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Abstract—Temporal Logic Model Checking is a ver-
ification method in which we describe a system, the
model, and then we verify whether important proper-
ties, expressed in a temporal logic formula, hold in the
system. Many Model Checking tools employ BDDs or
some other data structure to represent sets of states. It
has been empirically observed that the BDDs used in
these algorithms may grow exponentially as the model
and formula increase in size. We formally prove that no
kind of data structure of polynomial size can represent
the set of valid initial states for all models and all
formulae. This result holds for all data structures where
a state can be checked in polynomial time. Therefore,
it holds not only for all types of BDDs regardless of
variable ordering, but also for more powerful data
structures, such as RBCs, MTBDDs, ADDs and SDDs.
Thus, the size explosion of BDDs is not a limit of
these specific data representation structures, but is
unavoidable: every formalism used in the same way
would lead to an exponential size blow up.
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I. INTRODUCTION

Temporal Logic Model Checking [1] is a verifi-
cation method for discrete systems. In a nutshell,
the system, often called the model, is described
by the possible transitions of its components,
while the properties to verify are encoded in a
temporal modal logic. It is used, for example, for
the verification of protocols and hardware circuits
[2]. Many tools, called model checkers, have been
developed to this aim. The most famous ones
are SPIN [3], SMV [4] (with its well known
implementation NuSMV [5]) and PRISM [6].

Many languages can be used to express the
model; the most widespread ones are Promela and
SMV. Two temporal logics are mainly used to

define the specification: CTL [1] and LTL [7]. A
detailed survey of complexity results on temporal
logic model checking can be found in [8].

In many cases, the inputs of model checking
problems can be processed in different ways.
As an example, if the same system (encoded
as a model) has to be checked against different
properties (each expressed by a formula), it makes
sense to spend more time on the system if it
allows checking each property more efficiently.
The converse applies when the same property
has to be checked against different systems. A
previous article by the same authors of the present
one [9] analyzes these cases.

In this article, we consider the initial state
problem: given a formula, a model and a state, is
there a run of the model that starts from the given
state and that satisfies the formula? We prove that
complexity does not decrease even if both model
and formula undergo a preprocessing step that
produces a polynomially-sized result. In a way,
this shows that the choice of the initial state can
encode the whole complexity of model checking.

This result allows answering a long-time stand-
ing question in Symbolic Model Checking [4],
[10]. It has been observed that the BDDs [11],
[12], [13], [14] used by SMV and other Symbolic
Model Checking systems may become exponen-
tially large. This article formally proves that this
phenomenon is not limited to BDDs, but holds
for every possible form of representation of sets
of states in which a state can be checked for
membership in polynomial time.

Some specific Boolean functions have al-
ready been shown not to be representable with
polynomial-size BDDs [15]. The results in this
article proves that this is the case for every data



2

structure of this kind aimed at representing sets
of states in symbolic model checking. It holds
for all decision diagrams representing integer-
value functions whose evaluation problem is in
the polynomial hierarchy. Therefore it also ap-
plies to all current, and future, enhancements of
BDDs, such as BMD and *BMD [16], RBCs [17],
MTBDDs [18], ADDs [19] and SDD [20].

II. DEFINITIONS

In this section we briefly introduce the termi-
nology and important properties of LTL and CTL
temporal model checking [1], [7] and automated
planning formalism STRIPS [21]. For more de-
tails we refer the reader to the original articles.

A. Model checking
In this section, we briefly recall the basic def-

initions about model checking that are needed in
the rest of the paper. We follow the notation used
by Sistla and Clarke [22]. Only CTL formulae
EFϕ (or equivalently, LTL formulae Fϕ) are
used in this article, meaning that the propositional
formula ϕ is true in some future time point.
The meaning and formal definition of the other
operators can be found in any of a number of
articles on the topic [1], [7].

The semantics is based on Kripke structures.
Given a set of atomic propositions, a Kripke
structure is a tuple ⟨Q,R, ℓ, I⟩, where Q is a
set of states, R is a binary relation over states
(the transition relation), ℓ is a function from
states to atomic propositions (it labels each state
with the atomic propositions that are true in that
state), I is a set of the possible initial states.
A run of a Kripke structure is called a Kripke
model: an infinite sequence of states such that
siRsi+1 for each pair of consecutive states si,
si+1 in the sequence. The truth of formulas in
such a sequence [s0, s1, . . .] is defined as: atomic
propositions are evaluated according to the initial
state of the sequence (in this case ℓ(s0)); non-
modal connectives are evaluated as usual; Fϕ
is true if there exists i such that ϕ is true in
[si, si+1 . . .]. A formula EFϕ is true in a Kripke
structure, which may have several Kripke models
(runs), if ϕ is true in at least one of them.

In formal verification, the behavior of a system
is represented as a Kripke structure, and the

property to check as a modal formula. Checking
the structure against the formula tells whether
the system satisfies the property. Since Kripke
structure is usually called a “model” (which is in
fact very different from a Kripke model, which is
only a possible run), this problem is called Model
Checking.

