
Dipartimento di Scienze Statistiche

Dottorato di Ricerca in Ricerca Operativa

XXIV ciclo

The Stable Set Problem:

Some Structural Properties and

Relaxations

Ph.D. Candidate:

Carla Michini

Coordinator:

Prof. Stefano Lucidi

Advisor:

Prof. Antonio Sassano

Rome, March 2012





Contents

Acknowledgements v

Keywords vii

List of Figures xi

Preface xiii

1 Introduction to the Stable Set Problem 1

1.1 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Polyhedral theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Integer Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 The stable set problem . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Some combinatorial problems related to the stable set problem . . . . 13

1.7 Properties of the edge formulation . . . . . . . . . . . . . . . . . . . . 16

i



2 A graphic characterization of bases of the Fractional Stable Set Poly-

tope 19

2.1 Vertices of the Fractional Stable Set Polytope . . . . . . . . . . . . . 20

2.2 A graphic characterization of bases . . . . . . . . . . . . . . . . . . . 21

3 Vertex Adjacency and the Hirsch Conjecture for the Fractional Sta-

ble Set Polytope 27

3.1 Adjacency of integer vertices . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 A graphic representation of simplex pivots on the Fractional Stable

Set Polytope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Pivoting in a nonbasic edge of a 1-tree . . . . . . . . . . . . . 33

3.2.2 Pivoting in a nonbasic edge of a tree . . . . . . . . . . . . . . 39

3.2.3 Pivoting in the nonbasic node of a tree . . . . . . . . . . . . . 45

3.3 Some properties concerning adjacency . . . . . . . . . . . . . . . . . . 49

3.4 Vertex adjacency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 The diameter of the Fractional Stable Set Polytope . . . . . . . . . . 61

3.6 A simplex-like algorithm for the Stable Set Problem . . . . . . . . . . 68

3.6.1 Reduced costs . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6.2 non-degenerate pivots . . . . . . . . . . . . . . . . . . . . . . 70

3.6.3 Degenerate pivots . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6.4 Alternative schemes . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6.5 Computational results . . . . . . . . . . . . . . . . . . . . . . 73

ii



4 How tight is the corner relaxation? Insights gained from the stable

set problem 79

4.1 The Corner Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 How tight is the Corner Relaxation? . . . . . . . . . . . . . . . . . . 83

4.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Complete description of the corner polyhedron and of the intersection

closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Restriction to the fractional minor . . . . . . . . . . . . . . . . . . . . 88

4.6 Optimizing over the corner relaxation . . . . . . . . . . . . . . . . . . 93

4.7 Optimizing over the intersection closure . . . . . . . . . . . . . . . . . 104

4.8 Optimizing over the strict corner relaxation . . . . . . . . . . . . . . 106

4.9 Strengthening the LP relaxation with the description of the corner

polyhedron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 A concave heuristic for the stable set problem 111

5.1 Concave programming and the Frank-Wolfe algorithm . . . . . . . . . 112

5.2 Concave heuristics for 0-1 mixed integer programming . . . . . . . . . 114

5.3 A concave heuristic for Set Covering . . . . . . . . . . . . . . . . . . 117

5.4 Application to the stable set problem . . . . . . . . . . . . . . . . . . 119

5.5 Fixing integer variables of local optima . . . . . . . . . . . . . . . . . 121

5.6 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . 124

iii



6 Conclusions and perspectives 127

6.1 Vertex adjacency and the Hirsch conjecture . . . . . . . . . . . . . . . 128

6.2 A simplex-like algorithm for the stable set problem . . . . . . . . . . 129

6.3 The strength of the corner relaxation . . . . . . . . . . . . . . . . . . 129

6.4 A concave reformulation of the stable set problem . . . . . . . . . . . 130

Bibliography 136

iv



Acknowledgements

I would like to thank my advisor, Prof. Antonio Sassano, for sharing with me his

knowledge and for supporting me with his fatherly guidance. He has constantly

passed on his enthusiasm to me, providing me with challenging opportunities for my

scientific growth. From him, I have learnt that the passion for research should be

fed, above all, with the curiosity of answering new questions, rather than with the

pretension of establishing definitive conclusions.

I am also particularly obliged to Prof. Gérard Cornuéjols, who welcomed me in his
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Preface

A stable set in a graph G(V,E) is a subset S of the node set V such that no two

nodes of S are adjacent. The stable set polytope STAB(G) is the convex hull of the

incidence vectors of stable sets in G. Suppose that G has node weights c ∈ R|V |+ . The

Maximum Weight Stable Set Problem asks for the stable set of maximum weight and

is a NP-hard combinatorial optimization problem.

A natural formulation of the stable set problem is the so-called edge formulation

defined by |E| two-variable constraints, expressing the simple condition that two

adjacent nodes cannot belong to a stable set. The polytope defined by the linear

relaxation of the edge formulation is the fractional stable set polytope, denoted in the

following by FSTAB(G). The edge formulation yields a very weak approximation

of the stable set polytope, as FSTAB(G) coincides with STAB(G) only in the case

of bipartite graphs. Neverthless, the simpler geometrical structure of FSTAB(G)

provides deep theoretical insights as well as interesting algorithmic opportunities.

For instance, it is a well-known result that vertices of FSTAB(G) must be (0, 1
2
, 1)-

valued (Balinski, 1969). Furthermore, Nemhauser and Trotter proved that variables

assuming binary values in an optimal solution to the LP-relaxation of the edge for-

mulation retain the same values in some optimal solution of the original (integer)

problem. The main purpose of this thesis consists in the definition of some addi-

tional structural properties of the fractional stable set polytope, to be exploited for

solving efficiently instances of the Maximum Weight Stable Set Problem.

Instrumental to this goal is a graphic characterization of basic solutions of FSTAB(G),

based on a result of Campelo and Cornuéjols. To each basic solution xB we associate

a basic subgraph GB, that is a subgraph of G whose connected components are rooted

trees and 1-trees with an odd cycle. This graphic representation has the property
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that a component of xB is fractional if and only if the corresponding node belongs to

a 1-tree.

A first topic of the thesis concerns vertex adjacency on the fractional stable set

polytope. With regard to adjacency of 0-1 vertices, no information is lost by looking

at this relaxed polytope. Indeed, by the Trubin property, two 0-1 vertices are adjacent

in STAB(G) if and only if they are adjacent in FSTAB(G). Exploiting the graphic

characterization of bases, adjacency of bases is redefined in terms of simple graphic

operations (corresponding to simplex pivots), that turn a given basis into an adjacent

one. Between all possible pivots, we characterize degenerate and non-degenerate

ones, and we differentiate those leading to an integer or to a fractional vertex. The

graphic characterization of bases is also crucial to prove another structural property

of the fractional stable set polytope, concerning the adjacency of its vertices. In

particular, we extend a necessary and sufficient condition due to Chvátal for adjacency

of (integer) vertices of the stable set polytope to arbitrary (and possibly fractional)

vertices of the fractional stable set polytope. These results lead us to prove that the

Hirsch Conjecture is true for the fractional stable set polytope, i.e. the combinatorial

diameter of this fractional polytope is at most equal to the number of edges of the

given graph. We actually refine this bound in the non-bipartite case, by proving

a tighter bound, namely |V |. We finally design a simplex-like algorithm for the

Maximum Weight Stable Set Problem, that relies on the adjacency properties outlined

above. Primal algorithms applicable to stable set problem had already been developed

by Balas and Padberg (for the set partitioning problem), by Nemhauser and Ikura

(in the bipartite case) and by Firla et al. (for general 0-1 linear programs). Our

algorithm, which is also primal, exploits the adjacency properties of the fractional

stable set polytope to generate only integer solutions without using cutting plane

methods. Preliminary computational results are encouraging but show that the main

drawback of the algorithm consists in the occurence of cycling, due to the high degree

of degeneracy of the polytope. Despite this, our approach seems promising, as it

opens to the perspective of an exact combinatorial method of solution for the stable

set problem, provided that an anti-cycling rule is embedded in the current design of

the algorithm.

The second topic of the dissertation is the analysis of the strength of different corner

relaxations for the edge formulation of the Maximum Cardinality Stable Set Problem.

The corner relaxation is a central concept in cutting plane theory, as most general

xiv



purpose cutting planes are valid for the corner relaxation of a mixed-integer linear

program (MILP). Given a basis B of FSTAB(G), the corner relaxation is the con-

vex hull of the integer points of the problem obtained from the MILP by dropping

non-negativity on the basic variables. For the edge formulation of the stable set

problem, Campelo and Cornuéjols provided a full description of the corner polyhe-

dron associated to a given basis, proving in addition that the split and the Chvátal

closures coincide and can be obtained by intersecting the corner polyhedra over all

the (feasible) bases.

In a paper concerning the facial structure of the set packing polyhedron, Padberg

already observed that “the fractional vertex from which we generate the group prob-

lem and hence the Gomory cuts is generally degenerate, in the sense that part of

the tight constraints have zero basic slacks. These constraints are not used in the

group-theoretic approach though the shape of the cone defined by the fractional ver-

tex and the (feasible) edges emanating from it may depend critically (and obviously,

does so in the case of the node-covering problem) on this set of constraints. This

indicates a possible direction in which to extend the group theoretic approach”. Re-

cently, Fischetti and Monaci provided an empirical assessment of the strength of the

corner and other related relaxations on benchmark problems. We followed the line of

research indicated by Padberg and we validated with theoretical arguments the em-

pirical results obtained by Fischetti and Monaci. Our main contribution to this issue

consists in a tight analysis of the bounds given by the corner relaxation and three of

its extensions in the special case of the edge formulation of the stable set problem,

for which a full description of the corner polyhedron is available. Our theoretical

analysis confirms the intuition of Padberg, showing that degeneracy plays a major

role, as the difference in the bounds given by corner relaxations from two different

optimal bases can be significantly large. Therefore, exploiting multiple degenerate

bases for cut generation could give better bounds than working with just a single

basis.

Finally, a concave reformulation for Set Covering problems is presented, where inte-

grality constraints are dropped and the original linear objective function is replaced

by a concave one, penalizing fractional values. For such reformulation, any integer lo-

cal optimum corresponds to a heuristic solution of the original problem. To determine

local optima of our concave reformulation, we apply the Frank-Wolfe algorithm with

a multistart approach. The choice of a suitable parametric concave function allows
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us to regulate the smoothness of the objective function and to achieve sparseness of

the local optimum. When applied to the edge formulation of the stable set problem,

additional properties of local optima can be established. Namely, if the parameter of

the objective function belongs to a certain range, binary valued variables of the local

optimum can be fixed, allowing a reduction of the dimension of the problem. Com-

putational experiments show that the concave heuristic is effective on some difficult

benchmark problems.

In Chapter 1 we introduce the stable set problem and some basic notions of graph

theory, polyhedral theory, linear and integer programming. In Chapter 2 we describe

a graphic characterization of bases of the fractional stable set polytope, that will lay

the foundation of the subsequent results. In Chapter 3 we characterize graphically

simplex pivots and we then describe some structural properties concerning the adja-

cency of vertices on the fractional stable set polytope. We extend Chvátal’s condition

to arbitrary vertices of our fractional polytope and we prove that the Hirsch conjec-

ture is true in this case. Finally we describe our simplex-like algorithm and present

preliminary computational results. In Chapter 4 we study the strength of the corner

and other related relaxations in the case of the edge formulation of the stable set

problem. In Chapter 5 we propose a concave heuristic for the stable set problem and

we present an extension of the well-known fixing theorem of Nemhauser and Trotter.

Finally, in Chapter 6, we present the research directions and the perspectives of our

future work.
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Chapter 1

Introduction to the Stable Set

Problem

In this chapter we introduce the stable set problem and we recall some basic notions

that will be useful to derive the main results presented in the next chapters.

In Section 1.1 we introduce some basic notation and concepts of graph theory; in

Sections 1.2 we present basic notions of polyhedral theory; in Sections 1.3 and 1.4 we

recall concepts of linear and integer programming, respectively. Finally, in Sections

1.5 and 1.6, we introduce the stable set problem and some combinatorial problems

related to it, and in Section 1.7 we describe some properties of the edge formulation

of the stable set problem, due mainly to Nemhauser and Trotter.

1.1 Graph Theory

In this section we introduce some basic notation and notions of graphs theory. For

further readings we refer to [16] and [29].

A graph G is a pair G = (V,E), where V is the set of nodes of the graph, and E

consists of 2-element subsets of V , called edges of the graph. Therefore V ∩ E = ∅.
Graphs are usually represented graphically by drawing a dot for each node and by
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joining two of such dots by a line, if the corresponding two nodes define an edge. A

graph with node set V is said to be a graph on V . The node set and the edge set

of a graph G are denoted by V (G) and E(G), respectively. The number of nodes of

a graph G is the order of the graph. The graph of order 0 is called the empty graph

and is denoted by ∅, while we refer as singleton or isolated node to a graph of order

1.

If G(V,E) is a graph and e = (v1, v2) ∈ E, then we say that v1 and v2 are the ends

of e. The ends of an edge are said to be incident with the edge, and viceversa. Two

nodes which are incident with a common edge are adjacent. An edge with identical

ends is called a loop. A graph is simple if it has no loops and if no edges join the

same pair of nodes. We will only deal with finite graphs, i.e. graphs whose order is

finite, that are also simple.

Let G(V,E) be a (non-empty) graph. The set of neighbours of a node u in G, denoted

by N(u) is defined as N(u) := {v ∈ V : (u, v) ∈ E}. More generally for U ⊆ V , we

define the neighbours of U as N(U) := {v ∈ V : (u, v) ∈ E, u ∈ U, v ∈ V \ U}. The

degree d(v) of a node v is the number of edges incident with v in G. In a simple

graph, d(v) = |N(v)|. Given U ⊆ V , we define the set of edges with both endpoints

in U , as Γ(U) := {(u, v) ∈ E : u, v ∈ U}.

A cut of graph G(V,E) is a partition of its nodes into two disjoint subsets (U, V \U),

with U ⊆ V . The cutset δ(U) of the cut (U, V \ U) is the set of edges crossing the

cut, i.e. δ(U) = {(u, v) ∈ E : u ∈ U, v ∈ V \U}, the set of edges whose endpoints are

in different subsets of the partition.

The union of two graphs G(V,E) and G′(V ′, E ′) is defined as G∪G′(V ∪V ′, E ∪E ′),
while their intersection is G ∩G′(V ∩ V ′, E ∩ E ′). If G ∩G′ = ∅, then G and G′ are

disjoint. If V ′ ⊆ V and E ′ ⊆ E, then G′ is a subgraph of G or, equivalently, G is a

supergraph of G′. If V (G′) = V (G), then we say that G′ is a spanning subgraph of

G. Given V ′ ⊆ V , we define the subgraph of G induced by V ′, denoted by G[V ′], as

the subgraph of G with node set V ′ and edge set E ′ = Γ(V ′).

A walk in G is a sequence of nodes {v1, v2, . . . , vk}, k ≥ 1, such that (vj, vj+1) ∈ E
for j = 1, . . . , k − 1. A walk is closed if k > 1 and vk = v1. A walk without any

repeated nodes is a path. A closed walk with no repeated nodes other than the first
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and the last ones, is called a cycle. The length of the path {v1, v2, . . . , vk} is k − 1;

the length of the cycle {v1, v2, . . . , vk = v1} is k−1. A cycle of length k is odd or even

depending on whether k is odd or even. The distance d(u, v) in G of two nodes u

and v is the length of the shortest path (i.e. the path of minimum length) connecting

u and v in G. An edge which joins two nodes of a cycle but does not belong to the

cycle is a chord of the cycle. We say that a cycle is induced in G, if it defines an

induced subgraph of G which does not contain chords.

A non-empty graph G is called connected if any two of its nodes are linked by a

path in G. If a graph is not connected, we say that it is disconnected. Connection

is an equivalence relation on the node set V . Thus, there is a partition of V into

non-empty subsets V1, . . . , Vk such that two nodes u and v are connected if and only

if they both belong to the same set Vi. The subgraphs G[V1], . . . , G[Vk] are called the

connected components of G.

We now introduce some special classes of graphs. A simple graph where each pair of

distinct nodes is joined by an edge is called a complete graph. A clique is a subset of

the nodes of the graph, such that every two nodes in the subset are connected by an

edge. In other words, the nodes of a clique induce a complete subgraph on G. The

complement graph Ḡ of G is a graph on V (G) such that two nodes on Ḡ are adjacent

if and only if they are not adjacent in G. A bipartite graph G is a graph such that its

node set V (G) can be partitioned into two subsets X and Y , so that each edge has

one end in X and one end in Y ; such a partition (X, Y ) is called a bipartition of the

graph.

Theorem 1.1.1. [16] A graph is bipartite if and only if it contains no odd cycle

An acyclic graph is called forest. A connected forest is a tree. Therefore, a forest is

a graph whose connected components are trees. The nodes of degree 1 of a tree are

called leaves. Every tree with at least two nodes has a leaf.

Theorem 1.1.2. Let T be a graph. The following statements are equivalent:

(i) T is a tree;

(ii) There is a unique path connecting any two nodes of T ;

(iii) Removing any edge of T yields a disconnected graph;
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(iv) Adding an edge that connects any two non-adjacent nodes of T yields a graph

with a unique cycle.

Theorem 1.1.3. A connected graph with n nodes is a tree if and only if it has n− 1

edges.

The root r of a tree T is a special node of V (T ). When a tree T is rooted, a partial

order on V (T ) is defined, according to the distance of any node of the tree from its

root. Let G be a connected graph. A spanning tree of G is a spanning subgraph of

G that is tree. Every connected graph admits a spanning tree. A spanning tree of a

connected graph can be determined by applying the depth-first search algorithm, or

the breadth-first search algorithm.

We define a pseudoforest as a graph in which each connected component has at most

one cycle. A 1-tree is a connected psudoforest, that is a connected graph containing

exactly one cycle. Thus, the connected components of a pseudoforest are either trees

or 1-trees. Removing an edge from the cycle of a 1-tree yields a tree. Conversely,

adding an edge connecting two non-adjacent nodes of a tree yields a 1-tree.

We associate to any simple graph G(V,E) a |E| × |V | incidence matrix A(G) = [aij],

where aij is 1 if edge ei is incident with node vj, and 0 otherwise.

A node coloration of a graph G is an assignment of positive integers to the nodes of

G, so that no two nodes labelled with the same integer are adjacent. If G admits a

node coloration of its nodes with n colors, G is said to be n-colorable. The smallest

integer k such that G admits a k-coloration is called the chromatic number of G and

is denoted by χ(G).

A set of edges of G such that no two edges of the set are incident with the same node,

is called a matching. The size of the largest matching is the matching number and is

denoted by ν(G). A matching is said to be perfect if it covers all the node set V (G).

A set of edges such that every node of the graph is incident to at least one edge of the

set is called edge cover. The edge covering number is the cardinality of the smallest

edge cover in G, denoted by ρ(G).

A set of nodes of G that are pairwise non-adjacent is called stable set. The stability
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number α(G) is the cardinality of the largest stable set in G.

A set of nodes of G is a node cover if each edge of G has at least one endpoint in

the set. The cardinality of any smallest node cover of G is the node covering number

and is denoted by τ(G).

1.2 Polyhedral theory

Given a matrix A ∈ Rm×n and a vector b ∈ Rn, the solution set of the system of

linear inequalities {x ∈ Rn : Ax ≤ b} is called a polyhedron. A bounded polyhedron is

called a polytope. Thus, a polyhedron is defined by the intersection of a finite number

of halfspaces.

The dimension dim(P ) of a polyhedron P is defined as the dimension of the affine

space spanned by P . Precisely, the maximum number of affinely independent points

of P is equal to 1 + dim(P ).

An inequality aTx ≤ b0 is valid with respect to a polyhedron P if P ⊆ {x : aTx ≤ b0}.
If aTx ≤ b0 is a valid inequality of P , the set F ⊆ P given by F = {x ∈ P : aTx = b0}
is a face of P . A facet is a non-empty face of P of dimension dim(P )− 1.

A polyhedron is full dimensional if it has an interior point, i.e. a point satisfying all

defining inequalities with strict inequality. In this case, the inequalities defining the

polyhedron are all essential (up to the multiplication by a positive number) and they

are in one-to-one correspondence with facets. If, instead, the polyhedron is not full

dimensional, then there exist linear equations that are satisfied by all points of the

polyhedron.

If v ∈ P is a point of the polyhedron that is a face of P , then v is called a vertex of P .

A polyhedron is pointed if it contains a vertex or, equivalently, if it does not contain

a line. A non-empty polyhedron P = {x ∈ Rn : Ax ≤ b} is pointed if and only if A

has full column rank. A vertex of a polyhedron can be characterized geometrically

as a point which is not contained in the segment connecting any other two points of

the polyhedron.
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A polytope is the convex hull of finetely many points, i.e. its vertices. To describe a

polyhedron, instead, it does not suffice to consider its vertices. A classical result of

Minkowski and Weyl establishes that we can represent any polyhedron P as the sum

of a polytope and a convex polyedral cone: P = conv(V ) + cone(R), where V and R

are finite subsets of Rn. Precisely, V is the set of vertices of the polyhedron, and R

is the set of its extreme rays. Thus, each point of a polyhedron can be expressed as

a convex combination of vertices plus a conic combination of rays.

Given a constraint aTx ≤ b0, we say that the constraint is binding or active at x̄ if

aT x̄ = b0. We now introduce an algebraic definition of a vertex as a feasible solution

at which there are n linearly independent active constraints.

Definition 1.2.1. [13] Let P be a polyhedron defined by linear equality and inequality

constraints and consider a point x ∈ Rn.

• x is a basic solution if

(i) All equality constraints are active;

(ii) Out of the constraints that are active at x, there are n of them that are

linearly independent.

• If x is a basic solution that satisfies all the constraints, we say that it is a basic

feasible solution.

Theorem 1.2.1. [13] Let P be a non-empty polyhedron. x ∈ P is a vertex of P if

and only if it is a basic feasible solution.

A polyhedron P is in standard form if it is expressed as P = {x ∈ Rn : Ax = b, x ≥ 0},
where A is a m × n full row rank matrix. A non-singular m × m submatrix B of

A is called basis. A basic solution for a polyhedron in standard form is therefore a

vector x ∈ Rn of the form x =

(
xB

xN

)
such that xB = B−1b and xN = 0n−m. Two

different basic solutions are adjacent if there are n−1 linearly independent constraints

that are active at both of them. For standard form polyhedra, two bases are said

to be adjacent if they share all but one basic column. Each basis of a polyhedron

P corresponds to a basic solution of P . However, different bases may lead to the

same basic solution. This phenomenon is closely related to degeneracy. Degeneracy

occurs in a basic solution x, if there are more than n binding constraints. In other
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words, the number of active constraints in x is greater than the minimum necessary.

In standard form polyhedra, degeneracy occurs if more than n−m of the components

of x are zero.

1.3 Linear Programming

A linear programming (LP) problem consists in minimizing (or maximizing) a linear

function subject to linear equality and inequality constraints, i.e. over a polyhedron.

There are many standard forms in which linear programming problems can be written.

First we give a classical result of linear programming concerning optimality of vertices.

Theorem 1.3.1. Consider the linear programming problem of minimizing a linear

cost function cTx over a non-empty polyhedron P . Then, either the problem is un-

bounded, i.e. the optimal cost is −∞, or there exists an optimal solution. If the

problem has a finite solution and P does not contain a line, then there exists an

optimal solution which is a vertex of P .

Consider the following linear programming problem

min cTx

s.t. Ax = b

x ≥ 0,
(LP)

where A ∈ Rm×n is a matrix whose rows are linearly independent and b ∈ Rn.

The best known algorithm for linear programming, the simplex method was defined

by Dantzig in 1951 and is still one of the most efficient methods to solve LP problems.

We will first describe the principles of the simplex method assuming that the linear

program is non-degenerate. In this case, from a geometric point of view, the simplex

method starts from a vertex of P = {x ∈ Rn
+ : Ax = b} and looks for an edge

of the polyhedron P connecting v to another vertex v′, in which the value of the

objective function is strictly lower. Repeating this procedure, in a finite number

of steps, an optimal vertex is reached, i.e. a vertex such that all its neighboring

vertices are not improving for the objective function. Algebraically, at each step of
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the simplex the current basis B is transformed into an adjacent one by applying a

simplex pivot, i.e. by exchanging a column of the basis matrix B with a column of

the nonbasic matrix N , provided that the constraint matrix A has been expressed

according to such decomposition as A = [ B N ]. For each nonbasic variable xj

the corresponding reduced cost c̄j is computed, which represents the rate of change

of the objective function per unit increase of xj. At each step, the variable entering

the basis is chosen as the nonbasic variables with minimum negative reduced cost.

The basic variable which exits the basis is instead chosen according to a ratio test,

in order to guarantee that the new basic solution is also feasible. We refer to [13]

for further details on the classical version of the simplex method, and we recommend

[14] for alternative implementations used in current solvers.

In case of degeneracy, a pivot operation may result in no change of basic feasible

solution. In particular, stalling or cycling phenomena can occur. Several anti-cycling

rules have been proposed to guarantee the finite termination of the simplex method.

An approach that seems more efficient in practice to deal with degeneracy is based on

bound perturbation and related methods [14]. When the current basic feasible solution

is such that all reduced costs are nonnegative, the current solution is optimal. Note

that, in presence of degeneracy, this condition is only sufficient.

1.4 Integer Programming

An integer linear program (ILP) is an optimization problem of the form

min cTx

s.t. Ax ≥ b

x ∈ Zn.

(ILP)

In a mixed integer linear program (MILP) only a subset of the variables are integer

constrained, i.e. xi ∈ Z, i ∈ I ⊂ {1, . . . , n}. Analogously, in a mixed 0-1 linear

program a subset of the variables are constrained to assume binary values, i.e. xi ∈
{0, 1}, i ∈ I ⊂ {1, . . . , n}. In this thesis, we will mainly deal with pure 0-1 linear

programs, where all variables are constrained to assume binary values, i.e. x ∈ {0, 1}n.

Unlike linear programming problems, mixed integer linear programs are NP-hard [22].
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In particular, pure 0-1 linear programs are also classified as NP-hard, and in fact this

problem is one of Karp’s 21 NP-complete problems [49]. Consider the pure 0-1 linear

program

min cTx

s.t. x ∈ S ⊆ {0, 1}n.
(BLP)

A feasible solution x̄ ∈ S such that cT x̄ ≤ cTx for all x ∈ S is an optimal solution

of the problem; if S = ∅, the problem is infeasible; if S 6= ∅ and for each x ∈ S

there exists x̄ ∈ S such that cT x̄ < cTx, the problem is unbounded. Consider the

convex hull of points in S. Minimizing the objective function cTx over conv(S) yields

a linear program which is equivalent to (BLP). In fact, by Theorem 1.3.1, if this

problem has an optimal solution, then an optimum lies on a vertex of conv(S). Thus,

in principle, it is possible to solve the pure 0-1 linear program (BLP) by solving the

linear program min{cTx : x ∈ conv(S)}. Unfortunately, in general, the description of

conv(S) in terms of linear inequalities is not known.

A formulation is a representation of S by a system of linear inequalities Ax ≥ b such

that {x ∈ Rn : Ax ≥ b} ∩ {0, 1}n = S. The linear relaxation of a formulation Ax ≥ b

is the linear programming problem

min cTx

s.t. Ax ≥ b

0 ≤ x ≤ 1.

(LR)

Let P be the feasible set of (LR). Clearly P ⊇ S, implying that zLR = min{cTx : x ∈
P} ≤ min{cTx : x ∈ S} = zBP . Therefore, the optimal value of (LR), yields a lower

bound on the optimal value of (BLP). The difference zBP − zLR is the integrality gap

of the 0-1 program. Moreover, given any feasible solution x̄ of (BLP), the difference

cT x̄ − zLR is an indication of the quality of x̄. An interesting question concerns the

issue of establishing a measure of the quality of formulations. The classical criterion

used to establish whether a formulation is better than another one, is to verify which

one of the two better approximates conv(S). In fact, it is assumed that the better

such approximation is, the easier the integer program can be solved.

Two exact methods to solve an integer linear program are the branch-and-bound

method and the cutting planes algorithm.
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Given a valid inequality αx ≥ β, and a point x̄ /∈ conv(S), αx ≥ β is a cut for x̄ if

αx̄ < β, i.e. the inequality αx ≥ β cuts off x̄. Cutting planes are crucial, as they

can be used to tighten relaxations of integer programs. Cutting planes algorithms

generate a sequence of successively tighter relaxations, by adding at each step one

or more cuts to the current linear programming relaxation of the integer program.

The first finitely terminating cutting plane algorithm for integer programming was a

cutting plane algorithm proposed by Gomory in 1958 [38], which used some detailed

information from the optimal simplex tableau. Gomory cuts were initially considered

impractical and ineffective, due mainly to some numerical issues. Surprisingly, in the

mid 90’s Gomory cuts were shown to be very effective in combination with branch-

and-bound and techniques to overcome numerical instabilities [25]. Nowadays, all

commercial MILP solvers use Gomory cuts, also because they can be very efficiently

generated from a simplex tableau, whereas many other types of cuts are expensive to

separate. For further readings on cutting planes method see [24].

The branch-and-bound method was introduced in the early 60’s by Land and Doig

[52] and is an implicit enumeration technique based of the subdivision of the feasible

set into subsets. Roughly speaking, the algorithm computes a lower bound in every

unexplored subset and uses these bounds to discard certain subsets from further

consideration. The enumeration generated in the procedure is represented by a tree,

whose nodes correspond to the list of subproblems to be solved. For a 0-1 program,

the usual subdivision of the feasible region into subsets consists in progressively fixing

variables of the problem to 0 or 1.

Up to the early 80’s, pure branch-and-bound was the common method used by practi-

tioners to solve mixed integer programs. An important improvement consisted in the

introduction of cutting planes at the root node, i.e. the node of the branch-and-bound

tree where no variable has been fixed yet, to possibly tighten the original linear pro-

gramming relaxation. Another important improvement to branch-and-bound came

when cutting planes started to be added not only at the root node, but also at other

nodes of the branch-and-bound tree. When a cut is generated at a node where some

of the variables have been fixed, it is only guaranteed to be valid for all the descen-

dants of that node. On the other hand, to derive an inequality that is valid at the

root node, and therefore for the whole branch-and-bound tree, the cut has to be lifted

by computing the coefficients of the fixed variables. The method that we have just

outlined combines both the cutting planes and the implicit enumeration approach,
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and is known as branch-and-cut.

1.5 The stable set problem

Let G(V,E) be a graph and c : V → Q+ be any weighting of the nodes of G. A stable

set (independent set, node packing) is a subset S of the node set V such that no two

nodes of S are adjacent. We denote by α(G, c) the maximum weight stable set in

G. Determining the maximum weight stable set is well known to be NP-hard, even

in the case where c = 1, which corresponds to the problem of finding the maximum

cardinality stable set. The stable set polytope, denoted by STAB(G) is the convex

hull of the incidence vectors of stable sets in G. Formally,

STAB(G) := conv{χS ∈ {0, 1}|V | : S ⊆ V is a stable set of G}.

Consequently,

α(G, c) = max cTx

s.t. x ∈ STAB(G). (STAB)

For general graphs, a complete description of the facets of STAB(G) is not known. In

the following, we describe different classes of facets of the stable set polytope and, for

each of them, we present graphs for which such description is sufficient to characterize

STAB(G). For further readings of the facial structure of the stable set polytope we

refer to [45] and [63]. The first sets of linear inequalities valid for STAB(G) are the

following:

xi ≥ 0 ∀ i ∈ V (1.1)

xi + xj ≤ 1 ∀ (i, j) ∈ E. (1.2)

Constraints (1.2) express the simple condition that the endpoints of an edge cannot

both belong to a stable set. Constraints (1.1) and (1.2) define a formulation of

(STAB) which is commonly referred to as the edge formulation. We denote the

polytope defined by inequalities (1.1) and (1.2) by FSTAB(G) = {x ∈ Rn
+ : xi+xj ≤

1 ∀ (i, j) ∈ E} and we address it as the fractional stable set polytope.

Proposition 1.5.1. FSTAB(G) coincides with STAB(G) if and only if G is bipar-
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tite and has no isolated nodes.

If G contains some isolated nodes, we would need to add to the description of

FSTAB(G) also constraints of type xi ≤ 1, one for each isolated node i ∈ V .

Throughout the thesis we will make the following assumption.

Assumption 1.5.1. G(V,E) is an undirected, simple graph without isolated nodes.

