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Chapter 1

Introduction

1.1 What are colloids and colloidal glass tran-

sitions?

Soft matter physics is a fascinating fundamental research field with a wide

range of applications. It comprises the study of liquids, colloids, polymers,

foams, gels, granulars as well as biological materials. Among these materials

colloids are of particular interest as they have a large variety of industrial

applications [44] and great biological importance (see ref [58] and references

within). Since colloids are of sizes ranging typically from 10 nm to 10 µm,

they are easily accessible to experiments. Moreover with the advancement

of computational power, numerical simulations of colloids have shed light on

experimental observations and theoretical predictions.

For many decades, a large effort has been devoted to understand the

so called “dynamical arrest” in colloidal systems, a mechanism that can be

1



1.1 What are colloids and colloidal glass transitions? 2

described as follows: For the simplest case of athermal colloidal particles,

such as hard-sphere (HS) colloids, the only control parameter is packing

fraction φ. For such systems, it has been observed that at high φ, the viscosity

increases dramatically. Since the viscosity is a measurement of the ability

to flow of a fluid, a high viscosity (typical of solids) signals a slowing down

of the particles dynamics. When φ = φg, the viscosity diverges and the

system structurally looks like a fluid, but mechanically behaves like a solid;

such“amorphous solid” is out of equilibrium since for φ > φg, the colloids are

dynamically frozen and no structural relaxation occurs in the system. There

is no change in the thermodynamics occur, i.e. it is a kinetic transition. We

will refer to this state as a “glass”.

The pioneering investigations of HS colloids by Pusey and van Megen

[42,53] have shown that the HS glass transition occurs at a colloidal packing

fraction φ ≈ 0.58. When instead of a simple HS potentials, systems with

softer potentials [33] or with short range attractive wells [37] are considered,

also the temperature T and the well width ∆ are the control parameters

together with φ. For such systems a richer dynamical behavior has been

found showing the presence of multiple glass transitions as described in Sec.

1.4. For all these systems the transition has been rationalized within the

framework of the Mode Coupling Theory (MCT) [21]. Despite suffering of a

shift of the actual glass transition value, MCT provides a good description

of simulation and experimental data.
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1.2 Mode Coupling Theory

MCT is a theory that describes the behavior of systems on approaching

the glass transition and has been used to locate the glass transition curves

in colloidal systems. The theory is able to describe the time evolution of

the normalized density autocorrelation function, through a set of integro-

differential equations that can be solved by knowing the static structure

factors of the system, which is the only input of the theory. The mechanism

of arrest is explained in terms of the so-called ‘cage effect’ [21, 22], where

particles at high densities become trapped by their nearest neighbors for

an increasingly long time. This mechanism manifests itself in the form of

a two-step decay of the density auto-correlation functions approaching the

liquid-glass transition.

MCT predicts the occurrence of a glass transition starting from a set of

integro-differential equations for the density correlators Φq(t) = 〈ρq∗(t)ρq(0)〉/S(q)

at different wave numbers q, where S(q) = 〈ρq∗(0)ρq(0)〉/N is the static struc-

ture factor and ρq(t) =
∑Ni

j=1 exp[iq · rj(t)]. The MCT equations of motions

(for Newtonian Dynamics)1 read, in the one-component case, as

Φ̈q(t) + Ω2
qΦq(t) + Ω2

q

∫ t

0

dt′mq(t − t′)Φ̇q(t
′) = 0 (1.1)

where Ω2
q = q2kBT/mS(q) is a characteristic frequency and mq ≡ Fq[Φk(t)] is

the memory kernel. The memory kernel mq ≡ Fq[Φk(t)] contains fluctuating

stresses and plays the role of a generalized friction coefficient.

1The MCT equations can also be generalized to the case of Brownian Dynamics which

is more realistic to describe colloidal suspensions. However, the long-time limit features

and main predictions are not affected by the different microscopic dynamics.
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Solving the full dynamical Eq. (1.1) close to any point on the liquid-

glass transition, Φq(t) is found to follow a typical two-step decay. A first

decay at short times corresponds to the characteristic time termed as β-

relaxation that particles employ to explore the cages formed by their nearest

neighbors. A second decay occurs at longer time, and is characterized by

the α-relaxation time associated to the structural rearrangements necessary

for restoring the ergodicity in the fluid. In between these two regimes, Φq(t)

displays a characteristic plateau whose height is associated to the size of

the cages in which particles are rattling before finally escaping. When the

dynamics slows down, the correlators form a longer plateau. At the ideal glass

transition, this plateau does not decay to zero. The height of the plateau is

known as the non-ergodicity parameter fq and at the transition

fij(q) = lim
t→∞

Φij(q, t) (1.2)

Taking the long-time limit of Eq. (1.1) one obtains,

fq/(1 − fq) = Fq[fk], (1.3)

where fq = limt→∞ Φq(t) is the so-called non-ergodicity parameter. Fq[fk] is

the Mode Coupling functional, which is bilinear in fq

Fq[fk] =
1

2

∫

d3k

(2π)3
Vq,kfkf|q−k|, (1.4)

The vertices Vq,k express the overlap of fluctuating stresses with the pair
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density modes and are uniquely determined by the equilibrium structure

Vq,k ≡ S(q)S(k)S(|q − k|)
ρ

q4
[q · kck + q · (q − k)c|q−k|]

2 (1.5)

where, ck = 1/[1 − ρS(k)] is the direct correlation function related to the

static structure factor S(k). Both ck and S(k) depend on thermodynamic

parameters such as density or temperature.

During the transition from liquid to glassy state, the system loses ergod-

icity and the non-ergodicity parameter fq jumps from zero to a finite value,

i.e. there is a bifurcation of solution of MCT equation (because fq = 0 is

always a solution of Eq. (1.3)).

Besides the occurrence of a liquid-glass transition, under specific condi-

tions, a system can display multiple glassy states, giving rise to the presence

of glass-glass transitions in the kinetic phase diagram. These multiple glasses

occur as bifurcations of the solutions of Eq. (1.3) upon variation of the con-

trol parameters. Across a glass-glass transition the non-ergodicity parameter

jumps discontinuously between two non-zero values. This transition is found

to terminate at an endpoint, named higher-order singularity, beyond which

one can go from one glassy solution to the other continuously. The higher-

order singularities can be of type A3, when the two glasses coalesce already

inside the glassy region, and of type A4 when the two glasses merge also

with the liquid solution right on top of the liquid glass line. The latter is a

very special point occurring at (φ∗, T ∗, ∆∗), which can be identified by finely

tuning the value of the control parameter ∆ [11, 51], and in its vicinity the

form of the decay of Φq(t) is predicted to be unique. The singularities of
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type Al occur due to variation of l − 1 control parameters [50]. The higher

order singularity A2 called fold can be identified with variation of one control

parameter. Similarly, an A3 singularity - called cusp - requires two control

parameters and A4 singularity - the swallowtail requires the variation of three

parameters.

It is well-accepted that the long-time relaxation of the correlators can

be described by a stretched exponential which is termed as Kohlrausch and

Williams-Watts (KWW) law

Φq(t) ∼ fq exp−(t/τq)βq

(1.6)

where fq, τq give an estimate respectively of the non-ergodicity parameter,

the α-relaxation time, while βq is the stretching exponent. While no general

analytic solution of the MCT equations is provided for Φq(t), its asymptotic

form close to the glass is known.

On approaching the liquid-glass transition, the correlators are described

by the Von Schweidler power-law decay [21]

Φq(t) = fq − A[t/τ(T )]b (1.7)

where, A and b are positive constants and τ is relaxation time. However, close

to a higher order singularity, Φq(t) shows a peculiar logarithmic dependence:

Φq(t) ∼ f c
q − h(1)

q ln(t/τq) + h(2)
q ln2(t/τq). (1.8)

The parameters f c
q , h

(1)
q , h

(2)
q are the critical non-ergodicity parameter and
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critical amplitudes of first and second order in the expansion in ln(t) [22]. It

is found that a specific value of the wave vector q∗ exists, at which h
(2)
q is zero,

thus allowing for a pure logarithmic decay of the correlator to be observed.

Hence, the correlators should display a characteristic concave (convex) shape

for q < q∗ (q > q∗) in a logarithmic time scale.

MCT predicts that the diffusivity should go to zero at the ideal glass

transition with a power-law dependence. This should apply independently

on the chosen path, and hence both along an isotherm

D ∼| φ − φg(T ) |γ(T ) (1.9)

and along an isochore

D ∼| T − Tg(φ) |γ(φ) . (1.10)

Here φg and Tg are, respectively, the critical values of the packing fraction and

temperature at the ideal glass transition, while γ is a non-universal exponent

that is also determined by the theory in terms of the exponents a and b. The

simple relation between these exponents is represented as follows

γ =
1

2a
+

1

2b
(1.11)

All the experiments are related to the exponent parameter λ is the one which

has a microscopic definition in terms of the MCT kernel. These exponents

are represented via the relation

λ =
Γ(1 + b2)

Γ(1 + 2b)
=

Γ(1 − a2)

Γ(1 − 2a)
(1.12)
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The value of λ is generally λ < 1, but for higher order singularity A3, A4,

λ = 1. By performing the power-law fits, following Eq. (2.2) and (2.3), we can

then trace the locus of points in the (φ, T ) phase diagram for which D → 0.

This line can be directly compared to the MCT glass line, as previously done

for other systems [33,47,62].

1.3 Integral equations

From Eq. (1.5) it is clear that the only inputs needed to solve Eq. (1.3) are

the number density ρ and the static structure factor S(q) of the system. The

latter can be obtained by solving the Ornstein-Zernike (OZ) equation [?]

through the use of integral equations [8] or it can be evaluated numerically

from simulations. There are a set of closures which are used to solve the OZ

equation for example; Percus-Yevick (PY), Rogers-Young (RY). The first

application of MCT to hard-sphere system predicted glass transition for a

packing fraction φg = 0.516 when using the PY approximation for the calcu-

lation of the static structure factor. For Square Well (SW) System, the static

structure factor both from PY and the mean-spherical approximation have

been used. The glass transition obtained from both the calculations show

the independence from the closure relations. When we replace the attractive

well with a finite repulsive step in the potential, the MCT calculations shows

different results obtained from PY and RY closure relations. Now, we will

describe the different closures use to solve the Ornstein-Zernike equation.



1.3 Integral equations 9

1.3.1 Percus-Yevick Approximation

The Ornstein-Zernike (OZ) equation for the pair correlation function h(r) is

h(r) = c(r) + ρ

∫

dr′c(|r − r′|)h(|r′|), (1.13)

where g(r) = h(r) + 1 is the radial distribution function and c(r) the

direct correlation function. The radial distribution function, g(r), represents

the probability to find an atom in a shell dr at the distance r of another atom

chosen as a reference point. On expanding Eq. (1.13), the pair distribution

function can be written as following

g(r) = exp[−βv(r)][1 + h(r) − c(r)] (1.14)

This is the Percus-Yevick approximation. Another important quantity is

the static structure factor Sq, which is the equal time correlation function

of the density variables in wave vector space. The Fourier transform of the

correlation function hq, is related to the static structure factor by the relation

Sq = 1 + ρhq. The OZ relation in the wave vector space can be defined as

Sq =
1

1 − ρĉq

(1.15)

The OZ relation given in Eq. (1.13) is closed using PY approximation.
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In order to solve OZ equation one use following PY closures for c(r)

g(r) = 0, r < σ (1.16)

c(r) = g(r)[1 − eβv(r)], r > σ (1.17)

Using the above closure relation in Eq. (1.13), we can rewrite the OZ

equation [3] in terms of the real factor function Q(r), defined for r > 0. For

0 6 r 6 R, R being the range of the potential (σ + ∆ in the present case),

one has

rc(r) = −Q′(r) + 2πρ

∫ R

r

dsQ′(s)Q′(s − r) (1.18)

as well as, for r > 0

rh(r) = −Q′(r) + 2πρ

∫ R

r

ds(r − s)h(|r − s|)Q′(s) (1.19)

The Fourier transform of Q(r) gives the static structure factor Sq

S−1
q = Q̂(q)Q̂(q∗) (1.20)

Q̂(q) = 1 − 2πρ

∫ ∞

0

dreiqrQ(r) (1.21)

The PY equation is of particular interest in the theory of simple liquids

because it is solvable analytically in the special case of the hard-sphere fluid

and of a Baxter fluid [4]. Also it has been successful in describing systems

with short-range attractions. PY suffers from the fact that it is thermo-

dynamically inconsistent, i.e. the equations of state calculated by different

routes are different.
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1.3.2 Rogers-Young Approximation

In order to improve the theory of classical fluids and to impose thermody-

namic consistency more refined integrals have been proposed. For example,

RY is an appropriate mixture of the Percus-Yevick (PY) and hypernated

chain (HNC) equation. The pair distribution function for HNC approxima-

tion is

g(r) = exp[−βv(r)][h(r) − c(r)] (1.22)

When we mix the PY and HNC approximation, the resulting equation is

g(r) = exp[−βv(r)][1 +
exp[(h(r) − c(r))f(r)] − 1

f(r)
] (1.23)

When r = 0, f(0) = 0, Eq. (1.23) reduces to PY approximation. As r

increases, f(r) approaches to unity, and Eq. (1.23) reduces to HNC approx-

imation. The simple mixing function,

f(r) = 1 − exp(−αr) (1.24)

where α is the adjustable parameter used to achieve thermodynamic consis-

tency. In addition to thermodynamic consistency, it has been shown that RY

leads to accurate radial-distribution-functions for repulsive potentials [10].
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1.4 Recent studies of multiple glasses in col-

loids

1.4.1 Attractive Colloids

When HS colloids are in solution with non-absorbing polymers, they experi-

ence an effective short-range attraction that can be used to control the phase

behavior of the system [37]. In simulations, such system can be imitated

by complementing the hard-core repulsion with an attractive square-well

(SW [59]). The phase diagram of SW systems together with the dynam-

ical phase diagram (in which the glass line is located) have been widely

studied for different values of the well width ∆ and well depth ǫ. MCT

predictions [5,11,16] for the dynamics of the SW model at high densities re-

vealed an intriguing behavior. Indeed, when the range of the well width ∆ is

reduced down to a few percent of the particle diameter, a reentrant glass line

is observed in the temperature-concentration phase diagram. This results in

two different kind of glasses: a first glass (named repulsive or hard-sphere

glass), which is found at high temperature T , is driven by the packing of

particles, while a second glass (named attractive glass) is observed at low

T , when energetic effects are dominant and particles remain caged in their

attractive wells. In between the two glasses, at intermediate temperatures,

a reentrant liquid region occurs. Therefore at the same concentration it is

possible to go from one glass to the other by lowering T and passing through

a pocket of liquid states arising from the competition between energetic and

entropic effects occurring at intermediate T [46]. At even higher densities, a
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glass-glass line is observed, which terminates at an endpoint (A3 singularity).

Associated to these multiple glasses and reentrant melting, MCT predicts the

Figure 1.1: Packing fraction φ vs temperature T phase diagram, (a) the
reentrance has been observed along the liquid-glass line predicted from MCT
[11]. There are two glasses: repulsive glass and attractive glass meeting at
a common point. (b) The experimental phase diagram [37] in concentration
vs packing fraction plane show the same reentrant behavior.

occurrence of anomalous dynamics, which results in a logarithmic (rather

than two-step) decay of the density auto-correlation functions approaching

the endpoint singularity, as well as in a subdiffusive behavior of the parti-

cles mean-squared-displacement (MSD). Most of these predictions have been

confirmed by several simulations [40,59,60] and experiments [14,37]. In par-

ticular, in simulations, this has been possible by investigating the shape of the

isodiffusivity lines i.e. lines where the self diffusion coefficient is constant [17]

in the phase diagram for small diffusivity values. These lines maintain the

same shape of the MCT glass line at all (sufficiently small) values of D, so
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that they provide a useful reference to establish whether a reentrance (and

eventually associated anomalous dynamics) is present.

1.4.2 Soft Colloids

The successful predictions of MCT for the SW system paved the way for

applications of the theory in a wide variety of soft matter systems. In par-

ticular, MCT has been used to describe the arrested behavior of several,

purely repulsive systems. Among these are star polymers [29], i.e. long poly-

mer chains anchored onto a central core, where the number of chains (arms)

varies the softness of the particles, bridging HS colloids (in the limit of very

large arm number) to polymer chains (when the arm number is limited to

2). While one-component star polymer solutions only display a glass driven

by packing of the stars [18], binary mixtures of stars of different arm num-

bers and sizes have been shown to display multiple glassy states through a

combined effort of MCT, simulations and experiments [33].

