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Introduction

In my first year of my Computer Science degree, if somebody had told me that the few years

ahead of me could have been the last ones of the so-called PC-era, I would have hardly

believed him. Sure, I could imagine computers becoming smaller, faster and cheaper, but

I could have never imagined that in such a short time the focus of the market would have

so dramatically shifted from PCs to personal devices. Today, smartphones and tablets have

become our inseparable companions, changing for the better numerous aspects of our daily

life. The way we plan our days, we communicate with people, we listen to music, we

search for information, we take pictures, we spend our free time and the way we note our

ideas has been totally revolutionized thanks to them. At the same time, thanks also to the

rapid growth of the Cloud Computing based services, most of our data and of the Internet

services that we use every day are just a login-distance away from any device connected

to the Internet that we can find around us. We can edit our documents, look our and our

friends’ pictures and videos, share our thoughts, access our bank account, pay our taxes

using a familiar interface independently from where we are. What is the most fascinating

thing is that all these new possibilities are not anymore at the hand of technically-savvy

geeks only, but they are available to newer and older generations alike thanks to the efforts

that recently have been put into building user interfaces that feel more natural and intuitive

even to totally unexperienced users.

Despite of that, we are still far from an ideal world. Service providers, software en-

gineers, hardware manufacturers and security experts are having a hard time in trying to

satisfy the always growing expectations of a number of users that is steadily increasing

every day. People are always longing for faster mobile connectivity at lower prices, for

longer lasting batteries and for more powerful devices. On top of that, users are more and
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more exposed to new security threats, either because they tend to ignore even the most

basic security-practices, or because virus writers have found new ways to exploit the now

world-sized market of mobile devices.

For instance, more people accessing the Internet from their mobile devices forces the

existing network infrastructure to be continuously updated in order to cope with the con-

stantly increase in data consumption. As a consequence, AT&T’s subscribers in the United

States were getting extremely slow or no service at all because of the mobile network

straining to meet iPhone users’ demand [5]. The company switched from unlimited traffic

plans to tiered pricing for mobile data users in summer 2010. Similarly, Dutch T-Mobile’s

infrastructure has not been able to cope with intense data traffic, thus forcing the company

to issue refunds for affected users [6].

Another important aspect is that of mobile security. Around a billion of people today

have their personal information on Facebook and half of them access Facebook from their

mobile phone [7]; the size of the online-banking in America has almost doubled since

2004, with 16% of the American mobile users conducting financial-related activities from

their mobile device [8]; on 2010, customers spent one billion of dollars buying products

on Amazon via mobile devices [9]. These numbers give an idea of the amount of people

that today could find themselves in trouble by not giving enough care into protecting their

mobile device from unauthorized access. A distracted user who loses his phone, or just

forgets it in a public place, even if for a short time only, could allow someone else to get

unrestrained access to his online identity. By copying the contents of the phone, including

passwords and access keys, an attacker could steal money from the user’s bank account,

read the user’s emails, steal the user’s personal files stored on the cloud, use the user’s

personal information to conduct scams, frauds, and other crimes using his name and so on.

But identity theft is not the only security problem affecting mobile users. Between

2011 and 2012, the number of unique viruses and malwares targeting mobile devices has

increased more than six times, according to a recent report [10]. Typically, these try to get

installed in the target device by convincing the user to download an infected app, or by

making them follow a link to a malicious web site.

The problems just exposed are major issues affecting user’s experience nowadays. We

believe that finding effective, yet simple and widely adoptable solutions may require a new
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point of view, a shift in the way these problems are tackled. For these reasons, we evaluated

the possibility of using a hybrid approach, that is, one where different technologies are

brought together to create new, previously unexplored solutions.

We started by considering the issues affecting the mobile network infrastructure. While

it is true that the usage of mobile connectivity has significantly increased over the past

few years, it is also true that socially close users tend to be interested in the same content,

like, the same Youtube videos, the same application updates, the same news and so on. By

knowing that, operators, instead of spending billions [11] to update their mobile network,

could try an orthogonal approach and leverage an ad-hoc wireless network between the

mobile devices, referred to in literature as Pocket Switched Networks [12]. Indeed, most

of the smartphones on the market today are equipped with short-ranged radio interfaces

(i.e., Bluetooth, WiFi) that allow them to exchange data whenever they are close enough to

each other. Popular data could be then stored and transferred directly between devices in

the same social context in an ad-hoc fashion instead of being downloaded multiple times

from the mobile network. We therefore studied the possibility of channeling traffic to a

few, socially important users in the network called VIP delegates, that can help distribut-

ing contents to the rest of the network. We evaluated VIP selection strategies that are based

on the properties of the social network between mobile devices users. In Chapter 2, through

extensive evaluations with real and synthetic traces, we show the effectiveness of VIP del-

egation both in terms of coverage and required number of VIPs – down to 7% in average of

VIPs are needed in campus-like scenarios to offload about 90% of the traffic. These results

have also been presented in [1].

Next we moved to the security issues. On of the highest threats to the security of mo-

bile users is that of an identity theft performed using the data stored on the device. The

problem highlighted by this kind of attacks is that the most commonly used authentication

mechanisms completely fail to distinguish the honest user from somebody who just hap-

pens to know the user’s login credentials or private keys. To be resistant to identity theft

attacks, an authentication mechanism should, instead, be built to leverage some intrinsic

and difficult to replicate characteristic of each user. We proposed the Personal Marks and

Community Certificates systems with this aim in mind. They constitute an authentication

mechanism that uses the social context sensed by the smartphone by means of Bluetooth
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or WiFi radios as a biometric way to identify the owner of a device. Personal Marks is a

simple cryptographic protocol that works well when the attacker tries to use the stolen cre-

dentials in the social community of the victim. Community Certificates works well when

the adversary has the goal of using the stolen credentials when interacting with entities that

are far from the social network of the victim. When combined, these mechanisms pro-

vide an excellent protection against identity theft attacks. In Chapter 3 we prove our ideas

and solutions with extensive simulations in both simulated and real world scenarios—with

mobility traces collected in a real life experiment. This study appeared in [2].

Another way of accessing the private data of a user, other than getting physical access

to his device, could be by means of a malware. An emerging trend in the way people are

fooled into installing malware-infected apps is that of exploiting existing trust relationships

between socially close users, like those between Facebook friends. In this way, the malware

can rapidly expand through social links from a small set of infected devices towards the rest

of the network. In our quest for hybrid solutions to the problem of malware spreading in

social networks of mobile users we developed a novel approach based on the Mobile Cloud

Computing paradigm. In this new paradigm, a mobile device can alleviate the burden

of computationally intensive tasks by offloading them to a software clone running on the

cloud. Also, the clones associated to devices of users in the same community are connected

in a social peer-to-peer network, thus allowing lightweight content sharing between friends.

CloudShield is a suite of protocols that provides an efficient way stop the malware spread

by sending a small set of patches from the clones to the infected devices. Our experiments

on different datasets show that CloudShield is able to better and more efficiently contain

malware spreading in mobile wireless networks than the state-of-the-art solutions presented

in literature. These findings (which are not included in this dissertation) appeared in [3] and

are the result of a joint work with P.h.D student S. Kosta from Sapienza University. My

main contribution to this work was in the simulation of both the malware spreading and of

the patching protocol schemes on the different social networks datasets.

The Mobile Cloud Computing paradigm seems to be an excellent resource for mobile

systems. It alleviates battery consumption on smartphones, it helps backing up user’s data

on-the-fly and, as CloudShield proves, it can also be used to find new, effective, solutions

to existing problems. However, the communication between the mobile devices and their
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clones needed by such paradigm certainly does not come for free. It costs both in terms

of bandwidth (the traffic overhead to communicate with the cloud) and in terms of energy

(computation and use of network interfaces on the device). Being aware of the issues that

heavy computation or communication can cause to both the battery life of the devices [13],

and to the mobile infrastructure, we decided to study the actual feasibility of both mobile

computation offloading and mobile software/data backups in real-life scenarios. In our

study we considered two types of clones: The off-clone, whose purpose is to support com-

putation offloading, and the back-clone, which comes to use when a restore of user’s data

and apps is needed. In Chapter 5 we give a precise evaluation of the feasibility and costs

of both off-clones and back-clones in terms of bandwidth and energy consumption on the

real device. We achieved this by means measurements done on a real testbed of 11 Android

smartphones and on their relative clones running on the Amazon EC2 public cloud. The

smartphones have been used as the primary mobile by the participants for the whole ex-

periment duration. This study has been presented in [4] and is the result of a collaboration

with P.h.D. Student S. Kosta from Sapienza University. S. Kosta mainly contributed to the

experimental setup, deployment of the testbed and data collection.
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Chapter 1

Introduction to Pocket Switched
Networks And Properties of Human
Mobility

The rapid growth of the market of mobile devices that has characterized the latest years

has given rise to a very prolific research field of the so-called Pocket Switched Networks

(PSNs), or, more generally, mobile social networks. These are networks composed of mo-

bile devices communicating in an opportunistic manner by means of short-range radios

like Bluetooth or WiFi. In the following chapters, we will see how, by leveraging the well

known properties of the mobile social networks, we will be able to solve important prob-

lems affecting the mobile network infrastructure and the security of mobile users. Here, we

will briefly overview what we believe are some of the most interesting results of this field,

hoping that this will help the reader understand better our work.

1.1 Pocket Switched Networks

A Pocket Switched Network (PSNn) is a distributed wireless network that emerges from the

meeting patterns of people carrying their wireless mobile device (i.e., their smartphone).

PSNs belong to the family of Delay Tolerant Networks (DTN) [14]. In Delay Tolerant

Networks, messages usually are sent in a store-and-forward fashion from one node to the
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other, until the message reaches the intended destination(s). This approach allows to ex-

ploit communication opportunities that last even for few seconds, thus enabling messages

to travel between disconnected, moving portions of the network. In PSNs, the store-and-

forward strategy is adapted to human mobility: wireless communication links are created

and dropped in time, depending on the physical distance of the device holders. Thus, hu-

man mobility creates communicating opportunities that define the very network. Examples

of such network include people in working places, students in university campuses, and

citizens in metropolitan areas.

The body of the research in PSNs can be roughly divided into three parts. First, it has

been necessary to collect data on the meeting patterns of people so as to understand the

main properties of human social behaviour. Then, based on the collected data, a number

of so-called forwarding algorithms have been defined to allow reliable and fast communi-

cation between nodes. Finally, new mobility models have been designed with the aim of

overcoming the limitations affecting the collected data on human mobility.

1.2 Properties of Human Mobility

With the aim of fully understanding the actual feasibility of the model of communication

used in PSNs, researches made numerous efforts in collecting actual data that could shed

a light on the main properties of human social behaviour. These datasets were mostly

collected by means of experiments in which a set of participants were given small Bluetooth

devices (iMotes) able to sense and record their respective presence [12,15]. Many of these

experiments were performed in conference and campus environments with a number of

participants varying between 10 and 90 people, and for a period spanning between few days

and few weeks. Other data was also collected that, however, used information collected by

WiFi access points [16]. This allowed to increase the size of the dataset at the expense of

granularity. Thanks these datasets, researches could give precise characterizations of the

human mobility patterns leveraged by PSNs. Those that attracted the most of the attention

were the inter-contact time, the contact duration and the number of contacts. Together,

these properties characterize the latency before a message reaches the destination and the

amount of data that can be transferred.
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The inter-contact time is defined as the amount of time that passes in-between commu-

nication opportunities. The statistical properties of the inter-contact time of the collected

dataset has been mainly studied by Chaintreau et al. in [17], by Karagiannis et al. in [18]

and by Conan et al. in [19]. Their studies show how the cumulative distribution of the

inter-contact times between all the pair of nodes initially follows a power-law but then de-

cays exponentially. Chaintreau et al. also study the relationship between the exponent of

the power-law distribution and the expected communication delay.

Barabasi et al. in [20], study the trajectory of a very large number of anonymized

mobile phone users whose position is tracked for a six-months period. They observe that

human trajectories show a high degree of temporal and spatial regularity, each individual

being characterized by a time independent characteristic travel distance and a significant

probability to return to a few highly frequented locations. They also show that the proba-

bility density function of individual travel distances are heavy tailed and also are different

for different groups of users and similar inside each group. Furthermore, they plot also the

frequency of visiting different locations and show that it is well approximated by a power

law with an exponential decay.

The duration and the number of contacts, instead, are studied by Hui at al. in [21]. The

authors show how the social relationship between pairs of users can be classified in four

ways according to the number and duration of their contacts. These are friends, strangers,

community and familiar strangers. The first set contains pairs of users having long but not

necessarily frequent contacts; The second group contains people that meet sporadically;

The community of a person, instead, is the set of people that person meets in a regular

way and for long periods of times (e.g., colleagues); Finally, familiar strangers are pair of

people meeting often but for short periods of time.

To further understand the social structure of the nodes, Hui et al. in [22] study how

nodes divide into communities. They first build a contact graph where there edges are

weighted according to either the number of contacts or to the cumulative contact time be-

tween the nodes. Then, they run a number of weighted and unweighted community detec-

tion algorithms [23–25] on them. Finally, they propose distributed algorithms that do not

need to know the whole network topology to accurately detect communities among nodes.
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According to their study, complex community structures emerging from the meetings pat-

terns of the nodes can arise even in small networks.

One last important characteristic of the human social behaviour is the wide heterogene-

ity in the people centrality. Broadly speaking, as observed in all social networks, in mobile

social network people can have different degrees of sociality: There is very popular people,

that meet a great number of people every day, and there is less popular people, that always

meet the same small subset of people. This variety of social behaviour has both a positive

and a negative impact on PSNs. On one side, popular people happen to be very valuable

when it is necessary to send a message to a large set of users. On the other side, not-

so-popular people can sometimes be hard to reach, since they may be available for short

periods of time only during a whole day. In [26] the authors give experimental data on

this matter and show how the number nodes with high centrality is usually very low with

respect to the size of the network. They also show how centrality, as opposite to what one

might think, is not directly correlated to the number of unique nodes met, but, rather, to the

frequency of such contacts.

1.3 Forwarding in PSNs

Achieving reliable and fast communication in PSNs is a hard task. While it is true that, as

discussed in the previous section, the underlying social structure of these network produces

strong regularities in the meeting patterns of the nodes, human mobility has an unpre-

dictable nature that makes end-to-end communication difficult.

In general, in a forwarding algorithm a message follows a multi-hop path from the

source to the intended destination(s). When a node carrying a message meets another

node, it has to decide whether give it a replica of the message or not. To date, Epidemic

Forwarding [27] remains the protocol with the highest performance in terms of success

delivery and delay. The success delivery is defined as the percentage of the sent messages

that are actually delivered to destination before the message timeout. The delay is mea-

sured as the average time of delivery of these messages. Epidemic forwarding is based on

flooding: Upon contact between A and B, node A forwards message m to node B unless

B already has a replica of m. As it can be imagined, this protocol is inefficient in terms of
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message replicas created in the network, and network bandwidth. Further work has been

done in designing efficient and highly performing forwarding protocols for both DTNs and

PSNs. Most of them utilize flooding techniques aiming at approximating the performance

of Epidemic by trying to keep a low cost. Spray and Wait [28] limits the number of copies

to a number specified a-priori and dependent on the environment.

Other forwarding techniques exploit the “probability of delivering” of nodes. Schemes

based on this technique forward messages in a greedy fashion to nodes that are more likely

to meet the destination. One of the most representative protocols in this group is SimBet

Routing [29], where ego-centric centrality of nodes and their social similarity is used to

compute the forwarding quality of a possible relay node. SimBet is very efficient in terms

of message replicas created in the system, but also very well performing: It succeeds in

delivering messages even when there is a unique time-path between nodes. Unfortunately

this routing protocol needs for the nodes to maintain and update routing tables. This make

it unfeasible in PSNs where the movement of the nodes is highly dynamic and very unpre-

dictable.

Delegation Forwarding [30] is another protocol that falls under the same group of pro-

tocols of SimBet. In Delegation Forwarding, each node is given a forwarding quality that

can vary from the overall number of contacts to the time of last contact, and from the con-

tact frequency to the time of last contact with the destination. Similarly, each message is

given a rating that initially matches the forwarding quality of the source node. Upon con-

tact between A and B, every message in A with a rating lower than the forwarding quality

value of B updates its rating to this value. A forwards to B those messages whose rating

is updated, unless B already has a replica. Intuitively, the rating of a replica indicates the

value of the highest quality node that that replica has seen so far. Delegation is shown to

have a very high performance, similar to Epidemic, yet keeping the cost much lower.

Other forwarding protocols for PSNs are based on techniques that exploit social as-

pects of node movement such as being part of a community. One of them is Bubble [21].

This protocol bases its forwarding strategy on the popularity of the individuals within their

communities and within the whole network. Messages are first forwarded to popular nodes

within the network, till they reach the target community. Then, the forwarding continues

within the community through the most popular nodes, until delivery to target nodes.
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Another interesting approach to forwarding is that of SANE, presented in [31]. SANE

is a social aware, stateless forwarding algorithm that exploits people with similar interests,

represented as Interests Profiles (IPs). In the paper, the author show how considering people

with similar interests of the message recipient is a valuable way to quickly and efficiently

route data on PSNs. Moreover, they present a multicast forwarding algorithm that allow

a user to quickly send a message to the set of all the people that may be interested in its

contents.

1.4 Mobility Models

As we already discussed, the whole body of work on the PSNs is based on the data collected

during real-life experiments. Unfortunately, these datasets are often limited in size and

inaccurate. Indeed, collecting real data is an expensive process both in terms of monetary

cost and in terms of the human resources involved (i.e., volunteers). Moreover, hardware

failures and distracted users are often the cause of “holes” in the data that represent a tough

obstacle to researchers. For instance, it is not uncommon for nodes to disappear from the

dataset for long period of times or to report incorrect information. The use of WiFi based

traces partially solves these problems, but introduces many inaccuracies that are not easy

to smooth out [32].

For these reasons, in the past years, the quest for mobility models tailored for the rep-

resentation of the human social behaviour has attracted the attention of many researchers.

