
High Precision, High Performance
Simulations of Astrophysical Stellar Systems

Mario Spera

January 2014

Sapienza - Universita di Roma

Facolta di Scienze MM. FF. NN.

Dipartimento di Fisica

Tesi di dottorato in Astronomia XXVI ciclo

High Precision, High Performance

Simulations of Astrophysical

Stellar Systems

Candidate Mario Spera

Supervisor Prof. Roberto Capuzzo Dolcetta

January 2014

Mario Spera

High Precision, High Performance Simulations of Astrophysical Stellar Systems

Tesi di dottorato in Astronomia XXVI ciclo, January 2014

Supervisor: Prof. Roberto Capuzzo Dolcetta

Sapienza - Universita di Roma

Dipartimento di Fisica

Facolta di Scienze MM. FF. NN.

Piazzale Aldo Moro 5

00185 Roma

Contents

Summary 1

1 The N-body problem 5

1.1 Historical Introduction 5

1.1.1 The King Oscar’s Prize 5

1.1.2 Attempts to find an exact solution 6

1.1.3 The importance of computing facilities 7

1.1.4 Past of the numerical N -body simulations 8

1.2 Mathematics of the N -body problem 12

1.2.1 Newton’s law and equations of motion 12

1.2.2 The integrals of the motion 15

1.2.3 The virial theorem 19

1.2.4 Typical time scales of an N-body system 25

1.3 The numerical solution of the N -body problem 31

1.3.1 The double divergence of the potential 31

1.3.2 Numerical methods 34

2 The Graphics Processing Unit and CUDA 51

2.1 Historical introduction . 51

2.2 The modern GPU architecture 53

3 The N-body code HiGPUs 61

3.1 Motivation . 61

3.2 Main features of HiGPUs 64

3.2.1 Parallelization scheme 64

3.2.2 The Bfactor variable 65

v

3.2.3 Precision used in HiGPUs 67

3.2.4 Tested architectures 69

3.3 Results of performance tests on a hybrid supercomputer 69

3.3.1 Energy and angular momentum conservation . . . 71

3.3.2 Code scalability 74

3.3.3 Speedup and Efficiency 75

3.3.4 Code profiling 79

3.3.5 Consequences of block time steps 84

3.3.6 GPU memory used by HiGPUs 87

3.3.7 Hardware maximum performance 88

3.4 Final observations . 90

3.5 HiGPUs on single, different GPUs 93

3.5.1 Hardware . 95

3.5.2 Performance measurements 97

3.5.3 Astrophysical models 99

3.5.4 Performance results 102

3.5.5 Other important code sections 109

3.6 A possible application: the Milky Way Nuclear Star Cluster115

3.7 Final remarks and future developments 121

4 The initial conditions of stellar systems 125

4.1 The distribution function f (x,v, t) 125

4.1.1 Ergodic distribution functions 128

4.1.2 The Plummer distribution function 131

4.1.3 The King distribution function 133

4.2 Generating initial conditions 135

4.2.1 Positions . 135

4.3 Velocities . 136

4.4 Numerical implementation 138

4.4.1 Initial conditions for ψ and ψ
′

. 138

4.4.2 The evaluation of dρ
dψ 141

4.4.3 The numerical evaluation of f (E) 142

4.5 Time Units . 142

4.6 Practical tests . 144

4.7 Stability tests . 156

5 Regularization methods for the N-Body problem 165

5.1 Introduction . 165

5.2 The Burdet-Heggie regularization 166

5.3 The Kustaanheimo-Stiefel regularization 169

5.4 Generalization to N bodies 172

5.4.1 The Chain treatment 172

5.4.2 The Mikkola’s Algorithmic Regularization 174

5.4.3 Our implementation and tests 181

6 The emerging state of open clusters after

their violent relaxation 191

6.1 Introduction . 191

6.2 Modelization . 194

6.3 Results . 197

6.3.1 1024 stars, no gas, no central black hole 198

6.3.2 1024 stars, no gas, central black hole included . 203

6.3.3 1024 stars, gas included, no central black hole . 204

6.4 Final considerations . 207

Acknowledgments 211

Bibliography 217

Summary

The main target of this work is the discussion of the modern techniques

(software and hardware) apt to solve numerically the N -body problem

in order to develop a numerical code with highest as possible speed and

accuracy performance. In particular, we will introduce a new high preci-

sion, high performance, code (called HiGPUs) which solves the N -body

problem exploiting both a high order time integration algorithm (the

Hermite’s 6th order integrator) and the modern hardware represented

by Graphics Processing Units (GPUs), which work as powerful comput-

ing accelerators. I will describe in details HiGPUs showing how GPUs

can be efficiently exploited for gravitational N -body simulations up to

a large number of particles (N ≃ 107) with a degree of precision and

speed impossible to reach until 5 years ago. Being quite new technolo-

gies, the GPUs have not been fully exploited so far; this is why, in this

Thesis, I will discuss modern numerical techniques associated with the

N -body problem, starting from the set up of initial conditions up to the

computation of the dynamical evolution of dense and populous stellar

systems using GPUs and the two main languages (OpenCL and CUDA)

apt to program them.

I will present also results of the application of HiGPUs to study the

emerging state, and rapid mass segregation, of intermediate-N , young,

stellar systems after their violent relaxation process. These objects have

been investigated simulating systems composed by stars of different

1

masses, including a central star-mass black hole as well as a model of

gas residual of the mother cloud, starting from “cold” to “warm” initial

conditions. Moreover, thanks to the high adaptability of the developed

software, our group is investigating the formation and the evolution of

the innermost region of galaxies (Nuclear Star Clusters). This is, surely,

a modern topic, which has not yet received an adequate self-consistent

explanation neither from theoretical nor a numerical point of view.

In chapter 1, I will present an historical introduction of the N -body

problem, describing also its mathematical formulation and the issues

which have to be faced when it is considered from a numerical point of

view. In chapter 2, I will discuss some modern technologies, in particu-

lar GPUs, that can be efficiently used to solve numerically the N -body

problem while chapter 3 is dedicated to our new code HiGPUs . I de-

scribe also the tests done on a modern GPU-supercomputer (hosted by

the italian supercomputing consortium CINECA) exploiting simultane-

ously the power of 256 GPUs. I tested the HiGPUs performance when

running on single, different GPUs in order to understand what of them

are the best choice to perform astrophysical N -body simulations with

convenient balance of accuracy and speed performance. This study

is important because it gives a practical contribution to increase the

limit of the number of particles that, nowadays, can be simulated using

modern hardware and software. In chapter 4, I will face the important

problem of generating initial conditions for stellar systems in spherical

symmetry describing both the mathematical and numerical tools which

stand behind this problem and introducing a numerical utility, which

will be soon included in HiGPUs , that considers also the presence of

a central super massive compact object (for example, a super massive

black hole). In chapter 5 I will discuss the main characteristics of a

numerical routine, which will be included soon in HiGPUs , which im-

plements the so called Mikkola’s algorithmic regularization of the N -

body problem which allows to eliminate the ∝ 1/r divergence of the

newtonian pair gravitational potential which causes obvious numerical

2 Summary

problems. Finally, as said before, in chapter 6, I will present some (pre-

liminary) results concerning the application of the code HiGPUs to study

the emerging state of young stellar systems from their violent relaxation,

focusing our attention on their resulting degree of mass segregation.

Summary 3

1The N -body problem

1.1 Historical Introduction

The classical gravitational N -body problem consists in studying the mo-

tion of N point-like masses, placed at points P1, P2, . . . , PN with veloc-

ities v1,v2, . . . ,vN , interacting through no other forces than their mu-

tual gravitational attraction which is expressed explicitly by the New-

ton’s law (1687, Philosophiae Naturalis Principia Mathematica). The

development of an appropriate mathematical model for this problem

represented a reliable approach for astrophysicists who wanted to give

an exhaustive representation of objects from planetary systems up to

galaxy clusters. Already in 1710, Johann Bernoulli provided a complete

solution for the classical two-body problem although more than 250

years passed before Q. Wang in 1991 [96] got to a convergent power

series solution for a generic number of bodies.

1.1.1 The King Oscar’s Prize

The mathematical and numerical solution of the N -body problem has

always been considered of primary importance insomuch as between

1885 and 1886 a prize, in honour of King Oscar II of Sweden and Nor-

way, was advertised. For this occasion, Karl Weierstrass formulated the

first question which had to be answered no later than the 21st January

1889 (the King’s 60th birthday). The problem read:

Given a system of arbitrarily many mass points that attract

each other according Newton’s laws, under the assumption

that no two points ever collide, try to find a representation of

5

the coordinates of each point as a series in a variable that is

some known function of time and for all of whose values the

series converges uniformly. [...] In the event that the problem

remains unsolved at the close of the contest, the prize may

also be awarded for a work in which some other problem of

Mechanics is treated as indicated and solved completely.

Unfortunately, none of the 12 papers submitted solved the main prob-

lem even if the prize was awarded to Henri Poincaré for his work on

Hamiltonian systems.

1.1.2 Attempts to find an exact solution

In 1887, the German mathematician Ernst Heinrich Bruns showed that

“the N-body problem has no integrals-algebraic with respect to the time, the

position and the velocity coordinates-except the 10 known ones”. There-

fore, having ten known integrals of motion, the system of 6N equations

in 6N unknowns is reduced to 6N − 10 variables. Actually, it is possible

to show that the N -body problem can be reduced to the order 6N − 12

by eliminating the explicit dependence on time and by applying the

method of the elimination of nodes (see, for example, Boccaletti and

Pucacco [19]). The latter strategy is due to Jacobi who applied this tech-

nique to the case of N = 3 but it can be shown easily that still holds for

a generic N . It is straightforward that for typical astrophysical values of

N , the knowledge of just 12 integrals of the motion is not enough to ob-

tain a complete mathematical characterization of the N -body problem.

Because of these just partial results, the Scientific Community began

to believe that the problem was unsolvable and, still nowadays, some

wrong echoes tend to resound in the air. Actually, from a purely mathe-

matical point of view, the N -body problem is solvable, in fact, it can be

shown that a real analytical solution exists (by virtue of the Cauchy’s ex-

istence theorem), in an open time interval |t− t0| < δ, provided that the

6 Chapter 1 The N -body problem

initial conditions are such that the quantity ρ = mini6=j rij(t0), where

rij(t0) is the distance between the i -th and j-th particle at time t0, is

strictly positive. Indeed, this is a local solution but, it can be analytically

extended for t > t0 + δ by treating the singularities (collisions between

two particles) as elastic bounces. This is the approach followed by Karl

Sundman who obtained, in 1913, a series solution in power of t1/3, for

the three-body problem, uniformly convergent for all real value of t.

His solution, unfortunately, is not applicable if the initial conditions are

such that the system collapses producing a three-body collision (corre-

sponding to an initial angular momentum equal to zero); this because

of the inapplicability of the theory of the two-body elastic collision to

three bodies.

In 1991, Quidong Wang, a Chinese student, provided, definitively, the

solution (in terms of power-series) of the N -body problem [96]. His

solution, although elegant and remarkable from a mathematical point

of view, is not practically relevant. In fact it has a significantly slow con-

vergence and one should sum a very large number of contributions to

get to a sufficiently accurate solution of the motion of the particles on

a quite short interval of time. This explains why, probably, this theoreti-

cally brilliant approach is not widely known and, at the same time, why

the main way to solve the N -body problem is numerical.

1.1.3 The importance of computing facilities

It is already clear that themes apparently a bit far from purely astro-

physical studies such as advanced numerical techniques (closer to math-

ematics) and the development of ever growing computing technologies

(closer to computer science) becomes of very big relevance when we

talk about the numerical solution of the N -body problem or, more in

general, about the modern way to do scientific research. In particular,

in the last 20 years, computers and supercomputers have led to a deep

1.1 Historical Introduction 7

transformation of the way to do science yielding to a new model of sci-

entist which is nowadays far to be the character armed with pen and

paper alone in his laboratory on his desk. The modern scientist has

also a deep technical knowledge on the ways to model, manage, anal-

yse and visualize a scientific problem using the most efficient ways of-

fered by the modern technologies. Today, thanks to this large view and

to ever growing equipments, scientific problems related to medicine,

physics, climate, energy supplies, global food and water, car crashes, air

pollution, and many others, that some decades ago could not be faced

because of their considerable complexity, can be now investigated with

an unprecedented degree of precision, speed, cheapness and elegance

without too much effort. Obviously, the same holds for Astrophysics too.

In fact, considering the typical astrophysical scales, formulas and num-

bers, sooner or later, the ability to easily transform the theoretical model

to a numerical one and, therefore, the efficient use of (super)computers

in order to solve it, is inevitable. This is something more than pure as-

trophysics because it requires both a deep knowledge of the scientific

problem which has to be faced and the capability to think again of that

model using a completely different point of view in order to begin to

understand sides which where hidden before when it was written on a

piece of paper in the form of complicated and, very often, analytically

unsolvable formulas.

1.1.4 Past of the numerical N -body simulations

The development of advanced numerical techniques associated with the

new hardware technologies has been fundamental for the N -body prob-

lem; in fact, although the mathematical formulation has remained in-

tact since ∼XVIII century, we have had to wait the year 1941 to see

the first simulation of a self-gravitating N -body system. It was carried

out by Holmberg [54] even if, at that time, computers and, generally,

computational facilities did not exist yet.

8 Chapter 1 The N -body problem

Figure 1.1: This figure has been taken by the original paper by Holm-

berg [54]. This figure shows the tidal deformation resulting

from the mutual interaction of two galaxies, sampled using

37 light bulbs each, which, in the left panel are assumed in

clockwise rotation while in the right panel their rotation is

counterclockwise. This is considered the first simulation of

a N -body system.

Nevertheless, he found a strategy to calculate reciprocal interactions

by elegantly replacing gravitation by light. He used light bulbs, which

represented the individual mass elements, and measured the total light

along two different axes (x and y) by a combination of a photocell and

a galvanometer. Since the light obeys an inverse square law, just like

gravity, the data collected by Holmberg provided an estimate of the

gravitational field and the forces on the individual objects could be eval-

uated. With this experiment the scientist tried to study the interaction

between two massive objects, like galaxies, represented by two circu-

lar groups of lamps (A and B), each set with a diameter of 80 cm and

each composed by 37 elements (see Fig. 1.1). Holmberg spent weeks

in order to set-up and perform this 74-body simulation and the time ex-

tension was quite short. For more efficient simulations, we have to wait

for the 1960s; in fact, in these years, the first digital computers were

1.1 Historical Introduction 9

introduced. Although these general purpose machines were very heavy,

large, difficult to program and expensive in terms of power consump-

tion, they represented a significant step forward with respect to the

Holmberg’s experiment yielding to a quicker evaluation of the mutual

distances between the N particles. Thanks to the newer technologies, in

1963 a simulation with N = 100 was performed by Sverre Aarseth who

can be considered, in all respects, the father and the main pioneer of the

gravitational N -body simulations. Moreover, the simulation brought to

an end in 1963 carried out some general results on mass segregation

because a mass spectrum for the stars was included. Nevertheless, the

first integration methods were very primitive and largely based on tri-

als and errors but every scientist involved in the N -body sphere tried

to develop something newer, more precise and computationally more

efficient improving accuracy and speeding-up the algorithms. In 1985

the number of particles that a computer could evolve for a certain (rela-

tively short) astrophysical time with an acceptable accuracy was ∼ 1000

(see Aarseth [1]).

Around the end of years 80s, some special purpose machines were de-

veloped to increase further the number of particles which could be nu-

merically evolved. Very famous (at least in the field of numerical and

theoretical astrophysics) is the so called GRAvityPipE (GRAPE) project

founded by Sugimoto, Hut and Makino. The GRAPE boards constitute

actual “gravity accelerators” because they are thought to accelerate the

evaluation of the mutual distances between all the N particles. They

are attached to a host workstation achieving spectacular speedups and

they are in use still nowadays (GRAPE-6). The main disadvantages is

a relatively short mean time between failure, a limited availability and

the on-board memory to store data for the N stars.

In the meanwhile, computing machines started to become quite popu-

lar so that, today, most of us have a computer (desktop, notebook or

recent smartphones too) that can be considered, in all respects, a per-

10 Chapter 1 The N -body problem

sonal, always available, powerful computing machine. Initially, Central

Processing Units (CPUs), which perform the basic arithmetical, logical,

and input/output operations on a generic computer, where composed

by a single main unit (core) and this was true within 2005. Before

2005 the strategy to improve performance was, in broad lines, increas-

ing both the speed (clock frequency) of the single core and the cache

memory (small in size but very fast in terms of access). After 2005, be-

cause of the even growing complexity of the operations (also scientific)

to accomplish, the idea of “parallelism” gained ground. The clock fre-

quency of the core could be significantly reduced, improving power con-

sumption, because, thanks to this approach, many calculations could be

carried out simultaneously dividing a large problem into smaller ones.

This was a very important step for N -body simulations because the step

which evaluates the mutual forces, being the force between particles i

and j completely independent from that between particles k and s with

i 6= j 6= k 6= s, can be performed in parallel. If we suppose to have η

cores on a single workstation, one very simple approach is to distribute

particles in equal parts over the cores in order to calculate forces simul-

taneously. In this way the computing time, theoretically, decreases by

a factor η with respect to that spent using just one core. Nowadays it

is very common to find on the market CPUs specifically dedicated to

High Performance Computing (HPC) composed by 6 or 8 physical cores

(12 or 16 virtual) and almost every notebook or desktop pc harbours,

at least, a quad-core CPU. However, when we deals with a system with

a number of stars close to the astrophysical reality, N & 105, exploit-

ing a multi-core CPU could not be enough to get scientific results in

a reasonably short computing time. All the N -body simulations, until

∼2006, were made using CPUs or special-purpose machines. In the last

5-10 years, a great help, in this sense, came from the gaming industry

(even if not specifically for scientific research but, rather, for performing

specific rendering applications to boost the frame-rate of video-games):

Graphics Processing Units (GPUs). Graphic devices are slowly replac-

ing CPUs and dedicated hardware for a series of numerical applications

1.1 Historical Introduction 11

because they are getting cheaper and faster while keeping the electric

power consumption at very low levels. A GPU is particularly suitable for

parallel computing because, in a video-frame, many pixels should be up-

dated at the same time at fast rates and, at the same time, each pixel

does not require information from other pixels. The growth of GPUs as

means for scientific computing is strictly linked with the introduction

of Compute Unified Device Architecture (CUDA, 2006), introduced by the

nVIDIA corporation; in fact, thanks to this novelty, nVIDIA graphic cards

became easily programmable. CUDA (now at version 5.5) is of simple

use because is based on the C programming language even if its limita-

tion is that it can be used to exploit GPUs of the nVIDIA make only. Re-

cently, another GPU programming language has been introduced by the

Khronos group: Open Computing Language (OpenCL, 2008). OpenCL is

based on the programming language C99 and can be used to manage

GPUs of different vendors (nVIDIA, AMD, etc. . .) as well as CPUs.

1.2 Mathematics of the N -body

problem

1.2.1 Newton’s law and equations of motion

We start our mathematical discussion considering a particle of mass M ,

placed at the origin of a Cartesian coordinate system, and a vector r

which gives the position of a particle of mass mp, placed at a generic

point P (x, y, z). The force acting on this particle, according to Newton’s

law, is

F = −GMmp

r2
er (1.1)

where G is the universal gravitational constant, er = r
r is the radial unit

vector, which indicates that the force is directed along the line joining

the two particles, and the minus sign denotes an attractive force. We

12 Chapter 1 The N -body problem

define the single-particle potential U(x, y, z) as the scalar function such

that

∇U = F (1.2)

where

∇ ≡
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
. (1.3)

Given that it is possible to write

∇GMmp

r
= −GMmp

r2
∇r = −GMmp

r2

r

r
= −GMmp

r2
er (1.4)

we obtain

U(x, y, z) = U(r) = G
Mmp

r
. (1.5)

Introducing the independent variable t, which represents time, the equa-

tion of the motion of the individual particle writes

mpr̈ = −GMmp

r3
r (1.6)

which, completed with a set of initial conditions, leads to

r̈ = −GM
r3 r

r(t0) = r0

ṙ(t0) = ṙ0

. (1.7)

This constitutes a set of differential equations which represents a Cauchy’s

problem of one second-order vector equation or, equivalently, of three

second-order scalar equations which can be reduced to a system of six

first-order, scalar equations putting ṙ = v and v = −Gm
r3 r. The case

of N bodies is an immediate generalization of the two-body treatment.

The resulting force Fi, acting on the i-th particle, is the sum of the forces

Fij due to the attraction of all the other N − 1 bodies. Therefore

Fi =
N∑

j=1
j 6=i

G
mimj

r3
ij

(rj − ri) (1.8)

1.2 Mathematics of the N -body problem 13

where we have introduced

rij = |rj − ri| =
√

(xj − xi)
2 + (yj − yi)

2 + (zj − zi)
2 (1.9)

which is the module of the distance between particle i and particle j.

First of all, it is worth noting the symmetry of the gravitational force; in

fact, from (1.8), we have

Fij = −Fji (1.10)

which is an important property that we will use widely to show some

theoretical peculiarities of the N -body problem. It can be shown that

the generalization of the potential function U is

U(r1, r2, ..., rN) ≡ 1

2

N∑

i=1

N∑

j=1
j 6=i

G
mimj

rij
(1.11)

being trivial to prove that ∇kU = Fk. At this point it is possible to gen-

eralize system 1.7 in order to obtain the mathematical representation of

the classical gravitational N -body problem which is characterized by a

system of N second-order differential equations

r̈i =
∑N
j=1
j 6=i

G
mj
r3
ij

(rj − ri)

ri(t0) = ri0

ṙi(t0) = ṙi0

. (1.12)

System 1.12 is reducible, like the two-body case, to a system of 6N

first-order scalar equations putting ṙi = vi and vi = 1
mi

∂U
∂ri

. Although

the theoretical formulation of the problem is very simple, its numerical

resolution, as we will discuss later on, presents significant difficulties.

14 Chapter 1 The N -body problem

1.2.2 The integrals of the motion

First of all, it is worth formulating a definition of integral of motion.

Referring, specifically, to an N -body system, an integral of motion is any

function I of the phase-space coordinates of the N stars only, (x,v),

which is constant along the motion of a generic particle, that is

I [x(t1),v(t1)] = I [x(t2),v(t2)] ⇒ dI [x (t) ,v (t)]

dt
= 0 . (1.13)

The integrals which are able to confine orbits in the phase-space are

called isolating integrals and, it can be shown that, for an N -body sys-

tem, up to 12 isolating integrals can be found; specifically, here we focus

our attention on ten of them which can be determined using the Newto-

nian formalism while the remaining 2 can be made explicit using other

more sophisticated procedures (for a detailed discussion about this topic

see, for example, [19]).

Total energy conservation

Let us start examining the total energy of the system E, which is

E = T − U =
1

2

N∑

i=1

miṙ
2
i − 1

2

N∑

i=1

N∑

j=1
j 6=i

G
mimj

rij
(1.14)

where T is the total kinetic energy and U has already been defined in

(1.11). It can be shown that the energy E is an integral of the motion

by demonstrating the validity of the relation

Ė = Ṫ − U̇ = 0 . (1.15)

In fact, we know that

1.2 Mathematics of the N -body problem 15

Ṫ =
1

2

N∑

i=1

2miṙi · r̈i =
N∑

i=1

miṙi · r̈i (1.16)

and, since the potential function depends on time through the positions,

we may write

U̇(x1, y1, z1, ..., xN , yN , zN) =
N∑

i=1

(
∂U

∂xi

∂xi
∂t

+
∂U

∂yi

∂yi
∂t

+
∂U

∂zi

∂zi
∂t

)
=

N∑

i=1

∇iU ·ṙi .

(1.17)

Having Fi = mir̈i = ∇iU , substituting into (1.17) we obtain

U̇ =
N∑

i=1

miṙi · r̈i = Ṫ (1.18)

therefore, we have proven that the total energy is one of the integrals of

the motion letting the order of the system (1.12) be reduced to 6N−1.

Total angular momentum conservation

The total angular momentum of an N -body system is given by

L =
N∑

i=1

miri ∧ ṙi (1.19)

so, we will show that, for an isolating system, L̇ = 0 and, consequently,

the total angular momentum is a further integral of motion. To prove it,

first of all, we need to recover the second cardinal equation of dynam-

ics. It states that the time derivative of the total angular momentum

of a generic system is equal to the sum of the resulting moment of the

external (M(ext)) and internal (M(int)) forces, i.e.

L̇ = M(ext) + M(int) =
N∑

i=1

ri ∧ F
(ext)
i +

N∑

i=1

ri ∧ F
(int)
i . (1.20)

16 Chapter 1 The N -body problem

In our case, if we consider an isolated N -body system, M(ext) = 0 there-

fore we have

L̇ =
N∑

i=1

ri ∧ Fi . (1.21)

Thanks to the relation (1.8), we can replace the quantity Fi in the ex-

pression (1.21) obtaining

L̇ =
N∑

i=1

N∑

j=1
j 6=i

ri ∧ Fij . (1.22)

The summation (1.22) contains both the terms ri ∧ Fij and rj ∧ Fji so,

instead of writing a double sum, respectively on the index i and j, we

can write

L̇ =
N∑

(i,j)=1
j 6=i

(ri ∧ Fij + rj ∧ Fji) (1.23)

which represents a single summation on the couple of values (i, j). Specif-

ically, the formula (1.23) contains only
(N

2

)
= N(N−1)

2 terms of type

(ri ∧ Fij + rj ∧ Fji). Taking into account the relation (1.10), we have

L̇ =
N∑

(i,j)=1
j 6=i

(ri ∧ Fij − rj ∧ Fij) =
N∑

(i,j)=1
j 6=i

G
mimj

r3
ij

(ri − rj) ∧ (rj − ri) = 0

(1.24)

where, in the last passage, we have used the explicit expression of Fij

given by (1.8). From the expression (1.24) follows that L is an integral

of motion, thing that allows to reduce the order of the system (1.12) to

6N − 4.

Centre of mass position and velocity

To get to the explicit expression of another integral, let us consider the

equation of the motion

1.2 Mathematics of the N -body problem 17

mir̈i =
N∑

j=1
j 6=i

G
mimj

r3
ij

(rj − ri) ; (1.25)

summing both sides over i, we obtain

N∑

i=1

mir̈i = 0 =
N∑

i=1

N∑

j=1
j 6=i

G
mimj

r3
ij

(rj − ri) = 0 (1.26)

because we have obtained a sum of terms rj − ri and ri− rj which have

opposite signs and cancel each other two by two. The relation (1.26)

can be expressed in a more useful form introducing the position of the

centre of mass of the system

rc.m. =

∑N
i=1miri∑N
i=1 mi

=
1

M

N∑

i=1

miri (1.27)

where M is the total mass of the system. Therefore, the relation (1.26)

is equivalent to

r̈c.m. = 0 (1.28)

that is

ṙc.m. =
1

M

N∑

i=1

miṙi=
Q

M
= constant (1.29)

which express that the total momentum Q is an integral of motion and

it allows us to reduce the order of the system (1.12) of 3 units (one

per component). If we choose a new system of reference such that the

initial velocity of the centre of mass is null we have

ṙc.m. =
Q

M
= 0 (1.30)

and, integrating again, we obtain another integral of motion such that

rc.m. = constant = 0 (1.31)

18 Chapter 1 The N -body problem

which, provided to put the origin of the system of reference in the centre

of mass, definitively, reduces the order of the main system to 6N −10.

1.2.3 The virial theorem

Although Clausius in 1870 formulated the virial theorem to study the

mechanical origin of heat [33], his theory, very soon, was adapted to

other problems, including stellar dynamics and, specifically, the N -body

problem. To derive the compact expression of this theorem, we may

start from the equation of the motion of a generic particle k, belonging

to an N -body system, written in terms of the derivative of the potential

function

mkr̈k =
∂U

∂rk
. (1.32)

Taking into account that

1

2

d2

dt2
(rk · rk) =

d

dt
(rk · ṙk) = |ṙk|2 + rk · r̈k (1.33)

and multiplying (1.32) by rk, we get

1

2

d2

dt2

(
mkr

2
k

)
= mk |ṙk|2 + rk · ∂U

∂rk
. (1.34)

Summing over k and multiplying by 1
2 , we have

1

4

d2

dt2

N∑

k=1

mkr
2
k =

N∑

k=1

1

2
mk |ṙk|2 +

1

2

N∑

k=1

rk · ∂U
∂rk

. (1.35)

If we introduce the polar moment of inertia of the system

I =
N∑

k=1

mkr
2
k (1.36)

and, if we remember that the first term on the right side of equation

(1.35) is the total kinetic energy of the system T , we can express the

relation (1.35) in a more elegant form

1.2 Mathematics of the N -body problem 19

1

4

d2I

dt2
= T +

1

2

N∑

k=1

rk · ∂U
∂rk

. (1.37)

This is not the final form of the virial theorem yet because it is possi-

ble to express the so called Clausius’ virial (the last term on the right

side of equation (1.37)) in a more convenient form. To do this, it is

worth noting that a real function f(r), of m real variables, is said to be

homogeneous of degree n if

f(αr) = αnf(r) (1.38)

∀α ∈ ℜ (α 6= 0) and ∀r ∈ ℜm. From (1.38) it can be shown that the

potential function U(r1, r2, ..., rN) is homogeneous of degree n = −1.

At the light of this property, we can write

∂U(αr)

∂α
=
∂(αnU)

∂α
= nαn−1U . (1.39)

Nevertheless we have

∂U(αr)

∂α
=

N∑

i=1

(∇αriU) · ri . (1.40)

Since α is arbitrary, we choose α = 1 and, using both the equalities

(1.39) and (1.40), we obtain

N∑

i=1

∇riU · ri = −U . (1.41)

Substituting (1.41) in (1.35) we get

1

2
Ï = 2T − U (1.42)

which represents the final form of the virial theorem. Sometimes, the

potential energy Ω = −U is introduced and the equation (1.42) takes

the form

2T + Ω =
1

2
Ï (1.43)

20 Chapter 1 The N -body problem

which can also be expressed, taking into account thatE = T−U = T+Ω,

in the following way

E + T =
1

2
Ï . (1.44)

Consequences of the virial theorem

Generally, an N -body system is said to be stable, in the sense that it

remains confined to a limited region of the space, if the following con-

ditions are verified :

1. rij(t) 6= 0 for every i 6= j at any t;

2. |rij(t)| < A for any t , where A is a positive constant.

A necessary condition for this to happen is that E < 0. To demonstrate

this, we can start from (1.44) because, if E > 0, we may write

1

2
Ï ≥ E (1.45)

and, integrating two times, we have

I(t) ≥ Et2 + İ(t0)t+ I(t0) (1.46)

which grows quadratically in t yielding to I → ∞ when t → ∞, so,

from (1.36), rk → ∞ at least for one value of k and this does not verify

the condition listed above with the number 2. Therefore E < 0 is a

necessary, but not sufficient, condition; in fact, in anN -body system, the

energy per particle does not represent a conserved quantity, therefore,

although E < 0 is verified, a particle in position rp , locally, can reach

(and maintain) an energy Ep such that

Ep =
1

2
mpv

2
p(rp) − U(rp) > 0 (1.47)

1.2 Mathematics of the N -body problem 21

that is

vp(rp) >

√
2U(rp)

mp
= v(p)

e (rp) (1.48)

where v
(p)
e (rp) indicates the escape velocity for the particle p at position

rp. In this case, the particle p can escape from the system and the

condition number 2 is no longer verified.

The virial theorem can give us some information about the global be-

haviour of the system. To show it, we now introduce the idea of time

averaging. Given a quantity A(t), its average over the time interval (0, t)

is given by

〈A〉t =
1

t

t∫

0

A(τ)dτ . (1.49)

Now, if we apply the definition (1.49) to (1.42), averaging over a time

t, we obtain
İ(t) − İ(0)

2t
= 2 〈T 〉t − 〈U〉t (1.50)

and, in addition, if the system is limited in the phase space, we can

affirm that İ(t) − İ(0) is a limited quantity and, if t → ∞, we have

2 〈T 〉∞ − 〈U〉∞ = lim
t→∞

İ(t) − İ(0)

2t
= 0 . (1.51)

Therefore, a limited system, after a long time, is said to be virialized if

it has an average virial ratio 〈Q〉∞ such that

〈Q〉∞ =
2 〈T 〉∞
〈U〉∞

= 1 . (1.52)

Generally, when Ï > 0 it is clear that T > −E and the system, glob-

ally, tends to expand. On the contrary, when Ï < 0 we have T < −E
and the system tends to contract. However, even if a system is initially

characterized by a value Ï 6= 0, it tends to a virialized condition, which

corresponds to gravitational equilibrium, on a time comparable to the

relaxation time (see section 1.2.4). This stationary state is reached af-

22 Chapter 1 The N -body problem

ter a sequence of expansions and contractions which tend to fade with

time and that may well be seen by drawing a plot showing the trend

of the virial ratio in time for a generic simulation of a N -body system

starting from Q 6= 1. In this plot, after some relaxation times, it can be

noted that the virial ratio fluctuates around the value 1 with statistical

fluctuations of the order of 1/
√
N . An example of the typical trend of

the virial ratio for a generic N -body system is shown in Fig, 1.2. There

1 10
0,5

0,6

0,7

0,8

0,9

1,0

1,1

1,2

1,3

1,4

V
ir

ia
l r

at
io

Time

 Virial ratio

Figure 1.2: This figure shows the trend of the virial ratio, in function of

time, for a N -body system composed by ∼ 32,000 particles

starting from an initial virial ratio equal to 0.5. It is evident

the decreasing amplitude of the oscillations of the virial ra-

tio, around the equilibrium value Q = 1.0, as the system

evolves in time.

are some astrophysical cases in which the virialization of the system is

not verified. This, for example, is what we observed performing some

simulations of violent collapses starting from N -body systems whose

particles were initially posed on rest, Q = 0 (see Chapter 6). This is

mainly due to the presence of a significant percentage of high velocity

1.2 Mathematics of the N -body problem 23

stars that escape from the system just after the violent collapse. This,

indeed, violates the condition for which the system must have a limited

phase-space. In fact, it is not possible to choose a positive constant A

such that |rij(t)| < A for any t because the members who escape from

the N -body system always increase their distance from a fixed point in

the space, getting to infinity for t → ∞ maintaining approximatively a

constant velocity. Therefore, in such cases, Q & 1 and the larger the

percentage of escape stars, the larger the deviation from 1 of the virial

ratio. The explicit expression of the virial theorem is a powerful tool

which, often, is used to argue some intrinsic characteristics of astrophys-

ical systems from observable quantities. To show this, it is convenient

to write down the general expression of the total gravitational potential

energy which is

U =

∫
d3xρ (x) · ∇φ (x) , (1.53)

where ρ (x) is the mass density profile of the system and φ (x) is the

gravitational potential. In the case of spherically symmetric system,

equation (1.53) can be simplified in

U = 4πG

∫ ∞

0
drrρ (r)M (r) . (1.54)

In general, for a generic N -body system, equation (1.54) is written in

another, simpler form, which is

U = α
GM2

R
(1.55)

where α is the so called form factor that, indeed, takes into account the

shape of the density profile of the system while R is the characteristic

dimension of the stellar system and M its total mass. For example,

for a uniform density distribution αu = 3
5 , for a Plummer model [82]

αu = 3
32π. Moreover, the total kinetic energy of the system may be

written as

T =
1

2
Mv2 (1.56)

24 Chapter 1 The N -body problem

where

v2 =

∑N
i=1 mi |vi|2∑N

i=1mi

. (1.57)

If a certain stellar system is stationary and consequently virialized, the

virial theorem in equation (1.51) may be therefore written again in the

form

Mv2 − α
GM2

R
= 0 . (1.58)

Relation (1.58) can be used to determine the so called virial mass of a

stellar system starting from the observational parameters v2 andR. This

way is useful to easily determine, for example, mass-luminosity ratios of

astrophysical systems, black holes masses or to highlight the presence

of dark matter.

1.2.4 Typical time scales of an N-body system

The relaxation time (tc) is one of the most important parameters used to

describe exhaustively the evolution of a generic stellar system. It is de-

fined as the time over which, as a result of collisions between particles,

a stellar system completely loses memory of its initial state. After this

time, a system is generally said to be relaxed. To find an approximated

expression of the relaxation time, we consider a test particle, with mass

m, launched against a system composed by N particles of mass M (field

stars), from position r̃ → ∞ with velocity v along the x-axis. As we can

Figure 1.3: A simple scheme of a two-body collision with impact pa-

rameter b.

1.2 Mathematics of the N -body problem 25

see in figure (1.3), we assume that the impact parameter, related to the

generic field star, is b. Each close encounter produces a perturbation

δv⊥, directed along the y-axis, to the test particle’s velocity, but the

mean value 〈∆v⊥〉, summed over all the encounters, is zero because

the field stars are assumed to be distributed uniformly, therefore, to

get to an explicit expression of the relaxation time we will impose the

condition 〈
∆v2

⊥
〉

v2
≃ 1 (1.59)

which is equivalent to require that the generic test particle completely

loses memory of its initial trajectory. This simplified view will lead us to

an approach which is valid only under certain hypothesis which will be

clarified later in this thesis. Nevertheless, it is worth following this kind

of treatment because it allow us to obtain a very simple formula which,

anyway, maintains its validity for a significantly large number of stellar

systems. To obtain a relation for
〈
∆v2

⊥
〉
, we consider first the single

collision represented in figure (1.3); the module of the perpendicular

force F⊥, (i.e. the component along the y-axis), acting on the mass m,

can be written as

F⊥ = G
mM

r2
cos θ . (1.60)

If we assume that the perturbation to the velocity is small (i.e. δv⊥/v ≪
1, therefore we are excluding very close encounters between stars) we

can write

cos θ ≃ b

r
r2 ≃ x2 + b2 x = vt (1.61)

and, substituting into (1.60), we get

F⊥ = G
mMb

(v2t2 + b2)
3

2

= G
mM

b2
[(vt

b

)2
+ 1

] 3

2

= m
d

dt
v⊥ (1.62)

where, in the last passage, we have used the Newton’s second law of

motion. If we integrate the relation (1.62) with respect to time, we

have

26 Chapter 1 The N -body problem

δv⊥ =
GM

b2

+∞∫

−∞

[(
vt

b

)2

+ 1

]− 3

2

dt = 2
GM

bv
(1.63)

where the integral can be solved by putting vt
b = sinhx and noting that

d tanhx = (cosh x)−2 dx. The average number of collisions δnb, with an

impact parameter between b and b + δb, suffered by a particle crossing

a system with a typical dimension equal to R is

δnb = P (b,R) ·N (1.64)

where P (b,R) is the probability of the single close encounter which is

equal to the ratio between the geometric cross section of the collision

and the geometric cross section of the system. Therefore

δnb =
2πbdb

πR2
N =

2bN

R2
db (1.65)

and the mean quadratic variation of v⊥, due to the collisions δnb, can

be expressed as

〈
∆v2

⊥
〉
b

= δnbδv
2
⊥ =

8G2M2N

v2R2
d log b . (1.66)

To evaluate
〈
∆v2

⊥
〉

we need to integrate the relation (1.66) over all pos-

sible values of b. Considering that the gravitational force never vanishes,

it sounds reasonable to choose the typical dimension of the system, that

is R, as the maximum value of the impact parameter (bM). The min-

imum value could be bm = 0 but, in this case, integrating (1.66), we

should face a logarithmic divergence. Therefore, to get to an estimation

of bm, we use the distance of minimum approach between the two par-

ticle involved in the collision, that is r0 (see figure (1.3)). To evaluate

this quantity, we can use the conservation of the total system (2 bodies)

energy
1

2
µv2 =

1

2
µv2

0 −G
mM

r0
(1.67)

1.2 Mathematics of the N -body problem 27

where v0 is the velocity at the minimum distance, and µ = mM
m+M is the

reduced mass of the system. From (1.67) we obtain

1

2
µv2

0 −G
mM

r0
> 0 ⇒ r0 >

2G(M +m)

v2 v
2
0

v2

≃ 2G(M +m)

v2
= bm (1.68)

where we have used the approximation of small perturbation (
v2

0

v2 ≃ 1).