In the kinetic phase diagram, the star polymer mixture produces three

type of glasses; at low concentration of small stars, a single glass due to the

arrest of large stars and a double glass due to the arrest of both large and

small stars. The high concentration of small stars, brings an asymmetric

glass which differs with structural and rheological properties with respect to

other glasses. Despite indications that anomalous dynamics could be present

in these systems [30], a clear evidence from MCT predictions has not been

provided. In contrast, a recent theoretical study of binary, size-asymmetric

HS mixtures has reported the occurrence of higher-order singularities and a
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Figure 1.2: The figure represents the kinetic phase diagram in size ratio δ
and number density ρ2σ

3
1. The dashed lines are schematic curves to separate

the liquid region from glassy region. (a) The MCT [33] approach predicted
the multiple glass transitions. (b) The experimental [33] study for different
mixture of star polymers predicted 3 different glasses: single glass, double
glass and asymmetric glass.

variety of different glasses [54].

1.4.3 Purely repulsive colloids

Without necessarily turning to mixtures, it was recently realized that one-

component systems with distinct length scales in the interaction potential

(the so-called core softened models) are also promising candidates for de-

tecting thermodynamic and dynamic anomalies [19,20,26,27,34,55]. Among

these, the simplest model is the square shoulder (SS) model, where the hard-

core is complemented by an additional repulsive corona. This model has been

used to describe the behavior of some metallic glasses [57] or complex mate-

rials like micellar [35] or granular systems [13], as well as primitive models of

silica [25] and water [26]. The system has three control parameters; packing
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fraction φ, ∆ and temperature T .

Recent MCT calculations reported the existence of multiple glass transi-

tions also for the SS system both under compression and cooling [51]. The

kinetic phase diagram for SS system in (φ, T ) plane as predicted from MCT

is shown in Fig. 1.3. On solving the MCT integral equations, the SS sys-

tem predicts liquid-glass line for ∆ = 0.13. A peculiar behavior of the SS

model, with no counterpart in other investigated systems, is the prediction

of a disconnected glass-glass transition with two endpoint singularities. The

Figure 1.3: The phase diagram in the right panel and left panel have been
plotted in (φ, Γ) plane, where Γ = 1/kBT . The mode coupling theory (MCT)
calculation for SSS using RY approximation originates (a) a disconnected
glass-glass line represented by red curve for ∆ = 0.13 and terminated with
end point singularities. (b) On increasing ∆ = 0.15, the glass-glass line
moves and merge with liquid-glass line, gives rise to two glassy phase. Two
blues horizontal and vertical schematic lines are drawn as a guideline to eye
in order to observe the reentrance.

red curve in Fig. 1.3 (a) represents the glass-glass line terminating in two end

point singularities. These singularities are obtained for the specific values of
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the control parameters. With sufficient increase of shoulder width ∆ = 0.15,

the disconnected glass-glass line merge with liquid-glass line giving rise to

reentry phenomenon. We plot two schematic horizontal and vertical lines in

Fig. 1.3 (b) as a reference. These two lines intersects the liquid-glass line into

two different points and bring two glass-liquid-glass regions which underlines

the melting of the glass on increasing φ along y-axis and the melting of the

glass on decreasing T along x-axis. We will give a clear understanding of the

higher order singularities and different closures used in MCT equations in

Sec. 1.2.

The MCT predictions for the SS system pave the way to confirm these

anomalous dynamics and to explore the kinetic phase diagram by numerical

simulations. Before going into the detailed description about the numerical

study and results, we describe some basic elementary techniques and prop-

erties which will be useful for understanding the thesis

1.5 Mean Square Displacement and diffusion

coefficient

We previously discussed, simulations on short range attractive colloids have

shown the anomalous behavior of the diffusivity. Usually, such phenomenon

can be highlighted through a systematic study of quantities such as the mean

square displacement (MSD), that for a system of N particles, can be defined



1.5 Mean Square Displacement and diffusion coefficient 18

as

〈r2(t)〉 =

〈

1

N

N
∑

i=0

(ri(t) − ri(0))2

〉

(1.25)

Figure 1.4: The behavior of mean square displacement is described at differ-
ent time scales.

There are three regimes characterizing the motion of particles in a fluid

and that can be identified in the behavior of the MSD. A first regime, occur-

ring at short timescale, is related to the free motion of particles that do not

experience any collision with their neighbors. If the system is described by

Newtonian dynamics, such free motion is described by a ballistic behavior

and the MSD is characterized by a quadratic dependence in time,

〈r2(t)〉 ∝ t2 (1.26)
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The second regime, occurring at intermediate times corresponds to a situ-

ation in which diffusion is strongly limited upto the region where the particles

are trapped in a“cage” formed by the neighboring particles. Due to the cage

effect, each particle rattles inside the cage and the effect of this mechanism

on the MSD results into a transient plateau whose height gives an estimation

of the average size of the cage. After a finite period of time, particles get the

way out of their own cages and start to diffuse. The recovery of the diffusion

at large time scales is signaled by a linear behavior of MSD with time t.

〈r2(t)〉 ∝ t (1.27)

The whole diffusive motion of the particle is shown in Fig. 1.4. Indeed,

following the Einstein relation [24], one has that

lim
−→
t→∞

〈r2(t)〉 = 2dDt (1.28)

where, d is the dimension of the system. The slope of the MSD, for the long

time intervals gives the self diffusion constant D. In a three dimensional

system, the self-diffusion constant is defined as

D = lim
−→
t→∞

〈r2(t)〉

6t
(1.29)

The diffusive behavior of the particle is preserved until the dynamical

arrest occurs. In fact, when the system gets more and more viscous, then

particles rattle inside the cage for longer and longer time, thus forming a

plateau in the MSD that extend over a several decades. In the glassy state,
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the diffusive regime is never recovered and particles remain trapped in the

cage forever.

1.6 Plan of the thesis

In this section, we give an outline of the thesis. In Chapter 2, building on the

theoretical predictions Sperl et al., we perform an extensive simulation study

for SS system. We compare our simulation results with MCT predictions.

The dynamical phase diagram shows the reentrance due to cooling which

is observed in terms of diffusion anomaly along isochores. We also perform

novel MCT calculations using as input the partial structure factors obtained

within MD, confirming the simulation results. This new calculation produces

liquid-glass line along with the disconnected glass-glass line terminating with

two A3 higher order singularities. These singularities generate a logarithmic

dependence of the density correlators as well as a subdiffusive behavior of the

mean squared displacement. The presence of these singularities is detected

indirectly as the glass-glass line buried inside the glassy regime. This work

has been published as [10].

In Chapter 3, we reported the MD simulation results for ∆ = 0.17. We

redraw the dynamical phase diagram which produces the reentrance due

to cooling but not upon isothermal compression. The diffusion anomaly is

only observed along isochores. The MCT calculations using as input the

simulation partial structure factors produce the liquid-glass line along with

the glass-glass line terminating with A3 and A4 higher order singularities.

In the present study for ∆ = 0.17, we locate A4 singularity in the liquid
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phase. During a precise analysis for A4 singularity we unveil a novel invariant

dynamics close to the glass line. The dynamics are indistinguishable along

the invariant line.

In Chapter 4, we make a detailed investigation for ∆ = 0.15 and explore

the low φ and T region of the phase diagram. The presence of the repulsive

length scale in the potential generates the activated process which allow us

to achieve the glass transition in low density region for T → 0. We study the

temperature dependence of diffusivity and observe the Arrhenius behavior.

We evaluate the Stokes-Einstein relation, finding a clear breakdown. In low

density region of the phase diagram, the system shows a transition from

fragile to strong behavior.



Chapter 2

Complex glassy dynamics in

Square Shoulder (SS) system:

simulations and theory

2.1 Introduction

The Mode Coupling Theory (MCT) has predicted a rich phenomenology for

square shoulder (SS) system where the system shows diffusion anomalies and

reentrant behavior. Numerical simulations are aiming to confirm these com-

plex behaviors which have not been performed so far. In this work we provide

an extensive and systematic characterization of the SS model by means of

event-driven molecular dynamics (MD) simulations in order to describe its

dynamical behaviour. We examine the one-component system as well as a

suitably chosen binary mixture which is considered in order to avoid crystal-

lization at high densities and low temperatures, and to probe a sufficiently

22
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slow dynamics. The Chapter is organized as follows. In Section 2.2 we de-

scribe the simulation methods and provide a summary of MCT. Then in

Section 2.3 we report our main results in four different subsections: in 2.3.1

we discuss the behaviour of the self-diffusion coefficient calculated from the

simulations and extract an ideal glass line using power-law fits of the data; in

2.3.3 we compare with existing MCT results and perform new calculations for

the binary mixture currently under study to closely compare the theoretical

results with the simulations; in 2.3.4 we then search for the existence of the

predicted MCT higher order singularities; finally in 2.3.5 we report results

for the non-ergodicity parameters obtained from theory and simulations to

assess the types of the glasses that the system forms at various packing frac-

tions and temperatures. Finally in Section 4.5 we discuss our findings and

provide some conclusions and perspectives.

2.2 Methods: Simulations and Theory

We study a 50 : 50 mixture of N = 2000 particles of species A and B

interacting via pairwise SS potential

Vij(r) =































∞, r < σij

u0, σij ≤ r < (1 + ∆)σij

0, r ≥ (1 + ∆)σij,

(2.1)

where i, j = A,B, σAA and σBB are the particles diameters (and σAB =

(σAA + σBB)/2), ∆σij = 0.15σij are the shoulder widths, and u0 = 1 is the
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shoulder height. The mass m of both particles is chosen as unit mass, while

σBB and u0 are the units of length and energy respectively. T is measured

in units of energy (i.e. kB=1).

Figure 2.1: Square shoulder potential for a generic additive binary mixture
of species i, j. Here σij = (1/2)(σi + σj) are the hard-cores, ∆σij are the
shoulder widths and u0 = 1 is the shoulder height.

The size ratio between the two species is σAA/σBB = 1.2. We also study

the simple monodisperse version of the SS system with the same width. How-

ever, the one-component system crystallizes before it has actually entered

a sufficiently slowed-down regime of dynamics, similarly to what generally

observed for one-component glass-formers. The introduction of a small dif-

ference in the species size allows to extend the non-crystallizing region of the

phase diagram and to explore liquid states with very low diffusivity. In this

way, we get as close as possible to the ideal glass line, which is defined as

the locus of points in the packing fraction-temperature state diagram having

diffusivity D → 0.

We perform event-driven MD simulations of the system as a function of T
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and packing fraction, defined as φ = (π/6)(ρAσ3
A + ρBσ3

B), being ρi = Ni/L,

L the edge of the cubic simulation box and Ni the number of particles for

each species. Simulations are performed in the canonical and microcanonical

ensemble. For the desired packing fraction an initial configuration is gen-

erated randomly and the particles velocities are extracted from a Maxwell-

Boltzmann distribution corresponding to the desired T . Then, the system is

equilibrated by performing MD simulations in the canonical ensemble with

appropriate rescaling of particle velocities. After the equilibration, for each

state point investigated, NVE simulations are performed for times rang-

ing from t = 102 for the highly diffusive state points, to t = 106 for the

most viscous state points. For all the simulations t is measured in units of

σBB(m/u0)
1/2. A detail understanding of the Event-driven MD simulation

can be found in Appendix.

A first comparison with MCT results is possible by the calculation of iso-

diffusivity lines, which typically preserve the shape of the ideal liquid-glass

line. These lines, along which the self-diffusion coefficient D is constant, are

evaluated by using the Einstein relation given in Eq. (1.29). Then we identify

state points with the same D and connect them by iso-D lines. Repeating

this procedure for lower and lower values of D, typically covering a few orders

of magnitude in D, we can extrapolate the D = 0-ideal glass line.

As we have already discussed in Chapter 1, at the ideal glass transition

the diffusivity D obeys powerlaw behavior along an isotherm

D ∼| φ − φg(T ) |γ(T ) (2.2)
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and along an isochore

D ∼| T − Tg(φ) |γ(φ) . (2.3)

We can extrapolate the arrested temperature Tg and arrested packing fraction

φg following the Eqs. (2.2) and (2.3) respectively. This line can be directly

compared to the MCT glass line, as previously done for other systems [33,

47,62]. Indeed, MCT usually overestimates the tendency to form a glass, so

that the two lines (numerical and theoretical) are always shifted by a certain

amount in both T and φ. However, the shape of the two lines has been

found, for all previously investigated systems, to be identical: this makes

possible to establish an effective bilinear mapping between the two curves

so that they scale on top of each other, as it has been done for the SW

model [48]. In the presence of singular state points, such as the MCT higher

order singularities [50], the mapping procedure allows to estimate their exact

location on the numerical phase diagram. Indeed, for the SW system, it was

shown [47] that one of such singularities does exist by performing ad-hoc

simulations near this particular state point. In the present work, we aim to

carry out a similar, detailed investigation for the SS system.

For the SW system, higher-order singularities have been predicted and

observed by numerical simulations and experiments. In particular, it was

shown [11, 12] that MCT predictions in this case are robust upon the use

of different closure relations such as mean spherical approximation (MSA)

or Percus-Yevick (PY). Different closures only produce a shift of the glass

transition lines with respect to each other.

For the SS system the situation appears to be more complex. Recent
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theoretical studies [49,51] have shown that for the same value of the shoulder

width, the use of two different closures, namely PY and Rogers-Young (RY),

as input to the theory (from now on denoted as RY-MCT and PY-MCT

respectively), provide qualitatively different results. While the liquid-glass

line obtained within RY-MCT displays two reentrances (and hence diffusion

minima and maxima) associated both to cooling (as in the SW system) and

to compression, no reentrance is observed using PY-MCT. In the latter case,

there is also no evidence of a glass-glass transition, while RY-MCT predicts

two glass-glass lines each terminating in a higher order singularity. However,

for the SS system at the investigated ∆, RY is expected to be superior to PY

in the description of its structural and thermodynamic properties. Therefore,

one of the aims of this work will be also to assess the validity of PY-MCT

or RY-MCT predictions in order to establish the correct scenario for the SS

system while approaching the glass transition.

2.3 Results for ∆ = 0.15

2.3.1 Iso-diffusivity lines and ideal liquid-glass line from

simulations

We start by reporting the behavior of D along isothermal and isochoric cuts in

the (φ,T ) phase diagram in order to assess the presence of diffusion anomalies,

perhaps like the ones observed in other core-softened potentials [19, 27, 43],

conceptually similar to the SS system. In order to observe the diffusion

anomalies in the system, we look at the dependency of the diffusion coefficient
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on packing fraction φ and T . We remark that all shown data points do not

crystallize and have reached a diffusive behaviour at long times, a condition

necessary in order to extract D. In the following, we report results only for A

particles, because the behaviour of the B particles is qualitatively the same

due to the quasi-one-component nature of the mixture.

Figure 2.2: Normalized diffusion coefficient DA/D0 as a function of (a) φ for
several isotherms, as reported in the labels. At all investigated T data show
a monotonic decrease with increasing φ, which clearly indicates the absence
of diffusion anomalies associated to compression/expansion.

Fig. 2.2(a) shows the normalized self-diffusion coefficient of A particles

DA/D0 as function of φ for several isotherms, varying from T = 5.0 (close to

the HS regime) to T = 0.3 (where the shoulder effect becomes prominent).

The normalization factor D0 = σBB

√

T/m is introduced to account for the

T dependence of the particles average velocities. The behavior of DA with

φ is similar along all studied isotherms: from the dilute limit DA decreases

monotonically at all T . For not too low T , the decrease becomes faster with

increasing φ and is compatible with a power-law decay, as discussed below.
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Notable exceptions are data points for T . 0.35: in these cases, a robust

power-law dependence is not observed with decreasing T . Indeed, at T = 0.3

the data show a much wider range of decay. For a deeper investigation we

have performed simulations for T ≤ 0.3 and many adjacent φ with mesh 0.05

in the range 0.40 ≤ φ ≤ 0.53. This has allowed us to carefully check that the

behavior of DA is strictly monotonic within numerical error at the studied

∆ value of the SS model. However, despite the absence of a diffusivity max-

imum, we are tempted to speculate that at these low T the observed slower

decrease of DA seems to be an effect of the competition between the two

length scales in the potential. Indeed, at low enough φ the system behaves

as being composed of effective HS particles of diameter σ + ∆, while with

increasing φ the bare hard-core at σ becomes dominant, thereby providing

an intermediate non-trivial φ-dependence of DA. Such scenario does not ex-

clude the presence of a non-monotonic behavior for different values of ∆,

that will be investigated in future studies. The studied normalized diffusiv-

ity varies between 10−2 to 10−6 in our numerical simulations. The highest

packing fraction φ we could access in our numerical accuracy is φ = 0.59 as

the system becomes extremely slower to equilibrate.

