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Abstract The aim of the present paper is to develop a theory of spherical functions
for noncommutative Hecke algebras on finite groups. Let G be a finite group, K a
subgroup and (θ, V ) an irreducible, unitary K -representation. After a careful analysis
of Frobenius reciprocity, we are able to introduce an orthogonal basis in the commutant
of IndGK V , and an associated Fourier transform. Then we translate our results in the
corresponding Hecke algebra, an isomorphic algebra in the group algebra of G. Again
a complete Fourier analysis is developed. As particular cases, we obtain some classical
results of Curtis and Fossum on the irreducible characters. Finally, we develop a theory
of Gelfand–Tsetlin bases for Hecke algebras.
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938 F. Scarabotti, F. Tolli

1 Introduction

One of the key facts in the representation theory of a finite groupG is the isomorphism

L(G) ∼=
⊕

σ∈Ĝ
Mdσ ,dσ (C), (1.1)

where Ĝ is a complete set of irreducible, pairwise inequivalent unitary representations
of G, L(G) is its group algebra, dσ is the dimension of σ ∈ Ĝ and Md,d(C) is the
algebra of all d × d complex matrices. Such an isomorphism is given explicitly by
the Fourier transform; see [4], Section 9.5. More generally, if K ≤ G, X = G/K and
λX is the permutation representation on L(X), the of all complex valued functions
defined on X , then

HomG(L(X), L(X)) ∼=
⊕

σ∈J
Mmσ ,mσ (C), (1.2)

where J is the set of all σ ∈ Ĝ contained in λX and mσ the multiplicity of σ in
λX ; see again [4], Section 9.4. Clearly, (1.1) is a particular case of (1.2), because
HomG(L(G), L(G)) ∼= L(G). The spherical Fourier transform in the setting of (1.2)
has been extensively studied when (G, K ) is a Gelfand pair, that is when the algebra
HomG(L(X), L(X)) is commutative, which is equivalent to say that L(X) is multi-
plicity free. There are several accounts on this subject and on its many applications;
see [1,4,14]. In [21–23] we constructed a spherical Fourier transform on homoge-
neous spaces with multiplicity and gave several applications, mainly to probability
and statistics (an earlier example may be found in [20]). We showed that multiplicity
freeness is not an essential tool in order to develop a satisfactory theory and to perform
explicit calculations.

In the present paper we face a more general problem. Suppose that (θ, V ) is an
irreducible, unitary K -representation. Then we have again

HomG(IndGK V, IndGK V ) =
⊕

σ∈J
HomG(mσWσ ,mσWσ ) ∼=

⊕

σ∈J
Mmσ ,mσ (C), (1.3)

where J is the set of all σ ∈ Ĝ (with representation space Wσ ) contained in IndGK θ

and mσ is the multiplicity of σ in IndGK θ . The aim of the present paper is to introduce
a Fourier transform that gives an explicit form of (1.3). That is, we develop a theory
of spherical functions dropping two usual assumptions: (1) that the representation is
induced from the trivial one; (2) that it decomposes without multiplicity (actually, 2)
was already dropped in [21].

The plan of the paper is the following. Section 2 is devoted to fix notation and to
introduce one of the key ideas of the paper: the use of normalized Hilbert–Schmidt
scalar products in spaces of intertwining operators. This leads to several natural orthog-
onality relations: in Sect. 3 these are obtained by a detailed analysis of Frobenius
reciprocity. Most of the single results in this section are not new, but the entire picture
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Induced representations and harmonic analysis. . . 939

that we develop has never been given. In particular, for σ ∈ J , the explicit isomor-
phism between HomK (V,ResGKWσ ) and HomG(Wσ , IndGK V ) and a particular choice
of an orthonormal basis in HomK (V,ResGKWσ ) lead to an explicit orthogonal decom-
position of the σ -isotypic component in IndGK V . This is a new result that, in the case
of a Gelfand pair, corresponds to the choice of a K -invariant vector in each spherical
representation and to the use of the spherical functions to decompose the permutation
representation; see Section 4.6 in [4]. In Sect. 4 the results on Frobenius reciprocity are
used to construct a natural orthogonal basis in HomG(IndGK V, IndGK V ). The associated
Fourier transform is our first explicit form of (1.3) and another important new result.
In [9,10,24] the Hecke algebra was introduced as a subalgebra of L(G), then, using
the theory of idempotents in group algebras, IndGK V was identified with a subspace of
L(G). In Sect. 5 of the present paper we use a new and different approach: the theory
developed in Sect. 3 naturally yields an isometric immersion of IndGK V in L(G) and
this isometry may be used as a tool to translate the harmonic analysis in Sect. 4 into a
harmonic analysis in the Hecke algebra. Adapted bases for the irreducible represen-
tations of G involved in the decomposition of IndGK θ yield a complete set of matrix
coefficients, that is of spherical functions, for noncommutative Hecke algebras. This
is the most important result of the paper. The irreducible characters of the algebra
HomG(IndGK V, IndGK V ) were computed by C.W. Curtis and T.V. Fossum in [9]. But
their results can be used only for the Fourier analysis of functions in the center of the
algebra. In the setting of our more general theory, the results of Curtis and Fossum
may be easily derived and in a more transparent form. In Sect. 6 all the theory is
illustrated by an explicit example, namely when G (resp. K ) is the affine group over
the field Fqm (resp. Fq ). In Sect. 7 we develop a theory of Gelfand–Tsetlin bases:
when it is applicable, it leads to a natural orthonormal basis for HomK (V,ResGKWσ )

and to a corresponding basis for the σ -isotypic component of IndGK V . The first one is
obtained by means of iterated restrictions, while the second one is obtained by iterated
inductions.

Motivationsmay be found in our preceding papers [20–23], where only permutation
representations were studied and applied. Concrete examples of spherical functions
associated with induced representations are in [16,25], but the authors of these papers
consider only multiplicity free induced representations of one-dimensional represen-
tations. Hecke algebras play a fundamental role in the representation theory of finite
reductive groups: see [1,15].

It should be interesting to examine the case in which K is a normal subgroup using
Clifford theory (see [5]). Another direction of research might be the extension of our
results for permutation representations of wreath products (see [3,6,21]) to induced
representations. A parallel theory was developed by D’Angeli and Donno in [11–13]
by generalizing some constructions that arise in the setting of association schemes.

2 Preliminaries

In this section, in order to fix notation, we recall some basic facts on finite dimensional
linear operators and on the representation theory of finite groups. The scalar product on
a finite dimensional Hermitian vector space V is denoted by 〈·, ·〉V and the associated
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940 F. Scarabotti, F. Tolli

normby‖·‖V ;weusually omit the subscript if the vector space is clear from the context.
All the vector spaceswill beHermitian, and thereforewewill omit this adjective.Given
two finite dimensional vector spacesW,U we denote by Hom(W,U ) the vector space
of all linear maps T : W → U and by T ∗ the adjoint of T . We define a (normalized
Hilbert–Schmidt) scalar product on Hom(W,U ) by setting

〈T1, T2〉Hom(W,U ) =
1

dimW
tr(T ∗2 T1)

for all T1, T2 ∈ Hom(W,U ). Since tr(T ∗2 T1) = tr(T1T ∗2 ) we have

〈T1, T2〉 = dimU

dimW
〈T ∗2 , T ∗1 〉 (2.1)

In particular, the map Hom(W,U ) 
 T �→
√

dimU
dimW T ∗ ∈ Hom(U,W ) is a bijec-

tive isometry. Finally, note that if IW : W → W is the identity operator then
‖IW‖Hom(W,W ) = 1.

We consider only unitary representations of finite groups and the adjective unitary
will be usually omitted. If σ is a representation of a finite group G its dimension
will be denoted by dσ . If (σ,W ) and (ρ,U ) are two representations of G we denote
by HomG(W,U ) = {T ∈ Hom(W,U ) : Tσ(g) = ρ(g)T,∀g ∈ G}, the space of
all intertwining operators. Observe that if T belongs to HomG(W,U ) then also T ∗
belongs to HomG(U,W ).

If (σ,W ) is irreducible and m = dimHomG(W,U ) then U contains m copies of
W . In this case we say that T1, T2, . . . , Tm ∈ HomG(W,U ) give rise to an isomet-
ric orthogonal decomposition of the W -isotypic component mW of U if for every
w1, w2 ∈ W and i, j ∈ {1, 2, . . . ,m}we have 〈Tiw1, Tjw2〉U = 〈w1, w2〉W δi, j . This
implies that the subrepresentation of U isomorphic to mW is equal to the orthogonal
direct sum

T1W ⊕ T2W ⊕ · · · ⊕ TmW

and each operator Tj is a isometry from W to RanTj ≡ TjW .

