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Abstract 

 

The lack of a formulation in National and International Codes for the 

evaluation of shear resistance in Composite Steel-Concrete Beams (CSCB) 

led to a comparative study between reinforced concrete beams’ shear 

mechanisms and CSCB’ ones in order to propose a design and verification 

method consistent with those currently adopted. The analysis of the 

theoretical approach of the National Code, based on the Lower bound 

Theorem within the framework of Plasticity Theory, brought out some 

critical aspects mainly related to the non-fulfillment of the “equilibrium 

condition” and of the requirement of pseudo-ductile shear behavior. To 

overcome these limits, a new simplified mechanical model has been 

introduced, capable of predicting the yield of shear steel bars and the 

corresponding stress in concrete elements. The proposed model stems for 

a variational approach (Principle of Minimum Potential Energy), able to 

meet both the compatibility and the equilibrium conditions. In order to 

verify the validity of the results of the simplified mechanical model with a 

complete one, a parametric stiffness matrix of a CSCB has been developed, 

embedded in a worksheet able to evaluate stresses and strains of the whole 

beam, the collapse load and the pseudo-ductile or brittle behavior of the 

structural element. Afterwards, experimental tests on full-scale beams 

have been conceived, in order to verify the validity of the proposed 

theoretical approach. The comparison between the experimental evidence 

and the results of simplified and complete mechanical models showed a 

significant agreement, since the mechanical models are able to predict the 

collapse load and the structural behavior. On the basis of the validation of 

these models, an optimization procedure of beams’ shape has been 

proposed, able to guarantee a pseudo-ductile shear behavior, the 

maximum contribution of concrete in the resistance system and the 

minimum amount of material. The proposed mechanical models and 

design procedure are much more reliable than the ones proposed by 

Codes. In fact they are able to always guarantee the pseudo-ductile shear 

behavior of structures since the yield of steel becomes the base condition 

of design and optimization. 
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Chapter 1 

State of the art 

 

 

 

 

1.1. Introduction 

 

The aim of this section is to outline the origins and the historical evolution 

of a special type of partially prefabricate structures, made up of precast 

steel trusses embedded in cast in place concrete. In spite of the wide use of 

such structures since about forty years, nowadays neither National nor 

International Codes or a reliable bibliography provide proper mechanical 

models or design formulations. 
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From a technological standpoint, such systems are made up of columns, 

beams and joints. Referring to “beam elements”, unlike traditional 

reinforced concrete beams, prefabricated steel trusses can bear their own 

weight and the weight of concrete and slabs without any provisional 

support. The Code EN 1994-1-1:2004 [12] labels such constructions as 

“un-propped structures”. This stage is called “the first dry assembly stage”. 

Afterwards, the hardening of concrete marks the changeover to “the 

second stage”, when the composite behavior occurs.  

 

Referring to the constructive stages, all the steel components are made up 

in the assembly shops and then are moved toward the building site and are 

placed between couples of columns. In these conditions, structures behave 

like classical steel structures and the mechanical model to adopt for design 

purpose is a beam constrained with sliding supports at the ends. 

To ensure the structural continuity during the 2nd stage, additional 

reinforcing steel bars are placed over the beam-columns joints, on both 

upper and lower sides. So, after the hardening of concrete, structural joints 

behave like “composite joints”. 

The Italian Code (Decreto Ministeriale of January 14th, 2008, at paragraph 

4.6 [5]) mentions this special kind of structures stating that for their use it 

is necessary to require an official authorization to the Servizio Tecnico 

Centrale on the judgment of the Superior Council of Public Works. 

 

In the following, the origins of these structures will be retraced in order to 

identify all the critical aspects of classical structures that furthered the 

research of new constructive solutions. Among all the requirements that 

pushed the development of constructions, the most influent was the 

industrialization of the building process. 
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1.2. Historical framework 

 

Partially prefabricate structures have a beginning as a technological 

evolution of classical reinforced concrete (RC) structures. 

Nowadays RC structures are the most common in national countrywide for 

both the slowness to innovation of technology in civil constructions and 

technical reasons, which meanly deal with the knowledge of mechanical 

models and design formulations, supported by several laboratory tests and 

practical experience. This is the main reason why, about one hundred 

years away their introduction, RC structures are still used and made up 

following the same construction steps, although they present many critical 

issues related to all the design prescriptions that must be enforced. 

 

Classical RC structures are usually made up by casting fluid concrete in 

formworks, where steel rods have been previously placed. After the 

hardening of concrete, the mechanical behavior of structures depends on 

many factors. Among all of them the most important are: the 

characteristics of materials, the geometrical and mechanical percentage of 

reinforcement and the quality of detailing design. 

Several efforts have been made to renew the building process of classical 

RC structures, especially in order to make the process faster, less 

expensive and to reduce the uncertainties, typical of building sites. The last 

issue refers both to the lowering of risks and injuries for workers and to 

the lowering of the uncertainties related to the accurate application of 

design provisions: in fact, building site hand labors deal with the use of 

formworks, the disposal of props and the assembling of steel rods as 

reinforcement. 

 

Steel and concrete composite structures are made up by assembling cold-

formed steel elements and by casting in place concrete. Steel and concrete 

components are connected by means of shear connection in order to limit 
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the longitudinal slip between concrete and steel [12]. Nowadays both 

National and International Codes provide mechanical models and design 

formulations for these structures. 

 

Referring to the industrialization of building process, an important step 

forward has been accomplished thanks to the introduction of 

prefabrication techniques. Briefly, they consist in the dry assembling of 

structural elements - beams and columns - made up in assembly shops and 

tested by random sampling. Then, these structural components are moved 

towards building sites where they are connected by means of different 

kinds of structural joints. Even if this technology allows reducing building 

time length and lowering building site uncertainties, it presents several 

issues related to the structural behavior. Such structures, in fact, are 

usually statically determinate and this characteristic limits their use just to 

a few building typologies, as single-storey industrial buildings or bridges. 

Moreover, the structural continuity, achieved by statically indeterminate 

structures, is a prerequisite to build multilevel constructions and 

dissipative structures, able to dissipate energy during earthquakes by 

means of plastic hinges. 

 

In this overall framework, the new type of composite steel and concrete 

beams (CSCB) seems to be an interesting balance solution between 

statically indeterminate structures wholly realized in building sites and 

statically determinate structures made up in the assembly shops: in fact on 

one hand steel truss beams coming from the assembly shops are tested like 

every industrial product and it allows guarantying a high control of the 

quality of products and on the other hand casting in place of concrete 

allows the structures being statically indeterminate, without in situ 

weldings or connections by means of tightening torques. 
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1.3. The origins and the development of 

CSCB 

 

This section deals with the analysis of the development of CSCB typologies. 

As stated in the previous, nowadays there is not a reliable bibliography 

which presents an official historical evolution of CSCB and shows the date 

and the patent’s author of the first composite steel and concrete beams. 

Therefore the historical evolution, presented in the following, has been 

outlined gathering some official documents and patents. Moreover it has 

been often necessary referring to the history of some national companies 

and to their brands that, in collaboration with engineers and professors, 

furthered the introduction of new models and new constructive solutions. 

 

1964 Mr Prassede Savoia submitted the request for patent to the 

Ministry of Industry of Torino for the industrial invention n. 

16687/64 of July 27th, 1964, whose title was “Self-bearing 

reinforcement for reinforced concrete slabs”. The patent n. 735007 

was issued on 1996. The structural model covered by patent 

consisted of a self-bearing steel truss beam made up of a steel rod as 

upper chord, a steel truss as shear reinforcement and a steel plate as 

lower chord. All these elements, put together by welding, formed 

the steel component of the beam, completed by the cast in place 

concrete. The shape and the structural behavior of such elements 

were similar to the CSCB, but with an area of applicability limited to 

the slabs. 

 

1967 Eng. Salvatore Leone submitted the request for patent entitled 

“steel beam for slabs and vaulted ceilings, which can bear the weight 

of other structural elements and embedded in cast in place 

concrete”. The patent was registered on July 28th 1967. This 
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structural model marked the beginning of the use of truss beams as 

structural elements able to bear the weight of slabs. The first brand 

of such beams was SEP (Strutture Edili Prefabbricate), originated 

from the name of the fist company that produced and put to 

national market these elements. 

In detail, these beams were characterized by: a steel plate as lower 

chord, one steel truss as shear reinforcement, the same depth of the 

slabs that they had to carry and, if necessary, a lateritium layer to 

cover the lower plate. 

 

1972 The model proposed by Eng. Leone was improved by 

introducing two steel trusses as shear reinforcement and two 

supports at the ends of the beam able to avoid the slip of the beam 

during the 1st stage. Starting from these improvements, patents 966-

663 and 966-664 were issued for these new models, which allowed 

the use of such beams, called REP that stands for Rapida 

Economica Pratica, for complex structures like long span bridges. 

 

1978 The CSP Prefabbricati company introduced a new model of 

beams, whose lower chord was made up of reinforced concrete. 

Afterwards other models were proposed, whose main innovation 

dealt with different tilt angles of tensile and compressive bars. At 

that time, Fornaci Patricelli of Pescara and SEP put in the national 

market structural finished products. After the bankruptcy of SEP, 

the most widespread brand was REP and new kinds of products 

were conceived and patented: the most significant innovations dealt 

with the use of beams characterized by different depths, according 

to the depth of slabs. Moreover, they had more than two series of 

bent bars as shear reinforcement and three or more steel bars as 

upper chord. 
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In the late 70’s was conceived a hybrid model of beam called “beam-

slab”, especially useful for long span bridges, in which the weight of 

the fluid concrete is the main load for the 1st stage. 

 

1986 This date marks the beginning of research activities at RDB 

Laboratory, Pontenure (PC) thanks to an agreement among all the 

national REP companies. 

 

1987-88 New models of beams were conceived and patented: 

beams with two separate series of bent bars as shear reinforcement 

(S.C.A:V.) and beams with bent bars placed on the left or right side 

of the cross section (Reato snc). 

 

1996 The research activities increased and many new models of 

beam were covered by patent. Among all of them, it is useful to 

mention the steel truss beam which can be placed across structural 

joints (EDIS s.r.l.) and the beam with the upper chord shorted than 

the lower one (CSP). 

 

Thanks to all these improvements, the use of this kind of beams 

spread and many new brands were born. 

 

1.3.1. The idea and the patent 

 

The authorship of the CSCB is commonly ascribed to Eng. Leone, who 

conceived the first models of beams like so they are produced still now. 

This is the reason why a brief biography and all the official documents of 

his patents and structural models will be presented in the following. 

Salvatore Leone was born in Cosenza in 1922. He graduated in 1954 at the 

Engineering Faculty of Naples, defending the thesis “Research about the 
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plastic strain and the shrinkage of reinforced concrete”. From 1945 to 1950 

he was Assistant Professor and he teamed up with Prof. Adriano Galli. He 

worked as a freelancer engineer in Naples, Milan and Pescara with E. 

Giangreco and V. Franciosi. 

In 1967 he conceived and patented the first CSCB, called REP. In 1968 he 

developed the formulation for the structural design of such structures and 

in 1980, together with his wife Paola Pezzi, he founded the EDIS society 

for the management of patents for beams, columns, slabs and structural 

joints. 

The idea originated from the necessity to minimize the time length of 

building site actions and to optimize the use of materials: starting from the 

existing steel and concrete composite structures, Eng. Leone tried to 

outline new structural details. 

In the first model the web of the beam, that was usually made up of a steel 

plate in the classical steel and concrete composite structures, was replaced 

with a plate shaped as shown in Figure 1, the upper flange with a single 

steel rod and the lower flange with a steel plate. 

 

 

Figure 1. First model of CSCB 
 

In the next models, the lower chord was made up of steel plate and one or 

more series of steel bending bars, see Figure 2. 
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Figure 2. Next models of CSCB 

 

All these devices allowed obtaining prefabricated reinforcements, mass-

produced in the assembly shops. From a technological point of view, the 

new solution made the positioning of slabs faster and safer, since they can 

be placed on the lower plate of the beam, avoiding the use of props and 

formworks. 

The patent n.805383 of July 28th, Figure 3, 1967 dealt with steel (Fe 510C 

UNI 7870) truss beams, in which the bent bars of the web were welded to 

the upper longitudinal bars and to the lower plate. 

 

 

Figure 3. Patent n. n.805383 of July 28th, 1967  
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1.4. The technology 

 

CSCBs can be defined as structural elements subjected to bending moment 

and shear, made up of a steel truss as shear reinforcement, welded to the 

upper chord, usually made up of steel rods, and to the lower chord, made 

up of a steel plate or a reinforced concrete plate. 

Therefore, referring to Figure 4, the steel component of the CSCB is made 

up of: 

• upper chord 

• lower chord 

• web 

• other additional elements 

 

 

Figure 4. Main components of RCTB 

 

The upper chord is usually made up of longitudinal bars – circular or 

square cross section – welded to the upper nodes of the web and 

symmetrically placed in the cross section. For common beams, the number 

of bars varies, 2 by 2, from a minimum of 1 to a maximum of 5. 

The lower chord is usually made up of a steel plate or a 

reinforced/prestressed concrete bottom plate. The steel plate has usually 

upper chord

lower chord
sliding support
device

slabs

web
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the same thickness along the span and in order to satisfy the design 

requirements, additional longitudinal bars can be welded on it. 

Moreover, if the slabs have the same depth of the beam, the lower chord is 

usually designed in order that the bottom plate should be a support for 

slabs. In case of deep beams, the lower chord can be a C steel section. In 

both cases, the lower plate accomplishes all the tasks of the formworks. 

The web is made up of one or more steel – high bond or smooth bars - 

trusses, whose nodes are welded to the lower and upper chords. The 

diameter of the bent web bars is usually constant. 

 

 

 

The characterization of the web can be conducted on the basis of several 

parameters. 

Referring to the cross section, it can be spatial, when the tilt angle of 

tensile and compressive bars is less than 90°, single-plane or multiple-

plane, when the tilt angle is equal to 90°. 

 

As for the longitudinal section, the webs of the beam can be aligned or 

staggered, the longitudinal axes can be curved or broker line and the depth 

can change along the span. 

 

Moreover, referring to the position of the constrains, the sliding supports 

can be placed both at the ends, or one at the end and the other along the 

span or the web can be constrained with more than two sliding supports. 

 

The bent bars of the web can be shaped so that they are both at the same 

angle on the horizontal axis or not. 

 

The most common additional element typical of CSCB is the sliding 

support device, which is usually made up of transversal bars whose 
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purpose is to steady the steel beam during the placing. As structural 

components of the beam, they have to be designed to resist to all the loads 

– shear, tensile and compressive stresses – of the 1st and 2nd stage. 

All the others additional elements are proper of each beam and depend on 

its depth and on the mutual position with the slabs. Other typical 

additional elements are: structural cross bracings, additional mid-depth 

supports for the slabs or additional longitudinal bars welded to the lower 

steel plate. 

 

As stated in the previous, to ensure the structural continuity during the 2nd 

stage, additional reinforcing steel bars are located over beam-columns 

joints, on both upper and lower sides. As an alternative, additional steel 

trusses can be placed across the joints or reinforcing bars can be welded to 

both lower and upper chord of the beams. 

 

Referring to the confinement of the concrete, the stirrups are usually 

welded at the ends of the beams and along the span, according to the 

design requirements. 

1.5. 1st and 2nd stage: structural 

behavior 

 

The service life of CSCB can be divided into 3 stages, in detail: 

 

• Stage 0: it deals with the production, transportation and 

positioning of the steel trusses. During this stage the beams have to 

be inspected and tested like industrial prefabricated products, 

according to the requirements of proper Codes; 

• 1st stage: it starts from the positioning of steel elements on 

columns until the hardening of concrete. During this stage CSCB 
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behave like steel structures which can bear their own weight and the 

weight of slabs and concrete, with or without provisional supports, 

depending on the design requirements. They have to be designed 

according to the provisions of Codes about steel structures and 

referring to the model of beams constrained by sliding supports at 

the ends. 

• 2nd stage: it starts from the hardening of concrete until the end of 

structure’s design service life. CSCB’ behavior is outlined between 

reinforced concrete structures and composite steel concrete ones, 

since it has some peculiar characteristics of both of them, but of fact 

is different from them. In fact, during the 2nd stage, the steel truss 

beam is a prestressed structure embedded in the concrete and 

subjected to all the live and dead loads specific of this stage. 

Moreover, since the hardening of concrete marks the changeover of 

the structural model, from sliding supports to fixed end-supports, 

the design of the structure during the 2nd stage have to be conducted 

referring to continuous beam model. 

1.6. Advantages 

 

Nowadays the interest for this technology is growing up in Europe, mainly 

because of many advantages it provides with respect to the traditional 

reinforced concrete beams. Among all of them, referring mainly to the 

structural safety, the most important ones are the lowering of risk due to 

the manufacturing of beam reinforcement in the assembly shop rather 

than in the construction site and the possibility to build structures by 

assembling all members according to simple construction instructions. In 

addition to these advantages there are some others dealing with 

technological and economical aspects: for instance the prefabrication of 

the steel reinforcement speeds up the construction activities and since the 
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steel truss is self-carrying, it does not require any type of supports. 

Moreover, the reduction of the number of props reduces significantly the 

number of obstacles, which are the most important sources of risk and 

injury in building sites. Typically, all these positive features lead to a 

sensible reduction of management costs in comparison to traditional 

reinforced concrete structures. 
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1.7. Structural analysis methods 

 

The analysis of a reinforced concrete structure can be conducted according 

to several models based on the three fundamental principles of mechanics 

of materials: the stress equilibrium condition, the strain compatibility 

condition and the constitutive laws of concrete and steel. Hsu and Mo [36] 

provided for the first time a unified theory made up of six models each of 

which is characterized by the fundamental principles employed and the 

degree of adherence to the rigorous principle of mechanics of materials. 

The six models are: (1) the struts and ties model, (2) the equilibrium 

(plasticity) truss model, (3) the Bernoulli compatibility truss model, (4) the 

Mohr compatibility truss model, (5) the softened truss model and (6) the 

softened membrane model. 

Some of them may be particularly suitable for the analysis of discontinuity 

(or local) regions and others for continuity regions (also called beam or 

main regions). Moreover, some of them are intended for the service load 

stage or the ultimate load stage. In detail: 

• Struts and ties Model 

Principles: Equilibrium condition only 

Applications: Design of local regions; 

• Equilibrium (Plasticity) Truss Model 

Principles: Equilibrium condition and the theory of plasticity 

Applications: Analysis and design of , ,  and M N V T in the main 

regions at the ultimate load stage; 

• Bernoulli Compatibility Truss Model 

Principles: 1-D Equilibrium condition, Bernoulli compatibility 

condition and 1-D or uniaxial constitutive law for concrete and 

reinforcement. The constitutive laws may be linear or nonlinear 

Applications: Analysis and design of  and M N in the main regions at 

both the serviceability and the ultimate load stages; 
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• Mohr Compatibility Truss Model 

Principles: 2-D Equilibrium condition, Mohr’s compatibility 

condition and 1-D or uniaxial constitutive law (Hook’s Law is 

preferred) for both concrete and reinforcement 

Applications: Analysis and design of  and V T in the main regions at 

both the serviceability load stage; 

• Softened Truss Model 

Principles: 2-D Equilibrium condition, Mohr’s compatibility 

condition and the 2-D softened constitutive law for concrete. The 

constitutive law of reinforcement may be linear or nonlinear 

Applications: Analysis and design of V and T in the main regions at 

both the serviceability and the ultimate load stages 

• Softened Membrane Model 

Principles: 2-D Equilibrium condition, Mohr’s compatibility 

condition and the 2-D softened constitutive law for concrete. The 

constitutive law of reinforcement may be linear or nonlinear. The 

Poisson effect is included in the analysis 

Applications: Analysis and design of  and TV in the main regions at 

both the serviceability and the ultimate load stages. 

 

1.8. Equilibrium (Plasticity) Truss 

Model 

 

For the purpose of the analyses proposed in this work, the concept of the 

Equilibrium (Plasticity) Truss Model will be deepened in the following, 

especially referring to its application to the shear theory. 

The use of limit analysis methods has been growing up in the last sixty 

years for the solution of engineering problems, as widely grounded by 
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Prager [34] and Chen [35], especially starting from 1950s, when the theory 

of plasticity was completely developed. 

Before then all the structural analysis methods were based on the theory of 

elasticity, which starts from the well known assumption of zero residual 

stresses. Actually, referring to real structures, significant residual states of 

stress occur also for “elastic structures” and it is usually difficult to 

estimate them. Moreover, since ultimate loads of sufficiently ductile 

structures are independent of residual stresses, limit analysis methods can 

be a useful basis for strength design, especially for real complex structures. 

In addition, closed form solutions for ultimate load can be derived and 

usually the resulting expressions reflect the influence of the main 

parameters and the geometry of the problem, giving a clear idea about the 

load carrying behavior and the possible collapse mechanisms of the 

structure [33]. 

In the struts and ties models concrete compression struts and the tension 

steel ties outline a truss able to bear applied loads [37, 38]. This kind of 

model is usually adopted for the analysis of D-regions, where the classical 

De Saint Venant theory is not applicable [13, 44]. When the struts and ties 

models are employed for main regions’ analysis (also well known as B-

regions) they are called Truss models and are able to perform analysis of 

bending and axial loads and shear and torsion. The first application of 

truss theory to the shear design dates back to W. Ritter (1899) and E. 

Mörsch (1902): in their view a reinforced concrete beam acts like a 

parallel-stringer truss to resist bending and shear [36]. This model fits at 

best to describe the behavior of beams after the first 45° inclined cracks 

occur [45]. In fact these failures separate the concrete into a series of 

diagonal struts that, together with the transverse steel bars, are able to 

guarantee the equilibrium condition of external forces, by resisting 

respectively to compressive and tensile forces. Later, Rausch (1929), see 

[13, Vol. I], extended the concept of plane truss model for beam subjected 

to shear and flexure to members subjected to torsion. The weakness of this 
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truss model is that the concrete struts and the steel ties are treated like 

lines without cross-sectional dimensions and so it does not allow 

evaluating the stresses and the strains in the beam. 

Such model was improved in the 1960’s, when the dimensionless elements 

were replaced with more realistic 2-D elements. Starting from this new 

model, Nielsen (1967), [22, 48], and Lampert and Thurlimann (1968, 

1969) derived three equilibrium equations, where the steel and concrete 

stresses should satisfy the Mohr stress circle. 

 

1.8.1. Main hypotheses 

 

Three main hypotheses underpin the equilibrium (plasticity) truss model. 

Stress of materials: under the hypothesis that the yield of the steel 

occurs before the crushing of concrete struts, it is possible to use the three 

equilibrium equations to evaluate the stresses in the steel bars and in 

concrete struts at the ultimate load stage. This method of analysis is called 

equilibrium (plasticity) truss model. 

Strain compatibility: the strain compatibility condition is irrelevant 

under the plasticity condition. So the equilibrium truss model can be 

applied for all type of actions (bending, axial loads, shear and torsion) and 

their interactions. Elfgren (1972) provided a complete interactive 

relationship of bending, shear and torsion. 

Constitutive laws: the constitutive laws are not taken into account. 

 

 

 

1.8.2. Limitations 

 

The weakness of ignoring the strain compatibility and the constitutive laws 

of materials entails that the equilibrium (plasticity) truss model cannot be 
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used to derive the load deformation relationship of reinforced concrete 

beams subjected to shear and torsion. More sophisticated theories will 

have to be developed for shear and torsion that takes into account all the 

three principle of the mechanics of materials [36]. 

 

1.9. Shear theory 

 

In the following is briefly introduced the evolution of the shear theory, 

mostly drawn from Hsu and Mo’s work [36]1. 

As stated in the previous, Nielson, Lampert and Thurlimann derived three 

equilibrium equations for the 2-D elements of the truss. Afterwards the 

three strain compatibility equations were derived by Baumann (1972) and 

Collins (1973), according to the Mohr’s strain circle for both steel and 

concrete. 

So, referring to linear analysis, the 2-D equilibrium equations, Mohr’s 

compatibility equations and Hooke’s law allow developing a linear shear 

theory, called Mohr compatibility truss model. It could be applied in the 

elastic range up to the service load stage. Nonlinear shear theory is 

required to describe the behavior of 2-D shear elements up to the ultimate 

load stage. 

Shear in reinforced concrete membrane elements origins biaxial states of 

stress: if the shear stress can be solved referring to the principal tensile 

stress and the principal compressive stress in the 45° direction, on the 

other hand the biaxial constitutive relationship of a 2-D element was not 

easy to estimate since the stresses and strains in two directions affect each 

other. Robinson and Demorieux (1972) discovered that the principal 

compressive stress is reduced, or “softened”, by the principle tensile stress 

in the perpendicular direction. But without the proper equipment to 

                                                   

1 Also refer to [28] 
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perform biaxial testing of 2-D elements, they could not formulate the 

softened stress-strain relationship of concrete in compression. 

 

1.9.1. Stress –strain relationship of concrete in 

compression 

Later, Vecchio and Collins (1981) proved that the softening coefficient of 

the compressive stress-strain curve of concrete was a function of the 

principal tensile strain 1ε , rather than the principal tensile stress. 

So, incorporating the equilibrium equations, the compatibility equations 

and using the “softened stress – strain curve” of concrete, Collins and 

Mitchell (1980) developed the “compression field theory” (CFT), able to 

reproduce the non linear behavior of an element in the post-cracking 

region up to the peak point. 

Afterward, Vecchio and Collins (1986) proposed the “modified 

compression field theory” (MCFT) which included a constitutive 

relationship for concrete in tension able to better model the post-cracking 

shear stiffness [30, 31, 52]. 

In 1988 Hsu, Belarbi and Pang (1995) performed biaxial tests on large 2-D 

elements. They confirmed that the softening coefficient is a function of 

principal tensile strain 1ε  and developed the “rotating – angle softened 

truss model” (RA-STM). This model introduced two mains improvements 

to the previous ones: (1) the tensile stress of concrete was taken into 

account so that the deformations could be correctly predicted and (2) 

average stress–strain curve of steel bars embedded in concrete was derived 

on the “smeared crack level” so that it could be correctly used in the 

equilibrium and compatibility equations which are based on continuous 

materials. [36] 

Pang and Hsu (1996) and Hsu and Zhang (1997) introduced the fixed - 

angle softened truss model (FA-STM) able to predict the “concrete 
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contribution” cV  under the hypothesis that the cracks are oriented at the 

fixed angle, rather than the rotating one. 

