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RNA polymerase III (Pol III) synthesizes tRNAs and other small noncoding RNAs to regulate protein synthesis. Dysregulation of
Pol III transcription has been linked to cancer, and germline mutations in genes encoding Pol III subunits or tRNA processing
factors cause neurogenetic disorders in humans, such as hypomyelinating leukodystrophies and pontocerebellar hypoplasia. Here
we describe an autosomal recessive disorder characterized by cerebellar hypoplasia and intellectual disability, as well as facial
dysmorphic features, short stature, microcephaly, and dental anomalies. Whole-exome sequencing revealed biallelic missense
alterations of BRF1 in three families. In support of the pathogenic potential of the discovered alleles, suppression orCRISPR-mediated
deletion of brf1 in zebrafish embryos recapitulated key neurodevelopmental phenotypes; in vivo complementation showed all four
candidate mutations to be pathogenic in an apparent isoform-specific context. BRF1 associates with BDP1 and TBP to form the
transcription factor IIIB (TFIIIB), which recruits Pol III to target genes.We show that disease-causingmutations reduce Brf1 occupancy
at tRNA target genes in Saccharomyces cerevisiae and impair cell growth.Moreover, BRF1mutations reduce Pol III–related transcription
activity in vitro. Taken together, our data show that BRF1 mutations that reduce protein activity cause neurodevelopmental
anomalies, suggesting that BRF1-mediated Pol III transcription is required for normal cerebellar and cognitive development.

[Supplemental material is available for this article.]

Three RNA polymerases synthesize the different classes of RNAs in

eukaryotic cells. Pol I synthesizes most ribosomal RNAs; Pol II

mRNAs and miRNAs; and Pol III in a variety of noncoding RNAs

with a structural and catalytic function, e.g., tRNAs, 7SK RNA, 5S

rRNA, andU6 snRNA (SchrammandHernandez 2002;White 2011;

Dieci et al. 2013). Pol II–dependent transcriptionhas attractedmost
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attention because itsmRNAproducts are protein coding, but recent

years have seen an increasing interest in Pol III transcription, not

least because of its implication in human disorders. Increased

Pol III–dependent transcription has been linked to cell trans-

formation and cancer (Marshall and White 2008; Cabarcas and

Schramm2011), and germlinemutations in components of the Pol

III or tRNA processing machinery have been associated with neu-

rogenetic disorders, such as pontocerebellar hypoplasia (PCH),

a heterogeneous group of severe, often lethal, progressive neuro-

degenerative conditions characterized by cerebellar hypoplasia,

progressive microcephaly, seizures, and profound developmental

impairment. At least 10 types of PCH are currently recognized,

and mutations causing the most prevalent subtypes, PCH2 and

PCH4, are predicted to lead to loss of function of tRNA splicing

endonuclease (TSEN); other PCH types display anomalies of tRNA

processing as well (Namavar et al. 2011; Akizu et al. 2013; Rudnik-

Sch€oneborn et al. 2014; Schaffer et al. 2014). However, the

pathomechanism leading to PCH is poorly understood in many

subtypes.

More recently, mutations in the catalytic Pol III subunits

POLR3A and POLR3B have been identified in syndromic hypo-

myelinating leukodystrophies, such as hypomyelination, hypo-

dontia, and hypogonadotropic hypogonadism (4H syndrome)

(Bernard et al. 2011; Saitsu et al. 2011; Tetreault et al. 2011). POLR3A

mutations lead to a decrease in POLR3A levels and are predicted to

interfere with the interaction with other Pol III subunits, which in

turn would perturb Pol III–mediated transcription; a similar mech-

anism has been postulated for POLR3B-associated leukodystro-

phies. Although the molecular pathophysiology of these diseases is

not fully understood, these findings suggest that an intact Pol III

apparatus is essential for cognitive development and the structural

and functional integrity of the cerebellum and white matter.

The basal Pol III transcription machinery requires the orches-

trated interaction of Pol III, a multiprotein enzyme consisting of 17

polypeptide subunits, TFIIIB (transcription factor IIIB), and TFIIIC

(White 2011; Vannini and Cramer 2012). These factors, as well as

the underlying mechanisms of transcription initiation, are con-

served in eukaryotes. TFIIIC recognizes and binds to specific se-

quence blocks in internal promoters (type 1 and 2 promoters) of

target genes, such as tRNA genes. TFIIIC then recruits TFIIIB, which

is usually composed of the B-related factor BRF1, B double prime 1

BDP1, and the TATA box-binding protein TBP, each of which is re-

quired for TFIIIB function in vitro (White 2011). TFIIIB recruits Pol

III for transcription initiation. For the transcription of human RNA

genes with external (type 3) promoters, such as U6 snRNA, BRF1 is

replaced by BRF2 in TFIIIB, and TFIIIC is not required (Schramm

and Hernandez 2002). Notably, TBP is a candidate gene for cogni-

tive disorders in humans (Rooms et al. 2006), and TBP polyglut-

amine expansions cause spinocerebellar ataxia type 17 (Nakamura

et al. 2001).

Here, we describe an autosomal recessive human syndrome

characterized by intellectual disability and cerebellar, dental, and

skeletal anomalies. We used whole-exome sequencing (WES)

(Bamshad et al. 2011) and in vivo and in vitro assays to provide

evidence that partial loss-of-function BRF1 mutations cause this

recognizable disease by impairing Pol III–mediated transcription.