Lemma 2.1 Suppose that (σ,W ) is irreducible. Then the operators T1, T2, . . . , Tm
give rise to an isometric orthogonal decomposition of the W component of U if and
only if T1, T2, . . . , Tm form an orthonormal basis for HomG(W,U ). Moreover, if this
is the case, then we have:

T ∗j Ti = δi, j IW . (2.2)

Proof Suppose that T1, T2, . . . , Tm formanorthonormal basis forHomG(W,U ). Then
T ∗j ∈ HomG(U,W ). Therefore T ∗j Ti ∈ HomG(W,W ) and, by Schur’s lemma, there
exist λi, j ∈ C such that T ∗j Ti = λi, j IW . By taking the traces of both sides, we get

δi, j dσ = tr(T ∗j Ti ) = λi, j dσ ⇒ λi, j = δi, j ,
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Induced representations and harmonic analysis. . . 941

that is (2.2). Therefore, if w1, w2 ∈ W then

〈Tiw1, Tjw2〉U = 〈T ∗j Tiw1, w2〉W = δi, j 〈w1, w2〉W .

The converse implication is trivial. ��
Let (σ,W ) be a representation of G and let {w1, w2, . . . , wdσ } an orthonormal

basis of W . The corresponding matrix coefficients are defined by setting uσ
j,i (g) =

〈σ(g)wi , w j 〉, for i, j = 1, 2, . . . , dσ and g ∈ G. For σ, ρ ∈ Ĝ we set δσ,ρ = 1,
if σ and ρ are equivalent, otherwise we set δσ,ρ = 0. Let L(G) = { f : G → C}
be the vector space of all complex valued functions defined on G, endowed with the
scalar product 〈 f1, f2〉 = ∑

g∈G f1(g) f2(g) for f1, f2 ∈ L(G). It also has a natural
structure of an algebra by defining the convolution product of f1, f2 ∈ L(G) as the
function ( f1 ∗ f2)(g) = ∑

g0∈G f1(gg
−1
0 ) f2(g0), for all g ∈ G. We recall (see [4])

that if σ, ρ ∈ Ĝ then

〈uσ
i, j , u

ρ
h,k〉 =

|G|
dσ

δσ,ρδi,hδ j,k (orthogonality relations) (2.3)

uσ
i, j ∗ uρ

h,k =
|G|
dσ

δσ,ρδ j,hu
σ
i,k (convolution property). (2.4)

Let (σ,W ) be a G-representation and denote by χσ its character. The following
elementary formula is a generalization of (2) in Exercise 9.5.8 of [4].

Proposition 2.2 If (σ,W ) is irreducible, w ∈ W is a vector of norm 1 and φ(g) =
〈σ(g)w,w〉 is the diagonal matrix coefficient associated with w, then

χσ (g) = dσ

|G|
∑

h∈G
φ(h−1gh) ∀g ∈ G. (2.5)

Let K be a subgroup of G, (θ, V ) a representation of K and denote by λ = IndGK θ

the induced representation (see for instance, [1,2,7]). The representation space is given
by

IndGK V = { f : G → V : f (gk) = θ(k−1) f (g), ∀g ∈ G, k ∈ K } (2.6)

and λ is defined by setting [λ(g0) f ](g) = f (g−10 g), for all f ∈ IndGK V , g, g0 ∈ G.
Let G = ∐

t∈T t K be a decomposition of G into left K -cosets (
∐

denotes a disjoint
union). For v ∈ V we define fv ∈ IndGK V by setting

fv(g) =
{

θ(g−1)v if g ∈ K
0 if g /∈ K .

(2.7)

Then for every f ∈ IndGK V we have:

f =
∑

t∈T
λ(t) fvt (2.8)
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942 F. Scarabotti, F. Tolli

with vt = f (t). The representation IndGK θ is unitary with respect to the following
scalar product: 〈 f1, f2〉IndG

K V
= 1
|K |

∑
g∈G〈 f1(g), f2(g)〉V . Moreover, if {v j : j =

1, 2, . . . , dθ } is an orthonormal basis in V then the set

{λ(t) fv j : t ∈ T , j = 1, 2, . . . , dθ } (2.9)

is an orthonormal basis in IndGK V (see [2]).
Finally, we recall the transitive property of the induction (cf. [2,7]). Let H be a

subgroup of G containing K (i.e. K ≤ H ≤ G). Then

IndGH [IndHK V ] ∼= IndGK V . (2.10)

Indeed, the left hand side may be seen as the set of all F : G × H → V such that
F(gh, h0k) = θ(k−1)F(g, hh0), for all g ∈ G, h, h0 ∈ H and k ∈ K . With the right
hand side as in (2.6), we have that the isomorphism in (2.10) is given by the map

F �→ f (2.11)

where f (g) = F(g, 1G) for all g ∈ G (note that F is uniquely determined by f ,
because F(g, h) = f (gh) for all g ∈ G and h ∈ H ).

3 Orthogonality relations for Frobenius reciprocity

Let G be again a finite group, K ≤ G a subgroup, (σ,W ) a representation of G
and (θ, V ) a representations of K . Frobenius reciprocity is usually stated an explicit
isomorphism between HomG(W, IndGK V ) and HomK (ResGKW, V ).

Definition 3.1 (a) For each T ∈ HomG(W, IndGK V ) we set

∧
Tw = √|G/K |[Tw](1G), for allw ∈ W.

(b) For each L ∈ HomK (ResGKW, V ) we set

[∨Lw](g) = 1√|G/K | Lσ(g−1)w, for all w ∈ W, g ∈ G.

(c) For each T ∈ HomG(IndGK V,W ) we set

◦
T v = √|G/K |T fv, for all v ∈ V .

(d) For each L ∈ HomK (V,ResGKW ) we set

�
L f = 1√|G/K |

∑

t∈T
σ(t)L f (t), for all f ∈ IndGK V .
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Note that L ∈ HomK (V,ResGKW ) implies that σ(k)L f (t) = Lθ(k) f (tk) = L f (t),
so that

�
L f = 1√|G| · |K |

∑

t∈T

∑

k∈K
σ(tk)L f (tk) = 1√|G| · |K |

∑

g∈G
σ(g)L f (g).

In particular,
�
L does not depend on the particular choice of T .

Theorem 3.2 (Frobenius reciprocity revisited)

(a) For each T ∈ HomG(W, IndGK V ) we have
∧
T ∈ HomK (ResGKW, V ) and the map

HomG(W, IndGK V ) −→ HomK (ResGKW, V )

T �−→ ∧
T

is a linear isometric isomorphism. Moreover, its inverse is given by

HomK (ResGKW, V ) −→ HomG(W, IndGK V )

L �−→ ∨
L.

(b) For each T ∈ HomG(W, IndGK V ) we have (T ∗)◦ = (
∧
T )∗. In particular, the

diagram

HomG(W, IndGK V )
∧−→ HomK (ResGKW, V )

∗ ↓ ∗ ↓
HomG(IndGK V,W )

�−→ HomK (V,ResGKW )

is commutative.

Proof (a) Let T ∈ HomG(W, IndGK V ) and recall that λ = IndGk θ . Then

∧
Tσ(k)w = √|G/K |[Tσ(k)w](1G) = √|G/K |[λ(k)Tw](1G)

= √|G/K |[Tw](k−1) = √|G/K |θ(k)[Tw](1G) = θ(k)
∧
Tw,

for all k ∈ K and w ∈ W and this proves that
∧
T ∈ HomK (ResGKW, V ). The

identity

[Tw](g) = [λ(g−1)Tw](1G) = [Tσ(g−1)w](1G) = 1√|G/K |
∧
Tσ(g−1)w

(3.1)
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944 F. Scarabotti, F. Tolli

shows that the map T �→ ∧
T is injective, because T is determined by

∧
T . Now we

use (3.1) to show that the map is also an isometry. If T1, T2 ∈ HomG(W, IndGK V )

and {w1, w2, . . . , wdσ } is an orthonormal basis of W then

tr(T ∗2 T1) =
dσ∑

i=1
〈T1wi , T2wi 〉IndG

K V
=

dσ∑

i=1

1

|K |
∑

g∈G
〈[T1wi ](g), [T2wi ](g)〉V

(by(3.15)) =
dσ∑

i=1

1

|G|
∑

g∈G
〈 ∧T1σ(g−1)wi ,

∧
T2σ(g−1)wi 〉V

= 1

|G|
∑

g∈G
tr[σ(g)(

∧
T2)
∗ ∧T1σ(g−1)] = tr[( ∧T2)∗

∧
T1],

that is 〈T1, T2〉 = 1
dσ
tr(T ∗2 T1) = 1

dσ
tr[(∧T 2)

∗ ∧T 1] = 〈
∧
T 1,

∧
T 2〉. It is easy to see

that if L ∈ HomK (ResGKW, V ) then [∨Lw](gk) = θ(k−1)[∨Lw](g) and λ(g)
∨
Lw =

∨
Lσ(g)w for all g ∈ G, k ∈ K , w ∈ W , that is,

∨
Lw ∈ IndGK V and

∨
L ∈

HomG(W, IndGK V ). Finally, by definition of ∧ and ∨ we have

(∨
L
)∧

w = √|G/K |[∨Lw](1G) = Lw

for all w ∈ W , that is the map T �→ ∧
T is surjective and L �→ ∨

L is its inverse.
(b) For any T ∈ HomG(W, IndGK V ), w ∈ W and v ∈ V we have (by definition of ◦):

1√|G/K | 〈(T ∗)◦v, w〉W = 〈T ∗ fv, w〉W = 〈 fv, Tw〉IndG
K V
= 1
|K |

∑
g∈G
〈 fv(g), [Tw](g)〉V

(by (2.10)) = 1
|K |

∑
k∈K
〈θ(k−1)v, [Tw](k)〉V = 1

|K |
∑
k∈K
〈v, θ(k)[Tw](k)〉V

= 1√|G/K | 〈v,
∧
Tw〉V = 1√|G/K |

〈
(
∧
T )∗v, w

〉

W
.