At the light of this, we can integrate the relation(1.66) between bm and

bM obtaining
〈
∆v2

⊥
〉

=
8G2M2N

v2R2
log Λ (1.69)

where the quantity log Λ = log bM
bm

has been introduced and, often, it is

called Coulomb logarithm. Dividing (1.69) by v2 we get

〈
∆v2

⊥
〉

v2
=

8G2M2N

v4R2
log Λ . (1.70)

From (1.42) we can evaluate the typical velocity of a particle in an N -

body system, provided that this system is in a stationary (virialized)

state. We have

2T − U = Mtotv
2
typical − α

GM2
tot

R
= 0 ⇒ v2

typical = α
GMtot

R
= α

GMN

R
(1.71)

where α is the already introduced form factor (see 1.2.3) and Mtot =

MN is the total mass of the system. Putting α = 1 and substituting into

(1.70), we obtain 〈
∆v2

⊥
〉

v2
=

8

N
log Λ . (1.72)

We now define another important time-scale for a N -body system: the

crossing time tc. This is defined as the time that a particle takes to cross

the typical dimension of the system to which it belongs. Therefore

tc =
R

v
=

R
3

2√
GMN

. (1.73)

28 Chapter 1 The N -body problem

Before the system relaxes, a particle will pass through the system a num-

ber of times nR which can be derived from the condition

〈
∆v2

⊥
〉

v2
nR ≃ 1 ⇒ nR ≃ 1

8

N

log Λ
(1.74)

so, definitively, we obtain

tr ≃ nRtc =
1

8

N

log Λ
tc (1.75)

where, generally, log Λ is replaced by logN because

log Λ = log
Rv2

2G(M +m)
≃ log

N

2
≃ logN (1.76)

where we have used the expression of the typical velocity (1.71) and

we have considered M ≫ m and logN ≫ log 2. According to for-

mula (1.75), a typical, virialized globular cluster, having a characteris-

tic dimension of about 10 pc and velocity 10 km/s, has a crossing time

tc ≃ 1Myr. Assuming that, on average, a typical globular cluster is com-

posed by ∼ 5 × 105 stars, its relaxation time is about 10 Gyr which is

approximatively the age of such astrophysical system. This means that

systems like globular cluster (but also open clusters) are dynamically

old. The immediate consequence is that, on average, all the systems

belonging to the latter category, appear to eyes almost identical. On the

contrary, it is possible to show that galaxies and galaxy clusters are dy-

namically young systems having a relaxation time of about 1013 years.

A more general form of the relaxation time

It is clear from the treatment followed in the previous paragraph that

the formula 1.75 relies on the assumption of virial equilibrium of the

system. an extended and exhaustive derivation of the relaxation time

can be found in [18]. Summarizing it in broad lines, a more general

1.2 Mathematics of the N -body problem 29

formulation can be obtained considering the so called master equation

which is the formula that expresses the evolution, in time, of the dis-

tribution function of a generic stellar system when close encounters be-

tween stars are taken into account. Using the Fokker-Planck approxima-

tion the master equation becomes expressible in terms of the so called

diffusion coefficients which are quantities that denote the expectation of

change of a specific phase-space coordinate (wi) per unit of time. Tak-

ing into account the diffusion coefficient indicated as D
[(

∆v2
‖

)]
, the

relaxation time is defined as

trel ≡ v2

D
[(

∆v2
‖

)] (1.77)

where v is the typical velocity of a star in the considered system. For

simplicity, if we assume that the velocity distribution of the field stars is

Maxwellian with dispersion σ, it is possible to obtain an explicit expres-

sion for D
[(

∆v2
‖
)]

and the equation (1.77) can be rewritten as

trel =
v2σX

4
√

2πG2ρ̃m̃ ln ΛG(X)
(1.78)

where ρ̃ is the mean mass density of the field stars, m̃ the mean stellar

mass, ln Λ is the Coulomb logarithm, X ≡ v√
2σ

and G(X) is a function

that can be expressed as

G(X) =
1

2X2

[
erf(X) − 2X√

πe−X2

]
. (1.79)

Assuming that the velocity of the test star is equal to the Maxwellian

dispersion i.e. v =
√

3σ and that G(X)
X does not vary rapidly with X it is

possible to obtain the following expression which is less approximated

than (1.75) because it does not assume, a priori, a stationary state or

constant density for the field stars

trel ≃ 0.34
σ3

G2mρ log Λ
. (1.80)

30 Chapter 1 The N -body problem

To obtain again the expression (1.75) from (1.78) we can proceed as

follows. First of all let us assume that the considered system is in virial

equilibrium. Using the formula (1.58) we get

v2 = 2α
GM

R
. (1.81)

Substituting in equation (1.78) and approximating log Λ with logN we

have

trel ≃
(

2αGM

R

) 3

2 1

4
√

6πG2ρm logN
. (1.82)

The total mass of the system can be written as M = Nm and, assuming

constant density, we can consider

ρ =
Nm
4
3πR

3
(1.83)

therefore, substituting into the expression 1.82 we get

trel ≃ 2
α

3

√
α

3

X

G(X)

N

logN

R
3

2

GM
(1.84)

which can be written in the form (1.75) using the expression (1.73) for

the system crossing time

trel ∝ N

logN
tc . (1.85)

1.3 The numerical solution of the

N -body problem

1.3.1 The double divergence of the potential

As we discussed in the previous sections, the mathematical model of

the classical gravitational N -Body problem remained unchanged since

1.3 The numerical solution of the N -body problem 31

Newton’s epoch. Nevertheless, the numerical techniques apt to solve its

mathematical scheme are required to be very sophisticated, fast and ac-

curate, thing that, still nowadays, constitutes a challenge for astrophysi-

cists, mathematicians and computer scientists. In fact, we are still very

far to simulate, for example, a typical galaxy, containing ∼ 1011 stars,

over a relaxation time, with an acceptable accuracy and in reasonable

human times (even with the help of the most powerful supercomputers).

The numerical solution of the N -body problem is a difficult task mainly

because of the so called double-divergence of the two-body interaction

potential. As we saw in section 1.2.1 the Newtonian potential between

a point of mass mi and another of mass mj is given by

Uij =
Gmimj

|rj − ri|
≡ Gmimj

rij
= Uji, (1.86)

where ri and rj are the position vectors of the i-th and the j-th star, G

is the gravitational constant and rij ≡ |rj − ri| represents the Euclidean

distance between the two particles. As ultraviolet divergence we mean

the singularity in the Uij potential for very close encounters (rij → 0);

the infra-red divergence corresponds to a never vanishing pair-wise inter-

action. This double divergence leads to two immediate consequences:

1. close encounters (rij → 0) yield to an unbound force between

interacting stars (Fij → ∞) producing an unbound error in the

relative acceleration;

2. the resulting force acting on each particle belonging to a generic

N -body system requires summation overN−1 pair-wise contribu-

tions, yielding to an O(N2) computational complexity, which can

be overwhelming whenever, as in the relevant astrophysical cases,

N is very large (for instance, N ≃ 1011 for a typical galaxy).

32 Chapter 1 The N -body problem

Moreover, the evaluation of rij is a computationally intensive operation;

in fact, it requires the evaluation of the irrational function square root,

based on iterative methods (one of them is the Newton-Raphson strat-

egy), which need more than one floating point operation to be com-

pleted. There are several strategies to face the numerical difficulties

posed by the functional form of the Newtonian potential. The UV diver-

gence is often faced introducing a softening parameter, ǫ, in the interac-

tion potential which becomes

Uij =
Gmimj√
r2
ij + ǫ2

. (1.87)

It corresponds to substitute point masses with Plummer spheres of scale

length ǫ [82]. In this way, close encounters are smoothed but, of course,

this is paid by a loss of resolution at spatial scales of order ǫ and below.

Generally, it is used expressing the softening parameter as the average

distance of a particle to its closest neighbour (that we will be denoted

by 〈d〉) multiplied by a coefficient α ≪ 1. Given that we can write

4

3
πR3 ≃ 4

3
πN 〈d〉3 ⇒ 〈d〉 ≃ R

N
1

3

(1.88)

where R is the system characteristic dimension, then, the expression

ǫ = α 〈d〉 = α

(
R

N
1

3

)
. (1.89)

can be used to determine a reasonable value of ǫ. The parameter α can

be chosen arbitrarily (a value around 10−3 is reasonable) but, obviously,

the smaller it is, the better the numerical solution at small scales is

(even if a smaller time step is needed in order to not loose too much

accuracy).

On the other hand, to reduce the O(N2) complexity it is possible to use

approximation methods.

1.3 The numerical solution of the N -body problem 33

1.3.2 Numerical methods

Evaluating the accelerations

During the last years, the algorithms and techniques to solve numer-

ically the N -body problem and the hardware facilities have been sig-

nificantly improved. A detailed description of the different numerical

methods to solve the N -Body problem can be found in [39]. Here, in

broad lines, we group the numericalN -body techniques in the following

three categories, depending on the different ways to evaluate mutual

forces:

1. Direct summation : the force acting on the particle i is computed

by the complete sum of the contributions due to all the other N−1

particles in the system, that is

Fi =
N∑

j=1
j 6=i

G
mimj

r3
ij

(rj − ri) (1.90)

where mi and mj are the masses of the particles i and j, rij is

the distance between particle i and particle j and G is the grav-

itational constant. “Direct summation” represents the simplest

method to implement but, at the same time, it can be considered

the most accurate; nevertheless, its computational complexity is

high (order of N2), therefore it requires huge computing power

to be successfully applied to big (large N) astrophysical systems.

The best known codes based on this approach are NBODY4, mainly

developed by Sverre Aarseth [3] , φ-GRAPE [49], φ-GPU [16], the

N -body integrator included in the STARLAB environment [83],

MYRIAD [58], NBSymple [29] and HiGPUs [28].

2. Approximation schemes : the direct sum of inter-particle forces

is replaced by another mathematical expression lighter in terms

34 Chapter 1 The N -body problem

of computational complexity. To this category belongs, for in-

stance, the so called tree algorithm, which was originally intro-

duced by Barnes and Hut [13] and its computational complexity

is of O(N logN). Greengard and Rokhlin [47] proposed in the

field of molecular dynamics the so called Fast Multipole Algorithm

(FMA), claiming for an O(N) computing complexity, at least in

quasi-homogeneous 2D particles distribution. Unfortunately, the

deep comparison between the FMA and the tree code to evaluate

gravitational forces performed by Capuzzo-Dolcetta and Miocchi

[23], showed that FMA has, in 3D, the same O(N logN) computa-

tional complexity of the BH tree code and it is slower in both ho-

mogeneous and clumpy cases. An example of a modern tree code

is Bonsai [14] but also BRIDGE [44] which simultaneously takes

advantages from both the direct and the tree approach. Another

example is TreeATD (tree-code with Adaptive Tree Decomposi-

tion) developed mainly by Miocchi and Capuzzo-Dolcetta [75].

Another kind of approximation scheme is that developed by Ah-

mad and Cohen [7]. Using this strategy, during “regular” steps a

direct summation approach is used, but, more frequently, during

“irregular” steps, only the force from neighbour particles is eval-

uated. The widely used codes NBODY6 and NBODY7 [77] use this

scheme.

3. Grid methods : many codes are based on the solution of the Pois-

son’s equation

∇2φ(r) = −4πGρ(r) (1.91)

on a grid leading to a discretized force field (to solve the Poisson’s

equation, one of the quickest algorithms is the Fast Fourier Trans-

form [53]). This kind of method (also known as Particle Mesh

method) reduces, as the tree approach, the computational com-

plexity at the expenses of the accuracy. As the tree algorithm, it

is widely used in cosmological, large-scale simulations; one of the

most known codes which implements the FFT in the solution of

1.3 The numerical solution of the N -body problem 35

the Poisson’s equation, in a combination with a tree algorithm, is

GADGET2 [88].

We do not want to enter here in a discussion on advantages, disadvan-

tages and peculiarities of the many different ways suggested to reduce

the computational complexity of the N -body problem, we just state

what is, almost unanimously, accepted: any of them induce some source

of error, which can be systematic and not easily controlled. Anyway,

it is worth noting that only the direct summation approach avoids ap-

proximation errors but, obviously, it demands high computing power.

Throughout this work we will focus our attention on the direct summa-

tion approach because we developed our codes adopting this strategy.

Advancing the solution over time

Besides the way to evaluate accelerations, a method to advance the

solution over the time must be chosen and implemented. In principle,

every method to numerically solve ordinary differential equations can

be applied. Let us consider the N -body system formulated in (1.12);

the most simple numerical method to advance the solution from t = t0

to time t = t0 +∆t is the so called Euler method which is based on a first

order Taylor expansion

r (t0 + ∆t) = r (t0) + v (t0) ∆t (1.92)

v (t0 + ∆t) = v (t0) + a (t0) ∆t (1.93)

where a represents the acceleration. The Euler method is globally a first

order algorithm because its truncation error is proportional to ∆t2. It is

very easy to implement but very inaccurate for the majority of the cases

especially if a softening parameter is not included in the gravitational

potential. Reducing the time step ∆t may improve the integration in

terms of accuracy but the computing time increases too. The natural ex-

36 Chapter 1 The N -body problem

tension of this discussion would be to increase the order of the method

including, for example, higher order terms in the Taylor expansion or to

find another strategy to derive a different integration algorithm.

Unfortunately, the widely used Runge-Kutta methods do not constitute

the appropriate solution to increase the accuracy of the N -body simula-

tions. Using these kind of methods we would get higher precision of the

integration but, at the same time, a very slow algorithm too. In fact, for

example, using a 4th order Runge-Kutta algorithm, we have to evaluate

N2 mutual distances four times per time step which is not convenient

in terms of ratio between accuracy and computing time. Moreover, the

above discussed algorithms belong to the class of explicit methods that

is, to evolve a system from the state A to a state B, they do not require in-

formation about other states except of A itself. In general, explicit meth-

ods, performing integrations over a quite long interval of time, tend to

exhibit an unavoidable growth of the total energy. This error is due

to both the cumulation of the numerical truncation error over multiple

time steps and to the difficulty to treat close encounters where the sys-

tem becomes, so called, stiff. A problem is said to be stiff when some

of its involved amounts (like, in our case, positions, velocities and ac-

celerations) change their per step values too fast, making the numerical

solution correct only if very small integration steps are used.

Symplectic integrators

Standard integrators are said to become dissipative and they exhibit in-

correct long term behaviour not only because of the numerical problems

that we have just pointed out but also because the “classical” schemes

perform, step by step, non-canonical transformations (let us say from co-

ordinates (rn, vn) to (rn+1, vn+1)) yielding to a slightly different Hamil-

tonian. To face this problem the symplectic integrators were introduced.

To introduce this class of methods, first of all, we need to give some def-

1.3 The numerical solution of the N -body problem 37

initions. A canonical transformation is a change of coordinate which has

the property of preserving Hamiltonian form of dynamics, that is, per-

forming a coordinate transformation, for example, from (u, v) to (x, y),

we will have

H(u, v) = K(x, y) = K(x(u, v), y(u, v)) (1.94)

whereH andK are, respectively, the old and the new form of the Hamil-

tonian function of the system. We have to underline that an Hamiltonian

system is a dynamic system, having n degrees of freedom, defined, by

an Hamiltonian function (H) which satisfies the so called canonical equa-

tions

ṗk = −∂H

∂qk

q̇k =
∂H

∂pk
(1.95)

where qk is the k-th generalized coordinate and pk is called its momen-

tum conjugate. This system, of 2n first-order differential equations, can

be written in a form, called symplectic, which employs the matrix for-

malism, defining the column vectors z and ∂H/∂z, both of them having

2n components, and a 2n× 2n square matrix J such that

zi = qi, zi+n = pi (1.96)

(
∂H

∂z

)

i
=
∂H

∂qi
,

(
∂H

∂z

)

i+n
=
∂H

∂pi
(1.97)

J =

 0 1

−1 0

 (1.98)

where i = (1, 2, ..., n), 0 is the n × n matrix composed of vanishing

elements and 1 is the n×n identity matrix. Using these new entries, we

can write the system (1.95) in a more compacted form

38 Chapter 1 The N -body problem

ż = J
∂H

∂z
. (1.99)

It can be shown that

the necessary and sufficient condition for a transformation

(q, p) → (Q,P) to be a canonical one is that Jacobian matrix

of the transformation (Λ) is symplectic, that is

ΛTJΛ = J (1.100)

where it is known that

Λ ≡ ∂ (Q,P)

∂ (q, p))
. (1.101)

Consider, for example, the already discussed Euler’s explicit method.

For simplicity we will refer to a one-degree-of-freedom system and so

we may write

qn+1 = qn + pndt

pn+1 = pn + f(qn; tn)dt (1.102)

where n indicates the n-th integration step and f(qn; tn) = ṗn = −∂H/∂qn.

From (1.102) we have

Λ =

∂qn+1

∂qn

∂qn+1

∂pn
∂pn+1

∂qn

∂pn+1

∂pn

 =

 1 dt

∂f
∂qn

dt 1

 =

 1 dt

∇qf(qn)dt 1

(1.103)

where it has been set ∂/∂qn = ∇q. Since this is a one dimensional prob-

lem, from (1.100) we argue that the necessary and sufficient condition

for the matrix Λ to be symplectic is that det(Λ) = 1. In our case we have

det(Λ) = 1 − ∇qf(qn)dt2 = 1 ⇒ f(qn) = constant (1.104)

1.3 The numerical solution of the N -body problem 39

but, obviously, this does not happen, for example, for a generic N -body

system, where f(qn; tn) is the gravitational acceleration which, indeed,

depends on particles space coordinates. Therefore, we have just proven

that the Euler’s explicit method is not symplectic. Symplectic integrators

can be constructed thanks to Hamiltonian splitting. It can be verified

that, if H = H1 + H2 + ... + Hk, then we may construct, at least, a

first-order symplectic method by composition of k coordinate changes.

For example, if we consider a typical Hamiltonian function given by

H(q,p) = K(p) + U(q) , (1.105)

where K can be considered the Kinetic part of H and U is the potential

part, the canonical equations (1.95) corresponding to H1 = K are

q̇ = ∇pK(p) (1.106)

ṗ = 0

while, the others are

q̇ = 0

ṗ = −∇qU(q) . (1.107)

Integrating equations (1.107) and applying the resulting transformation

to a generic point of phase space (qn,pn) we obtain another point (q̂, p̂)

such that

q̂ = qn

p̂ = pn − ∇qU(qn)∆t . (1.108)

Now, integrating equations (1.106) and applying the transformation to

the point (q̂, p̂) we obtain

qn+1 = q̂ + ∇pK(pn+1)∆t (1.109)

pn+1 = p̂ .

40 Chapter 1 The N -body problem

Thus, eliminating (q̂, p̂) from (1.108) and (1.109) we may write

qn+1 = qn + ∇pK(pn+1)∆t (1.110)

pn+1 = pn − ∇qU(qn)∆t .

So we have just obtained a first-order symplectic method which, often,

is called Euler’s symplectic method. The construction of high order sym-

plectic methods is a harder task even if one can follow the just shown

strategy. A detailed description and construction of higher order sym-

plectic integrators can be found in Yoshida [98]. The code NBSymple

[29] developed by some members of our group some years ago imple-

ments both a 2nd order symplectic integrator (symplectic Leapfrog) and

a 6th order symplectic algorithm based on what obtained by Yoshida

[98] in his work. The code NBSymple perform very well in terms of

energy conservation especially if the 6th order integrator is used. For

systems composed by N & 104 stars since, for each integration step, the

accelerations must be evaluated more than once (7 times for the 6th or-

der algorithm), the evolution becomes very slow. Moreover, to reach a

good degree of accuracy integrating close encounters between stars, the

time step should be reduced significantly and the dynamical evolution

is further slowed down.

Hermite’s schemes

The current state of the art of direct N -body simulations is represented

by the class to which the Hermite’s integration schemes belong. In par-

ticuar, the Hermite’s 4th order scheme has been widely used in the past

years to dynamically evolve N -body systems efficiently in terms of both

computing time and accuracy of the final solution. To advance positions

and velocities from time t = t0 to t = t0 + ∆t, the classical Hermite’s

method uses Taylor expansions up to the third time derivative of the

1.3 The numerical solution of the N -body problem 41

acceleration. In other words this scheme is 4th order accurate which

corresponds to the order of the Taylor expansion for velocities

r = r0 + v0∆t+
1

2
a0∆t2 +

1

6
ȧ0∆t3 +

1

24
ä0∆t4 +

1

120

...
a 0∆t5 +O

(
∆t6

)

v = v0 + a0∆t+
1

2
ȧ0∆t2 +

1

6
ä0∆t3 +

1

24

...
a 0∆t4 +O

(
∆t5

)
.

In the classical scheme only the quantities a0 and ȧ0 are calculated using

their exact mathematical expressions while the higher order derivatives

ä0 and
...
a 0 are approximated in order to reduce the computing effort.

At the beginning of the time step it is possible to calculate ai,0 and ȧi,0

through the well known formulas

ai,0 =
N∑

j=1
j 6=i

aij,0 =
N∑

j=1
j 6=i

mj
rij,0

r3
ij,0

, (1.111)

ȧi,0 =
N∑

j=1
j 6=i

ȧij,0 =
N∑

j=1
j 6=i

(
mj

vij,0

r3
ij,0

− 3αij,0aij,0

)
. (1.112)

To obtain approximated formulas for the higher order time derivatives

of the acceleration we can expand, by mean of Taylor polynomials, the

acceleration and its first order time derivative

a1 = a0 + ȧ0∆t+
1

2
ä0∆t2 +

1

6

...
a 0∆t3 (1.113)

ȧ1 = ȧ0 + ä0∆t+
1

2

...
a 0∆t2 . (1.114)

From (1.114) we get

ä0 =
ȧ1 − ȧ0 − 1

2

...
a 0∆t2

t
(1.115)

which substituted into the equation (1.113) let us write an expression

for
...
a 0 as a function of only acceleration and its first derivative at the

beginning of the time step and at its end

...
a 0 =

6 [2 (a0 − a1) + (ȧ0 + ȧ1) t]

t3
. (1.116)

42 Chapter 1 The N -body problem

Similarly it is possible to obtain a similar expression for the second

derivative of acceleration

ä0 =
2 [−3 (a0 − a1) − (2ȧ0 + ȧ1) t]

t2
. (1.117)

Since equations (1.116) and (1.117) depend both on quantities which

must be evaluated at the end of the time step, the Hermite’s method, in

its complete form, is implicit. Nevertheless, it is always possible to insert

it in a Predictor-Evaluation-Corrector (PEC) scheme. At the beginning of

the time step positions and velocities are predicted using the evaluated

values of a0 and ȧ0 only, obtaining

ri,pred = ri,0 + vi,0∆t+
1

2
ai,0∆t2 +

1

6
ȧi,0∆t3 (1.118)

vi,pred = vi,0 + ai,0∆t+
1

2
ȧi,0∆t2 . (1.119)

Using the values of ri,pred and vi,pred it is possible to compute a1 and ȧ1

(evaluation step) which can be used in combination with a0 and ȧ0 to

obtain numerical values for equations (1.116) and (1.117). Then, the

corrections

∆ri =
1

24
ä0∆t4 +

1

120

...
a 0∆t5 (1.120)

∆vi =
1

6
ä0∆t3 +

1

24

...
a 0∆t4 (1.121)

are added to the expressions for ri,pred and vi,pred (Correction step) to

complete the integration step. Actually, it is possible to get also an

approximated expression for ä1 using a first order Taylor expansion

ä1 = ä0 +
...
a 0∆t (1.122)

in order to improve the subsequent predictors. J. Makino was the first

to formulate and to study this scheme in details (see [65] and [64]) gen-

eralizing some of the integration methods already developed by Sverre

1.3 The numerical solution of the N -body problem 43

Aarseth. Here we list some of the main advantages of the Hermite’s

scheme

1. the distances between particles have to be evaluated just once per

integration step improving significantly the computing effort;

2. the correction step is very fast and stable;

3. despite the previous points the scheme is, globally, a 4th order

algorithm;

4. the evaluation of accelerations and them first time derivatives can

be done using dedicated machines (like GRAPE) or computing ac-

celerators (like GPUs);

5. the scheme is easily adaptable to use individual (or block) time

steps or other approximation schemes (like some neighbours strat-

egy).

Regarding the latter point, one of the reasons for which the Hermite’s

scheme is, nowadays, widespread to numerically evolve N -body sys-

tems is that it can be efficiently used combined with a technique named

Block Time Steps [69].

Block time steps

It is trivial to understand why N -body systems are characterized by a

wide range of time-scales corresponding to profound differences of tra-

jectories, mutual distances and velocities of the stars inside the stellar

system. In order to take into account such big interval it is convenient

to transform the simple approach of shared to individual (per particle)

time steps. In this way each star has his own time step which can be

smaller or larger depending, in general, on the astrophysical parameters

44 Chapter 1 The N -body problem

of the star; for example, in the case of a close encounter with another

member of the same system, the time step must be small enough to

follow the numerical integration with an acceptable degree of accuracy.

Specifically, using this approach, it is not needed to assign to all the

stars of the system the same, very small, time step slowing down signif-

icantly the overall time evolution. It is enough to evolve, for each step,

only the particles with smaller time steps reducing the computational

complexity from O(N2) to O(mN) if the number of stars to be updated

in a step are m. The physical quantities of the other N − m particles

can be, in first approximation, left unchanged or predicted, using Tay-

lor expansions, without evaluating their accelerations and higher order

time derivatives till when they must be updated. Nevertheless, the use

of individual time steps introduces some problems regarding the time

synchronization of the N -body particles. In fact, requiring time synchro-

nization between particles means that their time steps must be integer

multiples each other but time steps are represented, in general, by real

numbers (in single or double precision arithmetic). The main idea of

the block time steps approach is to introduce hierarchical levels using

the so called quantization of time: each particle is allowed to have a

time step approximated using the closest power of two with (negative)

integer exponent. This allows particles to be grouped into blocks which

share the same time step, therefore stars belonging to the same level

can be updated simultaneously also favouring the use of parallel accel-

erators. Each time step can be always reduced by a factor 2β with β > 0

nevertheless, in order to maintain synchronization between particles

and to guarantee better accuracy, a generic time step is not allowed to

increase by a factor greater then 2. Moreover, while the time step of a

generic particle can be reduced, if needed, at every correction step, the

increasing process cannot be always performed due to synchronization

issues. To explain this latter point let us consider just 2 blocks, the first

one having a time step ∆t1 and the other ∆t2 = 2∆t1. Let us define also

the global time Gt of the simulation which must be advanced at each in-

tegration step and the local time Lt which represents the time to which

1.3 The numerical solution of the N -body problem 45

Figure 1.4: Schematic representation of the allowed (blue arrows)

and forbidden (blue arrows with red corosses) transitions

of particles (red spheres) in the block time steps strat-

egy. Here we have considered 6 bodies distributed equally

among three blocks; in particular, the 2 particles which be-

long to the block 1 have time step dt, those belonging to the

block 2 have step 2dt and the last two stars in block 3 have

time step equal to 4dt. It is evident that, in this situation,

the particles are synchronized at those times which are in-

teger multiples of 4dt. In these cases the stars are allowed

to change freely their block. Transitions at intermediate

stages, when some of the stars have only predicted physi-

cal position and velocity (black squares) must be performed

carefully in order to avoid mismatches.

each particle has been evolved. Initially, Gt = 0, Lt,1 = 0, Lt,2 = 0.

After we update the particles belonging to the first block we will have

Gt = ∆t1 and Lt,1 = Gt. At this time, the stars of the first block can-

not be moved to the second block because particles are at two different

46 Chapter 1 The N -body problem

times: those of the first block are at time Lt,1 = Gt = ∆t1 while the

others are still at Lt,2 = 0. The general condition such that particles can

increase the time step by a factor 2β and shift to the β block is that

[
Gt

2β∆tcurrentblock

]
− Gt

2β∆tcurrentblock
= 0 (1.123)

where the operator [] represents the integer part. This means that Gt

must be an integer multiple of 2β times the current time step of the

particle (in general β is not allowed to be greater than 1). A schematic

representation of the block time steps technique is shown in Fig, 1.4. For

a typical N -body simulation about ten levels are populated and, in gen-

eral, the time steps are allowed to change in a range between 2−2 and

2−25 (see, for example, Fig. 1.5). In order to determine the time steps

of the stars different criteria have been experimented but this remains,

by far, the most critical part to obtain, at the same time, an accurate

and fast simulation. Simple criteria based on the requirement of slowly

changing positions and/or velocities are proven to be not satisfactory for

N -body simulations especially if used in combination of Hermite’s meth-

ods and block time steps. Sverre Aarseth [4] stressed the importance to

take into account also higher order time derivatives of the accelerations

and, the requirement of small changes in the acceleration of the star

i-th, yields to the criterion

∆ti =

√
η

|a|
|ä| (1.124)

where η is a parameter introduced to control accuracy. The criterion

expressed in equation (1.124) can be improved for the 4th order Her-

mite’s algorithm considering also higher order time derivatives of the

acceleration

∆ti =

√√√√η |a| |ä| + |ȧ|2

|ȧ| |...a | + |ä|2
(1.125)

which remains well defined also if a star starts from rest or if |a| ≃ 0.

Equation (1.125) expresses what is generally called the Aarseth crite-

1.3 The numerical solution of the N -body problem 47

-15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2
100

101

102

103

104

105

 No black hole

 Black hole included

N
um

be
r o

f s
ta

rs

Time step (power of two)

Plummer model with HiGPUs

Figure 1.5: Time steps distribution obtained using our code HiGPUs in-

tegrating an isolated Plummer model with mass M = 1,

scale radius b = 1 and N ≃ 500, 000 (red curve). The

black curve represents the same system but considering

also the presence of a central super massive object with

mass MBH = M . It is evident that the inclusion of the

central black hole expand the distribution curve toward

smaller time steps increasing by a factor ∼ 2 the speed of

the numerical integration.

rion for N -body simulations.The Hermite’s 4th order scheme has been

also improved and generalized later by Keigo Nitadori and Junichiro

Makino [78]. We report here the steps relative to the Hermite’s 6th

order scheme for a generic particle i:

1. Prediction step, with O(N) complexity: positions, velocities and

accelerations of all the stars are predicted using their known val-

ues:

48 Chapter 1 The N -body problem

ri,pred = ri,0 + vi,0∆ti,0 +
1

2
ai,0∆t2i,0 +

1

6
ȧi,0∆t3i,0 +

+
1

24
äi,0∆t4i,0 +

1

120

...
a i,0∆t5i,0,

vi,pred = vi,0 + ai,0∆ti,0 +
1

2
ȧi,0∆t2i,0 +

1

6
äi,0∆t3i,0 +

+
1

24

...
a i,0∆t4i,0,

ai,pred = ai,0 + ȧi,0∆ti,0 +
1

2
äi,0∆t2i,0 +

1

6

...
a i,0∆t3i,0.

2. Evaluation step, withO(Nm) complexity (using block time steps):

the accelerations of m ≤ N particles as well as their first and sec-

ond time derivatives are evaluated using the above predicted data.

The mutual interaction between the i-th particle and the remain-

ing N − 1 is described by the following relations:

ai,1 =
N∑

j=1
j 6=i

aij,1 =
N∑

j=1
j 6=i

mj
rij

r3
ij

,

ȧi,1 =
N∑

j=1
j 6=i

ȧij,1 =
N∑

j=1
j 6=i

(
mj

vij

r3
ij

− 3αijaij,1

)
,

äi,1 =
N∑

j=1
j 6=i

äij,1 =
N∑

j=1
j 6=i

(
mj

aij

r3
ij

− 6αȧij,1 − 3βijaij,1

)
,

where rij ≡ rj,pred − ri,pred, vij ≡ vj,pred − vi,pred, aij ≡ aj,pred −
ai,pred, αijr

2
ij ≡ rij · vij , βijr

2
ij ≡ v2

ij + rij · aij + α2
ijr

2
ij

3. Correction step with complexity O(m): positions and velocities of

the mentioned m particles to be updated are corrected using the

above evaluated accelerations and their time derivatives:

1.3 The numerical solution of the N -body problem 49

vi,corr = vi,0 +
∆ti,0

2
(ai,1 + ai,0) −

∆t2i,0
10

(ȧi,1 − ȧi,0) +

+
∆t3i,0
120

(äi,1 + äi,0) ,

ri,corr = ri,0 +
∆ti,0

2
(vi,corr + vi,0) −

∆t2i,0
10

(ai,1 − ai,0) +

+
∆t3i,0
120

(ȧi,1 + ȧi,0) .

The individual time steps for m particles are, thus, updated, by

mean of the so called generalized Aarseth criterion [78]

∆ti,1 = η

(
A(1)

A(p−2)

) 1

p−3

, (1.126)

where

A(s) ≡
√∣∣a(s−1)

∣∣ ∣∣a(s+1)
∣∣+

∣∣a(s)
∣∣2. (1.127)

In Eqs. (1.126) and (1.127), p represents the order of the inte-

gration method and a(s) is the s-th time derivative of the acceler-

ation. In particular, if we use p = 4, we obtain again the standard

Aarseth criterion of equation (1.125). A typical value of the pa-

rameter η is around 0.6 for the 6th order scheme.

This is the state of the art for direct summation N -body simulations

considered for a theoretical point of view. The modern technologies and

strategies to implement them on a (super) computer will be discussed

in the next chapter.

50 Chapter 1 The N -body problem

2The Graphics Processing

Unit and CUDA

2.1 Historical introduction

As we saw in chapter 1 many algorithms and strategies have been de-

veloped in order to reduce the high computational complexity of the N -

body problem. Specifically, the introduction of approximation schemes,

in the past years, was compulsory because the computing power needed

to run realistic direct summation N -body simulations was exceedingly

large. All the runs, until ∼ 2006, were made using Central Process-

ing Units (CPUs) or special-purpose machines but, nowadays, Graphic

Processing Units (GPUs) are slowly replacing them to perform scien-

tific simulations thanks mainly to the introduction of Compute Unified

Device Architecture (CUDA). CUDA is, in essence, a collection of instruc-

tions that extend standard programming languages like C or Fortran in

order to allow the user to program GPUs. It has been introduced by

the nVIDIA corporation (between 2006 and 2007) and it is applicable

only to nVIDIA GPUs. There is another language, younger than CUDA

(its first public release went out in 2009) which can be used efficiently

to write programs for a wide range of architectures, from smartphones

to supercomputers, which is called OpenCL. In principle, a code writ-

ten in OpenCL is portable in the sense that can run on a wide range

of hardware (including GPUs of different brand) nevertheless it is less

optimized for the single device and it is clear that, in general, performs

slightly worse than CUDA when nVIDIA GPUs are used. Moreover, being

younger and slightly more complicated to learn, is less widespread and

it incorporates less functions and utilities. In any case, independently

51

from the programming language, which significantly helped, recently,

to let the GPUs become easily handled by the common user, the idea

itself of the so called General Purpose computing on Graphics Processing

Units (GPGPU) is not really new in terms of time. Helped by the even

growing popularity of graphically driven operating systems (Microsoft

Windows), by the introduction (in 1992) of the OpenGL library to write

3D applications and by the release of the first videogames, the nVIDIA

corporation released the GeForce 256 (October 11, 1999) which, for

the first time, could perform some graphics calculations (transform and

lighting) directly on-board. Before the advent of this kind of architec-

ture, the listed calculations were left to the CPU therefore the GeForce

256 was also marketed as the first GPU. It was with the introduction in

2001 of the 3rd generation of the GeForce series that the information

about each pixel on a screen became completely controlled by the pro-

grammer. In fact the GeForce 3 is remembered to be the first GPU with

programmable pixel and vertex shaders. This intoduced also the idea

that the arithmetic linked to the generic pixel (information about color,

textures, antialiasing, etc etc ...) could be reinterpreted differently from

a pure “graphics” point of view. Nevertheless, common users, among

them scientists, had to learn graphics languages available at that time

like DirectX or OpenGL to perform the discussed “trick” and this was

the main limitation to the diffusion of GPUs thought as general com-

puting accelerators. This is why CUDA and the first GPU supporting it

(GeForce 8800 GTX) were introduced some years later, specifically be-

tween 2006 and 2007. The main innovation is that this GPU is the first

model of unified shader architecture which means that, on the GPU, all

computational units can handle any type of shading tasks which is the

main idea of general-purpose computation. In fact, in the same period

(about 2007), also the Tesla brand appeared; with the word Tesla the

nVIDIA corporation indicated a special series of its hardware dedicated

exclusively to perform general purpose computation on GPUs and they

were initially based on the same chip of the GeForce GTX 8800 (G80)

even if with more specific dedicated drivers.

52 Chapter 2 The Graphics Processing Unit and CUDA

2.2 The modern GPU architecture

Today, a modern GPU is organized with a certain number of highly

threaded Streaming Multiprocessors (SMs) containing a certain number

of Streaming (or Scalar) Processors (SPs) which often are also called

CUDA cores. The G80 chip was composed by 16 SMs each with 8 SPs

while the most recent Nvidia Kepler architecture (see for example Tesla

K20X, GK110) has 15 SMX’s (next generation SM) even if each SMX

contains 192 SPs. The intermediate generation (Fermi) has 16 SMs

each composed by 32 (up to 48) SPs.

Figure 2.1: The nVIDIA G80 architecture (top) and a detail its one

Streaming Multiprocessor. Figure taken from [91]

2.2 The modern GPU architecture 53

Figure 2.2: The nVIDIA Fermi architecture. Figure taken from [36]

Figure 2.3: The nVIDIA Kepler architecture. Figure taken from [37]

54 Chapter 2 The Graphics Processing Unit and CUDA

Figure 2.4: Differences between the Kepler (represented on the left)

and the Fermi (on the right) Streaming Multiprocessors.

