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Introduction

In the last years the theory of irreversible investment under uncertainty has received

much attention in Economics as well as in Mathematics (see, for example, the extensive

review in Dixit and Pindyck [28]). From the mathematical point of view optimal irreversible

investment problems under uncertainty are singular stochastic control problems. In fact

the economic constraint that does not allow disinvestment may be modeled as a `monotone

follower' problem; that is a problem in which investment strategies are given by nondecreasing

stochastic processes, not necessarily absolutely continuous with respect to the Lebesgue

measure as functions of time. Work on `monotone follower' problems and their application to

Economics started with the pioneering papers by Karatzas, Karatzas and Shreve, El Karoui

and Karatzas (cf. [40], [42] and [32]), among others. These Authors studied the problem of

optimally minimizing a convex cost (or of optimally maximizing a concave pro�t) functional

when the production capacity is a Brownian motion tracked by a nondecreasing process, i.e.

the monotone follower. They showed that any such control problem is connected to a suitable

optimal stopping problem whose value function v is the derivative of the value function V of

the control problem; moreover, the optimal control ν∗ de�nes an optimal stopping time τ ∗ in a

very simple way through the formula τ ∗ := inf{t ∈ [0, T ] : ν∗(t) > 0}∧T . Later on, this kind

of link has been established also for more complicated dynamics of the controlled di�usion;

that is the case, for example, of a Geometric Brownian motion [2], or of a quite general

controlled Ito di�usion (see [13] and [20], among others). More recently, Boetius [14], and

Karatzas and Wang [47] showed that such connection holds in the case of bounded variation
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singular stochastic control problems as well; the value function of the control problem V

satis�es ∂
∂x
V = v, where v is the saddle point of a suitable Dynkin game, that is a zero-sum

optimal stopping game.

The link between irreversible investment problems and optimal stopping is also relevant

in Economics. In fact a �rm operating in a market with uncertainty not only has to decide

how to invest but also when to invest. The optimal timing problem is then related to option

theory, since it may be viewed as a `real option', an option whose strike price is the cost of

investment. It follows that exercising a real option means to invest properly at an optimal

time.

Usually (see Kobila [48], Chiarolla and Haussmann [18] and [20], Riedel and Su [59],

Oksendal [53] and Pham [55] among others) the optimal investment policy consists in waiting

until the marginal expected future pro�t is below the marginal cost of investment; on the

other hand, the times at which the future marginal expected pro�t equals the marginal cost

of investment are optimal times to invest. Such simple policy is traditionally known in the

economic literature as the `Net Present Value' method. It follows that from the mathematical

point of view one must �nd the region in which it is pro�table to invest immediately (the

so called `action region') and the region in which it is optimal to wait (the so called `no

action region'). The boundary between these two regions is the free boundary of the optimal

stopping problem naturally associated to the singular control one. The optimal investment

is then the least e�ort to keep the controlled process inside the closure of the `no-action'

region, i.e. it is the local time of the optimal controlled di�usion at the free boundary.

The investment problem becomes even harder if one takes into account the fact that

the available resources in which to invest may be limited. The problem turns into a `�nite

fuel' singular stochastic control problem: the total amount of e�ort (fuel) available to the

controller (for example the �rm's manager) is limited. The mathematical literature on this

�eld started in 1966 with Bather and Cherno� ([8] and [9]) in the context of controlling the

motion of a spaceship. Finite fuel monotone follower problems were then studied by Benes,
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Shepp and Witsenhausen in 1980 [10]. In 1985 Chow, Menaldi and Robin [26], by a PDE

approach, and Karatzas [43], by purely probabilistic arguments, showed that the optimal

policy of a `monotone follower' problem with constant �nite fuel consists in following the

unconstrained optimal policy until there is some fuel to spend. Much more di�cult is the

case of a �nite fuel speci�ed by a deterministic or stochastic time-dependent process. In 2005

Bank [7], without relying on any Markovian assumption, proved a suitable generalization of

the optimal policy proposed by Karatzas [43] when the �nite fuel is a stochastic, increasing,

adapted process θ(t). The Author characterized the optimal policy of a cost minimization

problem as the unique process satisfying some �rst order conditions for optimality ([7],

Theorem 1): the optimal control should be exercised only when its impact on future costs

is maximal; on the other hand, when the cost functional's subgradient tends to decrease,

then all the available fuel must be used. More in detail, if S(ν) is the Snell envelope of the

total cost functional's subgradient ∇νC(ν) (i.e. S(ν)(t) := ess inft≤τ≤T E{∇νC(ν)(τ)|Ft}),

andM(ν) +A(ν) is its Doob-Meyer decomposition, then Bank [7] proved that ν∗ is optimal

if and only if

(i) ν∗ is �at o� {∇νC(ν∗) = S(ν∗)}

(ii) A(ν∗) is �at o� {ν∗ = θ}.
(1)

Moreover the Author constructed the optimal control ν∗ in terms of the `base capacity'

process, a desirable value of capacity. Mathematically such process is the unique optional

solution of the Bank-El Karoui representation problem [6].

The Bank-El Karoui Representation Theorem allows to write an optional process Y =

{Y (t), t ∈ [0, T ]} as an optional projection of the form

Y (t) = E
{∫ T

t

f(s, sup
t≤v≤s

ξ(v)) ds
∣∣∣Ft}, t ∈ [0, T ], (2)

where f = f(t, ξ) is a prescribed function, strictly decreasing in ξ, and {ξ(t), t ∈ [0, T ]} is

a progressively measurable process to be found. It was shown in [6] that the representation

problem (2) is closely linked to the solution of stochastic optimization problems as contin-



Introduction 7

uous time dynamic allocation problems with a limited amount of e�ort to spend on a �xed

number of projects (e.g., cf. [31]), or the optimal consumption choice problem in a general

semimartingale setting with Hindy-Huang-Kreps utility functional (cf. [3]).

The optimal stochastic, irreversible investment problem of a �rm can also be involved

into more complex problems as, for example, the existence of the General Equilibrium in

a given economy. Roughly speaking, a market is in (intertemporal) equilibrium if prices

(of labour, money, goods and �nancial instruments) vary over the time so that the �rm's

manager can maximize the pro�ts of his company, the agents can optimize their utilities,

and still `market-clearing' conditions hold, i.e. there is a `balance' between supply forces

and demand forces. The mathematical treatment of such problem has been widely tackled

in several classic papers like [27], [29], [35], [45], [51]. Also the economic literature is quite

rich of models (usually in discrete time) which study the equilibrium problem for open and

closed economies, cf. [49] and [52] among others. In [17] Chiarolla and Haussmann studied

the equilibrium problem for a stochastic economy with consumption, wages and irreversible

investment, whereas in [22] money, supplied by the government, was also considered. For

an equilibrium model with irreversible investment simpler then that of [22], Paulsen [54]

analyzed money market returns and reached some interesting economic conclusions.

In this Thesis we treat continuous time, stochastic, irreversible investment problems with

both limited and unlimited resources. We develop a new approach based on �rst order con-

ditions for optimality which correspond to a stochastic, in�nite-dimensional analogue of the

Kuhn-Tucker conditions of real analysis. Our approach is based on the identi�cation of

investment plans with the cumulative distribution of optional random measures on [0, T ].

It does apply to very general semimartingale settings and not only to Markovian models;

therefore it may be seen as a non-Markovian substitute of the dynamic programming ap-

proach. Moreover, as we show in Chapter 2, when the state process is a di�usion, then the

dynamic programming method applies and our approach allows to obtain further regularity

of the free boundary and a new characterization of it.
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In Chapter 1 we study the Social Planner problem for a market with N �rms in which

the total investment is bounded by a stochastic, time-dependent �nite fuel θ(t), that is∑N
i=1 ν

(i)(t) ≤ θ(t) P-a.s. for all t ∈ [0, T ]. The Social Planner's objective is to pursue a

vector of e�cient irreversible investment processes ν∗ ∈ RN
+ that maximizes the aggregate

expected pro�t, net of investment cost, i.e.

sup∑N
i=1 ν

(i)≤θ

N∑
i=1

E
{∫ T

0

e−δ(t) R(i)(X(t), ν(i)(t))dt−
∫

[0,T )

e−δ(t)dν(i)(t)

}
.

Notice that the production function R(i) of �rm i, i = 1, 2, ..., N , depends directly on the

cumulative control exercised since in this problem we do not allow dynamics for the pro-

duction capacity. As in [48] and [59], the uncertain status of the economy is modeled by an

exogeneous economic shock {X(t), t ∈ [0, T ]}. The application of a version of Komlòs' theo-

rem for optional random measures (cf. [39]) allows us to prove existence and uniqueness of

optimal irreversible investement policies. Then we use the concavity of the pro�t functional

to characterize the optimal Social Planner policy as the unique solution of stochastic Kuhn-

Tucker conditions. The Lagrange multiplier takes the form of a nonnegative optional random

measure on [0, T ] whose support is the set of times for which the constraint is binding, i.e.

all the fuel is spent. Hence, as a subproduct we obtain an enlightening interpretation of the

�rst order conditions that Bank in [7] proved for a single �rm optimal investment problem.

Infact, condition (1)-(ii) may be interpreted as the Lagrange multiplier acting only when

the constraint is binding; this is due to the identi�cation of the Lagrange multiplier optional

measure with the increment of the compensator in the Doob-Meyer decomposition of the

net pro�t's supergradient at optimum.

Moreover, our generalized stochastic Kuhn-Tucker approach allows the explicit calcula-

tion of the Social Planner optimal investment strategy when the N �rms have the same

instantaneous production function (symmetric case) and, more interesting, in the case of

Cobb-Douglas production functions with a di�erent parameter for each �rm. The Social

Planner optimal policy is given in terms of the `base capacity' process, i.e. the unique
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solution of Bank-El Karoui's Representation Problem [6].

Chapter 1 is organized as follows: in Section 1.1 we present the model. The generalized

stochastic Kuhn-Tucker conditions for the Social Planner problem are introduced in Section

1.2. In Section 1.3 we test our approach on some `�nite-fuel' problems from the literature

(cf. [7], [10], [48]) and we solve some N -�rms Social Planner optimization problems.

In Chapter 2 we assume that the capacity is a di�usion process controlled by a nonde-

creasing process ν(t) representing the cumulative investment (as in Chiarolla and Haussmann

[20] but without leisure, wages and scrap value), i.e.
dCy,ν(t) = Cy,ν(t)[−µC(t)dt+ σC(t)dW (t)] + fC(t)dν(t), t ∈ [0, T ),

Cy,ν(0) = y > 0.

Here we allow for unlimited resources, i.e. θ(t) = +∞. The �rm's optimal investment

problem is

sup
ν

E
{∫ T

0

e−
∫ t
0 µF (s)dsR(Cy,ν(t))dt−

∫
[0,T )

e−
∫ t
0 µF (s)dsdν(t)

}
.

In [20] the Authors proved the existence of the optimal investment process ν̂. As expected,

the optimal time to invest τ ∗ was the solution of the associated optimal stopping problem.

In particular, under constant coe�cients and a Cobb-Douglas production function, they

obtained a variational formulation for the optimal stopping problem, i.e. a free boundary

problem. In order to characterize the moving boundary ŷ(t) through an integral equation,

the Authors proved the left-continuity of ŷ(t) and assumed its right-continuity (cf. [20],

Assumption-[Cfb]) since continuity of the free boundary was needed to prove the smooth

�t property. Rather than trying to generalize the variational approach to the case of time-

dependent coe�cients, we characterize the free boundary by exploiting the Bank-El Karoui

Representation Theorem (cf. [6]). In fact, by using the results in [6], Riedel and Su [59] in

their irreversible investment problem with deterministic capacity and pro�t rate in�uenced

by a stochastic parameter process, proved that invest just enough to keep the production

capacity above a certain lower bound (their `base capacity') is the optimal investment strat-
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egy. That means the optimal policy acts like the optimal control of the original monotone

follower problem (e.g., cf. [40] and [42]) or, more generally, irreversible investment problems

(cf. [2] and [20]). Hence in Chapter 2 we prove that the `base capacity' and the free boundary

arising in singular stochastic control problems are linked. That is done by identifying the

`base capacity' l∗(t) of our irreversible investment problem with ŷ(t). As a subproduct, in

the case of constant coe�cients and of a Cobb-Douglas production function, we obtain the

right-continuity of the free boundary, whereas the variational approach did not lead to it in

[20]. We start by proving some �rst order conditions for optimality. Then we obtain l∗(t)

as the unique solution of a representation problem in the spirit of Bank and El Karoui [6].

Hence we characterize the optimal solution of the investment problem in terms of l∗(t) by the

�rst order conditions for optimality. In particular, we prove that the `base capacity' l∗(t) is

deterministic and coincides with the free boundary ŷ(t) of the original irreversible investment

problem when the coe�cients of the controlled di�usion and the manager's discount factor

are deterministic. It turns out that the representation problem for l∗(t) provides an integral

equation for the free boundary which might be solved numerically by backward induction.

Notice that when T = +∞ we are able to �nd the explicit form of the free boundary

which we show to coincide with that obtained in [55] by H. Pham via a viscosity solution

approach.

Chapter 2 is organized as follows. In Section 2.1 we introduce the optimal investment

problem, whereas in Section 2.2 we derive the �rst order conditions for optimality. In Section

2.3 we obtain the optimal production capacity. Under Markovian assumptions, in Section

2.4 we show that l∗(t) is deterministic and coincides with ŷ(t). Section 2.5 is devoted to

the analysis of the Cobb-Douglas case with in�nite time horizon. In Section 2.6 we recall

the variational approach of Chiarolla and Haussmann [20] and we generalize some of their

results to the case of deterministic, time-dependent coe�cients. Such results are needed in

Section 2.4.

In Chapter 3 we embed the �rm's optimal irreversible investment problem into a stochas-
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tic continuous time economy on a �nite time interval as it was done in [22]. The economy of

[22] consists of a single perishable good producing �rm which has to decide on cash holdings,

levels of employment and investment for capacity expansion; rational agents that maximize

their total expected utility of consumption, money holding and leisure, some of them are

employed by the �rm to facilitate capacity expansion and some who are retired or on wel-

fare. Moreover, all the agents partecipate in a �nancial market consisting of a nominal

bond, a real bond (i.e. valued in real terms), another type of contract, called derivative, and

stocks of the �rm. The shares' owner receives dividends. The �rm produces a single kind

of perishable consumption good and to do that it employs labour, borrows capital for its

daily business, and sells shares to raise capital for capacity expansion. The agents and the

�rm's manager take the market parameters (e.g. the real interest rate, the wage process, the

nominal interest rate, the real dividend process...) as given, but their `optimal' value has to

be characterized at equilibrium by some stochastic �rst order conditions (`market-clearing'

conditions).

Rather than taking an exogeneous discount factor of the �rm's manager we assume that

it is the de�ator of the economy. It was shown in [22] that this leads to a very di�cult

random �xed point for the de�ator, the nominal interest rate and the wage process. We

study the existence of a solution to such �xed point problem. In the simpler case of no

leisure and no money, the de�ator may be thought as an element of the Skorohod space of

càdlàg processes endowed with the Meyer-Zheng topology (cf. [50] and Appendix A for a

brief introduction on such topology). Then, under some reasonable assumptions, we are able

to prove the continuity of the random operator arising in the �xed point problem and the

compactness of its domain. Hence an application of Schauder Theorem (see, for example,

[61]) guarantees the existence of an equilibrium de�ator.

Finally, in the Conclusions we discuss some possible developments of the research and

open problems.



Chapter 1

Generalized Kuhn-Tucker Conditions for

N-Firms Stochastic Irreversible

Investment under Limited Resources

In this Chapter we study a continuous time, optimal stochastic investment problem with

limited resources in a market with N �rms. The investment processes are subject to a time-

dependent stochastic constraint. Rather than using a dynamic programming approach, we

exploit the concavity of the pro�t functional to derive some necessary and su�cient �rst

order conditions for the corresponding Social Planner optimal policy. Our conditions are a

stochastic in�nite-dimensional generalization of the Kuhn-Tucker Theorem. As a subproduct

we obtain an enlightening interpretation of the �rst order conditions in Bank [7] for a single

�rm.

In the in�nite-horizon case with Cobb-Douglas production functions our method allows

the explicit calculation of the optimal policy in terms of the `base capacity' process, i.e. the

unique solution of the Bank and El Karoui representation problem [6].

1.1 The Model

We consider a market with N �rms on a time horizon T ≤ +∞. Let (Ω,F , {Ft}t∈[0,T ] ,P)

be a complete �ltered probability space with the �ltration {Ft, t ∈ [0, T ]} satisfying the
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usual conditions. The cumulative irreversible investment of �rm i, i = 1, 2, ..., N , denoted by

ν(i)(t), is an adapted process, nondecreasing, left-continuous, �nite a.s. s.t. ν(i)(0) = y(i) > 0.

The �rms are �nanced entirely by equities but we focus primarily on the irreversibility of

investments and do not model precisely the rest of the economy. It is reasonable to assume

that the �rms cannot invest in technologies or primary resources as much as they like. In

fact, we assume that the total amount of technologies and available primary resources in

the market is a �nite quantity θ(t), at each time t, depending on the status of the economy.

That is,
N∑
i=1

ν(i)(t) ≤ θ(t), P− a.s., for t ∈ [0, T ]. (1.1)

The stochastic time-dependent constraint {θ(t), t ∈ [0, T ]} is the cumulative amount of

resources extracted or technologies produced up to time t. It is a nonnegative and increasing

adapted process with left-continuous paths, which starts at time zero from θ(0) = θo > 0.

We assume

E{θ(T )} < +∞. (1.2)

We denote by Sθ the nonempty set of admissible investment plans, i.e.

Sθ := {ν : Ω× [0, T ]→ RN
+ , nondecreasing, left-continuous, adapted process s.t.

ν(i)(0) = y(i), P− a.s., i = 1, 2, ..., N, and
N∑
i=1

ν(i)(t) ≤ θ(t), P− a.s. ∀t ∈ [0, T ]}.

Let {X(t), t ∈ [0, T ]} be some exogenous real-valued state variable progressively measur-

able with respect to Ft. It may be regarded as an economic shock, re�ecting the changes in

technological ouput, demand and macroeconomic conditions which have direct or indirect

e�ect on the �rm's pro�t. At the moment we do not make any Markovian assumption.

We work in a moneyless world and so all the quantities are measured in units of capital

goods. That implies that the unitary price of the investment is set identically equal to one.

We take the point of view of a �ctitious Social Planner aiming to maximize the aggregate

expected pro�t, net of investment costs, JSP (ν) (see equation (1.5) below). We denote by
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δ(t) the Social Planner discount factor. δ(t) is a nonnegative, optional process, bounded

uniformly in (ω, t) ∈ Ω× [0, T ]. Assumption (1.2) ensures

E
{∫

[0,T )

e−δ(t) dν(i)(t)

}
< +∞, i = 1, 2, ..., N, (1.3)

i.e. the investment plan's expected net present value of �rm i is �nite.

The production function of �rm i, i = 1, 2, ..., N , is R(i) : R×R+ → R+. At time t, when

�rm i investment is ν(i)(t), R(i)
(
X(t), ν(i)(t)

)
represents the amount of goods produced by

�rm i under the shock process X(t).

The Social Planner problem is

VSP := sup
ν∈Sθ
JSP (ν), (1.4)

where

JSP (ν) :=
N∑
i=1

Ji(ν(i)) (1.5)

and, for i = 1, 2, ..., N ,

Ji(ν(i)) = E
{∫ T

0

e−δ(t) R(i)(X(t), ν(i)(t))dt−
∫

[0,T )

e−δ(t)dν(i)(t)

}
. (1.6)

Notice that Ji(ν(i)) is the expected total pro�t, net of investment costs, of �rm i when the

Social Planner picks ν ∈ Sθ.

The production functions satisfy the following concavity and regularity assumptions.

Assumption 1.1.1.

1. For every x ∈ R and i = 1, 2, ..., N , the mapping y → R(i)(x, y) is increasing, strictly

concave, with continuous decreasing partial derivative R
(i)
y (x, y) satisfying the Inada

conditions

lim
y→0

R(i)
y (x, y) =∞, lim

y→∞
R(i)
y (x, y) = 0.
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2. R(i)
(
X(ω, t), ν(i)(ω, t)

)
is dP⊗ dt-integrable, for i = 1, 2, ..., N .

3. The process

(ω, t) −→ sup
ν(i)(ω,t) : ν∈Sθ

R(i)(X(ω, t), ν(i)(ω, t))

is dP⊗ dt-integrable, for i = 1, 2, ..., N .

Under (1.2) and Assumption 1.1.1 the net pro�t Ji(ν(i)) is well de�nite and �nite for all

admissible plans.

In the next Section we show how to handle constraint (1.1) in order to �nd the solution

to Social Planner problem (1.4).

1.2 A Stochastic Kuhn-Tucker Approach

In this Section we aim to �nd an optimal investment plan by means of a gradient ap-

proach. As in [59], proof of Theorem 2.6, by applying a suitable version of Komlòs' Theorem

for optional random measures (cf. [39], Lemma 3.5), we obtain existence and uniqueness of

a solution to problem (1.4). Komlòs' Theorem states that a sequence of random variables

(Zn)n∈N upper-bounded in expectation, has a subsequence (Znk)k∈N which converges in the

Cesàro sense to some random variable Z. The limit identi�ed by Komlòs' Theorem turns

out to be the optimal investment strategy.

Theorem 1.2.1. Under (1.2) and Assumption 1.1.1, there exists a unique optimal vector of

irreversible investment plans ν∗ ∈ Sθ for problem (1.4).

Proof. Let ν ∈ Sθ and denote by H the space of optional measures on [0, T ]. Then, the

investment strategies ν(i) may be regarded as elements of H, hence Sθ ⊂ HN .

Let (νn)n∈N be a maximizing sequence of investment plans in Sθ, i.e. a sequence such

that lim
n→∞

JSP (νn) = VSP . By (1.2) we have that the sequence (E{ν(i)
n (T )})n∈N is bounded

for i = 1, 2, ..., N ; in fact, E{ν(i)
n (T )} ≤ E {θ(T )} < ∞. By a version of Komlòs' Theorem

for optional measures, there exists a subsequence (ν̂n)n∈N that converges weakly a.s. in the
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Cesàro sense to some random vector ν∗ ∈ HN . That is, for i = 1, 2, ..., N , we have, almost

surely,

Î(i)
n (t) :=

1

n

n∑
j=0

ν̂
(i)
j (t)→ ν(i)

∗ (t), as n→∞. (1.7)

Notice that ν̂n ∈ Sθ for all n implies that also the Cesàro sequence În belongs to Sθ due to

the convexity of Sθ, hence
∑N

i=1 Î
(i)
n (t) ≤ θ(t), for n ∈ N. It follows that, almost surely,

N∑
i=1

ν(i)
∗ (t) ≤ θ(t), (1.8)

which means ν∗ ∈ Sθ.

Since (ν
(i)
n )n∈N is a maximizing sequence so is (Î

(i)
n )n∈N by concavity of the pro�t func-

tional. Then Jensen inequality and the dominated convergence theorem yield

JSP (ν∗) ≥ lim
n→∞

1

n

n∑
j=0

JSP (ν̂n) = VSP . (1.9)

Finally, uniqueness follows from the strict concavity of the Social Planner pro�t functional.

We now aim to characterize the Social Planner optimal policy as the unique solution

of a set of �rst order generalized stochastic Kuhn-Tucker conditions. Notice that the strict

concave functionals Ji, i = 1, 2, ..., N , admit the supergradient

∇yJi(ν(i))(t) := E
{ ∫ T

t

e−δ(s) R(i)
y (X(s), ν(i)(s)) ds

∣∣∣Ft}− e−δ(t)1{t<T} (1.10)

for t ∈ [0, T ].

Remark 1.2.2. The quantity∇yJi(ν(i))(t), i = 1, 2, ..., N , may be interpreted as the marginal

expected pro�t resulting from an additional in�nitesimal investment at time t when the in-

vestment plan is ν(i). Mathematically, ∇yJi(ν(i)) is the Riesz representation of the pro�t

gradient at ν(i). More precisely, de�ne ∇yJi(ν(i)) as the optional projection of the progres-

sively measurable process

Φi(ω, t) :=

∫ T

t

e−δ(ω,s) R(i)
y (X(ω, s), ν(i)(ω, s)) ds − e−δ(ω,t)1{t<T}, (1.11)
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for ω ∈ Ω, and t ∈ [0, T ]. Hence∇yJi(ν(i)) is uniquely determined up to P-indistinguishability

and it holds

E
{ ∫

[0,T )

∇yJi(ν(i))(t)dν(i)(t)

}
= E

{ ∫
[0,T )

Φi(t)dν
(i)(t)

}
for all admissible ν(i)(t) (cf. Theorem 1.33 in [36]).

