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This note deals with models of quantum systems where the emergence of a clas-
sical behavior can be concretely analyzed. We first briefly review some well
known difficulties arising in the classical limit of quantum mechanics according
to the Copenhagen interpretation. Then we discuss the seminal contribution by
Mott (1929) on the tracks observed in a cloud chamber, where the problem can
be approached in a particularly transparent way. Finally, we propose a model
Hamiltonian, with interaction described by spin dependent point interactions,
where Mott’s analysis can be rephrased and the result can be rigorously formu-
lated.

1. Introduction

Quantum mechanics is a theory of extraordinary success meant to describe the
behavior of microscopic systems, i.e., systems with a typical action of the order of
the Planck’s constant h̄. On the other hand, in the nonrelativistic regime, quantum
mechanics is expected to be a universal theory and therefore should apply to the
macroscopic world.

Its final formulation is due to Heisenberg, Born, Jordan [Born and Jordan 1925],
Schrödinger [1982], Born [1926] and, for the mathematical aspects involved, to von
Neumann [1932]. In fact, the quantum mechanical description of physical phenom-
ena is rather abstract and counterintuitive, being based on the evolution of the wave
function, i.e., a complex probability amplitude defined on the configuration space
of the system with no direct physical meaning. This is in contrast with Newtonian
mechanics, where physical objects are described through their positions and veloc-
ities, evolving in time in the phase space. The radically different approaches are
the origin of some conceptual difficulties encountered when one tries to reconcile
the two descriptions in some concrete physical situations. The aim of the present
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note is to discuss this delicate conceptual point through the analysis of concrete
physical models. More precisely, the paper is organized as follows.

In this section we briefly review the basic rules of quantum mechanics in the
realm of the so-called Copenhagen interpretation.

In Section 2 we analyze a specific case study where the problem of the emer-
gence of a classical behavior in a quantum system appears in a clear way. In partic-
ular, we discuss the problem proposed by Mott [1929] concerning the emergence
of a classical trajectory of a quantum particle in a cloud chamber.

In Section 3 we illustrate a model, based on a spin dependent point interaction
Hamiltonian, where Mott’s result can be rephrased in a more explicit and rigorous
way.

Let us summarize the basic assumptions postulated for a system of n quantum
particles in R3. We avoid generality and technical difficulties and in particular we
neglect the specific requests needed to describe systems of identical particles.

(1) State: The state of the system at time t is described by the wave function
ψt(x1, . . . , xn), x j ∈ R3, which is an element of the Hilbert space L2(R3n) with
‖ψt‖ = 1.

(2) Evolution of the state: Given the initial state ψ0, the state at time t is the solu-
tion of the Schrödinger equation

i h̄
∂ψt

∂t
=−

n∑
j=1

h̄2

2m j
1 jψt + V (x1, . . . , xn)ψt , (1-1)

with initial datum ψ0, where m j is the mass of the j-th particle, 1 j denotes the
Laplace operator relative to the coordinates of the j-th particle and V is the inter-
action potential.

(3) Observables: An observable A relative to the system is represented by a self-
adjoint operator A in L2(R3n). In a system made of a single quantum particle,
simple examples of quantum observables are position and momentum. The posi-
tion is represented by x̂k , defined as the multiplication operator by xk , k = 1, 2, 3,
where xk denotes the k-th component of the position of the particle. Analogously,
the momentum is represented by the differential operator

p̂k =−i h̄
∂

∂xk
, k = 1, 2, 3.

One can easily check that the two observables do not commute and in fact, at
least formally, they satisfy the Heisenberg commutation relations [x̂k, p̂l] = i h̄δkl I ,
where I denotes the identity operator.

(4) Predictions: The predictions of the theory are given by Born’s rule and, in
general, are of probabilistic nature. In the special case of the position observable
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relative to a system made of one quantum particle, Born’s rule reduces to

P(x ∈�;ψ)=
∫
�

dx |ψ(x)|2, (1-2)

where the left hand side denotes the probability that the position of the particle
described by the state ψ is found in a set �⊂ R3. The prescription can be easily
extended to the case of other observables making use of the spectral theorem for
selfadjoint operators.

We list here few comments.

(i) As we already mentioned, the predictions of the theory are in excellent agree-
ment with experiments. Furthermore, quantum mechanics is formulated as a uni-
versal theory (in the nonrelativistic regime) and therefore it can be used to describe
both micro- and macrosystems.

(ii) Except in some special cases, Born’s rule gives only probabilistic predictions.
In particular, formula (1-2) means that the theory can only predict the statistical
distribution of the detected positions in a large number of experiments made in iden-
tical conditions. We notice that a quantum particle, when a position measurement
is performed in a single experiment, always appears localized in a well defined
position which, in general, cannot be predicted by the theory. It should be em-
phasized that quantum mechanics is the first fundamental theory which explicitly
renounces to a deterministic description of the physical phenomena.