The father of these models in undoubtedly the Random Waypoint [33]. In the Random

Waypoint model, nodes move in a squared area by first selecting a uniformly random point

inside the area and then reaching that point at a fixed speed. Needless to say, this model

cannot be used to accurately reproduce the same characteristics of the human contact pat-

terns found in the real datasets. For this reason, Musolesi and Mascolo in [34] proposed

a variation of the Random Waypoint model that leverages a pre-existing social network to

influence the movement of the nodes. More in detail, the probability that a node choses a

given destination is proportional to the amount of friends that are moving towards the same

destination. The main drawback of this model, however, is that it is not clear whether it is

able to reproduce the critical property, observed in real dataset, that the distribution of the
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inter-contact times of all the pair of nodes follow, first, a power law, and then an exponen-

tial distribution. The SWIM mobility model proposed in [35], on the other hand, has been

designed with this aim in mind. Briefly, in the SWIM model, nodes select their destination

according to both the its popularity among the other nodes, and according to the distance

to the “home” of the node. The speed at which the node approaches the destination, then,

is proportional to the distance from the node to the destination. Finally, the amount of time

the nodes wait before selecting the next destination follows a powerlaw distribution. SWIM

has been formally proven to be able to reproduce the inter-contact time characteristics of

the real datasets. Moreover, when tested using on traces generated following the SWIM

model, the most important forwarding algorithms show the same performances they have

on the real datasets.

We consider SWIM the state-of-the-art in the modelling human social behaviour for

PSNs and we will be our reference model for our experiments. Other interesting mobility

models for mobile social networks are those presented in [36–38].
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Chapter 2

Data Offloading in Social Mobile
Networks Through VIP Delegation

Since the modern smartphones have been introduced worldwide, more and more users

have become eager to engage with mobile applications and connected services. This eager-

ness has boosted up sales in the market and, today, smartphones sales are higher than PCs

sales [39]. Simultaneously, smartphone owners are using an increasing number of applica-

tions requiring the transfer of large amounts of data to/from mobile devices. Delay-tolerant

applications related to social networks [40, 41], global sensing [42, 43], and content dis-

tribution [44] are just a few of the examples. As a consequence, the traffic generated by

such devices has caused many problems to mobile network providers, forcing them to stop

selling unlimited data plans [5, 6]. Despite of that, it can be observed that, in the case of

popular data (e.g., news), the redundant traffic on the 3G infrastructure can be drastically

reduced through opportunistic offloading (see Figs. 2.1(a) and 2.1(b)).1

In this chapter, we propose VIP delegation, a solution to this problem based solely

on the inherent social aspects of user mobility. Our idea is to exploit a few, important

subscribers (users) that with their movement and interactions are able to potentially contact

on a regular basis all the rest of the network users. These VIP devices would act as a

bridge between the network infrastructure and the remaining of the network, each time

1There are several other offloading alternatives (through WiFi access points for example, as discussed in
Section 2.1). Here we focus only on the case of opportunistic offloading.
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(a) Pure infrastructure mode. In
this case, the 3G infrastructure
sends the same data to all the
nodes, generating a lot of redun-
dant traffic.

(b) By using opportunistic offloading, it becomes possible to re-
duce redundant traffic sent over the 3G infrastructure. Note that
in this example the 3G infrastructure sent only three copies of the
data (two copies in the beginning and one copy later to cover all
the nodes).

Figure 2.1: Leveraging opportunistic offloading to reduce traffic in 3G networks.

large amount of data has to be transferred. Because nodes move and meet each other, it

suffices to contact a subset of them to reach a large number of nodes (possibly all of them).

In the example of Figure 2.1(b), nodes {x,y} can serve as VIPs on behalf of the others, as

they meet by themselves the rest of the network.

VIP delegation can help alleviate the network traffic in different delay-tolerant scenar-

ios. Collection of urban-sensing related data [42, 43], distribution of content to users by

service providers, and free updates of (lite versions) mobile software’s ad pools are exam-

ples of applications that would directly benefit from the use of VIPs. As these examples

are typical applications that induce large amount of traffic in the network, delegating the

collection/distribution of such traffic to a few important nodes would result in immediate

data offload.

The question here is how to compute an appropriate VIP set given some requirements.

For this, we present, formalize, and evaluate two methods of VIPs selection: global and

neighborhood VIP delegation (see Section 2.2). While the former focuses on users that are

globally important in the network (namely, global VIPs), the latter selects users that are

important within their social communities. The importance of a user within the network

is given in terms of well-known attributes such as centrality (betweenness, degree, and

closeness) and page rank. In both cases, we observe that a short observation period (one
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week) is enough to detect users that keep their importance during long periods (several

months). Selected nodes are then used to cover the network during a certain time window

through solely direct wireless contacts with the remaining nodes (see Section 2.3). In this

chapter, we provide significant extension over a companion work by deeply investigating

coverage aspects [45].

Through extensive evaluations on real-life and synthetic traces, we evaluate the perfor-

mance of the global and neighborhood VIP delegation methods in terms of network cov-

erage, by varying the number of VIPs chosen (see Section 2.5). We compare our solution

with an optimal benchmark computed from the full knowledge of the system. The results

reveal that our strategies get very close to the performance of the benchmark VIPs: Only

5.93% page-rank VIPs against almost 4% of the benchmark VIPs are required to offload

about 90% of the network in campus-like scenarios. Additionally we discuss on possible

VIP incentives, the way VIPs offload the traffic accumulated to the network, and leveraged

applications in Section 2.7. Finally, we conclude with Section 2.8.

The results presented in this chapter appear in [1].

2.1 Network Offloading

So far, the most reasonable solution to alleviate the load on the mobile network infrastruc-

ture is that of offloading to alternate networks, such as femtocells and WiFi. Femtocells

exploit broadband connection to the service provider’s network and leverage the licensed

spectrum of cellular macro-cells to offer better indoor coverage to subscribers [46]. As a

side effect, automatic switching of devices from cellular network to femtocells reduces the

load of the network. Besides from being localized (indoors only), such solution suffers

from the non-proliferation of femtocells to subscribers’ homes. Moreover, charging users

for the necessary equipment as the network providers are currently doing (150 USD for

AT&T’s microcell) will not help in this direction.

On the other hand, the proliferation of modern WiFi enabled smartphones, together

with the network providers’ tendency towards already existing technologies has turn WiFi

offloading into a reality. More and more carriers worldwide are investing in this direc-

tion [47], by installing access points and hot-spots close to overloaded cellular towers, and
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by providing to clients WiFi access within tiered monthly subscription. In this direction,

Balasubramanian et al. propose a system to augment access to 3G network through WiFi

offloading [48]. This system, called Wiffler focuses only on Internet access from moving

vehicles. It leverages delay tolerance and fast switching of devices to overcome the poor

availability and performance of WiFi.

Even though offloading to WiFi seems to be the best solution so far to cellular network

overloading [49], the continuous increasing of mobile data-traffic demand suggests for in-

tegration of WiFi with other offloading methods. Indeed, according to a report released

from CISCO on February 2010 mobile data traffic is growing today 2.4 times faster than

global fixed broadband one [50]. The mobile data consumed annually is expected to reach

40 exabytes by 2014, more than 90% of which will be driven by laptops’ and smartphones’

air cards. As we will show, our solution is essentially different from WiFi and femtocell-

based offloading; nevertheless, it can be integrated to these methods to further help alleviate

mobile data overloads.

To the best of our knowledge, Han et al. were the first to exploit opportunistic communi-

cation between mobile devices to alleviate data traffic in cellular networks [51]. However,

conversely from ours, their solutions only apply to information dissemination problems

such as broadcasting. They focus on selecting k target users to which the information is first

sent through cellular network. These target users will then, through multi-hop opportunistic

forwarding, disseminate the information to all users in the network. Multi-hop forwarding

is not feasible in our scenario where large amount of data is to be transferred: applications

that require collection of sensing data would be costly in terms of energy [42, 43]. More-

over, multi-hop forwarding requires collaboration of all users in the network. Even though

such collaboration can be stimulated by incentive mechanisms [52], there is no guarantee

on packet delivery. Rather, our solution relies on upgrading a crucial small set of users’

devices (down to 5.93% according to experiments with real campus-like data traces), that

through direct contact with network members help alleviate the data traffic in both upload

and download, assuring that no packet is being lost.
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2.2 VIP Delegation in a Nutshell

We propose an offload method based solely on the inherent social aspects of user mobility.

Our idea is to detect subscribers (users) that, with their inherent mobility, are able to en-

counter a large number of users (possibly all them) in a regular fashion. These VIP devices

would act as a bridge between the network infrastructure and the remaining of the network,

each time large amount of data has to be transferred.

As the research in the field of Pocket Switch Networks has shown, our movement ois not

random; rather, it is a manifestation of our social behavior. The analysis of such mobility

patterns and the understanding of how mobile users meet play a critical role at the design

of solutions/services for such kind of networks. Therefore, in general lines, this chapter

investigates the following questions:

• How to gain insights into social mobile networking?

• How to utilize such insights to design solutions allowing alleviating the network

traffic in the current overloaded 3G networks?

In particular, though the number of network users can be very high, just a few of them

have an “important” role within the social graph induced by the encounters. The natural

behavior of these VIP nodes, which are considerably fewer than the rest of the network, can

be a valuable resource in both information dissemination and collection to/from the rest of

the network. Motivated by the fact that opportunities for users to exchange data depend

on their habits and mobility patterns, our idea is the following: turn those few VIP nodes

into bridges between regular users and the Internet, each time large amount of data is to be

uploaded/downloaded by these latter ones. In a word, VIPs would act as delegates of the

network infrastructure builder. As a side effect, this would immediately drop down the 3G

network usage.

In our scenario, we assume that users download/upload large amount of data. This

would demand a lot of networking resources and thus, makes the use of multi-hop proto-

cols unfeasible. Indeed, it is quite hard to convince the average user to act as a relay for

others, even though to the closest access point, of such an overloading traffic. Rather, our
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solution relies on the upgrade of a small, crucial set of VIP nodes that regularly visit net-

work users and collect (disseminate) data to them on behalf of the network infrastructure.

Such upgrade would serve as incentive to users to play the role of VIPs (see Section 2.7

for discussions on possible VIP incentives). When this happens we say that the network is

covered. Similarly, when a VIP visits a user, we say that the user is covered.

Now the problem becomes the following: how to choose the smallest VIP set that

with their natural movement in the network cover potentially all users in a certain time

window?. More formally, the problem is defined as follows: Let N = {n1, . . . ,nn} be the

network nodes and let Gi = (Vi,Ei) be the graph whose set of vertexes Vi ⊂ N are the

network nodes that have at least a meeting during the time window i, whereas the set of

edges Ei represents those meetings, i.e. {u1,u2} ∈ Ei iff u1 and u2 meet in the time window

i. We are looking for S⊂N such that S = argminS⊂N |∪i [(Vi \(S∪{u | {u,s} ∈ Ei,s∈ S})]|.
That is, we are looking for the smallest set of nodes S that dominate most of the network

during the time window i. Note that set S can be seen as the smallest set of vertexes from N

that dominates most of the nodes in each Gi according to the respective Ei. Though it has a

dominating set flavor, this problem is different from it: Indeed, here we deal with a series

of graphs instead of a singular one.

As previously mentioned, we solve this problem by presenting two VIP selection meth-

ods that rely on either a global or a local view of the network (the methods are detailed in

Section 2.3). We also present a benchmark solution for VIP delegation. The benchmark

provides an optimal selection method that (i) requires the complete pre-knowledge of users’

behavior and (ii) is based on an adaptation of the well known NP-hard problem of the Min-

imum Dominating Set [53]. Such a method is clearly not feasible in real-life applications,

but useful to evaluate the goodness of our social-based VIP selection methods.

2.3 VIP selection methods

The selection of VIPs in a social mobile network is based on the ranking of nodes accord-

ing to their social structural attributes and requires knowledge on their mobility. For this, a

social graph describing the tightness of links in the network has to be designed. As the au-

thors of [54] show, the performance of network protocols is strictly related to the goodness
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of the mapping between the mobility process and the network social graph. They propose

an online algorithm that uses concepts from unsupervised learning and spectral graph the-

ory to infer the “correct” graph structure. However, this approach is not applicable in our

case, where VIPs are to be predicted. We thus decide to follow a simpler method in detect-

ing the network’s social graph, based on the following intuition: The movement of users

guided by their interests generates repeatability in their behaviors (e.g., go to work/school

every day, hang out with the same group of friends). Thus, observing users’ movement and

meeting patterns for a short monitoring period reveals enough information to characterize

the tightness of the social links in the network graph.

In a real-life application, we could imagine the network infrastructure builder asking

participating users to log their meetings for a certain time, called here as monitoring period.

These logs serve then to build the networks’ social graph on which the VIPs selection is

made. More specifically, from mobility patterns and wireless interactions of users in a

network, we establish a social undirected graph G(V ;E), where V is the set of users and E

is the set of social ties (encounters) among them. Note that such social graph is different

from each of the Gi = (Vi,Ei) we mentioned in the previous section. Indeed, Gi represents

exactly who meets who in a certain time window i; whereas G is only a representation of

the tightest friendship relations among network nodes that appears during the monitoring

period, which is composed of a set of time windows i. The details of the construction of the

social graph will be given in Section 2.5.3. However, we anticipate that social ties (edges)

in the graph G(V ;E) are strictly related to users’ contact frequency: A link exists between

two users if the number of times they meet is larger than a certain threshold, which depends

on the considered networking scenario.

At the following, we present our global and local VIPs selection methods as well as the

social structural attributes used at nodes ranking.

2.3.1 VIPs selection methods

Global VIP selection: In the global selection, all network nodes are first ordered according

to their importance in the network, determined by their social structural attributes (see

Section 2.3.2). Afterwards, the smallest VIP set over the global social graph that covers
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the network during a certain time window through direct contacts is chosen, by applying

one of the following VIP promotion methods:

• Blind global promotion. It selects the top-ranked nodes not yet promoted, till the

network is covered.

• Greedy global promotion. This is a set-cover flavored solution. In particular, it starts

with promoting to VIP the top-ranked node. After this promotion, the nodes covered

by this VIP are dumped and ranking on the remaining nodes are re-computed. Again,

the procedure is repeated till the network is covered.

Hood VIP selection: The second strategy, neighborhood VIP delegation, is based on the

intuition that repetitive meetings among people happen usually in the same places. The

mobile social network generated by this behavior encompasses, besides contact locality,

well tight social-community sub-structures. With this in mind, the hood strategy aims to

cover each community at a time, independently from other communities. It selects hood

VIPs by their importance within the communities they belong to. Before doing so, we first

detect social-communities using the k-clique community algorithm [23]. The reason behind

this choice is that the k-clique algorithm can detect overlapping communities, i.e., nodes

may appear to belong to more than one community. This characteristic of the k-clique

algorithm makes it well suited for a scenario like ours in which people belong to more than

one social community (e.g. gym members that are also computer science students, etc.).

This is also the reason why the k-clique algorithm is widely used in the area of social mobile

networking [21,26,55]. Finally, to study the overlapping between communities, we use the

Jaccard similarity index [56], which, for two sets A and B is computed as: JA,B = |A∩B|
|A∪B| .

Afterwards, we rank members of each community according to their importance in the

network (see Section 2.3.2). Then, we start covering each community by promoting its

members to VIPs similarly to the global VIPs methods:

• Blind hood promotion. It continuously selects the top-ranked nodes not yet promoted

in the community, till the network is covered.
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• Greedy hood promotion. The highest-ranked member in the community is promoted,

nodes it covers within the community are dropped, and rankings are computed again

in the remaining graph.

In both promoting ways, when the whole community is covered, the procedure contin-

ues with another one, until all the communities are covered.

2.3.2 Social structural attributes of nodes

We define the importance of a node in the network by applying to the network social graph

several structural attributes: betweenness centrality, closeness centrality, degree centrality,

and Page rank. All these are well-known attributes in social network theory [57, 58]:

Betweenness centrality measures the number of occurrences of a node in the shortest-path

between pairs of others nodes. It thus determines “bridge nodes” that, with their movement,

act as connectors between node groups (communities). For a given node k it is calculated

as: CB(k) = ∑
N
j=1
j 6=k

∑
N
i=1
i6=k

gi, j(k)
gi, j

, where N is the number of nodes in the network, gi, j is the

total number of shortest paths linking i and j, and gi, j(k) is the number of those shortest

paths that include k.

Degree centrality ranks nodes based on the number of their direct ties (i.e., neighbors) in

the graph. It identifies the most popular nodes, also called hubs in social network theory,

possible conduits for information exchange. Degree centrality is calculated as: CD(k) =

∑
N
i=1 a(k, i), where a(k, i) = 1 if k and i are linked, and a(k, i) = 0 otherwise.

Closeness centrality ranks higher nodes with lower multi-hop distance to other nodes of

the graph. It describes “independent nodes” that do not dependent upon others as inter-

mediaries or relayers of messages due to their closeness to other nodes. The closeness

centrality for a node k is calculated as CC(k) = N−1
∑

N
i=1 d(k,i)

, where d(k, i) is the length of the

shortest path between nodes k and i. To deal with disconnections it is computed within the

subgraph induced by the elements of the connected component to which k belongs.

Page rank, the well known Google’s ranking algorithm, measures the likelihood of nodes

in having important friends in a social graph [58]. In particular, page rank of a node i in the

social graph is given by the equation PR(k) = 1−d
N + d ∑i∈F(k)

PR(i)
|F(i)| , where d (0 ≤ d ≤ 1)
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Figure 2.2: (a) Meeting between u, v, and w during days 1 and 2. (b)-(d) Rules for the
construction of graph G. (e) Final representation of graph G.

is the damping factor and F(k) is the set of neighbors of k in the social graph (the graph

is undirected). The damping factor d controls the amount of randomness in page ranking:

Values close to 1 will give high page rank to socially best-connected nodes.

2.4 Benchmark approach

To evaluate the efficiency of our strategies, we propose a benchmark approach that gives

the optimal solution: 100% of user coverage in a time window of one day, with minimum

number of VIPs. It is important to underline that the benchmark serves only for comparison

purposes, as it requires knowing the future to compute the exact set of VIPs.

2.4.1 Application scenario’s abstraction

Suppose the network has to be covered daily (i.e., the time window i is of one day) by VIP

delegates, for a period P during which the activity of all network users is known. Let also

P be n days long. We construct a directed graph G = (V,E) through the following rules (a

step-by-step generation of graph G is illustrated in Fig. 2.2):
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Rule 1 Graph G has a vertex ui for each day i in which user u is active (i.e., u has at least

one contact during the day). This vertex impersonates u during day i in G and is referred to

as the clone of u during that day (see Fig. 2.2(a) and 2.2(b)). The set of clones representing

user u in G is denoted as Cu.

