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Introduction 
 
Tumor mass is composed by a heterogeneous cell population including a subset of “cancer stem cells” (CSC), 

arisen by either transformed somatic stem cells or progenitor/differentiated cells reprogrammed towards cancer 

stemness (1,2). Thus, CSC share features with both cancer and stem cells such as self-renewal, 

epithelial/mesenchimal transition and constitutive activation of stemness-promoting signals (1). 

CSC are believed to trigger tumor formation, drive resistance to conventional therapeutics and underlie 

patients’ relapse (2). Indeed, stem cell signatures have been associated with poor prognosis in various tumors 

(3, 4, 5, 6). This background makes the identification of CSC molecular features mandatory to understand 

tumor progression and to design novel CSC specific therapeutic strategies. 

Medulloblastoma (Mb) is the most common childhood malignant brain tumor and a leading cause of 

cancer-related morbidity and mortality. Current multimodal therapies are effective in about 50% of patients but 

often cause long-term side effects, i.e. developmental, neurological, neuroendocrine and psychosocial deficits 

(7). 

For many years, Mb was treated as a single tumor entity despite the divergent histology, 

patients’outcome and drug sensitivity, and also the diversity of the cell of origin. Very recently the scenario of 

human Mb has dramatically changed since its heterogeneous biology has been addressed by gene expression 

high-throughput micro-arrays (8, 9, 10) and exome deep sequencing techniques (11,12). These led to the 

identification of four Mb subgroups (WNT, SHH, Group 3 and Group 4) uncovering the existence of a highly 

diverse mutational spectra and gene expression (13, 14, 7). 

However a quantitative approach has not yet been applied to the transcriptional landscape of 

Medulloblastoma stem cells (MbSC) through RNA Next Generation Sequencing (RNA-Seq) technology. This is 

a relevant issue, since RNA-Seq is able to interrogate the genome wide global transcriptome including new 

transcripts, alternative spliced isoforms and non-coding RNAs. 
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The cellular origin of 3 of the 4 MB subgroups has been identified. Lower rhombic lip progenitors of the 

dorsal brainstem are considered the triggering cells in WNT tumors. In SHH subgroup initiation cells are 

Prominin1+ CD15+ stem cells from the subventricular zone requiring the commitment to Math1+ granule cell 

progenitors [GCP] of the external granule cell layer [EGL]. Math1+ or Math1- EGL-GCP or Prominin1+/lineage-

negative stem cells sustain, instead, the MYC-driven Group 3 tumors (7, 2).  

MbSC derived from SHH tumors and postnatal normal cerebellar stem cells (NcSC) have been reported 

to share several features. A key signal for both of them is Hedgehog (Hh) (15). Furthermore, both NcSC and 

MbSC display up-regulation of stemness genes (e.g Sox2, Nestin, Nanog, Prom1) (15). Finally, constitutive 

activation of the Hh pathway by conditional deletion of Ptch1 inhibitory receptor in NcSC, promote Mb in vivo 

(16, 17,18), producing a mouse model of the human SHH tumor. Acquisition of stemness features may 

therefore represent the first step of oncogenic conversion. Cooperation with additional oncogenic signals is 

however needed to enhance MbSC tumorigenicity (19). Therefore, MbSCs may be characterized by both 

stemness and additional cancer-specific features. However, the identification of the genes responsible for 

these characteristics of MbSC by large-scale expression analysis is poorly investigated. 

In order to understand the MbSCs transcriptional programs we analyze MbSC derived from Ptch1+/- 

tumors (Ptch1+/- MbSC) by RNA-Seq. The choice of a genetically determined model of Mb has allowed us to 

work with cancer stem cells together with appropriate normal counterpart, and to analyze biological replicates 

for statistical analysis. 

We identify transcripts characterizing MbSC, including novel isoforms, and long non-coding RNAs. Pathway 

analysis of genes significantly deregulated in the MbSC setting includes also epithelial/mesenchimal transition 

features (Focal Adhesion and ECM-receptor interaction) and Hedgehog signaling with high expression and 

biological relevance of Gas1 and Hdac2. Some of these stemness- and cancer-related genes are conserved 

and deregulated in human Mbs. Interestingly, a subset of them belongs to the “cell stress response” and has 

prognostic relevance in human disease.  
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We have provided a high-resolution analysis of previously unidentified MbSC transcriptomes and identified 

prognosis-related transcripts of human tumors as potential candidate therapeutic targets.  
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Results 

 

MbSC, NcSC and Diff-NcSC deep-sequencing transcriptomes. 