1.2.1 Generalized Stochastic Kuhn-Tucker Conditions

Let B[0, T ] denote the Borel σ-algebra on [0, T ]. Recall that if β(t) is a right-continuous,

adapted and nondecreasing process, then the bracket operator

〈α, β〉 = E
{ ∫

[0,T )

α(t) dβ(t)

}
(1.12)

is well de�ned (possibly in�nite) for all processes α(t) which are nonnegative and FT⊗B[0, T ]-

measurable. Notice that the bracket is preserved when we pass from α to its optional

projection α(o) (cf. [36], Theorem 1.33); that is

〈α, β〉 = 〈α(o), β〉. (1.13)

Since the constraint is θ(t)−
∑N

i=1 ν
(i)(t) ≥ 0, P-a.s. for all t ∈ [0, T ] (cf. (1.1)), we de�ne

the Lagrangian functional of problem (1.4) as

Lθ(ν, λ) = JSP (ν) + 〈θ −
N∑
i=1

ν(i), λ〉

=
N∑
i=1

E
{∫ T

0

e−δ(t) R(i)(X(t), ν(i)(t))dt−
∫

[0,T )

e−δ(t)dν(i)(t)

}
(1.14)

+E
{ ∫

[0,T )

[θ(t)−
N∑
i=1

ν(i)(t)]dλ(t)

}
,

where dλ(ω, t) is a nonnegative optional measure, which may be interpreted as the Lagrange

multiplier of Social Planner problem (1.4). By using Fubini's Theorem we write the bracket

〈θ −
∑N

i=1 ν
(i), λ〉 in a more convenient form, that is



1.2 A Stochastic Kuhn-Tucker Approach 18

〈θ −
N∑
i=1

ν(i), λ〉 = E
{ ∫

[0,T )

[θ(t)−
N∑
i=1

ν(i)(t)]dλ(t)

}

= E
{ ∫

[0,T )

[ ∫
[0,t)

(dθ(s)−
N∑
i=1

dν(i)(s))
]
dλ(t)

}
+ K E

{ ∫
[0,T )

dλ(t)

}

= E
{ ∫

[0,T )

[ ∫
[t,T )

dλ(s)
]
(dθ(t)−

N∑
i=1

dν(i)(t))

}
+ K E

{ ∫
[0,T )

dλ(t)

}
,

where K := θo −
∑N

i=1 y
(i) = θ(0)−

∑N
i=1 ν

(i)(0). Hence

Lθ(ν, λ) = JSP (ν) + 〈θ −
N∑
i=1

ν(i), λ〉

=
N∑
i=1

E
{∫ T

0

e−δ(t) R(i)(X(t), ν(i)(t))dt−
∫

[0,T )

e−δ(t)dν(i)(t)

}

+E
{ ∫

[0,T )

[ ∫
[t,T )

dλ(s)
]
(dθ(t)−

N∑
i=1

dν(i)(t))

}
+ K E

{ ∫
[0,T )

dλ(t)

}
.

As done in [3] for an intertemporal utility maximization problem under uncertainty with

Hindy, Huang and Kreps preferences, we now obtain stochastic Kuhn-Tucker conditions for

optimality.

Theorem 1.2.3. Under (1.2) and Assumption 1.1.1, an admissible investment vector ν∗ is

the unique solution of the Social Planner problem (1.4) if there exists a nonnegative Lagrange

multiplier measure dλ(ω, t) such that E{
∫

[0,T )
dλ(t)} < ∞, and the following generalized

stochastic Kuhn-Tucker conditions hold true for i = 1, 2, ..., N

∇yJi(ν(i)
∗ )(t) ≤ E

{ ∫
[t,T )

dλ(s)
∣∣∣Ft}, P− a.s., ∀t ∈ [0, T ),

∫
[0,T )

[
∇yJi(ν(i)

∗ )(t)− E
{ ∫

[t,T )

dλ(s)
∣∣∣Ft}]dν(i)

∗ (t) = 0, P− a.s.,

E
{ ∫

[0,T )

[θ(t)−
N∑
i=1

ν(i)
∗ (t)]dλ(t)

}
= 0.

(1.15)
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Proof. Let ν∗ satisfy the �rst order Kuhn-Tucker conditions (1.15) and let ν be an arbitrary

admissible plan. By concavity of R(i)(x, ·), i = 1, 2, ..., N , and Fubini's Theorem we have

JSP (ν∗)− JSP (ν) =
N∑
i=1

E
{ ∫ T

0

e−δ(t)[R(i)(X(t), ν(i)
∗ (t))−R(i)(X(t), ν(i)(t)) ]dt

−
∫

[0,T )

e−δ(t)d(ν(i)
∗ (t)− ν(i)(t))

}
≥

N∑
i=1

E
{ ∫ T

0

e−δtR(i)
y (X(t), ν(i)

∗ (t)) (ν(i)
∗ (t)− ν(i)(t)) dt (1.16)

−
∫

[0,T )

e−δ(t)d(ν(i)
∗ (t)− ν(i)(t))

}
=

N∑
i=1

E
{ ∫

[0,T )

∫ T

s

e−δ(t)R(i)
y (X(t), ν(i)

∗ (t)) dt d(ν(i)
∗ (s)− ν(i)(s))

−
∫

[0,T )

e−δ(s)d(ν(i)
∗ (s)− ν(i)(s))

}
=

N∑
i=1

E
{ ∫

[0,T )

∇yJi(ν(i)
∗ )(t) d(ν(i)

∗ (t)− ν(i)(t))

}
.

Now (1.15) implies

JSP (ν∗)− JSP (ν) ≥
N∑
i=1

E
{ ∫

[0,T )

∇yJi(ν(i)
∗ )(t) d(ν(i)

∗ (t)− ν(i)(t))

}

≥
N∑
i=1

E
{ ∫

[0,T )

E
{ ∫

[t,T )

dλ(s)
∣∣∣Ft} d(ν(i)

∗ (t)− ν(i)(t))

}
(1.17)

=
N∑
i=1

E
{ ∫

[0,T )

[ ∫
[t,T )

dλ(s)
]
d(ν(i)
∗ (t)− ν(i)(t))

}
and the nonnegativity of dλ(t), the admissibility of ν, and another application of Fubini's

Theorem give

JSP (ν∗)− JSP (ν) ≥
N∑
i=1

E
{ ∫

[0,T )

[ ∫
[t,T )

dλ(s)
]
d(ν(i)
∗ (t)− ν(i)(t))

}

= E
{ ∫

[0,T )

N∑
i=1

[ν(i)
∗ (t)− ν(i)(t)]dλ(t)

}

= E
{ ∫

[0,T )

[θ(t)−
N∑
i=1

ν(i)(t)]dλ(t)

}
≥ 0,
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where the last line follows from (1.15), third condition.

Conditions (1.15) are also necessary for optimality under the assumption that

ω → θ(ω, T )

∫ T

0

R(i)(X(ω, t), θ(ω, T ))dt is dP− integrable, i = 1, 2, ..., N. (1.18)

The proof is based on arguments similar to those used in the �nite-dimensional Kuhn-Tucker

Theorem. Denote by T the set of all stopping times in [0, T ], P-a.s., and notice that

∇yJi(ν(i)
∗ )(τ) ≤ E

{∫
[τ,T )

dλ(s)
∣∣∣Fτ},

for every i = 1, 2, ..., N and for all τ ∈ T . In fact, if not, then there would exist some τ ∈ T

such that ∇yJi(ν(i)
∗ )(τ) > E{

∫
[τ ,T )

dλ(s)|Fτ} which, togheter with the continuity of R(i)
y and

the linearity of investment costs, would imply that a su�ciently small extra investment at

τ is pro�table and hence contradict the optimality of ν(i)
∗ , i = 1, 2, ..., N .

In the next Lemma we show that under (1.18) the optimal policy ν∗ solves the linearized

problem

sup
ν∈Sθ

N∑
i=1

E
{ ∫

[0,T )

Φ∗i (s)dν
(i)(s)

}
(1.19)

where Φ∗i is the progressively measurable process associated to ∇yJi(ν(i)
∗ ), i = 1, 2, ..., N ,

and de�ned in (1.11). Solutions of the linear problem will then be characterized by some

`�at-o� conditions' in the second Lemma.

Lemma 1.2.4. Let ν∗ be optimal for problem (1.4) and assume (1.18). Then it solves (1.19).

Proof. Let ν be an admissible plan. For i = 1, 2, ..., N and ε ∈ (0, 1), set ν(i)
ε = εν(i) +

(1− ε)ν(i)
∗ and let Φε

i be the progressively measurable process de�ned in (1.11) associated to

∇νiJi(ν
(i)
ε ). Then limε→0 ν

(i)
ε (t) = ν

(i)
∗ (t), P-a.s., as well as limε→0 Φε

i(t) = Φ∗i (t), P-a.s., by

continuity of R(i)
y . Optimality of ν∗, concavity of y → R(i)(X(t), y) and Fubini's Theorem,
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imply

0 ≥ 1

ε
[JSP (νε)− JSP (ν∗)]

=
1

ε

N∑
i=1

E
{ ∫ T

0

e−δ(t)[R(i)(X(t), ν(i)
ε (t))−R(i)(X(t), ν(i)

∗ (t)) ]dt

−ε
∫

[0,T )

e−δ(t)d(ν(i)(t)− ν(i)
∗ (t))

}
(1.20)

≥
N∑
i=1

E
{ ∫

[0,T )

Φε
i(t)d(ν(i)(t)− ν(i)

∗ (t))

}
,

since ε(ν(i) − ν(i)
∗ ) = ν

(i)
ε − ν(i)

∗ .

In order to prove that

N∑
i=1

E
{ ∫

[0,T )

Φ∗i (t) d(ν(i)(t)− ν(i)
∗ (t))

}
≤ 0

we need to apply Fatou's Lemma to conclude (by (1.20))

N∑
i=1

E
{ ∫

[0,T )

Φ∗i (t) d(ν(i)(t)− ν(i)
∗ (t))

}
≤ lim inf

ε→0

N∑
i=1

E
{ ∫

[0,T )

Φε
i(t) d(ν(i)(t)− ν(i)

∗ (t))

}
≤ 0.

To check the hypothesis of Fatou's Lemma, we must �nd dP-integrable random variables,

Gi(ω), i = 1, 2, ..., N , such that

Iεi (ω) :=

∫
[0,T )

Φε
i(ω, t) d(ν(i)(ω, t)− ν(i)

∗ (ω, t)) ≥ Gi(ω), ε ∈ (0, 1).

We write Iεi as

Iεi =

∫ T

0

e−δ(t)R(i)
y (X(t), ν(i)

ε (t))(ν(i)(t)− ν(i)
∗ (t))dt−

∫
[0,T )

e−δ(t)d(ν(i)(t)− ν(i)
∗ (t)) (1.21)

by Fubini's Theorem. Then, from concavity of R(i)(x, ·) and

ν(i)
ε (t)


≤ ν(i)(t), on {t : ν(i)(t)− ν(i)

∗ (t) ≥ 0},

> ν(i)(t), on {t : ν(i)(t)− ν(i)
∗ (t) < 0}.

(1.22)
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we obtain

Iεi ≥
∫ T

0

e−δ(t)R(i)
y (X(t), ν(i)(t)) (ν(i)(t)− ν(i)

∗ (t))1{ν(i)(·)≥ν(i)∗ (·)}(t)dt

+

∫ T

0

e−δ(t)R(i)
y (X(t), ν(i)(t)) (ν(i)(t)− ν(i)

∗ (t))1{ν(i)(·)<ν(i)∗ (·)}(t)dt

−
∫

[0,T )

e−δ(t)d(ν(i)(t)− ν(i)
∗ (t))

=

∫ T

0

e−δ(t)R(i)
y (X(t), ν(i)(t)) (ν(i)(t)− ν(i)

∗ (t))dt

−
∫

[0,T )

e−δ(t)d(ν(i)(t)− ν(i)
∗ (t))

=

∫
[0,T )

∇yJi(ν(i))(t) d(ν(i)(t)− ν(i)
∗ (t)).

Hence we de�ne

Gi(ω) :=

∫
[0,T )

∇yJi(ν(i))(ω, t)d(ν(i)(ω, t)− ν(i)
∗ (ω, t)). (1.23)

Now (1.2), Assumption 1.1.1 and condition (1.18), imply the integrability of Gi(ω) since

|Gi(ω)| ≤ C[θ(ω, T ) + (1 + θ(ω, T ))
∫ T

0
R(i) (X(ω, t), θ(ω, T )) dt] with C a constant.

Lemma 1.2.5. Let fi, i = 1, 2, ..., N , be optional processes and de�ne

µ(s) := max
{
f+

1 (s), f+
2 (s), ..., f+

N (s)
}
. (1.24)

Then every solution ν̂ to the linear optimization problem

sup
ν∈Sθ

N∑
i=1

E
{ ∫

[0,T )

fi(s) dν
(i)(s)

}
(1.25)

satis�es the `�at-o� conditions'

E
{ ∫

[0,T )

(fi(s)− µ(s)) dν̂(i)(s)

}
= 0, i = 1, 2, ..., N. (1.26)

Proof. Obviously

N∑
i=1

E
{ ∫

[0,T )

fi(s) dν
(i)(s)

}
≤

N∑
i=1

E
{ ∫

[0,T )

µ(s) dν(i)(s)

}
. (1.27)
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The equality holds if and only if ν satis�es (1.26). In fact (1.26) implies the equality.

Conversely, if equality holds in (1.27), then
∑N

i=1 E{
∫

[0,T )
(fi(s)− µ(s)) dν(i)(s)} = 0. Hence

(1.26) follows from the fact that the integrands are nonpositive.

Remark 1.2.6. We point out that our stochastic Kuhn-Tucker approach may be generalized

to the case of investment processes also bounded from below by a stochastic process. In that

case the Lagrangian functional is de�ned in terms of two Lagrange multipliers, dλ1(ω, t) and

dλ2(ω, t).

1.3 Applications of the Kuhn-Tucker Conditions

In this Section we test our approach on some `�nite-fuel' problems from the literature (cf.

[7] and [43], among others) and we solve a N -�rms Social Planner optimization problem. In

the following examples we assume δ(t) = δt, with δ > 0, and T = +∞.

1.3.1 The Finite Fuel Monotone Follower of Bank [7]

In the setting of Section 1.1, under (1.2) and Assumption 1.1.1, we take N = 1 and

T = +∞. We set ν := ν(1), y := y(1), R := R(1) and J := J1. Notice that with

c(ω, t, ν(ω, t)) := −e−δtR(X(ω, t), ν(ω, t)),

and instantaneous cost of investment

k(ω, t) := −e−δt,

we �t into Bank's model [7]. Recall that Bank's optimal investment (cf. [7], Theorem 2) was

given by

ν∗(t) := sup
0≤s<t

(l(s) ∧ θ(s)) ∨ y (1.28)

in terms of the `base capacity' process l(t) (cf. [59] for this de�nition) which solves uniquely

the stochastic backward equation (cf. [6], Theorem 3)

E
{ ∫ ∞

τ

e−δsRy(X(s), sup
τ≤u<s

l(u)) ds
∣∣∣Fτ} = e−δτ , ∀τ ∈ T . (1.29)
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When l(t) is a continuous process we show the optimality of ν∗(t) by means of our Gener-

alized Kuhn-Tucker conditions; as a subproduct we obtain an enlightening interpretation of

the �rst order conditions stated in [7], Theorem 1, for a single �rm optimal investment prob-

lem. Notice that continuity of l(t) is guaranteed when the shock process X(t) is continuous

as well, as in the case of a di�usion (cf. [59], Theorem 6.5).

Recall that the supergradient of the net pro�t functional is the unique optional process

given by

∇yJ (ν)(t) := E
{ ∫ ∞

t

e−δsRy (X(s), ν(s)) ds
∣∣∣Ft}− e−δt. (1.30)

By Theorem 1.2.3 an investment plan ν∗(t) is optimal if

∇yJ (ν∗)(t) ≤ E
{ ∫ ∞

t

dλ(s)
∣∣∣Ft}, P− a.s., t ≥ 0, (1.31)

∫ ∞
0

[
∇yJ (ν∗)(t)− E

{ ∫ ∞
t

dλ(s)
∣∣∣Ft}] dν∗(t) = 0, P− a.s., (1.32)

ν∗(t) ≤ θ(t), P− a.s., ∀t ≥ 0, (1.33)

E
{ ∫ ∞

0

(θ(t)− ν∗(t)) dλ(t)

}
= 0, (1.34)

for some nonnegative optional random measure dλ(ω, t) such that E{
∫∞

0
dλ(s)} < +∞.

Lemma 1.3.1. For all t ≥ 0 such that ν∗(t) = θ(t) a.s., one has Ry(X(t), θ(t)) ≥ δ a.s.

Proof. Let t ≥ 0 such that ν∗(t) = θ(t) a.s. Hence l(t) ≥ θ(t) a.s. and thereforeRy(X(t), θ(t)) ≥

Ry(X(t), l(t)) a.s. due to the decreasing property of the mapping y → Ry(X(t), y). Recall

that the base capacity process l(t) was de�ned in [6], Theorem 1, as

l(t) = ess inf
s≥t

ls,t, (1.35)

where the Ft-measurable random variable ls,t is the unique solution of the equation

E
{ ∫ s

t

e−δuRy (X(u), ls,t) du
∣∣∣Ft} = E

{
e−δt − e−δs

∣∣∣Ft}. (1.36)
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Hence for each stopping time τ ≥ t by (1.36) we have

E
{ ∫ τ

t

e−δuRy (X(u), l(t)) du
∣∣∣Ft} ≥ E

{
e−δt − e−δτ

∣∣∣Ft}, (1.37)

since y → Ry(X(t), y) is decreasing.

Therefore if ε > 0 and τε(t) := inf{u ≥ t : Ry (X(u), l(t)) > Ry (X(t), l(t)) + ε} we have

E
{ ∫ τε(t)

t

e−δuRy (X(u), l(t)) du
∣∣∣Ft} ≥ E

{
e−δt − e−δτε(t)

∣∣∣Ft}.
On the other hand, the de�nition of τε(t) implies

E
{ ∫ τε(t)

t

e−δuRy (X(u), l(t)) du
∣∣∣Ft} ≤ 1

δ
(Ry (X(t), l(t)) + ε)E

{
e−δt − e−δτε(t)

∣∣∣Ft}.
Therefore Ry (X(t), l(t)) + ε ≥ δ. By taking ε → 0 we obtain Ry (X(t), l(t)) ≥ δ, and hence

also Ry (X(t), θ(t)) ≥ δ a.s.

Theorem 1.3.2. If the base capacity process l(t) has continuous paths, then ν∗(t) (cf. (1.28))

is optimal and the Lagrange multiplier dλ(t) is absolutely continuous with respect to the

Lebesgue measure.

Proof. It su�cies to check the Generalized Kuhn-Tucker conditions (1.31) - (1.34) for ν∗(t).

Obviously ν∗(t) satis�es (1.33). Recall that the available resources process θ(t) is increasing

and left-continuous. To show (1.31) and (1.32), �x τ ∈ T , set τ0 := τ , and recursively de�ne{
τ2n := inf{s > τ2n−1 : l(s) ≤ θ(s+)}
τ2n+1 := inf{s > τ2n : l(s) > θ(s)} (1.38)

with the convention inf{∅} = +∞. Notice that time τ2n+1, n ≥ 0, is a time of increase for

l(t). Then

ν∗(s) = θ(s) for s ∈ (τ2n+1, τ2n+2],

and

ν∗(s) = sup
τ2n≤u<s

l(u) for s ∈ (τ2n, τ2n+1],
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by the continuity of l(t). Moreover we have l(s) ≤ θ(s) for s ∈ (τ, τ1], hence supτ≤u<s (l(u) ∧ θ(u)) =

supτ≤u<s l(u).

Recalling (1.28) and the previous considerations we have

E
{ ∫ ∞

τ

e−δsRy (X(s), ν∗(s)) ds
∣∣∣Fτ}

= E
{ ∫ τ1

τ

e−δsRy(X(s), ν∗(s))ds
∣∣∣Fτ}

+
∞∑
n=1

E
{ ∫ τn+1

τn

e−δsRy(X(s), ν∗(s))ds
∣∣∣Fτ}

≤ E
{ ∫ τ1

τ

e−δsRy(X(s), sup
τ≤u<s

l(u) ∧ θ(u))ds
∣∣∣Fτ} (1.39)

+
∞∑
n=1

E
{ ∫ τ2n

τ2n−1

e−δsRy(X(s), θ(s))ds
∣∣∣Fτ}

+
∞∑
n=1

E
{ ∫ τ2n+1

τ2n

e−δsRy(X(s), sup
τ2n≤u<s

l(u))ds
∣∣∣Fτ},

where the equality holds if and only if τ is a point of increase for ν∗. By de�nition of τ1,

from (1.39) we get

E
{ ∫ ∞

τ

e−δsRy(X(s), ν∗(s))ds
∣∣∣Fτ}

≤ E
{ ∫ τ1

τ

e−δsRy(X(s), sup
τ≤u<s

l(u))ds
∣∣∣Fτ} (1.40)

+
∞∑
n=1

E
{ ∫ τ2n

τ2n−1

e−δsRy(X(s), θ(s))ds
∣∣∣Fτ}

+
∞∑
n=1

E
{ ∫ τ2n+1

τ2n

e−δsRy(X(s), sup
τ2n≤u<s

l(u))ds
∣∣∣Fτ}.

Since τ1 and all odd indexed stopping times are times of increase for the process l(t), hence

supτ≤u<s l(u) = supτ1≤u<s l(u) for s > τ1, and supτ2n≤u<s l(u) = supτ2n+1≤u<s l(u) for s >

τ2n+1. Therefore, from (1.40) the stochastic backward equation (1.29) implies

E
{ ∫ ∞

τ

e−δsRy(X(s), ν∗(s))ds
∣∣∣Fτ} = E

{
e−δτ − e−δτ1

∣∣∣Fτ}
+
∞∑
n=1

E
{ ∫ τ2n

τ2n−1

e−δsRy(X(s), θ(s))ds
∣∣∣Fτ}



1.3 Applications of the Kuhn-Tucker Conditions 27

+
∞∑
n=1

E
{
e−δτ2n − e−δτ2n+1

∣∣∣Fτ}
= e−δτ +

∞∑
n=1

E
{ ∫ τ2n

τ2n−1

e−δs[Ry(X(s), θ(s))− δ]ds
∣∣∣Fτ}

= e−δτ + E
{∫ ∞

τ

e−δs[Ry(X(s), θ(s))− δ]1(s){ν∗=θ}ds
∣∣∣Fτ} .

Notice that the process e−δt[Ry(X(t), θ(t))− δ]1{ν∗=θ}(t) is nonnegative by Lemma 1.3.1 and

it is Ft ⊗ B([0, t])−measurable. Hence, we set

dλ(t) := e−δt[Ry(X(t), θ(t))− δ]1{ν∗=θ}(t)dt (1.41)

and we show that it is the optional measure Lagrange multiplier. Let us start by showing

that dλ(t) is an optional random measure on R+. That is, the continuous, increasing process

Λ(t) :=

∫
[0,t)

dλ(s) (1.42)

is adapted to the �ltration {Ft}t≥0. Assumption 1.1.1 and concavity of R in the second

argument, imply that

E{Λ(t)} = E
{ ∫ t

0

e−δs[Ry(X(s), θ(s))− δ]1{ν∗=θ}(s) ds
}

≤ E
{ ∫ t

0

e−δsRy(X(s), θo)1{ν∗=θ}(s) ds

}
≤ E

{∫ ∞
0

e−δsRy(X(s), θo) ds

}
(1.43)

≤ 1

θo
E
{∫ ∞

0

sup
ν(s)∈Sθ

R(X(s), ν(s)) ds

}
< +∞.

Hence Λ(t) is dP-integrable and e−δt[Ry(X(t), θ(t)) − δ]1{ν∗=θ}(t) is dP ⊗ dt-integrable on

Ω×R+. Therefore, by Fubini's Theorem, the application ω → Λ(ω, t) is Ft-measurable and

hence Λ is adapted. Then it is predictable since it is continuous.

It follows that (1.31) and (1.32) hold and hence the process (1.28) is optimal by Theorem

1.2.3.
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Remark 1.3.3. The usual interpretation of the Lagrange multiplier as the shadow price of

the value function may be heuristically shown as follows. After an integration by parts on

the cost term, we may write the value function as

V (θ) = E
{∫ ∞

0

e−δt
[
R(X(t), sup

0≤s<t
(l(s) ∧ θ(s)))− δ sup

0≤s<t
(l(s) ∧ θ(s))

]
dt

}
.

Now, if ν∗(t) = sup0≤s<t(l(s) ∧ θ(s)), then 1{ν∗=θ} is the derivative (in some sense) of ν∗

with respect to θ. We thus expect that the `derivative' of V with respect to the constraint θ

is e−δt[Ry(X(t), θ(t)) − δ]1{ν∗=θ}(t), which is exactly the density of the Lagrange multiplier

in the case of a continuous `base capacity' l(t).

Proposition 1.3.4. The process G(t) := E{Λ(∞) |Ft} is a uniformly integrable martingale.

Proof. By Assumption 1.1.1 the random variable Λ(∞) (cf. (1.42)) is dP-integrable. Hence

the process G(t) is a uniformly integrable martingale.

Proposition 1.3.5. The process

U(t) := E
{ ∫ ∞

t

dλ(s)
∣∣∣Ft} = E{Λ(∞) |Ft} − Λ(t) = G(t)− Λ(t) (1.44)

is a supermartingale of class (D) and G(t)− Λ(t) is its unique Doob-Meyer decomposition.

Proof. Recall (cf. proof of Theorem 1.3.2) that the process Λ(t) of (1.42) is increasing,

adapted, continuous and integrable. Then U(t) is dP-integrable. Moreover, being dλ non-

negative, for s ≤ t we have E{U(t) |Fs} ≤ U(s), i.e. U(t) is a supermartingale. Assumption

1.1.1 guarantees that it belongs to class (D). Hence G(t) − Λ(t) is the unique Doob-Meyer

decomposition of the supermartingale U(t) and therefore the process Λ(t) is the compensator

of U(t).

If S(ν) is the Snell envelope of the supergradient ∇yJ (ν), i.e.

S(ν)(t) = ess sup
t≤τ≤+∞

E {∇yJ (ν)(τ)|Ft} , (1.45)
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then [7], Theorem 1, claims that the optimal investment plan ν∗ is characterized by the

following conditions {
ν∗ is �at o� {∇yJ (ν∗) = S(ν∗)}
A(ν∗) is �at o� {ν∗ = θ}, (1.46)

where A(ν∗) is the predictable increasing process in the Doob-Meyer decomposition of the

supermartingale S(ν∗). Moreover S(ν∗)(t) = E {A(∞)− A(t) |Ft} since ∇yJ (ν∗)(∞) = 0. If

(1.18) holds, then (1.46), (1.31) and (1.32) imply that

U(t) ≡ S(ν∗)(t) (1.47)

at times of investment (when A(ν∗) and dλ are not �at). This argument allows an enlight-

ening interpretation of the increasing, predictable, integrable process Λ(t). In fact at times

of investment

G(t)− Λ(t) = E
{ ∫ ∞

t

dλ(s)
∣∣∣Ft} ≡ S(ν∗)(t) =M(ν∗)(t)− A(ν∗)(t), (1.48)

where M(ν∗) is the martingale process in the unique Doob-Meyer decomposition of S(ν∗).