Results

Clinical delineation of a cerebellar-facial-dental syndrome

By comparing the clinical features of three pairs of siblings (three

female and three male) (Fig. 1A–C) from three unrelated families,

we observed a striking clinical overlap pointing to a previously

undescribed disorder characterized by cerebellar hypoplasia, in-

tellectual disability, characteristic facial dysmorphisms, and dental

anomalies (Table 1; for the complete version of Table 1, see Sup-

plemental Material). In each of the three families, two affected

children were born to unaffected parents (Fig. 1C), suggesting

autosomal recessive inheritance. In family 3 with first-cousin

parents, Leber congenital amaurosis (LCA) segregated indepen-

dently from cerebellar hypoplasia in two siblings (Fig. 1C). The six

children affected by the cerebellar-facial-dental syndrome showed

similar dysmorphic features that included sparse eyebrows, wave-

shaped palpebral fissures, apparently low-set ears, malocclusion,

and prominent upper incisors (Fig. 1A). They had proportionate

short stature andmicrocephaly of prenatal onset, mild-to-moderate

intellectual disability with speech delay, scoliosis, and sparse hair

(Table 1). Three children had laryngeal stridor or laryngomalacia.

Cranial magnetic resonance imaging revealed a pattern that was

reminiscent of TSEN-related PCH, with a very thin corpus callosum,

a flattened brainstem, and cerebellar vermis hypoplasia; however,

the pons was relatively well formed (Fig. 1B). On skull and ortho-

panoramic x-rays, we saw bialveolar protrusion with prominent

alveolar processes as well as taurodontism, a specific malformation

of the pulp of molar teeth. Array-CGH did not detect causative copy

number variants.We refer to this syndrome as cerebellar-facial-dental

syndrome.

Identification of BRF1 mutations

We performedWES in one or two affected individuals from each of

the three families. Under the simplest assumption of genetic ho-

mogeneity for this rare autosomal recessive phenotypic constel-

lation, we filtered for variants in the same gene with a predicted

impact on protein function or RNA splicing that are rare in control

populations of European descent. Because of parental consan-

guinity in family 3 and the lack of consanguinity in families 1 and

2, we searched for a gene harboring a rare homozygous variant in

the affected individuals from family 3 and rare compound het-

erozygous (or homozygous) variants in the affected children in

families 1 and 2. Subsequent to WES analysis and filtering, there

was a single gene that contained biallelic mutations in all affected

children: BRF1. Each affected child had two variants that predicted

missense alterations, for a total of four distinct mutations. We

confirmed all four BRF1 alleles, as well as cosegregation with the

cerebellar-facial-dental syndrome, in each family by Sanger se-

quencing (Fig. 1C; Supplemental Fig. 1). In family 1, the affected

siblings were compound heterozygous for a maternally inherited

c.677C > T mutation and a paternally inherited c.776C > T muta-

tion, predicting p.Ser226Leu (S226L) and p.Thr259Met (T259M),

respectively. In family 2, the affected sisters had inherited a c.667C >

T mutation from their mother and carried a c.875C > A mutation

that was likely transmitted from their father, from whom no DNA

was available (Fig. 1C). These mutations predict p.Arg223Trp

(R223W) and p.Pro292His (P292H) missense alterations, respec-

tively. The two affected boys in family 3 were homozygous for the

c.677C > T (p.Ser226Leu) mutation that had been identified in

family 1. This mutation cosegregated with the cerebellar-facial-dental

syndrome in family 3, while LCA was caused by a homozygous

mutation in RDH12 (c.784dupG; p.Ala262Glyfs*11), a gene pre-

viously shown to bemutated in LCA (Janecke et al. 2004). The four

BRF1 mutations were absent from ethnically matched controls as

shown by sequencing and were not present or very rare in public

SNP databases (Table 2).
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The longest BRF1 isoform is a 677-amino-acid protein that,

together with TBP and BDP1, forms the transcription factor IIIB

(TFIIIB), which recruits Pol III to its templates and is involved in

promoter opening (White 2011). The N-terminal region of BRF1 has

a role inDNAbinding andPol III recruitment (Kassavetis et al. 1998),

is homologous to the Pol II transcription factor TFIIB, and contains

an N-terminal zinc ribbon domain and two cyclin domains (Khoo

et al. 2014). The BRF1 gene on human chromosome 14q32.33 en-

codes several functional isoforms, some of which lack the zinc rib-

bon domain (McCulloch et al. 2000). The four identified missense

alterations invariably affect amino acids that are evolutionarily

conserved, including in orthologs from mouse and zebrafish (Fig.

1D), but are not conserved in BRF2. In Saccharomyces cerevisiae, Brf1

(Colbert and Hahn 1992), Arg223, Thr259, and Pro292 are con-

served, whereas Ser226 is replaced conservatively by an alanine; for

clarity, we will use the human amino acid numbering henceforth.

Figure 1. BRF1mutations cause a cerebellar-dental-skeletal syndrome. (A) Patients 1 and 2 (family 1) at the ages of 12 and 10 yr, patients 3 and 4 (family 2) at
the ages of 10 and 4 yr, and patients 5 and 6 (family 3). Note characteristic facial dysmorphism and dental anomalies. (B) Brain MRI (top, sagittal scans; bottom,
coronal scans) of patients 1–4 (P1–P4) at the ages of 14 yr, 9 yr, 12 yr, and 18 mo, respectively, showing a thin corpus callosum (white filled arrows), flattened
brainstem (white unfilled arrows), and cerebellar hypoplasia (black unfilled arrows). (C ) Pedigrees of family 1 (left), family 2 (middle), and family 3 (right) with
genotypes for BRF1 missense alterations. In family 2, the p.Pro292His mutation was likely transmitted by the unaffected father who did not participate in the
study. In family 3, the two individuals denoted by an asterisk had Leber congenital amaurosis caused by a homozygous RDH12mutation. (D) Multiple sequence
alignment of BRF1 orthologs and human TFIIB showing evolutionary conservation of mutant BRF1 amino acid residues.