(iii) For a single observable A represented by the operator A, let 1ψ A denote the
mean square deviation of the statistical distribution of the possible values of A in
the state ψ . It is always possible to find a state ψ such that 1ψ A is arbitrarily small.
This means that the values of the observable A in the state ψ can be predicted with
arbitrary accuracy. On the other hand, the noncommutative character of the algebra
of observables implies that one cannot predict, with arbitrary accuracy, the value of
all the observables relative to a given system. In particular, for a quantum particle
in the state ψ one can prove the Heisenberg uncertainty relations

1ψ x̂k 1ψ p̂l ≥ h̄/2δkl . (1-3)

It is evident that this inequality makes the notion of trajectory for a quantum particle
problematic.

(iv) A crucial point of the theory is the linearity. This means that if ψ1(x) and
ψ2(x) are two states then also the sum ψ1(x)+ψ2(x), suitably normalized, is a
possible state (superposition principle) and this property is preserved by the (linear)
evolution. This apparently trivial fact has major physical consequences, because
the predictions (see (1-2)) are given by a quadratic expression with respect to the



238 RODOLFO FIGARI AND ALESSANDRO TETA

state. In particular the probability density for the position is

|ψ1(x)+ψ2(x)|2 = |ψ1(x)|2+ |ψ2(x)|2+ 2 Re (ψ1(x)ψ2(x)). (1-4)

From formula (1-4) it is clear that the situation described by ψ1(x)+ψ2(x) cannot
be considered in any sense as the “sum” of the situations described by ψ1(x) and
ψ2(x) separately. In particular the last term in (1-4) is responsible for the appear-
ance of interference effects, typical of waves, in the statistical distribution of the
detected positions in a large number of identical experiments. Such effects can be
directly observed in the so-called two-slit experiment.

We notice that a completely different situation occurs when we know that the
system is in the state ψ1(x) with probability p1 and in the state ψ2(x) with prob-
ability p2, where p1 + p2 = 1. In such a case the probability involved is due to
our ignorance about the state and the system is described by a so-called classical
statistical mixture of the two pure states ψ1(x) and ψ2(x).

(v) Another important aspect is the fact that the wave function is a “wave” in the
configuration space of the system rather than in the three dimensional physical
space. This implies the occurrence of “entanglement” for systems composed by
more than one particle. An entangled state is a state that cannot be factorized in a
product of one-particle states. At a kinematical level, this means that if a system
is described by an entangled state ψ(x1, . . . , xn), it is not possible to associate a
definite (pure) state to each subsystem. The situation is again radically different
from the classical case and it is the origin of the “nonlocal effects” which can be
produced on a subsystem S1 acting on another spatially separated subsystem S2.

We emphasize that there is a general and complete agreement in the physics
community on the validity of the above rules, in the minimal formulation we have
given. They are sufficient to give an accurate description of the physical phenomena
and they can be considered the basis of the “pragmatic” view of the majority of
the physicists working with quantum mechanics and without a specific interest in
foundational problems.

On the other hand, one can strive for a better understanding of various ideas as-
sociated with the rules, such as the nature of the notion of probability arising in the
theory, the meaning of an object’s physical properties, the role of the measurement
process and so on.

When one attempts to give an answer to such questions one enters the field of
the so-called interpretational problem. Here, since the birth of quantum theory,
many different views have been proposed that have stimulated a long and intense
epistemological debate which is still active. We are not going to discuss here
the different opinions and we limit ourselves to detail some aspect of the so-called
standard or Copenhagen interpretation which, more or less consciously, is the point



EMERGENCE OF TRAJECTORIES IN A QUANTUM SYSTEM 239

of view accepted by the majority of physicists. The aim is to highlight a conceptual
difficulty arising in such an interpretation when one describes the measurement
process or, more generally, the connection between the quantum and the classical
description of the world.

The basic assumption in the Copenhagen interpretation is the completeness of
the wave function. This means that the maximal information about a specific quan-
tum system is encoded in its wave function. Therefore, the probabilistic predictions
have an ontological character, i.e., they do not depend on our ignorance about some
property of the system. If the system is in a state ψ such that we cannot predict
the value of an observable A with probability one, then the system does not have
a definite, even if unknown, value of A.

A consequence of this assumption makes the role of observation problematic.
We recall that in classical physics a measurement of an observable is an innocuous
process that reveals the value of the observable (which was already possessed by
the system before the measurement). In the quantum case, and according to the
Copenhagen interpretation, the situation is different. Let us assume that the system
is in a state ψ such that the observable A does not have a definite value. Assume
that we perform a measurement of A and find a value a0. If, after a very short time,
we repeat the measurement of A we can reasonably expect to obtain the same value
a0. In other words, immediately after the first measurement we can predict with
probability one the value a0 for A. This means that the measurement process is
a strange mechanism that contributes to assign the value a0 to the observable and
it necessarily produces an instantaneous transition of the state ψ → ψ0, where
ψ0 is a state in which A has the definite value a0 (typically an eigenvector of the
self-adjoint operator A representing A).

The instantaneous (stochastic and nonlinear) transition ψ→ ψ0 is called wave
packet collapse.