Figures 2.1, 2.2, 2.3 show the main internal hierarchical structure of

three different nVIDIA architectures, which are respectively the G80

chip, the Fermi chip and the last generation scheme Kepler. In particular,

Fig. 2.4 shows the main differences between the Kepler (represented on

the left) and the Fermi (on the right) Streaming Multiprocessors. The

CUDA programming model takes into account this hierarchical structure

inside the GPU. In fact, in broad lines, the heart of any CUDA program is

a function which is mapped on the GPU, called kernel. A kernel is a set of

instructions which are executed simultaneously and independently by a

certain number of virtual processing units called threads. The program-

mer must choice the number of threads to run and he organizes also all

the threads in groups called blocks. The blocks are then organized in

2.2 The modern GPU architecture 55

other bigger groups called grids. The number of threads which can si-

multaneously run on a single GPU is a parameter which depends on the

specific board and the number of threads per block and the dimension of

the grid (1D, 2D or 3D) are strongly dependent on the nature of the al-

gorithm to be implemented. Finding the ideal combination to maximize

performance is a true challenge which requires a significant number of

numerical experiments. In general, there is a correspondence between

virtual units created by the programmer and physical components of the

GPU; this reflects the internal structure seen in Figures 2.1, 2.2, 2.3, in

fact each virtual thread is mapped to a single cuda core, each block of

threads is mapped to a single SM (or SMX) and a grid is mapped on the

entire GPU. Specifically, let us take, as example, a Tesla K20X. We will

try here to obtain its main characteristics. The new Kepler GPU, as seen

in Fig. 2.3, has 14 SMX’s for a total of 2688 cuda cores. Hereafter, to

measure and report the performance of a specific hardware we will use

the value of floating point operations per second (flops). It is possible to

calculate the maximum theoretical performance, in flops, that a Tesla

K20X can perform. In fact, in each SMX, each cuda core can perform

one single FMAD per clock. FMAD is the acronym of Fused Multiply-

ADd which is equivalent to a single Multiply-ADd (MAD) floating point

operation (a+ b× c) performed in one step with just one final rounding

(corresponding to two floating point operations: one addition and one

multiplication). Specifically, when a MAD calculates the product b × c,

rounds it to k significant bits, adds the result to a, and rounds again to k

significant bits. A FMAD executes the entire operation rounding only the

final result to k significant bits improving performance calculating, for

example, square roots (critical in solving numerically an N -body prob-

lem). With two floating point operations per clock cycle and a clock

frequency of around 0.732 GHz per cuda core, having 2688 total cores

we can evaluate the theoretical peak performance of the Tesla K20X as

0.732 GHz × 2 operations × 2688 cores = 3.94 TFlops . (2.1)

56 Chapter 2 The Graphics Processing Unit and CUDA

Nevertheless, this is valid for single precision operations which involve

numbers stored in a memory space of 32bit (4 bytes). The Tesla K20X

contains only 64 SPs, in each SMX, which can execute operations in dou-

ble precision (64bit) therefore the theoretical maximum performance in

64 bit precision reduces to

0.732 GHz × 2 operations × 896 cores = 1.31 TFlops . (2.2)

Moreover, Tesla K20X has six 64-bit memory partitions, for a 384-bit

memory interface and it has 6 GB of GDDR5 DRAM memory. This im-

portant information is necessary to calculate, for example, the theoret-

ical maximum bandwidth (Bw) which indicates the maximum amount

of data that the GPU and its on-board memory can exchange in one

second. Calling the memory interface Iw, having the memory clock fre-

quency vM , we can write

Bw(GB/s) =
2IwνM

8
= 0.25IwνM (2.3)

where Iw is in bit, the factor 1/8 converts Iw in bytes, νM is in GHz and

the factor 2 takes into account that we have a DDR (Double Data Rate)

RAM. For example, for a Tesla K20X we have

Iw = 384 bit νM = 2.6 GHz (2.4)

so, using the formula (2.3) , we obtain Bw(K20X) = 250GB/s.

Apart from the just described general properties of the so called global

memory, which is also used to load and read data to and from the GPU,

in the SMX we can find other kind of memories that have to be known

in order to use them efficiently when we are approaching the imple-

mentation of a generic GPU code. Each SMX of the Tesla K20X contains

65536 registers of 32 bit. This is, by far, the fastest memory in the SM.

Nevertheless, the user does not have direct control on register alloca-

2.2 The modern GPU architecture 57

tion; they are distributed among the threads by the compiler even if

the programmer can induce their use using, for example, some built-in

data types. The values stored in registers are local which means that

registers are per-thread memory which is not visible to other threads on

the GPU. There is also a certain amount of local memory but the access

to this kind of memory space has high latencies and low bandwidth just

like the global (device) memory space. According to the last version of

the CUDA programming guide [34] the compiler stores automatically

in local memory large structures or arrays, arrays for which it cannot

determine that they are indexed with constant quantities but also sin-

gle variables if the kernel uses more registers than those available. This

latter behaviour, also known as register spilling, in general, should be

avoided. There is also the shared memory space which has much higher

bandwidth and much lower latency than local or global memory. There

is a total of 64 kB of memory which can be configured and partitioned in

shared memory and L1 cache. This kind of memory is shared within all

the threads in a single block and is very important to optimize the per-

formance of a generic N -body code. Constant memory is a space which

resides in device memory and is cached in a constant read-only cache

(48 KB in a Tesla K20X). It is used, in general, to broadcast a value of a

read request to all threads that all refer to the same memory location.

In order to access memory (to read data or to store data), it is usu-

ally necessary to perform a simple calculation that returns a memory

address. Each SMX of a Tesla K20X has 32 Load/Store units (LD/ST)

which are dedicated to this purpose and they can calculate addresses for

32 threads per clock cycle. Moreover, 32 Special Function Units (SFUs)

execute transcendental instructions, reciprocals, and square roots and

are able to complete one instruction per thread and up to 4 floating

point operations per clock cycle. The SMX schedules threads in groups

of 32 virtual elements; these ensembles are called warps. Each SMX

contains 4 warp schedules which, in broad lines, select and distribute

instructions to cuda cores while each dispatch unit (8 in total) defines

58 Chapter 2 The Graphics Processing Unit and CUDA

their order of execution which is not necessarily ordered because warps

are executed independently.

This concludes in broad lines all that we need to know, for the scopes of

this work, about a modern GPU architecture in order to understand the

implementation on GPUs of a genericN -body code. For a more detailed,

technical and precise discussion about CUDA and GPUs we refer to [97],

[86], [34], [36], [37], [35]. For more information about the OpenCL

language we refer to [11], [48] and [76].

2.2 The modern GPU architecture 59

3The N -body code HiGPUs

3.1 Motivation

The main purpose of this chapter is to introduce our new numerical im-

plementation to solve the N -body problem using modern technologies

like GPUs and the so called hybrid supercomputers that is very pow-

erful machines composed by several computing nodes each containing

one (or more) CPU connected through a PCI Express interface to one (or

more) accelerator which can be a GPU. It is of primary importance to

develop codes apt to work efficiently on hybrid machines because they

are constantly growing in number, green efficiency (power consump-

tion) and performance. In fact, looking at the Top500 list [95] which is

the list of the most powerful supercomputers in the world, the second

position belongs to Titan (see Fig. 3.1) [94] which harbours 18,688

nVIDIA Tesla K20X GPUs and at position number 10 we find the Tianhe-

1A [93] which is composed by 7,168 nVIDIA Tesla M2050 GPUs but the

list is constantly changing. Numerical codes which run natively on such

big clusters are very rare because it is difficult to manage efficiently mul-

ticore CPUs, GPUs and more than one computing node all at the same

time. Moreover, we decided to implement our own version of the nu-

merical resolution of theN -body problem first of all because, in this way,

we know perfectly how the code works and we know perfectly where to

intervene if something goes wrong. This is a very important point when

we need to deal with codes that can run on supercomputers especially if

hardware accelerators like GPUs are present. In addition, there are no

manyN -body codes, freely available for the scientific community, which

use GPUs and supercomputers, therefore when we need very powerful

resources we do not have a wide choice. As we have already discussed,

61

Figure 3.1: This is a recent image of the Titan supercomputer, the sec-

ond most powerful supercomputer in the world. It has

a theoretical peak performance of ∼20 Pflops reached

thanks to 18,688 nVIDIA Tesla K20 GPUs and ∼ 200,000

CPU (Opteron) cores and it occupies an area of more than

4,000 square feet.

the number of particles that can be integrated, over a reasonable inter-

val of time (∼ 1 Gyr), using a modern direct summation N -body code

is ∼ 106. Another motivation to implement a new N -body code is to

actively contribute to the modern research in order to increase this limit

hoping that, as soon as possible, we will have numerical codes and tech-

nologies apt to model and dynamically evolve, for example, a typical

galaxy (that is, N ∼ 1011). To our knowledge a N -body code similar to

ours HiGPUs is φGPU which has been tested by their developers (see for

example Berczik et al. [16]) even if its first official public release is not

out yet, neither the related paper [17]. Some libraries (like Sapporo

[45]), which are built to extend the compatibility of pure CPU N -body

codes to GPUs, exist and are very useful and widespread but they do not

have full support for the use of more than one computing node. Some

other parallel GPU implementations of the famous N -body code NBODY6

exist (see for example [77]) but do not support the use of hybrid su-

percomputers. Motivated by this we decided to implement out parallel

N -body code HiGPUs guaranteeing natively full support for the modern

hybrid architectures. The N -body problem is one of the real-world al-

gorithms which is ideal to implement on GPUs. In fact, as we saw in

chapter 2, GPUs are highly parallel machines which, nowadays, contain

62 Chapter 3 The N -body code HiGPUs

thousands of cores able to execute hundreds of billion of floating point

operations per second (Gflops) at the same time and independently

from each other. Direct summation N -body codes, as we saw in section

1.3, are based on the all-pairs approach which has a very high compu-

tational complexity of O(N2) and the key idea is that the evaluation of

accelerations can be done in parallel because the force acting on the

i-th particle Fi is completely independent from that acting on the j-th

particle Fj (i 6= j) because they depend only on positions which are al-

ways known at a certain time. In one of the first papers about the GPU

implementation of the numerical N -body problem by Nyland et al. [79]

we find in the conclusion section:

It is difficult to imagine a real-world algorithm that is bet-

ter suited to execution on the G80 architecture than the all-

pairs N -body algorithm.

The paper by Nyland et al. [79] is very important because it introduced

for the first time the efficient use of CUDA and GPUs to the numerical

resolution of the N -body problem showing also, explicitly, techniques

and pieces of CUDA code relative to their implementation on a now old

nVIDIA GeForce GTX 8800 (G80) (already introduced in this work in

chapter 2) obtaining very high performance (& 200 Gflops) correspond-

ing to a speed up of about a factor 100 with respect to other previous

CPU-only implementations. Even if some modifications have been intro-

duced in the main CUDA N -body kernels of modern codes, all of them

reflect the strategies already introduced in [79].

3.1 Motivation 63

3.2 Main features of HiGPUs

3.2.1 Parallelization scheme

Our direct summation N -body code is called HiGPUs 1 which stands

for Hermite’s integrator running on GPUs. The code implements a Her-

mite’s 6th order integrator (see section 1.3), it is written combining

tools of C and C++, it uses CUDA (or OpenCL, we have both versions)

to exploit the power of GPUs and it is written using OpenMP [81] and

MPI [80] to exploit the computing power of modern multicore CPUs

distributed, in case, over many computational nodes. The Hermite’s

scheme is implemented using the already discussed technique of block

time steps (see section 1.3) allowing both high precision and speed in

the study of the dynamical evolution of very large (N up to 8M) stellar

systems. At this point it should be clear that the evaluation step is the

most expensive section in terms of number of operations to execute and

the prediction step comes after (see section 1.3). We found convenient

to avoid communications between CPUs and GPUs through the PCI Ex-

press interface as much as possible therefore we decided to put all the

sections of HiGPUs (Predictor, Evaluation and Corrector) on the GPU al-

though the correction step is light in terms of operations to execute pro-

vided that the total number of particles to update (m) is significantly

less than N with N not so high (N . 500k). The fundamental im-

portance of the GPU in HiGPUs constitutes another novelty for N -body

GPU codes. The parallelization scheme of the most recent version of

HiGPUs is slightly different from that originally described in [28]. If ng

is the number of GPUs used in a generic simulation of N bodies, each

GPU deals with the predictor of N
ng

particles and evaluates 3m N
ng

accel-

erations and their first and second time derivatives. The accelerations

1Both the CUDA and OpenCL version of HiGPUs are freely available at
http://astrowww.phys.uniroma1.it/dolcetta/HPCcodes/HiGPUs.

html

64 Chapter 3 The N -body code HiGPUs

http://astrowww.phys.uniroma1.it/dolcetta/HPCcodes/HiGPUs.html
http://astrowww.phys.uniroma1.it/dolcetta/HPCcodes/HiGPUs.html

are then collected and reduced by means of the MPI_Allreduce() func-

tions. Then the corrector is performed on the GPU but not in parallel;

in fact, each GPU executes the corrector for all the m particles to up-

date and determines their new time steps. This is done to avoid further

possible bottlenecks due to communications between computing nodes

and CPUs and GPUs inside the same node. Nevertheless, the immediate

consequence is that, at the beginning of the next integration step, the

same corrected particles could have slightly different values of positions

and velocities depending on the way the single GPU has just executed

the calculus. This is due mainly to round off errors which propagate,

of course, to the following evaluations of accelerations and so on. To

avoid further propagation, HiGPUs synchronizes again all the corrected

values of positions and velocities every time all the N particles must be

update (that is when m = N). In this way the time needed to perform

the latter broadcast operations becomes negligible if compared to that

spent to execute the other sections of HiGPUs when m = N .

3.2.2 The Bfactor variable

Regarding the implementation of the evaluation step, some considera-

tions about the maximum theoretical performance of the GPU have to

be done. As we saw in broad lines in chapter 2 a Tesla K20X can to run

up to 64 warps per SMX, which are 14, and each warp is a group of 32,

virtual, GPU threads. Therefore, in principle, considering the resources

available on the GPU, depending on the kernel that has to be executed, a

Tesla K20X can run a maximum of 28,672 threads in parallel. To exploit

the full power of this GPU is, therefore, necessary to run at least 28, 672

threads in parallel. If the stars to be updated are m and the GPUs to use

are ng, the simplest, but not so efficient, parallelization scheme of the

forces calculation would be such to run m threads per GPU and calcu-

late the partial accelerations (and their derivatives) due to N/ng bodies.

This is straightforward but, if m is small (less than 28, 672), there is not

3.2 Main features of HiGPUs 65

enough work to fully occupy the GPU, causing a significant decay of the

performance. In this low-m regime, in order to increase the number of

GPU thread blocks to map to as many SMX’s as possible, HiGPUs tries

to reduce the number of threads per block to use in the computation,

starting from an a priori chosen value of 1282 down, until this num-

ber reduces to the minimum possible, set to 323. Anyway, this may be

not enough to guarantee a good load of the GPU. To cope with this we

introduced a variable, which we call Bfactor, acting as factor that mul-

tiplies, when necessary, the total number of GPU blocks of threads in

order to split further the computation. For example, if m < 28, 672 and

Bfactor = B we run m∗B threads per GPU and the partial accelerations

(and derivatives) due to N/(ngB) stars are computed. Obviously, before

passing the results to the CPU, each GPU has to deal with the reduction

of B blocks of accelerations. This adds a GPU reduction operation to

our code but, as we will see, this cost is amortized by what is gained in

the evaluation kernel. In any case, HiGPUs can recognize automatically

the GPU in use, calculate the minimum number of parallel threads to

fully load it, and determine the Bfactor maximum value by using the

following procedure. Let us consider that, before the determination of

the B variable, we have a number of blocks to run (L0) equals to

L0 =

[
m

τL

]
+ 1 (3.1)

where τL is the number of threads in a single block. The value of B is

determined by the formula

B = 2

[
log2

M
τLL0

]
+1

(3.2)

2The value of 128 constitutes the result of many numerical experiments. We
verified that, in almost all the practical situations, a number of threads per
block greater than 128 does not produce a significant increase of perfor-
mance.

3The value 32 represents a limit due to the size of the warp, that is the base
unit to group virtual thread (as we already discussed in 2). For AMD GPUs
this limit is increased to 64.

66 Chapter 3 The N -body code HiGPUs

where M = 28, 672 in the case of a Tesla K20X. The maximum values of

the Bfactor variable (Bmax) is fixed to

Bmax =
N

ngτL
(3.3)

where ng is the total number of GPUs that will be used in the simulation.

It must be stressed that HiGPUs is built in order to work with values that

are integer powers of two (number of particles, Bfactor value, number

of computing nodes, time steps of the stars etc etc ...)4.

3.2.3 Precision used in HiGPUs

Another main characteristic of HiGPUs is that it uses both single and

double precision variables in the main GPU kernel (the evaluation of

the forces). In fact, double precision is needed especially to calculate

inter-particle distances where numerical cancellation errors might be-

come critical parameters in determining the accuracy of the simulation.

HiGPUs uses 64bit precision also to cumulate accelerations and their

higher order time derivatives in order to reduce the error due to the

propagation of the round-off errors on the single contributes (which

are, at least, N for each acceleration) which have to be cumulated on a

single variable. All the other operations are performed in single preci-

sion, including the unavoidable square root which is calculated directly

using the built-in function rsqrtf() that is an implementation of the

reciprocal square root, which operates on single precision arguments,

being significantly faster then the operation of 1.0/sqrt(a) with an ac-

ceptable loss of precision. We adopted this approach because (as we

saw in chapter 2) all the GPUs are significantly faster in performing sin-

gle precision operations than executing 64 bit instructions (see chapter

4This strategy has been implemented for simplicity and convenience but a
generalization is possible and it will be included in the next public release
of HiGPUs

3.2 Main features of HiGPUs 67

2) and, at the same time, a sufficiently high accuracy to evaluate forces

is kept.

Anyway, also other approaches are found in the literature. For example,

the use of emulated double precision or pseudo-double precision, (also

called Double-Single, DS, precision) is widespread (see, for example [3]

and [16]). In this way, only single precision operations are performed,

replacing a 64-bit value with two, properly handled, 32-bit values. We

have implemented a DS version of HiGPUs but we noticed that, although

the performance was higher in terms of pure Gflops (as expected), the

particle time steps distribution exhibited a sort of tail in the area of small

time steps which is not present when using double precision to evaluate

accelerations and higher order derivatives (this peculiar behaviour has

already been pointed out by Gaburov et al. [45] comparing single and

double-emulated precision). Therefore, using the DS version of HiGPUs

, we obtain higher performance but a total execution time which is the

same or greater and a relative energy conservation which is, on average,

2 orders of magnitude worse. A possible explanation of this behaviour

is that HiGPUs uses the following criterion to determine particles time

steps

∆t =
1

α1 + α2

α1η4

(
A(1)

A(2)

)
+ α2η6

(
A(1)

A(4)

) 1

3

 . (3.4)

This represents a weighted mean (with coefficients α1 and α2) between

the Aarseth criterion for the 4th order Hermite’s integrator (1.125) (with

accuracy parameter η4) and the generalized Aarseth criterion for the 6th

order scheme (1.126) (with accuracy parameter η6). The combination

with α1 = α2 = 0.5 has been found to be more stable, for the 6th order

method, than the two criteria used singly, providing better energy con-

servation and avoiding time steps too large or too small. The Aarseth

style criteria are sensible to round-off errors and numerical terms can-

cellation in the calculation of higher order derivatives thus producing

the above-said tail when using less precision to store variables. We do

not discuss further this point here because it is out of the scopes of this

68 Chapter 3 The N -body code HiGPUs

work, although a better investigation of this behaviour will likely lead

to fix this problem in a future implementation of our code.

3.2.4 Tested architectures

An older version of HiGPUs has been deeply tested on a big hybrid super-

computer: the IBM iDataPlex DX360M3 Linux Infiniband Cluster (PLX)

available, since June 2011, at the italian supercomputing consortium

CINECA [32]. This is a supercomputer which consists of 274 computing

nodes which exchange data through a Qlogic QDR (40 Gb/s) Infiniband

high-performance network. Each node harbours 2 GPUs, for a total of

528 nVIDIA Tesla M2070 plus 20 nVIDIA Tesla M2070-Quadro, 2 CPUs

Intel Xeon Esa-core Westmere E5645 running at 2.4 GHz and 46 GB of

RAM memory. The operating system is Linux Red Hat EL 5.6 x86_64

while the version of the gcc compiler installed and tested is the 4.4.4,

the CUDA version is the 4.0 and the OpenMPI version is the 1.4.3. Apart

from the usage of large structures, we also tested the OpenCL version

of our code on single different GPUs manufactured by different vendors

(nVIDIA, AMD) obtaining surprising performance results. We will show

that our OpenCL implementation of HiGPUs works fine on a wide range

of GPUs which means that it is very portable and it is, to our knowledge,

the first implementation in OpenCL of a N -body code, freely available,

which can run on hybrid supercomputers. We report in this work these

kinds of tests already published in two papers [28] and [25].

3.3 Results of performance tests on a

hybrid supercomputer

In this section we show the results of our older version of HiGPUs both

in terms of accuracy and performance performing some runs on the PLX

3.3 Results of performance tests on a hybrid supercomputer 69

supercomputer. These test were of fundamental importance to get to

the present version of HiGPUs because they let us understand where to

intervene to significantly improve the performance of our code. For this

purpose, we performed a set of N -body simulations with values of N

in the range from 32k to 8M stars, spatially distributed according to the

Plummer mass density profile [82]

ρ(r) =
3M

4πb3

(
1 +

r2

b2

)− 5

2

, (3.5)

where r is the distance from the centre of gravity of the system and b

and M are, respectively, the scale length (also called core radius) and

the total mass of the system. The choices b = 1, M = 1 and, for the

gravitational constant, G = 1 as units for the N -body simulations, lead

to the system characteristic crossing time (cfr section 1.2.4) as unit of

time for the code, written as

tc =
b

3

2√
GM

. (3.6)

At this regard, we note that there is no reason, a priori, to prefer other

kind of units (like for example the so called N -body units, which we

will briefly discuss in 4) to others even if, sometimes, they are simpler

and more elegant. We used a softening parameter ǫ = 10−4, which is

around 50 times smaller than the closest neighbour average distance

(which scales as N−1/3) for N = 8M. The choice of a fixed value of ǫ is

not best suited to follow the, rare, very close encounters that may result

in the formation of binaries but, for the scopes of our work, where we

exploit our code’s capabilities over relatively short time scales, it seems

appropriate. Moreover, to perform our benchmarks, we chose values of

N as powers of two. This is not compulsory but apt to guarantee best

performance of our code.

70 Chapter 3 The N -body code HiGPUs

3.3.1 Energy and angular momentum

conservation

The accuracy of our code, in its present version (not yet publicly re-

leased, still under tests) is controlled by the parameters η4 and η6 (see

equation 3.4). Nevertheless, here we show the results obtained when

the criterion of HiGPUs was just the generalized Aarseth criterion (i.e.

η4 = 0 and η6 = η). To test the accuracy we run N -body simulations

with N = 2k with k integer between [15; 20] over 10 time units, check-

ing both the energy and the angular momentum conservation over that

time interval. Specifically, the relative errors are calculated using the

expressions

∆Ek =
1

10

10∑

i=1

∣∣∣∣
Ek(ti) − Ek(0)

Ek(0)

∣∣∣∣ ∆Lk =
1

10

10∑

i=1

∣∣∣∣
Lk(ti) − Lk(0)

Lk(0)

∣∣∣∣ ,

(3.7)

where Ek(ti) and Lk(ti) are, respectively, the total energy and absolute

value of angular momentum of the N = 2k system evaluated at ten

times ti, which are multiples of the system crossing time. Moreover, the

obtained values of ∆Ek and ∆Lk are averaged over the five values of

N . Although this approach is quite arbitrary, we use it to estimate the

accuracy of our code because it allows a comparison with, for example,

the results obtained by mean of the direct N -body code by Berczik et

al. [16] who used the same approach (although their values of η are

not comparable to ours because they use DS precision while our code

uses separately single and double precision; for more details see section

3.2.3).

In Fig. 3.2 we show the results obtained for different values of η. As ex-

pected, the energy error does not depend on η when η is small enough;

for η . 0.3 the relative energy error gets an almost constant value

around 7.0 · 10−11. Increasing the value of η leads to a progressively

3.3 Results of performance tests on a hybrid supercomputer 71

worse energy conservation because the particles time steps become, on

average, larger, yielding to 〈∆Ek〉 ≃ 4.0 · 10−3 for η = 1.0. A similar

trend is noticed for the angular momentum error. We chose to main-

tain the energy error for our benchmarks below 5 · 10−9 and the angular

momentum error around 5 · 10−7 so we set η = 0.6.

Observations

We are actually testing the new criterion expressed in formula (3.4).

The main problem is that the Aarseth criterion for the 6th order method

allows, in general, particles to have bigger time steps than that ob-

tained using the criterion for the 4th order method (already stressed

by Nitadori and Makino [78]). Nevertheless, the 6th order criterion is

also more affected by round-off errors and terms cancellation (the crite-

rion for the 8th order even more than that for the 6th order) therefore,

sometimes, especially when, for example, the acceleration of a generic

particle is almost constant over a certain interval of time, (this can be

verified for a star which escapes from the simulated stellar system), the

time step tend to shrink significantly even if this reduction is not needed.

The forth order criterion is less affected by this error, therefore it can be

used together with other more elaborated criteria to control more accu-

rately the distribution of time steps. We are currently conducing a deep

study about this topic and the results will be shown in a forthcoming

publication.

72 Chapter 3 The N -body code HiGPUs

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

R

el
at

iv
e

va
ri

at
io

n
of

 e
ne

rg
y

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

R

el
at

iv
e

va
ri

at
io

n
of

 a
ng

ul
ar

 m
om

en
tu

m

Figure 3.2: Averaged relative energy (upper panel) and angular mo-

mentum (lower panel) errors as a function of the accuracy

parameter η.

3.3 Results of performance tests on a hybrid supercomputer 73

3.3.2 Code scalability

Figure 3.3 shows the wall clock time needed to integrate an N -body

system, for different values of N , up to one unit of time as a function of

the number of GPUs used.

2 4 8 16 32 64 128 256
10-3

10-2

10-1

100

101

102

103

 32 k
 65 k
 131 k
 262 k
 524 k
 1 M
 4 M
 8 M

Number of GPUs

Ex
ec

ut
io

n
tim

e
(h

ou
rs

)

10 days

1 day

1 hour

Figure 3.3: Time needed to integrate N -body systems (32k ≤ N ≤
8M) over one time unit using different numbers of nVIDIA

Tesla M2070 GPUs. Unfortunately, we could not use the

PLX cluster to perform further simulations using 128 and

256 GPUs, therefore we do not have complete data for N .

1M and a number of GPUs greater than 128. Nevertheless,

this does not constitute a problem for the scopes of this

work.

As relevant result, the total execution time decreases linearly increasing

the number of GPUs whenever the number of bodies is large enough

(1M, 4M or 8M). The departure from this inverse linear trend is seen

74 Chapter 3 The N -body code HiGPUs

for N . 262k and when the number GPUs used is greater than 16. This

is expected because, when the number of particles per GPU is small

(. 1000), the computational load is not enough to exploit the full com-

puting power of the GPUs. Specifically, in this case, memory latencies,

MPI communications, and other non-scalable parts of our code are not

“covered” adequately. Another important output of Fig. 3.3 is that, us-

ing 256 GPUs, an integration of a 8M-body system over one time unit

is done in less than 10 hours which is, to our knowledge, an unprece-

dented degree of performance for such kind of high precision, direct

summation, N -body simulations.

Notes on the last version of HiGPUs

With the introduction of the new version of HiGPUs , thanks also to the

introduction of always new functions and utilities in both CUDA and

OpenCL, we improved further the results presented in Fig. 3.3 and now

the departure from the linear trend is observed for N . 65k when the

number GPUs used is greater than 16 while the total times relative to

the 8M and 4M bodies systems are reduced approximatively by a factor

of about 1.4 over all the x-axis.

3.3.3 Speedup and Efficiency

A deeper analysis of the performance of our code may be done by mean

of the use of parameters like the speedup (Sn) and the efficiency (En).

The speedup quantifies how faster a parallel algorithm is with respect

to the corresponding sequential one, and it is defined as:

Sn =
∆T1

∆Tn
, (3.8)

where ∆Tn is the time spent to execute the program using n computa-

tional units (GPUs, in our case). A parallel algorithm is considered to

3.3 Results of performance tests on a hybrid supercomputer 75

 32 k
 65 k
 131 k
 262 k
 524 k
 1 M
 4 M
 8 M

Sp
ee

d
up

Number of GPUs

lin
ear sp

eedup

Figure 3.4: The speedup of our code as function of the number of GPUs

used. The straight dashed line represents the trend of the

perfect speedup.

76 Chapter 3 The N -body code HiGPUs

1 2 4 8 16 32 64 128 256
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

 32 k
 65 k
 131 k
 262 k
 524 k
 1 M
 4 M
 8 M

Number of GPUs

Ef
fic

ie
nc

y

maximum efficiency

Figure 3.5: The efficiency of our code as function of the number of

GPUs used. The horizontal dashed line represents the trend

of the perfect efficiency.

3.3 Results of performance tests on a hybrid supercomputer 77

be perfectly written if the so called linear speedup is reached and main-

tained increasing the number of computing units. This ideal situation

corresponds to Sn = n.

A parameter which derives directly from the speedup is the efficiency of

a generic algorithm, En, which indicates how the parallel algorithm ex-

ploits the whole available computing resources. It is usually expressed

as:

En =
Sn
n
. (3.9)

Low efficiencies mean a huge amount of time spent in data communica-

tions and/or synchronization events, that are, indeed, real bottlenecks

for almost all highly parallel applications.

Figures 3.4 and 3.5 draw how our code is able to integrate up to 8M

particles keeping a very good efficiency (≃ 0.80) when using 128 nodes,

decreasing to ∼ 0.70 for N ≃ 4M. With the new modifications intro-

duced in the new version of HiGPUs we get to a value E256 ≃ 0.92 for

N =8M. Nevertheless, the smaller the number of bodies, the worse the

scalability of our code is. This is a behaviour common to this kind of nu-

merical codes, direct consequence of, at least, two different factors:

1. when the number of particles is small, as we said before, there

is not enough work assigned to the generic GPU thread to cover

adequately latencies. This can be due to different reasons

a) to the too frequent GPU global memory access compared to

the computational load;

b) to the data transfer between GPUs and CPUs;

c) to idle GPU cores yielding the performance of the generic

GPU to very low levels.

78 Chapter 3 The N -body code HiGPUs

2. increasing the number of GPUs and computational nodes implies

the necessity to exchange and reduce data through a network con-

nection, an operation which becomes important in terms of total

execution time if the number of nodes in use is high (high laten-

cies and low bandwidth whose speed is around 40 Gb/s for the

IBM PLX cluster).

At the light of these observations, it is clear that the highest efficiency

is reached whenever a right balance between the number of GPUs and

the size (in terms of N) of the astrophysical problem is reached.

3.3.4 Code profiling

To obtain a clear picture of where the critical, non scalable, parts of our

code are, we divided the operations and tasks performed in a single time

step into 9 parts and we measured their execution times. The schematic

representation of our code and its main tasks is given and explained in

Table 3.1.

To investigate the performance of the individual sections of our code,

we will focus on a system composed of about 1M stars (N = 220 to be

precise) chosen as reference because it exhibits an average behaviour

among all our benchmarks. Following the notation listed in Table 3.1,

we report in Fig. 3.6 the fractional times spent to complete different sec-

tions of our code as a function of the number of computing nodes used.

It is worth noting that the force calculation section of the code becomes

less important in terms of execution time at increasing the number of

nodes, reducing from about 100%, when using 1 node (2 GPUs) only,

to 75% with 32 computing nodes (that is, 64 GPUs). Simultaneously,

the relative contribution of the other code sections increases, especially

the MPI communication part which goes from ∼0.2% with 1 node to

∼10% when we use 32 nodes. The same happens for the corrector step

(∼7.5% of the total time with 32 nodes). Figure 3.7 is also very helpful

3.3 Results of performance tests on a hybrid supercomputer 79

Index Section Used resource Notation

Each node determines the stars

to be updated and their indexes

1 indexes are stored in an array CPU (OpenMP) ∆tnext
named next containing m

integer elements

Each node copies to its GPUs

the array containing indexes

2 of m particles and the GPU ∆tpred
predictor step of N/n stars

is executed

Each node computes the forces

3 (and their higher order derivatives) GPU ∆teval
of m particles due to N/n bodies

Each node reduces the calculated

4 forces and derivatives GPU ∆tredu
of Bfactor blocks

5 Each node adjusts conveniently GPU ∆trepo
the reduced values

6 The CPUs receive the accelerations GPU → CPU ∆tDtoH
from the GPUs

The MPI_Allreduce() functions

7 collect and reduce accelerations CPU(MPI) ∆tmpi
from all the computational nodes

8 Corrector step and time step CPU ∆tcorr
update for m stars

The reduced accelerations

(and derivatives) and the corrected

9 positions and velocities of m CPU → GPU ∆tHtoD
bodies are passed to the GPUs

of each node

Table 3.1: The main sections in which our code is divided. We indicate

with n the number of GPUs used in the computation. The

“convenient adjustment” mentioned in the description of the

5th section of our code refers to the re-organization of the

computed and reduced accelerations and derivatives in one

array only (instead of three) to improve the performance

of the subsequent data transfer from the GPU to the CPU. In

this way we execute one bigger copy instead of three smaller

ones.

80 Chapter 3 The N -body code HiGPUs

1 2 4 8 16 32
10-4

10-3

10-2

10-1

100

R

el
at

iv
e

tim
e

n

 1 2 3 (evaluation)

 4 5 6

 7 (MPI)
 8 (corrector)

 9 (CPU - GPU comm.)

10%

1%

Figure 3.6: Relative (to the total) execution times of the different parts

of our code (labeled as in Table 3.1) integrating an N =
1M system up to one unit of time using different numbers

of computing nodes.

3.3 Results of performance tests on a hybrid supercomputer 81

0 4 8 12 16 20 24 28 32
100

101

102

103

104

Figure 3.7: The times needed to complete the evaluation step, the pre-

dictor step, the MPI communications and the other sections

of the code grouped together in the remaining curve. All

the times refer to a system composed by 1M stars evolved

over one time unit.

to identify possible bottlenecks in HiGPUs . It shows the time spent in

the various sections of the code (as indicated in Table 3.1), as a function

of the number of computational nodes, integrating the 1M-body system

over 1 time unit. The figure shows that the two sections that scale with

increasing the number of GPUs are the evaluation step (which is the

most relevant part) and the predictor step.

The trend of the dependence of the evaluation step on the number of

nodes, nn, is well fitted by

∆tnn,eval = a · nnα (3.10)

82 Chapter 3 The N -body code HiGPUs

with best fitting values a = 33, 213.0±1.6 s and α = −0.99968±0.00030.

This denotes, according to Eq. 3.8, a very good speedup of our main gpu

kernel, at least for N=1M and up to 64 GPUs. Moreover, we checked

that for N ∈ [32k; 8M] the value of α remains around −1, i.e. we ob-

tain an approximatively linear speedup for the evaluation step. On the

other hand, the ∆tmpi part of the code, as shown in Fig. 3.7, grows with

nn with an almost logarithmic scaling as a result of the combination of

latency effects, low network bandwidth and inter-node reduction oper-

ations. The time spent in this part of the code is fitted by the expression

∆tnn,MPI = b+ c log10 nn (3.11)

with best parameters b = 85.2 ± 5.2 s and c = 49.3 ± 5.7 s. The loga-

rithmic growth of this section is common to all values of N and may

reduce significantly the efficiency and scalability of our code when us-

ing a large number of GPUs. At the light of the analysis above it is

clear that a faster network connection could improve performance of

our code significantly.

Recent improvements

The figures shown in this section, already published in the paper by

Capuzzo-Dolcetta et al. [28], helped us to understand the critical parts

of our code. In fact, we noticed that, as we can see in Fig. 3.7, the

corrector step constituted about 70% of the constant, not scalable part,

of HiGPUs ; this is why, in the present version of HiGPUs , the corrector

has been ported entirely on the GPU guaranteeing negligible times for

this section with respect to other fundamental pats of our code. This

gave us also the possibility to eliminate a further copy between the CPU

and the GPU and following reorganization of positions, velocities and

accelerations of the particles. In other words, the times relative to both

sections 8 and 9 (see Tab. 3.1 and Fig. 3.6), are now negligible and

3.3 Results of performance tests on a hybrid supercomputer 83

comparable to the times needed to perform the prediction step (code

section 2).

3.3.5 Consequences of block time steps

Our direct summation N -body code is implemented by mean of hierar-

chically blocked time steps. This implies that the stars to be integrated

in a generic time step may vary from 1 to N depending on how the

blocks are populated. As a consequence, it is interesting to see what

are the groups of particles giving the biggest contribution in terms of

the total execution time, in order to know where our code needs further

optimization. To do this, we measured the update frequencies for the

whole set of stars over one time unit (in our 1M-body reference case)

using 32 computational nodes and then we multiplied these values by

the sum of the times needed to complete each section of the whole time

step for those bodies. After grouping particles into 6 groups (labeled

with the letters A, B, C, D, E and F) we obtained the results sketched in

Fig. 3.8.

Figure 3.8 show that, when using 32 nodes for the dynamical integra-

tion of 1M stars, the evaluation time can become significantly smaller,

for example, than that for the per-block particles determination (∼ 29%

for the A group, brown part) or than that for the GPU reduction of the

partial forces due to the presence of the Bfactor (∼ 30% for the A group,

in yellow). Moreover, the forces calculation time may be comparable to

that needed to complete the predictor step (red) and to that needed to

exchange data from the CPU to the GPU (pink). This situation becomes

more evident when the number of nodes increases, while it fades, as

expected, with larger number of bodies; the two effects tend to compen-

sate each other. Therefore, in order to obtain a better performance, it is

worth performing a further improvement of our code in the case when

the number of stars to be updated is small compared to N . It must be

84 Chapter 3 The N -body code HiGPUs

Figure 3.8: Considering the 1M-body reference system, calling fm the

update frequency ofm particles over 1 time unit and calling

Tm,s the time needed to complete the section s of our code

for m stars, the percentage value HG of each bar can be ob-

tained as HG = 100
Ttot

∑
s

∑
m∈G Tm,s ·fm, where Ttot is the to-

tal time needed to complete 1 time unit and G indexes the

groups A (m ∈ [1; 20]), B (m ∈ [21; 100]), C (m ∈ [101; 1k]),
D (m ∈ [1k; 10k]), E (m ∈ [10k; 100k]), F (m ∈ [100k; 1M]).

3.3 Results of performance tests on a hybrid supercomputer 85

noted that these results are strongly related to the chosen initial condi-

tions. In general, the overall performance of HiGPUs evolving a system

containing N bodies for a certain interval of time depends strictly on its

speed for m =< m > where

< m >=

∑S
i=1 mi

S
(3.12)

where S is the total number of integration steps and mi the number of

particles to update for the i − th step (Berczik et al. [16]). The value

of < m > depends on many factors like the distribution chosen to sam-

ple initial conditions, the value of the softening parameter, the criterion

used for determining the particle time steps, the presence of a more

massive body (black hole, see [26]) and also on the used time integra-

tion algorithm. A deep analysis about the relation which exists between

< m > and N is now under investigation. In particular, in Fig. 3.8 we

can see how, in our case, the majority of time (∼ 80%) is spent avolv-

ing blocks of particles belonging to the group F, that is m ∈ [100k; 1M].

In any case, the use of the variable which we indicate as Bfactor (see

section 3.2.2) improves significantly performance in critical (small m)

regimes. In Fig. 3.9 we show the speed achieved in the forces calcula-

tion as a function of the number of bodies to be updated, having 16,384

stars per GPU, in the cases when the Bfactor optimization is active and

when it is switched off. This mimics the situation in which an N -body

system of 1,048,576 stars is integrated using 64 GPUs (32 PLX compu-

tational nodes). As we see in Fig. 3.9 the discussed optimization helps

to improve performance up to a factor 50 when the number of particles

to be updated is less then 20. This means that, referring to Fig. 3.8,

the contribution to the total time of the first bar (A) would have been

around 50 times larger without introducing a Bfactor value becoming

the real bottleneck for our applications.

86 Chapter 3 The N -body code HiGPUs

Figure 3.9: Speed (in Gflops) achieved updating different numbers of

stars using 64 GPUs for a 1M-body system. The red bars

indicate the improved performance when the Bfactor opti-

mization is active.

3.3.6 GPU memory used by HiGPUs

As final benchmark, we investigated the maximum GPU memory used

as a function of the number of stars to integrate. The results are shown

in Fig. 3.10. As we can see, on a GPU Tesla M2070 it is possible to

handle up to N = 8M stars, while, using a Tesla C2050, N must be

reduced to 4M.