��
For the following corollary, see also Corollary 34.1 in [1] and Section 2.3 in [21].

Corollary 3.3 (The other side of Frobenius reciprocity)

(a) Let T ∈ HomG(IndGK V,W ). Then
◦
T ∈ HomK (V,ResGKW ) and the map

HomG(IndGK V,W ) −→ HomK (V,ResGKW )

T �−→ ◦
T

is a linear isomorphism with 〈 ◦T 1,
◦
T 2〉 = |G/K |〈T1, T2〉, for all T1, T2 ∈

HomG(IndGK V,W ). The inverse is given by
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HomK (V,ResGKW ) −→ HomG(IndGK V,W ).

L �−→ �
L

(b) We have (L∗)∨ =
( �
L
)∗

for all L ∈ HomK (V,ResGKW ).

Proof (a) Besides the statement that the map L �→ �
L is the inverse of T �→ ◦

T ,
everything follows from Theorem 3.2, (2.1) and the isomorphisms T �→ T ∗.
For all T ∈ HomG(IndGK V,W ), φ ∈ IndGK V , the definitions of

�
L and

◦
T , with

vt = φ(t), yield:

(
◦
T )�φ = 1√|G/K |

∑

t∈T
σ(t)

◦
Tφ(t) =

∑

t∈T
σ(t)T fvt =

∑

t∈T
Tλ(t) fvt

(by (2.11)) = Tφ.

For completeness, we derive also 〈 ◦T 1,
◦
T 2〉 = |G/K |〈T1, T2〉: taking into account

Theorem 3.2 and (2.1), for T1, T2 ∈ HomG(IndGK V,W ) we have:

〈 ◦T 1,
◦
T 2〉 = 〈[(T ∗1 )∧]∗, [(T ∗2 )∧]∗〉 = dσ

dθ

〈(T ∗2 )∧, (T ∗1 )∧〉

= dσ

dθ

〈T ∗2 , T ∗1 〉|G/K |〈T1, T2〉.

(b) From (b) in Theorem 3.2 it follows that
{[

(L∗)∨
]∗}◦ =

{[
(L∗)∨

]∧}∗ = L =
{[( �

L

)∗]∗}◦
.

��
Corollary 3.4 (Orthogonality relations for Frobenius reciprocity I) Let m be the
dimension of HomG(W, IndGK V ) and suppose that L1, L2, . . . , Lm ∈
HomK (V,ResGKW ). Then the following facts are equivalent:

(a) {L1, L2, . . . , Lm} is an orthonormal basis of HomK (V,ResGKW );

(b)

{√|G/K | �L1,
√|G/K | �L2, . . . ,

√|G/K | �Lm

}
is an orthonormal basis of

HomG(IndGK V,W );

(c)
{√

dσ

dθ
L∗1,

√
dσ

dθ
L∗2, . . . ,

√
dσ

dθ
L∗m

}
is an orthonormal basis of HomK (ResGKW, V );

(d)
{√

dσ

dθ
(L∗1)∨,

√
dσ

dθ
(L∗2)∨, . . . ,

√
dσ

dθ
(L∗m)∨

}
is an orthonormal basis of

HomG(W, IndGK V ).

Corollary 3.5 (Orthogonality relations for Frobenius reciprocity II) Suppose that

(σ,W ) and (θ, V ) are irreducible. Then
√

dσ

dθ
(L∗1)∨,

√
dσ

dθ
(L∗2)∨, . . . ,

√
dσ

dθ
(L∗m)∨ give

123



946 F. Scarabotti, F. Tolli

rise to an isometric orthogonal decomposition of the W-component of IndGK V if and
only if L1, L2, . . . , Lm give rise to an isometric orthogonal decomposition of the
V -component of ResGKW.

Proof It follows from Theorem 3.2 and Lemma 2.1. ��
In what follows, we will often use the identity in (b), Corollary 3.3, that is (L∗j )∨ =

(
�
L j )
∗. The following commutative diagram is helpful tomemorize the previous results.

HomG(W, IndGK V )

∧−→
∨←− HomK (ResGKW, V )

∗ � � ∗
HomG(IndGK V,W )

�−→
♦←−

HomK (V,ResGKW )

Remark 3.6 In [17], a different version of orthogonality relations for Frobenius reci-
procity is developed.Actually, the authorworks in amore general setting: she considers
representations over fields of characteristic zero and her spaces are endowed with
arbitrary non-degenerate symmetric bilinear forms. However, we limit ourselves to
illustrate and derive her main result in our setting. Theorem 2.1 of [17] may be
expressed in the following way: under the assumption that W is G-irreducible,

if L ∈ HomK (V,ResGKW ) is an isometry then also
√

dσ

dθ
(L∗)∨ ≡

√
dσ

dθ
(
�
L)∗ ∈

HomG(W, IndGK V ) is an isometry. This is our derivation: if L is an isometry, then

‖L‖ = 1 and therefore also ‖
√

dσ

dθ
(L∗)∨‖ = 1. Arguing as in Lemma 2.1, it is easy

to show that this fact implies that
√

dσ

dθ
(L∗)∨ is an isometry. Finally, we note that

Theorem 2.4 in [17] is a version of our Corollary 3.5.

4 Harmonic analysis in HomG(IndGKV, Ind
G
KV )

Now we construct an orthonormal basis of the commutant of IndGK V from the ortho-
normal bases analyzed in the previous section. This way we can introduce a Fourier
transform that gives an explicit isomorphism between HomG(IndGK V, IndGK V ) and⊕

σ∈J Mmσ ,mσ (C).
Let (θ, V ) be an irreducible representation of K ≤ G and (σ,W ) an irreducible

representation of G. Consider L1, L2 ∈ HomK (V,ResGKW ). Then we have L∗1 ∈
HomK (ResGKW, V ) and (L∗1)∨ ∈ HomG(W, IndGK V ), so that (

�
L1)
∗ �L2 = (L∗1)∨

�
L2 ∈

HomG(IndGK V, IndGK V ).

Lemma 4.1 Let (σ1,W1) and (σ2,W2) be two irreducible inequivalent representa-
tions of G. Consider L1, L2∈HomK (V,ResGKW2) and L3, L4∈HomK (V,ResGKW1).
Then
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�
L3(

�
L1)
∗ = 0 and

〈
(
�
L1)
∗ �L2, (

�
L3)
∗ �L4

〉
= 0. (4.1)

Proof By Schur’s lemma,
�
L3(

�
L1)
∗ ∈ HomG(W2,W1) = {0}. Moreover, by definition

of scalar product in HomG(IndGK V, IndGK V ) we have

〈
(
�
L1)
∗ �L2, (

�
L3)
∗ �L4

〉
= 1

dim IndGK V
tr

[
(
�
L4)
∗ �L3(

�
L1)
∗ �L2

]
= 0.

��
Lemma 4.2 Let (σ,W ) be an irreducible representation of G and {L1, L2, . . . , Lm}
an orthonormal basis of HomK (V,ResGKW ). Then

�
Lh(

�
Li )
∗ = dθ

dσ

IW δi,h . (4.2)

and the operators (
�
Li )
∗ �L j ∈ HomG(IndGK V, IndGK V ) satisfy the orthogonality rela-

tions:

〈
(
�
Li )
∗ �L j , (

�
Lh)
∗ �L	

〉
= δi,hδ j,	

dθ

dσ |G/K | .

Proof The identity (4.2) follows from (2.2) and Corollary 3.5. Moreover,

〈
(
�
Li )
∗ �L j , (

�
Lh)
∗ �L	

〉
= 1

dim IndGK V
tr

[
(
�
L	)
∗ �Lh(

�
Li )
∗ �L j

]

(by (4.17)) = δi,hdθ

dσ dim IndGK V
tr

[
(
�
L	)
∗ �L j

]

(by (b) in Corollary (3.4)) = δi,hδ j,	
dθ

dσ |G/K | .

��
Now we use the notation in (1.3). For every σ ∈ J select an orthonormal basis

{Lσ,1, Lσ,2, . . . , Lσ,mσ } (4.3)

of HomK (V,ResGKWσ ) and set

Uσ
i, j =

dσ

dθ

(
�
Lσ,i )

∗ �Lσ, j , i, j = 1, 2, . . . ,mσ . (4.4)

For every T ∈ HomG(IndGK V, IndGK V ) and σ ∈ J , the Fourier transform of T at σ

associated to the choice of (4.3) is the following matrix in Mmσ ,mσ (C):
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948 F. Scarabotti, F. Tolli

[FT (σ )]i, j = dθ |G/K |
dσ

〈T,Uσ
i, j 〉, i, j = 1, 2, . . . ,mσ .

