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Abstract

The objective of the present work is to develop a bottom-up approach to estimate the
similarity between two unknown objects. Given a set of digital images, we want to
identify the main objects and to determine whether they are similar or not. In the last
decades many object recognition and classification strategies, driven by higher-level
activities, have been successfully developed. The peculiarity of this work, instead,
is the attempt to work without any training phase nor a priori knowledge about the
objects or their context. Indeed, if we suppose to be in an unstructured and com-
pletely unknown environment, usually we have to deal with novel objects never seen
before; under these hypothesis, it would be very useful to define some kind of sim-
ilarity among the instances under analysis (even if we do not know which category
they belong to).

To obtain this result, we start observing that human beings use a lot of informa-
tion and analyze very different aspects to achieve object recognition: shape, position,
color and so on. Hence we try to reproduce part of this process, combining different
methodologies (each working on a specific characteristic) to obtain a more meaning-
ful idea of similarity. Mainly inspired by the human conception of representation, we
identify two main characteristics and we called them the implicit and explicit models.
The term "explicit" is used to account for the main traits of what, in the human rep-
resentation, connotes a principal source of information regarding a category, a sort of
a visual synecdoche (corresponding to the shape); the term "implicit", on the other
hand, accounts for the object rendered by shadows and lights, colors and volumetric
impression, a sort of a visual metonymy (corresponding to the chromatic character-
istics).

During the work, we had to face several problems and we tried to define specific
solutions. In particular, our contributions are about:

e defining a bottom-up approach for image segmentation (which does not rely
on any a priori knowledge);

e combining different features to evaluate objects similarity (particularly focus-



ing on shape and color);

e defining a generic distance (similarity) measure between objects (without any
attempt to identify the possible category they belong to);

e analyzing the consequences of using the number of modes as an estimation of
the number of mixture’s components (in the Expectation-Maximization algo-
rithm).
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Chapter 1

Introduction

1.1 Objective

The objective of the present work is to develop a bottom-up approach to estimate
the similarity between two unknown objects. Given a set of digital images, we want
to find the interesting elements and to identify the similar ones. In the last decades
many methodologies have been presented that try to understand the category to which
a specific object belongs. To obtain this result, a training phase is necessary, or at least
some a priori knowledge. Instead a bottom-up approach has to work without know-
ing anything about the object under analysis. As a consequence, it will be not able
to define the category of the item, but possibly to determine its degree of similarity
with respect to a reference object. This is in fact the condition under which, for ex-
ample, autonomous agents usually have to work. In an unstructured and completely
unknown environment, a robot has to travel around and to observe everything; it usu-
ally has to deal with novel objects never seen before, and it would be very useful if
the agent was able to define some kind of similarity among the instances under anal-
ysis (even if it could not know which category they belong to). To obtain this result,
we define a distance measure between objects able to determine similarities. Specif-
ically, in order to obtain a more meaningful idea of the similarity among objects, we
identify two main characteristics and we called them the implicit and explicit models.
The term "explicit" is used to account for the main traits of what, in the human rep-
resentation, connotes a principal source of information regarding a category, a sort of
a visual synecdoche (corresponding to the shape); the term "implicit", on the other
hand, accounts for the object rendered by shadows and lights, colors and volumetric
impression, a sort of a visual metonymy (corresponding to the chromatic character-
istics).



4 CHAPTER 1. INTRODUCTION

1.2 Motivation

Object recognition and classification in natural and digital images are among the most
important topics in computer vision. Despite the concerted efforts of researchers over
the last fifty years, the goal of identifying object categories within still or moving im-
ages remains mostly unsolved. While it may be obvious that human beings are able
to recognize objects under many variable conditions, it is well known that object
recognition and classification are extremely difficult tasks for computers. Human be-
ings are able to learn the appearance of never-seen-before objects and they can create
highly accurate world representations. Computers instead might be able to analyze
simple features and exploit those features to recognize. However, when an object has
slightly changed in its form or is seen from different viewpoints, the features would
appear altered and, as a consequence, the recognition task becomes harder. Equally
challenging is a scenario where a computer has to discriminate between two objects
that contain the same features, but with a different organization. Visual recognition
for human beings is a fast and effortless process, very robust with respect to view-
points, lighting conditions, occlusions and clutter; human beings are able to recognize
the presence, the position and the typology of an object even if it is represented only
by its outlines. Biederman shows (see (22)) that a person can usually recognize more
than 10, 000 categories of objects. Is it possible to obtain a computer able to accom-
plish the same task?

Obviously the applications of an autonomous object-recognition system would be
infinite. In everyday life it could help in searching videos from internet TV stations,
images on the web or photos in large image databases, as a response to a "seman-
tic" query (for instance: "search all videos containing a bottle"). The massive use
of Internet, the increasing diffusion of social networks and the availability of high-
accuracy and low-cost photo and video systems have lead to an exponential growth of
high-quality digital still or moving images. As a consequence the need of a semantic
image classification is becoming increasingly important. And this is the simplest sce-
nario. Object classification is very useful also in industrial automation where robots
have to recognize different items before being able to interact with them.

In the medical field also a lot of images are generated every day: echographies,
radiographies, TACs and so on. A reliable and reproducible system able to routinely
analyze these images can provide a great help to the diagnosis of diseases. An im-
portant improvement could be obtained also in security scenarios. Nowadays there is
increasing request of autonomous video-surveillance systems for complex and huge
areas, as railway stations, airports, underground stops or similar. An unintelligent
system requires a person screening the flow of images, while it is possible to imagine
a computer which can automatically detect suspicious people and unusual events, or
which can evaluate risk situation in a crowded environment. Video compression is
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another area of real interest: in fact, in the case of bandwidth limitation and signal
weakness, a high-quality video communication is impossible. New improvements
could be obtained using compression techniques based on a clear understanding of
the visual sequence (for instance, one can encode with low quality the background
and with a high quality the foreground).

Moreover in the design and development of autonomous agents the availability
of a visual recognition system is crucial. A robot has usually to perform tasks in
unstructured and often completely unknown environments without any human guid-
ance. Any meaningful interaction with the world requires analysis, recognition and
classification of objects. An agent has to recognize objects already known, but, above
all, it has to learn the identity of unknown ones. Thinking about a rescue scenario,
the agent has to move in a chaotic and unexplored environment looking for victims.
The ability of finding similarity among objects can greatly improve the performances.

The applications can easily be extended to every aspect of human-computer in-
teraction. World interaction is mostly based on visual understanding. Nowadays,
as stated before, computers are not able to interpret images at a higher level of rep-
resentation, as humans do. Some interesting results have been achieved in specific
classes (for instance to detect human faces, to recognize vehicles, to identify partic-
ular structures and so on), but it is not possible to extend these approaches to work
with any category of objects. It is very important to distinguish between these two
different kinds of scenario. In fact the recognition of instances of a specific cate-
gory has to cope with completely different problems with respect to the recognition
of the class to which a general object belongs. In the former case we have to de-
cide whether an image represents an instance of a particular category. If the system
does not recognize the object, this is discarded and no action is expected: figure 1.1
shows an example of this scenario taken from (95) (pag. 3 fig. 1). The images can
be taken from different points of view or inserted in different backgrounds, but we
are working with the same class. For the detection it is clearly possible to use well-
known information about shape, geometrical relationships, structure, color, texture,
usual context and so on. Completely different is the scenario of a general object
recognition system, where one looks instead for a visual consistency that must exist
between the examples of different classes, and where one can also suppose that the
system will eventually have to deal with a new (and consequently unknown) category
of objects. The system analyzes the items included in the image and tries to classify
them. Supposing the existance of a repository with a finite number of classes, it is
possible to simply consider this scenario as a complex generalization of the previous
one: every class has a specific algorithm able to recognize an object and the system
has only to perform all these algorithms over the current instance. Which decision
will the system take when it tries to analyze an object not belonging to any category?
Many experiments have shown us that the strategy of linking the object to the closest
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group could not have any meaning.

Motorbikes ~ Airplanes Faces Cars {Side) Cars (Rear) Spotted Cats
" EL g B B ¥ I "

Figure 1.1: An example of scenario with multiple instances of different classes of

objects (picture taken from (95), pag. 3 fig. 1).

There exist nowadays systems able to classify a large set of objects starting with
a training phase. This is currently a research field of great interest. In fact, the
Pascal Visual Object Classes challenge (90) is gaining increasing prestige, and can
be considered as the main reference in nowadays specialized research area. It is an
international competition, aiming at developing optimal object category recognition
and detection strategies. It is not surprising that in all scenarios established for the
competition, a training phase is always included. But how can we obtain interesting
results in a purely bottom-up approach? We can not know anything about the belong-
ing categories, so we have to define a procedure able to understand somehow whether
two objects are "similar" or not. Obviously, a distance meaasure, which can give an
evaluation of how close two generic objects are, could provide a helpful support. The
aim of the present work is to make a step forward in the direction of defining this
measure.
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1.3 Challenges

Even if in the last 15 years a lot of interesting approaches for object classification have
been presented, the main problems are not solved yet and still need to be addressed.
According to (94), we present a first list of the most common ones:

e changes of aspect;

e illumination differences;

changes in viewpoint;

background clutter;

occlusion;

intra-class variation.

Human beings are able to easily overcome these difficulties. In fact they can
quickly identify a never-seen-before object even if it has unusual characteristics, as
well as recognize a person even if age has changed his/her traits (see figure 1.2).
Computers can not do this, so far.

Figure 1.2: Sean Connery at different ages.
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Taking into account the changes in illumination is another trivial task for people,
but very hard for an autonomous system; most of the information is usually taken
from the intensity version of an image and it heavily depends on light conditions. It
is also important to consider that the distance between the observer and the object
can completely modify the size in the image: the farther the object from the camera,
the smaller its apparent size, and so a car in front of us will appear very different
compared to a car far away from the observer. An object would also appear to be
translated and rotated in the image depending on the location and orientation of the
camera: the shape of an object, in fact, undergoes perspective effects in the imaging
process. Moreover, it is necessary to consider that natural scenes rarely contain a sin-
gle isolated object and, generally, this causes strong limitation to the visual process;
if we glance around a room, we will quickly realize that clutter is the norm rather than
the exception. An object could be partially occluded by other ones, or the reflective
properties of its surface could result in part of it being invisible. Another hot topic
is intra-class variation: most of the variations among many common object classes
do not afford precise definitions. So the first challenge, for every kind of analysis,
is to find some cues or measurements that remain unchanged or invariants, under the
previously presented transformations.

Obviously the most difficult problem is the lack of a clear idea of object. We
are not able to say what an object exactly is. It seems to be impossible to give a
precise definition without taking into account purpose and context. Examples of dis-
tinguishing properties of objects are physical continuity (i.e. an object may be moved
around in one piece), having a common cause or origin, having well defined physical
limits with respect to the surrounding environment, or being made of a well defined
substance. In principle, a single image taken in an unconstrained environment is not
sufficient to allow a computer algorithm, or a human being, to decide where an ob-
ject starts and another object ends. However, a number of cues which are based on
the statistics of our everyday visual world are useful to guide this decision. The fact
that objects are mostly opaque and often homogeneous in appearance makes it likely
that areas of high contrast (in texture, color, brightness) will be associated with their
boundaries. Similarly, in everyday life, people do not have a formal definition for a
particular shape, but describe it by referring to well-known stereotyped shapes that
are considered to be primitive concept. For example, describing a cloud, someone
can say that it has the shape of a rabbit, being sure that other people can understand.

These last concepts give more and more credit to the rationale of planning a
system able to evaluate objects similarities, not considering the category they belong
to.
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1.4 Contributions

The main aim of our work is to define a bottom-up methodology to evaluate the
distance between two objects. During our research we had to face several problems
and we tried to define solutions. Specifically our research contributions are listed as
follows.

1.4.1 A bottom-up approach for image segmentation

First of all, we had to define a methodology to individuate objects in a scene with-
out any a priori knowledge about them. To obtain this result our system combines
light, color and positional analysis with statistical methodologies to individuate some
meaningful subparts in the image. Then the system decides how to merge or to divide
the blocks to isolate the interesting objects. The methodology proposed heavily relies
on mixtures of Gaussians, Expectation-Maximization, Mean Shift and graph cuts.

1.4.2 Combining different features to evaluate objects similarity

The central idea of the work is the combination of different features (specifically
shape and color information) to evaluate a distance measure between two objects
(possibly completely unknown). The system describes an object by using two dif-
ferent models: an explicit one (that contains information about the shape) and an
implicit one (that contains information about color). By defining two different dis-
tance measures (one for each model) and combining the results, the system returns
an estimate of the similarity between two objects. We present a first procedure based
on edge landmarks and Procrustes distance (for the explicit model), color histogram
peaks and mixture of Gaussians (for the implicit one) and Fisher discriminant analy-
sis (to merge the two distance measures).

1.4.3 Shape representation and analysis

The way we represent shapes is strictly connected with the definition of a similarity
measure between them. So we introduce a synthetic shape representation which relies
on specific critical points and the straight lines between them. The critical points are
obtained considering the sudden variations in the direction of the edge of the object.
The representation obtained is a compact and meaningful description of the main
characteristics of the shape. We also introduce a measure of similarity, and we show
how this distance is able to partially resolve some of the problems left open by the
previous approach (based on Procrustes distance).
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1.4.4 Using the number of modes as an estimation of the number of

mixtures components

We use mixtures of Gaussians several times in this work, both in the image seg-
mentation phase and in implicit object models comparison. In both cases, we have
to evaluate the best-fitting mixture given a set of points. This is a well-known and
widely studied problem. The Expectation-Maximization algorithm can return the
best-fitting function, but it requires to know in advance the number of components of
the mixture. We use the number of modes (evaluated by a Mean Shift algorithm) as
input parameters for the EM. It is already known that the number of modes could dif-
fer from the number of components. We perform a comparative experimental study
about the error generated by this choice and we show that it is irrelevant in the cases
of interest.

1.5 Methodologies and assumptions

We work on Intel®core™?2 Duo processor T5450 (1.66 GHz, 667 MHz FSB, 2 MB
L2 cache) with 2 GB DDR2. We use MATLAB®)7.0 on a Windows® XP environ-
ment. All the results presented (and the correlated performances) are evaluated on
this platform. For our experiments we used multiple image databases, listed below.

RGB-JPEG database

RGB-JPEG database includes 830 JPEG RGB images of objects divided in 6 cate-
gories: airplanes, vehicles, bottles, animals, furniture and lamps. The set has been
created putting together pictures taken from the Internet and digital photos realized
by us. Each digital image has a size of 1024 x 768 pixels. Every image contains a
single object set at the center of the image. In some photo the object is on a natural
background, in other ones it is set on a white or black background. Figure 1.3 shows
a small subset of this database.

LOG-JPEG database

LOG-JPEG database includes 520 couples of JPEG RGB and logical images. The
former ones are a subset of the previously presented RGB-JPEG database (containing
elements from all the 6 categories); the latter are logical images (1-valued pixel on a
0-valued background) representing the edge of the starting image. As we will explain
with further details in the following chapters, we use Canny algorithm with some
refinements to extract the edge from the images. Figure 1.4 shows a small subset of
this database.
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Figure 1.3: Some examples from the RGB-JPEG database.

ALOI database

We take a subset of the Amsterdam Library of Object Images (ALOI, see (112))
database. It is a color images collection of one-thousand small objects. In order
to capture the sensory variation in object recordings, this database contains images
representing objects with variation on the viewing angle, the illumination angle and
the illumination color. The database contains over a hundred images of each object,
yielding a total of 110,250 images for the collection. Each image contains a single
object on a black background. Figure 1.5 shows a small subset of this database.

BERKELEY database

The Berkeley Segmentation Dataset and Benchmark (see (188)) was created with the
goal of providing an empirical basis for research on image segmentation and bound-
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Figure 1.4: Some logical images from the log-JPEG database with, on the left, the

orignial image.

ary detection. To this end, 12, 000 hand-labeled segmentations of 1, 000 Corel dataset
images from 30 human subjects have been collected. Half of the segmentations were
obtained from presenting a color image to the subject; the other half from present-
ing a grayscale image. The public benchmark based on this data consists of all of
the grayscale and color segmentations for 300 images. The images are divided into
a training set of 200 images, and a test set of 100 images. We take a subset of the
color images of this database. It consists of natural images. Figure 1.6 shows a small
subset of this database.

1.6 Outline

The present work faces different problems strictly connected with the bottom-up ob-
ject classification task, with the aim of defining a similarity measure. During our
research we understood that a first step toward this direction was defining a distance
measure between shapes, and that to reach this result we needed some structure able
to define shapes themselves. In fact, if primitives of visual recognition were known
(like phonemes in speech recognition), then we would be able to define a language for
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Figure 1.5: Some examples from the ALOI database.

visual recognition based on the interpretation of these primitives and on specific laws
of composition. The representation of visual perception and the perception of the vi-
sual representation of perception range over an incredible amount of symbolic traits
and structures. Consider, for example, the two drawings in figure 1.7. If we look at
the left sketch, few primitive traits are sufficient to denote a face, even a known face
(Michelangelo’s David); on the other hand, in the second one a rich representation
of shadows and lights seems to be not enough to reveal the context and immediately
communicate the meaning of the represented object (it is, in fact, a studio of drapery
from Leonardo).

By analyzing the previous example we understand that shapes play a very impor-
tant role. Indeed we put the shape-comparison problem outside of the list previously
presented for its complexity and for the extreme importance it has. If the problem of
defining a methodology to classify 2-dimensional shape was solved, we would have
a great advance in object classification. First of all, shape analysis is very efficient
(working with few data); moreover it is possible to "normalize" a shape, obtaining a
universal model easier to compare. For these reasons, in this work, to evaluate ob-
ject similarity, we firstly investigate shape classification. But it is not enough. By
working only with shapes, we loose a great amount of information, which can really
help us to discriminate among objects. So our methodology tries to perform a dual
analysis: from one hand based on shapes, from the other based on color.

After a brief overview on the most known and used techniques, we present our
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Figure 1.6: Some examples of the used images from the Berkeley database.

investigations and results. In chapter 3 we address the localization problem present-
ing a segmentation procedure which works without any a priori knowledge. Then we
present our first approach to understand object similarity: Implicit and Explicit anal-
ysis (chapter 4). The idea underlying this methodology is that there are two different
interesting and complementary aspects to recognize an object: shape representation
(paradigmatically connoted by the traits of the David) and visual features (paradig-
matically connoted by the Leonardo’s drawing). The explicit description is used to
account for the main traits of what, in the human representation, connotes a principal
source of information regarding a category: the shape. The implicit one, on the other
hand, accounts for shadows and lights, color, and sense of volume. While studying
this approach, we had to face two different kinds of problem: how to compare dif-
ferent data sets (usually of different size) and how to compare shapes. In chapter 5,
we introduce a specific methodology, which tries to face this latter problem: relying
on a description based on critical points, we determine a similarity distance between
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Figure 1.7: On the left: few primitive traits of the Michelangelo’s David; on the right,
a part of a studio of drapery by Leonardo.

shapes. At the same time, we also introduce a description able to represent all the
information relevant for our analysis. Instead, in chapter 6, we try to address the
classical problem of comparing two different-sized datasets with the aim of evaluat-
ing the distance between them. Starting from the idea that under every data set we
can imagine a probability density function (pdf), we recall the Parzen’s assumption
that every pdf can be approximated to any degree by a Gaussian mixture. Then we
estimate the best fitting mixtures of Gaussians for each data set and we calculate the
distance between them. The measure obtained is used as an evaluation of the distance
between the two starting sets. Specifically, we show experimentally how it is possible
to use the number of modes to obtain some estimation of the number of components
of a mixture of Gaussians. Chapter 7 integrates all the results and, finally, chapter 8
presents our conclusions and future works.
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Chapter 2

Objects and Patterns: a historical

perspective

2.1 Object recognition and classification

Object recognition is one of the central research topics in the Artificial Intelligence
field. It is also one of the most actively studied subjects with many real applications in
the same areas of object classification: security, medicine, document analysis, image
and video retrieval and others. The aim is to detect and to analyze arbitrary objects
in a still or moving image. Nowadays, even if a large number of different methodolo-
gies exist, it has not been developed an optimal approach. It is possible to find very
efficient solutions in some specific scenarios (i.e. faces, vehicles, pedestrians), but a
general solution is unknown. In (139) the authors state that even if object recognition,
also in a free-form three dimensional scenario, can be considered a well-understood
problem with many successful approaches (47; 62; 91; 150; 272; 305), object clas-
sification (even in the simplest 2D form), where a previously unseen object must be
assigned to a generic object class, is still an open problem. In recent years there have
been a lot of studies in the field of object recognition and classification. As already
said, these different scenarios present similar problems. So usually the results found
in one of them are also useful for the others.

To evaluate similarity it is necessary to find some cues or measurements that re-
main unchanged, invariants, under a general viewing transformations. The use of pat-
tern recognition techniques can really help to solve some aspects of these problems.
This is the reason why, in the following sections, we first present a brief overview on
the most used pattern recognition methododologies, a theoretical and experimental
basis on which relying novel approaches. Obviously we mainly focus our attention

17
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on the techniques used in the present work.

2.2 Statistical approaches to classification

In the following sections we briefly analyze some of the pattern recognition method-
ologies used for multi-class categorization problem; other statistical approaches for
image interpretation are introduced in chapter 4. In the classical scenario there is a
predictor y (x) which takes as input a vector x and tries to assign it to one of K dis-
crete classes C, where k = 1,2,..., K. Itis possible to divide the input space into
a collection of regions labeled according to the y-classification. In the most common
scenario, these K classes are taken to be disjoint. The decision boundaries between
the regions can be of different shape (rough or smooth). Having K different classes,
one can also introduce a K-length vector t (known as target vector), which represents
the belonging class; specifically if the i-th element is in class j, then all element of t;
are zero, except the j-th element (set to 1):

t; = (0,0,...,1,...,0)

Usually a discriminative function y (x), able to return the right class, does not
exist, but one has to work in a probabilistic framework. In such a scenario, it is
possible to rely on a conditional probability distribution

p (Cilx)

modeled in an inference stage, which can help to take the optimal decision. A
general model for y (x) can be obtained by considering a non-linear function f (-)
(known as activation function), which takes as input a linear combination of the ele-
ment of x:

y(x)=f (wa + wo)

where w is a parameter vector. We can distinguish two different scenarios. In
a supervised approach we have a training set containing N couples (x;,t;) where
t; € [0, l]K is the label assigned to the input value x;. In an unsupervised scenario,
instead, we do not know in advance the belonging classes. A new value arrives and
we want to decide to which class it belongs or how to divide the complete set of sam-
ples. Many different techniques exist that try to solve this problem. We will give a
brief description of some of them.
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2.2.1 Fisher Linear Discriminant analysis

Fisher Linear Discriminant analysis (or LDA) is a linear classification technique, that
is the decision surfaces are hyperplanes. It performs a dimensionality reduction of
the K original classes to K — 1. This methodology, once defined a projection matrix
D, multiplies each sample for it. Obviously the projection leads to a considerable
loss of information and classes that are well separated in the original space may
become strongly overlapping. LDA allows to define a matrix D which minimizes
the distance between samples of the same class and maximizes the distance among
different classes. Without loss of generality we consider the binary case (/{ = 2):
class C' with V] points and class C'y with Na points. By using
y(x)=w'x

the datapoints are projected into a labeled set in the one-dimensional space .
Now it is necessary to evaluate the intra- and inter-class distances. The mean vectors
of the two classes are easily given by:

C;
1 <l
m; = — Z;
ti=1
The separation of classes can be estimated as the separation of the projected class
means. The mean of the projected data from class Cy, is represented by m;, = w’ my,.

So we have to maximize:

my —mp = w! (mg —m;)

To avoid that this expression becomes arbitrarely large by increasing the magni-
tude of w, its lenght is contrained to be equal to 1.
Instead the whithin-class variance of the projected data of class & is given by:

|Cr )
sp=>_ (yi —my)
i=1

where y; = wTlx;. So the total whitin-class variance for the whole dataset is
simply s? 4 s3. The Fisher criterion is defined to be the ratio of the between-class

variance to the within-class variance:

2
mg —mq)
s% + s%

Fw =
Now it is possible to introduce the between-class matrix

Sp = (my —my) (my — ml)T
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Figure 2.1: Two sets of 2d data points and the corresponding projection based on

Fisher linear discriminant (taken from (27), pag. 188 fig 4.6).

and the within-class covariance matrix

|C1] |Ca|
SW:Z(X —my) (x; —my) +Z X; — my) —m2)T
i=1

so we can rewrite the Fisher criterion as

wl Spw

F = T5aw

Differentiating with respect to w, we find that F' (w) is maximized when
(WTSBW> Sww = (WTSWW) Spw
from which

w o< Syt (mg — my)

known as Fisher’s linear discriminant (figure 2.1 shows an example). Obviously
the procedure can be easily extended to scenarios witk K > 2.

2.2.2 Kernel methods and Support Vector Machines

Kernel methods received great attention in recent years. Introduced into the field of
pattern recognition by Aizerman et al. (2), neglected for many years, they were re-
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introduced to face non-linearity within the Support Vector Machines method. The
idea behind them is simple, but very powerful: to classify two datasets which are not
linearly separable, a mapping function ¢ (x) is introduced and then one works in the
transformed space, at the cost of the transformation (see figure 2.2). The concept of a
kernel formulated as an inner product in a feature Hilbert space brought to extensions
of many well-known algorithms by using some kernel substitutions. In fact, in a pro-
cedure where the input vector x enters only in the form of scalar products, we can
easily replace that product with some other choice of kernel. Interesting examples
of such substitutions include nearest-neighbour classifiers and kernel Fisher discrim-
inant (198; 243; 12) and the non-linear variant of PCA (249). In other words given
an input space S and a mapping function ¢:

op(x): S —H

a kernel K is a function

K(Xv y) = <¢(X)7 ¢(Y)>H

Figure 2.2: A graphic example of how a Kernel method works.

More generally one can define a valid kernel, also without knowing the function
¢ (x). Admissible kernels can be specified with the finite positive definite property:
a necessary and sufficient condition for a function K to be a valid kernel is that:

n
Z CiCjK(xi,l‘j) Z 0
1,j=1

for any n € N, any subset {x1,...,x,} of the input space and any choice of
real numbers ci,...,c,. So there can be a big set of admissible functions. There
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are numerous forms of kernel functions in common use; many have the property of
being functions only of the difference between the arguments, so that K (x,y) =
K (x —y), which are known as stationary kernels. A further specialization involves
homogeneous kernels (or radial basis functions) which depend only on the magni-
tude of the distance between the arguments so that K (x,y) = K (||[x —y||). We
address the interested reader to (135; 250; 258) for a more exhaustive analysis on
kernel methods.

Support Vector Machines (SVM) are a group of supervised learning algorithms
that can be applied to regression, classification and novelty detection. In the mid 90s
using the first methodologies for incorporating prior knowledge (248), SVMs became
competitive (in particular their application was in the handwritten digit classification
task). In a short period of time, SVMs have found numerous applications in a wide
range of fields. The SVM algorithm is based on the statistical learning theory and
the VapnikChervonenkis (VC) dimension (290). SVM models were originally de-
fined for the classification of linearly separable classes of objects: they are able to
find the unique hyperplane having the maximum margin in a two-class dataset. Most
interesting is the use of SVM to separate classes that cannot be separated with a lin-
ear classifier. In such cases, the coordinates of the objects are mapped into a feature
space using nonlinear feature function. The feature space is a high-dimensional space
in which the classes can be separated with a linear classifier. The nonlinear mapping
by the feature functions is computed with special nonlinear functions called kernels.
Additional information on SVM can be found in (257; 258; 250; 19; 204).

2.2.3 Markov Random Fields

From their first introduction in image analysis (by Geman and Geman in (110)),
Markov Random Fields (MRF in the following) have been extensively used to face
computer vision problems and, specifically, in segmentation and classification tasks
(see, for example, (236; 201; 85; 168)). To understand MRF we first need to briefly
recall some notations about graphs and graph cuts.

A graph G = (V, E)) is defined as a set of nodes or vertices V' and a set of edges
E C V x V connecting neighboring nodes. The order of a graph is |V'| (the number
of vertices), the graph’s size is |E/| (the number of edges) and we define the degree
of a vertex v the number of edges that connect to it (where an edge that connects to
the vertex at both ends is counted twice). We now focus our attention specifically
on undirected graphs, where each pair of connected nodes is described by a single
edge e = {p,q} € E. In our case of interest, the node set V' contains two specially
designated terminal nodes s (source) and ¢ (sink) and a set of non-terminal nodes Q):
V = {s,t} U Q. Edges between nodes in ) are called n-links where n stands for
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"neighbor", while the so called ¢-links are used to connect nodes of @) to terminals.
All graph edges (p,q) € FE, including n-links and ¢-links, are assigned some non-
negative weight (cost) w (p, ¢). We will denote with N the set of all n-links. An s —t
cut (in the following sometimes just called cut) defines a partitioning of the nodes in
the graph into two disjoint sets S and 7', such that the source s is in S and the sink ¢
is in T'. We represent a cut C' either by the two subsets S and 7' (C = {S,T'}) or by
the subset of the edges in F severed to obtain the partitioning. The cost of a cut C' is
the sum of the weights of "boundary" edges (p,q) withp € Sand g € T

Cl= > w(pq)
(p.a)eC

In recent years combinational min-cut algorithms on graphs have emerged as an
increasingly useful tool for problem solving in vision. The 5* chapter (by Boykov
and Veksler) of (219) presents an interesting overview about graph cuts in vision.
As the authors show, there exist a lot of interesting links connecting graph cuts with
other combinational algorithms (dynamic programming, shortest paths (39; 161)),
statistical physics, simulated annealing, and other regularization techniques (123;
43; 142), sub-modular functions (164), random walks and electric circuit theory
(121; 122), Bayesian networks and belief propagation (276), integral/differential ge-
ometry, anisotropic diffusion, level sets and other variational methods (273; 41; 6).