Zhu, Hsu and Lee (2001) derived a rational shear modulus as s function of 

the compressive and the tensile stress-strain curves of concrete. 

Zhang and Hsu (1998) found that the softening coefficient was not only a 

function of the perpendicular tensile strain 1ε , but also a function of the 

compressive strength of concrete '
cf . 

Wang (2006) and Chintrakarn (2001), by experimental tests, proved that 

the softening coefficient was a function of deviation angle β . 

So the overall coefficients which affect the softening coefficient are: 1ε , '
cf

and β . 

All these theories are able to predict only the pre-peak branch of the shear 

stress vs shear strain curve, but not the post-peak branch of the curves, 

since the Poisson effect of cracked reinforced concrete was neglected. Zhu 

and Hsu (2002) quantified the Poisson effect and quantified this property 

by two ratios. So they developed the softened membrane model (SMM), 

able to predict the monotonic response of the load-deformation curves, 

including the pre-cracking and the post-cracking responses, as well as the 

ascending and descending branches. 

Mansour and Hsu (2005) extended the SMM to cycling loading, 

developing the cyclic softened membrane model (CSMM), which is able to 

evaluate the shear stiffness, the shear ductility and the shear energy 

dissipation of structures subjected to dominant shear (Hsu and Mansour, 

2005). 
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1.10. ACI 318-08: shear design 

 

As stated in the previous, in order to employ the Equilibrium (Plasticity) 

Truss Model for structural analysis the equilibrium condition must be met 

under the hypothesis of yield steel. 

The equilibrium condition for beam shear can be derived referring to the 

isolated beam element of Figure 5b. 

 

Figure 5. Equilibrium in beam shear, Hsu and Mo [36] 

 

Referring to the setting up of Hsu and Mo [36], the following assumptions 

are made: 

• transverse direction: the shear flow q  is a constant over the 

depth of the beam, d( )v vV q d qd= =∫ ; 

• longitudinal direction: the shear flow q  is distributed uniformly 

along the length of the beam and so the transverse steel stresses tf  

and the stresses in the diagonal concrete struts dσ  vary uniformly 

along their lengths. 
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So, the equilibrium condition of the main body in the longitudinal, 

transverse and diagonal directions can be expressed as: 

 

cotl rV N α=   (1.1) 

tant v rV n d α=   (1.2) 

( ) sin cosd v r rV h dσ α α=   (1.3) 

 

where lN and tn are the values of longitudinal steel and transverse steel 

respectively, h is the thickness of the structural element. 

The third equation,(1.3), allows checking the stress of concrete struts, in 

order to avoid the concrete crushing before the steel yielding. 

 

[36] According to the ACI prescription, the shear strength nV  should be 

evaluated as: 

 

n c sV V V= +   (1.4) 

 

where 

• cV is the contribution of concrete and can be evaluated by the 

following empirical expression (ACI318-08, ACI equation (11-3), 

[54]): 

 

( )'0,166c c wV f MPa b d=   (1.5) 

 

 where ( ) ( )' '0,166 0,42c w c c wf MPa b d V f MPa b d≤ ≤  and 1u

u

V d

M
≤  

• sV is the contribution of steel, which is the only one able to satisfy 

the equilibrium equation (1.3). 

According to the ACI Code, the following equations hold: 
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u
s c

V
V V

φ
= −   (1.6) 

 

Taking t vA A= , vd d=  and assuming the yielding of steel t ytf f=  

and 45θ = °  the (1.6) becomes: 

 

v s u c

yt yt

A V V V

s d f d f

φ
φ

−= =
⋅ ⋅ ⋅

  (1.7) 

 

The equation above refers to the transverse shear steel required in 

vertical legs of the cross section. The angle θ  is taken as 45° and for 

the spacing s  the following limits values are set: 

 

( )

( )

'

'

0,33
2

0,33
4

s c w

s c w

d
s V f MPa b d

d
s V f MPa b d

≤ → ≤

≤ → >
 (1.8) 
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1.11. Limitation of angleθ  

 

Within the framework of the strain compatibility conditions, after the 

cracking of a RC 2-D element, the width of the cracks must be controlled, 

especially at the service load stage. This requirement affects the range of 

variation of angle θ , which represents the inclination of compressive strut 

on the longitudinal axis of the beam. 

Each Code defines specific range of variation forθ : 

• [36] ACI Code: 30 60θ° ≤ ≤ °  

• [10] Eurocode2: 1 cot 2,5θ≤ ≤ , which corresponds to 21,8 45θ° ≤ ≤ °  

• [5] NTC 2008: 1 cot 2,5θ≤ ≤ , which corresponds to 21,8 45θ° ≤ ≤ °  

 

Usually both Codes and literature refer to experimental evidences and to 

qualitative evaluation of the crack width control to justify the limits ofθ . 

Recently Hsu and Mo (2010) [36] provided a rigorous demonstration 

based on the analysis of cracking condition at yielding of steel. In detail, 

they refer to two cases: (1) the yielding of the longitudinal steel and (2) the 

yielding of the transverse steel. 

These analyses are briefly summarized in the following. 

For the purpose of the analysis the normal strains have been defined: 

• lε : the strain of the longitudinal steel 

• tε : the strain of the transverse steel 

• rε : the cracking strain 

• dε : principal compressive strain, considered as a small given value 

• 90rα θ= ° −  

 

Referring to (1) the yielding of the longitudinal steel, the following 

condition is set: 
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l yε ε=   (1.9) 

 

The (1.9) guarantees the ductile behavior of the structural element, since 

the strain of longitudinal reinforcement corresponds to the yield stress of 

steel. 

The transverse steel strain tε  and the cracking strain rε  can be expressed as 

a function of ,  and l d rε ε α  and the following nondimensional equations for 

tε and rε hold: 

 

21 tant d d
r

y y y

ε ε ε α
ε ε ε

 
= + −  

 
  (1.10) 

21 1 tanr d
r

y y

ε ε α
ε ε

 
= + −  

 
  (1.11) 

 

The graph of Figure 6 shows the variation of the transverse steel strain 

ratio, /t yε ε , and the cracking strain ratio, /r yε ε , as a function of rα , 

according to (1.10) and(1.11). 

 

26



 

Chapter 1 – State of the art 

 

 

 

Figure 6. Cracking condition at yielding of steel, [36]2 

 

For each equation a range of /d yε ε ratios from 0  to 0,25− is given. The 

effect of /d yε ε ratio is small. 

So, referring to some significant values of rα  the (1.10) and(1.11) give: 

• 45 45rα θ= °⇒ = ° , t yε ε= and 2 2,25r y yε ε ε= − ; 

• 60 30rα θ= °⇒ = ° , 3 3,5t y yε ε ε= −  and 4 4,75r y yε ε ε= −  

                                                   

2 Thurlimann (1979) provided for the first time the /r r yα ε ε− graph, for the 

special case of / 0d yε ε =  [29, 47]. 

 

εεεεr-crack. 
for εεεεl=εεεεy 

θθθθ 

εεεεtransv. 
for εεεεl=εεεεy 

εεεεrupt. 
for εεεεt=εεεεy 

εεεεlong. 

for εεεεt=εεεεy 
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If the value of rα is furthered increased, the value of rε increases even 

faster. 

 

Referring to (2) the yielding of the transverse steel, the following condition 

is set: 

 

t yε ε=   (1.12) 

 

Following the same steps of the previous analysis, the longitudinal steel 

strain lε  and the cracking strain rε can be expressed as a function of

,  and t d rε ε α , giving the following nondimensional equations: 

 

21 cotl d d
r

y y y

ε ε ε α
ε ε ε

 
= + −  

 
  (1.13) 

21 1 cotr d
r

y y

ε ε α
ε ε

 
= + −  

 
  (1.14) 

 

The functions above are plotted in the graph of Figure 6 and for some 

significant value of rα they give: 

• 45 45rα θ= °⇒ = ° , l yε ε= and 2 2,25r y yε ε ε= −  

• 30 60rα θ= °⇒ = ° , 3 3,5l y yε ε ε= − and 4 4,75r y yε ε ε= −  

The trend of these two curves shows that the cracking strain ratio /r yε ε

increases very rapidly after the first yield of steel when the angle rα moves 

away from 45° , which represents the inclination of isostatic tensile and 

compressive lines in the pre-cracking stage. 
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On the basis of this analysis the range of variation of 30 60θ° ≤ ≤ °  should 

fit the real behavior of the structural element and should allow controlling 

cracks’ width. 
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1.11.1. Remarks 

The graph of Figure 6 gives useful information to understand the 

structural behavior of a reinforced concrete beam starting from the pre-

cracking state to the ultimate limit one. 

According to the behavior of an idealized homogeneous body, the first 

cracks follow the inclination of the principal stress lines, which is about 

45°  on the longitudinal axis3. Under increasing loads, the tilt angle of the 

struts θ decreases and, referring to Figure 6, rα increases. 

 

 

1.12. Comments 

 

As picked out by Hsu and Mo [36], the Equilibrium (Plasticity) Truss 

Model presents some weaknesses principally related to the strain 

compatibility condition for shear and torsion and the biaxial behavior of 

reinforced concrete 2-D elements. 

In detail, among all the advantages of the method underlined by the 

authors, the following are especially significant for the purpose of this 

work: the equilibrium condition is completely satisfied and provides three 

equilibrium equations, useful for the design of the three components of the 

truss model: transverse steel, longitudinal steel and diagonal concrete 

struts. Moreover these equations satisfy the Mohr circle. 

Referring to the shear behavior, the critical aspects deal mainly with the 

strain compatibility conditions that are not taken into account: so, shear 

and torsional deformations cannot be evaluated and the yielding of steel or 

                                                   

3 For the analysis of the behavior of a beam during the prefailure stage, the development 
of the crack pattern and the evaluation of the structural resisting mechanisms see, 
Chapter 2. 
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the crushing of concrete cannot be rationally determined as well as the 

modes of failure.[36] 
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Chapter 2 

Resistance to vertical shear in 

RC structures 

 

 

 

 

 

2.1 Introduction 

The majority of reinforced concrete flexural members have to resist to 

shearing forces in combination with flexure, axial loads and, in case, 

torsion. In order to indentify the effect of the only shear forces and the 

related mechanical models, it is useful to analyze all the possible 

interactions with the other structural actions [3]. 

If a flexural member, subjected to shear and flexure actions, fails before 

reaching the moment capacity, the structural collapse refers to “shear 

ultimate state” even if the structural behavior is ruled by shear and flexural 
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forces. Shear transfer relies more on compression and tension concrete 

elements than steel ones, which are usually subjected to low values of 

strain [13]. As a consequence, shear failures occur in concrete members 

and are usually non ductile. 

The De Saint Venant theory, which is proper of homogeneous, isotropic 

and elastic bodies, is still expedient for the analysis of reinforced concrete 

structures at the prefailure stage and gives acceptable predictions about 

the localization and the shape of first cracks [3]. With the development of 

failure pattern, the distribution of stiffness and stresses within the member 

becomes very complex, as well as the related kinematic equations. This is 

the reason why the shear behavior of reinforced concrete beams can be 

reasonably described referring to two different stages: the first prefailure 

stage, and the second cracked stage, which correspond to two different 

structural models. 

As stated previously, the uncracked stage can be reasonably analyzed 

referring to the classical concepts of shear stresses. As a confirmation, the 

crack patterns of a rectangular concrete beam, simply supported at the 

ends and subjected to uniform loads along the span, fit the isostatic lines 

of an ideal homogeneous, isotropic and elastic body, see Figure 1 and 

Figure 2, where flexure and shear combine to create a biaxial state of 

stress. So its behavior can be properly described by the classical 

formulation for the evaluation of strains and stresses [17]. 

 

Figure 1. Trajectories of principal stresses  

in a homogeneous isotropic beam [3] 
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When, under increasing magnitude of loads, the principal tensile stresses 

exceed the tensile strength of concrete, the second cracked stage occurs 

and the first failure is orthogonal to the principal tensile direction of the 

prefailure stage. 

The analysis of crack patterns can be conducted in reference to the beam of 

Figure 2. 

 

Figure 2. Reference beam model: possible cracking pattern 

 

The well-known loading and constrain conditions of the beam allow 

dealing with shear and flexural effects separately: in detail, segment a  is 

representative of the stresses and cracks of shear and segment b  of the 

stresses-related cracks of flexure. 

Briefly, the cracks within segment b  are typical of flexural stresses and, 

starting from lower extreme tension fibers of the beam, where the tensile 

stress has the maximum value, they reach the neutral axis along vertical 

paths. Within segment a , instead, two kinds of failures can occur ( )γ and 

( )β , see Figure 2. The first type, ( )γ , is typical of portions of the beam 

where the shear stresses reach their maximum value and the flexural 

stresses the minimum value. They usually begin next to the neutral axis of 

a b a

P

V=P

P

V=P

V=P

V=P

M=Pa

(γ) (β) (α)
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the beam and they propagate until the bottom chord along 45° inclined 

paths. 

The second type, ( )β , is characteristic of portions of the beam where there 

are shear and flexural stresses in equal measure. They usually follow 

vertical paths next to the bottom chord and 45° inclined paths next to the 

neutral axis, in accordance with the distribution of stresses in each cross 

section [13]. 

Note that only the first cracks have the same characteristics of the ideal 

ones described above. In fact, they deal with the stresses of an ideal 

homogeneous body, before the first failure and before the related 

redistribution of stiffness and stresses. 

The flexural member may collapse just after the formation of diagonal 

cracks or an entirely new shear carrying mechanism may develop, which is 

capable of sustaining further load in a cracked beam. 

Usually, the second circumstance occurs thanks to some carrying 

mechanisms, proper to concrete beams without reinforcement, which will 

be described in detail in the following. 

2.2 Resisting mechanisms in 
concrete beams 

 

This section deals with all the resisting mechanisms occurring in 

reinforced concrete beams without web reinforcement. 

Referring to the beam of Figure 2 and to ( )γ
 
type cracks described in the 

previous section, Figure 3 shows the equilibrium requirements for the 

shear span of the beam, subjected to constant shear force. The internal and 

external forces able to guarantee equilibrium can be easily identified. 
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Figure 3. Equilibrium of the span x of the beam 

 

The external transverse force V  is resisted by the combination of: 

• a shear force across the compression upper chord cV ; 

• a dowel force transmitted across the crack by the flexural 

reinforcement dV ; 

• the vertical components of inclined shearing stresses, iV , 

transmitted across the inclined crack by means of interlocking of 

aggregate particles [3]. 

Note that the first term, cV , is also present in uncracked members. The 

second and the third, instead, contribute to the resisting mechanism only 

in the presence of cracks, and the amount of their contribution depends on 

the relative displacements of the crack edges. 

In addition to these three terms, the “arch action” can contribute to shear 

resistance by inclined compressive bars, see Figure 4. This resisting 

mechanism is activated near the constraints and especially with low 

slenderness values, /l z ratio (span of the beam to depth of the cross-

section). In addition, in order for the arch action to work, it is necessary 

that the bottom longitudinal reinforcement runs through the span, with 

constant values of the cross-section, like the chains of arches. 
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The bearing capacity of the arch action depends on the geometrical and 

mechanical characteristics of the concrete struts (angle of the axis of 

gravity, concrete strength). 

 

Figure 4. Arch action 

 

The collapse of the arch within the beam may occur for the following 

reasons: 

• the loss of bond of longitudinal reinforcement; 

• the flexural failure of beams, ( )δ , starting from the bottom tension 

fibers, reaches the top compressive concrete chord and causes the 

reduction of the concrete struts cross-section, see Figure 4; 

• the eccentricity between the compressive force of the strut and the 

top chord causes tensile stresses in the top fibers of the beam. When 

the tensile stress exceeds the tensile strength of concrete, ( )ε  

failures come about and, depending on their length, they may 

reduce the area of the struts cross-section, see Figure 4; 

• the diagonal compression stress of the struts reaches the 

compressive strength of concrete. 

Extensive experimental works [18] show that the failures and the possible 

resisting mechanisms of the cracked beam develop in accordance with the 

/a d factor, which is the shear-span-to-depth ratio. 
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Concerning this, the results of experimental tests1 conducted by Leonhardt 

and Walther [20] are meaningful, showing that the shear failure 

mechanisms fall in three approximate ranges of /a d ratio. In detail: 

• Type I: the failures occur at or shortly after the application of the 

diagonal cracking load, with 3 / 7a d< < . The arch mechanism is not 

able to resist to cracking load. 

• Type II: shear compression or flexural tension failure of the 

compression zone above diagonal cracking load. This failure is 

typical of arch action, which occurs when 2 / 3a d< < . 

• Type III: failure by crushing or splitting of the concrete, when 

/ 2,5a d <  [3]. 

The behavior of web reinforced concrete beams is not far from the one 

described above. The web reinforcement does not change the mechanisms 

of shear resistance, but improves them in different aspects2. 

 

In the following section the main resisting mechanisms of diagonally 

cracked beams are described in detail. 

 

2.2.1 Concrete cantilevers, dowel 

action, aggregate interlock 

Crack pattern, induced by load on a simply supported beam, see Figure 2, 

divides the tension zone into a number of blocks. Each of them may be 

considered to act as a cantilever with its end fixed at the upper 

compression zone and its free end just beyond the flexural tension 

reinforcement [3]. The shear load transfer from the tension reinforcement 

                                                   

1 All the tests have been conducted on simply supported concrete beams, reinforced with 
lower longitudinal bars and subjected to point loads. 

2 For the detailed description of the shear resistance mechanisms for both reinforced and 
not reinforced concrete beams, see [3] and [13]. 
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to the upper compressive chord depends on the bearing capacity of each 

cantilever. 

In detail, referring to Figure 5, the actions on the concrete cantilever are 

the following: 

• the bond force along the flexural reinforcement due to the 

increasing tensile force between two adjacent cracks 

1 2T T T∆ = − ; 

• the forces induced by aggregate interlocking along the edges of the 

crack, 1iv  and 2iv , see Figure 5 and Figure 6; 

• the dowel forces 1dV and 2dV across the lower longitudinal 

reinforcement, see Figure 5 and Figure 7; 

• the axial force P , the shear force hV  and the bending moment cM  

that represent the reactions of the ideal cantilever fixed at the upper 

compressive chord and ensure the equilibrium of the “substructure” 

subjected to all the forces mentioned above [3]; 

 

Figure 5. Concrete cantilever: equilibrium of the single element [3] 

 

As regards the equilibrium condition of the cantilever, the moment 

induced by the bond forces, 1 2T T T∆ = − , is resisted by the aggregate 
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interlock forces, 2 1i i iv v v∆ = − , the dowel forces, 2 1V V Vd d d∆ = − , and the 

bending moment cM . 

 

Figure 6. Displacement along a cracked shear plane: 

aggregate interlock [3] 

 

 

 

Figure 7. The mechanism of dowel action 

across a shear interface [3] 

 

So, the resistance of the concrete cantilever is ruled by the resistance of 

each mechanism whose weight in the overall structure bearing capacity 

depends mainly on geometrical factors. 

Several experimental tests [1] showed that the flexural resistance of the 

cantilever depends on: 

∆

w

α

M

Vd

Vd

dd

M

Vd

Vd

Vd

Vd
dd

a) b) c)

l

General orientation 
of crack 

Shear 
displacement 

Crack width 

40



 

Chapter 2 – Resistance to vertical shear in RC structures 

 

 

• the tensile strength of concrete; 

• the distribution of stresses due to P , Vh  and cM ; 

• the depth cs  of the critical cantilever section. 

As widely shown in a series of beams tested by Leonhardt and Walther 

[20], for common beams3, at most 20%of the bond force can be resisted by 

the flexure of the “built – in end” of the concrete cantilever [3] and is 

determinate by the depth cs  of the critical cantilever section, which is 

usually small and especially at advanced stages of cracking. Moreover, the 

bearing capacity of the cantilever depends on the tensile and compressive 

strength of concrete, according to the stress of each fiber of the cantilever. 

The bearing capacity of the dowel action of the flexural reinforcement, 

instead, can be activated by the shear displacement along the inclined 

cracks and depends on the tensile strength of cover concrete. In fact, 

splitting cracks reduce the stiffness and the effectiveness of the dowel 

action and, at the same time, reduce the bond performance of the bars4. 

The splitting strength of the concrete depends on the area around the bars 

and hence on the bar spacing. 

Please note that the splitting and compressive strength of concrete is 

necessary to ensure the effectiveness of bond forces and, so, the overall 

effectiveness of the cantilever. 

Several tests (see [20, 69]) showed that the dowel action does not exceed 

25% of the total cantilever resistance. Moreover, it is more relevant in 

presence of stirrups, since they contribute to carry dowel forces right after 

the first cracks parallel to the flexural bar develop [3]. The stiffness of the 

dowel mechanism, in fact, depends on the position of a crack relative to 

the nearest stirrup which would be capable of sustaining the dowel force: 

dowel forces can be transferred by kinking of the bars, see Figure 7. 

                                                   

3 Tested beams:1 7
a

d
≤ ≤ . 

4 Note that the bond performance of the bars is also related to the compressive strength of 
concrete. For more details, see [13]. 

41



 

Chapter 2 – Resistance to vertical shear in RC structures 

 

 

When the width of the shear cracks is pretty narrow, small shear forces can 

be transmitted by means of the aggregate interlocking. The effectiveness of 

this mechanism, see Figure 6, depends mainly on the width and the 

coarseness of the crack, the shear displacement and the mechanical 

characteristics of concrete (concrete strength, size of aggregate compared 

to the width of the crack and the dimensions of the cross section). Among 

all the resisting shear mechanisms, the latter mentioned is the most 

efficient since it is able to bear 50% 70%− of the bond force5. 

The contribution of each mechanism (dowel action, aggregate interlock 

and flexural strength of the fixed end of the cantilever) to the shear 

capacity changes according to the evolution of the crack pattern and the 

three mechanisms are not necessary additive. 

The carrying capacity of the fixed-end of the cantilever, in fact, decreases 

according to the developing of the inclined cracks. This phenomenon 

causes the rotation of the free-end cantilever, pushing to maximum the 

values of dowel action. Then, dowel cracks and secondary diagonal cracks 

near the reinforcement affect the aggregate interlock action, which 

represents the main shear carrying mechanism at this stage. The increase 

of cracks’ width causes an instant reduction of the aggregate interlock 

forces on one side of the cantilever that causes imbalance. To restore the 

equilibrium condition a corresponding tension can be developed at the 

springing of the cantilever: the resulting tensile forces usually lead to 

further cracks that occur suddenly and, although they are about horizontal, 

these are referred to as diagonal tension failures. The shear carried by the 

compression zone above the diagonal cracks slowly increases according to 

the development of the cracks to a maximum of 25% to 40% of the total 

shear force across the section. Therefore the reminder shear must be 

carried by the tension zone of the beam by means of the aggregate 

interlock and the dowel mechanisms. But when they fail, the compression 

                                                   

5 For more detail about the aggregate interlocking resisting mechanism see [1, 70, 71]. 
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zone is usually unable to carry the increased shear in addition to the 

compression force resulting from the flexure and the beam fails [3]. 

2.3 Truss model for shear 

Many kinds of truss models are able to reproduce the mechanical behavior 

of reinforced concrete structures useful for structural design [19]. Among 

all of them, the Mörsch truss is one of the most well-known and used to 

evaluate the shear resistance of reinforced concrete beams. It can be 

described as a system of prismatic members, usually called bars, connected 

each other by frictionless hinges and subjected only to forces applied to the 

joints. Since the bars are weightless and the hinges are ideal ones, each bar 

can be subjected also to normal tensile and compressive stress [17]. The 

analogy between the truss model and the web of the equivalent truss 

consists of stirrups acting as tension members and concrete struts as 

compressive ones. The struts run parallel to diagonal cracks and their 

grade depends on the spacing of the stirrups and the depth of the beam. 

The upper and the lower parallel chords represent the flexural concrete 

compression and reinforced tension zone, respectively [3,17]. 

The stress and the strain of bars can be determined only referring to 

equilibrium conditions. 

The deformations that derive from beam and arch actions during the 

prefailure stage are not compatible with the ones coming from truss 

mechanisms: this strain incompatibility becomes less significant as the 

ultimate conditions are approached. [3] 

In the most general case, tensile and compressive web elements are 

respectively inclined at α  and θ  to the horizontal. These information 
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suffice describing the topology of the truss and determining the value of 

the internal forces, since the structural system is internally determinate6. 

Referring to Figure 8, graphic remarks allow evaluating the value of stress 

and strain in each element of the truss, by assuming a graphic scale where 

the depth of the beam represents the magnitude of the shear V . 

 

 

Figure 8. Internal forces in a generic truss 

 

Therefore the following relation holds: 

c s= N sin  = N sinθ α⋅ ⋅V   (2.1) 

where: 

• cN is the value of axial compressive stress in the compressive 

element; 

• sN is the value of axial tensile stress in the stirrup. 

The overall shear resistance of the beam can be evaluated taking into 

account all the resisting mechanisms explained above – carrying 

mechanisms of beams without reinforcement and truss resisting 

mechanism - or just some of them, depending on the provisions of design 

codes. 

Referring to the topology of the truss, the slope of the compression 

elements - struts - has been usually assumed to be 45° to the longitudinal 

axis of the beam and variable at the “discontinuity regions”, as the 

boundaries of the beam [3]. Several studies based on strain energy 

                                                   

6 Note that these remarks hold also for upper and lower chord only if the structure is 
externally statically determinate. 
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considerations, see [39], show that the optimum angle of compressive 

element along “beam regions” is about 38° . 

For the assessment of the compression strength of the struts, it is 

necessary considering some additional factors explained down below: 

• in real reinforced concrete beams, concrete struts are subjected to 

bending moments, according to what has been explained above on 

the resisting mechanisms of beams without web reinforcement, see 

Figure 5. Moreover the assumption of “pin-jointed nodes” is a 

theoretical one; 

• stirrups passing through transmit tension to these struts by means 

of bond [3], thus the compression strength of concrete is severely 

reduced by the biaxial state of stress and strain; 

• the real load condition, far from being a uniform load applied to 

each node of the ideal truss, brings about eccentricities and 

transverse tensile stresses, which affect the real state of stress of 

each element. 

The truss resisting mechanism in a reinforced concrete beam can be active 

only after the formation of the first diagonal cracks: in fact, in these 

conditions, the stirrups transfer the vertical shear across a diagonal crack. 

Moreover, the contribution of stirrups to the shear capacity of the beam 

can be evaluated also referring to the confinement action on concrete 

struts, which enhances the compressive strength of both concrete struts of 

the truss and the concrete elements of the arch on case of deep beams. 

