
STATIC AND ROTATING NEUTRON

STARS IN A GENERAL RELATIVISTIC

FORMULATION OF ALL FUNDAMENTAL

INTERACTIONS AND ASTROPHYSICAL

APPLICATIONS

Thesis Advisors Ph.D. Student
Prof. Remo Ruffini Riccardo Belvedere
Dr. Jorge A. Rueda

Sapienza–University of Rome

Academic Year 2012/2013





“Set the Controls for the
Heart of the Sun”

Pink Floyd





Contents

1 Introduction 1
1.1 Neutron Stars as Astrophysical Laboratories . . . . . . . . . . 1
1.2 A Bit of History . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Birth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Neutron Star Structure . . . . . . . . . . . . . . . . . . . . . . 4
1.5 The General Relativistic Thomas-Fermi Theory and the Neu-

tron Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Plan of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Equilibrium Configurations for Static Neutron Stars, Rela-
tivistic Mean Field Theory and Global Charge Neutrality 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 The Constitutive Relativistic Equations . . . . . . . . . . . . . 12

2.2.1 Core Equations . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Core-Crust Transition Layer Equations . . . . . . . . . 16
2.2.3 Crust Equations . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Neutron Star Structure . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Observational Constraints on the Static Mass-Radius Relation 28
2.5 Comparison with the Traditional TOV Treatment . . . . . . . 32
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Neutron Star Equilibrium Configurations in the Hartle-Thorne
Slow-Rotation Approximation 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Hartle Slow Rotation Approximation . . . . . . . . . . . . . . 40
3.3 Stability of Uniformly Rotating Neutron Stars . . . . . . . . . 43

3.3.1 Secular Axisymmetric Instability . . . . . . . . . . . . 43
3.3.2 Keplerian Mass-Shedding Instability . . . . . . . . . . 43
3.3.3 Gravitational Binding Energy . . . . . . . . . . . . . . 44

3.4 Structure of Uniformly Rotating Neutron Stars . . . . . . . . 45

v



3.4.1 Secular Instability Boundary . . . . . . . . . . . . . . . 45
3.4.2 Keplerian Mass-Shedding Sequence . . . . . . . . . . . 48

3.5 Neutron Star Mass-Radius Relation . . . . . . . . . . . . . . . 52
3.6 Moment of Inertia . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6.1 Core and Crust Moment of Inertia . . . . . . . . . . . 56
3.7 Deformation of the Neutron Star . . . . . . . . . . . . . . . . 57

3.7.1 Eccentricity . . . . . . . . . . . . . . . . . . . . . . . . 58
3.7.2 Rotational to Gravitational Energy Ratio . . . . . . . . 60
3.7.3 Quadrupole Moment . . . . . . . . . . . . . . . . . . . 60

3.8 Observational Constraints . . . . . . . . . . . . . . . . . . . . 62
3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.10 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Astrophysical Consequences of Realistic Neutron Stars 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Accuracy of Approximate Analytic Formulas for the Keplerian

Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Accuracy of Approximate Analytic Formulas for the Moment

of Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 Implications on the Magnetic-Dipole Model of Pulsars . . . . . 77
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.6 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Conclusions 87

6 IRAP & ICRANet-Sapienza University of Rome Ph.D Ac-
tivities 89

Appendices 95

A Neutron Stars, Einstein-Maxwell-Thomas-Fermi Equations
and Relativistic Mean Field Theory 97

B The Hartle Solution and Equatorial Circular Orbits 103
B.1 The Hartle-Thorne Vacuum Solution . . . . . . . . . . . . . . 103
B.2 Angular Velocity of Equatorial Circular Orbits . . . . . . . . . 104

List of Figures 105

List of Tables 110

Bibliography 111



Chapter 1

Introduction

1.1 Neutron Stars as Astrophysical Labora-

tories

There exist four fundamental forces that allow us to describe the magnif-
icent world built by Mother Nature in which we live. Among these forces,
the strong, the weak, the electromagnetic and the gravitational one, it is
the latter to be the most astonishing: extremely weak on short distances, it
becomes the inescapable master of anything is surrounding us, once long dis-
tances or big masses are taken into account. Our world is governed by any of
this four forces and a complete description of it can be reached only studying
the connections between them. A wonderful mix of this four forces is repre-
sented by the neutron stars. Neutron stars are the densest stars known, with
a radius of the order of 10 km, a mass slightly larger than the solar mass
(M⊙ ∼ 1.989 × 1033 g) and so a mass density of the order of 1015 g cm−3,
greater than the nuclear matter density. This means that the neutron stars
can be used as astrophysical laboratories to explore any of the above-quoted
forces, without the technical limits to which undergo terrestrial experiments.
They allow to explore condensed matter states, critical electromagnetic fields,
superfluidity and superconductivity, phase transitions, exotic matter, strong
fields, nuclear forces at high densities and so on.

1.2 A Bit of History

The milestone work that opened the road to the neutron stars, has been
the one from Landau in 1931 (published one year later) (Landau, 1932),
where he introduced the idea of a denser star with respect to white dwarfs,
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composed by matter at nuclear density. The neutrons were still not dis-
covered, so, building an atomic nucleus only with electrons and protons led
to a violation of the Heisenberg principle. Landau proposed a solution to
this issue arguing a violation of the quantum statistics, but, more impor-
tant, he understood that this new class of stars could be regarded as a sort
of “gigantic nucleus”. Just one year later, Chadwick discovered the main
ingredient of a neutron star, the neutron (Chadwick, 1932).

It has been at the end of 1933, that Baade and Zwicky predicted for the
first time the existence of the neutron stars analyzing the observations of
supernova explosions with the aim of explaining the huge amount of energy
released. As they wrote in their work (Baade and Zwicky, 1934): “With all
reserve we advance the view that a super-nova represents the transition of
an ordinary star into a neutron star, consisting mainly of neutrons. Such
a star may possess a very small radius and an extremely high density. As
neutron can be packed much more closely than ordinary nuclei and electrons,
the ”gravitational packing” energy in a cold neutron star may become very
large, and, under certain circumstances, may far exceed the ordinary nuclear
packing fractions. A neutron star would therefore represent the most stable
configuration of matter as such.”.

Some years later, in 1937, the scientific interest for the neutron stars grow
up thanks to two independent works by Gamow (1937) and Landau (1938),
in which they both argued about the possibility for any main sequence star
to contain a neutron star as a core. Anyway, such a core, in their model,
was useful to explain the amount of energy necessary for a normal star to be
stable, but one year later Bethe and Critchfield (Bethe and Critchfield, 1938),
demonstrated as the energy of a star is due to the thermonuclear reactions.

A fundamental step has been done by Tolman (1939) and Oppenheimer
and Volkoff (1939), that in two different and independent works, published on
the same day and in the same journal, described for the first time the equation
of hydrostatic equilibrium for a spherically symmetric star in the context of a
fully general relativistic theory. Oppenheimer and Volkoff (1939) calculated
the maximum gravitational mass for a stable static neutron star, obtaining
MMax ≈ 0.71M⊙ for an equation of state (EOS) 1 of stellar matter composed
only by a strongly degenerate relativistic gas of non-interacting neutrons.
The main problem of this limit was its quite low value, so low that was
below the Chandrasekhar mass limit for the white dwarfs (Chandrasekhar,

1An equation of state, or EOS for short, is a relation describing the dependence of
the pressure P on energy density E (or on mass density via the relation E=ρc2), and
temperature T (even if, for a system composed mainly by degenerate fermions as neutron
stars are, the temperature is mostly negligible) as well as other parameters depending by
the star composition.



1931). This low limit could prevent the formation of the neutron star and
was due mainly to the absence of the strong interactions, which provide addi-
tional pressure, thus increasing the maximum mass allowable. Oppenheimer
and Volkoff discussed the idea of introducing repulsive neutron-neutron inter-
actions to increase the maximum mass value, but they concluded that their
0.71M⊙ limit was close to the real one. In 1958 Wheeler and his collabora-
tors described a neutron star with a core composed by neutrons, protons and
electrons in β-equilibrium (Harrison et al., 1958) and one year later Cameron
(Cameron, 1959) emphasized the importance of the strong interactions and
how the Oppenheimer-Volkoff limit could be increased up to a more realistic
∼ 2M⊙ value for a neutron star born through a supernova explosion. Then,
in 1974, Rhoades and Ruffini (1974), with the aim to provide a method to
observationally distinguish neutron stars from black holes, established an ab-
solute upper limit for the mass of neutron stars, Mmax ≈ 3.2 M⊙, through
the principle of causality and Le Chatelier’s principle, in the framework of
general relativity.

The possibility to observe directly a neutron star came with the begin-
ning of the X-ray astronomy during the ′60s (Giacconi et al., 1962). In that
period a lot of theories born to suggest how to discover neutron stars (see
e.g. Zeldovich and Novikov (1971); Shapiro and Teukolsky (1983); Lyne and
Graham-Smith (1998)): it is noteworthy a work by Pacini (Pacini, 1967), in
which it is shown how a rapidly rotating neutron star with a strong mag-
netic field (assumed as a dipole one) could convert its rotational energy into
electromagnetic radiation and accelerate particles to high energies. Neutron
stars were discovered almost casually in 1967 and with methods quite differ-
ent form the ones proposed earlier: Jocelyn Bell discovered a weak variable
radio source, during night observations (Hewish and Okoye, 1965). The pe-
riod of this source was extremely stable as if it could derive from an artificial
signal. At the beginning of 1968 three other pulsar were discovered and it
was proposed that them could be either oscillating white dwarfs or neutron
stars (Hewish et al., 1968). The observational evidence that ruled out the
possibility for a pulsar to be a white dwarfs has been given by the discovery
of Crab pulsar in 1968 and the studies of its rotational period (∼ 33 ms,
too short for a white dwarf) (Comella et al., 1969): the idea by Pacini and
(in a different and independent work) by Gold (Gold, 1968) about pulsars as
rotating magnetized neutron stars has been since then the standard picture
of a pulsar.



1.3 Birth

Neutrons stars belong to the family of compact objects, together with
white dwarfs and black-holes. All of them are born from stars, once the
thermonuclear fuel is ended. The final stage depends from the mass of the
progenitor star and the environmental conditions. It is widely believed that
a neutron star is born from a star more massive than 8 solar masses: the
burning of the thermonuclear fuel leads the star to join the super red giant
stage. In the central region of the red star, the reactions burn to the iron end
point and the core can resist against the gravitational collapse only thanks to
the pressure of the degenerate nonrelativistic electrons. The external layers
burn adding to the iron core mass until the gravity squeeze the core itself
and the increasing pressure forces the nonrelativistic electrons to become
relativistic. The core of the star reaches the maximum possible mass for an
object supported by the pressure of ultrarelativistic, degenerate electrons,
namely the Chandrasekhar limit (≈ 1.4M⊙) (Chandrasekhar, 1931). The
core undergoes a sort of free-fall on itself, increasing its temperature and
pressure until the neutrons degeneracy pressure contrasts the gravitational
force and a rebound on itself, generating a shock wave that expel the external
layers of the supergiant red star and resulting in a supernova explosion. The
new system is composed by a cloud of matter expelled by the dead star, the
supernova remnant (SNR), and, at the center of this system, by the “old”
core, composed mainly by neutrons and a small fraction of electrons and
protons: a neutron star (Haensel et al., 2007; Shapiro and Teukolsky, 1983).

1.4 Neutron Star Structure

The state of the art about the understanding of the neutron star’s inner
structure lays on solving the Tolman-Oppenheimer-Volkoff (TOV) system of
equations, which, for a static neutron star under the assumption of local
charge neutrality, are given by

dP

dr
= −G(E+ P)(M + 4πr3P)

r2(1− 2GM
r

)
, (1.1)

dM

dr
= 4πr2E , (1.2)

where M=M(r) is the mass enclosed at the radius r and the energy-density
E and the pressure P are related by some EOS P=P(E); see Fig. 1.1 for a
schematic review of some solution of the TOV equations for different EOS:



Figure 1.1: Mass versus radius relation for different EOS for neutron stars
(and quark stars), obtained solving the TOV system of equations 1.1; (for
details see e.g. Lattimer, 2012, and references therein). Plot from (Lattimer,
2012).



Different regions inside the neutron stars can be found, depending by the
variation of the matter density from the center of the star up to the external
border: in Fig. 1.2 is shown an artistic picture of the inner structure of a
neutron star.

Figure 1.2: Artistic neutron star cross section.

Following the standard picture of the neutron stars, the first region that
we find starting from the low-density bottom layers is the outer crust. The
outer crust is a few hundred meters thick and composed mainly by nuclei
immersed in a sea of free electrons, namely, by a nuclei lattice surrounded by
white dwarf-like material. In the outer crust, the matter density grows up
to the “neutron drip” density ρdrip ≈ 4.3 × 1011 g cm−3. At this density, it
becomes energetically favorable for neutrons to drip out from nuclei, and the
so-called inner crust begins. The inner crust is about one kilometer thick and
it is composed by a nuclei lattice in a background of electrons and neutrons.
Below the inner crust, the core begins. The matter density to which the
core begins is model dependent, anyway, this value is generally close to the
value of the matter saturation density for ordinary nuclei ρnuc ≈ 2.7 × 1014



g cm−3, corresponding to a baryon number density nnuc ≈ 0.16 fm−3. The
core is about 10 km thick and its composition depends, as for the density
to which it begins, by the particular model used. Depending on the nuclear
model, in a neutron star core it is possible to find ordinary matter, namely a
degenerate gas of free neutrons, electrons and protons, or, in addition, more
exotic particles that could be created by the high pressure reached in the
most inner regions of the neutron star core. The maximum possible density
at the center of the core is also model dependent.

1.5 The General Relativistic Thomas-Fermi

Theory and the Neutron Stars

It is since long time ago that it has been recognized the Thomas-Fermi
model in the realm of Atomic Physics (Gombás, 1950; Lieb, 1981). In 1973,
for the first time, it was proposed, as a theoretical interest, that the Thomas-
Fermi model could be used to obtain an alternative derivation of a self-
gravitating system of fermions, within Newtonian gravity, able to give a de-
scription of neutron stars and white dwarfs in addition to the usual derivation
in the perfect fluid approximation (Ruffini and Bonazzola, 1969; Dewitt and
Dewitt, 1973). To describe the gravitational effect of relativistic objects as
neutron stars and white dwarfs, as well as to describe the physics of heavy
nuclei (Migdal et al. (1976, 1977); Ferreirinho et al. (1980); Ruffini and Stella
(1981)), it is mandatory to generalize the Thomas-Fermi model to the spe-
cial relativistic level. The Thomas-Fermi treatment started to span from the
original realm of Atomic Physics, through its special relativistic extension,
to gravitational and Nuclear Physics.

It has been thanks to the recent works by Ruffini et al. (2007); Ruffini
(2008); Popov (2010); Rotondo et al. (2011d), that the Thomas-Fermi model
started to be used in a rigorous way to describe neutron stars, taking into
account Nuclear Physics, Newtonian Physics and β-equilibrium. In particu-
lar, in (Ruffini, 2008), it has been shown, for the first time, the possibility
to have overcritical electric fields in the core of the neutron stars. All this
works led to the necessity to improve the Thomas-Fermi model, generalizing
it up to the general relativistic formulation, with the aim of describing rela-
tivistic objects as neutron stars. A fundamental step, in this sense, has been
made by Rotondo et al. (2011b) through the use of the Wigner-Seitz cell.
First of all they generalized the classical approach of Feynman, Metropolis
and Teller (FMT) (Feynman et al., 1949), solving the relativistic Thomas-
Fermi model for compressed atoms (Rotondo et al., 2011b): this work led to



a new equation of state for white dwarfs duly expressed in general relativity
(Rotondo et al., 2011a). As a consequence of this work, the same authors
proved the impossibility of imposing local charge neutrality on chemically
balanced matter made of neutrons, protons, and electrons, in the simplified
case in which the strong interactions are not taken into account (Rotondo
et al., 2011c). This was a critical issue for neutron star matter calculations,
because Rotondo et al. (2011c) demonstrated that the equations which de-
scribe baryonic matter and the Einstein-Maxwell equations need to be solved
simultaneously. In a subsequent work, Rueda et al. (2011) generalized this
theory including the strong interactions.

As said in Sec. 1.4, the classic work of Oppenheimer and Volkoff (1939)es
address the problem of the equilibrium configurations for a neutron star
composed only by neutrons. Even generalizing the model including other in-
gredients as protons and electrons, in all of the scientific literature on neutron
stars, it is still assumed that the condition of local charge neutrality applies
identically to all points of the equilibrium configuration (see e.g. Haensel et al.
(2007)). As a consequence, the corresponding solutions in this more general
cases of a non-rotating neutron star, are systematically obtained again on
the base of the TOV equations.

In general, to describe the equilibrium configurations of multi-particle
systems it must to be taken into account the framework of statistical physics
of multicomponent systems (see e.g. Evans (1992)). To ensure the thermo-
dynamic equilibrium of these systems, it has to be imposed the constancy,
throughout the whole configuration, of the generalized chemical potentials,
often called “electro-chemical”, of each of the components of the system; (see
e.g. Klein, 1949; Kodama and Yamada, 1972; Olson and Bailyn, 1975). Such
generalized potentials include both the contribution due to kinetic energy and
the contribution due to the potential fields, e.g. gravitational and electromag-
netic potential energies per particle, and, once the rotation is considered, also
the centrifugal potential. For such systems, in presence of gravitational and
Coulomb fields, electric polarization effects at macroscopic scales occur. The
balance of the gravitational and electric forces acting on ions and electrons
in ideal electron-ion plasma leading to the occurrence of gravito-polarization
was first pointed out in the classic work of S. Rosseland (1924).

Once the gravito-polarization effects are included in the theory of neutron
stars, the corresponding theoretical treatment acquires remarkable concep-
tual and theoretical complexity, since it must be necessarily formulated con-
sistently within the Einstein-Maxwell system of equations. In 1949, Klein
(1949), first introduced the constancy of the general relativistic chemical
potential of particles, hereafter “Klein potentials”, in the study of the ther-
modynamic equilibrium of a self-gravitating one-component fluid of neutral



particles throughout the configuration within the framework of general rel-
ativity. In 1972, Klein’s work has been extended to the case of neutral
multi-component degenerate fluids (Kodama and Yamada (1972)) and later,
in 1975, to the case of multi-component degenerate fluid of charged particles
by Olson and Bailyn (1975).

Recently, using the concept of Klein potentials, Rotondo et al. (2011c)
demonstrated the impossibility of imposing the condition of local charge neu-
trality in the simplest case of a self-gravitating system of degenerate neutrons,
protons and electrons in β-equilibrium: it has been shown that the consistent
treatment of such simple system demands the solution of the general rela-
tivistic Thomas-Fermi equations, coupled with the Einstein-Maxwell ones,
being the TOV equations thus superseded.

In the mean time, Rueda et al. (2011) formulated the theory of a system
of neutrons, protons and electrons fulfilling strong, electromagnetic, weak
and gravitational interactions. There, the role of the Klein first integrals
has been again highlighted and their theoretical formulation in the Einstein-
Maxwell background and in the most general case of finite temperature has
been presented, generalizing the previous results for the “non-interacting”
case (Rotondo et al., 2011c). The strong interactions are there modeled by a
relativistic nuclear mean field theory, and, more exactly, are described by the
introduction of the σ, ω and ρ virtual mesons (see Appendix A for details).