The monotonic behavior of diffusivity is understood by looking at MSD.

We monitor isotherm T = 0.4 and plotted MSD for several isochores as shown

in Fig. 2.3. In the short time limit MSD shows a ballistic regime. At the

intermediate time scale the particle get caged by it’s neighboring particles and

rattle inside the cage for a finite period of time. In the long time limit particle

escape from the cage and starts to diffuse. At low packing fraction φ < 0.50,

the particle diffuses faster and then the diffusive motion of the particle slows
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Figure 2.3: Mean Square Displacement along isotherm T = 0.4 for a set of
packing fraction φ. The particle diffuses slowly in a monotonic way with
increasing φ indicates the absence of diffusion anomaly due to compres-
sion/expansion.

down with increasing φ. The monotonic diffusive behavior of particle in MSD

clarify the absence of diffusion anomaly due to compression/expansion.

Next, we investigate the behavior of DA/D0 with T along several different

isochores, ranging between φ = 0.40 and φ = 0.59. This is reported in

Fig. 2.4. At lower φ the system does not reach a glass transition even for

very low temperatures. Indeed, in this limit, it can be considered as an

effective hard sphere of diameter σ + ∆. Since hard spheres are expected to

undergo a glass transition at φHS
g ∼ 0.58, we expect for the low-T limit that

the system becomes glassy for φHS
g [1/(σ + ∆)3] ∼ 0.381, in agreement with

our simulations.

For packing fractions 0.40 ≤ φ ≤ 0.56 the diffusion coefficient decreases

monotonically with T . For φ ≥ 0.57, DA/D0 becomes non-monotonic: from



2.3 Results for ∆ = 0.15 31

0 1 2 3 4 5
T

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

D
A

/D
0

φ = 0.40
φ = 0.45
φ = 0.50
φ = 0.525
φ = 0.55
φ = 0.56
φ = 0.57
φ = 0.58
φ = 0.585
φ = 0.586

Figure 2.4: Normalized diffusion coefficient DA/D0 as a function of T for
several isochores, as reported in the labels. The increase in the height of the
peak for φ > 0.57 show a non-monotonic behavior with decreasing T which
can be clearly observed in terms of a crossing of the data at high φ in Fig.
2.2. This non-monotonicity in normalized diffusivity signals the presence of
a diffusivity maximum associated to cooling.

the high T limit, it initially increases and then decreases, giving rise to the

presence of a diffusivity (local) maximum at intermediate T . When we plot

MSD for a fixed φ = 0.585 and vary the temperature, we observe a peculiar

dynamics in long time limit as shown in Fig. 2.5 (a). The diffusivity first

decreases with increasing T and then, at T = 1.5, the diffusivity increases

upto T = 1.0 and decreases again on lowering T . This fluctuation of the

particle dynamics in the long time limit of MSD can clearly observed in the

zoomed part as shown in Fig. 2.5 (b). The increase in the height of the peak

with increasing φ gives rise to the non-monotonic behavior of diffusivity. This

is also visible from the crossing of the high-T data (at large φ) in Fig. 2.2(a).
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Figure 2.5: Mean Square Displacement of particle has been plotted at a fixed
φ = 0.585 with varying T . (a) On lowering T particle dynamics slows down
and a nonmonotonic behavior of diffusivity has been observed at intermediate
1.5 ≤ T ≤ 0.6. (b) On magnifying the long-time limit of MSD, we could
observe that the diffusivity decreases and then increases again on lowering
T . This non-monotonicity in dynamics satisfies the anomalous behavior of
diffusivity along isochore as shown in Fig. 2.4.

The anomalous behavior of DA upon cooling is similar to that observed for

the SW system at high enough packing fractions when the width of the well

is of few percent of the particle size [59]. When we look at the long time

limit of MSD, the particle.

Compiling all data from Fig. 2.2 and Fig. 2.4 we are able to trace isodif-

fusivity lines in the phase diagram to be compared with the MCT glass lines.

The monotonic (non-monotonic) behavior of DA is reflected in the absence

(presence) of a reentrance in the iso-DA lines.

Fig. 2.6(a), shows the iso-diffusivity curves for three fixed values of nor-

malized diffusion coefficients: DA/D0 = 1.0×10−3, 1.0×10−4 and 1.1×10−5.

Each curve is obtained by extrapolating from Fig. 2.2 and Fig. 2.4 a set of i

states (φi, Ti) having the same value of DA/D0. As discussed above, we do
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Figure 2.6: Isodiffusivity lines for DA/D0 = 1.0× 10−3, 1.0× 10−4 and 1.1×
10−5, are extrapolated from the diffusivity plots in Fig. 2.2 and Fig. 2.4
along isotherms and isochores. The data display a reentrance in T (inset),
while no reentrance in φ is observed.

not observe a reentrant behaviour along φ even if we consider very low values

of DA/D0. On the other hand, for DA/D0 ∼ 10−5 a reentrance is observed

along T , as highlighted in the inset of Fig. 2.6(a). This is in agreement with

the presence of a diffusivity maximum at high enough φ (Fig. 2.4).

From this analysis we conclude that the liquid-glass line shows only a

reentrance along T . While the glass at high T corresponds to a HS glass, the

low-T glass could have a different nature and its properties will be elucidated

in the following.

As said above, the iso-DA lines are precursors of the ideal liquid-glass line,

where DA → 0. We can extrapolate this line where the simulated system
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Figure 2.7: We have shown the power-law fits of diffusivity with respect to
(a) φ and (b) T in semi-log scale within a fixed range of diffusivity.

should undergo dynamical arrest by performing power-law fits of the diffusiv-

ity both along isochores and along isotherms, following the MCT equations

given by Eq. (2.2) and Eq. (2.3). We do the power-law fit of bare diffusion

coefficient D as a function of φ and T in log scale. and extracted the arrested

temperature Tg and packing fraction φg with the corresponding γ.

We put all the fits together both along isotherms and isochores which are

shown in Fig. 2.8. In this way, we can extract both the transition values

φg and Tg where the system arrests and the associated power-law exponents

γ. These values are reported in Table 4.1. Note that no fits are performed

for T < 0.35 due to the fact that the data do not show a clear power-

law behaviour. Also for low values of φ some deviations from power-law

dependence are observed at low T .

The resulting ideal glass line is presented in Fig. 2.9 together with isod-

iffusivity lines. As expected the two branches, extrapolated by the different
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Figure 2.8: The power-law fits of diffusivity in log-log scale (a) along

isotherms with the formula DA |φ − φg(T )|γ(T ), and (b) along isochores with

the formula DA |T − Tg(φ)|γ(φ).

paths, merge continuously in the high-φ, low-T region of the phase diagram

and confirm the shape of the isodiffusivity lines. We note that the power-law

exponents obtained along each isotherm are consistent with previous esti-

mates for HS or SW systems. On the other hand, for the fits along isochores

the γ exponents are systematically lower, at times going below the lowest

limit predicted by MCT [21]. However, the values of γ obtained from the

fits should be taken with caution due to the significant variation of results

upon change of the chosen fit interval and relative distance to the transition.

Nonetheless, the values of φg and Tg extracted in the same way show only

little changes (of the order of a few percent), and hence they are robust.

We note that power-law fits along isochores could not be performed in

most systems with isotropic potentials, where the exploration of the low-

T region is preempted by intervening phase separation. For systems with
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T γ(T ) φg φ γ(φ) Tg

3.0 2.6 0.589 0.40 1.56 0.221
2.5 2.66 0.589 0.425 1.61 0.255
2.0 2.66 0.59 0.45 1.56 0.277
1.0 2.84 0.594 0.50 1.81 0.285
0.8 2.79 0.594 0.525 1.81 0.293
0.6 2.62 0.593 0.55 1.77 0.301
0.5 2.69 0.593 0.56 1.76 0.306
0.45 2.76 0.592 0.57 1.67 0.323
0.4 2.78 0.591 0.58 1.52 0.346
0.35 2.89 0.589 0.585 1.39 0.368

Table 2.1: Extrapolated values of γ(T ), φg, γ(φ) and Tg obtained from fitting
data of Fig. 2.6 (a) and (b) with MCT predictions of Eqs. (2.2,2.3) for the
diffusion coefficient DA. Error bars of the fit parameters typically amount
to a few percent for the values of φg and Tg, while the γ exponents can
vary systematically over different fit intervals, so they should be taken with
caution.

directional interactions where phase separation is suppressed by using a lim-

ited valence [31, 61], at low T bonding is the dominant mechanism of arrest

so that the dynamics is dominated by an Arrhenius (strong) behaviour [7].

Here, however, we do not find evidence of an Arrhenius dependence even

at very low T in the investigated window of densities, suggesting that the

system remains power-law (fragile). Indeed, in the SS system temperature

does not induce bonding, but rather has an effect on the excluded volume

of particles by changing the effective diameter. In this sense, the arrest at

low T remains of the same kind of the HS glass, so that a similar behaviour

(fragile) is then expected throughout the phase diagram. However, it is then

legitimate to ask, given that the nature of the glass transition remains the

same, whether a simple competition between two length scales is capable to

generate higher-order singularities as those predicted by MCT and related
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Figure 2.9: The extrapolated arrested (D → 0) glass lines from the fits

DA |φ − φg(T )|γ(T ) along isotherms and DA |T − Tg(φ)|γ(φ) along isochores
as shoen in Fig. 2.8. The arrested glass line shows a very good agreement
with isodiffusivity lines confirming the presence of reentrance in T , while no
reentrance in φ.

glass-glass transitions.

2.3.2 Verification of reentrance due to compression/expansion

for different ∆

In order to verify the reentrance in (T, φ) plane due to compression/expansion,

we did more simulations for different ∆. In Fig. 2.10, we plot the diffusion

along a set of isotherms varying between T = 1.0 and 0.2. The behavior of

DA with φ is monotonic along all studied isotherms: from the dilute limit
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DA decreases monotonically at all T . For not too low T , the decrease be-

comes faster with increasing φ and is compatible with a power-law decay,

as discussed below. We also verify the diffusivity for ∆ = 0.2 and 0.25 and

do not observe any non-monotonic behavior. This indicates the absence of

diffusion anomaly along isotherms which is a counter part of the reentrance

due to compression.

Figure 2.10: The behavior of self diffusion coefficient has been plotted with
φ for ∆ = 0.35.

2.3.3 Comparison with old and new MCT results: role

of the input structure factors and mapping to

simulations

We now compare the MD simulation results for the ideal glass line with

MCT predictions. While a mismatch of φg and Tg values is expected for the

theoretical and numerical glass lines, the two should share the same shape, as
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previously observed for a variety of glass-forming systems [17, 18, 27, 30, 62].

However, when referring to the RY-MCT calculations for ∆ = 0.15 [51],

it is immediate to notice that while the numerical curve shows only one

reentrance in T , the RY-MCT results display two of them, as shown in the

inset of Fig. 2.11. No reentrance is conversely observed for PY-MCT1. Under

this situation, we cannot perform a consistent mapping as previously done

for SW systems [47], because the difference in the shape of the liquid-glass

lines cannot be taken into account by a simple rescaling procedure. This

matter thus deserves further investigation.

For understanding the difference between theory and MD results, at first

we investigate the reliability of the different closures employed for producing

the input S(q) entering in MCT. In Fig. 2.11 S(q) evaluated within RY and

PY closures is shown together with that calculated directly from simulations

of the monodisperse SS system for a representative state point. As expected,

PY provides a rather poor estimate of Sq, since the height of its peaks and

its amplitudes do not agree with those of the Sq evaluated from MD, while

RY reproduces reasonably well the simulation results, as previously found for

other repulsive potentials [27, 28, 32]. The good agreement between RY and

MD S(q) is found for all studied state points. However, this comparison is

limited to the region of the phase diagram where the monodisperse system

does not crystallize. The quality of the input structure factors is reflected in

the better agreement of RY-MCT with the simulation iso-diffusivity lines. It

is therefore natural from now on, to refer to RY-MCT results as the relevant

theoretical predictions for the system.

1Courtesy of M. Sperl
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Figure 2.11: Static structure factors for a monodisperse SS system at
T = 0.5, φ = 0.45 calculated by MD simulations as well as solving the
Ornstein-Zernike equation within Rogers-Young (RY) and Percus-Yevick
(PY) closures. Inset: MCT results for the liquid-glass and glass-glass lines
using PY and RY.

However, although the shape of the RY-MCT liquid-glass line is more

similar to the MD results, with at least one reentrance recovered, there is

still a discrepancy between RY-MCT and MD simulations. In fact, both from

the analysis of D/D0 and from the iso-diffusivity lines we could not detect

the presence of a second reentrance (i.e. a diffusion anomaly) along φ (at

fixed low-T ).
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Figure 2.12: MCT results for the binary mixture under study using the static
structure factors calculated from simulations as input, labeled as SSIM

q −
MCT liquid glass (filled squares) and glass-glass (open squares). Arrest
curve drawn from φg (filled circles) and Tg (filled diamonds) obtained from
power-law fits of DA as in Fig. 2.6. Mapped MCT lines onto the arrest curve:
liquid-glass (filled triangles) and glass-glass (open triangles). Stars are the
two predicted higher order singularities AL

3 and AH
3 .
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Given this situation, we performed additional MCT calculations explicitly

incorporating the binary nature of the system under investigation. To avoid

to rely on a certain closure, we have used as inputs to the theory the partial

structure factors evaluated from MD simulations SSIM
ij (q). Hence, we have

solved the generalized version of long-time MCT equations (Eq. 1.3) for a

binary mixture [23] on a discretised grid of 1000 wave vectors up to a cut-off

value of qσBB = 65. This value is sufficient for the critical non-ergodicity

parameters along the liquid-glass line to decay to zero. In this way, we deter-

mine the liquid-glass and (if any) the glass-glass transition, and associated

non-ergodicity parameters.

The resulting liquid-glass line is reported in Fig. 2.12 together with the

arrest line extrapolated from the fits of DA. Despite the expected shift in the

control parameters, it now appears that the new MCT results for the mixture

are in full qualitative agreement with the simulation line, since the reentrance

in φ is no longer present. We can now operate a bilinear transformation,

as previously done [47, 48], to superimpose the MCT results onto the glass

line obtained from simulations. The parameters are chosen via a best fit

procedure, giving as a result

φ → 1.1046φ + 0.0038

T → 0.9052T − 0.0111 (2.4)

and the mapped glass lines are shown in Fig. 2.12.

MCT calculations predict a ‘disconnected’ glass-glass line, a scenario that

was also present in the one-component RY-MCT, albeit for lower values of
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∆ [51]. Luckily, this glass-glass line lies just inside, but very close to the

liquid-glass line so that signatures of the two A3 endpoints are in principle

detectable from simulations. When we study the dynamics far from this

glass-glass line, it behaves as a normal liquid. On moving close enough

to the glass-glass line in equilibrium phase the particle dynamics changes

drastically near these higher order singularities. Through our mapping, we

can now estimate the location of the two singularities, that will be referred

from now on as AL
3 and AH

3 , respectively the one at lower and higher φ. We

find AL
3 = (φ ∼ 0.53, T ∼ 0.26) and AH

3 = (φ ∼ 0.60, T ∼ 0.49). Both are

rather close to the liquid glass transition, the distance being ∆T ∼ 0.03 along

an isochore for AL
3 and ∆φ ∼ 0.06 along an isotherm for AH

3 respectively.

2.3.4 Searching for higher-order singularities

In this section we investigate the presence of the higher-order singularities

predicted by MCT in the numerical phase diagram. To this aim we concen-

trate on distinct paths in the phase diagram that allow us to approach closely

the two A3 points. We recall however, that both points are buried within

the glass region, hence they are not directly accessible in equilibrium; more-

over the behaviour of the observables that we examine are influenced also by

the presence of the nearby liquid-glass transition. In the following we will

only concentrate on species A, but we stress that the qualitative behaviour

is identical for type B particles.