This may seem, indeed, a real limit for our code applicability but it is

important to stress that for real astrophysical direct N -body simulations

(integrated over a significantly large interval of time, order of 1Gyr) it

would be impossible to use, in practice, a number of stars N & 2M

because of the prohibitive execution times even using the most power-

ful supercomputing facilities available nowadays. Therefore the limited

GPU on-board memory does not represent a real limit so far.

3.3 Results of performance tests on a hybrid supercomputer 87

Figure 3.10: Used on-board GPU memory, in GB, as it grows with the

number of stars of a generic N -body system.

3.3.7 Hardware maximum performance

As we have already discussed in chapter 2, the nVIDIA architecture

named FERMI organizes the generic GPU as a group of 16 Streaming

Multiprocessors of 32 Streaming Processors each for a total of 512 cores

which often are called simply cuda cores. The GPUs tested in this work

(Tesla M2070) are based on this kind of architecture having 448 active

cuda cores over the 512 potentially available. Each of them has a clock

frequency around 1.15 GHz and can execute up to two single precision

floating point operations (32 bit) per clock cycle. This means that the

theoretical performance peak in single precision can be determined by

Speak = 448 cores · 2 flops/cycle · 1.15 GHz = 1030.4 Gflops. (3.13)

88 Chapter 3 The N -body code HiGPUs

Operation CUDA expression Equivalent flops

a± b a ± b 1
a · b a ∗ b 1

1√
a

rsqrt(a) 4
a
b

a/b 5
ab pow(a,b) 9

Table 3.2: The number of floating point operations required by the op-

erations most relevant for our code.

On the other hand, up to 32 double precision floating point operations

(64 bit) can be performed by each Streaming Multiprocessor, per clock

cycle. Having 14 active multiprocessors on a Tesla M2070 we get

Dpeak = 14 multiprocessors · 32 flops/cycle · 1.15 GHz = 515.2 Gflops,

(3.14)

which is exactly half of the single precision peak. To estimate how much

our code can exploit the FERMI architecture we measured its peak per-

formance. To do this, we counted how many floating point operations

are enclosed in our evaluation kernel (the most expensive section in

terms of computational load) and then we divided this value by the time

needed to execute it, obtaining the performance expressed in Gflops.

Other authors use different strategies to count operations [41, 79] but

we prefer to refer to Table 3.2. Table 3.2 has been built following the

Table 2 (Throughput of Native Arithmetic Instructions) shown at para-

graph 5.4.1 (Arithmetic Instructions) in the document CUDA C program-

ming guide [34] coupled with the information given by the whitepaper

of the FERMI architecture [36]. Specifically, it is possible to stress that

the power elevation operation is very expensive, and it must be avoided,

as much as possible, because it is implemented using a combination of

one base-2 logarithm, one base-2 power elevation and one multiplica-

tion. Following Table 3.2 we counted 15 double precision operations

3.3 Results of performance tests on a hybrid supercomputer 89

plus 82 single precision operations in our main kernel. Therefore, we

estimate the theoretical peak achievable, per GPU, by the formula

Rpeak =
82 · Speak + 15 ·Dpeak

82 + 15
≃ 950 Gflops. (3.15)

This is, obviously, an ideal value because it does not consider any kind

of memory latency, communication and/or read and write operations

which, in general, can reduce performance significantly. The formula

that we derived to count Gflops in our main kernel is the following

R ≃ 97 ·N ·m
109 · ∆Tker(N,m)

(Gflops) (3.16)

where N is the total number of stars that form our N -body system, m

is the number of particles to be updated and ∆Tker(N,m) is the kernel

execution time. A similar formula has been used by other authors [78,

89]. We reached performance over 100 Tflops using 256 Tesla M2070

with N = 223 ≃ 8.4 × 106 stars, which corresponds to ∼ 400 Gflops per

GPU, that is around 40% of the claimed peak GPU performance. This

is a very good result for this kind of astrophysical computations, espe-

cially in this case of heavy use of the double precision arithmetic, and

is, at least, comparable to what obtained by other authors with similar

(in structure) N -body. codes (see [16, 89]). As a final note, we stress

that, in addition to the availability of powerful software and hardware

tools, to reach higher performance in real physical/astrophysical appli-

cations that require simulations extended over long time scales, the de-

velopment and improvement of the numerical algorithms is, in any case,

unavoidable.

3.4 Final observations

It is now clear that composite architectures based on several computing

nodes hosting multicore Cnetral Processing Units connected to one or

90 Chapter 3 The N -body code HiGPUs

more Graphic Processing Units represent a clever and efficient solution

to supercomputing needs in different scientific frameworks. Actually,

these architectures are characterized by a high ratio between perfor-

mance and both installation cost and power consumption. A practical

proof of this is that some of the most powerful systems in the Top500

list of world’s supercomputers [95] are based on that scheme. They

are, indeed, a valid alternative to massively parallel multicore systems,

where the final computational power comes by the use of a very large

number of CPUs, although each of them has a relatively low clock fre-

quency. It is quite obvious that a full exploit of the best performance of

the CPU+GPU platforms requires codes that clearly enucleate a heavy

computational kernel, to be assigned in parallel to the GPUs acting as

“number crunchers” which release, periodically, their results to the hosts.

In physics, the study of the evolution of systems of objects interacting

via a potential, depending on their mutual distance, falls into this cate-

gory.

In this chapter we presented and discussed a new, high precision, code

apt to simulating the time evolution of systems of N point masses in-

teracting with the classical, pair, Newtonian force. The high precision

comes from both the evaluation by direct summation of the pairwise

force among the system bodies and by a proper treatment of the mul-

tiple space and time scales of the system, which means resorting to an

individudal time-stepping procedure and resynchronizations, as well as

using a high order (6th) time integrator.

We also discussed the implementation of our fully parallel version of

a direct summation algorithm whose O(N2) computational complexity

is dealt with by GPUs acting as computing accelerators in the hosting

nodes where multicore CPUs are governed and linked via MPI direc-

tives. The code, called HiGPUs , available to the scientific community

at the web address in footnote5 or in the frame of the AMUSE project

5astrowww.phys.uniroma1.it/dolcetta/HPCcodes/HiGPUs.html

3.4 Final observations 91

astrowww.phys.uniroma1.it/dolcetta/HPCcodes/HiGPUs.html

on amusecode.org [68], shows a very good performance both in term

of scaling and efficiency in a good compromise between precision (as

measured by energy and angular momentum conservations) and speed.

Moreover, as discussed, the last version of HiGPUs (still under tests) has

been further improved. We performed an extensive set of test simula-

tion as benchmarks of our code using the PLX composite cluster of the

CINECA Italian supercomputing inter-university consortium. We found

that the integration of N = 8, 000, 000 bodies is done with an 80% ef-

ficiency, that is a deviation of just 20% from the linear speedup when

using 256 nVIDIA Tesla M2070. This corresponds to less than 10 hours

of wall clock time to follow the evolution of the 8M body system up

to one internal crossing time, performance, at our knowledge, never

reached for such kind of simulations.

This means that with HiGPUs it is possible to follow the evolution of a

realistic model of Globular Cluster (a spherical stellar system orbiting

our and other galaxies and composed by about 1,000,000 stars packed

in a sphere of about 10 pc of radius) with a 1:1 correspondence between

number of real stars in the system and simulating particles. Actually, as

we will see in the next section, by mean of 4 AMD Radeon HD7970

GPUs, the GC dynamical evolution over 1 orbital revolution around the

galactic center (at a galactocentric distance of about 8 kpc, i.e. the solar

galactocentric distance) takes ≃ 28 days. This time should be scaled

by a factor 3 when using the same number (4) of nVidia Tesla M 2070

GPUs.

These kinds of simulations will allow, for instance, a thorough investiga-

tion of open astrophysical questions that may involve, in their answer,

the role of globular clusters and globular cluster systems in galaxies.

We cite the open problem of the origin of Nuclear Clusters as observed

in various galaxies, like our Milky Way. Some authors (e.g., [74] and

[15]) suggested a dissipational, gaseous origin while others ([22], [27])

indicate, more realistically, a dissipationless origin by orbital decay and

92 Chapter 3 The N -body code HiGPUs

amusecode.org

merging of globular clusters, (hypothesis already numerically tested in

[24] and [12]).

One limit in the use of our code is the GPU memory: with a 6GB RAM, as

in the case of nVIDIA Tesla M2070, the upper limit in N is ∼ 8, 400, 000,

which is, anyway, a number sufficiently large to guarantee excellent

resolution in the simulation of most of the astrophysically interesting

cases involving stellar systems.

Apart from these technical, hardware, considerations, we wish to re-

mark that simulations extended over time length where secular behaviours

deploy likely rely on a clever strategy of balance between computational

power and algorithmic development which help, in any case, to have

physically reliable results without necessarily resort on brute force com-

putations.

We acknowledge the class C grant number HP10COVQZA provided by

the Italian consortium for supercomputing (CINECA, Casalecchio, Italy)

which allowed us to perform the simulations presented in this section.

3.5 HiGPUs on single, different GPUs

As we have already discussed in the previous chapters, nowadays, al-

though the use of GPUs to accelerate N -body codes is widespread, very

few codes have been implemented using OpenCL being very young and

less optimized than CUDA. Therefore, the theoretical computing power

of, for example, AMD GPUs has not been fully tested and compared

with the performance of nVIDIA GPUs. A deep knowledge of hardware

facilities and how to use them efficiently, as we discussed in chapter 1,

is a fundamental point for modern scientists and researchers who want

to use recent technologies to produce important scientific (numerical)

results. The following section of this work (which has been already pub-

3.5 HiGPUs on single, different GPUs 93

lished, see Capuzzo-Dolcetta and Spera [25]) focuses on the description

and benchmarks of a wide range of GPUs in order to give an idea to how

and what has to be used to perform a specific (in our case astrophysical)

simulation. Although we will use our code HiGPUs , already introduced

and deeply discussed in the previous section, the benchmarks presented

in this section can be easily seen in a more general way as tests of

a generic algorithm which has a computational complexity of O(N2),

which represents an amount of floating point operations widespread in

modern GPGPU applications.

Specifically, in this chapter, we will test the performance of the OpenCL

version of HiGPUs to exploit and compare the measured computing

power of the modern GPUs available on the market. We will show and

discuss the comparison among different GPUs running HiGPUs to evolve

several N -body systems corresponding to different astrophysical situa-

tions, chosen as test cases. Although we have a CUDA version of our

code (whose tests have been shown in the previous chapter), in this sec-

tion we need to use the OpenCL version to compare AMD and nVIDIA

GPUs using an identical high-level software. It is worth underlining that

the gain of performance running the same test cases on nVIDIA GPUs

using the CUDA version of HiGPUs , instead of the OpenCL, has been

quantified about 5 %. We introduced more recent improvements of the

CUDA version of HiGPUs obtaining a significant gain with respect to the

version used to realize the following tests. In fact, preliminary tests

show that the gain of ∼5% is increased to ∼20%.

Firstly we will focus our attention to the different hardware (GPUs)

tested; then we will describe how we measured performance and the as-

trophysical test cases. Finally we will show the results of the performed

tests.

94 Chapter 3 The N -body code HiGPUs

GPU Model Cores Clock 32bitP 64bitP

(number) (GHz) (Gflops) (Gflops)

AMD Radeon HD 6970 1536 0.880 2703 675

AMD Radeon HD 7970 2048 0.925 3789 947

AMD Radeon HD 7870 1280 1.000 2560 160

nVIDIA GeForce GTX 580 512 1.544 1581 198

nVIDIA GeForce GTX 680 1536 1.006 3090 129

nVIDIA Tesla K20 2496 0.706 3520 1170

nVIDIA Tesla C2050 448 1.150 1030 515

nVIDIA Tesla C1060 240 1.300 622 78

Table 3.3: Some characteristics of each of the tested GPUs. The

columns 32bitP and 64bitP list the maximum theoretical per-

formance in single and double precision respectively.

3.5.1 Hardware

Our performance tests were done on different GPUs manufactured by

nVIDIA and AMD corporations. In Tab. 3.3 and Tab. 3.4 we list the

GPUs used for our benchmarks with some useful reference data.

It is possible to see in Tab. 3.3 that we used 3 GPUs of the AMD Radeon

series, 2 GPUs of the nVIDIA GTX series and 3 GPUs of the nVIDIA Tesla

series. It is important to stress that while GeForce and Radeon cards are

explicitly designed for the gaming market, the Tesla cards are dedicated

to scientific users and, since double precision operations are not needed

for playing video games, both GeForce and Radeon cards have limited

64-bit computing capability. At this regard, we notice from Tab. 3.3 that

the GTX 580 GPU has a double precision peak limited to 0.125 times its

single precision speed, while this ratio is up to 0.5 for the Tesla C2050.

Unfortunately, for the more recent card, the GTX 680, which is based

on the so called Kepler architecture (see chapter 2), this factor is even

smaller (about 0.1).

3.5 HiGPUs on single, different GPUs 95

GPU Model Launch TDP Memory Bandwidth (a)

(quarter year) (Watt) (MB) (GB/s)

AMD Radeon HD 6970 Q4 2010 250 2048 176.0
AMD Radeon HD 7970 Q1 2012 250 3072 264.0
AMD Radeon HD 7870 Q1 2012 175 2048 153.6
nVIDIA GeForce GTX 580 Q4 2010 244 1536 192.3
nVIDIA GeForce GTX 680 Q1 2012 195 2048 192.3

nVIDIA Tesla K20 Q4 2012 225 5120(b) 208.0

nVIDIA Tesla C2050 Q4 2009 238 3072(b) 144.0
nVIDIA Tesla C1060 Q2 2008 188 4096 102.4

(a) Maximum device to device bandwidth.
(b) ECC memory supported.

Table 3.4: Some other relevant data to take into account for each

tested GPU. In the column Launch the letter Q stands for

Quarter. The TDP is the Thermal Design Power which indi-

cates the maximum dissipative power of the cooling system:

this is taken as an estimate of the GPU power consumption

at full load.

Looking at Tab. 3.4 it is worth noting that both the GPU Tesla C2050,

and the most recent Tesla K20, support ECC (Error Correcting Code)

memory which can detect and correct the most common memory errors

ensuring, probably, an improved system stability and more reliable re-

sults when running very long simulations. Moreover, Tesla cards have,

in general, more on-board memory, up to 5 GB (in some cases 6 GB)

in the Tesla K10/K20/K20X. Moreover, some recent CUDA utilities are

available only for Tesla cards. However, ECC memory, improved 64-bit

performance, large on-board memory and dedicated drivers are surely

important characteristics for scientific users, but these features have an

important cost too. Moreover, basing our discussion only on declared

performance and manufactured characteristics, Radeon GPUs seem to

represent a good compromise between 32/64 bit performance, cost and

power consumption. Another feature which emerges from Tab. 3.3 is

that the recent boards have, in general, a greater number of cores with

lower operating frequency than older GPUs. This new “extreme” par-

allel approach, if combined with a better double precision capability,

96 Chapter 3 The N -body code HiGPUs

ensures higher theoretical performance both in 32-bit and 64-bit preci-

sion, at least in those regimes where the GPU is fully “loaded”. However,

these technical considerations are purely ideal. Actually, the effective

measured performance depends on the combination of hardware, soft-

ware, drivers, characteristics of the motherboard and many other factors

that cannot be taken into account in an easy way.

In our case, the benchmarks were performed on one of our worksta-

tions at the Department of Physics of “Sapienza”, University of Roma.

The main characteristics of this workstation (named astroc12) and the

software used to perform our astrophysical test systems are summarized

in Tab. 3.5.6

3.5.2 Performance measurements

As we have already discussed in previous chapters, HiGPUs is such that if

we call, hereafter,m the number of particles to update in one integration

step, the computational complexity of the N -body problem is reduced

from O(N2) to O(mN) where m gets equal to N at the end of the time

synchronization process. Here we show a more detailed version of the

table 3.1 used in this chapter to study the GPU performance for sections

2, 3, 4, 5, 6, 7, 10 and 11, measuring the time to complete each of them

deducing the speed in Gflops. In broad lines, our strategy to measure

performance can be summarized by the following statement: if, for the

k-th section, the total number of running GPU threads is Tk, the counted

floating point operations are Fk and the time to complete the section,

in seconds, is ∆tk, the performance Rk in Gflops is obtained by the

formula

Rk =
TkFk

109∆tk
. (3.17)

6The Tesla K20 card has been tested thanks to two remote accesses kindly
provided by Simon Portegies Zwart, to a machine sited at the Department
of Astronomy of the Leiden University (NL), and by the E4 computer engi-
neering to one of their test workstations.

3.5 HiGPUs on single, different GPUs 97

Astroc12 workstation characteristics

Motherboard ASUS P6T7 WS SuperComputer
Power Supply Enermax ERV1250EGT 1250 W
CPU 1 Intel core i7 950 @ 3.07 GHz
RAM memory 6 GB (3 x 2GB) 1333 MHz
Operating System Ubuntu Lucid 10.04.2 64-bit version (a)

OpenCL AMD and nVIDIA implementations version 1.2 (b,c)

CUDA version 4.0, May 2011 (c)

AMD Drivers Catalyst 12.6 Linux x86_64 (b)

nVIDIA Drivers 295.75 Linux x86_64 (c)

Compiler gcc/g++ version 4.4.4
MPI OpenMPI version 1.5.4 (d)

GPU see Tab. 3.3
Software used HiGPUs (direct N -body code)

(a) http://www.ubuntu.com/
(b) http://developer.amd.com/zones/OpenCLZone/Pages/default.

aspx
(c) http://developer.nvidia.com/category/zone/cuda-zone
(d) http://www.open-mpi.org/

Table 3.5: The main characteristics of our workstation used to bench-

mark the GPUs listed in Tab. 3.3 and Tab. 3.4

98 Chapter 3 The N -body code HiGPUs

http://www.ubuntu.com/
http://developer.amd.com/zones/OpenCLZone/Pages/default.aspx
http://developer.amd.com/zones/OpenCLZone/Pages/default.aspx
http://developer.nvidia.com/category/zone/cuda-zone
http://www.open-mpi.org/

To count the floating point operations we refer to Tab. 3.2. In Tab. 3.6,

sections 2, 7 and 10 involve memory transfers between the GPU and

the CPU through the PCI Express interface. Table 3.6 shows also the

total amount of data, in bytes, that must be exchanged. On the other

hand, sections 6 and 11 involve only read and write operations inside

the GPU on-board memory. This is why, for these sections, we measured

the execution times in seconds and we give an estimate of the device-to-

device memory bandwidth exploited. Table 3.6 lists, also, the number

of bytes that each GPU thread must read (BR)/write (BW) from/to the

GPU memory.

3.5.3 Astrophysical models

The astrophysical models chosen for our tests include low−N cases

(256 stars) up to high−N systems (262,144 stars) and their main pa-

rameters are listed in Tab. 3.7. The first three models refer to systems

containing bodies randomly distributed in a sphere of unitary radius.

The values of N are 256, 512 and 1,024 starting from an initial “cold”

condition, i.e. the case where the virial ratio (see chapter 1) is equal

to zero. For the masses of the stars, we assumed a bimodal distribution

containing N/2 “light” particles of mass ml and N/2 “heavy” particles

of mass mh. We also considered the presence of an external force-field

by mean of a time-independent Plummer potential [82]

φ(r) =
GMG√
r2 + b2

, (3.18)

where r is the distance to the system barycentre, b is a scale radius and

Mg is the total gas mass. In the hypothesis that the external potential

mimics the role of a gas residual after star formation, the value of Mg

3.5 HiGPUs on single, different GPUs 99

Section Description Data for measuring
performance

Each node determines the
stars to be updated and

1 their indexes are stored in Not used(a)

an array named next
containing m elements

Each node copies to its GPUs
2 the array containing 4m Bytes

indexes of m particles

If k is the number of GPUs
that will be used in the

3 numerical integration, the 81 ops (DP)
predictor step of N/k

stars is executed

Each node computes
4 the forces (and derivatives) of SP : 82

m particles due to 15 ops (DP)
N/k bodies

Each node reduces the calculated
5 forces and derivatives 10 ops (DP)

of Bfactor blocks

6 Each node adjusts conveniently 32 BR
the reduced values 32 BW

7 The CPUs receive the accelerations 96m Bytes
from the GPUs

The MPI_Allreduce()

8 functions collect and reduce Not used(a)

accelerations from all the
computational nodes

9(b) Corrector step and Not used(a)

time step update for m stars

The reduced accelerations and
10(c) the corrected positions and velocities 192m Bytes

of m bodies are passed
to the GPUs of each node

(c) The GPUs rearrange the updated 36 BR
11 particles following the original 24 BW

indexes stored in the array next

(a) This section involves only the CPU.
(b) This section has been ported on GPU in the latest version

of HiGPUs.
(c) This section is not needed if the corrector step is

performed on the GPU.

Table 3.6: The main sections of our code performed for each time step.

100 Chapter 3 The N -body code HiGPUs

is determined by assuming a value for the Star Formation Efficiency,

defined by

ǫ =
M∗

M∗ +Mg
, (3.19)

where M∗ is the total mass in stars. Here we take ǫ = 0.3 as a likely

astrophysical value. On this basis we define three simple reference mod-

els, indicated with the symbols V1, V2 and V3, to (roughly) mimic the

initial state of young and very young open clusters which are observed

in sub-virial conditions, mass segregated, despite their age, and still

embedded in their native gas. A preliminary scientific analysis of the

results obtained from these simulations will be presented in chapter 6

while here we limit the analysis to the GPUs performance. We also sam-

pled the initial conditions for other N -body systems 7. from two King

models [56], indicated in Tab. 3.7 with K1 and K2, with NK1 = 65, 536,

NK2 = 32, 768. For the King models we assumed two values for the di-

mensionless central concentration parameter, W0K1
= 7 and W0K2

= 9.

In model K1 an Initial Mass Function, like that described in [59], has

been adopted while in the model K2 all the stars have the same mass,

m = 1
N . We also sampled a King model, indicated with the letter K3,

with NK3 = 262, 144 stars, W0K1
= 6 and the same mass function used

for the model K1, embedded in a rough representation of the Milky Way

bulge potential as a Plummer analytical potential [8] and moving on a

circular orbit at 2 kpc from the centre of the system barycentre. We also

sampled a Plummer model, listed as P1, having NP1 = 16, 384. In the

Plummer model all the stars have the same numerical mass m = 1
N .

All these models were generated using McLuster [60] and all the men-

tioned test cases have been followed up to 10 time units, which is an

extension in time sufficient to obtain a reliable averaged performance

for all the different sections of our N -body code. Specifically, we devel-

oped also a code which can generateN -body models, just like McLuster,

7The detailed description on how to sample initial (stable) conditions for
stellar systems is presented in chapter 4

3.5 HiGPUs on single, different GPUs 101

starting form a generic density profile in spherical symmetry. The details

can be found in chapter 4.

3.5.4 Performance results

Evaluation of the mutual forces

First of all we analyse the most important section of any N -body code:

the evaluation of the accelerations and, for the Hermite’s 6th order

scheme, some of their time derivatives. For populous stellar systems

this is, by far, the section which takes most of the execution time, there-

fore the performance exhibited in this part is of crucial importance

for realistic scientific applications. On the other hand, for small and

intermediate−N systems (N . 16k), as we will see later, the time spent

to execute this evaluation step becomes comparable to (or even smaller

than) that spent to complete other HiGPUs sections. This underlines the

importance to have powerful and efficient hardware on both small and

large scales. Nevertheless, to know the real performance and gain of a

specific GPU on the overall evolution (10 time units for this work) the

figures shown in this section must be integrated with the histograms in

Fig. 3.20, 3.21, and 3.22 that represent the measured wall-clock times

for each tested GPU to evolve each test system.

large N case: systems K3 and K1

In Fig. 3.11 we show the speed performance of the various GPUs in the

execution of the evaluation step of HiGPUs , in function of the numberm

of particles to be updated, in a generic time step. We refer to the system

K3 only because the resulting plot for system K1 does not point out sig-

nificant differences. Fig. 3.11 shows that, in the whole range of values

of m, the Radeon card HD7970 performs over 1 Tflops while the other

102 Chapter 3 The N -body code HiGPUs

Model Notation N System Background
parameters parameters

Homogeneous sphere + V1 256 R = 1 b = 1
Plummer background M = 0.3 Mg = 0.7

Homogeneous sphere + V2 512 R = 1 b = 1
Plummer background M = 0.3 Mg = 0.7

Homogeneous sphere + V3 1,024 R = 1 b = 1.0
Plummer background M = 0.3 Mg = 0.7

Plummer sphere P1 16,384 b = 1 no
M = 5 backgorund

W0 = 9
King distribution K2 32,768 rc = 0.2 no

M = 5 background

W0 = 7
King distribution K1 65,536 rc = 0.2 no

M = 5 background

King distrib. in a W0 = 6 b = 4
Plummer background K3 262,144 rc = 0.01 Mg = 14

M = 0.001

Table 3.7: The complete set of simulations performed for our bench-

marks. R and M represent, respectively, radius and mass of

the stellar system. The parameter b is the Plummer’s core

radius (see Eq. 3.18), Mg is the total mass of the analytic,

stationary background, if present, rc is the King’s core ra-

dius andW0 is the dimensionless central concentration [56].

All the simulations are performed in units such that G = 1,

while the length and mass units are chosen for computa-

tional convenience as in column 4.

3.5 HiGPUs on single, different GPUs 103

GPUs show a speed from 10% (Tesla C1060) to 50% (Radeon HD6970)

up to 75% (Tesla K20) that of the HD7970 board. Tesla C2050 and

HD7870 have approximatively the same performance while GTX cards

do not get considerable results mainly because of the low double pre-

cision computing power (see Tab. 3.3). Moreover, the recent GTX 680

(Kepler Architecture), has a speed performance a factor 1.4 worse than

that of the previous generation GTX 580 (Fermi Architecture). This is

mainly due to the ratio of performance in 64 bit precision operations

between these two cards. Nevertheless, it is curious to highlight that,

although the technical features of the GTX 680 and HD7870 are very

similar, the performance of the HD7870 is, in this large-N regime, about

a factor 1.6 higher of GTX 680. This is likely due to that an HD7870 can

run up to 51,200 GPU threads in parallel while a GTX 680 only up to

16,384. Therefore, the high parallel capability of the HD7870 is clearly

preferable in regimes of full load state of the GPU (as happens in the

large-N case). Despite tuned and different optimizations introduced

in our code working when m is smaller than the maximum number of

parallel threads that a GPU can run simultaneously, we can see a slight

decay of performance when m . 400 for system K3 (700 for system K1)

especially in the case of the Radeon HD7970, HD6970 and Tesla K20.

This is not surprising because these three cards are massively parallel.

These GPUs have a large number of processing elements with low clock

frequencies and an HD7970 can run up to 81,920 threads simultane-

ously while an HD6970, as well as a Tesla K20, up to 32,768. Therefore,

it is difficult to load completely these GPUs in the above low m regime

while the others GPUs are easier to exploit having, in general, both less

resources available and less theoretical computing power. This explains

why the performance decay at low m of these latter GPUs is almost neg-

ligible. In any case, we can affirm that, for a direct N -body code and,

more generally, for a kernel which fully loads the GPU using both single

and double precision operations, an HD7970, an HD6970 or a Tesla K20

represent the best choice to obtain scientific results in a short time.

104 Chapter 3 The N -body code HiGPUs

102 103 104 105
0

200

400

600

800

1000

1200

102 103 104 105

0

200

400

600

800

1000

1200

Tesla C1060

GTX 680
GTX 580

HD7870 Tesla C2050

HD6970

Tesla K20

0.1 Tflops

0.5 Tflops

G
flo

ps

Particles to update

1 Tflops

HD7970

Figure 3.11: Speed performance of the tested GPUs, in Gflops, as a

function of the number of particles to update. This figure

refers to system K3, with N=262,144.

intermediate-N case: systems P1 and K2

In Fig. 3.12 we show the performance of the tested GPUs in the same

frame adopted for Fig. 3.11. This figure refers to the system P1, chosen

as reference case for this regime of intermediate N . Radeon cards, also

in this regime, exhibit higher performance than the other GPUs with

reference to the evaluation step of HiGPUs . The performance of the

Tesla K20 remains always between the two Radeon GPUs, except for

low values of m (m . 200) in which it performs slightly better. The

gain of the massively parallel cards is relevant when m & 500 while

for smaller values of m the performance decay is more evident than

in the previous high-N case for all the GPUs although the Tesla C1060

remains in a state of full load (around 80 Gflops) because it has, both,

less cores and much lower theoretical performance than the other cards.

3.5 HiGPUs on single, different GPUs 105

We found that system P1 (N=16,384) is a lower limit for the number

of particles per GPU in the sense that below this N the time spent by,

for example, an HD7970, to complete the other sections of our code

becomes significant if compared to the total execution time. To remark

more this idea, Fig. 3.13 shows the ratio between the sum of the times

spent by an HD7970 to complete all the other parts of HiGPUs and that

to complete just the evaluation step, as a function of the number of

particles to update for our test systems. The fraction of the time spent

to evaluate accelerations to the total execution time is about 65% for

system P1 using an HD7970. The remaining 35% is equally divided in

memory transfers and reduction of partial forces. Therefore, while for

systems K1 and K3 the evaluation step is, by far, the most important part,

this is no longer true for the other tested systems. Fig. 3.13 is useful to

show that for systems with N . 16k the overall hardware performance

is determined also by the other sections of HiGPUs .

Low-N cases: systems V1, V2 and V3

Even if, in this regime, one may not need to use powerful computing

accelerators because the total execution time is well below that spent

to integrate systems in the intermediate and large-N cases, it is very

interesting to study how GPUs perform when they are not totally loaded.

This may also give us some general and useful information in the case

when more than one computing node is available. In fact, for example, a

system of N = 1, 024 bodies on a single GPU can be considered (almost)

equivalent to a system composed by N = 1M bodies distributed over

1,024 GPUs. Therefore, considering the low-N regime, we can argue

some considerations about the performance that would be got running

large-N systems over a set of GPUs.

As we said above, and as it is shown in Fig. 3.13, in this regime it is

important to consider how the GPUs perform not only in the evaluation

106 Chapter 3 The N -body code HiGPUs

102 103 104

100

1000

102 103 104

100

1000

500

Tesla C1060

GTX 680GTX 580

HD7870 Tesla C2050

HD6970

Tesla K20

0.5 Tflops

G
flo

ps

Particles to update

1 Tflops
HD7970

500

Figure 3.12: Speed performance of the tested GPUs, in Gflops, as a

function of the number of particles to update. This figure

refers to system P1, with N=16,384.

step but also in other sections of HiGPUs . Before discussing this, let

us examine the performance in the evaluation step. As we can see, for

example, in Fig. 3.14, relative to system V1, the situation is completely

changed with respect to large-N systems. The performance of GTX 580

and Tesla C2050 become comparable even if they remain well below

their maximum peak. On the other hand, the Radeon cards, the Tesla

K20 and the old generation Tesla C1060 are slower. The growth of per-

formance is, on average, linear for all the GPUs because they are far to

be fully loaded and the performance increases with the number of run-

ning threads. In general, the larger the distance from the full-load state,

the closer to the linear speed increase. This trend is particularly evident

for Radeon GPUs and Tesla K20 and less for other nVIDIA cards, whose

linear performance growth disappears completely already for system

V3, (see Fig. 3.15). In fact, in system V3, GTX 580, GTX 680 and Tesla

3.5 HiGPUs on single, different GPUs 107

100 101 102 103 104 105

0.01

0.1

1

100 101 102 103 104 105

0.01

0.1

1

 R
el

at
iv

e
tim

e

 Particles to update

V2V1

V3

K3

P1

K1
K2

20%

65%

77%

92%

98%

}

Radeon HD7970

Figure 3.13: Relative importance of all the code sections (excluding the

evaluation) to the evaluation section in function of the

number of particles to update in different cases. The var-

ious curves are labelled by the percentage time spent in

the evaluation.

C1060 get closer to their measured performance peak while Radeon

GPUs and Tesla K20 maintain their approximatively linear trend being

still very distant from their full load state. The Tesla C2050 performance

can further increase a little although the growth is no longer linear. We

do not report further figures for the regime in whichN ∈ [1, 024; 16, 384]

because the evolution of the speed performance of the tested GPUs can

be naturally argued from what has been already shown and discussed.

Actually, this is a transition phase in which the situation continues to

evolve and, in particular, for N = 4, 096 Radeon GPUs and Tesla K20

have already exceeded the performance of other nVIDIA GPUs and the

results become very similar to that showed in Fig. 3.12. At the light of

this analysis one concludes that a GTX or a Tesla C2050 card could be

108 Chapter 3 The N -body code HiGPUs

the right choice to perform direct N -body simulations in this regime but

we need to consider also other factors that will be taken into account in

the next section.

0 50 100 150 200 250
0

20

40

60

80

100

120

140

0 50 100 150 200 250

0

20

40

60

80

100

120

140

Tesla C1060

GTX 680

GTX 580

HD7870

Tesla C2050

HD6970

Tesla K20

G
flo

ps

Particles to update

HD7970

Figure 3.14: Speed performance of the tested GPUs, in Gflops, as a

function of the number of particles to update. This figure

refers to system V1, with N=256.

3.5.5 Other important code sections

As seen in Fig. 3.13, while the evaluation section constitutes the most

important part for large-N systems, in the case of small-N we must con-

sider also the performance obtained in other sections, which we divide,

for convenience and clarity, into 3 groups (see also Tab. 3.6)

1. Host-to-Device and Device-to-Host transfers (sections 2, 7 and

10);

3.5 HiGPUs on single, different GPUs 109

0 200 400 600 800 1000
0

100

200

300

400
0 200 400 600 800 1000

0

100

200

300

400

Tesla C1060

GTX 680

GTX 580

HD7870

Tesla C2050

HD6970

Tesla K20

0.1 Tflops

G
flo

ps

Particles to update

HD7970

Figure 3.15: Speed performance of the tested GPUs, in Gflops, as a

function of the number of particles to update. This figure

refers to system V3, with N=1,024.

2. Reduction of partial forces (section 5);

3. Device-to-Device transfers (sections 6 and 11).

It is worth noting, again, that the more recent improvements introduced

in HiGPUs are such that there is the possibility to run the correction step

directly on the GPU. This improves performance for large−N systems

(especially if we run HiGPUs on more than one computing node) and, in

addition, Sections 6 and 11 of our code are not needed anymore. More-

over, the prediction step is not considered here being always below the

other sections in terms of computing time. Nevertheless, to develop

this work we used an older version of HiGPUs whose corrector was per-

formed on the CPU, and, in this case, the above listed three groups of

sections contribute, with good approximation, for about 1/3 each to the

110 Chapter 3 The N -body code HiGPUs

execution time not spent in the evaluation of the forces. Let us examine

the performance exploited in these 3 sections.

Host-to-Device and Device-to-Host Bandwidth

Fig. 3.16 shows the resulting bandwidth, normalized to that of Tesla

C1060, in function of the amount of data transferred. The curves are

obtained by an arithmetic average of the performance measured for sec-

tions 2, 7 and 10 because no significant differences were found trans-

ferring data from/to the host and device. We do not show in Fig. 3.16

the results obtained for the Tesla K20 because we noticed that its band-

width has a peculiar behaviour which it has been reported, for more

clarity, separately in Fig. 3.17. As it can be seen in Fig. 3.16, the results

for the GTX 580 and GTX 680 are almost identical. We have also indi-

cated, with vertical dashed lines, the maximum data transfer during the

dynamical evolution of our test systems. It can be seen that the band-

width of the Radeon GPUs is constantly below the bandwidth of nVIDIA

GPUs. The reason is not easily determined but, surely, the drivers play

an important role. What is important for our scopes is that this perfor-

mance deficit is critical for systems V1, V2 and V3 in which data transfers

between the host and the device become one of the bottlenecks for our

simulations. Actually, for very low-N systems, Radeon GPUs loose about

a factor 3.5 in performance almost independently of the number of par-

ticles in a block. This degradation of performance adds to what is lost

in the evaluation step in these regimes (see Fig. 3.14 and Fig. 3.15).

Therefore, the GTX 580/680 and the Tesla C2050 perform better also

on memory transfers between host and device so they are a very good

choice in regimes of weak load. Anyway the situation of weak load, i.e.

low-N , is not in many cases critical on a computational side. Radeon

GPUs improve performance when the amount of data to exchange is

large enough (greater than 100 MB) but, at this level of amount of

3.5 HiGPUs on single, different GPUs 111

data transfer, the differences of bandwidth performance among differ-

ent GPUs are definitively negligible.

10-5 10-4 10-3 10-2 10-1 100 101 102 103

0.35

0.70

1.05

1.40

10-5 10-4 10-3 10-2 10-1 100 101 102 103

0.35

0.70

1.05

1.40

 R
el

at
iv

e
Ba

nd
w

id
th

 Data amount (MB)

K3K1K2P1V3V2

HD7870

HD7970

HD6970

Tesla C1060

Tesla C2050

GTX 580/680 V1

Figure 3.16: Bandwidth, normalized to Tesla C1060, of the tested GPUs

as a function of the amount of data to exchange (in MB).

This figure gives also as straight vertical lines the upper

limit to the amount of data that are transferred for each

of the test systems.

Reduction of partial forces

The optimizations introduced in our code are based mainly on the deter-

mination of the maximum number of threads that the GPU can handle

at the same time. HiGPUs automatically calculates this number, Pt, and,

if m . Pt, the standard one-to-one correspondence between particles to

update and parallel threads is increased in order to exploit, as much as

possible, all the capabilities of the GPU. In this case, the correspondence

is increased to 1:k (k > 1), which means that each thread calculates the

112 Chapter 3 The N -body code HiGPUs

10-4 10-3 10-2 10-1 100 101 102
0

2000

4000

6000

8000

10-4 10-3 10-2 10-1 100 101 102

0

2000

4000

6000

8000

 HD7970 OpenCL 1.2
 AMD-APP (923.1)
 driver Catalyst 12.6

 K20 OpenCL 1.1
 driver 304.54

 K10 Cuda 5.0
 driver 304.54

 K10 OpenCL 1.1
 driver 304.54

 K20 Cuda 5.0
 driver 304.54

Ba
nd

w
id

th
 (M

B/
s)

Data size (MB)

Figure 3.17: Bandwidth of some of the different GPUs examined in this

paper, in function of the amount of data transfer. In the

figure we label the various GPUs with the operational soft-

ware and driver version used. Note the somewhat steep

decline of the bandwidth of the Tesla Kepler nVIDIA cards

when using OpenCL at 1MB, while the same cards using

CUDA flatten at data transfer amount above 10 MB at 3

GB/s level (that is about 50% of the HD7970 bandwidth).

force acting on its own particle due to N/k bodies. The performance

of the evaluation step can be improved up to a factor 100 using this

strategy (see Fig. 3.9). Nevertheless, in this way we introduce another

operation which is the reduction of mk forces, all of them stored as dou-

ble precision (64-bit) values. The latter operation becomes important

for the small and very small-N systems V1, V2 and V3, therefore in Fig.

3.18 we show the performance of the tested GPUs in reducing partial

forces for m < 1, 024 which is the typical regime in which the above

described approximation strategy is active and relevant in terms of exe-

cution time. As usual we normalize the result to one GPU (in this case

3.5 HiGPUs on single, different GPUs 113

we use the Tesla C1060 as reference). Similar to what previously seen,

the GTX and Tesla C2050 cards perform better than Radeon and K20

cards that loose a factor > 4 with respect, for example, to a GTX 580.

We may say that, in general, GTX and Tesla C2050 GPUs are better ex-

ploited and maintain high efficiency on both small and large scale prob-

lems while the same cannot be said for Radeon GPUs. In fact, at these

regimes of both weak load and arithmetic intensities, the single-core

working frequency and lower latencies accessing GPU memory become

discriminant for better and worse performance. It would be interesting

to have a sort of boost of the GPU single-core frequency which should

be active whenever the GPU is recognized to be not in a full-load state.