1.6 Plan of the Thesis

In Chap. 2 are constructed the equilibrium configurations of non-rotating
neutron stars following the new approach shown by Rotondo et al. (2011c);
Rueda et al. (2011). We calculate the properties of neutron star matter and
neutron stars treated fully self-consistently with strong, weak, electromag-
netic, and gravitational interactions. The full set of the Einstein-Maxwell-
Thomas-Fermi (EMTF) equations is solved numerically for zero temperatures
and for selected parameterizations of the nuclear model.

In Chap. 3 we examine the equilibrium configurations of slowly rotating
neutron stars by using the Hartle formalism in the case of the EMTF equa-
tions presented in Chap. 2. We integrate these equations of equilibrium for
different central densities ρc and circular angular velocities Ω and compute
the mass M , polar Rp and equatorial Req radii, angular momentum J , ec-
centricity ǫ, moment of inertia I, as well as quadrupole moment Q of the
configurations. Both the Keplerian mass-shedding limit and the axisymmet-
ric secular instability are used to construct the new mass-radius relation.
Moreover we compute the maximum and minimum masses and rotation fre-



quencies of neutron stars. At the end of the chapter we compare and contrast
all the results for the global and local charge neutrality cases.

In Chap. 4, we compare and contrast the obtained neutron star param-
eters such as moment of inertia and radius with respect to the traditionally
assumed fiducial values. We also show the inapplicability of some existent
analytic formulas for the description of the maximally rotating sequence and
the moment of inertia of neutron stars. The consequences of our results on
neutron star astrophysics is explored; it is shown in particular that the mag-
netic field of pulsars can be overestimated up to one order of magnitude when
computed with fiducial parameters.

At the end we briefly summarize our results (see Chap. 5), the research
activities, as well as the scientific production obtained during the different
stages of this research work (see Chap. 6).

Spacetime metric signature (+,-,-,-) and units ~ = c = 1 are used unless
otherwise specified.



Chapter 2

Equilibrium Configurations for
Static Neutron Stars,
Relativistic Mean Field Theory
and Global Charge Neutrality

2.1 Introduction

In this first chapter, we formulate the equations of equilibrium of neutron
stars taking into account strong, weak, electromagnetic, and gravitational
interactions within the framework of general relativity. The nuclear interac-
tions are described by the exchange of the σ, ω, and ρ virtual mesons. The
equilibrium conditions are given by the recently developed theoretical frame-
work based on the Einstein-Maxwell-Thomas-Fermi equations along with the
constancy of the general relativistic Fermi energies of particles, the “Klein
potentials”, throughout the configuration. The equations are solved numer-
ically in the case of zero temperatures and for selected parameterizations of
the nuclear models. The solutions lead to a new structure of the star: a
positively charged core at supranuclear densities surrounded by an electronic
distribution of thickness ∼ ~/(mec) ∼ 102~/(mπc) of opposite charge, as well
as a neutral crust at lower densities. Inside the core there is a Coulomb po-
tential well of depth ∼ mπc

2/e. The constancy of the Klein potentials in the
transition from the core to the crust, impose the presence of an overcritical
electric field ∼ (mπ/me)

2Ec, the critical field being Ec = m2
ec

3/(e~). The
electron chemical potential and the density decrease, in the boundary inter-
face, until values µcrust

e < µcore
e and ρcrust < ρcore. For each central density,

an entire family of core-crust interface boundaries and, correspondingly, an
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entire family of crusts with different mass and thickness, exist. The config-
uration with ρcrust = ρdrip ∼ 4.3 × 1011 g/cm3 separates neutron stars with
and without inner crust. We present here the novel neutron star mass-radius
for the especial case ρcrust = ρdrip and compare and contrast it with the one
obtained from the traditional Tolman-Oppenheimer-Volkoff treatment.

We construct the constitutive equilibrium equations for the core, the crust
and the transition layer in between in Sec. 2.2. In Sec. 2.3 we show the results
of the numerical integration of the equilibrium system of equations. We focus
on the effects of the Coulomb interactions on the structure of the neutron star
crust as well as on the abundances of the chemical elements in the crust once
the electrostatic forces are taken into account. The observational constraints
on the mass-radius relation are discussed in Sec. 2.4. In Sec. 2.5 we compare
and contrast the globally and the locally neutral neutron star configurations.
We finally summarize the results in Sec. 2.6 and suggest some perspectives
in Sec. 2.7.

2.2 The Constitutive Relativistic Equations

2.2.1 Core Equations

It has been clearly recognized that, since neutron stars cores may reach
density of order ∼ 1016–1017 g/cm3, much larger than the nuclear density
ρnuc ∼ 2.7 × 1014 g/cm3, approaches for the nuclear interaction between
nucleons based on phenomenological potentials and non-relativistic many-
body theories become inapplicable (see Bowers et al. (1973b,a), for instance).
Based on the pioneering work of Johnson and Teller (Johnson and Teller,
1955), Duerr (Duerr, 1956) and later on Miller and Green (Miller and Green,
1972) formulated the basis of what is now known as Relativistic Mean Field
Theory (RMFT for short) of nuclear matter. They constructed the sim-
plest relativistic model that accounts for the binding of symmetric nuclear
matter at saturation density by introducing the interaction of one scalar
field and one vector field with nucleons through Yukawa couplings. A nu-
clear model with only the scalar field with a self-interacting potential up
to quartic order based on the sigma-model was considered by Lee and Wick
(1974); Lee and Margulies (1975). The repulsive contribution of nuclear force
was there introduced by hand through a hard-sphere model that artificially
increases the nucleon Fermi momentum emulating the effect of a massive
vector field coupled to nucleons. The relevance of such interactions as well
as relativistic effects in the determination of the equation of state and in the
nuclear matter properties such as compressibility and the nucleon effective



mass was clearly pointed out in (Miller and Green, 1972; Boguta and Rafel-
ski, 1977; Boguta and Bodmer, 1977). The importance of allowing scalar
meson self-interactions (cubic and quartic terms in the scalar field potential)
as adjustable parameters to reproduce physical nuclear properties and not
due to renormalization (see e.g. Walecka (1974)) was stressed by Boguta and
Bodmer (1977); Boguta and Stocker (1983); Boguta and Moszkowski (1983);
Boguta (1989). The necessity of introducing additional isovector fields to
match the empirical symmetry energy of nuclear matter at saturation den-
sity was recognized by Boguta and Bodmer (1977).

Assuming that the nucleons interact with σ, ω and ρ meson fields through
Yukawa-like couplings and assuming flat spacetime the equation of state of
nuclear matter can be determined. However, it has been clearly stated by
Rotondo et al. (2011c); Rueda et al. (2011) that, when we turn into a neutron
star configuration at nuclear and supranuclear densities, the global descrip-
tion of the Einstein-Maxwell-Thomas-Fermi equations is mandatory. Associ-
ated to this system of equations there is a sophisticated eigenvalue problem,
especially the one for the general relativistic Thomas-Fermi equation is nec-
essary in order to fulfill the global charge neutrality of the system and to
consistently describe the confinement of the ultrarelativistic electrons.

We here adopt the phenomenological relativistic mean field nuclear model
of Boguta and Bodmer (1977) by assuming nucleons interacting in minimal
coupling approximation with a σ isoscalar meson field that provides the at-
tractive long-range part of the nuclear force and a massive vector field ω that
models the repulsive short range. The self-interacting scalar field potential
U(σ) is assumed as a quartic polynomial with adjustable coefficients. In ad-
dition, a massive isovector field ρ is introduced to accounts for surface as well
as isospin effects of nuclei.

The total Lagrangian density of the system is given by

L = Lg + Lf + Lσ + Lω + Lρ + Lγ + Lint , (2.1)

where Lg, Lσ, Lω, Lρ are the Lagrangian densities for the free- fields, Lf is the
Lagrangian density for the three fermion species and Lint is the interacting
part of the Lagrangian density, in the minimal coupling assumption (for
details refer to Appendix A and Belvedere et al. (2012); Rueda et al. (2011)).

The non-rotating spherically symmetric spacetime metric is

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2 , (2.2)

where the ν(r) and λ(r) are only functions of the radial coordinate r.
For very large number of fermions, we adopt the mean-field approximation

in which fermion-field operators are replaced by their expectation values (see



Ruffini and Bonazzola (1969), for instance). Within this approximation, the
full system of general relativistic equations, in the degenerate case T = 0,
can be written in the form (see Appendix A and Belvedere et al. (2012) for
details, and Rueda et al. (2011) for a generalization to the finite temperature
case).

e−λ(r)

(

1

r2
− 1

r

dλ

dr

)

− 1

r2
= −8πGT 0

0 , (2.3)

e−λ(r)

(

1

r2
+

1

r

dν

dr

)

− 1

r2
= −8πGT 1

1 , (2.4)

d2V

dr2
+
dV

dr

[

2

r
− 1

2

(

dν

dr
+
dλ

dr

)]

= −e eν/2eλ(np − ne) , (2.5)

∂σU(σ) + gsns = 0 , (2.6)

gωJ
ω
0 −m2

ωω = 0 , (2.7)

gρJ
ρ
0 −m2

ρρ = 0 , (2.8)

Ee = eν/2µe − eV = constant , (2.9)

Ep = eν/2µp + Vp = constant , (2.10)

En = eν/2µn + Vn = constant . (2.11)

where µi = ∂E/∂ni =
√

(P F
i )2 + m̃2

i and ni = (P F
i )3/(3π2) are the free-

chemical potential and number density of the i-specie with Fermi momentum
P F
i , while gγ and mγ are the coupling constants and the masses of the three

virtual mesons respectively. The particle effective mass is m̃N = mN + gsσ
and m̃e = me and the effective potentials Vp,n are given by

Vp = gωω + gρρ+ eV , (2.12)

Vn = gωω − gρρ . (2.13)

Eqs. (2.9)–(2.11) describe the Thomas-Fermi equilibrium conditions: the
constancy of the generalized Fermi energies EF

n , E
F
p and EF

e , the Klein po-
tentials, derives from the thermodynamic equilibrium conditions given by the
statistical physics of multicomponent systems, applied to a system of degen-
erate neutrons, protons, and electrons within the framework of general rela-
tivity (Rueda et al., 2011). These constants are linked by the β-equilibrium
(Boguta, 1981) between the matter constituents

EF
n = EF

p + EF
e . (2.14)

These equations must be solved with the boundary conditions given by the
fulfillment of the condition of global charge neutrality and the continuity of



the Klein potentials of particles between the core and the crust (see Rotondo
et al. (2011c); Rueda et al. (2011) and below for details).

The parameters of the nuclear model, namely the coupling constants gs,
gω and gρ, and the meson masses mσ, mω and mρ are fixed by fitting ex-
perimental properties of nuclei, such as saturation density, binding energy
per nucleon (or experimental masses), symmetry energy, surface energy, and
nuclear incompressibility. In Table 2.1 we present selected fits of the nu-
clear parameters. In particular, we show the following parameter sets: NL3
(Lalazissis et al., 1997), NL-SH (Sharma et al., 1993), TM1 (Sugahara and
Toki, 1994), and TM2 (Hirata et al., 1995).

NL3 NL-SH TM1 TM2
mσ (MeV) 508.1940 526.0590 511.198 526.443
mω (MeV) 782.5010 783.0000 783.000 783.000
mρ (MeV) 763.0000 763.0000 770.000 770.000
gs 10.21700 10.44400 10.0289 11.4694
gω 12.86800 12.94500 12.6139 14.6377
gρ 4.474000 4.383000 4.63220 4.6783
g2 (fm−1) -10.4310 -6.90990 -7.2325 -4.4440
g3 -28.8850 -15.8337 0.61830 4.6076
c3 0.0000 0.000000 71.30750 84.5318

Table 2.1: Selected parameter sets of the σ-ω-ρ model.

The constants g2 and g3 are the third and fourth order constants of the
self-scalar interaction as given by the scalar self-interaction potential (see
Boguta and Bodmer (1977), for instance)

U(σ) =
1

2
m2

σσ
2 +

1

3
g2σ

3 +
1

4
g3σ

4 . (2.15)

The non-zero constant c3 that appears in the TM1 and TM2 models cor-
responds to the self-coupling constant of the non-linear vector self-coupling
1
4
c3(ωµω

µ)2. We have not include such a self-coupling vector interaction in
the general formulation presented above. However, we shown also here the
results of the integration when such a self-interaction is taken into account
(refer to Sugahara and Toki (1994); Hirata et al. (1995) for details about the
motivations of including such a contribution).

The numerical integration of the core equations can be started given a
central density and the regularity conditions at the origin; see below Sec. 2.3
for details. At nuclear density the phase-transition to the “solid” crust takes
place. Thus, the radius of the core Rcore is given by E(r = Rcore)/c

2 = ρnuc.



2.2.2 Core-Crust Transition Layer Equations

In the core-crust interface, the mean-field approximation for the meson-
fields is not valid any longer and thus a full numerical integration of the
meson-field equations of motion, taking into account all gradient terms, must
be performed. We expect for the core-crust transition boundary-layer to be
a region with characteristic length scale of the order of the electron Compton
wavelength∼ λe = ~/(mec) ∼ 100 fm corresponding to the electron screening
scale. Then, in the core-crust transition layer, the system of equations (2.3)–
(2.11) reduces to

d2V

dr2
+

2

r

dV

dr
= −eλcoreeJ ch

0 , (2.16)

d2σ

dr2
+

2

r

dσ

dr
= eλcore [∂σU(σ) + gsns] , (2.17)

d2ω

dr2
+

2

r

dω

dr
= −eλcore

[

gωJ
ω
0 −m2

ωω
]

, (2.18)

d2ρ

dr2
+

2

r

dρ

dr
= −eλcore

[

gρJ
ρ
0 −m2

ρρ
]

, (2.19)

Ee = eνcore/2µe − eV = constant , (2.20)

Ep = eνcore/2µp + eV + gωω + gρρ = constant , (2.21)

En = Ep + Ee , (2.22)

due to the fact that the metric functions are essentially constant on the
core-crust transition layer and thus it is possible to take their values at the
core-radius eνcore ≡ eν(Rcore) and eλcore ≡ eλ(Rcore). Here we have replaced the
TOV equation (see Eqs. (2.3)–(2.4)) with appropriate conservation laws for
the generalized particle Fermi energies and the beta equilibrium condition.

The system of equations of the transition layer has a stiff nature due to
the existence of two different scale lengths. The first one is associated with
the nuclear interactions ∼ λπ = ~/(mπc) ∼ 1.5 fm and the second one is due
to the aforementioned screening length ∼ λe = ~/(mec) ∼ 100 fm. Thus, the
numerical integration of Eqs. (2.16)–(2.22) has been performed subdividing
the core-crust transition layer in the following three regions: (I) a mean-
field-like region where all the fields vary slowly with length scale ∼ λe, (II)
a strongly interacting region of scale ∼ λπ where the surface tension due
to nuclear interactions dominate producing a sudden decrease of the proton
and the neutron densities and, (III) a Thomas-Fermi-like region of scale ∼ λe
where only a layer of opposite charge made of electrons is present producing
the total screening of the positively charged core.

In Fig. 2.1, we show the core-crust transition layer for the NL3-model of
Table 2.1 with and without the presence of the ρ-meson. The presence of the



ρ-meson is responsible for the nuclear asymmetry within this nuclear model.
The relevance of the nuclear symmetry energy on the structure of nuclei and
neutron stars is continuously stressed in literature; see e.g. Müther et al.
(1987); Kubis (2007); Sharma and Pal (2009); Hebeler et al. (2010); Loan
et al. (2011). The precise value of the nuclear symmetry energy plays here
a crucial in determining the precise value of the ρ-meson coupling which,
in the present case, is essential in the determination of the intensity of the
electric field in the core-crust boundary interface, as can be seen from the
comparison of the right and the left plot in Fig. 2.1.

We have integrated numerically Eqs. (2.3)–(2.11) for the models listed in
Table 2.1. The boundary conditions for the numerical integration are fixed
through the following procedure. We start assuming a value for the central
baryon number density nb(0) = nn(0)+np(0). From the regularity conditions
at the origin we have e−λ(0) = 1 and ne(0) = np(0).

The metric function ν at the origin can be chosen arbitrarily, e.g. ν(0) =
0, due to the fact that the system of equations remain invariant under the
shift ν → ν+ constant. The right value of ν is obtained once the end of the
integration of the core has been accomplished and duly matched to the crust,
by fulfilling the following identity at the surface of the neutron star,

eν(R) = e−λ(R) = 1− 2GM(R)

c2R
, (2.23)

being M(R) and R the total mass and radius of the star. Then, taking into
account the above conditions, the system of equations (2.6)–(2.11) is solved
at the origin for the other unknowns σ(0), ω(0), ρ(0), nn(0), np(0), ne(0).

The initial conditions for the numerical integration of the core-crust tran-
sition layer equations are determined by the final values given by the numeri-
cal integration of the core equations, i.e. we take the values of all the variables
at the core-radius Rcore.

In the region “I” the effect of the Coulomb interaction is clear: on
the proton-profile we can see a bump due to Coulomb repulsion while the
electron-profile decreases as expected. Such a Coulomb effect is indirectly felt
also by the neutrons due to the coupled nature of the system of equations.
However, the neutron-bump is much smaller than the one of protons and it
is not appreciable in Fig. 2.1 due to the plot-scale. In the region “II” we see
clearly seen the effect of the surface tension due to nuclear interaction which
produces a sharp decrease of the neutron and proton profiles in a character-
istic scale ∼ λπ. In addition, it can be seen a neutron skin effect, analogous
to the one observed in heavy nuclei, which makes the scale of the neutron
density falloff slightly larger with respect to the proton one, in close anal-
ogy to the neutron skin effect observed in neutron rich nuclei, see e.g. Tamii
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Figure 2.1: Upper panel: electric field in the core-crust transition layer in
units of the critical field Ec. Lower panel: particle density profiles in the
core-crust boundary interface in units of cm−3. Here we use the NL3-model
of Table 2.1 and λσ = ~/(mσc) ∼ 0.4 fm denotes the sigma-meson Compton
wavelength. The density at the edge of the crust in this example is ρcrust =
ρdrip = 4.3 × 1011 g/cm3. Upper plot: gρ 6= 0. Lower plot: the same as in
the upper plot, but setting gρ = 0, in order to see the effects of the ρ-meson
with respect to the case gρ 6= 0.



et al. (2011). The region “III” is characterized by a smooth decreasing of the
electron density which resembles the behavior of the electrons surrounding a
nucleus in the Thomas-Fermi model.

The matching to the crust must be done at a radius Rcore+ δR where full
charge neutrality of the core is reached. Different thicknesses δR correspond
to different electron Fermi energies EF

e . The thickness of the core-crust
transition boundary layer δR as well as the value of the electron density
at the edge of the crust, ncrust

e = ne(Rcore + δR), depend on the nuclear
parameters, especially on the nuclear surface tension.