We start by discussing the presence of AL
3 : we examine the dynamical

behaviour of the system along the isochore φ = 0.525 with decreasing T .
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Figure 2.13: MSD for a particles as a function of scaled time tD0 for φ = 0.525
as a function of T , indicated in the labels. The two vertical dotted lines
indicate as guides to the eye the regime of subdiffusive behaviour, which is
highlighted by the dashed line (∝ t0.5).

We recall that while the endpoint should be found at T ∼ 0.26, the system

becomes glassy according to MCT for T . 0.28 at this volume fraction.

Fig. 2.13 shows the MSD for A particles 〈r2
AA〉 along this path. We observe

that upon decreasing T the system shows a peculiar slowing down. Indeed, a

characteristic subdiffusive behaviour at intermediate times (0.1 . tD0 . 10)

is observed for T < 0.4. Hence, we observe a sort of three-step behaviour

of the MSD: after the ballistic transient, subdiffusion takes place for roughly

two decades in time, where 〈r2〉 ∼ tα with α ∼ 0.5. At long times the typi-

cal pattern of glass-forming systems takes place: a plateau later followed by
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long-time diffusion. Indeed, when T is very low, the system is approaching

the liquid-glass transition, that manifests itself in the MSD as the emergence

of the plateau. This is observed for T ≤ 0.3 and occurs at tD0 ∼ 102. The

plateau height is found to be ∼ 0.04σ2
AA. Its square root, which provides

a measure of the cage or localization length l0 of the glass, turns out to be

∼ 0.2σAA, roughly twice the typical HS cage length (lHS
0 ∼ 0.1σ). Indeed, the

packing fraction is significantly smaller than that of the HS ideal glass, due

to the effect of the shoulder. While the long-time behaviour, and associated

plateau, is controlled by the liquid-glass transition, the additional interme-

diate behaviour, which indicates the presence of a sub-diffusive regime, can

be associated to the presence of the higher order singularity.

The presence of subdiffusivity is a hint of a closeby higher order singu-

larity, but in order to provide a more convincing proof of its existence, we

now look at the behaviour of the density auto-correlations functions. A dis-

tinctive feature is the presence of a pure logarithmic regime for a certain

wave-vector q∗, where the second-order term of the asymptotic expansion

in Eq. 1.8 vanishes. Below and above q∗ the data should display a typical

concave-to-convex transition. To visualize this behaviour one should be close

enough to the AL
3 point, but far enough from the liquid-glass transition in

order to avoid that the final two-step decay covers most of the time-window

and preempts the observation of the logarithmic behaviour. We identify at

this φ the optimal temperature obeying these requisites as T = 0.375, for

which we show the collective normalized density auto-correlations functions

ΦAA
q (t) as a function of wave-vector in Fig. 2.14(a). Indeed, at this T we are
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Figure 2.14: The density autocorrelation functions ΦAA
q (t) for φ = 0.525 as a

function of time for (a) several wave vectors at T = 0.375. From top to bot-
tom, qσAA = 1.88, 2.81, 4.68, 5.63, 7.5, 10.32, 13.12, 17.82, 28.13. A concave-
convex shape transition is observed around q∗σAA ≈ 7.0 where the decay of
ΦAA

q (t) is almost purely logarithmic; (b) several T at fixed wave vector q = q∗.
From left to right, temperatures are T = 1.0, 0.6, 0.5, 0.4, 0.375, 0.35, 0.3, 0.29.

able to identify q∗σAA ≈ 7 where the decay of the correlators is purely log-

arithmic. Across q∗, the concave-to-convex transition in the shape of Φq(t)

with time is found. In Fig. 2.14(b), the T -dependence of the correlators at

fixed q = q∗ is shown. It is clear that with further decreasing T the system

approaches the liquid-glass transition, so that the signal of the logarithmic

decay gets lost. Indeed, the range where the logarithmic dependence (dashed

line) is valid shrinks upon reducing T . The evidence reported so far points

to the existence of a higher order singularity in the vicinity of the explored

path. While we cannot probe its exact location, since the system falls out of
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equilibrium before this can be accessed, it seems to be located within, but

not too far inside, the glassy region, compatibly with MCT predictions of a

disconnected glass-glass line.

Next we investigate the presence of the second singularity AH
3 . To ap-

proach this singularity, we monitor the isotherm T = 0.5 and check the dy-

namical behaviour with increasing φ. We recall that the endpoint should be

located at φ ∼ 0.6, while the system should become glassy around φ ∼ 0.593,

as estimated by the power law fits of DA. We repeat the same analysis as

done for AL
3 .
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Figure 2.15: MSD for a particles as a function of scaled time tD0 for T = 0.5
as a function of φ, indicated in the labels. The vertical dotted lines indicate
as guides to the eye the regime of subdiffusive behaviour, which is highlighted
by the dashed line (∝ t0.5).

We trace the position of AH
3 by moving along isotherm T = 0.5 of the
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phase diagram and understand the dynamics with increasing φ as shown. In

Fig. 2.15, we plot the MSD for a set of φ varying between 0.425 and 0.585

for a fixed value of T = 0.5. Following the usual behavior, at low density

(φ < 0.525) the particle diffuses as a normal liquid. With increasing φ, an

intermediate plateau region starts to appear and a clear subdiffusive region is

formed at φ = 0.585. The subdiffusivisity stays for two decades in magnitude

for the intermediate time scale (tD0) between 10−1 and 101. In long time

limit the particle escape from the cage and diffuses linearly with time. The

height of the plateau is ∼ 0.024σ2
AA gives the localization length l0 ∼ 0.15σAA

which is close value of typical HS cage length (lHS
0 ∼ 0.1σ).
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Figure 2.16: The figure shows (a) the density auto correlation functions for
qσAA ≈ 7.75 φ = 0.58 with decreasing T . (b) The appearance of concave and
convex shape for the state point φ = 0.58 at T = 0.5.

In addition to the subdiffusive behavior in MSD we verify the logarith-

mic decay in density auto-correlations functions. We do the similar check

as in case of AL
3 higher order singularity. From the previous analysis, we

understood for a critical qvector q∗, whose above and below, the density
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auto-correlation functions shows a transition from concave to convex shape.

We choose the state point φ = 0.58 for T = 0.5 and plotted ΦAA
q (t) for a

set of qvectors, where we could have a clear observation of transition from

concave and convex shape. For the critical value of qvector q∗ ≈ 7.75, we

do not see a pure logarithmic behavior as shown in Fig. 2.16 (b). The loga-

rithmic time window is very short (10−1) 6 tD0 6 10, less than two orders

of magnitude. In Fig. 2.16 (a), for q∗σAA = 7.75, the long time decay in

density auto-correlation function changes at φ = 0.58 on lowering the tem-

perature T . At high T limit (T 6 0.8), α-relaxation merge with each other.

In the intermediate temperature between T = 0.6 and 0.5, the density auto-

correlation function shows a logarithmic decay for a short time scale. On

further lowering T = 0.4, the α relaxation shows a extremely decay.

As shown in Fig. 2.16(b), for high φ > 0.57, the realization of logarithmic

decay in ΦAA
q (t) is in a very small interval of time scale less than 2 order of

magnitude (between 100 and 10−2). The decay in ΦAA
q (t) does not show a

clear picture of logarithmic behavior with increasing qvector. The two-step

relaxation in the density density correlator brings an impression of higher

order singularity. The interesting feature is reflected with three-step relax-

ation of density density correlator with increasing φ differently from usual

the two-step relaxation [59].

Next, we report ΦAA
q (t) at T = 0.5 for q∗σAA = 7.75 in Fig. 2.17 with

increasing φ. At high packing fractions, on lowering the temperature, the

three-step relaxation process becomes more prominent for intermediate wave

vectors (5.75 < qσAA < 13.6) and the time scale increases by one decade.

The logarithmic behavior in short time scale does not give a clear picture of



2.3 Results for ∆ = 0.15 50

Figure 2.17: The behavior of density autocorrelation functions ΦAA
q (t) with

scaled time tD0 has been shown at a fixed T = 0.5, with increasing packing
fraction φ.

higher order singularity. All the analysis for AH
3 singularity does not give a

clear picture of its presence. Indeed, also in this case, we observe subdiffusive

regime and logarithmic dynamics centered around a similar value of q∗. Also

in this case, the interference of the liquid-glass line does not allow us to probe

the anomalous time window for a significant amount of time. To shed light

on this point, simulations need to be performed for a system with a larger

∆ where the glass-glass line merges with the liquid-glass line so that the

anomalous dynamics can be approached in equilibrium.

The behaviour of the MSD, of Φq(t) with q not very close to the singu-

larity, the estimate of q∗, and finally also the approach to the liquid-glass
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Figure 2.18: (a) MSD and (b) Φq(t) calculated for q = q∗ for three state
points, indicated in the labels, which are located on the so-called line of
invariant dynamics (see Fig. 2.12).

transition, all these features appear to be indistinguishable from the previ-

ous case. This is shown in Fig. 2.18 where the MSD and Φq(t) at the same

q∗σAA ∼ 7.5 are reported for state points not too far to the liquid glass tran-

sition, but pointing to approach the two singularities. This result seems to

suggest that the correlators do not vary across the glass-glass transition or

may be they change following a non-monotonic variation as suggested by the

MCT results for the non-ergodicity parameters.

To discriminate between these two scenarios, we report in Fig. 2.18 also

the corresponding dynamical functions for a state point with the same long-

time dynamics (e.g. D/D0) but close to the middle (rather than endpoints)

of the putative glass-glass line. We find that also the MSD and Φq(t) for
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Figure 2.19: (a) MSD and (b) Φq(t) for q = q∗ for state points indicated in
the labels, along an isodiffusivity line with D/D0 ∼ 10−4 corresponding to
the line of invariant dynamics (see Fig. 2.12). The vertical lines marks the
boundary of the ‘anomalous’ time window, i.e. where subdiffusive behaviour
is present close the singularities.

this state point actually coincide (within our numerical resolution) with the

other two. This seems to exclude a non-monotonic variation of the non-

ergodicity parameters associated to glass-glass line as predicted by the theory.

Rather, and unexpectedly, we find that the influence of the glass-glass line

on the dynamics, sufficiently far from any liquid-glass transition, does not

depend on the particular position of the state points along the glass-glass

transition and that a similar anomalous dynamics is observed independently

of whether one approaches precisely the endpoints, i.e. the predicted higher
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order singularities, or another point in between them along the glass-glass

line.

We next investigate whether the two endpoints, not having any distinctive

feature with respect to other points along the glass-glass line, do really exist.

In other words we also want to explore where the glass-glass line terminates

on both sides. A way to clarify this point is to look along the isodiffusivity

line associated to the invariant dynamics discussed above and to compare

MSD and Φq(t) even beyond the glass-glass line boundaries. The results of

these comparisons are shown in Fig. 2.19. It can be clearly seen, within

our numerical accuracy, that for φ outside the range of the glass-glass line

boundaries we lose the invariant character of the dynamic observables, in

particular in the ‘anomalous’ time window (0.1 . tD0 . 4). Indeed, the

subdiffusive behaviour gets curved (i.e. losing the power-law behaviour) as

we go to either low or high φ. The deviations are more evident, as expected,

when the system becomes more far from the glass-glass line. These results

clearly point to a specific feature associated to the predicted glass-glass line,

i.e. the invariant dynamics, which, to our knowledge, was not predicted or

could be identified by MCT predictions. However, even if we do not find

evidence of what should be an intrinsic characteristics of the higher-order

singularities, i.e. an enhanced and extended in time logarithmic/subdiffusive

dynamics, we do find that the two endpoints mark the boundaries of the

glass-glass line. However, to all of this line seems to be associated the same

and equally extended in time logarithmic/subdiffusive dynamics.

At present we cannot judge whether this effect is a limitation of our

numerical accuracy, given to the significant distance to the glass-glass line
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and to the interplay of the liquid-glass transition. To shed light on this point,

simulations should be performed for a system with a larger ∆ where the glass-

glass line merges with the liquid-glass line and the anomalous dynamics can

be approached in equilibrium. This investigation is beyond the scope of the

present work.

Figure 2.20: (a) MSD and (b) Φq(t) calculated for q = q∗ for state points
indicated in the labels, having D/D0 ∼ 4×10−6. The vertical lines mark the
boundaries between anomalous and standard two-step regimes.

Finally we try to approach the liquid-glass ideal line. To do this, we move

again along an iso-diffusivity line to address the interference between two-

step and logarithmic dynamics. We show in Fig. 2.20 the MSD and Φq(t)

for very slow state points, for which D/D0 ∼ 4 × 10−6, in which we can

detect both ‘anomalous’ (for tD0 . 5) and standard two-step dynamics (for



2.3 Results for ∆ = 0.15 55

5 . tD0 . 200). Concerning the first regime, we substantially find confirma-

tion of the previous observations where the two-step dynamics was not yet

observed. A non-monotonic dependence of 〈r2〉 as well as Φq(t) is found in

the anomalous time window. Again, a subdiffusive behaviour is visible only

for packing fractions value close enough to the glass-glass line. Compared to

the previous data more far from the liquid-glass transition, the extension of

the subdiffusive window is minor (as it can be clearly seen focusing on a sin-

gle isochore in Fig.s 2.13 and 2.14). We cannot judge at present whether this

is a limitation of our numerical accuracy, given to the significant distance to

the glass-glass line and to the interplay of the liquid-glass transition. To shed

light on this point, simulations should be performed close to a even higher-

order singularity, i.e. the A4 rather than A3 point, where the anomalous

dynamics can be approached in equilibrium. This amounts to performing

simulations (and MCT calculations) at a different value of ∆ and is beyond

the scope of the present work.

Focusing on the long-time dynamics, we observe that the plateau height

of the MSD seems to decrease monotonically, while the height of the plateau

in Φq(t) shows a non-monotonic trend. This will be discussed in more detail

in the next paragraph where we will report the results for the non-ergodicity

parameters from the simulations. Another dramatic effect is visible: the

low φ data (e.g. φ = 0.40) although belonging to the same iso-D/D0 line

show a huge increase in the α-relaxation time: a clear manifestation of the

breakdown of the Stokes-Einstein relation. This is commonly observed in

glass-forming systems, approaching the glass transition. The amount of de-

viation is often interpreted in terms of dynamic heterogeneity of the system.
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We observe this effect being more pronounced at low/intermediate φ and low

T , where the effect of both length scales is active, probably giving rise to

a system which is more heterogeneous. A systematic investigation of these

effects has been described in next Chapter.

2.3.5 Non-ergodicity parameters from MCT and sim-

ulations

In this section, we show the behaviour of the non-ergodicity parameters calcu-

lated within MCT and extracted from the fits of the density auto-correlation

functions in the simulations.
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Figure 2.21: Critical non-ergodicity parameters for the A species calculated
within MCT along the liquid-glass (curves labeled from 1 to 5) and along
the glass-glass (curves labeled from 6 to 8) lines. The corresponding state
points and their position on the MCT lines are reported in the inset: a
non-monotonic behaviour with increasing φ is observed for both sets of data.
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We start by showing in Fig. 2.21 the ‘critical’ non-ergodicity parameters

fAA
q (MCT ) for the A species along the liquid-glass and the glass-glass lines,

calculated within MCT. The state points at which fAA
q (MCT ) are evaluated

are shown and numbered in the inset of Fig. 2.21. We find that along the

liquid-glass line the theoretical fAA
q (MCT ) follows two different types of be-

haviour: for φ ≤ 0.50, fAA
q (MCT ) at first decreases, showing a shift of the

peaks to larger wave vectors (from state point 1 to 3), while for φ > 0.50 at

all temperatures —below and above the reentrance— fAA
q (MCT ) maintains

its peaks and only grows around them in a continuous way (from state point 3

to 5). We note that the fAA
q (MCT ) of the lowest and highest T (states 1 and

5) corresponds to two glasses made, respectively, by effective hard spheres

of diameter σ + ∆ and hard spheres of diameter σ. It follows that the two

fAA
q (MCT ) can be superimposed on top of each other by simply readjust-

ing the diameters. In between these two limits, the system experiences the

competition between the two length scales, which results in a non-trivial and

non-monotonic behaviour of the non-ergodicity parameters. The crossover

between the two regimes arises in a region that cannot be associated with

any of the two higher order singularities.