This could guarantee a massively parallel GPU which would remain very

efficient (like the GTX 580 for example) even for weak-load regimes.

0 200 400 600 800 1000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
0 200 400 600 800 1000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

HD7970 - HD7870 - Tesla K20

HD 6970

Tesla C1060

GTX 680

GTX 580

R
el

at
iv

e
pe

rf
or

m
an

ce

Particles to update

Tesla C2050

Figure 3.18: Performance in executing the reduction of partial forces,

normalized to Tesla C1060, of the tested GPUs, as a func-

tion of the particles to be updated

114 Chapter 3 The N -body code HiGPUs

Device-to-Device bandwidth

For small-N systems, another important section in terms of the total exe-

cution time is that involving exchanges of data inside the global memory

of the single GPU. There are two kernels in HiGPUs which perform this

sort of Device-to-Device operations, and we measured performance of

these sections in terms of GB transferred per second, considering the

values listed in Tab. 3.6. In Fig. 3.19 we show the results normalized,

for convenience, to the performance of the GTX 680. Once again the

GTX GPUs and the Tesla C2050 are well above the Radeon GPUs, at

least for m . 104. The old generation Tesla C1060 card looses a factor

between 1 and 2.5 respect to the GTX 680. Radeon GPUs and Tesla K20

reach performance of the other nVIDIA cards only for m > 105; Tesla

C1060 is limited by its low theoretical device-to-device bandwidth (see

Tab. 3.4). Anyway, in this largem regime, the difference in performance

executing memory transfer operations is negligible with respect to the

total execution time.

3.6 A possible application: the Milky Way

Nuclear Star Cluster

We briefly show in this Section the total execution times needed to

evolve our astrophysical systems over 10 time units using the GPUs

under test. Each system has been integrated using a proper soften-

ing parameter, ǫ, in the pair-wise force. For systems V1, V2 and V3,

ǫ ≃ 3 · 10−4 〈D〉 where 〈D〉 is an estimate of the nearest neighbour dis-

tance i.e.

〈D〉 =
R

3
√
N
. (3.20)

For systems K1, K2 and K3 we used ǫ ≃ 10−2rc and, for system P1,

ǫ ≃ 4 · 10−3b. The results are shown in Fig. 3.20, 3.21 and 3.22 in

3.6 A possible application: the Milky Way Nuclear Star Cluster 115

102 103 104 105
0.0

0.5

1.0

1.5

2.0
102 103 104 105

0.0

0.5

1.0

1.5

2.0

HD7970

HD7870

Tesla K20

R
el

at
iv

e
pe

rf
or

m
an

ce

Particles to update

GTX 580

Tesla C2050

GTX 680

Tesla C1060

HD6970

Figure 3.19: Performance in executing device-to-device transfers, nor-

malized to GTX 680 for convenience, of the tested GPUs,

as a function of the particles to be updated

the form of histograms in which the wall-clock times have been normal-

ized to those of HD7870, for convenience. As an example, the integra-

tion of the system K3 for 109 years will require around 1,920 days using

an HD7870 and only around 600 using a single HD7970. Specifically,

using our very small, green and cheap cluster composed by two compu-

tational nodes each composed by two multicore CPUs and 4 HD 7970

GPUs, we may evolve the system K3 for 109 years in around 75 days of

simulation, reaching a peak of 10 Tflops+ of sustained performance.

For the sake of future applications of actual astrophysical interest we

are dealing with the formation and the long term (Gyr) evolution of

dense stellar systems around very compact and massive objects, like

black holes. Such systems are often observed in the central regions of

galaxies; in particular, more steps forward have to be done in the numer-

ical simulations of the so called Milky Way Nuclear Star Cluster, whose

116 Chapter 3 The N -body code HiGPUs

model of formation and evolution are still under debate (see [12] and

[30]). Through preliminary tests, we estimated that we can evolve this

system, modelled using N = 2M stars plus a central massive black hole,

up to 1 Myr in around 8 hours. (That is 8,000 hours to evolve this

system up to 109 years). Although following a long term evolution is

not possible using only eight HD7970, it can be done with our code

on large hybrid supercomputers in the world (especially Titan, which

is composed by 18,688 nVIDIA Tesla K20X). If we suppose, as we saw

in our benchmarks, that the performance of a single K20X is compara-

ble with that of one HD7970, the availability of 256 GPUs (less then

2% of Titan [94]), will allow us to finish the mentioned simulation in

∼ 1 month, reaching an unprecedented spatial resolution at a sustained

speed around 0.3 Pflops, which is, definitely, a very good result for

large-N direct simulations.

3.6 A possible application: the Milky Way Nuclear Star Cluster 117

C1060

GTX680

GTX580

C2050

HD7870

HD6970

K20

HD7970

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0
Relative time

System K3

tim
e

un
it

=
23

 h
ou

rs

C1060

GTX680

GTX580

HD7870

C2050

HD6970

K20

HD7970

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0
Relative time

System K1

tim
e

un
it

=
3

ho
ur

s

Figure 3.20: The execution times needed to evolve systems K3 and K1

over 10 time units using different GPUs. The performance

are normalized to the HD 7870. The time unit is reported

in each figure.

118 Chapter 3 The N -body code HiGPUs

C1060

GTX680

GTX580

HD7870

C2050

HD6970

K20

HD7970

0,0 0,5 1,0 1,5 2,0 2,5 3,0
Relative time

tim
e

un
it

=
65

0
se

co
nd

s System K2

C1060

GTX680

GTX580

C2050

HD7870

HD6970

K20

HD7970

0,0 0,5 1,0 1,5 2,0 2,5 3,0
Relative time

tim
e

un
it

=
14

00
 se

co
nd

s System P1

Figure 3.21: The execution times needed to evolve systems K2 and P1

over 10 time units using different GPUs. The performance

are normalized to the HD 7870. The time unit is reported

in each figure.

3.6 A possible application: the Milky Way Nuclear Star Cluster 119

HD7870

HD7970

HD6970

C1060

GTX680

K20

C2050

GTX580

0,0 0,5 1,0
Relative time

tim
e

un
it

=
47

0
se

co
nd

s

System V3

HD7870

HD7970

HD6970

C1060

GTX680

K20

C2050

GTX580

0,0 0,5 1,0
Relative time

Systems V1 and V2

tim
e

un
it

=
30

0
se

co
nd

s

Figure 3.22: The execution times needed to evolve systems V1, V2 and

V3 over 10 time units using different GPUs. The perfor-

mance are normalized to the HD 7870. The time unit is

reported in each figure.

120 Chapter 3 The N -body code HiGPUs

3.7 Final remarks and future

developments

In this section we compared performance of some Graphic Processing

Units produced by different firms when applied to a scientific applica-

tion. As test topic we chose the integration of the motion of N objects

interacting via the pairwise Newtonian gravitational force, and as code

to do this one that evaluates these forces via direct summation and per-

forms the integration in time by mean of a Hermite’s 6th order method.

Regarding the accuracy of HiGPUs , we note that the relative error in

total energy and angular momentum has always kept below 5.0 · 10−9

except for computationally critical runs (V1, V2 and V3) in which it was

below 1.0 · 10−3.

To allow a compared benchmark on GPUs of different makes a portable

version of the code is needed. In fact, the GPUs produced by nVIDIA

are conveniently programmed in Compute Unified Device Architecture

(CUDA) while other vendors’ GPUs do not support this paradigm and

need to be programmed in OpenCL which, although “young” and thus

not as developed as CUDA and still awkward to use, shows a very good

efficiency. Nevertheless, we note that very few scientific applications

have been implemented in OpenCL, so far. We are aware of another

work by Hauschildt and Baron [50]. The performance tests consisted

of runs of HiGPUs with initial conditions aiming at the representation

of the evolution of some stellar systems of astrophysical interest (stellar

clusters) in three different ranges of the total number of interacting

objects, N : low−N , intermediate and large−N cases. The sense of low,

intermediate and large has to be referred to the O(N2) complexity of the

high precision computations done by direct summation. The description

of the various test cases is given in Table 3.7.

The main result obtained may be summarized as follows:

3.7 Final remarks and future developments 121

1. as expected, the global performance is a combination fo the “brute”

computational power of the GPU and of the host-to-device and

device-to-host bandwidth;

2. the bandwidth exploited by the GPUs examined is higher for nVIDIA

cards when there are few data to exchange, while at high levels

the AMD GPUs are faster;

3. the breakdown of nVIDIA cards performance at about 1 MB of

data transfer is not completely understood. It may be due to the

particular version (304.54) of the driver used, at least for Tesla

K10 and K20 cards, while it works fine for nVIDIA GTX 580 and

680 when using CUDA (OpenCL does not work properly with this

driver version on GTX cards);

4. the highest computing speed is reached, in the majority of the

examined cases, by the AMD HD 7970;

5. the AMD HD bandwidth is not as high as that of the whole set of

nVIDIA GPUs tested whenever the amount of data to exchange is

not over a certain threshold, over which the HD 7970 performs as

well as the more expensive Tesla C and Tesla K GPUs.

The previous points imply what we have practically found and tested,

i.e. that:

1. the global performance of the AMD HD7970 is the highest of the

GPUs examined here whenever it is “load” enough to exploit its

intrinsically higher computational power without penalization on

the bandwidth side, thing that occurs in all the test cases studied

here;

122 Chapter 3 The N -body code HiGPUs

2. the nVIDIA Tesla GPUs of the Fermi and Kepler generations per-

forms in a range of speed from 10% (Tesla C1060) up to 75%

(K20);

3. the nVIDIA cards of the GTX family have speed performance in

between the Tesla C1060 and those of Tesla C2050 and AMD

HD7870, these latter being pretty similar.

At the light of previous considerations and results, we may say that it

is absolutely well pursuing code implementations in both CUDA, to ex-

ploit at best the performance of the very stable and controlled nVIDIA

GPUs of the Fermi and Kepler class, and OpenCL, which is needed to

use the high power to price (and power consumption cost) of the GPUs

of the AMD HD series make. As expected, some weak points are found

in using AMD GPUs, like that of some instability seen when using AMD

drivers of different releases. No particular problems rise, on the other

side, by the absence in the AMD GPUs of the Error correcting code mem-

ory (ECC) available on the Tesla C2050 and K20. The on board memory

limited to 3GB may represent, for the AMD HD7970 examined here, a

limitation for some scientific applications, although it did not limited

its performance in the cases studied in this work. The GPU hardware

evolution is fast, and some developments have been announced by the

GPUs producers, so no specific firm conclusion and operational sugges-

tion may be reliably drawn to be applied over a reasonable time range.

It would be interesting to see how the most recent GPUs (Radeon R9

290X, GeForce Titan and Tesla K40) perform even if the double preci-

sion theoretical maximum performance of the R9 290X has been ported

from 1/4 (as it was for the HD 7970) to 1/8 that of single precision lim-

iting, therefore, our interest to test it using our code HiGPUs . Anyway,

at this stage it seems that a good receipt to follow when setting up a

hybrid computational platform, especially of small-intermediate size, is

to carefully consider the weights to give to the various involved param-

eters (cost of the single GPUs, stability and robustness of the system,

3.7 Final remarks and future developments 123

quality of drivers, etc., bandwidth, power consumption on a side, per-

formance and easiness in programming on another side) when aiming

to a specific category of scientific topics.

124 Chapter 3 The N -body code HiGPUs

4The initial conditions of

stellar systems

4.1 The distribution function f (x,v, t)

In this chapter we will show how to generate proper initial conditions

(positions, velocities and masses) for a genericN -body system. Typically

they are collected into a computer file which will be able to be used as

input of a generic N -body code like, for example, our HiGPUs in order

to study the dynamical evolution of the sampled model. First of all we

need to introduce the concept of distribution function (hereafter DF)

which will be fundamental to assign a proper velocity to the N particles.

Given an unit of volume d3xd3v around the position x and velocity v

in the phase-space, we define the distribution function f (x,v, t) as a

function such that f (x,v, t) d3xd3v gives us the probability, at a given

time t, to find a generic star with position between x and x + dx and

velocity between v and v + dv. Directly from its definition comes its

normalization which requires

∫
f (x,v, t) d3xd3v = 1 . (4.1)

Because the stars move in the phase-space, the probability to find a

generic star in a certain position with a certain velocity changes with

time. In collisionless systems1 the DF evolves in such a way that the

1A collisionless system is a system whose typical dynamical time-scales are sig-
nificantly smaller than its relaxation time. In particular, in such systems,
close encounters between stars did not play an important role to their over-
all evolution.

125

probability is conserved that is the DF must satisfy the generalized form

of the continuity equation

∂f

∂t
+

∂

∂w
· (fẇ) = 0 (4.2)

where w = (x,v) and ẇ = (ẋ, v̇). On the other hand, for collisional

systems, that is when close encounters between stars are taken into

account, the phase-space probability density of stars, around a given

point, changes with time accordingly to the so called encounter operator

Γ [f]. Some mathematical considerations about the function Γ [f] yield

us to write the so called master equation which describes the complete

evolution in time of the DF in the case of collisional systems. Neverthe-

less, in this work, we are interested in investigating collisionless systems

which will be in equilibrium for arbitrary large interval of times but, for

a deeper analysis about this topic, it is possible to consult [18]. In order

to obtain an equation for the evolution of the DF for collisionless systems

we use the Hamiltonian equations (see eq. (1.95)) to simplify equation

(4.2)

∂f

∂t
+

∂

∂x
· (fx) +

∂

∂v
· (fv) =

=
∂f

∂t
+

∂

∂x

(
f
∂H

∂v

)
− ∂

∂v

(
f
∂H

∂x

)
=

=
∂f

∂t
+
∂f

∂x

∂H

∂v
− ∂f

∂v

∂H

∂x
+ f

∂2H

∂x∂v
− f

∂2H

∂v∂x
=

=
∂f

∂t
+ ẋ

∂f

∂x
+ v̇

∂f

∂v
= 0 (4.3)

which represents the so called collisionless Boltzmann equation which is

often known with the name of Vlasov equation. The equation (4.3) can

be written in many different forms but, surely, the most compact form

is that obtained using the extended (to 6 dimensions) concept of the

convective Lagrangian derivative which is

d

dt
≡ ∂

∂t
+ ẇ · ∂

∂w
=

∂

∂t
+ ẇ · ∇w . (4.4)

126 Chapter 4 The initial conditions of stellar systems

Using equation (4.4), the Vlasov equation (4.3) can be rewritten in the

following elegant form
df

dt
= 0 . (4.5)

The above cited master equation is a generalization of (4.5) introduc-

ing the quantity Γ [f], instead of zero, in its second member. Obtaining

an explicit expression for the DF of a generic stellar system is very com-

plicated. Nevertheless, the following result obtained firstly by Jeans in

1915 (see Jeans [55]), can significantly reduce the complexity of the

operation:

Jeans Theorem Any steady-state solution f (x,v) of the

equation 4.5 depends on the phase-space coordinates only

thorough integrals of motion in the given potential and vice

versa.

We have already introduced the concept of integral of motion in section

1.2.2. Explicitly we can write the equation (1.13) as

dI

dt
=

∂I

∂x
· dx

dt
+
∂I

∂v
· dv

dt
= (4.6)

= v · ∂I
∂x

− ∂φ

∂x
· ∂I
∂v

(4.7)

where we have considered the generic Hamiltonian H = K (v, t) +

φ (x, t) where φ (x, t) is the background gravitational potential (relative

to the “field stars ”) and K (v, t) the kinetic energy of the test particle.

Any steady state solution of (4.5) is such that

ẋ · ∂f
∂x

+ v̇ · ∂f
∂v

= 0 ⇒ v · ∂f
∂x

− ∂φ

∂x
· ∂I
∂v

= 0 (4.8)

which is identical to equation (4.7). Therefore we have proven that the

function f (x,v) is an integral of motion. If, then, f is a function of n

integrals I1, I2, ..., In we have

df

dt
[I1, I2, ..., In] =

∂f

∂I1

dI1

dt
+
∂f

∂I2

dI2

dt
+ ...+

∂f

∂In

dIn
dt

= 0 (4.9)

4.1 The distribution function f (x,v, t) 127

where we have used equation the definition given in (1.13) in the last

passage. Equation (4.9) proves the vice versa part of the Jeans theo-

rem.

4.1.1 Ergodic distribution functions

It is possible to show also that

Strong Jeans Theorem The DF of a steady-state stel-

lar system in which almost all orbits are regular with non-

resonant frequencies may be presumed to be a function only

of three independent isolating integrals, which may be taken

to be the actions.

The strong Jeans theorem, in broad lines, let us focus our attention, in

this work, to study the properties of a restrict field of systems character-

ized by a DF which is function of the Hamiltonian H = 1
2v

2 +φ(x, t) only,

which, in a steady-state potential φ(x), is an isolating integral of motion.

These kinds of DF are said to be ergotic. As shown in [18] the mean ve-

locity of systems described by an ergotic DF vanishes everywhere

v (r) =
1

ρ (r)
4π

∫
vv2f

(
1

2
v2 + φ

)
= 0 (4.10)

where

ρ (x) ≡
∫

d3vf

(
1

2
v2 + φ

)
(4.11)

and vf
(

1
2v

2 + φ
)

is an odd function of v. The spread around v (x) = 0

is characterized by the velocity dispersion tensor defined as

σ2
ij (x) ≡ 1

ρ (x)

∫
d3v (vi − vi) (vj − vj) f

(
1

2
v2 + φ

)
= vivj − vivj

(4.12)

128 Chapter 4 The initial conditions of stellar systems

which, in force of equation 4.10 reduces to

σ2
ij (x) =

1

ρ (x)

∫
d3vvivjf

(
1

2
v2 + φ

)
= vivj . (4.13)

Since σij (x) is symmetric, it is always possible to choose a base of vec-

tors in which σij (x) is diagonal, that is σ2
ij (x) = σ2 (x) δij therefore

simplifying equation (4.13) we get

σ2
ii (x) =

1

ρ (x)

∫
d3vv2

i f

(
1

2
v2 + φ

)
= v2

i . (4.14)

From equation (4.14) it is evident that σ2
xx (x) = σ2

yy (x) = σ2
zz (x) =

σ2 (x) therefore it is possible to write

σ2 (r) =
4π

3ρ (r)

∫ ∞

0
dvv4f

(
1

2
v2 + φ

)
. (4.15)

Therefore we conclude by saying that a system described by an ergodic

DF has an isotropic velocity dispersion tensor with value given by equa-

tion (4.15). Because some elliptical galaxies, most globular clusters and

the inner regions of most galaxies can be treated with good approxima-

tion as spherical systems, it is convenient to restrict our study to the

DF of such kind of systems. Following the notation given in [18] we

introduce the relative potential and the relative energy defined as

ψ ≡ −φ+ φ0 E ≡ ψ − 1

2
v2 (4.16)

where φ0 = 0 if the system extends to infinity. The relative potential ψ

must satisfy the Poisson’s equation

∇2ψ = −4πGρ (4.17)

which in the case of spherically symmetric systems can be rewritten in

spherical coordinates as

1

r2

d

dr

(
r2 dψ

dr

)
= −4πGρ (r) (4.18)

4.1 The distribution function f (x,v, t) 129

where ρ (r) represents the mass density distribution of the system. In

spherical symmetry we can write the equation (4.11) as

ρ (r) = 4π

∫ ∞

0
dvv2f

(
ψ − 1

2
v2
)
. (4.19)

It is useful to change the integration variable from v to E considering

that

v2 = 2 (ψ − E) ⇒ dv = − EdE√
2 (ψ − E)

(4.20)

which substituted in equation (4.19) give us

ρ (r) = −4π

∫ 0

ψ
2 (ψ − E) f (E)

EdE√
2 (ψ − E)

= 4π

∫ ψ

0
dEf (E)

√
2 (ψ − E)

(4.21)

where we have chosen φ0 such that f = 0 for E ≤ 0 to obtain the new

extremes of integration. In any spherical system it can be shown that

ψ is a monotonic function of r therefore we can transform ρ (r) in ρ (ψ)

and write
ρ (ψ)√

8π
= 2

∫ ψ

0
dEf (E)

√
ψ − E . (4.22)

Differentiating both sides with respect to ψ we get

1

π
√

8

dρ

dψ
= 2

d

dψ

∫ ψ

0
dEf (E)

√
ψ − E =

∫ ψ

0
dE f (E)√

ψ − E (4.23)

where we have used the Leibniz integration rule [43] and the fact that

f (E = 0) = 0. We can extract the DF from the integral noting that

equation (4.23) is an Abel integral equation. In fact, having a generic

function

g (x) =

∫ x

0

dts (t)

(t− x)α
(0 < α < 1) (4.24)

it is possible to show [31] that

s (t) = −sin (πα)

π

d

dt

∫ t

0

dxg (x)

(x− t)(1−α)
. (4.25)

In our case α = 1
2 , t = E , x = ψ and g (x) = 1

π
√

8

dρ
dψ therefore equation

4.23 may be transformed in

130 Chapter 4 The initial conditions of stellar systems

f (E) =
1

π2
√

8

d

dE

∫ E

0

dψ√E − ψ

dρ

dψ
. (4.26)

Eddington [40] was the first to obtain this result in fact equation (4.26)

is often referred as Eddington’s formula. This is a very important result

because using equation (4.26) we can always obtain a DF for a system

with explicitly known mass density profile ρ (r) provided that the inte-

gral ∫ E

0

dψ√E − ψ

dρ

dψ
(4.27)

is an increasing function of E in order to guarantee f (E) > 0 ∀E > 0. If

not, the DF for the considered mass density profile cannot be ergodic.

4.1.2 The Plummer distribution function

A very simple example of the application of the formula (4.26) to a case

of astrophysical practical interest is the procedure to obtain the DF of

the Plummer model [82]. This model is characterized by a potential

given by

φp (r) = − GM√
r2 + b2

= −GM

b

(
1 +

r2

b2

)− 1

2

(4.28)

where M is the total mass of the system and b is the so called Plummer

core radius. To obtain the corresponding density profile we have to

solve the Poisson’s equation in spherical symmetry (4.18) obtaining

ρp (r) =
3M

4πb3

(
1 +

r2

b2

)− 5

2

. (4.29)

From equation (4.28) we can get

(
1 +

r2

b2

)− 5

2

= −
[

b

GM
φp (r)

]5

(4.30)

4.1 The distribution function f (x,v, t) 131

which substituted into equation (4.29) gives us

ρp (ψp) =
3

4π

b2

G5M4
ψ5
p . (4.31)

The derivative of ρp (ψp) with respect to ψp writes

dρp
dψp

=
15

4π

b2

G5M4
ψ4
p (4.32)

which, substituted into equation (4.26) gives us the following expres-

sion for the Plummer DF

fp (E) =
15

8π3
√

2

b2

G5M4

d

dE

∫ E

0

dψψ4

√
E − ψ

. (4.33)

One method to solve the integral which appears in equation (4.33) is

to integrate firstly four times by parts and then solve a known standard

integral of the form
∫
f (x)α dx. The result is

∫ E

0
dψ

ψ4

√E − ψ
=

256

315
E4

√
E (4.34)

which can be derived with respect to E letting us obtain the following

complete expression of the Plummer DF

fp (E) =
24

√
2

tπ3

b2

G5M4
E 7

2 . (4.35)

It is possible to follow an analogous procedure to obtain DF for other

models with a known shape of the mass density profile and/or the po-

tential. In particular, the so called Dehnen models [38] are of practical

astrophysical interest because their associated gravitational potential is

analytical and, for some of them, it is possible to get to an explicit ex-

pression of the DF . They are very useful and used to describe and model

a wide sample of elliptical galaxies (for the detail see Dehnen [38]).

132 Chapter 4 The initial conditions of stellar systems

4.1.3 The King distribution function

A very important class of models which are very useful in astrophysics

especially because they approximate quite well most of the density pro-

files of most globular clusters are the so called lowered isothermal models

to which the King’s profiles belong [56]. These models are born to re-

semble the isothermal distribution at small distances from the centre of

mass of the system while, the density profile falls to zero more rapidly

at large distances ensuring the good property of having a finite total

mass for the entire system. This class of profiles is obtained starting

from a modified version of the DF of a isothermal sphere requiring that

f (E) = 0 for E ≤ E0 where E0 is also known as the critical relative en-

ergy. The explicit expression for the King DF , for values of Esuch that

E > E0, is

fk (E) = ρ1

(
2πσ2

)− 3

2

(
e

E

σ2 − 1

)
. (4.36)

In particular, it is always possible to choose the constant φ0, which ap-

pear in the definition of the relative potential, such that E0 = 0. To

get to the density profile it is sufficient to substitute equation (4.36) in

the expression given in (4.21) and use the definition of relative energy,

obtaining

ρk (ψk) = 4π

∫ ψk

0
dEρ1

(
2πσ2

)− 3

2

(
e

E

σ2 − 1

)√
2 (ψ − E) (4.37)

which, integrated, gives us the formula

ρk (ψk) = ρ1

e

ψk
σ2 erf

(√
ψk
σ

)
−
√

4ψk
πσ2

(
1 +

2ψk
3σ2

)
 . (4.38)

The Poisson’s equation for such models it is usually written introducing

new dimensionless variables ρ̃ and r̃, in the place of ρ and r, which are

defined in terms of the central density ρ0 and the so called King radius

r0

4.1 The distribution function f (x,v, t) 133

ρ̃ ≡ ρk
ρ0

r̃ ≡ r

r0
r0 ≡

√
9σ2

4πGρ0
. (4.39)

These variables were introduced, for the first time, to describe the sin-

gular isothermal sphere whose density profile is singular at r = 0 while

the trend of ρ̃ (r̃) is well behaved at the origin. Using the new variables,

the Poisson’s equation writes

1

r̃2

d

dr̃

(
r̃2 dψ

dr̃

)
= −9σ2ρ̃ . (4.40)

For the King model we introduce now another parameter, W , funda-

mental in every King’s model, defined as

W =
ψk
σ2

(4.41)

often called dimensionless potential. Substituting the expression for W

in equation 4.40 and carrying out the derivatives we get

d2W

dr̃2
+

2

r̃

dW

dr̃
+ 9ρ̃ (W,W0) = 0 (4.42)

where

ρ̃ (W,W0) =
eW erf

(√
W
)

−
√

4
πW

(
1 + 2

3W
)

eW0erf
(√
W0

)
−
√

4
πW0

(
1 + 2

3W0

) . (4.43)

The solution of equation (4.42) can be obtained numerically provided

that appropriate initial conditions for W and Ẇ are chosen. Specifically,

the value of W (r̃ = 0) = W0 represents the depth of the central poten-

tial well, and it is needed to require that its first derivative with respect

to r̃, calculated at null distance, is null
(
Ẇ0 = 0

)
. The latter condition

corresponds to have a null force at the centre of the system which, in-

deed, is in perfect agreement with its spherical symmetry and, moreover,

corresponds to have a finite (null) mass ar r̃ = 0. The solution for W (r̃)

is such that W (r̃) ⇔ r̃ ≥ rt where rt is called tidal radius of the King

model which represents also the distance at which the density vanishes.

134 Chapter 4 The initial conditions of stellar systems

In general, the bigger the value of the central potential well (W0) the

greater the tidal radius will be. Unfortunately, it is straightforward that

it is not always possible to get an explicit expression for the DF of a

system which has a generic, spherically symmetric, ρ (r). The most gen-

eral way is to use numerical techniques to solve directly equation (4.26)

given a certain formula (or numerical evaluation) of the density profile

as a function of the distance (or, equivalently, directly of the gravita-

tional potential). The procedure to obtain the DF for a spherical system

is very important because it constitutes one of the main steps to get a

computer model of a N -body system. In broad lines, what we need to

do is to obtain positions, velocities and, of course, masses for all the

bodies belonging to the astrophysical system.

4.2 Generating initial conditions

4.2.1 Positions

In order to perform this step, it is fundamental to introduce the cumula-

tive mass distribution defined as

M (r) =

∫ r

0
4πr2ρ (r) dr = −r2

G

dφ (r)

dr
(4.44)

which expresses the total mass enclosed in a sphere of radius r. This

represents a cumulative distribution function of the probability density

function dp (r) = 4πr2ρ (r) dr which represents, indeed, the probability

to find a star in a volume extended between r and r + dr. Therefore,

what we can do is to invert the mass distribution function in order to ob-

tain the position r (Mrand)) starting from a randomly generated number,

Mrand, between Mmin
2 and Mmax = M .

2In general, Mmin 6= 0. In fact, each star of the system has its own mass
mstar, therefore, Mmin ≥ mstar. Moreover, sometimes, there can be nu-
merical difficulties to integrate Poisson’s equation exactly form/to r = 0.

4.2 Generating initial conditions 135

4.3 Velocities

Having determined the position of the i-th particle (ri), to assign it a

proper velocity, we need to know the DF of the system. First of all it is

necessary that

vi ∈ [0; ve (ri)] (4.45)

where ve (ri) represents the escape velocity at distance ri which can be

written in terms of the relative potential ψ (r)

ve (ri) =
√

2ψ (ri) . (4.46)

The probability distribution for the velocities is strictly linked with the

DF . In fact, the probability to have an absolute value for the velocity, of

the i-th particle between vi and vi + dvi at position ri is given by the

probability density function

dp(vi; ri) = 4πv2
i f

(
ψ (ri) − 1

2
v2
i

)
dvi . (4.47)

In principle, one can follows the same procedure discussed to sample

the positions of the particles; in fact, the DF f
(
ψ (ri) − 1

2v
2
i

)
is com-

pletely equivalent to the role of ρ (r) therefore to sample velocities in

the right way, it is possible to invert (numerically) the relation

ν (v) =

∫ v

0
4πv2f (E) dv (4.48)

extracting random numbers for ν (r) from νmin and νmax. Nevertheless

this procedure is quite difficult because while the function M (r) can

be easily calculated explicitly or, at least, numerically tabulated while

solving the Poisson’s equation through the evaluation of the derivative

of ψ, the function ν (r) is quite laborious to obtain. In this case it is

easier to proceed using the so called method of the Acceptance and Re-

Therefore, if the minimum distance reached by the integration is rmin = ǫ
the minimum mass must be chosen such that Mmin = M (rmin) ≥ mstar.

136 Chapter 4 The initial conditions of stellar systems

jection directly on the expression of the DF which has to be calculated,

in any case, using the relation (4.26). What we can do is following this

schematic procedure

1. given a particle at position ri, the limits on the allowed energies

for this body must be determined. The interval is such that Ei ∈
[0, ψ (ri)] where Ei = 0 corresponds to vi = ve (ri) and Ei = ψ (ri)

is equivalent to vi = 0;

2. determine the minimum value (fmin) and the maximum value

(fmax) of the DF in the interval of all the possible energies ob-

tained in the previous schematic step;

3. continue to extract a random number for the velocity vi ∈ [0, ve (ri)]

until another random number f1 ∈ [0, fmax] becomes smaller

than f0 = f
(
ψ (ri) − 1

2v
2
i

)
. This is the main part of the accep-

tance/rejection technique;

4. Choose the extracted vi as velocity for the particle in position ri.

This schematic representation of the problem works theoretically fine

and it helps us to understand the overall procedure to implement a code

which generates stable initial conditions for a generic N -body system in

spherical symmetry.

4.3 Velocities 137

4.4 Numerical implementation

4.4.1 Initial conditions for ψ and ψ
′

We implemented a code which samples a generic spherical stellar system

starting from the expression of its mass density distribution. Although

some other similar implementations already exist (see for example [92]

and also [60]) we preferred to implement our own version which is

very easy to use, it can sample the N -body computer model starting

from any spherical density profile and it can also create a stable stellar

system containing a super massive black hole (SMBH). The first thing to

do is to solve the Poisson’s equation in order to obtain ψ (r), ψ
′

(r) and,

consequently, M (r) from the expression (4.44). In general, one does

not know much about initial conditions at r = 0 which are ψ (0) = A

and ψ
′

(0) = B. Nevertheless, it is true that, if we have a stellar system

with characteristic dimension R and we see it from a distance r ≫ R,

we can consider it a point of mass, therefore we can write

ψ (r ≫ R) ≃ GM

r
ψ

′

(r ≫ R) ≃ −GM

r2
. (4.49)

where M is the total mass of the system. Therefore, it is convenient to

start the numerical integration form r ≫ R back to r ≃ 0 in order to

know the initial conditions for the for the gravitational potential and

its first derivative. It is also clear that the total mass of the system (to

be precise, the mass at r ≫ R) must be previously determined solving

numerically the integral in equation 4.44. The exception is represented

by the King model which has ψ (r ≥ rt) = 0 therefore it is needed an

integration form r = 0 to r = rt choosing ψ (0) = W0σ
2 and ψ

′

(0) = 0

that is the initial values of W0 and σ2 (or equivalently the King’s radius

r0, see equation 4.39) must be chosen. It is also straightforward that

a very precise integrator is needed because we need to integrate Pois-

son’s equation over something like dozens of orders of magnitude in

138 Chapter 4 The initial conditions of stellar systems

distance (let us say from r ≃ 10−10R to r ≃ 1010R) maintaining very

good accuracy and, above all, in a reasonable wall clock (human) time.

To integrate it we choose the Bulirsch-Stoer method (see for example

[84]).

Notes about the Bulirsch-Stoer integrator

This method constitutes one of the best algorithms to obtain very high

accuracy with minimal computational effort provided that the functions

envolved in the problem are neither singular or complex to evaluate.

The main idea at the base of the BS method is the so called Richardson

extrapolation which thinks the final solution of a numerical problem as

itself being a function of the time step (h in our case) used to get it.

The key idea is to choose a so called macro time step, ∆r and obtain

different solutions of ψ (r0 + ∆r) using several values for the time step

such that

hn =
∆r

n
(4.50)

with, for example, n = 2, 4, 6, 8, 10, 12, 14 In this way we have

ψ (r0 + ∆r) = lim
h→0

g (h) (4.51)

where g (h) is a function obtained interpolating the n different solution

attempts for ψ (r0 + ∆r). In particular, to interpolate points in our code

we used a rational function extrapolation. To advance the solution with

steps hn we used the so called Modified Midpoint Method (MMM) which

is not very accurate (second order) but coupled with the Richardson

technique is proven to be very powerful because of the result obtained

by Grass [46] which showed that the error of the MMM can be expressed

as a power series of the time step which contains only its even powers.

This means that each following Richardson attempt is more precise with

respect to the previous one by 2 orders. To adapt the MMM to the Pois-

4.4 Numerical implementation 139

son’s equation we need to write it as the combination of two differential

equations of the first order:

ψ
′

= ζ

ζ
′

= −4πGρ (r, ψ, ζ) − 2
r ζ = K (r, ψ, ζ)

ψ0 = A

ζ0 = B.

(4.52)

The following steps represent schematically the MMM applied to the

solution of 4.52 to advance it from r0 to r0 + ∆r using a time step

h = ∆r
n ; we will use the notation ri = r0 + ih:

ψ (r0) = A

ζ (r0) = B

t0 = K (r0, ψ (r0) , ζ (r0))

ζ (r1) = ζ (r0) + ht

ψ (r1) = ψ (r0) + hζ (r0)

(4.53)

ti = K ((ri, ψ (ri) , ζ (ri))

ζ (ri+1) = ζ (ri−1) + 2hti, i = 1, 2, ...n − 1

ψ (ri+1) = ψ (ri−1) + hζ (ri)

(4.54)

ψ (r0 + ∆r) =
1

2
[ψ (rn) + (ψ (rn−1) + hζ (rn))]

tn = K (rn, ψ (rn) , ζ (rn))

ψ
′

(r0 + ∆r) = ζ (r0 + ∆r) =
1

2
[ζ (rn) + (ζ (rn−1) + htn)] .

(4.55)

Simultaneously, M (r) = − r2

Gψ
′

(r) can also be obtained. For a more

detailed description about the BS method or the MMM it is possible to

see [84]. Once the Poisson’s equation has been solved, the analytic con-

tribution of a central black hole (BH) with mass MBH can be included,

adding its contributions to ψ (r) , ψ
′

(r) and M (r).

140 Chapter 4 The initial conditions of stellar systems

4.4.2 The evaluation of dρ
dψ

The next step is the evaluation of the quantity dρ
dψ which is needed to

obtain the numerical evaluation of the DF from equation (4.26). We

need a method to estimate the first derivative from a certain number of

tabulated points of ψ (r) and ρ (r). We verified that the simple approach

dρ

dψ
(ψi) =

ρ (ψi + ∆ψ) − ρ (ψi)

∆ψ
(4.56)

was not enough accurate to guarantee sufficient precision for the fol-

lowing steps to execute. The same can be said for the slightly different

approach
dρ

dψ
(ψi) =

ρ (ψi − ∆ψ) − ρ (ψi + ∆ψ)

2∆ψ
. (4.57)

In fact, a further complication which arises, in our case, is that the

tabulated values of ψi are not, obviously, monospaced, that is ∆ψ 6=
constant, therefore we need to get to a more general approach to evalu-

ate the first derivative needed. A simple, but valid, idea is to start with

the Taylor expansions of the function ρ (ψ) in 3 points

ρ (ψ0 + h1) = ρ (ψ0) + ρ
′

(ψ0)h1 + 1
2ρ

′′

(ψ0)h2
1 + 1

6ρ
′′′

(ψ0)h3
1

ρ (ψ0 − h2) = ρ (ψ0) − ρ
′

(ψ0)h2 + 1
2ρ

′′

(ψ0)h2
2 − 1

6ρ
′′′

(ψ0)h3
2

ρ (ψ0 + h3) = ρ (ψ0) + ρ
′

(ψ0)h3 + 1
2ρ

′′

(ψ0)h2
3 + 1

6ρ
′′′

(ψ0)h3
3.

(4.58)

In this way we have a system composed by 3 equations in 3 unknowns

ρ
′

(ψ0), ρ
′′

(ψ0) and ρ
′′′

(ψ0) therefore we can obtain an explicit expres-

sion of ρ
′

+ (ψ0). The latter expression can be also averaged, for example,

with another evaluation of the first derivative, ρ
′

− (ψ0), using the expan-

sion of ρ (ψ0 − h4) instead of ρ (ψ0 + h3) in system (4.58).

4.4 Numerical implementation 141

4.4.3 The numerical evaluation of f (E)

The next step is to create a grid of energies (we verified that a loga-

rithmic grid gives better results) to evaluate the DF using equation 4.26.

The number of points in the grid must be determined for each specific

case but we found that, in general, a value of 5000 points represents

a good compromise between speed of the integration and accuracy of

the DF . Nevertheless, the integrand which appears in equation 4.26 is

numerically problematic in the extreme ψ = E (even if, from an analytic

point of view, the integrand can be convergent due to the trend of dρ
dψ).

To avoid numerical problems, for each value of energy Ẽ in the grid,

we integrate, with a certain step dẼ1, from 0 up to Ẽ − dẼ1. Then, we

reduce the integration step dẼ2 = ηdẼ1 (we chose η . 10−3) and we be-

gin another integration from Ẽ − dẼ1 to Ẽ − dẼ2. The result of the latter

integration is added as a “corrective” term to the first evaluation of the

integral. We iterate this procedure adding more corrective terms until

the numerical value of the integral does not vary significantly any more

adding further correction terms. To evaluate each integral we used the

Simpson method refined with the Richardson extrapolation method (see

section 4.4.1). To obtain the DF , a derivative of the just evaluated in-

tegral has to be calculated; this is performed using the same strategy

shown before to evaluate dρ
dψ . Having these quantities, the procedure

schematically described before can be followed and iterated in order

to generate positions and velocities for all the stars in the N -body sys-

tem.

