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Research Background



1
Introduction

In this introductive chapter a general description of turbulent combustion is pre-
sented. Once shown the two main categories (premixed and non-premixed),

the attention is focused on the

1.1 Interaction between Flames and Turbulence

Turbulent combustion is visible in most practical combustion systems such as
rockets, internal combustion or aircraft engines, while laminar combustion appli-
cations are almost limited to lighters, candles and some domestic furnaces. So the
study and the modelling of turbulent combustion processes is an important issue
to develop and improve practical systems. In general, technical processes in tur-
bulent combustion are subdivided into two classes: premixed and non-premixed
combustion; in the first, oxidizer and fuel are mixed together before they reach
the flame front, while in the second the mixing between oxidizer and fuel is not
“artificially” obtained but is only due to molecular diffusion.

Combustion processes are very difficult to describe using analytical techniques,
so numerical simulations for turbulent combustion are growing in importance,
also if numerical simulations of turbulent reacting flows are very complex, espe-
cially for three points:

turbulence is one of the most complex phenomenon in non-reacting fluid
mechanics, because various time and length scales are involved;

combustion is a very complex process involving a large range of chemical
time and length scales; the chemical reactions that generally control combus-
tion process take place in short times, over thin layers, therefore in the flow
field there are very large temperature, density and mass fraction gradients;

turbulent combustion is the result of a two way interaction between chemi-
cal reactions and flow structures; turbulence, in fact, is modified by combus-
tion because of the strong flow accelerations through the flame front due to
heat release and the large changes in kinematic viscosity associated with
temperature changes; turbulence itself alters the flame structure, because
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1.2 Turbulent Premixed Flames

mixing can enhance chemical reactions but also, in opposite way, turbulence
can completely inhibit combustion.

Figure 1.1. Peters diagram

The main effect of turbulence on combustion
is to increase combustion rate, both for pre-
mixed and for diffusion flames: the reaction
rate per unit volume increase, and the com-
bustion becomes more efficient. Once a range
of different size eddies has developed, strain
and shear at the interface between eddies en-
hance the mixing; in particular, during the
eddy break-up process and the formation of
smaller eddies, strain and shear will increase
and thereby steepen the concentration gradi-
ents at the interface between reactants, which
in turn enhances their molecular diffusion. All
these aspects can be summarized in figure 1.1, where depending on the flame
thickness (on the abscissa) and the flame speed (on the ordinate), different flame
regimes can be identified.

1.2 Turbulent Premixed Flames

Figure 1.2. Turbulent Premixed
Flame

Turbulent premixed flames are of tremendous
practical importance, because they can be en-
countered in many useful devices, as spark-
ignition engines, gas-turbine engines, indus-
trial gas burners; despite of their widespread
availability, there is yet no comprehensive and
generally accepted theory of turbulent pre-
mixed flames.

The propagation velocity of a turbulent pre-
mixed flame depends on the character of the
flow and on the thermal and chemical prop-
erties of the mixture: a turbulent flame speed
sT is defined as the velocity needed at the in-
let of a control volume V to keep a turbulent
flame stationary in the mean inside the vol-
ume. For a one-dimensional turbulent flame
propagating along x1, the mean fuel mass frac-
tion balance (equation 2.28 on page 20) can be
written in the reference frame of the flame as:

ρ1sT

∂
(
ρỸi

)
∂t

= −
∂
(
ρỸiṼij + ρỸiṼij

)
∂xj

+ ρω̃−
∂JSGS
ij

∂xj
(1.1)

Integrating this equation and cancelling the diffusion terms far away from
flame front gives:

3



1.2 Turbulent Premixed Flames

RMSu

s0L

sT

Low turbulence zone Bending zone Quenching limit

Figure 1.3. Variations of the turbulent flame speed with RMS turbulent speed

Aρ1Y
1
FsT = −

∫
V
ω̇FdV (1.2)

where ω̇F is the rate at which the reactants are consumed by the chemical
reaction, ρ1 is the density and Y1F is the fuel mass fraction in the fresh gases and
A is the area of the box cross section. This equation expresses that the fuel mass
flow rate entering the control box is totally consumed by combustion (true for
lean mixtures). The turbulent flame speed can be correlated to the laminar flame
speed by the:

sT

s0L
=
AT
A

(1.3)

This equation shows that the increase of the turbulent flame speed compared
to the laminar flame speed s0L is due to the increase of the total flame surface AT ,
allowing a higher consumption rate for the same cross section. The ratio AT/A is
the flame wrinkling factor and corresponds to the ratio of available flame surface
area divided by its projection in the propagating direction.

In figure 1.3 turbulent flame speed variations are presented: sT first increases,
almost linearly with rmsu, then becomes flat before total quenching occurs for
too intense turbulence.

Not only the turbulence influences the shape and the position of the flame
front, but also the flame front heavily influences the turbulence: fluid properties
almost always depend on fluid temperature, so when temperature changes from
one side of the flame front to the other, kinematic viscosity (and therefore local
Reynolds number) changes; usually kinematic viscosity increases, so Reynolds
number in burnt gases is smaller then in fresh gases, and this effect may lead to
relaminarization.

Another effect of the flame on the fluid is flow acceleration through the flame
front: this velocity increase can be significant and furthermore occurs in very thin
regions, so the flow field can be significantly modified.

4



1.3 Turbulent Non Premixed Flames

1.2.1 Structure of Turbulent Premixed Flame

Turbulent premixed flames can be classified into three groups, each of which can
be associated to a flame regime:

wrinkled laminar flames;

flamelets in eddies;

distribuited reactions.

In a turbulent flow field, various length scale exist simultaneously: the smallest
scale, the Kolmogorov microscale (lK), represents the smallest eddies in the flow;
at the other extreme of the scale spectrum, the integral scale (l0) characterizes the
largest eddy sizes. The structure of a turbulent flame is governed by the relation-
ship between lK, l0 and the laminar flame thickness (δL), that characterizes the
thickness of a reaction zone controlled by molecular transport of heat and mass.

When the flame thickness is much thinner than the smallest scale of turbulence,
the turbulent motion can only distort or wrinkle the laminar flame profile: in such
case, chemical reactions occur in thin sheets, Damköler number (defined as the
ratio between characteristic flow time and characteristic chemical time) is bigger
than 1 and a fast-chemistry regime is evident.

At the other extreme, if all scales of turbulence are smaller than the laminar
flame thickness, the transport phenomena in the reaction zone are controlled, or
at least influenced, by flow turbulence: Damköler number is less than 1.

Flamelets in eddies regime is typified by moderate Damköler numbers and
high turbulence intensities: the burning zone consists of parcels of unburned gas
and almost fully burned gas; the rate of combustion is determined by the rate
at which parcels of unburned gas are broken down into smaller ones, such that
there is sufficient interfacial area between the unburned mixture and hot gases to
permit reaction; the implication of this is that turbulent mixing rates completely
control combustion.

1.3 Turbulent Non Premixed Flames

Turbulent non premixed flames are encountered in a large number of industrial
systems, because a perfect reactant mixing, in given proportions, is not required
and so burners are simpler to design and to build compared to premixed flames;
furthermore, non premixed flames are also safer to operate because they do not
exhibit propagation speeds and cannot flashback.

These flames are however more difficult to model because reacting species have
to reach, by molecular diffusion, the flame front before reaction: their motion is
therefore strongly modified by turbulent motions.

1.3.1 Features of Turbulent Non Premixed Flames

The main characteristic of non premixed flames is that they do not propagate:
they are located where fuel and oxidizer meet, and this property is very useful

5



1.3 Turbulent Non Premixed Flames

for safety purposes but has consequences on the interaction between flame and
turbulence, because without propagation speed a non premixed flame is unable to
impose its own dynamics on the flow field. So a diffusion flame is more sensitive
to stretch than a turbulent premixed flame and is more likely to be quenched by
turbulent fluctuations.

Figure 1.4. Turbulent Diffusion
Flame

Another important point is the influence
of buoyancy effects, because pressure gradi-
ents or gravity forces induce differential ef-
fects on fuel, oxidizer and combustion product
streams.

Because of all these aspects, flame stabiliza-
tion is a central design criterion for combus-
tion chambers: insufficient stabilization can
result in a combustor which cannot be oper-
ated safely or which oscillates dangerously;
the choice between stabilization methods is a
function of the inlet speeds of the reactants.

For low inlet speeds, the flame can be sta-
bilized directly at the splitter plate separating
the fuel and oxidized streams; this regime is
seldom observed in real burners because the
splitter plate can suffer from excessive heat
transfer and because it corresponds to very
small powers.

When the fuel speed is high, the flame
cannot be stabilized without the use of pi-
lot flames, dump geometries, autoignition or
swirlers; in the first case, small premixed
flames are used in the vicinity of the jet exit
to ensure the flame ignition and stabilization;
when one of the fuel or oxidizer streams is suf-
ficiently hot, the flame stabilization may be en-
sured by auto-ignition process inside the mix-
ing layer, independently of the inlet speeds. If
flow speeds are much larger than the flame
speed, one solution is to create a recirculating
zone which acts as a hot burnt gases tank pro-
viding the energy to ignite incoming reactants:
this zone can be created by a sudden expan-
sion, in which the recirculating zone is created
by the burner geometry, or by swirlers, that cause a rotating movement of the
incoming reactants.

1.3.2 Turbulent Non Premixed Combustion Regimes

Regimes description is very difficult in turbulent non premixed combustion: first,
reactant mixing is a complex phenomena that isn’t easy to model; the second

6



1.4 Motivations

Cylindrical geometry

Total length of the combustion chamber zmax ≈ 80 cm
Radius of the combustion chamber rmax ≈ 10 cm
Internal inlet diameter z1 = 0.458 cm
External inlet diameter z2 = 0.634 cm
Inlet wall thickness lw = 0.088 cm

Table 1.1. Geometrical features of the Sandia Jet “Flame A”

difficulty arises from the fact that diffusion flames do not feature a propagation
speed and that the local flame thickness depends on flow conditions. The local
flame thickness and speed depend on the local flow conditions such as local strain
rates and may be affected by unsteady effects; moreover, in a given burner the
flame structure may strongly depend on the spatial location: a flamelet structure
may be encountered close to the injectors, while a partial extinction followed by
a re-ignition may be found downstream.

1.4 Motivations

The doctoral research presented in this dissertation is focused on the development
of a multi-resolution and multi-block mesh with staggered variables integration
technique for the numerical simulation of compressible and reacting flows. As
can be understood from the previous sections, to obtain a satisfactory numeri-
cal solution of the flow field with turbulent combustion, a numerical grid with
high spatial resolution is mandatory: with multi-block structured grids, both in
Cartesian and cylindrical coordinates, this goal isn’t always possible to achieve,
especially when the numerical simulation is performed on a domain with big
dimension and very small elements (like bluff bodies and fuel injectors).

As example can be chosen the numerical simulation of the Sandia “Flame A”
jet performed by the mean of HeaRT numerical code [Giacomazzi et al., 2008]:
this test case is a CO/H2/N2 (percentage 40/30/30 in volume) non-premixed,
unconfined, turbulent jet flame. The fuel is injected at 292K from a straight circu-
lar tube with squared-off ends (inner diameter 4.58mm, outer diameter 6.34mm),
with a bulk velocity of 76ms−1; the air at 290K and wet (molar fraction of water
0.012) coflows at 0.75ms−1.

The geometrical features (summarized in the table 1.1), don’t allow to produce
a structured cylindrical mesh with an high spatial resolution on the wall duct
and concurrently with a manageable number of grid nodes: in the first numerical
simulation of the test case entire domain, performed on a computational grid
with 63 452 nodes, the flame blows off because at the inlet way out the flow field
isn’t well predicted.

A second numerical simulation, performed only on the anchoring zone (a do-
main with rmax =1.5 cm and zmax =2 cm), with a computational grid of 206 349
nodes (that permit to obtain a 1.0× 10−5m spatial resolution close to the noz-
zle), allow to underline the vortex shedding phenomena that occur on the duct

7



1.5 State of The Art

Figure 1.5. Temperature contours, details of the shedding and flame anchoring

wall and that permit a stable flame anchoring, as can be seen in figure 1.5 on the
following page.

So is clear that in this test case, where there’s a big difference between the total
length of the domain and the wall thickness, with a structured grid is impossible
to obtain a satisfactory compromise between total number of nodes and adequate
spatial resolution: a mesh refinement technique can overcome this limitation, be-
cause it makes possible to use a grid with an high spatial resolution in a well
enclosed zone and to restrict the number of grid nodes in the remaining part
of the domain. A mesh refinement technique, is also very useful in combination
with Immersed Volume Method (IVM) technique, already implemented in HeaRT
numerical code and successfully validated [Cecere and Giacomazzi, 2014].

1.5 State of The Art

In the past years, a lot of attention has been addressed to the development of
multi resolution methods for a large set of numerical simulation, from shock
hydrodynamics to climate studies; with this techniques, is possible to obtain a
better numerical solution and in characteristic situations also to obtain a decrease
of computational costs and a reduction of numerical simulation times.
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1.6 Structure of the Thesis

Berger [Berger and Colella, 1989] developed a two dimensional adaptive mesh
refinement strategy for solving hyperbolic conservation laws: by the mean of an
error estimation procedure, new refined grid levels are introduced in field zones
where an higher spatial resolution is necessary; the communication between dif-
ferent grid levels is obtained with bilinear interpolation (from coarse to fine) and
with a weighted sum over fine cells (from fine to coarse).

In [Boersma et al., 1997] is described a numerical algorithm for local grid re-
finement in Large Eddy Simulation of incompressible flows: the communication
from coarse to fine is carried out by a multi linear interpolation of coarse values,
that is followed by a correction to ensure that the sum of the mass flux through
the fine grid cell interfaces of which the union is a coarse grid cell face, equals
the original mass flux through this coarse cell interface. The communication from
fine to coarse grid is done in two ways: the first is a simple weighted sum over
fine cells, while the second is a more complex modification of subgrid terms in
the coarse grid equations (following the work of Sullivan [Sullivan et al., 1996]).

Quéméré [Quéméré et al., 2001] developed a multi-resolution method for large
eddy simulation of compressible flows on a collocated numerical grid: as the two
papers previous described, the fine to coarse communication is an easy weighted
sum over the coarse cell volume. The inverse communication (called “enrich-
ment”), seeks to regenerate some high frequencies, evaluated on the fine field
from a comparison between the coarse multi linear interpolated flow field and
the extrapolated interpolated and weighted summarized fine flow field.

The use of staggered grids complicates grid communication procedures: for
an incompressible flow, Qianlong [Qianlong, 2010] proposed a projection method
on the overlapping region between coarse and fine zones, based on multi linear
interpolation (corrected to verify that the sum of the fine fluxes is equal to the
coarse corresponding flux) of the velocity divergence and of the pressure at the
interface of the two different resolution zones.

Although the relevance of the topic, to the author’s knowledge, there aren’t
significant studies in literature about multi-resolution techniques developed for a
compressible, staggered LES in-house developed code for the numerical simula-
tions of reacting flows.

1.6 Structure of the Thesis

The present Ph. D. dissertation is organized as following:

1. The chapter 1 on page 2 introduces the background of the doctoral research,
the main phenomena studies and the motivations of the doctoral research.

2. The chapter 2 on the following page presents the physical models adopted
to study turbulent reacting flows; the governing equations are reported
here.

3. The chapter 3 on page 23 shows numerical methods used to solve the gov-
erning equations adopted.

4. The chapter 4 on page 36 describes the multi-resolution technique devel-
oped for HeaRT numerical code: the coupling procedures between coarse

9



1.6 Structure of the Thesis

and fine grids are here illustrated, together with the numerical algorithm
chosen for the numerical integration of the conservative equations in a
multi-resolution domain.

5. The chapter 5 on page 50 reports the results of the first simple numerical
test, necessary to verify the formal accuracy of the developed algorithm.

6. The chapter 6 on page 65 presents the results of an hydrogen/methane/air
slot flame simulations in multi-resolution computational grids; also a com-
parison with the numerical results obtained from a numerical simulation on
a single-resolution is shown as a validation test.

7. In the chapter 7 on page 94 all the original results of this doctoral research
are summarized.

8. The appendix A on page 97 contains the mathematical passages necessary
to obtain the governing equations in cylindrical coordinates system.

9. In the appendix B on page 105 there’s a brief overview of the multi-reso-
lution code and the future developments expected for the multi-resolution
algorithm.

10. The appendix C on page 112 gives some details of the non reflective bound-
ary conditions implemented in the HeaRT numerical code and describes
some possible new easier formulations.

10



2
Governing Equations

In this chapter the governing equations of the physical model are described.
The model adopted is suitable to describe the turbulent flow in modern com-

bustors. However we note that the fluid characterization for combustors does not
affect the general treatment of governing equations since these principles describe
the mechanical and thermal behaviour of a generic moving fluid.

2.1 Conservation Laws

The governing equations are written in the form of partial differential equations.
This form of the governing equations derives directly from the physical principles
of flow dynamics:

conservation of mass;

conservation of Linear Momentum;

conservation of energy.

The conservation laws written in this form relate the flow field variables at a
point in the flow, as opposed to governing equations written in integral form that
deal with a finite space, the control volume.

2.1.0.1 Conservation of Mass

The conservation of mass principle states that, in absence of mass adduction, the
variation in time of the density of the flow field in a point is equal to the variation
in space of the product between the density and the velocity vector, that is:

∂ρ

∂t
+∇ · (ρu) = 0 (2.1)

where ρ is the density of the fluid.

11



2.2 Multifluids Model

2.1.0.2 Conservation of Momentum

The conservation of momentum principle states that in absence of external forces
the rate of change of linear momentum in a point in the space is equal to the
resultant forces on that point, that is:

∂ρu
∂t

+∇ · (ρuu) = −∇ · S + ρ

Ns∑
i=1

Yifi (2.2)

where S is the stress tensor, Ns is the number of chemical species, Yi is the
mass fraction of the ith species and fi is the body force per mass unit acting on
the ith species.

2.1.0.3 Conservation of Energy

The conservation of energy principle states that in absence of energy adduction
the rate of change of energy in a point in the space is equal to the heat transfer
rate and the total work made by the forces acting on that point, that is:

∂E

∂t
+∇ · (ρuE) = ∇ · (Su) −∇ · q + ρ

Ns∑
i=1

Yifi · (u + Vi) (2.3)

where E is the total energy (internal and kinetic), q is the heat transfer rate and
Vi is the diffusion velocity of the ith chemical species.

2.2 Multifluids Model

In a chemical reacting and multispecies flow, an additional equation is necessary
to complete the flow description: the conservation of species mass fraction; this
principle states that the rate of accumulus of the ith species depends on the
convective flux, the diffusive flux and the production (or destruction) rate of the
species due to the chemical reactions, that is:

∂ρYi
∂t

+∇ · (ρuYi) = −∇ · Ji + ρω̇i (2.4)

where Ji is the diffusive mass flux and ω̇i is the production – destruction rate
of the ith species.

The last equation used is the thermodynamic state equation that states a rela-
tion between the pressure, the density and the temperature of an ideal gas, that
is:

p = ρ

Ns∑
i=1

Yi
Wi

RuT (2.5)

where Wi is the molecular weight of the ith species, Ru is the universal gas
constant, T is the temperature and p is the pressure of the fluid.
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2.3 Chemical Kinetic Mechanisms

The summation of all species transport equations (2.4) yields the conservation
of mass equation (2.1): therefore the Ns species mass fraction conservation and
mass transport equation are linearly dependent and one of them is redundant.
Furthermore, to be consistent with mass conservation, the diffusion fluxes (Ji =
ρYiVi) and the chemical source terms must satisfy:

Ns∑
i=1

Ji = 0 and
Ns∑
i=1

ω̇i = 0 (2.6)

2.3 Chemical Kinetic Mechanisms

Combustion of hydrocarbons contains hundreds of reactions for simple hydrocar-
bons such as CH4, thousands of reactions for larger hydrocarbons. The interac-
tion of these elementary reactions governs the whole reaction mechanism. Even
though there are large amount of reactions, they have characteristic properties
which will be explained further.

2.3.1 Detailed (Skeletal) Mechanism

Detailed mechanisms consist of hundreds of species and from hundreds to thou-
sands of reactions. These mechanisms contain all the important species and ele-
mentary reactions. They also contain as much as possible fundamental informa-
tion.

Generation of reaction mechanisms starts with the estimation of necessary
species and reactions which are likely to occur in the observed conditions: re-
actants, large number of intermediate species and products must be included in
the mechanism. Increasing databases of rate parameters of elementary reactions
enable to create more detailed “complete” mechanisms which have more complex
structures.

The development of detailed mechanisms is time-consuming and iterative, also
because validation against experimental data is necessary.

The above detailed mechanism generation is so complex and there may always
exist human errors: in order to automate this challenging process, computers
have become to play an important role in the last two decades.

After the mechanism is constructed and rate parameters are incorporated, dif-
ferential rate equations are integrated.

The problem of the simulation of such detailed mechanisms is “stiffness” of the
mechanism, which increases the computation time; elementary reactions occur in
a reaction mechanism in different time scales: the ratio of fastest time scale to
slowest time scale is the stiffness of the system. Because of stiffness, too small time
steps are necessary to achieve stability and using standard integration methods
such as Runge-Kutta method become inapplicable in detailed mechanisms.
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2.3 Chemical Kinetic Mechanisms

2.3.2 Reduced (Skeletal) Mechanism

Applying detailed reaction mechanisms in CFD applications, and making a de-
tailed investigation on these mechanisms require too much computational time.
Coupling physical processes such as transport phenomena in the flow field with
the chemical kinetics makes the systems even more complicated to solve.

Some species and reactions in the detailed reaction mechanism have a negli-
gible influence on the combustion process: these species can be defined as re-
dundant. Removing redundant species from the detailed mechanism does not
give considerable error on the calculations such as mole fractions of species.
These species and reactions are defined by the mechanism simplifying technique
adopted: sensitivity analysis, necessity analysis, direct relation graph, etc.. . .

For instance, applying a necessity analysis allows deleting up to 55% of all
species from the detailed mechanism.

2.3.3 Global (Reduced) Mechanism

The approaches to generate reduced mechanisms can be classified in to two dif-
ferent categories: static and dynamic approaches. Static approaches are analy-
ses such as reaction flow analysis and sensitivity analysis: sensitivity analysis
gives the reactions and species with high sensitivities and defines them as non-
redundant, which cannot be removed from the detailed reaction mechanism.