Furthermore, we also show in Fig. 2.21 the evolution of fAA
q (MCT )’s for

the ‘disconnected’ glass, occurring upon crossing the glass-glass line. In this

case the non-ergodicity parameters are much larger and longer-ranged in q,

indicating more tightly-caged glasses, in analogy with previous observations

of repulsive glasses for star polymer mixtures [30]. In the present case, the

cage size is approximately one half of that of the first glass, as it can be

estimated by the q-range of the non-ergodicity parameters. We observe a
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non-monotonic behaviour when moving along the glass-glass line from low to

high density, similarly to what observed for the liquid-glass line.

We now extract the non-ergodicity parameters by fitting the density auto-

correlation functions close to the arrest line via the stretched exponential

of Eq. (1.6). For simplicity, again we focus only on species A, since the

results are formally identical for both species. We show in Fig. 2.22 the

behaviour of fAA
q along the liquid-glass line (for the state points labeled in

the upper inset). We find a behaviour that is remarkably similar to the MCT

predictions. Indeed, again we find that the non-ergodicity parameter shows a

non-monotonic behaviour (at fixed q) with increasing φ. While at low φ and

low T , fAA
q is compatible with that of a HS with effective diameter σ + ∆,

it decreases at first with a shift of the peaks at larger q for intermediate

densities. Then at a certain point, that we can roughly estimate as φ ≈ 0.50,

the peaks do not move further in q while fAA
q starts to increase in magnitude.

This continues until it behaves as the fq typical for HS of diameter σ. This

interpretation is reinforced by the fact that we can perfectly scale the low-φ

fAA
q on top of the high φ-one by simply scaling it for the effective diameter

(see lower inset). In addition, the behaviour of the stretching exponents

obtained from the fits seems to indicate an increase of βAA as the system

moves along the liquid-glass line with increasing φ. Hence glasses found at

lower T are considerably more stretched (βAA . 0.4) than those found at

higher φ.

Finally we could not estimate numerically the non-ergodicity parameters

close the disconnected glass-glass transition, due to the fact that this is buried

inside the glass phase. Hence, we do not have a numerical analogue of curves
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(6-8) in Fig. 2.21.
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Figure 2.22: (a): Non-ergodicity parameters obtained from simulations, fit-
ting the density auto-correlation functions with stretched exponential, for the
state points reported in the upper inset. The behaviour along the liquid-glass
line is strikingly similar to that of MCT predictions, reported in Fig. 2.21.
Lower inset: fAA

q for low φ (and low T ) (state point 1) is identical to that of
high φ (state point 6) upon a rescaling by the effective diameter σ + ∆; (b)
Stretching exponents βAA obtained from the fits as a function of wave vector
for the same state points considered in (a).



Chapter 3

Signature of Higher-order

singularity driving new

invariant dynamics in Square

Shoulder System

3.1 Introduction

In Chapter 2, we investigated the dynamical phase diagram for ∆ = 0.15,

where we observe two A3 higher order singularities buried inside the glassy

regime. We detect their position indirectly from the equilibrium phase. Now,

we aim to approach the A4 singularity in the liquid phase. Therefore we begin

the simulation for ∆ = 0.17 and investigated the phase diagram. During all

these analysis, we also found an unexpected invariant dynamics which has

not been observed in any other systems before. In this Chapter, we will

61
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discuss the results for ∆ = 0.17 and also give a detail description of the novel

invariant dynamics and associated dynamical properties.

Recent work on the Square Well (SW) system revealed the existence of A4

singularity in a three dimensional control parameter space [47]. The model

system has particles interacting through a hard-core repulsion complemented

by a short-range attractive well width with a few percent of the particles

diameter. The MCT glass-transition scenarios have been worked out for the

SW system [11] using Percus-Yevick (PY) approximation. There exists a

characteristic well width ∆ for the SW system which controls the position of

higher order singularities in φ, Γ, ∆ parameter plane, where Γ = u0/kBT .

In Sec. 1.2, we have given a brief description of higher order singularities.

Close to the higher order singularity the density autocorrelation function suf-

fers a bifurcation in the solution. In HS system, the system is driven by one

control parameter φ, which brings A2 point. The nonergodocity parameter

fq = 0 (see for more details in Sec. 1.2) is the only solution which is liquid

state. In SW system, for a certain value of square well width ∆ much smaller

than the hard-core diameter, the MCT predicts a reentrant behavior of the

liquid-glass line along with a glass-glass line which terminates with A3 singu-

larity in the temperature T and density φ phase diagram. The nonergodicity

parameter fq > 0 has two finite solutions fG
1 and fG

2 which characterize two

different glasses. Moving around A3 singularity, the values of fq changes

continuously. With a small increase in the well width ∆, the glass-line with

A3 point starts to shrink and makes A4 singularity to appear in the liquid

phase. A4 singularity appears at a special point (φ∗, T ∗, ∆∗) in the liquid

phase. At A4 singularity, fq exhibits more than two solutions. Apparently,
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at A4, there is coalescence of three glassy solutions; fG
1 , fG

2 and fG
3 . When

we pass through the glass-line, the value of nonergodicity parameter changes

discontinuously. For ∆ < ∆∗, the SW system always exhibits a glass-glass

transition line with A3 singularity as endpoints where as, for ∆ > ∆∗, there

is no cusp singularity. The morphology of these singularities is accompanied

by logarithmic variations of density auto-correlation functions as a function

of time and subdiffusive behavior of the MSD. MCT has also predicted the

diffusion anomalies (diffusion maxima or minima) along the liquid-glass line.

In comparison to our simulation study for SS system, we observe a dis-

connected glass-glass transition line terminating with two A3 higher order

singularities for ∆ = 0.15, the similar case for theoretical observation at

∆ = 0.13. With increasing ∆, the glass-glass line moves and merges with the

liquid-glass line which brings the A4 singularity on the liquid-glass transition

in equilibrium phase as predicted from theory. The theoretical calculations

has been done for ∆ = 0.17. The phase diagram shows the reentrance with

A3 and A4 singularities. So, we begin with simulations for ∆ = 0.17 aiming

to locate the A4 higher order singularity in liquid phase.

In this Chapter, we mostly concentrate on the numerical results for ∆ =

0.17. We have divided the Chapter in few sections and subsections, which will

give a systematic view of the analysis and results we have obtained. In Sec.

3.2, we discuss the dynamics of the SS system in the phase diagram. This

section has been divided into five subsections; In Sec. 3.2.1, we discuss the

behavior of diffusivity with T and φ and extrapolated several isodiffusivity

lines in the dynamical phase diagram. Sec. 3.2.2 describes the power-law fits

and extracted glass line. In Sec. 3.2.3, we discuss about the MCT calculated



3.2 Results for ∆ = 0.17 64

liquid-glass line and the mapping with glass line. In Sec. 3.2.4 and Sec. 3.2.5,

we give a detailed analysis of higher order singularities and the behavior of

nonergodicity parameters along the liquid-glass line. At the end, in Sec. 3.3,

we describe the invariant dynamics followed by two subsections: Sec. 3.3.1,in

which we discuss the variation of dynamical properties in a close approach

to the liquid-glass line, whereby we identify an invariant dynamics behavour;

Sec. 3.3.2, in which we verify the dynamical properties beyond the invariant

line.

3.2 Results for ∆ = 0.17

We study a 50 : 50 mixture of N = 2000 particles of species A and B

interacting via pairwise SS potential

Vij(r) =































∞, r < σij

u0, σij ≤ r < (1 + ∆)σij

0, r ≥ (1 + ∆)σij,

(3.1)

where i, j = A,B, σAA and σBB are the particles diameters. We have used

the same reduced units same as to ∆ = 0.15. We perform event-driven

MD simulations of the system as a function of T and packing fraction φ.

We use the same simulations techniques as for ∆ = 0.15 and performed in

the canonical and microcanonical ensemble. A detail description about the

simulation techniques will be found in Appendix A.
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3.2.1 Diffusivity and isodiffusivity lines

We perform a systematic investigation of the dependency of diffusivity on

temperature T and packing fraction φ. The normalized diffusivity D/D0

is plotted with respect to φ in Fig. 3.1. We present the diffusivity data

for temperature varying between 2.0 and 0.235 for a properly equilibrated

system. Moving from high to low φ, for all the values of temperature T , the

diffusivity increases monotonically. We do not observe any non-monotonic

behavior of the diffusivity along isotherms.

Figure 3.1: Normalized diffusion coefficient DA/D0 as a function of φ for
several isotherms, as reported in the labels. At all investigated T data show
a monotonic decrease with increasing φ, which clearly indicates the absence
of diffusion anomaly associated to compression/expansion.

Fig. 3.2, shows the dependence of D/D0 with T for different φ values vary-

ing between 0.45 and 0.596. The normalized diffusion coefficient D/D0 shows

a monotonic to the transition in the behavior of the diffusivity for φ 6 0.57.

By moving along isochores, with increasing φ values, the diffusivity starts
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Figure 3.2: Normalized diffusion coefficient DA/D0 as a function of T for sev-
eral isochores, as reported in the labels. The normalized diffusion coefficient
shows a nonmonotonic behavior in terms of a peak along large iscohores.
This indicates the presence of diffusion anomaly due to cooling.

to show a non-monotonic behavior with T . Such variation is highlighted by

the presence of maximum in diffusivity at T ∼ 0.75 for φ > 0.58. A similar

diffusivity maxima has already been discussed in Chapter 2 for ∆ = 0.15.

Using the data set of D/D0 along isotherms (Fig. 3.1) and isochores (Fig.

3.2), we are able to build isodiffusivity lines and plot them in (φ, T ) plane.

The extracted normalized isodiffusivity curves are shown in Fig. 3.3.

The isodiffusivity lines are precursors of the ideal liquid-glass line. We

measure the normalized isodiffusivity lines for three fixed values of normalized

diffusion coefficient: DA/D0 = 1.0×10−3, 1.0×10−4 and 1.1×10−5. Moreover,

we verify the presence of the reentrances by selecting the lowest normalized

isodiffusivity line DA/D0 = 10−5. The reentrance is only observed along T

due to cooling with the appearance of a non-monotonic behavior of DA/D0
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Figure 3.3: Isodiffusivity lines for DA/D0 = 1.0× 10−3, 1.0× 10−4 and 1.1×
10−5, extrapolated from the diffusivity plots in Fig. 3.1 and Fig. 3.2 along
isotherms and isochores respectively. The reentrance is observed along T as
displayed in the inset with a vertical line.

along isochores in Fig. 3.2.

3.2.2 Glass line

We are now interested in extrapolating the arrested line (i.e. the isodiffusivity

line with DA/D0 → 0) by performing a power-law fit of diffusivity along

isochores and isotherms following the diffusivity equations Eq. (2.2) and Eq.

(2.3). We fit our data for the temperatures varying between T = 2.0 and 0.3.

We have not performed any fitting below T = 0.3 due to the deviation from

power-law behavior. The power-law fits are shown in Fig. 3.4. We select

the fitting range of diffusivity between 10−2 to 10−5 for T > 0.75 as shown

in Fig. 3.4 (a). In the limit of diffusion DA → 0, we extracted the arrested
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packing fraction φg along each isotherms. The resulting straight lines in Fig.

3.1 (b) show a systematic variation in diffusivity.

Figure 3.4: The power-law fit of diffusivity along isotherms for a set of tem-
peratures T = 2.0, 1.0, 0.8, 0.75, 0.6, 0.5, 0.4, 0.375, 0.35, 0.325 and 0.3 and (a)
extracted glass transition packing fraction φg in log scale shows a very good
fitting (b) The diffusivity data put in log-log scale by rescaling x-axis with
arrested packing fraction φg

The extracted value of φg and the corresponding exponent parameters γ

are listed in Table 4.5. The value of exponent γ is roughly constant within

error bars.

Similarly, we also extract the arrested temperature Tg by performing a

power-law fit of DA for each isochores varying between φ = 0.45 and φ = 0.59

as shown in Fig. 3.5 (a). When we put the diffusivity vs T plot in log-log

scale, we always find a crossover for the isochores between 0.56 and 0.59.

We list the resulting values of Tg with their corresponding exponent pa-

rameter γ(φ) in Table 3.2. The value of γ shows a systematic increase with

increasing φ and then starts to drop at φ = 0.55. The variation in γ remains
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T γ(T ) φg

2.0 2.28 0.58
1.0 2.4 0.59
0.8 2.5 0.59
0.75 2.64 0.59
0.6 2.48 0.59
0.5 2.46 0.6
0.4 2.49 0.60
0.35 2.41 0.59
0.325 2.31 0.59
0.3 2.31 0.59

Table 3.1: Extrapolated values of γ(T ) and φg obtained from fitting data of
Fig. 3.1 (a) with MCT predictions of Eq. (2.3), for the diffusion coefficient
DA. Error bars of the fit parameters typically amount to a few percent for
the values of φg, while the γ exponents can vary systematically over different
fit intervals, so they should be taken with caution.

same even we change the range of power-law fit.

The extracted ideal glass line is presented together with isodiffusivity lines

in Fig. 3.6. The two branches of the glass line meet in the low T and high

φ region of the phase diagram. On comparing the isodiffusivity lines with

the extrapolated ideal glass line, the shape of the curves are in very good

agreement with each other. This agreement confirms the reentrance along

T . The observation of reentrant behavior due to cooling from our simulation

study for ∆ = 0.17 is in agreement with the MCT results for ∆ = 0.15 [51].

When we change the range of the fitting, we could observe the subsequent

variation in the exponent γ. Nonetheless, the values of φg and Tg extracted

in the same way show only a little changes (of the order of a few percent),

and hence they are robust. The overall shape of the ideal glass line remains

same in the phase diagram.
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Figure 3.5: The power-law fit of diffusivity along isochores for a set of pack-
ing fractions φ = 0.45, 0.475, 0.50, 0.525, 0.55, 0.56, 0.565, 0.57, 0.58, 0.585 and
0.59 and (a) extracted glass transition temperature Tg in log scale shows a
very good fitting. (b) The diffusivity data put in log-log scale by rescaling
x-axis with Tg

3.2.3 Mapping of MCT line and glass line

In our previous work for ∆ = 0.15, the revised MCT calculations using

binary simulation predicted the liquid-glass along with the glass-glass line.

The better understanding of the dynamical phase diagram is obtained from

the comparison of simulation MCT liquid-glass line with glass line. MCT

predictions suffer from a shift in the control parameter. Therefore, to locate

the higher order singularities we perform a bilinear transformation in φ and

T . Following the traditional way of mapping [47], we compare the MCT line

with arrested line as we did for ∆ = 0.15. So, we do the MCT calculations

for ∆ = 0.17 by giving as input the static structure factor SSIM
q evaluated

from numerical simulations. We solve the generalized version of long-time

MCT equations (Eq. (1.3)) for a binary mixture [23] on a discretised grid of
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φ γ(φ) Tg

0.45 2.43 0.22
0.475 2.23 0.22
0.50 2.52 0.21
0.525 2.51 0.21
0.55 2.55 0.20
0.56 2.3 0.22
0.565 2.32 0.21
0.57 1.96 0.23
0.58 1.53 0.26
0.585 1.4 0.27
0.59 1.25 0.28

Table 3.2: Extrapolated values of γ(φ) and Tg obtained from fitting data of
Fig. 3.2 (a) with MCT predictions of Eq. (2.2, for the diffusion coefficient
DA. Error bars of the fit parameters typically amount to a few percent for
the values of Tg, while the γ exponents can vary systematically over different
fit intervals, so they should be taken with caution.

1000 wave vectors up to a cut-off value of qσBB = 65. A detailed description

of the simulation MCT calculation for liquid-glass line has been described

in Chapter 2. We evaluate the critical non-ergodicity parameters along the

liquid-glass line and the glass-glass line. Moreover, our calculations show the

presence of an A3 and A4 singularities.