Now we can introduce MRFs. A Markov Random Field consists of a set P
of sites p (usually in computer vision P represents the set of the pixels of an im-
age I), a neighborhood system N = {N,|p € P} (where each NN, is a subset of
the elements in P which describes the neighbors of p) and a field of random vari-
able ' = {F,|p € P}. Each random variable F), takes a value f, in some set
L = {l1,ls,...,l;} of the different possible labels. We define an assignment f =
(fl, fo, ..., f‘PO,WhiCh correspond to the joint event {Fl =fu,Fa=fa,... ., Fip = f‘P‘}
and so to a specific realization of the field.

In order to be a MRF, F' must satisfy

p (fp\fp\{p}) =P (fplfn,)

and

P(f,) >0

both for all p € P, namely each variable depends on other random variables
only through its neighbors in fx, . One of the most important result about MRF
is the Equivalence Theorem proved by Hammersley and Clifford (see (128)) that
associates the probability of a specific assignment f with a sum over all the cliques
in the neighborhood system N. Specifically:
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P(f o<61‘p< > Velf )

where Vp is a clique potential which describes the prior probability of a particular
realization of the element of the clique D. Considering MRFs whose clique potentials
involve only pairs of neighbors, we can rewrite the previous formula as:

P(f) oce:rp( Z Z Vg fp7fq)

pEP qENy

We have to consider that, in common case, we can not observe directly F' and we
have to estimate it starting from an observation O. Considering

P(O|f) = H P(Op = op|F, = fp)

peEP

where O), is the observable label for pixel p. We want to obtain the association
f € L™ which maximizes the posterior probability P (f|O), knowing (from Bayes’
law) that P (f|O) o« P (O|f) P (f). Under these considerations, our maximum a
posteriori (MAP) estimate f should minimize the posterior energy function

S5 Voo (for f) = D In(P(Op = 0,|F,p = f))

pEP qeEN, peEP

Let ¢ (-) be the unit impulse function, we define a Generalized Potts Model MRF
(GPM-MRF) as an MRF having a clique potential for any pair of neighboring pixels
p and ¢ given by

14 (filN flI) = U{pq} " (1 - 6<fp?f(I))

This MREF is also isotropic if we do not take into account the order of the couple
(i.e. {p, q} is a set and not a couple). In (44) the authors define the posterior energy
function of a GPM-MREF, under the conditions presented above. Afterwards they
state (and demonstrate) that minimizing that energy function E (f) over f € L™ is
equivalent to solve a multiway cut problem on a specific graph. Their demonstration
is in a multilabel framework, but it clearly holds also in our simpler case of m = 2.
From a complexity point of view, this result is extremely important. In fact even if a
general multiway minimum cut problem is still NP-complete, there are a lot of prov-
ably good approximations with near linear running time (see (72)). We will use these
results in our segmentation procedure.
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2.3 A perceptual organization

In a fundamental paper Chen (53) classifies the study of the primitives of visual
perception into a Great Divide between the “early feature analysis: local-to-global”
holding the viewpoint that perceptual processing is from local to global, and “early
holistic registration: global-to-local”, i.e. the perceptual process coding the wholes
prior to perceptual analysis of their separable properties or parts. Chen emphasizes
that “physically or computationally simple does not necessarily mean psychologi-
cally simple or perceptual primitive”. And indeed, as Chen notes, from an opposite
different perspective, because psychologically plausible does not necessarily mean
computationally plausible, there is the need to determine the primitives of a compu-
tationally feasible language for recognition. In his seminal paper on visual perceptual
organization (225) Pentland has pointed out that perception is successful because of
an inner structuring of our environment, and because of the human ability to iden-
tify the connections between these environmental regularities and primitive elements
of cognition. The model-based approaches to perception have been strongly influ-
enced by this view (see (86; 303; 233)). Among the model-based approaches, the
constructive approach, known as recognition by components (RBC), was pioneered
by (186; 254; 225), and especially by (23), and finally by (303; 241). Biedermann’s
(see (24) for a review) proposal has been one of the first pointing out the need of
primitives in object representation in order to deal with a categorical description of
objects, as composed by common and similar parts. However a criticism towards the
36 qualitive geons (“‘geometric icons”) introduced by Biedermann (see figure 2.3)
was that they capture no metric shape information, being such information essential
for interacting with the object and for distinguishing between subclasses of an object
(see (79)). Another apparent drawback with the RBC approach is that it supports a
viewpoint-invariant notion of objects’ visual representation, while from psycholog-
ical experiments (see e.g. (132)) it has been argued that recognition performance
might be affected by relatively small perturbations in viewpoint. For example, exper-
iments in (208) show that view-invariant recognition can be achieved by a viewer-
centered system that interpolates between a small number of stored views.

To face the different views, (163) has introduced the concept of aspect graph, a
structured graph of the set of aspects of an object, where the edges of the graph are
the transitions between two neighboring stable views and a change between aspects
is called a visual event. Further more, (80) has suggested a 3D modeling of an object
via a hierarchical aspect representation based on the projected surfaces of the primi-
tives. They present a new grouping concept based on aspects recovered in the sensed
image: the aspect hierarchy is used to infer a set of volumetric primitives and their
connectivity. Similarly in (229; 230) objects categories are represented through their
common parts, which are recognized according to a decomposition into primitives,
and recomposition is achieved according to an algebra of figures and a Bayes aspect
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Figure 2.3: A subset of the famous Biedermann’s geons.

graph. Recentely (see e.g (5; 300; 35; 95; 96)), in the stream of object representa-
tion approaches based on categories gathering similar parts, the problem has been
faced in new terms, considering features and appearances of parts, so as to overcome
all the occlusion and view-point problems raised in the model-based approaches. In
particular, Perona and collegues (see (46; 95; 96)) have proposed to model objects
as constellation of parts, proposing a successful method to learn object categories
from cluttered data, with unsupervised labeling, in so relieving from the burden of
manually labeling the images. In (96) features are found using the detector described
in (151; 152), and features are represented in an appearance space, where each part
composing an object has a Gaussian density. Analogously both shapes and relative
scales are represented by a joint Gaussian, and thus the recognition model is based
on maximum likelihood estimation of the parameters composition. A difficulty with
this approach, at least from a cognitive point of view, is to understand which features
one is akin to give up, while retaining the recognition of an element in the scene. For
example, eyes without a face (or viceversa) might still lead to the recognition of a per-
son, which is not intuitive. Indeed the model lacks a hierarchy or a preference/causal
criterion on the features to be preferred and kept at last. However the approaches of
(46; 95; 96) are extremely interesting because they address a non obvious composi-
tional aspect of recognition, based on the source of information, or, as they call them,
constellation of parts.

In this direction it is also important to cite the work of Papageorgiou and Poggio
(218): a system that represents object classes in terms of local oriented multi-scale
intensity differences between adjacent regions in the images, trained using a sup-
port vector machine (SVM) classifier. This latter approach uses generic features;
in contrast in (134) a component-based face detection system is described that uses
class-specific features. The system automatically learns components by growing im-
age parts from initial seed regions until error in detection is minimized. From these
image parts, components are chosen to represent faces. In this system, the image
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parts and their geometric arrangement are used to train a two-level SVM. Another
object recognition system that uses fragments from images is described in (285). The
authors choose fragments from training images that maximize the mutual informa-
tion between the fragment and the class it represents. Extremely interesting is the
work with volumetric representation (166; 195; 224) and in particular the work by
Xing, Liu and Yuan (306). In this area there has been much research work focused
on object recognition with superquadrics or geons (37; 81; 166; 224; 237). In (37),
superquadrics and geons were especially used for volumetric representation, and in-
terpretation tree (124) was implemented for 3D recognition. Other interesting results
have been reached using invariant moments (particularly with respect to shape anal-
ysis). Moment invariant techniques were first introduced by Hu in 1962 (137), and
were more recently used by Maitra (see (185)). Hu’s moments are defined as the
projection of the image function f (z,y) onto the (non-orthogonal) monomial basis
set. The reconstruction of the image is therefore computationally expensive due to
the redundant information present in these moments. (277) suggested the use of or-
thogonal moments to overcome the problems associated with regular moments. The
orthogonality property of the basis ensures the linear independence of orthogonal
moments; various orthogonal moment orders correspond to different characteristics
of the image. Other moment-based techniques used in object recognition include
Legendre (277; 174; 222), pseudo-Zernike (278), rotational (38; 266)) and complex
(1) moments. We address the interested reader to (235) and (283).

Features detection and analysis represent another interesting research field in ob-
ject recognition. The most famous detector is the Harris corner detector (130), based
on the eigenvalues of the second-moment matrix. Then, starting from the observation
that Harris corners are not scale-invariant, in (178) the author introduced the concept
of automatic scale selection; his approach detects interesting points with their scale
characteristic. Harris-Laplace detectors (199) can be considered a subsequent robust
refinement, characterized by an high repeatability. Indeed, during the last decades,
several methodologies have been developed in this direction. Among them it is im-
portant to cite complex features (13), steerable filters (102), phase-based local fea-
tures (49) and Gaussian derivatives (98). A particular attention has to be focused
toward SIFT and SURF. SIFT has been introduced by Lowe in (182). It represents
the distribution of smaller-scale features within the interest point neighborhood. The
difference of Gaussian function provides a close approximation to the scale normal-
ized Laplacian of Gaussian

G (z,y,ko) — G (z,y,0) = (k—1)0c?V?G

whose maxima and minima produce the most stable image features compared to
gradient, Hessian or Harris corners. (182) introduces an efficient way of computing
D (z,y,0) = G (z,y,ko) — G (z,y,0) based on pyramids: incremental convolu-
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tion is performed starting from the given image to produce images which in the scale
space are separated by a constant factor k; every octave in the scale space (i.e. every
interval in which the o value doubles) is divided in s intervals, so k = 21/ 9; adjacent
images are subtracted to produce difference of Gaussians; once an octave is complete,
the image that is characterized by the double of the initial o is sub-sampled by a factor
of 2; the procedure iterates until the desired number of octaves is reached. SIFT have
been used in a wide range of applications: 3D reconstruction, motion tracking and
segmentation, robot localization, image panorama stitching, epipolar calibration and
obviously recognition of particular object categories in 2D images. Recently Bay,
Tuytelaars and Van Gool in (14) introduced another powerful tool for local features:
SURF (Speeded Up Robust Features). SURF is a scale- and rotational-invariant in-
terest point detector and descriptor. While SIFT which approximates Laplacian of
Gaussian with Difference of Gaussians, SURF approximates second order Gaussian
derivatives with box filters. Image convolutions with these box filters can be com-
puted rapidly by using integral images (294). As a consequence, the standard version
of SUREF is faster than SIFT and moreover it seems to be more robust against dif-
ferent image transformations. Indeed SURF outperforms the state-of-the-art both in
speed and in accuracy.

We will introduce other methodologies in chapter 5.
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Chapter 3

Bottom-up Image Segmentation

3.1 Introduction

Image segmentation and grouping is one of the most important challenge for com-
puter vision. Image segmentation is obviously the first step of every higher level
visual analysis. In fact, before starting to analyze and to interpret the sub-parts of a
digital image, the system has to individuate some coherent and consistent blobs of
pixels. The aim is to segment the scene into regions with particular semantic con-
tent, i.e. the constituent objects. It is a very hard task. And so, even if in the last
three decades have been developed a lot of different methodologies to face with seg-
mentation, nowadays there is no a general and completely satisfactory solution. An
image segmentation technique has to take into account position, texture, color and
much more information to decide whether some pixels have to be grouped into the
same cluster. But the system has to look for clusters which can represent meaningful
objects, without having any precise definition of what an object is. If we are work-
ing on a digital photo of a car, what do we expect from a well-defined segmentation
technique? Has it to return a big block containing the whole vehicle or do the dif-
ferent parts of the car have to be analyzed singly? Consider that structured objects
are almost always composed of different parts, each with different color and texture
characteristics. And how can we take the right decision?

Most existing segmentation algorithms are designed simply to detect homoge-
neous units in images. In real scenarios they correspond only approximately to ob-
jects or to object parts. So, usually, those methods generate an over-segmentation:
objects, that the system wants to individuate as single units, are (over-)segmented in
multiple parts. To take meaningful decision, the system may have in advance infor-
mation about the objects, and it has to use it to understand how to combine the single
parts. By knowing something about the semantic associated to the blocks of pixels,

31
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the system could try to group them together. So, to achieve this goal, the system has
to recognize the objects (or its constituent parts). But object recognition (or classifi-
cation) usually has to rely on image segmentation results: we first have to individuate
the units that have to be studied and, only after that, we can start to analyze and recog-
nize them; this is a classical chicken-and-egg problem. Image segmentation seems to
be a completely low-level problem but usually, to improve the performances or sim-
ply to obtain meaningful results, the execution of the process should be task driven,
i.e. supported by independent high-level information. In literature there exist a lot
of segmentation techniques that use both low-level and high-level cues relying very
often on semantic information to drive the process. If we can access some a priori
knowledge about the system, we can obtain a robust and compact model. Otherwise
we can rely on a very flexible and completely based on low-level information one.
In the present work, considering the scenario and the motivations presented in chap-
ter 1, we always try to favor a purely low-level methodology. Comaniciu and Meer
(see (65)) rightly assert that methods which rely upon a priori knowledge, as well as
methods which implicitly assume something about the structure of the output, could
not handle the complexity of a real feature space.

In this chapter we present the segmentation problem: given a digital image, the
system has to locate and isolate the possible objects inside the scene. First of all
we present a brief overview about segmentation methodologies already existing. We
divide the literature in bottom-up and top-down approaches. The difference between
them relies in the fact that these latter use high-level information (usually thanks to
a first training step) to accomplish the task. Working under the completely-unknown
environment hypothesis, we obviously focus our attention on bottom-up techniques.
We present our approach which consists of subsequent steps of a digital image pro-
cessing. We first filter the image to remove (Gaussian) noise. Then we combine
color, intensity and position analysis trying to group together the similar pixels. We
present our experimental results and discuss the problems still open.

3.2 A brief overview on the existing methodologies
At the beginning of 20*" century, Gestalt movement introduced the idea that percep-
tual grouping plays a fundamental role in all the human visual processes. And in fact,
as said before, almost every mid- or high-level vision problems has to rely heavily on
segmented images. The goal of image segmentation is to cluster pixels into salient
regions corresponding to individual objects or also to surfaces or natural parts of ob-
jects. Wertheimer (in (301)) pointed out the importance of perceptual grouping and
organization in vision and also listed several key factors (such as similarity, proxim-
ity and good continuation) which lead to visual grouping. Image segmentation is a
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longstanding but currently largely unachieved goal in Artificial Intelligence research.
And it can be considered probably the most studied problem of computer vision. Ac-
cording to the ideas presented in the previous section, the existing methodologies can
be divided into two big families: top-down and bottom-up approaches.

As stated before, given a digital still image, it could be not clear what is the ex-
pected output of a segmentation algorithm, and, in fact, segmentations performed (by
hand) by human beings often return incoherent responses. Imagine to analyze a pic-
ture representing a man wearing colored cloths. We can isolate the different cloths
(shirt, pants), but also group together all the blocks of the person. There may not
be a correct answer in the partitioning of an image and we have to work with differ-
ent hypothesis. The more mid- and high- level knowledge (about symmetries, object
model, scene, ...) we use, the more different grouping of the low-level cues (such
coherence, color, brightness, texture, motion) can be performed.

3.2.1 Bottom-up approaches

The early computer vision research has focused on developing models for bottom-up
segmentation processes. Bottom-up approaches solve the chicken-and-egg problem
of using object information to individuate the (same) object location in a digital im-
age. Starting with the assumption that we cannot use semantic information to guide
the object segmentation, the system works directly on the input data. Moreover, this
approach has an interesting theoretical basis in psychology: the idea of Fodor (see
(99)), in fact, about information encapsulation in the peripheral or input systems is
consistent with a low-level approach. Although Wertheimer (at the very beginning
of Gestalt movement) suggested that familiarity might influence perceptual organiza-
tion, the work of Gestalt psychologists (including Wertheimer) is typically viewed as
an attempt to identify bottom-up heuristics for organizing the visual field.

There exist many bottom-up methodologies. For example in Marr’s model of
visual processing, the grouping of features represented in the raw primal sketch cor-
responds to the full primal sketch. And this first phase is completed without receiving
top-down input from the object recognition stage (see (187)). Also Ullman in (284)
has proposed a model-based system for visual recognition in which object knowl-
edge is used to guide the search for and the interpretation of features in the visual
field. However, his system does not use this stored object knowledge to guide any
earlier image-segmentation process. Among the first bottom-up works, it is also in-
teresting to recall the connectionists models of image segmentation. Mozer et al.
(see (202; 203)) trained a connectionist network to segment images consisting of two
overlapping objects. The significant contribution of this work is that it exploits the
ability of connectionist networks to learn and to discover grouping principles without
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needing heuristics built in by the programmer.

In the following, according to Cheng (see (55)) we group the bottom-up ap-
proaches into two main families: region-based and contour-based methods.

Region-based methods

These methodologies try to solve the segmentation problem, searching for consistent
regions in the image. The researchers presented, mainly in the beginning, methods
which heavily relied on graph theory. The earliest graph-based methods use fixed
thresholds and local measures in computing a segmentation. The work of Zahn (309)
presents a segmentation method based on the minimum spanning tree of the graph.
This method, indeed, has been applied both to point clustering and to image segmen-
tation. In this latter case the edge weights in the graph are based on the differences
between pixel intensities. The segmentation criterion of Zahn seemed to be inad-
equate: differences between pixels within a high variability region could be larger
than those between the pixels belonging to two different uniform areas with a lit-
tle intensity difference. Urquhart in (287) attempted to address this shortcoming by
normalizing the weight of an edge using the smallest weight incident on the vertices
touching that edge. When applied to image segmentation problems, however, this is
not enough to provide a reasonable adaptive segmentation criterion.

One of the most important contributions among the graph-based methodologies
was given by Wu and Leahy in (304). They introduced a novel theoretic approach
for data clustering, easily extensible to image segmentation. The data are represented
by an undirected adjacent graph with arc capacity assigned to reflect the similarity
between the linked vertices. The idea is to remove arcs from the graph to obtain
mutually exclusive subgraphs such that the largest inter-subgraph’s maximum flow
is minimized. Wu and Leahy were the first to introduce a minimum cut criterion in
graphs. Their methodology is very interesting and produces meaningful results (in
their paper they showed how to successfully segment an MR image of a brain), but
it favored small components. To overcome this problem Shi and Malik (see (259)),
proposed the normalization cut criterion. They worked, as the previous ones, with
graph cuts but including some elements to evaluate also the global structure. Nor-
malized cut is in fact an unbiased measure of dissociation between subgroups of a
graph, and it has the nice property that minimizing normalized cuts leads directly to
maximizing the normalized association, which is an unbiased measure for total as-
sociation within the subgroups. The authors, instead of looking at the value of total
edge weight connecting the two partitions, as the previously presented methodology
did, compute the cut cost as a fraction of the total edge connections to all the nodes
in the graph. The drawback is that it yields a NP-hard problem. Even if the authors
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presented several approximation methods to solve the problem quickly, the cost of
those approximations is still too high for many common applications and moreover
the error generated is not well understood.

In (93) Felzenswalb and Huttenlocher presented another interesting method based
on graph analysis. Starting from a digital image, the authors define an undirected
graph with vertices corresponding to the pixels of the image, and the edges corre-
sponding to a measure of dissimilarity between them. The segmentation is induced
trying to capture the global image characteristics. They adaptively adjust the seg-
mentation criterion based on the degree of variability in neighboring regions of the
image. A boundary is detected when the degree of variability across the boundary of
two regions is large relative to the degree of variability inside at least one of the re-
gions. The methodology presented is very efficient and it gives interesting results in
many scenarios. Very interesting (and with a lot of common elements with our work)
is the approach introduced by Comaniciu and Peter (see (65)). They defined a general
nonparametric technique for the analysis of multimodal feature space and they used
this methodology to obtain image segmentation. Their procedure relies on a iterative
well-known mode detection and clustering procedure: mean shift, proposed firstly
by Fukunaga and Hostetler in 1975 (see (105)), a technique that we widely use, in
different scenarios, in the present work. We briefly recall (see the section 6.7.4 for
further details) that given a set of points, the mean shift procedure defines, for each
point of the set, a vector proportional to the normalized density gradient estimate,
and so a vector which always points toward the direction of maximum increase in the
density. In this scenario, each pixel is associated with a significant mode of the joint
domain density located in its neighborhood.

Contour-based methods

The Gestalt movement has emphasized the importance of contour closure in human
vision (see (153; 89; 88)) as one of the most significant grouping factors. Among
the first attempts on contour-based grouping we have Parent and Zucker’s work (see
(220)) using relaxation methods, Shashua and Ullman’s work (see (256)) on saliency
networks and Guy and Medioni’s work (see (127)) with voting schemes. We want to
recall also Mumford, who first pointed out the connection between minimal energy
curves and stochastic processes (see (205)) and discussed its application to computer
vision. Zhu and Yuille (see (313)) used both boundary and region information within
an energy optimization model. They assumed an image consisting of a set of homo-
geneous regions. The homogeneity was defined on some low-level properties such
as intensity, color or texture. The drawback is that their method, in order to achieve
good performances, needs a set of initial seeds to be placed correctly inside each
region. In addition, they use the gradient descent algorithm to compute minimum
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energy, which in many cases can only find the local minima. In a similar direction it
is important to recall the work of Jermyn and Ishikawa (see (149)). They proposed a
new form of energy function on edges that takes the form of a ratio of two integrals
around the boundary. The numerator of the energy is a measure of the flow of some
quantity, while the denominator is a generalized measure of the length of the bound-
ary. The main contribution of this form of energy is that the general types of region
information are allowed to be incorporated into the energy function.

Very interesting are also the works on active contours and deformable models.
Active contours models, also known as snakes, are a framework for delineating an
object outline. It attempts to minimize an energy associated to the current contour
as a sum of the internal and external energy. The external energy is supposed to be
minimal when the snake has a shape which is supposed to be relevant considering the
shape of the sought object, while the internal when the snake is at the object boundary
position . The seminal works in this area are (154) by Kass, Witkin and Terzopou-
los and (28) by Blake and Zisserman. In the last decade active contours obtained
new attention thanks to the work of Tony Chan (see (52)). This approach can de-
tect objects whose boundaries are not necessarily defined by gradient, by minimizing
an energy which can be seen as a particular case of the minimal partition problem.
The stopping term does not depend on the gradient of the image, as in the classical
active contour models, but is instead related to a particular segmentation of the image.

3.2.2 Top-down approaches

As said before, we are interested in a bottom-up image segmentation approach. It
is very useful, however, to give a look to the most popular top-down methodologies
developed in the last years. It is easy to understand that low-local cues are not enough
to get a high-level segmentation. If we want the system to return complex objects (by
grouping together parts having very different surface characteristics), the use of some
a priori knowledge is unavoidable. And, according to much empirical and theoretical
research, also in human beings prior knowledge partly guides visual processing. Fol-
lowing the interesting overview of Vecera and Farah (291), we present some works
which can be considered the basis of top-down segmentation. (240; 302) for instance
introduced the word-superiority effect: the perception of an individual letter is really
improved when it occurs in the context of a meaningful word as compared to when it
appears either in a non-word or in isolation. McCielland and Rumelhart (see (192))
provided a mechanism which can explain these results, suggesting that they could be
due to partial activation of visual word representations interacting with intermediate
letter representations. Interactive visual processing has also been demonstrated by
Prinzmetal and Millis-Wright in (234). They found that visual feature integration is
influenced by cognitive and linguistic factors. Interactive processing in higher-level
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vision is also suggested by context effects in object naming (217). Objects occurring
in their correct context were named more accurately than visually similar objects
occurring in an improper context. We want also to recall Biedermenn’s work (see
(25)). His contribution demonstrated that scheme-level information-influenced ob-
ject recognition is consistent with interactive processing. We address the interested
reader also to other works which present evidences from human vision that indicate
that high-level, class-based criteria play a crucial role in the ability to segment images
in a meaningful manner: (210; 211; 226; 227).

In computer vision, starting from these considerations, a lot of methodologies
have been developed in the last years. Recently great interest has been directed to-
ward the so called class segmentation methods. The general thrust behind these ap-
proaches is to use known shape characteristics of objects within a given class to guide
the segmentation process. The main difficulty stems from the large variability of
shapes within a given class of objects. One interesting solution is proposed by Boren-
stein and Ullman (see (35)). Trey presented an approach which uses a fragment-based
representation of object classes (a methodology already used also in object recogni-
tion). Given an image containing a specific object, they use fragments previously
extracted from images of the same object class to produce a consistent cover of the
novel object. This cover defines a figure-ground map that associates each pixel in the
input image with the likelihood of belonging to an object or background. A com-
mon strategy is to start with the easiest pieces and proceed by connecting additional
pieces that match in shape, color, edges, texture, etc. In some cases, as information
accumulates along this process, pieces must be replaced: locally these pieces provide
good matches, but the global structure adds constraints that reject the local matches.
Working with horse images, they obtained encouraging experimental results. Shotton
et al. (see (261)) assign a class label to a pixel based on a joint appearance, shape
and context model. Gould et al. (see (118)) proposed a super-pixel based conditional
random field (CRF) to learn the relative location offsets of categories. Even if bound-
ary detection methods based on statistical learning should seem to be closer to edge
detection problem, their results represent a great improvement also in image segmen-
tation. In this direction we want to present the work of Martin, Fowlkes and Malik
(see (189)). They start with a large set of natural images, manually segmented by
multiple human subjects. The output of this first step provides the ground truth label
for each pixel as being on- or off-boundary. They model the boundary-probability of
each pixel combining the posterior probability learned with some local measurement,
such as brightness, color, texture and position.

Dollar et al. in (82) proposed a supervised learning algorithm (which they called
Boosted Edge Learning or BEL) for edge and object boundary detection. In the
learning stage the algorithm selects and combines a set of features out of a pool with
tens of thousands of generic, efficient Haar wavelets in order to learn a discrimi-
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native model. The generic features include gradients, difference of offset Gaussian
and so on at multiple scales and locations. A very large aperture is used providing
significant context for each decision, and some knowledge of Gestalt laws are also
implicitly incorporated into the model. Very interesting results are in the work of
Heiler, Keuchel and Schnorr (see (133)). They introduced a method for clustering
and segmentation based on a semi-definite relaxation of the well-known minimal cut
problem on graphs. The advantage of their approach is that it allows incorporating
a priori knowledge in the clustering process without changing the target function.
Instead, available equivalence information is modeled by additional constraints on
the optimization problem. This simplifies the interpretation of the results and ensures
that different constraints can be combined arbitrarily.

3.2.3 Combining bottom-up and top-down methodologies

Some recent methodologies try to combine bottom-up and top-down approaches with
the aim to overcome the difficulties we usually have to face when relying only on one
of them. We briefly present here some methodologies. In the approach presented by
Borenstein, Sharon and Ullman in (34), the top-down approach uses object represen-
tation learned from examples to detect an object in a given input image and provide
an approximation to its figure-ground segmentation. The bottom-up approach, in-
stead, uses image-based criteria to define coherent groups of pixels that are likely to
belong together to either the figure or the background part. The combination provides
a final segmentation that draws the relative merits of both approaches: the result is
as close as possible to the top-down approximation, but is also constrained by the
bottom-up process to be consistent with significant image discontinuities. This work
is very interesting because, in contrast with previous approaches (see (54; 180; 308)),
it presents a very general combination which can be applied to combine a variety
of top-down and bottom-up algorithms. Moreover it is fast (linear in the number of
pixels) and takes into account image measurements at multiple scales, converging
to a global optimum in just one pass. The methodology is very simple: the authors
construct a global cost function that represents the top-down and bottom-up require-
ments. In the paper they show how the global minimum of this function can be
efficiently found by applying the sum-product algorithm, which also provides a con-
fidence map that can be used to identify image regions where additional top-down
or bottom-up information may further improve the segmentation. However, like in
other works, the training of the bottom-up and top-down modules is performed in-
dependently. Specifically for the top-down module it consists of choosing a set of
fragments from a huge set of possible image fragments without taking into account
any low-level cue.

Levin and Weiss (see (171)) try to overcome the disadvantages of such a choice.
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Their algorithm, at run-time, scans a novel image with an object detector which tries
all possible subimages until it finds a subimage that is likely to contain the object.
Within that subimage they search for object parts by performing normalized corre-
lation with a set of fragments. The location of a fragment gives rise to a local bias
term for an energy function. In addition to the local bias, the energy function rewards
segmentation boundaries occurring at image discontinuities. The final segmentation
is obtained by finding the global minimum of the energy function. While this algo-
rithm is similar at run-time to previous ones, the training method is unique in that it
simultaneously takes into account low-level and high-level cues. This problem can be
formulated in the context of Conditional Random Fields which leads to a convex cost
function for simultaneous training of both the low-level and the high-level segmenter.
It is moreover important to highlight that whereas pure top-down algorithms often re-
quire hundreds of fragments, this simultaneous learning procedure yields algorithms
with a handful of fragments that are combined with low-level cues to efficiently com-
pute high quality segmentations.

3.2.4 Autonomous agent scenarios

If segmentation (and object recognition) on a digital still image is a complex problem,
really harder is the attempt of realizing a system which can perform the same tasks on
an autonomous mobile agent. Nowadays very few robot systems have demonstrated
the ability to individuate objects, inside a realistic environment (such as an office, a
kitchen and so on). Obviously there are significant challenges in applying an object
recognition approach successfully on a physical platform. In fact even if this scenario
could theoretically offer the possibility to obtain on-going some specific additional
information which can help the system (a robot could, for example, drive the acquisi-
tion of more information about an unknown object), the real-time constraints and the
low quality resolution of the images make the problem very challenging. In the fol-
lowing we present some examples of image segmentation systems for mobile robots.

