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dell’Università di Oviedo (Spagna), per avermi seguito in tutte le fasi di questo la-

voro nel periodo Febbraio 2007 - Luglio 2008 trascorso presso il suo Dipartimento.

Desidero ringraziarla per i suoi insegnamenti e per avermi sostenuto nei momenti
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“Intelligent Data Analysis and Graphical Models” per avermi aiutato nella realiz-

zazione di questa tesi, per la sua infinita disponibilità e per il suo ottimismo.
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Prologue

Different sources of uncertainty can affect statistical reasoning: randomness, impre-

cision, vagueness, partial ignorance, etc. In particular, in regression analysis the

uncertainty is about: the relationship between response and explanatory variables;

the randomness due to the data generation process; the imprecision of the observed

values of the variables (see Coppi, 2008). In this work these three kinds of uncer-

tainty are taken into account.

The classical techniques manage only the first two types of uncertainty (see, for

instance, Casella & Berger, 2002), while recently the third one has started to be

considered due to a practical demand. Actually, in several practical applications

in public health, medical science, ecology, agriculture or economic problems, many

useful variables are vague, and the researchers find it easier to capture the vagueness

through more complex data than to discard the vagueness and obtain precise data.

In addition it is often less expensive to obtain an imprecise observation than to look

for precise measurements of the variable of interest (see, for instance, Heagerty &

Lele, 1998).

In order to handle a typical kind of imprecision the so-called LR fuzzy sets are

often used. Formally, they are a type of functional data determined by three val-

ues: the center, the left spread and the right spread. For example, in agriculture,

quantitative soil data are unavailable over vast areas and imprecise measures, that

can be modeled through LR fuzzy sets, are used (see Lagacherie et al., 2000). Also

in medical science symptoms, diagnosis and phenomena of disease may often lead

to LR data (see, for instance, Di Lascio et al., 2002). LR-type functional data may

also arise in other contexts, like image processing or artificial intelligence (see, for

instance, Sezgin & Sankur, 2004, Ranilla & Rodŕıguez-Muñiz, 2007).

In addition the LR fuzzy sets are a generalization of the intervals which are use-

ful in many other contexts. For instance, epidemiological research often entails the

analysis of failure times subject to grouping, and the analysis with interval-grouped

data is numerically simple and statistically meaningful (see Pipper & Ritz, 2007,

Gil et al., 2007, Billard & Diday, 2003).

In the context of random experiments whose outcomes are not numbers (or vec-
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tors in Rp) but they are expressed in inexact terms, the concept of fuzzy random

variable (FRV) arises. Kwakernaak (1978), Puri & Ralescu (1986) and Klement et

al. (1986) have introduced the concept of FRV as an extension of both, random

variables and random sets. In the first case (Kwakernaak, 1978) it is considered a

random variable that can be perceived through a set of windows Wi to which each

result can belong or not. The underlying crisp variable is called original (see, for

instance, Kruse, 1982 and 1987). Some years later Puri & Ralescu (1986) have de-

fined the concept of fuzzy random variable as an extension of random sets to handle

random experiments whose results are purely fuzzy values. That is, the values are

directly observed as fuzzy sets and there is not necessarily an underlying real-valued

random variable imprecisely observed (see, for instance, Colubi, 2009).

Several regression studies involving fuzzy sets to model imprecise data have been

developed (see, for instance, Diamond, 1988, Diamond & Körner, 1997, Körner

& Näther, 1998, Wünsche & Näther, 2002, Krätschmer, 2004, Krätschmer, 2006,

Näther, 2006, Coppi & D’Urso, 2003, D’Urso, 2003, Coppi et al., 2006, González-

Rodŕıguez et al., 2009). In details, Diamond’s model is one of the first regression

studies based on the least squares approach, from which some works have taken

inspiration. Among these, Körner & Näther (1998), Wünsche & Näther (2002),

Krätschmer (2004, 2006), Näther (2006) and González-Rodŕıguez et al. (2009) have

used a formalization by means of fuzzy random variables, but only in the last one a

complete solution for the estimation problem has been obtained.

Coppi et al. (2006) have proposed a linear regression model with LR fuzzy re-

sponse. The basic idea consists in modeling the centers of the response variable

by means of a classical regression model, and simultaneously modeling the left and

the right spread of the response through simple linear regressions on its estimated

centers. In the study in Coppi et al. (2006) the authors impose a non-negativity con-

dition to the numerical minimization problem to avoid negative estimated spreads.

Unlike the previous models it has not been formalized through fuzzy random vari-

ables, and to look for this kind of formalization the model proposed in this work

comes up. Furthermore the aim is not only the estimation, but also the analysis

of the statistical properties of the estimators (consistency, unbiasedness), besides

the construction of confidence intervals and of procedures for testing hypotheses

on the regression parameters. Then we propose an alternative model to overcome

the non-negativity condition, because the inferences for models with non-negativity

restrictions are usually more complex and less efficient (see, for instance, Liew, 1976

and Gallant & Gerig, 1980). In order to avoid the non-negativity condition, appro-

priate transformations of the spreads of the response are introduced.

The work is organized in four chapters. In the first chapter some preliminary

elements are introduced. The basic concepts of fuzzy sets theory are given: the



vii Prologue

definition of a fuzzy set and the LR characterization, the arithmetic of fuzzy data

and some distances between fuzzy sets, paying special attention to the Yang and

Ko distance, D2
LR. The concept of a fuzzy random variable, according to Puri &

Ralescu (1986), and its population moments are defined. In the last part of the

chapter some previous linear regression models with fuzzy data are briefly analyzed,

in particular, the models introduced by Diamond (1988), González-Rodŕıguez et al.,

(2009) and by Coppi et al. (2006) are reviewed.

Chapter 2 deals with a generalization of the Yang and Ko distance to R3, D2
λρ, the

correspondent scalar product 〈·, ·〉λρ and a new definition of variance. It is proved

that the space of LR fuzzy numbers is isometric to a closed convex cone of R3,

endowed with the inner product 〈·, ·〉λρ. The concept of variance for fuzzy random

variables based on D2
LR is given, following ideas in Körner (1997) and Lubiano et al.

(2000) for other metrics. Some properties of the variance are proved, in particular

it is shown that it verifies the Frèchet principle. This is a necessary condition to

employ appropriately the least squares criterion. Furthermore the covariance be-

tween two LR fuzzy variables is also defined. In the second part the estimation

problem is discussed. The estimators are unbiased and strongly consistent. In order

to illustrate the consistency of the estimators some simulation studies are presented

and some empirical examples are given.

Chapter 3 contains the new linear regression model with LR fuzzy response and

scalar predictors. It is formally described and the theoretical values of the pa-

rameters are expressed in terms of moments as usual. In order to measure the

goodness-of-fit of the model, a determination coefficient is given. The main part of

this chapter is focused on statistical inferences, in particular the estimation problem

and hypothesis testing. By means of the least squares criterion, the estimators of

the regression parameters are obtained. Their statistical properties are examined

and the corresponding asymptotic distributions are established.

The absence of realistic parametric models for fuzzy random variables makes no

sense to look for exact distributions for specific models as in the classical case (for

instance, for the exponential family). Thus non-parametric techniques are employed.

In order to analyze the accuracy of the estimators, a bootstrap procedure is given.

The results of simulation studies and real life applications are evaluated. To com-

plete the statistical inferences on the regression parameters confidence intervals and

hypothesis testing are defined and discussed.

As for the least squares estimators, some statistical properties and the asymptotic

distribution of the estimator of the determination coefficient are analyzed. Then the

linear independence test is given by means of the asymptotic approach and the boot-

strap one. In addition, simulation studies are discussed to illustrate the empirical

significance of the proposed test. The behaviour of the asymptotic test under local



Prologue viii

alternatives (power analysis) is shown to be the expected one in linear regression

models.

Chapter 4 is a generalization of Chapter 3. A multiple linear regression model

with imprecise response is discussed. This model is formally different, due to the

matrix notation which simplifies the extension of the results of the simple case. Only

a brief outline of the procedure is described, due to the analogy with the previous

chapter. Simulations and empirical results are presented in order to clarify the effi-

ciency of the models.

Each chapter is closed by a final evaluation about its contributions and some

open problems.

The last chapter is the epilogue. It contains concluding remarks and some future

directions.
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Chapter 1

Preliminaries

The present work is centered on the analysis of random experiments modeled by

means of a probabilistic space (Ω,A, P ), for which the characteristic X observed on

each ω ∈ Ω is not precise and can be described using fuzzy sets. In this chapter

some basic notions of fuzzy sets theory are given. It is organized in the following

way. In the next section the definition of a fuzzy set is given and the LR subclass

is discussed. Section 1.1.2 deals with the arithmetic of fuzzy data and in Section

1.2.2 some distances between fuzzy sets are introduced. In particular the interest is

focused on the Yang and Ko distance, D2
LR. In Section 1.2 the concept of a fuzzy

random variable, according to Kwakernaak (1978) and to Puri & Ralescu (1986), is

given. For what follows in the next chapters it is useful to define the expectation

value and the variance of a fuzzy random variable (Section 1.2.1 and Section 1.2.4,

respectively). A brief description of some previous linear regression models with

fuzzy data is in Section 1.4. The first one has been introduced by Diamond (1988)

and the second one by González-Rodŕıguez et al. (2009). The latter is the linear

regression model with LR fuzzy response, introduced by Coppi et al. (2006), from

which this work takes inspiration. Finally the reason to introduce a new regression

model is discussed and some concluding remarks are presented (Section 1.5).

1.1 Description of the data: Fuzzy sets

In many practical situations there are some concepts that are vague, or imprecise.

A classical set can not correctly represent these concepts. In the classical theory an

element either belongs to a given set or it does not belong. In fact, each classical

set A is represented by means of a characteristic function cA : X → {0, 1}, which

associates with each x ∈ X a number cA(x) = 1 if x belongs to A and cA(x) = 0 if
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x does not belong to A. But for vague concepts this kind of representation is too

rigid. To overcome this problem Lotfi A. Zadeh (1965) has introduced the fuzzy sets

theory. The notion of fuzzy set is an extension of the classical one.

Each element can belong to a given set with a membership degree. The fuzzy set

A of Rp is identified by ‘a membership function’ A(x), i.e a mapping A : Rp → [0, 1]

so that A(x) is the membership degree of x to the fuzzy set A.

For example, the concept of “tall people” is imprecise, it can not be represented

by a single value. In a classical framework it can be forcedly represented by means

of a classical set “people taller than 180 cm” (see Fig. 1.1 (a)). If John’s height

is 179.9 cm it means that John is not tall. It is obviously an artificial representa-

tion. To avoid this inconvenient the set of tall people can be considered by means

of fuzzy sets (an example is shown in Fig. 1.1 (b)). It is evident that this is a more

appropriate way to refer to a concept that is approximate.

Let Kc(Rp) be the class of nonempty compact convex subsets of Rp, the class

180 cm180 cm

“People taller than 180 cm”

170 cm170 cm 190 cm190 cm

“Tall people”

1 1

( a ) ( b )

Figure 1.1: Representation of the set of tall people by means of a classical set (a) and a
fuzzy set (b).

of fuzzy sets is Fc(Rp) = {A : Rp → [0, 1]|Aα ∈ Kc(Rp)}, where Aα is the α-

level of fuzzy set A, that is, Aα = {x ∈ Rp|A(x) ≥ α}, for α ∈ (0, 1], and

A0 = cl({x ∈ Rp|A(x) ≥ 0}) (Zadeh, 1965).

When p is equal to 1 the compact convex sets will be intervals. An interval I can

be characterized by means of the extremes [inf I, sup I] or, alternatively, by means of

the center mid I = (inf I+sup I)/2 and the spread spr I = (sup I−inf I)/2. In this case

we will use the notation [mid I± spr I]. As a result we can represent each fuzzy da-

tum A ∈ Fc(R) with the family of nested compact intervals {[inf Aα, sup Aα]}α∈[0,1]

or with the family {[mid Aα ± spr Aα]}α∈[0,1].

There are different kinds of fuzzy sets. In the next section a useful characteriza-



3 Preliminaries

tion of a particular class is described.

1.1.1 LR fuzzy sets

A particular class of fuzzy sets very useful in practice is determined by 3 values: the

center, the left spread and the right spread. This type of fuzzy datum is the LR

fuzzy number. An LR fuzzy number A is characterized by the following membership

function

A(x) =

{
L
(

Am−x
Al

)
x ≤ Am

R
(

x−Am

Ar

)
x ≥ Am

where Am ∈ R is the center, Al ∈ R+ and Ar ∈ R+ are, respectively, the left and

the right spread and, L and R are functions verifying the properties of the class of

fuzzy sets Fc(R), such that L(0) = R(0) = 1 and L(x) = R(x) = 0, ∀x ∈ R \ [0, 1]

(see Fig. 1.2). If Al = Ar the fuzzy number A is referred to as symmetrical.

A(x) A(x) A(x)

11 1

L R

A
m

x x

A -A
m l

A +A
m r

A -A
m l

A -A
m l

A
m

A
m A +

m r
AA +A

m r

LL RR

x

A
l

A
l

A
l

A
r

A
r

A
r

Figure 1.2: Examples of LR membership functions

The most used LR fuzzy numbers are the triangular ones, whose membership func-

tion is

T (x) =


1− T m−x

T l Tm − T l ≤ x ≤ Tm

1− x−T m

T r Tm ≤ x ≤ Tm + T r

0 otherwise

(see Fig. 1.3 (a)).

Remark 1.1.1 If the left and the right spread of a fuzzy number are null, the

number is reduced to a classical one and it is referred to as crisp.
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Remark 1.1.2 An interval I is a particular kind of LR fuzzy set where the mem-

bership function is the characteristic function 1I , that is equal to 1, for all x ∈ I,

and 0 otherwise (see Fig. 1.3 (b)).

I(x)
11

Tm

x
T -Tm l T +Tm r

x

T(x)

Tl Tr spr I spr I
mid I

(a) (b)

Figure 1.3: Functional representation of a triangular LR fuzzy number T (a) and an
interval I (b).

LR fuzzy numbers are used in medical science (see, for instance, Di Lascio et al.,

2002), in agriculture (see Lagacherie et al., 2000) or economic problems. This kind

of LR-type functional data may also arise in other contexts, like image processing or

artificial intelligence (see, for instance, Sezgin & Sankur 2004, Ranilla & Rodŕıguez-

Muñiz 2007).

Example 1.1.1 (Di Lascio et al., 2002) To analyze diabetic neuropathy, whose

pathogenesis is not well-known, some patient’s anagraphical and clinical data are

considered. In particular, patient’s hemoglicidic state, the amount of albumin in

the urine, the values of systolic and diastolic pressure, the amount of insulin admin-

istrated to the patient, etc. are measured. The aim is to classify the patients on

the basis of the severity of the symptoms. Each severity grade of symptoms can be

represent by means of a label of linguistic variables. Thus, to model the uncertainty

inherent to the clinical data and to represent the values of linguistic variables the

class of LR fuzzy numbers has been used. In this way there is not relevant loss

of information and the operations are very simple. For example, for the variable

“diabetes age” the following labels are singled out: “very early”, “early”, “average”,

“late” (see Fig. 1.4). Each one is represented by means of an LR fuzzy number.

The results obtained agree with most credited clinical analysis.
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1
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Figure 1.4: Representation of the labels singled out for the variable “diabetes age”.

Example 1.1.2 (Lagacherie et al., 2000) The estimation of crop yields is limited

by the dimension of the areas, due to the difficulty of finding soil data on vast areas.

So the spatial approach for the analysis takes into account imprecise soil data. Also

in this case LR fuzzy numbers are used to model the imprecision.

1.1.2 Arithmetic of fuzzy data

We can define the sum and the product by scalars in the space Fc(Rp) by means of

Zadeh’s extension principle

g(X1, X2, ..., Xp)(t) = sup
g(x1,..,xp)=t

min {X1(x1), ..., Xp(xp)}

which provides a general method for the extension of crisp continuous functions

g(x1, ..., xp) on Rp for fuzzy input X1,...,Xp. If we consider g(x1, x2) = x1 + x2 and

g(x) = λx, for all λ in R+, these operations agree level-wise with the Minkowski

sum and the product by a scalar on Kc(Rp), for all α ∈ [0, 1], that is

(A + B)α = {a + b|a ∈ Aα, b ∈ Bα}, (λA)α = {λa|a ∈ Aα},

whatever A, B ∈ Fc(Rp) and λ ∈ R.

Unfortunately neither (Kc(Rp), +, ·) nor (Fc(Rp), +, ·) are linear spaces because

there is no inverse for the addition. For instance, [1, 2] − [1, 2] = [−1, 1]. For this

reason we can use the Hukuhara difference A−H B, which is defined (if it exists) as

the element C ∈ Fc(Rp) so that A = B + C. If A and B are in Kc(R) the difference

A−H B = [inf A− inf B, sup A− sup B] exists if and only if spr B ≤ spr A.

If A and B ∈ FLR, these operations can be alternatively determined by consid-
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ering the fuzzy set A + B in FLR so that


(A + B)m = Am + Bm

(A + B)l = Al + Bl

(A + B)r = Ar + Br

and γA, γ ∈ R, is the fuzzy set so that


(γA)m = γAm

(γA)l = γAl if γ ≥ 0

(γA)r = γAr


(γA)m = γAm

(γA)l = −γAl if γ < 0

(γA)r = −γAr

The space (FLR, +, ·) is not closed because if A ∈ FLR, −A /∈ FLR except in

the case of symmetrical LR fuzzy numbers. In this work this is not a problem,

because only the product by positive scalars will be used. Anyway also in this case

the Hukuhara difference A −H B can be introduced, and it exists if Al ≥ Bl and

Ar ≥ Br. It is given by


(A−H B)m = Am −Bm

(A−H B)l = Al −Bl

(A−H B)r = Ar −Br

These operations agree with the intuitive meaning of the sum and the product

by positive scalars suitable for the kind of data that will be handled in this work.

The imprecision is propagated by means of the Minkowski arithmetic, as shown in

Example 1.1.3. Furthermore, to handle the above described situations it is natural

to consider this arithmetic to define the average of imprecise values instead of other

operations like the union or the intersection common in fuzzy logic.

Example 1.1.3 Consider the profit (X) of a company as interval-valued for each

month in one year. Suppose that in April the company has gained a quantity of

money (X1) varying between 5000 and 6000 dollars and in May the profit (X2) has

varied from 4500 to 7000 dollars, that is, X1 = [5000, 6000] and X2 = [4500, 7000]. If

we are interested in considering the sum of the profit in both months, it is intuitive

that the minimum is the sum of the minimum of each month and the maximum the

sum of the maximum, that is, X1 + X2 = [9500, 11000]. If the profit of the same

company in October (X3) is the double of the profit in April, that is, X3 = 2X1, X3

will, intuitively, vary from a minimum of 10000 dollars to a maximum of 12000.
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1.2 Random models: Fuzzy random variables and

characterization with LR

In practice there are random elements whose values are not numbers (or vectors

in Rp) but they are expressed in inexact terms. These random elements can be

managed by means of the concept of fuzzy random variable (FRV).

Kwakernaak (1978), Puri & Ralescu (1986) and Klement et al. (1986) have

introduced the concept of FRV from different points of view.

According to Kwakernaak (1978), a fuzzy random variable is an extension of a

random variable. It is defined as follows: Let (Ω,A, P ) be a probability space and

suppose that U is a random variable defined on this space. This random variable

is perceived through a set of windows Wi, i ∈ J , with J a finite or countable

set, each representing an interval in R, such that Wi ∩ Wj = ∅ for i 6= j, and⋃
i∈J Wi = R. “Perceiving” the random variable through these windows means that

for each ω we can only establish whether U(ω) ∈ Wi, for some i ∈ J . Let the

function Ii : R → [0, 1] be the characteristic function of the set Wi and let S be the

space of all piecewise continuous functions C : R → [0, 1]. The perception of the

random variable U is described through the mapping X : Ω → S, with X(ω) = Ii

if and only if U(ω) ∈ Wi. That is, not a real number U(ω) is associated with each

ω ∈ Ω, as in the case of an ordinary random variable, but a characteristic function

X(ω), which is an element of S. The above described map X : Ω → S characterizes

a special type of fuzzy random variable. The random variable U is an original of

the perceived fuzzy random variable.

Remark 1.2.1 There may exist many originals corresponding to a given fuzzy vari-

able.

In Kwakernaak (1978) a fuzzy random variable is defined as a map ξ : S → Fc(R).

The image of ω in Fc(R) under ξ is denoted as ξ(ω) = (R, Xω, aω), with Xω ∈ S

and aω : R → P . The map X : Ω → S has to fulfill some conditions, in particular,

for each µ ∈ (0, 1] both U∗
µ and U∗∗

µ , defined by

U∗
µ(ω) = inf {x ∈ R|Xω(x) ≥ µ}

and

U∗∗
µ (ω) = sup {x ∈ R|Xω(x) ≥ µ} ,

have to be finite real-valued random variables defined on (Ω,A, P ) satisfying, for

each ω ∈ Ω, Xω(U∗
µ(ω)) ≥ µ and Xω(U∗∗

µ (ω)) ≥ µ.

Finally, for each ω ∈ Ω and each x ∈ R, aω(x) is the statement

aω(x) = (U takes on the value x at the point ω)
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where U is the original random variable of which ξ is a fuzzy perception.

The concept of FRV in Puri & Ralescu’s sense arises to manage random experi-

ments whose outcomes are not numbers but are expressed in inexact linguistic terms.

A possible way of handling this kind of situations is by using the concepts of fuzzy

sets and fuzzy functions found useful in many applications.

According to Puri and Ralescu (1986), an FRV is an extension of a random set.

Let (Ω,A, P ) be a probability space, the mapping

X : Ω → Fc(Rp)

is an FRV on Rp if for all α ∈ [0, 1] the α−level mappings Xα : Ω → Kc(Rp), defined

so that for all ω ∈ Ω

Xα(ω) = (X(ω))α

are convex compact random sets.

The above definitions are carried out from different perspectives but they are

formally the same. The first one considers an underlying original variable and the

second one takes into account random variables whose values are purely fuzzy. Even

if what will be introduced and analyzed in this work can be applied to both cases, the

second definition is more appropriate, because the aim is handling FRVs themselves,

not the underlying variables.

In the case of LR FRVs it is equivalent to require that

(Xm, X l, Xr) : Ω → (R× R+ × R+)

be a random vector.

Example 1.2.1 An example of FRVs is introduced in Colubi (2009). In a recent

study about the reforestation in a given area of Asturias (Spain), carried out in the

INDUROT institute (University of Oviedo), the quality of the trees has been ana-

lyzed. This characteristic has not been assigned on the basis of an underlying real-

valued magnitude, but rather on the basis of subjective judgements/perceptions,

through the observation of the leaf structure, the root system, the relationship

height/diameter, and so on. The experts used a fuzzy-valued scale to represent

their perceptions, besides linguistic labels, because the usual categorical scale (very

low, low, medium, high, very high) was not able to capture the perceptions. The

considered support goes from 0 (absence of quality) to 100 (perfect quality). It

is possible to have different values for the same linguistic label. Some fuzzy val-

ues are represented in Fig. 1.5. This variable has been observed on 238 trees.

Thus Ω = {sets of trees in a given area of Asturias} endowed with the Borel σ-

field. Since the observations were arbitrarily chosen, P is the uniform distribution
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Figure 1.5: Values of the “quality” of three different trees

over Ω. For any i ∈ Ω, several characteristics are to be observed. In particular, the

quality, Yi, has been considered as an LR triangular fuzzy variable (λ = ρ = 1/2)

(see Table 1.1).

Table 1.1: Quality (Y m, Y l, Y r), Height (X1) and Diameter (X2) of 238 trees in Asturias.

Y m(center) Y l(left spread) Y r(right spread) X1(cm) X2(cm)

45 12.5 15 170 0.88

25 15 12.5 245 0.96

17.5 7.5 12.5 190 1.09

20 11.25 15 130 0.89

55 15 12.5 230 1.4

23.75 11.25 18.75 90 1.7

56.25 18.75 13.75 195 1.6

13.75 8.75 8.75 75 0.44

26.25 13.75 8.75 184 0.91

62.5 10 7.5 215 2.06

75 12.5 10 245 2.17

67.5 12.5 12.5 220 1.95

32.5 22.5 10 195 0.85

40 15 10 160 1.45

52.5 12.5 17.5 213 1.6

55 15 17.5 215 1.4

77.5 12.5 12.5 370 4

85 5 5 230 2.27

50 20 20 234 1.5

... ... ... ... ...
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According to Puri & Ralescu (1986) an FRV X is normal if and only if

X = EX + {ξ},

where ξ is a classical Gaussian random vector on Rp with zero mean and {ξ} is the

fuzzy set with ξ as membership-one-singleton.

This is not a realistic model and, even if it is possible to make inference, it is

useless because it does not model real elements (see Coppi, 2008).

There are not generalized models for FRVs that can be used in practice, for this

reason in this work non-parametric techniques (asymptotic and bootstrap) will be

employed.

1.2.1 Expected value and conditional expectation of an FRV

The expected value of an FRV is defined by means of the generalized Aumann

integral (Aumann, 1965), that is the expected value of the FRV X is the unique

fuzzy set E(X) in Fc(Rp), such that for all α ∈ [0, 1],

(EX)α =

{∫
Ω

f(ω)dP (ω)|f : Ω → R, f ∈ L1(Ω,A, P ), f ∈ Xα a.s.[P ]

}
,

if E‖X‖ < ∞ (Puri & Ralescu 1986), where ‖ · ‖ is the magnitude of a fuzzy set,

defined as the distance from 0 (see Section 1.2.2). This expected value is coherent

with the arithmetic used in this work, with respect to the strong law of large num-

bers. That is, if the sample mean is defined in terms of the Minkowski sum and

product by a scalar, then the sample mean of FRVs independent and identically

distributed converges almost surely to this expected value in terms of the strongest

metrics (Colubi et al., 1999).

In the Fc(R)-valued case we have that

(EX)α = [E(inf Xα), E(sup Xα)],

for all α ∈ [0, 1].

In case of LR FRVs, EX is the fuzzy set in FLR whose center is EXm and left

and right spread, respectively, EX l and EXr.

Moreover Puri and Ralescu (1986) have introduced the concept of the conditional

expectation of an FRV.