To identify MbSC- and NcSC-specific transcriptomes we used Mbs developed in Ptch1+/- mice, a genetically 

defined model of the SHH tumor. This murine model allowed us to analyze the paired normal stem cell 

counterpart (NcSC isolated from cerebella of wild type animals) from which MbSC are believed to derive (Wang 

J Exp Neurol. 2012). NcSC and Ptch1+/- MbSC were isolated and cultured as previously described (15). Both 

cells showed positive staining for the neural stem cell markers Sox2 and Nestin, (NcSC 70%, 85% and MbSC 

90%, 70% respectively), with very low expression of Neurod1 or Math1 neuronal differentiation markers (Figure 

1A and ref. 15). The Hh target gene Gli1 was detectable in 40% of NcSC (Figure 1B) and in 80% of MbSC, as 

expected (15, 16). NcSC gave rise to differentiated cells (Diff-NcSC) including astrocytes (S100+ cells), 

neurons (Tuj1+ cells), purkinje (Pvalb+ cells) and oligodendrocytes (Cspg4+) when cultured in the presence of 

platelet-derived growth factor (PDGF) (Figure 1C). 

 We performed a paired-end, high-throughput mRNA-Seq on three biological replicates for each cell 

type (NcSC, Diff-NcSC and MbSC). On average, 124±39 millions reads per biological replicate (~ 85% of the 

sequenced ones) were aligned to the mouse genome (Figure 1 D; Table S1). Aligned reads were then 

assembled using the reference annotation based transcript assembly (RABT) from the Cufflinks suite, using the 

UCSC transcripts as reference (20,21,22). The abundance of each transcript was estimated in fragments per 

kilobase of exon per million fragments mapped (FPKM). The similarity of the FPKM distributions among 

different samples (Figure 1E) and the balance in the MA plots among biological replicates and cell types 

(Figure 2) confirm the absence of biases in the sequencing and/or normalization phases. The overall 

expression data of the biological replicates cluster together and are separated from the expression values of 

each cell types (Figure 1F), demonstrating that our sample preparation and sequencing approach steps reflect 
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the biology and expression profile of the cells under examination. The transcriptomes of all three analyzed 

samples show similar features. In all of them expressed genes are between 14 and 15 thousand, 86% of which 

are genes already annotated in the mouse reference transcriptome. They also show a similar proportion of 

alternative splicing (see Figure 1G). We also identified transcribed isoforms not annotated in the reference 

version of UCSC and in the following refer to them as putative novel isoforms. The transcribed regions not 

annotated in UCSC were first filtered to remove those overlapping with repeated regions or annotated in other 

databases (Ensembl, RefSeq, NONCODE) and defined as Novel Transcriptionally Active Regions (nTAR). 

Their classification according to their splicing patterns (single or poly exons structure) and their position with 

respect to known expressed loci (intronic or intergenic) is shown in Figure 1H. We found 157 intronic single 

exon nTARs with an average length of 489 bases; 614 intergenic nTARs with a single exon structure (average 

length of 492 bases) and 351 poly-exons nTARs with an average length of 2118 bases.  

Long non-coding RNAs (lincRNAs) are also known to play a role in gene regulation (23). In our dataset we 

found 283 lincRNA annotated in UCSC, 51 of them subject to alternative splicing and 39 containing putative 

novel isoforms (24). As expected, the expression analysis of lincRNAs showed an overall lower expression 

level compared to protein-coding genes. The lincRNA and protein coding gene FPKM distributions have a 

different median (0.33 vs. 4.89) and upper quartile values (1.08 vs. 16.21) (Figure 3).  

Overall, our RNA-seq deep sequencing approach yielded an accurate analysis of global stem and differentiated 

cell transcriptomes. 

  

Classification of differentially expressed transcripts. 

In order to characterize MbSC and NcSC transcriptomes, we performed a differential expression analysis using 

the Cuffdiff program. We identified 4898 significantly differentially expressed transcripts (DETs) among NcSC, 

MbSC and Diff-NcSC. Among DETs we observed 431 upregulated and 934 downregulated transcripts in MbSC 

with respect to NcSC. Diff-NSC displayed 1207 downregulated and 1734 upregulated transcripts with respect 
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to NcSC. When the transcriptomes of MbSC versus Diff-NcSC were analyzed, we detected 1206 upregulated 

in and 2066 downregulated DETs. We performed an unsupervised clustering of all annotated DETs in at least 

one out of the three comparisons (Figure 4A). The analysis shows that the transcripts can be grouped in two 

main clusters, one composed of differentiated cells, the other by stem-like cells (NcSC, MbSC) with a much 

higher internal diversity in the latter with respect to the former. This MbSC/NcSC group further separated into 

two consistent subgroups, one composed of NcSC, the other by MbSC (Figure 4A). 

