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Chapter 1

Introduction

1.1 Motivations

The Standard Model is the modern theory describing the fundamental interactions among ele-
mentary particles.

The Model has been tested with success over a very large set of observables, showing to be
able to predict the experimental values of cross sections and decay rates for all processes up to the
explored scale of energy (the electroweak scale, of O (100) GeV), and has passed a large number
of different checks. Despite of its remarkable successes however, the Model suffers from various
problems, among which: the instability of the Higgs mass to radiative corrections, the lack of a
mechanism explaining the bariogenesis, the absence of a candidate for the dark matter, and its
failure to unify truly all the fundamental forces together.

The model itself limits to parametrize the observed hierarchy of particles mass and of flavor
mixing amplitude, and does not explain them. From this reason the model is generally considered
to be a low-energy approximation of a more fundamental theory.

All these problems suggest that the validity of the model is limited to energies of the order
of the TeV scale. It is common opinion that at this scale of energy a new physics beyond the
Standard Model has to show. This scale is experimentally accessible only by means of very high
energy particle accelerators (previously only from TeVatron, now only from LHC). On the other
hand, the effects caused by new physics should manifest indirectly at energies below the TeV
scale, as small corrections to the Standard Model predictions [1]. These observables are accessible
also from dedicated low energy but high energy luminosity accelerators (e.g the past B-factories
BaBar, Belle, and the to-be constructed SuperB [2]).

In the perspective of highlighting and quantifying the effects of new physics, a deep and
careful comparison of the experimental observables to the prediction of the Standard Model can
give remarkable information. A dominant role is played in this field by flavor physics, which
in the hadronic sector involves the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix.
The extraction of the values of the CKM matrix elements performed from different experimental
inputs and with the help of different theoretical calculations represents the most tighten test
of the Standard Model [3]. Here we will briefly review the quantities which have been subject
our analysis and give motivation for the work which we have carried out (see chapter in will be
reviewed in chapter 2 for more extensively informations on such quantities).

One of the most relevant and actual flavor physics problem is the precise determination of
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hadronic matrix elements relevant for the B physics. The b quark decay physics are highly
sensitive to new physics effects and very sensible to test presence of physics beyond the standard
model. These tests already provides some small indications of deviations from Standard Model
prediction, but actual statistic errors and systematics uncertainty do not allow them to be relevant
and demand for deeper study. From the experimental side the building of new generation of B
factories will allow to improve substantially the measurement of b quark quantities. From the
theoretical side, a precise determination (at the ∼ 1% level of accuracy) of hadronic matrix element
related to b quark will be needed in order to give relevance to statistically improved measurement
of B(s) meson leptonic and semi-leptonic decay width and of neutral B mixing amplitude.

Experiments measuring leptonic and semi-leptonic decay amplitude of K system, together
with lattice calculation of leptonic K meson decay constant fK and semi-leptonic form factors
give access to the Vus element of the CKM matrix. These experiments reach already such level of
precision that theoretical computations of K decay constant and form-factors need to take into
account the small isospin breaking effects related to the mass and charge difference of u and d
quarks in order to give meaningful results. This effects are typically added to the computations
using effective theory, but first principle and more precise computation of such corrections would
be very useful in order to make the Vus determination more accurate.

Quark masses can be determined using different physical inputs, so that the comparing the
results obtained in different lattice computations from different groups one can over-constrain the
Standard Model. Their values are also used as physical inputs for subsequent computations, and
is therefore of primary importance to measure them as accurately as it is possible.

1.2 Methodology

On the theoretical side, the calculations are challenging due to the effects of the strong interaction,
which in the Standard Model is described by the Quantum Cromodynamics (QCD).

At short distances (or equivalently at high energies) the quarks interact weakly, so that it is
possible to study the theory with perturbative techniques; the other way round, the interaction
increases with the increase of the distance (or with the decrease of the energy), and at distance
larger than ∼ 1 fm (energy lower than ∼ 1GeV) the theory is not perturbative anymore. For this
reason every calculation between low energy hadronic states needs a non perturbative treatment.
This is the case for many observables playing important role in the context of flavor physics, as for
example the form factors, the decay constants, and numerous matrix elements involved in meson
mixings, whose relevance has been explained previously.

The only available method to calculate physical observables non perturbatively starting from
first principles, in which all sources of systematic errors can be kept under control and whose
accuracy can be arbitrarily increased with time is Lattice QCD. This method has been the tool
used in the work of this thesis. In Chapter 3 we introduce Lattice QCD presenting examples
of calculations and discussing in details the various systematics effects which must be taken in
consideration when dealing with a modern Lattice computation.

1.3 Main results

Most part of the present thesis work has been devoted to the determination of Standard Model
parameters, in particular quark masses and CKM matrix elements. Here we report the main
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results of the thesis, which will be described more extensively in separate chapters.

Quark masses

In Chapter 4 we perform a non-perturbative determination of the u/d, s and c quark masses in-
cluding a careful discussion of the continuum and chiral extrapolations. In this way we reduced
the most important source of systematics errors in the current lattice calculation. Renormaliza-
tion has been performed non-perturbatively and quark masses has been tuned in such a way to
reproduce the pseudo-scalar meson masses.

The quark masses in the MS scheme at 2 GeV read:

mMS, 2GeV
l = 3.6 (1) (2) MeV = 3.6 (2) MeV ,

mMS, 2GeV
s = 95 (2) (6) MeV = 95 (6) MeV ,

mMS, 2GeV
c = 1.14 (3) (3) GeV = 1.14 (4) GeV .

(1.1)

B physics

Determination of the b quark related quantities suffers from additional systematic errors caused
by the needed extrapolation in the heavy quark mass. We have designed a specific approach to
deal with such extrapolation, which is described in Chapter 5, that allowed us to perform a precise
computation of the b quark mass and B and Bs leptonic decay constants fB and fBs , obtaining
them with a 2-3% level of precision. This poses our results among the most precise available at
present. Moreover we explored various new techniques which in future will allow, with an increase
computational power, to reach the level of accuracy required by future experiments, and allow to
extract the CKM matrix elements related to b quark (Vub, Vcb) with an unprecedented accuracy
and add strong constraints to the Standard Model.

The main results of this chapter are:

• the b quark mass:

mb(mb) = 4.29(13)(4)GeV = 4.29 (14) GeV ,

mMS, 2GeV
b = 4.92 (13) GeV .

• the B and Bs mesons leptonic decay constants fB and fBs :

fBs = 232(10) MeV , fB = 195(12) MeV ,
fBs

fB
= 1.19(5) . (1.2)

Isospin breaking effects

In Chapter 6 we present a new fully non-perturbative method to compute the u− d quark mass
difference and to take into account the isospin breaking effects on physical quantities related to
this difference. The method is then applied to the computation of the leptonic K-meson decay
constant, and proves to be very effective in decreasing the error on the computation on its isospin
breaking corrections. We also provide a preliminary determination of the proton-neutron mass
splitting, and of the isospin correction to the K semi-leptonic form factors.

The main results of this analysis are:

7



• the value of the up-down quark mass difference, which in MS at 2 GeV reads:

[md −mu]
MS, 2GeV = 2.27(24) MeV , (1.3)

• the isospin breaking corrections on the K leptonic decay constant:
[
fK+

fK
− 1

]
= −0.38(6)% , (1.4)

• the proton-neutron mass splitting, which at fixed lattice spacing results:

[Mn −Mp]
QCD = 2.7(9) MeV . (1.5)

Strange and Charm unquenching

All the computations presented up to this point are performed in partially quenched setup ac-
counting for Nf = 2 light sea quark. This is equivalent to performing the perturbative calculations
by ignoring the presence of quark different form u and d in fermionic loops in the diagrammatic
formalism. Although believed to have small effects on observable, this approximation must be
removed in order to increase the reliability of lattice QCD calculations. In Chapter 7 we present
preliminary results obtained in new computations which take into accounts two heavier flavors of
quarks (strange and charm) with respect to previous computations. We will show in particular a
preliminary computation of the BK parameter involved in neutral K mixing, and a preliminary
computation of the pion electromagnetic form factor. When terminated, these results will be the
first to take into account both strange and charm dynamical quarks.
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Chapter 2

Flavor physics

2.1 CKM matrix

The Standard Model group the six observed flavor of quarks in two sets of three generations:

u = (u, c, t)

d = (d, s, b) .

The quarks of types u have +2e/3 charge, while quarks of types d have −e/3 charge. Quark
mass increase going from u/d generation to t/b. The SM lagrangian contains a therm which mixes
allow interaction vertexes between u and d types quarks:

Lf.v =
g√
2
W+

µ

n∑

f,g=1

ūfγµV CKM
fg dg + h.c , (2.1)

where g is the Fermi constant, W the field of the charged vector boson mediating weak force, and
V CKM is the Cabibbo-Kobayashi-Maskawa matrix, a unitary matrix parameterizing the mixing
between different flavors of quarks. Its entries are fundamental parameters of the Standard Model
which must be extracted from experiments:

V CKM =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 . (2.2)

Being a rank n = 3 unitary matrix, it is parameterized by n2 = 9 parameters, of which
2n − 1 = 5 of them are not physically relevant because of the possibility to redefine quark fields,
so the number of significant parameters is actually 4, of which 3 are rotation angles between
different quarks, and the remaining one is a complex phase causing CP violations.

The unitarity of the CKM matrix can be expressed by numerous unitarity relations. In par-
ticular, the sum of squared entries of each rows (or columns) must be equal 1.

Given the fact that different entries of CKM matrix can be independently measured, it is
possible to test SM by verifying such relation to be experimentally satisfied. In particular the
most precise bound comes from the analysis of the first line of the matrix, that is proving the
relation:

|Vud|2 + |Vus|2 + |Vub|2 = 1. (2.3)
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The value of Vud is very precisely known from the measurement of nuclear β decays, and
the remaining two parameters can be determined experimentally from leptonic and semi-leptonic
decays of K, D and B mesons. Large part of this thesis work is dedicated to topics related to
the determination of such CKM matrix elements, and in next sections we will discuss how lattice
computations help in performing such tasks.

Another interesting propriety of unitary matrices is that each row (or column) is orthogonal
to the other, so that it is possible to build various other relations to prove the SM. In particular
considering the first and third columns of the matrix one gets:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 . (2.4)

Each of the three addend of such relation define a vector in the complex plane. Using the
Wolfeinstein parameterization of the CKM matrix they read respectively:

VudV
∗
ub = Aλ3

(
1− λ2/2

)
(ρ+ iη)

VcdV
∗
cb = −Aλ3

VtdV
∗
tb = Aλ3 (1− ρ− iη) .

These three vectors define a triangle in the complex plain, whose apex has coordinates (ρ̄, η̄) =(
1− λ2/2

)
× (ρ, η) in units of Aλ3. The area of the triangle quantify the amount of CP violation

in the SM: if all CKM entries were real, η would be null and thus the triangle would have zero
area. Therefore the triangle, which is called unitary triangle1 is strongly related to CP violation
phenomena.

Various experiments can measure different proprieties of this triangle, such as side lengths,
angles amplitudes, etc. In general it is very useful to show the various bounds on the CKM
matrix elements as bands on the complex plain which must intersect on the apex of the triangle.
In Fig. 2.1 we show the fit of all the present bounds to the values of ρ̄ and η̄ performed by UTfit
collaboration.

All the constraints to the triangle intersect in the same region, thus indicating quite a good
agreement between SM predictions and experiments. The increase of precision both on the the-
oretical and experimental sides will allow in future to perform more an more stringent fit and
possibly highlight the presence of New Physics.

Now that we have given a general overview of the flavor topics considered in the present thesis
work we can go in details on particular arguments, explaining how non-perturbative computation
pose problems on the computation of flavor quantities, and how lattice allow to solve them.

2.2 Leptonic decay constants

Among the most simples flavor-related hadronic quantities measurable on lattice there are the
leptonic decay constants of mesons. Quite a large part of our work has been devoted to the
determination of decay constants for various pseudo-scalar mesons.

Their values provides some of the most important bounds on the values of the CKM matrix
elements, and therefore of great relevance in the contest of flavor physics.

A pseudo-scalar meson composed by an up and down type quarks can decay into a (µ, ν̄µ)
pair through the emission of a W meson. Diagrammatically this happens through diagram shown
in Fig. 2.2.

1Actually other 5 similar triangles exists.
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Figure 2.1: Fit of all the bound to the values of ρ̄ and η̄ obtained by UTfit collaboration.

νµ

µ−

s

ū
W−

K−

Figure 2.2: Diagrammatic representation of the leptonic decay of K− → µ−ν̄µ.

The branching ratio of such decay mode is given by:

Γ (PS → µν̄µ (γ)) =
G2

F |VPS|
8π

f2
PSM

2
PSM

2
µ

(

1−
M2

µ

M2
PS

)[
1 +

α

π
CPS

]
, (2.5)

where GF is the Fermi constant, Mµ and MPS are the muon and pseudo-scalar particle masses,
CPS is a coefficient parameterizing the electromagnetic radiative corrections, and α the QED
coupling. VPS is the CKM matrix appropriate for the coupling between the u and d type quark
contained in the pseudo-scalar meson (so for example it is Vus when we look at the K meson
and Vud when we look at the Pion), and fPS parameterize the hadronic matrix element between
pseudo-scalar meson state and the vacuum of the axial current:
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fPSPµ = 〈0|Aµ |PS〉 , (2.6)

where we have defined the axial current: Aµ = ūγµγ5d. The experimental measurement of such
branching ratios, together with the knowledge of the decay constants fPS allow to determine CKM
matrix elements with great precision.

One of the most precise determination of the value of the ratio |Vus/Vud| comes from the
measurement of the ratio of K → µν̄µ (γ) and π → µν̄µ (γ) branching ratios. In particular it is
known [4] that:

Γ (K → µν̄µ (γ))

Γ (π → µν̄µ (γ))
=

∣∣∣∣
Vus

Vud

∣∣∣∣
2(fK

fπ

)2
(
M2

K −M2
µ

M2
π −M2

µ

)2

× 0.9930(35). (2.7)

In this expression the last coefficient parametrize long term and radiative corrections. Matrix
element |Vud| = 0.97425(22) is very precisely known from the measurement of nuclear beta decays,
so that the ratio fK/fπ allow to determine precisely the value of |Vus|.

Lattice QCD calculations is the only method that allow to determine the value of the decay
constants non-perturbatively starting directly from first principles, through the direct evaluation
of matrix element 2.6.

These computations are performed typically considering the isospin symmetric theory in which
mu = md and qu = qd. Given the precision reached from experiments measuring K and π leptonic
branching ratios, it is necessary to go beyond this approximation. In Chapter 6 we will present
novel method to take into account corrections related to the u/d mass difference. Taking into
account these corrections will allow to improve the current bounds on |Vus| and thus perform
improved test on the SM.

Other two particularly important cases of study are the leptonic decays B → τντ and Bs →
µ+µ−.

The first process is particularly sensitive to potential New Physics contributions mediated, at
tree level, by charged Higgs. The relevant entries in the Standard Model prediction for the decay
rate are the CKM matrix element Vub, which can be extracted from the study of semi-leptonic
B → π * ν! decays without significant New Physics contributions (for * = e, µ), and the pseudo-
scalar decay constant fB. The measured values of the B → τντ decay rate deviate, at present,
by about 3 sigma from the Standard Model prediction [5], within relatively large experimental
and theoretical uncertainties. In this respect, improving the lattice determination of fB would be
an important ingredient for increasing the chances of detecting the contribution of New Physics
effects to this decay.

The second process of interest is the rare leptonic decay Bs → µ+µ−, which is being studied
with unprecedented accuracy at LHCb. In this case the relevant hadronic parameter to be deter-
mined on the lattice, which enters the theoretical prediction of the decay rate, is the pseudo-scalar
decay constant fBs .

The determination of both fB and fBs , together with a prediction for the b quark mass mb,
are part of the present work and will be discussed extensively in chapter 5.

2.3 Semi-leptonic form factors

Lattice QCD allows to compute non-perturbatively hadronic form factors for both baryons and
mesons. In the following we will show how the determination of the K → π vector form factor

12



allows to provides the most precise determination of the CKM matrix element |Vus| through the
analysis of the semi-leptonic K → π*ν decay (also known as K!3 decay). At zero momentum
transfer q2 of the lepton pair this decay rate is given by:

ΓK→π!ν =
G2

FM
5
KW

192π3
SEW × |Vus|2

∣∣fKπ
+ (0)

∣∣2 IK!
(
1 + δK!EM + δKπSU(2)

)2
, (2.8)

where SEW = 1.0232 (3) is the short distance electroweak correction, GF is the Fermi constant,
MK is the K mass, δK!EM represents the channel-dependent long-distance EM corrections, δKπSU(2) the
correction for isospin breaking, and IK! is a phase-space integral that is sensitive to the momentum
dependence of the form factors. The latter describe the matrix element of the vectorial current
between K and π, defined by:

〈πi(p′)|Vµ|Ki(p)〉 = Ci
[
f i
+(q

2)(p+ p′)µ + f i
−(q

2)(p − p′)µ
]
, q2 = (p− p′)2 , (2.9)

where Ci is a Clebsch-Gordan coefficient equal to 1 (2−1/2) for neutral (charged) Kaons.
This form factor can be measured very precisely on lattice in a fully non-perturbative way.

In chapter 7 we will report on a preliminary calculation of such quantity, again computed in the
isospin symmetric approximation mentioned previously.

The precision reached by the experiments in the measurement of K!3 branching ratios need
to take into account the effects of the breaking of isospin symmetry, which are contained in term
δKπSU(2) in Eq. 2.8 and typically computed with Ch-PT. In chapter 6 we will present a new method

to compute non-perturbatively the effects of mass difference between u/d quark in the K → π
vector form factor. This correction

2.4 BK parameter

The neutral Kaon mesons system is quite a non-trivial one, given the fact that mass eigenstate∣∣K0
〉
≡ |ds̄〉 and its antiparticle K

0 ≡
∣∣d̄s
〉

are neither CP neither weak interactions eigenstates.

The CP even and odd eigenstates are K1,2 = 1√
2

(
K0 ±K

0
)
; the long-time and short-time de-

caying modes, which are eigenstates of the weak interaction, are almost but nor exactly CP
eigenstates, and in particular (by making an opportune definition of these modes) it is possible to
write them as:

|KS〉 =
1√

1 + ε2K

(|K1〉+ εK |K2〉) (2.10)

|KL〉 =
1√

1 + ε2K

(εK |K1〉 − |K2〉) . (2.11)

The nonequivalence between weak decay modes and CP eigenstates is just caused by the pos-
sibility of neutral kaon mass eigenstates to mix among themselves. Therefore the small parameter
εK quantify the amount of indirect CP violation in the weak interaction decay modes caused by
the mixing of mass eigenstates. Studying the neutral K decaying modes it is possible to measure
the value of εK .

In the Standard Model this take place through a second order weak interaction involving the
exchange of two W mesons, as sketched in the left panel of picture 2.3. The box diagram can be
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Figure 2.3: Left panel : interaction causing neutral K mixings in the SM. Right panel : low energy
effective description of the phenomenon.

contract to a point as shown in the right panel of picture 2.3, so that the interaction causes the
mixing is given by the effective hamiltonian:

H∆S=2
eff ≡

GFM2
W

16π2




∑

l,m=u,c,t

C(l,m)
1 (µ)V ∗

lsVldV
∗
msVmd





︸ ︷︷ ︸
perturbative

Q̂1 (µ)︸ ︷︷ ︸
non pert.

, (2.12)

where:

Qbare
1 ≡

1

4
[s̄γµ (1− γ5) d] [s̄γµ (1− γ5) d] , (2.13)

is a four-point operator dimension 6 operator, and C(l,m)
1 are Wilson coefficients matching the

effective theory with the full theory, which is a scale-dependent operator whose value is renormal-
ization scale depending. It is customary to parameterize the matrix element of the renormalized

Q̂1 operator between K0 and K
0

states as:
〈
K

0
∣∣∣ Q̂1 (µ)

∣∣K0
〉
=
〈
K

0
∣∣∣ Q̂1 (µ)

∣∣K0
〉
V IA

B̂1 (µ) , (2.14)

where the V IA stands for “Vacuum Insertion Approximation”, where one inserts only vacuum
between the two [s̄γµ (1− γ5) d] factors contained in Eq. 2.13, that is given by:

〈
K

0
∣∣∣ Q̂1 (µ)

∣∣K0
〉
V IA

=
8

3

〈
K

0 ∣∣s̄γ0γ5d
∣∣ 0
〉2

=
8

3
f2
KM2

K , (2.15)

where the factor 8/3 comes from Feirz rearrangement of the gamma matrices.
The value of B̂1 (µ), known also simply as BK quantify therefore the deviation from the VIA

of the matrix element 2.14. It is related to the value of εK through the relation:

εK =
G2

FM
2
W f2

KM2
K

6
√
2∆MK

B̂1 (µ) Im




∑

l,m=u,c,t

C(l,m)
1 (µ)V ∗

lsVldV
∗
msVmd



 . (2.16)

From the experimental measure of εK and the lattice computation of B̂1 (µ), one can put a
constraint on the unitary triangle. In particular one can put a constraint on the quantity:

constant = η̄ (1− ρ̄) , (2.17)

which correspond to the bound plotted in fig. 2.4.
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Figure 2.4: Constraint on the apex of the unitary triangle imposed by the knowledge of εK .

The operator defined in 2.12 is the only one contributing to neutral Kaon mixing according to
the Standard Model. In general, New Physics model predict a larger number of possible interaction
which can mediate the mixing, which are globally described by an enlarged set of operator in which
all possible current contribute to the hamiltonian 2.12 in addition to the axial one. Each of these
current is associated to a different parameter Bi for a total of 5 coefficient (including also the
standard BK). The calculation of these coefficients allow to put bound on New Physics models,
and is therefore of very strong interest.

In Chapter 7 we will present preliminary results for the calculation of the BK parameter
performed within new Nf = 2 + 1 + 1 simulations.
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Chapter 3

Lattice QCD

Lattice Quantum Field Theory is a ay to regularize Field Theory in which the continuum and
infinite space-time is replaced with a discretized grid of points in a finite volume. Lattice spacing
a between the hyper-cubic grid of points acts as ultra-violet cut-off, while the box length L acts
as infrared cut-off. This regularization is very suitable to perform non-perturbative computations.
We will illustrate the various steps involved in a lattice computation by starting from a particular
case, the hadron mass determination, on which much part of this Ph.D thesis work is based.

3.1 QCD in the continuum

3.1.1 QCD Lagrangian

The continuum lagrangian density for QCD with a set of nf quark of mass mi, i ∈ {1...nf} reads,
in the slashed Dirac notation and omitting color and Dirac indices:

L (x) =

nf∑

f=1

q(f) (x)
(
/D (x) +mf

)
qf (x) +

1

4
FµνF

µν , (3.1)

where

Fµν ≡
1

ig
[Dµ,Dν ] , (3.2)

being g the coupling, and where the covariant derivative D is definite in terms of the gauge field
A as:

Dµ (x) ≡ ∂µ + igAµ (x) . (3.3)

Fermions transform according to the fundamental representation of the SU (3) group while
gauge fields transform according to the adjoint.

3.2 Hadron masses determination

3.2.1 General strategy

Mass spectrum of a quantum theory for a certain set of field Φ defined by a certain action S [Φ]
can be determined by analyzing the large euclidean time behavior of correlation functions of
appropriate operators, as following.
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Let us suppose that we want to determine the mass of a particle with certain quantum num-
ber. First of all we have to choose two operator O1, O2 (not necessarily different) carrying the
same quantum numbers of the particle we are interested in. We have to compute the two-points
correlation function:

CT (t) ≡
〈
O2 (t)O

†
1 (0)

〉

T
=

1

ZT
Tr
[
e−i(T−t)HO2e

−itHO†
1

]
, (3.4)

where T is the time extent of the system, H is the hamiltonian of the theory and we have defined
the partition function: ZT = Tr

[
eiH
]
.

In the path-integral formulation of quantum field theory this correlation function is obtained
as:

CT (t) =
1

ZT

ˆ

D [Φ] eiS[Φ]O2 [Φ (t)]O†
1 [Φ (0)] , (3.5)

where
´

D [Φ] is the functional integral over all possible field configurations.

In the limit of large T it is possible to show that CT (t) correspond to the vacuum matrix
element of the operator O2 (t)O

†
1 (0):

C (t) ≡ lim
T→∞

CT (t) = 〈0|O2 (t)O
†
1 (0) |0〉 . (3.6)

By inserting the sum over intermediate states we can write it as:

C (t) = 〈0|O2 (t)

(∑
m |m〉 〈m|
2m

)
O†

1 (0) |0〉 =

=
∑

m

e−itEm

2m
〈0|O2 |m〉 〈m|O†

1 |0〉 .

In this way the correlation is decomposed as a sum of complex exponential, one for each state
m predicted by the theory, each oscillating with a factor equal to the mass of the state, and each
multiplied by the product of the matrix elements of O†

1 and O2. The operators O†
1, O2 have the

role of creating and destructing the particle of our interest out from the vacuum, and so are called
interpolating operators.

In order to isolate the ground state we apply the Wick rotation passing from Minkowskian to
Euclidean time. This is performed by applying the transformation t → −iτ to the system, which
implies also changing ∂0 → i∂0, γi → −iγi, i ∈ {1, 2, 3} and so on. In Euclidean space time the
metric matrix is given by gµν = Diag [1, 1, 1, 1] so that there is no need to distinguish between
upper and lower indices.