4.5 Time Units

Any N -body computer model which derives from the application of a

generic “sampling ” code, is just a collection of numbers which are

not directly linked with physical units such as solar masses, km/s, par-

142 Chapter 4 The initial conditions of stellar systems

secs and so on. To sample a generic computer model, astrophysicists,

in general, for pure convenience, use to put G = 1 and the same is

done in most N -body codes. To refer to a real astrophysical systems

it is important to choose a scale distance (Rs) and a scale mass (Ms)

and, from them, it is possible to obtain a time scale unit (Ts) and a

scale velocity (Vs) in order to completely characterize the sampled stel-

lar system. The physical quantities can be obtained using the relations

mphys = Msmnum and rphys = Rsrnum and it is straightforward to show

that the time unit is

Ts = 14.9477133878319
R

3

2
s /pc√
Ms/M⊙

Myr (4.59)

where the factor 14.92 comes from the value of 1√
G

in units of parsecs,

solar masses and mega years. The same can be said for the scale velocity

which is

Vs ≃ 6.54589713446219 × 10−2

√
Ms/M⊙
Rs/pc

km/s (4.60)

therefore the physical quantities can be obtained using the relations

tphys = Tstnum and vphys = Vsvnum. Sometimes, it is convenient to use

the so called N -body units (see for example [2]) which are character-

ized by having G = M = RV = 1 where RV is the so called virial radius

of the system which is such that

1

RV
= 2

N∑

i6=j

mimj

rij
. (4.61)

It is possible to show that, in these units, the total energy of the system

is E = −1
4 . The use of N -body units is widespread but their usage does

not constitute a rule. Moreover, they cannot deal with those systems

having a positive total energy. A good general rule is to choose Ms

and Rs in order to obtain a time unit Ts which guarantee a “regular”

distribution of time steps in N -body codes, like HiGPUs , that use block

4.5 Time Units 143

time steps. “Regular” means that the distribution of time steps for a

generic system should extend from about 2−15 to 2−3 resembling a bell

shape (like a gaussian distribution), If the majority of time steps are

around 2−3 means that the time unit should be increased in order to

lower time steps. The contrary can be said for time steps which are, on

average, too low.

4.6 Practical tests

This section shows N -body computer models obtained using our new

implementation of the code which can sample a stellar system starting

from a generic density profile in spherical symmetry. We use as tests

cases a Plummer model (P1), a King model (K1), a Dehnen model (D1)

and a custom model (C1) which also includes a central super massive

black hole (SMBH). All the studied systems, except the system C1, have

total, numerical, massM = 1 and we also useG = 1. The Plummer core

radius (b) and the King core radius (r0) are such that b = r0 = 1 while

the King’s central dimensionless potential is W0 = 7. For the Dehnen

profile, characterized by a mass density of the form

ρD1 (r) =
(3 − γ)M

4π

a

rγ (r + a)(4−γ)
, (4.62)

the parameter γ has been chosen such that γ = 1 and, similarly, the

Dehnen’s scale length a is also unitary. The system C1 is characterized

by a Dehnen (γ = 0.2) density profile truncated at a certain scale radius

(rcut) with an exponential term included in the function sech(x). This

profile is such that

ρC1 (r) =
7M

10π

a

r0.2 (r + a)3.8 sech

(
r

rcut

)
. (4.63)

The possibility to sample a N -body model starting from a generic spher-

ical density profile constituted the main motivation to implement our

144 Chapter 4 The initial conditions of stellar systems

new code. Specifically, the density profile expressed in equation (4.63)

is very important for astrophysical simulations for several reasons. Sup-

pose, for example, that we want to study the dynamical evolution of the

innermost region of a generic elliptical galaxy which, globally, is well

described by a Dehnen, γ = 2 density profile. Suppose also that the

total mass of the galaxy is Mgal = 1011M⊙ and that we would like to

concentrate our simulation on the first 50 parsecs of this object. Within

this distance, the galaxy contains, considering, for example, a = 2kpc,

Mgal (r = 50pc) ∼ 5 × 107M⊙ which, on average, means something like

107÷108 stars. Nevertheless it is not possible to sample the entire galaxy

with a Dehnen model and then select only the particles in the sphere of

radius r = 50pc for, at least, two reasons:

1. for numerical reasons, the maximum, reasonable, number of par-

ticles that can be dynamically evolved, at least using a direct

summation N -body code, must be N . 2M. This means that

if we want to sample the above described galaxy using this num-

ber of bodies, each star has to have a mass of about mstar ≃
1011

2x106M⊙ ≃ 5 × 104M⊙ which is significantly not realistic. This

results comes directly from the fact that we have tried to sample

a system containing, in reality, 1011 stars using “only” 106 parti-

cles. Moreover, the spatial resolution of the simulation, especially

in the very dense central regions, is poor therefore this kind of

under-sampling process should be avoided;

2. One strategy could be to perform on oversampling of the entire

model using for example N ∼ 1010 ÷ 1011 stars and then truncate

this model at r ∼ 50pc operating a brute selection of particles.

Nevertheless, in this way, it is straightforward to understand and

verify that the resulting system is not stable (it will tend to ex-

pand very fast because we have eliminated an entire region of the

original, stable, phase space).

4.6 Practical tests 145

The possible solution consists to modify the density profile such that at

small radii (r . 50pc) resembles the Dehnen’s distribution while it falls

rapidly to zero for r & 50pc which is exactly the behaviour of the trun-

cated density profile shown in equation 4.63. In this way we have a

self consistent model truncated at rcut = 50pc which let us concentrate

our attention on a specific region of the galaxy which we want to study.

In the last part of this chapter we will use the system C1 to show the

stability of the computer models obtained using our numerical imple-

mentation of the “sampling” problem. Now we focus our attention to

study the properties obtained for the models D1, K1 and P1.

10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

D
en

si
ty

Distance

 D1
 K1
 P1
 Effect of sech(r/rcut) on D1 with rcut = 50

f(r)=1/(2 r)

Figure 4.1: Density profiles obtained for the systems D1, K1 and P1. The

points are the numerical output of our code, continuous

lines are the theoretical expressions. The pink dashed line

is reported to show the effect of the function sech(x) on the

density profile of the model D1. The black dashed line is

shown to underline the divergence of the Dehnen density

profile for r ∼ 0 which goes as 1/r.

Fig. 4.1 shows the density profiles of the tested systems. The systems

present deep differences from one another; first of all, the D1 model

146 Chapter 4 The initial conditions of stellar systems

(black points) shows a cusp for r ∼ 0 which goes to infinity as the

function f (r) represented by a black dashed line (∝ 1/r) while the

models K1 (red points) and P1 (blue points) are characterized by the

presence of a flat core (ρK1 ∼ const. for r . r0 and ρP1 ∼ const. for

r . b). It is also evident what we have already pointed out about the

King density profile. It is such that ρK1 (r) = 0 for r ≥ rt and, in this

case (W0 = 7 and r0 = 1), rt = 33.708 which is in agreement to what

already shown in [56]. In Fig.4.1 we show also (pink dashed line) the

analytic form of the model D1 truncated with the function sech
(

r
rcut

)

with rcut = 50. As expected, it resembles the system D1 for r . rcut

while it falls rapidly (exponentially) to zero for r & rcut.

10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105

10-3

10-2

10-1

100

101

 Distance

 D1
 K1
 P1
 P1 (analytical)
 D1 (analytical)

R
el

at
iv

e
gr

av
ita

tio
na

l p
ot

en
tia

l

Figure 4.2: Gravitational potential for the tested models resulting from

the numerical integration of the Poisson’s equation. The ex-

act expressions (dashed lines) are shown for the models D1

adn P1 but not for the King model for which the expression

for the gravitational potential cannot be written explicitly.

4.6 Practical tests 147

Fig. 4.2 shows the gravitational potential (points) obtained from the

numerical solution of the Poisson’s equation for systems D1, P1 and K1.

The dashed lines represent the analytical, explicit forms of the potentials

(except for the King model for which the solution is numerical only). As

we can see, the analytical trends are not distinguishable, by eye, from

the points obtained in the integration which extends up to a distance of

∼ 1011 although we decided to cut the Fig. 4.2 at r ≃ 105 in order to

show a more clear representation of the results.

10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105 106 107 108 109 1010 1011

10-17

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

R
el

at
iv

e
er

ro
r o

n
th

e
po

te
nt

ia
l

Distance

 P1
 D1

Figure 4.3: Relative errors on the numerical gravitational potential,

shown in Fig. 4.2, for the tested models.

For completeness, we show in Fig. 4.2 the relative errors committed in

evaluating the gravitational potential for the tested models P1 and D1.

It can be seen that the relative errors are quite good: always around

10−14 except in the last part of the integration (small distances) where,

in any case, they remain satisfactory reaching the maximum value of

10−9 for r ∼ 10−5. We are currently trying to understand the reason

why the relative errors tend to increase almost linearly, in a logarithmic

scale, when r . 1 and, in the case of the system D1, for r & 109 too. It is

148 Chapter 4 The initial conditions of stellar systems

important to underline that we need to integrate the Poisson’s equation

over a wide range of distances because when we will need to numeri-

cally solve equation (4.26), we will need to evaluate the quantity dρ/dψ

for ψi ≪ ψ0. In fact the integral in (4.26), for a certain value E = Ẽ ,

has to be evaluated for values of ψ such that ψ ∈
[
0, Ẽ

]
and values of ψ

very close to zero means always very large distances, except for the King

model in which, indeed, the integration stops at r ≃ rt. Therefore, it is

also easy to understand why a good accuracy (thus a good integrator)

is needed to solve the Poisson’s equation.

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105
10-20

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

106

108

 D1
 K1
 P1
 K1 (analytical)
 P1 (analytical)
 D1 (analytical)

d
/d

Figure 4.4: The derivative of the density with respect to the gravita-

tional potential for the tested models, evaluated numeri-

cally using the procedure described in section 4.4.2.

Another important quantity which is shown in Fig. 4.4 is the numerical

derivative dρ
dψ calculated from the previously tabulated values of ρ (r)

and ψ (r) using the method described in section 4.4.2. This is one of

the most critical parts of the algorithm because it is based on a a quite

rough estimation of the first derivative dρ
dψ . We know the analytical

explicit formulas of dρ
dψ for the systems D1, K1 and P1; for the system

4.6 Practical tests 149

P1 the expression has already been obtained in section 4.1.2, equation

(4.32) and it is
dρP1 (ψ)

dψ
=

15

4π

b2

G5M4
ψ4. (4.64)

For the King model the density is given directly as a function of the

dimensionless potential W = ψ
σ2 (see equation 4.38). Changing variable

from W to z ≡
√
W we have

ρK1 (z)

dz
=

[
2zez

2

erf (z) − 4√
π
z2
]

(4.65)

where we have used the property of the error function

d

dz
erf (z) =

2√
π
e−z2

. (4.66)

Coming back to the variable W we get, except for a factor 1/σ2, the

expression of dρ
dψ for the King model

dρK1 (W)

dW
= eW erf

(√
W
)

− 2√
π

√
W. (4.67)

For a generic Dehnen model it is possible to write (see for example [38])

ρDehnen (ψ) =
(3 − γ)M

4πa3

(1 − y)4

yγ
(4.68)

where we have introduced the dimensionless variable y defined as

y ≡
[
1 − (2 − γ)

a

GM
ψ

] 1

2−γ

. (4.69)

For the system D1, γ = 1, we have

ρD1 (ψ) =
M

2πa3

(
a

GM
ψ

)4 (
1 − a

GM
ψ

)−1

. (4.70)

To calculate the derivative with respect to ψ of equation 4.70 we intro-

duce the dimensionless variable x defined as

x ≡ aψ

GM
(4.71)

150 Chapter 4 The initial conditions of stellar systems

in order to write

ρD1 (x) =
M

2πa3

x4

1 − x
. (4.72)

Therefore we can obtain

dρD1 (ψ)

dψ
=

dρD1 (x)

dx

dx

dψ
=

1

2πGa2

4x3 − 3x4

(1 − x)2 . (4.73)

As we can see in Fig. 4.4, the exact expressions for dρ
dψ (dashed lines) are

not distinguishable, by eye, from the numerical points obtained using

our code. The exception is constituted by the King model for the values

of ψ such that ψ . 10−6. This may be due to, at least, three main

reasons :

1. it is difficult to follow the rapid decrease of ψ (r) (and ρ (r)) when

the numerical resolution of the Poisson’s equation is approaching

to r ∼ rt where, in particular, ψ (rt) = 0. In particular, the in-

tegration step in the BS integrator must be reduced significantly

and iteratively to follow, with enough accuracy, the trend of ψ (r);

2. as we saw in section 4.1.3 the King’s density profile is written in

terms of the error function which must be evaluated numerically,

adding, surely, another term of error (even if it is generally small

compared to that described in point 1 and 3);

3. obviously, the method that we used to evaluate the numerical

derivative is approximated and it suffers rapid relative variations

of ψ which occur at r ∼ rt, being based on Taylor expansions.

Especially the point 3 is crucial to obtain a sufficiently accurate DF .

In fact, it can be seen in Fig.4.5 that, although, as we have seen pre-

viously, the errors on ψ (r) are very small (see Fig.4.2), the errors on

the quantity dρ
dψ are significantly bigger. As already seen in Fig.4.3, in

Fig,4.5 we find again that the error grows for r . 1 in each model as

expected considering its natural propagation. The error for r ≪ 1 in

4.6 Practical tests 151

10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105 106 107 108 109 1010 1011
10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
er

ro
r o

n
d

/d

Distance

 D1
 K1
 P1

Figure 4.5: Relative errors on the derivative of the density with respect

to the gravitational potential for the tested models.

the system D1, besides the already cited sources of error, comes from

the difficulty to approximate, with enough accuracy, the divergence of
dρD1

dψ (ψ = 1; r = 0) (see equation 4.73). Moreover, as already seen, by

eye, in Fig.4.5 it is evident the rapidly increasing trend of the error, for

the model K1, when approaching the tidal radius (rt ≃ 37 for W0 = 7).

Looking at the error for the models P1 and D1 it can be noticed a cer-

tain degree of periodicity which is not clear at present and it should be

investigated deeper in order to reduce it (even if the oscillations remain

around the value 10−10 which is, in any case, a very good error in dρ
dψ

ensuring the realization of a stable N -body system model).

Fig. 4.6 shows the DF , for the three tested models, resulting from the

numerical integration of equation 4.26 and sampled on a grid composed

by 5000 values of energies, for each curve, distributed logarithmically

between Emin and Emax. The dashed lines represent the analytical ex-

152 Chapter 4 The initial conditions of stellar systems

10-4 10-3 10-2 10-1 100 101 102
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

106

D
is

tr
ib

ut
io

n
fu

nc
tio

n

Relative energy

 D1
 K1
 P1
 D1 with black hole
 P1 (analytical)
 K1 (analytical)
 D1 (analytical)

Figure 4.6: The distribution functions for the tested models obtained

using our code. The distribution functions have been evalu-

ated using a logarithmic grid in energies composed by 5000

points. The dashed lines represent the explicit, analytical

forms of the distribution functions. The magenta points are

referred to the system D1 in which a central super massive

object, whose mass is equal to half the total system mass, is

included.

pressions for the DF . No appreciable differences can be seen, by eye,

between the dashed curves and the numerical evaluations and this re-

sult could be enough to guarantee sufficiently stable initial conditions

for a N -body computer model. The explicit expression for the King DF

and for the Plummer DF can be found respectively in equations 4.36 and

4.35 while it is possible to show that the DF for the model D1 is

1

8
√

2π3α3Ga2

1√
E (α− E)2

[
−16E4 + 24αE3 − 2α2E2 − 3α3E + 3α4KarctgK

]

(4.74)

where we have introduced α ≡ GM
a and K ≡

√
E

α−E . It is also evident

that the DF , in each model, has a limited domain; in fact the DF does not

4.6 Practical tests 153

exist for all the values of E such that E > ψ (r = 0) = ψmax. Since E ≡
ψ− 1

2v
2 ⇒ E+

lim = ψmax. Considering that, for example, the King model

K1 has been represented in Fig. 4.6 using the dimensionless energy

(that is scaled with a factor 1
σ2), we see that the right limit for the DF

is E+
lim = 7 = W0. The same can be said for the models D1 and P1

which are correctly limited by the value E+
lim = 1 which corresponds

to an asymptote, as expected from equation 4.74, for the model D1.

The left limit on the DF depends on the minimum value of ψ (ψmin)

reached during the integration of the Poisson’s equation. In fact, if, in

the integral 4.26, we choose a value Ẽ < ψmin we cannot evaluate f
(
Ẽ
)

because we do not have tabulated values of the integrand between 0

and Ẽ = ψmin.

This is now clear definitively the importance to integrate Poisson’s equa-

tion on a wide range in space. This implies that given a certain particle

in position ri, it cannot have an energy Ei . E−
lim therefore it cannot

goes arbitrarily close to its local escape velocity which is, actually, not

a big trouble for the initial conditions of a generic N -body system. For

completeness, we also show in Fig. 4.6 (magenta points) a D1 model

which includes a central black hole with mass MBH = 0.5, that is, half

the total mass of the system. The DF relative to this system is not known

explicitly but we can see, from our numerical results, how the presence

of the central black hole has two main effects:

1. it removes the singularity of the DF of the model D1 for E =

ψ (r = 0) = 1;

2. it expands significantly the range of allowed energies for the re-

sulting N -body model which now goes from ∼ 0 to the value of

the gravitational potential at the minimum distance reached by

the integration (in our case it is fixed to rmin = 10−3 therefore we

have E+
lim ≃ 500).

154 Chapter 4 The initial conditions of stellar systems

The usage of “sampling ” programs like ours is the only way to generate

a N -body, stable, computer model containing a central super massive

object. This is a very important point for astrophysicists because most

astrophysical stellar systems, like for example most of galaxies, harbour

a super massive black hole in their innermost regions.

10-4 10-3 10-2 10-1 100 101

10-4

10-3

10-2

10-1

R
el

at
iv

e
er

ro
r o

n
th

e
df

Energy

 D1
 K1
 P1

Figure 4.7: The relative errors on the distribution functions for the

tested models.

To quantify more precisely the errors on the different DF of our models,

we show in Fig.4.7 the relative errors on the DF . As we can see, they

are approximatively constants around 10−4 which is due for the majority

to the error done in evaluating the integral which appears in equation

4.26 which is, indeed, approximatively constant and very difficult to

improve (we are currently working on it). In any case, we verified, and

we will show some results in the next section, that this error on the DF

guarantees a stable N -body system even considering the most critical

situation which corresponds to the inclusion of a central super massive

object.

4.6 Practical tests 155

In figures 4.8, 4.9, 4.10 we show a graphical representation (on the

plane xy) of the resulting N -body system respectively for the models D1,

K1 and P1 flanked by a plot which represents the associated phase space

(velocity vs distance, both in absolute values, for each particle). Fig.

4.11 is the same of the previous 3 figures but it is referred to the system

D1 modified with the inclusion of a central super massive black hole.

In each phase space diagram (except for the K1 model) the analytical

expression of the escape velocity (red line) is shown as a function of the

distance from the centre of gravity of the considered systems. As we can

see, in all the figures the particles are distributed, as expected, below the

curve of the escape velocity (even in the case of the presence of a super

massive black hole). This constitutes one more proof of the validity of

our numerical implementation. In Fig. 4.11 it is worth noting how the

black hole alters the phase space distribution of the stars, especially in

the innermost regions of the system. The dashed blue line represents,

in fact, the escape velocity from the original D1 model (i.e. without the

black hole) while the green dashed line is that from the central massive

object only (excluding the Dehnen, γ = 1, gravitational potential). The

red line represents the resulting escape velocity which is the sum of the

two different contributions.

4.7 Stability tests

In order to verify, in practice, the stability of the sampled systems we

chose to sample a system of practical astrophysical interest and to anal-

yse the evolution of its mass density profile and of its lagrangian radii3

over a certain interval of time. To dynamically evolve this system we

used our direct summation N -body code HiGPUs already introduced,

tested and discussed in the previous chapters. The system chosen for

3The radius which contains a certain percentage (p) of the total mass of the
system is said to be the lagrangian radius of the p-percent of the total mass
of the system.

156 Chapter 4 The initial conditions of stellar systems

this simulation is the system indexed as C1: it mimics the innermost re-

gion of a typical elliptical galaxy modelled using a Dehnen model with

γ = 0.2 truncated using an hyperbolic secant function sech
(

r
rcut

)
with

rcut = 80pc in order to obtain a good spatial resolution and quite re-

alistic masses for the individual stars. The total mass of the galaxy is

Mg = 1011M⊙ and we choose the value of the scale parameter a using

the reasonable condition M (50kpc) = 0.9Mg which gives us the value

a ∼ 1.9 which corresponds to have a total mass of our truncated system

around 8 × 107M⊙. We sampled this system using N = 220 stars includ-

ing a central super massive black hole with mass MBH = 108M⊙. We

used an unit of length Rs = 10pc and an unit of mass Ms = 104M⊙

corresponding to a time unit of ∼ 4.7Myr. The crossing time for this

system, considering a characteristic dimension Rsys ≃ 100pc and a to-

tal mass Msys ≃ 108M⊙, is approximatively 1.5 Myr that is ∼ 0.3 time

units. The relaxation time is approximatively (using the formula 1.75)

∼ 2800 time units, that is ∼ 13 Gyr. We evolved this system for a suffi-

ciently long time to verify the goodness of the sampled model (50 time

units, that is ∼ 170 crossing times) using 4 AMD Radeon HD7970 to

accelerate the simulation (see section 3.5).

Fig.4.12 shows the evolution of several lagrangian radii, normalized to

their initial value for clarity of the representation, in function of time

expressed in units of the system crossing time. We can see that, in the

first 10 crossing times, the system does not suffer from rapid and sig-

nificant variations of its initial state and, considering also the presence

of a central black hole, this denotes the goodness of the generated com-

puter model. The variations (less than 1%) seen during the first 10

crossing times are due to the fact that we used this galaxy model to

study the dynamical evolution of a globular cluster in circular orbit em-

bedded in the sampled environment. The variations seen in the initial

values of the lagrangian radii are due to the perturbation induced by

the globular clutser itself on the background. Obviously the long term

evolution of the lagrangian radii reflects the tendence of the system to

4.7 Stability tests 157

evolve towards core collapse. Therefore the slightly decreasing trend

of the curves relative to the inner systems regions and the simultane-

ous inverse trend of the other outermost lagrangian radii, denotes also

the goodness of the N -body integrator (in this case our parallel code

HiGPUs). This is also confirmed by a value of the relative total energy

variation of ∼ 10−9 after ∼ 170 crossing times.

The same stability is observed by looking at Fig.4.13 which represents

the initial (black line) and the final (red line) mass density profile of the

system C1. It has been verified that wrong initial conditions produce

rapid and violent changes of the density profile (over a time ∼ 10 cross-

ing times) which then stabilize on a curve with a significantly different

shape. This not happens for our tested model (despite the presence

of the central black hole) and the density profile remains approxima-

tively untouched over 150 crossing times. The appearance of the tail

for the red line reflects the natural evolution of any collisional system:

some stars acquire enough kinetic energy, thanks to close encounters,

to get to large distances and, sometimes, to escape from the system. Si-

multaneously, in order to conserve the total energy, the system shrinks

(which explains also the slightly increasing value of the final density in

the central regions). In fact, the physical characteristics of the stellar

systems sampled using the Boltzmann, collisionless, relation (see equa-

tion (4.5)) must not remain exactly the same because, in real N -body

simulations, close encounters must be taken into account. Nevertheless,

it is important to avoid rapid and violent initial variations of the initial

conditions, in order to avoid spurious effect on the resulting scientific

results. In real N -body simulations, the evolution of the DF , as we have

already seen previously, follows the master equation

df

dt
= Γ [f] (4.75)

which, nevertheless, cannot be solved explicitly in an exact way.

158 Chapter 4 The initial conditions of stellar systems

Figure 4.8: The top panel shows the N -body model, on the plane xy,

resulting from the model D1. The bottom panel represents

the phase space associated to the N -body model. The red

line is the trend of the escape velocity in function of the

distance.

4.7 Stability tests 159

Figure 4.9: The top panel shows the N -body model, on the plane xy,

resulting from the model K1. The bottom panel represents

the phase space associated to the N -body model.

160 Chapter 4 The initial conditions of stellar systems

Figure 4.10: The top panel shows the N -body model, on the plane xy,

resulting from the model P1. The bottom panel represents

the phase space associated to the N -body model. The red

line is the trend of the escape velocity in function of the

distance.

4.7 Stability tests 161

Figure 4.11: The top panel shows the N -body model, on the plane xy,

resulting from the model D1 modified with the inclusion

of a central super massive particle. The bottom panel rep-

resents the phase space associated to the N -body model.

The red line is the trend of the escape velocity in function

of the distance while the blue dashed line is the escape

velocity relative to the original D1 model and the green

dashed line represents the trend of the escape velocity con-

sidering the presence of the central black hole only.

162 Chapter 4 The initial conditions of stellar systems

0 20 40 60 80 100
0.985

0.990

0.995

1.000

1.005

1.010

1.015

La
gr

an
gi

an
 ra

di
i (

no
rm

al
iz

ed
)

Crossing times

 10%
 25%
 50%
 75%

Figure 4.12: Lagrangian radii relative to different percentages of the

total mass of the system C1. For convenience, each la-

grangian radius has been normalized to its initial value.

0.1 1 10 100

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

D
en

si
ty

Distance

 Density profile at t=0
 Density profile at t=150tc

Figure 4.13: Mass density profile of the system C1 at times t = 0 and

t = 170 crossing times.

4.7 Stability tests 163

5Regularization methods

for the N -Body problem

5.1 Introduction

We have already seen in chapter 1 that, despite its simple mathematical

formulation, which is substantially untouched since 1687, the numeri-

cal integration of the N -Body problem poses at least two problems:

1. the computational complexity of the problem is O
(
N2
)

because

of the infra-red divergence of the gravitational potential. This

implies that the times needed to complete a typical astrophysical

simulation (N & 104) are long;

2. because of the ultraviolet divergence, close encounters between

stars, hard binaries and/or multiple systems are very difficult to

integrate. In general, without using the softening parameter, the

above listed situations become critical and the accuracy of the

simulation is lost (even using a very small time step coupled with

a high order integration algorithm).

We saw that modern hardware facilities like GPUs may help to overcome

the first point but, besides the introduction of the softening parameter,

we did not say anything about a possible solution which concerns the

second point. In fact, the introduction of a smoothing factor is an use-

ful artifice if we are interested to study the global properties of a cer-

tain N -Body system disregarding the small-scale phenomena such as

the evolution of hard binaries or the precise reconstruction of the orbits

165

of stars. Actually there are, at least, three possibilities to overcome the

ultraviolet divergence without introducing a smoothing parameter:

1. performing a smart coordinates transformation which can include,

or not, the temporal variable;

2. choosing an algorithm which produces regular1 results without

changing coordinates;

3. the combination of the previous two points.

In general, any attempt to remove or to bypass the singularity of the

2-body interaction gravitational potential is referred as an attempt to

regularize it, from which the world regularization derives.

5.2 The Burdet-Heggie regularization

We start describing a simple but efficient method, which transforms the

temporal coordinate only, also known as the Burdet-Heggie (hereafter

BH) method. The authors formulated independently this method and

described it respectively in [21] and [51]. Let us consider, in a N -Body

system, a binary star composed by one object of mass mi and its com-

panion of mass mj posed in positions ri and rj with velocities vi and vj

respectively. The equation of relative motion writes

d2R

dt2
= −GM

R3
R + aext (5.1)

where we have introduced the relative distance R = ri − rj, the total

mass M = mi + mj and the contribution to the acceleration due to the

1The word regular here means “not singular” where the singularity is that of
the gravitational potential in r = 0

166 Chapter 5 Regularization methods for the N -Body problem

other N − 2 stars (aext). In order to eliminate the divergence of type

1/R2 we introduce the following differential time transformation

dt = Rndτ (5.2)

where n is a generic exponent which, in principle, can take arbitrary

values. For convenience we denote the derivatives with respect to the

new time coordinate τ using “primes” and those with respect to the old

time t with “dots” . Therefore, we have

Ṙ =
dR

dτ

dτ

dt
=

1

Rn
R

′

(5.3)

R̈ =
dτ

dt

dṘ

dτ
=

1

R2n
R

′′ − n
R′

R2n+1
R′. (5.4)

Substituting the expression for R̈ in the equation of relative motion 5.1

we have

R′′ =
nR′

R
R′ − GM

R3−2n
R +R2naext. (5.5)

It is worth noting that if we choose n = 1, we have already smoothed

the singularity from 1/R2 to 1/R, the latter surely better behaved for

R → 0. Using n = 1 the equation of motion becomes

R′′ =
R′

R
R′ − GM

R
R +R2aext. (5.6)

We introduce now the Laplace-Runge-Lenz vector, e, whose length is

equal to the eccentricity of the orbit

e ≡ V ∧ C

GM
− R

R
=

R′2

GMR2
R − R′

GMR
R′ − R

R
(5.7)

where V = Ṙ = vi − vj and C ≡ R ∧ V. The introduction of the

eccentricity let us write equation (5.6) in the following form

R′′ = 2

(
R′2

2R2
− GM

R

)
R −GMe +R2aext. (5.8)

5.2 The Burdet-Heggie regularization 167

We introduce also the total energy of the 2-body system

E2b =
1

2
V 2 − GM

R
=

1

2

R′2

R2
− GM

R
(5.9)

therefore, using equation (5.9) to simplify equation (5.8), we obtain

R′′ = 2E2bR −GMe +R2aext (5.10)

which is the regularized equation of motion in which , in fact, the sin-

gularity at R = 0 has been completely removed. Obviously, equation

(5.10) must be coupled with equations that describe the rates of change

of E2b, e and t with respect to the new time coordinate τ . These re-

lations can be easily obtained deriving respect to τ the equations (5.7)

and (5.9) and using also the definition (5.2)

E′
2b = aext · R′

e′ = 2R (aext · R′) − R′ (aext · R) − aext (R · R′)

t′ = R.

(5.11)

In the absence of the external perturbation E2b and e are constant and

equation (5.10) becomes

R′′ = 2E2bR + constant (E2b < 0) (5.12)

that is a (regular) harmonic oscillator, subject to a constant force GMe,

which oscillates with a period

TBH =
π√
|E2b|

. (5.13)

168 Chapter 5 Regularization methods for the N -Body problem

5.3 The Kustaanheimo-Stiefel

regularization

Another method to regularize the N -Body problem, which operates

transformations of both time and spatial coordinates is the Kustaanheimo-

Stiefel (hereafter KS) method [61] whose formulation in 2 dimensions

is due to Levi-Civita [62]. The idea of Levi-Civita was to introduce (be-

side the time transformation 5.2) the new variables u1 and u2 such that

R = u2
1 + u2

2 and

R1 ≡ u2

1 − u2
2

R2 ≡ 2u1u2.
(5.14)

The transformation may be rewritten in a more elegant and compact

form introducing the so called Levi-Civita matrix L (u)

R = L (u) u (5.15)

where

L (u) =

 u1 −u2

u2 u1

 . (5.16)

The expression for the regularized velocity can be obtained deriving the

expression in 5.15

Ṙ = 2L (u)
u′

R
. (5.17)

It is possible to show (see for example Aarseth [4]) that the regularized

equation of motion in these coordinates can be written as

u′′ =
1

2
E2bu +

1

2
RLT (u) aext (5.18)

which must be coupled with

E′
2b = 2u′ · LT (u) aext. (5.19)

5.3 The Kustaanheimo-Stiefel regularization 169

In the absence of external perturbations we obtain, just like in the BH

regularization, an harmonic oscillator with period

TKS2D
= 2

√
2TBH . (5.20)

It is possible to show that a 3D generalization of relations 5.14 must in-

volve the complex plane, nevertheless Kustaanheimo and Stiefel showed

that a real 4D generalization can be achieved. The 4D expression of the

Levi-Civita matrix is

L (u) =

u1 −u2 −u3 u4

u2 u1 −u4 −u3

u3 u4 u1 u2

u4 −u3 u2 −u1

. (5.21)

Equation 5.15 still holds but now R = (R1, R2, R3, R4) with

R1 = u2
1 − u2

2 − u2
3 + u2

4

R2 = 2 (u1u2 − u3u4)

R3 = 2 (u1u3 + u2u4)

R4 = 0

(5.22)

and R = u2
1 + u2

2 + u2
3 + u2

4. Since we are applying the regularization

method for, realistic, 3D systems, we have one degree of freedom for

choosing the components of the four-vector u = (u1, u2, u3, u4). It is

appropriate to choose u4 = 0 ⇔ R1 > 0 and u3 = 0 ⇔ R1 < 0 obtaining

R1 > 0 :

u1 =
√

1
2 (R1 +R)

u2 = 1
2
R2

u1

u3 = 1
2
R3

u1

u4 = 0

R1 < 0 :

u1 = 1
2
R2

u2

u2 =
√

1
2 (R−R1)

u3 = 0

u4 = 1
2
R3

u2

(5.23)

170 Chapter 5 Regularization methods for the N -Body problem

in order to have the new coordinates u1 and u2 always well defined in

the field of real numbers. The other relations, already obtained for the

2D case, still hold. To perform a simple, not perturbed, numerical KS

test, the recipe is summarized in the following steps

1. transform cartesian in relative coordinates obtaining R and V =

Ṙ;

2. obtain KS coordinates u and u′ applying respectively the relations

5.23 and their derivatives with respect to the new time coordinate

τ ;

3. solve the equation of motion 5.18 with a standard algorithm for

ordinary differential equations; actually, in the not perturbed case,

the solution, as we have already shown, is an harmonic oscillator;

at the end we evolved u and u′ from regularized time τ0 to τ0 +

∆τ ;

4. transform the regularized coordinates to cartesian one using rela-

tions 5.22 and their derivatives;

5. obtain the physical time using the definition 5.2;

6. add the centre of mass motion to recover original (physical) posi-

tions and velocities.

5.3 The Kustaanheimo-Stiefel regularization 171

5.4 Generalization to N bodies

5.4.1 The Chain treatment

The KS formulas are valid for the perturbed 2-body problem and remain

applicable even if the perturbation becomes quite strong. Nevertheless,

during the integration of a N -Body system, a close encounter which

involves, for example, two hard binaries, can happen, therefore it is

needed to apply KS transformations not only to two bodies but to the

entire (small) N -Body system. Unfortunately, the regularized equation

of motion does not represent a simple harmonic oscillator any more

although several “global” methods, which let us still regularize all the

close approaches with N > 2, exist. We focus our attention on the

description of the so called chain treatment which was introduced and

subsequently improved by Seppo Mikkola and Sverre Aarseth [72]. To

build the chain, first of all, the shortest inter-particle vector must be

identified; this constitutes the first segment of the chain. Next, the

closest particle to one or the other extreme is added to the chain, and so

on, until all the stars to regularize are included. If the index k refers to

the ordered particles which belong to the chain we introduce the new

chain vectors defined as

Xk = rk+1 − rk Vk = vk+1 − vk. (5.24)

To go back to physical coordinates it is sufficient to assign to the first

particle r1 = 0 and v1 = 0, apply recursively the definitions (5.24) and

then rescale with respect to the centre of mass position and velocity.

The chain method is not only fundamental and elegant to apply, for ex-

ample, KS transformations to a generic N -Body system but also reduces

significantly round-off errors especially the already discussed problem

of numerical terms cancellation. The main disadvantage is that the

chain structure can change during the dynamical evolution therefore,

172 Chapter 5 Regularization methods for the N -Body problem

it must be inspected every time step and, eventually, updated. In this

framework the advantage is that it is not needed to go back to physical

coordinates and rebuild the new chain but it is possible to show that if

the positions of the k-th and j-th chained particles in the old chain are

Ioldk = Inewµ and Ioldj = Inewµ+1 we have

Xnew
µ =

m−1∑

ν=1

BµνXold
ν (5.25)

where m is the number of the particles to regularize and

Bµν =

+1 k ≤ ν ∪ j > ν

−1 j ≤ ν ∪ k > ν

0 otherwise.

(5.26)

To apply KS transformations to a N -body system we need to find the

new equation of motion. First of all we need to express the hamiltonian

in chain coordinates, then we need to switch to KS coordinates and

perform the related time transformation. When dealing with a N -Body

system, equation 5.2 must be generalized in the following form

t′ =
1

L
=

1

T + U
(5.27)

where L is the Lagrangian, T the kinetic energy and U the gravitational

potential energy of the system. The process to obtain the explicit form of

the new equations of motion (regularized Hamilton-Jacobi equations) is

laborious and the final result is also quite difficult to implement numer-

ically. Anyway, the entire detailed analytical procedure can be found

in Aarseth [4]. Surely KS regularization is a very powerful tool which,

nevertheless, mainly because of the spatial coordinates transformation,

is quite difficult to implement if coupled with the discussed chain treat-

ment.

5.4 Generalization to N bodies 173

5.4.2 The Mikkola’s Algorithmic Regularization

We now concentrate our attention on a valid alternative based on a

combination of a time-only transformation (whose power has already

been shown for BH and KS regularization) with a leapfrog algorithm

which produces regular results despite the singularity in the mutual

force. Seppo Mikkola can be considered the father of the so called al-

gorithmic regularization. He developed and tested it completely, for the

first time, with the help of Tanikawa in 1999 [73] and independently

from Preto and Tremaine [85]. Several anecdotal about the invention

of the algorithmic regularization and its development can be found in

the interesting section 3 of the paper by Mikkola [71]. A generic step

of the (symplectic) leapfrog algorithm, used to advance from time t0

to t1 = t0 + h the position r and velocity v of a generic particle which

suffers an acceleration a (r), writes

v1 = v0 + h ∗ a
(
r1/2

)

r1 = r1/2 + h
2 v1.

(5.28)

This scheme is not self-starting because we need to evaluate the quantity

r1/2 = r0 + h
2 v0. This algorithm has been proven to be very powerful,

especially if coupled with variable, symmetrized, time steps, to integrate

critical situations like close encounters producing regular results with-

out using time or spatial coordinates transformations (see Fig. 5.1). On

the other hand, we saw how time transformations can manipulate the

Hamiltonian in order to completely remove the singularity in R = 0 (or,

at least, to smooth it). The combination of these two strategies consti-

tutes the base of the algorithmic regularization (hereafter AR). Let us

consider a generic time transformation (from variable t to variable s)

such that

dt = g (q,p, t) ds (5.29)

174 Chapter 5 Regularization methods for the N -Body problem

where we have used the Hamilton-Jacobi formalism indicating the coor-

dinates with q and their conjugate momenta with p. The Hamiltonian

Γ, in the new coordinates, can be obtained considering the extended

Hamiltonian in the phase space H̃ which is

H̃ (q,p, t) = B +H (q,p, t) (5.30)

where B ≡ −H (q (0) ,p (0) , t = 0). It is possible to show that the new

Hamiltonian is

Γ = g (q,p, t) (B +H (q,p, t)) . (5.31)

In order to use a leapfrog algorithm we must have a separable Hamil-

tonian which allows the right hands of the equations of motion to be

independent from the left sides. Nevertheless, in principle, the general

form 5.31 is not separable in fact the equations of motion in the new

coordinates write

t′ =
∂Γ

∂B
= g q′ =

∂Γ

∂p
= g

∂H

∂p

B′ = −∂Γ

∂t
= −gH

t
p′ = −∂Γ

∂q
= −g∂H

∂q

where primes indicate the derivatives with respect to the new variable s

(often called regularized time) and we have considered that B + H = 0

along the correct solution.