The use of horizontal web reinforcement, if considered, contributes to the 

shear resistance of beam by aiding crack control and increasing dowel 

action, but it does not affect the capacity of truss mechanism. In deep 

beams, as well, the arch mechanism can be greatly boosted by the addition 

of horizontal bars, if they are well anchored. 
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2.4 Resistance to vertical shear 

According to the Italian National Code (Normativa Tecnica per le 

Costruzioni 2008), the design shear resistance of reinforced concrete 

structures should be determined by suitable truss models [5]. 

The structural members of the ideal truss are: the web reinforcement 

acting as tension member, the bottom longitudinal reinforcement, the 

flexural concrete compression zone and the concrete compressive struts. 

For the Ultimate Limit State verification of shear, the following condition 

is set: 

 

Rd EdV V≥   (2.2) 

 

where: 

EdV is the design value of shear demand and the shear capacity of the beam 

is defined as 

 

( )min ,Rd Rsd RcdV V V=   (2.3) 

 

The design capacity of tension web reinforcement should be evaluated as 

follows: 

 

( )0,9 sinsw
Rsd yd

A
V d f ctg ctg

s
α θ α= ⋅ ⋅ ⋅ ⋅ + ⋅  (2.4) 

 

The design strength of compressive web concrete members should be 

calculated as follows: 

 

( )
( )

'

2
0,9

1
Rcd w c cd

ctg ctg
V d b f

ctg

α θ
α

θ
+

= ⋅ ⋅ ⋅ ⋅ ⋅
+

  (2.5) 
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where: 

ydf  is the design value of the yield strength of structural steel 

d  is the depth of the cross section 

wb  is the width of the cross section 

swA  is the area of the web reinforcement’s cross section 

s  is the spacing of steel bars 

α  is the tilt angle of tension bars to the longitudinal axis of the beam 

θ  is the tilt angle of compressive struts to the longitudinal axis of the 

beam 

'
cdf  is the reduced compressive strength of web concrete ' 0,5cd cdf f= ⋅  

cα  is an amplification factor that, in case of non-compressive members, as 

beams usually are, can be taken equal to1. 

 

Referring to the formula (2.4) and to Figure 9 and Figure 10, the meaning 

of each term is explained in the following: 

• 0,9 d z⋅ =  is the internal lever arm; 

o ( )z ctg ctgα θ⋅ + , see Figure 9b, is the length of the 

representative span of the truss model, rsL . This quantity, 

together with angles α  and θ , gives all the useful 

information about the geometrical characteristics of the truss 

model adopted for the design. So, the ratio /rsL s , gives the 

number, n , of trusses that contribute to the overall tensile 

shear strength of the beam; 

• sw ydA f⋅  is the tensile strength of the web reinforcement within rsL , 

evaluated for the yield stress of the steel; 

o sinsw ydA f α⋅ ⋅  is the projection of the normal force of the 

tension bar on the vertical axis, 1 1 sinR t R tV N α= ⋅ . 
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So, the formulation (2.4) can be written as: 

 

( )
1sin sinRsd sw yd R t

z ctg ctg
V A f n N

s

α θ
α α

⋅ +
= ⋅ ⋅ ⋅ = ⋅ ⋅  (2.6) 

 

So, the design shear strength of tensile members of the truss is evaluated 

referring to the single representative truss span, rsL , since it is the product 

of the shear resistance of the single tension bar, multiplied by the number 

n  of the bars, see (2.6). 

 

Figure 9. Single truss 

 

Figure 10. Multiple trusses 
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With reference to (2.5) and to Figure 9 and Figure 10, the meaning of each 

term can be explained as follows: 

 

• 0,9 d z⋅ =  

o ( )z ctg ctgα θ⋅ +  has the same meaning explained above; 

� ( ) sin sin sinw w rs stb z ctg ctg b L Aα θ θ θ θ⋅ ⋅ + ⋅ = ⋅ ⋅ = ⋅ 7 

gives the projection of the strut cross-section area on 

the plane orthogonal to the strut axis, see Figure 11; 

� ' sin sinst cd Rc RcA f N Vθ θ⋅ ⋅ = ⋅ =  is the projection of the 

normal force of the compressive strut on the vertical 

axis, evaluated for the compressive strength of 

concrete. 

 

Figure 11. Compressive web member 

 

So, the design strength of compressive web member is defined as the 

compressive strength of the cross-section of the strut of the single truss, 

whose depth is rsL : 

 

sinRc RcV N θ= ⋅   (2.7) 

                                                   

7 Note that simple trigonometric transformations gives 2
2

1
sin

1 cot
θ

θ
=

+
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Note that by multiplying the numerator and the denominator by s , it is 

possible to express the overall strength of the strut as the sum of the 

contribution of n  struts, each of which is ideally related to one tension bar. 

 

( )
( )

' ' 2

2

'
1

1

0,9 sin
1

sin

sin

Rcd w c cd w cd

s cd

Rcd R c

ctg ctgs
V d b f n b f s

s ctg

n A f

V n N

α θ
α θ

θ

θ

θ

⊥

+
= ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ =

+

= ⋅ ⋅ ⋅ ⇒

= ⋅ ⋅

 (2.8) 

 

It makes clear that the Superposition Principle8 underpins the method for 

the evaluation of tensile and compressive shear strength. 

 

Figure 12. Superposition principle 

 

So, the collapse load is defined as the minimum between the load ( RsdV ) 

that brings n  tension bars to the yield stress and the one ( RcdV ) that brings 

the struts to the limit stress. Note that the number of tensile bars within 

RsL , as well as the depth of the struts, changes depending on the angle θ . 

 

For design purposes, all terms in (2.4) and (2.5) can be chosen according 

to the design requirements. As far as the angle θ  is concerned, note that it 

                                                   

8 See next section 
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cannot be imposed, since it represents the natural inclination of the struts 

under the real load condition. 

In fact, along the line of the commonly accepted theory of shear in 

reinforced concrete based on the variable angle strut, see Figure 13, the 

maximum shear capacity is attained when tension and compression 

elements fail simultaneously. Given this, the maximum shear capacity is 

attained when the two contributions (2.4) and (2.5) are made equal, by 

varying the value of θ  according to the following limits set by the Italian 

National Code [5]: 

 

1 cot 2,5θ≤ ≤   (2.9) 

 

 

Figure 13. Variation of θ  
 

Moreover, referring to (2.4), the value of RsdV  depends on the number of 

tension bars, n , in the representative span length rsL , the mechanical and 

geometrical characteristics of the single bar (area of the cross-section and 

yield stress of the steel) and the tilt angle, α . So, the value of RsdV increases 

as  n , 1R tN  and sinα  increase. 

Referring to (2.5), instead, the value of the shear compressive strength 

depends only on the geometrical and mechanical properties of the strut 

cross-section. It should be noted that, assuming α  and wb  as constant 

Lrs1
Lrs2

Lrs3

z

θ θ θ α
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values, since they are usually assigned data of the design, the area of the 

cross-section varies according to the angle θ9.  

By varying the value of θ , see Figure 13, both RsdV  and RcdV  change. 

In detail, when the value of θ  increases: 

• the value of RsdV  decreases, according to the number, n , of the 

tension bars within the shear representative span; 

• the value of RcdV  increases, according to the area of the cross-

section, see Figure 14, where: 

 

( )
( )Rcd 2

v
1

ctg ctg

ctg

α θ
θ

+
=

+
  (2.10) 
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Figure 14. Variation of Rcdv  as function of θ  

 

  

                                                   

9 Even if the number of struts related to each tensile bar changes, the overall area of the 

cross-section is constant, see Figure 10. 
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2.5 Analysis and critical aspects 

The shear design criterion explained above shows some critical aspects, 

mainly related to the theory that underpins the design formulation. 

In fact, the shear design method of the Italian National Code stems from 

the Lower Bound Theorem of Plasticity, also called Static Theorem, which 

states that: 

“If the load has such a magnitude that it is possible to find a stress 

distribution corresponding to stresses within the yield surface and 

satisfying the equilibrium conditions and the static boundary conditions 

for the actual load, then this load will not be able to cause collapse of the 

body.” [22] 

As long as the structure, subjected to any external loading condition, is 

able to guarantee the equilibrium by an internal stress resultant system, 

the external forces are less than the ones able to cause collapse of the 

structure. Referring to the structural safety, considering this external 

loading condition as the collapse one is a conservative choice, since the 

real collapse load will be either greater than the one considered or will 

refer to a different load condition. So, the equilibrium condition of the 

structural system is a necessary condition for the validity of the theorem. 

This approach is widely used to establish the collapse criterion and to 

define possible collapse loading conditions for statically indeterminate 

structures. 

 

Therefore, starting from (2.4) and  (2.5), and referring to the collapse 

criterion explained above, the Italian National Code sets the following 

assumptions: 

• the “equilibrium condition” is always met; 

• the stress of all structural members (transverse reinforcement and 

struts) is taken equal to the limit value. So, the forces applied to the 
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overall structural system are able to cause the simultaneous failure 

of both the compressive struts and the steel ties. 

• the design value of the shear capacity is the minimum value 

between the compressive resistance of the struts and the tensile 

resistance of the steel bars, referring to an arbitrary value of θ , 

within the range (2.9). 

In the following sections, the analyses carried out to verify that the first 

two conditions can be contemporarily satisfied will be presented, with the 

additional objective of understanding the physical meaning of the bounds 

on θ  and how they affect the validity of the theory behind the design 

method. 

 

2.5.1 Equilibrium condition and 

ductile collapse 

Referring to the structural model in Figure 13, the equilibrium condition 

can be expressed as follows: 

 

Rsd RcdV V=   (2.11) 

 

According to the Lower Bound Theorem, Eq. (2.11) should be always met, 

since it represents the only equilibrated solution valid to evaluate the 

collapse load. 

The Italian National Code, instead, does not impose the condition (2.11), 

but refers to it as the solution able to maximize the shear strength, see also 

[4], since it brings to collapse both concrete and steel members. Eq. (2.3), 

in fact, shows that, for the design purpose, it is possible to take into 

account as shear capacity the minimum between RsdV  and RcdV , which 

means that the condition of equilibrium is not satisfied. 
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Moreover, the condition of minimum is not able to guarantee the pseudo-

ductile shear collapse of the beam: in fact, if Rcd RsdV V< , RcdV  has to be 

considered as the design shear capacity and the concrete members will 

crush before the steel bars yield. 

 

Furthermore, the approach of the variable angle truss model allows 

considering the value of θ  able to guarantee the condition (2.2), by 

respecting the limits (2.9), without imposing any verification about the 

type of collapse – ductile or brittle – and about the real behavior of the 

structure, starting from the first prefailure stage (see previous section). 

The selected value of θ , able to guarantee the equilibrium condition and 

to satisfy the design requirements, can be imposed in the design model, 

but it is not the real angle of the struts. Therefore, the real behavior of the 

structure could be different from the expected one. Concerning this, 

several experimental tests have been conducted, see [20, 23, 24], showing 

that, at collapse of flexural members, the value of θ  depends on the 

amount and on the arrangement of shear and longitudinal reinforcement, 

and that, at the prefailure stage, the struts angle depends also on the axial 

stresses magnitude. 

 

The critical aspects picked out above have been verified by means of 

analytical analyses on standard reinforced concrete beams. 

For the purpose of studying the trend of RsdV  and RcdV  curves by varying 

the angle θ , (2.4) has been expressed as a function of the mechanical 

reinforcement ratio swµ . In detail: 

 

( ) ( )
'

,
sin

y sw
sw

cd w

f A
s

f b s

φ
µ φ

α
⋅

=
⋅ ⋅ ⋅

  (2.12) 

 

By substituting (2.12) in (2.6), the following relation holds: 
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( )' 2sinRsd sw cd wV f b z ctg ctgµ α α θ= ⋅ ⋅ ⋅ ⋅ ⋅ +  (2.13) 

 

Then, referring to (2.13) and (2.5), the normalized tensile and compressive 

shear capacity can be expressed as follows: 

 

( ) ( ) ( )2
'

,
v , sinRsd sw

Rsd sw sw
cd w

V
ctg ctg

f b z

θ µ
θ µ µ α α θ= = ⋅ ⋅ +

⋅ ⋅
 (2.14) 

( ) ( ) ( )
( )' 2

v
1

Rcd
Rsc c

cd w

V ctg ctg

f b z ctg

θ α θ
θ α

θ
+

= = ⋅
⋅ ⋅ +

  (2.15) 

 

Since the value of RsdV  is a function of ( ) and ,sw sθ µ φ  and RcdV  is a 

function of θ , the trend of the functions ( ) ( )v ,  and vRsd sw Rsdθ µ θ  can be 

analyzed referring to: , ,sw sθ µ . 

Note that the angle of the tensile shear reinforcement, α , has been 

considered equal to 90° , since in most civil constructions the tension web 

bars are made from vertical stirrups. Moreover, the values of ( )swµ φ  have 

been calculated referring to the following set of diameters: [ ]8,10,12 mmφ =

. 

 

The results of the analyses are summarized in the graphs below. 

Before starting to comment each case study, it is useful to underline that 

all the graphs, which show how the value of ( )v ,Rsd swθ µ  and ( )vRsc θ  

changes depending on θ  for three different values of swµ , have to be read 

referring to the real behavior of structures, from the prefailure state to the 

ultimate limit state (see previous section). 

Therefore, starting from 45θ ≈ ° , the first value of Rdv  is the one 

corresponding to the intersection point between the vertical line drawn 
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starting from 45θ = °  and the curve, ( )Rsdv , swiθ µ  or ( )Rcdv θ . Then, 

moving along the curve under consideration10, the value of Rdv  changes as 

the angle θ  decreases. 

 

The first graph, see Figure 15, refers to s=100 mm and shows that the 

equilibrium condition ( Rsd Rcdv = v ) is met for each value of swµ . 

Under the hypothesis of shear demand Dv =0.3 - horizontal gray line – 

there are three different design solutions able to meet the resistance 

requirement: 

• 0  ; 23sw swµ µ θ= ≈ ° ; 

• 1 ; 36sw swµ µ θ= ≈ ° ; 

• 2  ; 45sw swµ µ θ= ≈ ° . 

With reference to the second design solution and starting from the 

prefailure state, for 45θ = °  the beam shear capacity will equal the strength 

of n 11 yielded steel bars. As the shear force increases, until the shear 

demand Dv , the value of θ  decreases and the number of yielded steel bars 

increases up to the value of Dv . Then, under the design shear load Dv  all 

the steel bars within rsL  will be yielded and the stress of concrete will be 

less than the ultimate one. 

This solution, as well as the third one, ensures a pseudo-ductile shear 

behavior, but does not meet the equilibrium condition that can be satisfied 

for different values of θ , naturally reached under larger values of shear 

demand. 

The third design solution, as well, is the only one that, for the specific 

shear demand under analysis, is able to meet both equilibrium and 

resistance requirements. 

                                                   

10 Referring to (2.3), the reference curve is the first one intersected by the vertical line. 
11 Number of bars in rsL , whose length depends on θ . 
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Figure 15. s=100 mm, C25/30, S355, 1cα =  

 

Figure 16 refers to s = 200mm. Unlike the previous case, the equilibrium 

condition can be met only for 2sw swµ µ= . 
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Figure 16.s=200 mm, C25/30, S355, 1cα =  

µµµµsw 

µµµµsw 
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Figure 17, as well, refers to s = 300 mm and shows that the equilibrium 

solution cannot be satisfied for any value of swµ . 
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Figure 17. cs=300 mm, C25/30, S355, 1α =  

 

The three cases above show that the equilibrium condition, which is a 

necessary requirement for the validity of the Lower Bound Theorem, 

cannot always be met, also for all those design solution quite common in 

civil constructions. 

 

The graph below, see Figure 18, refers to an uncommon constructive 

solution, but is able to represent another limit of the theoretical approach 

of the Italian National Code. 

In fact, the graph shows that the equilibrium solution cannot be met for 

any value of  and swµ θ  and, most of all, it proves that all solutions refer to 

brittle shear behavior. 

Starting from 45θ = ° , the vertical line intersects the curve Rcdv , which 

represents the limit strength of concrete. Note that the value of the shear 

µµµµsw 
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resistance cannot increase, not only because it represents the maximum 

value along the curve Rcdv , but also because the brittle collapse does not 

allow the development of additional resisting mechanisms. 
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Figure 18. ws=50 mm, b =200, C16/20, S450, 1cα =  

 

Moreover, note that the variation of θ  cannot be continuous, since it 

depends on the spacing of transverse reinforcement, s . Therefore the 

equilibrium condition, that in some cases represents the only possible 

solution of the problem, see Figure 15, cannot be met because of the 

arrangement of the reinforcement and the limits of the range of variation 

of θ , see (2.9). 

  

µµµµsw 
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2.5.2 Constitutive law and 

superposition principle 

 

According to the theory behind the formulations of the Italian National 

Code, tensile and compressive forces are taken into account with their 

respective maximum values: the yield stress for steel, ydf , and the 

compressive strength for concrete, '
cdf . 

This condition has two critical aspects: the first one refers to the 

constitutive laws, which cannot be satisfied for both the compressive and 

the tensile member; the second one concerns the superposition principle, 

which is only valid for linear analysis. 

In fact, as explained above, at shear demand Dv , the variable angle truss is 

characterized by: 

• θ , the angle of compression struts; 

• n , the number of tension bars, which is a function of θ , see (2.8). 

The overall resisting substructure, characterized by rsL , can be considered 

as the sum of n  trusses, see (2.6) (2.8). But within the framework of 

plasticity theory, the assumption of applicability of the superposition 

principle does not seem appropriate. 
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3.1 Introduction 

 

This section deals with the development of a new simplified mechanical 

model of CSCB capable of predicting the yield of shear steel bars and the 

corresponding stress in concrete elements. The proposed model stems 

from a variational approach, able to meet both the compatibility and the 

equilibrium conditions. 

The problem has been set by means of the displacement method of 

analysis, under the hypotheses of infinite stiffness of the beam upper 

chord. Then the equilibrium condition has been found using the Principle 

of Minimum Potential Energy. 
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The first section of the chapter briefly outlines the theoretical background 

of variational methods for finding the solution of boundary mixed linear 

elastic problems1. 

The second section deals with the description of the proposed model and 

the theoretical assumptions behind it, the definition of all the adopted 

symbols, and the solution of the structural system, obtained by minimizing 

the potential energy functional. 

In the next part the concept is deepened of “shear demand” for the 

proposed model, by making use of the capacity design concept. 

In the last section, as well, some geometrical remarks are presented in 

order to explain the physical meaning of each term of the proposed 

formulation and the lower and upper limits set for the value of each of 

them. 

3.2 Variational approach 
 

The solution of mixed boundary linear elastic problems can be found by 

means of three different general methods: direct, inverse and semi-

inverse. The direct method allows determining the exact solution by direct 

integration of field equations (15 differential equations), which express 

compatibility conditions, equilibrium conditions and constitutive laws. 

Boundary conditions have to be satisfied exactly. 

According to the inverse method, particular displacements or stresses have 

to be selected and then it is necessary to identify the specific problem that 

can be solved by the solution field. 

By the semi-inverse method, part of the displacement and/or stress field is 

specified “a priori” and the remaining part is determined by means of the 

field equations (usually using direct integration) and boundary conditions. 

                                                   

1 This definition of the problem refers, respectively, to the mixed boundary conditions, 
since they deal with both displacements and forces, and to the linear equations, able to 
describe the problem. 
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As an example, De Saint Venant’s problem is set according to this method 

[25]. 

All the methods defined above require finding the solution of the field 

equations that can be found by means of several mathematical techniques: 

analytical solutions procedures, approximate solution procedures and 

numerical solution procedures. [25] 

Within the framework of approximate solution procedures, variational 

methods, which are related to energy theorems, allow obtaining values of 

unknown displacements or forces at specific points of the structure by 

finding an extreme of a particular integral functional. In structural 

mechanics, the reference functional is usually the total energy of the 

system and includes all the features of the problem – governing equations, 

boundary and/or initial conditions and constraint condition. [64]. 

In the following, some basic concepts related to variational methods for 

finding the solution of boundary mixed linear elastic problems are briefly 

presented. 

 

3.2.1 Strain Energy and Work 
 

The strain energy can be defined as the amount of energy stored in a 

structural element during its deformation, due to applied external loads. 

Consider the simplest case of a spring with non-linear constitutive law, 

gradually loaded with a force F  along its longitudinal axis. The load-

displacement graph is shown in Figure 1: by increasing the applied force by 

a small amount, Fδ , the displacement increases of an amount yδ . 
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Figure 1. Strain energy: linear constitutive law 

 

The dotted area of the graph underneath the curve ( )F f y=  represents 

the strain energy stored in the spring during the last increase of the load, 

see (3.1), which, neglecting the second order infinitesimal, is given by: 

 

U F dyδ = ⋅   (3.1) 

 

Therefore, the overall strain energy stored in the spring when the load 

increases gradually from 0  to F , see the striped area in Figure 1, can be 

expressed as the sum of the strain energy related to each small increase of 

displacement. So the following relation holds: 

 

0

y

U Fdy= ∫   (3.2) 

 

The strain energy stored in the spring can be also seen as a measure of the 

internal work, iW . 

 

Referring to the case of linear constitutive law of the spring, the curve in 

Figure 1 becomes a line, whose function is F ky= , where k  represents the 

stiffness of the spring. 

δ

F+δF

y

y

F

y0 y+δy

F+δF
F

y

U
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So, referring to (3.2), the strain energy – which is equal to the internal 

work – can be expressed as: 

 

2

0 0

1

2 2

y y

i

y
U W Fdy k ydy k F y= = = ⋅ = ⋅ = ⋅ ⋅∫ ∫  (3.3) 

 

For conservative systems, the internal work is equal to the external one, 

done by the force F . So, the following relation holds: 

 

e iW W=   (3.4) 

 

The work of external forces, eW , on an elastic solid is completely stored as 

strain energy, U , within the solid. 

Moreover, as F  is a conservative force, it is also possible to define the 

potential energy, which is a function of the external forces. The variation 

of the potential energy can be expressed as: 

 

eW V= −∆   (3.5) 

 

As shown in (3.5), V∆  has a negative sign since the positive work causes a 

reduction in the potential. 

 

3.2.2 Total potential energy 
 

The total potential energy is defined as the algebraic sum of the internal 

strain energy and the potential energy function of the external load, V . 

 

U VΠ = + ∆   (3.6) 

 

By substituting (3.3) and (3.5) into (3.6), the following formulation holds: 
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21

2
ky FyΠ = −   (3.7) 

 

Before expounding the Principle of Virtual Work, in the following all the 

terms used in the next section are briefly introduced. 

In the framework of the theory of deformable bodies, consider a mixed 

boundary value problem, where all the equations are linear and the 

boundary conditions deal with both forces and displacement. The 

generalized Hooke’s law for anisotropic bodies can be written as follows: 

 

[ ] [ ][ ]T C E=   (3.8) 

 

Where [ ]C  is the fourth order elastic modulus tensor (stiffness tensor), 

whose components represent the bounded functions of the variable x V∈ : 

for the general case of anisotropic materials, it has 
43 elements. [ ]T  and 

[ ]E  are the second order stress and the Cauchy strain tensors, respectively. 

Referring to the ij th− element of the tensor[ ]T , (3.8) gives: 

 

ij ijkl klCσ ε=   (3.9) 

 

Because of the rotational equilibrium of the body, [ ]T  is symmetric and 

the following equation holds: 

 

ij ji ij ijkl kl ji jikl kl ijkl jiklC C C Cσ σ σ ε σ ε= ⇒ = = = ⇒ =  (3.10) 

 

The symmetry of the tensor[ ]E , as well, gives:  

 

kl lk ij ijkl kl ijlk lkC Cε ε σ ε ε= ⇒ = =   (3.11) 

Then, the following equation can be written: 
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ijkl jikl ijlkC C C= =   (3.12) 

 

This property of the tensor [ ]C is called “minor symmetry” and reduces the 

number of matrix elements from 81 to 36 . 

Moreover, for hyperelastic materials, since the stress-strain relation can be 

derived from a strain energy2 density functional, see(3.13), the “major 

symmetry” holds, see (3.14), which reduces the number of matrix elements 

to 21  independent terms. 

 

2

ij ijkl
ij ij kl

C
ϕ ϕσ
ε ε ε

∂ ∂= ⇒ =
∂ ∂ ∂

  (3.13) 

ijkl klijC C=   (3.14) 

 

Moreover, in the case of an isotropic body, the independent elements of 

[ ]C become 2 : the in-plane shear modulus, G , and the Lame’s coefficient, 

λ , defined as follows: 

 

( ) ( )1 1 2

E νλ
ν ν

⋅=
+ + −  

  (3.15) 

 

where E is the Young modulus and ν is the Poisson’s ratio. 

 

 

 

 

                                                   

2 The work done by surface and body forces on an elastic body is stored inside it in the 
form of strain energy. For an idealized elastic body, this stored energy turns on zero when 
the body returns to the unstrained configuration. 
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3.2.3 The Principle of Virtual Work 
 

The principle of virtual work provides the basis for all the approximate 

solution procedures. The Virtual Work is the work done on a deformable 

body by actual forces in moving through a hypothetical or virtual 

displacement that is consistent with the geometric constrains [64]. 

It states that if ( )uσ  is a statically admissible stress field (equilibrium 

conditions are met) and ( )u x is a geometrically admissible displacement 

field (compatibility conditions are met), the following formulation holds 

 

( )d d d dij ij i i i i i iV V S S
u V f u V p u S r Sσ ε = + + δ∫ ∫ ∫ ∫  (3.16) 

 

where: 

• if  represents the i th− body force 

• ip  is the i th− surface force 

• ir  is the constraint reaction force 

• iδ  is the displacement at the support, along the same direction of ir  

Therefore, the virtual work of internal forces, represented by the left-hand 

side of the equation, is equal to the virtual work of external forces, made 

up of the virtual work of body forces, surface forces and the work of 

support reactions due to the displacements of constrains. 

 

Eq. (3.16) can be written as: 

 

( )d d d d 0ij ij i i i i i iV V S S
u V f u V p u S r Sσ ε − − − δ =∫ ∫ ∫ ∫  (3.17) 

 

Thus, the total virtual work for a body in equilibrium is zero. 