In the limit τ → ∞ only the ground state contributes to the correlation function:

= lim
t→∞

C (τ) =
e−τEf

2m
〈0|O2 |f〉 〈f |O†

1 |0〉 , (3.7)

so the lower lying state mass can be determined by looking at the large euclidean time behavior
of an appropriate correlation functions.
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3.2.2 Pion mass determination in QCD

Now we will consider a concrete example and we will describe how to determine the pion mass.
According to what said in section 3.2 we have first of all to choose an operator O carrying the same
quantum numbers of the charged pion, that is a pseudo-scalar particle. The simplest operator is:

Oπ+ = d̄γ5u , (3.8)

where u, d are the fields of the up and down quarks respectively.
Having chosen an interpolating operator we can write the formal expression of the time corre-

lation function of this operator:

CPS,PS (t) =
1

Z

ˆ

D
[
q̄(f), q(f), A

] {
(ū (t) γ5d (t)) (ū (0) γ5d (0)) e

−SE
}
. (3.9)

This kinds of expression has no real meaning, as they involve an infinite number of integrals
(one per space-time point). In order to make it sensible we need to regularize it, transforming it
into a canonical multi-dimensional integral. This will be the topic of next section.

3.3 Lattice regularization of QCD

There are various ways to make a field theory finite, each having its advantages and problems.
Dimensional regularization is by far the most popular among regularization prescriptions, and it is
the most useful in perturbative computations, by expanding functional integrals in powers of the
couplings. Lattice QCD (LQCD)instead allows to deal with non-perturbative problems, allowing
one to evaluate directly the full functional integrals numerically, with a precision limited only by
available computational power. In this section we will introduce the subject of lattice regulariza-
tion starting from the Wilson regularization (section 3.3.1), followed by the detailed discussion of
the continuum limit (section3.3.2) and then we briefly review how to improve the continuum scal-
ing through the so-called Symanzik program (section 3.3.3). In the end we will review the Twisted
Mass regularization (section 3.3.4), which have been used in all the computations presented in
this thesis.

We will not discuss other formulation of LQCD such as Staggered or Domain Wall, neither
will discuss recent development as Stout smeared actions, as these tools have not been used in
any part of the present work.

3.3.1 Wilson regularization of QCD

The first lattice regularization was proposed in 1974 by K. Wilson in the pioneering paper [6]. Over
the past years many developments of this technique have been proposed, and lattice computations
are rarely performed using straightly this regularization nowadays. Nonetheless in many cases the
Wilson regularization remained the basic ingredient to build more sophisticated lattice actions,
and so we will discuss it extensively in the following sections.

3.3.1.1 Regularization of the free fermion field

In any regularization one starts defining the hyper-cubic grid of points {n}, of extent L in space
and T in time, and first-neighbor separation a. Fields are associated to lattice points, so that a
field f is defined by the collection of the values fi, i ∈ {n}.
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The discretized derivative is defined as ∂̂µfn ≡ fn+µ̂−fn−µ̂

2a , where µ̂ is the vector of length a
pointing in the direction µ̂.

The Wilson lattice regularized action for a free fermion field ψ (x) of mass m is given in
euclidean space-time by:

Ŝfree
euc = ˆ̄ψi;αMi,j;α,βψ̂j;β , (3.10)

where we have defined the fermionic matrix :

Mi,j;α,β =
1

2

{

κ−1δi,jδαβ −
∑

µ

[(1 + γµ;α,β) δi+µ̂,j + (1− γµ;α,β) δi−µ̂,j]

}

, (3.11)

and the hopping parameter :

κ−1 = 2m̂+ 8r. (3.12)

All the quantities with “̂” are to be intended as expressed in terms of a, for example the dimension-
less mass m̂ ≡ am, and spin indices have been omitted for simplicity. Fermionic field at different
space-time point anti-commutate so for each lattice point ψ is a Grassman variable. From now
on, all the quantities have to be intended to be computed in Euclidean space-time (where not else
indicated) so that we will omit the eucl for simplicity.

By substituting all the quantities with their dimensional counterpart we can rewrite it as:

Ŝfree

a4
= mψ̄nψn − ψ̄nγµ

ψn+µ̂ − ψn−µ̂

2a︸ ︷︷ ︸
∂µψn

−ar
∑

µ

ψn+µ̂ − 2ψn + ψn−µ̂

2a2

︸ ︷︷ ︸
∂2ψn

= ψ̄n

[
m− /̂∂ − ar!̂

]
ψn ,

(3.13)
where we have defined the euclidean laplacian:

!̂ ≡
∑

µ

[δn,n+µ̂ − 2δn,n + δn,n−µ̂] . (3.14)

In the “naive” continuum limit (that is, taking the a → 0 limit of previous expression) this
reduces to the well known continuum action:

Sfree
naive = lim

a→0

Ŝfree

a4
=

ˆ

d4xψ̄
[
m− /∂

]
ψ . (3.15)

The laplacian in this contest is known as “Wilson term” and do not contribute to the continuum
limit because it is multiplied by a. Apparently this term is inessential to reproduce the continuum
limit. Moreover at finite a its presence breaks the chiral symmetry of the action at m = 0. We
could get a simpler expression for Ŝ setting r = 0 from the beginning (this is known as the naive

regularization), with the advantage of having to deal with a discretized theory for which the chiral
symmetry is preserved at finite lattice spacing.

Actually the presence of the Wilson term is necessary to avoid the so-called fermion doubling

problem which affects the theory if r is set to zero. In order to explain it more in details, let
us calculate the field propagator. This will also give us the possibility to show an example of an
analytical computation with lattice regularization.
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3.3.1.2 Propagator computation

The propagator is defined as the two points green function: Sαβ (x, y) =
〈
ψ̄β (y)ψα (x)

〉
which in

continuum path-integrals formulation is expressed as:

Sαβ (x, y) =

´

D
[
ψ, ψ̄

]
ψ̄β (y)ψα (x) e

−S(ψψ̄)
´

D
[
ψ, ψ̄

]
e−S(ψψ̄)

. (3.16)

In lattice discretization this expression is replaced by its discrete counterpart:

Sm,n;αβ =

´ ∏
p;γ

d ˆ̄ψp;γ
∏

r;δ
dψ̂r;δ e−

ˆ̄ψM ψ̂ ˆ̄ψn,αψ̂m,β

´ ∏
p;γ

d ˆ̄ψp;γ
∏

r;δ
dψ̂r;δ e−

ˆ̄ψM ψ̂
, (3.17)

The computation of integrals such as 3.17 can be performed using the Wick theorem, which
in this case assert simply that: ∆i,j;αβ =

(
M−1

)
i,j;αβ

.
The inverse of the matrix M can be computed easily in momentum space, and passing to

dimensional variables we can see that its limit is given by:

Sα,β (xi, xj) =
16∑

c=1

+∞̂

−∞

d4k eik(xi−xj)

(2π)4
lim
a→0

(
m+ r

2a*c
)
δα,β − i (/k)α,β(

m+ r
2a*c

)2
+ k2

, (3.18)

where *c = {0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4}.
This means that at finite lattice spacing the propagator contains 16 poles, and so describe 16

particles. One of them has the pole at m and so describe the correct particle, while the others
get an additional mass contribution r

2a*c. For any finite value of r the mass of these 15 additional
particles, known as doublers, gets larger and larger with the decreasing of the lattice spacing, and
eventually decouples from the system in the continuum. In particular setting r = 1, in a typical
lattice simulation with an inverse lattice spacing of ∼ 2GeV the 15 doublers have a mass of at
least 4GeV, so their presence can be ignored in any computation.

If r had been put to zero (that is, if had removed the Wilson term), the additional particles
would have been degenerate in mass with the physical one and so the continuum limit of the
theory would have been wrong: the Wilson term is needed to get the correct continuum limit.

The presence of this term in an interacting theory such as QCD has a bad side effects: the
chiral symmetry is broken at finite lattice spacing. This comes from a more general property of
QCD, expressed by the No-Go Nielsen and Ninomiya, which states that it is impossible to define
a discretization of QCD simultaneously free from the fermion doubling problem which reproduce
the correct chiral limit when the mass parameter m is set to zero.

Without chiral symmetry,mass term is not protected from additive renormalization. This
means that the renormalized quark mass is different from zero when the bare quark mass is set to
zero. The true chiral limit will instead be obtained at a particular value of the hopping parameter
κcrit whose value depends on the particular details of the regularization (gauge action, number of
quarks, lattice spacings, etc), corresponding to a particular value mcrit of the bare quark bass. In
can be shown that the renormalized quark mass mR is given by:

mR = Zm (m−mcrit) , (3.19)
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with Zm is the multiplicative renormalization constant and the value of mcr has to be determined
non-perturbatively. The additive renormalization can be solved working with twisted mass Wilson
fermions, which will be discussed in section 3.3.4 and have been used through all our work.

3.3.1.3 Regularization of Yang-Mills theory

In order to regularize the QCD we have to make gauge invariant the lattice Lagrangian for
fermionic field described in the previous chapter.

Let us define a lattice SU (3) gauge transformation {Ωn}, being n a generic lattice site.
Fermionic fields must transform according to the fundamental representation of the transfor-

mation:
ψ̂n → Ωnψ̂n,

ˆ̄ψn → ˆ̄ψnΩ
†
n , (3.20)

where we have omitted the color indices for simplicity.
Mass lagrangian term is automatically invariant under the gauge transformation:

m̂ ˆ̄ψnψ̂n → m̂ ˆ̄ψnΩ
†
nΩψ̂n = m̂ ˆ̄ψnψ̂n , (3.21)

as gng
†
n = 1. For the discretized derivative this is not true, for example:

ˆ̄ψnψ̂n+µ̂ → ˆ̄ψnΩ
†
nΩn+µ̂ψ̂n+µ̂. (3.22)

As in the continuum, in order to make the whole lagrangian gauge invariant we have to
introduce some kind of covariant derivative. This can be achieved by defining for each link
connecting two nearest neighbor lattice site n, n + µ̂ a link variable Un;µ, an element of SU (3)
transforming under the gauge transformation Ω as:

Un;µ → ΩnUn;µΩ
†
n+µ̂ , (3.23)

playing the role of parallel transport between n and n+ µ̂, and by making the substitution:

δi+µ̂,j → δi+µ̂,jUi;µ , δi−µ̂,j → δi−µ̂,jU
†
i−µ̂;µ . (3.24)

in the fermionic matrix (3.11):

Mi,j;α,β =
1

2

{

κ−1δi,jδαβ −
∑

µ

[(
1 + (γµ)α,β

)
Ui;µδi+µ̂,j +

(
1− (γµ)α,β

)
U †
i−µ̂;µδi−µ̂,j

]}

. (3.25)

In this way the lagrangian is gauge invariant under the defined Ω transformation, because the
links U transform exactly in the way needed to cancel the spurious term in equation 3.22:

ˆ̄ψnUn+µ̂ψ̂n+µ̂ → ˆ̄ψnΩ
†
nΩnUn;µΩ

†
n+µ̂Ωn+µ̂ψ̂n+µ̂ = ˆ̄ψnUn+µ̂ψ̂n+µ̂ . (3.26)

Link variable Un;µ elements of SU (3) and so can be wrote in terms of a generating element
Aµ = Aa

µT
a of the algebra SU (3):

Un;µ = exp (iagAµ) , (3.27)

where we have introduced the coupling g, so that in the continuum the Lagrangian density defined
by fermion matrix (Eq. 3.25) reduces correctly to the fermionic part of the QCD Lagrangian for
a single flavor (3.1 rotated to the Euclidean):

L = ψ̄
{
m+ /∂ + ig /A

}
ψ . (3.28)
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3.3.1.4 Gauge dynamic term

The gauge fields so introduced do not still have a proper dynamic, so we have to introduce a
kinetic term SG for them in the action. In the continuum this is given by the space-time integral
of the lagrangian density:

LG =
1

4
TrFµνFµν , (3.29)

being Fµν ≡ [Dµ,Dν ] the field strength tensor:

Fµν = ∂µAν − ∂νAµ + ig [Aµ, Aν ] . (3.30)

The simplest expression which in the continuum limit reduces to SG has been found by Wilson
and is expressed in terms of the plaquettes Un;µν , defined as the ordered product of the four links
variables lying over the border of the square defined by the points n and n+ µ̂+ ν̂:

Un;µ,ν ≡ Un;µUn+µ̂;νU
†
n+ν̂;µU

†
n;ν . (3.31)

In particular the Wilson expression for the gauge action is given by:

SG,W ≡
2

g2

∑

n

∑

µ<ν

(3−+TrUn;µν) , (3.32)

It is easy to show that this quantity is gauge invariant, and that near the continuum limit by
making use of the Baker-Hausdorff formula the plaquette can be wrote as:

Un;µ,ν = exp
[
iga2 (∂µAn;ν − ∂νAn;µ + ig [An;µ, An;ν ]) +O

(
a3
)]

Un;µ,ν = exp
[
iga2Fn;µν +O

(
a3
)]

,
(3.33)

so that expanding at second order in a, 3.32 reduces to the correct continuum expression.
Reassuming, the expression for the Wilson discretized action of QCD is given by

SLQCD ≡
∑

f

Sf
Q + SG,W , (3.34)

where for each quark flavor we have defined:

Sf
Q ≡ ˆ̄ψfMf ψ̂f , (3.35)

being Mf the fermionic matrix 3.25 wrote in terms of the mass mf of the quark f .
The partition function for this theory reads:

Z ≡
ˆ ∏

p




∏

f

d ˆ̄ψf
pdψ̂

f
p

∏

µ

dUp;µ



 e−
∑

f
ˆ̄ψfMf ψ̂f+SG,W . (3.36)

3.3.2 Continuum limit

We have shown that Wilson regularization of both fermionic and gauge action reduces to the
correct expressions in the continuum limit a → 0. This feature is needed but is not sufficient to
ensure that the fully quantized theory reproduces QCD in the continuum.
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The calculation of any observable requires to evaluate functional integral, whose behavior as
function of a is highly nontrivial, as we have already discovered in Sec. 3.3.1.2, where we have
shown that an apparently correct regularization do not have the correct propagator. We need
therefore a more convincing argument than the simple observation that the goodness of the a → 0
limit of the action.

When taking the continuum limit the cut-off is removed, so the action must be renormalized,
by tuning appropriately parameters such as g and the quark masses {m} in order to leave finite the
computed quantities. In general at a given lattice spacing a, we have to fix all the N parameters
{λ} of the theory, by imposing to the theory to reproduce the physical value of N observables
{G}, by solving the set of equations:






G1 (λ1 . . .λn, a) = Gphys
1

. . .

Gn (λ1 . . .λn, a) = Gphys
n .

(3.37)

The value of parameters λ depends on the lattice spacing in a nontrivial way, particular to the
precise detail of the regularization took into account. Let us assume that all the quarks in the
theory are massless, so that the theory depends only from the parameter g. In this case we must
impose:

lim
a→0

G (g (a) , a) = Gphys. (3.38)

The relation between g and a can then be obtained by requiring the observable not to depend
from a when it is sufficiently small, that is imposing:

dG (g (a) , a)

d ln a
= 0 →

(
∂

∂ ln a
+ β

∂

∂g

)
G (g (a) , a) = 0 . (3.39)

This reveals us that the relation between g and a is given by the β-function of QCD β ≡ ∂
∂ ln a .

It can be shown perturbatively that in any regularization of QCD we have:

a (g) =
1

ΛL

(
b0g

2
)− b1

2b20 exp
[
−1/

(
2b0g

2
)] (

1 +O
(
g2
))

, (3.40)

with:

b0 =
1

16π2
(11nc − 2nf )

3
, b1 =

1

(16π2)2
34n3

c − 10n2
cnf−3nf

(
n2
c−1

)

3nc
, (3.41)

being nc the number of colors of the theory (nc = 3 for QCD) and nf the number of flavor of
the quarks (assumed to be massless), and ΛL is a parameter depending from the details of the
regularizations. The functional relation between a and g depends from the regularization details
only from order g2.

The crucial point of this discussion is that for nf < 11nc/2 the lattice spacing a is a mono-
tonically increasing function of g, and that:

lim
g→0

a (g) = 0 . (3.42)

We have therefore proved that the continuum limit is realized sending the coupling g to zero:
this is well known asymptotic freedom of QCD. In presence of quarks of finite mass the β-function
cannot be computed in a closed form, and the continuum limit must be checked numerically.
However one still expects the relation (3.42) to hold also for the massive case, and the large
consensus on this is supported by strong numerical evidence.
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3.3.3 Symanzik improvement of lattice regularizations

Being not possible to choose arbitrary small lattice spacing, it is advisable to use any possible
strategy which can minimize discretization effects and make the extrapolation simpler.

We have already shown that Wilson gauge action (Eq. 3.32) reproduces the continuum limit
up to terms O

(
a2
)
. Wilson regularized fermionic action defined by the matrix (Eq. 3.25) instead

reproduces the continuum limit up to terms of order O (a).
One possibility to improve the approaching to the continuum of the discretized action is to

add operators of dimension greater than 4, which vanish in the continuum limit. These operators
must not modify the symmetries of the regularized action in order not to spoil the continuum
limit, but can suppress lattice artifacts and remove a part of the discretization effects. The idea
is that when the regularized action is expanded in powers of a, all possible operator compatible
with the regularization symmetries:

Slatt = Scont + ac1S1 + a2c2S2 +O
(
a3
)
. (3.43)

The terms Si are irrelevant operators, suppressed by increasing powers of the cut-off a. It should
be possible to add these operators explicitly to the action with appropriate coefficients such to
cancel their effect:

Slatt → Slatt − ac1S1 − a2c2S2 +O
(
a3
)
= Scont +O

(
a3
)
. (3.44)

The value of the parameters c1, c2 . . . in the renormalized action are unknown a-priori, so they
must be found non-perturbatively or computed in lattice perturbation theory.

The addition of these operators is known as Symanzik improvement program [7].
At order a the only operator needed to improve Wilson action is given by the Pauli term:

OPauli
n;µν = ψ̂†

nσµν ψ̂nF̂n;µν , (3.45)

where F̂µν is the discretized version of the field strength tensor, which can be for example expressed
as:

F̂n;µν =
−i

8
(Qn;µν −Qn;νµ) , (3.46)

being Qn;µν the sum of the plaquettes in the µ, ν plane containing the site n:

Qµν ≡ Un;µν + Un;−µ,ν + Un;−µ,−ν + Un;−ν,µ , (3.47)

The term in the continuum scales as a5 and so do not contribute to the continuum limit. It
can be added to the regularized action as:

Ssw ≡
csw
2

∑

n;µ<ν

OPauli
n;µν . (3.48)

The coefficient csw is known as Sheikholeslami–Wohlert coefficient from the name of the authors
which firstly proposed it [8]. Its value must be tuned appropriately in order to remove order a
effects from the action.

A complete application of the Symanzik program requires also to improve interpolating op-
erators used to compute correlation functions (which as the action, differs from their continuum
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counterpart for terms of order a), adding appropriate counter-terms with coefficient to be tuned
separately for each correlation function.

As all the improvement coefficient must be determined non perturbatively, this strategy of
improvement is quite tedious and expensive. In our works we have chosen a different strategy of
improvement for the fermionic action, which we will illustrate in section 3.3.4.

It has been shown that the problem of exceptional configuration occurring with Wilson fermions
when working at small quark masses is ameliorated when the Symanzik improvement program is
applied to the gauge action. At first order this requires to write the gauge action in terms of all
possible length 6 and 4 paths (which means to add rectangle and chair-shaped paths to the simple
plaquette). These can be heuristically understood as being an effect of the more non-locality of
the action: an action wrote in terms of longer paths enhances in functional integrals the rele-
vance of smoother configurations, associated to larger eigenvalues of the fermionic matrix, and so
suppresses exceptional configurations.

For this reason, although not necessary in order to achieve O (a) improvement, we have used
improved gauge actions in our computations, namely the tree-level Symanzik improved action for
the Nf = 2 simulations and the Iwasaki improved action for the Nf = 2 + 1 + 1 simulations, in
which all the O

(
a4
)

discretizations effects are removed from the continuum limit. In the first case
one includes only rectangles so that the gauge action reads:

Ssym = SG,W ≡
2

g2

∑

n

[

c0
∑

µ<ν

(
3−+TrU1x1

n;µν

)
+ c1

∑

µ<ν

(
3−+TrU1x2

n;µν

)
]

, (3.49)

where U1x1
n;µ,ν is the plaquette defined in eq. 3.31 while

U1x2
n;µ,ν = Un;µUn+µ̂;νUn+2µ̂;νU

†
n+µ̂+ν̂;µU

†
n+ν̂;µU

†
n;ν , (3.50)

is the rectangle originating on site n lying on plane µ, ν, and coefficients c0 and c1 are fixed
perturbatively to c1 = −1/12, c0 = 1− 8c1.

In the Iwasaki action also chair-shaped paths are included, and coefficients are fixed non-
perturbatively and thus allow to achieve a better suppression of exceptional configurations.

3.3.4 Twisted mass regularization

We have shown in details how to regularize QCD in the scheme proposed by Wilson. All our
computations have been performed with a modified version of Wilson regularization, called Twisted

Mass QCD.
In its simplest form, Twisted Mass lattice QCD describes two degenerate quark flavors:

χ ≡
(
χ1

χ2

)
. (3.51)

whose action:
S = χ̄Dtwistχ ≡ χ̄DWilson1

flavχ+ Stwist , (3.52)

contains an additional term:
Stwist ≡ χ̄iµγ5τ

flav
3 χ , (3.53)

where τ3 = diag {1,−1}.
This lattice regularization has many advantages with respect to the simple Wilson lattice QCD

which we will discuss in the following sections.
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3.3.4.1 Physical basis and continuum limits

For future discussions it is useful to define the polar mass M and the twist angle α:

M =
√

m2 + µ2, α = arctan (µ/m) , (3.54)

and rewrite the action (3.52) in terms of the more convenient variables:

ψ ≡ R (α)χ, R (α) ≡ exp (iαγ5τ3/2) . (3.55)

This is the so-called physical base (in opposition to the χ called twisted basis). In this basis
the non trivial flavor term is just associated to the value of the parameter r contained in the
fermionic matrix, which (omitting Dirac index) reads:

Di,j = 4f (α) δi,j −
1

2

∑

µ

[
(f (α) + γµ)Ui;µδi+µ̂,j + (f (α)− γµ)U

†
i−µ̂;µδi−µ̂,j

]
, (3.56)

where f (α) ≡ re−iαγ5τ3 , and the full action is:

S = ψ̄i

[
Di,j +Mδi,j1

flav
]
ψj . (3.57)

After taking the continuum limit the action simply reads:

S =

ˆ

d4xψ̄
(
/D +M

)
1
flavψ . (3.58)

Therefore in the continuum the twisted mass QCD describes two usual degenerate flavors of
quarks, while at finite lattice spacing the two quarks differ for discretization effects.

The relation between usual and twisted mass QCD (in the following often abbreviated as
tmQCD) is dictated by equation (3.55). Appropriate relation between tmQCD and QCD corre-
lation functions must be considered when performing computations in the twisted basis.

3.3.4.2 Historical motivation

Twisted term was originally introduced in [9] to add an infrared regulator to the Dirac matrix
(3.11). The eigenvalues of the Dirac matrix fluctuate configuration per configuration, and at
small quark mass exceptional configurations with anomalously low eigenvalues may appear, whose
presence put strong problems in the numerical analysis, and in particular limits the smallness
of the quark masses which can be analyzed at a fixed lattice spacing. By making use of the
γ5−hermiticity of the Wilson operator:

(γ5DWilson)
† = γ5DWilson , (3.59)

it can be shown that:
detDtwist = det

[
(D +m) (D +m)† + µ2

]
, (3.60)

with D being the massless Wilson fermionic matrix.
Eigenvalues of the quadratic form (D +m) (D +m)† are real and non-negative, and twisted

term expels all the eigenvalues of the Dirac matrix from a strip of size 2µ from the real axis, thus
allowing to analyze lower quark masses.
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3.3.4.3 Automatic order a improvement at maximal twist

In the case in which α = π
2 all the quark mass comes from the twisted term, and f (α) reduce

to γ5τ3r. In this situation called maximal twist the theory at finite lattice spacing describes two
flavor of Wilson fermions regularized with two opposite value of r, each carrying a nontrivial Dirac
structure γ5 [9].

This situation has a very nice property: parity even correlation function (which include all
the physical correlation functions) are automatically O (a) improved, and O (a) discretization
effects will affect only parity odd (unphysical) correlation functions. Let us sketch a proof of this
remarkable features of tmQCD.

Through Symanzik expansion (section 3.3.3) it can be shown that O (a) discretization effects
in parity even correlation functions computed in Wilson regularized QCD are odd with respect
to the sign of r. Therefore it could be possible to get rid of all the O (a) discretization effects by
averaging correlation functions computed with r = +1 with the same functions computed with
r = −1: but this is exactly what happens in tmQCD at maximal twist, where the average is
automatically performed between the two quarks of the doublet.

3.3.4.4 Tuning to maximal twist

We have already stressed that the interaction renormalizes additively the quark mass, and in
particular the untwisted term m. This means that in the full renormalized theory the maximal
twist condition cannot be realized by just setting m = 0 (that is, κ = 1/8). On the contrary, one
has to tune m (and thus κ) to a particular value in such a way that the renormalized Wilson mass
mR defined by equation (3.19) is 0.

This can be achieved by making use of the Partially Conserved Axial Current relation:

mR =
ZA
〈(
∂µAa

µ (x)
)
P a (0)

〉

2ZP 〈P a (x)P a (0)〉
, (3.61)

descending from the axial untwisted Ward identity [10], through which the renormalized Wilson
mass can be determined. Being interested in getting a null mR, it is sufficient to tune k to get a
null value of the correlation function

〈(
∂µAa

µ (x)
)
P a (0)

〉
. It is worth mentioning that this is not

the only possible way to tune the theory to the maximal twist. Different choice are possible and
in principle they might provide slightly different critical value for κ. These difference are however
higher order discretization effects.