Let (Ω,A, P ) be a probability space and Y an FRV on Fc(Rp) with E ‖Y ‖ < ∞.

Consider a sub-σ-algebra B ⊂ A, the conditional expectation of Y with respect to

B is the FRV E(Y |B) such that E(Y |B) is B-measurable and for all B ∈ B∫
B

E(Y |B)dP =

∫
B

Y dP.
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If B = σ(X) is induced by a further FRV X, it results

E(Y |B) = E(Y |X).

1.2.2 Distances between fuzzy sets

To define a metric for the family Fc(Rp), it is possible to consider a metric δ for the

family Kc(Rp), to apply it to the family of all corresponding α-cuts and to integrate

with respect to α.

The best-known metric for compact convex sets A and B in Rp is the Hausdorff

one, defined as

dH(A, B) = max

{
sup
b∈B

inf
a∈A

‖a− b‖p, sup
a∈A

inf
b∈B

‖a− b‖p

}
where ‖·‖p denotes the usual Euclidean norm in Rp.

This metric can be extended to the family Fc(Rp), but it does not fulfill the

Frèchet principle with respect to the Aumann expectation. So it is not useful in

practice when we consider the least squares procedures (see Näther, 1997).

Example 1.2.2 (Näther, 1997) Let X be an interval-valued random set so that

mid X =

{
2 p1 = 2

3

3 p2 = 1
3

spr X =

{
1 p1 = 2

3

2 p2 = 1
3

It is easy to check that the Aumann expectation is equal to E(X) = [4/3 ± 7/3],

while if we consider the dH metric the real interval U that minimize EdH
(X, U) is

equal to [2.2± 1.2].

To overcome this problem an L2-type metric can be employed.

Each compact convex set A in Kc(Rp) can be represented by means of its support

function

sA(u) = sup
a∈A

〈a, u〉, u ∈ Sp−1 (1.1)

where 〈·, ·〉 is the inner product in Rp and Sp−1 is the (p−1)-dimensional unit sphere

in Rp−1. sA uniquely determines A (see Diamond & Kloeden, 1994). The ρ2 metric

for A and B in Kc(Rp) can be defined in terms of support functions as

ρ2(A, B) =

p

∫
Sp−1

(sA(u)− sB(u))2dµ(u)

1/2
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where µ is the Lesbegue measure. For the intervals the sphere unit S0 = {−1, 1} is

taken into account, and it results sA(1) = sup A and sA(−1) = − inf A, so

ρ2(A, B) =

(
1

2
(sup A− sup B)2 +

1

2
(inf A− inf B)2

)1/2

.

By means of the family of α-cuts it is possible to extend the ρ2 metric to the

metric δ2 in the space Fc(Rp). Let X and Y be in Fc(Rp), we obtain

δ2(X,Y ) =

p

1∫
0

∫
Sp−1

(sX(u, α)− sY (u, α))2dµ(u)dα

1/2

,

where s is a mapping that generalize level-wise the support function (1.1) and it is

defined (see Klement et al., 1986) as

s : Fc(Rp) → L(Sp−1 × [0, 1])

such that

sA(a, α) = sup
w∈Aα

〈a, w〉,

for any a ∈ Sp−1 and α ∈ [0, 1], where L(Sp−1×[0, 1]) is the class of the Lebesgue real-

valued integrable function on Sp−1 × [0, 1]. Fc(Rp) can be isometrically embedded

in a space of functions on Sp−1 × [0, 1] by means of the δ2 metric through support

functions (see Krätschmer 2002b).

This metric has interesting statistical properties, but as the Hausdorff distance

it has some inconveniences from an intuitive point of view (see Bertoluzza et al.,

1995)

Example 1.2.3 (Bertoluzza et al., 1995) Consider two pairs of intervals A1 = [0, 5],

B1 = [6, 7] and A2 = [0, 5], B2 = [6, 10]. It is easy to check that the Hausdorff metric

assigns the same distance to A1 and B1 and to A2 and B2. But intuitively it seems

that the distance between the second pair should be greater. If we consider now the

pairs of intervals C1 = [−2, 2], D1 = [−1, 1] and C2 = [−2, 1], D2 = [−1, 2] the ρ2

distance is the same for the two pairs. Also in this case it seems more intuitive to

assign a greater value to the second one.

To avoid the inconveniences illustrated in Example 1.2.3 Bertoluzza et al. (1995)

have introduced an L2-type metric, taking into account a non-degenerate probability

measure W and a weight measure ϕ. Let X and B in Fc(R), it is defined as

Dϕ
W (A, B) =

∫ ∫
[0,1]

[fA(α, λ)− fB(α, λ)]2dW (λ)dϕ(α)


1
2

,
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with fA(α, λ) = λ sup Aα + (1 − λ) inf Aα and W probability measure on the mea-

surable space ([0, 1],B[0,1]).

The Dϕ
W and δ2 metric can be generalized by means of a family of metrics that

depend on certain kernels (Korner & Nather 2002). The DK-distance between A

and B ∈ Fc(Rp) is defined as

DK(A, B) =

 ∫
(Sp−1)2×[0,1]2

(sA(u, α)− sB(u, α))(sA(v, β)− sB(v, β))dK(a, α, b, β)


1
2

,

where K : Sp−1 × Sp−1 → R is a certain symmetrical and positive kernel.

1.2.3 Yang and Ko distance between fuzzy sets

The previous distances are defined for general fuzzy sets in Fc(Rp) and can be

considerably simplified if we consider the particular case FLR. In addition, Yang

and Ko (1996) have defined a distance DLR between two LR fuzzy numbers A,

B ∈ FLR as follows

DLR(A, B) =
(
(Am −Bm)2 + ((Am − λAl)− (Bm − λBl))2 (1.2)

+((Am + ρAr)− (Bm + ρBr))2
) 1

2 ,

where λ =
1∫
0

L−1(ω)dω and ρ =
1∫
0

R−1(ω)dω represent the influence of the shape

of the membership function on the distance. In particular, λ (or ρ) less than 0.5

represents an imprecision decreasing rapidly; λ (or ρ) equal to 0.5 represents an im-

precision decreasing linearly and λ (or ρ) greater than 0.5 represents an imprecision

decreasing slowly. This is illustrated in the following example.

Example 1.2.4 Consider two LR fuzzy numbers A = (2, 1, 1) and B = (4, 1.5, 1.5),

for different Li, Ri functions, i = 1, 2, 3, (see Fig. 1.6). In the case i = 1 λ = ρ = 0.2,

and D2
L1R1

(A, B) = 4.02; in the case i = 2 λ = ρ = 0.5 (triangular case) we get

D2
L2R2

(A, B) = 4.125 and, finally, in the case i = 3 λ = ρ = 0.8, and D2
L3R3

(A, B) =

4.32. The obtained values show that as the imprecision increases, the value of the

distance also increases.

1.2.4 Variance of an FRV

In literature there are different definitions of the variance of an FRV. Along this work

a real-valued variance will be considered, because the aim is to use it for measuring



1.2 Random models: Fuzzy random variables and characterization with LR 14

1

1 2 6543
A B

l=r=0.5,
, =r=0.8l

L =R1 1

L =R2 2

L =R3 3

, =r=0.2l

Figure 1.6: Examples of fuzzy numbers with different membership functions

the error due to the approximation of the values of a variable by means of the values

predicted by the regression model.

Körner (1997) has defined the variance of an FRV X based on the distance δ2 as

V ar(X) = Eδ2
2(X, EX),

if E ‖X‖2
2 < ∞.

Another definition of variance is given in Körner & Näther (2002). In details, by

means of the DK-distance, if E ‖X‖2
K < ∞

V ar(X) = ED2
K(X, EX) = E (〈sX − sEX , sX − sEX〉K) , (1.3)

where ‖·‖2
K and 〈·, ·〉K are, respectively, the norm and the inner product correspond-

ing to the DK-distance.

Independently a measure of quadratic dispersion with respect to the metric Dϕ
W

is given and analyzed in Lubiano et al. (2000).

Using the same idea in the next chapter a measure of the variance for FRVs with

respect to the metric DLR is introduced.

As for the variance also for the covariance there are different definitions. In par-

ticular, based on the variance in (1.3), expressed in terms of support functions, a

covariance between two FRVs X and Y is defined as

Cov(X, Y ) = E (〈sX − sEX , sY − sEY 〉K) ,

if E ‖X‖K < ∞, E ‖Y ‖K < ∞ and E ‖X‖K ‖Y ‖K < ∞ (Körner & Näther, 2002).
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1.3 Basic statistical inference

Let {X1, ..., Xn} be a random sample obtained from an FRV X in Fc(R). As usual,

the sample mean will be denoted as

X = (X1 + ... + Xn)/n,

and it will be considered as an estimator of the expected value of a FRV (see Lubiano

& Gil, 1999). In the particular case of LR FRVs it results that X is an LR fuzzy

number whose center is X
m

= (Xm
1 + ... + Xm

n )/n and whose left and right spread

are, respectively, X
l
= (X l

1 + ... + X l
n)/n and X

r
= (Xr

1 + ... + Xr
n)/n.

The sample variance is defined as

σ̂2
X =

1

n

n∑
i=1

D2(Xi, X),

where D is a generic metric between fuzzy elements. As estimator of the variance

can be used

S2
X =

1

n− 1

n∑
i=1

D2(Xi, X),

that is an unbiased sample variance.

Analogously a sample covariance, based on a random sample {Yi, Xi}i=1,...,n, ob-

tained from two FRVs X and Y , can be defined as

σ̂XY =
1

n

n∑
i=1

(〈sXi
− sX , sYi

− sY 〉) .

The estimation of the variance and some properties have been analyzed in Lu-

biano et al. (2000) and Körner (1997b). In the next chapter the statistical problem

of the estimation of the variance with the DLR distance is discussed.

1.4 Previous linear regression models

In this section some previous regression model in a fuzzy framework are presented.

In particular the models introduced by Diamond (1988), González-Rodŕıguez et al.

(2009) and Coppi et al. (2006) are briefly discussed. Diamond’s model is one of

the first fuzzy regression analyses by least squares approaches. The second one is

a simple linear regression model between FRVs and the last one is devoted to the

analysis of a regression model with LR response, from which the model in this work

has taken inspiration.
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1.4.1 Fuzzy least squares (Diamond, 1988)

Let X and Y be two triangular fuzzy random variables observed on n statistical

units, whose centers, left and right spreads are, respectively, Xm, X l, Xr and Y m,

Y l, Y r. It is assumed throughout that the explanatory variable X has positive

support, that is, Xm −X l ≥ 0.

Two models have been considered:

(F1): Y = a + bX, where a, b are in R

(F2): Y = C + bX, where b is in R and C is a triangular fuzzy number

It is clear that (F2) is a generalization of (F1) because if C is a triangular fuzzy

number with null spreads, it is equal to a value a in R.

The least squares optimization problem corresponding to the model (F2) is

min
n∑

i=1

d2(Yi, C + bXi) (1.4)

where d is a metric for LR fuzzy numbers, defined as

d(A, B) =
((

(Am − Al)− (Bm −Bl)
)2

+ ((Am + Ar)− (Bm + Br))2

+(Am −Bm)2
) 1

2

where Am, Al, Ar and Bm, Bl, Br are, respectively, the center, the left and the right

spread of the LR fuzzy numbers A and B.

Two cases have to be distinguished for the analysis, b ≥ 0 and b < 0. If b ≥ 0, it

results

d2(Yi, C + bXi) =
[
(Y m

i − Cm − bXm
i )− (Y l

i − C l − bX l
i)
]2

+ [(Y m
i − Cm − bXm

i ) + (Y r
i − Cr − bXr

i )]
2

+ (Y m
i − Cm − bXm

i )2

where Cm, C l and Cr are, respectively, the center, the left and the right spread of

the triangular fuzzy number C. If C is symmetrical, that is, C l = Cr, if a solution

to the minimization problem (1.4) exists for b ≥ 0, it is given by the solutions Cm∗,

C l∗, b∗ to the equations

(S∗) :

Cm = Ȳ m +
(Ȳ l − Ȳ r)

3
− b

(
X̄m +

(X̄ l − X̄r)

3

)
(1.5)
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C l = Cr =
(Ȳ l + Ȳ r)

2
− b

(
(X̄ l + X̄r)

2

)
(1.6)

nCm
[
3X̄m +

(
X̄ l − X̄r

)]
+ nC l

(
X̄ l + X̄r

)
(1.7)

+b
n∑

i=1

[(
Xm

i −X l
i

)2
+ (Xm

i −Xr
i )

2 + (Xm
i )2
]

=
n∑

i=1

[(
Xm

i −X l
i

)
(Y m

i + Y r
i ) + (Xm

i + Xr
i )
(
Y m

i − Y l
i

)
+ (Xm

i ) (Y m
i )
]

If consider the case b < 0 and C symmetrical, a solution to the minimization problem

(1.4) is given by

(S∗) :

Cm = Ȳ m +
(Ȳ l − Ȳ r)

3
− b

(
X̄m +

(X̄ l − X̄r)

3

)
(1.8)

C l = Cr =
(Ȳ l + Ȳ r)

2
+ b

(
(X̄ l + X̄r)

2

)
(1.9)

nCm
[
3X̄m +

(
X̄ l − X̄r

)]
− nC l

(
X̄ l + X̄r

)
(1.10)

+b
n∑

i=1

[(
Xm

i −X l
i

)2
+ (Xm

i + Xr
i )

2 + (Xm
i )2
]

=
n∑

i=1

[(
Xm

i −X l
i

) (
Y m

i − Y l
i

)
+ (Xm

i + Xr
i ) (Y m

i + Y r
i ) + (Xm

i ) (Y m
i )
]

The fuzzy data set {Yi, Xi}i=1,...,n is said to be coherent if the following conditions

are fulfilled:

1.
n∑

i=1

[(
X l

i − X̄ l
) (

Xr
i − X̄r

)] [(
Y l

i − Ȳ l
) (

Y r
i − Ȳ r

)]
≥ 0

2. either b∗ ≥ 0 or b∗ ≤ 0

If b∗ ≥ 0, the data set is coherent positive and if b∗ ≤ 0 it is coherent negative.

Diamond (1988) has proved that the optimization problem (1.4) has a unique so-

lution if the non-degenerate data set is coherent. If the data set is coherent positive,

the least squares solution is given by the (S∗) system of equations, and if is coherent

negative by the (S∗).
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Remark 1.4.1 In Diamond (1988) a complete analytical expression for the estima-

tors is not provided.

Remark 1.4.2 The regression models proposed by Diamond & Körner (1997),

Körner & Näther (1998), Wünsche & Näther (2002) and Krätschmer (2004) are

extensions or variations of the model briefly described in this section. In particu-

lar, Diamond & Körner (1997) have extended fuzzy linear models and least squares

estimates to overcome and discuss the occurrence of negative spreads. They have

introduced the quadratic optimization problem that can be solved by means of the

Kuhn-Tucker theorem, but there is not an analytic expression for the solutions.

Körner & Näther (1998) have introduced a linear regression with random fuzzy

variables and have analyzed extended classical estimates, best linear estimates and

least squares estimates. In the last case a quadratic problem is formalized but in

presence of negative spreads, they are replaced by 0. Wünsche & Näther (2002)

have presented some contributions to the theoretical regression problem with fuzzy

random variables, but the solution is not complete because in Fc(Rp) the regression

function does not determine the model (see González-Rodŕıguez et al., 2009). The

problem is totally solved for a natural model in González-Rodŕıguez et al. (2009).

1.4.2 A simple linear regression model for FRVs

(González-Rodŕıguez et al., 2009)

Let Y and X be two FRVs, the simple linear regression model considered is

Y = aX + ε, (1.11)

where a ∈ R and ε is an FRV with expected value Eε = B ∈ Fc(Rp). The model

(1.11) agrees with those in Diamond (1988), Diamond & Körner (1997), Körner

& Näther (1998), Krätschmer (2004) in the sense of involving the same regression

function under particular conditions.

The least squares problem consists in looking for â ∈ R and B̂ ∈ Fc(Rp) in order

to

min
a∈A

1

n

n∑
i=1

D2
K(Yi, aXi + B)

in A = {a∗ ∈ R|Yi −H a∗Xi exists for all i = 1, ..., n}.
It results that either A = R, or there exist a0, b0 ∈ [0, 1), so that A = [−a0, b0].

The solutions of the above minimization problem are

B̂ = Ȳ −H âX̄
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and

â =


β σ̂XY

σ̂2
X
− α σ̂XY

σ̂2
X

if α = 0 or β = 0

−α σ̂−XY

σ̂2
X

if σ̂−XY

σ̂2
X

≥ 2β−β2

2α−α2 and α · β 6= 0

β σ̂XY

σ̂2
X

if σ̂−XY

σ̂2
X

≤ 2β−β2

2α−α2 and α · β 6= 0

where

β =

{
0 if σ̂XY ≤ 0

min
{

1, b0
σ̂XY /σ̂2

X

}
if σ̂XY > 0

and

α =

{
0 if σ̂−XY ≤ 0

min
{

1, a0

σ̂−XY /σ̂2
X

}
if σ̂−XY > 0

Remark 1.4.3 If the explanatory variable X is not fuzzy, the fuzziness of the re-

sponse variable depends only on the error term ε.

Remark 1.4.4 If the model is split into two models, that is it is written in terms

of mid and spr,

mid Y = a ·midX + mid ε spr Y = |a| spr X + spr ε

it entails the same regression coefficient a for both models, which limits its applica-

bility in practice.

1.4.3 A linear regression model with LR fuzzy response

(Coppi et al., 2006)

Let X1, ..., Xm be m crisp quantitative explanatory variables and Y an LR fuzzy

response variable, observed on n statistical units. For each unit i it results Yi ∈ FLR,

i.e. the observational space for the vector Y is FLR. The basic idea is modeling the

centers of the LR response variable by means of a classical regression model, and

simultaneously modeling the left and the right spreads of the response through

simple linear regressions on its estimate centers, that is,

Y m = µ + ε,

Y m − Y l = (µ− δL) + εL

Y m − Y r = (µ + δR) + εR
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where ε, εL, εR are the vector of residuals and µ, δL, δR are the vectors of the theo-

retical values of the response variable. These theoretical values are reparametrized

in the following way:

µ = Fγ,

δL = ηLµ + ξ
L
1

δR = ηRµ + ξ
R
1, (1.12)

where F is a design matrix.

The optimization problem consists in looking for γ̂, η̂L, η̂R, ξ̂L, ξ̂R in order to

min D2
LR(Y , Y ∗)

where D2
LR(Y , Y ∗) is a generalization of the Yang and Ko metric between the ob-

served values Y and the theoretical ones Y ∗ with µ as vector of centers and δL, δR,

respectively, vector of left spreads and vector of right spreads. It results

D2
LR(Y , Y ∗) = ‖Y m − µ‖2 + ‖(Y m − λY l)− (µ− λδL)‖2

+‖(Y m + ρY r)− (µ + ρδR)‖2

= 3(Y m − µ)′(Y m − µ)− 2λ(Y m − µ)′(Y l − δL)

+λ2(Y l − δL)′(Y l − δL)

+2ρ(Y m − µ)′(Y r − δR) + ρ2(Y r − δR)′(Y r − δR),

where λ =
1∫
0

L−1(ω)dω and ρ =
1∫
0

R−1(ω)dω.

Equating to zero the partial derivatives of D2
LR with respect to the parameters γ,

ηL, ηR, ξL, ξR it is easy to check the following set of equations, on which an iterative

solution can be based,

ηL = λ−1(γ′F′Fγ)−1
[
λ
(
γ′F′Y l − γ′F′1ξL

)
−
(
γ′F′Y m − γ′F′Fγ

)]
,

ηR = ρ−1(γ′F′Fγ)−1
[
ρ
(
γ′F′Y r − γ′F′1ξR

)
+
(
γ′F′Y m − γ′F′Fγ

)]
,

ξL = (nλ)−1
[
λ1′
(
Y l − FγηL

)
− 1′

(
Y m − Fγ

)]
,

ξR = (nρ)−1
[
ρ1′
(
Y r − FγηR

)
+ 1′

(
Y m − Fγ

)]
,

γ = [3− ληL(2− ληL) + ρηR(2 + ρηR)]−1 (F′F)−1F′

×
[
3Y m − λ(Y mηL + Y l − 1ξL) + λ2(Y lηL − 1ηLξL)

+ρ(Y mηR + Y r − 1ξR) + ρ2(Y rηR − 1ηRξR)
]
.

Since the evaluation of the regression coefficients, γ, is crisp and the response

variable is fuzzy while the explanatory ones are crisp, the authors have introduced

an implicit fuzzy regression model, that is,

Y ∗
i = β1fi1 + ... + βpfip, i = 1, ..., n, (1.13)
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where βk (k = 1, ..., p) are LR fuzzy numbers whose centers are βm
k and whose left

and right spreads are, respectively, βl
k and βr

k. These fuzzy coefficients can be related

to the parameters of the responses by means of

µ = Fβm,

δL = |F| βl,

δR = |F| βr, (1.14)

where |F| denotes the matrix of the absolute values |fik|.
The above obtained iterative LS solutions may not verify the system (1.14), but

these relationships may be exploited in order to obtain estimates of βm, βl, βr which

are compatible with the estimates µ̂, δ̂L and δ̂R, that is

µ̂ = Fβm + τm,

δ̂L = |F| βl + τ l,

δ̂R = |F| βr + τ r,

where τm, τ l and τ r are the vectors of residuals.

The ordinary least squares estimate of βm is given by

β̂
m

= (F
′
F)−1F

′
µ̂ = (F

′
F)−1F

′
Fγ̂ = γ̂,

where γ̂ is the least squares estimate obtained by means of model (1.12). The esti-

mates of the spreads β̂
l
and β̂

r
may be got by means of a constrained least squares

problem due to the non-negativity condition.

In this way the imprecision of the regression function has been assessed.

Concerning the uncertainty linked with the data generation process it is used a

bootstrap procedure. Starting from the data it is possible to generate bootstrap

samples. For each of these samples optimal parameters can be computed. Through

the variations of the score across the bootstrap samples it is possible to estimate the

probabilistic uncertainty.

Remark 1.4.5 The global minimum is not attained but only a local one, due to

the use of an iterative algorithm.

Remark 1.4.6 Unlike the other models introduced in this section, Coppi et al.

(2006) have not formalized a model based on FRVs, and to find this type of formal-

ization the new regression model, presented in this work, comes up.
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1.5 Concluding remarks

• Some basic concepts have been introduced, in order to handle random experi-

ments for which the observed characteristic is imprecisely measured. Namely,

the concept of fuzzy set has been introduced and illustrated in some environ-

mental and medical applications. The arithmetics between fuzzy sets has been

discussed and the concept of fuzzy random variable has been analyzed from

different points of view.

• The main important regression models in literature have been introduced and

their advantages and limitations in connection with the aim of the present

work have been described.

• The model in this thesis is strongly connected with that in Coppi et al. (2006),

although the formalization involving FRVs is closer to González-Rodŕıguez et

al. (2009).



Chapter 2

An isometry for FLR and a

variance for LR fuzzy random

variables

Let FLR be the class of LR fuzzy numbers. Since any A ∈ FLR can be represented

by means of a 3-tuple (Am, Al, Ar), we define the mapping s : FLR → R3 such that

s(A) = (Am, A,l , Ar). (2.1)

In what follows we use without distinction A ∈ FLR or its s-representation. The

function s is obviously semi-linear, because s(A) + s(B) = s(A + B) and γs(A) =

s(γA), if γ > 0.

In the next chapter a regression model with LR fuzzy response Y is introduced.

Each LR fuzzy random variable Y can be expressed as a random vector

(Y m, Y l, Y r) : Ω → R× R+ × R+.

Since the left and the right spread, Y l and Y r, of the response variable will be

transformed by means of functions from R+ to R, the response can be considered

as a vector in R3. In view of the utilization we are going to make of this result, it is

necessary to define an appropriate distance between elements of R3.

In Section 2.1 it is proved that the space of LR fuzzy numbers is isometric to a

closed convex cone of R3, by means of 〈·, ·〉λρ. This is the inner product correspond-

ing to a generalization of the Yang and Ko distance, D2
λρ.

The operation 〈A, B〉LR = 〈sA, sB〉LR is not exactly an inner product due to the

lack of linearity, but due to its interesting properties it is used in Section 2.2. In this

section the concept of variance for fuzzy random variables based on D2
LR is given.

The idea is the same followed in Körner (1997) and Lubiano et al. (2000) in terms of
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other metrics. As in the classical theory, some properties of the variance are proved.

In particular it is shown that it verifies the Frèchet principle, so the least squares

criterion can be soundly applied. Furthermore the covariance is defined. Section

2.2.2 contains the estimation problem. It is proved that the estimators are unbiased

and strongly consistent.

In order to illustrate the consistency of the estimators some simulation studies

are presented and some empirical examples are given (Sections 2.3 and 2.4).

The last section is focused on final evaluation and open problems.

2.1 The isometry

In order to embed the space FLR into R3 by preserving the metric, we will define

a metric in R3 and we will show that this metric endows R3 with a Hilbertian

structure.

Proposition 2.1.1 Given a = (a1, a2, a3), b = (b1, b2, b3) ∈ R3 and λ, ρ ∈ R+,

(R3, Dλρ) is a metric space, where

D2
λρ(a, b) = (a1 − b1)

2 + ((a1 − λa2)− (b1 − λb2))
2 + ((a1 + ρa3)− (b1 + ρb3))

2

takes inspiration from the Yang-Ko distance. Moreover

〈a, b〉λρ = 〈a1, b1〉R + 〈(a1 − λa2), (b1 − λb2)〉R + 〈(a1 + ρa3), (b1 + ρb3)〉R

is an inner product.

Proof. It is clear that, Dλρ(a, b) = Dλρ(b, a) ≥ 0 and it is null if and only if a = b.

Concerning the triangle inequality we have that

D2
λρ(a, b) = (a1 − b1)

2 + ((a1 − λa2)− (b1 − λb2))
2 + ((a1 + ρa3)− (b1 + ρb3))

2

= (a1 − c1 + c1 − b1)
2

+((a1 − λa2)− (c1 − λc2) + (c1 − λc2)− (b1 − λb2))
2

+((a1 + ρa3)− (c1 + ρc3) + (c1 + ρc3)− (b1 + ρb3))
2

= D2
λρ(a, c) + D2

λρ(c, b) + 2(a1 − c1)(c1 − b1)

+2[(a1 − λa2)− (c1 − λc2)][(c1 − λc2)− (b1 − λb2)]

+2[(a1 + ρa3)− (c1 + ρc3)][(c1 + ρc3)− (b1 + ρb3)].