A similar cell-type specific pattern of expression was also observed by unsupervised clustering of putative 

novel isoforms (j) (Figure 5).  

Since Hh pathway sustains both MbSC and NcSC, we searched for its transcripts by a hypergeometric 

test and found that MbSC and NcSC are enriched in transcripts belonging to Hh (Figure 3B). Notably, among 

Hh pathway transcripts, Gas1 and Hdac2 were dramatically upregulated in stem cells context. Gas1 is an Hh 

co-receptor required to enhance the pathway activity in multiple developmental contexts (25, 26) with an early 

role in cell fate specification of multiple neuronal progenitors (27). Hdac2 de-acetylates the Hh effectors Gli1 

and Gli2, enhancing Hh signaling (28).  

To verify the biological significance of Gas1 and Hdac2 in stemness, we abrogated their expression by 

specific siRNA. Our results show that Gas1 and Hdac2 silencing significantly reduced NcSC and MbSC self-

renewal ability suggesting a role of these genes in neuronal and cancer stem cell maintenance (Figure 3C and 

D).  

Searching for molecular networks linking DETs, we used Gene Ontology (GO) enrichment analysis. Figure 6 

schematically summarizes the heatmaps of DETs belonging to KEGG pathways that characterize the cells. The 

first heatmap (a) “neuroactive ligand-receptor interaction” include the “gamma-aminobutyric acid 

(GABA)/glutamate/adrenergic receptor family” (Gabra3, 4, Gabrb1, 3, Gria1, 2, 4, Grin1, 2a, 3a, Adra1a, 

Chrna4), down-regulated in MbSCs vs NcSC. Among dowregulated genes in MbSCs other functional 

categories are enriched, such as “potential regulation”, “synaptic organization/transmission” and 
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“glutamate/ligand-gated ion channel activity” as well as the KEGG pathways “calcium signaling” and “axon 

guidance”. Conversely, upregulated genes in MbSCs significantly enrich the category of “amino-acid 

biosynthesis”. 

Panels b, c and d show transcripts of “cell cycle” (b), “DNA replication” (c) and  “p53 pathway” (d) networks. 

These genes are overrepresented in stem cell context and are involved in “mitotic and cell cycle activities” (e.g. 

cyclins Ccne2, Ccne1, Ccnd1, Ccnb2, Ccnd2, Ccna2), “nuclear division”, “DNA replication” (e.g. mini-

chromosome complex and helicases Mcm2-7, Pola1, Pole, Pole2, Dna2), “DNA repair”, “mitotic cell cycle 

checkpoints” (Cdk1, Ccnd1, Mad2l1, Cep192) and “metabolic processes” (Cbs, Nob1, Rps6, Dis3, Ebna1bp2, 

Ddx56, Pa2g4, Shmt1, 2). 

Panel e and f, “ECM-receptor interaction” and “focal adhesion” respectively, highlighted transcripts upregulated 

in Diff-NcSC. Among these, others enrich functional categories belonging to “extracellular matrix”, “cell 

adhesion”, “cell cycle arrest”, “synaptic organization”, “membrane organization” and “extracellular region part” 

“calcium ion binding” (S100a1, 3, 4, 6, 11, 13, S100b) and “integrins” (Itga2, 4, 7, Itgb4, 8) (Figure 6). 

  

Gene patterns characterizing MbSC.  

To define sub-groups of transcripts characterizing cell subtypes, we performed subset analysis by Venn 

diagrams to pick up DETs specifically upregulated in the cell contexts (Figure 7). The first subgroup is 

composed of 161 transcripts, which are downregulated in both MbSC and Diff-NcSC compared to NcSC. We 

hypothesized that this group includes genes specifically expressed in normal stem cells (Figure 7A). The 

second sub-group includes 111 transcripts specifically upregulated only in Diff-NcSC compared to NcSC and 

reciprocally downregulated in MbSC, assumed to be the genes expressed in normal differentiated cells (Figure 

7B). Finally, we selected two additional subsets of genes (MbSC1 and MbSC2) highly expressed in MbSC 

compared to NcSC: the MbSC1 subset is characterized by 11 transcripts specifically upregulated in MbSC, 

compared to NcSC, and reciprocally downregulated in Diff-NcSC, thus assumed to be the genes highly 
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expressed only in MbSC (Figure 7C and D, left box). This latter subset includes 7 known transcripts and 4 

novel isoforms. The MbSC2 is assumed to feature cancer properties of MbSC and includes 30 DETs (Figure 

7D, right box) selected according to the following criteria: i) highly expressed (FPKM > 15), ii) significantly up-

regulated in MbCSC versus NcSC (adjusted p value <0.05, log FC >1.5), iii) not significantly upregulated in 

Diff-NSC compared to NcSC, iv) published to be involved in various cancers. MbSC1 and MbSC2 subsets are 

thus suggested to play a role in both stemness and cancer behavior. 