Under the assumptions 0iδ =  and 0if = , which represent the most 

common case in real structures, (3.17) becomes: 
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( )d d 0ij ij i iV S
u V p u Sσ ε − =∫ ∫   (3.18) 

 

The strain energy, see (3.3), stored by the solid can be expressed as: 

 

ij ij

V

dVσ εΘ = ∫   (3.19) 

 

The density of local strain energy, as well, can be written as: 

 

0

0

ijd
ε

σ εΘ = ∫   (3.20) 

 

Moreover, the complementary strain energy density can be written as: 

 

0

0

ijd
σ

ε σΘ = ∫   (3.21) 

 

The strain energy is the area underneath the stress-strain curve up to the 

point of deformation, see Figure 2. 

 

Figure 2. Strain and complementary energy for linear and non-linear 
elastic materials 
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Note that just for linear elastic materials the value of the strain energy 

equals that of the complementary one. 

In case of uniaxial tension, when all the stress components of the tensor 

[ ]T  are zero, except iiσ , the linear strain energy density can be written as: 

 

( )
2

0

0 0

1 1

2 2 2
ii

ii ii ii ii

E
d E d

ε ε εσ ε ε ε σ εΘ = = = =∫ ∫  (3.22) 

 

Referring to the axial strain energy, the following formulations hold: 

 

( )ii ii ii

du
E x

dx
σ ε ε= =   (3.23) 

2 2
21 1 1

2 2 2ii

V L A L A

du du
E dV E dA dx EdA dx

dx dx
ε

      Θ = = =      
         

∫ ∫ ∫ ∫ ∫  (3.24) 

 

The following condition can be set: 

 

2

0,

1

2l

du
EA

dx
 Θ =  
 

  (3.25) 

 

It represents the strain energy per unit length. Then, the strain energy is: 

 

0,l

L

dxΘ = Θ∫   (3.26) 

 

The complementary strain energy density and the complementary strain 

energy can be written, respectively, as follows: 

 

2
c
0

1

2

N

EA
Θ =   (3.27) 
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c c

L

dxΘ = Θ∫   (3.28) 

 

3.2.4 Principle of Minimum Potential Energy 
 

As stated in the previous section, the potential energy can be denoted as 

U VΠ = + ∆ . According to the Virtual Work Principle, the variation of 

potential energy for an equilibrium configuration is zero. It means that the 

potential energy is stationary for equilibrium configurations. The 

potential energy, under this condition, will reach its local extremum, 

either minimim or maximum value. As demonstrated by Sokolnikoff 

(1956) or Reismann and Pawlik (1980), the potential energy function has a 

local minimum in the equilibrium configuration. This leads to the 

Principle of Minimum Potential Energy: of all displacements satisfying 

the given boundary conditions of an elastic solid, those that satisfy the 

equilibrium equations make the potential energy a local minimum [25]. 

So, under the hypotheses that the body is subjected to conservative forces, 

that it is made up of elastic materials regardless of whether the stress-

strain law is linear or nonlinear and starting from known displacements, 

the following formulation holds: 

 

( ) 1
( ) ( ) ( ) ( )

2
T T

ijkh ijkh

V V

u u C u dV u C u dVε ε ε εΠ = ⋅ ⋅ − ⋅ ⋅∫ ∫  (3.29) 
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3.3 Proposed model 
 

This section deals with the research and the solution of a new mechanical 

model able to describe the structural behavior of CSCB and to define a 

reliable design and verification method consistent with the requirements 

of the National Code. 

Starting from the model in Figure 3, which represents the main resistant 

elements of composite steel and concrete beams, the simplified model in 

Figure 4 has been defined, in order to fulfill the following requirements: 

• reproducing the real mechanical behavior of the structure, with 

reference to all the (compressive and tensile3) resisting elements 

and to their stiffness and resistance, for any possible arrangement 

of the steel elements of the beam; 

• providing a model which can be the basis for a reliable procedure of 

design and verification of structural elements, especially referring to 

the pseudo- ductile behavior of a beam failing in shear; 

• putting forward a solution methodology able to guarantee the 

attainment of both equilibrium and compatibility conditions. 

Referring to the first requirement, by means of a preliminary strut-and-tie 

modeling, the internal truss system has been organized in two groups of 

elements: those belonging to the flanges and those belonging to the web. 

The flanges are the upper compressed chord made of concrete and the 

bottom tension chord made generally by a steel plate. 

The web is made of the following elements: 

T  - Steel bars, either vertical or inclined, generally in tension 

R  - Rods made of concrete and steel, generally in compression 

S  - Diagonal struts made of concrete 

The flanges are devoted to the flexural capacity, while the web to the shear 

capacity. Moreover, all geometrical and mechanical characteristics of the 

                                                   

3 Please note that compressive and tensile elements have been defined referring to the 
most common load condition for beams in static conditions: uniform load. 
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model are parametric quantities, which allow describing any beam 

configuration. 

Referring to the shear capacity, the overall resisting system can be 

described referring separately to the steel tensile bars (T ) and the 

compressive steel and concrete elements ( R S+ ), where the former fix the 

tensile shear resistance of the beam and the latter the compressive shear 

resistance. It should be noted that, unlike the variable angle model for 

reinforced concrete structures, see Chapter 2, the mechanical model of a 

CSCB is fixed, since both Rθ  and Sθ  angles are defined by the steel truss 

geometry. So, the tensile and compressive shear resistance depends on the 

mechanical characteristics of the beam and the geometrical arrangement 

of the steel truss.  

This remark allows considering the set of ,  and T S R , which converge onto 

a common node, as a “representative substructure” of the shear resistance 

of the overall CSCB, see Figure 4 and Figure 9. 

Therefore, starting from this substructure, a design procedure, based on 

the capacity design criterion, has been defined, which seeks the equality 

between shear demand and tensile shear capacity, while verifying crushing 

of concrete compressive elements and lateral buckling of compressive steel 

bars.  

In the application of the capacity design criterion, this setting of the model 

allows considering the capacity of the tensile elements as the externally 

acting force that must be equilibrated by the compressive elements. 

Note that, as explained in detail in the “Shear Demand” section of this 

Chapter, the shear demand DV  used in the proposed model is defined by 

referring to the bending moment capacity of the cross section, since the 

shear design procedure refers to the 2nd stage, see Chapter 1. 

This setting of the design procedure is able to ensure both global and local 

ductile behavior of the beam. 

The structural model, which is a statically indeterminate one, has been 

solved by referring to a variational method, as described in a previous 
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section: in detail, starting from a compatibility solution under the 

hypothesis of infinite stiffness of the upper chord, see Figure 4, the 

equilibrium condition has been found by minimizing the total potential 

energy. As a result, the vertical displacement of the node of the structure 

has been expressed as a function of the shear demand and the stiffness of 

the compressive elements. Moreover, since the stiffness values of each 

compressive element are known after the solution of the system, it is 

possible to evaluate the stress of both concrete and steel compressive 

elements in order to check, respectively, the crack width and the buckling 

of bars. 

3.3.1 Symbols 
 

In the following Figure 3 and Table 1 all the symbols used to describe and 

analyze the proposed simplified model are summarized. Note that in the 

model the slight angle of the bars in the cross-section is neglected. 

 

Figure 3. Composite Steel-Concrete Beams: model 
 

Table 1. Symbols 

 
Tension 

bar 
Rod4 Strut 

symbol T  R  S  

area T swA A=  R E s w w RA n A b sν= ⋅ + ⋅ ⋅  S w SA b sν= ⋅ ⋅  

                                                   

4 The “Rod element” is made up of steel and concrete , with the following cross section 

area: R E s w w RA n A b sν= ⋅ + ⋅ ⋅ , where 
S

E
c

E
n

E
=  

z

bL  =sL  =s

αθ θR S

R
S

T

rs rs w
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angle α  
1

acot cotRθ α
ζ
 = − 
 

 
2

acot cotSθ α
ζ
 = − 
 

 

Young 
modulus 

sE  ,c sE E  cE  

length sinT

z
l

α
=  ( )sinR

R

z
l

θ α
=  ( )sinS

S

z
l

θ α
=  

glob. displ. v
 

v
 

v
 

loc. displ. v sin α⋅  v sin Rθ⋅  v sin Sθ⋅  

strain 
v

sinT z
ε α=  

v
sinR Rz

ε θ= ⋅  
v

sinS Sz
ε θ= ⋅  

stress s TE ε⋅  c RE ε⋅  c SE ε⋅  

aixal forces TN  RN  SN  

 

3.3.2 Solution of the simplified model 
 

Figure 4 shows the simplified model of the structure and Table 2 the 

meaning of the symbols used to describe and solve the system. 

 

 

Figure 4. Simplified model 
 

 

 

 

 

v

θ θ θθα α
RS

NR

NS

T  =VD=
µsw
sinα

k→∞

S
R

x,u

ys,v s

O

xs,us

yR, vR

xR,uR

y,v

RS

NR

NS

k→∞

S
R

( )
T  =VD=

µsw
sinα( )

x,uO

y,v

ys,vs
xs,us

yR, vR

xR,uR
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Table 2. Symbols for potential energy formulation 

 

Global 
reference 

system 
(GRS) 

Local 
reference 

system 
(LRS) 

Dimensio
nless 

quantity 
(GRS) 

Dimensio
nless 

quantity 
(LRS) 

Stiffness K k  K  k  

Shear 
demand 

DV  Dv  DV  Dv  

Axial force R SN ,N
 R Sn ,n

 R SN ,N  R Sn ,n  

Displaceme
nt 

V  R Sv , v
 V

 
v  

 

The geometrical characteristics of the truss along the longitudinal axis are 

expressed through the aspect ratio, defined as: 

 

z

s
ζ =   (3.30) 

 

Referring to the simplified model, see Figure 4, the potential energy 

function can be written as follows: 

 

( ) 2 2
R S D

1 1
V, K V K V V V

2 2
νΠ = ⋅ ⋅ + ⋅ ⋅ − ⋅  (3.31) 

 

The term V , see Figure 4, is the vertical displacement of the node. RK and 

SK
 
are the axial stiffness of, respectively, the rod and the strut, in the 

global reference system. They can be expressed as functions of the relative 

local stiffness: 

 

2
R R

2
S S

K k sin

K k sin

R

S

θ
θ

=

=
  (3.32) 

 

Moreover, the local stiffnesses are: 
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R

S

k

k

c R

R

c S

S

E A

l

E A

l

=

=
  (3.33) 

 

For the meaning of the symbols , , , ,c R R s SE A l A l , refer to Table 1. 

So (3.33) can be expressed as: 

 

3
R

3
S

k sin

k sin

c R
R

c S
S

E A

z
E A

z

θ

θ

=

=
  (3.34) 

 

By substituting (3.34) in (3.31), the following formulation holds: 

 

( )

( ) ( )

( ) ( )

( )

3 3 2
D

3 3 2
D

3 3 2
D

3 3 2
D

1
V, sin sin V V

2

1
sin sin V V

2
1

sin sin V V
2

1
sin sin V V

2

Recalling tha

V,

V,

V,

t

c R c S
R S

c
R R S S

c
E s w w R R S w S

c E s w
w R R S w S

E A E A
u

z z

E
A A u

z
E

n A b s sb u
z

E n A
b b s u

z s

 Π = + − ⋅ 
 

= + − ⋅

 = + + − ⋅ 

  = + + ⋅ − ⋅  
  

Π

Π

Π

ν

ν

ν

ν

θ θ

θ θ

ν θ ν θ

ν θ ν θ

( )

( )

3 3 2
D

3 3 2
D

 the aspect ratio is defined as = , then

1
sin sin V V

2

1
si

V,

V n sin V V,
2

s w w R S wE
c R S

s w SE R
c w R S

w

z

s

A b bn
E u

s

An
E b u

s b

  = + + ⋅ − ⋅  
  

  
= + + ⋅ − ⋅  ⋅ 

Π
 

Π

ζ

ν νθ θ
ζ ζ

ν
ζ

νν θ θ
ζ ζ ζ

ν
 (3.35) 
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( ) 3 3 2
D

By introducing the mechanical reinforcement ratio 

and the ratio , the formulation becomes:

1 1
sin sin V V

2

By introducing the dimen

V,

sio

y sw
sw

c w

y
f

c

SE
c w sw R R S

f

f A

f b s

f
n

f

n
E b u

n

=

=

  
= + + ⋅ − ⋅      

Π

µ

νµ ν θ θ
ζ ζ

ν

( )

( )

D

D

D

23 3 2 2

2 3

V
nless displacement, defined as V= and 

s
V

the dimensionless value of shear demand, V

1 1
V, sin sin V V V

2

1
,

1
in

2
V s

c w

SE
c w sw R R S c w

f

E
w c sw R

f

f b s

n
E b s f b s

n

n
b s E

n

=

  
Π = + + ⋅ ⋅ − ⋅      

 
= +  

 
Π

νν µ ν θ θ
ζ ζ

µ ν
ζ

ν θ

( )

D

D

23

22 3 3

sin V v V

1 1
sin sin V V V,

2
V

S
R S c

c SE
w c sw R R S

c f

f

E n
b s f

f n

   + ⋅ − ⋅  
    

    = + + ⋅ −       
Π

  

ν θ
ζ

νµ ν θ θ
ζ

ν
ζ

 

 

The potential energy can be expressed as a dimensionless quantity, defined 

as: 

 

( ) ( )
2

v,
V,

w cb s f

ν
ν

Π
Π =   (3.36) 

 

then: 

 

( ) ( )
D

3
23

2

v, 1 1 sin
V, sin v v v

2
c E S S

sw R R
w c c f

E n

b s f f n

ν ν θν µ ν θ
ζ ζ

  Π   Π = = + + ⋅ −    
     

(3.37) 

 

So, the values of the dimensionless rod and strut stiffness in the global 

reference system can be expressed as: 
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3
RK sin

E
sw R

fc
R

c

n
nE

f

µ ν
θ

ζ

+
=   (3.38) 

3
SK sinc S

S
c

E

f

ν θ
ζ

=   (3.39) 

 

Then the (3.31) can be expressed as: 

 

( ) D

2
R S

1
V, K K V V V

2
ν  Π = + ⋅ − ⋅    (3.40) 

 

According to the Principle of Minimum Potential Energy, the equilibrium 

solution can be found as the minimum of the function ( )v,νΠ . 

 

( )V, 0
V

ν∂ Π =
∂

  (3.41) 

D

D

2
R S R S

R S

1
K K V V V K K V V 0

2V

V
V

K K

D

E

∂     + − = + − = ⇒    ∂  

=
 + 

 (3.42) 

 

All the formulas above refer to the global reference system. For the 

purpose of evaluating the magnitude of axial forces in each element for the 

equilibrium solution, in the following the values of displacements and 

stiffness are expressed referring to the local reference system. 

 

R
R 2

S
S 2

K
k

sin

K
k

sin

R

S

θ

θ

=

=
  (3.43) 
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R E

S E

v v sin

v v sin

R

S

θ
θ

=

=
  (3.44) 

 

Then, the dimensionless axial force in each element can be expressed as: 

 

R R
R R E E2

S S
S S E E2

K K
n k v v sin v

sin sin

K K
n k v v sin v

sin sin

R R
R R

S S
S S

θ
θ θ

θ
θ θ

= ⋅ = ⋅ =

= ⋅ = ⋅ =
 (3.45) 

 

Referring to(3.42) the formula above becomes: 

 

D

D

R R

R E
R S

S S

S E
R S

K K v
n v

sin sin K +K

K K v
n v

sin sin K +K

R R

S S

θ θ

θ θ

= = ⋅
 
 

= = ⋅
 
 

  (3.46) 
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3.4 Geometrical variables 
 

In the following sections the analyses carried out to define the range of 

variation of all the dimensionless parameters chosen to describe the 

geometry and the mechanical characteristics of the model will be 

presented. 

The results of this study are embedded in the simplified model, since they 

allow selecting automatically the admissible set of parameters that define 

the structure. 

3.4.1 Range of variation of ζ  
 

The range of variation of the aspect ratio, /z sζ = , has been defined 

referring to the most common shapes of trusses, along the longitudinal 

axis. 

 

Figure 5. Range of variation of ζ  

 

The following limits have been set: 

 

0,5 4ζ≤ ≤   (3.47) 

 

where the range up to 2 represents common building typologies and that 

up to 4 refers to industrial buildings. 

 

 

s=11

θ α ζ=0,5

ζ=1
ζ=1,5

ζ=2ζ

82



 

Chapter 3 – Simplified model 

 

 

3.4.2 Range of variation of α  as a function ofζ  
 

The bar angle α  is an independent variable of the model, such as ζ . The 

following geometrical considerations show that the two quantities can 

change independently, but, since they are related by a geometrical 

relationship, the range of variation of α  changes according to the value of 

ζ , as shown in Figure 6. 

 

Figure 6. Variation of lower bound of α  as a function of ζ  

 

For the purpose of the analysis, the function ( ),Hα α ζ  has been defined: 

 

( ) ( ), ,H Hαα α ζ α α ζ= ⋅   (3.48) 

 

where 

 

( ) ( ), arctan 90Hα α ζ ζ α= ≤ ≤ °   (3.49) 

 

Eq. (3.49) defines the range of variation of α , which is related to 

geometrical conditions: the lower bound depends on the aspect ratio of the 

truss, /z sζ = , while the upper one , is 9 0° , which is the maximum angle 

of tensile bars in common beams. 

1 1 1

ααα

ζ=2

ζ=1
ζ=0,5

minminmin
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Figure 7. Range of variation of α  

 

Figure 7 shows that, as the value of ζ increases, the range of variation of α

becomes narrower. 

Thus, in the optimization process, carried out in Chapter 5, when a given 

value of iζ
 
is taken into account for the evaluation of the goal function, the 

values of α  change within the related geometrical admissible range: 

_i rangeα . 

 

3.4.3 Range of variation of swµ  

 

The transverse reinforcement mechanical ratio, swµ , can be defined as: 

 

sw f swnµ ρ=   (3.50) 

 

where: 

20 30 40 50 60 70 80 90
20

40

60

80

100

αα

ζ

( ),Hα α ζ
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• sw
sw

w

A

s b
ρ =

⋅
is the geometrical ratio of transversal tensile 

reinforcement with respect to concrete volume 

• y
f

c

f
n

f
= is the ratio between the yield strength of steel and the 

compressive strength of concrete, as previously defined, see (3.35). 

Then, (3.50) can be written as 

 

sw
sw f

w

A
n

s b
µ =

⋅
  (3.51) 

 

which shows that the reinforcement mechanical ratio gives information 

about the capacity of each structural element within the representative 

distance5. 

In the optimization function later defined, swµ
 
is an independent variable, 

such as ζ , but the limits of the mechanical transverse reinforcement ratio 

depend on the aspect ratio, as shown in the following. 

Eq. (3.51) can be expressed as a function of ζ  

 

sw
sw f

w

A
n

z b
µ ζ= ⋅

⋅
  (3.52) 

 

If the quantities , , ,f sw wn A z b  in (3.52) are constant, the value of swµ
 

changes according to ζ . Particularly, if the value of s  increases, the value 

of swµ
 

decreases, since the same amount of transversal reinforcement 

refers to a longer representative length. Also note that the value of swµ  

does not depend on z , see(3.52), since the reinforcement ratio is constant 

along the depth of the cross section. 

                                                   

5 Note that the length of the representative distance, rsL , is equal to s . 
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Starting from these remarks, the range of variation of swµ
 
has to be defined 

according to the values of ζ : in fact, the same amounts of reinforcement, 

expressed as functions of maximum and minimum diameters of steel bars, 

give different reinforcement ratios as the value of ζ  changes. 

0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

µswmax ζrange( )
µswmin ζrange( )

ζrange
 

Figure 8. Range of variation of swµ . The dashed line represents the lower 

bound, while the solid line represents the upper bound, both expressed as 
a function of ζ . 

 

Referring to Figure 8, the values _ minswµ  and _ maxswµ  have been defined as 

follows: 

 

( )
2
min

_ min 2sw f
w

n
z b

π φµ ζ ζ=
⋅

  (3.53) 

( )
2
max

_ max 2sw f
w

n
z b

π φµ ζ ζ=
⋅

  (3.54) 
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where, according to the most common geometrical and mechanical 

characteristics of these beam, the values of minφ
 
and maxφ

 
have been taken 

equal to 12mm  and 24mm , respectively. 

The graph in Figure 8 shows that the range of variation of swµ becomes 

wider as the value of ζ  increases. A useful key to understanding the graph 

is by considering that along the x  axis the value of s  decreases. It allows 

relating the area of steel to the area of concrete in the representative 

distance wb s⋅ . 

 

Given the relationship between the value of ζ  and the range of variation of 

swµ , it is also possible to establish the inverse relationship, by expressing 

the bounds of ζ  as functions of the value of swµ : 

 

( )min 2
max

2 sw w
sw

f

b z

n

µζ µ
π φ

⋅= ⋅ ⋅   (3.55) 

( )max 2
min

2 sw w
sw

f

b z

n

µζ µ
π φ

⋅= ⋅ ⋅   (3.56) 

 

So the following condition can be set: 

 

( ) ( )min maxsw swζ µ ζ ζ µ≤ ≤   (3.57) 

 

This condition will be used in the optimization function, to be defined at a 

subsequent stage. 
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3.4.4 Limits for considering compressed concrete 

elements 
 

The angles Rθ
 
and Sθ

 
are dependent variables, since their values depend 

on both α  and ζ . 

 

Figure 9. Angles Rθ  and Sθ  

 

Referring to Figure 9, the following relations hold: 

 

( ) ( )

( )

1
cot cot 1 cot 1 cot

1
, acot cot

R R

R

ζ θ α θ ζ α
ζ

θ α ζ α
ζ

+ = ⇒ = − ⇒

 = − 
 

 (3.58) 

( )

( )

2 cot cot cot

referring to the previous expression:

cot 2 1 cot cot cot 2 cot

2
cot cot

2
, acot cot

R S

S S

S

S

ζ θ ζ α ζ θ

ζ θ ζ α ζ α ζ θ ζ α

θ α
ζ

θ α ζ α
ζ

+ = ⇒

= − + ⇒ = − ⇒

 = − ⇒ 
 

 = − 
 

 (3.59) 

 

Since Rθ
 
and Sθ

 
are dependent variables, also their range of variation has 

to depend on both α  and ζ . 

11

θ θ αS R

ζ
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The bounds of the angles of the compressive elements have been evaluated 

taking into account the limitation imposed on θ 6 by the National Code 

(NTC2008) [5], while adding the further consideration that , due to the 

observed geometrical dependence, the maximum and minimum values of 

Rθ
 
and Sθ

 
have been defined in terms of α , as follows: 

 

1 cot cot 3,5 cot− ≤ ≤ −α θ α   (3.60) 

 

For the purpose of the analysis, the following functions have been 

introduced: 

 

( ) ( )sup , acot 1 cotθ α ζ α= −   (3.61) 

( ) ( )inf , acot 3,5 cotθ α ζ α= −   (3.62) 

( ) ( ) ( ) ( )_ inf _ sup, , , ,R R R RHθ α ζ θ α ζ θ α ζ θ α ζ= ≤ ≤  (3.63) 

( ) ( ) ( ) ( )_ inf _ sup, , , ,S S S SHθ α ζ θ α ζ θ α ζ θ α ζ= ≤ ≤  (3.64) 

 

So the geometry equations, which include the bounds, become: 

 

( ) ( ) ( ), , ,RH R RHθθ α ζ θ α ζ α ζ= ⋅   (3.65) 

( ) ( ) ( ), , ,SH S SHθθ α ζ θ α ζ α ζ= ⋅   (3.66) 

 

The following graphs, see Figure 10, Figure 11, Figure 12, show the results 

of the parametric analysis carried out to evaluate the geometrical 

conditions that allow considering the compressive elements as part of the 

                                                   

6 θ  refers to the angle of the strut, within the framework of the variable angle strut. Note 
in NTC2008 that the lower bound of 1 has to do with the representative de Saint Venant 
length (which has to equal at least the depth), while the upper bound of 2.5 has to do with 
the lowest angle by which the compressed element is deemed to be contributing to the 
shear capacity. 
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structural model. Each graph refers to a specific value of the aspect ratio, 

ζ , and shows: 

• the limits set by the National Code (NTC2008), represented with 

grey horizontal straight lines; 

• the new limits introduced by this study: the lower and upper 

bounds are represented by the dashed black curves; 

• the values of cot Sθ , along the black line; 

• the values of cot Rθ , along the black dashed line. 

 

The first graph in Figure 10 refers to 0,5ζ =  and shows that the 

contribution of the concrete strut cannot be taken into account. The 

contribution of the rod, instead, can be considered for 45α ≥ ° . 

It means that also the rod cannot be considered in the structural model. 

 

Figure 10. Limits for considering compressed struts, 0,5ζ =  

 

The second graph in Figure 11, instead, concerns the case of 1ζ = . It shows 

that both the strut and the rod are part of the mechanical model for all the 

admissible values of α , see Figure 7. 
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cot SHθ
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1
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0.5ζ =

Hα
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Figure 11. Limits for considering compressed struts, 1ζ =  

 

The third graph in Figure 12 deals with 1,5ζ =  and displays that just the 

strut can be considered in the mechanical model if 73 approx.α ≥ °  for all 

the admissible values of α . Note that, by considering the bounds of the 

National Code, the contribution of the rod should have been ignored. 

n
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0
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4

α α ζ, 

cot SHθ

cot RHθ

1

2.5

supcotθ

infcotθ

Hα

1.0ζ =
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Figure 12. Limits for considering compressed struts, 1,5ζ =  
 

On the basis of the results of the parametric analysis above, some 

considerations about the mechanical model have been carried out. 

Starting from 1,5ζ = , the contribution of the concrete part of the rod 

should not be considered in the mechanical model, since the cotangent of 

its angle is smaller than 1. 

Referring to Figure 13, note that the rod is made up of two steel bars and of 

the concrete included between them. 

 

Figure 13. Geometry of the concrete rod. 
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The strain of the steel rods, which are always part of the mechanical model 

apart from the value of the angle Rθ , involves the concrete component as a 

resistance element of the model. So it seems appropriate to consider just 

the upper bound of the condition (3.63). 
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3.4.5 Mechanical transverse reinforcement ratio 
 

The mechanical transverse reinforcement ratio has been evaluated by 

referring separately to the tension and compression web steel bars. 

 

Figure 14. Tension and compression web reinforcement 
 

The reinforcement mechanical ratio is evaluated referring to the volumes 

of concrete and steel and to their respective strength. So, referring to the 

tension steel bars, it can be expressed as follows: 

 

1

sin sin
y sw y sw

sw
c w c w

f A f Az

f z b s f b s
µ

α α
+ ⋅ ⋅

= ⋅ = ⋅
⋅ ⋅ ⋅ ⋅ ⋅

 (3.67) 

 

where α  is the angle of the tension bars. 