We will show that the Fourier transform is an explicit form of the isomorphism (1.3).
We need further notation. Every element in the algebra

⊕
σ∈J Mmσ ,mσ (C) may be

represented in the form
⊕

σ∈J Aσ , where Aσ ∈ Mmσ ,mσ (C). In particular, given T in
HomG(IndGK V, IndGK V ), we set

FT =
⊕

σ∈J
FT (σ ). (4.5)

We recall [7] that the irreducible representations of this algebra are given by the nat-
ural action of each Mmσ ,mσ (C) on C

mσ and that [24] the corresponding irreducible
characters are the functions {ϕσ : σ ∈ J } given by: ϕρ

(⊕
σ∈J Aσ

) = tr(Aρ). Under
the isomorphism (1.3), the irreducible representation of HomG(IndGK V, IndGK V ) cor-
responding to σ ∈ J is given by its action on the space HomG(Wσ , IndGK V ), that is by
the map S �→ T S, where T ∈ HomG(IndGK V, IndGK V ) and S ∈ HomG(Wσ , IndGK V ).
In what follows, we will also indicate by ϕσ the character of the isomorphic algebra
HomG(IndGK V, IndGK V ).

Theorem 4.3 (a) The set

{√
dθ |G/K |

dσ

Uσ
i, j : σ ∈ J, i, j = 1, 2 . . . ,mσ

}
(4.6)

is an orthonormal basis of HomG(IndGK V, IndGK V ). In particular, the Fourier
inversion formula is: T =∑

σ∈J
∑mσ

i, j=1[FT (σ )]i, jUσ
i, j .

(b) Setting Tσ,i =
√

dσ

dθ
(
�
Lσ,i )

∗, we have the isometric orthogonal decomposition

IndGK V =
⊕

σ∈J
⊕mσ

i=1 Tσ,iWσ , and the corresponding explicit isomorphism

HomG(IndGK V, IndGK V ) −→
⊕

σ∈J
Mmσ ,mσ (C)

T �−→ FT .

(c) The operator Uσ
i, j intertwines the subspace Tσ, jWσ with Tσ,iWσ .

(d) The operator Uσ
i,i is the orthogonal projection of IndGK V onto Tσ,iWσ .

(e) The irreducible characters of HomG(IndGK V, IndGK V ) are the functions {ϕσ : σ ∈
J } given by:

ϕσ (T ) = tr [FT (σ )] , ∀ T ∈ HomG(IndGK V, IndGK V ).

Proof FromLemmas4.1 and4.2wededuce that the set (4.6) is orthonormal.Moreover,
dim HomG(IndGK V, IndGK V ) =∑

σ∈J m2
σ so that it is a basis. For the other assertions

just note that Tσ,i is an isometry and that, by (4.1) and (4.2), we have
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Uσ
i, jU

ρ
h,l = δσ,ρδ j,hU

σ
i,l , Uσ

i, j Tρ,h = δσ,ρδ j,hTσ,i ,

and therefore

T Tσ, j =
mσ∑

i=1
[FT (σ )]i, j Tσ,i ,

for all σ, ρ ∈ J , i, j = 1, 2, . . . ,mσ , h, l = 1, 2, . . . ,mρ and T ∈ HomG(IndGK V,

IndGK V ). ��

5 Harmonic analysis in the Hecke algebra

As in the previous section, G is a finite group, K ≤ G, (θ, V ) an irreducible
K -representation and (σ,W ) an irreducible G-representation. The left regular rep-
resentation of G is denoted by λG (to distinguish it from λ = IndGK θ ); as usual,
[λG(g) f ](g0) = f (g−1g0) for all f ∈ L(G), g, g0 ∈ G. We choose v ∈ V with
‖v‖ = 1 and define ψ ∈ L(K ) and Tv ∈ Hom(IndGK V, L(G)) by setting

ψ(k) = dθ

|K | 〈v, θ(k)v〉, for all k ∈ K ;

(Tv f )(g) =
√
dθ /|K |〈 f (g), v〉 for all f ∈ IndGK V, g ∈ G

The following projection formula will be a very useful tool.

Lemma 5.1 If v ∈ V has norm 1, then we have

∑

k∈K
〈θ(k)u, v〉θ(k−1)v = |K |

dθ

u, ∀u ∈ V . (5.1)

Proof Let {v1, v2, . . . , vdθ } be an orthonormal basis of V with v = v1. Then, for
i, j = 1, 2, . . . , dθ , we have, taking into account the orthogonality relations in L(K ),

〈
∑

k∈K
〈θ(k)vi , v〉θ(k−1)v, v j

〉
=

∑

k∈K
〈θ(k)vi , v1〉〈θ(k)v j , v1〉 = |K |

dθ

δi, j .

Therefore we have proved (5.1) when u = vi and the general case follows by linearity.
��

Proposition 5.2 (a) Tv belongs to HomG(IndGK V, L(G)) and it is an isometry.
(b) Since ψ ∈ L(K ) ⊆ L(G), we can define P : L(G) −→ L(G), by setting

P f = f ∗ψ for all f ∈ L(G). Then P is the orthogonal projection of L(G) onto
Tv[IndGK V ]
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Proof (a) It is obvious that Tvλ(g) f = λG(g)Tv f . To show that Tv is an isometry,
we use the basis in (2.9): assuming that v = v1 we have, for t1, t2 ∈ T , i, j =
1, 2, . . . , dθ ,

〈Tvλ(t1) fvi , Tvλ(t2) fv j 〉L(G) = dθ

|K |
∑

g∈G
〈 fvi (t−11 g), v〉〈 fv j (t

−1
2 g), v〉

(by (2.10)) = dθ

|K |δt1,t2
∑

k∈K
〈θ(k−1)vi , v1〉〈θ(k−1)v j , v1〉

(by (2.6)) = δt1,t2δi, j .

(b) First of all, note that ψ ∗ ψ = ψ and ψ(g−1) = ψ(g). The first identity follows
from (2.4) applied to θ and ensures that P is an idempotent; from the second
identitywededuce that P is selfadjoint, and therefore it is an orthogonal projection.
Moreover, for all f ∈ IndGK V, g ∈ G we have

[(Tv f ) ∗ ψ](g) =
(

dθ

|K |
)3/2 ∑

k∈K
〈 f (gk−1), v〉〈v, θ(k)v〉

(by (2.9)) =
(

dθ

|K |
)3/2

〈
f (g),

∑

k∈K
〈θ(k)v, v〉θ(k−1)v

〉

(by (5.22)) = (Tv f )(g)

that is, PTv f = Tv f for all f ∈ IndGK V (and in particular RanP ⊇ TvIndGK V ) .
Finally, for all φ ∈ L(G), g ∈ G, we have

Pφ(g) =
∑

k∈K
φ(gk)ψ(k−1) = dθ

|K |

〈
∑

k∈K
φ(gk)θ(k)v, v

〉
= Tv f (g),

if f (g) = √dθ /|K |∑k∈K φ(gk)θ(k)v. Since it is immediate to check that f
belongs to IndGK V , we conclude that RanP is contained in (and therefore equal
to) Tv

[
IndGK V

]
. ��

Remark 5.3 We want to relate the operator Tv in the context of the results in Section
3. First note that the choice of v is equivalent to the choice of an isometry L ∈
Hom(C, V ), namely L(α) = αv for α ∈ C. Then, with K , V,G,W replaced by
1K , C, K , V we have:

[(L∗)∨u](k) = 1√|K | 〈u, θ(k)v〉 for all u ∈ V and k ∈ K

(L∗u = 〈u, v〉 for all u ∈ V ) and the map Sv = √dθ (L∗)∨ is an isometric immersion
ofV into L(K ) (this is also an easy consequence of the orthogonality relation formatrix
coefficients). Since Sv ∈ HomK (V,ResGK L(G)) (because L(K ) ⊆ ResGK L(G) in the
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natural way), it is easy to prove that Tv = √|G/K | �Sv , where in this case we apply
the machinery in Sect. 3 with K , V and G as in that section, but with W replaced by
L(G).

In the terminology of [9,10,24], ψ is a primitive idempotent, Sv(V ) = { f ∈
L(K ) : f ∗ψ = f } is the minimal left ideal in L(K ) generated by ψ and Tv[IndGK V ]
is generated by ψ as a left ideal in L(G). Then, the Hecke algebraH(G, K , ψ) is by
definition

H(G, K , ψ) = {ψ ∗ f ∗ ψ : f ∈ L(G)} ≡ { f ∈ L(G) : f = ψ ∗ f ∗ ψ}.

It is well known that H(G, K , ψ) is antiisomorphic to HomG(IndGK V, IndGK V ): we
now want to go further and develop a suitable harmonic analysis in H(G, K , ψ), by
translating the results of Sect. 4. First of all, we introduce a suitable orthonormal
basis in each G-irreducible representation. We divide the description of these bases in
various cases.