3.3.4.5 Simplifications in renormalization and main drawbacks

The usage of Twisted Mass regularization at maximal twist is fruitful also for simplifying the
renormalization of some hadronic matrix element, and make easier to perform some computations.
For example the decay constant fPS of a pseudo-scalar meson PS composed of two quarks of mass
µ1, µ2 discussed in chapter 2 in Wilson regularization is computed as:

fPSPµ =
〈
0
∣∣AR

µ

∣∣PS (P )
〉
, (3.62)

with AR
µ being the renormalized axial current, which can be computed on lattice only through an

appropriate renormalization procedure.
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In Twisted mass in particular it requires to compute the renormalization constant ZV , but
making use of the already cited PCVC relation holding at maximal twist, it can be also computed
as:

fPS = (µ1 + µ2)
〈0 |P |PS〉

M2
PS

. (3.63)

Being these all bare quantities, they do not require any renormalization procedure, and are
therefore simpler. Also other more complicated hadronic matrix elements, such as the BK pa-
rameter involved in the neutral K mixing, can be renormalized more easily than in plain Wilson
regularization, by carefully choosing the sign of the r parameter regularizing the quark composing
the K meson [11].

From the other side, the Twisted terms break parity and isospin at finite lattice spacing.
The breaking of the parity induces mixing between pseudo-scalar and scalar particles, for

example mesons. Being scalar heavier than pseudo-scalar mesons, this is not a problem when one
is interested in looking at the lighter ones, because scalar mesons appear as excited states whose
presence goes away in the continuum, but can be more troublesome if one is interested in looking
at the scalar mesons.

Isospin breaking instead leads to a breaking of the SU (2) vectorial symmetry of QCD with
two degenerate flavor, which induces a non-cancellation of disconnected contribution to neutral
hadron correlation functions. The lack of this symmetry at finite lattice spacing means for example
that M+

π = M−
π ,= M0

π for discretization effects, and that the neutral pion contains contribution
coming from disconnected terms. This can also lead to a greater number of mixing between
hadronic operator and make renormalization more difficult.

3.4 Numerical analysis

Apart from the free theory case already considered, the integrals of the kind (3.36) cannot be
solved in a closed analytical form, so they have to be computed numerically. This means that one
has to perform computations at fixed lattice spacing a and volume V , by making use of a numerical
integration scheme, and to extrapolate to the continuum and infinite volume the observables of
interest. We will review carefully all the steps involved in the procedure.

3.4.1 Integration over fermionic degrees of freedom

Let us consider the partition function (3.36). Fermionic fields are anti-commutating variables,
which in order to be treated numerically should be represented in terms of matrices of rank equal
to the lattice volume. This would make the computations unfeasible already at very small volumes.
One can avoid dealing with such representation by making use of the relation:

ˆ

D [ψ,ψ∗] exp [−ψ∗Mψ] = detM , (3.64)

coming from a particular case of the Wick theorem. In this way one get rids of the integrals over
the quark fields at the cost of having to deal with a much non local integrand. The partition
function can be expressed as the integral over all the configurations of fields Ui;µ:

Z =

ˆ ∏

i;µ

dUi;µ

∏

f

detMf exp (−SG,W ) . (3.65)
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The value of a quantity O will be computed as:

〈O〉 =
ˆ ∏

i;µ

dUi;µO (U) ρ [U ] , (3.66)

where we have defined:
ρ [U ] ≡

∏

f

detMf exp (−SG,W ) /Z , (3.67)

and with O (U) being expressed in terms of the field Ui;µ, according to the Wick theorem.

3.4.2 Monte Carlo methods for the gauge degrees of freedom

Having get rid of the fermionic degrees of freedom we are left with the integral over the gauge
fields, for which no relation such as 3.66 exists and so have to be computed in a numerical form.

It is clear that already with lattice grids of few points per size, the number of degrees of
freedom is too large to allow for a direct evaluation of integrals with technique such as Simpson
integration, so one need to relies on Monte Carlo techniques. These class of numerical integration
methods can be applied whenever the integral assumes the form of a weighted average over the
integrand space, and is very suitable when the weight is highly peaked over a limited region of
the integrand space.

In Wilson discretization it can be shown that detM is real (and positive on non-exceptional
configurations) so that Eq.3.66 can be regarded as the average value of O over the space U weighted
with the probability distribution ρ.

Let us indicate with Ua a certain realization of the gauge fields Ui;µ. The first part of the
evaluation of O consists in generating a set SN of N configurations Ua, a ∈ [1 . . . N ] according to
the distribution function ρ [Ua]. This is performed by making use of hybrid techniques which mix
normal Monte Carlo methods with molecular dynamics in order to avoid the explicit evaluation of
the fermionic matrix determinant. Being this a very technical point which has not been subject
of the thesis work, we will not review it and we will assume to be able to generate such set SN .

For each gauge configuration Ua one measures the value of the observable Oa on such configu-
ration, and then an approximate estimate ŌN of the observable is given by simple average of the
N determinations Oa:

ŌN ≡
1

N

N∑

a=1

Oa . (3.68)

Under the assumptions of the central limit theorem, for a sufficiently large N the estimator
ŌN will be distributed as a Gaussian with mean O and variance given by

VarρŌN ≡
C

N
VarρO , (3.69)

where C is a constant depending by the correlation between gauge configuration contained in the
ensemble. If all the configurations in the ensemble were independent each other, then C = 1.
Algorithms used to produce the gauge configurations instead make the configuration contained in
the ensemble SN correlated each other, so that we will always have C > 1 and unknown a priori.

In order to make an accurate estimate of the error εŌN
≡
√

VarρŌN jackknives and bootstrap

techniques have been used through all this work.
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After generating the gauge configurations, these can be used many times in order to determine
different quantities of interest. Let us come back to our original problem of computing correlation
functions and let us see in concrete how they can be obtained from gauge configurations.

3.4.3 Hadronic correlation functions

The discretized expression of the pion correlation function 3.9 reads:

Cu,d̄
x,t =

1

Z

ˆ




∏

f

dq̄fi dq
f
∏

µ

dUi;µ




{(

d̄x,tγ5ux,t
)
(ū0γ5d0) e

−
∑

f ψ̄
fMfψf−SG,W

}
, (3.70)

where for simplicity we have omitted the .̂ By making use of the Wick theorem one can again get
rid of the fermionic integrals and write the correlation function in term of the contraction:

C,x,t = −
〈
Tr
[
γ5S

u
(,x,t);0γ5S

d
0;(,x,t)

]〉
, (3.71)

where Sq
a;b is the propagator from a to b for quark q:

Sq
a;b ≡ (M q)−1

a;b , (3.72)

and for simplicity we have defined:

〈f〉 ≡
1

Z

ˆ

f
∏

i;µ

dUi;µe
−SG,W

∏

f

detMf . (3.73)

This expression has a simple physical interpretation: (Mu)−1
(,x,t);0 propagates an up quark from

the origin to the point (2x, t) while
(
Md
)−1

0;(,x,t)
propagates a down quark in the opposite direction,

as depicted with diagrams in fig. 3.1.

u

γ5 (0) γ5 (2x, t)

d

Figure 3.1: Pictorial depiction of correlation function.

In this way the pion correlation function can be computed as a product of inverse matrix. In
particular one need actually only one row of each matrices, which can be obtained by solving an
appropriate linear system. The hadronic correlation function can then be obtained by contracting
the Dirac indices according to the present gamma structure, and taking the trace over the color
indices.

We are left with a free space index 2x. As already stated, the correlation function C,x,t represent
the propagation of meson between the origin and the point 2x, t, so that the quark do has a
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completely undefined momentum. In order to have mesons with definite spatial momentum 2p (in
lattice units) one should have used the appropriate convolution of the interpolating operators,
which is the Fourier transformed of the creation operators at a fixed point:

Õ,p,t ≡
1√
N

∑

,x

e−i,p,xO,x,t, N ≡
∑

,x

. (3.74)

By making use of the space translation invariance of the theory one can avoid using such
operator on the source, and factorize the Fourier transform out from the trace:

C,p,t =
∑

,x

e−i,p,xC,x,t . (3.75)

In the case we want the meson to be at rest one simply has to sum the correlation function
C,x,t over the space index 2x.

After projecting to zero momentum the correlation function, by inserting the sum over all
intermediate state we get:

CA,B
t =

〈
ÕA
,0,t
ŌB

0

〉
=
∑

k

e−tEk

2Ek
〈0|OA |k〉 〈k|OB† |0〉 =

∑

k

e−tEk

2Ek
ZA
k Z

B∗
k , (3.76)

having defined the matrix elements:

ZA,B
k ≡ 〈0|OA,B |k〉 . (3.77)

3.4.4 Ground state mass measurement

The summation gets contributions from the states |k〉 with definite momentum coupling to the
operator OA and OB. At finite time this in general is a sum of infinite exponentials:

Ct = c0e
−E0t + c1e

−E1t + . . . . (3.78)

Let us call E1 the state with the lowest energy after the fundamental. If we collect the term
relative to the lowest state, and indicating with ∆Ei ≡ Ei − E0 the summation reads:

Ct = c0e
−E0t

(
1 +

c1
c0
e−∆E1t + . . .

)
. (3.79)

At short times all the terms contribute in the sum, but at times t larger than the reciprocal
of the first energy gap all the terms inside the bracket are suppressed, so that only the ground
states survive. The energy E0 can then be determined by looking at the slope of the logarithm of
the correlation function at times larger than 1/∆E1:

logCt

t' 1
∆E1−→ q − E0t . (3.80)

Actually the energy gap is not known a priori, as well as E0. It is therefore necessary to
determine it by looking at the correlation function itself, by searching for the time interval where
the logarithm of the correlation function shows a linear behavior.
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3.4.4.1 Effective mass

In order to better quantify the contamination from excited states in the correlation function, it is
very useful to define for each time point the effective mass:

meff
t ≡ log

Ct

Ct+1
. (3.81)

At times large enough where only the lowest states dominate the correlation function Ct =
ce−E0t

0 and the effective mass is constant in time: meff
t = E0. Where more than one state

contributes to the correlation function, the effective mass deviate from the constant behavior.
In general the simple exponential behavior is modified by periodic boundary conditions: oper-

ator ŌB
0 creates states propagating from t = 0 both in the positive and in the negative direction.

Meson correlators are symmetric with respect to the exchange t → T − t up to a possible
minus sign:

Cmes
t = ±Cmes

T−t , (3.82)

so that where the lower lying state dominates the correlation function shows in the symmetric
case the behavior:

CA,B
t =

ZA
0 Z

B∗
0

E0
e−TE0/2 cosh [E0 (T/2− t)] , (3.83)

and in the anti-symmetric case:

CA,B
t =

ZA
0 Z

B∗
0

E0
e−TE0/2 sinh [E0 (T/2− t)] . (3.84)

This is not the case for baryons, where after projecting to definite parity states, particles with
opposite parity having different masses propagate in the two halves of the lattice, so that the
correlation function takes a more general form of the kind:

CA,B; bar p
t = c(p)0 e−tE(p)

0 + c(−p)
0 e−tE(−p)

0 . (3.85)

If one wants to take into account properly the periodicity for mesons, the effective mass has
to be computed by solving iteratively for meff

t the equation:

Ct

Ct+1
=

cosh
[
meff

t (T/2− t)
]

cosh
[
meff

t (T/2− t− 1)
] , (3.86)

for the symmetric case, and similarly with sinh instead than cosh for the anti-symmetric.
The computation of the effective mass for a certain time t is done in terms of Ct and Ct+1 so

the effective mass is always defined up to t = T/2 − 1.

In Fig. 3.2 we illustrate an example of computation of the correlation function for Pions
composed of quark of various masses on lattice of time extent T = 48, plotted in logarithmic
scale. The correlation function is periodic around t = 24, and the linear behavior expected from
equation 3.80 is apparently visible from t - 6.

In Fig. 3.3 we show the effective mass computed according to equation 3.81 (dashed lines)
and to equation 3.86 (continuous lines), computed after symmetrizing the correlation function. It
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is clear that neglecting the periodicity of the correlation function leads to an error which becomes
larger and larger as t gets nearer T/2. The error gets instead smaller as the meson gets heavier:
light hadrons propagate for longer distance and feel boundaries more than heavy particles.

It is also clear that the contribution from excited states cannot be neglected before t - 10−12,
revealing the great importance of the effective mass analysis in the determination of the region of
domination of ground states.

3.4.4.2 Correlated vs uncorrelated fits

After having identified the region where the lowest state dominates we can proceed to determine
the mass of the ground state. As the computation of correlators is done numerically, with finite
statistics the value of the correlation is known only within an error. Therefore the hadron must
be determined by fitting the correlation Ct with the function (3.83), (3.84) or (3.85) (according
to the correlation periodicity) over an appropriate time range. In general there is no theoretical
argument for omitting points far both from 0 and T , so that when one is sure that the error is
properly computed the time range should be of the form [tmin;T − tmin] for mesons and [tmin;T/2]
for baryons. In the following we will always assume to treat appropriately the possible symmetry
of the correlation functions and quote time range as [tmin;T/2].

Being typically computed over the same gauge ensemble, values of correlation function at
different times are correlated each other, that is:

〈CtCt′〉 ,= 〈Ct〉 〈Ct′〉 . (3.87)

Therefore in theory one should perform a two-parameters fit of the correlation function by
minimizing the correlated χ2:

χ2
corr ≡ δtΣ

−1
t,t′δt′ , (3.88)

where we have defined the deviation between data and theoretic function:

δt ≡ Ct − f (t) , (3.89)

and Σ is the (exact) correlation matrix of C:

Σt,t′ = 〈CtCt′〉 − 〈Ct〉 〈Ct′〉 . (3.90)

The matrix Σ can be estimated only from the configuration per configuration fluctuations of
the correlation function, so that with finite statistics the matrix is known only approximatively.
The correlated fit should be advisable in all the cases in which the off diagonal elements of Σ
are not negligible, that is when correlation between different elements of fitted data is sizable.
Unfortunately in these cases the matrix Σ is very often badly conditioned (the ratio between the
larger and smaller eigenvalues of the matrix is large), and then matrix Σ−1 is known with large
errors. Using such kind of matrix can spoil the results of the fit, and lead to unphysical results,
so in all fits of correlation functions we have used the diagonal approximation:

Σt,t′ = σtδt,t′ . (3.91)
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3.4.4.3 Hadron mass determination

If one is interested both in the determination of the matrix elements and the hadron mass, a
two-parameters fit is necessary. If instead one is interested only in the determination of the
hadron mass, it is possible to perform a constant fit of the effective mass meff : being constructed
(qualitatively) as a ratio between correlated quantity Ct and Ct+1, the error on meff

t this quantity
is in general smaller than those of Ct, and meff at different times more uncorrelated than Ct.

In Fig. 3.4 we show the results of the 2 parameters fit of the correlation function Ct with the
function 3.83 (with the constraint ZA

0 = ZB
0 = Z0) together with the constant fit of the effective

mass, plotted over the effective mass. It is clear that the fit of the effective mass provide a more
precise estimate of E0.

In all the situations in which we have been interested only in the energy determination of
the hadrons, we have used the effective mass (or similar quantities built for more complicated
correlators). In the cases in which instead both energy and matrix element were needed, we have
used the direct fit of the correlation function in order to have a better control of the correlation
between the errors of E and Z so obtained.

3.5 Systematics effects

Let us analyze the various problems affecting a typical lattice computation and the techniques
used to treat them. We will put special care on the solution adopted in our work.

3.5.1 Finite size effects

When performing computations on lattice, the volume act as infrared cut-off on the obtained
observable that has to be removed at the end of the computation. The effects of the finite volume
is to modify the energy levels of the particle described by the theory. In a finite box the energy
levels become discrete and are shifted. The shift of the energy levels can be shown to be related
to the scattering length of particles in the box, and thus in general can be computed analytically
and removed without performing explicitly the V → ∞ limit.

The relevant scales for determining the finite size effects (FSE) are the side L of the box
simulated and the mass of the lowest particle of the theory, therefore the pion mass Mπ which
having a greater propagation length is the most affected by the presence of borders.

It can be shown that when the final state contains not more than one particle, FSE are
exponentially suppressed1 functions of the quantity LMπ. It can be shown that when constraint:
L " 2 fm and MπL . 1 Chiral Perturbation Theory (ChPT) [12] can be used to compute the
effects of finite borders [13].

In most of our computations the parameter MπL is larger than 4, so FSE are expected to be
small and therefore their presence treatable in ChPT. We checked explicitly the amount of FSE
by performing in one case two simulations, at the same parameters but the volume. By comparing
the results obtained at different volumes it is possible to quantify these effects. The only case in
which these effects have been found sizable and taken into account is the computation of the light
quark average mass (see section 4.2), while for other quantities the effects are negligible compared
to other errors.

1In presence of multiple particles in the final state, FSE are power functions of a.
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3.5.2 Quenching effects

Up to the late nineties computational power available was not sufficient to allow to take into
account the relevance of the fermionic determinant in lattice computations. For this reason all
lattice calculations were performed neglecting the detM contribution in the action. This corre-
sponds to perform the mquark → ∞ limit of the action, so that “sea” quark do not propagate. For
these reason this approximation is known as quenching of the fermionic degrees of freedom.

3.5.2.1 Quenching and non-unitarity

The generation of the gauge configurations at that time was performed in the pure Yang-Mills
theory, so that fermions appear as external “valence” classical fields only when computing fermionic
correlation functions. It is easy to understand that perturbatively this corresponds to neglect
diagrams containing fermionic loops in the computation of the correlation functions.

In general it is always possible to perform computation choosing different regularization for
the sea and valence quarks (respectively the quarks associated to the generation of the gauge
configurations and to the computation of correlation functions). These regularization scheme are
called non-unitary. If the renormalized mass of the sea and valence quark2 is chosen equal, the
non-unitarity leads only to modified cut-off effects which do not affect the continuum physics, but
in general this is not the case. In particular taking the chiral limit for non unitary valence quark
can lead to divergences in correlation, so that special cares must be taken.

3.5.2.2 Light quark unquenching and chiral limit

The quenched theory in the continuum describes a theory quite different from QCD, so that one
expect all the quenched computations to be affected by a non evaluable systematic error, and
would like ultimately to remove the quenching effect and perform computation in full QCD.

In the last 10 years the development in algorithms and machines made it possible to start
performing calculation taking into account the presence of the fermionic determinant. In all
regularizations, lower value of the quark mass corresponds enhance the density of low eigenvalues
of the fermionic matrix, and this makes computations more and more demanding and difficult as
the value of mquark is lowered. With Wilson family regularization the lowest value of quark masses
considerable without exceptional configuration problem to occurs is an increasing function of the
lattice spacing, so that in order to simulate lower quark masses one has to decrease the lattice
spacing. From the other side, one is forced to increase simulated volume in order not to have
large finite volume effects as explained in section 3.5.1. Therefore in general the number of lattice
point has to be increased in order to simulate lower quark masses. Given the present amount of
available computational power it is not possible to perform computations at physical light quark
mass having at the same time under control the lattice discretization and finite volume effects,
and one has to sacrifices one or more of these requirement: in particular one typically works with
nonphysically large quark masses, thus performing a partial quenching of the fermionic degrees of
freedom.

In our computations we have worked with light quark masses ranging from 15 up to ~3 times
the physical up/down quark average mass. The effect of the partial quenching is taken into

2Sea quarks are those appearing in the determinants of the lagrangian used to generate the gauge configuration.
Valence quarks are those from which external states are built.
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account by performing an accurate chiral limit mlight → mphysical during the computations, as
will be described carefully in an appropriate section of each studied quantities.

Generally speaking in most of the hadronic matrix elements the unquenching effects have been
found to be quite small, if not negligible.

3.5.2.3 Strange and charm unquenching

Computations presented in chapters 4, 6 and 5 are performed by taking into account only the
propagation of the two light quarks (up, down) and therefore will be indicated as Nf = 2 simula-
tions. The inclusion of the other quarks is expected to play a marginal role (especially those of
the three heavier quark, charm bottom and top). Moreover the twisted mass regularization in its
simple form is well suited to simulate pairs of degenerate quarks, therefore the up/down doublet,
and requires modification in order to deal with a non degenerate doublet such as strange/charm.

The effect of the quenching of an heavy quark (such as the charm, or possibly the strange)
could be kept into account (or at least roughly quantified) by performing a reweighting of the
gauge ensemble, that is by computing:

〈O〉unq =
´

D [U ] detMqOe−Sw

´

D [U ] detMqe−Sw
=

´

D[U ] detMqOe−Sw
´

D[U ]e−Sw
´

D[U ] detMqe−Sw
´

D[U ]e−Sw

=
〈O detM〉
〈detM〉

. (3.92)

As an effect of the difficulties related to the evaluation of the determinant of the fermionic
matrix, this method has never been tested. For these reasons the mentioned computations are
affected by an unpredictable quenching effect, which is expected to be much smaller than the
already small quantified light quark quenching (see comment in the ending of previous section).

For example a comparison of our Nf = 2 result for the B and Bs decay constants, to existing
results from Nf = 2+1 quark flavor simulations [14,15] suggests that the error due to the partial
quenching of the strange quark is smaller at present than other systematic uncertainties.

Nonetheless ultimately one would like to get rid also of this effect: for this reason ETM
collaboration has started the generation of a new set of Nf = 2+1+1 gauge ensembles including
also the unquenching of the strange and charm quarks, on which we will comment in chapter 7.

3.5.3 Discretization effects and continuum limit

Lattice regularized theory reproduces the original theory only in the continuum limit a → 0.
Observables computed at finite lattice spacing will differ from its continuum counterpart for finite
terms which go to zero only in the continuum limit, generally called discretization effects.

In order to extract continuum physics it is therefore necessary to compute observables at
various finite lattice spacings and extrapolate them to a → 0.

This extrapolation induces errors on the observables, so one should try to work at the smaller
possible lattice spacing. As the lattice spacing is decreased, the number of lattice points for
each direction has to be increased in order to keep the same fixed physical volume, thus the
computational efforts required to make any calculation increases with the decreasing of a. The
minimal lattice spacing affordable is dictated by the available computational power.

Assuming to be able to remove from observables discretization effects up to order a through
some kind of improvement, we will be left with effects of order a2 and superiors. Discretization
effects are typically parametrized as polynomial in a. Data computed at finite lattice spacing is
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fitted with such polynomial and the extrapolation is done numerically extrapolating the fitted
function.

3.5.4 Lattice spacing determination

When choosing the lattice spacing a at the beginning of the computations, one has to fix the
gauge coupling g at the value g (a) that it assumes at the chosen scale. The running of g with a
is given by the β-function (see Eq. 3.40), which is known only perturbatively up to few orders in
g, and the absolute relation between the two quantities is fixed by ΛQCD, which is only known
within error.

Therefore in general is not possible to fix exactly g to the value required for the chosen lattice
spacing, and an error will be committed. Looking the problem the other way around, as g fixes
univocally the lattice spacing, a will be different from what is expected. This means that at the
beginning of the computation one cannot choose exactly at which lattice spacing he is working,
but can only fix it roughly, by taking a more or less reasonable value of g, with the help of the
information coming from previous studies.

All quantities determined on lattice are known only in terms of lattice spacing. In order to
convert all quantities to physical units, a good knowledge of the lattice spacing is needed, so
after performing the computations one needs to re-determine it. This can be done by choosing
a quantity G of dimension d and computing its value in lattice units Ĝ. The lattice spacing will
then be given by the ratio:

a =
(
G/Ĝ

)1/d
. (3.93)

3.6 Non perturbative renormalization

Although some observables such as hadron masses can be computed and directly related to their
physical counterpart, in general this is not true: the process of quantization of the theory re-
define parameters (mass, couplings) and operators, so that the before been able to compare
quantity computed in a regularized theory with physical observables, one has to identify their
correct quantum definition. This process is achieved through the renormalization of the theory.

Different kinds of renormalization can take place. An operator O can renormalize multiplica-
tively: Oren (a) = ZO (a)O, where ZO can in general be a function of the cut-off a; can have an
additive renormalization constant Oren (a) = CO (a) + O; it can mix with operator carrying the
same quantum numbers O (a) = c1 (a)O1+ · · ·+cn (a)On, where Oi are all operators carrying the
quantum numbers of O. All these possibility can occur simultaneously, and complicate scenarios
can happen.

When renormalizing the theory one need to define a renormalization scheme imposing some
kind of condition on operators matrix elements that fix the values of renormalization constants
and mixings coefficients.

In the continuum the most used scheme is the MS scheme, which is very suitable when dealing
with perturbative computation. On lattice, perturbation theory suffer from various complication
which makes almost impossible to perform any calculation beyond the second order, and therefore
one often prefer to rely on non-perturbative methods. The more used is by far the RI/MOM
scheme [16], which been used extensively through all the present thesis work. However having not
worked directly with it, we limit to sketch it in the following.
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In order to keep the discussion simple we consider only the case of bilinear operators such as:

OΓ ≡ ūΓd , (3.94)

where Γ is a combination of gamma matrices, and let us call ZΓ the multiplicative renormalization
constant of such operator, so that Oren

Γ = ZΓOΓ. One compute non-perturbatively in the full
quantized theory the expectation value of the operator OΓ between quark fields status |p〉 at
momentum p, and choose ZΓ such that:

ZΓ 〈p| OΓ |p〉
∣∣∣
p2=µ2

= 〈p| OΓ |p〉tree
∣∣∣
p2=µ2

, (3.95)

where 〈p| OΓ |p〉tree is the matrix element computed at the tree level, and µ is a scale such that:

Λ2
QCD / µ2 / 1/a2 . (3.96)

This ensure from one side (µ2 / 1/a2) that cut-off effects are small, and from the other side
(Λ2

QCD / µ2) that one is working in a perturbative regime and therefore can connect RI/MOM

with other schemes such as MS through continuum perturbation theory [17] (a typical value for
µ is 2 GeV).