The reinforcement mechanical ratio of compression bars, as well, can be 

expressed as: 

 

1

sin sin
y sw y sw

sw
c w c w

f A f Az

f b s z f b s
µ

θ θ
− ⋅ ⋅

= ⋅ = ⋅
⋅ ⋅ ⋅ ⋅ ⋅

 (3.68) 

 

where θ is the angle of compression steel bars. 

Thus, the overall transverse reinforcement mechanical ratio, including 

both tension and compression bars, can be expressed as: 

z

θ α
R

µsw
+

µsw
-

s
bw
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1 1

sin sin
y swTOT

sw sw sw
c w

f A

f b s
µ µ µ

α θ
+ −  = + = ⋅ + 

 
 (3.69) 

 

Referring to (3.67) and (3.68), the following relation holds: 

 

sin

sinsw sw
R

αµ µ
θ

− +=   (3.70) 

 

Thus, the overall mechanical transverse reinforcement ratio, TOT
swµ  can be 

expressed as a function of swµ+ : 

 

sin
1

sin
TOT
sw sw

R

αµ µ
θ

+  
= ⋅ + 

 
  (3.71) 

 

Note that the equation for evaluating the mechanical transverse 

reinforcement ratio is usually given as: 

 

y sw
sw

c w

f A

f b s
µ =   (3.72) 

 

It still represents the ratio between the volumes of steel and concrete, 

weighted by their respective strength, but for the specific and most 

common case of just tensile reinforcement and 90α = ° . 

Given the above, (3.69) can be expressed as: 

 

1 1

sin sin
TOT
sw sw sw swµ µ µ µ

α θ
+ −  = + = ⋅ + 

 
  (3.73) 

 

The graph in Figure 15 shows the variation of the ratio /TOT
sw swµ µ by 

changing the value of α  within the admissible range for each ζ . The 
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curves prove that the reinforcement mechanical ratio evaluated referring 

to the angles changes its value according to the different length of the steel 

bars. This consideration confirms that the mechanical reinforcement ratio 

must be evaluated referring to the volumes of structural materials. 

Moreover, the graph in Figure 16 shows the variation of the ratio /TOT
sw swµ µ+  

according to the value of α . By increasing the value of the angle of tensile 

bars, which means by decreasing Rθ  for each ζ , the amount of 

reinforcement devoted to resist tensile stresses decreases and the 

compressive one increases. So the function /TOT
sw swµ µ+

 
always has an 

increasing trend. 

 

Figure 15. Ratio /TOT
sw swµ µ  

40 50 60 70 80 90
2

2.5

3

3.5

TOT
sw

sw

µ
µ ζ

Hα
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Figure 16. Ratio /TOT
sw swµ µ+

 

3.5 Lateral buckling 
 

For the evaluation of the optimal shape of the truss, the resistance of the 

rod has been evaluated referring to the compressive strength of the 

composite cross section and to the lateral buckling resistance. 

According to the formulation of the National Code [5] the following 

condition has to be met: 

 

22

1
1χ

φ φ λ
= ≤

+ −
  (3.74) 

 

where φ  is defined as: 

 

45 50 55 60 65 70 75 80 85 90
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2.4

2.6
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ζ
TOT
sw

sw
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µ +
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( ) 2
0,5 1 0,2)φ α λ λ = + − +

 
  (3.75) 

 

whereα  is a factor related to the imperfections of the structural elements, 

and according to the Table 4.2.VI [5] has been considered equal to 0,49

and 
2

λ  can be evaluated as follows: 

 

2 ,pl RK

cr

N

N
λ =   (3.76) 

 

where ,pl RKN  and crN  are, respectively, the compressive force related to the 

strength of the composite cross-section and the Euler’s critical load: 

 

, 0,85pl RK sw y c wN A f f b s= ⋅ + ⋅ ⋅ ⋅   (3.77) 

( )2

2
0

eff
cr

EJ
N

l

π
=   (3.78) 

 

The quantities , , , ,sw y c wA f f b s  have been defined previously, see Table 1. 

( )
eff

EJ  is the bending stiffness of the cross section, accounting for second 

order effects. According to [5], it has been evaluated as follows: 

 

( ) ( )0 ,, s B e II cm Reff II
EJ k E J k E J= +   (3.79) 

 

where 0 0,9k = , , 0,5e IIk = 7, BJ and RJ are the inertia moments of steel and 

concrete components of the rod, respectively. In detail: 

                                                   

7 Note that ,
c

e II cm
c

f
k E

ε
=  , where 0,2%cε =  
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2

32
B

B swJ A
φ= ⋅   (3.80) 

31

8 12
w

R

b s
J

⋅= ⋅   (3.81) 

 

Note that RJ  has been evaluated referring to the rod cross-section area of 

each web bar and the width of the cross section, 
 

/ 2wb , has been 

considered as the minor axis of inertia. 

By substituting (3.79), (3.80) and (3.81) in (3.78), crN  can be expressed as: 

 

2 2 3

0
0

2 2 3

0
0

1
32 8 12

sin 1
32 8 12

B c w
cr s sw

c

yR B c w
sw

y c
cr

f b s
N k E A

l E

f f b s
k A

z E E
N

π φ
β

π θ φ
β

   
= + ⋅ ⋅ =   
   

  
+ ⋅ ⋅  

    
=

 (3.82) 

 

By normalizing for c wf b s  , both ,pl RKN  and crN , 
2λ  can be expressed as: 

 

2

2 2 2

0
0

0,85

sin 1 1 1
32 8 12

sw

R B w
sw

y c

b
k

z

µλ
π θ φµ

β ε ε

+=
  

+ ⋅ ⋅  
   

 (3.83) 

 

where  

 

y sw
sw

c w

f A

f b s
µ =   (3.84) 

 

Moreover, by introducing the following relations 

 

lim  and y c B B sε ε ε φ ϕ= = = ⋅   (3.85) 
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the Eq. (3.84) can be written as: 

 

2

2 2 2 2
0

0 lim

2 2 2
0

2
0 lim

2

2 22
20

2
0 li

2

2

m

0,85

sin 1
32 8 12

0,85

sin 1
32 8 12

0,85

sin1
32 3

sw

R B w
sw

sw

R B w
sw

sw

Rw
sw B

k s b

s

k b
s

k b
s

µλ
π θ ϕµ

β ζ ε
µ

π θ ϕµ
β ζ ε

µ ζ
θπ µ ϕ

β ε

λ

λ

+= =
   + ⋅   

  

+ =
   + ⋅   

  

+= ⋅ =
   + ⋅   ⋅  

=



 (3.86) 

 

The following condition is laid down: 

 

w w
w

b b

s z

ζβ ⋅= =   (3.87) 

 

Then, the Eq. (3.86) becomes 

 

2
2

2 2

2 20

0 lim

0 lim

2 20

0,85

sin1
4 2 3

4 2 0,85
1 sin
3

sw

R

sw B w

sw

R
sw B w

k

k

µ ζλ
θπ µ ϕ β

β ε

β ε µ ζλ
π θµ ϕ β

+= ⋅ ⇒
   + ⋅   ⋅   

⋅ += ⋅
 + ⋅  

 (3.88) 

 

The lateral buckling phenomenon depends on the real dimensions of the 

structural element, and this issue must be taken into account for 

parametrical analyses. For this purpose, the dimensionless parameter Bϕ , 

see (3.89) has been defined: 
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1B B
B

B B

z

s z

φ φ ζϕ
ϕ φ ζ

⋅= = ⇒ =
⋅

  (3.89) 

It represents the inverse of the steel bar’s slenderness, expressed as the 

ratio between the diameter Bφ  and the bar spacing s . A useful key to the 

reading is by expressing /s z ζ= : since the value of z  is constant, the 

slenderness of the bar increases when Bφ  or the aspect ratio ζ decreases, 

that means by increasing the value of s . 

In order to analyze the phenomenon of lateral buckling, a preliminary 

analysis about the range of variation of Bϕ  has been carried out, see Figure 

17 and Figure 18. For assigning the values of s  the following vector has 

been defined: 

 

[ ]0, 2 0,3 0,4 0,5 0,6pls m=   (3.90) 
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Figure 17. Range of variation of Bϕ (1) 
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Figure 18. Range of variation of Bϕ (2) 

 

The graph in Figure 17 shows that the value of Bϕ  varies within the range

0,02 0,12− . Note that the bounded cases refer to unlikely pairs of B sφ −  

values in real structures: the lower bound value deals with 12B mmφ = , 

600s mm= and the upper one with 24B mmφ = , 200s mm= . 

The physical meaning of the function Bϕ  is shown in Figure 18, which 

shows that the value of the slenderness of the bar decreases as the value of 

the diameter increases, for each value of s . 

On the basis of these results, the following analysis has been conducted 

referring to a mean value of 0,05Bϕ = . 

As stated in the previous, the condition (3.74) must be met to satisfy the 

verification of compressive bars for lateral buckling. Referring to (3.74) 

and(3.75), χ  depends only on λ . 
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The formula (3.88) shows that, by assigning the values of 0 0,8β = 8, 

0 0,9k =  (see above) and lim 0,2%ε =  the value of λ  changes according to ζ  

Bϕ  and α , since ( ),Rθ α ζ . 

 

Figure 19. Limits of variation of χ  

 

The graph above shows that the condition (3.74) is always met for all the 

admissible geometrical conditions. Note that the range of variation of α  

depends on ζ , see (3.48) and (3.49), whose range of values is (3.47). 

Note that the mechanical transverse reinforcement ratio swTOTµ  in Figure 19 

refers to the overall mechanical reinforcement ratio, see (3.69). 

  

                                                   

8 From the analysis of experimental results [26] 
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3.6 Shear demand 
 

In agreement with Eurocode 8 and NTC2008, the design shear demand, 

DV , shall be determined according to capacity design rules, referring to the 

beam equilibrium under the following loads: the transverse (vertical) load 

coming from the seismic loading combination and the end bending 

moments ,i dM (the subscript 1,2i =  refers to the end sections of the beam), 

corresponding to plastic hinges formation for positive and negative 

directions of seismic loading. 

In detail, see Figure 20, at the end section i , two values of the acting shear 

force should be evaluated, i.e. the maximum ,max,Ed iV  and the minimum 

,min,Ed iV  corresponding to the maximum positive and the maximum negative 

end moments ,i dM , that can develop at ends 1 e 2  of the beam. End 

moments, ,i dM , may be evaluated as follows: 

 

, ,i d rd Rb iM Mγ=   (3.91) 

 

where 

• Rdγ  is the factor accounting for possible overstrength due to steel 

strain hardening, which in the case of DCM (medium ductility level) 

beams may be taken equal to 1; 

• ,Rb iM  is the design value of the beam moment of resistance at the 

end i  in the sense of the seismic bending moment under the 

considered sense of the seismic action; [65] 
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Figure 20. Capacity design values of shear forces on beams [65] 
 

So, the shear demand shall be calculated as follows: 

 

( )D 2 ,1 ,2V Rd
Rb Rb

cl

g q M M
l

γψ − += + + +   (3.92) 

 

For the purpose of evaluating the value of dynamic loads affecting the 

shear demand, bending moments coming from the dynamic combination 

of actions have been expressed as function of the bending moments 

coming from static loads. The static and dynamic combinations of actions 

are respectively: 

 

G k Q kG Q wγ γ+ =   (3.93) 

2k k EG Q E wψ+ + =   (3.94) 

 

where: 

• kG  is the characteristic permanent action; 

• kQ  is the characteristic variable action; 

• E is the effect of seismic actions; 

• 1,3Gγ =  is the partial factor for permanent actions; 

• 1,5Qγ =  is the partial factor for variable actions; 
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• 2 0,3ψ =  is the factor defining the representative values of variable 

actions for quasi-permanent loads. 

 

Referring to (3.93) and (3.94), the overall factors for static and dynamic 

load combinations can be considered equal to 1,5  and 1, respectively, so 

the following equality holds: 

 

1,5 Ew w=   (3.95) 

 

 

Figure 21 Shear demand 
 

The design values of the bending resistance moment are: 

 

2
( ) 1,5

12
S E cl

Rd Rd

w l
M γ= ⋅ ⋅   (3.96) 

( )
2

( )
,1 ,2max ,

12
E E cl Rd

Rd Rb Rb

w l
M M M

q

γ − += +   (3.97) 

 

where 1,35Rdγ =  and q  is the structure factor, which may fall in the range 

1,5  to 4,5. 

The design values of the resistance of the composite section to vertical 

shear are: 

l l

w=1,5wE
γRdM+

Rb,2wE

wEl
2

wEl
2

wEl
21,5

wEl
21,5

VD
(S) VD

(E)

γRdM-
Rb,1

q

clcl

γRdM+
Rb,2

q lcl

q lcl

γRdM+
Rb,2

q lcl

γRdM-
Rb,1

q lcl

γRdM-
Rb,1

q

cl cl

clcl
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(S) (S)
Rd DV V 1,5

2
E cl

Rd

w lγ= = ⋅ ⋅   (3.98) 

( )(E) (E)
Rd D ,1 ,2V V

2
E cl Rd

Rb Rb
cl

w l
M M

q l

γ − += = + +
⋅  

(3.99) 

 

By setting the following relation: 

 

2

,1 ,2 12
E cl

Rb Rb

w l
M M α− ++ =   (3.100) 

 

it is possible to express the condition by which the value of shear demand 

due to dynamic loads is larger than the static one. 

 

(E) (S)
D D

2
(E) (S)
D DV V 1,5

2 12 2

1 1,5 4,5V V
6

E cl Rd E cl E cl
Rd

Rd Rd

w l w l w l

q l

q
q

γ α γ

αγ γ α> =

> ⇔ + > ⋅ ⋅ ⇒
⋅

+ > ⇒ > ⋅
⋅

 (3.101) 

 

Under the hypothesis 

 

2

,1 ,2 2 12
E

Rb Rb e e

w l
M M M M

α− += = ⇒ = ⋅   (3.102) 

2 2
( )

12 2 12
E E cl Rd E cl

Rd

w l w l
M

q

γ α= + ⋅ ⋅   (3.103) 

2 2 2
( ) ( )

( ) ( )

1,5
12 2 12 12

1 1,5 1,52
2

E S E cl Rd E cl E cl
Rd Rd Rd

E S
Rd

Rd
RRd d

w l w l w l
M M

q

M M
q

γ α γ

γ α γ α

> ⇔ + ⋅ ⋅ > ⋅ ⋅ ⇒

+ ⋅ > ⋅ ⇒ >> ⇔
 (3.104) 

 

The dimensionless shear demand for the parametrical analyses has been 

defined as follows: 

 

107



 

Chapter 3 – Simplified model 

 

 

1
v

sin sin
y swsw

D sw
c w

f A

f b s

µ µ
α α

+= = ⋅ =   (3.105) 

 

The expression of swµ  is defined in (3.72), which refers to the tensile bars 

whose angle is 90α = ° . 
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Chapter 4 

Complete model 

Equation Chapter 4 Section 4 

 

 

 

 

4.1 Introduction 

 

This section deals with the construction of a parametric complete 

structural model of the CSCB, carried out by means the classical 

displacement method, able to describe the structural behavior of several 

types of beams, subjected to any kind of vertical load condition. 
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The developed model has been embedded in a worksheet capable to 

evaluate stresses and strains of the whole beam, the collapse load and the 

ductile or brittle behavior of the structure. 

The aim is to verify the validity of the results of the simplified mechanical 

model shown in the previous Chapter. 

 

4.2 Stiffness matrix 

4.2.1 Displacement method of analysis 

 

All structures must satisfy equilibrium of forces, compatibility of 

displacements and constitutive laws in order to ensure their safety. In case 

of statically indeterminate structures, there are two different methods to 

satisfy these requirements: the force method and the displacement 

method. The fist one is based on identifying the unknown redundant forces 

and then satisfying the structure’s compatibility equations. To do that, all 

the displacements are expressed as functions of loads by using the load-

displacement relations. The solution of these equations gives the 

redundant reactions and then the equilibrium equations allow determining 

the remaining reactions on the structure. 

The displacement method, instead, requires satisfying equilibrium 

equations for the structure. So, the unknown displacements are written as 

functions of loads by using the constitutive laws. The solution of these 

equations gives the displacements. Then, the unknown loads are 

determined from the compatibility conditions, using the load-

displacement equations. [2] 

 

The equation which establish the relation between forces and 

displacement can be written, in its general form, as: 
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( )( )

1

1....n
ij j i

j

k u F i
ν

ν
=

= =∑   (4.1) 

[ ] { } { }( )nK u F⋅ =   (4.2) 

 

Referring to(4.1): 

• ijk are the stiffness coefficients: the subscripts refer, respectively, to 

the direction of the force i  and the direction of the displacement j

with respect to which the stiffness coefficient is evaluated; 

• ju is the displacement of the node, along the direction j ; 

• ( )n
iF is the force applied to the node along the direction i . The 

superscript ( )n  refers to the nnodes of the structure. 

The formula (4.2) has the same meaning of (4.1) but it is expresses by 

matrices. 

 

So, the (4.1) imposes the equilibrium condition between external forces, 

which are known, and internal forces, which depend on stiffness and the 

displacement, for each node n . 

The external forces set up the vector of the constant terms and the internal 

ones are expressed as functions of nodes’ displacements and the stiffness 

matrix, K . Note that all the admissible displacements of the nodes 

represent the degrees of freedom (d.o.f.) of the structure. 

Given the assumption of linear-elastic behavior of structure, each bar of 

the truss beam can be modeled like a spring, whose stiffness is k , 

subjected to forces at the ends that cause displacements. 
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4.2.2 Truss analysis using stiffness 

method 

A standard procedure for determining the stiffness matrix of trusses is 

developed in the following. 

Since the truss is composed of many members, the matrix of the overall 

structure can be considered as the result of the assembling of n  the 

member stiffness matrix, see mK in(4.3). 

So, the first step is defining the stiffness matrix of the generic mbar in the 

local reference system (L.R.S.). This matrix defines the relationship 

between the displacement of the joints and the external forces. 

 

m
M l Mf K u=   (4.3) 

 

Note that, by imposing that the i th− component of the vector Mu  is equal 

to 1  and all the others are equal to 0 , the vector of internal forces, Mf , is 

the i th−  column of the stiffness matrix m
lK . 

 

So, a useful method to evaluate the terms of the member matrix is 

assigning to one node from time to time a unit displacement, along one of 

the two directions in the L.R.S., and by imposing that all the other 

displacements are 0 . It means that for each member, one node is held fixed 

and the other one is constrained with sliding support properly placed. 

Such a system can be solved referring also to equilibrium conditions. 

Moreover, the physical meaning of each term of the member stiffness 

matrix ijk can be explained as follows: it represent the force at joint i when 

a unit displacement is imposed at joint j . So, if 1i j= = , then 11k  is the 

force at the near joint when the far joint is held fixed and the near joint 

undergoes a displacement of 1u = . 
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For the generic element m , the procedure of construction of the member 

stiffness matrix is presented in the following. Note that the global 

reference system (G.R.S.) is ( ), ,O x y
&

 and the local one (L.R.S.) is ( ), ,O ξ η
&

, 

see Figure 1. For the sake of convention, the global coordinates will be 

considered positive x  to the right and positive y upward. For the local 

ones, the same convention will be adopted. 

 

Figure 1. Element m: local and global reference system 

 

First column 

 

In order to obtain the fist column of the member stiffness matrix, the unit 

displacement has been assigned to the node i , along the directionξ . 

Then the following relations hold: 

 

1, 0i i j jξ η ξ η= = = =   (4.4) 

 

The bar mis compressive, and the magnitude of the axial force is: 

 

i i

EA EA EA
N l

l l l
ξ= ∆ = =   (4.5) 
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By imposing the equilibrium condition, it is possible to evaluate the value 

of all the forces in m  caused by the displacement 1iξ = . The relationship 

between forces and displacement represents just the constitutive law. 

 

 

Figure 2. First column 

 

1

0

i ij A j

i j

EA
N K N

l
T T

ξ= ⋅ = ⋅ = −

= =
  (4.6) 

 

The results of the expression (4.6) represent the terms of the first columns 

of the matrix mK  in the L.R.S., see (4.7). 

 

0

0

i

i

j

j

EA

l

EA

l

ξ
η

ξ
η

 
 
 
 
 
− 
 
  

  (4.7) 

 

Second column 

 

In order to evaluate the terms of the second column, the displacement 

1iη =  has been imposed to the node i . 
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Figure 3. Second column 

 

1 0

0

i ij i j

i j

EA
N K N

l
T T

ξ= ⋅ = ⋅ = − =

= =
  (4.8) 

 

Under the hypothesis of small displacement, all the forces are equal to 0 . 

 

0i j i jN N T T= = = =   (4.9) 

 

Then: 

 

0

0

0

0

i

i

j

j

ξ
η
ξ
η

 
 
 
 
 
 

  (4.10) 

 

Third column 

 

For the third column, the displacement 1jζ = has been imposed to the 

node j . 
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Figure 4. Third column 

 

1

0

j ji j i

i j

EA
N K N

l
T T

ξ= ⋅ = ⋅ = −

= =
  (4.11) 

 

Then: 

 

0

0

i

i

j

j

EA

l

EA

l

ξ
η
ξ
η

 − 
 
 
 
 
 
  

  (4.12) 

 

Fourth column 

 

The values of the fourth column have been evaluated by imposing the 

displacement 1jη =  
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Figure 5. Fourth column 

 

0i j i jN N T T= = = =   (4.13) 

 

Then: 

 

0

0

0

0

i

i

j

j

ξ
η
ξ
η

 
 
 
 
 
 

  (4.14) 

 

Assembling the vectors above, allows obtaining the stiffness matrix of the 

single member not constrained, in the local reference system ( ), ,O ξ η
&  

 

1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

M
l

EA
K

l

− 
 
   =  − 
 
 

  (4.15) 

 

Since the truss is composed of many members, in the following is 

developed a method for transforming the member forces and 

displacements defined in local coordinates to global coordinates. For this 

purpose, the coordinate system rotation matrix [ ]R  has been introduced. 
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Generally speaking, the rotation is a linear transformation which depends 

on the angleθ , see Figure 1, able to transform the vector ( ),ξ η  in the 

vector ( ),x y . 

The rotation θ  matrices for respectively counterclockwise and anti-

counterclockwise rotation around the origin of axis, can be expressed the 

follows: 

 

[ ]cos sin cos sin
,

sin cos sin cos

x
R

y

θ θ ξ θ θ
θ θ η θ θ

       = =       − −       
 (4.16) 

[ ]cos sin cos sin
, '

sin cos sin cos

x
R

y

θ θ ξ θ θ
θ θ η θ θ

− −       = =       
       

 (4.17) 

 

Referring to the generic element m , the rotation from the local reference 

system to the global one can be expressed as follows: 

 

cos sin 0 0

sin cos 0 0 0

0 0 cos sin 0

0 0 sin cos

i j i

i j i

j j j

j j j

u u

v vR

u uR

v v

ξ θ θ
η θ θ
ξ θ θ
η θ θ

      
      −        = =          
      −      

 (4.18) 

 

The formulation above can be concisely expressed as: 

 

[ ] 0

0
L

L

s Tu R
T

f Tf R

=  =  =  
  (4.19) 

 

[ ]T is an orthogonal matrix, so [ ] [ ]1 T
T T

− = . The stiffness matrix of the 

generic i th−  member in the global reference system can be expressed as: 
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i i iT i i iT i
l l l l l lf K u T f K T u f T K T u K T K T= ⇒ = ⇒ = ⇒ =  (4.20) 

 

where: 

 

1

0

0

0

u

 
 
 =
 
 
   

 

in order to taking into account only axial strains. 

After a few counts, the stiffness matrix of member min the global reference 

system ( ), ,O x y
&

, in case of anti-counterclockwise θ  and counterclockwise 

rotation α respectively, becomes: 

 

2 2

2 2

2 2

2 2

cos cos sin cos cos sin

cos sin sin cos sin sin

cos cos sin cos cos sin

cos sin sin cos sin sin

m
g

EA
K

l

θ θ θ θ θ θ
θ θ θ θ θ θ

θ θ θ θ θ θ
θ θ θ θ θ θ

 − −
 − − =
 − −
 − − 

 (4.21) 

2 2

2 2

2 2

2 2

cos cos sin cos cos sin

cos sin sin cos sin sin

cos cos sin cos cos sin

cos sin sin cos sin sin

m
g

EA
K

l

α α α α α α
α α α α α α

α α α α α α
α α θ α α α

 − −
 − − =
 − −
 − − 

 (4.22) 

 

The matrices above are singular1 since, as stated in the previous, they refer 

to an unconstrained member, whose degree of freedom refers to the length 

variation. So, just one of the four components of displacement deals with 

the strain and the remaining three define displacements of rigid body. 

 

                                                   
1 det 0m

lK =  
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Generally speaking, member stiffness matrices can be divided into four 

sub-matrices, whose order is equal to the degrees of freedom of each joint. 

For the subject matter case, the sub-matrix is a 2nd order one. 

The mechanical meaning of each sub-matrix can be explained as follows:  

the matrices on the main diagonal, m
uuK and m

vvK , refer to the effects of the 

displacement of i or j node on the forces on the same node. Instead, the 

matrices out of the main diagonal, 
Tm m m

uv vu vuK K K = =   consider the effects of 

the displacement of i or j  node on jF and Fi respectively. 

Then, the (4.21) (or (4.22)) can be written as: 

 

( )Tm m
m uu uv

m m
vu vv

K K
K

K K

 
 =
  

  (4.23) 

 

The stiffness matrix of the overall structure, TOTK ,is a square matrix 2 -thn

order, where nrepresents the number of all the nodes of the structure, an2 

2  is the number of degrees of freedom for each of them. 

So the order of the matrix represents the number of the equilibrium 

equation and the number of the displacements (unknowns) of the 

unconstrained structure. 

 

The matrix TOTK can be divided in 2x2 sub-matrices as well, each of which 

has the same meaning explained above speaking of the member stiffness 

matrix. 

 

11 12 13 14

22 23 24

33 34

44

TOT

k k k k

k k k
K

sym k k

k

 
 
 =
 
 
 

  (4.24) 
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The assembly process of matrix should be done element by element. The 

method is briefly developed in the following. 