Bohr [1928] explained the transition claiming that a measurement apparatus is a
classical object and therefore it always possesses a definite value of its observables;
he assumed that the interaction between the classical apparatus and the quantum
system determines the collapse, inducing the transition of the quantum system state.

Bohr’s explanation can be criticized in many respects. We simply mention the
following observations.

It is not clear where the border line between the measurement apparatus (show-
ing a classical behavior) and the system (showing a quantum behavior) should be
fixed. The problem is usually solved pragmatically for each specific situation, but,
at the conceptual level, there is ambiguity.

An even more relevant point is the fact that it is not explained why a measure-
ment apparatus, despite being made of atoms, cannot be described by quantum
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mechanics and it is a priori considered as a classical object with well-defined clas-
sical properties.

On the other hand, taking a different point of view, one can insist to describe also
the measurement apparatus as a quantum system using the Schrödinger equation.
As a matter of fact, in this case one can arrive at the unpleasant situation in which
the apparatus’ pointer has no definite position. This fact, as clearly explained by
von Neumann [1932], happens when the system is in a superposition state of two
eigenstates of the observable to be measured. Due to the linearity of the evolution
and to the interaction system-apparatus, such a superposition state is transferred to
the pointer which, as a consequence, has no definite position after the measurement.

It should be underlined once again that the above difficulty arises only at a
conceptual level. Roughly speaking, in concrete physical models describing the
system-apparatus interaction the “difference” between the situation “the pointer has
no definite position” and the situation “the pointer has a definite, even if possibly
unknown, position” is so small that it is practically undetectable.

To summarize the situation, J. Bell [1987] wrote that the quantum description
entirely based on the Schrödinger equation works perfectly well for all practical
purposes (a phrase used often enough that he abbreviated it as FAPP), but he also
insisted that a conceptual inconsistency in the Copenhagen interpretation of the
formalism related to the measurement problem undoubtedly exists.

2. Mott’s analysis of the cloud chamber problem

Here we briefly recall the basic principles of a cloud chamber [Leone and Robotti
2004; Gupta and Ghosh 1946] and the first theoretical explanation of the observed
tracks proposed by Mott [1929]. For a more detailed historical analysis we refer
to [Figari and Teta 2013; 2014].

The air contained in the cloud chamber, saturated with water vapor, is brought
into a supersaturated state by means of a fast expansion that suddenly lowers its
temperature. An α-particle, released by a radioactive source in the center of the
chamber, interacts with the atoms of the gas, inducing ionization. The ionized
atoms then act as condensation nuclei, giving rise to the formation of small drops
of water. The sequences of these drops form visible tracks which are naturally
interpreted as magnifications of the α-particle “trajectories”. In fact, they are ac-
curately characterized as trajectories of a charged classical particle (relativistic or
nonrelativistic according to the initial particle velocity) in a classical electromag-
netic field. And, in particular, they are straight lines whenever no electromagnetic
field is present.

The first quantum theoretical analysis of the radioactive decay of a nucleus with
the emission of an α-particle was given by Gamow [1928] and by Condon and
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Gurney [1928]. The authors concluded that the initial state of the emitted α-particle
has to be described by a spherical wave, with center in the nucleus and isotropically
propagating in space.

It was immediately noticed that the spherical shape of the initial state was appar-
ently in contrast with the observed tracks in the cloud chamber. In particular, in the
words of Mott [1929]: “it is a little difficult to picture how it is that an outgoing
spherical wave can produce a straight track; we think intuitively that it should
ionise atoms at random throughout space.” In an attempt to obtain a satisfactory
theoretical explanation of the tracks, it was realized that a crucial role must be
played by an act of measurement responsible for the collapse of the spherical wave.
This requires an establishment as to where a line of separation between the quantum
system and the measuring device must be fixed. In this sense, the debate on the
cloud chamber can be considered as the prototype of any further discussion about
the measurement problem and the appearance of a classical behavior in a quantum
system in the context of the Copenhagen interpretation of quantum mechanics.

In a first possible approach, the α-particle is the quantum system under consid-
eration and the gas of the chamber acts as the measurement device by which we
observe the particle. Therefore, an atom of the gas “measures” the position of the
α-particle which must be considered a particle immediately after the disintegration
process, since at that moment the gas (i.e., the device) reduces the initial spherical
wave to a narrow wave packet with a definite momentum.

Another approach consists of considering the α-particle and the gas as the whole
quantum system under consideration. In this case, one observes the ionized atoms
and the wave function ψ of the system should provide the ionization probability.

According to this second point of view, the above mentioned intuitive difficulty
can be overcome, since it arises from our erroneous “tendency to picture the wave
as existing in ordinary three dimensional space, whereas we are really dealing with
wave functions in multispace formed by the coordinates both of the α-particle and
of every atom in the Wilson chamber” [Mott 1929].