By uniqueness

E
{ ∫ ∞

0

dλ(s)
∣∣∣Ft} ≡M(ν∗)(t) and Λ(t) ≡ A(ν∗)(t), (1.49)

hence

dA(ν∗)(t) ≡ dλ(t), P− a.s., ∀t ≥ 0. (1.50)

Therefore the second �rst order condition of (1.46) coincides with the Kuhn-Tucker condition

(1.34); that is the Lagrange multiplier acts only when the constraint is binding.

When l(t) is continuous, the explicit form of the Lagrange multiplier is known (cf. (1.41)),

hence the compensator A(ν∗)(t) is known as well. It follows that its paths are absolutely

continuous with respect to the Lebesgue measure and the Radon-Nykodym derivative of

dA(ν∗)(t) is e−δt[Ry(X(t), θ(t))− δ]1{ν∗=θ}(t).
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1.3.2 N Firms with Finite Fuel: the Symmetric Case

In the same setting of Section 1.1 with T = +∞, we may start with studying the sym-

metric Social Planner problem, i.e. problem (1.4) when R(i)(x, y) := R(x, y), i = 1, 2, ..., N .

Moreover, suppose that the investment processes of the N �rms have the same initial con-

ditions, i.e. ν(i)(0) = y, i = 1, 2, ..., N . Notice that in such case the supergradient processes

coincide for i = 1, 2, ..., N and are given by

∇yJi(ν(i))(t) = E
{ ∫ ∞

t

e−δsRy(X(s), ν(i)(s)) ds
∣∣∣Ft}− e−δt, (1.51)

Moreover, recall that the `base capacity' is de�ned as the optional process that uniquely

solves the backward stochastic di�erential equation (cf. [6])

E
{ ∫ ∞

τ

e−δsRy(X(s), sup
τ≤u<s

l(u)) ds
∣∣∣Fτ} = e−δτ , ∀τ ∈ T . (1.52)

By Theorem (1.2.3) we may prove the following Proposition.

Proposition 1.3.6. Let the production functions be identical, the investment processes start

from the same level and the base capacity l(t) have continuous paths. Then, the unique

optimal solution for the Social Planner problem (1.4) is given by

ν(i)
∗ (t) = sup

0≤u<t
(l(u) ∧ θ(u)

N
) ∨ y, i = 1, 2, ..., N.

Moreover the Lagrange multiplier associated to problem (1.4) is absolutely continuous with

respect to the Lebesgue measure.

Proof. We are going only to sketch the proof, since it is very similar to that of Theorem

(1.3.2).

Obviously
∑N

i=1 ν
(i)
∗ (t) ≤ θ(t), a.s. for all t ≥ 0. To prove the optimality of sup0≤u<t(l(u)∧

θ(u)
N

)∨y we proceed as in the case of only one �rm (see Section 1.3.1, proof of Theorem (1.2.3))

but with a base capacity given by Nl(t). For τ ≥ 0 �xed, and n ≥ 0, we may introduce the
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random times 

τ0 ≡ τ
.
.
τ2n+1 := inf{s > τ2n : Nl(s) > θ(s)}
τ2n+2 := inf{s > τ2n+1 : Nl(s) ≤ θ(s+)}
.
.

(1.53)

with the convention inf{∅} = +∞. Notice that time τ2n+1, n ≥ 0, is a time of increase for the

process Nl(s). Following from now on the same considerations as in the proof of Theorem

1.3.2 (obviously by substituting the process l(t) with Nl(t), or, equivalentely, θ(t) with θ(t)
N
),

we may conclude that (1.15) are actually satis�ed for a Lagrange multiplier optional measure

given by

dλ(t) = e−δt[Ry(X(t), N−1θ(t))− δ]1{∑N
i=1 ν

(i)
∗ =θ}(s)ds. (1.54)

Asymmetric Capital Levels

Since the results in this Section can be easily generalized, set N = 2 for sake of semplicity.

We now allow for some heterogeneity by considering that the two �rms have the same

production functions but investment processes with di�erent capital installed before the

starting time. We aim to prove that, as long as the levels of installed capital are not all the

same, only the `smallest �rm' (i.e. the �rm with the smallest value of installed capital at the

beginning) will invest. This particular behavior of the investment policies has been already

discussed in [60].

Interpret the investment processes as including the respective initial capital; without loss

of generality we may set: ν(1)(0) = y1, ν(2)(0) = y2 and y1 > y2. Hence we shall refer to �rm

2 as the smallest one.

Proposition 1.3.7. Suppose R(1)(x, y) = R(2)(x, y), ν(1)(0) = y1, ν
(2)(0) = y2 and y1 > y2.

Then, we have dν
(1)
∗ (t) = 0 as long as y1 > y2 +

∫ t
0
dν

(2)
∗ (s).
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Proof. Let σ1 be the �rst time at which �rm 1 invests, and σ2 the �rst time of investment for

�rm 2. Suppose, by absurdum, that σ1 < σ2 and let (ν
(1)
∗ , ν

(2)
∗ ) be the optimal solution for

the Social Planner problem (1.4). From the generalized stochastic Kuhn-Tucker �rst order

conditions in Theorem 1.3.2 we have at σ1

E
{ ∫ σ2

σ1

e−δsRy(X(s), ν(1)
∗ (s)) ds

∣∣∣Fσ1}+ E
{ ∫ ∞

σ2

e−δsRy(X(s), ν(1)
∗ (s)) ds

∣∣∣Fσ1}
= e−δσ1 + E

{ ∫ ∞
σ1

dλ(s)
∣∣∣Fσ1} (1.55)

for �rm 1 and

E
{ ∫ σ2

σ1

e−δsRy(X(s), y2) ds
∣∣∣Fσ1}+ E

{ ∫ ∞
σ2

e−δsRy(X(s), ν(2)
∗ (s)) ds

∣∣∣Fσ1}
≤ e−δσ1 + E

{ ∫ ∞
σ1

dλ(s)
∣∣∣Fσ1} (1.56)

since σ1 is not optimal for �rm 2.

Notice that σ2 is an optimal time for �rm 2. Hence

E
{ ∫ ∞

σ2

e−δsRy(X(s), ν(2)
∗ (s)) ds

∣∣∣Fσ1} = E
{
e−δσ2 +

∫ ∞
σ2

dλ(s)
∣∣∣Fσ1}. (1.57)

On the other hand, time σ2 is not optimal for �rm 1

E
{ ∫ ∞

σ2

e−δsRy(X(s), ν(1)
∗ (s)) ds

∣∣∣Fσ1}
≤ E

{
e−δσ2 +

∫ ∞
σ2

dλ(s)
∣∣∣Fσ1} (1.58)

= E
{ ∫ ∞

σ2

e−δsRy(X(s), ν(2)
∗ (s)) ds

∣∣∣Fσ1},
where in the last equality we have used (1.57). Moreover, by hypothesis ν(1)

∗ (t) ≥ y1 > y2,

on σ1 ≤ t < σ2; hence concavity of Ry(X(t), ·) implies

e−δσ1 + E
{ ∫ ∞

σ1

dλ(s)
∣∣∣Fσ1} = E

{ ∫ σ2

σ1

e−δsRy

(
X(s), ν(1)

∗ (s)
)
ds
∣∣∣Fσ1}

+E
{ ∫ ∞

σ2

e−δsRy(X(s), ν(1)
∗ (s)) ds

∣∣∣Fσ1}
≤ e−δσ1 + E

{ ∫ ∞
σ1

dλ(s)
∣∣∣Fσ1}
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≤ E
{ ∫ σ2

σ1

e−δsRy(X(s), y2) ds
∣∣∣Fσ1}

+E
{ ∫ ∞

σ2

e−δsRy(X(s), ν(2)
∗ (s)) ds

∣∣∣Fσ1}
≤ e−δσ1 + E

{ ∫ ∞
σ1

dλ(s)
∣∣∣Fσ1}.

It means that

E
{ ∫ σ2

σ1

e−δsRy(X(s), y2) ds
∣∣∣Fσ1}+ E

{ ∫ ∞
σ2

e−δsRy(X(s), ν(2)
∗ (s)) ds

∣∣∣Fσ1}
= e−δσ1 + E

{ ∫ ∞
σ1

dλ(s)
∣∣∣Fσ1}

which is, obviously, a contraddiction since σ1 is not an optimal time for �rm 2.

Proposition (1.3.7) states that the smallest �rm will catch up before any other invests.

Once all �rms are equally sized, they act identically as suggested by Proposition (1.3.6). If

we de�ne

τy1 := inf{t ≥ 0 : y1 = y2 +

∫ t

0

dν(2)
∗ (u)},

then the optimal investment couple (ν
(1)
∗ (t), ν

(2)
∗ (t)) is given by

ν
(1)
∗ (t) = y1, t ∈ [0, τy1)

ν
(2)
∗ (t) = sup0≤u<t(l(u) ∧ θ(u)), t ∈ [0, τy1)

(1.59)

and 
ν

(1)
∗ (t) = y1 ∨ supτy1≤u<t(l(u) ∧ θ(u)

2
), t ≥ τy1

ν
(2)
∗ (t) = y1 ∨ supτy1≤u<t(l(u) ∧ θ(u)

2
), t ≥ τy1

(1.60)

The Social Planner leads only to the smallest �rm to invest until its capital reaches the

value of the initial capital of the other �rm at time τy1 . This means that until that time �rm

2 behaves as a monopoly in a market with only one �rm; after τy1 the two �rms behave in a

symmetric way (see Proposition 1.3.6 for further details). Notice that (1.60) is the version

of the `dynamic programming' principle formulated in [7], Corollary 4.2: the base capacity

process l(t) may be used to describe optimal solutions not only when starting at time zero,

but actually for an arbitrary initial stopping time.
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1.3.3 N Firms: Finite Fuel and Cobb-Douglas Production

In the setting of Section 1.1 with T = +∞ we consider the Social Planner optimal

investment problem (1.4) for a market with N �rms endowed with Cobb-Douglas production

functions, i.e. R(i) (x, y) = xαi y1−αi

1−αi with αi ∈ (0, 1), i = 1, 2, ..., N .

Suppose that the economic shock process X(t) is given by X(t) = exp {Y (t)} for some

Levy process Y (t) such that Y (0) = 0 and with �nite Laplace transform. Then (cf. [59],

Proposition 7.1)

l(i)(t) = kiX(t), i = 1, 2, ..., N, (1.61)

with

ki =

(
E
{∫ +∞

0

e−δteαi inf0≤u<t Y (u)dt

}) 1
αi

, i = 1, 2, ..., N,

is the unique optional solution of the stochastic backward equation

E
{ ∫ ∞

τ

e−δsR(i)
y (X(s), sup

τ≤u<s
l(i)(u)) ds

∣∣∣Fτ} = e−δτ , ∀τ ∈ T . (1.62)

De�ne the optional process

βi(t) :=
l(i)(t)∑N
j=1 l

(j)(t)
. (1.63)

Here βi(t) may be thought as the fraction of desirable investment of the i-th �rm. By (1.61),

for t ≥ 0 and i = 1, 2, ..., N, we have that βi(t) is constant in time; in fact βi(t) = ki∑N
j=1 kj

=:

βi.

Fix τ ∈ T and introduce the random times σ1(τ) = inf{s ≥ τ :
∑N

i=1 l
(i)(s) > θ(s)}

σ2(τ) = inf{s ≥ τ : l(i)(s) > βiθ(s), ∀i = 1, 2, ..., N}.
(1.64)

Lemma 1.3.8. For all τ ∈ T we have σ1(τ) = σ2(τ) P-almost surely.

Proof. Notice that (1.61) implies σ1(τ) = inf{s ≥ τ : X(s) > θ(s)∑N
i=1 ki
} = inf{s ≥ τ :

kiX(s) > βiθ(s), ∀i = 1, 2, ..., N} = σ2(τ).
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Remark 1.3.9. If τ ∈ T is a time of investment for all �rms, that is dν
(i)
∗ (τ) > 0 for all i,

then the �rst Kuhn-Tucker condition in (1.15) guarantees that

E
{ ∫ +∞

τ

e−δsR(i)
y (X(s), ν(i)

∗ (s)) ds
∣∣∣Fτ } = E

{ ∫ +∞

τ

e−δsR(j)
y (X(s), ν(j)

∗ (s)) ds
∣∣∣Fτ }.

Notice that if X is continuous, then l(i) is continuous too due to (1.61).

Theorem 1.3.10. If the shock process X(t) is continuous then the process ν∗ with compo-

nents

ν(i)
∗ (t) = sup

0≤u<t
(l(i)(u) ∧ βiθ(u)) ∨ y(i), i = 1, 2, ..., N, (1.65)

is optimal for problem (1.4). Moreover, the Lagrange multiplier dλ(t) associated to (1.4) is

absolutely continuous with respect to the Lebesgue measure.

Proof. Let us check that ν(i)
∗ (t) satis�es the �rst order conditions of Theorem 1.2.3. Obviously∑N

i=1 ν
(i)
∗ (t) ≤ θ(t) a.s. for all t ≥ 0.

The arguments of the proof are similar to those in the proof of Theorem 1.3.2. Fix τ ∈ T ,

set τ0 := τ and de�ne the sequence of stopping times τn as in (1.38) but with
∑N

i=1 l
(i) instead

of l; that is, {
τ2n+1 := inf{s > τ2n :

∑N
i=1 l

(i)(s) > θ(s)}
τ2n+2 := inf{s > τ2n+1 :

∑N
i=1 l

(i)(s) ≤ θ(s+)}.
(1.66)

Notice that the continuity of l(i) implies

ν(i)
∗ (s) = sup

τ2n≤u<s
l(i)(u) for s ∈ (τ2n, τ2n+1].

Also τ2n+1 = σ1(τ2n) = σ2(τ2n) by Lemma 1.3.8, hence τ2n+1 is a time of increase for all l(i).

It follows

ν(i)
∗ (s) = βiθ(s) for s ∈ (τ2n+1, τ2n+2].

Fix i = 1, 2, ..., N, and consider E{
∫∞
τ
e−δsR

(i)
y (X(s), ν

(i)
∗ (s))ds |Fτ}. Split the integral into

two integrals
∫ τ1
τ

and
∫∞
τ1
. Since τ1 is a time of increase for every l(i), Remark (1.3.9) holds
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and we may write

E
{ ∫ ∞

τ

e−δsR(i)
y (X(s), ν(i)

∗ (s))ds
∣∣∣Fτ} = E

{ ∫ τ1

τ

e−δsR(i)
y (X(s), ν(i)

∗ (s))ds
∣∣∣Fτ} (1.67)

+E
{ ∫ ∞

τ1

e−δsβiR
(i)
y (X(s), ν(i)

∗ (s))ds
∣∣∣Fτ}+ E

{ ∫ ∞
τ1

e−δs
∑
j 6=i

βjR
(j)
y (X(s), ν(i)

∗ (s))ds
∣∣∣Fτ}

since Fτ ⊆ Fτ1 . Now, as in the proof of Theorem 1.3.2, we use the stopping times τn to split

the last two integrals above and by the backward equation (1.62) corresponding to l(i)(t) we

may write

E
{ ∫ ∞

τ

e−δsR(i)
y (X(s), ν(i)

∗ (s))ds
∣∣∣Fτ} (1.68)

≤ e−δτ + E
{ ∫ ∞

τ

e−δs
[ N∑
i=1

βiR
(i)
y (X(s), βiθ(s))− δ

]
1{

∑N
i=1 ν

(i)
∗ =θ}(s)ds

∣∣∣Fτ},
with equality if and only if dν(i)

∗ (τ) > 0. Hence

ρ(t) := e−δt
[ N∑
i=1

βi(R
(i)
y (X(t), βiθ(t))− δ)

]
1{

∑N
i=1 ν

(i)
∗ =θ}(t)

is nonnegative by Lemma 1.3.1. We may now de�ne the Lagrange multiplier for the N -�rms

Social Planner problem by dλ(t) := ρ(t)dt since such dλ is a nonnegative optional measure

as in the proof of Theorem 1.3.2.

Remark 1.3.11. For general production functions satisfying Assumption 1.1.1, we expect

the solution for the Social Planner problem (1.4) to be

ν(i)
∗ (t) = sup

0≤u<t
(l(i)(u) ∧ βi(u)θ(u)) ∨ y(i), i = 1, 2, ..., N,

with

βi(t) :=
l(i)(t)∑N
j=1 l

(j)(t)
.

1.3.4 Constant Finite Fuel and Quadratic Cost

Here we consider a monotone follower problem with constant �nite fuel similar to those

studied by Karatzas ([40], [43]), and Karatzas and Shreve [42] (among others). In particular
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we discuss the example (cf. [7]) of optimal cost minimization for a �rm that does not

incur into investment's costs and has a running cost �ow given by the convex function

c(x, y) = 1
2
(x − y)2 of the economic shock x and the investment y. That is, we study the

constrained convex minimization problem

inf
ν∈Sθo

C(ν) := inf
ν∈Sθo

E
{ ∫ ∞

0

δe−δs
1

2
(W (t)− ν(t))2 dt

}
(1.69)

where W (t) is a standard Brownian motion and θo is the positive constant �nite fuel such

that ν(t) ≤ θo, P-a.s. for all t ≥ 0.

We expect to �nd a nonpositive Lagrange multiplier. Notice that

∇yC(ν)(t) = E
{ ∫ ∞

t

δe−δs(ν(s)−W (s)) ds
∣∣∣Ft}. (1.70)

Moreover, the backward equation

E
{ ∫ ∞

τ

δe−δs sup
τ≤u<s

l(u) ds
∣∣∣Fτ} = e−δτW (τ), ∀τ ∈ T , (1.71)

is uniquely solved by

l(s) = W (s)− c, (1.72)

where c is the positive constant c := E{
∫∞

0
δe−δs sup0≤u<sW (u) ds}, by independence and

time-homogeneity of Brownian increments.

From [7] we know that the optimal investment policy is

ν∗(t) = sup
0≤s<t

((W (s)− c) ∧ θo) ∨ ν(0), (1.73)

which is the well known strategy of re�ecting the Brownian motion at the threshold c until

all the fuel is spent (cf. [43]).
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We may write the subgradient (1.70) at ν∗ as

∇yC(ν∗)(t) = E
{ ∫ ∞

t

δe−δs (ν∗(s)−W (s)) ds
∣∣∣Ft}− 0

= E
{ ∫ ∞

t

δe−δs (ν∗(s)−W (s)) ds
∣∣∣Ft}

−E
{ ∫ ∞

t

δe−δs sup
t≤u<s

(W (u)− c) ds
∣∣∣Ft}+ e−δtW (t)

= E
{ ∫ ∞

t

δe−δs
[
ν∗(s)− sup

t≤u<s
(W (u)− c)

]
ds
∣∣∣Ft}

where we have used (1.71) in the second equality with l given by (1.72). With this trivial

trick we are in the same setting as [7], proof of Theorem 2. Hence we have that the Snell

envelope of the subgradient evaluated at the optimum ν∗ (cf. (1.73)) is

S(ν∗)(t) = E
{ ∫ ∞

t

δe−δs
[
ν∗(s)− sup

t≤u<s
(W (u)− c)

]
∧ 0 ds

∣∣∣Ft} (1.74)

or, equivalently,

S(ν∗)(t) = E
{ ∫ ∞

τθo (t)

δe−δs
[
θo − sup

t≤u<s
(W (u)− c)

]
ds
∣∣∣Ft}

with

τθo(t) := inf{s ≥ t : W (s)− c > θo}, (1.75)

by means of (1.73). Notice that τθo(t) is a time of increase for W (t) − c. Hence we have

supt≤u<s(W (u)− c) = supτθo (t)≤u<s(W (u)− c) for s ∈ (τθo(t),+∞]. Therefore (1.71) implies

S(ν∗)(t) = E
{ ∫ ∞

τθo (t)

δe−δs θo ds
∣∣∣Ft}− E

{
e−δτθo (t)W (τθo(t))

∣∣∣Ft};

that is,

S(ν∗)(t) = E
{
e−δτθo (t)

[
θo −W (τθo(t))

] ∣∣∣Ft}. (1.76)

We now �nd the explicit form of the Snell envelope S(ν∗)(t) and then we use it to identify

the compensator part of its Doob-Meyer decomposition; that is the Lagrange multiplier of

problem (1.69) (cf. (1.50)). Notice that τθo(t) ≥ t a.s. by de�nition (1.75). Hence we have

two cases.
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• If t is such that W (t) < θo + c, then τθo(t) > t, a.s. Since τθo(u) = τθo(t) a.s. for all

u ∈ [t, τθo(t)), then for u1 < u2 in [t, τθo(t)) we have E{S(ν∗)(u2)|Fu1} = S(ν∗)(u1),

hence (S(ν∗)(u))u∈[t,τθo (t)) is a Fu-martingale. The Markov property, the continuity of

Brownian paths, and the Laplace transform formula for the hitting time of a standard

Brownian motion (see, for example, [44]) imply that S(ν∗)(u) = Ke
√

2δW (u)−δu for

u ∈ [t, τθo(t)), with K = K(δ, θo, c) a constant.

• If t is such that W (t) > θo + c, then de�ne the stopping time

σ(t) := inf{s > t : W (s) ≤ θo + c}.

Notice that t < σ(t) a.s. and τθo(u) = u a.s., for every u ∈ [t, σ(t)). Hence

S(ν∗)(u) = e−δu(θo −W (u)).

Fix now u1 < u2 in [t, σ(t)) and notice that E{S(ν∗)(u2)|Fu1} ≥ e−δu1(θo −W (u1)) =

S(ν∗)(u1). It follows that (S(ν∗)(u))u∈[t,σ(t)) is a Fu-submartingale with

dS(ν∗)(u) = −e−δudW (u) + [−δe−δu(θo −W (u))]du, (1.77)

i.e. with absolutely continuous compensator A(ν∗)(u) such that

dA(ν∗)(u) := −δe−δu (θo −W (u)) du. (1.78)

Recall that the Lagrange multiplier (1.41) acts only when ν∗(t) = θ(t), i.e. only when

l(t) > θ(t). Therefore, the Lagrange multiplier of problem (1.69) must be

dλ(t) = δe−δt [θo −W (t)] 1{W (t)>θo+c} dt, (1.79)

which, as expected, is negative and coincides with the opposite of the optional measure

dA(ν∗)(t) (cf. (1.78)).

Remark 1.3.12. In [10] Benes, Shepp and Witsenhausen considered a problem with the

same cost functional but they allowed controls of bounded variation.
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1.3.5 Constant Finite Fuel and Cobb-Douglas Production

We consider the maximization problem of pro�t, net of investment costs,

sup
ν∈Sθo

J (ν) := sup
ν∈Sθo

E
{ ∫ ∞

0

e−δsR (X(s), ν(s)) ds−
∫ ∞

0

e−δsdν(s)

}
. (1.80)

The �nite fuel is given by the positive constant θo, hence the controls satisfy 0 ≤ ν(t) ≤ θo

P-a.s., for all t ≥ 0. The economic shock process X(t) is modeled by a Geometric Brownian

motion

X(t) = x0e
(µ− 1

2
σ2)t+σW (t) with x0 > 0. (1.81)

The �rm's production function is of the Cobb-Douglas type and depends on the economic

shock x and the investment policy y; i.e., R (x, y) = 1
1−αx

αy1−α with 0 < α < 1. As

pointed out in [59] this construction is consistent with a competitive �rm which produces

at decreasing returns to scale or with a monopolist �rm facing a constant elasticity demand

function and constant returns to scale production. Notice that problem (1.80) has been

studied in detail in [48] in the case of θo = +∞ by a dynamic programming approach.

It is known (cf. [7]) that the unique optimal solution for problem (1.80) is given by

ν∗(t) = sup
0≤s<t

(l(s) ∧ θo) ∨ ν(0), (1.82)

where the optional process l(t) uniquely solves the stochastic backward equation (cf. [6])

E
{ ∫ ∞

τ

e−δsXα(s)
(

sup
τ≤u<s

l(u)
)−α

ds
∣∣∣Fτ} = e−δτ , ∀τ ∈ T . (1.83)

As shown in [59], Proposition 7.1, when the shock process is of exponential Levy type, i.e.

X(t) = x0e
Y (t), with Y (t) a Levy process such that Y (0) = 0, then the solution of (1.83) is

given by

l(t) = kX(t), (1.84)

where k = (1
δ
E{eαY (τ(δ))}) 1

α , Y (t) := inf0≤u≤t Y (u) and τ(δ) is an independent exponentially

distributed time with parameter δ.
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From (1.80) we have

∇yJ (ν)(t) = E
{ ∫ ∞

t

e−δsXα(s)ν−α(s)ds
∣∣∣Ft}− e−δt. (1.85)

Following [7], proof of Theorem 2, we know that the Snell envelope of supergradient (1.85)

evaluated at the optimal control policy (1.82) is

S(ν∗)(t) (1.86)

= E
{ ∫ ∞

t

e−δs
[
Xα(s)

((
sup

0≤u<s
(kX(u) ∧ θo) ∨ ν(0)

)−α
−
(

sup
t≤u<s

kX(u)
)−α)]+

ds
∣∣∣Ft}.

Fix t ≥ 0 and de�ne the stopping time

τθo(t) := inf{s ≥ t : kX(s) > θo}. (1.87)

It is a time of increase for X(t). Now we split the integral into
∫ τθo (t)

t
+
∫∞
τθo (t)

, then the �rst

one vanishes due to (1.87) and we are left with

S(ν∗)(t) = E
{ ∫ ∞

τθo (t)

e−δs
[
Xα(s)

(
(θo)

−α − ( sup
t≤u<s

kX(u))−α
)]
ds
∣∣∣Ft}

= (θo)
−αE

{ ∫ ∞
τθo (t)

e−δsXα(s) ds
∣∣∣Ft}− E

{
e−δτθo (t)

∣∣∣Ft}
where we have used (1.83) to obtain the second equality.