Therefore, we can consider the following linear relaxation of the edge formulation,

where all constraints of type xi ≤ 1 are redundant, and consequently discarded.

max cTx

s.t. xi + xj ≤ 1 ∀ (i, j) ∈ E
xi ≥ 0 ∀ i ∈ V.

(FSTAB)

The minimal graphs (under taking induced subgraphs) for which FSTAB(G) ⊃
STAB(G) are the odd cycles. In fact, x∗i = 1

2
∀ i ∈ V belongs to FSTAB(G) but

is not feasible with respect to STAB(G). A class of inequalities valid for STAB(G)

which takes into account odd cycles consists in the so-called odd cycle constraints :

∑
i∈C

xi ≤
|C| − 1

2
for each odd cycle C. (1.3)

Graphs for which (1.1), (1.2) and (1.3) suffice to describe STAB(G) are called t-

perfect. Bipartite graphs are trivially t-perfect. Other classes of graphs that have

been proven to be t-perfect are almost bipartite graphs, series-parallel graphs, nearly

bipartite planar graphs and strongly t-perfect graphs. For details and further readings

we refer to [45]. An important result on t-perfect graphs establishes that it is possible

to find a maximum weight stable set on t-perfect graphs in polynomial time, see [45].

Another system of linear inequalities valid for the stable set polytope consists of the

clique constraints ∑
i∈Q

xi ≤ 1 for each clique Q. (1.4)

A clique inequality (1.4) asserts that a stable set cannot pick more than one node in

a given clique. Remark that clique constraints (1.4) specialize in edge constraints, if
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|Q| = 2 and to odd cycle constraints, in the case where |Q| = 3, i.e. for triangles.

The graphs for which (1.1) and (1.4) suffice to describe STAB(G) are called perfect.

Perfect graphs were introduced by Berge in 1961. In general, for a graph G, the

clique number ω(G), i.e. the size of a maximum clique in G, is not greater than

the chromatic number χ(G), i.e. the minimum number of colors that is needed to

label the nodes of the graph in such a way that no two adjacent nodes have the same

color. For a perfect graph, ω(G′) = χ(G′) for each induced subgraph G′ of G. It was

conjectured by Berge (1961, 1962) and proven by Lovász (1972) that the complement

of a perfect graph is itself perfect. For a list of classes of perfect graphs, see e.g. [45].

A crucial contribution for the characterization of perfect graphs was given in 2002

by Chudnovsky, Robertson, Seymour and Thomas, who proved the following result,

conjectured by Berge in 1962.

Theorem 1.5.1 (The Strong Perfect Graph Theorem). A graph is perfect if and only

if it does not contain an odd cycle of length at least five, or its complement, as an

induced subgraph.

The Strong Perfect Graph Theorem implies that the minimal imperfect graphs are

the odd cycles of length at least five, and their complements.

In this thesis we mainly investigate some structural properties of the fractional sta-

ble set polytope FSTAB(G): even if FSTAB(G) turns out to be a very weak ap-

proximation of STAB(G), its simple geometrical structure allows us to state useful

characterizations of its bases and vertices, enhancing the understanding of several

interesting geometrical properties.

1.6 Some combinatorial problems related to the

stable set problem

Let M = {1, . . . ,m} be a finite set and M1,M2, . . . ,Mn be a given collection of

subsets of M . Define N = {1, . . . , n} and suppose that for each j ∈ N , cj is the

weight associated to the subset Mj of the collection. A subset F of N is called a

cover, packing or partitioning if it intersects each element Mj of the collection at

least once, at most once or exactly once, respectively. In the set covering problem
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we would like to find a cover F of minimum weight ; in the set packing problem we

would like to find a packing F of maximum weight, while in the set partitioning both

minimization and maximization versions are possible. In order to define an integer

programming formulation for such problems,it is possible to introduce a 0-1 m × n
matrix A, encoding incidence relations of the family {Mj : j ∈ N}. The entries aij of

A are such that aij = 1 if i ∈Mj and aij = 0 if i /∈Mj. The families of set covering,

packing and partitioning problems can be then formulated as

min
{∑n

j=1 cjxj : Ax ≥ 1, x ∈ {0, 1}n
}
, (SC)

max
{∑n

j=1 cjxj : Ax ≤ 1, x ∈ {0, 1}n
}
, (SP)

min
{∑n

j=1 cjxj : Ax = 1, x ∈ {0, 1}n
}
. (SPP)

In the following, we will denote by SC, SP and SPP the convex hulls of the feasible

points of (SC),(SP) and (SPP), respectively. Moreover, we will indicate with (LSC),

(LSP) and (LSPP) the linear relaxations of (SC), (SP) and (SPP), respectively.

First of all, note that (SP) is a special case of (SPP).

The edge formulation of the stable set problem is clearly a set packing problem on a

graph. Conversely, (SP) can be formulated as a stable set problem on the intersection

graph associated to matrix A. Precisely, denote by Aj the j-th column of matrix A

of (SP). The intersection graph GA(V,E) has a node for every column of A, and

one edge for every pair of non-orthogonal columns of A, i.e. (i, j) ∈ E if and only if

ATi Aj ≥ 1. Denote by AG the edge-node incidence matrix of GA and assign to each

node i ∈ V the weight ci of the i-th variable of (SP). Consider the stable set problem

max cTx

s.t. AGx ≤ 1

x ∈ {0, 1}n.
(1.5)

Remark that x is a feasible (resp. optimal) solution of (1.5) if and only if it is a

feasible (resp. optimal) solution of (SP). A direct consequence of this observation is

that one way of solving set packing problems consists in solving a stable set problem

on the corresponding intersection graph. However, while these two integer problems
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are equivalent, the two associated linear relaxations are not. Precisely

max
{∑n

j=1 cjxj : Ax ≤ 1, x ≥ 0
}
≤ max

{∑n
j=1 cjxj : AGx ≤ 1, x ≥ 0

}
.

Other combinatorial problems on graphs which are strictly related to the stable set

problem are: the node coverig problem, the maximum clique problem, the edge cov-

ering problem and the matching problem.

Let G be any graph, and let ν(G), τ(G), α(G), ρ(G) denote the matching, node

covering, stability and edge covering numbers, respectively. Two basic results linking

these numbers are the so-called Gallai Identities (1959).

Lemma 1.6.1. For any graph G, α(G) + τ(G) = |V (G)|.

Lemma 1.6.2. For any graph G with no isolated nodes, ν(G) + ρ(G) = |V (G)|.

It is easy to verify that, if S is a minimum node cover of G, then V (G) \ S is

a maximum stable set. Consider the edge formulation of the stable set problem:

STAB(G) = {x ∈ {0, 1}n : xi + xj ≤ 1}. The affine transformation y = 1 − x

maps STAB(G) into NC(G) = {y ∈ {0, 1}n : yi + yj ≥ 1}, that is the node covering

polytope, i.e. the convex hull of the incidence vectors of node covers in G.

Concerning the relationship between matchings and edge covers, a minimal edge cover

is minimum if and only if it contains a maximum matching. Conversely, a maximal

matching is maximum if and only if it is contained in a minum edge cover. Moreover,

for any graph G, ν(G) ≤ τ(G) and, for bipartite graphs the following identity holds.

Theorem 1.6.1 (König’s Minmax Theorem). If G is bipartite, then ν(G) = τ(G).

Note that the dual of (FSTAB) corresponds to the problem of covering weighted

nodes by a minimum number of edges:

min
∑

(i,j)∈E

yij

s.t.
∑

(i,j)∈E

yij ≥ cj ∀ j ∈ V

yij ≥ 0 ∀ (i, j) ∈ E.

(1.6)
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If cj = 1 ∀ j ∈ V , (1.6) corresponds to the linear relaxation of the edge covering

problem. In this case, by strong duality, the optimum value of (1.6) is equal to

the optimal value of (FSTAB). If G is bipartite, STAB(G) = FSTAB(G) implies

α(G) = ρ(G) and, by Lemma 1.6.2, α(G) + ν(G) = |V (G)|.

Finally, the maximum clique problem on a graph G is equivalent to the maximum

stable set problem on the complement graph of G, i.e. Ḡ(V, Ē). Therefore, we can

use the edge formulation to formulate the problem of finding the maximum weight

clique on G(V,E):

max cTx

s.t. xi + xj ≤ 1 ∀ (i, j) /∈ E
xi ≥ 0 ∀ i ∈ V.

1.7 Properties of the edge formulation

In this section we introduce some useful results about the fractional stable set poly-

tope FSTAB(G), due mainly to Nemhauser and Trotter [61]. The first result that

we present states that vertices of FSTAB(G) are half-integral and was originally

established by Balinski [11]; detailed proofs of this result are given in [60, 69].

Theorem 1.7.1. (Balinski [11]) Let x be a vertex of FSTAB(G). Then, xi = 0, 1
2

or 1 for i = 1, . . . , n.

An interesting sufficient condition for local optimality is given by the following the-

orem.

Theorem 1.7.2. (Nemhauser and Trotter [61]) If S ⊆ V is an optimal stable set in

G[S ∪ N(S)], the subgraph of G induced by S ∪ N(S), then S ⊆ S∗, where S∗ is an

optimal stable set in G.

The next theorem illustrates how to perform a fixing of the variables that are integer

valued in an optimal solution of (FSTAB).

Theorem 1.7.3. (Nemhauser and Trotter [61]) Suppose x∗ is an optimal (0, 1
2
, 1)-

valued solution of (FSTAB). Define sets S = {i ∈ V : x∗i = 1} and S̄ = {i ∈ V : x∗i =
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0}. There exists a maximum stable set in G that contains S and does not contain S̄.

Theorem 1.7.3 implies that those variables which assume binary values in an optimal

solution of (FSTAB) retain the same values in some optimal solution of (STAB).

This means that, to solve (STAB), one can solve (FSTAB) and then find a stable set

on the subgraph of G induced by the nodes i ∈ V : x∗i = 1
2
.

The next theorem establishes a necessary and sufficient condition for x∗i = 1
2
∀i =

1, . . . , n to be a (unique) optimal solution of (FSTAB). Recall that, for any S ⊆ V ,

the neighbors of S are defined as N(S) = {j ∈ V \ S : (i, j) ∈ E for some i ∈ S}.

Theorem 1.7.4. (Nemhauser and Trotter [61]) The solution x∗i = 1
2
∀i = 1, . . . , n

is an optimal (resp. the unique optimal) solution of (FSTAB) if and only if |S| ≤
|N(S)| (resp. |S| < |N(S)|) for every non-empty stable set S.





Chapter 2

A graphic characterization of bases

of the Fractional Stable Set

Polytope

In this chapter, we present a graphic characterization of bases of FSTAB(G) in

terms of special subgraphs of G. This result will be at the base of all our subsequent

results. In fact, the understanding of the bases of the fractional stable set polytope

will provide us with a deep insight of the problem, allowing for the definition of

further structural properties, presented in the next chapters. The characterization

of the bases of FSTAB(G) is based on a result of Campelo and Cornuéjols [17]

and is closely related to a previous characterization of the vertices of FSTAB(G),

established by Nemhauser and Trotter [60].

Remark that, by introducing a slack variable for each edge constraint, (FSTAB) can

be rewritten as
max cTx

s.t. xi + xj + yij = 1 ∀ (i, j) ∈ E
xi ≥ 0 ∀ i ∈ V
yij ≥ 0 ∀ (i, j) ∈ E.

(FSTAB)

Analogously, we can express the fractional stable set polytope as FSTAB(G) =

{(x, y) ∈ Rn
+ × Rm

+ : xi + xj + yij = 1 ∀ (i, j) ∈ E}. According to this redefinition
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of FSTAB(G), every node of G indexes a x variable of FSTAB(G), while each

edge of G indexes a y slack variable of FSTAB(G). Therefore, in the following,

we will call the x and y variables node variables and edge variables (or edge-slack

variables), respectively. We will also say that a node is 0, 1
2

or 1 valued in (x, y), if

the corresponding node variable is 0, 1
2

or 1 valued, respectively. Analogously, we say

that an edge is 0, 1
2

or 1 valued in (x, y), if the corresponding edge variable is 0, 1
2

or

1 valued, respectively.

Let A denote the edge-node incidence matrix of G. Let B stand for the set of all

bases of the constraint matrix [A I]. Note that the rows of (FSTAB) are linearly

independent, therefore a basis consists of m columns. We denote by B an element

of B and by N the resulting nonbasic submatrix. To avoid heavy notation, we may

also use B and N to denote the corresponding sets of indices.

In Section 2.1, we present a characterization of vertices of FSTAB(G) given by

Nemhauser and Trotter [60]. In Section 2.2, we describe a necessary condition, given

by Campelo and Cornuéjols [17], stating that any basic solution of FSTAB(G) can

be associated to a special pseudoforest of G. We also establish the converse, i.e.

we prove that this condition is sufficient as well. Finally, we briefly relate the first

characterization and the second.

2.1 Vertices of the Fractional Stable Set Polytope

A first characterization of the vertices of the fractional stable set polytope FSTAB(G)

was given by Nemhauser and Trotter in [60]. In their paper, Nemhauser and Trot-

ter present a decomposition theorem which yields a characterization of vertices of

FSTAB(G) in terms of certain elementary vertices. In this section, we briefly sum-

marize their fundamental results, which will be useful for a graphic characterization

of basic solutions of FSTAB(G).

Given a simple graph G(V,E), consider a subset of the nodes F ⊆ V . Let xF ∈
FSTAB(G) be defined as

xFj =

{
1
2

if j ∈ F
0 otherwise.

(2.1)
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Denote by G[F ] the subgraph of G induced by nodes in F . If xF is a vertex of

FSTAB(G) and G[F ] is connected, then xF is called an elementary fractional ver-

tex. The following proposition establishes a characterization of elementary fractional

vertices.

Proposition 2.1.1. (Nemhauser and Trotter [60]) Let F ⊆ V and xF ∈ FSTAB(G)

be defined as in (2.1). Then xF is an elementary fractional vertex of FSTAB(G) if

and only if G[F ] contains an odd cycle.

Feasible integer solutions of (FSTAB) correspond to integer vertices of FSTAB(G).

Two vertices of FSTAB(G) are said to be disjoint if their sum is feasible for FSTAB(G).

Nemhauser and Trotter proved a decomposition theorem for vertices of FSTAB(G),

describing them in terms of disjoint integer vertices and elementary fractional ver-

tices.

Theorem 2.1.1. (Nemhauser and Trotter [60]) A vector x ∈ Rn is a vertex of

FSTAB(G) if and only if it can be expressed as x = x0 + x1 + . . .+ xk, where

(i) x0 is an integer vertex of FSTAB(G);

(ii) x1, . . . , xk are elementary fractional vertices of FSTAB(G);

(iii) x0, x1, . . . , xk are mutually disjoint.

This characterization implies that an arbitrary vertex of FSTAB(G) can be decom-

posed uniquely in the sum of an integer vertex and elementary fractional vertices.

The converse is also true, that is any sum of vertices which yields a feasible solution of

FSTAB(G) produces a vertex of FSTAB(G). Nemhauser and Trotter also remark

that, unlike what happens in the matching problem, where elementary fractional ver-

tices are in one-to-one correspondence with the odd cycles of G, (FSTAB) has an

elementary fractional vertex for every induced subgraph of G that is connected and

contains an odd cycle.

2.2 A graphic characterization of bases

In this section, we present a graphic characterization of bases of FSTAB(G). Such

graphic characterization is deeply related to the results presented in Section 2.1.
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A graphic characterization of the bases of FSTAB(G) was given by Campelo and

Cornuéjols [17, 18]. This result, reported in the next theorem, is a necessary condition

for a half integral vector to be a basic solution of FSTAB(G). The condition states

that, given a basic solution of FSTAB(G) it is possible to associate it to a subgraph

of G, whose connected components are either rooted trees or 1-trees with an odd

cycle. We call such pseudoforest a 1-pseudoforest. We show that this condition

is also sufficient, that is given a 1-pseudoforest, a basic solution of FSTAB(G) is

automatically defined.

Let B ∈ B be a basis, feasible or infeasible, of [A I]. Let VB and VN represent the set

of basic and nonbasic nodes, indexing variables xB and xN , respectively. Similarly,

partition edges into EB and EN and slack variables correspondingly, into yB and

yN . In order to characterize the structure of the basis, consider GB(V,EN), which

is obtained from G by removing the basic edges. Let Ci(Vi, Ei), i = 1, . . . , k be the

connected components of GB.

Recall that a graph is a 1 -tree if it is connected and the number of its nodes equals the

number of its edges. A 1-tree contains a unique cycle. Define I0 and I1 as the subsets

of {1, . . . , k} indexing tree and 1-tree components of GB, respectively. Remark that

every singleton of GB can be seen as a trivial tree, containing only one node and no

edges.

Theorem 2.2.1. (Campelo and Cornuéjols [17]) For every B ∈ B, GB is a 1-

pseudoforest, i.e. each connected component of GB is either a rooted tree or a 1-tree

with an odd cycle. Each tree has exactly one nonbasic node, which corresponds to its

root. The nodes of every 1-tree are all basic.

Given B ∈ B, for all i = 1, . . . , k denote by Bi the submatrix of B defined by the

rows and columns indexed by Ei and Vi ∩ B, respectively. Remark that, for every

isolated node of GB, Vi∩B = ∅. We denote by I ′0 the tree components of GB that are

not singletons and we assume w.l.o.g. that singletons are the last k − k′ connected

components of GB.

Lemma 2.2.1. (Campelo and Cornuéjols [18]) Given B ∈ B, for i ∈ I ′0, B−1
i 1 ∈

{0, 1}|Vi|. For i ∈ I1, B−1
i 1 =

(
1
2

)
1.

Given a basis B ∈ B, consider the associated 1-pseudoforest GB. For every rooted



2.2 A graphic characterization of bases 23

tree of GB, i.e. for each Ci with i ∈ I0, denote by τ(Ci) the root of the tree. Similarly,

for every 1-tree component Cj, j ∈ I1 of GB, denote by κ(Cj) its unique (odd) cycle.

In the next chapters, in order to prove several results, the converse of Theorem 2.2.1

will be needed. To this purpose, it is very important to establish that there is a

one-to-one correspondence between 1-pseudoforests and bases of FSTAB(G). In the

next theorem, we prove that the converse of Theorem 2.2.1 holds.

Theorem 2.2.2. Let GB(V,EN) be a 1-pseudoforest of G, i.e. a subgraph of G

whose connected components are rooted trees and 1-trees with an odd cycle. Denote

by Ci(Vi, Ei), i = 1, . . . , k the connected components of GB. Let I0 ⊆ {1, . . . , k} index

the tree components of GB and, for i ∈ I0, let τ(Ci) be the root of the tree component

Ci. Define VN =
⋃
i∈I0 τ(Ci), VB = V \ VN , EB = E \ EN . Then B = VB ∪ EB is a

basis of FSTAB(G).

Proof. First, let us group the equations of (FSTAB) according to the edges of EN

and EB respectively, to get

Āx+ yN = 1, (2.2)

Âx+ yB = 1, (2.3)

where A =

[
Ā

Â

]
. Notice that Ā is the edge-node incidence matrix of GB. Precisely,

if Ai is the |Ei| × |Vi| incidence matrix of Ci, then Ā can be organized as

Ā =


A1

A2

. . .

Ak′

0

 ,

where k′ ≤ k is the number of connected components of GB containing at least two

nodes. Remark that the last zero columns correspond to those components of GB

which consist of isolated nodes.

For every non-trivial tree component Ci, i ∈ I0, i ≤ k′, let us partition Ai = [Bi Ni],

where Ni consists of a single column, which is the one indexed by node τ(Ci). It is

easy to check that each matrix Bi is square and invertible, because it can be expressed

as a triangular matrix, by reordering the nodes of the tree from the leaves towards
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the root τ(Ci), according to the partial order defined by the root of the tree.

For every 1-tree component Ci, i ∈ I1, define Bi = Ai. Also in this case each matrix

Bi is square and invertible, as it can be expressed as a block matrix of the form

Bi =

[
Ti Di

0 Ki

]
, (2.4)

where Ki is the edge-node incidence matrix of the odd cycle and Ti, togheter with an

extra column of Di, is the edge-node incidence matrix of the acyclic part of the 1-tree.

Note that, by conveniently reordering the nodes of the 1-tree, it is possible to express

Ki and Ti as a circulant matrix and a triangular matrix, respectively, implying that

Bi is invertible.

Therefore, a basis of (2.2), (2.3) is given by

B =

[
B̄ 0

B̂ I

]
, (2.5)

where B̄ and B̂ are submatrices of Ā and Â, respectively and

B̄ =


B1

B2

. . .

Bk′

 . (2.6)

Because B̄ is a block diagonal matrix whose blocks are non-singular, B̄ is non-singular

as well, implying that B is a basis.

Theorems 2.2.1 and 2.2.2 establish a precise correspondence between bases of (FSTAB)

and 1-pseudoforests of G. In the remainder of the thesis, given a basis B ∈ B, we will

say that GB(V,EN) is the basic subgraph of G associated to B. In the next theorem,

this correspondence is extended to basic solutions of (FSTAB). In particular, the

next theorem highlights the connection between the variables that are 1
2
-valued in a
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Figure 2.1: A basic feasible solution and the associated 1-pseudoforest. Black nodes
are 1-valued, white nodes are 0-valued, and half coloured nodes are 1

2
-valued. The

root of each tree component is indicated by a circle. Dashed and plain edges index
basic and nonbasic slack variables, respectively.

basic solution of FSTAB(G) and the nodes belonging to the 1-tree components of

the associated basic subgraph. Figure 2.1 illustrates the one-to-one correspondence

between 1-pseudoforests of G and bases of FSTAB(G). Throughout the thesis we

will always indicate graphically 1-valued nodes by black circles, 0-valued nodes by

white circles, and 1
2
-valued nodes by half coloured circles. The nonbasic edges of a

basic subgraph will be represented by plain lines, while basic edges will be represented

by dashed lines.

Theorem 2.2.3. Let B ∈ B be a basis of (FSTAB). Denote by x̄ the basic solution

associated to B. Then:

(i) all nodes in 1-tree components of GB index 1
2
-valued components of x̄;

(ii) all nodes of tree components of GB index (0, 1)-valued components of x̄. On

each tree component, nodes that are at even distance from the root are 0-valued,

while those that are at odd distance from the root are 1-valued.

Proof. The result immediately follows from (2.5), (2.6) and Lemma 2.2.1. Note that,

given a tree component Ci(Vi, Ei), i ∈ I0, the assignment of binary values to its nodes

is uniquely determined by τ(Ci) = Vi \B, the only nonbasic node of Ci, which takes

value 0.
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Example 2.2.1. Consider the graph of Figure 2.1 and the basis associated to the

1-pseudoforest depicted in the figure. By labeling the nodes according to the order

described in the proof of Theorem 2.2.2, it is possible to express the basis matrix B

as
1 2 4 6 7 8 (1, 3) (2, 5) (3, 4) (5, 6)

(1, 2) 1 1

(2, 3) 1

(4, 5) 1

(6, 7) 1 1

(7, 8) 1 1

(6, 8) 1 1

(1, 3) 1 1

(2, 5) 1 1

(3, 4) 1 1

(5, 6) 1 1

We say that a tree (or a forest) is alternating with respect to a basic solution x of

FSTAB(G), if all its edges connect a 1-valued node to a 0-valued node.

Remark 2.2.1. Given B ∈ B and the associated basic solution x, each tree compo-

nent of the basic subgraph GB is alternating. This easily follows by recalling that the

edges of GB are nonbasic, and therefore 0-valued in x, and from the fact that nodes

of tree components of GB are 0-1 valued.

Remark 2.2.2. How are the characterizations of sections 2.1 and 2.2 related one

to the other? Given a basic feasible solution x ∈ FSTAB(G), Theorem 2.1.1 states

that x can be expressed as the sum of an integer vertex x0, and k elementary frac-

tional vertices x1, . . . , xk. By definition, elementary fractional vertices are such that
1
2
-valued nodes induce a connected subgraph of G that contains an odd cycle. Such

subgraph admits one or more underlying 1-trees, representing degenerate bases as-

sociated to the same elementary fractional vertex. On the other hand, the subgraph

of G induced by the nodes that are 0-1 valued in x, admits one or more spanning

alternating forests, which represent degenerate bases associated to x0. Remark that

condition (iii) of Theorem 2.1.1 is related to the hypothesis that x is a vertex, i.e. a

basic feasible solution.
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Vertex Adjacency and the Hirsch

Conjecture for the Fractional

Stable Set Polytope

Given a graph, the edge formulation of the stable set problem is defined by two-

variable constraints, one for each edge, expressing the simple condition that two

adjacent nodes cannot belong to a stable set. We study vertex adjacency in the

fractional stable set polytope FSTAB(G), i.e. the polytope yielded by the linear

relaxation of the edge formulation, that is defined by the following inequalities:

xi + xj + yij = 1 ∀ (i, j) ∈ E
xi ≥ 0 ∀ i ∈ V
yij ≥ 0 ∀ (i, j) ∈ E.

Even if this polytope is a weak approximation of the stable set polytope, its simple ge-

ometrical structure provides deep theoretical insight as well as interesting algorithmic

opportunities. Exploiting a graphic characterization of the bases, we first redefine

simplex pivots in terms of simple graphic operations, that turn a given basis into

an adjacent one. Between all possible pivots, we characterize degenerate and non-

degenerate ones, and we differentiate those leading to an integer or to a fractional

vertex. The graphic characterization of bases is crucial to prove another structural

property of the fractional stable set polytope, concerning the adjacency of its ver-
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tices. In particular, we extend a necessary and sufficient condition due to Chvátal for

adjacency of (integer) vertices of the stable set polytope to arbitrary (and possibly

fractional) vertices of the fractional stable set polytope. These results lead us to

prove that the Hirsch Conjecture is true for the fractional stable set polytope, i.e.

the combinatorial diameter of this fractional polytope is at most equal to the number

of edges of the given graph.

In Section 3.1 we present some results from the literature regarding adjacency of

integer vertices on FSTAB(G). In Section 3.2 we give a graphic characterization of

simplex pivots, and we precisely distinguish degenerate and non-degenerate feasible

pivots. In Section 3.3 we characterize adjacency between integer and fractional ver-

tices. In Section 3.4 we establish a graphic characterization for two arbitrary vertices

to be adjacent on FSTAB(G). This result generalizes Chvátal’s condition about ad-

jacency of integer vertices. In Section 3.5 we prove Hirsch conjecture for FSTAB(G).

Finally, in section 3.6, we exploit the graphic properties of bases and pivots to define

a simple-like algorithm for the Maximum Weight Stable Set Problem.

3.1 Adjacency of integer vertices

The structural properties of the stable set problem and the special characterization

of bases of the edge relaxation, outlined in Chapters 1 and 2, translate into special

adjacency properties for vertices of FSTAB(G). Exploiting such properties, it could

in principle be possible to solve the stable set problem through a modified version

of the simplex method, which generates only integer solutions without using cutting

plane techniques. This issue has been addressed by Balas and Padberg [7, 8, 9],

with regard to the set partitioning and the set packing polytopes which are defined,

respectively, as:

SPP = conv{x ∈ {0, 1}n : Ax = 1},

SP = conv{x ∈ {0, 1}n : Ax ≤ 1},

where A is an m× n matrix of zeros and ones (see Section 1.6).

Define also

LSP = {x ∈ Rn
+ : Ax ≤ 1},
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the constraint set of the linear relaxation (LSP) of (SP).

Recall from Chapter 1 that the stable set problem (STAB) is in fact a special case of

the set packing problem (SP), since the constraint matrix has exactly two ones per

row. Moreover, remind that for a given set packing problem, one can equivalently

solve the stable set problem associated to the corresponding intersection graph.

Two bases of a linear program are called adjacent if they differ in exactly one column.

Two basic feasible solutions are called adjacent if they correspond to adjacent vertices

in the polytope defined by the constraint set of the problem. This distinction is

necessary since, because of degenaracy, two adjacent bases may be associated with

the same vertex, and two adjacent basic feasible solutions may be associated with

two non-adjacent bases. A basis is defined integer if the associated basic solution has

all its components integer.

Balas and Padberg [7] showed that, for every feasible integer basis to LSP, there

are at least as many adjacent feasible integer bases as there are nonbasic columns.

Moreover, they proved that, given two basic feasible integer solutions x1 and x2 to

LSP, x2 can be obtained from x1 by a sequence of p pivots, where p is the number of

indices j ∈ {1, . . . , n} for which x1
j is nonbasic and x2

j = 1, in such a way that each

basic solution of the sequence is feasible and integer. In the next theorem this result

is stated in the case where x2 is an optimal solution to (SP).

Theorem 3.1.1. (Balas and Padberg [7]) Let x1 be a feasible integer (but not optimal)

solution to (LSP) associated with the basis B1. If x2 is an optimal solution to (SP),

then there exists a sequence of adjacent bases B10, B11, . . . , B1p such that B10 = B1,

B1p = B2 is a basis associated with x2, and

(i) the basic solutions x1i = B−1
1i 1, i = 0, 1, . . . , p, are all feasible and integer;

(ii) cx10 ≤ cx11 ≤ · · · ≤ cx1p;

(iii) p = |J1 ∩ Q2|, where J1 is the index set of nonbasic variables associated with

B1, while Q2 =
{
j ∈ {1, . . . , n} : x2

j = 1
}

.

Remark that, since any vertex of LSP is optimal for some vector c, Theorem 3.1.1

implies that, given any two basic feasible integer solutions x1 and x2 to LSP, x2 can

be obtained from x1 by a sequence of p pivots. Moreover, since p ≤ m, part (iii) of
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the theorem proves Hirsch conjecture for this special class of linear programs, with

respect to integer solutions. A similar statement can also be deduced from a result

of Trubin [70]. Trubin, in a totally different fashion, showed that all edges of SP

are also edges of LSP. Because two vertices of a polytope are adjacent if they lie on

an edge, the Trubin property implies the existence of a path containing only integer

vertices between any two integer vertices of the feasible set.

A direct consequence of Theorem 3.1.1 is that, given a basic feasible integer solution

x1 to LSP, there is a better integer solution x2 which is a vertex adjacent to x1 on

LSP. However, identifying such adjacent vertices can be a very difficult task, because

set packing problems tend to be highly degenerate. This implies that there are many

bases associated to the same solution and that there is a very large number of vertices

of LSP adjacent to a given vertex.

In a subsequent paper [8], Balas and Padberg proposed a constructive characteriza-

tion of adjacency between integer vertices of LSP. In order to state their result, we

introduce some preliminary notation. Consider a basic feasible integer solution x1 to

LSP and a basis B1 associated to x1. Denote by N = {1, . . . , n} the index set of all

variables, and by I1 = {1, . . . ,m} and J1 = N \ I1 the index sets of basic and non-

basic variables, respectively. Let aj be the j-th column of A and define āj = B−1
1 aj,

āj =

(
āj

−ej

)
, where ej is the (n−m) unit vector. Define also Q1 = {j ∈ N |x1

j = 1}

and Q̄1 = N \Q1.

Theorem 3.1.2. (Balas and Padberg [8]) Let x1 be a basic feasible integer solution

to (LSP). Then x2 is a basic feasible integer solution to (LSP), if and only if there

exists Q ⊆ J1 such that

∑
j∈Q

ākj =

{
0 or 1, k ∈ Q1,

0 or − 1, k ∈ I1 ∩ Q̄1,

and

x2
j =

{
1 j ∈ Q2 = Q ∪ S,
0 otherwise,

where

S =
{
k ∈ Q1|

∑
j∈Q

ākj = 0
}⋃{

k ∈ I1 ∩ Q̄1|
∑
j∈Q

ākj = −1
}
.



3.1 Adjacency of integer vertices 31

When this condition holds, then

x2 = x1 −
∑
j∈Q

ākj.

Given a basic feasible integer solution x1, a set Q ⊆ J1 which satisfies the condition

of Theorem 3.1.2 is called decomposable, if it can be partitioned into two subsets,

such that each one of them satisfies the condition. This notion is useful for the next

theorem, which characterizes adjacency of integer vertices of LSP. The equivalence

between statements (i) and (iii) was established by Balas and Padberg [8] and implies

the one between (i) and (ii), proven earlier by Trubin [70].

