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CHAPTER 1 

 

INTRODUCTION 

 

 

 

 

 

 

 

1.1 QUALITY CONTROL OF FOOD 

 

Food is any substance consumed to provide nutritional support for the body. It can be of plant 

or animal origin, and contains essential nutrients, such as carbohydrates, fats, proteins, 

vitamins, or minerals. The substance is ingested and assimilated by the organism in an effort 

to produce energy, maintain life or stimulate growth. Consequently, in recent years attention 

has been increasingly focused on what we eat, trying to ameliorate the quality of food 

consumed by improving the standard of living. 

Today, most of the food energy consumed by the world population is supplied by the food 

industry so that, together with the food industry, the concepts of food safety and food quality 

were born at the same time. 

Food safety is a discipline born to describe handling, preparation and storage of food in ways 

that prevent foodborne illness. These include a number of routines (rules) that should be 

followed to avoid potentially severe health hazards. The tracks within this line of thought are 

safety between industry and the market and then between the market and the consumer. Food 

safety includes the origins of food, the processes relating to food labeling, food hygiene, food 

additives and pesticide residues, as well as policies on biotechnology and food and guidelines 

for the management of governmental import and export inspection and certification systems 

for foods. In considering market to consumer practices, the usual thought is that food ought to 

http://en.wikipedia.org/wiki/Nutrient
http://en.wikipedia.org/wiki/Fat
http://en.wikipedia.org/wiki/World_population
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be safe in the market and the concern is safe delivery and preparation of the food for the 

consumer.  

There are many agencies responsible for food safety monitoring. In particular, in the 

European Union (EU) the EU parliament is informed on food safety matters by the European 

Food Safety Authority (EFSA) created by European Regulation 178/2002 laying down the 

general principles and requirements of food law, establishing the European Food Safety 

Authority and enacting procedures in matters of food safety [1,2]. The EFSA provides 

scientific advice and effective communication regarding risks, existing and emerging, 

associated with the food chain. 

Consumers worldwide always demand to have their foods of higher standards or better 

quality. However, the term “standard” or “quality” is often not unclear. “Food quality” may 

have different meaning. Food quality encompasses the quality characteristics of food that are 

acceptable to consumers. These include external factors as appearance (size, shape, color, 

gloss), texture, and flavor; internal factors such as chemical, physical and microbiological 

properties. 

Food quality also deals with product traceability, e.g. of ingredient and packaging suppliers, 

should a recall of the product be required. It also deals with labeling issues to ensure there is 

correct ingredient and nutritional information. 

There are many existing international quality institutes testing food products in order to 

indicate which are higher quality products. Founded in 1961 in Brussels, the international 

quality institute Monde Selection is the oldest one in evaluating food quality. During the 

analysis the products must meet the following selection criteria, required by the institute: 

sensory analysis, bacteriological and chemical analysis, the nutrition and health claims and 

the utilization notice. In short, the judgments are based on the following areas: taste, health, 

convenience, labeling, packaging, environmental friendliness and innovation. As many 

consumers rely on manufacturing and processing standards, the institute Monde Selection 

takes into account the European Food Law [3,4]. 

In order to guarantee food quality there must be an adequate quality control. The aim of 

quality control is to achieve a good and a consistent standard of quality in the product being 

produced as it is compatible with the market for which the product is designed, and the price 

at which it will sell.  

 

Quality control is often considered under the following three headings:  

 

http://en.wikipedia.org/wiki/Ingredient
http://en.wikipedia.org/wiki/Packaging
http://en.wikipedia.org/wiki/Packaging_and_labeling
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Control of raw material 

Control of the process  

Control of the finished product 

 

Each heading is important and indispensable. A given raw material may be examined and 

analyzed in different ways, with different techniques, depending on the information that we 

wish to obtain. In the same way, the finished products must be analyzed in order to check the 

chemical, physical, biological and/or organoleptic parameters. Clearly it is difficult to discuss 

raw material control without reference to process control. It is equally difficult to talk about 

process control without  assuming that proper raw material control is carried out and that the 

materials are known to have reached the standard required for proper processing: they are 

simultaneously in operation. In planning a process control scheme, it is necessary first to list 

in sequence the steps in the process or to draw a flow diagram taking care to show the 

alternative processing steps, where these exist, to introduce changes in raw material. For each 

processing steps, one must identify the critical points, and define which trouble may arise 

which may be reflected in the quality of the finished product; for this reason it is necessary to 

establish controls in all these operations. 

We often confuse “Quality Assurance” (Q.A.) with “Quality Control” (Q.C.). Quality control 

focuses on the product, while quality assurance focuses on the process. Quality control 

includes evaluating an activity, a product, process, or service while quality assurance aims to 

ensure processes are sufficient to meet clearly defined objectives. Further on, quality 

assurance ensures a product or service is created, implemented, or produced correctly, 

whereas quality control determines if the end product results are satisfactory or not. 

Quality control in a typical food processing system begins right from the production stage of a 

food and runs till the stage of its sale and distribution. Some of the common quality control 

measures at each stage of a processed food are highlighted below: 

 

 PRODUCTION 

- Control on the use of pesticides, veterinary drugs, and fertilizers. 

- Quality control at the time of harvesting. 

- Post-harvest handling particularly during storage (temperature, humidity and 

time control) 

 PROCESSING 

- Use of Good Manufacturing Practices (GMPs) 
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- Application of Hazard Analysis of Critical Control Points (HACCP) approach 

to achieve optimum results with regard to the quality and safety of the product. 

- The application of ISO 9000 series of standards to establish Q.C. regimes. 

 DISTRIBUTION AND SALE 

- The ambient conditions under which food is stored or transported (e.g., time, 

temperature, humidity). 

 

Developed countries have structured food safety regulatory systems that are increasingly 

comprehensive and more stringent. They are adopting a mix of regulatory approaches 

depending on the problem addressed, including process standards such as HACCP, 

performance standards for testing final products and even increasing labeling standards to 

communicate about food safety to consumers [5-7].  

As above mentioned, the quality of end products is influenced primarily by the raw materials 

used. For this reason, close cooperation between agriculture and processing plants is needed. 

The farmers, in many cases, make agreements with the food industry, not only on the quantity 

of raw materials produced, but also all on their quality. In all cases, the raw materials must 

fulfill all standards requirements. Great attention is put on the presence of different kinds of 

contaminants such as toxic metabolites of microorganisms, toxic and heavy metals, residues 

of pesticides, the presence of undesired materials and others. In perishable raw materials, the 

chemical and microbiological quality of the raw material plays an important role and has to be 

controlled. For quality control of individual raw materials, different quality parameters are 

chosen, according to the quality requirements of the final products for which the raw material 

will be used [8]. Different evaluation methods based on different principles may be used. In 

particular, as far as the authentication of the quality of raw materials is concerned, usually 

rapid and accurate controls methods are preferred, for example through the use of NIRS (near-

infrared spectroscopy) and HPLC (high performance liquid chromatography) but their choice 

depends on many factors [9-11]. 

Quality of finished food products is the most important indicator for the consumer. Finished 

products have to fulfill all requirements on quality. They should have the appropriate nutritive 

value, typical sensory characteristics and above all, meet all standards from a safety point of 

view. For this reason the quality control of finished products is the crucial point of the whole 

quality control chain. For the consumers, it is important that the quality of such products 

remains at the level declared by the producer during the whole storage period guaranteed. 

Labeling of food is also important; its purpose is to provide the consumer with the data 
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necessary for making an informed choice in the marketplace. The label must always bear the 

statement of identity; declaration of net contents; name and address of the manufacturer, 

packager, distributor; and a list of ingredients. The date of production and expiration date is 

most important, especially in perishable foods. National regulations usually require further 

information, such as nutrients and energy contents, and information about food additives with 

appropriate E number. The first step of quality control of finished food products starts in the 

factory. The producers are responsible for the quality of products. Therefore, they use the 

technological procedure in which the HACCP system is incorporated. This means that at least 

the critical control points are regularly examined. The high quality of produced foods is also 

important as a competition factor. In this respect, the producers are economically stimulated 

to produce foods of better quality than a competitive company. Factory laboratories are on 

high standard and are reasonably equipped. Moreover, when the analyses could not be 

possible without special and usually expensive equipment, the producers hire the services of 

special laboratories. The state protects consumers by running its own state control 

laboratories; their organization varies from state to state. Such laboratories, in developed 

countries, are well equipped, not only as far as the instrumentation is concerned but also with 

skilled and qualified analytical staff. Consumer organizations are also engaged in the food 

control system and play an important role. These organizations inform consumers about the 

results of quality comparative studies and draw attention to products that don‟t fulfill given 

quality requirements. Generally, the activity of such laboratories is focused on observation of 

the chemical composition, organoleptic properties, quality of packaging, microbiological 

state, presence of food additives and contaminants. Controlled products have to fulfill 

requirements for their given type of product and they especially have to be safe for the 

consumer. Such controls have to rule out the possibilities of health hazards and to guarantee 

that food products have not been adulterated. The food that the consumer receives from the 

farm or factory via food distribution system may exhibit important compositional changes that 

may be relevant to health or may not correspond to production claims, the label or trade 

agreements. The consumer is now more conscious about what he wants and the industry is 

eager to deliver the quality the consumer prefers. At the same time, scientific advances are 

making available tools and techniques that are more and more enhancing the sensibility, 

specificity and reproducibility of analytical methods. This information arising from the basic 

chemical sciences has assisted the analytical researcher in identifying new indicators of 

quality and authenticity of food. In many countries, mandatory provisions in food legislation 

are becoming more rigorous, especially for what concerns safety aspects. The objective of the 
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food analyst is to encompass, in addition to detection of adulteration, characterization of the 

food with respect to its source, the history of its handling, storage, preprocessing and so on 

[12-14]. 

The benefits of food laws to the consumers and the processing industry depend upon the 

effectiveness with which the laws are implemented. This requires not only a well-organized 

national infrastructure for inspection and quality control, but also the availability of reliable 

methods of analysis, which could be used to check the quality standards and safety. In this 

way, industries can be advised to make improvements in their food products and legal actions 

taken when necessary to protect the consumers. Therefore, in recent years, new methods for 

the analysis of food have been developed, together with the attempts to improve the existing 

ones. In this respect, one must recall that the analyses concern all aspects of a food, such as 

chemical, physical and microbiological. In this way, it is possible for instance to check that a 

food possesses certain nutritional parameters. In addition, it is possible to identify frauds, 

adulterations and guarantee to the consumers the quality standards of a food. Regarding the 

quality control of food, the key issues are both to check that a food has certain indices, 

determined according to well defined analyses, within specifications, and to identify the new 

parameters of control that are able to guarantee the quality of a specific food. In recent years, 

research has made significant progress in the knowledge of the main factors that contribute to 

define the quality of a food. Thanks to the development of new technologies, it has been 

possible to modify and improve the existing methods for the determination of the quality 

parameters and it has also been possible to create new methods for food analysis [15]. As 

mentioned previously, the development of fast and precise analytical methods are essential to 

ensure product quality, safety, authenticity and compliance with labeling. 

 

 

 

 

1.2 TRACEABILITY AND AUTHENTICATION OF FOOD 

 

Open markets and the development of the circulation of natural and processed foods in the 

European Union involves the necessity to inform consumers and predisposed organs about all 

the elements that contribute to the identification of food products. 
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Traceability means the ability to trace and follow a food, feed, food-producing animal or 

substance that will be used for consumption, or expected to be incorporated into a food or 

feed, through all stages of production, processing and distribution. The need for traceability 

systems is well recognized throughout the world. In fact, traceability can protect consumers 

against deceptive marketing practices and/or frauds. Traceability can also allow to improve 

food safety, therefore it is a clear advantage for consumers and for food industry. 

The possibility of tracing the origin of foodstuff is assuming an increasingly important role at 

the legislative level, as a tool that may allow to check whether quality requirements are met. It 

allows to establish the identity, history and origin of product. The evolution of the discipline 

of traceability is accomplished in two stages: in a first time, traceability was provided only for 

certain products (not-food) and for some individual foods; in a second step, it was extended to 

all products and foods. In the food industry, laws began to speak about traceability in relation 

to the organic production of agricultural products (Reg. CEE 24.06.1991 n 2092 art 9-12). 

The regulation disposed that Member States should ensure that the inspections relate to all 

stages of production, slaughter, cutting and any other preparation up to the sale to the 

consumer in order to guarantee, as far as technically possible, the traceability of products. 

Subsequently, on January 28th 2002, the European Parliament and the Council adopted 

Regulation (EC)178/2002 laying down the General Principles and requirements of Food Law. 

The aim of the General Food Law Regulation is to provide a framework to ensure a coherent 

approach in the development of food legislation. At the same time, it provides the general 

framework for those areas not covered by specific harmonized rules, where the functioning of 

the Internal Market is ensured by mutual recognition. It lays down definitions, principles and 

obligations covering all stages of food/feed production and distribution. According to this 

regulation, each business operator must be able to produce data about who their customers 

and suppliers are and have those systems and procedures to identify the product, so that it 

could be easier to withdraw it in case of danger for the consumers‟ health. However, it lacks a 

true commitment towards what has been called "traceability evolved", a wide range of 

methodologies aiming at the monitoring of various production processes, the control of 

mixing techniques and treatment of raw materials and the protection of the area of origin. 

Therefore, if on one side there are extremely positive national policy-making aimed at the 

preservation, protection and development of the "typical" local as a synonym for quality, on 

the other hand it is extremely complex, for the control authorities, to be able to provide those 

aspects of sanitation residing at the base of the rules on food safety for consumers. It is clear 

that, in a context so articulated, any action to market low-cost products derived from 
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imitation, adulteration and counterfeiting of traditional foods represents a potential risk to the 

health of consumers and it is also a damage for “legal” economies. Therefore, the 

development of innovative techniques and methods for the control of food products is a top 

priority in the development plans of both Community and National authorities, to pursue the 

objectives of increasing security and protection of the quality. The movement of food has no 

borders in a globalized supranational context. For these reasons the consumer world requires 

insistently a more detailed and accurate information about the nutritional parameters to 

guarantee the quality of food.  

The authenticity of the product and its geographical traceability are therefore two fundamental 

aspects for a food. 

The authentication of a food is the process by which it is possible to verify that the product 

conforms to the statements on the label, and possibly to what established in the in force 

regulations. In particular, the use of non-destructive, rapid, precise, accurate and highly 

performant analytical methods represents, for the authorities, a valuable and irreplaceable tool 

to verify the authenticity of a product. In addition, scientific innovation and technological 

evolution of instrumentation and methodologies, can allow to identify fraud and adulteration 

even if particularly sophisticated, or specifically designed to evade inspection of law currently 

applied. By definition, the authentication of a product invests issues that are very different 

among themselves, which largely depend on the type of fraud mainly practiced for each food. 

They include both the identification of possible adulteration and falsification, and the 

differentiation from other substitute products, the differentiation by age, or the identification 

of the geographical and varietal origin. 

 

 

 

1.2.1 ANALYTICAL TECHNIQUES 

 

There is no magic solution to improve the traceability but effective systems must comprise a 

number of key elements. 

 

a) Regular labeling 

b) Electronic labeling 

c) Animal ear tags, passports 
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d) Production Records (one step forward-one step back) 

 

However, these elements are not sufficient to ensure the traceability and authenticity of foods 

and the consumers are not completely protected against food frauds. 

The analytical techniques, being a posteriori techniques, are essential for food safety, food 

quality control and for the traceability and authentication of food products. In fact, the 

analytical methods can provide feedback to prove that a system is working, troubleshoot and 

identify weaknesses and can provide traceability data where there is a breakdown in the chain. 

In addition the analytical techniques are effective internationally, and constitute a valid tool in 

order to prevent fraud and to confirm the authenticity of products. There are many emerging 

techniques available that can provide traceability information. Especially when used in 

combination, these techniques can provide extremely powerful tools. 

 

The analytical techniques most commonly used for food authentication and traceability are 

the following: 

 

• Stable isotope measurements (IRMS) 

• Spectroscopic techniques (MIR, NIR, Raman, UV-VIS) 

• Chromatographic techniques (GC, HPLC) 

• Mass Spectrometric techniques (MS, MSMS) 

• DNA-PCR methods 

• Chemometric techniques (in next chapters the chemometric techniques used in this thesis 

will be discussed in detail) 

 

Ratios of stable isotopes have been shown to be a valuable tool to discriminate foodstuffs 

according to their geographical origin and/or the technological processes applied during 

manufacture (production origin).  In particular, determination of the isotopic ratios of the light 

elements,  hydrogen (δ
2
H), carbon (δ

13
C), nitrogen (δ

15
N), oxygen (δ

18
O), and sulfur (δ

34
S), 

the so-called bioelements, combined with ratios of heavy isotopes (δ
87

Sr) and trace elements 

have been used successfully to provide information on the origin of food products [16-20]. 

However, although some official methods using isotope ratios have been introduced, they are 

usually reliant on commodity specific databases which are expensive to produce and to 

maintain. 
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Spectroscopy is the study of interaction between photons of radiation and molecules. Among 

the most widely used spectroscopic techniques for the authenticity of the food, there are MIR 

(mid-infrared) and NIR(near-infrared) spectroscopy. Even if the electromagnetic radiation 

used is of different frequency (range 4000-400 cm
-1

 is referred to as mid-infrared and 12500 

and 4000 cm
-1

 is known as near-infrared radiation), the response of the instrument consists of 

absorption bands due to chemical compounds, that can be observed, in the spectral regions of 

the MIR and NIR, as a result of molecular vibrations of these compounds thus giving rise to 

spectral signatures which are characteristic of the food composition and which may be 

considered as “fingerprints” of the food [21,22]. 

Chromatographic methods are widely used for the measurement of the „fingerprints‟ of 

foodstuffs. Gas chromatography (GC) and high performance liquid chromatography (HPLC) 

provide high-resolution compound separations, and can be used in conjunction with different 

detectors such as  a diode array detector (DAD) or a mass spectrometer (GC-MS, GC-

MS/MS, LC-MS, LC-MS/MS). The mass spectrometers are highly sensitive and universal, 

able to detect almost any organic compound, regardless of its class or structure. As reported 

for spectroscopic profiles, the chromatographic profiles may be used as the fingerprint of the 

food to control the quality of food and to guarantee its authenticity [23,24]. 

Analysis of specific nucleic acids in food allows control laboratories to determine the 

presence or absence of certain ingredients in complex products or the identification of specific 

characteristics of single food components. In food analysis, DNA detection is increasingly 

applied as an answer to different needs, such as for GMO detection, microbial pathogen 

determination, assessment of the presence of undeclared allergenic ingredients [25]. These 

analyses are based on nucleic acids probes, including the polymerase chain reaction (PCR), 

which allow the detection of minute amounts of degraded nucleic acids and their sequence. 

These methods may be also used for the identification of meat or fish species and the 

recognition of genetically altered foods [26]. 
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1.3 REVISION OF METHODS OF FOOD CHEMICAL 

ANALYSIS 

 

As mentioned in the previous paragraphs, the control of food quality, food safety, traceability 

and authentication of food have considerable importance. Therefore, scientific research is 

increasingly addressing the development of new methods that can ensure the 

geographical/botanical traceability [27]. In particular, in recent years, some successful 

examples of application of fingerprinting techniques for assessing the origin of foods have 

been reported in the literature [28,29]. In this context, the possibility of relying on the 

outcome of a fingerprinting technique to authenticate the origin of a foodstuff has a high 

potential as it would allow the traceability of the product without being tied to the labeling or 

production records. 

Parallel to this – and always with the aim of guaranteeing the consumers by assessing the 

quality of a food, especially if with added value, and to characterize foods identifying the 

nutraceutical components – scientific research has also put a big effort in the revision of the 

traditional methods of food chemical analysis, with the objective of developing methods with 

better performance compared to the ones currently used for the determination of the 

constituents of foods. In fact, even if several methods for the chemical analysis of some 

characteristics of the food already exist, for instance all the analytical methods described in 

the laws, the continuous innovation and technological development have made researchers 

trying to develop methods for food analysis resulting in better performance than the currently 

adopted ones in terms of accuracy and precision, trueness, limits of detection and 

quantification etc. Together with these aspect, also the possibility of reducing the times and 

costs of analysis without loss in accuracy is also often investigated, as it could allow carry out 

a higher number of controls in the same timespan and with the same budget. 

On the other hand, in recent years the international community is laying attention on 

environmental issues and on green chemistry. Green chemistry is the design of chemical 

products and processes that reduce or eliminate the use and generation of hazardous 

substances [30]. In addition to being innovative, the approach of green chemistry is, at the 

same time, not-regulatory and attentive to the economic aspects. Therefore, developing 

methods for chemical analysis with the intention of preventing the pollution can be defined a 

new scientific approach to eliminate or minimize the environmental problems. More 

generally, whenever possible, it is appropriate to replace the traditional obsolete test methods 
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with others who maintain their functional efficacy while reducing toxicity to humans and the 

environment. 

In this context, in 1999, the concept of green analytical chemistry was introduced, together 

with some representative examples [31]. In 2001, Namiesnik suggested that the twelve 

principles of green chemistry could be used to formulate the "green" character of Analytical 

chemistry and identified four priorities [32]:  

1) Elimination (or, at least, a significant reduction) in the consumption of reagents, in 

particular organic solvents, by the procedures of analysis; 

2) Reducing emissions of gases and vapors, as well as liquid and solid waste generated in 

the laboratories of analysis; 

3) Elimination of reagents that show high toxicity and / or ecotoxicity from analytical 

procedures (e.g., by replacing the benzene with other solvents); 

4) Reduction of energy consumption of the work required by the procedures of analysis; 

In accordance with the guidelines of green chemistry and the priorities identified by 

Namiesnik, the following seven principles were suggested for green analytical chemistry: 

1) Not polluting analytical techniques and production processes  

2) Efficiency in terms of time, labor and energy consumption; 

3) No or minimal sample preparation; 

4) No or minimal destruction of the sample; 

5) Low or even zero cost in terms of reagents and release of waste, and elimination of 

highly toxic reagents from analytical procedures; 

6) Analysis in situ/in vivo or real-time process monitoring; 

7) Simple/portable instrumentation while maintaining high selectivity and sensitivity; 

It is necessary to point out how these seven aspects must be considered as a whole rather than 

individually when it comes to green analytical chemistry. It is evident, in fact, that their 

complete application is related to an ideal condition as it is practically impossible that all 

analytical methodologies can satisfy all these aspects: the important thing is to make an 

analytical procedure as green as possible. 

In the traditional analytical chemistry approach, an analytical procedure is presented as a 

series of subsequent steps: sampling (go to the selected site, collecting samples for analysis, 

transport to the laboratory and possible pre-treatment to maintain sample integrity), sample 

preparation (eg, dissolution, digestion, separation, enrichment, etc.. all processes "cost "in 

terms of time and energy); measure (transformation of the analytes in" measurable form "with 
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procedures which may require energy, reagents, and can lead to release of polluting products); 

waste disposal (residues of the sample, reagents used, products reaction, etc.). 

Therefore, the conventional procedures of chemical analysis, often necessarily destructive, are 

generally expensive not only because they consume time, reagents and energy, but also 

because they produce waste that, being dangerous to humans and to the environment, require 

special treatments for disposal. The aim of green analytical chemistry is to follow analytical 

procedures that generate less hazardous wastes and which are more secure to use both for both 

man and environment [33]. 

 

 

 

 

1.4 THE ROLE OF CHEMOMETRICS IN FOOD ANALYSIS 

 

Chemometrics, according to the definition of the International Chemometrics Society, is “the 

chemical discipline that uses mathematical and statistical methods to design or select optimal 

procedures and experiments, and to provide maximum chemical information by analyzing 

chemical data”. Already from the definition, the importance of chemometrics for the chemist 

is clear. Chemometrics has a key role in all areas of chemistry, including analytical chemistry. 

Consequently, chemometrics is a necessary and powerful tool in the field of food analysis and 

control [34]. It is widely known that the application of advanced statistical and mathematical 

methods has been continuously increasing in food science, once the use of such techniques 

has allowed the extraction and identification of important results from complex data matrices. 

Nowadays these statistical techniques are necessary for the academy and food industry during 

the development and evaluation of food products and processes, as well as during the study of 

the mechanisms underlying different phenomena that may affect the product‟s quality or unit 

operations in the food development. Thus, the interest and application of new and complex 

statistical and mathematical techniques in food science has significantly increased [35,36].  

The issues related to authentication, typicality, traceability and overall quality of foods are of 

particular importance for researchers, regulatory entities and most importantly for consumers. 

The need to guarantee quality (nutritional value, absence of adulterations, traceability, food 

safety, typicality, sensory properties including image analysis and other intrinsic quality 

parameters) has led researchers and sanitary vigilance authorities to develop and use effective 
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statistical tools to investigate food-related problems and to address limitations on processes 

and shelf life. Once food matrices become complex, the way to investigate and try to solve 

problems related to sensory, chemical, physical and rheological issues is multivariate and thus 

require multidimensional data. Thus, the use of multivariate statistical techniques has gained 

strength in Food Science, especially for monitoring the unit operations and the quality of food 

products, including beverages. 

Technological innovation implies the use of increasingly sophisticated instruments, through 

which it is possible to face and overcome analytical problems otherwise unsolvable. The 

chemist has at its disposal tools more precise, accurate, sensitive and which allow to 

determine qualitatively and quantitatively compounds even in trace. These techniques and 

tools also result in thousands of data in which useful information is often "hidden". Often we 

have too much data and too less information. In fact, a serious imbalance is developing in 

science, between the technical capacity to generate lots of good data and the human capacity 

to interpret and understand all these data. Indeed, it should be emphasized that the fact of 

having many data is not a synonym of having many information, in fact data is not the same 

as information. The fact that the analytical chemist has innovative tools available, almost 

always very expensive, but from which he then fails to obtain all possible information without 

fully interpreting them is, as once Harald Martens, a famous norwegian chemometrician, said, 

“like having a grand pianos and playing with only one finger”.  

Near-infrared spectroscopy represents one example. The information enshrined in an entire 

NIR spectrum is poorly selective, as it depends on a particularly large number of physical 

variables, chemical and structural properties, which often make the recognition of differences 

between the samples subjected to analysis very difficult. To obtain useful information, as for 

instance the amount of a particular substance in a food sample, or the identification of 

possible differences between samples subjected to NIR analysis, it is necessary to use 

mathematical and statistical techniques without which it would be impossible to solve some 

analytical problems.  

Chemical analysis of food is also part of the issue of traceability and fingerprinting techniques 

as a tool to characterize, identify, and ensure the authenticity of the food. In fact, the term 

“fingerprinting techniques” describes a variety of analytical methods that can measure the 

composition of foodstuffs in a non-selective way such as by collecting a spectrum or a 

chromatogram. Mathematical processing of the information contained in such fingerprints 

may permit the characterization of foodstuffs. Fingerprinting techniques produce a large 

volume of information. Most of the information may not be useful for solving the problem of 
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authentication or identity confirmation. Mathematical tools, such as classification models, 

must be applied to these signals to extract that information which is helpful to solve the 

problem being investigated [37]. Simply, a model is a mathematical equation which can 

convert measurements, may be many hundred or more, made by one or more fingerprinting 

techniques into indicators or numbers that are easily interpretable; when mathematical and 

statistical methods are applied to the fingerprint of a given sample, the outcomes of the 

corresponding model can for example represent the answer to the question “Is this food what 

it claims to be on the product label?” 

Without these mathematical processes, it would be impossible to carry out the classification 

of foods, especially if there are thousands of variables such as the points that constitute a 

spectrum, a chromatogram or the innumerable chemical compounds that describe and 

characterize a food.  

The mathematical and statistical techniques play a key role also in the context of Identity 

Confirmation (IC). Methodology to confirm that a food is in compliance with claimed 

identity. An important aspect of food production is to produce a good which always has the 

same characteristics and therefore, by extension, with the same fingerprinting. The food 

industry can verify the consistency of their product using fingerprinting techniques and 

mathematical techniques [38]. 

Other issues that can be addressed with chemometrics concern process monitoring and the 

quality control of foods. In fact, to ensure the control of the quality of a food, which depends 

on several factors/variables, a multivariate analysis of the entire system is then required. 

Indeed, it is not sufficient to carry out quality control or monitoring of a production process in 

a univariate mode, because the system is a multivariate system. Therefore, there is an 

increasing need for the analytical chemist to use mathematical tools which allow to treat 

systems, more or less complex, also described by thousands of variables. Accordingly, in 

quality control in general, and in particular in food quality control, there has been a transition 

from using systems such as the univariate control charts to multivariate systems [39].  

When dealing with n quality variables, the usual approach consists in verifying whether the 

value of each variable measured on the final product is inside some predefined limits. If all 

the variables are inside the range, then the product is said to be within specification. Probably 

this statement is not always correct. The problem with using univariate control charts for 

separately monitoring key variables on the final product is that the variables are not 

independent on one another, and none of them adequately defines product quality by itself. 
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Product quality is defined by the simultaneous correct values of all the measured properties; 

thus, a multivariate property requires multivariate analysis methods [40].  

Chemometric plays an important role also in the choice of the experiments to be carried out 

for the optimization of an analytical method, allowing for the development phase of an 

analytical method a saving of time and money. In fact, the use of experimental designs makes 

it possible to define a priori the experiments to be executed and the data to be collected. 

While the standard way of developing an analytical method is very often to select possible 

influencing factors, vary them one-by-one and evaluate their influence on the response(s) of 

interest (OVAT – One Variable at A Time – approach), experimental design represents a valid 

alternative to this approach. In fact, it is an even better alternative because for a given number 

of experiments the experimental domain is more completely covered and interaction effects 

between factors can be evaluated.  

Mention was also made about the development of the analytical instruments of analysis that 

enabled to overcome analytical problems, but there are issues that can be overcome by the 

application of chemometric methods. Unstable baselines occur in many types of instrumental 

measurements. They can cause severe problems, especially when detection limits are 

approached [41]. These baselines hamper the interpretation of spectra or chromatograms. In 

addition, the baseline varies greatly from spectrum to spectrum (or from chromatogram to 

chromatogram), even for similar samples. In quantitative analysis, these inconsistent baselines 

are able to reduce the simplicity and robustness of a calibration model that is built on these 

spectra or chromatograms. In these cases the application of mathematical processing tool can 

help to improve the baseline allowing a better interpretation of the data. 

Chemometric comes to the aid of the analytical chemist also to solve problems related to the 

shift of the retention times which may be due to multiple causes such as variations in 

temperature between a chromatographic run and another run, the chromatographic column not 

being well conditioned, etc [42]. In fact, the importance of always having the same retention 

time for the same analyte present in different samples is rather obvious, especially when 

analyzing complex matrices such as foods. The "shift" is not, however, a phenomenon 

concerning only the retention time in chromatography. Many analytical techniques yield data 

where the same underlying factor may result in signals at different positions or which may 

have different „durations‟ depending on the specific analytical conditions. 
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1.5 AIM OF THESIS 

 

Food safety and authenticity are, nowadays, themes of growing interest and increasing 

importance. As a result, the European Union has issued over the years, regulations to 

guarantee consumers relating to food safety and traceability [43,44] and, together with the 

monitoring bodies, encourages the development of effective methods to combat food fraud 

not only caused by the fraudulent addition of substances, but also those due to 

misrepresentation on the label [45]. 

In addition to developing new methods for the analysis of foods that make it possible to check 

the authenticity of a food and to discover new food fraud, research is moving towards the 

improvement of the performance of the existing ones, even with the support of mathematical-

statistical methods and therefore with chemometrics. 

For these reasons, the aim of this thesis was to develop new methods of chemical analysis for 

the verification of the authenticity and the  traceability of food. In this context, the developed 

methods focus on the verification of two aspects which are closely related: 

i) the chemical characterization of foods, in terms of monitoring their composition 

and quantifying their constituents 

ii) the identification of the origin of foods 

On one hand, therefore, chemical methods of analysis for the determination of some 

components presents in different foods have been developed and validated.  

In particular, a spectroscopic method based on NIR spectroscopy for the determination of the 

some of the indices required by law for the quality control of honey samples – water, reducing 

sugars and hydroxy methyl furfural (HMF) – has been developed. Another purpose was to 

develop an innovative method based on the extraction with microwaves and subsequent 

chromatographic analysis for the determination of the quality of saffron.  

Concurrent acetylation-dispersive liquid-liquid microextraction (DLLME) combined with gas 

chromatography mass spectrometry (GC-MS) has been proposed, for the first time, for the 

sensitive determination of several polar benzotriazolic compounds in water samples. In fact, 

even if the water is not considered a food, the ingestion of water in some form is widely 

recognized as essential for human life. 

The methods of analysis have been improved compared to traditional and law methods, by 

reducing the economic costs and times of analysis and also considering the environmental 
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impact, trying to reduce the environmental costs by eliminating or minimizing the use of toxic 

and hazardous solvents. 