5.4 Generalization to N bodies 175

Figure 5.1: This figure is taken from Binney and Tremaine [18] sec-

tion 3.4.7. It represents the relative energy variation ob-

tained integrating one pericentre passage of a highly ec-

centric orbit in a Keplerian potential, as a function of the

number of force evaluations. The orbit has semi-major axis

a = 1 and eccentricity e = 0.99. Curves labeled by RK are

followed using a fourth-order Runge-Kutta integrator with

adaptive timestep control. The word U stands for unreg-

ularized, the curve BH uses Burdet-Heggie regularization,

and KS means Kustaanheimo-Stiefel regularization. The

curve labeled U,LF is followed in Cartesian coordinates us-

ing a leapfrog integrator 5.28 with variable timestep. The

horizontal axis is the number of force evaluations used in

the integration. The leapfrog method shows its validity be-

ing less precise of regularized codes but significantly more

efficient (although it is only second order accurate) then

the widely used RK (4th order) scheme. In this sense the

leapfrog algorithm 5.28 is said to produce "regular" results.

176 Chapter 5 Regularization methods for the N -Body problem

Time Transformed Leapfrog (TTL)

Let us consider the k-th particle in a N -Body system with position rk,

velocity vk and acceleration ak at regularized time s = s0. If we choose

the function to transform time such as

g =
1

Ω (ri)
Ω (ri) > 0 and i = 1, 2 . . . , N (5.32)

with Ω (ri) completely arbitrary, we will have, for example,

r′
k =

1

Ω (ri)

∂H

∂pi
(5.33)

which does not allow us to apply the leapfrog algorithm (5.28). Never-

theless, we can introduce a new auxiliary quantity W = Ω but, instead

to think this new value such that W = W (ri) = Ω (ri), we consider

W as a variable which evolves numerically following the differential

equation

Ẇ =
N∑

i=1

vi · ∂Ω

∂ri
or W ′ =

1

Ω

N∑

i=1

vi · ∂Ω

∂ri
. (5.34)

This allow us to separate the equations of motion of the generic particle

k in two different systems

r′
k = 1

W vk

t′ = 1
W

v′
k = 0

W ′ = 0

v′
k = 1

Ωak

W ′ = 1
Ω

∑N
i=1 vi · ∂Ω

∂ri

r′
k = 0

t′ = 0

. (5.35)

In the following we will use the intuitive subscripts 0, 1 and 1/2 to

indicate quantities calculated respectively at s = s0, s1 = s0 + ∆s and

s1/2 = s0 + ∆s
2 . Moreover, we use the expression of the acceleration of

the k-th particle of the chain

5.4 Generalization to N bodies 177

Ak = −
N∑

k 6=j
mj

rkj

r3
kj

. (5.36)

Introducing now the chain coordinates Xk and Vk, systems (5.35) can

be rewritten in a compact form using a generic leapfrog step which

evolves chained positions and velocities from (regularized) time s = s0

to s1 = s0 + ∆s passing through s1/2 = s0 + ∆s
2

Rk

(
∆s

2

)
:

Xk1/2
= Xk0

+ ∆s
2W0

Vk0

t1/2 = t0 + ∆s
2W0

(5.37)

Vk (∆s) :

Vk1
= Vk0

+ ∆s
Ω1/2

(Ak+1 − Ak)1/2

W1 = W0 + ∆s
Ω1/2

∑N
i=1

∂Ω
∂ri 1/2

· vi1/2

(5.38)

Rk

(
∆s

2

)
:

Xk1
= Xk1/2

+ ∆s
2W1

Vk1

t1 = t1/2 + ∆s
2W1

(5.39)

The quantity vi1/2
is not known but we can approximate it averaging

the values of vi0 and vi1 . If we want to evolve the system from time s0

to time s1 performing n iterations of step ∆s, we can write the leapfrog

algorithm as

Rk

(
∆s

2

)[n−1∏

ν=1

(Vk (∆s) Rk (∆s))

]
Vk (∆s) Rk

(
∆s

2

)
. (5.40)

The algorithm illustrated in (5.39) is known with the name of Time

Transformed Leapfrog or simply TTL. The recipe for the function Ω (r) is

given by many numerical experiments

Ω (r) =
N∑

i<j

Ωij

rij
where Ωij =

m̃2 if mimj < ǫm̃2

0 otherwise
(5.41)

with

m̃2 =
N∑

i<j

2mimj

N (N − 1)
(5.42)

178 Chapter 5 Regularization methods for the N -Body problem

and ǫ ∼ 10−3 may be a good guess. It is worth noting that the physical

time obtained from the regularized variable s using the equation for t′

in the generic step Rk (∆s) is not correct and should be changed using

its definition 5.29, that is

∫ t1=t0+∆t

t0
dt =

∫ s1=s0+∆s

s0

ds

W
⇒ t1 = t0 +

∫ s1

s0

ds

W
(5.43)

but the quantity 1
W cannot be taken out of the integral because W =

W (s). An approximated solution can be obtained solving the integral

using the trapezoidal rule

∆t =

∫ s1

s0

ds

W
≃ ∆s

2

[
1

W1
+

1

W0

]
+O (∆s)3 (5.44)

but this implies that this kind of method produces a time (phase) error

of O
(
∆s3

)
.

The Logarithmic Hamiltonian

If we choose the function

g =
1

U
(5.45)

to transform the time coordinate, where U is the total potential energy

of the system to regularize, we obtain the new extended hamiltonian

Γ =
T − U +B

U
(5.46)

where T is the total kinetic energy. Γ = 0 on the correct solution there-

fore T +B = U letting us write

g =
1

T +B
=

1

U
. (5.47)

5.4 Generalization to N bodies 179

In this case, system (5.39) can be written as

Rk

(
∆s

2

)
:

Xk1/2
= Xk0

+ ∆s
2(T+B)

0

Vk0

t1/2 = t0 + ∆s
2(T+B)0

(5.48)

Vk (∆s) :

Vk1
= Vk0

+ ∆s
U1/2

(Ak+1 − Ak)1/2

B1 = B0 + ∆s
U

∑N
i=1

(
−mivi1/2

· fk1/2

) (5.49)

Rk

(
∆s

2

)
:

Xk1
= Xk1/2

+ ∆s
2(T+B)

1

Vk1

t1 = t1/2 + ∆s
2(T+B)

1

(5.50)

where f takes into account the presence of an external perturbation.

This method is called the logarithmic hamiltonian algorithm or simply

LogH. In fact, a functional (logarithmic) manipulation of the hamilto-

nian (5.46) allows us to write the hamiltonian Γ in its separable form

Λ = log (T +B) − logU (5.51)

to whom the leapfrog algorithm can be applied without problems. The

same observations pointed out about the time error of the TTl method

still hold. Actually the LogH, the TTL and the standard leapfrog method

(no time transformation) can be collected using the generalized trans-

forming function

g =
1

α (T +B) + βΩ + γ
=

1

αU + βW + γ
(5.52)

which is a function of the three parameters (α, β, γ). The combination

(1, 0, 0) is equivalent to the LogH method, (0, 1, 0) is the TTL and (0, 0, 1)

is the standard leapfrog scheme. The ideal combination of parameter

(α, β, γ) must be determined through numerical experiments. We must

say that, in any case, the described schemes are only second order ac-

curate and must be coupled with a powerful method to extrapolate or

interpolate numerical results like, for example, the BS integrator (see

section 4.4.1). This yields the complexity of the regularization (in terms

180 Chapter 5 Regularization methods for the N -Body problem

of both difficulty of implementation and operations to be executed) to

very high levels.

5.4.3 Our implementation and tests

We now show some brief tests in order to demonstrate the numerical

accuracy of the regularization. We implemented the general form of the

Mikkola’s algorithmic regularization (5.52) thanks also to the precious

suggestions of Seppo Mikkola himself and we compare the results with

those obtained using a CPU version of the widely used Hermite’s 4th

order integrator implemented using Block Time Steps (BTS). The first

test we performed is referred to a system composed by two bodies with

masses m and M with M ≫ m. We ran several simulations varying

the eccentricity of the orbit. We know that, for the 2-Body problem, we

have 2

Ra =
1

G (M +m)

R2
aV

2
a

1 − e
⇒ e = 1 − Ra

G (M +m)
V 2
a = 1 − V 2

a

V 2
circ

(5.53)

where e is the eccentricity, Ra and Va respectively the relative position

and velocity at the apocentre and Vcirc the relative velocity which cor-

responds to have a circular orbit. If we assign a relative velocity at

apocentre Va = ζVcirc we have e = 1 − ζ2. We performed tests using

ζ = 1(e = 0), ζ = 0.5(e = 0.75), ζ = 0.2 (e = 0.96) and the most critical

case ζ = 0.01 (e = 0.9999).

2It is worth remembering that the 2-Body problem is completely equivalent
to considering the motion of a test particle attracted by a fixed centre with
mass equal two the total mass of the system.

5.4 Generalization to N bodies 181

Figure 5.2: Case of eccentricity e = 0. Relative errors in total energy

(top panel) for a standard (red) an regularized (black) al-

gorithm. The bottom panel shows the positions (around

apocentre) obtained by the standard (red) and regularized

(black) integrators evolving the system over a time interval

corresponding to ∼ 104 orbital revolutions of the lighter

star around the more massive particle.

182 Chapter 5 Regularization methods for the N -Body problem

Figure 5.3: Case of eccentricity e = 0.75. Relative errors in total energy

(top panel) for a standard (red) an regularized (black) al-

gorithm. The bottom panel shows the positions (around

apocentre) obtained by the standard (red) and regularized

(black) integrators evolving the system over a time interval

corresponding to ∼ 104 orbital revolutions of the lighter

star around the more massive particle.

5.4 Generalization to N bodies 183

Figure 5.4: Case of eccentricity e = 0.96. Relative errors in total energy

(top panel) for a standard (red) an regularized (black) al-

gorithm. The bottom panel shows the positions (around

apocentre) obtained by the standard (red) and regularized

(black) integrators evolving the system over a time interval

corresponding to ∼ 104 orbital revolutions of the lighter

star around the more massive particle.

184 Chapter 5 Regularization methods for the N -Body problem

Figure 5.5: Case of eccentricity e = 0.9999. Relative errors in total en-

ergy (top panel) for a standard (red) an regularized (black)

algorithm. The bottom panel shows the positions (around

apocentre) obtained by the standard (red) and regularized

(black) integrators evolving the system over a time interval

corresponding to ∼ 104 orbital revolutions of the lighter

star around the more massive particle.

5.4 Generalization to N bodies 185

Figures 5.2, 5.3, 5.4 and 5.5 show a detail of the trajectory (sampled

accordingly to the variable time steps of the integrators) at apocentre for

different eccentricities flanked by a plot which shows the relative energy

variation in function of time using the regularized code (AR) and using

a standard Hermite’s algorithm with BTS. The accuracy parameter for

the Hermite’s code has been chosen equal to 0.002 and the tolerance of

the BS integrator in our implementation of the AR (see [84] for details)

equal to 10−14 in order to get very high accuracy in both cases (typical

values of these parameters are respectively 0.01 and 10−12 ÷10−13). The

period P of the orbit in terms of the parameter ζ can be written as

P =
2π√

G (M +m)

(
Ra

2 − ζ2

) 3

2

. (5.54)

Each systems has been evolved for 104 periods which means that choos-

ing G = M = 1, m = 0.0001, Ra = 1 and ζ ∈ (0; 1) we have P ∈
(2.2; 6.3). As we can see in figures 5.2, 5.3, 5.4 and 5.5, the relative

energy conservation reached by the AR code is constantly ∼ 8 orders

of magnitude better than that reached by the standard Hermite’s inte-

grator. Obviously, the difference is more pronounced for the extreme

eccentric orbit represented in Fig. 5.5. The worse energy conservation

reflects in the accuracy in determining the positions (and velocities) of

the two bodies along their orbit. In fact, in the right panels of figures 5.2,

5.3, 5.4 and 5.5 we can see how the cumulation of the error in the Her-

mite’s scheme causes the orbit to shrink, that is the apocentre distance

is not conserved and the orbit does not form a perfectly closed loop. On

the other hand, the points (black) obtained using our implementation

of the AR regularization seem to draw, by eye, a perfect ellipse in all the

shown cases. Tab. ?? summarizes the obtained results including also

the times needed to complete the integrations in seconds. It is possible

to see that the AR code is constantly more expensive, in terms of com-

puting time, than the Hermite’s integrator. This is true provided that

the accuracy parameters are 0.002 and 10−14 respectively. In fact, we

can see in Tab. ?? that increasing the accuracy parameters of one or-

186 Chapter 5 Regularization methods for the N -Body problem

der of magnitude the AR code is both significantly more accurate and

faster executing all the tested cases, paying ∼ 2 orders of magnitude

of worse relative energy conservation although its value (∼ 10−10) re-

mains very good. Nevertheless, for N & 10, using the AR code becomes

not convenient any more (despite its very high accuracy) because of its

complexity mainly due to chain transformations, chain inspections, BS

integrator, frequent evaluation of the gravitational potential energy, etc

. . . .

Accuracy parameters : ηhermite = 0.001, ηBS = 10−14

ζ e tH (s) tAR (s)
(

∆Emax
E

)
H

(
∆Emax
E

)
AR

1 0 2 35 ∼ 10−5 ∼ 10−13

0.5 0.75 3 35 ∼ 10−3 ∼ 10−12

0.2 0.96 4 35 ∼ 10−2 ∼ 10−12

0.01 0.9999 25 35 ∼ 10−1 ∼ 10−12

Table 5.1: This table summarizes the results obtained in our tests. tH
and tAR are respectively the times needed to complete the

preformed simulations, in seconds, given the accuracy pa-

rameters written at the top of the table.

Accuracy parameters : ηhermite = 0.01, ηBS = 10−13

ζ e tH (s) tAR (s)
(

∆Emax
E

)
H

(
∆Emax
E

)
AR

1 0 2 2 ∼ 10−4 ∼ 10−12

0.5 0.75 2 3 ∼ 10−2 ∼ 10−11

0.2 0.96 3 3 ∼ 10−1 ∼ 10−10

0.01 0.9999 20 3 ∼ 1 ∼ 10−10

Table 5.2: This table summarizes the results obtained in our tests. tH
and tAR are respectively the times needed to complete the

preformed simulations, in seconds, given the accuracy pa-

rameters written at the top of the table.

5.4 Generalization to N bodies 187

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

y

x

Figure 5.6: Results in relative energy variation (top panel) and trajecto-

ries (bottom panel) for the Pythagorean 3-body problem as

integrated by the two tested codes. The trajectory is shown

only for the AR code because, as explained in the text, the

Hermite’s method could not reproduce the exact result.

188 Chapter 5 Regularization methods for the N -Body problem

Figure 5.7: The trajecotries obtained using our implementation of the

Mikkola’s algorithmic regularization, integrating the so

called Pythagorean 6-body problem. Three binaries start

at the vertices of a right triangle with null velocities. The

evolution shows several exchanges of the components of

the binaries and the final result is the disruption of the sys-

tem and the formation of a very tight binary formed by the

stars colored respectively in red and blue.

In Fig. 5.6 and 5.7 we show the last two tests for our AR code. Fig.

5.6 represents results obtained integrating the so called Pythagorean 3-

body problem which consists in 3 bodies of (numerical) mass 3, 4 and

5 placed with null velocities at the vertices of a right triangle of sides

5.4 Generalization to N bodies 189

of length 3, 4 and 5. This system has been shown to be very chaotic

(see for example the paper by Aarseth et al. [5]) but it has been shown

that the final net result is the formation of a binary and the ejection

of the lightest mass, thing that occurs at t ≃ 60 [90]. This represents

a very hard test for a N -Body code because even very small errors in

the integration of close encounters produce very big difference of the

final configuration. In fact, in Fig. 5.6 we show the results of the in-

tegration between t = 0 and t = 80 using only the AR code because

the Hermite’s integrator, independently from the value of the accuracy

parameter, cannot reproduce the final correct result which is, on the

contrary, shown in the right panel of Fig, 5.6 for the regularized code.

The left panel shows the relative energy variation. For the Hermite’s

code we showed the curve relative to η = 0.001 which gave the best re-

sult. The total computing time was ∼ 0.1 seconds for the AR code while

it gets to ∼ 0.5 seconds using the Hermite’s scheme. Fig. 5.7 represents

the Pythagorean 3 body problem where the three bodies are replaced by

3 binaries (therefore a 6-Body problem). The situation is even more crit-

ical with respect to the standard Pythagorean case; in fact the Hermite’s

integrator immediately stops because the integration time step becomes

prohibitively small. The only chance in this case is to use a regularized

code which is also very fast (∼ 3 seconds to integrate 20 time units).

190 Chapter 5 Regularization methods for the N -Body problem

6
The emerging state of

open clusters after their

violent relaxation

6.1 Introduction

This chapter presents some preliminary results, on which we are cur-

rently working, about the segregation of masses which occurs on very

short time scales (significantly smaller than the relaxation time) as a

direct consequence of violent dynamical processes. This constitutes one

of the possible astrophysical applications of the instruments already dis-

cussed in the previous chapters of this work.

Astronomical observations show that several stellar systems (from young

and very young open star clusters to rich clusters of galaxies) manifest

a certain degree of segregation of the most luminous and massive com-

ponents in their inner regions. As an example, the Orion Nebula Cluster

(ONC) has been found to be mass segregated down to about 5M⊙ (see

for example [52]) despite its young age which has been estimated to be

less than 2 Myr. The main cause of the rapid mass segregation process

for such systems is still under debate. In particular, a dynamical origin

is usually excluded because the estimation of the age of some stellar sys-

tems is less than their two-bodies relaxation time which is considered

the time-scale needed to segregate masses. Specifically, the time needed

191

by a system to get to a dynamically relaxed state, as we have already

discussed in section 1.2.4, is defined as

trel ≡ v2

D
[(

∆v2
‖

)] (6.1)

where v is the typical velocity of a star in the system, and D
[(

∆v2
‖
)]

in one of the three independent diffusion coefficients which derive from

the Fokker-Planck approximation for the master equation (see [18]). For

simplicity, if we assume that the velocity distribution of the field stars is

Maxwellian with dispersion σ, it is possible to obtain an explicit expres-

sion for D
[(

∆v2
‖
)]

and the equation 6.1 can be rewritten as

trel =
v2σX

4
√

2πG2ρ̃m̃ ln ΛG(X)
(6.2)

where ρ̃ is the mean mass density of the field stars, m̃ the mean stellar

mass, ln Λ is the Coulomb logarithm, X ≡ v√
2σ

and G(X) is a function

that can be expressed as

G(X) =
1

2X2

[
erf(X) − 2X√

πe−X2

]
. (6.3)

Equation (6.2) is valid whether the initial conditions are, indeed, not

too far from virial equilibrium which is not necessary a correct assump-

tion especially if we consider the early dynamical evolution of young

stellar systems whose stars form in regions which are observed to be

sub-structured, clumpy and in sub-virial conditions. Farouki et al. [42]

and Allison et al. [9] have already shown, through numerical N -Body

simulations, that, if the initial state of a stellar system is not in equi-

librium and the initial distribution of the positions of the stars is not

192 Chapter 6 Violent relaxation of open clusters

homogeneous, a significant degree of mass segregation might be ob-

served on very short time-scales which are significantly shorter than the

two-bodies relaxation time of the considered system. In particular, they

argue that the main mechanism which brings to mass segregation on

very short time scales resides in the short interval of time in which the

initially violent collapse creates a dense core containing about half the

mass of the stellar system in a radius of about one tenth of its char-

acteristic dimension in the initial state. They showed that the time to

segregate masses down to 4 − 5M⊙ in the dense core is comparable to

its living time (approximatively 0.1 Myr). This is enough to justify also

the degree of mass segregation observed in some astrophysical systems

(like the above cited ONC). On the other hand, some works, like that by

Bonnell and Davies [20], excluded that the observed mass segregation

in young stellar clusters could be due to a violent dynamical evolution

introducing, rather, the hypothesis of an in situ formation of the most

massive and brilliant stars. Bonnell and Davies [20], in their work, in-

vestigated the dynamical evolution of both spherical stellar systems ini-

tially in virial equilibrium and not-spherical stellar systems in sub-virial

conditions. They found that the time-scale for mass segregation was

largely unaffected by differences in initial phase-space distribution of

the stars. It is evident that, still nowadays, we cannot discriminate be-

tween the two formulated interpretations to explain the phenomenon of

rapid mass segregation even because the astronomical observations of

star forming regions are very difficult to accomplish because it is often

needed to see through very dense gas clouds. Therefore it is very diffi-

cult to prove that the most massive stars form primordially very close

to the innermost regions or if the system segregates masses later. An-

other dynamical mechanism, which has not been deeply investigated

yet (even if already highlighted by Aarseth et al. [6] and McMillan et

al. [70]), which might play an important role in segregating masses, is

the initial rapid fragmentation of such stellar systems whose stars are

initially homogeneously distributed in spherical symmetry with approx-

imatively null velocities. In particular, McMillan et al. [67] stressed that

6.1 Introduction 193

the sub-systems which form during the collapse phase show, just before

the bounce of the system, a certain degree of mass segregation which

is preserved after the collapse, excluding the hypothesis that the system

segregates masses during the formation of the short-living core.

There is not a clear scenario which is even more complicated if the pres-

ence of a certain number of primordial binaries or that of a background

gas (both not considered in N -Body simulations so far) are included. In

particular, in this work we study the effects of violent collapse of an N -

body self-gravitating system starting from initially cold conditions (ini-

tial virial ratio Q = 0.0) and an homogeneous distribution of stars. We

also check the role played on mass segregation, on the resulting density

profile and on the stars velocity dispersion taking into account the pres-

ence of both residual gas after star formation and of a stellar mass black

hole. For all our N -Body simulations we consider the simplest case of

a bimodal mass spectrum with bodies initially distributed randomly in

a sphere with initial radius R = 1. We report here some preliminary

results of the simulations performed. Firstly we describe the models of

stellar systems adopted to give, after, a description of both the software

and hardware resources used to dynamically evolve them. Finally we

present and discuss the preliminary results with attention to both the

physics of violently relaxing intermediate N -body systems and to possi-

ble comparisons with observational data of real clusters.

6.2 Modelization

We performed a large set of direct N -Body simulations of young star

clusters composed by a number of bodies between N = 128 and N =

1024. For each simulation we used a bimodal mass spectrum dividing

194 Chapter 6 Violent relaxation of open clusters

stars into light (each with mass mL and total number NL) and heavy

(each with mass mH and total number NH) such that

mH

mL
= P

NH

NL
= Z. (6.4)

In this paper we investigate the simplest models considering only P = 2

and Z = 1. Initially the bodies have been distributed randomly in a

sphere with radius R = 1 varying the initial virial ratio Q of the system

(see chapter 1). We ran simulations of different stellar systems using

values of Q from Q = 0, which corresponds to the most violent collapse,

to Q = 1, which means dynamical equilibrium, using a variation step

of 0.1. These values have been chosen taking into account that obser-

vations of young stellar systems suggest that stars form in clusters in

sub-virial equilibrium (see, for example, [63] and [57]) so it is reason-

able to choose always an initial virial ratio Q < 1. We also investigated

the presence of gas which is modelled as an analytical additional contri-

bution to the accelerations of stars. We represented this external field

using a Plummer model, therefore the gas is described by the potential

ΦP (r; t) = − GMG√
r2 + r2

c (t)
(6.5)

where rc (t) is the gas core radius and MG is the gas total mass. We

modelled our models such that the gas core radius may vary in time

according to the formula

rc(t) = r0e
t
τ (6.6)

where r0 = rc(t = 0) and τ is a characteristic time scale for the gas

core radius variations. By including formula 6.6 in our N -body simu-

lations, we can study the dynamical evolution of stellar systems con-

sidering also an expanding gas which mimics the removal of molecular

clouds, mainly due to stellar winds, in which such young clusters are

still embedded. We also varied the parameter τ to model different ex-

pansion rates using τ = +∞ to represent a stationary gas and τ = 1 to

emulate a process of gas removal which act on a time scale compara-

6.2 Modelization 195

ble with the system crossing time. In our simulations we included also

a particle with a mass significantly higher that the other bodies. This

point-mass may be considered as a stellar mass black hole whose mass

will be indicated, hereafter, as mBH . We compared the resulting mass

segregation, density profile and velocity dispersion when the black hole

is included and when it is not. The black hole mass is such that

mBH = KmL (6.7)

where K is an integer value which, in our work, assumes the values

K = 0 and K = 50. In any case the total mass of the stellar system MC

is thought to be constant and unitary, i.e.

MC = NH ·mH +NL ·mL +MG +mBH = M∗ +MG = 1 (6.8)

where we used the notation M∗ to indicate the total mass in stars. The

total number of particles is

N = NH +NL +NBH (6.9)

where NBH = 1 only if a black hole is present, otherwise NBH = 0. In

order to determine the fraction of gas in which the stellar system is em-

bedded we used the star formation efficiency (hereafter S) parameter

which is

S =
M∗

MG +M∗
=
M∗
MC

. (6.10)

If we fix the value of S, we can determine the stellar mass of the cluster

M∗ = SMC and, as a consequence, we getMG = MC−M∗ = MC(1−S).

We considered simulations with S = 1 (no gas included) and S = 0.3

which is a likely astrophysical value. Because we are interested in the

emerging state of young and very young open clusters we evolved our

stellar systems shortly in time (< 8Myr) therefore we neglected the

effects of stellar evolution. For each set of parameters we performed 25

runs to have a certain degree of statistics to present our final results.

196 Chapter 6 Violent relaxation of open clusters

To perform direct N -body simulations we used our highly parallel N -

body code HiGPUs running on our private machine containing a CPU

Intel i7 950 and 2 nVIDIA Tesla C2050 (Fermi) cards. Although the GPU

used is not the best in terms of cost and computing capability, being,

nowadays, and old generation card, thanks to higher core frequencies

with respect to the most modern GPUs, it performs well in regimes of

weak load (that is using a number of particles less than about 1024, as

we described in 3.5).

6.3 Results

To measure the degree of mass segregation we used, first of all, the ratio

between several lagrangian radii of heavy and light particles so that a

value significantly greater than 1 indicates the presence of mass segre-

gation. Lagrangian radii are very good indicators of mass segregation

until the system to study has spherical symmetry but, in our simulations,

this is true only after the first bounce which, in our units, occurs at time

t = tB ≃ 1. In fact, for t . tB we observe a fragmentation of the system

resulting in the formation of various clumps which are not spherical.

Therefore, we used also the so called Minimum Spanning Tree method1

developed by Allison et al. [10]. Given a sub-set of points indicated with

the letter Km, composed by m points, belonging to a system composed

by m
′

> m bodies, the degree of mass segregation established for that

sample, ΛKm , is defined as

ΛKm =
〈lnorm〉
lKm

± σnorm
lKm

(6.11)

where lKm is the MST for the sample Km, 〈lnorm〉 is the average MST

for m randomly selected stars in the whole system and σnorm is its asso-

ciated standard deviation. To calculate 〈lnorm〉 we averaged the results

1The Minimum Spanning Tree (MST) is the shortest path length which con-
nects a certain number of points without forming close loops.

6.3 Results 197

got, for each run, from 200 different sub-sets of points. From the def-

inition given in 6.11 it is evident that the generic sample K is mass

segregated if its corresponding value of ΛK is significantly grater than

1. When using the MST method to investigate the distribution of masses

in our simulations the process of removing escapers from the numerical

results was needed. This is important because, after the first bounce,

a significant amount of mass (almost equally divided between heavy

and light particles and approximatively quantifiable as 20% of the total

mass) is lost; therefore a single star, far from the stellar system core,

may alter significantly the length of the spanning tree of a specific popu-

lation. To identify escapers correctly one of the best methods is to adopt

criteria on both energy (which should be positive) and distance from

the most dense region of the system (the core). For our purposes, it was

enough to use a truncating distance of d = 1.

6.3.1 1024 stars, no gas, no central black hole

This is the simplest case we studied. We generated 25 different samples

changing the seed of the Mersenne Twister random number generator

[66] and here we show the results obtained from these simulations.

Fig. 6.1 shows the ratio between the averaged value of Λ for the heavy

(ΛH) and for the light (ΛL) stars in function of time where the time

unit is the initial system crossing time. Several curves, which corre-

spond to different values of the initial virial ratio, are represented. The

first important evidence is that the observed degree of mass segregation

depends strictly on the initial state of the system; the farther from equi-

librium the higher and the quicker the degree of the resulting mass seg-

regation on both short and long time scales. Another important result

which is worth noting is that a significant degree of mass segregation

is obtained starting from homogeneous and smooth initial conditions.

This implies that starting form an initially clumpy distribution is not

198 Chapter 6 Violent relaxation of open clusters

Sp

an
ni

ng
 tr

ee
s

ra
tio

 (
L)

Crossing times

Q=0

Q=0.1
Q=0.2

Q=0.3

Q=0.4

Q=0.5
Q=1

Figure 6.1: It shows, as a function of time expressed in units of the ini-

tial system crossing time, the ratio between ΛH and ΛL for

several values of the initial virial ratio Q. Values of Q be-

tween 0.6 and 0.9, both included, are not showed in order

to obtain a more clear representation of the results. Each

curve represents an average value of ΛH/ΛL, taking into

account the results obtained from the single runs, while

the error (standard deviation) is represented by the pattern

area.

needed. For the cases of very violent collapses (Q = 0.0 and Q = 0.1)

the system gets to a saturation of the degree of mass segregation around

12 time units while for other values of the initial virial ratio mass segre-

gation continues at approximatively constant rates.

Fig. 6.2 shows a detail of the Fig. 6.1. This is a zoom which spans an

interval of time between t = 0 and t = 2 that is from the initial state

to just after the first bounce. The graphical evolution of the cluster in

this interval of time has been summarized with 4 snapshots collected in

Fig. 6.3. As we can see in Fig. 6.2, there is a rapid increase of mass

6.3 Results 199

Sp

an
ni

ng
 tr

ee
s r

at
io

 (
L)

Crossing times

Q=0

Q=0.1

Q=0.2

Figure 6.2: It shows a detail of 6.1 zooming in the interval of time be-

tween 0 and ∼ 2. The curves are for Q = 0, Q = 0.1 and

Q = 0.2.

segregation from t = 0 to t ≃ 1 then an inverse trend is observed ap-

proximatively around the time t ≃ tB which corresponds to the state

of maximum compression (see Fig. 6.3) and, finally, mass segregation

starts again with the same rate and with the same efficiency as it was

before the bounce. The rapid increase of mass segregation before the

bounce is in perfect agreement with the mass segregation observed in

the sub-clumps that form as the system collapses. Nevertheless, when

the merging process begins, the degree of mass segregation does not

seem to be preserved and Fig. 6.2 shows an inverse trend. After the

merging process, mass segregation continues with the same efficiency

as it was before the bounce but, this time, sub-structures have been

completely removed, therefore, mass segregation continues inside the

dense core which forms just after the bounce. It is clear that sub-clumps

cannot be considered the only cause of the observed mass segregation

200 Chapter 6 Violent relaxation of open clusters

Figure 6.3: This is a visual representation of one of the simulated clus-

ters at four different times. Panel a shows the homoge-

neous initial distribution, panel b the formation of several

sub-clumps of which the most evident have been circled,

panel c represents the state of maximum compression of

the stellar system while panel d is a view of the cluster af-

ter the bounce.

on short time scales, and the same can be said for the short-living but

very dense core. Rather, the two phenomena have to be taken into ac-

count simultaneously because the first one acts on time-scales such that

t . 1 while the second one is responsible of the long lived mass segrega-

tion for t & tB. Times around the collapse phase (t ≃ tB) corresponds

6.3 Results 201

to a transition between the two regimes. Nevertheless, this interpreta-

tion is valid provided that Q . 0.3; in fact, for Q & 0.3 sub-clumps

do not form at all although a degree of mass segregation significantly

greater than the equilibrium case (Q ≃ 1.0) is established. In these

cases (Q & 0.3) the only mechanism responsible for the rapid and sec-

ular mass segregation has to be the dynamical evolution of the dense

core which forms after the collapse. For completeness, we also show

0 5 10 15 20

1.0

1.5

2.0

2.5

3.0

3.5

Q=1

Q=0.4

Q=0.3

Q=0.2

Q=0.1

R
at

io
 o

f l
ag

ra
ng

ia
n

ra
di

i (
50

%
)

Crossing times

Q=0

Figure 6.4: Ratio between the lagrangian radius, containing 50% of the

total mass of a specific sample of stars, of light and heavy

particles. We do not show data related to other lagrangian

radii for clarity because the resulting curves are almost in-

distinguishable from those reported here. Different curves

correspond to different values of the initial virial ratio of

the system.

in Fig. 6.4 the results obtained studying another indicator of mass seg-

regation that is the ratio between various lagrangian radii of light and

heavy stars. The ratio of lagrangian radii can be used to quantify the

degree and the efficiency of the mass segregation when the studied sys-

tem maintain spherical symmetry which is true, in our case, provided

202 Chapter 6 Violent relaxation of open clusters

that the interval of time studied is grater than ∼ tB . In other words, we

use lagrangian radii to point out the presence of a long lived mass seg-

regation whose efficiency depends on the above described phenomena

which occur at t . tB. In Fig. 6.4 we show the ratio calculated using

the lagrangian radius containing 50% of the total mass of, respectively,

light and heavy stars starting from various values of the initial virial

ratio. The phenomenon of mass segregation, for Q = 0, is evident in

fact, on average, in 6 crossing time, the typical dimension of the spatial

region occupied by light stars is almost twice that of the heavy particles.

This is very efficient if compared with the case of Q = 1 whose curve is

almost flat. This confirms again the strong dependence of the efficiency

of mass segregation on the initial conditions of the system.

6.3.2 1024 stars, no gas, central black hole

included

As we can see in Fig. 6.5 the presence of a central massive particle,

whose mass is 50 times that of a generic “heavy” star, tends to com-

pact the curves of the spanning trees ratios with respect to the case

shown in Fig. 6.1. In fact, the process of mass segregation is less effi-

cient (the values of the spanning trees ratio are less than that reached

in Fig. 6.1) but still evident and strongly dependent on the violence

of the collapse. In particular, the presence of mass segregated struc-

tures before the bounce is still present at least for Q = 0.0 but clumps

disappear already for Q & 0.1, that is significantly before with respect

to what argued analysing the results deriving from the simulations of

a system which does not contain a central heavier star, for which sub-

structures did not form for Q & 0.4. These differences can be due to the

reduced efficiency of close encounters (that is, redistribution of kinetic

energy) between stars due to the presence of a strong contribution in

the gravitational potential due to the central black hole. The immediate

consequence of having less efficient exchanges of energy is that mass

6.3 Results 203

0 5 10 15 20

1.0

1.1

1.2

1.3

Sp
an

ni
ng

 tr
ee

s r
at

io
 (

L)

Crossing times

Q=0

Q=0.1

Q=0.2

Q=0.3
Q=0.4

Q=0.5

Q=1

Figure 6.5: It shows, as a function of time expressed in units of the ini-

tial system crossing time, the ratio between ΛH and ΛL for

several values of the initial virial ratio Q. Values of Q be-

tween 0.6 and 0.9, both included, are not showed in order

to obtain a more clear representation of the results. Each

curve represents an average value of ΛH/ΛL, taking into

account the results obtained from the single runs, while

the error (standard deviation) is represented by the pattern

area.

segregation is reduced, with respect to the case described in section

6.3.1, even if it is still present.

6.3.3 1024 stars, gas included, no central black

hole

It is known that the majority of young and very young star clusters are

still embedded in their native proto-cloud. This residual gas can be

important in terms of background potential affecting significantly the

204 Chapter 6 Violent relaxation of open clusters

dynamical evolution of the stellar cluster. In this work we modelled

the presence of a gas using a simple model of a stationary background

added as a further analytical contribution to the mutual gravitational

interaction between the bodies in the N -Body system. This may not rep-

resent strictly the astrophysical reality because the gas distribution is,

generally, unknown with enough accuracy but, using our simple model,

we can study the overall effect of the inclusion of a background poten-

tial. We verified that the analytic gravitational potential smooths both

the cluster potential and the 2-body close encounters, decreasing the

efficiency of mass segregation on both small and longer time scales.

Figure 6.6 is the analogous of Fig. 6.1 when a stationary background

is included. As we can see, the results got for the case of initial virial

ratio Q = 0 are very similar to that obtained for the case in which

no gas was included; it is still evident the formation and quick mass

segregation of sub-clumps, before the bounce, as much the inverse trend

of the spanning trees ratio around the time corresponding to the state of

maximum compression of the system. The mass segregation on longer

time scale is slightly less efficient than that observed for the case Q = 0

in Fig. 6.1. For values of the initial virial ratio such that Q & 0.1 the

situation deeply changes. In fact, the presence of gas smooths close

encounters of stars and mass segregation is not efficient neither on small

and long time scales. We are currently trying to investigate deeper this

point but it is interesting to note that, for the case Q = 0.1, profound

differences in mass segregation between the case which includes gas

and that in which the gas is not present are seen also on the evolution

of the distribution of the velocities of stars. In the case Q = 0.0 no

significant differences emerge.

In Fig. 6.7 we show the distribution of the velocities of the stars at differ-

ent times. Initially, at t = 0, the velocity distribution follow more or less

the same trend. The situation deeply changes after 1 crossing time: the

velocity dispersion in the system which does not include gas increases

6.3 Results 205

0 2 4 6 8 10 12 14

1.0

1.1

1.2

1.3

1.4

Q=0.3

Q=0.2

Q=1

Q=0.1

Sp
an

ni
ng

 tr
ee

s r
at

io
 (

L)

Crossing times

Q=0

Figure 6.6: It shows, as a function of time expressed in units of the ini-

tial system crossing time, the ratio between ΛH and ΛL for

several values of the initial virial ratioQwhen a component

of stationary background, which mimics the presence of a

gas, is added to the newtonian interaction force. Values

of Q between 0.4 and 0.9, both included, are not showed

in order to obtain a more clear representation of the re-

sults. Each curve represents an average value of ΛHΛL, tak-

ing into account the results obtained from the single runs,

while the error (standard deviation) is represented by the

pattern area.

more rapidly than that of the system which includes the gaseous contri-

bution. This means that the background potential reduces the efficiency

of the 2-body interactions and than the possibility to form gravity-driven

substructures (clumps) and, at the same time, the efficiency of mass seg-

regation. At the bounce, the difference between the two considered sys-

tems is even more pronounced and, after 2 crossing times, the two dis-

tributions are completely different in shape. In particular, the presence

of the gas tends to crush the distribution on the y-axis that is particles

206 Chapter 6 Violent relaxation of open clusters

Figure 6.7: The figure shows the distribution of the velocities of stars,

in the case of Q = 0.1, considering the presence of a back-

ground (stationary) gas (dashed line) and a system which

does not contain any background potential (solid line). The

four panels represent different times: the beginning of the

simulation, the situation after 1 crossing time, the time of

the bounce and the state after 2 crossing times.

tend to have all the same, small velocity. On the other hand, the result-

ing distribution when no gas is present tend to distribute the velocities

of particles over a big range. This is the natural consequence of more

efficient 2-body encounters which let the system segregate masses more

rapidly.

6.4 Final considerations

The results presented in this chapter are just preliminary and a deeper

analysis has still to be done. At present we evidenced the importance

6.4 Final considerations 207

of two dynamical mechanisms which contributes both to the resulting

mass segregation of the system on very short time scales

1. the formation of substructures, as the system collapses, which

segregate masses very quickly. This phenomenon acts before the

bounce of the system because, during the bounce, the clumps are

completely removed;

2. the formation of a very dense core which is responsible for the

mass segregation of the system, after its bounce.