Lemma 1.3.13. Assume δ > µ+ σ2. Then for every t ≥ 0, one has

E
{ ∫ ∞

τθo (t)

e−δsXα(s) ds
∣∣∣Ft} =

1

(δ − µα) + 1
2
σ2α(1− α)

E
{
e−δτθo (t)Xα(τθo(t))

∣∣∣Ft}. (1.88)

Proof. The proof follows from the Markov property and the Laplace transform of a Gaussian

process. Independence of Brownian increments, together with W (u + τθo(t))−W (τθo(t)) ∼

W (u), allow us to write

E
{ ∫ ∞

τθo (t)

e−δsXα(s) ds
∣∣∣Ft} = E

{
E
{ ∫ ∞

τθo (t)

e−δsXα(s) ds
∣∣∣Fτθo (t)

} ∣∣∣Ft}
= E

{
e−δτθo (t)Xα(τθo(t))E

{ ∫ ∞
0

e−δueα(µ− 1
2
σ2)u+ασ(W (u+τθo (t))−W (τθo (t))) ds

} ∣∣∣Ft}
= E

{
e−δτθo (t)Xα(τθo(t))E

{ ∫ ∞
0

e−δueα(µ− 1
2
σ2)u+ασW (u) ds

} ∣∣∣Ft}
= E

{
e−δτθo (t)Xα(τθo(t))

∫ ∞
0

e−(δ−µα)u− 1
2
σ2α(1−α)udu

∣∣∣Ft}.
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Notice that (δ − µα) + 1
2
σ2α(1− α) > 0 by the assumption, hence (1.88) follows.

Now Lemma 1.3.13 and (1.88) imply

S(ν∗)(t) =
(θo)

−α

(δ − µα) + 1
2
σ2α(1− α)

E
{
e−δτθo (t)Xα(τθo(t))

∣∣∣Ft}− E
{
e−δτθo (t)

∣∣∣Ft}. (1.89)

As in Subsection 1.3.4 we now �nd the explicit form of the compensator of the Snell envelope

S(ν∗)(t) and hence we identify the compensator part of its Doob-Meyer decomposition, which

is the Lagrange multiplier of problem (1.80). By de�nition we have τθo(t) ≥ t a.s., hence we

consider two cases.

• If t is such that kX(t) < θo, then τθo(t) > t a.s. Since τθo(u) = τθo(t) a.s. for all

u ∈ [t, τθo(t)), then for u1 < u2 in [t, τθo(t)) we have E{S(ν∗)(u2)|Fu1} = S(ν∗)(u1),

hence (S(ν∗)(u))u∈[t,τθo (t)) is a Fu-martingale. By using the continuity of Brownian

paths, the Laplace transform formula for the hitting time of a Brownian motion with

drift (cf. [44]) and the Markov property, we may write

S(ν∗)(u) = KeW (u)(
√
γ2+2δ−γ)−u(δ+γ2−γ

√
γ2+2δ) for u ∈ [t, τθo(t)),

with γ := 1
σ
(µ− 1

2
σ2) and K = K(σ, θo, k) a constant.

• If t is such that kX(t) > θo, then de�ne the stopping time

σ(t) := inf{s > t : kX(s) ≤ θo}.

Notice that t < σ(t) a.s. and we have τθo(u) = u a.s., for every u ∈ [t, σ(t)). Hence

S(ν∗)(u) =
(θo)

−α

(δ − µα) + 1
2
σ2α(1− α)

e−δuXα(u)− e−δu, for u ∈ [t, σ(t)).

Moreover Xα(u)(θo)
−α > δ for all u ∈ [t, σ(t)). In fact, with k as in (1.84) and

Y (u) := inf0≤s≤u
[(
µ− 1

2
σ2
)
s+ σW (s)

]
, we have Xα(u)(θo)

−α > k−α for u ∈ [t, σ(t))

because E{eαY (τ(δ))} = β−(β− − α)−1 < 1, being β− the negative root of 1
2
σ2x2 +(

µ− 1
2
σ2
)
x− δ = 0 and α > 0.
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Fix now u1 < u2 in [t, σ(t)) and apply Ito's Lemma,

E
{
S(ν∗)(u2)

∣∣∣Fu1} = S(ν∗)(u1) +
σα(θo)

−α

(δ − µα) + 1
2
σ2α(1− α)

E
{∫ u2

u1

e−δtXα(s)dW (s)

∣∣∣∣Fu1}
−E
{∫ u2

u1

e−δs
(
Xα(s)(θo)

−α − δ
)
ds

∣∣∣∣Fu1} ≤ S(ν∗)(u1).

Hence (S(ν∗)(u))u∈[t,σ(t)) is a Fu-supermartingale whose compensator is the absolutely

continuous process

dA(ν∗)(u) := e−δu
(
Xα(u)(θo)

−α − δ
)
du. (1.90)

Recall that the Lagrange multiplier optional measure dλ (cf. (1.41)) acts only at times

such that ν∗(t) = θ(t) (i.e., only when l(t) > θ(t)). Therefore, for problem (1.80), dλ must

be given by

dλ(t) = e−rδ
(
Xα(t)(θo)

−α − δ
)
1{kX(t)>θo} dt, (1.91)

which coincides with the random measure dA(ν∗)(t) (cf. (1.90)).



Chapter 2

Identifying the Free Boundary of a

Stochastic, Irreversible Investment

Problem via the Bank-El Karoui

Representation Theorem

In this Chapter we study a stochastic, continuous time model on a �nite horizon for a

�rm that produces a single good. In contrast with Chapter 1 in which we did not make any

Markovian assumption and in which there was not a production capacity dynamics, here we

model the capacity as an Ito di�usion controlled by a nondecreasing process representing

the cumulative investment. We suppose now that the resources are unlimited and the �rm's

manager aims to maximize its expected total net pro�t by choosing the optimal investment

process. That is a singular stochastic control problem. The aim of this Chapter is to

understand the signi�cance of the base capacity process in such a di�usion framework.

We derive some �rst order conditions for optimality and we characterize the optimal

solution in terms of the base capacity process l∗(t), i.e. the unique solution of a representation

problem in the spirit of Bank and El Karoui [6].

Under further assumptions we show that the base capacity is in fact deterministic and

coincides with the free boundary ŷ(t) of the optimal stopping problem naturally associated

to the original singular control problem. This result allows us to obtain the continuity of
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the free boundary ŷ(t) in the case of a Cobb-Douglas production function and of constant

coe�cients in the controlled capacity process.

2.1 The Firm's Investment Problem

The setting is as in Chiarolla and Haussmann [20] but without leisure, wages and scrap

value. We brie�y recall their notation. An economy with �nite horizon T and productive

sector represented by a �rm is considered on a complete probability space (Ω,F ,P) with

�ltration {Ft, t ∈ [0, T ]}. Such �ltration is the usual augmentation of the �ltration generated

by an exogeneous Brownian motion {W (t) : t ∈ [0, T ]} and augmented by P-null sets. The

�rm produces at rate R(C) when its capacity is C. The cumulative, irreversible investment

is denoted by ν(t). It is an a.s. �nite, left-continuous with right-limits, nondecreasing, and

adapted process. The irreversibility of investment is expressed by the nondecreasing nature

of ν. The production capacity Cy,ν associated to the investment strategy ν satis�es
dCy,ν(t) = Cy,ν(t)[−µC(t)dt+ σC(t)dW (t)] + fC(t)dν(t), t ∈ [0, T ),

Cy,ν(0) = y > 0,
(2.1)

where µC , σC and fC are given measurable, uniformly bounded in (ω, t) adapted processes.

Moreover fC is continuous with 0 < kf ≤ fC(t) ≤ κf and µC ≥ 0. Here fC is a conversion

factor since any unit of investment is converted into fC units of production capacity.

By setting

C0(t) := C1,0(t), ν(t) :=

∫
[0,t)

fC(s)

C0(s)
dν(s), (2.2)

then we may write

C0(t) = e−
∫ t
0 µC(s)dsM0(t), (2.3)

where the exponential martingale

Ms(t) := e−
∫ t
s

1
2
σ2
C(u)du+

∫ t
s σC(u)dW (u), t ∈ [s, T ], (2.4)
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is de�ned for s ∈ [0, T ]. Without investment, C0 represents the decay of a unit of initial

capital and we have

Cy,ν(t) = C0(t)[y + ν(t)]. (2.5)

The production function of the �rm is a nonnegative, measurable function R(C). We

make the following

Assumption 2.1.1.

1. the mapping C → R(C) is strictly increasing and strictly concave with continuous

derivative Rc(C) := ∂
∂C
R(C) satisfying the Inada conditions

lim
C→0

Rc(C) =∞, lim
C→∞

Rc(C) = 0.

2. ∀η > 0 : supC≥0 {R(C)− ηC} <∞.

Our Assumption 2.1.1 is not as general as the Assumption in [20] but it is needed to

apply the Bank-El Karoui Representation Theorem [6]. Assumption 2.1.1, part 2 is satis�ed

by any production function which grows at in�nity less than linearly as, for example, the

Cobb-Douglas one, i.e. R(C) = Cα/α with α ∈ (0, 1).

Each investment plan ν ∈ S0 leads to the expected total pro�t net of investment

J0,y(ν) = E
{∫ T

0

e−
∫ t
0 µF (s)dsR(Cy,ν(t))dt−

∫
[0,T )

e−
∫ t
0 µF (s)dsdν(t)

}
(2.6)

where

S0 := {ν : Ω× [0, T ]→ R+, nondecreasing, left-continuous, adapted s.t. ν(0) = 0, P− a.s.}

is the convex set of irreversible investment processes. Here µF is the �rm's manager discount

factor; it is a nonnegative, measurable, uniformly bounded in (ω, t) adapted process. Of

course S0 6= ∅ because ν(t) = 0 for all t ∈ [0, T ] belongs to S0.

The �rm's problem is

V (0, y) := sup
ν∈S0
J0,y(ν). (2.7)
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V is �nite thanks to Assumption 2.1.1, part 2 (cf. [20], Proposition 2.1). Moreover, the

concavity of R and the a�ne nature of Cy,ν in ν imply that J0,y(ν) is strictly concave on

S0. Hence if a solution ν̂ of (2.7) exists, it is unique. The existence of the solution has been

proved in [20], Theorem 3.1. We provide a new characterization of it in Theorem 2.3.1.

2.2 First Order Conditions for Optimality

As in [3] and [24], we aim to characterize the optimal solution of (2.7) by some �rst order

conditions for optimality.

Let T denote the set of all stopping times with value in [0, T ], P-a.s. Note that the strict

concave functional J0,y(ν) admits the supergradient

∇νJ0,y(ν)(τ) := E
{ ∫ T

τ

e−
∫ s
0 µF (u)duC0(s)

fC(τ)

C0(τ)
Rc(C

y,ν(s)) ds
∣∣∣Fτ } (2.8)

− e−
∫ τ
0 µF (u)du 1{τ<T},

for τ ∈ T .

Remark 2.2.1. The quantity ∇νJ0,y(ν)(t) may be interpreted as the marginal expected fu-

ture pro�t resulting from an additional in�nitesimal investment at time t. Mathematically,

∇νJ0,y(ν) can be viewed as the Riesz representation of the pro�t's gradient at ν. More pre-

cisely, we may de�ne ∇νJ0,y(ν) as the optional projection of the progressively measurable

process

φ(ω, t) :=

∫ T

t

e−
∫ s
0 µF (ω,u)duC0(ω, s)

fC(ω, t)

C0(ω, t)
Rc(C

y,ν(ω, s)) ds− e−
∫ t
0 µF (ω,u)du1{t<T}, (2.9)

for ω ∈ Ω, t ∈ [0, T ]. Hence ∇νJ0,y(ν) is uniquely determined up to P-indistinguishability

and it holds

E
{ ∫

[0,T )

∇νJ0,y(ν)(t)dν(t)

}
= E

{ ∫
[0,T )

φ(t)dν(t)

}
(2.10)

for all ν ∈ S0 (cf. Theorem 1.33 in [36]).

We shall prove that



2.2 First Order Conditions for Optimality 48

Theorem 2.2.1. Given problem (2.7), the following �rst-order conditions

∇νJ0,y(ν̂)(τ) ≤ 0, ∀τ ∈ T , P− a.s., (2.11)

E
{∫

[0,T )

∇νJ0,y(ν̂)(τ) dν̂(τ)

}
= 0, (2.12)

are su�cient for the optimality of ν̂(t).

Conversely, if J0,y(ν) ≥ 0 for all ν ∈ S0 and νy(T ) :=
∫

[0,T )
fC(s)
C0(s)

dν̂(s) is P-integrable,

then (2.11) and (2.12) are also necessary for optimality.

The proof of Theorem 2.2.1 relies on the following Lemma. The idea is to use arguments

similar to those in the proof of the �nite dimensional Kuhn-Tucker Theorem. First of all,

notice that the supergradient (2.8) evaluated at the optimal investment plan cannot be

positive. In fact there cannot exist a stopping time τ ∈ T such that ∇νJ0,y(ν̂)(τ) > 0, since

the continuity of Rc and the linearity of the investment cost imply that a su�ciently small

extra investment at τ would be pro�table, and hence ν̂ would not be optimal. Therefore

∇νJ0,y(ν̂)(τ) ≤ 0 for all τ ∈ T .

In the next Lemma we show that if J0,y(ν) ≥ 0 for all ν ∈ S0 and E{νy(T )} < +∞,

then the optimal policy ν̂ solves the problem linearized near ν̂. The solutions of the linear

problem are characterized by a �at-o� condition.

Lemma 2.2.2. Let ν̂ be optimal for problem (2.7) and let φ̂ be the progressively measurable

process given by (2.9) and corresponding to ∇νJ0,y(ν̂). If J0,y(ν) ≥ 0 for all ν ∈ S0 and

E{νy(T )} < +∞, then ν̂ solves the linear problem

sup
ν∈S0

E
{ ∫

[0,T )

φ̂(s)dν(s)

}
. (2.13)

Proof. Let ν ∈ S0. We set νε(t) = εν(t) + (1− ε)ν̂(t), for ε ∈ (0, 1), and de�ne φε to be the

progressively measurable process given by (2.9) and corresponding to ∇νJ0,y(ν
ε) . Of course

limε→0 ν
ε(t) = ν̂(t) for all t ≤ T , P-a.s., as well as limε→0 φ

ε(t) = φ̂(t) by continuity of Rc.
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By optimality of ν̂ and concavity of R we have

0 ≥ J0,y(ν
ε)− J0,y(ν̂)

ε

=
1

ε
E
{∫ T

0

e−
∫ t
0 µF (u)du (R(Cy,νε(t))−R(Cy,ν̂(t)))dt

}
−1

ε
E
{∫

[0,T )

e−
∫ t
0 µF (u)du (dνε(t)− dν̂(t))

}
≥ 1

ε
E
{∫ T

0

e−
∫ t
0 µF (u)duRc(C

y,νε(t))(Cy,νε(t)− Cy,ν̂(t))

}
dt

−E
{∫

[0,T )

e−
∫ t
0 µF (u)du (dν(t)− dν̂(t))

}
(2.14)

= E
{∫ T

0

e−
∫ t
0 µF (u)duRc(C

y,νε(t))
[ ∫

[0,t)

C0(t)
fC(u)

C0(u)
(dν(u)− dν̂(u))

]}
dt

−E
{∫

[0,T )

e−
∫ t
0 µF (u)du (dν(t)− dν̂(t))

}
= E

{∫
[0,T )

[ ∫ T

t

e−
∫ s
0 µF (u)duRc(C

y,νε(s))C0(s)
fC(t)

C0(t)
ds− e−

∫ t
0 µF (u)du

]
(dν(t)− dν̂(t))

}
= E

{∫
[0,T )

φε(t) (dν(t)− dν̂(t))

}
where in the third equality we have used Fubini's Theorem.

We would like to prove that

E
{ ∫

[0,T )

φ̂(t) (dν(t)− dν̂(t))

}
≤ 0.

Consider

Iε :=

∫
[0,T )

φε(t) (dν(t)− dν̂(t))

=

∫ T

0

e−
∫ t
0 µF (u)duRc(C

y,νε(t))
[ ∫

[0,t)

C0(t)
fC(s)

C0(s)
(dν(s)− dν̂(s))

]
dt

−
∫

[0,T )

e−
∫ t
0 µF (u)du (dν(t)− dν̂(t)) (2.15)

=

∫ T

0

e−
∫ t
0 µF (u)duRc(C

y,νε(t))(Cy,ν(t)− Cy,ν̂(t))dt

−
∫

[0,T )

e−
∫ t
0 µF (u)du (dν(t)− dν̂(t)) ,
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where in the �rst equality we have used Fubini's Theorem. Notice that

Cy,νε(t) = εCy,ν(t) + (1− ε)Cy,ν̂(t)


≤ Cy,ν(t) on {Cy,ν(t)− Cy,ν̂(t) ≥ 0},

> Cy,ν(t) on {Cy,ν(t)− Cy,ν̂(t) < 0}.

(2.16)

Since the production function is concave, then for ε ∈ (0, 1) the decreasing property of Rc

and (2.16) give

Iε =

∫
[0,T )

φε(t)(dν(t)− dν̂(t))

≥
∫ T

0

e−
∫ t
0 µF (u)duRc(C

y,ν(t))(Cy,ν(t)− Cy,ν̂(t))1{Cy,ν(t)≥Cy,ν̂(t)}dt

+

∫ T

0

e−
∫ t
0 µF (u)duRc(C

y,ν(t))(Cy,ν(t)− Cy,ν̂(t))1{Cy,ν(t)<Cy,ν̂(t)}dt

−
∫

[0,T )

e−
∫ t
0 µF (u)du(dν(t)− dν̂(t))

=

∫ T

0

e−
∫ t
0 µF (u)duRc(C

y,ν(t))(Cy,ν(t)− Cy,ν̂(t))dt

−
∫

[0,T )

e−
∫ t
0 µF (u)du(dν(t)− dν̂(t)) (2.17)

=

∫
[0,T )

∇νJ0,y(ν)(t)(dν(t)− dν̂(t)) =: G(ω).

If E {|G(ω)|} < +∞, we may apply Fatou's Lemma to limε→0 E {Iε(ω)} and obtain

E
{ ∫

[0,T )

φ̂(s)(dν(s)− dν̂(s))

}
≤ lim inf

ε→0
E
{ ∫

[0,T )

φε(s)(dν(s)− dν̂(s))

}
≤ 0

(2.18)

by (2.14).

It remains to show that E {|G(ω)|} < +∞. The growth assumption on R (cf. Assumption

2.1.1, part 2) implies that for every η > 0 there exists κη such that R(C) ≤ κη + ηC. As in

[20] we de�ne νy(t) :=
∫

[0,t)
fC(s)
C0(s)

dν̂(s). By concavity of R we have

|G(ω)| ≤
∫ T

0

e−
∫ t
0 µF (u)du R (Cy,ν(t))

Cy,ν(t)

∣∣Cy,ν(t)− Cy,ν̂(t)
∣∣ dt
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+

∫
[0,T )

e−
∫ t
0 µF (u)du |dν(t)− dν̂(t)|

≤
∫ T

0

e−
∫ t
0 µF (u)du κη + ηCy,ν(t)

Cy,ν(t)

∣∣Cy,ν(t)− Cy,ν̂(t)
∣∣ dt

+

∫
[0,T )

e−
∫ t
0 µF (u)du (dν(t) + dν̂(t)) (2.19)

≤ κηT +

∫ T

0

e−
∫ t
0 µF (u)du κη

(
y + νy(t)

y

)
dt+

+ η

∫ T

0

e−
∫ t
0 µF (u)duC0(t) (ν(t) + νy(t))dt

+

∫
[0,T )

e−
∫ t
0 µF (u)du (dν(t) + dν̂(t))

≤ 2κηT +
κη
y

∫ T

0

e−
∫ t
0 µF (u)du νy(t)dt+ η

∫ T

0

e−
∫ t
0 µF (u)duC0(t)(ν(t) + νy(t))dt

+

∫
[0,T )

e−
∫ t
0 µF (u)du (dν(t) + dν̂(t)).

If J0,y(ν) ≥ 0, then [20], Proposition 2.1 part (b), implies E{
∫

[0,T )
e−

∫ t
0 µF (u)du dν(t)} < +∞

for all ν ∈ S0. Thus we have only to show that

E
{∫ T

0

e−
∫ t
0 µF (u)du νy(t)dt

}
<∞ and E

{∫ T

0

e−
∫ t
0 µF (u)duC0(t)(ν(t)+νy(t))dt

}
< +∞.

Clearly, if νy(T ) is P-integrable then E
{∫ T

0
e−

∫ t
0 µF (u)duνy(t)dt

}
< +∞.

Recall that C0(t) = e−
∫ t
0 µC(u)duM0(t) and apply Fubini's Theorem to obtain

E
{∫ T

0

e−
∫ t
0 µF (u)duC0(t)ν(t)dt

}
= E

{∫
[0,T )

fC(s)
dν(s)

C0(s)

∫ T

s

e−
∫ t
0 µF (u)duC0(t)dt

}
≤ E

{∫
[0,T )

e
∫ s
0 µC(u) fC(s)

M0(s)
dν(s)E

{∫ T

s

e−
∫ t
0 (µC(u)+µF (u))duM0(t) dt |Fs

}}
(2.20)

≤ constE{ν(T )},

since fC , µC and µF are uniformly bounded in (t, ω). Again by [20], Proposition 2.1 part (b),

if J0,y(ν) ≥ 0 then E{ν(T )} < ∞ for all ν ∈ S0. Hence E
{∫ T

0
e−

∫ t
0 µF (u)duC0(t) ν(t)dt

}
<

+∞ and similarly for E
{∫ T

0
e−

∫ t
0 µF (u)duC0(t) νy(t)dt

}
. It means that G(ω) is P-integrable

and this concludes the proof.
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Notice that for every nonpositive, optional, and adapted process f(t), the linear opti-

mization problem

sup
ν∈S0

E
{ ∫

[0,T )

f(s)dν(s)

}
(2.21)

has value zero since ν ∈ S0 has nondecreasing paths.

Proof of Theorem 2.2.1. Let ν̂ satisfy the �rst-order conditions (2.11) and (2.12) and let

ν ∈ S0. Then it follows from (2.5) that

Cy,ν̂(t)− Cy,ν(t) =

∫
[0,t)

C0(t)
fC(s)

C0(s)
(dν̂(s)− dν(s)).

Hence the strict concavity of R implies

J0,y(ν̂)− J0,y(ν)

= E
{ ∫ T

0

e−
∫ t
0 µF (u)du(R(Cy,ν̂(t))−R(Cy,ν(t)))dt −

∫
[0,T )

e−
∫ t
0 µF (u)du(dν̂(t)− dν(t))

}
> E

{ ∫ T

0

e−
∫ t
0 µF (u)duRc(C

y,ν̂(t))(Cy,ν̂(t)− Cy,ν(t))dt −
∫

[0,T )

e−
∫ t
0 µF (u)du(dν̂(t)− dν(t))

}
= E

{ ∫ T

0

e−
∫ t
0 µF (u)duRc(C

y,ν̂(t))

∫
[0,t)

C0(t)
fC(s)

C0(s)
(dν̂(s)− dν(s))dt

−
∫

[0,T )

e−
∫ t
0 µF (u)du(dν̂(t)− dν(t))

}
(2.22)

= E
{ ∫

[0,T )

[ ∫ T

t

e−
∫ s
0 µF (u)duRc(C

y,ν̂(s))C0(s)
fC(t)

C0(t)
ds− e−

∫ t
0 µF (u)du

]
(dν̂(t)− dν(t))

}
= E

{ ∫
[0,T )

∇νJ0,y(ν̂)(t) (dν̂(t)− dν(t))

}
≥ 0

where we have used Fubini's theorem in the third equality, and (2.11) and (2.12) in the last

one. It follows that ν̂ is optimal for problem (2.7).

On the other hand, that (2.11) and (2.12) are necessary for optimality follows from

Lemma 2.2.2. 2
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Theorem (2.2.1) characterizes the optimal investment plan but it might not be useful if

one aims to �nd the explicit solution, since the �rst order conditions are not always binding.

In what follows we construct the optimal capacity in terms of the `base capacity ' {l(t), t ∈

[0, T ]} (cf. [59]) which represents the capacity level that is optimal for a �rm starting at

time t without any knowledge of the past capacity, and we show that it is optimal for (2.7)

to invest up to the base capacity level if the current capacity level is below it; otherwise no

investment is optimal.

2.3 Finding the Optimal Capacity Process

Recall the Bank-El Karoui Representation Theorem (cf. [6], Theorem 3); that is, given

• an optional process X = {X(t), t ∈ [0, T ]} of class (D), lower-semicontinuous in expec-

tation with X(T ) = 0,

• a nonnegative optional random Borel measure µ(ω, dt),

• f(ω, t, x) : Ω× [0, T ]× R→ R such that f(ω, t, ·) : R→ R is continuous in x, strictly

decreasing from +∞ to −∞, and the stochastic process f(·, ·, x) : Ω × [0, T ] → R is

progressively measurable and integrable with respect to dP⊗ µ(ω, dt),

then there exists a unique optional process ξ = {ξ(t), t ∈ [0, T ]} such that for all τ ∈ T

f(t, sup
τ≤u≤t

ξ(u))1[τ,T )(t) ∈ L1 (dP⊗ µ(ω, dt))

and

E
{ ∫ T

τ

f(s, sup
τ≤u≤s

ξ(u))µ(ω, ds)
∣∣∣Fτ } = X(τ).

Note that ξ may be taken to be upper right-continuous a.s. (cf. [6], Lemma 4.1).