In formal verification, the behavior of a system
is represented as a Kripke structure, and the
property to check as a modal formula. Checking
the structure against the formula tells whether
the system satisfies the property. Since a Kripke
structure is usually called a “model” (which is in
fact very different from a Kripke model, which is
only a possible run), this problem is called Model
Checking.

In most applications, the Kripke structure is
not specified by a tuple ⟨Q,R, ℓ, I⟩ but in a more
compact form. More precisely, the set of states
Q is the set of all possible interpretations over
a given alphabet of variables V and the initial
states and the allowed transitions between states
are specified by formulas L and ϱ; the latter is
a formula over variables V ∪ V ′, where V ′ is a
new set of variables in one-to-one relation with
V ; These variables represent the state after the
change.

Such a triple (V, L, ϱ) is called a model, and
represents a Kripke structure ⟨Q,R, ℓ, I⟩ in which
Q is the set of all possible interpretations over
V , ℓ is the identity function, I is the set of
interpretations satisfying L, and sRs′ holds if the
formula ϱ is satisfied by the model s ∪ s′[V/V ′]
(s ∪ s′[V/V ′] |= ϱ), where s′[V/V ′] denotes the
state obtained by substituting each variable x ∈ V
with its corresponding variable x′ ∈ V ′.

As a result, states are interpretations over V ,
and a Kripke model is an infinite sequence of
states such that the first one satisfies L and each
consecutive pair satisfies ϱ; this sequence is also
called a run of the model.

Problems like reachability (where the formula
is EFϕ) can be checked in time polynomial in
the size of the Kripke structure, but a model can
represent a Kripke structure of size exponentially
larger than it. In particular, a model can have an
exponential number of initial states satisfying Fϕ,
but this alone does not rule out the possibility that
the set of such states can be represented in a com-
pact form. As a limit example, EF (p1∨ · · ·∨pn)
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holds in an exponential number of initial states in
the model

∧
pi ≡ p′i, yet the formula p1∨ . . .∨pn

itself provides a very compact representation of
the set of such states.

Usually, models are specified as compositions
of modules. Each module is a sort of “mini-
model”: it is like a model but some variables
are local to it while the others are shared with
the other modules. If V L is the set of local
variables of a module and V S the set of shared
variables, which is common to all modules, then
the module is M = (V L ∪ V S, L, ϱ). A model
can be then obtained as the composition of a
number of modules, each set of local variables
being disjoint from all others.

A set of modules M1, . . . ,Mk can be com-
posed, forming a single model, by using the fol-
lowing set of variables and initial state formula:

V = V S ∪
∪

i=1,...,k

V L
i

L =
∧

i=1,...,k

Li

The transition formulas can be composed ac-
cording to a synchronous or an (interleaved)
asynchronous behavior. In the synchronous com-
position, every module changes state at every time
point: ϱ =

∧
i=1,...,k ϱi.

In the interleaved asynchronous composition,
only one module at time can change state. There
is however no specified rule as for which module
changes at each time, so for example a module
can change state three times in a row. This is
formalized as follows:

ϱ =
∨

i=1,...,k

[
ϱi ∧

∧
j=1,...,i−1,i+1,...,k

V L
j ≡ V ′L

j

]
(1)

This formula is satisfied if one of its subformu-
las is satisfied. Therefore, when the subformula
of index i changes state it forces all local vari-
ables of modules M1, . . . ,Mi−1,Mi+1, . . . ,Mk to
maintain their value, while the local variables of
module Mi and the shared variables change value
as specified by ϱi.

Definition 1 (Initial state problem): Given a
model M , a formula ϕ and an initial state, is

there a run of M starting from that state and
satisfying ϕ in some state?

This problem can be recast into the existence of
a propositional formula I satisfied by exactly one
propositional interpretation and such that I∧EFϕ
holds in the model.

The complexity of temporal logic model check-
ing has been extensively studied in the literature
and a good survey can be found in [8].

B. STRIPS
We use the STRIPS planning formalism [21]

as the source problem for our reduction, because
of the structural similarities among STRIPS plan-
ning and model checking.

A STRIPS instance (or STRIPS domain) is
a 4-tuple ⟨P ,O, I,G⟩, where P is the set of
conditions, O is the set of operators, I is the
initial state, and G is the goal. The conditions are
facts that can be true or false. A state s is a set of
conditions, and represents the state of the world
at a certain time point: conditions in s represent
facts that are true in the world, those not in s
represent facts currently false.

The initial state is a state, thus a set of
conditions. The goal is specified by a set of
conditions that should be achieved, and another
set specifying which conditions should not be
made true. Thus, a goal G is a pair ⟨M,N⟩,
where M is the set of conditions that should be
made true and N is the set of conditions that
should be made false.