The equilibrium conditions given by the constancy of the Klein potentials
(2.9)–(2.11) throughout the configuration, impose in the transition layer the
following continuity condition

EF
e = eνcore/2µcore

e − eV core = eνcrust/2µcrust
e , (2.24)

where µcore
e = µe(Rcore), eV

core = eV (Rcore), and µ
crust
e = µe(Rcore + δR), and

eνcrust ≃ eνcore .
In the boundary interface, the electron chemical potential and the density

decrease: µcrust
e < µcore

e and ρcrust < ρcore. For each central density, an entire
family of core-crust interface boundaries exist each one with a specific value
of δR: the larger the ρcrust, the smaller the δR. Correspondingly, an entire
family of crusts with different mass and thickness, exist. From the continuity
of the electron Klein potential in the boundary interface given by Eq. (2.24),
it follows that different values of ρcrust ≥ 0 correspond to different values
of the electron Fermi energy EF

e ≥ 0. In close analogy to the compressed
atoms studied by Rotondo et al. (2011b), the case EF

e = 0 corresponds to the
“free” (uncompressed) configuration, where δR → ∞ and ρcrust = 0, i.e. a
bare core. In this configuration the electric field reaches its maximum value.
The case EF

e > 0 is analogous to the one of the compressed atom (Rotondo
et al., 2011b). In Fig. 2.2 we have plotted the electron distribution in the
core-crust boundary interface for selected densities at the edge of the crust
ρcrust = [ρdrip, 10

10, 109] g/cm3, where ρdrip ∼ 4.3× 1011 g/cm3 is the neutron
drip density.

The configuration with ρcrust = ρdrip separates neutron stars with and
without inner crust. In the so-called inner crust, the neutrons dripped from
the nuclei in the crust form a fluid that coexist with the nuclei lattice and
the degenerate electrons Baym et al. (1971).

For definiteness, we present in this work the results for configurations
ρcrust ≤ ρdrip, i.e for neutron stars possessing only outer crust. The construc-
tion of configurations with ρcrust > ρdrip needs to be studied in more detail
and will be the subject of a forthcoming work.
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Figure 2.2: Distribution of electrons in the core-crust boundary interface for
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2.2.3 Crust Equations

Turning now to the crust, it is clear from the recent treatment of white
dwarfs by Rotondo et al. (2011a) that also this problem can be solved by the
adoption of Wigner-Seitz cells, and from the relativistic Feynman-Metropolis-
Teller (RFMT) approach (Rotondo et al., 2011b) it follows that the crust is
clearly neutral. Thus, the structure equations to be integrated are the TOV
equations

dP

dr
= −G(E+ P)(M + 4πr3P)

r2(1− 2GM
r

)
, (2.25)

dM

dr
= 4πr2E , (2.26)

where M = M(r) is the mass enclosed at the radius r and E and P are the
energy density and the pressure of the system respectively.

The effects of the Coulomb interaction in “solid”-like electron-ion systems
appears only at the microscopic level e.g. Debye-Hueckel screening in classical
systems (Debye and Hückel, 1923) and Thomas-Fermi screening in the de-
generate case (Mott, 1936). In order to analyze the effects of the microscopic
screening on the structure of the configuration we will consider two equations



of state for the crust: the locally neutral case or uniform approximation (see
e.g. Chandrasekhar (1931)) and, for simplicity, instead of using the RFMT
EOS (Rotondo et al., 2011b), we use as second EOS the one due to Baym,
Pethick and Sutherland (BPS) (Baym et al., 1971), which is by far the most
used equation of state in literature for the description of the neutron star
crust (see e.g. Haensel et al. (2007)).

In the uniform approximation, both the degenerate electrons and the
nucleons distribution are considered constant inside each cell of volume Vws.
This kind of configuration can be obtained only imposing microscopically the
condition of local charge neutrality

ne =
Z

Vws

. (2.27)

The total pressure of the system is assumed to be entirely due to the
electrons, i.e.

P = Pe =
2

3 (2π~)3

∫ PF
e

0

c2p24πp2
√

c2p2 +m2
ec

4
dp , (2.28)

while the total energy-density of the system is due to the nuclei, i.e. E =
(A/Z)mNne, where mN is the nucleon mass.

We turn now to the BPS equation of state. The first correction to the uni-
form model, corresponds to abandon the assumption of the electron-nucleon
fluid through the so-called “lattice” model which introduces the concept of
Wigner-Seitz cell: each cell of radius Rws contains a point-like nucleus of
charge +Ze with A nucleons surrounded by a uniformly distributed cloud of
Z fully-degenerate electrons.

The sequence of the equilibrium nuclides present at each density in the
BPS equation of state is obtained by looking for the nuclear composition that
minimizes the energy per nucleon for each fixed nuclear composition (Z,A)
(see Table 2.2 and Baym et al. (1971) for details). The pressure P and the
energy-density E of the system are, within this model, given by

P = Pe +
1

3
WLnN , (2.29)

E

nb

=
WN +WL

A
+

Ee(nbZ/A)

nb

, (2.30)

where the electron energy-density is given by

Ee =
2

(2π)3

∫ PF
e

0

√

p2 +m2
e4πp

2dp , (2.31)



and WN(A,Z) is the total energy of an isolated nucleus given by the semi-
empirical formula

WN = mnc
2(A− Z) +mpc

2Z − bA , (2.32)

with b being the Myers and Swiatecki binding energy per nucleon (Myers,
1966). The lattice energy per nucleus WL is given by

WL = −1.819620Z2e2

a
, (2.33)

where the lattice constant a is related to the nucleon density nN by nNa
3 = 2.

2.3 Neutron Star Structure

In the traditional TOV treatment the density and the pressure are a priori
assumed to be continuous as well as the local charge neutrality of the system.
The distinguishing feature of the new solution presented in this thesis is that
the Klein potentials are constant throughout the three regions; the core, the
crust and the transition interface boundary. An overcritical electric field is
formed and consequently a discontinuity in density is found with a continuous
total pressure including the surface tension of the boundary. In Fig. 2.3, we
compare and contrast the density profiles of configurations obtained from the
traditional TOV treatment and with the treatment presented here.

In Figs. 2.4–2.10 we show the results of the numerical integration of the
system of the general relativistic constitutive equations of the configuration
from the center all the way up to the surface with the appropriate boundary
conditions between the involved phases. In particular, we have plotted the
mass-radius relation as well as the compactness of the neutron stars obtained
with the models listed in Table 2.1.

It is worth to note that the inclusion of the Coulomb interaction and
in particular the presence of the negative lattice energy WL results in a
decreasing of the pressure of the cells. Such an effect, as shown in Fig. 2.7–
2.10, leads to a decreasing of the mass and the thickness of the crust with
respect to the uniform-approximation case where no Coulomb interactions
are taken into account.

Comparing the mass and the thickness of the crust obtained with these
two different EOS, we obtain systematically crusts with smaller mass and
larger thickness when Coulomb interactions are taken into account. This
results are in line with the recent results in Rotondo et al. (2011a), where
the mass-radius relation of white-dwarfs has been calculated using an EOS
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Figure 2.3: Upper panel: electric field in the core-crust transition layer, in
units of the critical field Ec. Middle panel: particle density profiles in the
core-crust boundary interface, in units of cm−3. Lower panel: density profile
inside a neutron star with central density ρ(0) ∼ 5ρnuc. We compare and
contrast the structural differences between the solution obtained from the
traditional TOV equations (locally neutral case) and the globally neutral
solution presented here. We use here the NL3 nuclear parametrization of
Table 2.1 and λσ = ~/(mσc) ∼ 0.4 fm, denotes the sigma-meson Compton
wavelength. Upper plot: the density at the edge of the crust is ρcrust =
ρdrip = 4.3× 1011 g/cm3. Lower plot: the density at the edge of the crust is
ρcrust = 1010 g/cm3.
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EOS without Coulomb interactions.
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Figure 2.8: Crust-thickness as a function of the compactness for the crust
EOS without Coulomb interactions.
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Figure 2.9: Crust mass as a function of the compactness for crust with the
BPS EOS.
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Figure 2.10: Crust thickness as a function of the compactness for crust with
the BPS EOS.

based on the relativistic Feynman-Metropolis-Teller model for compressed
atoms Rotondo et al. (2011b).

In the case of the BPS EOS, the average nuclear composition in the outer
crust, namely the average charge to mass ratio of nuclei Z/A, is obtained by
calculating the contribution of each nuclear composition present to the mass
of the crust. We exemplified the analysis for two different cores: Mcore =
2.56M⊙, Rcore = 12.79 km; Mcore = 1.35M⊙, Rcore = 11.76 km.

The relative abundance of each nuclide within the crust of the star can
be obtained as

R.A. =
1

MBPS
crust

∫

∆r

4πr2Edr , (2.34)

where the integration is carried out in the layer of thickness ∆r where the
particular nuclide is present; see Table 2.2 and Fig. 2.11. Our results are in
agreement with the analysis on the neutron star crust composition obtained
in (Goriely et al., 2011; Pearson et al., 2011). In both cases we obtain as
average nuclear composition 105

35 Br. The corresponding crusts with fixed nu-
clear composition 105

35 Br for the two chosen cores are calculated neglecting
Coulomb interactions (i.e. using the first EOS). The mass and the thickness
of these crusts with fixed 105

35 Br are different with respect to the ones obtained
using the full BPS EOS, leading to such average nuclear composition. For
the two selected examples we obtain that the mass and the thickness of the



crust with average 105
35 Br are, respectively, 18% larger and 5% smaller with

respect to the ones obtained with the corresponding BPS EOS. This result
shows how small microscopic effects due to the Coulomb interaction in the
crust of the neutron star leads to quantitative not negligible effects on the
macroscopic structure of the configuration.

Equilibrium Nuclei Below Neutron Drip
Nucleus Z ρmax(g cm−3) ∆ R1 (km) R.A.1(%) ∆ R2 (km) R.A.2(%)

56Fe 26 8.1× 106 0.0165 7.56652× 10−7 0.0064 6.96927× 10−7

62Ni 28 2.7× 108 0.0310 0.00010 0.0121 0.00009
64Ni 28 1.2× 109 0.0364 0.00057 0.0141 0.00054
84Se 34 8.2× 109 0.0046 0.00722 0.0017 0.00683
82Ge 32 2.2× 1010 0.0100 0.02071 0.0039 0.01983
80Zn 38 4.8× 1010 0.1085 0.04521 0.0416 0.04384
78Ni 28 1.6× 1011 0.0531 0.25635 0.0203 0.25305
76Fe 26 1.8× 1011 0.0569 0.04193 0.0215 0.04183

124Mo 42 1.9× 1011 0.0715 0.02078 0.0268 0.02076
122Zr 40 2.7× 1011 0.0341 0.20730 0.0127 0.20811
120Sr 38 3.7× 1011 0.0389 0.23898 0.0145 0.24167
118Kr 36 4.3× 1011 0.0101 0.16081 0.0038 0.16344

Table 2.2: ρmax is the maximum density at which the nuclide is present;∆
R1, ∆ R2 and R.A.1(%), R.A.2(%) are respectively the thickness of the
layer where a given nuclide is present and their relative abundances in the
outer crust for two different cases: Mcore = 2.56M⊙, Rcore = 12.79 km;
Mcore = 1.35M⊙, Rcore = 11.76 km.

2.4 Observational Constraints on the Static

Mass-Radius Relation

It has been recently pointed out that the most up-to-date stringent con-
straints to the mass-radius relation of neutron stars are provided by the
largest mass, the largest radius, the highest rotational frequency, and the
maximum surface gravity, observed for pulsars (Trümper, 2011a).

So far, the highest neutron star mass measured with a high level of ex-
perimental confidence, until 2013, has been the mass of the 3.15 millisecond
pulsar PSR J1614–2230, M = (1.97 ± 0.04)M⊙, obtained from the Shapiro
time delay and the Keplerian orbital parameters of the binary system (De-
morest et al., 2010). However, recently, Antoniadis et al. (2013) gave an
even more stringent constraint to the nuclear EOS of a neutron star, due
to the reported mass (2.01± 0.04)M⊙ in the relativistic binary system PSR
J0348+0432. The fitting of the thermonuclear burst oscillation light curves
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Figure 2.11: Relative abundances of chemical elements in the crust for the
two cores analyzed in Table 2.2



from the accreting millisecond pulsar XTE J1814–338 weakly constrain the
mass-radius relation imposing an upper limit to the surface gravity of the
neutron star, GM/(c2R) < 0.24 (Bhattacharyya et al., 2005). A lower
limit of the radius of RX J1856–3754, as seen by an observer at infinity
R∞ = R[1 − 2GM/(c2R)]−1/2 > 16.8 km, has been obtained from the fit of
the optical and X-ray spectra of the source (Trümper et al., 2004); it gives
the constraint 2GM/c2 > R−R3/(Rmin

∞ )2, being Rmin
∞ = 16.8 km. Assuming

a neutron star of M = 1.4M⊙ to fit the Chandra data of the low-mass X-ray
binary X7, it turns out that the radius of the star satisfies R = 14.5+1.8

−1.6

km, at 90% confidence level, corresponding to R∞ = [15.64, 18.86] km, re-
spectively (see Heinke et al. (2006) for details). The maximum rotation rate
of a neutron star taking into account both the effects of general relativity
and deformations has been found to be νmax = 1045(M/M⊙)

1/2(10 km/R)3/2

Hz, largely independent of the equation of state (Lattimer and Prakash,
2004). The fastest observed pulsar is PSR J1748–2246ad with a rotation
frequency of 716 Hz (Hessels et al., 2006), which results in the constraint
M ≥ 0.47(R/10 km)3M⊙. In Fig. 2.12 are shown all these constraints and
the mass-radius relation presented in this chapter.

As discussed by J. E. Trümper in (Trümper, 2011a), the above constraints
strongly favor stiff equations of state which provide high maximum masses
for neutron stars. In addition, putting all of them together, the radius of a
canonical neutron star of massM = 1.4M⊙ is highly constrained to the range
R & 12 km disfavoring, at the same time, the strange quark hypothesis for
these specific objects. It is clear from Fig. 2.12 that the mass-radius relation
presented here is consistent with all the observation constraints, for all the
nuclear parametrizations of Table 2.1. In Table 2.3 are presented the radii
predicted by the new mass-radius relation (presented in this chapter and in
(Belvedere et al., 2012)) for a canonical neutron star of M = 1.4M⊙ as well
as for the millisecond pulsar PSR J1614–2230, M = (1.97± 0.04)M⊙.

M(M⊙) RNL3 RNL−SH RTM1 RTM2

1.40 12.31 12.47 12.53 12.93
1.93 12.96 13.14 13.13 13.73
2.01 13.02 13.20 13.17 13.82

Table 2.3: Radii (in km) predicted by the nuclear parametrizations NL3, NL-
Sh, TM1 and TM2 of Table 2.1, for a canonical neutron star of M = 1.4M⊙

and for the millisecond pulsar PSR J1614–2230, M = (1.97± 0.04)M⊙.
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Figure 2.12: Constraints on the mass-radius relation given by J. E. Trümper
in Trümper (2011a) and the theoretical mass-radius relation presented in
this chapter (and in (Belvedere et al., 2012)) in Fig. 2.4. The solid line is
the upper limit of the surface gravity of XTE J1814–338, the dotted-dashed
curve corresponds to the lower limit to the radius of RX J1856–3754, the
dashed line is the constraint imposed by the fastest spinning pulsar PSR
J1748–2246ad, and the dotted curves are the 90% confidence level contours
of constant R∞ of the neutron star in the low-mass X-ray binary X7. Any
mass-radius relation should pass through the area delimited by the solid, the
dashed and the dotted lines and, in addition, it must have a maximum mass
larger than the mass of PSR J0348+0432, M = (2.01± 0.04)M⊙.



2.5 Comparison with the Traditional TOV Treat-

ment

In the traditional TOV treatment local charge neutrality as well as the
continuity of the pressure and the density in the core-crust transition are
assumed. This leads to explicit violation of the constancy of the Klein po-
tentials throughout the configuration (see e.g. Rotondo et al. (2011c)). In
such a case there is a smooth transition from the core to the crust without
any density discontinuity and therefore the density at the edge of the crust is
∼ ρnuc ∼ 2.7× 1014 g/cm3. The so-called inner crust in those configurations
extends in the range of densities ρdrip . ρ . ρnuc while, at densities ρ . ρdrip,
there is the so-called outer crust.

In Figs. 2.13 and 2.14 we compare and contrast the mass and the thick-
ness of the crust as obtained from the traditional TOV treatment with the
new configurations presented here, discussed previously in Secs. 2.2 and 2.3
characterized by ρcrust = ρdrip.
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Figure 2.13: Mass of the crust given by the traditional locally neutral
Tolman-Oppenheimer-Volkoff treatment and by the new globally neutral
equilibrium configurations presented in this article. We use here the NL3
nuclear model, see Table 2.1.

The markedly differences both in mass and thickness of the crusts (see
Figs. 2.13 and 2.14) obtained from the traditional Tolman-Oppenheimer-
Volkoff approach and the new equilibrium configurations presented here,
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Figure 2.14: Thickness of the crust given by the traditional locally neu-
tral Tolman-Oppenheimer-Volkoff treatment and by the new globally neu-
tral equilibrium configurations presented in this article. We use here the
NL3 nuclear model, see Table 2.1.

leads to a very different mass-radius relations which we compare and contrast
in Fig. 2.15.

2.6 Conclusions

We have formulated the equations of equilibrium of neutron stars based
on the recent works by Rueda et al. (2011) and Rotondo et al. (2011b,a,c).
The strong, weak, electromagnetic, and gravitational interactions are taken
into due account within the framework of general relativity. In particular,
the strong interactions between nucleons is described by the exchange of the
σ, ω, and ρ mesons. The equilibrium conditions are given by the set of
Einstein-Maxwell-Thomas-Fermi equations and by the constancy of the gen-
eral relativistic Fermi energies of particles, the Klein potentials, throughout
the configuration.

We have solved these equilibrium equations numerically, in the case of zero
temperatures, for the nuclear parameter sets NL3 Lalazissis et al. (1997), NL-
SH Sharma et al. (1993), TM1 Sugahara and Toki (1994), and TM2 Hirata
et al. (1995); see Table 2.1 for details.

A new structure of the star is found: the positively charged core at
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Figure 2.15: Mass-Radius relation obtained with the traditional locally neu-
tral TOV treatment and with the new globally neutral equilibrium configu-
rations presented here. We use here the NL3 nuclear model, see Table 2.1.

supranuclear densities is surrounded by an electronic distribution of thick-
ness & ~/(mec) ∼ 102~/(mπc) of opposite charge and, at lower densities, a
neutral ordinary crust.

In the core interior the Coulomb potential well is ∼ mπc
2/e and corre-

spondingly the electric field is ∼ (mp/mPlanck)(mπ/me)
2Ec ∼ 10−14Ec. Due

to the equilibrium condition given by the constancy of the Klein potentials,
there is a discontinuity in the density at the transition from the core to
the crust, and correspondingly an overcritical electric field ∼ (mπ/me)

2Ec

develops in the boundary interface; see Fig. 2.1 1.