The matrix element on the left side of equation 3.95 is the amputated two points Green
function and might be computed as

〈p| OΓ |p〉 =
1

12
tr
(
S−1(p)GO (p)S−1 (p)

)
, (3.97)

with GO (p) being the Fourier transform of the un-amputated Green function

GO (p) =

ˆ

d4x d4y e−ip·(x−y)GO (x, y) =

=

ˆ

d4x d4y e−ip·(x−y) 〈S (x, 0)ΓS (0, y)〉 =

=

〈(
ˆ

d4x e−ip·xS (x, 0)

)
Γγ5

(
ˆ

d4y e−ip·yS (y, 0)

)†

γ5

〉

=

=
〈
S (p)Γγ5S

† (p) γ5
〉
,

where we have defined the Fourier transform of the propagator

S (p) =

ˆ

d4x e−ip·xS (x, 0) , (3.98)

and its inverse S−1 (p), and we have made use of the γ5 hermiticity property of the propagator.
In order to make the renormalization procedure mass independent, the 3.95 must be imposed

at null value of all quark masses. This means that, being impossible to work directly at null mass,
a chiral extrapolation must be performed in order to fulfill the renormalization condition. Other
complications arising in the case of power divergence, mixing with other operators, etc must be
treated in a case-by-case approach.
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Chapter 4

Quark masses

Quark masses are fundamental parameters of the Standard Model. A precise knowledge of their
values is of great importance for many different reasons.

From a phenomenological point of view, several useful observables to constrain the SM or to
search for New Physics depend on quark masses, thus requiring their accurate values in order to
make significant theory vs. experiment comparisons.

From a more theoretical side, explaining the quark mass hierarchy, which is not predicted by
the SM, is a deep issue and a great challenge.

From a practical point of view, quark masses are parameters of the lattice QCD lagrangian
and their values need to be fixed as well as that of the strong running coupling αs.

Although many different observations indicate that hadrons are constituted by quarks, as
a consequence of their peculiar interactions quarks are not observed as free objects in nature,
therefore the their masses cannot be directly measured and have to be inferred.

4.1 Lattice determination with Nf = 2 gauge ensembles

Lattice QCD allow one to determine quark masses non-perturbatively starting from first principle.
Bare quark masses appear explicitly as parameters in the QCD lagrangian, and can be fixed to
their physical values by imposing to a certain observable G (mq) to reproduce its experimental
value Gphys.

One of the more common and more suitable choices is to fix the quark masses through the
mass of the pseudo-scalar mesons MPS . This strategy has many advantages: meson masses are
simple to extract from lattice simulations thanks to the good signal/noise ratio, their physical
value are very well known, and many of the systematic effects involved in the analysis can be
treated with the help of Chiral Perturbation Theory. Most important, the pseudo-scalar mesons
are quasi-Goldstone bosons, so their squared mass is directly related to the mass of the valence
quarks, namely:

M2
PS ∝ (mq1 +mq2) . (4.1)

In order to fix the value of a quark mass one has to solve numerically the equation MPS (mq) =

Mphys
PS , by tuning the quark mass mq iteratively up to reproducing the physical mass of the pseudo-

scalar meson PS. In order to avoid the demanding computation to become prohibitive, we evaluate
MPS over a discrete set of quark masses, find an analytical function describing the data, and use
it to interpolate or extrapolate to the physical meson mass.
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In the real world all quark masses contribute simultaneously to every observable, so that in
theory one should determine quark masses all at once. In the following instead we will consider
the determination of each mass in a separate analysis, starting from the lightest Up/Down up to
the case of the Charm. We will perform our analysis over the gauge configurations obtained with
Nf = 2 light sea quarks, and therefore only the quark u and d are treated in a fully unquenched
way. This corresponds to having neglected the effect of all the other quarks in virtual loops, so
that the value of their masses can affect only quantities in which they appear as external states.

Stating it the other way around, having neglected all quarks but the lights means that ob-
servables might differ from the value in “full” QCD. These differences are generally expected to
be very small, as explained in section (3.5.2).

This part of the work is organized in this way. In Section7.1.4 we discuss the details of the
performed computation. In section 4.2 we discuss the determination of the average up/down quark
mass, while in sections 4.3 we determine the strange and in section 4.4 the charm masses.

This chapter is based on the published paper [18].

4.1.1 Simulation details

Our calculation is based on a set of 13 ensembles of gauge field configurations generated by the
European Twisted Mass Collaboration (ETMC) using the tree-level improved Symanzik gauge
action discussed in section 3.3.3 and the twisted mass quark action at maximal twist, discussed
in section 3.3.4. Gauge configurations contains two mass degenerate dynamical quarks. In order
words, strange and charm quarks are quenched in this calculation. More details on the gauge
ensembles used in this work can be found in [19, 20].

As discussed in previous chapter, we implement non-degenerate valence quarks in the twisted
mass formulation by formally introducing a twisted doublet for each non-degenerate quark flavor.
In the present analysis we thus include in the valence sector three twisted doublets, (u, d), (s, s′)
and (c, c′), with masses aml, ams and amc, respectively. Within each doublet, the two valence
quarks are regularized in the physical basis with Wilson parameters of opposite values, r = −r′ =
1. Moreover, we only consider in the present study pseudo-scalar mesons composed of valence
quarks regularized with opposite r. This choice guarantees that the squared meson mass m2

PS
differs from its continuum counterpart only by terms of O(a2mq) and O(a4). Details of the
ensembles of gauge configurations used in the present analysis are collected in Table 4.1.

In order to investigate the properties of the various light, strange and charmed mesons, we
simulate the sea and valence up/down quark mass in the range (14− 48) MeV (in MS at 2 GeV),
the valence strange quark mass within (77− 144) MeV, and the valence charm quark mass within
(1− 2) GeV (again in MS at 2 GeV). Strange and charm ranges have been chosen in such a way
to cover the physical value of relative quarks.

Quark propagators with different valence masses are obtained using the so called multiple mass
solver method, which allows to invert the Dirac operator for several valence masses at the same
time, with a mild increase in computational cost with respect to the computation of the single
propagator.

The statistical accuracy of the meson correlators is significantly improved by using the so-called
one-end stochastic method [21], which includes all spatial sources at a single time-slice.
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β a
(
10−3fm

)
N3

x ×Nt aml Mπ (MeV ) MπL Nconf

3.80 98 243 × 48 0.0080 410 5.0 240
0.0110 480 5.8 240

3.90 85 243 × 48 0.0040 315 3.3 480
0.0064 400 4.1 240
0.0085 450 4.7 240
0.0100 490 5.0 240

323 × 64 0.0030 275 3.7 240
0.0040 315 4.3 240

4.05 67 323 × 64 0.0030 300 3.3 240
0.0060 420 4.5 240
0.0080 485 5.2 240

4.20 54 323 × 64 0.0020 270 3.5 80
483 × 96 0.0065 495 4.3 240

Table 4.1: Details of the 13 gauge ensembles considered. See following section for a discussion
concerning the determination of the lattice spacing.

In this method one start defining a set of 4 random field ηtw ,β
n;α;a, β ∈ [1; 4] such as:

η
tw,β
n;α;a = δα(β)δn0,twZn;a, β ∈ [1, 4] , (4.2)

where n0 is the time coordinate of site n, tw is the time coordinate of the spatial source, andZn;a

is a random number extracted according to an appropriate distribution, satisfying the propriety:

〈
Z∗
n;aZm;b

〉
=
∑

r

Zr∗
n;aZ

r
m,b = δm,nδa,b , (4.3)

where r indicate the different realizations of η.
Starting from this definition one compute:

φqn;α,β;a = Sq
n,m;α,ρ;a,bη

β
m;ρ;b . (4.4)

where Sq is the propagator for the quark q. It is easy to show that the quantity:

Cq1,q2
t;A,B =

∑

r conf ;n

tr
[
γ5φ

r,q1†
n γ5ΓAφ

r,q2
n δn0,t+tw

]
, (4.5)

is a good estimator of the two points correlation functions such as 3.71. In fact using orthogonality
relation 4.3 and γ5 hermiticity this can be rewritten as:

Cq1,q2
t;A,B =

∑

,x; conf

tr
[
S,q1
t,,x;0ΓAS

,q2
0;t,,xΓB

]
. (4.6)

In typical situation one consider Zn;a distributed according to a gaussian or uniform over Z4,
and only one realization of η per configuration. Indeed, therms which averages to 0 performing
summation over r are also gauge variant, so that the summation over configurations already
contains an implicit summation over r.
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4.1.2 General remarks

4.1.2.1 Statistical methods

Statistical errors on the meson masses are evaluated using the jackknife procedure. We have used
16 jackknife bins for each configuration ensemble, verifying that bin length in each ensemble is
larger than autocorrelation time of the ensemble. Statistical errors on the fit results which are
based on data obtained from independent ensembles of gauge configurations are evaluated using
a bootstrap procedure, with 100 bootstrap samples.

4.1.2.2 Renormalization

The analysis is based on a study of the dependence of meson masses on renormalized quark masses,
with data at the four simulated values of the lattice spacing simultaneously analyzed. In twisted
mass QCD, when working at maximal twist, the renormalized quark mass m̄ is given by

m̄µ = Zµ
mm, (4.7)

with m being the twisted mass parameter Zm the renormalization constant at the scale µ , which
making use of the Partially Conserved Vectorial Current (PCVC) relation can be shown to be
equal to the reciprocal of the axial current renormalization constant Zm:

Zm = Z−1
P , (4.8)

For this quantity we use the results obtained in [22], which read:

ZP = {0.411 (12) , 0.437 (7) , 0.477 (6)} at : β = {3.80, 3.90, 4.05} , (4.9)

in the MS scheme at 2GeV. Here, and in the following, we denote by “bar” the quark masses
renormalized in the MS scheme and, if not otherwise specified, at the scale of 2 GeV. The errors
given in Eq. 4.9 do not account neither the discretization errors nor the uncertainty associated
with the perturbative conversion from the RI-MOM (see sec. 3.6) to the MS scheme. The
former are taken care of by performing on the renormalized quark masses the extrapolation to
the continuum limit. The uncertainty associated to the conversion from the RI-MOM to the
MS scheme is included in our final estimate of the systematic error on the quark masses. For
the renormalization constant at β = 4.20, not calculated in [22], we use the preliminary value

ZMS
P (2GeV)

∣∣∣
4.20

= 0.501 (20).

The uncertainty on ZP has been taken into account by including in the definition of the χ2 to
be minimized in the fits a term: (

Z̃i
P (a)− Zi

P (a)

δZi
P (a)

)2

, (4.10)

for each value of the lattice spacing and in each bootstrap sample, where Zi
P (a) ± ZP (a) is the

input value for the renormalization constant at the lattice spacing a and for the bootstrap i,
and e Zi

P (a) the corresponding fit parameter. This procedure corresponds to assuming for the
renormalization constant a Bayesian Gaussian prior [23].
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4.1.2.3 Scale setting

The simultaneous analysis of data at different values of the lattice spacing also requires the data
conversion from lattice units to a common scale. For the analysis in the pion sector, we have
expressed all quantities in appropriate units of the Sommer parameter r0 [24]. This is defined
in terms of purely gauge quantities, as the distance at which the force F (r) between two statics
quarks behaves like:

F (r0) r
2
0 = 1.65 . (4.11)

We use for r0/a in the chiral limit the values:

r0/a = {4.54(7), 5.35(4), 6.71(4), 8.36(6)} at β = {3.80, 3.90, 4.05, 4.20} , (4.12)

obtained from an extension of the analyses in [23,25] with the inclusion of all four lattice spacings.
As in [23], the chiral extrapolation of r0/a is performed by using three ansatze for the sea quark
mass dependence: linear only, quadratic only and quadratic+linear. The size of mass-dependent
discretization effects is verified by including in the fits O(a2ml) and O(a2m2

l ) terms, which turn
out to be negligible. The uncertainties on the results given in Eq. 4.12 include the systematic
errors estimated as the spread among the values obtained from the above-mentioned fits. In the
present analysis the uncertainty on the r0/a values is taken into account by adding a term to the
χ2 of the fit in a similar way to ZP , as explained above.

The analysis in the pion sector is also used to determine, besides the value of the average
up/down quark mass at the physical point, the lattice spacing at each coupling. The physical
input used for this determination is the pion decay constant fπ, whose computation in terms of
hadronic correlation function is explained in the next section.

In the successive determination of the strange and charm quark masses, the data are analyzed
directly in physical units.

4.2 Light quarks (up, down) average mass

In the following we will focus on the determination of the average light quarks mass:

ml ≡
mu +md

2
. (4.13)

Light quark average mass is much simpler to determine than the two separate masses for various
reasons. The difference between their mass is estimated to be of the same order of magnitude of
their average value, so one would expect large differences between observables related to hadrons
composed of different combinations of these two quarks. However the relevant scale for almost all
of these observables is ΛQCD, whose value is of some hundreds of MeV, and so much larger than
up and down quark masses. Moreover, the fermionic determinant of a theory containing two light
quarks with different masses is guaranteed to be definite positive only in a regularization with an
exact chiral symmetry (overlap fermions), which are very demanding in terms of computational
power.

In a numerical analysis any direct effect of the mass splitting would be of the same order of
magnitude of the statistical errors, therefore a direct determination of the two light quark masses
would be affected by a large error. In other words this means that at the present level of accuracy it
is enough in many cases to determine this quantity and use it in further computations. Correction
to the isospin degenerate case might be determined separately as we will discuss in section 6.
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In order to fix the light quark mass we have considered the Pion neutral meson mass Mπ0 =
135.0MeV as physical input. In the isospin symmetric world the mass of charged and neutral
pion should be equals, and it is known that the difference in mass between neutral and charged
pions induced by the light quark mass difference is quadratic in this quantity. Moreover the
electromagnetic effects on neutral pion mass are very small, so for these reasons, Mπ0 is the
quantity nearer to the value of the pion mass in the isospin symmetric limit light, and therefore
is the more suitable quantity to fix ml.

4.2.1 Correlation functions analysis

As already explained in section (3.2.2), a good interpolating field for pseudo-scalar mesons is
given by the local pseudo-scalar bilinear Oq1q2

PS = ψ̄q1γ5ψq2 . For this analysis we have computed
the correlation function:

C l
PS (t) =

〈
Oll

PS (t)Oll
PS (0)

〉
. (4.14)

The two light quark entering the correlation functions have been regularized with opposite r:
in this case the correlation is obtained by computing the single connected contraction:

C l,+−
PS = −

∑

conf

∑

n,m

tr
[
γ5D

−1
+ (n,m) γ5D

−1
− (m,n)

]
, (4.15)

where the ± refers to the sign of r. This contraction is equivalent (apart from small O
(
a2
)

effects)

to the C l,−+
PS , and the two have been averaged in order to improve statistics.

These contractions correspond to the so-called r-charged (or “twisted mass”) meson, which are
known to have better signal to noise ratio and much lower cut-off effects than the corresponding
r-neutral or “Osterwalder–Schrader“) meson (see section 3.3.4.5).

For each gauge ensemble we have considered only unitary Pions, e.g. those with the same va-
lence quark mass of the sea. Pion mass has been determined by fitting over an appropriate interval
[tmin, T − tmin] the correlation function C l

PS (t) with the single exponential state expression:

C (t) =
Z2
πe

−aMπT/2

aMπ
cosh [aMπ (T/2 − t)] , (4.16)

where Zπ and aMπ have been let as free minimization parameters, and where the “cosh” arises
instead of the simple exponential due to the backward propagating states as explained in section
3.4.4.1. The value of tmin has been chosen by examining the the effective mass and taking the
part at which it shows a plateau. In Fig. 4.1 we show an example of the effective mass for various
mesons at the same lattice spacing (β = 3.90) together with the mass resulting from the fit of the
correlation function.

After determining aMπ and Zπ we build afπ according to section 3.3.4.5. In order to determine
ml, a combined fit in terms of ml and a is needed.

4.2.2 Combined chiral and continuum fit

We have studied the dependence of the pion mass and decay constant on the renormalized quark
mass. For these quantities the predictions based on NLO-ChPT and the Symanzik expansion up
to O

(
a2
)

can be written in the form:

M2
π = 2B0ml ·

[
1 +

2B0ml

16π2f0
2 log

2B0ml

16π2f0
2 +P1ml + a2 ·

(
P2 +P3 log

2B0ml

16π2f0
2

)]
(4.17)
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Figure 4.1: Plot of the effective mass at four different values of the light quark mass at the same
lattice spacings. Fit lines are the values of Mπ obtained from the fit of the correlation functions,
plotted together with their errors. Light quark valence mass is equal to the sea one and is indicated
with am.

fπ = f0 ·
[
1− 2

2B0ml

16π2f0
2 log

2B0ml

16π2f0
2 +P4ml + a2 ·

(
P5 +P6 log

2B0ml

16π2f0
2

)]
, (4.18)

were ml is the renormalized quark mass and f0 is normalized such that fπphys = 130.7MeV.
We have fitted expressions (4.17) and (4.18) simultaneously over all available lattice data,

leaving bold quantities (discussed in more details below) as free fit parameters. We have checked
that the correlation between M2

π and fπ is quite small and can be safely neglected in building the
χ2.

In order to fit lattice data, we have converted pion mass and decay constant into units of r0
by multiplying them for the appropriate power of r0/a, thus:

(r0Mπ)
2 = (aMπ)

2 · (r0/a)2 (4.19)

(r0fπ) = (afπ) · (r0/a) . (4.20)

Also the fitting expression are to be intended in units of r0: therefore from the fit we have
determined 2B0r0, r0f0, a/r0, etc that have been converted in physical units after determining r0
(see below).

In fig. 4.3 we show the dependence of (r0mπ)
2 /ml on the renormalized light quark mass at

the four β, and the curves corresponding to the best fit of the lattice data according to Eq. (4.17),
while in fig. 4.3 we show a similar plot for r0fπ fitted according to Eq. (4.18).
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Figure 4.2: Dependence of (r0fπ)
2 on the renormalized light quark mass at the four lattice spac-

ings.. Empty diamonds represent the results obtained after extrapolating to the continuum limit.
Quark mass is renormalized in MS at 2 GeV.

4.2.3 Systematic errors

Let us discuss the various sources of systematic errors that affect the determination of the quark
masses.

4.2.3.1 Chiral extrapolation

For estimating the systematic uncertainty due to the chiral extrapolation we have also considered
a fit including a next-to-next-to leading order (NNLO) local contribution proportional to the light
quark mass square. In particular we neglected the logarithmic dependance from quark mass and
considered only polynomial term in m2

l . In this case we are not able to determine all the fitting
parameters and we are thus forced to introduce priors on the additional LECs. In this way we
find that the result for ml increases by 6%.

4.2.3.2 Discretization effects

As already mentioned, discretization effects on squared pseudo-scalar meson mass have been shown
to be proportional to a2ml. Pion mass is an exception to this rule: it has been recently pointed out
in [26] that in twisted mass regularization additional terms originate from the splitting between
charged and neutral pion mass. The cut-off dependence terms P3 and P6 in formulas 4.17 and

50



0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13
r0ml(2GeV)

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

r 0f π

β = 3.80
β = 3.90
β = 4.05
β = 4.20 
Physical point

Figure 4.3: Dependence of (r0mπ)
2 /ml on the renormalized light quark mass at the four lattice

spacings. Empty diamonds represent continuum limit results. Quark mass is in MS at 2 GeV.

4.18 are obtained by expanding the expression computed in 1-loop twisted chiral perturbation
theory [26]. Parameters P3 and P6 are directly related to the charged-neutral pion mass splitting
induced by twisted term so that it is possible to determine this splitting from their fitted values.
The squared mass splitting turns out to be ∆M2

π = − (33± 19) a2Λ4
QCD, consistent with a direct

evaluation performed by ETMC [27] (where it was determined to be ∆M2
π = −50a2ΛQCD).

In order to illustrate the dependence of the pion mass on the lattice cutoff, we have interpolated
the lattice data for M2

π at the four values of the lattice spacing to a common reference value of
the light quark mass, mref = 50MeV (in MS at 2 GeV), which is the only mass value where data
at the four different lattice spacings is simultaneously available. In other words we have taken for
each lattice spacing a the mass Ma,mnear

π of the pion made from the quark having renormalized
mass mnear more near to mref , and have defined:

Ma,ref
π = Ma,mnear

π

√
M2
π (mref , a)

M2
π (mnear, a)

(4.21)

where M2
π (ml, a) is fit function 4.17. The resulting values of (r0mπ)

2 obtained in this way are
shown in fig. 4.4 as a function of (a/r0)

2, together with the corresponding continuum extrapola-
tion. We see that discretization errors on the pion mass square are below 10% at β = 3.90 and
negligible within the fitting errors at β = 4.20.

In order to estimate the systematic uncertainty due to discretization effects we have performed
both a fit without the logarithmic discretization terms, i.e. with P3 = P6 = 0 in Eq. 4.2, and a fit
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without all O
(
a2
)

corrections, i.e. with P2 = P3 = P5 = P6 = 0. Both these ansatze turn out be
compatible with the lattice data. We find that the result for the up/down quark mass decreases
by approximately 2% and increases of about 6% in the two cases respectively, so that we estimate
an overall uncertainty due to residual discretization effects of ±4%. We have also tried to add
in the fit discretization terms of O

(
a2m2

l

)
or O

(
a4
)
. In both cases these terms turn out to be

hardly determined with our data, leading for ml to results consistent with those obtained from
the other fits, but with uncertainties larger by a factor three.

4.2.3.3 Finite volume effects

Lattice results for pion masses and decay constants have been corrected for finite size effects (FSE)
evaluated using the resumed Luscher formulae. The effect of the O

(
a2
)

isospin breaking has been
taken into account also in these corrections, according to the formulae computed in [28]. On our
pion data, FSE vary between 0.2% and 2%, depending on the simulated mass and volume. The
inclusion of the pion mass splitting in the FSE induces a variation of about 15− 40% in the finite
size correction itself. This effect is at the level of one third of the statistical error for our lightest
pion mass at β = 3.90 on the smaller volume, and even smaller in the other cases.
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4.2.3.4 Renormalization

We also include in the final result a systematic uncertainty coming from the perturbative conver-
sion of the quark mass renormalization constant from the RI-MOM to the MS scheme. Using the
results of the 3-loop calculation of [29], one can write the relation between the quark mass in the
two schemes as:

m (µ)

mRI (µ)
= 1− 0.424αs (µ)− 0.827αs (µ)

2 − 2.126αs (µ)
3 +O

(
αs (µ)

4
)
. (4.22)

The uncertainty due to the truncation of the perturbative series has been conservatively esti-
mated by assuming the unknown O

(
α4
s

)
term to be as large as the O

(
α3
s

)
one. Evaluating this

term at the renormalization scale µ - 3GeV , which is the typical scale of the non-perturbative
RI-MOM calculation in our simulation [22], and using αs (3GeV, Nf = 2) = 0.202, we then find
that this uncertainty corresponds to be less than 2%.

4.2.4 Determination of m̄l

The value of the physical up/down quark mass is determined by solving numerically the equation:

M2
π (m̄l)

f2
π (m̄l)

= (Mπ/fπ)
2
phys , (4.23)

where the left hand side of equation is the ratio of the fitted function, while the right hand side
is the experimental value of the ratio.

To summarize previous discussions and for future reference, we have performed fits based on
three different ansatze, which led to results:

L1 L2 L3

m̄MS, 2GeV
l [MeV] 3.55(14) 3.75(7) 3.78(17)

where:

L1 is our best fit is based on NLO ChPT with the inclusion of O(a2) discretization effects. This
fit corresponds to Eq. (4.17) with all parameters different from zero.

L2 same as L1 but without discretization terms, i.e. P2 = P3 = P5 = P6 = 0.

L3 same as L1 with the inclusion of a NNLO correction proportional to m2
l .

Adding all the systematic errors discussed in previous section in quadrature we obtain ml =
3.55 (14)

(
+28
−16

)
MeV in the MS scheme at the renormalization scale of 2GeV, where the two errors

are statistical and systematic, respectively. We symmetrize the error and obtain:

mMS, 2GeV
l = 3.6 (1) (2)MeV = 3.6 (2)MeV . (4.24)

Note that, in the symmetrized result, the uncertainties due to discretization effects, chiral
extrapolation and perturbative conversion give similar contributions to the final systematic error,
at the level of 4%, 3% and 2% respectively.
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4.2.5 Determination of r0 and lattice spacings

Actually equation 4.23 provides us with the value of ml still in units of r0, that is: r0ml. We can
determine r0 by taking the ratio:

r0 =
r0fπ

(
r0m̄

phys
l

)

fphys
π

, (4.25)

(or the equivalent for Mπ), where the numerator of the fraction is equation (4.18) computed at
the value r0m̄

phys
l previously determined. The so obtained value of r0 = 0.440(12) fm can then

be used to determine ml from r0m̄l
1.

The lattice spacings for each simulated β by taking the ratio:

a =
r0

r0/a
, (4.26)

They read, at β = {3.80, 3.90, 4.05, 4.20} respectively:

a = {0.098(3)(2), 0.085(2)(1), 0.067(2)(1), 0.054(1)(1)} fm , (4.27)

where again the two quoted errors are statistical and systematic.
We observe that, in principle, the ratio of lattice spacings at two different values of β could be

determined from the fit of the pion meson mass and decay constant, without using the information
coming from r0/a of Eq. (4.12). With our data, however, the uncertainties on the values of the
quark mass renormalization constant, as well as the a priori unknown size of discretization errors
affecting the pion masses and decay constants, do not allow to achieve a reliable determination of
these ratios.

Other interesting low energy constant obtained from the analysis are: 2BMS ,2GeV
0 = 5.42(23)GeV,

and f0 = 121.88(18)MeV.

4.2.6 Alternative way of setting the scale

The lattice spacing computed in previous section are affected by a 2-3% error. This error enters
directly in the conversion to physical units of any quantity, and it is likely to dominate any other
error. It would therefore be interesting to provide a more precise way to fix the scale.

Analyzing the functions 4.17 and 4.3 we noted that the product M2
π

√
fπ is not affected by

chiral logs. In fig. 4.5 this quantity is plotted as function of the renormalized quark mass. This
quantity is subject to a very smooth chiral extrapolation, and at the chiral point m = 0 is affected
by very tiny (≤3%) cut-off effects.

Disposing of 3-4 sea quark mass combinations per β, one could therefore perform a simple
linear chiral extrapolation of this quantity at each separate lattice spacing, without the need
of any renormalization constant. Given the easiness of the extrapolation and the fact that this
quantity is related to simple correlators, we propose to use it as an alternative or complementary
quantity in addiction to r0/a to set the scale and compare quantities at different lattice spacings.