In recent years, also thanks to some international robot competitions (like Se-
mantic Robot Vision Challenge (SRVC) (215), RoboCup@Home (214), RoboCup
Rescue (213)) which require participants to design platforms able to autonomously
explore an unstructured and completely unknown environment locating specific ob-
jects, some interesting results have been obtained. To analyze problems and solutions
of this area, we present briefly Curious George, a system developed by the team of
UBC LCI Robotics from University of British Columbia (see (196)), which came
first in the robot league of the SRVC for both 2007 and 2008 and first in the software
league for 2009. Curiuos George collects low-resolution visual imagery and employs
an attention scheme that allows it to identify interesting regions, corresponding to po-
tential objects in the world. These regions will be focused on by the foveal camera,
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to obtain high-resolution information, which may be of sufficient quality to allow the
objects contained in the region to be recognized. The system uses top-down infor-
mation to rank the potential objects it has identified, and proceeds to actively collect
images of these objects from different viewpoints. The potential objects are selected
in the peripheral cameras based on depth from stereo and spectral residual saliency.
Spectral residual saliency returns an output that is similar to state-of-art multi-scale
saliency measures. The system computes saliency on intensity, red-green and yellow-
blue channels. The saliency maps so obtained are summed and regions are detected in
their sum using the Maximally Stable External Region (MSER) detector (see (191)).
MSER outputs nested regions and these latter come in a wide range of size. The
different region sizes map nicely to different zoom setting on the robot camera. The
detected MSERs are additionally pruned by requiring that they have a depth different
from that of the ground plane. Once identified a potential object, Curious George
tries to locate it on a geometric map, associating the objects(s) with a particular re-
gion of the map. Once the environment has been fully covered, numerous potential
objects will likely have been identified and the system starts to perform recognition to
identify the true semantic labels for each of these. There is a fundamental difference
between this methodology and ours: Curious George needs to be previously trained
with known (and so labeled) images, while our system does not have any a priori
knowledge neither for the segmentation step, nor for the recognition one.

3.3 Image segmentation: a bottom-up approach

In this section we present a bottom-up methodology for image segmentation. We
work under an unstructured and completely unknown environment hypothesis. We
also suppose to have still RGB digital images and not to know anything about the
objects we are looking for. Our aim is to identify the "interesting" elements within
the image. It is obviously necessary to define the exact details of what we consider
"interesting". In order to do so, let’s consider our work scenario. We do not possess
any information about the objects that will be found, neither about their structure.
We only have to select the "possible" objects within the environment, not considering
what they represent. Obviously, under this hypothesis, the algorithm presented can
only look for coherent pixel sets which are grouped together, relying on specific low-
level features: light, color and position.

After a noise removing phase, by considering light information, the algorithm de-
rives the starting blocks, which will be refined working on chromatic and positional
elements. These first steps define a probability map which assigns to each single pixel
of the starting image an "object-probability"”. By using a s — ¢ graph cut approach,
we will determine the final clusters.

The block diagram in figure 3.1 summarizes the image segmentation algorithm.
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Figure 3.1: A block diagram to summarize the main steps of the segmentation algo-

rithm.

In the following we briefly describe each step, presenting also examples with respect
to figure 3.2. At the end of the chapter we will discuss the open problems.

3.3.1 Noise removing

We work with images taken from different sources (see section 1.5). Some images
need a filtering step before processing. We suppose the presence of a white Gaussian
noise and we implement the technique proposed by Vijaykumar et al. (see (292)) to
remove it. The authors presented a fast and efficient algorithm. First, the amount of
noise corruption in the noisy image is estimated. Then the center pixel of a given
window is replaced by the mean value of some of the surrounding pixels based on a
threshold value. We adopt this procedure not only because its computational com-
plexity is very low, but above all because it does not affect edge consistency (a usual
drawback of noise filtering). In the following we briefly give some details of the
method. We address the interested reader to (292) for further details.

Noise having Gaussian-like distribution is very often encountered in acquired
data. In such scenario, to each pixel of the original image is added a value from a
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Figure 3.2: An image of a toy airplane taken from the RGB-JPEG database.

zero-mean Gaussian distribution. This condition allows to remove that noise simply
by locally averaging pixel values (see (143)). Given a N x M image I, for every
pixel P; j of I (with0 < ¢ < N and 0 < j < M), adding a white Gaussian noise we
obtain a new pixel R:

Rij=Fij+Gij

where G ; is a noise value drawn from a zero-mean Gaussian distribution. First of
all, by using the Immerkaer’s fast method (see (108)), the noise standard deviation of
the image is estimated. The absolute difference between the centered pixel C' and the
surrounding pixels in the filtering window is obtained by subtracting C' to each ele-
ment in the filtering window. This difference is compared with a threshold, calculated
as the product of a smoothing factor and noise standard deviation. If the smoothing
value is high, then the noise removal is better at the cost of loss of image details. We
are mainly interested in preserving details and so, knowing that our acquired images
are not affected by a high noise, we set the smoothing factor to 1.5 (instead of 2, the
value proposed by the authors). At this point, if the absolute difference above in-
troduced is within the threshold, the corresponding pixel values are taken for further
processing. The number of pixels taken into account in a filtering window should be
at least 5 (as the authors suggested). If it fails to satisfy the above condition, the win-
dow size is increased and the above mentioned procedure is repeated until the number
of pixels under consideration in a filtering window is at least 5. Then the center pixel
is replaced by the mean of those pixels that are considered. As the authors explained,
the procedure can be summarized as follows. Let / be a N x M image and F; ; a
pixel of I; let S; ; be the filtering window of size (2L + 1) x (2L + 1) centered at
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P; ;. The elements of this window are .S; j = {Pi—y j—v, —L < u,v < L} (where L
depends on the windows size):

1.

2.

the noisy image is taken as P;

the noise standard deviation is found out using Immerkar’s fast method;

. a 2D filtering window S; ; of size 3 x 3 is selected from the noisy image

and let its center pixel be F; ;. In the window, the center pixel is subtracted
from each element and the absolute value of difference is calculated as AD =
|Si; — Pij

>

if the absolute difference AD < SF x SD (where SF is the smoothing fac-
tor and SD the standard deviation), store the corresponding pixels in a one-
dimensional array as DA (x);

if the number of elements in the D A (x) is at least 21 — 1 (where W is chosen
to be 3 for a 3 x 3 window) then the mean of DA () is calculated and at the
center pixel P; ; of the window is replaced with it;

otherwise the window size is increased and the same process is repeated;

steps 3 — 6 are repeated until the processing is completed for the entire image.

Figure 3.3: The starting image after the local thresholding.
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3.3.2 Lightening analysis - finding the starting clusters

We have to individuate some starting clusters of pixels to be refined in the following
steps, and we only want to rely on light, color and positional information. The first
partition could be not very accurate. Indeed it has simply to be a starting point.
So we start with an intensity analysis. The intensity version of an RGB image, in
fact, contains few information (one third of the whole amount) and so its analysis is
computationally very simple. Specifically we want to group together sets of adjacent
pixels having similar lightening characteristics. First of all, we convert the RGB
image into its corresponding intensity image. For each pixel P; j, whose RGB values
are R; j, G; j, B; j, the intensity (gray scale) value is:

;i =0,299% R; ; + 0,587+ G ; + 0,114 % B; ;

Once the intensity image is to hand, we can define a threshold ¢h and group to-
gether on one side all the pixels having intensity values over th (setting them to 1)
and on the other side the remaining ones (setting them to 0). This is exactly what
happens when we convert an intensity image to its corresponding BW version. The
naive approach to define th is to consider the mean intensity value of the whole im-
age. Obviously, if the image presents very dark or very light areas (as it usually
happens in real scenarios), by using a global value we waste a lot of important de-
tails. To overcome this disadvantage we perform a locally normalized analysis: we
divide the image in equal-sized blocks and we calculate a threshold for each of them
(still considering the local mean value). Figure 3.3 shows the result of this process
performed on our image.

Now we have all the pixels set to 1 or 0. Then we consider all the blocks of
adjacent identical pixels, whose size is over a specific threshold, and we collect them
in an array. We set the threshold to 0.3% of the whole image (i.e. working with
600 x 800 images we will discard blocks having size less than 1,600 pixels). To
individuate the blocks we use simple morphological operations, considering an 8-
connected neighborhood. We label each pixel of the image belonging to a block with
the same (progressive) integer, setting to 0 all the pixels which do not belong to any
group (background). In figure 3.4 it is possible to observe the previously described
procedure applied to the image of figure 3.2. As we can see, there are some blocks
containing sparse sets of similar pixels which do not represent any meaningful ob-
ject. Moreover the main object of the scene (the toy airplane) is subdivided into two
different blocks. It is a very common scenario: in fact this first segmentation only
based on intensity values is used to obtain what we call the starting clusters, that need
a refinement to became the interesting objects of the scene.
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Figure 3.4: The image with the starting clusters (in different colors). The background

is represented in black.

3.3.3 Chromatic analysis - finding the probability map

In a bottom-up approach we must use only the physical characteristics of the objects
to segment the image. We have already performed a first coarse clusterization based
on intensity values, grouping together pixels of the image only relying on light in-
tensity. Now we have to combine those results with information taken from color. In
fact, it is possible that, as shown, after this first analysis, some sets of pixels are over-
or under-segmented. The aim of the present step is to group together adjacent pixels
with similar chromatic characteristics.

We obviously have to start from the blocks identified previously. Due to the low
accuracy, it is plausible that blocks contain different chromatic areas. Our idea is to
individuate a set of adjacent pixels and to perform a probability function estimation
to represent its color-range. This function will help us to discover in the image other
pixels with the same chromatic characteristics possibly belonging to different start-
ing clusters. Obviously considering the whole block of a starting cluster does not
help us. Conversely we select a subset of the block to perform the analysis. How
can we choose a meaningful subset? Is there a right size? If we could rely on some
higher-level information, the decision would be easier, but in a bottom-up approach
this is not available. Therefore it will be necessary to decide on the basis of other
considerations. First, it is fair to say that, as in the analysis performed by the human
visual system, color information must have a great importance. The choice of the
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size of the subset is closely related to the weight that the color analysis will have
compared to the first clustering process: the smaller the size of the subset, the greater
the influence of this second step. As a drawback, if we considered sets that are too
small, the outputs could be meaningless. Experimental results suggest to chose a
dimension between 30% and 40% of the starting cluster. Once the size is to hand,
we have also to decide how to select those points. As said previously, the starting
clusters contain areas with similar intensity characteristics, but we have no assurance
of chromatic uniformity. Obviously the chromatic differences inside a single starting
cluster can not be very high. In the natural objects and artifacts is also easy to ob-
serve some color consistency: given a point, its surroundings has generally similar
colors or, at most, different shades of the same hue. Sudden variations are unusual
and even when this occurs (e.g. in the border zone between two areas with different
color), does not occur in all directions. Under these assumptions, wanting to main-
tain a bottom-up approach, without any additional information, we randomly chose a
point of the block and we selected a square-shaped subset centered on it (see figure
ref fig: airyectangle).

Figure 3.5: The image shows one starting block, the random point (red point) and the

squared-shaped subset used for chromatic analysis (red rectangle).

To estimate its own chromatic characteristics, we need a probability function able
to describe the color distribution in a meaningful and compact way. We use a mixture
of Gaussians. A mixture of Gaussians can be seen as a weighted sum of M Gaussians,
as in the following:

M
p(CE) = Z OémG(.T;Mm, Em)
m=1
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where

1 1 T
Glaim D) = ——eap (5 - = @)
(2m)z ]2
and where a, ..., ay are the mixing coefficients, and 1, ..., ups and Xy, ..., Xy
the means and covariances of each component.

In this work we will widely use mixtures of Gaussians and in chapter 6 we will
describe in details the reasons of this choice. Now we simply want to point out that
we do not know anything in advance about the characteristics of the function and, as
Parzen explained (see (221)), a mixture of Gaussians can describe, with any degree
of approximation, every other probability density function. Moreover there exists an
efficient and very reliable iterative procedure to define a mixture of Gaussians starting
from the set of values: the Expectation-Maximization algorithm.

The Expectation-Maximization approach

A mixture of Gaussians (see figure 4.18) can be obtained as weighted sum of M
Gaussians. We want to model a set of samples (considered as an i.i.d.) by using this
pdf. A mixture of Gaussian is a function in the following form:

M
p(x) =Y amG(x; pr, Ti)
k=1

where

G (a:p, %) = LT @ u))

et

The parameters in a Gaussian mixture (the mixing coefficients «ay, ..., apy, the
mean and covariance of each component p1, ..., iy and X1, ..., Xp7) can be estimated
very efficiently from sets of samples with the Expectation-Maximization (EM) algo-
rithm (26), given that the number of components M is known. Starting from initial
values of these parameters, the EM algorithm proceeds by executing the following
steps until convergence,

apG (i g, Xk
S0 oG (2 g, 5)
fori=1,...,Nk=1,.... M

pr (i) =

1
O = N;pk (i)
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fork=1,...,M

g, = Zij\il iy (7)
ZZ‘JL P (4)

fork=1,...,.M

N

5, = iz (T — ) (@i — )" pr (4)

Zi]\;l Pk (Z)

fork=1,...,M

The EM algorithm guarantees to converge within finite steps to a local maximum
of the log-likelihood function of the parameters, given the set of samples. More de-
tails of the EM estimation for Gaussian mixtures can be found in (26).

As previously said EM is an iterative procedure that, given the number of com-
ponents M and starting from a set of values, proceeds by executing simple steps
until convergence and determines the parameters (o, i, 2;), for the best-fitting M-
components mixture. The knowledge about the number of components M is nec-
essary. Many techniques have been proposed in the literature to face this problem.
We use the estimated number of modes obtained by the Mean Shift algorithm. Mean
Shift is a very simple non-parametric iterative procedure that shifts each data point
to the average of data points in its neighborhood for seeking the mode of a density
function represented by a set of samples. In chapter 6 we will analyze in details the
use of modes as input parameters of the EM, and the use of Mean Shift to estimate
them.

We want to summarize the procedure:
e choose randomly a point P inside the block;

e define a square-sized set of pixels (say S) around P (whose size is between
30% and 40% of the whole block size);

e use Mean Shift to estimate the number of modes of S (say M);

e by using the EM (initialized with M as the number of components), estimate
the parameters of the best-fitting mixture of Gaussians.

Once the probability density function is to hand, we can determine the pixels of
the image having the same chromatic characteristics of S. After a normalization step,
we obtain a mapping from each pixel of the starting image to a probability value in
the range [0, 1]. In figure 3.6 we can observe the probability map obtained starting
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Figure 3.6: The (normalized) probability map obtained evaluating the whole image

with the mixture obtained from the squared-shaped set defined in figure 3.5.

from the squared-shaped set showed in figure 3.5.

The previous step has already provided some information about the structure of
the image. In particular, it has grouped together adjacent points with similar lighting
conditions. We do not want to miss this information and thus it is necessary to define
some procedures which allow us to increase the probability of the pixels belonging
to the same block with respect to the others belonging to a different one. To this end,
we multiply the probability of all points belonging to the same starting block by a
factor k; equal to 1.2. This last operation could result in probability values out of
the range [0, 1], so we have to perform a further normalization step. In figure 3.7 we
present the result of this last step. As we can see, the probability of the points on the
left wing (which was not part of the starting block under analysis) are proportionally
reduced with respect to the points belonging to the airplane’s starting set.

3.3.4 Positional analysis - refining the probability map

At this point, we have an analysis based on light and color values. Obviously, it is
necessary to refine the probability map by adding some information about the relative
position of the pixels within the image. Proximity is one of the criteria for identifying
objects on which usually systems rely more. Besides the fact that proximity was one
of the first laws of Gestalt submitted, everyday experience teaches us that we tend
to group together parts of the image having similar color characteristics, only if they
are adjacent to each other. We have a probability map over the whole image, which
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Figure 3.7: Chromatic probability map with block enhancing.

returns the reliability of each pixel to have similar chromatic characteristics to the
subset of the starting cluster. Now we want to analyze also their relative position: the
closer the pixels, the greater the probability to group them together.

We perform two different approaches to consider the relative position of each
pixel. In the first case, without any regard to the values already obtained in the pre-
vious steps and without any additional consideration, we simply decrease the proba-
bility of a point in function only of the distance from E (the random point selected at
the beginning of the chromatic analysis). By using an isotropic filter, we did not take
into account the relative direction between E and the point under analysis. To ob-
tain this result we define a Gaussian isotropic filter with mean set to £ and variance
defined with respect to the position of E in the picture. The probability map is then
multiplied by the so defined filter. Figure 3.8 shows an example of this kind of filter
(already centered in E), while figure 3.9 shows the result of the product between it
and the image under analysis.

The previous approach is very efficient and allows us to discard some noise in the
peripheral area of the picture, but, not taking into account any information about the
shape of the possible object, it is not completely satisfactory. In fact independently
from the direction, we obtain a value influenced only by the distance, and by the
distance evaluated from a reference point £, that we know has been chosen randomly
inside the patch. To obtain better results, we start from the idea that, to calculate the
decreasing of the value of a generic point x’, we have to consider two aspects: the
relative position of x’ with respect to the center of the probable object and the spatial
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Figure 3.8: The Gaussian filter for the image under analysis.

distribution of the object main points {x}'},_, , (thatis the shape). So, if we consider
the probability of z” given the characteristics of the object, we can define:

P («'[6) = f ([, %)
where ;1 = % > i1, @} is the center of mass of the sampled points cloud and X

is the sample variance of the set. Under this assumption, the Mahalanobis distance
(My) can help us to evaluate the probability of z’. In fact we recall that

My (2') = (' = p)" B (z — p)

Obviously this second approach has the advantage to take into account the spatial
disposition of the object points when we decrease the probability of a pixel with re-
spect to the distance. But, firstly, we have to define the value of 2. We use a Bayesian
approach. Given a digital image, we indicate with X, the area of I representing the
object. We considered 4 factors which can influence the value of >::

1. the density of X;
2. the position of X with respect to the whole image;
3. the distance of the point of X from u;

4. the distance of the centers of the other clusters from p.

Generally, as we can see from the figures, in this phase most of the "noise" gen-
erated from the chromatic analysis previously performed (as a consequence of the
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presence of distant points with similar color), is filtered out.

Figure 3.9: The probability map after the Gaussian distance filtering.

3.3.5 Neighborhood analysis - obtaining the final cluster

At this point we have a probability map that takes into account the information about
light, color and position, but we do not yet have the final block. With a very naive
approach, we could define a certain threshold on the probability values and consider
"interesting" only those pixels that have a value above that threshold. This would
result in numerous problems. First, we should think of some ways to define the
threshold value (and this alone would be enough to make it difficult to generalize the
method in a completely unsupervised scenario). Furthermore, as can be seen also in
figure 3.9, the final image would contain false positives and false negatives. In fact,
pixels not belonging to the object (false positives), which appear to be not far from
the block under analysis because of their location and color characteristics, would be
included as well. At the same time some parts of the object may have color charac-
teristics greatly altered by lighting conditions, and therefore may be discarded. In the
scene presented, for example, there is an area of pixels with very low probability that
separates the left wing and the fuselage of the plane, creating an unwanted gap. Thus,
a function must be defined in some way to be able to take into account the probability
of each pixel to belong to the image, but also the connectivity. When choosing a
pixel, the system must also consider its "neighbors" and their values. Therefore some
representation is needed that allows us to incorporate the idea of "closeness". The
Markov Random Field framework can really help us to solve the problem (for further
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details on MRF see section 2.2.3). As we stated earlier, solving a MRF is equivalent
to solve a multiway cut problem on a specific graph (44). This result is extremely
important: even if a general minimum cut problem is still NP-complete, there exist a
lot of provably good approximations with near linear running time (72). Specifically
we will use a s — t cut graph approach. By using graphs, we can represent the im-
age pixels as nodes and we can use the edges to define the relationship of adjacency.
Starting from the graph, we will try to define a min-cut that separates the pixels of
the object from the background (42; 40).

In the following we will use the same notation and terminology introduced in sec-
tion 2.2.3. We recall that we have an undirected graph G = (V, E), where the node
set V' contains two special nodes called terminal nodes: V' = {s,t} U @; edges be-
tween nodes in () are called n-links where n stands for "neighbor", edges connecting
nodes of () to terminals are called ¢-links. The cut will partition V' into two disjoint
sets .S and 7', such that the source s is in .S and the sink ¢ is in 7". Nodes () represent
image pixels (with a one-to-one correspondence), while node s represents the object
and node ¢ represents the background. The nodes are interconnected by edges in E.
Typically, neighboring pixels are interconnected in a regular grid-like fashion. It is
important to note that a neighborhood system can be arbitrary and may include also
diagonal or any other kind of n-links. At the beginning of the procedure, every node
of @), other than to n-links, is connected with s and ¢ by two ¢-links. Now we have to
determine the cut.

The minimum cut problem looks for a cut which has the minimum cost among
all possible ones. A very interesting result for defining the minimum cut of a graph,
is the max-flow/min-cut theorem by Ford and Fulkerson (see (100)) which states that,
in a flow network, the maximum amount of flow passing from the source to the sink
is equal to the minimum capacity which, when removed in a specific way from the
network, causes the situation that no flow can pass from the source to the sink. In
other words the two problems are equivalent and to determine the min-cut it is suf-
ficient to calculate the max-flow of the graph. There are a lot of polynomial time
algorithms for min-cut/max-flow, which can be divided into two groups: Goldberg-
Tarjan style push-relabel methods (see (113)) and Ford-Fulkerson style "augmenting
paths" (see (100)). Even if the formers perform better on general graphs, for the kind
of graphs of our interest (two dimensional grids) the latter seem to work in a more
meaningful way. In (42) the authors presented a fast augmenting path algorithm
with observed linear running time, which presents very interesting performances. We
briefly describe how we can formulate the object/background segmentation as an en-
ergy minimization problem by using graph cuts.

We have to group together the pixels of the image into two sets, represented by
the source s and the sink ¢. Given some neighborhood system (represented by V)
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of all (unordered) pairs {p, ¢} of elements in (), we can define an assignment f =
( fi, foy oo, f‘Q|> that is a binary vector whose components f, specify assignments
to pixels ¢ in ). Each f, can be either 1 (for object) or O (for background). Vector
f defines a segmentation and so it defines a cut. We can associate an energy (i.e. a
cost) to f. Let D, (1) with I € {0,1} be a fixed penalty for assigning to pixel ¢ a
specific value (knowing its starting probability). As a consequence of the way we
have defined the probability values of ¢, it is clear that I (¢) represents our degree of
trust that pixel ¢ belongs to the object under analysis. Thus we can define D, () as
in the following:

I(q) ifl=1
Dq(l):{ 1—qI(q) ifl=0

and, more simply, D, (1) = |I (¢) —|]. To encode these constraints, we create
two ¢-links for each pixel node ¢, one from ¢ to s with weight D, (1) and the other
from ¢ to ¢ with weight D, (0). Figure 3.10 shows a schematic representation of the
graph (starting from the image under analysis). Now it is important to introduce some
constraints able to represent the coherence between neighboring pixels. Specifically,
we use a 8-neighborhood system as in figure 3.11.

So we create n-links between nodes with that configuration. The weight of these
links is set to a smoothing parameter v > 0, which discourages the separation of
adjacent pixels. Now the cost of an arbitrary cut C' includes weights of two types of
edges: severed t-links and severed n-links. It is important to note that a cut severs
exactly one t-link per pixel: it will sever ¢-link (s, ¢) if the pixel will be in compo-
nent 7" (it belongs to background), it severs ¢-link (g,¢) otherwise. There will be
severed also the n-links between adjacent pixels that are collocated in different sides.
Therefore:

|C| = ZDq(fq)"‘ Z w (q,p)

qeQ (¢,p)EN,q€S,peT

The energy of the labeling f is correlated to the cost of C"

=1|Cl = ZII fol+v- Z V(fq # )
q€Q (¢p)EN
where V' (f, # fp) returns 1 if its argument is true, 0 otherwise. With these as-
sumptions, a minimum cut of G gives labeling f that minimizes energy E (f). Note
that parameter v controls the relative importance of the data constraints versus the
regularizing constraints. Note that if it is very small, an optimal labeling assigns each
pixel ¢ a label f, that minimizes its own data cost Dy (f,). In this case, each pixel
chooses its own label independently from the other pixels. If v is big, then all pixels
must choose one label that has a smaller average data cost. For intermediate values
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D,(1)

D,(0)

Figure 3.10: A schematic representation of the s — ¢ graph obtained starting from
the image under analysis. From each pixel of the image start two ¢-links: the first
(in azure) toward the source s with weight D, (1), the second (in orange) toward the
sink ¢ with weight D, (0).

of v, an optimal labeling f should correspond to a balanced solution with compact
spatially coherent clusters of pixels who generally like the same label. We set v = 2.
Now we have to define a low-complexity implementation of this procedure.

Greig et al. in (123) constructed a two terminal graph such that the minimum
cost cut of the graph gives a globally optimal binary labeling f. Before their work,
exact minimization of energies like F (f) was not possible and such energies were
approached mainly with iterative algorithms like simulated annealing. One of the
most important contributions in (123) is showing that, in practice, simulated anneal-
ing reaches solutions very far from the global minimum even in simple binary cases.
Even if, as we said before, in computer vision scenario path augmenting algorithms
seem to return interesting results, they present a high complexity. Those methodolo-
gies, in fact, need to repeat continuously a breadth-first search for paths from s to .
In (42) the authors note that in the analysis of real images, building a breadth-first
search tree typically involves scanning the majority of pixels and it could be a very
expensive operation if it has to be performed too often. So they presented a novel
approach which really improves the performances. The methodology they presented
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Figure 3.11: 8-neighborhood system.

maintain two non-overlapping search trees S and 7" with root at source s and at the
sink ¢ respectively. In the following we present the main steps of the process as the
authors described in the original paper. For further details we address the interested
reader to their work (42).

In the tree S all edges from each parent node to the children are non-saturated,
while in tree T" edges from children to their parents are non-saturated. The nodes that
are notin S or 1 are called "free". The others can be either "active" or "passive". The
active ones represent the outer border in each tree while the passive ones are internal.
The point is that active nodes allow trees to "grow" by acquiring new children (along
non-saturated edges) from a set of free nodes. The passive nodes can not grow as they
are completely blocked by other nodes from the same tree. It is also important that
active nodes may come in contact with the nodes from the other tree. An augmenting
path is found as soon as an active node in one of the trees detects a neighboring node
that belongs to the other tree. The algorithm iteratively repeats the following three
stages:

e "growth" stage: search trees S and 1" grow until they touch giving a path from
stot;

e "augmentation" stage: the found path is augmented, search tree(s) break into
forest(s);

e "adoption" stage: trees .S and 7" are restored.

At the growth stage the search trees expand. The active nodes explore adjacent
non-saturated edges and acquire new children from a set of free nodes. The newly
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acquired nodes become active members of the corresponding search trees. As soon
as all neighbors of a given active node are explored the active node becomes passive.
The growth stage terminates if an active node encounters a neighboring node that
belongs to the opposite tree. The augmentation stage augments the path found at the
growth stage. Since we push through the largest flow possible some edge(s) in the
path become saturated. Thus, some of the nodes in the trees S and 7" may become
"orphans", that is, the edges linking them to their parents are no longer valid (they are
saturated). In fact, the augmentation phase may split the search trees S and 7" into
forests. The source s and the sink ¢ are still roots of two of the trees while orphans
form roots of all other trees. The goal of the adoption stage is to restore single-tree
structure of sets S and T’ with roots in the source and the sink. At this stage we try to
find a new valid parent for each orphan. A new parent should belong to the same set,
S or T, as the orphan. A parent should also be connected through a non-saturated
edge. If there is no qualifying parent we remove the orphan from S or 7" and make it
a free node. We also declare all its former children as orphans. The stage terminates
when no orphans are left and, thus, the search tree structures of S and 7" are restored.
Since some orphan nodes in S and 7" may become free, the adoption stage results
in contraction of these sets. After the adoption stage is completed the algorithm re-
turns to the growth stage. The algorithm terminates when the search trees .S and T’
can not grow (no active nodes) and the trees are separated by saturated edges. This
implies that a maximum flow is achieved. The corresponding minimum cut can be
determined by C' = {S,T'}. In the tests of the algorithm with image segmentation
(the case of our interest), the authors considered the use of some "seeds" introduced
interactively by the user. Obviously this initialization step has been replaced in our
case by the previously described probability map. It is important to note that even if
the authors did not give a polynomial bound for their algorithm, they experimentally
showed that in grid graphs for image analysis it performs better than the other known
methods. Our experiments confirmed this finding in specific scenarios supporting our
choice.

Indeed this approach helps us to solve the connectivity problem and to include,
in the final cluster, also those parts of the image that, for chromatic and lighting
characteristics, have not been included in the previous steps. Obviously we have no
guarantees that the whole object is considered. Figure 3.12 shows the final result of
the procedure on the selected image: as we can see, in the rear of the airplane the
vertical stabilizer and the rudder are completely ignored.

3.3.6 Final analysis

Obviously the procedure has to be repeated at least once for each starting block. In
fact, as said before, the first coarse clusterization could have grouped together pixels
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Figure 3.12: Our image after the last step: the toy airplane is isolated from the back-

ground but some parts are still missing.

with very different RGB values. Given a starting block, we have defined S (which is
a strict subset of the block). After the first iteration of the procedure above described,
we might have two different scenarios about the remaining pixels (the ones belonging
to the starting block, but not to S):

o if the pixels subset whose estimated probability value is below a certain thresh-
old th,. has a size of at least 30% of the starting block, we repeat the procedure
over this subset (i.e. we choose a random point and we define a square-sized
subset whose size is between 30% and 40% of the block size);

e otherwise the remaining pixels are not considered and we analyze the next
starting block.

We experimentally determined this last threshold to be 0.2.

As we can observe from the examples presented (more specifically from figure
3.4), it is possible that in the starting clusters (both at the beginning of the process
and after some iterations), there are some subsets consisting of pixels that can not
became a meaningful object (or part of it), independently from the complexity of
next analysis. For example it can happen that adjacent pixels with similar intensity
characteristics are grouped together in an extremely sparse (eventually connected)
set. Consider, for example, the second and third blocks of figure 3.4. So, before
any further processing, the system has to evaluate, relying on graph operators, the



3.4. EXPERIMENTAL RESULTS 59

consistency of the block and the possibility that it can lead to an "interesting" cluster.
To perform this analysis, we simply determine the Laplacian matrix associated with
the cluster. We recall that the element {4, j} of the Laplacian matrix M (also called
admittance or Kirchhoff matrix) associated to a graph GG can be defined as:

deg(v;) ifi=3j
M; ;=< -1 if i # j and v; is adjacent to v;
0 otherwise

where deg (v;) represents the degree of node v;. Afterwards we calculate the al-
gebraic connectivity (see (31; 212)), which corresponds to the second smallest eigen-
value of M. This value gives information about the connectivity of the graph: if it is
connected (with a measure of the connectivity) or not. It is interesting to note that at
the beginning of the process, we can be sure that the starting clusters are connected,
but, after the iterations of the procedure, we can not have any assurance.