The operators are actions that can be per-
formed to achieve the goal. Each operator is a
4-tuple ⟨ϕ, η, α, β⟩, where ϕ, η, α, and β are sets
of conditions. An operator can be executed if and
only if the conditions in ϕ are true and those in η
are false, and its execution makes the conditions
in α true, and those in β false. The conditions
in ϕ and η are called the positive and negative
preconditions of the operator. The conditions in α
and β are called the positive and negative effects
or postconditions of the operator. Given a state s
and an operator o = ⟨ϕ, η, α, β⟩, r(s, o) denotes
the result of applying action o in state s and is
defined as follows:

r(s, ⟨ϕ, η, α, β⟩) =

 (s ∪ α)\β
if ϕ ⊆ s and η ∩ s = ∅

undefined otherwise



4

A plan for ⟨P ,O, I,G⟩ is a sequence
of operators o1, o2, . . . , ok such that s =
r(r(. . . , r(I, o1)), . . .), oi−1), oi) is defined for all
i ∈ {1, . . . , k} and it holds that M ⊆ s and
N ∩ s = ∅.

The plan-existence problem for STRIPS can
be formulated as follows: Given a planning in-
stance ⟨P ,O, I,G⟩, decide whether it has a plan.
For a more detailed presentation of STRIPS and
its properties we refer the reader to the article by
Fikes and Nilsson [21]. In this article, we consider
the restrictions STRIPSk where the goal is com-
posed of a single positive condition and, for each
operator, the maximum number of preconditions
is k and there are at most 2 postconditions. Plan
existence is PSPACE-hard for every k ≥ 2, as
proved by Bylander [23].

III. COMPLEXITY AND COMPILABILITY

This article employs the complexity class
PSPACE, which is the set of decision problems
that can be solved in space polynomial in the size
of the input [24], [25]. The class P is defined
in the same way with polynomial time instead
of space. The polynomial hierarchy [26] is a
hierarchy of classes of decision problems whose
basic class is P and it is completely included in
PSPACE. It is generally assumed to be a proper
hierarchy, that is for each k, level k is strictly
included in level k + 1. The collapse of the
polynomial hierarchy is considered very unlikely
and many results in computational complexity
are frequently stated as ”The property holds un-
less the polynomial hierarchy collapse”, such in
[27]. We assume that the instances of a decision
problem are strings built over a finite arbitrary
alphabet Σ. The set of all strings over Σ is
denoted by Σ∗. The length of a string x ∈ Σ∗ is
denoted by ||x||. A language (decision problem)
is defined as a set of strings.

We recall some definitions and results about the
on-line complexity of problems [28]. This deals
with problems that, as many do, have instances
that can be naturally broken into two parts: one
part known in advance and one part known only
at run-time. An instance of such problems can
be represented as a pair of strings rather than a
single string. Therefore, the language correspond-
ing to these decision problems is a language over

pairs of strings, i.e., a set of pairs of strings (rather
than a set of strings). Formally, a language of
pairs is a subset of Σ∗ × Σ∗, where × is the
Cartesian product.

The difference between the first and second
string of a pair is that the first is known in
advance, meaning that more time can be spent
on it. This could be useful to solve the problem
faster when the second string comes to be known.
The idea is that an algorithm can take advantage
of the difference between the first and the second
part of the input:

preprocessing phase:
elaborates only the first part of the input;
since that part is known advance, this
phase may take a long time;

online processing:
when the rest of the input arrives, the
algorithm can use both it and the result
of the preprocessing phase to solve the
problem.

While the first phase is allowed to take more
time than the second one, some constraints have
to be put on it: we impose its result to be of
polynomial size. Poly-size functions are intro-
duced to this purpose: a function f from tuples of
strings to strings is called poly-size if there exists
a polynomial p such that, for all tuples of strings
⟨x1, . . . , xn⟩, the inequality ||f(⟨x1, . . . , xn⟩)|| ≤
p(||x1|| + · · · + ||xn||) holds. We extend this
definition to mixed tuples of strings and integers
by considering each number i as a string of length
i; more details are in the article where poly-size
functions have been introduced [28].

In the computational complexity framework,
every function computable in polynomial time is
also poly-size [29], but not vice versa. For ex-
ample, the function that computes whether there
exists a winning strategy for a generalized N by
N version of checkers requires exponential time
[30] to be computed but its output is either ”yes”
or ”no”. In spite of the long computing time,
the produced value is always representable with
a single bit.

This article uses classes that characterize the
complexity of problems that can be expressed
as languages of pairs, where the first input (the
fixed part) is available in advance and the second
one (the varying part) is only available at the
last moment. The idea is that a class such as
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∥;P contains all problems that are in P after
preprocessing the first part of the data, that is,
neglecting the complexity of the preprocessing
phase, and concentrating only on the complexity
of what remains to be done after the preprocess-
ing step. We constraint the preprocessing phase
to produce a polynomially sized result.

In a similar way, the class ∥;PSPACE contains
all problems that can be solved in polynomial
space after the preprocessing phase is over. For
technical reasons, we make the assumption that
preprocessing can use not only the fixed part
of the instance but also the size of the varying
part. This will not be a problem because the
impossibility of making a problem belong in a
class will carry on to the case in which this size
is not given [28].