Among them, we noticed specific genes involved in mouse Mb formation (i.e. the Notch ligand Jagged-1, the 

chemokine receptor CXCR4 and the angiogenic VEGFA) (29,30,31) or Hh-dependent development (i.e. 

neuropilin-1) (32).   

  

MbSC transcriptome correlates with clinical outcome of human medulloblastomas. 

To understand whether the above described gene networks identified in Mb mouse model could be 

conserved in human tumors, we queried GeneMANIA (33) and identified putative human networks involved in 

pathophysiology. Notably, ATF4, TRIB3, DDIT3 and ASNS are involved in “response to stress” (Figure 7E), 

while CXCR4, JAG1 and NRP2 are linked together and with the CXCR4 ligand CXCL12, FLT4 and VEGFA 

and C in controlling cell locomotion (Figure 8A). These observations suggest that both MbSC1 and MbSC2 

signatures might be involved in human Mb. 

Therefore, we evaluated the selected MbSC specific transcripts (listed in figure 7D) in human Mb samples 

(n=36). Details of patients included in the study are reported in Table 1. Mb patients were stratified according to 

their risk subgroups (based on patients’ age, metastasis and post-surgical residual) (34). Twenty-three patients 

were high risk (HR) (< 3 year age, metastatic and residual tumor mass) and 13 were average risk (AR). 

Patients were also stratified with respect to molecular subgroups (15 SHH + 21 non-SHH) (13,14).  

We first applied an unsupervised clustering algorithm based on non-negative matrix factorization 

(NMF) (35) that identified aggregate pattern of gene expression analyzed in human samples. We obtained 2 or 
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8 compact clusters as judged by the cophenetic value. In both cases one of the clusters is significantly 

enriched in Shh-patients (Figure 8B,C and D).  

 Twenty-three out of 37 genes (62%) are significantly higher in human Mbs (Fig. 9A), mirroring similar 

features observed in mouse model. 

To get insights into the biological relevance of the differentially expressed gene signature, we 

investigated whether any of the selected genes could have a prognostic value. Patients were divided into two 

subgroups (containing at least five patients) according to whether the expression of the selected gene was 

more than 3 standard deviation above the median of the controls or not. Interestingly, Kaplan-Meier (KM) 

analysis of the two groups indicated a worse prognosis with a shorter survival rate of ATF4 high expressing 

patients (regardless of the Mb subgroup classification) compared to patients with lower transcript levels (Fig. 

9B). To investigate whether such a gene signature may also represent a further prognostic indicator besides 

the currently known ones (i.e. HR versus AR), we performed KM analyses in HR patients. High levels of ATF4, 

GADD45a and ERO1L also correlated with a worse prognosis in HR patients (Fig. 9 C,D and E). Overall, 

ATF4, ERO1L and GADD45a belonging to the “cell stress response”, correlate with clinical outcome of Mb 

patients. 

Interestingly, this gene signature extends to human MbSC, as well. Indeed the levels of these genes are 

significantly overexpressed in human MbSC with respect to the bulk pre-neurosphere cell population (Figure 

9F). 
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Discussion 

 

We describe here the first report of the use of a large scale RNA-seq technology of mouse MbSC revealing 

their previously unknown transcriptional landscape. We have obtained high-throughput trascriptome that meets 

best requirements (36) for the measurement of genes and identification of alternative splicing as well as 

analysis for detection of noncoding transcripts. 

Differential expression analysis shows that MbSC and NcSC share “stem-like” gene patterns that make 

them a cluster distinct from a second cluster corresponding to Diff-NcSC. According to the Ptc1+/- Mb model 

studied, we found that the Hh pathway is enhanced in stem context, confirming previous findings (15). More 

specifically, we reveal a link of NcSC/MbSC with Gas1, a target of Hh signaling and also a Hh co-receptor 

required to enhance the pathway activity (25,26,27), that we show here to promote self-renewal. We also report 

the upregulation of Hdac2, which regulates the acetylation of the Hh Gli effectors enhancing their activity and 

confirming its functional role in Mb (28). Similar considerations can be made for MbSC-associated upregulation 

of the transmembrane protein Nrp2, an important enhancer of Hh signaling forming a positive feedback circuit 

(32). 