By Cauchy-Schwarz inequality, we obtain

D2
λρ(a, b) ≤ D2

λρ(a, c) + D2
λρ(c, b) + 2Dλρ(a, c)Dλρ(c, b) = (Dλρ(a, c) + Dλρ(c, b))

2.
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Thus Dλρ(a, b) ≤ Dλρ(a, c) + Dλρ(c, b). It results that Dλρ(a, b) is a metric in R3.

Since the terms defining 〈·, ·〉λρ are based on 〈·, ·〉R, it is easy to check that

1. 〈a, b〉λρ = 〈b, a〉λρ

2. 〈(a + c), b〉λρ = 〈a, b〉λρ + 〈c, b〉λρ

3. 〈ka, b〉λρ = k〈a, b〉λρ

The thesis is proved.

2

The next proposition states that FLR is isometric to a closed convex cone of the

Hilbert space (R3, 〈·, ·〉λρ).

Proposition 2.1.2 Given the space FLR, consider λ=
1∫
0

L−1(ω)dω and ρ=
1∫
0

R−1(ω)dω,

then FLR is isometric to a closed convex cone of R3 endowed with the inner product

〈·, ·〉λρ.

Proof. As S = {s(A) : A ∈ FLR} is R × [0,∞) × [0,∞), S is clearly a closed

convex cone, and the metric is preserved by definition.

2

From now on, we will consider the operation 〈A, B〉LR = 〈sA, sB〉LR, which is not

exactly an inner product due to the lack of linearity, but has interesting properties.

2.2 The variance based on DLR

As discussed in Chapter 1, the concept of variance for FRVs has been previously

established in terms of several metrics (see Körner 1997a, 1997b and Lubiano et al.

2000). By following the same ideas, we can also consider it in the sense of the DLR

metric.

2.2.1 Definition and properties of the variance

The variance of an LR fuzzy random variable X = (Xm, X l, Xr) with E‖X‖2
LR < ∞

is defined by

V ar(X) = ED2
LR(X, EX),
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or, equivalently, in terms of support functions

V ar(X) = E 〈sX − sEX , sX − sEX〉LR (2.2)

It can be easily checked that

V ar(X) = E
[
3(Xm

i − EXm)2 + λ2(X l
i − EX l)2 + ρ2(Xr

i − EXr)2
]

+E
[
−2λ(Xm

i − EXm)(X l
i − EX l) + 2ρ(Xm

i − EXm)(Xr
i − EXr)

]
= 3V ar(Xm) + λ2V ar(X l) + ρ2V ar(Xr)

−2λCov(Xm, X l) + 2ρCov(Xm, Xr).

Inspired by the expression (2.2) of the variance, we can also define the covariance

as follows.

Definition 2.2.1 The covariance between two LR fuzzy random variables X =

(Xm, X l, Xr) and Y = (Y m, Y l, Y r) is defined by

Cov(X, Y ) = E〈sX − sEX , sY − sEY 〉LR.

In this case it is easy to prove that

Cov(X, Y ) = 3Cov(Xm, Y m) + λ2Cov(X l, Y l) + ρ2Cov(Xr, Y r)

−λCov(Xm, Y l)− λCov(X l, Y m)

+ρCov(Xm, Y r) + ρCov(Xr, Y m).

The DLR-variance satisfies the same suitable properties of the usual variance in

R, that is,

Proposition 2.2.1 Let X and Y be LR fuzzy random variables, A ∈ FLR and

γ ∈ R. Then

1. V ar(X) = E‖X‖2
LR − ‖EX‖2

LR,

2. V ar(γX) = γ2V ar(X),

3. V ar(A + X) = V ar(X),

4. V ar(X + Y ) = V ar(X) + V ar(Y ) if X and Y are independent,

5. if A ∈ FLR, it holds ∆X(A) = E [D2
LR(X, A)] = V ar(X) + D2

LR(A, EX).

Proof. By means of properties of the variance and the covariance for real-valued

random variables it is easy to prove this proposition.
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1. Since, for Z and W real-valued random variables, V ar(Z) = EZ2 − (EZ)2

and Cov(Z,W ) = E(ZW )− EZEW , we have

V ar(X) = = 3V ar(Y m) + λ2V ar(Y l) + ρ2V ar(Y r)

−2λCov(Y m, Y l) + 2ρCov(Y m, Y r)

= 3(E(Xm)2 − (EXm)2)

+λ2(E(X l)2 − (EX l)2) + ρ2(E(Xr)2 − (EXr)2)

−2λ(E(XmX l)− EXmEX l) + 2ρ(E(XmXr)− EXmEXr)

= 3E(Xm)2 + λ2E(X l)2 + ρ2E(Xr)2

−2λE(XmX l) + 2ρE(XmXr)

−(3(EXm)2 + λ2(EX l)2 + ρ2(EXr)2

−2λ− EXmEX l + 2ρEXmEXr)

= E‖X‖2
LR − ‖EX‖2

LR

2. Since, for Z, W real-valued random variables and γ ∈ R, V ar(γZ) = γ2V ar(Z)

and Cov(γZ, γW ) = γ2Cov(Z,W ),

V ar(γX) = 3V ar(γY m) + λ2V ar(γY l) + ρ2V ar(γY r)

−2λCov(γY m, γY l) + 2ρCov(γY m, γY r)

= 3γ2V ar(Y m) + λ2γ2V ar(Y l) + ρ2γ2V ar(Y r)

−2λγ2Cov(Y m, Y l) + 2ργ2Cov(Y m, Y r)

= γ2V ar(X)

3. Since, for real-valued random variables, the variance and the covariance are

invariant with respect to translation, it follows that

V ar(A + X) = 3V ar(Y m + Am) + λ2V ar(Y l + Al) + ρ2V ar(Y r + Ar)

−2λCov(Y m + Am, Y l + Al) + 2ρCov(Y m + Am, Y r + Ar)

= 3V ar(Y m) + λ2V ar(Y l) + ρ2V ar(Y r)

−2λCov(Y m, Y l) + 2ρCov(Y m, Y r)

= V ar(X)

4. Taking into account that X + Y is an LR FRV whose s-representation is

(Xm + Y m, X l + Y l, Xr + Y r), it results

V ar(X + Y ) = 3V ar(Xm + Y m) + λ2V ar(X l + Y l) + ρ2V ar(Xr + Y r)

−2λCov(Xm + Y m, Y l + Al)

+2ρCov(Xm + Y m, Xr + Y r),
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and since Xm + Y m, X l + Y l and Xr + Y r are sums of real-valued random

variables

V ar(X + Y ) = 3V ar(Xm) + 3V ar(Y m) + 6Cov(Xm, Y m)

+λ2V ar(X l) + λ2V ar(Y l) + 2λ2Cov(X l, Y l)

+ρ2V ar(Xr) + ρ2V ar(Y r) + 2ρ2Cov(Xr, Y r)

−2λCov(Xm, X l)− 2λCov(Xm, Y l)

−2λCov(Y m, X l)− 2λCov(Y m, Y l)

+2ρCov(Xm, Xr) + 2ρCov(Xm, Y r)

+2ρCov(Y m, Xr) + 2ρCov(Y m, Y r)

= V ar(X) + V ar(Y ) + 2Cov(X,Y ).

If X and Y are independent, Cov(X,Y ) = 0, hence

V ar(X + Y ) = V ar(X) + V ar(Y )

5. Using the metric D2
LR we have

D2
LR(X, A) = (Xm − Am)2 + ((Xm − λX l)− (Am − λAl))2

+ ((Xm + ρXr)− (Am + ρAr))2

and

∆X(A) = E
[
(Xm − Am)2 + ((Xm − λX l)− (Am − λAl))2

]
+E

[
((Xm + ρXr)− (Am + ρAr))2

]
= 3E

[
(Xm − Am)2

]
+λ2E

[
(X l − Al)2

]
+ ρ2E

[
(Xr − Ar)2

]
−2λE

[
(Xm − Am)(X l − Al)

]
+ 2ρE [(Xm − Am)(Xr − Ar)] .

By adding and subtracting in the term (Xm−Am) the expected value of Xm,

it results

E
[
(Xm − Am)2

]
= E

[
(Xm − EXm + EXm − Am)2

]
= E

[
(Xm − EXm)2

]
+ E

[
(EXm − Am)2

]
+2(EXm − Am)E(Xm − EXm)

= V ar(Xm) + E
[
(EXm − Am)2

]
Analogously

E
[
(X l − Al)2

]
= V ar(X l) + E

[
(EX l − Al)2

]
E
[
(Xr − Ar)2

]
= V ar(Xr) + E

[
(EXr − Ar)2

]
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and

E
[
(Xm − Am)(X l − Al)

]
= E [(Xm − EXm + EXm − Am)

× (X l − EX l + EX l − Al)
]

= E
[
(Xm − EXm)(X l − EX l)

]
+E

[
(EXm − Am)(EX l − Al)

]
= Cov(Xm, X l) + E

[
(EXm − Am)(EX l − Al)

]
E [(Xm − Am)(Xr − Ar)] = E [(Xm − EXm + EXm − Am)

× (Xr − EXr + EXr − Ar)]

= E [(Xm − EXm)(Xr − EXr)]

+E [(EXm − Am)(EXr − Ar)]

= Cov(Xm, Xr) + E [(EXm − Am)(EXr − Ar)] .

As a consequence

∆X(A) = 3V ar(Xm) + 3E
[
(EXm − Am)2

]
+ λ2V ar(X l) + λ2E

[
(EX l − Al)2

]
+ ρ2V ar(Xr) + ρ2E

[
(EXr − Ar)2

]
− 2λCov(Xm, X l)− 2λE

[
(EXm − Am)(EX l − Al)

]
+ 2ρCov(Xm, Xr) + 2ρE [(EXm − Am)(EXr − Ar)] .

Taking into account that

D2
LR(A, EX) = 3(Am − EXm)2 + λ2(Al − EX l)2 + ρ2(Ar − EXr)2

−2λ(Am − EXm)(Al − EX l)

+2ρ(Am − EXm)(Ar − EXr),

and

V arX = 3V ar(Xm) + λ2V ar(X l) + ρ2V ar(Xr)

− 2λCov(Xm, X l) + 2ρCov(Xm, Xr),

we obtain the thesis

E
[
D2

LR(X,A)
]

= V ar(X) + D2
LR(A, EX).

2

Property 5 of Proposition 2.2.1 shows that E [D2
LR(X, A)] is minimized for A = EX,

that is, the Aumann expectation agrees with the Frèchet-expectation with respect

to the Yang-Ko metric D2
LR.
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Proposition 2.2.2 Let X and Y be LR fuzzy random variables. Then

1. Cov(X,Y ) = E〈sX , sY 〉LR − 〈sEX , sEY 〉LR,

2. V ar(X) = Cov(X,X),

3. V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X, Y ).

Remark 2.2.1 Due to the lack of linearity of FLR the covariance does not have

the same meaning or the properties of the covariance in R. For example, if X is

non-degenerate and symmetrical with respect to 0, X = −X, then Cov(X,−X) =

Cov(X,X) = V ar(X) 6= 0, that is, Cov(X,−X) 6= −Cov(X, X), contrary to what

happens in the real case.

2.2.2 Estimation of the variance and covariance

The estimation of the variance and some properties have been also discussed in Lu-

biano et al. (2000) and Körner (1997b). In this section we analyze the statistical

problem of the estimation for the variance of FRVs based on DLR.

Let X be an LR FRV with E‖X‖2
LR < ∞, observed on n statistical units

{Xi}i=1,...,n. Analogously to the classical case, the estimator of V ar(X) can be

defined as follows

S2
n =

1

n− 1

n∑
i=1

D2
LR(Xi, X),

where X = 1
n

n∑
i=1

Xi. Note that S2
n : Ωn → R is a real-valued random variable.

Proposition 2.2.3 Let X be an LR FRV, S2
n = 1

n−1

n∑
i=1

D2
LR(Xi, X) is an unbiased

and strongly consistent estimator of the variance V ar(X), that is

ES2
n = V ar(X), ∀n ∈ N, and S2

n
n→∞−→ V ar(X) a.s.− [P ].

Proof. We start by proving the unbiasedness of the estimator.

E
n− 1

n
S2

n = E
1

n

n∑
i=1

D2
LR(Xi, X)

= E
1

n

n∑
i=1

[
3(Xm

i −X
m

)2 + λ2(X l
i −X

l
)2 + ρ2(Xr

i −X
r
)2
]

+E
1

n

n∑
i=1

[
−2λ(Xm

i −X
m

)(X l
i −X

l
) + 2ρ(Xm

i −X
m

)(Xr
i −X

r
)
]
.
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By adding and subtracting in the terms (Xm
i − X

m
), (X l

i − X
l
) and (Xr

i − X
r
),

respectively, the expectation values of Xm, X l and Xr, it results

E
n− 1

n
S2

n = E
1

n

n∑
i=1

[
3(Xm

i − EXm + EXm −X
m

)2
]

+E
1

n

n∑
i=1

[
λ2(X l

i − EX l + EX l −X
l
)2
]

+E
1

n

n∑
i=1

[
ρ2(Xr

i − EXr + EXr −X
r
)2
]

−E
1

n

n∑
i=1

[
2λ(Xm

i − EXm + EXm −X
m

)(X l
i − EX l + EX l −X

l
)
]

+E
1

n

n∑
i=1

[
2ρ(Xm

i − EXm + EXm −X
m

)(Xr
i − EXr + EXr −X

r
)
]
.

Through simple operations it is easy to check that

E
n− 1

n
S2

n = 3V ar(Xm) + λ2V ar(X l) + ρ2V ar(Xr)

−2λCov(Xm, X l) + 2ρCov(Xm, Xr)

−3V ar(X
m

)− λ2V ar(X
l
)− ρ2V ar(X

r
)

+2λCov(X
m

, X
l
)− 2ρCov(X

m
, X

r
).

Since the variance and the covariance of the sample means of real-valued random

variables can be written in terms of the variance and the covariance of the given

variables, it results

E
n− 1

n
S2

n = V ar(X)− V ar(X) = V ar(X)− 1

n
V ar(X).

It follows that

ES2
n = V ar(X), ∀n ∈ N.

Concerning the consistency of the estimator, starting from

S2
n =

1

n− 1

n∑
i=1

[
3(Xm

i −X
m

)2 + λ2(X l
i −X

l
)2 + ρ2(Xr

i −X
r
)2
]

+
1

n− 1

n∑
i=1

[
−2λ(Xm

i −X
m

)(X l
i −X

l
) + 2ρ(Xm

i −X
m

)(Xr
i −X

r
)
]
,

we have that

S2
n =

3

n− 1

n∑
i=1

(Xm
i −X

m
)2 +

λ2

n− 1

n∑
i=1

(X l
i −X

l
)2 +

ρ2

n− 1

n∑
i=1

(Xr
i −X

r
)2
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− 2λ

n− 1

n∑
i=1

(Xm
i −X

m
)(X l

i −X
l
) +

2ρ

n− 1

n∑
i=1

(Xm
i −X

m
)(Xr

i −X
r
)

=
3n

n− 1
σ̂2

Xm +
λ2n

n− 1
σ̂2

Xl +
ρ2n

n− 1
σ̂2

Xr −
2λn

n− 1
σ̂XmXl +

2ρn

n− 1
σ̂XmXr .

Since the sample variance of a real-valued random variable and the sample covari-

ance between two real-valued random variables are, respectively, strongly consistent

estimators of the variance and covariance, we obtain the consistency of the estimator

S2
n, that is

S2
n

n→∞−→ 3V ar(Xm) + λ2V ar(X l) + ρ2V ar(Xr)

−2λCov(Xm, X l) + 2ρCov(Xm, Xr),

S2
n

n→∞−→ V ar(X) a.s.− [P ].

2

In an analogous way, it is possible to determine an estimator for the covariance

between two LR FRVs and to check some statistical properties.

Let Y and X be two LR FRVs, observed on n statistical units {Yi, Xi}i=1,...,n,

with E‖Y ‖2
LR < ∞ and E‖X‖2

LR < ∞, the estimator of Cov(X,Y ) can be defined

as

Cn =
1

n− 1

n∑
i=1

〈sX − sX , sY − sY 〉LR,

where Y = 1
n

n∑
i=1

Yi and X = 1
n

n∑
i=1

Xi.

Taking into account that Cn can be written in terms of sample covariances of

real-valued random variables, it is easy to check the next proposition, by following

reasoning similar to that in Proposition 2.2.3.

Proposition 2.2.4 Let X and Y be two LR FRVs, Cn = 1
n−1

n∑
i=1

〈sX−sX , sY−sY 〉LR

is an unbiased and strongly consistent estimator of the covariance Cov(X,Y ), that

is

ECn = Cov(X, Y ) and Cn
n−→∞−→ Cov(X, Y ) a.s.− [P ].

2.3 Simulations

In order to illustrate the consistency of the estimator of the variance S2
n in an

empirical way, we consider a simulated situation. An LR fuzzy random variable

X has been generated by considering a real variable Xm normally distributed as
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N(0, 1) and two real random variables X l and Xr distributed as χ2
1 and generating

values of X based on the assumption of independence among the above three random

variables. If we choose the triangular case, λ = ρ = 1/2, it is easy to check that the

theoretical variance of the fuzzy variable X is equal to 4.

Table 2.1: DLR-variance estimates in a simulated case.

n S2
n

100 3.6831

1000 3.9045

10000 3.9273

100000 3.9984

As shown in Table 2.1, the estimates of the variance for the simulated data are close

to the theoretical value, as n increases. In particular, from n = 1000, they are quite

accurate.

2.4 Empirical results

We consider the data introduced in Example 3.1.1. In this example we consider

the quality of the trees, that is an LR fuzzy random variable. By means of the n

statistical observations in Table 1.1, it is possible to estimate the variance of the

quality. It is easy to check that the estimate is equal to 1068.1 (estimated standard

deviation equal to 32.6816).

2.5 Final evaluation and open problems

In this chapter we have introduced and analyzed the concept of variance in the sense

of the DLR-metric by following the ideas in Körner (1997) and Lubiano et al. (2000).

This analysis is necessary for the subsequent chapters, since we will apply the

least squares criterion to find the estimators of a given regression model involving

LR FRVs. The properties verified for this variance make it suitable for analyzing

the variability of involved LR FRVs, as usual in least squares problems.

As open problems concerning this chapter we propose to follow the idea in

(Ramos, 2008) to establish the asymptotic distribution of the sample estimators



2.5 Final evaluation and open problems 34

and to use them for developing confidence intervals and hypothesis testing proce-

dures.



Chapter 3

A linear regression model with

imprecise response

The problem of linear regression in a fuzzy framework has been developed in several

studies, as described in Chapter 1. In the present work a new linear regression model

for LR fuzzy responses and scalar predictors is given. It takes inspiration from the

model introduced in Coppi et al. (2006).

In the next section the new population regression model is formally defined. In

order to measure the degree of linear relationship in Section 3.2 a determination

coefficient is given, defined by means of the metric D2
λρ. The main part of this

chapter is focused on statistical inferences. Section 3.3 contains the minimization

problem and the procedure to get the least squares estimators. Throughout this

section some statistical properties are proved, the asymptotic distribution of the

estimators is determined and, to analyze the accuracy of the estimators, a bootstrap

procedure is given. The model is employed on simulated data and in two real

life situations. Sections 3.4 and 3.5, respectively, contain confidence regions and

hypothesis testing on the regression parameters. Section 3.6 concerns the estimation

of the determination coefficient and some statistical properties. In Section 3.7 a

linear independence test is introduced. It is given by means of the asymptotic

approach and the bootstrap one. To illustrate the empirical significance level of the

test some simulation studies and empirical results are discussed. The last part is

devoted to the study of the behavior of the power of the asymptotic test by means

of a sequence of local alternatives.
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3.1 The regression model

Consider a random experiment in which an LR fuzzy response variable Y and a real

explanatory variable X are observed on n statistical units, {Yi, Xi}i=1,...,n. Since Y is

determined by (Y m, Y l, Y r), the proposed regression model concerns the real-valued

random variables in this tuple. The center Y m can be related to the explanatory

variable X through a classical regression model. However, as shown also in the model

introduced in Coppi et al. (2006), described in the preliminary part of this work,

the restriction of non-negativity satisfied by Y l and Y r entails some difficulties. One

solution is to consider a model with the restriction of non-negativity but, when a

variable has this kind of restriction, the errors of the model may be dependent on

the explanatory variable, and the classical inferential methods are not efficient (see,

for instance, Liew 1976, Gallant & Gerig 1980).

In contrast we propose modeling a transformation of the left spread and a trans-

formation of the right spread of the response through simple linear regressions (on

the explanatory variable X). This can be represented in the following way, letting

g : (0, +∞) −→ R and h : (0, +∞) −→ R be invertible:
Y m = amX + bm + εm

g(Y l) = alX + bl + εl

h(Y r) = arX + br + εr

(3.1)

where εm, εl and εr are real-valued random variables with E(εm|X) = E(εl|X) =

E(εr|X) = 0. The variance of the explanatory variable X will be denoted by σ2
X

and Σ will stand for the covariance matrix of (εm, εl, εr), whose variances are strictly

positive and finite.

It is easy to check that the variables εm, εl and εr are uncorrelated with the

variable X. For instance,

Cov(εm, X) = E [(εm − Eεm)(X − EX)]

= E [E ((εm − Eεm)(X − EX)) |X]

= E(X − EX)E [E (εm − Eεm) |X] ,

as the expected value of the variable εm given X is equal to 0, we get the result,

that is Cov(εm, X) = 0. Analogously, it is possible to check the same result for the

variables εl and εr.

The functions g and h transform the left and the right spread, that are positive

variables, into variables that can take all the real values. This makes possible the

use of the linear regressions.
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Remark 3.1.1 In practice, particularly in the socio-economical domain, it is pos-

sible to have restrictions on the center Y m or on the explanatory variable X. In this

case we can transform these variables too. It results a non linear model.

Example 3.1.1 We consider the data introduced in Chapter 1 (see Table 1.1). In

this example we consider only the dependence relationship of the quality of trees on

the height. We will use the new linear regression model to analyze the part of the

quality, Y , of the 238 trees explained by the height, X. In presence of constrained

variables, a common approach consists in transforming the constrained variable into

an unconstrained one by means of the logarithmic transformation (that is g=h=ln).

We will use this approach in this example to transform the spreads into real variables

without the restriction of non-negativity (see Examples 3.3.1, 4.3.1).

3.1.1 Theoretical values

In Proposition 3.1.1 we show that the population parameters can be expressed, as

usual, in terms of some moments involving the considered random variables.

Proposition 3.1.1 Let Y be an LR fuzzy random variable and X a real random

variable satisfying the linear model (3.1), then we have that

am =
σY mX

σ2
X

, al =
σg(Y l)X

σ2
X

, ar =
σh(Y r)X

σ2
X

, bm = E(Y m|X)− σY mX

σ2
X

EX,

bl = E[g(Y l)|X]−
σg(Y l)X

σ2
X

EX, br = E[h(Y r)|X]−
σh(Y r)X

σ2
X

EX.

Proof. Under the assumptions in this proposition, we have that Y m = amX + bm +

εm and EY m = amEX + bm + Eεm, hence

σY mX = Cov(Y m, X) = E [(Y m − EY m)(X − EX)]

= E [(amX + εm − amEX)(X − EX)]

= amE(X − EX)2 + E [ε(X − EX)] .

Since the variables εm and X are uncorrelated it follows that

σY mX = amV ar(X) = amσ2
X ,

and as a result

am =
σY mX

σ2
X

.
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By means of opportune substitutions it is easy to check that

bm = EY m − σY mX

σ2
X

EX.

Analogously, following the same reasoning for σg(Y l)X and σh(Y r)X ,

al =
σg(Y l)X

σ2
X

bl = Eg(Y l)−
σg(Y l)X

σ2
X

EX

ar =
σh(Y r)X

σ2
X

br = Eh(Y r)−
σh(Y r)X

σ2
X

EX

2

3.2 Determination coefficient

In order to quantify the degree of linear relationship between the response variables

and the explanatory ones in a regression model, it is possible to use the determi-

nation coefficient. The following proposition proves the decomposition of the total

variation, and taking it into account it is possible to define the determination coef-

ficient for the new regression model.

Proposition 3.2.1 Let Y be an LR fuzzy random variable and X a random variable

satisfying the linear model (3.1), by indicating Ỹ = (Y m, g(Y l), h(Y l)), we obtain

E
[
D2

λρ(Ỹ , EỸ )
]

= E
[
D2

λρ(Ỹ , E(Ỹ |X))
]

+ E
[
D2

λρ(E(Ỹ |X), EỸ )
]
, (3.2)

that is the total variation of the response Ỹ is equal to the sum of the variation that

does not depend on the model and the variation explained by the model.

Proof. The total variation can be written as follows

E
[
D2

λρ(Ỹ , EỸ )
]

= 3E[Y m − EY m]2 + λ2E[g(Y l)− Eg(Y l)]2

+ρ2E[h(Y r)− Eh(Y r)]2

−2λE[(Y m − EY m)(g(Y l)− Eg(Y l))]

+2ρE[(Y m − EY m)(h(Y r)− Eh(Y r))].

Starting from the first term E[Y m − EY m]2, that is the variance of the real ran-

dom variable Y m, we add and subtract the conditional expectation of Y m given X,

E(Y m|X), from the term Y m − EY m and we get

E[Y m − EY m]2 = E[Y m − E(Y m|X) + E(Y m|X)− EY m]2

= E[Y m − E(Y m|X)]2 + E[E(Y m|X)− EY m]2

+2E[(Y m − E(Y m|X))(E(Y m|X)− EY m)].
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Since the expectation of a real-valued random variable is equal to the expectation

of the conditional expectation of the same variable it follows that

E[Y m − EY m]2 = E[Y m − E(Y m|X)]2 + E[E(Y m|X)− EY m]2

+2E{E[(Y m − E(Y m|X))(E(Y m|X)− EY m)|X]}.