Definition 2: The class ∥;PSPACE contains
all languages of pairs S ⊆ Σ∗ × Σ∗ such that
there exist a poly-size function f from strings
and integers to strings and another language of
pairs S ′ ∈ PSPACE such that, for all ⟨x, y⟩ ∈ S,
the following holds:

⟨x, y⟩ ∈ S iff ⟨f(x, ||y||), y⟩ ∈ S ′

The poly-size function f of this definition
represents the preprocessing phase: f(x, ||y||) is
the result of preprocessing the first element of the
data plus the size of the second element. Since S ′

is in PSPACE, the problem is in PSPACE given
the result f(x, ||y||) of preprocessing. The pre-
processing phase is allowed to know, in addition
to x, the size of y (i.e., ||y||) for technical reasons
[28].

Every problem in PSPACE is also in
∥;PSPACE. Proving that a problem is also one
of the most difficult ones in ∥;PSPACE cannot
be done with the usual definition of polynomial
reduction. A new definition of reduction is nec-
essary.

Definition 3: A nucomp reduction is a triple
of functions ⟨f1, f2, g⟩, where g is poly-time
and f1 and f2 are poly-size. A problem A is
non-uniformly comp-reducible to a problem B
(denoted A ≤nucomp B) iff there exists a non-
uniform comp-reduction ⟨f1, f2, g⟩ such that, for
every pair ⟨x, y⟩, the following holds:

⟨x, y⟩ ∈ A if and only if
⟨f1(x, ||y||), g(f2(x, ||y||), y)⟩ ∈ B

The rationale behind this formal definition is
quite technical, but it intuitively means that the
fixed part of A is treated differently than the vary-
ing part. These reductions allows for a concept
of hardness and completeness. More details and
justifications can be found in [28].

Definition 4: A language of pairs S
∥;PSPACE-hard iff for all problems
A ∈ ∥;PSPACE, it is the case that A ≤nucomp S.
Moreover, S is ∥;PSPACE-complete if S is in
∥;PSPACE and is ∥;PSPACE-hard.

It can be proved that if a ∥;PSPACE-hard
problem could be solved in polynomial time after
preprocessing the fixed part, and this preprocess-
ing phase obeys the above restriction of produc-
ing a polynomially-sized result, then the poly-
nomial hierarchy collapses to its second level.
The details of this result can be found in other
articles [28], [31], but are unnecessary for the
aim of this article; what matters is that, as already
discussed, such a collapse is currently considered
very unlikely by the computational complexity
community.

We show a technique to derive a nucomp
reduction from a (regular) poly-time reduction.
More precisely, we present sufficient conditions
allowing for a polynomial-time reduction to im-
ply the existence of a nucomp reduction [31].

Let us assume that we know a polynomial
reduction from problem A to problem B, and
we want to prove the nucomp-hardness of B.
This can be accomplished by first proving some
conditions on A, and then one condition on the
reduction from A to B.

Definition 5: A classification function for a
problem A is a polynomial time function Class
from instances of A to nonnegative integers, such
that Class(y) ≤ ||y||.

Typically, the classification function computes
the number of “objects” the instance y is build
upon. For example, if A is a problem on graphs,
Class(y) could be the number of nodes of the
graph y. If A is a problem on propositional for-
mulas, Class(y) could be the number of variables
in the formula y.

Definition 6: A representative function for a
problem A is a polynomial time function Repr
from nonnegative integers to instances of A such
that for every integer n ≥ 0 it is the case that
Class(Repr(n)) = n and ||Repr(n)|| is bounded
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by a polynomial in n.
The representative function simply computes

an element of a class. As an example, for prob-
lems of graphs the representative of the class n
may be the graph with n nodes and no edge.

Definition 7: An extension function for a prob-
lem A is a polynomial time function Ext from in-
stances of A and nonnegative integers to instances
of A such that, for each y and n ≥ Class(y), the
instance y′ = Ext(y, n) satisfies the following
conditions:

1) y ∈ A if and only if y′ ∈ A;
2) Class(y′) = n.
An extension function increases the class of an

instance without changing its membership to the
language.

Let us give some intuition about these func-
tions. Usually, an instance of a problem is com-
posed of a set of objects combined in some way.
For problems on Boolean formulas, we have a
set of variables combined to form a formula. For
graph problems, we have a set of nodes, and the
graph is indeed a set of edges, which are pairs
of nodes. The classification function gives the
number of objects in an instance. The represen-
tative function thus gives an instance composed
of the given number of objects. This instance
should be in some way “symmetric”, in the sense
that its elements should be interchangeable (this
is because the representative function must be
determined only from the number of objects.)
Possible results of the representative function can
be the set of all clauses of three literals over a
given alphabet, the complete graph over a set of
nodes, the graph with no edges, etc.

Let, as an example, A be the problem of
propositional satisfiability. Class(F ) could be the
number of variables in formula F and Repr(n)
the set of all clauses of three literals over an
alphabet of n variables. A possible extension
function simply adds a suitable number of tau-
tological clauses.

These three functions are related to the problem
A only, and involve neither the specific problem
B we want to prove hard nor the specific reduc-
tion used. We now define a condition over the
poly-time reduction from A to B. Since B is a
problem of pairs, we can define a reduction from
A to B as a pair of polynomial functions ⟨r, h⟩
such that x ∈ A if and only if ⟨r(x), h(x)⟩ ∈ B.