On the other hand, chemical methods have been developed to verify and authenticate the 

origin of foods. Specifically, a method for the analysis of extra virgin olive oil, which allows 

to identify and discriminate Sabina PDO extra virgin olive oils from the others, was 

developed and validated. 

Analogously, the same approach was followed to verify the origin of two other high value-

added food products, honey and saffron. In particular, a method of analysis that allows to 

determine both the geographical (Italian/non-Italian) and the botanical origin of different 

honeys, was designed, developed, optimized and validated. The same strategy was followed 

to design and optimize a method for characterizing the geographical origin of saffron, also 

taking into account the possible differences in the growing and production processes. 

Given the different foods and the different problems faced, the research was articulated and 

configured in a way which has necessarily involved the use of multiple methods of analysis. 

Indeed, depending on the type of food and the issues to be solved, the most appropriate and 

cost-effective strategy, both in terms of analytical platform and of chemometric techniques 

chosen, was always selected. 

More in detail, the experimental work was focused on the following research topics: 

1- Olive oil: Geographical traceability of extra virgin olive oils from Sabina PDO 

by chromatographic fingerprinting of the phenolic fraction coupled to 

chemometrics (chapter 3) 

2- Honey: Geographical and botanical traceability of honey by chromatographic 

and spectroscopic fingerprinting coupled to chemometrics (chapter 4); 

Determination of quality parameters of honey by Near-Infrared spectroscopy 

and chemometrics (chapter 5) 

3- Saffron: Determination of quality of saffron samples by microwave-assisted 

extraction and chromatography (chapter 6) 

4- Water: Determination of benzotriazoles in water samples by concurrent 

derivatization-dispersive liquid-liquid microextraction followed by gas 

chromatography mass spectrometry (chapter 7) 
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CHAPTHER 2 

 

CHEMOMETRIC METHODS 

 

 

 

 

 

 

 

2.1 EXPERIMENTAL DESIGN 

 

In analytical chemistry, especially in method development, it is of utmost importance to be 

able to optimize all parameters that can affect the performances of the method itself. In this 

framework, the objective is to perform a limited number of experiments – ideally as few as 

possible, but at the same time to be able to determine how the experimental variables 

influence the outcomes of the analysis and whether there are any interactions between the 

factors. 

Based on these assumptions, it is evident how in all cases where there is the need to optimize 

a process or a response, as for instance an extraction procedure, or the yield of a reaction, or 

when it is necessary to evaluate the incidence of multiple factors (experimental variables) on a 

procedure, it is advantageous and often essential to think and operate in a multivariate way. 

Indeed, varying one variable at a time while keeping all other constants, the so-called OVAT 

approach, apart from requiring in general a significantly higher number of experiments to be 

performed, almost always lead to suboptimal solution, as it doesn‟t take into account the 

possibility that factors interact with one another.  

An experimental design can be considered as a series of experiments that, in general, are 

defined a priori and allow the influence of a predefined number of factors (experimental 

variables) in a predefined number of experiments to be evaluated [46]. 
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In order to properly design the experiments to be conducted, the first step is to define the 

analytical problem (what do we need to investigate?), what are the experimental variables that 

screened and controlled and what is the response(s) that better describe the propertie(s) to be 

optimized? Once the experimental variables and the responses have been clearly defined, the 

experiments can be planned and performed in such a way that a maximum of information is 

gained from a minimum of experiments.  

At each of the design points, one or more responses are determined, so that the effect of the 

controlled factors and their interactions on them can be evaluated. For instance, in the 

simplest case when a factor is controlled only at two levels, then its effect can be calculated as 

the difference between the average value of the response obtained when this factor is at its 

high and at its low levels. The relevance of the effects (i.e., the significance of their difference 

from the variability which can be ascribed to the experimental error) is either statistically or 

graphically evaluated [47]. 

Different types of experimental designs are available to the analytical chemist, depending on 

the analytical problems to face, and, in particular, depending on the number and type of 

variables that one wants to optimize. In this framework, the different kinds of experimental 

designs can be roughly divided in two categories, those aimed at screening and the ones for 

optimization [48].  

Screening designs are used to search for possibly important factors during method 

optimization or in robustness testing. They can be used if there is little knowledge of the 

possible factors that may affect the response: in these cases, all the possible factors that can 

influence the results of a method should be selected. With the use screening designs, it is 

possible to identify the factors that have a major influence on the response(s) of interest. 

Generally, two-level designs are used for screening, as they allow screening a relatively high 

number of factors in a rather low number of experiments. These designs can also be used to 

verify the robustness of an analytical method. In this context, the difference between the 

screening and robustness testing lies in the amplitude of the explored experimental domain, 

i.e. in the interval between the two levels of the factors [49]. Indeed, for any given factor, a 

relatively large interval is considered for optimization, while in robustness testing the 

intervals are much smaller and do not exceed much the experimental error. 

The optimization of a method can be performed with a stepwise strategy. This means that 

groups of experiments can be performed sequentially. For instance, it is possible to make a 

first experimental design in a given experimental domain and, depending on the result, 

repeating another experimental design but choosing a different range of variability for the 
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factors to be investigated. This process can be repeated step by step until a pre-determined 

criterion is met. For example, if for the optimization of an extraction method a recovery of 

80% is sufficient and, with the experimental design, it is possible to identify the portion of the 

experimental domain that allows an extraction efficiency higher than 80%, it is not necessary 

to perform additional experiments. If, instead, the best experimental setting still does not 

result in a recovery of at least 80%, then there is the need to perform additional experiments 

by extending the experimental domain in the direction of the optimal conditions obtained with 

the previous experimental design. 

 

HOW TO START 

The first step of any experimental design consists in determining which factors could 

influence the response(s) and in choosing the domain of variability for each controlled factor. 

Sometimes one knows which factors have an effect on the response, but often this information 

is not available. In this case, it is possible to start writing down all the possible factors that 

could have an effect on the response and make a screening of which factors may have an 

effect by using the highest possible fraction of a factorial design or the corresponding 

Plackett-Burman„s designs which are performed on two levels with a number of experiments 

increasing by multiples of 4 [50]. After choosing the factors, it is necessary to fix the limits of 

the experimental domain, i.e. the extreme levels for each experimental variable. The next step 

is often to obtain a model that describes in a quantitative manner the effect of the factors on 

the response. Finally, based on the model, one tries to find the optimal conditions, or, in other 

words, the values of the factors that result in the best features of the product, process or 

procedure studied [51]. 

 

EXPERIMENTAL MODELS 

The response Y of an experiment (the area of a peak, the intensity of a signal, etc.) is 

influenced by the experimental conditions. Mathematically Y = f (x). The function f (x) is a 

polynomial function that, within the experimental domain, relates the controlled factors to the 

response. There are three types of polynomial models that describe the Y response. The first 

and simplest is the linear model, where the relationship between the experimental variables 

and the response is linear. For instance, in the case where two factors x1 and x2 are 

controlled: 
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 y= b0 + b1x1 + b2x2 + e (1) 

 

e being the residual, i.e. the portion of the variability in the response y not explained by the 

model.  

On the other hand, if there are interactions among variables, terms accounting for these 

interactions should be added. Usually, only second order interactions, i.e. those involving pair 

of factors, are considered to be possibly significant. Under this assumption, in the case of two 

factors, equation 1 transforms to: 

 

 y= b0 + b1x1 + b2x2 + b12x1x2 + e (2) 

 

These two models, linear model and second order interaction model, are the ones most often 

used to do a screening and/or robustness tests. 

In all the cases where it is not possible to assume a linear relationship between the 

experimental variables and the response, higher order polynomial terms should also be 

included. However, the models customarily used in experimental design very rarely exceed 

second order polynomials, meaning that a quadratic function is fitted to the data. In the case 

of two controlled factors, this translates to:  

 

 y= b0 + b1x1 + b2x2 + b12x1x2 +b11x1

2 + b22x2

2 + e (3) 

 

Of course, even though the functions reported in equations 1-3 refer to the case when only 

two factors are controlled, they can be easily generalized to a higher number of variables.  

The polynomial functions described contain unknown parameters (b0, b1, b2, etc.), which 

need to be estimated based on the results of the experiments carried out and for each model an 

appropriate experimental design exists. 

 

FULL FACTORIAL DESIGN 

The full factorial design with two levels are used to determine if some factors and / or 

interactions between two or more factors have effect on the response, and to estimate the 

magnitude of this effect. It requires that experiments be conducted at all possible 

combinations of the two levels of the k factors studied. Therefore, the number of these 

experiments is 2k, which is also the way these designs are indicated [52].  
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As an example, the experimental matrices describing the factor levels for the full factorial 

designs in the case of 2, 3, and 4 controlled factors are reported in Tables 2.1-2..3. 

 

 

 

Table 2.1: full factorial design for 2 factors 

experiment number variable 1 

b(1) 

variable 2 

(b2) 

1 -1 -1 

2 -1 +1 

3 +1 -1 

4 +1 +1 

 

 

 

Table 2.2: full factorial design for 3 factors 

experiment number variable 1 

(b1) 

variable 2 

(b2) 

variable 3 

(b3) 

1 -1 -1 -1 

2 -1 -1 +1 

3 -1 +1 -1 

4 -1 +1 +1 

5 +1 -1 -1 

6 +1 -1 +1 

7 +1 +1 -1 

8 +1 +1 +1 
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Table 2.3: full factorial design for 4 factors 

experiment 

number 

variable 1 

(b1) 

variable 2 

(b2) 

variable 3 

(b3) 

variable 4 

(b4) 

1 -1 -1 -1 -1 

2 -1 -1 -1 +1 

3 -1 -1 +1 -1 

4 -1 -1 +1 +1 

5 -1 +1 -1 -1 

6 -1 +1 -1 +1 

7 -1 +1 +1 -1 

8 -1 +1 +1 +1 

9 +1 -1 -1 -1 

10 +1 -1 -1 +1 

11 +1 -1 +1 -1 

12 +1 -1 +1 +1 

13 +1 +1 -1 -1 

14 +1 +1 -1 +1 

15 +1 +1 +1 -1 

16 +1 +1 +1 +1 

 

 

 

In a similar way, the matrix of experiments for 5, 6 or more factors can be built. It can be seen 

how in passing from one experiment to another, all – or at least most of the variables - are 

varied at the same time in a systematic way, contrarily to what happens in the one variable at 

a time approach. The levels can be represented in different ways but the one most widely used 

is to encode them to -1 (lowest level) and 1 (highest level), or simply as - and +. The same 

notation can be applied to qualitative factors, but this case -1 is not smaller than +1, it is only 

different.  

A zero-level is also included, as a center, in which all variables are set at their intermediate 

value. Three or four experiments in the center should be included in factorial designs, for 

verifying whether any nonlinearity could be present and to estimate the experimental variance 

in order to assess the significance of the effects (parameters such as b1, b2, etc).  

The sign for the interaction effect between variables is defined as the sign for the product of 

variables (table 2.4). 
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Table 2.4: 22 full factorial design with interactions 

experiment number variable 1 

(b1) 

variable 2 

(b2) 

interaction 1 and 2 

(b12) 

1 -1 -1 +1 

2 -1 -1 +1 

3 -1 +1 -1 

4 -1 +1 -1 

 

 

 

FRACTIONAL FACTORIAL DESIGN 

When the number of factors increases, so does the number of experiments. In these cases, it is 

possible to perform only a part of the experiments (1/2, 1/4, 1/8) required by a full factorial 

design, and the design obtained is called fractional factorial design. As a consequence of 

performing only a part of the experiments, information on some or on all interactions may be 

lost. These experimental designs are also used to determine the collective effect of a 

combination of factors on the variance of a procedure, without analyzing in detail the 

individual contributions. Consistently to the notation already used for full factorials, these 

designs are often indicated as 2k-p, symbolizing that a only a fraction 1/2p of the experiments 

required for the complete design are to be performed. [53,54]. For example, a 2
4-1

 design is a 

design for 4 factors where only half of the experiments required by full factorial design (8 

instead of 16) are performed. The following table shows the matrix of experiments for a 

fractional factorial design 2
7-4

: in this case only 8 out of the 128 experiments needed 

according to a full factorial design with 7 factors have to be performed. 

 

 

 

Table 2.5: fractional factorial design 2
7-4

 

experment 

number 

variable 

1 

(b1) 

variable 

2 

(b2) 

variable 

3 

(b3) 

variable 4 

(b4=b12) 

variable 5 

(b5=b13) 

variable 

6 

(b23) 

variable 7 

(b7=b123) 

1 -1 -1 -1 +1 +1 +1 -1 

2 -1 -1 +1 +1 -1 -1 +1 

3 -1 +1 -1 -1 +1 -1 +1 

4 -1 +1 +1 -1 -1 +1 -1 

5 +1 -1 -1 -1 -1 +1 +1 

6 +1 -1 +1 -1 +1 -1 -1 

7 +1 +1 -1 +1 -1 -1 -1 

8 +1 +1 +1 +1 +1 +1 +1 
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Of course reduction in the number of experiments comes with a cost: by using 2
k-p 

experiments to evaluate 2
k
 effects (model coefficients), then each terms is confused with other 

2
p-1

. For instance, considering the matrix of experiments in Table 2.5, it is possible to see that 

it was built from the matrix of experiments of a full factorial design of the same dimensions 

(2
3
) by using the interaction terms to account for the sign combination of the other factors to 

be accommodated. Specifically, the signs for the variable 4 are the same as those of the 

interaction between variables 1 and 2, those for variable 5 as the ones of the interaction 

between factors 1 and 3, those for variable 6 as the interaction between factors 2 and 3 and the 

ones for variable 7 as the ternary interaction among variables 1, 2, and 3. Since only 1/16 of 

the original experiments are performed, each of these terms is confounded also with other 14 

effects. When, as in the case reported in Table 2.5, the highest possible fraction of 

experiments is performed, the corresponding fractional factorial design is often used for 

screening and In model building assumption is made that only the terms corresponding to the 

main effect are significant, so that other confounded terms are neglected:  

 

 y = b0 + bi xii=1

k

å + e  (4)  

 

In factorial or fractional factorial designs all variables are normalized between -1 and +1. For 

continuous variables, the scaling is made so that the original variables vary continuously 

within the interval from -1 to +1. Since all variables used in the model are normalized in this 

way, the relative change of a variable is directly related to the size of its regression 

coefficient. This means that if the model parameters have either a large positive or negative 

value the corresponding variable has a large influence on response. 

 

IDENTIFY SIGNIFICANT EFFECTS 

Once the design has been chosen and the experiments performed, to calculated the effect of 

the factors and their significance a simple procedure can be adopted, as far as full or fractional 

factorial designs are concerned. First of all, the offset b0 can be estimated as the average of 

the responses by summing the responses and dividing the sum obtained by the number of 

experiments carried out. On the other hand, calculation of all other coefficients is carried out 

multiplying point to point the column of the design matrix corresponding to the coefficient 

that has to be estimated by the column of the response and than taking the average of the 

results. Once the model coefficients are calculated, their statistical significance must be 
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assessed. To do so, at first the experimental variance 
sy

2

 must be estimated, e.g. by repeating 

the experimental design or by performing several measures (usually 3 or 4) in the central 

point of the design (at the test point). Then the standard deviation of the model coefficients 

(i.e. of the effects of the individual factors and interactions) can be calculated as: 

 

 
scoeff =

sy

N  (5) 

 

where N is the number of experiments in the design. Accordingly, the significance of the 

effect is estimated by means of a t test, and in particular, comparing the value of each 

coefficient (b1, b2, etc.) with the value Scoeff*t, where t is the critical value of Student‟s t at 

the opportune number of degrees of freedom and desired confidence level. A coefficient is 

significant and therefore the experimental variable or the interaction between the experimental 

variables is significant if the absolute value of the coefficient is greater than the value 

Scoeff*t. Depending on the sign of the coefficients, the most appropriate experimental 

conditions to minimize or maximize the response can be found in a relatively easy way.  

Furthermore, when experiments are performed at the central point, it is also possible to 

validate the assumption of linearity of the model by comparing the predicted response at the 

center of the experimental domain, which is estimated by b0, with the actual measured values, 

again using a t test. In this case, b0 is compared to
t

sy

C , C being the number of replicate 

measurements at the center point.  

 

 

 

RESPONSE SURFACE METHODOLOGY 

The aim of these designs is to model the responses and to find the optimal combination of 

conditions. In these designs the factors are examined at more than two levels. The reason is 

that in the models, curvature of the response as a function of the factor levels is included, 

which requires testing of (at least) three levels. From a mathematical standpoint, this 

corresponds to a polynomial model which contains quadratic terms: 

 

 y= b0 + b1x1 + b2x2 + b12x1x2 +b11x1

2 + b22x2

2 + e (6) 
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The differences with other multivariate optimization approaches such as the simplex one 

resides in the fact that models for the responses are built and that one assumes that the 

optimum of the method is situated in the experimental domain created by the selected extreme 

levels of the different factors. 

It is a good way to graphically illustrate the relation between different experimental variables 

and the responses.  

Box-Behnken designs (BBD) [55] are a class of second-order designs based on three-level 

incomplete factorial designs. For three factors, its graphical representation can be seen in two 

forms (A and B): A is a cube where there are a central point and the middle points of the 

edges (figure 2.1.a); B consists in a central point and three interlocking 2
2
 factorial designs 

(figure 2.1.b). 

 

 

 

 
Figure 2.1: (a) the cube for BBD and three interlocking 2

2
 factorial design (b) [56] 
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Table 2.1.6: Coded factor levels for a BBD of a three variable system 

number of 

experiments 

variable 1 variable 2 variable 3 

1 -1 -1 0 

2 +1 -1 0 

3 -1 +1 0 

4 +1 +1 0 

5 -1 0 -1 

6 +1 0 -1 

7 -1 0 +1 

8 +1 0 +1 

9 0 -1 -1 

10 0 +1 -1 

11 0 -1 +1 

12 0 +1 +1 

Central 0 0 0 

Central 0 0 0 

Central 0 0 0 

 

 

 

The number of experiments (N) required for the development of BBD is defined as 

N=2*k*(k−1)+C0, (where k is number of factors and C0 is the number of central points). The 

BBD is an efficient design, where the concept of efficiency is mathematically expressed as the 

ratio of the number of number of coefficients in the estimated model to the number of 

experiments. In fact, with a limited number of experiments it is possible to determine the 

linear terms and the quadratic terms. Another advantage of the BBD is that it does not contain 

combinations for which all factors are simultaneously at their highest or lowest levels. So 

these designs are useful in avoiding experiments performed under extreme conditions, for 

which unsatisfactory results might occur [56]. 

 

 

 

 

2.2 MULTIVARIATE CALIBRATION 

 

Multivariate calibration techniques are widely used for the characterization of complex 

matrices, as, if experiments are carefully planned so that all the relevant sources of variability 

are spanned, they allow to reduce to a minimum or even completely bypass possibly 
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expensive chemical treatments and preventive separative operations. These operations are 

necessary when you use univariate methods of quantification, as complete selectivity of the 

measurement is assumed. In contrast to the univariate approach, which makes use, for the 

determination, of only one variable extrapolated from the entire set of those monitored (for 

example, an absorbance value at a wavelength corresponding to a maximum of a spectral 

profile), the multivariate approach allows to take advantage of the information obtained by the 

measurement operations [57]. 

The multivariate approach allows obtaining many benefits: for example, it is possible to build 

calibration models using techniques not perfectly selective, as the NIR spectroscopy, or build 

models for chromatographic and/or spectroscopic fingerprint. 

Generally, a multivariate calibration involves the following steps: 

1 defining the problem: selecting the property to determine; 

2 selection of standards for the model construction: choose a sufficiently large number 

of samples that will guarantee a good statistical coverage of the calibration domain; 

3 recording the signals (the variables): collect information about samples in a 

reproducible way; 

4 building the regression model: finding the relation between response(s) and the 

variables measured on the samples (predictors); 

5 validating the model: verifying the predictive ability of the model on “unknown” 

samples. 

 

Concerning point 4), it may be opportune to define what regression is. In chemistry, 

regression is the search for a quantitative relation, which can be expressed by a particular 

mathematical equation, in order to be able to predict the value of one or more properties Y 

from the experimental measurements X; in other words, a function is sought that describes the 

relationship between two blocks of variables [58]. The regression is therefore, in general, the 

calculation of the unknown terms of an equation which, in the univariate case, takes the form: 

 

 yi = b0 + b1xi + ei  (7) 

 

where x is the independent variable (for example the concentration of a particular analyte), xi 

is the value of this variable for the ith sample, y is the dependent variable (for example, the 

absorbance at a particular wavelength) and yi is the value of this variable for the ith sample. 
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The terms b0 and b1 are the intercept (or offset term) and the regression coefficient, 

respectively, and represent the unknown terms that a regression problem aims to find. Finally, 

the term ei is the residual for sample i, i.e. the error committed by the equation, which is 

defined as the difference between the predicted and the true values of yi. 

When the number of variables increases, equation 7 can be written in matrix form: 

 

 y = Xb+ e (8) 

 

where X is the matrix that collects the measurements of each variable x for each sample (X 

collects a set of variables x characterizing objects, called predictors, for example the 

absorbances at different wavelengths), y is a vector which instead contains all the measured 

responses on the samples (for example, the concentrations), while b is the vector of regression 

coefficients, and e is a vector that contains the differences between the measured and 

predicted y [59]. 

In particular, Partial Least Squares Regression [60] is the most appropriate method to process 

data of spectral or chromatographic nature, in which a large number of variables are measured 

on a relatively small number of samples and in which the components of the multivariate 

signal (i.e., the X variables considered) are strongly correlated with one another. 

The PLS algorithm compensates for the deep correlation commonly existing in the matrix of 

experimental data and that, generally, leads – in mathematical terms – to a so-called ill-

conditioned problem, by operating a projections which results in a reduced number of 

orthogonal variables. 

In detail, the PLS algorithm uses, for the calculation of the regression model, a new set of 

abstract variables (latent variables) computed as linear combinations of the original ones. 

These variables are constructed to describe in the best way the correlation between the block 

of measured variables X and the block of the response variables Y (maximizing the correlation 

between X and Y), and at the same time to explain the structure and the variability of the 

original data (maximizing the variance of X and Y). In this way, the relevant information 

present in the matrix of the original data is compressed into a smaller number of latent 

variables, which also have the advantage of being orthogonal to each other, while the part of 

noise present in the data is collected in the last latent variables that will be discarded in the 

definition of the model. The regression is then made using this new set of variables, and the 

calibration of the model corresponds, in practice, to the search of the mathematical parameters 
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that define these latent variables. The reduction of the variables, from original variables to 

latent variables is sequential [61]. 

To describe the process by which the PLS components are calculated, in the following the 

single y case, i.e. the case where only one response is fitted, is considered: the predictors are 

then collected in a matrix X which is of size N (number of samples) x J (the number of 

original variables measured), while the response is represented by the vector y with 

dimensions N x 1. Assuming that both X and y are mean centered, the first PLS component t1 

is calculated as the one having the highest covariance with the y to be predicted:  

 

 
max

w1

cov t1,y( ) t1 = Xw1 & w1 = 1( )
  (9) 

 

where the normalized vector of weights w1 defines the direction of the projection. The 

maximization of the covariance between t and y, dependents on the variance of t and depends 

on the correlation of t with y. This ensures that the noise present in the data may not be 

modeled (due to dependence on var(t)) and, at the same time, that the t chosen will be good to 

predict y (due to the dependence on corr(t, y)). Once t1 is extracted, the procedure is repeated 

iteratively to calculate the subsequent components. In particular, at first the scores t1 are 

regressed on X to obtain a vector of loadings p1. The dyad t1/p1 is used to remove from the 

data matrix X the portion of variability which is accounted for by the first latent vector 

through a process which is called deflation: 

 

 E1 = X - t1p1

T

  (10) 

 

Then the second component t2 is calculated through the weight vector w2, which is extracted 

according to a criterion analogous to equation 9, but involving E1 instead of X. 

All these operations are iterated until the desired number of latent variables is calculated; this 

number is usually estimated by cross validation (see section 2.5). 

In the present thesis, the PLS algorithm was used for the quantitative determination of the 

parameters of quality of saffron (crocin, picrocrocin and safranal) and for the quantitative 

analysis of some indices required by law for the control of honey samples (reducing sugars, 

water and hydroxy methyl furfural). 
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2.3 MULTIVARIATE CLASSIFICATION: PARTIAL LEAST 

SQUARES DISCRIMINANT ANALYSIS (PLS-DA) 

 

The qualitative methods of multivariate analysis are commonly known as pattern recognition. 

These techniques define the mathematical criteria that enable to quantify the similarity, 

usually in terms of distance, between two different samples or between a sample and a class. 

A class can thus be defined as a collection of objects that meet certain specific criteria 

dependent on the problem at issue. In chemical terms, therefore, the recognition is made 

according to the results of the measurements made on different samples. 

The fundamental problem of pattern recognition can also be represented geometrically, 

considering each pattern as a vector that describes a point in the hyperspace of variables, 

namely in the multidimensional space whose n axes correspond to the experimental variables 

monitored. In this way, each group of samples defines a set of points, a cluster. In this 

context, the purpose of pattern recognition, therefore, is to separate the hyperspace in a series 

of distinct and well-identified regions, in such a way that all the points that are located within 

them belong to the same class [62]. Depending on whether these classes are known a priori or 

not, it is possible to distinguish two different types of techniques: the first is called supervised 

learning or classification methods, while the other unsupervised learning or clustering 

methods. The term supervised highlights the use of a data set (training set), collected on 

samples the classes of which are known in advance, in order to extrapolate a classification 

rule. In many cases, to allow the evaluation of the real predictive capacity of the model 

developed, a second data set, also made of samples of known attribution (test set), can be 

used. Whenever a supervised learning strategy is adopted, it is possible to demonstrate that 

the decision rule minimizing the prediction error is called Bayes‟ rule, according to which a 

sample has to be assigned to the class it has the highest probability of belonging to. 

From the applicative point of view, an important division which can be made is between 

discriminant (or pure) classification methods and class-modeling ones. 

Discriminant techniques mainly focus on the differences between samples from different 

categories and divide the space of the variables in as many regions as there are classes: a 

sample is always assigned to one and only one of those [63]. The probability that a sample 

described by the vector x belongs to the class g - p(g|x) - can be calculated, on the basis of 

Bayes' theorem, as the product of the probability of obtaining a vector of measurements x for 
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a sample extracted from the generic class g – the likelihood p(x|g) - and the probability, a 

priori, to observe a sample belonging to the same class g, π(g), according to: 

 

 
p(g x) = p(x g)p g( )  (11)  

 

Bayes' rule, therefore, involves two distinct phases: the calculation of the probability that a 

sample belongs to each class and the assignment of the sample to the class for which this 

probability of membership is higher. It is obvious that, depending on the method used, the 

results may be significantly different. Since it is not necessary to know the absolute value of 

this probability, but only for which class its value is maximum, sometimes it is preferable not 

to calculate directly the probability but a monotonic function of it, chosen in such a way as to 

simplify as much as possible the calculation. These functions are called classification 

functions: 

 

 
fg x( ) = f p g x( )( )

 (12) 

 

Once the parameters of these classification functions are calculated on the basis of training 

data, it is possible to define the boundaries which separate the regions of space corresponding 

to the different categories as:  

 

 
fg1(x) = fg2(x)

 (13) 

 

Modeling techniques instead are based on the recognition of the similarity between samples of 

the same category. Each class is modeled independently on the others and each sample can be 

assigned to one, more than one or none of them (asymmetric classification) [64]. 

In all cases described until now, the construction of the model consists of three basic steps: 

 

1) Construction of hyperspace: projection of the set of samples in the multidimensional 

space defined by the original variables 

2) Choice of the distinctive characteristics: reduction of dimensionality of the data 

matrix, targeted to the conservation of the maximum significant variance, and 
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graphical representation of the distribution of the samples within a low-dimensional 

space  

3) Classification: formulation of a decision rule that allows the assignment of unknown 

samples to one of the distinct classes 

 

Specifically, in the present thesis, classification studies of extra virgin olive oil, honey and 

saffron were completed using the discriminant approach by means of the algorithm PLS-DA 

(partial least square discriminant analysis). 

As with the problems of multivariate calibration, to build a classification model means finding 

the best possible relationship between a multivariate independent matrix, whose ith row 

contains the values of the monitored variables on the i
th

 sample, and an array of qualitative 

responses, realized in such a manner as to include information relating to membership of the 

samples to one or any of the other classes considered. In this way, it is possible to use the 

traditional regression methods for the solution of non-quantitative problems [65]. The matrix 

of responses, the so-called dummy matrix, is consequently characterized by a number of rows 

equal to the number of analyzed samples and by a number of columns equal to the number of 

classes. Each row vector contains a value of 1 in correspondence to the column associated to 

the category of the relative sample while all the other values are instead equal to zero. The 

figure 2.2 shown the generic structure of a dummy matrix for n samples and g groups. 

 

 

 

 

Figure 2.2: generic dummy matrix for n samples and g classes 
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Once the dummy Y matrix is built, its relation with the X block can be described using Partial 

Least Squares regression (see section 2.2). Accordingly, the use of PLS-DA allows building 

reliable classification models also for ill-conditioned problems [65].  

 

 

 

 

2.4 DATA PRETREATMENT 

 

Before applying chemometric methods, either for calibration or classification, it is often 

necessary to pre-treat the data. The term data pretreatment refers to a range of preliminary 

data characterization and processing steps. There are numerous methods for the pretreatment 

of chromatographic and spectroscopic data. The following are the main pre-treatments 

methods used for the pretreatment of chromatographic and spectroscopic data, with the aim of 

improving the performance of regression and classification models. 

 

 

 

2.4.1 BASELINE CORRECTION: ASYMMETRIC LEAST SQUARE 

 

The presence of a non-zero baseline in chromatographic signals can severely affect the 

bilinear modeling of the signals, by introducing additional components, and distort the 

similarity/dissimilarity relations among the samples. Therefore, baseline correction is an 

essential step when modeling such kind of signals. Baseline correction was carried out using 

the penalized asymmetric least squares algorithm proposed by Eilers [66]. The algorithm 

operates by estimating, for each chromatogram, the baseline f using a weighted least squares 

procedure in which the value of the weights is iteratively changed until convergence. In 

particular, for each chromatogram, the solution is sought as the baseline f which minimizes 

the following cost function: 

 

 
L = wi yi - fi( )

2

i=1

NP

å + l D2 fi( )
2

i=1

NP

å  (1) 

where yi and fi are the value of the i
th

 point of the experimental signal and of the estimated 

baseline, respectively, wi is the weight associated to that point and NP is the total number of 
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points. The second term in equation 1 is introduce to govern the smoothness of the solution, 

through the regularization parameter λ: Δ
2
f indicates that second-order differences are used to 

evaluate the roughness of the solution. Baseline estimation is an iterative step: initially, all 

points are given unitary weight and a first approximation of f is calculated. Then, weights are 

asymmetrically updated so that only those points which are below the approximated solution 

will contribute relevantly to the definition of the baseline at the successive iteration: 

 

 

wi = p         if yi > fi

wi = 1- p    if yi £ fi

ì
í
î

       0 < p <1

 (2) 

 

To impose that all data points with positive deviation from the approximation f exert a very 

small influence on the baseline approximation, usually p is given the value 0.01 or less). Once 

the baseline is approximated in a satisfactory manner, it can be subtracted from the studied 

signal. 

 

 

 

2.4.2 ALIGNMENT OF CHROMATOGRAPHIC PEAKS: INTERVAL 

CORRELATED SHIFTING (ICOSHIFT) 

 

After correcting the baseline, it was necessary to pretreat further chromatographic signals to 

ensure that the peaks of the analytes were aligned. Retention time alignment is useful for peak 

identification and quantitation, but is especially important as a pre-treatment step before the 

application of classification models like PLS-DA. Indeed, in order for PLS-DA to work well, 

the same underlying process must be associated to the same variables in all the samples. In the 

case of chromatographic data, this implies that retention time, for the same compound, must 

be invariant across all samples. If this condition is not met, as it is often the case in real world 

experiments, the predictive ability of classification model and the chemical interpretation of 

the results can be compromised [67]. Misalignment problem can be overcome by using 

alignment algorithm; in particular, in the present study, Interval Correlation Optimized 

Shifting (icoshift) algorithm was used for aligning HPLC-DAD data [68]. icoshift divides 

spectra into segments, and aligns these to the corresponding segments of a reference 

spectrum. The alignment is performed by shifting the segments sideways to maximize their 
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correlation. In practice, this involves calculating the crosscorrelation between the segments by 

a fast Fourier transform (FFT) engine that aligns all signals of a data set simultaneously.  