Lemma 2.3.1. There exists a unique upper right-continuous process ξ∗(t) that solves

E
{ ∫ T

τ

e−
∫ s
0 µF (u)duC0(s)Rc

(
− C0(s)

supτ≤u≤s ξ
∗(u)

)
ds
∣∣∣Fτ }

= e−
∫ τ
0 µF (u)duC

0(τ)

fC(τ)
1{τ<T}

(2.23)
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for all τ ∈ T . Moreover ξ∗(t) < 0 for all t ∈ [0, T ) a.s.

Proof. We apply the Bank-El Karoui Representation Theorem to

X(ω, t) := e−
∫ t
0 µF (ω,u)duC

0(ω, t)

fC(ω, t)
1[0,T )(t), µ(ω, dt) := e−

∫ t
0 µF (ω,u)duC0(ω, t)dt (2.24)

and

f(ω, t, x) :=


Rc

(
−C0(ω,t)

x

)
, for x < 0,

−x , for x ≥ 0.

(2.25)

Then there exists a unique upper right-continuous process ξ∗ such that, for all τ ∈ T

e−
∫ τ
0 µF (u)duC

0(τ)

fC(τ)
1{τ<T} = E

{ ∫ T

τ

f(s, sup
τ≤u≤s

ξ∗(u))µ(ds)
∣∣∣Fτ }. (2.26)

It now su�cies to show that ξ∗ < 0 on [0, T ) a.s. De�ne

σ := inf{t ∈ [0, T ) : ξ∗(t) ≥ 0} ∧ T,

then for ω ∈ {σ < T}, the upper right-continuity of ξ∗ implies ξ∗(σ) ≥ 0 and therefore

supσ≤u≤s ξ
∗(u) ≥ 0 for all s ∈ [σ, T ]. Therefore, (2.26) with τ = σ, i.e.

e−
∫ σ
0 µF (u)duC

0(σ)

fC(σ)
1{σ<T} = −E

{ ∫ T

σ

e−
∫ s
0 µF (u)duC0(s) sup

σ≤u≤s
ξ∗(u) ds

∣∣∣Fσ }, (2.27)

is not possible for ω ∈ {σ < T} since the right-hand side of (2.27) is nonpositive, whereas

the left-hand side is always strictly positive. It follows that σ = T a.s. and hence ξ∗(t) < 0

for all t ∈ [0, T ) a.s.

Proposition 2.3.2. There exists a unique upper right-continuous solution l∗(t) of

E
{ ∫ T

τ

e−
∫ s
0 µF (u)duC0(s)Rc

(
C0(s) sup

τ≤u≤s

(
l∗(u)

C0(u)

))
ds
∣∣∣Fτ }

= e−
∫ τ
0 µF (u)duC

0(τ)

fC(τ)
1{τ<T} (2.28)

for τ ∈ T , and it is given by

l∗(t) := −C
0(t)

ξ∗(t)
. (2.29)
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Proof. With ξ∗(t) = −C0(t)
l∗(t)

as in (2.29), it follows from (2.23) that

e−
∫ τ
0 µF (u)duC

0(τ)

fC(τ)
1{τ<T} = E

{ ∫ T

τ

e−
∫ s
0 µF (u)duC0(s)Rc

(
C0(s)

− supτ≤u≤s(−
C0(u)
l∗(u)

)

)
ds
∣∣∣Fτ }

= E
{ ∫ T

τ

e−
∫ s
0 µF (u)duC0(s)Rc

(
C0(s)

infτ≤u≤s(
C0(u)
l∗(u)

)

)
ds
∣∣∣Fτ } (2.30)

= E
{ ∫ T

τ

e−
∫ s
0 µF (u)duC0(s)Rc

(
C0(s) sup

τ≤u≤s

(
l∗(u)

C0(u)

))
ds
∣∣∣Fτ }.

Finally, the upper right-continuity of l∗(t) follows from that of ξ∗(t) and from the continuity

of C0(t).

Notice that l∗(t) may be found numerically from (2.28) by backward induction. In some

cases, when T = +∞, (2.28) has a closed form solution as in the case of a Cobb-Douglas

production function.

We are now able to �nd the unique optimally controlled capacity plan for problem (2.7).

De�nition 2.3.3. For a given optional process l(t), the capacity process that tracks l is

de�ned as

C(l)(t) := C0(t)

(
y ∨ sup

0≤u≤t

(
l(u)

C0(u)

))
. (2.31)

Theorem 2.3.1. Let l∗(t) be the unique solution of (2.28) and let C(l∗) be the capacity

process that tracks l∗. Then the investment plan ν(l∗)(t) that �nances C(l∗), i.e.

dν(l∗)(t) = C(l∗)(t)[µ(t)dt− σ(t)dW (t)] + dC(l∗)(t), with ν(l∗)(0) = 0,

is optimal for the �rm's problem (2.7).

Proof. In order to prove that C(l∗)(t) is the optimal capacity, we only have to show that

C(l∗)(t) solves the two �rst-order conditions of Theorem 2.2.1. In fact, for all τ ∈ T

E
{ ∫ T

τ

e−
∫ s
0 µF (u)duC0(s)Rc

(
C(l∗)(s)

)
ds
∣∣∣Fτ }

= E
{ ∫ T

τ

e−
∫ s
0 µF (u)duC0(s)Rc

(
C0(s)

(
y ∨ sup

0≤u≤s

(
l∗(u)

C0(u)

)))
ds
∣∣∣Fτ } (2.32)
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≤ E
{ ∫ T

τ

e−
∫ s
0 µF (u)duC0(s)Rc

(
C0(s) sup

τ≤u≤s

(
l∗(u)

C0(u)

))
ds
∣∣∣Fτ }

= e−
∫ τ
0 µF (u)duC

0(τ)

fC(τ)
1{τ<T}

where in the last step we have used (2.28). Notice that in (2.32) we have equality if and

only if τ is a time of investment; that is a time of strict increase for C(l∗), i.e. dC(l∗)(τ) > 0.

In fact, at such time, we have C(l∗)(t) = C0(t) supτ≤u≤t

(
l∗(u)
C0(u)

)
for t ≥ τ . Hence (2.11) and

(2.12) hold (see also (2.8)) and so ν(l∗)(t) ≡ ν̂(t).

Remark 2.3.4. Recall that Cy,ν̂(t) = C0(t)[y+νy(t)] (cf. 2.5) where νy(t) =
∫

[0,t)
fC(s)
C0(s)

dν̂(s).

Hence it follows from (2.31) with l = l∗ that

νy(t) = sup
0≤u≤t

(
y ∨ l∗(u)

C0(u)

)
− y. (2.33)

Therefore

νy(t) = sup
0≤u≤t

(
l∗(u)− yC0(u)

C0(u)

)
∨ 0. (2.34)

2.4 Identifying the Base Capacity Process

In this Section we �nd the explicit link between our `base capacity' approach and the

variational approach in Chiarolla and Haussmann [20] based on the shadow value of installed

capital, v := ∂
∂y
V (see Section 2.6 for a generalization of [20] in the case of deterministic,

time-dependent coe�cients).

We make the following Markovian Assumption

Assumption 2.4.1. µC(t), σC(t), fC(t) and µF (t) are deterministic functions of t ∈ [0, T ].

De�ne

Γξ(t) := ess inf
t≤τ≤T

E
{ ∫ τ

t

e−
∫ u
0 µF (r)drC0(u)Rc

(
− 1

ξ
C0(u)

)
du

+ e−
∫ τ
0 µF (r)drC0(τ)

1

fC(τ)
1{τ<T}

∣∣∣Ft}, (2.35)

for ξ ∈ R and t ∈ [0, T ]. Then [6], Lemma 4.12 and Lemma 4.13 guarantee that
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• the stopping time

τ ξt := inf

{
s ∈ [t, T ) : Γξ(s) = e−

∫ s
0 µF (r)drC0(s)

1

fC(s)

}
∧ T (2.36)

is optimal for (2.35);

• the optional process

ξ∗(t) := sup

{
ξ ∈ R : Γξ(t) = e−

∫ t
0 µF (r)drC0(t)

1

fC(t)

}
, t ∈ [0, T ), (2.37)

is the unique solution of the representation problem (2.23).

We now make an absolutely continuous change of probability measure. In fact, consider

the exponential martingaleMt(s) := e
∫ s
t σ(u)dW (u)− 1

2

∫ s
t σ

2(u)du, t ∈ [0, T ] and t ≤ s ≤ T , and

de�ne the probability measure P̃t by P̃t(A) := E {Mt(T )1A}, for A ∈ F̃t, T := σ{W (u) −

W (t), t ≤ u ≤ T}. Then the Radon-Nikodym derivative is

dP̃t
dP

∣∣∣
F̃t,s

=Mt(s), s ∈ [0, T ], (2.38)

and the process W̃ t(s) := W (s) −W (t) −
∫ s
t
σ(u)du is a standard Brownian motion under

P̃t. We denote by Ẽt {·} the expectation w.r.t. P̃t.

Hence under P̃ := P̃0 the process e
∫ t
0 µF (r)dr Γξ(t)

C0(t)
becomes

Γ̃ξ(t) := ess inf
t≤τ≤T

Ẽ
{ ∫ τ

t

e−
∫ u
t µ(r)dr Rc

(
− 1

ξ
C0(u)

)
du + e−

∫ τ
t µ(r)dr 1

fC(τ)
1{τ<T}

∣∣∣Ft}, (2.39)
and so the optional process ξ∗(t) (cf. 2.37) may be written as

ξ∗(t) = sup

{
ξ ∈ R : Γ̃ξ(t) =

1

fC(t)

}
. (2.40)

In fact,

ξ∗(t) = sup

{
ξ ∈ R : ess inf

t≤τ≤T
E
{ ∫ τ

t

e−
∫ u
t µF (r)drC

0(u)

C0(t)
Rc

(
− 1

ξ
C0(u)

)
du

+e−
∫ τ
t µF (r)drC0(τ)

C0(t)

1

fC(τ)
1{τ<T}

∣∣∣Ft} =
1

fC(t)

}
,
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and by the continuous time Bayes' Rule (see e.g. [44]), we obtain

E
{ ∫ τ

t

e−
∫ u
t µF (r)drC

0(u)

C0(t)
Rc

(
− 1

ξ
C0(u)

)
du + e−

∫ τ
t µF (r)drC0(τ)

C0(t)

1

fC(τ)
1{τ<T}

∣∣∣Ft}
= Ẽ

{ ∫ τ

t

e−
∫ u
t µ(r)dr Rc

(
− 1

ξ
C0(u)

)
du + e−

∫ τ
t µ(r)dr 1

fC(τ)
1{τ<T}

∣∣∣Ft}
with µ(t) := µC(t) + µF (t). Now (2.40) follows from (2.39).

For an appropriate value of ξ, we are now able to link Γ̃ξ(t) to v(t, y), the shadow value

of installed capital (cf. (2.81)).

Proposition 2.4.2. With Γ̃ξ(t) as in (2.39) and v(t, y) as in (2.81), that is

v(t, y) = inf
t≤τ≤T

Ẽt
{ ∫ τ

t

e−
∫ u
t µ(r)dr Rc

(
Y t,y(u)

)
du+ e−

∫ τ
t µ(r)dr 1

fC(τ)
1{τ<T}

}
, (2.41)

we have

Γ̃−
1
y (t) = v

(
t, yC0(t)

)
. (2.42)

Proof. The proof borrows arguments from [18], Theorem 4.1. As in Section 2.6 we set

Y t,y(s) := yC̃t(s) = yCt,1,0(s) for s ≥ t (cf. (2.69)). Then, for t ∈ [0, T ) and τ ∈ [t, T ],

notice that

Ẽ
{ ∫ τ

t

e−
∫ u
t µ(r)dr Rc

(
yC0(u)

)
du + e−

∫ τ
t µ(r)dr 1

fC(τ)
1{τ<T}

∣∣∣Ft}
= Ẽ

{ ∫ τ

t

e−
∫ u
t µ(r)dr Rc

(
Y t,yC0(t)(u)

)
du + e−

∫ τ
t µ(r)dr 1

fC(τ)
1{τ<T}

∣∣∣Ft} (2.43)

= Ẽ
{ ∫ τ

t

e−
∫ u
t µ(r)dr Rc

(
yC0(t)C̃t(u)

)
du + e−

∫ τ
t µ(r)dr 1

fC(τ)
1{τ<T}

∣∣∣Ft}.
In order to take care of the conditioning, it is convenient to work on the canonical prob-

ability space
(
Ω,P

)
, where P is the Wiener measure on Ω := C0 ([0, T ]), the space of all

continuous functions on [0, T ] which are zero at t = 0. In fact, we may take W̃ 0(·) =

ω = (ω1, ω2) where ω1 =
{
W̃ 0(v), 0 ≤ v ≤ t

}
and ω2 =

{
W̃ 0(v)− W̃ 0(t), t ≤ v ≤ T

}
={

W̃ ′(v), 0 ≤ v ≤ T − t
}
. Since Brownian increments are independent then P is a product-

measure on C0 ([0, T ]) = C0 ([0, t]) × C0 ([0, T − t]) and τ ≥ t P̃-a.s. may be written in the
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form τ (ω1, ω2) = t+τ ′ω1
(ω2) with τ ′ω1

(·) a
{
FW̃ ′v

}
0≤v≤T−t

-stopping time for every ω1. Then,

since C̃t(·) is independent of Ft, the last conditional expectation in (2.43) is equal to

Ẽω2

{ ∫ t+τ ′ω1

t

e−
∫ u
t µ(r)dr Rc

(
yC0(t)C̃t(u)

)
du + e−

∫ t+τ ′ω1
t µ(r)dr 1

fC(t+ τ ′ω1
)
1{τ ′ω1+t<T}

}
= Ẽt

{ ∫ τ

t

e−
∫ u
t µ(r)dr Rc

(
Y t,yC0(t)(u)

)
du + e−

∫ τ
t µ(r)dr 1

fC(τ)
1{τ<T}

}
(2.44)

where Ẽω2{·} denotes expectation over ω2 or W̃ ′. Hence (2.42) follows from (2.39) and

(2.41).

Notice that the process ξ∗(t) is negative for all t ∈ [0, T ) a.s. (cf. Lemma 2.23), then

for t ∈ [0, T ) it must be ξ∗(t) = sup
{
ξ < 0 : Γξ(t) = e−rtC0(t) 1

fC(t)

}
or equivalently ξ∗(t) =

sup
{
ξ < 0 : Γ̃ξ(t) = 1

fC(t)

}
.

The following Proposition provides another representation of the base capacity l∗(t) :=

−C0(t)
ξ∗(t)

(cf. (2.29)).

Proposition 2.4.3. The base capacity l∗(t), unique solution of (2.28), admits the represen-

tation

l∗(t) = sup

{
y C0(t) > 0 : v

(
t, y C0(t)

)
=

1

fC(t)

}
. (2.45)

Proof. For t ∈ [0, T ) and y > 0 we have

l∗(t) := −C
0(t)

ξ∗(t)
= − C0(t)

sup
{
ξ < 0 : Γ̃ξ(t) = 1

fC(t)

} = − C0(t)

sup
{
− 1
y
< 0 : Γ̃−

1
y (t) = 1

fC(t)

}
=

C0(t)

− sup
{
− 1
y
< 0 : Γ̃−

1
y (t) = 1

fC(t)

} =
C0(t)

inf
{

1
y
> 0 : Γ̃−

1
y (t) = 1

fC(t)

}
= C0(t) sup

{
y > 0 : Γ̃−

1
y (t) =

1

fC(t)

}
= sup

{
yC0(t) > 0 : Γ̃−

1
y (t) =

1

fC(t)

}
= sup

{
y C0(t) > 0 : v

(
t, y C0(t)

)
=

1

fC(t)

}
where the last equality follows from Proposition 2.4.2.



2.4 Identifying the Base Capacity Process 60

Notice that v(t, y) ≤ 1
fC(t)

for all t ∈ [0, T ) and y > 0. As in [20], (3.19) introduce the

Continuation Region (or `no-action region') of problem (2.41)

D :=

{
(t, y) ∈ [0, T )× (0,∞) : v(t, y) <

1

fC(t)

}
. (2.46)

This is a Borel set and, roughly speaking, D is the region where it is not pro�table to

invest, since the expected marginal pro�t is strictly less than the capital's replacement cost.

Similarly its complement is the Stopping Region (or `action region'), i.e.

Dc :=

{
(t, y) ∈ [0, T )× (0,∞) : v(t, y) =

1

fC(t)

}
, (2.47)

is the region where it is pro�table to invest immediately.

The boundary between these two regions is the free boundary ŷ(t) of the optimal stopping

problem (2.41).

Theorem 2.4.1. The base capacity process l∗(t), unique solution of (2.28), is deterministic

and coincides with the free boundary ŷ(t) associated to the optimal stopping problem (2.41).

Hence

l∗(t) = sup

{
z > 0 : v(t, z) =

1

fC(t)

}
for t ∈ [0, T ). (2.48)

Proof. Recall (2.45). Fix t ∈ [0, T ) and set

z(ω, y) := yC0(ω, t).

It follows that{
yC0(ω, t) > 0 : v

(
t, yC0(ω, t)

)
=

1

fC(t)

}
=

{
z(ω, y) > 0 : v(t, z(ω, y)) =

1

fC(t)

}
⊆

{
z > 0 : v(t, z) =

1

fC(t)

}
for a.e. ω ∈ Ω and y > 0, hence the inclusion holds a.s. for all y > 0.

To show the reverse inclusion, �x ω ∈ Ω and t ∈ [0, T ), then for z > 0 de�ne

y(ω, z) :=
z

C0(ω, t)



2.4 Identifying the Base Capacity Process 61

so that that every z > 0 may be written as z = y(z, ω)C0(t, ω). Then{
z > 0 : v(t, z) =

1

fC(t)

}
=

{
y(ω, z)C0(ω, t) > 0 : v

(
t, y(ω, z)C0(ω, t

)
) =

1

fC(t)

}
⊆

{
yC0(ω, t) > 0 : v

(
t, yC0(ω, t)

)
=

1

fC(t)

}
.

This inclusion holds for a.e. ω ∈ Ω, hence a.s. Hence, it holds P̃-a.s. that

sup

{
yC0(ω, t) > 0 : v

(
t, yC0(ω, t)

)
=

1

fC(t)

}
= sup

{
z > 0 : v(t, z) =

1

fC(t)

}
(2.49)

and l∗(t) is deterministic (cf. (2.45)). Now the right-hand side of (2.49) (cf. [20], (3.13))

identi�es l∗(t) with the free boundary ŷ(t) of problem (2.41).

Since ŷ(t) coincides with l∗(t), equation (2.28) provides an integral equation for the free

boundary ŷ(t).

Theorem 2.4.2. The free boundary ŷ(t) of problem (2.41) is the unique upper right-continuous

solution of the integral equation

Ẽ
{∫ T−t

0

e−
∫ v+t
t µ(r)drRc

(
sup

0≤u′≤v

(
ŷ(u′ + t)

C0(v + t)

C0(u′ + t)

))
dv

}
=

1

fC(t)
, t ∈ [0, T ). (2.50)

Proof. Fix t ∈ [0, T ). Set τ = t and recall that l∗(t) = ŷ(t). Then write (2.28) under P̃ and

apply the continuous time Bayes' Rule to obtain

Ẽ
{∫ T−t

0

e−
∫ v+t
t µ(r)drRc

(
sup

0≤u′≤v

(
ŷ(u′ + t)

C0(v + t)

C0(u′ + t)

))
dv
∣∣∣Ft} =

1

fC(t)
.

Now (2.50) follows since C0(v+t)
C0(u′+t)

, v > u′ ≥ 0, is independent of Ft.

We now aim to obtain paths' regularity of the free boundary ŷ(t) of problem (2.41) from

the fact that it coincides with the base capacity process l∗(t). Recall that l∗(t) has upper

right-continuous paths on [0, T ) and satis�es l∗(t) > 0 on [0, T ) a.s. (cf. Lemma 2.3.1).

As in [20], Section 4, we make the following assumptions

Assumption 2.4.4.
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1. R(C) = 1
α
Cα with α ∈ (0, 1) (i.e. Cobb-Douglas production function);

2. µC(t) ≡ µC , σC(t) ≡ σC , µF (t) ≡ µF , fC(t) ≡ fC .

Remark 2.4.5. Notice that under Assumption 2.4.4, part 2, the process C0(v+t)
C0(u′+t)

has the

same law as C0(v)
C0(u′)

. Hence, the integral equation (2.50) takes the form

Ẽ
{∫ T−t

0

e−µvRc

(
sup

0≤u′≤v

(
ŷ(u′ + t)

C0(v)

C0(u′)

))
dv

}
=

1

fC(t)
. (2.51)

Under Assumption 2.4.4, the properties of the free boundary obtained in [20] hold. The

novelty is the continuity of ŷ(t) which we prove thanks to its identi�cation with l∗(t).

Theorem 2.4.3. Let Assumptions 2.4.4 hold and recall that ŷ(t) is the function representing

the free boundary between the continuation region D and the stopping region Dc. Then we

have

1. ŷ(t) > 0 on t ∈ [0, T );

2. ŷ(T−) = 0;

3. ŷ(t) is nonincreasing for t ∈ [0, T );

4. ŷ(t) is left-continuous for t ∈ [0, T );

5. ŷ(t) is continuous on t ∈ [0, T ).

Proof. Property 1 follows from the analogous property of l∗(t) (see Lemma 2.3.1). For the

proof of properties 2, 3 and 4 see [20], Proposition 4.3. To prove property 5 recall that

l∗(t) has upper right-continuous paths (see Lemma 2.3.1), but l∗(t) = ŷ(t) admits right-hand

limits thanks to property 3, then it is right-continuous, i.e.

l∗(t) = lim sup
s↓t

l∗(s) = lim
s↓t

l∗(s).

Hence the continuity of ŷ(t) follows from property 4.
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Notice that property 5 was assumed in [20] (see [20], Assumption-[Cfb]). Chiarolla and

Haussmann in [20] stressed that the data regularity of problem (2.41) gave no indication

that continuity of the free boundary should fail, but they were unable to prove it, as they

could not show its right-continuity. In fact arguments similar to those used in [38] for the

free boundary of the American put did not apply being the value function of their stopping

problem an inf rather than a sup as in the option problem.

In this Section we have linked the Bank-El Karoui's probabilistic approach to the vari-

ational approach followed by Chiarolla and Haussmann in [18] and [20] for an irreversible

investment problem similar to (2.7). Under Markovian assumptions we have proved that

the base capacity process l∗(t) is a deterministic process and it coincides with the free-

boundary of the optimal stopping problem (2.41). Moreover, in the Cobb-Douglas case, we

have obtained its continuity so to remove Assumption-[Cfb] in [20]. We have characterized

the free boundary as the unique solution of an integral equation based on the stochastic

Representation Theorem of [6]. Even under Assumption 2.4.4, the integral equation for the

free boundary (2.50) cannot be analitically solved when the time horizon is �nite. However

it is possible to �nd a curve bounding the free boundary from above. In Section 2.5 we shall

see that, instead, when T = +∞ (as in H. Pham [55]) the free boundary is a constant whose

value we �nd explicitly by applying Proposition 2.5.1.

Recall that T < +∞.

Proposition 2.4.6. Under Assumption 2.4.4 the boundary ŷ(t) of the continuation region

D satis�es

ŷ(t) ≤
[
fC

(
1− e−(µF+αµC+ 1

2
α(1−α)σ2

C)(T−t)

µF + αµC + 1
2
α(1− α)σ2

C

)] 1
1−α

=: y∗(t), (2.52)

for every t ∈ [0, T ).

Proof. Fix t ∈ [0, T ). The representation formula (2.28) for τ = t and in the Cobb-Douglas

case becomes

e−µF t
1

fC
= E

{ ∫ T

t

e−µF s
C0(s)

C0(t)

(
sup
t≤u≤s

(
C0(s)

l∗(u)

C0(u)

))α−1

ds
∣∣∣Ft}. (2.53)
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Set µ̃C := µC + 1
2
σ2
C , then the right-hand side of (2.53) gives

E
{ ∫ T

t

e−µF s
C0(s)

C0(t)

(
sup
t≤u≤s

(
C0(s)

l∗(u)

C0(u)

))α−1

ds
∣∣∣Ft} (2.54)

= E
{∫ T

t

e−µF s e−µ̃C(s−t)+σC(W (s)−W (t))

× inf
t≤u≤s

(
[l∗(u)]α−1 e(α−1)(−µ̃C(s−u)+σC(W (s)−W (u)))

)
ds
∣∣∣Ft}

≤ E
{∫ T

t

e−µF s e−µ̃C(s−t)+σC(W (s)−W (t)) [l∗(t)]α−1 e(α−1)(−µ̃C(s−t)+σC(W (s)−W (t))) ds
∣∣∣Ft}

= e−µF t [l∗(t)]α−1 E
{∫ T−t

0

e−µF v e−µ̃Cv+σC(W (v+t)−W (t))

× e(α−1)(−µ̃Cv+σC(W (v+t)−W (t))) dv
∣∣∣Ft}

Since the Brownian increments in the integral above are independent of Ft, we obtain

E
{ ∫ T

t

e−µF s
C0(s)

C0(t)

(
sup
t≤u≤s

(
C0(s)

l∗(u)

C0(u)

))α−1

ds
∣∣∣Ft}

≤ e−µF t [l∗(t)]α−1 E
{∫ T−t

0

e−µF v e−µ̃Cv+σC(W (v+t)−W (t))

× e(α−1)(−µ̃Cv+σC(W (v+t)−W (t)))

}
dv (2.55)

= e−µF t [l∗(t)]α−1

∫ T−t

0

e−µF v E
{
eα(−µ̃Cv+σC(W (v+t)−W (t)))

}
dv

= e−µF t [l∗(t)]α−1

∫ T−t

0

e−µF ve−αµ̃Cv E
{
eασCW (v)

}
dv

= e−µF t [l∗(t)]α−1

∫ T−t

0

e−µF ve−αµ̃Cv e
1
2
α2σ2

C v dv.