Definition 8: Given a problem A with associ-
ated Class, Repr and Ext functions, a problem
of pairs B, and a polynomial reduction ⟨r, h⟩
from A to B, the condition of representative
equivalence holds if, for any instance y of A, the
following holds:

⟨r(y), h(y)⟩ ∈ B iff
⟨r(Repr(Class(y)), h(y)⟩ ∈ B

Representative equivalence requires an exten-
sion function Ext to exists, even if it is not
mentioned in the ”iff” condition. It can be shown
that the existence of such a reduction from a
PSPACE-hard problem A to a problem B proves
that the latter is ∥;PSPACE-hard [31].

IV. PLANNING

A preliminary step to prove the claim about
model checking in temporal logic is to show
that a certain restriction of the planning problem
STRIPS is ∥;PSPACE-hard.

Theorem 1: The problem of plan-existence in
STRIPS3 is ∥;PSPACE-hard if the varying part
of an instance is the initial state.

Proof: We show a reduction from STRIPS2

to STRIPS3 satisfying the condition of represen-
tative equivalence. It would had been formally
more elegant to reduce STRIPS2 to STRIPS2 or
to reduce STRIPS3 to STRIPS3, but to satisfy
the condition of representative equivalence we
need to introduce a precondition to each oper-
ator, thereby turning a STRIPS2 instance into a
STRIPS3 one.

As previously mentioned, the problem of plan
existence for STRIPS2 is PSPACE-hard. Its re-
quired three functions are:

Classification:
Class(⟨{p1, . . . , pn},O, I,G⟩) = n

Representative:
Repr(n) =

⟨{p1, . . . , pn}, O2/2
n , ∅, ⟨{p1}, ∅⟩⟩,

where O
2/2
n is the set of all possible

operators of at most two preconditions
and two postconditions of {p1, . . . , pn}

Extension:
Ext(⟨{p1, . . . , pm},O, I,G⟩, n) =
⟨{p1, . . . , pm, pm+1, . . . , pn},O, I,G⟩
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The reduction produces an instance of
STRIPS3 by suitably modifying a STRIPS2 in-
stance. In particular, new conditions are created
and inserted in the initial state, and each op-
erator is modified individually. For each opera-
tor o = ⟨α, β, γ, δ⟩ of the original instance, a
condition po is added to the set of conditions
and to the initial state, and o is changed into
o′ = ⟨α ∪ {po}, β, γ, δ⟩; this is a valid STRIPS3

instance because ||α|| ≤ 2 and ||β|| ≤ 2 since
the original instance is of STRIPS2, therefore
||α ∪ {po}|| ≤ 3. The goal is not changed. In
this new instance, no operator modifies po, which
therefore always remains true. As a result, each
operator o′ is executable if and only if o is.
Therefore, a plan exists for this new instance if
and only if one exists for the original instance.

We prove that this reduction satisfies the con-
dition of representative equivalence. Let y be an
instance of STRIPS2 and ⟨r(y), h(y)⟩ its corre-
sponding STRIPS3 instance, where h(y) is the
initial state and r(y) the rest of the instance.
We show that ⟨r(y), h(y)⟩ has the same plans of
⟨r(z), h(y)⟩, where z = Repr(Class(y)).

The two instances y and z have the same
conditions and goal, but differ on the initial state
and operators. In particular, z has every operator
with two preconditions and two postconditions,
while y in general may contain only some of
them. The corresponding instances ⟨r(y), h(y)⟩
and ⟨r(z), h(y)⟩ therefore only differ for their
operators, since the initial state h(y) is the same
in them.

In particular, r(y) contains an operator o′ =
⟨α ∪ {po}, β, γ, δ⟩ for every operator o =
⟨α, β, γ, δ⟩ of y whereas r(z) contains one such
operator o′ for each possible operator o with two
preconditions and two postconditions. However,
h(y) contains po only if o is an operator of y.
As a result, the condition po for an operator o
that is in z but not in y is not in the initial
state of ⟨r(z), h(y)⟩. Since no operator has it as
a postcondition, the corresponding operator o′ is
never executable. As a consequence, the operators
in ⟨r(z), h(y)⟩ that are not in ⟨r(y), h(y)⟩ are not
part of any plan of the former instance.

In order to complete the proof, the repre-
sentation of conditions and operators has to be
specified. Indeed, we have to make sure that
replacing r(y) with r(z) in ⟨r(y), h(y)⟩ does not

create a mismatch between the representation of
conditions and operators in y and z.

The chosen representation has alphabet
{0, . . . , 9, (, ), ⟨, ⟩, c}. A condition like p34
is represented simply by the two-character
string 34. Similarly, the operator that has p34
and p1 as positive preconditions, no negative
precondition or postcondition and p123 as the
positive postcondition, is represented by the
string ⟨(34c1)()(123)()⟩. In such a string, (
represents what is commonly written as an open
curly brace {; in the same way, ) means the
closed curly brace and c stands for a comma.