The MCT liquid-glass is reported together with the glass line (arrest line)

evaluated from power-law fits in Fig. 3.7. The curve with red filled squares

represents the MCT liquid-glass line and curve with red open squares rep-

resents the MCT glass-glass line joining two higher order singularities. This

glass-glass line is not completely disconnected, whose one end is extended to

lower T and ends in an A3 singularity while the other end meets with the

liquid-glass line at A4 higher order singularity. The green filled triangle is
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Figure 3.6: The extrapolated arrested (D → 0) glass lines from the fits
DA |φ − φg(T )|γ(T ) along isotherms and DA |T − Tg(φ)|γ(φ) along isochores
as shown in Figs. 3.1 and 3.2. The glass line shows a very good agreement
with isodiffusivity lines confirming the presence of reentrance in T as well as
in φ.

the A3 singularity while the blue filled triangle corresponds to the A4 sin-

gularity in high T region. The filled circles represent two branches of glass

line. MCT always suffers for a small shift in the control parameters, but the

shape of the resulting MCT liquid-glass line shows a qualitative agreement

with the shape of the glass line. In order to make a one to one comparison,

we superimpose the MCT liquid-glass together with the glass-glass line onto
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Figure 3.7: MCT results for the binary mixture under study using the static
structure factors calculated from simulations as input, labeled as SSIM

q −
MCT liquid glass (filled squares) and glass-glass (open squares). Arrest
curve drawn from φg (filled circles) and Tg (filled diamonds) obtained from
power-law fits of DA as in Fig. 2.6. Mapped MCT lines onto the arrest curve:
liquid-glass (filled triangles) and glass-glass (open triangles). Stars are the
two predicted higher order singularities AL

3 and A4.

the arrest line with the following bilinear transformation in φ and T

φ → 1.115668φ + 0.0135,

T → 0.741929T + 0.0061 (3.2)

The mapping shows a very good overlap at the meeting of two arrest lines

and in the high temperature region i.e. repulsive driven HS glass as shown

in Fig. 3.7. There is a small discrepancy in the low packing fraction limit

i.e. the effective HS limit which is also observed in case of ∆ = 0.15. The
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super position of the theoretical and numerical curves allows us to investigate

the presence of the two higher order singularities which should be located at

A3 = (φ ∼ 0.49, T ∼ 0.187) and A4 = (φ ∼ 0.60, T ∼ 0.615). A4 is on the

liquid-glass line while A3 is very close to the liquid-glass transition with a

distance ∆T ∼ 0.02 along an isochore.

3.2.4 Searching for Higher order singularities

The existence of higher order singularities is ascertained by means of the

dynamical properties; subdiffusive behavior in MSD and logarithmic decay

in density autocorrelation functions. These properties are well predicted

from MCT and we have discussed about these properties in section 1.1.4.

On approaching more closely to the higher order singularity, the density

autocorrelation function shows more logarithmic behavior. One can trace

the position of A4 singularity in equilibrium phase as it lies in liquid phase;

on the contrary the influence of A3 can only be observed indirectly as it

lies inside the glassy regime. From our simulation study, we start to locate

the position of A3 and A4 higher order singularities by moving along a fixed

isochore and isotherm respectively in the phase diagram.

In a close approach to the estimated position of A3 singularity, we monitor

the isochore φ = 0.50 and plot MSD for a set of temperatures T varying

between 0.4 and 0.225 as shown in Fig. 3.8. On lowering the temperature,

the system starts to show slow dynamics and for T < 0.3, the system displays

a characteristic subdiffusive behavior at the intermediate times which signals

the presence of a higher order singularity as already observed for ∆ = 0.15.
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Figure 3.8: The data set of MSD at φ = 0.50 for a set of temperatures
T = 0.4, 0.35, 0.3, 0.275, 0.25, 0.235, 0.23, 0.225. There is a clear appearance
of subdiffusive behavior marked with solid straight line with exponent α =
0.45 at the intermediate time scale (1 6 tD0 6 102) on approaching the MCT
predicted A3 higher order singularity.

The subdiffusive region is more clear for T = 0.235. We observe a three-step

behavior in MSD; the usual ballistic regime in the small time scale, then at

intermediate time the particle gets caged by its neighboring particles and

rattle inside the cage for a finite time. In this caged part, we could see the

effect of two length scales in the SS system. After a finite time, the particle

makes the path out of the cage and starts to show diffusive behavior as the

system is in equilibrium. The subdiffusive behavior in MSD is marked with

power-law fit with exponent α ∼ 0.5. This subdiffusivity is varying between

0.2 6 tD0 6 61.5, with a plateau height of 0.06σ2
AA that gives the localization

length of 0.24σAA. This localization length is very close to the value found for

A3 singularity for ∆ = 0.15. In order to give a more convincing proof to the
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existence of A3, we verify the logarithmic behavior in density-autocorrelation

function.

Figure 3.9: The density autocorrelation functions have been plotted for the
state point φ = 0.50 and T = 0.235 for several q vectors varying between
1.84 and 23.06. The fitting is followed by the asymptotic decay law given
by Eq. (?? at the intermediate time. The density auto correlation functions
shows a logarithmic behavior in the fitting time window 4 6 tD0 6 102 for
qσAA = 7.38, 8.3, 10.14.

The fitting is done with general asymptotic decay law for the correlation

function for a set of qvectors close to the higher order singularity as predicted

from MCT

Φq(t) ∼ fq + h(1)
q ln(t/τ) + h(2)

q (ln(t/τ))2 (3.3)

When the system approaches higher order singularity, h
(2)
q ≈ 0 in Eq. ((3.3)

for a specific value of qvector and a pure logarithmic behavior is observed in

the density auto-correlation function for a critical value of qvector q∗. Above



3.2 Results for ∆ = 0.17 77

and below this critical qvector q∗, the density correlation function creates a

concave and convex shape. In order to observe all these behaviors, we fit the

density autocorrelation functions to a quadratic polynomial in ln(t/τ) for a

set of qvectors qσAA = 1.84, 2.76, 4.61, 5.53, 7.38, 8.3, 10.14, 13.84, 17.53, 20.29

and 23.06. Fits are reported in Fig. 3.9 where the fitting time window extends

about 2 decades. In Fig. 3.9, the density autocorrelation functions show a

clear picture of logarithmic decay for qσAA = 7.38 in the time interval 10 6

tD0 6 102 similar to those for MSD in Fig. 3.8. At this critical value of q∗ the

density autocorrelation functions show a transition from concave to convex

shape. The range of logarithmic time window in density autocorrelation

functions is similar to the time window of subdiffusive behavior in MSD.
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Figure 3.10: The presented data for MSD (a) along isotherm T = 0.325
with increasing φ shows a plateau of subdiffusivity at the intermediate time
(tD0) marked in thick (blue) line. (b) For φ = 0.585, with decreasing T , the
subdiffusivity becomes more prominent.

Next, we try to investigate the presence of A4 singularity which is the

only singularity accessible from liquid phase. The estimated position of A4
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singularity obtained within the scope of mapping of simulation MCT liquid-

glass line with glass line in Fig. 3.7 is A4 = (φ ∼ 0.60, T ∼ 0.615). In

the limit of our simulation, we simulated the system up to φ = 0.60 at the

lowest T = 0.4. Initially, we monitor MSD along a set of isotherms close to

A4 and do not observe any subdiffusive behavior. When we go to the lowest

T = 0.325, there is a clear visibility of subdiffusive behavior at φ = 0.585 as

shown in Fig. 3.10 (a). Then we follow the isochore φ = 0.585 and plot MSD

with lowering the temperature in Fig. 3.10 (b). We could see an appearance

of subdiffusivity at T = 0.325 as we clarify from Fig. 3.10 (a).

Figure 3.11: The density auto-correlation functions fitted with asymptotic
decay law formula (a) at φ = 0.585, T = 0.325 for a set of q vectors. The
correlator has a logarthmic time window at qσAA = 8.75. (b) For the same
critical vector qσAA = 8.75, we check more extended logarithmic time window
at T = 0.325 with increasing φ.

We also verify the presence of A4 singularity in terms of logarithmic

behavior in density autocorrelation functions. We fit the general asymp-

totic decay law for the density autocorrelation function given in Eq. (3.3)
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for a set of qvectors. We select the isochore φ = 0.585 and do the fit-

ting of density autocorrelation functions at T = 0.325 for a set of qvectors

qσAA = 0.19, 2.91, ..., 23.33 as shown in Fig. 3.11(a). For the qvector

qσAA = 8.75, the density autocorrelation function shows a logarithmic depen-

dence at the intermediate time interval same as to MSD. Above and below

this critical qvector q∗σAA
, the density autocorrelation function produces a

concave and convex shape which is a clear indication of presence of higher

order singularity. Along the same isotherm T = 0.325, we plot the density

autocorrelation function for critical value of q∗ in Fig. 3.11(b). We do not

see a pure logarithmic decay with an extended period of time as expected

close to A4 higher order singularity. According to the mapping, the posi-

tion of A4 has been estimated at T ∼ 0.615, where simulation data indicates

at T ∼ 0.325. We approach the A4 singularity from different paths in the

phase diagram and try to observe a pure logarithmic with an extension of

time scale. The correlators, reported in Fig. 3.12, for a set of temperatures

with increasing φ shows a full logarithmic behavior. Due to the competition

between A2 and A4 singularities, a clear α relaxation does not take place

for the state points along the studied path. We explore the path in (φ, T )

plane and observe a pure logarithm behavior for the critical value of qvector

q∗ ≈ 7.75 where the α relaxation does not occur. The fitting is done with

general asymptotic decay law for the density correlation function following

the Eq. (3.3) for a set of qvectors. The fitting is done in a fixed time interval

so that the second term of Eq. (3.3) varnishes. We fixed the state points

in φ and T and put them together in Fig. 3.12. The logarithmic time scale

increases with increasing φ as we move close to A4 singularity. We start
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Figure 3.12: The density autocorrelation functions for state points explor-
ing the path towards A4 singularity for ∆ = 0.17. There is a visibility of
logarithmic behavior for φ = 0.58, T = 0.5.

to investigate the exact location of A4 singularity in equilibrium phase by

exploring the different values of ∆ [22]. We carry out the simulation for ∆

varying between 0.1625 and 0.1675 in an equal grid of 0.0025 for the state

points at high packing fraction. In Fig. 3.13, we put all the state points

together for different ∆ to observe the pure logarithmic in anomalous time

window.

We also do the several verifications for pure logarithmic feature for high φ

value at different ∆. In Fig. 3.14, we have presented the density correlators

for φ = 0.585 and T = 0.5 on approaching A4 for ∆ = 0.1625, 0.165, 0.1675

and 0.17. The correlator for φ = 0.585 shows a more logarithmic at ∆ = 0.17

as compare to other studied values of ∆. Now, we are simulating the system

close to the predicted state point for A4 in high φ region.
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Figure 3.13: The density autocorrelation functions for ∆ =
0.17, 0.1675, 0.165. The solid dark line for ∆ = 0.1675 shows a pure
logarithmic behavior for a large time scale with respect to other state points.
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0.17, 0.1675, 0.165for the state point φ = 0.585, T = 0.5.
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3.2.5 Non-ergodicity parameters

The behavior of the dynamical properties close to the singularities gives a

clear understanding of their presence so far. There is still lacking of infor-

mation to detect the exact position of A4. We select an isodiffusivity line

D/D0 = 9.5E−06, where the system goes to arrested state and evaluated the

non-ergodicity parameters. The fitting has been made with general asymp-

totic decay law Eq.(3.3) for the correlation function for the state points along

the glass line joining two higher order singularities (curves 2-7) and extracted

the non-ergodicity parameters. Similarly, we fit the long-time relaxation for a

set of qvectors for the state points marked with 8 and 9 in with the stretched

exponential

ΦAA
q (t) ∼ fqexp[−(t/τq)

βq ] (3.4)

for the state points marked with 8 and 9 in Fig. 3.15. The behavior of

extracted non-ergodicity parameter fAA
q is discussed very explicitly along the

liquid-glass line. We denoted the state points with number to discuss easily

the interesting region of the isodiffusivity line as shown in the inset of Fig.

3.15. We note that the fAA
q at lowest T for the state 1(φ = 0.40, T = 0.235)

and at highest T for the state 9(φ = 0.59, T = 1.0) corresponds to two type of

repulsive glasses: effective HS glass (1) corresponds to effective hard sphere

diameter σ + ∆ and the HS glass (9) corresponds to hard sphere diameter σ

respectively. When we rescale the effective HS glass with effective diameter

σ + ∆, they exactly fall on top of each other. The state points numbering

with 2 and 7 represents the position of the higher order singularities A3 and
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A4 respectively. As we could see, the behavior of fAA
q at φ = 0.50 and

φ = 0.58 are similar. The intermediate state points numbered from 3 − 6

shows non-monotonous behavior in non-ergodicity parameter fAA
q without

any variation in the height of the peak. The state points marked with 3, 4, 5

increases monotonically and then suddenly at 6, the height of fAA
q drops

down. This behavior of fAA
q allow us to super impose the low-φ fAA

q on top

of the high-φ fAA
q by simply scaling with the effective diameter.
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Figure 3.15: The non-ergodicity parameters extracted from the fitting of den-
sity auto-correlation functions along the isodiffusivity line D/D0 = 9.5E−06
as shown in the inset. The state points are marked with numbers along the
isodiffusivity line. The behavior of non-ergodicity parameter along the liquid-
glass line shows a non-monotonous behavior.

From the fitting of density autocorrelation functions, we extract the fitting

parameters for the coefficient h
(1)
q and h

(2)
q which are reported in Fig. 3.16 and

3.17. Following the typical variation in non-ergodicity parameters, we also

observe the non-monotonic variation in the value of h
(1)
q at the intermediate

glassy regime. Initially, the curves for 2 − 5 increases monotonically with
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a small shift in the height of peaks with increasing q. The curve at φ =

0.57, T = 0.283, starts to show a nonmonotonic behavior and height of the

peak starts to drop. We scale the curve 2 on curve 6 with the effective

diameter. In Fig. 3.17, the value of h
(2)
q drops to zero and this gives the

estimation of critical qvector q∗.

Figure 3.16: The figure shows the plot for h
(1)
q for the state points along

glass-glass line as shown in the inset.

Figure 3.17: The figure shows the plot for h
(2)
q for the state points along

glass-glass line as shown in the inset.
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3.3 Novel Invariant Dynamics

An extensive study for the presence of A4 singularity gives an understanding

of the dynamics of AA particles. During the analysis for higher order sin-

gularities, we encounter with peculiar properties in the dynamical quantities

close to the intermediate region of the glass line in the phase diagram. The

previous analysis for ∆ = 0.15 in Chapter 2, gives a notion that the dy-

namical features are indistinguishable close to the middle points (rather that

endpoints) of the glass-glass line in the phase diagram. The similar observa-

tion for ∆ = 0.17, gives more clear picture of the dynamics on approaching

the higher order singularities. So, we extend this analysis more and try to

explore the endpoints of the glass-glass line. We also try to understand the

dynamical features of the two end points with respect to other points along

the glass transition line joining A3 and A4 higher order singularities. A way

to clarify this point is to look along the isodiffusivity line associated to the

invariant dynamics. We compare mean square displacement and density au-

tocorrelation functions and verify the range of validity even beyond the glass

line boundaries associated to the invariant dynamics. We investigate the

dynamics along three isodiffusivity lines,D/D0 = 3.5 × 10−4, 5.5 × 10−5 and

9.8 × 10−6 as shown in Fig. 3.18.

With a precise study of the dynamical properties, we are able to locate

few invariant state points along each studied isonormalized diffusivity lines.

We put these invariant state points in Fig. 3.18 marked with filled squares.

We magnify the invariant region in inset of the figure. In the next section we

discuss about the dynamical properties on a close approach to the liquid-glass
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Figure 3.18: The invariant dynamics has been studied along three isodiffu-
sivity lines D/D0 = 3.5× 10−4, 5.5× 10−5 and 9.8× 10−6. The solid squares
represent the invariant state points along the corresponding isodiffusivity
lines.

line.

3.3.1 Dynamics along the invariant line

We begin our analysis for normalized isodiffusivity D/D0 = 3.5 × 10−4 and

plotted MSD for the state points (0.55, 0.4), (0.555, 0.425), (0.56, 0.45) and

(0.565, 0.5) in Fig. 3.19 (a). The MSD exactly coincide for all the studied

state points on scaling the time with factor D0 = σBB

√

T/m. The invariant

dynamics remain unchanged without any time scaling. We also verify the

behavior of density autocorrelation functions for several q vectors for the

above state points and observed the dynamic remain invariant for all the q

vectors. In Fig. 3.19 (b), we have shown the density autocorrlation functions

ΦAA
q (t) for a set of selected qvectors.