Gene signatures defining SHH subgroup human primary Mbs were previously identified to include 

transcripts that we found to be upregulated in MbSC and NcSC. These transcripts include HHIP (8,14), SFRP1 

(9,14), MICAL1 (37), BCHE (36), NTRK3 (8) and SPHK1 (8). Insm1, a target of Hh (38), is also enriched in 

stem context. 

Unsupervised clustering allowed us to identify DETs specifically upregulated in mouse MbSC, 

composing a subset of genes which correlates with stemness, cancer or both features. Notably, these 

transcripts were conserved to a large extent in a cohort of human Mb. Most importantly, some of them correlate 

with tumor prognosis, thus attributing a clinical validation to our data.  
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More specifically, a prognostic value can be attributed to ATF4, GADD45a and ERO1L transcripts that 

distinguish mouse MbSC from normal NcSC and are not downregulated in differentiated cells, which are 

therefore likely to mark MbSC with some cancer-associated differentiation-related features.  

 Remarkably, ATF4, GADD45A and ERO1L are also upregulated in MbSC isolated from human primary 

Mbs, with respect to bulk pre-neurosphere cell population and encode proteins involved in the response to 

oncogenic and metabolic stress. This is in line with the observations that tumor progression and metastatic 

activity need to overcome a series of microenvironmental obstacles, in order to adapt escaping mechanisms 

and promote disease recurrence. Among these obstacles, the disordered microvasculature impairs oxygen and 

nutrient supply while genotoxic stress is caused by chemo/radiotherapy. To this regard, ATF4 overexpression 

is observed in response to a diverse array of micro-environmental stresses including amino acid depletion, 

oxidative stress and endoplasmic reticulum (ER) stress. It also characterizes tumors under hypoxic- and 

nutrient-deprived conditions, where it promotes metabolic homeostasis and cancer cell survival by 

transcriptional regulation of amino acid uptake and biosynthesis, autophagy, redox balance, angiogenesis and 

resistance to current chemotherapeutic drugs (39). Interestingly, the analysis of transcripts expressed in mouse 

MbSC and conserved in human primary medulloblastomas, reveals a number of genes that functionally interact 

with ATF4 either as activated negative loops (i.e. TRIB3 and DDIT3) (40) or survival response to anoxia (i.e. 

VEGF) (41). An imbalance of these signals is therefore suggested to be involved in the ATF4-controlled clinical 

outcome that we have described. 

ER is very sensitive to tumor-associated hypoxia, resulting in the unfolded protein response-linked ER-stress, 

critically regulated by ATF4 (42). Notably, we observed that the ER oxidoreductin 1 (ERO1L) also plays a 

prognostic role. ERO1L is the primary disulfide bond-generating catalyst in the ER and plays an essential role 

in protein folding, whose subversion is involved in diseases such as cancer. Indeed, by oxidizing Protein 

Disulfide Isomerase to keep its function, ERO1L prevents the suppression of disulfide bond formation caused 

by hypoxic stress. ERO1L overexpression has been reported as an adaptive response to the prevalent hypoxic 
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conditions of growing tumor cells, whereby hypoxia enhances HIF-1-mediated transcriptional upregulation of 

ERO1L that in turn promotes appropriate VEGF protein folding and secretion, thus favoring tumor angiogenesis 

and progression (43).  

Finally, the member of the stress sensor GADD45 family, GADD45a, is implicated in the response to 

physiological and environmental stress. These include oncogenic stress, which interact in a complex manner 

with other cellular proteins involved in cell cycle regulation and stress response (such as PCNA, p21, 

cdc2/cyclinB1, and the p38 and JNK stress response kinases) (44). The result can be cell cycle arrest, DNA 

repair, cell survival, senescence, and apoptosis. Altered expression of GADD45 has been observed in multiple 

types of solid tumors and hematopoietic malignancies, where it can function to either promote or suppress 

tumor development, depending on the activating oncogene, the cell type and the engagement of different 

signaling pathways (44). For instance, GADD45a suppresses RAS-driven tumorigenesis via Jnk-mediated 

apoptosis and p38-mediated senescence. In contrast GADD45a promotes Myc-driven tumorigenesis via 

GSK3b/b-catenin signaling which suppresses MMP10 expression, resulting in increased tumor vascularization, 

decreased apoptosis and senescence, ultimately accelerating tumor growth (44). Notably, c-MYC is known to 

promote Mb formation in vivo and to confer stemness and mitogenic properties (45, 46). Indeed, we observed 

that c-myc is is highly expressed in MbSC compared to NcSC (Figure 8). Accordingly, several c-myc target 

genes (i.e. ASNS, ATF4, EMP1, FBLN5, GADD45A, HK2, MTHFD2, NRP2, PRPH, SLC1A4, DDIT3, ERO1L, 

TRIB3) belong to the signature we have observed to be upregulated in MbSC 

(http://www.myccancergene.org/site/myctargetdb.asp). 