Rule 2 For every user u, Cu forms a clique in G, i.e., each pair of clones ui, u j of user u in

G is connected by two directed edges, namely, (ui,u j) and (u j,ui) (see Fig. 2.2(c)).

Rule 3 If users u and v meet on day i, then every member ut of Cu is connected to vi through

an edge (ut ,vi). Similarly, every member vt of Cv is connected to ui through an edge (vt ,ui).

In particular, G also contains edges (vi,ui) and (ui,vi) representing that u and v met on day

i (see Fig. 2.2(d)).

The graph G constructed with the above rules represents users’ behavior in the network

during the whole period P. Take for example a certain user u. According to Rules 1 and 2,

user u is “expanded” in G into a clique Cu, containing clones of u only for the days u is

active (see Fig. 2.2(b) and 2.2(c)). Moreover, if u meets v in day i, Rule 3 guarantees that all

members of Cu point to vi (see Fig. 2.2(d)). The intuition behind this rule is that outgoing

edges from u′s clique indicate that “u can be a delegate for v on day i”.

Rule 3 is applied to every day on which user u is active. As a consequence, all members

of the u′s clique in G point to the same members of other users’ cliques. Thus, any clone

of user u in G (any member of Cu) is enough to determine the set of users v for which u can

be a delegate, and on which days.

2.4.2 Benchmark delegates selection

Intuitively, in order to cover all the network day by day, it is enough to select as delegates

the members of a minimum out-dominating set of graph G. Moreover, such a set of dele-

gates is the smallest set that can achieve full coverage. The following theorems prove such

intuition.
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Theorem 1 Let MDS be a minimum out-dominating set of G. The set MDS can cover

100% of the active users for each day i ∈ P.

Proof 1 First recall that according to Rule 2, the set Cu of clones of a same user u form a

clique in G. Since MDS is minimum, it contains at most one clone for every user u. When

members of such a set are promoted to delegates, we get at most one delegate-instance per

user.

Suppose, without loss of generality, that user v is active during day i, i.e., vi ∈ G. As

MDS is a dominating set, either of the following cases might happen: (i) some clone vt of

v is in MDS or (ii) there is at least one other node u’s clone ul ∈MDS such that the edge

(ul,vi) is in G. In case (i), since vt ∈ MDS, v is promoted to a delegate and is covered

by itself. Case (ii) can only happen if edge (ul,vi) was added by Rule 3, i.e., u and v met

during day i. Given that ul ∈ MDS, u is promoted to a delegate. Thus, v is necessarily

covered on day i.

Theorem 2 Let MDS be a minimum out-dominating set of G. Let also S be the smallest

set of VIP delegates able to cover, for every day i ∈ P, 100% of the active network users on

day i. Then, |MDS| ≤ |S|.

Proof 2 Suppose, on the contrary, that |S| < |MDS|. By construction, and with a similar

reasoning used in the proof of Theorem 1 it is easy to see that S is an out-dominating set of

G. Then, by the minimum cardinality of MDS, we are done.

The above theorems indicate how to proceed to find the best possible solution to our

problem: after constructing graph G according to Rules 1, 2, and 3, find a minimum out-

dominating set of G and use the members of such set as benchmark VIP delegates.

The minimum dominating set is notably a NP-hard problem. Thus, to individuate our

benchmark VIP delegates, we reduce our problem to Set Cover (equivalent to MDS under

L-reductions [53]) for which a simple greedy algorithm is known to be only a logarithmic

approximation factor away from the optimum [53]. Moreover, the innaproximability result

for this problem shows that no polynomial algorithm can approximate better than (1−
o(1)) logn unless NP has quasi-polynomial algorithms. Thus, there is no polynomial-time
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Table 2.1: Details on the datasets and respective monitoring period.

Data set Taxi Dartmouth SWIM-500 D-SWIM-1500 A-SWIM-1500
Total nodes 536 1142 500 1500 1500
AVG active nodes/day (trace) 491 1060 499.98 1500 1500
AVG active nodes/day (monitoring) 429 1061.5 500 1500 1500
AVG contacts/node/day (trace) 7804 292 128 130 380
AVG contacts/node/day (monitoring) 7656 284 131 129 378

algorithm with a smaller approximation factor. The delegates obtained by this heuristic are

then used as benchmark VIPs in our experiments.

2.5 Experimental setting: From data-sets to social graphs

We now give detailed information on the data-sets (real and synthetic) we use in the evalu-

ation of our strategies.

2.5.1 Real data-sets

Two real data-sets are used: Dartmouth [59] (movement of students and staff in a college

campus) and Taxis [60] (movement of taxi cabs in San Francisco). The vehicular mobility

of the cabs is different from human mobility (Dartmouth). However, the purpose of using

the taxis trace is to test our solution’s extendibility to different contexts.

Dartmouth. Dartmouth includes SNMP logs from the access points across the Dartmouth

College campus from April 2001 to June 2004. To generate user-to-user contacts from the

data-set, we follow the popular consideration in the literature that devices associated to the

same AP at the same time are assumed to be in contact [61]. We consider activities from

the 5th of January to the 6th of March 2004, corresponding to a 2-month period during

which the academic campus life is reasonably consistent. We chose to work with the set of

nodes that have a fairly stable activity in time: at least 500 contacts per week with any other

device. This results in a set of 1,146 nodes with an average of 1,060 daily active devices

and 292 daily contacts in average per device.

Taxis. The Taxi data-set contains GPS coordinates of 536 cabs collected over 24 days
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in San Francisco. Here, we assume that two cabs are in contact when their geographical

distance is smaller than 250 m (following suggestions of Piorkowski et al. [60]). This yields

an average of 491 active nodes per day and 7,804 daily contacts per node.

2.5.2 Synthetic data-sets

Synthetic traces are generated using the SWIM model [62], shown to simulate well human

mobility from statistical and social points of view. We use SWIM to simulate a 500-node

version of the Cambridge Campus data-set (of only 36 Bluetooth enabled iMotes, 11 days

long) [62]. We call this trace SWIM-500. It simulates user activity during 2 months,

yielding 128 daily contacts per node in average. Then, we scale up to 1,500 nodes in two

ways: (i) by keeping density constant (D-SWIM-1500) and (2) by keeping the area constant

(A-SWIM-1500). The purpose of the two different scalings is to study the behavior of our

strategies in two scenarios: D-SWIM-1500 simulates an urban growing in both area and

population and A-SWIM-1500 refers to a sudden over-population of a given city.

Table 2.1 summarizes the details of the data-sets. Note that, although both data-sets

represent campus scenarios, they yield different activity per node per day as they used

distinct technologies (WiFi capable APs in Dartmouth and Bluetooth-like characteristics in

SWIM) in the two data-sets.

2.5.3 Monitoring period and social graph

As we have already discussed in Section 2.3, we observe nodes encounters during an obser-

vation/monitoring period and exploit repeatability of users’ movement patterns and recur-

rence of contacts among them. The used length of the monitoring period is not casual: It is

as short as 1 week and divided in time windows of 1 day. Usually, our life and the activities

we conduct are organized on a week-base, mostly having a common routine repeated day

by day (e.g., go to work/school or have lunch in the same place). Such repetition also infers

the common meetings generated by those activities.

In the case of the Taxi data-set, the repeatability of contacts is due to several factors in-

cluding the popularity of geographical zones in the city (e.g., center, stations, and airports),

the fixed tracks leading to such zones, and the common city areas covered by groups of
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taxis. As shown by Piorkowski et al., popularity of areas generates clusters of connectivity

among cabs [60]. Taxis’ movements are guided by clients’ (humans) necessity to reach a

specific geographic location. Thus, one week observation is again enough to predict future

meetings.

Our intuition on the length of the monitoring period is also confirmed by the results

shown in Table 2.1. Indeed, the properties of the monitoring period are very close to the

whole trace, for each considered scenario. Hence, this makes prediction of future meetings

easy: the monitoring period we have chosen allows us characterizing social relationships.

We are then able to generate a social graph, where two users are connected only if they

have met with a certain frequency – that we call social connectivity threshold – during the

monitoring period. The social connectivity threshold depends on the scenario considered:

• In the Dartmouth data-set, social connectivity in mostly due to the frequentation of

the same classes, or studying in the same library, or living in the same dormitory.

All these activities generate lots of meetings among people. We thus set the social

connectivity threshold in this case to be at least 1 contact per day, for at least 5 days

during a week.

• The social connectivity threshold in the Taxi data-set is higher due to higher speeds:

at least 8 contacts per day during the monitoring period were considered.

• As the SWIM-500 trace also represents a University campus, we use the same social

connectivity threshold of the Dartmouth trace: at least 1 contact per day for at least 5

days of the monitored week. This leads to a set of 498 nodes. When scaling up with

constant density (D-SWIM-1500) the social connectivity threshold remains constant.

It increases to at least 8 contacts per day for at least 5 days of the monitored week

when scaling up with constant area (A-SWIM-1500).

The social graphs generated by the social connectivity thresholds are then used to indi-

viduate the VIP delegates, according to each of the strategies of Section 2.3.
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2.5.4 Community detection

Our hood VIPs selection strategies operate on a community basis and aim at covering single

communities by selecting members that are important within each community.

After applying the k-clique algorithm [23] to determine the communities and with re-

spect to the campus-like scenarios, we have the following parameters: the Dartmouth data

set has 24 communities of 41 members in average, the SWIM-500 trace has 16 communi-

ties with 32 members in average, the D-SWIM-1500 trace has 39 communities with 39.6

members in average, and the A-SWIM-1500 has 35 communities with 44 members in av-

erage. Note that constant-area scaling yields less, bigger communities.

The communities are well-knit and do not show much intersection between them. In-

deed, the average Jaccard similarity index [56] between intersecting communities is 0.038

in the Dartmouth case and about 0.025 in SWIM-500 and D-SWIM-1500 case. This re-

sult supports recent findings on universities’ communities detected with the k-clique algo-

rithm [26]. Conversely, in the constant-area scaling of A-SWIM-1500, the communities

have a higher overlapping: the Jaccard similarity index in this case is 0.045.

The Taxi data-set, due to the large number of contacts and the high mobility of nodes,

does not present any community sub-structuring. When applying the k-clique algorithm,

we observe one huge community containing almost 80% of the nodes, whereas the remain-

ing 20% do not belong to any community. Thus, we decided to apply only the global VIP

selection strategies to this trace.

2.6 Experimental Results

We analyze the performance of all our strategies in terms of coverage when applied to

real and synthetic traces. For better understanding the quality of the VIPs selected by each

strategy, we investigate the coverage trend with regard to an increasing number of the VIPs.

The set used for coverage is updated from time to time following the order in which each

strategy selects VIPs. For the sake of comparison, the results for the benchmark (“Bn”)

are included in the plots. We use the same technique as above to build the benchmark’s

trend: updating the VIPs set and the corresponding network coverage, following the order
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Figure 2.3: Performance of the selection strategies on the Dartmouth data-set. “Bn” refers
to the benchmark, “PR” to the page-rank, “BW” to betweenness centrality, “DG” to degree
centrality, and “CL” to closeness centrality.

in which the benchmark promotes nodes to VIPs. For the page rank attribute, we noted that,

varying the damping factor in the interval [0.51;0.99] does not change the performance of

page rank VIPs with respect to the VIPs selected according to other centralities. However,

we decided to use d = 0.85, since, for page rank, it results in the best performance in terms

of network coverage.

2.6.1 Results with real data-sets: Dartmouth case

Blind promotion. We show in Fig. 2.3 the coverage obtained by each of the promotion

strategies. The blind promotion in the global and hood VIP selection strategies yields the

results presented in Fig. 2.3(a) and 2.3(b). Notice that there is a coverage efficiency gap

between page rank VIPs (referred as “PR” in the figure) and those of other centralities (re-

ferred as “BW”, “DG”, and “CL”). In addition, page rank is very close to the benchmark,
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Figure 2.4: Distribution of VIPs per social attribute on the Dartmouth data-set with the
blind global promotion strategy. The x-axis represents different communities detected.

even for small percentages of delegates considered. For instance, in the global blind strat-

egy, to get to 90% of coverage, page rank only requires the promotion of 5.93% of nodes as

delegates against 3.92% with the benchmark approach (see Table 2.2). Another considera-

tion to be made is that hood selection is more effective than global selection. Hence, aiming

to cover the network by forcing VIP selection within different communities seems to be a

very good strategy. Nevertheless, there exist social attributes such as page rank that do not

gain much from the hood selection. Indeed, global and hood page rank VIPs perform very

similarly in both data-sets. This is because, on the one hand, page rank VIPs already target

different communities, even in the global case. On the other hand, betweenness, degree,

and closeness centrality tend to over-select VIPs from a few network communities, and

consequently, leave uncovered many marginal ones. The tendency of these social attributes

to target only a few communities is attenuated with the hood selection that boosts their

efficiency in covering the network. In Fig. 2.4, we show how the global strategy distributes
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Table 2.2: VIP sets cardinality to get 90% coverage on Dartmouth. The benchmark needs
3.92% of nodes.

G-Blind (%) H-Blind (%) G-Greedy (%) H-Greedy (%)
PR 8.98 6.89 5.93 6.19
BW 15.96 9.16 8.98 6.19
DG 26.96 15.09 5.93 6.19
CL 47.993 26.0035 5.93 6.19
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Figure 2.5: Distribution of VIPs per social attribute on the Dartmouth data-set with the
greedy global promotion strategy. The x-axis represents different communities detected.

VIPs among communities of different centralities.

Greedy promotion. When applying the greedy promotion, the performance of all strategies

improves considerably (see Figs. 2.3(c) and 2.3(d)). In addition, VIPs obtained with each

social attribute perform very similarly to each other, in both hood and global selections.

This is due to the capacity of the greedy approach to not promote as VIPs nodes that are

too close to each other in the social graph. Indeed, after every node’s promotion to VIP,
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Figure 2.6: Performance of blind global and greedy global selection strategies on the Taxi
data-set. “Bn” refers to the benchmark, “PR” to the page-rank, “BW” to betweenness
centrality,“DG” to degree centrality, and “CL” to closeness centrality.

all its neighbors in the social graph and their links are removed. Since communities are

very well tight, the promotion of one member can remove a large part of the community

(if not all of it). Thus, attributes such as betweenness and closeness do not concentrate

their selection on a few communities as in the global selection. This is also confirmed by

Fig. 2.5, where we show how the greedy strategy distributes VIPs among communities for

different social attributes.

2.6.2 Results with real data-sets: Taxi case

As discussed in Section 2.5.4, the community sub-structuring of the Taxi data-set is flat.

This means that, due to the high mobility of nodes, a huge unique community containing

80% of nodes is detected and the 20% remaining nodes do not belong to any community.

Thus, only the global selection strategy is applicable to this data-set. Fig. 2.6 shows the

performance of blind and greedy global selection strategies in terms of coverage for the

Taxi data-set. As we can see, due to the high mobility of nodes, all strategies perform

very well in this scenario. Moreover, the sets selected by each strategy to guarantee up to

90% of coverage are exactly of the same (small) size: Only 0.93% of network nodes. The

benchmark guarantees the same coverage with 0.2% of network nodes selected.
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Figure 2.7: Performance of (a)-(c) blind global and (d)-(f) blind hood selection on SWIM.
“Bn” refers to the benchmark, “PR” to the page-rank, “BW” to betweenness centrality,
“DG” to degree centrality, and “CL” to closeness centrality.

2.6.3 Results with synthetic data-sets: SWIM

As discussed in Section 2.5.2, starting from SWIM-500 (a 500-node simulation of a Uni-

versity scenario [63]), we generate two scaled versions with 1,500 nodes: D-SWIM-1500

(constant density scaling) and A-SWIM-1500 (constant area scaling). Our purpose is to

study the reaction of the different strategies in two cases: an urban growing in both area

and population (constant density) and a sudden over-population of a city (constant area).

We start from blind promotion (see Fig. 2.7). Again, like in the Dartmouth scenario,

page rank VIPs are more efficient than VIPs of other centralities. The reason is the same as

discussed in the previous section, i.e., page rank global VIPs are better distributed within

communities with respect to VIPs obtained with other centralities. For instance, Fig. 2.9

shows such distribution for the trace D-SWIM-1500 (the traces SWIM-500 and A-SWIM-

1500 show a similar trend). Once again, aiming to cover the network by forcing VIPs to

fall in different communities (hood selection) is a winning strategy.
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Figure 2.8: Performance of (a)-(c) greedy global and (d)-(f) greedy hood selection on
SWIM. “Bn” refers to the benchmark, “PR” to the page-rank, “BW” to betweenness cen-
trality, “DG” to degree centrality, and “CL” to closeness centrality.

Results related to greedy promotion are presented in Fig. 2.8. As in the Dartmouth case,

the performance of all strategies is boosted up by the greedy selection of VIPs, yielding a

better distribution of delegates within communities (see Fig. 2.10) and thus, much better

coverage results with respect to the blind promotion. What is interesting to notice here

is the impact of the way of scaling in our strategies. When passing from SWIM-500 to

D-SWIM-1500 (constant density), all strategies perform very similarly in both blind and

greedy promotions. Conversely, in an emergency situation where the network is suddenly

much more overloaded as a result of the over-population of the network area (A-SWIM-

1500), our strategies perform even better (see Fig. 2.7(c), 2.7(f), 2.8(c), and 2.8(f)). This

is also confirmed by the results shown in Tables 2.3, 2.4, and 2.5 that contain, for each

data-set, the percentage of delegates needed by the different strategies to cover 90% of the

network.
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Figure 2.9: Distribution of VIPs per social attribute on the D-SWIM-1500 data-set with
the blind global promotion strategy. The x-axis represents different communities detected.

Table 2.3: Delegates given by each strategy to get 90% coverage on SWIM-500. The
benchmark approach needs 7.4%.

G-Blind (%) H-Blind (%) G-Greedy (%) H-Greedy (%)
BW 21 14 9 10.6
CL 48 25.4 12.8 11.6
DG 23 13.6 8 8.8
PR 10.8 10.2 9.8 9.6

2.6.4 Coverage potential

To complete our study, we investigate the coverage potential of the first 10% of nodes pro-

moted to delegates according to each strategy. To this end, we measure, for each delegate,

the ratio of non-delegates neighbors on the social graph (i.e., the number of non-delegates

neighbors of delegate i over the total number of neighbors in the social graph). We average

then the result over the set of all delegates chosen by the corresponding strategy. Intuitively,
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Figure 2.10: Distribution of VIPs per social attribute on the D-SWIM-1500 data-set with
the greedy global promotion strategy. The x-axis represents different communities de-
tected.