A new condition po created by the reduction
is represented by the same string that repre-
sents o, the distinction between condition and
operator being clear from the context. For in-
stance, the example operator of the previous
paragraph generates the new condition po repre-
sented by the same string ⟨(34c1)()(123)()⟩ and
the new operator o′ represented by the string
⟨(34c1c⟨(34c1)()(123)()⟩)()(123)()⟩.

There is no recursion in this expression: while
o′ contains the string representing o, no condition
po′ is ever created.

The introduction of the new condition and the
change to the operator do not superpolynomially
increase size. Indeed, for each operator the new
condition has the same size of the original oper-
ator, and the new operator is twice the size of the
original operator.

Since STRIPSk limits preconditions to be at
most k and postconditions to be two, STRIPS3 is
a restriction of STRIPSk for every k ≥ 3 and of
unbounded STRIPS. As a result, the ∥;PSPACE-
hardness of STRIPS3 implies that all these prob-
lems are ∥;PSPACE-hard as well.

In the opposite way, since STRIPS is in
PSPACE, it is in ∥;PSPACE as well, as well
as all its restrictions. Together with the above
hardness result, this proves that STRIPS and all
STRIPSk problems with k ≥ 3 are ∥;PSPACE-
complete.

V. INTERLEAVED ASYNCHRONOUS
COMPOSITION

The main aim of this section is to show that
the initial state problem of model checking is
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∥;PSPACE-hard when the model is represented
as an asynchronous interleaved composition of
modules. This is achieved by reducing STRIPS3,
proved hard for that class in the previous section,
to that problem.

Theorem 2: The initial state problem is
∥;PSPACE-complete, if the model is represented
as an asynchronous interleaved composition of
modules and the varying part of the problem is
the initial state.

Proof: We show a reduction from STRIPS3.
In this reduction, the initial state is translated
into the initial state, and the rest of the planning
instance is translated into the model and the
formula of the initial state problem.

An operator of a planning instance specifies
conditions over the states before and after its
execution. This can be directly translated into
the formula of a model checking module. In
particular, this formula is true if the previous state
makes the operator executable, the effects of the
operators are true in the next state and all other
conditions maintain their truth value through the
transition.

Let ⟨{p1, . . . , pn},O, I, ⟨{p1}, ∅⟩⟩ be an in-
stance of STRIPS3. For each operator oi =
⟨αi, βi, γi, δi⟩ in O, we define a module Mi =
(V L

i ∪ V S, true, ϱi) where V L
i = {ni}, V S =

{p1, . . . , pn}, and ϱi is as follows:

ϱi = (ni ̸≡ n′
i) ∧

∧
pj∈αi

pj ∧
∧

pj∈βi

¬pj ∧∧
pj∈γi

p′j ∧
∧
pj∈δi

¬p′j ∧
∧

pj ̸∈δi∪γi

(p′j ≡ pj)

Each module represents the execution of the
corresponding operator. Indeed, this formula can
only be satisfied if the precondition of the opera-
tor is true in the previous state, the postcondition
is true in the next state, and all other conditions
maintain their truth values.

There is exactly one variable ni for each mod-
ule. The subformula ni ̸≡ n′

i ensures that if a
module is “active”, the others are not. Indeed,
the transition function ϱ of the composition is
defined in (1) as the disjunction of a subformula
for each module, and each subformula forces the
local variables of the other modules to maintain
their value. As a result, if the subformula cor-
responding to an operator is true, then the local

variables of all other modules will be forced to
maintain their values.

The interleaved composition of the modules
ϱi is a model that allows, at each step, only
the changes resulting from executing exactly one
operator of the STRIPS3 instance: the variables ni

and their subformulae ensure that the translation
is what results from applying a single operators
and not two or more at the same time while the
rest of the formulae Mi encode the behavior of
an operator each. As a result, the existence of a
plan equates the existence of a run of the model
that starts from the given initial state and satisfies
p1 in some time point. This condition is the same
as EFp1 being true in the given initial state of
the model.

Therefore, this is a translation from the prob-
lem of planning into the problem of checking
whether the model has a run, starting from a given
initial state, that satisfies a given formula. In this
translation, the formula is fixed, the initial state is
translated into the initial state and the rest of the
instance is translated into the rest of the instance.
This is therefore a nucomp reduction.

Technically, a nucomp reduction is a triple
of functions f1, f2 and g that operate on the
fixed part of the planning problem {p1, . . . , pn},
O, ⟨{p1}, ∅⟩, the varying part of the planning
problem I and its size ||I||. In particular:

f1(⟨{p1, . . . , pn},O, ⟨{p1}, ∅⟩⟩, ||I||)
is the pair composed of the interleaved
asynchronous composition of the Mi’s
above and of the formula EFp1;

f2(⟨{p1, . . . , pn}, O, ⟨{p1}, ∅⟩⟩, ||I||)
is EFp1;

g(x, I)
is I for every x.

In this specific case f2 is not really needed;
yet, the definition of nucomp reduction dictates
that one has to be provided. The choice of EFp1
for its value is arbitrary.