Theorem 3.1.3. (Balas and Padberg [8], Trubin [70]) Let x and y be any two vertices

of SP. Let J(x) be the index set of nonbasic variables associated to an arbitrary basis

of x. Then the following statements are equivalent:

(i) x and y are adjacent in LSP;

(ii) x and y are adjacent in SP;

(iii) Q(y) ∩ J(x) is not decomposable, where Q(y) = {j ∈ N : yj = 0}.

Another characterization of adjacency was given by Chvátal [20] with regard to the

stable set polytope STAB(G). Given two sets X and Y , denote by X∆Y their

symmetric difference, i.e. the set of elements belonging to one but not both of two

given sets.

Theorem 3.1.4. (Chvátal [20]) Given a graph G(V,E), let x and y be two vertices

of STAB(G). Denote by X and Y the stable sets associated to x and y, respectively.

Then x and y are adjacent in STAB(G) if and only if the subgraph of G induced by

X∆Y is connected.

A direct consequence of this result is a characterizartion of adjacency in the matching

polytope. Recall from Section 1.1 that a matching M ⊆ E in a given graph G(V,E)

is a set of edges without common nodes. The matching polyhedron is the convex hull

of incidence vectors of all matchings of G. The line graph L(G) of G is defined as a

graph where each node of L(G) is associated to an edge of G and two nodes of L(G)
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are adjacent if and only if the corresponding edges in G share a common endpoint.

Therefore, there is a one-to-one correspondence between matchings of G and stable

sets in L(G). Moreover, the subgraph of L(G) induced by X ⊆ E is connected if and

only if the subgraph obtained from G by removing edges in E \ X and deleting all

isolated nodes is connected.

Corollary 3.1.1. (Chvátal [20]) Given a graph G(V,E), let x and y be the incidence

vectors of matchings X and Y in G. Then x and y are adjacent in the matching

polytope if and only X∆Y defines a connected graph.

In the following, we say that two stable sets of G(V,E) are adjacent, if the corre-

sponding incidence vectors are adjacent in STAB(G).

Given a stable sets X, define an alternating subgraph of G(V,E) as a bipartite sub-

graph H(V ′, E ′), where nodes of X are connected only to nodes of V \X and such

that for any (i, j) ∈ E \ E ′, if i ∈ V ′ and j /∈ V ′, then j /∈ X. Clearly, for any pair

of adjacent stable sets (X, Y ), the subgraph of G induced by X∆Y , which is con-

nected by Theorem 3.1.4, is also an alternating subgraph. This observation connects

Chvátal result to an earlier result due to Balinski [10], who related the optimality

of a stable set X to the existence of an augmenting subgraph, that is an alternating

subgraph H(V ′, E ′), such that the weight-sum of V ′ \X exceeds that of V ′ ∩X (see

also Edmonds [31]).

Theorem 3.1.5. (Balinski [10]) Let X be a stable set in G(V,E) and denote by x

its incidence vector. X has maximum weight if and only if it admits no augmenting

subgraph.

3.2 A graphic representation of simplex pivots on

the Fractional Stable Set Polytope

Recall from Chapter 2 that, given a basis B ∈ B, by Theorem 2.2.1, it is possible to

associate to B a subgraph GB of G(V,E), consisting of single nodes, trees and 1-trees

with an odd cycle.
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The basic subgraph GB is obtained from G by removing the basic edges, that cor-

respond to basic slack variables of FSTAB(G). We have denoted by Ci(Vi, Ei),

i = 1, . . . , k the connected components of GB and we have defined I0 and I1 as the

index sets of tree and 1-tree components, respectively. For each i ∈ I1 we have de-

noted by κ(Ci) the unique cycle of 1-tree Ci; for each j ∈ I0 we have denoted by

τ(Cj) the only nonbasic node of tree Cj.

Such characterization of bases of FSTAB(G) allows us to describe graphically sim-

plex pivots as well. A similar task was tackled by Ikura and Nemhauser for bipartite

graphs [47]. Given a basis B ∈ B, simplex pivots on FSTAB(G) can be characterized

in terms of elementary transformations of GB into GB′ , where B′ ∈ B is adjacent to B

in FSTAB(G). In this section, we present an overview of all possible transformations

of GB into GB′ . We denote by (x, y) and (x′, y′) the basic solutions associated to B

and B′, respectively. In the following, unless explicitly specified, we don’t assume

neither B nor B′ to be feasible.

3.2.1 Pivoting in a nonbasic edge of a 1-tree

Consider a connected component Ci(Vi, Ei), i ∈ I1. Suppose we want edge (i1, i2) ∈ Ei
to enter the basis. If (i1, i2) ∈ κ(Ci), C

′
i(Vi, Ei \ (i1, i2)) is a tree; otherwise, it is a

subgraph consisting of two connected components, Ci1(Vi1, Ei1) and Ci2(Vi2, Ei2), such

that Vi = Vi1∪Vi2 and Ei = Ei1∪Ei2∪{(i1, i2)}. Clearly, one of the two components

is a 1-tree, while the other one is a tree. Assume w.l.o.g. that Ci1 is a 1-tree and Ci2

is a tree. To construct a basis B′ adjacent to B, we then need to remove a variable

from the basis, in order to obtain a subgraph of G(V,E), satisfying the conditions of

Theorem 2.2.2. In the following, we describe separately two different situations that

can occurr.

Pivoting out a basic edge. A first possibility consists in pivoting out an edge (s, t) /∈
Ei, such that s, t ∈ Vi. If (i1, i2) ∈ κ(Ci), the distance d(s, t) (i.e. the number of edges

of the path connecting s and t) on C ′i must be even. Then, C ′′i (Vi, Ei \ (i1, i2)∪ (s, t))

is a 1-tree with an odd cycle that can replace Ci in GB, yielding a new subgraph

GB′ (Fig. 3.1). If (i1, i2) /∈ κ(Ci) and s, t ∈ Vi2, d(s, t) on Ci2 must be even, and a

new subgraph GB′ can be obtained from GB by replacing Ci with the 1-trees Ci1 and

C ′i2(Vi2, Ei2∪(s, t)), both containing an odd cycle (Fig. 3.2). If (i1, i2) /∈ κ(Ci), s ∈ Vi1
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Figure 3.1: Ci(Vi, Ei), i ∈ I1. (i1, i2) ∈ κ(Ci) enters the basis. (s, t) /∈ Ei : s, t ∈ Vi
exits the basis.

Figure 3.2: Ci(Vi, Ei), i ∈ I1. (i1, i2) /∈ κ(Ci) enters the basis. (s, t) /∈ Ei : s, t ∈ Vi2
exits the basis.

and t ∈ Vi2, C ′′i (Vi, Ei\(i1, i2)∪(s, t)) is a 1-tree with an odd cycle, that can replace Ci

in GB, yielding the basic sungraph G′B (Fig. 3.3). In any case, B′ = B \ (s, t)∪ (i1, i2)

is a basis of FSTAB(G).

Alternatively, it is possible to pivot in an edge (s, t) ∈ δ(Vi). Suppose (i1, i2) ∈ κ(Ci)

(resp. (i1, i2) /∈ κ(Ci)). Then, (s, t) should be such that s ∈ Vi (resp. s ∈ Vi2) and

t ∈ Vj, j 6= i. This amounts to connecting C ′i (resp. Ci2) to Cj, yielding component

Cij(Vi ∪ Vj, Ei \ (i1, i2) ∪ Ej ∪ (s, t)) (resp. C ′j(Vi2 ∪ Vj, Ei2 ∪ Ej ∪ (s, t))). Replacing

Ci and Cj with Cij (resp. with Ci1 and C ′j) in GB yields the basic subgraph GB′ ,

associated to basis B′ = B \ (i1, i2) ∪ (s, t) (Fig. 3.4 and Fig. 3.5).

Pivoting out a basic node. Suppose (i1, i2) ∈ κ(Ci) (resp. (i1, i2) /∈ κ(Ci)). It is

possible to pivot out a node z ∈ Vi (resp. z ∈ Vi2). This amounts to replacing in GB

the 1-tree Ci with the tree C ′i (resp. with the 1-tree Ci1 and the tree Ci2), where z is

the nonbasic node of the new tree component, that is τ(C ′i) = z (resp. τ(Ci2) = z).

The new basis is B′ = B \ (i1, i2) ∪ {z} (Fig. 3.6 and 3.7).

Proposition 3.2.1. Given a basis B ∈ B, consider a 1-tree component Ci(Vi, Ei),
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Figure 3.3: Ci(Vi, Ei), i ∈ I1. (i1, i2) /∈ κ(Ci) enters the basis. (s, t) /∈ Ei : s ∈ Vi1,
t ∈ Vi2 exits the basis.

Figure 3.4: Ci(Vi, Ei), i ∈ I1. (i1, i2) ∈ κ(Ci) enters the basis. (s, t) /∈ Ei : s ∈ Vi,
t ∈ Vj, j 6= i exits the basis.

Figure 3.5: Ci(Vi, Ei), i ∈ I1. (i1, i2) /∈ κ(Ci) enters the basis. (s, t) /∈ Ei : s ∈ Vi2,
t ∈ Vj, j 6= i exits the basis.
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Figure 3.6: Ci(Vi, Ei), i ∈ I1. (i1, i2) ∈ κ(Ci) enters the basis. z ∈ Vi exits the basis.

Figure 3.7: Ci(Vi, Ei), i ∈ I1. (i1, i2) /∈ κ(Ci) enters the basis. z ∈ Vi2 exits the basis.

i ∈ I1 and an edge (i1, i2) ∈ Ei to be pivoted in. The following pivots are those (the

only ones) that are degenerate:

(i) pivoting in (i1, i2) ∈ κ(Ci), and pivoting out an edge (s, t) /∈ Ei s.t. s, t ∈ Vi

and d(s, t) on C ′i is even;

(ii) pivoting in (i1, i2) /∈ κ(Ci), and pivoting out an edge (s, t) /∈ Ei s.t. s, t ∈ Vi2
and d(s, t) on Ci2 is even;

(iii) pivoting in (i1, i2) /∈ κ(Ci), and pivoting out an edge (s, t) /∈ Ei s.t. s ∈ Vi1 and

t ∈ Vi2;

(iv) pivoting in (i1, i2) ∈ κ(Ci) (resp. (i1, i2) /∈ κ(Ci)), and pivoting out an edge

(s, t) s.t. s ∈ Vi (resp. s ∈ Vi2), t ∈ Vj, j 6= i, j ∈ I1.

Proof. (i), (ii) and (iii) correspond to the pivots represented in Fig. 3.1, Fig. 3.2 and

Fig. 3.3, respectively. Observe that only nodes in Vi are involved in the trasformation

of GB. Moreover, Ci is replaced with one or more 1-tree components. Therefore, by

Theorem 2.2.3, the new basis B′ is such that x′B′ = xB.



3.2 A graphic representation of simplex pivots 37

Analogously, to prove (iv), observe that j ∈ I1 implies that only nodes belonging to

1-trees (namely, those in Vi ∪ Vj) are involved in the transformation of GB (see, for

example, Fig. 3.5). Moreover, in GB′ they still belong to 1-trees, while the rest of

the subgraph is unchanged. Therefore, by Theorem 2.2.3, the new basis B′ is such

that x′B′ = xB.

To prove that there are no other degenerate pivots, recall that pivoting in a nonbasic

edge and pivoting out a basic node amounts to trasforming a 1-tree (or part of it)

into a tree (see, for example, Figures 3.6 and 3.7). Therefore, those components of

x′B′ that are indexed by nodes of the new tree component are, by Theorem 2.2.3, 0-1

valued. This implies x′B′ 6= xB. The last pivot to be considered is the one where

a nonbasic edge enters the basis, and a basic edge (s, t) ∈ δ(Vi) exits the basis, s.t.

t ∈ Vj, j ∈ I0. In this tranformation of GB, a non-empty subset of the nodes in Vi

become part of a tree component. These nodes will be then, by Theorem 2.2.3, 0-1

valued in x′B′ , showing that x′B′ 6= xB.

Consider a pivot such that a nonbasic edge (i1, i2) of 1-tree Ci enters the basis. We call

the pivot trivially infeasible, if the new basis B′ ∈ B is such that the corresponding

basic solution (x′, y′) is infeasible and y′i1i2 < 0.

Proposition 3.2.2. Given a basis B ∈ B, consider a 1-tree component Ci(Vi, Ei),

i ∈ I1 and an edge (i1, i2) ∈ Ei s.t. (i1, i2) ∈ κ(Ci) (resp. (i1, i2) /∈ κ(Ci)). The

following pivots yield a new basis B′ ∈ B, which is trivially infeasible:

(i) pivoting in (i1, i2), and pivoting out a node z ∈ Vi (resp. z ∈ Vi2) s.t. d(z, i2)

on C ′i(Vi, Ei \ (i1, i2)) (resp. on Ci2) is odd;

(ii) pivoting in (i1, i2), and pivoting out an edge (s, t) s.t. s ∈ Vi (resp. s ∈ Vi2),

t ∈ Vj, j ∈ I0, and d(τ(Cj), i2) on Cij(Vi∪Vj, Ei \ (i1, i2)∪Ej ∪ (s, t)) (resp. on

C ′j(Vi2 ∪ Vj, Ei2 ∪ Ej ∪ (s, t))) is odd.

Proof. (i) The new component C ′i (resp. Ci2) is a tree s.t. τ(C ′i) = z (resp. τ(Ci2) =

z). Therefore, in the new tree component, all nodes at odd distance from z will index

1-valued components of x′B′ (this follows from the fact that edges of a basic subgraph

are nonbasic and therefore 0-valued). Because d(z, i2) is odd, x′i2 = 1. This means

that x′i1 +x′i2 = 1
2

+ 1 and that y′i1i2 = −1
2
, implying that (x′, y′) is trivially infeasible.
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(ii) The new component Cij (resp. C ′j) is a tree s.t. d(τ(Cij), i2) (resp. d(τ(C ′j), i2))

is odd, implying that x′i2 = 1. Therefore, x′i1 + x′i2 = 1
2

+ 1 and y′i1i2 = −1
2
, showing

that (x′, y′) is trivially infeasible.

In the following, given a tree T and a node i ∈ V (T ), we denote by H(i, T ) the set of

nodes of T that are at odd distance from i, i.e. H(i, T ) = {j ∈ V (T ) : d(i, j) on Ti is odd}.

Proposition 3.2.3. Given a feasible basis B ∈ B, consider a 1-tree component

Ci(Vi, Ei), i ∈ I1 and an edge (i1, i2) ∈ Ei to be pivoted in. The following pivots

are those that are non-degenerate and yield a feasible basis B′ ∈ B:

(i) pivoting in (i1, i2) ∈ κ(Ci), and pivoting out a node z ∈ Vi \ H(i2, C
′
i) s.t.,

H(i2, C
′
i) is a stable set of G(V,E) and there is no edge (v, u) ∈ δ(H) with

v ∈ H and u ∈ Vr, r ∈ I1;

(ii) pivoting in (i1, i2) /∈ κ(Ci), and pivoting out a node z ∈ Vi2 \ H(i2, Ci2) s.t.,

H(i2, Ci2) is a stable set of G(V,E), and there is no edge (v, u) ∈ δ(H) s.t.

v ∈ H and u ∈ Vr, r ∈ I1;

(iii) pivoting in (i1, i2) ∈ κ(Ci), and pivoting out an edge (s, t) with s ∈ Vi, t ∈ Vj,
j ∈ I0, such that s ∈ H(i2, C

′
i), H(i2, C

′
i) is a stable set of G(V,E), and there

is no edge (v, u) ∈ δ(H) s.t. v ∈ H and u ∈ Vr, r ∈ I1;

(iv) pivoting in (i1, i2) /∈ κ(Ci), and pivoting out an edge (s, t) with s ∈ Vi2, t ∈ Vj,
j ∈ I0, such that s ∈ H(i2, Ci2), H(i2, Ci2) is a stable set of G(V,E), and there

is no edge (v, u) ∈ δ(H) s.t. v ∈ H and u ∈ Vr, r ∈ I1.

Proof. Pivots (i)-(iv) are not degenerate and not trivially infeasible, by Propositions

3.2.1 and 3.2.2, respectively. Consider case (i). In GB′ , Ci has been replaced by the

tree component C ′i, s.t. τ(C ′i) = z. Because the edges of GB′ are 0-valued, H(i2, C
′
i)

includes all nodes that were 1/2-valued in xB and that are 1-valued in x′B′ . To prove

feasibility of (x′, y′), we have to show that y′uv ≥ 0 ∀ (u, v) ∈ E. By feasibility of

B, all edges in E(V \ Vi) index nonnegative slack variables. As H(i2, C
′
i) is a stable

set, E(H) = ∅. We show that ∀ (v, u) ∈ δ(H), (v, u) is s.t. v ∈ H, u ∈ Vr, r ∈ I0

and d(u, τ(Cr)) on Cr is even. Indeed, by hypothesis, Cr cannot be a 1-tree. If

r ∈ I0 and d(u, τ(Cr)) on Cr is odd, it would follow xu = x′u = 1 and yuv = −1
2
,

contradicting feasibility of (x, y). This proves that nodes in H(i2, C
′
i) can only be
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connected to nodes that are 0-valued in x′. Feasibility of B′ for cases (ii)-(iv) can be

proven analogously to case (i).

We now prove that there are no more non-degenerate pivots where (i1, i2) enters the

basis, which yield a new feasible basis B′. First, observe that all pivots where (i1, i2)

enters the basis and (s, t) /∈ Ei with s, t ∈ Vi exits the basis are degenerate (see

Figures 3.1-3.3). Similarly, those pivots where (i1, i2) enters the basis and (s, t) /∈ Ei
with s ∈ Vi and t ∈ Vj, j ∈ I1 is pivoted out are degenerate (see, for example, Fig.

3.5). Suppose we pivot in (i1, i2) ∈ κ(Ci) and we pivot out a node z ∈ Vi. We show

that conditions stated in (i) are necessary for feasibility (this can be analogously

shown for (ii)). Indeed, z ∈ H(i2, C
′
i) would imply that B′ is trivially infeasible, as

i1 and i2 would be both 1-valued in the new basic solution x′. If H(i2, C
′
i) is not

a stable set, (x′, y′) violates all the edge constraints indexed by E(H). Finally, if

there exists an edge (v, u) ∈ δ(H) s.t. v ∈ H and u ∈ Vr, r ∈ I1, it follows that

x′v+x′u = 1+ 1
2

and y′vu = −1
2
, implying infeasibility of (x′, y′). Analogously, it can be

proven the necessity of the conditions stated in (iii) and (iv) for the case where we

pivot in (i1, i2) and we pivot out an edge (s, t) /∈ Ei s.t. s ∈ Vi and t ∈ Vj, j ∈ I0.

3.2.2 Pivoting in a nonbasic edge of a tree

Consider a connected component Ci(Vi, Ei), i ∈ I0. Suppose we want edge (i1, i2) ∈
Ei to enter the basis. Then C ′i(Vi, Ei \ (i1, i2)) consists of two tree components,

Ci1(Vi1, Ei1) and Ci2(Vi2, Ei2), such that Vi = Vi1 ∪ Vi2 and Ei = Ei1 ∪ Ei2 ∪ (i1, i2).

Assume w.l.o.g. that i1 ∈ Vi1, i2 ∈ Vi2, τ(Ci) ∈ Vi1. To construct a basis B′ adjacent

to B, we need to remove a variable from the basis, in order to obtain a subgraph

of G(V,E), satisfying the conditions of Theorem 2.2.2. In the following, we describe

separately two different situations that can occurr.

Pivoting out a basic edge. If the edge to be pivoted out (s, t) /∈ Ei connects two

nodes of the tree, such that s, t ∈ Vi2, and d(s, t) on Ci2 is even, then the new

component C ′i2(Vi2, Ei2 ∪ (s, t)) is a 1-tree with an odd cycle, and the subgraph GB′ ,

obtained fromGB by replacing Ci with Ci1 and C ′i2, satisfies the conditions of Theorem

2.2.2 (Fig. 3.8). If (s, t) is such that s ∈ Vi1 and t ∈ Vi2 the new component

C ′′i (Vi, Ei \ (i1, i2) ∪ (s, t)) is a tree, and the subgraph GB′ obtained from GB by

replacing Ci with C ′′i satisfies the conditions of Theorem 2.2.2 (Fig. 3.9). Finally, if
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Figure 3.8: Ci(Vi, Ei), i ∈ I0. (i1, i2) ∈ Ei enters the basis. (s, t) /∈ Ei : s, t ∈ Vi2 exits
the basis.

Figure 3.9: Ci(Vi, Ei), i ∈ I0. (i1, i2) ∈ Ei enters the basis. (s, t) /∈ Ei : s ∈ Vi1,
t ∈ Vi2 exits the basis.

Figure 3.10: Ci(Vi, Ei), i ∈ I0. (i1, i2) ∈ Ei enters the basis. (s, t) /∈ Ei : s ∈ Vi2,
t ∈ Vj, j 6= i exits the basis.
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Figure 3.11: Ci(Vi, Ei), i ∈ I0. (i1, i2) ∈ Ei enters the basis. z ∈ Vi2 exits the basis.

(s, t) is such that s ∈ Vi2 and t ∈ Vj, j 6= i, pivoting out (s, t) amounts to connecting

Ci2 to Cj, which yields component C ′j(Vi2 ∪ Vj, Ei2 ∪ Ej ∪ (s, t)). Replacing Ci and

Cj with Ci1 and C ′j in GB defines the basic subgraph GB′ (Fig. 3.10). In any case,

B′ = B \ (s, t) ∪ (i1, i2) is a basis of FSTAB(G) associated to GB′ .

Pivoting out a basic node. In this case, it is possible to pivot out a node z ∈ Vi2. This

amounts to replacing in GB the tree Ci with the trees Ci1 and Ci2, where τ(Ci2) = z

(Fig. 3.11).

Proposition 3.2.4. Given a basis B ∈ B, consider a tree component Ci(Vi, Ei),

i ∈ I0 and an edge (i1, i2) ∈ Ei to be pivoted in. The following pivots are those (the

only ones) that are degenerate:

(i) pivoting in (i1, i2), and pivoting out an edge (s, t) s.t. s ∈ Vi2, t ∈ Vj, j 6= i,

j ∈ I0 and d(τ(Ci), τ(Cj)) on Cij(Vi ∪ Vj, Ei ∪ Ej ∪ (s, t)) is even;

(ii) pivoting in (i1, i2), and pivoting out an edge (s, t) 6= (i1, i2) s.t. s ∈ Vi1, t ∈ Vi2,

and d(s, t) on Ci is odd;

(iii) pivoting in (i1, i2), and pivoting out a node z ∈ Vi2, s.t. d(τ(Ci), z) on Ci is

even.

Proof. (i). In this case, components Ci and Cj are replaced in GB with components

Ci1 and C ′j(Vj∪Vi2, Ej∪Ei2∪(s, t)), which are both trees. Clearly, variables indexed by

nodes of Vi1∪Vj retain their values in x′. We have to prove that, ∀ v ∈ Vi2, d(v, τ(Ci))

on Ci and d(v, τ(Cj)) on C ′j have the same parity. Indeed, given a tree component

of a basic subgraph, all nodes at even (resp. odd) distance from the nonbasic node

of the tree are 0-valued (resp. 1-valued) in the corresponding basic solution. Recall
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also that, given two nodes of a tree, there exists only one path connecting them on

the tree. Therefore, given the tree Ci of GB, if d(s, τ(Ci)) on Ci is even (resp. odd),

all the nodes in {v ∈ Vi2 s.t. d(s, v) on Ci is even} are 0-valued (resp. 1-valued),

while all the nodes in {v ∈ Vi2 s.t. d(s, v) on Ci is odd} are 1-valued (resp. 0-valued).

Analogously, given the tree C ′j of GB′ , if d(s, τ(Cj)) on C ′j is even (resp. odd), all the

nodes in {v ∈ Vi2 s.t. d(s, v) on C ′j is even} are 0-valued (resp. 1-valued), while all

the nodes in {v ∈ Vi2 s.t. d(s, v) on C ′j is odd} are 1-valued (resp. 0-valued). Observe

also that ∀ v ∈ Vi2, d(v, s) on both Ci and C ′j is equal to d(v, s) on Ci2. Therefore, we

have only to prove that d(s, τ(Ci)) on Ci and d(s, τ(Cj)) on C ′j have the same parity.

This easily follows from the fact that d(τ(Ci), τ(Cj)) on Cij(Vi ∪ Vj, Ei ∪Ej ∪ (s, t)),

which is even by hypothesis, can be expressed as the sum of d(s, τ(Ci)) on Ci and

d(s, τ(Cj)) on C ′j. Consequently, the two terms have the same parity.

(ii). Pivoting out (s, t) amounts to connecting back Ci1 and Ci2, that yields the new

tree component C ′′i (Vi, Ei ∪ (i1, i2) \ (s, t)). Because d(s, t) on Ci is odd, the slack

variable yst, associated to edge (s, t) leaving the basis, is 0-valued in (x, y) (Fig. 3.9).

This shows that we have performed a degenerate pivot.

(iii). Being d(τ(Ci), z) on Ci even, xz = 0. Pivoting out a 0-valued basic node clearly

yields a degenerate pivot.

To prove that there are no more degenerate pivots where (i1, i2) enters the basis,

consider first the case where a node z ∈ Vi2 is pivoted out. If d(τ(Ci), z) on Ci is

odd, all 0-valued nodes of Vi2 become 1-valued, and viceversa. If, instead, we pivot

out an edge (s, t) /∈ Ei, connecting two nodes of Vi2 at even distance in Ci2, the

resulting component is a 1-tree. This implies that nodes of Vi2 become 1
2
-valued.

When (s, t) 6= (i1, i2) is s.t. s ∈ Vi1, t ∈ Vi2 and d(s, t) on Ci is even, it follows that

yst ∈ {−1, 1} and the pivot swaps the assignments of zeros and ones on nodes of Vi2.

If (s, t) is s.t. s ∈ Vi2, t ∈ Vj, j 6= i, we introduce in the basic subgraph component

C ′j(Vj ∪ Vi2, Ej ∪ Ei2 ∪ (s, t)). If j ∈ I1, nodes of Vi2 become 1
2
-valued. If j ∈ I0

and d(τ(Ci), τ(Cj)) on Cij(Vi ∪ Vj, Ei ∪ Vj ∪ (s, t)) is odd, then d(s, τ(Ci)) on Ci and

d(s, τ(Cj)) on C ′j have different parity and, as a consequence, all nodes in Vi2 change

their values from 0 to 1, and viceversa.

Consider a pivot such that a nonbasic edge (i1, i2) of tree Ci enters the basis. Again,

we define a pivot to be trivially infeasible if the new basis B′ ∈ B is such that the
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corresponding basic solution (x′, y′) is infeasible and y′i1i2 < 0.

Proposition 3.2.5. Given a basis B ∈ B, consider a tree component Ci(Vi, Ei),

i ∈ I0 and suppose that an edge (i1, i2) ∈ Ei, s.t. d(τ(Ci), i1) on Ci is odd, enters the

basis. The following pivots yield a basis B′ ∈ B that is trivially infeasible:

(i) pivoting in (i1, i2), and pivoting out an edge (s, t) s.t. s ∈ Vi2, t ∈ Vj, j ∈ I1;

(ii) pivoting in (i1, i2), and pivoting out an edge (s, t) s.t. s ∈ Vi2, t ∈ Vj, j 6= i,

j ∈ I0 and d(i2, τ(Cj)) on C ′j(Vj ∪ Vi2 , Ej ∪ Ei2 ∪ (s, t)) is odd;

(iii) pivoting in (i1, i2), and pivoting out an edge (s, t) /∈ Ei such that s, t ∈ Vi2, and

d(s, t) on Ci2 is even;

(iv) pivoting in (i1, i2), and pivoting out an edge (s, t) /∈ Ei such that s ∈ Vi1, t ∈ Vi2
and d(s, t) on Ci is even;

(v) pivoting in (i1, i2), and pivoting out a node z ∈ Vi2, s.t. d(i2, z) on Ci2 is odd.

Proof. First, observe that d(τ(Ci), i1) on Ci being odd, implies xi1 = 1. (i). In GB,

we are replacing Ci and Cj with the tree Ci1 and the 1-tree C ′j(Vj∪Vi2, Ej∪Ei2∪(s, t))

(Fig. 3.10). As a consequence, all nodes of Vi2 become 1
2
-valued, while the other ones

retain their values. Therefore x′i1 +x′i2 = 1 + 1
2
, and y′i1i2 = −1

2
, implying infeasibility

of B′.

(ii). In GB, we are replacing Ci and Cj with the trees Ci1 and C ′j(Vj ∪Vi2, Ej ∪Ei2 ∪
(s, t)). Because τ(C ′j) = τ(Cj) and, by hypothesis, d(i2, τ(Cj)) on C ′j is odd, it follows

that x′i2 = 1. Therefore x′i1 + x′i2 = 1 + 1, and y′i1i2 = −1, implying infeasibility of B′.

(iii). In GB, we are replacing Ci with the tree Ci1 and the 1-tree C ′i2(Vi2, Ei2 ∪ (s, t))

(Fig. 3.8). As a consequence, all nodes of Vi2 become 1
2
-valued, while the other ones

retain their values. Therefore x′i1 +x′i2 = 1 + 1
2
, and y′i1i2 = −1

2
, implying infeasibility

of B′.

(iv). In GB, Ci is replaced with C ′′i (Vi, Ei \ (i1, i2) ∪ (s, t)). Notice that d(s, t) on Ci

being even, all nodes of Vi2 have their values switched from 0 to 1, and viceversa.

Therefore x′i1 + x′i2 = 1 + 1, and y′i1i2 = −1, implying infeasibility of B′.

(v). In GB, Ci is replaced with Ci1 and Ci2 and it is set τ(Ci2) = z (Fig. 3.11). Notice

that d(i2, z) on Ci2 being odd, all nodes of Vi2 have their values switched from 0 to
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1, and viceversa. Therefore x′i1 + x′i2 = 1 + 1, and y′i1i2 = −1, implying infeasibility

of B′.

Proposition 3.2.6. Given a feasible basis B ∈ B, consider a tree component Ci(Vi, Ei),

i ∈ I0 and suppose that an edge (i1, i2) ∈ Ei, s.t. d(τ(Ci), i2) on Ci is odd, enters the

basis. Define H = H(i2, Ci2). The following pivots are those that are non-degenerate

and yield a feasible basis B′ ∈ B:

(i) pivoting in (i1, i2), and pivoting out a node z ∈ Vi2 s.t. z /∈ H, H is a stable set

of G(V,E), and there is no edge (v, u) ∈ δ(H) s.t. v ∈ H and u ∈ Vr, r ∈ I1 or

r ∈ I0 and d(u, τ(Cr)) on Cr is odd;

(ii) pivoting in (i1, i2), and pivoting out an edge (s, t) /∈ Ei such that s ∈ Vi1,

t ∈ Vi2, d(s, t) on Ci is even, H is a stable set of G(V,E), and there is no edge

(v, u) ∈ δ(H) s.t. v ∈ H and u ∈ Vr, r ∈ I1 or r ∈ I0 and d(u, τ(Cr)) on Cr is

odd;

(iii) pivoting in (i1, i2), and pivoting out an edge (s, t) s.t. s ∈ Vi2, t ∈ Vj, j ∈ I0,

d(t, τ(Cj)) on Cj is even, s ∈ H, H is a stable set of G(V,E), and there is no

edge (v, u) ∈ δ(H) s.t. v ∈ H and u ∈ Vr, r ∈ I1 or r ∈ I0 and d(u, τ(Cr)) on

Cr is odd;

(iv) pivoting in (i1, i2), and pivoting out an edge (s, t) s.t. s, t ∈ Vi2, d(s, t) on Ci

is even, and there is no edge (v, u) ∈ δ(H) s.t. v ∈ H and u ∈ Vr, r ∈ I0 and

d(u, τ(Cr)) is odd;

(v) pivoting in (i1, i2), and pivoting out an edge (s, t) s.t. s ∈ Vi2, t ∈ Vj, j ∈ I1,

and there is no edge (v, u) ∈ δ(H) s.t. v ∈ H and u ∈ Vr, r ∈ I0 and d(u, τ(Cr))

is odd.

Proof. Pivots (i)-(v) are not trivially infeasible, by Proposition 3.2.5, because d(τ(Ci), i2)

on Ci is odd. By Proposition 3.2.4, it immediately follows that pivots (i), (ii), (iv) and

(v) are non-degenerate. (iii) is also a non-degenerate pivot, because d(τ(Ci), τ(Cj))

on Cij(Vi ∪ Vj, Ei ∪ Ej ∪ (s, t)) is equal to d(τ(Ci), s) on Ci, which is even, plus

d(s, t) = 1 on Ci, plus d(t, τ(Cj)) on Cj, which is even.