3.3 Novel Invariant Dynamics 87

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

tD
0

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

<
δr

A
A

2 >

φ = 0.55, Τ = 0.4
φ = 0.555, Τ = 0.425
φ=0.56, Τ = 0.45
φ = 0.565, Τ = 0.5

(a)

10
-2

10
-1

10
0

10
1

10
2

tD
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Φ
qA

A
(t

)

φ=0.55, T=0.4, qσ
AA

=4.7
qσ

AA
=8.5

qσ
AA

=12.3
qσ

AA
=18

φ=0.555, T=0.425, qσ
AA

=4.7
qσ

AA
=8.5

qσ
AA

=12.4
qσ

AA
=18.1

φ=0.56, T=0.45, qσ
AA

=4.7
qσ

AA
=8.6

qσ
AA

=12.4
qσ

AA
=18.1

φ=0.565, T=0.5, qσ
AA

=4.8
qσ

AA
=8.6

qσ
AA

=12.4
qσ

AA
=18.2

(b)

Figure 3.19: The locus of invariant state points along the isodiffusivity line
D/D0 = 3.5× 10−4 shows an (a) exact overlap in MSD and (b) ΦAA

q (t) for a
set of qvectors.

We move close to the liquid-glass line and track the dynamics along the

isodiffusivity line D/D0 = 5.5 × 10−5. In Fig. 3.20, we have shown MSD

and ΦAA
q (t). We observe the similar behavior which indicates the invariant

dynamics.

Finally, we make a close approach to the liquid-glass ideal line by studying

dynamics along the isodiffusivity line D/D0 = 9.8 × 10−6. We shows the

behavior of MSD and density auto correlation functions for slow state points

in Fig. 3.21. The dynamics remains unchanged and are in good agreement

with previous analysis for invariant dynamics. In this case, the invariant

line shorter compare to other two or may be we do not have enough state

points. During the above analysis we find that the influence of glass line

associated to the higher order singularities on dynamics, sufficiently far from

any liquid-glass transition, does not depend on the particular position of the

state points along the glass transition and that a similar anomalous dynamics
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Figure 3.20: The locus of invariant state points the along isodiffusivity line
D/D0 = 5.5× 10−5 shows an (a) exact overlap in MSD and (b) ΦAA

q (t) for a
set of qvectors.

is observed independently of whether one approaches precisely the endpoints,

i.e. the predicted higher order singularities, or another point in between then

along the glass line.

Figure 3.21: The locus of invariant state points the along isodiffusivity line
D/D0 = 9.8× 10−6 shows an (a) exact overlap in MSD and (b) ΦAA

q (t) for a
set of qvectors.
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3.3.2 Dynamics beyond the invariant line

We next investigate the dynamical properties beyond the invariant line and

compare with the state points along the glass line associated to the higher

order singularities. We would like to see, where the line of invariant termi-

nates on both sides. For this we compare MSD and ΦAA
q (t) for the state

points even beyond the invariant one along the liquid-glass line. We selected

the isodiffusivity line D/D0 = 5.5 × 10−5 in order to observe the validity

of the invariant dynamics. The state points denoted with blue stars in the

inset of Fig. 3.22, beyond the invariant line. We verify the MSD and ΦAA
q (t)

for the state points say: non-invariant state points. We could see in Fig.

3.22, at the intermediate time scale (0.1 6 tD0 6 102), MSD doesn’t overlap

as we observed for invariant state points. In high density (φ = 0.585) and

temperature (T = 1.0) region the MSD starts to show the curvature at the

intermediate time scale. The long time limit of MSD does not overlap for

the non-invariant state points.

In order to have a more clear picture of the non-invariant dynamics we

also study the density auto correlation functions for the same non-invariant

state points. The density auto correlation functions for a set of qvectors in

Fig. 3.23. The solid magenta curve is the density autocorrelation function

for an invariant state point is a guideline to the eye. When we compare

ΦAA
q (t) of non-invariant points with invariant state point, we could see a

clear discrepancy at β relaxation. The density autocorrelation function starts

to bend instead of overlapping with each other. The deviations of MSD

and density autocorrelation functions from the invariant dynamics clearly



3.3 Novel Invariant Dynamics 90

Figure 3.22: The dynamics studied for the state points beyond the invariant
state points along the isodiffusivity line D/D0 = 5.5 × 10−5. MSD shows a
clear bending in the subdiffusivity region indicates the termination of invari-
ant dynamics.

indicates the peculiar invariant dynamics associated to the glass line joining

the higher order singularities, even if it does not predict the exact location

of the singularities.
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Figure 3.23: The dynamics studied for the state points beyond the invariant
state points along the isodiffusivity line D/D0 = 5.5× 10−5. ΦAA

q (t) shows a
bending in the anomalous time window and does not overlap.



Chapter 4

Low Density glassy dynamics:

fragile to strong behavior

4.1 Introduction

An important concept of glassy physics is fragility. According to Angell-

classification [1], in glass forming liquids, the viscosity shows two phenomeno-

logical behavior as a function of temperature, as temperatures decreases to-

wards the glass transition. One is known as Arrhenius relaxation law where

viscosity as well as relaxation times grow exponentially with lowering of tem-

peratures as

η = η0 eA/T (4.1)

92
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where A is the activation energy. Systems exhibiting Arrhenius behavior are

designated as strong glass former [1]. The second one is the Vogel-Fulcher-

Tammann-Hesse law ( or simply VFT), expressed as

η = η0 eβ/(T−T0) (4.2)

The η diverges even faster than the Arrhenius one, sometimes called super-

Arrhenius. Systems whose viscosity follows the VFT law are designated as

fragile glass former.

Dynamics of colloidal systems are often studied through diusivity. In

equilibrium phase, the diusivity is related to the viscosity by the Stokes-

Einstein relation as

D = kBT/(6πrη) (4.3)

where, D/T is inversely proportional to the viscosity η.

Sometimes the system shows a fragile behavior and becoming stronger

at a certain packing fraction φ. There is a contribution to fragility from

the kinetic term determined by the stretching exponent βq. This stretching

exponent is extracted from long time limit of α−relaxation of the density

autocorrelation functions following the stretched exponential

Φq(t) = Aq exp[−(t/τq)
βq ] (4.4)

where, τq is the relaxation time and βq is the stretching exponent. The

stretching exponent obtained from the fitting of stretch exponential gives
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the dependency of the fragility in the viscous liquids. A value of βq = 1 gives

simple exponential relaxation; lower values of βq yield increasingly nonexpo-

nential relaxation. The higher value of βq leads to strong glass.

Recently a model system with spherical pair-wise additive along with

directional interactions has been studied by using a binary mixture of non-

additive hard spheres [31]. While large spheres mimic the colloidal particles,

small spheres act as bonds between the large ones. The interaction is at-

tractive only between small and large particles and it is modeled via a short

range square well potential. To control the valency, the hardcore interaction

between small particles is chosen significantly larger than their actual size.

In this system, the phase separation is suppressed by using a limited valency.

At low T bonding is the dominant mechanism of structural arrest. An ex-

tensive simulation study of the system shows an Arrhenius behavior. For a

square well (SW) model [41] there is a breakdown of Stokes-Einstein (SE)

relation for attractive glass at low T and also for repulsive glass in high T .

In our model system instead of any attraction, we add the repulsive interac-

tion to the hard sphere; Square Shoulder (SS). Without the presence of any

attraction, we found the super-Arrhenius behavior and breakdown of SE re-

lation due to the competition between two repulsive length scales. We made

a detail investigation in the low packing fraction φ and low temperature T

limit and discuss the complete phase diagram.

In Chapter 3, we discussed the phase diagram of SS system in (φ, T ) plane.

A detail numerical simulation study for SS system shows the anomalous

diffusion and reentrant behavior due to cooling for a fixed interaction range

∆ = 0.15 that has been predicted by MCT [51]. In order to explore the low



4.1 Introduction 95

packing fraction region of the phase diagram, we carried out the simulations

for a 50 − 50 binary mixture of SS spheres for ∆ = 0.15. One aspect of this

study is peculiar: it shows that at low φ we can approach the glass transition

down to very low temperatures, without intervening crystallization or phase

separation. This was previously achieved only in systems with directional

attraction as we have discussed above [31]. The dynamics at low T was found

to be dominated by bonding processes, showing an Arrhenius dependence.

Here on the contrary, bonding is not present and the dynamics seems to

always retain the fragile character of HS systems. The absence of phase

separation at low T and φ for the present system thus offers the unexplored

possibility to investigate the glass transition at T → 0 for φ → φg[σ/(σ+∆)]3.

In this Chapter, we make a detail investigation of dynamics in the low density

region for T → 0 and explore the phase behavior of SS system in low density

regime.

The contents of this chapter is organized as follows: In Sec. 4.2, we will

give a small description about the system and molecular dynamics (MD)

simulations we perform. Then, in Sec. 4.3, we will discuss about the associ-

ated dynamical properties. It is subdivided into subsections: in Sec. 4.3.1,

we will discuss the behavior of diffusivity along isochores and isotherms and

associated isodiffusivity lines; in Sec. 4.3.2, we explore the dynamical phase

diagram in low φ and T region. Together with all these studies, we present

a detailed discussion about the strong glass former in Sec. 4.4. Finally,

in Sec.4.5 we discuss the breakdown of Stokes-Einstein relation in Square

Shoulder (SS) system.



4.2 Results 96

4.2 Results

We continue with the simulation for a 50-50 binary mixture of 2000 particles

using Event-driven Molecular Dynamics simulations where particles interact

with a pairwise (SS) potential. Following the same simulation techniques for

∆ = 0.15 as explained in Chapter 2, we equilibrate the system in NVT and

NVE ensembles. A systematic study of the diffusivity has been made for the

packing fraction ranging between 0.30 and 0.425 for the temperature limit

T → 0. In the entire simulations we only concentrate on the large A type

particles, because of the similarity between the two species. For each packing

fraction, we continue the simulations until we approach a dynamical arrest

and equilibration becomes prohibitively long. We evaluate the self diffusion

coefficient D from the long time limit of mean square displacement following

the Einstein relation,

D = lim
t→∞

< r2(t) >

6t
(4.5)

4.3 Dynamical Properties

4.3.1 Self-diffusion coefficient and isodiffusivity lines

During the entire simulation, the system is in fluid state for the packing

fraction 0.30 6 φ 6 0.385 even at T → 0. We presented this strange behavior

of the particle in Fig. 4.1(a) in terms of MSD. The particle diffuses faster

at all values of T as a normal liquid. When we increase the packing fraction

φ = 0.385, we could see in Fig. 4.1(b), at high T , the particle diffuses faster
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and then starts to diffuse more faster with decreasing T . At high T > 0.1,

the particle diffuses very fast as we could see in Fig. 4.1(b). When we move

along T and decrease further to lower value of T < 0.01, the particle shows

a very peculiar dynamics. Initially, particle obeys a ballistic behavior. At

intermediate time 0.01 6 t ≤ 103, the particle gets caged by its neighboring

particles and rattle inside the cage for a subsequent period of time. At large

time scale due to some activated processes, there will be space created by

small particles. Due to these activated processes the particle moves out of

the cage and starts to diffuse linearly with time.

Figure 4.1: MSD along the isochore (a) φ = 0.30 shows a normal behavior of
liquid at T → 0, while (b) along isochore φ = 0.38 produces a long plateau for
T → 0 and becomes diffusive in long limit of time scaled with D0 = σ

√

T/m.

We made a systematic investigation of diffusivity with temperature T for

the packing fraction ranging between 0.30 and 0.425. We start by looking

at high φ > 0.40, where the diffusivity shows a monotonic variation with

decreasing T along each isochore. For φ 6 0.40, there is a bending which

becomes more clear along isochores φ 6 0.395 at a certain value of T . The
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kink in the diffusivity is observed at different values of T along each isochore.

On further lowering the temperature, we encounter with a sharp drop in the

diffusivity as shown in Fig. 4.2. This bending becomes more clear with

decreasing φ and disappears at φ = 0.30 below which the system behaves as

normal liquid.

Figure 4.2: The diffusion coefficient D is plotted with T along a set of iso-
chores. The diffusivity shows a curvature on lowering the temperature and
then drops to a constant value in the limit of T → 0.

We observe that for certain value of φ the diffusivity shows an Arrhenius

dependence at low T . Fig. 4.3 (a) shows the diffuision D as a function of 1/T .

In log scale the diffusivity shows an arrhenius dependence in φ. In our simula-

tion, the best isochores showing Arrhenius behavior are φ = 0.39 and 0.395.

We did the Arrhenius fitting using the relation D = C exp[−(EA/KBT )],

where EA is the activation energy.

In the range of Arrhenius fitting, we extracted the activation energy and
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Figure 4.3: (a) Arrhenius plot of the diffusion coefficient along the studied
isochores. The dashed lines represent the fitting along each isochores. (b)
The value of activation energy EA extracted from the Arrhenius fitting.

it increases systematically with increasing φ. The list of activation energy

EA extracted from Arrhenius fitting has been plotted in Fig. 4.3 (b).

In order to have a better understanding of the phase diagram we plotted

the isodiffusivity lines extracted from the diffusivity plot of Fig. 4.2 for D →

0. We cover three different normalized isodiffusivity lines, D/D0 = 10−3, 10−4

and 1.7 × 10−5 in Fig. 4.4. As we have discussed in Chapter 3 and Chapter

4, these lines estimates the shape of the arrested line. In the previous study

for ∆ = 0.15, we proposed the phase diagram with reentrance due to cooling

along the isodiffusivity line and is confirmed both from simulations and new

MCT calculations. Now we are concentrating on the same phase diagram in

the low density part. The isodiffusivity line show an interesting behavior.

In the phase diagram, we could see a sharp fall in temperature along the

isodiffusivity line, D/D0 = 1.7× 10−5 and T → 0 for φ ∼ 0.3825 as shown in

Fig. 4.4. There is always a deviation at φ = 0.395 along each isodiffusivity
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lines.
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Figure 4.4: The iso-normalized diffusivity lines are plotted for D/D0 = 10−3

(solid green), 10−4 (solid red) and 1.7 × 10−5 (solid black).

To verify the shape of the isodiffusivity lines , we extract the arrested

glass line from power-law fits along isotherms only. We do the power-law

fit along a set of isotherms varying between 0.2 and 0.001 as shown in Fig.

4.5. We extract the transition value φg by performing the power-law fit of

diffusivity D ∼ |φ−φg(T )|γ(T ) along isotherms and corresponding power-law

exponent γ. The fitting has been made for a fixed range of diffusivity in

order to observe a systematic variation in γ. The range of fitting changes for

φ 6 0.425 as the system starts to show an arrhenius dependence of diffusivity

in Fig. 4.3. So, we set different range for fitting for the low density regime.

In Table 1, we put together the extracted φg and the corresponding γ(T ).

The value of γ increases with decreasing T and at T = 0.01 it starts to

decrease. We could see a systematic decrease in φg value with decreasing
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Figure 4.5: Diffusion coefficient dependence on φ for various studied
isotherms. The power-law fits are done with the diffusion equation DA ∼
|φ − φg(T )|γ(T ) along isotherms.

T . When the temperature T → 0, the arrested φg becomes constant. The

arrested line obtained from φg in the low density region of the phase diagram

preserves the same shape as observed along the isodiffusivity line, D/D0 =

1.7 × 10−5. There are large error bars in the fits especially in the calculated

values for γ, but nonetheless the fits give a good estimate of φg(t), which

drops rather vertically to low T at around φ ≈ 0.395.



4.3 Dynamical Properties 102

T γ(T ) φg

0.2 2.69 0.40
0.175 2.94 0.39
0.15 3.17 0.38
0.143 3.44 0.38
0.125 4.24 0.39
0.1 4.75 0.39
0.05 6.65 0.39
0.01 4.74 0.39

Table 4.1: Extracted value of φg from the diffusivity plot of Fig. 4.5 following
the formula D ∼ |φ − φg(T )|γ(T ).
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4.3.2 Phase diagram

Figure 4.6: The phase diagram of SS system for low φ and low T in (φ, T )
plane.

Now, we compare the simulation results obtained from the power-law fit

and Arrhenius time window in the phase diagram of Fig. 4.6. We plot the

arrested glass line represented with filled circles obtained from power-law fits

in the high density regime for ∆ = 0.15. These lines are represented with TH
g

and φH
g . The open squares represent the arrested φL

g obtained from power-law

fits of diffusivity for several isotherms in the low packing fraction regime. The

curve with filled triangles represents the lowest isodiffusivity line, D/D0 =

1.7×10−5 which has been extrapolated from diffusivity plot of T dependence
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in Fig. 4.2. We have also put the liquid state points (green star) for φ 6 0.385

where the system remains in liquid phase for T → 0. Since, the system shows

Arrhenius dependence, we selected the most arrhenius isochores and mark the

region where the Arrhenius begins along each isochore (blue open square).

