
Sapienza University of Rome

Kuantay Boshkayev

Ph.D. Thesis

Rotating White Dwarfs and Neutron Stars
in General Relativity

Thesis Adviser: Co-Adviser:
Prof. Remo Ruffini Dr. Jorge A. Rueda

Academic year 2012-2013





Contents

General Introduction iv

1 Gravitational field of compact objects in general relativity 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 The Hartle-Thorne metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 The interior solution . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 The exterior solution . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 The Fock’s approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 The interior solution . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 The exterior solution . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.3 The Kerr metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 A solution with quadrupole moment . . . . . . . . . . . . . . . . . . . . . . 15
1.4.1 The exterior Fock solution . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.2 The exterior Quevedo-Mashhoon solution . . . . . . . . . . . . . . . 19

1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.6 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Equatorial circular geodesics in the Hartle-Thorne spacetime 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 The domain of validity of the Hartle-Thorne approximation . . . . . . . . . 26
2.3 Equations for the equatorial circular geodesics . . . . . . . . . . . . . . . . 27

2.3.1 The Orbital Angular Velocity . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Radii of marginally stable and marginally bound orbits . . . . . . . 30

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Tidal indicators in the field of a rotating deformed mass 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 The gravitational field of a rotating deformed mass . . . . . . . . . . . . . 34

3.2.1 Limiting cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Circular orbits on the symmetry plane . . . . . . . . . . . . . . . . . . . . 37
3.4 Tidal indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Super-energy density and super-Poynting vector . . . . . . . . . . . 40



ii CONTENTS

3.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.3 Limit of slow rotation and small deformation . . . . . . . . . . . . . 44

3.5 Multipole moments and tidal Love numbers . . . . . . . . . . . . . . . . . 49
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.7 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 On general relativistic uniformly rotating white dwarfs 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Spacetime geometry and Hartle’s formalism . . . . . . . . . . . . . . . . . 55
4.3 Limits on the stability of rotating white dwarfs . . . . . . . . . . . . . . . 55

4.3.1 The mass-shedding limit . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.2 The turning-point criterion . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.3 Inverse beta-decay instability . . . . . . . . . . . . . . . . . . . . . 57
4.3.4 Pycnonuclear fusion reactions . . . . . . . . . . . . . . . . . . . . . 57

4.4 WD structure and stability boundaries . . . . . . . . . . . . . . . . . . . . 60
4.5 The maximum mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6 The minimum rotation period . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7 Occurrence of secular axisymmetric instability . . . . . . . . . . . . . . . . 66
4.8 Spin-up and spin-down evolution . . . . . . . . . . . . . . . . . . . . . . . 70
4.9 Astrophysical implications . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.11 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 SGRs and AXPs as fast rotating white dwarfs 75

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Rotation powered white dwarfs . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3 Structure and stability of rotating white dwarfs . . . . . . . . . . . . . . . 77
5.4 SGR 0418+5729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.1 Bounds on the WD parameters . . . . . . . . . . . . . . . . . . . . 79
5.4.2 Solidification and glitches . . . . . . . . . . . . . . . . . . . . . . . 79
5.4.3 Rotation power and magnetic field . . . . . . . . . . . . . . . . . . 80
5.4.4 Prediction of the spin-down rate . . . . . . . . . . . . . . . . . . . . 81
5.4.5 Optical spectrum and luminosity . . . . . . . . . . . . . . . . . . . 81

5.5 Swift J1822.3–1606 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5.1 Bounds of the WD parameters . . . . . . . . . . . . . . . . . . . . . 84
5.5.2 Solidification and glitches . . . . . . . . . . . . . . . . . . . . . . . 84
5.5.3 Rotation power and magnetic field . . . . . . . . . . . . . . . . . . 85
5.5.4 Optical spectrum and luminosity . . . . . . . . . . . . . . . . . . . 85

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.7 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Magnetic Fields in Rotating Nuclear Matter Cores 89

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



6.2 The relativistic Thomas-Fermi equation . . . . . . . . . . . . . . . . . . . . 90
6.3 The ultra-relativistic analytic solutions . . . . . . . . . . . . . . . . . . . . 94
6.4 Rotating nuclear matter cores of stellar dimensions . . . . . . . . . . . . . 95
6.5 Stability of rotating nuclear matter cores of stellar dimensions . . . . . . . 101
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.7 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 Neutron star equilibrium configurations 105

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2 The Constitutive Relativistic Equations . . . . . . . . . . . . . . . . . . . . 107

7.2.1 Core Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2.2 Core-crust transition layer equations . . . . . . . . . . . . . . . . . 112
7.2.3 Crust equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3 Neutron star structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.4 Observational constraints on the mass-radius relation . . . . . . . . . . . . 119
7.5 Comparison with the traditional TOV treatment . . . . . . . . . . . . . . . 121
7.6 Rotating neutron stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.8 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A Derivation of the Fock extended metric 129

B Relevant frame components of tidal tensors 131

C The Hartle-Thorne solution and equatorial circular orbits 133

C.0.1 The Hartle-Thorne vacuum solution . . . . . . . . . . . . . . . . . . 133
C.0.2 Angular velocity of equatorial circular orbits . . . . . . . . . . . . . 134
C.0.3 Weak field limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

C.1 Pycnonuclear fusion reaction rates . . . . . . . . . . . . . . . . . . . . . . . 136
C.2 Comparison with the Newtonian treatment and other works . . . . . . . . 137
C.3 Accuracy of the Hartle’s approach . . . . . . . . . . . . . . . . . . . . . . . 139

D Spherical Capacitor 145

E Rotating neutron stars 147

Bibliography 153





General Introduction

White dwarfs and neutron stars are formed when normal (main sequence) stars end
their thermonuclear evolution. They differ from normal stars in two fundamental ways.
First, since they do not burn nuclear fuel, they cannot support themselves against gravita-
tional collapse by generating thermal pressure. Instead, white dwarfs are supported by the
pressure of degenerate electrons, while neutron stars are supported largely by the pressure
of degenerate neutrons. The second characteristic, distinguishing compact objects from
normal stars, is their exceedingly small size. Relative to normal stars of comparable mass,
compact objects have much smaller radii and hence, much stronger surface gravitational
fields [235].

Because of the enormous density range spanned by compact objects, their analysis
requires a deep physical understanding of the structure of matter and the nature of in-
terparticle forces over a vast range of parameter space. All four fundamental interactions
(the strong and weak nuclear forces, electromagnetism, and gravitation) play a crucial role
in compact objects [95, 101, 18] . Particularly noteworthy are the large surface potentials
encountered in compact objects, which imply that general relativity is important in deter-
mining their structure. Even for white dwarfs, where Newtonian gravitation is adequate
to describe their equilibrium structure, general relativity turns out to be important for a
proper understanding of their stability [235, 96, 45].

Because of their small radii, luminous white dwarfs, radiating away their residual
thermal energy, are characterized by much higher effective temperatures than normal
stars even though they have lower luminosities. In other words, white dwarfs are much
“whiter” than normal stars, hence their name. Neutron stars derive their name from the
predominance of neutrons in their interior, following the mutual elimination of electrons
and protons by inverse β-decay [235]. Because their densities are comparable to nuclear
values, neutron stars are essentially “giant nuclei” (1057 baryons!), held together by self-
gravity [137, 222].

The main objective of this work is to investigate the equilibrium configuration of
uniformly rotating white dwarfs and neutron stars. To this end in Chapter 1 we study
some exact and approximate solutions of Einstein’s equations that can be used to describe
the gravitational field of astrophysical compact objects in the limiting case of slow rotation
and slight deformation. First, we show that none of the standard models obtained by
using Fock’s method can be used as an interior source for the approximate exterior Kerr
solution. We then use Fock’s method to derive a generalized interior solution, and also an
exterior solution that turns out to be equivalent to the exterior Hartle-Thorne approximate
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solution that, in turn, is equivalent to an approximate limiting case of the exact Quevedo-
Mashhoon solution. As a result we obtain an analytic approximate solution that describes
the interior and exterior gravitational field of a slowly rotating and slightly deformed
astrophysical object [41].

In Chapter 2 we investigate the influence of the quadrupole moment of a rotating
body on the motion of a test particle in the strong field regime. For this purpose we use
the Hartle-Thorne (HT) metric, that is an approximate solution of the vacuum Einstein
field equations which describes the exterior of any slowly rotating, stationary and axially
symmetric body. The metric is given with accuracy up to the second order terms in
the body’s angular momentum, and first order terms in its quadrupole moment. We
analyze the domain of validity of the HT metric then we give, with the same accuracy,
the analytic equations for the equatorial circular geodesics and integrate them numerically
[24]. In addition we derive the radii for marginally bound, marginally stable and photon
orbits. We show that these radii are in agreement with the results of Bardeen et al. [13].

In Chapter 3 we consider tidal indicators, that are commonly associated with the
electric and magnetic parts of the Riemann tensor (and its covariant derivatives), with
respect to a given family of observers in a given spacetime. The observer-dependent tidal
effects have been extensively investigated with respect to a variety of special observers in
the equatorial plane of the Kerr spacetime. This analysis is extended here by considering
a more general background solution (Quevedo-Mashhoon solution) to include the case
of matter which is also endowed with an arbitrary mass quadrupole moment. Relation
with curvature invariants and Bel-Robinson tensor, i.e., observer-dependent super-energy
density and super-Poynting vector, are investigated too [23].

In Chapter 4 the properties of uniformly rotating white dwarfs (RWDs) are analyzed
within the framework of general relativity. Hartle’s formalism is applied to construct
the internal and external solutions to the Einstein equations. The WD matter is de-
scribed by the relativistic Feynman-Metropolis-Teller equation of state which generalizes
the Salpeter’s one by taking into account the finite size of the nuclei, the Coulomb in-
teractions as well as electroweak equilibrium in a self-consistent relativistic fashion. The
mass M , radius R, angular momentum J , eccentricity ǫ, and quadrupole moment Q of
RWDs are calculated as a function of the central density ρc and rotation angular veloc-
ity Ω. We construct the region of stability of RWDs (J-M plane) taking into account
the mass-shedding limit, inverse β-decay instability, and the boundary established by the
turning-points of constant J sequences which separates stable from secularly unstable
configurations. We found the minimum rotation periods ∼ 0.3, 0.5, 0.7 and 2.2 seconds
and maximum masses ∼ 1.500, 1.474, 1.467, 1.202 M⊙ for 4He, 12C, 16O, and 56Fe WDs
respectively. By using the turning-point method we found that RWDs can indeed be
axisymmetrically unstable and we give the range of WD parameters where it occurs. We
also construct constant rest-mass evolution tracks of RWDs at fixed chemical composition
and show that, by loosing angular momentum, sub-Chandrasekhar RWDs (mass smaller
than maximum static one) can experience both spin-up and spin-down epochs depending
on their initial mass and rotation period while, super-Chandrasekhar RWDs (mass larger
than maximum static one), only spin-up [45].
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In Chapter 5 we consider the astrophysical implication of RWDs. Following the work of
Malheiro et al. (2012) we describe so-called low magnetic field magnetars, Swift J18822.3-
1606 and SGR 0418+5729, as massive fast rotating higly magnetized white dwarfs. We
give bounds for the mass, radius, moment of inertia, and magnetic field for these sources ,
by requesting the stability of realistic general relativistic uniformly rotating configurations.
Based on these parameters, we improve the theoretical prediction of the lower limit of
the spin-down rate of SGR 0418+5729. We also present the theoretical expectation of
the infrared, optical and ultraviolet emission and show their consistency with the current
available observational data. In addition, we compute the electron cyclotron frequencies
corresponding to the predicted surface magnetic field [40].

In Chapter 6 we consider a globally neutral system of stellar dimensions consisting of
degenerate Nn neutrons, Np protons and Ne electrons in beta equilibrium. Such a system
at nuclear density having mass numbers A ≈ 1057 can exhibit a charge distribution
different from zero. We present the analysis in the framework of classical electrodynamics
to investigate the magnetic field induced by this charge distribution when the system is
allowed to rotate as a rigid body with a constant angular velocity around the axis of
symmetry [43, 42]. In addition, we investigate the stability of these nuclear matter cores
of stellar dimensions against centrifugal repulsion and magnetic energies extending the
work of [222, 213]. These cores represent inner parts (cores) of neutron stars.

Natural generalization of non-rotating nuclear matter cores of stellar dimensions in
general relativity taking into consideration weak, strong, electromagnetic and gravita-
tional interactions has been presented by Belvedere et al. (2012) in [211, 193, 18]. Thus
in Chapter 7, we construct uniformly rotating configurations for a new model of neutron
stars making use of Hartle’s formalism analogously to what we have already performed
for RWDs [45]. We investigate the stability of the system against general relativistic
instabilities and axisymmetric secular instabilities. As a result for globally and locally
neutral configurations we have obtained the maximum mass 2.76M⊙ and 2.79M⊙, and
the minimum rotation period 0.51 and 0.53 milliseconds, respectively.
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Chapter 1

Gravitational field of compact

objects in general relativity

1.1 Introduction

In astrophysics, the term compact object is used to refer to objects which are small
for their mass. In a wider sense, the class of compact objects is often defined to contain
collectively planet-like objects, white dwarfs, neutron stars, other exotic dense stars, and
black holes. It is well known that Newtonian theory of gravitation provides an adequate
description of the gravitational field of conventional astrophysical objects. However, the
discovery of exotic compact objects such as quasars and pulsars together with the pos-
sibility of continued gravitational collapse to a black hole points to the importance of
relativistic gravitation in astrophysics. Moreover, advances in space exploration and the
development of modern measuring techniques have made it necessary to take relativistic
effects into account even in the Solar system. Probably the simplest way to study the rel-
ativistic gravitational field of astrophysical compact objects is by expressing it in terms of
their multipole moments, in close analogy with the Newtonian theory, taking into account
the rotation and the internal structure of the source.

In this context, the first exterior solution with only a monopole moment was discov-
ered by Schwarzschild [233], soon after the formulation of Einstein’s theory of gravity. In
1917, Weyl [271] showed that the problem of finding static axisymmetric vacuum solutions
can generically be reduced to a single linear differential equation whose general solution
can be represented as an infinite series. The explicit form of this solution resembles the
corresponding solution in Newtonian’s gravity, indicating the possibility of describing the
gravitational field by means of multipole moments. In 1918, Lense and Thirring [144] dis-
covered an approximate exterior solution which, apart from the mass monopole, contains
an additional parameter that can be interpreted as representing the angular momentum
of the massive body. From this solution it became clear that, in Einstein’s relativistic
theory, rotation generates a gravitational field that leads to the dragging of inertial frames
(Lense-Thirring effect). This is the so–called gravitomagnetic field which is of especial
importance in the case of rapidly rotating compact objects. The case of a static axisym-
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metric solution with monopole and quadrupole moment was analyzed in 1959 by Erez
and Rosen [74] by using spheroidal coordinates which are specially adapted to describe
the gravitational field of non-spherically symmetric bodies. The exact exterior solution
which considers arbitrary values for the angular momentum was found by Kerr [124] only
in 1963. The problem of finding exact solutions changed dramatically after Ernst [75]
discovered in 1968 a new representation of the field equations for stationary axisymmetric
vacuum solutions. In fact, this new representation was the starting point to investigate
the Lie symmetries of the field equations. Today, it is known that for this special case the
field equations are completely integrable and solutions can be obtained by using the mod-
ern solution generating techniques [66]. A comprehensive review on solution generating
techniques and stationary axisymmetric global solutions of Einstein and Einstein-Maxwell
equations is given in [120]. There are several solutions with higher multipole moments
[52, 155, 157, 156, 179] with very interesting physical properties. In this work, we will
analyze a particular class of solutions, derived by Quevedo and Mashhoon [199] in 1991,
which in the most general case contains infinite sets of gravitational and electromagnetic
multipole moments. Hereafter this solution will be denoted as the QM solution.

As for the interior gravitational field of compact objects, the situation is more compli-
cated. There exists in the literature a reasonable number of interior spherically symmetric
solutions [10] that can be matched with the exterior Schwarzschild metric. Nevertheless,
a major problem of classical general relativity consists in finding a physically reasonable
interior solution for the exterior Kerr metric. Although it is possible to match numerically
the Kerr solution with the interior field of an infinitely tiny rotating disk of dust [173],
such a solution cannot be used in general to describe astrophysical compact objects. It
is now widely believed that the Kerr solution is not appropriate to describe the exterior
field of rapidly rotating compact objects. Indeed, the Kerr metric takes into account the
total mass and the angular momentum of the body. However, the quadrupole moment
is an additional characteristic of any realistic body which should be considered in order
to correctly describe the gravitational field. As a consequence, the multipole moments
of the field created by a rapidly rotating compact object are different from the multipole
moments of the Kerr metric [246]. For this reason a solution with arbitrary sets of mul-
tipole moments, such as the QM solution, can be used to describe the exterior field of
arbitrarily rotating mass distributions.

In the case of slowly rotating compact objects it is possible to find approximate interior
solutions with physically meaningful energy-momentum tensors and state equations. Be-
cause of its physical importance, in this work we will review the Hartle-Thorne [105, 108]
interior solution which are coupled to an approximate exterior metric. Hereafter this so-
lution will be denoted as the HT solution. One of the most important characteristics of
this family of solutions is that the corresponding equation of state has been constructed
using realistic models for the internal structure of relativistic stars. Semi-analytical and
numerical generalizations of the HT metrics with more sophisticated equations of state
have been proposed by different authors [8]. A comprehensive review of these solutions
is given in [246]. In all these cases, however, it is assumed that the multipole moments
(quadrupole and octupole) are relatively small and that the rotation is slow.
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To study the physical properties of solutions of Einstein’s equations, Fock [82] proposed
an alternative method in which the parameters entering the exterior metric are derived
by using physical models for the internal structure of the body. In this manner, the
significance of the exterior parameters become more plausible and the possibility appear
of determining certain aspects of the interior structure of the object by using observations
performed in the exterior region of the body. Fock’s metric in its first-order approximation
was recently generalized in 1985 by Abdildin [2, 4] (for details see Appendix A ).

In this work, we review the main exact and approximate metrics which can be used
to study the interior and exterior gravitational field of compact objects and find the
relationships between them. We will show that the exterior HT approximate solution is
equivalent to a special case of the QM solution in the limit of a slowly rotating slightly
deformed compact object (first order in the quadrupole and second order in the angular
momentum). Moreover, we will show that a particular case of the extended Fock metric is
equivalent to the approximate exterior HT solution. Furthermore, since those particular
cases of the exterior HT metric that possess internal counterparts with plausible equations
of state are also special cases of the exterior QM metric, we conclude that at least in those
particular cases it should be possible to match the QM solution with an exact interior
still unknown solution so that it describes globally the gravitational field of astrophysical
compact bodies.

This work is organized as follows. In Section 1.2 we review the HT solutions and briefly
comment on their most important properties. In Section 1.3 we present Fock’s extended
metric, as first derived by Abdildin [2, 4] in harmonic coordinates, and introduce a set
of new coordinates which makes it suitable for comparison with other exterior metrics.
Moreover, we find explicitly the coordinate transformation that relates Fock’s extended
metric with the exterior HT solution.

In Section 1.4.2 we present a particular case of the QM metric which contains, in
addition to the mass and angular momentum parameters, an additional parameter related
to the mass quadrupole of the source. Here we show explicitly that a limiting case of the
QM metric contains the HT metric. Finally, Section 1.5 contains discussions of our results
and suggestions for further research.

1.2 The Hartle-Thorne metrics

To second order in the angular velocity, the structure of compact objects can be ap-
proximately described by the mass, angular momentum and quadrupole moment. An
important consequence of this approximation is that the equilibrium equations reduce to
a set of ordinary differential equations. Hartle and Thorne [105, 108] explored the grav-
itational field of rotating stars in this slow rotation approximation. This formalism can
be applied to most compact objects including pulsars with millisecond rotational periods,
but it shows “large” discrepancies in the case of rapidly rotating relativistic objects near
the mass-shedding limit according to [246], i. e., when the angular velocity of the object
reaches the angular velocity of a particle in a circular Keplerian orbit at the equator. In
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fact, recently in [20] and [21] it was shown that the second order rotation corrections of
the HT metric are sufficient to describe the properties of stars with intermediate rotation
rates. These results were generalized in [19] to include third order corrections. It turns
out that third order corrections are irrelevant at the mass-shedding limit; however, they
are important to study the moment of inertia of rapidly rotating neutron stars. Moreover,
in [179] an analytical solution was derived that can be matched accurately with interior
numerical solutions. On the other hand, an alternative numerical study [150] shows that
in the case of uniformly rotating neutron stars the dimensionless specific angular momen-
tum cannot exceed the value 0.7. An additional property of this formalism is that it can
be used to match an interior solution with an approximate exterior solution. In this con-
nection, it is worth noticing that the problem of matching interior and exterior solutions
implies many mathematical and physical issues [186, 184, 187, 185, 180, 197], including
the performance of the metric functions and the coordinates at the matching surface as
well as the physical behavior of the internal parameters like the density and pressure of
the matter distribution. In the following subsections we will present the interior and the
exterior metrics and introduce notations which will be used throughout this work.

1.2.1 The interior solution

If a compact object is rotating slowly, the calculation of its equilibrium properties
reduces drastically because it can be considered as a linear perturbation of an already-
known non-rotating configuration. This is the main idea of Hartle’s formalism [105]. To
simplify the computation the following conditions are assumed to be satisfied.
1) Equation of state: the matter in equilibrium configuration is assumed to satisfy a one-
parameter equation of state, P = P(E), where P is the pressure and E is the mass-energy
density.
2) Axial and reflection symmetry: the configuration is symmetric with respect to an
arbitrary axis which can be taken as the rotation axis. Furthermore, the rotating object
should be invariant with respect to reflections about a plane perpendicular to the axis of
rotation.
3) Uniform rotation: only uniformly rotating configurations are considered since it is
known that configurations that minimize the total mass-energy (e.g., all stable configu-
rations) must rotate uniformly [107] 1.
4) Slow rotation: this means that angular velocities Ω are small enough so that the
fractional changes in pressure, energy density and gravitational field due to the rotation
are all less than unity, i.e.

Ω2 ≪
( c

R′

)2 GM ′

c2R′
(1.1)

where M ′ is the mass and R′ is the radius of the non-rotating configuration. The above
condition is equivalent to the physical requirement Ω ≪ c/R′.

1 Notice, however, that stability is also possible in the case differentially rotating configurations. See,
for instance, [127, 128]
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When the equilibrium configuration described above is set into slow rotation, the
geometry of space-time around it and its interior distribution of stress-energy are changed.
With an appropriate choice of coordinates, the perturbed geometry is described by

ds2 = eν [1 + 2(h0 + h2P2)] dt
2 − [1 + 2(m0 +m2P2)/(R− 2M ′)]

1− 2M ′/R
dR2−

−R2 [1 + 2(v2 − h2)P2]
[

dΘ2 + sin2 Θ(dφ− ωdt)2
]

+O(Ω3)

(1.2)

Here M ′ is the mass of the non-rotating star, P2 = P2(cosΘ) is the Legendre polyno-
mial of second order, ω is the angular velocity of the local inertial frame, which is a function
of R and is proportional to the star’s angular velocity Ω, and, finally, h0, h2,m0,m2, v2
are all functions of R that are proportional to Ω2.

In the above coordinate system the fluid inside the star moves with a 4-velocity cor-
responding to a uniform and rigid rotation [257]. The contravariant components are

ut = (gtt + 2Ωgtφ + Ω2gφφ)
−1/2, uφ = Ωut, uR = uΘ = 0. (1.3)

The quantity Ω that appears in the expression for ut is so defined that ω̄ ≡ Ω− ω is the
angular velocity of the fluid relative to the local inertial frame.

The energy density E and the pressure P of the fluid are affected by the rotation
because it deforms the compact object. In the interior of the object at a given (R,Θ), in
a reference frame that is momentarily moving with the fluid, the pressure and the density
of mass-energy are

P ≡ P + (E + P )(p∗0 + p∗2P2) = P +∆P (1.4)

E ≡ E + (E + P )(dE/dP )(p∗0 + p∗2P2) = E +∆E. (1.5)

Here, p∗0 and p
∗
2 are dimensionless functions of R that are proportional to Ω2, and describe

the pressure perturbation, P is the pressure and E is the energy density of the non-rotating
configuration. The stress-energy tensor for the fluid of the rotating object is

T ν
µ = (E+ P)uµu

ν − Pδνµ. (1.6)

The rotational perturbations of the objects’s structure are described by the functions
ω̄, h0,m0, p

∗
0, h2,m2, v2, p

∗
2. These functions are calculated from Einstein’s field equations

(for details see [105, 108]).
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1.2.2 The exterior solution

The HT metric describing the exterior field of a slowly rotating slightly deformed
object is given by

ds2 =

(

1− 2M

R

)

[

1 + 2k1P2(cosΘ) + 2

(

1− 2M

R

)−1
J2

R4
(2 cos2 Θ− 1)

]

dt2

−
(

1− 2M

R

)−1
[

1− 2k2P2(cosΘ)− 2

(

1− 2M

R

)−1
J2

R4

]

dR2

−R2[1− 2k3P2(cosΘ)](dΘ2 + sin2 Θdφ2) + 4
J

R
sin2 Θdtdφ

(1.7)

with

k1 =
J2

MR3

(

1 +
M

R

)

+
5

8

Q− J2/M

M3
Q2

2

(

R

M
− 1

)

, k2 = k1 −
6J2

R4
,

k3 = k1 +
J2

R4
+

5

4

Q− J2/M

M2R

(

1− 2M

R

)−1/2

Q1
2

(

R

M
− 1

)

,

where

Q1
2(x) = (x2 − 1)1/2

[

3x

2
ln
x+ 1

x− 1
− 3x2 − 2

x2 − 1

]

, (1.8)

Q2
2(x) = (x2 − 1)

[

3

2
ln
x+ 1

x− 1
− 3x3 − 5x

(x2 − 1)2

]

,

are the associated Legendre functions of the second kind. The constants M, J and Q
are related to the total mass, angular momentum and mass quadrupole moment of the
rotating object, respectively. This form of the metric corrects some misprints of the
original paper by Hartle and Thorne [108] (see also [30] and [21]).

The total mass of a rotating configuration is defined as M = M ′ + δM , where M ′ is
the mass of non-rotating configuration and δM is the change in mass of the rotating from
the non-rotating configuration with the same central density. It should be stressed that
in the terms involving J2 and Q the total mass M can be substituted by M ′ since δM is
already a second order term in the angular velocity.

In general, the HT metric represents an approximate vacuum solution, accurate to
second order in the angular momentum J and to first order in the quadrupole parameter
Q. In the case of ordinary stars, such as the Sun, considering the gravitational constant
G and the speed of light c, the metric (1.7) can be further simplified due to the smallness
of the parameters:

GMSun

c2RSun

≈ 2× 10−6,
GJSun
c3R2

Sun

≈ 10−12,
GQSun

c2R3
Sun

≈ 10−10. (1.9)
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For this special case one can calculate the corresponding approximate metric from
(1.7) in the limit c→ ∞. The computations are straightforward and lead to

ds2 =

[

1− 2GM

c2R
+

2GQ

c2R3
P2(cosΘ) +

2G2MQ

c4R4
P2(cosΘ)

]

c2dt2

−
[

1 +
2GM

c2R
− 2GQ

c2R3
P2(cosΘ)

]

dR2

−
[

1− 2GQ

c2R3
P2(cosΘ)

]

R2(dΘ2 + sin2 Θdφ2) +
4GJ

c2R
sin2 Θdtdφ . (1.10)

This metric describes the gravitational field for a wide range of compact objects, and
only in the case of very dense (GM ∼ c2R) or very rapidly rotating (GJ ∼ c3R2) objects
large discrepancies will appear.

1.3 The Fock’s approach

Fock proposed in [82] a method to analyze Einstein’s equations in the presence of
matter and to derive approximate interior and exterior solutions. This approach takes
into account the internal properties of the gravitational source, and reduces the problem
of finding interior approximate solutions to the computation of some integrals that depend
explicitly on the physical characteristics of the object. In this section, we present the main
results of this approach, derive a particular interior approximate solution, and investigate
the possibility of matching it with an exterior counterpart.

1.3.1 The interior solution

Fock’s first-order approximation metric was recently re-derived and investigated by
Abdildin [3] in a simple manner. Initially, this metric was written in its original form in
a harmonic coordinate system [62, 136] as follows (a derivation of this metric is presented
in the Appendix)

ds2 =

[

c2 − 2U +
2U2

c2
− 2G

c2

∫

ρ
(

3
2
v2 +Π− U

)

+ 3p

|~r − ~r′|
(dx′)

3

]

dt2

−
(

1 +
2U

c2

)

(

dx1
2 + dx2

2 + dx3
2
)

+
8

c2
(U1dx1 + U2dx2 + U3dx3) dt,

(1.11)

where U is the Newtonian gravitational potential, ρ is the mass density of the body, v
is the speed of the particles inside the body, Π is the elastic energy per unit mass, p is
the pressure, ~U is the gravitational vector potential. Notice that the quantities ρ, v, Π
and U that characterize the inner structure of the source depend only on the ”inner”
coordinates x′i, which are defined inside the body only. To simplify the notations we
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omit the arguments that define this coordinate dependence. The corresponding energy-
momentum tensor is given as

T 00 =
ρ

c2

[

1 +
1

c2

(

v2

2
+ Π− U

)]

, T 0i =
ρ

c2
vi , T ij =

1

c2
(

ρvivj + pδij
)

, (1.12)

where δij is the Kronecker delta and i, j = 1, 2, 3. Newton’s potential satisfies the equation
∇2U = −4πGρ. The solution of this equation that satisfies the asymptotically flatness
condition at infinity can be written in the form of a volume integral:

U = G

∫

ρ

|~r − ~r′|
dx′1dx

′
2dx

′
3 . (1.13)

Furthermore, the vector potential must satisfy the equation ∇2Ui = −4πGρvi whose
general asymptotically flat solution can be represented as

Ui = G

∫

ρvi

|~r − ~r′|
dx′1dx

′
2dx

′
3 . (1.14)

Additional details about this metric can be found in [5] and
[6].

It is worth noticing that Chandrasekhar, using the Fock method, obtained in
[54] a solution similar to (1.11) that later on was used by Hartle and Sharp in [107].
However, it is not difficult to show that Chandrasekhar’s solution is equivalent to (1.11).
Indeed, the identification of the density

ρ = ρFock = ρChandra

[

1 +
1

c2

(

3U +
v2

2

)]

(1.15)

at the level of the energy-momentum tensor allows one to calculate the corresponding
metric functions that show the equivalence of the metrics. Moreover, it has been shown
in [54] that the solution for the non-rotating case can be matched with the well-known
Schwarzschild solution, appropriately specialized to the case of spherical symmetry and
hydrostatic equilibrium in the post Newtonian approximation.

1.3.2 The exterior solution

In order to completely determine the metric, it is necessary to calculate the above
integrals. Clearly, the result will depend on the internal structure of the body which is
determined by the density ρ, pressure p and velocity vi distributions. Once these functions
are given, the calculation of the integrals can be performed in accordance with the detailed
formalism developed by Fock [82] and then extended and continued by Abdildin [2, 4] and
Brumberg [49]. Consider, for instance, the case of a slowly rotating sphere with total mass
M . Then, the corresponding exterior metric in spherical-like (non harmonic) coordinates
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can be written as [2]

ds2 =

[

c2 − 2GM

r
− κ

GS2
0

c2Mr3
(

1− 3 cos2 θ
)

]

dt2 −
(

1 +
2GM

c2r

)

dr2

−r2
(

dθ2 + sin2 θdφ2
)

+
4GS0

c2r
sin2 θdφdt ,

(1.16)

where S0 is the angular momentum of the body2. Here we added the constant κ and
verified that in fact the above metric is an approximate solution for any arbitrary real
value of κ. This simple observation allows us to interpret Fock’s procedure as a method
to find out how the internal structure of the object influences the values of the external
parameters. For instance, the total mass in the above metric is M but it can decomposed
as

M = m+
ζ

c2
, (1.17)

where m is the static mass of the body (for details see [82, 49, 107]), and ζ is an arbitrary
real constant which, as the constant κ, depends on the internal properties of the body. In
particular, the cases of a liquid and a solid sphere have been analyzed in detail in [2, 4, 6]
with the result

ζ =

{

8
3
K + 2

3
ε, for a liquid sphere,

4K + 2
3
ε, for a solid sphere,

κ =

{

4
7
, for a liquid sphere,

15
28
, for a solid sphere.

(1.18)

where K is the rotational kinetic energy of the body and ε is the energy of the mutual
gravitational attraction of the particles inside the body. In Sec. 1.4.1, we will briefly
explain how to obtain the above values.

1.3.3 The Kerr metric

To describe the gravitational field of the rotating sphere outside the source, it seems
physically reasonable to assume that the exterior vacuum metric be asymptotically flat.
In this case, the first obvious candidate is the Kerr solution in the corresponding limit.
The Kerr metric [124] in Boyer-Lindquist coordinates [48, 49] can be written as

ds2 =

(

1− 2µ̺

̺2 + a2 cos2 ϑ

)

c2dt2 − ̺2 + a2 cos2 ϑ

̺2 − 2µ̺+ a2
d̺2 −

(

̺2 + a2cos2 ϑ
)

dϑ2

−
(

̺2 + a2 +
2µ̺a2 sin2 ϑ

̺2 + a2 cos2 ϑ

)

sin2 ϑdφ2 − 4µ̺a sin2 ϑ

̺2 + a2 cos2 ϑ
cdtdφ ,

(1.19)

where

µ =
GM

c2
, a = − S0

Mc
. (1.20)

2Notice the typos in the sign in front of S2

0
in Eqs. (1.78) and (1.79) of [4]
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Expanding this metric to the order 1
c2
, one obtains

ds2 =

[

c2 − 2GM

̺
+

2GMa2

̺3
cos2 ϑ

]

dt2 −
(

1 +
2GM

̺c2
− a2

̺2
sin2 ϑ

)

d̺2

−̺2
(

1 +
a2

̺2
cos2 ϑ

)

dϑ2 − ̺2
(

1 +
a2

̺2

)

sin2 ϑdφ2 − 4GMa

̺c
sin2 ϑdφdt .