1This value is quite different from that obtained from analysis of baryon masses by various collaboration,
including ETMC. This discrepancy might be explained as an effect of chiral extrapolation, which is much more
under control in the mesonic sector.
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Figure 4.5: Dependence of the quantity (Mπ)
2 √fπ on the renormalized quark mass. . Lines are

just the fitting functions (with chiral logs) plotted over data.

4.3 Strange quark mass

In this section we will discuss the determination of the strange quark mass inferred from the study
of two different strange mesons: the Kaon and the ηs meson.

4.3.1 Determination from the Kaon mass

4.3.1.1 General strategy

Since the valence strange quark mass has not been previously tuned in our simulations, the
determination of the physical strange quark mass requires an interpolation of the lattice data.
In order to better discriminate the strange quark mass dependence of the kaon masses from
other dependencies, we first interpolate the lattice data with quadratic spline to three reference
values of the strange quark mass, which are chosen to be equal at the four lattice spacings:
m̄ref

s = {80, 95, 110} MeV in MS at 2 GeV In figure 4.6 we show for example the interpolation
of M2

K lattice data to the reference mass for the three sea quark masses of β = 4.05.
Then, at fixed reference strange mass, we simultaneously study the kaon mass dependence on

the up/down quark mass and on discretization effects, thus performing the chiral extrapolation
and taking the continuum limit. In this step we have considered chiral fits based either on
SU(2)−ChPT [29, 30], where the chiral symmetry is assumed for the up/down quark only, or
partially quenched SU(3)−ChPT [31], where the valence strange quark is treated as a small
perturbation. In order to extrapolate the kaon mass values to the continuum and to the physical
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Figure 4.6: Interpolation of lattice data for M2
K (empty points) to reference mass for the three

sea quark mass of β = 4.05.

ml limit, we use the results for the average up/down quark mass and for the lattice spacings
obtained in Eqs. (4.23) and (4.27), at each reference value of the strange quark mass. Finally,
we study the kaon mass dependence on the strange quark mass, and determine the value of the
physical strange quark mass using the experimental value of MK . In order to account for the
electromagnetic isospin breaking effects which are not introduced in the lattice simulation, we
have used in the present analysis as “experimental” value of kaon mass the combination [32]:

(
M2

K

)
QCD

=
1

2

[
M2

K0 +M2
K+ − (1 +∆E)

(
M2
π+ −M2

π0

)]
= 494.4MeV , (4.28)

where ∆E parameterize the violation of the Dashen theorem (which states that the K and π masses
takes equal EM corrections at first order in e2), and has been taken equal to 1 as suggested in [33].

4.3.1.2 Chiral and continuum extrapolation

In the first step the strange quark mass is fixed to the reference values and only the ml and a2

dependence of the kaon mass is studied
We have considered for the kaon meson mass functional forms based on the predictions of

either NLO SU(2)−ChPT, which predicts the absence at this order of chiral logs:

M2
K (ms,ml, a) = Q1 (ms) +Q2 (ms) ml +Q3 (ms) a

2 , ∀ms (4.29)

for the two steps, or SU(3)−ChPT:
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M2
K (ms,ml, a) = B0 (ms +ml)

(
1 +Q6 (ms) +Q7 (ms)ml +Q8 (ms) a

2
)
, ∀ms (4.30)

where B0 and f0 are determined from the pion fit described in the previous section.
For illustration we show in fig. 4.6 the combined chiral/continuum fit based on SU(2)−ChPT,

Eq. (4.29), for a fixed reference value of the strange quark mass, as a function of the light quark
mass.
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Figure 4.7: Dependence of M2
K on the renormalized light quark mass, for a physical strange quark

mass and at the four lattice spacings.

4.3.1.3 Study in terms of ms

The data in the continuum limit and at the physical ml value are studied as a function of the
strange quark mass. The dependence of the kaon mass on the strange quark mass is not determined
by the chiral symmetry in the SU(2) theory and we find that, with our choice of three reference
strange masses around the physical value, a linear fit as given in Eq. (4.29) is perfectly adequate
to describe the data:

M2
K

(
ms,m

phys
l , a = 0

)
= Q1(ms) +Q2(ms)m

phys
l = Q4 +Q5 ms , (4.31)

with a value of Q5 = 2.5(3)GeVwhile the SU(3)−ChPT prediction read:
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M2
K

(
ms,m

phys
l , a = 0

)
= B0 ·

(
ms +mphys

l

)(
1 +

2B0 ms

(4πf0)
2 log

2B0 ms

(4πf0)
2 +Q9ms

)
, (4.32)

with a value of Q9 = 1.2(2)MeV if one takes for B0 and f0 the values compute in sec 4.2.5.

In fig. 4.8 the dependence on the strange quark mass is shown, in the case of the SU(2)
analysis (Eq. 4.31).
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Figure 4.8: Dependence of M2
K in the continuum limit and at the physical up/down mass, on the

strange quark mass in the SU(2)−ChPT analyses. Physical result is shown with empty diamond.

4.3.2 Determination from ηs mass

As an alternative way to determine the strange quark mass we have studied the dependence on ms

of a meson made up of two strange valence quarks [34]. The advantage of this approach is that the
mass of this unphysical meson, denoted as ηs, is sensitive to the up/down quark mass only through
sea quark effects, and it is thus expected to require only a very smooth chiral extrapolation. This
expectation will be confirmed by our analysis. The price to pay is the need for an additional chiral
fit required to determine the ηs mass at the physical point.
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4.3.2.1 The ηs meson

In the real world, the ηs meson is known to mix with the
(
ūu+ d̄d

)
component to produce the

physical η and η′ mesons. This mixing proceeds through the contribution of disconnected dia-
grams, which are known to be rather noisy on the lattice and therefore computationally expensive.
In order to avoid this computation we consider here the two strange quarks composing the meson
as degenerate in mass but distinct in flavor. Though this ηs meson does not exist in nature, its
mass can be determined on the lattice [34], as we will show in the following section.

4.3.2.2 Determination of the physical ηs mass

In order to relate the mass of the ηs meson to the physically observable Mπ and MK , we have
studied its dependence on the kaon and pion masses for different values of the simulated light
and strange quark masses. This dependence turns out to be well described by both the functional
form based on either NLO SU(2)−ChPT:

M2
ηs = R1 +R2

(
2M2

K −M2
π

)
+R3 m

2
π +R4 a

2 , (4.33)

or SU(3)−ChPT:

M2
ηs =

(
2M2

K −M2
π

)
·
[
1 + (ξs − ξl) log (2 ξs) + (R7 + 1) (ξs − ξl) +R8 a

2
]
−

− M2
π [−ξl log (2 ξl) + ξs log (2 ξs) +R7 (ξs − ξl)] , (4.34)

with ξl = M2
π/ (4π f0)

2 and ξs =
(
2M2

K −M2
π

)
/ (4π f0)

2, obtained from the ChPT formulae
given in Eqs. (4.36 - 4.39) by replacing quark masses in terms of meson masses, and keeping terms
up to NLO. We observe that, within the accuracy of our lattice data, the O(a2) term in the ηs
mass is found to be independent of the strange quark mass.

In fig. 4.9 we show the SU(2) determination of the mass of the ηs meson. Only data near the
physical point have been considered. The quantities M2

ηs and (2M2
K −M2

π) are highly correlated,
and correlation has been taken into account when building the χ2 as explained in section 3.4.4.2.
In the figure we show also the prediction of the Gell-Mann-Okubo law (M2

ηs = (2M2
K −M2

π)) for
comparison.

Once the physical values of the kaon and pion mass are inserted in eqs. (4.33) and (4.34),we
find that the two fits yield very close results for the ηs meson mass, namely:

Mηs = 692(1)MeV from SU(2) , Mηs = 689(2)MeV from SU(3) (4.35)

to be compared with the leading order SU(3) prediction (Gell-Man-Okubo law): (Mηs)LO =√
2M2

K −M2
π = 686MeV and with the lattice determination of [34] Mηs = 686(4)MeV.

4.3.2.3 Chiral and continuum extrapolation

Once the mass of the ηs meson has been determined, the strange quark mass can be extracted
by following the very same procedure described for the case of the kaon mass. At first, at fixed
reference strange mass lattice data are extrapolated to the continuum and to the physical up/down
mass.
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We have considered the following fitting functions based on NLO-ChPT for the dependence
of the ηs meson on the (sea) up/down quark mass and on the leading discretization effects:

M2
ηs(ms,ml, a) = T1(ms) + T2(ms)ml + T3(ms) a2 , ∀ms , (4.36)

in SU(2), and:

M2
ηs(ms,ml, a) = 2B0 ms · (1 + T6 (ms) + T7(ms)ml + T8(ms) a2) , ∀ms , (4.37)

in SU(3).
In fig. (4.10) we show as example the chiral and continuum extrapolation of M2

ηs in SU(2)
chiral perturbation theory. The scale on y axis has been chosen the same of fig. (4.7) to show the
smallness of the chiral extrapolation compared to that of M2

K .

4.3.2.4 Study in terms of ms

After this extrapolation, the value of the physical strange quark mass is extracted studying the
dependence on the strange mass. We have considered the following fitting functions based on
NLO-ChPT for the dependence of the ηs meson on the strange quark mass:

M2
ηs(ms,m

phys
l , a = 0) ≡ T1(ms) + T2(ms)m

phys
l = T4 + T5 ms , (4.38)
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Figure 4.10: Dependence of M2
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in SU(2), with a value of T5 = 5.10(14) GeV and:

M2
ηs(ms,m

phys
l , a = 0) ≡ 2B0 ms · (1 + T6 (ms) + T7(ms)m

phys
l ) =

= 2B0 ms ·
(
2
2B0 ms

(4πf0)2
log

(
2
2B0 ms

(4πf0)2

)
+ T9 + T10 ms

)
, (4.39)

in SU(3). The LECs T2 and T7, describing the dependence on the light quark mass, are found to
be independent of the strange mass, within the accuracy of our lattice data. They are then fitted
with a single parameter for all reference strange quark masses.

4.3.3 Determination of m̄s

In order to quote a final estimate for the strange quark mass we choose as a central value the
weighted average of the results from the four determinations discussed above, namely from K
and ηs and based on SU(2)- and SU(3)-ChPT. In the MS scheme at 2 GeV this average reads

mMS, 2GeV
s = 95(2)MeV, with the 2 MeV error representing the typical statistical and fitting

uncertainty. Let us discuss the systematics uncertainty common to the two determinations of ms.

Chiral extrapolation The difference between the determinations based on the K and ηs mesons
is about 3%. The results obtained from either the SU(2) or the SU(3) fits are practically the same
in the analysis based on the ηs and differ by approximately 3% in the kaon case. In table (4.2)
we collect the result of all these determinations of m̄s.
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ms [MeV] K − SU(2) K − SU(3) ηs−SU(2) ηs−SU(3)

L1 92.1(3.8) 94.7(2.2) 96.0(2.6) 95.5(2.1)
L2 91.6(3.9) 94.6(2.3) 95.4(2.6) 95.3(1.9)
L3 95.4(3.8) 94.7(2.1) 99.4(2.9) 97.7(2.2)

Table 4.2: Results for the strange quark mass in the MS scheme at 2 GeV, as obtained from the
different fits within the light and strange quark sectors.

Continuum extrapolation In order to evaluate the uncertainty of the continuum extrapolation
we have proceeded in two ways. We have added an O(a4) mass independent term in Eqs. (4.36-
4.39), and we have (alternatively) excluded from these fits the data from the coarser lattice
(β = 3.80). We find that the O(a4) term turns out to be hardly determined in the fit, leading to
three times larger uncertainties. The exclusion of β = 3.80 data, instead, yields a variation of the
results of approximately 2% leaving the fitting error approximately unchanged. We then assume
±2% as uncertainty related to the continuum extrapolation.

Renormalization We include also in this case an uncertainty of 2% related to the truncation
of the perturbative expansion in the conversion from the RI-MOM to the MS scheme. The results
for the strange quark mass obtained from both the kaon and the ηs meson masses turn out to be
well consistent.

Final result Combining all these uncertainties in quadrature, we quote as our final estimate of
the strange quark mass in the MS scheme:

mMS, 2GeV
s = 95(2)(6)MeV = 95(6)MeV . (4.40)

We observe that our result for the strange mass in Eq. (4.40) is, though compatible, smaller
than the value obtained by ETM collaboration in ( [35]) at a fixed value of the lattice spacing
(a - 0.085fm). This is a consequence of discretization effects, which are at the level of 15% in
M2

K on the a - 0.085fm lattice, as shown in fig. (4.7). A further comparison can be done with the
ETMC estimate of the strange quark mass that appeared in the recent work on the bag parameter
BK ( [22]). Within that analysis, based on data at three β values (3.80, 3.90 and 4.05), the strange
quark mass is determined from the same lattice setup by performing an SU(2) chiral fit of the
kaon meson mass, whose result (obtained using preliminary values for the lattice spacings and

renormalization constants) reads: mMS, 2GeV
s = 92(5)MeV.

4.3.4 The ms/ml ratio

Using our determinations of both the strange and light quark masses, we can obtain a prediction
for the ratio ms/ml, which is both a scheme and scale independent quantity. The several ms/ml

values obtained from different fits are collected in Table (4.3). The result that we quote as our
final estimate is

ms/ml = 27.3(5)(7) = 27.3(9) . (4.41)

The results for the ratio ms/ml collected in Table (4.3) are slightly different from the ratios of
the m̄s and m̄l results. This difference originates from the fact that in the ratio ms/ml the quark
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ms/ml K-SU(2) K-SU(3) ηs-SU(2) ηs-SU(3)

L1 26.9(5) 27.2(5) 27.6(4) 27.3(7)
L2 27.1(5) 26.9(3) 27.5(3) 26.8(3)
L3 25.7(5) 26.0(6) 26.5(6) 26.0(7)

Table 4.3: Results for the ratio ms/ml, as obtained from the different fits within the light and
strange quark sectors.

mass renormalization constant Z−1
P exactly cancels out, whereas in the determinations of m̄s and

m̄l the central values of ZP are slightly modified by the fitting procedure.

4.4 Charm quark mass

The determination of the charm quark mass follows, quite closely, the strategy adopted in the
determination of the strange quark mass discussed in the previous section. In this case, we use as
experimental input the masses of the D, Ds and ηc mesons.

4.4.1 Preliminary interpolation

As for the strange quark case, the analysis requires an interpolation of the lattice data, being
the simulated charm masses roughly in the range 0.9mphys

c # µc # 2.0mphys
c . In order to better

study the a2 and ml dependence of charmed meson masses, we first use a quadratic spline fit to
interpolate the data at three reference values of the charm mass which are equal at the four β

values: m̄ref,MS, 2GeV
c = {1.08 , 1.16 , 1.24}GeV. We have verified that different choices of the

set of reference masses leaves the charm quark results unchanged.

4.4.2 Chiral and continuum extrapolation

At fixed reference charm mass, we then study the dependence of the D, Ds and ηc meson on the
up/down mass (and on the strange mass in the case of the Ds meson) and on discretization terms,
thus getting the results for the meson masses in the continuum limit, at the physical values of the
light (and strange) quark masses, and at the reference charm mass.

In order to fit the meson masses we have considered the following (phenomenological) polyno-
mial fits, which turn out to describe well the dependence on the light and strange quark masses
and on the lattice cutoff of the D, Ds and ηc meson masses, at fixed reference charm mass mc,

mH(mc,ms,ml, a) = CH
1 (mc) + CH

2 (mc)ml + CH
3 (mc)ms +CH

4 (mc) a
2 , ∀mc , (4.42)

with H = D,Ds, ηc. From the fits, we find that the coefficients CH
2 and CH

3 turn out to be
independent of the charm mass within the statistical errors. The latter coefficient CH

3 , of course,
enters the fit only in the Ds case.

In fig. (4.11) we show the dependence of the D, Ds and ηc masses on the light quark mass at
a fixed reference charm mass, for the four β. For the Ds and ηc mesons, which contain the light
quark in the sea only, this dependence turns out to be practically invisible.

In Fig. (4.12) the meson masses at physical light and strange quark masses are shown as a
function of a2, for a reference value of the charm quark mass. As can be seen from this plot,
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Figure 4.11: Left: Dependence of MD (left) and MDs and Mηc (right) on the light quark mass, at

fixed reference charm quark mass (m̄ref
c = 1.16GeV) and for the four simulated lattice spacings.

For the Ds meson the strange quark mass is fixed to its physical value.

discretization effects on the ηc meson mass vary from approximately 4% on the finest lattice up to
14% on the coarsest one. These effects are larger than those affecting the D and Ds meson masses
by approximately 30%. Fig. (4.12) also shows that the dependence of the three charmed meson
masses on a2 is very well described by a linear behavior. Attempting to vary the continuum
extrapolation from the simple linear fit produces only small effects: in order to estimate the
uncertainty due to the continuum extrapolation we have proceeded in two ways. We have either
added in the fitting form of Eq. (4.42) an O(a4) dependence, which turns out to be hardly
determined thus leading to uncertainties larger by a factor three, or we have excluded the data
from the coarser lattice (with a - 0.098 fm). This latter analysis yields a variation of the results
of approximately 1.5%.

4.4.3 Determination of m̄c

Finally, the value of the physical charm quark mass is extracted by fitting these data as a function
of the charm quark mass and using as an input the experimental value of the corresponding
charmed meson M exp

D = 1.870GeV, M exp
Ds

= 1.969GeV, M exp
ηc = 2.981GeV2. In fig. 4.13 we show

the dependence of the D, Ds and ηc masses on the charm mass (in the continuum limit and at
physical light and strange mass).

A constant plus either a linear or a 1/mc term have been considered for describing data of the
D, Ds and ηc mesons, namely:

mH(mc,m
phys
s ,mphys

l , a = 0) = CH
5 +

CH
6

mc
+ CH

7 mc . (4.43)

Since we have data at three reference charm masses (close to the physical charm), we can keep
only one of the coefficients CH

6 , CH
7 different from zero. We find that both choices describe very

2The experimental value of the meson masses should be corrected to take into account the absence of electro-
magnetic effects and, in the case of the ηc, of disconnected diagrams in the lattice calculation. For the ηc meson,
these corrections are estimated to be of the order of 5 MeV [34], thus affecting the extracted charm quark mass to
approximately 0.2%. Similar corrections are expected for the D and Ds mesons. Given our uncertainties, we can
safely neglect these corrections in the analysis.
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Figure 4.12: Dependence of mD, mDs and mηc , at fixed reference charm quark mass

(m̄ref,MS, 2GeV
c = 1.16GeV) and at physical up/down and strange quark mass, on the squared

lattice spacing. Empty diamonds represent continuum limit results.

well the lattice data and affect only in a marginal way the interpolation to the physical charm
mass. The two dependencies of the meson masses on the charm quark mass, considered in Eq.
(4.43), yield results that differ by only few MeV. The systematic uncertainty then comes from
the sum in quadrature of the approximately 1% spread among the three determinations from the
D, Ds and ηc mesons, the 1.5% uncertainty due to discretization effects and the 2% uncertainty
coming from the perturbative conversion of the renormalization constants from the RI-MOM to
the MS scheme.

We quote as our final result for the charm quark mass in the MS scheme

m̄c(2GeV) = 1.14(3)(3)GeV = 1.14(4)GeV (4.44)

→ m̄c(m̄c) = 1.28(4)GeV ,

where the evolution to the more conventional scale given by m̄c itself has been performed at
N3LO [29] with Nf = 2, consistently with our non-perturbative evaluation of the renormalization
constant. Had we evolved with Nf = 4, which is the number of active flavors above µ = mc, the
result for m̄c(m̄c) would have increased by less than one standard deviation.

Our result is compatible with the preliminary estimate of the charm quark mass, m̄c(2GeV) =
1.23(6), obtained by ETMC [36] using data at three lattice spacings and preliminary values for
the renormalization constants. It is also in good agreement with the HPQCD result m̄c(m̄c) =
1.268(9)GeV [37], with a larger uncertainty in our determination. Finally, our result is in good
agreement with the recent sum rules determination m̄c(m̄c) = 1.279(13)GeV of [38].
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Figure 4.13: Dependence of mD, mDs and mηc , in the continuum limit and at physical up/down
and strange quarks, on the charm quark mass. The charm mass results from the three determi-
nations are also shown, with empty diamonds.

4.4.4 The mc/ms ratio

We also provide a prediction for the scheme and scale independent ratio mc/ms. The several
mc/ms values obtained from different fits are collected in Table (4.4).

K-SU(2) K-SU(3) ηs-SU(2) ηs-SU(3)

mc/ms 12.4(4) 12.1(2) 11.9(2) 12.0(3)

Table 4.4: Results for the ratio mc/ms, as obtained from the different fits within the strange quark
sector, and from the analysis of the D meson mass in the charm sector. Determination from Ds

and η are almost identical.

The result that we quote as our final estimate is

mc/ms = 12.0(3) , (4.45)

in good agreement with the other recent lattice determination mc/ms = 11.85(16) [34].
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Chapter 5

B-physics

As discussed in chapter 2 the study of process involving the b quark offer important windows to
indirect effects of new physics. The value of the B and Bs meson leptonic decay constant fB and
fBs , the form factors parameterizing semi-leptonic decays of B → D (D∗) lν and B → π (ρ) lν,
and the bag parameters BB which parametrize the oscillation of neutral B meson system are
decisive ingredients in extracting elements of the CKM matrix. Lattice QCD is the only method
which allow one to compute these quantities non-perturbatively in a model independent manner.

Unfortunately with the available computer power it is not possible to simulate quark masses
in the range of the physical b mass and at the same time keep the finite volume and discretization
effects under control. In order to circumvent these problems, many different methods have been
proposed so far (for a recent review see [39]).

In this work we used the Nf = 2 gauge ensemble already discussed in the previous chapters to
determine the b quark mass and fB, fBs decay constants. In none of these ensembles the lattice
spacing is smaller than inverse b quark mass, which can be estimated to be of the order of ∼ 4GeV.
The physical b quark mass expressed in lattice units, amb is larger than 1 for all ensembles, and one
expect large discretization effects (in principle of order 100%) when computing directly quantities
at the physical b quark mass. In our work we have avoided to compute the quantities of our interest
directly at the physical b quark, and have instead performed an interpolation of data computed
from the c quark region together with information coming from the static limit mq → ∞.

We have used two different methods to tackle this interpolation, which differs in the way in
which the static limit information is used.

In section 5.2 we will show how it is possible to introduce suitable ratio for the quantities
of interest with its exactly known limit for mb → ∞ [36], and so thereby avoid to perform
computation in the static limit. Using this approach (which will be referred as “ratio method” in
the following) it has been possible to perform a calculation of the b quark mass and the decay
constants fB and fBs without performing any static calculation.

In section 5.3 a more standard method [40] was applied, in which the extrapolation is done
using explicitly information calculated in the static limit point. This which will be called “interpo-
lation method” in the following do not allow to determine the b quark mass. Preliminary results
for fB and fBS

studied in terms of the meson mass MB , MBs were presented in [41].

The two methods have been discussed together in the paper [?] where results obtained with
the two approach have been found to be compatible, and their errors similar in size.
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As a byproduct of this analysis we also obtain the results for fD and fDs decay constants,
which will shortly discussed in section 5.3.5. This updates and improves a previous result by the
ETM collaboration [42].

Our analysis indicates that the discretization effects are not as large as one would expect them
to be. In other words the discretization errors are not the main source of error in our computation:
instead, the limitations to use directly the data at the physical b quark mass comes from the fact
that as the quark mass increases the gap between lower lying and excited states decreases, so that
the ground state is isolated at times that gets larger and larger, where the correlation functions
are typically noisier. Moreover the correlation functions becomes noisier and noisier as the heavy
quark mass increases. In order to make a step in the direction of using heavier masses, in section
5.4 we present preliminary results obtained with the aid of smearing techniques discussed in section
5.4, which revealed to be extremely efficient in both reducing the excited state contamination and
in improving the signal to noise ratio. In the near future these techniques might be the key factors
to perform calculation closer to the b quark mass.

5.1 Simulation details

At variance with the analysis of chapters 4 and 6, where only the light, strange and charm quark
masses were studied, a wider range of values for the valence quark masses is considered here,
in order to get closer to the physical b quark mass. The values of the simulated valence quark
masses are collected in Table 5.1. The valence light quark mass, µ!, is always taken to be identical
with those of the sea quarks. The heavy quark mass µh ranges from approximately mc up to
(2.3 − 2.4)mc, with mc the physical charm quark mass. Correlators at higher µh have been
computed and were included in [41]. They are characterized by large fluctuations in the effective
mass plateaux, and thus by large statistical uncertainties. As a consequence, data extracted from
these correlators turns out to be irrelevant in the fits, and we have excluded them from the present
analysis.

β aµ! aµs aµh tmin/a

3.80 0.0080, 0.0110 0.0165, 0.0200 0.2143, 0.2406, 0.2701, 0.3032 14
0.0250 0.3403, 0.3819, 0.4287, 0.4812

3.90 0.0030, 0.0040, 0.0150, 0.0180 0.2049, 0.2300, 0.2582, 0.2898 16
0.0064, 0.0085, 0.0100 0.0220 0.3253, 0.3651, 0.4098, 0.4600

4.05 0.0030, 0.0060, 0.0135, 0.0150, 0.1663, 0.1867, 0.2096, 0.2352 21
0.0080 0.0180 0.2640, 0.2963, 0.3326, 0.3733

4.20 0.0020, 0.0065 0.0130, 0.0148 0.1477, 0.1699, 0.1954, 0.2247 25
0.0180 0.2584, 0.2971, 0.3417

Table 5.1: Values of simulated bare quark masses in lattice units, for the four β values, in the
light (aµ!), strange (aµs) and heavy (aµh) sectors. In the last column the minimum values of
time tmin chosen for the 2-point function fits are collected.