By naming each node of the structure with a capital letter, the stiffness 

coefficient A m
uuk − represents the stiffness of the node A given by the bar m

and the coefficient A p
uuk − represents the stiffness of the node A given by the 

bar p and so on. Then, the overall coefficient A
uuk is equal to the sum of the 

coefficients, with the same subscripts, of all the elements which converge 

in the same node A : if nmembers converge in the node A , A
uuk  will be 

made up of the sum of n  terms. So, the A
vvk can be found the same 

procedure. Ea 

Referring to the coefficients out of the main diagonal, the same procedure 

allows obtaining the values of A m A m
uv vuk k− −=  and A p A p

uv vuk k− −= . 

 

TOTK is a singular matrix, since it refers to the unconstrained structure. By 

deleting the arrows and columns of the constrained degrees of freedom, it 

is possible to obtain the stiffness matrix of the constrained structure, 

which is not singular. This is a necessary condition to solve the equilibrium 

equation by finding the displacements of the nodes, see (4.25): 

 

{ } [ ] { }1

i TOT iU K F
−= ⋅   (4.25) 

 

where: 

• { }iU is the vector of the displacements of nodes; 

• { }iF  is the vector of the external forces. 

 

In order to obtain the value of stresses in each member, it is necessary 

referring to the vector of displacements and to the stiffness matrix of each 

element, see Figure 1: 
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{ }

m m

i i

i im

j j

j j

u H

v V
K

u H

v V

   
   
   =
   
   
   

  (4.26) 

 

The axial forces and the values of stress can be found referring to the 

following well known formulas: 

 

( ) ( )2 2m m m
i i

m

m
m

N H V

N

A
σ

= +

=
  (4.27) 

 

As an alternative, it is possible to evaluate the stress in each bar by 

calculating at first the strain mε  and then by using the constitutive laws: 

 

i iEσ ε=   (4.28) 
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4.3 Case of study 

 

The case of study deals with the construction of the parametric stiffness 

matrix of a composite steel and concrete truss beam, whose shape is shown 

in Figure 6: the continuous lines represent the steel elements of the beam 

and the dotted ones the possible additional concrete elements. Please note 

that, depending on the loading and geometry conditions, concrete 

elements can be part or not of the resisting system and the steel ones, as 

well, can be made up of steel and concrete. 

 

Figure 6. Shape of truss 

 

The stiffness of each element in the local reference system can be 

expressed as follows: 
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,
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c c uc
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z
κ

α θ
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Table 1. Stiffness of each element in the local reference system 

For the meaning of each term in the table above, refer to Chapter 3.  

 

As stated in the previous, for the purpose of assembling the overall 

stiffness matrix in the global reference system (G.R.S.) it is necessary to 

preliminary construct the stiffness matrix of each element in the G.R.S. by 

using the rotation matrices, (4.21) (4.22), and then filling out each term of 

the global matrix according to the topology of the beam. 

For the subject matter case, to give an example of the possible terms of the 

stiffness matrix it is necessary to preliminary define a loading condition, 

see Figure 7, since the contribution of concrete affects only the 

compressive elements. 

 

Figure 7. Possible loading condition 

 

The structure shown above is externally statically determinate with respect 

to vertical loads and internally statically indeterminate

( )2 2 11 22 4n a v< + ⇒ × < + . The structure in the plane ( ), ,O x y
&

 has 18 

degrees of freedom, so the overall stiffness matrix is an 18 order one. The 

formula (4.29) shows the structure of the matrix, which mainly depends on 

the placing of the nodes and their respective d.o.f. in the matrix. 
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 (4.29) 

So, referring to Figure 7 and formula (4.29), the expressions of the 

parametric stiffness of nodes A and B are: 
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Such a stiffness matrix, where each term is a parameter, is able to describe 

the structural behavior of several types of beams, subjected to any vertical 

load condition. 
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The matrix, moreover, has been embedded in a worksheet able to evaluate 

the values of stress and strain in each element, the collapse load and the 

ductile or brittle behavior of the structure. 

The collapse load is calculated by means of the loads multiplier clα , whose 

expression is: 

 

/

/

y c
cl

y c

f
α

σ
=   (4.34) 

 

where: 

• /y cf is the value of the yield or compressive strength, depending on 

the element under analysis; 

• /y cσ is the value of the stress, tension or compression, in each 

element. 

So, given a beam and a loading condition, each steel or concrete element of 

the beam is characterized by a specific value of clα , which represents how 

much the value of stress is far from the limit one. Then, the minimum 

value among all clα coefficients corresponds to the multiplier of the loads 

able to bring on collapse the structure, which means the collapse of at least 

one of all the elements of the overall structure. 

Moreover, each value of clα refers to a specific kind of collapse: yield of 

compressive or tensile steel bars, lateral buckling of composite elements or 

compressive strength of compressive concrete elements. So the minimum 

value of the multiplier of loads allows knowing if the collapse is a ductile or 

brittle one. The verification methods and the theoretical assumptions 

behind them are explained in the following section. 
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4.3.1 Verifications 

As stated above, the collapse of the structure corresponds to the collapse of 

at least one of the structural elements of the beam. So, within the 

worksheet, the stress of each bar is compared with the corresponding limit 

one. In detail, in the structural model all the compressive elements are 

made up of steel and concrete, so they are subjected to three different 

verifications: the yield strength of steel bar, the compressive strength of 

concrete element and the verification to lateral buckling of composite cross 

section. Referring to tensile bars, instead, the reference value of stress for 

verifications is the yield strength of steel. 

 

4.3.1.1 Compressive elements 

Referring to the first two verifications of compressive elements, the limit 

values for the yield stress of steel and compressive strength of concrete 

refer to those provided by the National Code [5] and depend on the 

adopted materials, see section 4.3.2 Materials. 

The area of the cross sections, as well, has been evaluated as follows: 

• steel bars: 
2

2C swA A
φπ= = . Since it refers to the area of two steel 

bars, under the hypothesis of symmetrical behavior in the cross 

section2; 

• concrete elements: R w RA b sν= ⋅ ⋅ , where rss L=  and wb is the width 

of the cross section. 

With reference to the verification to lateral buckling, all the details about 

the formulation and geometrical assumptions are explained in the 

following section. 

 

                                                   
2 As confirmed by experimental tests, see Chapter 5. 
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4.3.1.1.1 Lateral buckling 

The buckling resistance of all the compressive elements of the structural 

system, see Figure 7, has been verified in accordance with the formulation 

of NTC2008 [5], in detail: 

 

,

1E

b R

N

N
≤   (4.35) 

 

where: 

EN  is the compressive force in the local reference system 

,b RN is the buckling resistance of the bars, calculated as follows: 

 

,
1

ym
b R

M

Af
N

χ
γ

=   (4.36) 

 

with: 

 

22

1
1χ

φ φ λ
= ≤

+ −
  (4.37) 

( ) 2
0,5 1 0,2φ α λ λ = + − +

 
  (4.38) 

 

Referring to the value of λ , a distinction has been made for the bars of the 

upper chord, ucλ ,and the bars of the web truss wtλ . 

In fact the first ones have been verified referring to the formulation for 

steel structures, the second ones referring to the formulation of steel and 

concrete composite structures. So: 
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uc ym
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cr

A f

N
λ

⋅
=   (4.39) 

,pl R
wt

cr

N

N
λ =   (4.40) 

 

where 

 

, 0,85pl R c cm s ymN A f A f= ⋅ ⋅ + ⋅   (4.41) 

 

crN  has been calculated referring to the Euler’s critical load. In detail: 

 

2

2
0

cr

EJ
N

l

π=   (4.42) 

 

For the evaluation of the bending stiffness of the composite cross section 

for limit state verifications, the second order effects have been taken into 

account. So, the following bending stiffness has been considered: 

 

( ) ( )0 ,, s s e II cm ceff II
EJ k E J k E J= + ⋅   (4.43) 

 

where: 

0 0,9k =   (4.44) 

, 0,5e IIk =   (4.45) 
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sJ  is the moment of inertia of the web truss’ bars, cJ  is the moment of 

inertia of the rods3. 

As stated in the previous, the numerical model refers to a standard model 

of beam, in which the upper chord is made up of 3  bars and the web truss 

is made up of 2  bars. Since the aim is the evaluation of the shear 

resistance, for all the steel elements the moment of inertia refers to the 

single bar and the area of the cross section to the sum of all of them. 

Also notice that the use of ,e IIk  reduces the value of the tangent modulus of 

elasticity of concrete, as that that the buckling is evaluated with cracked 

concrete section. 

As for the evaluation of 0l lβ= , according to the behavior of steel beams 

during the experimental tests, β   has been considered as follows: 

 

element ββββ    

web bars 

upper/lower chord 

0,8 

0,5 

Table 2. Values of β coefficient 

A  is the area of the steel cross section under consideration and ymf  the 

mean value of steel yield strength. 

 According to the Table 4.2.VI [5], the factor α , related to the 

imperfections of the structural elements, has been considered equal to 

0,49 for both the solid circular cross sections of the web and the upper 

flange. 

Moreover, the partial factor 1Mγ  for structural steel applied to resistance of 

members to instability has been considered equal to 1,05. 

                                                   
3 Notice that cJ  has been calculated referring to the rod cross section’s area proper of 

each web bar. / 2wb , has been considered as the minor axis of inertia, since along the 

longitudinal plane of the beam, it seems reasonable that the lateral buckling of the cross 
section has a very low likelihood of occurrence. 
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4.3.1.2 Tensile bars 

The verification of tensile bars has been conducted by comparing the yield 

stress of steel provided by the National Code [5] with the stress of each 

tensile steel bar, under the hypothesis of no tensile concrete, see section 

4.3.2 Materials. 

As for the compressive steel bars, the area of the cross sections has been 

evaluated as follows: 

• steel bars: 
2

2T swA A
φπ= = . Since it refers to the area of two steel 

bars, under the hypothesis of symmetrical behavior in the cross 

section4; 

  

                                                   
4 As confirmed by experimental tests, see Chapter 5. 
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4.3.2 Materials 

 

The numerical analysis has been conducted referring to the mean values of 

concrete and steel strength, cmf and ymf . 

All the mechanical characteristics of materials, in fact, are part of input 

data of the analysis and they have to be taken into account with mean 

values so that also the output result can be considered as “the mean value” 

of the function. 

 

4.3.2.1 Steel 

 

All the steel grades used for this kind of composite beams have been taken 

into account for the analysis, as shown in Table 3. 

 

steel grade ftk fyk fyd fym 

235S  360 235 224  271 

275S  430 275 262 317 

f

VR

0

VR1

f1

VR,k1

fk

g(f,...)
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355S  510 355 338 409 

450S  550 440 419 488 

Table 3. Mechanical characteristics for each steel grade [N/mm2] 

 

The Young modulus for every steel grade has been considered equal to 

2210.000 /N mm . 

The mean value of yield stress, ymf , has been evaluated taking into account 

the coefficient of variation ( CV ) [14] for each steel grade. CV is the 

normalized measure of dispersion of a probability distribution and shows 

the accuracy of the measures of the collected data, usually coming from 

experimental tests. Referring to a finite number of samples: 

 

2

1

1
1

n
i

i

x
CV

n

σ
µ µ=

 
= − = 

 
∑   (4.46) 

 

In the subject matter case: 

 

( )2

1 1;
1

n n

yi m yi
i i

ym

f f f
f

n n
σ = =

−
= =

−

∑ ∑
  (4.47) 

 

σ and ymf allow to calculate the characteristic value of the yield strength of 

steel, ykf , that Eurocode EN1990 [9] defines as the 5% fractile of its 

statistical distribution where a minimum value of the property is the 

nominal failure limit, and as the 95% fractile where a maximum value is 

the limiting value. Then: 
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yk ymf f K σ+ = + ⋅   (4.48) 

1,645K =   (4.49) 

 

With reference to NTC2008:  

 

steel grade CV 

235 355S S−  

355S>  

8% 

6%  

Table 4. Coefficient of variation for each steel grade 

 

So all the useful data are available to evaluate ymf . 

As stated in the previous, all the analyses have been conducted under the 

hypotheses of linear behavior of materials, until the collapse of one of 

them. Referring to the steel elements, it occurs when at least one bar 

reaches the yield compressive or tensile stress or reaches the buckling 

critical load. 

The following bilinear constitutive law has been considered for the steel: 

 

 

Figure 8. Constitutive law for steel: σ − ε diagram [5] 

 

134



 

Chapter 4 – Complete model 

 

 

4.3.2.2 Concrete  

 

The mechanical characteristics of concrete have been calculated following 

the formulation of NTC2008 [5].  

For the evaluation of ckf and cmf , respectively the characteristic and mean 

value of the cylinder compressive strength of concrete at 28 days can be 

calculated starting from the value of the compressive strength of cubes: 

 

0,83ck ckf R= ⋅   (4.50) 

8cm ckf f= +   (4.51) 

 

The value of design strength of concrete, as well, has been evaluated taking 

into account the partial factor 1,5Mγ =  for concrete property, also 

accounting for model uncertainties and dimensional variations. And the 

value of Young modulus has been calculated as: 

 

0,3

22.000
10

cm
cm

f
E  =   

  (4.52) 

 

concrete 

strength 

classes 

fck fcm fcd Ecm 

20 / 25C  20,75 28,75 13,83 30.200 

25 / 30C  24,9 32,9 16,60 31.447 

28 / 35C  29,05 37,05 19,37 32.588 

32 / 40C  33,2 41,2 22,13 33.643 

Table 5. Mechanical characteristics for each concrete strength class 
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For the constitutive law of concrete the parabola-rectangle model has been 

used: 

 

 

Figure 9. Constitutive law for concrete: σ − ε diagram [5] 
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Chapter 5 

Experimental tests 

Equation Chapter 5 Section 5 

 

 

 

 

5.1 Introduction 

This section deals with the experimental tests conceived and conducted in 

order to verify the validity of the collapse criterion, which underpins the 

proposed design methodology based on the new simplified mechanical 

model, see Chapter 3. 

The overall experimental campaign has been performed on twenty-two 

samples, in order to study separately the shear and flexure behavior of 
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CSCBs at the 1st and 2nd stage and to test the behavior of the upper chord of 

a new model of steel structural joint at the 1st stage. 

Herein will be shown and analyzed the results of shear tests on beams 

during the 2nd stage. 

5.2 Experimental set-up 

The experimentation has been conducted on 4  full scale beams, whose 

geometrical and mechanical characteristics are summed up in Table 1. 

In the structural arrangement of the composite beam, the internal truss 

system can be organized in two groups of elements: those belonging to the 

flanges and those belonging to the web. 

The flanges are the upper compressed chord made of concrete and the 

bottom tension chord made generally by a smooth surface steel plate. 

The web is made of the following elements: 

B : Steel bars, generally in tension 

R : Rods made of concrete and steel, generally in compression  

S : Diagonal struts made of concrete 

The flanges are devoted to the flexural capacity, while the web to the shear 

capacity. 

Technologically speaking, each diagonal truss is the result of coupling of n  

bent bars welded to the lower plate and to the upper longitudinal bars. 

The topology of steel truss can be described referring to: 

• α : the angle between the steel bars, B , and the longitudinal axis of 

the beam; 

• Rθ : the angle between the compressive rods, R , and the 

longitudinal axis of the beam; 

• Sθ : the angle between the concrete strut, S , and the longitudinal 

axis of the beam; 
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• γ : the angle between the steel bars and the vertical axis in the cross 

section; 

• h : the depth of the cross section 

• wb : the width of the cross section 

• rsL : the length of the representative span, which, for this kind of 

beams, overlaps with the bar spacing s . Note that the first two 

representative spans have different length, *
rsL , for constructive 

requirements; 

• L : the span of the beam. 

Moreover Bφ is the diameter of diagonal steel bars and Lφ is the diameter of 

the longitudinal bars. 

For the purpose of analyzing the structural behavior until the shear 

ultimate limit state, the structural design of samples has been conceived 

over-sizing upper and lower longitudinal reinforcement. 

 

ID Geometrical properties 

 
xb h  span 

lower 

chord 

upper 

chord 
web Rθ α=  γ  

 
[ ]m  [ ]m  2mm    

  
[ ]deg  [ ]deg  

C 0,3x0,4 3,50 300X6 3φ24 2φ12 53 80 

D 0,3x0,4 3,50 300X6 3φ32 2φ20 53 80 

E 0,3x0,4 3,50 300X6 3φ24 2φ12∗ 53 80 

F 0,3x0,4 3,50 300X6 3φ32 2φ20∗ 53 80 

*web: steel truss without steel compression bars 

Table 1. Samples: geometrical characteristics 
 

Concrete 

C32/40 

ckf  cmf  cdf  cmE  Steel 

S355 

tkf  ykf
 ydf

 ymf
 sE  

33,2 41,2 22,13 33643 510 355 338 409 210000 

Table 2. Samples: materials 2[ / ]N mm  
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As previously stated, experimental tests have been performed on four 

types of beam. This section deals with the tests on samples C and D , 

whose web reinforcement is made of two series of bent steel bars. The 

results of the other two samples, E and F , in which the web reinforcement 

is made of only tensile bars1, will be not illustrated in this work. 

Referring to the test of sample C , the test loading condition is shown in 

Figure 1 and Figure 3: one concentrated force has been applied to the 

second upper node of the web truss by a hydraulic jack (100t ) coupled with 

a loading control unit. 

The constraint condition of samples, as well, is also shown in Figure 1: 

all the tests have been performed on simply supported beams.  

 

 

Figure 1. Sample C : experimental set-up 
 

During all the tests, the beams have been monitored with couples of strain 

gauges placed on the first seven diagonal bars, see Figure 2. As explained 

in the following, these measurers allowed evaluating the strain of each 

                                                   

1 Referring to the case of uniform load. 
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steel bar during the whole test duration and, by means of an acquisition 

software, all the data have been collected, stored and elaborated. 

Moreover, before concrete filling, all the strain gauges have been tested 

in order to check their correct working, see Figure 2. 

 

           

Figure 2. Sample C : strain gauges testing before concrete filling 
 

           

Figure 3. Sample C before testing 
 

5.3 Method 

In order to characterize the contribution of each element to the shear 

capacity of CSCBs, the value of stress and strain has been evaluated by 

means of direct measurements for steel bars and indirect measurements 

for concrete elements. 

In detail, starting from the values of steel bars’ strain coming from the 

strain gauges, the constitutive law of steel allowed obtaining the value of 

stress and, thereby, the value of the axial load and the shear carried by 
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each steel bar. Therefore, by imposing the equilibrium condition on all the 

nodes, the values of the shear carried by the concrete element has been 

calculated. 

 

In the following the method is explained in detail, referring to the set-up of 

the subject matter tests. 

 

 

Figure 4. Strain gauges mapping 
 

The structure is externally statically determinate in reference to vertical 

forces. So, the equilibrium conditions to vertical displacement and rotation 

of the beam, see Figure 4, allow getting the magnitude of the reaction 

forces at the sliding supports: 
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2

1
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1

6

R V

R V

 =

 =


  (5.3) 

 

Since the beam is internally statically indeterminate, the only equilibrium 

conditions do not allow evaluating the stress in each element. But, all the 

data collecting during the experimental tests give the value of strain in 

each steel element and so, as stated in the previous, through the 

constitutive laws, it is possible to evaluate the stress of each steel element 

and the relative axial force. 

Moreover, since the external forces are given, see(5.3), the equilibrium 

condition in each node of the structure allows obtaining the value of stress 

in all concrete elements. 

The method is briefly developed in the following: starting from the 

equilibrium condition above, see(5.3), the following relation holds 

 

2 6 4 3 6 5 2R V V− − − −= +   (5.4) 

 

In detail:  

• 6 4 3V − − is the vertical force of the rod 6 4 3− − , see Figure 4, and can 

be ideally considered equal to the sum of two quantities: 

 

 ( ) ( ) ( )6 4 3 6 4 3 6 4 3R B C
V V V− − − − − −= +  (5.5) 

 

where 

o ( )6 4 3 B
V − − is the vertical force of the two steel bars; 

o ( )6 4 3 C
V − − is the vertical force of the concrete part of the rod. 

• 6 5 2V − −  is the vertical force of the concrete strut 

143



 

Chapter 5 – Experimental tests 

 

 

The value of the vertical forces, iV , can be easily obtained from the value of 

axial forces, iN , see Figure 5: 

 

sin
i

i

V
N

x
=   (5.6) 

 

Referring to the term ( )6 4 3 B
V − − , since the geometrical characteristics of the 

steel bars are known as well as the strain of the bars, the value of the axial 

forces can be evaluated for each steel element: 

 

i i i i i iE A Nε σ σ⋅ = ⇒ ⋅ =   (5.7) 

 

 

Figure 5. Node 6 : equilibrium condition 
 

Referring to the vertical equilibrium condition of the node 4 3− , see Figure 

6, the value of the term ( )6 4 3 C
V − − can be found as: 

 

( ) ( ) ( )6 4 3 1 4 3 6 4 3C B B
V V V− − − − − −= −   (5.8) 
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Please note that the concrete is no tensile strength, so the overall tensile 

stress in the element 1 4 3− − can be evaluated referring to the bars’ strain. 

 

Figure 6: Node 4 3− : equilibrium condition 
 

Starting from the(5.4), the value of 6 5 2V − −  can be evaluated as the difference 

between the known data 2R and 6 4 3V − − . 

Please note that the same results could be reached starting the analysis 

from the node 5 2− . 

 

5.4 Data analysis 

5.4.1 Sample C 

The strain of bars has been monitored for the whole duration of the test. 

The graph down below, see Figure 7, shows the deformation of the bars 

next to the sliding support B , as shown in Figure 4. 

The first remark deals with the curve trend: the difference between the 

strain magnitudes of tensile and compressive bars hints at the contribution 
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of concrete to the shear strength. In fact, by drawing a vertical straight line 

by Load 250kN= e.g., it intercepts the two couples of curves, 1 4−  1 3−  and

6 4−  6 3− , in two couples of points, which correspond to strains that defer 

from one another by one order of magnitude. So the equilibrium condition, 

that has to be met for each node of the structure, can be satisfied only by 

supposing the contribution of compressive concrete elements to shear 

mechanical behavior. 

 

 

Figure 7. Sample C : Load – strain of bars. 
 

Moreover the graph above shows that the trend is elastic until 

Load 450kN= , where both the curves of tensile bars become irregular. To 

better understand the distribution of stresses in the structural element and 

to better understand the trend of tensile bars’ curves, the analysis 

explained below has been conducted referring to 4 load-steps of the test: 

200V kN= 400V kN= 450V kN= 490V kN= . The tables about steel bars 

report the value of the strainε , the stressσ , the ratio of stress to the yield 

strength of steel ∆ ,the value of axial force N and vertical force V for each 

steel bar. The tables about concrete elements, instead, report the value of 

N  and V obtained as explained above. 
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Steel bar  
ε  

 

σ  

[N/mm2] 

∆  

[%] 

N  

[N] 

V  

[N] 

6 4−   0,00010−  21−  5  2.410−  2.168 

1 4−   0,00077 162 40 18.278 16.439 

6 3−   0,00013−  26−  6  2.969−  2.671  

1 3−   0,00076 159 39 17.969 16.161 

6 8−   0,00028−  58 14  -6.536 5.878 

1 2−   0,00052−  110−  27 12.388−  11.142 

Table 3. Direct measurements of bars’ strain: 200V kN=  
 

Concrete element  
N  

[N] 

V  

[N] 

rod 6 3 4− −    30.867−  27.761 

rod 1 2 5− −    11.471−  1 0.316 

strut 6 5 2− −   244.800−  1 34.067  

Table 4. Indirect evaluation of the concrete elements’ forces: 200V kN=  
 

 

Steel bar  
ε  

 

σ  

[N/mm2] 

∆  

[%] 

N  

[N] 

V  

[N] 

6 4−    0,00024−  50−  12  5.684−  5.112 

1 4−     0,00153 321 78 36.258 32.609 

6 3−    0,00023−  49−  12  5.499−  4.946  

1 3−     0,00160 335 82 37.914 34.098 

6 8−    0,00049−  102−  25 11.520−  1 0.360 

1 2−    0,00077−  162−  40 18.338−  16.493 

Table 5. Direct measurements of bars’ strain: 400V kN=  
 

Concrete element  
N  

[N] 

V  

[N] 

rod 6 3 4− −    62.989−   56.650 
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rod 1 2 5− −    37.496−   33.723 

strut 6 5 2− −    486.846−   266.625  

Table 6. Indirect evaluation of the concrete elements’ forces: 400V kN=  
 

 

Steel bar  
ε  

 

σ  

[N/mm2] 

∆  

[%] 

N  

[N] 

V  

[N] 

6 4−    0,00028−  58−  14  6.574−  5.913 

1 4−   0,00182 383 94 43.315 38.956 

6 3−    0,00026−  54−  13 6.140−  5.522  

1 3−   0,00189 396 97 44.770 40.265 

6 8−    0,00052−  109−  27 12.356−  11.112 

1 2−    0,00053−  111−  27 1 2.540−  11.278 

Table 7. Direct measurements of bars’ strain: 450V kN=  
 

Concrete element  
N  

[N] 

V  

[N] 

rod 6 3 4− −    75.372−   67.787 

rod 1 2 5− −    63.005−  56.665 

strut 6 5 2− −   540.078−  295.779  

Table 8. Indirect evaluation of the concrete elements’ forces: 450V kN=  
 

 

Steel bar  
ε  

 

σ  

[N/mm2] 

∆  

[%] 

N  

[N] 

V  

[N] 

6 4−   0,00030−  63−  15 7.166−  6.445 

1 4−   0,00061 129 32 14.598 13.129 

6 3−   0,00025−  53−  13 5.972−  5.371 

1 3−   0,00176 371 91 41.909 37.692 

6 8−   0,00054−  114−  28 12.888−  11.591 

1 2−   0,00057−  120−  29 13.593−  12.225 
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Table 9. Direct measurements of bars’ strain: 490V kN=  
 

 

Concrete element  
N  

[N] 

V  

[N] 

rod 6 3 4− −   43.370−   39.005 

rod 1 2 5− −    29.320−   26.370 

strut 6 5 2− −    652.801−  357.513  

Table 10. Indirect evaluation of the concrete elements’ forces: 490V kN=  
 

 

Referring to Table 7, the ratio of stress to the yield strength of steel is 

about94% and 97%for steel bars 1 4− and 1 3− respectively. Moreover by 

increasing the load until 490kN the stress of tensile bars decreases, 

showing an irregular behavior that can be identified as the collapse of the 

structural element. 

Figure 8 shows the crack pattern at the end of the test. 