(1.21)

Furthermore, if we introduce new coordinates ̺ = ̺(r, θ), ϑ = ϑ(r, θ) by means of the
equations

̺ = r − a2 sin2 θ

2r
, ϑ = θ − a2 sin θ cos θ

2r2
, (1.22)

then the approximate Kerr metric (1.21) can be reduced to the following form

ds2 =

[

c2 − 2GM

r
− GS2

0

c2Mr3
(

1− 3 cos2 θ
)

]

dt2 −
(

1 +
2GM

c2r

)

dr2

−r2
(

dθ2 + sin2 θdφ2
)

+
4GS0

c2r
sin2 θdφdt ,

(1.23)

which coincides with the metric (1.16) with κ = 1. Consequently, the extended Fock
metric (1.16) can be interpreted as describing the exterior field of a rotating body to
second order in the angular velocity. The advantage of using Fock’s method to derive this
approximate solution is that it allows the determination of the arbitrary constant κ. In
fact, whereas κ = κL = 4/7 for a liquid sphere and κ = κS = 15/28 for a solid sphere, the
value for the Kerr metric κ = κK = 1 does not seem to correspond to a concrete internal
model. On the other hand, all the attempts to find a physically meaningful interior Kerr
solution have been unsuccessful. Perhaps the relationship with Fock’s formalism we have
established here could shed some light into the structure of the interior counterpart of the
Kerr metric.

Furthermore, the coordinate transformation [108]

̺ = R− a2

2R

[(

1 +
2GM

c2R

)(

1− GM

c2R

)

− cos2 Θ

(

1− 2GM

c2R

)(

1 +
3GM

c2R

)]

,

ϑ = Θ− a2

2R2

(

1 +
2GM

c2R

)

cosΘ sinΘ , (1.24)

transforms the Kerr solution (1.19), expanded to second order in the angular momentum,
(here one should set G = c = 1) into the HT solution (1.7) with J = −Ma, M = M and
a particular quadrupole parameter Q = J2/M.

In this way, we have shown that the extended Fock metric coincides for κ = 1 with the
approximate Kerr solution which, in turn, is equivalent to the exterior HT solution with
a particular value of the quadrupole parameter. The fact that in the Kerr solution the
quadrupole moment is completely specified by the angular momentum is an indication that
it can be applied only to describe the gravitational field of a particular class of compact
objects. A physically meaningful generalization of the Kerr solution should include a
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set of arbitrary multipole moments which are not completely determined by the angular
momentum. In the next section, we present a particular exact solution characterized by
an arbitrary quadrupole moment.

1.4 A solution with quadrupole moment

In this section, we will consider the case of deformed objects as, for example, a rotating
ellipsoid. It is obvious that if the form of the body slightly deviates from spherical sym-
metry, it acquires multipole moments, in particular, a quadrupole moment; the moments
of higher order are negligible, especially, for a slowly rotating ellipsoid. We will generalize
Fock’s metric so that the quadrupole moment appears explicitly from the integration of
(1.11) and in the Newtonian potential. It should be mentioned that finding external and
internal Newtonian potentials for a rotating ellipsoid is one of the classic problems of both
physics and mathematical physics. Some examples for a homogeneous ellipsoid are con-
sidered in [138], but the most comprehensive details on this matter are given in [55] and
more recently in [162]. As for the exterior counterpart, there are several exact solutions
[52, 155, 157, 156, 179] with quadrupole moment and rotation parameter that could be
used as possible candidates to be matched with the interior approximate solution. In this
work, we limit ourselves to the study of a particular solution first proposed in [198] and
then generalized in [194, 199].

1.4.1 The exterior Fock solution

Let us consider the first-order approximation metric (1.11). It is convenient to use
the notation x′1 = x, x′2 = y, and x′3 = z. In general, the fact that the mass density ρ =
ρ(x, y, z) is a function of the coordinates does not allow us to find explicit expression for the
internal Newtonian potential. It is possible only by numerical integration. However, for
the case of uniform density there is in the literature a reasonable number of exact solutions
for rotating ellipsoids. Since we consider slow rotation and the weak field approximation,
we can use the expansion for the Newtonian potential [138], [139]

U(r, θ) = G

∫

ρ

|~r − ~r′|
dxdydz =

Gm

r
+
GD

2r3
P2(cos θ) , (1.25)

where m is the rest mass of the ellipsoid, D is the Newtonian quadrupole moment, θ is
the angle between r′ =

√

x2 + y2 + z2 and z — axis. The first term in the expression
above is the potential of a sphere and the second one is responsible for the deviation
from spherical symmetry. If one takes the z axis as a rotating axis then the quadrupole
moment is defined by

D =

∫

ρ(2z2 − x2 − y2)dxdydz. (1.26)

For the rotating ellipsoid with uniform density the quadrupole moment is well-known
D = 2m

(

r2p − r2e
)

/5, where rp and re are the polar and equatorial radii of the ellipsoid,
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respectively. The mass of the ellipsoid is defined as the integral m =
∫

ρdxdydz that
in the case of an ellipsoid with uniform density yields m = 4πρr2erp/3. Note that the
integration is carried out in the ranges of 0 ≤ x, y ≤ re and 0 ≤ z ≤ rp. Using the same
procedure one may write the integral in Fock’s metric as follows

∫

ρ
(

3
2
v2 +Π− U

)

+ 3p

|~r − ~r′|
dxdydz =

ζ

r
+

D

2r3
P2(cos θ), (1.27)

where

ζ =

∫
[

ρ

(

3

2
v2 +Π− U

)

+ 3p

]

dxdydz , (1.28)

D =

∫
[

ρ

(

3

2
v2 +Π− U

)

+ 3p

]

(2z2 − x2 − y2)dxdydz . (1.29)

The quantity D/c2 is the relativistic correction to the Newtonian quadrupole moment
D, i. e., the quadrupole moment due to rotation. To evaluate the integrals we use the
relation for a compressible elastic medium [82]

ρΠ− ρU + p = ρW , (1.30)

where W is the potential of the centrifugal forces determined by

W =
(x2 + y2)

2
Ω2 , (1.31)

for rigid rotation the angular velocity of the body ~Ω = {0, 0,Ω} has only one component
along z axis and v2 = 2W . Taking into account these expressions, the above shown
equations reduce to the simple form

ζ = 2

∫

[2ρW + p] dxdydz , (1.32)

D = 2

∫

[2ρW + p] (2z2 − x2 − y2)dxdydz . (1.33)

Furthermore, to evaluate these integrals we consider the following two cases that de-
termine the inner structure of the body:

1) A liquid body with following the equation of internal motion [82]

ρ
∂

∂xi
(U +W ) =

∂p

∂xi
. (1.34)

2) An absolute solid body with the following equation of internal motion [49]

ρ
∂U

∂xi
=

∂p

∂xi
. (1.35)
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These are the equations of hydrostatic equilibrium which are adopted by Fock [82] and
Brumberg [49] to describe the internal structure of the object. We limit ourselves to
consider those cases in which the body rotates as a whole, in the manner of a rigid body.
Then, for both liquid and solid bodies the rotational kinetic energy takes the form

K =

∫

ρWdxdydz =
IzzΩ

2

2
, (1.36)

where Izz is the moment of inertia of the ellipsoid, which for a uniform density distribution,
is equal to

Izz =

∫

ρ(x2 + y2) dxdydz =
2

5
mr2e . (1.37)

The pressure can be expressed as

∫

p dxdydz =

{

1
3
(ε− 2K) , for a liquid body,

1
3
ε, for a solid body,

(1.38)

where

ε =
1

2

∫

ρU dxdydz , (1.39)

represents the negative of the energy of mutual attraction of the constituent particles of
the body. For a uniform density it has form

ε =
3Gm2

5
√

r2e − r2p
arccos

rp
re
. (1.40)

The second moments

Kik =

∫

ρWx′ix
′
k dxdydz , (1.41)

can be computed by using the above expressions. Then, for the second moments of the
pressure we obtain (see [3])

∫

px′ix
′
k dxdydz =

{

1
2
χik − 2

5
Kik, for a liquid body,

−1
2
Kik, for a solid body,

(1.42)

where (more details can be found in [3])

χik = −2

5

∫

ρx′ix
′
kx

′
j

∂U

∂x′j
dxdydz . (1.43)

After calculating all the integrals we have

ζ =

{

8
3
K + 2

3
ε, for a liquid body,

4K + 2
3
ε, for a solid body,

(1.44)



18 Gravitational field of compact objects in general relativity

D =

{

28
5

κLS
2
0

I2zz

[∫

ρ(x2 + y2)(z2 − x2)dxdydz
]

− 4
5

∫

ρ(z2 − x2)x′j
∂U
∂x′

j
dxdydz, liquid,

28
5

κSS
2
0

I2zz

[∫

ρ(x2 + y2)(z2 − x2)dxdydz
]

, solid,

(1.45)
where S0 is the angular momentum of the body, which is found from

~S0 = Izz~Ω , (1.46)

and the numerical factors are

κ =

{

κL = 4
7
, for a liquid body,

κS = 15
28
, for a solid body.

(1.47)

Unlike the Newtonian scalar potential, the vector potential can be easily calculated from

~U =
G

2r3

[

~S0 × ~r
]

. (1.48)

Introducing the effective (total) mass as

M = m+
ζ

c2
, (1.49)

for the Fock metric we obtain the following expression

ds2 =

[

c2 − 2

(

GM

r
+
GD

2r3
P2(cos θ)

)

+
2

c2

(

GM

r
+
GD

2r3
P2(cos θ)

)2

− GD

c2r3
P2(cos θ)

]

dt2

−
[

1 +
2GM

c2r
+
GD

c2r3
P2(cos θ)

]

[

dr2 + r2(dθ2 + sin2 θdφ2)
]

+
4GS0

c2r
sin2 θdφdt ,

(1.50)

in harmonic coordinates. In order to write it in Schwarzschild like (standard) spherical
coordinates one should use the coordinate transformation

r → R− GM

c2
, θ → Θ. (1.51)

which transforms the metric (1.50) into

ds2 =

[

c2 − 2GM

R
−

(

D +
D

c2

)

G

R3
P2(cosΘ)− G2DM

c2R4
P2(cosΘ)

]

dt2 +
4GS0

c2R
sin2 Θdφdt

−
[

1 +
2GM

c2R
+
GD

c2R3
P2(cosΘ)

]

dR2 −
[

1 +
GD

c2R3
P2(cosΘ)

]

R2(dΘ2 + sin2 Θdφ2) ,

(1.52)

where we have neglected quadratic terms in the quadrupole parameter D. In the limiting
case with vanishing rotation S0 = 0 and vanishing quadrupole moment D = D = 0, this
metric represents the approximate Schwarzschild solution.
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An examination of the metric (1.50) shows that the rough approximation with re ≈
rp ≈ rsphere and S0 6= 0 leads to the approximate Fock metric considered in Sec. 1.3 with
the total mass M , for a slowly rotating spherically symmetric body with

D = 0, D = −2κS2
0

M
. (1.53)

It should be noted that an analogous result was obtained by Laarakkers and Poisson
[133]. They numerically computed the scalar quadrupole moment Q of rotating neutron
stars for several equations of state (EoS). They found that for fixed gravitational mass
M , the quadrupole moment is given as a simple quadratic fit

Q = −κ
J2

Mc2
(1.54)

where J is the angular momentum of the star and κ is a dimensionless quantity that
depends on the EoS. Note that the scalar quadrupole moment Q of Laarakkers and Poisson
is related to the one of Hartle and Thorne as follows Q = −Q. The above quadratic fit
reproduces Q with remarkable accuracy. The quantity κ varies between κ ≈ 2 for very
soft EoS’s and κ ≈ 7.4 for very stiff EoS’s, for M = 1.4MSun as in neutron stars. This
is considerably different from a Kerr black hole, for which κ = κ = 1 (see [246, 258]).
Recently, the results of [133] were modified taking into account the correct definition of
multipole moments [187]. Therefore the value of the κ parameter in the numerical fit
(1.54) is slightly different from that given in [133]. In our case, we have similar, but not
the same results, since the Fock solution is not valid in the limit of strong gravitational
fields (like in neutron stars) and fast rotation. The values for the constant κ are obtained
from qualitative analyses in the limit of weak field and slow rotation. In order to find
exact values for κ one should specify the EoS’s and perform numerical integrations. This
task, however, is out of the scope of the present work.

1.4.2 The exterior Quevedo-Mashhoon solution

In this section, we study the general metric describing the gravitational field of a
rotating deformed mass found by Quevedo and Mashhoon [198, 194, 195, 199], which is
a stationary axisymmetric solution of the vacuum Einstein’s equations belonging to the
class of Weyl-Lewis-Papapetrou [271, 145, 183]. For the sake of simplicity we consider
here a particular solution involving only four parameters: the mass parameter M , the
angular momentum parameter a, the quadrupole parameter q, and the additional Zipoy-
Voorhees [277, 266] constant δ. For brevity, in this section we use geometric units with
G = c = 1. The corresponding line element in spheroidal coordinates (t, r, θ, φ) with
r ≥ σ +M0, 0 ≤ θ ≤ π

2
is given by [198]

ds2 = f(dt− ωdφ)2 − 1

f

{

e2γ
(

dθ2 +
dr2

r2 − 2M0r + a2

)

[

(M0 − r)2 − (M2
0 − a2) cos2 θ

]

+
(

r2 − 2M0r + a2
)

sin2 θdφ2

}

, (1.55)
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where f, ω and γ are functions of r and θ only, and σ is a constant. They have the form
[x = (r −M0)/σ, y = cos θ]

f =
R̃

L
e−2qδP2Q2 , ω = −2a− 2σ

M

R̃
e2qδP2Q2 ,

e2γ =
1

4

(

1 +
M

σ

)2
R̃

(x2 − 1)δ
e2δ

2γ̂, (1.56)

where

R̃ = a+a− + b+b−, L = a2+ + b2+, (1.57)

M = (x+ 1)δ−1
[

x(1− y2)(λ+ η)a+ + y(x2 − 1)(1− λη)b+
]

, (1.58)

γ̂ =
1

2
(1 + q)2 ln

x2 − 1

x2 − y2
+ 2q(1− P2)Q1 + q2(1− P2)[(1 + P2)(Q

2
1 −Q2

2)

+
1

2
(x2 − 1)(2Q2

2 − 3xQ1Q2 + 3Q0Q2 −Q′
2)]. (1.59)

Here Pl(y) and Ql(x) are Legendre polynomials of the first and second kind, respectively.
Furthermore

a± = (x± 1)δ−1[x(1− λη)± (1 + λη)], (1.60)

b± = (x± 1)δ−1[y(λ+ η)∓ (λ− η)], (1.61)

with

λ = α(x2 − 1)1−δ(x+ y)2δ−2e2qδδ+ , (1.62)

η = α(x2 − 1)1−δ(x− y)2δ−2e2qδδ− , (1.63)

δ± =
1

2
ln

(x± y)2

x2 − 1
+

3

2
(1− y2 ∓ xy) +

3

4
[x(1− y2)∓ y(x2 − 1)] ln

x− 1

x+ 1
. (1.64)

Moreover, α and σ are constants defined as

α =
σ −M

a
, σ =

√
M2 − a2. (1.65)

The physical meaning of the parameters entering this metric can be investigated in an
invariant manner by calculating the Geroch-Hansen [90, 103] moments:

M2k+1 = J2k = 0, k = 0, 1, 2, . . . , (1.66)

M0 = M + σ(δ − 1), J1 =Ma+ 2aσ(δ − 1), (1.67)

M2 = −Ma2 +
2

15
qσ3

− 1

15
σ(δ − 1)

[

45M2 + 15Mσ(δ − 1)− (30 + 2q + 10δ − 5δ2)σ2
]

, (1.68)

J3 = −Ma3 +
4

15
aqσ3

− 1

15
aσ(δ − 1)

[

60M2 + 45Mσ(δ − 1)− 2σ2(15 + 2q + 10δ − 5δ2)
]

. (1.69)
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The vanishing of the odd gravitoelectric (Mn) and even gravitomagnetic (Jn) multipole
moments is a consequence of the reflection symmetry with respect to the equatorial plane
θ = π/2. Note that in the limiting case δ = 1, M0 = M is the total mass of the body, a
represents the specific angular momentum, and q is related to the deviation from spherical
symmetry. All higher multipole moments can be shown to depend only on the parameters
M, a, and q. In general, we see that the Zipoy-Voorhees parameter is related to the
quadrupole moment of the source. In fact, even in the limiting static case with a = 0 and
q = 0, the only non-vanishing parameters are M = σ and δ so that all gravitomagnetic
multipoles vanish and one obtainsM0 =Mδ andM2 = −1

3
M3δ(δ2−1) — the quadrupole

moment that indicates a deviation from spherical symmetry. Some geometrical properties
of (1.55) versus particle motion and tidal indicators in this spacetime were explored in
[30] and [23], respectively.

Consider the limiting cases of the QM solution. For vanishing quadrupole parameter,
q = 0, δ = 1, and vanishing angular momentum a = 0, α = 0, and σ = M , one recovers
the Schwarzschild solution with the following metric functions:

f = 1− 2M

r
, ω = 0, γ =

1

2
ln

r(r − 2M)

(M − r)2 −M2 cos2 θ
. (1.70)

For vanishing quadrupole parameter and δ = 1, one recovers the Kerr solution (1.19) with
ϑ→ θ and ̺→ r and functions

f = 1− 2Mr

r2 + a2 cos2 θ
, ω =

2aMr sin2 θ

r2 − 2Mr + a2 cos2 θ
,

γ =
1

2
ln

r(r − 2M) + a2 cos2 θ

(M − r)2 − (M2 − a2) cos2 θ
. (1.71)

The above limiting cases show that this solution describes the exact exterior field a ro-
tating deformed object. To compute the case of a slowly rotating and slightly deformed
body we choose the Zipoy-Voorhees parameter as δ = 1 + sq, where s is a real constant.
Then, expanding the metric (1.55) to first order in the quadrupole parameter q and to
second order in the rotation parameter a, we obtain

f = 1− 2M

r
+

2a2M cos2 θ

r3
+ q(1 + s)

(

1− 2M

r

)

ln

(

1− 2M

r

)

+ 3q
( r

2M
− 1

)

[(

1− M

r

)

(

3 cos2 θ − 1
)

+

{

( r

2M
− 1

)

(3 cos2 θ − 1)− M

r
sin2 θ

}

ln

(

1− 2M

r

)]

, (1.72)

ω =
2aMr sin2 θ

r − 2M
, (1.73)
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γ =
1

2
ln

r(r − 2M)

(r −M)2 −M2 cos2 θ
+
a2

2

[

M2 cos2 θ sin2 θ

r(r − 2M)((r −M)2 −M2 cos2 θ)

]

+ q(1 + s) ln
r(r − 2M)

(r −M)2 −M2 cos2 θ

− 3q

[

1 +
1

2

( r

M
− 1

)

ln

(

1− 2M

r

)]

sin2 θ. (1.74)

The further simplification s = −1, and the coordinate transformation [108, 30, 161]

r = R +Mq +
3

2
Mq sin2 Θ

[

R

M
− 1 +

R2

2M2

(

1− 2M

R

)

ln

(

1− 2M

R

)]

− a2

2R

[(

1 +
2M

R

)(

1− M

R

)

− cos2 Θ

(

1− 2M

R

)(

1 +
3M

R

)]

(1.75)

θ = Θ− sinΘ cosΘ

{

3

2
q

[

2 +

(

R

M
− 1

)

ln

(

1− 2M

R

)]

+
a2

2R

(

1 +
2M

R

)}

(1.76)

transforms the approximate QM solution (1.72)–(1.74) into

ds2 =

[

1− 2GM(1− q)

c2R
+

2G

c2R3

(

J2

M
− 4

5
qM3

)(

1 +
GM(1− q)

c2R

)

P2(cosΘ)

]

c2dt2

−4GMa

c2R
sin2 Θdtdφ−

[

1 +
2GM(1− q)

c2R
− 2G

c2R3

(

J2

M
− 4

5
qM3

)

P2(cosΘ)

]

dR2

−
[

1− 2G

c2R3

(

J2

M
− 4

5
qM3

)

P2(cosΘ)

]

R2(dΘ2 + sin2 Θdφ2) .

(1.77)

Here we introduced again all the necessary constants G and c in order to compare our
results with previous metrics. Finally, if we redefine the parameters M , a, and q as

M =M(1− q), J = −Ma, Q =
J2

M
− 4

5
M3q , (1.78)

the approximate metric (1.77) coincides with the exterior HT metric (1.10) and, conse-
quently, can be matched with the interior HT metric discussed in 1.2.

The above metric is equivalent to the exterior extended Fock metric discussed in the
previous subsection. To see this one has to consider the exterior solution (1.52) which is
written in the same coordinates as the exterior solutions (1.77) and (1.10). It is convenient
to show first the equivalence with the exterior HT solution (1.10) that yields the conditions

M =M, J = S0, Q = −1

2

(

D +
D

c2

)

. (1.79)
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The equivalence with the approximate QM solution (1.77) follows then from the compar-
ison of Eqs.(1.78) and (1.79). We obtain

q =
5

8

c4

G2

1

M3

[

D +
1

c2

(

D+
2J2

M

)]

, (1.80)

and for vanishing D

q =
5

4

c2

G2

J2

M4
(1− κ) . (1.81)

This result is in accordance with the limiting case of the Kerr metric for which we obtained
that κ = 1 and hence q = 0.

Thus we come to the conclusion that in the limit of a slowly rotating and slightly
deformed body the QM approximate solution is equivalent to the exterior Fock solution.

1.5 Conclusions

In this work, we studied the gravitational field of slowly rotating, slightly deformed
astrophysical compact objects. We presented the main exact and approximate solutions of
Einstein’s equations that can be used to describe the interior and the exterior gravitational
field. In particular, we presented the method proposed by Hartle and Thorne to find
interior and exterior approximate solutions, and the method proposed by Fock to derive
approximate interior and exterior solutions. We derived an extension of the approximate
exterior Fock metric that takes into account up to the first order the contribution of a
quadrupole parameter that describes the deviation of the body from spherical symmetry.
A particular parameter that enters the extended Fock metric turns out to have very specific
values in the case of a liquid sphere and a solid sphere. In the case of the approximate
Kerr metric, this parameter does not seem to correspond to any known interior model
analyzed in the framework of Fock’s formalism.

We found that a particular QM solution, which in general possesses an infinite set
of gravitational and electromagnetic multipole moments, contains the exact Kerr metric
and the approximate HT metric as special cases. Moreover, since the HT solution is
endowed with its interior counterpart, we conclude that the approximate QM solution
(to the second order in the angular momentum and to the first order in the quadrupole
parameter) can be matched with the interior HT solution, indicating that it can be used to
correctly describe the gravitational field of astrophysical compact objects. Moreover, we
showed that the explicit form of the exterior Fock metric is equivalent to the approximate
exterior QM solution.

To avoid the technical problems that are usually found in the process of matching
solutions [197], we use the same set of coordinates inside and outside the body. In the
cases presented here, this can be done in a relative easy way only because all the coordinate
transformations are not calculated exactly, but with the same approximation as the metric
functions. This approach allows us to reduce the matching problem to the comparison of
the metrics on the matching surfaces in such a way that only algebraic conditions appear.
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Using this method, we could show that the approximate Kerr metric cannot be matched
with an interior Fock solution. However, if we take into account an additional quadrupole
parameter, the matching of the extended Fock metric can be carried out by using as
exterior counterpart a particular approximate QM solution that contains the Kerr metric
as special case. We conclude that the quadrupole parameter offers an additional degree
of freedom that allows the matching. A first step in this direction was recently taken
forward in [196]. It would be interesting to see if this is also true in the case of exact
solutions. This could shed some light into the problem of finding a realistic gravitational
source for the Kerr metric, a long-standing problem of classical general relativity.

1.6 Perspectives

In view of recent works on white dwarfs [210, 209, 45] and neutron stars [18] it would
be interesting to calculate the quadrupole moment for these objects and perform analyses
of Laarakkers and Poisson [133], and Pappas and Apostolatos [187]. From our preliminary
results we expect that the quadrupole moment for rotating white dwarfs and neutron stars
will be larger than the Kerr quadrupole moment Q = J2/M . To this end, it is appropriate
to use the Hartle-Thorne solution, since it possesses both internal and external solutions
unlike other exact solutions, in addition it works in the strong gravitational field regime
whereas the Fock metric is valid only in the weak field regime.



Chapter 2

Equatorial circular geodesics in the

Hartle-Thorne spacetime

2.1 Introduction

Astrophysical objects in general are characterized by a non-spherically symmetric dis-
tribution of mass. In many cases, like ordinary planets and satellites, it is possible to
neglect the deviations from spherical symmetry: it seems instead reasonable to expect
that deviations should be taken into account in case of strong gravitational fields (around
compact objects). In this light we investigate the influence of the quadrupole parameter
on the equatorial circular motion of a test particle in the field of a rotating deformed
central object. To this end the metric, describing the exterior field of a slowly rotating
slightly deformed object, found by Hartle and Thorne [105, 108] is of high importance.
However in this chapter we use the form of the metric presented by Bini et al. [30], since
it is always possible to show that by redefining the quadrupole parameter in [30] one can
obtain the same metric form of Hartle and Thorne (HT) [108]. In geometrical units this
metric is given by

ds2 = −
(

1− 2M

r

)

[

1 + 2k1P2(cos θ) + 2

(

1− 2M

r

)−1
J2

r4
(2 cos2 θ − 1)

]

dt2

+

(

1− 2M

r

)−1
[

1− 2k2P2(cos θ)− 2

(

1− 2M

r

)−1
J2

r4

]

dr2 (2.1)

+r2[1− 2k3P2(cos θ)](dθ
2 + sin2 θdφ2)− 4J

r
sin2 θdtdφ

where

k1 =
J2

Mr3

(

1 +
M

r

)

− 5

8

Q− J2/M

M3
Q2

2

( r

M
− 1

)

, k2 = k1 −
6J2

r4
,
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k3 = k1 +
J2

r4
− 5

4

Q− J2/M

M2r

(

1− 2M

r

)−1/2

Q1
2

( r

M
− 1

)

,

P2(x) =
1

2
(3x2 − 1),

Q1
2(x) = (x2 − 1)1/2

[

3x

2
ln
x+ 1

x− 1
− 3x2 − 2

x2 − 1

]

,

Q2
2(x) = (x2 − 1)

[

3

2
ln
x+ 1

x− 1
− 3x3 − 5x

(x2 − 1)2

]

.

Here P2(x) is Legendre polynomials of the first kind, Qm
l are the associated Legendre

polynomials of the second kind and the constantsM , J and Q are the total mass, angular
momentum and quadrupole parameter of a rotating star respectively1. The approximate
Kerr metric [124] in the Boyer-Lindquist coordinates (t, R, Θ, φ) up to second order
terms in the rotation parameter a can be obtained from (2.1) by setting

J = −Ma, Q = J2/M, (2.2)

and making a coordinate transformation given by

r = R +
a2

2R

[(

1 +
2M

R

)(

1− M

R

)

− cos2 Θ

(

1− 2M

R

)(

1 +
3M

R

)]

, (2.3)

θ = Θ+
a2

2R2

(

1 +
2M

R

)

sinΘ cosΘ.

2.2 The domain of validity of the Hartle-Thorne ap-

proximation

Having on mind the applicability of the metric (2.1) to the exterior of a compact object,
we demand that the energy-momentum tensor, which follows from (2.1), be much smaller
than the corresponding tensor of the source object. The correct comparison of these
tensors should be performed in terms of eigenvalues. Consider a surface of the object
which generates the metric under consideration. According to the Einstein equations
Gα

β = 8πTα
β, where α, β = (t, r, θ, φ), the eigenvalues of the Einstein tensor inside the

matter are equal to its density and pressure multiplied by 8π [249]. Due to the inequality
ρ > p which holds for all known types of matter, the maximum of eigenvalues can be
estimated as 8πρ, where ρ represents the average density of the body:

|Gα
β| . 8πρ =

8πM

4πr3/3
=

6M

r3
. (2.4)

1We note here that the quadrupole parameter Q is related to the mass quadrupole moment defined
by Hartle and Thorne [108] through Q = 2J2/M −QHT .



2.3 Equations for the equatorial circular geodesics 27

On the other hand, the first non-vanishing terms in the expansion of the Einstein tensor
of the Hartle-Thorne metric in powers of J and Q are G0

4 and G4
0. Then the Einstein

tensor has two purely imaginary eigenvalues different from zero λ1,2 6= 0 and two exactly
zero eigenvalues λ3,4 = 0. The first pair is diverging as r → 2M . Near this radius we
have, for δr = r − 2M approaching 0, the leading terms equal to

λ1,2 → ±i15JQ(1− 3 cos2 θ) sin θ

32
√
2M11/2δr3/2

. (2.5)

Finally, by comparing the absolute values of (2.4) and (2.5) for r → 2M , taking into
account that 0 ≤ (1 − 3 cos2 θ)2 sin2 θ ≤ 1, we obtain the following inequality, describing
the domain of validity of the Hartle-Thorne metric around the gravitating body

δr3 ≫ 25J2Q2

128M7
. (2.6)

If we take the extreme values of the parameters for neutron stars such as J ≃ M2,
Q ≃ 10−2M3 we obtain δr ≫ 3×10−2M , that is certainly true for the exterior of neutron
stars while their radii are more than 2.5M [101], i. e. δr > 0.5M .

2.3 Equations for the equatorial circular geodesics

2.3.1 The Orbital Angular Velocity

The 4-velocity U of a test particle on a circular orbit can be parametrized by the
constant angular velocity ζ with respect to infinity

U = Γ[∂t + ζ∂φ], (2.7)

where Γ is the normalization factor which assures that UαUα = −1. From the normaliza-
tion and the geodesics conditions we obtain following expressions for Γ and ζ = Uφ/U t

gtt + 2ζgtφ + ζ2gφφ = −1/Γ2, gtt,r + 2ζgtφ,r + ζ2gφφ,r = 0, (2.8)

where gαβ,r = ∂gαβ/∂r. Hence, ζ, the solution of (2.8)2, is given by

ζ±(u) = ±ζ0(u)
[

1∓ jf1(u) + j2f2(u) + qf3(u)
]

(2.9)

where (+/−) stands for co-rotating/contra-rotating geodesics, j = J/M2 and q = Q/M3

are the dimensionless angular momentum and quadrupole parameter and u =M/r. The
rest quantities are defined as follows

ζ0(u) =
u3/2

M
, f1(u) = u3/2,

f2(u) =
48u7 − 80u6 + 4u5 + 42u4 − 40u3 − 10u2 − 15u+ 15

16u2(1− 2u)
− f(u),

f3(u) = −5(6u4 − 8u3 − 2u2 − 3u+ 3)

16u2(1− 2u)
+ f(u),

f(u) =
15(1− 2u3)

32u3
ln

(

1

1− 2u

)

.
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Figure 2.1: Left panel: one revolution of a test particle in the field of a rotating central
body for Q = 0. Right panel: the motion of the test particle in the field of a non-rotating
deformed object for J = 0. The common parameters are M = 1, r = 7, dr/ds = 0,
φ = π/2, and dφ/ds = 0.07145.

In Fig. 2.1 left panel we show the differences among the geodesics with the same
initial conditions arising due to the rotation of the central body i.e. the frame dragging
effect in the strong field regime. The solid line for J = 0 corresponds to equatorial
circular geodesics in the Schwarzschild spacetime. The dashed line for J > 0 corresponds
to co-rotating and the dotted line for J < 0 corresponds to the contra-rotating orbits.
In Fig. 2.1 right panel we show the differences between the geodesics with the same
initial conditions arising due to the deformation of the source i.e. the oblateness of the
central body. The solid line for Q = 0 corresponds to equatorial circular geodesics in the
Schwarzschild spacetime. The dashed line for Q < 0 corresponds to the geodesics in the
field of oblate and the dotted line for Q > 0 corresponds to the geodesics in the field
of the prolate central body. It is easy to see that varying the quadrupole parameter Q
one can recover the deviations from the Schwarzschild spacetime geodesics analogous to
those caused by the frame dragging effect. By selecting the values of J and Q one can
recover the circular orbits as in Fig. 2.2 left panel. In Fig.2.2 right panel and Figs. 2.3 we
consider the geodesics with the same initial conditions in the field of non-rotating bodies
with the increasing values of Q. As a result, we have obtained different spiraling and
bound trajectories of the test particle.
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Figure 2.2: Left panel: circular orbit for J = −0.05, Q = −0.1575 and r = 7, dφ/ds =
0.07145. Right panel: spiral orbit for Q = −0.16 and J = 0, r = 10, dφ/ds = 0.035355.
The common parameters are M = 1, φ = π/2, and dr/ds = 0.

Figure 2.3: Left panel: spiral orbit for Q = 0. Right panel: bound orbit for Q = 0.16.
The common parameters are M = 1, J = 0, r = 10, dr/ds = 0, φ = π/2, and
dφ/ds = 0.035355.
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2.3.2 Radii of marginally stable and marginally bound orbits

The condition ε = −Ut = 1 gives the radius of the marginally bound orbit rmb, where
ε is the conserved specific energy per unit mass of the particle and the normalization
condition PαPα = 0 gives the photon orbit radius rph, where P = Γph[∂t + ζph∂φ] is the
photon 4-momentum. Note, that the normalization condition PαP

α = 0 gives the orbital
angular velocity for the photon ζph, however Γph remains arbitrary. In order to define the
photon orbit radius rph, first, one has to define ζph and evaluate the expression for the
4-acceleration aα. For the circular geodesic the condition aα = 0 is enough to find rph. In
addition, by setting dl/dr = 0 one can find the radius of the marginally stable orbit rms,
where l = −Uφ/Ut is the specific angular momentum per unit energy of the particle.

rmb = 4M

[

1∓ 1

2
j +

(

8033

256
− 45 ln 2

)

j2 +

(

−1005

32
+ 45 ln 2

)

q

]

,

rph = 3M

[

1± 2
√
3

9
j +

(

1751

324
− 75

16
ln 3

)

j2 +

(

−65

12
+

75

16
ln 3

)

q

]

,

rms = 6M

[

1± 2

3

√

2

3
j +

(

−251903

2592
+ 240 ln

3

2

)

j2 +

(

9325

96
− 240 ln

3

2

)

q

]

.

It is clear that the presence of both the rotation and quadrupole parameters can increase
or decrease the values for rmb, rph and rms. For the sake of comparison, if one writes
these radii in the Boyer-Lindquist coordinates using the reverse of (2.3) for θ = π/2, and
the relation (2.2), then it is easy to obtain the following expressions for the Kerr solution
with accuracy up to second order terms in the rotation parameter a:

Rmb = 4M

[

1± a

2M
− a2

16M2

]

,

Rph = 3M

[

1∓ 2
√
3

9

a

M
− 2a2

27M2

]

,

Rms = 6M

[

1∓ 2

3

√

2

3

a

M
− 7a2

108M2

]

.

These radii are exactly those radii, expanded in terms up to second order in a, given in
the work of Bardeen et. al. [13] for the Kerr solution.

2.4 Conclusions

In this chapter we have explored the domain of validity of the Hartle-Thorne solution
as well as the geodesics in this spacetime. We considered equatorial circular geodesics
and investigated the role of the quadrupole parameter in the motion of a test particle.
Besides, we have shown that the effects arisen from the rotation of the source can be
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balanced (increased or decreased) by its oblateness (quadrupole moment). Moreover we
derived the radii of innermost marginally stable, marginally bound and photon circular
orbits with the same accuracy of the Hartle-Thorne solution. It has been shown that these
results are approximately in agreement with those of Bardeen [13] for the Kerr solution.