The continuity of the Klein potentials at the core-crust boundary inter-
face leads to a decreasing of the electron chemical potential and density,
until values µcrust

e < µcore
e and ρcrust < ρcore at the edge of the crust, where

global charge neutrality is achieved. For each central density, an entire fam-
ily of core-crust interface boundaries and, correspondingly, an entire family
of crusts with different mass and thickness, exist. The larger ρcrust, the
smaller the thickness of the interface, the peak of the electric field, and

1This strong electric field reminds the one studied in the stability of charged nuclear
cores against vacuum polarization; see e.g. Müller and Rafelski (1975); Migdal et al.
(1976, 1977); Rotondo et al. (2008).



the larger the mass and the thickness of the crust. The configuration with
ρcrust = ρdrip ∼ 4.3 × 1011 g/cm3 separates neutron stars with and without
inner crust. The neutron stars with ρcrust > ρdrip deserve a further analysis
in order to account for the reduction of the nuclear tension at the core-crust
transition due to the presence of dripped neutrons from the nuclei in the
crust.

All the above new features lead to crusts with masses and thickness
smaller than the ones obtained from the traditional TOV treatment, and
we have shown specifically neutron stars with ρcrust = ρdrip; see Figs. 2.13–
2.14. The mass-radius relation obtained in this case have been compared and
contrasted with the one obtained from the locally neutral TOV approach; see
Fig. 2.15. We have shown that this new mass-radius relation is in line with
observations, based on the recent work by J. E. Trümper Trümper (2011a);
see Fig. 2.12 for details.

2.7 Perspectives

The results of this chapter could be extended to different models for the
strong interactions. For example, it is possible to extend RMFT either in-
troducing higher order couplings or by mean density-dependent couplings.
These extensions have strong impact in the high-density regime. The values
of the nuclear matter incompressibility coefficient for the standard σ-ω-ρ non
linear models are usually larger on respect to their values obtained through
the experimental data on isoscalar giant monopole resonances. At the same
time, the symmetry energy coefficient and its density dependence are higher
relative to the corresponding empirical estimates. It is possible to over-
come these issues through the field-theoretical-based relativistic mean-field
(FTRMF) model, which includes self and mixed interaction terms for σ, ω,
and ρ mesons up to the quartic order. In particular, mixed interaction terms
involving the ρ-meson field enables one to vary the density dependence of the
symmetry energy coefficient and the neutron skin thickness in heavy nuclei
over a wide range without affecting the other properties of finite nuclei, while
the contribution from the self-interaction of ω mesons is important in varying
the high-density behavior of the EOS and prevents instabilities in the calcu-
lation of the EOS itself; (see e.g. Dhiman et al., 2007, and references therein).
Extended RMFT models are useful to study the crust of the neutron stars
too, as shown for example in (Gupta and Arumugam, 2013), where they have
been used to describe the phase transition from the non-uniform matter of
the inner crust at densities lower than the nuclear one, to the uniform matter
in the neutron star core. Moreover, it would be interesting to analyze what



it happens at high density once isospin-antisymmetric matter is taken into
account. In such a case, the contribution of δ-meson could be important and
influence the properties of dense matter (Kubis and Kutschera, 1997a,b).

An important tool to understand the EOS of the matter at nuclear den-
sity, to analyze the instabilities of the neutron stars, as well as to prove or
discard the strange and the quark stars hypothesis (Zheng et al., 2007), is
the study of oscillations, namely the neutron star modes; (for an extended
review see e.g. Stergioulas, 2003, and references therein).

An open issue about our work is related to the minimum energy configu-
ration. More precisely, in this chapter we compared and contrasted the TOV-
like solution, in which local charge neutrality applies with our new EMTF
solution, in which global charge neutrality applies. In the former, there is
no electric field and in its surface, and the crust has both inner and outer
crusts, while in the latter the core is charged, an overcritical electric field
appear in the thin transition layer in between the core and the crust, and the
inner crust might disappear due to the fast decreasing of the matter density
in the transition layer. As mentioned in section 2.1, there can exist two kind
of possible sub-configurations: the configuration with ρcrust = ρdrip separates
neutron stars with and without inner crust. In this chapter we faced the con-
figuration for which ρcrust = ρdrip, showing examples with ρcrust < ρdrip too.
It would be interesting to construct configurations with ρdrip < ρcrust < ρnuc,
and consequently to analyze which has the minimum energy, namely, which
is the most stable configuration.

In addition, it is of interest to study the effects of the above new structure
on the cooling of neutron stars, since the thermal evolution is very sensitive on
the mass-radius relation and the properties of strongly compressed hadronic
matter (Schramm et al., 2013).

The electromagnetic structure of the neutron star presented here is of
clear astrophysical relevance. The process of gravitational collapse of a core
endowed with electromagnetic structure leads to signatures and energetics
markedly different from the ones of a core endowed uniquely of gravitational
interactions; see e.g. Ruffini et al. (2003a,b); Ruffini and Xue (2008); Ruffini
et al. (2010).

It is clear that the release of gravitational energy in the process of gravita-
tional collapse of the core, following the classic work of Gamow and Schoen-
berg (see Gamow and Schoenberg (1941); Arnett et al. (1996)), is carried
away by neutrinos. The additional nuclear and electromagnetic energy∼ 1051

erg of the collapsing core introduced in this chapter are expected to be carried
away by electron-positron plasma created in the overcritical electromagnetic
field in the collapsing core.



Chapter 3

Neutron Star Equilibrium
Configurations in the
Hartle-Thorne Slow-Rotation
Approximation

3.1 Introduction

As shown in Chap. 2 (see Rotondo et al., 2011c; Rueda et al., 2011;
Belvedere et al., 2012, for details), the equations of Tolman-Oppenheimer-
Volkoff (TOV) (Tolman, 1939; Oppenheimer and Volkoff, 1939), traditionally
used to describe the neutron star equilibrium configurations, are superseded
once the strong, weak, electromagnetic and gravitational interactions are
taken into account. Instead, the Einstein-Maxwell system of equations cou-
pled with the general relativistic Thomas-Fermi equations of equilibrium have
to be used; what we called the Einstein-Maxwell-Thomas-Fermi (EMTF) sys-
tem of equations. While in the TOV approach the condition of local charge
neutrality, ne(r) = np(r), (being ni the particle density of the i-species), is
imposed (see e.g. Haensel et al., 2007, and references therein), the EMTF
approach requests the less stringent condition of global charge neutrality,
namely

∫

ρchd
3r =

∫

e[np(r)− ne(r)]d
3r = 0 , (3.1)

where ρch is the charge density, e is the fundamental electric charge, and the
integral is carried out on the entire volume of the system.

The Lagrangian density taking into account all the interactions include
the free-fields terms Lg, Lγ, Lσ, Lω, Lρ (respectively for the gravitational,
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the electromagnetic, and the three mesonic fields), the three fermion species
(electrons, protons and neutrons) term Lf and the interacting part in the
minimal coupling assumption, Lint, as shown in Subsec. 2.2.1, Eq. (2.1) and
in Appendix A, Eqs. (A.2)–(A.8), where the description of the strong inter-
actions between the nucleons is made through the σ-ω-ρ nuclear model in
the version of Boguta and Bodmer (1977).

As introduced in the previous chapter, the nuclear model is fixed once
the values of the coupling constants and the masses of the three mesons are
fixed: in this chapter we use the NL3 parameter set Lalazissis et al. (1997):
mσ = 508.194 MeV, mω = 782.501 MeV, mρ = 763.000 MeV, gσ = 10.2170,
gω = 12.8680, gρ = 4.4740, plus two constants that give the strength of the
self-scalar interactions, g2 = −10.4310 fm−1 and g3 = −28.8850; see Tab. 2.1
and (Belvedere et al., 2012) for details.

From the equations of motion of the above Lagrangian we obtain the
EMTF equations, see Appendix A and (Rueda et al., 2011; Belvedere et al.,
2012) for details. The solution of the EMTF coupled differential equations
leads to a new structure of the star, as shown in Fig. 2.1: a positively charged
core at supranuclear densities, ρ > ρnuc ∼ 2.7×1014 g cm−3, surrounded by an
electron distribution of thickness & ~/(mec) and, at lower densities ρ < ρnuc,
a neutral ordinary crust.

The thermodynamic equilibrium is ensured by the constancy of the parti-
cle Klein potentials (Klein, 1949) generalized to the presence of electrostatic
and strong fields (Rotondo et al., 2011c; Rueda et al., 2011; Belvedere et al.,
2012)

1

ut
[µi + (qiAα + gωωα + gρτ3,iρα)u

α] = constant , (3.2)

where the subscript i stands for each kind of particle, µi is the particle
chemical potential, and qi is the particle electric charge. In the static case
only the time components of the vector fields, A0, ω0, ρ0 are present. In
the above equation ut = (gtt)

−1/2 is the time component of the fluid four-
velocity which satisfies uαu

α = 1; gtt is the t–t component of the spherically
symmetric metric; see Eq. (2.2).

The equilibrium conditions (3.2) lead to a discontinuity in the density at
the core-crust transition and, correspondingly, an overcritical electric field
∼ (mπ/me)

2Ec, where Ec = m2
ec

3/(e~) ∼ 1.3 × 1016 Volt cm−1, appears in
the core-crust boundary interface. The constancy of the Klein potentials is
necessary to fulfill the requirement of thermodynamical equilibrium, together
with the constancy of the gravitationally red-shifted temperature (Tolman
condition) (Tolman, 1930; Klein, 1949), if finite temperatures are considered
(see e.g. Rueda et al., 2011). In particular, the continuity of the electron
Klein potential leads to a decreasing of the electron chemical potential µe and



density at the core-crust boundary interface. They reach values µcrust
e < µcore

e

and ρcrust < ρcore at the base of the crust, where global charge neutrality is
achieved.

As it is shown in Fig. 2.15 (see Belvedere et al., 2012, for details), the
solution of this new set of equilibrium equations leads to a more compact neu-
tron star with a less massive and thinner crust. Consequently, it gives a new
mass-radius relation which markedly differs from the one described through
the solution of the TOV equations in the case of local charge neutrality; see
Fig. 2.15

We extend in this chapter the previous results to the case in which the
neutron star is rotating as a rigid body. To this end we use the Hartle
approach (Hartle, 1967) which solves the Einstein equations accurately up to
second order approximation in the angular velocity of the star, Ω (see next
section 3.2 for details).

In this rotating case, the condition of the constancy of the particle Klein
potential has the same form as Eq. (3.2), but the fluid inside the star now
moves with a four-velocity of a rigid rotating body, uα = (ut, 0, 0, uφ), with
(see Hartle and Sharp (1967) and Appendix B, for details)

ut = (gtt + 2Ω gtφ + Ω2 gφφ)
−1/2, uφ = Ωut , (3.3)

where φ is the azimuthal angular coordinate with respect to which the metric
is symmetric, namely the metric is independent of φ (axial symmetry). The
metric functions gαβ are now given by Eq. (3.4) below. It is then clear that
in a frame comoving with the rotating star, ut = (gtt)

−1/2, and the Klein
equilibrium condition becomes the same as Eq. (3.2), as expected.

We applied the Hartle formalism to the seed static solution obtained
from the integration of the EMTF equations (Belvedere et al., 2012). For
the construction of the new mass-radius relation we take into account the
Keplerian mass-shedding limit and the secular axisymmetric instability (see
Sec. 3.3). We compute in Sec. 3.4 the mass M , polar Rp and equatorial Req

radii, angular momentum J , eccentricity ǫ, and quadrupole moment Q, as
a function of the central density and the rotation angular velocity Ω of the
stable neutron star both in the globally and locally neutral cases. Based
on the criteria of equilibrium we calculate the maximum stable neutron star
mass and from the gravitational binding energy of the configurations establish
the minimum mass under which the neutron star becomes gravitationally
unbound. We construct in section 3.5 the new neutron star mass-radius
relation. In Sec. 3.6 we calculate the moment of inertia as a function of the
central density and total mass of the neutron star. The eccentricity ǫ, the
rotational to gravitational energy ratio T/W , and quadrupole moment Q



are shown in section 3.7. The observational constraints on the mass-radius
relation are discussed in Sec. 3.8. We finally summarize the results in Sec. 3.9
and suggest some perspectives in Sec. 3.10. We use in this chapter geometric
units G = c = 1.

3.2 Hartle Slow Rotation Approximation

In his pioneering work, Hartle (1967) computed the equilibrium equations
of slowly rotating stars in the context of General Relativity. The solutions
of the Einstein equations are obtained through a perturbative method, ex-
panding the metric functions up to the second order in the angular velocity
Ω. Under this assumption the structure of compact objects can be approxi-
mately described by the total massM , angular momentum J and quadrupole
moment Q. The slow rotation regime implies that the perturbations owing
to the rotation are relatively small with respect to the known non-rotating
geometry. The interior solution is derived by solving numerically a system of
ordinary differential equations for the perturbation functions. The exterior
solution for the vacuum surrounding the star, can be written analytically
in terms of M , J , and Q (see Hartle, 1967; Hartle and Thorne, 1968, for
details). The numerical values for all the physical quantities are derived by
matching the interior and the exterior solution on the border of the star.

The spacetime metric for the rotating configuration up to the second
order of Ω is given by (Hartle, 1967)

ds2 = eν (1 + 2h) dt2 − eλ
[

1 +
2m

r − 2M0

]

dr2

−r2 (1 + 2k)
[

dθ2 + sin2 θ (dφ− ωdt)2
]

, (3.4)

where ν = ν(r), λ = λ(r), and M0 = MJ=0(r) are the metric functions
and mass profiles of the corresponding seed non-rotating star with the same
central density as the rotating one; see Eq. (2.2). The functions h = h(r, θ),
m = m(r, θ), k = k(r, θ) and the fluid angular velocity in the local iner-
tial frame, ω = ω(r), have to be calculated from the Einstein equations.
Expanding up to the second order the metric in spherical harmonics we have

h(r, θ) = h0(r) + h2(r)P2(cos θ) , (3.5)

m(r, θ) = m0(r) +m2(r)P2(cos θ) , (3.6)

k(r, θ) = k0(r) + k2(r)P2(cos θ) , (3.7)

where P2(cosθ) is the Legendre polynomial of second order. Because the
metric does not change under transformations of the type r → f(r), it is
possible to assume k0(r) = 0.



The functions h = h(r, θ), m = m(r, θ), k = k(r, θ) have analytic form in
the exterior (vacuum) spacetime and they can be found in Appendix B. The
mass, angular momentum, and quadrupole moment are computed from the
matching condition between the interior and exterior metrics.

First the angular momentum is computed. It is introduced the angular
velocity of the fluid relative to the local inertial frame, ω̄(r) = Ω − ω(r). It
can be shown from the Einstein equations at first order in Ω that ω̄ satisfies
the differential equation

1

r4
d

dr

(

r4j
dω̄

dr

)

+
4

r

dj

dr
ω̄ = 0 , (3.8)

where j(r) = e−(ν+λ)/2 with ν and λ the metric functions of the seed non-
rotating solution, Eq. (2.2).

From the matching equations, the angular momentum of the star results
to be given by

J =
1

6
R4

(

dω̄

dr

)

r=R

, (3.9)

so the angular velocity Ω is related to the angular momentum as

Ω = ω̄(R) +
2J

R3
. (3.10)

The total mass of the rotating star, M , is given by

M =M0 + δM , δM = m0(R) + J2/R3 , (3.11)

where δM is the contribution to the mass owing to rotation. The second order
functionsm0 and p

∗
0 (related to the pressure perturbation) are computed from

the solution of the differential equation

dm0

dr
= 4πr2

dE

dP
(E+ P )p∗0 +

1

12
j2r4

(

dω̄

dr

)2

− 1

3

dj2

dr
r3ω̄2 , (3.12)

dp∗0
dr

=− m0(1 + 8πr2P )

(r − 2M0)2
− 4πr2(E+ P )

(r − 2M0)
p∗0

+
1

12

j2r4

(r − 2M0)

(

dω̄

dr

)2

+
1

3

d

dr

(

r3j2ω̄2

r − 2M0

)

, (3.13)

where E and P are the total energy-density and pressure.
Turning to the quadrupole moment of the neutron star, it is given by

Q =
J2

M0

+
8

5
KM3

0 , (3.14)



whereK is a constant of integration. This constant is fixed from the matching
of the second order function h2 obtained in the interior from
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, (3.15)
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with its exterior counterpart (see Hartle (1967) and Appendix B).

It is worth to underline that the influence of the induced magnetic field
owing to the rotation of the charged core of the neutron star in the globally
neutral case is negligible (Boshkayev et al., 2012b). In fact, for a rotating
neutron star of period P = 10 ms and radius R ∼ 10 km, the radial compo-
nent of the magnetic field Br in the core interior reaches its maximum at the
poles with a value Br ∼ 2.9×10−16Bc, where Bc = m2

ec
3/(e~) ≈ 4.4×1013 G

is the critical magnetic field for vacuum polarization. The angular component
of the magnetic field Bθ, instead, has its maximum value at the equator and,
as for the radial component, it is very low in the interior of the neutron star
core, i.e. |Bθ| ∼ 2.9×10−16Bc. In the case of a sharp core-crust transition as
the one studied by Belvedere et al. (2012) and shown in Fig. 2.1, this compo-
nent will grow in the transition layer to values of the order of |Bθ| ∼ 102Bc

(see Boshkayev et al., 2012b, for further details). However, since we are here
interested in the macroscopic properties of the neutron star, we can ignore at
first approximation the presence of electromagnetic fields in the macroscopic
regions where they are indeed very small, and safely apply the original Hartle
formulation without any generalization.



3.3 Stability of Uniformly Rotating Neutron

Stars

3.3.1 Secular Axisymmetric Instability

In a sequence of increasing central density in the M -ρc curve, ρc ≡ ρ(0),
the maximum mass of a non-rotating neutron star is defined as the first max-
imum of such a curve, namely the point where ∂M/∂ρc = 0. This derivative
defines the secular instability point, and, if the perturbation obeys the same
equation of state (EOS) as the equilibrium configuration, it coincides also
with the dynamical instability point (see e.g. Shapiro and Teukolsky, 1983).
In the rotating case, the situation becomes more complicated and in order to
find the axisymmetric dynamical instability points, the perturbed solutions
with zero frequency modes (the so-called neutral frequency line) have to
be calculated. Friedman et al. (1988) however, following the works of Sorkin
(1981, 1982), described a turning-point method to obtain the points at which
secular instability is reached by uniformly rotating stars. In a constant an-
gular momentum sequence, the turning point is located in the maximum of
the mass-central density relation, namely the onset of secular axisymmetric
instability is given by

[

∂M (ρc, J)

∂ρc

]

J=constant

= 0 , (3.17)

and once the secular instability sets in, the star evolves quasi-stationarily
until it reaches a point of dynamical instability where gravitational collapse
sets in (Stergioulas, 2003).

The above equation defines an upper limit for the mass at a given J
for a uniformly rotating star, however this criterion is a sufficient but not
necessary condition for the instability. This means that all the configurations
with the given angular momentum J on the right side of the turning point
defined by Eq. (3.17) are secularly unstable, but it does not imply that the
configurations on the left side of it are stable. An example of dynamically
unstable configurations on the left side of the turning-point limiting boundary
in neutron stars was recently shown by Takami et al. (2011), for a specific
EOS.