In figure 5.1 we show for each β the effective mass of B mesons composed of a light quark of
about 50MeV (in MS at 2 GeV) and the heaviest considered quark, together with the larger one
computed in [41] but neglected in the present work. For comparison we also show the Bs meson.
The horizontal lines are values of the meson masses obtained by the fits of the correlators.
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The minimal time considered in the fit is the same for all the four β when expressed in physical
units. This has been obtained by scaling appropriately the tmin of β = 3.90, in such a way that
possible contaminations with scalar mesons due to the parity breaking at finite lattice spacing will
be removed when taking the continuum limit.

For all values of β the ground state is clearly identified and the signal is clean within the lower
plotted combinations, but the same is not true for the higher ones, and as already stated their
inclusion would practically have no impact on the analysis.
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Figure 5.1: Effective masses of heaviest B (filled squares) and Bs (empty squares) mesons consid-
ered in the analysis (in blue) together with an heavier combination not considered in the present
work (in red). For all mesons the light quark (valence and sea) is about 50MeV.
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5.2 Determination of m̄b

The method that we have used to determine the quark mass is suggested by the Heavy Quark
Effective Theory (HQET) asymptotic behavior of the heavy-light meson mass Mh!:

lim
µpole
h →∞

(
Mh!

µpole
h

)

= constant , (5.1)

where µpole
h is the pole quark mass and the limit (5.1) is approached without corrections of

O(1/ log(µpole
h /ΛQCD)). Let us describe the method in details.

5.2.1 Ratio method

As a first step we consider an appropriate sequence of heavy quark masses, µ̄(1)
h , µ̄(2)

h , . . . , µ̄(N)
h ,

with fixed ratio:
µ̄(n)
h

µ̄(n−1)
h

= λ , (5.2)

and ranging from the charm mass to values somewhat below the bottom mass.
Then one computes the following ratios that have an exactly known static limit:

y(µ̄(n)
h ,λ; µ̄!, a) ≡

Mh!(µ̄
(n)
h ; µ̄!, a)

Mh!(µ̄
(n−1)
h ; µ̄!, a)

·
µ̄(n−1)
h

µ̄(n)
h

·
ρ(µ̄(n−1)

h , µ∗)

ρ(µ̄(n)
h , µ∗)

=

= λ−1 Mh!(µ̄
(n)
h ; µ̄!, a)

Mh!(µ̄
(n)
h /λ; µ̄!, a)

·
ρ(µ̄(n)

h /λ, µ∗)

ρ(µ̄(n)
h , µ∗)

, n = 2, · · · , N . (5.3)

The function ρ(µ̄h, µ∗) converts the renormalized MS quark mass (at the scale µ∗) into the pole
mass:

µpole
h = ρ (µ̄h, µ

∗) µ̄h (µ
∗) , (5.4)

known up to N3LO in perturbation theory [29, 43–48]. The NLO expression reads:

ρ(µ̄h, µ
∗) =

[

1 +
16

3
·
αMS(µ̄h)

4π

]

·

(
αMS(µ̄h)

αMS(µ∗)

)12/(33−2Nf )

·

[

1 +

(
2(4491 − 252Nf + 20N2

f )

3(33 − 2Nf )2

)
αMS(µ̄h)− αMS(µ∗)

4π

]

, (5.5)

used for Nf = 2 in the present analysis. We notice that the dependence on the scale µ∗ cancels in
the ratios of ρ factors evaluated at different heavy quark masses and thus in the y ratio defined
in Eq. (5.3).

From Eq. (5.1) and QCD asymptotic freedom it follows that the ratios (5.3) have the following
static limit:

lim
µ̄h→∞

y(µ̄h,λ; µ̄!, a = 0) = 1 . (5.6)

The value of the ratio λ of Eq. (5.2), between two subsequent values of the heavy quark mass,
is chosen in such a way that after a finite number of steps the heavy-light meson mass assumes the
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experimental value MB = 5.279 GeV (we find λ = 1.1762). In order to implement this condition,
the lattice data at the four lattice spacings are interpolated at the following values of the heavy
quark mass,

µ̄(1)
h = 1.140 GeV , µ̄(2)

h = λ µ̄(1)
h = 1.341 GeV , µ̄(3)

h = λ2µ̄(1)
h = 1.577 GeV , (5.7)

µ̄(4)
h = λ3µ̄(1)

h = 1.855 GeV , µ̄(5)
h = λ4µ̄(1)

h = 2.182 GeV , µ̄(6)
h = λ5µ̄(1)

h = 2.566 GeV .

5.2.2 Chiral and continuum extrapolation

Ratios of the kind defined in Eq. (5.3) are introduced because, besides having an exactly known
static limit, they are also expected [36] to have a smooth chiral and continuum limit, as shown in
the right plot of fig. 5.2. For this reason we perform a simple linear extrapolation of Mh! and of
y.

In fig. 5.2 (left) we show the (linear) chiral and a2 → 0 extrapolation of the heavy-light meson

mass at the first heavy quark mass µ̄(1)
h , namely Mh!(µ̄

(1)
h ), for the four β values.
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Figure 5.2: Light quark mass dependence of the meson mass Mh!(µ̄
(1)
h ) (left) and of the ratio

y(µ̄(2)
h ) (right) at the four values of the lattice spacing.

5.2.3 Static limit interpolation

After performing the continuum and chiral extrapolation of the ratios (5.3), we study their de-
pendence on the inverse heavy quark mass. Inspired by HQET, we perform a polynomial fit in
1/µ̄h, of the form

y(µ̄h) = 1 +
η1
µ̄h

+
η2
µ̄2
h

, (5.8)

which imposes the constraint y = 1 at the static point. The fit is illustrated in fig. 5.3.
The value of the b quark mass is finally determined by considering the following equation

y(µ̄(2)
h ) y(µ̄(3)

h ) . . . y(µ̄(K+1)
h ) = λ−K Mhu/d(µ̄

(K+1)
h )

Mhu/d(µ̄
(1)
h )

·

[
ρ(µ̄(1)

h , µ∗)

ρ(µ̄(K+1)
h , µ∗)

]

, (5.9)
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Figure 5.3: Heavy quark mass dependence of the ratio y(µ̄h) extrapolated to the physical value
of the light quark mass and to the continuum limit. The vertical line represents the value of the
physical b quark mass.

which should be looked at as a relation between the mass of the heavy-light meson, Mhu/d(µ̄
(K+1)
h ),

and the corresponding heavy quark mass µ̄(K+1)
h , being Mhu/d(µ̄

(1)
h ) the initial triggering value.

The b quark mass is then determined by finding the value of K at which Mhu/d(µ̄
(K+1)
h ) takes

the experimental value of the B-meson mass, MB = 5.279GeV. Calling Kb the solution of the

resulting Eq. (5.9) (we find Kb = 9), one gets for µ̄b = m̄MS, 2GeV
b the simple relation

µ̄b = λKbµ̄(1)
h = 4.91(15) GeV . (5.10)

We observe that it is always possible to guarantee that the solution Kb is an integer number

through a slight variation of the parameter λ and/or of the triggering mass µ̄(1)
h .

5.2.4 Determination from Bs meson

An equivalent method consists in determining the b quark mass by studying Mhs instead of Mhu/d

and using in input the experimental Bs-meson mass value, MBs = 5.366 GeV. A very similar

result is obtained from this analysis: µ̄MS, 2GeV
b = 4.92(13) GeV. The small difference (0.01 GeV)

with respect to Eq. (5.10) indicates a good control of the chiral extrapolation which, in particular,
in the heavy-strange meson case involves only the sea quark mass.

The main effect of the uncertainty due the chiral extrapolation is accounted for by the error
quoted in eq. (5.10), which comes from the chiral, continuum and 1/µh fits.
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5.2.5 Systematic effects

5.2.5.1 Discretization effects

In order to estimate the residual uncertainty due to discretization effects, we have tried to include
in the continuum extrapolation, besides the leading O(a2) correction, an additional a4 term. We
find, however, that this sub-leading contribution cannot be fitted with our data. Therefore, we
have repeated the analysis by excluding the data at the coarsest lattice spacing (β = 3.80). The
difference in the determination of the b quark mass turns out to be of 0.05 GeV.

5.2.5.2 Interpolation

In order to estimate the systematic error associated to the interpolation of y(µ̄h) as a function of
1/µ̄h, we have repeated the whole analysis by choosing a third order polynomial in 1/µ̄h (rather
than a second order one, as in the ansatz (5.8)). This change resulted in an increase of the b
quark mass of about 0.5%, corresponding to a shift of - 0.02 GeV of the central value result of
Eq. (5.10).

5.2.5.3 Pole mass definition

An additional uncertainty is introduced by the truncation of the perturbative series in the de-
termination of the pole mass in Eq. (5.4), which is defined only perturbatively, and affected by
renormalon ambiguities. When comparing the results obtained with the NLO definition of the
pole mass to the results found with the LO one, the difference in the b quark mass is found to
be small, of about 0.01 GeV. The sensitivity to the pole mass definition, which appears in the
intermediate steps, thus largely cancels out in the final determination.

5.2.5.4 Global error budget

We finally quote the b quark mass at the conventional renormalization scale of mb itself:

m̄b(mb) = 4.29(13)(4) GeV = 4.29(14) GeV , (5.11)

where the first error is of statistical and fitting origin and the second one is the sum in quadrature
of the residual systematic uncertainties discussed above. The present result for the b quark mass
has a central value which is smaller by approximately one standard deviation than the value
found in [36], and an uncertainty which is reduced by almost a factor two, reflecting the various
improvements implemented in the present analysis.

5.3 Determination of B and Bs meson decay constant

In this section we will determine the B and Bs mesons decay constants. In order to have better
control on the chiral extrapolation, we consider as primary quantities in the present analysis the
decay constant fBs , whose dependence on the light quark mass only occurs through sea effects,
and the ratio fBs/fB which provides a direct determination of the SU(3) breaking effect in the
decay constant.
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5.3.1 Ratio method for the decay constant

A strategy similar to that employed to determine m̄b is applied to determine the B and Bs meson
decay constants.

Ratio construction The HQET asymptotic prediction for the decay constant is

lim
µpole
h →∞

fh!

√
µpole
h = constant . (5.12)

Therefore, in this case the ratios with static limit equal to one of interest are, for fB and fBs [36]:

z(µ̄h,λ; µ̄!, a) ≡ λ1/2
fh!(µ̄h, µ̄!, a)

fh!(µ̄h/λ, µ̄!, a)
·
Cstat
A (µ∗

b , µ̄h/λ)

Cstat
A (µ∗

b , µ̄h)

[ρ(µ̄h, µ∗)]1/2

[ρ(µ̄h/λ, µ∗)]1/2

zs(µ̄h,λ; µ̄!, µ̄s, a) ≡ λ1/2
fhs(µ̄h, µ̄!, µ̄s, a)

fhs(µ̄h/λ, µ̄!, µ̄s, a)
·
Cstat
A (µ∗

b , µ̄h/λ)

Cstat
A (µ∗

b , µ̄h)

[ρ(µ̄h, µ∗)]1/2

[ρ(µ̄h/λ, µ∗)]1/2
. (5.13)

The ratio of ρ factors (raised to the appropriate power) is present to convert MS heavy quark
masses to pole masses as in Eq. (5.3). The factor Cstat

A (µ∗
b , µ̄h), defined as

Φhs(µ
∗
b) =

[
Cstat
A (µ∗

b , µ̄h)
]−1 · ΦQCD

hs (µ̄h) , (5.14)

provides the matching between the decay constant in QCD for a heavy quark mass µ̄h and in
HQET, and the running of the static axial current to the renormalization scale µ∗

b , and it is
known up to N2LO in PT [49]. The NLO expression used in the present analysis reads:

Cstat
A (µ∗

b , µ̄h) =

(
αMS(µ̄h)

αMS(µ∗
b)

)− 6
33−2Nf

·

[

1−

(
−3951 + 300Nf + 60N2

f + (924 − 56Nf )π2

9(33 − 2Nf )2

)

·
αMS(µ̄h)− αMS(µ∗

b)

4π

]

·

[

1−
8

3

αMS(µ̄h)

4π

]

, (5.15)

with Nf = 2.
The value of fBs is obtained from the ratio zs, while fBs/fB from the double ratio zs/z.

Chiral and continuum extrapolation at triggering mass For fhs/fh!, heavy meson chiral
perturbation theory (HMChPT) predicts at the NLO a linear+logarithmic dependence on the light
quark mass, since a chiral log controls the chiral behavior of fB (see Eq. (5.17) below). In figs. 5.4
we show the chiral and continuum extrapolation of fhs and fhs/fh! at the initial (triggering) mass

µ̄(1)
h .

With our results, the logarithmic dependence cannot be appreciated, and we thus perform
also a simpler linear fit in the light quark mass which turns out to describe well the lattice data.
As discussed in section 5.3.3, we eventually average the results obtained from the HMChPT and
the linear fits and include the difference in the systematic uncertainty. For fhs, which depends on
the light quark mass for sea effects only, we have implemented both a linear and a quadratic fit,
which turn out to provide essentially identical results.
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Chiral and continuum extrapolation of z Both zs and zs/z have a smooth chiral and
continuum limit, as illustrated in fig. 5.5.

The ratio zs has been fitted with a simple linear function of µ̄! and a2 (see fig. 5.5 left).
The double ratio zs/z is well described by both a linear and a constant behavior in both µ̄!

and a2 (see fig. 5.5 right). For simplicity reasons the constant fit ansatz was chosen.

Interpolation to m̄b Finally, we study the dependence of the ratio zs and the double ratio zs/z
on the heavy quark mass, which are shown in fig. 5.6.

For zs we perform a quadratic interpolation to the b quark mass as for the ratio y(µ̄h) in
Eq. (5.8). For zs/z, the dependence on the heavy quark mass is barely visible, so that in this
case we perform either a linear interpolation in 1/µ̄h or we fix this ratio equal to its asymptotic
heavy-quark mass limit, zs/z = 1.
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zs(µ̄h)/z(µ̄h) (right) extrapolated to the physical value of the light and strange quark masses and
to the continuum limit. The vertical line represents the value of the physical b quark mass.

5.3.2 Interpolation method

As already mentioned, the interpolation method consists in interpolating to the b quark mass the
results in the theory with the propagating heavy quark obtained for values of the heavy quark
masses in the range around and above the physical charm (up to twice to three times its value)
and the result evaluated in the static limit by simulating the HQET on the lattice. In the following
we will address the calculation with lattice QCD in the charm mass region (section 5.3.2.1) and
the interpolation among the two sets of results (section 5.3.2.2).

The calculation within the HQET on the lattice has been carried on by Andrea Shindler, Chris
Michael and Marc Wagner and details on the calculations can be found in [?].

5.3.2.1 Decay constants in QCD

The lattice data with the propagating heavy quark for the meson masses and decay constants
are the same used for the ratio method. We considered in the analysis four values of the lattice
spacing and the values of valence quark masses collected in Table 5.1.

First, we slightly interpolate the lattice data to reach a set of reference heavy quark masses
equal at the four β values, namely µ̄h = {1.25, 1.50, 1.75, 2.00, 2.25} GeV in the MS scheme, at
µ = 2GeV.

This allows us to perform chiral extrapolation and to study discretization effects at fixed heavy
quark mass. As for the ratio method, we consider as primary quantities fhs and the ratio fhs/fh!
obtained in the present analysis from Φhs and Φhs/Φh!, where:

Φhs = fhs
√

Mhs and
Φhs

Φh!
=

fhs
fh!

√
Mhs

Mh!
. (5.16)

An alternative analysis based on the definition of Φh!(s) in terms of the pole mass, rather than

the meson mass, i.e. Φh!(s) = fh!(s)

√
µpole
b , has been also performed, leading to fully equivalent

results.
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Figure 5.7: Dependence of Φhs on the squared lattice spacing, at the five reference values of the
heavy quark mass (for a fixed value of the up/down and strange quark masses).

The light quark mass dependence predicted for Φh! and Φhs by HMChPT [50–52] at the NLO
reads:

Φh! (a, µ̄!, µ̄h) = Ah

[

1−
3
(
1 + 3ĝ2

)

4

2B0 µ̄!

(4π f0)
2 log

(
2B0 µ̄!

(4π f0)
2

)
+Bh µ̄! + Ch a2

]

,

Φhs (a, µ̄!, µ̄s, µ̄h) = Dh
(
1 + Eh µ̄! + Fh µ̄s +Gh a2

)
, (5.17)

where we have also included in the above expressions a linear dependence on a2 to account for
leading discretization effects. The subscript h in the fit parameters of Eq. (5.17) denotes the
dependence on the heavy quark mass.

Details on chiral extrapolation As previously discussed for the ratio method, the contribu-
tion of chiral logs in the ratio Φhs/Φh!, predicted by HMChPT, cannot be appreciated with our
data (see fig. 5.4 right). Thus, in order to perform the chiral extrapolation to the physical light
quark mass, we also perform a simple linear fit in µ̄! and eventually take the average of the two
results. In the fit based on HMChPT we take for the parameter ĝ the value ĝ = 0.61(7) obtained
from the experimental measurement of the gD∗Dπ coupling [53]. We choose this value, instead
of the HQET prediction ĝ = 0.44(8) [54, 55], as we fit data that are close to the charm mass
region and in order to conservatively include in the average the maximum spread resulting from
the different ways of performing the chiral extrapolation of our data (larger value of ĝ increase
the effects of chiral logs). For Φhs, as for fhs within the ratio method (see fig. 5.4 left), we have
tried both a linear and a quadratic fit in µ̄!, obtaining very similar results.

Details on discretization effects The size of discretization effects in the calculation of Φhs

is shown in fig. 5.7, for a simulated value of the light quark mass of about 50 MeV (in MS at 2

GeV) and with µ̄s ≈ µ̄phys
s .

It is interesting to note that lattice artifacts turn out to be small. We find that this is a
consequence of a partial cancellation between discretization terms in the decay constant and in
the rooted meson mass, which are of similar size and opposite sign. For the same reason, the ratio
Φhs/Φh! (not shown) turns out to be practically independent of the lattice spacing.
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Figure 5.8: Dependence of Φhs (left) and Φhs/Φh! (right), in the chiral and continuum limit, on
the inverse of the heavy quark mass.

5.3.2.2 Interpolation to physical b

In order to perform a combined fit static and b−propagating data, we convert the values of Φhs

from QCD to HQET, by using the NLO matching and evolution factor Cstat
A (see Eqs.(5.14)

and (5.15)). The renormalization scale is chosen to be µ∗
b = 4.5 GeV as for the static data. Note

that in the ratio Φhs/Φh! the Cstat
A factor cancels out.

The interpolation is then performed, as shown in fig. 5.8, through a fit in 1/µ̄h, which is
quadratic for Φhs (similarly to Eq. (5.8)) and only linear for Φhs/Φh!, where a much smoother
dependence on the heavy quark mass is found, as expected. It is clear from the plots that the
static point data has a quite significant influence on the shape of the fitting curve.

Finally, the physical results for the decay constants are obtained by inserting the “physical”
value of the b quark mass determined from the ratio method, given in Eqs. (5.10)-(5.11). The
uncertainty on the b quark mass has been propagated by assuming a Gaussian distribution of the
errors.

5.3.3 Results for the decay constants

In this section we present and discuss the final results obtained for the decay constants fBs,
fBs/fB and fB from the ratio and the interpolation methods.

As discussed in the previous sections, in order to estimate the uncertainty due to the chiral
extrapolation we compare the results of two different chiral fits. This comparison is relevant in
particular for the ratio Φhs/Φh!, from which ΦBs/ΦB is extracted. In this case, the two fits
are based either on the linear + logarithmic dependence on the light quark mass predicted by
HMChPT (Eq. (5.17)) or on a polynomial (quadratic) behavior. For Φhs we have tried both the
linear fit of Eq. (5.17) and a quadratic fit. The analogous chiral fit ansatz employed in the analysis

of fhs(µ̄
(1)
h )/fh!(µ̄

(1)
h ) within the ratio method framework have been discussed in sect. 5.3.1. The

results are collected in Table 5.2 for both the ratio and the interpolation method. The first error
quoted in the table is the one coming from the fit, and includes both the statistical error and the
systematic uncertainty due to the chiral and continuum extrapolation and to the interpolation to
the b quark mass.

The second error accounts for the additional systematic uncertainties and it has been evaluated
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fBs[ MeV] fBs/fB

Ratio Method Interpol. Method Ratio Method Interpol. Method
Lin. Quad. Lin. Quad. HMChPT Polyn. HMChPT Polyn.

225(7)(4) 225(7)(4) 237(9)(4) 238(9)(4) 1.22(2)(0) 1.14(2)(0) 1.22(5)(2) 1.16(6)(2)

225(7)(4) 238(9)(4) 1.18(2)(4) 1.19(5)(3)
232(10) 1.19(5)

Table 5.2: Collection of the results obtained for fBs and fBs/fB from the ratio and interpolation
methods. The statistical and systematic uncertainties are summed in quadrature. The third and
fourth lines provide info on the results obtained by extrapolating to the physical pion mass point
by using different chiral fit ansatz (see text). The final values, given in the last row, are an average
of the results of the two methods.

as discussed in the following.

Continuum limit When performing the continuum limit, both in the ratio and the interpolation
method, we consider a linear fit in a2. Since an additional a4 term cannot be fitted with our data,
we estimate the uncertainty due to discretization effects by excluding data at the coarsest lattice
(β = 3.80). The central values for fBs change by 2 and 1 MeV for the ratio and the interpolation
method respectively. The corresponding changes in the values of the ratio fBs/fB are instead
negligible.

Heavy mass dependence Within the interpolation method we estimate the uncertainty in
reaching the physical bottom mass by including, for each β, data at two larger values of µh, and
by choosing slightly different values for the reference masses. We find that with these variations
the central values obtained for fBs change by approximately 3 MeV, while the results for the ratio
fBs/fB are practically unaffected. In the context of the ratio method analysis in order to estimate
the systematic error associated to the determination of zs(µ̄b) we have varied the fit ansatz by
considering either a second order or a third order polynomial in 1/µ̄h. This change produces only
a 1 MeV decrease in the final value of fBs - 225 MeV (see Table 5.2). Even smaller is the relative
uncertainty in the 1/µ̄h interpolation of the double ratio zs(µ̄h)/z(µ̄h), owing to the very flat
profile of data within errors, as it is seen from fig. 5.6 (right).

Pole mass As the pole mass is affected by renormalon ambiguities, in the analysis based on the
ratio method we compare the results obtained by using the NLO definition of the pole mass to
the results found with the LO definition. Within the interpolation method, instead, we have also
considered the alternative definition of Φh!(s) in terms of the pole mass (rather than the meson
mass), again using either the NLO or the LO definition of the pole mass. In both cases, the
differences are found to be small, at the level of 1 MeV, for the decay constants, as the sensitivity
to the pole mass definition, which appears in the intermediate steps of the calculation, largely
cancels out in the final determinations. The results for the ratio fBs/fB are practically unaffected.

Mismatch of the strange quark mass in the static simulation The static-strange corre-
lators have been calculated with a value of the strange quark mass that was estimated from an
analysis at fixed lattice spacing, and turned out to be larger with respect to the continuum limit
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estimate by approximately 22% at β = 3.90 and 13% at β = 4.05. In order to evaluate the system-
atic uncertainty due to this mismatch, we have analyzed the data with propagating heavy quark
for Φhs which are available at several values of the strange quark mass. By using the continuum
estimate of the strange quark mass, ΦBs decreases by approximately 2%. A similar effect can be
thus expected for the static data. We have thus repeated the interpolation to the b quark mass
using for the static points results smaller by 2%. We find that the Bs decay constant decreases
by 3MeV and fBs/fB by 0.015. We conservatively ignore the sign of the variation and consider
these changes as a symmetric contribution to the systematic uncertainty. This uncertainty does
not affect the ratio method, since in this case the static limit of zs and zs/z is exactly known.

Final results For both methods we add in quadrature the systematic uncertainties and, finally,
as shown in the last row of Table 5.2, we average the results of the two methods obtaining

fBs = 232(10) MeV ,
fBs

fB
= 1.19(5) , (5.18)

and for the B decay constant, which is determined for each analysis as fB = fBs/(fBs/fB),

fB = 195(12) MeV . (5.19)

These values are in agreement and improve the results obtained in [36] and [41].

5.3.4 Comparison of the two methods

The systematic uncertainties due to the chiral and continuum extrapolation and to the interpo-
lation to the physical b quark mass, as well as the sensitivity to the definition of the pole mass
used in the ratio method, have been carefully studied. An important uncertainty affecting the
determination of the ratio fBs/fB and, in turn, of fB, is introduced by the chiral extrapolation
to the physical value of the average up/down quark mass. We note, in this respect, that given an
assumption for the chiral extrapolation fitting function, i.e. either including or not the leading
chiral logarithm, the results obtained for the ratio fBs/fB by using the ratio and the interpolation
method are in perfect agreement within each other (see Table 5.2). In order to reduce the uncer-
tainty due to the chiral extrapolation, simulations at smaller values for the light quark masses,
closer to their physical values, are needed.

The difference between the results obtained for fBs by using the ratio and the interpolation
method (approximately 5%, see Table 5.2) provides an indication of the uncertainty due to the
interpolation to the heavy b quark mass. In this respect, the main advantage of the ratio method
is that the static limit of the ratios is exactly known (by definition), so that the approach does
not require a dedicated lattice computation within the HQET.