Overall, our data suggest that the oncogenic activation of mechanisms driving the adaptation to 

metabolic and micro environmental stress plays a major role in enhancing the aggressiveness of MbSC. 

In summary, we have shown that our model system is effective in prioritizing potential molecular 

mechanisms of human Mb. Moreover we provided evidence for the existence of a new subset of genes useful 

for patients’ stratification to predict clinical outcome.  
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Materials & Methods 

 

Stem Cell cultures and treatments  

Neural Stem Cells (NcSC) and Medulloblastoma Cancer Stem Cells (MbSC) were isolated and cultivated as 

already described (15). More in detail NcSC were isolated from murine WT postnatal cerebella (P4). MbSC 

were isolated from fresh tumor specimens obtained from Ptch1+/- mice, which develop Sonic Hedgehog-

dependent medulloblastoma (16). Both NcSC and MbSC were obtained after mechanical and enzymatic 

dissociation and cultured in serum-free DMEM-F12 plus glucose 0.6%, insulin 25 mg/ml, N-acetyl-L-cystein 60 

mg/ml, heparin 2 mg/ml, B27 1x, EGF 20 ng/ml and bFGF 20 ng/ml, to maintain them under proliferative 

conditions. NSC were also treated to differentiate in vitro after withdrawal of EGF/bFGF and addition of 

differentiating factors (Platelet Derived Growth Factor, PDGF) for 4 days (15). For the neurosphere -forming 

assay, cells were plated at clonal density (1–2 cells/mm2) into 96-well plates and cultured in selective medium 

as described above. 

Knockdown of mouse Gas1 and Hdac2 was performed with specific smart pool siRNAs (20 nM) (Dharmacon, 

Lafayette, CO) using interferin siRNA Transfection Reagent (Polyplus Transfection, NY). 

 

Immunofluorescence  

Neurospheres were dissociated mechanically in cell dissociation solution non-enzymatic buffer (Sigma) to 

obtain aggregates of around 5-10 cells and plated on poly-lysine-coated Lab-Tek chamber slides (cover slips) 

and allowed to adhere for 3 h or differentiated for 3 days as described above to detect differentiation markers. 

Cells were fixed with 4% paraformaldehyde for 20 min at room temperature, incubated in blocking solution (5% 

normal goat serum (NGS), 1% BSA, 0.1% Triton X-100) and stained overnight with primary antibodies diluted 

in blocking solution and for 2 h with secondary antibodies. Primary antibodies were mouse anti-Sox2 
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(MAB4343 Millipore Billerica, MA), mouse anti-Nestin (Abcam ab 11306); mouse anti-Gli1, #2643 (Cell 

Signaling Technology Inc); mouse anti-Parvalbumin P3088 (Sigma); rabbit anti- S100 S2644 (Sigma); mouse 

antib-III tubulin (MAB1637) (Millipore). In all, 488-conjugated anti-mouse and antirabbit secondary antibodies 

were purchased from Molecular Probes (Invitrogen, Eugene, OR). Nuclei were counterstained with HoecHst 

reagent. Cover slips were mounted with fluorescence mounting medium (S3023) (Dako, Carpinteria, CA). 

Images were acquired with Carl Zeiss microscope (Axio Observer Z1) using Apotome technology and 

AxioVision Digital Image Processing Software. 

 

Western blot assay.  

Cells were lysed in Tris–HCl pH 7.6, 50mM, deoxycholic acid sodium salt 0.5%, NaCl 140 mM, NP40 1%, 

EDTA 5mM, NaF 100mM, Na pyrophosphate 2mM and protease inhibitors. Lysates were separated on 8% 

acrylamide gel and immunoblotted using standard procedures. Rabbit anti-Gas1 (Santa Cruz Biotechnology, 

sc-33175), rabbit anti- Hdac2 (Santa Cruz Biotechnology, sc-7899), rabbit anti- Jagged1 (Cell Signaling # 

2620), rabbit anti-HSP70, Santa Cruz Biotechnology, sc-33575), rabbit anti-c-myc (Cell Signalling #9402) and 

HRP-conjugated secondary antisera (Santa Cruz Biotechnology) were used followed by enhanced 

chemiluminescence (ECL Amersham, Amersham, UK). 