Suppose that σ ∈ J and that ResGKWσ = mσV ⊕
(⊕ρ∈RmρUρ

)
is the

decomposition of ResGKWσ into irreducible K -representations, where R contains the
representations different from σ . Let {Lσ,1, Lσ,2, . . . , Lσ,mσ } be as in (4.3) and v as
above. We begin by introducing an orthonormal basis in the V -isotypic component.
The first step consists in setting

wσ
i = Lσ,iv, i = 1, 2, . . . ,mσ . (5.2)

In the second and last step we introduce (see also Lemma 5.1) an orthonormal basis
v1, v2, . . . , vdθ of V with v = v1 and we suppose that {wσ

h : mσ + 1 ≤ h ≤ mσdθ }
is an arbitrary arrangement of the vectors {Lσ,iv j : 1 ≤ i ≤ mσ , 2 ≤ j ≤ dθ }. The
final result

{wσ
h : 1 ≤ h ≤ mσdθ }

is the desired orthonormal basis in mσV .
Then we repeat the construction for each Uρ, ρ ∈ R, without an initial

choice of a vector in Uρ (we avoid the first step): we select an orthonormal
basis {Mρ,1, Mρ,2, . . . , Mρ,mρ } for HomK (Uρ,ResGKWσ ), an orthonormal basis
{uρ

1 , u
ρ
2 , . . . , u

ρ
dρ
} in Uρ and we suppose that

{wσ
h : mσdθ + 1 ≤ h ≤ dσ }

is an arbitrary arrangement of the vectors {Mρ,i u
ρ
j : ρ ∈ R, 1 ≤ i ≤ mρ, 1 ≤ j ≤

dρ}. The final result is an orthonormal basis {wσ
h : 1 ≤ h ≤ dσ } for Wσ : we say that

it is adapted to the choice of v and of {Lσ,1, Lσ,2, . . . , Lσ,mσ }.
If σ /∈ J then {wσ

h : 1 ≤ h ≤ dσ } is an arbitrary orthonormal basis of Wσ . The
importance of such bases is in the following properties.
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Lemma 5.4 (a) If σ ∈ J , 1 ≤ j ≤ mσ and 1 ≤ h ≤ dσ then

L∗σ, jw
σ
h =

{
v	 i f wσ

h = Lσ, jv	 f orsome 	 ∈ {1, 2, . . . , dθ }
0 otherwise.

(5.3)

(b)
∑

k∈K
ψ(k)σ (k)wσ

i =
{ |K |

dθ
wσ
i i f σ ∈ J, 1 ≤ i ≤ mσ

0 otherwise.
(5.4)

Proof (a) This is a consequence of (2.2) and the definition of the vectors wσ
h .

(b) First of all, note that

∑

k∈K
ψ(k)σ (k)wσ

i =
dθ

|K |
∑

k∈K
〈θ(k)v, v〉σ(k−1)wσ

i .

If σ ∈ J and 1 ≤ i ≤ mσ , then we may apply (5.1) since σ(k−1)wσ
i =

σ(k−1)Lσ,iv = Lσ,iθ(k−1)v. Otherwise, we can argue as in the proof of (5.1):
the bases are adapted to the choice of v and to the decomposition of ResGKWσ

and therefore we may use the orthogonality relations for the matrix coefficients
in L(K ). For instance, if σ ∈ J andmσ < i ≤ mσdθ thenwσ

i = Lσ,hv j for some
1 ≤ h ≤ mσ , 2 ≤ j ≤ dθ , and therefore, for all 	 = 1, 2, . . . , dσ

〈
∑

k∈K
〈θ(k)v, v〉σ(k−1)Lσ,hv j , w

σ
	

〉
=

∑

k∈K
〈θ(k)v, v〉〈θ(k−1)v j , L

∗
σ,hw

σ
	 〉 = 0

because if L∗σ,hw
σ
	 �= 0 by (5.3) it is equal to one of the v1, v2, . . . , vdθ and

j ≥ 2. In the other cases we are dealing with matrix coefficients corresponding
to inequivalent K -representations.

��

The matrix coefficients of σ corresponding to the bases chosen above are uσ
i, j (g) =

〈σ(g)wσ
j , w

σ
i 〉, σ ∈

∧
G, i, j = 1, 2, . . . , dσ , g ∈ G. We define the convolution opera-

tors

Ũσ
i, j f =

dσ

|G| f ∗ u
σ
j,i , where f ∈ L(G), σ ∈ J, i, j = 1, 2, . . . ,mσ .

Now we show that Ũσ
i, j corresponds to U

σ
i, j in (4.4) under the isometry Tv .

Theorem 5.5 For all σ ∈ J , i, j = 1, 2, . . . ,mσ and f ∈ IndGK V we have:

TvU
σ
i, j f = Ũσ

i, j Tv f,
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that is, the following diagram is commutative:

IndGK V
Tv−→ Tv[IndGK V ]

Uσ
i, j ↓ ↓ Ũσ

i, j

IndGK V
Tv−→ Tv[IndGK V ].

Proof For all g ∈ G we have:

[TvU
σ
i, j f ](g) =

dσ√|K |dθ

〈[(L∗σ,i )
∨ �Lσ, j f ](g), v〉

= dσ

|G|√|K |dθ

∑

g1∈G
〈L∗σ,iσ(g−1g1)Lσ, j f (g1), v〉

(Lσ,iv = wσ
i ) = dσ

|G|√|K |dθ

∑

g1∈G

dσ∑

h=1
〈 f (g1), L∗σ, jw

σ
h 〉〈σ(g−11 g)wσ

i , wσ
h 〉

(by (5.24)) = dσ

|G|√|K |dθ

∑

g1∈G

dθ∑

	=1
〈 f (g1), v	〉〈σ(g−11 g)wσ

i , Lσ, jv	〉

(by (5.22) with u = v	) = dσ

|G|
√
dθ

|K |3/2
dθ∑

	=1

∑

g1∈G

∑

k∈K
〈 f (g1), θ(k−1)v〉 ·

·〈v, θ(k)v	〉〈σ(g−11 g)wσ
i , Lσ, jv	〉

(g1 = g2k) = dσ

|G|
√
dθ

|K |3/2
dθ∑

	=1

∑

g2∈G
〈 f (g2), v〉

×
〈
σ(g−12 g)wσ

i , Lσ, j

∑

k∈K
〈θ(k−1)v, v	〉θ(k)v	

〉

= dσ

√
dθ

|G|√|K |
∑

g2∈G
〈 f (g2), v〉〈σ(g−12 g)wσ

i , wσ
j 〉

(by (5.22) with u, vreplacedbyv, v	) = dσ

√
dθ

|G|√|K |
∑

g2∈G
〈 f (g2), v〉uσ

j,i (g
−1
2 g)

= [Ũi, j Tv f ](g).

��
Lemma 5.6 We have

ψ ∗ uσ
i, j ∗ ψ =

{
uσ
i, j i f σ ∈ J and 1 ≤ i, j ≤ mσ

0 otherwise.

that is, uσ
i j ∈ H(G, K , ψ) if and only σ ∈ J and 1 ≤ i, j ≤ mσ .
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Proof For all g ∈ G,

uσ
i, j ∗ ψ(g) =

∑

k∈K
uσ
j,i (kg

−1)ψ(k)

(by definition of uσ
i, j ) =

〈
σ(g−1)wσ

i ,
∑

k∈K
ψ(k)σ (k)wσ

j

〉
(5.5)

(by(5.25)) =
{
uσ
i, j (g) if σ ∈ Jand 1 ≤ j ≤ mσ

0 otherwise.

The reader can complete the proof by computing in a similar way ψ ∗ uσ
i, j . ��

We set
φσ
i, j = uσ

i, j (5.6)

for σ ∈ J , i, j = 1, 2, . . . ,mσ , that is, φσ
i, j (g) = 〈wσ

i , σ (g)wσ
j 〉 for all g ∈ G,

and these are the spherical matrix coefficients of the Hecke algebra. Compare with
Definition 9.4.5. of [4] and Definition 2.10 of [21]. If f ∈ H(G, K , ψ), its Fourier
transform at σ ∈ J is the mσ × mσ complex matrix whose i, j-entry is

[F f (σ )]i, j = 〈 f, φσ
i, j 〉L(G).

As in (4.5), we set F f = ⊕
σ∈J F f (σ ). We denote by χσ the character of the

G-irreducible representation (σ,Wσ ). Moreover, χσ ( f ) =∑
g∈G χσ (g) f (g) for all

f ∈ L(G).

Theorem 5.7 (a) The set {φσ
i, j : σ ∈ J, i, j = 1, 2, . . . ,mσ } is an orthogonal basis

forH(G, K , ψ) and ‖φσ
i, j‖2L(G) = |G|dσ

. In particular, the Fourier inversion formula
is

f = 1

|G|
∑

σ∈J
dσ

mσ∑

i, j=1
[F f (σ )]i, j φ

σ
i, j .