BRF1 mutations cause neurodevelopmental anomalies
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Functional analysis of brf1 in zebrafish

As a first test of the functional candidacy of BRF1, we sought an in

vivo model with a credible phenotypic surrogate. We noted that

all probands in our study have cerebellar hypoplasia and micro-

cephaly, both of which have beenmodeled previously in zebrafish

embryos for a variety of neurodevelopmental disorders (Golzio

et al. 2012; Dauber et al. 2013; Margolin et al. 2013; Bernier et al.

2014). We therefore turned to developing zebrafish embryos

and asked whether either suppression or overexpression of brf1

has an effect on neurogenesis, head size, and/or cerebellar

morphology.

Given that brf1 has two copies in the zebrafish genome due to

the teleost-specific genome duplication, we generated splice

blocking morpholinos (sbMOs) for both copies (brf1a and brf1b),

and we scored for neurogenesis by measuring the area of the optic

tectum, the area between the eyes as a surrogate for brain size, and

the cerebellar integrity. We note that while brf1a is known to be

expressed at multiple stages of development as well as in multiple

organs, little is known about brf1b in zebrafish. Our in-house RNA-

seq data that interrogate the transcripts expressed specifically in

the head of 5 d post fertilization (d.p.f) zebrafish embryos in-

dicated that brf1b has significantly increased expression when

compared to brf1a. Indeed, brf1b was expressed, on average, 11.59

CPM (counts per millionmapped reads), while brf1a expression was

4.32 CPM. In triplicate experiments scored by two investigators

masked to the injection cocktails, suppression of brf1a gave no ap-

preciable phenotypes (data not shown). In contrast, suppression of

brf1b with a MO against the donor site of exon 8 (MO#1) (Supple-

mental Fig. 2) resulted in a significant reduction of both the size of

the optic tectum (Fig. 2B9,D,F9,H) and the total area between the eyes

(Fig. 2B,C,F,G). Furthermore, we observed cerebellar hypoplasia as

determined by the lack of axons in the midline of the morphant

zebrafish cerebellum (Fig. 2B9,F9,I). We did not observe further overt

morphological abnormalities or developmental delay in the injected

embryos as judged by the shape and position of the heart, the ab-

sence of edema, the number and shape of somites, and the presence

of a normal swim bladder. The observed phenotypes were specific;

coinjection of MO and wild-type (WT) human mRNA was able to

rescue the phenotypes (Fig. 2B–D,F–I). To assess the functionality of

the alleles, we coinjectedMOwith humanmRNAbearing one of the

variants of interest (P292H, R223W, S226L, and T259M) at a time. In

the context of BRF1 isoform2 (Fig. 2E), P292H and R223W scored as

functionally nulls as they failed to rescue the reduction in head size

and optic tecta as well as the cerebellar hypoplasia (Fig. 2F–I), while

S226L and T259M scored as hypomorphic: The mutants were sig-

nificantlymore affected thanMO+WTbutnot as severe asMOalone.

Strikingly, testing of three of the alleles (R223W, S226L, T259M) in

isoform 1 showed them all to be benign (rescuewas indistinguishable

from WT) (Fig. 2A–D), suggesting that the effect of the mutations is

isoform specific. Overexpression of WT human BRF1 and human

P292H, R223W, S226L, or T259M BRF1 showed no difference in head

size, optic tecta, or cerebellar hypoplasia (Fig. 2G9,H9,I9).

To confirm the specificity of our assay, we designed a second

sbMO against the donor site of brf1b exon 6 (MO#2). Injections of

MO#2 recapitulated the results obtained with MO#1, showing

a reduction of head size and optic tecta as well as cerebellar dis-

organization phenotypes in 3 d.p.f. embryos; again, the pheno-

types could be at least partially rescued by coinjection of human

WT BRF1 mRNA (Supplemental Fig. 3). Further supplementing

these findings, we utilized the CRISPR system and induced aber-

rations in brf1b by CAS9/gRNA. In the F0 brf1bCas9/gRNA, we ob-

served phenotypes that are fully concordant with the brf1b mor-

phant phenotypes produced by both sbMOs (Supplemental Fig. 3).

We conclude that suppression of brf1 leads to phenotypes that

recapitulate key symptoms of the human pathology, arguing in

favor of the candidacy of this gene for disease pathogenesis.

BRF1 mutations affect cell growth

We next turned to the question of the precise effect of the dis-

covered missense alleles. Consistent with their predicted patho-

genic nature, yeast lacking the chromosomal BRF1 gene and

expressing BRF1 with mutations corresponding to R223W or

P292H did not grow in spot dilution tests (Fig. 3A), consistent with

loss of Brf1 function and similar to our zebrafish functional assay

in which R223W and P292H were classified as nulls. Yeast cells

transformed with plasmids containing BRF1 substitutions T259M

or S226L (as found in families 1 and 3) or A226S (reflecting the

human reference sequence) grew normally. We observed similar

results in liquid cultures (Supplemental Fig. 4). To mimic the

compound heterozygosity present in the families, we transformed

yeast with two distinct plasmids expressing the BRF1 variants

R223W/P292H or S226L/T259M. Whereas S226L/T259M yeast

showed essentially normal growth, the R223W/P292H combina-

tion was lethal (Fig. 3A). With respect to the mutations identified

in family 1, these results further supported the candidacy of human

biallelic BRF1 missense alterations causing the cerebellar-facial-dental

syndrome.