We now formally prove that the reduction
works as required. We assume that the planning
instances always contain a “nop” operator, that
is, ⟨∅, ∅, ∅, ∅⟩; this is necessary to ensure that
transitions are still possible in the model after the
goal is reached. We denote by N the set of all
variables ni.
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1. correspondence between operators and mod-
ules

Let s and oi be respectively a state and an
operator of the STRIPS3 instance, and let s′ =
r(s, oi). We prove that both ⟨s∪Ni∪{ni}, s′∪Ni⟩
and ⟨s ∪ Ni, s

′ ∪ Ni ∪ {ni}⟩ are pairs of previ-
ous/next states allowed by the model, for every
Ni ⊆ N\{ni}. We also prove the converse: if
a pair of states is allowed by the model, then it
is either in the form ⟨s ∪ Ni ∪ {ni}, s′ ∪ Ni⟩ or
⟨s ∪ Ni, s

′ ∪ Ni ∪ {ni}⟩, where s′ = r(s, oi) and
Ni is a subset of N\{ni}.

Assume that s′ = r(s, oi) and let oi =
⟨α, β, γ, δ⟩. Since r(s, oi) is not undefined, this
operator is executable in s. As a result, the
formula

∧
pi∈α pi ∧

∧
pi∈β ¬pi is true in the state

s ∪ Ni ∪ {ni}. Since s′ differs from s only by
the addition of γ and deletion of δ, the formula∧

pi∈γ p
′
i ∧

∧
pi∈δ ¬p

′
i ∧

∧
pi ̸∈δ∪γ(p

′
i ≡ pi) holds as

well in the resulting state s′∪Ni. The same holds
for the pair ⟨s ∪Ni, s

′ ∪Ni ∪ {ni}⟩.
This proves that ϱi is satisfied by all considered

pairs. Since the values of nj for j ̸= i is the same
in the state before and after the transition, and
these are the local variables of the other modules,
the i-th disjunct of ϱ (see equation 1) is satisfied,
which means that ϱ itself is satisfied as well.

Let us now prove the converse. Let s, s′ be a
pair of previous/next state allowed by the model.
Since ϱ is true, (at least) one of its disjuncts has
to be satisfied. Let it be the i-th one. We prove
that s′\N = r(s\N, oi).

Since the i-th subformula of ϱ is satisfied, all
variables N have the same value in s and s′ but
ni, which has opposite values. Furthermore, ϱi
is satisfied by the values of variables in P . This
means that all variables in α are true and all those
in β are false in s, that the variables in γ are true
and those in δ are false in s′, and that all other
variables maintain their values between s and s′.
This proves that s′\N = r(s\N, oi).

2. Correspondence between sequences
We proved that the execution of an operator

corresponds to a transition allowed by the model
and vice versa. By using the same initial state,
the result of applying a sequence of operators
is an allowed multi-step transition according to
the model, if one disregards the values of the
variables Ni.

As a result, the existence of a plan implies that
EFp1 holds in the initial state of the model. Since
plan existence is ∥;PSPACE-complete, it follows
that the initial state problem is ∥;PSPACE-hard.
Membership to the same class follows from the
initial state problem being in PSPACE.

The result of the preprocessing phase can be
considered as a representation of the set of states
satisfying the initial state problem. As a con-
sequence, the above theorem has the following
result as a corollary.

Corollary 1: The polynomial hierarchy col-
lapses if, given a formula and a model represented
by the asynchronous interleaved composition of
modules, there always exists a polynomially sized
data structure that allows checking whether a
state is a solution of the initial state problem in
polynomial time.

This result has a practical implication on algo-
rithms using the labeling technique for solving
model checking. The labeling technique works
by determining the set of states satisfying the
subformulas of the formula, starting from the
literals and proceeding in a bottom-up manner.
Since the number of states is exponential in the
number of variables, BDDs are used to represent
these sets. The procedure ends when we generate
a BDD representing the set of initial states satis-
fying the formula. This is exactly a data structure
that allows checking whether a state is an initial
state satisfying the formula in polynomial time.
Therefore, the above corollary applies to this
case.

Corollary 2: Unless the polynomial hierarchy
collapses to its second level, the BDD representa-
tion of the initial states satisfying a formula and
a model defined as an asynchronous interleaved
composition of modules is, in the worst case,
superpolynomial in the size of the formula and
model.

This result theoretically confirms the empirical
observations about the size increase of BDDs in
model checking. The previous corollary however
qualifies it as not being specific to BDDs, as the
same holds for any other formalism with similar
features. In fact, the same result also applies to
RBCs, MTBDDs, SDDs, and ADDs.
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VI. SYNCHRONOUS COMPOSITION

When modules are composed synchronously,
all their formulas ϱi apply to every transition. For-
mally, the difference from the interleaved asyn-
chronous composition is the way the formulas ϱi
are composed to form ϱ.