5.3.5 D and Ds meson decay constants

As a byproduct of the analysis we also obtain the decay constants for the D and Ds mesons. In
order to determine these quantities, we only consider three values for the heavy quark reference
masses around the physical charm quark mass. By interpolating to the physical value mc(mc) =
1.28(4) GeV, obtained in [41], we find

fD = 212(8) MeV , fDs = 248(6) MeV ,
fDs

fD
= 1.17(5) , (5.20)
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to be compared with the results fD = 197(9) MeV, fDs = 244(8) MeV and fDs/fD = 1.24(3)
of [42]. With respect to [42], the present analysis is improved essentially for the reasons discussed
for fB and fBs, namely: the statistics is increased for some ensembles, data at the finest lattice
spacing (β = 4.20) are now included, the continuum extrapolation is performed at fixed (reference)
heavy quark masses. Moreover, as discussed for fBs/fB, we perform the chiral extrapolation of
fhs/fh! either following HMChPT or a linear dependence on µ!. In [42] the value fDs/fD =
1.24(3) was obtained from the HMChPT fit only, while the result given in Eq. (5.20) is an average
of fDs/fD = 1.21(2) from HMChPT and fDs/fD = 1.12(2) from the linear fit. By considering
both results we have increased the uncertainty associated to the chiral extrapolation.

5.4 Smearing tests

Increasing the mass of the heavy quark results in a smaller gap between the lowest and excited
states. One needs to go to larger time to isolate the ground state in the correlation functions.
Given that in two points correlation functions the signal decrease faster than gauge sampling and
stochastic noise (if random source are used), at increasing quark masses the determination of
matrix elements and hadron masses becomes more and more difficult, end eventually impossible.

When computing correlation functions one create out from the vacuum the state of its interest
|s〉 (which we will suppose for simplicity to be a single particle state) through an appropriate
operator O carrying quantum numbers of the state s. The operator O in general will create all
state with the same quantum numbers of s and not just the fundamental:

O |0〉 = |s〉+
∣∣∣s(1)

〉
+
∣∣∣s(2)

〉
+ . . . . (5.21)

Nevertheless it must exist a set of operator Os that when applied to the vacuum create only
the state1 s. The prove of this is simple: given the (non unique) operator O, an operator Os can
be defined as Os ≡ |s〉 〈s|O.

The operator Os will be in general a non-local combination of fields at different space points,
corresponding to the wave function of the state. Knowing the distribution of such fields one could
build the interpolating operator and compute correlation functions containing just the state s at
all times, highly improving signals.

In order to build an operator which approximate Os and have therefore a better overlap with
state |s〉, one have to make some guess on the shape of hadron wave function. The general criteria
used to build such improved creation operator is that the wave function of an hadron of mass M
extend over a region of space of order 1/M . Increasing the spatial extent of operators one can
achieve better overlap with the lower lying state and thus obtain correlation functions with minor
excited states contamination. One can assume the shape of the wave function to be Gaussian-like,
and build a creation operator with such form.

5.4.1 Gaussian Smearing

One possibility called Gaussian smearing is to substitute the creation operator O with:

Os = Gn (k)O, G (k) ≡
1 + kH

1 + 6k
, (5.22)

1The operator Os is not unique: different choice of operator O lead to different operators Os, which differ for
the normalization and their action on states different from the vacuum.
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where H is given by:

Hx,y ≡
∑

µ=1,2,3

(
Ux;µδy,x+µ̂ + U †

x−µ̂;µδy,x−µ̂

)
, (5.23)

with U being the gauge links, k a real number, and n an integer number called the smearing level.
Let us consider the computation of two points correlation functions between bilinear oper-

ator such as Oi = ψ̄Γiψ, and to be interested in the calculation of the correlation functions

Cs2s1

〈
O†

s2Os1

〉
between smeared operators:

Osi = Gni (ki)Oi, i ∈ 1, 2 . (5.24)

It can be shown that the correlation function wrote in terms of these operator is given by the
contraction:

C,x,t = −
〈
Tr
[
Γ2
(
MSS

)−1

x,0
Γ1
(
MSS

)−1

0,x

]〉
, (5.25)

where we have defined the sink and source smeared (SS) propagator
(
MSS

)−1
, which can be

expressed in terms of the usual propagator as:

(
MSS

x,0

)−1
= Gn2 (k2)x,y (My,z)

−1 Gn1 (k1)z,0 . (5.26)

This can be achieved first of all by defining a vector ηx = δx,0, then applying over it the source
smearing operator:

φy = Gn1 (k1)y,x ηx, (5.27)

then solving for the vector χ the linear system:

Mx,yχy = φy , (5.28)

and lastly applying the sink smearing operator:
(
MSS

)−1

x,0
≡ Gn2 (k2)x,y χy . (5.29)

The effect of the source smearing operator is to build an extended source φ on which to invert
the fermionic matrix. If the original source η is a Kronecker delta at the origin, the extended or
“smeared” source η is a Gaussian-like distributed in space, mainly:

|η|2x ∝ e
−
(

|"x|
2σ

)2

δt,0 , (5.30)

where the parameter σ is an increasing function of k and n, which must be tuned in order to
obtain the wanted Gaussian width. Increasing the number of iteration n decreasing at the same
time the smearing strength k one can achieve (approximatively) the same source width σ.

At fixed σ, larger n will correspond to a greater gaussianity of the shapes of the source. This
is not a very relevant point anyway, given that the true wave-function of lowest state does not
need to be gaussian.

In Fig. 5.9 we show for example the profile density as a function of the distance of a smeared
source, obtained by smearing with parameters k = 4, n = 50 using a β = 3.90, am = 0.0064
gauge configuration. The gaussianity of the smeared source is evident.

The smearing of propagator sink act in a very similar way, enhancing the overlap of operator
O2 between vacuum and the state s.

This discussion apply also when working with stochastic sources with (or without) using one-
end trick.
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Figure 5.9: Density profile of a smeared source obtained by smearing with k = 4, n = 50 using
a β = 3.90, am = 0.0064, V = 243 × 48 gauge configuration. The curve is a plot of the fitting
gaussian.

5.4.2 Comparison between different smearing combinations

In general one can build one can build correlation function with smearing parameters in the source
and in the sink. For the sake of simplicity we have limited to analyze correlation functions with
the same smearing level in the source and in the sink, or with one of the two set to zero (local). To
summarize we have considered four kind of correlation functions: the simple local-local which has
been used through all previous work, which we indicate in the following as LL (where L stand for
Local); the source smeared correlation functions, which we call SL; the sink smeared correlation
function LS; and the source and sink smeared, SS.

We made a test by computing pseudo-scalar correlation functions on the β = 3.90, am =
0.0064, V = 243 × 48 gauge ensemble using 240 gauge configurations, with a large list of heavy
quark masses, fixing the parameter k = 4 and with four different number of iterations: 0, 30, 60, 90.

In Fig. 5.10 we plot the effective mass relative to four level smearing of the meson composed
by light (am = 0.0064) quark and an heavy quark of a mass approximately double of the physical
charm.

As expected in smeared correlation functions the ground state is isolated much better and at
shorter time than the simple local-local correlator. Increasing the number of smearing iterations
does not improve the suppression of excited state contamination, while enhance errors.

We noted that the error on correlation function is an increasing function of the number of
smearing iterations applied to the sink. In figure 5.11 we show the correlation function effective
mass obtained fixing the number of iterations in the source to 30 and varying the number of
iteration in the sink. It is evident that the suppression of excited states do not worsen much
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Figure 5.10: Comparison of the effective mass of the pseudo-scalar correlation function with
four different numbers of iterations. The function is compute over 240 gauge configuration of
am = 0.0064, β = 3.90, V = 243 × 48 ensemble. Data is slightly displaced horizontally for better
readability. The number of iterations in the sink is always equal to the source.

neither at nsink = 0.
The signal behaves much better if the sink of the propagator is not smeared at all.
It turns instead out that the signal to noise ratio in the SL (source smeared, sink local)

correlation function is quite largely improved with respect to the simple local-local correlation.
There is indeed an apparent difference between the effects of the smearing on the source and on
the sink. We suggest that this feature might be related to the usage of random wall sources: the
increase of noise is known to be a general feature of usage of smearing, but when performed on
a stochastic source it could help to cancel part of the stochastic noise, possibly by averaging a
larger number of gauge variant terms end therefore improving the stochastic closure of the source
indices. This topic could be investigated in future by comparing the effects of smearing also in
presence of a simple point source.

5.4.3 Preliminary study of the B meson mass

We decided to fix the number of smearing iteration in the sink to 30 and on the sink to 0, and
perform a preliminary calculation of the pseudo-scalar correlation functions. We studied a single
gauge setup for each of the three β ∈ {3.80, 3.90, 4.05} , in order to check the feasibility of the
determination of the b quark mass and of the decay constant fB and fBs directly at the physical
b quark mass, or by making a more limited heavy extrapolation.

The bare sea quark mass for each setup has been chosen to correspond approximately to the
same renormalized light mass (in MS at 2 GeV.) of about 30MeV. In Fig 5.12 we show the
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Figure 5.11: Comparison fixing the number of source iteration to 30 and changing the number of
smearing iteration on the sink.

effective mass of the correlation function computed approximately at the physical b quark mass.
It is evident that a clear plateaux can still be seen starting from t ∼ 12.

In figure 5.13 we show the continuum extrapolation of the meson mass as determined at the
three lattice spacing, for a set of four different b quark masses. It is remarkable that even at
the physical b quark discretization effects seem to be not larger than 20%. Of course this is
a preliminary result, which must be checked more carefully with a fourth lattice spacing and
analyzing a larger number of sea quark masses.

As a last check we studied the decay constant fB on the gauge ensemble β = 3.90, am =
0.0064 already analyzed for previous test. In order to build the meson decay constant, the local
interpolating field ZL is needed. The source smeared correlator is expected to behave as:

CSL (t) =
ZSZL

MB
e−TMB/2 cosh [MB (T/2− t)] , (5.31)

over times where only lowest state dominates, with ZS being an unknown function of ZL and
smearing parameters. Only the combination ZSZL and the mass MB can be determined through
the fit of the SL correlation functions. In order to determine the simple ZL factor one need
to determine separately the factor ZS by fitting the source and sink smeared (SS) correlation
function, which is expected to behave as:

CSS (t) =
Z2
S

MB
e−TMB/2 cosh [MB (T/2− t)] , (5.32)

and obtain ZL by dividing appropriately the fitted constant ZSZL. Being the meson mass MB

contained in both 5.31 and 5.32 formulae, this can (and should) be done in a combined fit of the
two correlation functions.
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Figure 5.12: Effective mass of the correlation function at β = 3.90 for the B meson composed
of a light quark of renormalized quark mass of approximately 30MeV (in MS at 2 GeV) and the
physical b quark. .

In figure 5.14 we show the result of the B meson decay constant fB obtained at various heavy
quark masses up to the physical b, using or not using smearing techniques. With smearing it is
possible to determine fB with high precision up to the physical B and thus it could be possible
to determine it by making small or null extrapolation.

Having the test been done at a fixed lattice spacing and sea quark mass, the comparison with
the results obtained in previous chapter does not allow to say anything definitive over them, but
nonetheless is very encouraging.

To summarize, the usage of smearing techniques seem to be a very promising tool to study
b physics, and we plan to start a full analysis of b quantities with these techniques in the near
future.
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Chapter 6

Isospin breaking effects

Isospin symmetry is an almost exact property of strong interactions as described by the QCD
Lagrangian. As already mentioned, this symmetry hold because of the difference between the
up and down quark masses is much smaller than the QCD scale, (md −mu) /ΛQCD / 1, and
it remains true also when electromagnetic interactions are switched on, because isospin breaking
effects due to the different quark electric charges (qu ,= qd) are suppressed by the electromagnetic
coupling constant, αem ∼ 1/137. For these reasons most of theoretical predictions assume isospin
symmetry, i.e. the masses of the up and down quarks are taken equal and the electromagnetic
effects are neglected. The calculations presented in the previous chapters are obtained in the
isospin symmetric limit.

Nowadays, with the increasing precision of the experimental determinations of many physical
quantities, and in some cases with the improvement of the theoretical predictions, the control over
isospin breaking effects is becoming phenomenologically relevant. This is the case, for example,
of the form factors parameterizing K!3 decays. Isospin breaking effects are important also for
hadron spectroscopy, for the meson decay constants, for the π−π scattering length, for the chiral
condensate and for many other quantities.

In this chapter we will describe a new method to take into account the correction arising from
quark mass difference, and present some example of applications. In particular we will compute
the up-down quark mass difference, determine the QCD corrections to the Kaon meson decay
constant fK, the semi-leptonic K*3 form factors and predict the proton-neutron mass difference.

6.1 Motivation and method

In the past, isospin breaking effects due to the light quarks mass difference (in the following
referred to as QCD Isospin Breaking effects or simply QIB effects) have been accommodated
within the ChPT framework, while several attempts to compute electromagnetic effects for the
meson spectroscopy in lattice QCD have been presented.

It is much harder to take into account in numerical simulations QCD isospin breaking because
the effect is in general rather small and comparable with the errors in the determination of,
say, the meson masses or decay constants. Furthermore, in order to perform unitary dynamical
simulations of two light quarks of different mass the single quark determinant must be positive
and this happens only in the case of lattice discretizations of the fermion action that are very
expensive from the numerical point of view.
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Our method is instead based on a perturbative expansion in the up-down quark mass difference.
Let us start by considering the evaluation of any generic euclidean correlation function used to
extract information about physical quantities as masses, decay constants, form factors etc.

〈O〉 =
´

DφOe−S
´

Dφ e−S
, (6.1)

where D represents generically the full functional integration measure of the theory. By neglecting
for the moment electromagnetic corrections and possible isospin breaking terms that may arise
because of lattice artifacts with particular choices of the lattice fermion action, we can write the
Lagrangian density as a term which is SU(2)V symmetric plus the isospin breaking term:

L = Lkin +
md +mu

2

(
ūu+ d̄d

)

︸ ︷︷ ︸
L0=Lkin+mudq̄q

−
md −mu

2

(
ūu− d̄d

)

︸ ︷︷ ︸
εudq̄τ3q=εudL̂

, (6.2)

where q ≡ (u, d), mud ≡ (md +mu) /2 and εud ≡ (md −mu) /2. By expanding at first order the
exponential of the action, S =

∑
x L(x), with respect to εud we obtain

〈O〉 -

´

DφO
(
1 + εŜ

)
e−S0

´

Dφ
(
1 + εŜ

)
e−S0

=
〈O〉0 + εud

〈
OŜ
〉

0

1 + εud
!
!
!

〈
Ŝ
〉

0

= 〈O〉0 + εud
〈
OŜ
〉

0
, (6.3)

The correction in the denominator vanishes because of isospin symmetry. Concerning the Wick

contractions of the correlation functions
〈
OŜ
〉

0
, isospin symmetry makes also vanish disconnected

contributions of the form:

εud
〈
[Wick contractions of O]× tr

[
Ŝ
]〉

0
= 0 , (6.4)

since these are proportional to the trace of the flavor matrix τ3. The previous observation is a
particular case of the following general recipe to be used in order to compute leading QIB effects
on the lattice:

• consider a given correlation function in the full theory with mu ,= md, and draw all the
Wick contractions

• expand the up and down quark propagators with respect to εud according to

Su (x1, x2) = S! (x1, x2) + εud
∑

y S! (x1, y)S! (y, x2) + . . . ,
Sd (x1, x2) = S! (x1, x2) + εud

∑
y S! (x1, y)S! (y, x2) + . . . ,

(6.5)

• retain the terms linear in εud and compute the corresponding diagrams.

In the following sections we shall discuss in details how to extract physical informations from the
resulting correlation functions. To this end we need to set the notation we are going to use in
drawing Feynman diagrams. Eqs. 6.5 can be represented diagrammatically as in figure 6.1, where
the up quark line in the full theory is drawn in light blue color while the down quark line in green.

All the black lines refer to S!, the propagator with the symmetric mass mud in the isospin

symmetric theory: = S! (x− y) =
〈
* (x) *̄ (y)

〉
, whereas the insertion of the scalar
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Figure 6.1: Diagrammatic expansion of up and down quark propagators

density is represented by a cross = εud
∑

z *̄ (z) * (z) = εLud
∑

z

[
*̄ (z) * (z)

]L
, with * being either

u or d. Here and in the following the superscript L stays for bare lattice quantity. In particular
we have:

εud = Z∆mε
L
ud , (6.6)

but as already stressed previously, in tmQCD at maximal twist the non-singlet scalar density
renormalizes as ZP = 1/Z∆m so that the combination εud

∑
z *̄ (z) * (z) is renormalization group

invariant.

The square of the S! propagator entering Eqs. 6.5 can be easily calculated on the lattice by
using S! itself as the source vector of a new inversion.

It is useful to introduce the following operators acting as absolute variations:

∆dO = O(d)−O(*) , ∆uO = O(*)−O(u) , ∆O =
∆dO +∆uO

2
,

and the relative variation operator:

δdO =
∆dO
O(*)

, δuO =
∆uO
O(*)

, δO =
∆O
O(*)

. (6.7)

6.2 Determination of md −mu

In order to compute the QIB corrections to any observable, we must first of all fix the value of
the quantity εud. This is can be achieved as already done in chapter 4 to fix any other mass, by
requiring a certain quantity depending (at first order) from the light quarks mass splitting εud to
reproduce its physical value.

A first trivial observation comes from Eq. (6.4) telling us that all the quantities that do not
involve a light valence quark propagator do not get corrected at first order in εud. This is the case
for example of heavy-heavy and heavy-strange meson’s masses and decay constants, etc.

Pions’ masses and decay constants too do not get corrected at first order. This can be shown
diagrammatically as follows:

u
d

= + − + · · · = +O(ε2ud) ,
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for the charged pions two point function Cπ+π−(t) =
∑

,x〈 ūγ5d(x) d̄γ5u(0) 〉, and:

u
u

= + + + · · · = + 2 +O(ε2ud) ,

d
d

= − − + · · · = − 2 +O(ε2ud) ,

1

2

[
u
u

+ d
d

]
= +O(ε2ud) ,

for the connected diagrams entering neutral pion two point function Cπ0π0(t) = 1
2

∑
,x〈 (ūγ5u −

d̄γ5d)(x) (ūγ5u− d̄γ5d)(0) 〉. It is easy to show that the first order corrections cancel also for the
disconnected diagrams contributing to Cπ0π0(t) in the full theory.

First order corrections to masses and decay constants are instead different from zero for flavored
mesons. Here we discuss the case of strange particles but the discussion proceeds unchanged if
the strange is replaced with a charm or a bottom quark. The QIB correction to the two-point
correlation functions of the strange mesons are

CK+K−(t) =
∑

,x〈 ūγ5s(x) s̄γ5u(0) 〉 = −s
u

= − − +O(ε2ud) ,

CK0K0(t) =
∑

,x〈 d̄γ5s(x) s̄γ5d(0) 〉 = −s
d

= − + +O(ε2ud) .

(6.8)
In the diagrams above and in the following the strange quark line is red. Note that the

correction to the neutral mesons is equal in magnitude and opposite in sign with respect to that
to the charged particles, i.e. ∆dCKK(t) = ∆uCKK(t).

We can therefore use the Kaon mass splitting MK0 −MK+ to fix the value of the parameter
εud. In the full theory the correlation functions of Eqs. 6.8 behave as:

CK+K−(t) =
Z2
K±

MK±
e−TMK±/2 cosh [MK± (T/2− t)]

CK0K0(t) =
Z2
K0

MK0
e−TMK0/2 cosh [MK0 (T/2 − t)] ,

where the ground state dominates. In these formulae the mass and Z are function of the quark
masses, and in particular of the parameter εud. Expanding at first order in εud we get:

δCK,K (t)

εud
= − = 2

δZK

εud
− (TMK/2 + 1)

δMK

εud
+MK

δMK

εud
(t−T/2) tanh [MK(t− T/2)] .

(6.9)
We can therefore use the correction to the Kaon mass to fix the value of εud, as illustrated in

the following sections.

92



6.2.1 Correlation function analysis

By applying the method explained in previous section, we have computed the correlation function
ratio δCK,K (t) /εud over the whole set of Nf = 2 gauge ensembles already used for the quark
masses determination, considering about 150 configurations for each ensemble.

The data of δCK,K (t) /εud has been fitted with Eq. 6.9, leaving ZK , MK , δZK/εud and
δMK/εud as free parameters. The parameters MK , ZK are constrained by fitting simultaneously
the function CK,K (t) with the expression:

CK,K(t) =
Z2
K

MK
e−TMK/2 cosh [MK (T/2− t)] . (6.10)

In Fig. 6.2 we show the fit of the correlation function CK,K and δCK,K/εud. It is clear that
the two correlation functions are well fitted by the mentioned functions.
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Figure 6.2: Left panel: effective mass of CK,K correlation function. Right panel: ratio
δCK,K (t) /εud. Data is shown for a single lattice spacing (β = 3.80) at four different values
of the sea quark mass. The colored band show the 68% C.L contour of the fit of Eq. 6.9 over the
computed data. Light quark mass is in MS at 2 GeV.

6.2.2 Continuum and chiral extrapolation

After determining the parameter δMK/εud on each gauge ensemble we have performed the con-
tinuum and chiral fit. We shall now discuss the chiral and continuum extrapolations. The chiral
formulae for ∆M2

K and δFK were obtained long ago within the SU(3)V effective theory in ref. [56].
It is useful to consider the correction to the meson’s mass square because this is a finite quantity
in the chiral limit. The relevant formulae are:

M2
π = 2B0mud ,

M2
K = B0(mud +ms) ,

M2
η = 2B0(mud + 2ms)/3 ,

µP =
M2

P

16π2f2
0

ln(M2
P /µ

2) , (6.11)
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Figure 6.3: Combined chiral and continuum extrapolations of ∆M2
K/εud.

Since our results have been obtained by quenching the strange quark (Nf = 2), we have chosen
to fit our data with the formulae resulting by expanding the r.h.s. of Eqs. (6.11) with respect to
mud/ms. This procedure is justified when the average light quark mass is sufficiently small as
appears to be the case by looking at our data shown in Figure 6.3.

Our results, obtained at four different lattice spacings for several values of the average light
quark mass, do not show a visible dependence with respect to mud that can be quantified within
the plotted errors. These errors combine the statistical and systematic errors coming from the
uncertainties on the lattice spacing and on the renormalization constants). We have consequently
fitted the numerical data with the following functional form:

[
∆M2

K

εud

]
(mud, a) =

[
∆M2

K

εud

]QCD

+ CMa2. (6.12)

The results of the fit is ∆M2
K/εud = −2.61(7)MeV.

After having determined ∆M2
K/εud we can use the physical value of the K± − K0 mass

difference as input to determine [md−mu]QCD. But before doing this, we have to understand how
to deal with the isospin breaking corrections to the Kaon mass originating from electromagnetism.

6.2.3 Electromagnetic corrections

When comparing the theoretical predictions with the experimental numbers we cannot neglect the
isospin breaking corrections induced by electromagnetic interactions. As an effect of ultraviolet
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divergences, the separation of the electromagnetic and strong QIB effects is artificial and ambigu-
ous [57, 58]: the amount of each of the two contributions depend on the definition by which they
are separated, whereas they do not correspond to any physical observable.

In this work we only consider the QCD corrections: this is equivalent to say that we follow the
common procedure of separating the two isospin breaking contributions by switching off electro-
magnetism. Obviously the attempt to use physical quantities to fix εQCD

ud fails, since there are no
data with electromagnetic interactions switched off and, for this reason, we shall use the definition
and determination of the electromagnetic corrections done by other groups.

According to Dashen’s theorem [59], electromagnetic corrections are the same for M2
K0 −M2

K+

and M2
π0 − M2

π+ in the chiral limit while, as discussed in the previous sections, pions’ masses
are not affected by first order QCD corrections. Beyond the chiral limit it is customary [60] to
parametrize violations to the Dashen’s theorem in terms of small parameters and, concerning
M2

K0 −M2
K+ , we have:

[
M2

K0 −M2
K+

]QCD
=
[
M2

K0 −M2
K+

]exp − (1 + εγ)
[
M2
π0 −M2

π+

]exp
, (6.13)

where we have neglected QCD contributions of the second order O(ε2ud) in the pion’s mass differ-
ence. Using chiral perturbation theory and results from lattice QCD calculations of the electro-
magnetic corrections [60] estimates:

εγ = 0.7(5) ,

[
M2

K0 −M2
K+

]QCD
= 6.05(63) × 103 MeV . (6.14)

6.2.4 Determination of md −mu

By using Eqs. (6.14) and the results of the fits of our data shown in Figure 6.3 to the functional
forms given in Eqs. (6.12) and (6.20) we get the following results:

[md −mu]
QCD (MS, 2GeV) = 2εQCD

ud = 2.27(24) MeV. (6.15)

After having fixed the value of εud we can proceed to evaluate the other observables of our
interest.

6.3 Isospin breaking effects in fK

The value of the Kaon leptonic decay constant fK is used together with the Pion’s one fπ to

determine the ratio between the CKM matrix elements
∣∣∣Vus
Vud

∣∣∣, as explained in chapter 2. The

world average value for the ratio fK/fπ computed in the isospin symmetric limit is 1.193(5). This
value is corrected for IB using chiral perturbation theory. A recent calculation [61] gives:

[
fK+/fπ+

fK/fπ
− 1

]QCD

= −0.22(6)% . (6.16)

This correction is quite poorly known, and its error is of the same order of magnitude of the
statistical error of fK/fπ itself. Moreover it is obtained within an effective theory, and it would
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be interesting to have a first principle computation to compare. We will provide our estimate of
the QIB corrections to fK using the method exposed in sect. 6.1.

The WI formula for fK is:

fK ≡
(µs + µl)ZK

M2
, (6.17)

with µl and µs being respectively the light and strange bare quark masses, and ZK the matrix
element of the K local interpolating operator. It is immediate to show that:

δfK =
fK+ − fK−

2fK
, (6.18)

is given by:

δfK =
εud

µs + µl
+ δZK − 2δMK . (6.19)
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Figure 6.4: Combined chiral and continuum extrapolations of δfK/εud.

This can be computed directly using the parameters δZK/εud and δMK/εud fitted from the
time behavior of the δCKK correlation function of previous section.

After having determined δfK on each gauge ensemble we have to perform the chiral and
continuum extrapolation of the data. We have performed a fit of the data with the formula:

δfK (ml, a)

εud
= A+Bml logml + C ml +Da2 , (6.20)
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which is the SU(2) Chiral Perturbation Theory prediction plus a quadratic dependence from the
lattice spacing.