BRF1 mutations impair Pol III–dependent transcription

To investigate whether the altered BRF1 residuesmay be important

for DNA binding, we mapped the mutated BRF1 residues on the

known crystal structure of the homologous human TFIIB-TBP-

DNA complex (Tsai and Sigler 2000). Residues Arg223 and Thr259

are conserved in human TFIIB (Fig. 1D) and are predicted to contact

Table 2. BRF1 mutations

BRF1 mutation
(DNA)

BRF1 alteration
(protein)

Affected protein
domain

Frequency in
control chromosomes

(sequencing)

Frequency in
control chromosomes

(ESP-EVS) PolyPhen-2 prediction SIFT prediction

c.677C > T p.(Ser226Leu) Cyclin 2 0/200 0/12,994 Probably damaging Not tolerated
c.776C > T p.(Thr259Met) Cyclin 2 0/200 1/13,006 Probably damaging Not tolerated
rs373957300
c.667C > T p.(Arg223Trp) Cyclin 2 0/100 2/12,996

(heterozygous)
Probably damaging Not tolerated

rs370270828
c.875C > A p.(Pro292His) � 0/100 0/13,006 Probably damaging Not tolerated

(ESP-EVS) National Heart, Lung and Blood Institute (NHLBI) Exome Sequencing Project Exome Variant Server.

BRF1 mutations cause neurodevelopmental anomalies

Genome Research 5
www.genome.org

 Cold Spring Harbor Laboratory Press on January 21, 2015 - Published by genome.cshlp.orgDownloaded from 



Figure 2. Functional annotation of variants in isoforms 1 and 2 of BRF1 and its effects on the head size, optic tectum size, and cerebellar formation in
zebrafish embryos. (A,E) Schematic representation of the location of BRF1 variants examined in zebrafish within each of the two isoforms evaluated:
isoform 1 (NP_001229717.1; 650 aa) and isoform 2 (NP_001229715.1; 584 aa). In purple are alleles that when tested are shown to be null, and in brown
are alleles that score as hypomorphs based on zebrafish assays. (B,B9) Dorsal views of control zebrafish embryos and embryos injected with brf1bMO, brf1b
MO +WT human BRF1, and brf1bMO + variant (R223W, S226L, or T259M) human BRF1 RNA in the context of isoform 1, respectively, at 3 d.p.f., stained
with anti-a acetylated tubulin. (B) Head sizemeasurements were taken using brightfield images (highlighted with a yellow outline in panel F). (B9) The area
of the optic tecta wasmeasured in the fluorescent images (highlightedwith a cyan oval in panel F9). (C,D) Bar graphs showing the relative head size (C ) and
the optic tecta area (D). Data are presented asmean6 SE. Two-tailed t-tests were performed to assess statistical significance. The embryos coinjected with
theMOand each of the variants were statistically different fromMOalone but not statistically different when compared to embryos injectedwithMO+WT
human BRF1, therefore scoring as benign. (F–I9) Functional assessment of the BRF1 missense variants in the context of isoform 2. Three d.p.f. embryos
injected with brf1b MO, brf1b MO + WT human BRF1, brf1b MO + variant human BRF1 RNA (P292H, R223W, S226L, or T259M), or variant human BRF1
RNA alone in the context of isoform 2were observed following stainingwith anti-a acetylated tubulin for head size (F) and for optic tecta area (F9), as well as
for cerebellar defects (F9; illustrated with a red dashed box where maximum disorganization is observed). (G–I9) Bar graphs showing average head size,
optic tecta area, as well as the percentage of embryos with cerebellar defects evaluated among each condition. To assess statistical significance among the
evaluated conditions, two-tailed t-tests were performed for head size and optic tecta, and x2 tests were performed for cerebellar disorganization to
evaluate statistical significance across the conditions. In the context of isoform 2, functional analysis using zebrafish show that P292H and R223W are null,
while S226L and T259M are hypomorphic alleles, showing an isoform-specific effect in which head size and optic tecta size are reduced and cerebellar
disorganization occurs. No significant effects were observed for any of the phenotypeswhen the variants themselves were overexpressed. Each experiment
was done at minimum in triplicate with at least 50 embryos per condition per replicate. (***) P-value # 0.001 relative to MO + WT; (e) P-value # 0.001
relative to controls; (y) P-value # 0.01 relative to MO.
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DNA (Fig. 3B). Residues Ser226 and Pro292 are not conserved in

human TFIIB and are predicted to be in the proximity of the DNA,

but not in direct contact (Fig. 3B). These modeling results sug-

gested that the BRF1mutationsmight affect BRF1 binding to DNA,

impair TFIIIB-mediated Pol III recruitment, and reduce Pol III–

mediated transcription.

To test whether the BRF1 mutations influence Pol III re-

cruitment to gene promoters in vivo, we performed chromatin

immunoprecipitation (ChIP) with tandem affinity purification

(TAP)–tagged versions of BRF1 variants on Pol III target genes in

yeast (Fig. 3C–E). Consistentwith our predictions, the BRF1 variant

T259M showed strongly decreased promoter occupancy at four

tested tRNA loci and a significant decrease in occupancy of the U6

snRNA promoter (Fig. 3D). The ChIP signals for TAP-tagged A226S

and S226L variantswere not different fromwild-type Brf1 (Fig. 3C).

Although the R223Wand P292H variants could not be tested due

to their lethal effect, these results indicate that at least one BRF1

alteration can affect occupancy of different Pol III promoters in

vivo.

Finally, to test whether the BRF1 mutations cause a tran-

scriptional defect, we used an established in vitro assay (Hahn and

Roberts 2000). This assay is based on a nuclear extract from

a temperature-sensitive yeast strain carrying the BRF1 substitution

p.Trp107Arg (W107R). Extracts from this strain are transcription-

ally inactive, but addition of recombinant Brf1 protein restores

activity on a template encoding the native SUP4 promoter. When

we used purified recombinant Brf1 variants in this assay, we ob-

served significantly less transcription for the BRF1 variant R223W

in comparison with the same concentration of WT Brf1 (Fig. 4).

Milder, but both significant and reproducible defects were ob-

served for T259M, P292H, A226S, and S226L. BRF1 variants com-

bining two mutations also showed transcriptional defects in this

assay (Fig. 4). Taken together, these results show that BRF1 muta-

tions identified in patients can impair transcription in a well-

controlled, in vitro transcription assay.