Table 2.4: VIP sets cardinality to get 90% coverage on D-SWIM-1500. The benchmark
approach needs 7.06%.

G-Blind (%) H-Blind (%) G-Greedy (%) H-Greedy (%)
BW 22 17.26 9 9.93
CL 59 42.06 12.93 11.6
DG 24 17.2 8 9.06
PR 10.9333 10.06 9 9.93

the bigger this value, the larger the coverage potential of the strategy, and vice-versa. In

Tables 2.6 and 2.7 we present the results for every strategy/social attribute for respectively

the Dartmouth and Taxi traces. As a representative of the SWIM traces, on Table 2.8 we

show the results obtained on D-SWIM-1500, since, being the least dense of the synthetic

traces, it is the most interesting for the study of the coverage potential.

44



Table 2.5: VIP sets cardinality to get 90% coverage on A-SWIM-1500. The benchmark
approach needs 2.53%.

G-Blind (%) H-Blind (%) G-Greedy (%) H-Greedy (%)
BW 10 6.73 4 4.4
CL 30 11.6 9 6.06
DG 7 5.13 4 3.53
PR 5 4.33 6 4.4

Table 2.6: Coverage potential for each strategy on Dartmouth. The benchmark’s potential
is 0.91.

G-Blind H-Blind G-Greedy H-Greedy
PR 0.830 0.069 1.0 0.831
BW 0.657 0.067 1.0 0.969
DG 0.530 0.061 1.0 0.890
CL 0.144 0.059 1.0 0.886

Table 2.7: Coverage potential for each strategy on TAXI. The benchmark’s potential is
0.96.

G-Blind G-Greedy
PR 0.760 1.0
BW 0.758 1.0
DG 0.742 1.0
CL 0.745 1.0

Note that in the global blind selection, page-rank is the one with the highest value,

followed by betweenness, degree, and finally closeness. This again supports the results

of Fig. 2.3(a). The potential falls drastically when considering the hood blind selection

(second column of Table 2.6): delegates are forced to be in the same community, in a blind

way. Thus, with high probability, they are socially connected with each other. However,

page rank remains the attribute with the highest value, supporting the results of Fig. 2.3(b).

The global greedy selection naturally yields the highest coverage potential for every

attribute: after each node promotion, its neighbors are eliminated from the graph; thus,
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Table 2.8: Coverage potential for each strategy on D-SWIM-1500. The benchmark’s po-
tential is 0.99.

G-Blind H-Blind G-Greedy H-Greedy
PR 0.888 0.558 1.0 0.992
BW 0.688 0.451 1.0 0.993
DG 0.607 0.288 1.0 0.994
CL 0.180 0.094 1.0 0.993

the ratio of non-delegate neighbors of a node is 1. The hood greedy selection (fourth col-

umn of Tables 2.6 and 2.8) leads to smaller values. This is because selection is done on

a community basis and only community neighbors are eliminated after promotion. Since

communities are not totally distinct, it might happen that two VIP neighbors in the social

graph belong to different communities and, consequently, are eliminated after the promo-

tion, decreasing thus the coverage potential of the strategy. This effect is smaller for high

betweenness nodes: they tend to belong to the same group of communities (the ones that

they connect). Closeness/degree attributes suffer less from this effect, as they select nodes

that are central to communities. Finally, page rank is the one that suffers most: high page

rank nodes are well distributed within the community to which they belong (being commu-

nities well-knit). Thus, they are more likely to have high page rank neighbors belonging to

other communities (that the hood greedy selection does not eliminate).

It is worth to note that the coverage potential just gives a hint on the real coverage power

of a method: It does not affect the real ability of the selection method/attribute in covering

the network. Indeed, for all traces (see Tables 2.6, 2.7, and 2.8) the coverage power of the

benchmark in all traces is less than all the values related to the global greedy selection.

Regardless of the coverage potential, the benchmark performs better with respect to every

strategy. In addition, the results with 90% coverage presented in Tables 2.2–2.5, confirm

page ranks’s high performance ability when combined with every strategy.

2.6.5 Coverage stability

Finally, we investigate the stability of coverage of our strategies in time. We focus on the

delegates set needed to reach, in average, 90% coverage for each strategy on all tracers. In
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Figure 2.11: Coverage stability in time for all strategies (Dartmouth data-set).

Fig. 2.11 and 2.12, we plot the coverage per day of the Dartmouth and D-SWIM-1500 data

sets. We observe that coverage is quite constant in time for every strategy. This reinforces

our intuition on both the monitoring period and the way the social graph is generated.

With minimal information on the scenario and a very short observation of the network, our

strategies are able to compute VIP sets that are small, efficient, and stable in time. The

results we obtained with the Taxi, SWIM and A-SWIM-1500 confirm these results.

2.6.6 Coverage intervals vs. VIPs

The VIPs selected by our strategies are expected to cover all nodes every day of the data-

trace by carrying data traffic from/to the users. All our target applications (e.g., urban-

sensing related data, software updates) are delay-tolerant and would not suffer from the

1-day latency of the daily coverage of VIPs. But what happens for applications that require

coverage intervals different from 1-day? How does the length of the coverage interval
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Figure 2.12: Coverage stability in time for all strategies (D-SWIM-1500 data-set).

Table 2.9: VIP sets cardinality to get 90% coverage on D-SWIM-1500. The benchmark
approach needs 13%. Half-day coverage interval.

G-Blind (%) H-Blind (%) G-Greedy (%) H-Greedy (%)
BW 30 25.53 15 15.63
CL 70 56.33 15 15.69
DG 34 28.66 15 15.65
PR 18 17.46 15 15.6

impact the selection of VIPs? Clearly, if the coverage interval is longer, the 1-day coverage

VIPs are a superset of the required number of delegates. Indeed, for a coverage interval

long e.g. 2 days, the 1-day coverage VIPs would perform as good as in the 2-day coverage

case. However, if the coverage interval required is smaller, the VIP set required to cover

the network is likely to change. To quantify such change we have also studied the half-

day network coverage for all the traces. For both the Taxi and the A-SWIM-1500 traces

we noted absolutely no difference from the 1-day coverage case. We believe this is due
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Figure 2.13: Performance of the selection strategies on the D-SWIM-1500 data-set. “Bn”
refers to the benchmark, “PR” to the page-rank, “BW” to betweenness centrality, “DG” to
degree centrality, and “CL” to closeness centrality. Half-day coverage interval.

to the high mixing and speed of movement of cabs in the Taxi case, and due to the high

node density in the A-SWIM-1500 trace. Recall that A-SWIM-1500 is obtained scaling

SWIM-500 with constant area.

In Dartmouth, SWIM-500 and D-SWIM-1500 we observed a growth in the VIPs num-

ber required to assure 90% of network coverage. Intuitively, this is because the meeting

patterns of the first half of the day are different from those of the second half. The growth

on the number of delegates required to cover 90% of the network in the half-day coverage

case is also reflected in the benchmark’s VIPs, which are almost doubled with respect to the

1-day coverage interval case (see Table 2.9). Hence, one would expect that the same should

happen also with the VIP sets selected by our strategies. However, this is not the case. For

instance, from the comparison of the 1-day coverage interval results with the D-SWIM-

1500 dataset of Table 2.4 with the half-day coverage interval results with the same dataset
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Figure 2.14: Coverage stability in time for all strategies (D-SWIM-1500 data-set). Half-
day coverage interval.

of Table 2.9 we note that the VIP sets have increased of about 60%. This again means that

selecting VIPs according to their “importance” in the network is a good strategy: Indeed,

most of the important people during the morning remain so also during evening. However,

the coverage interval length indeed does impact the cardinality of VIPs. This suggests for

application developers or network infrastructure builders to trade off between data transfer

frequency and number of VIPs.

To conclude, Fig. 2.13 and 2.14 show respectively the coverage trend, and the perfor-

mance of the different selection strategies for the case of half-day interval coverage. Again

we note that page-rank wins over the other centralities, and the hood selection strategy wins

over the global selection one. Finally, Fig. 2.14 confirms the stability in time of our VIPs,

regardless of the length of the coverage interval.
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2.7 Incentivizing VIPs and data transfer

Being the human nature inherently selfish, it is more likely that no user would accept the

promotion to VIP. However, the number of VIPs selected by our strategies to guarantee

90% coverage is quite low (8% in SWIM, 5.93% in Dartmouth, less than 1% in Taxi). In

view of this, VIPs could have their devices upgraded to more fancy, recent ones, and get

paid for carrying them around and "working" for the network provider/application builder.

Considering the amount of funding that Governments worldwide are putting into global-

sensing research [64–66] this incentive is more than real. Another possibility involves

considering users’ traffic load at the delegates selection and use it to establish a maximum

load threshold per delegate. Accordingly, combine it with the social attributes for delegate

selection considering fairness and resource constraint among delegates.

It is clear that cellular networks cannot handle the data-traffic from/to VIPs in the classic

way (whenever VIPs like), because it would not be of any benefit to offloading. However,

the 3G network can still be used in different moments of the day to transfer the data. So, the

network load would result distributed in time rather than concentrated in highly congested

hours. Another possibility is to transfer the data through wired networks, whenever a VIPs

device gets connected to a broadband network during the day. After all, if VIPs are being

paid to perform such task, this assumption is more than reasonable.

Another consideration to be made on our strategies is the following: “How to handle

the traffic of 10% of network users that remain uncovered by our delegates?” As discussed

above, the coverage of 90% of nodes requires the promotion as delegates of very few and

constant in time network members. This confirms the advantage of our opportunistic dele-

gation approach for covering a high percentage of nodes in a daily basis. Additionally, we

claim that the impact of the few 10% non-covered nodes on the 3G network will be small

and typically generated by nodes that are marginal to the network (e.g., people frequent-

ing peripheral areas of a city). Usually, nodes having a high activity or mostly visiting

central areas in the network will be represented in the constructed social graph, stressing

their frequent encounters. In this way, we believe that such more active nodes will be

mostly responsible for the traffic overloading previously mentioned and will be covered by
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the selected delegates, with high probability. Therefore, to answer the previous considera-

tion, the few remaining uncovered nodes could directly transfer their data using 3G cellular

networks, at the end of the day, once no delegate visit was detected.

2.8 Conclusions

Dense metropolitan areas are suffering network overloading due to the data-traffic gener-

ated by the proliferation of smartphone devices. In this chapter, we describe VIP delegation,

a mechanism to alleviate such traffic based on opportunistic contacts. Our solution relies

on the upgrade of a small, crucial set of VIP nodes that regularly visit network users and

collect (disseminate) data to them on behalf of the network infrastructure.

VIPs are defined according to well known social network attributes (betweenness, close-

ness, degree centrality and page-rank), and are selected according to two methods: global

(network-based) and hood (community-based) selection. Our observations reveals that 1

week of monitoring period is enough to characterize the tightness of the social links in

the network graph. Hence, all methods rely on this network monitoring period and select

VIP sets that result small, efficient, and stable in time. Extensive experiments with several

real and synthetic data-sets show the effectiveness of our methods in offloading: VIP sets

of about 7% and 1% of network nodes in respectively campus-like and vehicular mobility

scenarios are enough to guarantee about 90% of network offload. Additionally, the perfor-

mance of the VIPs selected by our methods is very close to an optimal benchmark VIPs set

computed from the full knowledge of the system (i.e., based on past, present, and future

contacts among nodes).
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Chapter 3

Personal Marks and Community
Certificates: Detecting Clones in
Wireless Mobile Social Networks

You have left your smartphone on the table at a cafeteria. You soon realize and go back to

take it. Fortunately, it is still there! You feel safe—while you are not safe at all. Someone

has connected your smartphone to a laptop and dumped all of its memory, including public

and secret cryptographic keys. It is a matter of seconds or, at most, minutes. You do not

revoke your certificates and passwords (you feel safe!) but, a month later, you discover that

your credentials have been used by someone else. If you think this cannot happen—people

take very good care of their personal devices—consider that according to a report 478 lap-

tops have been lost or stolen from the IRS (the Internal Revenue Service is the United States

federal government agency that collects taxes and enforces the internal revenue laws) be-

tween 2002–2006; 112 held sensitive taxpayer data, including SSNs. Furthermore, recent

statistics show that in the United States around a thousand phones are lost every hour [67].

Our idea on how to solve this identity cloning (or identity theft) attack is to leverage

social physical contacts, securely collected by wireless radio equipped personal devices

(e.g., smartphones), as a biometric way to authenticate the owner of the device: Users

prove who they are not with something they know (passwords), or something they have

(certificate), but with an unforgeable proof that they actually meet physically and regularly
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the people they are supposed to meet. Indeed, as the research on Pocket Switched Networks

has proved, our physical contacts are not random. Rather, they are highly influenced by

the fact that almost everything in our everyday life is guided by social relationships (e.g.

friends, family) and interests (e.g. work, school, gym, or playing chess) which yields a

regularity in the communities we live in and in circle of friends that we usually meet in

person.

We will see how to use this regularity, complemented with other essential mechanisms,

to detect the clone attack by using wireless networks of mobile devices and to prevent

the misuse of stolen certificates. We will introduce two protocols: Personal Marks and

Community Certificates. Personal Marks is a simple cryptographic protocol that provides

a way to detect the attack when the adversary is an insider, a person that tries to use the

cloned identity in the social community of the victim. Community Certificates is a solution

based on certificates that tells how the owner of a device is expected to behave in terms

of social contacts. If the adversary is an outsider, someone that wants to use the cloned

identity outside the community of the victim, the certificates soon expire, and the cloned

identity cannot be used anymore.

The results presented in this chapter appear in [2].

3.1 The clone attack

The detection of the clone attack is one of the most investigated security issue in wireless

ad-hoc networks. As far as static wireless networks are concerned, there are three main ap-

proaches to the problem: Centralized, local and distributed random based techniques. The

centralized techniques like [68] require a base station to collect the location information of

the nodes and to check for anomalies (same node ID with different locations). Local-based

schemes like [69] make use of voting mechanisms within nodes’ neighborhoods to detect

clones. Finally, the distributed and random based techniques like [70, 71] require nodes

to send signed location information to randomly selected destinations on the network in

a hop-by-hop fashion. All these techniques, by relying on fixed geographical position of

the nodes in the network are not apt to be used in mobile scenarios such the one we con-

sider [12, 72].
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With the spreading of the mobile pay systems (72.8 million of users at the end of 2009,

expected 220 million by 2011 in China only [73]), and especially those based on credit card

transactions, phone cloning has become a vicious threat to the users portfolio [74]. Thus a

lot of research on detecting such attacks have been done, most of which is based on the use

of neural networks by the carrier to detect possible anomalies. For a good survey see [75].

The use of biometrics to authenticate has become a well-known area of investigation

in computer security. Several biological measurements have been used to identify people

to computer systems: voice, face, iris, keystroke dynamics (the way we type is often suf-

ficiently unique to identify ourselves), and others. As an excellent reference and starting

point on computer biometrics, see [76].

The authors in [77] propose two intrusion detection systems that have similar biomet-

rics ideas: The first one is built upon Radio Frequency Fingerprinting (RFF), whereas the

second one leverages User Mobility Profiles (UMP). However both detection systems are

not distributed, and rely on the fact that the intruder (the clone) behaves substantially dif-

ferently from the real user in terms of geographical movements. Thus, compared with the

solutions proposed by us, both systems are not able to detect anomalies when the clone

behaves similarly to the original node (for example, when the clone attack happens in a

building).

In [78], Chaw et al. propose a framework for authentication based on behavioural infor-

mation collected by a portable device like a smartphone. There are some key differences

with our solution. First, they require an always online Data Aggregator that must be in-

voked during the authentication phase, while our solution is distributed. Second, they need

a Trusted Platform Module to be installed in the device that checks if the device sensing

components have been tampered. Third, they are not able to detect an anomaly when the

adversary is able to reproduce the behaviour of the victim. Finally, they do not leverage the

social characteristics of the user.

In the system presented by Miettinen and Asokan in [79] a device adjusts its access

control policies based on the context in which it resides. If the context, defined as the set of

devices in range, is not familiar to the device, then the device locks itself and asks the user

to type a password or pin to unlock it. On the other hand, if the set of devices in range is

mainly composed of known devices, then the device assumes the environment is safe and
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applies a shallow locking mechanism.

To the best of our knowledge, we are the first presenting biometric authentication tech-

niques based on the social contacts of the owner of the device to detect the clone attack in

mobile wireless networks of smartphones. The techniques, namely Community Certificates

and Personal Marks, are only built upon the socially-guided meeting patterns of users in

the mobile social network. They are thoroughly orthogonal to trust or voting mechanisms,

or geography based techniques to detect cellphone theft or credit card fraud, that are based

on different ideas and can be used at the same time.

The rest of this chapter is structured as follows: In Section 3.2 we give a detailed

description of our system and of the model of the adversary; In Section 3.3 we describe

the details of the Personal Marks and Community Certificates protocols; In Section 3.5

we show some experimental results; Finally, in Section 3.6 we discuss some interesting

extensions to our system.

3.2 The System

Our network setting is made of last generation smartphones. Smartphones are not-so-small

devices that can easily handle video/audio streaming, 3D games, web surfing and SSL

sessions, and other applications. Therefore, we can safely assume that nodes are able to

perform public key cryptography. The nodes are equipped with public/private key pairs,

and the former is signed by a trusted authority CA.

Nodes are loosely time synchronized. Loose time synchronization is very easy to get,

if a precision in the order of the second is enough, like in our protocols. We also assume

that the trusted authority is able to send a message to any node in the system, for example

using the cellular network. When a clone is present, the message is received by the original

node and by the clone as well (of course it is perfectly possible that the clone has turned

off its interface to the cellular network).

We also assume that the users have access to an alternative way to authenticate to the

authority. There are several examples of such mechanisms. One example is GMail: If

you forget your password, you can still authenticate by responding to a list of personal

questions that, most probably, only you can respond. In other systems, you might be able
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to authenticate by using a smart-card at your desktop at home. Another example is the PUK

code used in GSM mobile phones. In any case, we assume that the alternative mechanism

to authenticate is secure but long, burdensome, and we definitely want to use it only in rare

and exceptional circumstances like when we need to recover from a clone attack.