Notice that

µF + αµ̃C −
1

2
α2σ2

C = µF + αµC +
1

2
α(1− α)σ2

C > 0,

hence (2.53) and (2.55) imply that

e−µF t
1

fC
≤ e−µF t [l∗(t)]α−1

∫ T−t

0

e−(µF+αµC+ 1
2
α(1−α)σ2

C)v dv (2.56)
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= e−µF t [l∗(t)]α−1

(
1− e−(µF+αµC+ 1

2
α(1−α)σ2

C)(T−t)

µF + αµC + 1
2
α(1− α)σ2

C

)
.

Now 2.56 gives

[l∗(t)]1−α ≤ fC

(
1− e−(µF+αµC+ 1

2
α(1−α)σ2

C)(T−t)

µF + αµC + 1
2
α(1− α)σ2

C

)
=: y∗(t)1−α, (2.57)

and (2.52) follows from the identi�cation of l∗(·) with ŷ(·) (cf. Theorem 2.4.1).

Remark 2.4.7. Notice that the curve y∗(t) is exactly what in [18] was incorrectly identi�ed

as the free boundary between the `action' and the `no-action' regions. In [20] the authors

characterized the free boundary ŷ(t) as the unique solution of a nonlinear integral equation

(see [20], Theorem 4.8). Then, by using a discrete approximation of such integral equation,

they showed that ŷ(t) ≤ y∗(t), for t ≤ T . That is exactly what we prove here in Proposition

2.4.6.

Remark 2.4.8. Notice that the arguments in the proof of Proposition 2.4.6 apply even

under the more general conditions of Assumption 2.4.1. That is, under deterministic, time-

dependent coe�cients we have

ŷ(t) ≤
[
fC(t)

∫ T−t

0

e−
∫ v+t
t (µF (s)+αµC(s)+ 1

2
α(1−α)σ2

C(s)) dsdv

] 1
1−α

, ∀t ∈ [0, T ).

2.5 Explicit Results when T = +∞

In this Section, with T = +∞ and under Assumption 2.4.4, we set fC = 1 in order to

compare our �nding with the results in H. Pham [55]. As one would expect, when the time

horizon is in�nite, the free boundary is a point. That is what we show below.

Proposition 2.5.1. The unique solution of the representation problem (2.28) is given by

l∗(t) =
[ 2

2µF − σ2
Cβ− − ασ2

C(1 + β+)

] 1
1−α

=: a (2.58)

where β± are, respectively, the positive and negative roots of 1
2
σ2
Cx

2 + µ̃Cx − µF = 0 with

µ̃C := µC + 1
2
σ2
C.
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Hence (cf. De�nition 2.3.3 and Theorem 2.3.1) the optimal capacity is given by

Cy,ν̂(t) = C(a)(t) ≡ C0(t)

(
y ∨ sup

0≤u≤t

(
a

C0(u)

))
. (2.59)

Proof. We make the ansatz that l∗(t) ≡ a for all t ∈ [0,∞) and we plug it into the left-hand

side of (2.28) to obtain

aα−1 E
{ ∫ ∞

τ

e−µF s
C0(s)

C0(τ)

[
sup
τ≤u≤s

(
C0(s)

C0(u)

)]α−1

ds
∣∣∣Fτ }

= aα−1 E
{ ∫ ∞

τ

e−µF s
C0(s)

C0(τ)
inf

τ≤u≤s

([C0(s)

C0(u)

]α−1
)
ds
∣∣∣Fτ }

= aα−1 E
{ ∫ ∞

τ

e−µF seσC(W (s)−W (τ))−µ̃C(s−τ) (2.60)

× inf
0≤u′≤s−τ

[
eσC(W (s)−W (u′+τ))−µ̃C(s−u′−τ)

](α−1)

ds
∣∣∣Fτ }

= aα−1e−µF τ E
{ ∫ ∞

0

e−µF veσCW (v)−µ̃Cv inf
0≤u′≤v

(
e(α−1)(σC(W (v)−W (u′))−µ̃C(v−u′))

)
dv

}
since the Brownian increments are independent of Fτ .

De�ne now Y (v) := µ̃Cv−σCW (v), Y (v) := inf0≤u′<v Y (u′) and Y (v) := sup0≤u′<v Y (u′),

then

aα−1e−µF τ E
{ ∫ ∞

0

e−µF veσCW (v)−µ̃Cv inf
0≤u′≤v

(
e(α−1)(σC(W (v)−W (u′))−µ̃C(v−u′))

)
dv

}
= aα−1e−µF τ E

{ ∫ ∞
0

e−µF ve−α(µ̃Cv−σCW (v)) e sup0≤u′≤v [(α−1)(µ̃Cu
′−σCW (u′))] dv

}
= aα−1e−µF τ E

{ ∫ ∞
0

e−µF ve−αY (v)e(α−1)Y (v)dv

}
(2.61)

=
1

µF
aα−1e−µF τ E

{ ∫ ∞
0

µF e
−µF ve−α(Y (v)−Y (v))e−Y (v) dv

}
=

1

µF
aα−1e−µF τ E

{
e−α(Y (τ(µF ))−Y (τ(µF )))e−Y (τ(µF ))

}
where τ(µF ) denotes an independent exponential distributed random time.

Using the Excursion Theory for Levy processes (cf. [11]), Y − Y is independent of Y ,

and by the Duality Theorem, Y − Y has the same distribution of Y . Hence from (2.61) we
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obtain

1

µF
aα−1e−µF τ E

{
e−α(Y (τ(µF ))−Y (τ(µF )))e−Y (τ(µF ))

}
=

1

µF
aα−1e−µF τ E

{
e−αY (τ(µF ))

}
E
{
e−Y (τ(µF ))

}
. (2.62)

It is well known that for a Brownian motion with drift

E
{
ezY (τ(µF ))

}
=

β+

β+ − z
and E

{
ezY (τ(µF ))

}
=

β−
β− − z

,

if β+ and β− are, respectively, the positive and negative roots of 1
2
σ2
Cx

2 + µ̃Cx− µF = 0, i.e.

β± = − µ̃C
σ2
C

±

√(
µ̃C
σ2
C

)2

+
2µF
σ2
C

.

Hence (cf. (2.28))

e−µF τ = E
{ ∫ ∞

τ

e−µF s
C0(s)

C0(τ)

[
C0(s) sup

τ≤u≤s

(
l∗(u)

C0(u)

)]α−1

ds
∣∣∣Fτ }

=
1

µF
aα−1e−µF τE

{
e−αY (τ(µF ))

}
E
{
e−Y (τ(µF ))

}
(2.63)

=
1

µF
aα−1e−µF τ

β+β−
(1 + β+)(α + β−)

.

Then, we solve for a and we obtain

aα−1 =

(
µF (1 + β+)(α + β−)

β+β−

)
,

which may also be written as

a =

(
2

2µF − σ2
Cβ− − ασ2

C(1 + β+)

) 1
1−α

being β+β− = −2µF
σ2
C
.

Hence (cf. Theorem 2.3.1) the optimal capacity is

Cy,ν̂(t) = C(a)(t) = C0(t)

(
y ∨ sup

0≤u≤t

(
a

C0(u)

))
. (2.64)
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From Remark 2.3.4 we have

νy(t) = sup
0≤u≤t

(
a− yC0(u)

C0(u)

)
∨ 0, (2.65)

and the corresponding control ν̂(t) (cf. (2.2)) makes the di�usion re�ect at the boundary a,

it is the local time of Cy,ν̂(t) at a.

Notice that the boundary a in (2.58) coincides with the free boundary kb obtained by H.

Pham in [55] for a unit cost of investment p. In fact from [55], Example 1.5.1

kα−1
b =

1−m
C(α−m)

,

with

C =
1

µF + αµ̃C −
α2σ2

C

2

and m = −β+.

It is easy to see that

aα−1 =
µF (1 + β+)(α + β−)

β+β−
=

1−m
C(α−m)

= kα−1
b , (2.66)

hence a = kb.

The following Proposition permits to have some comparative statics results.

Proposition 2.5.2. The free boundary of problem (2.7) is a positive decreasing function of

the di�usion coe�cient σC and satis�es

lim
σC→0

a =

(
1

µF + αµC

) 1
1−α

lim
σC→+∞

a = 0.

Proof. Notice that kb > 0 since β+ and α are positive as well as C. By means of (2.66) it

follows a > 0.

Straighforward calculations give

∂β+

∂σC
= −β+

σC

(
1 +

(
µ̃C
σ2
C

)
√(

µ̃C
σ2
C

)2

+ 2µF
σ2
C

)
= − 2µF

σ3
C

√(
µ̃C
σ2
C

)2

+ 2µF
σ2
C

< 0
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where we have used the de�nition of β− and the relation β+β− = −2µF
σ2
C
. Thanks to (2.66)

we get
∂a1−α

∂σC
=
C2(1− α)[ 1

C
∂β+
∂σC
− σCα(1 + β+)(α + β+)]

(1 + β+)2
< 0

from which it is clear that σC → a(σC) is a decreasing mapping.

Moreover, we have

lim
σC→0

kα−1
b = µF + αµC

and

lim
σC→+∞

kα−1
b = +∞.

Hence, thanks to (2.66) we get

lim
σC→0

a =

(
1

µF + αµC

) 1
1−α

and

lim
σC→+∞

a = 0.

We notice that when σC and µC are zero (i.e. in the deterministic setting with zero

depreciation) Rc(l
∗(t)) = Rc(a) = µF as expected from economic theory.

Remark 2.5.3. For a general production function R(·) satisfying Assumption 2.1.1, to �nd

the free boundary a one should solve the analogue of (2.62), i.e.

1

µF
E
{
e−Y (τ(µF ))Rc

(
a e−Y (τ(µF ))

)}
E
{
e−Y (τ(µF ))

}
= 1,

or equivalently
1

µF
E
{
e−Y (τ(µF ))Rc

(
a e−Y (τ(µF ))

)} β+

1 + β+

= 1.

That is, a is the unique solution of

E
{
e−Y (τ(µF ))Rc

(
a e−Y (τ(µF ))

)}
=
µF (1 + β+)

β+

. (2.67)
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2.6 The Variational Approach in the Case of

Time-Dependent Coe�cients

In this Section we recall the solution of problem (2.7) obtained in Chiarolla and Hauss-

mann [20] by a variational approach and we generalize some of their results to the case of

deterministic, time-dependent coe�cients of the controlled di�usion (cf. Assumption 2.4.1).

Let Cs,y,ν(t) be the capacity process starting at time s ∈ [0, T ) from y, controlled by ν,

then 
dCs,y,ν(t) = Cs,y,ν(t)[−µC(t)dt+ σC(t)dW (t)] + fC(t)dν(t), t ∈ [s, T ),

Cs,y,ν(s) = y > 0,
(2.68)

hence

Cs,y,ν(t) =
C0(t)

C0(s)

{
y +

∫
[s,t)

C0(s)

C0(u)
fC(u)dν(u)

}
with C0(t) as de�ned in (2.3).

To semplify notation write

C̃s(t) := Cs,1,0(t) =
C0(t)

C0(s)
= e−

∫ t
s (µC(u)+ 1

2
σ2
C(u))du+

∫ t
s σC(u)dW (u), (2.69)

this process is F̃s,t := σ{W (u)−W (s), s ≤ u ≤ t}-measurable.

To Cs,y,ν we associate the expected total pro�t net of investment given by

Js,y(ν) = E
{∫ T

s

e−
∫ t
s µF (u)duR(Cs,y,ν(t))dt−

∫
[s,T )

e−
∫ t
s µF (u)dudν(t)

}
. (2.70)

The corresponding optimal investment problem is

V (s, y) := sup
ν∈Ss

Js,y(ν), (2.71)

where

Ss := {ν : Ω× [s, T ]→ R+, nondecreasing, left-continuous, adapted s.t. ν(s) = 0, P− a.s.}

is the convex set of irreversible investments.
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We de�ne the opportunity cost of not investing until time t as (compare with [20], Section

3)

ζs,y,T (t) :=

∫ t

s

e−
∫ u
s µF (r)dr C̃s(u)Rc(yC̃

s(u))du+ e−
∫ t
s µF (r)drC̃s(t)

1

fC(t)
1{t<T}, (2.72)

and the optimal stopping problem (compare with [20], (3.1))

Zs,y,T (t) := ess inf
t≤τ≤T

E
{
ζs,y,T (τ)

∣∣F̃s,t} . (2.73)

Denoting by Zs,y,T (·) the right-continuous with left-limits modi�cation of Zs,y,T (·), for s = t

we set v(s, y) := Zs,y,T (s), so that up to a null set,

v(s, y) = ess inf
s≤τ≤T

E
{ ∫ τ

s

e−
∫ u
s µF (r)dr C̃s(u)Rc

(
yC̃s(u)

)
du

+ e−
∫ τ
s µF (r)drC̃s(τ)

1

fC(τ)
1{τ<T}

}
. (2.74)

Now, the results in [2], Proposition 2 and Theorem 3, guarantee that for s ∈ [0, T ) the

stopping time

τ ∗(s, y) = inf
{
t ∈ [s, T ) : Zs,y,T (t) = ζs,y,T (t)

}
∧ T (2.75)

is optimal for (2.73) and the function v(s, y) is the shadow value of installed capital, i.e.

v(s, y) =
∂

∂y
V (s, y).

Theorem 2.6.1. Under Assumption 2.4.1, for every (s, y) in [0, T ) × (0,∞) the optimal

stopping time (2.75) may be written as

τ ∗(s, y) = inf

{
t ∈ [s, T ) : v(t, Y s,y(t)) =

1

fC(t)

}
∧ T. (2.76)

Proof. Recall that Y s,y(t) := yC̃s(t). From (2.73) we may write

Zs,y,T (t) = ess inf
t≤τ≤T

E
{∫ t

s

e−
∫ u
s µF (r)dr C̃s(u)Rc (Y s,y(u)) du

+

∫ τ

t

e−
∫ u
s µF (r)dr C̃s(u)Rc (Y s,y(u)) du
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+e−
∫ t
s µF (r)dre−

∫ τ
t µF (r)drC̃s(τ)

1

fC(τ)
1{τ<T}

∣∣∣F̃s,t} (2.77)

= ζs,y,T (t) + ess inf
t≤τ≤T

E
{∫ τ

t

e−
∫ u
s µF (r)dr C̃s(u)Rc (Y s,y(u)) du

+ e−
∫ t
s µF (r)dr

(
e−

∫ τ
t µF (r)drC̃s(τ)

1

fC(τ)
1{τ<T} − C̃s(t)

1

fC(t)
1{t<T}

)∣∣∣F̃s,t}.
Notice that

C̃s(u) = C̃s(t)C̃t(u), ∀u ≥ t, and e−
∫ τ
s µF (r)drC̃s(τ) = e−

∫ t
s µF (r)dre−

∫ τ
t µF (r)drC̃s(t)C̃t(τ).

Hence for t < T we have

Zs,y,T (t) = ζs,y,T (t) (2.78)

+ e−
∫ t
s µF (r)drC̃s(t) ess inf

t≤τ≤T
E
{∫ τ

t

e−
∫ u
t µF (r)dr C̃t(u)Rc

(
Y s,y(t)C̃t(u)

)
du

+ e−
∫ τ
t µF (r)drC̃s(τ)

1

fC(τ)
1{τ<T} −

1

fC(t)

∣∣∣F̃s,t}.
In order to take care of the conditioning in (2.78) we proceed exactly as in the proof of

Proposition 2.4.2 by working on the canonical probability space
(
Ω,P

)
, where P is the

Wiener measure on Ω := C0 ([0, T ]), the space of continuous functions on [0, T ] which are

zero at time zero. Since C̃t(·) is independent of F̃s,t and Y s,y(t) is F̃s,t-adapted, recalling

(2.74), from (2.78) we get

Zs,y,T (t) = ζs,y,T (t) + e−
∫ t
s µF (r)drC̃s(t)

(
v (t, Y s,y(t))− 1

fC(t)

)
. (2.79)

Finally, (2.75) and (2.79) imply

τ ∗(s, y) = inf{t ∈ [s, T ) : Zs,y,T (t) = ζs,y,T (t)} ∧ T

= inf

{
t ∈ [s, T ) : e−

∫ t
s µF (r)drC̃s(t)

(
v (t, Y s,y(t))− 1

fC(t)

)
= 0

}
∧ T

= inf

{
t ∈ [s, T ) : v(t, Y s,y(t)) =

1

fC(t)

}
∧ T. (2.80)
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Notice that if Ẽs {·} is the expectation w.r.t. P̃s (cf. (2.38) for its de�nition), then (2.74)

may also be written as

v(s, y) = inf
s≤τ≤T

Ẽs
{ ∫ τ

s

e−
∫ u
s µ(r)dr Rc (Y s,y(t)) du+ e−

∫ τ
s µ(r)dr 1

fC(τ)
1{τ<T}

}
(2.81)

with µ(t) = µF (t) + µC(t), for t ∈ [0, T ].

The value function v(s, y) is expected to be the solution of a variational inequality similar

to that obtained in Chiarolla and Haussmann [20] under Markovian restrictions (cf. [20],

Assumption-[M]) and with a Cobb-Douglas production function (cf. [20], (4.5) and Theorem

4.4).

In order to show that v(s, y) is directly related to the solution of a suitable variational

inequality, we introduce for s ∈ [0, T ] and t ≥ s the di�usion

Xs,x(t) = x+

∫ t

s

(µC(r)− 1

2
σ2
C(r))dr +

∫ t

s

σC(r)dW̃ s(r), Xs,x(s) = x. (2.82)

Clearly, Xs,ln(y)(t) = ln(Y s,y(t)). Moreover, we may de�ne the second order di�erential

operator

L :=
1

2
σ2(s)∂xx + (

1

2
σ2(s)− µ(s))∂x. (2.83)

De�nition 2.6.1. Let 1 ≤ p ≤ ∞ and let O be an open set of R. For any m ∈ N and λ > 0

we denote by Wm,p,λ(O) the space of all functions u such that

||u||m,p,λ :=

(∑
k≤m

∫
O
e−λ|x||u(k)(x)|pdx

) 1
p

< +∞,

where u(k)(x) denotes the k-th derivate of u.

Moreover, we write u ∈ Lp,λ(O) if u is such that(∫
O
e−λ|x||u(x)|pdx

) 1
p

< +∞.

Theorem 2.6.2. Assume that µC, σC, fC and µF have bounded �rst order derivatives

and �x λ > 2. Then, there exists a unique solution Φ(s, x) ∈ L2
(
0, T ;W1,2,λ(R)

)
∩
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L2
(
0, T ;W2,2,λ(R)

)
such that ∂Φ

∂s
∈ L2

(
0, T ;L2,λ(R)

)
∩ L2

(
0, T ;L2,λ(R)

)
and

(−∂s − L− µ(s)) Φ(s, x) ≤ Rc (ex) , (s, x) ∈ (0, T )× R,

(−(∂s + L+ µ(s))Φ(s, x)−Rc (ex))

(
Φ(s, x)− 1

fC(s)

)
= 0, (s, x) ∈ (0, T )× R,

Φ(s, x) ≤ 1

fC(s)
, (s, x) ∈ (0, T )× R,

Φ(T, x) = 0, x ∈ R.
(2.84)

Moreover, the unique solution Φ(s, x) admits the representation

Φ(s, x) = inf
s≤τ≤T

Ẽs
{ ∫ τ

s

e−
∫ u
s µ(r)dr Rc(e

Xs,x(u))du+ e−
∫ τ
s µ(r)dr 1

fC(τ)
1{τ<T}

}
with the di�usion Xs,x(t) given by (2.82).

Proof. The proof is an application of the results of Bensoussan and Lions in [12] (see [12],

Chapter 3, Section 4.9, p. 442). With respect to the notation in [12] we may write system

(2.84) as

(−∂s + A(s)) Φ(s, x) ≤ Rc (ex) , (s, x) ∈ (0, T )× R,

(−∂sΦ(s, x) + A(s)Φ(s, x)−Rc (ex))

(
Φ(s, x)− 1

fC(s)

)
= 0, (s, x) ∈ (0, T )× R,

Φ(s, x) ≤ 1

fC(s)
, (s, x) ∈ (0, T )× R,

Φ(T, x) = 0, x ∈ R,

where we have introduced the di�erential operator A(s) := − (L − µ(s)) .

Notice that

• Rc(e
x) ∈ L2

(
0, T ;L2,λ(R)

)
for every λ > 2. In fact, the strict concavity of the produc-

tion function and the growth assumption on the production function (cf. the second

part of Assumption 2.1.1) imply∫ T

0

(∫ ∞
−∞

e−λ|x||Rc (ex) |2dx
) 1

2

dt ≤ T

(∫ ∞
−∞

e−λ|x|e−2x (kη + ηex)2 dx

) 1
2

<∞.
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• 1

fC(s)
is bounded with bounded �rst order derivative and clearly it belongs to the

space L2
(
0, T ;W1,2,λ(R)

)
for all λ > 0. Moreover 1

fC(s)
∈ C0([0, T ]× R) and(

− ∂

∂s
+ A(s)

)
1

fC(s)
∈ L2

(
0, T ;L2,λ(R)

)
, ∀λ > 0

being µ(s) bounded as well as fC(s) and its �rst order derivative.

• Φ(T, x) = 0, hence it belongs to W2,2,λ(R) for all λ > 0, and Φ(T, x) ≤ 1

fC(T )
.

Moreover we have 1
2
σ2
C(s), µC(s)− 1

2
σ2
C(s) and µ(s) bounded with bounded �rst order deriva-

tives. Finally, the di�erential operator L is uniformly parabolic.

Hence, thanks to the results in [12], Chapter 3, Section 4.9, p. 442, we have that there

exists a unique Φ s.t.

Φ(s, x) ∈ L2
(
0, T ;W1,2,λ(R)

)
∩ L2

(
0, T ;W2,2,λ(R)

)
,

∂Φ

∂s
∈ L2

(
0, T ;L2,λ(R)

)
∩ L2

(
0, T ;L2,λ(R)

)
,

(−∂s + A(s)) Φ(s, x) ≤ Rc (ex) , (s, x) ∈ (0, T )× R,

(−∂sΦ(s, x) + A(s)Φ(s, x)−Rc (ex))

(
Φ(s, x)− 1

fC(s)

)
= 0, (s, x) ∈ (0, T )× R,

Φ(s, x) ≤ 1

fC(s)
, (s, x) ∈ (0, T )× R,

Φ(T, x) = 0, x ∈ R.

In particular it follows that

Φ(s, x) = inf
s≤τ≤T

Ẽs
{ ∫ τ

s

e−
∫ u
s µ(r)dr Rc(e

Xs,x(u))du+ e−
∫ τ
s µ(r)dr 1

fC(τ)
1{τ<T}

}
, (2.85)

where the di�usion Xs,x(t) is given by (2.82).

Corollary 2.6.2. Let Φ(s, x) be the unique solution of (2.84). Then we have Φ(s, ln(y)) =

v(t, y).

Proof. Since Y s,y(t) ≡ eX
s,ln(y)

(t), then it is clear by (2.85) that v(t, y) = Φ(s, ln(y)).



Chapter 3

A Stochastic Economy in Continuous

Time: First Order Conditions and a

Fixed Point Problem

In the previous two Chapters of this Thesis a �rm has represented the productive sector

of a market, but we have not modeled precisely the rest of the economy. In fact we focused

only on the �rm's manager problem, i.e. to choose an irreversible investment strategy that

maximizes the company's expected total pro�t, net of investment costs. In this Chapter we

consider the optimal irreversible investment problem for a �rm embedded in a stochastic,

continuous time economy on a �nite time interval, as modeled in [22]. When the discount

factor of the �rm's manager coincides with the de�ator, stochastic �rst order conditions for

the general equilibrium of the economy lead to a very di�cult random �xed point problem

that the Authors in [22] have been unable to solve. We now aim to study the existence of a

solution to such �xed point problem.

3.1 A Stochastic Economy with Irreversible Investment

We brie�y recall the model of [22] for a continuous time, stochastic economy with irre-

versible investment and money. A stochastic, continuous time economy consists of a single

perishable good producing �rm which has to decide on cash holdings, levels of employment
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and how to invest for capacity expansion; rational agents that maximize their total expected

utility of consumption, money holding and leisure, some of them are employed by the �rm

to facilitate capacity expansion, and some are retired or on welfare. Moreover, all the agents

partecipate in a �nancial market consisting of a nominal bond, a real bond (i.e. valued in

real terms), stocks of the �rm and another type of contract, called derivative. The shares'

owner receives dividends. For its production the �rm employs labour, borrows capital for its

daily business, and sells shares to raise capital for capacity expansion.

We may think of the agents partecipating in the economy as members of three di�erent

categories: the �rst kind provides labour to the �rm (production sector), the second turns

investment cash into capacity expansion (construction sector), and the third category pro-

vides no labour (the welfare and retired sector). All the agents own the �rm's shares and

the bonds, and consume the good produced by the �rm. Moreover, in order to facilitate

purchases of the goods and the other �nancial transactions, the government supplies money

to the agents as an exogeneous process M . On the other hand, all the price processes are

endogeneous and their optimal value is determined from equilibrium considerations.

We now start with brie�y introducing the `ingredients' we need. Let J be the total

number of agents operating in the three sector of the economy. At equilibrium, market

clearing conditions has to be solved, and, following the original approach of [45], the analysis

becomes much easier if only one (representative) agent is present. For that reason the actions

of the single agents are aggregated into the action of a single �ctitious Social Planner. His

utility function, U , is a suitable weight of the utility functions of the individual agents in the

economy. The factor Λ := (λ1, ..., λJ) ∈ RJ
++ accomplishes this. The suitable Λ is determined

at equilibrium as solution of a �xed point problem in the spirit of [45], Theorem 11.1.

Denote by Ĉ(t) the optimal (at equilibrium) production capacity process, by K̂(t) the

optimal real capital at time t ∈ [0, T ], and by L̂(t) the optimal labour level process. As

already introduced, M(t) represents the exogeneous money supply, whereas Jp is the total

number of agents who supply labour to the �rm (that is, Jp− L̂(t) is the equilibrium number
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of agents in the welfare and retired sector at time t ∈ [0, T ]).