Discussion
Whereas intellectual disability can be due to mutations in syn-

aptic genes (Pavlowsky et al. 2012; Zoghbi and Bear 2012), recent

studies have highlighted impairments of basal cellular functions

and pathways such as transcription and translation in the

etiology of cognitive disorders and neurogenetic syndromes

(Najmabadi et al. 2011). Some examples include pontocerebellar

hypoplasias, Pol III–related leukodystrophies, X-linked in-

tellectual disability, and leukoencephalopathy with vanishing

white matter (Bugiani et al. 2010; Namavar et al. 2011; Borck

et al. 2012; Daoud et al. 2013). Complete inactivation of pro-

cesses such as translation initiation or tRNA transcription is not

compatible with life, suggesting that most disease-causing mu-

tations are hypomorphs.

Our identification and characterization of BRF1 mutations

causing the syndromic cerebellar-facial-dental phenotype is in line

with these observations. No mutant Brf1mouse has been reported

to our knowledge; in yeast, deletion of BRF1 is lethal (Colbert and

Hahn 1992). Accordingly, one of the missense variants we have

Figure 3. BRF1 mutations cause growth defects and reduced target promoter occupancy. (A) BRF1 mutations affect cell growth. Spot dilutions of the
variants introduced into a BRF1 knockout strain grown at 30°C. Wild-type (WT) and variant Brf1 were encoded on plasmids. For the combination of two
mutations, two plasmids were used, each harboring one mutation and a distinct marker. (5-FOA)5-fluoroorotic acid. (B) Three-dimensional modeling of
human BRF1missense alterations. The four identified amino acid substitutions weremapped to the structure of human TFIIB (green) in a complexwith TBP
(purple) and DNA (pdb code 1C9B) (Tsai and Sigler 2000). Amino acids affected by mutations in families 1 and 2 are shown in yellow and orange,
respectively. (C–E) BRF1 variants show a decreased occupancy of tRNA promoters in yeast. Fold enrichments of ChIP experiments performed with tandem
affinity purification (TAP)—tagged BRF1 variants in yeast. Data are presented asmean6 SD. (C ) Mutations A226S to serine or S226L show no effect on fold
enrichment compared to WT. (D) Mutation T259M leads to decreased fold enrichment on tRNA genes. (E) Combination of the two variants results in
amuch lower occupancy of the S226L and T259M variants. Summing up both signals results in less occupancy of the twomutated BRF1 than theWT BRF1.
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identified is recruited to a lesser extent than wild type to target

genes. Several other mutants have reduced transcriptional activity,

suggesting that in the context of this assay they behave as hypo-

morphs. BRF1mutations likely confer a specific phenotype; we did

not identify BRF1 mutations in three individuals with clinically

overlapping but distinct malformation syndromes or in seven in-

dividuals with genetically unresolved forms of PCH (data not

shown). However, there is compelling evidence for the pathoge-

nicity of the identified variants in the cerebellar-facial-dental

syndrome: BRF1was the only gene exome-wide that harbored very

rare or unique biallelic mutations in the three affected sibships.

These missense variants affect conserved amino acids that lie

within a predicted functional domain, and two of the affected

amino acids likely interact directly with DNA. In vivo experiments

in zebrafish embryos showed that suppression of brf1b phe-

nocopied some of the key pathognomonic features of the syn-

drome. Of note, while we cannot exclude a possible effect of

overexpression on the outcome of our zebrafish assays, the effects

of the variants seemed to be restricted to isoform 2 of BRF1. Thus

our results possibly illustrate an isoform-specific effect underlying

the phenotype and offer a plausible hypothesis about how muta-

tions in a ubiquitous, key component of the cellular machinery

can induce specific, albeit severe, phenotypes. Similar splice

isoform-specific pathogenic effects have been found in other disor-

ders (Sarparanta et al. 2012; Schulte et al. 2014), suggesting that

this mechanism might be a significant regulator of pleiotropy.

Previous studies have shown that full-length human BRF1 is the

canonical isoform in pol III transcription, and whether other iso-

forms, including isoforms lacking the evolutionary conserved Zn

ribbon domain such as isoform 2, are biologically active remains

unknown. Biochemical data indicate that overexpression of iso-

forms lacking the Zn ribbon domain

can induce BRF1–TBP interactions in

vitro and reconstitute transcription in

crude systems (McCulloch et al. 2000;

Schramm and Hernandez 2002). While

the in vivo role of different BRF1 isoforms

remains to be elucidated, our zebrafish

data provide further evidence of the

pathogenic nature of the four missense

variants.

Further studies showed each of the

missense variants to affect a variety of

relevant activities in yeast, including tar-

get gene promoter occupancy, in vitro

transcription, and cell growth. We do not

know the precise mechanism by which

BRF1 contributes to the phenotype in

humans. We note, however, that mouse

Brf1 is expressed in anatomical structures

that are relevant to the observed human

pathology: In situ hybridization of post-

natal day 56 mouse brain had previously

revealed prominent Brf1 expression in

the olfactory bulb, hippocampus, and the

Purkinje and granule cell layers of the

cerebellum (Allen Brain Atlas) (Sunkin

et al. 2013), underscoring the important

role of BRF1 in brain development.

We speculate that one plausible

pathomechanism underlying the cere-

bellar-facial-dental syndrome is a reduced

steady-state level of tRNAs that would be predicted to impair

translation elongation; thismay explain the growth defect in yeast

and contribute to short stature in the affected individuals.

Whether themajor drivers of the phenotype are tRNAs or other Pol

III–dependent transcripts remains to be determined. Finally, it is

also unknown why partial disruption of Pol III transcription leads

to organ- and tissue-specific phenotypes. There are ;450 nuclear

encoded tRNA genes in the human genome for only 61 anticodons.