From now on, we use 〈m〉E to denote a message m signed by the entity E (e.g. a node

or the CA).

3.2.1 The Adversary and the Problem

We consider a scenario in which an adversary has cloned a device by copying the relevant

contents of its memory, including passwords, cryptographic keys and certificates. By stor-

ing the stolen data on his device, the adversary is now able to interact in the network by

using the victim’s credentials.

We assume that the victim is unaware of the attack and keeps on using his device in a

normal way. This makes the problem more difficult to solve, since, if the user knew that

his identity has been cloned, he could renew his keys and passwords to stop the attack.

Our adversary can be an outsider or an insider. An outsider tries to use the cloned

identity outside of the victim’s community. On the other hand, an insider is interested

in using the cloned identity inside the victim’s community. We fight outsiders with the

Community Certificates subsystem, and insiders with the Personal Marks subsystem.

Our model of the adversary is rather general: He can turn the cloned device on and off

at will, refuse to follow any security protocol and try to eavesdrop any data transmitted or

received by any other device (if he is in its transmission range). Also, we do not make any

assumption on the way he moves. For instance, he could start following the victim or any

other node at all times, though this would require some effort.

A powerful adversary may also infect the victim’s device with a malware that is able to

continuously steal the certificates and the keys from it. We believe that this kind of attack

should be tackled with malware detection techniques [80] and we do not address it directly.
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3.3 The Protocol

In this Section we are going to give a detailed description of the Personal Marks protocol

and the Community Certificates and show how, used together, they make it possible to

detect the clone attack in mobile networks of smartphones.

3.3.1 Personal Marks

Personal Marks is a simple cryptographic protocol that can be used by a node to check if

it has been interacting with two different nodes claiming to be the same node. Personal

Marks is executed each time a node, say node i, meets a node j in its community. The aim

of the protocol is to make it possible for node j to realize if there is another node claiming

to be node i. Personal Marks is made of three parts: channel-creation, mark-check and

mark-exchange.

The channel-creation is done first and it’s meant to make it impossible for an adver-

sary that has cloned node i (i.e. has node’s i private key) to eavesdrop the data exchanged

between the two nodes. The protocol is inspired by the SSL handshake [81]: Node i ran-

domly generates a symmetric key and sends it to node j encrypted with the public key of

node j. Starting from this moment until the end of the Personal Marks protocol, the two

nodes will encrypt their messages using this key. Since the key is encrypted using node’s j

public key, an adversary who has cloned node i cannot read it. The adversary, however,

could also try to perform a man-in-the-middle attack to make node i believe it is node j

and eavesdrop the channel. To make sure that he is using the public key of node j, node i

can, for example, use the certificate signed by the CA to node j. Another possibility could

be that of making node i and node j exchange keys the first time they meet through either

the wireless channel (assuming that an attack doesn’t happen in that short moment), or, for

example, by means a Near Field Communication [82].

The mark-exchange consists on the two nodes exchanging a mark, that is an object in

the form 〈MARK, t〉 ji, signed by both nodes, where t is a timestamp. To exchange the mark,

node j first sends 〈MARK, t〉 j to node i, and node i replies with 〈MARK, t〉 ji. Note that if

the protocol is not completed for any reason (may be for lack of continuous connectivity,

or because one of the two nodes is malicious), the peers can safely assume that it has not
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happened.

The mark-check is done before the mark-exchange protocol when it is not the first

time that node j meets node i. Node j sends a request to which node i has to reply with

〈MARK_RPL, t,m〉i, where t is a timestamp and m is the latest version of the mark node i

received from node j. Note than m was signed by both nodes in the previous contact, so

node i cannot forge it. The mark-check continues with node j checking if the mark m

received by node i is the same as the mark exchanged during the previous contact with

node i. If this is not the case, then node j can be sure that the node i met during the

previous contact was not the same as the current one. Therefore, one of them must be a

clone of the other.

To understand why this is true, assume that node i has been cloned at time t1 and that

node j gets in physical contact with node i for the first time after the attack at time t2 > t1.

In this case both node i and its clone have the same mark m0 = 〈MARK, t0〉 ji in memory,

where t0 < t1. Therefore, independently on whether node i is the clone or the original

node, the mark-check protocol doesn’t fail, and, at the end of the mark-exchange protocol,

node i gets a new mark m1 = 〈MARK, t2〉 ji. The detection is triggered when eventually

node j meets at time t3 > t2 the other node, that, during the mark-check protocol, sends

the message r = 〈MARK_RPL, t3,m0〉i which doesn’t pass the test made by node j. Now,

node j cannot tell which node is a clone, but it can prove that node i has been cloned. The

proof consists on the pair of messages r and m1.The reason this is a proof of the attack is

that, in r, node i declares that at time t3 the latest mark was m0 (generated at time t0), but

at the same time node j has a mark m1 (generated at time t1 > t0) signed by node i that

contradicts this declaration.

Note that the messages r and m1 are signed with the key of node i, thus the proof

cannot be forged by node j. This is an important detail because it makes it impossible for

an adversary to build fake reports and threaten the honest nodes. This proof can be either

sent to the authority by using GSM or broadcasted in the network, and the credentials of

node i are thus revoked. Then, the legitimate node i is invited to re-authenticate and get

new credentials.
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3.3.2 Community Certificates

A community certificate is a cryptographic object used by a node i to prove that he hasn’t

abruptly changed his social behavior. When node i joins the system, it automatically enters

a training period during which it securely collects signed and timestamped logs of the

physical contacts with the other nodes. At the end of the period the logs are reported to the

authority. The authority uses the logs to build a signed certificate ComCi that is sent back to

node i. All these messages are encrypted and authenticated. The certificate is of the form

ComCi = 〈〈FSi,FIi,ki〉CA,SUi〉.
In the certificate, FSi is the community of node j; FIi is a mapping that tells the

“strength of the relationship” between node i and his best friends. More specifically, for

every j ∈ FSi, FIi( j) is a value computed as a function of the inter-contact times between

nodes i and j observed during the training period. Moreover, for every j ∈ FSi, SUi( j) is

an object 〈TIMESTAMP, t〉 j signed by node j where t is a timestamp. This object, called

signed timestamp, certifies at what time there has been the last contact between node i

and j. Signed timestamps are similar to the marks of Personal Marks. However, the two

objects cannot be used interchangeably.

Before sending a signed timestamp to node i, a node j in the set FSi must first check

node i by using the Personal Marks protocol described in the previous Section. Upon

completing the Personal Marks protocol with success, node j sends the signed timestamp

to node i. This is an important detail we will talk about in a short time.

Node i receives signed timestamps through an encrypted channel created with the same

channel-create procedure used in the Personal Marks protocol (it could even be the same

channel created during the execution of the Personal Marks protocol). This prevents the

adversary with node i’s private key to get a copy of the timestamp through eavesdropping

or a man-in-the-middle attack.

Given node j ∈ FSi, we say that the timestamp SUi( j) is fresh at time t if t < SUi( j)+

FIi( j). Certificate ComCi = 〈〈FSi,FIi,k〉CA,SUi〉 is valid at time t if and only if at least k

signed timestamps in set SUi are fresh at time t. In other words, the certificate is valid only

if the node has been able to collect enough fresh signed timestamps by physically meeting

people in his circle of friends.
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When the authority generates the certificate, SUi can be prepared with timestamps

signed by the authority, just to make the certificate immediately valid. Note that all this

process is totally automatic. Note as well that we assume that no attack occurs during the

training period. This is quite reasonable indeed, if such an attack takes place, the author-

ity would receive training logs from both the victim and the clone at the same time, thus

revealing the attack.

3.3.3 Personal Marks and Community Certificates

Personal Marks and Community Certificates, when used together, are able to defend any

honest node i from a clone attack. Let us see how: In our system, having a valid community

certificate is a requirement for the authentication of a node i to the other nodes. Indeed,

when node i wants to set up a communication or to use one of the services provided by a

node j, it will first be asked to show a valid certificate ComCi. This applies also in the case

when node i needs to get a signed timestamp from node j.

Note that node i should never send the certificate ComCi directly since this would make

it possible for the node receiving it to use node i’s identity for the remaining validity time

of the certificate. Node i should instead sign and send an object like 〈ComCi, t, j〉i where

t is a timestamp and j is the public key of the node to which the certificate is being sent.

This would bind the certificate to both the moment it is being used and to the node that is

receiving it, thus making it impossible for any node to reuse it at a later time. Also, the

certificate should always be sent through an encrypted channel created in such a way that

an adversary who copied node i’s private key cannot eavesdrop it (see the channel-create

protocol described in Section 3.3.1).

Let us now consider the scenario where an adversary has just cloned node i, getting,

along with all the keys stored in the node, the valid community certificate ComCi. By

using the certificate, the adversary can interact with any node j of the system pretending to

be node i. Now, if the adversary is an insider, then the attack will eventually be detected

by node j thanks to the Personal Marks protocol. On the other hand, if the adversary is an

outsider, he will be able to use node i’s identity only until the certificate ComCi expires.

The only way an outsider adversary can try to keep on using the cloned identity is to get

61



enough fresh signed timestamps from the nodes in the community of node i and use them

to maintain ComCi up to date. However, as explained earlier, before giving a new signed

timestamp, a node j in the community of node i will require the adversary to go through

the Personal Marks protocol and, therefore, will detect the attack.

This is the key idea behind Personal Marks and Community Certificates: While Per-

sonal Marks discourages the adversary from using the cloned identity to interact with the

nodes in the community of the victim, at the same time Community Certificates requires

him to interact with them. Therefore the adversary will either be detected with Personal

Marks or will be able to use the cloned identity for a limited amount of time.

In the experiments with real traces, we show that it is possible to choose FSi, FIi, and k

in such a way that the certificates are continuously and consistently valid when carried by

the legitimate owner and expire quickly when carried by outsiders. Therefore, a combined

use of Community Certificates and Personal Marks is a good way to provide efficient and

secure authentication and to thwart the clone attack.

3.3.4 Dynamic Community Certificates

So far, we have described Community Certificates as a static system. However, in real

life it may be possible, even if it is not common, that we change our own community. In

general, it is reasonable to imagine the following scenarios: (i) our community changes

completely since, for example, we move to another town; and (ii) one of our friends moves

away, or a new node is our new best friend. Here, we see that it is easy to design protocols

to dynamically change the community certificate in a secure way.

In case (i), it is enough to start off a new training phase and to get a new certificate.

In case (ii), we can initiate a selective update of the certificate to remove one node, or to

add a new one, or to update the parameter of a node that is already part of our ring. Of

course, the addition and/or the removal can change all the parameters of the certificate,

like mapping FIi or ki. The procedure can be easily secured. Indeed, when the procedure

starts, the authority sends a GSM message to the node. If a clone requests the procedure

to change the certificate according to his own communities, then the message is received

by the original owner as well, that promptly detects the attack and sends to the authority a
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signed request of certificate revocation.

3.4 Multiple, Coordinated Clone Attacks

Here we consider the problem of detecting a single clone attack. Generally speaking, if

the adversary is very powerful, it is however possible that it clones a whole set of mobile

nodes. While we do not explicitly deal with this case in this work, it is still useful to see

what is going to happen with Personal Marks and Community Certificates.

Let us start with Personal Marks. An insider adversary who clones more than one

node has one main advantage: He can use the stolen private keys either to eavesdrop on

the encrypted channels that two victims establish during the Personal Marks protocol, or

to make the cloned nodes forge marks to each other. In most of the cases, however, this

doesn’t stop Personal Marks to detect the attack anyway. The only thing the adversary can

do is to clone a node i and a node j in node i’s community and make sure that, whenever

he uses a clone of node i to communicate with node j, at the exact same time he uses

the clone of node j to exchange a mark with node i. This would make it impossible for

the two honest nodes to detect the attack since they will store the same mark. Moreover,

whenever the adversary wants to repeat this procedure, he will first have to eavesdrop a

mark-exchange between the honest node i and node j in order to be sure he has the latest

version of the mark.

Though in principle this attack is possible, we think that the amount of effort it requires

is big enough to drastically reduce the probability that the adversary performs it.

A similar argument can be made for Community Certificates: By using the stolen pri-

vate keys, an outsider adversary can either eavesdrop on the encrypted channels that two

victims establish to exchange the signed timestamps, or make the cloned nodes forge signed

timestamps to each other. This means that if the adversary clones a node i and some of the

nodes in its community, he could now get signed timestamps for node i without having to

exchange marks with the honest nodes. If the number of cloned nodes in the community

of node i is high enough, then the adversary can build a valid certificate ComCi (Section

3.3.2).

There are two possible ways we can try to fight back this kind of attack. The first one
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Table 3.1: Details on the datasets (DS) and training periods (TR).

Data set Dartmouth UCSD Reality SWIM
Total nodes 1099 32 45 1500
DS AVG active nodes/day 1034 27 37 1500
TR AVG active nodes/day 980 28 38 1500
DS AVG contacts/node/day 283 49 15 132
TR AVG contacts/node/day 263 51 16 131

is to use a fairly big value of k in the ComCi. This would tradeoff between the risk for

false positives for the node i and the number of nodes the adversary has to clone in order to

generate a valid certificate. A second possibility would be requiring that, to be considered

valid, ComCi has to contain a valid ComCj for each fresh signed timestamp SUi(j). This

extra requirement, however, shouldn’t be applied recursively to the internal ComCj’s so as

to avoid the certificate to become too big.

In this way we would make it harder for the adversary to forge a valid ComCi because,

in order to do that, he would also have to forge valid ComCj for at least ki of the nodes in

FSi. The adversary would therefore be forced to search for a set of nodes which form a

clique and can mutually certificate each other. Considering that, in general, communities

are not closed sets of nodes [23], it should be hard find such a clique. While studying

this attack is out of the scope of this study, it is certainly a open and interesting research

direction.

3.5 Experimental Results

To validate our mechanisms we use four different data-sets. We first start with describ-

ing them and their properties. Then, we show the effectiveness of Personal Marks and

Community Certificates in detecting insiders and outsiders in all datasets.

3.5.1 Datasets

For the experiments we use an event-driven simulator, fed with 4 traces of three types:

WLAN (real)—Dartmouth [59] and UCSD [83]; bluetooth (real)—Reality [84], and SWIM [35]
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simulated traces. In the simulated scenario we are able to select the number of nodes and

the length of the experiment. Rather, in the real scenarios (WLAN and bluetooth), the

datasets suffer from data loss due to periods of low node activity (e.g. people not always

have their devices on), thus we are forced to select a trace period in which nodes are rea-

sonably active.

Dartmouth

It contains SNMP logs of the access points across the Dartmouth College campus from

April 2001 to June 2004. To infer the contacts between the nodes we follow the assumption

widely used in the literature: two nodes can communicate whenever associated to the same

access point [85] [72]. From this trace we have selected a time span of 8 weeks, from

January 5, 2004 to March 1, 2004, during which 1099 nodes have at least 50 contacts a

day for at least the 80% of the days. This ensures us that these nodes remain fairly active

during the whole period.

UCSD

This trace is part of the Wireless Topology Discover project (WTD) [83]. It contains logs

extracted from PDAs carried around campus by a set of about 275 freshmen students of

the University of California San Diego. The trace spans a period of 11 weeks between

September 22, 2002 and December 8, 2002, during which each PDA periodically recorded

the signal strength of all the APs in its range. To infer contacts between nodes we again

use the assumption that two nodes communicate when they are associated to the same

access point. As reported in [85] the trace is characterized by a steady decline of the user

population that especially affects the last two weeks. Thus, we restrict our tests to the first

8 weeks and use the nodes that are fairly active during this period by discarding nodes that

record no contact at all for more than 20% of the time. This selection yields a set of 32

nodes.
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Reality

Differently from UCSD and Dartmouth which are WiFi–based, the Reality [84] trace con-

tains the bluetooth records collected by 94 cellphones distributed to student and faculty on

MIT campus during 9 months (from Sept. 2004 to June 2005). This trace is one of the

few bluetooth–based existing traces this long encompassing a relatively large node num-

ber. Nonetheless, it includes many nodes which have recorded very few to no sightseeings

for long periods of time. In order to keep the amount of active nodes high we thus restrict

ourselves to a period of 8 weeks (Oct. 18th–Dec. 13th 2004) and discard the nodes that

record no contacts (do not appear) for more than 30% of the time. This selection yields a

final set of 45 nodes.

SWIM

This trace is generated by the SWIM model [35, 86], shown to simulate well human mo-

bility in conference and university campus environments and to properly scale a reference

scenario by keeping the nodes density constant. With SWIM we replicate the statistical

and social properties of the Cambridge Campus bluetooth data set [87] (only 11 days long)

increasing both the number of nodes and the time span while preserving the dynamics of

the original real trace in terms of average number of contacts per user: The generated trace

contains 1500 nodes and is 8 weeks long. The simulated nodes do not suffer from battery

insufficiency or other problems that generate periods of low activity in the network. Thus,

with SWIM we use the whole trace with all the 1500 nodes in it.

3.5.2 Training Period

In order to work, Personal Marks and Community Certificates need that nodes “know”

their Friends Set (FSi) and the values FIi to be put in ComCi so that the Authority can

incorporate this information in the certificates. For this reason nodes go through a training

period during which they collect logs of contacts with other nodes. In our experiments

we use the first part of each trace as the training period, whereas the remaining of the

trace is used to test the performance of our security mechanisms. We have experimentally

observed that the training period doesn’t need to be long: Only the first 2 weeks of each
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Figure 3.1: Distribution of FSi sizes and parameter k for all traces.

trace are enough for our system to quickly detect both insiders and outsiders. Table 3.1

includes statistical details of traces and training periods. It is interesting to note that the

characteristics of each trace are similar to those of the respective training period, even

though the training period is just a subset of 2 weeks of the whole trace.

3.5.3 Selecting the right friends is good for your phone

Our mechanisms are built upon a given node’s i friend set (FSi)—the set of nodes whose

signed timestamps are collected by node i—and the respective FIi telling the “strength

of the relationship” between the node and his friends in FSi. As we anticipated in Sec-

tion 3.3.2, FIi( j) defines the period of time in which a signed timestamp given to node i by

a node j ∈ FSi remains fresh (valid). The choice of FSi and FIi is crucial: Large FSi (too

many “best” friends) and big values of FIi (too long time before expiration) clearly reduce

the chances of a honest node to fail proving its identity (the false positive rate). Nonethe-

less, they also increase the chances that the adversary can use cloned certificates for a long
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time. Also, a too big FSi could include nodes that do not have regular contacts with node i.