3.3.2 Keplerian Mass-Shedding Instability

The maximum velocity for a particle to remain in equilibrium on the
equator of a star, kept bound by the balance between gravitational and cen-
trifugal force, is the Keplerian velocity of a free particle computed at the same



location. As shown, for instance in (Stergioulas, 2003), a star rotating at Ke-
plerian rate becomes unstable due to the loss of mass from its surface. The
mass shedding limiting angular velocity of a rotating star is the Keplerian
angular velocity evaluated at the equator, r = Req, i.e. Ω

J 6=0
K = ΩK(r = Req).

Friedman et al. (1986) introduced a method to obtain the maximum possible
angular velocity of the star before reaching the mass-shedding limit; however
Torok et al. (2008) and Bini et al. (2013), showed a simpler way to com-
pute the Keplerian angular velocity of a rotating star. They showed that
the mass-shedding angular velocity, ΩJ 6=0

K , can be computed as the orbital
angular velocity of a test particle in the external field of the star and co-
rotating with it on its equatorial plane at the distance r = Req. For the
Hartle external solution, this is given by

ΩJ 6=0
K (r) =

√

M

r3
[

1− jF1(r) + j2F2(r) + qF3(r)
]

, (3.18)

where j = J/M2 and q = Q/M3 are the dimensionless angular momentum
and quadrupole moment. Further details and the analytical expression of the
functions Fi can be found in Appendix B.

3.3.3 Gravitational Binding Energy

Besides the above stability requirements, one should check if the neutron
star is gravitationally bound. In the non-rotating case, the binding energy
of the star can be computed as

WJ=0 =M0 −M0
rest , M0

rest = mbAJ=0 , (3.19)

where M0
rest is the rest-mass of the star, mb is the rest-mass per baryon, and

AJ=0 is the total number of baryons inside the star. So the non-rotating star
is considered bound if WJ=0 < 0.

In the slow rotation approximation the total binding energy is given by
(Hartle and Thorne, 1968)

WJ 6=0 = WJ=0 + δW , δW =
J2

R3
−
∫ R

0

4πr2B(r)dr , (3.20)



where
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, (3.21)

where u = E − mbnb is the internal energy of the star, with nb the baryon
number density.

We will therefore request that the binding energy be negative, namely
WJ 6=0 < 0. As we will show below in Sec. 3.4.2 this condition leads to a mini-
mum mass for the neutron star under which the star becomes gravitationally
unbound.

3.4 Structure of Uniformly Rotating Neutron

Stars

In this section we show the results of the integration of the Hartle equa-
tions for the globally and locally charge neutrality neutron stars; see e.g. Fig. 2.1.
Following Belvedere et al. (2012), we adopt, as an example, globally neutral
neutron stars with a density at the edge of the crust equal to the neutron
drip density, ρcrust = ρdrip ≈ 4.3× 1011 g cm−3.

3.4.1 Secular Instability Boundary

In Fig. 3.1 we show the mass-central density curve for globally neutral
neutron stars in the region close to the axisymmetric stability boundaries.
Specifically are shown some J-constant sequences to stress that indeed along
each of these curves there exist a maximum mass point (turning point). The
line joining all the turning points defines the secular instability limit and the
axisymmetric stable zone is on the left side of this instability line.

Clearly we can to transform the mass-central density relation in a mass-
radius relation. In Fig. 3.2 we shown the mass versus the equatorial radius
of the neutron star that correspond to the range of densities of Fig. 3.1. In
this plot the stable zone is on the right side of the instability line.

We can construct a fitting curve joining the turning points of the J-
constant sequences line which determines the secular axisymmetric instability
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Figure 3.1: Total mass versus central density of globally neutral neutron
stars. The solid line represents the configuration with Keplerian angular ve-
locity, the dashed line represents the static configuration, the dotted-dashed
lines represent the J-constant sequences (in units of 1011 cm2). The gray
line joins all the turning points of the J-constant sequences, so it defines the
secular instability boundary.
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Figure 3.2: Total mass versus equatorial radius of globally neutral neutron
stars. The solid line represents the configuration with Keplerian angular ve-
locity, the dashed line represents the static configuration, the dotted-dashed
lines represent the J-constant sequences (in units of 1011 cm2). The gray
curve joins all the turning points of the J-constant sequences, so it defines
the secular instability boundary.



boundary. Defining Mmax,0 as the maximum stable mass of the non-rotating
neutron star constructed with the same EOS, we find that for globally neutral
configurations the instability line is well fitted by the function

MGCN
sec

M⊙

= 21.22− 6.68
MGCN

max,0

M⊙

−
(

77.42− 28
MGCN

max,0

M⊙

)

(

Req

10 km

)−6.08

, (3.22)

where 12.38 km . Req . 12.66 km, and MGCN
max,0 ≈ 2.67M⊙.

The turning points of locally neutral configurations in the mass-central
density plane are shown in Fig. 3.3. the corresponding mass-equatorial radius
plane is plotted in Fig. 3.4.
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Figure 3.3: Total mass versus central density of locally neutral neutron stars.
The solid line represents the configuration with Keplerian angular velocity,
the dashed line represents the static configuration, the dotted-dashed lines
represent the J-constant sequences (in units of 1011 cm2). The gray line joins
all the turning points of the J-constant sequences, so it defines the secular
instability boundary.

For locally neutral neutron stars, the secular instability line is fitted by

MLCN
sec

M⊙

= 20.51− 6.35
MLCN

max,0

M⊙

−
(

80.98− 29.02
MLCN

max,0

M⊙

)

(

Req

10 km

)−5.71

, (3.23)
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Figure 3.4: Total mass versus equatorial radius of locally neutral neutron
stars. The solid line represents the configuration with Keplerian angular ve-
locity, the dashed line represents the static configuration, the dotted-dashed
lines represent the J-constant sequences (in units of 1011 cm2). The gray
curve joins all the turning points of the J-constant sequences, so it defines
the secular instability boundary.

where 12.71 km . Req . 13.06 km, and MLCN
max,0 ≈ 2.70M⊙.

3.4.2 Keplerian Mass-Shedding Sequence

We turn now to analyze in detail the behavior of the different properties
of the neutron star along the Keplerian mass-shedding sequence. For the
sake of reference we have indicated in the following plots stars with the se-
lected masses M ≈ [1, 1.4, 2.04, 2.5]M⊙. The cyan star indicates the fastest
observed pulsar, PSR J1748–2446ad (Hessels et al., 2006), with a rotation
frequency of f ≈ 716 Hz. The gray filled circles indicate the last stable con-
figuration of the Keplerian sequence, namely the point where the Keplerian
and the secular stability boundaries cross each other.

Maximum Mass and Rotation Frequency

The total mass of the rotating star is computed from Eq. (3.11). In
Fig. 3.5 is shown the total mass of the neutron star as a function of the
rotation frequency for the Keplerian sequence. It is clear that for a given
mass, the rotational frequency is higher for a globally neutral neutron star
with respect to the locally neutral one.
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Figure 3.5: Total mass versus rotational Keplerian frequency both for the
global (red) and local (blue) charge neutrality cases.

The configuration of maximum mass, MJ 6=0
max , occurs along the Keplerian

sequence, and it is found before the secular instability line crosses the Ke-
plerian curve. Thus, the maximum mass configuration is secularly stable.
This implies that the configuration with maximum rotation frequency, fmax,
is located beyond the maximum mass point, specifically at the crossing point
between the secular instability and the Keplerian mass-shedding sequence.
The results are summarized in Table 3.1.

It is important to discuss briefly the validity of the present perturbative
solution for the computation of the properties of maximally rotating neutron
stars. The expansion of the radial coordinate of a rotating configuration
r(R, θ) in powers of angular velocity is written as (Hartle, 1967)

r = R + ξ(R, θ) +O(Ω4) , (3.24)

where ξ is the difference in the radial coordinate, r, between a point located
at the polar angle θ on the surface of constant density ρ(R) in the rotating
configuration, and the point located at the same polar angle on the same
constant density surface in the non-rotating configuration.

In the slow rotation regime, the fractional displacement of the surfaces of
constant density due to the rotation have to be small, namely ξ(R, θ)/R ≪ 1,



Global Neutrality Local Neutrality
MJ=0

max (M⊙) 2.67 2.70
RJ=0

max (km) 12.38 12.71
MJ 6=0

max (M⊙) 2.76 2.79
RJ 6=0

max (km) 12.66 13.06
δMmax 3.37% 3.33%
δRmax

eq 2.26% 2.75%
fmax (kHz) 1.97 1.89
Pmin (ms) 0.51 0.53

Table 3.1: MJ=0
max and RJ=0

max : maximum mass and corresponding radius of
non-rotating stars as computed in (Belvedere et al., 2012); MJ=0

max and RJ=0
max :

maximum mass and corresponding radius of rotating stars; δMmax and δR
max
eq :

increase in mass and radius of the maximum mass configuration with respect
to its non-rotating counterpart; fmax and Pmin: maximum rotation frequency
and associated minimum period.

where ξ(R, θ) = ξ0(R) + ξ2(R)P2(cos θ) and ξ0(R) and ξ2(R) are function of
R, proportional to Ω2. From Table 3.1, we can see that the configuration
with the maximum possible rotation frequency has a maximum fractional
displacement δRmax

eq = ξ(R, π/2)/R as low as ≈ 2% and ≈ 3%, for the
globally and locally neutral neutron stars respectively.

In this line, it is worth to quote the results of Benhar et al. (2005),
who showed that the inclusion of a third-order expansion Ω3 in the Hartle’s
method improves the value of the maximum rotation frequency by less than
1% for different EOS. The reason for this is that as mentioned above, along
the Keplerian sequence the deviations from sphericity decrease with density
and frequency (see Figs. 3.14 and 3.15), which ensures the accuracy of the
perturbative solution.

Turning to the increase of the maximum mass, Weber and Glendenning
(1992) showed that the mass of maximally rotating neutron stars, computed
with the Hartle’s second order approximation, is accurate within an error as
low as . 4%.

Minimum Mass and Rotation Frequency

We compute now the gravitational binding energy of the neutron star
from Eq. (3.20) as a function of the central density and angular velocity.
We make this for central densities higher than the nuclear density, thus we
impose the neutron star to have a supranuclear hadronic core. In Fig. 3.6 we



plot the binding energy W of the neutron star as a function of the neutron
star mass along the Keplerian sequence. For the sake of comparison we show
also the binding energy of the non-rotating configurations.
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Figure 3.6: Neutron star binding energy versus total mass along the Keplerian
sequence both for the global (red) and local (blue) charge neutrality.

We found that the globally neutral neutron stars studied here are bound
up to some minimum mass at which the gravitational binding energy van-
ishes. For the static and Keplerian configurations we find that WJ=0 = 0,
and WJ 6=0 = 0 respectively at

MJ=0
min ≈ 0.177M⊙ , MK

min ≈ 0.167M⊙ , (3.25)

where with the superscript K we indicate that this value corresponds to the
minimum mass on the Keplerian sequence. Clearly this minimum mass value
decreases with decreasing frequency until it reaches the above value MJ=0

min of
the non-rotating case.

We did not find any unbound configuration in the local charge neutrality
case for the present EOS (see Fig. 3.6). The corresponding plot of W as a
function of the central density is shown in Fig. 3.7.

The configuration with the minimum mass, MK
min ≈ 0.167M⊙, has a

rotation frequency
fK
min = f(MK

min) ≈ 700.59Hz , (3.26)
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Figure 3.7: Neutron star binding energy versus central density along the Ke-
plerian sequence both for the global (red) and local (blue) charge neutrality.

that is the minimum rotation rate that globally neutral configurations can
have along the Keplerian sequence in order to be gravitationally bound. In-
terestingly, the above value is slightly lower than the frequency of the fastest
observed pulsar, PSR J1748–2446ad, which has a frequency of 716 Hz (Hes-
sels et al., 2006). Further discussions on this issue are given below in Sec. 3.8.

In Fig. 3.8 we show in detail the dependence of W on the rotation fre-
quency.

3.5 Neutron Star Mass-Radius Relation

In this section are summarized the above results in form of a new mass-
radius relation of uniformly rotating neutron stars, including the Keplerian
and secular instability boundary limits. In Fig. 3.9 we show a summary plot
of the equilibrium configurations of rotating neutron stars. In particular we
show the total mass versus the equatorial radius: the dashed lines represent
the static (non-rotating, J = 0) sequences, while the solid lines represent the
corresponding Keplerian mass-shedding sequences. The secular instability
boundaries are plotted in pink-red and light blue color for the global and
local charge neutrality cases, respectively.
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Figure 3.8: Neutron star binding energy versus frequency for the Keplerian
sequence both for the global (red) and local (blue) charge neutrality neutron
stars.

It can be seen that due to the deformation for a given mass the radius of
the rotating case is larger than the static one, and similarly the mass of the
rotating star is larger than the corresponding static one. It can be also seen
that the configurations obeying global charge neutrality are more compact
with respect to the ones satisfying local charge neutrality.

3.6 Moment of Inertia

The neutron star moment of inertia I can be computed from the relation

I =
J

Ω
, (3.27)

where J is the angular momentum and Ω are related via Eq. (3.10). Since
J is a first-order quantity and so proportional to Ω, the moment of inertia
given by Eq. (3.27) does not depend on the angular velocity and does not
take into account deviations from the spherical symmetry. This implies that
Eq. (3.9) gives the moment of inertia of the non-rotating unperturbed seed
object. In order to find the perturbation to I, say δI, the perturbative
treatment has to be extended to the next order Ω3, in such a way that
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by Eqs. (3.22) and (3.23), respectively.



I = I0 + δI = (J0 + δJ)/Ω, becomes of order Ω2, with δJ of order Ω3 (see
e.g. Hartle, 1973; Benhar et al., 2005). In this work we keep the solution
up to second order and therefore the moment of inertia is the one for the
non-rotating configurations. In any case, as seen in Sec. 3.4 even the fastest
observed pulsars rotate at frequencies much lower than the Keplerian rate,
and under such conditions we expect that the moment of inertia can be
approximated with high accuracy by the one of the corresponding static
configurations. Moreover, owing to the high density of neutron stars, most
of the observed pulsars are accurately described by a perturbed spherical
geometry and the accuracy of the moment of inertia of the non-rotating star
is a good approximation for the actual value of the rotating object. The
accuracy of the approximation increases for stiffer EOS (see Benhar et al.,
2005, for details), as it is the case of the EOS obtained from σ-ω-ρ relativistic
nuclear mean field models (Boguta and Bodmer, 1977) such as the one used
here.

In Figs. 3.10 and 3.11 we show the behavior of the total momentum of
inertia, i.e. I = Icore + Icrust, with respect to the total mass and central
density for both globally and locally neutral non-rotating neutron stars.
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Figure 3.10: Total moment of inertia versus total mass both for globally (red)
and locally (blue) neutral non-rotating neutron stars.

We can see from Figs. 3.10 and 3.11 that the total moment of inertia is
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Figure 3.11: Total moment of inertia versus central density for globally (red)
and locally (blue) neutral non-rotating neutron stars.

quite similar for both global and local charge neutrality cases. This is due
to the fact that the globally neutral configurations differ from the locally
ones mostly in the structure of the crust, which however contributes much
less than the neutron star core to the total moment of inertia (see below in
section 3.6.1).

3.6.1 Core and Crust Moment of Inertia

In order to study the single contribution of the core and the crust to
the moment of inertia of the neutron star, it shall to be used the integral
expression for the moment of inertia. Multiplying Eq. (3.8) by r3 and making
the integral of it, the following relation we obtain1

I(r) = −2

3

∫ r

0

r3
dj

dr

ω̄(r)

Ω
dr =

8π

3

∫ r

0

r4(E+ P )e(λ−ν)/2 ω̄(r)

Ω
dr , (3.28)

where the integration is carried out in the region of interest. Thus, the
contribution of the core, Icore, is obtained integrating from the origin up to

1It is clear that this expression approaches, in the weak field limit, the classic Newtonian
expression INewtonian = (8π/3)

∫

r4ρ dr where ρ is the mass-density (Hartle, 1967).



the radius of the core, and the contribution of the crust, Icrust, integrating
from the base of the crust to the total radius of the neutron star.

We show in Figs. 3.12 and 3.13 the ratio between the moment of inertia of
the crust and the one of the core as a function of the total mass and central
density, respectively, for both the globally and locally neutral configurations.
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Figure 3.12: Crust to core moment of inertia ratio versus the total mass of
both globally and locally neutral non-rotating neutron stars.

3.7 Deformation of the Neutron Star

In this section we explore the deformation properties of the neutron star.
The behavior of the eccentricity, the rotational to gravitational energy ratio,
as well as the quadrupole moment, are investigated as a function of the mass,
density, and rotation frequency of the neutron star.
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Figure 3.13: Crust to core moment of inertia ratio versus the central density
both globally and locally neutral non-rotating neutron stars.

3.7.1 Eccentricity

A measurement of the level of deformation of the neutron star can be
estimated with the eccentricity

ǫ =

√

1−
(

Rp

Req

)2

, (3.29)

where Rp and Req are the polar and equatorial radii of the configuration.
Thus, ǫ = 0 defines the spherical limit and 0 < ǫ < 1 corresponds to oblate
configurations.

In Fig. 3.14, we show the behavior of the total eccentricity (3.29), as a
function of the neutron star frequency.

We can see that in general the globally neutral neutron star has an eccen-
tricity larger than the one of the locally neutral configuration for almost the
entire range of frequencies and the corresponding central densities, except
for the low frequencies f . 0.8 kHz and central densities ρ(0) . 1.3ρnuc;
see also Fig. 3.15. Starting from low values of the frequency f and central
density ρ(0), the neutron stars increase their oblateness, and after reaching
the maximum value of the eccentricity, the compactness increases and the
configurations tend to a more spherical shape.
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Figure 3.14: Eccentricity (3.29) versus frequency for the Keplerian sequence
both for the global (red) and local (blue) charge neutrality cases.
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Figure 3.15: Eccentricity (3.29) versus central density for the Keplerian se-
quence both for the global (red) and local (blue) charge neutrality cases.



3.7.2 Rotational to Gravitational Energy Ratio

Other property of the star related to the centrifugal deformation of the
star is the ratio between the gravitational energy and the rotational energy
of the star. The former is given by Eq. (3.20), whereas the latter is

T =
1

2
IΩ2 , (3.30)

We show in Fig. 3.16 the ratio T/|W | as a function of the mass of the
neutron stars along the Keplerian sequence. In Fig. 3.17 instead we plot
the dependence of the ratio on the central density and in Fig. 3.18 on the
Keplerian frequency.
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Figure 3.16: Rotational to gravitational binding energy ratio versus total
mass along the Keplerian sequence both for the global (red) and local (blue)
charge neutrality.

3.7.3 Quadrupole Moment

In Figs. 3.19 and 3.20 we show the quadrupole moment, Q given by
Eq. (3.14), as a function of the total mass and central density for both glob-
ally and locally neutral neutron stars along the Keplerian sequence. The
dependence of Q on the rotation frequency is shown in Fig. 3.21. Here,
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Figure 3.17: Rotational to gravitational binding energy ratio versus central
density along the Keplerian sequence both for the global (red) and local
(blue) charge neutrality.
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Figure 3.18: Rotational to gravitational binding energy ratio versus frequency
along the Keplerian sequence both for the global (red) and local (blue) charge
neutrality cases.



we have normalized the quadrupole moment Q to the quantity MR2 of the
non-rotating configuration with the same central density.
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Figure 3.19: Total quadrupole moment versus total mass along the Keplerian
sequence both for the global (red) and local (blue) charge neutrality cases.
The quadrupole moment Q is here in units of the quantity MR2 of the non-
rotating configuration with the same central density.