Figure 3.13: Some examples of our segmentation technique.

3.4 Experimental results

In this section we present the results from our experiments. Our method tries to
individuate, with a bottom-up procedure, the main object(s) appearing in a digital
picture. Once obtained this result (if it is possible), there is no further analysis and
the remaining part of the image is simply considered background (even if there can
be other items). We perform experiments with 5,000 different images taken from
our databases. Figure 3.13 shows some meaningful examples. For many kinds of
objects the methodology proposed can group together the interesting pixels of the
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whole element or the main portion of it. It is worth noting that the segmentation
step is performed without requiring any previous recognition. Our method obviously
works worst with fairly articulated objects having subparts with different chromatic
characteristics. In fact grouping is performed taking into account intensity, color and
position. However for objects having a complex structure, even if it may not be able
to isolate the whole element, the segmentation step can individuate one of the more
semantically meaningful parts (or a connected subset of them). In such a scenario, it
is not possible to perform better without any higher-level information.

'WEIGHT | HEIGHT | IMAGE PIXELS| OBJECT PIXELS |PIXELS GROUPED| FALSE NEGATIVES | FALSE POSITIVES | NEG/OBJ PIX| POS/OBJ PIX
481 320 153.920 23.310 24.095 1.035 1.820 4.44% 7,81%
1024| 680 696.320 187.104 179.604 13.632 6.132 7,29% 3,28%
300] 455 136.500 38.818 38.896 672 750 1,73% 1,93%
640| 480 307.200 104.207 103.203 2.808 1.904 2,69% 1,83%
3200 214 68.480 32.840 35.516 1.608 4.284 4,90% 13,05%
380 274 104.120 37.635 30.699 10.457 3.521 27,79% 9,36%
525| 679 356.475 130.025 129.329 4.896 4.200 3,77% 3,23%

Figure 3.14: A table containing some significant values about the images segmented
(from left to right): weight of the picture, height of the picture, number of pixels of the
picture, number of pixels of the object (calculated by hand), number of pixel returned
by the segmentation procedure, false negatives (number of pixels of the object not
recognized by the segmentation), false positives (number of pixels not belonging to
the object but recognized by the segmentation), false negatives/object size ratio, false

positives/object size ratio.

If we look at figure 3.13, we can observe different examples. When the object
presents similar chromatic characteristics in the whole structure (as in the airplane
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and the starfish images), even if the color is not uniform, if the object is complex and
articulated or if it is partially occluded, we are able to individuate it and to clearly
separate it from the background. It is interesting also to point out that while the
starfish has colors that strongly differ from the one of the background, in the picture
with the airplane the difference is very mild, but the segmentation returns anyway
the whole object. When the object consists of subparts with different chromatic and
lighting characteristics, the segmentation may return only one of them (or all of them
but belonging to different clusters), as in the picture of the boat: the red hull is in-
dividuated, but it is completely separated from the rest. Instead when the subparts
present different appearance, but their dimensions are small if compared with the
size of the whole object and/or such subparts are included in the boundary of one
specific part of the object, the method is able to group them together; for example if
we look at the picture of the truck, we can see that the rims, the windows, the lights
and the indicators are considered also if they strongly differ (for intensity and color)
from the main block. Conversely if we look attentively to the picture of the racing
car, we can note that the passenger compartment is not included; firstly the subpart
has a big size, but, above all, it is important to observe that the upper right part of the
spoiler (which is adjacent to the passenger compartment) presents similar chromatic
characteristics, defining a darker area which does not allow us to consider the com-
partment completely surrounded by the main block. The amphora picture presents
a similar scenario: in the lower left part we can find a lighter group of pixels in the
peripheral area adjacent to the boundary, which is not included in the cluster. Finally
it is important to note that if in the picture there are other adjacent elements or the
background near the object under analysis presents similar chromatic characteristics,
we may obtain an under-segmentation with blocks containing elements from seman-
tically separated objects; this is the case of the picture of the hawk, where the bird of
prey is grouped together with the branch of the tree it is perched on.

Figure 3.14 presents a table containing values which can help us to evaluate the
performances of the methodology presented. Given a picture, we perform the seg-
mentation and, by a human inspection, we extract the number of pixels of the main
object in the scene; then we calculate the number of pixels of the object discarded by
the algorithm (false negatives) and the number of pixels of the scene not belonging to
the object but grouped in the main cluster by the algorithm (false positives). Clearly,
as stated in the first sections of this chapter, also the segmentation performed by hu-
man beings could return different results (especially about the grouping of different
subparts into a single cluster). Knowing this limitation, we considered the charac-
teristics of the procedure also in the extraction by hand. Specifically, if we have a
picture containing a person wearing clothes of very different colors, we do not group
them together. The graph in figure 3.15 shows how the ratio between the size of
the main object and the dimensions of the image influences the performances of this
methodology (in particular the presence of false negatives). As we can expect when
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Figure 3.15: A graph showing how the object/picture size ratio influences the perfor-

mance of the procedure.

the dimension of the object increases with respect to the dimension of the picture, we
can observe fewer false negatives.

It is important to evaluate the performance of the algorithm with respect to the
"complexity" of the object under analysis. In fact, given the details of the procedure,
it is reasonable to expect a decrease in performance with increasing polychromatism
and structural complexity of the object. Even looking at the examples shown above,
there are clues in this direction (we consider in this regard images of the amphora and
the race car). In the literature there is no specific performance index that will allow
us to evaluate features of interest. We have therefore introduced a new parameter
that could partly solve the problem. This value, called v, will have to carry multiple
information. Specifically, it will grow significantly with the number of subparts of
the object and their chromatic distance. The relevance of a subset will depend on two
factors: the relationship between its size and the entire object (expressed in terms
of pixels number) and the chromatic distance from the entire object. This value will
be established with an average color value for each subpart and for the entire object.
Let O be an object contained in a picture, whose size, expressed in number of pixels,
is represented by H. Suppose that the object consists of M different components,
each with size s; with ¢ = 1,2,..., M. 1 has to be higher when the number of
components grows, when the chromatic variation within each single component is
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Figure 3.16: A graph showing how the performances of the procedure are influenced
by 1.

high and, moreover, when the chromatic characteristics of the components differ each
other. We indicate with ; the normalized RGB triplet (with values in [0, 1]*) of pixel
i, with ¢y, the chromatic variance of the element k£ and with ¢ j, a value which
represents the chromatic distance between component £ and component h. ¢y, j, and
ck,p, are defined as in the following:

Ny

Chk = ]\lfk > (r - m(k))T (r# - m®)

and
==

where m(*) = Zf\iﬂl rgk). Now we can define y:

i=1j=1 i=1j=i+1

1 M M 1 M M M
Y= 2 chi,jsisj = (2; Ci,z‘S? + 22 Z cmsisj)
i

As we can observe in figure 3.16, the performance of the our segmentation pro-
cedure decreases as 1) increases.

3.5 Open problems

By using the procedure previously presented, starting from an unseen picture, with
the procedure previously described, it is possible to isolate one or more "probable"”
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objects. In the approach there still are some open problems concerning both the ef-
fectiveness and the efficiency.

About this latter aspect, it is worth noting that, in the previous description, we
did not completely consider the run-time complexity. In real scenarios decision time
is a very critical point. Unfortunately, even if our methodology can mostly return the
main object of a scene very quickly, considering that image segmentation is only the
first step of a more complex image analysis, in the worst case the time complexity is
not feasible for real applications. However it is possible to define some approxima-
tions; the fact that the procedure works directly with every single pixel of the image
causes a high cost. So we can obtain a great reduction, grouping together adjacent
pixels before the first step of the algorithm and working with these sets. A similar
choice is performed, with very interesting results, in (3): the image is pre-processed
subdividing it into a grid of regular N x NN pixels cells. Obviously with this resolu-
tion reduction, the number of elements heavily decreases (of a factor equal to N?).
Increasing IV, with the time complexity reduction, also the performances of the algo-
rithm became worst. It can be useful to perform a comparative study to determine the
optimal N value. In the same work, we also find another interesting "trick" to reduce
complexity: instead of working with the complete RGB triplets, the authors convert
each image in I;I513. This specific space can help because the three components
are statistically-uncorrelated color features, independent of intensity changes. (206)
works only on I2 and I3 for segmentation and classification, while the authors of (3)
present interesting results working only with the /o component. We are performing
experiments with other color spaces to understand how this choice can influence our
results.

From a completely different point of view, we want to evaluate whether the pro-
cedure could be more effective. Indeed, for complexity considerations, in the analysis
of the final clusters, we performed a s — ¢ graph cut, isolating each single possible
object at time. Then, individuated the block, the belonging pixels were discarded and
the analysis started again on the remaining ones. If we could be able to perform a
multi-label analysis, the obtained results really would be improved. Once estimated,
for each single cluster, the probability map over the whole image, by using MRF we
could define a function able to maximize the sum of the probability of each single
pixel, maintaining, at the same time, the cluster connected. This implementation, ob-
viously, needs more space and time resources. We are trying to perform a multi-label
image analysis under certain assumptions which can reduce the complexity.



Chapter 4

IEA: Implicit and Explicit

Analysis

4.1 Introduction

The procedure presented in the previous chapter returns connected subparts of the
original image containing "interesting" features. The aim of the present work is to
define a similarity measure between objects. We start observing that human beings
use a lot of information and analyze very different aspects to achieve the goal of clas-
sifying objects: shape, position, color and so on. The main idea that inspired this
work is to combine different methodologies (each working on a specific character-
istic) to obtain a more meaningful idea of the distance between objects. In fact in
the Implicit and Explicit Analysis (in the following also called IEA) we try to anal-
yse two important aspects, paradigmatically connoted by the traits of the David and
Leonardo’s drawings shown in figure 1.7. Mainly inspired by the human conception
of representation, we identify two main characteristics of object representation and
we called them the implicit and explicit models. The term "explicit" is used to ac-
count for the main traits of what, in the human representation, connotes a principal
source of information regarding a category, sort of visual synecdoche; the term "im-
plicit", on the other hand, accounts for the object rendered by shadows and lights,
colors and volumetric impression, sort of visual metonymy in which specific features
account for the whole object.

In this chapter we will firstly show how, once isolated an object from the scene,
to obtain the two representations; then we will define a specific distance measure for
both of them, showing the results obtained by individually using each of these two
approaches, without any interaction with the other. At the end we will introduce a

65
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specific methodology to combine these measures to obtain a more general object sim-
ilarity distance. As we will show in a more detailed way in next sections, we choose a
logical matrix to describe the contour and a set of real tuples for the interior. We will
use Procrustes analysis to compare logical shapes, and Kernel methods for the other
characteristics. The chapter ends with our experimental results and with the analysis
of the open problems of the methodology.

4.2 Methodology

The representation of every object is given as a pair (F, I) where F is the "drawing",
a necessarily connected (maybe meaningless) contour of an object or of its part (the
so-called explicit representation), and I is the "painting", the area inside the bound-
ary (the so-called implicit representation). Some examples are given in figure 4.1.
We work with different kinds of images. Some of them are taken from the log-JPEG
database (see section 1.5), which contains images which do not require any further
processing, being already in the format described. Moreover we work also with ob-
jects isolated by using the segmentation technique presented in the previous chapter
starting from generic digital images taken from the other databases.

Figure 4.1: Images from our log-JPEG database with the implicit (on the left) and the

explicit (on the right) descriptions.

This first scenario is very simple: we have a pair (F, I), that describes the object
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under analysis, and we want to assign it to the proper category. In this approach,
in contrast with the rest of the work, we assume the existence of a repository. In
these first experiments, the existence of the repository can give a great help. In fact
we can evaluate the performances of the methodologies presented working on im-
ages containing known subjects. Once obtained an estimation of the effectiveness
of the algorithms, we can eliminate the repository and compare directly two com-
pletely unknown objects extracted from the scene. Our knowledge base consists of a
set of reference classes. Each class is represented by some objects described by an
implicit-explicit model. The explicit denotation is a 60 x 60 logical matrix; it will be
compared with the extracted shape via generalized Procrustes analysis, as illustrated
in section 4.3. The model of the implicit denotation, instead, is a learned mixture de-
scribing the chromatic characteristics of the set of tuples which represent the interior
of the object; it will be compared with the implicit description of the current object
by using kernel methods, as illustrated in section 4.4. It is clear from the figures that
while the texture representation gives a very detailed description of the part analyzed,
the shape can only give an approximation. Despite all this, the importance of shape
in object classification is very significant, as we will explain thoroughly in the next
sections. The experiments will show that even if each object can be analyzed and
compared for similarities with prior shapes and parameters, suitably classified in the
knowledge base, each of the two data sets by itself does not give enough information,
while, once combined, they can lead to further selection of the correlated objects.
Obviously we will need also to define precise methodology for combining the two
distances in a meaningful way.

4.3 Explicit Analysis

4.3.1 Defining the explicit model

The explicit model for each object consists of a logical 60 x 60 matrix: the pixels of
value 1 are on a 0 values background. We extracted the contour by using the widely
known Canny method (see (48)). The Canny algorithm uses an optimal edge detector
based on a set of criteria which include finding most of the edges by minimizing
the error rate, marking edges as closely as possible to the actual edges to maximize
localization, and marking edges only once when a single edge exists for minimal
response. The methodology was first introduced by John Canny for his Masters thesis
at MIT in 1983, and still outperforms many of the more recent algorithms that have
been developed. The solution to the edge detection problem was presented as a rather
complex exponential function, but Canny found several ways to approximate and
optimize the edge-searching problem. His procedure consists of four main steps:
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e the image is smoothed by two one-dimensional Gaussians, one in the x direc-
tion and the other in the y direction (2D Gaussian filter is separable);

o the gradient of the image is calculated (again working in the = and y directions
separately);

e cach non-maximal pixel is suppressed: in this step only the local maxima pixels
in the direction of the gradient are preserved (with the consequent suppression
of all others);

e cach pixel is evaluated by using two thresholds (hysteresis): if a pixel has a
value above the higher threshold, it is set as an edge pixel; otherwise if it has
a value between the two thresholds there are two cases: if it is the neighbor of
an edge pixel, it is set as an edge pixel as well, otherwise not. A pixel having a
value below the lower threshold is never set as an edge pixel.

Figure 4.2: An image of an airplane and the contour obtained by using the Canny

algorithm.

In figure 4.2 we can see an example of the Canny algorithm applied on one of our
images: as we can see, the previous segmentation step really improves the perfor-
mance of the edge detection. We opted for Canny for its performances but, above all,
because it produces single pixel thick, continuous edges, very useful for our analysis.
As we said previously, we need to resize the contours to obtain a 60 x 60 matrix; con-
sidering the very low complexity of the figure, we simply adopt a nearest neighbor
interpolation. The choice of the matrix size is of extreme importance. In one of the
next steps we have to extract from the contour some critical points. If the matrix is too
small, the risk is having false negatives, and so losing some important information.
On the other hand, if it is too big, the risk is having false positives. We experimentally
found that the optimal size is between 53 and 72. We chose arbitrarily a size of 60.
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We now need to determine a way to compare two explicit models, i.e. two 60 x 60
logical matrices representing two shapes. Many different methodologies exist in this
direction. The next chapter contains a brief overview about the most used method-
ologies for shape description and comparison.

4.3.2 Shapes

The choice of a shape descriptor can heavily influence the performances of the oper-
ations on the shape itself. Before starting describing a shape, we have to give some
definitions. But how can we define a shape? In our work we recall the results of D.G.
Kendall (in (159)):

Definition 1: Shape
A shape is all the geometrical information that remains when location, scale and ro-
tational effects are filtered out from an object.

According to this definition, shape - in other words - is something invariant to
Euclidean similarity transformations. Now we have to ask how we can compare two
shapes and under which conditions they can be considered similar. We start from the
interesting idea that they can be considered congruent if they differ by a rigid body
transformation. In fact a shape is what we obtain if we remove location, scaling and
orientation from a 2D figure, while we define form (see figure 4.3) what we obtain if
we remove only location and orientation (i.e. a form is a shape at different scales).
We can express mathematically the previous definitions.

More specifically two figures A : N x K and B : N x K have the same shape,
i.e. they belong to the same shape equivalence class [A] = [B], if:

B=AI+1n7 '

while they have the same form if:

B = BAT + 1nv "

where 3 > 0 is a scalar which makes the two figures of the same size, I' : K x K
is a rotation (|I'| = 1), 1n is a vector of ones and v : K x 1 is a translation.

There is clearly a strong connection between shapes, their descriptors and the
methodology to calculate a distance between them. Think about everyday life: how
can we describe or define a shape? It is clear that we do not have a formal and an-
alytic description, but usually, when we have to describe how an object appears, we
use references to known shapes (e.g. a cloud seems to have the shape of a rabbit,
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Figure 4.3: Two objects with the same form: an elephant.

see figure 4.4). Obviously such descriptions can not easily be used in an algorithmic
framework. In the following sections we will describe a shape by locating a finite
number of points on its outline. We refer to those points as landmarks (see (83)):

Definition 2: Landmark
A landmark is a point of correspondence on each object that matches between and

within populations.

In (83) the authors discriminate landmarks into three subgroups:

e Anatomical landmarks: points assigned by an expert that corresponds between
organisms in some biologically meaningful way.

e Mathematical landmarks: points located on an object according to some math-
ematical or geometrical property, i.e. high curvature or an extremum point.

e Pseudo-landmarks: constructed points on an object either on the outline or
between landmarks.

A mathematical representation of an n-point shape in k£ dimensions could be ob-
taining by concatenating each dimension into a kn-vector. The vector representation
for planar shapes (i.e. kK = 2) would then be:

_ . . . T
X = [$17y17$27y27-~ . 7xn)yn]
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Figure 4.4: A rabbit-shaped cloud.

4.3.3 Landmarks

We stated that it is possible to represent a shape by using only a subset of the boundary
points, extracting from an image contour all the relevant information and discarding
the redundant ones. Now we need to decide which points of the contour can be
discarded and which ones have instead to be considered important. We will call these
latter “critical points”. We hereby start making some assumptions and introducing
some definitions, concerning the object image:

1. the image is formed by pixels in the set {1,0} in a 60 x 60 logical matrix, such
that the contour of the represented shape is 1s on a background of Os;

2. each point on the boundary is specified by a single pixel. The boundary is pixel-
continuous (i.e. no discontinuity is allowed between two pixels) and closed.
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In figure 4.5 it is shown a logical shape from our data set and its extracted bound-
ary (obtained by using Canny algorithm).

Definition 3: Configuration
A configuration is a finite set of landmarks (i.e. the zy coordinates) on a specimen.
The configuration matrix X for planar shapes is the £ x 2 matrix of Cartesian coor-
dinates of k£ landmarks in 2 dimensions. The coordinates of the points are calculated
starting from the upper left corner of the image.

Definition 4: Topologically Ordered Configuration
A topologically ordered configuration (TOC) is a configuration in which the points in
the rows of X respect a cyclic order (invariant for circular shifting of matrices rows)
induced by any parameterization of the contour of the shape.

Definition 5: Clockwise/Counterclockwise TOC
A clockwise/counterclockwise topologically ordered configuration is a topologically
ordered configuration in which the points are ordered clockwise/counterclockwise
with respect to the contour of the shape.

Figure 4.5: A logical shape (on the left) and its extracted boundary (on the right).

Given the landmarks (A, B, C, D) in figure 4.6, for any parameterization of the
contour, the points (A4, B, C, D) can appear in any configuration which is a circular
shifting of this sequence (i.e. (B,C, D, A), (C,D, A, B), (D, A, B,C)), and these
are all part of a topologically ordered configuration. Instead a sequence (A, C, B, D)
violates the topological order. Moreover the sequence (D, C, B, A), even if it does
not violate the topological order, it is not a clockwise TOC, but counterclockwise.
Note also that the conditions on the continuity and closure of the boundary hold.
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Figure 4.6: An elephant shape with 4 landmarks (A, B, C, D) highlighted.

But we still have to decide which points can be considered critical. We start from
the idea that the variation points of a boundary bring the information needed to ana-
lyze a shape. If we think to the polygons (which can be considered the most simple
and regular shapes) and we want to extract the minimum number of pixels to pre-
serve all the information, the only choice is to maintain the vertexes. If we take fewer
points it will be impossible to reconstruct the original figure and, at the same time,
every point we take in addition is redundant. Our description is not already complete
and we need to introduce a last element to define mathematically the critical points:
the medial axis.

4.3.4 Medial axis

Let 2 be a domain in R2. Let B, (p) denote the closed disk of radius r centered at p.
(60) defines D (£2) as the ordered set of all closed disks contained in 2

D (Q) ={B: (p) B, (p) C 2}

which is ordered by the set inclusion. The core of a domain €2 is consequently defined
as the set of all maximal elements in D (2), i.e.:

CORE () = {B:(p) € D(2)|B; (¢) € D (Q) and

B, (p) C Bs(¢9) = B, (p) = Bs(q)}-

The medial axis of a domain () is the set (i.e. the geometrical locus) of the centers
of the disks in CORE (£), that is:
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MA(Q) = {p € Q|B, (p) € CORE (Q)}.

Figure 4.7 shows a shape taken from our repository and its medial axis. The
description presented here allows us to obtain the so called Blum’s medial axis (see
(29)), from the name of the researcher who first introduced the idea. In the literature
there exist more complex, accurate and meaningful structures used to determine the
medial axis (briefly introduced in chapter 5 and also object of our current research).

Figure 4.7: A shape from our repository and the corresponding Blum’s medial axis.

4.3.5 Critical Points

Now we have a meaningful background to define our landmarks. The introduction of
the medial axis, in fact, allows us to introduce an analytical procedure to determine
the critical points. The vertices of a polygon, as well as other significant points of
a shape, correspond, as mentioned, to the points where the boundary presents rapid
changes in its direction. The medial axis is a skeleton around which the boundary
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develops and follows the profile. If we imagine to unroll the skeleton of a shape,
represent it as a straight line, and, therefore, to indicate the boundary of the shape
from this new reference system, we will notice a series of profiles represented by line
segments on which peaks and valleys our points of interest would be located. That
is, if we defined a measure able to associate each point of the boundary to the value
of the distance from the corresponding skeleton point, the points of interest would be
easily associated to the minimum and maximum of that function. This allows us to
introduce the following definition:

Definition 6: Critical Point
Given a shape boundary S, we indicate with C' the subset of points in .S over which
there are sudden variations in the direction of S. The elements of C are called critical
points.

Now we will give a mathematical formalization for the critical points:

Let C be a pixel-continuous and closed shape contour of n pixels; let L be a
clockwise topologically ordered configuration of a set of landmarks for each point
location of C' (|L| = n); let Q¢ be the set of points in 2 contained inside C' and
M A (Q¢) the medial axis of C; let h : L — R a function that, taken a landmark of
L, returns the distance of the corresponding point in M A (2¢); define

T:{leLzaggl)zo}

then the points ¢ € C' such that the corresponding landmark [ is in 7" are the
critical points of the shape.

In other words each point of the contour which represents a local maximum or a
local minimum of the distance from the corresponding point in the medial axis can
be considered a critical point. More simply, every point of the contour in which there
is a sudden variation in the direction of the contour itself represents a critical point.
According to the classification presented in section 4.3.2 our critical points are math-
ematical landmarks.

Now we have to locate the critical points. Our first approach tried to solve the
problem analytically, calculating the medial axis of the figure and the derivative of
the function which maps the points of the axis to their distance from the contour
(i.e. following exactly the previous definition). But the results were not encouraging
and we opted for a heuristic approach. It is extremely important in fact to highlight
that, once resized and digitalized, our image is affected by pixelization and, as a
consequence, there might be a lot of false positive. In real scenarios, the set of critical
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points defined above is not the minimum one: there is a little redundancy. However
this redundancy does not affect the results. Only if the number of false positives
becomes too high, the following steps of the analysis fail. Our heuristic approach
seems to partially solve this problem. We define a set of

superimposed

nxn windows (with n = {3,5,7,9}). On each contour pixel we center all these
windows. For each window we estimate the angles described by the central and the
two external points. If the difference between the four angles is less the 40 degree,
we consider only the minimum angle (i.e. the angle with the lowest value), say .
If < 144 (a value found experimentally), then we have a critical point, otherwise
there is none. To face the consequences of the pixelization, when we find a critical
point we shift the windows of 9 contour pixels. See figure 4.8 for some examples of
shapes with critical points.

Figure 4.8: Contours of two different objects of our dataset with highlighted critical

points (in red).

4.3.6 Procrustes Analysis

Once the critical points are to hand, we need to define some procedure to compare two
shapes and to determine the distance between them, possibly taking the most advan-
tage of the shape description adopted. Procrustes analysis seems to be an interesting
answer: it is a powerful tool that, while determining the rigid body transformation (in
case it exists) between two shapes, can return an evaluation of the distance between
them. This distance is calculated as a measure of the complexity of the transformation
itself. More specifically the Procrustes distance is a least-squares type shape-metric
that requires two aligned shapes with one-to-one point correspondence. The align-
ment part involves four steps (see figure 4.9):
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compute the centroid of each shape;

e re-scale each shape to have equal size;

align w.r.t. position the two shapes at their centroids;

align w.r.t. orientation by rotation.

Procrustes analysis theory is a set of mathematical tools to directly estimate and
perform simultaneous similarity transformations among the model point coordinates
matrices up to their maximal agreement. It avoids the definition and solution of the
classical normal equation systems. No prior information is requested for the geomet-
rical relationship existing among the different model objects components. By this
approach, the transformation parameters are computed in a direct and efficient way
based on a selected set of corresponding point coordinates (see (15)). Akra in (78)
describes the birth and the evolution of this methodology. The method was explained
and named as Orthogonal Procrustes problem by Schoenemann in 1966 (see (246)), a
scientist in the Quantitative Psychology area. In this publication, Schoenemann gave
the direct least-squares solution of the problem, that is to transform a given matrix A
into a given matrix B by an orthogonal transformation matrix 7" in such a way to min-
imize the sum of squares of the residual matrix ¥ = AT — B. The first generalization
to the Schoenemann orthogonal Procrustes problem was given by Schoenemann and
Carroll in 1970 (see (247)), when a least squares method for fitting a given matrix
A to another given matrix B under the choice of an unknown rotation, an unknown
translation and an unknown scale factor, was presented. This method is often identi-
fied in statistics and psychometry as Extended Orthogonal Procrustes problem.

After Schoenemann, similar methods were proposed in computer vision and robotics
area (see (8; 136)). The solution of the Generalized Orthogonal Procrustes problem
to a set of more than two matrices was reported (119; 279). Further generalization in
the stochastic model is called Weighted Procrustes Analysis, which can be different
weighting across columns (179) or across rows (165) of a matrix configuration. An
approach that can differently weight the homologous points coordinates was given in
a important paper by Goodall (see (117)). A method that can take into account the
stochastic properties of the coordinate axes was given by Beinat and Crosilla (70).

Geodetic Sciences were given by Crosilla and Beinat (70): photogrammetric
block adjustment by independent models, and registration of laser scanner point
clouds. The reader can also find a detailed survey of the Procrustes analysis and
some of its possible applications in the Geodetic Sciences in (69).

Procrustes analysis starts pre-multiplying the shape A by an (N —1) x N Helmert
matrix H. H has orthonormal rows, each orthogonal to the unit vector 1n/ \/N . The
rows of the matrix Ag = HA are the coordinates of the derived landmarks. And
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Figure 4.9: An example of Procrustes analysis on two triangles (1). Three different

transformations are applied: scaling (2), translation (3) and rotation (4).

the centered landmarks, i.e. with the location removed, are obtained by the derived
landmarks as

Ac=H"Ag
(N-1)K

The matrix of the derived landmarks is said to be in preform space R ,
while the original figure is in figure space R(N~DX (Goodall in (117) notes that any
statistical model for the matrix in the preform space can be derived from the figure
matrix in the figure space). The derived landmarks are centered and scaled by:

- HA
|[HA|
the Procrustes distance between A and B is thus

Z,=H

d(A.B) = inf |Z; — FZ4T|

where I' = UV ", with U and V obtained by the singular values decomposition
of Z } Zp and:
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Figure 4.10: Two airplanes isolated from the background with critical points (in red).

k
8= Z Ai, A1 > Ag > ... > Ag, the singular values
i

Procrustes analysis has many variations and forms. Of these forms, the gener-
alized orthogonal Procrustes analysis (GPA) is the most useful in shape correspon-
dence, because of the orthogonal nature of the rotation matrix, and because & sets can
be aligned to one target shape or aligned to each other. Ross in Procrustes Analysis
presents an interesting description of GPA. We summarize briefly the algorithm (we
address the interested reader to (119; 279; 117; 83; 36)):

e select one shape to be the approximate mean shape (i.e. the first shape in the
set);

e align the shapes to the approximate mean shape:

calculate the centroid of each shape (or set of landmarks);

align all shapes’ centroids to the origin;

normalize each shape’s centroid size;

rotate each shape to align with the newest approximate mean.

e calculate the new approximate mean from the aligned shapes;

o if the approximate means from steps 2 and 3 are different, then return to step
2, otherwise we have found the true mean shape of the set.



80 CHAPTER 4. IEA: IMPLICIT AND EXPLICIT ANALYSIS

700 ; 1 g ! ) : 5 !
BO0
500
400
300
200

100

0 i 1 ] i 1 i 1 1
a 100 200 300 400 Sa0 GO0 700 a00 a00

Figure 4.11: The contours of the two airplanes of the previous figure with critical

points. The critical points added to make the shapes comparable are colored in black.