After adding fuel, oxidizer, and products to this non-redundant list, reaction
flow analysis gives the atomic mass flow through the given reactions. This is used
to detect redundant species that are considered unimportant for the mechanism,
due to small amounts of formation and destruction, for differently defined levels
of mass flow.

Dynamic approaches take a detailed or skeletal mechanism as reference and
then select only the most important species and reactions for the reduced mech-
anism. Reduced mechanisms can be generated by applying the steady state as-
sumptions to a detailed or skeletal mechanism without any significant loss of ac-
curacy. A measure of species lifetimes is taken from the diagonal elements of the
Jacobian matrix of the chemical source terms: the species with a lifetime shorter
than and mass fraction below specified limits are assumed to be in steady state
and selected for removal from the skeletal or detailed mechanism; these schemes
are anyway computationally expensive, since to evaluate global reactions rate
they require solving an algebraic-differential system of equations.

Solving such a non-linear algebraic system of equations (generally via itera-
tions) is also a negative critical issue in supercomputing since inevitably pro-
duces load unbalancing (e.g., processors solving non-reacting portion of a fluid
will have to wait processors solving reacting portions).

2.3.4 Fast Chemistry

The simplest mechanism is the fast chemistry, that is based on a very basic ap-
proach: when fuel and oxidizer are mixed together, they burn, so there isn’t need
of any kinetic information.
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2.4 Constitutive Equations

2.4 Constitutive Equations

Each material has a different response to an external force, depending on the
properties of the material itself: the constitutive equations describe this behaviour.

In particular, they express with simple mathematical models the microscopic
molecular diffusion of momentum, energy and mass. For a gas mixture, they
should model the stress – strain relation between S and E, the heat flux q and the
species mass flux Ji.

2.4.1 The Diffusive Momentum Flux

For all gases that can be treated as continuum it has been observed a linear pro-
portion between viscous stresses that arise from the flow and the local strain
rate: that is equivalent to saying that those forces are proportional to the rates of
change of the fluid’s velocity vector as one moves away from the point in ques-
tion in various directions; a fluid that behaves in this manner is called Newtonian
fluid. With this assumption is possible to derive an expression that relates the
stress tensor S to the pressure p, the strain rate E and the velocity vector u, that
is:

S = (−p+ λ∇ · u) I + 2µE = −pI + τ (2.7)

where τ is the viscous part of stress tensor, µ is the coefficient of viscosity
and λ is the second coefficient of viscosity. These two coefficient of viscosity
are related to the coefficient of bulk viscosity µb by the µb = −2/3µ+ λ ; with
the assumption of the Stoke hypothesis (the sum of the normal stresses is zero),
µb = 0, so λ = 2/3µ and the viscous stress tensor becomes:

τij = λ
∂ui
∂xi

+ 2µ

[
1

2

(
∂ui
∂xj

+
∂uj

∂xi

)]
(2.8)

Pressure at the macroscopic level corresponds to the microscopic transport of
momentum by means of molecular collisions in the direction of molecules motion.
Instead, molecular momentum transport in other directions is what at macro-
scopic level is called viscosity. They are of different nature, because in terms
of work done, when continuous distribution are considered, pressure produces
reversible transformations (changes of volume), while viscous stresses produce
irreversible transformations (dissipation of energy into heat).

2.4.2 The Diffusive Species Mass Flux

In equation (2.4) the knowledge of diffusive species mass flux Ji is required: this
flux expresses the relative motion of chemical species with respect to the motion
of their (moving) center of mass; by the means of a constitutive law this mo-
tion can be expressed without an additional momentum equation for chemical
species. Both modelling and calculation of individual species diffusive mass flux
is not easy; the distribution of Ns chemical species in a multicomponent gaseous
mixture is rigorously obtained by the means of kinetic theory [Kuo, 1986]:
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2.4 Constitutive Equations

∇Xi =
Ns∑

i=1,i 6=j

XiXj

Dij

(
Vj − Vi

)
︸ ︷︷ ︸

DV

+(Yi −Xi)
∇p
p︸ ︷︷ ︸

PG

+
ρ

p

Ns∑
j=1

YiYj
(
fi − fj

)
︸ ︷︷ ︸

BF

+

Ns∑
j=1

XiXj

ρDij

(
αj

Yj
−
αi
Yi

)
∇T
T︸ ︷︷ ︸

SG

(2.9)

where Dij is the binary diffusion coefficient of species i into the species j, Xj
and Yj are the molar and the mass fraction of the jth species respectively, fj the
body force per unit mass, acting on species j, αj the thermo-diffusion coefficient
of species j.

Equations (2.9) are referred to as the Maxwell-Stefan equations, since Maxwell
[Maxwell, 1860a,b] suggested them for binary mixtures on the basis of kinetic
theory, and Stefan [Stefan, 1871] generalized them to describe the diffusion in a
gas mixture with Ns species.

The main feature of equations (2.9) is that they couple inextricably all diffu-
sion velocities Vj (and thus all fluxes), to all concentrations Xj and Yj and their
gradients. According to equations 2.9, concentrations gradients can be physically
created by:

differences in Diffusion Velocities (DV);

Pressure Gradients (PG);

differences in Body Forces (BF) per unit mass acting on molecules of differ-
ent species;

thermo-diffusion, or Soret Effect (SE), i.e., mass diffusion due to tempera-
ture gradients, driving light species towards hot regions of the flow; this last
effect, often neglected, is nevertheless known to be important, in particular
for hydrogen combustion, and in general when very light species play an
important role.

The linear system of equations (2.9) for the variable Vj has size Ns ×Ns and
requires knowledge of Ns(Ns − 1)/2 diffusivities. Only Ns − 1 equations are
independent, since the sum of all diffusion fluxes must be zero. This system
must be solved in each direction of the frame of reference (coordinate system), at
every computational node and, for unsteady flows, at each time step of numerical
integration.

Extracting the diffusion velocities is a very difficult task, therefore in many
CFD computations simplified models are preferred; in the present dissertation,
Hirschfelder and Curtiss law is used to calculate diffusion velocities in an ap-
proximate way:

Vi = −Di
∇Xi
Xi

(2.10)
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2.4 Constitutive Equations

where

Di =
1− Yi∑Ns
j=1,j6=i

Xj
Dji

(2.11)

The coefficient Di is an equivalent diffusion coefficient of species i into the
whole remaining mixture of Ns − 1 species.

When approximated expressions (like Hirschfelder and Curtiss law) are used
to obtain diffusion velocities, mass conservation problems can occur: in fact the
diffusion velocities do not necessarily satisfy the constrain

Ns∑
i=1

Ji =
Ns∑
i=1

ρYiVi = 0

A simple empirical remedy to impose global mass conservation consists in
subtracting any residual artificial diffusional velocity from the flow velocity in
the species transport equations. In fact, summing all species transport equations,
the mass conservation equation must be obtained, while it is found:

∂ρ

∂t
+∇ · (ρu) = −∇ · (ρ

Ns∑
i=1

YiVi) (2.12)

Thus, in order for the conservation of mass to be respected, a term ρfVc involv-
ing a correction velocity Vc must be introduced. Vc is defined as

Vc = −

Ns∑
i=1

YiVi

and assuming Hirschfelder’s law holds, it becomes

Vc =
Ns∑
i=1

Wi
Wmix

Di∇Xi (2.13)

The correction velocity must be computed at each time step and added to the
flow velocity in the species convective term. The corrected convective term of
species transport equations must then become

∇(ρfufYi)→ ∇(ρf(uf + Vc)Yi) (2.14)

With this "trick", any artificial flow due to the nonzero diffusional mass flux is
thereby cancelled. Furthermore, the constrain

∑Ns
i=1 Yi = 1 is strictly ensured by

the

Yi =
Yi∑Ns
i=1 Yi

(1− Yi) + Yi (2.15)
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2.5 LES Model

2.4.3 The Diffusive Heat Flux

The heat flux q for a gaseous mixture of Ns chemical species can be split in three
contributions:

1. the heat transfered by conduction, modeled by the Fourier’s law; at a micro-
scopic level, this flux is due to molecular collision: molecules with an higher
level of kinetic energy (with higher temperature) transfer energy by molec-
ular collision to the ones with a lower level of kinetic energy (with a lower
temperature); in the continuum view, the heat flux arises from temperature
gradients;

2. the heat transfered by molecular diffusion in a multi–species mixture, due
to concentration gradients; when ∇Yi 6= 0, each species diffuses with its
own velocity Vi; this means that can be energy transfer even in a gas at
uniform temperature or in a rarefied gas (where conduction is negligible);

3. the heat transfered by Dufour effect: the Onsager principle of microscopic
reversibility in the thermodynamics of irreversible processes implies that
if temperature gradients cause species diffusion (thermo-diffusive or Soret
effect), concentration gradients must cause a reciprocal (Dufour effect) heat
flux; the Dufour effect is neglected [Kuo, 1986].

The total heat flux q = qF + qVi + qD, where qD is the thermal flux due to
Dufour effect (neglected) is:

q = −k∇T + ρ
Ns∑
i=1

HiYiVi (2.16)

where k is the thermal conductivity and Hi is the enthalpy of the ith species.

2.5 LES Model

Large eddy simulations are based on the assumption that small-scale turbulent
eddies are more isotropic than the large ones, and are responsible mostly for
energy dissipation in the mean. Modelling the small scales, while resolving the
large eddies, may be very beneficial: first, since most of the momentum transport
is due to the large eddies, model inaccuracies are less critical; secondly, the mod-
elling of the unresolved scales is easier, since they tend to be more homogeneous
and isotropic than the large ones, which depend on the boundary conditions.

Thus, LES is based on the use of a filtering operation: a filtered (or resolved)
large-scale variable is defined by:

f (x) =
∫
D
f
(
x ′
)
G
(
x, x ′,∆

)
dx ′ (2.17)

where D is the entire domain and G is the filter function. The size of the small-
est eddies that are resolved in LES is clearly related to the filter width, denoted
by ∆: the grid spacing h should be sufficiently fine to represent accurately ed-
dies of size ∆. There has been considerable discussion on the appropriate value
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2.5 LES Model

of filter width; in most cases, the filter width is chosen proportional to the grid
size (∆ = nh), but if the mesh is anisotropic, an appropriate average is used to
determine h:

h = (hxhyhz)
1/3 or h =

(
h2x + h

2
y + h2z

)
(2.18)

When complex geometries are studied, is preferable relating the filter width to
physical quantities, rather than the grid. The most commonly used filter function
are the sharp Fourier cutoff filter, defined in the wave space, that is:

Ĝ (k) =

{
1, if k 6 π/∆

0, otherwise
(2.19)

the Gaussian filter in the physical space, that is:

G (x) =

√
6

π∆
2
exp

(
−
6x2

∆
2

)
(2.20)

and the top hat filter in physical space, that is

G (x) =

{
1/∆, if |x| 6 ∆/2
0, otherwise

(2.21)

In this work, the filter operation is implicitly defined by the mesh size. The
uncertainties related to the procedure of exchanging the order of the filter and
differential operators (commutation errors), are neglected and assumed to be in-
corporated in the sub-grid scale modeling.

2.5.1 Filtered Conservation Equations

In compressible flows, it is convenient to use Favre-filtering to avoid the intro-
duction of subgrid-scale terms in the equation of conservation of mass: when the
mass balance equation is averaged (with this operation a generic variable φ is
split into a mean value φ and a deviation from the mean denoted by φ ′), indeed,
velocity/density fluctuation correlation appears; to avoid the explicit modelling
of such correlation, a Favre average is introduced: a Favre-filtered variable is
defined by the

f̃ =
ρf

ρ
(2.22)

The Favre-filtered equations of motion can be written in the form:
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∂ρ

∂t
+
∂
(
ρũj
)

∂xj
= 0 (2.23)

∂
(
ρũj
)

∂t
+
∂
(
ρũiũj

)
∂xj

= −
∂p

∂xi
+
∂τji

∂xj
−
∂τSGS
ji

∂xj
+ ρ

Ns∑
i=1

Ỹifi (2.24)

∂
(
ρH̃
)

∂t
+
∂ρH̃ũ

∂xj
=
Dp

Dt
−
∂
(
qj + q

SGS
j

)
∂xj

+ ρ

Ns∑
i=1

Ỹif̃ijṼij (2.25)

where

τij = µ

(
∂ũi
∂xj

+
∂ũj

∂xi

)
−
2

3
µδij

∂ũk
∂k

and

τSGS
ij = ρũiuj − ρũiũj (2.26)

qSGS
j = ρH̃uj − ρH̃ũj (2.27)

The subgrid-scale heat flux due to diffusion effects has been considered negli-
gible with respect to SGS heat flux qSGS

ij .
The Favre-filtered equations of species and state can be written in the form:

∂
(
ρỸi

)
∂t

+
∂
(
ρỸiṼij

)
∂xj

= −
∂
(
ρỸiṼij

)
∂xj

+ ρω̃−
∂JSGS
ij

∂xj
(2.28)

p = ρ

Ns∑
i=1

Ru
Ỹi
Wi

T (2.29)

where

JSGS
ij = ρỸiuj − ρỸiũj (2.30)

Also in this case, the subgrid-scale effects due to diffusion, arising from J̃ij,
may be neglected with respect to SGS species transport JSGS

i .

2.5.2 Subgrid-scale Modelling

The main role of subgrid-scale model must be to remove energy from the resolved
scales, mimicking the drain that is usually associated with the energy cascade. It
may not be necessary for a model to represent the “exact” SGS stresses accurately
at each point in space and time, but only to account for their global effect; the
resolved scales exchange energy with the unresolved scales and the surroundings
through several mechanisms.

In the Fractal Model (FM), the eddy viscosity (that has to dissipate energy from
the resolved scales) is given by:
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2.5 LES Model

µT =
1

π
µ∆

[(
∆

η

)2
− 1

]
(2.31)

where ∆ is the characteristic cell dimension (for example the cube root of the
cell volume), η is the dimension of the dissipative scale and µ∆ is the viscosity
value in the cell; this expression yields automatically µT = 0 when ∆/η = 1 (i.
e. in laminar regions and in particular at walls), or when the computational cell
Reynolds turbulent number is of order 1.

In this equation, ∆/η is related to the local turbulent Reynolds number based
on the local filter size and a velocity fluctuation u ′∆ = (2/3ksgs)1/2: so in each
computational cell the value of subgrid kinetic energy is required.

This value is obtained from a transport equation of ksgs, defined as ksgs =
1
2 (ũ

2
i − ũ

2
i ):

∂(ρksgs)

∂t
+
∂(ρũik

sgs)

∂xi
=− ρcε

(ksgs)3/2

∆
+ τsgsij

∂
(
ũj
)

∂xi

+
∂
[
(µ+ µt)

∂ksgs

∂xi

]
∂xi

+
∂
(
µtR̃
Prt

∂T̃
∂xi

)
∂xi

(2.32)

where the terms on the right hand side are, respectively:

dissipation of subgrid kinetic energy;

subgrid stress work;

diffusion due to subgrid pressure fluctuations in kinetic energy;

ksgs diffusion due to subgrid pressure fluctuations modelled adopting an
eddy-viscosity assumption.

The coefficient cε is assumed constant (and set to 0.916). Once the turbulent
viscosity is known, the subgrid stresses τsgsij can be modelled as:

τ
sgs
ij = 2µt

(
S̃ij −

1

3
S̃kkδij

)
−
2

3
ρksgsδij (2.33)

The subgrid heat flux can be modelled as:

q
sgs
j = −αT∇H (2.34)

where αT = µT
ρPrT

and the subgrid diffusive flux can be modelled as:

JSGS
ij = −DT∇Yi (2.35)

where DT = νT
ScT

.
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2.5.3 LTSM Model

The Favre filtered chemical source term in the energy and single species transport
equation is here modelled as

ω̃i ' γ∗ω∗i
where γ∗ is the local reacting volume fraction of the computational cell and ω∗i

is the reaction rate of the ith chemical species.
The local reacting volume fraction is defined as

γ∗ =
V∗F
V∆

where V∗F is the reacting volume and V∆ is the total volume of the computa-
tional cell.

The Localized Turbulent Scales Model (LTSM) is developed under the following
two assumptions:

• within a wrinkled flame front the iso-surfaces of the progress variables are
parallel;

• the ratio between the turbulent and the laminar flame surface areas scales
as the ratio between the associated flame speeds, that is:

AF/AL ≡ AT/AL ≈ ST/SL

This model estimates the value of γ∗ assuming that a flame front having a
surface area AF and thickness δF is contained in a computational cell volume of
characteristic size ∆ = V

1/3
∆

γ∗ =
V∗F
V∆
≈ AδF

V∆
≈ ST

SL
AL

δF
V∆
≈ ST

SL
∆2
δF
∆3

=
ST

SL

δF
∆

(2.36)

So the problem of γ∗ estimation becomes the problem of estimating the char-
acteristic of the local flame front in terms of its turbulent flame speed, laminar
flame speed and thickness (turbulent or laminar) from the filtered conditions of
the flow and depending on the related local premixed combustion regime.

Introducing an extinction or flame stretch factor Gext 6 1, γ∗ can be finally
evaluated from the:

γ∗ = Gext
ST

SL

δF
∆

(2.37)

When Gext = 1 at subgrid level does not imply that stretching is not experi-
enced by the flame at all: it means that the subgrid turbulence is very weak and
so it doesn’t effectively stretch the subgrid flamelets, but the resolved velocity
fluctuations may be high enough to effectively stretch the resolved flame front.

The model used to predict quenching is the so called quenching cascade model
[Meneveau and Poinsot, 1991], that compares quite well with experimental and
direct numerical simulation data on quenching.
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3
Numerical Methods

In this chapter the numerical methods used to integrate the governing equations
presented in chapter 2 on page 11 are presented. The methods adopted can be

considered at the state of the art for LES of compressible reacting flows.

3.1 Numerical Schemes

In the HeaRT code, described in detail in section 3.2 on page 30 are used the
following numerical schemes and methods:

1. AUSM numerical scheme combined with quadratic upstream interpolation
developed for the QUICK numerical scheme;

2. finite difference numerical scheme;

3. Newton-Raphson method;

4. Runge-Kutta method.

3.1.1 AUSM Numerical Scheme

The develop of this numerical scheme was motivated by the desire to combine the
efficiency of FVS and the accuracy of FDS [Liou and Steffen, 1993]. Considering
the two-dimensional system of Euler equation for a perfect gas

∂U
∂t

+
∂F
∂x

+
∂G
∂y

= 0 (3.1)

where the inviscid flux vector F consists of two physically distinct parts, namely
convective and pressure terms:

F =


ρ

ρu

ρv

ρH

u+


0

p

0

0

 = F(c) +


0

p

0

0

 (3.2)
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3.1 Numerical Schemes

The convective terms can now be considered as a passive scalar quantities con-
vected by a velocity u at the cell interface: the pressure flux terms are governed
by the acoustic wave speed. So the two components can be discretized separately:
at an interface L < 1/2 < R the convective terms can be written as:

F(c)
1/2

= u1/2


ρ

ρu

ρv

ρH


L/R

=M1/2


ρa

ρau

ρav

ρaH


L/R

(3.3)

where

(•)L/R =

{
(•)L if M1/2 > 0

(•)R otherwise
(3.4)

The advective velocity M1/2 can be expressed as a combination of the wave
speeds (M± 1) traveling towards the interface

(
1
2

)
from the adjacent L and R

cells:

M1/2 =M+
L +M−

R (3.5)

where the split Mach number M± is defined according Van Leer splitting:

M± =

{
±14 (M± 1)

2 if |M| 6 1
1
2 (M± |M|) otherwise

(3.6)

The pressure term can be written, following equation (3.5):

p1/2 = p+L + p−R (3.7)

and the pressure splitting is weighted using the polynomial expansion of the
characteristic speeds (M± 1). The pressure splitting can be expressed in terms of
first order polynomials (M± 1):

p± =

{
p
2 (1±M) if |M| 6 1
p
2 (M± |M|) /M otherwise

(3.8)

or in terms of second order polynomials (M± 1)2:

p± =

{
p
4 (M± 1)2 (2∓M) if |M| 6 1
p
2 (M± |M|) /M otherwise

(3.9)

All the above formulas can be recast in the form:
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ρuv
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0

p+L + p−R
0

0



(3.10)

where ∆1/2 {•} = {•}R − {•}L. The first term on the right hand side is a Mach-
number-weighted average of L and R states; the second term is the numerical
dissipation.

Summarizing, this numerical scheme (AUSM - Advection Upstream Splitting
Method) treats the convective and the pressure terms separately:

convective terms are biased from the upstream using a properly definite
cell-interface velocity;

pressure term is dealt with convective terms using acoustic waves.

3.1.1.1 Quick Reconstruction

In HeaRT code, “L” and “R” convective terms of equation (3.10) are evaluated
by the mean of a quadratic upstream interpolation developed in the QUICK
(QUadratic Interpolation for Convective Kinetics) numerical scheme [Leonard,
1979]; the method can be expressed as a linear interpolation corrected by a term
proportional to the upstream-weighted curvature (see figure 3.1 on the following
page):

φ∗l =
1

2
(φL +φC) −

∆x2l
8

1

∆xL

(
φC −φL
∆xl

−
φL −φFL
∆xfl

)
φ∗r =

1

2
(φC +φR) −

∆x2r
8

1

∆xC

(
φR −φC
∆xr

−
φC −φL
∆xl

) (3.11)

where subscripts FL, L, C, R and FR refer to the far left, left, central, right and
far right nodes; subscripts l and r refer to the left and right faces.

The general formula for the QUICK scheme is the following:
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y

x

φFL

i− 2

φL

i− 1

φC

i

φR

i+ 1

φFR

i+ 2

φl

φr

ul ur

∆xL ∆xC ∆xR

∆xfl ∆xl ∆xr ∆xfr

(
∂φ
∂x

)
l

(
∂φ
∂x

)
r

Figure 3.1. Schematic showing a control volume for node i, variables φ at upstream
and downstream nodes, grid spaces, faces velocities u∗ and face gradients (∂φ/∂x)∗
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φ∗l =
1

2
(φL +φC) −

∆x2l
8
Curvl

=
1

2
(φL +φC) −

∆x2l
8

[
1

∆xL
(Gradl −Gradfl)

]
φ∗r =

1

2
(φC +φR) −

∆x2r
8
Curvr

=
1

2
(φC +φR) −

∆x2r
8

[
1

∆xC
(Gradr −Gradl)

]
(3.12)

where “Curv” represents (upstream-weighted) φ curvatures and “Grad” φ gra-
dients.