2.5 Perspectives

The quadrupole moment of astrophysical compact objects plays a crucial role, as well
as the frame dragging effect, in exploring the motion of test particles. As we can see
from the previous part of this work, the quadrupole moment offers an additional degree
of freedom that allows not only the matching of the different solutions but also the fitting
of observational data. In this respect the Hartle-Thorne solutions, both internal and ex-
ternal, are of high importance. With the help of the HT solutions one can obtain analytic
expressions for the orbital angular velocity, angular momentum, energy and epicyclic fre-
quencies of test particles around compact objects. These quantities are relevant to several
astrophysical phenomena, namely to the observed quasi periodic oscillations (QPOs) in
the X-ray luminosity from black hole candidates and neutron star sources. It is believed
that QPOs data may be used to test the strong field regime of Einstein’s general relativity,
and the physics of super dense matter which neutron stars are made of. This task will be
treated in our forthcoming works.
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Chapter 3

Tidal indicators in the field of a

rotating deformed mass

3.1 Introduction

Relativistic tidal problems have been extensively studied in the literature in a variety of
contexts. Tidal effects are responsible for deformations or even disruption of astrophysical
objects (like ordinary stars but also compact objects like neutron stars) placed in strong
gravitational fields. For instance, they play a central role in the merging of compact
object binaries, which can be accurately modeled only by numerical simulations in full
general relativity, solving the coupled Einstein-hydrodynamics equations needed to evolve
relativistic, self-gravitating fluids [240, 69, 239]. Such tidal disruption events are expected
to happen very frequently in the Universe, leading then to a possible detection of the
associated emission of gravitational waves in the near future by ground-based detectors
[1]. To this end, different analytical and semi-analytical approaches have been developed
to properly describe at least part of the coalescence process and to study the associated
gravitational wave signals [81, 113, 114, 60]. These approaches usually require either Post-
Newtonian techniques or first order perturbation theory. In fact, in this limit the motion
of each individual compact object in the binary system can be treated as the motion of an
extended body in a given gravitational field due to its companion under the assumption
that it causes only a small perturbation on the background [159, 160]. Finally, one can also
be interested in studying the tidal disruption limit of ordinary stars and compact objects
in the field of a black hole (see, e.g., Ref. [119] and references therein). Tidal problems of
this kind can be treated within the so-called tidal approximation, i.e., by assuming that
the mass of the star is much smaller than the black hole mass and that the stellar radius
is smaller than the orbital radius, so that backreaction effects on the background field
can be neglected. Therefore, the star is usually described as a self-gravitating Newtonian
fluid and its center of mass is assumed to move around the black hole along a timelike
geodesic path. The tidal field due to the black hole is then computed from the Riemann
tensor in terms of the geodesic deviation equation.

The role of the observer in relativistic tidal problems has never received enough atten-
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tion in the literature. Nevertheless, it is crucial in interpreting the results. In fact, if tidal
forces are due to curvature, the latter is experienced by observers through the electric
and magnetic parts of the Riemann tensor, which is the only true 4-dimensional invariant
quantity. In contrast, its electric and magnetic parts depend by definition on the choice
of the observers who perform the measurement. In a recent paper [29] we have addressed
such an issue by providing all necessary tools to relate the measurement of tidal effects
by different families of observers. We have considered two “tidal indicators” defined as
the trace of the square of the electric and magnetic parts of the Riemann tensor, respec-
tively. They are both curvature and observer dependent and we have investigated their
properties by considering a number of special observer families in the equatorial plane
of the Kerr spacetime. As an interesting feature we have shown that the electric-type
indicator cannot be made as vanishing with respect to any such observers, whereas the
family of Carter’s observers is the only one who measures zero tidal magnetic indicator.
We have argued that the explanation for this effect relies on the absence of a quadrupole
moment independent on the rotational parameter for the Kerr solution. To answer this
question, as well as to extend the previous analysis to a more general context, we consider
here a solution of the vacuum Einstein field equations due to Quevedo and Mashhoon
[195, 199], which generalizes the Kerr spacetime to include the case of matter with ar-
bitrary mass quadrupole moment and is specified by three parameters, the mass M , the
angular momentum per unit mass a and the quadrupole parameter q. It is its genuine
quadrupole moment content which makes this solution of particular interest here. We will
thus investigate how the shape deformation of the rotating source affects the properties
of tidal indicators with respect to special family of observers, including static observers,
ZAMOs (i.e., zero angular momentum observers) and geodesic observers.

In this chapter latin indices run from 1 to 3 whereas greek indices run from 0 to 3 and
geometrical units are assumed. The metric signature is chosen as +2.

3.2 The gravitational field of a rotating deformed

mass

The exterior gravitational field of a rotating deformed mass can be described by the
Quevedo-Mashhoon (hereafter QM) solution [195, 199]. This is a stationary axisymmet-
ric solution of the vacuum Einstein’s equations belonging to the class of Weyl-Lewis-
Papapetrou [271, 145, 183] and is characterized, in general, by the presence of a naked
singularity. Although the general solution is characterized by an infinite set of gravito-
electric and gravitomagnetic multipoles, we consider here the special solution discussed
in Ref. [198] that involves only three parameters: the mass M , the angular momentum
per unit mass a and the mass quadrupole parameter q of the source.

The corresponding line element in prolate spheroidal coordinates (t, x, y, φ) with x ≥ 1,
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−1 ≤ y ≤ 1 is given by [245]

ds2 = −f(dt− ωdφ)2

+
σ2

f

{

e2γ
(

x2 − y2
)

(

dx2

x2 − 1
+

dy2

1− y2

)

+ (x2 − 1)(1− y2)dφ2

}

, (3.1)

where f , ω and γ are functions of x and y only and σ is a constant. They have the form

f =
R

L
e−2qP2Q2 , ω = −2a− 2σ

M

R
e2qP2Q2 ,

e2γ =
1

4

(

1 +
M

σ

)2
R

x2 − 1
e2γ̂ , (3.2)

where

R = a+a− + b+b− , L = a2+ + b2+ ,

M = αx(1− y2)(e2qδ+ + e2qδ−)a+ + y(x2 − 1)(1− α2e2q(δ++δ−))b+ ,

γ̂ =
1

2
(1 + q)2 ln

x2 − 1

x2 − y2
+ 2q(1− P2)Q1 + q2(1− P2)

[

(1 + P2)(Q
2
1 −Q2

2)

+
1

2
(x2 − 1)(2Q2

2 − 3xQ1Q2 + 3Q0Q2 −Q′
2)

]

. (3.3)

Here Pl(y) and Ql(x) are Legendre polynomials of the first and second kind respectively.
Furthermore

a± = x(1− α2e2q(δ++δ−))± (1 + α2e2q(δ++δ−)) ,

b± = αy(e2qδ+ + e2qδ−)∓ α(e2qδ+ − e2qδ−) ,

δ± =
1

2
ln

(x± y)2

x2 − 1
+

3

2
(1− y2 ∓ xy) +

3

4
[x(1− y2)∓ y(x2 − 1)] ln

x− 1

x+ 1
, (3.4)

the quantity α being a constant

α =
σ −M

a
, σ =

√
M2 − a2 . (3.5)

We limit our analysis here to the case σ > 0, i.e. M > a. In the case σ = 0 the solution
reduces to the extreme Kerr spacetime irrespective of the value of q [199].

The Geroch-Hansen [90, 103] moments are given by

M2k+1 = J2k = 0 , k = 0, 1, 2, ... (3.6)

M0 =M , M2 = −Ma2 +
2

15
qM3

(

1− a2

M2

)3/2

, ... (3.7)

J1 =Ma , J3 = −Ma3 +
4

15
qM3a

(

1− a2

M2

)3/2

, .... (3.8)
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The vanishing of the odd gravitoelectric (Mn) and even gravitomagnetic (Jn) multipole
moments is a consequence of the reflection symmetry of the solution about the hyperplane
y = 0, which we will refer to as “symmetry” (or equivalently “equatorial”) plane hereafter.
Note that these expressions are limiting cases of (1.66) with the Zipoy-Voorhees parameter
δ = 1. From the above expressions we see thatM is the total mass of the body, a represents
the specific angular momentum, and q is related to the deviation from spherical symmetry.
All higher multipole moments can be shown to depend only on the parameters M , a, and
q [198].

Some geometric and physical properties of the QM solution have been analyzed in Ref.
[30]. It turns out that the whole geometric structure of the QM spacetime is drastically
changed in comparison with Kerr spacetime, leading to a number of previously unexplored
physical effects strongly modifying the features of particle motion, especially near the
gravitational source. In fact, the QM solution is characterized by a naked singularity at
x = 1, whose existence critically depends on the value of the quadrupole parameter q. In
the case q = 0 (Kerr solution) x = 1 represents instead an event horizon.

3.2.1 Limiting cases

The QM solution reduces to the Kerr spacetime in the limiting case q → 0, to the Erez-
Rosen spacetime when a → 0 and to the Schwarzschild solution when both parameters
vanish. Furthermore, it has been shown in Ref. [30] that the general form of the QM
solution is equivalent, up to a coordinate transformation, to the exterior vacuum Hartle-
Thorne solution once linearized to first order in the quadrupole parameter and to second
order in the rotation parameter. The limiting cases contained in the general solution thus
suggest that it can be used to describe the exterior asymptotically flat gravitational field
of a rotating body with arbitrary quadrupole moment.

Kerr solution

For vanishing quadrupole parameter we recover the Kerr solution, with functions [245]

fK =
c2x2 + d2y2 − 1

(cx+ 1)2 + d2y2
, ωK = 2a

(cx+ 1)(1− y2)

c2x2 + d2y2 − 1
,

γK =
1

2
ln

(

c2x2 + d2y2 − 1

c2(x2 − y2)

)

, (3.9)

where
c =

σ

M
, d =

a

M
, c2 + d2 = 1 , (3.10)

so that α = (σ −M)/a = (c − 1)/d. Transition of this form of Kerr metric to the more
familiar one associated with Boyer-Lindquist coordinates is accomplished by the map

t = t , x =
r −M

σ
, y = cos θ , φ = φ , (3.11)

so that x = 1 corresponds to the outer horizon r = r+ =M + σ.
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Erez-Rosen solution

Similarly, for vanishing rotation parameter we recover the Erez-Rosen solution [74, 67,
275]. It is a solution of the static Weyl class of solutions (i.e. ω ≡ 0) with functions

fER =
x− 1

x+ 1
e−2qP2Q2 , γER = γ̂ , (3.12)

which reduce to the Schwarzschild solution

fS =
x− 1

x+ 1
, γS =

1

2
ln

(

x2 − 1

x2 − y2

)

(3.13)

when q = 0 too.

Hartle-Thorne solution

The Hartle-Thorne solution is associated with the exterior field of a slowly rotating
slightly deformed object [105, 108]. It is an approximate solution of the vacuum Einstein
equations accurate to second order in the rotation parameter a/M and to first order
in the quadrupole parameter q, generalizing the Lense-Thirring spacetime [144]. The
corresponding metric functions are given by

fHT ≃ x− 1

x+ 1

[

1− q

(

2P2Q2 − ln
x− 1

x+ 1

)]

− x2 + x− 2y2

(x+ 1)3

( a

M

)2

,

ωHT ≃ 2M
1− y2

x− 1

( a

M

)

,

γHT ≃ 1

2
ln

(

x2 − 1

x2 − y2

)

+ 2q(1− P2)Q1 −
1

2

1− y2

x2 − 1

( a

M

)2

, (3.14)

where terms of the order of q(a/M) have also been neglected.

3.3 Circular orbits on the symmetry plane

Let us introduce the ZAMO family of fiducial observers, with four velocity

n = N−1(∂t −Nφ∂φ) , (3.15)

where N = (−gtt)−1/2 and Nφ = gtφ/gφφ are the lapse and shift functions respectively. A
suitable orthonormal frame adapted to ZAMOs is given by

et̂ = n, ex̂ =
1√
gxx

∂x, eŷ =
1

√
gyy

∂y, eφ̂ =
1

√
gφφ

∂φ, (3.16)

with dual

ωt̂ = Ndt , ωx̂ =
√
gxxdx , ωŷ =

√
gyydy , ωφ̂ =

√
gφφ(dφ+Nφdt) . (3.17)
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The 4-velocity U of uniformly rotating circular orbits can be parametrized either by
the (constant) angular velocity with respect to infinity ζ or, equivalently, by the (constant)
linear velocity ν with respect to ZAMOs

U = Γ[∂t + ζ∂φ] = γ[et̂ + νeφ̂], γ = (1− ν2)−1/2 , (3.18)

where Γ is a normalization factor which assures that UαU
α = −1 given by

Γ =
[

N2 − gφφ(ζ +Nφ)2
]−1/2

=
γ

N
(3.19)

and

ζ = −Nφ +
N

√
gφφ

ν. (3.20)

We limit our analysis to the motion on the symmetry plane (y = 0) of the solution
(3.1)–(3.5), where there exists a large variety of special circular orbits [28, 25, 26, 31].

The prolate spheroidal coordinates in which the metric (3.1) is written are adapted
to the Killing symmetries of the spacetime itself and automatically select the family of
static or “threading” observers, i.e. those at rest with respect to the coordinates, following
the time coordinate lines. Threading observers have zero angular velocity, whereas their
relative velocity with respect to ZAMOs is

ζ(thd) = 0 , ν(thd) =
fω

σ
√
x2 − 1

. (3.21)

ZAMOs are instead characterized by

ζ(zamo) = − f 2ω

σ2(x2 − 1)− f 2ω2
, ν(zamo) = 0 . (3.22)

Co-rotating (+) and counter-rotating (−) timelike circular geodesics are characterized
by the following linear velocities

ν(geo)± ≡ ν± =
fC ± [f 2ω2 − σ2(x2 − 1)]

√
D√

x2 − 1σ{fx[f 2ω2 + σ2(x2 − 1)] + 2f(f 2ωωx − σ2x)}
, (3.23)

where

C = −2σ2(x2 − 1)ωfx − f{ωx[f
2ω2 + σ2(x2 − 1)]− 2σ2xω} ,

D = f 4ω2
x − σ2fx[fx(x

2 − 1)− 2xf ] . (3.24)

All quantities in the previous expressions are meant to be evaluated at y = 0. The corre-
sponding timelike conditions |ν±| < 1 together with the reality condition D ≥ 0 identify
the allowed regions for the “radial” coordinate where co/counter-rotating geodesics exist.
We refer to Ref. [30] for a detailed discussion about the effect of the quadrupole moment
on the causality condition. There exists a finite range of values of q wherein timelike
circular geodesics are allowed: q1 < q < q3 for co-rotating and q2 < q < q3 for counter-
rotating circular geodesics. The critical values q1, q2 and q3 of the quadrupole parameter
can be (numerically) determined from Eq. (3.23). For instance, for a fixed distance pa-
rameter x = 4 from the source and the choice of the rotation parameter a/M = 0.5 we
find q1 ≈ −105.59, q2 ≈ −36.29 and q3 ≈ 87.68.
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3.4 Tidal indicators

We investigate here tidal forces, commonly associated with the Riemann tensor and
more specifically with its electric and magnetic parts with respect to a generic timelike
congruence. Let us denote by u the corresponding unit tangent vector.

The electric and magnetic parts of the Weyl tensor Cαβγδ with respect to a generic
timelike congruence with unit tangent vector u are defined as [63]

E(u)αβ = Cαµβνu
µuν , H(u)αβ = −C∗

αµβνu
µuν . (3.25)

These spatial fields are both symmetric and tracefree. The electric part is associated with
tidal gravity, whereas the magnetic part describes differential dragging of inertial frames.
Some tools for visualizing the spacetime curvature through the electric and magnetic
parts of the Weyl tensor have been recently introduced in Ref. [178], where the nonlinear
dynamics of curved spacetime in merging black hole binaries has been investigated by
using numerical simulations. We recall that in a vacuum spacetime, which is just the case
we are considering, the Weyl and Riemann tensors coincide.

The simplest way to built up scalar quantities through the electric and magnetic parts
of the Riemann tensor which are representative of them and serve as “tidal indicators” in
the study of tidal effects is to take the trace of their square. One can then consider the
following electric and magnetic tidal indicators [29]

TE(u) = Tr[E(u)2] , TH(u) = Tr[H(u)2] . (3.26)

They are related to the curvature tensor as well as to the particle/observer undergo-
ing tidal deformations. One could also consider other more involved tidal invariants
constructed from the covariant derivative of the curvature tensor. Such invariants have
received some attention in the recent literature in order to investigate both geometrical
and topological properties of certain classes of static as well as stationary spacetimes (see,
e.g., Refs. [134, 169, 228]). However, in the context of tidal problems differential invari-
ants are of interest only when using Fermi coordinate tidal potential, as discussed in Ref.
[119]. We will not address this problem in the present work.

Let u = n be the unit tangent vector to the ZAMO family of observer given by Eq.
(3.15) with adapted frame (3.16). The relevant nonvanishing frame components of the
electric and magnetic parts of the Riemann tensor are given by E(n)11, E(n)33 and H(n)12
with

E(n)11 + E(n)22 = −E(n)33 . (3.27)

They are listed in Appendix B. The tidal indicators (3.26) then turn out to be given by

TE(n) = 2{[E(n)11]2 + [E(n)22]
2 + E(n)11E(n)22} ,

TH(n) = 2[H(n)12]
2 . (3.28)

Let now U be tangent to a uniformly rotating timelike circular orbit on the symmetry
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plane. We find 1

TE(U) = γ4
{

TE(n)(ν
4 + 1)− 4H(n)12(E(n)11 − E(n)22)ν(ν

2 + 1)

−2ν2([E(n)11]
2 + [E(n)22]

2 + 4E(n)11E(n)22 − 4[H(n)12]
2)
}

,

TH(U) = TH(n)γ
4(ν − ν∗)

2(ν − ν̄∗)
2 , (3.29)

where

ν∗ = W −
√
W 2 − 1 , W =

E(n)11 − E(n)22
2H(n)12

, (3.30)

and we have used the notation ν̄∗ = 1/ν∗. After expliciting the Lorentz factor γ4 =
1/(1− ν2)2 and rearranging terms we can derive from Eq. (3.29) the following relation

TE(U) = TE(n)− TH(n) + TH(U) . (3.31)

This is actually an invariance relation also involving the curvature invariants. In fact, it
is possible to show that

TE(U)− TH(U) =
K

8
= TE(n)− TH(n) , (3.32)

where K is the Kretschmann invariant of the spacetime (evaluated on the equatorial plane
y = 0, see Appendix B), i.e.,

K = CαβγδC
αβγδ

∣

∣

y=0
. (3.33)

Its behavior as a function of the distance parameter is shown in Fig. 3.1(a) for a fixed
value of the rotation parameter and different values of the quadrupole parameter. As
a consequence, since K does not depend on ν, all along the family of circular orbits
parametrized by ν both tidal indicators have their extremal values simultaneously, i.e.,

dTE(U)

dν
=
dTH(U)

dν
. (3.34)

3.4.1 Super-energy density and super-Poynting vector

Bel [17] and Robinson [206] first introduced the Bel-Robinson super-energy-momentum
tensor for the gravitational field in vacuum in terms of the Weyl curvature tensor in
analogy with electromagnetism (see also Refs. [153, 39])

Tαβ
γδ =

1

2
(CαρβσC

γρδσ + ∗Cαρβσ
∗Cγρδσ) . (3.35)

1These relations were first derived in Ref. [29]. Note that the last line of Eq. (4.5) there was misprinted
by an overall minus sign, corrected here. Such a misprint also affected the equivalent form (4.6), which
was but never used.
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(a) (b)

Figure 3.1: The behavior of the Kretchmann invariant K evaluated on the symmetry
plane is shown as a function of the distance parameter for the choice a/M = 0.5 and
different values of q = [−5,−1, 0, 1, 5] in panel (a). Panel (b) shows instead its behavior
as a function of q for different values of x = [1.5, 2, 2.5] Units on the vertical axis are
chosen so that M = 1.

Figure 3.2: The behavior of the linear velocity ν∗ as a function of the distance parameter is
shown for the choice a/M = 0.5 and different values of the quadrupole q = [−5,−1, 0, 1, 5].
The thick black solid curve refers to the Kerr case (q = 0), i.e., to the Carter’s 4-velocity.
Dashed vertical lines correspond to observer horizons.
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The super-energy density and the super-Poynting vector associated with a generic observer
u are given by

E
(g)(u) = Tαβγδu

αuβuγuδ =
1

2
[TE(u) + TH(u)] ,

P (g)(u)α = Tαβγδu
βuγuδ = [E(u)×u H(u)]α , (3.36)

where
[E(u)×u H(u)]α = η(u)αβγE(u)

β
δH(u)δγ (3.37)

and the spatial unit-volume 3-form has been introduced, i.e.,

η(u)αβγ = uµηµαβγ . (3.38)

Bel showed that for Petrov types I and D, an observer always exists for which the
super-Poynting vector vanishes: this observer aligns the electric and magnetic parts of
the Weyl tensor in the sense that they are both diagonalized and therefore commute.
For black hole spacetimes, the Carter’s observer family plays this role at each spacetime
point. The same property is also shared by the observers ν∗ in this more general context.
In fact, the super-Poynting vector for a circularly rotating orbit U turns out to have a
single nonvanishing frame component along eφ̂ given by

P (g)(U)φ̂ =
γ4

2ν∗
TH(n)(ν − ν∗)(ν − ν̄∗)[(1 + ν2∗)(1 + ν2)− 4νν∗] . (3.39)

Furthermore, the orbit associated with ν∗ is also characterized by the following relation
involving the super-energy density (which can be easily evaluated from Eq. (3.29))

dE(g)(U)

dν
= −4γ2P (g)(U)φ̂ , (3.40)

or in terms of the rapidity parameter α such that ν = tanhα

dE(g)(U)

dα
= −4P (g)(U)φ̂ , (3.41)

so remembering the structure of Hamilton’s equations for conjugate variables. The ob-
servers ν∗ thus correspond to vanishing super-Poynting vector and minimal super-energy
density.

3.4.2 Discussion

Eq. (3.29) implies that TH(U) vanishes for ν = ν∗, regardless of the value of the
quadrupole parameter q. The family of observers identified by this 4-velocity plays the
role of Carter’s family in such a generalized Kerr spacetime. In the Kerr case in Boyer-
Lindquist coordinates Carter’s observer velocity is given by

ν(car) =
a
√
∆

r2 + a2
. (3.42)
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(a) (b)

(c) (d)

Figure 3.3: The behaviors of the tidal indicators TE(U) and TH(U) as functions of ν
are shown in panels (a), (c) for q = 0 and (b), (d) for q = 5 respectively for the choice
a/M = 0.5 and different values of the coordinate x = [1.2, 1.5, 2, 2.5, 3, 3.5]. For negative
values of q the behaviors are very similar to the Kerr case. For q increasingly negative the
values of TE(U) at the minimum of each curve increase, whereas the curves corresponding
to TH(U) shrink to the vertical axis. Units on the vertical axis are chosen so that M = 1.
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The main property of Carter’s observers world lines is to be the unique timelike world lines
belonging to the intersection of the Killing two-plane (t, φ) with the two-plane spanned
by the two independent principal null directions of the Kerr spacetime. In contrast, the
QM solution is Petrov type I with four independent principal null directions and hence
the above property is lost.

Fig. 3.2 shows how the behavior of the generalized Carter’s observer velocity ν∗ as
a function of the distance parameter modifies due to the presence of the quadrupole.
Carter’s observers are defined outside the outer event horizon of the Kerr spacetime,
corresponding to x = 1. For negative values of q, the observer horizon associated with
such generalized Carter’s observers is located at a certain value x > 1, which increases as
q becomes increasingly negative. A similar situation occurs also for positive values of q,
but additional allowed branches also appear in the inner region.

In contrast with the Kerr case where Carter’s observers are the only ones who measure
zero magnetic tidal indicator, this property is shared here also by other observer families
for special values of q. This is evident from Figs. 3.3 and 3.4, where the behaviors of
the tidal indicators as functions of ν are shown for a fixed value of the quadrupole and
different values of the distance parameter in comparison with the Kerr case (Fig. 3.3)
and for a fixed value of x and different values of q (Fig. 3.4). In fact, we see that TH(U)
vanishes many times for different values of ν corresponding either to different x with fixed
q, or to different q with fixed x.

Correspondingly the electric type tidal indicator takes its minimum value, which can
be further reduced by suitably choosing the quadrupole parameter, but cannot be made
vanishing. In fact, the invariant relation (3.32) implies for instance that TE(U) is minimum
when TH(U) = 0 and K is mimimum as well. Fig. 3.1(b) shows the behavior of K as
a function of q for different values of the distance parameter. K reaches an absolute
minimum only for positive values of q, which increase for increasing x. The behaviors of
the tidal indicators as measured by ZAMOs, static and geodesic observers are shown in
Figs. 3.3–3.5, respectively, as functions of the distance parameter for different values of
q. The behavior is Kerr-like for negative values of q. For positive values of q instead the
situation significantly modifies with respect to the Kerr case, the magnetic tidal indicator
vanishing many times and correspondingly the electric tidal indicator showing a damped
oscillating behavior.

3.4.3 Limit of slow rotation and small deformation

Let us consider the limiting case of the Hartle-Thorne metric written in terms of the
more familiar Boyer-Lindquist coordinates according to the transformation (3.11). Terms
of the order a3, q2, aq and higher are then neglected in all formulas listed below. The
relevant nonvanishing ZAMO frame components of the electric and magnetic parts of the
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(a) (b)

Figure 3.4: The behaviors of the tidal indicators TE(U) and TH(U) as functions of ν are
shown in panels (a) and (b) respectively for the choice a/M = 0.5, with a fixed value
x = 2 of the distance parameter and different values of q = [−10,−5, 0, 5, 10]. Units on
the vertical axis are chosen so that M = 1.

(a) (b)

Figure 3.5: The behaviors of the tidal indicators TE(U) and TH(U) as measured by
ZAMOs are shown as functions of the distance parameter for the choice a/M = 0.5 and
different values of q = [−1, 0, 1]. Dashed curves correspond to the Kerr case (i.e., q = 0).
Units on the vertical axis are chosen so that M = 1.



46 Tidal indicators in the field of a rotating deformed mass

(a) (b)

Figure 3.6: The behaviors of the tidal indicators TE(U) and TH(U) as measured by static
observers are shown as functions of the distance parameter for the choice a/M = 0.5 and
different values of q = [−1, 0, 1]. Dashed curves correspond to the Kerr case (i.e., q = 0).
Units on the vertical axis are chosen so that M = 1.

Riemann tensor are given by

E(n)11 = −2M

r3
− 3a2M

r5
N2 + q

[

6(r2 − 3Mr + 4M2)

Mr3
Q1 −

3r − 10M

r3
Q2

+
4M

r3
lnN

]

,

E(n)33 =
M

r3
+ q

[

3(7M3 − 9rM2 + 5r2M − r3)

Mr3(r − 2M)
Q1 +

3r2 − 11Mr + 7M2

r3(r − 2M)
Q2

−2M

r3
lnN

]

,

H(n)12 = −3aM

r4
N , (3.43)

where N =
√

1− 2M/r and Q1 = Q1(r/M − 1) and Q2 = Q2(r/M − 1) are Legendre
functions. The Kretschmann invariant on the symmetry plane is

K =
48M2

r6

{

1− q

[

6(r2 − 3Mr + 4M2)

M2
Q1 −

3r − 10M

M
Q2 + 4 lnN

]}

. (3.44)
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(a) (b)

(c) (d)

Figure 3.7: The behaviors of the tidal indicators TE(U) and TH(U) as measured by
geodesic observers are shown as functions of the distance parameter for the choice a/M =
0.5 and different values of q = [−10,−1, 0, 1, 10]. Panels (a)–(b) and (c)–(d) correspond
to the co-rotating and counter-rotating case respectively. Dashed curves correspond to
the Kerr case (i.e., q = 0). Units on the vertical axis are chosen so that M = 1.
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Generalized Carter’s observers have 4-velocity ν∗ = aN/r, whereas static observers are
characterized by ν(thd) = −2aM/r2N and geodesics observers by

ν(geo)± = ±
√

M

r

1

N

[

1 +
a2

2N2r4
(r2 + 2Mr − 12M2)

]

− 3aM

r2N

∓3

2
q
(r −M)2

N3
√
Mr3

[( r

M
− 1

)

Q1 −Q2

]

. (3.45)

We list below the expression for TH(U) corresponding to the different families of
observers considered above:

TH(n) =
18a2M2

r8
N2 ,

TH(u(thd)) =
18a2M2

r8
1

N2
,

TH(u∗) = 0 ,

TH(u(geo)±) =
18M3

r5
N2

(r − 3M)2
∓ 36aM2N

2

r5

√

M

r

r −M

(r − 3M)3

+
18a2M2

r7
1
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(r3 +Mr2 − 13M2r + 15M3)

−q
[

72M3
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+
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r6
1
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−18M2

r6
1
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(5r3 − 29Mr2 + 73M2r − 69M3)Q2

]

. (3.46)

Note that TH(n) and TH(u(thd)) do not depend on q, in this limit, in contrast to the
general case. This is a consequence of the series expansion in the parameters a/M and q,
so that terms of the order of q(a/M) have also been neglected.

Finally, in the weak field limit M/r ≪ 1 the previous expressions have the following
asymptotic forms (up to the order (M/r)10)

TH(n) ≃ 18a2M2

r8

(

1− 2M

r

)

,

TH(u(thd)) ≃ 18a2M2
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}

. (3.47)
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3.5 Multipole moments and tidal Love numbers

Although the merging of compact objects can be accurately modeled only by numerical
simulations in full general relativity, there is a variety of analytical and semi-analytical
approaches which allow to properly describe at least part of the coalescence process and
to study the associated gravitational wave signals (see, e.g., Refs. [81, 113, 114, 60]). The
effect of the tidal interaction on the orbital motion and the gravitational wave signal is
measured by a quantity known as the tidal Love number of each companion.

In Newtonian gravity, where it has been introduced [152], the Love number is a con-
stant of proportionality between the external tidal field applied to the body and the
resulting multipole moment of its mass distribution. In a relativistic context instead
Flanagan and Hinderer [81, 113, 114] estimated the tidal responses of a neutron star to
the external tidal solicitation of its companion, showing that the Love number is po-
tentially measurable in gravitational wave signals from the early regime of the inspiral
through Earth-based detectors.

The relativistic theory of Love numbers has been developed by Binnington and Poisson
[32] and Damour and Nagar [59]. They classified tidal Love numbers into two types:
an electric-type Love number having a direct analogy with the Newtonian one, and a
magnetic-type Love number with no analogue in Newtonian gravity, already introduced
in Post-Newtonian theory by Damour, Soffel and Xu [61]. Damour and Lecian [58] also
defined a third class of Love numbers, i.e., the “shape” Love numbers, measuring the
distortion of the shape of the surface of a star by an external gravito-electric tidal field.
The relativistic Love numbers are defined within the context of linear perturbation theory,
in which an initially spherical body is perturbed slightly by an applied tidal field. Tidal
fields are assumed to change slowly with time, so that only stationary perturbations are
considered. Computing the Love numbers requires the construction of the metric also
in the interior of the body and its matching with the external metric at the perturbed
boundary of the matter distribution. Therefore, the internal problem depends on the
choice of the stellar model, i.e., on the selected equation of state, whereas the external
problem applies to a body of any kind.

Consider a massive body placed in a static, external tidal gravitational field, which
is characterized by the electric part of the associated Riemann tensor. This tidal field
will deform the body which will develop in response a gravitational mass quadrupole
moment (and higher moments). The components of the tidal field, quadrupole moment
and total mass of the body will enter as coefficients the power series expansion of the
spacetime metric in the body local asymptotic rest frame [259, 113, 114]. For an iso-
lated body in a static situation these moments are uniquely defined. They are just the
coordinate-independent moments defined by Geroch and Hansen [90, 103] for stationary,
asymptotically flat spacetimes (see Eqs. (3.7)–(3.8)).

Tidal effects in relativistic binary system dynamics have been recently investigated
in the framework of Post-Newtonian theory (see Ref. [27] and references therein). They
have computed tidal indicators of both electric and magnetic types within the so called
“effective one body approach” suitably modified to include tidal effects in the formalism,
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so improving the analytical description of the late inspiral dynamics with respect to
previous works (see, e.g., Ref. [60]). In order to relate our results with the analysis done
in Ref. [27], consider, for instance, the electric-type tidal indicator. In the case of geodesic
orbits and in absence of rotation we find in the weak field limit the following approximate
expression (up to terms of the order (M/r)8)

TE(u(geo)±) ≃
6M2

r6

[

1− 2q +
3M

r
(1− q)

]

, (3.48)

which can then be rewritten passing to harmonic coordinates r = rh +M and restoring
the physical mass parameter [105, 108], i.e., M =M(1− q), as

TE(u(geo)±) ≃
6M2

r6h

[

1− 3M

rh

]

. (3.49)

The same quantity (termed Ja in Ref. [27], see Eq. (4.14) there) as above for the binary
system at 1 PN order reads as

TE(u(geo)±) ≃
6M2X2

2

r6h

[

1 +
(X1 − 3)M

rh

]

, (3.50)

where evaluation is performed in the center of mass system using harmonic coordinates and
the mass of the two bodies are encoded in the parameters X1 = m1/M and X2 = m2/M,
with M = m1 + m2. In the limit X1 = 0 (X2 = 1) the two expressions coincide, as
expected.

3.6 Conclusions

We have discussed the observer-dependent character of tidal effects associated with
the electric and magnetic parts of the Riemann tensor with respect to an arbitrary family
of observers in a generic spacetime. Our considerations have then been specialized to
the Quevedo-Mashhoon solution describing the gravitational field of a rotating deformed
mass and to the family of stationary circularly rotating observers on the equatorial plane.
This family includes static, ZAMOs and geodesic observers and for each of them we
have evaluated certain tidal indicators built up through the electric and magnetic parts
of the Riemann tensor. The main difference from the Kerr case examined in a previous
paper is due to the presence of a genuine quadrupolar structure of the background solution
adopted here: the total quadrupole moment of the source is not depending on the rotation
parameter only, but there is also a further contribution due to the shape deformation
directly related to the mass through a new mass quadrupole parameter, q. The properties
of tidal indicators strongly depend on this new parameter. We have found that there exists
a family of circularly rotating orbits associated with ν = ν∗ along which the magnetic
tidal indicator vanishes identically as in the Kerr case, playing the same role as Carter’s
observers there. For special values of q this property is also shared by other observer
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families, a novelty in comparison with the Kerr case. However, still no observer family
can be found for which the electric tidal indicator vanishes, a fact that can be explained in
terms of curvature invariants. The tidal electric indicator can be but extremized several
times close to the source, showing also a damped oscillating behavior.