We show a translation from asynchronous to
synchronous composition that does not involve
the initial state. This reduction adds a shared
variable ai to each module. A new module ϱa0
is created, and each module ϱi is translated into
ϱai as follows:

ϱai = ai → (ϱi ∧
∧

j=1,...,k
j ̸=i

V L
j ≡ V L

j

′
)

The new module ϱa0 enforces exactly one ai to
be true at each time step:

ϱa0 =
∨

i=1,...,k

ai ∧
∧

j=1,...,k
j ̸=i

¬aj


Intuitively, this reduction works because, at

any time point, at least one of the variables ai
has to be true, but no more then one. If ai
is false, then ϱai is satisfied. If ai is true, then
ϱai becomes equivalent to the i-th disjunct of
ϱ, the composed formula of the asynchronous
composition, as defined in (1). This means that
ϱ is true if and only if the pair of states satisfies
the corresponding formula for the interleaved
asynchronous composition.

Theorem 3: Disregarding the variables ai, the
models that are the asynchronous interleaved
composition of the ϱ1, . . . , ϱk and the syn-
chronous composition of ϱa0, ϱ

a
1 . . . , ϱ

a
k are the

same.
Proof: We show that ϱa, the synchronous

composition of ϱa0, ϱ
a
1 . . . , ϱ

a
k, is essentially the

same as ϱ, the asynchronous interleaved compo-
sition of the ϱ1, . . . , ϱk, the only difference being
the values of the new variables ai.

ϱa =
∧

i=0,...,k

ϱai

=
∨

i=1,...,k

ai ∧
∧

j=1,...,k
j ̸=i

¬aj

 ∧

∧
i=1,...,k

ai → (ϱi ∧
∧

j=1,...,k
j ̸=i

V L
j ≡ V L

j

′
)

=
∨

i=1,...,k

ai ∧
∧

j=1,...,k
j ̸=i

¬aj∧

∧
h=1,...,k

ah → (ϱh ∧
∧

j=1,...,k
j ̸=h

V L
j ≡ V L

j

′
)


If h ̸= i the formula ah → . . . is entailed by

¬ah. As a result, ϱa is also equivalent to:

ϱa =
∨

i=1,...,k

ai ∧
∧

j=1,...,k
j ̸=i

¬aj∧

ai → (ϱi ∧
∧

j=1,...,k
j ̸=i

V L
j ≡ V L

j

′
)


This formula can be further simplified:

ϱa =
∨

i=1,...,k

ai ∧
∧

j=1,...,k
j ̸=i

¬aj∧

(ϱi ∧
∧

j=1,...,k
j ̸=i

V L
j ≡ V L

j

′
)


Apart from the variables ai, this formula is

equivalent to the one defining the allowed tran-
sitions of the interleaved asynchronous compo-
sition of modules ϱi. Formally, the variables ai
can be removed by performing the operation of
forgetting [32]; the resulting formula is equivalent
to (1).

From the above theorem we can derive the
class of the initial state problem when the model
is a synchronous composition of modules.
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Corollary 3: The initial state problem is
∥;PSPACE-complete if the initial state is the
varying part of the instances and the model
is represented as a synchronous composition of
modules.

As a result, the statement of Corollary 1 holds
even in the case of synchronous composition of
modules: unless the polynomial hierarchy col-
lapses, the set of the initial states of a model
satisfying a property cannot in general be rep-
resented by a data structure that is polynomially
sized and allows checking a state in polynomial
time. As in the case of asynchronous composition
of modules, this results concerns BDDs but also
BRBCs, MTBDDs, SDDs, and ADDs.

VII. DISCUSSION AND RELATED WORK

This article presents results about preprocess-
ing in Temporal Logic Model Checking. These
results extend, refine and improve over a previous
work by the same authors [9] where the fixed part
is the formula and the varying one is the model
or vice versa. In particular, the present article
strengthens these results by placing the initial
state only in the varying part of the problem,
so that the formula and most of the model are
fixed. This result also appeared in a technical
report [33], where the formula is however not
assumed to be a composition of modules.

The results in the present article also improve
over those about the exponential growth of BDDs
with respect to a particular problem (e.g. integer
multiplication [34]) and about the size growth of
other decision diagrams with respect to particular
problems [35]. While these results are not condi-
tional to the collapse of the polynomial hierarchy
as the ones reported in this paper, they are also
less general, as they concern only specific data
structures (e.g. OBDDs) and specific problems
(e.g. integer multiplication).

Also related is the computational analysis of
model checking, in particular its parametrized
complexity [36]. All the considered problems,
where the input is a synchronized product of
k components, where k is the parameter, are
shown intractable even in the parametrized case.
A more detailed comparison of the differences
and similarities between parametrized complexity
and the classes like ∥;PSPACE is presented by
Cadoli, Donini, Liberatore and Schaerf [28].

Other related results are [37]: the complexity
of model checking does not decrease under the
hypotheses of some structural restrictions (e.g.
treewidth) in the input; although a CNF for-
mula of bounded treewidth can be represented
by an OBDD of polynomial size, the nice prop-
erties of treewidth-bounded CNF formulas are
not preserved under existential quantification or
unrolling, which is a basic operation of model
checking algorithms.
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