3.1.2 Finite Difference Numerical Scheme

The idea of a finite-difference representation for a derivative can be introduced
by recalling the definition of the derivative for the function u(x,y) at x = x0 and
y = y0, that is:

x

y
∆x

∆y

(a)

ui,j−1

ui,j

ui,j+1

ui−1,j ui+1,j

(b)

Figure 3.2. A typical finite-difference grid

∂u

∂x
= lim
∆x→0

u (x0 +∆x,y0) − u (x0,y0)
∆x

(3.13)

If the function u is continuous and ∆x is “sufficiently” small but finite, is
expected that [u (x0 +∆x,y0) − u (x0,y0)] /∆x will be a good approximation to
∂u/∂x. Developing a Taylor-series expansion for u (x0 +∆x,y0) about (x0,y0)
gives (see figure 3.2)

u (x0 +∆x,y0) = u (x0,y0) +
∂u

∂x

∣∣∣∣
0

∆x+
∂2u

∂x2

∣∣∣∣
0

(∆x)2

2!
+ . . .

+
∂n−1u

∂xn−1

∣∣∣∣
0

(∆x)n−1

(n− 1)!
+
∂nu

∂xn

∣∣∣∣
ξ

(∆x)n

n!

(3.14)
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3.1 Numerical Schemes

where x0 6 ξ 6 (x0 +∆x). Thus we can form the “forward” difference by
rearranging equation (3.14), switching to the i, j notation:

∂u

∂x

∣∣∣∣
i,j

=
ui+1,j − ui,j

∆x
+O (∆x) (3.15)

An infinite number of difference representations can be found for ∂u/∂x|i,j, for
example we could expand “backward”:

∂u

∂x

∣∣∣∣
i,j

=
ui,j − ui−1,j

∆x
+O (∆x) (3.16)

or subtracting equations (3.15) and (3.16), to obtain the “central” difference:

∂u

∂x

∣∣∣∣
i,j

=
ui+1,j − ui−1,j

2∆x
+O (∆x)2 (3.17)

or adding equations (3.15) and (3.16), to obtain an approximation of the second
derivative:

∂2u

∂x2

∣∣∣∣
i,j

=
ui+1,j − 2ui,j + ui−1,j

(∆x)2
+O (∆x)2 (3.18)

The mixed derivative approximation can be obtained from the Taylor-series
expansion for two variables:

u (x0 +∆x,y0 +∆y) = u (x0,y0) +
(
∆x

∂

∂x
+∆y

∂

∂y

)
u (x0,y0)+

+
1

2!

(
∆x

∂

∂x
+∆y

∂

∂y

)2
u (x0,y0) + . . .

+
1

n!

(
∆x

∂

∂x
+∆y

∂

∂y

)n
u (x0 + θ∆x,y0θ∆y)

(3.19)

where 0 6 θ 6 1; rearranging equation (3.19), switching to the i, j notation:

∂2u

∂x∂y

∣∣∣∣
i,j

=
1

∆x

(
ui+1,j − ui+1,j−1

∆y
−
ui,j − ui,j−1

∆x

)
+O (∆x,∆y) (3.20)

In this manner is possible to obtain all derivatives that appear in Navier-Stokes
equations described in chapter 2, for cylindrical and Cartesian structured grids.

3.1.3 Newton-Raphson Method

Newton–Raphson method is a method for finding successively better approxima-
tions to the roots (or zeroes) of a real-valued function. Assuming that an initial
estimate x0 is known for the desired root α of f(x) = 0, Newton-Raphson method
will produce a sequence of iterates which will converge to α. Since x0 is assumed
close to α, the function f(x) can be approximated by constructing its tangent line
at (x0, f (x0)), as can be seen in figure 3.3 on the next page.
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y

x
x0x1x2α

Figure 3.3. Newton’s method

Then the root of this tangent line can be used to approximate α, calling this
approximation x1. This process can be repeated to obtain a sequence of iterates
xn with the following iteration formula:

xn+1 = xn −
f (xn)

f ′ (xn)
with n > 0 (3.21)

Newton-Raphson method can be explained also starting with a Taylor series
development: expanding f(x) about xn:

f (x) = f (xn) + (x− xn) f
′ (xn) +

(x− xn)
2

2
f ′′(ξ) (3.22)

with ξ between x and xn. Letting x = α and using f (α) = 0, solving for α we
obtain:

α = xn −
f (xn)

f ′ (xn)
−

(α− xn)
2

2
· f
′′ (ξn)

f ′ (xn)
(3.23)

with ξn between xn and α. Recalling equation (3.21):

α− xn+1 = −(α− xn)
2 · f

′′ (ξn)

2f ′ (xn)
with n > 0 (3.24)

Using equations (3.23) and (3.24), Newton-Raphson method has a quadratic
order of convergence (p = 2) in:

|α− xn+1| 6 c |α− xn|
p with n > 0, c > 0 (3.25)
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3.2 HeaRT Code

3.1.4 Runge-Kutta Method

Runge-Kutta method is a numerical scheme commonly used to solve initial value
problems for ODE’s. This scheme was developed around 1900 by the German
mathematicians C. Runge and M. W. Kutta and essentially utilizes the weighted
average of several solutions over the interval ∆t in order to improve accuracy of
solution. A generic Runge-Kutta scheme can be expressed by the:un+1 = un + h

s∑
i=1

bik
n
i n = 0, ..,N− 1

u0 = u(t0)

(3.26)

where

h = tn+1 − tn (3.27)

kni = F

tn + cih,un + h

i−1∑
j=1

aijk
n
j

 i = 1, .., s (3.28)

c1 = 0 (3.29)
i−1∑
j=1

aij = ci for i = 2, . . . , s (3.30)

and aij, ci, bi are coefficients to be determined and s are the substeps of Runge-
Kutta scheme.

3.2 HeaRT Code

Into the chapter 2 on page 11 we have pointed out that in order to perform a LES
numerical simulation of an energy burner, Navier-Stokes conservation laws are
suitable. The Navier-Stokes system is the first component of our CFD study: our
aim is to find the solution of the Navier-Stokes system (conveniently modified)
when the initial and boundary conditions are imposed to it. In this section the
numerical model used to find this solution is presented.

HeaRT (Heat Release and Turbulence) numerical code, developed by UTTEI
(Technical Unit for Advanced Technologies for Energy and Industry) of ENEA, in
collaboration with DIMA (Mechanical and Aerospace Engineering Department)
of Sapienza University of Rome, is an unsteady numerical solver for turbulent
reacting and non reacting flows, at low Mach number, in three-dimensional carte-
sian and cylindrical geometries, discretized by the means of structured grids.
Navier-Stokes equation are implemented in the compressible formulation, in or-
der to highlight wave propagation phenomena that are very important for com-
bustion instability analysis.

Governing equations are solved, in HeaRT code, on a staggered grid scheme:
scalars (density, temperature, pressure, total energy and mass fractions) are set
in the cell center, while the three mass fluxes are staggered in space by half grid
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(a) Scalars and Mass Fluxes
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Figure 3.4. Variables Position in a Cell

i− 1 i i+ 1 i+ 2

Figure 3.5. AUSM grid

width and collocated in the “positive” faces of the cell (see figure 3.4a). Viscous
stresses are set in the cell center and in the edges of the cell (see figure 3.4b).

Summarizing, HeaRT code is a staggered numerical code that uses:

AUSM numerical scheme with QUICK reconstruction for convective fluxes
of scalar variables (ρ, Utot, Yi, ksgs); the numerical algorithm, for evaluation
of convective mass flux in a generic direction, is the following:

1. left and right sound velocities are evaluated on the red face in figure 3.5
by the mean of a quadratic upstream interpolation

aL = Q+
1 a (i+ 1) +Q

+
2 a (i) +Q

+
3 a (i− 1)

aR = Q−
1 a (i+ 2) +Q

−
2 a (i+ 1) +Q

−
3 a (i)

(3.31)

where Q+
i and Q−

i , with i = 1, · · · 3 are grid spacing depending metric
terms;

2. Mach number on the red face in figure 3.5 is evaluated from the

M = U (i)
aL + aR
2aLaR

(3.32)
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i− 1 i i+ 1

(a)

i i+ 1

j− 1

j

j+ 1

(b)

Figure 3.6. Interpolation scheme for “axial” and “orthogonal” mass fluxes and veloci-
ties

where U(i) is the flow velocity orthogonal to the red face, where is
collocated due to the staggered formulation;

3. the convective mass flux is evaluated from

Fc =
1

2
M (ρaL + ρaR) + |M| (ρaL − ρaR) (3.33)

where ρaL and ρaR are the product of density and sound velocity
evaluated by the means of equation (3.31);

the same algorithm is used for the other two directions and for convective
energy fluxes ρUtot + p and convective species fluxes ρYi.

second order centered finite difference numerical scheme for momentum
(ρUz, ρUr, ρUθ) and for diffusive fluxes of scalar variables; due to the stag-
gered formulation adopted, some interpolations are necessary to obtain all
the required variables in the right place; for “axial” momentum flux, mass
flow and velocity have to be re-collocated in the cell center by the means of
a linear interpolation from the two cell faces: as can be seen in figure 3.6a,
staggered velocities and mass fluxes (the black crosses) are interpolated in
the momentum cell faces (the red dotted cell) to compute momentum flux
balance, with the following equation:

φ(i) = ciφ(i+ 1/2) + (1− ci)φ(i− 1/2) (3.34)

where due to the staggered formulation ci = 1/2; after that, axial convec-
tive momentum flux p + ρuu can be computed, because the pressure is
collocated on the cell center;
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3.2 HeaRT Code

for “orthogonal” momentum flux, mass flux and velocity have to be re-
collocated on the corners of the scalar cell (the red dots in figure 3.6b on
the preceding page); orthogonal velocities (green crosses) are interpolated
in the momentum cell face with the equation:

φ(i+ 1/2) = ciφ(i+ 1) + (1− ci)φ(i) (3.35)

but otherwise from “axial” flux, ci =
xi+1/2−xi
xi+1−xi

; axial mass fluxes (black
crosses) are interpolated in the momentum cell face with the equation:

φ(j+ 1/2) = cjφ(j+ 1) + (1− cj)φ(j) (3.36)

where cj =
yj+1/2−yj
yj+1−yj

. After these simple interpolations, the other convec-
tive flux (ρuauo, where subscript “a” is for “axial” component and sub-
script “o” is for “orthogonal” component of flow velocity); viscous terms
in the momentum equation, due to the staggered formulation adopted (see
figure 3.4b on page 31), don’t need any interpolation and the derivatives of
these terms can be easily calculated by the equation (3.15).

For energy equation, viscous work terms and heat fluxes are evaluated from
equation (3.15) as for diffusive terms in species equation.

Newton-Raphson procedure for temperature calculation; the temperature
is evaluated, starting from its old value (at the previous time-step), as the
value for which the equation nRT + Etot −Htot = 0, where R is the universal
gas constant, Etot is the internal energy and Htot is the standard formation
enthalpy of the mixture.

Runge-Kutta third order numerical scheme for time integration; in order to
obtain a III order accurate scheme s = 3 must be chosen in equation (3.30);
in the scheme here adopted [Shu and Osher, 1989] the coefficients are set
to:

c2 = c3 = 0

b1 = b2 = 1
6 b3 = 2

3

a21 = 1 a31 = a32 = 1
4 .

In order to ensure the calculation stability two conditions must be respected:
the condition on the Courant-Friedricks-Lewy (CFL) condition and the con-
dition on the Von Neumann number VNN for the stability of transport-
diffusion systems. The CFL (or Courant) number is defined as

CFL = λMAX
j

∆t

∆xj
(3.37)

where λMAX
j is the maximum local eigenvalue in the jth direction. The phys-

ical meaning of this condition can be explained with reference to Figure 3.7.
CFL = 1 implies that ∆t is the time by which the signal entering the control
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∆ t

j-1/2 j+1/2j

Figure 3.7. Physical interpretation of the CFL condition

volume crosses it reaching the opposite interface. ∆t is therefore the time
by which the flux estimate should be updated, unless the initial estimate
already takes into account the outgoing flux variation.

The non-linear stability of this scheme, in conjunction with a ENO recon-
struction is reported in [Shu and Osher, 1989] to be given by the condition
CFL < 1. Nevertheless, the application of III order R-K schemes, in conjunc-
tion with the staggered discretization described in section ( 3.2 on page 30),
to compressible flow LES is reported in [Nagarajan et al., 2003] to be per-
formed using CFL = 0.29 in order to limit the effects of the truncation error.

The condition on the VNN defined as

VNN = ν
∆t

(∆x)2
(3.38)

for a Forward-Time-Centered-Space (FTCS) it is reported to be VNN < 0.5
proven that a condition for the cell Reynolds number Re∆ is satisfied. The
complete analysis of the FTCS scheme stability is reported in [Thompson
et al., 2005].

3.2.1 Boundary Conditions

For inlet and outlet boundary conditions, NSCBC (Navier-Stokes Characteristic
Boundary Conditions) is adopted: in this way Navier-Stokes equation on the
boundaries are solved with in terms of acoustical waves amplitude on the bound-
ary itself [Poinsot and Veynante, 2005]. This boundary conditions are described
in appendix C.

Because of the particular variables location, in a cylindrical geometry the axis
is treated as a boundary condition: all the quantities are staggered with respect
to the centerline in the radial direction (i.e. they lie at ∆/2 from the axis), except
ur, that is collocated on the axis. The values of ur at the centerline are obtained
averaging the values of ur near the axis as described below:

ur(r = 0, ϑ) =
1

2
[ur(∆r, ϑ) + ur(∆r, ϑ+ π)] (3.39)

34



3.2 HeaRT Code

The angular distribution of ur on the point near the axis of symmetry does not
ensure a single value of ur on the axis.

For wall boundary condition, eulerian wall, adiabatic wall, viscous wall and
fixed temperature wall are available.
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4
multi -resolution Technique for

HeaRT Code

In this chapter, the original multi-resolution technique developed for HeaRT
code during the present doctoral research is described. This method, based on

joined-grids approach, require to prepare reliable procedures for variables values
transfers and is been developed for cartesian or cylindrical three-dimensional
non-uniform grids.

4.1 Parallel Computing and Domain Decomposition

Large parallel computers are become very popular in the last thirty years, and
the number of processors available in these big clusters grows up very quickly.
In this scenario, numerical simulation of big computational domains with a huge
number of grid points can be performed, in a parallel environment with shared
memory, with the assistance of the domain decomposition techniques. In par-
ticular, these techniques divide the computational grid into many overlapping
sub domains (equal to the number of processor being used), and each processor
solves its local sub domain independently from the other processors, yielding an
apparently perfect parallel algorithm.

For a number of reasons, this is an illusion: in particular, any domain decom-
position algorithm involves some communication and coordination between the
computations on each domain, and the heaviest procedure is without doubt the
communication with neighboring domains. With the use of explicit solvers and
structured grids, communication between a generic sub domain and its neigh-
bours is performed at every substep of the time integration algorithm by means
of a simple copy of values, from “real” cells of a sub zone to the “ghost” cells of
the neighbour sub zone.

These ghost cells are necessary for the grid cells near to the sub domain edge to
perform a correct numerical integration of the conservative equations: for exam-
ple, Finite Difference numerical scheme described in 3.1.2 on page 27, combined
with a staggered grid, need a stencil of two points in the upstream direction for
variable evaluation. As example, in figure 4.1 on the following page, a coarse
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4.2 Joined-Grids Approach

and a fine sub zone, joined in the j direction, are represented: the coarse sub
zone (blue grid) requires two ghost cells in j direction (yellow colored, dashed
blue cells in figure 4.1a), that are overlapped to the corresponding real cells of
the neighbour fine zone; the fine sub zone (red grid) requires two ghost cells in j
direction (yellow colored, dashed red cells in figure 4.1b), that are overlapped to
the corresponding real cells of the coarse zone.

j
i

(a)

j
i

(b)

Figure 4.1. Example of ghost cells for a coarse block (a) and for a fine block (b)

4.2 Joined-Grids Approach

With the joined-grids approach, on the computational domain, multiblock grids
with different spatial resolution can be placed side by side. The resolution of the
block is identified from a parameter, named level: a grid block of level 1 is the
coarsest, a grid block of level n is the finest (where n is the maximum number of
levels that are present in the computational grid).

Another important parameter is the refinement ratio, defined as

r =
∆xn−1
∆xn

(4.1)

where x is an arbitrary Cartesian or cylindrical grid direction and ∆xn is the
grid step in x direction for level n. For the sake of simplicity, this refinement ratio
is assumed constant for all three coordinates and equal to 2.
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4.2 Joined-Grids Approach

There’s no limit to grid block junction: a grid block of level n can be next to a
grid block of level n+ 2; in such case is useful to combine level and refinement
ratio informations, to obtain the number p of cells of the fine grid block that are
contained in the neighbouring coarse grid block

p = r(n+2)−n (4.2)

If only one grid level is present (no mesh refinement adopted), variable values
on ghost cells are obtained from a simple copy of the corresponding “real” cells
of the neighboring grid block.

With the joined-grids approach, copy isn’t the appropriate operation for the
communication between grid blocks with different spatial resolution, so two new
reliable procedures have been developed: the first, that transfer variable values
from fine to coarse grid is called restriction and the second, that makes the oppo-
site way is called prolongation.

4.2.1 Solution Algorithm

In the solution algorithm, each grid block solves conservation equations indepen-
dently from other grid blocks, but the time step chosen in order to satisfy CFL
condition is the same for all grids: minimum value is selected, as can be seen
in figure 4.2 (where, for the sake of simplicity, only 3 zones of 3 different spatial
resolutions - or levels - are illustrated).

Zone
(lev)

0(1)

1(2)

2(3)

tt0
|

tin1
|

tin2
|

tfin

5

3 8

10

13

154

2 7

9

12

14

1

1

1

6

6

6

11

11

11

Single time step

Temporal Integration

Prolongation

Restriction

Figure 4.2. Scheme of temporal advance on all grid levels
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Time integration procedure is here described:

1. First RK Substep of all zones, from t0 to tin1 ;

2. Restriction of boundary conditions at time tfin1 from zone 2 to zone 1;

3. Prolongation of boundary conditions at time tfin1 from zone 1 to zone 2;

4. Restriction of boundary conditions at time tfin1 from zone 1 to zone 0;

5. Prolongation of boundary conditions at time tfin1 from zone 0 to zone 1;

6. Second RK Substep of all zones, from tin1 to tin2 ;

7. Restriction of boundary conditions at time tfin2 from zone 2 to zone 1;

8. Prolongation of boundary conditions at time tfin2 from zone 1 to zone 2;

9. Restriction of boundary conditions at time tfin2 from zone 1 to zone 0;

10. Prolongation of boundary conditions at time tfin2 from zone 0 to zone 1;

11. Third RK Substep of all zones, from tin2 to tfin;

12. Restriction of boundary conditions at time tfin3 from zone 2 to zone 1;

13. Prolongation of boundary conditions at time tfin3 from zone 1 to zone 2;

14. Restriction of boundary conditions at time tfin3 from zone 1 to zone 0;

15. Prolongation of boundary conditions at time tfin3 from zone 0 to zone 1;

At the end of any Runge-Kutta substep, finest zones start to transfer variables
values on ghost cells of neighboring coarser zones, that subsequently transfer
variables values on ghost cells of the finest zones; this couple of operations (pro-
longation and restriction) is repeated until coarsest zones are reached, and all
ghost cells of all zones have updated their values. At this point, a new Runge-
Kutta substep begins for all the zones of the domain.

Communications between zones of different spatial resolution are very impor-
tant, because a correct variables transfer on ghost cells is essential to obtain a
continuous solution on the entire domain.

4.2.2 Communication Procedures

For the sake if simplicity, communication procedures hereafter illustrated are
related to a Cartesian uniform bi-dimensional grid: their form and structure can
be easily extended to a three-dimensional cylindrical or Cartesian non-uniform
grid.
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ΦI,J

φi,j φi,j+1

φi+1,j φi+1,j+1
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j

Figure 4.3. Scalar positions in a bidimensional grid

4.2.2.1 Restriction

Restriction procedure is used for communication of numerical solution from level
l to level l− 1. For scalar variables (collocated at the centre of the cell, see fig-
ure 4.3), coarse value is obtained from fine values by the means of:

Φ(I, J) =
ΦI,JAI,J
AI,J

(4.3)

where

ΦI,JAI,J = φ(i, j)A(i, j) +φ(i, j+ 1)A(i, j+ 1)

+φ(i+ 1, j)A(i+ 1, j) +φ(i+ 1, j+ 1)A(i+ 1, j+ 1)

AI,J = A(i, j) +A(i, j+ 1) +A(i+ 1, j) +A(i+ 1, j+ 1)

and AI,J = A(I, J); variables A(i, j), A(i, j+ 1), A(i+ 1, j), A(i+ 1, j+ 1) are fine
cell areas (colored areas in figure 4.3), contained in coarse cell A(I, J) (checker-
board zone in figure 4.3). Essentially a scalar value is a weighted sum of fine
value, where the weight is the area fraction of each fine cell contained in the
coarse one. Is straightforward that for a three-dimensional case coarse value is
calculated with:

Φ(I, J,K) =

l∑
i=1

m∑
j=1

n∑
k=1

φ(i, j,k)V(i, j,k)

l∑
i=1

m∑
j=1

n∑
k=1

V(i, j,k)

(4.4)

where l, m and n are the numbers of fine scalar cells contained in a scalar
coarse cell for i, j and k direction respectively.
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ρUI,J

ρui,j ρui,j+1

ρui+1,j ρui+1,j+1

l1 l2

L

Figure 4.4. Momentum restriction

For momentum ρU, collocated at the positive edges (in a bi-dimensional grid)
of a cell (see figure 4.4, coarse grid value is obtained from fine values by the
means of:

Φ(I, J) =
φ(i+ 1, j)l1 +φ(i+ 1, j+ 1)l2

l1 + l2
(4.5)

where L = l1 + l2. For a three-dimensional grid, coarse scalar value is calcu-
lated from:

Φ(I, J,K) =

m∑
j=1

n∑
k=1

φ(in, j,k)A(in, j,k)

m∑
j=1

n∑
k=1

A(in, j,k)

(4.6)

where A(in, j,k) are the face areas of fine cell where are collocated φ(in, j,k)

momentum and A =

m∑
j=1

n∑
k=1

A(in, j,k) is the face area of coarse cell where Φ(I, J)

is collocated.