First of all, observe that all nodes of H index 0-valued components of x, while all

nodes of Vi2 \H index 1-valued components of x. This is implied by the fact that all

edges of a basic subgraph are nonbasic, therefore 0-valued.
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Consider case (i). In GB′ , Ci has been replaced by the tree components Ci1 and

Ci2, s.t. τ(Ci2) = z. As z /∈ H, all nodes of H index now 1-valued components of

x′, whereas nodes in Vi2 \ H index 0-valued components of x′. Moreover, all slack

variables y′ij are nonnegative, because, by hypothesis, H is a stable set and nodes

of H are only connected to 0-valued nodes of tree components. This proves that

pivot (i) is non-degenerate and feasible, and that all other pivots where (i1, i2) enters

the basis and a node z ∈ Vi2 exits the basis are either degenerate or they yield an

infeasible basis .

Similarly, pivot (ii) (resp. (iii)) can be shown to be the only non-degenerate pivot

leading to a new feasible basis, s.t. (i1, i2) enters the basis an edge (s, t) /∈ Ei with

s ∈ Vi1 and t ∈ Vi2 (resp. (s, t) /∈ Ei with s ∈ Vi2, t ∈ Vj, j ∈ I0) exits the basis.

Consider case (iv). In GB′ , Ci has been replaced by the tree component Ci1 and the

1-tree component C ′i2(Vi2, Ei2 ∪ (s, t)). All nodes of Vi2 index now 1/2-valued compo-

nents of x′. Moreover, all slack variables y′ij are nonnegative because, by hypothesis,

there is no edge connecting a node of H to any 1-valued node of a tree component.

This proves that pivot (iv) is feasible, and that all other pivots where (i1, i2) enters

the basis and an edge (s, t) s.t. s, t ∈ Vi2 exits the basis yield an infeasible basis.

Feasibility of pivot (v) can be proven following the same line of reasoning of case (iv).

Analogously, all other pivots where (i1, i2) enters the basis and an edge (s, t) /∈ Ei

s.t. s ∈ Vi2 and t ∈ Vj, j ∈ I1 exits the basis lead to an infeasible basis.

3.2.3 Pivoting in the nonbasic node of a tree

Consider a connected component Ci(Vi, Ei), i ∈ I0. Suppose we want node z = τ(Ci)

to enter the basis . To construct a basis B′ adjacent to B, we need to remove a variable

from the basis, in order to obtain a subgraph of G(V,E) satisfying the conditions of

Theorem 2.2.2. Again, we consider two different cases.

Pivoting out a basic edge. If the edge to be pivoted out (s, t) /∈ Ei is such that s, t ∈ Vi
and d(s, t) on Ci is even, the new component C ′′i (Vi, Ei∪(s, t)) is a 1-tree with an odd

cycle and the subgraph GB′ , obtained from GB by replacing Ci with C ′′i , satisfies the

conditions of Theorem 2.2.2. Therefore, B′ = B \ (s, t)∪{z} is a basis of FSTAB(G)
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Figure 3.12: Ci(Vi, Ei), i ∈ I0. τ(Ci) enters the basis. z′ ∈ Vi, z′ 6= τ(Ci) exits the
basis.

Figure 3.13: Ci(Vi, Ei), i ∈ I0. τ(Ci) enters the basis. (s, t) /∈ Ei, s.t. s, t ∈ Vi exits
the basis.

associated to GB′ (Fig. 3.12).

If (s, t) is such that s ∈ Vi and t ∈ Vj, j 6= i, pivoting out (s, t) amounts to connecting

Ci to Cj, yielding component Cij(Vi ∪ Vj, Ei ∪Ej ∪ (s, t)). Replacing Ci and Cj with

Cij in GB yields the basic subgraph GB′ , associated to basis B′ = B \ {z} ∪ (s, t)

(Fig. 3.13).

Pivoting out a basic node. In this case, it is possible to pivot out a node z′ ∈ Vi,

z′ 6= z. This implies that, in GB′ , the only nonbasic node of the tree Ci is z′, that is

τ(Ci) = z′ (Fig. 3.14).

Proposition 3.2.7. Given a basis B ∈ B, consider a tree component Ci(Vi, Ei),

i ∈ I0 and its nonbasic node τ(Ci). The following pivots are degenerate:

(i) pivoting in τ(Ci) and pivoting out a node z′ 6= τ(Ci) s.t. d(τ(Ci), z
′) on Ci is

even;
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Figure 3.14: Ci(Vi, Ei), i ∈ I0. τ(Ci) enters the basis. (s, t) /∈ Ei, s.t. s ∈ Vi, t ∈ Vj,
j 6= i exits the basis.

(ii) pivoting in τ(Ci) and pivoting out an edge (s, t) s.t. s ∈ Vi, t ∈ Vj, j 6= i, j ∈ I0

and d(τ(Ci), τ(Cj)) on Cij(Vi ∪ Vj, Ei ∪ Ej ∪ (s, t)) is even.

Proof. (i). In GB′ , Ci is such that its only nonbasic node is now z′. Because

d(τ(Ci), z
′) on Ci is even, we are swapping two 0-valued variables, yielding a de-

generate pivot.

(ii). In this case, components Ci and Cj are replaced in GB with the tree Cij, s.t.

τ(Cij)= τ(Cj). Clearly, variables indexed by nodes of V \ Vi retain their values

in x′. We have to prove that, ∀ v ∈ Vi, d(v, τ(Ci)) on Ci and d(v, τ(Cj)) on Cij

have the same parity. We follow the same reasoning used in proof of Proposition

3.2.4(i). d(s, τ(Ci)) on Ci and d(s, τ(Cj)) on Cij have the same parity because, by

hypothesis, d(τ(Ci), τ(Cj)) on Cij(Vi∪Vj, Ei∪Ej ∪ (s, t)) is even. Therefore, x′s = xs

and consequently x′v = xv ∀ v ∈ Vi.

Given a tree T and a node i ∈ V (T ), define J(i, T ) as the set of nodes of T that are

at even distance from i, i.e. J(i, T ) = {j ∈ V (T ) : d(i, j) on Ti is even}.

Proposition 3.2.8. Given a feasible basis B ∈ B, consider a tree component Ci(Vi, Ei),

i ∈ I0 and suppose that node τ(Ci) enters the basis. Define J = J(τ(Ci)), Ci). The

following pivots are those that are non-degenerate and yield a feasible basis B′ ∈ B:

(i) pivoting in τ(Ci), and pivoting out a node z′ ∈ Vi, s.t. z′ /∈ J , J is a stable set

of G(V,E), and there is no edge (v, u) ∈ δ(J) s.t. v ∈ J and u ∈ Vr, r ∈ I1 or

r ∈ I0 and d(u, τ(Cr)) on Cr is odd;
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(ii) pivoting in τ(Ci), and pivoting out an edge (s, t) s.t. s ∈ Vi, t ∈ Vj, j ∈ I0,

d(t, τ(Cj)) on Cj is even, s ∈ J , J is a stable set of G(V,E), and there is no

edge (v, u) ∈ δ(J) s.t. v ∈ J and u ∈ Vr, r ∈ I1 or r ∈ I0 and d(u, τ(Cr)) on

Cr is odd;

(iii) pivoting in τ(Ci), and pivoting out an edge (s, t) s.t. s, t ∈ Vi, d(s, t) on Ci is

even, and there is no edge (v, u) ∈ δ(J) s.t. v ∈ J and u ∈ Vr, r ∈ I0 and

d(u, τ(Cr)) is odd;

(iv) pivoting in τ(Ci), and pivoting out an edge (s, t) s.t. s ∈ Vi, t ∈ Vj, j ∈ I1, and

there is no edge (v, u) ∈ δ(J) s.t. v ∈ J and u ∈ Vr, r ∈ I0 and d(u, τ(Cr)) is

odd.

Proof. First of all, observe that all nodes of J index 0-valued components of x, while

all nodes of Vi \ J index 1-valued components of x. This is implied by the fact that

all edges of a basic subgraph are nonbasic, therefore 0-valued. By Proposition 3.2.7,

it immediately follows that pivots (i), (iii), and (iv) are non-degenerate. (ii) is also a

non-degenerate pivot, because d(τ(Ci), τ(Cj)) on Cij(Vi ∪Vj, Ei ∪Ej ∪ (s, t)) is equal

to d(τ(Ci), s) on Ci, which is even (s ∈ J), plus d(s, t) = 1 on Ci, plus d(t, τ(Cj)) on

Cj, which is even (by hypothesis).

Consider case (i). In GB′ , Ci is such that its only nonbasic node is now z, that is

τ(Ci) = z. As z′ /∈ J , all nodes of J index now 1-valued components of x′, whereas

nodes in Vi \ J index 0-valued components of x′. Moreover, all slack variables y′ij are

nonnegative, because J is a stable set and nodes of J are only connected to 0-valued

nodes of tree components. This proves that pivot (i) is non-degenerate and feasible

and that all other pivots, where τ(Ci) enters the basis and another node z′ ∈ Vi exits

the basis, are either degenerate or they yield an infeasible basis.

Similarly, pivot (ii) can be shown to be the only non-degenerate pivot leading to a

new feasible basis, s.t. τ(Ci) enters the basis an edge (s, t) /∈ Ei with s ∈ Vi and

t ∈ Vj, j ∈ I0 exits the basis.

Consider case (iii). In GB′ , Ci has been replaced by the 1-tree component C ′′i (Vi, Ei∪
(s, t)). All nodes of Vi index now 1/2-valued components of x′. Moreover, all slack

variables y′ij are nonnegative because, by hypothesis, there is no edge connecting a

node of J to any 1-valued node of a tree component. This proves that pivot (iii) is
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feasible, and that all other pivots, where τ(Ci) enters the basis and an edge (s, t) s.t.

s, t ∈ Vi exits the basis, yield an infeasible basis.

Feasibility of pivot (iv) can be proven following the same line of reasoning of case (iii).

Analogously, all other pivots, where τ(Ci) enters the basis and an edge (s, t) /∈ Ei s.t.

s ∈ Vi and t ∈ Vj, j ∈ I1 exits the basis, lead to an infeasible basis.

Remark 3.2.1. Each of the non-degenerate feasible pivots described in Propositions

3.2.3, 3.2.6 and 3.2.8 transforms a basis B1 associated to vertex x1, into an adja-

cent basis B2 associated to vertex x2 and is such that both GB1 [W ] and GB2 [W ] are

connected, where W = {u ∈ V : x1
u 6= x2

u}.

3.3 Some properties concerning adjacency

Given a connected graph G(V,E), assume it is not bipartite, i.e. it contains an

odd cycle. Then FSTAB(G) admits fractional vertices. In [63], Padberg gave the

following characterization of the fractional vertices of FSTAB(G) that are adjacent

to a given integral vertex. We propose an alternative proof of this result, based on

the graphic characterization of bases and pivots of FSTAB(G), given in Chapter 2

and Section 3.2.

Proposition 3.3.1. (Padberg [63]) Given an integer vertex xI of FSTAB(G), and a

fractional vertex xF , adjacent to xI on FSTAB(G), consider any two adjacent bases

BI and BF , associated to xI and xF , respectively. Then, BF can be written as follows

(after, possibly, permuting some rows and columns):

BF =

 D 0 0

0 G 0

F1 F2 I

 ,
where D has exactly two +1 entries in each row and contains exactly one cyclic

submatrix of odd order.

Proof. By Theorem 2.2.3, any basis BI associated to xI is such that GBI is a spanning

forest of G(V,E). By Propositions 3.2.6 and 3.2.8, the only feasible pivots leading to
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a fractional vertex adjacent to xI are (iv) of Proposition 3.2.6, and (iii) of Proposition

3.2.8. Both these pivots yield a new basis BF associated to a fractional vertex xF ,

such that GBF contains exactly one 1-tree component, say C1. Therefore, by Theorem

2.2.2, BF can be expressed as in (2.5) and (2.6), where B1 is the edge-node incidence

matrix of C1 and B2, . . . , Bk are associated to tree components of BF . Recall that

B1 can be then expressed as in (2.4), implying that BF contains exactly one cyclic

submatrix of odd order.

Proposition 3.3.1 can then be restated as follows.

Lemma 3.3.1. Given an integer vertex xI of FSTAB(G), and a fractional vertex xF ,

adjacent to xI on FSTAB(G), consider any two adjacent bases BI and BF , associated

to xI and xF , respectively. Then, GBF contains exactly one 1-tree component.

A direct consequence of Lemma 3.3.1 is that we are able to characterize integer

vertices adjacent to the solution x∗i = 1
2
, i = 1, . . . , n.

Proposition 3.3.2. Let S ⊆ V be a stable set of G(V,E) and xS be the incidence

vector associated to S. Then xS is adjacent to x∗ on FSTAB(G) if and only if there

exists a spanning tree T of G, such that for each (i, j) ∈ T , i ∈ S, j /∈ S.

Proof. Suppose there exists a spanning tree T of G, such that for each (i, j) ∈ T ,

i ∈ S, j /∈ S. Define C1(V, T ) and τ(C1) = z, where z ∈ V is an arbitrary node such

that z /∈ S. By Theorems 2.2.2 and 2.2.3, BS = (V \ z)∪ (E \T ) is a basis associated

to GBS = C1, whose corresponding basic feasible solution is xS. Because G is not

bipartite, there should exist an edge connecting two nodes i, j /∈ S. Pivoting in z

and pivoting out (i, j) yields basis B∗ = BS \ (i, j) ∪ {z}, whose corresponding basic

graph GB∗ is composed by a single 1-tree component, namely C ′1(V, T ∪ (i, j)). By

Theorem 2.2.3, the basic feasible solution associated to B∗ is x∗.

Suppose now that xS is adjacent to x∗ on FSTAB(G). By Lemma 3.3.1, there exist

two adjacent bases BS and B∗, associated to xS and x∗, respectively, such that GB∗

contains exactly one 1-tree component. Because all components of x∗ are fractional,

by Theorem 2.2.3, it follows that GB∗ consists of a single 1-tree component C1(V,W ).

By Proposition 3.2.3, this implies that there exist an edge (i, j) ∈ κ(C1) to be pivoted

in and a node z /∈ S to be pivoted out, such that BS = B∗ ∪ (i, j) \ {z} is associated
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Figure 3.15: For the given graph G, the stable set formed by black nodes is not
adjacent to x∗ in FSTAB(G)

to xS. Clearly, GBS consists of a single tree component. Because all the edges of GBS

are nonbasic, and therefore 0-valued, it follows that each edge in W \ (i, j) connects

a node in S and a node in V \ S.

Recall that, to solve (STAB), we can assume w.l.o.g. x∗ to be the optimal solution

of (FSTAB). Indeed, if this is not the case, by Theorem 1.7.3, we can fix (0,1)-

valued variables of the optimal solution and reduce the problem to the subgraph of

G induced by 1
2
-valued nodes. Under this assumption, Proposition 3.3.2 establishes

whether the optimal solution of (STAB) is adjacent in FSTAB(G) to x∗, which is

optimal to (FSTAB). Figure 3.15 shows a graph where this is not the case.

We now generalize Proposition 3.3.2 to an arbitrary fractional vertex of FSTAB(G).

We introduce first some preliminary definitions. Given a vector x ∈ {0, 1
2
, 1}|V |, de-

fine F (x) =
{
i ∈ V : xi = 1

2

}
, I(x) = {i ∈ V : xi ∈ {0, 1}}, S(x) = {i ∈ V : xi = 1}.

Given a fractional vertex x̄, denote by G[F (x̄)] the subgraph of G induced by nodes

of F (x̄).

Proposition 3.3.3. Let S ⊆ V be a stable set of G(V,E) and xS be the incidence

vector associated to S. Then xS is adjacent to x̄ on FSTAB(G) if and only if there

exists a spanning tree T of G[F (x̄)], such that for each (i, j) ∈ T , i ∈ S, j /∈ S and

∀ i ∈ I(x̄) xSi = x̄i.

Proof. Suppose there exists a spanning tree T ofG[F (x̄)], such that for each (i, j) ∈ T ,

i ∈ S, j /∈ S and ∀ i ∈ I(x̄) xSi = x̄i. By Theorems 2.2.1 and 2.2.3, any basis of x̄
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is associated to a basic subgraph whose tree and 1-tree components span F (x̄) and

I(x̄), respectively. Consider any basis B̄ associated to x̄ and assume w.l.o.g. that

the first r components C̄1(V1, E1), . . . , C̄r(Vr, Er) of GB̄ are trees. Define Ci = C̄i,

i = 1, . . . , r and Cr+1(F (x̄), T ),with τ(Cr+1) = z, where z ∈ F (x̄) \ S. By Theorems

2.2.2 and 2.2.3,

BS =

(
V \

r+1⋃
i=1

τ(Ci)

)
∪

(
E \

(
r⋃
i=1

Ei ∪ T

))

is a basis associated to xS, whose corresponding basic subgraph GBS consists of

components C1, . . . , Cr+1. Because x̄ is a vertex of FSTAB(G), the subgraph of

G induced by F (x̄) is not bipartite. Hence, there should exist an edge connecting

two nodes i, j ∈ (F (x̄) \ S). Pivoting in z and pivoting out (i, j) yields basis B̂ =

BS \(i, j)∪{z}, whose basic graph GB̂ is composed by the trees Ĉi = Ci, i = 1, . . . , r,

plus a single 1-tree component, namely Ĉr+1(F (x̄), T ∪ (i, j)). By Theorem 2.2.3, the

basic feasible solution associated to B̂ is x̄, i.e. B̂ is a degenerate basis associated to

x̄ adjacent to BS.

Suppose now that xS is adjacent to x̄ on FSTAB(G). By Lemma 3.3.1, there exist

two adjacent bases BS and B̄, associated to xS and x̄, respectively, such that GB̄

contains r tree components C̄1, . . . , C̄r, and one 1-tree component C̄r+1(F (x̄),W ).

By Proposition 3.2.3, this implies that there exist an edge (i, j) ∈ κ(C̄r+1) to be

pivoted in and a node z ∈ F (x̄) \S to be pivoted out, such that BS = B̄ ∪ (i, j) \ {z}
is associated to xS. Clearly, GBS consists of tree components Ci = C̄i, i = 1, . . . , r

and Cr+1(F (x̄),W \ (i, j)). Because all the edges of GBS are nonbasic, and therefore

0-valued, it follows that each edge in W \ (i, j) connects a node in S and a node in

V \ S.

It is natural to ask whether all integer vertices of FSTAB(G) are adjacent to some

fractional vertex of FSTAB(G). We next present a necessary and sufficient condition

for an integer vertex to be adjacent to a fractional one.

Proposition 3.3.4. Let S ⊆ V be a stable set of G(V,E) and xS be the incidence

vector associated to S. Then xS is adjacent to a fractional vertex of FSTAB(G) if

and only if there exists an odd cycle of G with at most two consecutive nodes belonging

to V \ S.
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Proof. Suppose that there exists an odd cycle κ of G with at most two consecutive

nodes u and v belonging to V \ S. Then, there exists a basis B of xS such that

all nodes of κ and all edges of κ but (u, v) belong to a tree component Ci of GB.

Assume w.l.o.g. that nodes in V (Ci) \ S are connected in G only to nodes of other

trees which belong to V \S. (If this is not the case, i.e. if i is a node of Ci belonging

to V \S, connected in G to another tree Cj through a node j ∈ S, pivoting out (i, j)

and pivoting in τ(Ci) results in a degenerate pivot.) Then, pivoting out (u, v) and

pivoting in τ(Ci) yields a fractional vertex such that all nodes of Ci are 1
2
-valued.

If, conversely, xS is adjacent to the fractional vertex x̄, then, by Proposition 3.3.3

there exists a spanning tree T of G[F (x̄)], such that for each (i, j) ∈ T , i ∈ S and

j /∈ S. Recalling that G[F (x̄)] is not bipartite, it follows that there exist two nodes

u, v ∈ F (x̄) such that (u, v) ∈ E. Therefore T ∪ (u, v) contains an odd cycle with

only two consecutive nodes in V \ S.

By Proposition 3.3.4, an integer vertex may not be adjacent to any fractional vertex.

An example is shown in Fig. 3.16. The converse is also not necessarily true, as we

show in the next Proposition. We first introduce an algorithm to determine a suitable

spanning tree of a connected graph G(V,E).

Algorithm 3.3.1. Initialization: Given a node v ∈ V , set S0 = {v}, S̄0 = ∅ and

T 0 = ∅.

1. If Sk ∪ S̄k = V , stop. H(V, T k) is a spanning tree of G. Otherwise, go to 2.

2. Choose a node v ∈ V \ (Sk ∪ S̄k) adjacent to a node u ∈ Sk ∪ S̄k.

3. If v ∈ N(Sk), set Sk+1 = Sk and S̄k+1 = S̄k ∪ {v}, and T k+1 = T k ∪ (u, v). Go

to 1.

4. If v ∈ N(S̄k), set Sk+1 = Sk ∪ {v}, S̄k+1 = S̄k, and T k+1 = T k ∪ (u, v). Go to

1.

Lemma 3.3.2. Let G(V,E) be a connected graph. Given v ∈ V , there exists a stable

set S ⊆ V with v ∈ S, and a spanning tree T ⊆ E, such that ∀ (i, j) ∈ T, i ∈ S, j ∈
V \ S.

Proof. Apply Algorithm 3.3.1 setting S0 = {v}. At each iteration k we add to the

current tree T k an edge (u,w) ∈ δ(Sk ∪ S̄k). Therefore, T k+1 is connected and
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Figure 3.16: The stable set formed by black nodes is not adjacent to any fractional
vertex of FSTAB(G)

acyclic. At termination, a spanning tree is returned (G is connected). Note that, by

construction, each node that is added to Sk is not adjacent to any other node in Sk,

proving that Sk is a stable set. Finally, each edge (u,w) that is added to T k connects

a node of Sk to a node in S̄k.

Proposition 3.3.5. Let x̄ be a vertex of FSTAB(G). Then there exists an integer

vertex xS of FSTAB(G) adjacent to x̄ if and only if G[F (x̄)] is connected.

Proof. Suppose that G[F (x̄)] is connected and observe that nodes of F (x̄) are only

adjacent to 0-valued nodes of I(x̄). We can apply Lemma 3.3.2 to construct, in

G[F (x̄)], a tree T associated to a stable set P . The subgraph C(F (x̄), T ), with

τ(C) = z such that z /∈ P , defines a tree component that, together with GB̄[I(x̄)]

forms a basic subgraph of

xSj =


1 j ∈ F (x̄) ∩ P
0 j ∈ F (x̄) \ P
x̄j j ∈ I(x̄),

where S = P ∪ I(x̄) is a stable set of G, and xS is the associated incidence vector.

The converse is immediately implied by Proposition 3.3.3.

We now prove that, from any vertex, we can reach x∗ along a path on FSTAB(G)

of length at most |V |.
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Theorem 3.3.1. Let x be a basic feasible solution to (FSTAB) associated with the

basis B. There exists a sequence of adjacent bases BI0, BI1, . . . , BIp such that BI0 =

B, BIp = B∗ is a basis associated with x∗, and

(i) the basic solutions xIi = B−1
Ii 1, i = 0, 1, . . . , p, are all feasible and such that

I(xI0) ⊇ I(xI1) ⊇ · · · ⊇ I(xIp) = ∅;

(ii) p is the number of nonbasic nodes in B, that is equal to the number of tree

components of GB.

Proof. The proof is constructive. Assume w.l.o.g. that G is connected (if not, apply

the following reasoning to each connected component of G).

If some nodes of G are 1
2
-valued in x, GBI0 contains p tree components CI0

i (V I0
i , EI0

i ),

i = 1, . . . , p and q 1-tree components CI0
i (V I0

i , EI0
i ), i = p + 1, . . . , p + q. First,

perform d degenerate pivots, in order to merge progressively any two tree components

connected by an edge with 0-valued slack (pivot (ii) of Proposition 3.2.7). Basis BId

is such that the subgraph GBId consists of p′ = p − d tree components and there

are no 0-valued edges connecting them. Recall that G is connected. Therefore, it is

possible to progressively merge each tree component to some 1-tree through pivots

(iv) of Proposition 3.2.8. Observe that feasibility is preserved at each step, because

nodes increasing their values from 0 to 1
2

can only be connected to 0-valued nodes of

other tree components, or to nodes of the same tree, that simultaneously switch their

values to 1
2
. After p′ pivots, we get a basis BIp, such that GBIp is composed only by

1-tree components. Therefore B∗ = BIp is a basis associated to x∗.

If, conversely, all nodes of G are integer valued in x, consider the p tree components

CI0
i (V I0

i , EI0
i ), i = 1, . . . , p of forest GBI0 . First, perform d degenerate pivots, in order

to merge progressively any two tree components connected by an edge with 0-valued

slack (pivot (ii) of Proposition 3.2.7). Basis BId is such that the forest GBId consists

of p′ = p−d connected components and there are no 0-valued edges connecting them.

If for some k ∈ {1, . . . , p′} there exist two nodes u, v ∈ V Id
k such that xIdu = xIdv = 0,

CId
k contains an odd cycle. Then we can perform a pivot that leads to basis BI(d+1) =

BId \ (u, v) ∪ τ(CId
k ) (pivot (iii) of Proposition 3.2.8). The associated basic feasible

solution is:

x
I(d+1)
j =

{
1
2

j ∈ V Id
k

xIdj otherwise
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Note that xI(d+1) is feasible, because none of the 0-valued nodes of V Id
k was connected

to a 1-valued node of another tree component. Because G is connected, we can

progressively enlarge the 1-tree component by merging it, at each iteration, with

a tree component of the current basic graph. At each step, the nonbasic node of

a tree component enters the basis, and a 1-valued edge connecting the tree to the

current 1-tree exits the basis (pivot (iv) of Proposition 3.2.8). The corresponding

pivot operations are p′ − 1. Therefore, after d+ 1 + (p′ − 1) = p pivots, we obtain a

basis consisting of a single 1-tree, associated to x∗. Moreover, at each step we get a

basic feasible solution satisfying (i).

If for all k ∈ {1, . . . , p′} there do not exist two nodes u, v ∈ V Id
k such that xIdu = xIdv =

0, V Id
k induces a bipartite subgraph of G. Therefore, any odd cycle of G contains

at least three consecutive nodes which do not belong to S. Then, by Proposition

3.3.4, xI is not adjacent to any fractional vertex. We can then perform q − d pivots,

in order to obtain a basis BIq associated to an integer solution xIq, that is adjacent

to a fractional vertex. Precisely, we can merge two tree components, say CId
1 and

CId
2 , through a 1-valued edge (u1, u2), with u1 ∈ V Id

1 and u2 ∈ V Id
2 , which exits the

basis. Suppose we pivot in τ(CId
1 ). The new basis BI(d+1) = BId \ (u1, u2)∪ τ(CId

1 ) is

associated to the basic feasible solution:

x
I(d+1)
j =

{
1− xIdj j ∈ V Id

1

xIdj otherwise

Note that xI(d+1) is feasible, because nodes increasing their values from 0 to 1 can

only be connected to 0-valued nodes of other tree components, or to nodes of the

same tree, that simultaneously switch their values to 0.

Let d0 = d. If GBI(d
0+1) has some 0-valued edges connecting its tree components,

we can merge them by performing d1 degenerate pivots, in order to obtain a basis

BI(d0+1+d1) associated to xI(d
0+1+d1) = xI(d

0+1), with the smallest number of connected

components in its corresponding basic subgraph. We can repeat this procedure t

times, until at step q = d0 + t +
∑t

i=1 d
i, one of the p − q trees of GBIq , say CIq

k ,

has two nodes u, v ∈ V Iq
k such that xIqu = xIqv = 0. Note that this must happen if

q = p−1, because G is not bipartite. Pivoting in τ(CIq
k ) and pivoting out (u, v) leads
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to basis BI(q+1), which is associated to the fractional basic feasible solution:

x
I(q+1)
j =

{
1
2

j ∈ V Iq
k

xIqj otherwise

Finally, merging the remaining p − (q + 1) tree components to the current 1-tree,

yields basis BIp, which consists of a single 1-tree component and is associated to x∗.

This proves both (i) and (ii). An example of the constructive procedure used in the

proof is shown in Figure 3.17.

Corollary 3.3.1. Let x be a vertex of FSTAB(G). There exists a path from x to

x∗ along edges of FSTAB(G) of length at most p, where p is the number of nonbasic

nodes of a basis B of x.

3.4 Vertex adjacency

In this section, we generalize Chvátal’s graphic characterization of integer vertices

which are adjacent in FSTAB(G) (see Theorem 3.1.4), to arbitrary vertices of

FSTAB(G).

Let us first introduce some preliminary notation. Given two vertices x1 and x2 of

FSTAB(G), we define the generalized symmetric difference x1 ⊗ x2 = {u ∈ V : x1
i 6=

x2
i }. Define also V ij = {u ∈ V : x1

u = i, x2
u = j}, where i, j ∈ {0, 1

2
, 1}.

Theorem 3.4.1. Given a graph G(V,E), let (x1, y1) and (x2, y2) be vertices of

FSTAB(G). Let V ⊗ = x1 ⊗ x2 and E⊗ = {(i, j) ∈ E : i, j ∈ V ⊗, y1
ij = y2

ij = 0}.
Then (x1, y1) and (x2, y2) are adjacent in FSTAB(G) if and only if G⊗(V ⊗, E⊗) is

a connected (bipartite) subgraph of G.

Proof. First, let us prove that if G⊗(V ⊗, E⊗) is connected, (x1, y1) and (x2, y2) are

adjacent in FSTAB(G). Remark that E⊗ contains only edges (u, v) ∈ E such that:

(i) u ∈ V 01 and v ∈ V 01;

(ii) u ∈ V 0 1
2 and v ∈ V 1 1

2 ;

(iii) u ∈ V 1
2

0 and v ∈ V 1
2

1.
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(i) (ii)

(iii) (iv)

(v) (vi)

Figure 3.17: It is possible to reach x∗ from the integer solution represented in (i) in
p = 5 pivots. The first step consists in a degenerate pivot (ii). The second step leads
to a new integer basic feasible solution (iii). Another degenerate pivot is performed
in (iv). In (v) we move to an adjacent fractional vertex and finally, in (vi), to x∗.
Remark that the length of the path to x∗ is 3 < p, because we have performed two
degenerate pivots.
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We claim that, if G⊗ is connected, then either V ⊗ = V 01 ∪ V 10 and edges of E⊗ are

of type (i), or V ⊗ = V 0 1
2 ∪ V 1 1

2 and edges of E⊗ are of type (ii), or V ⊗ = V
1
2

0 ∪ V 1
2

1

and edges of E⊗ are of type (iii). By contradiction, suppose that G⊗ is connected,

V
1
2

0 ∪ V 1
2

1 = ∅, and that V ⊗ contains u ∈ V 10 ∪ V 01 and v ∈ V 0 1
2 ∪ V 1 1

2 . Then, any

path connecting u and v should traverse an edge (s, t) such that s ∈ V 10 and t ∈ V 0 1
2 ,

contradicting the fact that y2
st = 0. If V 0 1

2 ∪V 1 1
2 = ∅, and V ⊗ contains u ∈ V 10∪V 01

and v ∈ V 1
2

0 ∪ V 1
2

1, any path connecting u and v traverses an edge (s, t) such that

s ∈ V 01 and t ∈ V 1
2

0, contradicting the fact that y1
st = 0. Finally, if V 01 ∪ V 10 = ∅,

and V ⊗ contains u ∈ V 0 1
2 ∪ V 1 1

2 and v ∈ V 1
2

0 ∪ V 1
2

1, any path connecting u and v

traverses an edge (s, t) such that s ∈ V 0 1
2 and t ∈ V 1

2
0, contradicting the fact that

y1
st = y2

st = 0.

Suppose now that G⊗ has only edges of type (i). Note that for any basis B1 associated

to x1, in GB1 the only edges connecting a node u ∈ V ⊗ to a node v ∈ V \V ⊗ are such

that u ∈ V 10 and v ∈ V 00. If V ⊗ = {u}, in GB1 there exists exactly one edge (u, v)

belonging to the cutset (V ⊗, V \V ⊗), as G by assumption does not contain singletons.

By pivoting in (u, v) and pivoting out u yields an adjacent basis associated to x2.

This proves that x1 and x2 are adjacent on FSTAB(G).