It has been shown previously that up to 26% of tRNA genes are

active in one cell type versus another (Barski et al. 2010) and that

tRNA expression varies by asmuch as tenfold among human tissues

(Dittmar et al. 2006), suggesting the existence of active cell and

tissue-specific regulation of Pol III transcription (Oler et al. 2010).

Although the genome-wide architecture of Pol III–mediated tran-

scription in neurons or specific brain regions is unknown, a pilot

study using a microarray containing 42 probes for nuclear encoded

tRNAs and assaying their relative expression among eight human

tissues revealed a high overall tRNA expression level in brain

(Dittmar et al. 2006). This observation may partially explain the

vulnerability of brain regions toward impaired tRNA transcription

or processing.Whether other affected tissues, such as the teeth, also

show specific tRNA expression patterns remains to be investigated.

We note that dental anomalies such as delayed dentition, hypo-

dontia, oligodontia, and abnormally placed or shaped teeth are part

of the Pol III–related leukodystrophy syndromes 4H; ataxia, delayed

dentition, andhypomyelination (ADDH); and leukodystrophywith

oligodontia (LO) (Daoud et al. 2013). An alternative explanation for

the tissue-restricted phenotypes engendered by BRF1 dysfunction

might be a partial functional redundancy with BRF2. It has been

shown, however, that BRF1 and BRF2 are almost completely

mutually exclusive as components of TFIIIB under physiological

Figure 4. In vitro transcription defects caused by BRF1 mutations in yeast. (Top) A representative
gel of the in vitro transcription reaction using a nuclear extract harboring a deficient Brf1 protein
(p.Trp107Arg, W107R) that is impaired in Pol III–dependent transcription. Addition of WT Brf1 rescues
activity whereas the different Brf1 variants and the combinations present in the affected children show
a defect in transcription. Data are presented asmean6 SD. A quantification is shown in themiddle panel.
(*) P < 0.01; (**) P < 0.0001. The lower panel shows a twelve times excess of the Brf1 protein amount
used for this assay separated on an SDS gel.
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conditions (Moqtaderi et al. 2010), andwhether BRF2 can partially

compensate for defective BRF1 is unknown.

In conclusion, our study defines a syndrome with cerebellar

hypoplasia, intellectual disability, and growth retardation that is

caused by partial deficiency of the conserved Pol III transcription

factor BRF1. These results add an example to the short list of ge-

netic diseases caused by dysregulation of the Pol III machinery,

most of which predominantly affect the central nervous system

and suggest that improved understanding of the potential target

specificity provided by BRF1 might offer pathomechanistic clues.

Methods

Subjects
The study was performed with the approval of the University of
Ulm Ethics Committee. Affected individuals were evaluated at the
genetics outpatient clinics of the Bambino Ges�u Children’s Hos-
pital, Rome (family 1); the Hospital S. Maria, Lisboa (family 2); and
IRCCS Casa Sollievo Della Sofferenza Hospital, San Giovanni
Rotondo andGiovanni XIII Hospital, Bari, Italy (family 3). Patients
were enrolled with written parental consent for participation in
the study. The clinical evaluation included medical history in-
terviews, a physical examination, and review of medical records.
Clinical information of affected individuals from the first two
families had been independently submitted to the web-based
Dysmorphology Diagnostic System (DDS) of the DYSCERNE
network (a European network of centers of expertise for dysmor-
phology) (Douzgou et al. 2014) by the respective attending genet-
icists (M.L.D. and B.D.; A.M.). After review of the clinical
information and pictures, the DDS Expert Panel (including B.D.)
concluded that the four affected individuals were likely affected by
a previously unreported autosomal recessive disorder. Blood sam-
ples were obtained from each participating individual, and geno-
mic DNA was extracted by standard procedures.

Whole exome and BRF1 sequencing

Families 1 and 2

Genomic DNA was enriched for exonic and adjacent splice site
sequences with the SeqCap EZ Human Exome Library v2.0 kit, and
libraries were run on an Illumina HiSeq 2000 Sequencer via
a paired-end 100-bp protocol (Hussain et al. 2013). For data anal-
ysis, the Cologne Center for Genomics Varbank pipeline v2.6 and
user interface was used. Primary data were filtered according to
signal purity by the Illumina Realtime Analysis (RTA) software
v1.8. Subsequently, the reads were mapped to the human genome
reference build GRCh37/hg19 (http://www.genome.ucsc.edu/)
using the BWA-SW alignment algorithm (Li and Durbin 2010.
GATK v.1.6 (McKenna et al. 2010) was used to mark duplicated
reads, perform a local realignment around short insertion and
deletions (indels), recalibrate the base quality scores, and call SNPs
and short indels. Mean coverage was >1003 in both exomes and
;90% of target bases were covered more than 303. In the target
regions, we detected 25,894 SNVs and 2004 short indels in the
family 1 individual and 35,642 SNVs and 2795 short indels in the
family 2 individual. Scripts developed in-house at the Cologne
Center for Genomics were applied to detect protein changes, af-
fected donor and acceptor splice sites, and overlaps with known
variants. Splice site variants were analyzed with a maximum en-
tropymodel (Yeo and Burge 2004).We filtered for high-quality rare
variants (MAF < 0.1%; based on the 1000 Genomes database, build
20110521 [The 1000 Genomes Project Consortium 2012] and the
NHLBI Exome Sequencing Project Exome Variant Server [EVS],

build ESP5400 [Tennessen et al. 2012]) with a predicted impact on
protein sequence or splicing. We also filtered against an in-house
database containing variants from 511 exomes from individuals
with epilepsy to exclude pipeline-related artifacts.