We have also investigated the relation between tidal indicators and Bel-Robinson ten-
sor, i.e., observer-dependent super-energy density and super-Poynting vector. We have
shown that the super-Poynting vector identically vanishes for ν = ν∗ leading to minimal
gravitational super-energy as seen by such a generalized Carter’s observer within the fam-
ily of all circularly rotating observers at each spacetime point, a property already known
to characterize Carter’s observers in the case of black hole spacetimes.

3.7 Perspectives

It is important to study relativistic tidal problems in different contexts and the possi-
bility to apply the approach presented here, in order to better understand the role of the
observers, measuring such a kind of effects. These effects result in deforming and even
tidally disrupting astrophysical objects, like ordinary stars but also compact objects like
neutron stars. It is also widely believed that such tidal disruption events occur very fre-
quently in the Universe, leading then to a possible detection of the associated emission of
gravitational waves in the near future by ground-based detectors such as LIGO or VIRGO
and their advanced versions [1]. In this line, the further development of the current work
is of high importance and relevance.
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Chapter 4

On general relativistic uniformly

rotating white dwarfs

4.1 Introduction

The relevance of rotation in enhancing the maximum stable mass of a white dwarf
(WD) have been discussed for many years both for uniform rotation (see e.g. [121, 7,
215, 166, 91]) and differential rotation (see e.g. [176, 177, 252, 73]). Newtonian gravity
and post-Newtonian approximation have been mainly used to compute the structure of
the star, with the exception of the work of [11], where rotating white dwarfs (RWDs)
were computed in full General Relativity (GR). From the microscopical point of view,
the equation of state (EOS) of cold WD matter has been assumed to be either the one
of a microscopically uniform degenerate electron fluid used by [53] in his classic work, or
assumed to have a polytropic form.

However, as shown first by [229] in the Newtonian case and then by [210, 209] in
General Relativity (GR), a detailed description of the EOS taking into account the effects
of the Coulomb interaction are essential for the determination of the maximum stable
mass of non-rotating WDs. Specific microphysics of the ion-electron system forming a
Coulomb lattice, together with the detail computation of the inverse β-decays and the
pycnonuclear reaction rates, play a fundamental role.

A new EOS taking into account the finite size of the nucleus, the Coulomb interactions,
and the electroweak equilibrium in a self-consistent relativistic fashion has been recently
obtained by [210]. This relativistic Feynman-Metropolis-Teller (RFMT) EOS generalizes
both the [53] and [229] works in that a full treatment of the Coulomb interaction is
given through the solution of a relativistic Thomas-Fermi model. This leads to a more
accurate calculation of the energy and pressure of the Wigner-Seitz cells, hence a more
accurate EOS. It has been shown how the Salpeter EOS overestimates at high densities
and underestimates at low densities the electron pressure. The application of this new
EOS to the structure of non-rotating 4He, 12C, 16O and 56Fe was recently done in [209].
The new mass-radius relations generalize the works of [53] and [102]; smaller maximum
masses and a larger minimum radii are obtained. Both GR and inverse β-decay can be
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relevant for the instability of non-rotating WDs depending on the nuclear composition,
as we can see from Table 4.1, which summarizes some results of [209].

Composition ρcrit (g/cm
3) Instability MJ=0

max/M⊙
4He 1.56× 1010 GR 1.40906
12C 2.12× 1010 GR 1.38603
16O 1.94× 1010 inverse β-decay 1.38024
56Fe 1.18× 109 inverse β-decay 1.10618

Table 4.1: Critical density and mass for the gravitational collapse of non-rotating 4He,
12C, 16O and 56Fe WDs in GR obtained by [209], based on the RFMT EOS [210]. We
indicate in the third column if the critical density is due either to inverse β-decay or to
general relativistic effects.

We here extend the previous results of [209] for uniformly RWDs at zero temperatures
obeying the RFMT EOS. We use the Hartle’s approach [105] to solve the Einstein equa-
tions accurately up to second order approximation in the angular velocity of the star. We
calculate the mass M , equatorial Req and polar Rp radii, angular momentum J , eccen-
tricity ǫ, and quadrupole moment Q, as a function of the central density ρc and rotation
angular velocity Ω of the WD. We construct also RWD models for the Chandrasekhar
and Salpeter EOS and compare and contrast the differences with the RFMT ones.

We analyze in detail the stability of RWDs both from the microscopic and macroscopic
point of view in Sec. 4.3. Besides the inverse β-decay instability, we also study the limits
to the matter density imposed by zero-temperature pycnonuclear fusion reactions using
up-to-date theoretical models [89, 274]. The mass-shedding limit as well as the secular
axisymmetric instability boundary are calculated.

The general structure and stability boundaries of 4He, 12C, 16O and 56Fe WDs are
discussed in in Sec. 4.4. From the maximally rotating models (mass-shedding sequence),
we calculate in Sec. 4.5 the maximum mass of uniformly rotating 4He, 12C, 16O and
56Fe WDs for the Chandrasekhar, Salpeter, and RFMT EOS, and compare the results
with the existing values in the literature. We calculate the minimum(maximum) rotation
period(frequency) of a RWD for the above nuclear compositions, taking into account both
inverse β-decay and pycnonuclear restrictions to the density; see Sec. 4.6.

We discuss in Sec. 4.7 the axisymmetric instabilities found in this work. A comparison
of Newtonian and general relativistic WDs presented in App. C.2 show that this is indeed a
general relativistic effect. Furthermore, we estimate in App. C.3 the accuracy of the “slow”
rotation approximation (power-series solutions up to order Ω2) for the determination
of the maximally rotating sequence of WDs. In this line, we calculate the rotation to
gravitational energy ratio and the deviations from spherical symmetry.

In addition, we construct in Sec. 4.8 constant rest-mass evolution tracks of RWDs
at fixed chemical composition and show that RWDs may experience both spin-up and
spin-down epochs while loosing angular momentum, depending on their initial mass and
rotation period.

Finally, in Sec. 4.9 we outline some astrophysical implications of the results presented
in this work, which we summarized in Sec. 4.10.



4.2 Spacetime geometry and Hartle’s formalism 55

4.2 Spacetime geometry and Hartle’s formalism

[105] described for the first time the structure of rotating objects approximately up
to second order terms in the angular velocity of the star Ω, within GR. In this “slow”
rotation approximation, the solution of the Einstein equations in the exterior vacuum can
be written in analytic closed form in terms of the total mass M , angular momentum J
and quadrupole moment Q of the star (see App. C). The interior metric is constructed
by solving numerically a system of ordinary differential equations for the perturbation
functions (see for details [105, 108]).

The spacetime geometry up to order Ω2, with an appropriate choice of coordinates is,
in geometrical units c = G = 1, described by [105]

ds2 =
{

eν(r)[1 + 2h0(r) + 2h2(r)P2(cos θ)]− ω2r2 sin2 θ
}

dt2

+2ωr2 sin2 θdtdφ− eλ(r)
[

1 + 2
m0(r) +m2(r)P2(cos θ)

r −MJ=0(r)

]

dr2

−r2 [1 + 2k2(r)P2(cos θ)] (dθ
2 + sin2 θdφ2) , (4.1)

where P2(cos θ) is the Legendre polynomial of second order, eν(r) and eλ(r) = [1 −
2MJ=0(r)/r]−1, and MJ=0(r) are the metric functions and mass of the corresponding
static (non-rotating) solution with the same central density as the rotating one. The
angular velocity of local inertial frames ω(r), proportional to Ω, as well as the functions
h0, h2, m0, m2, k2, proportional to Ω2, must be calculated from the Einstein equations
(see for details [105, 108]); their analytic expressions in the vacuum case can be found in
App. C.

The parameters M , J and Q, are then obtained for a given EOS from the matching
procedure between the internal and external solutions at the surface of the rotating star.
The total mass is defined byM =MJ 6=0 =MJ=0+δM , whereMJ=0 is the mass of a static
(non-rotating) WD with the same central density as MJ 6=0, and δM is the contribution
to the mass due to rotation.

4.3 Limits on the stability of rotating white dwarfs

4.3.1 The mass-shedding limit

The velocity of particles on the equator of the star cannot exceed the Keplerian velocity
of “free” particles, computed at the same location. In this limit, particles on the star’s
surface keep bound to the star only due to a balance between gravity and centrifugal
forces. The evolution of a star rotating at this Keplerian rate is accompanied by loss of
mass, becoming thus unstable (see e.g. see e.g. stergioulas). A procedure to obtain the
maximum possible angular velocity of the star before reaching this limit was developed
e.g. by [85]. However, in practice, it is less complicated to compute the mass-shedding
(or Keplerian) angular velocity of a rotating star, ΩJ 6=0

K , by calculating the orbital angular
velocity of a test particle in the external field of the star and corotating with it at its
equatorial radius, r = Req.
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For the Hartle-Thorne external solution, the Keplerian angular velocity can be written
as (see e.g. [261, 24] and App. C.0.2, for details)

ΩJ 6=0
K =

√

M

R3
eq

[

1− jF1(Req) + j2F2(Req) + qF3(Req)
]

, (4.2)

where j = cJ/(GM2) and q = c4Q/(G2M3) are the dimensionless angular momentum
and quadrupole moment, and the functions Fi(r) are defined in App. C.0.2. Thus, the
numerical value of ΩJ 6=0

K can be computed by gradually increasing the value of the angular
velocity of the star, Ω, until it reaches the value ΩJ 6=0

K expressed by Eq. (4.2).
It is important to analyze the issue of the accuracy of the slow rotation approximations,

e.g. accurate up to second order in the rotation expansion parameter, for the description of
maximally rotating stars as WDs and neutron stars (NSs). We have performed in App. C.3
a scrutiny of the actual physical request made by the slow rotation regime. Based on this
analysis, we have checked that the accuracy of the slow rotation approximation increases
with the density of the WD, and that the mass-shedding (Keplerian) sequence of RWDs
can be accurately described by the Ω2 approximation within an error smaller than the
one found for rapidly rotating NSs, . 6%.

4.3.2 The turning-point criterion

In a sequence of increasing central density the mass of non-rotating star is limited by
the first maximum of the M -ρc curve, i.e. the turning-point given by the maximum mass,
∂M/∂ρc = 0, marks the secular instability point and it coincides also with the dynamical
instability point if the perturbation obeys the same EOS as of the equilibrium configu-
ration (see e.g. [235] for details). The situations is, however, much more complicated in
the case of rotating stars; the determination of axisymmetric dynamical instability points
implies to find the perturbed solutions with zero frequency modes, that is, perturbed
configurations whose energy (mass) is the same as the unperturbed (equilibrium) one,
at second order. However, [84] formulated, based on the works of [241, 242], a turning-
point method to locate the points where secular instability sets in for uniformly rotating
relativistic stars: along a sequence of rotating stars with fixed angular momentum and
increasing central density, the onset of secular axisymmetric instability is given by

(

∂M(ρc, J)

∂ρc

)

J

= 0 . (4.3)

Thus, configurations on the right-side of the maximum mass of a J-constant sequence
are secularly unstable. After the secular instability sets in, the configuration evolves quasi-
stationarily until it reaches a point of dynamical instability where gravitational collapse
should take place (see [246] and references therein). The secular instability boundary thus
separates stable from unstable stars. It is worth stressing here that the turning-point of
a constant J sequence is a sufficient but not a necessary condition for secular instability
and therefore it establishes an absolute upper bound for the mass (at constant J). We
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Decay ǫβZ (MeV) ρβ
crit

(g/cm3)
4He →3 H + n → 4n 20.596 1.39× 1011

12C →12B →12Be 13.370 3.97× 1010
16O →16N →16C 10.419 1.94× 1010

56Fe →56Mn →56Cr 3.695 1.18× 109

Table 4.2: Onset for the inverse β-decay of 4He, 12C, 16O and 56Fe. The experimental
values of the threshold energies ǫβZ have been taken from Table 1 of [12]; see also [268, 235].
The corresponding critical density ρβcrit are for the RFMT EOS [209]

.

construct the boundary given by the turning-points of constant angular momentum se-
quences as given by Eq. (4.3). The question whether dynamically unstable RWDs can
exist or not on the left-side of the turning-point boundary remains an interesting problem
and deserves further attention in view of the very recent results obtained by [250] for some
models of rapidly rotating NSs.

4.3.3 Inverse beta-decay instability

It is known that a WD might become unstable against the inverse β-decay process
(Z,A) → (Z − 1, A) through the capture of energetic electrons. In order to trigger such
a process, the electron Fermi energy (with the rest-mass subtracted off) must be larger
than the mass difference between the initial (Z,A) and final (Z − 1, A) nucleus. We
denote this threshold energy as ǫβZ . Usually it is satisfied ǫβZ−1 < ǫβZ and therefore the
initial nucleus undergoes two successive decays, i.e. (Z,A) → (Z − 1, A) → (Z − 2, A)
(see e.g. [229, 235]). Some of the possible decay channels in WDs with the corresponding
known experimental threshold energies ǫβZ are listed in Table 4.2. The electrons in the
WD may eventually reach the threshold energy to trigger a given decay at some critical
density ρβcrit. Since the electrons are responsible for the internal pressure of the WD,
configurations with ρ > ρβcrit become unstable due to the softening of the EOS as a result
of the electron capture process (see [104, 229] for details). In Table 4.2, correspondingly
to each threshold energy ǫβZ , the critical density ρβcrit given by the RFMT EOS is shown;
see [209] for details.

4.3.4 Pycnonuclear fusion reactions

In our WD model, we assume a unique nuclear composition (Z,A) throughout the
star. We have just seen that inverse β-decay imposes a limit to the density of the WD
over which the current nuclear composition changes from (Z,A) to (Z − 1, A). There is
an additional limit to the nuclear composition of a WD. Nuclear reactions proceed with
the overcoming of the Coulomb barrier by the nuclei in the lattice. In the presence case
of zero temperatures T = 0, the Coulomb barrier can be overcome because the zero-point
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energy of the nuclei (see e.g. [235])

Ep = ~ωp , ωp =

√

4πe2Z2ρ

A2M2
u

, (4.4)

where e is the fundamental charge and Mu = 1.6605× 10−24 g is the atomic mass unit.
Based on the pycnonuclear rates computed by [276] and [50], [229] estimated that in

a time of 0.1 Myr, 1H is converted into 4He at ρ ∼ 5 × 104 g cm−3, 4He into 12C at
ρ ∼ 8× 108 g cm−3, and 12C into 24Mg at ρ ∼ 6× 109 g cm−3. The threshold density for
the pycnonuclear fusion of 16O occurs, for the same reaction time 0.1 Myr, at ρ ∼ 3×1011

g cm−3, and for 10 Gyr at ∼ 1011 g cm−3. These densities are much higher that the
corresponding density for inverse β-decay of 16O, ρ ∼ 1.9 × 1010 g cm−3 (see Table 4.2).
The same argument applies to heavier compositions e.g. 56Fe; so pycnonuclear reactions
are not important for heavier than 12C in WDs.

It is important to analyze the case of 4He WDs in detail. At densities ρpyc ∼ 8× 108

g cm−3 a 4He WD should have a mass M ∼ 1.35M⊙ (see e.g. Fig. 3 in [209]). However,
the mass of 4He WDs is constrained to lower values from their previous thermonuclear
evolution: a cold star with mass > 0.5M⊙ have already burned an appreciable part of
its Helium content at earlier stages. Thus, WDs of M > 0.5M⊙ with 4He cores are very
unlikely (see [102] for details). It should be stressed that 4He WDs with M . 0.5M⊙

have central densities ρ ∼ 106 g cm−3 [209] and at such densities pycnonuclear reaction
times are longer than 10 Gyr, hence unimportant. However, we construct in this work
4He RWDs configurations all the way up to their inverse β-decay limiting density for the
sake of completeness, keeping in mind that the theoretical 4He WDs configurations with
M & 0.5M⊙ could actually not be present in any astrophysical system.

From the above discussion we conclude that pycnonuclear reactions can be relevant
only for 12CWDs. It is important to stress here that the reason for which the pycnonuclear
reaction time, τC+C

pyc , determines the lifetime of a 12C WD is that reaction times τC+C
pyc < 10

Gyr are achieved at densities ∼ 1010 g cm−3, lower than the inverse β decay threshold
density of 24Mg, 24Mg→24Na→24Ne, ρ ∼ 3.2 × 109 g cm−3 (see e.g. [229, 235]). Thus,
the pycnonuclear 12C+12C fusion produces unstable 24Mg that almost instantaneously
decay owing to electron captures, and so the WD becomes unstable as we discussed in
Subsec. 4.3.1.

However, the pycnonuclear reaction rates are not known with precision due to theo-
retical and experimental uncertainties. [102] had already pointed out in their work that
the above pycnonuclear density thresholds are reliable only within a factor 3 or 4. The
uncertainties are related to the precise knowledge of the Coulomb tunneling in the high
density low temperature regime relevant to astrophysical systems, e.g. WDs and NSs, as
well as with the precise structure of the lattice; impurities, crystal imperfections, as well
as the inhomogeneities of the local electron distribution and finite temperature effects,
also affect the reaction rates. The energies for which the so-called astrophysical S-factors
are known from experiments are larger with respect to the energies found in WD and NS
crusts, and therefore the value of the S-factors have to be obtained theoretically from
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Figure 4.1: Pycnonuclear reaction times at zero temperature for C+C fusion as a function
of the density.

the extrapolation of experimental values using appropriate nuclear models, which at the
same time are poorly constrained. A detailed comparison between the different theoret-
ical methods and approximations used for the computation of the pycnonuclear reaction
rates can be found in [89, 274].

The S-factors have been computed in [89, 274] using up-to-date nuclear models. Fol-
lowing these works, we have computed the pycnonuclear reaction times for C+C fusion
as a function of the density as given by Eq. (C.14), τC+C

pyc , which we show in Fig. 4.1; we
refer to App. C.1 for details.

We obtain that for τC+C
pyc = 10 Gyr, ρpyc ∼ 9.26 × 109 g cm−3 while, for τC+C

pyc = 0.1
Myr, ρpyc ∼ 1.59 × 1010 g cm−3, to be compared with the value ρ ∼ 6 × 109 g cm−3

estimated by [229]. In order to compare the threshold densities for inverse β-decay and
pycnonuclear fusion rates, we shall indicate in our mass-density and mass-radius relations
the above two density values corresponding to these two lifetimes. It is important to keep
in mind that [89] estimated that the S-factors are reliable within a factor ∼ 3.5, so the
density is reliable within the same factor. If three times larger, the above value of ρpyc
for τC+C

pyc = 0.1 Myr becomes ρpyc ∼ 4.8 × 1010 g cm−3, larger than the inverse β-decay
threshold density ρCβ ∼ 3.97×1010 g cm−3 (see Table 4.2). As we will see, the turning-point
construction leads to an axisymmetric instability boundary between 2.12× 1010 < ρ < ρCβ
g cm−3 for a specific range of angular velocities; a range of densities particularly close to
the above value of ρpyc.
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4.4 WD structure and stability boundaries

The structure of uniformly RWDs have been studied by several authors (see [121, 7,
215, 166, 91]). The issue of the stability of both uniformly and differentially rotating WDs
has been studied as well (see e.g. [176, 177, 252, 73]). All the above computations were
carried out within Newtonian gravity or at the post-Newtonian approximation. The EOS
of cold WD matter has been assumed to be either the one of a microscopically uniform
degenerate electron fluid, which we refer hereafter as Chandrasekhar EOS [53], or assum-
ing a polytropic EOS. However, microscopic screening caused by Coulomb interactions as
well as the process of inverse β-decay of the composing nuclei cannot be properly studied
within such EOS (see [210, 209] for details).

The role of general relativistic effects, shown in [209], has been neglected in all the
above precedent literature. The only exception to this rule is, up to our knowledge, the
work of [11], who investigated uniformly RWDs for the Chandrasekhar EOS within GR.
They use an Ω2 approximation following a method developed by [234], independently of
the work of [105]. A detailed comparison of our results with the ones of [11] can be found
in App. C.2.

In Figs. 4.2–4.3 we show the mass-central density relation and the mass-radius relation
of general relativistic rotating 12C and 16O WDs. We explicitly show the boundaries
of mass-shedding, secular axisymmetric instability, inverse β-decay, and pycnonculear
reactions.

Turning now to the rotation properties, in Fig. 4.4 we show the J-M plane especially
focusing on RWDs with masses larger than the maximum non-rotating mass, hereafter
Super-Chandrasekhar WDs (SCWDs). It becomes clear from this diagram that SCWDs
can be stable only by virtue of their non-zero angular momentum: the lower-half of the
stability line of Fig. 4.4, from J = 0 at M/MJ=0

max all the way up to the value of J at
MJ 6=0

max ∼ 1.06MJ=0
max , determines the critical(minimum) angular momentum under which a

SCWDs becomes unstable. The upper half of the stability line determines, instead, the
maximum angular momentum that SCWDs can have.

4.5 The maximum mass

The maximummasses of rotatingWDs belongs to the Keplerian sequence (see Figs. 4.2–
4.4) and it can be expressed as

MJ 6=0
max = kMJ=0

max , (4.5)

whereMJ=0
max is the maximum stable mass of non-rotating WDs and k is a numerical factor

that depends on the chemical composition, see Table 4.3 for details. For 4He, 12C, 16O,
and 56Fe RWDs, we found MJ 6=0

max ∼ 1.500, 1.474, 1.467, 1.202 M⊙, respectively.
In Table 4.4 we compare the properties of the configuration with maximum mass using

different EOS, namely Chandrasekhar µ = 2 (see e.g. [44]), Salpeter, and RFMT EOS.
A comparison with classical results obtained with different treatments and EOS can be
found in App. C.2.
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Figure 4.2: Mass in solar masses versus the central density for 12C (top panel) and for
16O (bottom panel) WDs. The solid curve corresponds to the mass of non-rotating WDs,
the Keplerian sequence is the red thick dashed curve, the blue thick dotted-dashed curve
is the inverse β instability boundary, and the green thick solid curve is the axisymmetric
secular instability boundary. The orange and purple dashed boundaries correspond to the
pycnonuclear densities for reaction times τpyc = 10 Gyr and 0.1 Myr, respectively. All
rotating stable WDs are in the shaded region.
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for the same range of central densities of the corresponding panels of Fig. 4.2.
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Comp. ρ
M

J 6=0

max

k MJ=0

max/M⊙ RMJ=0
max

Pmin RPmin

p RPmin

eq (T/|W |)Pmin ǫPmin

4He 5.46×109 1.0646 1.40906 1163 0.284 564 736 0.0163 0.642
12C 6.95×109 1.0632 1.38603 1051 0.501 817 1071 0.0181 0.647
16O 7.68×109 1.0626 1.38024 1076 0.687 1005 1323 0.0194 0.651
56Fe 1.18×109 1.0864 1.10618 2181 2.195 2000 2686 0.0278 0.667

Table 4.3: Properties of uniformly rotating general relativistic 4He, 12C, 16O and 56Fe
WDs: Comp. stands for nuclear composition, ρMJ 6=0

max
is the central density in g cm−3

corresponding to the rotating maximum mass MJ 6=0
max ; k is the dimensionless factor used

to express the rotating maximum mass MJ 6=0
max as a function of the non-rotating maxi-

mum mass MJ=0
max of WDs, in solar masses, obtained in [209], as defined in Eq. (4.5); the

corresponding minimum radius is RMJ=0
max

, in km; Pmin is the minimum rotation period
in seconds. It is worth recalling that the configuration with Pmin is obtained for a WD
rotating at the mass-shedding limit and with central density equal to the critical density
for inverse β-decay (see Table 4.2 and the right panel of Fig. 4.6). The polar RPmin

p and
equatorial RPmin

eq radii of the configuration with Pmin are also given in km. The quantity
(T/|W |)Pmin is the ratio between the kinetic and binding energies, the parameter ǫPmin is
the eccentricity of the star, rotating at Pmin.

Comp. EOS ρ
M

J 6=0

max

(g/cm3) R
MJ 6=0

max

p (km) R
MJ 6=0

max

eq (km) MJ 6=0

max/M⊙ PMJ 6=0

max (sec)

µ = 2 Chandra 1.07× 1010 1198.91 1583.47 1.5159 0.884

Salpeter 1.07× 1010 1193.08 1575.94 1.4996 0.883
4He RFMT 5.46× 109 1458.58 1932.59 1.5001 1.199

Salpeter 1.08× 1010 1183.99 1564.16 1.4833 0.878
12C RFMT 6.95× 109 1349.15 1785.98 1.4736 1.074

Salpeter 1.09× 1010 1178.88 1556.68 1.4773 0.875
16O RFMT 7.68× 109 1308.09 1730.65 1.4667 1.027

Salpeter 1.14× 109 2002.43 2693.17 1.2050 2.202
56Fe RFMT 1.18× 109 2000.11 2686.06 1.2017 2.195

Table 4.4: The maximum rotating mass of general relativistic uniformly rotating 4He, 12C,
16O and 56Fe WDs for different EoS. ρMJ 6=0

max
, RMJ 6=0

max
p , RMJ 6=0

max
eq , and PMJ 6=0

max are central density,
polar and equatorial radii, and rotation period of the configuration with the maximum
mass, MJ 6=0

max .
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It is worth mentioning that the maximum mass of RWDs is not associated with a
critical maximum density for gravitational collapse. This is in contrast with the non-
rotating case where the configuration of maximum mass (turning-point) corresponds to a
critical maximum density over which the WD is unstable against gravitational collapse.

The angular momentum J along the mass-shedding sequence is not constant and thus
the turning-point criterion (4.3) does not apply to this sequence. Therefore the config-
uration of maximum rotating mass (4.5) does not separate stable from secular axisym-
metrically unstable WDs. We have also verified that none of the RWDs belonging to the
mass-shedding sequence is a turning-point of some J =constant sequence, and therefore
they are indeed secularly stable. We therefore extend the Keplerian sequence all the way
up to the critical density for inverse β decay, ρβcrit, see Table 4.2 and Fig. 4.2.

4.6 The minimum rotation period

The minimum rotation period Pmin of WDs is obtained for a configuration rotating at
Keplerian angular velocity, at the critical inverse β-decay density; i.e. is the configuration
lying at the crossing point between the mass-shedding and inverse β-decay boundaries,
see Figs. 4.2 and 4.4. For 4He, 12C, 16O, and 56Fe RWDs we found the minimum rotation
periods ∼ 0.28, 0.50, 0.69 and 2.19 seconds, respectively (see Table 4.3 for details). In
Table 4.4 we compare the properties of the configuration with minimum rotation period
using different EOS, namely Chandrasekhar µ = 2, Salpeter, and RFMT EOS.

In the case of 12C WDs, the minimum period 0.50 seconds have to be compared with
the value obtained assuming as critical density the threshold for pycnonuclear reactions.
Assuming lifetimes τC+C

pyc = 10 Gyr and 0.1 Myr, corresponding to critical densities ρpyc ∼
9.26×109 g cm−3 and ρpyc ∼ 1.59×1010 g cm−3, we obtain minimum periods P pyc

min = 0.95
and 0.75 seconds, respectively.

It is interesting to compare and contrast some classical results with the ones presented
in this work. Using post-Newtonian approximation, [215] analyzed the problem of dynam-
ical stability of maximally rotating RWDs, i.e. WDs rotating at the mass-shedding limit.
The result was a minimum polar radius of 363 km, assuming the Chandrasekhar EOS
with µ = 2. The Roxburgh critical radius is rather small with respect to our minimum
polar radii, see Table 4.3. It is clear that such a small radius would lead to a configuration
with the central density over the limit established by inverse β-decay: the average density
obtained for the Roxburgh’s critical configuration is ∼ 1.47 × 1010 g/cm3, assuming the
maximum mass 1.48M⊙ obtained in the same work (see Table C.2 in App. C.2). A config-
uration with this mean density will certainly have a central density larger than the inverse
β-decay density of 12C and 16O, 3.97 × 1010 g/cm3 and 1.94 × 1010 g/cm3, respectively
(see Table 4.2). The rotation period of the WD at the point of dynamical instability of
Roxburgh must be certainly shorter than the minimum values presented here.

The above comparison is in line with the fact that we did not find any turning-
point that cross the mass-shedding sequence (see Figs. 4.2–4.3). Presumably, ignoring the
limits imposed by inverse β-decay and pycnonuclear reactions, the boundary determined
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Composition EoS ρβ
crit

(g/cm3) RPmin

p (km) RPmin

eq (km) MJ 6=0

Pmin
/M⊙ Pmin (sec)

µ = 2 Chandra 1.37× 1011 562.79 734.54 1.4963 0.281

Salpeter 1.37× 1011 560.41 731.51 1.4803 0.281
4He RFMT 1.39× 1011 563.71 735.55 1.4623 0.285

Salpeter 3.88× 1010 815.98 1070.87 1.4775 0.498
12C RFMT 3.97× 1010 816.55 1071.10 1.4618 0.501

Salpeter 1.89× 1010 1005.62 1324.43 1.4761 0.686
16O RFMT 1.94× 1010 1005.03 1323.04 1.4630 0.687

Salpeter 1.14× 109 2002.43 2693.17 1.2050 2.202
56Fe RFMT 1.18× 109 2000.11 2686.06 1.2018 2.195

Table 4.5: The minimum rotation period of general relativistic rotating 4He, 12C, 16O and
56Fe WDs. ρβcrit is the critical density for inverse β decay. MJ 6=0

Pmin
, RPmin

p , and RPmin
e are

the mass, polar, and equatorial radii corresponding to the configuration with minimum
rotation period, Pmin.

by the turning-points could cross at some higher density the Keplerian sequence. Such a
configuration should have a central density very similar to the one found by [215].

In the work of [11] the problem of the minimum rotation period of a WD was not
considered. However, they showed their results for a range of central densities covering
the range of interest of our analysis. Thus, we have interpolated their numerical values of
the rotation period of WDs in the Keplerian sequence and calculated the precise values
at the inverse β-decay threshold for 4He, 12C, and 16O that have µ = 2 and therefore in
principle comparable to the Chandrasekhar EOS results with the same mean molecular
weight. We thus obtained minimum periods ∼ 0.31, 0.55, 0.77 seconds, in agreement with
our results (see Table 4.5).

It is important to stress that, although it is possible to compare the results using the
Chandrasekhar EOS µ = 2 with the ones obtained for the RFMT EOS, both qualitative
and quantitative differences exist between the two treatments. In the former a universal
mass-density and mass-radius relation is obtained assuming µ = 2 while, in reality, the
configurations of equilibrium depend on the specific values of Z and A in non-trivial way.
For instance, 4He, 12C, and 16O have µ = 2 but the configurations of equilibrium are
rather different. This fact was emphasized by [102] in the Newtonian case and further
in GR by [209], for non-rotating configurations. In Fig. 4.5 we present a comparison of
the mass-density and mass-radius for the universal Chandrasekhar µ = 2 and the RFMT
EOS for specific nuclear compositions.

4.7 Occurrence of secular axisymmetric instability

Regarding the stability of rotating WDs, [176, 177, 73] showed that uniformly rotat-
ing Newtonian polytropes and WDs described by the uniform degenerate electron fluid
EOS are axisymmetrically stable at any rotation rate. In clear contrast with these re-
sults, we have shown here that uniformly RWDs can be indeed be secularly axisymmetric
unstable as can be seen from Figs. 4.2–4.4 (green boundary). We have constructed in
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App. C.2 Newtonian RWDs for the Chandrasekhar EOS and compare the differences
with the general relativistic counterpart. Apart from the quantitative differences for the
determination of the mass at high densities, it can be seen from Fig. C.1 (left panel)
the absence of turning-points in the Newtonian mass-density relation. This can be un-
derstood from the fact that the maximum stable mass of non-rotating WDs is, in the
Newtonian case, reached formally at infinite central density. We should then expect that
turning-points will appear only from a post-Newtonian approximation, where the critical
mass is shifted to finite densities (see e.g. [215] for the calculation of dynamical instability
for post-Newtonian RWDs obeying the Chandrasekhar EOS).

In this respect the Fig. 4.4 is of particular astrophysical relevance. Configurations
lying in the filled region are stable against mass-shedding, inverse β-decay and secular
axisymmetric instabilities. RWDs with masses smaller than the maximum non-rotating
mass (Sub-Chandrasekhar WDs), i.e. MJ 6=0 < MJ=0

max , can have angular momenta ranging
from a maximum at the mass-shedding limit all the way down to the non-rotating limit
J = 0. SCWDs, however, are stabilized due to rotation and therefore there exist a min-
imum angular momentum, Jmin > 0, to guarantee their stability. We have shown above
that secular axisymmetric instability is relevant for the determination of this minimum
angular momentum of SCWDs (see green boundary in Fig. 4.4). It is interesting to note
in this respect that from our results it turns out that SCWDs with light chemical com-

positions such as 4He and 12C, are unstable against axisymmetric, inverse β-decay and
mass-shedding instabilities. On the opposite, in SCWDs with heavier chemical composi-

tions, such as 16O and 56Fe, the secular axisymmetric instability does not take place; see
Fig. 4.4. The existence of the new boundary due to secular axisymmetric instability is a
critical issue for the evolution of SCWDs since their lifetime might be reduced depending
on their initial mass and angular momentum.

From the quantitative point of view, we have found that axisymmetric instability sets
in for 12C SCWDs in the range of masses MJ=0

max < M . 1.397M⊙, for some specific range
of rotation periods & 1.24 seconds. We can express the minimum rotation period that a
SCWD with a mass M within the above mass range can have through the fitting formula

Paxi = 0.062

(

M −MJ=0
max

M⊙

)−0.67

seconds , (4.6)

where MJ=0
max is the maximum mass of general relativistic non-rotating 12C WDs, MJ=0

max ≈
1.386M⊙ (see Table 4.1 and [209]). Thus, Eq. (4.6) describes the rotation periods of the
configurations along the green-dotted boundary in Figs. 4.2, 4.3, and 4.4. Correspond-
ingly, the central density along this instability boundary varies from the critical density
of static 12C WDs, ρC,J=0

crit = 2.12× 1010 g cm−3 (see Table 4.1), up to the inverse β-decay
density, ρCβ = 3.97× 1010 g cm−3 (see Table 4.2).

It is important to note that at the lower edge of the density range for axisymmetric
instability, ρC,J=0

crit , the timescale of C+C pycnonuclear reactions are τC+C
pyc ≈ 339 yr (see

Fig. 4.1). It becomes then of interest to compare this timescale with the corresponding
one of the secular axisymmetric instability that sets in at the same density.

The growing time of the secular instability is given by the dissipation time that can be
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driven either by gravitational radiation or viscosity [56]. However, gravitational radiation
reaction is expected to drive secular instabilities for systems with rotational to gravita-
tional energy ratio T/|W | ∼ 0.14, the bifurcation point between McClaurin spheroids
and Jacobi ellipsoids (see [56] for details). Therefore, we expect gravitational radiation
to become important only for differentially rotating WDs, which can attain more mass
and more angular momentum [176]. In the present case of general relativistic uniformly
RWDs, only the viscosity timescale τv is relevant. A rotating star that becomes secularly
unstable first evolve with a characteristic time τv and eventually reach a point of dynam-
ical instability, thus collapsing within a time τdyn ≈ Ω−1

K ∼
√

R3/GM . 1 s, where R is
the radius of the star (see e.g. [246]).