 

            

Figure 8. SampleC : cracking pattern 
 

Starting from the collected data and the indirect evaluation of the axial 

forces in concrete elements, it has been possible evaluating the stress of 

rod and strut starting from the assumption that the relative cross sections 

can be defined respectively as follows: 

 

sinR E s w w RA n A s b θ= ⋅ + ⋅ ⋅   (5.9) 
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sinS w SA s b θ= ⋅ ⋅   (5.10) 

 

So, for 450V kN= , the values of stress in each concrete element are: 

 

Concrete element  
N  

[N] 

σ  

[N/mm2] 

∆  

[%] 

rod 6 3 4− −   -75.372 -0,92 3,07 

rod 1 2 5− −   -63.005 -0,77 2,57 

strut 6 5 2− −   -704.828 -19,74  65,81  

Table 11. Stress in each concrete element: 450V kN=  
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5.4.2 Sample D 

The same method explained above has been adopted to analyze the data of 

the sample D .  

Referring to Figure 9, please note that the results shown and analyzed 

down below refer to the second test conducted on the sample D , by 

applying the load near to the end B , on the beam shifted of 750 cm in 

order to keep out the part of the beam cracked during the first test. 

 

 

Figure 9. Sample D : Experimental set-up 
 

The graph of Figure 10 shows the deformation of the bars 1 2− , 1 5− , 1 3− , 

1 4− , 6 3−  and 6 4− , see also Figure 4: the same remarks explained for the 

sample C hold for the sample D . Therefore the irregular trend of the 

curves at 670 V kN= marks the yield of tensile steel bars and the collapse 

of the structure. 
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Figure 10. Sample D : Load – strain of bars 
 

In the tables down below are shown all the data, direct and indirect ones, 

collected during the tests at the following steps: 

200 V kN= , 400 V kN= , 600 V kN=  and 670 V kN= . 

 

Steel bar  
ε  

 

σ  

[N/mm2] 

∆  

[%] 

N  

[N] 

V  

[N] 

6 4−   0,00007−  16−  4  4.871−  4.381 

1 4−   0,00017 36 9  11.400 10.253 

6 3−   0,00015−  31−  8   9.696−  8.720  

1 3−   0,00028 58 14 18.186 16.356 

1 5−   0,00007−  14−  4  4.539−  4.082 

1 2−    0,00012−  25−  6 7.872−  7.079 

Table 12. Direct measurements of bars’ strain: 200V kN=  
 

 

Concrete element  
N  

[N] 

V  

[N] 

rod 6 3 4− −    15.019−  13.508 

rod 1 2 5− −    1 7.176−  1 5.447 
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strut 6 5 2− −   243.566−  133.391  

Table 13. Indirect evaluation of the concrete elements’ forces: 200V kN=  
 

Steel bar  
ε  

 

σ  

[N/mm2] 

∆  

[%] 

N  

[N] 

V  

[N] 

6 4−   0,00020−  42−  10  13.059−  11.745 

1 4−   0,00050 104 25 32.738 29.443 

6 3−   0,00046−  97−  24 30.566−  27.490  

1 3−   0,00084 177 43 55.478 49.895 

1 5−   0,00014−  30−  7  9.334−  8.395 

1 2−   0,00042−  87−  21 27.460−   24.697 

Table 14. Direct measurements of bars’ strain: 400V kN=  
 

Concrete element  
N  

[N] 

V  

[N] 

rod 6 3 4− −    44.591−   40.103 

rod 1 2 5− −    51.422−   46.247 

strut 6 5 2− −    439.437−   240.661  

Table 15. Indirect evaluation of the concrete elements’ forces: 400V kN=  
 

 

Steel bar  
ε  

 

σ  

[N/mm2] 

∆  

[%] 

N  

[N] 

V  

[N] 

6 4−    0,00049−  102−  25 32.195−  28.955 

1 4−   0,00112 235 57 73.755  66.332 

6 3−    0,00074−  154−  38 48.511−  43.629  

1 3−   0,00151 317 78 99.692 89.659 

1 5−    0,00044−  92−  23 28.953−   26.039 

1 2−    0,00075−  159−  39 49.808−   44.796 

Table 16. Direct measurements of bars’ strain: 600V kN=  
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Concrete element  
N  

[N] 

V  

[N] 

rod 6 3 4− −     92.740−   83.407 

rod 1 2 5− −    94.685−   85.157 

strut 6 5 2− −   591.624−  324.008  

Table 17. Indirect evaluation of the concrete elements’ forces: 600V kN=  
 

 

Steel bar  
ε  

 

σ  

[N/mm2] 

∆  

[%] 

N  

[N] 

V  

[N] 

6 4−   0,00063−  133−  32   41.740−   37.540 

1 4−   0,00138 289 71 90.719  81.590 

6 3−    0,00083−  174−  43 54.739−   49.231  

1 3−   0,00178 374 91 117.486 1 05.663 

1 5−    0,00090−  190−  46  59.595−  53.598 

1 2−    0,00135−  284−  69 89.196−  80.220 

Table 18. Direct measurements of bars’ strain: 670V kN=  
 

Concrete element  
N  

[N] 

V  

[N] 

rod 6 3 4− −    1 11.725−  1 00.482 

rod 1 2 5− −   59.414−   53.435 

strut 6 5 2− −    636.796−   348.747  

Table 19. Indirect evaluation of the concrete elements’ forces: 670V kN=  
 

 

Referring to Table 18, the ratio of tension to the yield strength of steel is 

about 91% and 71%for steel bars 1 3− and 1 4−  respectively. 

Figure 11 shows the crack pattern at the end of the test. For further 

analyses and the comparison between experimental results and the results 

of the Simplified Model and Complete Model refer to Chapter 6. 
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Figure 11. Sample D : cracking pattern 
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Chapter 6 

Correlation studies and 

optimization 

 

 

 

 

6.1 Introduction 

This chapter deals with all the analyses carried out to verify the accuracy of 

the proposed mechanical model and the description of a structural 

optimization procedure based on it. 

In order to validate the new simplified model’s capability of predicting the 

structural behavior and the collapse load, the results obtained in the 

experimental tests, see Chapter 5, have been compared with those coming 

from both simplified and complete models. 

Therefore, in the first part of the chapter the models adapted to reproduce 

the experimental set-up and the method adopted to predict the value of the 

stress in concrete elements are presented. 
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It is shown that the results of the analyses significantly agree with the 

experimental ones and have confirmed the consistency of the model with 

the real structure. Thus, on the basis of the new model, an optimization 

procedure of the beams shape is then proposed, able to ensure both a 

pseudo-ductile shear behavior, and the maximum contribution of concrete 

in the resisting system, with the minimum amount of material and labor. 

Hence, the second section deals with the description of the optimization 

criterion and the analysis of the resulting functions that rule the variation 

of all the independent parameters of the optimization function as the shear 

demand varies. 

In the next section, starting from the design method currently adopted to 

evaluate the shear resistance of beams, a “standard design solution” has 

been compared with the optimal one as obtained from the optimization 

function. 

In the last section, as well, the proposed mechanical model, see Chapter 3, 

has been modified in order to adopt the same design and optimization 

criteria for traditional reinforced concrete structures. 

 

6.2 Comparison: mechanical 
models - experimental 
evidence 

In this section, the comparison between the results of the experimental 

tests with the simplified and complete model will be presented. 

With reference to the simplified model, the underlying collapse criterion1 

sets the yield strength of tensile bars as the ultimate shear resistance2. The 

same model, as well, allows evaluating the magnitude of stress in all 

concrete elements that are part of the resisting mechanism. These values 

                                                   

1 See Chapter 3. 
2 This hypothesis has been confirmed by the experimental results, see Chapter 5. 

157



 

Chapter 6 – Correlation studies and optimization 

 

 

will be compared with those obtained from the experimental results, 

calculated as shown in Chapter 5. This analysis has been conducted in 

order to demonstrate, both, that the model can be adapted to different 

structural arrangements and that it is able to reproduce the actual 

behavior of the structure. 

Moreover, comparisons to the complete model have been made to confirm 

the validity of the theoretical assumptions of the simplified model, by 

comparing the value of ultimate limit load and the type of collapse with the 

results obtained from the simplified model and, consequently, with the 

experimental tests. 

 

6.2.1 Simplified mechanical model 

In order to have the simplified mechanical model provide results 

comparable to the experimental ones, see Chapter 5, it has been modified, 

by neglecting the contribution of the strut, see Figure 1 and Figure 2. 

 

Figure 1. Simplified mechanical model. 
 

Referring to the Figure above, the dimensionless vertical force vD  

represents the collapse value for shear, since under this load the tensile bar 

reaches the yield stress. 

The experimental tests, for the samples C  and D , respectively, gave the 

following results: 

α=θR

NR

VD=
µsw

sinα

k→∞

R

xO

yR

xR

y

158



 

Chapter 6 – Correlation studies and optimization 

 

 

 

( ) 1 4 1 3V 70D C
V V kN− −= + ∼

3  (6.1) 

( ) 1 4 1 3V 187D D
V V kN− −= + ∼   (6.2) 

 

The meaning of (6.1) and (6.2) can be verified by imposing the equilibrium 

condition of node 1, see Figure 2. 

 

Figure 2. Node 1: equilibrium condition 
 

So, the normalized axial forces in the rod in its local reference system can 

be expressed as: 

 

( ) ( )R
1 1

, ,
sin sin ,sw sw

R

n µ α ζ µ
α θ α ζ

= ⋅ ⋅   (6.3) 

 

For the mechanical and geometrical properties of the beam one should 

refer to Table 1 and Table 2 of Chapter 5. 

In the subject matter case, (6.3) gives: 

                                                   

3 Note that the value of shear resistance is different from the one evaluated during the test 

v 450D kN∼ since the mechanical model does not take into account the contribution of 
the strut. Anyway, it is possible to verify that: 

2 6 5 2 1 4 1 3 375000 305001 34421 35578( )R V V V N− − − −− = + → − = +
 

The same remarks hold for sample D. 
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R
360

0.021,64 , 0,026
180 550 C

n
π ⋅ = 

 
  (6.4) 

R
360

0.059,64 , 0,073
180 550 D

n
π ⋅ = 

 
  (6.5) 

 

The comparison between these values and the experimental ones shows 

that the simplified model is able to describe the mechanical behavior of the 

structure: 

 

Table 1. Comparison: simplified model – experimental results 

Sample  vD  Rn  

 ( 12)C φ  
Simplified model 1 0,026 

Exp. results 0,97 0,022 

 ( 20)D φ  
Simplified model 1 0,073 

Exp. results 0,91 0,051 

 

Note that, the value 1 of the dimensionless ultimate load Dv  refers to the 

maximum capacity of the mechanical system, since it represents the load 

that causes the tensile bars to yield. 

6.2.2 Complete mechanical model 

The complete mechanical model, as the simplified one, has been adapted 

to the case study by neglecting the contribution of the concrete strut and 

by entering all the data, materials and geometric quantities4, which 

characterized the samples. 

Referring to Figure 3, a unit force, 100 V kN= , has been applied to node D  

and then the value of the amplification factor, α , has been evaluated. The 

following information is obtained: 

                                                   

4 See Table 1 and Table 2 of the Chapter 5 
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• it singles out the first element that reaches the ultimate limit state, 

as defined for each resisting element in Chapter 4; 

• it gives the exact value of the ultimate load. 

 

Figure 3. Complete model: experimental set up  
 

Starting from sample C , the results of the analysis coming from the 

complete model are summarized in the following graphs. 

 

 

Figure 4. Sample C: vertical displacement of nodes 
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Figure 5. Sample C: horizontal displacements of nodes 
 

 

Figure 6. Sample C: value of stress in each element 
 

The first two graphs, see Figure 4 and Figure 5, show the vertical and 

horizontal displacements of the nodes, see also Figure 3. 

The third one, as well, see Figure 6, shows the value of stress in each 

element: for the loading condition of the experimental test, the maximum 

value of stress refers to the steel bar CB  and the corresponding value of 

the amplification factor is: 

 

0,83Cα =   (6.6) 
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The product of the applied unit load by the factor (6.6) gives the ultimate 

limit load, which is about 83 kN . 

Therefore, the complete model of sample C  demonstrates that the yield of 

the steel bar CB  causes the collapse of the structure under the load 

83 CV kN= . 

 

Referring to sample D , the results are summarized in the following 

graphs. 

 

 

Figure 7. Sample D: vertical displacement of nodes 
 

 

Figure 8. Sample D: horizontal displacements of nodes 
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Figure 9. Sample C: value of stress in each element 
 
The first two graphs, see Figure 7 and Figure 8, have the same meaning 

explained above. 

The third one, see Figure 9, shows that the collapse of the structure 

depends on the yielding of the steel bar CB . The value of the amplification 

factor α  is: 

 

2,31Dα =   (6.7) 

 

Then the collapse load of the structure is 231 kN . 

The following Table 2 summarizes the comparison between the results of 

the experimental tests and the complete model and shows a good 

agreement between the values. 

In detail, the complete model allows obtaining automatically the value of 

the stress in each structural element: then, the values of Rn  have been 

evaluated referring to the homogenized concrete cross-section of the 

structural element under analysis, steel bar AB  in the subject matter case, 

see Figure 3, the value of concrete strength, see Chapter 4 and Chapter 5, 

and taking into account the amplification factor α  in order to evaluate the 

concrete stress at the ultimate limit state. 
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Table 2. Comparison: complete model – experimental results 

Sample  vD  Rn  

 ( 12)C φ  
Complete model 1 0,021 

Exp. results 0,845 0,022 

 ( 20)D φ  
Complete model 1 0,057 

Exp. results 0,816 0,051 

 

 

6.2.3 Remarks 

The analyses above allow comparing and discussing the results all together 

and give useful information about the accuracy of the simplified model. 

In detail: 

• the experimental evidence confirmed the validity of the collapse 

criterion of the simplified model: in fact, for all tests, the ultimate 

limit load has been reached for tensile steel bars yielding; 

• the comparison between the results of complete model and 

simplified model, referring to the value of Rn 7, showed that the 

simplified model is able to predict the state of stress of the 

compressive elements. Therefore, the assumption of infinite 

stiffness of the upper chord does not affect significantly the results 

of the simplified model; 

• the comparison between the complete model and the experimental 

results, as well, confirmed that the laboratory tests, even if always 

affected by uncertain and unpredictable variables, can be 

                                                   

5 Note that this value of the load, evaluated referring to the unit one of the complete 

model, refers to the mean stress of tensile bars equal to 95% ymf , see Chapter 5. 

6 This value of the load, evaluated referring to the unit one of the complete model, refers 

to the mean stress of tensile bars equal to 81% ymf , see Chapter 5. 

7 For both the comparisons, see Table 1. Comparison: simplified model – experimental 

results, Table 1 and Table 2, the value of vD  is equal to 1, since it is the reference value 
for the collapse: it is the main hypothesis of the simplified model and the main evidence 
of the experimental results. 
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considered sufficiently reliable for the evaluation of the structural 

behavior. 
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6.3 Optimization of shape 
 

The analysis of the shear behavior by means of the simplified structural 

model showed that the arrangement of the beam transverse reinforcement 

can be completely described by referring to three independent parameters: 

• swµ , the mechanical transverse reinforcement ratio, see Chapter 3; 

• α , the tilt angle of the tensile bars; 

• ζ , the aspect ratio, see Chapter 3. 

Referring to the simplified mechanical model, presented again in Figure 

10, since the shear demand has been expressed as a function of swµ , the 

optimal solution is found by varying the values of α  and ζ . 

 

Figure 10. Simplified model 
 

Therefore, the optimization criterion has been defined as follows: 

• given the shear demand, the optimal solution, defined by α  and ζ , 

is the one minimizing the amount and the related cost of materials 

and labor, where the cost of materials steelc  depends on the amount 

of shear steel and of labor workc  on the number of weldings and 

bendings. 

The minimization function is defined as follows: 

 

( ) ( )Minimize , ,sw totOPT cµ α ζ=   (6.8) 

( ) ( ) ( )tot steel work, , , ,sw swc c cµ α ζ µ α ζ ζ= +  (6.9) 

θ θ α
RS

NR

NS

T  =VD=
µsw

sinα

k→∞
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x,u
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As a result, the following formulation holds: 

 

( ) ( ) ( )( )opt tot , ,sw sw opt sw opt swc cµ µ α µ ζ µ=   (6.10) 

 

Before deepening the meaning of each term of the optimization function, it 

is useful to underline that the adopted criterion is able to ensure that shear 

collapse is pseudo-ductile. In fact, the resistance of tensile bars, whose 

angle α  is one of the outcomes of the optimization process, is laid down 

equal to the shear demand. 

 

Eq. (6.9) represents the normalized cost per unit beam length, which is the 

goal function of the minimization. 

The term steelc  can be expressed as follows:  

 

( )steel mat_steel

1 1 1
, ,

sin sinsw sw
R

c cµ α ζ µ
ζ α θ
 

= + 
 

 (6.11) 

 

where: 

 

3

2

mat_steel steel_m
w

f

b z
c c

n

⋅= ⋅   (6.12) 

 

3steel_m
c  represents the cost of steel per m3. All the other terms, as well, have 

been defined in Chapter 3 and are given data within the structural design. 

By substituting Eq. (6.12) into Eq. (6.11), the following formulation holds: 
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ζ α θ

α θ

µ α ζ

µ α ζ
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 

 ⋅= ⋅ ⋅ ⋅ ⋅ ⋅ + = 
 

 
= ⋅ ⋅ ⋅ + 

 

 (6.13) 

 

Where 
1 1

sin sinsw
R

A z
α θ

 
⋅ ⋅ + 

 
represents the volume of tensile and 

compressive steel bars, per unit length of beam. 

 

The term ( )workc ζ
 
of Eq. (6.9) refers to the cost of weldings and bendings 

per unit length of beam, evaluated as follows: 

 

( )work welding bending8 2c c cζ ζ ζ= ⋅ ⋅ + ⋅ ⋅   (6.14) 

 

where 

• the coefficient 8  refers to the number of weldings necessary for 

each couple of bent bars, see Figure 11; 

• the coefficient 2, instead, refers to the overall necessary bendings, 

one for each bar; 

• 
z

s
ζ =  allows defining the number of weldings and bendings per 

unit length of beam. In fact, given the value of z , if the value of ζ

decreases, the value of s  will increase and the number of the overall 

bent bars, with relative bending and welding, will decrease within a 

given value of span. 
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Figure 11. Weldings and bendings per /z ζ  

 

Given the value of swµ
 
depending on the shear demand, the function (6.9) 

shows the trend depicted in Figure 12. 

 

 

Figure 12. ( ) ( ) ( )tot steel work0.4, , 0.4, ,c c cα ζ α ζ ζ= +  

 

The surface shows a minimum next to the optimal values of α  and ζ . 

Starting from the definition of the optimization function, see (6.8), the 

analyses presented in the following have been carried out in order to 

obtain the optimal values of α  and ζ , within their respective admissible 

range of variation, see Chapter 3, for each value of swµ . 

z

s
bw
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The graph below, see Figure 13, shows the optimal values of α  for each 

value of swµ . Note that the maximum value of α  is about 70° . In fact, even 

though the condition 90α = °  maximizes the use of steel bars, since 

vD swµ= , it is not able to ensure the minimum cost of the solution. 

The graph of Figure 14 shows the optimal values of ζ  by varying the value 

of shear demand: it demonstrates that as vD  increases, the aspect ratio 

increases, that is to say that the length of the representative span, rsL  

becomes smaller and smaller than the depth of the beam. 
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Figure 13. Optimal values of α  
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Figure 14. Optimal values of ζ  

 

The graph below, see Figure 15, shows the trend of optimal costs. The 

function has a minimum for 0,10swµ ∼ . It means that, within the 

admissible range of variation of α  and ζ , the values of shear demand 

included in the range 0,05 0,15−  allow obtaining the minimum value of 

costs. 
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Figure 15. Range of variation of optc  
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After the optimization process, the value of stress in concrete elements, 

rod and strut, has been evaluated in order to verify the following 

condition: 

 

( )
( )

, ,

, ,

R sw opt opt

S sw opt opt

n

n

µ α ζ
η

µ α ζ


 ≤


  (6.15) 

 

where:  

 

'
c

c

f

f
η =   (6.16) 

' 0,6 1
250

c
c c

f
f f  = − 

 
  (6.17) 

 

η  is a reduction factor accounting for the biaxial stress state of concrete. 

The Model Code, see Regan [67], provides a formulation to evaluate the 

strength of concrete elements as a function of the uniaxial strength of 

concrete. 

The values of Rn  and Sn  for each optimal solution have been evaluated, 

starting from the formulations of Chapter 3, as follows: 
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 (6.18) 
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The graph below, see Figure 16, shows that the stress of concrete elements 

is lower than the set value of 0,5η ∼  for all the optimal solutions. 
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Figure 16. Value of stress in strut and rod. 
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6.4 Comparison: standard solution 

– optimum solution 
 

This section deals, both, with the analysis of the design method currently 

used for CSCBs, and with the comparison between the solution deriving 

from this standard approach and the solution coming from the proposed 

mechanical model embedded in the optimization procedure. 

 

The standard shear resistance verification for the ultimate limit state at the 

2nd stage is set as follows: 

• the contribution of concrete is neglected in the evaluation of shear 

resistance; 

• the stress of shear tensile bars is compared to the yield stress of 

steel; 

• the stress of compressive steel bars is compared to the yield stress 

and no lateral buckling verification is carried out8; 

• the arrangement of the shear reinforcement is set following 

standard shapes: the angles of truss are usually equal, α θ= , and 

the aspect ratio varies in the following range: 0,5 1ζ≤ ≤ . 

Therefore, the shear mechanical model at the 2nd stage is a statically 

determinate one, made up of steel elements and the yield of steel bars is 

set as the collapse condition. 

Following this design approach, the amount of materials depends on the 

span of the beam and the shear demand and does not allow controlling the 

value of stress in concrete elements. 

 

Starting from a real set of data – shear demand, mechanical characteristics 

of materials and geometrical quantities – the design solution obtained by 

means of the method explained above has been compared to the solution 

                                                   

8 For the evaluation of the compressive resistance the coefficient 0 1,05Mγ = is taken into 

account, according to National Code [5]. 
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obtained by means of the proposed model and of the optimization 

function. 

In detail, the mechanical reinforcement ratio of the “standard solution” 

has been evaluated as follows: 

 

( ) ( )
2

1,25 0,108
2sw f sw

w

n
b z

π φµ ζ ζ µ= ⋅ ⋅ ⋅ ⇒ =
⋅

 (6.19) 

 

where: 

• 18 mmφ =  

• 300 wb mm=  

• 500 z mm=  

• 54,46α θ= = °  

• 5850 L mm=  

 

All the design data have been entered in the optimization code, see Eq. 

(6.8), and the value of the mechanical reinforcement ratio, see Eq. (6.19), 

has been entered in the simplified model as the value of shear demand. 
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Figure 17. optα  
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Figure 18. optζ  

 

The optimal arrangement of the reinforcement, see Figure 17 and Figure 

18, can be described by: 

• 40α °∼  

• 0,75ζ ∼  

The function (6.10) gives the following value: 

 

( ) ( ) ( )( )
( ) ( ) ( )( )

opt tot

opt tot

, ,

0,108 , , 26,9

sw sw opt sw opt sw

sw opt sw opt sw

c c

c c

µ µ α µ ζ µ

µ α µ ζ µ

= ⇒

= =
 (6.20) 

 

for the standard solution, 29,8sc = . 

Therefore the optimal solution allows reducing the cost of the overall beam 

by 11%. 

Moreover, as stated in the previous section, the simplified model permits 

to control the stress of concrete elements. 
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Referring to the optimum solution, see Figure 18, the value of stress is 

lower than the limit of the Eq. (6.16)9. 

19
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Figure 20. Control of stress in concrete elements. 

 

                                                   

9 
'16 / 20 16,6 cC f MPa→ =  
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Chapter 7 

Conclusions 

 

 

 

 

The developed research dealt with the study of shear resisting mechanisms 

in Composite Steel – Concrete Beams, in order to define a reliable 

mechanical model and formulations for Ultimate and Serviceability Limit 

State verifications. 

As for today, neither National nor International Codes provide a 

formulation for the evaluation of shear resistance in Composite Steel-

Concrete Beams (CSCB). 

The Italian Code (Decreto Ministeriale of January 14th, 2008, at paragraph 

4.6 [5]) numbers these structures among the constructions made of other 

materials, stating that for their use it is necessary to require an official 

179



 

Chapter 7 – Conclusions 

 

 

authorization to the Servizio Tecnico Centrale on the judgment of the 

Superior Council of Public Works. 

Moreover, in spite of the wide use of these structures since about forty 

years, neither Codes nor a reliable bibliography provide proper mechanical 

models or design formulations. 

Therefore, the first step of the study dealt with a comparative analysis 

between mechanical models and Codes’ provisions of well-known 

structures - reinforced concrete structures and steel and concrete 

composite structures - and the CSCBs in order to find similarities and 

differences. 

 

The deepening of the theory behind the formulations provided by Codes 

clarified that none of the existing models is able to reproduce the 

mechanical behavior of CSCBs. Moreover, the analysis of the theoretical 

approach of the National Code for reinforced concrete structures, based on 

the Lower bound Theorem within the framework of Plasticity Theory, 

brought out some critical aspects mainly related to the non-fulfillment of 

the “equilibrium condition” and of the requirement of pseudo-ductile 

shear behavior. 

 

This led to the development of a new simplified mechanical model, capable 

of predicting the yield of shear steel bars and the corresponding stress in 

concrete elements. 

Since unlike the variable angle model for reinforced concrete structures, 

the mechanical model of a CSCB is fixed by the topology of steel truss, the 

tensile and compressive shear resistance depends on the mechanical 

characteristics of the beam and the geometrical arrangement of the steel 

truss. This allowed considering a “representative substructure” for the 

definition of the shear model and the resistance of the overall CSCB. 

The proposed model stems for a variational approach (Principle of 

Minimum Potential Energy), able to meet both the compatibility and the 

equilibrium conditions and it is capable of: 

• describing the shear behavior of CSCB; 
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• setting the pseudo-ductile shear behavior; 

• allowing cracking control (SLS) of compressive elements and lateral 

buckling verification; 

 

Starting from this substructure, a design procedure, based on the capacity 

design criterion, has been defined, which seeks the equality between shear 

demand and tensile shear capacity, while verifying crushing of concrete 

compressive elements and lateral buckling of compressive steel bars.  

In the application of the capacity design criterion, this setting of the model 

allows considering the capacity of the tensile elements as the externally 

acting force that must be equilibrated by the compressive elements. 