In his paper Mott proposes a simplified model to obtain a theoretical explanation
following the second point of view. He considers a three particle system consisting
of the α-particle, initially described by a spherical wave centered at the origin, and
two hydrogen atoms, initially in their ground state, whose nuclei are fixed at the
positions a1, a2, with |a1|< |a2|. The α-particle interacts with the electrons of the
atoms while the repulsion between the two electrons is neglected. Moreover, he
introduces some assumptions on the physical parameters characterizing the model:
first, the observation point is far away from the origin and the atoms; secondly, the
α-particle has a high momentum and the collision with the atoms is almost elastic.
Then he looks for a solution to the corresponding time-independent Schrödinger
equation. Using perturbation theory up to second order and standard stationary



242 RODOLFO FIGARI AND ALESSANDRO TETA

phase arguments, he computes the probability that both atoms are excited. His
important result can be formulated as follows: the probability that both atoms are
excited is (nearly) zero unless a1, a2 and the origin lie on the same straight line.

Let us comment on the meaning of this statement.
Since the observed phenomenon in the experiment is the excitation of the atoms,

Mott’s result says that one can only observe straight tracks. Therefore, it provides
a clear physical explanation of the straight tracks observed in the chamber entirely
based on the Schrödinger equation, without any use of the collapse postulate. On
the contrary, the explanation given following the first approach appears physically
obscure, since it is not a priori clear how an atom (i.e., a microscopic system) can
act as measurement device.

It should be stressed that the above result holds under specific physical assump-
tions on the parameters of the model. This means that the observed behavior of
the α-particle in a cloud chamber is far from being universal.

It is worth mentioning that Mott’s analysis is the first example of an approach
typical of the modern theory of environment-induced decoherence [Blanchard et al.
2000; Joos et al. 2003; Hornberger 2009; Adami et al. 2004; 2006]. In fact, the
classical behavior (the trajectory) of the system (α-particle) emerges as an effect of
the interaction with the environment (vapor atoms in the chamber) under suitable
assumptions on the physical parameters of the model.

This approach is particularly interesting since it is based on a quantitative de-
scription of the phenomenon, with a possible explicit control of the approximations.
This is a crucial aspect in a detailed comparison between theory and experiment,
which certainly would not be possible following an approach based on the idea of
wave packet reduction.

It should also be noted that from the mathematical point of view some aspects
of Mott’s analysis can be improved. For instance, the stationary phase theorem is
used without an accurate control of the conditions of applicability. Another unsat-
isfactory aspect is the use of the stationary Schrödinger equation, which prevents
a time-dependent description of the evolution of the whole system. The use of the
time-dependent Schrödinger equation, with a clear definition of the initial state and
an explicit description of the successive interactions of the α-particle with the first
and the second atom, is required to make both the analysis and the result more
transparent. We refer to [Dell’Antonio et al. 2008; 2010; Finco and Teta 2011;
Recchia and Teta 2014; Teta 2010] for results in this direction.

3. A model of cloud chamber

In this section we present a model of a quantum environment inside which a quan-
tum particle evolves. The environment should mimic the supersaturated vapor of
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a cloud chamber where ionization takes place when a fast and massive particle
is passing by. The model we propose consists of a quantum particle interacting
via point interactions with localized finite-dimensional quantum subsystems (two-
level atoms or spins). Details of the construction of the Hamiltonian of the whole
system can be found in [Cacciapuoti et al. 2007] (see also [Albeverio et al. 2005]
for a comprehensive analysis of point interactions Hamiltonians).

We consider N spins placed in fixed positions y1, y2, . . . , yN . The state space
of the system is the Hilbert space

H= L2(R3)⊗SN ≡ L2(R3)⊗ (C2)1⊗ · · ·⊗ (C
2)N , (3-1)

where (C2) j denotes the j -th copy of C2 in which the j -th spin state is represented
(note that the particle itself is assumed to have no spin). To describe the j-th spin
state in (C2) j we take the basis made up of the first Pauli matrix eigenvectors

σ̂
(1)
j χσ j = σ jχσ j , σ̂

(1)
j =

(
1 0
0 −1

)
, σ j =±1. (3-2)

Any state in H can be written according to the following decomposition

9 ∈H, 9 =
∑
σ

ψσ ⊗Xσ ,

σ = {σ1, σ2, . . . , σN }, Xσ = χσ1 ⊗χσ2 ⊗ · · ·⊗χσN ,
(3-3)

where ψσ ∈ L2(R3). Using such a decomposition, the scalar product in H reads

〈9,8〉 =
∑
σ

(ψσ , φσ ), (3-4)

where (·, ·) is the scalar product in L2(R3) and the induced norm will be denoted
by ‖·‖. With this notation, the normalization condition in H reads

‖9‖2H = 〈9,9〉 =
∑
σ

‖ψσ‖
2
= 1 (3-5)

The Hamiltonian H0 acting in H generating the free dynamics of the system reads

D(H0)= H 2(R3)⊗SN ≡ H 2(R3)⊗ (C2)1⊗ · · ·⊗ (C
2)N , (3-6)

H0 =−
h̄2

2m
1⊗ ISN +

N∑
j=1

IL2 ⊗α j S j , α j ∈ R+,

ISN = I(C2)1 ⊗ · · ·⊗ I(C2)N ,

(3-7)