3.8 Observational Constraints

In Fig. 3.22 we show the above mass-radius relations together with the
most recent and stringent constraints indicated by Trümper (2011a):

1) The largest mass

Until 2013 it was given by the mass of the 3.15 millisecond pulsar PSR
J1614–2230 M = (1.97±0.04)M⊙ (Demorest et al., 2010), however the
recent reported mass (2.01± 0.04)M⊙ for the neutron star in the rela-
tivistic binary PSR J0348+0432 (Antoniadis et al., 2013) puts an even
more stringent request to the nuclear EOS. Thus, the maximum mass
of the neutron star has to be larger than the mass of PSR J0348+0432,
this constraint is represented by the orange-color stars in Fig. 3.22.
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Figure 3.20: Total quadrupole moment versus central density along the Ke-
plerian sequence both for the global (red) and local (blue) charge neutrality
cases. The quadrupole moment Q is here in units of the quantity MR2 of
the non-rotating configuration with the same central density.

2) The largest radius

It is given by the lower limit to the radius of RX J1856–3754. The
lower limit to the radius as seen by an observer at infinity is R∞ =
R[1 − 2GM/(c2R)]−1/2 > 16.8 km, as given by the fit of the optical
and X-ray spectra of the source (Trümper et al., 2004); so in the mass-
radius relation this constraint reads 2GM/c2 > R − R3/(Rmin

∞ )2, with
Rmin

∞ = 16.8 km. This constraint is represented by the dotted-dashed
curve in Fig. 3.22.

3) The maximum surface gravity

Using a neutron star ofM = 1.4M⊙ to fit the Chandra data of the low-
mass X-ray binary X7, it turns out that the radius of the star satisfies at
90% confidence level, R = 14.5+1.8

−1.6 km, which gives R∞ = [15.64, 18.86]
km, respectively (Heinke et al., 2006). Using the same formula as
before, 2GM/c2 > R−R3/(Rmin

∞ )2, we obtain the dotted curves shown
in Fig. 3.22.

4) The highest rotation frequency

The fastest observed pulsar is PSR J1748–2446ad with a frequency
of 716 Hz (Hessels et al., 2006). It is shown the constant rotation
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Figure 3.21: Total quadrupole moment versus frequency along the Keplerian
sequence both for the global (red) and local (blue) charge neutrality cases.
The quadrupole moment Q is here in units of the quantity MR2 of the non-
rotating configuration with the same central density.

frequency sequence f = 716 Hz for both globally (dashed pink) and
locally (dashed light blue) neutral neutron stars. We indicated with
cyan-color stars the point where these curves cross the corresponding
Keplerian sequences in the two cases (see Fig. 3.22).

Every f -constant sequence crosses the stability region of the objects in
two points: these crossing points define the minimum and maximum possible
mass that an object rotating with such a frequency may have in order to be
stable. In the case of PSR J1748–2446ad, the cut of the f = 716 Hz constant
sequence with the Keplerian curve establishes the minimum mass of this
pulsar. We find that its minimum mass is ≈ 0.175M⊙ and corresponding
equatorial radius 10.61 km for the globally neutral neutron star. For the
locally neutral configuration we find ≈ 0.48M⊙ and 14.8 km, respectively
for the minimum mass and corresponding equatorial radius. This implies
that the mass of PSR J1748–2446ad is poorly constrained to be larger than
the above values.

It is interesting that the above minimum mass, given by its constant rota-
tion frequency sequence, is slightly larger than the minimum mass for bound
configurations on the Keplerian sequence, MK

min ≈ 0.167M⊙; see Eq. (3.25).
In fact, as we shown in Eq. (3.26) the minimum rotation frequency along the



Keplerian sequence for bound configurations in the globally neutral case is,
fK
min ≈ 700.59 Hz, which is slightly lower than the frequency of PSR J1748–
2446ad. It would imply that PSR J1748–2446ad is very likely rotating at a
rate much lower than the Keplerian one.

Similarly to what presented by Belvedere et al. (2012) for the static
neutron stars and introduced by Trümper (2011a), the above observational
constraints show a preference on stiff EOS that provide highest maximum
masses for neutron stars. It is evident from Fig. 3.22 that mass-radius re-
lations for both the static and the rotating case presented here, are consis-
tent with all the observational constraints. In Table 3.2 we show the radii
predicted by our mass-radius relation both for the static and the rotating
case for a canonical neutron star as well as for the most massive neutron
stars discovered, namely, the millisecond pulsar PSR J1614–2230 (Demorest
et al., 2010), M = (1.97± 0.04)M⊙, and the most recent PSR J0348+0432,
M = (2.01± 0.04)M⊙ (Antoniadis et al., 2013).

M(M⊙) RJ=0 (km) RJ 6=0
eq (km)

1.40 12.313 13.943
1.97 12.991 14.104
2.01 13.020 14.097

Table 3.2: Radii for a canonical neutron star of M = 1.4M⊙ and for
PSR J1614–2230 Demorest et al. (2010), M = (1.97 ± 0.04)M⊙, and PSR
J0348+0432 (Antoniadis et al., 2013), M = (2.01± 0.04)M⊙. These config-
urations are computed under the constraint of global charge neutrality and
for a density at the edge of the crust equal to the neutron drip density. The
nuclear parameterizations NL3 has been used.

3.9 Conclusions

We have constructed equilibrium configurations of uniformly rotating
neutron stars in both the global charge neutrality and local charge neutrality
cases, generalizing our previous work (Belvedere et al., 2012) and described in
chapter 2. To do this we have applied the Hartle method to the seed static so-
lution obtained from the integration of the Einstein-Maxwell-Thomas-Fermi
equations (Belvedere et al., 2012). We calculated the mass, polar and equa-
torial radii, angular momentum, moment of inertia, quadrupole moment,
and eccentricity, as functions of the central density and the rotation angular
velocity of the neutron star.
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Figure 3.22: Observational constraints on the mass-radius relation given by
Trümper (2011a) and the theoretical mass-radius relation presented in this
work in Fig. 3.9. The red lines represent the configuration with global charge
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rian sequences and the red and blue dashed lines represent the static cases
presented by Belvedere et al. (2012).



The Keplerian mass-shedding limit and the secular axisymmetric insta-
bility have been analyzed for the construction of the region of stability of
rotating neutron stars. We have given fitting curves of the secular instability
boundary in Eqs. (3.22) and (3.23) for global and local charge neutrality,
respectively. With this analysis we have established in section 3.4.2 the max-
imum mass and maximum rotation frequency of the neutron star. We com-
puted in section 3.4.2 the gravitational binding energy of the configurations
as a function of the central density and rotation rate. We did this for cen-
tral densities higher than the nuclear one, so imposing that the neutron star
has a supranuclear hadronic core. We found that, in the case of a globally
neutral neutron star, there is a minimum mass under which the neutron star
becomes gravitationally unbound. Along the Keplerian sequence, to this
minimum mass object we associate a minimum frequency under which an
object rotating at the Keplerian rate becomes unbound; see Eq. (3.26). We
found that locally neutral neutron stars with supranuclear cores remained
always bound for the present EOS. In Table 3.3 are summarized all these
results.

Global Neutrality Local Neutrality
MJ=0

max (M⊙) 2.67 2.70
MJ 6=0

max (M⊙) 2.76 2.79
fmax (kHz) 1.97 1.89
Pmin (ms) 0.51 0.53
MJ=0

min (M⊙) 0.18 –
MK

min(M⊙) 0.17 –
fK
min (kHz) 0.70 –

Table 3.3: Maximum mass, maximum frequency, minimum period, minimum
mass of globally and locally neutral neutron stars.

We finally analyzed in section 3.8 the current observational constraints
on the mass-radius relation of neutron stars. We constructed the constant
frequency sequence of PSR J1748–2446ad to obtain the minimum possible
mass of this source, which is given by the crossing point of the f = 716 Hz
constant sequence with the Keplerian one. It gives ≈ 0.17M⊙ and ≈ 0.48M⊙

for the global and charge neutrality cases, respectively. The very low mass
inferred for PSR J1748–2446ad assuming that it rotates at the Keplerian rate
implies that its frequency is unlikely to be actually the Keplerian. Otherwise,
it would imply that PSR J1748–32446ad could be the less massive neutron
star ever observed.

It would be interesting to analyze the generality of the neutron star fea-



tures shown in this work since the most recent measurement of the mass
PSR J0348+0432, M = (2.01 ± 0.04)M⊙ (Antoniadis et al., 2013), favors
stiff nuclear EOS as the one used here.

3.10 Perspectives

Regarding the topic faced in this chapter, here we could make similar
considerations as for the first one. Namely, it would be interesting to study
the changes in the configuration of the neutron stars for different nuclear
models. In addition to a different nuclear model, it should be studied the
configurations with ρdrip < ρcrust, as well as the cooling of the rotating neutron
stars and the axisymmetric oscillations.

Moreover, once rotation is taken into account, differential rotation should
be studied too, in addition to the uniform one. As shown in (Baumgarte et al.,
2000; Morrison et al., 2004), differential rotation can lead to an increase in
the maximum stable mass for configurations dynamically stable against radial
collapse and bar formation. Furthermore, Shapiro (2000) studied the effects
of magnetic braking and viscous damping on a differentially rotating star,
suggesting a delay in the star collapse after a binary neutron star merger
and the possibility to generate both a delayed gravitational wave burst and
a gamma-ray burst.

Of course, since in this work we expanded the Hartle-Thorne metric only
up to the second order in the angular velocity Ω, would be interesting to
reach higher order expansion to see the effects on moment of inertia I as well
as on the quadrupole moment Q.

On regard the Hartle-Thorne method to describe uniformly rotating neu-
tron star, it should be implemented to give a wider and more realistic de-
scription of the stars, generalizing it by taking into account the contribution
of both the electric and magnetic fields.

Still, a possible work to face with, would be to study the relation between
the presence of the internal transition layer in between the core and the crust
and the glitch phenomenon, to analyze the connection among mechanical and
electromagnetic energy.



Chapter 4

Astrophysical Consequences of
Realistic Neutron Stars

4.1 Introduction

In chapters 2 and 3, we have shown both for the static and the rotating
case, how the traditional approach to study the equilibrium configurations
for neutron stars, based on the solution of the Tolman-Oppenheimer-Volkoff
(TOV) system of equations (Oppenheimer and Volkoff, 1939; Tolman, 1939),
has to be superseded once the weak, strong, gravitational and electromagnetic
interactions within a general relativistic framework are taken into account.
The TOV equations must be then replaced by the Einstein-Maxwell system
of equations coupled to the general relativistic Thomas-Fermi equations of
equilibrium, giving raise to the what we have called the Einstein-Maxwell-
Thomas-Fermi (EMTF) equations, (see Rotondo et al., 2011c; Rueda et al.,
2011; Belvedere et al., 2012, for details). Uniform rotation has been in-
troduced via the Hartle formalism. From the numerical integration of the
EMTF equations in this rotating case, we computed the mass, equatorial
and polar radii, eccentricity, moment of inertia I, quadrupole moment, the
sequence of maximally rotating (Keplerian, Ω = ΩK), as well as the bounds
to mass, radius, and rotation frequency imposed by the secular axisymmetric
instability.

From all we have shown in the previous chapters, it is clear that in the
intervening years from the seminal work of Oppenheimer and Volkoff (1939)
on neutron stars, much more has been learned concerning the EOS including
the nuclear interactions, and on a more complex description of the structure
parameters and stability of both static and rotating neutron stars.

However, it is common in the pulsar literature to infer neutron star as-
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trophysical observables such as the surface magnetic field and radiation effi-
ciency, by adopting fiducial structure parameters for the mass, radius, and
moment of inertia. In this line, we would like also to introduce a word of
caution on the use of analytic formulas existing in the literature for the de-
termination of the maximum rotation frequency and of the moment of inertia
of a neutron star.

In the first part of this chapter, we compare and contrast our values of
ΩK and I with the ones estimated through the claimed universal analytic
formulas 1) for the Keplerian sequence by Lattimer and Prakash (2004), and
2) for the moment of inertia as a function of the compactness by Ravenhall
and Pethick (1994) and by Lattimer and Schutz (2005), respectively. We
show that those simple universal analytic formulas cannot properly describe
the above properties of neutron stars, leading instead to inaccurate qualita-
tive and quantitative results. We show that such inadequacy of the universal
formulas is equally severe for both globally and locally neutral neutron stars.

In the second part of this chapter, we show that the use of realistic param-
eters of rotating neutron stars obtained from numerical integration of the self-
consistent axisymmetric general relativistic equations of equilibrium leads to
values of the magnetic field and radiation efficiency of pulsars very different
from estimates based on fiducial parameters assuming a neutron star mass,
M = 1.4 M⊙, radius R = 10 km, and moment of inertia, I = 1045 g cm2. We
apply these considerations to the specific class high-magnetic field pulsars.
We show that indeed all these sources can be described as canonical pul-
sars driven by the rotational energy of the neutron star with magnetic fields
lower than the quantum critical field, for appropriate values of the neutron
star mass.

This chapter is organized as follows. In section 4.2 we construct the Ke-
plerian sequence of globally and locally neutral neutron stars, and compare
qualitatively and quantitatively our results with the approximate analytic
formula given by Lattimer and Prakash (2004). We analyze specifically the
case of the fastest observed pulsar PSR J1748–2446ad (Hessels et al., 2006)
with a frequency of 716 Hz, which is often used in the literature to con-
straint the mass-radius relation and so the EOS of the neutron stars (see e.g.
Trümper, 2011b). In section 4.3 we calculate the moment of inertia of glob-
ally and locally neutral neutron stars and compare and contrast the results
with the approximate formulas given by Ravenhall and Pethick (1994) and
also Lattimer and Schutz (2005) for the moment of inertia as a function of
the star compactness. We analyze in section 4.4 the estimates of the mag-
netic field and radiation efficiency of the high-magnetic field pulsars class, for
which overcritical magnetic fields are inferred with fiducial parameters (see
e.g. Ng and Kaspi, 2011). In section 4.5 we discuss our results and in section



4.6 we conclude giving some perspectives.
We use geometric units with G = c = 1 throughout unless otherwise

specified.

4.2 Accuracy of Approximate Analytic For-

mulas for the Keplerian Sequence

It has been obtained by Lattimer and Prakash (2004) that the numerical
value of the Keplerian frequency, namely the maximum rotation frequency,
of a neutron star accounting for the effects of general relativity, deformation,
and independent on the EOS, can be well fitted from the simple formula

fL&P
K =

ΩL&P
K

2π
= 1045

(

M0

M⊙

)1/2(
10 km

R

)3/2

Hz , (4.1)

providing the neutron star mass is not very close to the maximum stable
value, where ΩL&P

K is the Keplerian angular velocity described in (Lattimer
and Prakash, 2004) and M0 and R are the mass and the radius of the non-
rotating star, respectively.

The Eq. (4.1) is often used to impose a constraint to the neutron star
mass-radius relation (see e.g. Trümper, 2011b), by replacing fLP

K with the
frequency of the fastest observed pulsar PSR J1748–2446ad (Hessels et al.,
2006), 716 Hz. Specifically, by doing this it can be obtained either an upper
bound to the radius or a lower bound to the mass:

M0 ≥
(

716

1045

)2(
R

10 km

)3

M⊙ ≈ 0.47

(

R

10 km

)3

M⊙ . (4.2)

In Fig. 4.1 we show the approximate constraint, given by Eq. (4.2), rep-
resented by the gray dot-dashed curve together with the Keplerian sequence
of globally and locally neutral neutron stars obtained in this work. We have
also constructed the constant frequency sequence for fastest observed pulsar
PSR J1748–2446ad with f = 716 Hz. The crossing point of this constant
frequency curve with the Keplerian one is represented by a cyan-color star.

One should therefore expect that, if accurate, the dot-dashed curve passes
over (or close to) the two cyan-color stars at the bottom of Fig. 4.1. It is
clear that Eq. (4.2) is very far from representing correctly the position of a
star on the Keplerian sequence, and this inconsistency is equally severe for
both globally and locally neutral neutron stars. Quantitatively, we can see
that Eq. (4.2) would predict for the same radius a much larger mass, namely
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Figure 4.1: Gray dot-dashed line: constraint on the mass-radius relation
given by Eq. 4.2, as shown in (Trümper, 2011b). Light-red and light-blue
dashed lines: mass-radius relation for a constant rotational frequency f =
716 Hz, for the global and local charge neutrality respectively. The two cyan-
color stars at the bottom of the plot represent the pulsar PSR J1748–2446ad
for our new configuration and the traditional one, both along the Keplerian
sequence. For the sake of comparison, we show also the sequences of constant
rotation period P = 10 s (f = 0.1 Hz).



M ≈ 0.56 M⊙ in the globally neutral case and M ≈ 1.5 M⊙ in the locally
neutral one; see Fig. 4.1.

The reason of the discrepancy between Eq. (4.1) and the real results, is
as follows. The maximum Keplerian velocity can be written in terms of the
non-rotating mass and radius of the neutron star as (see Belvedere et al.,
2014)

ΩJ 6=0
K = C

√

M0

R3
, (4.3)

or in terms of rotation frequency

fK = C× 1833

(

M0

M⊙

)1/2(
10 km

R

)3/2

Hz , (4.4)

where ρc ≡ ρ(0) is the central density, and C is a coefficient given by

C =

√

1 + δM/M0

(1 + δR/R)3
[

1− jF1(r) + j2F2(r) + qF3(r)
]

, (4.5)

with δM = M −M0, δR = Req − R being M and Req the total mass and
equatorial radius of the rotating star, j = J/M2

0 and q = Q/M3
0 are the

dimensionless angular momentum and quadrupole moment. The functions
Fi can be found in Appendix B.2 and Appendix A of (Belvedere et al., 2014),
and the angular momentum J and the quadrupole moment Q are given by
Eqs. 3.9 and 3.14, respectively.

In Fig. 4.2 we plot the dependence of the coefficient C in Eq. (4.3) as a
function of the static neutron star mass, M0. In contrast to the constancy
of such a coefficient in the approximate analytic formula (4.1), we find that
C has a non-trivial dependence on the central density (or the mass) of the
star. Indeed, we obtain 0.720 . CGCN . 0.912 and 0.750 . CLCN . 0.916
for the global and local charge neutrality cases, respectively (see Fig. 4.2).
This dependence is caused by the effects of general relativity, the angular
momentum, the quadrupole deformation, and the specific EOS used. There-
fore, the Eqs. (4.1) and (4.2) are, in general, not applicable for all neutron
star models.

We show in Fig. 4.3 the accuracy of the approximate analytic formula for
the Keplerian sequence given by Eq. (4.1) with respect to the actual value
obtained from our numerical integrations, 1−fL&P

K /fK , where fK is obtained
via Eqs. (4.4) and (4.5).
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4.3 Accuracy of Approximate Analytic For-

mulas for the Moment of Inertia

It has been claimed in the literature the possibility of constructing model-
independent approximate analytic formulas to compute the moment of inertia
of a neutron star as a function of its compactness, GM0/(c

2R).