 

 

 

2.4.3 VARIABLES SELECTION: BACKWARD INTERVAL PARTIAL 

LEAST SQUARE (BiPLS) 

 

PLS and PLS-DA algorithms were used for the construction of quantification and 

classification models. Before constructing a model, in addition to the correction of the base 

line and the alignment of the chromatographic peaks, it can be useful to reduce the number of 

variables.  

The predictive capability of a multivariate classification or regression model can be affected 

by the presence of a large number of variables: not all the points that constitute the 

instrumental profile carry relevant information, so that a selection of portions of the signal can 

significantly improve the results. For this purpose, in the present thesis the technique 

Backwards Interval PLS (Bi-PLS) coupled to Genetic Algorithms (GA) was used [69].  

The BiPLS algorithm allows to calculate local PLS models using as predictors only variables 

contained in equidistant intervals in the matrix X. In particular, in its backward 

implementation, at every iteration, the calibration is carried out using a data matrix built by 

eliminating from the entire instrumental profile the selected intervals. For each model, a cross 

validation step, with a certain number of cancellation groups, is executed: the interval whose 

elimination results in the minimum value of the RMSECV (see section 2.5) error, is the one 

which is finally excluded before the algorithm proceeds with the next iteration. The routine is 

thus interrupted once a minimum value of selected variables is reached. However, in many 

practical cases, to avoid problems related to the possibility that a peak is divided between two 

intervals, the entire procedure described is repeated by gradually increasing the number of 

intervals up to a fixed maximum value. At the end of these repetitions the frequency of 

selection of the variables is evaluated, on the basis of which the final set of variables to store 

is defined [69]. 
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2.4.4 VARIABLES SELECTION: GENETIC ALGORITHMS 

 

To finalize the selection of variables, it is essential to apply to the data matrix, previously 

reduced by biPLS, characteristic genetic algorithms (GA). The coupling between the two 

procedures is necessary since, due to the enormous amount of monitored variables, it is not 

possible to use only GA [70]. In particular, genetic algorithms constitute an optimization 

method which is based on biological evolution. By analogy, any possible solution provided 

for a specific problem is called chromosome, while each iteration of the computational 

procedure is defined generation. More than one solution at a time is tested, so that in general 

one speaks of a population of chromosomes. The aim of the application of genetic algorithms 

is to evolve the population along several generations to find the best solution to the problem. 

To determine the quality of these solutions, the concept of fitness, i.e. any mathematical 

criterion that determines the goodness, is introduced. Usually, the fitness is defined as the 

minimum error committed by the model during cross-validation. As this problem concerns the 

selection of the variables, each chromosome will correspond to a binary vector of length equal 

to the number of points that constitute the whole signal and will contain zeros in the positions 

of the variables to not be selected and ones elsewhere. The algorithm is initialized by 

generating at random a number of possible solutions, or of groups of variables: these variables 

are then used to build the corresponding regression or classification models, and the relative 

error in cross validation is calculated. Once the chromosomes are sorted in descending order 

of fitness, the algorithm proceeds by using two different operators, crossover and mutation, 

which allow at the same time the exploitation of the “genetic” material in the actual 

population and the exploration of new possible solutions.  

In particular, the crossover modifies the structure of two chromosomes selected operating an 

exchange in blocks between their internal values. The mutation, instead, operates by inverting 

the values of each position of the chromosome with a probability equal to 0.1%. 

Consequently, for each iteration two new chromosomes will be built, the quality of which 

should then be evaluated. The solutions that are characterized by a better fitness compared to 

those present in population at that particular generation will replace the worst ones [71]. 

The entire procedure is then repeated for a fixed number of generations, the end of which, the 

chromosome, or the group of variables, corresponding to the higher fitness is selected as the 

best. To ensure high consistency of results, generally, a genetic algorithm is not applied only 

once to a matrix of data, but for a sufficiently large number of times, equal to 100 in our case, 
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so that, in the end, one will include in the final model only the variables most frequently 

selected. 

 

 

 

 

2.5 VALIDATION OF CHEMOMETRIC METHODS 

 

The validation of the developed models, for the study of multivariate classification or 

quantification, is of uttermost importance for the evaluation of the reliability of their 

performances. To this purpose, there are different techniques useful for the control and the 

determination of the quality of the results obtained by chemometric analysis, which differ 

according to the type of problem in exam and samples available. More generically, the 

validation procedures are to be able to provide information of two kinds: in fact they allow to 

obtain both indications on how to maximize the sensitivity of the model and its effective 

capacity to characterize unknown samples, confirming the reliability and ensuring that their 

solutions are generalizable [72].  

The increase in the quality of a chemometric model depends on the possibility to minimize the 

error in the prediction of a certain type of response, which for the i
th

 sample can be 

determined according to the following equation: 

 

 ei = yi - ŷi  (14) 

 

where ŷi and yi represent the value of the response predicted by the built model and its 

reference value, respectively. However, in sets of samples very different from one another, a 

common situation in the case of multivariate calibration and classification, it is not much 

important reducing the prediction error on the individual object, but rather the average error 

made on the totality of the validation group (test set). This error is defined RMSEP, Root 

Mean Square Error of Prediction; if nnew samples, different than those used for model 

construction, are used to validate the model, RMSEP is calculated as: 

 

 

RMSEP =
ep

Tep

nnew  (15) 
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where ep is a vector containing the differences between the reference and the predicted values 

for all the test set samples.  

Similarly, it is possible to determine the error of the model in the calibration phase, the 

RMSEC, Root Mean Square Error of Calibration, according to the following equation: 

 

 

RMSEC =
ec

Tec

n- df  (16) 

 

In this case, ec is formed by the residuals associated with the n samples on the basis of which 

the model has been realized, while df is equal to the number of degrees of freedom lost in the 

estimation of its parameters. In addition to the classical procedure of external validation, it is 

possible perform a kind of systematic resampling of all available data for subsequent 

evaluation of different sets, this operation is called cross-validation. It acts by splitting the set 

of samples available in a number k of so-called cancellation groups. Iteratively, each of these 

sets is not included in the calibration phase and it is used as a validation set. In total, therefore, 

k different models will be constructed, so that eventually the RMSECV, Root Mean Square 

Error of Cross Validation, is evaluated as: 

 

 

RMSECV =
yi - ŷi ,cv( )

2

i=1

n

å
n- df  (17) 

 

where      
 and 

ŷi ,cv are the reference value of the response for the ith sample and its predicted 

value from the model built when the sample is left out in one of the k cancellation groups, 

respectively, while the other terms have the same meaning as in equation 17. 

Generally, while external (test set) validation is used to evaluate the predictive ability of the 

models, cross-validation is employed to estimate the optimal model complexity, i.e. the 

number of components needed for the construction of the best model [73]. 
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CHAPTER 3 

 

EXTRA VIRGIN OLIVE OIL: 

GEOGRAPHICAL TRACEABILITY 

OF SABINA PDO 

 

 

 

 

 

 

 

3.1 INTRODUCTION 

 

In recent years, the issues of food quality and safety have received a special attention both 

from the producers and the consumers [74-77]. In this context, a key role is played by the 

identification, authentication and traceability of foodstuff [78-80]. In particular, while the 

former terms indicate, in general, to what extent the products comply to what declared on the 

label and to the law, the latter concentrates on the ability to track any food through all stages 

of production, processing and distribution. Based on this definition, it is evident how the 

possibility of well-enacted food traceability protocols could on one hand represent an 

effective way of managing the risks connected to foods and feeds, for instance by allowing to 

quickly isolate contaminated products and prevent them from reaching consumers, or guiding 

targeted withdrawals when needed. On the other hand, since the largest share of traceability 

issues is related to the verification of the geographic, species or production origin of the 

goods, it can also represent a solid ground to protect local and/or regional foods, to help 

producers obtain a proper price for their authentic products, and to avoid the unfair market 
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competition by products,
 
which may be of inferior quality. In the framework of the European 

Union, this necessity of protecting and promoting the names of traditional, regional and 

quality foodstuff has been enforced through the introduction of the geographical indication 

marks: protected designation of origin (PDO), protected geographical indication (PGI), and 

traditional specialties guaranteed (STG) [81,82]. In particular, the attribution of a 

geographical indication mark certifies that the quality of the foodstuff is significantly or 

exclusively determined by its geographical environment, including natural and human factors, 

and that its production, processing and preparation took place within the determined 

geographical area [83]. 

Extra virgin olive oil (EVOO), due to its chemical composition and characteristics, in 

particular its nutritional and biological properties [84,85], represents a high quality and value-

added product, whose price can be even 6-7 times higher than that of other edible vegetable 

oils. Given the specificities of its production, EVOO is one of the foods whose quality is most 

closely related to the terroir, i.e. “the set of special characteristics that the geography, geology 

and climate of a certain place, interacting with the plant's genetics, express in agricultural 

products” [86], and consequently already many oils from different European countries 

(mainly Italy, Spain, Greece, France and Portugal) are protected by the PDO mark. Among 

these, Sabina EVOO is the first Italian oil to have gained the PDO status, in 1996 [87]. It is 

produced in the homonymous territory in the Lazio region, which is part of the provinces of 

Rome and Rieti and owes its name to the fact that this area was originally occupied by the 

ancient Sabines tribe; indeed, Sabina has been an oil producing region since 7
th

-6
th

 century 

B.C. Nowadays, the production disciplinary for the PDO [88] provides that Sabina oil should 

be made from the following olive varieties, either combined or singularly: “Raja”, “Leccino”, 

“Frantoio”, “Carboncella”, “Pendolino”, “Olivastrone”, “Salviana”, “Rosciola”, “Olivago” 

and “Moraiolo”. Its sensory characteristics are defined as: golden yellow color, with greenish 

tinges when very fresh, fruity aroma and smooth, even, fruity, fragrant, sweet, flavors, bitter 

when very fresh. As a consequence of their provenance and of the reported organoleptic 

characteristics, Sabina PDO oils are considered high quality products and due to their higher 

market price can be subjected to frauds, such as the addition of cheap oils and/or the 

marketing of oils from other regions under the same name. However, from the quality control 

standpoint, the traceability system enacted so far by the European authorities operates mainly 

a priori, defining in detail the percentages of specified cultivar olives, cultural practices, 

circumscribed geographical production areas, chemical and sensorial properties needed to 

obtain the PDO label in the production disciplinary, and relying only on the inspection of the 
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production registries for the verification of the authenticity of the products. On the other hand, 

at present no analytical indices exist which could be measured on the final product, allowing, 

a posteriori, to distinguish it from other oils of lesser value. Accordingly, the possibility of 

building traceability models by coupling chemometric classification methods to the analytical 

characterization of the products (often by fingerprinting techniques) is becoming more and 

more fundamental for the verification of the authenticity of foods with geographical 

indication marks [89-94]. In this framework, variations in the phenolic composition of virgin 

olive oils related to cultivars, ripening and production techniques were already reported in the 

literature [95-97], suggesting that the chromatographic fingerprinting of this fraction could be 

a valuable tool for tracing the origin of the product. On the other hand, considering the 

increasing attention to the potential health benefits associated to different classes of 

biophenols (for instance, prevention against cardiovascular diseases, immunoregulation 

diseases, or asthma [98-100]), the possibility of relating the higher quality of the product to 

the phenolic composition would be of utmost importance for its characterization. Therefore, 

aim of the present study was to verify the potential of using the chromatographic 

fingerprinting of the phenolic fraction coupled to chemometric data processing for the 

authentication of the PDO Sabina oils. To this purpose, at first Partial Least Square-

Discriminant Analysis (PLS-DA) was used to process the chromatographic profiles recorded 

at three selected wavelengths (254, 280 and 340nm), while in a second stage, mid-level data 

fusion was used to integrate portions of the signals at the different wavelengths, selected by a 

successive application of backwards interval Partial Least Squares (biPLS) and genetic 

algorithms (GA), in order to achieve better classification performances and easier 

interpretability.  

 

 

 

 

3.2 MATERIALS AND METHODS 

 

3.2.1 SAMPLES 

 

Sabina samples (20 oils) were all taken from different oil mills in various place of the region, 

covering as representatively as possible the whole production area in terms of geographical 
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position, maturation olives and climate conditions and also of manufacturing techniques 

employed: traditional (press) or modern (two, two and half, and three phases decanters). 

Samples coming from other origins (here, for the sake of simplicity, labeled “not Sabina”, 57 

oils) were provided by the chemical laboratories of the Customs Agency (Rome, Italy). These 

samples were collected from the producers within 10 days of production, and immediately 

frozen and stored at -20° C in their laboratories, and carried in our laboratory by mean of an 

ice bag. 

 

 

 

3.2.2 OPTIMIZATION OF THE EXTRACTION OF THE PHENOLIC 

FRACTION FROM OLIVE OIL 

 

To isolate the phenolic fraction from the olive oil matrix, a rapid liquid-liquid extraction 

(LLE) procedure was used: 1 g of oil was diluted with hexane and extracted with 

water/methanol solution. The optimal extraction conditions were optimized using an 

experimental design. In particular, considering the experimental domain and the number of 

controlled factors, a two level full factorial design was chosen. Indeed, after some preliminary 

screening experiments, it was observed that four factors only might relevantly affect the 

recovery: the volume of hexane used to dilute the sample, the composition and volume of the 

water/methanol solution, and the extraction time. Therefore, a 2
4
 factorial design was used, 

controlling each factor at the levels reported in Table 3.1. The sum of the areas of all peaks 

within the phenolic fraction was used as the response to be optimized. 

 

 

 

Table 3.1: Experimental domain for the optimization of LLE 

Level Hexane vol.  MeOH:H2O Ratio MeOH:H2O vol. Extraction 

time 

+1 1 mL 80:20 4 ml 1 min 

-1 2 mL 60:40 6 ml 3 min 
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When analyzing the results, none of the interaction terms and only two of the main effects 

resulted to be significant: the composition of the water/methanol solution and the extraction 

time, their optimal values being MeOH/H2O 80:20 v/v and 3 min, respectively. Since the 

effect of the other two factors was shown to be not statistically relevant, their values were 

fixed at the level which resulted more advantageous in terms of rapidity and costs (1 mL 

hexane and 4 mL hydroalcoholic solution, respectively). Accordingly, the final extraction 

procedure resulted to be the following: 1 g of olive oil was diluted with 1mL of hexane and 

then extracted with 4mL MeOH:H2O 80:20 v/v for 3 minutes. Then, the hydroalcoholic 

extract containing the analytes was filtered and evaporated to dryness in rotavapor at 30 °C; 

the residue was dissolved in 200 µL of MeOH:H2O (50:50, v/v) and 20µL of the solution 

were injected into the HPLC. This extraction showed a good reproducibility (RSD < 5%), and 

it was used for the analysis of all EVOO samples. 

 

 

 

3.2.3 HPLC-DAD ANALYSIS OF THE PHENOLIC FRACTION 

 

For the chromatographic analysis of olive oil samples, biochanin A was used as internal 

standard (10 µg/g olive oil). The extracts prepared according to what described in section 

3.2.2 were analyzed by HPLC-DAD with a Thermo Quest Spectrasistem LC (Thermo Fisher 

Scientific, Waltham, MA) equipped with a P4000 pump, a UV6000 UV-Vis Diode Array 

Detector, and a SN4000 interface to be operated via a personal computer. Extracted 

compounds were separated using an Eclipse XDB-C18 analytical column (4.6x250mm, 5µm 

particle size; Agilent Technologies, Santa Clara, CA) protected by a guard cartridge of the 

same packing, operating at 25° C. The mobile phase consisted of a binary solvent system 

using water (solvent A) and methanol (solvent B) both acidified with 0,1% formic acid kept at 

a flow rate of 0.8 mL/min. The gradient program started with 90% eluent A and 10% eluent 

B. This percentage was maintained for 5 minutes and eluent B was ramped linearly to 20% in 

5 min and kept constant for 10 min; eluent B was ramped again linearly to 30% at 30 min and 

to 70% at 45 min. The chromatographic profiles were collected at 254, 280 and 340 nm. 
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3.2.4 IDENTIFICATION OF POTENTIAL PDO MARKERS BY 

HPLC/ESI-MS  

 

For the qualitative analysis and, in particular, to identify which compound could be most 

significant for characterizing the PDO Sabina, HPLC/ESI-MS analysis was carried out. In 

particular, selected portions of the eluate from the HPLC-DAD system were sampled at the 

detector, evaporated to dryness under N2, dissolved in 50μL of MeOH and injected into the 

HPLC/ESI-MS system. In particular, a Perkin-Elmer series 200 (Norwalk, CT, USA) liquid 

chromatograph, equipped with a binary pump and a vacuum degasser was used. Electrospray 

ionization tandem mass spectrometry (ESI-MS/MS) was conducted using a QTRAP
TM

 

quadrupole linear ion trap (QLIT) instrument equipped with a TurboIon-Spray (TISP) 

interface (Applied Biosystems/MDS Sciex, Concord, ON, Canada) operated in positive and 

negative ion modes. The whole apparatus was controlled by Analyst software (Applied 

Biosystems/MDS Sciex). The chromatographic column was an Alltima-C18 (2.1x250mm, 

5µm particle size; Alltech, Deerfield, IL, USA). The mobile phase and gradient program were 

the same described for HPLC-DAD analysis (section 3.2.3) while flow rate was 200µL/min. 

Each sample was analyzed twice, once in positive ionization mode and once in negative 

ionization mode in the ranges 100-850 m/z (MS) and 90-850 m/z (MS/MS) using an 

information-dependent data acquisition (IDA) protocol.  

 

 

 

3.2.5 SIGNAL PRE-PROCESSING 

 

Since chromatographic signals could be affected by unwanted sources of variability, which 

could result in baseline contributions and shifts in the position of peak maxima, prior to the 

classification analysis a data preprocessing step was carried out. Baseline correction and peak 

alignment are essential steps, and in this study they were carried out using the penalized 

asymmetric least squares algorithm and interval correlation optimized shifting (icoshift) 

algorithm (described in the previous chapter, Sections 2.4.1 and 2.4.2) 
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3.2.6 CLASSIFICATION 

 

Classification models were built using Partial Least Squares-Discriminant Analysis (PLS-DA) 

[65]. PLS-DA is a discriminant classification technique based on Partial Least Squares 

regression (PLS), where the dependent matrix Y is a binary-coded dummy matrix encoding 

information about class belonging. In particular, the number of columns of Y is the same as 

the number of categories in the classification problem and each row of the matrix is built as a 

vector of all zeros except for the component corresponding to the class of the samples, which 

has a value of 1. Since PLS predictions are real valued, for classification the sample is 

assigned to the category corresponding to the highest value of the predicted Y component. 

 

 

 

 

3.3 RESULTS AND DISCUSSION 

 

The 77 oil samples considered in this study where characterized by recording the 

chromatograms of the phenolic fraction, after liquid-liquid extraction, at 254, 280 and 340nm, 

as described in sections 3.2.2 and 3.2.3. The chromatographic profiles of each sample were 

considered as a fingerprint of the olive oils to be used, together with classification techniques, 

in particular PLS-DA, for building a traceability model able to discriminate Sabina samples 

from other oils. To this purpose, at first classification models were built considering each of 

profiles recorded at the different wavelengths separately, while in a further stage mid-level 

data fusion was used to integrate the information coming from the various chromatograms. 

However prior to model building, it was necessary to preprocess the data, as described in 

Section 3.2.5. In particular, baseline correction was performed using the penalized 

asymmetric least squares algorithm, testing different combinations of p and λ, and selecting 

the optimal value of the parameters by visual inspection of the resulting pretreated; the best 

combination resulted to be p=0.001 and λ=10
5
. Successively, icoshift was used to align the 

signals. For each wavelength, a preliminary warping by coshift on the whole signal was 

performed using the median chromatogram as the target. Then, for the successive icoshift run, 

14 intervals unevenly spaced were manually selected and a maximum shift of 100 data points 

was allowed, using as the target a signal built by taking, for each retention time, the maximum 
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intensity over all samples. The results of these two pretreatment can be visualized in Figure 

3.1 on a time window selected as example.  

 

 

 

 

Figure 3.1A: chromatograms recorded at 340nm, without pretreatments 
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Figure 3.1B: chromatograms recorded at 340nm, after pretreatments 

 

 

 

After baseline correction and alignment, the fingerprints were normalized by dividing the 

intensity at each data point by the area of the internal standard. 

In order to have a set of independent samples to validate the predictions of the developed 

classification models, data were then split into training and test sets by means of the duplex 

algorithm [73]. Duplex algorithm was chosen as it keeps the same diversity within two sets: it 

operates by first finding the two pairs of farthest samples to constitute the basis of the training 

and test set and then by adding, alternatively, the sample which is most different to those 

already present in the set. In this context, difference is defined by the so-called maximin 

criterion: the most different sample is the one having the maximum value of the minimum 

distance to all the individuals in the set. In the present study, to guarantee that both classes 

were properly represented, duplex algorithm was separately applied to each category with a 

splitting ratio of 2:1. Moreover, in order to use the same training/test division throughout the 
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study, the selection algorithm was operated on a matrix obtained by concatenating the scores 

along the significant principal components extracted from the three data set corresponding to 

the signals at 254, 280 and 340 nm. Accordingly, 50 samples (13 from Sabina and 37 from 

other origins were selected as training set and the remaining 27 (7 from Sabina and 20 from 

other origins) left out as external validation set.  

 

 

 

3.3.1 PLS-DA ANALYSIS ON INDIVIDUAL DATA MATRICES 

 

At first separate PLS-DA models were built on the individual data matrices containing the 

chromatographic profiles recorded at 254, 280 and 340 nm, after mean centering. Selection of 

the optimal complexity of the latent variable models was made on the basis of the minimum 

classification error in 5-fold cross-validation. The results obtained are reported in Table 3.2. 

 

 

 

Table 3.2: Results of PLS-DA modeling on individual data sets without variable selection 

Wavelength LVs %Correct Class. 

Calibration 

%Correct Class. 

CV  

%Correct Class. 

Prediction 

Sabina  Not Sabina Sabina Not Sabina Sabina Not Sabina 

254nm 4 92,3% 89,2% 84,6% 75,7% 71,4% 75,0% 

280nm 3 92,3% 81,1% 84,6% 78,4% 57,1% 75,0% 

340nm 3 84,6% 83,8% 80,4% 83,1% 57,1% 85,0% 

 

 

 

It can be observed from the Table that in all cases rather parsimonious models are obtained, 

and that in general a rather good classification ability is observed both in calibration and 

cross-validation. However, when the trained model are applied on the external test set, the 

performances are significantly worse, especially for the class Sabina. Based on these results, 

in order to improve the classification ability of the models, by including only those parts of 

the signal carrying the discriminant information, variable selection was carried out by means 
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of a sequential application of backward interval-PLS and genetic algorithms (biPLS-GA) 

[69]. The biPLS step, indeed, allows to operate a preliminary variable reduction, so that the 

genetic algorithm can operate of a number of predictors which is low enough (usually <250) 

to minimize the risk of overfitting. In detail, biPLS was algorithm was run 21 times, changing 

the interval size at each iteration (each of the data matrices, after autoscaling was divided in a 

number of intervals ranging from 25 to 45) and the predictors most frequently selected over 

the runs, were pooled to constitute the data set on which GA variable reduction was operated. 

Leardi‟s hybrid GA [101] was used with a population of 30 chromosomes and probabilities of 

cross-over and mutation of 0.5 and 0.01 respectively, on autoscaled data. Classification error 

in 5-fold cross-validation was used as the fitness function and the optimal number of 

evaluations was chosen on the basis of randomization tests, as the one minimizing the risk of 

selecting irrelevant variables and overfitting [101]. The results of PLS-DA analysis after 

variable selection are reported in Table 3.3. 

 

 

 

Table 3.3: Results of PLS-DA modeling on individual data sets after variable selection by 

biPLS-GA 

Wavelength LVs %Correct Class. 

Calibration 

%Correct Class. 

CV  

%Correct Class. 

Prediction 

Sabina  Not 

Sabina 

Sabina Other 

origin 

Sabina 

DOP 

Sabina  

254nm 4 92,3% 91,1% 84,9% 75,7% 85,7% 77,0% 

280nm 3 92,1% 86,5% 88,5% 85,0% 85,7% 85,0% 

340nm 3 92,3% 91,9% 83,5% 85,0% 85,7% 85,0% 

 

 

 

It can be seen from the Table that variable selection significantly improved the classification 

ability of the models, especially for the class Sabina, which is the one of interest. Moreover, 

better results are obtained on the data sets at 280 and 340 nm with respect to the one at 254 

nm, as it could be expected, since the signals at higher wavelengths are more selective and 
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less affected by interferents. The chromatographic regions which were chosen by the biPLS-

GA algorithm are shown in Figure 3.2. 

 

 

 

 

Figure 3.2: chromatographic regions (highlighted in green) which were chosen by the biPLS-

GA algorithm 

 

 

 

It can be observed from the Figure that biPLS-GA selected in all cases meaningful regions of 

the signals, corresponding to specific chromatographic peaks. Moreover, selection of the 

peaks was in most cases consistent at the different wavelengths: this is a further indication 

that the variables were not selected on the basis of chance correlations with the desired 

response. 
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3.3.2 DATA FUSION 

 

To verify whether the classification ability of the PLS-DA models could be further improved 

by integrating the information from the signals at the different wavelength, a data fusion 

strategy was considered. In particular, to take advantage of the better results obtained after 

variable selection on the individual matrices, the so-called mid-level fusion strategy was 

adopted. In mid-level data fusion, the concatenation occurs at the level of the features 

extracted from the individual matrices. In particular, in the present study, for each data set, the 

variables selected after biPLS-GA were concatenated to form the final fused matrix: since 

three individual data set were available, all the possible binary combinations, plus the one 

involving all the three wavelengths together were tested and the results are reported in Table 

3.4. 

 

 

 

Table 4: Results of PLS-DA modeling on individual data sets after variable selection by 

biPLS-GA and mid-level data fusion 

Wavelength LVs %Correct 

Class. 

Calibration 

%Correct 

Class. 

CV  

%Correct 

Class. 

Prediction 

Sabina  Not 

Sabina 

Sabina Other 

origin 

Sabina 

DOP 

Sabina  

254nm+280nm 4 92,3% 91,9% 91,2% 88,0% 85,7% 80,0% 

254nm+340nm 1 92,3% 86,5% 88,8% 85,4% 85,7% 85,0% 

280nm+340nm 3 100% 91,9% 91,2% 91,4% 85,7% 90,0% 

254nm+280nm+340nm 2 100% 97,3% 87,7% 85,0% 85,7% 85,0% 

 

 

 

When looking at the Table, it is possible to observe that in almost all the cases, the 

classification results after data fusion are the same as the best one obtained on individual 

matrices after variable selection. This outcome is not completely unexpected as it was already 

shown how the peaks selected by biPLS-GA at the different wavelengths were in most cases 
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the same, and so the selected features which were fused carry almost identical information. 

The only exception was the data set resulting from the fusion of the variables selected at 280 

nm and 340 nm, which allow to improve the sensitivity of the models, as the correct 

classification rate for the not Sabina oils increased to 90%. 

 

 

 

3.3.3 IDENTIFICATION OF POTENTIAL TRACEABILITY MARKERS 

FOR THE PDO SABINA 

 

To interpret the results obtained after variable selection in terms of chemical species which 

could carry a discriminant information and, hence, which could be used as traceability 

markers for the PDO Sabina, HPLC/ESI-MS analysis was carried out, as described in Section 

3.2.4. The analytes corresponding to the peaks selected by biPLS-GA were identified by 

tandem MS either in positive or negative mode and they are listed in Table 3.5. 
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Table 3.5: Compounds identified by HPLC/ESI-MS 

Retention 

time 

Compound Ion 

mode
a 

m/z Fragments
b 

Identification
c 

5.4 vanillic acid negative 167.1 108.0(100);151.8(10) A 

9.1 p-coumaric acid negative 163.1 119.1(100);167.1(27); 

91.1(13) 

A 

18.2 luteolin negative 285.2 133.2(100);107.2(20); 

151.2(17) 

A 

19.9 pinoresinol positive 359.1 359.1(100);327.1(10) A 

21.0 acetoxypinoresinol positive 417.4 417.4(100);358.4(10) B
 

26.8 apigenin negative 269.0 117.0(100);107.0(17); 

151.0(12) 

A 

27.9 methoxyluteolin negative 299.4 299.4(100);199.4(25); 

191.4(20) 

B
 

a
 collision energy was 25eV for negative ion mode and 30eV for positive ion mode;  

b
 the relative abundances are shown in brackets;  

c
 identification was based on: (A) retention time and MS data consistent with those of 

authentic standard; (B) MS data consistent with literature. 

 

 

 

 

3.4. CONCLUSIONS 

 

The results obtained in the present study suggest that the phenolic composition of olive oils 

can constitute a reliable basis to discriminate PDO oils, when coupled to chemometric 

classification techniques. In particular, it was shown that by selecting specific portions of the 

chromatograms recorded at 280 nm or 340 nm, it was possible to correctly classify about 85% 

of samples in external validation. Moreover, when the information from these two 

wavelengths was combined through a mid-level data fusion strategy, the specificity of Sabina 

with respect to the oil of the other origin raised to 90%. The use of variable selection 

strategies, together with improving the correct classification rate of the models, allowed also 

to identify a reduced set of predictors carrying the greatest part of the discriminant 
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information, which could then be thought of as a potential traceability markers for the PDO 

Sabina. Identification of these analytes by HPLS-MS analysis showed that the substances 

which contributed the most to the discrimination of Sabina PDO from other oils are all 

phenols of high nutritional and biological value: vanillic acid, p-coumaric acid, luteolin, 

pinoresinol, acetoxypinoresinol, apigenin, methoxyluteolin. 
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CHAPTER 4 

 

HONEY: GEOGRAPHICAL AND 

BOTANICAL TRACEABILITY 

 

 

 

 

 

 

 

4.1 INTRODUCTION 

 

Honey is a food consumed all over the world and appreciated as a quick source of energy, but 

also for its antibacterial and antioxidant activity. Commercially there are both mono-floral 

honeys (mainly made from a single botanical species) and polyfloral honeys (obtained from 

different plant species). Each one has its own composition and organoleptic characteristics 

derived from the type of flora worked by bees that make the honey undoubtedly a product 

linked to the area of production. 

Honey is a food often adulterated; moreover, differences in price and quality are present 

between honeys of European countries, China or South America, but there are also differences 

between honeys of the various European countries or even between regions within the same 

country. The European Union Commission is encouraging the development of new analytical 

methods for monitoring and verifying the quality of the different honeys and for identifying 

their geographical origin. The product label must show the country or countries of origin 

where the honey has been produced. When the honey originates in more Member States or 

third country the indication may be replaced by one of the following sentences: "blend of CE 

honeys", "blend of non-CE honeys 'or' blend of honeys not originating in the CE". In addition, 
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the botanical origin of honey must also be indicated on the label, so it must be declared 

whether a honey is polyfloral or it is obtained from a specific species of plant.  

The method that is currently used in the determination of the botanical origin of honey, 

consists of the pollen analysis (melissopalynological analysis), because the pollen reflects the 

type of vegetation from which nectars were collected. This analysis presents some limitations, 

since a good knowledge of the morphology of pollen and qualified staff are needed. 

Moreover, due to the limited amount of pollen present in the samples, usually it takes a long 

time to perform the analysis. 

This work has as purpose to classify the honeys, both on the basis of botanical origin and in 

terms of geographical origin. Analyses of the phenolic fraction present in honey were 

conducted by HPLC-DAD. The honey samples were also analyzed by NIR spectroscopy and 

the classification method Partial least squares-discriminant analysis (PLS-DA) was applied to 

both the chromatographic and the spectroscopic data. 

In particular, aim of the present project was to develop a reliable method to characterize the 

floral origin of honeys produced in the same geographical area (in order to avoid problems 

related to geographical variability), and which could constitute a valid alternative to pollen 

analysis. As said, at the same time, a similar approach was followed, to discriminate the 

geographical origin of polyfloral honey. The methods developed are easy, quick and 

objective, not relying on the subjective interpretation of the analyst as instead happens for the 

melissopalynological analysis. 

HPLC-DAD analysis of the polyphenol content present in honey was chosen for instrumental 

fingerprinting because it is strongly linked to the geographical and floral origin of the 

foodstuff, and to the climatic characteristics of the local production [102-105]. The literature 

describes numerous analytical methods developed to test the authenticity of  honey, in 

particular with respect to the declared geographical and floral origins [106-108]. However, a 

simple and effective procedure has not yet been identified which, individually, is sufficient to 

the evaluation of the "complex" characteristics of a honey, such as its geographical or floral 

origin or, more generally, its belonging to a particular denomination of origin.  