S j = I(C2)1 · · · ⊗ I(C2) j−1 ⊗ σ̂
(1)
j ⊗ I(C2) j+1 · · · ⊗ I(C2)N (3-8)

In (3-7), I(C2) j and IL2 denote the identity operators in C2 and in L2(R3) respectively.
The system energy is the sum of the kinetic energy of the particle and the energy
of the spins. The j-th spin has an energy ±α j respectively in the states χ±1. In
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order to simplify notation, we will take in the following h̄ = 1, 2m = 1. The action
of H0 on functions of its domain is

H09 =
∑
σ

(−1+α · σ )ψσ ⊗Xσ , (3-9)

where α = (α1, . . . , αN ), α · σ = α1σ1+ · · ·+αNσN .
The spectrum of H0 is easily derived from the spectrum of the free Laplacian

σp(H0)=∅, σess(H0)= σac(H0)= [µ,∞), µ=min
σ
(α · σ ). (3-10)

Under the unitary group e−i t H0 , the particle evolves freely with no interaction with
the spins. The evolution of the j-th spin first component eigenstate corresponding
to the eigenvalue ±1 is given by e∓iα j tχ±1. In fact, e−i t H0 is explicitly known and
the solution of the Cauchy problem for the Schrödinger equation with initial datum
90
=
∑

σ ψ
0
σ ⊗Xσ ∈H is

9 t
= e−i t H090

=
∑
σ

(U tψ0
σ )⊗ e−iσ ·αtXσ , (3-11)

where

(U t f )(x)=
∫

R3
dx′

ei |x−x′|2/(2t)

(4π i t)3/2
f (x′). (3-12)

In order to define a Hamiltonian with spin-dependent point interactions placed at
y1, . . . , yN , one can start from the following consideration. Since the interaction
must be nontrivial only at y1, . . . , yN , such a Hamiltonian should act as the free
Hamiltonian on wave functions vanishing at the points y1, . . . , yN . This suggests
considering the operator H̃0 defined as the restriction of H0 to the set of states
whose spatial support does not contain y1, . . . , yN and to define the spin-dependent
point interaction Hamiltonian any (nontrivial) self-adjoint extension of H̃0.

In the following theorem we summarize the definition and properties of the
Hamiltonians in the subfamily of the “local” self-adjoint extensions, characterized
by local singular boundary conditions on each point y j . In order to state the theo-
rem we introduce the notation

8z
jσ = Gz−α·σ (· − y j )⊗Xσ , z ∈ C \R, (3-13)

where

Gw(x)= ei
√
w|x|

4π |x| , w ∈ C\R+, Im
√
w > 0. (3-14)

Then we have
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Theorem 3.1 [Cacciapuoti et al. 2007]. Define the operator H A with domain

D(H A)=
{
9 =

∑
σ

ψσ ⊗Xσ ∈H |9 =9z
+
∑
jσ

q jσ8
z
jσ ;

9z
∈ D(H0), Im

√
z > 0,

∑
j ′σ ′

A jσ , j ′σ ′q j ′σ ′ = f jσ
}
,

(3-15)

and action
H A9 = H09

z
+ z

∑
j,σ

q jσ8
z
jσ , 9 ∈ D(H A), (3-16)

where

q jσ = lim
|x− y j |→0

4π |x− y j |ψσ (x), (3-17)

f jσ = lim
|x− y j |→0

[
ψσ (x)−

q jσ

4π |x− y j |

]
, (3-18)

A jσ , j ′σ ′ = 0 if j 6= j ′, (3-19)

A jσ , jσ ′ = 0 if σk 6= σ
′

k for some k 6= j, (3-20)

A jσ , jσ ′ = a jσ j , jσ ′j otherwise, with

a jσ j , jσ ′j = βδσ j ,σ
′

j
+ σ j iρ(1− δσ j ,σ

′

j
) with β, ρ ∈ R.

(3-21)

Then H A is self-adjoint and its resolvent, R A(z) = (H A
− z)−1, is the finite rank

perturbation of the free resolvent R(z) given by

R A(z)= R(z)+
∑

jσ , j ′σ ′
((0β,ρ(z))−1) jσ , j ′σ ′〈8

z̄
j ′σ ′, ·〉8

z
jσ , z ∈ ρ(H A), (3-22)

where 0β,ρ(z) is the N2N
× N2N matrix defined as

0β,ρ(z)= 0(z)+ A, (3-23)

with
0(z) jσ , j ′σ ′ = 0, if σ 6= σ ′,

0(z) jσ , jσ =
√

z−α · σ/(4π i),

0(z) jσ , j ′σ =−Gz−α·σ ( y j − y j ′), if j 6= j ′,

(3-24)

and A is the matrix defined in (3-19)–(3-21).