Family 3

WES and data analysis were performed as previously described
(Alfaiz et al. 2014). Briefly, exomes were captured using the Agilent
SureSelect human all exon V4 enrichment kit and sequenced on an
Illumina HiSeq platform. Variants were filtered based on adherence
to an autosomal recessive inheritance pattern, prediction by SIFT
(http://sift.jcvi.org/) (Kumar et al. 2009) and PolyPhen-2 (http://
genetics.bwh.harvard.edu/pph2/) (Adzhubei et al. 2010), and absence
from dbSNP129 (http://www.ncbi.nlm.nih.gov/projects/SNP/).

PCR and Sanger sequencing were performed according to
standard protocols for the validation of variants of interest and for
cosegregation studies. BRF1 mutation nomenclature is based on
transcript NM_001519.3 and RDH12 mutation nomenclature on
transcript NM_152443.2.

In vivo modeling in zebrafish

Reciprocal BLASTof the human BRF1 protein sequence against the
zebrafish genome identified two orthologs, suggesting that this
gene is duplicated in the zebrafish genome: brf1a (NP_956192.1,
60% identity, 72% similarity) and brf1b (NP_956183.1, 60%
identity, 72% similarity).We targeted each of these transcriptswith
a sbMO designed and obtained from Gene Tools. The MOs target
the donor site of exon 6 for brf1a sbMO (TATTTGAAGCTTACC
GATAGCTGGT), the donor site of exon 8 for brf1b sbMO
(AGCTGTGACATTCACCTTTTTCTCA), and the donor site of
exon 6 for brf1b sbMO#2 (GTCATTACAGGGAGACTTACCGACA).
For rescue experiments, human WT mRNAs of isoform 1 (NP_
001229717.1) and isoform 2 (NP_001229715.1) of BRF1 were
cloned into pCS2+ vector and transcribed in vitro using SP6
mMessage machine kit (Ambion). All variants were introduced
with Phusion high-fidelity DNA polymerase (New England
Biolabs) and custom designed mutagenesis primers and Sanger
sequence confirmed on a 3730 ABI sequencer. We injected 1 nL of
solution (12 ng MO and/or 200 pg of human mRNA, (WT, P292H,
R223W, S226L, or T259M) into one- to four-cell-stageWT zebrafish
embryos (Niederriter et al. 2013) and collected them at 3 d.p.f.,
fixed in Dent’s fixative overnight at 4°C. Standard immunohisto-
chemistry was then performed using control embryos and em-
bryos injected with brf1b MO, MO + WT human BRF1, and MO +
variant human BRF1 (P292H, R223W, S226L, or T259M) stained
with anti-a acetylated tubulin (T7451, mouse, Sigma-Aldrich, di-
lution 1:1000) as the primary antibody and Alexa Fluor (goat anti-
mouse IgG (A21207, Invitrogen, dilution 1:1000) as a secondary
antibody. Stained zebrafish were observed using the Nikon AZ100
Microscopewith aDS-Qi1MCdigital camera head. All experiments
were performed in triplicate (;200 embryos), and significance was
determined with a Student’s t-test.

CRISPR target sequences (brf1b: CATGCATGAATTCCGGC
GCA) were identified using crispr.mit.edu and cloned into pT7-
gRNA (Addgene) following the protocol described at http://www.
addgene.org/crispr/Chen/. gRNAs and mRNAs were synthesized by
a MEGAshortscript T7 kit (Ambion), and Cas9 mRNAs were synthe-
sized by mMESSAGE mMACHINE SP6 (Ambion). One hundred two
pictograms gRNA + 150 pg Cas9 mRNA were injected into one-cell
stage zebrafish and collected at 3 d.p.f in Dent’s fixative overnight at
4°C and stained as mentioned above.

For RNA sequencing (RNA-seq), total RNA from 5 d.p.f.
zebrafish heads was extracted using a TRIzol/chloroform protocol. Li-
braries were constructed using a customized version of strand-specific
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dUTP and run on an IlluminaHiSeq 2000 platform (Sugathan et al.
2014).

Yeast strains and growth assays

To introduce BRF1 mutations in yeast, the shuffle vector system
developed by Sikorski and Hieter was used (Sikorski and Hieter
1989). BRF1 mutations were introduced in the vector pRS315,
which contains yeast BRF1 expressed under the control of its own
promoter. Mutations were introduced using site-directed mutagen-
esis and confirmed by DNA sequencing. The identified mutations
from humans (h) were transferred to yeast (y). The corresponding
amino acid positions are as follows: hR223 = yR218, hS226 =

yA221, hT259 = yT254, and hP292 = yP288. For combinations of
two mutations, BRF1 variants T259M and S226L were cloned into
pRS314 vector and cotransformed with the S226L and T259M
mutations in the pRS315 vector, respectively. Plasmids were
transformed into the yeast strain SHY285 (gift from S. Hahn,
MATa, ade2D∷hisG, his3D200, leu2D0, lys2D0, met15D0, trp1D63,
ura3D0, brf1D∷HIS3/pSH524), andWT BRF1was replaced with the
mutant gene by plasmid shuffle at 30°C. The rescue plasmid
pSH524 contains a URA3marker (Ars Cen URA3, BRF1) (Hahn and
Roberts 2000). For the spotting assays, strains were grown over-
night in selective media, normalized to equal densities (107 cells/
200 mL), serially diluted (1:5), and spotted on YPD media or
selective media (Leu-, Leu/Trp-) supplemented with 5-fluoroorotic
acid (5-FOA; Carl Roth). Plates were incubated for 3 d at 30°C. For
the liquid assays, cultures were inoculated in selective media,
grown overnight and normalized to equal densities (OD600nm =

0.33).We used 3.5 mL of these dilutions to inoculate a 96-well plate
with 200 mL of liquid media (YPD and selective media supple-
mented with 5-FOA). Plates were incubated for 3 d at 30°C. As
a control strain we used WT BY4741 yeast.