The polyphenol content could be a significant "discriminating" factor in order to establish a 

standard method (currently absent) for the analytical control of the geographic and floral 

origin of honey. In fact, from the literature, phenolic compounds appear to be an important 

quality parameter which gives the product added value and it also justifies the different cost of 

sales [109]; in addition, observing the differences in the quantitative composition of phenolic 

compounds (i.e. the fingerprint of the whole phenolic fraction) may be more useful for the 
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characterization (geographical and floral origin) of this product than focusing on the content 

of a specific substance [110].  

At the same time, a spectroscopic method based on NIR spectroscopy was also developed, as 

NIR spectroscopy allows analyzing the honey samples as they are without any sample 

preparation at the same time permitting the investigation of many samples in a limited time, 

with a consequent economic saving. 

 

 

 

4.2 HONEY SAMPLES 

 

The honey samples used in the study of the botanical origin were all from the same 

geographical area of production (Tuscany, Italy), to avoid that the botanical classification 

could be affected by the different geographical origin of the product. The botanical species 

considered and the number of available samples are shown in Table 4.1. As it can be seen 

from the table also honeydew honey samples were analyzed, produced from honeydew, 

obtained by the action of parasitic insects. 

 

 

 

table 4.1: botanical origin of honey samples and number of samples analyzed by HPLC-DAD 

and NIR spectroscopy 

Floral origin number of samples (2012) 

acacia (ac) 10 

orange (or) 10 

chestnut (ch) 10 

eucalyptus (eu) 10 

lavender (la) 10 

honeydew (hd) 10 

linden (li) 10 
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These 70 samples, each coming from a different manufacturer of honey, were analyzed by 

HPLC-DAD and NIR. 

On the other hand, for the study of the geographic origin of the product, samples of 

wildflower honey coming from different regions and countries were used. In particular, the 

characteristics of the samples which were analyzed by NIR spectroscopy are reported in Table 

4.2. 

 

 

 

Table 4.2: geographical origin of honey samples and number of samples analyzed by NIR 

spectroscopy 

geographical origin of honey 

(analyzed by NIRS) 

number of samples (2011) number of samples (2012) 

southern Greece 10 10 

northern Greece 10 10 

southern Italy 10 24 

center Italy 15 20 

northern Italy 21 20 

center France 10 24 

center Denmark 10 10 

 

 

 

Unfortunately, for some of these samples only a very limited amount of honey was available, 

so that it was not possible to carry out the chromatographic analysis. Therefore, HPLC-DAD 

characterization was performed on a sub-set of the samples reported in Table 4.2: the 

composition of the sample set used for the geographical classification by HPLC-DAD is 

described in Table 4.3. 
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Table 4.3: geographical origin of honey samples and number of samples analyzed by HPLC-

DAD 

geographical origin of honey 

(analyzed by HPLC-DAD) 
number of samples (2011) number of samples (2012) 

Greek: south 10 10 

Greek: north 10 10 

Italy: south 10 10 

Italy: center 10 10 

Italy: north 10 10 

France: center 10 10 

Denmark: center 10 10 

 

 

 

 

4.3 MATERIALS 

 

4.3.1 SOLVENTS 

 

Methanol RPE for analysis (Sigma-Aldrich, Milan) 

Methanol RS for HPLC (Sigma-Aldrich, Milan) 

Acetonitrile RPE for analysis (Sigma-Aldrich, Milan) 

Acetonitrile RS for HPLC (Sigma-Aldrich, Milan) 

Concentrated hydrochloric acid(Carlo Erba, Milan) 

Milli-Q water (distilled water further purified with Milli-Q Plus apparatus). 

Concentrated formic acid (Carlo Erba, Milan) 

 

 

 

4.3.2 STANDARDS 

 

Apigenin (Sigma-Aldrich, Milan) 

Ferulic acid (Sigma-Aldrich, Milan) 
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p-hydroxybenzoic acid (Sigma-Aldrich, Milan) 

Kaempferol (Sigma-Aldrich, Milan). 

 

 

 

4.3.3 INSTRUMENTATION AND SOFTWARE 

 

The extraction of the phenolic component present in honey was performed using C18 SPE 

cartridges (Applied Separations); the chromatographic analysis was performed using a HPLC 

apparatus SpectraSystem LC of ThermoFisher, equipped with a degasser SCL1000 model, a 

two-way pump model P4000 and a UV-Visible photodiode model UV6000LP. The 

chromatograph was interfaced to a personal computer for acquiring and processing the data 

through the interface SN4000. The acquisition of the chromatograms and the subsequent 

processing of the data was performed using the software ChromQuest 5.0, supplied by the 

manufacturer of the instrument. The column used was Agilent XDB-C18, 250 x 4.6 mm, 

packed with 5μm particles. 

Rotary evaporator was used in the development of the method and in the preparation of the 

samples. 

A Nicolet 6700 FT-NIR instrument (Thermo Scientific Inc., Madison, WI), equipped with a 

tungsten-halogen source and an InGaAs detector, was used for the acquisition of spectra in the 

near infrared range. The spectra were acquired at room temperature and without any further 

sample treatment, in transflectance mode, through the use of an integrating sphere (Thermo 

Scientific Inc., Madison, WI). 

 

 

 

 

4.4 SAMPLE PREPARATION 

 

As far as NIR spectroscopy is concerned, honey samples did not require any sample 

preparation prior to the analysis. 

On the other hand, a preliminary extraction step was necessary to prepare the honey samples 

for the HPLC-DAD analysis. In particular, the phenolic fraction present in honey was 
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extracted by SPE (solid phase extraction). Solid phase extraction (SPE) was chosen since it is 

one of the simplest and at the same time very efficient and versatile methods of sample 

preparation [111]. An experimental design was used for the choice of the optimal 

experimental conditions, since the efficiency of the extraction procedure may depend on 

several factors, potentially interacting. This approach allowed carrying out the minimum 

number of experiments necessary for the evaluation of the effects of various factors on the 

response to optimize. 

In particular, a fractional factorial experimental design was used for the optimization of the 

solid phase extraction procedure. Five variables and two levels, coded as -1 and +1 (Table 

4.4) were taken into consideration. 

 

 

 

Table 4.4: experimental variables and levels considered 

experimental variables LEVEL -1 LEVEL +1 

Sample weight 5g 10g 

g sample:mL HCl ratio 1/2 1/4 

clean up volume 13 mL 26 mL 

kind of solvent MeOH MeOH:CH3CN=2:1 

Solvent volume 3 mL 6 mL 

 

 

 

The experiments described in table 4.5 were performed using a commercial polyfloral honey. 
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Table 4.5: Experiemental design for SPE optimization 

sample 

weight 

(g) 

 

g 

sample: 

ml HCl 

ratio 

 

clean 

up 

vol. 

(ml) 

kind of 

solvent 

volume of 

solvent 

(ml) 

dummy 

variabl

e 1 

dummy 

variabl

e 2 

Experimen

t nr. 

10 1/2 26 MeOH 3 + - 1 

5 1/4 26 MeOH 3 - + 2 

10 1/2 13 
MeOH:CH3CN

=2:1 
3 - + 3 

10 1/4 26 
MeOH:CH3CN

=2:1 
6 + + 4 

5 1/2 26 
MeOH:CH3CN

=2:1 
6 - - 5 

5 1/2 13 MeOH 6 + + 6 

5 1/4 13 
MeOH:CH3CN

=2:1 
3 - - 7 

10 1/4 13 MeOH 6 - - 8 

 

 

 

For each extract obtained, 20μL of solution were injected in the HPLC apparatus. The mobile 

phase used constituted of (A) H2O and (B) MeOH both acidified with 0.1% formic acid. The 

chromatography provides an initial composition of the mobile phase of 85% of A and 15% B. 

The gradient was set as follows (Table 4.6): 
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Table 4.6: chromatographic gradient used, A means H2O and B means CH3OH 

TIME 

min. 
0 5 10 15 20 25 50 55 60 65 

A 

(%) 
85 85 75 75 70 70 45 25 0 0 

B 

(%) 
15 15 25 25 30 30 65 75 100 100 

 

When the 8 experiments were done, the main effects of each variable of interest were 

evaluated, i.e. grams of sample, ratio of the grams of samples to the volume (mL) of HCl, 

volume (mL) used for the washing, type and volume (mL) of solvent used for the extraction. 

The responses were considered as the sum of the areas of the peaks resulting in the 

chromatograms of the 8 extracts injected at 3 different wavelengths (λ = 254nm, 280nm and 

340nm). 

To evaluate the significance of an effect at the different λ considered, a comparison was made 

between the effect itself and the variability associated to the dummy variables in Table 4.5, 

variables that do not correspond to any experimental factor, therefore allowing the assessment 

of the natural between samples and instrumental variation. According to these considerations, 

only three variables resulted to be influential for the purposes of the optimization of the solid 

phase extraction procedure (Table 4.7): 

 

1. g of sample; 

2. type of solvent used for the extraction; 

3. volume (mL) of solvent used for the extraction. 

 

From the calculation of the main effects, negative values were obtained in terms of both the 

grams of sample and of the type and volume (mL) of solvent used for extraction. Since an 

effect of negative sign indicates that the experimental response decreases with increasing 

factor, in order to maximize the total area of the peaks in the chromatograms at 3 λ 

(normalized for the area of the internal standard used, apigenin), the level -1 was chosen as 

optimal for the variables g of sample (5 g), type of solvent (MeOH) and volume (3mL) of 

solvent used for the extraction. 

The variables ratio g sample / HCl volume (mL) and clean up volume were found to be not 

influential for the optimization of the extraction procedure. Accordingly, for these variables, 



67 
 

the level -1, i.e. a ratio g sample / HCl volume (mL) of ½ and a volume of 13mL for clean up, 

was selected. Indeed, the choice of level -1 has been made to reduce the cost, speed and 

improve the overall efficiency of the method. 

The optimized extraction procedure was the following: 

 

 

 

1. g of sample: 5; 

2. ratio g sample/volume (mL) HCl: 1/2; 

3. volume used for the washing: 13mL (3mL HCl + 10mL H2O); 

4. kind of solvent used for the extraction: MeOH; 

5. volume of solvent used per the extraction: 3mL. 
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Table 4.7: Experimental design with responses and main effects of the variables of interest 

NUM. 

EXP. 

g 

sample 

ratio g 

sample/vol 

HCl 

clean 

up vol. 

kind of 

solvent 

extractant 

Vol solv 

extractant 

dummy 

variable 

1 

dummy 

variable 

2 

1 + - + - - + - 

2 - + + - - - + 

3 + - - + - - + 

4 + + + + + + + 

5 - - + + + - - 

6 - - - - + + + 

7 - + - + - + - 

8 + + - - + - - 

principal 

coeff. 

254 

-2,015 -1,15 0,3575 -2,67475 -1,9435 1,6025 -1,4475 

principal 

coeff 

280 

-4,6512 -3,29375 -1,8137 -6,147375 -4,912375 1,76625 -1,60375 

principal 

coeff 

340 

-0,37125 -0,03875 -0,1387 -0,846625 -0,281125 0,00875 -0,09875 

 

 

 

 

4.5 VALIDATION OF THE EXTRACTION PROCEDURE 

 

Recovery is one of the parameters to be considered for the validation of an analytical method 

and defines the percentage of analyte that is recovered after the extraction process. 

Analysis of the recovery was performed by adding the standards of p-hydroxybenzoic acid, 

ferulic acid and kaempferol to a matrix made of 20% H20, 40% fructose and 40% glucose, the 

most similar to the samples to be analyzed; apigenin (the internal standard) was added after 
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the extraction stage and before the step of evaporation of the solvent. Recoveries are 

calculated by applying the following formula: 

 

R (%) =[(Ai /AS.I.)sample] x 100 / [(Ai /AS.I.)ss] 

 

Where: 

Ai = area of the added analyte (p-hydroxybenzoic acid or ferulic acid or kaempferol) 

AS.I. = area of internal standard (apigenin) 

ss = standard solution 

 

 

 

Table 4.9: Recoveries obtained from an average of three experiments 

 
p-idroxybenzoic 

acid 
ferulic acid Kaempferolo 

RECOVERY % 

(RSD) 
91 (6) 86 (5) 95 (4) 

 

 

 

 

As shown in the table, the recoveries calculated as the average of 3 experiments appear to be 

high, all over 80% with RSD less than 7%. This clearly shows that the extraction method is 

efficient. 

Another parameter for the validation of a method is the precision, or the degree of agreement 

between the results of a series of measurements carried out under the test conditions specified. 

It is measured by calculating the per cent relative standard deviation (RSD%) or coefficient of 

variation (CV): 

 

CV= (S/x ) x 100 

 

Where: 

S = absolute standard deviation  

x = the average of the results obtained 
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The precision of the method is considered as: 

Intra-day precision (repeatability) is evaluated as the CV of mutually independent evidence 

obtained under the same experimental conditions, by the same operator on the same day and 

laboratory, with the same instruments and the same materials. 

To check if extraction procedure used is repeatable, 5 analyses are performed on the same day 

and the area of each analyte is measured. For each compound a RSD% always less than 2% 

was obtained and for each extract the sum of the areas of each chromatogram also remained 

practically constant. This shows, therefore, that the method proposed is repeatable. 

Inter-day precision (reproducibility) is evaluated as the CV of mutually independent tests 

obtained by the same method and the same laboratory but on different days. 

To assess the reproducibility of the method applied, 5 extractive tests (one every week, for 5 

weeks) were performed. Areas of each peak were calculated and the RSD% resulted to be 

always less than 2%. 

 

 

 

 

4.6 BOTANICAL AND GEOGRAPHICAL CLASSIFICATION 

BY PHENOLIC FINGERPRINT 

 

The extraction procedure, optimized and validated in terms of recovery and precision, was 

then applied to the extraction of the phenolic fraction present in available honey samples. 

For each sample of honey the procedure previously described was applied. Successively, 

20μL of each extract were injected into the HPLC-DAD system and the chromatograms were 

recorded at 254, 280, and 340 nm. 

The chromatographic profiles of each sample were considered as fingerprint. 

 

 

 

4.6.1 BOTANICAL CLASSIFICATION BY HPLC-DAD 

 

The chromatographic data of 70 samples of honey analyzed with the HPLC-DAD procedure 

were used for the construction of classification models. 
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In Figures 4.1, 4.2, 4.3 the chromatograms recorded at 254.280, 340 nm are shown.  

 

 

 

Figure 4.1: original chromatograms recorded at 254nm 

 

 

Figure 4.2: original chromatograms recorded at 280nm 
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Figure 4.3: original chromatograms recorded at 340nm 

 

 

 

Before applying the PLS-DA classification method, it was necessary to correct the baseline, to 

align the chromatographic peaks and, obviously, to normalize the signals, dividing them by 

the area of the internal standard. 

Asymmetric Least Square method (described in section 2.4.1) was used to correct the 

baseline. The alignment of the chromatographic peaks was carried out using the algorithm 

Icoshift (described in section 2.4.2).  

Three PLS-DA models were constructed, one for each of the wavelengths considered. The 

corresponding results are reported in tables 4.10, 4.11, 4.12. Considering the number of 

samples available for each class, the models were validated using the procedure of cross 

validation. 
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Table 4.10: PLS-DA model, data 254nm, latent variable=7, cross validation (CV)= venetian 

blinds w/ 10 splits 

254nm acacia chestnut eucalyptus honeydew lavender linden orange 

sensitivity cal. 0.800 1.000 0.800 1.000 1.000 1.000 0.800 

specificity cal. 0.950 0.983 0.950 0.983 0.983 1.000 0.967 

sensitivity CV 0.600 1.000 0.800 1.000 0.800 1.000 0.800 

specificity CV 0.950 0.983 0.933 0.983 0.917 1.000 0.967 

 

 

 

Table 4.11: PLS-DA model, data 280nm, latent variable=7, cross validation (CV)= venetian 

blinds w/ 10 splits 

280nm acacia chestnut eucalyptus honeydew lavender linden orange 

sensitivity cal. 1.000 1.000 1.000 1.000 1.000 1.000 0.900 

specificity cal. 0.967 0.983 1.000 0.967 1.000 1.000 0.933 

sensitivity CV 0.800 1.000 1.000 0.900 1.000 1.000 0.700 

specificity CV 0.917 1.000 1.000 0.967 0.983 1.000 0.917 

 

 

 

Table 4.12: PLS-DA model, data 340nm, latent variable=7, cross validation (CV)= venetian 

blinds w/ 10 splits 

340nm acacia chestnut eucalyptus honeydew lavender linden orange 

sensitivity cal. 0.800 1.000 0.800 1.000 1.000 1.000 0.800 

specificity cal. 0.950 0.983 0.950 0.983 0.983 1.000 0.967 

sensitivity CV 0.600 1.000 0.800 1.000 0.800 1.000 0.800 

specificity CV 0.950 0.983 0.933 0.983 0.917 1.000 0.967 

 

 

 

It can be seen that the model built on the chromatographic data recorded at 280nm appears to 

be better than the other two. Indeed, the PLS-DA model on the chromatograms recorded at 

280 nm allowed the correct classification of all the samples belonging to eucalyptus and 
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linden. Moreover, as far as the other categories are concerned, the lowest value of sensitivity 

in CV is 0.700 (only 70% of the samples of orange is correctly classified as belonging to the 

class orange), while the lowest value in CV specificity is 0.917. 

In addition, data fusion models were built: in particular, in order to obtain more information 

for each sample, the following datafusion protocols were carried out: 

 

254nm+280nm 

254nm+340nm 

280nm+340nm 

254nm+280nm+340nm 

 

In the following tables, the results of the models obtained on fused data are reported. 

 

 

 

Table 4.13: PLS-DA model, datafusion of 254 and 280nm, latent variable=7, cross validation 

(CV)= venetian blinds w/ 10 splits 

254+280nm acacia chestnut eucalyptus honeydew lavender linden orange 

sensitivity cal. 0.800 1.000 1.000 1.000 1.000 1.000 0.800 

specificity cal. 0.950 0.983 0.967 0.983 0.983 1.000 0.967 

sensitivity CV 0.700 1.000 0.800 1.000 1.000 1.000 0.800 

specificity CV 0.950 0.983 0.967 0.983 0.983 1.000 0.967 

 

 

 

Table 4.13: PLS-DA model, datafusion of 254 and 340nm, latent variable=6, cross validation 

(CV)= venetian blinds w/ 10 splits 

254+340nm acacia chestnut eucalyptus honeydew lavender linden orange 

sensitivity cal. 0.800 1.000 0.900 1.000 0.900 1.000 0.900 

specificity cal. 0.950 0.983 0.967 1.000 0.733 1.000 0.950 

sensitivity CV 0.800 1.000 0.900 1.000 0.700 1.000 0.900 

specificity CV 0.917 0.983 0.950 1.000 0.617 1.000 0.967 
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Table 4.14: PLS-DA model, datafusion of 280 and 340nm, latent variable=6, cross validation 

(CV)= venetian blinds w/ 10 splits 

280+340nm acacia chestnut eucalyptus honeydew lavender linden orange 

sensitivity cal. 0.800 1.000 1.000 1.000 1.000 1.000 1.000 

specificity cal. 0.683 0.983 0.967 1.000 1.000 1.000 0.833 

sensitivity CV 0.800 1.000 0.800 1.000 1.000 1.000 0.800 

specificity CV 0.767 0.983 0.950 0.983 0.983 1.000 0.833 

 

 

 

Table 4.15: PLS-DA model, datafusion of 280 and 340nm, latent variable=7, cross validation 

(CV)= venetian blinds w/ 10 splits 

254+280+340 

nm 
acacia chestnut eucalyptus honeydew lavender linden orange 

sensitivity cal. 0.800 1.000 1.000 1.000 1.000 1.000 1.000 

specificity cal. 0.950 0.983 0.967 0.983 1.000 1.000 0.983 

sensitivity CV 0.800 1.000 1.000 1.000 1.000 1.000 0.800 

specificity CV 0.950 0.983 0.967 0.983 0.933 1.000 0.983 

 

 

 

The best model obtained in this study of classification is the one created from the fusion of 

the chromatographic profiles recorded at the three wavelengths. In fact, it can be seen from 

Table 4.15 that the model developed has sensitivity values always higher than 0.800 and 

specificity values of always higher than 0.933. This indicates that on average more than 80% 

of the samples are correctly recognized as belonging to their true class (sensitivity) and that at 

least 93.3% of the samples correctly rejected (specificity) as not belonging to the other 

categories. 

For a complete interpretation of a classification model, in addition to the results in terms of 

percentage of correct predictions, it is also important to assess which variables of the original 

data set contribute the most to the classification. 

In PLS-DA analysis, this interpretation can be accomplished through the inspection of the 

VIP scores (Variable Importance in the Projection). For each variable, in fact, the VIP 
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coefficient is an index of the importance of the variable in the definition of the subspace of the 

latent variables [112].  

Operationally, since the average of the squares of VIP is 1, for the interpretation of the models 

all those variables for which the calculated value of the VIP is greater than this threshold are 

considered significant. In particular, the VIP scores corresponding to the predictions of the 

different categories are reported in the following figures (the interval between data points 

corresponds to 1s in the retention time scale, so that each chromatogram is made of 3901 

points, equivalent to 65 minutes, and consequently 11703 variables = 3901 * 3 result from 

data fusion). 

 

 

 

 

Figure 4.10: VIP score for the acacia class corresponding to each chromatographic point 

acquired; variable from 1 to 3901 correspond to the points relating to the chromatograms 

recorded at 254nm; variable from 3902 to 7802 correspond to the points relating to the 

chromatograms recorded at 280 nm; variable from 7803 to 11703 match the points regarding 

the chromatograms recorded at 340 nm. 
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Figure 4.11: VIP score for the chestnut class corresponding to each chromatographic point 

acquired; variable from 1 to 3901 correspond to the points relating to the chromatograms 

recorded at 254nm; variable from 3902 to 7802 correspond to the points on the 

chromatograms recorded at 280 nm; variable from 7803 to 11703 match the points regarding 

the chromatograms recorded at 340 nm. 
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Figure 4.12: VIP score for the eucalyptus class corresponding to each chromatographic point 

acquired; variable from 1 to 3901 correspond to the points relating to the chromatograms 

recorded at 254nm; variable from 3902 to 7802 correspond to the points relating to the 

chromatograms recorded at 280 nm; variable from 7803 to 11703 match the points regarding 

the chromatograms recorded at 340 nm. 
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Figure 4.13: VIP score for the honeydew class corresponding to each chromatographic point 

acquired; variable from 1 to 3901 correspond to the points relating to the chromatograms 

recorded at 254nm; variable from 3902 to 7802 correspond to the points relating to the 

chromatograms recorded at 280 nm; variable from 7803 to 11703 match the points regarding 

the chromatograms recorded at 340 nm. 
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Figure 4.14: VIP score for the lavender class corresponding to each chromatographic point 

acquired; variable from 1 to 3901 correspond to the points relating to the chromatograms 

recorded at 254nm; variable from 3902 to 7802 correspond to the points relating to the 

chromatograms recorded at 280 nm; variable from 7803 to 11703 match the points regarding 

the chromatograms recorded at 340 nm. 

 

 

 

 

 

 

 

 



81 
 

 

Figure 4.15: VIP score for the linden class corresponding to each chromatographic point 

acquired; variable from 1 to 3901 correspond to the points relating to the chromatograms 

recorded at 254nm; variable from 3902 to 7802 correspond to the points relating to the 

chromatograms recorded at 280 nm; variable from 7803 to 11703 match the points regarding 

the chromatograms recorded at 340 nm. 
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Figure 4.16: VIP score for the orange class corresponding to each chromatographic point 

acquired; variable from 1 to 3901 correspond to the points relating to the chromatograms 

recorded at 254nm; variable from 3902 to 7802 correspond to the points relating to the 

chromatograms recorded at 280 nm; variable from 7803 to 11703 match the points regarding 

the chromatograms recorded at 340 nm. 

 

 

 

4.6.2 GEOGRAPHICAL CLASSIFICATION BY HPLC-DAD 

 

The chromatographic profiles of the 140 honey samples analyzed were used as data for the 

construction of classification models PLS-DA. 

Before the construction of the models, pretreatments were applied to correct the baseline, and 

to align the chromatographic peaks and, obviously, a normalization of the chromatograms as a 

function of the area of the internal standard added was also made. 

An example of the chromatographic data pretreatment, illustrating how the alignment of the 

chromatographic peaks was almost perfect, is reported in Figure 4.17.  
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Figure 4.17: chromatographic peaks aligned after the application of the algorithm ALS; 

wavelength 340nm, Rt = 47.3 min. 

 

 

 

Based on the chromatographic profiles, 3 PLS-DA classification models, one for each 

wavelength considered, were constructed. Specifically, the construction of the model was 

performed using only the chromatograms of the samples relating to the year 2011 as training 

set. Once the model was built and optimized, it was validated with a cross-validation 

procedure and also by external validation using the chromatograms of the samples produced 

in the year 2012 as test set. So the ability to accurately predict the geographical area of 

production of a honey irrespectively of the year of production was also verified. 

The tables summarizing the performances of the models both in training and validation are 

shown below. 
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Table 4.16: PLS-DA model, data 254nm, latent variables=8, cross validation (CV)= venetian 

blinds w/ 10 splits, prediction of test set (2012) 

254nm 
Greek: 

south 

Greek: 

north 

Italy: 

south 
Italy: center 

Italy: 

north 

France: 

center 

Denmark: 

center 

sensitivity cal. 1.000 1.000 0.900 1.000 1.000 1.000 1.000 

specificity cal. 0.967 0.967 0.967 1.000 1.000 1.000 0.967 

sensitivity CV 0.800 1.000 0.900 1.000 1.000 0.700 1.000 

specificity CV 0.967 0.900 0.900 1.000 1.000 0.900 0.933 

sensitivity 

prediction 
0.900 0.700 1.000 0.800 0.600 0.600 0.800 

specificity 

prediction 
0.950 0.933 0.817 0.983 0.933 1.000 0.883 

 

 

 

Table 4.17: PLS-DA model, data 280nm, latent variables=7, cross validation (CV)= venetian 

blinds w/ 10 splits, prediction of test set (2012) 

280nm 
Greek: 

south 

Greek: 

north 

Italy: 

south 
Italy: center 

Italy: 

north 

France: 

center 

Denmark: 

center 

sensitivity cal. 0.900 1.000 1.000 1.000 1.000 1.000 1.000 

specificity cal. 0.917 0.967 0.967 0.983 1.000 1.000 0.800 

sensitivity CV 0.900 1.000 1.000 1.000 0.900 0.900 0.700 

specificity CV 0.917 0.950 0.950 0.900 1.000 0.967 0.850 

sensitivity 

prediction 
1.000 1.000 1.000 0.300 0.800 0.400 0.400 

specificity 

prediction 
0.917 0.883 0.800 0.967 1.000 0.933 0.750 
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Table 4.18: PLS-DA model, data 340nm, latent variables=3, cross validation (CV)= venetian 

blinds w/ 10 splits, prediction of test set (2012) 

340nm 
Greek: 

south 

Greek: 

north 

Italy: 

south 
Italy: center 

Italy: 

north 

France: 

center 

Denmark: 

center 

sensitivity cal. 0.900 0.900 1.000 1.000 0.900 0.600 1.000 

specificity cal. 0.483 0.683 0.467 1.000 0.983 0.933 0.567 

sensitivity CV 0.900 0.900 0.900 0.900 0.900 0.600 1.000 

specificity CV 0.483 0.667 0.483 1.000 1.000 0.833 0.567 

sensitivity 

prediction 
1.000 1.000 1.000 0.900 0.400 0.500 1.000 

specificity 

prediction 
0.400 0.517 0.350 1.000 1.000 0.967 0.683 

 

 

 

It can be seen how the model built by the chromatographic data recorded at 254nm appears to 

be better than the other two. The PLS-DA model on the chromatograms recorded at 254nm 

results in a good classification of the classes both in cross-validation and by using the external 

test set made up of the 2012 honeys (not used in the model construction phase). Both the 

values of sensitivity and specificity are good. The classes of samples that are less 

discriminated are northern Italy and France: in fact, the sensitivity values for these two classes 

is 0.600, but the value of specificity relative to the samples correctly rejected remains high. 

In addition, the possibility of improving the results by fusing the data recorded at the different 

wavelengths was considered also in this case. In particular, the following four datafusion 

protocols were tested: 

 

254nm+280nm 

254nm+340nm 

280nm+340nm 

254nm+280nm+340nm 
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Table 4.19: PLS-DA model, datafusion of 254nm and 280nm, latent variables=8, cross 

validation (CV)= venetian blinds w/ 10 splits, prediction of test set (2012) 

254+280nm 
Greek: 

south 

Greek: 

north 

Italy: 

south 
Italy: center 

Italy: 

north 

France: 

center 

Denmark: 

center 

sensitivity cal. 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

specificity cal. 1.000 0.967 0.917 1.000 1.000 1.000 0.950 

sensitivity CV 0.900 1.000 1.000 1.000 1.000 0.800 1.000 

specificity CV 0.950 0.950 0.900 1.000 1.000 0.967 0.900 

sensitivity 

prediction 
1.000 1.000 1.000 0.800 0.900 0.400 0.800 

specificity 

prediction 
0.917 0.917 0.833 0.983 0.983 1.000 0.800 

 

 

 

Table 4.20: PLS-DA model, datafusion of 254nm and 340nm, latent variable=9, cross 

validation (CV)= venetian blinds w/ 10 splits, prediction of test set (2012) 

254+340nm 
Greek: 

south 

Greek: 

north 

Italy: 

south 
Italy: center 

Italy: 

north 

France: 

center 

Denmark: 

center 

sensitivity cal. 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

specificity cal. 0.983 1.000 0.967 1.000 1.000 1.000 0.967 

sensitivity CV 0.900 1.000 1.000 1.000 1.000 0.900 1.000 

specificity CV 0.967 0.933 0.917 1.000 0.983 0.950 0.917 

sensitivity 

prediction 
0.900 0.600 1.000 0.800 0.800 0.900 0.900 

specificity 

prediction 
0.933 0.950 0.883 0.933 0.917 0.967 0.917 
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Table 4.21: PLS-DA model, datafusion of 280nm and 340nm, latent variables=8, cross 

validation (CV)= venetian blinds w/ 10 splits, prediction of test set (2012) 

280+340nm 
Greek: 

south 

Greek: 

north 

Italy: 

south 
Italy: center 

Italy: 

north 

France: 

center 

Denmark: 

center 

sensitivity cal. 0.900 1.000 1.000 1.000 1.000 1.000 1.000 

specificity cal. 0.933 0.950 0.983 1.000 1.000 0.967 0.967 

sensitivity CV 0.900 1.000 1.000 0.900 0.900 0.800 0.800 

specificity CV 0.917 0.933 0.950 1.000 1.000 0.933 0.967 

sensitivity 

prediction 
1.000 0.900 1.000 0.900 0.800 0.600 0.800 

specificity 

prediction 
0.867 0.967 0.867 1.000 0.950 0.917 0.967 

 

 

 

Table 4.23: PLS-DA model, datafusion of 254nm, 280nm and 340nm, latent variables=6, 

cross validation (CV)= venetian blinds w/ 10 splits, prediction of test set (2012) 

254+280+340

nm 

Greek: 

south 

Greek: 

north 

Italy: 

south 
Italy: center 

Italy: 

north 

France: 

center 

Denmark: 

center 

sensitivity cal. 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

specificity cal. 0.983 1.000 0.983 1.000 0.983 0.983 1.000 

sensitivity CV 0.900 1.000 0.900 0.900 1.000 0.900 1.000 

specificity CV 0.967 0.917 0.987 1.000 0.967 0.950 1.000 

sensitivity 

prediction 
0.700 1.000 1.000 0.900 1.000 0.900 1.000 

specificity 

prediction 
0.867 0.967 1.000 0.983 0.983 0.917 0.967 

 

 

 

The best model obtained in this classification study is the one created from the fusion of the 

chromatographic profiles recorded at the three wavelengths, as for the botanical classification. 
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In fact, it can be seen from Table 4.23 that the model correctly recognized 61 out of 70 test set 

samples (sensitivity), while at the same time the specificity was always higher than 86%. 