The red stars represent the aging state points for the system fall out of

equilibrium. The interesting behavior observed in the phase diagram is the

fragile behavior of system with the interruption of strong behavior. In the

low density region of the phase diagram (φ 6 0.385) shows a fragile behavior

for T → 0. There is a small channel of strong behavior observed for the

packing fraction range between φ = 0.39 and 0.395.

4.4 Do we have a strong glass former?

Figure 4.7: The density autocorrelation functions along the isodiffusivity
lines D/D0 = 10−4, 1.7 × 10−5 for qσAA ≈ 5.56, the first peak of partial
structure factor.
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In the beginning of the Chapter, we give a small introduction to the prop-

erties of strong glass former. In our study for low density region of the phase

diagram, the system shows a fragile behavior and becoming stronger at a

certain packing fraction φ. We verify this strong behavior of glassy system

by extracting the stretching exponent βq from Eq. (4.4). The stretching

exponent obtained from the fitting of stretch exponential gives the depen-

dency of the fragility in the viscous liquids. The value of βq defines the

behavior of strong glass former. A value of βq = 1 gives simple exponential

relaxation; lower values of β yield increasingly nonexponential relaxation. A

higher value of βq is characteristic of strong glass behavior. Initially, we start

to understand the behavior of βq along isodiffusivity line D/D0 = 10−4 and

1.7 × 10−5.

We do the fitting with stretched exponential (Eq. (4.4)) and extracted

relaxation time τq and corresponding stretching exponent βq along the isod-

iffusivity lines D/D0 = 10−4, 1.7 × 10−5. In Fig. 4.7, we plot the density

autocorrelation functions for critical value of qvector obtained from first peak

of partial structure factor, along the isodiffusivity line D/D0 = 10−4.

φ T βq

0.38 0.143 0.53
0.381 0.143 0.51
0.3825 0.15 0.49
0.385 0.175 0.46
0.39 0.195 0.49
0.395 0.205 0.45
0.40 0.22 0.45

Table 4.2: The value of tau βq extracted with stretched exponential fitting of
Φq(t) for the closest simulated state points to the isodiffusivity line D/D0 =
10−4.
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We monitor isodiffusivity line D/D0 = 10−4 and put extracted βq in

Table. 4.2. We note that the relaxation time τq increases monotonically and

then decreases with increasing φ and T . We do not observe any significant

variation in βq. Moving closer to the liquid-glass line, we verify the behavior

of βq along isodiffusivity line D/D0 = 1.7 × 10−5 and we do not find any

significant change in βq again. From the above analysis, the isochores φ =

0.39, 0.395, shows a good Arrhenius dependence and we start to explore more

along these isochores with decreasing T . We plot the density autocorrelation

functions for isochores 0.39 and 0.395 for low T .
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Figure 4.8: The density autocorrelation functions for (a) isochore, φ = 0.39,
and (b) isochore φ = 0.395 with decreasing T .

The increase in the value of βq → 1, the diffusion should be more Arrhe-

nius. In order to approach the highest value of β, we evaluated the stretching

exponent βq along isochores 0.39 and 0.395 with decreasing T . We do the

fitting with stretched exponential, but simulations are still running because

the full decay to zero of Φq(t) is needed before a robust value of β can be
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drawn. We plot the dependency of β on temperature in Fig. 4.9. In high T

region the value of β remains constant. On lowering the temperature T , the

value of β increases.

Figure 4.9: The behavior of βq is plotted with dependence of temperature T .
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4.5 Breakdown of Stokes-Einstein relations

Typical homogeneous equilibrium liquids, far above their glass transition

temperature (Tg), obey the Stokes-Einstein (SE) equation, Dη =constant,

where D is the diffusion coefficient and η the reduced shear viscosity[η =

ηs/T , where ηs is the shear viscosity]. Recent experiments [56] and simu-

lations [2] on supercooled liquids have shown that the structural relaxation

time τ obeys proportionality, τ ∝ η so that both Dτ and Dη are essentially

constant well above Tg. However, both of these relations “breakdown dra-

matically” in the immediate vicinity of Tg [6, 9, 15, 45, 52]. It is commonly

accepted that this effect results from“dynamic heterogeneity” in supercooled

liquids.
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Figure 4.10: Extracted τ along isochores φ = 0.39 and 0.395 from Φq(t)
defined by (a) stretched exponential, and (b) ΦAA

q (t) = 1/e.

A detail study of Arrhenius behavior in Sec. 4.3.1, provides two stable

isochores φ = 0.39 and 0.395. We start examining the SE relation for the

binary hard-sphere with repulsion. The validity of SE relation can be checked
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with the temperature dependence of relaxation time τ . The relaxation time τ

has been extracted from the α−relaxation of density autocorrelation function

Φq(t) with the fitting of stretched exponential in Eq. (4.4). We study the

behavior of τ with temperature dependence in Fig. 4.10. The decay in τ is

described by an Arrhenius law in the low T region in Fig. 4.10 (a). We also

verify the same behavior of τ by fitting with ΦAA
q (t) = 1/e. The decay in τ

follows the same Arrhenius law along each isochores.
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Figure 4.11: The figure shows the breakdown of Stokes-Einstein relation
defined with the divergence of Dτ at low temperature T .

To determine in which region of the phase diagram the SE relation is valid,

we show the behavior of scaled diffusivity Dτ with temperature T 6 0.2 in

Fig. 4.11. AT high temperature T > 0.2, the diffusion remains constant

obeying SE relations Dτ = constant, even on increasing the packing frac-

tion. When the temperature is lowered, Dτ is enhanced and starts to diverge

from SE relations. The growth in Dτ at low T reflects the shoulder effect

on the motion of the particle. The earlier study for the breakdown of the

SE relations for the model system of water [prl, vol97, 055901 (2006)], has
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shown the deviation from SE relations driven by the transnational and ro-

tational diffusion. In the present study, we understood that simple isotropic

interaction can enhance the diffusivity and violates the SE relation.



Conclusions

In this work we have reported an extensive investigation of the SS model by

doing simulations and theory. Despite the simplicity of the model, its dynam-

ical behavior close to the glass transition had largely remained unexplored,

while its thermodynamic phase diagram showing the presence of many crys-

tal phases has been addressed in a number of publications [36, 38, 63]. The

recent predictions by MCT of multiple glass transitions for the SS model [51]

is the motivation for the present work. Given the amount of effort requested

to elucidate the various aspects of both liquid-glass transition and glass-glass

lines, we have focused on two different values of the width of the SS model

to address the dependence on ∆ of the results presented here.

In Chapter 2, our investigation focused on searching for the so-called dif-

fusion anomalies, i.e. a local maximum in the self-diffusion coefficient, both

upon compressing the system and upon cooling it, as predicted by MCT for

∆ = 0.15. We performed the simulations down to a T -range at the limit of

today computational capabilities and we did not detect the presence of an

anomaly upon compression/expansion in contrast to theoretical results, as

well as with other studies of core-softened potentials [19, 27, 39, 43]. How-

ever, none of these previous studies involved a potential with sharply-defined
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length scales such as the SS, so that this might be the reason why a differ-

ent behaviour is observed. Also, it remains to be established whether such

different models share the intriguing glassy properties of the one-component

SS model, as detailed MCT studies have not been performed.

The role of the SS width is also crucial within MCT, because it con-

trols the position of the glass-glass line and its endpoints with respect to

the liquid-glass line. The present case was predicted to show two glass-glass

lines merging from the liquid-glass one by RY-MCT for the monodisperse

SS [51]. However, when we have repeated the MCT calculations for the bi-

nary mixture investigated by MD simulations, which avoided the onset of

crystallization, we found a different topology. Namely, a disconnected glass-

glass transition lying all inside the glassy region with two endpoints, i.e. a

scenario that RY-MCT attributed to lower values of ∆. Such a shift in the

control parameters is expected when comparing with MCT, although for the

SW model there was a remarkable good agreement between theory and sim-

ulations at the same ∆ [47]. Also no reentrance in φ was detected within the

binary MCT calculations, in agreement with the simulation results. The dis-

connected glass-glass topology seems to be confirmed by simulations, which

have shown the presence of a regime of logarithmic decay of the correlators

and of subdiffusive increase of the MSD, in agreement with the predictions

close to a higher order singularity. Also the presence of the glass-glass line

and its special endpoints, called AL
3 and AH

3 , is compatible with the presented

results.

We have also found evidence that the non-ergodicity parameters along

the liquid-glass line vary in a non-monotonic fashion, in very good agreement
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with the theory. We have shown that the glass found at low/intermediate φ

(e.g. φ = 0.40) and low T is identical to that found at high φ (and almost

T -independent) when a scaling of the effective diameter is performed to take

into account the effect of the shoulder width. Thus the system clearly displays

two identical glasses, both of HS type, driven solely by excluded volume, and

differing between themselves only by a change of length scale. However, the

interplay between these two glasses is highly non-trivial, giving rise to anoma-

lous behaviour in the dynamics, although not in the form of a local maximum

in the diffusion coefficient, but in the form of clear subdiffusive regime in the

MSD and logarithmic dynamics of the density correlators. This is enhanced

at a length scale that is compatible with that always associated as the main

responsible for the hard-sphere transition, i.e. the nearest-neighbour length.

It is a remarkable finding that this simple physics is capable of producing

such non-trivial and unexpected dynamical behaviour.

In order to approach the higher order singularity in equilibrium phase and

to rule out the presence of a diffusivity maximum in density we have also car-

ried out extensive simulations for ∆ = 0.17 which were discussed in Chapter

3. By following the same simulation techniques as we have done in Chapter

2, we studied the behavior of diffusivity along isochores and isotherms and

propose the dynamical phase diagram for ∆ = 0.17. In the phase diagram,

we found a glass-glass line connecting A3 singularity lying inside the glassy

regime and the A4 singularity lying on the liquid-glass line. The glass-glass

line along with the liquid-glass line is evaluated from the binary MCT calcu-

lations. We map the MCT liquid-glass line onto the arrested line obtained

from power-law fits along isochores and isotherms. The estimated position
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of A3 and A4 singularities obtained from mapping is confirmed with logarith-

mic behavior in density autocorrelation function and subdiffusive increase in

MSD. MCT predicts a pure logarithmic in density autocorrelation function

close to A4 singularity. Following the same behavior, we are now investigat-

ing the exact location of A4 singularity in equilibrium phase by exploring

different values of ∆.

One of the novel results of this work is the identification of a locus of in-

variant dynamics, at a certain distance from the glass-glass transition where

the influence of the liquid-glass boundary does not yet interferes with that

of the glass-glass one. These findings will need to be complemented by the

MCT solutions for the full-time equations (Eq. 1.1) in order to judge their

regime of validity. Currently, we have established a collaboration with Dr.

Matthias Sperl in Koln to investigate this matter theoretically. From our

numerical analysis, we found that this invariant dynamics breaks at the cer-

tain point close to the glass-glass line. The MCT results for the glass-glass

non-ergodicity parameter suggest a non-monotonic variation, which imply

that the invariance is broken. An extensive numerical study for ∆ = 0.17

has revealed that the simple competition between two repulsive length scales

brings a new invariant dynamics along the putative glass-glass line which has

not been observed in any other systems. Our work shows that in order to

explore unexpected dynamics, it is not needed to rely on two different phys-

ical ingredients, such as attraction and repulsion, but competing isotropic

repulsions are sufficient.

Last, but not the least, we have concentrated on the dynamics of the

system at low φ, where we can approach the glass transition down to very
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low temperatures, without intervening crystallization or phase separation.

The temperature dependence of diffusivity sh”ows an Arrhenius behavior at

low T and remains constant with increasing T . This behavior of the system

describes the presence of some “activated dynamics (but generated by a

purely repulsive potential) which makes the system more diffusive at T → 0.

We explore the low φ and T region of the phase diagram for ∆ = 0.15, where

we identify a crossover from fragile to strong behavior at low T . The above

analysis suggests that the SS system retains strong-like character in the small

region of the phase diagram (see Fig.4.3.2). Also a significant violation of

SE relation is observed in analogy to other glass-forming systems.

In our work, we are able to explore the entire dynamical phase diagram

of the SS system by means of numerical simulations. We are also able to

explore a new invariant dynamics which could possibly be observed in other

systems with two competing repulsive length scales.
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Appendix A

Molecular Dynamics

simulations

Molecular dynamics (MD) simulations have been used to study thermody-

namic as well as dynamic properties of material (characterized by an inter-

action potential). The simulation considered as a close approach to experi-

mental studies at the level of theoretical approach. The first MD simulation

used for hard sphere fluid/solid [M. P. Allen, G. T. Evans, D. Frenkel, and

B. M. Mulder, Hard convex body fluids, Advances in Chemical Physics 86

(1993), 1-166]. For soft particles, one needs to integrate a system of ordinary

differential equations given by Newton’s law of motion. Several algorithms

have been developed to solve the Newton’s equations of motion. However,

for hard sphere, integrating the equation of motion is a difficult task as the

particles follow the sequence of binary collisions, or collisions of the particles

with hard walls of a container if any. So, it is necessary to predict and pro-

cess a sequence of discrete events with time. The algorithm for hard particles
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therefore are called event-driven. In event-driven MD one has to schedule

the sequence of events predicted to happen in future. The schedule of events

is updated if necessary and the same process is repeated.

Using the event-driven MD simulation techniques, we prepare an initial

configuration randomly generated for the desired packing fraction. The po-

sition of the particle is chosen from an uniform random number generator

and the particle velocities are extracted from a Maxwell-Boltzmann distri-

bution corresponding to the desired T . The periodic boundary conditions

have been applied along x, y and z directions to make infinite periodic boxes

where each particle can interact with its nearest neighboring particles. Due

to the replicas of the simulation box a particle that leaves the simulation box

through a particular bounding face immediately reenters the box through the

opposite face. Using successive steps, we generate a random configuration

where two particles at least separated by a distance of 1σ. After generating

the configuration, we add a finite repulsion 15% of the particle size to the

HS system.

Simulations are performed in the canonical and microcanonical ensembles.

MD simulations follow three main steps: (1) Initialization of the system, (2)

Evolution of the system towards equilibrium and (3) Calculation of equilib-

rium properties. The system is equilibrated by performing Event-Driven MD

simulations in the canonical ensemble with appropriate rescaling of particle

velocities. During the evolution of system, a number of particles are selected

to undergo a collision process with the heat bath. The use of step potential

introduces the following set of collisions in the system:

1. collision between the hard cores
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2. two atoms either entering or leaving their mutual potential

3. two atoms bounce as the potential boundary is reached

As we discussed above, in order to predict the future events after collision,

one has to prepare an Event calendar. Depending on the events, the calen-

dar has been organized to schedule the future collisions and the necessary

changes are incorporated. During the simulation, each particle is at the point

in time when the last event involving it happened. Each particle predicts its

upcoming event and when it is expected to happen. The positions and mo-

menta of the particles involved in this event are updated, the particles’ next

event predicted, the event queue updated, and the simulation continued with

the next event. In the early stages of the simulation it is natural for the tem-

perature to move away from the value at which it was set. We avoid the

thermal hindrance by rescaling of particle velocities. In thermal equilibra-

tion, we measure average kinetic energy and pressure. Once the equilibration

is reached for each investigated state points, NVE simulations are performed

for times ranging from t = 102 for the highly diffusive state points, to t = 106

for the most viscous state points. For all the simulations t is measured in

units of σBB(m/u0)
1/2. In this ensemble, the system has been described with

a fixed number of particles N , a fixed volume V , and a fixed energy E.

The longer equilibration makes the system fluctuate around the mean pres-

sure P and fixed temperature T as compared to canonical ensemble. The

equilibration is verified by measuring the energy, pressure and temperature

fluctuation around the fixed value. For each studied configuration, we mea-

sured the self diffusion coefficient D in the long time limit of mean square
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displacement (MSD). We also looked at the time dependent density auto cor-

relation function to compare with mode coupling theory (MCT) predictions.

In this chapter, we discuss some basic concepts of dynamical quantities.
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