Protein purification

Protein purification was performed essentially as previously de-
scribed (Alexander et al. 2004), withminormodifications. Proteins
were expressed in Escherichia coli BL21-Codon plus (DE3) RIL cells
in LB medium. Protein expression was induced in 2 l cultures with
1 mM IPTG at an OD600 of 0.7. Cells were grown for 3 h at 37°C
and harvested (20 min, 4000 rpm, 4°C). The pellet was washed
with 40 mL LB medium and flash-frozen in liquid nitrogen. The
cells were thawed on ice and resuspended in 50 mL lysis buffer (25
mM Tris/HCl at pH 7.5 and 25°C; 200 mM KCl; 12.5 mM MgCl2;
10% [v/v] glycerol; 1 3 PI). Subsequently, 0.8 mg lysozyme (Roth)
per 1mL lysatewas added and incubated rotating in the cold room.
After 10 min, 0.2% IGEPAL CA-630 (MP Biomedicals) was added
for further 5 min. For cell disruption, lysate was sonicated for 15
min, at 25% duty cycle and 40 output value. Brf1 in inclusion
bodies was washed twice in H.35 buffer (20 mM HEPES at pH 8.0
and 25°C; 350 mM KCl; 2 mM MgCl2; 1% NaOH; 20% [v/v] glyc-
erol; 0.1% [v/v] IGEPAL CA-630; 1 3 PI). Inclusion bodies were
extracted with 5 mL G6 buffer (100 mM Tris/HCl at pH 7.5 and
4°C; 6MGdmCl; 2mM b-mercaptoethanol) and rotation for 1 h at
4°C. The solution was bound in batch to 2.5 mL Ni-NTA bead
volume in G6 buffer overnight at 4°C. Beads were washed with
12.5mLG6 buffer and protein eluted in batch with three times 2.5
mL Ni-NTA elution buffer (100 mM Tris/HCl at pH 7.5 and 4°C;
6 M GdmCl; 10 mM b-mercaptoethanol; 500 mM imidazole; 1 3
PI). To the combined eluate, ZnSO4 and DTT were added to final
concentrations of 10 mM and 5 mM, respectively. Finally, the
denatured Brf1 was refolded via rapid dilution and dialysis. For
dilution, 100 mL of the eluate was placed in the lid of a 1.5-mL
Eppendorf tube containing 1 mL dialysis buffer (20 mM Tris ace-

tate 80% cation at pH7.5 and 4°C; 200mMKCl; 2mMMgCl2; 20%
[v/v] glycerol; 0.1% [v/v], IGEPAL CA-630; 1 3 PI), and the lid was
closed quickly. For every tube this could be repeated twice. After
flash dilution the protein was dialyzed in dialysis buffer for 2 h,
frozen in liquid nitrogen, and stored at �80°C. Usually the puri-
fication resulted in 30 mL of 0.4–0.8 mg/mL protein solution.

ChIP assay

For the ChIP assay, TAP-tagged BRF1 and its mutant variants were
introduced in the pRS315 vector, which contains BRF1 expressed
under the control of its own promoter. For combinations of the
mutations, S226L and T259Mwere cloned into pRS314 vector and
cotransformed with the TAP-tagged BRF1 variants T259M-TAP and
S226L-TAP in the pRS315 vector, respectively. ChIP experiments
were performed as previously described (Aparicio et al. 2005).

In vitro transcription assay

The Pol III–dependent in vitro transcription assay was performed as
described by Hahn and Roberts (2000), with minor modifications.
The nuclear extract was prepared as described by Seizl et al. (2011).
The template used contained the SUP4 gene from [�159] � [+244]
with respect to the transcription start site of the tRNA. SUP4 encodes
a tyrosine tRNA. The 25mL transcription reaction contained 100mM
KOAc (pH 7.6), 20mMHEPES (pH 7.6), 1 mM EDTA, 5mMMgOAc,
2.5 mM DTT, 150 ng template, 192 mg phosphocreatine, 0.2 mg
creatine phosphokinase, 10URiboLock RNase inhibitor (Fermentas),
50mg temperature-sensitive nuclear extract harboring a temperature-
sensitiveW107Rmutation inBRF1, 40mMa-amanitin, and100ngof
recombinant protein where indicated. Proteins were added to the
transcription reactionmix for 5min before addition of 0.1mMNTPs.
The transcription reaction was carried out for 60 min at 30°C. The
RNA was isolated, and for primer extension, 0.125 pmol primer was
annealed for 45min at 60°C in20mL5mMTris (pH8.3), 75mMKCl,
1mMEDTA (pH 8.0). The sequence of the 59-Cy5 labeled primer was
TCTCCCGGGGGCGAGTCGAACGCCC. Two micrograms of Acti-
nomycin D was added before 0.25 units MuLV reverse transcriptase
in 60 mL 5 mM Tris (pH 8.3), 75 mM KCl, 4.5 mM MgCl2, 15 mM
DTT, and 0.1 mM dNTPs extended the primer. The resulting cDNA
was isolated by ethanol precipitation and resuspended in 4 mL 0.04
mg/mL RNase A and 4 mL formamide buffer (80% formamide, 25
mM EDTA, 1.5% bromphenolblue). Before loading, samples were
boiled for 2min at 95°C and put directly on ice. Samples were run on
a 7 M urea, 8% polyacrylamide (35:1) gel in 13 TBE for 45 min at
180 V. The gel was pre-run for 5–10min, and the pockets were rinsed
before loading. Gels were analyzed and quantified with a typhoon
scanner FLA9400 and ImageQuant Software (GE Healthcare).

Data access
The zebrafish RNA-seq data have been submitted to theNCBIGene
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/)
under accession number GSE63191. BRF1 mutation data have
been submitted to the NCBI ClinVar database (http://www.ncbi.
nlm.nih.gov/clinvar/) under accession numbers SCV000192004,
SCV000192005, SCV000192006, and SCV000195766.
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