(b) The map

H(G, K , ψ) −→
⊕

σ∈J
Mmσ ,mσ (C)

f �−→ F f

is an isomorphism of algebras.
(c) Set φσ = ∑mσ

i=1 φσ
i,i and suppose that ϕσ is the irreducible character of

H(G, K , ψ) corresponding to Mmσ ,mσ (C). Then

ϕσ ( f ) = χσ ( f ) =
∑

g∈G
f (g)φσ (g), for all f ∈ H(G, K , ψ). (5.7)
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Moreover, the φσ ’s satisfy the following orthogonality relations:

〈φσ , φρ〉 = δσ,ρ

|G|mσ

dσ

. (5.8)

Proof (a) It follows from Lemma 5.6 and the usual orthogonality relations (2.3).
(b) The usual convolution properties of the matrix coefficients (2.4) yields

φσ
i, j ∗ φ

ρ
h,	 =

|G|
dσ

δσ,ρδ j,hφ
σ
i,	.

Then from the inversion it follows that F is an isomorphism.
(c) For all f ∈ H(G, K , ψ) and σ ∈ J , we have

ϕσ ( f ) =
mσ∑

i=1
[F f (σ )]i,i =

mσ∑

i=1
〈 f, φσ

i,i 〉 =
∑

g∈G
f (g)φσ (g)

=
mσ∑

i=1

∑

g∈G
f (g)uσ

i,i (g) = χσ ( f ),

where the last equality follows from 〈 f, uσ
i,i 〉 = 0 if i > mσ . (5.8) is obvious.

��
Remark 5.8 To each φ ∈ L(G) we can associate the convolution operator Tφ f = f ∗
ψ , for all f ∈ L(G). Since Tφ1∗φ2 = Tφ2Tφ1 , the map φ �→ Tφ is an antiisomorphism
between L(G) and HomG(L(G), L(G)), see Exercise 4.2.2. in [4]. It follows that the
map Uσ

i, j �→ Ũσ
i, j in Theorem 5.5 yields the antiisomorphism Uσ

i, j �→ φσ
j,i between

HomG(IndGK V, IndGK V ) andH(G, K , ψ) (see also [9,10,24]). Actually, these algebras
are isomorphic, because they are both isomorphic to

⊕
σ∈J Mmσ ,mσ (C). Moreover,

all other results in Theorem 4.3 may be translated in the present setting. For instance,
if we define T̃σ,i : Wσ → L(G) by setting

(T̃σ,iw)(g) = √
dσ /|G|〈w, σ(g)wσ

i 〉, for all w ∈ W, g ∈ G,

then it is easy to check that TvTσ,i = T̃σ,i and Tv[IndGK V ] =
⊕

σ∈J
⊕mσ

i=1 T̃σ,iWσ

is an isometric orthogonal decomposition. Moreover, Ũσ
i, j intertwines T̃σ, jWσ with

T̃σ,iWσ and Ũσ
i,i is the orthogonal projection onto T̃σ,iWσ .

We now prove some formulas that relate χσ , ϕσ and φσ [see also (5.7)]. We recall

that δg is the Dirac function centered at g, that is δg(g0) =
{
1 if g = g0
0 otherwise.

Theorem 5.9 We have:

χσ (g) = dσ

|G|mσ

∑

h∈G
φσ (h−1gh) (5.9)
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and
φσ (g) = ϕσ (ψ ∗ δg ∗ ψ), for all σ ∈ J and g ∈ G. (5.10)

Proof Clearly, (5.9) follows from (2.5), since φσ is the sum of the conjugate of mσ

diagonal matrix coefficients. Now we prove (5.10). Starting from (5.7) we get:

ϕσ (ψ ∗ δg ∗ ψ) =
∑

g1∈G
(ψ ∗ δg ∗ ψ)(g1)φσ (g1)

=
∑

g1∈G:
g1k
−1
2 g−1∈K

∑

k2∈K

[
ψ(g1k

−1
2 g−1)ψ(k2)

]
φσ (g1)

(k1 = g1k
−1
2 g−1) =

∑

k1,k2∈K
ψ(k1)ψ(k2)φσ (k1gk2)

(by Lemma 5.6) = φσ (g).

��
Remark 5.10 In [9] (see also [10,24]), a formula, that expresses χσ in terms of ϕσ , is
proved . In our notation it reads:

χσ (g) = |G|
|C(g)|ϕ

σ (ψ ∗ 1C(g) ∗ ψ)

[
∑

h∈G
ϕσ (ψ ∗ δh−1 ∗ ψ) · ϕσ (ψ ∗ δh ∗ ψ)

]−1

(5.11)
where C(g) denotes the conjugacy class of g ∈ G and 1C(g) its characteristic function.
We now want to deduce (5.11) from the results in the present paper. First note that by
(5.10)

∑

h∈G
ϕσ (ψ ∗ δh ∗ ψ)ϕσ (ψ ∗ δh−1 ∗ ψ) =

∑

h∈G
φσ (h)φσ (h−1) =

∑

h∈G
|φσ (h)|2

(by (2.6)) = mσ |G|
dσ

. (5.12)

Moreover, from the equality 1C(g) = |C(g)|
|G|

∑
h∈G δh−1gh , using (5.10) and then (5.9)

we get

ϕσ (ψ ∗ 1C(g) ∗ ψ) = |C(g)|
|G|

∑

h∈G
ϕσ (ψ ∗ δh−1gh ∗ ψ) = |C(g)|

|G|
∑

h∈G
φσ (h−1gh)

= |C(g)|mσ

dσ

χσ (g). (5.13)

Then (5.11) follows from (5.12) and (5.13).

The spherical functions of a finite Gelfand pair satisfy the following functional
identity 1

|K |
∑

k∈K φ(gkh) = φ(g)φ(h), for all g, h ∈ G (see Theorem 4.5.3 in [4]).
We prove an analogous identity for the spherical matrix coefficients φσ

i, j .
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Proposition 5.11 For σ ∈ J , i, j = 1, 2, . . . ,mσ and g, h ∈ G, we have

∑

k∈K
φσ
i, j (gkh)ψ(k) =

mσ∑

	=1
φσ
i,	(g)φ

σ
	, j (h).

Proof

∑

k∈K
φσ
i, j (gkh)ψ(k) =

∑

k∈K
〈wσ

i , σ (gkh)wσ
j 〉ψ(k)

=
dσ∑

	=1
〈σ(g−1)wσ

i , wσ
	 〉

∑

k∈K
uσ

	, j (kh)ψ(k)

(by (5.26)) =
mσ∑

	=1
φσ
i,	(g)φ

σ
	, j (h).

��
Remark 5.12 If χ : K → {z ∈ C : |z| = 1} is a one-dimensional K -representation
then

H(G, K , χ) = { f ∈ L(G) : f (k1gk2) = χ(k1)χ(k2) f (g), ∀k1, k2 ∈ K , g ∈ G}.

See [24] for the easy details. If G = ∐
s∈S KsK is the decomposition of G into

double K -cosets, then a function f ∈ H(G, K , ψ) is determined by its values on S.
In particular, the orthogonality relations for φσ

i, j and φσ take the form:

∑

s∈S
|KsK |φσ

i, j (s)φ
ρ
	,r (s) =

|G|
dσ

δσ,ρδi,	δ j,r and

∑

s∈S
|KsK |φσ (s)φρ(s) = mσ |G|

dσ

δσ,ρ.

From the last formula, it is easy to deduce the orthogonality relations in 2, Theorem
4.24 in [24], (the original sources are Theorem 2.4 in [9] or (ii), Theorem 11.32 in
[10]).

6 A worked example

In this section,wedescribe an example inwhich all the operators and functions of Sects.
3, 4 and 5 are explicitly computable. In order to simplify the notation, we will use the
same symbol to denote a one-dimensional representation and its representation space.
Denote by Fq the finite field on q = pn elements (p is a prime and n ≥ 1), by F

∗
q the

multiplicative group of non zero elements and by F̂q the set of all additive characters
on Fq . We recall that the finite affine group over Fq is the semidirect product F∗q � Fq ;
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if (x, y), (a, b) ∈ F
∗
q �Fq their product is given by: (x, y)(a, b) = (xa, xb+ y). This

group has exactly q−1 one-dimensional representations and one (q−1)-dimensional
representation that we call θ . If χ ∈ F̂q is nontrivial, then

θ = Ind
F
∗
q�Fq

Fq
χ. (6.1)

See [8,26]. The corresponding representation space is

V = { f : F∗q � Fq → C | f (x, y) = χ(−yx−1) f (x, 0) for all (x, y) ∈ F
∗
q � Fq}.