If |V ⊗| > 1, we define a new basis B̄1 for x1, and a pivot operation to a a basis of x2.

Denote by E(GB1) the edge set of the basic subgraph GB1 and define

Ē =
(
E(GB1) ∩ Γ(V \ V ⊗)

)
∪ T,

where T is a spanning tree of G⊗(V ⊗, E⊗).

We essentially break any tree component Ci(Vi, Ei) of GB1 which contains both nodes

of V ⊗ and of V \ V ⊗, by removing the edges (ui, vi) with ui ∈ V ⊗ and vi ∈ V \ V ⊗.

For each tree component that is generated, we can set vi as its nonbasic node. Then,

we replace GB1 [V ⊗] with the tree C⊗(V ⊗, T ), and we set τ(C⊗) = z, with z ∈ V 01

(observe that such a node exists, because |V ⊗| > 1). This defines a basic subgraph

GB̄1 satisfying the conditions of Theorem 2.2.2. Pivoting in z and pivoting out a

node z′ ∈ V 10 yields the adjacent basis B2 = B̄1 \ {z′} ∪ {z} associated to x2. This

proves that x1 and x2 are adjacent on FSTAB(G).

Suppose thatG⊗ has only edges of type (ii). Assume w.l.o.g. that the integral support

of x1 contains that of x2 (I(x1) ⊃ I(x2)). Note that for any basis B1 associated to
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x1, in GB1 the only edges (u, v) in the cutset of (V ⊗, V \V ⊗) connect a node u ∈ V 1 1
2

to a node v ∈ V 00. We claim that, if V ⊗ = {u}, then u ∈ V 0 1
2 . In fact, suppose by

contradiction that u ∈ V 1 1
2 . By feasibility of x1, it follows that u is not connected to

any node in V
1
2

1
2 . This contradicts the fact that x2 is a vertex, because x2

u = 1
2

and u

cannot be included in a 1-tree with the other 1
2
-valued nodes of x2. This proves that

u ∈ V 0 1
2 . Then, in GB1 there exists exactly one edge (u, v) in the cutset (V ⊗, V \V ⊗),

as G by assumption does not contain singletons. Moreover, for any basis B2 of x2, in

GB2 u is connected to a node w ∈ V 1
2

1
2 . By pivoting in (u, v) and pivoting out (u,w),

we obtain a basis B2 associated to x2. This proves that x1 and x2 are adjacent on

FSTAB(G).

If |V ⊗| > 1, we define a new basis B̄1 for x1, and a pivot operation to a a basis of x2.

Define

Ē =
(
E(GB1) ∩ Γ(V \ V ⊗)

)
∪ T,

where T is a spanning tree of G⊗(V ⊗, E⊗). Again, we remove from any tree Ci(Vi, Ei)

ofGB1 the edges (ui, vi) with ui ∈ V ⊗ and vi ∈ V \V ⊗, if any. For each tree component

that is generated, we can set vi as its nonbasic node. Then, we replace GB1 [V ⊗] with

the tree C⊗(V ⊗, T⊗), and we set τ(C⊗) = z, with z ∈ V 0 1
2 (observe that such a

node exists, because |V ⊗| > 1). This defines a basic subgraph GB̄1 satisfying the

conditions of Theorem 2.2.2. If G[V ⊗] is not bipartite, there exists an edge (u, t)

with u, t ∈ V 0 1
2 . By pivoting in z and pivoting out (u, t), we get a basis associated to

x2. If, conversely, G[V ⊗] is bipartite, there exists an edge (u,w) with u ∈ V 0 1
2 and

w ∈ V 1
2

1
2 . By pivoting in z and pivoting out (u,w), we obtain a basis associated to

x2. This proves that x1 and x2 are adjacent on FSTAB(G).

Finally, the case where G has only edges of type (iii) is symmetrical to case (ii).

To prove the converse, i.e. that if (x1, y1) and (x2, y2) are adjacent in FSTAB(G) then

G⊗(V ⊗, E⊗) is connected, suppose that B1 and B2 are adjacent bases of FSTAB(G)

associated to (x1, y1) and (x2, y2), respectively. Recall that all the pivots described

in Section 3.2 modify x in one of the following ways:

(i) swap the zeros and ones of x on a subset of nodes;

(ii) assign integer values to a subset of fractional components of x;

(iii) assign fractional values to a subset of integer components of x.
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Moreover, by Remark 3.2.1, nodes in V ⊗ induce connected subgraphs both of GB1

and of GB2 . Therefore, G⊗ is connected.

Remark 3.4.1. Suppose that G consists of k connected components G1, . . . , Gk and

consider FSTAB(Gi), i = 1, . . . , k. Observe that FSTAB(G) = FSTAB(G1)×· · ·×
FSTAB(Gk). Given two vertices x and y of FSTAB(G), express them according to

the above decomposition as

x =


x1

...

xk

 , y =


y1

...

yk

 ,

where xi, yi ∈ FSTAB(Gi), i = 1, . . . , k. Then, x and y are adjacent on FSTAB(G)

if and only if xj and yj are adjacent on FSTAB(Gj) for some j ∈ {1, . . . , k} and

xi = yi ∀ i 6= j.

3.5 The diameter of the Fractional Stable Set Poly-

tope

In this section we prove that the Hirsch conjecture is true for FSTAB(G). The Hirsch

Conjecture (1957) stated that a d-dimensional polytope with f facets cannot have

(combinatorial) diameter greater than f−d, i.e. any two vertices of the polytope can

be connected to each other by a path of at most f−d edges. The conjecture was first

disproven for unbounded polyhedra [50], then recently also for bounded ones [67]; it

was instead proven to be true for (0, 1)-polytopes [58]. In our case f − d = m.

In the following, we first assume G to be connected and we next generalize our

results to graphs composed by several connected components. To prove that the

Hirsch conjecture is true for FSTAB(G), we have to show that the combinatorial

diameter of FSTAB(G) is at most |E| = m. In other words, we have to prove that

from an arbitrary vertex xA of FSTAB(G), it is possible to reach any other vertex

xZ through a sequence of solutions {xt}t=1,...,T , such that xt is a basic feasible solution

of FSTAB(G) for all t = 1, . . . , T , xT = xZ and T ≤ m. Basically, at each step the

current vertex is transformed into an adjacent one. Observe that V 01, V 10, V
1
2

1, V 1 1
2



62 Chapter 3. Vertex Adjacency and the Hirsch Conjecture

1→ 1

1
2
→ 1

1→ 1
2

0→ 1

1→ 0

0→ 0

1
2
→ 0

1
2
→ 1

2

0→ 1
2

Figure 3.18: Potential connections in G are represented, according to the the partition
of V into sets V ij, i, j ∈ {0, 1

2
, 1}. Sets included in a square are stable sets, while there

can be connections between nodes belonging to the sets represented inside circles.

and V 11 are stable sets, because their nodes are 1-valued either in xA or in xZ . Note

also that there is no edge of G connecting V ij and V hk, if i+ h > 1 or j + k > 1. In

Figure 3.18 we represent all potential connections in G, according to the the partition

of V into sets V ij, i, j ∈ {0, 1
2
, 1}. Sets included in a square are stable sets, while there

can be connections between nodes belonging to the sets represented inside circles.

To guarantee feasibility, we establish precedence relations among transformations

involving nodes of V ij, i, j ∈ {0, 1
2
, 1}. In Figure 3.19, each arrow goes from a set V ij

to a set V hk, where i + k > 1. The directed arc (V ij, V hk) indicates that, for each

(u, v) ∈ E with u ∈ V ij and v ∈ V hk, if xtv = k, then xtu = j. In other words, the

value of xv should not be set to k before that the value of xu is set to j. To guarantee

that each feasible solution xt is a vertex, we show that it admits an underlying basic

subgraph. If xt is integer, this is trivially true: the incidence vector of every stable

set is a vertex of FSTAB(G). If xt is fractional, we need to define a basic subgraph

of G associated to xt, where all fractional nodes belong to 1-tree components.

Let us first introduce some intermediate results.

Lemma 3.5.1. Let G(V,E) be a graph and x be a vertex of FSTAB(G). Then each

node indexing a 1
2
-valued component of x is connected in G to another node indexing

a 1
2
-valued component of x.

Proof. By contradiction, assume that there is a node v ∈ V such that xv = 1
2

and
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1
2
→ 1

1→ 1
2

0→ 1

1→ 0

1→ 1

0→ 1
2

1
2
→ 0

0→ 0 1
2
→ 1

2

Figure 3.19: Precedence relations among transformations involving nodes of V ij i, j ∈
{0, 1

2
, 1}. Each arrow goes from a set V ij to a set V hk, where i+ k > 1.

each edge (u, v) ∈ E is such that xu ∈ {0, 1}. Then, in any basic subgraph associated

to x, v does not belong to any 1-tree component, which contradicts the hypothesis

that x is a basic feasible solution of FSTAB(G).

Lemma 3.5.2. Given a connected graph G(V,E), let x1 be a vertex of FSTAB(G)

and x2 ∈ {0, 1
2
, 1}|V |. Given a partition of V into (T, V \ T ), let

x1 =

(
x1
T

x1
V \T

)
, x2 =

(
x2
T

x2
V \T

)
,

and suppose that:

(i) x1
V \T = x2

V \T ;

(ii) G[T ] does not contain singletons and x2
T is a vertex of FSTAB(G[T ]);

(iii) x1
i = 0 ∀ i ∈ N(T ).

Then, x2 is a vertex of FSTAB(G).

Proof. (ii) and (iii) imply that x2 is feasible for FSTAB(G). To prove that x2 is

a vertex, we show that it admits an underlying basic subgraph. Let B1 and B̄2

be the bases associated to x1 and x2
T , respectively, and denote by GB1 and GB̄2

the corresponding basic subgraphs. Note that FSTAB(G[T ]) is well defined, as
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G[T ] does not contain singletons, and recall that x2
T is a vertex of FSTAB(G[T ]),

implying that GB̄2
is defined only on nodes of T . To define a basis B2 associated to

x2, we will conveniently append to the basic subgraph GB̄2
some extra tree and 1-tree

components defined on the nodes of V \ T , in such a way to obtain a basic subgraph

GB2 spanning all the node set V . Precisely, we will prove that the spanning subgraph

GB2 = GB1 [V \ T ] ∪GB̄2

is a basic subgraph associated to x2. To this purpose, we first show that all nodes

that are 1
2
-valued in x2 belong to a 1-tree of GB2 , and then that each tree component

of GB2 has a nonbasic node.

(iii) implies that each edge in the cutset defined by the partition (T, V \ T ) is 0-

valued if and only if it connects a 1-valued node of T to a 0-valued node of V \ T .

This observation is valid for both x1 and x2 as, by (i), they coincide on V \ T . As

a consequence, each 1-tree of GB1 is such that all its nodes belong either to T or to

V \ T . Therefore, in GB1 [V \ T ], all nodes that are 1
2
-valued in x2 belong to a 1-tree.

Moreover, nodes of T that are 1
2
-valued in x2 also define 1-tree components, because

GB̄2
is a basic subgraph associated to x2

T .

Consider now a tree component of GB2 . By construction, it belongs either to GB̄2
or

to GB1 [V \ T ]. In the first case, the tree clearly has a nonbasic node, because GB̄2

is a basic subgraph. In the second case, we have to show that no tree of GB1 [V \ T ]

is a singleton that is 1-valued in x2. This follows from the fact that G is connected,

implying that each 1-valued node of V \ T must be connected to a 0-valued node of

V \ T with respect to both solutions x1 and x2 (in fact, nodes in N(T ) are 0-valued,

therefore 1-valued nodes in V \ T are not adjacent to nodes in T ). This implies that

GB2 satisfies the conditions of Theorem 2.2.2, proving that x2 is a vertex.

Theorem 3.5.1. Let G(V,E) be a connected graph. Then, the combinatorial diam-

eter of FSTAB(G) is at most |V | = n.

Proof. We will show that it is possible to go from an arbitrary vertex xA of FSTAB(G)

to another vertex xZ traversing at most n edges of FSTAB(G). To this purpose,

we perform four blocks of transitions, each block consisting in a sequence of adjacent

vertices of FSTAB(G).
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1→ 1

1
2
→ 1

1→ 1
2

0→ 1

1→0

0→ 0

1
2
→ 0

1
2
→ 1

2

0→ 1
2

Figure 3.20: The first block of transitions yields vertex xB.

In the first block of transitions we switch to zero, one by one, nodes of V 10. Clearly

no precedence relation is violated (see Fig. 3.19), implying that each point of the

sequence xA = v0, . . . , v|V
10| = xB is feasible. We also need to show that each point

of the sequence is a basic solution. Define W = V
1
2

1 ∪ V 1
2

0 ∪ V 1
2

1
2 . First, for each

point vk, with k = 1, . . . , |V 10|, we can construct a suitable spanning forest of rooted

trees in G[V \ W ]. This can always be done, because it cannot be the case that

we have singletons that should be 1-valued in xA, and therefore in vk. To define a

basic subgraph for every point of the sequence, we can then complete such forest

with the 1-trees of a basic subgraph associated to xA, that span the nodes of W .

This proves that v1, . . . , v|V
10| are vertices of FSTAB(G). By Theorem 3.4.1, all

consecutive points of the above sequence are adjacent. Finally, we obtain a basic

graph associated to

xBj =

{
0 j ∈ V 10,

xAj j ∈ V \ V 10,

j ∈ V (see Fig. 3.20).

In the second block of transitions we change the values of nodes of V 1 1
2 ∪ V 0 1

2 . In

order to respect the precedence relations illustrated in Fig. 3.19 and preserve fea-

sibility, whenever a node of V 0 1
2 is adjacent to a node of V 1 1

2 we change their val-

ues simultaneously, keeping tight the corresponding edge constraint. Define Y =

V 0 1
2 ∪ V 1 1

2 ∪ V 1
2

1
2 ∪ V 1

2
0 ∪ V 1

2
1 and partition xB accordingly. Consider the vector

xCj =

{
1
2

j ∈ Y,
xBj j ∈ V \ Y,
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1→ 1

0→ 1

1→0

1
2
→ 1

1→1
2

0→ 0

1
2
→ 0

1
2
→ 1

2

0→1
2

Figure 3.21: The second block of transitions yields vertex xC .

j ∈ V . By Corollary 3.3.1, we can generate in G[Y ] a sequence xBY = y0, . . . , yp = xCY
of adjacent vertices of FSTAB(G[Y ]), where p is the number of nonbasic nodes of

a basis associated to xBY , implying p ≤ |V 0 1
2 |. We can then lift all the points of

such sequence to vertices of FSTAB(G) by setting ykV \Y = xBV \Y , k = 0, . . . , p. We

next show that the consecutive points of this lifted sequence satisfy the hypothesis

of Lemma 3.5.2. Indeed, they all coincide on V \ Y and, by Lemma 3.5.1 G[Y ] does

not contain singletons. Moreover, ykj = 0 for all j ∈ N(Y ) and k = 0, . . . , p (see Fig.

3.18). The lifted sequence defines a path of length at most |V 0 1
2 | from xB to xC ,

along edges of FSTAB(G) (see Fig. 3.21).

In the third block of transitions we change the values of nodes in V
1
2

1 ∪ V 1
2

0. As

before, to preserve feasibility we respect the precedence relations illustrated in Fig.

3.19: whenever a node of V
1
2

1 is adjacent to a node of V
1
2

0 we change their values

simultaneously, and keep tight the corresponding edge constraint. We want to define

a path from xC to

xDj =

{
xZ j ∈ Y,
xCj j ∈ V \ Y,

j ∈ V . Again, we can apply Corollary 3.3.1 to generate a sequence xCY = z0, . . . , zq =

xDY of adjacent vertices of FSTAB(G[Y ]), where q ≤ |V 1
2

0|, and we can lift the points

of such sequence to vertices of FSTAB(G) by setting zkV \Y = xCV \Y , k = 0, . . . , q (Fig.

3.22).

Finally, in the last block of transitions, we switch to one, in succession, nodes of

V 01, obtaining the sequence xD = u0, . . . , u|V
01| = xZ . In doing so, we do not violate
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1→ 1

0→ 1

1→0

1→1
2

1
2
→1

0→ 0 1
2
→ 1

2

0→1
2

1
2
→0

Figure 3.22: The third block of transitions yields vertex xC .

1→ 1

1→0

1
2
→1

1→1
2

0→1

0→ 0

1
2
→0

1
2
→ 1

2

0→1
2

Figure 3.23: The fourth block of transitions yields vertex xD.

any precedence relation, because all nodes of V 10 and V
1
2

0 have already been set to

zero. Each intermediate point of this sequence is a vertex, as we can define a basic

subgraph associated to it. To this purpose, define Z = V 1 1
2 ∪ V 0 1

2 ∪ V 1
2

1
2 . First,

for each point uk, with k = 1, . . . , |V 01|, we can construct a suitable spanning forest

of rooted trees in G[V \ Z]. This is possible because xZ is a vertex, implying that

in G[V \ Z] there are no singletons that are 1-valued in uk. Then, to define a basic

subgraph for every point of the sequence, we complete such forest with the 1-trees of a

basic subgraph associated to xZ , spanning this way also the nodes of Z. By Theorem

3.4.1, all consecutive points of the above sequence are adjacent. An illustration is

given in Fig. 3.23.

Summing up the lengths of the sequences defined above, we obtain

|V 10|+ p+ q + |V 01| ≤ |V 10|+ |V 0 1
2 |+ |V

1
2

0|+ |V 01| ≤ n,



68 Chapter 3. Vertex Adjacency and the Hirsch Conjecture

which proves the theorem.

Corollary 3.5.1. Let G(V,E) be a graph. The combinatorial diameter of FSTAB(G)

is at most min{n,m}, where n = |V | and m = |E|.

Proof. For each bipartite component Gi of G, FSTAB(Gi) is a (0,1)-polytope, and

its combinatorial diameter is at most min{mi, ni}, where mi and ni are the number

of edges and nodes of Gi, respectively [58]. For each connected non-bipartite compo-

nent Gj of G apply Theorem 3.5.1 to FSTAB(Gj). The claim directly follows from

Remark 3.4.1.

Corollary 3.5.2. The Hirsch conjecture is true for FSTAB(G).

3.6 A simplex-like algorithm for the Stable Set

Problem

In this section we propose an algorithm for the stable set problem, which exploits the

characterization of adjacency given in the previous sections.

Balas and Padberg [7, 8, 9] developed a column generating primal simplex algorithm

for the set partitioning problem, which is a generalization of the set packing problem

(SP). The algorithm produces a sequence of integer solutions converging to an optimal

solution of the problem and is based on the characterization of adjacency defined in

Theorems 3.1.1 and 3.1.2: starting from an integral basic feasible solution, there exists

a sequence of pivots leading to an integer optimum, such that all of the intermediate

solutions are integral, the reduced costs of the pivot columns are positive, and the

number of pivots equals the number of nonbasic variables in the initial solution that

are 1-valued in the specified integer optimum. A Balas-Padberg pivot may have a

pivot element with negative sign. Precisely, the algorithm performs non-degenerate

primal simplex pivots on +1 entries as long as this is possible. When this cannot be

continued, degenerate pivots are performed on positive or negative entries, as long as

they decrease total dual infeasibility. When neither type of pivoting can be continued,

a column generating procedure is used to produce a composite column defining an

edge of LSP which connects the current vertex to a better one, or to establish the

absence of any improving vertex.
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Ikura and Nemhauser [48], showed that there exists a sequence of simplex pivots

from an arbitrary integer vertex of FSTAB(G) to the optimal one, such that each

pivot column has positive reduced weight and each pivot element equals +1. The

number of the pivots of this sequence corresponds to the number of nonbasic nodes

in a basis of the starting solution, which are 1-valued in the optimal solution. The

pivot sequence is defined constructively and it requires the knowledge of an optimal

solution.

Again Ikura and Nemhauser developed an efficient primal “simplex-like” algorithm

based on a graphical interpretation of pivots for solving (FSTAB) on bipartite graphs

[47]. For the cardinality problem, their method has a number of pivots which is

bounded by n2, while the running time is O(n4), with n = |V |. For general integer

weights a scaling technique is used and the bounds are increased by a factor equal to

the logarithm of the largest weight.

Armstrong and Jin [4] gave later an algorithm to solve the weighted vertex packing

problem on a bipartite graph via strong spanning trees. The strong spanning tree

structure makes their algorithm pseudo-polynomial and improves the complexity of

Ikura and Nemhauser’s algorithm.

In this section we propose a primal “simplex-like” algorithm based on a graphical

interpretation of simplex pivots for connected non-bipartite graphs. The algorithm

explores integer solutions, starting from the empty solution, and tries to augment

the current stable set at each iteration. Clearly, the basis associated to the starting

solution is composed by |V | singletons. Moreover, as we refrain from pivoting to

fractional solutions, i.e. we preserve integrality at each step, for all solutions of the

sequence, the associated basic subgraph is composed only by trees.

Next, we outline our “simplex-like” algorithm.

3.6.1 Reduced costs

We define reduced costs of a basic integer solution according to [47].

Given B ∈ B, and one of its tree components Ci(Vi, Ei), we define W (Ci) = {j ∈
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Vi : d(τ(Ci), j) on Ci is even} and B(Ci) = {j ∈ Vi : d(τ(Ci), j) on Ci is odd}. Note

that W (Ci) and B(Ci) correspond to 0 and 1 valued nodes, respectively, in the basic

solution associated to B. For each (nonbasic) edge (u, v) of a tree component Ci,

define the branch Bv as the subtree obtained by removing (u, v) from Ci, which does

not contain τ(Ci). We assume w.l.o.g. that v ∈ V (Bv). We define branch Bv to be

black if d(τ(Ci, v) is odd, i.e. if v is 1-valued in the basic solution associated to B;

we define Bv to be white if d(τ(Ci, v) is even, i.e. if v is 0-valued in the basic solution

associated to B. Given a branch Bv of a tree Ci, we define W (Bv) = {j ∈ V (Bv) : j ∈
W (Ci)} and B(Bv) = {j ∈ V (Bv) : j ∈ B(Ci)}. For each nonbasic variable, reduced

costs are computed as follows:

• the reduced cost associated to a nonbasic node, i.e. to the root of a tree com-

ponent Ci of GB, is equal to W (Ci)−B(Ci);

• the reduced cost associated to a nonbasic edge (u, v) of a tree component Ci, is

equal to W (Bv)−B(Bv) if Bv is a black branch;

• the reduced cost associated to a nonbasic edge (u, v) of a tree component Ci, is

equal to B(Bv)−W (Bv) if Bv is a white branch.

3.6.2 non-degenerate pivots

In our algorithm, we perform the following non-degenerate pivots.

Suppose that the variable entering the basis is a node, i.e. the root of a tree component

Ci of GB. If Ci is a singleton, i.e. V (Ci) = {τ(Ci)}, we merge Ci to another tree

component Cj according to pivot (ii) of Proposition 3.2.8. The leaving variable is

chosen arbitrarily between those originating basic feasible solutions (all of them yield

the same improvement). An illustration is given in Fig. 3.24 (i). If Ci is not a

singleton, we change the root of the tree, as described in pivot (i) of Proposition

3.2.8 (Fig. 3.24 (ii)). The new root is chosen between the neighbors of τ(Ci) in Ci.

Note that in both cases, the new basic feasible solution is such that: nodes of Ci

that were 0-valued in B are now 1-valued; nodes of Ci that were 1-valued in B are

now 0-valued. Remark that pivots (iii) and (iv) of Proposition 3.2.8 don’t preserve

integrality of the current solution, and therefore we refrain from performing them.
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(i) (ii) (iii)

Figure 3.24: Non-degenerate pivots implemented in the simplex-like algorithm.

(i) (ii)

Figure 3.25: Degenerate pivots implemented in the simplex-like algorithm.

Suppose now that the variable entering the basis is an edge (u, v) of tree Ci. If its

removal generates a white branch, all pivots described in Section 3.2.2 are trivially

infeasible (see Proposition 3.2.5), and therefore we discard them. Suppose now that

the removal of (u, v) generates a black branch Bv. In this case, we cut the branch

Bv from Ci by performing pivot (i) of Proposition 3.2.6. As the leaving variable, we

choose to pivot out v, which is set to be the root of Bv (Fig. 3.24 (iii)). Remark

that pivots (iv) and (v) of Proposition 3.2.6 don’t preserve integrality of the current

solution, and therefore we refrain from performing them. We also discard pivots (ii)

and (iii), which do preserve integrality, because these pivots yield bases that we can

anyway reach by combining one of our feasible pivots with a degenerate one.

3.6.3 Degenerate pivots

In our algorithm, we perform the following degenerate pivots.

Suppose that the entering variable is a node, i.e. the root of a tree component Ci of

GB. We merge Ci to another tree component Cj according to pivot (ii) of Proposition
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3.2.7. The leaving variable is chosen arbitrarily between the 0-valued slacks yielding

a degenerate pivot. An illustration is given in Fig. 3.25 (i).

If the entering variable is an edge (u, v) of tree Ci, we cut the corresponding branch

Bv according to pivot (iii) of Proposition 3.2.4. The root of Bv is chosen arbitrarily

between the neighbors of v in Bv, which are all 0-valued in the original feasible basic

solution associated to B (Fig. 3.25 (ii)).

Note that pivots (i) and (ii) of Proposition 3.2.4 can be obtained by the combination

of two the operations described above.

3.6.4 Alternative schemes

We can define alternative schemes of our simplex-like algorithm, according to different

strategies for choosing the entering and the leaving variables.

For the entering variable, at each iteration we can select either a random variable with

positive reduced cost, or the variable with highest reduced cost. In this latter case,

we can break possible ties by choosing between the variables with highest reduced

cost, either a random one, or that with the smallest index. The leaving variable is

always chosen according to the strategy described in Sections 3.6.2 and 3.6.3.

When non-degenerate pivots are no longer possible (because they all yield infeasible

bases) we can choose to perform a degenerate pivot. When we perform degenerate

pivots, there is no improvement of the objective function and cycling can occur.

We can attempt to decrease the occurrence of cycling by perturbing costs. Another

possibility consists in disabling some degenerate pivots, as for instance the one where

the root of a tree enters the basis and the corresponding tree is merged to another

one through a 0-valued edge. In this case, we avoid merging operations between trees

and we only allow the degenerate pivot operations which consist in breaking tree

components.

The algorithm terminates either when no more pivot is possible, or when an iteration

limit is reached. We can also set an iteration limit for the maximum number of

degenerate pivots that are performed consecutively (i.e. without any improvement of
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the objective function).

3.6.5 Computational results

Our simplex-like algorithm for the stable set problem is a primal method, as it man-

tains integrality and primal feasibility, and uses adjacency properties of FSTAB(G)

to drive the solution towards optimality. This is not explicitly done by adding cuts

(e.g. odd cycle inequalities), but by avoiding fractional vertices whenever an odd

cycle is detected. The flavour of the algorithm is therefore similar to that of primal

cutting plane algorithms, that are also based on the primal simplex method and were

developed in the 1960s by Ben-Israel [1] and Charnes and Young [65, 66]. In fact,

the primal approach consists in starting from a feasible solution and improving it

through a series of augmentation steps, until the IP optimum is reached.

While a lot of effort has been devoted to dual fractional cutting plane algorithms,

which form the basis of the well-known branch-and-cut method, few research has been

developed on primal methods. In [53] Letchford and Lodi argue for a re-examination

of these primal methods and describe a primal algorithm for 0-1 programs giving

some interesting computational results. In [32] Firla at al. investigate the approach

of integer pivoting and discuss algorithmic issues related to the design of an aug-

mentation algorithm for 0-1 programs. Interestingly, they also report computational

experience on the max-clique problems that are collected in the DIMACS Challenge

library1. To solve these instances, they perform at each iteration a non-degenerate

integer pivot, and they stop whenever this is not possible. In many cases, optimality

of the returned solution can be proven by dual arguments and by performing a fixing

of the nonbasic variables by means of a bound analysis.

We also performed preliminary computational experiments on the DIMACS instances,

that we modeled as stable set problems on the respective complement graphs, accord-

ing to the edge formulation. Because of degeneracy and, as a consequence, of cycling

phenomena, the current implementation of our algorithm also returns a heuristic so-

lution, i.e. a stable set that is not necessarily optimal. We have tested different

schemes of our algorithm, according to the variations described in section 3.6.4. We

1Second DIMACS Implementation Challenge, http://dimacs.rutgers.edu/Challenges/
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report results in Tables 3.1, 3.2 and 3.3. In Scheme 1 we choose as the entering

variable the nonbasic variable with the highest reduced cost, and we break possible

ties by choosing a random variable between those with the same reduced cost. In

Scheme 2 we choose as the entering variable a random nonbasic variable with positive

reduced cost. In Scheme 3 the entering variable is again the one with highest reduced

cost, but when a degenerate pivot has to be performed, a perturbation of costs is

applied. For Schemes 1, 2 and 3, we allow at most 100 consecutive degenerate pivots,

i.e. 100 iterations without any improvement of the objective function. In Scheme 4

we disable the degenerate pivot where the entering variable is the root of a tree and

we therefore avoid cycling. The algorithm stops when no more pivot is possible. All

computation times are given in CPU seconds on a Intel Core i5 with 2.3 GHz. The

results obtained by these four different schemes of the algorithm are comparable,

except for few cases. For example, for the instances of the class MANN, the first

two schemes achieve better performances, probably due to the fact that degenerate

pivots are useful to further improve the current solution when non-degenerate pivots

are no longer possible. This leads to the following considerations. As an heuristic

method, Scheme 4 is probably preferable, as it avoids cycling and runs in a shorter

time. Though, the results reported in Tables 3.1, 3.2 and 3.3 are not competitive

with state-of-the-art heuristics [62, 64, 44], due to the stalling phenomena that we

haven’t yet treated. We therefore expect that, provided that an anti-cycling rule is

implemented, the algorithm can be competitive as an exact method of solution, due

to the fact that each pivot step is not performed algebraically but, more efficiently,

as a simple combinatorial operation, and because we can avoid to pivot to fractional

solutions.