 

 

 

 

Figure 4.18: Predictive ability of the PLS-DA model, datafusion of 254nm, 280nm and 

340nm; latent variables=6: the dashed line corresponds to the limit of the value of the 

predicted response over which the sample is assigned to the reference class (southern 

Greece) 

 

 

 

 



89 
 

 

Figure 4.19: Predictive ability of the PLS-DA model, datafusion of 254nm, 280nm and 

340nm; latent variable=6: the dashed line corresponds to the limit of the value of the 

predicted response over which the sample is assigned to the reference class (northern 

Greece) 

 

 

 

 

Figure 4.20: Predictive ability of the PLS-DA model, datafusion of 254nm, 280nm and 

340nm; latent variable=6: the dashed line corresponds to the limit of the value of the 

predicted response over which the sample is assigned to the reference class (southern Italy) 
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Figure 4.21: Predictive ability of the PLS-DA model, datafusion of 254nm, 280nm and 

340nm; latent variable=6: the dashed line corresponds to the limit of the value of the 

predicted response over which the sample is assigned to the reference class (central Italy) 

 

 

 

 

Figure 4.22: Predictive ability of the PLS-DA model, datafusion of 254nm, 280nm and 

340nm; latent variable=6: the dashed line corresponds to the limit of the value of the 

predicted response over which the sample is assigned to the reference class (northern Italy) 
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Figure 4.23: Predictive ability of the PLS-DA model, datafusion of 254nm, 280nm and 

340nm; latent variables=6: the dashed line corresponds to the limit of the value of the 

predicted response over which the sample is assigned to the reference class (central France). 

 

 

 

 

Figure 4.24: Predictive ability of the PLS-DA model, datafusion of 254nm, 280nm and 

340nm; latent variables=6: the dashed line corresponds to the limit of the value of the 

predicted response over which the sample is assigned to the reference class (central 

Denmark) 
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To assess which variables of the original data set contribute the most to the classification, as 

already described for the botanical classification, the values of the VIP (Variable Importance 

in the Projection) scores were inspected. In particular, the VIP scores corresponding to the 

predictions of the different categories are reported in the following figures (the interval 

between data points corresponds to 1s in the retention time scale, so that each chromatogram 

is made of 3901 points, equivalent to 65 minutes, and consequently 11703 variables = 3901 * 

3 result from data fusion). 

 

 

 

 

Figure 4.25: VIP score relating to the "southern Greece" class corresponding to each 

chromatographic point acquired; variable from 1 to 3901 correspond to the points on the 

chromatograms recorded at 254nm; variable from 3902 to 7802 correspond to the points on 

the chromatograms recorded at 280 nm; variable from 7803 to 11703 correspond to the 

points relating to the chromatograms recorded at 340 nm. 
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Figure 4.26: VIP score relating to the "northern Greece" class corresponding to each 

chromatographic point acquired; variable from 1 to 3901 correspond to the points on the 

chromatograms recorded at 254nm; variable from 3902 to 7802 correspond to the points on 

the chromatograms recorded at 280 nm; variable from 7803 to 11703 correspond to the 

points relating to the chromatograms recorded at 340 nm. 
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Figure 4.27: VIP score relating to the "southern Italy" class corresponding to each 

chromatographic point acquired; variable from 1 to 3901 correspond to the points on the 

chromatograms recorded at 254nm; variable from 3902 to 7802 correspond to the points on 

the chromatograms recorded at 280 nm; variable from 7803 to 11703 correspond to the 

points relating to the chromatograms recorded at 340 nm. 

 

 

 

 

 

 

 



95 
 

 

Figure 4.28: VIP score relating to the "central Italy" class corresponding to each 

chromatographic point acquired; variable from 1 to 3901 correspond to the points on the 

chromatograms recorded at 254nm; variable from 3902 to 7802 correspond to the points on 

the chromatograms recorded at 280 nm; variable from 7803 to 11703 correspond to the 

points relating to the chromatograms recorded at 340 nm. 
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Figure 4.29: VIP score relating to the "northern Italy" class corresponding to each 

chromatographic point acquired; variable from 1 to 3901 correspond to the points on the 

chromatograms recorded at 254nm; variable from 3902 to 7802 correspond to the points on 

the chromatograms recorded at 280 nm; variable from 7803 to 11703 correspond to the 

points relating to the chromatograms recorded at 340 nm. 
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Figure 4.30: VIP score relating to the "central France" class corresponding to each 

chromatographic point tested; variable from 1 to 3901 correspond to the points on the 

chromatograms recorded at 254nm; variable from 3902 to 7802 correspond to the points on 

the chromatograms recorded at 280 nm; variable from 7803 to 11703 correspond to the 

points relating to the chromatograms recorded at 340 nm. 
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Figure 4.31: VIP score relating to the "central Denmark" class corresponding to each 

chromatographic point acquired; variable from 1 to 3901 correspond to the points on the 

chromatograms recorded at 254nm; variable from 3902 to 7802 correspond to the points on 

the chromatograms recorded at 280 nm; variable from 7803 to 11703 correspond to the 

points relating to the chromatograms recorded at 340 nm. 

 

 

 

 

4.7 BOTANICAL AND GEOGRAPHICAL CLASSIFICATION 

BY NIR SPECTROSCOPY 

 

As already described in section 4.1, together with the investigation of the chromatographic 

fingerprinting of the phenolic fraction, the possibility of discriminating the botanical and 

geographical origin of honeys by coupling NIR spectroscopy to chemometrics was also 

studied.  

NIR spectroscopy is a technique which is becoming widespread in different applications of 

analytical chemistry, especially thanks to its desirable characteristics (in particular, the fact of 

being non-destructive and solvent free, requiring almost no sample treatment) [113,114]. 

Using this technique, through the application of chemometrics, it is possible to solve complex 

analytical problems. 
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NIR spectroscopy is an analytical technique based on the absorption of electromagnetic 

radiation in the near infrared region, i.e. in a range of wavenumbers between 12800 and 4000 

cm
-1

. In this interval, there are harmonics bands (overtones) and combination bands of the 

vibrational transitions. The spectrum obtained depends on the behavior of the sample after the 

incident radiation strikes: the sample can absorb, reflect or be crossed by the radiation. All 

this depends on the chemical and physical characteristics of the sample. The spectrum shows 

the intensity as a function of wavenumbers and it is characterized by broad bands, related to 

the functional groups that are present in the sample. The NIR spectrum can be acquired in 

three modalities: 

- Transmittance: the fraction of the incident radiation transmitted by the sample (i.e. which is 

not absorbed by the sample itself) is detected. 

- Reflectance: the fraction of the incident radiation reflected by the sample is recorded. 

- Transflectance: this mode is a combination of the previous two. Indeed, the radiation hits the 

sample and passes through it; the beam transmitted by the sample is reflected back by a mirror 

placed in a perfectly perpendicular position with respect to it, so that the radiation passes 

through it again; Finally, the intensity of the resulting beam is measured.  

NIR spectra, however, are very complex. A NIR spectrum alone, in fact, provides almost no 

quantitative or qualitative information on the sample and for this reason it is necessary to use 

chemometrics. 

The acquisition was made through the use of a NIR spectrophotometer in transflectance 

mode. For each sample (previously homogenized), a drop of honey between was placed 

between two laboratory slides and each sample was analyzed four times, each time repeating 

the sampling and analysis. Once recorded through the instrumental software Omnic, the data 

were saved and exported to Matlab. 

Successively, the NIR spectra of the 264 samples available for the botanical and geographical 

classification were used as data for the construction of the PLS-DA models. As already 

described, 4 spectra were acquired for each sample and the "standard normal variate" (SNV) 

algorithm was applied to preprocess the signals. Indeed, this algorithm is widely used for the 

removal of spurious contributions associated with scattering and/or other undesired 

phenomena [115]. From the practical point of view the formula for the correction used by 

SNV is the following: 

 

      
        

  
  (Eq. 4.1) 
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where: 

      is the correct spectrum;      is the original spectrum,    is the mean value of the 

original spectrum,    is the standard deviation of the spectrum of each sample. 

 

 

 

4.7.1 BOTANICAL CLASSIFICATION BY NIR 

 

For the botanical classification of honey, 70 samples from 7 different classes were considered. 

SNV algorithm was applied to the resulting 280 spectra and subsequently, the 4 

measurements corresponding to each sample were averaged. To illustrate the effect of the 

optimal pretreatment (SNV) and of other possible preprocessing considered, the raw spectra, 

and the results of using SNV, alone or followed by first and second derivative, are reported in 

the following figures. 

 

 

 

 

Figure 4.32: original spectra in pseudo absorbance of the 70 honey samples used for the 

botanical classification 
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Figure 4.33: spectra pretreated with SNV 

 

 

 

 

Figure 4.34: spectra pretreated with SNV +first derivative 
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Figure 4.35: spectra pretreated with SNV + second derivative 

 

 

 

Accordingly, three PLS-DA models were constructed (one for each type of pretreatment 

used). The tables below show the performances of each model (evaluated by cross-validation 

procedure). 

 

 

 

Table 4.24: PLS-DA model, with SNV pretreatment, latent variable=5, cross validation 

(CV)= venetian blinds w/ 10 splits 

SNV acacia chestnut eucalyptus honeydew lavender linden orange 

sensitivity cal. 0.900 1.000 1.000 0.800 1.000 0.900 1.000 

specificity cal. 0.883 0.900 0.950 0.700 0.850 0.900 1.000 

sensitivity CV 0.700 0.900 0.700 0.600 0.900 0.900 1.000 

specificity CV 0.883 0.883 0.900 0.533 0.833 0.900 1.000 

 

 

 

 



103 
 

Table 4.25: PLS-DA model, with SNV+first derivative, latent variable=11, cross validation 

(CV)= venetian blinds w/ 10 splits 

SNV+der1 acacia chestnut eucalyptus honeydew lavender linden orange 

sensitivity cal. 0.900 1.000 1.000 1.000 1.000 1.000 1.000 

specificity cal. 0.933 1.000 0.950 0.933 0.983 0.933 1.000 

sensitivity CV 0.600 0.800 0.800 0.300 0.700 0.800 1.000 

specificity CV 0.867 0.900 0.883 0.883 0.850 0.933 1.000 

 

 

 

Table 4.26: PLS-DA model, with SNV+second derivative, latent variable=5, cross validation 

(CV)= venetian blinds w/ 10 splits 

SNV+der2 acacia chestnut eucalyptus honeydew lavender linden orange 

sensitivity cal. 0.900 0.900 0.900 0.800 0.900 0.900 1.000 

specificity cal. 0.683 0.867 0.900 0.683 0.750 0.800 1.000 

sensitivity CV 0.800 0.800 0.800 0.300 0.800 0.700 1.000 

specificity CV 0.667 0.850 0.867 0.717 0.733 0.800 1.000 

 

 

 

All the three PLS-DA models perfectly discriminate the orange honey, while for the other 

classes the best classification is obtained by SNV correction without any further 

differentiation. For the interpretation of the results, the VIP scores corresponding to the PLS-

DA model built on the data pretreated with SNV, is reported in the following figure. The VIP 

plot indicates that there are different bands having a relevant impact on the construction of the 

model and hence on the discrimination between different botanical classes. The largest 

variation among the spectra of considered honey were observed in the regions corresponding 

to the combination bands of the C-O and C-H stretching of the saccharides between 4200 and 

5200-5300 cm
-1

 and to the first overtone of O-H at 7100cm
-1

.  
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Figure 4.36: VIP score relating to the corresponding classes 

 

 

 

4.7.2 GEOGRAPHICAL CLASSIFICATION BY NIR 

 

204 honey samples produced in two different years of harvest were analyzed (86 samples of 

2011 and 118 of 2012 samples) by NIRS to develop a method for the classification of honeys 

according to their geographical origin. The samples were produced by different manufacturers 

located in different countries and geographical areas (Table 4.2). The acquisition of the NIR 

spectra of each sample was performed in transflectance mode as already described in the 

previous paragraph. Each sample was analyzed 4 times. 

As for the development of the method for the botanical classification of the honey, the NIR 

spectra were pretreated with SNV with the aim to remove the effects of scattering on the 

spectra. Subsequently the four spectra recorded for each sample, after SNV pretreatment, 

were averaged. 
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To illustrate the effect of the optimal pretreatment (SNV) and of other possible preprocessing 

considered, the raw spectra, and the results of using SNV, alone or followed by first and 

second derivative, are reported in the following figures. 

 

 

 

 

Figure 4.37: original spectra in pseudo absorbance of 204 honey samples used for the 

geographical classification 

 

 

 

Figure 4.38: spectra pretreated with SNV 
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Figure 4.39: spectra pretreated with SNV + first derivative 

 

 

 

The 204 spectral profiles associated to the different samples were at first processed by first 

principal component analysis (PCA) with the aim to perform exploratory data analysis; the 

samples of honey were plotted in the space of the first two principal components (Figure 

4.40). 

 

 

 

 



107 
 

 

Figure 4.40: PCA scores of analyzed honey samples: 1A means southern Greece; 1B means 

northern Greece; 2A means southern Italy; 2B means center Italy; 2C means northern Italy; 

3A means center France; 4A means center Denmark 

 

 

 

Exploratory analysis shows the presence of evident clusters, corresponding to the different 

categories investigated. As done for the corresponding analysis based on HPLC-DAD, the 

data set was split in two sets before building the classification model: a set for the 

construction of the model (training set) and a set for the validation of the model built (test 

set). Here, it was chosen to build the model using honey samples of 2012 and to test the 

predictive ability of the model with samples of 2011. 

Together with SNV alone, also the possibility of using first and second derivative as spectral 

pretreatment was tested. Three PLS-DA models were constructed, one for each type of 

pretreatment used (SNV, SNV + first derivative, second derivative SNV +) and the tables 

summarizing the performances of the corresponding models are reported below. The choice of 

the number of latent variables was performed based on cross validation, and each model was 

validated with the test set not used for the construction of the models (samples of the year 

2011). 
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Table 4.38: PLS-DA model, with SNV pretreatment, latent variable=10, cross validation 

(CV)= venetian blinds w/ 10 splits 

SNV southern 

Greece 

northern 

Greece 

southern 

Italy 

center 

Italy 

northern 

Italy 

center 

France 

center 

Denmark 

sensitivity cal. 0.900 1.000 0.917 0.900 0.950 0.833 0.800 

specificity cal. 0.898 0.963 0.894 0.806 0.806 0.809 0.917 

sensitivity CV 0.800 1.000 0.875 0.650 0.800 0.625 0.600 

specificity CV 0.843 0.935 0.883 0.786 0.776 0.766 0.898 

sensitivity 

Prediction 

0.900 1.000 1.000 0.867 0.571 0.500 0.800 

specificity 

Prediction 

0.750 0.908 0.763 0.831 0.800 0.829 0.895 

 

 

 

Table 4.39: PLS-DA model, with SNV pretreatment, latent variable=5, cross validation 

(CV)= venetian blinds w/ 10 splits 

SNV+der1 
southern 

Greece 

northern 

Greece 

southern 

Italy 

center 

Italy 

northern 

Italy 

center 

France 

center 

Denmark 

sensitivity cal. 0.700 1.000 0.833 0.850 0.900 0.750 0.700 

specificity cal. 0.861 0.972 0.862 0.827 0.755 0.787 0.796 

sensitivity CV 0.600 0.900 0.833 0.650 0.700 0.708 0.600 

specificity CV 0.852 0.963 0.869 0.847 0.745 0.723 0.806 

sensitivity 

Prediction 
0.800 0.400 1.000 0.867 0.524 0.500 1.000 

specificity 

Prediction 
0.697 0.961 0.671 0.817 0.815 0.803 0.882 
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Table 4.40: PLS-DA model, with SNV pretreatment, latent variable=15, cross validation 

(CV)= venetian blinds w/ 10 splits 

SNV+der2 
southern 

Greece 

northern 

Greece 

southern 

Italy 

center 

Italy 

northern 

Italy 

center 

France 

center 

Denmark 

sensitivity cal. 0.800 1.000 1.000 1.000 1.000 0.917 1.000 

specificity cal. 0.963 1.000 0.957 0.959 0.969 0.915 0.963 

sensitivity CV 0.400 0.900 0.917 0.700 0.800 0.667 0.700 

specificity CV 0.880 0.991 0.851 0.908 0.857 0.840 0.907 

sensitivity 

Prediction 
0.700 0.600 1.000 0.733 0.476 0.200 0.800 

specificity 

Prediction 
0.605 1.000 0.855 0.817 0.862 0.816 0.895 

 

 

 

The model built from the data pretreated with SNV results to be better than the other two. The 

best model is able to discriminate very well the different classes, with the only exception of 

honeys from northern Italy and central France. In fact, excluding these two geographic 

classes, the sensitivity values range from 0.800 to 1000 and the specificity values from 0.750 

to 0.908. 

In the next figures, the predictive performances of the PLS-DA model built from the NIR 

spectral profiles after SNV are shown graphically. 
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Figure 4.41: Predictive ability of the PLS-DA model; NIR data with SNV pretreatment; latent 

variable=10: the dashed line corresponds to the limit of the value of the predicted response 

over which the sample is assigned to the reference class (southern Greece) 

 

 

 

 

Figure 4.42: Predictive ability of the PLS-DA model; NIR data with SNV pretreatment; latent 

variable=10: the dashed line corresponds to the limit of the value of the predicted response 

over which the sample is assigned to the reference class (northern Greece). 
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Figure 4.43: Predictive ability of the PLS-DA model; NIR data with SNV pretreatment; latent 

variable=10: the dashed line corresponds to the limit of the value of the predicted response 

over which the sample is assigned to the reference class (southern Italy). 

 

 

 

 

Figure 4.44: Predictive ability of the PLS-DA model; NIR data with SNV pretreatment; latent 

variable=10: the dashed line corresponds to the limit of the value of the predicted response 

over which the sample is assigned to the reference class (central Italy) 
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Figure 4.45: Predictive ability of the PLS-DA model; NIR data with SNV pretreatment; latent 

variable=10: the dashed line corresponds to the limit of the value of the predicted response 

over which the sample is assigned to the reference class (northern Italy) 

 

 

 

 

Figure 4.46: Predictive ability of the PLS-DA model; NIR data with SNV pretreatment; latent 

variable=10: the dashed line corresponds to the limit of the value of the predicted response 

over which the sample is assigned to the reference class (central France) 
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Figure 4.47: Predictive ability of the PLS-DA model; NIR data with SNV pretreatment; latent 

variable=10: the dashed line corresponds to the limit of the value of the predicted response 

over which the sample is assigned to the reference class (central Denmark) 

 

 

For the sake of interpretation, the VIP scores corresponding to the model built from the data 

pretreated with SNV, are graphically reported in the following figure. 
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Figure 4.48: VIP score relative to geographical classes 

 

 

 

The VIP graphs indicate that there are different bands with a significant impact on the 

construction of the model and therefore on the geographical discrimination between the 

different classes. The largest variation among the spectra of the considered honeys were 

observed between 4000 and 5200 cm
-1

 (combination bands of CO and CH stretching vibration 

and combination bands of the peptide bond) and 6900 cm
-1

 corresponding to the first overtone 

of OH stretching. 

 

 

 

 

4.8 CONCLUSION: BOTANICAL AND GEOGRAPHICAL 

ORIGIN OF HONEY 

 

The statistical processing of the NIR data and the processing of chromatographic data related 

to the phenolic content of all samples analyzed, led to distinguish the botanical and 

geographical origin of the honeys. 
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The HPLC-DAD and NIR protocols combined with multivariate statistical analysis, result a 

valuable tool for the characterization of botanical and geographical origin of honey samples. 

The phenolic fraction present in honey is strongly influenced by floral origin and but also 

from the production area. So even honeys belonging to the same botanical species produced in 

different geographical regions have differences in level of phenolic composition that make 

them different from one other. The phenolic content represents a kind of map for the 

recognition of the history of the food in question, including the possibility of tracing its 

geographical origin. 

For wildflower honey, a differentiation between Italian, Greek, French and Danish samples 

was obtained; the statistical models showed very good predictive abilities, being able to 

evaluate the geographic origin of external samples (test set). 

The results of the project are promising and could be transferred to the honey production 

chain, for producers and processors in order to control their products; consumers will benefit 

from the project in terms of food safety. Finally, the method can be proposed at the control 

authorities for the suppression of fraud. 
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CHAPTER 5  

 

HONEY: DETERMINATION OF 

QUALITY PARAMETERS 

 

 

 

 

 

 

 

5.1 INTRODUCTION 

 

One of the aims of the PhD research summarized in this dissertation was to develop an 

analytical approach, alternative to the official methods of analysis, based on coupling near-

infrared spectroscopy with chemometric processing of the signal for the determination of 

some quality parameters of honey samples, so that it can be rapid, inexpensive and non-

destructive/not invasive. In particular, three of the quality indices whose measured is required 

by law, as described in the following paragraphs, were considered: the determination of the 

content of reducing sugars, which usually involves the titration of Fehling's solution, the 

determination of water content which normally consists of a refractometric analysis, and the 

quantification of the 5-hydroxymethylfurfural which, as far as now, is accomplished through 

the use of a procedure based on liquid chromatography. At the same time, again in order to 

reduce the time and cost of analysis, additional tests were carried out to verify if it was also 

possible to determine the water content by thermo-gravimetric analysis, which is the method 

required by law for determining ashes, another index of honey quality. In all cases, since the 

development of the NIR method required to have samples for which the values of the 

properties to be calibrated were known and no certified standards were available, in the first 
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phase of the study a proper number of honey samples was analyzed by the official methods to 

obtain the reference values to be used for PLS modelling. Indeed, the relation between the 

NIR spectra and the properties whose values had to be predicted was sought by processing the 

data using chemometric regression methods. 

 

 

 

5.1.1 REGULATIONS OF HONEY QUALITY 

 

Aiming at consumer protection and fighting against frauds, the authentication of honey 

samples passes through an European legislation (Reg. CEE 753/82 art. 2, Official Gazette. L 

86/53 del 31-03-1982) which defines the quality indices of the product. In particular, the law 

establishes the characteristics of honey to be sold as it is or to be used for industrial purposes, 

by indicating a series of parameters to be measured and their corresponding threshold values; 

in addition to these limits, the regulations lay also down the methods for their determination. 

 

 

 

Table 5.1: quality criteria for honey with their respective features 

reducing sugar content 

not less than 65% (honeydew honey 60%); it serves to identify 

whether honey were added other sugars such as sucrose, which is 

not a reducing one. 

apparent water content 
not more than 21% (heather honey and strawberry clover not 

more than 23%); it serves to prevent the fermentation 

sucrose content 

not more than 5% (honeydew honey 10%); also this analysis is 

used to determine the addition of sucrose or other not reducing 

sugars 

content of minerals (ash) 

not more than 0,6% (honeydew honey 1%); it serves to identify 

contamination by mineral particles, addition of molasses or 

inverted sugars or sugar syrups that contain minerals 

content of water-insoluble 

substances 

not more than 0,1% (pressed honey not more than 1%); it serves 

to locate honeys rich in impurities 

acidity 

not more than 40 meq / kg; it serves to identify whether a honey 

is old because the acidity is a parameter that increases with aging 

and sophistication with other sugars or sugar syrups.  

diastatic index 

not less than 8(shade‟s scale); it serves to identify adulteration 

with substances that do not give diastase, excessive heating, 

prolonged storage at elevated temperatures 

hydroxymethylfurfural 

content (HMF) 

not more than 40 mg / kg; it serves to identify addition of 

inverted sugar, excessive heating and prolonged storage at 

elevated temperatures. 
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5.2 OFFICIAL METHODS 

 

As previously mentioned, for the determination of each of these parameters, the law provides 

official methods, which were selected according to the required analytical accuracy and based 

on their characteristics which could allow to have large application in a wide number of 

laboratories (Ministry of Health, decree of 20 July 1984, "Methods of analysis for the official 

control of the compositional characteristics of honey”). 

 

Reducing sugars 

The method is based on the reduction of Fehling's solution by the reducing sugars contained 

in a diluted solution of honey, in the presence of methylene blue as indicator [116]. 

Water content 

The determination of the water content in honey is important to verify the conservation and to 

define its characteristics; its quantification is performed indirectly by measuring the refractive 

index of the honey or by thermogravimetric analysis. 

Ashes and water-insoluble substances 

Today these informations are obtained from thermogravimetric analysis. 

Acidity 

It is defined as "acidity of an aqueous solution of honey titratable with a solution of sodium 

hydroxide up to pH 8.5" and it‟s determined by a potentiometric titration. 

Diastatic Index 

Spectrophotometric determination of the amount of residual starch of a solution placed in 

incubation under standardized conditions with the solution of honey to be measured.  

5-Hidroxymethylfurfural (HMF) 

The official methods for International Honey Council (IHC) are the White method, the 

Winkler method and the chromatographic method (this latter was used): 

CHROMATOGRAPHIC METHOD (HPLC) 

This method involves the dissolution of 5g of honey in 50 mL of. After filtration, the solution 

is injected into a HPLC equipped with UV detector and an isocratic elution using as mobile 

phase a solution of 90% water and 10% methanol at a flow rate of 1 mL / min is carried out. 

The hydroxymethylfurfural (HMF) content is then determined, using the internal standard 

method, by measuring the areas of the peaks of the analyte and the IS at 285 nm. 
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To obtain an accurate quantification, it is very important not to leave more than an hour and a 

half between sample preparation and its injection into the column, since problems can 

possibly arise from its degradation: to overcome this drawbacks, it is possible (according to 

the method of White) to add the Carrez solution. 

The comparison of the three methods [116] pointed out that there is a discordance for low 

concentrations of HMF (for a HMF content of about 5mg/kg of the Winkler method gives 

higher concentration values than the other two), while for high concentrations (20 to 40 mg 

/kg) they are all concordant. From these considerations, it follows that any of the three 

methods can be used indiscriminately for the determination of the honey quality, due to their 

agreement around the legal limit (if we consider the parameters IHC, in fact, the upper limit is 

80mg/kg for all types of honey); the use of the Winkler method is, however, recommended 

only in the cases where it is not possible to apply the others, because p-toluidine is 

carcinogenic. 

 

 

 

 

5.3 DETERMINATION OF REDUCING SUGARS, WATER 

CONTENT AND 5-HMF 

 

For the development of the method for the determination of reducing sugars and water content 

14 samples of honey of different botanical origin were analyzed: three of acacia honeys, three 

wildflower honeys, one mountain wildflower honey, one orange honey, one linden honey, two 

chestnut honey, and two eucalyptus honeys. 

On the other hand, for the determination of 5-HMF, 13 samples of uni-and multi-floral honey 

of different botanical origin were tested: four wildflower honey, two chestnut honey, two 

eucalyptus honey, one of acacia honey, one of linden honey, one of orange honey.  
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5.3.1 REDUCING SUGARS 

 

A reducing sugar is a sugar which, put in solution, presents a ketone group or an aldehyde 

group in its open form. In solution, an equilibrium is established in which sugars are present 

both in their cyclic form and in their open-chain form. In particular, while the aldoses can be 

oxidized directly, the ketoses must first be transformed into aldehydes through a tautomerism 

that leads to formation of a carbonyl group at the end of the chain. As far as honey is 

concerned, the reducing sugars include glucose and fructose, while sucrose is not part of this 

category: from the standpoint of legislation, it is precisely this differentiation underlying the 

choice of this index as a quality criterion. In fact, a reducing sugar content below the legal 

limit is indicative of fraudulent addition of sugars, such as sucrose, to the product. 

 

a)  Reagents and preparation 

Fehling’s reagent 

Fehling's reagent is a reagent used to identify organic compounds, especially sugars, with a 

reducing nature. This reagent can be used both in qualitative and quantitative analysis, as it is 

able to completely oxidize all reducing species. 

The Fehling's reagent is formed by the union of two solutions called: 

Fehling A: consisting of copper sulphate pentahydrate (69.278 g / L); 

Fehling B: composed of potassium sodium tartrate (346 g / L) and NaOH (100 g / L). 

The copper is maintained in solution due to the complexing effect of the tartrate, in the 

absence of which otherwise, it would precipitate as hydroxide, considered the basicity of the 

environment. 

Solution of methylene blue 

Methylene blue is a heterocyclic compound which at room temperature appears as a 

crystalline solid of dark green colour while dissolved in aqueous solution takes the dark blue 

colouring. This compound is widely used as a redox indicator, as its two forms, oxidized and 

reduced, have a different coloration: in particular, the oxidized form is intensely coloured in 

blue, while the reduced form is colourless. The potential of the transition depends on the pH 

and is equal to 0.53V at pH = 0, and decreases to 0.01V at pH = 7. 

For the titration of sugars with Fehling method, the solution of methylene blue was prepared 

at a concentration of 1 g/L. 
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Preparation of standard solution of inverted sugar 

9.5 g of pure sucrose were weighed and dissolved into 5 mL of concentrated hydrochloric 

acid; the resulting solution was then diluted with water to 100 mL. The acidified solution was 

then stored for several days at room temperature (about 3 days between 20 °C and 25 °C) and 

then diluted to 1000 mL. Immediately before being used, a volume of this solution was 

neutralized with a 1 M solution of sodium hydroxide and diluted to the required concentration 

(2 g/L) for the standardization. 

Preparation of the test sample 

About 2 g of homogeneous sample of honey, accurately weighed (W), were collected and 

dissolved in distilled water, the resulting solution was diluted to 100 mL in a volumetric flask. 

Successively, a further 1:4 dilution was performed, taking 50 mL of this solution and diluting 

them to 200 mL. 

b)  Standardization of Fehling's reagent 

This step is the confirmation that the reagent is not altered and titrates exactly the amount of 

reducing sugars estimated. To do this, the title of the reagent Fehling solution A was checked, 

verifying that 5.0 mL mixed with 5.0 mL of solution B, react completely with 0.050 g of 

inverted sugar contained in 25 mL of diluted standard. 

c) Preliminary titration 

It is appropriate that the total volume of the solution at the equivalence point is 35 mL. For 

this purpose, it is normally necessary to add a certain volume of water before the start of the 

titration. To determine the volume of water to be added, a preliminary titration was necessary. 

In particular, 5 mL of Fehling's solution A, to which 5 mL of solution B were added, were 

placed in a flask together with 7 mL of water and a few grains of pumice stone or other 

boiling regulator; successively, 15 mL of the diluted solution of honey were added through 

the burette. The mixture was heated to boiling point on a plate, maintaining moderate boiling 

for 2 minutes. During boiling 3 drops of a solution of methylene blue were added and the 

titration was completed using small additions of solution of diluted honey until decolouration 

of the indicator in about 3 minutes. Defined as X mL the total volume of diluted solution of 

honey used for the preliminary titration, the volume of water to be added is equal to (25 - X) 

mL. 

d) Determination of reducing sugars 

Exactly 5 mL of Fehling's solution A were introduced, with a pipette, in a 250 mL flask, in 

which 5 mL of the solution B, (25 - X) mL of water, some grains of pumice and, with a 

burette, a volume of diluted honey corresponding to (X - 1.5) mL were added. The mixture 
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was then heated to boiling on plate, maintaining a moderate boiling for 2 minutes. During the 

boiling, 1 mL of the solution of methylene blue was added and the titration with the diluted 

solution of honey until decolouration of the indicator was completed in a total time not 

exceeding 3 minutes. Defined as Y mL the total volume of diluted honey used, the following 

formula was used for the calculation of the results, as shown in the Codex Alimentarius 

Standard for Honey, Ref No. CL 1993/14-SH: 

   
      

   
 Eq 5 3  

Where: 

C = g of inverted sugar per 100 g of honey, W = weight in g of honey sample, Y = volume in 

mL of the diluted solution of honey consumed in the determination. 

 

 

 

5.3.2 WATER CONTENT THROUGH REFRACTOMETRIC ANALYSIS 

 

By law, the determination of water content in honey is made using refractometric analysis. 

This technique is based on measurement of refractive index or the ratio between the speed of 

light in vacuum and that the substance to be analyzed, and can be used both in the case of 

solid and liquid or gas samples. The measurement was performed by an Abbe refractometer 

prism, which is a tool for liquid and solid samples. This type of refractometer is composed of 

two prisms, separated by about 0.15 mm. Within this thin layer, a small drop of the liquid to 

be examined is placed and the value of the refractive index is measured at the emission 

frequency of sodium. The value obtained must always be coupled to temperature [117]. 