Thus, this would reduce the effectiveness of Personal Marks in detecting an attempt of the

adversary to refresh the community certificate of the victim.

That said, it is meaningful to restrict FSi to the set of nodes that i is likely to encounter

more often. More in details, we define the set FSi as follows: We compute the average

number of encounters between i and other network nodes. Then we put j in FSi if the

number of encounters with i is larger than the average value. Simultaneously, we set FIi( j)

to be the average time that usually passes from two consecutive encounters between i and

j (their average inter-contact time). In this way, we implicitly include in the certificate i’s

habitual behavior in the network, that is, his “best friends” and how often he meets them.

Note that both FSi and FIi are computed taking into account the training period only.

The distribution of the size of FSi’s for all traces is shown in Figure 3.1(a). In Reality,

UCSD and SWIM traces, most of the sets’ sizes are between 7 and 15. Instead, in Dart-

mouth, FSi sets’ sizes are a bit larger—between 10 and 30 nodes. This happens for two

reasons: (1) Datmouth is more than 20 times bigger than Reality and UCSD, in terms of

number of nodes; (2) even though SWIM is bigger than Dartmouth, the longer range of

the Wi-Fi communication in Dartmouth (vs the bluetooth in SWIM) induces more contacts

among nodes. Even so, we want to stress that the size of the FSi’s in Dartmouth is still

much smaller than the total number of nodes in the network (at most 2%), meaning that our

selection strategy scales well.

3.5.4 Inter-contacts and detection

Suppose node i has been cloned, and that the adversary is an insider that can easily meet

node i’s friends. Take, for example, node j ∈ FSi. Either node i meets j before the clone

does, or vice versa. If the former happens, node i exchanges a mark with friend node j thus

making obsolete the clone’s mark. As a consequence, the next time the clone meets node j

it will be detected. Rather, if it is the clone who first meets node j after the cloning and

exchanges marks with it, victim node’s i mark will result outdated and the anomaly will

eventually be detected during the next meet between nodes i and j. Thus, the amount of

time the clone can get away inside i’s community is bounded by the time-period between
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two consecutive meets of i with his friends—the inter-contact time.

In a similar way, the validity of the certificate ComCi depends again on the inter-contacts

of i and its friends. Indeed, FIi is the average inter-contact time between i and its friends in

FSi. Overall, the better the friends in FSi of a node i are selected, i.e., the more frequently

i meets them, the faster is the detection of insiders (through Personal Marks) and outsiders

(through Community Certificates). In the real-life we would expect that each of us has in

his FS work colleagues, family members etc.. People that we meet daily or even more

often (e.g. office co-workers). And this is what our mechanisms are based upon. However,

the real-traces we use for our experiments are not exactly representing the real life: The

people taking part in the experiment might not be friends, thus, might not frequent each

other with the same rate as it happens to us with our âĂIJbest friendsâĂİ or family. This is

confirmed when looking at the inter-contacts of nodes with their friends (nodes in FS) of

the real-life traces. The average of such inter-contact time distribution is little more than 2

days in UCSD and Reality, whereas it is little more than 1 day in Dartmouth and little less

than 1 day in SWIM. We would expect then that this is also reflected in the clone detection

time in each trace.

3.5.5 Personal Marks vs Insiders

An insider is one that clones a victim i’s device and hangs out in victim’s community to

keep refreshing his certificate. It can attempt to do so at any moment after the cloning. Sup-

pose, without loss of generality, that the cloning happens after the meeting of i with friend

node j. As we already discussed, through the Personal Marks mechanism the anomaly will

be detected at most after both the clone and the victim meet with j again (no matter in what

order this happens). We do not know when the attacker will meet j, nor we do know when

exactly the cloning happened (if right after i meets j or later on). However, the clone is

interested in seeing j again, to keep renewing the certificate ComCi (remind that j is one of

the nodes in FSi, and that ComCi expires as dictated by FIi–the averages of inter-contacts

between i and j ∈ FSi). So, to test the effectiveness of Personal Marks we measure, for

each node i and each j ∈ FSi, the expected amount of time it will take for them to meet

again starting from any point in time in order to count for the possible instants the attacker
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Figure 3.2

could meet j, and possible cloning times. Then we average the results over all network

nodes and communities. Figure 3.2(a) shows, for all traces, the distribution of the detection

time of an insider with Personal Marks. As expected, the detection time is shorter with

SWIM, where nodes have, on average, shorter inter-contacts. A little bit longer detection

times are yielded by the Dartmouth trace, where again inter-contacts are longer than in

SWIM. However, in both traces the detection for more than 90% lasts less than 1 day and

a half. Accordingly, UCSD and Reality–the two traces with longer inter-contacts among

nodes–yield longer detection times than Dartmouth: less than 2.7 days in UCSD and less

than 3.5 days in Reality for more than 90% of nodes.

However, we note that in real life typically inter-contacts with the people we meet more

often are even shorter than in SWIM: we meet our office co-workers or family members at

least twice a day, vs 1 per day as in SWIM. This makes us think that in a real deployment

the clone would be detected much faster.

3.5.6 False Positives

As we already discussed in Section 3.3.2 a certificate ComCi = 〈〈FSi,FIi,k〉CA,SUi〉 is valid

at time t if and only if at least k signed timestamps in set SUi are fresh at time t. That is,

if node i manages to refresh his certificate by meeting with at least k of its friends. So, the

value k is crucial: It determines the trade-off between high detection performance (high
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k) and low false positives (low k). We first study the lower bound of the false positives

in each trace by setting k = 1, the minimum possible value. In our tests we assume that,

when the community certificate of an honest node expires, then the user asks the Certificate

Authority for a community certificate with a validity of one day. The results of this first

test are encouraging. In Reality, only for 8 over 45 nodes we get false positives: The

certificate expires once for 4 of them, while for the remaining 4 it expires twice. In UCSD

only 3 nodes over 32 show false positives: the certificate expires only once for one node,

whereas it expires respectively 2 and 3 times for the remaining 2 nodes. In the case of

the Dartmouth trace (1099 nodes) only 63 (less than 6%) show false positives. For all of

them, the certificate expires at most 3 times during the whole two months span of the trace.

Finally, in SWIM no node at all suffers from false positives.

In Figures 3.1(b) and 3.1(c) we show the distributions of the values ki that we have

found to be the largest we can use on each node without generating false positives. As

we can see, the optimal values found for the Dartmouth and SWIM traces are bigger than

those found in the Reality and UCSD traces. The reason is that, as already discussed, in

Dartmouth we have bigger sets FSi (more nodes) and the range of the nodes is higher,

while, in SWIM, nodes have more contacts and, consequently, more chances to exchange

signed timestamps with respect to the Reality and UCSD traces. By comparing the values

ki with the sizes of the corresponding sets FSi, we have noted that in the UCSD and Reality

traces, choosing a value of ki around the 10% of the size of FSi is good enough for the

90% of the nodes. In Dartmouth, for 90% of the nodes, ki can be chosen to be around the

25% of the size of FSi, while in SWIM it can be set to the 50%. Taking these values into

consideration, we believe that a good initial choice of the value ki could be the 10% of the

size of FSi and, in case this doesn’t produce false positives, ki could be safely raised up to

values around the 20% or 25% using a tuning procedure like the one described in Section

3.3.4.

3.5.7 Community Certificates vs Outsiders

After we studied the lower-bound of the false positive rate with the Community Certificates

we are ready to study the effectiveness of the mechanism in detecting outsiders, that is,
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attackers that try to get away with cloning a victim’s device by using the device far from

the victim’s community, where the Personal Marks mechanism would promptly detect the

attack. To do so we compute the average expiring time of a cloned certificate (e.g. from a

legitimate node i) in absence of contacts with nodes in the set FSi. This gives us a measure

of the expected amount of time the adversary has available to use a cloned identity outside

the victim’s community. In the experiment, we set ki to be, for each node, the highest value

for which the node is not affected by false positives. The results of our measurements are

plotted in Figure 3.2(b). The first observation we make is that in all traces the duration of

the certificate is never more than 2 or 3 days at worst (UCSD and Reality, respectively),

and roughly between 0.5 and 1.5 days at best (SWIM and Dartmouth, respectively). Again,

the detection is faster in traces with shorter average inter-contacts among nodes (SWIM),

which makes us think that in real-life the performance of the mechanism would be even

better.

3.6 Add-ons and Caveats

Community Certificates can be complemented and extended in such a way to design more

sophisticated and complete versions. Here we discuss two of these addons.

Traveling If we travel, especially alone, our community certificate is going to expire

soon. While this is generally true, we can easily design a solution. The user can prepare two

different profiles, in the same certificate, that can be selected when changing community.

Of course, it is fundamental that these solutions can be used only by the legitimate owner

by performing the burdensome alternative authentication that is used in case of exceptional

events.

Complex patterns It is fairly easy to extend Community Certificates in such a way that

it is not enough to get k fresh signed timestamps from your circle of friends. Rather, the

certificate needs k1 fresh signed timestamps from one sub-community (for example your

family) and k2 fresh signed timestamps from another sub-community (for example your

colleagues) to be valid. A community certificate like this can easily be more efficient and
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more useful in particular situations. For example when we need at least one signature from

one of our bosses to be able to perform critical operations. Or at least one signature from a

fixed infrastructure in the building of our company, for example.

Electronic handshakes In addition to standard physical contacts, Community Certifi-

cates can be extended to use electronic handshakes. Assume that, when meeting a friend,

you use a particular secure "handshake" made with your devices (like bumping the two

together, for example). Handshakes can be used at the place of physical proximity. In this

way, contacts are more trustworthy, but, on the other hand, they need human intervention

and are much fewer in number. Alternatively, handshakes could be used to exchange a

stronger signed timestamp. By using complex patterns, one or more of these handshakes

can be required to enable a higher level of authentication to perform critical operations.

3.7 Conclusions

We introduced Personal Marks and Community Certificates. The fundamental idea of Com-

munity Certificates is that, in networks of mobile people, authentication can be based on

the notion of community, and nodes can authenticate by showing that they indeed meet the

people that are part of their community. While the social structure of these networks has

been extensively used in networking, to the best of our knowledge this is the first time that

this has been used as a biometric to authenticate device. We also present Personal Marks, a

way a community can use to protect itself against insiders performing a clone attack. The

combined used of these mechanisms deliver an excellent protection of the social mobile

network against the clone attack. Indeed our experiments show that the detection is fast

enough considered the slow dynamics of the trace we have used. In any real system, we

believe that the much faster dynamics of meetings can help deliver much faster detection

times.
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Chapter 4

Introduction to Mobile Cloud
Computing

A topic that has recently attracted the attention of the research community is the integration

of cloud computing in the mobile environment, which has given birth to the concept of

Mobile Cloud Computing. With Mobile Cloud Computing, resource constrained mobile

devices can extend their battery lifetime, improve their security, increase their data storage

and their processing power by leveraging the cloud computing infrastructure. To better

frame the topic of the next chapter here we give a short introduction to the aspects of

mobile cloud computing that have been source of inspiration for our work. These include

the recently proposed [88] Clone to Clone system. Note that Mobile Cloud Computing is

a broad, constantly evolving area of research. We refer the reader to [89, 90] for a more

complete overview of the subject.

4.1 Mobile Cloud Computing

The recent explosion of the market of mobile devices has convinced many of us [91,92] that

we are shifting from (or have already shifted to) an era dominated by Personal Computers

(PCs) to one dominated by portable, wireless devices. Today, that the vast majority of the

activities that in the past required us to seat in front of our big, noisy, clumsy computer can

be performed in a much more comfortable, intuitive way using our smartphone or tablet. It
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is therefore not hard to foresee a future where PCs will start disappearing from the houses

and the life of the most of the people, replaced with a wide variety of mobile devices.

From the point of view of the programmers and software engineers, however, things

have become much worse than before: If a few years ago their software was running on

powerful machines with lot of processing power, RAM, hard drive space and with a re-

liable, high-speed, uncapped Internet connectivity, today they are forced to deal with an

environment that has a very limited set of resources available. The resource that is lack-

ing the most in our devices is for sure the battery power, which, in turn, affects all the

other components (i.e., clock speed). Moreover, building smaller and faster hardware, that

doesn’t need an active cooling system, is another serious challenge too. On top of that,

people expect their smartphones and tablets to perform always more complex tasks, like

gaming and video processing, following the same trend that characterized the PC market

in the past.

This increasing gap between the demand for complex applications and the availability

of resources on mobile devices is one of the major concerns of the modern tech industry and

is pushing the research community into exploring solutions to it. This has encouraged the

idea that computation offloading should be taken into consideration as a way to increase the

efficiency of mobile devices by, at the same time, increasing their battery life. Computation

offloading is the practice of migrating parts of a software running on a system (e.g., a

mobile device) to a more resourceful, remote system. Computation offloading, however,

should not be mistakenly confused with the concept of thin-clients [93] that always offload

all their computation to some server.

As Kumar explains in [89], the research on computation offloading dates back to the

middle or late 90’s. Back then, the efforts were focused on trying to make the offloading

process feasible, since the wireless technology was still young (less than 2 Mbit/s) and rep-

resented a severe bottleneck. As the wireless technology (both WiFi and mobile) improved,

the attention shifted to the problem of understanding if, by selecting with care the portions

of code to be offloaded, this technique could really solve the problems of today’s mobile

devices.

But the improvements in the wireless technology are not the only reason why today

we can realistically consider solutions based on computation offloading. A major role is
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also the one played by the cloud computing infrastructure that, with the ability to quickly

allocate virtually infinite resources on-demand, and with the heavy usage of virtualization

techniques, is perfectly able to play the role of the always reachable, reliable and powerful

remote server where the offloading can happen.

In the following sections, we will briefly expose some examples of the most recent

advances in the field of the Mobile Cloud Computing, and we will conclude with the de-

scription of the recently proposed Clone to Clone system [88].

4.2 Computation Offloading

While, in principle, offloading computation to a remote, powerful, server seems like an easy

way to overcome many of the limitations of today’s mobile devices, in practice it presents

several difficulties. The most important one is that sending code and data to be processed

to the cloud can be both a slow and an energy consuming process. It is therefore important

to understand when the offload has to happen and what to offload. Offloading a piece of

computationally intensive code to the cloud may not be a good idea if, for example, the

amount of data that that code depends on is big. In this case, offloading the code may cost

the device more energy and bandwidth than running it locally. Also, there are pieces of

code that heavily depend on the sensors installed on the mobile phone (e.g., the camera)

and that, for this reason, may not be trivial to be offloaded. On the other hand, offloading

a piece of code that consumes a lot of memory, or one that does not require much data

(like a chess engine) may help saving a considerable amount of battery power to the mobile

device.

The authors in [89] identify two main approaches in the literature for the decision of

when the offloading should happen. One, is to make these decisions statically, that is,

during the development phase. The other is to use a decision engine that, based on the

observed conditions of the device (i.e., battery level, available bandwidth, connectivity

type and so on), dynamically decides when it is the right time to perform the offloading.

Obviously, unless the conditions in which the code will be executed can be predicted with

reasonable accuracy, the dynamic method is to be preferred. This is especially true for

mobile devices that, sometimes, have slow, intermittent mobile connectivity, while, some
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other times, can access to a fast and stable WiFi connection.

The process of detecting offloadable portions of the code is generally referred to as code

partitioning. A typical approach is that of representing the program as a graph where the

nodes are the functions to be computed and the edges are the dependencies between them.

Partitioning the code, then, can be reduced to a graph partitioning problem.

Recently, Cuervo et al. proposed MAUI [94], a fine grained, energy aware offload-

ing technique based on the .NET Common Language Runtime. MAUI performs dynamic

decisions on whether to offload computation by combining network and CPU cost with

measurements of the wireless connectivity. The decisions are based on a linear program-

ming formulation of the code offloading problem. MAUI uses programming reflection

provided by the .NET environment in order to identify the context needed for the methods

to be offloaded with minimal intervention from the programmer’s side. Experimental re-

sults show that MAUI can both save up to 47% of energy to the mobile device, and improve

the performances of mobile applications.

In [95] Chun et al. propose an offloading mechanism named CloneCloud. CloneCloud,

as opposed to MAUI, is usable even for applications that were not originally intended to

be offloaded because it does not need any support from the programmer. CloneCloud

determines the pieces of code to be offloaded by means of an offline static analysis of

the binary. Plus, it uses a dynamic profiling to build a cost model for the execution and

migration of the computation. In CloneCloud, the code is offloaded to one or more device

clones running on the cloud, which allows native execution of the code to be offloaded. The

authors show how with CloneCloud virus scanning, image search and behavior profiling

sample applications can get a 20x speed up and, at the same time, a 20x reduction in the

energy consumed on the device.

In [96], Kosta et al. propose ThinkAir, an offloading mechanism that allows method-

level computation offloading with the help of simple annotations on the code. Like MAUI

and CloneCloud, to decide whether a method should be offloaded for execution to the cloud,

ThinkAir uses a runtime mechanism which considers execution time and energy consump-

tion together with environmental parameters like, for example, the network state. ThinkAir

creates virtual machines running the same device’s operating system (i.e., Android) and

allows parallel execution of the code on the cloud.
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These are just three examples of the most recent studies about computation offloading.

Other interesting systems are Cloudlets [97] and the Virtual Smartphone over IP proposed

in cite [98]. For a more complete review of this field, see [89].

4.3 Data Storage

Storage capacity is another limitation of today’s mobile devices that can be alleviated

thanks to the Mobile Cloud Computing paradigm. Indeed, today’s fast wireless connec-

tivity enables mobile devices to store and access relatively large data on the cloud without

using their local memory. In [99], the authors propose ImageExchange, a cloud based ser-

vice that allows users to upload and share the photos immediately after captured them with

their mobile device(s). Flickr [100], Facebook [101], Google Music [102] and iCloud [103]

are vary popular services that, based on the mobile cloud paradigm paradigm, allow users

to store on the cloud the personal data they have on their phone, thus saving precious space

on their device.

Also, systems that regularly send user’s data to remote servers for backup are very valu-

able. The system proposed in [104], besides from backup/restore, also allows for sharing

information in smartphones among groups of people. The authors test their system in terms

of time needed (on the phone) to backup three different data types: SMS, calendar events,

and contacts. In [105] the authors argue that not only contacts and emails—synced by e.g.