Regarding the Social Planner's utility function U , we assume all the properties of [22],

Lemma 4.1; brie�y, U(t, ·; Λ) is a concave, increasing, continuous function on R3 with con-

tinuous partial �rst order derivatives Uc, Ul, Um.

The process ζ(t) is the de�ator (or real state-price density) and (cf. [22], (2.18)) it is

assumed to be continuous, uniformly bounded in (ω, t) ∈ Ω × [0, T ] (i.e. there exist �nite

constants kζ , κζ such that a.s. a.e. 0 < kζ ≤ ζ(ω, t) ≤ κζ .), and to satisfy{
dζ(t) = ζ(t)[−r(t)dt− θT (t)dW (t)− dβ(t)],
ζ(0) = 1.

(3.1)

Here, r(t) is the real interest rate (cf. [22], (2.1)), whereas β(t) is the singular continuous

part in the dynamics of the real bond (cf. [22], (2.1)). In [22], (2.2), it is assumed that∫ T

0

|r(t)|dt < +∞ a.s., ||β||T <∞ a.s.,

where ||β||T denotes the total variation of the process β on [0, T ]. W (t) is an exogeneous

two-dimensional Brownian motion and θ(t) is the `market price of risk' (cf. [22], (2.16),

(2.17) and Remark 2.1) such that
(i)

∫ T

0

||θ(t)||2dt <∞ a.s.

(ii) E(t) := exp[−
∫ t

0

θT (s)dW (s)− 1

2

∫ t

0

||θ(s)||2ds] is a martingale.

(3.2)

On the other hand, r̃(t) and w′(t) are the nominal interest rate and the real cost of labour

(the real wage process) respectively. They are uniformly bounded in (ω, t) ∈ Ω × [0, T ]

continuous processes (cf. [22], (2.4) and (3.5)).

The �rm's production function is denoted by R : R3 → [−∞,∞), and, according to

[22], Assumption R (3.4), it is a nondecreasing, upper semicontinuous, concave function

with sub-linear growth, twice continuously di�erentiable on the interior of its domain. Since

R is the rate of production of goods, the production pro�t per unit of time is given by



3.1 A Stochastic Economy with Irreversible Investment 79

R(C,K,L) − r̃K − w′L which the manager aims to maximize at each moment in time by

choosing capital and labour (K,L) at the current capacity C. Take M ≤ κM to be the

current money supply and set Q(M) := [0,M ]× [0, Jp]. Then, (cf. [22], (3.11))

R̃(C, r̃, w′) := max
(K,M)∈Q(M)

[R(C,K,L)− r̃K − w′L]

is the maximal pro�t rate. Notice that for C ≥ 0 �xed, −R̃(C, ·, ·) is the concave conjugate

of RQ(M)(C, ·, ·) = R(C, ·, ·)− χQ(M)(·, ·) where

χQ(M) :=

{
0, x ∈ Q(M)
+∞, otherwise

The �rm's manager chooses the investment strategy ν(ω, t) in order to maximize the

total pro�t plus scrap value, net of investment costs, that is he maximizes

J0,y(ν) := E
{∫ T

0

e−µF (t)R̃(Cy,ν(t), r̃(t), w′(t))dt+ e−µF (T )G(Cy,ν(T ))

−
∫

[0,T )

e−µF (t)dν(t)

}
(3.3)

over the convex set

S := {ν : left-continuous, nondecreasing, adapted process, a.s. �nite, s.t. ν(0) = 0 a.s.}.

Here G is the scrap-value function; it is strictly concave, non decreasing, continuously dif-

ferentiable with sub-linear growth (cf. [22], Assumption G). Recall that the controlled pro-

duction capacity Cy,ν(t), unique strong solution of
dCy,ν(t) = Cy,ν(t)[−µC(t)dt+ σC(t)dW (t)] + fC(t)dν(t), t ∈ [0, T ),

Cy,ν(0) = y > 0,

is given by Cy,ν(t) = C0(t)[y + ν(t)], with C0(t) := C1,0(t) and ν(t) :=
∫

[0,t)
fC(s)
C0(s)

dν(s).

At equilibrium all the agents act optimally: the �rm's manager has to choose investment,

labour and operating capital to maximize the expected total net pro�ts; the pro�ts have to

be distributed as dividends; the investment capital has to be passed as wages to the non-

production sector; the changes in the money supply have to be passed into the economy
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as `welfare' and the market (goods, bonds, money, labour, derivative and stocks) have to

be clear. In [22], De�nition 6.1, the general equilibrium of the economy is characterized by

stochastic �rst order conditions that must hold simultaneously.

3.1.1 First Order Conditions and a Random Fixed Point Problem

Notice that, as pointed out in [22], Remark 3.2, we may look at the manager's situation

(cf. (3.3)) slightly di�erent. In fact, we may think of the �rm's net present value as a claim

to be sold with no-arbitrage price given by J0,y when the manager's discount factor coincides

with the de�ator of the economy (cf. (3.1)), i.e. e−µF (t) ≡ ζ(t). In such a case J0,y(ν) is the

total number of �rm's shares at time zero, i.e. J0,y = N(0)S(0) (cf. [22], (3.13)). If N(0) is

given (exogeneous), on the other hand S(0) depends on the future expected payments, hence

the �rm's manager attempt is to maximize the present share value. Notice that he may well

be motivated to do so if he owns a signi�cant number of stock options. It follows that, when

e−µF (t) ≡ ζ(t), the market parameters ζ, r̃ and w′ are expected to be at equilibrium solutions

of a very di�cult random �xed point problem. In fact, (cf. [22], (6.16) and (6.17)),

ζ(t) = Uc(t, R(Ĉ(t), K̂(t), L̂(t)),M(t)− K̂(t), Jp − L̂(t); Λ),

r̃(t) =
Um(t, R(Ĉ(t), K̂(t), L̂(t)),M(t)− K̂(t), Jp − L̂(t); Λ)

Uc(t, R(Ĉ(t), K̂(t), L̂(t)),M(t)− K̂(t), Jp − L̂(t); Λ)
,

w′(t) =
Ul(t, R(Ĉ(t), K̂(t), L̂(t)),M(t)− K̂(t), Jp − L̂(t); Λ)

Uc(t, R(Ĉ(t), K̂(t), L̂(t)),M(t)− K̂(t), Jp − L̂(t); Λ)
.

(3.4)

Equations (3.4) state that, at equilibrium, the de�ator ζ equals the marginal utility of

consumption; the nominal interest rate r̃ coincides with the marginal utility of money relative

to the marginal utility of consumption; whereas the real cost of labour w′ is the marginal

utility of labour relative to the marginal utility of consumption. Notice that equations (3.4)

are well posed since, as ζ, r̃ and w′, also Uc, Ul and Um are bounded (cf. [22], proof of Theorem

7.1). We stress that in [22] the Authors did not work with the endogeneous discount factor

ζ(t), but only with the exogeneous one e−µF (t), since they were unable to solve (3.4). In
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this Section, we aim to prove the existence of a solution to the daunting �xed point problem

(3.4).

We shall write (ζ(t), r̃(t), w′(t)) ∈ A, where

A := {X : Ω× [0, T ]→ R3 continuous and s.t. ||X||R3 ≤ K < +∞,∀t ∈ [0, T ], P− a.s.}.

Notice that the right-hand sides of (3.4) are highly nonlinear functionals of the processes

ζ(t), r̃(t) and w′(t). The marginal utilities Ul, Um and Uc depend on (Ĉ(t), K̂(t), L̂(t)) which

in turn are functions of ζ(t), r̃(t) and w′(t). In fact

(K̂(t), L̂(t)) = IR
Q(M)(Ĉ(t),·,·)

(r̃(t), w′(t)),

where IR
Q(M)(C,·,·)

is an extension of the inverse of ∇K,LR
Q(M)(C, ·, ·), whereas the optimal

productive capacity Ĉ(t) = C0(t)[y + νy(t)] depends on (ζ(t), r̃(t), w′(t)) in the following

way. De�ne

Ry,T (t) :=

∫ t

0

ζ(s)C0(s)R̃c(yC
0(s), r̃(s), w′(s))ds

+ζ(t)
C0(t)

fC(t)
1{t<T} + ζ(T )C0(T )G′(yC0(T ))1{t=T}

and the Snell Envelope of Ry,T (t),

Zy,T := ess inf
t≤τ≤T

E{Ry,T (τ)|Ft}.

Let Zy,T (t) be a modi�cation of Zy,T with right-continuous paths, then the stopping time

τ ∗(0, y) := inf{s ∈ [0, T ) : Zy,T (t) = Ry,T (t)} ∧ T

is the optimal time to invest and its left-continuous inverse (modulo a shift)

νy(t) := [sup{z ≥ y : τ ∗(0, z+) < t} − y]+ if t > 0, νy(0) = 0,

is related to the optimal investment ν̂(t) through

ν̂(t) :=

∫
[0,t)

C0(s)

fC(s)
dνy(s).
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Unfortunately the right-hand sides of (3.4) are not monotone operators, hence �xed point

theorems for monotone operators (e.g. Tarski Theorem) cannot be applied. Therefore the

idea is to look for a topology under which the mapping

(ζ(t), r̃(t), w′(t))→ (Uc,
Um
Uc

,
Ul
Uc

)(t, R(Ĉ(t), K̂(t), L̂(t)),M(t)− K̂(t), Jp − L̂(t); Λ)

is continuous and under which the setA is compact. We may think ofX(t) := (ζ(t), r̃(t), w′(t))

as an element of D([0, T ];R3), the Skorohod space of càdlàg functions from [0, T ] into R3 en-

dowed with the Meyer-Zheng (or pseudo-path) topology. As pointed out in [50], D([0, T ];R3)

with the pseudo-path topology is a separable metric space and the Meyer-Zheng topology

is equivalent to convergence in measure (see Appendix A for further details on the Meyer-

Zheng topology). We aim to check if A is compact under such topology and the right-hand

sides of (3.4) are continuous.

It has been proved in [57] that if Y is a stochastic process satisfying some conditions and

such that Yn
MZ⇒ Y (i.e. the probabilities PYn converge to PY when the Skorohod sample

space is endowed with Meyer-Zheng topology), then the Snell envelope Υn associated to Yn

is such that PΥn → PΥ, where Υ is the Snell envelope of Y . That result motivates our

attempt to look at our �xed point problem under the Meyer-Zheng topology, possibly under

some additional assumptions. Our daunting program of action is described below.

Set Xn := (ζn(t), r̃n(t), w′n(t)) ∈ A and de�ne

Ry,T
n (t) :=

∫ t

0

ζn(s)C0(s)R̃c(yC
0(s), r̃n(s), w

′

n(s))ds

+ ζn(t)
C0(t)

fC(t)
1{t<T} + ζn(T )C0(T )G′(yC0(T ))1{t=T},

Zy,Tn (t) as the right-continuous modi�cation of the Snell envelope of Ry,T
n (t),

τ ∗n(0, y) := inf{s ∈ [0, T ) : Zy,Tn (t) = Ry,T
n (t)} ∧ T,

νyn(t) := [sup{z ≥ y : τ ∗n(0, z+) < t} − y]+ if t > 0, νyn(0) = 0,
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and

Ĉn(t) = C0(t)[y + νyn(t)].

Suppose Xn
MZ⇒ X, then we would like to prove the following steps.

Ry,T
n

MZ⇒ Ry,T (3.5)

Zy,Tn
MZ⇒ Zy,T (3.6)

τ ∗n(0, y)
a.s→ τ ∗(0, y) (3.7)

(recall that a stopping time, being a functional of a process, is continuous in the more usual

Skorohod topology (cf. [37], Chapter VI))

νyn
a.s.→ νy (3.8)

Ĉn
a.s.→ Ĉ. (3.9)

The continuity of IR
Q(M)(Ĉ,·,·)

and of Ul, Um, Uc (cf. [22] and [21]) might then enable us to

obtain the continuity of the right-hand sides of (3.4).

3.1.2 The Case of no Leisure and no Money

We may start with studying the simpler case of no leisure and no money; hence through-

out this Section we make use of the following Assumption.

Assumption 3.1.1.

1. r̃(t) ≡ 0 ≡ w′(t) for t ∈ [0, T ];

2. E
{∫ T

0

r(u)du

}
≤ C1, E

{∫ T

0

||θ(u)||2du
}
≤ C2 and E{||β|| T} ≤ C3.

Notice that the second part of Assumption 3.1.1 is stronger than [22], (2.2) and the �rst

of (2.17), but, in any case, that will be veri�ed in equilibrium (cf. [22], page 42). Under

Assumption 3.1.1 the �xed point problem (3.4) becomes

ζ(t) = Uc(R(Ĉ(t))). (3.10)
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Introduce the set

A′ := {X : Ω× [0, T ]→ R continuous, uniformly of class (D) and

uniformly bounded in (ω, t) with bounded conditional variation},

and recall that (cf. (3.1)){
dζ(t) = ζ(t)[−r(t)dt− θT (t)dW (t)− dβ(t)],
ζ(0) = 1,

(3.11)

with kζ ≤ ζ(ω, t) ≤ κζ , P-a.s. for all t ∈ [0, T ].

Proposition 3.1.2. Let Assumption 3.1.1 hold, then ζ ∈ A′.

Proof. Under Assumption 3.1.1 the solution of (3.11) ζ(t) = E(t) exp{
∫ t

0
r(s)ds− β(t)} (see

(3.1) for the de�nition of the exponential martingale E(t)) is continuous; moreover, being

uniformly bounded in (ω, t) ∈ Ω× [0, T ], it is uniformly of class (D) as well, i.e. the random

variable ζ(τ) is uniformly integrable for every stopping time τ ≤ T .

Let π be any partition of [0, T ]. Denoting by Vπ(ζ) the conditional variation of ζ(t), we

have

Vπ(ζ) = E{|ζ(T )|}

+
n−1∑
k=0

E
{∣∣∣E{− ∫ tk+1

tk

ζ(u)r(u)du−
∫ tk+1

tk

ζ(u)θT (u)dW (u)−
∫ tk+1

tk

ζ(u)dβ(u)
∣∣∣Ftk}∣∣∣}

≤ C
(

1 +
n−1∑
k=0

E
{∫ tk+1

tk

r(u)du+

∫ tk+1

tk

|dβ(u)|
})

= C
(

1 + E
{∫ T

0

r(u)du

}
+ E{||β|| T}

)
≤ C̃

by Assumption 3.1.1. It follows that ζ belongs to A′ .

Proposition 3.1.3. The set A′ is relatively compact (in the sense of convergence in distri-

bution) when D([0, T ];R) is endowed with the Meyer-Zheng topology.

Proof. Notice that every X ∈ A′ is a uniformly bounded in (ω, t) quasimartingale. Hence

[50], Theorem 4 implies the thesis.
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From now on we use the notation Xn
MZ⇒ X to indicate that the probabilities PXn con-

verge to PX when the sample space D([0, T ];R) is endowed with the Meyer-Zheng topology.

Moreover Xn
MZ→ X if the sample path Xn converges to X in the Meyer-Zheng topology. We

may now start with studying the continuity of the right-hand side of (3.10). Hence, letting

ζn
MZ⇒ ζ, we aim to prove that Uc(R(Ĉn(t))) converges (in some sense) to Uc(R(Ĉ(t))).

Recall that F is a continuous functional on D([0, T ];R) endowed with the Meyer-Zheng

topology if for all xn and x in D([0, T ];R) such that xn
MZ→ x we have

lim
n→∞

1

T

∫ T

0

|F (t, xn(t))− F (t, x(t))|dt = 0.

Proposition 3.1.4. The functional Ry,T (·) : D([0, T ];R)→ D([0, T ];R) is continuous under

the Meyer-Zheng topology.

Proof. Let ζn be a sequence in A′ which converges to ζ in the Meyer-Zheng topology. We

have

|Ry,T
n (t)−Ry,T (t)| ≤

∫ t

0

|ζn(s)− ζ(s)|C0(s)Rc(yC
0(s))ds

+ |ζn(t)− ζ(t)|C
0(t)

fC(t)
1{t<T} + |ζn(T )− ζ(T )|C0(T )G′(yC0(T ))1{t=T}. (3.12)

Hence, concavity of R and G, and continuity of C0(t) imply∫ T

0

|Ry,T (ζ)(t)−Ry,T (ζn)(t)|dt ≤ K

∫ T

0

|ζn(t)− ζ(t)|dt, (3.13)

where K denotes a suitable constant depending on y, inft∈[0,T ] fC(t), supt∈[0,T ] C
0(t) and

on the constants that appear in the growth conditions on G and R. The thesis follows

by recalling that convergence in the Meyer-Zheng topology is just convergence in Lebesgue

measure (cf. Appendix A, Lemma A.0.10).

By continuous mapping Theorem we have the following simple result.

Lemma 3.1.5. If ζn
MZ⇒ ζ then Ry,T

n
MZ⇒ Ry,T .
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Proposition 3.1.6. Denote by Y n := (Ry,T
n , ζn, C

0) and by Υn the random vector whose

components are the Snell envelopes of the elements of Y . If (ζn, C
0,Ry,T

n )
MZ⇒ (ζ, C0,Ry,T )

then (Y n,Υn)
MZ⇒ (Y ,Υ).

Proof. For this proof we aim to apply the results in [57] regarding the functional convergence

of the Snell envelopes in American Options approximations. First of all, notice that the

processRy,T (t) does not satisfy hypothesis (H) in [57], De�nition 2.4 since it is not Markovian

depending on the path of processes C0 and ζ up to time t. On the other hand, if we consider

the Markovian three-dimensional process (Ry,T (t), C0(t), ζ(t)) ∈ D([0, T ];R3), hypothesis

(H) of [57] does apply.

Notice that [57], condition (3.1), is satis�ed being (Ry,T
n )n∈N of class (D), i.e. the r.v.

(Ry,T
n (τ))n∈N are uniformly integrable for every stopping time τ ≤ T . In fact, since R and

G are concave functions such that R(x) ≤ κη + ηx and G(x) ≤ kε + εx and fC and ζn are

bounded processes, we may write

|Ry,T
n (τ)| ≤ K(1 + sup

0≤t≤T
C0(t)), ∀τ ∈ [0, T ],

where K denotes a suitable constant depending on y, κε, ε, κη, η, T and the bounds on fC

and ζn. Moreover, notice that the process Ry,T
n (t) has right-continuous paths, hence

lim
δ→0+

1

δ

∫ t+δ

t

Ry,T
n (s)ds = Ry,T

n (t).

Denote by En{·} the expectation under the distribution Pn of Ry,T
n on the canonical space

D([0, T ];R). By Lebesgue Theorem, there exists δ(ε;n) such that

En
{
|1
δ

∫ t+δ

t

Ry,T
n (s)ds−Ry,T

n (t)|
}
< ε, δ < δ(ε;n).

Set now γ := infn∈N δ(ε;n). Then, if δ < γ we have

En
{
|1
δ

∫ t+δ

t

Ry,T
n (s)ds−Ry,T

n (t)|
}
< ε, ∀n ∈ N.

It follows that the assertion of Lemma 3.3 in [57] is also ful�lled.
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Moreover, a sequence (C0(t), ζn(t))n∈N ∈ D([0, T ];R2), with (ζn(t))n∈N ∈ A
′
and converg-

ing in the Meyer-Zheng topology to (C0(t), ζ(t)) ∈ D([0, T ];R2), ful�ll hypotheses 3.1 being

(ζn(t))n∈N and C0(t) uniformly of class (D). By using the same arguments as for Ry,T
n (t), we

may prove that (ζn(t))n∈N and C0(t) satisfy the assertion of Lemma 3.3 in [57].

Denoting by Y n := (Ry,T
n (t), ζn(t), C0(t)) and by Υn(t) the random vector whose compo-

nents are the Snell envelopes of the elements of Y , i.e.

Υn(t) :=

(
ess inf
t≤τ≤T

En{Ry,T
n (τ)|Ft}, ess inf

t≤τ≤T
En{ζn(τ)|Ft}, ess inf

t≤τ≤T
E{C0(τ)|Ft}

)
,

then by [57], Theorem 3.5 and Remark 3.6, we have (Y n,Υn)
MZ⇒ (Y ,Υ) with

Υ(t) :=

(
ess inf
t≤τ≤T

E{Ry,T (τ)|Ft}, ess inf
t≤τ≤T

E{ζ(τ)|Ft}, ess inf
t≤τ≤T

E{C0(τ)|Ft}
)
.

Therefore the thesis follows.

Notice that, under hypothesis (H) in [57], De�nition 2.4, every limit law of (Y n,Υn, τ
∗
n)

on D([0, T ];R6) × [0, T ] is the law of (Y ,Υ, τ ∗) on D([0, T ];R6) × [0, T ] where τ ∗ is an

optimal stopping time for (Ry,T ,Zy,T ) (cf. [57], Remark 3.8). Then, by the Skorohod

representation theorem (see, e.g., [15]), we can assume without loss of generality that on

a common probability space, still denoted by (Ω,F ,P), τ ∗n converges to τ ∗ almost surely.

Hence the following proposition holds.

Proposition 3.1.7. νyn(t)→ νy(t) a.s. for every t ∈ [0, T ].

Proof. If τ ∗n(0, y) → τ ∗(0, y) a.s. for all y > 0, then it is well known that its generalized

inverse, i.e. νyn, converges weakly to νy, that is νyn(t)→ νy(t) a.s. for all the times t ∈ [0, T ]

of continuity of νy(·). Being ν̂(t), with continuous paths and thus a.s. �nite on [0, T ] (cf.

[22], (3.18)), by Dominated Convergence Theorem we have that νy(t) :=
∫

[0,t)
C0(s)
fC(s)

dν̂(s) has

continuous trajectories as well. Hence νyn(t) converges a.s. to νy(t) for all t ∈ [0, T ].

Corollary 3.1.8. Ĉn(t) converges a.s. to Ĉ(t) for all t ∈ [0, T ].
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Proof. Since Ĉn(t) := C0(t)[y+ νyn(t)], obviously lim
n→∞

Ĉn(t) = Ĉ(t) a.s. for all t ∈ [0, T ].

We may now prove the main Theorem.

Theorem 3.1.1. There exists a solution to the �xed point problem (3.10).

Proof. Proposition 3.1.4, Proposition 3.1.6, Proposition 3.1.7, Corollary 3.1.8 and, �nally,

the continuity of R and Uc (cf. [23], Lemma 4.4) imply the continuity of the right-hand side

of (3.10). Hence an application of Schauder Fixed Point Theorem (e.g., cf. [61]) guarantees

the existence of an equilibrium de�ator, that is the existence of a solution ζ to (3.10).

Remark 3.1.9. A future attempt will be surely to remove Assumption 3.1.1. By assuming

that the uniformly bounded continuous processes r̃ and w′ have uniformly bounded conditional

variation, then ζ, r̃ and w′ are continuous quasimartingale that belong to the set

D := {X : Ω× [0, T ]→ R3 continuous, uniformly of class (D) and

uniformly bounded in (ω, t) with bounded conditional variation}.

By [50], Theorem 4, the set D is relatively compact (in the sense of convergence in distri-

bution) if D([0, T ];R3) is endowed with the Meyer-Zheng topology. Then, arguments similar

to those used in Proposition 3.1.4, Proposition 3.1.6, Proposition 3.1.7, Corollary 3.1.8, to-

gether with the continuity of R, Uc, Ul, Um and IR
Q(M)(Ĉ(t),·,·)

(cf. [23], Lemma 4.4, and [21],

Proposition 3.2) allow to conclude that there exists a solution (ζ, r̃, w′) to (3.4).



Chapter 4

Concluding Remarks and Open Problems

In this Thesis we have studied stochastic, irreversible investment problems in continuous

time. We have developed a new approach based on �rst order conditions for optimality

which may be thought as generalized stochastic Kuhn-Tucker conditions.

In particular, in Chapter 1, we analyzed in a very general semimartingale setting the

optimal investment problem for the Social Planner of a market with N �rms and with

limited resources. Our approach generalizes that of Peter Bank [7] for a single �rm. The

optimal solution has been given in terms of the base capacity process l∗(t), a desirable value

of production capacity, unique optional solution of a representation problem in the spirit of

Bank and El Karoui [6].

Chapter 2 has tackled the problem of the meaning of l∗(t) in a di�usion setting. We

have studied a stochastic, continuous time model on a �nite horizon for a �rm that produces

a single good and whose production capacity is a controlled Ito process. Under suitable

assumptions on the controlled di�usion coe�cients, we have showed that the base capacity

process is actually deterministic and coincides with the free boundary ŷ(t) of the optimal

stopping problem naturally associated to the singular control one. It follows that the Bank-

El Karoui representation problem gives rise to an integral equation for ŷ(t) which might be

solved numerically by backward induction.

Finally, in Chapter 3 we have considered the optimal irreversible investment problem
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for a �rm embedded in a stochastic continuous time economy on a �nite time interval, as

modeled in [22]. Under Markovian assumptions, we have studied a very daunting random

�xed point problem arising from stochastic �rst order conditions for the general equilibrium

of the economy when the discount factor of the �rm's manager coincides with the de�ator.

The new approach for solving singular, stochastic control problems we have developed in

this Thesis might apply to other some very interesting problems arising in Economics. In

this Chapter we want to discuss some possible developments of the research.