Procrustes analysis has several advantages. First of all it is a fairly straightfor-
ward approach to shape correspondence. The algorithm’s low complexity allows for
easy implementation. And these are the reasons why we used it in our analysis. This
methodology does however have some disadvantages as well (see (120)). First, it is
arigid evaluation and requires a one-to-one landmark correspondence, both of which
limit its correspondence capabilities. Also, the convergence of means is not guar-
anteed, and therefore convergence is then signified when there is not a significant
change in the mean. The major issue for comparing two figures using the Procrustes
methodology is the representation of data. This is not a minor problem because the
Procrustes methodology, as stated, assumes that figures are denoted by their coordi-
nates in R¥ which are the figure landmarks. Furthermore it is assumed that the two
mentioned figures have the same number of landmarks. Usually when using Pro-
crustes it is necessary to face with different (but strictly connected) problems. First
of all to determine what a landmark is and which points of the representation (even
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the whole set, if necessary) can be considered belonging to this category. Moreover,
assuming that the two figures would be unusually described by the same number of
landmarks, we have to define a methodology to "normalize" the two sets, making
them comparable. We already addressed the first problem by introducing our critical
points representation of the shape. In the following we will describe how to face with
the other one.

4.3.7 Explicit distance

When a shape A is extracted from a patch, it is a M x K logical matrix. The con-
tour S4 extracted, once vectorized, is a matrix Sy, H X 2 of points. The goal is to
compare, by the Procrustes analysis, .54 with the shapes in the repository and to find
the relevant category. Herewith we define a threshold: if the distance from the closest
class is less than the given threshold, the object belongs to that category; otherwise
we have a non-classified object. Procrustes needs the two shapes to be described by
the same number of points. We have the contour for each image in the repository and
an efficient method to extract this information online. Let A be the image extracted
from the patch, this is initially resized, by nearest neighbor interpolation, to a logical
matrix of 60 x 60. It is worth noting that the result obtained by the vectorization
of the contour matrix S4 is not suitable, because it is described column-wise, i.e.
(x1,91), (x2,Y2), ..., (zH,ym) are sorted according to the column indexing, there-
fore it is necessary to recover the continuous function f(S4) describing the shape
contour and its critical points. The critical points Cpa of f(S4) shall constitute
the core landmarks. Obviously there might still be no complete correspondence in
the number of critical points, even in the case of similar shapes. For example some
critical points may be induced by noise or by the steps of the pixels. During the com-
parisons f(S4) needs to be adapted to the target contour f (Sx) for each element X
in the repository. To obtain this result we follow a simple procedure. Let Cpa be
the J x 2 matrix of the critical points of f(S4) and Cpx the N x 2 (with N > J)
matrix of the critical points of the target contour f(Sx ). Then L4 is the N x 2 matrix
of the new set of critical points obtained by adding to Cpa new elements, so as to
match with Cpx. We are assuming, without loss of generality, that the image under
analysis has fewer critical points than the repository image. LA is initially set equal
to Cpa; let Cy and C be two critical points at maximal distance in f (S4); then py,,
a point randomly extracted on the path between C'; and CY, is added to L o. This is
repeated until the new set has the same size of Cpx. Obviously if |[Cpa| > |Cpx
we follow the same procedure adding points to Cpx.

’

Given a threshold 7, we say that two instances A = {z;,y;} and B =

{zi,vi},_, ,, are similar if:

i=1l..n
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1. there exist approximations ¢ (A) of instance A and t3 (B) of instance B such
that d. (EX’Eti(X)> =0, for: = 1,2 and X € {A, B}, where d. is the
Procrustes distance, X x is the empirical variance-covariance matrix of X and
ti (X) = {xh, yn 1 With & = maz (n,m);

2. de (t1 (A),t2 (B)) < m, with t; (X) defined as in the previous item and d
representing the Procrustes distance.

To satisfy the first condition, it is really important to note that the new contour
L a has the same spherical variance and mean as the contour f(S4). Hence:

P(pm|0¢(s4)) = P(pmlOL,)

where 0x = (ux, X x). Therefore the transformation has not affected the prop-
erties of the original contour, as far as the critical points remain untouched. In the
worst case, the extension of Cpa to Lo has to be performed for each comparison.
Fortunately the complexity of this step is O (h), with h = ||Cpa| — |Cpx]||-

Figure 4.12: Two digital images of bottles with highlighted critical points (in red).

Figures 4.10 and 4.11 show thw above mentioned steps. In the first figure, we
can observe the image of two airplanes isolated from the background with the critical
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points highlighted, whose number is different between the two airplanes. Instead the
second figure shows the contours of the staring objects with critical points, plotted on
the same graph. In black are marked the fictitious points added to make them com-
parable. As we can note, to make the figure clearer, we do not perform the resizing
of the original image.

4.3.8 Explicit experiments

In this section we present the results from our experiments. We set 7 = 0.52 (a value
found experimentally). Consider the two bottles of figure 4.12: after the resizing,
the algorithm highlighted the critical points (in red in the figure). Figure 4.13 shows
the two original contours of the bottles (drawn on the same graph) and in black, the
critical points added to make the sets comparable. On the left side is also shown
the transformation of the first contour performed by the Procrustes analysis to fit the
other one.

Figure 4.13: On the left, the contours of the two bottles of figure 4.12 with critical
points: in blue bottle 1, in red bottle 2. On the right, in blue the contour of bottle 1

after the transformation (and in red the contour of bottle 2).

In our experiment we have considered 1,200 images, among which 500 have
been extracted by segmentation, 500 are from databases and 200 have been drawn by
hand with a suitable interface. We consider different classes of objects, evaluating the
Procrustes distance between instances of the same class and, obviously, between in-
stances belonging to different classes. Consider two families of objects having very
different shape characteristics: airplanes and bottles. Let’s start with the airplane
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family. Figure 4.14 shows our results. The distance values between the instances
from 2 to 9 are all below the threshold. Instead the values between the first instance
and the other ones are all above it. This fact must not surprise: even if the first ele-
ment belongs to the airplane family, its shape is different from the others; specifically,
the wings are strictly connected with the fuselage and so, differently from the other
airplanes, it seems like it has only a big central part. When the algorithm tries to fit
this element with another one, the difference in the structure leads to more complex
transformation and consequently to a higher distance value. Surprisingly, instead, the
seventh airplane has a shape which is slightly different from the other ones; despite
this, its distance values are under the threshold and only when it is compared with the
fifth airplane, the distance returns a value very close to ).

© 0725 07205 O0,7876 0,7314 0,5511 ©,7555 0,6991 0,6156

0 0,4271 02606 04557 0,3148 0,3485 03292 0,326%

0 0,3188 04489 00,3854 0,2545 0,3523 00,3516

0 0432 04344 03331 03002 0,3189

O 0,8481 05063 0,4745 0,2865

0| 03101 04757 0,3343

00,2866 0,2176

0 03624

Figure 4.14: Intra-class Procrustes distance in airplane family.
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Now we consider the bottles. From figure 4.15 we can observe that almost all
the distances are below the threshold . However, generally, the values are very low.
This happens because these shapes are simpler than the ones of the airplanes having
less critical points and less protrusions. Only the seventh bottle, whose size is too
big to exceed the frame dimensions, has a different behavior: it presents some values
above 7 (with the instances 3 and 5). The fact that the intra-class values between
bottles are lower with respect to those between airplanes must not be surprising: the
shape complexity of the airplanes, due to the presence of different subparts (which
generate boundary local variations), makes it much more complex to describe the
shape. The number of critical points is higher and more difficult the computation.
Consider that on average we needed 22 points to describe a bottle and 92 to describe
an airplane.

It is interesting also to observe the distance values between objects belonging to
different classes. Figure 4.16 shows the Procrustes distances evaluated between five
bottles and five airplanes. As we can expect, all the distances calculated are mainly
over the intra-class distances and they are all over the threshold 7.

Instead figure 4.17 shows some results obtained from experiments with instances
of a specific class (elephants) in different poses. As we can expect, Procrustes analy-
sis does not perform well in such scenario. Looking at the table, we can observe that
generally the distance values are above 7.

4.4 TImplicit Analysis

4.4.1 Introduction

It is clear from many experiments on recognition that shape analysis can provide
a meaningful support to recognition. Beside being certainly interesting by itself in
several applications, it needs however to be combined with dimensional and featu-
ral information (extracted from the image), to provide the set of hypotheses neces-
sary to infer some suitable conclusions on the current extracted patch. In fact, as
the previous sections have shown, the Procrustes analysis can be seen as a first im-
portant step in the classification task, but it cannot be considered a general solution
to the problem (see (279)). We introduce now a notion of distance complementary
to the Procrustean, taking into account other features. For each object the implicit
model consists of a probability density function estimated starting from a set (with
no fixed size) of tuples: the chromatic characteristics of every pixel contained inside
the boundary. Differently from the explicit approach, here we do not need any pro-
cedure to extract this information, nor to adapt the size of the set. The operations for
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Figure 4.15: Intra-class Procrustes distance in bottle family.

obtaining the interesting values can be performed very quickly and we only need to
estimate an underlying synthetic structure. But, as in the explicit scenario, we need a
methodology to compare the two models. For their effectiveness and efficiency, we
will use kernel methods.

4.4.2 Bag of tuples and probability density functions

As stated before, the repository contains, for each element, an explicit and an im-
plicit descriptions. The former consists of a figure contour and a set of critical points,
constituting the basis for the Procrustes analysis (see section 4.3). The latter (the
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Figure 4.16: Inter-class Procrustes distance between airplanes and bottles families.

implicit one) needs to be described in detail. We can treat the patches as a "bug of
tuples" (see (146)): every tuple contains the intensity in terms of RGB values. The
number of tuples depends on the dimensions of the shape. As already stated, the sets
can have different sizes. Obviously this representation is invariant with respect to
the permutations of the tuples. But how can we meaningfully compare these mod-
els? It is necessary to define a synthetic representation of the set. If we consider
these “clouds of pixels” as collections of i.i.d. samples from some unknown prob-
ability distribution, we can evaluate these pdfs and use them as synthetic descriptions.

The idea of using a pdf to describe the characteristics of a set of data is very old
and in the literature a lot of different approaches exist. In this first experience we
chose the Gaussian mixture model. There are a lot of reasons for this choice. First
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Figure 4.17: A hard case: instances of the same object (elephant) in different poses.

of all, it is a very well-known model. Moreover this choice was supported by the
idea that any probability density function can be approximated by a Gaussian mix-
ture (see (221)). We will discuss this subject in a more detailed way in chapter 6.
So we have in our depository a set of tuples and an associated Gaussian mixture for
every model. And we have to perform the same estimation on the patch under analy-
sis. How can we proceed? If the number of components (say N) is known, starting
from a set of values and considering them as i.i.d. samples, the underlying mixture
of Gaussians can be easily estimated with the Expectation-Maximization technique
(77), already presented in the previous chapter. But, as said before, there is a great
disadvantage for the EM algorithm: it requires knowing the number of components
(M) as input parameter. Given M, EM evaluates, in a finite number of steps, the best
fitting M -components Gaussian mixture for the dataset. But usually we do not have
any information about M. We now present our first approach to estimate M. For
classical methods we address the interested reader to (193; 73; 68; 295).

4.4.3 On the estimation of the components number

In our scenario, the estimation step is performed off-line for all the models in the
repository. When we encounter a “new” patch we have to elaborate it on-line to de-
fine its own explicit and implicit characteristics. First of all we have to decide (both
for the object in the repository and for the analyzed one) M, the number of com-
ponents. To obtain this result, we will define a chromatic histogram: the number of
peaks will be used as an estimation of M. If we worked with RGB values, we would
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Figure 4.18: A 2-dimensional Mixture of Gaussians with 4 components.

obtain a 3D histogram, over which performing the peak search. In a N-dimensional
structure, the "peaks" correspond to the bins with maximal accumulation. Obviously
in a 3D histogram, peak search presents a lot of problems due to the data sparseness
on one side and to the increasing complexity of the search algorithm on the other.
As shown in (175; 297), a suboptimal implementation of multiband images consists
in processing each band separately and then fusing together the different obtained
results. Obviously in this way the paucity of data is partly overcome and also the
search effort is smaller.

In our specific case, starting from an RGB dataset, we could define 3 two-band
analysis: RG, RB and BG band-pairs (as in the methodology presented in (169)). In-
deed it is possible to follow another approach. Working in the HSV color-space, we
can discard the V component, which refers to the lightness and so brings less infor-
mation about the color. Afterwards we can calculate the histogram only on the first
two components and analyze it. Now there are two problems to face: how to define
the size of the histogram bins and how to determine the number of peaks. Consid-
ering the resolution that we want on the graph, we decided to divide the interval of
H and S (which assume values in [0, 1]) into 15 equal-sized sub intervals. Instead,
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the estimation of the peaks number is more complex. We adopted the peak-climbing
approach developed by Knoontz et al. in (162). We briefly summarize the procedure.
Considering an 4-connection neighboring system, for each bin only the neighbors
having a higher value are considered. Among them, the bin is connected with the one
having the highest value, choosing arbitrarily if there are more cells with this charac-
teristic. So we have defined a parent-childhood relation between bins: each cell can
be linked to one parent, but can be parent of more than one cell.
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Figure 4.19: The HS 2D histogram from a tiger image (in the upper panel) and the
corresponding peak-climbing procedure in the neighborhood of the highest peak (in

the lower panel).

Every bin with the largest density in the neighborhood (i.e. a cell with no parent)
is a peak. It is possible that the algorithm might bring to scenarios where there are
two or more peaks neighbors of each other. If it happens, the algorithm chooses one
peak arbitrarily that becomes parent of the other (the assumption is that two or more
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neighboring peaks belong to the same cluster). The method is very efficient, in fact
in a K-dimensional histogram we have to consider (SK — 1) elements for each cell

(so only 32 — 1 = 8 cells in our case with K = 2). The procedure is not iterative and
does not require the number of peaks to be specified a priori. Considering the wide
amount of data in our experiments, we slightly modified the presented procedure,
discarding all the peaks having a value below a certain threshold: once the histogram
is to hand, we calculate the mean value of the bins (say m) and we set the threshold
to this value. Figure 4.19 shows an example of the procedure. In the upper part of
the image, it is represented the 2D histogram of a set of pixel taken from a picture
of a tiger. In green are highlighted the peaks selected with the algorithm. Three of
them will be discarded because their values are below m = 0.405 x 10* (represented
by the blue plane in the graph). In the lower part of the image, it is shown the peak
climbing algorithm in the area around the highest peak. As we can see, all the cells
are directed toward a neighboring cell with the highest value.

4.4.4 Implicit distance

To determine the distance between two mixtures of Gaussians there exists a closed
form solution introduced by Lyu in (183). It uses kernel analysis (see section 2.2.2),
but avoiding the computationally very expensive integral operation. The closed form
presented in (183) allows to calculate the Expected Likelihood Kernel, introduced by
Jebara and Kondor in (144; 145). Expected Likelihood kernel (K z1,) is a special case
of the Probability Product kernel:

K, (p.0) = [p(@)' 0 (0) do

with p = 1:

Kew (p.0) = [ p(@)sf (@) da

Essentially, the Probability Product kernels act as a measure of the degree of
similarity between two distributions. Specifically, given two d-dimensional Gaussian
mixtures p and p’,

N1
p (x) = Z amG (:L'; Hms Zm)
m=1
and

N2
p(@) =" a,G (511, 5h)

m=1

the Expected Likelihood Kernel can be computed in a closed form as
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K (p,p') = (QTF)_% BTy

T
where p has N; components, p’ has No components, 3 = (agl), .. .,ag\lh) ) ,
T
vy = (o/l(Q), .. ,a§v2(2)> are the mixing coefficients. I, instead, is a function that

correlates the different components of the two distributions; it is a N7 X N3 matrix
which is formed as I' (4, j) = g (14, 2i, pt5, £5), where function g is defined as:

) eap (3675n)
1 _
152y 1502 exp (%M?Zi 1Mz’>

g (Ml) E17 H2, 22) =

with pp = 37 1 + 55 s and ¥ = (21—1 + 22_1) 1. Moreover, as Lyu shows,
this measure can also be made independent of the dimensionality of data. This
normalization (that we call Normalized Mutual Energy), can be obtained dividing
Kgr (p,p') by the product of the energies of p and p’. Given a distribution p, its
energy can be calculated as the Expected Likelihood kernel between p and i; that is:

/ Kgr (p,p')
My (. Kgr (p,p) Ker (¢, 7')
where My is the Normalized Mutual Energy; we can note that its value is in
[0,1]. My can be used to determine the similarity between two elements. Specif-
ically, given a threshold )\, we say that two datasets A = {h;,s;,v;} and
B = {h;,si,vi};,_ ,, are similar if

i=1...n

1. there exist probability density functions f4 (z) and fp (x), such that a set X
can be seen as a sampling of fx (x) for X € {A, B};

2. di (fa(x), fe(x)) > X with fx (z) defined as in the previous item and d;
representing the Normalized Mutual Energy.

It is important to note that the computational cost of this distance is O (k1k2),
where k; is the number of the parameters necessary to describe fx (z) (with X €
{A, B}). Independently from the size of the dataset, the corresponding mixture of
Gaussians can be completely described by 3M parameters (where M is the number
of components). So we obtain that the complexity is O (M Ms).

4.4.5 Implicit experiments

In this section we present the experimental results obtained by using the implicit
methodology previously described. We set A = 0, 56 (a value found experimentally).
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Figure 4.20: Intra-class distance values of the Normalized Mutual Energy over the

tigers family.

In our experiments, we have considered 860 images. Consider a set of tiger pictures,
once isolated the interesting pixels, we convert their RGB triplets in HSV values.
Then we define the 2D histogram for the H and S components. By using the peak-
finding approach earlier presented, we obtain the number of peaks and we use this
value as input parameter of the Expectation Maximization. At the end of this proce-
dure, we have the mixture of Gaussians and we are able to determine the Normalized
Mutual Energy.

Figure 4.20 shows the intra-class distance values between 7 tiger pictures. As
we can see, with few exceptions, the values are all over A. Only the sixth instance
presents 2 values under the threshold. It is also interesting to show some inter-class
results. Figure 4.21 shows the distances between tigers and instances belonging to
different classes (airplane, truck, dog, butterfly, building); as we can see, mainly
the values are below \. Note that the butterfly presents all distance values over the
threshold; this is not surprising: in fact its chromatic characteristics (mainly yellow,
green and black) are not so different from the ones of the tigers. Moreover also the
distances between the dog and two specific instances of the tiger family are over .
This can be explained considering that the dog is almost completely white and the
colors of those tigers, due to the environment characteristics (snowy landscape), are
very light.
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Figure 4.21: Inter-class distance values of the Normalized Mutual Energy between
the tiger family and other objects, specifically (from left to right): airplane, truck,
dog, butterfly, building).

4.5 Combining the distances

The explicit description (consisting of the shapes extracted from each patch and the
correlated critical points) and the implicit one (consisting of a mixture of Gaussian)
conveyed two distance measures: the Procrustes (d. as explicit) and the Normalized
Mutual Energy (d; as implicit). The two distances assume values in the range [0, 1],
where 1 represents a perfect matching for d; and totally wrong for d., while O rep-
resents a perfect matching for d. and totally wrong for d;. Now, using these pairs of
values, we have to classify every patch, i.e. we have to estimate the class that each of
them belongs to. As stated before, our system can rely on a repository containing the
descriptions (implicit and explicit) of several models. They are obtained through an
off-line analysis of images. To classify a patch, we start evaluating its distance from
every stored model.

To combine d; and d., at the beginning we tried a very simple approach; given a
pair of objects, A and B, we considered them similar only if they were similar with
respect to both the distance measures simultaneously. That is:

A=g B,iffd. < m,d; > A\
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Implicit distance

Explicit distance

Figure 4.22: On the x-axes the explicit distance (Normalized Mutual Energy), on
the y-axes the implicit distance (Procrustes distance). The blue circles represent the
element belonging to the similarity class, while the red crosses represent the ones
belonging to non-similarity. Two elements are considered similar if d. < 7 and

d; > ), that is if the points reprsenting their two distances falls in the blue area.

We consider a set S’ consisting of several images belonging to different classes.
From the repository, we determine a set 7' consisting of two specific instances taken
from each category. Then we calculate both implicit and explicit distances between
the objects in .S and the elements in 7. We plot the results on a graph having on the
x-axes the explicit distance and on the y-axes the implicit one. We classify all the
instances in two categories: similarity (blue circles) and non-similarity (red crosses).
In figure 4.22 is shown the scenario described above. We consider similar only in-
stances with de < 7 and d; > A. The blue rectangle represents the selected region.
As we can see, there are a lot of false negatives in the upper-right and lower-left areas
of the graph (i.e. where only one of the two distance measures holds), but very few
false positives.
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Implicit distance

Explicit distance

Figure 4.23: On the x-axes the explicit distance (Normalized Mutual Energy), on
the y-axes the implicit distance (Procrustes distance). The blue circles represent the
element belonging to the similarity class, while the red crosses represent the ones be-
longing to non-similarity. Two elements are considered similar if the points reprsent-
ing their two distances falls in the blue area, obtained by using Fisher discirminat

analysis.

We obtain more interesting results by using Fisher Linear Discriminant Analysis
(see section 2.2.1). Firstly we assume the sets to be linearly separable:

y(x) =w' x4 wp

where w ! is the weight and wy is the threshold. Therefore a pair x = (d;, d.) is
classified similar, to the current target, if w ' (x — 1) > 0 and non-similar otherwise.

Using the values obtained on couples of known images, we partition the test
samples in S = similar and N = non — similar with ug and p their mean and
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scatter matrix given by:

Sw= Y (x—ps) (x—ps)+

S (¢ — o) (x = jaw) @D

XEN

So that learned weight w can be obtained as w = an¥ ' (us — un), (see (84)
for details). We have selected several different images belonging to different classes.
We have evaluated the pair of distances between all of them and we have repre-
sented these values on the d;/d. plan. We distinguish between the "valid distances"
(distances between elements of the same class) and "invalid distances" (distances
between element of different classes).

As we can see in figure , the discrimination model, however, is dichotomic, it
does not account for non-classifiable. On the other hand, if all the measures fall in the
invalid side of the discriminative plane, then we consider the patch as not belonging
to any category.

Figure 4.23 shows that the combined use of the two distances improves the results
obtained: even if there are more false positives, the number of false negatives greatly
decreases.

4.6 Open problems

The key idea of this approach is the use of two different models to describe objects
and to evaluate their similarity: the first tries to capture some explicit information
about the boundary, defined by the critical points of the shape and their disposition
on the edge; the second one tries to extract implicit information about the chromatic
characteristics of the whole set of points in the interior of the boundary. For both
descriptions, we introduced a specific distance measure: Procrustes for the explicit,
Normalized Mutual Energy for the implicit. The use of two different distance mea-
sures allows to estimate how the two objects have similar features and consequently,
how much they are similar. In fact it is possible that two objects have the same shape
but different chromatic features, and viceversa.

Obviously there are still some open problems both in the general methodology
and in the two single procedures. We start observing that the approach presented
needs the existence of a repository. As we discussed earlier, this choice causes some
problems: first of all, it is necessary to spend some time to initialize the system;
moreover the performances of the classification task can rely on the characteristics
of the repository itself (number of objects, quality of the images,...). Our aim is to
obtain a similarity measure that, given two objects, can return a distance between
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them, even if the system does not know anything about the "semantic" of the two
instances. Obviously, if it was possible, we also would be able to define a meaningful
behavior for the scenario in which the system has to analyze unknown object not in
the repository.

Concerning the explicit procedure, there are some critical aspects. First of all,
we did not introduce a meaningful and compact shape description able to capture all
the salient features of the boundary; moreover we opted for the Procrustes analysis, a
very powerful tool, but which requires the sets of landmarks used to define the bound-
ary to have the same size. As shown, this condition usually does not hold; even if we
introduced a procedure to make two general sets comparable, the solution adopted
is not completely satisfying. Finally we want to highlight that Procrustes analysis
fails when we have to work with pictures representing the same object in different
poses: it considers the global spatial arrangement of the points over the boundary,
but it is not able to manage information about the structure of the shape analyzed. In
the next chapter we will present some improvements which try to face some of these
problems.

Instead, in the implicit analysis, there is mainly one single problem to face: the
use of EM requires knowledge about the supposed number of components of the
mixture. Obviously different choices about this number lead to very different results.
In our first experiments, we try to determine M by a peak-searching over the HS
histogram. The results obtained are not satisfying and it is necessary to explore other
approaches to evaluate M. Chapter 6 will show how the estimation of the modes can
help us in this direction.



Chapter 5

Shape Description and Analysis

5.1 Introduction

In the explicit approach of IEA (see chapter 4) we had to evaluate the distance be-
tween two shapes. While analyzing the boundaries, we tried to identify some land-
marks to extract the most significant aspects of the shape. We called “critical” those
reference points. Starting from them we used the Procrustes distance measure to
compare the shapes. The approach presented some limitations; above all, Procrustes
analysis requires that the two compared datasets have the same size, a very unusual
scenario. We introduced an empiric methodology to get round the problem and make
the two sets comparable; specifically we added fictitious points to the set with less
elements, demonstrating that also after this transformation its statistical proprieties
were preserved. Moreover Procrustes analysis does not return a meaningful compar-
ison between the whole structure of the objects. If we have to compare two shapes
representing the same subject in different poses, we can not use Procrustes.

In this chapter we present a more detailed analysis of shape distance estimation.
Starting from the idea, earlier presented, that a distance measure for shape heavily
depends on the description of the shape itself, at the beginning we define a novel
model for 2D shapes, demonstrating some interesting properties about it. Our model
is compact, complete, easily computable and, above all, robust to the Euclidean trans-
formations. It will help us in local analysis of a shape (nevertheless without giving
a powerful tool for global analysis). For this reason we will subsequently focus on
a similarity measure derived from the Fréchet distance and we will show that it can
improve shape analysis when we deal with different poses of the same object.

99
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5.1.1 Shape description

As Pizlo already explained in his fundamental book on shapes (see (232)), "object’s
shape is a unique perceptual property of the object in the sense that is the only per-
ceptual property that has sufficient complexity to allow an object to be independent”
and so it needs a specific and very detailed analysis. And in fact also in (194), the au-
thors stated that in the last years the problem of classifying objects extracted from an
image is often most intuitively formulated as a shape classification task. This is the
reason why we focused our attention on shape and shape description. In fact, the way
we use to describe a shape heavily influences the study we can perform on it. And
it is very hard to obtain meaningful results: shape is corrupted by noise, distortions
and occlusions. In the modeling of a shape, a plethora of different features have been
considered in literature to face these problems. We can recall shape invariants, shape
context, shape signature, shape histogram, moments, curvature and so on. In the last
decades have been introduced a lot of different (often very different) descriptions.
The work of Pizlo mainly concerned with 3D shapes, while, in this section, we work
with 2D elements and so we will point out our attention on 2D. In fact it is worth
noting that when a 3D object is projected onto the visual plane, it is perceived as a
plane figure, so the capability of understanding 2D shapes (a problem still unsolved)
is the first important step toward the analysis of a real object.

Shape descriptors can be classified in several ways. First of all, it is possible
to distinguish between global and local descriptions. By using a global descriptor,
we have some problems with articulated objects. In fact, even if the pose of the
object undergoes little changes, the global structure may be deeply affected (a sce-
nario that can not be handle neither by critical points and Procrustes distance, as we
have already shown in chapter 4). On the other side, if we use local descriptors, it is
not possible to take into account global information. But we start referring to a re-
view about shape representation and description techniques (310), where tha authors,
Zhang and Lu, present a meaningful taxonomy of the existing techniques. They di-
vide shape descriptors into two big family: contour-based and region-based. Each of
these "families" is subsequently subdivided into structural and global methodologies.
In the following we first of all briefly recall the most used contour-based method-
ologies presented by the authors with a particular attention towards those approaches
which influenced our work. Obviously this overview has not to be considered ex-
haustive and we address the interested reader to the original paper (310) for further
details.

Contour-based structural methods In this group we can find methodologies which
break the shape boundary into segments called primitives. Usually the final result
can be represented as a string S = s1, S92, . . ., Sp, Where s; is a single element and S
represent the boundary. We start considering this family, mainly because it heavily
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influenced our shape representation. Chain code (101) is an example: the shape is
represented by a set of unit-size segments with the relative orientation; there exist nu-
merous variations of chain code, but they all are sensitive to noise and requires high
dimensions. Commonly it is used for a higher level analysis. Another interesting
structural method is the so called polygon decomposition: the boundary is broken
down into segments by polygon approximation and the vertices are used as primi-
tives (125; 126), described by internal angle, distance from the previous (or next)
vertex and spatial coordinates. Given this representation, once selected a subset of
the sharpest angles, the distance between shapes is expressed by the editing distance
of the two features string. Obviously, given the dependency on polygons, this ap-
proach works better with manmade rather than natural objects. In (20) the authors
present a methodology which relies on a primitive called token: it consists of the
maximum curvature and the orientation of a coherent continue subpart of the bound-
ary and a weighted Euclidean distance is used to evaluate the similarity between two
of them. A particular attention has to be pointed out on the so called syntactic analy-
sis. The underlying idea is that, as in the speech recognition, it is possible to define
some "basic" phonemes which can be combined together to obtain words and subse-
quently also very complex sentences (103). Once the shape is described by a string,
the matching can be performed by finding the minimal number of edit operations nec-
essary to convert one string into the other. There exist interesting more articulated
variations which work with specific grammar, able to describe also the phonemes
composition laws. Also shape invariants can be considered structural contour-based
methods. Generally with invariants it is specified a group of methodologies based on
specific properties of the boundary, which remain unchanged under some transfor-
mations (and, obviously, the class of transformations of interest). Cross-ratio, length-
ratio, distance-ratio, angle, area, determinant, eigenvalues, curvature (173; 138; 269)
are all examples of invariants (geometrical, algebraic or differential).