Some particular features in the definition of H A are noteworthy:

– For the sake of convenience, the domain and action of H A are represented us-
ing the complex number z but one can check that the definition of the operator
is independent of the choice of z.
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– Functions in the domain of H A are either singular or zero in each scattering
center y j , j = 1, 2, . . . , N . The “charges” q’s are the coefficients of the
singular part whereas the f ’s are the values assumed in the scattering centers
by the “regular part” of functions in the domain (i.e., the function minus its
singular part in that point). The relation

∑
j ′σ ′ A jσ , j ′σ ′q j ′σ ′ = f jσ (see (3-15))

is then a singular boundary condition satisfied by the functions in the domain
in each point yi . Relation (3-19) guarantees that the boundary condition satis-
fied in each point by functions in the domain do not depend on the boundary
conditions satisfied elsewhere (“locality” of the self-adjoint extension). Notice
that the matrix A jσ , j ′σ ′ is defined in terms β, ρ ∈ R (see (3-21)), i.e., the two
relevant parameters characterizing the interaction.

– The Hamiltonians one obtains for ρ = 0 do not show any term indicating
interaction between particle and spins. They correspond to point interaction
Hamiltonians for the particle (see [Albeverio et al. 2005]) together with free
evolution of the spins. Among the self-adjoint extensions of H̃0 there are
Hamiltonians where β is taken as spin-dependent (β(σ )). Always in cases
with ρ = 0, the spins are still free, whereas the particle feels a point force in
each y j whose strength depends on the spin state in that same point. The latter
were the Hamiltonians used to analyze neutron scattering by (fixed) nuclei.

– ρ is the coupling constant of the particle-spin interaction. If ρ is different from
zero, the particle, in addition to the zero-range interaction with the points, can
exchange energy with the spins. Condition (3-20) guarantees locality of the
boundary conditions in this case.

– The spectrum of H A can have a very rich structure. In particular, several
eigenstates embedded in the continuum when ρ = 0 turn into resonances when
ρ 6= 0 as a consequence of the interaction particle-spin. For our scope only
the spectral structure at high energy will be relevant. It is easy to check that
the spectrum of H A is purely continuous with no embedded eigenvalues for
energies larger then maxσ (α · σ ).

The generalized eigenfunctions of H A are computable using the explicit form
of the resolvent operator (3-22). For positive energies λ > maxσ (α · σ ) their σ
components are

ϕσβ,ρ(x, λ,ω)⊗Xσ =
(λ−α · σ )1/4

(4π)3/2

[
ei
√
λ−α·σω·x

⊗Xσ

+

∑
j, j ′,σ ′

(0β,ρ(λ))
−1
j,σ , j ′σ ′e

i
√
λ−α·σω· y j Gλ−α·σ ′(x− y j ′)⊗Xσ ′

]
, (3-25)
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where ω ∈ S2 is the unit vector representing the momentum direction. In fact, (3-25)
remains valid for all values of λ provided that the imaginary part of

√
λ−α · σ is

chosen positive for all σ such that λ−α · σ < 0.
We consider the normalized initial condition

90
= ψ0⊗Xσ 0, (3-26)

where σ 0 is the spin configuration in which σ j =−1 for all j ,

ψ0(x)= N̂ e−x2/(2γ 2)

x
sin(P0x), (3-27)

with x = |x| and

N̂ = 1

π3/4√γ (1− e−P2
0 γ

2
)1/2

, (3-28)

is a normalization factor making the norm of 90 equal to one. In momentum space
the initial particle wave packet reads

ψ̂0(k)= N̂ ′/k[e−(γ
2/2)(k−P0)

2
− e−(γ

2/2)(k+P0)
2
] (3-29)

where k = |k| and N̂ ′ = γ /2N̂ .
The meaning of the choice made above relates to the physical model: the spins

are initially in the lowest energy state and are ready to detect the particle position
during time evolution; the particle is propagating isotropically from the origin, with
initial average radial momentum P0 (corresponding to a wavelength 1/P0). The
parameter γ represents the radial spread of the initial wave packet.

For simplicity, we fix α j = α > 0, for all j in the Hamiltonian H A of the system.
In this way 2α is the energy needed to flip the j-th spin from the down (σ j =−1)
to the up state (σ j = 1).

We consider situations in which the spin positions y j are distributed uniformly
on a portion 6 of linear dimension D of a sphere of radius L centered at the origin.

We assume that γ � L in such a way that the initial wave packet is concentrated
around the origin far from the scattering centers.

The parameter ρ in H A has the dimension of inverse length and the role of the
strength of the coupling between the particle and the spins; 1/β is the scattering
length of the scatterers.

We assume that the following inequalities between the order of magnitudes of
relevant physical parameters hold:

1/β� 1/P0 < D,

α� P2
0 specifically P2

0 & Nα. (3-30)

The meaning of the assumptions above can be summarized as follows:
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The average initial energy of the particle is larger than the energy needed to
produce any number of spin flips and the particle de Broglie wavelength is much
larger than the scattering length of the point scatterers. The relation 1/P0 < D will
imply that two spherical waves

sin P0|x− y j |

4π |x− y j |
, j = j1, j2,

centered in two scatterers will show constructive interference only on the axis of
the segment connecting the two points.