The viscosity timescale can be estimated as τv = R2ρ/η (see e.g. [149]), where ρ and
η are the density and viscosity of the star. The viscosity of a WD assuming degenerate
relativistic electrons is given by [72]

ηfluid = 4.74× 10−2HΓ(Z)

Z
ρ5/3

[

(

ρ

2× 106

)2/3

+ 1

]−1

, (4.7)

where HΓ(Z) is a slowly varying dimensionless contstant that depends on the atomic
number Z and the Coulomb to thermal energy ratio

Γ =
e2Z2

kBT

(

4π

3

ρ

2ZMu

)1/3

, (4.8)

where kB is the Boltzmann constant and A ≃ 2Z has been used.
The expression (4.7) is valid for values of Γ smaller than the critical value for crys-

tallization Γcry. The critical Γcry is not well constrained but its value should be of the
order of Γcry ∼ 100 (see e.g. [72, 235]). The critical value Γcry defines a crystallization
temperature Tcry under which the system behaves as a solid. For Γcry ∼ 100, we have
Tcry ≈ 8 × 107[ρ/(1010 g cm−3)]1/3 K, for Z = 6. When Γ approaches Γcry the viscosity
can increase drastically to values close to [265, 72]

ηcry = 4.0× 10−2

(

Z

7

)2/3

ρ5/6 exp[0.1(Γ− Γcry)] . (4.9)

For instance, we find that at densities ρC,J=0
crit and assuming a central temperature

T & 0.5Tcry with Tcry ≈ 108 K, the viscous timescale is in the range 10 . τv . 1000
Myr, where the upper limit is obtained using Eq. (4.7) and the lower limit with Eq. (4.9).
These timescales are longer than the pycnonuclear reaction timescale τC+C

pyc = 339 yr at
the same density. So, if the pycnonuclear reaction rates are accurate, it would imply
that pycnonuclear reactions are more important to restrict the stability of RWDs with
respect to the secular instability. However, we have to keep in mind that, as discussed in
Sec. 4.3.4, the pycnonuclear critical densities are subjected to theoretical and experimental
uncertainties, which could in principle shift them to higher values. For instance, a possible
shift of the density for pycnonuclear instability with timescales τC+C

pyc ∼ 1 Myr to higher

values ρC+C
pyc > ρC,J=0

crit , would suggest an interesting competition between secular and

pycnonuclear instability in the density range ρC,J=0
crit < ρ < ρCβ .
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4.8 Spin-up and spin-down evolution

It is known that at constant rest-massM0, entropy S and chemical composition (Z,A),
the spin evolution of a RWD is given by (see [236] for details)

Ω̇ =
Ė

Ω

(

∂Ω

∂J

)

M0,S,Z,A

, (4.10)

where Ω̇ ≡ dΩ/dt and Ė ≡ dE/dt, with E the energy of the star.
Thus, if a RWD is loosing energy by some mechanism during its evolution, that is

Ė < 0, the change of the angular velocity Ω in time depends on the sign of ∂Ω/∂J ; RWDs
that evolve along a track with ∂Ω/∂J > 0, will spin-down (Ω̇ < 0) and the ones following
tracks with ∂Ω/∂J < 0 will spin-up (Ω̇ > 0).

In Fig. 4.6 we show, in the left panel, the Ω =constant and J =constant sequences in
the mass-central density diagram and, in the right panel, contours of constant rest-mass
in the Ω− J plane.

The sign of ∂Ω/∂J can be analyzed from the left panel plot of Fig. 4.6 by joining two
consecutive J = constant sequences with an horizontal line and taking into account that
J decreases from left to right and from up to down. The angular velocity Ω, instead,
decreases from right to left and from up to down for SCWDs and, for sub-Chandrasekhar
WDs, from left to right and from up to down. We note that, in the SCWDs region
Ω = constant sequences satisfy ∂Ω/∂ρc < 0 while, in the sub-Chandrasekhar region, both
∂Ω/∂ρc < 0 and ∂Ω/∂ρc > 0 appear (see minima). SCWDs can only either spin-up by
angular momentum loss or spin-down by gaining angular momentum. In the latter case,
the RWD becomes decompressed with time increasing its radius and moment of inertia,
and then SCWDs following this evolution track will end at the mass-shedding limit (see
Fig. 4.6). Some evolutionary tracks of sub-Chandrasekhar WDs and SCWDs are shown in
the right panel of Fig. 4.6. It is appropriate to recall here that [236] showed that spin-up
behavior by angular momentum loss occurs for rapidly rotating Newtonian polytropes if
the polytropic index is very close to n = 3, namely for an adiabatic index Γ ≈ 4/3. It was
shown explicitly by [92] that these conditions are achieved only by Super-Chandrasekhar
polytropes.

Besides the confirmation of the above known result for SCWDs in the general relativis-
tic case, we report here the presence of minima ∂Ω/∂ρc = 0 for some sub-Chandrasekhar
masses (see e.g. the evolution track of the RWD with M = 1.38M⊙ in the right panel
of Fig. 4.6) which raises the possibility that sub-Chandrasekhar WDs can experience, by
angular momentum loss, not only the intuitively spin-down evolution, but also spin-up
epochs.

4.9 Astrophysical implications

It is appropriate to analyze the astrophysical consequences of the general relativistic
RWDs presented in this work.
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Figure 4.6: Top panel: mass versus the central density for 12C RWDs. The solid black
curves correspond to J=constant sequences, where the static case J = 0 the thickest
one. The color thin-dashed curves correspond to Ω=constant sequences. The Keplerian
sequence is the red thick dashed curve, the blue thick dotted-dashed curve is the inverse
β-decay instability boundary, and the green thick dotted curve is the axisymmetric secular
instability boundary. Bottom panel: contours of constant rest-mass in the Ω − J plane;
RWDs that evolve along a track with ∂Ω/∂J > 0 spin-down by loosing angular momentum
while, the ones with ∂Ω/∂J < 0, spin-up.



72 On general relativistic uniformly rotating white dwarfs

Most of the observed magnetic WDs are massive; for instance REJ 0317-853 withM ∼
1.35M⊙ and B ∼ (1.7–6.6)× 108 G (see e.g. [14, 132]); PG 1658+441 with M ∼ 1.31M⊙

and B ∼ 2.3 × 106 G (see e.g. [148, 231]); and PG 1031+234 with the highest magnetic
field ∼ 109 G (see e.g. [232, 131]). However, they are generally found to be slow rotators
(see e.g. [272]). It is worth mentioning that it has been recently shown by [87] that such
a magnetic WDs can be indeed the result of the merger of double degenerate binaries;
the misalignment of the final magnetic dipole moment of the newly born RWD with the
rotation axis of the star depends on the difference of the masses of the WD components
of the binary.

The precise computation of the evolution of the rotation period have to account for
the actual value at each time of the moment of inertia and the equatorial and polar radii
of the WD. Whether magnetic and gravitational radiation braking can explain or not the
current relatively long rotation periods of some observed magnetic WDs is an important
issue that deserves the appropriate attention and will be addressed elsewhere.

Magnetic braking of SCWDs has been recently invoked as a possible mechanism to
explain the delayed time distribution of type Ia supernovae (SNe) (see [118] for details):
a type Ia SN explosion is delayed for a time typical of the spin-down time scale τB due
to magnetic braking, providing the result of the merging process of a WD binary system
is a magnetic SCWD rather than a sub-Chandrasekhar one. The characteristic timescale
τB of SCWD has been estimated to be 107 . τB . 1010 yr for magnetic fields comprised
in the range 106 . B . 108 G. A constant moment of inertia ∼ 1049 g cm2 and a fixed
critical(maximum) rotation angular velocity

Ωcrit ∼ 0.7ΩJ=0
K = 0.7

√

GMJ=0

R3
MJ=0

, (4.11)

have been adopted [118].
It is important to recall here that, as discussed in Sec. 4.8, SCWDs spin-up by angular

momentum loss, and therefore the reference to a “spin-down” time scale for them is just
historical. SCWDs then evolve toward the mass-shedding limit, which determines in this
case the critical angular velocity for rotational instability.

If we express ΩJ 6=0
K in terms of ΩJ=0

K (see App. C.0.2), taking into account the values
of j and q from the numerical integration, we find for RWDs

ΩJ 6=0
K = σΩJ=0

K , (4.12)

where the coefficient σ varies in the interval [0.78,0.75] in the range of central densities
[105, 1011] g cm−3. It is important to mention that the above range of σ hold approximately
the same independently on the chemical composition of the WD. However, the actual
numerical value of the critical angular velocity, ΩJ 6=0

K , is different for different compositions
owing to the dependence on (Z,A) of mass-radius relation of non-rotating WDs.

Furthermore, as we have shown, the evolution track followed by a SCWD depends
strongly on the initial conditions of mass and angular momentum as well as on chemical
composition, and evolution of the moment of inertia (see Fig. 4.6 and Sec. 4.8 for details).
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It is clear that the assumption of fixed moment of inertia I ∼ 1049 g cm2, leads to a spin-
down time scale depending only on the magnetic field strength. A detailed computation
will lead to a strong dependence on the mass of the SCWD; resulting in a two-parameter
family of delayed times τB(M,B). Detailed calculations of the lifetime of SCWDs braking-
down due to magnetic dipole radiation are then needed to shed light on this important
matter. Theoretical work along these lines is currently in progress and the results will be
presented in a forthcoming publication.

Massive fast rotating and highly magnetized WDs have been proposed as an alternative
scenario of Soft Gamma Ray Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs);
see [154] for details. Within such scenario, the range of minimum rotation periods of
massive WDs found in this work, 0.3 . Pmin . 2.2 seconds, depending on the nuclear
composition (see Table 4.5), implies the rotational stability of SGRs and AXPs, which
possess observed rotation periods 2 . P . 12 seconds. The relatively long minimum
period of 56Fe RWDs ∼ 2.2 seconds, implies that RWDs describing SGRs and AXPs have
to be composed of nuclear compositions lighter than 56Fe, e.g. 12C or 16O.

4.10 Conclusions

We have calculated the properties of uniformly RWDs within the framework of GR
using the Hartle formalism and our new EOS for cold WD matter based on the relativistic
Feynman-Metropolis-Teller treatment [210], which generalizes previous approaches includ-
ing the EOS of [229]. A detailed comparison with RWDs described by the Chandrasekhar
and the Salpeter EOS has been performed.

We constructed the region of stability of RWDs taking into account the mass-shedding
limit, secular axisymmetric instability, inverse β-decay, and pycnonuclear reaction life-
times. The latter have been computed using the updated theoretical models of [89, 274].
We found that the minimum rotation periods for 4He, 12C, 16O, and 56Fe RWDs are ∼ 0.3,
0.5, 0.7 and 2.2 seconds, respectively (see Table 4.5). For 12C WDs, the minimum pe-
riod 0.5 seconds needs to be compared with the values P pyc

min = 0.75 and 0.95 seconds,
obtained assuming as critical density the threshold for pycnonuclear reactions for life-
times τC+C

pyc = 0.1 Myr and 10 Gyr, respectively. For the same chemical compositions, the
maximum masses are ∼ 1.500, 1.474, 1.467, 1.202 M⊙ (see Table 4.4). These results and
additional properties of RWDs can be found in Table 4.3.

We have presented a new instability boundary of general relativistic SCWDs, over
which they become axisymmetrically unstable. We have expressed the range of masses
and rotation periods where this occurs through a fitting formula given by Eq. (4.6). A
comparison with Newtonian RWDs in App. C.2 show to the conclusion that this new
boundary of instability for uniformly rotating WDs is a general relativistic effect.

We showed that, by loosing angular momentum, sub-Chandrasekhar RWDs can expe-
rience both spin-up and spin-down epochs while, SCWDs, can only spin-up. These results
are particularly important for the evolution of WDs whose masses approach, either from
above or from below, the maximum non-rotating mass. The knowledge of the actual
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values of the mass, radii, and moment of inertia of massive RWDs are relevant for the
computation of delay collapse times in the models of type Ia SN explosions. A careful
analysis of all the possible instability boundaries as the one presented here have to be
taken into account during the evolution of the WD at pre-SN stages.

We have indicated specific astrophysical systems where the results of this work are
relevant; for instance the long rotation periods of observed massive magnetic WDs; the
delayed collapse of SCWDs as progenitors of type Ia SNe; and the alternative scenario for
SGRs and AXPs based on massive RWDs.

4.11 Perspectives

Recently magnetic braking of SCWDs has been invoked as a possible mechanism to
explain the delayed time distribution of type Ia supernovae (SNe) (see [118] for details):
a type Ia SN explosion is delayed for a time typical of the spin-down time scale t due
to magnetic braking, providing that the result of the merging process of a WD binary
system is a magnetic SCWD rather than a sub-Chandrasekhar one. The characteristic
timescale t of SCWD has been estimated to be 107 . t . 1010 yr for magnetic fields
comprised in the range 106 . B . 108 G. We have performed similar computations to
estimate the characteristic timescale for the realistic EoS of white dwarfs presented in
[209] relaxing the constancy of the moment of inertia, the radius and other parameters
of WDs. Indeed we have shown here that all parameters are the functions of the central
density and rotation period. Hence we performed more refined analyses, that can be
seen from Fig. 4.7, taking into consideration all the stability criteria. The details will be
addressed in our forthcoming works.
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Figure 4.7: The characteristic t (life time, in Myr) versus WD mass in units of MJ=0
max for

12C RWDs. The magnetic field B is in Gauss.



Chapter 5

SGRs and AXPs as fast rotating

white dwarfs

5.1 Introduction

Soft Gamma Ray Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs) are a
class of compact objects that show interesting observational properties (see e.g. [163]):
rotational periods in the range P ∼ (2–12) s, a narrow range with respect to the wide
range of ordinary pulsars P ∼ (0.001–10) s; spin-down rates Ṗ ∼ (10−13–10−10), larger
than ordinary pulsars Ṗ ∼ 10−15; strong outburst of energies ∼ (1041–1043) erg, and for
the case of SGRs, giant flares of even large energies ∼ (1044–1047) erg, not observed in
ordinary pulsars.

The observation of SGR 0418+5729 with a rotational period of P = 9.08 s, an upper
limit of the first time derivative of the rotational period Ṗ < 6.0 × 10−15 [200], and an
X-ray luminosity of LX = 6.2 × 1031 erg s−1 can be considered as the Rosetta Stone for
alternative models of SGRs and AXPs.

The magnetar model, based on a neutron star of fiducial parameters M = 1.4M⊙,
R = 10 km and a moment of inertia I = 1045 g cm2, needs a magnetic field larger than
the critical field for vacuum polarization Bc = m2

ec
3/(e~) = 4.4×1013 G in order to explain

the observed X-ray luminosity in terms of the release of magnetic energy (see [70, 255]
for details). The inferred upper limit of the surface magnetic field of SGR 0418+5729
B < 7.5 × 1012 G describing it as a neutron star (see [200] for details), is well below the
critical field, which has challenged the power mechanism based on magnetic field decay
in the magnetar scenario.

Alternatively, it has been recently pointed out how the pioneering works of [167] and
[181] on the description of 1E 2259+586 as a white dwarf (WD) can be indeed extended to
all SGRs and AXPs. These WDs were assumed to have fiducial parameters M = 1.4M⊙,
R = 103 km, I = 1049 g cm2, and magnetic fields B & 107 G (see [154] for details) inferred
from the observed rotation periods and spin-down rates.

The energetics of SGRs and AXPs including their steady emission, glitches, and their
subsequent outburst activities have been shown to be powered by the rotational energy of
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the WD [154]. The occurrence of a glitch, the associated sudden shortening of the period,
as well as the corresponding gain of rotational energy, can be explained by the release of
gravitational energy associated with a sudden contraction and decrease of the moment of
inertia of the uniformly rotating WD, consistent with the conservation of their angular
momentum.

By describing SGR 0418+5729 as a WD, [154] calculated an upper limit for the mag-
netic field B < 7.5 × 108 G and show that the X-ray luminosity observed from SGR
0418+5729 can be well explained as originating from the loss of rotational energy of the
WD leading to a theoretical prediction for the spin-down rate

LXP
3

4π2I
= 1.18× 10−16 ≤ ṖSGR0418+5729 < 6.0× 10−15 , (5.1)

where the lower limit was established by assuming that the observed X-ray luminosity of
SGR 0418+5729 coincides with the rotational energy loss of the WD. As we will show
below, these predictions can be still improved by considering realistic WD parameters [45]
instead of fiducial ones.

The situation has become even more striking considering the recent X-ray timing mon-
itoring with Swift, RXTE, Suzaku, and XMM-Newton satellites of the recently discovered
SGR Swift J1822.3–1606 [201]. The rotation period P = 8.437 s, and the spin-down rate
Ṗ = 9.1 × 10−14 have been obtained. Assuming a NS of fiducial parameters, a mag-
netic field B = 2.8× 1013 G is inferred, which is again in contradiction with a magnetar
explanation for this source.

We have recently computed in [45] general relativistic configurations of uniformly
rotating white dwarfs within Hartle’s formalism [105]. We have used the relativistic
Feynman-Metropolis-Teller equation of state [210] for WD matter, which we have shown
generalizes the traditionally used equation of state of [229]. It has been there shown that
rotating WDs can be stable up to rotation periods of ∼ 0.28 s (see [45] and Sec. 5.3 for
details). This range of stable rotation periods for WDs amply covers the observed rotation
rates of SGRs and AXPs P ∼ (2–12) s.

The aim of this work is to describe the so-called low magnetic field magnetars, SGR
0418+5729 and Swift J1822.3-1606, as massive fast rotating highly magnetized WDs. In
doing so we extend the work of [154] by using precise WD parameters recently obtained
by [45] for general relativistic uniformly rotating WDs. It is also performed an analysis of
the expected Optical and near-Infrared emission from these sources within the WD model
and confront the results with the observational data.

5.2 Rotation powered white dwarfs

The loss of rotational energy associated with the spin-down of the WD is given by

Ėrot = −4π2I
Ṗ

P 3
= −3.95× 1050I49

Ṗ

P 3
ergs−1 , (5.2)
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where I49 is the moment of inertia of the WD in units of 1049 g cm2. This rotational
energy loss amply justifies the steady X-ray emission of all SGRs and AXPs (see [154] for
details).

The upper limit on the magnetic field (see e.g. [77]) obtained by requesting that the
rotational energy loss due to the dipole field be smaller than the electromagnetic emission
of the magnetic dipole, is given by

B =

(

3c3

8π2

I

R̄6
PṖ

)1/2

= 3.2× 1015
(

I49
R̄6

8

PṖ

)1/2

G , (5.3)

where R̄8 is the mean radius of the WD in units of 108 cm. The mean radius is given by
R̄ = (2Req +Rp)/3 (see e.g. [108]) with Req and Rp the equatorial and polar radius of the
star.

It is clear that the specific values of the rotational energy loss and the magnetic field
depend on observed parameters, such as P and Ṗ , as well as on model parameters, such
as the mass, moment of inertia, and mean radius of the rotating WD.

5.3 Structure and stability of rotating white dwarfs

The rotational stability of fast rotating WDs was implicitly assumed by [154]. The
crucial question of whether rotating WDs can or not attain rotation periods as short as
the ones observed in SGRs and AXPs has been recently addressed by [45]. The properties
of uniformly rotating WDs were computed within the framework of general relativity
through Hartle’s formalism [105]. The equation of state for cold WD matter is based on
the relativistic Feynman-Metropolis-Teller treatment [210], which generalizes the equation
of state of [229]. The stability of rotating WDs was analyzed taking into account the mass-
shedding limit, inverse β-decay instability, and secular axisymmetric instability, with the
latter determined by the turning point method of [84]; see Fig. 5.1 and [45], for details.

The minimum rotation period Pmin of WDs is obtained for a configuration rotating at
Keplerian angular velocity, at the critical inverse β-decay density, namely this is the config-
uration lying at the crossing point between the mass-shedding and inverse β-decay bound-
aries. The numerical values of the minimum rotation period Pmin ≈ (0.3, 0.5, 0.7, 2.2) s
and the maximum masses were found for Helium (He), Carbon (C), Oxygen (O), and
Iron (Fe) WDs, respectively (see Table 5.1 and [45], for details). As a byproduct, these
values show that indeed all SGRs and AXPs can be described as rotating WDs because
their rotation periods are in the range 2 . P . 12 s.

The relatively long minimum period of rotating Fe WDs, ∼ 2.2 s, lying just at the
lower edge of the observed range of rotation periods of SGRs and AXPs, reveals crucial
information on the chemical composition of SGRs and AXPs, namely they are very likely
made of elements lighter than Fe, such as C or O.

It can be seen from Fig. 5.1 that every Ω=constant sequence intersects the stability
region of general relativistic uniformly rotating WDs (M -Req curves inside the shaded
region of Fig. 5.1) in two points. These two points determine the minimum(maximum)
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Figure 5.1: Mass versus equatorial radius of rotating Carbon WDs. The solid black curves
correspond to J=constant sequences, where the static case J = 0 the thickest one. The
color thin-dashed curves correspond to Ω=constant sequences. The Keplerian sequence is
the red thick dashed curve, the blue thick dotted-dashed curve is the inverse β instability
boundary, and the green thick dotted curve is the axisymmetric instability line. The
gray-shaded region is the stability region of rotating white dwarfs [45].

Composition Pmin (s) Mmax/M⊙

Helium 0.3 1.500
Carbon 0.5 1.474
Oxygen 0.7 1.467
Iron 2.2 1.202

Table 5.1: Minimum rotation period and maximum mass of general relativistic uniformly
rotating WDs (see [45], for details).
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Comp. Mmin Mmax Rmin
eq Rmax

eq R̄min R̄max Imin
48

Imax
50

Bmin(10
7G) Bmax(108G)

He 1.18 1.41 1.16 6.88 1.15 6.24 3.59 1.48 1.18 2.90
C 1.15 1.39 1.05 6.82 1.05 6.18 2.86 1.42 1.19 3.49
O 1.14 1.38 1.08 6.80 1.08 6.15 3.05 1.96 1.42 3.30
Fe 0.92 1.11 2.21 6.36 2.21 5.75 12.9 1.01 1.25 0.80

Table 5.2: Bounds for the massM (in units ofM⊙), equatorial Req and mean R̄ radius (in
units of 108 cm), moment of inertia I, and surface magnetic field B of SGR 0418+5729.
I48 and I50 is the moment of inertia in units of 1048 and 1050 g cm2, respectively.

and maximum(minimum) Mmin,max(R
max,min
eq ), respectively, for the stability of a WD

with the given rotation angular velocity Ω = 2π/P . Associated to the boundary values
Mmin,max and R

max,min
eq , we can obtain the corresponding bounds for the moment of inertia

of the WD, Imax,min, respectively.
We turn now to a specific analysis to each of the two sources SGR 0418+5729 and

SGR SGR 1822–1606.

5.4 SGR 0418+5729

5.4.1 Bounds on the WD parameters

SGR 0418+5729 has a rotational period of P = 9.08 s, and the upper limit of the spin-
down rate Ṗ < 6.0 × 10−15 was obtained by [200]. The corresponding rotation angular
velocity of the source is Ω = 2π/P = 0.69 rad s−1. We show in Table 5.2 bounds for the
mass, equatorial radius, mean radius, and moment of inertia of SGR 0418+5729 obtained
by the request of the rotational stability of the rotating WD, as described in Section
5.4, for selected chemical compositions. Hereafter we shall consider general relativistic
rotating Carbon WDs.

5.4.2 Solidification and glitches

It has been shown by [154] that the massive WDs consistent with SGRs and AXPs
possibly behave as solids since the internal temperature of the WD (∼ 107) is very likely
lower than the crystallization temperature (see e.g. [235, 264])

Tcry ≃ 2.28× 105
Z2

A1/3

(

ρ̄

106g/cm3

)1/3

K , (5.4)

where (Z,A) and ρ̄ denote the chemical composition and mean density, respectively.
This fact introduces the possibility in the WD to observe sudden changes in the period

of rotation, namely glitches. The expected theoretical values of the fractional change of
periods of massive WDs have been shown to be consistent with the values observed in
many SGRs and AXPs (see [154] for details).

From the bounds of M and Req we obtain that the mean density of SGR 0418+5729
must be in the range 1.72× 106 . ρ̄ . 5.70× 108 g cm3. Correspondingly, the crystalliza-
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tion temperature is comprised in the range 4.3× 106 K . Tcry . 2.97× 107 K, where the
lower and upper limits correspond to the configuration of minimum and maximum mass
configurations, respectively.

The crystallization temperature obtained here indicates that SGR 0418+5729 should
behave as a rigid solid body and therefore glitches during the rotational energy loss,
accompanied by radiative events, are expected. Starquakes leading to glitches in the WD
may occur with a recurrence time (see e.g. [16, 264, 154])

δtq =
2D2

B

|∆P |/P
|Ėrot|

, (5.5)

where Ėrot is the loss of rotational energy (5.2), D = (3/25)GM2
c /Rc,

B = 0.33 (4π/3)R3
ce

2Z2[ρ̄c/(Amp)]
4/3, Mc, Rc and ρ̄c are the mass, the radius and the

mean density of the solid core, and mp is the proton mass.
For the minimum and maximum mass configurations and the upper limit of the spin-

down rate Ṗ < 6× 10−15, we obtain a lower limit for recurrence time of starquakes

δtq >

{

4× 109(|∆P |/P ) yr, M =Mmin

2× 1012(|∆P |/P ) yr, M =Mmax

, (5.6)

which for a typical fractional change of period |∆P |/P ∼ 10−6 observed in SGRs and
AXPs we obtain δtq > 4 × 103 yr and δtq > 2 × 106 yr, for Mmin and Mmax respec-
tively. These very long starquake recurrent times are in agreement with the possibility
that SGR 0418+5729 is an old WD whose magnetospheric activity is settling down, in
agreement with its relatively low spin-down rate, magnetic field, and high efficiency pa-
rameter LX/Ėrot, with respect to the values of other SGRs and AXPs (see e.g. Fig. 9 in
[154]).

5.4.3 Rotation power and magnetic field

Introducing the values of P and the upper limit Ṗ into Eq. (5.2) we obtain an upper
limit for the rotational energy loss

Ėrot <

{

−9.05× 1032 erg s−1, M =Mmax

−4.49× 1034 erg s−1, M =Mmin

, (5.7)

which for any possible mass is larger than the observed X-ray luminosity of SGR 0418+5729,
LX = 6.2× 1031 erg s−1, assuming a distance of 2 kpc [200].

The corresponding upper limits on the surface magnetic field of SGR 0418+5729,
obtained from Eq. (5.3) are (see also Table 5.2)

B <

{

1.19× 107 G, M =Mmin

3.49× 108 G, M =Mmax

. (5.8)
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It is worth noting that the above maximum possible value of the surface magnetic
field of SGR 0418+5729 obtained for the maximum possible mass of a WD with rotation
period 9.08 s, B < 3.49×108 G, is even more stringent and improves the previously value
given by [154], B < 7.5× 108 G, based on fiducial WD parameters.

The electron cyclotron frequency expected from such a magnetic field is

fcyc,e =
eB

2πmec
=

{

3.33× 1013 Hz, M =Mmin

9.76× 1014 Hz, M =Mmax

, (5.9)

corresponding to wavelengths 9.04 and 0.31 µm, respectively.

5.4.4 Prediction of the spin-down rate

Assuming that the observed X-ray luminosity of SGR 0418+5729 equals the rotational
energy loss Ėrot, we obtain the lower limit for the spin-down rate

Ṗ >
LXP

3

4π2I
=

{

8.28× 10−18, M =Mmin

4.11× 10−16, M =Mmax

, (5.10)

which in the case of the WD with the maximum possible mass is more stringent than the
value reported by [154], Ṗ = 1.18× 10−16, for a massive WD of fiducial parameters.

5.4.5 Optical spectrum and luminosity

[71] observed SGR 0418+5729 with the two wide filters F606W and F110W of the Hub-
ble Space Telescope, and derive the upper limits of the apparent magnitudes, mF606W >
28.6 and mF110W > 27.4 (Vega system), within the positional error circle derived from
Chandra observations of the field of SGR 0418+5729 [200]. The approximate distance
to the source is d = 2 kpc (see [71] for details). Assuming an interstellar extinction
obtained from the NH column absorption value observed in the X-ray data, AV = 0.7,
[71] obtained the corresponding luminosity upper bounds LF606W < 5× 1028 erg s−1 and
LF110W < 6× 1028 erg s−1, respectively.

We use here a similar technique, i.e. computing the interstellar extinction values for
the V band from the NH column absorption value observed in the X-ray data, NH =
1.5 × 1021cm−2 [200], and then using the empirical formula described in [192]. Then we
have extrapolated the extinction to the other filters by using the method delineated in
[51]. Since the F606W and the F110W are well approximated by the V and J band, we
obtained for the extinction values AF606W = 0.83 and AF110W = 0.235 respectively. The
corresponding luminosity upper bounds are, consequently, LF606W < 6.82 × 1028 erg s−1

and LF110W < 3.05× 1028 erg s−1.
An estimate of the effective surface temperature can be obtained by approximating

the spectral luminosity in these bands by the black body luminosity

L = 4πR2σT 4 , (5.11)
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Figure 5.2: Temperature-Radius constraint given by Eq. (5.16). The gray region corre-
sponds to the possible values for the temperature and the radius of the WD. The range
of radii correspond to the one defined by the minimum and maximum radius of SGR
0418+5729 inferred from the WD stability analysis and summarized in Table 5.2, namely
Rmin ≤ R ≤ Rmax.

where σ = 5.67 × 10−5 erg cm−2 s−1 K −4 is the Stefan-Boltzmann constant. For a
WD of fiducial radius R = 108 cm, the upper limits for the WD surface temperature,
T < 9.58 × 103 K and T < 9.15 × 103 K, can be obtained for the F110W and F606W
filters, replacing the upper limits for LF110W and LF606W in Eq. (5.11).

The above bounds of the surface temperature of the WD can be improved by using the
explicit dependence on the radius of the black body surface temperature for each filter.
The black body flux at a given frequency ν, in the source frame, is given by

νfν = π
2h

c2
ν4

exp[hν/(kT )]− 1
, (5.12)

where h, k, and ν are the Planck constant, the Boltzmann constant, and the spectral
frequency respectively. From this expression we can obtain the temperature as a function
of the frequency, the observed flux, the distance d and radius R of the black body source

T =
hν

k ln
(

1 + π2hν4R2

c2d2Fν,obs

) , (5.13)

where we have used the relation between the flux in the observed and source frames,
Fν,obs = (R/d)2 νfν .
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Figure 5.3: Expected optical magnitudes for the progenitor WD of SGR 0418+5729 ob-
tained assuming a simple blackbody for the spectral emission from a WD with surface
temperature T = 104 K and a radius of 1.5× 108 cm, according to the constraints shown
in Fig. 5.2.

The observed fluxes, in units of erg , cm−2 , s−1 , corrected for the extinction are given
by

F F606W
ν,obs = 3.6× 10−20νF606W × 100.4(mF606W−AF606W ) , (5.14)

and
F F110W
ν,obs = 1.8× 10−20νF110W × 100.4(mF110W−AF110W ) , (5.15)

where νF606W = 5.07× 1014 Hz and νF110W = 2.60× 1014 Hz.
Introducing the upper limits of the apparent magnitudes of [71] with the extinction

values computed in this work, Eq. (5.13) gives the upper bounds on the temperature

T <

{

1.25×104

ln(1+0.44R2
8
)

K, F110W
2.43×104

ln(1+6.35R2
8
)

K, F606W
, (5.16)

where R2
8 is the radius of the WD in units of 108 cm and, following [71], we have approxi-

mated the band integrated flux as νcFν , with νc the pivot wavelength of the corresponding
band filter.

In Fig. 5.2, we show the constraints on the T -R relation obtained from Eq. (5.16).
We have used the range of radii defined by the minimum and maximum radius of SGR
0418+5729 inferred from the WD stability analysis and summarized in Table 5.2. It
is clear that the optical observational constraints are in agreement with a model based
on a massive fast rotating highly magnetic WD for SGR 0418+5729. It is appropriate
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to recall in this respect the observed range of temperatures of massive isolated WDs
1.14× 104 K ≤ T ≤ 5.52× 104 K; see Table 1 in [78].

[154] obtained for a WD of fiducial parameters the upper limits for the WD surface
temperature, T < 3.14× 104. We now improve these bounds on the surface temperature
using realistic WD parameters. From the minimum and maximum values we have obtained
for the equatorial radius of SGR 0418+5729 (see Table 5.2) we obtain for the F110W filter

TF110W <

{

3.94× 103 K, M =Mmin

2.90× 104 K, M =Mmax

, (5.17)

and for the F606W filter

TF606W <

{

4.22× 103 K, M =Mmin

1.13× 104 K, M =Mmax

. (5.18)

These values are in agreement with a WD description of SGR 0418+5729. In this
respect it is worth recalling the optical observations of 4U 0142+61 of [116] where the
photometric results of the field of 4U 0142+61 at the 60-inch telescope on Palomar Moun-
tain were found to be in agreement with a 1.3M⊙ WDwith a surface temperature ∼ 4×105

K (see [116] for details).
We show in Fig. 5.3 the expected optical magnitudes of a WD with surface temperature

T = 104 K and radius R = 1.5 × 108 cm, located at a distance of 2 kpc. This radius
corresponds to the upper limit given by the gray region shown in Fig. 5.2, for this specific
value of the temperature.

5.5 Swift J1822.3–1606

5.5.1 Bounds of the WD parameters

Swift J1822.3–1606 (or SGR 1822–1606) was recently discovered in July 2011 by Swift
Burst Alert Telescope (BAT). A recent X-ray timing monitoring with Swift, RXTE,
Suzaku, and XMM-Newton satellites found that SGR 1822-1606 rotates with a period
of P = 8.44 s and slows down at a rate Ṗ = 9.1 × 10−14 (see [201] for details). The cor-
responding rotation angular velocity of the source is Ω = 2π/P = 0.74 rad s−1. Bounds
for the mass, equatorial radius, and moment of inertia of SGR 0418+5729 obtained by
the request of the rotational stability of the rotating WD, as described in Section 5.4, are
shown in Table 5.2.