Contour-based global methods These techniques compute a multi-dimensional
numeric feature vector from the shape boundary information. The matching between
shapes is a straightforward process, usually obtained by using a metric distance. First
of all we can consider the most simple global descriptors such as area, circularity,
eccentricity, axis orientation and bending energy (307) or other ones more complex as
convexity, axis ratio, circular variance and elliptical variance (228). These descriptors
usually can return only very coarse information allowing to discriminate between
shapes having large differences. Another interesting instance of this group is the
Hausdorff distance: represented the shapes by two sets of points 51 = {s%, ceey S}L}
and So = {s?,...,s2,}, the Hausdorff distance (H) is defined as:

H (S1,82) = maz (h(S1,52),h(S2,51))

where
h (Sla S2) = max81;651min8j652 Hsl - SJ'H
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and ||-|| is the underlying norm of points of S; and Sa. Even if this distance mea-
sure is not invariant to translation, scale and rotation and, at the same time, is too
sensitive to noise or outlier, in literature there exist a lot of implementations relying
on it (59; 140; 197). Among the numerous variations proposed, we want to recall
that Rucklidge extended Hausdorff distance matching into affine invariant matching
(244). Also shape matching using shape context (16) can be seen as an improve-
ment to the traditional Hausdorff distance methods: it extracts a global feature (the
so called shape context) for each corresponding point. The matching between the
context features represents the matching between shape points. Instead shape sig-
nature represents a shape by a one dimensional function derived from the boundary
points. We can recall centroidal profile, complex coordinates, centroid distance, tan-
gent angle, cumulative angle, curvature, and chord length (75; 288; 311). Even if
they can be derived simply (and with a very low cost), the matching techniques are
expensive and, generally, small modifications on the boundary can lead to great dif-
ference in the representation of the shapes. Assuming that the shape boundary has
been represented by shape signature, it is also possible to derive boundary moments.
Specifically, having a shape signature z (7), the r-th moment m, and central moment
W can be estimated as:

1N
my = > [2(0)]

i=1
and

o = (@) =il

where N is the number of boundary points. The normalized moments m, =
my/ (u2)"? and miu, = mu,/ (u2)"/? are invariant to shape translation, rotation
and scaling (267). Another interesting approach is represented by the so called elastic
matching, proposed firstly by Bimbo and Pala (76); a deformed template is generated
as the sum if the original template 7 (s) and a warping deformation 6 (s):

¢(s)=7(s) +0(s)

where 7 = (7, 7) is a second order spline and ¢ = (6, §,)) is the deformation.
This description is associated to a specific function able to return a similarity mea-
sure. We can also cite stochastic methods like autoregressive modeling: considering
a function f describing the boundary, a linear autoregressive model can express the
value of f as the linear combination of a certain number of preceding values. Given
a set of observation, the model predicts the value of the next one and, specifically, it
defines the current value of the property considered (i.e. radius) by a linear combina-
tion of the values already observed, with a clear reduction of the complexity.
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Golland, in her PhD thesis on statistical shape analysis of anatomical structures
(114), gives another interesting classification of shape descriptors which allows us to
introduce other interesting methodologies:

Parametric descriptors The methods in this family fit a parametric model to a
boundary surface in a 3D image, or an outline curve in a 2D image, and use the
model parameters as feature vector components. The best known parametric shape
descriptors are based on decomposition of the object using a particular functional
basis, such as the Fourier series (271; 275) or the harmonic functions (45; 157). The
model parameters are typically extracted from segmented images.

Deformation fields Descriptors in this class are based on non-rigid matching of a
template to an input image. Additional constraints on the resulting deformation field
stabilize the inherently under-constrained matching problem. Examples of regular-
ization models that ensure smoothness of the field include thin plate splines (32; 115),
elasticity constraints (74; 184; 190) and viscous fluid models (61; 71).

Distance transforms A distance transform, or distance map, is a function that, for
each point in the image is equal to the distance from that point to the boundary of the
object. The boundary is modeled implicitly as a zero level-set of the distance trans-
form. A signed variant of the distance transform, which negates the values of the
distance transform outside the object, eliminates the singularity at the object outline,
changing linearly as we cross the boundary. Distance transforms have been used in
computer vision for medial axis extraction (115; 172), and more recently, in medical
image analysis for shape description (115; 170). The distance transform is computed
from a binary segmentation of the object.

A particular attention has to be given to the landmarks based methods, strictly
connected to our approach. A landmark is presented as a point on the object bound-
ary, a surface in a 3D image, a curve in a 2D image, that can be reliably estimated
from an image. Landmarks can be placed manually by the users who employ their
knowledge of anatomy to identify special locations (32; 67; 66), or detected automat-
ically using geometric properties of the outline surface, such as curvature (223). A
special attention has to be given to the use of these points to describe a shape. In this
direction a very interesting and efficient approach is presented in (194). The authors
introduced a new description of shape boundaries using a set of equally spaced points
(avoiding the need to extract specific landmark points). Much of the work in this area
uses a finite set of points taken from the object’s boundary as the shape representa-
tion. Very different approaches exist for the choice of the reference points. They can
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be selected on the basis of maximal curvature (274), distance from the centroid (312)
or any criteria deemed suitable to the class of shapes involved. More sophisticated
approaches parameterize the boundary as a closed curve and slide points along the
outline to minimize an objective function (298). Another interesting approach is to
simply place points at roughly equal intervals along the boundary (17). As we show
hereby, in this work we preferred selecting the landmarks in the critical points (i.e.
where the contour has a sudden variation in the direction).

There exist a lot of other methodologies, not included in the previous lists. Among
the approaches based on shapes, there exist other procedures relying on boundary (see
e.g. (9; 159; 30; 33) for early works), other ones based on fill-in features (e.g. (96))
or on skeleton representation of the shape and their shock graphs (we will give more
details about theme methodologies in the following). Coordinate systems (Cartesian,
polar, tangential, etc.), length and curvature representation (which represents every
contour segment by its length and its angle with the axis), B-spline, statistical mo-
ments, fractals belong to the so called contour-based methods. Other approaches use
the Fourier transformation of the boundaries or the estimation of the tolerance in-
terval. On the other side there are region-based shape representations; specifically
there are some heuristic approaches which allow to extract important features from
simple shapes. These techniques can be applied to the analysis of more compli-
cated shapes, by decomposing these latter in smaller and simpler sub-regions, and
by describing them separately. Some of the features extracted from shapes are: area
(number of pixels inside the contour), Euler’s number (difference between the num-
ber of contiguous parts and the number of holes in an object), vertical and horizontal
projections, elongatedness (a ratio between the length and width of the region bound-
ary rectangle), rectangularity (maximum ratio of the region area and the area of a
variable-direction bounding rectangle), direction (the direction of the longer size of
a minimum bounding rectangle) and compactness (ratio between the region border
length and the area). Another interesting approach calculates the convex hull of a
shape, i.e. the smallest convex region which contains all the points of the shape (for
an exhaustive description of all the methodologies cited above, we address the inter-
ested reader to (268; 231; 286; 245)). Finally we want to cite (10): the authors present
an interesting use of the Spherical Harmonic Descriptor (SHD, see (156; 155) which
has been shown empirically to perform well for the task of shape matching (see for
example the applications of SHD in (107; 200; 260).

A specific attention has to be given towards the so called skeleton approaches
(briefly already introduced in chapter 4). Medial axis was firstly introduced in the
70’s by Blum (30) as a tool for biological shape recognition. In the last years many
researchers point out a renewed attention toward this topic which has allowed to ob-
tain a richer (and compact) description of a shape boundary. In (160), the authors
firstly introduced the idea of characterized boundary shapes using the differential
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singularities of the reaction equation: in fact, by using the reaction-diffusion equa-
tion, the boundary evolves in the skeleton, which represents the singularities in the
curve evolution (the locus where there are the collisions between the evolving inward
moving boundaries). There exist a lot of methodologies to calculate the skeleton (see
(7; 216)). Recently Torsello in his PhD thesis (282) presents a variation of the clas-
sical method introduced by Siddiqi et al. (262), who showed an interesting approach
which relies on the Hamilton-Jacobi formalism to solve the eikonal equations. The
new procedure seems to be more stable with respect to local variations. In chapter
8 we will describe how we are attempting to merge these methodologies with our
approach.

5.1.2 Framework

A meaningful formal shape description has to capture all the salient features. Ac-
cording to (109), we are interested in a representation that is:

e complete, i.e. the whole shape information is stored in the representation;

e simple, meaningful and compact, i.e. redundancies are removed by capturing
symmetries, region information, articulations (local deformations), and divid-
ing the object into “object parts” with as few parts as needed for any level of
specified details;

e stable, i.e. robust under small variations of the shape;

e easily computable, i.e. polynomial time algorithms (on the size of the shape)
exist to find its representation.

We also add another important characteristic to this list:

e comparable, i.e. it is easy to define a suitable notion of distance between two
different shape descriptions.

The distance, in fact, has to capture a qualitative concept of similarity between
objects and the class they belong to. Analyzing a set of object images, obviously
there might be a large degree of variation in position, viewing direction, illumination
and other aspects. Ideally we want to obtain a representation capable to overcome all
these aspect changes. Given the plethora of different approaches and methodologies
to represent and to analyze a shape, we first need to define a framework to estab-
lish how well a representation works. (268) shows how description methods can be
characterized from different points of view:

e input representation form;
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e object reconstruction ability;

e incomplete shape recognition ability;

e local/global description character;

e statistical or syntactic object description;

and, above all,

e robustness to translation, rotation and scale transformation.

These are crucial aspects to understand how good a measure is. In particular, we
want to focus our attention on the latter aspect: the robustness to rigid-body trans-
formation. We recall again that according to Kendall’s definition (see (158)), shape
has to be invariant to Euclidean similarity transformations. Kendall defines also the
idea of pre-shape, which is the last step towards shape, in which rotational effects
still need to be filtered out. In the following we recall this idea of pre-shape with
some refinements. By using all these techniques, several significant results have been
established in the literature (e.g. see (9; 280; 263; 11; 83; 18; 253; 255; 252; 270)),
but, as said, a satisfactory methodology is not available yet.

P -
& w

Figure 5.1: Different transformed copies of the same shape.

5.2 Shape features representation

5.2.1 Shape pattern

Once found the critical points (see section 4.3.5), we construct a new image (called
polygonal image). The new image is an abstraction of the original one. It is a closed
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boundary obtained connecting by straight lines the contiguous critical points. This
step is necessary to overcome the pixelization problem. Figure 5.2 shows an example
of a polygonal image, obtained starting from the shape of figure 5.1.

Figure 5.2: The polygonal version of the image in figure 5.1. Boundary points are

colored in green, while critical points are colored in black.

Now it may be interesting to obtain additional information about the local charac-
teristics of the boundary around the critical points. To obtain this result, we introduce
the shape patterns:

Definition 7: Shape Pattern
A shape pattern L,, (with n odd) is a n X n matrix with all Os and n 1s. The 1s
describe the configuration of n consecutive contour pixels, considering one of them
as the central pixel. Every shape pattern is centered on this specific point (a single
pixel) so the central element of the matrix, which represents this pixel, is always set
to 1.

Under the hypothesis of pixel-continuous single-thick boundary, we can obtain a
specific shape pattern L,,, simply centering a n X n window over one of the boundary
pixels and considering the other pixels which fall into the window. As stated before,
once we have found the critical points, the shape patterns can help us to observe the
local variations of the boundary. Obviously, adjusting the value of n, we can decide
the dimension of the boundary segment to analyze. Our experiments have shown that
also considering the smallest set (i.e. n = 3), we can obtain relevant information
about the local variation. So in the following we start pointing our attention on the
L3 shape patterns. It is easy to show that only 28 of these patterns exist; in fact,
putting the first 1 in the center of the 3 x 3 matrix, we have 8 different positions for
the second 1 and for the third 1 we can chose one of the 7 left positions. So:




108 CHAPTER 5. SHAPE DESCRIPTION AND ANALYSIS

We use (3 to represent the set of all L3 shape patterns. The element of Q? will
be used as basic elements to describe a shape. In the following we show four of these
patterns, denoted by A, B, C' and D:

A B
11 0] [1 0 1]
01 0 10
0 0 0 00 0
C D
1 00] [1 0 0]
01 1 01 0
000 00 1

In this work the coordinates of the points in the 3 x 3 matrices are calculated with
respect to the central point. So, the coordinates of the center point are (0, 0) and the
other 8 positions are described using {—1,0, 1}, as shown in the following:

(-1,-1) (-1,0) (—1,+1)
(0,—1)  (0,0)  (0,+1)
(+1,-1) (+1,0) (4+1,+1)

Using this notation, for example the pattern A is uniquely described by

{(*17 *1) ’ (07 O) ) (*17 0)}

Obviously the order of the couples does not matter. We can now define a function
which, given a shape, returns the corresponding shape patterns.

Definition 8: Pattern Mapping Function

Let C be a pixel-continuous and closed-shape contour of n pixels; let L be a clock-

wise topological ordered configuration of a set of landmarks for each point loca-

tion of C (/L] = n) and Q} (k€ {1,...,28}) a L3 shape-pattern. Let X =
((xi—1,Yi-1), (s, :), (Ti+1, yi+1)) be a set of three consecutive points in L (chosen

with respect to the clockwise topologically order), and let ] : Q3 — ({—1,0,+1} x {—1,0,+1})*
be the function which maps each pattern Qi in its own set of landmarks. Then it is

possible to define a mapping function f : X +— [(Q), where f returns the landmarks

of the pattern corresponding to X. f is defined as follows:

f(l‘z'—hyz‘—l) = (%—1 — Ty, Yi—-1 — yi);
f(xi,y:) = (0,0) 5
f($i+17 yz‘+1) = (5Uz‘+1 — Ti, Yi+1 — yi)



5.2. SHAPE FEATURES REPRESENTATION 109

Lemma 1
Let L be a finite clockwise topologically ordered set of n landmarks, each corre-
sponding to a point location of a pixel-continuous and closed shape. Then L can be
factored uniquely into a sequence of patterns in Q3. We will obtain a pattern for each
landmark in L. It is possible to define a function ' : L — (Q*)" which takes L as
input and returns the ordered sequence of n L3 patterns corresponding to the points
of L.

Proof
L contains n points. It is possible to define n triplets. For each point ¢ of L we take
the previous and the following points (according to the clockwise topological order).
The ¢ — th triplet is then ((i — 1) modn, i, (i + 1) modn). The fuction f previously
introduced maps each triplet in one of the 28 shape pattern. So we obtain n L3 pat-
terns.

a

Consider for example the set of landmarks L = {(2, 3), (3,4), (4,4), (4,3),(3,2)}
of the pixel-continuous and closed shape shown in figure 5.3. L is a clockwise topo-
logically ordered configuration. The factorization obtained by calculating F' on L is:
E,M,C,0, X where:

E M C
100 010 1 00
010 110 011
010 0 00 0 0O
) X

0 01 0 00

010 010

0 01 1 01

For the point (3, 4), for example, in fact we obtain:

f ((273) ) (374) ) (474)) = {(273) + (0
{(_17_1)7(0’0)7(170)}

and so for the other points.

The 28 patterns can be grouped in 4 classes: (', C2, C3 and Cy. Each category
contains a basic shape pattern and other 7 elements which are simply rotations of the
basic pattern. Obviously the forth category (C}) has only 4 shape patterns (the others
are identical to these, two by two). The four basic patterns for C, Cs, C3 and Cy
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1 2 3 4 5 &

L= R - P R R

Figure 5.3: A simple pixel-continuous and closed shape.

are, respectively, the A, B, C and D patterns previously showed.

Notational convention
Let Y be the basic pattern for a specific class (Y € {4, B, C, D}), we indicate with
Y@ the pattern obtained by a clockwise rotation of o x 7 degrees starting from Y

B I=B!
101 010
010 011 -1
00 0 000

We also represent a segment s of length [ and angle with y-axis 3 with 1%, It is simple
to observe that s is uniquely defined by 7.

5.2.2 Shape Description

With all the elements previously defined to hand, we can introduce our shape descrip-
tion:

Definition 9: Shape Description
Let X be a k x 2 matrix representing a clockwise topologically ordered configuration
of k points describing a close and continuous contour of a shape S having n critical
points. We use the following notation to describe S:

S = ({05,057, Cam) (IR, s 13 ) )

where (C,...,Co) and <l§i}1, llﬁ\é, . ,l]‘i}‘n> are clockwise topologically ordered
configurations, C; € {A, B,C, D}, o; € {1,2,...,8},; € R, §; € [0, 7] and C}"
represents the pattern centered on the ¢ — th (with respect to the clockwise topologi-
cal ordering) critical point. l%i represents the 7 — th straight segment connecting the
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i — th and the (i + 1) — th critical points. In particular, let [; (Vi € {1,...,n}) be
the lenght of the i — th segment and Iy;ax = maxi=1,. n (l;), then In; = l]ul;X'
Obviously Iy; € [0, 1].

5.3 Properties of Shape Decriptors

First of all we want to show the properties of our shape representation with respect to
the lists presented in the previous section.
Our representation is:

e simple: we describe a shape by using very few information;

o meaningful: we preserve information about the number, the relative position
and the main characteristics of the critical points;

e compact: having a boundary of n pixels with m critical points (with usual
m << n), we need only 4m values to represent the boundary;

e stable: small variations of the shape do not affect the description (that also
solves the pixelization problem);

e easy to compute: once obtained the critical points of the boundary (O (n),
where n is the size of the boundary), it is very simple to define C;, o, [y, and

Bi.

Above all we want to demonstrate that the shape description defined is robust
versus translation, rotation and scale transformations. In the following we present
these important results.

Lemma 2
The representation presented is invariant with respect to translations.

Proof
Let S be a shape and S’ a 2D-translation (A;, A,) of S. The length (In;) and the
angle (3;) of the segments do not change after the translation. Moreover the criti-
cal points of S" (C;**) are the same of S (for the definition of critical points). The
patterns in the critical points are obtained using the mapping function f previously
introduced. Given two critical points @ and a’ where a is taken from S and o’ is the
corresponding critical point in S’, f returns the same pattern on a and o’. In fact:
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F@icr +Ap,yic1 +Ay) = (i—1 — 4, Yim1 — i) =
= f(@i—1,Yi-1);

flai+ A,y +4y) =(0,0) =
= f(xi, yi);

[ (@ig1+ Az, yiv1 + Ay) = (Tig1 — @iy Yir1 — ¥i) =
=f (wz‘+1,yz’+1)-

Lemma 3
The representation presented is invariant with respect to scaling.

Proof

Let S be a shape and S’ the shape obtained by a k-factor scaling of S. Note that
orientation and angles are the same, thus the patterns over the critical points are
unaffected, hence (C{",...,Com) = <C{a/1, . ,C;Zail>. Also the angle (8;) of
each segment [; is unaffected. The length of each segment will be multiplied for
the scaling factor k. But the values [ y; are normalized with respect to [ 4 x , so they
will be unchanged. In fact (Vi € {1,...,n}):

I k x l;

)

/
lNi -

= = = l ’i'
Dyiax kxluax  luax N

a

The representation is not invariant to rotations, but it is very simple to update
when a rotation occurs. In the following we show how to update the structure:

Lemma 4
Given a shape S = <(Cf1, oo, GOy <l]‘i,11, e ,l]’i}ln>>, the new shape S’ obtained
by a clockwise ~y-degree rotation of S has the following structure:
s = ({c, oy (I )
where Vi € {1,...,n}:
C! = C; (i.e. the basic patterns C; remain the same),
af = (o + [y x w/4]) mods,

I =1,
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Bi = (Bi + ) mod (2).
where [x] represents the nearest integer to .

Proof
S’ is the shape obtained by a y-degree rotation of S. The rotation does not change
the length of the segments (I ;) neither the basic patterns overimposed to the critical
points (C}).

a

So, recalling the definitions given previously, our representation is not feasible
for shape, but for pre-shape. Our shape description allows us to obtain quickly the
most significant characteristics (including the critical points) but does not suggest a
way to compare them.

5.4 Similarity and Distance

In this section we discuss a methodology for evaluating the similarity between two-
dimensional shapes, each one represented by a set of topologically ordered critical
points. In this framework we use a different notation, representing the boundary
points by a vector Z = (Z3, Zs, ..., Zy) of complex numbers. The transformation
from Euclidean to complex coordinates is the following:

Zj = xj+1y;

for j =1,2,..., k. Consider the Fréchet distance:

Definition 10: Fréchet distance
Given two parametric curves f : [a,b] — V and ¢ : [a,b] — V/, the Fréchet distance
between them is

dr (f,9) = mina gmazieio.d (f (e (1)), 9 (B (1))

where o and 3 are continuous parameterization of f and g respectively.

Fréchet distance is easy to understand thinking to a man that walks his dog. Each
of them walks on a different curve and dr is the minimum length of the leash that
traverse them. Configuration points can be seen as the edges of a polygonal ap-
proximation of shape contours, so we introduce a proper version of Fréchet distance
illustrated in (87). Given a polygonal curve z, we denote the sequence of its end
points as o (z) = (z1,..., 2k)-
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Definition 11: Coupling
Let Z and Y be two polygonal curves and o (Z) = (Z1,...,Zp) and 0 (Y) =
(Y1,...,Y,), acoupling A is a sequence

A= C(Z7Y) = (ZUNKJl)?' ) (Zumvnm)
where u; = v; = 1, Uy, = p, Uy = ¢, m = min (p, q).
The length of a coupling A is defined as:

’A| = mawi:l...md (Zum YU@)

‘We also introduce the discrete Fréchet distance:

Definition 12: Discrete Fréchet distance
Given two polygonal curves Z and Y, the discrete Fréchet distance between them is

dagp (Z,Y)=min{|A| : A=c(Z,Y)}
where ¢ (Z,Y) is a coupling between Z and Y.

The Fréchet distance is independent of shape configurations, but before comput-
ing it, we have to find a significative alignment between the configurations.

Definition 13: Sub-Configuration Set
Given a configuration Y such that |Y'| = ¢ > p, then

SpT (V)= {Y/ CY: ‘Y/‘ =pandY is topologically ordered}

is the set of topologically ordered sub-configurrations of cardinality p that can be
derived from Y. For any ¢ > p, we have ‘SPT (Y)‘ = ()

Definition 14: Common Structure Registration (CSR)
Let Z and Y be two configurations (without loss of generality suppose |Z| = p <
g = |Y|). A common structure registration is a matching between Z and Y such
that

YS = argminyfesg(y)dp (Z, Y/>
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The hypothesis that undergoes the CSR is that if two configurations represent ob-
jects of the same class, for example two elephants in different poses (see figure 5.4),
then they have to differ only for some details. In fact, objects of the same class have
a similar structure, which is supposed to be more evident in the configuration with
fewer points. So the CSR finds the subset of the points of Y which is the configu-
ration more similar to Z. Since ‘Y}DT‘ = (}}), the cost of finding a CSR between two
configuration is O ((Z)) Obviously if a common structure between the two config-
urations does not exist, because they represent different objects, there will be a value
of the objective function higher than a fixed threshold &.

ANRN
9 ¥ 2%, a0

U S ¥

Figure 5.4: Some figures taken from our data set and representing an elephant in

different poses.

However, once Y has been found, we calculate the affine transformation that
superimposes one shape to the other. Subsequently, being Z and Y superimposed,
we can compute the discrete Fréchet distance between them. Having aligned the two
starting shapes, it is easy to compute this distance. First of all circularly shift Y so
that Y = Y,%, then let Z = [ZZ,] and Y* = {YSYq}. Let I; be the set of point of

Y included by YJS and Y72

e and let

0 (I;) = max (maxpejj (d( ,Zj)> , MATpe], (d( ,Zj+1)>)

then we have that
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dap = max (maxizl...p (d (Yf, Zz)) ,maz;j—1..p (0 (Ij)))

Since we have some information about the contour of configuration points, we
can use it for deriving a new notion of distance. To obtain this result first we have to
define the distance between critical points. Given two critical points C;"* and C;‘j ,
the distance between them is defined as

de (€4, 057 = i (IDs = D;| modd) - é (o — a5 mod8)
where
1 ifCL=A
D=1 3 itch—o
4 ifCL=D

Note that d¢ returns value in [0, 1]. Now we can introduce the topological dis-
tance:

Definition 15: Topological distance
Let Z and Y be the vectors of two configurations, both of cardinality k. The topo-
logical distance between them is

k
dr (2,Y) =Y de (€5, C5%)
j=1

where C;* fori = 1,.. ., k are the critical points of Z and Cgag fori=1,...,k
are the critical points of Y.

At this point we can use the pair <ddF (Z,Y),dr (Z YS )> for classifying the
similarity between the configurations. In fact dyr quantifies how much the whole
figure borders are similar and dr suggests when there is a similar structure between
them. In particular dyr (Z,Y) = 0 when points of both configurations are per-
fectly superimposed. When the Fréchet distance increases two cases might occur:
the shapes are of the same class but differs for some details, or they belong to dif-
ferent classes. Fréchet distance is not sufficient for deciding between this two cases
since it can lead to a non significant distance even between objects of the same class.
Thus we introduce the following similarity measure (defined topological-Fréchet dis-
tance):

dr (2,Y%) 1 g tar (2Y)

Str(Z,Y)=p ;
T tp
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where § € [0, 1] is a weight balancing the topological and Fréchet components
and t7 and tp are empirically derived thresholds equal to the mean value of d7 and
dgr respectively, that we obtain comparing objects of different classes. When the
value of S is greater than a given threshold 7, shapes belong to different classes,
otherwise they are similar. Note that S7r is not a distance measure since the trian-
gular inequality does not hold for it.

In chapter 7, we will compare this new approach with the Procrustes distance
previously introduced.
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Chapter 6

Implicit Analysis: evaluating the
distance between two general sets

of points

6.1 Introduction

In chapter 4, we tried to estimate the distance between two objects by integrating
information about shape (explicit model) and about color (implicit model). The pre-
vious chapter introduced some improvements on the explicit analysis; now we point
out our attention on the implicit one. The comparison of two sets of samples of dif-
ferent size with the aim of defining their distance is one of the most studied problems
not only in Artificial Intelligence, but more generally in statistical literature. As we
have already shown, to obtain this result we supposed the existence of an underlying
model represented by a probability density function. Starting from the datasets, we
tried to estimate the function. Afterwards we evaluated the distance between the two
pdfs and we considered that value as a distance measure between the two starting
sets. Obviously there were a lot of problems to solve. First of all we had to choose
which function can be used to describe in a meaningful way the sets (we opted for a
mixture of Gaussians). Once decided the "family" of the function, we had to estimate
the specific parameters suitable for our dataset. To obtain this result for mixtures
of Gaussians, there exists a well-known algorithm: Expectation-Maximization. We
want to remind the reader that, even if it is very efficient and effective, the EM re-
quires to know in advance the number of components of the mixture. We estimated
this parameter in a easy way: starting from the histogram, we cumulated the HS
channels to find the peaks which represent our component estimation.

119
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In this chapter we will investigate the theoretical basis which underlies this ap-
proach and the use of a mixture of Gaussians model. Moreover we want to im-
prove our methodology to determine the number of components. Specifically we will
present a different and more effective way to estimate this parameter, based on the
estimation of the number of modes. Mode estimation can easily be performed by
using the Mean Shift algorithm (briefly already shown in chapter 3), a convergent
iterative gradient descent procedure which returns the modes of a given set. Even if
it is possible to demonstrate that sometimes the number of modes differs from the
number of components, nevertheless we will show that the results obtained using this
approach are very interesting, since this choice produces a negligible error.

6.2 The data: our source of information

An inference process wanting to estimate the characteristics of an unknown model
can rely only on the observable state, and a state is observable only through the data.
Every cognitive process, exploiting interaction with the real world, must work with
data and their manipulation. The data is all we have and also most of what we need.
When we observe the world, we observe data. For example, computer vision deals
with digital images: each color image is simply a matrix of integer triples in the range
[0,255]. In the same way, considering a physical scenario, if we want to study the
evolution of the state of a gas, it can be described by the values of its state variables
taken in different instants. Moreover, by analyzing the performance of our Engineer-
ing Department of the University “La Sapienza”, we can study the value of variables,
such as the number of new students, the average students’ age, the number of students
who find a job within the first year after graduation, and so on. The scenario does
not matter: to gather information we need techniques that allow us to extract all the
information hidden in the data.

Indeed all the information is in the data, we have only to find it. But the infor-
mation is spread: it lies not only in the values of variables, but, above all, in the
relations between them. This idea is usually misunderstood: even if we make com-
plex transformations on our data, we cannot add anything to the informative content,
we can only make the information more clear and readable. Extracting information
from data means to find relations, patterns, trends and so on to effectively understand,
as stated in (131), "what data says”. Patterns are regularities; they pave the way to
interpretation. They allow us to learn, to compare, to generalize: patterns allow us to
know. Every day human beings can recognize shapes, objects, phonemes, words. We
are able to understand whether a specific sound belongs to our language, even if we
have never heard it before. We are able to recognize a human face even if it has been
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transformed. We know (and recognize) because we detect (and recognize) patterns.
Patterns are what we have to look for over our data (chapter 2 gives a brief overview
about the most popular pattern recognition techniques).

Vast amounts of data are being generated in many fields of science and industry.
But what kind of data do we have to deal with? We have huge (sometimes unlimited)
sets of values taken from measurements. Some are from quantitative measurements,
where it is possible to state an order; others are from qualitative measurements as-
suming values in a finite set (see, for instance, the famous discrimination example
due to Fisher in (97) on the species of Iris). The values are a subset (often very lim-
ited) of the whole information, but they are the only subset we can rely on. Recalling
the previous example of a digital still image, the triples are just a sampling of the real
image view. The color values are taken and evaluated only on the pixels, that is, in a
discrete set of equidistant points of the observed scene. And also the intensity of each
color is sampled: the light intensity (analogical in its nature) is mapped on a limited
range of integers between 0 and 255. A digital image always represents a sampling in
space and a sampling in a range of values. Analogously the state of a gas is described
by values of variables that are taken in discrete instants and that are bound by the
precision of the measurement instrument. Our data are always a sampling of the real
world.

6.3 Sampling and fitting

Sampling is a process through which we obtain a discrete and limited description of
a real phenomenon. From a statistical point of view, for instance, sampling a proba-
bility density function f(x) gives us a set of points in R"™ distributed over the space
according to f(z) itself. Sampling is generally quite simple (under certain assump-
tions). But what happens if we try to do the reverse process? Estimating a function,
given a set of samples, is instead a hard problem. We have no assurance of finding al-
ways a solution and, even when it is possible, the function found could not be unique.
It is the same scenario of fitting.