With the assumptions made above, Mott’s conjecture can be rephrased as fol-
lows: consider the cone C6 with apex at the origin and intersecting S2 in 6. Let
us denote with χ6 the characteristic function of the cone. It is convenient to write
the initial condition as the following superposition state

ψ̂0(k)= (1−χ6(k))ψ̂0(k)+χ6(k)ψ̂0(k). (3-31)

We can show that the first term in (3-31) evolves almost freely giving a negligible
contribution to any change in the configuration of spins in 6. Only the second
term in (3-31) can produce relevant changes in the spin configuration in 6.

The precise statement will be formulated in terms of the long term behavior of
the whole system (particle and spins). This requires the use of standard techniques
in time-dependent and independent scattering theory (see [Reed and Simon 1979]).
The wave operators �± associated to the couple H A, H0 are defined as

9+ =�+9 = s− lim
t→∞

ei t H A
e−i t H09, (3-32)

9− =�−9 = s− lim
t→−∞

ei t H A
e−i t H09. (3-33)

As a consequence of the fact that the resolvent of H A is a finite rank perturbation
of the resolvent of H0, the wave operators exist and are complete. In particular one
has

lim
t→∞
‖e−i t H A

9 − e−i t H0�−1
+
9‖H = 0. (3-34)

This means that �−1
+ applied to the initial state gives a modified initial state whose

free evolution approximates the long term evolution of the system. In terms of �−1
+

our main result can be stated as follows:

Theorem 3.2. For any σ 6= σ 0, under the assumptions (3-30),

‖(�−1
+
ψ̂0)σ (k)−χ6(k)ψ̂0(k)‖L2(R3) < e−C P0, (3-35)

where C is a positive real constant and, as an abuse of notation, we use the same
symbol �−1

+ for the wave operator acting on the particle Fourier space.
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Notice that the free evolution of the approximate modified initial state, denoted
by χ6(k)ψ̂0(k), in (3-35) is characterized by a particle momentum always con-
centrated inside the cone and by an unaltered spin configuration. The result then
states the following (conceivable) result: when the particle initial energy is very
large compared to the energy necessary to flip a large number of spins

(1) the evolution of the particle state is not affected significantly by the interaction
with the environment, and

(2) spins in a particular direction with respect to the source have negligible proba-
bility to be flipped by components of the initial wave packet heading in other
directions.

The main steps heading to the result are sketched below. Only the proof of the
main technical lemma will be detailed in the following.

The relation between wave operators and generalized eigenfunctions implies
that the modified initial condition in a specific spin configuration reads

(90
+
)σ := (�

−1
+
90)σ =

∫
∞

α·σ

dλ
∫

S2
dω φσ (·, λ,ω)(ϕσβ,ρ(λ,ω), ψ

0
σ ), (3-36)

where

φσ (x, λ,ω)=
(λ−α · σ )1/4

(4π)3/2
ei
√
λ−α·σω·x . (3-37)

• The first step in the proof consists in carrying out an explicit computation of
the scalar product of the initial conditions with the generalized eigenfunctions
appearing in the integral on the right hand side of (3-36). If y is the position
of a spin in 6 and σ 6= σ 0 then

Lemma 3.1.

‖( ̂Gλ−α·σ (· − y), ψ̂0)− (
̂Gλ−α·σ (· − y), χ6ψ̂0)‖< eC ′P0,

where C ′ is a positive real constant.

Proof. Let us write

Fσ ,6(λ, | y|)≡ (( ̂Gλ−α·σ (· − y), χ6ψ̂0)

=

∫
R3

dk ̂Gλ−α·σ (· − y)ψ̂0(k)χ6(k) (3-38)
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for the specific initial state of interest (3-27). The spherical wave Fourier
transform is the distribution

̂Gλ−α·σ (· − y)=
1

(2π)3/2

∫
R3

e−i k·x ei
√
λ−α·σ |x− y|

4π |x− y|
dx

=
e−i k· y

(2π)3/2k

∫
∞

0
sin(kξ)ei

√
λ−α·σ ξ dξ,

where σ is a generic spin configuration σ 6= σ 0.
First, we compute explicitly the integral with respect to the momentum

modulus k. Neglecting terms exponentially decreasing faster then e−cP2
0 for

any c > γ 2/2, we perform the gaussian integral

I (ξ)≡
∫
∞

0
eik| y| cos θk, y sin(kξ)e−γ /2(k−P0)

2
dk = I+(ξ)− I−(ξ),

where

I±(ξ)≡
1
2i

∫
∞

0
eik| y| cos θk, y e±ikξe−γ /2(k−P0)

2
dk,

and θk, y is the angle between the vectors k and y. The result of the integration
reads

I±(ξ)= 1/(2iγ )
√
π/2e−γ

2/2P2
0 e−1/(2γ 2)z2

± Erfc(−i/(
√

2γ )z±),

where z± = ±ξ + | y| cos θk, y − iγ 2 P0 and Erfc denotes the complementary
error function.