Restriction Observations From the previous section it’s clear that the restric-
tion treatment for momentum is different from the restriction treatment for scalar,
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Figure 4.5. Momentum control volumes for coarse (area with points) and fine (colored
areas) cells

not much for the procedure itself (in both cases a “weighted” sum is used), but
for the diverse approach: the scalar restriction, indeed, is obtained by the mean of
a sum of all the fine variables that have their control volumes are enclosed in the
control volume of the coarse scalar; when a cell is refined (and therefore divided
in several little cells), the scalar control volumes for a single coarse is shared be-
tween all the fine cells that are contained in the biggest one, as can be seen in
figure 4.3 on page 40, where the coarse cell control volume is the checkerboard
zone and th fine cells control volumes are the colored zones. So the restriction
procedure for scalar variables is fully conservative, because it takes place on the
exact control volumes.

Momentum restriction follow a different approach: in a staggered grid, the
computational cell coincide with the scalar control volume, while the momen-
tum control volume is shared between two adjacent cells, as can be seen from
figure 4.5; so, when the grid is refined, the coarse momentum control volume is
constituted by (in the streamlined picture) two entire fine momentum control vol-
umes (red and pink squares) and four fine momentum control volume fractions
(yellow, purple, green and cyan rectangles).

If for momentum restriction is adopted the same criterion used for scalar re-
striction, a paradox can occur: the momentum ρUI,J could not be the sum of
the two ρui,j+1 and ρui+1,j+1 fine momentum; this is impossible, because the
momentum ρu is clearly a mass flux in a proper direction, and therefore, from
a “local” conservation point of view, the mass flux that pass through a surface
in common between fine and coarse grid must be the same. So for momentum
restriction the procedure described in the previous section is based on the sum
over the surfaces and not over the volumes.
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4.2.2.2 Prolongation

For prolongation, an accurate interpolation algorithm is been chosen, and there-
fore the communication “operator” has a big complexity.

The selected algorithm is the same for both scalar and momentum prolongation:
least squares interpolation, that conserves mean value in the control volumes. To
compute the fine cell interpolated value a Taylor series expansion about the coarse
value ci that belongs to the corresponding coarse cell (the “centroid”):

φINTci
(x) = φci +

∂φ

∂x

∣∣∣∣
ci

∆x+
∂φ

∂y

∣∣∣∣
ci

∆y+
∂φ

∂z

∣∣∣∣
ci

∆z+

+
∂2φ

∂x2

∣∣∣∣
ci

∆x2

2
+
∂2φ

∂y2

∣∣∣∣
ci

∆y2

2
+
∂2φ

∂z2

∣∣∣∣
ci

∆z2

2
+

+
∂2φ

∂x∂y

∣∣∣∣
ci

∆x∆y+
∂2φ

∂x∂z

∣∣∣∣
ci

∆x∆z+
∂2φ

∂y∂z

∣∣∣∣
ci

∆y∆z

(4.7)

where ∆x = x − xci ,∆y = y − yci ,∆z = z − zci being the distances, along
the three Cartesian coordinates, between the reconstruction point and the cen-
troid ci where derivatives in equation (4.7) are calculated. If first order inter-
polation is chosen, only the first 4 must be maintained in equation (4.7). In a
three-dimensional case, for a third order interpolation, there are 9 unknowns (the
derivatives in the equation (4.7)), so for the sake of simplicity of the numerical
algorithm, a total number of 26 neighboring points to the centroid are used to
construct the stencil of least squares interpolation.

To conserve the mean value in the control volume of the interpolating function
φINTci

(x), the following equation must be forced:

φi =
1

Vi

∫
Vi

φINTci
(x)dV (4.8)

Substituting equation (4.7) in (4.8) and computing the mean value in a volume
Vj of the interpolation stencil gives:

φj = φi +
∂φ

∂x

∣∣∣∣
ci

1

Vj

∫
Vj

∆xdV +
∂φ

∂y

∣∣∣∣
ci

1

Vj

∫
Vj

∆ydV+

+
∂φ

∂z

∣∣∣∣
ci

1

Vj

∫
Vj

∆zdV+

+
∂2φ

∂x2

∣∣∣∣
ci

1

2Vj

∫
Vj

∆x2dV +
∂2φ

∂y2

∣∣∣∣
ci

1

2Vj

∫
Vj

∆y2dV+

+
∂2φ

∂z2

∣∣∣∣
ci

1

2Vj

∫
Vj

∆z2dV+

+
∂2φ

∂x∂y

∣∣∣∣
ci

1

Vj

∫
Vj

∆x∆ydV +
∂2φ

∂x∂z

∣∣∣∣
ci

1

Vj

∫
Vj

∆x∆zdV

+
∂2φ

∂y∂z

∣∣∣∣
ci

1

Vj

∫
Vj

∆y∆zdV

(4.9)
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To avoiding calculation of x − xci , etc.. . . , integrals for each control volume
Vj with respect to ci [Ollivier-Gooch, 1997], values x − xci , y − yci , z − zci in

equation (4.9) are replaced with
(
x− xcj

)
+
(
xcj − xci

)
,
(
y− ycj

)
+
(
ycj − yci

)
,(

z− zcj

)
+
(
zcj − zci

)
:

φj = φi +
∂φ

∂x

∣∣∣∣
ci

x̂+
∂φ

∂y

∣∣∣∣
ci

ŷ+
∂φ

∂z

∣∣∣∣
ci

ẑ+
∂2φ

∂x2

∣∣∣∣
ci

x̂2 +
∂2φ

∂y2

∣∣∣∣
ci

ŷ2 +
∂2φ

∂z2

∣∣∣∣
ci

ẑ2

+
∂2φ

∂xy

∣∣∣∣
ci

x̂y+
∂2φ

∂xz

∣∣∣∣
ci

x̂z+
∂2φ

∂yz

∣∣∣∣
ci

ŷz

(4.10)

with

̂xnymzp =
1

Vi

∫
Vi

[(
x− xcj

)(
xcj − xci

)]n [(
y− ycj

)(
ycj − yci

)]m
[(
z− zcj

)(
zcj − zci

)]p
dV

=

n∑
k=0

n!
k! (n− k)!

(
xcj − xci

)k m∑
l=0

m!
l! (m− l)!

(
ycj − yci

)l
p∑
r=0

p!
r! (p− r)!

(
ycj − yci

)r
xn−kym−lzp−r

(4.11)

and

xmynzp =
1

Vi

∫
Vi

(
x− xci

)m (
y− yci

)n (
z− zci

)p
dV (4.12)

Writing equation (4.10) for any coarse point that belongs to the interpolation
stencil, an overdetermined system of equations can be obtained:

∆φ = Sdφ (4.13)

where

∆φ =


wi1

(
φ1 −φci

)
wi2

(
φ2 −φci

)
· · ·
· · ·

wiN
(
φNi −φci

)

 (4.14)

S =


x̂1 ŷ1 ẑ1 x̂21 ŷ21 ẑ21 x̂y1 ŷz1 x̂z1

x̂2 ŷ2 ẑ2 x̂22 ŷ22 ẑ22 x̂y2 ŷz2 x̂z2
· · ·
· · ·

x̂Ni ŷNi ẑNi x̂2Ni ŷ2Ni ẑ2Ni x̂yNi ŷzNi x̂zNi

 (4.15)
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dφ =
[
∂φ
∂x

∂φ
∂y

∂φ
∂z

∂2φ
∂x2

∂2φ
∂y2

∂2φ
∂z2

∂φ
∂xy

∂φ
∂yz

∂φ
∂xz

]
(4.16)

and

wij =
1∣∣−→x j −−→x i∣∣2 (4.17)

The system of equations (4.13) can be rearranged in the form:

dφ = S−1∆φ (4.18)

where S matrix contains only geometrical constants and so can be calculated
once.

After the interpolation, to ensure local conservation, the interpolated scalar
values are modified as:

φ =
ΦV∑
φ ′ivi

φ ′ (4.19)

where φ ′ is the original fine interpolated value, Φ is the centroid coarse value,
V is the coarse cell volume and φ ′i and vi are respectively the fine interpolated
values and the fine cells volumes of all the fine cells that form the centroid coarse
cell. The interpolated momentum values are modified as:

φ =
ΦA∑
φ ′iai

φ ′ (4.20)

where φ ′ is the original fine interpolated value, Φ is the centroid coarse value,
A is the coarse cell surface area in a coordinate direction and φ ′i and ai are
respectively the fine interpolated values and the fine cells surface areas of all the
fine cells that form the centroid coarse cell.

Interpolation Stencil The neighboring points are, of course, points that be-
long both to coarse and to fine grids: in this way, also if the complexity of the
interpolation algorithm increases, only “true” integrated points are used to ob-
tain the fine value and for this reason restriction and prolongation operations are
decoupled.

In figure 4.6 on the next page interpolation domain for scalar value in a bidi-
mensional Cartesian grid is illustrated: the interpolation stencil is composed by
only coarse points, the green dot is the centroid, the red cross is the fine value
that has to be calculated and the black dots are all coarse points that belong to
the interpolation stencil; with the blue line the grid border is represented. Yellow
color cells in figure, that belong to the interpolation stencil, lie on the fine grid
and therefore their variable values are obtained by means of a restriction of corre-
sponding “true” fine grid points: so the prolongation depends on restriction and
the whole operation is like a closed loop.

In figures 4.7 on page 47 are illustrated the stencils adopted for scalar and mo-
mentum values in a bidimensional Cartesian grid: the green dot is the centroid,
the red cross is the fine value that has to be calculated and the black dots are all
coarse and fine points that belong to the interpolation stencil. As can be seen,
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Figure 4.6. Interpolation stencil with only coarse points

also if the complexity of the stencil (and so the identification of all the points that
belong to it) is increased, only “true” grid points (where the numerical solution is
derived from the integration of the conservation equations) are used for the eval-
uation of fine grid ghost cells, and so the stencil of the interpolation is composed
by both coarse and fine grid points.

The only one case where the stencil is composed only by coarse grid points is
the interpolation of a fine ghost cell that lies beyond the limits of r (refinement
ratio) fine cells after fine grid boundary, in each direction (see figure 4.7d on the
next page): in this case there isn’t any fine grid point available.

4.2.2.3 Variable Treatment

Into HeaRT numerical code, conservative variables (ρ, ρux, ρuy, ρuz, ρetot and
ρYi) are evaluated by means of numerical integration of the conservation equa-
tions described in 2 on page 11; the temperature of the fluid is evaluated from
the conservative variables by means of Newton-Raphson Method (see 3.1.3 on
page 28), and the fluid pressure is evaluated from the density and the tempera-
ture by means of the equation of state of gas.

The same procedure was earlier adopted for restriction and prolongation: the
conservative variables were added or interpolated and then the temperature and
the pressure were evaluated; this approach, however, often has lead to an oscil-
latory trend for the pressure evaluated on fine ghost cells, also if all the conser-
vative variables, the temperature, the molecular weight of the mixture and the
gas constant were smooth. So, for the evaluation of the variables on the “ghost”
cells is been putted in place: not all the conservative variables are interpolated
(or summed), and the equation of state is used for ρ evaluation; for the sake of
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Figure 4.7. Interpolation stencils adopted
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simplicity, operation detail shown below is related to the prolongation, but the
operation sequence is the same for the restriction:

ρux, ρuy, ρuz and ρYi are interpolated;

p and T are interpolated;

ρ is evaluated from p and T by means of equation of state of gas;

ρetot is evaluated by means of the sum of kinetic and internal energy.
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5
Preliminary Validation

In this chapter a preliminary validation of multi-resolution technique developed
for HeaRT code is described: this validation is performed by the mean of two

simple numerical test cases, to highlight the formal accuracy of the procedures
described in the chapter 4.

5.1 Rankine Vortex

The Rankine vortex is a simple model for a vortex, that is represented by a core
rotating with a constant angular velocity and an external zone with an asymptotic
decreasing velocity:

vt(r) =


ωr, r 6 a

ωa2

r
, r > a

(5.1)

For an incompressible fluid, neglecting gravity force, the pressure follows the
equation:

p(r) =


ρω2

r2

2
, r 6 a

−
ρω2a4

2r2
+ ρω2a2, r > a

(5.2)

Tangential velocity and pressure trends are represented in figure 5.1
The simulation parameters are summarized in table 5.1. Initial conditions of

the numerical simulation, for pressure and tangential velocity are represented in
figures 5.2b and 5.2c: for the sake of simplicity, the flow field is initialized with
only the rotating core).

The computational domain is represented in figure 5.2a (with the red color the
fine zone, with gray color the coarse zone): for all the edges, NSCBC are imposed.
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Figure 5.1. Tangential Velocity and Pressure for a Rankine Vortex with ω = a = 1

Cylinder radius (r) 15 cm

Cylinder height (h) 1 cm

Total grid points 185 600

Fine grid points 153 600

Fine grid radius (rf) 5.5 cm
Level 1 grid space in j and i directions 3.75mm, 1mm
Level 2 grid space in j and i directions 1.875mm, 0.5mm
Level 1 grid nodes in θ direction 128

Level 2 grid nodes in θ direction 256

Angular velocity 25 rad s−1

Table 5.1. Simulation Setup

(a) Computational Grid (b) Pressure (c) Tangential Velocity

Figure 5.2. Initial Conditions

5.1.1 Simulation Results

In figures 5.3 and 5.4 are illustrated the pressure and tangential velocity pro-
files along a radius: the connection between the two zones is well represented
and none spurious oscillation appears. At the beginning of the simulation, the
imposed discontinuity on pressure produces some spurious oscillations that, be-
cause of the high resolution of the numerical grid, quickly disappear from the
flow field.
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The flow viscosity, moreover, reduces gradually the tangential velocity peak,
that diminishes from ∼ 12ms−1 (figure 5.3b) to ∼ 10ms−1 (figure 5.4d).

(a) (b)

(c) (d)

(e) (f)

Figure 5.3. Pressure and tangential velocity profiles
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(a) (b)

(c) (d)

Figure 5.4. Pressure and tangential velocity profiles

5.2 Jet Simulations

The numerical simulation of simple jets in a squared duct, also if it is very simple,
can emphasize some numerical bugs and algorithm errors. Three numerical sim-
ulations have been performed, with an N2 jet that flows in a squared duct where
the nitrogen is stillness: two with a one dimensional jet, the first on an eulerian
flow, the second on a viscous flow, the third with a parabolic jet.

For all the three simulations, the temperature of the gas is 300K and its pressure
is 101 325 Pa; for the one dimensional jet, the axial velocity at the inlet is increased
from the null initial value to 7.41ms−1, with the time law illustrated in figure 5.5a
on the following page, and it’s the same for the whole xy inlet plane. For the
parabolic jet, the velocity increasing vs time follows the same trend of figure 5.5a,
while the final velocity profile in the xy plane is illustrated in figure 5.5b.

The computational grid is the same for all the three simulations and is illus-
trated in figure 5.6a on page 55, where the finest zone (red mesh in the picture,
level 2) is surrounded, in every direction, by coarsest zones (black mesh in the
picture, level 1), in order to test communication procedures in all the three co-
ordinate directions. The simulation parameters are summarized in the table 5.2:
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(a) Time Law (b) Parabolic Velocity Profile

Figure 5.5. Inlet Boundary Conditions

Duct width (h) 1 cm

Domain size in the crosswise (x), spanwise (y)
h× h× 3h

and streamwise (z) directions
Total grid points 304 000

Fine grid points 128 000

Fine grid size in the crosswise (x), spanwise (y)
0.5h× 0.5h× h

and streamwise (z) directions
Steady jet velocity 7.41ms−1

Level 1 grid space 5× 10−1mm
Level 2 grid space 2.5× 10−1mm

Table 5.2. Simulation Setup

the domain size in the crosswise (x), spanwise (y) and streamwise (z) directions
is Lx × Ly × Lz = h× h× 3h, where h = 1× 10−2m is the duct width; the grid
is uniform for all the three directions, with ∆x1 = ∆y1 = ∆z1 = 2.5× 10−4m for
the first (coarse) level, and ∆x2 = ∆y2 = ∆z2 = 5× 10−4m for the second (fine)
level.

For the first run, performed with an eulerian flow, in z direction NSCBC (Navier-
Stokes Characteristic Boundary Conditions) are imposed, in order to obtain non-
reflecting inlet and outlet boundary conditions, while in x and y directions eule-
rian and adiabatic walls boundary conditions are imposed.

For the second and the third run, performed with a viscous flow, in z direction
NSCBC (Navier-Stokes Characteristic Boundary Conditions) are imposed, in or-
der to obtain non-reflecting inlet and outlet boundary conditions, while in x and
y directions viscous and adiabatic walls boundary conditions are imposed.

The velocity profiles are evaluated on five lines, that are parallel to the z axis
and that pass through the green points illustrated in figure 5.6b. In this figure, the
fine grid is painted in red, while the coarse grid is painted in blue; the choice of
these points isn’t coincidental: the E point is the center of the duct in ax xy plane,
the other four points are points where the numerical solution obtained on the
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(a) Computational Grid

A B

CD

E

y

x

(b) Sampling Points in the xy Plane

Figure 5.6. Grid and Sampling Points Configurations

fine grid is affected by the communication procedures in all the three coordinate
directions.

5.2.1 Simulation Results

5.2.1.1 One Dimensional Eulerian Jet

In the figures 5.7 on the following page and 5.8 on page 57 are illustrated the pro-
files of the three velocity components, for the five points described in figure 5.6b:
as can be easily expected, the flow remain one-dimensional and the unique ve-
locity component that is not equal to zero is Uz. At the coarse-fine interface
the solution is smooth and the “connection” between the two zones take place
flawlessly.

In figure 5.9 on page 58 are illustrated two-dimensional slides of the Uz veloc-
ity component and also from this pictures the mono-dimensional behaviour of
the flow field is evident: the iso-surfaces are always perfectly orthogonal to the
direction of the flow.

5.2.1.2 One Dimensional Viscous Jet

In the figures 5.10 on page 59 and 5.11 on page 60 are illustrated the profiles of
the three velocity components, for the five points described in figure 5.6b: when
the jet starts to flow in the duct, because of the viscous walls, Ux and Uy velocity
components start to arise at the inlet (figures 5.10d, 5.10e, 5.10g, 5.10h), while at
the center of the duct the crosswise and spanwise velocities remain null.

As the flow propagates into the duct, the crosswise and spanwise velocity com-
ponents grow but remain symmetrical respect to the streamwise axis that passes
through the E point; Ux and Uy, furthermore, are also identical. Another notice-
able aspect is the Uz velocity increase in the streamwise direction, as can be seen
in figures 5.11a, 5.11b, 5.11c: the outlet value is greater than the inlet one, and
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5.2 Jet Simulations

(a) Uz, A and C points (b) Uz, B and D points (c) Uz, E point

(d) Ux, A and C points (e) Ux, B and D points (f) Ux, E point

(g) Uy, A and C points (h) Uy, B and D points (i) Uy, E point

Figure 5.7. Eulerian flow velocity profiles, t = 3.73× 10−4 s
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5.2 Jet Simulations

(a) Uz, A and C points (b) Uz, B and D points (c) Uz, E point

(d) Ux, A and C points (e) Ux, B and D points (f) Ux, E point

(g) Uy, A and C points (h) Uy, B and D points (i) Uy, E point

Figure 5.8. Eulerian flow velocity profiles, t = 7.37× 10−3 s
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5.2 Jet Simulations

(a) Uz, t = 1.0× 10−3 s (b) Uz, t = 3.0× 10−3 s

(c) Ux, t = 5.0× 10−3 s (d) Ux, t = 8.0× 10−3 s

Figure 5.9. Eulerian flow velocity 2D slides
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5.2 Jet Simulations

(a) Uz, A and C points (b) Uz, B and D points (c) Uz, E point

(d) Ux, A and C points (e) Ux, B and D points (f) Ux, E point

(g) Uy, A and C points (h) Uy, B and D points (i) Uy, E point

Figure 5.10. Viscous flow velocity profiles, t = 3.73× 10−4 s

this behaviour is caused by the development of the boundary layer on the walls,
that reduce the duct section and speed up the flow.

Also in this test case, the connection between the different resolution zones
doesn’t alter the flow field.

In figure 5.12 on page 61 are illustrated two-dimensional slides of the Uz ve-
locity component: the iso-surfaces remain orthogonal to the direction of the flow
while the jet propagates into the duct; in figure 5.12d on page 61 is evident the
development of the boundary layer and the speed-up of the flow next to the walls:
the iso-surface isn’t orthogonal to the direction of the flow and the Uz velocity
component is greater at the corners than at the center of the field.

5.2.1.3 Parabolic Jet

Also this case has a central symmetry respect to the z axis that passes through the
E point: the symmetry is maintained when the flow passes the borders between
coarse and fine zones, as can be seen in figures 5.13a, 5.13b.
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5.2 Jet Simulations

(a) Uz, A and C points (b) Uz, B and D points (c) Uz, E point

(d) Ux, A and C points (e) Ux, B and D points (f) Ux, E point

(g) Uy, A and C points (h) Uy, B and D points (i) Uy, E point

Figure 5.11. Viscous flow velocity profiles, t = 7.37× 10−3 s
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5.2 Jet Simulations

(a) Uz, t = 1.0× 10−3 s (b) Uz, t = 3.0× 10−3 s

(c) Ux, t = 5.0× 10−3 s (d) Ux, t = 8.0× 10−3 s

Figure 5.12. Viscous flow velocity 2D slides
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5.2 Jet Simulations

(a) Uz, A and C points (b) Uz, B and D points (c) Uz, E point

(d) Ux, A and C points (e) Ux, B and D points (f) Ux, E point

(g) Uy, A and C points (h) Uy, B and D points (i) Uy, E point

Figure 5.13. Parabolic flow velocity profiles, t = 3.73× 10−4 s

When the parabolic flow starts to propagate into the duct, two vortexes appear
in front of the parabolic profile: the counter-rotating vortexes motion isn’t altered
by the coarse-fine grid communications. At the center of the duct, the spanwise
and crosswise velocities remain null (figures 5.14f and 5.14i).