Given X the expected value E[(Y m −E(Y m|X))(E(Y m|X)−EY m)|X] is equal to

(E(Y m|X)−EY m)E[(Y m−E(Y m|X))|X] and, consequently, it is equal to 0. Hence

E[Y m − EY m]2 = E[Y m − E(Y m|X)]2 + E[E(Y m|X)− EY m]2.

Analogously, using the real random variables g(Y l) and h(Y r), we get

E[g(Y l)− Eg(Y l)]2 = E[g(Y l)− E(g(Y l)|X)]2 + E[E(g(Y l)|X)− Eg(Y l)]2,

E[h(Y r)− Eh(Y r)]2 = E[h(Y r)− E(h(Y r)|X)]2 + E[E(h(Y r)|X)− Eh(Y r)]2.

Following the same idea, by adding and subtracting E(Y m|X) from Y m−EY m and

E(g(Y l)|X) from g(Y l)− Eg(Y l),

E[(Y m − EY m)g(Y l)− Eg(Y l)]=E[(Y m − E(Y m|X) + E(Y m|X)− EY m)]

× [(g(Y l)− E(g(Y l)|X) + E(g(Y l)|X)− Eg(Y l))]

=E[(Y m − E(Y m|X))(g(Y l)− E(g(Y l)|X))]

+E[(E(Y m|X)− EY m)(E(g(Y l)|X)− Eg(Y l))]

+E[(Y m − E(Y m|X))(E(g(Y l)|X)− Eg(Y l))]

+E[(g(Y l)− E(g(Y l)|X))(E(Y m|X)− EY m)].

Trough simple passages it is easy to check that

E[(Y m − EY m)g(Y l)− Eg(Y l)]=E[(Y m−E(Y m|X))(g(Y l)−E(g(Y l)|X))]

+E[(E(Y m|X)−EY m)(E(g(Y l)|X)−Eg(Y l))]

+E{[E(Y m|X)−EY m]E[(g(Y l)−E(g(Y l)|X))|X]}
+E{[E(g(Y l)|X)−Eg(Y l)]E[(Y m−E(Y m|X))|X]},

that is

E[(Y m − EY m)g(Y l)− Eg(Y l)]=E[(Y m − E(Y m|X))(g(Y l)− E(g(Y l)|X))]

+E[(E(Y m|X)− EY m)(E(g(Y l)|X)− Eg(Y l))].

Analogously

E[(Y m − EY m)h(Y r)− Eh(Y r)]=E[(Y m−E(Y m|X))(h(Y r)−E(h(Y r)|X))]

+E[(E(Y m|X)−EY m)(E(h(Y r)|X)−Eh(Y r))].
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Since

E
[
D2

λρ(Ỹ − E(Ỹ |X))
]

= 3E[Y m − E(Y m|X)]2

+λ2E[g(Y l)− E(g(Y l)|X)]2

+ρ2E[h(Y r)− E(h(Y r)|X)]2

−2λE[(Y m − E(Y m|X))(g(Y l)− E(g(Y l)|X))]

+2ρE[(Y m − E(Y m|X))(h(Y r)− E(h(Y r)|X))]

and

E
[
D2

λρ(E(Ỹ |X)− EỸ )
]

= 3E[E(Y m|X)− EY m]2

+λ2E[E(g(Y l)|X)− Eg(Y l)]2

+ρ2E[E(h(Y r)|X)− Eh(Y r)]2

−2λE[(E(Y m|X)− EY m)(E(g(Y l)|X)− Eg(Y l))]

+2ρE[(E(Y m|X)− EY m)(E(h(Y r)|X)− Eh(Y r))],

then, we get the thesis

E
[
D2

λρ(Ỹ − EỸ )
]

= E
[
D2

λρ(Ỹ − E(Ỹ |X))
]

+ E
[
D2

λρ(E(Ỹ |X)− EỸ )
]
.

2

Starting from the above decomposition we can define a determination coefficient.

Definition 3.2.1 Let Y be the LR FRV of the linear model (3.1), by indicating

Ỹ = (Y m, g(Y l), h(Y l)), the determination coefficient can be defined as follows

R2 =
E
[
D2

λρ(E(Ỹ |X), EỸ )
]

E
[
D2

λρ(Ỹ , EỸ )
] = 1−

E
[
D2

λρ(Ỹ , E(Ỹ |X))
]

E
[
D2

λρ(Ỹ , EỸ )
] . (3.3)

This coefficient represents approximately the part of the total variation of Y ex-

plained by the regression model and for this reason it can be used to quantify the

degree of linear relationship. Furthermore, it takes values in the interval [0, 1]. If

R2 = 0 it is the case of linear independence, that is, the regression model does not

explain any variability of the imprecise response variable. When R2 is equal to 1,

it is the case of the best fit, that is, the regression model explains completely the

variability of the response variable.
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3.3 The estimation problem

In order to get the estimators of the regression parameters the Least Squares (LS)

criterion will be used. It consists in minimizing the squared distance between the

observed values and the values predicted by the model.

3.3.1 The minimization problem

The minimization problem is defined by means of the generalized Yang-Ko metric

D2
λρ. As it was previously mentioned, the use of the LS criterion is justified by the

properties of the variance proved in Proposition 2.2.1, among which we find the

Frèchet principle.

In this case the LS problem consists in looking for âm, âl, âr, b̂m, b̂l e b̂r in order

to

min ∆2
λρ = min

n∑
i=1

D2
λρ((Y

m
i , g(Y l

i ), h(Y r
i )), ((Y m)∗i , g

∗(Y l
i ), h∗(Y r

i ))) (3.4)

where (Y m)∗i = amXi + bm, g∗(Y l
i ) = alXi + bl and h∗(Y r

i ) = arXi + br are the

predicted values.

The function to minimize becomes

∆2
λρ =

n∑
i=1

[
3(Y m

i − amXi − bm)2
]

(3.5)

+
n∑

i=1

[
λ2(g(Y l

i )− alXi − bl)
2 + ρ2(h(Y r

i )− arXi − br)
2
]

+
n∑

i=1

[
−2λ(Y m

i − amXi − bm)(g(Y l
i )− alXi − bl)

]
+

n∑
i=1

[+2ρ(Y m
i − amXi − bm)(h(Y r

i )− arXi − br)] .

3.3.2 Least squares estimators

In Proposition 3.3.1 the optimization problem (3.4) is solved.

Proposition 3.3.1 The solutions of the LS problem are

âm =
σ̂XY m

σ̂2
X

, âl =
σ̂Xg(Y l)

σ̂2
X

, âr =
σ̂Xh(Y r)

σ̂2
X

,

b̂m =

n∑
i=1

Y m
i

n
− âm

n∑
i=1

Xi

n
, b̂l =

n∑
i=1

g(Y l
i )

n
− âl

n∑
i=1

Xi

n
, b̂r =

n∑
i=1

h(Y r
i )

n
− âr

n∑
i=1

Xi

n
.
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Proof. Since the functions to minimize are continuous and convex, to solve

the minimization problem we equate to zero the partial derivative with respect

to the parameter to be estimated. As in classical regression, we start with the

constant elements of the model, because their estimators are expressed in terms of

the regression coefficients.

The function to be minimized can be written as

∆2
λρ =

n∑
i=1

[
3
(
(Y m

i )2 + a2
mX2

i + b2
m − 2amY m

i Xi − 2bmY m
i + 2ambmXi

)]
(3.6)

+
n∑

i=1

[
λ2
(
(g(Y l

i ))2 + a2
l X

2
i + b2

l − 2alg(Y l
i )Xi − 2blg(Y l

i ) + 2alblXi

)]
+

n∑
i=1

[
ρ2
(
(h(Y r

i ))2 + a2
rX

2
i + b2

r − 2arh(Y r
i )Xi − 2brh(Y r

i ) + 2arbrXi

)]
−

n∑
i=1

[
2λ
(
Y m

i g(Y l
i )− alY

m
i Xi − blY

m
i − amg(Y l

i )Xi + amalX
2
i

)]
−

n∑
i=1

[
2λ
(
amblXi − bmg(Y l

i ) + albmXi + bmbl

)]
+

n∑
i=1

[
2ρ
(
Y m

i h(Y r
i )− arY

m
i Xi − brY

m
i − amh(Y r

i )Xi + amarX
2
i

)]
+

n∑
i=1

[2ρ (ambrXi − bmh(Y r
i ) + arbmXi + bmbr)] .

To estimate bl we equate to zero the partial derivative of ∆2
λρ with respect to bl,

that is

∂∆2
λρ

∂bl

= 0 ⇔ 2λ2nbl − 2λ2

n∑
i=1

g(Y l
i ) + 2λ2al

n∑
i=1

Xi

+2λ
n∑

i=1

Y m
i − 2λam

n∑
i=1

Xi − 2λnbm = 0

⇔ bl =

n∑
i=1

g(Y l
i )

n
− al

n∑
i=1

Xi

n
− 1

λ

n∑
i=1

Y m
i

n
+

am

λ

n∑
i=1

Xi

n
+

bm

λ
. (3.7)

By following the same procedure, and equating to zero the partial derivative of ∆2
λρ

with respect to br we have

∂∆2
λρ

∂br

= 0 ⇔ 2ρ2nbr − 2ρ2

n∑
i=1

h(Y r
i ) + 2ρ2ar

n∑
i=1

Xi

−2ρ
n∑

i=1

Y m
i + 2ρam

n∑
i=1

Xi + 2ρnbm = 0
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⇔ br =

n∑
i=1

h(Y r
i )

n
− ar

n∑
i=1

Xi

n
+

1

ρ

n∑
i=1

Y m
i

n
− am

ρ

n∑
i=1

Xi

n
− bm

ρ
. (3.8)

To estimate bm we have to take into account that bl and br obtained above are

expressed as functions of bm. Thus, by substituting (3.7) and (3.8) in (3.6), we

obtain

∆2
λρ =

n∑
i=1

[
3
(
(Y m

i )2 + a2
mX2

i + b2
m − 2amY m

i Xi − 2bmY m
i + 2ambmXi

)]

+λ2
n∑

i=1

(g(Y l
i ))2 + a2

l X
2
i +

 nP
i=1

g(Y l
i )

n
− al

nP
i=1

Xi

n
− 1

λ

nP
i=1

Y m
i

n
+ am

λ

nP
i=1

Xi

n
+ bm

λ

2
+λ2

n∑
i=1

−2alg(Y l
i )Xi−2

 nP
i=1

g(Y l
i )

n
− al

nP
i=1

Xi

n
− 1

λ

nP
i=1

Y m
i

n
+ am

λ

nP
i=1

Xi

n
+ bm

λ

 g(Y l
i )


+λ2

n∑
i=1

+2al

 nP
i=1

g(Y l
i )

n
− al

nP
i=1

Xi

n
− 1

λ

nP
i=1

Y m
i

n
+ am

λ

nP
i=1

Xi

n
+ bm

λ

Xi



+ρ2
n∑

i=1

(h(Y r
i ))2 + a2

rX
2
i +

 nP
i=1

h(Y r
i )

n
− ar

nP
i=1

Xi

n
+ 1

ρ

nP
i=1

Y m
i

n
− am

ρ

nP
i=1

Xi

n
− bm

ρ

2
+ρ2

n∑
i=1

−2arh(Y r
i )Xi−2

 nP
i=1

h(Y r
i )

n
− ar

nP
i=1

Xi

n
+ 1

ρ

nP
i=1

Y m
i

n
− am

ρ

nP
i=1

Xi

n
− bm

ρ

h(Y r
i )


+ρ2

n∑
i=1

+2ar

 nP
i=1

h(Y r
i )

n
− ar

nP
i=1

Xi

n
+ 1

ρ

nP
i=1

Y m
i

n
− am

ρ

nP
i=1

Xi

n
− bm

ρ

Xi


-2λ

n∑
i=1

[
Y m

i g(Y l
i )− alY

m
i Xi − amg(Y l

i )Xi + amalX
2
i

]
-2λ

n∑
i=1

−
 nP

i=1
g(Y l

i )

n
− al

nP
i=1

Xi

n
− 1

λ

nP
i=1

Y m
i

n
+ am

λ

nP
i=1

Xi

n
+ bm

λ

Y m
i


-2λ

n∑
i=1

am

 nP
i=1

g(Y l
i )

n
− al

nP
i=1

Xi

n
− 1

λ

nP
i=1

Y m
i

n
+ am

λ

nP
i=1

Xi

n
+ bm

λ

Xi − bmg(Y l
i )


-2λ

n∑
i=1

+albmXi + bm

 nP
i=1

g(Y l
i )

n
− al

nP
i=1

Xi

n
− 1

λ

nP
i=1

Y m
i

n
+ am

λ

nP
i=1

Xi

n
+ bm

λ





3.3 The estimation problem 44

+2ρ
n∑

i=1

[Y m
i h(Y r

i )− arY
m
i Xi − amh(Y r

i )Xi + amarX
2
i ]

+2ρ
n∑

i=1

−
 nP

i=1
h(Y r

i )

n
− ar

nP
i=1

Xi

n
+ 1

ρ

nP
i=1

Y m
i

n
− am

ρ

nP
i=1

Xi

n
− bm

ρ

Y m
i


+2ρ

n∑
i=1

am

 nP
i=1

h(Y r
i )

n
− ar

nP
i=1

Xi

n
+ 1

ρ

nP
i=1

Y m
i

n
− am

ρ

nP
i=1

Xi

n
− bm

ρ

Xi − bmh(Y r
i )


+2ρ

n∑
i=1

+arbmXi + bm

 nP
i=1

h(Y r
i )

n
− ar

nP
i=1

Xi

n
+ 1

ρ

nP
i=1

Y m
i

n
− am

ρ

nP
i=1

Xi

n
− bm

ρ

 .

By equating to zero the partial derivative of ∆2
λρ with respect to bm we get

∂∆2
λρ

∂bm

= 0 ⇔ +6nbm − 6
n∑

i=1

Y m
i + 6am

n∑
i=1

Xi

+2nbm + 2λ
n∑

i=1

g(Y l
i )− 2λal

n∑
i=1

Xi − 2
n∑

i=1

Y m
i

+2am

n∑
i=1

Xi − 2λ
n∑

i=1

g(Y l
i ) + 2λal

n∑
i=1

Xi

+2nbm − 2ρ
n∑

i=1

h(Y r
i ) + 2ρar

n∑
i=1

Xi − 2
n∑

i=1

Y m
i

+2am

n∑
i=1

Xi + 2ρ
n∑

i=1

h(Y r
i )− 2ρar

n∑
i=1

Xi

+2
n∑

i=1

Y m
i − 2am

n∑
i=1

Xi + 2λ
n∑

i=1

g(Y l
i )− 2λal

n∑
i=1

Xi

−4nbm − 2λ
n∑

i=1

g(Y l
i ) + 2λal

n∑
i=1

Xi + 2
n∑

i=1

Y m
i − 2am

n∑
i=1

Xi

+2
n∑

i=1

Y m
i − 2am

n∑
i=1

Xi − 2ρ
n∑

i=1

h(Y r
i ) + 2ρar

n∑
i=1

Xi

−4nbm + 2ρ
n∑

i=1

h(Y r
i )− 2ρar

n∑
i=1

Xi + 2
n∑

i=1

Y m
i − 2am

n∑
i=1

Xi = 0.

As results we obtain the following solutions that depend on the parameters am, al

and ar

bm =

n∑
i=1

Y m
i

n
− am

n∑
i=1

Xi

n
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bl =

n∑
i=1

g(Y l
i )

n
− al

n∑
i=1

Xi

n

br =

n∑
i=1

h(Y r
i )

n
− ar

n∑
i=1

Xi

n
.

For this reason in the estimation of al, ar and am we have to take into account the

values obtained above.

If we consider the centered values

Ỹ m
i = Y m

i −

n∑
i=1

Y m
i

n
X̃i = Xi −

n∑
i=1

Xi

n

g̃(Y l
i ) = g(Y l

i )−

n∑
i=1

g(Y l
i )

n
h̃(Y r

i ) = h(Y r
i )−

n∑
i=1

h(Y r
i )

n
the objective function can be written as follows

∆2
λρ =

n∑
i=1

[
3(Ỹ m

i − amX̃i)
2
]

(3.9)

+
n∑

i=1

[
λ2(g̃(Y l

i )− alX̃i)
2 + ρ2(h̃(Y r

i )− arX̃i)
2
]

+
n∑

i=1

[
−2λ(Ỹ m

i − amX̃i)(g̃(Y l
i )− alX̃i)

]
+

n∑
i=1

[
+2ρ(Ỹ m

i − amX̃i)(h̃(Y r
i )− arX̃i)

]
.

By equating to zero the partial derivative of ∆2
λρ with respect to al we obtain

∂∆2
λρ

∂al

= 0 ⇔ −2λ2

n∑
i=1

X̃i(g̃(Y l
i )− alX̃i)

+2λ
n∑

i=1

X̃i(Ỹ m
i − amX̃i) = 0

⇔ al =

1
n

n∑
i=1

X̃ig̃(Y l
i )

1
n

n∑
i=1

X̃i

2
− 1

λ

1
n

n∑
i=1

Ỹ m
i X̃i

1
n

n∑
i=1

X̃i

2
+

am

λ

al =
σ̂Xg(Y l)

σ̂2
X

− 1

λ

σ̂XY m

σ̂2
X

+
am

λ
.

Analogously, by equating to zero the partial derivative of ∆2
λρ with respect to ar, we

have

∂∆2
λρ

∂ar

= 0 ⇔ −2ρ2

n∑
i=1

X̃i(h̃(Y r
i )− arX̃i)
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−2ρ
n∑

i=1

X̃i(Ỹ m
i − amX̃i) = 0

⇔ ar =

1
n

n∑
i=1

X̃ih̃(Y r
i )

1
n

n∑
i=1

X̃i

2
− 1

ρ

1
n

n∑
i=1

Ỹ m
i X̃i

1
n

n∑
i=1

X̃i

2
+

am

ρ

ar =
σ̂Xh(Y r)

σ̂2
X

+
1

ρ

σ̂XY m

σ̂2
X

− am

ρ
.

By substituting into (3.10) al and ar obtained above, the objective function becomes

∆2
λρ =

n∑
i=1

[
3(Ỹ m

i − amX̃i)
2
]

+
n∑

i=1

[
λ2

(
g̃(Y l

i )− X̃i

(
σ̂Xg(Y l)

σ̂2
X

− 1

λ

σ̂XY m

σ̂2
X

+
am

λ

))2
]

+
n∑

i=1

[
ρ2

(
h̃(Y r

i )− X̃i

(
σ̂Xh(Y r)

σ̂2
X

+
1

ρ

σ̂XY m

σ̂2
X

− am

ρ

))2
]

+
n∑

i=1

[
−2λ(Ỹ m

i − amX̃i)

(
g̃(Y l

i )− X̃i

(
σ̂Xg(Y l)

σ̂2
X

− 1

λ

σ̂XY m

σ̂2
X

+
am

λ

))]
+

n∑
i=1

[
+2ρ(Ỹ m

i − amX̃i)

(
h̃(Y r

i )− X̃i

(
σ̂Xh(Y r)

σ̂2
X

+
1

ρ

σ̂XY m

σ̂2
X

− am

ρ

))]
.

Finally, by equating to zero the partial derivative of ∆2
λρ with respect to am we

obtain the estimation of am, that is

∂∆2
λρ

∂am

= 0 ⇔ −6
n∑

i=1

[
X̃i(Ỹ m

i − amX̃i)
]

−2λ
n∑

i=1

[
X̃i

(
g̃(Y l

i )− X̃i

σ̂Xg(Y l)

σ̂2
X

+
X̃i

λ

σ̂XY m

σ̂2
X

− am
X̃i

λ

)]

+2ρ
n∑

i=1

[
X̃i

(
h̃(Y r

i )− X̃i

σ̂Xh(Y r)

σ̂2
X

− X̃i

ρ

σ̂XY m

σ̂2
X

+ am
X̃i

ρ

)]

+2λ
n∑

i=1

[
X̃i

(
g̃(Y l

i )− X̃i

σ̂Xg(Y l)

σ̂2
X

+
X̃i

λ

σ̂XY m

σ̂2
X

− am
X̃i

λ

)]

−2ρ
n∑

i=1

[
X̃i

(
h̃(Y r

i )− X̃i

σ̂Xh(Y r)

σ̂2
X

− X̃i

ρ

σ̂XY m

σ̂2
X

+ am
X̃i

ρ

)]

⇔ âm =

n∑
i=1

Ỹ m
i X̃i

n∑
i=1

X̃2
i

=
σ̂XY m

σ̂2
X

.
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The solutions are

âm =
σ̂XY m

σ̂2
X

, âl =
σ̂Xg(Y l)

σ̂2
X

, âr =
σ̂Xh(Y r)

σ̂2
X

,

b̂m =

n∑
i=1

Y m
i

n
−âm

n∑
i=1

Xi

n
, b̂l =

n∑
i=1

g(Y l
i )

n
−âl

n∑
i=1

Xi

n
, b̂r =

n∑
i=1

h(Y r
i )

n
−âr

n∑
i=1

Xi

n
.

2

The LS estimators, analogously to the classical case of linear regression analysis,

fulfill some algebraic properties that will be analyzed in the next chapter for the

general case, and some statistical properties that will be introduced and proved in

Proposition 3.3.2.

Proposition 3.3.2 The estimators âm, âl, âr, b̂m, b̂l and b̂r are unbiased and

strongly consistent.

Proof. To prove the unbiasedness of the estimators we have to analyze their ex-

pected values. Starting from âm we have

E(âm|X) = E

(
σ̂XY m

σ̂2
X

∣∣∣X) = E


n∑

i=1

(Xi − X̄)(Y m
i − Ȳ m)

n∑
i=1

(Xi − X̄)2

∣∣∣X
 .

Since Y m
i = amXi + bm + εmi and Y

m
= amX + bm + εm we obtain

E(âm|X) =

n∑
i=1

(
(Xi −X)E((amXi + bm + εmi − amX − bm − εm)|X)

)
n∑

i=1

(Xi −X)2

=

n∑
i=1

(
(Xi −X)am(Xi −X)

)
n∑

i=1

(Xi −X)2

+

n∑
i=1

(
E(Xi −X)E(εm − εm|X)

)
n∑

i=1

(Xi −X)2

,

and taking into account that the conditional expectation of εm given X is equal to

0 and εm is an unbiased estimator of Eεm, we get

E(âm|X) = am.

Since E(âm) = E (E(âm|X)), the thesis is proved. Analogously it is possible to

check that E(âl) = al and E(âr) = ar.

Furthermore, E(b̂m|X) = E
(
Y

m − âmX|X
)

= E
(
Y

m|X
)
− E(X)E(âm|X), it
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follows that E(b̂m) = E(E(b̂m|X)) = E
(
E
(
Y

m|X
))
− E(X)E (E(âm|X)), that is,

E(b̂m) = E
(
Y

m) − E(X)E(âm). Taking into account that the sample means are

unbiased estimators of the expectations, it is easy to check that

E(b̂m) = E (Y m)− amE(X) = bm,

and, by means of similar reasoning, E(b̂l) = bl and E(b̂r) = br.

In order to analyze the consistency of the estimators with respect to the popu-

lation constants of the linear model, we have to study how these estimators behave

as the size of random samples increases. Since in the real case the sample moments

are consistent estimators of the population moments we get the thesis, i.e.,

• âm = σ̂xY m

σ̂2
x

n→∞−→ σxY m

σ2
x

= am a.s.− [P ]

• âl =
σ̂

xg(Y l)

σ̂2
x

n→∞−→
σ

xg(Y l)

σ2
x

= al a.s.− [P ]

• âr =
σ̂xh(Y r)

σ̂2
x

n→∞−→ σxh(Y r)

σ2
x

= ar a.s.− [P ]

• b̂m = Y
m − âmX

n→∞−→ EY m − amEX = bm a.s.− [P ]

• b̂l = g(Y l)− âlX
n→∞−→ Eg(Y l)− alEX = bl a.s.− [P ]

• b̂r = h(Y r)− ârX
n→∞−→ Eh(Y r)− arEX = br a.s.− [P ]

2

In order to develop inferences it is useful to provide an approximation to the distri-

bution of the estimators. A typical approximation is the asymptotic distribution of

the estimators.

Proposition 3.3.3 Under the assumptions of model (3.1), as n →∞,

√
n

 âm − am

âl − al

âr − ar

 D−→ N

(
0
′
,

Σ

σ2
X

)
.

Proof. Starting from the expression of âm, âl and âr in terms of sample moments

 âm

âl

âr

 =



1
n

nP
i=1

(Xi−X)(Y m
i −Y m)

1
n

nP
i=1

(Xi−X)2

1
n

nP
i=1

(Xi−X)(g(Y l
i )−g(Y l))

1
n

nP
i=1

(Xi−X)2

1
n

nP
i=1

(Xi−X)(h(Y r
i )−h(Y r))

1
n

nP
i=1

(Xi−X)2


,
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and taking into account that Y m
i = amXi +bm +εmi, g(Y l

i ) = alXi +bl +εli, h(Y r
i ) =

arXi+br+εri and Y m = amX+bm+εm, g(Y l) = alX+bl+εl, h(Y r) = arX+br+εr,

it is easy to check that

 âm

âl

âr

 =



am +

1
n

nP
i=1

(Xi−X)(εmi−εm)

1
n

nP
i=1

(Xi−X)2

al +

1
n

nP
i=1

(Xi−X)(εli−εl)

1
n

nP
i=1

(Xi−X)2

ar +

1
n

nP
i=1

(Xi−X)(εri−εr)

1
n

nP
i=1

(Xi−X)2


.

In this way, we have that,

√
n

 âm − am

âl − al

âr − ar

 =

(
1

n

n∑
i=1

(Xi −X)2

)−1


1√
n

n∑
i=1

(Xi −X)(εmi − εm)

1√
n

n∑
i=1

(Xi −X)(εli − εl)

1√
n

n∑
i=1

(Xi −X)(εri − εr)


and then,

1√
n

n∑
i=1

(Xi −X)(εmi − εm)

1√
n

n∑
i=1

(Xi −X)(εli − εl)

1√
n

n∑
i=1

(Xi −X)(εri − εr)

 =


1√
n

n∑
i=1

(Xi − EX)εmi

1√
n

n∑
i=1

(Xi − EX)εli

1√
n

n∑
i=1

(Xi − EX)εri

+


1√
n

n∑
i=1

(EX −X)εmi

1√
n

n∑
i=1

(EX −X)εli

1√
n

n∑
i=1

(EX −X)εri



−


1√
n

n∑
i=1

(Xi − EX)εm

1√
n

n∑
i=1

(Xi − EX)εl

1√
n

n∑
i=1

(Xi − EX)εr

−


1√
n

n∑
i=1

(EX −X)εm

1√
n

n∑
i=1

(EX −X)εl

1√
n

n∑
i=1

(EX −X)εr

 .