5.5.2 Solidification and glitches

The mean density of SGR 1822–1606 is in the range 1.98 × 106 . ρ̄ . 5.70 × 108 g
cm3. The crystallization temperature for such a range following Eq. (5.4) is then in the
range 4.51× 106 K . Tcry . 2.97× 107 K, which indicates that SGR 1822-1606 will likely
behave as a rigid solid body.
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Comp. Mmin Mmax Rmin
eq Rmax

eq R̄min R̄max Imin
48

Imax
50

Bmin(10
7G) Bmax(109G)

He 1.21 1.41 1.16 6.61 1.15 5.99 3.59 1.38 4.84 1.09
C 1.17 1.39 1.05 6.55 1.05 5.93 2.86 1.32 4.87 1.31
O 1.16 1.38 1.08 6.53 1.08 5.91 3.05 1.83 5.80 1.24
Fe 0.95 1.11 2.21 6.11 2.20 5.53 12.9 0.94 5.09 0.30

Table 5.3: Bounds for the massM (in units ofM⊙), equatorial Req and mean R̄ radius (in
units of 108 cm), moment of inertia I, and surface magnetic field B of Swift J1822.3–1606.
I48 and I50 is the moment of inertia in units of 1048 and 1050 g cm2, respectively.

For the minimum and maximum mass configurations and the spin-down rate Ṗ =
9.1× 10−14, we obtain a lower limit for recurrence time of starquakes

δtq >

{

2× 108(|∆P |/P ) yr, M =Mmin

1× 1011(|∆P |/P ) yr, M =Mmax

, (5.19)

which for a typical fractional change of period |∆P |/P ∼ 10−6 gives δtq > 2 × 102 yr
and δtq > 1 × 105 yr, for Mmin and Mmax respectively. The long recurrence time for
starquakes obtained in this case, confirms the similarities between SGR 1822–1606 and
SGR 0418+5729 as old objects with a settling down magnetospheric activity.

5.5.3 Rotation power and magnetic field

Using the observed values of P and Ṗ , we obtain from Eq. (5.2) a rotational energy
loss

Ėrot <

{

−1.71× 1034 erg s−1, M =Mmax

−7.89× 1035 erg s−1, M =Mmin

, (5.20)

which amply justifies the observed X-ray luminosity of SGR 1822–1606, LX = 4 × 1032

erg s−1, obtained assuming a distance of 5 kpc (see [201] for details).
The surface magnetic field of SGR 1822.3-1606, as given by Eq. (5.3), is then between

the values (see Table 5.3)

B =

{

3.63× 107 G, M =Mmin

1.30× 109 G, M =Mmax

. (5.21)

Corresponding to the above magnetic fields, the electron cyclotron frequencies are

fcyc,e =
eB

2πmec
=

{

1.01× 1014 Hz, M =Mmin

3.63× 1015 Hz, M =Mmax

, (5.22)

that correspond to wavelengths 2.96 and 0.08 µm, respectively.

5.5.4 Optical spectrum and luminosity

[201] observed the field of SGR 1822–1606 with the Gran Telescopio Canarias (GranTe-
Can) within the Swift-XRT position [182]. Three sources (S1, S2, and S3) were detected
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Figure 5.4: Expected optical magnitudes of SGR 1822–1606 assuming a blackbody spec-
tral emission from a WD with surface temperature T = 104 K and a radius of 1.5 × 108

cm.

with the Sloan z filter with corresponding z-band magnitudes mz,S1 = 18.13 ± 0.16,
mz,S2 = 20.05 ± 0.04, and mz,S3 = 19.94 ± 0.04 (see [201] for details). No additional
objects were found to be consistent with the Swift-XRT position up to a magnitude
mz = 22.2± 0.2 (3σ).

In addition, data from the UK Infrared Deep Sky Survey (UKIDSS) for the field of
SGR 1822–1606 were found to be available, giving the magnitudes of the three afore-
mentioned sources in the J , H, and K bands; mJ,i = (13.92, 16.62, 16.43), mH,i =
(12.37, 15.75, 15.40), and mK,i = (11.62, 15.20, 14.88), where the index i indicates the
values for the sources S1, S2, and S3. In addition to S1, S2, and S3, no sources were de-
tected within the consistent position up to the limiting magnitudesmJ = 19.3,mH = 18.3,
and mK = 17.3 (5σ).

We repeat the same analysis for SGR 0418+5729 to the case of SGR 1822–1606. We
consider only the upper limits, since the three sources reported in [201], S1, S2 and S3,
are very luminous to be a WD at the distance considered for the SGR, d ≈ 5 kpc. From
the NH column density value, NH = 7×1021 cm−2 we obtain an extinction in the V -band
of AV = 3.89. From the [51] relation we obtain the extinction values for the four bands
considered, Az = 1.86, AJ = 1.10, AH = 0.74 and AK = 0.44. The extinction corrected
upper limits do not put very strong constraints to the temperature and the radius of the
WD, due to the very large distance assumed for SRG 1822–1606. We show in Fig 5.4
the expected extinction-corrected magnitudes for a WD with a temperature T = 104 K
and a radius R = 1.5 × 108 cm at a distance of 5 kpc. We obtain a very deep value
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for the K-band of ≈ 30. We conclude that, if SGR 1822–1606 is at the distance of 5
kpc introduced by [201], it will be hard to detect the WD. On the contrary, a possible
detection would lead to a more precise determination of the distance.

5.6 Conclusions

The recent observations of SGR 0418+5729 [200], P = 9.08 and Ṗ < 6.0× 10−15, and
Swift J1822.3-1606 [201], P = 8.44 s and Ṗ = 9.1 × 10−14, challenge the description of
these sources as ultramagnetized NSs of the magnetar model of SGRs and AXPs. Based
on the recent work of [154], we have shown here that, instead, both SGR 0418+5729 and
Swift J1822.3-1606 are in full agreement with a description based on massive fast rotating
highly magnetic WDs.

From an analysis of the rotational stability of the WD using the results of [45], we
have predicted the WD parameters. In particular, bounds for the mass, radius, moment of
inertia, and magnetic field of SGR 0418+5729 and Swift J1822.3-1606 have been presented
(see Tables 5.2 and 5.3, for details).

We have improved the theoretical prediction of the lower limit for the spin-down rate
of SGR 048+5729, for which only the upper limit, Ṗ < 6.0 × 10−15 [200], is currently
known. Based on a WD of fiducial parameters, [154] predicted for SGR 0418+5729 the
lower limit Ṗ > 1.18 × 10−16. Our present analysis based on realistic general relativistic
rotating WDs allows us to improve such a prediction, see Eq. (5.10) for the new numerical
values.

We have given in Eqs. (5.9) and (5.22) an additional prediction of the electron cyclotron
frequencies of SGR 0418+5729 and Swift J1822.3-1606, respectively. The range we have
obtained for such frequencies fall into the optical and infrared bands.

We have also presented the optical properties of SGR 0418+5729 and Swift J1822.3-
1606 as expected from a model based on WDs. In particular, the surface temperature
of the WD has been inferred and predictions for the emission fluxes in the UV, Optical,
and Infrared bands have been given. Follow-on missions of Hubble and VLT are strongly
recommended to establish the precise values of the luminosity in the Optical and in the
near-Infrared bands, which will verify the WD nature of SGRs and AXPs.

5.7 Perspectives

It would be interesting to study possible progenitors of SGRs and AXPs which could be
the mergers of WDs that lead to the formation of massive fast rotating highly magnetized
WDs (see [117], [88] for details). In addition it is important to analyze the mechanisms
of radiation of these WDs, specifically in the high-energy bands e.g. X and Gamma rays.
This will be a natural extension of this work where we have showed the emission in the
optical band. This issue will be considered in the forthcoming works.
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Chapter 6

Magnetic Fields in Rotating Nuclear

Matter Cores

6.1 Introduction

Neutron stars are mainly detected as pulsars, whose regular pulsations in the radio,
X-ray, and optical bands are produced by constant, ordered magnetic fields that are the
strongest known in the Universe. However the origin of the magnetic field in the neutron
stars is not fully understood, so far. Nevertheless in the literature one may find various
hypotheses explaining the formation of the magnetic field [93, 273, 216, 217, 202, 203, 204].
The simplest hypothesis to explain the presence of the strong fields observed in neutron
stars is the conservation of the magnetic flux already present in the progenitor stars
during the gravitational collapse. This idea is based on the assumption that all stars at
all stages of their evolution have some magnetic field, due to electronic currents circulating
in their interiors. Thus this argument led to the prediction of the fields B ≈ 1012 G in
neutron stars a few years before the discovery of pulsars [93, 273]. However, there is no
detailed physical picture of such a flux conserving collapse. Thompson and Duncan [254]
put forward the hypothesis that newborn neutron stars are likely to combine vigorous
convection and differential rotation making a dynamo process operate in them. They
predicted fields up to 1015 − 1016 G in neutron stars with few millisecond initial periods,
and suggested that such fields could explain much of the phenomenology associated with
Soft Gamma Repeaters and Anomalous X-ray Pulsars [255, 256].

Probably, these processes are not mutually exclusive. A strong field might be present
in the collapsing star, but later be deformed and perhaps amplified by some combination
of convection, differential rotation, and magnetic instabilities [253, 243]. The relative
importance of these ingredients depends on the initial field strength and rotation rate of
the star. For both mechanisms, the field and its supporting currents are not likely to be
confined to the solid crust of the star, but distributed inmost of the stellar interior, which
is mostly a fluid mixture of neutrons, protons, electrons, and other, more exotic particles.

Unlike aforementioned hypotheses which are based on the assumptions that all stars
are magnetized or charged with some net charge different from zero, we explore the system
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recently considered by Ruffini et al. [222]. According to that work the system consisting
of degenerate neutrons, protons and electrons in beta equilibrium is globally neutral and
expected to be kept at nuclear density by self gravity. In what follows these systems
are termed as Nuclear Matter Cores of Stellar Dimensions. Despite the global neutrality
the charge distribution turned out to be different from zero inside and outside (near
the surface) the star. The magnitude of the net charge inside and outside the core is
equal, but the sign is opposite. Such an effect takes place as a consequence of the beta
equilibrium, the penetration of electrons into the core, hence the screening of the core
charge and global charge neutrality. As a result of this effect, one can show the presence
of an electric field close to the critical value Ec = m2

ec
3/e~ near the surface of the massive

cores, although localized in a very narrow shell. Thus in this case the magnetic field of
the neutron star may be generated only if it spins like pulsars, even though the progenitor
star has not been magnetized or electrically charged. In addition the stability against the
Coulomb repulsion of such configurations has been shown in [213] within the Newtonian
theory of gravity and a new island of stability has been found. In the present work the
special attention is given to the stability of such rotating nuclear matter cores of stellar
dimensions extending the results for stability given in [213].

6.2 The relativistic Thomas-Fermi equation

The Thomas-Fermi equation is the exact theory for atoms, molecules and solids as
Np → ∞ [147]. The relativistic Thomas-Fermi theory developed for the study of atoms
for heavy nuclei with Np = 106 (see for instance [189], [79, 223]) gives important basic
new information on the study of nuclear matter in bulk in the limit of A = (mP lanck/mn)

3

nucleons of mass mn and on its electrodynamic properties. The analysis of nuclear matter
bulk in neutron stars composed of degenerate gas of neutrons, protons and electrons,
has traditionally been approached by implementing microscopically the charge neutrality
condition by requiring the electron density ne(r) to coincide with the proton density np(r),

ne(r) = np(r). (6.1)

It is clear however that especially when conditions close to the gravitational collapse
occur, there is an ultra-relativistic component of degenerate electrons whose confinement
requires the existence of very strong electromagnetic fields, in order to guarantee the
overall charge neutrality of the neutron star. Under these conditions equation (6.1) will
be necessarily violated.

Using the relativistic Thomas-Fermi equation, [79], and later [223] have analyzed the
electron densities around an extended nucleus in a neutral atom all the way up to Np =
6000. They have shown the effect of penetration of the electron orbital well inside the
nucleus, leading to a screening of the nuclei positive charge and to the concept of an
“effective” nuclear charge distribution.

In the work of [223] and [213] the relativistic Thomas-Fermi equation has been used
to extrapolate the treatment of super heavy nuclei to the case of nuclear matter cores
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Figure 6.1: The electron number in the unit of the total proton number Np, for selected
values of A, as function of radial distance is shown in logarithmic scale. It is clear how by
increasing the value of A the penetration of electrons inside the core increases (this figure
is reproduced from [222]).

of stellar dimensions. These cores represent the inner part of neutron stars and are
characterized by an atomic number of order of A = (mP lanck/mn)

3 ≈ 1057, composed of
degenerate neutrons, protons and electrons in beta equilibrium and expected to be kept
at nuclear density by self gravity. It has been shown that near the surface of the massive
cores it is possible to have an electric field close to the critical value Ec, although localized
in a very narrow shell of the order of the λe electron Compton wavelength. Now let us
review the main assumptions and results of those works.

According to [223] and [213] the protons are distributed at constant density np within
a radius

Rc = ∆
~

mπc
N1/3

p , (6.2)

where ∆ is a parameter such that ∆ ≈ 1 (∆ < 1) corresponds to nuclear (supranuclear)



92 Magnetic Fields in Rotating Nuclear Matter Cores

1033

1034

1035

1036

1037

1038

1039

-10 -5  0  5  10

N
um

be
r 

de
ns

ity
 

ξ

ne
np
nn

Figure 6.2: The neutron number density nn, the proton number density np and the electron
number density ne, expressed in cm−3, are plotted as functions of the dimensionless radial
coordinate ξ. It is clear that near the surface of the core is located a transition layer
of width ≈ ~/(

√
αmπc) with an uncompensated charge which generates an overcritical

electric field (see Fig. 6.5).

densities when applied to ordinary nuclei. The proton number density is given by

np =
1

3π2ℏ3
(P F

p )3 =
3Np

4πR3
c

H(Rc − r), (6.3)

where P F
p is the Fermi momentum of a proton and H(Rc−r) is the Heaviside step function

(for details see [213]). The overall Coulomb potential satisfies the Poisson equation

∇2V (r) = −4πe [np(r)− ne(r)] , (6.4)

with the boundary conditions V (∞) = 0 (due to the global charge neutrality of the sys-
tem) and finiteness of V (0). The density ne(r) of the electrons of charge −e is determined
by the Fermi energy condition on their Fermi momentum P F

e ; we assume here

EF
e = [(P F

e c)
2 +m2

ec
4]1/2 −mec

2 − eV (r) = 0 , (6.5)
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Figure 6.3: The normalized charge separation (np − ne)/np is plotted as function of the
dimensionless radial coordinate ξ. The maximum charge separation happens near the
surface of the core where a transition layer with an uncompensated charge is located (see
Fig. 6.2).

which leads to

ne(r) =
(P F

e )3

3π2~3
=

1

3π2~3c3
[

e2V 2(r) + 2mec
2eV (r)

]3/2
. (6.6)

By introducing the dimensionless quantities x = r/[~/mπc], xc = Rc/[~/mπc] and χ/r =
eV (r)/c~, the relativistic Thomas-Fermi equation takes the form

1

3x

d2χ(x)

dx2
= − α

∆3
H(xc − x) +

4α

9π

[

χ2(x)

x2
+ 2

me

mπ

χ

x

]3/2

, (6.7)

where α = e2/(~c) is the fine structure constant and the boundary conditions for χ(x)
are χ(0) = 0, χ(∞) = 0 Ne =

∫∞

0
4πr2ne(r)dr. These equations together with the beta

equilibrium, form a close set of non-linear boundary value problem for a unique solution
for the Coulomb potential V and electron distribution ne, as functions of the parameter
∆, i.e., the proton number-density np. A relevant quantity for exploring the physical
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significance of the solution is given by the number of electrons within a given radius r,
Ne(r) =

∫ r

0
4π(r′)2ne(r

′)dr′. This allows to determine, for selected values of the mass
number A, the distribution of the electrons within and outside the core and to follow the
progressive penetration of the electrons in the core at increasing values of A (see Fig.6.1).
We can then evaluate the net charge inside the core Nnet = Np − Ne(Rc) < Np, and
consequently determine the electric field at the core surface, as well as within and outside
the core. The neutron density nn(r) is determined by the Fermi energy condition on their
Fermi momentum P F

n imposed by beta decay equilibrium

EF
n = [(P F

n c)
2 +m2

nc
4]1/2 −mnc

2 = [(P F
p c)

2 +m2
pc

4]1/2 −mpc
2 + eV (r), (6.8)

which in turn is related to the proton and electron densities by Eqs. (6.4), (6.6) and (6.7).

6.3 The ultra-relativistic analytic solutions

In the ultrarelativistic limit with the planar approximation the relativistic Thomas-
Fermi equation admits an analytic solution. Introducing the new function φ defined by
φ = 41/3(9π)−1/3∆χ/x and the new variables x̂ = (12/π)1/6

√
α∆−1x, ξ = x̂ − x̂c, where

x̂c = (12/π)1/6
√
α∆−1xc, then Eq. (6.7) becomes

d2φ̂(ξ)

dξ2
= −H(−ξ) + φ̂(ξ)3, (6.9)

where φ̂(ξ) = φ(ξ + x̂c). The boundary conditions on φ̂ are: φ̂(ξ) → 1 as ξ → −x̂c ≪ 0
(at the nuclear matter core center) and φ̂(ξ) → 0 as ξ → ∞. The function φ̂ and its first
derivative φ̂′ must be continuous at the surface ξ = 0 of the nuclear matter core of stellar
dimensions.

Hence equation (6.9) admits an exact solution

φ̂(ξ) =







1− 3
[

1 + 2−1/2 sinh(a−
√
3ξ)

]−1
, ξ < 0,√

2

(ξ + b)
, ξ > 0 ,

(6.10)

where the integration constants a and b have the values a = arccosh(9
√
3) ≈ 3.439,

b = (4/3)
√
2 ≈ 1.886.The charge distribution inside and outside the core is defined by

ρ(ξ) =











3e
4π

(

∆ℏ

mπc

)−1 [

1− φ̂(ξ)3
]

, ξ < 0,

3e

4π

(

∆ℏ

mπc

)−1
[

−φ̂(ξ)3
]

, ξ > 0 ,
(6.11)

details are given in Fig. 6.3. Hence the Coulomb potential and electric field functions

V (ξ) =

(

9π

4

)1/3
mπc

2

∆e
φ̂(ξ), E(ξ) = −

(

35π

4

)1/6 √
α

∆2

m2
πc

3

e~
φ̂′(ξ) . (6.12)

Details are given in Figs. 6.4 and 6.5.
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Figure 6.4: The proton Coulomb potential energy eV , in units of pion mass mπ is plotted
as a function of the radial coordinate ξ = x̂ − x̂c, for selected values of the density
parameter ∆.

6.4 Rotating nuclear matter cores of stellar dimen-

sions

In section 6.2 and 6.3 we have seen that in the massive nuclear density cores the electric
charge distribution is different from zero, although it is globally neutral (for details see
Table 6.4). In this section we investigate the case when this charge distribution is allowed
to rotate with the constant angular velocity ~ω = {0, 0, ω} around the axis of symmetry.
Thus the magnetic field of the resultant current density is calculated in terms of the
charge distribution. Consider a charge distribution moving in a such way that at every
point in space the charge density and the current density remain constant. In this case
the magnetic field is defined by

~B(~r) = ~∇× ~A(~r), ~A(~r) =
~ω

c2
× ~F (~r), ~F (~r) =

1

4πε0

∫ ~r′ρ(~r′)d3~r′

|~r − ~r′|
, (6.13)

where ~A is the vector potential of the magnetic field, ~F (~r) is the ”superpotential” in

general form and ε0 is the electric constant. In the case of spherical symmetry, ~F (~r) may
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Figure 6.5: The electric field is plotted in units of the critical field Ec as a function of the
radial coordinate ξ, showing a sharp peak at the core radius, for selected values of ∆.

be taken as radial (see [158]). Writing ~F (~r) = ~erF (r), where ~er is the unit radial vector,
one has

F (r) =
1

r2

∫ r

0

r′2
d

dr′
[r′V (r′)]dr′. (6.14)

This expression allows to calculate the magnetic field induced due to rotation of any
spherically symmetric distribution of charge in terms of its electrostatic Coulomb poten-
tial. Note that in fact due to rotation the shape of the neutron star must deviate from
spherical symmetry. Since we are interested in the estimation of the order (magnitude) of
the magnetic field, the distortions to the shape of the star can be neglected for the sake
of simplicity. Thus the magnetic field is defined by

~B(~r) = Br~er + Bθ~eθ, (6.15)

where

Br =
2ω

c2
F

r
cos θ, Bθ = −2ω

c2

[

F

r
+
r

2

d

dr

(

F

r

)]

sin θ, (6.16)

Br is the radial component and Bθ is the angular component of the magnetic field, θ
is the angle between r and z axis, and ~eθ is the unit vector along θ. Consequently the
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Figure 6.6: The radial component of the magnetic field Br is plotted as a function of the
radial coordinate ξ in units of the critical field Bc = m2

ec
3/e~ ≈ 4.5 × 1013 G. Here the

period is taken to be P = 10 ms, θ = 0, ∆ = 1 and the radius of the core Rc = 10 km.
Note that Br is considered at the poles of star, where it has maximum value. Outside the
star Br has very small negative value and it tends to zero.

expression for the magnitude (the absolute value) of the magnetic field can be written as

B(r, θ) =
ωr

c2

√

√

√

√

(

2F

r2

)2

+

{

4F

r2
d

dr

(

F

r

)

+

[

d

dr

(

F

r

)]2
}

sin2 θ. (6.17)

Using the relation between r and ξ

r = Rc +
( π

12

)1/6 ∆√
α

~

mπc
ξ, (6.18)

one may estimate the value of the magnetic field. Details are given in Figs. 6.6, 6.7, 6.10
and 6.9.

Examining Fig. 6.6 one can see very small value of Br which almost does not make
a significant contribution to the magnitude of the field, except for the poles of the star.
On the contrary, Bθ has values exceeding the critical magnetic field near the surface of
the core although localized in a narrow region between positively and negatively charged
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Figure 6.7: The angular component of the magnetic field Bθ is plotted in units of the Bc.
Here P = 10 ms, θ = π/2, ∆ = 1 and Rc = 10 km. Note that Bθ is considered at the
equator, where it has maximum value. Inside the star it has very small constant negative
value. Outside the star first it becomes negative (the value is very small) then it tends to
zero.

shells as expected Fig. 6.7. Outside the core the magnetic field becomes negative. The
magnitude of the field has very small and eventually vanishing values.

In Fig. 6.8 shows spacial distribution of the magnetic field on the surface of the nuclear
matter core. According to the figure the magnetic field has its maximum value at the
equatorial plane and minimum at the poles. Fig. 6.9 represents magnetic lines of force
inside, outside and on the surface of the star. It turned out that the lines of force of the
overcritical magnetic field are appressed between two shells along the surface of the core.

In Table 6.4. electrodynamic properties of the globally neutral configurations with
different charge distribution are presented schematically. All parameters are chosen in a
such way to show the general features of the systems. Analyzing the magnetic fields of the
configurations one can easily see the resemblance between the Coulomb potential V and
Br, plus between the electric field E and Bθ for both idealized and real configurations.
In our case the magnetic field shares common properties with the previous configurations
although it has its own peculiarities representing the smooth changes in the regions close
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*

Table 6.1: Electrodynamic properties of the globally neutral configurations with different
charge distribution are demonstrated schematically. The dashed lines correspond to the
radii of the spheres.
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Figure 6.8: The magnitude of the magnetic field B(ξ = 0, θ) as given by (6.17) in the
units of the critical magnetic field Bc is shown as a function of the angular variable θ. It
is seen from the picture that the magnetic field has its maximum at the equatorial plane
and minimum at the poles.

to the surface of the core. In order to check the validity of our results we have considered
similar examples. First thing when one deals with the positively and negatively charged
spherical shells with the thickness of order of λe in contrast with a radius of 10km neutron
star, the natural idea that comes to one’s mind is to assume a spherical surface charge
distribution. Since there are two spherical shells the closest example has been to explore
electrodynamic properties of a spherical capacitor. As matter of fact this example showed
the similar behavior of the Coulomb potential V and Br with the solution of Thomas-
Fermi equation plus a huge difference in the orders betweenBr andBθ, however the electric
field E and Bθ had completely different features from our results. Moreover the spherical
capacitor has not explained why in our case one had continuous Bθ at the boundary of the
charged shells. In addition to all above given arguments there was some distance between
positively and negatively charged surfaces, whereas in our case the distance between the
shells was zero. Thus, one had to consider one more alternative problem close to our case
in order to carry out a cross check. This time two oppositely charged spherical layers
with volume charge distribution have been considered in contrast with our case. Indeed
this example was fortunate and the closest simple example. It explained all the common
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Figure 6.9: A schematic illustration of the magnetic lines of forces. Outside the star the
magnetic field looks like a dipole field. Extra arrows along the surface of the star indicate
an overcritical value of the field between positively and negatively charged shells.

electrodynamic properties of both systems. As a result, Br and Bθ turned out to be
functions of the thickness of the spherical layers. When these thickness is of order of
λe one observes this huge difference and since the charge has been distributed in given
volumes, with different signs, the electric field E and Bθ turned out to be continuous.

6.5 Stability of rotating nuclear matter cores of stel-

lar dimensions

In the work [213] the gravitational stability against the Coulomb repulsion of a nuclear
matter core of stellar dimensions has been analyzed. In particular since in this system the
gravitational energy increases proportionally to A4/3 and the Coulomb energy increases
proportionally to A2/3 the two cross at

Aω=0
R = 0.039

(

mP lanck

mn

)3 (
Np

A

)1/2

, (6.19)



102 Magnetic Fields in Rotating Nuclear Matter Cores

0.01 0.1 1 10 100

0.1

1

10

100

P

BΘ H0, Π � 2L

Bc

Figure 6.10: The magnitude of the magnetic field is plotted as a function of the period
of the star P (in seconds) in the units of the critical field Bc at the surface of the core on
the equator in the logarithmic scale. Here Rc = 10 km and ∆ = 1.

where mP lanck is the Planck mass and mn is the neutron mass. This establishes a lower
limit for the mass number AR necessary for the existence of stable nuclear matter cores
of stellar dimensions.

We consider now the analysis of the gravitational stability against the Coulomb repul-
sion of a nuclear matter core of stellar dimensions when the system is allowed to rotate
as a whole rigid spherical object.

We know that the Coulomb energy, mainly distributed within a thin shell of width
δRc ≈ ℏ∆/(

√
αmπc) with a proton number δNp ≈ 4πnpR

2
cδRc at the surface, is given by

Eel ≈ 0.15
3(3π)1/2ℏc

4
√
α

(

∆ℏ

mπc

)−1 (
Np

A

)2/3

A2/3, (6.20)

while the magnetic energy evolving due to rotation is given by

Emag ≈ 0.223
mπc

2

∆
√
α

(

Np

A

)4/3

A4/3

(

∆ℏ

mπc

)2
ω2

c2
. (6.21)

and the rotational kinetic energy of that thin proton shell is given by

Erot ≈ mnc
2

√
α

(

Np

A

)4/3

A4/3

(

∆ℏ

mπc

)2
ω2

c2
. (6.22)
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Figure 6.11: Energies of the system in the units of the gravitational energy of the thin
shell plotted as a function of the period of the star P for ∆ = 1 in the range between 1ms
and 10ms in logarithmic scale.

To ensure the stability of the system, the magnitude of the attractive gravitational energy
of the thin proton shell

Eg ≈ 3Gm2
n√

α

(

∆ℏ

mπc

)−1 (
Np

A

)1/3

A4/3, (6.23)

must be larger than the repulsive Coulomb energy (6.20), the magnetic energy (6.21) and
the repulsive rotational energy (6.22). Indeed, it is shown in the Fig. 6.11 that for the
periods more than 1ms, the condition Eg > Eel + Emag + Erot is valid.

This leads to

Aω 6=0
R ≈ Aω=0

R

[

1 +

(

0.112 + 0.5∆
mn

mπ

)(

mP lanck

mn

)2
Np

A

(

∆ℏ

mπc

)2
ω2

c2

]

, (6.24)

which generalizes the relation given by Eq.(6.19). We can see that the correction term
(

0.112 + 0.5∆mn

mπ

)(

mPlanck

mn

)2
Np

A

(

∆ℏ

mπc

)2
ω2

c2
for the pulsars with the period more than 1ms

is of the order of 10−3, so in this case the system is stable.
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6.6 Conclusions

We have investigated the behavior of the magnetic field induced by the rotation of a
nuclear matter core of stellar dimensions on the basis of the research works considered in
[222] and [213] using the technique developed by Marsh [158].

In particular, for such a rotating system with a period of 10ms we have obtained a
magnetic field of order of the critical field near the surface and analyzed the magnetic
lines of forces.

In addition we have investigated the stability of rotating nuclear matter cores of stellar
dimensions against the rotational kinetic energy and induced magnetic energy. In fact the
whole system is gravitationally bound and stable even for the 1ms period. However for
the periods less than 1ms the centrifugal repulsive forces will prevail over the gravitational
force. In that case the system can no longer be stable.

Since the electric field and the magnetic field are mainly concentrated in the very thin
shell on the surface, compared to the radius of the object, we have considered the energies
of the system only in that region. The magnetic energy has the order of one tenth of the
rotational energy irrespective of the value of the period.

According to our results the magnetic field of a neutron star could be generated by its
rotation as a whole rigid body leading to the formation of the constant magnetic field at
the initial moments of neutron stars birth.

6.7 Perspectives

The results of the present work can be applied to the physics of compact objects;
e.g. the emergence of critical electromagnetic fields in neutron stars and the process of
gravitational collapse to a black hole.

We are currently investigating the effects of magnetic fields and the stability of a rotat-
ing self-gravitating system of degenerate fermions in β-equilibrium in general relativity,
generalizing thus previous results of [211, 208, 218].



Chapter 7

Neutron star equilibrium

configurations

7.1 Introduction

The fact that the Thomas-Fermi model originates from the realm of atomic physics
has been known for a long time [97, 146]. It was proposed in 1973 that the Thomas-Fermi
model could be useful to give an alternative derivation of a self-gravitating system of
fermions within Newtonian gravity leading to a description of neutron stars and white
dwarfs complementary to the traditional derivation in the perfect fluid approximation
[221, 219]. This gravitational treatment needed the special relativistic generalization of
the Thomas-Fermi model, which became also a necessity in order to describe the physics
of heavy nuclei [164, 79, 223]. The Thomas-Fermi treatment from the original realm of
atomic physics started so to be applied in its special relativistic extension to gravitational
and nuclear physics.

It has been until [222, 220, 190, 213] that all these considerations have been extended to
an heuristic simplified Thomas-Fermi model of a neutron star taking into account nuclear
physics, Newtonian physics, and β-equilibrium. The evidence for the possible existence
of overcritical electric fields at the core of neutron stars was there presented [220]. At
this stage a basic theoretical progress in the description of neutron stars with a fully
relativistic Thomas-Fermi model with all interactions became a necessity. It has been
particularly important to use a Wigner Seitz cell: we first solved the relativistic Thomas-
Fermi model for compressed atoms [210], generalizing the classical approach of Feynman,
Metropolis and Teller [80]. This has given as a byproduct a new equation of state for
white dwarfs duly expressed in general relativity [209]. We then proved the impossibility
of imposing local charge neutrality on chemically equilibrated matter made of neutrons,
protons, and electrons, in the simplified case where strong interactions are neglected [211].
This was a critical issue for neutron star matter calculations, since we demonstrated
that the equations which describe baryonic matter need to be solved simultaneously in
combination with the Einstein-Maxwell equations. The general formulation to the case of
strong interactions have been recently achieved in [218]. The present work is the result of
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the above multi year effort and summarizes and discusses the relevant equations for the
description of neutron stars, i.e. relativistic mean field theory and the Einstein-Maxwell-
Thomas-Fermi system of general relativistic equations, presenting a self-consistent neutron
star model including all fundamental interactions: strong, weak, electromagnetic, and
gravitational.

It is well-known that the classic works of Tolman [260] and Oppenheimer and Volkoff
[175], for short TOV, address the problem of neutron star equilibrium configurations
composed only of neutrons. For the more general case when protons and electrons are
also considered, in all of the scientific literature on neutron stars it is assumed that the
condition of local charge neutrality applies identically to all points of the equilibrium
configuration (see e.g. [101]). Consequently, the corresponding solutions in this more
general case of a non-rotating neutron star, are systematically obtained also on the base
of the TOV equations.

In general, the formulation of the equilibrium of systems composed of different particle
species must be established within the framework of statistical physics of multicompo-
nent systems; see e.g. [76]. Thermodynamic equilibrium of these systems is warrantied
by demanding the constancy throughout the configuration of the generalized chemical
potentials, often called “electro-chemical”, of each of the components of the system; see
e.g. [125, 126, 174]. Such generalized potentials include not only the contribution due
to kinetic energy but also the contribution due to the potential fields, e.g. gravitational
and electromagnetic potential energies per particle, and in the case of rotating stars also
the centrifugal potential. For such systems in presence of gravitational and Coulomb
fields, global electric polarization effects at macroscopic scales occur. The balance of the
gravitational and electric forces acting on ions and electrons in ideal electron-ion plasma
leading to the occurrence of gravito-polarization was pointed out in the classic work of
S. Rosseland [207].

If one turns to consider the gravito-polarization effects in neutron stars, the corre-
sponding theoretical treatment acquires remarkable conceptual and theoretical complex-
ity, since it must be necessarily formulated consistently within the Einstein-Maxwell sys-
tem of equations. O. Klein, in [125], first introduced the constancy of the general rela-
tivistic chemical potential of particles, hereafter “Klein potentials”, in the study of the
thermodynamic equilibrium of a self-gravitating one-component fluid of neutral particles
throughout the configuration within the framework of general relativity. The extension
of Klein’s work to the case of neutral multicomponent degenerate fluids can be found in
[126] and to the case of multi-component degenerate fluid of charged particles in [174].

Using the concept of Klein potentials, we have recently proved the impossibility of
imposing the condition of local charge neutrality in the simplest case of a self-gravitating
system of degenerate neutrons, protons and electrons in β-equilibrium [211]: it has been
shown that the consistent treatment of the above system implies the solution of the general
relativistic Thomas-Fermi equations, coupled with the Einstein-Maxwell ones, being the
TOV equations thus superseded.

We have recently formulated the theory of a system of neutrons, protons and electrons
fulfilling strong, electromagnetic, weak and gravitational interactions [218]. The role of
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the Klein first integrals has been again evidenced and their theoretical formulation in the
Einstein-Maxwell background and in the most general case of finite temperature has been
there presented, generalizing the previous results for the “non-interacting” case [211]. The
strong interactions, modeled by a relativistic nuclear mean field theory, are there described
by the introduction of the σ, ω and ρ virtual mesons (see Subsec. 7.2.1 for details).

In [18] for the first time the equilibrium configurations of non-rotating neutron stars
have been constructed, following the new approach of [211, 218]. We calculate the
properties of neutron star matter and neutron stars treated fully self-consistently with
strong, weak, electromagnetic, and gravitational interactions. The full set of the Einstein-
Maxwell-Thomas-Fermi equations is solved numerically for zero temperatures and for se-
lected parameterizations of the nuclear model. We use units with ~ = c = 1 throughout
the chapter.