In figure 5.15 on page 64 are illustrated two-dimensional slides of the Uz veloc-
ity component: the parabolic profile isn’t altered when passes through the coarse-
fine and fine-coarse grid interfaces and in figure 5.15d on page 64 the parabolic
front is exited from the outlet and the entire flow field has a central symmetry.
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5.2 Jet Simulations

(a) Uz, A and C points (b) Uz, B and D points (c) Uz, E point

(d) Ux, A and C points (e) Ux, B and D points (f) Ux, E point

(g) Uy, A and C points (h) Uy, B and D points (i) Uy, E point

Figure 5.14. Parabolic flow velocity profiles, t = 7.37× 10−3 s
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5.2 Jet Simulations

(a) Uz, t = 1.0× 10−3 s (b) Uz, t = 3.0× 10−3 s

(c) Ux, t = 5.0× 10−3 s (d) Ux, t = 8.0× 10−3 s

Figure 5.15. Parabolic flow velocity 2D slides
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6
Validation

The validation is a fundamental phase for the development of a numerical code.
In this chapter the numerical simulations of a significant test case, obtained

with the joined-grids technique, are presented: a Large Eddy Simulation of a lean
premixed CH4/H2–Air slot flame.

6.1 Lean Premixed CH4/H2–Air Combustion

In the last few years, exceptional attention in high efficiency and low pollutants
emissions is been addressed in many practical devices, such as gas turbines or
propulsive systems, because of increasingly stringent pollutant emissions limits
and fuel shortages: for this purpose a new class of burners is been developed, in
which hydrocarbon-based fuel and oxidizer mixture is very lean. In such way, be-
yond a less fuel consumption, CO2 and NOx emissions are reduced (substantially
thanks to higher efficiencies and lower temperatures of combustion).

Unfortunately, combustors that operate at leaner conditions generate high lev-
els of combustion dynamic stems from the fact that their design goals are also
ideal for promoting combustion instabilities: they operate very near the blowout
point, where the flame is thicker and propagate more slowly; furthermore, high
mixture inlet velocity (necessary to avoid flashback phenomena) can stretch flame
front, causing heat losses and local flame extinction.

In order to overcome these issues, it is possible to add a small percentage of
hydrogen to the lean premixed hydrocarbon–air mixture: with no design changes,
a small percentage of H2, thanks to its very wide flammability range, can extend
the stable combustion regime, thus allowing stable operation at the lower temper-
atures needed to reduce oxides of nitrogen. Hydrogen addition can also reduce
quenching distance (very important in safety and micro-combustion issues, be-
cause this distance is directly related to the flashback risk) and increase flame
propagation velocity, due to the faster reaction rates of the H2/O2 system and to
the larger diffusion coefficient of H2. However, hydrogen also if has an higher
heat of combustion relative to hydrocarbon fuels on a per unit mass basis, due to
its lower density, has a lower heating value on a per unit volume (about a factor
four less than CH4).
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6.2 Problem Configuration and Simulation Setup

The use of HENG (Hydrogen-Enriched Natural Gas) appears to be an econom-
ically sustainable solution to reduce the carbon intensity of natural gas, consider-
ing its compatibility with current transmission, distribution and energy produc-
tion infrastructure (up to an hydrogen percentage of 20%); it is however observed
that, depending on the gasification process and on which solid is used in the
gasification process, substantial differences in the resulting syngas composition
occur: these differences can modify the combustion properties, like flame speed,
flammability limits and ignition delay time. All these issues increase the variabil-
ity of fuel composition at the inlet of gas turbine combustors, thus increasing the
risk of thermo-acoustic instabilities in gas turbine combustors and leading to the
need for more fuel-flexible gas turbines.

For turbulent flames with hydrogen added to methane the literature is limited:
we mention some experimental studies [Schefer et al., 2002; Cozzi and Coghe,
2006; Mandilas et al., 2007; Halter et al., 2007], the LES of [Hernandez-Perez et al.,
2013] and the LES of [Giacomazzi et al., 2014], from which the present test case is
been inspired.

6.2 Problem Configuration and Simulation Setup

The simulations were performed in a slot-burner Bunsen flame configuration, that
is especially interesting due to the presence of mean shear in the flow and is sim-
ilar to the burner used in the experimental studies by [Filatyev et al., 2005]. This
configuration consists of a central jet of premixed reactants that is surrounded
on either side by a heated coflow, whose composition and temperature are those
of the complete combustion products of the reactant jet mixture. The size of the
three adjacent slot burners is undefined in the crosswise (x) direction, and they
are separated along the spanwise (y) direction by means of two 0.17mm thick
walls.

The premixed jet is a mixture of methane/hydrogen air jet at 600K, with equiv-
alence ratio φ = 0.7 and molar fraction distribution of 20% H2 and 80% CH4;
the unstrained laminar flame properties at these conditions have been computed
using LaminarSMOKE [Cuoci et al., 2013] and summarized in table 6.1 on the
next page, where φ is the multicomponent equivalence ratio

φ =

[(
XH2 +XCH4

)
/XO2

][(
XH2 +XCH4

)
/XO2

]
stoich

Tu is the unburned gas temperature, Tb is the product gas temperature, sL is
the unstrained laminar flame speed and δth is the thermal thickness based in
maximum temperature gradient

δth =
(Tb − Tu)

|∂T/∂x|max

Preheating the reactants leads to a higher flame speed and allows an higher in-
flow velocity without blowing out the flame, reducing computational costs; also,
many practical devices such as gas turbines operate at highly preheated condi-
tions.
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6.2 Problem Configuration and Simulation Setup

Table 6.1. CH4/H2–Air Laminar Flame

φ nH2 = xH2/
(
xH2 + xCH4

)
Tu (K) Tb (K) sL (cms−1) δth (mm)

0.7 0.2 600 2072 92.85 0.436

Table 6.2. Simulation Setup

Slot width (h) 1.2mm

Domain size in the crosswise (x), spanwise (y)
2.5h× 29h× 32.5h

and streamwise (z) directions
Total grid points 2 416 950

Fine grid points 2 116 320

Fine grid size (inlet excluded) in the crosswise,
2.5h× 8.7h× 17.15h

spanwise and streamwise directions
Minimum grid space 3.5× 10−2mm
Turbulent jet velocity 110ms−1

Coflow velocity 25ms−1

Jet Reynolds number (Rejet = Uh/ν) 2264

Turbulent intensity (u ′/SL) 12.5
Turbulent length scale (lt/δl) 2.6
Turbulent Reynolds number (Ret = u ′η/ν) 226

Damköhler number (sLLt/u ′L) 0.21
Karlowitz number (δL/ηk) 22

The reduced skeletal scheme adopted in the simulation [Sankaran et al., 2007]
is based on 17 species (CH4, CH3, CH2, CH, CH2O, HCO, CO2, CO, H2, H, O2,
O, OH, HO2, H2O2, H2O, N2) and 57 reactions. This scheme, compared to the
detailed GRI-MECH 3.0 scheme [Smith et al.] by looking at their laminar freely
propagating flame solutions obtained by using the CHEMKIN code [Kee et al.,
1998] and neglecting the Soret effect, shows maximum errors of ∼ 4% and ∼ 6%
for the laminar flame velocity and temperature, respectively.

The simulation parameters are summarized in table 6.2: the domain size in
the crosswise (x), spanwise (y), and streamwise (z) directions is Lx × Ly × Lz =

2.5h × 29h × 32.5h, where h = 1.2mm is the slot width; the grid is uniform
only in the x direction, with ∆x = 5.0× 10−2mm for the fine level and ∆x =

1.0× 10−1mm for the coarse level, while is stretched in the y and z directions
near the inlet duct walls (see figure 6.1 on the next page).

The grid has been created starting from the grid already used in a previous
LES performed on the same test case by means of HeaRT code [Giacomazzi et al.,
2014]: in the central reaction zone, the new grid is the same of the grid used in
the previous simulation; the side and the upper zones (where flow field is calm),
are obtained from the “old” grid deleting every other point, in each direction.

The simulation was run at atmospheric pressure using a 17 species chemical
mechanism. The velocity of the central jet is 110ms−1, while the velocity of the
coflow stream is 25ms−1; the width of the central duct, where the inlet turbulent
velocity profile may develop is h =1.2mm and 4mm long.
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6.2 Problem Configuration and Simulation Setup

Figure 6.1. Domain configuration with computational coarse (black) and fine (blue)
grids (only one line each four is represented); iso-surface of temperature T = 1600K
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6.3 Simulation Results

Velocity fluctuations, u ′ = 12ms−1, are imposed on the mean inlet velocity
profile, obtained by generating at duct’s inlet homogeneous isotropic turbulence
field with a characteristic turbulent correlation scale in the streamwise direction
of 4× 10−4m, by means of Klein’s procedure [Klein et al., 2003].

The Reynolds number based on the centerline inlet velocity, slot width h and
kinematic viscosity 5.3× 10−5m2 s−1 is Rejet = Uh/ν = 2264; based on the
centerline jet velocity and the streamwise domain length, the flow through time
is τU = 39ms.

The central jet turbulent Reynolds number is 226, based on the rms velocity fluc-
tuation (12ms−1), the integral scale (1mm) and the previous kinematic viscosity;
The Kolmogorov length scale is η = 17.22µm. The adiabatic flame temperature
is 2072K and at these conditions laminar flame speed is sL = 0.96ms−1 and
laminar flame front thickness is δL = 0.386mm.

In x direction periodic boundary conditions are imposed, in z direction NSCBC
(Navier-Stokes Characteristic Boundary Conditions) are imposed, in order to ob-
tain non-reflecting inlet and outlet boundary conditions, and in y direction vis-
cous and adiabatic walls boundary conditions are imposed. The subgrid scale
model adopted for the turbulence closure is the dynamic Smagorinsky model.

6.3 Simulation Results

Figure 6.2. Borghi Diagram

In figure 6.3 on the following page
mean (6.3a) and instantaneous (6.3b)
temperature contours are represented:
the flame front is anchored at the
corner between inlet duct and cen-
ter reaction zone, and considering the
Damköhler number, the Kolmogorov
length scale and the laminar flame
thickness values, turbulence of the
flow field strongly influences the
flame structure: this flame is in the
thin reaction zone regime (as can be
seen also in figure 6.2, where the com-
bustion regimes are identified in terms
of length and velocity ratio on loga-
rithmic scales in the black area).

The influence of turbulence can also
be seen in figure 6.4 on the next page, in which mean (6.4a) and instantaneous
(6.4b) streamwise velocity contours are represented: as can be seen from stream-
traces in figure 6.4a, the channel boundary layer takes in the section of the inlet
and for this reason the streamwise velocity is greater than its inlet value; this is
well-rendered also in figure 6.5a, where the continuous black line reach a maxi-
mum value of 110ms−1.

The velocity fluctuations are greater around the shear layer between cold flow
and hot flow, also because of the heat released by the flame; the expansion of
the CH4/H2–Air mixture jet at the end of the inlet duct and the coflow motion

69



6.3 Simulation Results

(a) Mean Temperature Contour (b) Instantaneous Temperature Contour

Figure 6.3. Temperature Contours

(a) Mean Velocity Contour (b) Instantaneous Velocity Contour

Figure 6.4. Streamwise Velocity Contours
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6.3 Simulation Results

(a) Mean Streamwise Velocity Profile (b) rms Streamwise Velocity Profile

Figure 6.5. Streamwise Velocity Profiles

(a) Mean Spanwise Velocity Profile (b) rms Spanwise Velocity Profile

Figure 6.6. Spanwise Velocity Profiles

towards the cold jet core can be seen in figure 6.6, where the spanwise mean and
rms velocity profiles are plotted: moving towards the walls from the flame front,
spanwise velocity is negative, while is positive into the jet; from figure 6.6a can
also be seen that the flame front broadens in the spanwise direction when the
flow moves towards outlet in streamwise direction: Uy becomes less than 0 for
increasing values of the streamwise coordinate distance z.

Downstream the injection point the separation between the cold jet and the hot
coflow is evident, as can be seen in figure 6.7a on the next page, where the mean
temperature profile is plotted; at h =3mm the temperature at the center of the
flow field starts to raise from 600K and reaches the maximum of about 1000K at
h =10mm, thanks to the heat released from the flame front. The rms temperature
profiles in figure 6.7b on the following page show that temperature peak moves
towards the external of the jet because at higher quotes the flame broadens and
the flam front oscillations are greater.
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6.3 Simulation Results

(a) Mean Temperature Profile (b) rms Temperature Profile

Figure 6.7. Temperature Profiles

(a) Mean Pressure Profile (b) rms Pressure Profile

Figure 6.8. Pressure Profiles

The pressure field is strongly conditioned by the flame front oscillations and by
the heat release from the flame, as can be seen in figure 6.8a: the minimum of the
mean pressure profile decreases as the height from the injection point increases;
the minimum, moreover, moves towards the y direction. At the maximum height
(h = 1 cm) the mean pressure profile shows a different trend respect to the three
other quotas, and this behaviour is also noticeable in figure 6.8b (where the rms
pressure profiles are plotted): the motion of the flame front reduces the pressure
rms peak.

In figure 6.9 on the next page, mean profiles of four species (H2, CH4, CO and
OH) are plotted: the fast reaction rate and the high diffusion coefficient of H2 is
evident for the lower quota, where as the hydrogen encounter high temperature
combustion products it burns instantaneously and its concentration decreases
very quickly (see figure 6.9a); the higher flame propagation velocity due to the
hydrogen can be seen also from the steep fall of the methane concentration at the
lower quota in figure 6.9b; CH4 is always totally burnt before the hydrogen.
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6.3 Simulation Results

(a) Mean H2 Profile (b) Mean CH4 Profile

(c) Mean CO Profile (d) Mean OH Profile

Figure 6.9. H2, CH4, CO and OH Mean Profiles

From these figures is also evident that CO has an higher diffusion velocity
respect to the OH, which concentration remains very low at the center of the
cold jet also for high quotas (see figures 6.9c and 6.9d); moreover, CO mean peak
is always at a lower distance from the center of the cold jet than the OH mean
peak: CO is therefore produced at an higher velocity than the OH in the chemical
reactions that take place in the flame front.

6.3.1 “Old” LES Data Comparison

In this section, comparison between the numerical simulation described in sec-
tion 6.3, a second multi-resolution numerical simulation, the previous LES [Gia-
comazzi et al., 2014] and a DNS [Cecere et al., 2015] are illustrated; all the three
numerical simulations are performed by means of HeaRT numerical code, with
numerical models described in chapter 3, on the computational domain described
in table 6.2: the difference between the runs is obviously the presence of the
joined-grid algorithm in the first two simulations, and therefore a different com-
putational grid; the four configurations are summarized in table 6.3.
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6.3 Simulation Results

Table 6.3. Grid comparison between the previous simulation (Single Level) and the
actual simulations (Joined Grids)

DNS Single Level (SL) Two Levels (JG2) Three Levels (JG3)

Computing blocks 4 4 5 (1), 3 (1)
(for level) 4 (2) 3 (2),

4 (3)
Computing nodes 119666400 3969480 2416950 1548390

Grid levels 1 1 2 3

Grid points 119666400 3969480 234630 (1), 33030 (1),
(for level) 2116320 (2) 130080 (2),

1385280 (3)

The computational grid of the second numerical simulation with joined grid
approach (JG3, see figure 6.10 on the following page) is obtained from the grid
described in tabular 6.2: the finest zone (level 3) has the same resolution of the
level 2 of JG2 simulation, but it’s smaller in y direction (4.35h) and in z direction
(12.3h); outside this zone, the grid is obtained from the JG2 grid deleting every
other point, in each direction: it’s been possible to achieve an additional reduction
for the total of computational nodes: the computational grid of JG2 simulation
has about 1 500 000 nodes less than the SL grid, while the JG3 grid has about
870 000 nodes less than the JG2 grid; the JG3 computational grid has just over one
third of the total nodes of SL grid.

In figures 6.12, 6.13, 6.14 average and rms profiles of streamwise velocity, span-
wise velocity and temperature at several heights (illustrated in figure 6.11, where
the injection is at z = 0.00 mm) are plotted: it is evident a very good agreement
between JG2 (solid lines), JG3 (solid lines with cross), SL (dashed lines) and DNS
(circles) simulation data; the communication procedures described in section 4.2.2
on page 39 don’t modify both trend and maximum and minimum positions.

In figure 6.12, the transversal averages of streamwise velocity (blue lines) show
the gradual opening of the central “cold” jet towards the hot gases that surround
it: from the figure 6.12a to the figure 6.12f, the maximum of the averaged Uz
decreases of about 30ms−1 (from ∼ 110ms−1 to ∼ 80ms−1), while the minimum
of the averaged Uz increases of about 15ms−1 (from ∼ 20ms−1 to ∼ 35ms−1;
this phenomena is also underlined by the transformation of the curve trend, that
shows a wider bell shape.

At lower quotes, the streamwise velocity rms profiles (red lines in figures 6.12)
show two well-rendered peaks at the edges of the central jet; at higher quotes
(from figure 6.12d), the rms maximum value increases (up to 35ms−1 and the
curve shape becomes more smooth. The shape of the rms curves, furthermore,
points out that at higher quotes the central jet becomes unstable and, also because
of the combustion process, oscillates in the spanwise direction.

In figure 6.13, the transversal averages of spanwise velocity (blue lines) show
that the hot combustion products tend to flow towards the central jet (see the two
peaks near 4ms−1 and −4ms−1 in figure 6.13a), while the central jet flows in the
opposite direction (see the two peaks near −1.5ms−1 and 1.5ms−1 in the same
picture): at higher quotes, all these peaks move towards the transversal edges of
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6.3 Simulation Results

Figure 6.10. Domain configuration with level 1 (green), level 2 (blue) and level 3 (red)
computational grids (only one line each two is represented); iso-surface of temperature
T = 1600K
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6.3 Simulation Results

Figure 6.11. The six xy planes (white dashed lines) where JG2, JG3 and SL comparisons
take place
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6.3 Simulation Results

the domain, strengthen the observation previously carried out about the opening
of the central jet.

The spanwise velocity rms profiles (red lines in figure 6.13) show a gradual
growth in the velocity fluctuation magnitude as the distance from the combustion
chamber inlet increases; the higher fluctuations are also localized in the central
high speed jet flow.

In figure 6.14, the transversal averages of temperature (blue lines) show that
downstream the injection point the separation between the cold jet and the hot
coflow is evident; at h =2.5mm the temperature at the center of the flow field
starts to raise from 600K and reaches the maximum of ∼ 1200K at h =7.5mm
(see figure 6.14f), thanks to the heat released from the flame front.

The temperature rms profiles (red lines in figure 6.14) show a behaviour similar
to the streamwise velocity rms profiles, with two well-rendered peaks of 300K
at the edges of the central jet, for h =1.25mm (figure 6.14a): these two peaks
increase rapidly (at h =2.5mm the maximum value is close to 450K) and reach
the maximum value for h =7.5mm (∼ 550K, figure 6.14f).

In figure 6.15 average profiles at several heights above injection, for CH4 (blue),
H2 (red), CO2 (green), CO (purple), OH (cyan) are plotted. Also in this case
is evident a very good agreement between data values obtained with the present
numerical simulation (solid lines) and the “old” one (dashed lines, with symbols).
The combustion products (CO and OH) diffuse in the central cold jet (the mass
fraction minimum, located at the center of the flow field, increase as the quota
increases), while the methane diffuses in the opposite direction: at the highest
quota (h =7.5mm, figure 6.15f), all the curves are almost flat.

In table 6.4, comparison between mean times for computing a single iteration
(or time step) are reported: from the data obtained, is possible to understand that
joined grids communication procedures need a deep analysis to discover and
locate possible bottlenecks, cache misses and every other problem in memory
management to improve computational efficiency; but is also clear that the do-
main decomposition algorithm currently adopted in HeaRT numerical code has
to be redesigned to taking into account that computational grid is composed by
blocks with different spatial resolution.

Another observation that can be made is that joined grid algorithm imple-
mented in HeaRT code is more suitable for numerical simulation of big domains
that require a very high spatial resolution in a little zone, rather than to speed up
a numerical simulation of a simple domain.

Number of Cores SL JG2 JG3

8 28.013 47 s 26.313 07 s 22.834 56 s
16 15.356 42 s 13.535 09 s 10.398 12 s
32 8.893 72 s 8.028 20 s 7.251 65 s
64 4.782 63 s 5.288 21 s 5.127 34 s

Table 6.4. Comparison between Mean Time for a Single Iteration
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6.3 Simulation Results

(a) z = 1.25 mm (b) z = 2.50 mm

(c) z = 3.75 mm (d) z = 5.00 mm

(e) z = 6.25 mm (f) z = 7.00 mm

Figure 6.12. Streamwise Velocity Mean (blue) and rms (red) profiles at several heights
above injection: comparisons between DNS (circles), SL (dashed lines), JG2 (solid lines)
and JG3 (solid lines with crosses)
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6.3 Simulation Results

(a) z = 1.25 mm (b) z = 2.50 mm

(c) z = 3.75 mm (d) z = 5.00 mm

(e) z = 6.25 mm (f) z = 7.00 mm

Figure 6.13. Spanwise Velocity Mean (blue) and rms (red) profiles at several heights
above injection: comparisons between DNS (circles), SL (dashed lines), JG2 (solid lines)
and JG3 (solid lines with crosses)
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6.3 Simulation Results

(a) z = 1.25 mm (b) z = 2.50 mm

(c) z = 3.75 mm (d) z = 5.00 mm

(e) z = 6.25 mm (f) z = 7.00 mm

Figure 6.14. Temperature Mean (blue) and rms (red) profiles at several heights above
injection: comparisons between DNS (circles), SL (dashed lines), JG2 (solid lines) and JG3

(solid lines with crosses)
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6.3 Simulation Results

(a) z = 1.25 mm (b) z = 2.50 mm

(c) z = 3.75 mm (d) z = 5.00 mm

(e) z = 6.25 mm (f) z = 7.00 mm

Figure 6.15. Mass Fraction profiles at several heights above injection: comparisons
between DNS (circles), SL (dashed lines), JG2 (solid lines) and JG3 (solid lines with crosses)
for CH4 (blue), H2 (red), CO2 (green), CO (purple), OH (cyan)
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6.3 Simulation Results

6.3.2 Flame Curvature Statistics

In this section, a more in detail description of the flame is provided, analyzing its
curvature and shape-factor at different iso-c surfaces and heights. The analysis is
based on the progress variable c, defined as a normalized sum of S species mass
fractions, with S={H2, CO2, CO, H2O}:

c =

∑
i∈S Yi −

∑
i∈S Yi,u∑

i∈S Yi,b −
∑
i∈S Yi,u

=

∑
i∈S Yi −

∑
i∈S Yi,u

Yc,n
(6.1)

where Yi,u is the i-th species mass fraction in unburnt gases, Yi,b is the i-th
species mass fraction in burned gases and Yc,n is the normalizing factor; so the
progress variable values can be only included between 0 and 1: in particular,
c = 0 in unburnt gases and c = 1 in burned gases (see figure 6.16).