If we make different assumptions on the class the function belongs to, on the
quantities to minimizes, on the relations among the points, we will obtain completely
different results. But to make assumptions means to have more knowledge. This
fact is not surprising if we consider (as stated before) that sampling is a very limited
representation of the real world. While augmenting the number of points, the range
of different possibilities decreases: in fact, after receiving more information on the
world, it is possible to cut off some supposed models.
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6.4 Comparing two datasets

Obviously the considerations that we present are feasible for every kind of data, not
exclusively for digital images. For this reason the classification approach that we
introduce (including the commentaries) has to be considered, as a general perspec-
tive, not limited to the Computer Vision field. But what does “classification” mean?
As we have seen before, in a classical supervised approach we have a set of classes
{C4,Cy,...,Ck} and we have also a training set which contains elements associ-
ated to their own label. In an object recognition task, this means that, for every object
met, the system has to decide the class (among the classes it knows) to which the
object belongs. However, as said before, the need of a repository could be extremely
limiting, especially in the scenarios of our interest. In fact, usually we do not know
in advance the kinds of objects the system will have to deal with; so it can be more
useful not to define a set of classes for the classification, but simply ask the system to
recognize possible similarities between the objects. This means that the system has
to decide if two objects (represented by two general sets of d-dimensional points) are
similar and it has to evaluate their degree of similarity, without any further "seman-
tic" consideration. In other words we want to compare two entities, that is to evaluate
whether two sets of general d-dimensional points are different or not, whether they
belong to the same category (even if we do not know exactly which is the category)
and how much distant they are. We want to know whether and how much they are
similar.

But what does ’similarity” mean? Similarity is a way to evaluate the distance be-
tween two entities with the aim of understanding whether the two entities are different
instances of the same class or whether they are completely distinct. To express math-
ematically this idea, we need a distance measure. It is simple to understand that the
two sets of points cannot be compared directly. First of all, as seen in the Procrustes
analysis (see section 4.3.6), some methodologies require that the two sets have the
same size. And, usually, this condition does not hold. But also when the same size
is not required, even if we normalize the points (and so we make them analytically
comparable), most of the information can be completely hidden and it is necessary to
extract it. Directly comparing two sets of points is the same as comparing two closed
boxes without knowing anything about their content.

We supposed the existence of an underlying hidden source for each dataset. Such
source can describe the data, being a compact abstraction of the set of samples. Ob-
viously now we have to consider two different sides: the possibility of obtaining a
complete description of the source with all the relevant characteristics, and the proof
that the source could be a synthetic description of the whole set. We need a very
flexible structure, which can be described in an implicit way using few parameters.
But it is still not enough: we also have to determine a method to compare the sources



6.5. SEARCHING A PDF 123

and to evaluate the distances between them. The measure obtained could be extended
to the two starting sets and considered as a distance between them. We made differ-
ent hypothesis about the underlying sources, but for the characteristics of the set of
values, probability density functions and more specifically mixture models, represent
the best solution.

6.5 Searching a pdf

The search of the underlying source (i.e. the underlying model) is then reduced to the
search of a probability density function. To estimate a pdf, starting from a given set
of samples, classically we can adopt two different approaches: parametric and non-
parametric. This latter relies exclusively on data without any additional hypothesis
about the structure of the function; the model will be very close to the set of points
under analysis and the evaluated pdf can give a great emphasis also to little variations
inside the set. The parametric approach, instead, depends on some a priori considera-
tions about the final shape of the function and about the characteristics of the process.

In our scenario we consider the set of points as a set of independent identically-
distributed values, taken from a continue random variable and we try to define a pdf
f(x), able to describe its distribution. Obviously the pdf allows us to know the statis-
tical characteristics (as mean and variance) of the set, but also it gives us information
about which areas of the space are dense and which are sparse and allow us to calcu-
late the probability that the variable will take on values in a certain interval. Thus the
pdf is very useful: it completely characterizes the behavior of the variable. Let’s give
a look to the classical approaches for pdf estimation.

6.5.1 Non-parametric approach

The non-parametric estimate is strictly connected to the data and tries to capture as
much information as possible about them. It tries to solve the estimation problem
without assuming that f(z) has some known functional form. This is obviously in
contrast with parametric estimation, where the density is assumed to come from a
given family, and the parameters are then estimated by various statistical methods.
Early contributors to the theory of non-parametric estimation include N. V. Smirnov
(265), M. Rosenblatt (242), E. Parzen (221), N. N. Chenston (58). Extensive de-
scriptions of various approaches to non-parametric estimation, along with a compre-
hensive bibliography, can be found in (264) and (209), while results of experimental
comparison of some widely used methods appear in (141) and (293). We address the
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interested reader to those works.

Histogram is a first common example of a non-parametric density estimation. The
construction of a histogram is fairly simple. We have a random sample X1, Xo, ..., X,
from some unknown continuous distribution. According to (129) we can define the
following steps:

e select an origin z( and divide the real line into bins of bin-width h:

Bj = [xo+ (j = Dh,zo + jh)],j € Z

e count how many observations fall into each bin. Denote the number of obser-
vations that fall into bin j by n;;

e for each bin divide the frequency count by the sample size n (to convert them
into relative frequencies, the sample analog of probabilities), and by the bin-
width A (to make sure that the area under the histogram is equal to one);

e plot the histogram by erecting a bar over each bin with height f; and width h.

More formally the histogram is given by:

fulz) = n—lh ZZI(Xi € Bj)I(z € B))

=1 7

where

I(XZGBJ):lﬁXZEB]

Figure 6.1 (taken from (27), pag. 121 fig. 2.24) mostra un esempio di uso degli
istogrammi per fittare una funzione al variare della dimensione del bin. Although the
use of histograms gives us a first non-parametric pdf estimation, ( fh(x)), (129) shows
how it is possible to make some improvements by using a kernel method estimation
(see figure 6.2). In fact the histogram retains some undesirable properties:

o the histogram assigns the same estimate f to all the xs set in a bin. This seems
to be overly restrictive;

e the histogram is not a continuous function, but it has gaps at the boundaries of
the bins. It is not differentiable at the gaps and has zero derivative elsewhere.
This leads to the ragged appearance of the histogram which is especially unde-
sirable if we want to estimate a smooth, continuous pdf.
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3

A =10.04

Figure 6.1: Histogram approach to density estimation with different dimension of the
bin (taken from (27), pag. 121 fig. 2.24).

We recall that we use histograms in our first attempt to estimate the number of
components for the mixtures (see chapter 4).

The research in the area of non-parametric estimation has grown exponentially.
Various methods have been proposed for non-parametric density estimation in math-
ematical statistics, such as the kernels (221; 21; 299) and the orthogonal series meth-
ods (167; 251). But we want also to recall the classical ones: penalized maximum
likelihood of Good and Gaskins (116), the near neighbour estimators of Loftsgaar-
den and Quesenbarry (181), the spline methods of Wahba (296) or the histogram type
estimator of Van Ryzin (289). The kernel method has been extensively studied, and
it is probably nowadays the most popular scheme in practical applications. In this
method the value of the density at the point x is estimated as

o) = o Sk (F5 )

%

where K (u) is a kernel function chosen from different alternative functions,
which works as a weight function returning in a point v a value which is the weighted
sum of the values of the neighbours of u. Kernel density estimation generalizes the
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histogram method, but also gives us a clearer idea of how non-parametric methods
work. We evaluate a specific kernel on each point of the set and we define the pdf in
that point as the result of the "weighted sum” of the points near x.
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Figure 6.2: The same set of data estimated with two nonparametric approaches: his-

tograms (on the right) and kernels (on the left).

In the orthogonal series method, instead, we have to choose a convenient orthog-
onal system of functions and write the pdf as the corresponding orthogonal series
expansion. In order to estimate f, we first have to cut the series keeping only a finite
number of terms, and then estimate the coefficients of this finite series. This method
was studied among others by Schwartz (251) using the system of Hermite functions,
by Kronmal and Tarter (167) using the trigonometric system of functions, and by
Cencov (207) using a general orthogonal system.

Non-parametric estimate is really close to the set of points and attempts to con-
sider the whole information contained in it. As a drawback, the function obtained
is simply a sum of kernels having as many terms as the number of points of the set.
We do not obtain a compact representation of data, and so this representation can not
help us to make a comparison between sets.

6.5.2 Parametric approach

A completely different way is given by the parametric approach: given a set of sam-
ples, to estimate the underlying pdf, we start making some a priori assumptions on
the characteristics of the underlying function. We suppose that the unknown pdf be-
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longs to a particular class of functions and we search only the best-fitting instance of
this class. In every class, each function can be associated to a limited set of param-
eters, which represents a complete description of the function itself: if we know the
values of the parameters we can evaluate the function in every point. The estimate of
the density g(z) is formed by substitution of the estimate of the parameters:

g(x) =g (z[0)

‘We use the notation:

90()

where 6 represents the unknown parameters (one if necessary) that govern the
distribution of X. This is called a parametric model for X.

As an example, if X is supposed to have a normal distribution with mean y and
variance o2, then 6 = (u, o) and

1

2o

o (e—p)?/o?

go(x) =

There are different methods to estimate the parameters. Most of them involve
minimization of residuals. To fit a parametric probability density function, the most
common ways are maximum likelihood, matching moments and matching quantiles.
We recall (111), which gives an interesting summary of these approaches:

Maximum Likelihood Methods The method of maximum likelihood involves the
use of a likelihood function that comes from the joint density for a random sample. If
g (x]0) is the underlying density, the joint density is just [[; p (x;|0). The likelihood
is a function of the parameter 6:

L(O;xy,...,2p) = Hp(ml|c9)

Note the reversal in roles of variables and parameters. The mode of the likeli-
hood (that is, the value of 6 for which L attains its maximum value) is the maximum
likelihood estimate of # for the given data, . The data, which are realizations of the
variables in the density function, are considered fixed as well, and the parameters are
considered as variables of the optimization problem in maximum likelihood methods.

Fitting by Matching Moments Since many of the interesting distributions are
uniquely determined by a few of their moments, another method of estimating the
density is just to estimate parameters of a given family , so that the population mo-
ments (or model moments) match the sample moments. In some distributions, the
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parameter estimates derived from matching moments are the same as the maximum
likelihood estimates. In general, we would expect the number of moments that can
be matched exactly to be the same as the number of parameters in the family of dis-
tributions being used.

Fitting by Matching Quantiles The moments of distributions with infinite range
may exhibit extreme variability. This is particularly true for higher-order moments.
For this reason it is sometimes better to fit distributions by matching population quan-
tiles with sample quantiles. In general, we would expect the number of quantiles that
can be matched to be exactly the same as the number of parameters in the family of
distributions being used. A quantile plot may be useful in assessing the goodness of
the fit. The idea seems to be completely different with respect to the non-parametric
approach: in this latter we “force” the function to fit the data, while here we ”force”
the data to fit a predetermined function. If this might seem limiting, on the other hand
we obtain a concise description of the whole set and we can represent a large set of
points using only a few parameters. Obviously the real disadvantage of this method
is that we have to decide in advance what kind of parameters the fitting function will
have. In fact the use of a parametric family for estimating an unknown density results
in good estimators only if the unknown density is a member of that family. If this is
not the case, the density estimator is not robust.

6.5.3 Mixture of Gaussians

It is clear that, for our purposes, it would be extremely powerful to describe the whole
set of samples using only a few parameters. But adopting a parametric approach, we
have the problem of deciding a priori the class of the function. Can the parametric
approach solve the problem? Can the estimated pdf completely describe our sam-
ples? Can the pdf capture in few parameters the interesting features of the set? No, it
cannot when we have to deal with so complex and unpredictable structures. In such
scenario, ML will give an unsatisfactory approximation. We recall that our sam-
ples can be potentially distributed in any way over the space and we could not have
any information about the underlying process. On the other hand, the use of a non-
parametric approach does not give us the possibility to capture the most important
information of the set and to discard the others. We want to combine the flexibility
of non-parametric methods and the efficiency in evaluation of parametric ones. This
result can be obtained by using a mixture of parametric pdfs. By using a mixture we
obtain the powerful and the flexibility of a non-parametric model, and we can easily
estimate the parameters of the single component either by some optimization tech-
nique, like gradient descent, or by Expectation-Maximization algorithm. Specifically
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we opted for a mixture of Gaussians (see section 3.3.3).

The mixture of Gaussians is probably the most studied and widespread model
in statistical literature. It seems to combine the advantages of parametric and non-
parametric approaches. It combines the simplicity of a Gaussian model and the pos-
sibility of describing a pdf using only a few parameters, with the capability to deal
with multi-modal distribution, which is usually (and obviously in our scenario) the
case of interest. The search of a mixture of Gaussians model can be seen also as a
sort of non-parametric technique, if we consider that, as Parzen has shown in (221),
with a sufficient number of components, any probability density can be approximated
to any degree by a Gaussian mixture.

Figure 6.3: An example of a 3-dimensional mixture of Gaussians with 5 components.

This solves the problem of choosing a priori the family to which the pdf has to
belong. However it is extremely important to note that choosing as approximating
function a mixture of Gaussian, does not mean knowing the parameters, but only the
class of parameters (namely 3M — 1 parameters where m has to be discovered) that
have to be estimated. Therefore this is far different from assuming a known distri-
bution, such as a binomial or Poisson or Gamma (or even Gaussian); the fact that
a Gaussian mixture refers to a set of Gaussian distributions has an implication only
with respect to the properties of the mixture, but the relation between each sample
class and its component has yet to be discovered.
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As stated in the same section, we can use the Expectation-Maximization algo-
rithm to estimate the parameters. The drawback is that we have to know in advance
(and to pass it as an input parameter to the algorithm) the number M of components.
In chapter 4, we proposed an interesting but not completely satisfactory method to
estimate M. Now we present an improvement and the connected results.

6.6 On the underlying model

First of all it is necessary to make some clarifications about the model underlying the
set of points. We are looking for a function which can “explain” our samples. The
pdf has to be seen simply as a descriptor of the collected points. Indeed we are look-
ing for a function which can characterize our data and extract from it some important
features, otherwise unknown. Than it could not have any meaning speaking about a
"real" model. The pdf obtained will be for sure an approximation of the dataset. We
try to “parameterize” (and thus “simplify”) the set and to represent it only through a
few parameters able to emphasize the main features and to discard the unimportant
and redundant ones. Starting from this point of view, we can look at some classical
density estimation problems in an another way. Let us go back again to our scenario:
we are looking for a mixture of Gaussians to describe our data. Instead of trying
to evaluate how well the chosen function can fit our data, it is of extreme interest
to wonder how much information the model can extract from the data, which kind
of information it is and, moreover, how this information can help us to compare the
original datasets.

Given a dataset of points in Jt"*, we want to estimate the parameters of the best-
fitting mixture of Gaussians . We have presented a powerful methodology to obtain
this result; but we recall that the EM requires, as input parameter, the number of
components M. This problem has been largely studied in the literature, but satis-
factory solutions are not known nowadays. Even If we already have introduced an
empiric approach, based on the HS histogram peaks, in the following sections, we
will present a novel methodology. It is very crucial however to highlight that it is not
only hard to solve this problem, but it is also very difficult to give an evaluation of
the performance of different approaches: that is, starting with a set of experimental
data, once estimated the supposed underlying mixture (with an hypothesis on M), we
will not have a reference function to compare with, nor a specific distance measure.
So we cannot obtain an evaluation of the obtained mixture (and consequently of the
estimated parameters).

We use the mean shift algorithm to estimate the number of modes of a dataset,
and we use this value as the input parameter of the EM algorithm. To cope with the
problems presented above, in our experiments we make this assumption: instead of
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Figure 6.4: A block diagram to summarize the main step of the mixture estimation

algorithm.

considering datasets taken from digital images, we start with a completely known
probability density function and we sample it to obtain the data; once estimated the
pdf (using the number of modes as input parameter of the EM), we can compare the
two pdfs (the first one, completely known and the second one estimated) and we can
obtain an evaluation of our choice on the number of components. Being the obtained
results encouraging, we then integrate the implicit analysis with this approach.

6.7 Our approach

According to the block diagram of figure 6.4, we start from a known Mixture of
Gaussians (say fx () with N components). We sample from it a set of points (say
Py, ). We use the mean shift algorithm to estimate the number of modes on Py, (say
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M). We use the EM algorithm to estimate the best fitting Mixture of Gaussians on
Py, : firstly by using M as input parameter, and then by using N (the real number of
components). We obtain two estimated pdfs (say fr and fg,). Finally we evaluate
how distant the two pdfs (fz and fg,) are from the starting function f, and so we
obtain an evaluation of the methodology used. In the following we will describe in a
more detailed way each single step.

Figure 6.5: Some mixtures of Gaussians randomly generated.



6.7. OUR APPROACH 133

6.7.1 Randomly generated mixtures

First of all we defined a set of mixtures. To obtain this result, we simply defined the
ranges of each parameter (4 and X)) and we randomly generated them. The parame-
ters are taken inside the following ranges: [—9, 9] for mean values (1) and [0, +8]
for covariance values (32). We worked with d-dimensional mixtures with a number
of components varying from 2 to 6. Due to visualization issue, without any loss of
generality, we will present only examples from experiments performed with 2D and
3D mixtures. However in one of the next sections we will show the complete results.
Figure 6.5 shows some examples of randomly generated 2D mixtures.

6.7.2 Sampling

Now we have to define a procedure to obtain a set of samples for each generated mix-
ture. There exist a lot of sampling techniques in literature. We needed to generate
wide sets of samples (20, 000 points for every pdf) so we need an efficient approach.
We perform a Montecarlo sampling. In figure 6.6 it is possible to observe a 3D mix-
ture with 5 components and the set of sampled points.

We recall that only sampling a known pdf we can have datasets directly connected
with the functions and we can consider the original mixtures as ’true” models of the
sets. Obviously this is the only way to know all the parameters of the underlying
model and also to understand how far will be the mixture estimated from the origi-
nal one: we are able to estimate the mixture only starting from the sampled points
and, once obtained, we can compare the results with the well-known starting mix-
tures. Now we have obtained our starting sets. Obviously this allows us to rely on a
powerful technique to evaluate the goodness of the estimation about the number of
components. However we still have the problem of defining a methodology to define
1t.

6.7.3 Modes

It is necessary to analyze some aspects about the nature of the model adopted. A mix-
ture of Gaussians is simply a weighted sum of functions. Given a set of points, we
will use the expectation-Maximization algorithm to estimate the best-fitting probabil-
ity density function. To use successfully the EM procedure, it is necessary to know in
advance the number of components of the mixture. We tried to solve this problem by
using the peaks of the HS histogram; now we will use the number of the modes. The
use of the number of modes arises from a simple idea: it is reasonable to hypothesize
that each single Gaussian would be set at the center of the densest areas and that we
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-20

Figure 6.6: A sampling of a 5 components 3D mixture of Gaussians.

have one (and only one) component for each of them. Since that a mode is defined
as the value that occurs most frequently in a data set or a probability distribution, it
lies exactly in the center of those areas. The number of modes can thus represent
a bound for the number of components or, in specific case, they can even coincide.
Unfortunately there exist scenarios in which these two numbers have no correlation.
In (50) the authors presented the following conjecture:

Conjecture 1

Let p (z) , be a mixture of M d-variate normal distributions, then p (x) has M modes
at most, all of which in the convex hull of { ,um}i\n/[:l, if one of the following condi-
tions holds:

1. d = 1 (one-dimensional mixture);

2. d > 1 and the covariance matrices are arbitrary but equal: >, =X =1... M
(homoscedastic mixture);

3. d > 1 and the covariance matrices are isotropic: ¥, = 02,1, (isotropic mix-
ture).

As the authors showed in (51) those conditions are necessary and several parts of
the conjecture hold. Specifically they demonstrated that all modes lie in the convex
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hull and that for d = 1, M is upper bounded by the number of modes (for the proof
of these assertions we address the interested reader to (51)); as a corollary of this lat-
ter theorem, the authors also showed that any 1D projection (marginal or conditional
distribution) of any Gaussian mixture in d dimensions with M components, has, at
most, M modes.

Obviously we can not make any specific assumption about the structure of our
mixtures. On the contrary we recall that the choice of this model (mixture of Gaus-
sian) has derived from the Parzen’s assumption that such function can approximate
every other pdf and from our complete lack of information about the underlying
dataset. And, for sure, we know that there exist scenarios in which there is no cor-
relation between the two values. We will show an image (see figure 6.7) taken from
(51) in which there is a mixture with 6 components having different, non-isotropic
covariances; this mixture has 9 modes (marked with "A"): 6 of them are coincident
with the means p,,, (marked with "+") and the other ones are in the overlapping areas
of the components. It is interesting to note that some modes are outside the convex
hull of the centroids (marked by the thick black line). So the number of modes ex-
ceeds the number of components.

At the same time we can define a scenario where the number of modes is less
than M. Consider figure 6.8. There is a 3D Gaussian mixture with 3 components.
The figure consists of 3 couples of graphs, where at the top a 3D graph of the mixture
is represented, while at the bottom the corresponding profiles projected on the zy
plane is shown. In the bottom the means of the components (yellow dots) and the
modes of the functions (red stars) are also highlighted. The 3 couples of images refer
to mixtures with the same values of the priors, of the covariances and of 2 of the 3
means. We only perturb the mean of the second component to reduce the Euclidean
distance between it and the mean of the first component (from left to right). When
the 2 component are close enough, despite there are 3 components, we observe only
2 modes.

Thus, as we have shown, there is no analytic correlation between these two val-
ues. In the following we will experimentally demonstrate that, even if the number of
modes does not represent the "correct" answer, the approximation obtained by using
it, leads to a small error. This methodology seems interesting also because there ex-
ists an efficient algorithm to estimate the modes of a dataset: the Mean Shift. We will
explain it in the next section.

6.7.4 Mean Shift

The mean shift algorithm has been firstly proposed as a method for cluster analysis
(see (106), (264), (57)). A great improvement occurred when it started to be used as a
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Figure 6.7: Image taken from (51) (fig. 1, pag. 3): an example of mixture of Gaus-
sians where the number of modes (9 - marked by "A") exceeds the number of com-

ponents (6 - marked by "+").

gradient ascent. The Mean Shift was introduced by Fukunaga (who is also one of the
authors of the peak-climbing algorithm used in chapter 4, (162)) and Hostetler (106).
It is in fact a simple nonparametric iterative procedure that shifts each data point to
the average of data points in its neighborhood for seeking the mode of a density func-
tion represented by a set S of samples. The procedure uses kernels, as decreasing
functions of the distance from a given point ¢ to a point s in .S. For every point ¢ in a
given set T, the sample means of all points in .S, weighted by a kernel at ¢, are com-
puted to form a new version of T". This computation is repeated until convergence.
The resulting set T" contains estimates of the modes of the density underlying set .S.
Obviously it is very interesting because gives us a powerful iterative procedure that,
given a dataset, returns the modes of the underlying pdf, and so we can use this infor-
mation to estimate the number of component of the mixture of Gaussians. Cheng in
(56) revisited mean shift, developing a more general formulation and demonstrating
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Figure 6.8: A 3D 3-components mixture of Gaussians. In the panels (from left to
right) the mean of one of the components changes getting closer to the mean of an-
other component. Upper panels represent the 3d view of the mixtures; lower panels
represent the profiles (projected on the (x,y) axis) of the corresponding mixtures

with modes (red stars) and means (yellow dots) highlighted.

its potential uses in clustering and global optimization.

Consider a simple flat kernel k (z):

NERIES
K(x)—{ 0 otherwise

The sample mean at z € X is

2ses K (s—x)s
ZSES K (S - x)

The difference m (x) —x is called mean shift in (106). The repeated movement of
data points to the sample means is called the mean shift algorithm (see (106), (264)).
In each iteration of the algorithm, s <— m (s) is performed for all s € .S simultane-
ously. Cheng in (56) defines the algorithm as in the following:

m(z) =

Definition 16: Mean Shift procedure
Let S C X be a finite set (the "data" or "sample"). Let K be a kernel and w : S —
(0, 00) a weight function. The sample mean with kernel K at x € X is defined as

ses K(s—x)w(s)s
Yses K (s —x)w(s)

m () =
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Let I' C X be a finite set (the "cluster centers"). The evolution of 7" in the form
of iterations T' «— m (T') with m (T') = {m (t);t € T} is called a mean shift al-
gorithm. For each t € T, there is a sequence ¢, m (t), m (m (t)),..., that is called
the trajectory of ¢. The weight w (s) can be either fixed throughout the process or
re-evaluated after each iteration. It may also be a function of the current 7". The
algorithm halts when it reaches a fixed point (m (T) = T).

Even if in the original formulation the mean shift procedure was strictly con-
nected to the idea of kernels, Fashing and Tomasi in (92) defined mean shift in terms
of a profile. We recall some definitions from their paper:

Definition 17: Profile
A profile k is a piecewise continuous, monotonically non-increasing function from a
non-negative real to a non-negative real, such that the definite integral fénf k(r)dr <
00.

Definition 18: Kernel
A kernel K is a function from a vector x in the n-dimensional real Euclidean space,

X, to a nonnegative real, such that K (z) = k <Hx||2) for some profile k.

Definition 19: Mean Shift profile procedure
Let X be an n-dimensional real Euclidean space and S a set of sample vectors in X .
Let w be a weight function from a vector in X to a non-negative real. Let the sample
mean m with profile k£ at x € X be defined such that

Seesk (s =) w(s)s
Seesk (lls = ) w(s)

Let M (T) = {m(t):t € T}. One iteration of mean shift is given by 7' «
M (T'). The full mean shift procedure iterates until it finds a fixed point 7' = M (T').

m(z) =

Cheng also introduced the concept of shadow kernel:

Definition 20: Shadow Kernel
Kernel H is said to be a shadow of kernel K, if the mean shift using K,

ses K (s —x)w(s)s
2ses K (s —x)w(s)

Is in the gradient direction at = of the density estimate using H,

m(z) —x =

q(z) = H(s—z)w(s)

sES



6.7. OUR APPROACH 139

And he also demonstrated that kernel H is a shadow of kernel K if and only if
their profiles, h and k, satisfy

h(r):f(r)—kc/rook(t)dt,

where ¢ > 0 is a constant and f is a piecewise constant function. It is possible to
choose several kernels for the algorithm. According to (64), we use the Epanechnikov
kernel:

st (d+2) (1 - ngy) JifaTe <1
0 otherwise

KE(l'):{

where ¢, is the volume of the unit d-dimensional sphere. It is very important to
note that K r is the shadow of the flat kernel. Comaniciu and Meer demonstrated that
if fo = {fr (Y, KE)}y—1 . is the sequence of density estimates obtained using
K g and computed in the points defined by the successive locations of the mean shift
algorithm with uniform kernel, then the convergence of the sequence is guaranteed.
Mean shift procedure has met great popularity in the computer vision community.
Applications range from image segmentation and discontinuity-preserving smooth-
ing (64), (65) to higher level tasks like appearance-based clustering (238), (239) and
blob tracking (63).

We have a set of points sampled from a completely known mixture of Gaussians.
Starting from this set, we will use Mean Shift algorithm to estimate the number of
modes of the underlying pdf. In our experiments we tried different kernels (flat,
biweight, Epanechnicov and Gaussian); the results presented are obtained with the
Epanechnikov kernel. In the use of mean shift it is necessary to tune two parame-
ters: the sixe of the window over which to calculate the mean in each single step
(we define hyper-cubic areas con edge 2h, so the volume in d dimensions is: (2h)d)
and the threshold value which bound the kernel (say A). In literature there is not
an exhaustive analysis of these values, so we perform some experiments to define A
and h. We generated 1,000 random mixtures and we perform mean shift analysis
with 7 different values of A and h: {1,1.5,2,2.5,3,3.5,4,4.5}. We than consider
the assignments which leads to a number of modes which is equal or different for 1
from the real number of components. As you can see in figure 6.9, the best results
are obtained with A = 1.5 and h = 3.5.

In figure 6.10 instead we show an example of the complete procedure. In this
case we have a 3D mixture with 3 components. The image represents a 2D projec-
tion of the mixture (with the profiles of the components). The red points represent
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Figure 6.9: On the x and y axis are represented, respectively, the different values of
A and h. For ach couple of values, the histograms indicate how many occurrences of
the couple has returned an estimated modes number equal to the components number
(upper left), how many occurrences of the couple has returned an estimated modes
number differ for ! unit from the components number (upper right) and the sum of

the two previous values (lower).

the sampling of the mixture. The green stars represent the starting points and the
green points represent the trajectories of the mean shift algorithm. The yellow stars
represent the estimated modes. As you can see, there are some modes very close to
each other in the densest areas; at the same time there are some modes also in areas
with very few points. To obtain a more meaningful result, we perform a successive
thresholding step which discards some hypothetical but not interesting modes.

6.7.5 Distance measure

Once the number of modes is to hand, it is possible to initialize the EM for the es-
timation of the other parameters of the mixture. As we said before, to evaluate the
quality of our choice, we need a meaningful procedure able to calculate the distance
between two pdfs. In this section we will derive our distance measure, which will be
used both to estimate the distance between the starting pdf and the estimated one, but
also, in the general procedure, to evaluate the similarity between 2 implicit models.
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Figure 6.10: An example of mean shift algorithm: the red points represent the sam-
pling of the mixture (superimposed), the green stars the starting point of the algo-
rithm, the green points the trajectories’ steps of the algorithm and the yellow stars the

estimated modes (before thresholding).

In the literature many different distance measures have been introduced. Now we
present a brief list of their most interesting properties:

e nonnegativity:
d(p,q) >0

o reflexivity:
d(p,p) =

e isolation:
d(p,qg) =0=p=q

e symmetry:
d(p,q) = d(q,p)
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triangle inequality:
d(p,q) +d(q,r) > d(p,7)

relaxed triangle inequality:

d(p,q) +d(q,r) > cd(p,r)

c<1
e finiteness:
d(p,q) < oo
e boundness:
d(p,q) <c
ceR
e semiboundness:

d(p.q) > d(p,p)

But what do we exactly expect from a distance measure? Above all we want it
to be able to determine the similarity between the two analyzed elements. Similarity
is an extremely important and always widely used concept; but, at the same time, it
is also complex to formalize. In the last decades many different definitions of simi-
larity have been proposed, and most of all were exactly tied for a particular scenario.
Lin in (176) suggests a definition of similarity which tries to achieve two extremely
important goals: universality and theoretical justification. He made the following 6
assumptions, that we consider a good starting point:

Assumption 1 The commonality between A and B is measured by
I (common (A, B))

where common (A, B) is a proposition that states the commonalities between
A and B and I (s) is the amount of information contained in a proposition s.