According to the law, the refractive index of homogenized honey was determined at 20 ° C. If 

the determination had been made at different temperature, but near to 20 ° C, one would have 

to correct the value found using the following thermal coefficients: +0.00023 / ° C for 

temperatures above 20 ° C and -0.00023 / ° C for temperatures below 20 ° C. The percentage 

of water content was obtained from the following table of correlation. 
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Table 5.2: values are indicated in percentage of water present in honey in function of the 

refractive indices obtained by refractometer at a temperature of 20 ° C 

Refractive 

index 

(20 °C) 

water 

% 

Refractive 

index 

(20 °C) 

water 

% 

Refractive 

index 

(20 °C) 

water 

% 

1,5044 13,0 1,4935 17,2 1,4830 21,4 

1,5038 13,2 1,4930 17,4 1,4825 21,6 

1,5033 13,4 1,4925 17,6 1,4820 21,8 

1,5028 13,6 1,4920 17,8 1,4815 22,0 

1,5023 13,8 1,4915 18,0 1,4810 22,2 

1,5018 14,0 1,4910 18,2 1,4805 22,4 

1,5012 14,2 1,4905 18,4 1,4800 22,6 

1,5007 14,4 1,4900 18,6 1,4795 22,8 

1,5002 14,6 1,4895 18,8 1,4790 23,0 

1,4997 14,8 1,4890 19,0 1,4785 23,2 

1,4992 15,0 1,4885 19,2 1,4780 23,4 

1,4987 15,2 1,4880 19,4 1,4775 23,6 

1,4982 15,4 1,4875 19,6 1,4770 23,8 

1,4976 15,6 1,4870 19,8 1,4765 24,0 

1,4971 15,8 1,4865 20,0 1,4760 24,2 

1,4966 16,0 1,4860 20,2 1,4755 24,4 

1,4961 16,2 1,4855 20,4 1,4750 24,6 

1,4956 16,4 1,4850 20,6 1,4745 24,8 

1,4951 16,6 1,4845 20,8 1,4740 25,0 

1,4946 16,8 1,4840 21,0     

1,4940 17,0 1,4835 21,2     
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5.3.3 WATER CONTENT THROUGH THERMOGRAVIMETRIC 

ANALYSIS 

 

According to the law, the thermo-gravimetric analysis is the technique that must be used to 

determine the amount of ashes and water-insoluble substances present in honey. Based on this 

consideration, in the present research tests were performed to verify if it was also possible to 

determine the water content through this technique. For this purpose, the instrument used was 

the thermo-balance. 

Balances available for this kind of analysis have an operating range between 1 and 20 mg. In 

the thermo balance the sample is placed in the oven, while the rest of the device is thermally 

insulated. In thermo-gravimetric analysis, the instrument records the loss in mass of the 

sample, subjected to a specific temperature ramp. The instrument is then able to identify all 

those thermal processes that result in a loss of mass: because the loss of water due to 

volatilization represents just one of these processes detectable, it was decided to study the 

possibility of using the thermal analysis for the quantification of water.  

For this purpose, three measurements for each sample (5 mg) were made in an inert and 

oxidant environment. Also, two different temperature ramps were tested, in order to get as 

much information on the components sought: 

a) heating at a constant rate of 5 °C/min [118], corresponding to the optimal conditions for the 

determination of the ash content and substances insoluble in water; 

b) a programmed heating at not constant speed to be able to better appreciate the initial step of 

the thermogram (and, in particular, that corresponding to the loss of water). 

The obtained thermograms were then exported to ASCII form using the TADS tool software. 

 

 

 

5.3.4 HYDROXYMETHYLFURFURAL 

 

In the absence of the standard samples, the quantification of HMF in the samples mentioned 

in the previous paragraph was performed through the use of the HPLC method, in order to 

obtain the reference values for the construction and validation of the NIR method. In 

particular, it was decided to perform the quantitative analysis through the use of the external 

standard. For the construction of the calibration curve of the HPLC method a standard of 
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HMF of purity over 99% (Sigma Aldrich, St. Louis, MO) was used. A stock solution was 

prepared at a concentration 1 mg/mL by dissolving the appropriate amount of standard in 

distilled water. The hydroxymethylfurfural solution of known concentration (in the range of 

0.2-10 ng/µL) necessary for the quantitative analysis through the method of the external 

standard were prepared by dilution from the stock solution. 

In detail, the quantification of hydroxymethylfurfural in honey samples through the HPLC 

method was performed using the following procedure. After homogenization of the sample, 

about 5 g (with an accuracy of 0.01g) of honey were weighed, and transferred into a 50 mL 

volumetric flask. Distilled water was added to the volume expected to completely dissolve the 

honey. The obtained solution was filtered on 0.45 µm filters and 20 µL of the filtrate were 

then injected into HPLC system. The chromatographic analysis was performed using a HPLC 

system interfaced with a photodiode array detector (ThermoFisher, Waltham, MA) and 

equipped with a C18 reverse phase column (length 15 cm and internal diameter 4.6 mm), 

packed with 5 µm particles. The elution was conducted using an isocratic mobile phase 

composed of 90% of ultra-pure water (MilliQ) and 10% methanol (HPLC grade, Carlo Erba, 

Milan, Italy); both of the phases were acidified with 0.1% formic acid (Sigma Aldrich, St. 

Louis, MO). For detection and quantification, the wavelength of 285 nm, the value at which it 

is possible to appreciate a detectable signal of the analyte even at very low concentrations and 

without interference, was chosen. 

In a second phase of the study, to expand the range of concentration for the calibration and 

validation of the NIR method, since the real samples showed a small range of values, 

additional samples of honey were then prepared at known concentration of analyte, adding an 

appropriate amount of standard of HMF. 

 

 

 

 

5.4 ACQUISITION OF NIR SPECTRA 

 

The acquisition was made through the use of a NIR spectrophotometer. A drop of each 

sample was put between two laboratory glass slides. Before this step, each sample was mixed 

to obtain homogeneity. The spectra were acquired in transflectance mode [119]. Each honey 

was sampled and analyzed 4 times. All acquisitions were performed with 82 scans. Once 
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recorded, the data were saved in. csv and .spa using the software Omnic and exported to 

Matlab. 

 

 

 

 

5.5 RESULTS - OFFICIAL METHODS 

 

5.5.1 DETERMINATION OF REDUCING SUGARS 

 

To get reliable values about the amount of reducing sugars present in honey samples, the 

official method was applied. For each of the 14 samples, 3 solutions were prepared, so as to 

verify reproducibility of the results. Subsequently, the average and the standard deviation of 

the values obtained on each sample were calculated. 
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Table 5.3: Concentration (%)of reducing sugars in the analyzed honey samples. Results of 

individual analyses, average and standard deviation. 

sample 1
st
 analysis 2

nd
 analysis 3

th
 analysis average RSD % 

01 wildflower 64.6 64.5 64.6 64.6 0.1 

02 acacia 60.0 60.2 60.0 60.1 0.2 

03 acacia 59.2 59.4 59.2 59.3 0.2 

04 linden 66.6 66.6 66.7 66.6 0,1 

05 chestnut 65.6 65.9 65.8 65.8 0.1 

06 wildflower 66.1 66.3 66.2 66.2 0.1 

07 orange 68.2 68.5 68.5 68.4 0.2 

08 acacia 60.1 60.1 60.0 60.1 0.1 

09 chestnut 60.0 59.8 60.0 60.0 0.2 

10 eucalyptus 70.7 70.7 70.6 70.7 0.1 

11 wildflower 64.6 64.7 64.8 64.7 0.1 

12 wildflower 62.2 62.3 62.1 62.2 0.2 

13 eucalyptus 65.6 65.5 65.5 65.6 0.1 

14 wildflower 66.1 65.9 66.1 66.0 0.1 

 

 

 

5.5.2 APPARENT WATER CONTENT 

 

The apparent water content was measured both with the refractometric and with the 

thermogravimetric analysis. However, in the case of the thermograms,  difficulties in the 

choice of inflection points were experienced and, therefore, it was decided to approximate the 

values and the RSD% was higher than the experimental variability of gravimetric analysis. 

The refractometric analysis was also made just for four of the fourteen samples because of the 

unavailability of the Abbe refractometer for the analysis of all of honeys. However, this type 

of analysis has confirmed the results on the samples analyzed using both techniques. 

The quantities of water obtained from thermogravimetric analysis are shown in the following 

table. 
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Table 5.4: Water content (%) obtained by the thermogravimetric analysis and its 

corresponding relative standard deviation 

sample % of water RSD 

01 wildflower 15.0 1.0 

02 acacia 15.0 2.0 

03 acacia 16.0 2.0 

04 linden 16.5 2.0 

05 chestnut 17.0 1.0 

06 wildflower 17.0 1.0 

07 orange 16.0 2.0 

08 acacia 17.5 1.0 

09 chestnut 16.0 1.0 

10 eucalyptus 15.0 1.0 

11 wildflower 14.5 2.0 

12 wildflower 15.0 1.0 

13 eucalyptus 15.5 2.0 

14 wildflower 15.0 2.0 

 

 

 

5.5.3 DETERMINATION OF 5-HMF 

 

The results obtained are reported in Table 5.5 (for each sample, three replicate measurements 

were performed and the values shown are the average and the relative standard deviation, 

respectively). 
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Table 5.5: Results of the quantification of HMF obtained by chromatographic method 

sample HMF (mg/kg) RSD% 

01 wildflower 8.55 7.44 

02 acacia 7.75 6.98 

03 linden <LOQ  

04 chestnut 10.40 6.70 

05 wildflower <LOQ  

06 orange 26.95 6.56 

07 chestnut 11.28 7.03 

08 eucalyptus 23.31 6.31 

09 wildflower 22.44 7.23 

10 wildflower 19.79 6.45 

11 eucalyptus 14.04 7.09 

12 wildflower 14.93 7.32 

13 wildflower 12.99 7.16 

 

 

 

The legal limit for the content of HMF in honeys for consumption is of 40mg/kg (except for 

some honeys such as citrus fruits for which the limit is lowered to 15mg/kg): examining the 

values in Table 5.5, it can be seen that all honeys tested are perfectly within the limits 

established by law, except for sample number 6 (orange honey). However, a careful analysis 

of the data in Table also shows how the range of concentrations of HMF in real samples was 

rather limited - between 7.75 and 26.95 mg/kg - and this is insufficient to be used for the 

development of the NIR method. In fact, in order to build an accurate model, the set of 

standards for calibration must adequately cover the experimental domain (and especially, in  

order to be able to detect frauds, a representative number of samples with values close to or 

above the limits set by law are also needed).  

Therefore, before proceeding with the subsequent NIR analysis, new samples were prepared 

by adding increasing amounts of HMF standard. In this way, it was possible to extend the 

range of concentration of the samples up to 107.09mg/kg of HMF. The concentration of 

analyte in this new series of samples is shown in detail in Table 5.6. 
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Table 5.6: Samples and HMF added 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The new set of samples obtained, allows both to have a greater number of honeys to be 

analyzed through the NIR spectroscopy to be used for the calibration and validation of the 

proposed method, and to cover a larger range of variability than it can be achieved with the 

starting samples of honey. 

 

 

 

sample HMF (mg/kg)  sample HMF (mg/kg) 

14A1 20.44  21A1 29.60 

14B1 30.70  21B1 39.56 

14C1 39.01  21C1 49.84 

14D1 51.09  21D1 60.02 

14A2 61.18  21A2 71.72 

14B2 71.89  21B2 80.30 

14C2 79.08  21C2 92.33 

14D2 88.36  21D2 101.75 

22A1 26.58  19A1 33.35 

22B1 33.70  19B1 43.04 

22C1 44.71  19C1 54.67 

22D1 54.72  19D1 64.64 

22A2 63.94  19A2 74.07 

22B2 75.43  19B2 80.75 

22C2 85.15  19C2 92.13 

22D2 95.27  19D2 104.55 

23A1 24.69  16A1 37.00 

23B1 34.65  16B1 46.49 

23C1 46.11  16C1 56.47 

23D1 53.78  16D1 67.28 

23A2 47.40  16A2 76.13 

23B2 76.35  16B2 88.01 

23C2 82.63  16C2 96.45 

23D2 96.20  16D2 107.09 
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5.6 RESULTS – CHEMOMETRIC ANALYSIS 

 

As already mentioned, one of the aims of this thesis was to study the possibility of developing 

alternative methods based on near-infrared spectroscopy for the determination of three 

important parameters of honey quality: water content, the amount of reducing sugars and the 

amount of idroxymethylfurfural. 

For this purpose, the spectra of the samples were recorded in the range 4000-10000 cm
-1

, 

according to the methods described in Section 5.4. 

The "raw" spectral signals obtained are affected by various undesirable phenomena such as 

the presence of shift of the baseline, or multiplicative effects, probably due to scattering. 

These contributions to the signal constitute sources of undesirable variability (i.e., not bound 

to the analyte that is to be determined), so before chemometric analysis, a signal pre-treatment 

step was necessary. 

The spectral data, after being exported, were converted into pseudo-absorbance units and pre-

treated with the algorithm SNV (Standard Normal Variate) [115] to eliminate contributions to 

the variability of the signal, related to sources of spurious variability. 

The set of NIR spectra measured, after SNV pretreatment, is shown in Figure 5.1. 

 

 

 

 

Figure 5.1: NIR spectra recorded, after pretreatment with SNV 
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The effects of the pretreatment can be visualized in a better way going to consider the graph 

of the first principal components obtained in the two cases. In fact, the principal component 

analysis (PCA) is a chemometric method for exploratory data analysis, which allows 

condensing the main sources of variability of the signal in a low-dimensional graphical 

representation (often two or three dimensions). The representation of samples in this reduced 

space (scores plot) provides useful information about the similarities and differences between 

samples. In particular, the next figures shown the scores plot obtained by projecting the 

samples on the space of the first two principal components calculated on the spectra without 

and with pretreatment, respectively. 

 

 

 

 
Figure 5.2: representation of the NIR spectra on the space of the first two principal 

components without pre-treatment. 
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Figure 5.3: representation of the NIR spectra on the space of the first two principal 

components after pretreatment with SNV. 

 

 

 

By the comparison between the two figures it can be observed how, without pretreatment, the 

differentiation between the groups of different measures result along the second principal 

component, while on the first principal component, which is the greatest source of variability 

of the signal, is linked to other (spurious variability). On the contrary, in figure 5.3 it is 

possible to observe how the measurements made on different honeys tend to position itself 

along the first principal component, indicating that the spectral pretreatment allowed to 

remove the undesirable sources of spurious variability. 

The analysis of the graphs of the principal components in the case of pretreated signals data 

(Figure 5.3) also shows how some measures fall quite far away from most of the other, 

suggesting the possible presence of outliers in the spectral matrix. 

For this reason, in the construction of the PLS calibration models for the prediction of the 

three indices of quality, a "robust" approach was used: "partial robust M regression (PRM)" 

algorithm was used to provide accurate results even in the presence of outliers [119]. 

The basic concept of the robust PLS calibration is that each of the data used for the 

construction of the mathematical model contributes to the definition of the model in a 

weighted way: in  particular, the weights can take values ranging from 0 (element completely 

discarded) to 1 (data considered to be absolutely certain). In this context, it is necessary to 

specify why a measure may be abnormal in the case of multivariate calibration: outliers can 
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be characterized by rather high values of residues (for which the predicted y deviates much 

from the measured y), or they can be data for which the anomaly is linked to significant 

differences in the spectral signal (both in terms of form and intensity), such as the two points 

on the bottom left in the graph in figure 5.3. A further advantage of the robust approach to 

calibration is that, in addition to identifying the presence of outliers, is also able to provide 

information about type of anomaly that characterizes them. 

On the basis of these considerations the construction of chemometric calibration models for 

the three parameters was performed. The set of spectral signals was divided into a training set 

and a test set, in order to have a set of measurements not used for the development of the 

calibration model. To do this, considering also the fact that the use of robust calibration 

methods require that all potential outliers are in the training set, the Kennard-Stone algorithm 

was used [120]. This algorithm operates the selection of the samples so that all the most 

diverse measurements (and thus, where present, also any anomalous data) are included in the 

training set. 

 

 

 

5.6.1 DETERMINATION OF WATER CONTENT 

 

First of all calibration model for the quantification of the water content in honey was 

developed. Results of thermogravimetric analysis were used as reference values for 

calibration, because it was not possible to use analyse by the refractometer all available 

samples. The choice of the optimum number of latent variables for the robust PLS model was 

performed using a cross-validation procedure and the resulting optimal complexity was 9 LV. 

The model developed resulted in a mean square error in calibration (RMSEC) of 0.165. 

As shown, the important information that can be derived from the use of a robust method 

concerns the presence or absence of anomalous data (and thus the necessity or otherwise of 

the robust approach). This information can easily be represented a two-dimensional graph that 

relates the weights of the model. Indeed, it was previously described how the robust approach 

provides that to each sample a weight between 0 and 1 is associated, depending on its degree 

of anomaly: this weight is the resultant of two weights, related to the two different types of 

outliers described previously and indicated with the terms of "residual weight" (in the case of 

the residues) and "leverage weight" (in the case of the difference in the spectral domain). 
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Figure 5.4: robust PLS model for predicting the water content - plot of the weights 

 

 

 

As one can see in Figure 5.4, where the plot of the weights (residual and leverage) for the 

measures used for the development of the model is shown, different values fall relatively far 

from 1 in one direction or another (mainly due to the value of the residuals), thus confirming 

the validity of the initial assumptions concerning the possibility of anomalous data, and the 

need of a robust approach. 

When the model was applied to the test set measures, a good mean square error in prediction 

(RMSEP), equal to 0.393, was obtained. The set of results in calibration and prediction is 

graphically shown in Figure 5.5, in which the measured and the predicted values of water 

content are compared, both for training and the test set.  
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Figure 5.5: PLS calibration for predicting the water content in honey: observed vs. predicted 

plot for the training (full symbols) and the test set (empty symbols). 

 

 

 

5.6.2 DETERMINATION OF THE CONTENT OF REDUCING SUGARS 

 

A multivariate calibration model for the determination of the content of reducing sugars was 

performed. The same spectral matrix, pre-treated by SNV as described previously and divided 

into training and test set on the basis of the same criteria used for the quantification of water 

was used. For this purpose, the results of analysis performed with the Fehling‟s method were 

used as reference values. 

Also in this case, for the construction of the calibration model a robust PLS approach was 

used, on the basis of the same considerations made for the determination of water content, 

since outliers could be present in the data matrix. 

The best PLS model, chosen according to the results in cross-validation, consisted of 10 latent 

variables, and led to a mean square error in calibration (RMSEC) of 0.875. 

The analysis of the weights performed as described previously, confirmed also for this second 

model the importance of having used a robust approach to multivariate calibration. Indeed, as 

shown in Figure 5.6, several weights are much smaller than 1, for both the leverage and the 

residue. 
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Figure 5.6: PLS model for quantification of the content of reducing sugars: plot of the 

weights of the model. 

 

 

 

When the model was applied to the measures of the test set, it resulted in a mean square error 

of prediction (RSMEP) of 1.91. The comparison between the reference values and the values 

predicted by the model for the samples of the training and the test set is shown in Figure 5.7. 

 

 

 

 

Figure 5.7: PLS calibration for the prediction of the quantity of reducing sugars in honey: 

observed vs. predicted plot for the training (full symbols) and the test set (empty symbols). 
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5.6.3 DETERMINATION OF 5-HMF 

 

On the set of samples obtained by integrating the initial honey samples with further samples 

prepared with standard additions, the NIR analysis was carried out, in order to build a 

calibration model that could allow the quantification of HMF in a rapid, economic and non-

destructive way. 

As said, the set of samples was divided into two sets, the training set and the test set. In 

particular, to obtain a good representation of both sets, a splitting ratio of about 2:1 was 

chosen. Figure 5.8 shows the separation between training and test sets on the space of the first 

two principal components. 

 

 

 

 
Figure 5.8: Distribution of training samples (red) and test (black) on the space of the first two 

PCs 

 

 

 

The PRM algorithm was then applied to the NIR data, after transforming the variable Y 

(concentration of HMF) by calculating the square root: so, a model that would put in relation 

the measured spectral signal (after pretreatment SNV) with the quantity of analyte (5-HMF) 

was built. The model required the calculation of 11 latent variables (the choice of the optimal 

complexity was made on the basis of the error in cross-validation). 
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Figure 5.9: PRM model relating the spectral signal to the square root of HMF concentration: 

observed vs. predicted plot for the training (red) and the test set (black) 

 

 

 

As it can be observed in figure 5.9, by using the PRM method relatively good predictions 

were obtained. The improvement with respect to the outcomes obtained by standard PLS due 

to the use of robust methods may indicate the presence of outliers in the training set. A 

confirmation of this hypothesis can be found by examining the plot of the weights.  
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Figure 5.10 – PRM model after processing the square root of y: graph of the weights of the 

model. 

 

 

 

As one can see from the graph, different samples of the training set are far from the vertex at 

the top right of the graph, corresponding to the optimal situation, reflecting the presence of 

some suspicious anomalous measures. 

 

 

 

 

5.7 CONCLUSIONS 

 

This research showed that FT-NIR spectroscopy coupled with chemometric analysis 

represents a valid alternative to the official methods of analysis for the determination of three 

indices of quality of honey, i.e., the content of water, of reducing sugars and of 5-

idroxymthylfurfural. In particular, the results obtained through the spectroscopic method do 

not deviate too much from those obtained by the official methods, which have constituted the 

reference values for the setup of the calibrations. In this context, it was not possible to 

construct a regression model for the prediction of the ash content, although the data were 

available, since the values obtained with the TGA were not considered reliable enough due to 

the high standard deviation observed. 
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From the experimental point of view the spectroscopic method has proved to be advantageous 

compared to the titrimetric method and the thermo-gravimetric method, since the analysis 

time were much shorter. The method based on NIR spectroscopy is non-invasive, is more 

economic and, from an environmental point of view, zero impact (since it does not require the 

use of reagents), according to the guidelines of green chemistry. The time, cost and 

environmental impact of refractometer analysis, however, were found to be in line with those 

of spectroscopic analysis.  

Comparing the thermogravimetric analysis with the refractometric one, the results obtained 

showed that the former can achieve performances comparable to those of the latter 

considering, on the one hand, that the analysis times are much longer and, on the other hand, 

that this technique is required to find the ash content present in honeys and therefore it is an 

analysis that still has to be performed. 

The results, however, were obtained on a reduced number of samples, and this didn‟t allow to 

build a general model for the analysis of honeys. The work showed, however, the existence of 

the possibility to realize a model for this type of analysis having a sufficient number of 

samples available. 

Moreover, the possibility of quantifying the hydroxymethylfurfural in honey samples through 

the coupling of NIR spectroscopy and multivariate calibration method was studied. In this 

context, best results were obtained by replacing the concentration of HMF with its square 

root, suggesting that there are sources of interference in the spectral signal that make the 

quantitative relationship not linear. However, this model was not accurate enough to be 

adopted. On the other hand, the use of robust methods of calibration, limiting the impact of 

any anomalous data on the results, allowed to significantly improve the predictive ability of 

the models developed, reducing, at the same time, the error in the prediction of validation 

samples. 

In conclusion, these results, in general, suggest that it is possible to develop a method that 

allows the quantification of HMF in honey samples in a rapid, non-destructive and economic 

way by using NIR spectroscopy. However, the fact that the method proposed does not possess 

yet the accuracy and precision required for its use in official contexts, shows how this study 

represents only a preliminary investigation which necessarily should be examined further: 

processing more samples and, in parallel, checking chemometric models of increasing 

complexity. 
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CHAPTER 6 

 

SAFFRON: MAE-HPLC-DAD FOR 

THE DETERMINATION OF 

QUALITY 

 

 

 

 

 

 

 

6.1 QUALITY OF SAFFRON 

 

Saffron is also called "red gold of the East" and it is the most expensive spice in the world 

[121, 122], being already known by ancient people who appreciated it for its characteristic 

aroma, flavor and taste [123]. Saffron is produced from the dried dark-red colored stigmas of 

the flowers of Crocus sativus L. grown in many countries of the Mediterranean basin and 

southern Asia [124]. The determination of the geographical origin plays an important role for 

this product, since some producing countries, such as Spain, have an export volume which 

appears to be too big if it is compared with their production. The original Spanish saffron is a 

product of high quality, but its costs have forced many farmers to move in countries such as 

Turkey where labor is cheaper [125]. The other producers of saffron are Arzebaijan, Iraq, 

Syria, Jordan, Egypt (the latter three are still following the traditional crop), Kashmir, China, 

Lebanon (one of the oldest manufacturers), Morocco, Italy, France, Greece, Switzerland.  
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As mentioned, saffron is known to be the most expensive spice in the world due to the limited 

cultivation and low harvesting yield. Its high price gives rise to several problems of 

sophistication [126]. 

In order to contrast sophistications and adulterations, the importance of quality control of 

saffron is clear.  

The chemical composition of saffron is the most important indicator of its quality and of its 

commercial value in accordance with ISO 3632-1 and 3632-2 (2003). In fact, ISO 3632 norm 

was specifically designed to prevent and combat frauds, this precious spice could be subjected 

to. The growing number of frauds of this product, and economic speculation on market prices 

reflects an increasing interest from international research institutes.  

The International Organization for Standardization (ISO) has defined the quality of saffron 

establishing three different categories (I, II and III) defined by specific parameters and ISO 

normative establishes also the procedures for their assessment.  
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Table 6.1: Specific parameters for the quality of saffron 

 
 
 

Characteristics 

 
Specs 

 
 

 
 
 

Test methods 
 

Category 
 

I              II            III 

Moisture and volatile substances (% 
max.) 

 
Saffron in filaments 

Ground saffron 
 

12 
10 

 

12 
10 

 

12 
10 

 

ISO/TS 3632-2:2003, 
Clause 7 

Total ash (% max.) 
 

8 
 

8 
 

8 
 

ISO 928:1997. Clause 8, 
and ISO/TS 3632-2:2003, 

Clause 12 

Soluble ash in acid solution (%, max.) 1,0 1,0 1,5 
ISO 930:1997. Clause 7, 

and ISO/TS 3632-2:2003, 
Clause 13 

 
Soluble extract in cold water (max.) 

 
65 65 65 ISO 941:1980, Clause 7 

1% 
E 1cm 257nm, dried basis: 

min. 
 

(maximum absorbance of the 
picrocrocin) 

70 55 40 
ISO/TS 3632-2:2003, 

Clause 14 
 

1% 
E 1cm 330nm, dried basis: 

min. 
max. 

 
(maximum absorbance of the safranal) 

20 
50 

 

20 
50 

 

20 
50 

 

ISO/TS 3632-2:2003, 
Clause 14 

 

1% 
Dyeing power, E 1cm 440nm, 

dried basis. 
 

(maximum absorbance of the crocins) 
 

190 150 100 
ISO/TS 3632-2:2003, 

Clause 14 
 

Soluble artificial colorants in acid 
solution 

No No No 
ISO/TS 3632-2:2003, 

Clause 16 and/or 
Clasue17 
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These guidelines provide analytical methods, reference values and propose the classification 

of this spice on the basis of the content in specific active principles. 

The general chemical composition of this spice is known. Saffron is made from the dried 

stigmas of Crocus sativus flowers, but, among the various substances which are present in the 

product, those which mostly attracted the interest of some researchers are bioactive 

compounds endowed with promising biological activities: crocin, crocetin, picrocrocin and 

the most important component of the volatile fraction safranal [127]. Their formation occurs 

during the flowering period and they are derived from a single precursor, zeaxanthin, after 

enzymatic cleavage.  

 

 

 

 

Figure 6.1: crocetin, picrocrocin, safranal and crocin biosynthesis 

 

 

 

Safranal, the main responsible of the aroma of saffron spice, is easily obtained by hydrolysis 

of picrocrocin, its glycosidic derivative which in turn is the responsible of the taste of saffron. 
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The color of this spice is mainly due to glycosidic esters of crocetin, and in particular to 

crocin. All these components and their content determine the quality and the commercial 

category of legally traded saffron. 

The quality of saffron depends on many factors, such as climate and soil of the area of 

production, and also by the mode of cultivation and drying.  

Saffron production is constituted by four main phases. The first one is naturally the 

cultivation in specific conditions, the second and characteristic one is the manual harvest of 

the stigmas. The drying process represents the most critical phase of its production due to the 

registered differences among the producing countries. India, Iran and Morocco usually expose 

Saffron stigmas to direct sunlight, whereas Greece, Italy and Spain prefer drying processes 

indoor at higher temperature than ambient one. That‟s what has the strong impact on the 

amount of active principles and then on the quality of Saffron, due to the volatility and 

photodegradation processes. Lastly, the product could be marketed as dried filaments or 

ground as a powder. 

Among the factors related to the quality of saffron, the determination of crocin, picrocrocin 

and safranal are the most important parameters, since these three compounds are analytes that 

most characterize the saffron. In the literature, different extraction techniques have been 

reported, on the basis of the component to be extracted.  

The classical extraction method, described by ISO 2003, provides for the extraction of crocin, 

picrocrocin, safranal present in 0.5g of saffron using H2O (1 L) and stirring the solution for 1 

hour at room temperature. In the literature, there are also articles reporting ultrasonic 

extraction [128, 129].  

As mentioned in the first chapter, a part of the thesis is focused on the development of an 

analytical method which could allow a fast, cheap and reliable analysis of the saffron 

permitting to control and to guarantee the quality of the product. Therefore a procedure for the 

determination of crocin, picrocrocin and safranal, based on the microwave assisted extraction 

(MAE) of the substances followed by HPLC analysis has been developed and optimized. In 

order to determine the quality of saffron, the method then has been applied for the analysis of 

samples coming from different manufacturers and from different geographical origins. 

Microwave-assisted extraction has never been applied to saffron for the recovery of its most 

important bioactive compounds and this technique provides in general a better isolation of the 

secondary metabolites after the complete swelling of the subcellular structures, faster times of 

extraction, reduced solvent waste and an accurate control of different parameter. 

 



147 
 

6.2 MICROWAVE-ASSISTED EXTRACTION OF CROCIN, 

PICROCROCIN AND SAFRANAL 

 

For the microwave-assisted extraction of crocin, picrocrocin and safranal different solvents 

and mixtures of extractants were tested; instrumental parameters and time of extraction were 

also optimized. 

 

 

 

6.2.1 SAMPLES AND CHEMICALS 

 

Commercial standards of all trans-crocin (crocin-1, crocetin digentiobiose ester, 98%) and 

safranal (>88%) were purchased from Sigma-Aldrich (Italy), and picrocrocin (>98%) from 

Biotain PHARMA CO.LTD (China). Safranal was purified by column chromatography on 

silica gel (230-400 mesh, G60 Merck) using ethyl acetate:hexane (1:3) as the eluent. 
1
H 

NMR, 
13

C NMR and IR spectra of the purified product were in agreement with those reported 

in the literature. 4-Nitroaniline, used as internal standard (IS), was purchased from Sigma-

Aldrich (Riedel-de Haën, Seelze, Germany). Methanol and Ethanol HPLC grade (<99.9%) 

were purchased from Carlo Erba. Ultrapure water generated by the MilliQ system (Millipore, 

Bedford, MA) was used. 

One hundred six samples were collected from the best representative leading producers with 

particular interest towards Italian saffron from Sardinia and Latium. In particular, 20 samples 

from Greece, 25 samples from Turkey, 19 samples from Latium (Italy), 10 samples from 

Sardinia (Italy), 23 samples from Spain were collected. They were obtained under the 

guarantee of their quality in according to ISO 3632 guidelines. They were ground manually 

and sieved to obtain a uniform granulometry before performing the extraction/HPLC and the 

NIR spectroscopic analyses. 
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6.2.2 MICROWAVE-ASSISTED EXTRACTION PROCEDURE 

 

Microwave-assisted extraction was performed by using a Biotage InitiatorTM 2.0 (Sweden). 

Ground saffron (approximately 10 mg) was placed in a sealed vessel suitable for an automatic 

single-mode microwave reactor (2.45 GHz high-frequency microwaves, power range 0-300 

W) and a proper volume of solvent was added to the sample. The mixture was pre-stirred for 

10 s and then heated by microwave irradiation for the time of extraction at 40 °C (irradiation 

power reaches its maximum at the beginning of reaction, then it decreases to lower and quite 

constant values). The internal vial temperature was controlled by an IR sensor probe. 

Two of the parameters to be set to perform the microwave-assisted extraction are the 

temperature of the extraction solvent and the irradiation power. In order to avoid thermal 

degradation of the analytes, after preliminary tests conducted at different temperatures, it has 

been decided to set a constant temperature of 40 ° C for the entire duration of the extraction. 

this temperature was used for all extractions. In the next figures, as an example, are shown the 

graphs relating to temperature and irradiation power in function of extraction time. 

 

 

 

 

Figure 6.2: extraction temperature (° C) in function of time (s) 
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Figure 6.3: irradiation power (W) versus time (s) 

 

 

 

In addition to setting the temperature and the irradiation power, the extraction time must also 

be set. In particular, 3 levels were considered  for the extraction time: 1 minute, 10 minutes, 

and 19 minutes. Also, the following solvents were tested: MeOH, EtOH and mixtures 

H2O:MeOH=50:50 and H2O:EtOH=50:50. Lastly, for each solvent, the influence of the 

extraction volume was also tested by considering two different levels: 2mL and 10mL of 

solvent.  

In order to optimize the extraction time, the type and volume of solvent, a full factorial design 

with 24 experiments (3*4*2=24) was carried out. The following table (6.2) schematically 

shows all the experimental variables and the levels considered for each of them. 