Ravenhall and Pethick (1994) for instance obtained that, within 10% of
accuracy, the moment of inertia for a large variety of the EOS existing at the
time is fitted by the formula

IR&P

M0R2
= 0.21

(

1− 2
GM0

c2R

)−1

, (4.6)

except for those configurations with masses M0 .M⊙.

Lattimer and Schutz (2005) calculated the moment of inertia for sev-
eral hadronic EOS and concluded that I/(M0R

2) follows approximately the
following universal expression

IL&S

M0R2
= (0.237± 0.008)

[

1 + 2.84
GM0

c2R
+ 18.9

(

GM0

c2R

)4
]

, (4.7)

for EOS that leads to maximum masses larger than 1.6M⊙ and for values
M0/R & 0.07 M⊙/km and M ≥M⊙.

In Fig. 4.4 we compare the approximate formulas (4.6) and (4.7) with the
actual behavior of I/(M0R

2) as a function of the neutron star compactness.

We show in Fig. 4.5 the accuracy of the approximate formulas (4.6) and
(4.7) with respect to the numerical values obtained from Eq. (3.27) for both
globally and locally neutral neutron stars. Namely, we plot as a function
of the compactness the value of 1 − IGCN/IR&P,L&S and 1 − ILCN/IR&P,L&S.
We can see the performance of the above approximate formulas is in general
not accurate. The accuracy improves with increasing compactness and in
particular for configurations very close to the one of maximum mass. How-
ever, it is clear that the above approximate formulas cannot be considered
as good approximations for the moment of inertia of any neutron star since
the qualitative and quantitative behavior of it depends very strongly on the
nuclear EOS. As we have shown here, these particular descriptions fail in the
case of stiff EOS as the ones given by relativistic nuclear mean field theory
models.
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4.4 Implications on the Magnetic-Dipole Model

of Pulsars

The upper limit on the magnetic field of a pulsar (see e.g. (Ferrari and
Ruffini, 1969)), obtained by requesting that the rotational energy loss due to
the dipole field be smaller than the electromagnetic emission of the dipole,
is given by

B =

(

3c3

8π2

I

R6
PṖ

)1/2

, (4.8)

where P and Ṗ are the rotational period and the spin-down rate of the
pulsar which are observational properties, and the moment of inertia I and
the radius R of the object are model dependent properties.

In literature of pulsars are generally used fiducial parameters of the canon-
ical neutron star M = 1.4M⊙, R = 10 km, and moment of inertia I = 1045

g cm2, for which Eq. (4.8) becomes

Bf = 3.2× 1019
(

PṖ
)1/2

G . (4.9)

The loss of rotational energy within this model is given by

Ėrot = −4π2I
Ṗ

P 3
, (4.10)

that for the aforementioned fiducial values becomes

Ėf
rot = −3.95× 1046

Ṗ

P 3
erg s−1 . (4.11)

There is an interesting family of pulsars known as high-magnetic field
pulsars characterized by surface magnetic fields, inferred from their period
and spin-down rates thorough Eq. (4.9), close or in some cases even larger
than the quantum critical field (see e.g. Ng and Kaspi, 2011; Zhu et al., 2011,
and Table 4.1 for details):

Bc =
m2

ec
2

e~
= 4.41× 1013 G . (4.12)

Due to this fact, it has been suggested the possibility that this family of
pulsars can be the missing link, i.e. transition objects, between rotation pow-
ered pulsars and the so-called magnetars: neutron stars powered by the decay
of overcritical magnetic fields. In principle this would lead to a large unseen



population of magnetars in a quiescence state which could be disguised as
radio pulsars (see e.g. Zhu et al., 2011, for details).

However, as we shall show below, these conclusions might be premature
since the magnetic fields, inferred using a neutron star of fiducial parameters,
are in general overestimated. Indeed, lower values of the magnetic field are
obtained when realistic structure parameters are used. In particular, they
could be in some cases larger by almost an order of magnitude when compared
with the magnetic field obtained from Eq. (4.8) using realistic mass-radius
relations and the corresponding general relativistic moment of inertia. We
shall show that both different theoretical models or, for a fixed model, differ-
ent structure parameters as a function of the central density and/or rotation
frequency of the star, can give rise to quite different quantitative estimates
of the astrophysical observables.

To analyze the magnetic fields and the efficiency of pulsars in converting
rotational energy into electromagnetic radiation, we focus, in particular, on
what it is known in the literature as the high-magnetic field pulsar class
(see Ng and Kaspi, 2011). In Table 4.1, we show a sample of this class for
which magnetic fields higher than the critical value (4.12) have been inferred
(see second column of the table) using fiducial values of the neutron star
parameters.

High-Magnetic Field Pulsars

J-Name Bf/Bc LX (1033 erg s−1) P (s) Ṗ (10−12)
J1846–0258 1.11 25− 281 , 120− 1702 0.32568424880 7.083300
J1819–1458 1.13 1.8− 2.4 4.26316403290 0.575171
J1734–3333 1.18 0.1− 3.4 1.16900829800 2.278980
J1814–1744 1.24 < 43 1.16934068500 2.279410
J1718–3718 1.67 0.14− 2.6 3.37820652870 1.598150
J1847–0130 2.13 < 34 6.70704572410 1.274900

1 in 2000, prior to the 2006 outburst
2 during the outburst in 2006

Table 4.1: Magnetic fields of the overcritical high-magnetic field pulsars
obtained assuming fiducial neutron star parameters, R = 10 km and I =
1045 g cm2, respectively, namely using Eq. (4.9). See Zhu et al. (2011); Ng
and Kaspi (2011) for additional details of these pulsars.

In Fig. 4.6 we show the ratio between the magnetic field obtained via
Eq. (4.8) using the realistic mass-radius relations of globally and locally neu-
tral neutron stars used in this work and the one obtained with fiducial pa-
rameters given by Eq. (4.9), which we denote to as Bf . We did this for both



static and maximally rotating (Keplerian sequence) neutron stars. For the
rotating stars we substitute the radius R in Eq. (4.8) by the mean-radius,
〈R〉 = (2Req +Rp)/3, where Req and Rp are, respectively, the equatorial and
polar radii.
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Figure 4.6: Ratio between the magnetic field given by Eq. (4.8) obtained
with the realistic mass-radius relations of globally and locally neutral neutron
stars of this work and the one obtained with fiducial parameters, given by
Eq. (4.9).

We can see from this figure that the inferred magnetic field decreases
with the neutron star mass. Therefore, the configurations of maximum and
minimum mass give us respectively upper and lower limits to the magnetic
field.

In Fig. 4.8 we plotted our theoretical prediction for magnetic fields of
the pulsars of Table 4.1 as a function of the neutron star mass. In this case
we use the static approximation, namely we adopted the radius of the non-
rotating configurations to be consistent with the moment of inertia obtained
by the Hartle approach at second order, which as we mentioned above does
not account for the effects of deformation due to rotation. This is in principle



a good approximation for this family of pulsars since their rotation periods
are well far the millisecond region, where appreciable deviations from spher-
ical symmetry are expected. See for instance in Fig. 4.7 the sequence of
configurations with rotation period P = 10 s which practically overlaps the
static mass-radius relation. It can be also noticed from Fig. 4.6, that the
non-rotating approximation give us an upper limit to the magnetic field with
respect to the value obtained from the actual rotating configuration.

9 11 13 15 17
Req (km)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
/M

⊙

GCN : Static
GCN : Keplerian
GCN : P=10 s
GCN : Secular Inst.
LCN : Static
LCN : Keplerian
LCN : P=10 s
LCN : Secular Inst.
M J=0

min (GCN)

M J≠0
min (GCN)

Figure 4.7: Comparison between the mass-radius relation for the P = 10 s,
the static and the Keplerian sequences. As can be seen, the P = 10 s lines,
here in darkred and lightblue color for the global and the local charge neutron
star respectively, almost overlap the static configurations.

We find that, in the global neutrality case, PSR J1847–0130 and PSR
J1718–3718 are under-critical up to a mass M0 ≈ 0.25 M⊙, and M0 ≈
0.65M⊙, respectively, while the other pulsars are under-critical up to masses
M0 ≈ 2.3–2.5 M⊙. In the local charge neutrality case, PSR J1847–0130
and PSR J1718–3718 are under-critical up to a mass M0 ≈ 0.9 M⊙ and
M0 ≈ 1.5 M⊙ respectively, while the other sources up to masses M0 ≈ 2.5–
2.7 M⊙.



0.0 0.5 1.0 1.5 2.0 2.5 3.0
M0/M⊙

0.0

0.5

1.0

1.5

2.0

B
/B

c

J1847−0130
J1718−3718
J1734−3333

J1814−1744
J1819−1458
J1846−0258

0.0 0.5 1.0 1.5 2.0 2.5 3.0
M0/M⊙

0.0

0.5

1.0

1.5

2.0

B
/B

c

J1847−0130
J1718−3718
J1734−3333

J1814−1744
J1819−1458
J1846−0258

Figure 4.8: Magnetic field B in the dipole approximation, in units of critical
magnetic field Bc, as function of the mass (in solar masses) for static neutron
stars in the global (upper panel) and local (lower panel) charge neutrality
cases. We show the high-magnetic field pulsar of Table 4.1 for which overcrit-
ical values (B/Bc > 1) are obtained using fiducial neutron star parameters.



Concerning the efficiency of pulsars in converting rotational energy into
electromagnetic radiation, we show in Fig. 4.9 the X-ray luminosity to rota-
tion energy loss ratio, LX/Ėrot, as a function of the neutron star mass, for
both global and local charge neutrality.

We find that for both globally and locally neutral neutron stars LX < Ėrot:
1) in PSR J1718–3718 for M0 & 1.2 M⊙ and for the entire range of masses
adopting, respectively, the observational upper or lower limits on LX ; 2) in
PSR J1814–1744 for M0 & 0.8 M⊙ using the upper limit on LX ; 3) for the
rest of the objects in the entire range of stable masses.

The only exception to the above rule are PSR J1847–0130 and PSR
J1819–1458, for which no range of masses with LX < Ėrot was obtained.
However, for PSR J1847–0130 we have only an upper limit for LX , so there
is still room for solutions with LX < Ėrot if future observations lead to an ob-
served value lower than the present upper limit. In this line, the only object
with LX > Ėrot for any mass is PSR J1819–1458. For this particular object
there is still the possibility of being a rotation powered neutron star since
the currently used value of the distance to the source, 3.6 kpc, inferred from
its dispersion measure, is poorly accurate with a considerable uncertainty of
at least 25% (see McLaughlin et al., 2007, for details). Indeed, a distance to
the source 25% shorter than the above value would imply LX < Ėrot for this
object in the mass range M0 & 0.6 M⊙.

It is also worth to mention that the rotation energy loss (4.10) depends
on the neutron star structure only through the moment of inertia, whose
quantitative value can be different for different nuclear EOS and/or owing
to an improved value accounting for deviations from the spherical geometry,
for instance considering a third-order series expansion in Ω. However, the
latter effect is negligible for this specific case (P ≈ 4.3 s), see for instance
Fig. 5 in (Benhar et al., 2005), where no deviations of I from its spherical
value appear for such long rotation periods.

4.5 Conclusions

It is common in the pulsar literature to infer neutron star astrophysical
observables such as the surface magnetic field and radiation efficiency, by
adopting fiducial structure parameters for the mass, radius, and moment of
inertia. In addition, in order to put constraints to the mass-radius relation,
simple analytic formulas for the sequence of neutron stars with maximum
rotation frequency are used.

However, in this chapter we explored the consequences of a realistic model
for neutron stars on the inference of the astrophysical observables of pulsars.
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Figure 4.9: Ratio between the observed X-ray luminosity LX and the loss of
rotational energy Ėrot versus total mass of the non-rotating neutron star, in
units of M⊙. Are drawn the high-B pulsar from the work by Ng and Kaspi
(2011) for which a magnetic field higher than the critical field Bc is inferred,
once the fiducial value for the moment of inertia I = 1045 g cm2 is taken into
account (see Table 4.1). Pulsars with luminosity LX defined by an upper limit
are labeled with “up”, for pulsars with luminosity LX not well established we
have assumed the existent lower limits (label “min”) and upper limits (label
“max”) on it. The values for the pulsar PSR J1846–0258 are dived in prior
the 2006 outburst and during the 2006 outburst (label “D.O.”). Top plot:
global charge neutrality. Bottom plot: local charge neutrality. The magnetic
fields shown are referred to the high-magnetic field pulsars of Table 4.1.



We have shown here that the properties of neutron stars obtained from the
solution of the Einstein-Maxwell-Thomas-Fermi equations for uniform rota-
tion leads to a very different results with respect to the ones obtained with
such simple formulas and fiducial parameters.

We showed the inaccuracy of the analytic universal formulas by Lattimer
and Prakash (2004) for the Keplerian sequence, and by Ravenhall and Pethick
(1994) and Lattimer and Schutz (2005) for the moment of inertia of neutron
stars. Indeed, no simple formulas can be found for the neutron star properties
analyzed in this work, and the use of universal formulas leads, instead, to
inadequate qualitative and quantitative results owing to the effects of general
relativity, angular momentum, quadrupole deformation, and the specific EOS
used; see Figs. 4.2–4.5.

We showed that the magnetic field inferred from the magnetic-dipole for-
mula can be overestimated up to one order of magnitude if fiducial parameters
are adopted. We analyzed in addition the specific case of the high-magnetic
field pulsar class, for which overcritical magnetic fields have been obtained
in the literature with the use of fiducial neutron star parameters. We found
that, instead, the magnetic field of all the high-magnetic field pulsars turn to
be under-critical for appropriate values of the neutron star mass. This non-
trivial dependence of the inferred magnetic field on the neutron star mass, in
addition to the dependence on P and Ṗ , namely B = B(I(M0), R(M0), P, Ṗ ),
leads to the impossibility of accommodating the pulsars in a typical Ṗ − P
diagram together with a priori fixed values of the magnetic field; see Fig. 4.8.

We finally computed the range of neutron star masses for which the X-ray
luminosity of these pulsars can be well explained via the loss of rotational
energy and therefore they fall into the family of ordinary rotation powered
pulsars. The only possible exceptions were found to be PSR J1847–0130 and
PSR J1819–1458, which however, as we argued, still present observational
uncertainties in the determination of their distances and/or luminosities that
leave room for a possible explanation in terms of spin-down power.

We also discussed the possible effects of different nuclear models as well
as the improved values of the moment of inertia given by further expansion
orders of the slow rotation approximation or full numerical integration of
the equilibrium equations in the rotating case. However, the former effect
appears to be negligible for the long rotation periods, P ∼ 10 s, of the
high-magnetic field pulsars (see e.g. Fig. 5 in Benhar et al., 2005).

It is worth to underline that the validity of the results of this work will
very likely apply also to different nuclear EOS consistent with the current
observational constraints, as suggested by the high value of the recently mea-
sured mass of PSR J0348+0432,M = 2.01±0.04M⊙ (Antoniadis et al., 2013).
Such a high value favors stiff nuclear EOS, as the one used here based on



relativistic nuclear mean field theory á la Boguta and Bodmer (1977), which
lead to a critical mass of the neutron star higher than the above value.

We have shown that the above results apply both for global charge neu-
trality as well as in the limit of local neutrality.

4.6 Perspectives

As for the chapters 2 and 3, all the quantities studied here, should be
compared and contrasted both once a different nuclear model is taken into
account and a higher order expansion of the Hartle-Thorne metric on respect
the angular velocity Ω is carried out. In particular, to perform an expansion
of the metric to an order higher than the third, would take into account the
effects of rotation on the moment of inertia I and, as consequence, on the
quadrupole moment Q and the dipole magnetic field B. In this way, it would
be possible to study the magnetic field of neutron stars rotating at a higher
rate with respect to the one analyzed here. In fact, in this work we analyzed
stars rotating at a rate so slow that allow us to neglect the rotation itself
on respect the moment of inertia. Considering higher order expansion in Ω
would lead to introduce the effect of rotation on the quantities involved in
the description of dipole magnetic field, namely to analyze the effect of the
flattening of the star due to the fast rotation. In principle this means that
other family of pulsar in addition the ones studied here could be taken into
account, as, for example, the millisecond pulsars.





Chapter 5

Conclusions

We have formulated the equations of equilibrium of neutron stars both in
the static and the uniformly rotating configurations. The strong, weak, elec-
tromagnetic, and gravitational interactions are taken into due account within
the framework of general relativity. The nuclear forces are modeled through
the σ-ω-ρ strong forces model, where the interactions between nucleons are
described by the exchange of the σ, ω, and ρ virtual mesons.

We shown how the TOV system of equations has to be superseded withe
EMTF one, and we solved such a system in the case of zero temperature for
different parameterizations of the nuclear model.

We performed the integration of the equilibrium equations both for the
static and the rotating case, both for the global charge neutrality case and a
traditional configuration with the local charge neutrality.

We found a new structure for the neutron stars. We have a charged
core at supranuclear density, surrounded by a tiny layer of opposite charge
screening it, in its turn enclose by a neutral ordinary crust at lower density.

The equilibrium condition are given by the constancy of the Klein po-
tentials along the configuration, leading to a discontinuity in the density at
the transition from the core to the crust, and correspondingly an overcrit-
ical electric field ∼ (mπ/me)

2Ec develops in the boundary interface. The
continuity of the Klein potentials at the core-crust boundary interface leads
to a decreasing of the electron chemical potential and density, until values
µcrust
e < µcore

e and ρcrust < ρcore at the edge of the crust, where global charge
neutrality is achieved.

For each central density, an entire family of core-crust interface bound-
aries and, correspondingly, an entire family of crusts with different mass and
thickness, exist. The larger ρcrust, the smaller the thickness of the interface,
the peak of the electric field, and the larger the mass and the thickness of
the crust. The configuration with ρcrust = ρdrip ∼ 4.3× 1011 g/cm3 separates
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neutron stars with and without inner crust. In this work we limited our
analysis to configuration with density . ρdrip.

Our new neutron stars have crusts with masses and thickness smaller
than the ones obtained from the traditional TOV treatment, and our new
mass-radius relation is in line with observations.

To construct the equilibrium configurations of uniformly rotating neutron
stars in the slow rotation regime, we applied the Hartle-Thorne formalism.
This approach perform an expansion of the metric on respect the angular
velocity Ω of the star. We performed the expansion of the metric up to the
third order in Ω, so to calculate the mass, polar and equatorial radii, an-
gular momentum, moment of inertia, quadrupole moment, and eccentricity,
as functions of the central density and the rotation angular velocity of the
neutron star.

To construct the region of stability of rotating neutron stars, we analyzed
the Keplerian mass-shedding limit and the secular axisymmetric instability.

We have established the maximummass and maximum rotation frequency
of the neutron star. We computed the gravitational binding energy of the
configurations as a function of the central density and rotation rate. We
found that there is a minimum mass under which the neutron star becomes
gravitationally unbound once a globally neutral neutron star is considered,
while the locally neutral neutron stars are always bound. Even for the ro-
tating neutron stars, our mass-radius relation is in line with observations.