Figure 6.16. Progress Variable Contour for JG2 Numerical Simulation

For the flame described in table 6.1 on page 67, the maximum heat release is
for c = 0.704, while the maximum value of temperature gradient, adopted for the
calculation of laminar flame thermal thickness δth, is c = 0.44; the heat release is
complete at c ∼ 0.9.

The local geometry of the progress variable scalar field is defined by:

its value c = (x, t);

its derivative in the direction normal to the iso-surface;

its curvature.
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6.3 Simulation Results

Figure 6.17. Areas where the statistics take place: JG3 (white), JG2 (green), DNS (black)

The curvature is computed from the not symmetric tensor formed by taking
the gradient of the flame front normal vector ni,j = ∂nii/∂xj. The principal
curvatures k1, k2 are the two nonzero eigenvalues of the curvature tensor ni,j.
They are related to the two nonzero invariants I1 = −∇ · n = −(k1 + k2) = 2km
(where km = I1/2 is the mean curvature) and I2 = (ni,inj,j − ni,jnj,i)/2 = k1k2 =

kg (where kg is the Gaussian curvature) by the

k1, k2 =

(
−I1 +

√
I21 − 4I2

)
2

(6.2)

The zone kg > k2m implies complex curvature and it’s excluded from the statis-
tics, that are normalized using the laminar flame temperature gradient thickness
δL.

The statistics take place in the finest reaction zone, where the main part of the
flame is located. In figure 6.17, are represented the regions where the statistics
take place, for the three simulations analyzed: the biggest rectangle (black) is the
volume, in the IJ plane, where the DNS statistics are evaluated, the green rectan-
gle is the region where JG2 statistics are evaluated while the smallest rectangle
(white) is the JG3 region: so, for JG3 simulation, the upper part of the flame is
excluded from the statistics, because of the poor resolution of the computational
grid respect to JG2 and DNS simulations.

In figure 6.18 the PDF of the normalized curvature at different progress variable
values is represented (JG2 - lines, JG3 - lines with symbols): in the reaction zone,
at higher value of the progress variable c, the probability of finding negative
(concave towards the reactants) curvature (∇ · nδL ∼ −0.6) is higher than in the
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6.3 Simulation Results

Figure 6.18. Curvature’s PDFs for JG2 (lines) and JG3 (lines with symbols)

diffusive layer (∇·nδL ∼ 0); the smallest mean radius of curvature is about δL ∼ 10

since the flame has a finite thickness.
An asymmetry in the flame curvature PDFs is noticeable in the reaction zone,

where it’s more probable to find negative curves than positive ones. The two
joined grid simulations show very good agreement.

In figure 6.19 are plotted PDF’s curvatures for JG2, JG3 and DNS for c = 0.44,
c = 0.7 and c = 0.9; also if there’s a big difference in terms of spatial resolution
(for DNS, minimum grid spacing is 9µm, for JG2 and JG3 is 35µm), the shape of
the curves and the peak position are very close: the closure model adopted for
LES simulations is very good.

(a) c = 0.44 (b) c = 0.7 (c) c = 0.9

Figure 6.19. JG2, JG3 and DNS Curvature PDFs comparison for c = 0.44, c = 0.7 and
c = 0.9
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6.3 Simulation Results

Figure 6.20. JG2 (red) and DNS (blue) Curvature PDFs comparison for any c value

In all the three figures, for curvature values very close to 0, the PDF’s curvature
of the DNS (green curve) is always slightly over the PDF’s curvatures of JG2 and
JG3 simulations.

In figure 6.20 are plotted the curvature PDFs for any c value for both JG2

and DNS numerical simulations: is possible to notice that JG2 PDFs for outer
curvature values is bigger than the DNS PDFs, at any c; the DNS, otherwise,
shows higher PDFs for the smaller curvatures, at almost any c value.

The local geometry of a three dimensional iso-surface can be qualitatively char-
acterized by the curvature shape factor Hk = kmin/kmax, where kmin and kmax
are respectively the smaller and the larger values between k1 and k2: so, following
this definition, the shape factor can only vary between −1 and 1. If Hk ∼ −1, the
mean curvature is zero and the flame surface is near a perfect spherical saddle; if
Hk ∼ 0, one principal curvature is much larger in magnitude than the numerator,
so the flame surface is flat in one direction (i.e. it’s locally cylindrical); when
Hk ∼ +1, the flame surface is spherically curved.

The normalized PDFs of Hk at different iso-c surfaces are shown in figure 6.21

on the following page (JG2 - lines, JG3 - lines with symbols): the most probable
values for the shape factor are close to zero, indicating that the flame has mainly
a cylindrical shape; the distribution of the shape factor is skewed negatively, indi-
cating that saddle-like curvatures are more probable than ellipsoidal regions: for
Hk ∼ 1, the PDF value, for all the three curves, is near zero.

The comparison between JG2, JG3 and DNS is showed in figure 6.22 on the
next page, where are plotted shape factor PDFs for c = 0.44, c = 0.7 and c = 0.9:
the shape of the curves is very similar, and also for the DNS the higher PDF value
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Figure 6.21. Shape factor PDFs for JG2 (lines) and JG3 (lines with symbols)

(a) c = 0.44 (b) c = 0.7 (c) c = 0.9

Figure 6.22. JG2, JG3 and DNS Shape Factor PDFs comparison for c = 0.44, c = 0.7
and c = 0.9
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Figure 6.23. JG2 (red) and DNS (blue) Shape Factor PDFs comparison for any c value

is reached when Hk = 0, but also in this case the DNS PDF is higher than JG2

and JG3 PDF for Hk values close to 0.
In figure 6.20 on page 85 are plotted the shape factor PDFs for any c value for

both JG2 and DNS numerical simulations: DNS PDFs for Hk values near 0 are
higher than JG2 PDFs for any c value, so for the DNS the c isosurfaces have an
higher probability to acquire a cylindrical shape than the JG2 c iso-surfaces; for
JG2 is otherwise more probable to find a spherical saddle or a perfect sphere in
the c iso-surfaces than the DNS.

The inverse of the magnitude of the gradient of the progress variable is directly
associated to the flame thickness: the figure 6.24 shows the conditional mean of
normalized |∇c|, with the laminar flame thickness δL used as normalizing factor.
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6.3 Simulation Results

Figure 6.24. Conditional means of the normalized flame thickness |∇c|δL versus the
progress variable, at different heights (JG2 lines, JG3 lines with symbols); in the square
curvature’s PDF obtained from the DNS [Cecere et al., 2015]

The results show that the flame thickness is lower than the laminar flame thick-
ness δL close to the exit of the mixture channel (h = 0.2mm) and for c ∼ 0.3: this
is due to the development of the shear layer and to the local increase of the strain
rate that reduces the thickness of the flame; the shape of the curve, moreover, is
skewed towards the reactant side.

As the shear layer develops downstream, velocity gradients in crosswise direc-
tion decrease and the flame thickness increases. Also in this case, the shape and
the amplitude of the curves is similar to that obtained from the previously cited
DNS (figure 6.24, on the upper right corner); also in this case the two joined grid
simulations show a good agreement.

6.3.3 Turbulence Spectra Analysis

In this section, the fluctuating kinetic energy spectra analysis for JG2 and DNS
numerical simulation are reported. The sampling point, for both cases, is located
4mm over the right wall of the inlet duct (figure 6.25).

From the samples of the streamwise (w) and spanwise (v) velocities, the stream-
wise and spanwise mean values are obtained from:

w =

∑N
i=1wi
N

, v =

∑N
i=1 vi
N

(6.3)

where N is the total number of the samples.
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6.3 Simulation Results

Figure 6.25. Sampling point (red circle) position

These mean values are used to extract the fluctuating component for the stream-
wise and the spanwise velocities, as

w ′i = wi −w, v ′i = vi − v (6.4)

The fluctuating kinetic energy is then calculated as

E ′i =
w ′2i + v

′2
i

2
(6.5)

The crosswise velocity component (u) is excluded from the 6.5 because it is
negligible with respect to the other two components but above all because it has
not converged statistics.

For DNS, the sampling frequency is 1MHz, the sampling time is ∼ 1.8ms and
so the resolution frequency is ∼ 550Hz.

In figure 6.26 on the following page, the complete (on the left) and the selected
two-burst (∼ 0.508ms, on the right) samplings are reported, while the spectra of
these two signals are represented in figure 6.27.

The two-burst spectrum shows an inertial decay with a slope very close to −5/3

for frequencies above 75 kHz.
The complete signal spectrum, instead, shows an inertial decay with a slope

close to −5/3 only for high frequencies (above ∼ 126 kHz), while for the rest of
the spectrum the slope is close to −2/3: this behaviour will be investigated in
future DNS simulations.

Summarizing, the DNS spectral analysis shows a −5/3 slope for frequencies
larger than 75 kHz: for smaller frequencies, the slope is very close to −2/3, but
the poor frequency resolution doesn’t permit to examine this phenomenon in a
adequate manner.

In figure 6.28, the complete (on the left) and the first two-burst (∼ 1.308ms,
on the right) samplings obtained from the JG2 simulation are reported: the sam-
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(a) Complete sampling (b) Two-bursts sampling

Figure 6.26. Fluctuating kinetic energy samplings for DNS

Figure 6.27. Fluctuating kinetic energy spectra for the complete and the two-burst sam-
plings obtained from DNS
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(a) Complete sampling (b) Two-burst sampling

Figure 6.28. Fluctuating kinetic energy samplings for JG2

pling frequency is 5MHz, the sampling time is ∼ 4.396ms and so the resolution
frequency is ∼ 230Hz.

The spectra of these two signals are represented in figure 6.29: the complete
signal shows an inertial decay with a slope close to −2/3 until ∼ 300 kHz, that is
the cut-off frequency where the subgrid scale model starts to work; at that point,
under the ergodic hypothesis, it is possible to find a relationship between the
characteristic length of the cell and the frequency: the characteristic length of the
cell is ∆ = 3

√
V = 5.0× 10−5m, where V is the cell volume, and therefore 1/∆ =

3.0× 105.
The two-burst spectrum shows an inertial decay with a slope close to −2/3

until ∼ 150 kHz, beyond which the Kolmogorov theory −5/3 slope appears: also
in this case, for frequencies larger than ∼ 300 kHz the spectrum separates from
the predicted Kolmogorov theory slope.

The absence of −5/3 slope in the complete energy spectrum can be attributed
to the subgrid scale model error: as can be seen in [Lesieur, 2008], the scale of
the wave number over which most of the error is confined (ke(t)) follows an
analogous Richardson law, which leads to

k
−2/3
e (t) ∼ ε1/3t+ k

−2/3
e (t0) (6.6)

where t0 is the time at which the error has been injected in the small scales of
the inertial range. This shows that ke is going to decrease following a (t− t0)

−3/2

law, as soon as ke(t) will be sufficiently small compared with ke(0). So the initial
location of this wave number can be forgotten, and the necessary time for the
error, starting from very high wave numbers, to reach a given wave number k, is
proportional to ε−1/3k−2/3, that is the local turnover time of turbulence at k.

The complete signal was sampled for more than 4ms, so the error had the time
to go back up the energy spectrum and “replaces” the −5/3 Kolmogorov slope
with the −2/3 slope obtained from equation 6.6.

As can be seen from the DNS spectra, the −2/3 slope can be attributed to
the subgrid scale model error only for the wave numbers between 150 kHz and
300 kHz: the −2/3 slope before 150 kHz in the JG2 simulation, as well as the
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6.3 Simulation Results

Figure 6.29. Fluctuating kinetic energy spectra for the complete and the two-burst sam-
plings obtained from JG2

−2/3 slope observed in figure 6.27, will be investigated in future LES and DNS
simulations.

In figure 6.30 on the next page, the complete and two-burst spectra for JG2 and
DNS are compared. For the two-burst spectra, DNS and JG2 are not in agreement:
the first, indeed, shows a −5/3 slope for almost the whole spectrum, excluding
a very little zone where the DNS spectrum has the same −2/3 slope of the JG2

spectrum. The complete spectra show a better agreement until ∼ 150 kHz, where
the DNS begins to show a slope very close to the −5/3 Kolmogorov’s theory one,
while the LES spectrum slope is still −2/3 up to 300 kHz, beyond which the slope
changes to −11/3.
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(a) Two-burst spectra (b) Complete spectra

Figure 6.30. Comparison between DNS and LES 2 bursts and complete spectra
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7
Concluding Remarks

The LES approach is growing in importance since, when a sufficient portion of
the energy spectrum is resolved, it is the only available and reliable tool with

prediction capability for complex flows.
Unfortunately, when this technique is used on a big domain discretized by

means of a structured grid, a difficult compromise could be engaged: if the
domain geometric characteristics or the fluid motion peculiarities need an high
spatial resolution, the numerical grid will be made by an incredible number of
nodes, making the solution obtainable only on hundred of thousands compu-
tational cores; vice versa, if such computing power is not available, the chosen
number of computational nodes don’t allow to produce an accurate numerical
solution of the flow field.

This problem can be resolved with a multi-resolution technique that permit to
improve the spatial resolution only where it’s necessary: in such way it’s possible
to reduce the total number of computational nodes and/or, at the same time, to
obtain a better numerical solution.

The development of a multi-resolution technique for an existing numerical code
is a challenging task. Indeed, a deep and accurate knowledge of the existing code
is necessary, from both numerical and information technology points of view:
the first has a fundamental role in the selection of a multi-resolution algorithm
(i.e. the staggered grid adopted in the HeaRT numerical code requires a different
treatment for scalars and momentum), while the latter is very important to un-
derstand existing data structures, modules and subroutines already available and
to understand the whole operation algorithm.

By mean of this technique, based on the joined-grid approach, is possible to
obtain some important targets.

First, is possible to reduce, in a considerable way, the total number of grid
points without any significant loss of accuracy: the 3 levels computational grid
used in the numerical simulation of the slot flame has about one third, in terms
of computing nodes, respect to the single level grid; this permits to obtain smaller
output files (the size is reduced from ∼ 800MB to ∼ 270MB) and therefore an im-
portant saving of disk space, post-processing times and computational resources.

The computational nodes number reduction has furthermore a positive effect
on single iteration (or time step) computing times: for a small number of cores
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(up to 16), the joined-grids numerical simulations shows a shorter computing
time respect to the single level simulation; for an higher number of cores, the ad-
vantage of joined-grids algorithm is not so clear. One the reasons is the domain
decomposition algorithm adopted in the HeaRT code, that makes impossible a
concentration of CPUs on the finest zone, because it is limited on a “structured”
decomposition of the numerical grid; another reason is most assuredly the poor
efficiency of the joined-grids procedures, that have to be deep analyzed to dis-
cover all the possible bottlenecks, cache misses and every other problem in mem-
ory management.

The validation of the whole multi-resolution algorithm has permitted to ana-
lyze in detail the topological structure of the CH4/H2–Air slot flame: the central
pre-heated jet, because of its high velocity, trails and warps the hot coflow; in few
millimeters, the central jet speed decrease of about 30ms−1, since a section of
its kinetic energy is been transferred to the coflow, that sees its velocity increased
from ∼ 20ms−1 to ∼ 35ms−1.

The flame curvature statistics analysis strengthen the three dimensional be-
haviour of the flow field with particular attention to the flame front curvature
and shape-factor: the flame has mainly a cylindrical shape and in the reaction
zone, because of the presence of the hydrogen, the curvature has an high proba-
bility to be concave towards the reactants. The flame thickness, moreover, is lower
than the laminar flame thickness close to the exit of the mixture channel, because
of the development of the shear layer and to the local increase of the strain rate:
as the shear layer develops downstream, the flame thickness increase.

The spectral analysis shows an unexpected behaviour, with an inexplicable
slope of about −2/3 both for DNS and for LES simulations; another interesting
aspect is the difference between the complete spectra and the two-bursts spectra,
that is partially explained with the Lesieur error formulation. These two anoma-
lies will be the subject of future DNS and LES numerical simulations of channel
flows.

In conclusion, even if this work can be considered as a first step to obtain a
multi-resolution algorithm on a compressible and staggered LES numerical code,
the presented approach has demonstrated a great potential providing good nu-
merical results and a important drop in the numerical results data amount.
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Part III

Appendixes



A
Cylindrical Coordinates System

The common large energy burner combustion chamber’s shape is cylindrical-
like, at least for the main part, therefore adopting a cylindrical coordinates

system is very useful for a better discretization of the domain. The cylindrical co-
ordinates system adopted, cylindrical/rectangular transformation equations and
the governing equations in cylindrical coordinates are reported in this chapter.

a.1 Curvilinear Orthogonal Coordinates System

Cylindrical coordinates system belongs to the curvilinear orthogonal system. Re-
spect to the rectangular coordinates system, that is also an orthogonal system, a
curvilinear orthogonal system has a tensor metric that is generally different to
the unit tensor. In this section the tensor metric for a curvilinear orthogonal coor-
dinates system is evaluated; also the transformation equations for the operators
∇2 (), −→∇ · (), −→∇ × () and

−→∇ () are presented.
Considering the rectangular coordinates system (x,y, z) with the basis unit vec-

tors
−→
i ,
−→
j ,
−→
k the position vector −→p can be expressed as:

−→p = x ·
−→
i + y ·

−→
j + z ·

−→
k (A.1)

Introducing a new curvilinear orthogonal coordinates system (ξ1, ξ2, ξ3) with the
basis unit vectors −→e 1,−→e 2,−→e 3 the position vector −→p can be expressed as:

−→p = ξ1 · −→e 1 + ξ2 · −→e 2 + ξ3 · −→e 3 (A.2)

The derivatives of −→p with respect to (ξ1, ξ2, ξ3) are the base vectors of the curvi-
linear system:

h1 =
∣∣∣∂−→p∂ξ1 ∣∣∣ = ∣∣∣ ∂x

∂ξ1

∂y
∂ξ1

∂z
∂ξ1

∣∣∣ =√( ∂x∂ξ1)2 + ( ∂y∂ξ1)2 + ( ∂z∂ξ1)2
h2 =

∣∣∣∂−→p∂ξ2 ∣∣∣ = ∣∣∣ ∂x
∂ξ2

∂y
∂ξ2

∂z
∂ξ2

∣∣∣ =√( ∂x∂ξ2)2 + ( ∂y∂ξ2)2 + ( ∂z∂ξ2)2
h3 =

∣∣∣∂−→p∂ξ3 ∣∣∣ = ∣∣∣ ∂x
∂ξ3

∂y
∂ξ3

∂z
∂ξ3

∣∣∣ =√( ∂x∂ξ3)2 + ( ∂y∂ξ3)2 + ( ∂z∂ξ3)2
(A.3)
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Therefore the tensor metric is:

TMetric =

 h1 0 0

0 h2 0

0 0 h3

 (A.4)

Thus the curvilinear basis unit vectors can be expressed as:

−→e1 =
1

h1

∂−→p
∂ξ1

−→e2 =
1

h2

∂−→p
∂ξ2

−→e3 =
1

h3

∂−→p
∂ξ3

(A.5)

The operators
−→∇ · () and

−→∇ () can be expressed as:

−→
∇ · () = ∂ ()

∂x
·
−→
i +

∂ ()

∂y
·
−→
j +

∂ ()

∂z
·
−→
k =

1

h1

∂ ()

∂ξ1
· −→e1 +

1

h2

∂ ()

∂ξ2
· −→e2 +

1

h3

∂ ()

∂ξ3
· −→e3
(A.6)

−→
∇ () =

∂ ()

∂x

−→
i +

∂ ()

∂y

−→
j +

∂ ()

∂z

−→
k =

1

h1

∂ ()

∂ξ1

−→e1 +
1

h2

∂ ()

∂ξ2

−→e2 +
1

h3

∂ ()

∂ξ3

−→e3 (A.7)

Note that if we apply one of A.6 and A.7 to a vector expressed in the curvi-
linear system we must evaluate the derivatives of −→e 1,−→e 2,−→e 3 with respect of
(ξ1, ξ2, ξ3); since the curvilinear coordinates system considered is orthogonal the
following identities are satisfied:

−→e1 · −→e2 = 0 −→e2 · −→e3 = 0 −→e1 · −→e3 = 0
∂−→p
∂ξ1
· ∂
−→p
∂ξ2

= 0 ∂−→p
∂ξ2
· ∂
−→p
∂ξ3

= 0 ∂−→p
∂ξ1
· ∂
−→p
∂ξ3

= 0
−→e1 = −→e2 ×−→e3 −→e2 = −→e3 ×−→e1 −→e3 = −→e1 ×−→e2

(A.8)

Differencing the second line of identities of A.8 by that coordinate which does
not appear explicitly we obtain:

∂−→p
∂ξ1
· ∂

2−→p
∂ξ2∂ξ3

+ ∂2−→p
∂ξ1∂ξ3

· ∂
−→p
∂ξ2

= 0
∂−→p
∂ξ2
· ∂

2−→p
∂ξ1∂ξ3

+ ∂2−→p
∂ξ1∂ξ2

· ∂
−→p
∂ξ3

= 0
∂−→p
∂ξ1
· ∂

2−→p
∂ξ2∂ξ3

+ ∂2−→p
∂ξ1∂ξ2

· ∂
−→p
∂ξ3

= 0

(A.9)

adding the first two of A.9 we obtain:

∂−→p
∂ξ1
· ∂

2−→p
∂ξ2∂ξ3

+ ∂2−→p
∂ξ1∂ξ3

· ∂
−→p
∂ξ2

+ ∂−→p
∂ξ2
· ∂

2−→p
∂ξ1∂ξ3

+ ∂2−→p
∂ξ1∂ξ2

· ∂
−→p
∂ξ3

= 0

⇓

2∂
−→p
∂ξ2
· ∂

2−→p
∂ξ1∂ξ3

+
∂−→p
∂ξ1
· ∂

2−→p
∂ξ2∂ξ3

+
∂2−→p
∂ξ1∂ξ2

· ∂
−→p
∂ξ3︸ ︷︷ ︸

=0 by means of third identities

= 0

⇓
∂−→p
∂ξ2
· ∂

2−→p
∂ξ1∂ξ3

= 0

With analogous calculations we obtain:

∂−→p
∂ξ1
· ∂

2−→p
∂ξ2∂ξ3

= 0
∂−→p
∂ξ2
· ∂

2−→p
∂ξ1∂ξ3

= 0
∂−→p
∂ξ3
· ∂

2−→p
∂ξ1∂ξ2

= 0 (A.10)
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The partial derivatives of −→p with respect to (ξ1, ξ2, ξ3) are tangential to the coor-
dinate lines ξ1, ξ2 and ξ3, respectively, and so from the first of A.10 we obtain:

∂2−→p
∂ξ2∂ξ3

⊥−→e1 ⇒
∂2−→p
∂ξ2∂ξ3

= α · −→e2 +β · −→e3

Using the third of A.5 and the above equation we obtain:

∂2−→p
∂ξ2∂ξ3

=
∂

∂ξ2

(
∂−→p
∂ξ3

)
=

∂

∂ξ2

(
h3
−→e3
)
= h3

∂−→e3
∂ξ2

+
∂h3
∂ξ2

−→e3 = α · −→e2 +β · −→e3

because ∂
−→e3
∂ξ2
‖ −→e2 we obtain:

β =
∂h3
∂ξ2

With analogous passages we finally obtain:

∂−→e1
∂ξ1

= −∂h1∂ξ2

−→e2
h2

− ∂h1
∂ξ3

−→e3
h3

∂−→e1
∂ξ2

= ∂h2
∂ξ1

−→e2
h1

∂−→e1
∂ξ3

= ∂h3
∂ξ1

−→e3
h1

∂−→e2
∂ξ1

= ∂h1
∂ξ2

−→e1
h2

∂−→e2
∂ξ2

= −∂h2∂ξ3

−→e3
h3

− ∂h2
∂ξ1

−→e2
h2

∂−→e2
∂ξ3

= ∂h3
∂ξ2

−→e3
h2

∂−→e3
∂ξ1

= ∂h1
∂ξ3

−→e1
h3

∂−→e3
∂ξ2

= ∂h2
∂ξ3

−→e2
h3

∂−→e3
∂ξ3

= −∂h3∂ξ1

−→e1
h1

− ∂h3
∂ξ2

−→e2
h2

(A.11)
By means of A.11 we can obtain the operators

−→∇ · () into the curvilinear coor-
dinates system; considering a generic vector −→u = u1

−→e1 + u2−→e2 + u3−→e3 the diver-
gence operator can be expressed as:

−→
∇ ·−→u = ∂−→u

∂ξ1
·
−→e1
h1

+ ∂−→u
∂ξ2
·
−→e2
h2

+ ∂−→u
∂ξ3
·
−→e3
h3

=

=
∂(u1

−→e1+u2−→e2+u3−→e3)
∂ξ1

·
−→e1
h1

+
∂(u1

−→e1+u2−→e2+u3−→e3)
∂ξ2

·
−→e2
h2

+
∂(u1

−→e1+u2−→e2+u3−→e3)
∂ξ3

·
−→e3
h3

=

=

∂u1∂ξ1

−→e1 · −→e1︸ ︷︷ ︸
1

+u1
∂−→e1
∂ξ1
· −→e1︸ ︷︷ ︸
0

+∂u2∂ξ1

−→e2 · −→e1︸ ︷︷ ︸
0

+u2
∂−→e2
∂ξ1
· −→e1 + ∂u3

∂ξ1

−→e3 · −→e1︸ ︷︷ ︸
0

+u3
∂−→e3
∂ξ1
· −→e1

 1
h1

+

+

∂u1∂ξ2

−→e1 · −→e2︸ ︷︷ ︸
0

+u1
∂−→e1
∂ξ2
· −→e2 + ∂u2

∂ξ2

−→e2 · −→e2︸ ︷︷ ︸
1

+u2
∂−→e2
∂ξ2
· −→e2︸ ︷︷ ︸
0

+∂u3∂ξ2

−→e3 · −→e2︸ ︷︷ ︸
0

+u3
∂−→e3
∂ξ2
· −→e2

 1
h2

+

+

∂u1∂ξ3

−→e1 · −→e3︸ ︷︷ ︸
0

+u1
∂−→e1
∂ξ3
· −→e3 + ∂u2

∂ξ3

−→e2 · −→e3︸ ︷︷ ︸
0

+u2
∂−→e2
∂ξ3
· −→e3 + ∂u3

∂ξ3

−→e3 · −→e3︸ ︷︷ ︸
1

+u3
∂−→e3
∂ξ3
· −→e3︸ ︷︷ ︸
0

 1
h3

=

= 1
h1h2h3

[
h2h3

∂u1
∂ξ1

+ h2h3u2
∂−→e2
∂ξ1
· −→e1 + h2h3u3 ∂

−→e3
∂ξ1
· −→e1+

+h1h3u1
∂−→e1
∂ξ2
· −→e2 + h1h3 ∂u2∂ξ2

+ h1h3u3
∂−→e3
∂ξ2
· −→e2+

+h1h2u1
∂−→e1
∂ξ3
· −→e3 + h1h2u2 ∂

−→e2
∂ξ3
· −→e3 + h1h2 ∂u3∂ξ3

]
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A.1 Curvilinear Orthogonal Coordinates System

Using the A.11 we obtain:

−→∇ ·−→u = 1
h1h2h3

h2h3 ∂u1∂ξ1
+ h2h3u2

∂h1
∂ξ2

1
h2

−→e1 · −→e1︸ ︷︷ ︸
1

+h2h3u3
∂h1
∂ξ3

1
h3

−→e1 · −→e1︸ ︷︷ ︸
1

+

+h1h3u1
∂h2
∂ξ1

1
h1

−→e2 · −→e2︸ ︷︷ ︸
1

+h1h3
∂u2
∂ξ2

+ h1h3u3
∂h2
∂ξ3

1
h3

−→e2 · −→e2︸ ︷︷ ︸
1

+

+h1h2u1
∂h3
∂ξ1

1
h1

−→e3 · −→e3︸ ︷︷ ︸
1

+h1h2u2
∂h3
∂ξ2

1
h2

−→e3 · −→e3︸ ︷︷ ︸
1

+h1h2
∂u3
∂ξ3

 =

= 1
h1h2h3

[
∂(h2h3u1)

∂ξ1
+
∂(h1h3u2)

∂ξ2
+
∂(h1h2u3)

∂ξ3

]
With analogous passages we can obtain the expression of the other operators;
considering a scalar variable φ and a tensor of second order T the operators read:

∇2 (φ) = 1

h1h2h3

[
∂

∂ξ1

(
h2h3
h1

∂φ

∂ξ1

)
+

∂

∂ξ2

(
h1h3
h2

∂φ

∂ξ2

)
+

∂

∂ξ3

(
h1h2
h3

∂φ

∂ξ3

)]
(A.12)

−→
∇ ·−→u =

1

h1h2h3

[
∂

∂ξ1
(h2h3u1) +

∂

∂ξ2
(h1h3u2) +

∂

∂ξ3
(h1h2u3)

]
(A.13)

−→
∇ ×−→u =

−→e1
h2h3

[
∂
∂ξ2

(h3u3) −
∂
∂ξ3

(h2u2)
]
+

+
−→e2
h1h3

[
∂
∂ξ3

(h1u1) −
∂
∂ξ1

(h3u3)
]
+

+
−→e3
h1h2

[
∂
∂ξ1

(h2u2) −
∂
∂ξ2

(h1u1)
] (A.14)

−→
∇ · T = −→e1

{
1

h21h2h3

[
∂
∂ξ1

(h1h2h3T11) +
∂
∂ξ2

(
h21h3T12

)
+ ∂
∂ξ3

(
h21h2T13

)]
+

− 1
h21

∂h1
∂ξ1

T11 −
1

h1h2

∂h2
∂ξ1

T22 −
1

h1h3

∂h3
∂ξ1

T33

}
+

+−→e2
{

1
h1h

2
2h3

[
∂
∂ξ1

(
h22h3T12

)
+ ∂
∂ξ2

(h1h2h3T22) +
∂
∂ξ3

(
h22h1T23

)]
+

− 1
h1h2

∂h1
∂ξ2

T11 −
1
h22

∂h2
∂ξ2

T22 −
1

h2h3

∂h3
∂ξ2

T33

}
+

+−→e3
{

1
h1h2h

2
3

[
∂
∂ξ1

(
h2h

2
3T13

)
+ ∂
∂ξ2

(
h1h

2
3T23

)
+ ∂
∂ξ3

(h1h2h3T33)
]
+

− 1
h1h3

∂h1
∂ξ3

T11 −
1

h2h3

∂h2
∂ξ3

T22 −
1
h23

∂h3
∂ξ3

T33

}
(A.15)

It is also useful to report the expression of −→u ·
−→
∇
(−→u ) and −→u

(−→
∇ ·−→u

)
:

−→u ·
−→
∇
(−→u ) = +

+−→e1
[
u1
h1

∂u1
∂ξ1

+ u2
h2

∂u1
∂ξ2

+ u3
h3

∂u1
∂ξ3

+ u1u2
h1h2

∂h1
∂ξ2

−
u22
h1h2

∂h2
∂ξ1

+ u1u3
h1h3

∂h1
∂ξ3

−
u23
h1h3

∂h3
∂ξ1

]
+

+−→e2
[
u1
h1

∂u2
∂ξ1

+ u2
h2

∂u2
∂ξ2

+ u3
h3

∂u2
∂ξ3

+ u1u2
h1h2

∂h2
∂ξ1

−
u21
h1h2

∂h1
∂ξ2

+ u2u3
h2h3

∂h2
∂ξ3

−
u23
h2h3

∂h3
∂ξ2

]
+

+−→e3
[
u1
h1

∂u3
∂ξ1

+ u2
h2

∂u3
∂ξ2

+ u3
h3

∂u3
∂ξ3

+ u1u3
h1h3

∂h3
∂ξ1

−
u21
h1h3

∂h1
∂ξ3

+ u2u3
h2h3

∂h3
∂ξ2

−
u22
h2h3

∂h2
∂ξ3

]
(A.16)

100



A.2 Cylindrical Coordinates System

y

z

x

−→p ·
−→
k

−→p ·
−→
i

−→p ·
−→
j

−→p

−→
j

−→
k

−→
i

Figure A.1. Orthogonal Rectangular Coordinates System (x,y, z)

−→u
(−→∇ ·−→u) = +

+−→e1
[
u1
h1

∂u1
∂ξ1

+ u1u2
h1h2

∂h1
∂ξ2

+ u1u3
h1h3

∂h1
∂ξ3

+

+u1h2
∂u2
∂ξ2

+
u21
h1h2

∂h2
∂ξ1

+ u1u3
h2h3

∂h2
∂ξ3

+

+u1h3
∂u3
∂ξ3

+
u21
h1h3

∂h3
∂ξ1

+ u1u2
h2h3

∂h3
∂ξ2

]
+

+−→e2
[
u2
h1

∂u1
∂ξ1

+
u22
h1h2

∂h1
∂ξ2

+ u2u3
h1h3

∂h1
∂ξ3

+

+u2h2
∂u2
∂ξ2

+ u1u2
h1h2

∂h2
∂ξ1

+ u2u3
h2h3

∂h2
∂ξ3

+

+u2h3
∂u3
∂ξ3

+ u1u2
h1h3

∂h3
∂ξ1

+
u22
h2h3

∂h3
∂ξ2

]
+

+−→e3
[
u3
h1

∂u1
∂ξ1

+ u2u3
h1h2

∂h1
∂ξ2

+
u23
h1h3

∂h1
∂ξ3

+

+u3h2
∂u2
∂ξ2

+ u1u3
h1h2

∂h2
∂ξ1

+
u23
h2h3

∂h2
∂ξ3

+

+u3h3
∂u3
∂ξ3

+ u1u3
h1h3

∂h3
∂ξ1

+ u2u3
h2h3

∂h3
∂ξ2

]

(A.17)

a.2 Cylindrical Coordinates System

The conservations laws in cylindrical coordinates system is reported in this sec-
tion.

Considering figure A.1, the transformation equations from cylindrical to rect-
angular system (and viceversa) are:

x = x

y = r cos ϑ
z = r sin ϑ

(A.18)

x = x

r =
√
y2 + z2

ϑ = tan−1
(
z
y

) (A.19)
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A.2 Cylindrical Coordinates System

The base vectors of the cylindrical system are:

hx =
∣∣∣∂−→p∂x ∣∣∣ = ∣∣∣ ∂x∂x ∂y

∂x
∂z
∂x

∣∣∣ =√(1)2 + (0)2 + (0)2 = 1

hr =
∣∣∣∂−→p∂r ∣∣∣ = ∣∣∣ ∂x∂r ∂y

∂r
∂z
∂r

∣∣∣ =√(0)2 + (cos ϑ)2 + (sin ϑ)2 = 1

hϑ =
∣∣∣∂−→p∂ϑ ∣∣∣ = ∣∣∣ ∂x∂ϑ ∂y

∂ϑ
∂z
∂ϑ

∣∣∣ =√(0)2 + (−r sin ϑ)2 + (r cos ϑ)2 = r

(A.20)

Thus the metric tensor is:

Tmetric =

 1 0 0

0 1 0

0 0 r

 (A.21)

The curvilinear basis unit vectors can be expressed as:

−→ex =
1

hx

∂−→p
∂x

=
1

1

∂−→p
∂x

−→er =
1

hr

∂−→p
∂r

=
1

1

∂−→p
∂r

−→eϑ =
1

h3

∂−→p
∂ϑ

=
1

r

∂−→p
∂ϑ

(A.22)

We note that the only metric derivative not null is:

∂h3
∂ξ2

=
∂hϑ
∂r

=
∂r

∂r
= 1 (A.23)

We can now calculate the expression of the conservation laws in cylindrical sys-
tem. Consider the following system of equations:

∂ρ
∂t +

−→
∇ ·

(
ρ−→u
)
= 0

∂(ρ−→u )
∂t +

−→∇ ·
(
ρ−→u−→u

)
+
−→∇ (p) =

−→∇ ·
(
T
)

∂(ρE)
∂t +

−→∇ ·
(−→
B
)
= 0

(A.24)

where T is a tensor (of generic viscous terms),
−→
B is generic vector and where:

−→∇ ·
(
ρ−→u−→u

)
= −→u · −→∇

(
ρ−→u
)
+ ρ−→u

(−→∇ ·−→u ) (A.25)

Using the expression A.13 for the cylindrical system we obtain:

−→
∇ ·

(
ρ−→u
)
=
1

r

[
∂

∂x
(rρu) +

∂

∂r
(rρur) +

∂

∂ϑ
(ρuϑ)

]
(A.26)

where ~u =
[
u ur uϑ

]
. Using the expression A.16 and A.17 for the cylindrical

system we obtain:

−→u · −→∇
(
ρ−→u
)
= +

+−→ex
[
u
∂(ρu)
∂x + ur

∂(ρu)
∂r + uϑ

r
∂(ρu)
∂ϑ

]
+

+−→er
[
u
∂(ρur)
∂x + ur

∂(ρur)
∂r + uϑ

r
∂(ρur)
∂ϑ −

ρu2ϑ
r

]
+

+−→eϑ
[
u
∂(ρuϑ)
∂ξ1

+ ur
∂(ρuϑ)
∂ξ2

+ uϑ
r
∂(ρuϑ)
∂ϑ + ρuruϑ

r

] (A.27)
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A.2 Cylindrical Coordinates System

ρ−→u
(−→∇ ·−→u) = +

+−→ex
[
ρu∂u∂x + ρu∂ur∂r + ρu

r
∂uϑ
∂ϑ + ρuur

r

]
+

+−→er
[
ρur

∂u
∂x + ρur

∂ur
∂r + ρur

r
∂uϑ
∂ϑ +

ρu2r
r

]
+

+−→eϑ
[
ρuϑ

∂u
∂x + ρuϑ

∂ur
∂r + ρuϑ

r
∂uϑ
∂ϑ + ρuruϑ

r

] (A.28)

Adding A.27 and A.28 we obtain:

−→
∇ ·

(
ρ−→u−→u

)
= −→u ·

−→
∇
(
ρ−→u
)
+ ρ−→u

(−→
∇ ·−→u

)
= +

+−→ex
[
∂(ρu2)
∂x +

∂(ρuur)
∂r + 1

r
∂(ρuuϑ)
∂ϑ + ρuur

r

]
+

+−→er
[
∂(ρuru)
∂x +

∂(ρu2r)
∂r + 1

r
∂(ρuruϑ)
∂ϑ +

ρu2r−ρu
2
ϑ

r

]
+

+−→eϑ
[
∂(ρuϑu)
∂x +

∂(ρuϑur)
∂r + 1

r

∂(ρu2ϑ)
∂ϑ + 2ρuruϑ

r

]
(A.29)

The gradient of pressure in cylindrical coordinates is:

−→
∇ (p) = −→ex

∂ (p)

∂x
+−→er

∂ (p)

∂r
+
−→eϑ
r

∂ (p)

∂ϑ
(A.30)

For the divergence of the tensor T using the A.15 we obtain:

−→∇ · T = +

+
−→ex
r

[
∂(rTxx)
∂x +

∂(rTxr)
∂r + ∂Txϑ

∂ϑ

]
+

+
−→er
r

[
∂(rTxr)
∂x +

∂(rTrr)
∂r + ∂Trϑ

∂ϑ − Tϑϑ

]
+

+
−→eϑ
r2

[
∂(r2Txϑ)
∂x +

∂(r2Trϑ)
∂r +

∂(rTϑϑ)
∂ϑ

] (A.31)

Finally the divergence of vector
−→
B in cylindrical system is:

−→∇ ·
(−→
B
)
=
1

r

[
∂

∂x
(rBx) +

∂

∂r
(rBr) +

∂

∂ϑ
(Bϑ)

]
(A.32)

Using the equations A.26, A.29, A.30, A.31 and A.32 the system of conservation
laws in cylindrical coordinates can expressed as:

∂ρ
∂t +

1
r

[
∂
∂x (rρu) +

∂
∂r (rρur) +

∂
∂ϑ (ρuϑ)

]
= 0

∂(ρu)
∂t + ∂

∂x

(
ρu2 + p

)
+ ∂
∂r (ρuur) +

1
r
∂
∂ϑ (ρuuϑ) +

ρuur
r = +

+1r

[
∂(rTxx)
∂x +

∂(rTxr)
∂r + ∂Txϑ

∂ϑ

]
∂(ρur)
∂t + ∂

∂x (ρuru) +
∂
∂r

(
ρu2r + p

)
+ 1
r
∂
∂ϑ (ρuruϑ) +

ρu2r−ρu
2
ϑ

r = +

+1r

[
∂(rTxr)
∂x +

∂(rTrr)
∂r + ∂Trϑ

∂ϑ − Tϑϑ

]
∂(ρuϑ)
∂t + ∂

∂x (ρuϑu) +
∂
∂r (ρuϑur) +

1
r
∂
∂ϑ

(
ρu2ϑ + p

)
+ 2ρuruϑ

r = +

+ 1
r2

[
∂(r2Txϑ)
∂x +

∂(r2Trϑ)
∂r +

∂(rTϑϑ)
∂ϑ

]
∂(ρE)
∂t + 1

r

[
∂
∂x (rBx) +

∂
∂r (rBr) +

∂
∂ϑ (Bϑ)

]
= 0

(A.33)
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A.2 Cylindrical Coordinates System

Multiplying all terms of A.33 for r the conservation laws in cylindrical coordinates
read:

∂(rρ)
∂t + ∂

∂x (rρu) +
∂
∂r (rρur) +

∂
∂ϑ (ρuϑ) = 0

∂(rρu)
∂t + ∂

∂x

[
r
(
ρu2 + p

)]
+ ∂
∂r (rρuur) +

∂
∂ϑ (ρuuϑ) = +

+
∂(rTxx)
∂x +

∂(rTxr)
∂r + ∂Txϑ

∂ϑ
∂(rρur)
∂t + ∂

∂x (rρuru) +
∂
∂r

[
r
(
ρu2r + p

)]
+ ∂
∂ϑ (ρuruϑ) = p+ ρu

2
ϑ+

+
∂(rTxr)
∂x +

∂(rTrr)
∂r + ∂Trϑ

∂ϑ − Tϑϑ
∂(rρuϑ)
∂t + ∂

∂x (rρuϑu) +
∂
∂r (rρuϑur) +

∂
∂ϑ

(
ρu2ϑ + p

)
= −ρuruϑ+

+1r

[
∂(r2Txϑ)
∂x +

∂(r2Trϑ)
∂r +

∂(rTϑϑ)
∂ϑ

]
∂(rρE)
∂t + ∂

∂x (rBx) +
∂
∂r (rBr) +

∂
∂ϑ (Bϑ) = 0

(A.34)

Noting that:

1
r

[
∂(r2Txϑ)
∂x +

∂(r2Trϑ)
∂r +

∂(rTϑϑ)
∂ϑ

]
=

= ∂
∂x

(
r2

r Txϑ

)
+ ∂
∂r

(
r2

r Trϑ

)
− r2Trϑ

∂
∂r

(
1
r

)
+ ∂
∂ϑ

(
r
rTϑϑ

)
=

= ∂
∂x (rTxϑ) +

∂
∂r (rTrϑ) − r

2Trϑ ·
(
− 1
r2

)
+ ∂
∂ϑ (Tϑϑ) =

= ∂
∂x (rTxϑ) +

∂
∂r (rTrϑ) + Trϑ +

∂
∂ϑ (Tϑϑ)

the conservation laws in cylindrical coordinates become:

∂(rρ)
∂t + ∂

∂x (rρu) +
∂
∂r (rρur) +

∂
∂ϑ (ρuϑ) = 0

∂(rρu)
∂t + ∂

∂x

[
r
(
ρu2 + p

)]
+ ∂
∂r (rρuur) +

∂
∂ϑ (ρuuϑ) = +

+
∂(rTxx)
∂x +

∂(rTxr)
∂r + ∂Txϑ

∂ϑ
∂(rρur)
∂t + ∂

∂x (rρuru) +
∂
∂r

[
r
(
ρu2r + p

)]
+ ∂
∂ϑ (ρuruϑ) = p+ ρu

2
ϑ+

+
∂(rTxr)
∂x +

∂(rTrr)
∂r + ∂Trϑ

∂ϑ − Tϑϑ
∂(rρuϑ)
∂t + ∂

∂x (rρuϑu) +
∂
∂r (rρuϑur) +

∂
∂ϑ

(
ρu2ϑ + p

)
= −ρuruϑ + Trϑ+

+ ∂
∂x (rTxϑ) +

∂
∂r (rTrϑ) +

∂
∂ϑ (Tϑϑ)

∂(rρE)
∂t + ∂

∂x (rBx) +
∂
∂r (rBr) +

∂
∂ϑ (Bϑ) = 0

(A.35)
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B
Multi -Resolution Code Overview

The numerical algorithm presented in chapter 4 on page 36 has been imple-
mented into the HeaRT (Heat Release and Transfer) numerical code. HeaRT

is written in standard Fortran 95, with partial use of OOP (Object Oriented Pro-
gramming) and is parallelized using Message Parsing Interface (MPI) standard.