Furthermore, 
1√
n

n∑
i=1

(EX −X)εmi

1√
n

n∑
i=1

(EX −X)εli

1√
n

n∑
i=1

(EX −X)εri

 a.s.−→ 0
′
,


1√
n

n∑
i=1

(Xi − EX)εm

1√
n

n∑
i=1

(Xi − EX)εl

1√
n

n∑
i=1

(Xi − EX)εr

 a.s.−→ 0
′
,
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1√
n

n∑
i=1

(EX −X)εm

1√
n

n∑
i=1

(EX −X)εl

1√
n

n∑
i=1

(EX −X)εr

 a.s.−→ 0
′
,

and


 (Xi − EX)εmi

(Xi − EX)εli

(Xi − EX)εri




i=1,...,n

is a sequence of random vectors i.i.d., centered

at 0
′
, whose covariance matrix is σ2

XΣ, so applying the Central Limit Theorem it

results that 
1√
n

n∑
i=1

(Xi − EX)εmi

1√
n

n∑
i=1

(Xi − EX)εli

1√
n

n∑
i=1

(Xi − EX)εri

 D−→ N(0
′
, σ2

XΣ).

Hence

√
n

 âm − am

âl − al

âr − ar

 D−→ N

(
0
′
,

Σ

σ2
X

)
.

2

The accuracy of the estimators is analyzed by means of standard error (the square

root of the variance). In presence of sampling model whose functional form has not

been further specified, it is possible to use a bootstrap procedure to get an estimate

of standard error (Efron & Tibshirani, 1993).

The bootstrap algorithm for estimating standard errors

Step 1 Draw B independent bootstrap samples {Y m∗
i , Y

l∗
i , Y

r∗
i , X

∗
i }i=1,...,n of size

n with replacement from the original sample {Y m
i , Y l

i , Y r
i , Xi}i=1,...,n.

Step 2 Compute the value of the bootstrap estimator corresponding to each boot-

strap sample T̂ ∗b , b = 1, ..., B.

Step 2 Estimate the standard error ŝeB by the sample standard deviation of the

B replications,

ŝeB =

√√√√√ B∑
b=1

(
T̂ ∗b − T̂ ∗

)2

B − 1
,
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where T̂ ∗ =
B∑

b=1

T̂ ∗b /B.

3.3.3 Simulations

In order to compare empirically the estimates obtained by means of the least squares

procedure with the theoretical values, we consider a simulated situation. We have

drawn a sample of 30 units in the following way. We have generated an explanatory

variable X and three random variables εm, l, εr normally distributed as N(0, 1). We

have supposed that the parameters of the model are: am = 2, al = 1.2, ar = −2.6,

bm = 44, bl = −12 and br = 12. The response variables are obtained as


Y m

i = 2Xi + 44 + εmi

g(Y l
i ) = 1.2Xi − 12 + εli

h(Y r
i ) = −2.6Xi + 12 + εri

(3.10)

for i = 1, ..., 30. The simulated data are shown in Table 3.1.

Table 3.1: Simulated data from Model (3.10).

Y m
i g(Y l

i ) h(Y r
i ) Xi Y m

i g(Y l
i ) h(Y r

i ) Xi

41.6902 -13.4821 15.9795 -1.6466 47.7300 -10.3252 7.1249 1.7295

46.6195 -12.3565 11.8423 0.4287 46.9530 -11.0842 10.1590 0.7090

43.9529 -12.8048 13.3834 -0.7372 41.4519 -14.6555 14.8292 -0.7479

46.0416 -11.8437 9.6301 0.5649 45.0833 -10.0386 11.9874 0.2289

41.5585 -15.0749 14.7063 -1.3842 42.7554 -11.9408 10.9668 -0.2235

44.9902 -11.8320 11.0820 0.4603 41.9799 -12.3080 12.7149 -0.8533

43.7590 -11.7027 9.6178 0.6294 44.0890 -9.9866 11.6750 0.3456

44.3415 -11.8357 12.6159 0.3798 45.4786 -13.9330 10.8041 0.1098

41.9523 -13.5172 15.2089 -1.0133 42.5924 -14.1033 13.3146 -1.1330

43.5339 -14.0053 13.2235 -0.3472 40.5285 -12.6436 13.4170 -0.6831

43.8756 -10.3754 10.6996 0.4419 43.0834 -11.8056 12.3248 -0.2779

40.1549 -12.5841 16.4504 -1.5902 45.8631 -11.7674 9.1362 0.6548

43.1553 -12.9682 15.1674 -0.7014 39.9468 -13.1998 14.1360 -1.2484

40.6563 -14.0303 12.5639 -1.0776 42.5983 -13.9437 13.8443 -0.5975

45.2290 -10.5836 10.6871 1.0022 42.6108 -12.7679 11.3425 -0.4818
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The estimated model is
Ŷ m = 2.1652X + 43.9847

ĝ(Y l) = 1.2170X +−12.1636

ĥ(Y r) = −2.3047X + 11.8122

(3.11)

By comparing (3.10) and (3.11), we observe that in this simulated case the esti-

mates are quite good.

3.3.4 Empirical results

To illustrate the application of the regression model introduced in this work two

examples are analyzed. The first one is referred to triangular fuzzy numbers and

the second one concerns interval data.

Example 3.3.1 We consider the data of Example 3.1.1. For analyzing the part of

the quality explained by the height of the trees we use the new regression model and

we obtain the following estimated models
Ŷ m = 0.1558X + 18.7497

Ŷ l = exp(−0.00017X + 2.5780)

Ŷ r = exp(−0.00067X + 2.6489)

(3.12)

The value of the estimated parameter âm equal to 0.1558 represents a positive

linear relationship between the response and the explanatory variable. In particular,

the quality is expected to increase of about 0.16 for any additional cm of the height.

The estimated spreads of the response variable, Ŷ l and Ŷ r, represent the imprecision

of the quality estimated by the new model. In Fig. 3.1 the extreme values of the

0-level and the single-value of the 1-level of the quality by the height are indicated,

respectively, by means of the vertical segments and the dots, while the estimated

centers and the estimated spreads are represented by the solid line and the dash

line.

To evaluate the accuracy of these estimates we draw 800 bootstrap samples of

size n = 238 with replacement from our data set. For each bootstrap replication we

calculate the estimate of the parameters of the linear regression model. By means

of the 800 replications of the estimation procedure we compute the estimate of the

standard errors ŝe of the parameters and we check the value in Table 3.2.

Hence two kinds of uncertainty have been taken into account: the imprecision

of the estimated quality and the stochastic uncertainty of the regression model

represented by the values in the third column of Table 3.2.
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Figure 3.1: The observed extreme values of the 0-level and the single-value of the quality
by the height of the trees, and the estimated linear regression models

Table 3.2: Estimation of the parameters of Model (3.12) and estimation of their standard
errors.

Estimator Estimated value Estimate of standard error

âm 0.1558 0.0210

âl -0.00017 0.0004

âr -0.00067 0.0004

b̂m 18.7497 3.9745

b̂l 2.5780 0.0821

b̂r 2.6489 0.0839

Example 3.3.2 In this example we are interested in analyzing the dependence rela-

tionship of the Retail Trade Sales (in millions of dollars) of the U.S. in 2002 by kind

of business on the number of employees (see http://www.census.gov/econ/www/).

The Retail Trade Sales are intervals in the period: January 2002 through December

2002 (see Table 3.3). For each interval we consider the center and the spreads and

we apply the new regression model in order to evaluate the dependence relationship.

As in Example 3.3.1 we have transformed the spreads by means of the logarithmic

transformation.
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Table 3.3: The Retail Trade Sales and the Number of Employees of 22 kinds of Business
in the U.S. in 2002.

Kind of Business Retail Trade Sales Number of Employees

Automotive parts, acc., and tire stores 4638-5795 453468

Furniture stores 4054-4685 249807

Home furnishings stores 2983-5032 285222

Household appliance stores 1035-1387 69168

Computer and software stores 1301-1860 73935

Building mat. and supplies dealers 14508-20727 988707

Hardware stores 1097-1691 142881

Beer, wine, and liquor stores 2121-3507 133035

Pharmacies and drug stores 11964-14741 783392

Gasoline stations 16763-23122 926792

Men’s clothing stores 532-1120 62223

Family clothing stores 3596-9391 522164

Shoe stores 1464-2485 205067

Jewelry stores 1304-5810 148752

Sporting goods stores 1748-3404 188091

Book stores 968-1973 133484

Discount dept. stores 9226-17001 762309

Department stores 5310-14057 668459

Warehouse clubs and superstores 13162-22089 830845

All other gen. merchandise stores 2376-4435 263116

Miscellaneous store retailers 7862-10975 792361

Fuel dealers 1306-3145 98574

By means of the least squares estimation we obtain the following predicted values
Ŷ m = 0.0181X − 672.731

Ŷ l = exp(0.000002482X + 5.9244)

Ŷ r = exp(0.000002482X + 5.9244)

(3.13)

The value 0.0181 indicates the strength of the relationship between the response

and the explanatory variable, in particular, the retail trade sales are expected to

increase of about 18.100 dollars for any additional employee.

Also in this case we evaluate the accuracy of the estimators by means of a boot-

strap procedure with 800 replications.

As Table 3.4 shows, the intercept term b̂m is affected by a high degree of uncer-
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Table 3.4: Estimation of the parameters of Model (3.13) and estimation of their standard
errors.

Estimator Estimated value Estimate of standard error

âm 0.0181 0.0015

âl 0.000002482 0.0000

âr 0.000002482 0.0000

b̂m -672.731 412.0407

b̂l 5.9244 0.2151

b̂r 5.9244 0.2151

tainty, while the uncertainty of âl and âr, which represent the relationship between

the explanatory variable and the logarithmic transformation of the spreads of the

response, is practically equal to 0. As Fig. 3.2 shows, the predicted values of the
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Figure 3.2: The observed interval retail trade sales by number of employees and the
estimated linear regression models

spreads grow as the number of employees increases.

3.4 Confidence regions

As in classical Statistics, in this case it is useful to estimate the regression parameters

not only by a single value but by a confidence interval too. These intervals represent

the reliability of the estimates. How likely the interval is to contain the parameter

is determined by the confidence level α. The aim of this section is to get asymptotic
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confidence regions for the regression coefficients am, al and ar. In particular, taking

into account the asymptotic distribution of Proposition 3.3.3, it results

P

−cα/2 ≤
√

n

 âm − am

âl − al

âr − ar

 ≤ +cα/2

 = 1− α,

where the vector cα/2 defines a α/2-quantile of a N
(
0
′
, Σ

σ2
X

)
. As consequence it is

easy to check that for the vector of parameters (am, al, ar) the 100(1−α) confidence

interval is 
 âm

âl

âr

−
cα/2√

n
,

 âm

âl

âr

+
cα/2√

n

 . (3.14)

It follows that the probability that the random interval includes the theoretical

parameters, as the sample size n increases, tends to 1− α.

Since cα/2 is not unique, it results not easy in practice to find confidence regions

for (am, al, ar)
′
. To face this inconvenience useful confidence bands can be found.

The rule for constructing the bands may be providing a lower and an upper bound,

L(X) and U(X), such that the probability that [L(X), U(X)] contain the true vector

of parameters, (am, al, ar)
′
, is approximately equal to 1− α, that is,

P
(
[L(X), U(X)] ⊃ (am, al, ar)

′
)
≈ 1− α.

An example of confidence bands is
 âm

âl

âr

− λ√
n


Σ11

σ2
X

Σ22

σ2
X

Σ33

σ2
X

 ,

 âm

âl

âr

+
λ√
n


Σ11

σ2
X

Σ22

σ2
X

Σ33

σ2
X


 (3.15)

where λ is in R, σ2
X is the variance of the explanatory variable and Σ11, Σ22, Σ33 the

diagonal elements of the covariance matrix of the vector (εm, εl, εr). The constant

λ is chosen so that the probability that the (3.15) contains the theoretical vector of

parameters is approximately equal to 1− α.

In the next sections the accuracy of these results is evaluated by means of simu-

lation studies and applicative examples.

Remark 3.4.1 If we consider separately the regression parameters, that is the case

of independence between the spreads and the center of the response variable, it is

possible to obtain confidence intervals for each parameters. In this case smaller

confidence intervals could be obtained.
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Remark 3.4.2 The problem of confidence bands for the regression parameters

could be analyzed also by means of a bootstrap technique.

3.4.1 Simulations

Consider a simulated situation in order to construct confidence regions for the re-

gression parameters for different sample sizes. For each sample size n we have

generated an explanatory variable X and three random variables εm, εl, εr normally

distributed as N(0, 1) assuming stochastic independence among all of them. Sup-

pose that the parameters of the model are: am = 2, al = 1.2, ar = −3.4, bm = 10,

bl = 3.5 and br = 4.2. The response variables are obtained as
Y m

i = 2Xi + 10 + εmi

g(Y l
i ) = 1.2Xi + 3.5 + εli

h(Y r
i ) = −3.4Xi + 4.2 + εri

(3.16)

for i = 1, .., n.

The variables εm, εl, εr are independent and cα/2 in (3.14) is a α/2-quantile of

a N
(
0
′
, I
)
, where I is the identity matrix. Due to the data generation process the

estimators âm, âl and âr are independent, so it is possible to consider separately the

confidence interval for each parameter: am, al, ar[
âm −

tα/2√
n

, âm +
tα/2√

n

]
,

[
âl −

tα/2√
n

, âl +
tα/2√

n

]
,

[
âr −

tα/2√
n

, âr +
tα/2√

n

]
where tα/2 is the α/2-quantile of a N (0, 1). If α = 0.05 it results tα/2 = 1.96.

As shown in Table 3.5, as the sample size increases the estimates are closer to the

Table 3.5: Estimates and Confidence Regions of the parameters of Model (3.16) for a
simulation

n âm CI0.05(âm) âl CI0.05(âl) âr CI0.05(âr)

30 2.21 [1.852,2.568] 1.0106 [0.653,1.368] -3.6879 [-4.046,-3.330]

50 1.8788 [1.602,2.156] 1.2779 [1.001,1.555] -3.2004 [-3.478,-2.923]

100 2.0959 [1.900,2.292] 1.1307 [0.935,1.327] -3.5721 [-3.768,-3.376]

200 2.0856 [1.947,2.224] 1.1520 [1.013,1,291] -3.5119 [-3.651,-3.373]

500 2.0429 [1.955,2.131] 1.1751 [1.087,1.263] -3.3324 [-3.420,-3.245]

1000 2.0112 [1.949,2.073] 1.1915 [1.129,1.254] -3.3938 [-3.456,-3.332]

10000 1.9989 [1.979,2.018] 1.1951 [1.176,1.215] -3.3952 [-3.415,-3.376]

theoretical value and the confidence regions are smaller.
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Consider the simulated data set described above. The probability that each

100(1 − α)-confidence interval contains the theoretical value should tend to 1 − α,

as the sample size n increases. This is indicated by the values of Table 3.6.

Table 3.6: Empirical confidence level of the confidence intervals.

n Prob(CI0.05(âm)⊃ am) Prob(CI0.05(âl)⊃ al) Prob(CI0.05(âr)⊃ ar)

50 0.9432 0.9433 0.9446

100 0.9459 0.9474 0.9469

200 0.9483 0.9489 0.9488

300 0.9487 0.9502 0.9499

3.4.2 Empirical results

To illustrate the results we have considered the data of Example 3.1.1. Confi-

dence bands of the type (3.15) for the vector of parameters (am, al, ar) have been

constructed. The covariance matrix of the vector (εm, εl, εr) has been replaced by

the covariance matrix of the residuals ε̂mi = Ŷ m
i − Y m

i , ε̂li = ĝ(Y l
i ) − g(Y l

i ), ε̂ri =

ĥ(Y r
i )− h(Y r

i ), and it results

Σbε =

 264.7 0 −0.3

0 0.1 0

−0.3 0 0.1

 .

The variance of the explanatory variable, σ2
X , has been estimated by means of

the sample variance σ̂X
2 = 3715.9.

Through empirical trials a constant λ equal to 6300, that can be used to obtain

a confidence band of level α = 0.05, has been found, that is,
 −28.9355

−0.0133

−0.0122

 ,

 29.2470

0.0130

0.0109




3.5 Hypothesis testing on the regression parame-

ters

The parameters am, al and ar of Model (3.1) represent the strength of the relation-

ship between the response variables Y m, g(Y l), h(Y r) and the explanatory one X.
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Testing the explicative power of X consists in testing that the coefficients am, al

and ar are equal to 0. In general it is possible to test the null hypothesis

H0 :

 am

al

ar

 =

 km

kl

kr

 (3.17)

against the alternative

H1 :

 am

al

ar

 6=

 km

kl

kr

 ,

where km, kl, and kr are constant values in R, on the basis of the available sample

information. As test statistic we can use

Tn = V ′
nVn, (3.18)

where

Vn =
√

n

 âm − km

âl − kl

âr − kr

 .

In the next section, through an asymptotic approach, we will test H0 against H1.

3.5.1 Asymptotic approach

Since previously we have proved that, under H0,

Vn
D−→ N

(
0
′
,

Σ

σ2
X

)
,

it follows that

Tn
D−→ f1 (V ) ,

where V ∼ N
(
0
′
, Σ

σ2
X

)
and f1(A) = A′A. Based on it, a rejection region for the null

hypothesis (3.17) has been defined.

Proposition 3.5.1 In testing the null hypothesis (3.17) at the nominal significance

level α, H0 should be rejected if

Tn = V ′
nVn > cα,

where cα is a α-quantile of the asymptotic distribution of Tn.

As usual this asymptotic test works suitably for samples with very large size, and

for this reason we propose a bootstrap test in the next section.



3.5 Hypothesis testing on the regression parameters 60

3.5.2 Bootstrap approach

To get a bootstrap population fulfilling the null hypothesis, the new variables Zm =

Y m − âmX + kmX, Z l = g(Y l) − âlX + klX and Zr = h(Y r) − ârX + krX are

considered. Then, a sample of size n with replacement
{
(X∗

i , Zm∗
i , Z

l∗
i , Z

r∗
i )
}

i=1,...,n

from the bootstrap population is drawn. The bootstrap statistic is

T ∗n = V ∗
n

′
V ∗

n ,

where

V ∗
n =

√
n

 â∗m − km

â∗l − kl

â∗r − kr

 .

and

â∗m =
σ̂X∗Zm∗

σ̂2
X
∗ , â∗l =

σ̂X∗Zl∗

σ̂2
X
∗ , â∗r =

σ̂X∗Zr∗

σ̂2
X
∗ .

Proposition 3.5.2 Under the assumptions of model (3.1) and if E(X4) < ∞,

E(ε4
m) < ∞, E(ε4

l ) < ∞ and E(ε4
r) < ∞, the asymptotic distribution of the bootstrap

statistic T ∗n is almost sure f1(V ), where V ∼ N
(
0
′
, Σ

σ2
X

)
.

Proof. Let (X∗
i , ε∗mi, ε

∗
li, ε

∗
ri) be a simple random sample from (Xi, εmi, εli, εri). Since

Y m
i
∗ = amX∗

i + bm + ε∗mi = âmX∗
i + b̂m + ε̂∗mi,

g(Y l
i

∗
) = alX

∗
i + bl + ε∗li = âlX

∗
i + b̂l + ε̂∗li,

h(Y r
i
∗) = arX

∗
i + br + ε∗ri = ârX

∗
i + b̂r + ε̂∗ri,

and

ε̂∗mi = Y m
i
∗ − âmX∗

i − b̂m = (am − âm) X∗
i +

(
bm − b̂m

)
+ ε∗mi,

ε̂∗li = g(Y l
i

∗
)− âlX

∗
i − b̂l = (al − âl) X∗

i +
(
bl − b̂l

)
+ ε∗li,

ε̂∗ri = h(Y r
i
∗)− ârX

∗
i − b̂r = (ar − âr) X∗

i +
(
br − b̂r

)
+ ε∗ri,

it results that

â∗m =
σ̂X∗Zm∗

σ̂2
X
∗ =

σ̂X∗Y m∗

σ̂2
X
∗ − âm + km =

σ̂X∗ε̂∗m

σ̂2
X
∗ + km,

and analogously â∗l =
σ̂X∗ε̂∗

l

σ̂2
X
∗ + kl, â∗r =

σ̂X∗ε̂∗r
σ̂2

X
∗ + kr.

Hence

√
n

 â∗m − km

â∗l − kl

â∗r − kr

 =


√

nσ̂X∗ε̂∗m
σ̂2

X
∗

√
nσ̂X∗ε̂∗

l

σ̂2
X
∗

√
nσ̂X∗ε̂∗r
σ̂2

X
∗

 .
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Since, as n →∞,

√
n

 âm − am

âl − al

âr − ar

 =


√

nσ̂Xεm

σ̂2
X√

nσ̂Xεl

σ̂2
X√

nσ̂Xεr

σ̂2
X

 D−→ N

(
0
′
,

Σ

σ2
X

)
,

if we prove that

1. σ̂2
X
∗ − σ̂2

X
P−→ 0

2.
√

n

 σ̂X∗ε̂∗m − σ̂Xεm

σ̂X∗ε̂∗l
− σ̂Xεl

σ̂X∗ε̂∗r − σ̂Xεr

 P−→ 0
′
,

the thesis follows.

1. This part has been proved in Bickel & Freedman (1981).

2. In what follows we prove that
√

n
(
σ̂X∗ε̂∗m − σ̂Xεm

) P−→ 0.

According to Bickel & Freedman (1981), we can fix A in the σ-field with

P (A) = 1, so that for any ω ∈ A there exists a random vector (ε∗m, X∗, εm, X)

with

(ε∗m, X∗) ∼ F̂n(ω),

(εm, X) ∼ F,

where F̂n denotes the empirical distribution function of (εm1, X1), . . . , (εmn, Xn)

and F the theoretical distribution, and

E
[
‖(ε∗m, X∗)− (εm, X)‖4] −→ 0,

that is,

E
[(

ε∗m − εm)4
]
−→ 0,

E
[(

X∗ −X)4
]
−→ 0,

E
[
(ε∗m − εm)2 (X∗ −X)2] −→ 0.

We start from

E

( 1√
n

n∑
i=1

[(
X∗

i −X
∗
)(

ε̂∗mi − ε̂
∗
m

)
−
(
Xi −X

)
(εmi − εm)

])2
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=
1

n

n∑
i=1

E

([(
X∗

i −X
∗
)(

ε̂∗mi − ε̂
∗
m

)
−
(
Xi −X

)
(εmi − εm)

]2)
+

1

n

n∑
i=1

∑
j 6=i

[
E
((

X∗
i −X

∗
)(

ε̂∗mi − ε̂
∗
m

)
−
(
Xi −X

)
(εmi − εm)

)]
×

[
E
((

X∗
j −X

∗
)(

ε̂∗mj − ε̂
∗
m

)
−
(
Xj −X

)
(εmj − εm)

)]
.

Taking into account that(
ε̂∗mi − ε̂

∗
m

)
= (am − âω

m)
(
X∗

i −X
∗
)

+
(
bm − b̂ω

m

)
+ (ε∗mi − ε∗m) ,

it follows that

E
((

X∗
i −X

∗
)(

ε̂∗mi − ε̂
∗
m

))
=E

(
(am − âω

m)
(
X∗

i −X
∗
)2
)

+E
((

bm − b̂ω
m

)(
X∗

i −X
∗
)
+(ε∗mi − ε∗m)

(
X∗

i −X
∗
))

,

and it is straightforward to derive

E
((

X∗
i −X

∗
)(

ε̂∗mi − ε̂
∗
m

))
= E

((
Xi −X

)
(εmi − εm)

)
= 0.

It results that

E
(√

n
(
σ̂X∗ε̂∗m − σ̂Xεm

))2
=E

([(
X∗

1 −X
∗
)(

ε̂∗m1 − ε̂
∗
m

)
−
(
X1 −X

)
(εm1 − εm)

]2)
.

If we prove that the above expression tends to 0,
√

n
(
σ̂X∗ε̂∗m − σ̂Xεm

)
converges

to 0 in mean square, hence also in probability.

By means of simple calculations and by applying the Hölder’s inequality it can

be easily proved that it is enough to check that

E

([(
X∗

1 −X
∗
)

(ε∗m1 − ε∗m)−
(
X1 −X

)
(εm1 − εm)

]2)
−→ 0.

In a similar way, by adding and subtracting E(ε∗m) in (ε∗m1 − ε∗m), E(X∗) in(
X∗

1 −X
∗
)
, E(X) in

(
X1 −X

)
and the E(εm) in (εm1 − εm), and using again

the Hölder’s inequality the proof is reduced to check if

E
(
[(X∗

1 − E(X∗)) (ε∗m1 − E(ε∗m))− (X1 − E(X)) (εm1 − E(εm))]2
)
−→ 0.

Finally, using the conditions of the random vector (ε∗m, X∗, εm, X) it results

that

E
(
[(X∗

1 − E(X∗)) (ε∗m1 − E(ε∗m))− (X1 − E(X)) (εm1 − E(εm))]2
)
−→ 0.

Analogously it can be showed that

√
n
(
σ̂X∗ε̂∗l

− σ̂Xεl

) P−→ 0
√

n
(
σ̂X∗ε̂∗r − σ̂Xεr

) P−→ 0,
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so the second part of proposition is proved.

2

Proposition 3.5.3 In testing the null hypothesis (3.17) at the nominal significance

level α, H0 should be rejected if

T ∗n = V ∗
n

′
V ∗

n > cα,

where cα is a α-quantile of the asymptotic distribution of T ∗n .

The application of the test in Proposition 3.5.3 is presented in the following algo-

rithm.

Algorithm

Step 1: Compute the estimate values âm, âl and âr and the value of the statistic

Tn = V ′
nVn.