 

 

 

Table 6.2: experimental variables and levels considerated 

Solvents Extraction time Solvent volume 

Ethanol (e) 1 minute (-1) 2 ml (-1) 

Methanol (m) 10 minutes (0) 10 ml (1) 

Methanol:H2O (m/w) 19 minutes (1)  

Ethanol:H2O (e/w)   
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After the extraction of bioactive compounds, each extract was filtered through a PTFE filter 

(0.45 mm; Whatman-Merck, Darmstadt, Germany) and subsequently analyzed by HPLC-

DAD. 

 

 

 

6.2.3 HPLC-DAD ANALYSIS 

 

Crocin, picrocrocin and safranal were determined by high performance liquid 

chromatography. 

The extracts prepared according to what described in section 6.2.2 were analyzed by HPLC-

DAD with a Thermo Quest Spectrasystem LC (Thermo Fisher Scientific, Waltham, MA) 

equipped with a P4000 pump, a UV6000 UV-Vis Diode Array Detector, and a SN4000 

interface to be operated via a personal computer. Extracted compounds were separated using 

an Eclipse XDB-C18 analytical column (4.6x250mm, 5µm particle size; Agilent 

Technologies, Santa Clara, CA) protected by a guard cartridge of the same packing, operating 

at 25° C. Separation was carried out using gradient elution with a mixture of water 

(A):acetonitrile (B) (30–70% B in 20 min) at a flow rate of 0.9 mL min−
1
. Injection volumes 

were 10 µL for all samples and standards. Multiwavelength detection was in the range of 

200–550 nm and quantification was carried out by integration of the peak areas at 250 nm 

(picrocrocin), 310nm (safranal) and 440 nm (crocin). 

 

 

 

6.2.4 OPTIMIZATION OF THE MICROWAVE-ASSISTED 

EXTRACTION 

 

As anticipated in section 6.2.4, the operating conditions for the microwave-assisted extraction 

of the analytes from saffron samples were optimized using an experimental design. In 

particular, for each of the 24 designed experiments (for all extraction tests was used the same 

saffron sample), the extracts were subjected to HPLC analysis and the area of safranal, crocin 

and picrocrocin were integrated. Obviously, each area was normalized according to the area 

of the internal standard added (10µg) before each extraction. The conditions were optimized 
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to maximize both the quantity of each analyte extracted, and to maximize the concentration of 

each analyte extracted in the extracting solution. Indeed, on one hand it is important to assess 

the efficiency of extraction in order to develop an extraction method able to extract as much 

crocin, picrocrocin and safranal as possible. On the other hand, it is important to maximize the 

concentration of the analytes in the extract, to be able to analyze very dilute solutions and 

analytes in trace. Often, in fact even if the method developed allows to extract almost all of 

the analytes using big volume of solvents, it is necessary to add a step of concentration. In this 

specific case, however, it is not possible to make a concentration of the sample extract. In fact 

the use of a rotavapor or nitrogen flow to facilitate the elimination of the solvent leads to a 

significant loss of the more volatile compounds, such as safranal. 

The next tables shown the normalized area (max=1) relative to safranal, crocin and 

picrocrocin. To determine which of the experiments was the best to extract the maximum 

quantity of safranal, crocin and picrocrocin, the area of each analyte was normalized in 

function of sample weight and area of the internal standard (10µg I.S. / 10mg of saffron). 

Then these areas (for each analyte) were normalized to 1. 

 

 

 

Table 6.3: normalized quantity of extracted safranal; 1 means maximum quantity in the 

extract 

  Extraction time 

 Area norm. safranal 1 minute 10 minutes 19 minutes 

Extrac Solv.: EtOH 
10ml EtOH 0,68 0,66 0,66 

2ml EtOH 0,61 0,63 0,61 

Extrac Solv.: MeOH 
10ml MeOH 0,73 0,68 0,68 

2ml MeOH 0,68 0,63 0,63 

Extrac Solv.: MeOH:H2O 
10ml MeOH:H2O 0,88 0,83 0,80 

2ml MeOH:H2O 0,80 0,78 0,76 

Extrac Solv.: EtOH:H2O 
10ml EtOH:H2O 1,00 0,93 0,90 

2ml EtOH:H2O 0,93 0,85 0,85 
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Table 6.4: normalized quantity of extracted crocin; 1 means maximum quantity in the extract 

  Extraction time 

 Area norm. crocin 1 minute 10 minutes 19 minutes 

Extrac Solv.: EtOH 
10ml EtOH 0,13 0,13 0,14 

2ml EtOH 0,07 0,11 0,15 

Extrac Solv.: MeOH 
10ml MeOH 0,71 0,81 0,78 

2ml MeOH 0,61 0,71 0,68 

Extrac Solv.: MeOH:H2O 
10ml MeOH:H2O 0,93 1,00 0,86 

2ml MeOH:H2O 0,86 0,92 0,80 

Extrac Solv.: EtOH:H2O 
10ml EtOH:H2O 0,76 0,82 0,78 

2ml EtOH:H2O 0,73 0,82 0,78 

 

 

 

Table 6.5: normalized quantity of extracted picrocrocin; 1 means maximum quantity in the 

extract 

  Extraction time 

 Area norm. picrocrocin 1 minute 10 minutes 19 minutes 

Extrac Solv.: EtOH 
10ml EtOH 0,08 0,09 0,09 

2ml EtOH 0,04 0,07 0,10 

Extrac Solv.: MeOH 
10ml MeOH 0,75 0,70 0,69 

2ml MeOH 0,65 0,61 0,58 

Extrac Solv.: MeOH:H2O 
10ml MeOH:H2O 1,00 0,99 0,90 

2ml MeOH:H2O 0,94 0,91 0,82 

Extrac Solv.: EtOH:H2O 
10ml EtOH:H2O 0,93 0,91 0,85 

2ml EtOH:H2O 0,85 0,82 0,78 

 

 

 

Table 6.3 shown that the best MAE to extract the greatest amount of safranal from sample is 

obtained extracting for 1 minute and using 10ml Et:H2O=50:50. Table 6.4 shown that the best 

MAE to extract the greatest amount of crocin from sample is obtained extracting for 10 
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minutes and using 10ml MeOH:H2O=50:50. Table 6.5 shown that the best MAE to extract the 

greatest amount of picrocrocin from sample is obtained extracting for 1 minute and using 

10ml MeOH:H2O=50:50.  

Instead, to maximize the concentration we need to take account of the volume of solvent. The 

following tables refer to the maximization of concentration of the analytes in each extract. 

The area of each analyte is divided by the area of the internal standard (10µg I.S. / 10mg of 

saffron) and by the volume of extracting solvent used for extraction (areas are normalized to 

1; max. area = 1). 

 

 

 

Table 6.6: normalized concentration of extracted safranal; 1 means maximum concentration 

in the extract 

  Extraction time 

 Area norm. safranal 1 minute 10 minutes 19 minutes 

Extrac Solv.: EtOH 
10ml EtOH 0,15 0,14 0,14 

2ml EtOH 0,66 0,68 0,66 

Extrac Solv.: MeOH 
10ml MeOH 0,16 0,15 0,15 

2ml MeOH 0,74 0,68 0,68 

Extrac Solv.: MeOH:H2O 
10ml MeOH:H2O 0,19 0,18 0,17 

2ml MeOH:H2O 0,87 0,84 0,82 

Extrac Solv.: EtOH:H2O 
10ml EtOH:H2O 0,22 0,20 0,19 

2ml EtOH:H2O 1,00 0,92 0,92 
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Table 6.7: normalized concentration of extracted crocin; 1 means maximum concentration in 

the extract 

  Extraction time 

 Area norm. crocin 1 minute 10 minutes 19 minutes 

Extrac Solv.: EtOH 
10ml EtOH 0,03 0,03 0,03 

2ml EtOH 0,08 0,12 0,16 

Extrac Solv.: MeOH 
10ml MeOH 0,15 0,18 0,17 

2ml MeOH 0,67 0,77 0,74 

Extrac Solv.: MeOH:H2O 
10ml MeOH:H2O 0,20 0,22 0,19 

2ml MeOH:H2O 0,93 1,00 0,88 

Extrac Solv.: EtOH:H2O 
10ml EtOH:H2O 0,17 0,18 0,17 

2ml EtOH:H2O 0,80 0,89 0,84 

 

 

 

 

 

Table 6.8: normalized concentration of extracted picrocrocin; 1 means maximum 

concentration in the extract 

  Extraction time 

 Area norm. picrocrocin 1 minute 10 minutes 19 minutes 

Extrac Solv.: EtOH 
10ml EtOH 0,02 0,02 0,02 

2ml EtOH 0,05 0,08 0,11 

Extrac Solv.: MeOH 
10ml MeOH 0,16 0,15 0,15 

2ml MeOH 0,69 0,65 0,62 

Extrac Solv.: MeOH:H2O 
10ml MeOH:H2O 0,21 0,21 0,19 

2ml MeOH:H2O 1,00 0,97 0,88 

Extrac Solv.: EtOH:H2O 
10ml EtOH:H2O 0,20 0,19 0,18 

2ml EtOH:H2O 0,91 0,88 0,83 
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The MAE procedure which allows obtaining the highest concentration of safranal in the 

extract (table 6.6) corresponds to extracting for 1 minute and using 2mL of EtOH: H2O. The 

MAE procedure which allows to obtain the highest concentration of crocin in the extract 

(table 6.7) corresponds to extracting for 10 minutes and using 2 mL MeOH:H2O=50:50. The 

MAE procedure which allows obtaining the highest concentration of picrocrocin in the extract 

(table 6.8) corresponds to extracting for 1 minute and using 2 mL MeOH:H2O=50:50. 

As can be noted from previous tables we must use different mixtures of solvents (MeOH:H2O 

for crocin and picrocrocin, EtOH:H2O for safranal) and different extraction time (1 minute for 

safranal and picrocrocin, 10minutes for crocin) depending on which compound we want to 

optimize.  

Regarding the volume of extracting solvent, the use of 2mL of solvent allows to obtain much 

higher concentrations of the analytes than using 10mL. Indeed the use of 10mL, even if the 

volume is 5 times greater than 2mL, does not lead to a comparable increase in the amount of 

analytes extracted.  

On the basis of these results, for the analysis of safranal, crocin and picrocrocin in available 

saffron samples, it was decided to use the best conditions for the extraction of safranal (2mL 

EtOH:H2O and 1 minute of extraction) because they provided a limited solvent waste 

balanced by a suitable extract concentration, reduced extraction times limiting the degradation 

of the active principles and the best recovery of safranal which is normally present in very 

low concentrations.  

 

 

 

6.2.5 VALIDATION OF MAE-HPLC-DAD METHOD 

 

The method developed, based on the microwave-assisted extraction was validated in terms of 

linearity, limit of detection (LOD), limit of quantification (LOQ), reproducibility and 

recovery (table 6.9). 
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Table 6.9: validation parameters – 2ml EtOH:H2O and 1 min. extraction time; 
a
 Intermediate 

precision determined by different analysts on six separate weeks; 
b
 N=6  

compounds 
linearity 

(µg/ml) 
LOD (µg/ml) LOQ (µg/ml) 

reproducibility 

(RSD%) a 

recovery (%) 

b 

safranal 
0.5 – 55 

R2=0.9999 
0.15 0.50 <3 87 ± 2 

picrocrocin 
0.5 – 50 

R2=0.9999 
0.15 0.50 <3 80 ± 2 

crocin 
2.0 – 85 

R2=0.9999 
0.15 0.50 <3 68 ± 2 

 

 

 

As it is possible to see, crocin recovery due to the short extraction time is not so high; 

however, this analyte is still extracted in large amount thanks to its abundant presence in this 

spice. 

The calibration curves for safranal, crocin and picrocrocin are reported in the next figures. 
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Figure 6.4: calibration curve of safranal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: calibration curve of picrocrocin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: calibration curve of crocin 
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Since analyte-free saffron does not exist, LOD and LOQ were calculated as the average signal 

plus, respectively, 3 times and 10 times the standard deviation of a solution of EtOH: H2O = 

50:50.  

LOD=0.15µg/ml; LOD=30µg/g 

LOQ=0.50µg/ml ; LOQ=100µg/g 

An RSD% <2 indicated that repeatability of procedure was satisfactory (N=6). Intermediate 

precision determined by different analysts on six separate weeks was also found satisfactory 

(RSD%<3). 

Test for recoveries were performed on three different saffron samples (1 from Greece, 1 from 

Sardinia and 1 from Latium) comparing different extraction methods, such as ISO 2003 

method [130]. Specifically the following extractions were compared for the recovery of 

safranal: 

 

a)  One cycle of extraction with 2ml (1x2ml) of EtOH:H2O=50:50; 1 minute per cycle; 

10mg saffron. 

b)  One cycle of extraction with 10ml (1x10ml) of EtOH:H2O=50:50; 1 minute per cycle; 

10mg saffron. 

c)  Two cycles of extraction with 10ml (2x10ml) of EtOH:H2O=50:50; 1 minute per 

cycle; 10mg saffron. 

d)  Three cycles of extraction with 10ml (3x10ml) of EtOH:H2O=50:50; 1 minute per 

cycle; 10mg saffron. 

e)  ISO 2003 Method: 0.5g saffron in one liter of H2O, room temperature, with stirring 

for 1 hour. 

 

Tests were carried out with more extraction cycles to assess the efficiency and relative 

recoveries for safranal. Furthermore the different methods were compared with ISO 2003 

method [130].  
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Table 6.10: recovery of safranal 

 
a 

1x2ml di EtOH:H2O, 1min , 10mg di saffron , N=6 , RSD%<2 
b 

1x10ml di EtOH:H2O, 1min , 10mg di saffron , N=6 , RSD%<2 
c 
2x10ml di EtOH:H2O, 1min , 10mg di saffron , N=6 , RSD%<2 

d 
3x10ml di EtOH:H2O, 1min , 10mg di saffron , N=6 , RSD%<2 

e 
 ISO 2003 Method, N=6 , RSD%<3 
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The following extractions were compared for the recovery of picrocrocin: 

 

a)   One cycle of extraction with 2ml (1x2ml) of MeOH:H2O=50:50; 1 minute per cycle; 

10mg saffron. 

b)  One cycle of extraction with 10ml (1x10ml) of MeOH:H2O=50:50; 1 minute per 

cycle; 10mg saffron. 

c)  Two cycles of extraction with 10ml (2x10ml) of MeOH:H2O=50:50; 1 minute per 

cycle; 10mg saffron. 

d)  Three cycles of extraction with 10ml (3x10ml) of MeOH:H2O=50:50; 1 minute per 

cycle; 10mg saffron. 

e)  ISO 2003 Method: 0.5g saffron in one liter of H2O, room temperature, with stirring 

for 1 hour. 

f)  One cycle of extraction with 2ml (1x2ml) of EtOH:H2O=50:50; 1 minute per cycle; 

10mg saffron. 

 

Tests were carried out with more extraction cycles to assess the efficiency and relative 

recoveries for picrocrocin. Furthermore the different methods were compared with ISO 2003 

method [130].  
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Table 6.11: recovery of picrocrocin 

 
a
 1x2ml di MeOH/water , 1min , 10mg di saffron , N=6 , RSD%<2 

b
 1x10ml di  MeOH/water , 1min , 10mg di saffron , N=6 , RSD%<2 

c
 2x10ml di  MeOH/water , 1min , 10mg di saffron , N=6 , RSD%<2 

d
 3x10ml di  MeOH/water , 1min , 10mg di saffron , N=6 , RSD%<2 

e
 ISO 2003 Method, N=6 , RSD%<3 

f
 1x2ml di EtOH:H2O, 1min , 10mg di saffron , N=6 , RSD%<2 
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The following extractions were compared for the recovery of crocin: 

 

a)   One cycle of extraction with 2ml (1x2ml) of MeOH:H2O=50:50; 10 minutes per 

cycle; 10mg saffron. 

b)  One cycle of extraction with 10ml (1x10ml) of MeOH:H2O=50:50; 10 minutes per 

cycle; 10mg saffron. 

c)  Two cycles of extraction with 10ml (2x10ml) of MeOH:H2O=50:50; 10 minutes per 

cycle; 10mg saffron. 

d)  Three cycles of extraction with 10ml (3x10ml) of MeOH:H2O=50:50; 10 minutes per 

cycle; 10mg saffron. 

e)  ISO 2003 Method: 0.5g saffron in one liter of H2O, room temperature, with stirring 

for 1 hour. 

f)  One cycle of extraction with 2ml (1x2ml) of EtOH:H2O=50:50; 10 minutes per cycle; 

10mg saffron. 

 

Tests were carried out with more extraction cycles to assess the efficiency and relative 

recoveries for crocin. Furthermore the different methods were compared with ISO 2003 

method [130].  
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Table 6.11: recovery of crocin 

 
a
 1x2ml di MeOH/water , 10min. , 10mg di saffron , N=6 , RSD%<2 

b
 1x10ml di  MeOH/water , 10min. , 10mg di saffron , N=6 , RSD%<2 

c
 2x10ml di  MeOH/water , 10min. , 10mg di saffron , N=6 , RSD%<2 

d
 3x10ml di  MeOH/water , 10min. , 10mg di saffron , N=6 , RSD%<2 

e
 ISO 2003 Method, N=6 , RSD%<3 

f
 1x2ml di EtOH:H2O, 1min , 10mg di saffron , N=6 , RSD%<2 
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6.3 DETERMINATION OF SAFRANAL, CROCIN, 

PICROCROCIN IN SAFFRON 

 

The method (previously described and validated), which allows to obtain the maximum 

concentration of safranal in the extract, was then applied for the determination of constituents 

related to the quality of the saffron (safranal, picrocrocin and crocin) in all the available 

samples.  

10 mg of ground saffron were placed in a 10 mL sealed vessel suitable for an automatic 

single-mode microwave reactor and 2mL of EtOH:H2O were added to the sample. The 

extraction temperature was set at 40 ° C and the extraction time to 1 minute. The extract 

containing the analytes extracted was then filtered through a PTFE filter and 10µL were 

injected into the HPLC system. With the use of EtOH: H2O and 1 minute of extraction, we 

obtained high recovery for safranal which is normally present in very low concentrations. 

The following table shows the results obtained on 106 samples of saffron analyzed by MAE-

HPLC-DAD.  
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Table 6.12: determination of crocin, picrocrocin and safranal in different saffron samples – 

GR means Greece, LA means Latium, SA means Sardinia, SP means Spain, TK means Turkey 

sample 
crocin 
(mg/g) 

picrocrocin 
(mg/g) 

safranal 
(mg/g) 

 sample 
crocin 
(mg/g) 

picrocrocin 
(mg/g) 

safranal 
(mg/g) 

GR01 15,03 5,39 4,96  SA101 18,93 5,32 2,38 

GR02 14,03 5,11 5,45  SA102 16,91 4,52 2,07 

GR03 14,48 5,31 4,81  SA103 15,27 4,22 2,06 

GR04 12,60 4,45 4,30  SA104 15,08 4,05 1,80 

GR05 13,02 4,83 4,37  SA105 16,56 4,71 2,19 

GR06 13,47 4,88 4,35  SP21 15,05 4,59 2,99 

GR07 12,31 4,35 4,38  SP22 15,03 4,66 2,96 

GR08 12,96 4,66 4,27  SP23 10,00 3,12 0,94 

GR09 11,08 3,75 3,72  SP24 11,57 3,65 1,02 

GR10 13,45 4,60 4,73  SP25 16,19 5,20 2,09 

GR11 15,32 5,54 5,21  SP26 16,17 5,21 2,18 

GR12 12,44 4,65 3,92  SP27 17,51 5,61 1,91 

GR13 17,04 5,99 6,48  SP28 16,80 5,48 1,91 

GR14 14,26 5,16 3,89  SP29 17,23 5,81 2,02 

GR15 14,56 5,18 4,81  SP30 18,33 6,69 1,86 

GR16 14,10 4,91 3,90  SP31 17,80 5,59 2,37 

GR17 15,41 5,45 4,81  SP32 17,16 5,75 2,46 

GR18 13,83 4,74 4,49  SP40 5,37 1,37 1,86 

GR19 14,04 4,87 4,26  SP41 12,81 4,10 1,85 

GR20 15,26 5,41 4,15  SP42 15,80 5,17 2,43 

LA75 19,02 6,93 6,99  SP43 14,87 4,80 2,22 

LA76 16,24 6,05 6,10  SP44 13,40 4,26 1,40 

LA77 17,82 6,41 5,55  SP45 14,36 4,90 1,59 

LA78 18,17 7,97 5,71  SP46 14,20 4,28 1,56 

LA79 17,41 7,29 6,24  SP47 14,73 4,49 2,06 

LA80 14,24 5,12 4,58  SP48 13,05 4,45 1,78 

LA81 16,23 5,86 5,76  SP49 13,90 5,25 1,93 

LA82 7,98 2,75 2,73  SP106 7,16 2,08 1,55 

LA83 19,69 7,94 4,33  TK50 3,98 0,62 0,30 

LA84 14,22 5,02 3,06  TK51 3,94 0,59 0,24 

LA85 15,28 5,56 3,24  TK52 3,99 0,66 0,33 

LA86 14,04 5,19 3,29  TK53 3,80 0,58 0,24 

LA87 17,90 6,61 2,56  TK54 3,61 0,52 0,18 

LA88 13,54 4,77 2,97  TK55 3,68 0,57 0,24 

LA89 17,08 7,32 2,73  TK56 4,71 0,82 0,36 

LA90 15,13 5,45 2,57  TK57 3,52 0,53 0,19 

LA91 15,72 13,00 3,26  TK58 3,60 0,54 0,20 

LA92 14,66 5,12 2,80  TK59 3,43 0,54 0,19 

LA93 14,62 5,21 3,20  TK60 3,62 0,52 0,18 

SA33 13,42 4,42 3,70  TK61 4,69 0,64 0,32 

SA34 13,31 4,62 3,84  TK62 3,49 0,55 0,20 

SA35 14,25 4,27 2,53  TK63 3,60 0,56 0,22 

SA36 14,42 4,45 4,44  TK64 3,61 0,55 0,21 

SA37 5,15 1,46 2,75  TK65 3,78 0,56 0,22 

SA38 14,92 4,61 3,77  TK66 3,57 0,53 0,19 

SA39 5,08 1,39 3,54  TK67 3,68 0,58 0,24 

SA94 3,62 0,83 2,36  TK68 3,40 0,55 0,20 

SA95 3,79 0,80 1,15  TK69 3,78 0,55 0,23 

SA96 3,59 0,84 2,24  TK70 3,45 0,51 0,17 

SA97 3,55 0,81 2,52  TK71 3,62 0,54 0,21 

SA98 16,97 4,74 2,11  TK72 3,50 0,55 0,21 

SA99 18,41 5,33 2,36  TK73 3,70 0,55 0,21 

SA100 18,77 5,03 2,29  TK74 3,51 0,54 0,21 
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The 106 saffron samples were analyzed and plotted in the space of experimental variables 

(safranal, crocin and picrocrocin). The next figure shows the distribution of the saffron 

samples analyzed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: representation of the 106 samples in the space of the variables (safranal, crocin 

and picrocrocin) 

 

 

 

Figure 6.7 shows how the Turkish samples are grouped in a clearly limited area and that they 

are relatively far from all the other samples produced in other geographical areas. 

The graphical representation of the results also shows how the Greeks samples and the 

Spanish samples are well separated in the space of the three experimental variables. 

saffron 
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The MAE-HPLC-DAD results collected on the available samples were also used to build a 

model to discriminate the 5 classes of samples (Greece, Latium, Sardinia, Spain, Turkey). The 

method used for discriminant classification was linear discriminant analysis (LDA) [131]. 

Aim of Linear Discriminant Analysis is to find one or more linear combinations of parameters 

which allow to discriminate optimally the various groups of samples. In this way it is possible 

to assign an observation (sample) in a given class on the basis of measurements of crocin, 

picrocrocin and safranal. In next table we report the error in cross-validation evaluated by 

linear discriminant analysis for each distinct saffron. 

 

 

 

Table 6.13: LDA of saffron samples; the quantity (mg/g) of safranal, crocin and picrocrocin 

were used; cross validation (CV)= venetian blinds w/ 5 splits 

 Greece Latium Sardinia Spagna Turkey 

Error in Cross-Validation 1 13 13 4 0 

number of samples 20 19 19 23 25 

 

 

 

LDA provided a classification on the basis of the corresponding content of crocin, picrocrocin 

and safranal in different saffron samples. Saffron from Latium and Greece presented the 

bigger concentrations of crocin, picrocrocin and safranal. Saffron from Sardinia were split 

into two clusters with completely different amounts of their active principles. Spanish saffron 

is the most scattered and in general is characterized by a low concentration of safranal. 

Turkish saffron displayed the lowest concentrations of the active principles and this could be 

due to the specific drying procedure.  
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6.4 GEOGRAPHICAL ORIGIN BY NIR 

 

The method developed, based on microwave-assisted extraction, allows a limited use of 

solvents and efficient use of saffron, allowing a rapid quality control. In fact, the amount of 

picrocrocin, crocin and safranal indicate the quality of saffron being related on taste, smell 

and color. The amount of crocin, picrocrocin and safranal are also related to the geographical 

origins of production. In fact, type of soil, climatic conditions, modes of production and 

storage, change in function of different geographical areas of production. Saffron is dried 

differently (shade, heating system, electric ovens, sunlight, etc.) in various regions of the 

world, and drying practices are known to affect the final composition of saffron. Crocins and 

picrocrocin compounds degrade naturally in the cells of stigmas during drying and storage 

[132].  

Even if the MAE-HPLC-DAD method compared to other methods presents in the literature 

allows a rapid analysis and a limited use of solvents, a method based on NIR spectroscopy for 

discriminant classification of saffron was also developed. NIR spectroscopy is a non-

destructive, non-invasive, rapid, and it does not require any pre-treatment of the sample. The 

are many advantages of its use, in addition to those already mentioned. From an 

environmental point of view, it results zero impact: saffron can be analyzed without any 

pretreatment and therefore without the use of solvents. NIR spectroscopic analysis is also 

economic because it does not need reagents.  

 

 

 

6.4.1 ACQUISITION OF NIR SPECTRA OF SAFFRON SAMPLES 

 

For the acquisition of spectra in the near infrared range, a Nicolet 6700 FT-NIR instrument 

(Thermo Scientific Inc., Madison, WI), equipped with a tungsten–halogen source and an 

InGaAs detector, was used. The spectra were acquired at room temperature and without any 

further sample treatment, in reflectance mode, through the use of an integrating sphere 

(Thermo Scientific Inc., Madison, WI). Operationally, for the acquisition of each spectrum, 

the proper amount of saffron (approximately 10 mg) was placed inside a cylindrical glass 

sample holder (19 mm internal diameter, 2.7 cm in height), which was then positioned on the 

hole of the integrating sphere. The spectra were acquired between 10,000 and 4000 cm−1, 
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collecting 82 scans at a nominal resolution of 4 cm−1. For each sample four spectra were 

acquired for a total of 424 spectra (106*4). The data were then exported from Omnic Suite 

software (Thermo Fisher Scientific Inc., Waltham, MA) as an ASCII file, which was then 

imported into MATLAB (release R2009b, The MathWorks Inc., Natick, MA), for the 

successive chemometric analysis.  

 

 

 

 

6.4.2 PLS-DA MODEL 

 

The "raw" spectral signals obtained are affected by various undesirable phenomena, such as 

the presence of shift in the base line, or effects due to the scattering. Since these contributions 

to the signal are unwanted sources of variability (i.e. they are not related to the phenomenon 

of interest), before chemometric analysis, a pre-treatment of the signals was necessary. 

Therefore, after being exported, the spectral data were converted in pseudo-absorbance and 

pretreated with the SNV (Standard Normal Variate) algorithm [115]. After pretreatment, 

spectral data matrices were built by averaging the pretreated signals of the four replicated 

measurements for each sample. Figure 6.8 shows the set of NIR spectra measured after SNV 

pretreatment.  
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Figure 6.8: near infrared spectra collected on the saffron samples; after SNV pretreatment 

 

 

 

The 106 samples were then plotted in the space of the principal components (PC). Next figure 

shown the samples produced in different ways and in different geographical areas, in the 

space of the first two PCs. 

 

Figure 6.9: representation of the samples in the space of the first two principal components 
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The analysis of the principal components shows how the samples from the same geographical 

area of production are well grouped. 

As can be seen from the representation of the 106 samples in the space of the safranal, crocin 

and picrocrocin variables (figure 6.7), also in this case (figure 6.9), with the NIRS data is 

possible to note for the Greek samples a cluster in a narrow space of the PC. Even the Turkish 

samples in the space of PC can be grouped together and separated from the other samples. 

The same analysis can be made for Latium samples, which form a distinct cluster from the 

other samples. With the NIR data, in addition to exploratory analysis, in order to discriminate 

the different geographical origins and production of saffron we developed a classification 

model (PLS-DA). 

 

 

 

Table 6.14: PLS-DA model, latent variable=9, cross validation (CV)= venetian blinds w/ 10 

splits 

NIR data Greece Latium Sardinia Spain Turkey 

sensitivity 

cal. 
1.000 1.000 1.000 0.913 1.000 

specificity 

cal. 
1.000 1.000 0.966 1.000 1.000 

sensitivity 

CV 
1.000 1.000 0.947 0.913 1.000 

specificity 

CV 
0.988 1.000 0.954 0.976 0.988 

 

 

 

The low number of samples did not allow an external validation of the model. However, the 

model developed allows an almost perfect classification in cross validation of all the five 

available classes of samples.  
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6.5 CONCLUSION 

 

A microwave-assisted extraction system for biologically active compounds has many 

advantages over other conventional extraction methods. Microwave-assisted extraction 

methods required shorter time, less solvents, provide higher extraction rates and better 

products with lower costs. 

It can be concluded that microwave-assisted extractions provide significant advantages in 

terms of extraction efficiency and time savings. 

The method developed allows high recovery, it is very reproducible and allows to analyze 

samples with very low concentration of safranal, crocin and picrocrocin. This method, thanks 

to the high concentration factor (only 2 mL of solvent are used), can be used for the analysis 

of compounds and derivatives with similar characteristics to safranal, crocin and picrocrocin 

even if they are present in very low concentrations. It may be used also for the analysis of 

other spices in which the amount of safranal, crocin and picrocrocin are very low. We 

obtained, with the use of microwave-assisted extraction, concentrations of extracts 

approximately 10 times higher compared to the ISO 2003 method and to methods which use 

ultrasounds for the extraction [129,133,134]. Moreover, with the method developed, it is 

possible to simultaneously analyze both safranal, and crocin/picrocrocin, while the works 

reported in the literature are focused on the determination of either safranal or crocin and 

picrocrocin [123,128].  

Although a perfect geographical classification could not be performed only with the 

quantitative analysis of crocin, picrocrocin and safranal, we can assert by graphical analysis of 

the samples in the space of these three parameters (figure 6.7) and by the results of the linear 

discriminant analysis in cross validation (table 6.12), that the content of these bioactive 

compounds is strongly linked to the production area. 

A discriminant method of classification faster than HPLC-DAD analysis was developed. The 

analysis of the NIR spectra of the saffron samples allowed to discriminate in a rapid, non-

destructive and zero impact way, samples from the different production areas such as Turkey, 

Greece, Spain and Italy (Latium and Sardinia). 

In the future, the method based on NIR spectroscopy will be validated with samples which 

will be harvested in 2014: doing so it will be possible to validate the PLS-DA model 

developed with a test set does not used to build the model. 
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CHAPTER 7 

 

WATER: DETERMINATION OF 
BENZOTRIAZOLES IN WATER 
SAMPLES 

 

 

 

 

 

 

 

7.1 INTRODUCTION 

 

Benzotriazole derivatives are categorized as high production volume chemicals, being 

complexing agents widely used as anticorrosives (e. g. in engine coolants, aircraft deicers and 

antifreeze liquids) and for silver protection in dish washing liquids [135,136]. Toxicological 

studies have demonstrated that they might be hazardous to plants [137,138], mutagenic in 

bacteria cell systems [138] and toxic to some microorganisms [139]. Moreover, 1H-

benzotriazole (BTri) has been classified as a suspected human carcinogen by the Dutch Expert 

Committee on Occupational Standards [138]. In the environment, benzotriazoles are 

considered as emerging pollutants [135,136], with sewage treatment plants (STPs) 

representing one of the most important discharge sources of these compounds into the aquatic 

media [140-142].Thus, they have been detected in different aquatic compartments, such as 

surface, ground or wastewater [135,136], sludge [143,144] and sediments [144]. Also, 

benzotriazoles appear in indoor environments (indoor dust) [145], and even in human urine 

[146].  