 

Libraries preparation and RNA sequencing 

RNA extraction. Total RNA from biological replicates of mNSC, differentiated NSCs and mMbSCs was 

extracted using Trizol reagent (Life technologies, USA) according to the manufactures' protocol. The quality of 

total RNA was checked on BioAnalyzer (Agilent) using RNA nano kit according to the manufactures' 

instructions. Only RNA with RIN value > 9 were used for libraries preparation.   

mRNAseq libraries were constructed according to the standard Illumina protocol by using TruSeq RNA Sample 

Prep Kit. mRNA was converted from total RNA into a library of template molecules suitable for subsequent 
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deep sequencing analysis. Briefly, in a first step, poly-dA containing mRNA molecules were purified using poly-

dT oligo-attached magnetic beads. Following purification, mRNA was fragmented into small pieces using 

divalent cations under elevated temperature. The cleaved RNA fragments were copied into first strand cDNA 

using reverse transcriptase and random primers. This was followed by second strand cDNA synthesis using 

DNA Polymerase I and RNase H. These cDNA fragments went through an end-repair process, the addition of a 

single ‘A’ base, and then ligation of the adapters. The products were purified and enriched by PCR to create 

the final cDNA library.  

 

Sequencing data analysis 

Mapping of RNA-Seq reads using TopHat. All sequenced reads (70 bases in paired-ends) were aligned to the 

Mus musculus genome (NCBI37/mm9) using the spliced read aligner TopHat version V1.3.1. We ran two 

iterations of TopHat alignments to maximize the use of splice site information derived across all samples (47). 

To this purpose, the reads from each sample were first aligned using the paired-end alignment option when 

possible (default parameters and ‘min-anchor=5’). Next, we generated a pooled splice-sites (or “junctions”) file 

by combining all predicted splice sites across all alignments. We then re-aligned each sample using the pooled 

splice-sites file without the option to search for new splice junctions. This strategy led to the reconstruction of 

about 80% of the junctions annotated in UCSC (Genes knownGene) (173,464). 

RNA-Seq transcriptome assembly. The transcriptome of each sample was assembled separately from the 

mapped reads using Cufflinks V1.2.1 with default parameters and paired-end information with UCSC reference 

gtf annotation. If more than one lane per sample was available the corresponding aligned reads were pooled 

prior to running the assemblers. Similarly to other studies we established an FPKM threshold to define whether 

a transcript is expressed using the lower bound of the expression distributions (Figure 1E) (48).   

Differential expression test. Once all reads were assembled with Cufflinks, the output was carefully cleaned by 

non-expressed transcripts and transcripts not present in at least two out of the three biological replicas to avoid 
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assembly artifacts and we used Cuffcompare to produce a combined annotation file subsequently used as 

input for Cuffdiff along with the original alignments files produced by TopHat. Cuffdiff was used to re-estimates 

transcript abundance and differentially expressed transcripts (DETs) and to perform pairwise comparisons of 

expression, splicing and promoter usage between NSC/CSC and NSC/DIF. 

Functional Analysis. We used the DAVID gene functional classification tool (ref). In our analysis we considered 

only GO categories with a false discovery rate < 0.05 and pathways with Benjamini correction < 0.05. (49,50). 

Clustering analysis. Unsupervised clustering and heatmap were generated in R by using differentially 

expressed transcripts as input. We used the R package Pvclust to generate sample clustering with 10000 

bootstrap replicas and heatmap.2 to generate the heatmaps. (51)  

 

Human samples.  

Thirty-six human primary medulloblastoma patients’ for whom a 5-years clinical follow-up was available were 

used in this study. Tumor specimens were collected during surgical resection with the approval of Institutional 

Review Board, as previously described (51). RNA of normal human cerebellum (four adult samples from 25- to 

70-year-old subjects were purchased from Biocat (Heidelberg, Germany) and Ambion (LifeTech, Foster City, 

CA). Human MBs were further stratified according the risk subgroups (based on patients age, metastasis and 

post-surgical residual) (34). Twenty-three patients were high risk (HR) (< 3 year age, metastatic and residual 

tumor mass) and 13 were average risk (AR). Finally, patients were stratified with respect to tumors “molecular 

subgroups” (15 SHH + 21 non-SHH) by realt-time PCR evaluating the expression levels (with respect to normal 

controls) of the following genes: GLI1, SFRP1, PTCH2, MICAL1, RAB33A, PDLIH3, BCHE, ITIH2 (ITIH2-

Hs00158297_m1; BCHE-Hs00163746_m1; PTCH2-Hs00184804_m1, MICAL1-Hs00917696_m1; RAB33A-Hs-

00191243_m1; PDLIM3-Hs01062534_m1; GLI1-Hs00171790_m1; HHIP-Hs01011009_m1; SFRP1-

Hs00610060_ m1, performed in triplicates. Patients were considered to belong to SHH subgroup if all the 

analyzed genes were expressed at least three standard deviations over the average of normal cerebellar 
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controls. (14, 37). All the Clinical and molecular features of patients included in the study are schematized in 

Table 1. 