This promising behavior is highlighted by the experiments conducted on a subset

of the DIMACS instances, the ones reported in the computational experiments of

[32]. As a comparison, we transcribe in Table 3.4 the results of [32]. On this testset,

both algorithms reach optimality on all the instances, [32] providing in addition an

optimality certificate on the starred instances. Observe that our computing times are

extremely short for such small instances.
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Scheme 1 Scheme 2 Scheme 3 Scheme 4
obj time obj time obj time obj time

brock200 1 12 0.015 13 0.009 13 0.021 13 0.001
brock200 2 7 0.023 7 0.020 7 0.010 7 0.001
brock200 3 9 0.017 9 0.013 11 0.011 11 0.002
brock200 4 11 0.010 12 0.012 12 0.012 12 0.002
brock400 1 18 0.029 18 0.020 15 0.025 15 0.004
brock400 2 18 0.023 18 0.025 17 0.019 17 0.003
brock400 3 18 0.032 15 0.023 17 0.015 17 0.004
brock400 4 17 0.036 14 0.018 17 0.018 17 0.004
brock800 1 14 0.087 15 0.089 14 0.041 14 0.012
brock800 2 13 0.090 14 0.090 14 0.039 14 0.011
brock800 3 12 0.117 16 0.069 14 0.048 14 0.015
brock800 4 14 0.109 12 0.116 13 0.042 13 0.012
c-fat200-1 10 0.013 10 0.007 12 0.006 12 0.001
c-fat200-2 22 0.006 22 0.005 24 0.008 24 0.002
c-fat200-5 57 0.006 57 0.005 58 0.007 58 0.002
c-fat500-1 12 0.039 12 0.032 14 0.017 14 0.004
c-fat500-2 24 0.038 24 0.031 26 0.022 26 0.005
c-fat500-5 62 0.028 62 0.023 64 0.024 64 0.007
C125.9 27 0.006 27 0.004 26 0.005 26 0.001
C250.9 32 0.014 31 0.009 30 0.010 30 0.002
C500.9 37 0.024 36 0.026 33 0.023 33 0.005
C1000.9 47 0.084 44 0.062 44 0.051 44 0.021
C2000.5 10 0.662 11 0.560 11 0.152 11 0.078
C2000.9 53 0.244 50 0.201 52 0.139 52 0.068
C4000.5 11 2.715 12 3.077 12 0.519 12 0.309

Table 3.1: Computational results for four different schemes of our simplex-like algo-
ritm (I).
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Scheme 1 Scheme 2 Scheme 3 Scheme 4
obj time obj time obj time obj time

DSJC500.5 10 0.082 8 0.022 9 0.026 9 0.005
DSJC1000.5 10 0.236 7 0.241 9 0.051 9 0.018
gen200 p0.9 44 29 0.006 28 0.008 30 0.007 30 0.001
gen200 p0.9 55 28 0.006 30 0.008 30 0.009 30 0.002
gen400 p0.9 55 37 0.019 35 0.022 34 0.016 34 0.003
gen400 p0.9 65 39 0.022 37 0.017 35 0.017 35 0.004
gen400 p0.9 75 40 0.023 35 0.015 38 0.017 38 0.003
hamming6-2 32 0.002 32 0.001 32 0.002 32 0.001
hamming6-4 4 0.003 4 0.002 4 0.005 4 0.000
hamming8-2 128 0.019 128 0.010 128 0.014 128 0.005
hamming8-4 7 0.019 7 0.011 16 0.011 16 0.002
hamming10-2 238 0.133 251 0.082 512 0.116 512 0.076
hamming10-4 17 0.116 17 0.094 32 0.084 32 0.026
johnson8-2-4 4 0.002 4 0.001 4 0.001 4 0.000
johnson8-4-4 8 0.003 9 0.004 14 0.004 14 0.000
johnson16-2-4 8 0.005 8 0.003 8 0.005 8 0.000
johnson32-2-4 16 0.026 16 0.026 16 0.025 16 0.004
keller4 7 0.008 9 0.007 7 0.006 7 0.001
keller5 15 0.091 15 0.062 15 0.050 15 0.009
keller6 35 0.868 28 0.796 31 0.494 31 0.156
MANN a9 16 0.002 16 0.001 16 0.003 9 0.000
MANN a27 118 0.019 121 0.015 98 0.020 27 0.002
MANN a45 336 0.096 333 0.088 267 0.134 45 0.018
MANN a81 1085 0.964 1080 0.653 266 0.340 81 0.154
p hat300-1 5 0.035 5 0.024 6 0.013 6 0.002
p hat300-2 11 0.029 11 0.021 12 0.011 12 0.002
p hat300-3 21 0.014 19 0.018 18 0.011 18 0.002
p hat500-1 5 0.141 5 0.070 6 0.019 6 0.005
p hat500-2 18 0.044 19 0.028 21 0.021 21 0.005
p hat500-3 20 0.049 29 0.021 29 0.021 29 0.006
p hat700-1 6 0.128 6 0.122 5 0.034 5 0.007
p hat700-2 21 0.082 22 0.086 18 0.034 18 0.010
p hat700-3 36 0.059 35 0.052 30 0.030 30 0.012
p hat1000-1 8 0.276 8 0.246 6 0.051 6 0.016
p hat1000-2 22 0.107 26 0.195 24 0.058 24 0.021
p hat1000-3 35 0.118 36 0.093 29 0.054 29 0.019
p hat1500-1 5 0.410 7 0.237 6 0.094 6 0.036
p hat1500-2 24 0.278 22 0.212 23 0.097 23 0.040
p hat1500-3 42 0.222 33 0.164 49 0.097 49 0.053

Table 3.2: Computational results for four different schemes of our simplex-like algo-
ritm (II).
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Scheme 1 Scheme 2 Scheme 3 Scheme 4
obj time [s] obj time [s] obj time [s] obj time [s]

san200 0.7 1 16 0.009 16 0.009 15 0.008 15 0.001
san200 0.7 2 14 0.010 14 0.008 12 0.007 12 0.001
san200 0.9 1 28 0.007 33 0.006 47 0.009 43 0.001
san200 0.9 2 35 0.006 38 0.007 36 0.008 36 0.001
san200 0.9 3 27 0.008 27 0.010 21 0.009 21 0.001
san400 0.5 1 7 0.028 7 0.025 7 0.016 7 0.003
san400 0.7 1 21 0.028 21 0.026 21 0.018 21 0.004
san400 0.7 2 15 0.033 15 0.027 15 0.016 15 0.003
san400 0.7 3 13 0.031 10 0.031 10 0.014 10 0.003
san400 0.9 1 33 0.015 51 0.030 35 0.016 35 0.003
san1000 7 0.259 7 0.233 7 0.061 7 0.018
sanr200 0.7 12 0.007 11 0.008 13 0.008 13 0.001
sanr200 0.9 27 0.009 27 0.006 29 0.009 29 0.001
sanr400 0.5 9 0.057 9 0.054 8 0.015 8 0.003
sanr400 0.7 15 0.034 14 0.021 15 0.017 15 0.004

Table 3.3: Computational results for four different schemes of our simplex-like algo-
ritm (III).

Firla et al. Scheme 4
Clique Size time [s] time[s]

hamming6-2 32 ∗0.6 0.001
hamming6-4 4 3.4 0.000
hamming8-2 128 ∗12.3 0.005
johnson8-2-4 4 ∗0.4 0.000
johnson8-4-4 14 10.2 0.000
johnson16-2-4 8 ∗6.0 0.000
johnson32-2-4 16 ∗191.2 0.004
c-fat200-1 12 ∗112.2 0.001
c-fat200-2 24 ∗272.2 0.002
c-fat200-5 58 ∗864.5 0.002
c-fat500-1 14 ∗2300.8 0.004
c-fat500-2 26 ∗5336.3 0.005
c-fat500-5 64 ∗29314.5 0.007

Table 3.4: Computational results on a subset of the DIMACS instances.





Chapter 4

How tight is the corner relaxation?

Insights gained from the stable set

problem

1

Consider a Mixed-Integer Linear Program (MILP) in standard form:

min cTx

s.t. Ax = b

x ≥ 0

xi ∈ Z ∀ i ∈ I,

(MILP)

where A is a m × n rational matrix with full row rank m, c ∈ Qn, b ∈ Qm and

I ⊆ {1, . . . , n} is the subset of variables that are integer constrained. The Linear

Programming (LP) relaxation of (MILP) is the problem:

1This is a work developed with Gérard Cornuéjols (CMU) and Giacomo Nannicini (SUTD) when
the author of the thesis was visiting Tepper School of Business (CMU) and their support is gratefully
acknowledged.
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min cTx

s.t. Ax = b

x ≥ 0.
(LP)

In Section 1.4 we have discussed some exact methods for the solution of (MILP).

In particular, we have briefly outlined the Branch-and-Cut method, which combines

both cutting planes and enumeration techniques. The cutting planes component of

Branch-and-Cut generates cuts that are valid for (MILP), which are then added to

(LP). Most general purpose cutting planes, such as Gomory mixed-integer [39] and

mixed-integer rounding [59] cuts, are valid for the corner relaxation of (MILP), in-

troduced by Gomory [40]. Studying the strength of the corner relaxation is therefore

of both theoretical and practical interest. Given a basis B of (LP), the corner relax-

ation is the convex hull of the integer points of the problem obtained from (MILP)

by dropping non-negativity on the basic variables. If non-negativity is dropped on

the strictly positive basic variables only, we call the convex hull of the resulting set of

points strict corner relaxation (there is no standard terminology for this relaxation

in the literature). If (LP) has primal degeneracy, the strict corner relaxation can be

stronger than the corner relaxation.

In this chapter we study the corner and other related relaxations in the particular case

of the edge formulation of the stable set problem. This is an important combinatorial

optimization problem, and stable set type constraints appear in the MILP formulation

of many real-world problems. We give a precise characterization of the bounds arising

from four different relaxations for this particular combinatorial problem. The reason

for choosing this problem is that it is one of the very few where the structure of the

bases is well understood, allowing a tight analysis of the relaxations.

Given a graph G(V,E) with |V | = n nodes, it is known that, under mild assumptions,

the linear programming relaxation (FSTAB) of the edge formulation of (STAB) for

the maximum cardinality stable set problem has value n/2. For the most common

random graph models and for n → ∞, these assumptions hold with probability

1 [42, 43]. The results proven in this chapter can be summarized as follows. We

show that, for a connected graph G, if the graph admits a perfect matching or a

nearly perfect matching, there exists an optimal basis B of (FSTAB) such that the

associated corner relaxation gives a bound of bn/2c. If the nodes of the graph can be
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partitioned into cliques of size at least 3, the split closure [23] yields a bound of n/3.

If all cliques in the partition have size 3, the same bound can also be obtained from

a corner relaxation associated with an optimal basis. We show that in some cases,

generating cutting planes from a corner relaxation and adding them to (FSTAB)

significantly improves the corner relaxation bound. Finally, we show that the strict

corner relaxation yields the optimal value of (STAB).

In Section 4.1 we introduce the corner relaxation and some basic results concerning

the corner polyhedron. In Section 4.2 we discuss the empirical results on the strength

of the corner and other related relaxations obtained in [35]. In Section 4.3 we describe

our main results on the strength of different relaxations of (STAB). In Section 4.4

we present some crucial results, due to Campelo and Cornuéjols [17], concerning the

complete description of the corner polyhedron and of the intersection closure. In

Section 4.5 we prove that, in oder to compute the bounds yielded by the relaxations

considered in this chapter, it is possible to restrict to the subgraph induced by the

nodes indexing fractional variables of a given optimum to (FSTAB). In Sections 4.6,

4.7, 4.8, 4.9 we study the bounds arising from the corner and other related relaxations,

which we introduce next.

4.1 The Corner Relaxation

In this section we present some basic notions concerning the corner relaxation and the

corner polyhedron, originally introduced by Gomory [40] and Gomory and Johnson

[41]. For further readings on this topic and recent developments in multi-row cuts,

we recommend [21]. Consider the mixed integer linear set of (MILP) and a feasible

basis B of (LP). Let N = {1, . . . , n} \ B index the nonbasic variables. It is possible

to express the system Ax = b in tableau form, in order to rewrite basic variables in

terms of nonbasic variables as

xi = b̄i −
∑
j∈N

āijxj i ∈ B, (4.1)

where feasibility of B implies that b̄i ≥ 0, for each i ∈ B. The basic feasible solution

x̄ associated to B is then x̄i = b̄i, i ∈ B, x̄j = 0, j ∈ N . If b̄i ∈ Z ∀ i ∈ B ∩ I, x̄

is feasible for (MILP). If, instead, any of the integrality constraints is violated by x̄,
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it is possible to separate x̄, i.e. to determine an inequality that is valid for (MILP),

which is violated by x̄. The corner relaxation, introduced by Gomory in [40], is

obtained from MILP by dropping non-negativity constraints on the basic variables

xi, ∀ i ∈ B. If some of the basic variables are not integer constrained, i.e. B \ I 6= ∅,
these variables only appear in one equation of type (4.1). Therefore, it is possible

to drop constraints xi = b̄i −
∑

j∈N āijxj for each basic continuous variable xi, with

i ∈ B \ I. For the sake of simplicity, it is usually assumed that all the basic variables

are integer constrained, i.e. I ⊇ B. Therefore, the corner relaxation of (MILP) is

min cTx

s.t. xi = b̄i −
∑

j∈N āijxj i ∈ B
xi ≥ 0 i ∈ N
xi ∈ Z i ∈ I.

(4.2)

The convex hull of the feasible solutions to (4.2) is the corner polyhedron relative

to the basis B, denoted by corner(B). Any inequality that is valid for the corner

polyhedron corner(B) is also valid for the integer hull of feasible solution to (MILP).

Consider now the linear relaxation of (4.2), and denote its feasible region by P (B).

P (B) is a cone pointed in x̄ and such that its extreme rays are the vectors satisfying

at equality all but one non-negativity constraints. The extreme rays of P (B) are

linearly independent, implying that P (B) has dimension |N | and that the affine hull

of P (B) is defined by the equations (4.1) [21].

Lemma 4.1.1. [21] If the affine hull of P (B) contains a point x ∈ Rn such that

xi ∈ Z for each i ∈ I, then corner(B) is an |N |-dimensional polyhedron. Otherwise,

corner(B) is empty.

In Figure 4.1 are represented: the convex hull of the feasible solutions of a MILP (in

red); the objective function of the MILP (dashed lines); the feasible region of the LP

relaxation of the MILP (in black); the optimum of the LP relaxation of the MILP

(the star); the cone P (B) (in blue); the feasible points of the corner relaxation (4.2)

(green dots); the corner polyhedron (in green).
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Figure 4.1: The corner polyhedron of the given MILP is the convex hull of green
points.

4.2 How tight is the Corner Relaxation?

Fischetti and Monaci [35] empirically study the strength of the corner relaxation,

strict corner relaxation and other related polyhedra on a set of benchmark MILP

instances. They compare the objective value of the integer optimum of (MILP) with

the bounds given by the strict corner relaxation, the corner relaxation associated

with an optimal basis of (LP), (LP) alone, and (LP) strengthened by one round of

cutting planes from an optimal basis. They conclude that:

• For problems with binary variables, the corner relaxation is often a weak ap-

proximation of (MILP).

• The strict corner relaxation gives on average 50% better bounds (in relative

terms) than the corner relaxation.

• The conclusion that the corner relaxation is often a weak approximation of

(MILP) is mitigated by the fact that, in practice, cutting planes are added to

(LP) and this often gives much better bounds.
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4.3 Main Results

Consider a simple graph G(V,E), where V and E are the sets of n nodes and m

edges of G, respectively. We a assume that G does not contain isolated nodes (recall

Assumption 1.5.1). In Section 1.5 we have introduced the stable set problem which

consists, in its unweighted version, in finding the maximum cardinality subset of nodes

which are not pairwise adjacent. A natural formulation for the stable set problem is

the edge formulation. In fact, a vector x ∈ {0, 1}n is the incidence vector of a stable

set of G if and only if it satisfies xu + xv ≤ 1, for all (u, v) ∈ E. By introducing a

slack variable for each edge constraint, the edge formulation of the stable set problem

can be written in the form

α(G) = max
n∑
i=1

xi

s.t. xi + xj + yij = 1 ∀ (i, j) ∈ E
yij ≥ 0 ∀ (i, j) ∈ E
xi ∈ {0, 1} ∀ i ∈ V.

(STAB)

The stable set polytope, which we have denoted by STAB(G), is the convex hull of

the incidence vectors of stable sets of G, which correspond to feasible solutions of

(STAB). For the MILP (STAB), under the assumption that G does not contain

singletons, the LP relaxation has the form

αFSTAB = max
n∑
i=1

xi

s.t. xi + xj + yij = 1 ∀ (i, j) ∈ E
xi ≥ 0 ∀ i ∈ V
yij ≥ 0 ∀ (i, j) ∈ E,

(FSTAB)

whose feasible set will be denoted FSTAB(G).

In Chapter 2 we have extensively discussed structural properties of the bases of

FSTAB(G). In particular, we have presented a graphic characterization of bases

of FSTAB(G). Precisely, a one-to-one correspondence exists, between bases of

FSTAB(G) and special pseudoforests of G, composed by rooted trees and 1-trees
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with an odd cycle.

We have denoted by A the edge-node incidence matrix of G and by B the set of all

bases of the constraint matrix [A I]. The rows of (FSTAB) are linearly independent,

implying that a basis consists of m columns. It follows that a cobasis (the set indexing

out-of-basis variables) is composed by n columns. We have denoted by B an element

of B and by N the resulting nonbasic submatrix (we use the same symbols to denote

the sets of indices of a basis and of a cobasis, respectively). The variables can be

then partitioned according to each basis B ∈ B, as x =

(
xB

xN

)
and y =

(
yB

yN

)
.

Discarding non-negativity constraints on the basic variables, we get a relaxation of

(STAB). The convex hull of the resulting set of feasible solutions corresponds to the

corner polyhedron associated with basis B, denoted by corner(B). If the basic solution

associated with basis B is not integral, then it does not belong to corner(B), and

a valid inequality for corner(B) can be generated, such that the fractional solution

is cut off. It has been shown [17] that all valid inequalities necessary to describe

corner(B) can be derived from one row of the simplex tableau associated to basis B

as Chvátal-Gomory cuts.

Define now the intersection closure as the intersection of the corner polyhedra asso-

ciated to all bases and denote it by int(B), namely

int(B) =
⋂
B∈B

corner(B). (4.3)

It has been proven [17] that, for the stable set formulation (STAB), the set int(B)

and the split, Chvátal and {0, 1
2
}-Chvátal closures are all identical.

We address two additional relaxations of (STAB). The first one, that we call strict

corner relaxation, is obtained from (STAB) by relaxing non-negativity constraints on

those variables that are strictly positive in an optimal solution x∗ of (FSTAB). The

convex hull of the feasible points of the strict corner relaxation is the strict corner

polyhedron, denoted by strict(x∗). The second relaxation is defined by intersecting

corner(B) and FSTAB(G) for a given B ∈ B, and we denote it by LP∩corner(B).

The reason for studying this relaxation is that LP∩corner(B) corresponds to strength-

ening (FSTAB) with cutting planes valid for corner(B), and is therefore highly rele-

vant in practice.
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In this chapter, we estimate and compare the bounds obtained by optimizing over

corner(B), int(B), strict(x∗) and LP∩corner(B). In other words, we study the fol-

lowing problems:

αcorner(B) = max{1Tx : x ∈ corner(B)}, (corner(B))

αint(B) = max{1Tx : x ∈ int(B)}, (int(B))

αstrict(x∗) = max{1Tx : x ∈ strict(x∗)}, (strict(x∗))

αLP∩corner(B) = max{1Tx : x ∈ FSTAB(G) ∩ corner(B)}. (LP∩corner(B))

In Section 1.7 we have presented some fundamental properties of the linear relaxation

(FSTAB) arising from the edge formulation (STAB). One of them asserts that in

basic feasible solutions to (FSTAB), variables must be (0, 1
2
, 1)-valued, see Theorem

1.7.1. For an optimal solution x∗ to (FSTAB) , we define P = {i ∈ V : x∗i = 1},
Q = {i ∈ V : x∗i = 1

2
}, p = |P | and q = |Q|. Therefore αFSTAB = p + q

2
. Define G[Q]

as the subgraph of G induced by nodes of Q.

Our main results are stated in the following theorems.

Theorem 4.3.1. If G[Q] is connected and admits a perfect or nearly perfect matching,

then there exists an optimal basis B associated to x∗ such that αcorner(B) = p+
⌊
q
2

⌋
.

Theorem 4.3.2. Optimizing over strict(x∗) yields the same optimal value as opti-

mizing over the original integer problem, namely αstrict(x∗) = α(G).

Theorem 4.3.3. If the nodes of Q can be partitioned into cliques of size at least

3, αint(B) = p + q
3
. If all cliques of the partition have size exactly 3, there exists an

optimal basis B associated to x∗ such that αcorner(B) = p+ q
3
.

Theorem 4.3.4. For an optimal basis B associated to x∗, the difference between

αcorner(B) and αLP∩corner(B) is at most q
8
, and there are graphs for which this bound is

tight.
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4.4 Complete description of the corner polyhedron

and of the intersection closure

The characterization of the bases of FSTAB(G) that we have described in Chapter

2 lays the foundation for the results that we present in this section, due mainly to

Campelo and Cornuéjols [17]. These results concern the complete description of the

corner polyhedron and of the intersection closure. Given a basis B ∈ B, consider the

associated basic subgraph GB. The description of the corner polyhedron is obtained

from the linear relaxation (FSTAB) of (STAB) by adding an odd cycle inequality for

each 1-tree component of GB. Recall that, given a 1-tree component Ci of GB, we

denote by κ(Ci) its unique odd cycle.

Theorem 4.4.1. (Campelo and Cornuéjols [17]) For every B ∈ B, the corner poly-

hedron of (STAB) associated to B is

corner(B) =

(x, y) ∈ Rn+m : Ax+ y = 1, xN ≥ 0, yN ≥ 0,
∑

e∈κ(Ci)

ye ≥ 1, i ∈ I1

 .

(4.4)

Note that in the above description of corner(B), the odd cycle inequalities (1.3) are

expressed in terms of the edge-slack variables y.

Let us denote by B+ = {B ∈ B : B−11 ≥ 0} the set of feasible bases and by int(B+)

the intersection of the corner polyhedra associated to all feasible bases, that is

int(B+) =
⋂
B∈B+

corner(B), (4.5)

and define C as the set of all the induced odd cycles of G(V,E).

Theorem 4.4.2. (Campelo and Cornuéjols [17]) int(B) = int(B+) = S̄(G), where

S̄(G) =

{
(x, y) ∈ Rn+m

+ : Ax+ y = 1,
∑
e∈C

ye ≥ 1,∀ C ∈ C

}
. (4.6)

Theorem 4.4.3. (Campelo and Cornuéjols [17]) For the stable set formulation (STAB),

the set S̄(G), the split closure, the Chvátal closure, the {0, 1
2
}-Chvátal closure, int(B)



88 Chapter 4. How tight is the corner relaxation?

and int(B+) are all identical.

4.5 Restriction to the fractional minor

In this section we show that, in order to prove Theorems 4.3.1-4.3.4, it is sufficient

to consider the case where the optimal solution to (FSTAB) is x∗i = 1
2
∀ i =

1, . . . , n. Given the linear relaxation (FSTAB) of (STAB), if an optimal solution has

some 0-1 components we know that, by Theorem 1.7.3, it is possible to fix those

components to their values. Therefore, we can restrict our attention to the minor

obtained by contracting 0-valued variables and by deleting 1-valued ones. In fact,

our approach consists in considering first the subgraph induced by fractional nodes

and then extending our results to the original graph.

In the next lemma we show that dropping non-negativity constraints on all x variables

from (STAB) does not affect the optimal value when x∗i = 1
2
∀ i = 1, . . . , n is an

optimal solution of (FSTAB).

Lemma 4.5.1. Given a graph G(V,E), suppose that x∗i = 1
2
, i = 1, . . . , n is optimal

for (FSTAB). Define (NSTAB) as the problem obtained from (STAB) by dropping

non-negativity on the x variables. Then:

(i) (NSTAB) has an optimal 0-1 solution;

(ii) if x∗ is the unique optimal solution to (FSTAB), all optimal solutions to (NSTAB)

are 0-1.

Proof. For simplicity, we write (NSTAB) as:

max
n∑
i=1

xi

s.t. xi + xj ≤ 1 ∀ (i, j) ∈ E
xi ∈ Zn ∀ i ∈ V.

(NSTAB)

This avoids dealing with the y variables.

First, note that (NSTAB) has a feasible solution (the 0 vector). Second, observe that

(NSTAB) is bounded because x∗ is optimal for its LP relaxation (this follows from
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the fact that we remove from (FSTAB) only constraints that are not tight at x∗,

i.e. non-negativity on the x variables). Therefore (NSTAB) has an optimal solution.

(i): Assume that x∗i = 1/2, i = 1, . . . , n is optimal for (FSTAB) but not necessarily

unique. For any feasible solution x̂ to (NSTAB), define S−(x̂) : {i ∈ V : x̂i <

0}, S+(x̂) : {i ∈ V : x̂i > 1}. Observe that every node in S+(x̂) can only be adjacent

to nodes in S−(x̂). Therefore the incidence vector of S+(x̂) defines a stable set of G.

By Theorem 1.7.4, this implies |S−(x̂)| ≥ |S+(x̂)|.

Let x̄ be an optimal solution to (NSTAB). If S−(x̄) = ∅, we are done. Define

∆(x̄) = mini∈V {x̄i}. Note that ∆(x̄) ≤ −1. Construct a solution x̃ as:

x̃k =


x̄k for k ∈ V \ (S−(x̄) ∪ S+(x̄))

x̄k − 1 for k ∈ V ∩ S+(x̄)

x̄k + 1 for k ∈ V ∩ S−(x̄).

We show that x̃ satisfies all the edge constraints. It suffices to prove that increasing

by 1 a variable xi with i ∈ S−(x̄) does not yield constraint violations. Observe that

x̃i ≤ 0. Let j be a node adjacent to i. Either:

• j ∈ S+(x̄) and x̃j = x̄j − 1, or

• j ∈ S−(x̄) and x̃j ≤ 0, or

• j ∈ V \ (S−(x̄) ∪ S+(x̄)) and x̃j = x̄j ≤ 1.

In all cases, x̃i + x̃j ≤ 1. Therefore x̃ is feasible for (NSTAB) and ∆(x̃) = ∆(x̄) + 1.

The objective value of x̃ is
∑

i∈V x̃i =
∑

i∈V x̄i + |S−(x̄)| − |S+(x̄)| ≥
∑

i∈V x̄i, so x̃ is

optimal. We can iterate this construction from x̃ until we obtain an optimal solution

x′ with ∆(x′) = 0, i.e., S−(x′) = ∅. This implies that x′ has 0-1 components.

(ii): Observe that if x∗i = 1/2, i = 1, . . . , n is the unique optimum of (FSTAB), by

Theorem 1.7.4 |S−(x̂)| > |S+(x̂)|. Let x̄ be an optimal solution to (NSTAB) and

suppose S−(x̄) 6= ∅. Construct x̃ as shown above. x̃ has cost
∑

i∈V x̄i + |S−(x̄)| −
|S+(x̄)| >

∑
i∈V x̄i. This contradicts optimality of x̄, therefore S−(x̄) = ∅, i.e. x̄ is

0-1.

We now show that, to prove Theorems 4.3.1-4.3.4, it is sufficient to restrict our



90 Chapter 4. How tight is the corner relaxation?

attention to the case where the optimum of (FSTAB) is x∗i = 1/2, i = 1, . . . , n.

Given an optimal solution x∗ to (FSTAB), let V 0 = {i ∈ V : x∗i = 0}, V 1
2 = {i ∈

V : x∗i = 1
2
}, V 1 = {i ∈ V : x∗i = 1}. Define E00 = {(i, j) ∈ E : i, j ∈ V 0}, E0 1

2 =

{(i, j) ∈ E : i ∈ V 0, j ∈ V 1
2}, E01 = {(i, j) ∈ E : i ∈ V 0, j ∈ V 1}, E 1

2
1
2 = {(i, j) ∈ E :

i, j ∈ V 1
2} (the graph being undirected, the edges are unordered pairs). By Theorem

1.7.1, V 0, V
1
2 , V 1 define a partition of V . Since there can be no edge between V 1

and V
1
2 ∪ V 1, it follows that E00, E0 1

2 , E01, E
1
2

1
2 is a partition of E. We consider two

induced subgraphs of G: G
1
2 induced by V

1
2 , and G01 induced by V 0 ∪ V 1. We show

that for all relaxations of (STAB) studied in this chapter, if we are able to compute

a bound on G
1
2 , we can generalize its value to G by simply adding |V 1| = p.

Theorem 4.5.1. Let x∗ be the optimal solution to (FSTAB) and let B be an optimal

basis associated to x∗. Partition x∗ according to V
1
2 and V 0∪V 1 as (x∗

1
2 , x∗01). Define

B01 = B ∩ (V 0 ∪ V 1 ∪E00 ∪E01) and B
1
2 = B ∩ (V

1
2 ∪E 1

2
1
2 ). Let G01 = G[V 0 ∪ V 1]

and G
1
2 = G[V

1
2 ]. Then:

(i) if B̃
1
2 is an optimal basis associated to x∗

1
2 for max{1Tx : x ∈ FSTAB(G

1
2 )}

and B̃ = B01 ∪ B̃ 1
2 ∪ E0 1

2 , then:

1. B̃ is a basis of (FSTAB),

2. max{1Tx : x ∈ corner(B̃)} = p+ max{1Tx : x ∈ corner(B̃
1
2 )},

3. max{1Tx : x ∈ FSTAB(G)∩corner(B̃)} = p+max{1Tx : x ∈ FSTAB(G
1
2 )∩

corner(B̃
1
2 )};

(ii) if B 1
2 is the set of all bases of max{1Tx : x ∈ FSTAB(G

1
2 )}, then: max{1Tx : x ∈

int(B)} = p+ max{1Tx : x ∈ int(B 1
2 )};

(iii) max{1Tx : x ∈ strict(x∗)} = p+ max{1Tx : x ∈ strict(x∗
1
2 )}.

Proof. First, observe that the constraints corresponding to edges in E0 1
2 are not tight

at x∗. Therefore they can be relaxed without affecting optimality of x∗ for (FSTAB).

This implies that max{1Tx : x ∈ FSTAB(G)} = max{1Tx : x ∈ FSTAB(G01)} +

max{1Tx : x ∈ FSTAB(G
1
2 )} and x∗01 is optimal on FSTAB(G01). Since x∗01 is

in STAB(G01), it is an optimal stable set in G01 and max{1Tx : x ∈ S(G01)} =

max{1Tx : x ∈ FSTAB(G01)}.



4.5 Restriction to the fractional minor 91

Let B01 be the set of all bases of max{1Tx : x ∈ FSTAB(G01)}. We have the chains:

max{1Tx : x ∈ STAB(G01)} ≤ max{1Tx : x ∈ strict(x∗01)} ≤
max{1Tx : x ∈ corner(B01)} ≤ max{1Tx : x ∈ FSTAB(G01)} =

max{1Tx : x ∈ STAB(G01)}

and

max{1Tx : x ∈ STAB(G01)} ≤ max{1Tx : x ∈ int(B01)} ≤
max{1Tx : x ∈ FSTAB(G01) ∩ corner(B01)} ≤ max{1Tx : x ∈ FSTAB(G01)} =

max{1Tx : x ∈ STAB(G01)},

which imply that x∗01 is optimal for all the relaxations discussed above on G01, with

cost |V 1| = p.

(i). B̃ has m elements, and the subgraph GB̃ corresponds to the union of G[V0 ∪ V1]

and G
B̃

1
2
. Therefore, by Theorems 2.2.2 and 2.2.3, B̃ is a basis of FSTAB(G), which

proves (i)-1.

Observe that the y variables corresponding to the constraints E0 1
2 are basic in B̃.

Therefore, they become free variables in corner(B̃) and the constraints E0 1
2 can be

dropped. Since there are no constraints linking G01 and G
1
2 in corner(B̃), we have

that max{1Tx : x ∈ corner(B̃)} = max{1Tx : x ∈ corner(B01)} + max{1Tx : x ∈
corner(B̃

1
2 )} = p+ max{1Tx : x ∈ corner(B̃

1
2 )}. This proves (i)-2.

For (i)-3, we note that max{1Tx : x ∈ FSTAB(G) ∩ corner(B̃)} ≤ max{1Tx : x ∈
FSTAB(G01)∩corner(B01)}+max{1Tx : x ∈ FSTAB(G

1
2 )∩corner(B̃

1
2 )} because by

optimizing separately over FSTAB(G01)∩corner(B01) and FSTAB(G
1
2 )∩corner(B̃

1
2 )

we are relaxing the edge constraints E0 1
2 that are present in FSTAB∩corner(B̃). Ob-

serve that any optimal solution to max{1Tx : x ∈ FSTAB(G
1
2 ) ∩ corner(B̃

1
2 )} has

components in [0, 1]. Pick any such solution x̃
1
2 . Define x̂ as:

x̂i =

{
x̃

1
2
i for i ∈ V 1

2

x∗i for i ∈ V 0 ∪ V 1.
(4.7)

Clearly x̂ satisfies the constraints of FSTAB(G01)∩ corner(B01) and FSTAB(G
1
2 )∩

corner(B̃
1
2 ). Additionally, it satisfies the edge constraints E0 1

2 because the variables

corresponding to nodes in V 0 have value 0 and those in V
1
2 have value in [0, 1]. Thus,
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x̂ is feasible for FSTAB(G) ∩ corner(B̃) with cost max{1Tx : x ∈ FSTAB(G01) ∩
corner(B01)} + max{1Tx : x ∈ FSTAB(G

1
2 ) ∩ corner(B̃

1
2 )} = p + max{1Tx : x ∈

FSTAB(G
1
2 ) ∩ corner(B̃

1
2 )}, and therefore optimal.

(ii). Recall the description of int(B) given in Theorem 4.4.2. Observe that max{1Tx : x ∈
int(B)} ≤ max{1Tx : x ∈ int(B01)}+ max{1Tx : x ∈ int(B 1

2 )} because by optimizing

separately over int(B01) and int(B 1
2 ) we are relaxing some of the constraints that de-

fine int(B) , namely: the edge constraints E0 1
2 , and the odd cycle inequalities involving

at least one edge in E0 1
2 . Let x̃

1
2 be an optimal solution to max{1Tx : x ∈ int(B 1

2 )}.
Define x̂ as in (4.7). By construction, x̂ satisfies the constraints of int(B01) and

int(B 1
2 ). Since x̂i = 0 ∀ i ∈ V0, it also satisfies all the edge constraints E0 1

2 (x̃
1
2

has components in [0, 1]) and any odd cycle inequality involving at least one edge

in E0 1
2 (for any such cycle κ with 2k + 1 edges, no more than 2k nodes are in V

1
2 ;

since they form a chain, the nodes in the cycle add up to at most k). Thus, x̂ is

feasible for int(B) with cost max{1Tx : x ∈ int(B01)} + max{1Tx : x ∈ int(B 1
2 )} =

p+ max{1Tx : x ∈ int(B 1
2 )}, and therefore optimal.