The joined-grids algorithm is made up by 3 different modules:

1. The memory allocator (MA) module.

2. The joined grids geometric evaluation (GE) module.

3. The coarse-fine grids coupling (GC) module.

At the beginning of the numerical simulation, after that the computational do-
main has been decomposed between all the available cores and that the domain
topology geometric characteristics have been evaluated, MA module allocates all
the variables and parameters necessary to the fine to coarse and coarse to fine
data transfer; after that, GE module evaluates all these quantities. Then the nu-
merical integration starts, and at every time step GC module transfers data for
any coarse-fine grid interface.

b.1 The Memory Allocator Module

The MM module is assigned to the memory management: for any zone in the
processor domain it browses the three coordinate directions (I, J, K) searching for
a finest grid at the beginning or at the end of the zone; if this finest zone exists,
the following variables will be allocated:

for any ghost coarse cell and for any coarse cell overlapping fine ghost cells,
volume fractions of the fine cells that form a single coarse cell;

for any ghost coarse cell and for any coarse cell overlapping fine ghost cells,
surface area fractions, for any coordinate direction, of the fine cell surfaces
that form a single coarse cell surface;
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B.2 The Geometric Evaluation Module

these two quantities are used for scalar and momentum restriction (section 4.2.2.1
on page 40) and for the conservation control after prolongation (section 4.2.2.2 on
page 43).

Furthermore, for any fine ghost cell, the following variables will be allocated:

the geometric distance between any point of the interpolation domain and
the fine point where the variable has to be interpolated (one for scalars, one
for each momentum component);

the geometric distance, one for each coordinate direction, between the cen-
troid of the interpolation domain and all the points that belong to the inter-
polation stencil (one for scalars, one for each momentum component);

the geometric distance, one for each coordinate direction, between the cen-
troid of the interpolation domain and the fine point where the variable has
to be interpolated (one for scalars, one for each momentum component);

the coordinate indexes of all the points (coarse and fine) that belong to the
interpolation stencil.

b.2 The Geometric Evaluation Module

The GM module follows the scheme adopted in the MM module and evaluates all
the variables that have been previously allocated. Specific care is been addressed
to the correct composition of the interpolation stencil; after that the connection
direction (I, J or K) is been identified (for example, I), the following steps are
carried out:

1. if the interpolation centroid is “far” from the fine zone borders, the interpo-
lation stencil can be composed only by coarse points also in the I direction
(figure 4.7d on page 47);

2. if the interpolation centroid is adjacent to the fine cell border, in the interpo-
lation stencil must be included also fine grid points: their number depends
on the interpolation centroid position compared with the fine grid borders
in the J and K directions; if the centroid is far from J and K fine zone borders,
the first (or the last) interpolation stencil row in I direction is composed by
only fine points (figure 4.7a on page 47); if the centroid is adjacent to a J or
K (or both) fine border, the first (or the last) interpolation stencil row in I di-
rection is composed by both fine and coarse points (figures 4.7b on page 47

and 4.7c on page 47).

This phase is really heavy in terms of computing time, because it involves a
lot of conditional constructs, but it runs once at the beginning of the numerical
simulation, so this aspect isn’t so important.

b.3 The Coarse-Fine Grids Coupling Module

This module connects, at every substep of the Runge-Kutta algorithm, the edge
of a fine zone that adjoins a coarsest one, and vice-versa. First, the connection
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Figure B.1. “Extra” ghost for u evaluation

between different resolution zones is done for chemical species mass fractions,
then for the momentum components; after the connection is made for pressure,
temperature, density and total energy. Since the interpolation stencil are com-
posed by only “true” integrated points, the connection between zones isn’t hold
to follow a precise order, but can take place indifferently first from fine to coarse
grid or vice-versa: in the CM module, the communication occurs first from fine
to coarse and then from coarse to fine.

Because of the use of a staggered grid, in the velocity and in the total energy
evaluation processes an “extra” ghost is necessary.

A single velocity component u, is evaluated from the same component mo-
mentum ρu and from the density ρ, as u = ρu/ρ; when the “upper” ghost cell
velocity has to be calculated (figure B.1), the necessary ρi,j+1 doesn’t exist in the
flow field and also in the data structure ρ for that zone: so a dummy variable
ρgh+ is been allocated and by means of prolongation or restriction procedure,
the value of ρi,j+1 is been evaluated and stored in ρgh+. After that is possible to
calculate the ρ at the scalar cell interface and subsequently the u.

The same need is visible when the total energy has to been evaluated in the
“lower” ghost cell (figure B.2 on the following page): the total energy, indeed, is
calculated as a sum of the kinetic and the internal energy of the cell, but to evalu-
ated the kinetic energy in the “scalar” cell, both ρui,j and ρui,j−1 must be known;
the variable ρui,j−1 doesn’t exist in the flow field and in the ρu data structure
for this zone, so a dummy variable ρugh− is been allocated and by means of
prolongation or restriction procedure, the value of ρui,j−1 is been evaluated and
stored in ρugh−. After that, the value of internal energy U can be calculated.

b.4 Future Developments: Multi-level Approach

The Joined Grid algorithm presented in chapter 4 on page 36 can be easily evolved
in a Multi-level algorithm, where on the entire domain there is a coarse grid and
in specific zones, where is foreseeable the presence of high gradients and little
vortexes, finest grid levels are generated “a priori”, that is before that numeri-
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Figure B.2. “Extra” ghost for U evaluation

cal simulation begins. Also in this case is possible to define a refinement ratio,
assumed the same between neighboring levels and for each direction, that is:

∆x1
∆x2

=
∆x2
∆x3

= · · · = ∆xl−1
∆xl

= r

∆y1
∆y2

=
∆y2
∆y3

= · · · = ∆yl−1
∆yl

= r

∆z1
∆z2

=
∆z2
∆z3

= · · · = ∆zl−1
∆zl

= r

(B.1)

where ∆x, ∆y and ∆z are grid spacings for the three directions and subscripts
are level indexes: it is straightforward that in a one-dimensional grid, a coarse
cell can contain only 2 fine cells, while for a bi-dimensional grid 4 fine cells are
contained in a coarse one and in a three-dimensional grid a coarse cell contains 8
fine cells.

In case of a uniform coarse grid, fine levels are easily obtained dividing in n
identical fine cells a single coarse cell (with n = 2, 4, 8); if coarse grid is non-
uniform, this approach isn’t applicable because fine grid obtained will display
discontinuities on fine grid cell dimensions. To solve this problem is possible to
map coarse grid stretched grid points in an artificial coordinate system in which
the grid is uniform spaced: from this “uniform” grid fine cells can be obtained
by simple division and fine points extracted in this fake coordinate system are
brought back to the original “real” coordinate system. In this way not only coarse
grid spacing but also fine grid spacing is coherent with the original stretching
function.

Coarsest level has number 1 and the level number increase as grid refinement;
fine grid are also properly nested: all level l fine points have to be contained into
level l− 1 grid, except boundary condition points (inlets, outlets and walls).

The two communication procedures, described in 4.2.2 on page 39 can be used
also in a multi-level algorithm: the prolongation procedure remains the same,
while the restriction procedure needs some little modifications: the information
transfer, indeed, must take place on internal points, that is to say grid points where
numerical solution is calculated on level l grid (yellow cells in figure B.3 on the
next page).
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Figure B.3. Grids mutual position

b.4.1 Solution Algorithm

In the solution algorithm, each level solves conservation equations independently
from other levels: level communications don’t take place during a time step but at
the end of Runge-Kutta procedure. In particular, communication between level
l and level l − 1 (or l + 1) happens only when the two levels are at the same
instant. So fine levels, to ensure CFL condition respect, must fulfill a multiple
of time step of the previous (coarser) level, to reach the same instant and carry
out communication: each level, indeed, evaluates its own δt that ensure stability
conditions of its own grid.

Solution algorithm is illustrated in figure B.4 on the following page, where for
the sake of simplicity, only 3 grid levels are considered.

Time integration procedure is here described:

1. Prolongation of boundary conditions at time tin from level 1 to level 2;

2. Prolongation of boundary conditions at time tin from level 2 to level 3;

3. Temporal Integration of level 1 grid, from tin to tfin;

4. Temporal Integration of level 2 grid, from tin to tfin2 6= tfin;

5. Temporal Integration of level 3 grid, from tin to tfin2 6= tfin, by the means
of p1 time steps, while fine grid boundary condition are keep blocked at
time tin;

6. Prolongation of boundary conditions at time tfin2 from level 2 to level 3;

7. Restriction of solution at time tfin2 from level 3 to level 2;

8. Temporal Integration of level 2 grid, da tfin2 a tfin3 ;
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Figure B.4. Scheme of temporal advance on all grid levels

9. Temporal Integration of level 3 grid, da tfin2 a tfin3 6= tfin, by the means
of p2 time steps, while fine grid boundary condition are keep blocked at
time tfin2 ;

10. Prolongation of boundary conditions at time tfin3 from level 2 to level 3;

11. Restriction of solution at time tfin3 from level 3 to level 2;

12. Temporal Integration of level 2 grid, da tfin3 a tfin;

13. Temporal Integration of level 3 grid, da tfin3 a tfin, by the means of p3 time
steps, while fine grid boundary condition are keep blocked at time tfin3 ;

14. Prolongation of boundary conditions at time tfin from level 1 to level 2;

15. Prolongation of boundary conditions at time tfin from level 2 to level 3;

16. Restriction of solution at time tfin from level 3 to level 2;

17. Restriction of solution at time tfin from level 2 to level 1;

So HeaRT solver routine is been changed in a recursive procedure, in which
level l, after completing its time integration, recalls solver routine for the follow-
ing (if present) l + 1 level, that repeats the same operation until finest level is
reached. After, finest level ln catch up with ln − 1 level by the means of p time
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steps and so on, until all level catch up level 1. After that conservative equation
integration is completed and the first level passes to the next time step.

In this algorithm, level communications are very important, because by the
means of these communications all grid levels are tied each other and all grids
flow fields are coherent, also if it’s possible some difference due to the different
spatial resolution between grid levels.

For example, in a turbulent flow field, little whirling structures motion has a
big impact on macroscopic mixing of the fluid: if finest grid, that can “see” and
solve little vortexes, doesn’t transfer numerical solution to coarser levels, flow
field on these levels (that because of their spatial resolution cannot solve so little
structures) can be very different to the fine grid solution, because the mixing
mechanism isn’t well predicted.

Furthermore, fine grid boundary conditions are obtained by the means of pro-
longation from coarser level flow field, so if on coarser level numerical solution
isn’t in agreement with the solution on fine grid, level l will transfer “wrong”
boundary conditions on level l+ 1 and numerical solution on level l+ 1 will start
to distance from the “correct” solution evaluated on the previous time step: grids
communications at certain instants are mandatory for a right implementation of
a multi-level approach.

The algorithm is been chosen after an in-depth analysis of HeaRT code features:
multi-block structured grids are well mixed with multiple overlapped grid levels;
blocked boundary conditions and restriction from fine to coarse level ensure that
all levels remain dependent each other. The entire flow field covered with a coarse
grid allows to insert fine levels where at the beginning they weren’t expected,
without altering the complete domain: so evolved flow fields can be used as
inputs for new simulations, without a restart from a fixed and uniform field.
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C
Boundary Conditions Analysis

In HeaRT code, non reflecting boundary condition approach is called NSCBC
(Navier-Stokes Characteristic Boundary Conditions): such approach permits

to solve reflecting waves problem into flow field from a non reflecting inlet or out-
let. NSCBC approach consists to solve Navier-Stokes equation on non-reflecting
boundaries in terms of incident acoustic waves amplitude on the boundary itself;
orthogonal derivatives are solved by the means of a non centered first order nu-
merical scheme that uses numerical data that come from the internal flow field.
Also if accuracy order at non-reflecting boundaries is lower than the remaining
field, global accuracy is of the same order of the numerical scheme adopted into
the internal points.

Red line in figure C.1 is the physical boundary when a non reflecting outlet
boundary condition is imposed; on the right side of the red line there’s the inter-
nal field, while in left side there are “ghost” cell used for numerical integration.

The algorithm is the following:

φi−1,j φi,j φi+1,jψi−1,j ψi,j

0 1
2 1 3

2 2

j

i

Figure C.1. Scheme for boundary condition
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1. is necessary to calculate λ1, λ2, λ3, that in this case assume the values:

λ1 = u+ a (C.1)

λ2 = u− a (C.2)

λ3 = u (C.3)

where u is flow field in j direction in point 1, (obtained dividing mass
fluxes average in 1

2 and 3
2 by flow density if point 1) and a is sound velocity

calculated in point 1;

2. first order derivative are obtained on the boundary from:

∂u

∂x
=
u1 − u 1

2

δx
2

(C.4)

∂p

∂x
=
p2 − p1
δx

(C.5)

∂ρ

∂x
=
ρ2 − ρ1
δx

(C.6)

∂T

∂x
=
T2 − T1
δx

(C.7)

where δx is the uniform grid spacing in i direction;

3. the following values are calculated:

d1 =

[
λ3
(
a2ρx − px

)]
+ 1
2λ2 (px − ρaux)

a2
(C.8)

d2 =
1

2
λ2 (px − ρaux) (C.9)

d3 =
−12 [λ2 (px − ρaux)]

ρa
(C.10)

where notation ∂[..]
∂x is substituted by the [..]x.

At this point, d1, d2, d3 values are used into HeaRT solver to change numer-
ical integration scheme for the cell that lie on the non-reflecting boundary: this
operation is repeated for any Runge-Kutta substep.

c.1 New Boundary Conditions

With the aim to obtain an easiest procedure for non-reflecting boundary condi-
tions, some attempts have been accomplished: the first, and easiest, is to copy
first (or last, depending on which boundary it’s been considered) flow field point
value on ghost cells; in this manner numerical scheme isn’t modified and local
order of accuracy is the same for boundary and for internal points.

To improve awful results obtained by the means of extrapolation (see C.2 on
page 116), a new boundary condition, named “FaRo”, is been introduced: with
this boundary condition, the order of accuracy isn’t modified; at the boundary
the same variables used in the internal points are evaluated and employed in
numerical integration of conservation laws. The procedure is the following (see
figure C.1 on the previous page):
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1. in point 12 velocity in i direction, pressure and density are evaluated; veloc-
ity is collocated in that point, while pressure and density are calculated by
the means of:

p 1
2
=
p0 + p1
2

(C.11)

rho 1
2
=
ρ0 + ρ1
2

(C.12)

2. in point 1 velocity and density are evaluated:

u1 =
u 1
2
+ u 3

2

2
(C.13)

ρ1 =

(ρ0+ρ1
2

)
+
(ρ1+ρ2

2

)
2

(C.14)

3. pressure, density and velocity derivative in i direction are evaluated:

ux =

(
u 3
2
− u 1

2

)
δx

(C.15)

ρx =

(ρ1+ρ2
2

)
−
(ρ0+ρ1

2

)
δx

(C.16)

px =

(p1+p2
2

)
−
(p0+p1

2

)
δx

(C.17)

4. sound velocity in point 1 is evaluated:

a1 =

(a0+a1
2

)
+
(a1+a2

2

)
2

(C.18)

5. pressure, density and velocity time derivatives in point 12 are evaluated and
integrated by the means of Runge-Kutta method used for internal points.

6. by the means of the variables p 1
2

, ρ 1
2

, u 1
2

just now calculated, temperature,
total energy, etc.. . . , are evaluated; the following values on ghost cells are
evaluated by the means of:

p(0) = 2p 1
2
− p1 (C.19)

rho(0) = 2ρ 1
2
− ρ1 (C.20)

u(0) = u 1
2

(C.21)

T(0) = 2T 1
2
− T1 (C.22)

Utot(0) = 2Utot 1
2
−Utot1 (C.23)

where, with 0 index number, are indicated variables that belong to the cell
with staggering;

7. variables values on ghost cells are used to integrate boundary points, with-
out any modification to the numerical scheme adopted.
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An additional step is to simplify “FaRo” boundary conditions, introducing a
new procedure, named “FaRo NEW”: at any Runge-Kutta substep, some vari-
ables necessary to the numerical integration of conservation equations are evalu-
ated, as follow (see figure C.1 on page 112):

1. the following values are evaluated:

p 1
2
=
1

2

[
piniz + p1 + ρ1a1

(
uiniz − u 3

2

)]
(C.24)

ρ 1
2
=
1

a2
(p1 − piniz) + ρiniz se u 3

2
< 0 (C.25)

ρ 1
2
=
1

a2
(p1 − piniz) + ρ1 se u 3

2
> 0 (C.26)

u 1
2
=

(p1 − piniz)

(ρ1a1)
+ u 3

2
(C.27)

where a1 is sound velocity in the point 1 evaluated by the means of a1 =√
γp1
ρ1

;

2. variables p 1
2

, ρ 1
2

, u 1
2

just now calculated, are used to evaluate temperature,
total energy, etc.. . . , essential for numerical integration; on ghost cell the
following values are calculated by the means of:

p(0) = 2p 1
2
− p1 (C.28)

rho(0) = 2ρ 1
2
− ρ1 (C.29)

u(0) = u 1
2

(C.30)

T(0) = 2T 1
2
− T1 (C.31)

Utot(0) = 2Utot 1
2
−Utot1 (C.32)

where, with 0 index number, are indicated variables that belong to the cell
with staggering;

3. values evaluated in equations (C.24 to C.27 on the current page) are calcu-
lated in a different point to integrate momentum conservation equation in i
direction:

p1 =
1

2

[
piniz + p 3

2
+ ρ 3

2
a 3
2

(
uiniz − u 3

2

)]
(C.33)

ρ1 =
1

a2

(
p 3
2
− piniz

)
+ ρiniz se u 3

2
< 0 (C.34)

ρ1 =
1

a2

(
p 3
2
− piniz

)
+ ρ 3

2
se u 3

2
> 0 (C.35)

u1 =

(
p 3
2
− piniz

)
(
ρ 3
2
a 3
2

) + u 3
2

(C.36)

where with subscript iniz initial values in points 0 and 1
2 are indicated; in

such manner domain is extended towards infinity and no acoustic wave
entering to the internal field can come from initial condition.
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4. ghost cell values (subscript 0) and at the center of the first cell (subscript 1)
are used, respectively, in mass conservation and energy conservation equa-
tions right hand side evaluations, and for momentum conservation equation
in i direction right hand side evaluation, at any Runge-Kutta substep.

c.2 Boundary Conditions Results Comparison

(a) Mass flow

(b) Pressure

Figure C.2. Initial conditions

To evaluate all boundary conditions,
a simple one-dimensional test case is
been developed; at the right bound-
ary non reflecting boundary con-
ditions (NSCBC) are forced, while
at the left boundary non reflecting
boundary condition has been changed
from NSCBC to simple extrapolation,
“FaRo” and “FaRo NEW”; as initial
condition, a compression-expansion-
expansion-compression has been im-
posed (CEEC, see figure C.2a and C.2b).

Best numerical results are obtained
by the means of NSCBC boundary
condition, while simple extrapolation
shows a totally wrong behaviour and
a non-reflecting outlet can’t be accu-
rately simulated: when the acoustic
wave arrives to the left boundary (fig-
ure C.3d on page 118), extrapolation
obtained pressure is underestimated
in comparison with the other bound-
ary conditions imposed; so, a reflect-
ing acoustic wave, of the same mag-
nitude of the original wave, propa-
gates into the internal field. “FaRo”
boundary conditions, also if doesn’t
obtain a good result as NSCBC, per-
mit to achieve an enough good non-
reflecting condition; “FaRo NEW” nu-
merical results are close to NSCBC
boundary condition, except for time instant where acoustic wave arrives on the
boundary (figure C.3f on page 118) and time instant in which acoustic wave leaves
internal field (figure C.2n on page 120).

“FaRo NEW” boundary condition is also very simple to implement, and fur-
thermore physical boundary isn’t moved, to the contrary of what happen when
NSCBC is used; due to the particular position of flow variables, indeed, physi-
cal boundary is relocated from point 12 to point 1 (see figure C.1 on page 112),
where mass flow is re-collocated and waves amplitudes are evaluated (variables
d1, d2, d3): in this way, conservation equations are partially rewritten close to the
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boundaries (numerical scheme hasn’t second order global accuracy), and imple-
mentation is therefore harder and less straightforward.
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(a) Mass flow at t=0.00003895s (b) Pressure at t=0.00003895s

(c) Mass flow at t=0.00011678s (d) Pressure at t=0.00011678s

(e) Mass flow at t=0.00013622s (f) Pressure at t=0.00013622s

Figure C.3. Numerical solution from t=0.00003895s to t=0.00011678s
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(g) Mass flow at t=0.00015526s (h) Pressure at t=0.00015526s

(i) Mass flow at t=0.00017433s (j) Pressure at t=0.00017433s

(k) Mass flow at t=0.00019376s (l) Pressure at t=0.00019376s

Figure C.2. Numerical solution from t=0.00015526s to t=0.00019376s
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(m) Mass flow at t=0.00021343s (n) Pressure at t=0.00021343s

(o) Mass flow at t=0.00023311s (p) Pressure at t=0.00023311s

(q) Mass flow at t=0.00025277s (r) Pressure at t=0.00025277s

Figure C.1. Numerical solution from t=0.00021343s to t=0.00025277s
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