Google sync on Android OS—but also application settings, game scores etc., are important

to users. With this in mind they build ASIMS, a tool that has the goal of providing a better

application settings integration and management scheme for Android mobiles. ASIMS is

based on SQLite, it stores other applications’ settings and syncs them to the Internet. Its

interface makes it possible for other applications to store settings in one common place and

for users to select which applications they want to sync.

An interesting example of how mobile cloud computing can simplify the managament

of data stored on mobile devices can be found in [106]. The authors present Dessy, a mo-

bile search and synchronization framework inspired by desktop search applications. Dessy

manages synchronization of data and index files between all the mobile devices of a user

and the cloud, and between the devices themselves. By offloading the indexing and ranking
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of the data on the cloud, Dessy allow mobile devices to save both energy for creating the

index, and energy that could be required to download supplementary data from the Internet.

4.4 Security

The Mobile Cloud Computing paradigm can also help improving the security of mobile

devices. Indeed, the constrained resources of mobile devices would not make it feasible for

an antivirus software to continuously scans for viruses on downloaded files or to monitor

the behaviour of the applications installed. This makes the cloud a perfect place where

these checks could be performed with a minimal energy expense from the side of the de-

vice. Two interesting examples are the system proposed by Oberheide et al. in [107], and

ParanoidAndroid, presented in [108]. Oberheide et al. present an approach to move the

threat detection capabilities to the cloud. Their system is an extension of the cloud AV

platform that provides an in-cloud service for malware detection. The main advantage of

their solution is that moving the detection to the cloud enables the use of multiple antivirus

engines in parallel. On the other hand, in ParanoidAndroid, execution traces of the apps on

the device are recorded and transmitted for analysis on the cloud. The authors show how

this paradigm not only improves detection accuracy, but also saves the battery lifetime up

to 30%.

4.5 Clone to Clone

In [88] the authors propose the Clone to Clone (C2C) platform, which extends the Mo-

bile Cloud Computing paradigm by developing a distributed platform for cloud clones of

smartphones. Clone to Clone associates each smartphone to a software clone on the cloud

(e.g., Amazon EC2) and interconnects the clones in a peer-to-peer fashion using the net-

working service of the cloud. The peers (clones) of the C2C network clearly do not suffer

of battery limitations, unlike their mobile alter-egos since they are running on the cloud.

Indeed, a wireless P2P network between smartphones would be very expensive to realize,

as well as would it suffer from continuous on/off of devices, due to battery insufficiency or

temporary loss of cellular coverage or Internet connection. Such problems are mitigated by
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the C2C platform, where the clones are always on and peer-to-peer connectivity lies upon

the high-bandwidth network of the cloud. Not only can the C2C platform help offload

heavy mobile computational tasks by adopting techniques similar to MAUI, CloneCloud

and ThinkAir, but it also enables innovative services such as content sharing, search, and

distributed execution among the C2C network users.

As a proof of concept of the functionalities of Clone to Clone, the authors implement

CloneDoc and CloneBox. CloneDoc is a real-time collaboration system for smartphone

users that work simultaneously on the same document. CloneDoc is structured as p2p-like

application that makes use of heavy crypto primitives and communication among peers.

On the other hand, CloneBox, is a system that provides smartphone users with a service

similar to DropBox. With CloneBox users can decide which files/directory to share with

whom. The files are actually pushed to the clone of the mobile and shared with the other

authorized users connected on the C2C platform. In their work, the authors show how

CloneDoc and CloneBox can execute on smart-phones by using a very limited amount of

energy thus demonstrating that C2C enables a whole new class of distributed applications

on mobile devices.

81



82



Chapter 5

To Offload or Not to Offload? The
Bandwidth and Energy Costs of Mobile
Cloud Computing

The more eager we get when using our smartphones by installing new apps, the less happy

we are with the lifetime of the battery. The problem is that we rely upon a number of crucial

pieces of information that are only stored in the device (phone numbers, addresses, notes,

appointments, etc.), or, in some cases, that can be got only by using the Internet on the fly

as many of us are used to do. It is so important to keep our smartphone operational that

everyday we pay attention to our battery and try to save it by reducing the number of phone

calls, or by avoiding to watch too many videos, just enough to be able to reach home and

recharge it. But that means that we cannot use our device to the fullest.

As discussed in the previous chapters, Mobile Cloud Computing seems an excellent

candidate solution to help reduce battery consumption of smartphones, as well as to backup

user’s data. Indeed, recent works have focused on building frameworks that enable mo-

bile computation offloading to software clones of smartphones on the cloud as well as to

backup systems for data and applications stored in our devices. Both mobile computation

offloading and data backup involve communication between the real device and the cloud.

However, this communication does not come for free, in terms of both energy consumption
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(utilization of network interfaces to send the data) and bandwidth. None of the many previ-

ous works related to mobile cloud computing explicitly studies the actual overhead in terms

of bandwidth and energy to achieve full backup of both data/applications of a smartphone,

as well as to keep, on the cloud, up-to-date clones of smartphones for mobile computation

offload purposes. In this chapter we address both issues, and, for the first time (to the best of

our knowledge), we provide results with a real testbed of 11 Android powered smartphones

and associated clones running on the Amazon EC2 platform. This work, appeared in [4],

is the result of a collaboration with P.h.D. Student S. Kosta from Sapienza University.

5.1 Energy efficiency of Mobile Cloud Computing

The mobile cloud computing paradigm has, among its main objectives, that of saving mo-

bile devices’ battery life. For this reason, in literature, there are a number of studies that try

to give at least an approximate answer about whether there can be an actual energy gain for

mobile devices in performing computation offloading. Analytical models have been pro-

posed, for instance, in [109–111]. In [109], the authors give a formula that expresses the

amount of saved energy in terms of factors like the number of instructions to be offloaded,

the computational power of the mobile device, the available bandwidth and the energy re-

quired to send the data to the cloud. In [110] the authors present an analytical study to

find the optimal execution policy. This is identified by optimally configuring the clock fre-

quency in the mobile device to minimize the energy used for computation and by optimally

scheduling the data rate over a stochastic wireless channel to minimize the energy for data

transmission. By formulating these issues as a constrained optimization problem they ob-

tain close-formed solutions which give analytical insight in finding the optimal offloading

decision. The authors of [111] discuss on the main factors that affect the energy consump-

tion of mobile apps in cloud computing, and deem that such factors are workload, data

communication patterns, and usage of WLAN and 3G. However, these works are limited to

consider best case scenarios—ideal WiFi connectivity and WiFi interface always switched

on.

In [112] the authors argue that previous frameworks that enable offloading are inaccu-

rate in estimating the energy of a certain workload in the system. This is because they do not
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operate at kernel level. With this in mind they present AppScope, an Android-based energy

estimator implemented as a kernel module that uses an event-driven monitoring method.

By operating at kernel level their framework yields energy consumption estimation values

that are very close to the ones obtained through the Mobile Device Power Monitor1, a tool

used also in other works in the area [94, 113].

To the best of our knowledge there is no study on the cost of keeping updated a clone

or a backup on the cloud in a real setting with real mobile smartphone users, where Inter-

net connectivity is often guaranteed by WiFi only at home and at work, by 2G/3G when

moving outside these areas, and where coverage is often not present (think of subways, for

example).

5.2 Off-clones and Back-clones

In our study we assume an architecture as Clone to Clone [88], CloneCloud [95] and

ThinkAir [96], presented in Chapter 4, where each real device is associated to a software

clone on the cloud. For the mobile computation offloading to work, the status of the appli-

cations running on the clone needs to be in sync (as accurately as possible) with the ones

running on the real device. In order to allow users to offload mobile computation on the fly,

the clone must run the same applications the real device is running. In addition, also the

state of both the real application (the one running on the device) and the cloned application

(the one running on the clone), has to be the same. We will refer to a clone that is used to

offload computation on the fly as an off-clone, and to a clone that is used to backup user’s

data and to enable restore as a back-clone (backup clone). Since the goal of the back-clone

is to restore user’s data and the system (including installed apps) in case of system/data

corruption or loss, it does not need to keep up with any single application’s status in time,

as in the case of the off-clone. Yet, it needs to be up to date with all sort of data gener-

ated/received by the user like notes, pictures, videos, contacts, calendar entries, messages,

emails etc.

Our goal in this work is to study the feasibility of both mobile computation offloading

and mobile software/data backups in real-life scenarios. We give a precise evaluation of the

1http://www.msoon.com/LabEquipment/PowerMonitor/
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feasibility and costs of both off-clones and back-clones in terms of bandwidth and energy

consumption on the real device. Our contribution is as follows:

• We study the network availability (2G/3G, WiFi etc.) as well as the signal quality

in a real testbed of mobile smartphone users, with reference to the requirements of

offloading and backup on the cloud;

• we study the data communication overhead that is necessary to achieve different

levels of synchronization (once every 5min, 30min, 1h, etc.) between devices and

clones in both the off-clone and back-clone case;

• we report on the costs in terms of energy incurred by each of these synchronization

frequencies as well as by the respective communication overhead.

To achieve all the above we design and build Logger, an Android app that runs in the

foreground and collects data on the utilization of the device. Logger also handles the com-

munication between the real device and the cloud. We run Logger on a testbed of 11 smart-

phones (associated to 5 different carriers) that make use of clones running on the Amazon’s

EC2 cloud platform.

5.3 The Logger

Studying the overheads incurred by the off-clones and the back-clones is not easy. It de-

pends on how user actually uses her device, on the properties of the network technologies

(WiFi/3G/ etc.) and on which of these technologies is actually available and used. So, we

develop Logger, an Android app that continuously logs the events occurring in the device.

These includes user and system generated events. Examples of user generated events are:

Mail sending and receiving, phone calls (both incoming and outgoing), files exchanged

over blue-tooth, device switching on and off, battery charging, installing and uninstalling

applications. Examples of system generated events are: Access to network interfaces (e.g.

regular heartbeat pings to Google’s servers), access to GPS radio (e.g. Google Latitude or

Facebook), generation and editing of internal files by apps, automatic updates, and so on.
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The Logger service is structured into sub-components, each responsible for logging

data coming from a given resource. While some information about the device state can

be logged passively by our Logger using standard facilities provided by the Android OS,

collection of other statistics require the Logger to actively and recurrently send requests

to the OS. In the remaining of this section we give details on both the passive and active

aspects of our Logger. Also, we describe the difficulties we faced in building this tool and

how we overcame them.

5.3.1 Passive data collection

Some of the Android OS components are loosely coupled (e.g. network interfaces and the

browser). To make them communicate the Android OS provides the Intents—instances

of the android.content.Intent class. Intents are asynchronous messages and can be used

to perform all sorts of operations: Requesting the system to launch applications, asking

the user to select a WiFi network to connect to, sending notification messages to other

applications, signalling the Android system that a certain event has occurred (e.g. message

received, connection available, etc.). In this latter case, a component interested in a specific

event does not have to actively send the system requests on the occurrence of the event. It

suffices that the component registers to the specific event through the so called intent filters,

and it will be notified by the system as soon as the selected event occurs.

Our Logger uses Intents to be notified about changes in the device connectivity (2G,

3G, WiFi), of the battery status (charging, discharging, current battery life), of the screen

state (on/off) etc.

5.3.2 Active data collection

Data collected passively through Intents are not enough for our study. Statistics as network

data usage, for example, cannot be obtained through Intents. In this case, the Android OS

has to actively be sent specific requests by the interested component. In Android systems

this is achieved through Alarms—actions scheduled to be executed recurrently, even when

the device is in sleep mode.

So, we built a set of alarms and included them in our Logger architecture in order to log
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data exchanged through the network interfaces, the set of currently running applications,

incoming and outgoing emails, SMSs, phone calls, and so on.

5.3.3 Filesystem activity

Monitoring the filesystem’s activity includes logging information on when and how each

file or directory was created, deleted, accessed, and modified. This information is clearly

important in both the study of the off-clones (as far as files internal to single applications

are concerned) and back-clones (user-generated files). The Alarms are not suited to achieve

this: They would require very frequent scan of the whole filesystem, which would be in-

accurate, aside from being very expensive in terms of battery consumption. Fortunately,

the underlying Linux kernel on which Android OS is based includes Inotify—a filesystem

monitoring service with a similar approach to that of Intents. Inotify allows applications

to add so called watches to directories. Whenever one of the watched directories, or its

content, is modified, the kernel promptly notifies the “watching application”. The Android

OS provides user-level applications with a Java interface to the Inotify subsystem.

The notifications are sent only when something actually happens on the filesystem.

So, the interface to the Inotify subsystem allowed our Logger to get the most accurate

information possible about the filesystem changes at a minimal cost in terms of resources.

Inotify does not allow to watch for changes happening in the subdirectories of a directory.

To overcome this problem the Logger, when started, adds watches to all the directories in

the filesystem tree of the device. In addition, whenever a new directory is created/deleted

the watch is added/removed automatically by the Logger. It is worth noting that adding each

directory of the filesystem tree to the Inotify watch list is not expensive in terms of memory

and computational resources, and it did not affect the user experience in a noticeable way.

5.3.4 File permissions

An Android device storage is usually composed of an external storage unit, in the form of

an SD card, and one or more internal storage units. The external SD card is where most of

the user files are stored (mp3s, pictures, etc.). Conversely, system files like config files and

system binaries are stored in the internal storage unit. The SD card storage (usually a FAT32
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filesystem) is the one with the highest capacity (for example 10 GB) and is accessible in

read/write mode by all the apps without restrictions. While it is possible for an app to

have its data stored on the SD card (this is very useful for large apps like games or other

media-based ones), most of them are installed in the internal storage space.

As opposite to the external SD card, the access to the internal storage (an ext3 or ext4

filesystem) is restricted: A user-level app is only allowed to access its private data (usu-

ally stored in the /data/data/ directory). This prevents any user application (including our

Logger), to add Inotify watches to the private directories of other apps. To overcome this

limitation we root the devices of our experimental testbed. By rooting a device, an appli-

cation can execute commands using the root permissions, thus going past the restrictions

of user applications, including those on filesystem access. Our Logger, even though run-

ning on a rooted device, is not allowed to execute its own code with root permissions. It

is however enabled to execute shell commands as root. This permits us to use the Unix

shell included in Android OS to temporarily change the permissions of private application

files. The permission changing step takes place during the starting phase of the Logger.

The old permissions are saved into a database (internal to Logger), and are restored when-

ever it is stopped by the user. To make the permission changing phase as independent as

possible from the Android platform we used BusyBox [114] a popular lightweight collec-

tion of Unix tools largely used and optimized for embedded systems. Finally, with these

modifications, the Logger is enabled to add Inotify watches to files that are private to other

apps.

5.3.5 Dealing with file modifications

Once Inotify sends a notification to our Logger about the modification/editing of a directo-

ry/file, we need to understand the amount of data that we should upload to the cloud so to

keep the clone up-to-date with the user’s device. Of course, uploading has to be performed

in an efficient way—we certainly do not want to upload the whole file/directory each time

it is modified. A standard technique is to send just incremental modifications of the file,

instead of the whole file. Unfortunately, nor does Inotify provide details on the amount of

data that was modified, neither does it keep track of the modified file portion. So we had
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to find a method to identify the file portions involved in a modification that was fast and

lightweight. Fast, so that it could cope with frequent modifications occurring in the system.

Lightweight, so that its overhead is low and it would not affect the user experience. For all

these reasons we decided to apply the rolling hash [115] technique, widely used on popular

backup/sync software rsync [116]. Rolling hash is one of the possible implementations

of the so called binary-diff, used also by Dropbox to update users’ modified files yet not

wasting users’ network bandwidth2. This technique allows to compute very quickly (in

linear time with respect to file sizes) hashes of all possible file blocks (the block size is

a parameter of the rolling hash technique). So, it makes possible to quickly compute the

amount of data (in terms of blocks) that make two file versions differ. A very detailed and

clear description of the rolling hashes technique (including how to compute it and how to

deal with hash collisions) can be found in [115].

We built from scratch a Java implementation of the rolling hash technique, and included

it as one of the modules of our Logger app. Old rolling hashes of files are maintained into

a SQLite database (stored in the phone’s SD card) so that they are promptly available to be

compared with the new rolling hashes each time files are modified. The block size we used

in our implementation equals 8KB, the same used by rsync.

Our implementation of the rolling hash technique turned out to be very efficient in

computing and comparing hashes. Nonetheless, we believe that an implementation written

in native code (C/C++) and running as a root process would dramatically improve the

performances. We leave this as future work.

5.3.6 Logger output

The data collected by each component of the Logger is continuously written to a log file (a

simple text file) that is periodically rotated, compressed and stored onto a special directory

within the SD card reserved to the Logger. The user, on request, can also trigger sending

emails with the content of this directory, from time to time, to a custom gmail account we

created for this purpose. If the user does so, the log files that are successfully sent by email

are deleted from the device.
2https://www.dropbox.com/help/8/en
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Number, type & OS CPU RAM

7×Samsung Galaxy S Plus 1.4 GHz Scorpion 512 MB
(Android 2.3)
2×Samsung Galaxy S 1 GHz Cortex-A8 512 MB
(Android 2.3)
1×Samsung Galaxy Note 1.4 GHz dual-core Cortex-A9 1 GB
(Android 2.3)
1×Samsung Galaxy Nexus 1.2 GHz dual-core Cortex-A9 1 GB
(Android 4.1)

Table 5.1: Phone specifications.

5.4 Experimental results

Our experiments are based on a testbed of real users. In this section we describe the testbed,

the results, and the observations of our study on the cost of keeping updated both off-clones

and back-clones in the cloud.

5.4.1 Experimental setting

To gather data related to the device usage we set up a testbed of 11 smartphones running

our Logger app. In addition, the testbed consists of an equal number of software clones—

customized AMIs of the Android x86 OS [88]—running on the Amazon’s EC2 platform.

Logger makes the device communicate with the clones to collect data related to networking.

The details of the mobile devices involved in the experiment are shown in Table 5.1.