We also stressed the importance, on the resulting mass segregation, of

the introduction of a stationary background potential (which mimics

the presence of a gas) or of a heavier central object (for example a black

hole) which both reduce the efficiency of close encounters between stars

decreasing the efficiency of both energy exchanges and then of the re-

sulting mass segregation. The analysis of density profiles, the inclusion

of an expanding gas, the introduction of a more realistic mass spectrum

and deeper considerations about the escaping stars in the different cases

are surely very important points which will be taken into account in or-

der to present final results on this work in a forthcoming publication. It

is worth underlining that the simulations performed so far are very pre-

cise despite the criticality of the initial conditions of the tested systems

(initially null velocities of the stars corresponding to the most violent

collapse).

To confirm this point we show in Fig. 6.8 the relative variation of the

total system energy for the case N = 1, 024, Q = 0, no gas and the

inclusion of the central heavier particle. It can be seen that the relative

variation is always kept below the value of 10−4 even after the core

collapse of the system, that occurs at time tcc ∼ 7tc, after which very

tight, central, multiple systems of stars form yielding to a deep increase

of the total energy of the system.

208 Chapter 6 Violent relaxation of open clusters

Figure 6.8: The relative energy variation for the most critical case sim-

ulated using our N -body code HiGPUs : N = 1, 024, Q = 0
and the inclusion of a central stellar mass black hole. No

gas (stationary background potential) is present.

Another point which must be stressed concerns some observations about

the relaxation time. Spitzer [87] showed that the time needed by a

system to segregate a population of stars with masses around M is

tseg (M) ≃ 〈m〉
M

trel (6.12)

where 〈m〉 is the average mass of the stars in the considered system2.

Nevertheless, if the system is far from equilibrium, as it is in our cases,

further simplifications of the formula for the relaxation time 6.2 are not

2This time has been calculated using the hypothesis of a spherical cluster
containing a bimodal mass distribution with mH ≫ mL and total mass of
heavy stars much less than the total mass of the core of the light stars

6.4 Final considerations 209

allowed. For example the assumptions of virial equilibrium and constant

density simplify the formula 6.2 to the well known expression

trel ≃ N

8 logN

R

σ
. (6.13)

A less approximated expression, which does not assume a state of equi-

librium or constant density, is the following

trel ≃ 0.34
σ3

G2mρ log Λ
. (6.14)

In our simulations of the case N = 1, 024, Q = 0.0, no gas and no

black hole, the parameters of the dense core are N ≃ 350 stars, R ≃ 15

parsecs, σ ≃ 3km/s, 〈m〉 ≃ 1M⊙. If we substitute these parameters into

the formula 6.13 we get 0.3 Myr which means that the system evolves

fast and, on very short time scales (this very dense core lives, in our

simulations, for about 0.2 Myr) can segregate masses up to 1.5M⊙. On

the other hand, using the less approximated formula 6.14 we get that

the relaxation time for this system is about 3 Myr therefore we have a

system that can segregate masses down to 15M⊙. This is just one simple

proof of the inconsistency and inapplicability of both formulas 6.13 and

6.14 to a situation which is very far from virial equilibrium.

210 Chapter 6 Violent relaxation of open clusters

Acknowledgments

Questa è la prima volta che scrivo dei ringraziamenti a conclusione di

un lavoro. Ho ritenuto opportuno farlo solo questa volta perché ci tengo

a ringraziare esplicitamente alcune persone che hanno contribuito atti-

vamente alla mia felicità e serenità durante questi ∼ 8 anni di studi: una

parte del mio sentimento di realizzazione personale è anche dovuto a

loro. Comincio con una premessa: molto spesso le persone rimangono

stupite dal fatto che io sia arrivato alla soglia di un dottorato di ricerca

relativo ad una disciplina così “complicata” chiedendomi come io ci sia

riuscito. Sperimentalmente, la velocità con cui si arriva alla domanda

successiva è direttamente proporzionale alla retoricità della stessa; in-

fatti essa riguarda, con grande probabilità, l’utilità dell’Astronomia o

dell’Astrofisica. Sfortunatamente, molto spesso, chi fa questa domanda

non la fa perché è conscio di non sapere e ha intenzione di allargare le

proprie vedute ma, piuttosto, solo perché, con aria di sufficienza degna

della peggior specie, ritiene la mia disciplina, a priori, decisamente inu-

tile se paragonata a tutte le altre cose e, in special modo, alle loro occu-

pazioni in ambito giuridico, medico, economico, ingegneristico etc etc

. . . . Nei casi peggiori, mentre cerco di fornire risposte ai punti prece-

denti, si arriva alla fatidica questione universale: “Si ma. . . esistono gli

alieni” la quale, ultimamente, si è unita a “Beh, insomma? Quando

finisce il mondo?” (raccontandomi anche fantasiose esperienze person-

ali annesse). Sembra proprio un quadro pessimo da come l’ho descritto

ma, mentre qualche tempo fa cercavo di fornire risposte “esaurienti” ,

211

da un pò di tempo, a seconda della situazione, tento di divertirmi anche

io fornendo delle risposte fantasiose la cui apocalitticità è inversamente

proporzionale al grado di interesse mostrato dal “pubblico pagante” ,

proprio come si fa, d’altronde, in uno spettacolo circense. Dato questo

quadro, si può immaginare quanto io sia grato a Mamma e Papà che

ringrazio proprio per non far parte delle categorie elencate sopra e che,

quindi, mi hanno permesso di andare a vivere a Roma (ancora diciot-

tenne) e di non avermi mai impedito di inseguire un sogno che è partito

da quando avevo circa 6 anni quando mi fissavo per ore a guardare

il sistema solare rappresentato in un vecchio atlante di Papà. Ricordo

benissimo il mio primo telescopio: il “famoso” Newton 114/900, nero e

anche, come se fosse ieri, la mia felicità e le sensazioni provate quando,

tornando a piedi da un rientro scolastico (era un Martedì di Dicembre),

a soli 11 anni, ho visto i miei genitori che stavano lì, sul terrazzo, cer-

cando di montare i pezzi. Ricordo bene che, la mia più grande paura,

era di andare a dormire e che facesse giorno. Grazie ancora Mamma e

grazie ancora Papà per avermi aiutato a maturare la mia passione fino

al Dottorato di ricerca, cioè fino al grado più alto di istruzione e nel

frattempo di non avermi mai trascurato; vi voglio bene e ve ne vorrò

sempre.

Chiaramente però, nemmeno loro avrebbero potuto immaginare cosa

sarebbe accaduto una volta entrato nel mondo dell’Università; infatti,

a 18 anni, sono stato catapultato dalla vita tranquilla a casa dei miei

genitori ad Avezzano, a Roma, in una casa dove non conoscevo nessuno

(in casa c’eravamo io ed altri tre individui), da solo e senza particolari

punti di riferimento. Qui è subentrata la fortuna, cioè quella di aver

trovato subito (cosa che non accade in molti altri ambienti universitari)

delle persone magnifiche. Sembra ieri che, dopo aver sbagliato strada

per arrivare in Università, entrando per la prima volta in dipartimento

(Nuovo Edifico di Fisica per l’esattezza) per il test di autovalutazione

preliminare ai pre-corsi, il 7 Settembre 2005 alle ore 9:00 c.a., davanti

l’aula 1 chiesi alla prima persona che incrociata: “Scusa, è qui che si fa

212 Acknowledgments

il test?” . Il caso vuole che quella persona, ancora oggi, può essere con-

siderata, a tutti gli effetti, l’amico più importante, Filippo e subito dopo

ne è subentrato un altro, Alessandro. Ancora mi ricordo il primo (di una

lunghissima serie) laboratorio di fisica fatto insieme, le lunghe relazioni,

le esperienze al telescopio fatte in montagna, le feste. . . , ma quanto ci

siamo divertiti con quei cilindretti? Con loro ho passato i più bei mo-

menti Universitari e, sebbene ormai io non riesca più a vedere spesso

Alessandro (e forse, fra un pò, neanche Filippo) questa è una delle ul-

time occasioni per dirvi grazie e che vi voglio bene, moltissimo.

Non avrei mai immaginato che, dopo aver conosciuto due persone come

Filippo e Alessandro, gli amici che tutti dovrebbero avere, le cose sareb-

bero andate ancora meglio. Infatti, durante il mio secondo anno di

Università, ho conosciuto una dolce fanciulla, dall’aria inizialmente un

pò indifferente ma a tratti radiosa come poche cose al mondo, che, di

lì a qualche, mese sarebbe diventata la mia ragazza, Silvia. Non credo

ci siano parole per descrivere quanto importante lei sia per me anche

se lei sa benissimo che non c’è cosa al mondo che funzioni più di me

e lei insieme. Non credevo si potesse raggiungere tale livello di intesa

con una persona e tutt’oggi mi fermo spesso a pensare quanto io sia

stato fortunato ad incontrarla. La serenità che mi dà, specie nei mo-

menti peggiori, non è paragonabile a nessun’altra cosa, e lei è l’unica

persona al mondo che è sempre riuscita a farmi sorridere. Da quel 17

Gennaio 2007 non c’è stato un litigio, un’incomprensione, un dubbio,

nulla. Posso sicuramente dire, infatti, che senza Silvia non avrei avuto

MAI un percorso scientifico così brillante quindi grazie infinite, anche se

lei questo già lo sa perchè, comunque, cerco sempre di farle capire ogni

giorno quanto sia importante per me e così continuerò sempre. Grazie

anche a tutti i membri della sua famiglia (dai 0 ai ∼90 anni) per avermi

sempre, accolto, ospitato e subito voluto bene.

In questi tre anni di Dottorato sicuramente una delle persone che va

aggiunta esplicitamente alla lista è il mio collega (ma prima di tutto am-

Acknowledgments 213

ico) Manuel. Abbiamo felicemente condiviso la dependance della stanza

314 come dottorandi e abbiamo avuto numerose discussioni scientifiche,

grazie alle quali siamo cresciuti molto entrambi. La sua presenza mi ha

sempre messo di buon umore specialmente nell’andare in stanza 314,

le mattine, perché pensavo: “Dai che pure oggi con Manuel tra una

chiacchierata, una pausa, un’esperienza nuova e una risata portiamo a

termine con successo, insieme, la giornata” . Lui ha contribuito a creare

intorno a me un clima rilassato e sereno specie da quando, da un pò di

mesi, condividiamo lo stesso appartamento a Roma. Sebbene, forse, in

futuro prenderemo strade diverse sono sicuro che rimarremo per sem-

pre legati. Nel frattempo ti ringrazio di essermi amico e di avermi fatto

vivere un’esperienza di dottorato più unica che rara da tutti i punti di

vista. Un altro posto di rilievo e quindi un sentito grazie, ovviamente,

spetta anche al gruppo più stretto di amici di cui fanno parte sicura-

mente Grazia, Jacopo, Martina e Mauro: tutti insieme abbiamo passato

dei momenti stupendi. Secondo me dobbiamo ritenerci molto fortunati,

dei gruppi così, in genere, si formano solo nei licei e non in ambito uni-

versitario. Noi siamo un caso unico quindi impegniamoci, per favore,

a non perderci mai. Non credo sia difficile considerata l’intesa che ci

unisce e, credo che quando delle persone si sentono bene insieme, e

hanno raggiunto la nostra maturità, sia sempre difficile separarle. Gra-

zie a voi cari amici per aver condiviso con me una gran parte delle

vostre esperienze in questi anni. Grazie sicuramente anche a Davide per

l’impegno che ha dimostrato durante la sua laurea e per il primo anno di

dottorato passato a lavorare insieme al fine di produrre il nostro primo

articolo pubblicato su una rivista internazionale. Grazie soprattutto per-

ché siamo poi diventati ottimi amici in breve tempo e sono sicuro che,

sebbene lontani, il legame rimarrà sempre tale.

Grazie anche al Prof. Roberto Capuzzo Dolcetta, conosciuto durante il

mio secondo anno di Università e che, da allora, mi ha seguito nella

mia tesi triennale, specialistica e nel dottorato di ricerca. Egli continua

ad essere il mio principale punto di riferimento scientifico da ormai più

214 Acknowledgments

di 6 anni e sicuramente a lui devo gran parte della mia crescita. Sicura-

mente devo ringraziarlo anche per avermi introdotto agli importanti per-

sonaggi del mio campo specifico (nominati più volte nella tesi) tra cui

Sverre Aarseth, Seppo Mikkola, Rainer Spurzem, Peter Berczik e Keigo

Nitadori. In particolare ringrazio Sverre, Seppo e Rainer per avermi os-

pitato e trattato come un loro pari rispettivamente presso l’Università di

Cambridge, presso la cittadina di Turku e presso il National Astronomi-

cal Observatory of China a Pechino.

Merita un posto di rilievo anche Antonio, l’unica persona che è rimasta

affianco a me dal liceo. Abbiamo passato (e continuiamo a trascor-

rere) tante belle serate insieme e rimane ancora oggi la persona con

cui ho passeggiato di più in giro per Roma ammirandone le bellezze

(specie durante i primi anni di Università). Grazie anche a te, caro Tony,

per la compagnia che mi fai partendo e tornando da/ad Avezzano in

macchina. Sicuramente hai contribuito moltissimo alla mia serenità e

felicità, quindi parte del merito della realizzazione di questo obiettivo è

anche tuo.

Infine grazie infinite alla mia “compagna d’inglese” Claudia che mi ha

aiutato a migliorare il mio inglese (a dir la verità me lo ha proprio inseg-

nato). La conosco ormai da più di 3 anni e, senza di lei, non sarei mai

potuto intervenire in conferenze internazionali e, di certo, non avrei

mai potuto scrivere questa tesi.

Grazie ancora alle persone menzionate che mi hanno sempre reso sereno

e felice creando un clima di tranquillità che sta dietro alla mia realiz-

zazione personale e, in modo particolare, a questa tesi di dottorato che,

a grandi linee, conclude il mio percorso di studi universitari.

Grazie a tutti

Acknowledgments 215

Bibliography

[1] S. J. Aarseth. Direct n-body calculations. Published in Dy-

namics of Star Clusters. Ed. by J. Goodman and P. Hut.

Vol. 113. IAU Symposium. 1985. Pp. 251–258. (Cit. on

p. 10).

[2] S. J. Aarseth. Direct N-body codes. Published in The Cam-

bridge N-Body Lectures. Ed. by S. J. Aarseth, C. A. Tout, and

R. A. Mardling. Springer-Verlag, Berlin Heidelberg, 2008.

Pp. 1–30. (Cit. on p. 143).

[3] S. J. Aarseth. From NBODY1 to NBODY6: The Growth of

an Industry. pasp 111 (Nov. 1999), pp. 1333–1346 (cit. on

pp. 34, 68).

[4] S. J. Aarseth. Gravitational N-Body Simulations : tools and

algorithms. The Edinburgh Building, Cambridge CB2 8RU,

UK: Cambridge University Press, 2003 (cit. on pp. 47, 169,

173).

[5] S. J. Aarseth, J. P. Anosova, V. V. Orlov, and V. G. Szebehely.

Global chaoticity in the Pythagorean three-body problem. Ce-

lestial Mechanics and Dynamical Astronomy 58 (Jan. 1994),

pp. 1–16 (cit. on p. 190).

217

[6] S.J. Aarseth, D.N.C. Lin, and J.C.B. Papaloizou. On the col-

lapse and violent relaxation of protoglobular clusters. apj

324 (Jan. 1988), pp. 288–310 (cit. on p. 193).

[7] A. Ahmad and L. Cohen. A numerical integration scheme for

the N-body gravitational problem. Journal of Computational

Physics 12 (1973), pp. 389–402 (cit. on p. 35).

[8] C. Allen and A. Santillan. An improved model of the galac-

tic mass distribution for orbit computations. rmxaa 22 (Oct.

1991), pp. 255–263 (cit. on p. 101).

[9] R.J. Allison, S.P. Goodwin, R.J. Parker, et al. Dynamical

Mass Segregation on a Very Short Timescale. apj 700 (Aug.

2009), pp. L99–L103 (cit. on p. 192).

[10] R.J. Allison, S.P. Goodwin, R.J. Parker, et al. Using the min-

imum spanning tree to trace mass segregation. mnras 395

(May 2009), pp. 1449–1454 (cit. on p. 197).

[12] F. Antonini, R. Capuzzo-Dolcetta, A. Mastrobuono-Battisti,

and D. Merritt. Dissipationless Formation and Evolution of

the Milky Way Nuclear Star Cluster. ApJ 750 (May 2012),

pp. 111–125. arXiv: 1110.5937 [astro-ph.GA] (cit. on

pp. 93, 117).

[13] J. Barnes and P. Hut. A hierarchical O(N log N) force-

calculation algorithm. nat 324 (Dec. 1986), pp. 446–449

(cit. on p. 35).

[14] J. Bédorf and S. Portegies Zwart. A pilgrimage to gravity on

GPUs. European Physical Journal Special Topics 210 (Aug.

2012), pp. 201–216. arXiv: 1204.3106 [astro-ph.IM] (cit.

on p. 35).

218 Bibliography

http://arxiv.org/abs/1110.5937
http://arxiv.org/abs/1204.3106

[15] K. Bekki. The Formation of Stellar Galactic Nuclei through

Dissipative Gas Dynamics. PASA 24 (July 2007), pp. 77–94

(cit. on p. 92).

[16] P. Berczik, R. Spurzem, I. Berentzen, et al. High perfor-

mance massively parallel direct N-body simulations on large

GPU clusters. Proceedings of International conference on

High Performance Computing 2011 Kyev, Ukraine (2011),

pp. 8–18 (cit. on pp. 34, 62, 68, 71, 86, 90).

[17] P. Berczik, K. Nitadori, T. Hamada, and R. Spurzem. The

parallel NBody code phiGPU. New Astronomy, in preparation

(2011) (cit. on p. 62).

[18] J. Binney and S. Tremaine. Galactic Dynamics. 41 William

Street, Princeton, New Jersey 08540: Princeton University

Press, 2008 (cit. on pp. 29, 126, 128, 129, 176, 192).

[19] D. Boccaletti and G. Pucacco. Theory of Orbits: Volume 1:

Integrable Systems and Non-perturbative Methods. Springer-

Verlag Berlin Heidelberg New York, 2003 (cit. on pp. 6,

15).

[20] I. A. Bonnell and M. B. Davies. Mass segregation in young

stellar clusters. MNRAS 295 (1998), pp. 691–698 (cit. on

p. 193).

[21] C. A. Burdet. Regularization of the two-body problem. Z.

Angew. Math. Phys. 18 (1967), pp. 434–442 (cit. on

p. 166).

[22] R. Capuzzo-Dolcetta. The Evolution of the Globular Cluster

System in a Triaxial Galaxy: Can a Galactic Nucleus Form by

Globular Cluster Capture? ApJ 415 (Oct. 1993), pp. 616–

630. eprint: arXiv:astro-ph/9301006 (cit. on p. 92).

Bibliography 219

arXiv:astro-ph/9301006

[23] R. Capuzzo-Dolcetta and P. Miocchi. A comparison between

the fast multipole algorithm and the tree-code to evalu-

ate gravitational forces in 3-D. Journal of Computational

Physics 143 (June 1998), pp. 29–48. eprint: arXiv:astro-

ph/9703122 (cit. on p. 35).

[24] R. Capuzzo-Dolcetta and P. Miocchi. Merging of Globular

Clusters in Inner Galactic Regions. II. Nuclear Star Cluster

Formation. ApJ 681 (July 2008), pp. 1136–1147. arXiv:

0801.1072 (cit. on p. 93).

[25] R. Capuzzo-Dolcetta and M. Spera. A performance compari-

son of different graphics processing units running direct N-

body simulations. Computer Physics Communications 184

(2013), pp. 2528–2539 (cit. on pp. 69, 94).

[26] R. Capuzzo-Dolcetta and M. Spera. High Precision Simu-

lations of the Evolution of a Super Star Cluster Around a

Massive Black Hole. Published in Advances in Computa-

tional Astrophysics: Methods, Tools, and Outcomes. Ed. by

R. Capuzzo-Dolcetta, M. Limongi, and A. Tornambe’. As-

tronomical Society of the Pacific, 2012. Pp. 351–352. (Cit.

on p. 86).

[27] R. Capuzzo-Dolcetta and L. Vignola. Have many globulars

disappeared to the galactic centres? The case of the Galaxy, M

31 and M 87. A&A 327 (Nov. 1997), pp. 130–136 (cit. on

p. 92).

[28] R. Capuzzo-Dolcetta, M. Spera, and D. Punzo. A fully par-

allel, high precision, N-body code running on hybrid comput-

ing platforms. Journal of Computational Physics 236 (Mar.

2013), pp. 580–593. arXiv: 1207.2367 [astro-ph.IM] (cit.

on pp. 34, 64, 69, 83).

220 Bibliography

arXiv:astro-ph/9703122
arXiv:astro-ph/9703122
http://arxiv.org/abs/0801.1072
http://arxiv.org/abs/1207.2367

[29] R. Capuzzo-Dolcetta, A. Mastrobuono-Battisti, and D.

Maschietti. NBSymple, a double parallel, symplectic N-body

code running on graphic processing units. na 16 (July 2011),

pp. 284–295. arXiv: 1003.3896 [astro-ph.IM] (cit. on

pp. 34, 41).

[30] R. Capuzzo-Dolcetta, M. Arca-Sedda, and M. Spera.

The Dense Stellar Systems Around Galactic Mas-

sive Black Holes. ArXiv e-prints (Feb. 2013). arXiv:

1302.2509 [astro-ph.CO] (cit. on p. 117).

[31] T. Carleman. Ueber die Abelsche Integralgleichung mit kon-

stanten Integrationsgrenzen. Math. Z. 15 (1922), pp. 111–

120 (cit. on p. 130).

[33] R. Clausius. On a mechanical theorem applicable to heat.

Phil. Mag. Ser. 4 XL (1870), pp. 122–127 (cit. on p. 19).

[38] W. Dehnen. A Family of Potential-Density Pairs for Spherical

Galaxies and Bulges. MNRAS 265 (Nov. 1993), p. 250 (cit.

on pp. 132, 150).

[39] W. Dehnen and J. I. Read. N-body simulations of grav-

itational dynamics. European Physical Journal Plus 126

(2011), p. 55 (cit. on p. 34).

[40] A. S. Eddington. The distribution of stars in globular clusters.

MNRAS 76 (1916), pp. 572–585 (cit. on p. 131).

[41] E. Elsen, V. Vishal, M. Houston, et al. N-Body Simulations

on GPUs. CoRR abs/0706.3060 (2007) (cit. on p. 89).

[42] R.T. Farouki, G.L. Hoffman, and E.E. Salpeter. The collapse

and violent relaxation of N-body systems - Mass segregation

and the secondary maximum. apj 271 (Aug. 1983), pp. 11–

21 (cit. on p. 192).

Bibliography 221

http://arxiv.org/abs/1003.3896
http://arxiv.org/abs/1302.2509

[43] H. Flanders. Differentiation Under the Integral Sign. The

American Mathematical Monthly 80, No.6 (1973), pp. 615–

627 (cit. on p. 130).

[44] M. Fujii, M. Iwasawa, Y. Funato, and J. Makino. BRIDGE:

A Direct-Tree Hybrid N-Body Algorithm for Fully Self-

Consistent Simulations of Star Clusters and Their Parent

Galaxies. pasj 59 (Dec. 2007), pp. 1095–. arXiv: 0706.2059

(cit. on p. 35).

[45] E. Gaburov, S. Harfst, and S. Portegies Zwart. SAPPORO:

A way to turn your graphics cards into a GRAPE-6. New As-

tronomy 14 (2009), pp. 630–637 (cit. on pp. 62, 68).

[46] W. B. Gragg. On extrapolation algorithms for ordinary ini-

tial value problems. SIAM J. Num. Anal. 2 (1965), pp. 384–

403 (cit. on p. 139).

[47] L. Greengard and V. Rokhlin. A fast algorithm for parti-

cle simulations. Journal of Computational Physics 73 (Dec.

1987), pp. 325–348 (cit. on p. 35).

[49] S. Harfst, A. Gualandris, D. Merritt, et al. Performance anal-

ysis of direct N-body algorithms on special-purpose supercom-

puters. 12 (July 2007), pp. 357–377. eprint: arXiv:astro-

ph/0608125 (cit. on p. 34).

[50] P.H. Hauschildt and E. Baron. A 3D radiative transfer frame-

work. VIII. OpenCL implementation. aap 533, A127 (Sept.

2011), A127 (cit. on p. 121).

[51] D.C. Heggie. Regularization using a time-transformation

only. Published in Recent advances in Dynamical Astronomy.

Ed. by Springer Netherlands. Vol. 39. Astrophysics and

Space Science Library. 1973. Pp. 34–37. (Cit. on p. 166).

222 Bibliography

http://arxiv.org/abs/0706.2059
arXiv:astro-ph/0608125
arXiv:astro-ph/0608125

[52] L.A. Hillenbrand and L.W. Hartmann. A Preliminary Study

of the Orion Nebula Cluster Structure and Dynamics. apj 492

(Jan. 1998), p. 540 (cit. on p. 191).

[53] R. W. Hockney and J. W. Eastwood. Computer simulation

using particles. 270 Madison Avenue, New York, NY 10016:

Taylor and Francis Group, 1988 (cit. on p. 35).

[54] E. Holmberg. On the Clustering Tendencies among the Neb-

ulae. II. a Study of Encounters Between Laboratory Models

of Stellar Systems by a New Integration Procedure. ApJ 94

(Nov. 1941), p. 385 (cit. on pp. 8, 9).

[55] J. H. Jeans. On the theory of star-streaming and the structure

of the universe. MNRAS 76 (Dec. 1915), pp. 70–84 (cit. on

p. 127).

[56] I.R. King. The structure of star clusters. III. Some simple dy-

namical models. Astrophysical Journal 71 (1966), p. 64 (cit.

on pp. 101, 103, 133, 147).

[57] H. Kirk, D. Johnstone, and M. Tafalla. Dynamics of Dense

Cores in the Perseus Molecular Cloud. apj 668 (Oct. 2007),

pp. 1042–1063 (cit. on p. 195).

[58] S. Konstantinidis and K. D. Kokkotas. MYRIAD: a new N-

body code for simulations of star clusters. aap 522, A70

(Nov. 2010), A70. arXiv: 1006.3326 [astro-ph.IM] (cit.

on p. 34).

[59] P. Kroupa. On the variation of the initial mass function. mn-

ras 322 (Apr. 2001), pp. 231–246. eprint: arXiv:astro-

ph/0009005 (cit. on p. 101).

Bibliography 223

http://arxiv.org/abs/1006.3326
arXiv:astro-ph/0009005
arXiv:astro-ph/0009005

[60] A. H. W. Kupper, T. Maschberger, P. Kroupa, and H. Baum-

gardt. Mass segregation and fractal substructure in young

massive clusters - I. The McLuster code and method cali-

bration. MNRAS 417 (Nov. 2011), pp. 2300–2317. arXiv:

1107.2395 (cit. on pp. 101, 138).

[61] P. Kustaanheimo and E. Stiefel. Perturbation theory of Ke-

pler motion based on spinor regularization. Journal für die

Reine und Angewandte Mathematik 218 (1965), pp. 204–

219 (cit. on p. 169).

[62] T. Levi-Civita. Sur la régularisation du problème des trois

corps. Acta Mathematica 42 (1920), pp. 99–144 (cit. on

p. 169).

[63] D. Li, J. Kauffmann, Q. Zhang, and W. Chen. Massive Qui-

escent Cores in Orion: Dynamical State Revealed by High-

resolution Ammonia Maps. apjl 768 (May 2013), p. L5 (cit.

on p. 195).

[64] J. Makino. A modified Aarseth code for GRAPE and vector

processors. Publ. Astron. Soc. Japan 43 (1991), pp. 859–76

(cit. on p. 43).

[65] J. Makino. Optimal order and time-step criterion for Aarseth-

type N-body integrators. Astrophys. J. 369 (1991), pp. 200–

12 (cit. on p. 43).

[66] Makoto Matsumoto and Takuji Nishimura. Mersenne

Twister: A 623-dimensionally Equidistributed Uniform

Pseudo-random Number Generator. ACM Trans. Model. Com-

put. Simul. 8.1 (Jan. 1998), pp. 3–30 (cit. on p. 198).

[67] S. McMillan, E. Vesperini, and N. Kruczek. Rapid Mass Seg-

regation in Massive Star Clusters. ArXiv e-prints (Oct. 2012).

arXiv: 1210.8200 (cit. on p. 193).

224 Bibliography

http://arxiv.org/abs/1107.2395
http://arxiv.org/abs/1210.8200

[68] S. McMillan, S. Portegies Zwart, A. van Elteren, and A.

Whitehead. Simulations of Dense Stellar Systems with the

AMUSE Software Toolkit. Published in Advances in Com-

putational Astrophysics: Methods, Tools, and Outcome. Ed.

by R. Capuzzo-Dolcetta, M. Limongi, and A. Tornambè.

Vol. 453. Astronomical Society of the Pacific Conference Se-

ries. July 2012. P. 129. arXiv: 1111.3987 [astro-ph.IM].

(Cit. on p. 92).

[69] S. L. W. McMillan. The vectorization of small-N integrators.

Published in The Use of Supercomputers in Stellar Dynamics.

Ed. by P. Hut and S. McMillan. Vol. 267. Springer-Verlag,

Berlin Heidelberg New York, 1986. P. 156. (Cit. on p. 44).

[70] S.L.W. McMillan, E. Vesperini, and S.F. Portegies Zwart. A

Dynamical Origin for Early Mass Segregation in Young Star

Clusters. apjl 655 (Jan. 2007), pp. L45–L49 (cit. on p. 193).

[71] S. Mikkola. Numerical Treatment of Small Stellar Systems

with Binaries. Celestial Mechanics and Dynamical Astronomy

68 (May 1997), pp. 87–104 (cit. on p. 174).

[72] S. Mikkola and S. Aarseth. An implementation of N-body

chain regularization. Cel. Mech. Dyn. Ast. 57 (1993), p. 439

(cit. on p. 172).

[73] S. Mikkola and K. Tanikawa. Explicit symplectic algorithms

for time-transformed Hamiltonians. Celest. Mech. Dyn. Astr.

74 (1999), pp. 287–295 (cit. on p. 174).

[74] M. Milosavljević. On the Origin of Nuclear Star Clusters in

Late-Type Spiral Galaxies. ApJL 605 (Apr. 2004), pp. L13–

L16. eprint: arXiv:astro-ph/0310574 (cit. on p. 92).

Bibliography 225

http://arxiv.org/abs/1111.3987
arXiv:astro-ph/0310574

[75] P. Miocchi and R. Capuzzo-Dolcetta. An efficient parallel

tree-code for the simulation of self-gravitating systems. aap

382 (Feb. 2002), pp. 758–767. eprint: arXiv:astro-ph/

0104152 (cit. on p. 35).

[76] A. Munshi, B. R. Gaster, T. G. Mattson, J. Fung, and D. Gins-

burg. OpenCL Programming Guide. Addison-Wesley, 2012

(cit. on p. 59).

[77] K. Nitadori and S. J. Aarseth. Accelerating NBODY6 with

graphics processing units. mnras 424 (July 2012), pp. 545–

552. arXiv: 1205.1222 [astro-ph.IM] (cit. on pp. 35, 62).

[78] K. Nitadori and J. Makino. Sixth- and eighth-order Her-

mite integrator for N-body simulations. New Astronomy 13

(2008), pp. 498–507 (cit. on pp. 48, 50, 72, 90).

[79] L. Nyland, M. Harris, and J. Prins. Fast N-Body Simula-

tion with CUDA. Vol. 31. Prentice-Hall, 2007. Chap. 31,

pp. 677–695 (cit. on pp. 63, 89).

[82] H. C. Plummer. On the problem of distribution in globular

star clusters. mnras 71 (1911), pp. 460–470 (cit. on pp. 24,

33, 70, 99, 131).

[83] S. F. Portegies Zwart, S. L. W. McMillan, P. Hut, and J.

Makino. Star cluster ecology - IV. Dissection of an open star

cluster: photometry. mnras 321 (Feb. 2001), pp. 199–226.

eprint: arXiv:astro-ph/0005248 (cit. on p. 34).

[84] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.

Flannery. Numerical Recipes 3rd Edition: The Art of Scien-

tific Computing. Cambridge University Press, 2007 (cit. on

pp. 139, 140, 186).

226 Bibliography

arXiv:astro-ph/0104152
arXiv:astro-ph/0104152
http://arxiv.org/abs/1205.1222
arXiv:astro-ph/0005248

[85] M. Preto and S. Tremaine. A Class of Symplectic Integra-

tors with Adaptive Time Step for Separable Hamiltonian Sys-

tems. aj 118 (Nov. 1999), pp. 2532–2541. eprint: astro-

ph/9906322 (cit. on p. 174).

[86] J. Sanders and E. Kandrot. CUDA by example: an Introduc-

tion to General-Purpose GPU Programming. Addison-Wesley,

2010 (cit. on p. 59).

[87] L. Spitzer Jr. Equipartition and the Formation of Compact

Nuclei in Spherical Stellar Systems. apj 158 (Dec. 1969),

p. L139 (cit. on p. 209).

[88] V. Springel. The cosmological simulation code GADGET-2.

mnras 364 (Dec. 2005), pp. 1105–1134. eprint: arXiv:

astro-ph/0505010 (cit. on p. 36).

[89] R. Spurzem, P. Berczik, I. Berentzen, et al. Astrophysical

particle simulations with large custom GPU clusters on three

continents. Computer Science - Research and Development 26

(3 2011), pp. 145–151 (cit. on p. 90).

[90] V. Szebehely and C.F. Peters. A new periodic solution of the

problem of three bodies. aj 72 (Nov. 1967), p. 1187 (cit. on

p. 190).

[92] P. Teuben. The Stellar Dynamics Toolbox NEMO. Published

in Astronomical Data Analysis Software and Systems IV. Ed.

by R. A. Shaw, H. E. Payne, and J. J. E. Hayes. Vol. 77. As-

tronomical Society of the Pacific Conference Series. 1995.

P. 398. (Cit. on p. 138).

[96] Q.D. Wang. The global solution of the n-body problem. Celest.

Mech. Dyn. Astr. 50 (1991), pp. 73–88 (cit. on pp. 5, 7).

[97] N. Wilt. The CUDA Handbook. Addison-Wesley, 2013 (cit.

on p. 59).

Bibliography 227

astro-ph/9906322
astro-ph/9906322
arXiv:astro-ph/0505010
arXiv:astro-ph/0505010

[98] H. Yoshida. Construction of higher order symplectic interga-

tors. Phys. Lett. A 150 (1990), p. 262 (cit. on p. 41).

Web sites

[11] Advanced Micro Devices (AMD). OpenCL Zone. URL:

http://developer.amd.com/resources/heterogeneous-

computing/opencl-zone/ (cit. on p. 59).

[32] CINECA Web Page. URL: http://www.cineca.it/en (cit. on

p. 69).

[34] nVIDIA corporation. CUDA C programming guide. 2013.

URL: http://docs.nvidia.com/cuda/pdf/CUDA_C_

Programming_Guide.pdf (cit. on pp. 58, 59, 89).

[35] nVIDIA corporation. CUDA Zone. URL: https://developer.

nvidia.com/category/zone/cuda-zone (cit. on p. 59).

[36] nVIDIA corporation. NVIDIA’s Next Generation CUDA Com-

pute Architecture: Fermi. 2009. URL: http://www.nvidia.

com/content/PDF/fermi_white_papers/NVIDIA_Fermi_

Compute_Architecture_Whitepaper.pdf (cit. on pp. 54,

59, 89).

[37] nVIDIA corporation. NVIDIA’s Next Generation CUDA

Compute Architecture: Kepler GK110. 2013. URL: http://

www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-

GK110-Architecture-Whitepaper.pdf (cit. on pp. 54,

59).

[48] Khronos Group. OpenCL Web Page. URL: http://www.

khronos.org/opencl/ (cit. on p. 59).

[80] Open MPI Web Page. URL: http://www.open-mpi.org/ (cit.

on p. 64).

228 Bibliography

http://developer.amd.com/resources/heterogeneous-computing/opencl-zone/
http://developer.amd.com/resources/heterogeneous-computing/opencl-zone/
http://www.cineca.it/en
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://developer.nvidia.com/category/zone/cuda-zone
https://developer.nvidia.com/category/zone/cuda-zone
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://www.open-mpi.org/

[81] OpenCL Web Page. URL: http://openmp.org/wp/ (cit. on

p. 64).

[91] Alan Tatourian. nVIDIA GPU architecture and CUDA

programming environment. URL: http://tatourian.

com/2013/09/03/nvidia-gpu-architecture-cuda-

programming-environment/ (cit. on p. 53).

[93] The TH-1A Supercomputer. URL: http://www.nscc-tj.gov.

cn/en/resources/resources_1.asp (cit. on p. 61).

[94] The Titan supercomputer. URL: http://www.olcf.ornl.

gov/titan/ (cit. on pp. 61, 117).

[95] Top 500 list. URL: http://www.top500.org/ (cit. on pp. 61,

91).

Web sites 229

http://openmp.org/wp/
http://tatourian.com/2013/09/03/nvidia-gpu-architecture-cuda-programming-environment/
http://tatourian.com/2013/09/03/nvidia-gpu-architecture-cuda-programming-environment/
http://tatourian.com/2013/09/03/nvidia-gpu-architecture-cuda-programming-environment/
http://www.nscc-tj.gov.cn/en/resources/resources_1.asp
http://www.nscc-tj.gov.cn/en/resources/resources_1.asp
http://www.olcf.ornl.gov/titan/
http://www.olcf.ornl.gov/titan/
http://www.top500.org/

	Cover
	Titlepage
	Summary
	The N-body problem
	Historical Introduction
	The King Oscar's Prize
	Attempts to find an exact solution
	The importance of computing facilities
	Past of the numerical N-body simulations

	Mathematics of the N-body problem
	Newton's law and equations of motion
	The integrals of the motion
	The virial theorem
	Typical time scales of an N-body system

	The numerical solution of the N-body problem
	The double divergence of the potential
	Numerical methods

	The Graphics Processing Unit and CUDA
	Historical introduction
	The modern GPU architecture

	The N-body code HiGPUs
	Motivation
	Main features of HiGPUs
	Parallelization scheme
	The Bfactor variable
	Precision used in HiGPUs
	Tested architectures

	Results of performance tests on a hybrid supercomputer
	Energy and angular momentum conservation
	Code scalability
	Speedup and Efficiency
	Code profiling
	Consequences of block time steps
	GPU memory used by HiGPUs
	Hardware maximum performance

	Final observations
	HiGPUs on single, different GPUs
	Hardware
	Performance measurements
	Astrophysical models
	Performance results
	Other important code sections

	A possible application: the Milky Way Nuclear Star Cluster
	Final remarks and future developments

	The initial conditions of stellar systems
	The distribution function f(x, v, t)
	Ergodic distribution functions
	The Plummer distribution function
	The King distribution function

	Generating initial conditions
	Positions

	Velocities
	Numerical implementation
	Initial conditions for and '
	The evaluation of d d
	The numerical evaluation of f(E)

	Time Units
	Practical tests
	Stability tests

	Regularization methods for the N-Body problem
	Introduction
	The Burdet-Heggie regularization
	The Kustaanheimo-Stiefel regularization
	Generalization to N bodies
	The Chain treatment
	The Mikkola's Algorithmic Regularization
	Our implementation and tests

	The emerging state of open clusters after their violent relaxation
	Introduction
	Modelization
	Results
	1024 stars, no gas, no central black hole
	1024 stars, no gas, central black hole included
	1024 stars, gas included, no central black hole

	Final considerations

	Acknowledgments
	Bibliography