(6.2)
The action is given by:

[θ(a, b) f ](x, y) = f (a−1x, a−1y − a−1b), (6.3)

and the scalar product is: 〈 f1, f2〉V =∑
x∈F∗q f1(x, 0) f2(x, 0). We fix χ as above and

for z ∈ F
∗ we define χz(x) = χ(xz), for all x ∈ Fq . Then {χz : z ∈ F

∗
q} is exactly

the set of all nontrivial additive characters of Fq . Moreover, if we denote by Vz the
space (6.2) with χ replaced by χz then it is easy to check that the map Tz : V → Vz ,
defined by setting Tz f (x, y) = f (xz−1, y), for all f ∈ V and (x, y) ∈ F

∗
q � Fq , is

an isometric isomorphism of representations.
Now suppose suppose that m > 1; considering Fqm as a vector space over the

subfield Fq , we can fix a decomposition Fqm = Fq ⊕ F
m−1
q , so that any x ∈ Fqm may

be written uniquely in the form: x = x1+ x2, with x1 ∈ Fq and x2 ∈ F
m−1
q . Similarly,

every ψ ∈ F̂qm may be written uniquely in the form: ψ = χξ , where χ ∈ F̂q and
ξ ∈ F̂

m−1
q . Now we fix χ ∈ F̂q nontrivial and we apply the theory developed in the

previous sections to case:

G = F
∗
qm � Fqm , K = F

∗
q � Fq , σ = Ind

F
∗
qm �Fqm

Fqm
(χ1), θ = Ind

F
∗
q�Fq

Fq
χ

where 1 is the trivial character of F
m−1
q . Since the restriction of the one-dimensional

representations of G cannot contain θ , by Frobenius reciprocity IndGK θ contains only

σ : IndGK θ ∼= qm−1
q−1 σ . Therefore we can avoid the superscript σ .

The space V is as in (6.2) and W has a similar structure. We choose a subset
Z ⊂ F

∗
qm such that: |Z | = qm−1 and

{χξ : ξ ∈ F̂
m−1
q } = {(χ1)z : z ∈ Z}.

That is, we have a bijection between F̂
m−1
q and Z : if ξ corresponds to z then (χξ)(x) =

(χ1) (zx), for all x ∈ Fqm . In particular, if x ∈ Fq then (χ1)z (x) = χ(x).

Lemma 6.1 {zF∗q : z ∈ Z} is a family of pairwise disjoint subsets of F
∗
qm .

Proof First of all, note that Ker (χξ) is equal to the set of all x = x1+ x2 ∈ Fqm , with
x1 ∈ F and x2 ∈ F

m
q such that: ξ(x2) = χ(x1) (the values of χ and ξ are p-th roots of

123



Induced representations and harmonic analysis. . . 959

the unit). In particular, Ker (χ1)z = Ker (χξ) = {x ∈ Fqm : zx ∈ F
m−1
q } determines

z. Now we show that if z1, z2 ∈ Z , z1 �= z2 then z−11 z2 /∈ F
∗
q . By contradiction,

assume that z2 = az1 with a ∈ F
∗
q . If x ∈ Fqm , z1x = y1 + y2 and z2x = u1 + u2,

with y1, u1 ∈ Fq and y2, u2 ∈ F
m−1
q , then u1 = ay1. Therefore y1 = 0 if and only if

u1 = 0 so that Ker (χ1)z1 = Ker (χ1)z2 . ��
Now with each z ∈ Z we associate an operator Lz : V → W defined by setting:

(Lz f )(x, y) =
{

(χ1) (−x−1y) f (zx, 0) if zx ∈ F
∗
q

0 otherwise,

for all (x, y) ∈ G and f ∈ V .

Proposition 6.2 The set {Lz : z ∈ Z} is an orthonormal basis of HomK (V,ResGKW ).

Proof First of all, we show that Lz intertwines the actions of K on V andW . Suppose
that f ∈ V , (x, y) ∈ G and (a, b) ∈ K . If xz ∈ F

∗
q then

(χ1) (−x−1y + x−1b) = (χ1) (−x−1y) (χ1)z (x−1z−1b)
(x−1z−1b ∈ Fq) = (χ1) (−x−1y)χ(x−1z−1b)

and therefore

[Lzθ(a, b) f ](x, y) = (χ1) (−x−1y)[θ(a, b) f ](zx, 0)
(by (6.36) and (6.37)) = (χ1) (−x−1y)χ(x−1z−1b) f (a−1zx, 0)

= (χ1) (−x−1y + x−1b) f (a−1zx, 0)
(by (6.36) and (6.37) applied to σ) = [σ(a, b)Lz f ](x, y).

Similarly, if zx /∈ F
∗
q then [Lzθ(a, b) f ](x, y) = 0 = [σ(a, b)Lz f ](x, y). From

Lemma 6.1 it follows that the operators {Lz : z ∈ Z} form an orthogonal family
because the supports of their images are disjoint; it is easy to check that these operators
are also isometric immersions. ��

By transitivity of induction, we have the isomorphism IndGK θ = IndGK Ind
K
Fq

χ ∼=
IndG

Fq
χ .More precisely, taking into account (2.11) a function F : G×K → C belongs

to IndGK V if and only if F(x, y; a, b) = F(xa, xb + y; 1, 0) and F(x, y; a, b) =
χ(−a−1b)F(x, y; a, 0), for all (x, y) ∈ G, (a, b) ∈ K and the isomorphism is given
by the map F �→ f where

f (x, y) = F(x, y; 1, 0) and F(x, y; a, b) = f (xa, xb + y). (6.4)

It is easy to see that this isomorphism is also an isometry; in conclusion, we identify
IndGK V with IndG

Fq
χ , that is with the space of all f : G → C such that

f (x, xy1 + xy2) = χ(−y1) f (x, xy2) (6.5)
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for all x ∈ F
∗
qm , y1 ∈ Fq and y2 ∈ F

m−1
q .

Theorem 6.3 For every z ∈ Z, define a linear operator Tz : W → L(G) by setting:
Tz f (x, y) = 1√|G/K | f (xz

−1, y), for all f ∈ W, (x, y) ∈ G. Then

Tz ∈ HomG(W, IndG
Fq

χ); (6.6)

(L∗z )∨ = Tz; (6.7)

�
Lz f (x, y) = 1

q
√|G/K | (χ1)(−yx

−1)
∑

y′∈Fqm

(χ1)(y′x−1) f (zx, y′) (6.8)

for all f ∈ IndG
Fq

χ , (x, y) ∈ G.

Proof First of all, we show that Tz f ∈ IndG
Fq

χ by verifying (6.5):

(Tz f )(x, xy1 + xy2) = f (xz−1, xy1 + xy2)

(by (6.36) applied to σ) = (χ1)(−zy1 − zy2) f (xz
−1, 0)

= (χ1)z(−y1) f (xz−1, xy2)
(y1 ∈ Fq) = χ(−y1) f (xz−1, xy2).

It is immediate to check that Tz intertwines σ and IndG
Fq

χ and this ends the proof of

(6.6). By Theorem 3.2 and Corollary 3.3, (6.7) is equivalent to L∗z =
∧
T z . In order to

give an explicit form of
∧
T z , it suffices to use the second identity in (6.4) and Definition

3.1.(a): (
∧
T z f1)(a, b) = f1(az−1, b) for all f1 ∈ W and (a, b) ∈ K . If also f2 ∈ V

then:

〈∧T z f1, f2〉V =
∑

a∈F∗q
f1(az

−1, 0) f2(a, 0) =
∑

x∈z−1F∗q
f1(x, 0) f2(zx, 0) = 〈 f1, Lz f2〉W

and this ends the proof of (6.7). Finally, we can deduce (6.8) from the identity
�
Lz = T ∗z

and the fact that, for f1 ∈ W and f2 ∈ IndG
Fq

χ , the equality 〈Tz f1, f2〉IndG
Fq χ
=

〈 f1, T ∗z f2〉W is equivalent to

1

q

∑

x∈F∗qm
f1(x, 0)

∑

y′∈Fqm

(χ1)(−y′x−1) f2(zx, y′) =
∑

x∈F∗qm
f1(x, 0)(T ∗z f2)(x, 0).

��
Now we are in position to describe the operatorsUσ

i, j defined in (4.4) in the present

setting. For z1, z2 ∈ Z we set Uz1,z2 = dσ

dθ
Tz1
�
Lz2 . The explicit formula is easy to

determine:
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[
Uz1,z2 f

]
(x, y) = 1

qm
(χ1)(−yx−1z1)

∑

y′∈Fqm

(χ1)(y′x−1z1) f (z2z−11 x, y′)

for all f ∈ IndG
Fq

χ , (x, y) ∈ G. On the other hand, if we choose the vector v ∈ V

of Sect. 5 by setting v(1, b) = χ(b) for all b ∈ Fq and v(a, b) = 0 for b ∈ Fq ,
a ∈ Fq , a �= 1, then it is easy to check that TvIndGK V coincides with IndG

Fq
χ , that

is (TvF)(x, y) = 1√
q F(x, y; 1, 0), for all F ∈ IndGK V [(in the notation of (6.4),

TvF = 1√
q f ]. Then, according to (5.2), we set wz = Lzv for all z ∈ Z . Elementary

calculations show that

wz(x, y) =
{

(χ1)(−yz) if x = z−1
0 if x �= z−1.

Moreover, the spherical functions (5.6) have the expression:

φz1,z2(x, y) =
{

(χ1)(−yz1) if x = z2z
−1
1

0 if x �= z2z
−1
1 .