The devices were used as primary smartphones for the whole duration of the experiment

(the experiment lasted 3 weeks) and involved people living in the city of Rome, Italy, and

Cambridge, UK. The profiles of the participants are heterogeneous in age and occupation—

university students, faculties, and part-time and full-time workers that are completely ex-

ternal to the university. So is the technology they use to connect to the Internet with their

mobile devices: One of the participants does not have a cellular data traffic plan, so he

connects only through WiFi networks (home or work). Another participant does not have

an available WiFi network neither at home nor at work, so he only makes use of 2G/3G

technology. The remaining participants use habitually both cellular data traffic and WiFi
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Figure 5.1: Average daily connectivity percentage for various technologies.

interchangeably.

During the experiment the participants used their own contract with the service provider

of their choice. The data we gathered includes the four major cellular service providers in

Italy, namely, TIM, Vodafone, Wind and 3, as well as O2, a major provider in UK. It is

worth to note that, though each of these carriers relies on its own network infrastructure,

they all provide cellular data traffic plans with the same upload and download speed in best

case scenarios. The actual speed and availability depend, of course, on the quality of the

signal and on the load of the cells that are used by the participants during the three weeks

of the experiment. As this is an element that might impact the performance of mobile cloud

paradigms, we start our study with network availability.

5.4.2 Mobile data traffic and network availability

Certainly one of the most important component to keep both off-clones and back-clones

updated is the ability of the real devices to communicate often and efficiently with the

cloud. Often, so that the user can send data to the cloud anytime she needs. Efficiently,

so that the overhead of this communication is as low as possible and does not impact the

usability of the system. Indeed, if the networking process becomes a bottleneck to usability

then people will not be happy about it, and they will less likely accept and use mobile cloud

systems.

The first network related result that we present is the average amount of time per day,
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Figure 5.2: Network properties.

in percentage, users spend connected either to 3G/2G or to WiFi networks (see Figure 5.1).

The first observation that we make is that the percentage of the daily time period during

which the devices are connected is quite high (more than 90%), and the trend is similar for

all the days of the week. The periods of disconnection are either due to areas with no signal

at all (e.g. subways), or due to periods in which the devices are switched off. The time of

connectivity using the three different networking technologies (WiFi, 3G, 2G) is also quite

stable from day to day: Around 45% of WiFi, around 40% of 3G, and the remaining of

2G. This partitioning is particularly positive being WiFi and 3G the two communication

technologies with larger bandwidth.

Keeping off-clones and back-clones up-to-date requires the device to upload data to

the cloud. For this reason we measure, separately for 3G/2G and WiFi, the average speed

in upload during the real life conditions of our testbed. We achieve the measurement by

making Logger send a file of 300kB from each device to its clone on the Amazon platform

every 30 min, keeping track of the technology used to send the data, and averaging the

results. We compute the average speed for every user (per day). Figure 5.2(a) shows the

average as well as a representation of the distribution of the values: Minimum, 25th, 50th,

and 75th percentiles, and maximum. By doing so we are able to depict in the graphic

results related to scenarios where the user happens to be in zones that are not well covered
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by wireless technology.

Let us first focus on comparing 3G with 2G connectivity. When using 2G/3G technol-

ogy, smartphones switch from 3G to 2G whenever the 3G signal is not present or lower

than a certain threshold, which depends on the smartphone type. As expected, the 2G up-

load speeds are much lower than the 3G ones (see Figure 5.2(a)). Fortunately, this 3G to

2G switch typically happens only for short periods of time (see Figure 5.1). WiFi connec-

tions are faster than 3G ones, as far as download is concerned. However, the mobile cloud

paradigm requires that the majority of traffic travels from the real devices to the cloud, to

keep the clone up-to-date. The results in Figure 5.2(a) show that the average upload speeds

are higher in the 3G case with respect to WiFi. This is not surprising: When accessing

the WiFi users typically set up their devices to automatically connect to known and trusted

WiFi routers that are at their home or work locations. These in Italy are generally ADSL

WiFi routers, and thus they do not provide high speed in upload. This last consideration

makes think that, when a device is being charged, it is more likely to be connected to a

WiFi network—usually we charge our devices at home or at work where WiFi is available.

Not to mention that ADSL connection providers make users pay fixed prices for unlimited

bandwidth. So, exploiting WiFi networking to keep clones up-to-date is more likely to

come for free in both terms of costs (no cellular data traffic is used) and energy (the device

has more chances to be charging).

Figure 5.1 shows that the overall WiFi connection time per day is high, around 45%

of the time. However, it is important to see how this period of time is distributed over

the day. This is an important question to address. Indeed, as long as the device is under

WiFi coverage, keeping off-clones and back-clones updated is cheap and therefore users

might configure the system in such a way to use WiFi only to sync. So, we are interested

in checking whether it is frequent that users are without WiFi connection for long period

of times. A technical way to check this property is to compute the distribution of the

intervals between the end of a period of WiFi coverage and the start of the next period of

WiFi coverage. We refer to this time as the WiFi inter-contact time. The results of our

experiments to this respect are shown in Figure 5.2(b).

From Figure 5.2(b) we can see that 20% of the WiFi inter-contact times are lower

than 20 min, 40% are lower than 30 min, 50% are lower than 2h. Just 35% of them are
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higher than 1 day. Considering that among the participants there are also people that do

not use WiFi at all, this result is excellent—50% of WiFi inter-contact times are as low as

2h and that means that 50% of the times users can rely on WiFi connection to sync their

device’s clones as frequently as every 2 hours or more. And, as we already discussed, this

makes users save their cellular data traffic, and, possibly, save battery (if during the WiFi

connectivity they are charging their device at home or at work.).

5.4.3 Overhead of Mobile Cloud Computing

To keep off-clones and back-clones up-to-date devices need to recurrently access the net-

work interfaces to send the latest user-generated data and app statuses to the respective

clones. Clearly, the more often the device syncs with the clone, the better the clones rep-

resent the status of the device. Though, frequent syncs incur higher bandwidth and energy

overhead to the real device. The overhead depends on the network technology involved in

the device-cloud communication (WiFi vs 2G/3G), as well as on how the device is used—

for example, the more pictures a user takes with her device’s camera the more data have to

be transferred to the user’s back-clone. The user should be able to trade-off this overhead

with the synchronization level of the clone of her device, and decide the rate of synchro-

nization that better suits her needs.

Off-clone synchronization requires information on the user apps. For a given app this

information includes the app’s state, its internal private files, its settings specified by the

user, and so on. Back-clone synchronization requires informations on the apps that are

installed in the device and user’s data (contacts, calendars, pictures, music, notes, emails,

SMS etc.). As we already anticipated in Section 5.3, the Logger computes, at the end

of specific time-intervals that correspond to sync frequencies, the amount of data that the

device should send to the cloud in order to update each clone type. In particular we recall

that, when a file is modified, we use the efficient rolling hash technique to compute the

difference between the new and the old version of the file. The sync intervals that we have

considered are 5 min, 30 min, 1h, 2h, 6h, 12h, and 24h. To keep it as real as possible, the

Logger computes the amount of data to be sent at the end of each interval only if either

2G/3G or WiFi connectivity is available.
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Network bandwidth overhead

In Figures 5.3(a) and 5.3(b) we plot, for both clone types, the quartiles of the distribu-

tion of the average (per user) daily traffic needed to be sent to the cloud in dependence

of the sync frequency in order to keep off-clone and back-clone updated. The first sim-

ple observation that we make is that the traffic overhead incurred by the synchronization

decreases as the sync interval increases. This phenomenon is straightforward—while the

device is running there is a large number of files/directories generated and then destroyed

in the system (temporary files). Typically, this happens more frequently with system or

app private files rather than with user generated files. Indeed, the results in Figure 5.5, that

show the complementary cumulative distribution of the file lifetime for both clone types

in the device, confirm this intuition—more than 90% of off-clone files last less than 1s,

while more than 90% of back-clone files last longer than 5 days. If the device-cloud syn-

chronization interval is long, most of the temporary files generated during the interval do

not last till its end—when the file diffs are computed. On the contrary, if the sync interval

is short, it is more likely that temporary files are still “alive” at the end of the interval, so

they are involved in the file diffs. This is what boosts up the overhead traffic incurred by

small synchronization intervals even in the presence of a smart incremental backup system

like that we implemented. As this is more likely to happen with system/app private files,

the difference between the overhead traffic generated by the synchronization for different

sync interval lengths is smaller for back-clones—these clones involve more user-generated

data (like sent/received emails, texts, calls, and so on) which is rarely deleted by the user.

Another important observation is that, for small sync intervals, the back-clones incur much

less overhead (around 4 times less) than the off-clones. Again, this is due to the fact that the

user generates data with much less frequency with respect to the system, and typically do

not delete their data. The overhead difference between the two types of clones is attenuated

when the interval of syncs increases (see Figures 5.3(a) and 5.3(b)).

Lastly, for both types of clones, the bandwidth overhead incurred is not excessive, if

we compare it to the data traffic normally generated by the user’s device to receive/send

mail, access Facebook/Twitter accounts etc. For the sake of comparison we have plotted,

in Figure 5.4, the quartiles of the average traffic generated normally by the users per day.
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Figure 5.3: Bandwidth overhead for clone synchronization in dependence of the sync fre-
quency. The graphics include the minimum and maximum speed value as well as the 25th,
50th and 75th percentile.

Energy overhead

To measure the energy overhead incurred by the sync of back-clones and off-clones we

make use the Mobile Device Power Monitor, an external power meter widely used to val-

idate offloading frameworks esteems [94, 112, 113]. The device samples the smartphone’s
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Figure 5.4: Average (per user) data traffic sent/received per day.

battery with high frequency (5000 Hz) so to yield accurate results on the battery’s power,

current, and voltage. Clearly, we could not do the measurement when the devices were with

the users. So, at the end of the experiment, we gathered the devices and re-simulated the

device-cloud communication for each smartphone with the device connected to the Power

Monitor. The simulation included re-computation of the amount of data to be sent to the

clones at the end of the time-interval considered, as well as the data sending process. The

clones involved are customized Amazon AMIs (Amazon Machine Image) of the Android-

x86 OS and run on the Amazon EC2 platform.

The simulation is run 20 times for every device: 10 times using WiFi connectivity and

the other 10 times using 3G connectivity. Figures 5.6(a) and 5.6(b) show the trend of the

energy overhead in the case of WiFi connectivity for both off-clones and back-clones in

dependence of the sync frequency. Similarly, Figures 5.6(c) and 5.6(d) show the trend

of the energy overhead in dependence of the sync frequency in case of 3G connectivity.

There are several considerations to be made. First, let us consider WiFi sync compared

to 3G sync of the same clone type. See, for example, Figure 5.6(a) and Figure 5.6(c) that

depict the results for the off-clones. When the same clone type is considered, the energy

overhead difference is determined by the communication technology used. Indeed, the

energy dissipated to compute the file diffs is the same, being that we are comparing the
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same clone types among them. However, the energy consumed in computing the rolling

hashes of the files dominates the energy required to actually send the diffs. As a result, the

overall energy overhead of the sync through WiFi is slightly lower than the overhead of the

sync done through 3G. The difference is of the order of tens of Joule.

Now, let us focus on one communication technology, say, WiFi, and compare the energy

overhead to sync off-clones (Figure 5.6(a)) with the energy overhead to sync back-clones

(Figure 5.6(b)). It is worth noting that, although off-clones incur higher energy costs than

back-clones, the difference in energy requirement is much more attenuated than the dif-

ference in traffic overhead. This is so for the following reason: As shown in Figure 5.5,

off-clones generate many small temporary files (the system files). On the other hand, the

files generated by the back-clones are user-generated files. Typically, these are bigger, are

generated with a lower frequency, and last longer. So, the computation load of the file diffs

is somehow balanced in the two cases—For the off-clones the rolling hashes are computed

very frequently times on small files; for the back-clones, the rolling hashes are computed

much less frequently on bigger files. The energy for this computation dominates the en-

ergy required to send the file diffs. So, even though back-clones generate 4 times less traffic

overhead than off-clones, the difference of the overall energy spent to compute the diffs and

to send them to the cloud for both clone types is attenuated. The same observation holds
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Figure 5.6: Energy overhead for clone synchronization through WiFi (a and b) and through
3G (c and d) in dependence of the sync frequency. The graphics include the minimum and
maximum speed value as well as the 25th, 50th and 75th percentiles.

for the case when 3G technology is used in the device-clone communication.

That said, it is worth noting that mobile cloud computing does not impact much the

life of the battery. The smartphones we used in our testbed are powered by Lithium–

Ion batteries (1650 mAh, 3.7 V). These batteries, if fully charged contain 21.9 KJoule
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of energy. According to our experiments, synchronizing off-clones (back-clones) every 5

minutes, incurs, at max, around 11.8 KJoule (8 KJoule) of energy overhead per day (see

Figure 5.6). This means that the sync cost is about 53% (36%) of the battery. These

values certainly correspond to an extreme scenario—keeping the clone updated every 5

min certainly has its cost. As soon as lower synchronization frequencies are considered

these values are drastically reduced. For 30 min (2h) sync intervals the synchronization

cost drops to around 11% (2.7%) of the battery for the off-clone and around 8% (2.3%) of

the battery for the back-clone.

Lastly, the differences in terms of energy overhead between off-clones and back-clones

(being it WiFi or 3G) are attenuated with the increasing of the synchronization interval.

In addition, large synchronization intervals yield much lower energy overhead than short

ones.

5.5 Lesson learned and conclusions

In this work we have described our experience with a testbed of real users of smartphones

and a mobile cloud system of smartphone software clones in the cloud. The goal of the

experiment is to understand the feasibility of mobile cloud systems in a real setting—a

setting consisting of people (participants in the experiment) using the smartphone as their

primary device during their everyday life. In the experiment, the participants made use of

their mobiles just as usual for three weeks. Here are some of the key observation we made

during this experience:

• Most of the users are virtually always under the coverage of some wireless technol-

ogy. In particular, almost 50% of the time smartphone users are connected to a WiFi

access point. Indeed, this is often the case at home and at work (recall that these

numbers are computed as the average of all the participants);

• In more than 50% of the cases, users lose WiFi coverage for just for 2 hours at most.

This is probably due to commuting between places with WiFi, like work and home.

For a systems point of view, it means that sync operations can optimistically wait
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until the device is connected to a WiFi access point, and that most probably this is

going to happen in a short period of time.

• Synchronizing back-clones (for backup purposes) requires less network traffic (down

to 4 times less) and less energy overhead (around to 3 KJoule less) than synchronizing

off-clones (that handle mobile computation offload).

• The difference in overhead incurred by the synchronization of the two clone types

decreases drastically as the sync frequency decreases; reasonable sync frequencies

like 30 min have a reasonable cost in term of energy spent on the device to keep

off-clones and back-clones updated (11% of the battery for the off-clones and 8% for

the back-clones sync). Recall that by paying this overhead, the user either has a very

efficient backup system or can efficiently offload computation on the fly. This latter

service has the potential, depending on the application, to reduce energy consumption

by a factor that is much higher than the cost we computed in this experiment.

• Finally, WiFi technology incurs lower overhead with respect to 3G. However, the

overall energy overhead, which depends also on the workload before the device-

cloud communication, is almost the same with both communication technologies.

Our work supports the conclusion that mobile cloud computing can be sustained by

continuous update of software clones in the cloud with a reasonable overhead in terms of

bandwidth and energy costs, especially if the sync intervals are not too short.
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Future Work and Concluding Remarks

The past few years have been characterized by an explosion of the market of mobile de-

vices. It all started with the awkward and poorly designed first models of PDAs of the mid

90’s, that had relative success only among a small market niche of early adopters with very

specific needs. In the following years things changed slowly, until a “revolution” happened

around 2007, when faster, more appealing devices suddenly became extremely popular to

the general public too. We reached a point where everyone has, or longs for, a smartphone

or a tablet (or both), and it is clear that it won’t take long for the market to expand up to sat-

uration like it happened in the past for the phone or the television [117]. During my P.h.D I

studied what, in my opinion, represent the most important issues affecting this PostPC-era,

which regard data connectivity, security and energy efficiency of the mobile devices. In try-

ing to solve these issues I used an hybrid approach, taking the best of different technologies

to create new solutions.

We started with the lessons learned from the field of Pocket Switched Networks (PSNs).

The insights on the statistical properties of human meeting patterns allowed us to tackle two

important problems, namely, the overloading of the network infrastructure and the identity-

theft. For what concerns the first problem, we showed how it is possible to identify a set

of important subscribers, the VIPs, that can act as a bridge between the other subscribers

and the network provider whenever a large set of data has to be transferred to/from the

network. Our experiments showed that this technique is indeed effective in reducing the

load on the network infrastructure even when the set of VIPs is less than 10% of the nodes

in the network. As a future work, we would like to consider a more realistic communication

model, that takes into consideration, for example, the sizes of the data to be transferred.

Then, we showed how to exploit the regularity of the meeting patterns of people in
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order to define a new authentication mechanism that is resistant to the identity theft (or

cloning). We introduced Personal Marks and Community Certificates. Personal Marks

detect whenever a cloned identity is used inside the community of the victim. On the other

hand, Community Certificates prevent the unauthorized use of the cloned identity outside

of the community of the victim. Used together, these two systems allow to unmask an

attack that other authentication mechanisms fail to detect. In the future, we will use a new

dataset we collected with the purpose of testing the system in a more accurate way, using

previously unavailable information about all the different aspects of the social life of the

users.

From the PSNs we then moved to the clouds. We considered how the usage of software

clones of mobile devices running on the cloud infrastructure can help fighting the spread

of social mobile malware. In this context, CloudShield is a suite of strategies able to detect

a small set of clones that, if used to patch the respective devices, can quickly stop the mal-

ware from infecting the whole network. We also considered the eventuality that the cloud

itself becomes a channel for the spread of the malware and used a quarantine strategy to

stop it. Our evaluations performed with real datasets have shown that our strategies are sim-

pler, faster to compute and more effective than the state of the art of malware containment

techniques. In the future, we plan to study the scenario of smarter malware that explicitly

tries to fool our patching strategies.

Finally, we studied the feasibility, in terms of energy and bandwidth consumption, of

mobile cloud systems in a real setting. We considered, again, a scenario where mobile

devices have a respective software clone on the cloud that they can use to offload compu-

tationally intensive tasks or to backup their data. To do so, we collected data about the

regular use of the smartphone of a set of 11 participants for a period of three weeks. Our

data shows how much time users spend connected to WiFi or 3g, how much download

and upload bandwidth they have available and how the frequency of updates sent from the

smartphones to their clones in the cloud impacts the energy and bandwidth consumption.

In the future we would like to extend the study to a larger set of volunteers.
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