(iii). We have max{1Tx : x ∈ strict(x∗)} ≤ max{1Tx : x ∈ strict(x∗01)}+max{1Tx : x ∈
strict(x∗

1
2 )} since the edge constraints E0 1

2 are relaxed when optimizing separately

over strict(x∗01) and strict(x∗
1
2 ). By Lemma 4.5.1, there exists an optimal 0-1 solu-

tion to max{1Tx : x ∈ strict(x∗
1
2 )}. Let x̃

1
2 be such a solution, and define x̂ as in

(4.7). Observe that x̂ is 0-1 and satisfies all the edge constraints, including those in

E0 1
2 because xi = 0 ∀ i ∈ V 0. This implies that x̂ is feasible for strict(x∗) with

cost max{1Tx : x ∈ strict(x∗01)} + max{1Tx : x ∈ strict(x∗
1
2 )} = p + max{1Tx : x ∈

strict(x∗
1
2 )}, and therefore optimal.

By Theorem 4.5.1, the bound provided by a relaxation on G
1
2 is sufficient to charac-

terize the bound by the same kind of relaxation on G. In particular, for the corner

relaxation and LP∩corner we can take any basis of FSTAB(G
1
2 ), and there always

exists a basis of FSTAB(G) for which the generalization of the bound on G
1
2 is valid.
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4.6 Optimizing over the corner relaxation

We assume that x∗i = 1
2
∀ i = 1, . . . , n is an optimal solution to (FSTAB). Thus

zLP = n
2
. If m > n, there are many bases associated to vertex x∗, which may yield

different corner relaxations. We show that the strength of these relaxations can

be significantly different. We prove that if the graph is connected and its maximum

matching has size
⌊
n
2

⌋
, there exists an optimal basis associated to x∗ yielding a bound

of
⌊
n
2

⌋
, i.e. a weak bound improvement over (FSTAB). On the other hand, if the

graph can be partitioned into triangles, we show that there is also a basis providing

the much stronger bound of n
3
. In the classical random graph model where edges

occur independently with a fixed probability p, both of the above conditions hold

almost surely (i.e. with probability going to 1 as the number of nodes n increases)

[15] when n is a multiple of 3. This implies that almost all graphs have both a weak

corner relaxation with bound
⌊
n
2

⌋
and a much stronger one with bound of the order

of n
3
.

For each basis B ∈ B associated to x∗, all x variables are positive and belong to B.

In the corner polyhedron we drop the non-negativity constraints on variables yij such

that (i, j) ∈ EB. This corresponds to removing the redundant constraints of type

xi + xj + yij = 1 for each (i, j) ∈ EB. Thus, the corner polyhedron associated to B

is the convex hull of the points satisfying

xi + xj + yij = 1 ∀ (i, j) ∈ EN
yij ≥ 0 ∀ (i, j) ∈ EN
xi ∈ Zn ∀ i ∈ V.

(4.8)

Using the graphic characterization of the bases described in Chapter 2, we show that

any basis B associated to x∗ has, in general, an associated graph GB with k ≥ 1

connected components, each one representing a 1-tree.

Lemma 4.6.1. Any basis B associated to vertex x∗i = 1
2
∀ i = 1, . . . , n is such that

all connected components C1, . . . , Ck, k ≥ 1 are 1-trees.

Proof. By contradiction, suppose this is not the case, that is, there exists at least

one connected component Ci(Vi, Ei) which is a tree. Then, by Theorem 2.2.3, some

components of x∗ would have binary values, precisely x∗j ∈ {0, 1} ∀ j ∈ Vi.
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Consider now the linear relaxation of (4.8). The feasible set of such problem corre-

sponds to the cone P (B) defined in Section 4.1, for our particular case. Precisely,

P (B) has the form:

P (B) = {(x, y) : Ax+ y = 1, yN ≥ 0} . (4.9)

For a general MILP, Lemma 4.1.1 establishes that if P (B) contains a point satisfying

the integrality constraints of (MILP), then any basis B of the linear relaxation (LP) is

optimal if and only if corner(B) has an optimal solution. For sake of completeness, we

prove a specialization of this result to the edge formulation of the stable set problem.

An example is given in Figure 4.2.

Lemma 4.6.2. Suppose x∗i = 1
2
∀ i = 1, . . . , n is an optimal solution of (FSTAB).

Any basis B associated to x∗ is optimal for (FSTAB) if and only if corner(B) has an

optimal solution.

Proof. If B is an optimal basis of (FSTAB) associated to x∗, all the reduced costs of

nonbasic variables are nonpositive. The objective function can be rewritten in terms

of the nonbasic variables as n
2

+ max
∑

(i,j)∈EN c
′
ijyij, where for all (i, j) ∈ EN , c′ij

is the reduced cost of nonbasic variable yij. Because c′ij ≤ 0 ∀(i, j) ∈ E ∩ N and

yij ≥ 0 ∀(i, j) ∈ EN , optimizing over (4.8) is not unbounded. As (4.8) is non-empty,

corner(B) has an optimal solution. Assume now that problem (corner(B)) has an

optimal solution and, by contradiction, suppose c′uv > 0 for some (u, v) ∈ EN . It is

possible to increase variable yuv by a positive integer M , without modifying any of

the other (nonbasic) y variables, in such a way that all xi are integer (because all xi’s

are basic and unrestricted in sign). This would yield an improvement of the objective

function equal to Mc′uv, showing that (corner(B)) is unbounded for M →∞.

Definition 4.6.1. A bipartite graph B(U, V,W ) is balanced if |U | = |V |.

Definition 4.6.2. A bipartite graph B(U, V,W ) is nearly balanced if |U |−|V | = ±1.

Definition 4.6.3. We define a 1-tree component Ci(Vi, Ei) to be unbalanced if it

admits a stable set Pi ⊆ Vi such that 2|Pi| ≥ |Vi| + 1. Otherwise, we say that it is

balanced.

Lemma 4.6.3. Let B be a basis of (FSTAB) associated to x∗, and let GB be the

corresponding basic subgraph. B is an optimal basis of (FSTAB) if and only if x∗ is

an optimal solution of (FSTAB) over GB.
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0

0

0 −M M

−M

M M

1

0

0 1 0

1

0 1

(i) corner(B1) (ii) corner(B2)

Figure 4.2: The given graph admits x∗i = 1
2
∀ i ∈ V as the unique optimum of

(FSTAB). (i) and (ii) represent two bases associated to x∗. However, B1 is not
an optimal basis: for M ∈ Z+ the assignment depicted satisfies the constraints of
corner(B1). This implies that corner(B1) is unbounded. On the other hand, B2 is an
optimal basis associated to x∗ and correspondingly corner(B2) has a finite optimum.
An optimal solution of corner(B2) is the 0-1 solution represented in (ii).

(i) (ii)

Figure 4.3: A balanced bipartite graph (i) and a nearly balanced one (ii).
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Figure 4.4: A balanced 1-tree (i) and an unbalanced one (ii).

Proof. Suppose B is an optimal basis of (FSTAB). Relaxing non-negativity con-

straints of basic variables of FSTAB(G) corresponds to optimizing on FSTAB(GB).

Because B is an optimal basis, dropping the constraints associated to basic variables

does not affect optimality of x∗. For the converse, suppose x∗ is an optimal solution

on FSTAB(GB). By Lemma 4.5.1, (NSTAB) admits a 0-1 optimal solution on GB.

Remark that the latter problem is exactly corner(B). This implies that corner(B)

has an optimal solution and therefore, by Lemma 4.6.2, B is an optimal basis of

(FSTAB).

As an example, consider again the bases represented in Fig. 4.2. Basis B1 is not

optimal and correspondingly x∗i = 1
2
∀ i ∈ V is not an optimal solution of corner(B1).

Indeed, the solution that assigns values 1, 0 and 1
2

to the nodes that in Fig. 4.2 (i)

take values M , −M and 0, respectively, is an optimum of corner(B1).

Lemma 4.6.4. Suppose B is an optimal basis of (LP) associated to x∗. Then all its

components Ci are balanced.

Proof. By Lemma 4.6.3, optimizing over FSTAB(GB) gives an upper bound of n
2

for

(STAB) over GB. This implies that the maximum stable set of GB has size at most⌊
n
2

⌋
.

Note that the condition stated in Lemma 4.6.4 is only necessary. For example, basis

B1 of Fig.4.2 (i) yields a balanced 1-tree but is not an optimal basis.
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Lemma 4.6.5. If C(V,E) is a balanced 1-tree containing an odd cycle, then there

exists an edge (uj, uj+1) ∈ κ(C) such that C ′(V,E \ (uj, uj+1)) is a bipartite graph

which is nearly balanced if |V | is odd, or balanced if |V | is even.

Proof. Suppose that |κ(C)| = k and let u1, u2, . . . , uk, uk+1 = u1 be the nodes of κ(C).

By contradiction, suppose that for all j = 1, . . . , k the removal of edge (uj, uj+1) yields

the tree Tj(V
+
j , V

−
j , E \ (uj, uj+1)), such that |V +

j | ≥ |V −j | + 2. As there is a path

of even length connecting uj and uj+1, they both belong to the same side of the

partition. They cannot both belong to V −j , otherwise V +
j would be a stable set of C

such that 2|V +
j | ≥ |V +

j |+ |V −j |+ 2 = |V |+ 2 and therefore C would be unbalanced.

Thus, uj, uj+1 ∈ V +
j .

We first prove that the inequality |V +
j | ≥ |V −j | + 2 cannot hold strictly. Suppose

otherwise. The stable set P = V +
j \{uj} would be such that 2|P | ≥ |V |+1, implying

again that C is unbalanced. Thus, it can be only |V +
j | = |V −j |+ 2. If |V | is odd, this

is not possible and the first part of the statement is proven.

Consider therefore the case where |V | is even. Observe that C can be partitioned

into k branches B(uj), one departing from each node of the odd cycle uj, j = 1, . . . , k

(Fig 4.5 (i)). By contradiction, suppose that for all j = 1, . . . , k removing (uj, uj+1)

yields a tree Tj whose bipartition satisfies |V +
j | = |V −j | + 2. Remark that, when we

remove two consecutive edges (uj−1, uj) and (uj, uj+1) the corresponding trees Tj−1

and Tj are such that: V +
j−1 ∩ B(uj) = V +

j ∩ B(uj) and V −j−1 ∩ B(uj) = V −j ∩ B(uj);

V +
j−1 \ B(uj) = V −j \ B(uj) and V −j−1 \ B(uj) = V +

j \ B(uj) (Fig 4.5 (ii) and (iii)).

Following this remark and recalling that 2 = |V +
j | − |V −j | = |V +

j−1| − |V −j−1|, by

elementary algebraic manipulations it follows that |B(uj) ∩ V +
j | = |B(uj) ∩ V −j | + 2

(Fig 4.5 (iv)). Therefore, one can build a stable set P of C by selecting in each

branch B(uj), all nodes in B(uj) ∩ V +
j , and by including or excluding uj depending

on j being even or odd, i.e.

P =

 ⋃
j=1,...,k

V +
j

 \
 ⋃

j=1,...,k
j odd

uj

 .

The corresponding stable set has therefore size |V |+k−1
2

≥ |V |
2

+ 1, contradicting the

hypothesis that C is a balanced 1-tree.
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u1
u2

u3u4

u5

B(u1)

B(u2)B(u5)

B(u3)B(u4)

u1
u2

u3u4

u5

(i) (ii)

u1
u2

u3u4

u5

u1
u2

u3u4

u5

+2

+0+0

+2+0

(iii) (iv)

Figure 4.5: The nodes of the 1-tree can be partitioned into branches departing from
each node of the odd cycle (i). Each branch is a tree, therefore a bipartite graph,
whose sides are indicated by a black and a white square. Removing two consecutive
edges of the odd cycle modifies the bipartition of the so-obtained trees as represented
in (ii) and (iii). Supposing, by contradiction, that the removal of each edge of the
cycle yields an unbalanced tree contradicts the hypothesis that the 1-tree is balanced
(iv).
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Figure 4.6: There always exists an edge belonging to the odd cycle of a balanced
1-tree which, removed, yields a balanced tree.

An illustration of Lemma 4.6.5 is given in Fig. 4.6.

Lemma 4.6.6. Let B ∈ B be an optimal basis associated to x∗ and consider any

1-tree component Ci(Vi, Ei) of GB. There exists an edge (ui, vi) ∈ κ(Ci) which, if

removed, yields a tree with all of its stable sets Pi satisfying |Pi| ≤
⌈
|Vi|
2

⌉
.

Proof. By Lemma 4.6.4, Ci is balanced. By Lemma 4.6.5, we can remove an edge

(ui, vi) ∈ κ(Ci) in order to obtain a bipartite graph, which is balanced or nearly

balanced depending on the parity of |Vi|. Let us denote by V +
i and V −i the two sets

of the bipartition and suppose w.l.o.g. |V +
i | =

⌈
|Vi|
2

⌉
and |V −i | =

⌊
|Vi|
2

⌋
(Fig. 4.7 (i)).

By contradiction, suppose that there exists a stable set Pi of C ′i(Vi, Ei \ (ui, vi)) such

that |Pi| >
⌈
|Vi|
2

⌉
. Consider Pi ∩ V +

i and Pi ∩ V −i . Clearly neither V +
i , nor Pi are

stable sets of Ci, because Ci is a balanced 1-tree. This implies that ui, vi ∈ Pi ∩ V +
i .

Because B is optimal, by Lemma 4.6.3, x∗ is optimal for the linear relaxation of

(STAB) on GB. A feasible solution x̃ for FSTAB(GB) can be obtained as

x̃j =


0 for j ∈ V +

i \ Pi
1 for j ∈ Pi ∩ V −i
1
2

for j ∈ (V −i \ Pi) ∪ (Pi ∩ V +
i )

Because |V −i ∩ Pi| > |V +
i \ Pi|, for this latter solution

∑n
i=1 x̃i ≥

|Vi|+1
2

which contra-

dicts optimality of x∗ on FSTAB(GB) (Fig. 4.7 (ii)).
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V +
i V −i

V +
i \ Pi

V +
i ∩ Pi

V −i \ Pi

V −i ∩ Pi

V +
i V −i

V +
i \ Pi

V +
i ∩ Pi

V −i \ Pi

V −i ∩ Pi

(i) (ii)

Figure 4.7: An illustration of the proof of Lemma 4.6.6.

Theorem 4.6.1. Consider (STAB) and its linear relaxation (FSTAB). Suppose

x∗i = 1
2
∀ i = 1, . . . , n is an optimal solution of (FSTAB) and B is an optimal

basis associated to x∗, composed by k 1-tree components Ci(Vi, Ei), i = 1, . . . , k.

Then, zcorner(B) = n−ko
2

, where ko ≤ k is the number of odd components among Ci,

i = 1, . . . , k.

Proof. For all i = 1, . . . , k define

Wi = {(x, y) ∈ Z|Vi| × R|Ei|+ : xu + xv + yuv = 1 ∀ (u, v) ∈ Ei}

and partition (x, y) according to components Ci into {(xi, yi)}, i = 1, . . . , k. Prob-

lem (corner(B)) can be split into k independent problems, one for each connected

component of GB, because zcorner(B) =
∑k

i=1 z(Ci), where

z(Ci) = max{1Txi : (xi, yi) ∈ Wi} (4.10)

By optimality of B and Lemma 4.5.1, (4.10) admits an optimal (0, 1)-valued solution

(xi, yi), such that xi is the incidence vector of a stable set Pi of nodes in Ci. By

Lemma 4.6.4, because B is an optimal basis, Ci is balanced and therefore |Pi| =

z(Ci) ≤
⌊
|Vi|
2

⌋
. By Lemma 4.6.5, there exists an edge (ui, vi) ∈ κ(Ci) such that

C ′i(Vi, Ei\(ui, vi)) is a bipartite graph which is balanced or nearly balanced, depending

on |Vi| being even or odd, respectively. Moreover, by Lemma 4.6.6, C ′i is such that

all its stable sets have size at most
⌈
|Vi|
2

⌉
.



4.6 Optimizing over the corner relaxation 101

This implies that a maximum stable set of Ci corresponds to the side of the bipartition

of C ′i with has cardinality
⌊
|Vi|
2

⌋
and does not contain (ui, vi). Therefore, there always

exists in Ci a stable set of cardinality
⌊
|Vi|
2

⌋
, implying z(Ci) =

⌊
|Vi|
2

⌋
, which completes

the proof of the theorem.

Next, we show that if the graph is connected and its maximum matching has size⌊
n
2

⌋
, there always exists an optimal basis that has only one connected component.

Lemma 4.6.7. Let G be a connected graph on n nodes. Consider (STAB) and its

linear relaxation (FSTAB). Suppose x∗i = 1
2
∀i = 1, . . . , n is an optimal solution

of (FSTAB). There exists an optimal basis B associated to x∗ which has only one

connected component if and only if G admits a perfect matching, if n is even, or a

nearly perfect matching, if n is odd.

Proof. Let us first show that the condition is sufficient.

If n is even and G admits a perfect matching, it is possible to incrementally build a

spanning tree of G, such that all edges of the perfect matching belong to the tree. This

can be done by adding to the tree, at each iteration, first an edge of the matching,

and then an edge of the cutset separating the nodes in the tree from the nodes outside

the tree. By construction, a maximum stable set in this spanning tree has size n
2
.

Moreover, because the tree is bipartite, both sides of the bipartition correspond to

maximum stable sets of the spanning tree. Now, recall that G admits x∗ as an optimal

solution of (FSTAB). This implies that G cannot be bipartite, hence there exists an

edge between two nodes on the same side of the bipartition. Adding this edge to the

spanning tree yields a 1-tree with an odd cycle. It follows that an optimal solution

of (FSTAB) on the 1-tree is x∗, proving that the 1-tree corresponds to an optimal

basis.

If n is odd and G admits a nearly perfect matching, consider G−v, the graph obtained

from G by removing node v and all its incident edges, where v is the only exposed

node of the matching. Remark that G − v may not be connected. Because G − v
admits a perfect matching, every connected component has an even number of nodes.

Applying the same procedure described for the case of n even, it is possible to build a

forest spanning G−v, in such a way that all the edges of the nearly perfect matching

belong to the forest. The maximum stable set in this forest has cardinality n−1
2

. It
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is then possible to connect v to the forest, in order to obtain a spanning tree of G,

whose maximum stable set has at most cardinality n+1
2

. In this case, a maximum

stable set of the tree is given by the side of its bipartition which contains v. Recalling

that x∗ is an optimal solution of (FSTAB), it follows that there cannot exist a stable

set of size n+1
2

. This implies that there exists an edge between two nodes in the side

of the bipartition that contains v. We can add this edge to the tree, in order to obtain

a 1-tree with an odd cycle, such that the optimal solution of (FSTAB) on the 1-tree

has value n
2
.

In order to show the converse recall that, by Lemma 1.6.1, for a bipartite graph B

of n nodes, n = ν(B) + α(B), where ν(B) and α(B) are the size of the maximum

matching and of the maximum stable set in B, respectively. By Lemma 4.6.6, given

an optimal basis associated to x∗, which consists of a unique 1-tree, it is possible to

remove an edge of the odd cycle of the 1-tree, in order to obtain a tree such that

its maximum stable set has cardinality
⌈
n
2

⌉
. This implies that in the same tree, the

maximum matching has cardinality
⌊
n
2

⌋
. Therefore, G has a perfect matching, if n is

even, or a nearly perfect matching, if n is odd.

An illustration of Lemma 4.6.7 is given in Fig. 4.8: the graph represented in (i) does

not admit a perfect matching and there does not exist an optimal basis composed by

a unique 1-tree component; for instance, the 1-tree depicted in (ii) corresponds to

a basis that is not optimal (the corresponding corner relaxation is unbounded); the

graph represented in (iii) has a perfect matching and an optimal basis composed by

a unique 1-tree component is depicted in (iv).

Theorem 4.6.2. Let G be a connected graph on n nodes. Consider (STAB) and its

linear relaxation (FSTAB). Suppose x∗i = 1
2
∀ i = 1, . . . , n is an optimal solution of

(FSTAB). There exists an optimal basis B associated to x∗ such that zcorner(B) =
⌊
n
2

⌋
if and only if G admits a perfect matching, if n is even, or a nearly perfect matching,

if n is odd.

Proof. By Lemma 4.6.7 there exists an optimal basis associated to x∗, which is com-

posed by a unique 1-tree if and only if G admits a perfect matching, if n is even,

or a nearly perfect matching, if n is odd. Under this assumption, applying Theorem

4.6.1 with k = 1, it follows that zcorner(B) = n−1
2

, if n is odd, and zcorner(B) = n
2

if n is

even.
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Figure 4.8: An illustration of Lemma 4.6.7.
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Theorems 4.5.1 and 4.6.2 imply Theorem 4.3.1.

Theorem 4.6.2 highlights the unlucky possibility where a basis yields an extremely

weak corner relaxation. On the other hand, there may be the chance of choosing a

basis which provides a much stronger corner relaxation, as shown in the next theorem.

Theorem 4.6.3. Suppose that there exists a partition of V into triangles, i.e., cliques

of size 3. Then there is an optimal basis B associated to x∗ such that zcorner(B) = n
3
.

Proof. Such a basis has n
3

connected 1-tree components corresponding to the partition

into triangles. By Theorem 4.6.1, because ko = n
3
, zcorner(B) = n

3
.

A sufficient condition for V to be partitioned into triangles is established by [26] and

amounts to requiring that the minimum node degree is at least 2
3
n. A random graph

G(n, p) almost surely has such a partition whenever n = 3k and p ≥ O( 1
n0.6 ) [51].

4.7 Optimizing over the intersection closure

Because bounds from corner relaxations can be significantly different, instead of re-

lying on a single basis, it may be advantageous to consider the intersection of the

corner polyhedra associated to all bases.

We now study problem (int(B)). By Theorem 4.4.2, (int(B)) can be expressed as

zint(B) = max
n∑
i=1

xi

s.t. xi + xj + yij = 1 ∀ (i, j) ∈ E
yij ≥ 0 ∀ (i, j) ∈ E∑

(i,j)∈C yij ≥ 1 ∀C ∈ C.

(4.11)

Proposition 4.7.1. zint(B) ≥ n
3
.

Proof. Consider vector x′i = 1
3
∀ i ∈ V , yij = 1

3
∀(i, j) ∈ E. We want to prove

feasibility of x′. For every induced odd cycle C ∈ C, denote by l(C) the length of the
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cycle. For every C ∈ C the corresponding odd cycle constraint is satisfied:

∑
(i,j)∈C

yij =
l(C)

3
≥ 1,

where the last inequality follows by l(C) ≥ 3 ∀C ∈ C. All the other constraints

are trivially satisfied by x′, and this implies that
∑n

i=1 x
′
i = n

3
is a lower bound for

zint(B).

We now state a sufficient condition for zint(B) to be n
3
.

Theorem 4.7.1. Assume that there exists a partition of V into cliques of size at

least 3. Then zint(B) = n
3
.

Proof. Assume G(V,E) can be partitioned in h cliques {Qi}, i = {1, . . . , h}. Denote

by V (Qi) the set of nodes in Qi and define the size of every clique as s(Qi) = |V (Qi)|.
Note that every clique Qi of size at least 3 contains exactly

(
s(Qi)

3

)
triangles, and each

node is in
(
s(Qi)−1

2

)
triangles. Remark also that every odd cycle inequality of type∑

(i,j)∈C

yij ≥ 1, C ∈ C,

can be rewritten in term of the x variables as∑
i∈C

xi ≤
l(C)− 1

2
, C ∈ C.

Consequently, for each i ∈ {1, . . . , h}, summing up all triangle inequalities on clique

Qi yields the valid inequality(
s(Qi)− 1

2

) ∑
i∈V (Qi)

xi ≤
(
s(Qi)

3

)
,

which implies ∑
i∈V (Qi)

xi ≤
(
s(Qi)

3

)(
s(Qi)−1

2

) =
s(Qi)

3
. (4.12)
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Summing up inequalities (4.12) over the cliques in the partition, we get

n∑
i=1

xi ≤
1

3

h∑
i=1

s(Qi) =
n

3
.

By Proposition (4.7.1), zint(B) ≥ n
3
. The two results imply zint(B) = n

3
.

Theorems 4.5.1, 4.6.3 and 4.7.1 imply Theorem 4.3.3.

4.8 Optimizing over the strict corner relaxation

Assume that x∗i = 1
2
∀ i = 1, . . . , n is an optimal solution to (FSTAB). If m > n

there are many optimal bases associated with x∗. Let B be one of these bases. In

this section we study the strict corner relaxation of (STAB), obtained by relaxing

non-negativity of the strictly positive basic variables. The strict corner is a tighter

relaxation than the corner relaxation, because the latter relaxes non-negativity of all

the basic variables, i.e., also degenerate basic variables. Note that the strict corner

relaxation does not depend on the choice of B, since all degenerate bases associated

with x∗ have the same non-degenerate basic variables.

Observe that all the edge constraints are tight at x∗. Therefore, problem (strict(x∗))

reads:

max
n∑
i=1

xi

s.t. xi + xj + yij = 1 ∀ (i, j) ∈ E
yij ≥ 0 ∀ (i, j) ∈ E
xi ∈ Zn ∀ i ∈ V.

(STR)

The main result of this section consists in showing that (STAB) and strict(x∗) have

the same optimal value.

Theorem 4.8.1. If x∗i = 1
2
∀ i = 1, . . . , n is the optimum of (FSTAB), zSTAB =

zstrict(x∗).
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Proof. zSTAB ≤ zstrict(x∗) because (STR) is a relaxation of (STAB). By Lemma 4.5.1

(i), (STR) has an optimal solution that is 0-1. This solution is feasible for (STAB).

Therefore zSTAB ≥ zstrict(x∗).

Together with Theorem 4.5.1, this implies Theorem 4.3.2.

Even though zstrict(x∗) = zSTAB, optimal solutions to (STR) are not always feasible

for (STAB) when (FSTAB) has alternate optimal solutions. However, when x∗ is the

unique optimal solution to (STAB), the following holds.

Theorem 4.8.2. Suppose that x∗i = 1
2
∀ i = 1, . . . , n is the unique optimal solution

to (FSTAB). Then the optimal solution to (STR) is 0-1.

Proof. Follows immediately from Lemma 4.5.1 (ii).

4.9 Strengthening the LP relaxation with the de-

scription of the corner polyhedron

In this section we study the strength of (LP∩corner(B)) for an optimal basis B of

(FSTAB) associated to x∗i = 1
2
∀ i = 1, . . . , n.

Theorem 4.9.1. Given graph G(V,E), let B be an optimal basis of (FSTAB) asso-

ciated to x∗i = 1
2
∀ i = 1, . . . , n. Suppose that B is composed by k 1-tree components

Ci(Vi, Ei), i = 1, . . . , k. Then n−k
2
≤ zLP∩corner(B). If G is the complete graph on n

nodes, zLP∩corner(B) = n−k
2

.

Proof. We start by proving n−k
2
≤ zLP∩corner(B). By Theorem 4.4.1, the intersection of

(FSTAB) and corner(B) is given by (FSTAB) plus the odd cycle inequalities of (4.4).

Therefore we can express problem (LP∩corner(B)) on G in terms of the x variables

as:

zLP∩corner(B) = max
n∑
j=1

xj

s.t. xi + xj ≤ 1 ∀ (i, j) ∈ E
xj ≥ 0 ∀ j ∈ V∑

j∈κ(Ci)
xj ≤ |κ(Ci)|−1

2
i = 1, . . . , k.

(4.13)
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Observe that problem

zclique = max
n∑
j=1

xj

s.t. xi + xj ≤ 1 ∀ (i, j) ∈ E
xi + xj ≤ 1 ∀ (i, j) /∈ E
xj ≥ 0 ∀ j ∈ V∑

j∈κ(Ci)
xj ≤ |κ(Ci)|−1

2
i = 1, . . . , k,

(4.14)

is obtained from (4.13) by adding constraints relative to the edges of the complement

graph. This implies zclique ≤ zLP∩corner(B). Remark also that, letting B′ = B∪{(i, j) /∈
E}, (4.14) corresponds to problem (LP∩corner(B′)) on Kn, the clique defined on

the node set V . This is because N ′ = N indexes the same 1-tree components Ci,

i = 1, . . . , k. We first show zclique ≤ n−k
2

. Partition V into subsets K = {j ∈
V : ∃ i ∈ {1, . . . , k} with j ∈ κ(Ci)} and V \K. The objective function of (4.14) can

be rewritten as
∑

j∈K xj +
∑

j∈V \K xj. Summing up constraints xi + xj ≤ 1 for all

edges of Kn with both ends in V \ K we obtain
∑

j∈V \K xj ≤
|V \K|

2
. Similarly, the

odd cycle inequalities imply

∑
j∈K

xj =
k∑
i=1

∑
j∈κ(Ci)

xj ≤
k∑
i=1

|κ(Ci)| − 1

2
=
|K| − k

2
.

Therefore,
n∑
j=1

xj ≤
|V \K|+ |K| − k

2
=
n− k

2
.

It remains to prove that a feasible solution of (4.14) with value n−k
2

exists. Such a

solution can be easily constructed by arbitrarily choosing one node for each odd cycle

κ(Ci) i = 1, . . . , k and assigning 0 to the corresponding x variables, while setting all

remaining x variables to 1
2
.

The second statement follows directly from the fact that, when G is itself a clique,

problems (4.13) and (4.14) coincide and B′ = B.

Theorem 4.9.2. Given an optimal basis B associated to x∗i = 1
2
∀ i = 1, . . . , n, the

difference between zcorner(B) and zLP∩corner(B) can be at most n/8, and there are graphs

for which this bound is tight.
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Proof. By Theorem 4.6.1, zcorner(B) = n−ko
2

. By Theorem 4.9.1, zLP∩corner(B) ≥ n−k
2

.

It follows that the greatest gap between zcorner(B) and zLP∩corner(B) can occur when

(k − ko) is maximized. Because the maximum number of even 1-tree components in

a basis is at most
⌊
n
4

⌋
the theorem follows. For a clique Kn with n multiple of 4, we

can find a basis with exactly n
4

even 1-tree components. In this case, by Theorem

4.9.1, zcorner(B) − zLP∩corner(B) = n
8
.

By Theorems 4.5.1 and 4.9.2, Theorem 4.3.4 is proven.





Chapter 5

A concave heuristic for the stable

set problem

Heuristic algorithms are very useful not only to be applied stand-alone, when deter-

mining the optimal solution of a problem is prohibitive from a computational point

of view. Indeed, also in the framework of exact methods, heuristics can enhance

efficiency by providing good incumbent solutions. For example, heuristic methods

can be combined with branch-and-bound and branch-and-cut methods to facilitate

pruning of subtrees or intensifying reduced-cost fixing.

The literature shows a very rich variety of heuristics for 0-1 MILPs, including the

pivot-and-complement method of Balas and Martin [6], the tabu-search-based method

of Løkkentagen and Glover [54], OCTANE of Balas et al. [5], the local branching by

Fischetti and Lodi [34], the relaxation induced neighborhood search (RINS) by Danna

et al. [27], the pivot, cut and dive heuristic by Eckstein and Nediak [30], and the

feasibility pump heuristic by Fischetti and Lodi [33]. For a review of the state of

the art heuristics for mixed integer and binary programs we recommend [2] and [19].

We will describe in more detail the pivot, cut and dive [30], and the feasibility pump

heuristics [33] in Section 5.2.

In this chapter we present a concave reformulation for set covering problems, where

integrality constraints are dropped and the original linear objective function is re-

placed by a concave one, penalizing fractional values. When a local integer optimum
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of the concave problem is generated, a heuristic solution of the original problem has

been found. This task can be accomplished quite efficiently by means of the Frank-

Wolfe algorithm. The choice of a suitable parametric concave function allows us to

regulate the smoothness of the objective function and to achieve sparseness of the

local optimum. When applied to the edge formulation of the stable set problem,

additional properties of local optima can be established. Namely, if the parameter of

the objective function belongs to a certain range, binary valued variables of the local

optimum can be fixed, allowing for a dimensionality reduction of the problem.