 

The next step of the work dealt with the development of a parametric 

stiffness matrix of a CSCB, embedded in a worksheet able to evaluate 

stresses and strains of each element of beam, the collapse load and the 

pseudo-ductile or brittle behavior of the structural element. 

This model allowed verifying the reliability of the results coming from the 

simplified model: the correlation studies showed a significant agreement 

between the results coming from the simplified and the complete models, 

since the simplified one is able to predict the state of stress of the 

compressive elements: therefore the assumption of infinite stiffness of the 

upper chord does not significantly affect the results of the simplified 

model. 

 

Afterwards, experimental tests on full-scale beams have been conceived 

and conducted in order to verify the validity of the collapse criterion, 

which underpins the proposed design methodology. 

The comparison between the experimental evidence and the results of the 

simplified mechanical model confirmed the validity of the collapse 

criterion, since, for all tests, the ultimate limit load has been reached for 

tensile steel bars yielding. Moreover, the comparison between the value of 
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stress of compressive elements coming from the model and the tests 

confirmed the reliability of the simplified model. 

 

Starting from the validation of the simplified model, an optimization 

procedure of beams’ shape has been proposed able to guarantee a pseudo-

ductile shear behavior, the maximum contribution of concrete in the 

resistance system and the minimum amount of material. 

In detail, the analysis of the shear behavior by means of the structural 

simplified model showed that the arrangement of the reinforcement of the 

beam can be completely described referring to three independent 

parameters: swµ , α  and ζ . Therefore, the optimization criterion has been 

defined as follows: 

given the shear demand, expressed as a function of the shear demand DV , 

the optimal solution, defined by α  and ζ , is the one minimizing the 

amount and the related cost of materials and labor, where the cost of 

materials steelc  depends on the amount of shear steel and of labor workc  on 

the number of weldings and bendings. 

 

The further step of the work dealt with the comparison between the 

solution deriving from the design method nowadays adopted and the 

solution coming from the proposed mechanical model embedded in the 

optimization procedure. The analyses of the results showed that the 

optimal solution allows reducing the cost of the overall beam by 11% . 

Moreover, since the simplified model permits controlling the stress of 

concrete elements, it has been possible to verify also the increase of stress 

in concrete elements for optimal solutions. 

 

Therefore, the developed research brought to the development of 

mechanical models and design procedure that are much more reliable than 

the ones proposed by Codes: they are able to always guarantee the pseudo-

ductile shear behavior of structures since the yield of steel becomes the 
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base condition of design and optimization and to allow controlling of stress 

and strain in compressive elements. 

 

As for future scenarios, this work can be the basis for the development of 

an optimization procedure of the overall beam: shear and flexure 

reinforcement. 
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1. Sample C

1-5 INF CH
0

1-4 INF CH
2

6-4 SUP
CH 5

6-8 INF CH
6

9-8 INF CH
10

9-11 INF
CH 12

12-11 INF
CH 14 1-2 INF CH 16 6-3 INF CH 20 6-7 INF CH 21 TEMP CH 22

CELLA 500
KN CH 23

50 MM CH
24

100 MM
CH 25

µm/m µm/m µm/m µm/m µm/m µm/m µm/m µm/m µm/m µm/m µm/m kN mm mm
0 0 0 1 0 0 0 0 0 0 0,5 0 0 0

-6 13 -1 0 2 0 0 -3 -1 -1 -0,7 4,89 -0,03 -0,03
-9 18 -2 0 3 0 1 -4 -1 -1 -0,7 6,48 -0,06 -0,04

-10 19 -1 0 3 0 1 -4 -2 -1 -0,7 6,78 -0,06 -0,04
-48 160 -6 2 42 -5 9 -26 -8 -7 -1,4 29,22 -0,41 -0,34
-51 176 -6 3 45 -6 11 -28 -9 -8 -1,4 31,41 -0,44 -0,38
-56 197 -6 3 50 -7 13 -31 -10 -9 -1,1 34,56 -0,49 -0,42
-68 242 -7 6 60 -9 22 -40 -12 -11 -1,4 42,81 -0,62 -0,54
-71 251 -8 7 62 -10 24 -43 -12 -11 -1,4 44,55 -0,64 -0,57
-75 265 -8 8 66 -11 28 -46 -13 -12 -1,4 47,49 -0,69 -0,62
-79 279 -8 8 69 -11 32 -50 -13 -12 -1,6 50,13 -0,73 -0,66
-87 307 -9 11 75 -12 40 -58 -15 -13 -1,1 55,95 -0,82 -0,75
-94 333 -9 13 80 -13 47 -65 -15 -14 -1,1 60,48 -0,88 -0,82
-96 342 -9 14 82 -13 50 -68 -16 -14 -1,1 62,22 -0,91 -0,83

-156 579 -16 38 125 -20 129 -159 -27 -21 -0,5 116,58 -1,63 -1,53
-157 585 -16 39 126 -20 131 -162 -27 -21 -0,7 118,08 -1,65 -1,56
-159 592 -16 40 128 -21 134 -165 -27 -22 -0,5 119,94 -1,67 -1,58
-160 600 -16 40 129 -21 137 -168 -28 -22 -0,5 121,98 -1,69 -1,61
-162 607 -16 41 130 -21 139 -171 -28 -22 -0,5 123,72 -1,72 -1,64
-163 613 -17 42 131 -21 141 -174 -29 -22 -0,7 125,43 -1,73 -1,66
-165 619 -17 42 132 -21 144 -177 -29 -22 -0,7 127,14 -1,75 -1,69
-166 626 -17 43 133 -21 145 -180 -29 -22 -0,7 128,7 -1,78 -1,71
-167 632 -17 44 134 -21 147 -183 -29 -23 -0,7 130,38 -1,79 -1,74
-168 637 -17 44 135 -22 149 -185 -30 -23 -0,5 131,61 -1,81 -1,75
-170 645 -18 45 137 -22 152 -188 -30 -23 -0,7 133,71 -1,83 -1,78
-172 650 -18 45 138 -22 154 -191 -30 -23 -0,7 135,18 -1,85 -1,81
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-174 662 -18 47 139 -22 158 -195 -31 -24 -0,7 138,33 -1,88 -1,84
-179 685 -19 49 143 -23 166 -205 -32 -24 -0,9 144,78 -1,96 -1,94
-183 705 -19 51 147 -24 173 -213 -33 -24 -0,7 150,03 -2,02 -2,01
-186 721 -20 52 149 -24 179 -219 -34 -25 -0,7 154,41 -2,07 -2,08
-190 741 -20 54 152 -25 186 -227 -35 -25 -0,5 159,96 -2,13 -2,16
-195 762 -21 55 156 -25 194 -235 -36 -26 -0,7 165,72 -2,20 -2,24
-325 1344 -37 78 275 -43 415 -400 -68 -37 -0,7 330,06 -3,97 -4,51
-326 1345 -37 78 276 -43 416 -400 -68 -37 -0,9 330,51 -3,97 -4,51
-327 1352 -37 78 278 -43 417 -402 -68 -37 -0,9 331,89 -3,99 -4,53
-328 1353 -37 78 278 -43 417 -402 -68 -37 -0,9 331,98 -4,00 -4,53
-331 1362 -37 77 280 -43 419 -405 -69 -37 -1,4 333,81 -4,02 -4,56
-333 1375 -37 78 285 -43 425 -407 -70 -37 -1,4 337,86 -4,05 -4,61
-336 1391 -38 80 289 -44 432 -410 -71 -38 -2,1 342,51 -4,10 -4,66
-338 1393 -38 79 289 -44 433 -412 -71 -38 -2,3 343,08 -4,11 -4,68
-350 1462 -40 83 308 -46 467 -426 -75 -38 -3,4 364,32 -4,30 -4,94
-353 1479 -40 84 312 -46 475 -429 -75 -39 -3,4 369,24 -4,35 -5,01
-361 1512 -41 87 320 -47 491 -438 -77 -40 -3,4 378,87 -4,46 -5,14
-362 1515 -41 87 321 -47 491 -439 -77 -40 -3,4 379,08 -4,46 -5,14
-372 1560 -43 89 335 -48 511 -449 -80 -40 -3,9 391,14 -4,58 -5,31
-380 1607 -44 92 348 -49 533 -458 -83 -41 -3,4 404,28 -4,71 -5,47
-388 1638 -45 94 355 -50 545 -467 -84 -41 -3,0 411,63 -4,80 -5,59
-398 1681 -46 97 368 -51 565 -477 -86 -41 -2,3 423,27 -4,92 -5,74
-404 1710 -47 100 376 -52 582 -484 -88 -41 -2,3 432,81 -5,03 -5,87
-560 1773 -60 181 481 -58 745 -595 -195 15 -2,1 505,89 -6,31 -7,26
-577 1745 -60 184 485 -58 750 -601 -197 17 -1,6 507,6 -6,36 -7,31
-626 1696 -62 192 496 -59 764 -626 -200 24 -1,8 514,5 -6,53 -7,47
-657 1672 -62 197 502 -59 771 -653 -202 29 -1,4 517,47 -6,63 -7,56
-766 1785 -64 206 503 -60 776 -767 -207 45 -2,5 518,46 -6,93 -7,76
-779 1784 -64 208 507 -60 780 -764 -208 48 -2,5 520,35 -7,01 -7,82
-797 1749 -64 210 493 -60 765 -785 -208 53 -1,8 511,95 -7,08 -7,83
-798 1755 -64 210 494 -59 766 -789 -208 54 -2,1 512,16 -7,08 -7,83
-801 1757 -64 210 494 -59 766 -792 -209 54 -2,3 511,86 -7,08 -7,83
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-802 1756 -64 210 494 -59 766 -793 -209 54 -2,3 511,86 -7,08 -7,83
-806 1757 -64 209 501 -60 773 -809 -211 56 -2,3 514,53 -7,14 -7,88
-802 1748 -64 210 497 -60 770 -814 -210 57 -2,7 512,28 -7,16 -7,86
-806 1757 -64 209 497 -60 770 -822 -211 57 -3,0 511,47 -7,17 -7,88
-808 1762 -64 209 497 -60 770 -824 -211 57 -3,0 511,53 -7,18 -7,89
-811 1788 -65 209 507 -60 777 -834 -213 58 -2,3 516 -7,25 -7,96
-811 1774 -64 209 501 -60 771 -841 -212 60 -4,3 512,43 -7,27 -7,97
-811 1774 -64 209 501 -60 771 -841 -212 60 -4,3 512,37 -7,27 -7,97
-811 1773 -64 209 501 -60 771 -841 -212 60 -4,3 512,34 -7,27 -7,97
-811 1773 -64 209 501 -60 771 -842 -212 60 -4,3 512,28 -7,27 -7,97
-825 1818 -65 213 513 -61 780 -889 -215 66 -3,4 517,29 -7,51 -8,15
-827 1831 -66 212 516 -61 784 -892 -216 65 -3,4 519,3 -7,51 -8,16
-828 1801 -64 213 500 -60 767 -894 -213 67 -5,3 510,27 -7,51 -8,10
-837 1918 -67 212 503 -64 771 -911 -221 80 -4,8 507,66 -7,64 -8,13
-755 1386 -48 176 183 -52 481 -817 -195 87 -7,8 358,29 -6,56 -6,53
-747 1364 -47 174 174 -52 473 -809 -194 87 -7,5 352,92 -6,50 -6,45
-741 1356 -47 173 172 -51 470 -804 -194 87 -7,5 351,15 -6,48 -6,43

-11 -285 3 141 36 -2 85 -44 -96 118 -7,8 29,01 -2,33 -1,67
24 -321 4 141 34 0 81 -26 -89 124 -7,8 24,39 -2,22 -1,57
53 -349 5 141 32 2 77 -11 -82 128 -7,8 20,97 -2,13 -1,50
67 -362 5 141 32 2 76 -3 -80 131 -7,8 19,5 -2,09 -1,47
80 -373 6 141 31 3 74 5 -77 132 -7,8 18,33 -2,05 -1,44
89 -381 6 141 31 3 74 10 -76 133 -7,5 17,49 -2,03 -1,41

101 -392 6 141 30 3 72 17 -73 135 -7,5 16,35 -1,99 -1,39
112 -403 7 141 29 4 71 24 -71 136 -7,8 15,18 -1,96 -1,36
118 -408 7 142 29 4 71 27 -70 137 -7,8 14,67 -1,95 -1,35
122 -412 7 142 29 4 70 30 -68 137 -7,8 14,28 -1,94 -1,34
127 -416 7 142 29 4 70 33 -65 138 -7,5 13,98 -1,93 -1,33
177 -468 9 141 25 6 67 58 -57 142 -8,0 7,38 -1,74 -1,18
189 -479 9 141 25 7 65 64 -55 142 -8,2 6,03 -1,70 -1,14
197 -488 9 141 24 7 64 70 -53 143 -8,0 5,04 -1,67 -1,12
205 -495 10 141 24 8 64 74 -52 144 -8,0 4,26 -1,64 -1,09
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212 -501 10 141 24 8 63 78 -51 144 -8,2 3,72 -1,62 -1,08
216 -504 10 141 24 8 63 80 -50 145 -8,2 3,39 -1,61 -1,08
284 -549 12 142 22 10 58 127 -36 153 -8,2 0,21 -1,46 -0,95
285 -550 12 142 22 10 58 128 -36 153 -8,2 0,18 -1,46 -0,94
288 -551 12 142 22 10 58 130 -35 153 -8,2 0,12 -1,46 -0,94
291 -553 12 142 21 10 58 133 -35 154 -8,5 0,03 -1,45 -0,94
295 -555 13 143 22 11 58 136 -33 154 -8,7 -0,06 -1,45 -0,94
296 -555 13 143 22 11 58 137 -33 154 -8,5 -0,09 -1,45 -0,94
296 -555 13 143 22 11 58 137 -33 155 -8,7 -0,09 -1,45 -0,94
301 -558 13 143 22 11 58 142 -32 155 -8,2 -0,18 -1,44 -0,94
302 -559 13 143 21 11 58 143 -31 155 -7,8 -0,21 -1,44 -0,93
304 -560 13 143 21 11 58 144 -31 155 -7,8 -0,24 -1,43 -0,92
310 -565 12 143 21 11 57 149 -29 156 -9,4 -0,24 -1,42 -0,91
310 -566 12 143 21 11 57 150 -29 156 -9,4 -0,24 -1,42 -0,91
312 -581 3 135 13 2 41 149 -40 147 -9,1 -0,24 -1,41 -0,90
324 -579 11 143 19 11 55 163 -24 157 -11,0 -0,21 -1,40 -0,89
325 -579 11 144 19 11 54 164 -24 157 -10,5 -0,21 -1,40 -0,88
327 -583 11 145 18 11 54 168 -24 157 -9,8 -0,21 -1,39 -0,86
328 -583 11 144 18 11 53 168 -24 157 -9,8 -0,21 -1,39 -0,87
329 -584 10 144 18 10 49 169 -23 155 -7,8 -0,21 -1,38 -0,87
329 -584 10 144 18 11 49 169 -24 155 -8,0 -0,21 -1,38 -0,87
331 -587 9 144 18 10 49 171 -23 155 -11,2 -0,18 -1,38 -0,97
332 -589 9 143 17 10 48 173 -23 153 -15,3 -0,18 -1,38 -0,99

195



Appendix B

2. Sample D

_1-2 INF CH
0

_1-5 INF CH
2

_1-3 INF CH
4

_1-4 INF CH
6

_6-3 INF CH
10

_6-4 INF CH
12

_9-7 INF CH
16

_50 MM CH
24

_100 MM
CH 25

CARICO TOTALE
CH 24

µm/m µm/m µm/m µm/m µm/m µm/m µm/m mm mm KN

29.07.11
11.58.52

29.07.11
11.58.52

29.07.11
11.58.52

29.07.11
11.58.52

29.07.11
11.58.52

29.07.11
11.58.52

29.07.11
11.58.52

29.07.11
11.58.52

29.07.11
11.58.52 29.07.11 11.58.52

-28 -3 19 5 -8 8 -3 -0,30 -0,79 13,83
-29 -3 19 5 -8 9 -3 -0,31 -0,81 14,10
-29 -4 20 5 -9 9 -3 -0,32 -0,83 14,52
-30 -4 21 5 -9 10 -4 -0,35 -0,86 15,03
-32 -4 23 6 -9 10 -4 -0,39 -0,89 15,75
-33 -4 23 7 -9 10 -4 -0,42 -0,91 16,17
-33 -4 24 6 -9 9 -4 -0,43 -0,93 16,32
-33 -4 24 6 -9 10 -4 -0,44 -0,93 16,32
-34 -4 24 6 -10 11 -4 -0,45 -0,93 16,44
-34 -4 24 6 -10 12 -4 -0,45 -0,95 16,74
-35 -4 25 7 -10 12 -4 -0,46 -0,97 17,25
-36 -5 26 7 -11 13 -4 -0,47 -0,99 17,70
-37 -5 27 7 -11 13 -5 -0,49 -1,01 18,18
-38 -4 27 7 -11 13 -5 -0,51 -1,03 18,45
-38 -4 28 8 -11 13 -5 -0,53 -1,03 18,48
-38 -5 28 7 -11 13 -4 -0,54 -1,04 18,36
-37 -5 27 7 -11 13 -5 -0,55 -1,04 18,33
-38 -4 28 7 -11 14 -4 -0,55 -1,04 18,36
-39 -5 28 8 -11 14 -4 -0,55 -1,05 18,90
-40 -5 29 8 -11 15 -5 -0,56 -1,07 19,44
-41 -5 30 8 -12 15 -5 -0,57 -1,09 19,92
-42 -5 31 8 -12 15 -5 -0,58 -1,11 20,28
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-42 -5 32 8 -12 15 -5 -0,59 -1,13 20,55
-43 -5 32 9 -12 15 -5 -0,61 -1,14 20,82

-272 -118 242 157 -127 41 110 -2,98 -3,40 182,82
-273 -119 243 158 -128 41 110 -2,99 -3,41 183,72
-274 -120 244 159 -129 41 111 -3,00 -3,43 184,56
-275 -120 245 159 -130 41 112 -3,01 -3,43 185,10
-275 -120 245 160 -130 41 112 -3,02 -3,44 185,43
-276 -120 245 160 -131 41 112 -3,03 -3,44 185,67
-276 -120 245 160 -131 41 112 -3,03 -3,44 185,82
-277 -120 245 161 -131 41 112 -3,03 -3,45 185,97
-277 -121 245 160 -132 40 113 -3,04 -3,45 186,24
-277 -121 246 161 -132 41 113 -3,04 -3,46 186,54
-278 -121 246 161 -133 41 114 -3,05 -3,47 186,66
-278 -121 246 162 -133 41 115 -3,05 -3,48 187,14
-279 -122 247 162 -134 41 114 -3,06 -3,48 187,80
-280 -122 248 163 -134 41 114 -3,06 -3,49 188,43
-280 -122 249 163 -135 40 114 -3,07 -3,50 189,00
-281 -123 250 164 -135 41 115 -3,08 -3,51 189,48
-282 -123 250 164 -136 40 115 -3,08 -3,51 189,93
-282 -123 251 165 -137 40 115 -3,08 -3,52 190,41
-283 -123 251 165 -137 41 115 -3,08 -3,53 190,86
-283 -124 251 165 -138 41 115 -3,09 -3,53 191,16
-284 -124 252 165 -138 41 115 -3,09 -3,54 191,43
-284 -124 252 165 -139 41 115 -3,09 -3,54 191,70
-284 -124 252 165 -139 41 115 -3,10 -3,54 192,03
-285 -124 253 166 -140 41 116 -3,10 -3,55 192,36
-285 -125 253 167 -140 40 116 -3,11 -3,56 192,87
-286 -125 254 167 -141 40 116 -3,12 -3,56 193,38
-287 -125 255 168 -141 40 116 -3,13 -3,57 194,16
-288 -126 256 168 -142 40 117 -3,14 -3,58 195,00
-311 -136 277 186 -162 38 125 -3,35 -3,81 213,12
-312 -136 279 187 -163 38 123 -3,37 -3,83 213,87
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-313 -136 280 187 -163 38 121 -3,38 -3,83 214,53
-315 -137 281 188 -164 38 119 -3,38 -3,84 215,55
-316 -138 283 190 -166 38 119 -3,40 -3,86 216,96
-318 -139 285 192 -167 38 117 -3,42 -3,88 218,58
-320 -139 287 193 -168 39 117 -3,43 -3,90 220,11
-322 -140 288 194 -170 39 115 -3,45 -3,92 221,46
-323 -140 290 196 -171 38 115 -3,47 -3,93 222,54
-325 -141 291 197 -173 38 114 -3,47 -3,94 223,62
-326 -141 292 198 -174 38 112 -3,49 -3,96 224,55
-328 -142 293 199 -176 38 112 -3,50 -3,97 225,42
-329 -143 294 200 -177 38 111 -3,51 -3,98 226,23
-330 -143 295 201 -179 38 110 -3,53 -3,99 226,98
-331 -143 296 202 -180 37 109 -3,54 -4,00 227,70
-332 -144 297 203 -181 37 109 -3,55 -4,01 228,45
-345 -148 308 213 -195 34 104 -3,66 -4,12 237,00
-345 -148 308 214 -195 34 104 -3,66 -4,13 237,36
-345 -149 308 214 -197 34 104 -3,66 -4,13 237,66
-346 -149 308 215 -197 34 104 -3,67 -4,14 238,20
-347 -149 309 215 -198 34 104 -3,67 -4,14 238,83
-347 -149 310 216 -200 34 104 -3,68 -4,15 239,40
-348 -150 311 217 -200 34 104 -3,68 -4,16 240,03
-349 -150 311 217 -201 34 104 -3,69 -4,16 240,69
-350 -150 312 218 -202 34 104 -3,69 -4,17 241,35
-351 -151 313 219 -203 33 103 -3,70 -4,18 242,04
-352 -151 313 220 -204 34 104 -3,71 -4,19 242,88
-353 -152 315 221 -205 34 103 -3,72 -4,19 243,75
-354 -152 316 222 -206 34 103 -3,73 -4,21 244,65
-355 -152 317 223 -208 34 103 -3,74 -4,22 245,46
-356 -153 318 223 -209 34 103 -3,75 -4,23 246,24
-365 -156 325 231 -219 31 100 -3,84 -4,31 252,84
-365 -157 326 232 -220 31 99 -3,85 -4,32 253,41
-366 -157 326 232 -221 31 99 -3,86 -4,33 254,04

198



Appendix B

-367 -157 327 233 -223 31 99 -3,87 -4,33 254,70
-378 -164 355 252 -247 28 100 -4,03 -4,51 268,92
-392 -172 387 277 -280 30 102 -4,19 -4,71 286,83
-392 -173 389 277 -283 29 103 -4,20 -4,73 287,58
-392 -173 391 279 -284 29 103 -4,20 -4,73 288,33
-393 -173 392 280 -286 29 103 -4,21 -4,74 289,05
-393 -174 394 281 -288 29 103 -4,22 -4,75 289,74
-394 -174 395 282 -290 29 103 -4,22 -4,76 290,40
-395 -174 397 283 -291 29 103 -4,23 -4,76 291,03
-421 -188 443 324 -352 24 113 -4,58 -5,14 324,42
-435 -206 524 382 -419 21 111 -5,08 -5,72 371,85
-379 -77 685 696 -507 -87 110 -5,72 -6,43 429,63
-379 -74 686 701 -507 -89 109 -5,74 -6,44 430,80
-379 -69 688 706 -508 -91 109 -5,76 -6,46 431,88
-379 -67 689 710 -509 -93 109 -5,77 -6,46 432,69
-379 -65 688 714 -509 -94 109 -5,78 -6,48 433,62
-379 -63 689 717 -510 -96 109 -5,79 -6,49 434,58
-380 -61 690 720 -511 -97 109 -5,80 -6,49 435,48
-380 -59 692 723 -512 -98 109 -5,80 -6,51 436,26
-380 -57 693 725 -512 -99 108 -5,82 -6,52 436,92
-380 -56 694 728 -513 -100 108 -5,82 -6,53 437,55
-380 -54 695 731 -514 -101 108 -5,83 -6,54 438,18
-380 -53 695 733 -514 -102 108 -5,84 -6,54 438,69
-381 -52 695 735 -515 -103 108 -5,84 -6,55 439,11
-381 -51 696 737 -515 -104 107 -5,84 -6,56 439,50
-381 -49 696 738 -515 -105 107 -5,85 -6,56 439,80
-381 -48 696 740 -515 -105 107 -5,85 -6,57 440,22
-365 0 798 907 -569 -188 95 -6,31 -7,13 484,71
-365 0 799 909 -570 -189 95 -6,31 -7,14 485,22
-634 -106 730 1126 -739 -498 23 -9,25 -10,09 604,62
-634 -107 725 1128 -740 -499 21 -9,30 -10,12 605,37
338 193 222 1238 -821 -816 -43 -12,87 -13,12 665,31
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413 216 216 1248 -822 -817 -41 -12,97 -13,16 665,64
484 241 211 1266 -824 -817 -40 -13,09 -13,19 666,00
562 270 208 1291 -825 -823 -39 -13,13 -13,23 666,39
648 315 202 1316 -825 -836 -38 -13,16 -13,25 666,63
740 358 194 1339 -825 -859 -37 -13,21 -13,28 666,75
853 410 189 1353 -827 -874 -36 -13,27 -13,31 666,72
966 484 184 1369 -828 -891 -33 -13,36 -13,36 666,87

1072 570 181 1375 -830 -901 -31 -13,43 -13,39 667,02
1162 665 177 1385 -832 -912 -28 -13,49 -13,43 666,99

-4411 -2954 -807 -190 -2325 -1043 -17 -21,38 -15,51 249,96
-4411 -2954 -257 -372 -1787 -829 -50 -18,88 -13,06 91,77
-4411 -2954 -142 -353 -1371 -768 -58 -17,03 -11,53 29,64
-4411 -2954 -129 -239 -1707 -990 -22 -18,21 -13,21 138,24
-4411 -2954 -126 -239 -1713 -991 -22 -18,23 -13,24 139,47
-4411 -2954 -125 -239 -1718 -993 -21 -18,26 -13,26 140,49
-4411 -2954 -124 -239 -1724 -995 -21 -18,28 -13,28 141,66
-4411 -2954 -122 -239 -1729 -997 -21 -18,31 -13,29 143,04
-4411 -2954 -121 -238 -1736 -999 -21 -18,35 -13,33 144,57
-4411 -2954 -119 -239 -1743 -1001 -20 -18,40 -13,35 146,22
-4411 -2954 -119 -238 -1750 -1002 -20 -18,43 -13,37 147,84
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