Defining b =
√
λ+ Nα, we have

Fσ ,6(λ, | y|) (3-39)

=
1

(2π)3/2
N̂ ′
∫
χ6

[∫
∞

0
(I+(ξ)− I−(ξ))e−ibξ dξ

]
d6

= De−(b−P0)
2γ 2/2

∫
S2
χ6(k)ei P0| y| cos θk, y e−| y|

2/(2γ 2) cos2 θk, y[∫
∞

0
e−(ξ/(

√
2γ )+i(b−P0)γ /

√
2)2e−ξ/γ

2
| y| cos θk, y Erfc(−i/(

√
2γ )z+)dξ

]
d6

+ De−(b+P0)
2γ 2/2

∫
S2
χ6(k)ei P0| y| cos θk, y e−| y|

2/(2γ 2) cos2 θk, y[∫
∞

0
e−(ξ/(

√
2γ )+i(b+P0)γ /

√
2)2e+ξ/γ

2
| y| cos θk, y Erfc(−i/(

√
2γ )z−)dξ

]
d6,
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where D = 1/(2π)3/2N̂ ′1/(2iγ )
√
π/2. Being the integral in the variable ξ

uniformly bounded for any finite value of b, P0 and θk, y, it is possible to
integrate over the momentum directions which lie inside the cone C6 .

In order to give an estimate for large P0| y| of the integral we will make use
of a stationary phase argument. We will take the axis of the cone to be the
polar axis θk = 0. Both integrals in (3-39) have the form∫ θmax

0
ei P0| y| cos θk, y G(cos θk, y) sin θk dθkdφk, (3-40)

with cos θk, y = cos θk cos θ y+ sin θk sin θ y cos(φk−φ y).
It is easy to check that the phase cos θk, y is stationary only if θk = θ y

and φk = φ y and that the Hessian matrix determinant computed at the point of
stationary phase is sin2 θ y. We deduce that the case of stationary phase applies
only if y/| y| belongs to the cone C6 and that, in such a case, the leading term
of (3-40) reads

2π
i

ei P0| y|

P0| y|
G(cos θk, y = 1)

sin θ y

|sin θ y|
. (3-41)

If y is inside the cone C6 and θmax < π/2, we then have

Fσ ,6(λ, | y|)'−
N̂
8

ei P0| y|

P0| y|
e−(b−P0)

2γ 2/2e−| y|
2/(2γ 2)[∫

∞

0
e−(ξ/(

√
2γ )+i(b−P0)γ /

√
2)2e−ξ/γ

2
| y| Erfc(−i/(

√
2γ )v+)dξ

]
−

N̂
8

ei P0| y|

P0| y|
e−(b+P0)

2γ 2/2e−| y|
2/(2γ 2)[∫

∞

0
e−(ξ/(

√
2γ )+i(b+P0)γ /

√
2)2e+ξ/γ

2
| y| Erfc(−i/(

√
2γ )v−)dξ

]
,

where v± =±ξ + | y| − iγ 2 P0.
If the scatterer position lies outside the cone, standard results in approximation
of integrals in the nonstationary case proves the exponential decay stated in
the lemma. �

Notice that, as a by-product, the lemma proves that the main contribution
to the integral with respect to λ in (3-36) is attained for b ≈ P0 which, under
our assumption, means

√
λ≈ P0.

• As a second step, one has to examine the coefficients in the sum of spheri-
cal waves Gλ−α·σ in (3-25). In particular, it is necessary to check that the
matrix 0β,ρ(λ) is invertible and to control the norm of its inverse. Under
the assumptions of the dynamical and geometrical parameters of the system
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listed above it is always possible to find a β, independent on the number of
spins, for which the matrix 0β,ρ(λ) is invertible and the norm of its inverse
is bounded uniformly in the number of spins. Details about the invertibility
and the continuum limit of the inverse of the 0 matrix are given in [Figari and
Teta 2014] (see also [Figari et al. 1988] for a similar result in the case of point
interactions without spin dependence).

Theorem 3.2 specifies where the main contribution to the flipping probability comes
from, yet does not give quantitative indications about the transition probabilities
to any specific final configuration of the environment. In order to investigate thor-
oughly the asymptotic behavior of the particle and the environment and character-
ize its dependence on the number of flipped spins, it is necessary to go one step
further:

• Prove a kind of Huygen’s principle stating that the spherical waves centered in
a large number of points uniformly distributed on 6 interfere constructively
only inside the cone C6 . The situation is analogous to the case of electromag-
netic wave propagation through a hole when the linear dimensions of the hole
are much larger than the wavelength (absence of diffraction).

• Give an estimate of the probability that a significant fraction of spins turns
out to be flipped.

These two last technical steps, requiring detailed combinatorial estimates, will be
examined in a paper in preparation.

To conclude, we want to summarize what we obtained in the language of the
environment induced decoherence: if a large number of “clouds” of spin depen-
dent point scatterers are present on the sphere of radius L , the above stated result
amounts to saying that the long term behavior of the whole system state is the inco-
herent sum of states with support in distant regions of the configuration space, each
characterized by a sharply defined particle momentum direction and a significant
change in the spin configuration only relative to spins in that specific direction.
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