In Section 5.1 we describe some properties of concave programming problems and we

introduce the Frank-Wolfe method; in Section 5.2 we present a couple of heuristics

for 0-1 mixed integer programs that exploit, directly or indirectly, a concave merit

function penalizing fractional solutions; in Section 5.3 we propose a concave heuristic

for set covering problems and in Section 5.4 we apply it to the stable set problem. In

Section 5.5 we establish a new fixing theorem for variables that are integer valued in

local optima and finally, in Section 5.6, we present some computational results.

5.1 Concave programming and the Frank-Wolfe

algorithm

In this section we introduce concave programming problems and the Frank-Wolfe

algorithm. We refer to [46] and [12] for further reading. A concave programming

problem consists in the minimization of a concave function over a convex set (or,

equivalently, in the maximization of a convex function over a convex set):

min f(x)

s.t. x ∈ D,
(5.1)

where D ⊂ Rn is non-empty, closed and convex and where f : A → R is concave on

a suitable set A ⊂ Rn containing D. Standard optimization techniques can fail in

determining a global optimum of (5.1), because of the existence of local minima that

are not global. In the literature, such optimization problems are referred as multiex-

tremal global optimization problems. Concave programming problems have, however,

some special properties that make them easier to handle than general multiextremal
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global optimization problems. In particular, if f is concave, its global minimum over

D is attained at an extreme point of D (see Theorem I.1 in [46]). It has been shown

that concave minimization problems are NP-hard, even in some special cases, as, for

example, the minimization of a concave quadratic function over a hypercube. In [46]

an overview of practical applications of concave minimization problems is presented.

Furthermore, the relationships between concave programming and integer program-

ming are investigated; in fact, it is shown that there exists a µ0 ∈ R such that for all

µ ≥ µ0 problems

min cTx

s.t. Ax ≤ b

x ∈ {0, 1}n

min cTx+ µxT (1− x)

s.t. Ax ≤ b

x ∈ [0, 1]n

are equivalent.

One of the most well-known iterative methods of nonlinear programming to solve

constrained problems of type

min f(x)

s.t. x ∈ X,

where f is continuously differentiable and X ⊆ Rn is non-empty, compact and con-

vex, is the Frank-Wolfe method, also called the conditional gradient method. The

algorithm, introduced in 1956 [37], was originally proposed for problems with a non-

linear quadratic objective function.

Starting from a feasible vector x0, the method generates a sequence of feasible points

{xk} according to xk+1 = xk + αkdk, where dk = (x̄k − xk) is a feasible direction at

xk, which is also descent, i. e. ∇f(xk)T (x̄k − xk) < 0, and the stepsize αk is positive

and such that xk + αkdk ∈ X. At each iteration, x̄k is obtained as a solution of the

linear program

min ∇f(xk)T (x− xk)
s.t. x ∈ X.

(5.2)

X is assumed to be compact, which guarantees that (5.2) has a solution. Intuitively,

x̄k is the furthest point of X along the negative gradient direction. The algorithm

generates points of the sequence by searching along descent directions. In this sense,

it can be viewed as a constrained version of the unconstrained descent algorithms,

like the gradient method. If the stepsize is chosen according to suitable rules like,



114 Chapter 5. A concave heuristic for the stable set problem

for example, the Armijo rule or the limited minimization rule, every limit point of

the sequence {xk} generated by the Frank-Wolfe method is a stationary point x∗ of

(5.2), i.e. a point satisfying ∇f(x∗)T (x− x∗) ≥ 0 ∀ x ∈ X [12].

In the special case where X is a non-empty polyhedral set and f is a continuously

differentiable concave function bounded below on X, the Frank-Wolfe algorithm with

unitary stepsize is guaranteed to converge in a finite number of iterations to a vertex

that is a stationary point of the problem [56]. Moreover, it is possible to choose

a random starting point x0 ∈ Rn, which may even not belong to X. The same

convergence properties of the algorithm can be extended to the case where X is a

polyhedral set in Rn that does not contain a line and f is a concave non-differentiable

function bounded below on X [57].

5.2 Concave heuristics for 0-1 mixed integer pro-

gramming

In [30] Eckstein and Nediak presented a heuristic for 0-1 mixed integer programming

based on the use of a concave merit function to measure integrality of solutions. The

concave merit function is zero at integer-feasible points and positive elsewhere in the

unit cube. The key layer of the method presented by Eckstein and Nediak consists in

using either individual pivots or Frank-Wolfe blocks of pivots to reduce the value of the

merit function, while trying to avoid excessive deterioration of the original objective

function. Pivots are selected on the base of local gradient information, leading to local

optimal solutions of the merit function over the feasible set. When a local optimal

solution is reached, that is not integer-feasible, a phase of probing is performed,

which consists in explicitly testing a list of possible pivots. If an adjacent vertex

is not found, which improves the merit function without excessively deteriorating

the original objective function, a convexity cut (or intersection cut) violated by the

current vertex is computed. Finally, if probing fails, and the resulting convexity

cut is too shallow, a recursive depth-first diving technique is applied, in order to fix

a possibly large group of variables simultaneously. When this operation yields an

infeasible problem, it is possible to backtrack and apply a complementary vertex cut.
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Consider a Mixed-Integer Linear Program (MILP) of the form:

min cTx

s.t. Ax = b

l ≤ x ≤ u

xi ∈ {0, 1} ∀ i ∈ I,

where A is a m× n matrix, I ⊆ {1, . . . , n} is the set of integer variables and li, ui ∈
{0, 1} ∀ i ∈ I. Dropping integrality constraints on variables in I yields the linear

programming (LP) relaxation of the MILP. Integer infeasibility can be measured

by means of a concave merit function defined as follows. Let φi : R → R, i ∈ I

be a concave, continuously differentiable function such that φ(0) = φ(1) = 0 and

φ(x) > 0 ∀ x ∈ (0, 1). The class of functions used by Eckstein and Nediak in their

experiments depends on a parameter α ∈ (0, 1) and is defined as:

φα(x) = 1−


(
x− α
α

)2

, x ≤ α(
x− α
1− α

)2

, x ≥ α

Note that the function attains its maximum value of 1 at x = α.

Define function ψ as:

ψ(x) =
∑
i∈I

φi(xi).

Eckstein and Nediak propose two rounding procedures, the ratio and the sum meth-

ods, to reach integer feasibility and preserve a good value of the objective function.

In the ratio method, simplex pivots are performed, where reduced costs are computed

on the base of local gradient information. First, the algorithm tries to select a pivot

that decreases the merit function and that does not increase the objective. If no such

pivot is possible, the pivot corresponding to least possible increase of the objective

function is chosen. In the sum method, integrality and objective improvement are

simultaneously taken into account by defining the merit function

ψ̂(x) = ψ(x) + wcTx,

where w > 0 weights the original objective function. The merit function ψ̂ is min-

imized over the polyhedral set defined by the feasible region of the LP relaxation.
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In this case, either individual simplex pivots can be performed, or the Frank-Wolfe

algorithm can be applied to perform block pivots, which saves time in highly degen-

erate problems. Eckstein and Nediak observed that the feasibility pump heuristic of

Fischetti, Glover and Lodi [33] is strongly related to the Frank-Wolfe algorithm.

The feasibility pump heuristic is a scheme for finding a feasible solution to general

MILPs, that performs quite successfully in finding heuristics even for hard instances,

and is currently implemented in many optimization solvers, both commercial and

open-source. The method rounds a sequence of fractional solutions of the LP relax-

ation, until an integer feasible solution is possibly found. More precisely, the heuristic

is applied to a MILP of the form min{cTx : Ax ≥ b, xj integer ∀ j ∈ I}, where A is a

m×n matrix and I ⊆ {1, . . . , n} is the set of integer constrained variables, and to the

polyhedron P = {x : Ax ≥ b} associated to the LP relaxation of the MILP. At each

iteration (called pumping cycle) a LP-feasible solution, that is, a solution x∗ ∈ P , is

rounded to an integer solution (with respect to variables in I) x̃, where x̃j = [x∗j ] if

j ∈ I and x̃j = x∗j otherwise, and [ · ] represents the rounding to the nearest inte-

ger value. A new fractional point x∗ is then obtained from x̃ as a point minimizing

∆(x, x̃) =
∑

j∈I |xj − x̃j| over P . The procedure terminates if x∗ = x̃, meaning that

x∗ is integer-feasible, or if a time or iteration limit is reached. Intuitively, starting

from a LP-feasible point, two (hopefully) convergent trajectories of points x∗ and x̃

are generated, such that points x∗ are LP-feasible but may not be integer feasible,

while points x̃ are integer, but may be not LP-feasible. Further improvements of the

basic version of the feasibility pump heuristic have been found in [36] and [3].

Eckstein and Nediak remarked that the feasibility pump heuristic corresponds in the

binary case to applying the Frank-Wolfe method to the minimization of the non-

smooth merit function ψ̂, with w = 0 and ψ =
∑n

i=1 φ(xi), where φ(x) = min{x, 1−
x}. Note that φ(x) is a concave function that is non-differentiable in x = 1

2
. For

a concave function f : Rn → R the supergradient ∂f(x) of f at x is a vector in Rn

satisfying

f(y)− f(x) ≤ ∂f(x)T (x− y)

It is then possible to define the supergradient ∂ψ(x) of ψ, in the following way: the

i-th component of ∂ψ(x) is set to 1 if xi <
1
2
, or to −1 if xi ≥ 1

2
. Starting from a point

x0, at each iteration k of the Frank-Wolfe procedure, a point xk+1 ∈ P is determined,
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such that

xk+1 = argmin
x∈P

∑
i : xki<

1
2

(xi − xki )−
∑

i : xki≥
1
2

(xi − xki )

= argmin
x∈P

∑
i : xki<

1
2

xi −
∑

i : xki≥
1
2

xi,

where, in the linear objective function, the costs correspond exactly to the compo-

nents of the supergradient of ψ evaluated in xk. This corresponds to a pumping cycle

of the feasibility pump heuristic, where a new fractional point xk+1 ∈ P is determined

according to the rounding [xk] of xk, as described above. Precisely:

xk+1 = argmin
x∈P

∑
i : [xki ]=0

xi +
∑

i : [xki ]=1

(1− xi)

= argmin
x∈P

∑
i : xki<

1
2

xi +
∑

i : xki≥
1
2

(1− xi)

= argmin
x∈P

∑
i : xki<

1
2

xi −
∑

i : xki≥
1
2

xi.

5.3 A concave heuristic for Set Covering

Consider now the set covering problem

min cTx

s.t. Ax ≥ 1m

x ∈ {0, 1}n,
(SC)

where A is an (m× n) matrix with aij ∈ {0, 1} and c ∈ Rn
+. The linear relaxation of

(SC) is

min cTx

s.t. Ax ≥ 1m

0 ≤ xi ≤ 1 i = 1, . . . , n.

(LSC)
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We propose the following concave reformulation for (SC), which is inspired by the

concave approximation of the step function described in [56]

min
∑n

i=1 ci(1− e−αxi)
s.t. Ax ≥ 1m

0 ≤ xi ≤ 1 i = 1, . . . , n,

(CSC)

where α > 0 is a parameter. The motivation for replacing the original objective

function by ψ(x) =
∑n

i=1 ci(1 − e−αxi), lies in the fact that f penalizes fractional

values simultaneously taking into account weights ci, i = 1, . . . , n of the original

objective function, see Fig. 5.1. Roughly speaking, the concave objective function ψ

f(x) = 1 - e-2x

f(x) = 1 - e-8x

f(x) = 1 - e-4x

f(x) = 1 - e-16x

f(x) = x

Figure 5.1: The concave function φ(x) = 1 − e−αx, plotted for different values of
parameter α.

discourages components of x from taking fractional values: as long as the parameter

α is sufficiently large (1 − e−αxi) tends to 1 for any xi ∈ (0, 1). As a consequence,

in the objective function fractional components of x tend to be weighted as if they

were 1-valued, while they contribute less in covering the constraints of the problem,

possibly requiring that other components are fixed to positive values.

It is possible to determine a local minimum of (CSC) by applying the Frank-Wolfe

method with unitary stepsize, starting from a random point x0 ∈ Rn. Rounding up

the vector returned by the Frank-Wolfe algorithm immediately provides an heuristic

for the original problem.
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5.4 Application to the stable set problem

We are interested in applying the concave heuristic to the stable set problem (STAB).

Given a graph G(V,E), a node cover of G is a set C ⊆ V such that each edge is

incident with at least one node of C. Suppose we are given a weight ci for each node

i ∈ V . The minimum weight node covering problem consists in finding the node cover

with minimum total weight and can be formulated as

min cTy

s.t. yi + yj ≥ 1 (i, j) ∈ E
yi ∈ {0, 1} i ∈ V.

(NC)

The linear relaxation of (NC) is

min cTy

s.t. yi + yj ≥ 1 (i, j) ∈ E
0 ≤ yi ≤ 1 i ∈ V.

(LNC)

Observe that y is a feasible solution of (LNC) (resp. of (NC)) if and only if x = 1−y
is a feasible solution of (FSTAB) (resp. of (STAB)). Therefore, vertices of (LNC) are

also half-integer, i.e. (0, 1
2
, 1)-valued, and those components that are (0, 1)-valued in

an optimal solution of (LNC) can be fixed (recall Theorem 1.7.3).

As a consequence, finding a concave heuristic of (NC) by determining a local minimum

ȳ of

min
∑n

i=1 ci(1− e−αyi)
s.t. yi + yj ≥ 1 (i, j) ∈ E

0 ≤ yi ≤ 1 i ∈ V.
(CNC)

immediately provides us with an heuristic solution x̄ of (STAB), namely x̄ = 1−dȳe.
This task can be equivalently accomplished by finding a local maximum of the concave

problem

max
∑n

i=1 cie
−α(1−xi)

s.t. xi + xj ≤ 1 (i, j) ∈ E
0 ≤ xi ≤ 1 i ∈ V,

(CSTAB)

which, rounded down, generates a feasible solution of STAB(G).
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Recall that the constraints xi ≤ 1 ∀ i ∈ V do not appear in the definition of

FSTAB(G), as G by assumption does not contain isolated nodes, implying that these

constraints are redundant. Remark also that we can drop constraints yi ≤ 1 ∀ i ∈ V
in (LNC), in order to obtain an equivalent minimization problem, i.e. a problem with

the same optimal solution:

min cTy

s.t. yi + yj ≥ 1 (i, j) ∈ E
yi ≥ 0 i ∈ V.

(LNC’)

In the literature this latter formulation of the node covering problem is very common,

due to the fact that, if ci = 1 ∀ i ∈ V , the dual linear program of (LNC’) is

the maximum matching problem [55], [68]. The feasible region of (LNC) is strictly

contained in that of (LNC’). In other words, there exists some feasible solution ỹ of

(LNC’) with some of its components strictly greater to 1, implying that x̃ = 1− ỹ is

not feasible for (FSTAB). Nevertheless, none of such feasible solutions is a vertex of

the polyhedron defined by (LNC’), as we clarify in the next proposition.

Proposition 5.4.1. ỹ is a vertex of P = {y ∈ R|V |+ : yi + yj ≥ 1(i, j) ∈ E} if and

only if x̃ = 1− ỹ is a vertex of FSTAB(G).

Proof. First, we show that if ỹ is a vertex of P , then ỹ ≤ 1. By contradiction, suppose

that ỹ is a vertex of P and that ỹu = 1 + ε, ε > 0, for some u ∈ V . Define y− and y+

as y−v = y+
v = ỹv ∀ v 6= u, y−u = ỹu − ε, and y+

u = ỹu + ε. Clearly, y−, y+ ∈ P and ỹ

can be obtained as a convex combination of y− and y+, contradicting the fact that

ỹ is a vertex of P . Therefore vert(P ) = vert(P ∩ [0, 1]|V |). Because P ∩ [0, 1]|V | is an

affine transformation of FSTAB(G), the thesis directly follows.

As a consequence, we can equivalently compute our heuristic by applying the Frank-

Wolfe algorithm to the following concave formulation of (NC)

min
∑n

i=1 ci(1− e−αyi)
s.t. yi + yj ≥ 1 (i, j) ∈ E

yi ≥ 0 i ∈ V.
(CNC’)
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5.5 Fixing integer variables of local optima

In this section we prove that, under suitable assumptions, it is possible to fix the

components of x that are integer valued in a critical point x∗ of (CSTAB). In the

following we assume G to be connected and ci ∈ Z, ci > 0 ∀ i ∈ V . We denote by

f : R|V | → R the convex, continuously differentiable function f(x) =
∑n

i=1 cie
−α(1−xi)

and, for any P ⊆ V , we define c(P ) =
∑

i∈P ci. Suppose x∗ is a (0, 1
2
, 1)-valued vertex

of FSTAB(G) and define S = {j ∈ V : x∗j = 1} and N(S) = {j ∈ V : x∗j = 0}.

Given a stable set S of G, define

β(S) = min {c(S) + 1, bω∗(G[N(S)])c} , (5.3)

where ω∗(G[N(S)]) is the optimal value of (FSTAB) on the subgraph of G induced

by nodes in N(S), i.e. ω∗(G[N(S)]) = max
{∑

i∈N(S) cixi : x ∈ FSTAB(G[N(S)])
}

.

Theorem 5.5.1. Suppose x∗ is a vertex of (CSTAB) such that |S| > 0 and

∇f(x∗)T (x− x∗) ≤ 0 ∀ x ∈ FSTAB(G). (5.4)

If 0 < α < − ln
β(S)− 1

β(S)
, then there exists a maximum stable set of G containing S.

Proof. First, observe that the condition on α is well defined, as the argument of the

logarithm is always nonnegative. This follows from the fact that S 6= ∅, implying

N(S) 6= ∅, as the graph is connected.

By Theorem 1.7.2, we only need to show that S is a maximum weight stable set in

G[S∪N(S)] , the subgraph of G induced by S∪N(S). Let us suppose by contradiction

that there exists a stable set S ′ of G[S ∪N(S)] such that c(S ′) ≥ c(S) + 1. To prove

the claim, we contradict condition (5.4). Recall that S ′ can be expressed in terms of

S and an augmenting subset I ⊆ N(S), such that I is a stable set of G and

S ′ = S ∪ I \ S(I),

where S(I) = S ∩ N(I). Consequently, c(S) + 1 ≤ c(S ′) = c(S) + c(I) − c(S(I))

implies

c(I) ≥ c(S(I)) + 1.
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Define now vector x′ ∈ Rn as follows:

x′j :=

1
2

j ∈ I ∪ S(I)

x∗j otherwise,

∀ j ∈ V . Note that nodes u with x∗u = 0 and x′u = 1
2

are such that u ∈ I. Because x′v =
1
2
∀ v ∈ S(I), it follows that x′ is a feasible solution of FSTAB(G). Furthermore, x′

contradicts condition (5.4), as

∇f(x∗)T (x′ − x∗) = α

∑
i∈I

ci

(
e−α

(
1

2
− 0

))
+
∑
i∈S(I)

ci

(
1

2
− 1

)
=
α

2

[
e−αc(I)− c(S(I))

]
> 0,

(5.5)

where the last inequality is implied by condition (5.5.1). In fact

e−αc(I)− c(S(I)) > 0 if and only if α < − ln
c(S(I))

c(I)
(5.6)

and the latter inequality is satisfied because α < − ln
β(S)− 1

β(S)
and either β(S) =

c(S) + 1, implying
c(S(I))

c(I)
≤ c(S(I))

c(S(I)) + 1
≤ c(S)

c(S) + 1
,

or β(S) = bω∗(G[N(S)])c, and therefore

c(S(I))

c(I)
≤ c(I)− 1

c(I)
≤ bω

∗(G[N(S)])c − 1

bω∗(G[N(S)])c
.

Hence, condition (5.6) is satisfied, contradicting that x∗ is critical point. Therefore,

S is a maximum weight stable set in G[S ∪N(S)] and, by Theorem 1.7.2, we can fix

to 1 the components of x in S, and to 0 those that are in N(S).

Remark 5.5.1. To prove Theorem 5.5.1 we exploited Theorem 1.7.2. Note that the

condition of such theorem is only sufficient, implying that there may exist a maximum

weight stable set of G containing S, although S is not a maximum weight stable set

in G[S ∪N(S)].

Remark 5.5.2. Given vectors x∗ and x̄i = 1
2
∀ i ∈ V , and defined S = {j ∈ V : x∗j =

1}, suppose that S is a maximum weight stable set in G[S ∪N(S)]. Then (x̄− x∗) is
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Figure 5.2: An illustration of Example 5.5.1
.

an ascent feasible direction if

∇f(x∗)T (x̄− x∗) =
α

2

[
e−αc(N(S))− c(S)

]
> 0,

which implies α < − ln c(S)
c(N(S))

. Roughly speaking, if α is sufficiently large, i.e. α ≥
− ln c(S)

c(N(S))
, x∗ does not fall into the basin of attraction of x̄. Note that, by convexity

of f , ∇f(x∗)T (x̄−x∗) > 0 implies f(x̄)−f(x∗) > 0. The analogous condition for the

linear relaxation (FSTAB) of (STAB) is c(S∪N(S))
2

− c(S) > 0, implying c(N(S)) >

c(S), that is satisfied if and only if x̄ is the unique optimal solution of (FSTAB) (see

Theorem 1.7.4).

Example 5.5.1. Consider G(V,E) with V = {1, 2, 3, 4, 5, 6, 7, 8} and

E = {(1, 2), (1, 3), (2, 3), (3, 4), (4, 5), (4, 6), (5, 8), (6, 7), (6, 8), (7, 8)}. Suppose that

ci = 1 ∀ i ∈ V . For α ≥ − ln 2
3
, vector x∗5 = x∗7 = 1, x∗4 = x∗6 = x∗8 = 0, x∗1 = x∗2 =

x∗3 = 1
2

is a local maximum of (CSTAB), as

∇f(x∗)T (x− x∗) = α
[
x5 + x7 + e−

α
2 (x1 + x2 + x3) + e−α(x4 + x6 + x8)

]
≤ 0,

∀ x ∈ FSTAB(G). In this case ω∗(G[4, 6, 8]) = 2, therefore β = 2, and we can

fix variables that are (0,1)-valued in x∗, for any − ln 2
3
≤ α < − ln 1

2
. Remark that

x̄i = 1
2
∀ i ∈ V is the unique optimum of (FSTAB).
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5.6 Computational results

We have performed computational experiments on the DIMACS benchmark instances1

to test the heuristic described in Sections 5.3 and 5.4. In these experiments, we per-

form a progressive fixing of blocks of variables, until we obtain an integer feasible

solution. To fix each block, we start from an initial value of parameter α and we

run the Frank-Wolfe heuristic 20 times. We then fix the integer variables of the most

integral local maximum found so far. If no variable can be fixed, we increase α by

a factor and repeat. If we have performed three consecutive blocks of fixing without

increasing α, we decrease its value by a factor. This corresponds to an automatic

tuning of α, which is necessary because the problems of the test set are very different

in their nature and structure. We repeat this procedure 100 times, and we finally

choose the best heuristic. For each instance, the initial value of α is chosen as the

lowest such that some variables can be fixed in a run of the Frank-Wolfe algorithm.

The results are shown in Table 5.1, where we report the objective value of the best

heuristic solution found by the algorithm, the overall number of blocks of fixing, and

the overall time (in seconds) needed to run the algorithm. The experiments have been

performed on a Intel Core i7 at 3.47 GHz. The algorithm shows some weaknesses,

especially in terms of efficiency. In fact, not only the results are often not comparable

with state-of-the-art metaheuristics [62, 64, 44], but also the time required to compute

the best heuristic solution is significantly high, due to the multistart implementation

and because we are not exploiting the combinatorial structure of the problem.

Though, on some difficult instances, as the MANN instances, the algorithm performs

quite well, as it can achieve good feasible solutions in a reasonable amount of time.

This may be due to the fact that these max clique instances are more dense than the

others, and therefore probably less degenerate. We have also tested a different scheme

of the algorithm, where the heuristic fixing is not performed till all the components are

integer, but it is terminated when the dimension of the problem has been reduced to a

tractable size, in order to solve this smaller instance as a MILP. In this setting, we can

reach the optimal solutions over all the MANN instances. Note that on some of the

hamming instances the maximum stable set is in fact computed in the preprocessing

step, consisting in solving (FSTAB) and fixing the integer valued variables of its

1Second DIMACS Implementation Challenge, http://dimacs.rutgers.edu/Challenges/



5.6 Computational results 125

Obj nb time[s] Obj nb time[s]
brock200 1 19 491 735 p hat1000-1 9 324 124023
brock200 2 9 225 302 p hat1000-2 31 418 36621
brock200 3 13 276 503 p hat1000-3 53 588 125331
brock200 4 15 239 176 p hat1500-1 9 353 386713
brock400 1 21 288 1228 p hat1500-2 43 527 461292
brock400 2 20 261 751 p hat1500-3 68 673 549517
brock400 3 20 342 1755 p hat300-1 8 226 3741
brock400 4 20 301 1285 p hat300-1 8 226 3741
brock800 1 17 354 33088 p hat300-2 20 326 4244
brock800 2 16 365 33916 p hat300-3 31 415 996
brock800 3 17 358 21075 p hat500-1 8 254 12815
brock800 4 16 376 28044 p hat500-2 30 316 9108
c-fat200-1 12 204 1243 p hat500-3 40 415 5248
c-fat200-2 24 178 587 p hat700-1 8 315 38488
c-fat200-5 58 177 556 p hat700-2 35 349 19183
c-fat500-10 124 290 44051 p hat700-3 49 434 18460
c-fat500-1 14 3652 16 san1000 8 249 72717
c-fat500-2 26 2786 463462 san200 0.7 1 16 281 478
c-fat500-5 64 471 107199 san200 0.7 2 12 358 175
hamming10-2 512 0 1 san200 0.9 1 70 307 42
hamming10-4 32 722 72208 san200 0.9 2 48 691 213
hamming6-2 32 0 0 san200 0.9 3 34 735 152
hamming6-4 4 141 13 san400 0.5 1 8 232 3228
hamming8-2 128 0 0 san400 0.7 1 21 258 2687
hamming8-4 15 302 415 san400 0.7 2 16 271 2350
johnson16-2-4 8 374 34 san400 0.7 3 15 311 2903
johnson32-2-4 16 707 1150 san400 0.9 1 53 427 2287
johnson8-2-4 4 176 1 sanr200 0.7 15 243 221
johnson8-4-4 14 337 12 sanr200 0.9 38 672 129
keller4 11 309 100 sanr400 0.5 10 266 4704
keller5 21 527 21443 sanr400 0.7 18 369 5493
keller6 - - -
MANN a27 126 8699 185
MANN a45 343 24234 1547
MANN a81 1098 71087 16204
MANN a9 16 565 1

Table 5.1: Computational results on the DIMACS instances.
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optimal solution.



Chapter 6

Conclusions and perspectives

This dissertation has focused on the edge formulation of the stable set problem,

investigating some polyhedral aspects concerning the polytope arising from the linear

relaxation of such formulation. This polytope, which we have called fractional stable

set polytope, is a very weak approximation of the stable set polytope, i.e. the convex

hull of the incidence vectors of stable sets of the graph. However, it seems to have a

special geometrical structure, that allowed us to characterize its bases and vertices.

In particular, we have established a necessary and sufficient condition for two (pos-

sibly fractional) vertices to be adjacent, extending a condition for vertex adjacency

on the stable set polytope, due to Chvátal. Our graphic characterization of simplex

pivots was also crucial to prove a bound on the diameter of the fractional stable set

polytope, equal to the number of nodes of the input graph. A direct implication

is that the Hirsch conjecture holds for our fractional polytope. Another byproduct

of the graphic characterization of bases is that we could easily design a simplex-like

algorithm that generates a sequence of integer vertices of the polytope without using

cutting plane techniques.

In addition, the structural properties outlined above let us gain insight on issues

related to the strength of the corner and other related relaxations in the context

of mixed integer linear programming. With respect to the MILP arising from the

edge formulation of the stable set problem, we have proven that the corner relaxation

can yield a very weak bound if the input graph admits a perfect or a nearly perfect
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matching; on the other hand, some related relaxations can be significantly stronger

than the corner relaxation.

Finally, we have presented a concave reformulation of the stable set problem, where

fractionality is penalized by means of a concave merit function. Exploiting the struc-

ture of our polytope, we could derive a condition for fixing variables that are integer

valued in a local optimum of the concave problem, which extends a well-known con-

dition due to Nemhauser and Trotter.

In the following sections we point out some observations and directions for future

research about the main topics of the thesis.

6.1 Vertex adjacency and the Hirsch conjecture

Chvátal’s condition about vertex adjacency on the stable set polytope directly im-

plies that the Hirsch conjecture holds for this 0-1 polytope. In fact, the incidence

vector of any stable set is a vertex of the stable set polytope. Therefore, if the sym-

metric difference between two stable sets induces a subgraph with several connected

components, sequentially inverting the assignment of zeros and ones on each of them

would generate a succession of integer vertices of the polytope.

Concerning the fractional stable set polytope, our definition of generalized symmetric

difference does not maintain this property, because a feasible {0, 1
2
, 1}-valued feasible

solution is not necessarily a vertex. This is why, in the proof of the Hirsch conjecture,

we needed to make sure that any intermediate feasible solution generated on the

path between two arbitrary vertices is still a vertex. A natural question arising at

this point is whether there exists an alternative definition of generalized symmetric

difference extending the properties of the symmetric difference in the 0-1 case. This

would probably facilitate the proof of the Hirsch conjecture, and could even help in

characterizing more precisely the distance between two arbitrary vertices, and hence

the exact diameter of the polytope.

Currently, we are also exploring alternative and more straightforward ways of proving

the bound of |V | for the diameter of the fractional stable set polytope, and it seems
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very likely that there are different paths in order to prove this result. We also suspect

that the length of diameter of the polytope depends somehow on the size of the maxi-

mum stable set in the graph: the furthest vertices is the polytope could in fact be the

empty solution and the maximum stable set. A future perspective consists therefore

in answering these questions, and in possibly validating our current intuitions.

6.2 A simplex-like algorithm for the stable set prob-

lem

As discussed in Section 3.6, our simplex-like algorithm is affected by the problem

of cycling, that can occur due the high degree of degeneracy of the problem. For

few instances of the DIMACS library we could almost instantaneously determine the

optimal solution by starting from the empty stable set and augmenting it at each

iteration through a non-degenerate pivot, in a primal fashion. The efficiency of our

primal algorithm relies on the fact that each simplex pivot is performed as a simple

graph transformation. This indicates that it would be significantly more interesting

to extend the current heuristic algorithm to an exact method of solution. To this

purpose, it will be crucial to devise a smart anti-cycling rule, as it is sometimes needed

to perform degenerate pivots to reach some improving neighboring vertices that are

not adjacent to the current basis.

6.3 The strength of the corner relaxation

Our results confirm the empirical study of Fischetti and Monaci [35]. They lead to

the following observations. The corner relaxation can be a very weak approximation

of the integer hull. Using cuts from multiple bases of the fractional stable set polytope

can greatly improve over using a single basis; for this line of research, see e.g. [28].

Degeneracy plays a major role. The stable set problem is highly degenerate, and

the difference in the bounds given by corner relaxations from two different optimal

bases can be arbitrarily large. Furthermore, the strict corner relaxation can be much

stronger than corner relaxations. Although generating cutting planes from the strict
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corner relaxation is difficult, this is another indication that, in the presence of LP

degeneracy, exploiting multiple degenerate bases for cut generation could give signif-

icantly better bounds than working with just a single basis. Finally, the strength of

the corner relaxation is not always a good indicator of the strength of the cutting

planes that can be obtained from it, when these cuts are added to the LP relaxation.

A future direction of research consists in extending these results to the weighted case.

6.4 A concave reformulation of the stable set prob-

lem

The current implementation of the concave heuristic described in Chapter 5 does

not seem very promising, especially for efficiency issues. Current state-of-the-art

metaheuristics are extremely fast in computing good solutions. Indeed, the week

point of our algorithm is that we don’t exploit the combinatorial structure of the

problem and that we solve it as a general linear problem. Probably an analogous

concave reformulation, applied to stronger formulations of the stable set problem

would yield better results. It would also be interesting to test the condition for

fixing stated in Theorem 5.5.1. This condition generalizes the well-known result

of Nemhauser and Trotter, but it may be still not likely to generate local optima

satisfying the requirements of Theorem 5.5.1.
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