Step 2: Compute the bootstrap population{
(Xi, Z

m
i , Z l

i , Z
r
i )
}

i=1,...,n
, (3.19)

where

Zm
i = Y m

i − âmXi + kmXi,

Z l
i = g(Y l

i )− âlXi + klXi,

Zr
i = h(Y r

i )− ârXi + krXi.

Note that the bootstrap population (3.19) is defined with the aim of guaran-

teeing that the null hypothesis is fulfilled.

Step 3: Draw a sample of size n with replacement{
(X∗

i , Zm∗
i , Z

l∗
i , Z

r∗
i )
}

i=1,...,n
,

from the bootstrap population.

Step 4: Compute the value of the bootstrap statistic

T ∗n = V ∗
n

′
V ∗

n .

Step 5: Repeat Steps 3 and 4 a large number B of times to get a set of B estimators,

denoted by {T ∗1 , ..., T ∗B}.

Step 6: Compute the bootstrap p-value as the proportion of values in {T ∗1 , ..., T ∗B}
such that being greater than Tn.
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Simulation studies

In order to illustrate the empirical significance of the bootstrap test proposed in

Proposition 3.5.3, a simulated situation has been taken into account. For the sim-

ulations we have considered B = 1000 replications of the bootstrap estimator and

we have carried out 10.000 iterations of the test at 3 different nominal significance

levels α = 0.01, α = 0.05 and α = 0.1 for different sample sizes n. Two simulation

cases are presented. The first one considers real random variables X, εm, εl and εr

behaving as independent N(0, 1) random variables. The empirical percentages of

rejection under H0 : (am, al, ar)
′
= (1, 1, 1)

′
are represented in Table 3.7.

Table 3.7: Empirical percentages of rejection under H0 : (am, al, ar)
′
= (1, 1, 1)

′
(case of

normality).

n \ α× 100 1 5 10

30 0.48 4.28 9.52

50 0.86 4.96 10.55

100 0.8 5.05 10.59

200 0.98 5.01 10.57

In the second one we deal with the following real random variables: X, behaving

as an Unif(−3, 10) random variable, εm, εl and εr behaving as independent N(0, 1)

random variables. The empirical percentages of rejection under H0 : (am, al, ar)
′
=

(1, 1, 1)
′
are represented in Table 3.8.

Table 3.8: Empirical percentages of rejection under H0 : (am, al, ar)
′
= (1, 1, 1)

′
(case of

non-normality).

n \ α× 100 1 5 10

30 0.92 5.31 10.47

50 1.03 5.86 11.09

100 0.98 5.36 10.80

200 1.03 5.15 9.92

In both cases, by means of the application of the bootstrap procedure, also for

very small sample sizes the empirical percentages of rejection are quite close to the

nominal levels.
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Empirical results

As in previous sections, two real life examples are considered to illustrate the boot-

strap test introduced in Section 3.5.2. Taking into account the LR fuzzy data in Ta-

ble 1.1, to test if the vector of regression parameters (am, al, ar)
′
is equal to (1, 1, 1)

′
,

B = 1000 replications of the bootstrap statistic are used and a p-value equal to 0

is obtained. Hence the considered hypothesis should be rejected. In testing if the

vector (am, al, ar)
′
is equal to a vector whose elements are approximately equal to

the estimations of the parameters, that is (0.16,−0.0002,−0.0007)
′
, a p-value equal

to 0.85 is obtained. Obviously the hypothesis tested should not be rejected. The

second example is referred to the data in Table 3.3. In testing the null hypothesis

that the vector of regression parameters (am, al, ar)
′
is equal to (1, 1, 1)

′
, it results

a p-value equal to 0, hence the null hypothesis should be rejected. On the contrary

the null hypothesis H0 : (am, al, ar)
′

= (0.017, 0.000002, 0.000002)
′

should not be

rejected, in fact a p-value equal to 0.901 is obtained.

3.5.3 Local alternatives

To show that the effectiveness of the asymptotic test on the regression parameters

is the expected one for a linear regression model its power will be studied. To deal

with this kind of study is often difficult. To overcome this problem it is possible

to analyze the asymptotic power function under a sequence of local alternatives,

concretely under a sequence of Pitman alternatives. That is, to consider a sequence

of alternative hypotheses which converge to the null hypothesis when the sample

size increases.

Proposition 3.5.4 We consider the null hypothesis (3.17) against the alternative

H1 and we use the statistic (3.18) and the critical region (Tn > k). Let Hn be the

sequence of Pitman alternatives verifying am

al

ar

 =

 km

kl

kr

+
1√
n

 δm

δl

δr

 ,

where |δ| > 0.

1. Under Hn, Tn
D−→ f1 (V ), where V ∼ N

(
δ
′
, Σ

σ2
X

)
.

2. If we consider the sequence of local alternatives for which δ = δn, with |δn| −→
∞, then

lim
n→∞

PHn(Tn > k) = 1.
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Proof.

1. By subtracting and adding the vector (am, al, ar)
′
in Vn as follows

Vn =
√

n

 âm − am + am − km

âl − al + al − kl

âr − ar + ar − kr


it results

Vn =
√

n

 âm − am

âl − al

âr − ar

+
√

n
1√
n

 δm

δl

δr


= V 0

n +

 δm

δl

δr


Since V 0

n
D−→
(
N
(
0
′
, Σ

σ2
X

))
,

Vn
D−→
(

N

(
δ
′
,

Σ

σ2
X

))
and the thesis follows.

2. If δ = δn, with |δn| −→ ∞, we obtain that Vn →∞ and Tn →∞, hence

lim
n→∞

PHn(Tn > k) = 1.

2

Remark 3.5.1 Proposition 3.5.4 (1) establishes the maximum speed at which the

vector of parameters (am, al, ar)
′
can tend to (km, kl, kr)

′
as n increases, so that the

power of the test is greater than the significance level. That is, the speed at which

the test is able to detect that the null hypothesis is not true. In addition in (2) it is

stated that for smaller speeds the asymptotic test will always detect that H0 is not

true. In particular, for any fixed alternative hypothesis the consistency of the test

is established.

Remark 3.5.2 Proposition 3.5.4 indicates that the behaviour under local alter-

natives of the asymptotic test is the same as in classical linear regression studies.

However, it should be noted that the explicit expression of the power (Proposition

3.5.4 (1)) is not relevant from a practical point of view because, as the asymptotic

distribution is too far from the sampling distribution, a bootstrap test will be used.
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Power of the test

In order to obtain a graphical representation of the power function of the test

H0 :

 am

al

ar

 =

 0

0

0


against the alternative

H1 :

 am

al

ar

 6=

 0

0

0

 ,

we have fixed a sample size equal to 500 and we have simulated different situations

in which the null hypothesis is not fulfilled. By means of a bootstrap procedure we

have computed the p-value under each of the these different situations. As usual,

we have considered B = 1000 replications of the bootstrap estimator and we have

carried out 10.000 iterations of the test at a nominal significance level α equal to

0.05. The result is shown in Fig. 3.3.
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Figure 3.3: The graphical representation of the power of the test
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3.6 Estimation of the determination coefficient

Definition 3.6.1 Let Y be an LR fuzzy random variable and X a random variable

satisfying the linear model (3.1), observed on n statistical units, {Yi, Xi}i=1,...,n. We

can define

• the total sum of squares (SST)

SST =
n∑

i=1

D2
λρ(Ỹi, Ỹ )

• the residual sum of squares (SSE)

SSE =
n∑

i=1

D2
λρ(Ỹi,

̂̃
Y )

• the regression sum of squares (SSR)

SSR =
n∑

i=1

D2
λρ(
̂̃
Yi, Ỹ )

where, for i = 1, ..., n,

Ỹi = (Y m
i , g(Y l

i ), h(Y r
i )) = (amXi + bm + εm, alXi + bl + εl, arXi + br + εr)̂̃

Y i = (Ŷ m
i , ĝ(Y l

i ), ĥ(Y r
i )) = (âmXi + b̂m, âlXi + b̂l, ârXi + b̂r)

Ỹ = (Y
m

, g(Y l), h(Y r)) = (amX + bm + εm, alX + bl + εl, arX + br + εr)

Proposition 3.6.1 The total sum of squares, SST, is equal to the sum of the resid-

ual sum of squares, SSE, and the regression sum of squares, SSR, that is

SST = SSE + SSR. (3.20)

Proof. The total sum of squares can be written as follows

n∑
i=1

D2
λρ(Ỹi, Ỹ ) = 3

n∑
i=1

(Y m
i − Y

m
)2 + λ2

n∑
i=1

(g(Y l
i )− g(Y l))2

+ρ2

n∑
i=1

(h(Y r
i )− h(Y r))2 − 2λ

n∑
i=1

(Y m
i − Y

m
)(g(Y l

i )− g(Y l))

+2ρ
n∑

i=1

(Y m
i − Y

m
)(h(Y r

i )− h(Y r)).
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By subtracting and adding Ŷ m
i to the term (Y m

i − Y
m

) we get

n∑
i=1

(Y m
i − Y

m
)2 =

n∑
i=1

(Y m
i − Ŷ m

i + Ŷ m
i − Y

m
)2

=
n∑

i=1

(Y m
i − Ŷ m

i )2 +
n∑

i=1

(Ŷ m
i − Y

m
)2

−2
n∑

i=1

(Y m
i − Ŷ m

i )(Ŷ m
i − Y

m
).

Now we prove that the last term of the sum is equal to 0.

n∑
i=1

(Y m
i − Ŷ m

i )(Ŷ m
i − Y

m
) =

n∑
i=1

(Y m
i − Ŷ m

i )Ŷ m
i − Y

m
n∑

i=1

(Y m
i − Ŷ m

i )

=
n∑

i=1

(Y m
i − âmXi − b̂m)(âmXi + b̂m)

−Y
m

(
n∑

i=1

Y m
i − âm

n∑
i=1

Xi − nb̂m).

Since b̂m =

nP
i=1

Y m
i

n
− âm

nP
i=1

Xi

n
, we have Y

m
(

n∑
i=1

Y m
i − âm

n∑
i=1

Xi − nb̂m) = 0 and it

follows

n∑
i=1

(Y m
i − Ŷ m

i )(Ŷ m
i − Y

m
) =

n∑
i=1

(Y m
i − âmXi − b̂m)(âmXi + b̂m)

= âm

n∑
i=1

Y m
i Xi − â2

m

n∑
i=1

X2
i − âmb̂m

n∑
i=1

Xi

+b̂m

n∑
i=1

Y m
i − âmb̂m

n∑
i=1

Xi − nb̂2
m

= âm

n∑
i=1

Y m
i Xi − â2

m

n∑
i=1

X2
i − âmY

m
n∑

i=1

Xi

+â2
mX

n∑
i=1

Xi + Y
m

n∑
i=1

Y m
i

−âmX
n∑

i=1

Y m
i − âmY

m
n∑

i=1

Xi + â2
mX

n∑
i=1

Xi

−n(Y
m

)2 − nâ2
mX

2
+ 2nâmY

m
X.

Since
n∑

i=1

Y m
i Xi− nXY

m
= nσ̂Y mX ,

n∑
i=1

X2
i − nX

2
= nσ̂2

X and âm = bσxY mbσ2
x

, we obtain

nâmσ̂Y mX − nâ2
mσ̂2

X = n
σ̂xY m

σ̂2
x

− n
σ̂xY m

σ̂2
x

= 0.
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Analogously it can be proved that

n∑
i=1

(g(Y l
i )− g(Y l))2 =

n∑
i=1

(g(Y l
i )− ĝ(Y l

i ))2 +
n∑

i=1

(ĝ(Y l
i )− g(Y l))2

n∑
i=1

(h(Y r
i )− h(Y r))2 =

n∑
i=1

(h(Y r
i )− ĥ(Y r

i ))2 +
n∑

i=1

(ĥ(Y r
i )− h(Y r))2

n∑
i=1

(Y m
i − Y

m
)(g(Y l

i )− g(Y l)) =
n∑

i=1

(Y m
i − Ŷi

m
)(g(Y l

i )− ĝ(Y l
i ))

+
n∑

i=1

(Ŷ m
i − Y

m
)(ĝ(Y l

i ))− g(Y l))

n∑
i=1

(Y m
i − Y

m
)(h(Y r

i )− h(Y r)) =
n∑

i=1

(Y m
i − Ŷ m

i )(h(Y r
i )− ĥ(Y r

i ))

+
n∑

i=1

(Ŷ m
i − Y

m
)(ĥ(Y r

i )− h(Y r)).

The residual sum squares is equal to

n∑
i=1

D2
λρ(Ỹi,

̂̃
Yi) = 3

n∑
i=1

(Y m
i − Ŷ m

i )2 + λ2

n∑
i=1

(g(Y l
i )− ĝ(Y l

i ))2

+ρ2

n∑
i=1

(h(Y r
i )− ĥ(Y r

i ))2 − 2λ
n∑

i=1

(Y m
i − Ŷ m

i )(g(Y l
i )− ĝ(Y l

i ))

+2ρ
n∑

i=1

(Y m
i − Ŷ m

i )(h(Y r
i )− ĥ(Y r

i )),

and the regression sum of squares is equal to

n∑
i=1

D2
λρ(
̂̃
Y i, Ỹ ) = 3

n∑
i=1

(Ŷ m
i − Y

m
)2 + λ2

n∑
i=1

(ĝ(Y l
i )− g(Y l))2

+ρ2

n∑
i=1

(ĥ(Y r
i )− h(Y r))2 − 2λ

n∑
i=1

(Ŷ m
i − Y

m
)(ĝ(Y l

i )− g(Y l))

+2ρ
n∑

i=1

(Ŷ m
i − Y

m
)(ĥ(Y r

i )− h(Y r)), (3.21)

as consequence,

SST = SSE + SSR.

2

Proposition 3.6.2 Let Y be an LR fuzzy random variable and X a random variable

satisfying the linear model (3.1), observed on n statistical units, {Yi, Xi}i=1,...,n. The
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estimator of the determination coefficient R2 is

R̂2 = 1− SSE

SST
=

SSR

SST
.

Proposition 3.6.3 The estimator R̂2 is strongly consistent, concretely we have that

1. SSR
n

a.s.−→ E
[
D2

λρ(E(Ỹ |X)− EỸ )
]
,

2. SST
n

a.s.−→ E
[
D2

λρ(Ỹ − EỸ )
]

= σ2eY
Proof. To prove the consistency of R̂2 we have to study how this estimator behaves

as the size of random samples increases.

1. Starting from the expression (3.21) and taking into account that

Ŷ m
i − Y m = âmXi + b̂m − Y m = âm(Xi −X)

ĝ(Y l
i )− g(Y l) = âlXi + b̂l − g(Y l) = âl(Xi −X)

ĥ(Y r
i )− h(Y r) = ârXi + b̂r − h(Y r) = âr(Xi −X)

it follows

SSR

n
=

1

n

[
3

n∑
i=1

â2
m(Xi −X)2 + λ2

n∑
i=1

â2
l (Xi −X)2 + ρ2

n∑
i=1

â2
r(Xi −X)2

−2λ
n∑

i=1

âmâl(Xi −X)2 + 2ρ
n∑

i=1

âmâr(Xi −X)2

]
,

that is

SSR

n
= 3â2

mσ̂2
X + λ2â2

l σ̂
2
X + ρ2â2

rσ̂
2
X − 2λâmâlσ̂

2
X + 2ρâmârσ̂

2
X . (3.22)

Since the sample moments are strongly consistent estimators of the respec-

tive population moments and the estimators of the regression parameters are

strongly consistent too, it results

SSR

n

a.s.−→ 3a2
mσ2

X + λ2a2
l σ

2
X + ρ2a2

rσ
2
X − 2λamalσ

2
X + 2ρamarσ

2
X .

Taking into account that

E
[
D2

λρ(E(Ỹ |X)− EỸ )
]
=3E[E(Y m|X)− EY m]2

+λ2E[E(g(Y l)|X)− Eg(Y l)]2

+ρ2E[E(h(Y r)|X)− Eh(Y r)]2

−2λE[(E(Y m|X)− EY m)(E(g(Y l)|X)− Eg(Y l))]

+2ρE[(E(Y m|X)− EY m)(E(h(Y r)|X)− Eh(Y r))],
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where E(Y m|X) = amX +bm, E(g(Y l)|X) = alX +bl, E(h(Y r)|X) = arX +br

and EY m = amEX + bm, Eg(Y l) = alEX + bl, Eh(Y r) = arEX + br, it is

easy to check that

E
[
D2

λρ(E(Ỹ |X)− EỸ )
]
=3a2

mσ2
X+λ2a2

l σ
2
X+ρ2a2

rσ
2
X−2λamalσ

2
X+2ρamarσ

2
X ,

hence

SSR

n

a.s.−→ E
[
D2

λρ(E(Ỹ |X)− EỸ )
]
.

2. Furthermore

SST

n
= 3σ̂2

Y m + λ2σ̂2
g(Y l) + ρ2σ̂2

h(Y r) − 2λσ̂Y mg(Y l) + 2ρσ̂Y mh(Y r),

as consequence

SST

n

a.s.−→ 3σ2
Y m + λ2σ2

g(Y l) + ρ2σ2
h(Y r) − 2λσY mg(Y l) + 2ρσY mh(Y r),

that is,

SST

n

a.s.−→ E
[
D2

λρ(Ỹ − EỸ )
]

= σ2eY .

Thus, R̂2 = SSR
SST

is a strongly consistent estimator of the determination coefficient.

2

3.6.1 Simulations

In order to compare the empirical behaviour of the estimator of the determination

coefficient, R̂2, with the theoretical value, and to evaluate the accuracy of the es-

timation, a simulation study is considered. In particular, we have generated an

explanatory variable X normally distributed as N(0, 1) and an LR fuzzy response

Y in the following way: the center Y m normally distributed as N(0, 1), the left and

the right spread as χ2
1. A logarithmic transformation has been used for both spreads.

The variables have been generated independently, for this reason the coefficient R2

is equal to 0. Starting from n = 30 for this simulated situation we calculate the

value of R̂2. The results are represented in Table 3.9. As the sample size n increases,

the estimated values are closer to 0. It illustrates the consistency of R̂2.
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Table 3.9: Estimated values R̂2 for samples of different size.

n R̂2 n R̂2

30 0.0724 800 0.0007358

50 0.0264 1000 0.000076408

100 0.0032 2000 0.000050197

500 0.0007597 3000 0.000035863

3.6.2 Empirical results

As in the case of the least squares estimators of the regression parameters, we can

illustrate the results exposed in the previous sections by means of empirical exam-

ples. In particular, if we consider the data of Example 3.3.1 we get R̂2 = 0.2539,

that is, approximately 25.39% of the total variation of the quality is explained by

the regression model with the height of the trees as explicative variable.

For the interval data introduced in Example 3.3.2 we get R̂2 = 0.9146. Approx-

imately almost 92% of the total variation of the Retail Trade Sales of the U.S. in

2002 is explained by the number of employees.

3.7 Linear independence test

A linear regression model is used to analyze the relationship between random vari-

ables and to predict a variable based on one or more explanatory variables. If

the determination coefficient, that measures the goodness-of-fit of a linear regres-

sion model, is equal to zero, there is linear independence. Hence it is necessary to

test the linear independence because, in case of lack of linear relationship between

random variables, it has no sense to employ the linear regression model with ex-

planatory/predictive purposes.

The goal of this section is to test the null hypothesis

H0 : R2 = 0 (3.23)

against the alternative hypothesis

H1 : R2 > 0

on the basis of the available sample information. For testing the null hypothesis we

propose as a test statistic,

Tn = nR̂2 = n
SSR

SST
.
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In the next sections this problem will be analyzed by means of two different

approaches: the asymptotic approach and the bootstrap one.

3.7.1 Asymptotic approach

It is simple to derive an asymptotic distribution of the test statistic Tn under the

null hypothesis (3.23).

Proposition 3.7.1 Under the assumptions of model (3.1) and the hypothesis of

linear independence (3.23), as n →∞

Tn = nR̂2 D−→ f2 (W )

σ2eY ,

where W ∼ N(0
′
, Σ) and f2 : R3 → R is a mapping that associates to each vector

(a, b, c) in R3 a value f2(a, b, c) = 3a2 + λ2b2 + ρ2c2 − 2λab + 2ρac.

Proof. To get the asymptotic distribution of nR̂2 under the null hypothesis, we

consider the expression (3.22). It is easy to check that

SSR =
n(3σ̂2

Y mX + λ2σ̂2
g(Y l)X

+ ρ2σ̂2
h(Y r)X − 2λσ̂Y mX σ̂g(Y l)X + 2ρσ̂Y mX σ̂h(Y r)X)

σ̂2
X

,

that is

SSR = f2

(√
nσ̂Y mX√

σ̂2
X

,

√
nσ̂g(Y l)X√

σ̂2
X

,

√
nσ̂h(Y r)X√

σ̂2
X

)
.

Under the null hypothesis of linear independence (am, al, ar)
′
is equal to 0

′
. Since

Y m
i = bm + εmi, g(Y l

i ) = bl + εli, h(Y r
i ) = br + εri and Y m = bm + εm, g(Y l) = bl + εl,

h(Y r) = br + εr, it follows that

√
n

 σ̂Y mX

σ̂g(Y l)X

σ̂h(Y r)X

 =


1√
n

n∑
i=1

(Xi −X)(εmi − εm)

1√
n

n∑
i=1

(Xi −X)(εli − εl))

1√
n

n∑
i=1

(Xi −X)(εri − εr)

 .

Taking into account that (Xi −X) = (Xi − EX) + (EX −X), we check that

√
n

 σ̂Y mX

σ̂g(Y l)X

σ̂h(Y r)X

 =


1√
n

n∑
i=1

(Xi − EX)εmi

1√
n

n∑
i=1

(Xi − EX)εli

1√
n

n∑
i=1

(Xi − EX)εri

+


1√
n

n∑
i=1

(EX −X)εmi

1√
n

n∑
i=1

(EX −X)εli

1√
n

n∑
i=1

(EX −X)εri
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−


1√
n

n∑
i=1

(Xi − EX)εm

1√
n

n∑
i=1

(Xi − EX)εl

1√
n

n∑
i=1

(Xi − EX)εr

−


1√
n

n∑
i=1

(EX −X)εm

1√
n

n∑
i=1

(EX −X)εl

1√
n

n∑
i=1

(EX −X)εr

 .

Furthermore, 
1√
n

n∑
i=1

(EX −X)εmi

1√
n

n∑
i=1

(EX −X)εli

1√
n

n∑
i=1

(EX −X)εri

 a.s.−→ 0
′
,


1√
n

n∑
i=1

(Xi − EX)εm

1√
n

n∑
i=1

(Xi − EX)εl

1√
n

n∑
i=1

(Xi − EX)εr

 a.s.−→ 0
′
,


1√
n

n∑
i=1

(EX −X)εm

1√
n

n∑
i=1

(EX −X)εl

1√
n

n∑
i=1

(EX −X)εr

 a.s.−→ 0
′
,

and


 (Xi − EX)εmi

(Xi − EX)εli

(Xi − EX)εri




i=1,...,n

is a sequence of random vectors i.i.d., centered

at 0
′
, whose covariance matrix is σ2

XΣ, so applying the Central Limit Theorem it

results that 
√

nσ̂Y mX√
nσ̂g(Y l)X√
nσ̂h(Y r)X

 D−→ N(0
′
, σ2

XΣ).

Hence SSR
D−→ f2 (W ).

Besides, Proposition 3.6.3 (2) ensures that

1

n
SST −→ σ2eY .

Consequently applying Slutsky’s theorem we can assure that

nR̂2 D−→ f2 (W )

σ2eY .
2
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By means of the large sample theory it is possible to define a rejection region for

the null hypothesis.

Proposition 3.7.2 In testing the null hypothesis of linear independence at the nom-

inal significance level α, H0 should be rejected if

Tn > cα,

where cα is a α-quantile of the asymptotic distribution of Tn.

As in the case of hypothesis testing on the regression parameters, this asymptotic

test works suitably for samples with very large size, and for this reason we propose

also for the linear independence test a bootstrap approach.

3.7.2 Bootstrap test of linear independence

In order to obtain a bootstrap population fulfilling the hypothesis of linear inde-

pendence, the residual variables can be considered. That is, the new variables

Zm = Y m− âmX, Z l = g(Y l)− âlX and Zr = h(Y r)− ârX are considered. Then, a

sample of size n with replacement
{
(X∗

i , Zm∗
i , Z

l∗
i , Z

r∗
i )
}

i=1,...,n
from the bootstrap

population is drawn. The bootstrap statistic is

T ∗n = n

n∑
i=1

D2
λρ(
̂̃
Z∗

i, Z̃∗)

σ2eY
where Z̃∗

i = (Zm∗
i , Z

l∗
i , Z

r∗
i ).

Proposition 3.7.3 Under the assumptions of model (3.1) and if E(X4) < ∞,

E(ε4
m) < ∞, E(ε4

l ) < ∞ and E(ε4
r) < ∞, as n →∞,

T ∗n
D−→ f2 (W )

σ2eY ,

where W ∼ N(0
′
, Σ) and f2 is the same function defined in Proposition 3.7.1.

Proof. Since the bootstrap statistic T ∗n can be expressed as

f2

(
√

nσ̂Zm∗X∗√
σ̂2

X∗
,
√

nσ̂
Zl∗X∗√
σ̂2

X∗
,
√

nσ̂Zr∗X∗√
σ̂2

X∗

)
σ2eY ,

for what showed in the proof of Proposition 3.5.2 it results that

σ̂X∗Zm∗ = σ̂X∗Y m∗ − âmσ̂2
X∗ = âmσ̂2

X∗ + σ̂X∗ε̂∗m − âmσ̂2
X∗ ,
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and analogously

σ̂X∗Zl∗ = σ̂X∗Y l∗ − âlσ̂
2
X∗ = âlσ̂

2
X∗ + σ̂X∗ε̂∗l

− âlσ̂
2
X∗ ,

σ̂X∗Zr∗ = σ̂X∗Y r∗ − ârσ̂
2
X∗ = ârσ̂

2
X∗ + σ̂X∗ε̂∗r − ârσ̂

2
X∗ .

Hence

T ∗n =

f2

(√
nσ̂X∗ε̂∗m√

σ̂2
X∗

,
√

nσ̂X∗ε̂∗
l√

σ̂2
X∗

,
√

nσ̂X∗ε̂∗r√
σ̂2

X∗

)
σ2eY

Taking into account that for Proposition 3.7.1, as n →∞,
√

nσ̂Xεm√
nσ̂Xεl√
nσ̂Xεr

 D−→ N
(
0
′
, σ2

XΣ
)

,

and, as previously proved (see Proposition 3.5.2)

1. σ̂2
X
∗ − σ̂2

X
P−→ 0

2.
√

n

 σ̂X∗ε̂∗m − σ̂Xεm

σ̂X∗ε̂∗l
− σ̂Xεl

σ̂X∗ε̂∗r − σ̂Xεr

 P−→ 0
′
,

the thesis follows.