It is also easy to verify that Uz1,z2 f = dσ|G| f ∗ φz2,z1 , according to Theorem 5.5 (in

view of the identification of IndGK V with IndGKχ ≡ TvIndGK V , now the operators Ũ ’s
coincide with the U ’s).

7 Gelfand–Tsetlin bases

We now extend to our setting the classical theory of Gelfand–Tsetlin bases (cf. [7,
18,22]), that yields a natural choice for the orthonormal basis in Corollary 3.4. We
continue to use the notation of the previous sections (in particular Sects. 3 and 4). First
we prove a preliminary result that examines the correspondence L �→ (L∗)∨ in relation
to the induction in stages. Let H be a subgroup of G containing K (i.e. K ≤ H ≤ G)
and denote by (ρ,U ) an irreducible H -representation. If L1 ∈ HomK (V,ResHKU )

and L2 ∈ HomH (U,ResGHW ) then L2L1 ∈ HomK (V,ResGKW ). Since (L∗1)∨ ∈
HomH (U, IndHK V ), we can consider (L∗1)∨U as a subspace of IndHK V . Therefore,
IndGH [(L∗1)∨U ] is a subspace of IndGH [IndHK V ]which can be identified with IndGK V by
the isomorphism (2.11).

Theorem 7.1 Under the isomorphism (2.11), we have

[
(L2L1)

∗]∨W ≤ IndGH
[
(L∗1)∨U

]
.

Proof The space IndGH [(L∗1)∨U ] is made up of all functions F ∈ IndGH [IndHK V ] such
that, for every fixed g ∈ G, the function h �→ F(g, h) belongs to (L∗1)∨U , i.e. there
exists ug ∈ U such that

F(g, h) = [
(L∗1)∨ug

]
(h). (7.1)
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For w ∈ W , g ∈ G we have:

{[
(L2L1)

∗]∨w
}

(g) = 1√|G/K | L
∗
1L
∗
2σ(g−1)w

and therefore

{[
(L2L1)

∗]∨w
}

(gh) = 1√|G/K | L
∗
1L
∗
2σ(h−1)σ (g−1)w

(L2 ∈ HomH (U,ResGHW )) = 1√|G/K | L
∗
1ρ(h−1)[L∗2σ(g−1)w]

=
√|H/K |√|G/K |

{
(L∗1)∨[L∗2σ(g−1)w]

}
(h)

= {
(L∗1)∨[(L∗2)∨w](g)

}
(h).

This means that, with respect to (2.11), the function f = (L2L1)
∗∨w ∈ IndGK V

corresponds to an F(g, h) of the form (7.1), with ug = [(L∗2)∨w](g). Therefore,
f ∈ IndGH [(L∗1)∨U ]. ��
Suppose now that there exists a chain of subgroups of G of the form

K = H1 ≤ H2 ≤ · · · ≤ Hm−1 ≤ Hm = G. (7.2)

Define recursively J	 ⊆ Ĥ	, 1 ≤ 	 ≤ m, by setting J1 = {θ} and J	+1 equal to
the set of all η ∈ Ĥ	+1 such that η is contained in IndH	+1

H	
ρ, for some ρ ∈ J	,

	 = 1, 2, . . . ,m−1.We say that the chain (7.2) satisfies theGelfand–Tsetlin condition
if for all 1 ≤ 	 ≤ m − 1, ρ ∈ J	 and η ∈ J	+1 the multiplicity of η ∈ IndH	+1

H	
ρ

(equivalently, the multiplicity of ρ in ResH	+1
H	

η) is at most 1; we write η → ρ when
themultiplicity is equal to 1. If theGelfand–Tsetlin condition is satisfied, the associated
Bratteli diagram is the finite oriented graph whose vertex set is

∐m
	=1 J	 and the edge

set is formed by the pairs (η, ρ) such that η→ ρ. A path in the Bratteli diagram is a
sequence C : ρm → ρm−1→ · · · → ρ2 → ρ1, where ρ1 = θ and ρm ∈ J . For every
σ ∈ J , we denote by P(σ ) the set of all paths C : ρm → ρm−1 → · · · → ρ2 → ρ1
such that ρm = σ . Fix now σ ∈ J and denote by W its representing space. We define
recursively a chain of subspaces

Wm ≥ Wm−1 ≥ · · · ≥ W2 ≥ W1

as follows. We set Wm = W and for 	 = m − 1,m − 2, . . . , 1, we denote by W	 the
unique subspace of ResH	+1

H	
W	+1 isomorphic to the representation space of ρ	. This

way, W1 ∼ V as a K -representation; we set VC = W1. If C̃ : ρ̃m → ρ̃m−1 → · · · →
ρ̃2 → ρ̃1 is a different path inP(σ ), then there exists 2 ≤ 	 ≤ m such that ρi ∼ ρ̃i for
i = m,m− 1, . . . , 	 and ρ	−1 � ρ̃	−1. Therefore, if W̃m ≥ W̃m−1 ≥ · · · ≥ W̃2 ≥ W̃1
is the chain of subspaces associated with C̃ then Wi = W̃i , i = m,m − 1, . . . , 	,
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but W	−1 and W̃	−1 are orthogonal, because they afford inequivalent representations.
This implies that also VC and VC̃ are orthogonal. Finally, by induction on m, it is easy
to prove that ⊕

C∈P(σ )

VC (7.3)

is an orthogonal decomposition of the θ -isotypic component of ResGKW . Let Lσ,C ∈
HomK (V,ResGKW ) be an isometry with Lσ,CV = VC . The operator Lσ,C : V → W
is defined up to a complex constant of modulus 1 (the phase factor) and, by Lemma
2.1 the set

{Lσ,C : C ∈ P(σ )} (7.4)

is an orthonormal basis for HomK (V,ResGKW ).
Similarly, with each C ∈ P(σ ), C : ρm → ρm−1 → · · · , ρ2 → ρ1, we can

associate the following sequence of spaces: Z1 = V , and recursively, Z	+1 is the
unique subspace of IndH	+1

H	
Z	, that affords ρ	+1; finally, we set WC = Zm . Clearly,

WC is a subspace of IndGK V and ⊕

C∈P(σ )

WC (7.5)

is an orthogonal decomposition of the σ -isotypic component of IndGK V . Indeed, we
have

IndGK V = IndHm
Hm−1 Ind

Hm−1
Hm−2 · · · Ind

H2
H1
V

and at each stage the induction is multiplicity free.
We now show that the decomposition (7.3) and (7.5) are closely related as in

Corollary 3.5.

Theorem 7.2 The orthonormal basis

{√
dσ

dθ

(L∗σ,C )∨ : C ∈ P(σ )

}

of HomG(W, IndGK V ) gives rise precisely to the isometric orthogonal decomposition
(7.5), that is

WC =
√
dσ

dθ

(L∗σ,C )∨W

for every C ∈ P(σ ).

Proof It follows from Corollary 3.5 and a repeated application of Theorem 7.1, by
induction on m. ��
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7.1 A worked example: part II

Now we analyze the results in Sect. 6 from another point of view.

Example 7.3 The chain Fq ≤ Fqm ≤ F
∗
qm � Fqm satisfies the Gelfand–Tsetlin condi-

tion with respect to the nontrivial additive character χ of Fq . Indeed, in the notation
of Sect. 6,

IndG
Fq

χ = IndG
Fqm

Ind
Fqm

Fq
χ =

⊕

z∈Z
IndG

Fqm
(χ1)z .

It is easy to see that TzW coincides with IndG
Fqm

(χ1)z as a subspace of IndGFq
χ and

therefore of L(G). In other words, the decomposition of IndGK V given by the basis in
Theorem 6.3 coincides with the decomposition given by the above Gelfand–Tsetlin
construction. The diagram

G
↗ ↖
Fqm K
↖ ↗

Fq

(7.6)

summarizes the two ways in which we can induce χ from Fq to G: the right path has
been described in Sect. 6; the left path yields immediately the same decomposition
of IndG

Fq
χ ∼= IndGK V . Actually, the Gelfand–Tsetlin decomposition leads to a slightly

different approach to calculations in Sect. 6: it yields immediately the expression of

Tz and then one can obtain the expression of Lz because it is equal to 1√|G/K |

(∧
T z

)∗
.

Open Problem 7.4 Set K = GL(2, Fq), G = GL(2, Fqm ) and let χ be again a
nontrivial additive character of Fq . Then Fq ≤ Fqm ≤ G is a Gelfand–Tsetlin chain
for χ . This depends on the fact that IndG

Fqm
(χξ) (which is called the Gelfand-Graev

representation) decomposes without multiplicity, for every ξ ∈ F̂
m−1
q [1,19]. There-

fore, also in this situation, the left path of the diagram (7.6) yields a decomposition
of IndG

Fq
χ . Now the situation in the right path is more difficult than in Sect. 6, and

for every θ ∈ K̂ contained in IndK
Fq

χ we have the problem to decompose IndGK θ and
develop the relative machinery of intertwining operators and spherical functions.
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