 

Quantitative RT-PCR 

cDNA synthesis was performed using High Capacity cDNA reverse transcription kit from  Applied Biosystems- 

Life Technologies (Foster City, CA) as previoly described (53). Quantitative reverse transcription (RT–PCR) 

analysis was performed using a custom 384-TaqMan Low Density Array (TLDA) containing triplicates for the 

following assay: ADAM15-Hs00984794_m1, ADAM19-Hs00224960_m1, CTH-Hs00542276_m1, FBLN5-

Hs00197064_m1, GABRR2-Hs00266703_m1, MTHFD2-Hs00759197_s1, P2RX3-Hs01125554_m1, SLC1A5-

Hs00194540_m1, ADAM15-Hs00984794_m1, ALDH1L2-Hs00402876_m1, ARHGEF2-Hs00190884_m1, 

ASNS-Hs00370265_m1, ATF4-Hs00909569_g1, ATF5-Hs01119208_m1, CA14-Hs00201626_m1, CXCR4-

Hs00607978_s1, DDIT3-Hs00358796_g, DDR2-Hs01025953_m1, DUSP4-Hs01027785_m1,EMP1-

Hs00608052_m1, ERO1L-Hs00205880_m1, GADD45A-Hs00169255_m1, GTF3A-Hs00157851_m1, GTPBP2-

Hs00368050_m1, HK2-Hs00606086_m1, JAG1-Hs01070032_m1, LONP1-Hs00998404_m1, NRP2-

Hs00187290_m1, NUPR1-Hs01044304_g1, PODXL-Hs01574644_m1, PRPH-Hs00196608_m1, RCOR2-

Hs00293511_m1, SLC3A2-Hs00374243_m1,STC2-Hs00175027_m1,TEAD2-Hs00366217_m1, TRIB3-

Hs01082394_m1, VEGFA-Hs00900055_m1, VLDLR-Hs01045922_m1. mRNA expression was analyzed on 

cDNAs using the ABI Prism 7900HT Sequence Detection System (Applied Biosystems) using TaqMan gene 

expression assay according to the manufacturer’s instructions (Applied Biosystems). Each amplification 

reaction was performed in triplicate, and the average of the three threshold cycles was used to calculate the 

amount of transcripts in the sample (SDS software, AB). mRNA quantification was expressed, in arbitrary units, 

as the ratio of the sample quantity to the calibrator or to the mean values of control samples. All values were 

normalized to 4 endogenous controls, PGK1, GAPDH, ß-ACTIN and HPRT.  

Shh-type MBs were assessed by real-time PCR of the following assay ITIH2-Hs00158297_m1; BCHE-
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Hs00163746_m1; PTCH2-Hs00184804_m1, MICAL1-Hs00917696_m1; RAB33A-Hs-00191243_m1; PDLIM3-

Hs01062534_m1; GLI1-Hs00171790_m1; HHIP-Hs01011009_m1; SFRP1-Hs00610060_ m1, performed in 

triplicates (36).  

 

Statistical analysis.  

Where not differently indicated, statistical analysis was performed using StatView 4.1 software (Abacus 

Concepts, Berkeley, CA). The Mann–Whitney U test for unpaired data was used to analyze differences in gene 

expression of each gene between cancer patients and controls. The results are expressed as mean±S.D. from 

at least three experiments as indicated in the figure legends. 

 

Survival analysis 

Kaplan–Meier analysis was used to determine the survival effect based on gene expression data. Patients 

were divided into two subgroups (containing at least five patients) according to whether the expression of the 

selected gene signature was more than 3 standard deviation above the median of the controls or not. 

The statistical significance of Kaplan–Meier curves was evaluated with the log-rank test. 

 

MNF methods 

Non-negative matrix factorization (NMF) is an efficient and powerful method for the identification of distinct 

molecular patterns and for class discovery (35). It is an algorithm based on decomposition by parts that can 

reduce the dimension of expression data from thousands of genes to a handful of metagenes. We could obtain 

2 or 8 compact clusters as judged by the cophenetic value provided by the NMF method. In both cases one of 

the clusters is significantly enriched in Shh-patients.  
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