2

Proposition 3.7.4 In testing the null hypothesis of linear independence at the nom-

inal significance level α, H0 should be rejected if

T ∗n = n

n∑
i=1

D2
λρ(
̂̃
Z∗

i, Z̃∗)

σ2eY > cα,

where cα is a α-quantile of the asymptotic distribution of T ∗n .

The application of the test in Proposition 3.7.4 is presented in the following algo-

rithm.
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Algorithm

Step 1: Compute the estimate values âm, âl and âr and the value of the statistic

Tn = nR̂2 = n

n∑
i=1

D2
λρ(
̂̃
Yi, Ỹ )

n∑
i=1

D2
λρ(Ỹi, Ỹ )

Step 2: Compute the bootstrap population{
(Xi, Z

m
i , Z l

i , Z
r
i )
}

i=1,...,n
, (3.24)

where

Zm
i = Y m

i − âmXi,

Z l
i = g(Y l

i )− âlXi,

Zr
i = h(Y r

i )− ârXi.

Step 3: Draw a sample of size n with replacement{
(X∗

i , Zm∗
i , Z

l∗
i , Z

r∗
i )
}

i=1,...,n
,

from the bootstrap population.

Step 4: Compute the value of the bootstrap statistic

T ∗n = n

n∑
i=1

D2
λρ(
̂̃
Z∗

i, Z̃∗)

σ2eY
where Z̃∗

i = (Zm∗
i , Z

l∗
i , Z

r∗
i ).

Step 5: Repeat Steps 3 and 4 a large number B of times to get a set of B estimators,

denoted by {T ∗1 , ..., T ∗B}.

Step 6: Compute the bootstrap p-value as the proportion of values in {T ∗1 , ..., T ∗B}
being greater than Tn.

Simulation studies

Simulations are considered to illustrate the empirical significance of the bootstrap

test proposed in Proposition 3.7.4. For the simulations we have considered B = 1000

replications of the bootstrap estimator and we have carried out 10.000 iterations of
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the test at 3 different nominal significance levels α = 0.01, α = 0.05 and α = 0.1

for different sample sizes n. Two simulation cases are presented. The first one

considers real random variables X, εm, εl and εr behaving as independent N(0, 1)

random variables. The empirical percentages of rejection under H0 are represented

in Table 3.10.

Table 3.10: Empirical percentages of rejection under the hypothesis of linear independence
(case of normality).

n \ α× 100 1 5 10

30 1.81 6.75 11.93

50 1.71 6.20 11.20

100 1.27 5.64 10.90

200 1.27 5.55 10.57

300 1.05 5.06 10.08

By means of the application of the bootstrap procedure for n > 200 the empirical

percentages of rejection are quite close to the nominal level.

In the second one we deal with the following real random variables: X, behaving

as an Unif(−20, 35) random variable, εm, behaving as an Unif(0, 8), εl behaving

as an Unif(−12, 22) and εr behaving as an Unif(−1, 5). The empirical percentages

of rejection under H0 are represented in Table 3.11.

Table 3.11: Empirical percentages of rejection under the hypothesis of linear independence
(case of non-normality).

n \ α× 100 1 5 10

30 1.84 5.44 11.11

50 1.53 5.30 11.07

100 1.30 5.29 10.69

200 1.22 5.21 9.96

300 1.06 5.03 10.02

It results that for n ≥ 200 the empirical percentages of rejection are quite close to

the three nominal levels.

Remark 3.7.1 In future works it could be interesting to standardize the test statis-

tic Tn in order to obtain empirical percentages of rejection quite close to the nominal

levels also for very small sample sizes.
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Empirical results

In order to employ the bootstrap test defined in Section 3.7.2 two real life examples

are considered. The first one considers the LR fuzzy data in Table 1.1 and the second

one is referred to the data in Table 3.3. For the simulations B = 1000 replications

of the bootstrap estimator are used. For both examples the p-value is equal to 0.

In both cases, the observed significance level is smaller than 0.01, that is, without

hesitation the null hypothesis of linear independence is rejected.

3.7.3 Local alternatives

To study the power of the test, as in Section 3.5.3, a sequence of local alternatives

is taken into account.

Proposition 3.7.5 We consider the null hypothesis (3.23) of the linear indepen-

dence test against the alternative H1 and we use the statistic Tn and the critical

region (Tn > k). Let Hn be the sequence of Pitman alternatives verifying am

al

ar

 =

 0

0

0

+
1√
n

 δm

δl

δr

 ,

where |δ| > 0. Then

1. Under Hn, Tn
D−→ f2(W )

σ2eY , where W ∼ N(δ
′√

σ2
X , Σ).

2. If we consider the sequence of local alternatives for which δ = δn, with |δn| −→
∞, then

lim
n→∞

PHn(Tn > k) = 1.

Proof.

1. As in the previous section, we use the test statistic Tn = nR̂2 = nSSR
SST

and

SSR = f2

(√
nσ̂Y mX√

σ̂2
X

,

√
nσ̂g(Y l)X√

σ̂2
X

,

√
nσ̂h(Y r)X√

σ̂2
X

)
.

As, under the local alternatives Hn, Y m
i = (δm/

√
n)Xi + bm + εmi, g(Y l

i ) =

(δl/
√

n)Xi + bl + εli, h(Y r
i ) = (δr/

√
n)Xi + br + εri and Y m = (δm/

√
n)X +
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bm + εm, g(Y l) = (δl/
√

n)X + bl + εl, h(Y r) = (δr/
√

n)X + br + εr, it results

that

√
n

 σ̂Y mX

σ̂g(Y l)X

σ̂h(Y r)X

 =


1√
n

n∑
i=1

(
δm√

n
(Xi −X) + (εm

i − εm)
)

(Xi −X)

1√
n

n∑
i=1

(
δl√
n
(Xi −X) + (εl

i − εl)
)

(Xi −X)

1√
n

n∑
i=1

(
δr√
n
(Xi −X) + (εr

i − εr)
)

(Xi −X)



=


1
n

n∑
i=1

δm(Xi −X)2

1
n

n∑
i=1

δl(Xi −X)2

1
n

n∑
i=1

δr(Xi −X)2

+


1√
n

n∑
i=1

(Xi −X)(εm
i − εm)

1√
n

n∑
i=1

(Xi −X)(εl
i − εl)

1√
n

n∑
i=1

(Xi −X)(εr
i − εr)


Since 

1
n

n∑
i=1

δm(Xi −X)2

1
n

n∑
i=1

δl(Xi −X)2

1
n

n∑
i=1

δr(Xi −X)2

 −→ σ̂2
X

 δm

δl

δr

 a.s.− [P ]

and, as previously proved,
1√
n

n∑
i=1

(Xi −X)(εm
i − εm)

1√
n

n∑
i=1

(Xi −X)(εl
i − εl)

1√
n

n∑
i=1

(Xi −X)(εr
i − εr)

 D−→ N
(
0
′
, σ2

XΣ
)

,

as consequence

√
n

 σ̂Y mX

σ̂g(Y l)X

σ̂h(Y r)X

 D−→ N
(
δ
′
σ2

X , σ2
XΣ
)

.

It results that

SSR
D−→ f2 (W ) ,

where W ∼ N
(
δ
′√

σ2
X , Σ

)
, and the thesis follows.

2. If δ = δn, with |δn| −→ ∞, we obtain that SSR →∞ and Tn →∞, hence

lim
n→∞

PHn(Tn > k) = 1.

2
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Remark 3.7.2 As for Proposition 3.5.4, the explicit expression of the power (Propo-

sition 3.7.5 (1)) is not relevant from a practical point of view because, as the asymp-

totic distribution is too far from the sampling distribution, a bootstrap test will be

used.

3.8 Final evaluation and open problems

In this chapter we have carried out a wide statistical analysis concerning a regression

model to express an imprecise response as a function of a crisp explanatory variable.

Namely

• The least squares estimators have been found, and some confidence regions

and testing procedures have been developed on the basis of their asymptotic

distributions.

• Some bootstrap techniques have been considered in order to improve the em-

pirical results for small/moderate sample sizes and we have shown by means

of some simulations their suitability in practice.

• A determination coefficient has been defined and an estimator has been ana-

lyzed. In addition a test to check the goodness-of-fit of the model has been

developed on the basis of this estimator.

• Some analysis of power of the tests through local alternatives has been devel-

oped and some simulations to illustrate the empirical behaviour in this respect

have been shown.

• All the results have been applied to some real-case studies with illustrative

purpose.

As open problems concerning this chapter, we consider interesting

• The analysis of an appropriate family of functions g and h to transform the

spreads of the LR response variables and the introduction of semi-parametric

models.

• The study of non-linear models in which the explanatory variables are trans-

formed due to the restrictions that they have to satisfy.



Chapter 4

A multiple linear regression model

with imprecise response

In this chapter a multiple linear regression model with imprecise response is dis-

cussed. This model is a generalization of model (3.1), but it is formally different,

because of the matrix notation. This formalization makes it possible to extend the

results of the simple case. Only the outline of the procedure is described, due to the

analogy with the previous chapter.

The chapter is organized as follows. In Section 4.1 the population multiple regres-

sion model is formally defined and described. Section 4.2 contains the definition of a

multiple determination coefficient to measure the degree of linear dependence. Sec-

tion 4.3 deals with the estimation problem. In details, the least squares estimators of

the regression parameters are checked and some algebraic and statistical properties

are proved. To employ the new model in Sections 4.3.1 and 4.3.2, respectively, a

simulated situation and empirical results will be considered. The study of confidence

regions and hypothesis testing on the regression parameters is analyzed in Section

4.4. In Section 4.5 it is proved the decomposition of the total sum of squares into

the sum of the residual sum of squares and the regression sum of squares. Taking it

into account an estimator of the determination coefficient is proposed. Section 4.6

contains a linear independence test. For all the last three sections there are simula-

tions and empirical examples to illustrate the accuracy. Final evaluations and open

problems are the last part of this chapter.
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4.1 The regression model

Consider a random experiment in which an LR fuzzy response variable Y and p real

explanatory variables X1, X2, ..., Xp are observed on n statistical units, {Yi, X i}i=1,...,n,

where X i = (X1i, X2i, ..., Xpi), or in a compact form (Y ,X), where Y is the 1 × n-

vector of the observations of Y and X is the n× p-matrix of the observations of X.

The model (3.1) generalized to this multiple case is
Y m = X a

′
m + bm + εm

g(Y l) = X a
′

l + bl + εl

h(Y r) = X a
′
r + br + εr

(4.1)

where εm, εl and εr are real-valued random variables with E(εm|X) = E(εl|X) =

E(εr|X) = 0, am = (am1, ..., amp), al = (al1, ..., alp) and ar = (ar1, ..., arp) are the

(1× p)-vectors of the parameters related to the vector X. The covariance matrix of

the vector of explanatory variables X will be denoted by ΣX and Σ will stand for

the covariance matrix of (εm, εl, εr), whose variances are strictly positive and finite.

As in the simple case, it is easy to check that the variables εm, εl and εr are

uncorrelated with the explanatory variables.

4.1.1 Theoretical values

In Proposition 4.1.1 the expression of the population parameters in terms of mo-

ments, analogous to Proposition 3.1.1, is shown

Proposition 4.1.1 Let Y be an LR fuzzy random variable and X the vector of the

p real random variables satisfying the linear model (4.1), then we have that

a
′

m = {ΣX}−1 E
[
(X − EX)

′
(Y m − EY m)

]
,

a
′

l = {ΣX}−1 E
[
(X − EX)

′
(g(Y l)− Eg(Y l))

]
,

a
′

r = {ΣX}−1 E
[
(X − EX)

′
(h(Y r)− Eh(Y r))

]
,

bm = E(Y m|X)− EX {ΣX}−1 E
[
(X − EX)

′
(Y m − EY m)

]
,

bl = E(g(Y l)|X)− EX {ΣX}−1 E
[
(X − EX)

′
(g(Y l)− Eg(Y l))

]
,

bl = E(h(Y r)|X)− EX {ΣX}−1 E
[
(X − EX)

′
(h(Y r)− Eh(Y r))

]
,

where ΣX = E
[
(X − EX)

′
(X − EX)

]
Proof. Under the assumptions in this proposition, by following the same reasoning

of the proof of Proposition 3.1.1, it is easy to get the thesis. 2
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4.2 Multiple determination coefficient

As in the simple case, the decomposition of the total variation of the response in

the variation that does not depend on the model and the variation explained by the

model remains valid, that is,

Proposition 4.2.1 Let Y be an LR fuzzy random variable and X a vector of real

random variables satisfying the linear model (4.1) so that the errors are uncorrelated

with X, by indicating Ỹ = (Y m, g(Y l), h(Y l)), we obtain

E
[
D2

λρ(Ỹ , EỸ )
]

= E
[
D2

λρ(Ỹ , E(Ỹ |X))
]

+ E
[
D2

λρ(E(Ỹ |X), EỸ )
]
. (4.2)

A multiple determination coefficient, analogously to the (3.3), is introduced.

Definition 4.2.1 Let Y be the LR FRV of the linear model (4.1), by indicating

Ỹ = (Y m, g(Y l), h(Y l)), the determination coefficient can be defined as follows

R2 =
E
[
D2

λρ(E(Ỹ |X), EỸ )
]

E
[
D2

λρ(Ỹ , EỸ )
] = 1−

E
[
D2

λρ(Ỹ , E(Ỹ |X))
]

E
[
D2

λρ(Ỹ , EỸ )
] . (4.3)

This coefficient measures the degree of linear relationship. As in the simple case it

takes values in [0, 1]. In particular, R2 = 0 indicates linear independence and when

R2 reaches the value 1, it indicates that the variability of the response is completely

explained by the model.

4.3 The estimation problem

As in Section 3.3, the estimators of the population parameters of the multiple model

will be based on the LS criterion. In this case, using the Yang-Ko metric D2
λρ written

in vector terms, the LS problem consists in looking for âm, âl, âr, b̂m, b̂l and b̂r in

order to

min ∆2
λρ = min D2

λρ((Y
m′

, g(Y l)
′
, h(Y r)

′
), ((Y m)∗

′
, g∗(Y l)

′
, h∗(Y r)

′
) (4.4)

where (Y m)∗
′
= Xa

′
m + 1

′
bm, g∗(Y l)

′
= Xa

′

l + 1
′
bl and h∗(Y r)

′
= Xa

′
r + 1

′
br are the

n× 1-vectors of the predicted values.

The function to minimize

∆2
λρ =

∥∥∥Y m′ − (Y m)∗
′
∥∥∥2

+
∥∥∥(Y m′ − λg(Y l)

′
)
−
(
(Y m)∗

′
− λg∗(Y l)

′)∥∥∥2

+
∥∥∥(Y m′

+ ρh(Y r)
′
)
−
(
(Y m)∗

′
+ ρh∗(Y r)

′
)∥∥∥2
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becomes

∆2
λρ = 3

(
Y m′ −Xa

′

m − 1
′
bm

)′ (
Y m′ −Xa

′

m − 1
′
bm

)
(4.5)

+ λ2
(
g(Y l)

′ −Xa
′

l − 1
′
bl

)′ (
g(Y l)

′ −Xa
′

l − 1
′
bl

)
+ ρ2

(
h(Y r)

′ −Xa
′

r − 1
′
br

)′ (
h(Y r)

′ −Xa
′

r − 1
′
br

)
− 2λ

(
Y m′ −Xa

′

m − 1
′
bm

)′ (
g(Y l)

′ −Xa
′

l − 1
′
bl

)
+ 2ρ

(
Y m′ −Xa

′

m − 1
′
bm

)′ (
h(Y r)

′ −Xa
′

r − 1
′
br

)
.

Analogously to Proposition 3.3.1, it holds

Proposition 4.3.1 The solutions of the LS problem are

â
′

m = (X̃
′

X̃)−1X̃
′

Ỹ m
′

,

â
′

l = (X̃
′

X̃)−1X̃
′

g̃(Y l)
′

,

â
′

r = (X̃
′

X̃)−1X̃
′

h̃(Y r)
′

,

b̂m = (1 1
′
)−11 Y m′ − (1 1

′
)−11Xâ

′

m,

b̂l = (1 1
′
)−11g(Y l)

′ − (1 1
′
)−11Xâ

′

l,

b̂r = (1 1
′
)−11h(Y r)

′ − (1 1
′
)−11Xâ

′

r,

where

Ỹ m = Y m − 1(1
′
1)−11

′
Y m

g̃(Y l) = g(Y l)− 1(1
′
1)−11

′
g(Y l)

h̃(Y r) = h(Y r)− 1(1
′
1)−11

′
h(Y r)

are the centered values of the response and

X̃ = X− 1
′
(1 1

′
)−11X

the centered matrix of the explanatory variables.

Proof. By means of the same procedure used in Proposition 3.3.1 it is possible

to get the least squares estimators in this multiple case.

2

The estimated values, obtained from the LS criterion, fulfill some algebraic prop-

erties.
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Proposition 4.3.2 For model (4.1) and the LS estimators of Proposition 4.3.1 we

have

(i) The sums of the residual values are equal to 0, that is

1
(
Y m − Ŷ m

)′
= 0,

1
(
g(Y l)− ĝ(Y l)

)′
= 0,

1
(
h(Y r)− ĥ(Y r)

)′
= 0.

(ii) The residuals
(
Y m − Ŷ m

)′
,
(
g(Y l)− ĝ(Y l)

)′
and

(
h(Y r)− ĥ(Y r)

)′
are un-

correlated with the matrix of the explanatory variables, X, that is

X
′
(
Y m − Ŷ m

)′
= 0

′
,

X
′
(
g(Y l)− ĝ(Y l)

)′
= 0

′
,

X
′
(
h(Y r)− ĥ(Y r)

)′
= 0

′
,

where 0 is the 1× p null vector.

(iii) The residuals
(
Y m − Ŷ m

)′
,
(
g(Y l)− ĝ(Y l)

)′
and

(
h(Y r)− ĥ(Y r)

)′
are un-

correlated, respectively, with the predicted values Ŷ m
′

, ĝ(Y l)
′

and ĥ(Y r)
′

, that

is

Ŷ m
(
Y m − Ŷ m

)′
= 0,

ĝ(Y l)
(
g(Y l)− ĝ(Y l)

)′
= 0,

ĥ(Y r)
(
h(Y r)− ĥ(Y r)

)′
= 0.

Proof. For each property, it will be only proved the first equality, because the other

ones may be obtained analogously.

(i) Since Ŷ m
′

= Xâ
′

m + 1
′
b̂m, it follows

1
(
Y m − Ŷ m

)′
= 1

(
Y m′ −Xâ

′

m − 1
′
b̂m

)
,

and taking into account that b̂m = (1 1
′
)−11 Y m′ − (1 1

′
)−11Xâ

′

m,

1 Y m′ − 1Xâ
′

m − (1 1
′
)(1 1

′
)−11 Y m′

+ (1 1
′
)(1 1

′
)−11Xâ

′

m = 0.
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(ii) Consider the centered matrix of explanatory variables X̃ = X − 1
′
(1 1

′
)−11X.

It results that

X̃
′ (

Y m − Ŷ m
)′

=X̃
′

Y m′ − X̃
′

Xâ
′

m − X̃
′

1
′
b̂m

=X̃
′

Y m′ − X̃
′

Xâ
′

m − X̃
′

1
′
(1 1

′
)−11 Y m′

+ X̃
′

1
′
(1 1

′
)−11Xâ

′

m

=X̃
′

Ỹ m
′

− X̃
′

X̃â
′

m.

Taking into account that â
′

m = (X̃
′

X̃)−1X̃
′

Ỹ m
′

, we have

X̃
′ (

Y m − Ŷ m
)′

= 0
′
. (4.6)

From (4.6)

X̃
′ (

Y m − Ŷ m
)′

= (X− 1
′
(1 1

′
)−11X)

′
(
Y m − Ŷ m

)′
= 0

′
,

that is

X
′
(
Y m − Ŷ m

)′
−X

′
1
′
(1 1

′
)−11

(
Y m − Ŷ m

)′
= 0

′
.

Since 1
(
Y m − Ŷ m

)′
= 0, it follows

X
′
(
Y m − Ŷ m

)′
= 0

′
.

(iii) By means of the previous property it can be easily proved that

Ŷ m
(
Y m − Ŷ m

)′
=

(
Xâ

′

m + 1
′
b̂m

)′ (
Y m − Ŷ m

)′
= âmX

′
(
Y m − Ŷ m

)′
+ b̂m1

(
Y m − Ŷ m

)′
= 0

2

Analogously to the classical case of linear regression analysis, it is easy to check

some statistical properties of the LS estimators.

Proposition 4.3.3 The estimators âm, âl, âr, b̂m, b̂l and b̂r are unbiased, strongly

consistent and as n →∞

√
n

 â
′

m − a
′
m

â
′

l − a
′

l

â
′

r − a
′
r

 D−→ N

(
0
′
,

Σ

ΣX

)
. (4.7)
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4.3.1 Simulations

In order to compare the estimates obtained by means of the least squares procedure

with the theoretical values, we consider a simulated situation. A sample of 30 units

is drawn. Three explanatory variables X1, X2, X3 and three random variables εm,

εl, εr have been generated normally distributed as N(0, 1). The theoretical values

taken into account are: am = (3,−1.2, 16), al = (4, 1.2, 2.5), ar = (−2, 8.2,−3),

bm = 3.5, bl = −12 and br = 4. The response variables are obtained as
Y m

i = 3X1i − 1.2X2i + 16X3i + 3.5 + εmi

g(Y l
i ) = 4X1i + 1.2X2i + 2.5X3i − 12 + εli

h(Y r
i ) = −2X1i + 8.2X2i − 3X3i + 4 + εri

(4.8)

for i = 1, .., 30. The simulated data are shown in Table 4.1.

The estimated model is
Ŷ m = 2.9865X1 − 0.9708X2 + 15.7021X3 + 3.4252

ĝ(Y l) = 3.8906X1 + 1.5853X2 + 2.5552X3 − 11.8661

ĥ(Y r) = −1.8671X1 + 8.2256X2 − 2.9442X3 + 4.1558.

(4.9)

By comparing (4.8) and (4.9) we observe that the estimates for the parameters are

quite good.

4.3.2 Empirical results

In order to illustrate the application of the multiple regression model introduced

in this chapter, the following examples are analyzed. The first one is referred to

triangular fuzzy numbers and the second one to interval data.

Example 4.3.1 We have considered the variables introduced in Example 3.1.1. In

this example the aim is the analysis of the linear dependence relationship of the

quality of the trees on two explanatory variables: X1=height, X2=diameter (see

Table 1.1). The new multiple linear regression model is employed in order to analyze

the problem. The spreads of the LR fuzzy response are transformed by means of

the logarithmic transformation (that is g=h=ln). Through the LS procedure we

obtain the following estimated models
Ŷ m = 0.1374X1 + 1.7937X2 + 19.6085

Ŷ l = exp(0.0011X1 − 0.1211X2 + 2.52)

Ŷ r = exp(0.0008X1 − 0.1471X2 + 2.5785).

(4.10)
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Table 4.1: Simulated data of Model (4.8)

Y m
i g(Y l

i ) h(Y r
i ) X1i X2i X3i

-22.9847 -14.0403 22.7427 -0.5624 1.4596 -1.5755

1.7450 -8.5442 4.3603 1.0325 0.1697 -0.2518

14.7005 -16.2417 -3.3158 -1.2142 -0.9437 0.8747

-8.7315 -16.2936 0.6981 -0.7561 -0.7908 -0.6906

-0.1140 -18.4398 -1.0862 -1.0776 -0.9397 -0.2208

-31.3596 -15.5840 18.8256 0.3290 1.1919 -2.1974

27.5393 -10.8309 -2.7892 -0.8023 -0.3406 1.6818

18.7749 -10.5795 0.2480 -0.1462 -0.2526 1.0198

-1.1178 -9.0317 11.3000 0.5634 0.7689 -0.3822

10.7308 -7.7804 4.0573 0.5036 0.1849 0.4481

15.8898 -16.7836 -3.7861 -1.2006 -0.8845 0.9588

1.4936 -10.1194 8.9047 0.0898 0.5249 -0.0802

18.9339 -7.3200 7.8560 0.0387 0.8186 0.9623

32.2690 -9.6969 -10.5664 -0.3333 -1.1227 1.8858

-6.8706 -18.5083 4.6519 -1.2025 -0.2775 -0.3736

15.7910 -12.0064 11.1557 -0.8798 1.0485 0.9991

12.0485 -8.5603 -0.0211 0.7162 -0.0489 0.4810

-10.5228 -11.7908 23.5207 -0.2029 2.0821 -0.6985

0.2772 -11.8025 -4.9949 1.2013 -0.9967 -0.5234

-26.0635 -16.9350 20.7473 -0.9023 1.2604 -1.6059

-22.1592 -17.1332 -0.3016 0.0043 -1.2305 -1.5791

14.9907 -12.3651 -2.9761 -0.5082 -0.6562 0.8346

1.5722 -3.4690 14.5982 1.6858 1.5196 -0.3200

-18.8227 -17.7980 13.9320 -0.4883 0.5654 -1.3268

-3.1167 -15.4804 1.1831 -0.5143 -0.5197 -0.4171

-7.0028 -7.3808 -0.5069 2.0778 -0.5634 -1.2143

-46.7499 -20.6266 19.8188 -0.5760 0.7923 -2.9551

-10.1549 -19.3151 9.5865 -1.6785 0.0184 -0.5455

10.5697 -16.2964 5.3440 -1.5899 -0.0593 0.7201

10.8596 -8.2852 -4.6447 0.9365 -0.7835 0.2258

As in the simple case, we use a bootstrap procedure to estimate the standard errors

ŝe of the parameters. In particular we draw 800 bootstrap samples of size n = 238

with replacement from our data set. For each bootstrap replication we calculate
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the estimate of the parameters of the linear regression model. By means of the 800

replications of the estimation procedure we compute ŝe. The estimated parameters

and the estimates of their standard errors are represented in Table 4.2.