First of all we may study the singular stochastic control problem of Chapter 2 when in the

economy there are limited resources. In particular we may consider an economy on a �nite

time horizon T whose productive sector is represented by a �rm with capacity dynamics
dCy,ν(t) = Cy,ν(t)[−µC(t)dt+ σC(t)dW (t)] + fC(t)dν(t), t ∈ [0, T ),

Cy,ν(0) = y > 0.
(4.1)

We may assume that any investment strategy ν(t) is such that ν(t) ≤ θ(t), for some nonde-

creasing, integrable, left-continuous, adapted process θ. The �rm's manager problem is

sup
ν≤θ

E
{∫ T

0

e−
∫ t
0 µF (s)dsR(Cy,ν(t))dt−

∫
[0,T )

e−
∫ t
0 µF (s)dsdν(t)

}
. (4.2)

Recall that C0(t) := C1,0(t), T denotes the set of all stopping times with values in [0, T ],

and that the optional process

∇νJ0,y(ν)(τ) := E
{ ∫ T

τ

e−
∫ s
0 µF (u)duC0(s)

fC(τ)

C0(τ)
Rc(C

y,ν(s)) ds
∣∣∣Fτ }

− e−
∫ τ
0 µF (u)du 1{τ<T}

is the supergradient of J0,y(ν). At the moment we are able to prove that necessary and

su�cient conditions for optimality of ν̂(t) are

∇νJ0,y(ν̂)(τ) ≤ 0, ∀τ ∈ T , P− a.s.,

E
{∫

[0,T )

∇νJ0,y(ν̂)(τ) dν̂(τ)

}
= 0,



Conclusions and Future Research 91

ν̂(t) ≤ θ(t), ∀t ∈ [0, T ], P− a.s.,

E
{∫

[0,T )

(θ(t)− ν̂(t))dλ(t)

}
= 0.

As in Chapter 1 the Lagrange multiplier dλ(ω, t) is an optional random measure on [0, T ].

We guess that, at least in the case of a constant �nite fuel θ0, the optimal investment strategy

takes the form

ν̂(t) = ν∗(t) ∧ θ0, (4.3)

with ν∗(t) the optimal solution of the in�nite fuel case discussed in Chapter 2, Theorem 2.3.1.

Such policy represents a quite natural generalization of that in [43] for a Brownian Motion

controlled by a nondecreasing process. Notice that even in this case the base capacity process

l∗(t), unique solution of a representation problem in the spirit of Bank-El Karoui (cf. (2.28)),

should coincide with the free boundary of the optimal stopping problem associated to the

singular control one. In fact, as stressed in [7], it does not depend on the fuel and, therefore,

it may be viewed as a universal signal for a big class of �nite fuel optimal stochastic control

problem. It follows that it would be interesting to prove guess (4.3) and to study which is

the optimal investment strategy in the case of a time-dependent, stochastic, increasing fuel.

It is reasonable to think that a �rm might also disinvest. In that case the controls are

stochastic processes of bounded variation with minimal decomposition

ν(t) = ν+(t)− ν−(t),

for ν+ and ν− increasing and left-continuous. The total expected pro�t associated to the

investment-disinvestment strategy ν might be

J (ν;x) = E
{∫ T

0

R(t,X(t)) dt−
∫

[0,T )

γ(t) dν+(t)−
∫

[0,T )

β(t) dν−(t)

}
,
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hence the �rm's optimal problem

sup
ν
J (ν;x). (4.4)

Here the process γ(t) (resp. β(t)) is the running cost per unit of fuel spent to push in the

positive (resp. negative) direction, whereas the process X(t) = x+ ν(t) represents the state

at time t, when starting at X(0) = x. Economically, γ(t) is the running cost of investment

and β(t) the rebate for disinvestment. We may assume that γ and β are optional processes,

of class (D), continuous in expectation, such that γ ≥ β and γ(T ) = β(T ) = 0.

Denoting by ν̂ the optimal solution of (4.4) and by X̂(t) = x+ ν̂(t) the optimal controlled

state, then the �rst order conditions for optimality for problem (4.4) would be

E
{∫ T

τ

Rx(t, X̂(t)) dt
∣∣∣Fτ} ≤ γ(τ), ∀τ ∈ T , P− a.s., (4.5)

E
{∫ T

τ

Rx(t, X̂(t)) dt
∣∣∣Fτ} ≥ −β(τ), ∀τ ∈ T , P− a.s., (4.6)

with equality whenever investment and disinvestment actually occur. We expect that the

optimal control policy (ν̂+, ν̂−) might be expressed in terms of the solutions (l∗+, l
∗
−) of a

coupled representation problem of the Bank-El Karoui's type arising from (4.5) and (4.6).

Hence it is engaging to compare this kind of analysis with that one based on the connections

between bounded variation control and Dynkin Games (e.g., cf. [47] and [14]). Moreover,

when X is a controlled di�usion, it would be intriguing to understand if l∗+ and l∗− coincide, as

in the irreversible investment case (cf. Chapter 2), with the free boundaries of the investment-

disinvestment problem (4.4) and to analyze their path properties, e.g. if they cross each other,

if they are monotone, continuous...

A daunting task is to study the problem of Chapter 2 when the production capacity is a

very general controlled di�usion given by
dCy,ν(t) = Cy,ν(t)[−µC(t, Cy,ν(t)) dt+ σC(t, Cy,ν(t)) dW (t)] + fC(t)dν(t), t ∈ [0, T )

Cy,ν(0) = y > 0,
(4.7)
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for some deterministic coe�cients satisfying suitable assumptions. By introducing the Doléans-

Dade exponential of Cy,ν , i.e.

E(Cy,ν(t)) := exp

{
−
∫ t

0

(µC(s, Cy,ν(s)) +
1

2
σ2
C(s, Cy,ν(s)) ds+

∫ t

0

σC(s, Cy,ν(s)) dW (s)

}
,

and

ν(t) :=

∫
[0,t)

fC(s)

E(Cy,ν(s))
dν(s),

then, by Ito's Lemma, one formally obtains

Cy,ν(t) = E(Cy,ν(t))[y + ν(t)]. (4.8)

Notice that, under some assumptions on the di�usion coe�cients and on the production

function, we are in the same setting of [34] with no absolutely continuous controls. Hence,

the control problem

sup
ν

E
{∫ T

0

e−
∫ t
0 µF (s)dsR(Cy,ν(t))dt−

∫
[0,T )

e−
∫ t
0 µF (s)dsdν(t)

}
(4.9)

has an optimal solution ν̂(t). However that solution is not unique; in fact, althought the

production function is strictly concave, the capacity process Cy,ν(t) is not a�ne in ν. We

are able to show that a process ν̂ is optimal for problem (4.9) if it satis�es the following

�rst-order conditions

∇νJ0,y(ν̂)(τ) ≤ 0, ∀τ ∈ T , P− a.s., (4.10)

E
{∫

[0,T )

∇νJ0,y(ν̂)(τ) dν̂(τ)

}
= 0, (4.11)

with ∇νJ0,y(ν) the unique optional process given by

∇νJ0,y(ν)(τ) := E
{ ∫ T

τ

e−
∫ s
0 µF (u)duE(Cy,ν(s))

fC(τ)

E(Cy,ν(τ))
Rc(C

y,ν(s)) ds
∣∣∣Fτ }

−e−
∫ τ
0 µF (u)du1{τ<T}. (4.12)

Notice that (4.10) and (4.11) are not necessary conditions as instead (2.11) and (2.12). In

fact in this general case we are not able to apply Fatou's Lemma, a crucial tool for proving the
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necessity of the �rst-order conditions for optimality. We can show that an optimal capacity

production can be represented as

Cy,ν̂(t) = C0(t)

(
y ∨ sup

0≤u≤t

(
l∗(u)

C0(u)

))
, (4.13)

with C0(t) := C1,0(t). The optional process l∗(t) is expected to be the solution of a repre-

sentation problem in the spirit of Bank-El Karoui, i.e.

E
{∫ T

τ

e−
∫ s
0 µF (u)duE(Cy,ν̂(s))Rc

(
C0(s) sup

τ≤u≤s

l∗(u)

C0(u)

)
ds
∣∣∣Fτ }

= e−
∫ τ
0 µF (u)du E(Cy,ν̂(τ))

fC(τ)
1{τ<T}. (4.14)

We stress that (4.13) is not an explicit solution for the optimal investment problem (4.9) de-

pending l∗(t) through (4.14) on Cy,ν̂(t) itself. Hence (4.13) is actually a �xed point problem.

However, formula (4.13) is an interesting characterization of an optimal production capacity

Cy,ν̂(t) in terms of the solution of representation problem (4.14). It would be then of some

interests to understand which is in this setting the meaning of the the `base capacity' l∗(t),

i.e. of the optional solution to (4.14).

Finally a further attempt is to study the �xed point problem of Chapter 3 removing

Assumption 3.1.1.



Appendix A

The Meyer-Zheng Topology

In this Appendix we recall the main facts about the Meyer-Zheng (or pseudo-path)

topology [50] for the Skorohod space D([0, T ];RN) of càdlàg processes with values in RN ,

N ≥ 1. The Meyer-Zheng topology has been widely used concerning the existence of solutions

to backward stochastic di�erential equations (see [1] and [16] among others) and for showing

the existence of singular stochastic optimal controls as in [34].

For sake of semplicity set N = 1, then for every X ∈ D([0, T ];R) de�ne the pseudo-path

of X to be a probability measure on [0, T ]× R as

PX(A) :=
1

T

∫ T

0

1A(t,X(t))dt, ∀A ∈ B([0, T ]× R), (A-1)

where B([0, T ] × R) denotes the Borel σ-algebra and 1A(·) the indicator function of a set

A. By de�nition, the pseudo-path of X is the image measure of the Lebesgue measure over

[0, T ], λ(dt) := 1
T
dt, under the mapping t→ (t,X(t)).

Denote by ψ the mapping which associates to a path X its pseudo-path; obviously ψ

identi�es two paths if and only if they are equal a.e. in the Lebesgue sense. In particular,

ψ is 1-1 on D([0, T ];R), hence we can identify every X ∈ D([0, T ];R) with its pseudo-

path. Moreover, ψ provide an imbedding of D([0, T ];R) into the compact space P of all

probability laws on the compact space [0, T ]× R. The topology induced on D([0, T ];R) by

this embedding is the pesudo-path or Meyer-Zheng topology. It can also be introduced as
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the topology generated by the metric

d(x, y) =
1

T

∫ T

0

(|x(s)− y(s)| ∧ 1) ds, x, y ∈ D([0, T ];R). (A-2)

Convergence in the metric d is equivalent to convergence with respect to the Lebesgue

measure.

Lemma A.0.10. Let Ψ denote the set of all the pseudo-paths. Then, the pseudo-path topol-

ogy on Ψ is just convergence in Lebesgue measure, that is Xn
MZ→ X if and only if for every

bounded continuous function f(s, x) on [0, T ]× R we have

lim
n→∞

1

T

∫ T

0

f(s,Xn(s))ds =
1

T

∫ T

0

f(s,X(s))ds.

For the proof see [50], Lemma 1. Notice that the Meyer-Zheng topology is much weaker

than the usual Skorohod topology (see [37] for a good introduction on the usual Skorohod

topology).

Let X ∈ D([0, T ];R) and de�ne X∗ := supt∈[0,T ] |X(t)|. For u and v in R such that u < v,

denote by Nu,v(X) the number of upcrossing of X(·) on [0, T ] between levels u and v. Then

a subset A ⊂ D([0, T ];R) such that for every u < v

sup
X∈A

X∗ <∞, sup
X∈A

Nu,v(X) <∞ (A-3)

is relatively compact in D([0, T ];R) endowed with the Meyer-Zheng topology. For details,

see [50], Corollary of Theorem 2.

The most signi�cant application of the Meyer-Zheng topology is a tightness criterion

for quasimartingales. Let X be an adapted, càdlàg process de�ned on [0, T ], such that

E{|X(t)|} < ∞ for all t ∈ [0, T ]. Let π := {t0, t1, ..., tn : 0 = t0 < t1 < ... < tn = T} be a

partition of the time interval [0, T ] and de�ne

Vπ(X) :=
n−1∑
i=0

E{|E{X(ti+1)−X(ti)|Fti} |}+ E{|X(T )|}.

If the conditional variation ofX is �nite, i.e. if supπ Vπ(X) <∞, thenX is a quasimartingale.

In [50], Theorem 4, the following tightness result for quasimartingales is proved.
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Theorem A.0.2. Let (Pn)n∈N be a sequence of probability laws on D([0, T ];R) such that,

under Pn, the coordinate process X(t) is a quasimartingale with variation Vn(X) uniformly

bounded in n. Then there exists a subsequence (Pnk)k∈N which converges weakly on D([0, T ];R)

to a law P, and X is a quasimartingale under P.

Finally notice that, contrary to the case of the usual Skorohod topology, the Meyer-

Zheng topology on the product space D([0, T ];RN) is the product topology; then, if each

component of the RN valued random vector is tight, then the vector is tight as well.



Ringraziamenti

Con la stesura di questa tesi di Dottorato si conclude un'altra fase della mia vita, una

fase intensa, ricca, che mi ha permesso di crescere come `scienziato' e come persona. Voglio

qui ringraziare tutti quelli che mi hanno tenuto compagnia in questo periodo.

Il primo immenso ringraziamento va ai miei genitori, Rita ed Alberto, che mi sono sempre

stati vicini supportandomi con in�nito amore da ventisette anni a questa parte. La stesura

di questo lavoro non sarebbe poi stata possibile senza la mia relatrice, la Professoressa Maria

B. Chiarolla. La ringrazio per tante cose, tante delle quali esulano di molto dal suo ruolo

di mentore scienti�co. Mi è stata sempre vicina, anche quando ero lontano, consigliandomi

sui più disparati argomenti, credendo in me e comportandosi sempre come amica sincera.

Ed in�ne, prova più di�cile, ha saputo sopportare il mio terribile `Inglese di Via Casilina

Vecchia'. Grazie Professoressa. Grazie per tutto questo e molto altro.

Un grazie va sicuramente al Professor Frank Riedel, mio futuro `boss' in quel di Bielefeld.

Lo ringrazio per tutto il tempo che mi ha dedicato durante il periodo di visiting, per la sua

gentilezza, per la sua disponibilità e per l'opportunità che mi sta dando.

Durante questi tre anni ho conosciuto persone nuove che mi hanno arricchito e con le

quali ho scherzato, ho lavorato duro per poi di nuovo ricominciare a scherzare. Grazie ai

miei compagni di stanza, la gloriosa 144, `Dottò Antonio', `Rigidino Tiziano', Giovannino,

Ila Ila, Isa e Francesca. Grazie a tutti i dottorandi degli altri anni (in particolare al caro

Marco), al Professor Raimondo Manca per gli allegri pranzi passati assieme in mensa ed a

Gabriele e Stefano che ci hanno sempre saputo far sentire parte del gruppo. Una menzione



Ringraziamenti 99

speciale è riservata a Chiara, Valeria ed Alessandro che hanno continuato a sopportarmi,

consigliarmi, sgridarmi e farmi ragionare.

Voglio poi anche ringraziare la Professoressa Lucia Caramellino per avermi fatto conoscere

il Calcolo di Malliavin e per tutti i consigli, scienti�ci e non, che mi ha dato. In questi tre anni

ho avuto la possibilità di insegnare, di essere esercitatore nei corsi di Matematica Generale

e di Processi Stocastici per la Finanza. Un grazie va perciò al Professor Sandro Blasi ed

al Professor Marco Scarsini per avermi dato questa bellissima opportunità. Immancabile

nei miei ringraziamenti è la Professoressa Lina Di Filippo, mia insegnante di Lettere del

Ginnasio. Grazie Professoressa per le belle chiacchierate fatte assieme.

Anche se non ne saranno mai a conoscenza, voglio ringraziare il Principe Francesco De

Gregori ed il Maestro Francesco Guccini per aver accompagnato anche questi tre anni con

le loro canzoni.

Ora il dottorato è �nito, e con la sua �ne si apre una nuova fase della mia vita, fase che

mi vedrà in Germania. Ma sia ben chiaro a tutti che ogni volta mi chiederanno dove ho

preso il mio dottorato, io risponderò �ero: At MEMOTEF. Don't you know MEMOTEF?

You should!



Bibliography

[1] F. Antonelli, A. Kohatsu-Higa, Filtration Stability of Backward SDE's, Stochastic

Analysis and Applications 18(1) (2000), pp. 11-37.

[2] F.M. Baldursson, I. Karatzas, Irreversible Investment and Industry Equilibrium, Fi-

nance and Stochastics 1 (1997), pp. 69− 89.

[3] P. Bank, F. Riedel, Optimal Consumption Choice with Intertemporal Substitution,

The Annals of Applied Probability 11 (2001), pp. 750− 788.

[4] P. Bank, H. Follmer, American Options, Multi-Armed Bandits, and Optimal Consump-

tion Plans: a Unifying View, in `Paris-Princeton Lectures on Mathematical Finance',

Volume 1814 of Lecture Notes in Math. pp. 1− 42, Springer-Verlag, Berlin (2002).

[5] P. Bank, F. Riedel, Optimal Dynamic Choice of Durable and Perishable Goods, Dis-

cussion Paper 28/2003 of the Bonn Graduate School of Economics (December 2003).

[6] P. Bank, N. El Karoui, A Stochastic Representation Theorem with Applications to

Optimization and Obstacle Problems, The Annals of Probability 32 (2004), pp. 1030−

1067.

[7] P. Bank, Optimal Control under a Dynamic Fuel Constraint, SIAM Journal on Control

and Optimization 44 (2005), pp. 1529− 1541.

[8] J.A. Bather, H. Cherno�, Proc. Fifth Berkeley Symp. Math. Stat. Probab. 3 (1966),

pp. 181− 207.



BIBLIOGRAPHY 101

[9] J.A. Bather, H. Cherno�, J. Appl. Probab. 4 (1967), pp. 584− 604.

[10] V.L. Benes, L.A. Shepp, H.S. Witsenhausen, Some Solvable Stochastic Control Prob-

lems, Stochastic 4(1) (1980), pp. 39− 83.

[11] J. Bertoin, Levy Processes, Cambridge University Press 1996.

[12] A. Bensoussan, J.L. Lions, Applications of Variational Inequalities to Stochastic Con-

trol, North Holland Publishing Company 1982.

[13] F. Boetius, M. Kohlmann, Connections between Optimal Stopping and Singular

Stochastic Control, Stochastic Processes and their Applications 77 (1998), pp. 253-

281.

[14] F. Boetius, Bounded Variation Singular Stochastic Control and Dynkin Game, SIAM

Journal on Control and Optimization 44 (2005), pp. 1289− 1321.

[15] P. Billingsley, Probability and Measures, John Wiley and Sons Inc., New York, 1986.

[16] R. Buckdahn, H.-J. Engelbert, A. Rascanu, OnWeak Solutions of Backward Stochastic

Di�erential Equations, Theory Prob. Appl. 49 (2005), pp. 16-50.

[17] M.B. Chiarolla, U.G. Haussmann, Equilibrium in a Stochastic Model with Consump-

tion, Wages and Investment, J. Math. Economics 35 (2001), pp. 1− 31.

[18] M.B. Chiarolla, U.G. Haussmann, Explicit Solution of a Stochastic, Irreversible In-

vestment Problem and its Moving Threshold, Mathematics of Operations Research 30

No. 1 (2005), pp. 91− 108.

[19] M.B. Chiarolla, U.G. Haussmann, Erratum, Mathematics of Operations Research, 31

No. 5 (2006), p. 432.

[20] M.B. Chiarolla, U.G. Haussmann, On a Stochastic Irreversible Investment Problem,

SIAM Journal on Control and Optimization 48 (2009), pp. 438− 462.



BIBLIOGRAPHY 102

[21] M.B. Chiarolla, U.G. Haussmann, Multivariable Utility Functions, SIAM Journal on

Control and Optimization 19 (2008), pp. 1511− 1533.

[22] M.B. Chiarolla, U.G. Haussmann, A Stochastic Equilibrium Economy with Irreversible

Investment, preprint (May 10, 2011).

[23] M.B. Chiarolla, U.G. Haussmann, Equilibrium in a Production Economy, Applied

Mathematics and Optimization 19 (2011), pp. 435− 461.

[24] M.B. Chiarolla, G. Ferrari, F. Riedel, Generalized Kuhn-Tucker Conditions for N -

Firms Stochastic Irreversible Investments with Limited Resources, working paper

(2011).

[25] M.B. Chiarolla, G. Ferrari, Identifying the Free Boundary of a Stochastic, Irreversible

Investment Problem via the Bank-El Karoui Representation Theorem, submitted to

SIAM Journal on Control and Optimization (2011).

[26] P.L. Chow, J.L. Menaldi, M. Robin, Additive Control of Stochastic Linear Systems

with Finite Horizon, SIAM Journal on Control and Optimization, 23(6) (1985), pp.

858− 899.

[27] J. Cox, J. Ingersoll, S. Ross, An Intertemporal General Equilibrium Model of Asset

Prices, Econometrica, 53 (1985), pp. 363− 384.

[28] A.K. Dixit, R.S. Pindyck, Investment under Uncertainty, Princeton University Press,

Princeton 1994.

[29] D. Du�e, C. Huang, Implementing Arrow-Debreu Equilibria by Continuous Trading

of Few Long-Lived Securities, Econometrica 53 (1985), pp. 1337− 1356.

[30] N. El Karoui, Les Aspects Probabilistes du Controle Stochastique, Lecture Notes of

the `Ecole d'Été de Probabilité de Saint-Flour IX-1979'.



BIBLIOGRAPHY 103

[31] N. El-Karoui, I. Karatzas, Dynamic Allocation Problems in Continuous Time, The

Annals of Applied Probability 4 (1994), pp. 255− 286.

[32] N. El Karoui, I. Karatzas, A New Approach to the Skorohod Problem, and its Appli-

cations, Stochastics and Stochastics Reports 34 (1991), pp. 57− 82.

[33] W.H. Fleming, R.W. Rishel, Deterministic and Stochastic Optimal Control, Springer-

Verlag, New York 1975.

[34] U.G. Haussmann, W. Suo, Singular Optimal Stochastic Controls I: Existence, SIAM

Journal on Control and Optimization 33 No. 3 (1995), pp. 916− 936.

[35] C. Huang, An Intertemporal General Equilibrium Asset Pricing Model: the Case of

Di�usion Information, Econometrica 55 (1987), pp. 117− 142.

[36] J. Jacod, Calcul Stochastique et Problèmes de Martingales, no. 714 in Lecture Notes

in Mathematics, Springer 1979.

[37] J. Jacod, N. Shiryaev, Limit Theorems for Stochastic Processes, Springer 2003.

[38] S. Jacka, Optimal Stopping and the American Put, Mathematical Finance 1 (1991),

pp. 1− 14.

[39] Y. Kabanov, Hedging and Liquidation under Transaction Costs in Currency Markets,

Finance and Stochastics 3 (1999), pp. 237− 248.

[40] I. Karatzas, The Monotone Follower Problem in Stochastic Decision Theory, Applied

Mathematics and Optimization 7 (1981), pp. 175− 189.

[41] I. Karatzas, A Class of Singular Stochastic Control Problems, Adv. Appl. Prob. 15

(1983), pp. 225− 254.



BIBLIOGRAPHY 104

[42] I. Karatzas, S.E. Shreve, Connections between Optimal Stopping and Singular Stochas-

tic Control I. Monotone Follower Problems, SIAM Journal on Control and Optimiza-

tion 22 (1984), pp. 856− 877.

[43] I. Karatzas, Probabilistic Aspects of Finite-Fuel Stochastic Control, Proc. Nat'l Acad.

Sci. USA 82 (1985), pp. 5579− 5581.

[44] I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag,

New York 1988.

[45] I. Karatzas, J.P. Lehoczky, S.E. Shreve, Existence and Uniqueness of Multi-Agent

Equilibrium in a Stochastic, Dynamic Consumption/Investment Model, Mathematics

of Operations Research 15(1) (1990), pp. 80− 126.

[46] I. Karatzas, S.E. Shreve, Methods of Mathematical Finance, Springer-Verlag, New

York 1998.

[47] I. Karatzas, H. Wang, Connections between Bounded-Variation Control and Dynkin

Games in `Optimal Control and Partial Di�erential Equations'; Volume in Honor of

Professor Alain Bensoussan's 60th Birthday (J.L. Menaldi, A. Sulem and E. Rofman,

eds.), pp. 353-362. IOS Press, Amsterdam 2005.

[48] T.O. Kobila, A Class of Solvable Stochastic Investment Problems Involving Singular

Controls, Stochatics and Stochastics Reports 43 (1993), pp. 29− 63.

[49] R.E. Lucas, Liquidity and Interest Rates, J. Economic Theory 50 (1990), pp. 237−264.

[50] P.A. Meyer, W.A. Zheng, Tightness Criteria for Laws of Semimartingale, Annales de

l'Institute Henri Poincaré, section B, tome 20(4) (1984), pp. 353-372.

[51] R. Merton, Optimum Consumption and Portfolio Rules in a Continuous Time Model,

J. Economic Theory 3 (1971), pp. 373− 413.



BIBLIOGRAPHY 105

[52] M. Obstfel, K. Rogo�, Exchange Rate Dynamics Redux, J. Political Economy 103

(1995), pp. 624− 660.

[53] A. Oksendal, Irreversible Investment Problems, Finance and Stochastics 4 (2000), pp.

223− 250.

[54] D. Paulsen, General Equilibrium with Irreversible Investment and Money Market Re-

turns, preprint (2009).

[55] H. Pham, Explicit Solution to an Irreversible Investment Model with a Stochastic Pro-

duction Capacity, in `From Stochastic Analysis to Mathematical Finance, Festschrift

for Albert Shiryaev' (Y. Kabanov and R. Liptser eds.), Springer 2006.

[56] H. Pham, Continuous-time Stochastic Control and Optimization with Financial Ap-

plications, Springer 2009.

[57] M. Pratelli, S. Mulinacci, Functional Convergence of Snell Envelopes: Applications to

American Options Approximations, Finance and Stochastics 2 (1998), pp. 311− 327.

[58] D. Revuz, M. Yor., Continuous Martingales and Brownian Motion, Springer-Verlag,

Berlin 1999.

[59] F. Riedel, X. Su, On Irreversible Investment, Finance and Stochastics 15(4) (2011),

pp. 607− 633.

[60] J.H. Steg, Irreversible Investment Games, Working paper of the Institute of Mathe-

matical Economics (IMW), Bielefeld University (March 2009).

[61] E. Zeidler, Nonlinear Functional Analysis and its Applications I: Fixed-Point Theo-

rems, Springer-Verlag 1992.