7.2 The Constitutive Relativistic Equations

7.2.1 Core Equations

It has been clearly recognized that, since neutron stars cores may reach density of
order ∼ 1016–1017 g/cm3, much larger than the nuclear density ρnuc = ρ0 ∼ 2.7 × 1014

g/cm3, approaches for the nuclear interaction between nucleons based on phenomenolog-
ical potentials and non-relativistic many-body theories become inapplicable (see [47, 46],
for instance). Based on the pioneering work of Johnson and Teller [122], Duerr [68] and
later on Miller and Green [165] formulated the basis of what is now known as Relativistic
Mean Field Theory of nuclear matter. They constructed the simplest relativistic model
that accounts for the binding of symmetric nuclear matter at saturation density by in-
troducing the interaction of one scalar field and one vector field with nucleons through
Yukawa couplings. A nuclear model with only the scalar field with a self-interacting po-
tential up to quartic order based on the sigma-model was considered in [143, 141]. The
repulsive contribution of nuclear force was there introduced by hand through a hard-sphere
model that artificially increases the nucleon Fermi momentum emulating the effect of a
massive vector field coupled to nucleons. The relevance of such interactions as well as
relativistic effects in the determination of the equation of state and in the nuclear matter
properties such as compressibility and the nucleon effective mass was clearly pointed out in
[165, 37, 35]. The importance of allowing scalar meson self-interactions (cubic and quartic
terms in the scalar field potential) as adjustable parameters to reproduce physical nuclear
properties and not due to renormalization (see e.g. [267]) was stressed in [35, 38, 36, 34].
The necessity of introducing additional isovector fields to match the empirical symmetry
energy of nuclear matter at saturation density was recognized in [35].

Assuming that the nucleons interact with σ, ω and ρ meson fields through Yukawa-
like couplings and assuming flat spacetime the equation of state of nuclear matter can be
determined. However, it has been clearly stated in [211, 218] that, when we turn into a
neutron star configuration at nuclear and supranuclear densities, the global description of
the Einstein-Maxwell-Thomas-Fermi equations is mandatory. Associated to this system
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of equations there is a sophisticated eigenvalue problem, especially the one for the general
relativistic Thomas-Fermi equation is necessary in order to fulfill the global charge neu-
trality of the system and to consistently describe the confinement of the ultrarelativistic
electrons.

We here adopt the phenomenological relativistic mean field nuclear model of Boguta
and Bodmer [35] by assuming nucleons interacting in minimal coupling approximation
with a σ isoscalar meson field that provides the attractive long-range part of the nu-
clear force and a massive vector field ω that models the repulsive short range. The self-
interacting scalar field potential U(σ) is assumed as a quartic polynom with adjustable
coefficients. In addition, a massive isovector field ρ is introduced to account for surface
as well as isospin effects of nuclei.

The total Lagrangian density of the system is given by

L = Lg + Lf + Lσ + Lω + Lρ + Lγ + Lint, (7.1)

where the Lagrangian densities for the free-fields are

Lg = − R

16πG
, (7.2)

Lγ = − 1

16π
FµνF

µν , (7.3)

Lσ =
1

2
∇µσ∇µσ − U(σ), (7.4)

Lω = −1

4
ΩµνΩ

µν +
1

2
m2

ωωµω
µ, (7.5)

Lρ = −1

4
RµνR

µν +
1

2
m2

ρρµρ
µ, (7.6)

where Ωµν ≡ ∂µων − ∂νωµ, Rµν ≡ ∂µρν − ∂νρµ, Fµν ≡ ∂µAν − ∂νAµ are the field strength
tensors for the ωµ, ρ and Aµ fields respectively, ∇µ stands for covariant derivative and R
is the Ricci scalar. We adopt the Lorenz gauge for the fields Aµ, ωµ, and ρµ.

The Lagrangian density for the three fermion species is

Lf =
∑

i=e,N

ψ̄i (iγ
µDµ −mi)ψi, (7.7)

where ψN is the nucleon isospin doublet, ψe is the electronic singlet, mi states for the
mass of each particle-specie and Dµ = ∂µ + Γµ, being Γµ the Dirac spin connections.

The interacting part of the Lagrangian density is, in the minimal coupling assumption,
given by

Lint = −gσσψ̄NψN − gωωµJ
µ
ω − gρρµJ

µ
ρ + eAµJ

µ
γ,e − eAµJ

µ
γ,N , (7.8)
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where the conserved currents are

Jµ
ω = ψ̄Nγ

µψN , (7.9)

Jµ
ρ = ψ̄Nτ3γ

µψN , (7.10)

Jµ
γ,e = ψ̄eγ

µψe, (7.11)

Jµ
γ,N = ψ̄N

(

1 + τ3
2

)

γµψN . (7.12)

The coupling constants of the σ, ω and ρ-fields are gσ, gω and gρ, and e is the funda-
mental electric charge. The Dirac matrices γµ and the isospin Pauli matrices satisfy the
Dirac algebra in curved spacetime (see e.g. [221, 142] for details).

We first introduce the non-rotating spherically symmetric spacetime metric

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2, (7.13)

where the ν(r) and λ(r) are only functions of the radial coordinate r.
For very large number of fermions, we adopt the mean-field approximation in which

fermion-field operators are replaced by their expectation values (see [221], for instance).
Within this approximation, the full system of general relativistic equations can be written
in the form

e−λ(r)

(

1

r2
− 1

r

dλ

dr

)

− 1

r2
= −8πGT 0

0 , (7.14)

e−λ(r)

(

1

r2
+

1

r

dν

dr

)

− 1

r2
= −8πGT 1

1 , (7.15)

V ′′ +
2

r
V ′

[

1− r(ν ′ + λ′)

4

]

= −4πe eν/2eλ(np − ne), (7.16)

d2σ

dr2
+
dσ

dr

[

2

r
+

1

2

(

dν

dr
− dλ

dr

)]

= eλ [∂σU(σ) + gsns] , (7.17)

d2ω

dr2
+
dω

dr

[

2

r
− 1

2

(

dν

dr
+
dλ

dr

)]

= −eλ
(

gωJ
ω
0 −m2

ωω
)

, (7.18)

d2ρ

dr2
+
dρ

dr

[

2

r
− 1

2

(

dν

dr
+
dλ

dr

)]

= −eλ
(

gρJ
ρ
0 −m2

ρρ
)

, (7.19)

EF
e = eν/2µe − eV = constant, (7.20)

EF
p = eν/2µp + Vp = constant, , (7.21)

EF
n = eν/2µn + Vn = constant, , (7.22)

where we have introduced the notation ω0 = ω, ρ0 = ρ, and A0 = V for the temporal com-
ponents of the meson-fields. Here µi = ∂E/∂ni =

√

(P F
i )2 + m̃2

i and ni = (P F
i )3/(3π2) are

the free-chemical potential and number density of the i-specie with Fermi momentum P F
i .

The particle effective mass is m̃N = mN + gsσ and m̃e = me and the effective potentials
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Vp,n are given by

Vp = gωω + gρρ+ eV , (7.23)

Vn = gωω − gρρ . (7.24)

The constancy of the generalized Fermi energies EF
n , E

F
p and EF

e , the Klein potentials,
derives from the thermodynamic equilibrium conditions given by the statistical physics
of multicomponent systems, applied to a system of degenerate neutrons, protons, and
electrons within the framework of general relativity (see [218] for details). These constants
are linked by the β-equilibrium [33] between the matter constituents

EF
n = EF

p + EF
e . (7.25)

The electron density ne is, via Eq. (7.20), given by

ne =
e−3ν/2

3π2
[V̂ 2 + 2meV̂ −m2

e(e
ν − 1)]3/2 , (7.26)

where V̂ ≡ eV + EF
e . Substituting Eq.( 7.26) into Eq. (7.16) one obtains the general

relativistic extension of the relativistic Thomas-Fermi equation recently introduced for
the study of compressed atoms [210, 209]. This system of equations has to be solved with
the boundary condition of global neutrality; see [211, 218] and below for details.

The scalar density ns, within the mean-field approximation, is given by the following
expectation value

ns = 〈ψ̄NψN〉 =
2

(2π)3

∑

i=n,p

∫

d3k
m̃N

ǫi(p)
, (7.27)

where ǫi(p) =
√

p2 + m̃2
i is the single particle energy.

In the static case, only the temporal components of the covariant currents survive, i.e.
〈ψ̄(x)γiψ(x)〉 = 0. Thus, by taking the expectation values of Eqs. (7.9)–(7.12), we obtain
the non-vanishing components of the currents

J ch
0 = nchu0 = (np − ne)u0, (7.28)

Jω
0 = nbu0 = (nn + np)u0, (7.29)

Jρ
0 = n3u0 = (np − nn)u0, (7.30)

where nb = np + nn is the baryon number density and u0 =
√
g00 = eν/2 is the covariant

temporal component of the four-velocity of the fluid, which satisfies uµuµ = 1.
The metric function λ is related to the mass M(r) and the electric field E(r) =

−e−(ν+λ)/2V ′ through

e−λ(r) = 1− 2GM(r)

r
+
GQ2(r)

r2
, (7.31)

being Q(r) the conserved charge, related to the electric field by Q(r) = r2E(r).
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The energy-momentum tensor of free-fields and free-fermions T µν of the system is

T µν = T µν
f + T µν

γ + T µν
σ + T µν

ω + T µν
ρ , (7.32)

where

T µν
γ =

1

4π

(

F µ
αF

αν +
1

4
gµνFαβF

αβ

)

, (7.33)

T µν
σ = ∇µσ∇νσ − gµν

[

1

2
∇σσ∇σσ − U(σ)

]

, (7.34)

T µν
ω = Ωµ

αΩ
αν +

1

4
gµνΩαβΩ

αβ +m2
ω

(

ωµων − 1

2
gµνωαω

α

)

, (7.35)

T µν
ρ = R

µ
αR

αν +
1

4
gµνRαβR

αβ +m2
ρ

(

R
µ
R

ν − 1

2
gµνRαω

α

)

, (7.36)

T µν
f = (E+ P)uµuν − Pgµν , (7.37)

where the energy-density E and the pressure P are given by

E =
∑

i=n,p,e

Ei, P =
∑

i=n,p,e

Pi, (7.38)

being Ei and Pi the single fermion fluid contributions

Ei =
2

(2π)3

∫ PF
i

0

ǫi(p) 4πp
2dp, (7.39)

Pi =
1

3

2

(2π)3

∫ PF
i

0

p2

ǫi(p)
4πp2dp. (7.40)

It is worth recalling that the equation of state (7.38)–(7.40) satisfies the thermody-
namic law

E+ P =
∑

i=n,p,e

niµi. (7.41)

The parameters of the nuclear model, namely the coupling constants gs, gω and gρ,
and the meson masses mσ, mω and mρ are fixed by fitting experimental properties of
nuclei, such as saturation density, binding energy per nucleon (or experimental masses),
symmetry energy, surface energy, and nuclear incompressibility. In Table 7.1 we present
selected fits of the nuclear parameters. In particular, we show the following parameter
sets: NL3 [135], NL-SH [238], TM1 [248], and TM2 [115].

The constants g2 and g3 are the third and fourth order constants of the self-scalar
interaction as given by the scalar self-interaction potential (see [35], for instance)

U(σ) =
1

2
m2

σσ
2 +

1

3
g2σ

3 +
1

4
g3σ

4 . (7.42)

The non-zero constant c3 that appears in the TM1 and TM2 models corresponds to the
self-coupling constant of the non-linear vector self-coupling 1

4
c3(ωµω

µ)2. We have not
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NL3 NL-SH TM1 TM2
mσ (MeV) 508.194 526.059 511.198 526.443
mω (MeV) 782.501 783.000 783.000 783.000
mρ (MeV) 763.000 763.000 770.000 770.000
gs 10.2170 10.4440 10.0289 11.4694
gω 12.8680 12.9450 12.6139 14.6377
gρ 4.4740 4.3830 4.6322 4.6783
g2 (fm−1) -10.4310 -6.9099 -7.2325 -4.4440
g3 -28.8850 -15.8337 0.6183 4.6076
c3 0.0000 0.0000 71.3075 84.5318

Table 7.1: Selected parameter sets of the σ-ω-ρ model.

include such a self-coupling vector interaction in the general formulation presented above.
However, we show also here the results of the integration when such a self-interaction is
taken into account and we refer to [248, 115] for details about the motivations of including
such a contribution.

The numerical integration of the core equations can be started with a given central
density and the regularity conditions at the origin; see below Sec. 7.3 for details. At
nuclear density the phase-transition to the “solid” crust takes place. Thus, the radius of
the core Rcore is given by E(r = Rcore)/c

2 = ρnuc = ρ0. These equations must be solved
with the boundary conditions given by the fulfillment of the condition of global charge
neutrality and the continuity of the Klein potentials of particles between the core and the
crust.

7.2.2 Core-crust transition layer equations

In the core-crust interface, the mean-field approximation for the meson-fields is not
valid any longer and thus a full numerical integration of the meson-field equations of
motion, taking into account all gradient terms, must be performed. We expect the core-
crust transition boundary-layer to be a region with characteristic length scale of the order
of the electron Compton wavelength ∼ λe = ~/(mec) ∼ 100 fm corresponding to the
electron screening scale. Then, in the core-crust transition layer, the system of equations
(7.14)–(7.22) reduces to

V ′′ +
2

r
V ′ = −eλcoreeJ0

ch , (7.43)

σ′′ +
2

r
σ′ = eλcore [∂σU(σ) + gsns] , (7.44)

ω′′ +
2

r
ω′ = −eλcore

[

gωJ
ω
0 −m2

ωω
]

, (7.45)

ρ′′ +
2

r
ρ′ = −eλcore

[

gρJ
ρ
0 −m2

ρρ
]

, (7.46)
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Figure 7.1: Left Fig. upper panel: electric field in the core-crust transition layer in units
of the critical field Ec. Lower panel: particle density profiles in the core-crust boundary
interface in units of cm−3. Here we use the NL3-model of Table 7.1 and λσ = ~/(mσc) ∼
0.4 fm denotes the sigma-meson Compton wavelength. The density at the edge of the
crust in this example is ρcrust = ρdrip = 4.3 × 1011 g/cm3. Right Fig. the same as Left
Fig., but setting gρ = 0 in order to see the effects of the ρ-meson with respect to the case
gρ 6= 0.

eνcore/2µe − eV = constant , (7.47)

eνcore/2µp + eV + gωω + gρρ = constant , (7.48)

µn = µp + µe + 2 gρρe
−νcore/2 , (7.49)

due to the fact that the metric functions are essentially constant on the core-crust tran-
sition layer and thus we can take their values at the core-radius eνcore ≡ eν(Rcore) and
eλcore ≡ eλ(Rcore).

The system of equations of the transition layer has a stiff nature due to the existence
of two different scale lengths. The first one is associated with the nuclear interactions
∼ λπ = ~/(mπc) ∼ 1.5 fm and the second one is due to the aforementioned screening
length ∼ λe = ~/(mec) ∼ 100 fm. Thus, the numerical integration of Eqs. (7.43)–(7.49)
has been performed subdividing the core-crust transition layer in the following three
regions: (I) a mean-field-like region where all the fields vary slowly with length scale
∼ λe, (II) a strongly interacting region of scale ∼ λπ where the surface tension due to
nuclear interactions dominate producing a sudden decrease of the proton and the neutron
densities and, (III) a Thomas-Fermi-like region of scale ∼ λe where only a layer of opposite
charge made of electrons is present producing the total screening of the positively charged
core. The results of the numerical integration of the equilibrium equations are shown in
Figs. 7.1for the NL3-model.

We have integrated numerically Eqs. (7.14)–(7.22) for the models listed in Table 7.1.
The boundary conditions for the numerical integration are fixed through the following
procedure. We start assuming a value for the central baryon number density nb(0) =
nn(0) + np(0). From the regularity conditions at the origin we have e−λ(0) = 1 and
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ne(0) = np(0).
The metric function ν at the origin can be chosen arbitrarily, e.g. ν(0) = 0, due to

the fact that the system of equations remain invariant under the shift ν → ν+ constant.
The right value of ν is obtained once the end of the integration of the core has been
accomplished and duly matched to the crust, by fulfilling the following identity at the
surface of the neutron star,

eν(R) = e−λ(R) = 1− 2GM(R)

c2R
, (7.50)

being M(R) and R the total mass and radius of the star. Then, taking into account the
above conditions, we solve the system (7.17)–(7.22) at the origin for the other unknowns
σ(0), ω(0), ρ(0), nn(0), np(0), ne(0).

The initial conditions for the numerical integration of the core-crust transition layer
equations are determined through the final values given by the numerical integration of
the core equations, i.e. we take the values of all the variables at the core-radius Rcore.

In the region I the effect of the Coulomb interaction is clear: on the proton-profile we
can see a bump due to Coulomb repulsion while the electron-profile decreases as expected.
Such a Coulomb effect is indirectly felt also by the neutrons due to the coupled nature
of the system of equations. However, the neutron-bump is much smaller than the one of
protons and it is not appreciable in Figs. 7.1 due to the plot-scale. In the region II we see
clearly the effect of the surface tension due to nuclear interaction which produces a sharp
decrease of the neutron and proton profiles in a characteristic scale ∼ λπ. In addition, one
can see a neutron skin effect, analogous to the one observed in heavy nuclei, which makes
the scale of the neutron density falloff slightly larger with respect to the proton one, in
close analogy to the neutron skin effect observed in neutron rich nuclei, see e.g. [251]. The
region III is characterized by a smooth decreasing of the electron density which resembles
the behavior of the electrons surrounding a nucleus in the Thomas-Fermi model.

The matching to the crust must be done at a radius Rcore + δR where full charge
neutrality of the core is reached. Different thicknesses δR correspond to different electron
Fermi energies EF

e . The thickness of the core-crust transition boundary layer δR as well
as the value of the electron density at the edge of the crust, ncrust

e = ne(Rcore+δR), depend
on the nuclear parameters, especially on the nuclear surface tension.

The equilibrium conditions given by the constancy of the Klein potentials (7.20)–
(7.22) throughout the configuration, impose in the transition layer the following continuity
condition

EF
e = eνcore/2µcore

e − eV core = eνcrust/2µcrust
e , (7.51)

where µcore
e = µe(Rcore), eV

core = eV (Rcore), and µ
crust
e = µe(Rcore+δR), and e

νcrust ≃ eνcore .
In the boundary interface, the electron chemical potential and the density decrease:

µcrust
e < µcore

e and ρcrust < ρcore. For each central density, an entire family of core-crust
interface boundaries exist each one with a specific value of δR: the larger the ρcrust, the
smaller the δR. Correspondingly, an entire family of crusts with different mass and thick-
ness, exist. From the continuity of the electron Klein potential in the boundary interface
given by Eq. (7.51), it follows that different values of ρcrust ≥ 0 correspond to different
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Figure 7.2: Distribution of electrons in the core-crust boundary interface for different
densities at the edge of the crust, ρcrust. The larger the ρcrust, the smaller the electric field
E and the smaller the thickness of the interface δR.

values of the electron Fermi energy EF
e ≥ 0. In close analogy to the compressed atoms

studied in [210], the case EF
e = 0 corresponds to the “free” (uncompressed) configuration,

where δR → ∞ and ρcrust = 0, i.e. a bare core. In this configuration the electric field
reaches its maximum value. The case EF

e > 0 is analogous to the one of the compressed
atom [210]. In Fig. 7.2 we have plotted the electron distribution in the core-crust bound-
ary interface for selected densities at the edge of the crust ρcrust = [ρdrip, 10

10, 109] g/cm3,
where ρdrip ∼ 4.3× 1011 g/cm3 is the neutron drip density.

The configuration with ρcrust = ρdrip separates neutron stars with and without inner
crust. In the so-called inner crust, the neutrons dripped from the nuclei in the crust form a
fluid that coexist with the nuclei lattice and the degenerate electrons [15]. For definiteness,
we present in this work the results for configurations ρcrust ≤ ρdrip, i.e for neutron stars
possessing only outer crust. The construction of configurations with ρcrust > ρdrip needs
to be studied in more detail and will be the subject of a forthcoming work. In Figs. 7.1,
we show the core-crust transition layer for the NL3 model of Table 7.1 with and without
the presence of the ρ-meson respectively. The presence of the ρ-meson is responsible for
the nuclear asymmetry within this nuclear model. The relevance of the nuclear symmetry
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Figure 7.3: Upper panel: particle density profiles in the core-crust boundary interface, in
units of cm−3. Middle panel: electric field in the core-crust transition layer, in units of the
critical field Ec. Lower panel: density profile inside a neutron star with central density
ρ(0) ∼ 5ρnuc. We compare and contrast the structural differences between the solution
obtained from the traditional TOV equations (locally neutral case) and the globally neu-
tral solution presented here. We use here the NL3 nuclear parametrization of Table 7.1
and λσ = ~/(mσc) ∼ 0.4 fm, denotes the sigma-meson Compton wavelength. In this
example the density at the edge of the crust is ρcrust = ρdrip = 4.3× 1011 g/cm3.
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energy on the structure of nuclei and neutron stars is continuously stressed in literature;
see e.g. [171, 130, 237, 109, 151]. The precise value of the nuclear symmetry energy plays
here a crucial role in determining the precise value of the ρ-meson coupling which, in the
present case, is essential in the determination of the intensity of the electric field in the
core-crust boundary interface; as can be seen from the comparison of Figs. 7.1.

7.2.3 Crust equations

Turning now to the crust, it is clear from our recent treatment of white dwarfs [209]
that also this problem can be solved by the adoption of Wigner-Seitz cells and from the
relativistic Feynman-Metropolis-Teller (RFMT) approach [210] it follows that the crust
is clearly neutral. Thus, the structure equations to be integrated are the TOV equations

dP

dr
= −G(E+ P)(M + 4πr3P)

r2(1− 2GM
r

)
, (7.52)

dM

dr
= 4πr2E, (7.53)

where M =M(r) is the mass enclosed at the radius r.
The effects of the Coulomb interaction in “solid”-like electron-ion systems appears

only at the microscopic level e.g. Debye-Hueckel screening in classical systems [64] and
Thomas-Fermi screening in the degenerate case [168]. In order to analyze the effects of the
microscopic screening on the structure of the configuration we will consider two equations
of state for the crust: the locally neutral case or uniform approximation (see e.g. [53])
and, for simplicity, instead of using the RFMT EoS [210], we use as second EoS the one
due to Baym, Pethick and Sutherland (BPS) [15], which is by far the most used equation
of state in literature for the description of the neutron star crust (see e.g. [101]).

In the uniform approximation, both the degenerate electrons and the nucleons distri-
bution are considered constant inside each cell of volume Vws. This kind of configuration
can be obtained only imposing microscopically the condition of local charge neutrality

ne =
Z

Vws

. (7.54)

The total pressure of the system is assumed to be entirely due to the electrons, i.e.

P = Pe =
2

3 (2π~)3

∫ PF
e

0

c2p24πp2
√

c2p2 +m2
ec

4
dp, (7.55)

while the total energy-density of the system is due to the nuclei, i.e. E=(A/Z)mNne,
where mN is the nucleon mass.

We turn now to the BPS equation of state. The first correction to the uniform model,
corresponds to abandon the assumption of the electron-nucleon fluid through the so-called
“lattice” model which introduces the concept of Wigner-Seitz cell: each cell of radius Rws
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contains a point-like nucleus of charge +Ze with A nucleons surrounded by a uniformly
distributed cloud of Z fully-degenerate electrons.

The sequence of the equilibrium nuclides present at each density in the BPS equation
of state is obtained by looking for the nuclear composition that minimizes the energy per
nucleon for each fixed nuclear composition (Z,A) (see [15] for details). The pressure P

and the energy-density E of the system are, within this model, given by

P = Pe +
1

3
WLnN , (7.56)

E

nb

=
WN +WL

A
+

Ee(nbZ/A)

nb

, (7.57)

where the electron energy-density is given by

Ee =
2

(2π)3

∫ PF
e

0

√

p2 +m2
e4πp

2dp, (7.58)

and WN(A,Z) is the total energy of an isolated nucleus given by the semi-empirical
formula

WN = mnc
2(A− Z) +mpc

2Z − bA, (7.59)

with b being the Myers and Swiatecki binding energy per nucleon [172]. The lattice energy
per nucleus WL is given by

WL = −1.819620Z2e2

a
, (7.60)

where the lattice constant a is related to the nucleon density nN by nNa
3 = 2.

7.3 Neutron star structure

In the traditional TOV treatment the density and the pressure are a priori assumed
to be continuous as well as the local charge neutrality of the system. The distinguishing
feature of our new solution is that the Klein potentials are constant throughout the three
regions; the core, the crust and the transition interface boundary. An overcritical electric
field is formed and consequently a discontinuity in density is found with a continuous
total pressure including the surface tension of the boundary. In Fig. 7.3, we compare
and contrast the density profiles of configurations obtained from the traditional TOV
treatment and with the treatment presented here.

It is worth noting that the inclusion of the Coulomb interaction and in particular the
presence of the negative lattice energy WL results in a decreasing of the pressure of the
cells. Such an effect, leads to a decreasing of the mass and the thickness of the crust
with respect to the uniform-approximation case where no Coulomb interactions are taken
into account. Comparing the mass and the thickness of the crust obtained with these
two different EoS, we obtain systematically crusts with smaller mass and larger thickness
when Coulomb interactions are taken into account. This results are in line with the recent
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results in [209], where the mass-radius relation of white-dwarfs has been calculated using
an EoS based on the relativistic Feynman-Metropolis-Teller model for compressed atoms
[210].

In the case of the BPS EoS, the average nuclear composition in the outer crust, namely
the average charge to mass ratio of nuclei Z/A, is obtained by calculating the contribution
of each nuclear composition present to the mass of the crust. We exemplified the analysis
for two different cores: Mcore = 2.56M⊙, Rcore = 12.79 km;Mcore = 1.35M⊙, Rcore = 11.76
km. The relative abundance of each nuclide within the crust of the star can be obtained
as

R.A. =
1

MBPS
crust

∫

∆r

4πr2Edr , (7.61)

where the integration is carried out in the layer of thickness ∆r where the particular
nuclide is present; Our results are in agreement with the analysis on the neutron star crust
composition obtained in [98, 188]. In both cases we obtain as average nuclear composition
105
35 Br. The corresponding crusts with fixed nuclear composition 105

35 Br for the two chosen
cores are calculated neglecting Coulomb interactions (i.e. using the first EoS). The mass
and the thickness of these crusts with fixed 105

35 Br are different with respect to the ones
obtained using the full BPS EoS, leading to such average nuclear composition. For the
two selected examples we obtain that the mass and the thickness of the crust with average
105
35 Br are, respectively, 18% larger and 5% smaller with respect to the ones obtained with
the corresponding BPS EoS. This result shows how small microscopic effects due to the
Coulomb interaction in the crust of the neutron star leads to quantitative not negligible
effects on the macroscopic structure of the configuration (see [18] for details).

7.4 Observational constraints on the mass-radius re-

lation

It has been recently pointed out that the most up-to-date stringent constraints to the
mass-radius relation of neutron stars are provided by the largest mass, the largest radius,
the highest rotational frequency, and the maximum surface gravity, observed for pulsars
[262].

So far, the highest neutron star mass measured with a high level of experimental
confidence is the mass of the 3.15 millisecond pulsar PSR J1614-2230,M = 1.97±0.04M⊙,
obtained from the Shapiro time delay and the Keplerian orbital parameters of the binary
system [65]. The fitting of the thermonuclear burst oscillation light curves from the
accreting millisecond pulsar XTE J1814-338 weakly constrain the mass-radius relation
imposing an upper limit to the surface gravity of the neutron star, GM/(c2R) < 0.24
[22]. A lower limit of the radius of RX J1856-3754, as seen by an observer at infinity
R∞ = R[1 − 2GM/(c2R)]−1/2 > 16.8 km, has been obtained from the fit of the optical
and X-ray spectra of the source [263]; it gives the constraint 2GM/c2 > R−R3/(Rmin

∞ )2,
being Rmin

∞ = 16.8 km. Assuming a neutron star of M = 1.4M⊙ to fit the Chandra
data of the low-mass X-ray binary X7, it turns out that the radius of the star satisfies
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Figure 7.4: Constraints on the mass-radius relation given by J. E. Trümper in [262] and
the theoretical mass-radius relation presented in this work.The solid line is the upper limit
of the surface gravity of XTE J1814-338, the dotted-dashed curve corresponds to the lower
limit to the radius of RX J1856-3754, the dashed line is the constraint imposed by the
fastest spinning pulsar PSR J1748-2246ad, and the dotted curves are the 90% confidence
level contours of constant R∞ of the neutron star in the low-mass X-ray binary X7. Any
mass-radius relation should pass through the area delimited by the solid, the dashed and
the dotted lines and, in addition, it must have a maximum mass larger than the mass of
PSR J1614-2230, M = 1.97± 0.04M⊙.

R = 14.5+1.8
−1.6 km, at 90% confidence level, corresponding to R∞ = [15.64, 18.86] km,

respectively (see [110] for details). The maximum rotation rate of a neutron star taking
into account both the effects of general relativity and deformations has been found to
be νmax = 1045(M/M⊙)

1/2(10 km/R)3/2 Hz, largely independent of the equation of state
[140]. The fastest observed pulsar is PSR J1748-2246ad with a rotation frequency of 716
Hz [112], which results in the constraint M ≥ 0.47(R/10 km)3M⊙. In Fig. 7.4 we show
all these constraints and the mass-radius relation presented in this work.

As discussed by J. E. Trümper in [262], the above constraints strongly favor stiff
equations of state which provide high maximum masses for neutron stars. In addition,
putting all of them together, the radius of a canonical neutron star of mass M = 1.4M⊙

is highly constrained to the range R & 12 km disfavoring, at the same time, the strange
quark hypothesis for these specific objects. It is clear from Fig. 7.4 that the mass-radius
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Figure 7.5: Mass-Radius relation obtained with the traditional locally neutral TOV treat-
ment (orange lines) and with the new globally neutral equilibrium configurations (green
lines) presented here. We use here the NL3 nuclear model, see Table 7.1. Solid blue lines
show axisymmetric secular instability lines. Solid orange and green lines correspond to
the static case and the dashed lines show corresponding Keplerian sequences.

relation presented here is consistent with all the observation constraints, for all the nuclear
parametrizations of Table 7.1.

7.5 Comparison with the traditional TOV treatment

In the traditional TOV treatment local charge neutrality as well as the continuity
of the pressure and the density in the core-crust transition are assumed. This leads to
explicit violation of the constancy of the Klein potentials throughout the configuration
(see e.g. [211]). In such a case there is a smooth transition from the core to the crust
without any density discontinuity and therefore the density at the edge of the crust is
∼ ρnuc = ρ0 ∼ 2.7× 1014 g/cm3. The so-called inner crust in those configurations extends
in the range of densities ρdrip . ρ . ρnuc while, at densities ρ . ρdrip, there is the so-called
outer crust.

The markedly differences both in mass and thickness of the crusts (see [18] for de-
tails) obtained from the traditional Tolman-Oppenheimer-Volkoff approach and the new
equilibrium configurations presented here, leads to a very different mass-radius relations
which we compare and contrast in Fig. 7.5.
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7.6 Rotating neutron stars

To rotate a static neutron star we make use of Hartle’s formalism by analogy to what
we have already performed in Chapter 5. From the conceptual point of view it is well-
known that Hartle’s formalism is valid only for neutral systems, when there is no any
electric charge and the pressure is the function of the density only. As it has been pointed
out in this and previous chapters we consider a globally neutral configuration. Moreover
the critical electric field that emerges at the transition layer between core and crust does
not affect the total mass of the configuration. In addition the thickness of the transition
layer is negligible with respect to the size of the configuration. The critical magnetic field
that is generated due to the rotation is also limited in the transition layer and outside it is
very small, as it can be seen from the previous chapter. These facts allow us to neglect the
electromagnetic field in these configurations and safely use Hartle’s approach in order to
analyze the stability of rotating configurations against axisymmetric secular instabilities
discussed in [84] and estimate the maximum mass and minimum period of neutron stars.

The maximum mass of neutron stars plays an important role in determining the end
point of the evolution of massive stars. In other words it sets the upper bound for
the mass of neutron stars before undergoing a gravitational collapse. To this end, the
maximum mass of non-rotating and rotating neutron stars has been intensively studied in
the literature (see [205, 57, 106, 83, 191, 99, 244, 111, 123] for details). Depending on the
model and the equation of state the maximum masses are different. In our case with the
assumptions, the global or local charge neutrality, we have obtained M rot

max ∼ 2.76M⊙ and
M rot

max ∼ 2.78M⊙ and the corresponding central densities ρc = 6.12ρnuc and ρc = 5.89ρnuc,
respectively. The maximum static masses are M stat

max ∼ 2.67M⊙ and M rot
max ∼ 2.69M⊙ and

the corresponding central densities are ρc = 6.32ρnuc and ρc = 6.18ρnuc, respectively. The
larger masses of the locally neutral configurations with respect to the globally neutral one
are the sequence of the presence of the inner crust (see Figs. 7.5, 7.6, 7.7, 7.8, 7.9 for
details).

The minimum period has been studied in the literature intensively as well (see [269,
94, 100, 129] for details) since it determines the upper limits for the frequency of neu-
tron stars close to the mass shedding. Before defining the minimum period we have
analyzed the stability of the system against axisymmetric secular instabilities [84]. As
we expected, it turned out that the turning points (the maximum masses) of the con-
stant angular momentum (J) sequences were almost located along the line connecting the
maximum static and rotating masses on the mass-central density, the mass-radius etc.
planes (see Appendix E). We have obtained for the globally and locally neutral system
the minimum periods Pmin ∼ 0.51 and ∼ 0.53ms with the corresponding central densities
ρc ∼ 6.12ρnuc and ∼ 5.89ρnuc, respectively. Since for the globally neutral configuration we
have no inner crust, its size is smaller than the locally neutral one, though their masses
are slightly different. As a result we have the smaller rotation period for the globally
neutral configuration (see Figs. 7.5, 7.6, 7.7, 7.8, 7.9 and Appendix E for details).