In Fig. 6.4 we show the fit of the simultaneous fit of our data. The dependence from ml is
clearly visible, although the two terms ml and ml logml are only marginally fitted simultaneously.

Using the value of εud determined in the previous section we get:

[
fK+/fπ+

fK/fπ
− 1

]QCD

=

[
fK+

fK
− 1

]QCD

= −0.38(6)% , (6.21)

which is almost double than the straight Ch-PT perturbation theory 6.16.

6.4 Neutron - Proton mass splitting

An interesting quantity to compute is the proton-neutron mass splitting. We have performed a
preliminary determination of this quantity at a fixed lattice spacing, on which we shall report in
the following.

6.4.1 Relevant correlations

One of the simplest1 color singlet operator which is possible to build from two u and one d quark
fields, with definite parity and transforming as a spin 1/2 representation is given by:

O±
N = εabc

1± γ0

2
uc
(
uaCγ5d

T
b

)
. (6.22)

The proton mass can therefore be determined from the correlation function:

C±
pp(t) =

∑

,x

〈
[
εabc

(
ūaCγ5d̄

T
b

)
ūc

1± γ0

2

]
(x)

[
εdef

1± γ0

2
ud
(
uTe Cγ5df

)]
(0) 〉 , (6.23)

while the neutron from the correlation:

C±
nn (t) =

∑

,x

〈
[
εabc

(
d̄aCγ5ū

T
b

)
d̄c

1± γ0

2

]
(x)

[
εdef

1± γ0

2
dd
(
dTe Cγ5uf

)]
(0) 〉 . (6.24)

Each correlation function corresponds to two different contractions, diagrammatically:

C±
nn(t) = − +

C±
pp(t) = − + .

Moreover the proton propagates only in the first half of the correlation function C+ and in the
second half of C−, while its negative parity partner propagate in the other halves, and in order

1there are other possible interpolators as simple as the proposed one, but this choice maximize the signal/noise
ratio.
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to increase statistical, we shall extract nucleon masses from the combinations:

Cnn(t) = C+
nn(t)− C−

nn(T − t) ,

Cpp(t) = C+
pp(t)−C−

pp(T − t) . (6.25)

In the isospin symmetric limit there is no difference between the two correlation functions,
which are identically equivalent. The correction to the isospin symmetric limit is given by:

C±
nn(t) = − + ,

C±
pp(t) = − + ,

− = 2



 − −



+O(ε2ud) ,

− = 2

[

− −

]

+O(ε2ud) .

(6.26)

6.4.2 Correlation computation and analysis

The nucleon correlation functions are known to be much noisier than the mesonic ones, and the
signal to noise ratio increases very fast with the increasing of the time, therefore it is important
to isolate the lowest state the sooner it is possible. For this reason the quark fields entering
the source interpolating operators have been “Gaussian smeared” as already explained in section
(5.4.1), using for the parameters k and n values optimized in ref. [62] where the same gauge
configurations of this study have been used.

The extraction of physical informations from nucleons euclidean two point functions proceeds
along the same lines described in details in the case of the Kaon. By using the diagrammatic
analysis of Eqs. (6.26) we have:

CNN (t) = − + = WNe−MN t + · · · , (6.27)
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Figure 6.5: Left panel : correlation functions δCNN (t)/aεLud. The data are at fixed lattice spacing a = 0.085 fm

for different values of ml. Left panel : linear extrapolation of the neutron-proton mass splitting.

and

δCNN (t) = −

− −

− +

+

− −

− +

= δWN − t∆MN + · · · , (6.28)

where the dots represent sub leading exponentials contributing to the correlation functions. By
extracting the slope in t of δCNN (t), we can determine ∆MN = (Mn −Mp)/2. In the left panel

of Figure 6.5 we show the effective masses M eff
N (t) as extracted from the correlation functions

δCNN (t)/aεLud that we have fitted to straight lines, according to Eq. (6.28), i.e. without taking
into account the finite time extent of the lattice because it affects the correlation functions only at
large times where no signal can be extracted within our errors. In the right panel of Figure 6.5 we
show the chiral extrapolation of ∆MN/εud performed by using a simple linear fitting function [63].

By using the results of the fit and the value of εQCD
ud previously found we get:

[Mn −Mp]
QCD = 2εQCD

ud

[
∆MN

εud

]QCD

= 2.7(9) MeV , (6.29)

This number is our best estimate at present but it has been obtained at fixed lattice spacing
and with limited statistics. We plan to refine the calculation in future.
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6.5 Isospin breaking effects in K*3

The method exposed in this chapter allow to determine QIB corrections to many other quantities,
such as the semi-leptonic form factors involved in K!3 decays. The determination of the correction
to such quantity is of primary importance given the strong impacts that they may have on the
determination of Vus CKM matrix element.

6.5.1 Semi-leptonic form factors

Let us first describe how the semi-leptonic form factors are determined on lattice.
Our aim is to determine the fK→π

+ as a function of transferred momentum, with particular
attention to the value assumed at 0 transferred momentum. The form factor is defined by the
decomposition:

〈π(p′)|Vµ|K(p)〉 =
[
f+
(
q2
) (

p+ p′
)
µ
+ f−

(
q2
) (

p− p′
)
µ

]
, q2 = (p− p′)2. (6.30)

In order to determine such matrix element we start by defining the three point function:

CKπ
pK ,pπ;µ (t) = =

∑

,x,,y

〈
Opπ
π (tsink, 2y) V̂µ (t, 2x) OpK†

K (0)
〉
, (6.31)

where Op
K (0) is the operator which creates a Kaon in the origin and Op

π (tsink, 2y) a Pion in the
point (tsink, 2y), with tsink kept fixed. The p means that the two particles are created in a system
in presence of twisted boundary conditions, which force particles to have at least momentum p
(this allow to change continuously the values of the momentum injected in the system and study
kinematics region not accessible otherwise). This correlation function can be computed by taking
the contraction:

CKπ
pK ,pπ;µ (t) = Tr

[
SpK
s (0, y) γµΣ

pπ
s,l (y, 0) γ5

]
, (6.32)

where SpK
s is the propagator satisfying the Dirac equation for the strange:

Ds (x, y)S
pK
s (0, y) = e−ipKxδ (x, 0) , (6.33)

and ΣpK ,pπ
s,l is the sequential propagator, satisfying the Dirac equation:

Dl (x, y)Σ
pπ
s,l (y, 0) = e−ipπxγ5S

pK=0
s (x, 0) δx0=tsink

. (6.34)

In these equations Di is the fermionic matrix for the quark i. It is possible to show that the
evaluation of Ss requires an inversion of the fermionic matrix for each value of pK , and Σs,l an
additional inversion for each value of pπ.

Where ground state dominates, correlation function 6.32 behaves as:

CK,π
pK ,pπ;µ (t) =

1√
ZK
V Zπ

V

ZKZπ
4EK

pKE
π
pπ

e−t(EK
pK

−Eπ
pπ)e−TEπ

pπ/2 〈KpK |Vµ |πpπ〉 , (6.35)

with E being meson energy (equal to the mass in the case 2p = 20).
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It is possible to build smart ratio in which almost all coefficients but the matrix element of
interest cancel out. In particular we define:

Rµ ≡
CK,π
pK ,pπ;µ (t)C

π,K
pπ,pK ;µ (t)

CK,K
pK ,pK ;µ (t)C

π,π
pπ,pπ;µ (t)

= =
1

4EK
pKE

π
pπ

|〈KpK |Vµ |πpπ〉|
2 , (6.36)

where CK,K and Cπ,π are degenerate case of three point correlation functions (in which case the
form factor is 1 because of the conservation of vectorial current). By measuring the value of E
from the simple two points function we are left with |〈KpK |Vµ |πpπ〉| which can be studied in terms
of pK and pπ to determine form factors.

6.5.2 QIB corrections to form factor

In the present section we will list the contractions relevant to determine the QIB corrections to
the form factors. The diagrams entering the correction to the ratio 6.36 are:

δRµ
Kπ(t) = −

−

−
−

+ =

= 2δ [〈π|V µ
su|K〉]− δEK + · · · .

Given the strong complication involved in the precise determination of disconnected dia-
grams, in this work we have not calculated disconnected diagrams and we cannot show results
for δfKπ

± (q2). For the time being and in order to show that our method works also in the case of

three point functions and form factors, we have calculated the difference of fK0π−

+ (q2) with respect
the isospin symmetric value fKπ

+ (q2), i.e δdfKπ
+ (q2). This is a quantity that cannot be measured

directly because the missing contribution, δufKπ
+ (q2), is neither equal nor related in a simple way

to δdfKπ
+ (q2). The two different contributions are associated to two independent isospin channels,

nonetheless its computation is interesting to show the various possible applications of our method.
Neglecting disconnected contribution we can compute only:

δdR
µ
Kπ(t) = −

−
−

−
+ ,

= 2δd [〈π|V µ
su|K〉]− δEK + · · · . (6.37)

In Fig. 6.6 we show the ratios R0
Kπ(t) and their corrections computed on a single ensemble of

gauge configurations. The good precision of the correlation function means that the method will
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Figure 6.6: Left panel : we show our results for
√

R0
Kπ(t) for several values of the momentum transfer. Right

panel : we show our results for δdR
0
Kπ(t)/aε

L
ud for several values of the momentum transfer. The data are obtained

a fixed lattice spacing a = 0.085 fm and at fixed amL
ud = 0.0064.

allow - when completed with the computation of disconnected diagrams - to determine the QIB
correction to the f+ form factors and provide stronger bound on the value of Vus CKM matrix
element.
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Chapter 7

Nf = 2 + 1 + 1 simulations

As explained in section 3.5.2.3 the quenching of the strange and charm quark is believed to have
quite small effects on physical observable (and b quark even smaller). Nonetheless a direct eval-
uation of the amount of the corrections induced by the unquenching of these quarks is difficult
and still lacking. The partial quenching of s and c quarks induces therefore a systematic effect
which is not quantifiable. The only practical way to estimate it is to perform a lattice QCD com-
putation including these two quarks, and to compare the results obtained with partially quenched
simulations.

In this chapter we will discuss briefly the preliminary results obtained from a set of Nf = 2+
1+1 simulations recently carried out by ETM [64,65]. We will briefly explain how a non degenerate
doublet of quark s and c can be introduced maintaining the automatic O (a) improvement, describe
the lattice ensemble produced and list all correlation functions computed on them. On the end
we will present preliminary results for selected quantities.

7.1 Twisted mass with s and c quarks

7.1.1 Un-degenerate doublet

On its simplest form twisted mass QCD describes a degenerate doublet of quarks. In order to
introduce the strange and charm quarks, which have a quite different mass, we must generalize
the structure of the twisted mass terms in order to accommodate for a mass splitting, by writing
the mass term of the Lagrangian as:

Sheavy ≡ χ̄h

(
m+ iµσγ5τ

flav
1 + µδτ

flav
3

)
χh, χh =

(
χs

χc

)
. (7.1)

The µδ induces a splitting between the mass of the doublet, and comparing this expression
with the one presented in section 3.3.4 we can notice that the twisting term iµσγ5 is not anymore
diagonal in the flavor isospin. This is needed because the direction z has been used to induce the
splitting, and in order to have a real quark determinant the twist term must be taken orthogonal
to it, as shown in [66].

The bare parameters µσ, µδ are related to the renormalized strange and charm mass through
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the relation:

mren
s = Z−1

P (µσ − ZP /ZSµδ)

mren
c = Z−1

P (µσ + ZP /ZSµδ) .

The value of µσ and µδ must be tuned appropriately in order to reproduce the physical value
of the s and c quarks.

The automatic order a improvement can be obtained using the same value of the critical
parameter m = 1/2κ − 4 used for the light sector.

7.1.2 Gauge action and renormalization procedure

When adding a second doublet of quarks, the value of the light quark mass for which exceptional
configurations shows up increases significantly at fixed physical situation [67]. For this reason being
interested in considering quark mass as near the chiral point as done in the Nf = 2 simulations,
a different gauge action was chosen for Nf = 2 + 1 + 1 computations. Iwasaki gauge action
has proved to be more efficient in suppressing exceptional configuration with respect to the tree-
level-Symanzik improved action [68], and therefore has been used through all the simulations here
considered.

When calculating renormalization constants in the RI/MOM scheme, one has to perform a
chiral extrapolation of the constants. This must be done in unitary setup in which both sea and
valence quark masses are send to zero, and therefore means that one needs to produce dedicated
gauge ensembles with four degenerate quarks in order to compute renormalization constants. An
additional problem comes again from exceptional configuration, which in presence of a second
light doublet are present at much higher quark mass than when in presence of an heavy doublet,
even using Iwasaki gauge action. The solution in this case is to work off maximal twist: in
this situation, lower quark masses can be reached without incur in exceptional configuration. In
order to achieve O (a) improvement, average between quantities computed at opposite twist angle
must be performed. This strategy has been pursued by ETM collaboration. All these technical
problems render the computation of the renormalization constants much more difficult than in
the Nf = 2 case, indeed the computation is still going one well after the production of the gauge
configurations. This is the main reason for which all the results presented in this chapter are still
preliminary.

7.1.3 Setup used for the correlation function measurement

The structure of the heavy twisted mass Lagrangian term 7.1 is non-diagonal in the twist isospin
space. This means that at finite lattice spacing s and c quarks can mix among themselves. This
imply that interpolating operator containing the c quark will produce correlation functions whose
large time behavior will be dominated by stranged hadron in place of the expected charmed ones.
This effect goes away when taking the continuum limit, but makes very hard to extract the true
values of mass and matrix elements of hadrons containing s or c quarks.

For this reason we have preferred to work in a non-unitary setup in which the s and c mesons
are separate part of a light-type doublet of the kind presented in Eq. 3.52. In the computation
of correlation functions we have used alternatively only one of the two strange or charm quark
present in each doublet, as already done in all previous Nf = 2 work. The effects of non-unitarity
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are expected to be quite mild, as the difference between sea and valence quark in this case are
only discretization effects and therefore are expected to go away in the continuum limit.

7.1.4 Simulation details

These are the parameters of our analysis:

• three different lattice spacings, β = 1.90, 1.95, 2.10 → a ∼ 0.06 − 0.09 fm

• several sea masses corresponding to Mπ = 230− 500MeV

• 3 heavy valence quark masses around the physical strange mass MK = 450− 700MeV

• three volumes: 243 × 48, 323 × 64, 483 × 96.

7.2 BK parameter

In this section we will briefly report about the computation of the BK parameter. As the renor-
malization constant of the operator has been computed only on one of the three lattice spacings, it
is not possible to perform the continuum limit and therefore the analysis is presented at the fixed
lattice spacing β = 1.95 although the bare values of BK are available for all the lattice spacing
reported in section 7.1.4.

In order to compute the value of BK according to what shown in chapter 2, it is necessary to
take the ratio between the matrix element of operator:

Q1 =
1

4
[s̄γµ (1− γ5) d] [s̄γµ (1− γ5) d] , (7.2)

between Kaon and anti-Kaon states and the square of the matrix element of the axial current:

A0 = [s̄γ0γ5d] , (7.3)

between Kaon (or anti-Kaon) and the vacuum.
This means that we should determine these matrix elements from the long time behavior of

appropriate correlators, but actually we can take advantage of the definition of BK as a ratio
and work directly with the correlation function itself. Putting an operator interpolating for the
Kaon at time tsource and another at time tsink we can compute the ratio between the correlation
functions:

B (t) =

∑
,x

〈
K̄0 (2x, tsink)

∣∣∣Q1 (t)
∣∣∣K0

(
20, tsource

)〉

8
3

(∑
,y

〈
K̄0 (2y, tsink)

∣∣∣A0 (t)
∣∣∣0
〉)(∑

,z

〈
0

∣∣∣∣A0 (t)

∣∣∣∣K0 (2z, tsource)

〉) . (7.4)

This ratio behaves as:

B (t) =
B1f2

BM
2
Ke−(tsink−t)MK−(t−tsource)MK + . . .

8
3f

2
BM

2
Ke−(tsink−t)MK−(t−tsource)MK + . . .

= Bbare
K + E (t) , (7.5)

where the dots and E (t) contain all the contributions coming from excited states. Therefore
BK is simply given by the ratio between correlation functions taken only where lower lying state
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dominates. It is important to choose tsep ≡ tsink − tsource large enough in order to allow some
point t to be in the range where ground state dominates, but not too large, otherwise the signal
will be destroyed by noise. A common choice is to take tsep = T/2, which allows to improve
statistics averaging between the two halves of the time lattice extension.

Stochastic sources can be used to improve the signal, but as we have to ensure the stochastic
closure of the sources, careful attention must be placed in taking two different stochastic walls at
source and sink (otherwise, non-local closure of the sink can take place).

The correlation at the numerator of 7.4 is given by two different Wick contractions:

C3 (t) ≡
∑

,x

〈
K̄0 (2x, tsink)

∣∣∣Q1 (t)
∣∣∣K0

(
20, tsource

)〉
= (7.6)

= 2
∑

,x,,y

Tr
[
Sd (2x, tsink; 2y, t)ΓSs

(
2y, t;20, tsource

)
γ5Sd

(
2y, t;20, tsource

)
ΓSs (2x, tsink; 2y, t)

]
−

− Tr [Sd (2x, tsink; 2y, t)ΓSs (2x, tsink; 2y, t) γ5] ·
[
Sd

(
2y, t;20, tsource

)
γ5Ss

(
2y, t;20, tsource

)
Γ
]
.

In Fig. 7.1 we show the ratio of Eq. 7.4 compute on two different gauge ensembles, on which
we fitted the data with a constant over the indicated interval.

Figure 7.1: Ratio defined Eq. 7.4 (still missing the 3/8) factor) measured on two fixed gauge
ensembles (left panel: β = 2.10, V = 483 × 96, am = 0.0015; right panel : β = 1.95, V = 323 × 64,
am = 0.0055) considering 3 different strange masses. The vertical purple lines define the fit
interval of the correlation functions ratio (images courtesy of Nuria Carrasco).

After determining the ratios, the data at β = 1.95 has been extrapolated to the physical
point by fitting separately at each strange mass the five available light quark masses with the
SU (2)− ChPT prediction at next leading order:

Bbare
K (Mll) = Bchir

K,hh

[

1 +AhhMll −
(

M

4πf

)2

log
Mll

4πf0

]

∀Mhh , (7.7)

where the constant Ahh and Bchir
K,hh are different for each value of the strange quark. In the left

panel of plot Fig. 7.2 we show the data at the and fit function simultaneously.
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Figure 7.2: Left panel: chiral extrapolation at β = 1.95 for the three considered strange mass.
Right panel: interpolation of chiral data (red points) to the physical strange (empty point).

After performing the chiral extrapolation, we interpolated the result at the physical strange
by studying the value of Bbare

K in terms of the strange meson mass, interpolating linearly to the
physical point, as shown in the right panel of Fig. 7.2.

The final result on the β = 1.95 lattice is Bbare
K = 0.565(9).

The renormalization constant of the BK parameter has been computed in RI/MOM scheme
and evolved in the RGI scheme by N.Carrasco and reads:

ZBK
= 1.334(18) . (7.8)

In the present work this constant will be taken only as external input: the details on its
calculation are quite involved and, not having been part of the present thesis, will not be presented
in this work. We remind to the published literature [11] for details on the calculation. Putting
the value of such renormalization constant together with Bbare

K we get:

BRGI
K (Nf = 2 + 1 + 1, β = 1.95) = ZBK

Bbare
K = 0.754(16) . (7.9)

The lack of knowledge of the renormalization constant for other two lattice spacings (β = 1.95,
β = 2.10) do not allow to take continuum limit, so present result is still preliminary.

Nonetheless this value compares very well with the results obtained in previous Nf = 2
computation carried on by ETM collaboration obtained performing a full continuum limit analysis:

BRGI
K (Nf = 2, cont) = 0.729(30) . (7.10)

This seem to suggest that the quenching effects on the calculation of the BK parameter is quite
small compared to the statistical error.

In the near future the availability of the missing renormalization constants will allow to present
also for Nf = 2 + 1 + 1 a continuum extrapolated result.

7.2.1 K!3 form factors

As a last topic we present a preliminary determination of the K!3 form factor applying the method
has been described in Sec. 6.5.1.
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We have measured the three point correlation functions 6.32 on all Nf = 2 + 1 + 1 gauge
ensembles previously considered. In Fig. 7.3 we show an example of such measure performed
on a single gauge ensemble

(
β = 1.90, V = 243 × 48, Mπ ∼ 440Mev

)
at a particular value of q2,

corresponding to the maximum possible transfer momentum q2MAX = M2
K −M2

π .
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1.020
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f 0(q
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ax
2 )
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β = 1.90
L = 24,   T=48
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π
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M
K
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Figure 7.3: Ratio 6.36 measured at maximal value of q2, where it equals f0. Vertical lines bounds
fit interval.

Fitting to constant such ratios over appropriate interval gives us the value of the matrix
element.

Measuring such ratio for various combination of values of pK and pπ we have been able to
cover a large kinematic range. In Fig. 7.4 we show the f+ and f0 form factors in terms of q2.

In future, the full analysis of the value of f+
(
q2
)

will take into account the chiral extrapolation
and interpolation of strange to its physical value.
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Figure 7.4: Form factors f+ and f0 determined on a single gauge ensemble shown in terms of q2.
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Chapter 8

Conclusions

In the present Ph.D work we have carried out the determination of various parameters of the
Standard Model. This allow to test the model predictions against physical measurement and to
enlighten the possible presence of new physics. Here we will summarize the main achievements of
this work.

Quark masses

In chapter 4 we performed a non-perturbative determination of the u/d, s, c quark masses. The
value of quark masses have been determined by tuning them in such a way to reproduce the ob-
served spectrum of pseudo-scalar mesons. For the average up-down quark mass we have considered
pion, for strange quark we have considered Kaon and the η

′
, and for charm we chose D Ds and

ηc mesons. Quark masses has been renormalized within the RI-MOM scheme, and converted to
physical units considering lattice spacings values fixed from fπ. By taking into account carefully
the continuum limit and chiral extrapolation we have been able to present results where the two
main sources of systematic errors are properly taken into account and removed from the analysis.

The final values of the quark mass in MS scheme at 2GeV are:

mMS, 2GeV
l = 3.6 (1) (2) MeV = 3.6 (2) MeV ,

mMS, 2GeV
s = 95 (2) (6) MeV = 95 (6) MeV ,

mMS, 2GeV
c = 1.14 (3) (3) GeV = 1.14 (4) GeV .

(8.1)

Where the first error is statistic and the second systematic, and the two have been summed
in quadrature.

For the charm we also report the running mass:

mc (mc) = 1.28 (4) GeV . (8.2)

b-physics

In chapter 5 we presented a specific approach to deal with b quark extrapolation, and we have
applied it to b quark mass and fB and fBs leptonic decay constants determination. By building
suitable ratios of appropriate quantities having exactly known static limit it has been possible to
determine the b quark mass:

mb(mb) = 4.29(13)(4)GeV = 4.29 (14) GeV , (8.3)
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for which we also report the value in MS at 2 GeV:

mMS, 2GeV
b = 4.92 (13) GeV . (8.4)

By interpolating between the charm quark masses and the static limit computed in HQET it has
been possible to compute fB and fBs , which have been compared also with the results obtained
with the ratio methods:

fBs = 232(10) MeV , fB = 195(12) MeV ,
fBs

fB
= 1.19(5) . (8.5)

We explored also the impact of usage of smearing techniques, finding them very effective in im-
proving the appearance of ground state. In future this techniques will allow for the determination
of these quantities to reach the level of accuracy required by future experiments.

Isospin breaking

In chapter 6 we present a new fully non-perturbative method to to take into account the isospin
breaking effects related to this difference. In particular by expanding the full QCD lagrangian
at first order in the u − d quark mass difference and treating the isospin breaking therms as a
perturbation, we have computed the u−d quark mass difference from first principles which results
in MS at 2 GeV:

[md −mu]
MS, 2GeV = 2.27(24) MeV . (8.6)

We also computed the isospin breaking corrections on the K leptonic decay constant with
unprecedented accuracy: [

fK+

fK
− 1

]
= −0.38(6)% . (8.7)

We also provide a preliminary determination of the proton-neutron mass splitting at fixed
lattice spacing:

[Mn −Mp]
QCD = 2.7(9) MeV , (8.8)

Moreover we studied the feasibility of the calculation of the isospin breaking correction to the
K semi-leptonic form factors.

Simulations with nf = 2 + 1 + 1

In chapter 7 we present preliminary results obtained in new computations which take into accounts
two heavier flavors of quarks (strange and charm) with respect to previous computations. We
showed in particular a preliminary computation of the BK parameter involved in neutral K mixing,
and a preliminary computation of the pion electromagnetic form factor. When terminated, these
results will be the first to take into account both strange and charm dynamical quarks.

Future perspective

The most relevant systematics effects still affecting flavor lattice computations are the chiral
extrapolation and the neglecting of electromagnetism.

In future with the increasing of availability of computational power it will be possible to reach
lower and lower light quark mass, and so eventually reach the physical point. This will allow to
avoid to perform the chiral extrapolation and to provide more reliable lattice computed quantities.
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Regarding the electromagnetism, various lattice collaborations are already producing gauge
ensemble with actions which includes the QED. These QCD+QED dynamical simulations are
quite more difficult than the simple QCD ones. We suggest that an extension of the δmud expan-
sion method present in chapter 6 to the expansion in powers of e2 (electric charge) will provide
alternative and possibly simpler way to compute QED corrections to computed quantities. We
already started working on this promising simulation program and we hope to provide feasibility
studies in future publications.

A large source of uncertainty comes from the quite poor knowledge of lattice spacings. In future
in order to reach a precision lower than 2% on dimensional quantities, a more precise determination
of lattice spacings will be needed. In section 4.2.6 we provided a possible alternative way to fix
the scale, which we promise to investigate in the near future.
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