Table 4.2: Estimation of the parameters of Model (4.10) and estimation of their standard
errors.

Estimator Estimated value Estimate of standard error

âm1 0.1374 0.0016

âm2 1.7937 0.0001

âl1 0.0011 0.0813

âl2 -0.1211 0.0007

âr1 0.0008 0.0814

âr2 -0.1471 0.0007

b̂m 19.6085 0.0000085

b̂l 2.52 0.00039437

b̂r 2.5785 0.00040506

There is a strong influence of the diameter on the quality of the tree (âm2 =

1.7937), in particular, for any additional cm of the diameter the quality is expected

to increase of about 1.8, while it is expected to increase of 0.14 for any additional

cm of the height of the tree. The estimates of the standard errors are all close to

zero.

As for the simple case, the estimated spreads represent the imprecision of the

response variable while the estimates of standard error the stochastic uncertainty

due to the data generation process.

Example 4.3.2 (http://www.census.gov/econ/www/). Consider the data related

to the Retail Trade Sales (in millions of dollars) of the U.S. in 2002 by kind of

business (see Table 3.3). As in Example 3.3.2, since the Retail Trade Sales are

intervals, for each one we consider the center and the spreads. In Table 4.3 for each

kind of business the Number of Employees (X1) and the Establishments (X2) are

reported. These variables are referred to as explanatory in a multiple regression

model where the Retail Trade Sale is the imprecise response.

By means of the least squares estimation the following predicted values are obtained
Ŷ m = 0.01817X1 − 0.112X2 − 559.849

Ŷ l = exp(0.0045X1 − 0.0188X2 + 375.02211)

Ŷ r = exp(0.0045X1 − 0.0188X2 + 375.02211)

(4.11)
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Table 4.3: Number of Employees (X1) and Establishments (X2) of 22 kinds of Business
in the U.S. in 2002.

Kind of Business Number of Employees Establishments

Automotive parts, acc., and tire stores 453468 57698

Furniture stores 249807 28244

Home furnishings stores 285222 36960

Household appliance stores 69168 10330

Computer and software stores 73935 10134

Building mat. and supplies dealers 988707 67190

Hardware stores 142881 15103

Beer, wine, and liquor stores 133035 28957

Pharmacies and drug stores 783392 40234

Gasoline stations 926792 121446

Men’s clothing stores 62223 9437

Family clothing stores 522164 24539

Shoe stores 205067 28499

Jewelry stores 148752 28625

Sporting goods stores 188091 22239

Book stores 133484 10860

Discount dept. stores 762309 5650

Department stores 668459 3705

Warehouse clubs and superstores 830845 2912

All other gen. merchandise stores 263116 28456

Miscellaneous store retailers 792361 129464

Fuel dealers 98574 11079

The value am1 = 0.01817 indicates that the retail trade sales are expected to

increase of about 18.170 dollars for any additional employee, while for any additional

establishment the retail trade sales increase of 112.000 dollars.

As usual, the accuracy of the estimators is analyzed by means of a bootstrap

procedure with 800 replications. The results are illustrated in Table 4.4.
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Table 4.4: Estimation of the parameters of Model (4.11) and estimation of their standard
errors.

Estimator Estimated value Estimate of standard error

âm (0.01817,-0.112) (0.0208,0.0012)

âl (0.0045,-0.188) (0.0507,0.0041)

âr (0.0045,-0.188) (0.0507,0.0041)

b̂m -559.849 0.00000005442

b̂l 375.0211 0.00000014294

b̂r 375.0211 0.00000014294

4.4 Confidence regions and hypothesis testing on

the regression parameters

In addition to the estimation of the regression parameters, as in the simple case,

the confidence regions and the hypothesis test are introduced. Starting from the

asymptotic distribution (4.7) it is easily obtained the following 100(1−α) confidence

region for the parameters (a
′
m, a

′

l, a
′
r)

′
 â

′

m

â
′

l

â
′

r

−
cα/2√

n
,

 â
′

m

â
′

l

â
′

r

+
cα/2√

n


where cα/2 is a α/2-quantile of a N

(
0
′
, Σ

ΣX

)
.

In order to test the null hypothesis

H0 :

 a
′
m

a
′

l

a
′
r

 =

 k
′

m

k
′

l

k
′

r

 (4.12)

against the alternative

H1 :

 a
′
m

a
′

l

a
′
r

 6=

 k
′

m

k
′

l

k
′

r

 ,

where km, kl, and kr are vectors of constant values in R, the test statistic Tn = V ′
nVn,

where

Vn =
√

n

 â
′

m − k
′

m

â
′

l − k
′

l

â
′

r − k
′

r

 ,
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can be used. As in the simple case it is possible to define a rejection region for the

null hypothesis, that is

Proposition 4.4.1 In testing the null hypothesis (4.12) at the nominal significance

level α, H0 should be rejected if

Tn > cα,

where cα is a α-quantile of the asymptotic distribution of Tn, that is f1 (V ) (V ∼
N
(
0
′
, Σ

ΣX

)
and f1(A) = A′A).

Analogously to Section 3.5.2 also in this case a bootstrap approach can be devel-

oped. Thus, the new variables Zm = Y m −X â
′

m + X k
′

m, Z l = g(Y l)−X â
′

l + X k
′

l

and Zr = h(Y r)−X â
′

r + X k
′

r are considered, in order to obtain a bootstrap pop-

ulation satisfying the null hypothesis (4.12). A sample of size n with replacement{
(X∗

i , Z
m∗

i , Z
l∗
i , Z

r∗
i )
}

i=1,...,n
from the bootstrap population is drawn and, as boot-

strap statistic, T ∗n = V ∗
n

′
V ∗

n , where

V ∗
n =

√
n

 â∗m
′ − k

′

m

â∗l
′ − k

′

l

â∗r
′ − k

′

r

 ,

and

â∗m
′

= (X̃
′

X̃)−1X̃
′

Z̃m
′

,

â∗l
′

= (X̃
′

X̃)−1X̃
′

Z̃ l
′

,

â∗r
′

= (X̃
′

X̃)−1X̃
′

Z̃r
′

,

(Z̃m, Z̃ l, Z̃r are the centered vector of the bootstrap variables and X̃ is the centered

matrix) is used. It can be easily proved that, as n →∞

T ∗n
D−→ f1 (V ) , (4.13)

where V ∼ N
(
0
′
, Σ

ΣX

)
, and analogously to Proposition 3.5.3, it follows

Proposition 4.4.2 In testing the null hypothesis (4.12) at the nominal significance

level α, H0 should be rejected if

T ∗n > cα,

where cα is a α-quantile of the asymptotic distribution of T ∗n .
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By means of the following algorithm, as usual, the test in Proposition 4.4.2 can be

employed.

Algorithm

Step 1: Compute the estimate vectors âm, âl and âr and the value of the statistic

Tn = V ′
nVn

Step 2: Compute the bootstrap population{
(X i, Z

m
i , Z l

i , Z
r
i )
}

i=1,...,n
, (4.14)

where

Zm
i = Y m

i −X iâ
′

m + X ik
′

m,

Z l
i = g(Y l

i )−X iâ
′

l + X ik
′

l,

Zr
i = h(Y r

i )−X iâ
′

r + X ik
′

r.

Step 3: Draw a sample of size n with replacement{
(X∗

i , Zm∗
i , Z

l∗
i , Z

r∗
i )
}

i=1,...,n
,

from the bootstrap population (4.14).

Step 4: Compute the value of the bootstrap statistic

T ∗n = V ∗
n

′
V ∗

n

Step 5: Repeat Steps 3 and 4 a large number B of times to get a set of B estimators,

denoted by {T ∗1 , ..., T ∗B}.

Step 6: Compute the bootstrap p-value as the proportion of values in {T ∗1 , ..., T ∗B}
such that being greater than Tn.

As for the simple case in Section 3.5.3, it is possible to analyze the asymptotic power

function under a sequence of local alternatives

Proposition 4.4.3 Consider the null hypothesis (4.12) against the alternative H1,

the statistic Tn and the critical region (Tn > k). Let Hn be the sequence of Pitman

alternatives verifying a
′
m

a
′

l

a
′
r

 =

 k
′

m

k
′

l

k
′

r

+
1√
n

 δ
′

m

δ
′

l

δ
′

r

 ,

where |δ| > 0. Then
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1. Under Hn, Tn
D−→ f1 (V ) , whereV ∼ N

(
δ
′
, Σ

ΣX

)
;

2. If we consider the sequence of local alternatives for which δ = δn, with |δn| −→
∞,

lim
n→∞

PHn(Tn > k) = 1.

4.4.1 Simulations

In order to illustrate the empirical significance of the bootstrap test proposed in

Proposition 4.4.2, a simulated situation has been taken into account. For the sim-

ulations we have considered B = 1000 replications of the bootstrap estimator and

we have carried out 10.000 iterations of the test at 3 different nominal significance

levels α = 0.01, α = 0.05 and α = 0.1 for different sample sizes n. Two simulation

cases are presented. The first one considers real random variables X1, X2, εm, εl and

εr behaving as independent N(0, 1) random variables. The empirical percentages of

rejection under H0 : (a
′
m, a

′

l, a
′
r)

′
= (1

′
, 1

′
, 1

′
)
′
are represented in Table 4.5. In this

case for α = 0.05 and α = 0.1, it results that for n ≥ 100 the empirical percentages

of rejection are quite close to the nominal levels.

Table 4.5: Empirical percentages of rejection under H0 : (a
′
m, a

′
l, a

′
r)

′
= (1

′
, 1

′
, 1

′
)
′
(case

of normality).

n \ α× 100 1 5 10

30 0.33 2.77 7.97

50 0.56 3.78 9.08

100 0.61 4.78 9.92

200 0.8 4.92 9.95

In the second one we deal with the following real random variables: X1, behaving as

an Unif(−2, 3) random variable, X2, behaving as an Unif(1, 6) random variable,

εm, εl and εr behaving as independent N(0, 1) random variables. The empirical per-

centages of rejection under H0 : (a
′
m, a

′

l, a
′
r)

′
= (1

′
, 1

′
, 1

′
)
′
are represented in Table

4.6. By applying the bootstrap procedure, for n ≥ 100 the empirical percentages of

rejection are quite close tho the the three nominal levels.

Empirical results

In order to illustrate the bootstrap test introduced in Section 3.5.2 a real life ex-

ample is considered . Taking into account the LR fuzzy data in Table 1.1, to test
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Table 4.6: Empirical percentages of rejection under H0 : (a
′
m, a

′
l, a

′
r)

′
= (1

′
, 1

′
, 1

′
)
′
(case

of non-normality).

n \ α× 100 1 5 10

30 0.5 4.14 9.9

50 0.72 4.42 9.86

100 0.97 5.1 10.11

200 1.04 5.17 10.04

if the vector of regression parameters (a
′
m, a

′

l, a
′
r)

′
is equal to (3

′
, 3

′
, 3

′
)
′
, B = 1000

replications of the bootstrap statistic are used and a p-value equal to 0.02 is ob-

tained. Hence the considered hypothesis should be rejected. In testing if the vector

(am1, am2, al1, al2, ar1, ar2)
′

is equal to a vector whose elements are approximately

equal to the estimations of the parameters, that is (0.14, 1.8, 0.02,−0.1, 0.001,−0.2)
′
,

a p-value equal to 0.993 is obtained. Obviously the hypothesis tested should not be

rejected.

4.5 Estimation of the multiple determination co-

efficient

As in the previous chapter, we can define an estimator for the multiple determination

coefficient. Using the same scheme, the next proposition proves the decomposition

of the total sum of squares and on this basis we can define the estimator.

Proposition 4.5.1 Let Y be an LR fuzzy random variable and X a vector of real

random variables satisfying the linear model (4.1) observed on n statistical units,

{Yi, X i}i=1,...,n. The total sum of squares, SST, is equal to the sum of the residual

sum of squares, SSE, and the regression sum of squares, SSR, that is

SST = SSE + SSR. (4.15)

In details,

(i) the total sum of squares (SST) is

SST =
∥∥∥Y m′ − 1

′
Y m
∥∥∥2

+
∥∥∥(Y m′ − λg(Y l)

′
)
−
(
1
′
Y m − λ1

′
g(Y l)

)∥∥∥2

+
∥∥∥(Y m′

+ ρh(Y r)
′
)
−
(
1
′
Y m + ρ1

′
h(Y r)

)∥∥∥2
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(ii) the residual sum of squares (SSE) is

SSE =

∥∥∥∥Y m′ − Ŷ m
′
∥∥∥∥2

+

∥∥∥∥(Y m′ − λg(Y l)
′
)
−
(

Ŷ m
′

− λĝ(Y l)
′)∥∥∥∥2

+

∥∥∥∥(Y m′
+ ρh(Y r)

′
)
−
(

Ŷ m
′

+ ρĥ(Y r)
′)∥∥∥∥2

(iii) the regression sum of squares (SSR) is

SSR =

∥∥∥∥Ŷ m
′

− 1
′
Y m

∥∥∥∥2

+

∥∥∥∥(Ŷ m
′

− λĝ(Y l)
′)
−
(
1
′
Y m − λ1

′
g(Y l)

)∥∥∥∥2

+

∥∥∥∥(Ŷ m
′

+ ρĥ(Y r)
′)
−
(
1
′
Y m + ρ1

′
h(Y r)

)∥∥∥∥2

where Ŷ m
′

, ĝ(Y l)
′

, ĥ(Y r)
′

are the vectors of the estimated values, that is,

Ŷ m
′

= Xâ
′

m + 1
′
b̂m, ĝ(Y l)

′

= Xâ
′

l + 1
′
b̂l, ĥ(Y r)

′

= Xâ
′

r + 1
′
b̂r,

and Y m = (1 1
′
)−11Y m′

, g(Y l) = (1 1
′
)−11g(Y l)

′
, h(Y r) = (1 1

′
)−11h(Y r)

′
are the

vectors of the sample means of the response variables.

Proposition 4.5.2 Let Y be an LR fuzzy random variable and X a vector of real

random variables satisfying the linear model (4.1), observed on n statistical units,

{Yi, X i}i=1,...,n. The estimator of the determination coefficient R2 is

R̂2 = 1− SSE

SST
=

SSR

SST
.

Proposition 4.5.3 The estimator R̂2 is strongly consistent.

4.5.1 Simulations

In order to illustrate the accuracy of the estimator of the multiple determination

coefficient, a simulation study is considered. Three explanatory variables X1, X2 and

X3 have been generated normally distributed as N(0, 1) and an LR fuzzy response

Y has been generated in the following way: the center Y m normally distributed as

N(0, 1), the left and the right spread as χ2
1. A logarithmic transformation has been

used for both spreads. It follows that the multiple determination coefficient R2 is

null because the variables have been independently generated. Taking into account

different sample sizes, the idea is to calculate the estimate of R2 for each sample size

and to show that the estimated values are closer to 0, as the sample size n increases.

The results presented in Table 4.7 show the consistency of the estimator.
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Table 4.7: Estimated values R̂2 (multiple) for samples of different size.

n R̂2 n R̂2

30 0.0518 800 0.0048

50 0.0373 1000 0.0011

100 0.0266 2000 0.00074932

500 0.0082 3000 0.0003759

4.5.2 Empirical results

The estimator of the determination coefficient, R̂2, referred to Example 4.3.1 is equal

to 0.2567. This value indicates that approximately almost 25.67% of the total varia-

tion is explained by the multiple regression model taken into account. Obviously as

the number of explanatory variables increases the determination coefficient referred

to the model improves. In details, compared with the simple model of Example

3.3.1 in Chapter 3, this multiple case explains approximately only 0.28% more of

the total variation.

Taking into account the data set of Example 4.3.2, R̂2 = 0.9175 is put up. Ap-

proximately almost 92% of the total variation of the retail trade sale is explained

by means of the multiple model with Number of Employees and Estabishments as

explanatory variables. To insert the variable Estabishments in the model entails an

increment of R̂2 of 0.0019%.

4.6 Linear independence test

In this section a linear independence test is introduced. To test the null hypothesis

H0 : R2 = 0 against the alternative H1 : R2 > 0, the test statistic Tn = nR̂2 is used.

Taking into account that, under the assumption of model (4.1) and under the null

hypothesis of linear independence, as n →∞

nR̂2 D−→ f2 (W )

σ2eY , (4.16)

where W ∼ N(0
′
, Σ), analogously to Proposition 3.7.2, it follows the next asymptotic

procedure.

Proposition 4.6.1 In testing the null hypothesis of linear independence at the nom-

inal significance level α, H0 should be rejected if

Tn > cα,
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where cα is a α-quantile of the asymptotic distribution of Tn, that is f2(W )

σ2eY , where

W ∼ N(0
′
, Σ) and f2 is the function introduced in Proposition 3.7.1.

Following the same idea of Section 3.7.2 a more efficient bootstrap approach can be

developed. Thus, the residual variables Zm = Y m − X â
′

m, Z l = g(Y l) − X â
′

l and

Zr = h(Y r)−X â
′

r are used, in order to obtain a bootstrap population. A sample of

size n with replacement
{
(X∗

i , Z
m∗

i , Z
l∗
i , Z

r∗
i )
}

i=1,...,n
from the bootstrap population

is drawn and, as bootstrap statistic,

T ∗n = n

n∑
i=1

D2
λρ(
̂̃
Z∗

i, Z̃∗)

σ2eY
(Z̃∗

i = (Zm∗
i , Z

l∗
i , Z

r∗
i )) is used. It is easy to check the same results of Propositions

3.7.3 and 3.7.4, that are an asymptotic distribution of the bootstrap statistic and a

bootstrap test for the linear independence. In particular, as n →∞

T ∗n
D−→ f2 (W )

σ2eY , (4.17)

(W ∼ N(0
′
, Σ) and f2 is the function of Proposition 3.7.1) and analogously to

Proposition 3.7.4, it follows

Proposition 4.6.2 In testing the null hypothesis of linear independence at the nom-

inal significance level α, H0 should be rejected if

T ∗n > cα,

where cα is a α-quantile of the asymptotic distribution of T ∗n .

The application of the test in Proposition 4.6.2 is presented in the following algo-

rithm.

Algorithm

Step 1: Compute the estimate vectors âm, âl and âr and the value of the statistic

Tn = nR̂2 = n

n∑
i=1

D2
λρ(
̂̃
Yi, Ỹ )

n∑
i=1

D2
λρ(Ỹi, Ỹ )

Step 2: Compute the bootstrap population{
(X i, Z

m
i , Z l

i , Z
r
i )
}

i=1,...,n
, (4.18)
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where

Zm
i = Y m

i −X iâ
′

m,

Z l
i = g(Y l

i )−X iâ
′

l,

Zr
i = h(Y r

i )−X iâ
′

r.

Step 3: Draw a sample of size n with replacement{
(X∗

i , Zm∗
i , Z

l∗
i , Z

r∗
i )
}

i=1,...,n
,

from the bootstrap population (4.18).

Step 4: Compute the value of the bootstrap statistic

T ∗n = n

n∑
i=1

D2
λρ(
̂̃
Z∗

i, Z̃∗)

σ2eY
where Z̃∗

i = (Zm∗
i , Z

l∗
i , Z

r∗
i ).

Step 5: Repeat Steps 3 and 4 a large number B of times to get a set of B estimators,

denoted by {T ∗1 , ..., T ∗B}.

Step 6: Compute the bootstrap p-value as the proportion of values in {T ∗1 , ..., T ∗B}
being greater than Tn.

4.6.1 Simulations

As usual we have used simulations in order to illustrate the empirical significance of

the bootstrap test. We have carried out 10.000 iterations of the test at 3 different

nominal significance levels α = 0.01, α = 0.05 and α = 0.1 for different sample sizes

n. B = 1000 bootstrap replications have been considered.

Two simulation cases are presented. The first one is referred to real random

variables X1, X2, X3, εm, εl and εr behaving as a N(0, 1) random variable. The

empirical percentages of rejection under H0 are represented in Table 4.8. The con-

clusions are better, as the sample size n increases, that is, the empirical percentages

of rejection are closer to the nominal levels.

In the second simulation case the following variables have been considered: X1,

X2, εm, εl and εr behaving, respectively, as an Unif(0, 10), an Unif(−2, 2), an

Unif(−1, 4), an Unif(5, 9) and an Unif(0, 6) independent random variables.
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Table 4.8: Empirical percentages of rejection under the hypothesis of linear independence
(case of normality).

n \ α× 100 1 5 10

50 1.40 5.83 11.03

100 1.36 5.48 10.83

200 1.27 5.32 10.67

300 1.09 5.09 10.14

Table 4.9: Empirical percentages of rejection under the hypothesis of linear independence
(case of non-normality).

n \ α× 100 1 5 10

50 1.2 5.58 10.79

100 1.17 5.6 10.37

200 1.27 5 9.76

300 0.94 5.37 10.49

4.6.2 Empirical results

As in Section 3.7.2 the bootstrap test defined in Section 4.6 has been employed on

two real life examples. The first one considers the LR fuzzy data in Table 1.1 and

the second one is referred to the data in Table 4.3. For the simulations B = 1000

replications of the bootstrap estimator are used. Also in this multiple case for both

examples the p-value is equal to 0. In both cases the null hypothesis of linear

independence should be rejected.

4.6.3 Local alternatives

A study about the power function of the linear independence test is also presented

for the multidimensional case. Due to the difficulties of this kind of analysis, a

sequence of local alternatives is used for verifying how sensible the test is under

small deviations from null hypothesis.

Proposition 4.6.3 Consider the null hypothesis H0 : R2 = 0 of the linear indepen-

dence test against the alternative H1. Let Tn be the test statistic and (Tn > k) the
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critical region. Let Hn be the sequence of Pitman alternatives verifying a
′
m

a
′

l

a
′
r

 =

 0
′

0
′

0
′

+
1√
n

 δ
′

m

δ
′

l

δ
′

r

 ,

where |δ| > 0. Then

1. Under Hn, Tn
D−→ f2(W )

σ2eY , where W ∼ N(δ
′
(ΣX)1/2 , Σ);

2. If If we consider the sequence of local alternatives for which δ = δn, with |δn| −→ ∞,

lim
n→∞

PHn(Tn > k) = 1.

4.7 Final evaluation and open problems

In this chapter we have carried out a wide statistical analysis concerning a multiple

regression model to express an imprecise response as a function of crisp explanatory

variables. Since this model is a multidimensional extension of the model proposed

in Chapter 3, final evaluation and open problems are similar. In addition, as open

problems pertaining to this chapter, it could be interesting

• The analysis of multicollinearity problem that may be faced with the appli-

cation of Principal Component Analysis. The idea consists in replacing the

original variables by a set of uncorrelated artificial variables (principal com-

ponents).

• The study of a selection procedure to obtain the appropriate number of ex-

planatory variables to be used, based on the goodness-of-fit coefficient, by

following the same reasoning proposed in D’Urso & Santoro (2006).





Epilogue

In this work a regression analysis to model statistical relationships between imprecise

and real elements has been developed. In particular a linear regression model for LR

fuzzy response and scalar predictors has been introduced and analyzed. In a classical

framework one of the main difficulties is related to the condition of non-negativity

of the spreads. The introduction of suitable functions g and h that transform the

spreads into real numbers and of an appropriate metric, Dλρ, has made it possible

to solve the problem.

In this work three kinds of uncertainty are taken into account: the relationship

between response and explanatory variables; the relationship between the observed

data and the universe of possible data (randomness due to the generation of the

data); the observed value of the variables (imprecision). The first one has been

handled by means of linear regression models, the second and the third ones by

considering fuzzy random variables.

Some basic concepts have been introduced, in order to handle random experi-

ments for which the observed characteristic is imprecise on the results. It has been

also discussed the adequacy for the practical situations with which we treat and its

coherence. Some regression models in a fuzzy framework have been introduced. In

particular, the model proposed by Diamond (1988), that is one of the first works

with fuzzy elements using the least squares criterion, and the model introduced by

González-Rodŕıguez et al. (2009) that considers fuzzy random variables and it is the

first work that presents a complete solution, have been briefly described. Finally the

model analyzed by Coppi et al. (2006) that proposes a linear regression model with

LR fuzzy response, from which this work has taken inspiration. The authors have

taken into account the three kinds of uncertainty but they handle the randomness

by means of a bootstrap procedure. This model has not been formalized based on

fuzzy random variables, and to develop this formalization the new regression model,

presented in this work, has come up.

The concept of variance in the sense of the Dλρ-metric by following the ideas in

Körner (1997) and Lubiano et al. (2000) has been defined and some properties, nec-

essary to apply the least squares criterion, have been proved. In further research an
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asymptotic distribution of the sample variance could be determined for developing

confidence intervals and hypothesis testing procedures.

A wide statistical analysis concerning a regression model to express an impre-

cise response as a function of a real explanatory variable has been carried out. In

details, the least squares estimators have been found, and some confidence inter-

vals and testing procedures have been developed on the basis of their asymptotic

distributions. Some bootstrap techniques have been considered in order to improve

the empirical results for small/moderate sample sizes and we have shown by means

of some simulations their suitability in practice. A determination coefficient has

been defined and an estimator has been analyzed. In addition a test to check the

goodness-of-fit of the model has been developed on the basis of this estimator. Some

analysis of power of the tests through local alternatives has showed that the test is

asymptotically consistent.

All these analysis have been also developed in the multiple case, that is simply a

multidimensional extension of the simple case.

For future works several open problems can be indicated. In particular, it could

be interesting to find an appropriate family of functions g and h to transform the

spreads of the LR response variables and to introduce semi-parametric models. Since

also the explanatory variables in some cases have to fulfill some conditions, in or-

der to face this restriction non-linear models could be introduced. Concerning the

multiple regression model, it could be interesting to analyze the problem of mul-

ticollinearity, for example by means a preliminary Principal Component Analysis,

and to study a selection procedure to obtain the appropriate number of explanatory

variables to be used, based on the goodness-of-fit coefficient.
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Krätschmer, V. (2002b). Some complete metrics on spaces of fuzzy subsets. Fuzzy

sets and systems. 130, 357–365.
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Näther, W. (2000). On random fuzzy variables of second order and their application

to linear statistical inference with fuzzy data. Metrika. 51, 201–221.
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