Due to their polar character (log Kow values from 1.44 to 2.25), high water solubility and low 

volatility, liquid chromatography (LC), usually coupled to mass spectrometry (MS), has been 
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the preferred technique for their sensitive determination in environmental samples during last 

years [136]. Most water samples analysis have been carried out using triple quadrupole LC-

MS/MS instruments, achieving methodological LOQs in the low ng L
-1 

[140,147-150]; 

furthermore, other types of mass analyzers, such as LTQ FT Orbitrap MS [151], HRMS [152] 

and QTOF MS [153], have also demonstrated their suitability for benzotriazole determination 

in combination with LC as separation technique. Limited performance of gas chromatography 

(GC) methods for benzotriazole compounds has been overcome by the use of ionic liquid 

stationary phases coated columns [154], derivatization processes, such as methylation 

[155,156] or acetylation [157], and the use of two-dimensional gas chromatography 

[156,158]. But for now, no simple analytical methodologies, based on the use of a routine 

laboratory affordable GC-single quadrupole MS instrument, have been developed, able to 

reach LOQs comparable to those provided by LC-MS/MS methods and an improved isomer 

resolution. 

Regarding sample preparation, solid-phase extraction (SPE), using conventional hydrophilic-

lipophilic balanced polymeric materials such as OASIS HLB [140,146-148,151] or Strata X 

[154,156], remains as the most popular concentration technique for benzotriazoles 

determination in water samples. SPE, based on reversed-phase polymers, is also the preferred 

approach to carry out multiresidue water sampling campaigns in which these emerging 

pollutants are often included [159-162].  

Despite microextraction techniques potential advantages, such as miniaturization, low solvent 

consumption and high selectivity [163, 164], they have just been scarcely investigated for the 

extraction and preconcentration of benzotriazoles. As regards solid-phase methodologies, stir-

bar sorptive extraction (SBSE) has been tested for the determination of BTri in ultrapure 

water using coating materials with different polarities, such as polydimethylsiloxane (PDMS), 

polyacrylate (PA) with a proportion of poly(ethylene) glycol (PEG) and a PEG modified 

silicone. In all cases, the extraction efficiency for BTri remained below 1%, for 50 mL of 

ultrapure water, after sampling during 4 hours [165]. Benzotriazoles have also been 

successfully concentrated from water samples using a disposable polar membrane of 

polyethersulfone [153]. However, the sample preparation method required 6 hours to achieve 

equilibrium conditions. Slow extraction kinetics, which are characteristic of solid-phase 

microextraction techniques, can be overcome by some liquid-liquid microextraction 

methodologies, such as dispersive liquid-liquid microextraction (DLLME) [163]. Following 

the first report by Assadi and coworkers [166] in 2006, a high number of DLLME 

applications have been published. Some of them, as well as the most outstanding trends in 
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DLLME, have been revised in a recent review [167]. To the best of our knowledge, the only 

application of DLLME to benzotriazoles analysis considered tri-n-butylphosphate as 

extractant, with concentrated species determined by LC with fluorescence detection and LC-

MS/MS [168]. Obviously, the above extractant was unsuitable to be used in combination with 

GC-MS determination. 

Therefore, main aims of this work are (1) the development of a simple, easy, highly efficient, 

environmental friendly and low cost sample preparation proposal, based on a concurrent 

derivatization-DLLME extraction, and (2) the combination with a relatively inexpensive 

determination technique, as GC-MS, for the sensitive and selective determination of trace 

levels of benzotriazolic compounds in complex aqueous matrices. The performance of the 

developed method, particularly the achieved limits of quantification (LOQs) and the 

possibility to individually quantify isomeric benzotriazoles, is compared to that corresponding 

to previously published approaches, most of them using more sophisticated determination 

techniques. 

 

 

 

 

7.2 EXPERIMENTAL 

 

7.2.1 STANDARD, SOLVENT AND MATERIAL 

 

Standards of BTri (98%), 4-methyl-1H-benzotriazole (4-TTri; 100%), 5-methyl-1H-

benzotriazole (5-TTri; 98%), 5,6-dimethyl-1H-benzotriazole (XTri; 99%) and  1H-

benzotriazole-(ring-d4) solution (BTri-d4), 10 g mL
-1

 in acetone used as internal surrogate 

(IS) through derivatization and liquid microextraction steps, were purchased from Sigma-

Aldrich (Milwaukee, WI, USA). Two different standards of 5-chloro-1H-benzotriazole, with 

nominal purities of 98% and 99% were acquired from TCI (Zwijndrecht, Belgium) and 

Sigma-Aldrich, respectively. Stock solutions of the above compounds and diluted mixtures, 

used to spike water samples employed during optimization of extraction conditions, were 

prepared in acetonitrile and stored at 4ºC for a maximum of 2 weeks. A standard of 1-acetyl-

1H-benzotriazole (97%) was also provided by Sigma-Aldrich. 
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Methanol and acetonitrile (HPLC-grade) were from Merck (Darmstadt, Germany). Acetone, 

toluene, chlorobenzene, carbon tetrachloride and 1,1,1-trichloroethane (trace analysis grade) 

were provided by Sigma-Aldrich. Ultrapure water was obtained from a Milli-Q system 

(Millipore, Billerica, MA, USA). Sodium acetate, acetic acid, sodium bicarbonate (NaHCO3), 

disodium hydrogen phosphate (Na2HPO4) and acetic anhydride were also obtained from 

Sigma-Aldrich. Cellulose acetate membrane filters (0.45 m pore size) were purchased from 

Millipore (Bedford, MA, USA). 

Acetylated derivatives of target compounds, used during optimization of GC-MS 

determination conditions, were prepared as described elsewhere [157]. In brief, 10 mL of 

ultrapure water, containing a 0.8% (w/v) of Na2HPO4, were spiked with benzotriazole 

standards prepared in acetonitrile. Thereafter, 150 L of acetic anhydride were poured into 

the same vessel, 5 mL of toluene were added and vials were manually shaken for 2 min. 

Derivatized species were concentrated in the upper organic phase (toluene), which was 

recovered using a Pasteur pipette before GC-MS analysis. In the particular case of BTri, the 

commercially available acetylated standard was also used. 

 

 

 

7.2.2 SAMPLES AND SAMPLE PREPARATION 

 

Grab samples of treated wastewater were obtained from different STPs located in Galicia 

(Northwest Spain); moreover, time-proportional 24-hour composite samples were received 

from the inlet stream of a STP serving a 100000 inhabitants city, in the same region. River 

water was obtained from two pristine creeks and the river receiving the discharge of the above 

STP. 

Optimization of acetylation and DLLME conditions was performed with spiked (0.050 to 20 

ng mL
-1

) aliquots of ultrapure water, adjusted at different pHs, considering also different 

volumes of derivatization reagent (acetic anhydride) dispersant and extractant solvents. 

Extractions were performed in conical bottom glass tubes (nominal volume 12 mL), which 

were manually shaken during derivatization and microextraction steps. Thereafter, tubes were 

centrifuged and the settled drop of extractant (case of chlorinated solvents) recovered after 

removal of the upper aqueous phase. When using toluene as extraction solvent, the floating 

organic phase, together with some water, was transferred to a conical insert (0.3 mL volume) 
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to improve phase separation, recovering enough volume of toluene to be handled with the 

autosampler of the GC-MS instrument. Sample preparation conditions were optimized 

following uni- and multi-variate strategies based on the use of experimental factorial designs. 

In the latter case, the Statgraphics software (Statpoint Technologies, Warrenton, VA, USA) 

was used for experimental design creation and analysis. 

Under optimal conditions, samples (10 mL) were first mixed with 1 mL of Na2HPO4 (8%, 

w/v) in the DLLME tube. Acetylation and microextraction of target compounds were 

simultaneously carried out by addition of a ternary mixture, consisting of 100 L of acetic 

anhydride, 1.5 mL of acetonitrile and 60 L of toluene. Reaction and centrifugation (3000 

rpm) times were set at 1 and 5 min, respectively. After phase separation, as described above, 

around 30 L of toluene could be recovered for GC-MS analysis. 

 

 

 

7.2.3 GC-MS CONDITION 

 

Acetylated compounds were determined by GC-MS. The gas chromatograph was an Agilent 

(Wilmington, DE, USA) 7890A model, equipped with a split/splitless injector and connected 

to a quadrupole MS spectrometer (Agilent MSD5975C), which was furnished with an 

electron impact (EI) ionization source. Compounds were separated with an Agilent HP-5MS 

capillary column (30 m x 0.25 mm i.d., df: 0.25 m) using helium (99.999%) as carried gas, at 

a constant flow of 1.2 mL min
-1

. The GC oven was programmed as follows: 80 ºC (held for 2 

min), rate at 10 ºC min
-1

 to 280 ºC (held for 6 min). Injections (2 µL) were done in the 

splitless mode, with the solenoid valve switching to the split mode after 1 min. EI source, 

quadrupole and transfer line temperatures were maintained at 230 ºC, 150 ºC and 280 ºC, 

respectively. GC-MS chromatograms were recorded in the SIM mode, selecting two different 

ions per compound, Table 7.1. 
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Table 7.1: Abbreviations, retention times and GC-MS recorded ions for acetylated species 

Compound Abbreviation 
Retention time 

(min) 

Molecular 

Weight 

Quantification (qualifier) 

ions, m/z values 

1H-benzotriazole BTri 9.76 119.1 133 (161) 

4-methyl-1H-benzotriazole 4-TTri 10.99 133.2 104 (175) 

5-methyl-1H-benzotriazole 5-TTri 11.31 133.2 104 (175) 

5-chloro-1H-benzotriazole 

(2 isomers) 

ClBTri1 

ClBTri2 

11.71 

11.83 
153.6 195 (197) 

5,6-dimethyl-1H-benzotriazole XTri 13.16 147.2 118 (189) 

1H-Benzotriazole-(ring-d4) (I.S.) BTri-d4 9.74 123.2 137 (165) 

 

 

 

Identities of acetylated benzotriazoles, and particularly the existence of two isomers in 

commercial 5-chloro-1H-benzotriazole standards, were confirmed using a second GC-MS 

system, equipped with an hybrid quadrupole time-of-flight (QTOF), 7200 model from 

Agilent, mass analyzer. Chromatographic conditions, EI source and transfer line temperatures 

were set to same values as those used in the single quadrupole GC-MS system. Moreover, an 

equivalent capillary column was installed in the GC-QTOF-MS system. Accurate MS spectra 

were recorded in the m/z range from 50 to 500 units with the spectrometer operated in the 2 

GHz mode (full-width half-maximum mass resolution 5000 at m/z 131).  

 

 

 

7.2.4 DLLME PERFORMANCE AND SAMPLES QUANTIFICATION 

 

The efficiency of the sample preparation process, under optimized conditions, was evaluated 

using enrichment factors (EFs). They were defined as the ratio between the concentration of 

each compound in toluene extracts and those added to the water sample [166,167]. The 

concentration of BTri in the former solution was determined against a calibration curve built 

with a commercial standard of this acetylated compound. Acetylated derivatives of the rest of 

benzotriazoles, at different concentrations, were prepared as reported in section 7.2.1. Given 
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that the exact volume of the floating toluene phase is hard to establish, the absolute extraction 

efficiencies of the DLLME method were not calculated. 

Potential variations of extraction efficiencies among ultrapure, surface and wastewater 

samples were evaluated using relative recoveries (%R) defined as follows:  

%R = [(As-Ab)/Ar] x 100.  

As is the response (analyte/IS peak areas) measured in the extract from a spiked sample, Ab is 

the response of the extract from a non-spiked fraction of the same sample, and Ar is the 

response measured in the extract from an aliquot of ultrapure water spiked at the same 

concentration level. The calculated %R values remained around 100%, a fact that indicates 

small variations in the efficiency of the acetylation-DLLME process for different matrices. 

Therefore, concentrations of benzotriazoles in environmental water samples were established 

by comparison with aliquots of ultrapure water, spiked with target species at different 

concentration levels (from 0.05 to 20 ng mL
-1

) and containing the same level of IS (1 ng mL
-

1
).  

 

 

 

 

7.3 RESULTS AND DISCUSSION 

 

7.3.1 PRELIMINARY EXPERIMENTS 

 

Pervova and co-workers [157] reported, for the first time, the acetylation of BTri with the aim 

of improving the performance of its GC-MS determination. Thereafter, the same procedure 

was applied to 4-TTri and 5-TTri [169]. In both cases, acetylation was performed in aqueous 

media, in presence of a basic catalyzer and analytes were further extracted, by conventional 

LLE, with toluene. This strategy was extrapolated to the rest of compounds involved in this 

study, introducing some changes regarding the type of base and volumes of acetic anhydride 

and toluene. Whatever the tested derivatization parameters, under chromatographic conditions 

reported in the experimental section, all compounds rendered a single, well-defined peak 

corresponding to the acetylated derivative, whose identity was verified on the basis of low and 

high resolution MS scan spectra and, in case of BTri, by injection of a commercially available 
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acetylated standard. However, in the case of 5-chloro-1H-benzotriazole (nominal purity above 

98%), two peaks with the same MS spectra and similar intensities were observed.  

 

 

 

 

Figure 7.1: extracted ion chromatogram after acetylation of 5-chloro-1H-benzotriazole 

 

 

 

Figure 7.1 shows the extracted ion chromatogram (extraction window 50 ppm) and accurate 

MS spectra, acquired with the GC-QTOF-MS system, after acetylation of 5-chloro-1H-

benzotriazole. The EI-MS spectra were identical for both peaks; thus, it was assumed that 

commercial standards of 5-chloro-1H-benzotriazole correspond in fact to a mixture of 4-

chloro and 5-chloro isomers. Although in previous published LC-MS methods, the existence 

of one single peak for 5-chloro-1H-benzotriazole has been reported [153, 168], the increased 

resolution provided by the GC capillary column for acetylated derivatives allowed the 

separation of both isomers. Quantification and identification ions used during this work for 

acetylated derivatives of target compounds, and the IS, together with the corresponding 

retention times are summarized in Table 7.1. In case of chloro-1H-benzotriazole, isomers 

were labeled as ClBri1 and ClBri2, assuming that the commercial standard is a 1:1 mixture of 

both species. 
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7.3.2 OPTIMIZATION OF SAMPLE PREPARATION CONDITIONS 

 

Derivatization conditions and DLLME setup 

Performance of acetylation reactions in aqueous solution can be affected by the type of basic 

catalyzer and the pH of the solution; moreover, when combined with DLLME, CO2 bubbles 

might disturb separation of aqueous and extractant phases. Fractions (10 mL) of a spiked (3 

ng mL
-1

) ultrapure water sample were mixed with 1 mL of two different bases (NaHCO3, pH 

8; Na2HPO4, pH 9; both 5% w:v). Additional experiments were also performed using 

ultrapure water (pH 6), without any catalyzer, and samples adjusted at pH 5 with 1 mL of a 

sodium acetate-acetic acid (1 M) buffer. Then, 0.150 mL of acetic anhydride were added and 

the mixture was shaken for 2 min. A binary extraction mixture, consisting of 1 mL of acetone 

and 0.1 mL of chlorobenzene, was used for DLLME in all cases. Figure 7.2 shows the 

normalized responses (peak areas) obtained for acetylated compounds under above 

conditions.  

 

 

 

 

Figure 7.2: normalized responses (peak areas) obtained for acetylated compounds under 

different conditions 
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The highest responses were achieved using Na2HPO4, which was selected as catalyzer of the 

acetylation reaction in further experiments. 

The effects of acetic anhydride volume (50-150 L), derivatization time (2-6 min) and 

Na2HPO4 concentration (2-8%) were investigated using a Box-Behnken experimental design, 

with 3 central points and a total of 15 experiments. DLLME extractions were performed under 

conditions reported in the above section, with ultrapure water samples spiked again at 3 ng 

mL
-1

. Responses for each compound in these experiments were analyzed by the Statgraphics 

software to obtain the main effects and two-factor interactions corresponding to variables 

involved in the design. Table 2 compiles the standardized main effects.  

 

 

 

Table 7.2. Standardized main effect values for variables involved in the Box-Behnken 

experimental design 

Compound 

Acetic anhydride 
volume  

(50, 100  and 150 L) 

Reaction time  
(2, 4 and 6 min) 

Na2HPO4 

concentration  
(2, 5 and 8%) 

BTri 0.87 -3.05a 6.28a 

4-TTri 0.88 -2.11 5.81a 

5-TTri 1.75 -1.24 3.02 a 

ClBTri1 0.85 -1.69 3.38 a 

ClBTri2 0.61 -1.63 3.75 a 

XTri 2.01 -0.81 1.42 
a Significant effects at the 95% confidence level 

 

 

 

The sign of main effects, positive or negative, corresponds to an improvement or a decrease in 

the acetylation step efficiency, respectively; whereas, the absolute values are correlated to the 

variation in the response of a given analyte when the associated variable moves from the low 

to the high level, within the domain of the design. The statistical significance boundary was 

established at the 95% confidence level. 

The Na2HPO4 concentration was the most relevant variable, with a positive and statistically 

significant influence on the acetylation process for 5 of the 6 compounds. For XTri presented 
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a positive influence although it did not reach the statistical significance level. The reaction 

time followed an opposite trend, showing a negative effect on the yield of the derivatization, 

being just statistically significant for BTri. Finally, the acetic anhydride volume, despite 

exerting a positive influence on the process, remained non-significant. Based on above results, 

the phosphate buffer concentration was set at the highest level (8%) and the volume of acetic 

anhydride fixed in the intermediate value (100 L). The negative, although in most cases non-

significant, effect of the derivatization time in the responses of acetylated species suggests 

that (1) acetylation of benzotriazoles is a fast process and that (2) derivatives might be slowly 

hydrolyzed to the free forms in contact with aqueous sample at basic pH. Taking into account 

these considerations, the possibility of combining acetylation and DLLME processes in the 

same step, as reported in case of chlorophenol compounds [170], was further evaluated. 

To this end, we compared the responses obtained under above conditions, considering an 

acetylation time of 2 min, followed by DLLME extraction (two-step approach) and adding the 

acetic anhydride (100 µL) to the binary mixture of acetone (1 mL) and chlorobenzene (100 

µL) (single-step procedure). In both cases, manual shaking and centrifugation (3000 rpm) 

times were 2 and 5 min, respectively. Figure 7.3 shows the obtained normalized responses for 

each compound.  

 

 

 

 

Figure 7.3: comparison between two-step approach and single-step procedure  
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No significant differences between the results provided by the two methodologies are 

observed for ClBTri1, ClBTri2 and XTri. For the other 3 benzotriazoles, responses for the 

single step approach represented between 90 and 95% of those attained in two steps. On the 

view of these results, in order to save time and to reduce sample manipulation, in further 

experiments analytes acetylation and concentration were simultaneously performed. 

DLLME conditions 

Selection of a suitable extraction solvent is one of the most important issues during method 

development in DLLME. Three solvents with higher density than water, commonly used in 

DLLME [163] (chlorobenzene, carbon tetrachloride and trichloroethane), and toluene, as a 

lighter than water alternative, were compared on the basis of their affinity for acetylated 

benzotriazoles. In all cases, the volume of extractant was 100 µL. 

 

 

 

Figure 7.4: normalized peak areas for each compound as function of the type of extractant 

 

 

 

Carbon tetrachloride and trichloroethane provided the lowest responses and the highest 

variabilities for all species, whereas similar peak areas were measured for toluene and 
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chlorobenzene. Likely, - interactions established between acetylated benzotriazoles and 

both aromatic solvents are responsible for their higher extraction efficiencies versus 

chlorinated alkanes. Despite separation of the floating toluene extract was more complex than 

direct collection of the settled phase of chlorobenzene, the former solvent was preferred as 

extractant because of its lower toxicity. As reported in the experimental section, firstly, the 

upper phase of the extraction tube was transferred to a narrow (i.d. 3 mm) conical insert, 

where a neat interface between toluene and the aqueous phase was obtained. 

The type of dispersant (methanol, acetone and acetonitrile) exerted a minor effect in the 

responses of derivatized compounds (data not shown); however, acetone led to a peak with a 

retention time close to that of 5-TTri and same nominal m/z values and methanol showed the 

highest variability. Therefore, acetonitrile was selected as dispersant. 

Figure 7.5 compares the peak areas obtained combining two different volumes of toluene (60 

and 120 µL) with four of acetonitrile (0.5, 1.0, 1.5 and 2 mL).  
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Figure 7.5: peak area in function of extractant and dispersant volume 

 

 

 

In all cases, 100 µL of acetic anhydride were incorporated, as derivatization reagent, in the 

ternary extraction mixture. With the only exception of the lowest dispersant volume, higher 

responses were achieved using 60 µL of toluene than with 120 µL. For the former extractant 

volume, the increase in the responses of the analytes with the volume of acetonitrile can be 

explained since a more efficient dispersion of toluene droplets in the aqueous sample is 

achieved. At 2 mL of acetonitrile, the increased solubility of acetylated analytes in the 

aqueous phase led to a small reduction in the efficiency of their extraction. Thus, 60 µL and 

1.5 mL were adopted as toluene and acetonitrile optimal volumes. Under these conditions, 25-

30 µL of toluene could be recovered at the end of phase separation process. 
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The influence of the ionic strength on the efficiency of the DLLME was evaluated comparing 

the responses obtained without and with addition of 1 g of NaCl to water samples. No 

significant variations were noticed in the responses measured for acetylated compounds; thus, 

no salt was used in further extractions. The extraction time, after addition of the ternary 

acetylation-extraction mixture, was varied between 1 and 5 min, whereas centrifugation (3000 

rpm) times of 5, 10 and 15 min were tested. None of these factors modified the performance 

of the extraction; thus, extraction and centrifugation steps were limited to 1 and 5 min, 

respectively.  

 

 

 

7.3.3 PERFORMANCE OF THE METHOD 

 

Linearity of the proposed methodology was investigated with ultrapure water aliquots 

fortified with increasing concentrations of target benzotriazoles (from 0.050 to 20 ng mL
-1

, 

n=7 levels), maintaining the IS at 1ng mL
-1

. The corrected responses (peak area/IS peak area) 

for each compound were plotted against their concentrations in the water samples and fitted to 

a linear model. Determination coefficients (R
2
) values for the obtained graphs varied from 

0.995 up to 0.9997. Regarding reproducibility, nine extractions were carried out in three 

different days with samples spiked at two concentration levels, 0.2 ng mL
-1

 and 2 ng mL
-1

. 

Relative standard deviation (RSDs, %) of corrected responses remained between 2 and 10%. 

Efficiency of the proposed method was evaluated with EFs, calculated as defined in the 

experimental section, for a sample spiked at the 10 ng mL
-1

 level. Analytes were concentrated 

between 93 times (BTri) and 172 times (XTri), Table 7.3. 
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Table 7.3: Linearity, enrichment factors (EFs), inter-day precision and limits of 

quantification (LOQs) of the method 

Compound 
Linearity (R2, 

0.050-20 ng mL-1) 
EFs 

Reproducibility 
(RSDs,%)  

(n=9 replicates, 3 days) 
LOQs 

(ng mL-1) 
a0.2 ng mL-1 a2 ng mL-1 

BTri 0.9997 93 ± 5 2 2 0.045 

4-TTri 0.9995 134 ± 7 4 5 0.007 

5-TTri 0.9991 134 ± 7 6 4 0.009 

ClBTri1 0.995 161 ± 10 8 10 0.080 

ClBTri2 0.998 171 ± 7 9 7 0.060 

XTri 0.9993 172 ± 9 7 8 0.013 

a
Addition level 

 

 

 

The limits of quantification (LOQs) of the method were calculated as the concentration of 

each compound providing a response 10 times higher than the baseline noise at the retention 

time of each compound in procedural blanks. BTri was noticed at low levels in procedural 

blanks, therefore, its LOQ was calculated as 10 times the standard deviation value for this 

peak in five consecutive procedural blanks divided by the slope of the calibration curve. The 

attained LOQs varied between 0.007 ng mL
-1

 for 4-TTri and 0.08 ng mL
-1

 for ClBTri1, Table 

7.3. Regarding other microextraction applications, these values are significantly lower than 

those obtained by DLLME, using tri-n-butylphosphate as extractant, and LC determination 

(0.1-7.3 ng mL
-1

) [168] and in the same order than those reported using polyethersulfone 

solid-phase microextraction and LC-QTOF MS (0.005-0.1 ng mL
-1

) [153], with the advantage 

of employing a much faster sample preparation approach. LOQs summarized in Table 7.3 are 

also equivalent to those obtained by SPE combined with LC-MS/MS [140, 147-150, 160-

162], LC-LTQ FT Orbitrap MS [151] and GC x GC-TOF-MS [156, 158] requiring a less 

sophisticated instrumentation. 

Potential changes in the performance of the sample preparation procedure among water 

samples with different complexities was investigated comparing the responses obtained for 

ultrapure and different water samples spiked at two different concentration levels (0.5 ng mL
-1
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and 10 ng mL
-1

). Obviously, non-spiked aliquots of environmental water samples were also 

prepared. The relative recoveries values, calculated as described in the experimental section, 

varied between 91 ± 11% and 116 ± 3%, Table 7.4. Therefore, after IS correction, comparison 

of responses measured for environmental water samples with those attained for spiked 

aliquots of ultrapure water can be used as quantification approach. 

 

 

 

Table 7.4: Relative recoveries for samples spiked at two different concentrations levels (0.5 

ng mL
-1

 and 10 ng mL
-1

), n=4 replicates 

Compound 
Tap water  

(0.5 ng mL-1) 

River water  

(0.5 ng mL-1) 

Effluent  

(10 ng mL-1) 

Influent  

(10 ng mL-1) 

BTri 103 ± 14 98 ± 6 108 ± 2 111 ± 2 

4-TTri 107 ± 16 101 ± 4 109 ± 4 109 ± 4 

5-TTri 106 ± 15 101 ± 2 109 ± 2 109 ± 2 

ClBTri1 91 ± 11 99 ± 7 107 ± 3 107 ± 3 

ClBTri2 104 ± 9 116 ± 3 106 ± 2 106 ± 2 

XTri 97 ± 2 108 ± 4 108 ± 3 108 ± 3 
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7.3.4 REAL SAMPLE ANALYSIS 

 

Table 7.5 reflects BTri, 4-TTri and 5-TTri levels in 24-h composite raw wastewater samples 

obtained, during a week, from the same STP serving a 100.000 inhabitants population.  

 

 

 

Table 7.5: Concentrations (ng mL
-1

) of BTri and tolyltriazoles in 24-h composite raw 

wastewater, and masses (g day
-1

) entering an urban STP during a seven days sampling 

campaign, n=3 replicates 

Day 
Concentration (ng mL

-1
)  SD 

Ratio 
5-/4-TTri 

Water 
volume 

(m
3
 day

-1
) 

Mass (g day
-1

) 

BTri 4-TTri 5-TTri BTri 4-TTri 5-TTri 

1 1.94  0.08 0.47  0.02 0.56  0.04 1.2 58410 113 27 33 

2 1.31  0.02 0.32  0.01 0.37  0.01 1.2 58909 77 19 22 

3 1.35  0.02 0.24  0.01 0.30  0.01 1.3 62813 85 15 19 

4 1.43  0.04 0.35  0.01 0.42  0.01 1.2 61505 88 22 26 

5 0.62  0.01 0.32  0.03 0.27  0.01 0.8 58024 36 19 16 

6 0.46  0.02 0.20  0.01 0.21  0.01 1.1 66050 30 13 14 

7 0.66  0.02 0.17  0.01 0.18  0.01 1.1 70394 46 12 13 

Average 1.11 0.30 0.33 1.1 62301 69 19 21 

 

 

 

The rest of compounds remained under their LOQs; although, ClBTri isomers were detected 

in some samples. The average raw wastewater concentration of BTri (1.11 ng mL
-1

) was 

significantly lower than that found in German STPs influents (12 ng mL
-1

) [140,141] and 

other Spanish locations (7.3 ng mL
-1

) [158]. Average individual concentrations of 

tolyltriazoles represented around 25% of that corresponding to BTri. The ratios of their 

concentrations (5-TTri/4-TTri) varied from 0.8 to 1.3, with an average value of 1.1, which is 

in concordance with previous studies. While Weiss et al [140] reported a 5-TTri/4-TTri ratio 

of 1.06, Casado et al [153] found values between 0.84 and 1.04. Taking into account the daily 

processed water volume (c.a. 62000 m
3
), the global mass discharge of the above corrosion 
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inhibitors in the plant was estimated. The average daily input of BTri was 69 g, followed by 

20 g of 4- and 5-TTri. Thus, the STP receives a total of 0.11 kg day
-1

 of benzotriazoles, which 

is in a relatively low amount when compared with 9.72 kg day
-1

 recently reported for a STP 

processing a 12-times higher input of wastewater [150].  

 

 

 

Table 7.6. Concentrations (ng mL
-1

) in grab samples of river and treated wastewater, n=3 

replicates 

Code Type 
Concentration (ng mL-1)  SD  

Ratio 
5-/4-TTri BTri 4-TTri 5-TTri 

1 River 0.025  0.003 n.d. n.d. -- 

2 River 0.051  0.003 0.016  0.001 0.009  0.002 0.6 

3 River 0.144  0.005 0.102  0.003 0.102  0.005 1.0 

4 Sewage 0.64   0.01 0.37   0.01 0.39   0.01 1.1 

5 Sewage 0.27  0.01 0.16  0.01 0.15  0.01 0.9 

6 Sewage 0.19   0.01 0.15  0.01 0.15  0.01 1.0 

7 Sewage 0.68  0.02 0.26  0.02 0.25  0.02 1.0 

8 Sewage 0.41  0.01 0.21  0.02 0.20  0.03 1.0 

9 Sewage 0.15  0.01 0.19  0.01 0.090  0.004 0.5 

 

 

 

Table 7.6 compiles the concentrations of BTri, 4-TTri and 5-TTri (rest of compounds 

remained undetected) in grab samples of river water (codes 1-3) and the outlet streams (codes 

4-9) of different STPs. River water samples codes 1 and 2 were collected from relatively 

pristine creeks, whereas sample number 3 was taken 5-km downstream the discharge of a 

STP. As regards treated wastewater samples, BTri usually remained at higher levels than 

tolyltriazoles; however, differences between their concentrations were lower than those found 

for raw wastewater samples compiled in Table 7.5. Finally, 5-TTri/4-TTri ratios in treated 

wastewater again remained around the unit (Table 7.6), except for sample code 9. This sample 

corresponds to the only STP applying UV disinfection after the secondary (activated sludge) 

treatment tank.  
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7.4 CONCLUSION 

 

A simple, rapid, and low cost methodology has been developed for the determination of 

several benzotriazolic derivatives in different aqueous matrices. The protocol requires a very 

low volume of sample and just a few microlitres of organic solvent for the microextraction. It 

enables the concurrent acetylation and microextraction processes with sample preparation 

requiring just 10 minutes. GC-MS, a relative accessible instrumentation, reaches LOQs 

comparable to those reported using more sophisticated systems such as LC-MS/MS or GC x 

GC-TOF-MS. Moreover, the resolution between 4-TTri and 5-TTri, and also between ClBTri 

isomers, is improved compared to that provided by LC-MS based methods. In summary, the 

described procedure constitutes an appealing alternative to monitor the levels and the 

behavior of several benzotriazoles during wastewater treatments and also to investigate their 

fate in the aquatic environment.  

Further studies will be performed on foods cultivated using waters of the river in which 

benzotriazoles were found. In doing so, it will be possible to study the possible contamination 

of the foods due to the use of irrigation waters polluted by benzotriazoles. 
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CHAPTER 8 

 

OVERALL CONCLUSION 

 

 

 

 

 

 

In conclusion, new methods for analysis of foods were developed, based on the fruitful 

coupling of different instrumental profiling methods to chemometric data processing 

techniques, which allow reliable quality control and traceability of the origin of the product. 

In this respect, on one hand, chromatographic fingerprinting of the phenolic fraction proved to 

be a valid secondary traceability indicator for oil and honey samples.  

On the other hand, thanks to the many benefits provided by NIR spectroscopy coupled with 

chemometric techniques, it was possible to build models of classification and regression 

which allowed to discriminate different samples, providing an additional tool to combat fraud. 

In this framework, particular attention was posed to the respect of the principles of "Green 

Chemistry", which has now become the focus of the chemistry of the new millennium. 

Indeed, the use of NIR spectroscopy allowed developing methods with less impact on the 

environment, humans and higher performance compared to existing methods for analysis of 

foods. But it is necessary to point out that, in all the examined cases, a key role is played by 

chemometrics. Indeed, the possibility of using a not selective fingerprinting technique such as 

NIR for calibration and classification, without needing any separation step or sample 

pretreatment is only made possible by the use of chemometric data processing which allow to 

mathematically manage the presence of interferents and other sources of unwanted variability 

in the signals. Furthermore, chemometric proved to be essential also for all the other studies 

presented in this PhD research, and ubiquitous in all the stages of the analytical process, 

starting from sampling strategies and experimental design to the final validation of the results 

obtained. 
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