The shape of these configurations becomes less oblate with the increasing central
density (see Figs. 7.8, 7.9 for details). The size of the core initially increases then after
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Figure 7.6: Mass-Central density relation obtained with the traditional locally neutral
TOV treatment (top panel) and with the new globally neutral equilibrium configurations
presented here (bottom panel). The black thick line is the static case, the red thick line is
the Keplerian sequence, the blue thick line is the axisymmetric secular instability line and
the rest dashed lines are J = constant sequences. We use here the NL3 nuclear model,
see Table 7.1.
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Figure 7.7: Mass-Radius relation obtained with the traditional locally neutral TOV treat-
ment (top panel) and with the new globally neutral equilibrium configurations presented
here (bottom panel). The black thick line is the static case, the red thick line is the
Keplerian sequence, the blue thick line is the axisymmetric secular instability line and the
rest dashed lines are J = constant sequences. We use here the NL3 nuclear model, see
Table 7.1.
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Figure 7.8: Cross section in the plane passing through the rotational axis of a neutron
star with the traditional locally neutral TOV treatment at frequency f = 852Hz and
f = 1900Hz. The total rotating gravitational mass is M = 0.67M⊙ and M = 2.78M⊙,
the central density ρc = 1.445ρnuc and ρc = 6ρnuc (left and right panels). The contours
are the lines of constant density. The inner purple contour is the core-crust interface,
corresponding to the nuclear density; the outer brown one is the stellar surface, and the
intermediate orange contour corresponds to the neutron drip density. We use here the
NL3 nuclear model, see Table 7.1.

reaching its maximum decreases with the increasing central density. The thickness of the
crusts in both global and local neutrality cases gradually decreases with the increasing
central density. However the radii of the crusts behave similarly to the radius of the
core (for details see Appendix E). Close to the maximum rotating mass, even though the
configurations rotate at the Keplerian rate, the shape becomes almost spherical, but still
oblate (see the right panels of Figs. 7.8, 7.9 for details).

7.7 Conclusions

We have considered the equations of equilibrium of neutron stars based on the recent
works [218, 18] and [210, 209, 211]. The strong, weak, electromagnetic, and gravitational
interactions are taken into due account within the framework of general relativity. In
particular, the strong interactions between nucleons is described by the exchange of the
σ, ω, and ρ mesons. The equilibrium conditions are given by the set of Einstein-Maxwell-
Thomas-Fermi equations and by the constancy of the general relativistic Fermi energies
of particles, the Klein potentials, throughout the configuration.

We have solved these equilibrium equations numerically, in the case of zero tempera-
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Figure 7.9: Cross section in the plane passing through the rotational axis of a neutron
star with the new globally neutral equilibrium configurations presented here at frequency
f = 986Hz and f = 1942Hz. The total rotating gravitational mass is M = 0.488M⊙

and M = 2.763M⊙, the central baryon density ρc = 1.445ρnuc and ρc = 6ρnuc (left and
right panels ). The contours are the lines of constant density. The inner purple contour is
the core-crust interface (corresponds to the nuclear and neutron drip density); the outer
brown one is the stellar surface. We use here the NL3 nuclear model, see Table 7.1.

tures, for the nuclear parameter sets NL3 [135], NL-SH [238], TM1 [248], and TM2 [115];
see Table 7.1 for details.

A new structure of the star is found: the positively charged core at supranuclear
densities is surrounded by an electronic distribution of thickness & ~/(mec) ∼ 102~/(mπc)
of opposite charge and, at lower densities, a neutral ordinary crust.

In the core interior the Coulomb potential well is ∼ mπc
2/e and correspondingly the

electric field is ∼ (mp/mPlanck)(mπ/me)
2Ec ∼ 10−14Ec. Due to the equilibrium condition

given by the constancy of the Klein potentials, there is a discontinuity in the density at
the transition from the core to the crust, and correspondingly an overcritical electric field
∼ (mπ/me)

2Ec develops in the boundary interface; see Figs. 7.11.
The continuity of the Klein potentials at the core-crust boundary interface leads to

the decrease of the electron chemical potential and density, until values µcrust
e < µcore

e and
ρcrust < ρcore at the edge of the crust, where the global charge neutrality is achieved. For
each central density, an entire family of core-crust interface boundaries and, correspond-
ingly, an entire family of crusts with different mass and thickness, exist. The larger ρcrust,
the smaller the thickness of the interface, the peak of the electric field, and the larger the
mass and the thickness of the crust. The configuration with ρcrust = ρdrip ∼ 4.3 × 1011

1This strong electric field reminds the one studied in the stability of charged nuclear cores against
vacuum polarization; see e.g. [170, 164, 212].
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g/cm3 separates neutron stars with and without inner crust. The neutron stars with
ρcrust > ρdrip deserve a further analysis in order to account for the reduction of the nu-
clear tension at the core-crust transition due to the presence of dripped neutrons from
the nuclei in the crust.

All the above new features lead to crusts with masses and thickness smaller than
the ones obtained from the traditional TOV treatment, and we have shown specifically
neutron stars with ρcrust = ρdrip; . The mass-radius relation obtained in this case have been
compared and contrasted with the one obtained from the locally neutral TOV approach;
see Fig. 7.5. We have shown that our mass-radius relation is in line with observations,
based on the recent work by J. E. Trümper [262]; see Fig. 7.4 for details.

Furthermore we have analyzed the stability of rotating neutron stars, making use
of Hartle’s approach, against axisymmetric secular instabilities. We have estimated the
maximum rotating mass and minimum period for both globally and locally neutral con-
figurations.

7.8 Perspectives

The electromagnetic structure of the neutron star presented here is of clear astrophysi-
cal relevance. The process of gravitational collapse of a core endowed with electromagnetic
structure leads to signatures and energetics markedly different from the ones of a core
endowed uniquely of gravitational interactions; see e.g. [225, 226, 227, 224].

It is clear that the release of gravitational energy in the process of gravitational collapse
of the core, following the classic work of Gamow and Schoenberg (see [86, 9]), is carried
away by neutrinos. The additional nuclear and electromagnetic energy ∼ 1051 erg of the
collapsing core introduced in [18] are expected to be carried away by electron-positron
plasma created in the overcritical electromagnetic field in the collapsing core.

It would be interesting to investigate the spin-up and spin down effects of rotating
neutron stars, losing angular momentum via electromagnetic radiation. To this end, it is
appropriate to construct the constant rest mass (baryon mass) sequences.

To accurately reproduce the moment of inertia of a star which rotates at rates com-
parable to that of the fastest isolated pulsars, one needs to take into consideration the
third order corrections.

To explore the induced magnetic field, Hartle’s approach needs to be reformulated
including the charge of the system. These tasks will be considered in the forthcoming
works.
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Appendix A

Derivation of the Fock extended

metric

In this Appendix, we present a review of the derivation of a generalization of Fock’s
metric, based upon the approach formulated by Abdildin in [4]. The original approximate
metric derived by Fock in [82] can be written as

ds2 =
(

c2 − 2U
)

dt2 −
(

1 +
2U

c2

)

(

dx1
2 + dx2

2 + dx3
2
)

+
8

c2
(U1dx1 + U2dx2 + U3dx3) dt,

(A.1)

where U is the Newtonian gravitational potential that satisfies the equation ∇2U =
−4πGρ, where ρ represents the matter density of the gravitational source. Moreover, the
gravitational vector potential ~U satisfies the equation ∇2Ui = −4πGρvi, where vi are the
components of the 3-velocity of the particles inside the source. The coordinates xµ are
harmonic functions satisfying the D’Alambert equation 2xµ = 0.

As noticed by Abdildin, the metric (A.1) presents certain difficulties. First, the com-
ponents g0i and gij contain a relativistic contribution that is absent in the component g00.
Second, if we use the metric (A.1) to investigate the motion of test particles in a central
potential, we obtain an expression for the perihelion shift that differs from the correct
one by a factor of 1/2. Finally, in the case of a static field or for Gaussian-like coordinate
systems Udt2 ∼ dx21+dx

2
2+dx

2
3, i.e., the relativistic correction of g00 must be of the same

order as that of gij.
From the above observations it follows that it is necessary to consider a more appro-

priate expression for the component

g00 =
1

c2
+

2U

c4
+

Φ

c6
, (A.2)

where Φ is an unknown function which must satisfy the corresponding approximate Ein-
stein equation in harmonic coordinates

R00 =
1

2
∇2g00 − 2U

c6
∇2U − 2

c6

∑

i

(

∂U

∂xi

)2

= −8πG

c2

(

T 00 − 1

2
g00T

)

. (A.3)
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As for the components of a energy-momentum tensor, in the case of an elastic source one
can use the expressions

T 00 =
ρ

c2

[

1 +
1

c2

(

v2

2
+ Π− U

)]

, T 0i =
ρ

c2
vi , T ij =

1

c2
(

ρvivj + pδij
)

, (A.4)

where Π is the elastic energy. It is then straightforward from Eqs.(A.3) and (A.4) to
conclude that

Φ = 2U2 + 2G

∫

ρ
(

3
2
v2 +Π− U

)

+ 3p

|~r − ~r′| (dx′)3. (A.5)

Consequently, the generalized approximate metric is

ds2 =

[

c2 − 2U +
2U2

c2
− 2G

c2

∫

ρ
(

3
2
v2 +Π− U

)

+ 3p

|~r − ~r′|
(dx′)

3

]

dt2

−
(

1 +
2U

c2

)

(

dx1
2 + dx2

2 + dx3
2
)

+
8

c2
(U1dx1 + U2dx2 + U3dx3) dt .

(A.6)

This form of the metric overcomes all the difficulties mentioned above for the original
Fock metric (A.1), and is used everywhere in the present work to obtain the correct
approximations.



Appendix B

Relevant frame components of tidal

tensors

We list below the relevant nonvanishing ZAMO frame components of the electric and
magnetic parts of the Riemann tensor:

E(n)11 =
e−2γ

4Tσ2x2

{

X2Sf 3
x

2xf 2
+
X

x
f 2
xfω(Xωx + xω)− 2X(Sfxx + 2f 3ωωxx)

−fx
[

10Xf 2ωωx +
2

X
f 2ω2(X + 2) +

X

2σ2x
(4σ4 + Sf 2ω2

x)

]

− X

xσ2
f 3ωωx(f

2ω2
x − 4σ2)− f 3

σ2
ω2
x(S + f 2ω2)

}

,

E(n)33 =
e−2γ

4σ4fx2
[

σ2fx(2xf −Xfx) + ω2
xf

4
]

,

H(n)12 =
e−2γ

√
X

8Tx3σ5f

{

2ωσ4[Xf 2
x(fxX + xf)− 6f 2fx − 2Xf 2(fx + 2xfxx)]− f 5ω3

xS

+fσ2[−2f 3ωω2
x(Xfx + 3xf) + 4Sf 2(ωx − xωxx)

+Sfxωx(Xfx − 10xf)]} , (B.1)

where X = x2 − 1, S = σ2X + f 2ω2 and T = S − 2σ2X.
Furthermore, the Kretschmann invariant (3.33) of the QM spacetime evaluated on the
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equatorial plane y = 0 is given by

K = e−4γ 4X
2

σ4x4

{

f 2
xx −

f 4ω2
xx

Xσ2
+
f 2ωxωxx

2xXσ4
[σ2fx(Xfx − 10xf)− f 2(f 2ω2

x − 4σ2)]

+fxx

[

(X + 3)
fx
Xx

− f 2
x

2f 2x
(Xfx + xf) +

f 2ω2
x

2Xxσ2
(Xfx + 3xf)

]

+
f 3
x

16σ2x2f 2

[

Xσ2

f 2
f 2
x(Xfx + 2xf)− 3f 2ω2

x(Xfx − 4xf)− 8σ2fx

−8xσ2f

X
(2X + 3)

]

+
f 3fxω

2
x

2xXσ2

(

−7f 2ω2
x

4σ2
+ 13 +

6

X

)

+f 2
x

[

3f 4ω4
x

16σ4x2
− f 2ω2

x

4Xσ2x2
(29X + 25) +

X2 + 3X + 3

X2x2

]

− f 4ω2
x

Xσ2x2

[

f 4ω4
x

16σ4
+ 1− f 2ω2

x

4Xσ2
(5X + 3)

]}

. (B.2)



Appendix C

The Hartle-Thorne solution and

equatorial circular orbits

C.0.1 The Hartle-Thorne vacuum solution

The HT metric given by Eq. (4.1) can be written in an analytic closed-form in the
exterior vacuum case in terms of the total massM , angular momentum J , and quadrupole
moment Q of the rotating star. The angular velocity of local inertial frames ω(r), pro-
portional to Ω, and the functions h0, h2, m0, m2, k2, proportional to Ω2, are derived from
the Einstein equations [see 105, 108, for details]. Thus, the metric can be then written as

ds2 =

(

1− 2M

r

)

[

1 + 2k1P2(cos θ) + 2

(

1− 2M

r

)−1
J2

r4
(2 cos2 θ − 1)

]

dt2

−
(

1− 2M

r

)−1
[

1− 2

(

k1 −
6J2

r4

)

P2(cos θ)− 2

(

1− 2M

r

)−1
J2

r4

]

dr2

−r2[1− 2k2P2(cos θ)](dθ
2 + sin2 θdφ2) +

4J

r
sin2 θdtdφ (C.1)

where

k1 =
J2

Mr3

(

1 +
M

r

)

+
5

8

Q− J2/M

M3
Q2

2

( r

M
− 1

)

,

k2 = k1 +
J2

r4
+

5

4

Q− J2/M

M2r

(

1− 2M

r

)−1/2

Q1
2

( r

M
− 1

)

,

and

Q1
2(x) = (x2 − 1)1/2

[

3x

2
ln
x+ 1

x− 1
− 3x2 − 2

x2 − 1

]

,

Q2
2(x) = (x2 − 1)

[

3

2
ln
x+ 1

x− 1
− 3x3 − 5x

(x2 − 1)2

]

, (C.2)
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are the associated Legendre functions of the second kind, with x = r/M − 1, and
P2(cos θ) = (1/2)(3 cos2 θ − 1) is the Legendre polynomial. The constants M , J and
Q the total mass, angular momentum and mass quadrupole moment of the rotating ob-
ject, respectively. This form of the metric corrects some misprints of the original paper by
[108] (see also [21] and [30]). The precise numerical values of M , J and Q are calcualted
from the matching procedure of the exterior and interior metrics at the surface of the
star.

The total mass of a rotating configuration is defined as M = MJ 6=0 = MJ=0 + δM ,
where MJ=0 is the mass of non-rotating configuration and δM is the change in mass of
the rotating from the non-rotating configuration with the same central density. It should
be stressed that in the terms involving J2 and Q the total mass M can be substituted by
MJ=0 since δM is already a second order term in the angular velocity.

C.0.2 Angular velocity of equatorial circular orbits

The four-velocity u of a test particle on a circular orbit in equatorial plane of axisym-
metric stationary spacetime can be parametrized by the constant angular velocity Ω with
respect to an observer at infinity

u = Γ[∂t + Ω∂φ], (C.3)

where Γ is a normalization factor which assures that uαuα = 1. From normalization and
geodesics conditions we obtain the following expressions for Γ and Ω = uφ/ut

Γ = ±(gtt + 2Ωgtφ + Ω2gφφ)
−1/2, gtt,r + 2Ωgtφ,r + Ω2gφφ,r = 0, (C.4)

hence, Ω, the solution of (C.4)2, is given by

Ω±orb(r) =
uφ

ut
=

−gtφ,r ±
√

(gtφ,r)2 − gtt,rgφφ,r
gφφ,r

, (C.5)

where (+/−) stands for co-rotating/counter-rotating orbits, uφ and ut are the angular
and time components of the four-velocity, and a colon stands for partial derivative with
respect to the corresponding coordinate. In our case one needs to consider only co-rotating
orbits (omitting the plus sign in Ω+orb(r) = Ωorb(r)) to determine the mass shedding
(Keplerian) angular velocity on the surface of the WD. For the Hartle-Thorne external
solution Eq. (C.1) we have

Ωorb(r) =

√

M

r3
[

1− jF1(r) + j2F2(r) + qF3(r)
]

, (C.6)
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where j = J/M2 and q = Q/M3 are the dimensionless angular momentum and quadrupole
moment,

F1 =

(

M

r

)3/2

,

F2 = [48M7 − 80M6r + 4M5r2 − 18M4r3 + 40M3r4 + 10M2r5

+15Mr6 − 15r7][16M2r4(r − 2M)]−1 + F,

F3 =
6M4 − 8M3r − 2M2r2 − 3Mr3 + 3r4

16M2r(r − 2M)/5
− F,

F =
15(r3 − 2M3)

32M3
ln

r

r − 2M
.

The mass shedding limiting angular velocity of a rotating star is the Keplerian angular
velocity evaluated at the equator (r = Req), i.e.

ΩJ 6=0
K = Ωorb(r = Req). (C.7)

In the static case i.e. when j = 0 hence q = 0 and δM = 0 we have the well-known
Schwarzschild solution and the orbital angular velocity for a test particle ΩJ=0

ms on the
surface (r = R) of the WD is given by

ΩJ=0
K =

√

MJ=0

R3
MJ=0

. (C.8)

C.0.3 Weak field limit

Let us estimate the values of j and q recovering physical units with c and G. The
dimensionless angular momentum is

j =
cJ

GM2
=

c

G

αMR2Ω

M2
= α

(

ΩR

c

)(

GM

c2R

)−1

, (C.9)

where we have used the fact that J = IΩ, with I = αMR2, and α ∼ 0.1 from our
numerical integrations. For massive and fast rotating WDs we have (ΩR)/c ∼ 10−2 and
(GM)/(c2R) ∼ 10−3, so j ∼ 1.

The dimensionless quadrupole moment q is

q =
c4

G2

Q

M3
=

c4

G2

βMR2

M3
= β

(

GM

c2R

)−2

, (C.10)

where we have expressed the mass quadrupole moment Q in terms of mass and radius of
the WD, Q = βMR2, where β ∼ 10−2, so we have q ∼ 104.
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The large values of j and q might arise some suspicion on the products jF1, j
2F2 and

qF3 as real correction factors in Eq. (C.6). It is easy to check this in the weak field limit
M/r ≪ 1, where the functions Fi can be expanded as a power-series

F1 =

(

M

r

)3/2

,

F2 ≈ 1

2

(

M

r

)3

− 117

28

(

M

r

)4

− 6

(

M

r

)5

− ...,

F3 ≈ 3

4

(

M

r

)2

+
5

4

(

M

r

)3

+
75

28

(

M

r

)4

+ 6

(

M

r

)5

+ ...

so evaluating at r = R

jF1 = α

(

ΩR

c

)(

GM

c2R

)1/2

, j2F2 =
α

2

(

ΩR

c

)(

GM

c2R

)2

, (C.11)

so we finally have jF1 ∼ 10−9/2, j2F2 ∼ 10−9, and qF3 ∼ 10−2. We can therefore see
that the products are indeed corrections factors and, in addition, that effect due to the
quadrupolar deformation is larger than the frame-dragging effect.

C.1 Pycnonuclear fusion reaction rates

The theoretical framework for the determination of the pycnonuclear reaction rates
was developed by [230]. The number of reactions per unit volume per unit time can be
written as

Rpyc = Z4AρS(Ep)3.90× 1046λ7/4 exp(−2.638/
√
λ) cm−3 s−1

λ =
1

Z2A4/3

(

ρ

1.3574× 1011 g cm−3

)1/3

, (C.12)

where S are astrophysical factors in units of Mev barns (1 barn=10−24 cm2) that have to
be evaluated at the energy Ep given by Eq. (4.4).

For the S-factors we adopt the results of [89] calculated with the NL2 nuclear model
parameterization. For center of mass energies E ≥ 19.8 MeV, the S-factors can be fitted
by

S(E) = 5.15× 1016 exp

[

−0.428E − 3E0.308

1 + e0.613(8−E)

]

MeVbarn , (C.13)

which is appropriate for the ranges of the zero-point energies at high densities. For
instance, 12C nuclei at ρ = 1010 g cm−3 have a zero-point oscillation energy Ep ∼ 34 keV.

All the nuclei (Z,A) at a given density ρ will fuse in a time τpyc given by

τpyc =
nN

Rpyc

=
ρ

AMuRpyc

, (C.14)
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Treatment/EOS MJ 6=0

max/M⊙ References
Newtonian/Chandrasekhar µ = 2 1.474 [7]

Newtonian/Polytrope n = 3 1.487 [214]
Post-Newtonian/Chandrasekhar µ = 2 1.482 [215]

GR/Chandrasekhar µ = 2 1.478 [11]

Table C.1: Maximum rotating mass of WDs in literature.

where nN = ρ/(AMu) is the ion-density. [89] estimated that the S-factors (C.13) are
uncertain within a factor ∼ 3.5; it is clear from the above equation that for a given
lifetime τpyc such uncertainties reflect also in the determination of the density threshold.

C.2 Comparison with the Newtonian treatment and

other works

We have constructed solutions of the Newtonian equilibrium equations for RWDs accu-
rate up to order Ω2, following the procedure of [105]. In Fig. C.1 (left panel) we compare
these Newtonian configurations with general relativistic RWDs for the Chandrasekhar
EOS with µ = 2. We can see clearly the differences between the two mass-density rela-
tions toward the high density region, as expected. A most remarkable difference is the
existence of axisymmetric instability boundary in the general relativistic case, absent in
its Newtonian counterpart.

Up to our knowledge, the only previous work on RWDs within GR is the one of [11]. A
method to compute RWDs configurations accurate up to second order in Ω was developed
by two of the authors [see 234, for details], independently of the work of [105]. In [11],
RWDs were computed for the Chandrasekhar EOS with µ = 2.

In Fig. C.1 (right panel) we show the mass-central density relation obtained with their
method with the ones constructed in this work for the same EOS. We note here that the
results are different even at the level of static configurations, and since the methods are
based on construction of rotating configurations from seed static ones, those differences
extrapolate to the corresponding rotating objects. This fact is to be added to the possible
additional difference arising from the different way of approaching the order Ω2 in the
approximation scheme. The differences between the two equilibrium configurations are
evident.

Turning now to the problem of the maximum mass of a RWD, in Table C.2 we present
the previous results obtained in Newtonian, Post-Newtonian approach and GR by several
authors. Depending on their method, approach, treatment, theory and numerical code
the authors showed different results. These maximum mass of RWDs are to be compared
with the ones found in this work and presented in Table 4.4 for the Chandrasekhar µ = 2,
Salpeter, and RFMT EOS.
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Figure C.1: Top panel: Mass versus central density of Newtonian and general relativistic
WDs for the Chandrasekhar EOS with µ = 2. Both the non-rotating case and the
Keplerian sequence are shown. We have stopped the density, just for sake of comparison,
at the critical density for the onset of inverse β-decay of 4He ρ = 1.39 × 1011 g cm−3.
Bottom panel: Mass versus central density relation for general relativistic WDs for the
Chandrasekhar EOS with µ = 2 for the static and the Keplerian sequence in this work
and the one of [11].
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C.3 Accuracy of the Hartle’s approach

In his classic work, [105] described the slow rotation regime by requesting that frac-
tional changes in pressure, energy density, and gravitational field due to the rotation of
the star are all much smaller with respect to a non-rotating star with the same central
density. From a dimensional analysis, such a condition implies

Ω2 ≪
( c

R

)2 GMJ=0

c2R
, (C.15)

whereMJ=0 is the mass of the unperturbed configuration and R its radius. The expression
on the right is the only multiplicative combination ofM,R,G, and c, and in the Newtonian
limit coincides with the critical Keplerian angular velocity ΩJ=0

K given by Eq. (C.8). For
unperturbed configurations with (GM)/(c2R) < 1, the condition (C.15) implies ΩR/c≪
1. Namely, every particle must move at non-relativistic velocities if the perturbation to
the original geometry have to be small in terms of percentage. Eq. (C.15) can be also
written as

Ω ≪ ΩJ=0
K , (C.16)

which is the reason why it is often believed that the slow rotation approximation is not
suitable for the description of stars rotating at their mass-shedding value.

Let us discuss this point more carefully. It is clear that the request that the contri-
bution of rotation to pressure, energy density, and gravitational field to be small can be
summarized in a single expression, Eq. (C.15), since all of them are quantitatively given by
the ratio between the rotational and the gravitational energy of the star. The rotational
energy is T ∼ MR2Ω2 and the gravitational energy is |W | ∼ GM2/R = (GM/c2R)Mc2,
hence the condition T/|W | ≪ 1 leads to Eq. (C.15) or (C.16). Now we will discuss the
above condition for realistic values of the rotational and gravitational energy of a rotating
star, abandoning the assumption of either fiducial or order of magnitude calculations.
We show below that the actual limiting angular velocity on the right-hand-side of the
condition (C.16) has to be higher than the Keplerian value.

We can write the gravitational binding energy of the star as |W | = γGM2/R and the
rotational kinetic energy as T = (1/2)IΩ2 = (1/2)αMR2Ω2, where the constants γ and α
are structure constants that depends on the density and pressure distribution inside the
star. According to the slow rotation approximation, T/|W | ≪ 1, namely

T

|W | =
αMR2Ω2/2

γGM2/R
=

(

α

2γ

)(

GM

R3

)−1

Ω2 =

(

α

2γ

)(

Ω

ΩJ=0
K

)2

≪ 1, (C.17)

which can be rewritten in analogous form to Eq. C.16 as

Ω ≪
√

2γ

α
ΩJ=0

K . (C.18)

Now we check that the ratio of the structural constants is larger than unity. Let us
first consider the simplest example of a constant density sphere. In this case α = 2/5 and
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γ = 3/5, so
√

2γ/α ≈ 1.73, and the condition (C.18) is Ω ≪ 1.73ΩJ=0
K . If we consider

now a more realistic density profile, for instance, a polytrope of index n = 3, we have [see
e.g. 235]

|W | = 3

5− n

GM2

R
=

3

2

GM2

R
, T =

1

2
IΩ2 =

1

2

2

3
M〈r2〉Ω2 (C.19)

where 〈r2〉 = 0.11303R2. Therefore we have in this case γ = 3/2 and α = 0.075, and so
Eq. (C.18) becomes Ω ≪ 6.32ΩJ=0

K . This is not surprising since T/|W | → 0.025 when
Ω → ΩJ=0

K .
The above analysis has been done assuming spherical symmetry. When deviations

from the spherical shape are taken into account, the ratio T/|W | turn to be even smaller
than the previous estimates based on spherical polytropes. Since the equatorial radius
satisfies Req > R, at mass-shedding we will have Ω < ΩJ=0

K . In fact, in the Roche model

the mass-shedding angular velocity is ΩJ 6=0
K = (2/3)3/2ΩJ=0

K ≈ 0.544ΩJ=0
K , corresponding

to a rotational to gravitational energy ratio T/|W | ≈ 0.0074 [see e.g. 235].
In our RWDs we have obtained that the mass-shedding angular velocity satisfies

ΩJ 6=0
K ≈ 0.75ΩJ=0

K at any density; see Eq. (4.12). Accordingly to this, we show in the
left panel of Fig. C.2 the ratio T/|W | for RWDs as a function of the central density for
the Keplerian sequence. For an increasing central density T/|W | decreases. On the right
panel we have plotted the eccentricity versus the central density. For increasing central
density the eccentricity decreases, so RWDs become less oblate at higher densities.

Now we turn to evaluate more specifically the deviations from the spherical symmetry.
The expansion of the radial coordinate of a rotating configuration r(R, θ) in powers of
the angular velocity is written as [105]

r = R + ξ(R, θ) +O(Ω4), (C.20)

where ξ is the difference in the radial coordinate, r, between a point located at the polar
angle θ on the surface of constant density ρ(R) in the rotating configuration, and the point
located at the same polar angle on the same constant density surface in the non-rotating
configuration. In the slow rotation regime, the fractional displacement of the surfaces
of constant density due to the rotation have to be small, namely ξ(R, θ)/R ≪ 1, where
ξ(R, θ) = ξ0(R) + ξ2(R)P2(cos θ) and ξ0(R) and ξ2(R) are function of R proportional to
Ω2. On the right panel of Fig. C.3 the difference in the radial coordinate over static radius
versus the central density is shown. Here we see the same tendency as in the case of the
eccentricity, that these differences are decreasing with an increasing central density. On
the left panel the rotation parameter ΩR/c versus the central density is shown. Here, with
an increasing central density the rotation parameter increases. Thus, for higher densities
the system becomes less oblate, smaller in size with a larger rotation parameter i.e. higher
angular velocity.

In order to estimate the accuracy of the slow rotation approximation for RWDs, based
on the above results, it is useful to compare all the above numbers with the known
results for NSs. For instance, we notice that in NSs ΩR/c ∼ 10−1, ξ(R, 0)/R ∼ 10−2

and ξ(R, π/2)/R ∼ 10−1 [see e.g. 21], to be compared with the corresponding values of
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Figure C.2: Top panel: rotational to gravitational energy ratio versus the central density
for maximally rotating RWDs, calculated with the Chandrasekhar EOS µ = 2. Bottom
panel: the eccentricity versus the central density for the same sequence of RWDs.
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Figure C.3: Top panel: the rotation parameter normalized to the speed of light versus
the central density. Bottom panel: the difference in the radial coordinate over the static
radius versus the central density. The solid curve corresponds to the difference between
equatorial (θ = π/2) and static radii and the dashed curve corresponds to the difference
between polar (θ = 0) and static radii.
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RWDs shown in Fig. C.3, ΩR/c . 10−2, ξ(R, 0)/R ∼ 10−2 and ξ(R, π/2)/R ∼ 10−1.
[270] calculate the accuracy of the Hartle’s second order approximation and found that
the mass of maximally rotating NSs is accurate within an error . 4%; [19] found that
the inclusion of third order expansion Ω3 improved the mass-shedding limit numerical
values in less than 1% for NSs obeying different EOS. On the other-hand, it is known
that the ratio T/|W | in the case of NSs is as large as ∼ 0.1 in the Keplerian sequence
(see e.g. Tables 1–5 of [20]). Since RWDs have T/|W | and ΩR/c smaller than NSs, and
δR/R = ξ/R at least of the same order (see left panel of Fig. C.2), we expect that the
description of the strucure of RWDs up to the mass-shedding limit within the Hartle’s
approach to have at least the same accuracy as in the case of NSs.
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Appendix D

Spherical Capacitor

Consider a spherical capacitor with the internal R1 and external R2 radii having
charges q1 and q2 correspondingly. The Coulomb potential in general has forms

V (r) =















k
(

q1
R1

+ q2
R2

)

, r < R1,

k
(

q1
r
+ q2

R2

)

, R1 < r < R2,

k
(

q1
r
+ q2

r

)

, r > R2,

(D.1)

where

k =
1

4πε0
. (D.2)

Using the procedure developed by [158] for the computation of the magnetic field one has

Br(r, θ) =



















2kω cos θ
3c2
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(D.3)

Bθ(r, θ) =



















−2kω sin θ
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(D.4)

Let us consider a limiting case analogous to ours when

q1 = q, q2 = −q, R1 ≈ R2 − λe. (D.5)

This means that one may expand the expressions for both Br and Bθ in λe. Retaining
only the terms linear in λe one has

Br(r, θ) =











2kωqλe cos θ
3c2R2

2

, r < R1,

−4kωqλeR2 cos θ
3c2r3

+
2kωq(R3

2
−r3) cos θ

3c2r3R2
, R1 < r < R2,

−4kωqλeR2 cos θ
3c2r3

, r > R2,

(D.6)



146 Spherical Capacitor

Bθ(r, θ) =











−2kωqλe sin θ
3c2R2

2

, r < R1,

−2kωqλeR2 sin θ
3c2r3

+
kωq(R3

2
+2r3) sin θ

3c2r3R2
, R1 < r < R2,

−2kωqλeR2 sin θ
3c2r3

, r > R2.

(D.7)

Note that when r = R2 one will have a huge difference between Br and Bθ in orders
between the spherical shells.



Appendix E

Rotating neutron stars

In Fig. E.1 we show the mass-radius relation making use of the observations constraints
for neutron stars given by Trümper in [262]. It can be seen that for both globally and
locally neutral configurations, including static and rotating cases the mass-radius relation
is in a good agreement with the constraints.

9 11 13 15 17 19
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Req@kmD

M

M
�

Figure E.1: Constraints on the mass-radius relation given by J.E. Trümper in [262] and the
theoretical mass-radius relation presented in this work. Globally neutral configurations
are in green and locally neutral ones are in orange. The solid lines correspond to the
static case and dashed lines correspond to the Keplerian sequence. We use here the NL3
nuclear model.
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Figure E.2: Detail near the maximum mass versus central density, plot for globally neutral
configuration. We use the NL3 nuclear model. Colored dashed lines are constant J
sequences, the solid black line is the static case, the solid red line is the Keplerian sequence,
the dotted black line is the axisymmetric secular instability line, the blue line is the line
connecting M rot

max and M stat
max.

In Fig. E.2 we show the mass-central density relation for the globally neutral configu-
ration. Here we focus on the definition of the maximum rotating mass M rot

max, maximum
static mass M stat

max, maximum angular momentum Jmax and maximum angular velocity
(minimum rotation period) Ωmax (Pmin). Note that Ωmax is defined along the turning
points of constant J sequences (axisymmetric secular instability line) what is consistent
with the results of Stergioulas and Friedman [247]. At large scales the difference between
axisymmetric secular instability line and the line joining M rot

max with M stat
max can not be

seen. For details see [20] and [101].
In Figs. E.3, E.4, and E.5 we show the eccentricity, moment of inertia, and angular

momentum versus central density. For the globally neutral configurations the moment of
inertia and eccentricity are smaller with respect to the one of the locally neutral configu-
rations, since there is the inner crust in the locally neutral configurations and due to this
fact these configurations will have larger radius and mass. Details are shown in Fig. E.7.

In Fig. E.6 we show nonlinear dependence of the angular momentum on the angular
velocity.

In Figs. E.8 and E.9 we show the quadrupole moment and T/|W | versus central density.
Here we have larger values for locally neutral configurations.



149

5.02.0 3.01.5 7.0

0.3

0.4

0.5

0.6

0.7

Ρc�Ρ0

ec
ce

nt
ri

ci
ty

Figure E.3: Eccentricity versus central density. We use the NL3 nuclear model. The green
line is globally neutral configuration and the orange line is locally neutral configuration.
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Figure E.4: Moment of inertia versus central density for static case. We use the NL3
nuclear model. The green line is globally neutral configuration and the orange line is
locally neutral configuration.
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Figure E.5: Angular momentum versus central density. We use the NL3 nuclear model.
The green line is the global charge neutrality and orange line is the local charge neutrality
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Figure E.6: Angular momentum versus angular velocity. We use the NL3 nuclear model.
The green line is the globally neutral configuration and the orange line is the locally
neutral configuration.
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Figure E.7: Radius versus central density. We use the NL3 nuclear model. Top: globally
neutral configuration. Bottom: locally neutral configuration. The black lines are the radii
of the cores, the red lines are the radii of the inner crusts, the blue lines are the radii of
the outer crusts. All solid lines are for the static configurations. All dashed lines are the
equatorial radii for the Keplerian sequence.
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Figure E.8: Quadrupole moment versus central density. We use the NL3 nuclear model.
The green line is global charge neutrality and orange line is local charge neutrality

5.02.0 3.0 7.0
0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ρc�Ρ0

T

 W ¤

Figure E.9: Kinetic energy/binding energy (T/|W |) versus central density. We use the
NL3 nuclear model. The green line is global charge neutrality and orange line is local
charge neutrality
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[88] E. Garćıa-Berro, S. Torres, P. Lorén-Aguilar, G. Aznar-Siguán, J. Camacho,
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