At the end, we compared and contrasted some physical quantities of neu-
tron stars obtained through the integrations of our system of equations, with
the same quantities derived through the adoption of fiducial values and by
using approximate analytic formulas in the literature. We shown that the
use of both the fiducial values and the analytical formulas should be done
with caution.

We, then, applied our results to the astrophysics of pulsars. We showed
that the magnetic field inferred from the magnetic-dipole formula can be over-
estimated up to one order of magnitude if fiducial parameters are adopted.
We analyzed in addition the specific case of the high-magnetic field pulsar
class, for which overcritical magnetic fields have been obtained in the lit-
erature with the use of fiducial neutron star parameters. We found that,
instead, the magnetic field of all the high-magnetic field pulsars turn to be
under-critical for appropriate values of the neutron star mass. We finally
showed that the X-ray luminosity of these pulsars can be well explained via
the loss of rotational energy and therefore they fall into the family of ordinary
rotation powered pulsars.



Chapter 6

IRAP & ICRANet–Sapienza
University of Rome Ph.D
Activities

In this section are listed my activities during my IRAP PhD–Sapienza
University of Rome period.

Research Experiences

During my IRAP PhD (International Relativistic Astrophysics Ph.D.)
held at Sapienza–University of Rome, I have been working with Professor
Ruffini and Dr. Jorge Rueda on a new configuration for the neutron stars.
Initially, we formulated the equilibrium equations for static neutron stars,
taking into account strong, weak, electromagnetic, and gravitational inter-
actions within the framework of general relativity and relativistic nuclear
mean field theory. We shown that the Tolman-Oppenheimer-Volkoff (TOV)
equations are superseded and the use of the Einstein-Maxwell-Thomas-Fermi
(EMTF) system of equations is mandatory. The key points are the constancy
of the general relativistic Fermi energies of particles, the “Klein potentials”,
throughout the configuration, and the use of the global charge neutrality
over the whole configuration as requested by the EMTF system of equations,
replacing the generally used local one. The solution of the EMTF equations
leads to a new structure of the neutron stars: a positively charged core at
supranuclear density, surrounded by an electron layer of thickness of the or-
der of the electron screening scale, and at lower density, a neutral ordinary
crust.

Then, we introduced rotation on the new neutron stars model, following
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the slow rotation approximation in the Hartle-Thorne formalism. Integrat-
ing the equations of equilibrium for different central densities and circular
velocities, we have been able to compute mass, polar and equatorial radii, an-
gular momentum, eccentricity and quadrupole moment of the configurations.
We took account of the Keplerian mass-shedding limit and the axisymmetric
secular instability. We computed the minimum mass for the globally neutral
neutron stars, under which them result gravitationally unbound. No un-
bound configurations have been found for the locally neutral neutron stars,
meaning that no minimum mass limit exist for this case.

Afterward, we showed the inaccuracy of some analytic universal formu-
las, generally used in the literature, for the Keplerian sequence and for the
moment of inertia of neutron stars. The values for the moment of inertia
I and the Keplerian rotational frequency fK , obtained through our model,
have been compared and contrasted with such formulas. We analyzed the
effect on the magnetic field of pulsars on respect to the case in which fiducial
parameters are used. We showed that the magnetic field inferred from the
magnetic-dipole formula can be overestimated up to one order of magnitude
if fiducial parameters are adopted. We analyzed in particular the case of the
high-magnetic field pulsar class. We found that the magnetic field of all the
high-magnetic field pulsars can turn to be under-critical for appropriate val-
ues of the neutron star mass. We finally computed the range of neutron star
masses for which the X-ray luminosity of these pulsars can be well explained
via the loss of rotational energy and therefore they fall into the family of
ordinary rotation powered pulsars.
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Appendix A

Neutron Stars, Einstein-
Maxwell-Thomas-Fermi
Equations and Relativistic
Mean Field Theory

For a system composed by neutrons, protons and electrons, taking into
account strong, weak, electromagnetic, and gravitational interactions in the
context of a fully general relativistic theory, the total Lagrangian density is
given by (see Belvedere et al. (2012) for details and Rueda et al. (2011) for
the general case with finite temperature)

L = Lg + Lf + Lσ + Lω + Lρ + Lγ + Lint , (A.1)

where the Lagrangian densities for the free-fields are

Lg = − R

16πG
, (A.2)

Lγ = − 1

16π
FµνF

µν , (A.3)

Lσ =
1

2
∇µσ∇µσ − U(σ) , (A.4)

Lω = −1

4
ΩµνΩ

µν +
1

2
m2

ωωµω
µ , (A.5)

Lρ = −1

4
RµνR

µν +
1

2
m2

ρρµρ
µ , (A.6)

where Ωµν ≡ ∂µων − ∂νωµ, Rµν ≡ ∂µρν − ∂νρµ, Fµν ≡ ∂µAν − ∂νAµ are the
field strength tensors for the ωµ, ρ and Aµ fields respectively, ∇µ stands for
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covariant derivative and R is the Ricci scalar. We adopt the Lorenz gauge
for the fields Aµ, ωµ, and ρµ.

The Lagrangian density for the three fermion species is

Lf =
∑

i=e,N

ψ̄i (iγ
µDµ −mi)ψi , (A.7)

where ψN is the nucleon isospin doublet, ψe is the electronic singlet, mi states
for the mass of each particle-specie and Dµ = ∂µ + Γµ, being Γµ the Dirac
spin connections.

The interacting part of the Lagrangian density is, in the minimal coupling
assumption, given by

Lint = −gσσψ̄NψN − gωωµJ
µ
ω − gρρµJ

µ
ρ + eAµJ

µ
γ,e − eAµJ

µ
γ,N , (A.8)

where the conserved currents are

Jµ
ω = ψ̄Nγ

µψN , (A.9)

Jµ
ρ = ψ̄Nτ3γ

µψN , (A.10)

Jµ
γ,e = ψ̄eγ

µψe , (A.11)

Jµ
γ,N = ψ̄N

(

1 + τ3
2

)

γµψN . (A.12)

The coupling constants of the σ, ω and ρ-fields are gσ, gω and gρ, and e
is the fundamental electric charge. The Dirac matrices γµ and the isospin
Pauli matrices satisfy the Dirac algebra in curved spacetime (see e.g. Ruffini
and Bonazzola (1969); Lee and Pang (1987) for details)

{γµ, γν} = 2gµν , (A.13)

{γµ, γν} = 2gµν , (A.14)

{γµ, γν} = 2δµν , (A.15)

[τi, τj ] = 2ıǫijkτ
k . (A.16)

The equations of the motion of the above Lagrangians lead to the Einstein-
Maxwell-Dirac system of equations

Gµν + 8πGTµν = 0 , (A.17)

∇µF
µν − eJν

ch = 0 , (A.18)

∇µΩ
µν +m2

ωω
ν − gωJ

ν
ω = 0 , (A.19)

∇µR
µν +m2

ρρ
ν − gρJ

ν
ρ = 0 , (A.20)

∇µ∇µσ + ∂σU(σ) + gsns = 0 , (A.21)

[γµ (iD
µ − V µ

N )− m̃N ]ψN = 0 , (A.22)

[γµ (iD
µ + eAµ)−me]ψe = 0 , (A.23)



where the nucleon effective mass is m̃N ≡ mN +gσσ, me is the electron mass,
the scalar density ns within the mean-field approximation, is given by the
following expectation value

ns = 〈ψ̄NψN〉 =
2

(2π)3

∑

i=n,p

∫

d3k
m̃N

ǫi(p)
, (A.24)

where ǫi(p) =
√

p2 + m̃2
i is the single particle energy, and

V µ
N ≡ gωω

µ + gρτρ
µ + e

(

1 + τ3
2

)

Aµ , (A.25)

is the effective four potential of nucleons.
The energy-momentum tensor of free-fields and free-fermions T µν of the

system (A.3)–(A.6) is

T µν = T µν
f + T µν

γ + T µν
σ + T µν

ω + T µν
ρ , (A.26)

where

T µν
γ =

1

4π

(

F µ
αF

αν +
1

4
gµνFαβF

αβ

)

, (A.27)

T µν
σ = ∇µσ∇νσ − gµν

[

1

2
∇σσ∇σσ − U(σ)

]

, (A.28)

T µν
ω = Ωµ

αΩ
αν +

1

4
gµνΩαβΩ

αβ

+m2
ω

(

ωµων − 1

2
gµνωαω

α

)

, (A.29)

T µν
ρ = R

µ
αR

αν +
1

4
gµνRαβR

αβ

+m2
ρ

(

R
µ
R

ν − 1

2
gµνραρ

α

)

, (A.30)

T µν
f = (E+ P)uµuν − Pgµν , (A.31)

where the energy-density E and the pressure P are given by

E =
∑

i=n,p,e

Ei, P =
∑

i=n,p,e

Pi , (A.32)

being Ei and Pi the single fermion fluid contributions (see Rueda et al. (2011)
for details)

Ei =
2

(2π)3

∫ PF

i

0

ǫi(p) 4πp
2dp , (A.33)

Pi =
1

3

2

(2π)3

∫ PF

i

0

p2

ǫi(p)
4πp2dp . (A.34)



It is worth to recall that the equation of state (A.32)–(A.34) satisfies the
thermodynamic law

E+ P =
∑

i=n,p,e

niµi , (A.35)

where µi = ∂E/∂ni =
√

(P F
i )2 + m̃2

i and ni = (P F
i )3/(3π2) are the free-

chemical potential and number density of the i-specie with Fermi momentum
P F
i respectively.
In the static case, only the temporal components of the covariant currents

survive, i.e. 〈ψ̄(x)γiψ(x)〉 = 0. Thus, by taking the expectation values of
Eqs. (A.9)–(A.12), it is possible to obtain the non-vanishing components of
the currents

J ch
0 = nchu0 = (np − ne)u0 , (A.36)

Jω
0 = nbu0 = (nn + np)u0 , (A.37)

Jρ
0 = n3u0 = (np − nn)u0 , (A.38)

where nb = np + nn is the baryon number density and u0 =
√
g00 = eν/2

is the covariant temporal component of the four-velocity of the fluid, which
satisfies uµuµ = 1.

Therefore, the Einstein-Maxwell equations (A.17)–(A.21), become

e−λ(r)

(

1

r2
− λ′

r

)

− 1

r2
= −8πGT 0

0 , (A.39)

e−λ(r)

(

1

r2
+

1

r

dν

dr

)

− 1

r2
= −8πGT 1

1 , (A.40)

d2V

dr2
+
dV

dr

[

2

r
− 1

2

(

dν

dr
+
dλ

dr

)]

= −eλeJ ch
0 , (A.41)

d2σ

dr2
+
dσ

dr

[

2

r
+

1

2

(

dν

dr
− dλ

dr

)]

= eλ [∂σU(σ) + gsns] , (A.42)

d2ω

dr2
+
dω

dr

[

2

r
− 1

2

(

dν

dr
+
dλ

dr

)]

= −eλ
[

gωJ
ω
0 −m2

ωω
]

, (A.43)

d2ρ

dr2
+
dρ

dr

[

2

r
− 1

2

(

dν

dr
+
dλ

dr

)]

= −eλ
[

gρJ
ρ
0 −m2

ρρ
]

, (A.44)

where we have introduced the notation ω0 = ω, ρ0 = ρ, and A0 = V .
The metric function λ is related to the mass M(r) and the electric field
E(r) = −e−(ν+λ)/2V ′ through

e−λ(r) = 1− 2GM(r)

r
+Gr2E2(r) = 1− 2GM(r)

r
+
GQ2(r)

r2
, (A.45)



being Q(r) the conserved charge, related to the electric field by Q(r) =
r2E(r).
The electron density ne is, using the constancy of the generalized Fermi
energy of the electons (see Eq. (2.9) in Subsec. 2.2.1), given by

ne =
e−3ν/2

3π2
[V̂ 2 + 2meV̂ −m2

e(e
ν − 1)]3/2 , (A.46)

where V̂ ≡ eV + EF
e . Substituting Eq.( A.46) into Eq. (A.41) one obtains

the general relativistic extension of the relativistic Thomas-Fermi equation
recently introduced for the study of compressed atoms by Rotondo et al.
(2011b,a).





Appendix B

The Hartle Solution and
Equatorial Circular Orbits

B.1 The Hartle-Thorne Vacuum Solution

It is possible to write the Hartle-Thorne metric given by eq. 3.4 in an
analytic closed-form in the exterior vacuum case as function of the total
mass M , angular momentum J , and quadrupole moment Q of the rotating
star. The angular velocity of local inertial frames ω(r), proportional to Ω,
and the functions h0, h2, m0, m2, k2, proportional to Ω

2, are derived from the
Einstein equations (see Hartle, 1967; Hartle and Thorne, 1968, for details).
Following this prescriptions the eq. 3.4 become:

ds2 =

(

1− 2M

r

)

×
[

1 + 2k1P2(cos θ) + 2

(

1− 2M

r

)−1
J2

r4
(2 cos2 θ − 1)

]

dt2

+
4J

r
sin2 θdtdφ−

(

1− 2M

r

)−1

×
[

1− 2

(

k1 −
6J2

r4

)

P2(cos θ)− 2

(

1− 2M

r

)−1
J2

r4

]

dr2

− r2[1− 2k2P2(cos θ)](dθ
2 + sin2 θdφ2) , (B.1)
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where

k1 =
J2

Mr3

(

1 +
M

r

)

+
5

8

Q− J2/M

M3
Q2

2(x) , (B.2)

k2 = k1 +
J2

r4
+

5

4

Q− J2/M

M2r
√

1− 2M/r
Q1

2(x) , (B.3)

and

Q1
2(x) = (x2 − 1)1/2

[

3x

2
ln

(

x+ 1

x− 1

)

− 3x2 − 2

x2 − 1

]

, (B.4)

Q2
2(x) = (x2 − 1)

[

3

2
ln

(

x+ 1

x− 1

)

− 3x3 − 5x

(x2 − 1)2

]

, (B.5)

are the associated Legendre functions of the second kind, being P2(cos θ) =
(1/2)(3 cos2 θ−1) the Legendre polynomial, and where it has been effectuated
the re-scaling x = r/M − 1. The constants M , J and Q are the total mass,
angular momentum and mass quadrupole moment of the rotating object,
respectively. This form of the metric corrects some misprints of the original
paper by Hartle and Thorne (1968) (see also Berti et al., 2005; Boshkayev
et al., 2012a). To obtain the exact numerical values of M , J and Q, the
exterior and interior metrics have to be matched at the surface of the star.
It is worthy underline that in the terms involving J2 and Q, the total mass
M can be substituted by M0 since δM is already a second order term in the
angular velocity.

B.2 Angular Velocity of Equatorial Circular

Orbits

It is possible to obtain the analytical expression for the angular velocity Ω
given by Eq. (3.18) with respect to an observer at infinity, taking into account
the parameterization of the four-velocity u of a test particle on a circular
orbit in equatorial plane of axisymmetric stationary spacetime, regarding as
parameter the angular velocity Ωitself:

u = Γ[∂t + Ω∂φ] , (B.6)

where Γ is a normalization factor such that uαuα = 1. Normalizing and
applying the geodesics conditions we get the following expressions for Γ and
Ω = uφ/ut

Γ = ±(gtt + 2Ωgtφ + Ω2gφφ)
−1/2 , (B.7)

gtt,r + 2Ωgtφ,r + Ω2gφφ,r = 0 . (B.8)



Thus, the solution of Eqs. (B.7–B.8) can be written as

Ω±
orb(r) =

uφ

ut
=

−gtφ,r ±
√

(gtφ,r)2 − gtt,rgφφ,r
gφφ,r

, (B.9)

where +/− stands for co-rotating/counter-rotating orbits, uφ and ut are the
angular and time components of the four-velocity respectively, and a colon
stands for partial derivative with respect to the corresponding coordinate.
To determine the mass shedding angular velocity (the Keplerian angular ve-
locity) of the neutron stars, we need to consider only the co-rotating orbit, so
from here and thereafter we take into account only the plus sign in Eq. (B.7)
and we write Ω+

orb(r) = Ωorb(r).
For the Hartle external solution given by Eq. (B.1) we obtain Eq. (3.18)

with

F1 =

(

M

r

)3/2

, (B.10)

F2 =
48M7 − 80M6r + 4M5r2 − 18M4r3

16M2r4(r − 2M)
(B.11)

+
40M3r4 + 10M2r5 + 15Mr6 − 15r7

16M2r4(r − 2M)
+ F , (B.12)

F3 =
6M4 − 8M3r − 2M2r2 − 3Mr3 + 3r4

16M2r(r − 2M)/5
− F , (B.13)

F =
15(r3 − 2M3)

32M3
ln

r

r − 2M
. (B.14)

(B.15)

The maximum angular velocity possible for a rotating star at the mass-
shedding limit is the Keplerian angular velocity evaluated at the equator
(r = Req), i.e.

ΩJ 6=0
K = Ωorb(r = Req) . (B.16)

In the static case i.e. when j = 0 hence q = 0 and δM = 0 we have the
well-known Schwarzschild solution and the orbital angular velocity for a test
particle ΩJ=0

K on the surface (r = R) of the neutron star is given by

ΩJ=0
K =

√

MJ=0

R3
MJ=0

. (B.17)
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J. (2013). Structure and Cooling of Neutron and Hybrid Stars. Greiner,
W.

Shapiro, S. L. (2000). Differential Rotation in Neutron Stars: Magnetic
Braking and Viscous Damping. ApJ, 544:397–408.

Shapiro, S. L. and Teukolsky, S. A. (1983). Black holes, white dwarfs, and
neutron stars: The physics of compact objects. Research supported by the
National Science Foundation. New York, Wiley-Interscience, 1983, 663 p.

Sharma, B. K. and Pal, S. (2009). Nuclear symmetry energy effects in finite
nuclei and neutron star. Physics Letters B, 682:23–26.

Sharma, M. M., Nagarajan, M. A., and Ring, P. (1993). Rho meson coupling
in the relativistic mean field theory and description of exotic nuclei. Physics
Letters B, 312:377–381.

Sorkin, R. (1981). A Criterion for the Onset of Instability at a Turning Point.
ApJ, 249:254.



Sorkin, R. D. (1982). A Stability Criterion for Many Parameter Equilibrium
Families. ApJ, 257:847.

Stergioulas, N. (2003). Rotating Stars in Relativity. Living Reviews in Rel-
ativity, 6:3.

Sugahara, Y. and Toki, H. (1994). Relativistic mean-field theory for unstable
nuclei with non-linear σ and ω terms. Nuclear Physics A, 579:557–572.

Takami, K., Rezzolla, L., and Yoshida, S. (2011). A quasi-radial stability
criterion for rotating relativistic stars. MNRAS, 416:L1–L5.

Tamii, A., Poltoratska, I., von Neumann-Cosel, P., Fujita, Y., Adachi, T.,
Bertulani, C. A., Carter, J., Dozono, M., Fujita, H., Fujita, K., Hatanaka,
K., Ishikawa, D., Itoh, M., Kawabata, T., Kalmykov, Y., Krumbholz,
A. M., Litvinova, E., Matsubara, H., Nakanishi, K., Neveling, R., Oka-
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