Assumption 2 The differences between A and B is measured by
I (description (A, B)) — I (common (A, B))
where description (A, B) is a proposition that describes what A and B are.

Assumption 3 The similarity between A and B, sim (A, B) is a function of their
commonalities and differences. That is

sim (A, B) = f (I (common (A, B)), I (description (A, B)))

the domain of f is {(z,y) |z > 0,y > 0,y > x}
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Assumption 4 The similarity between a pair of identical objects is 1:

Ve >0, f(z,z)=1

Assumption 5 Where there is no commonalities between A and B, their similarity
is O:
Vy>0,f(0,y) =0

Assumption 6 The overall similarity of two objects is a weighted average of their
similarities computed from different perspectives. The weights are the amounts
of information in the description:

Vo >y, 20 >yt f (w1 + 20,91 +y2) =

Y1
= [z, ) + [ (x2,92
Y1+ Y2 ( ) Y1+ Y2 ( )

Very interesting observations (strictly connected to the scenario of our interest)
can also be taken from the famous article by Ali and Silvey ((4)); they present a gen-
eral class of coefficients to estimate the divergence of one distribution from another.
They introduce four properties that seem reasonable to demand of a real coefficient
d (P1, P») whether “this coefficient is to reflect the facts that some distributions may
be closer together than others and that it may be more difficult to distinguish between
the distributions of one pair than between those of another”. We list them in the
following:

First property The coefficient d (P, P») should be defined for all pairs of measures
P, and P» on the same sample space.

Second property Suppose thaty = ¢ (z) is a measurable transformation from (H, F’)
onto a measure space (Y, G). Then we should have

d(Py, P) > d (Plt_l,Pgt_l)

Here P;t~! denotes the induced measure on Y corresponding to P;.

Third property d (P;, P;) should take its minimum value when P; = P» and its
maximum value when P is orthogonal to Ps.

Fourth property Let 6 be a real parameter and let { Py = {0 € (a,b)}} be a family
of equivalent (mutually absolutely continuous) distributions on the real line
such that of the family of densities py () with respect to a fixed measure p has
monotone likelihood ratio in x. Then if ¢ < 61 < 0y < 03 < b, we should
have

d(PGUP@z) < d(P91’P93)
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6.7.6 Our distance measure: Normalized Mutual Energy

According to the previous definitions to calculate the distance between two mixtures
of Gaussians, we use the Normalized Mutual Energy (see section 4.4.4). Different
observations lead us to this specific choice. Consider two d-dimensional functions:

fiRt SR

g: R R

From a theoretical point of view, it is worth noting that Normalized Mutual En-
ergy returns a value which represents the d-dimensional hyper-volume on which f
and g overlap. So it gives us an idea of how distant the two functions are. In figure
6.11 you can see 2 randomly generated 2D mixtures with 3 components and the cor-
responding Normalized Mutual Energy (below).

— — comp.1: mu:-3.2922, var:3.61, prior:0.54028

comp.2: mu:8.104, var:3.0525, prior-0.12697
— — comp.3: mu:-6.38, var:6.1241, prior:0.33276
— 4 mixture A

— — comp.1: mu:8.2709. var6.793, prior:0.40026

comp.2: mu:2.8033, var.7.4719, prior-0.39255
— — comp.3: mu:-8.3572, var:5.4299, prior0.20719
4: mixture B

/
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Figure 6.11: Two 2D mixtures with 3 components (top right and left) and the corre-

sponding mutual energy (bottom, in green).

As we stated previously, this measure is very interesting also from a computa-
tional point of view. In fact, by using the method presented by Lyu in (183), it is
possible to calculate this distance in a closed form. Specifically having two functions
p with N7 components and p’ with N5 components, the Normalized Mutual Energy
(M) has the following form:
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Kgr (p,p')
My (p,p') =
(b, Kgr (p,p) Ker (v, 1)
where Ky is the Expected Likelihood Kernel, which we recall can be defined in
a closed form as:

Kgp (pvp/) = (QW)_% aTI‘ﬁ

For the description of «, 5 and I' we address the reader to section 4.4.4. Let’s
give a look to the properties which hold for M:

e non-negativity: My (p,q) >0

o reflexivity: My (p,p) =0

isolation: My (p,q) =0=p=g¢q

symmetry: My (p,q) = My (¢, p)
e finiteness: My (p,q) < inf

e boundness: My (p,q) <c,ce R

Moreover it is interesting to highlight that the Mutual Energy is also an upper
bound for the Kullback-Leibler distance. In Appendix A we present some interesting
relationships between the most used pdfs distance measures.

6.7.7 Experimental Results

We recall the block-diagram of figure 6.4. Firstly a random mixture of Gaussians is
generated. The mixture is sampled and the samples obtained are used as starting set.
The samples became the input of a mean shift algorithm, which is used to determine
the number of the modes of the pdf underlying the samples. This value (M in the
block diagram) is used as input parameter of the Expectation-Maximization. Also
the real number of components (/V in the diagram) is passed as input parameter to
the EM. It is important to note that we know the real number of components only
because we start from a specific underlying mixture. Obviously, in real scenarios, we
do not know anything about N. The EM therefore returns two different estimated
mixtures (respectively mixtys and mizty).

We use the Normalized Mutual Energy to compare the distances between these
two mixtures and the original one: specifically we indicate with dy the distance
between the original mixture and the one estimated by using /N and with d,; the
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Figure 6.12: Experiments with 1d mixtures: mixty is closer to the original mixture
than mixtys. The original mixture (in black, bottom left), mixty (in blue, top left),
maxt)s (inred, top right), a graph containing the original mixture and mixt s plotted

together (in black and red respectively, bottom right).

distance between the original mixture and the one estimated by using M. These
distances are in the range [0, 1], where 1 represents a perfect matching, while 0 rep-
resents two mixtures without any overlapping areas. We use the difference between
dy and djs (indicated with dR) to evaluate the quality of the approximation obtained
with the mean shift with respect to the mixture estimated by using the real number of
components. djs also returns an evaluation about the absolute quality of the mixtures
obtained. In the following we present our experimental results. We worked with mix-
tures with different dimensions. We generated over 10, 000 for each scenario.

1D mixtures

The results obtained working with 1D mixtures must be considered a special case:
it is known that for one-dimensional mixtures the number of modes never exceeds
the number of components (see (51)). We generated 11, 768 random mixtures. In
7.25% of the cases, the number of modes estimated by the mean shift is equal to the
real number of components, so the two estimated mixtures are equivalent and the dp
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is equal to 0. In 82.25% of cases mixty; has a greater distance from the original
mixture than mizt . But the error is negligible:

e in 50.75% of cases, |dy — dps| < 0.01;
e in 21.50% of cases, 0.01 < |dy — dps| < 0.05;
e in 5.25% of cases, 0.05 < |dy — dpr| < 0.1;

e in4.75% of cases, 0.1 < |dny — dpr] < 15
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Figure 6.13: Two examples where the distance between miztys and mixty is close
to the mean value (0.0232). In the top graphs (A1-A4) dr = 0.0238, in the bottom
graphs (B1-B4) dp = 0.0226.

It is extremely important to note that the maximum distance between mizt
and miztys is equal to 0.3755; figure 6.12 shows this case: as in the other figures,
the original mixture is represented in black (in the lower left graph), mixt in blue
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(in the upper left graph) and miztys in red (in the upper right graph). The lower
right graph represents the original mixture and mixts plotted together. In this case
dy = 6.007e¢~° while dp; = 0.3755.
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Figure 6.14: Experiments with 1d mixtures: mixt ;s is closer to the original mixture
than mixty. The original mixture (in black, lower left), mixty (in blue, upper left),
maxtys (in red, upper right), a graph containing the original mixture and mixty,

plotted together (in black and red respectively, lower right).

Considering all the mixtures generated, the mean value of dp is equal to 0.0232
(in figure 6.13, we can see two cases with dr equal to 0.0238 and 0.0226). Surpris-
ingly in 10.5% of cases the approximation obtained by using M works better than
maxtyy. Figure 6.14 shows an example. As we can see, there is a remarkable differ-
ence between the two different approximations and mixtjs overlaps almost perfectly
the original mixture.

We have experimentally showed that the when we use the number of modes as
an estimation of the number of components the mixture obtained has a distance from
the original one comparable with the distance between this latter and the mixture
obtained knowing the real number of components. Now we want to show how far
maixtys 1s from the original one. In our experiments the maximum value of this
distance is 0.3755 (see figure 6.14) with a mean value of 0.0202 and a minimum of
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Figure 6.15: Experiments with 1d mixtures: the original mixture is represented in
black, the estimated one with a dashed red line and, in green, the overlapping area.
Two scenarios: a mean value for dj; = 0.202 (on the left) and the minimum value
for dj; = 4.0241e7° (on the right).

4.0241e7 (see figure 6.15).

2D mixtures

The results obtained working with 2D confirm the trends of the previous ones. We
generated 12, 324 random mixtures. In 14.0% of the cases, the number of modes
estimated by the mean shift is equal to the real number of components, so the two
estimated mixtures are equivalent and the dr, is equal to 0. In 62.5% of cases mixt s
has a greater distance from the original mixture than mixty. But the error is negli-
gible:

e in 41.75% of cases, |dy — das| < 0.01;
e in 13.00% of cases, 0.01 < |dy — dps| < 0.05;
e in 4.25% of cases, 0.05 < |dny — dps] < 0.1;

e in 3.50% of cases, 0.1 < |dy — dp| < 1;

It is extremely important to note that the maximum distance between mixty and
maxtys is equal to 0.4684; figure 6.16 shows this case: as in the other figures, the
original mixture is represented in green (on the left), mixty in blue (in the center)
and mixtys in red (on the right). In the lower part are drawn the corresponding pro-
files projected on the xy-plane.

Considering all the mixtures generated, the mean value of dp is equal to 0.0215;
in figure 6.17 and 6.18, we can see two cases with dr equal to 0.0217 and 0.0210).
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Figure 6.16: Experiments with 2d mixtures: mixty is closer to the original mixture
than mixtys. The original mixture (in green, left), mizt (in blue, center), miztys

(in red, right).

Figure 6.17: Experiments with 2d mixtures: an example where the distance between
mazt)r and mixty is close to the mean value (0.0215): dp = 0.0217. The original

mixture (in green, left), mixty (in blue, center), mizt,s (in red, right).

There exist cases in which the approximation obtained by using M works better than
mazty. Figure 6.19 shows an example. As we can see, as in the 1D scenario, there is
a remarkable difference between the two different approximations and mixt,s over-
laps almost perfectly the original mixture.
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Figure 6.18: Experiments with 2d mixtures: another example where the distance
between mixty; and mizty is close to the mean value (0.0215): dg = 0.0210. The

original mixture (in green, left), mixty (in blue, center), mixt s (in red, right).

Higher dimensional mixtures

When we work with datasets with 3 or more dimensions, it is impossible to graph-
ically represent the corresponding mixtures. We present in the following the result
obtained. We generate 25, 342 mixtures with 3, 4 and 5 dimensions.

Figure 6.19: Experiments with 2d mixtures: msxtjs is closer to the original mixture
than mizty. The original mixture (in green, left), mixty (in blue, center), mizt s

(in red, right).

e 5% of cases dy = dj;
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e (7.25% of cases dy < djps and specifically:

in 54.23% of cases, |dy — ds| < 0.01;

in 11.02% of cases, 0.01 < |dn — dps| < 0.05;
in 1.21% of cases, 0.05 < |dny — dps| < 0.1;
in 0.79% of cases, 0.1 < |dny — dpr| < 1;

In chapter 7, we will show how this approach can improve the performance of the
Implicit Analysis.



Chapter 7

Final experiments

7.1 Introduction

Our aim is to define a similarity measure between unknown objects. To obtain this
goal we perform two analysis based on different features: explicit analysis (based
on shape) and implicit analysis (based on color). For the explicit analysis, we use
the Procrustes distance between sets of critical points taken from the boundaries; for
the implicit one, we determine the Normalized Mutual Energy between mixture of
Gaussians estimated by the Expectation Maximization, using the number of peaks
of the HS histogram as an estimation of the number of components. These two dis-
tance values are then merged by Fisher Linear Discriminant analysis. Subsequently
we try to improve the results obtained in the two analysis. Specifically a similarity
measure based on Fréchet and topological distances has been used to compare shapes
instead of Procrustes, and the number of components of the mixture (for the EM) has
been estimated by a Mean Shift procedure (that is by using the estimated number of
modes of the datasets). In this chapter we present experimental results which show
how these two new approaches can improve the performance of the procedure.

7.2 Explicit analysis: topological-Fréchet distance

We have already shown that even Procrustes generally returns encouraging results
on similar shapes, but when it has to deal with images containing the same object
in different poses, the performance becomes worst. The new measure (that we call
topological-Fréchet distance) seems to partly solve this problem. For our experiments
we have used logical images containing single objects belonging to a database of 35
categories of shapes. For each category, the objects are presented in different poses,

153
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Figure 7.1: Logical images representing four animals in different poses

for a total of 3,600 shapes. In figure 7.1 some examples of shapes used in our tests
are reported.
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Figure 7.2: A graph representing the accuracy of Topological-Fréchet similarity mea-

sure with respect to
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We have divided our dataset in a training set (T'S) of 72 elements (2 per category)
and a validation set (VS). We have first extracted the contour of TS shapes, topolog-
ically ordering their points, and then found critical points with the method described
in section 4.3.5. For this set we have empirically computed the three thresholds ¢,
tT and 7, in order to guarantee a classification accuracy greater than 70%. Then we
have used the thresholds found for classifying the similarity between VS shapes. We
have repeated the experiment 9 times using different values of 5 (see section 5.4).
The results obtained are listed in figure 7.2. Varying /3 from 0 to 1, we have analyzed
the influence of the topological and Fréchet distance on the accuracy in finding the
similarity between objects of the same class. As we can see (and as it was supposed),
a slightly higher relevance of the topological component gives the best results.

PROCRUSTES  TOP/FRE PROCRUSTES ~ TOP/FRE

0,56092 0,48652 0,69802 0,56988

0,29373 0,25470 0,59221 0,45133
0,38379 0,37541

0,48881 0,50078

0,68136 0,49614 0,63685 0,49996

13327

0,51320 0,53499 0,53475 0,45136

Figure 7.3: A comparison between the values with the Procrustes and the Fréchet

distance among the elephant family

Now we show the results obtained with this similarity measure, compared with
the results obtained with Procrustes. In the analysis of poses, topological-Fréchet
distance presents better performance. Figure 7.3 shows some experiments: in the
first column of the table the values obtained with Procrustes are listed, while in the
second column are the values obtained with topological-Fréchet. We recall that we
previously set the similarity threshold such that two instances can be considered sim-
ilar if their distance is below m = 0.52. As we can observe, on average the values
of Procrustes are greater than the values of Fréchet, with only two exceptions: cou-
ples 5 and 8. Note that the new values are able to return a correct classification also
in the cases where Procrustes was unable (see couples 1, 4, 5, 6, 7 and 8), and that
topological-Fréchet distance returns values above the threshold, whenever Procrustes
does. Thus, also maintaining the value of the threshold (7 = 0.52), the performance
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Figure 7.4: Color images representing four subjects

increases.

The selection of results presented in figure 7.3 is representative of the entire panel
of our experiments.

7.3 Implicit analysis: number of modes for number of com-

ponents

In the implicit analysis, the new methodology will return better results with respect
to the previous one in all cases considered. This fact has not to be surprising: in fact,
Mean Shift is able to identify more accurate results than a peak-climbing algorithm.
Moreover, in the previous experiments we consider only two color channels (H and
S), without any analysis on the third. Instead the new approach considers complete
RGB tuples, and the mode analysis and best-fitting mixture estimation are both per-
formed on the entire color space. For our experiments we have used RGB images
containing objects belonging to a database of 24 categories. Obviously we focused
our attention on classes where the color is a discriminative feature. We work with
2,400 objects. In figure 7.4 some examples of images used in our tests are reported.

Now we present some examples showing how the results obtained with the new
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peaks number
modes number

Figure 7.5: A comparison between the values obtained by comparing mixtures of
Gaussians by using the number of peaks of the HS histogram (in light blue) and the
number of modes of the RGB space (in light red) as an estimation of the number of

components

approach differ from the results obtained previously. Figure 7.5 shows a selection of
our experiments with the same images already analyzed in section 4.4.5. As we can
see, the values of the new distance (on the lower rows, in light red) are all higher with
respect to the previous ones (on the upper rows, in light blue). Note that, maintain-
ing the value of the threshold (A = 0.56), we can obtain correct answers also on the
couples previously misclassified.

The results presented in figure 7.3 are representative of the entire panel of our
experiments: when two elements have similar chromatic characteristics, the new dis-
tances are better on average by 18% compared to previous values. Whenever the
objects present different color characteristics, the new distance returns values very
similar to the previous ones (which, however, were already able to discriminate suc-
cessfully).

7.4 Merging the distances

As with the previous distances, we use Fisher Discriminant Analysis to merge the re-
sults. Figure 7.6 shows the discrimination boundary; as we can see, as a consequence
of the improvement of the two distances, the number of false positives decreases. A
better improvement can be observed in the implicit analysis with respect to the ex-
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Implicit distance

Figure 7.6: On the x-axes the explicit distance (Normalized Mutual Energy), on the
y-axes the implicit distance (topological-Fréchet distance). The blue circles represent
the elements belonging to the similarity class, while the red crosses represent the ones
belonging to non-similarity. Two elements are considered similar if the points repre-
senting their two distances fall in the blue area, obtained by using Fisher discriminant

analysis

plicit one. So the decision region is closer to the area which represents the implicit
similarity than to the other.

7.5 A synthesis of the whole process

In this section we present a specific example to summarize the process. Starting from
an image downloaded from the Internet representing an acoustic guitar, we perform
the analysis to obtain the implicit and the explicit models. Subsequently, we compare
the image with 24 pictures downloaded from the Internet or taken from our databases,
20 of which are chosen randomly, while the remaining 4 contain the same subject of
the original 2 in different colors.
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Figure 7.8: A BW version of figure 7.7.

7.5.1 Extracting the implicit and the explicit models

Figure 7.7 shows the image selected for our analysis. It is a 600 x 449 JPEG color
picture representing an acoustic guitar. As figure 7.8 shows, first of all, we convert
the image in BW by performing a local thresholding (see section 3.3.2).

Then the starting clusters, obtained grouping together adjacent pixels having the
same value, are defined (see section 3.3.2). Figure 7.9 shows the result of this step.

By combining chromatic and positional analysis, we obtain a probability map
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Figure 7.9: The starting clusters obtained from figure 7.8.

Figure 7.10: The probability map obtained from cluster 1 in figure 7.9.

which assigns a value to each pixel in the image (see sections 3.3.3 and 3.3.4). Fig-
ure 7.10 shows the result of these steps.

Subsequently we define a graph over the pixels of the image and we determine
the weights of the edges starting from the values of the probability map previously
obtained. We calculate the s — ¢ cut of the graph and we obtain the final cluster (see
section 3.3.5). Figure 7.11 shows the result: as we can see, the segmentation algo-
rithm individuate only a part of the whole object.

To determine the explicit model, we resize the image to a dimension of 60 x 60
pixels, we extract the edge (section 4.3.3) and we calculate the critical points (section
4.3.5). Than we define the polygonal version and we calculate the shape patterns
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Figure 7.11: The final cluster obtained by the s — ¢ cut over the graph initialized with

the probability values of figure 7.10.
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Figure 7.12: The polygonal version of figure 7.11 with critical points highlighted.

(sections 5.2.1 and 5.2.2) of the original image (as shown in figure 7.12).

To obtain the explicit model, we consider the RGB tuples of figure 7.11, we
determine the number of modes by the Mean Shift (section 6.7.4) and we evaluate the
best-fitting mixture by the EM. The mixture so obtained has the following parameters
(note that the RGB values are in the range [—15,+15]) :

e number of components: 3;
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e priors: m; = 0.6374, T = 0.2076, 73 = 0.1549;
® Imeans:
p1 = [12.38,4.96, —7.26]" , g = [8.34,2.34, —6.58]" |
s = [10.63,6.31, —1.61]"

e covariances:

0.73 0.72 0.31 1.80 0.88 —0.19
1=1072 087 050 |,X2=1| 088 059 035 |,
0.31 0.50 1.60 -0.19 035 1.75

11.62 7.32 —-0.20
3 = 732 8.09 7.99
—-0.20 7.99 2254

7.5.2 Similarity measure

Figure 7.13 shows the comparison values between the original images and the oth-
ers. The first row shows the values of the explicit analysis, the second row the values
of the implicit, and in the lower row there is the classification obtained merging the
previous values.

As we can observe, even if the segmentation step did not extract the whole object,
we obtain a good matching with the 4 pictures representing the same object. It is not
surprising that one of the two instances of the same object with different colors has
been misclassified. In fact the final decision is taken considering both distances and,
although the value of the implicit distance is below the threshold, the classification
fails. At the same time, the value of the explicit distance between the guitar and the
flower is acceptable, but the classification fails due to the implicit analysis.
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different different different different different different different different
objects objects objects objects objects objects objects objects

different different different different different same same same
objects objects objects objects objects object object object

Figure 7.13: The results obtained comparing the original image with 24 images taken
from the Internet. The first row contains values of the explicit analysis (7 = 0.52),
the second row values of the implicit analysis (A = 0.56), and the third row contains

the classification obtained merging the two previous values.
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Chapter 8

Conclusions and Future Works

8.1 Introduction

The development of a general bottom-up object recognition and classification system
is very complex. In the last three decades plethora of different methodologies have
been defined. An efficient and effective solution is very far from being reached. In
the present work we analyzed some of the most common problems in this specific
field. The main objective was to define a similarity measure between two unknown
objects extracted from a digital image.

8.2 Summary of the work

8.2.1 A bottom-up approach for image segmentation

First we defined a procedure to extract the interesting objects from a scene in a purely
bottom-up approach. To obtain this result we combined light, color and positional
analysis with statistical methodologies to locate the meaningful areas. First we con-
verted an RGB image, by using a local thresholding, in its BW version; then we
grouped together adjacent pixels having the same values (obtaining the starting clus-
ters). This coarse grouping also generated meaningless blocks. For each single clus-
ter, we analyzed the connectivity and discard the ones that seemed not promising;
then, considering the set of RGB tuples of the block, we estimated the number of
modes by the Mean Shift and we used this value as an estimation of the number of
components to obtain, by Expectation Maximization, the best-fitting mixture, able
to describe the chromatic characteristics of the cluster. Once this pdf is to hand, we
assigned to each pixel of the starting image a chromatic probability. These proba-
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bilities were subsequently refined by using information about the relative position of
the pixels in the image. To obtain the final segmentation, we first defined a weighted
graph having a node for each pixel of the image, where the weights of the edges are
initialized by using the values of the probability map. Then we perform an s — ¢ cut
and we isolated a possible object.

8.2.2 A similarity analysis based on shape and color

To evaluate the similarity between two (possible unknown) objects, we combined
shape and chromatic analysis. The explicit model brings information about the shape,
instead the implicit model about color. In the explicit analysis we extracted the
boundary from the object and we determined on it some reference points (called
"critical points"). On the other hand, in the implicit analysis, we represented the ob-
ject by the set of RGB tuples of the area delimited by the boundary. Once defined two
distance measures able to compare the models, we combined them by Fisher Linear
Discriminant analysis, obtaining a similarity measure.

8.2.3 Explicit analysis

Our first approach to explicit distance was based on Procrustes analysis. Once indi-
viduated the critical points, we considered the Procrustean distance between them as
an estimation of their similarity. This approach was not completely satisfying. First
of all, it requires that the number of elements of the two datasets is the same; more-
over it presents very low performance when we compare two shapes representing
the same object in different poses. We tried to improve the results by introducing a
different shape description (which considers also the local spatial characteristics of
the boundary points around the critical ones) and a similarity measure obtained as a
combination of the Fréchet and the topological distances. This approach seemed to
partly solve the previous problems.

8.2.4 Implicit analysis

Instead, to compare the implicit models, we started from the idea of supposing the
existence of a model underlying the datasets: a probability density function able
to summarize the most important characteristics of the sets and to make them eas-
ily comparable. Specifically we opted for mixtures of Gaussians and we used the
Expectation-Maximization algorithm to estimate the unknown parameters. To per-
form the estimation, EM needs to know in advance the number of the components of
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the estimating mixture. First we used an empirical approach to estimate this value:
we converted the RGB into HSV tuples, we calculated the histogram representing
the HS values of the set, and the peaks number of the histogram obtained was our
estimation of the number of components. Obviously, discarding a color space com-
ponent leads to loss of information. So we tried to refine this approach considering
a complete color space. Specifically we estimated the number of modes of the RGB
tuples by the Mean Shift algorithm and we used this value for the EM. Once obtained
the two pdfs, we used a methodology introduced by Lyu to evaluate in a closed form
the distance between them.

8.2.5 Number of modes as component estimation

The estimation of the number of components for an unknown mixture model is one
of the most studied problems in statistical literature. We perform this estimation by
using the number of modes. This approach is very efficient, since a reliable itera-
tive procedure exists able to obtain this value: the Mean Shift. Unfortunately, it is
known that there exist scenarios in which the number of components and the number
of modes differ. To obtain an evaluation of our approach, we perform a systematic
experimental analysis with the aim of understanding the quality of the approxima-
tion. Specifically we generated random mixtures of Gaussians and we sampled them.
By using the Mean Shift we calculated the number of modes of the obtained data
set. Then we perform twice best-fitting mixture estimations by EM algorithm on the
set: first by using the number of modes, then by using the real number of compo-
nents (known from the original mixture). By using the measure between mixtures
of Gaussians previously introduced, we estimated the distances between the two ob-
tained mixtures and the original one. The experiments confirmed our hypothesis: the
estimation error generated by the use of the number of modes is absolutely negligible.

8.3 Open problems and future works

There are still some open problems:

e the segmentation step, as already stated in section 3.5, needs further refine-
ments. First of all, in the worst case, computational time is not feasible for
real applications. It is possible to perform approximations which can reduce
the cost. A great reduction can be obtained, grouping together adjacent pix-
els before the first step of the algorithm and working with these sets of pixels
instead that with single units. Obviously, as a consequence of this resolution
reduction, the performances of the algorithm became worst. We are actually
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performing a comparative study to understand the optimal approximation. In
the same direction, mainly inspired by (206; 3), we are also evaluating which
results can be obtained working with different color spaces and discarding one
or two color channels.

To describe a shape we used critical points, defined as the points where the
boundary has sudden variations. Even if we defined critical points from an an-
alytical point of view, we used an empiric approach to individuate them. The
procedure is efficient, but, also due to pixelization problems, it does not indi-
viduate the minimal set. Obviously a redundant description makes the compar-
ison procedures less efficient and less effective. So we are studying a different
approach to define critical points.

The comparison between shapes, either with the Procrustes or the topological-
Fréchet distance, does not produce satisfactory results. It is reasonable to per-
form first a global structure comparison between shapes and subsequently a
local analysis. Some results obtained with skeletons (see (282)) seem to be
really encouraging. We are performing a first experimental phase to test the
possibility of integrating our methodology with the results described in (282).
Specifically two chatacteristics are very appealing: the stability under defor-
mations and the ability to return significant distance values between instances
of the same class in different poses.

Working with shapes, we observed that some known techniques can either eas-
ily find similarities on the general structure without giving any result in the
analysis of small local variations, or they can manage the pose variations with-
out presenting interesting results on the general structure. The proposed com-
bination of skeleton and critical points (currently under analysis) could prob-
ably mitigate this drawback. Note that two different poses of an object are
mainly represented by boundaries having many common subparts and dissimi-
larities only in some areas interested by the variations. Obviously it is complex
to define a technique to compare two entities with these characteristics: the
boundary has to be divided into subparts and similar blocks have to be cor-
related obtaining a global distance between the two elements. The scenario
seems to be very similar to a multiple sequence alignment problem. A multi-
ple sequence alignment (MSA) is an alignment technique used for biological
sequences (generally protein, DNA, or RNA). The aim of the process is to
determine whether the query sequences have an evolutionary relationship by
which they share a lineage and are descended from a common ancestor. MSA
also refers to the process of aligning such a sequence set. Because three or
more sequences of biologically relevant length can be difficult and are almost
always time-consuming to align by hand, computational algorithms are used
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to produce and analyze the alignments. There are interesting analogies with
our scenario and we are trying to adapt the presented methodology to shape
analysis.
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Appendix A

Appendix

A.1 A brief overview of the probability density distance mea-

sures

in the following we present the most used pdf distance measures and their relation-
ships. We recall that M Ey is an upper bound fot the K L distance.

A.1.1 Kullback-Leibler distance

description

Also known as Information divergence (or I directed divergence).

formulation

L(pillp2) = > 1 ( lOg Ei;
zeX

note

The base of the logarithm usually is 2. Here we consider the natural logarithm, so the
base is e.

properties

K L distance is not symmetric and in fact generally, as it is simple to see, K L (p1||p2) #
KL (p2||p1). KL is non negative and additive. One important drawback with KL
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distance is that it is undefined for po = 0 and p; # 0 and so p; has to be absolutely
continuous w.r.t. po.

identities and inequalities

It is important to note that:

KL (p1llp2) > maz {L1 (V (p1llp2)) s L2 (V (p1llp2))}

where V is the variational distance (see below) and

24+ x 2x
Li(2) =1 -
1(33) 092—:70 2+
and ) . 6
X X X
Ly() = — 4+ — 4+ —
2(2) =5 + 35+ o33

Even if this interesting lower bound exists, note that there is no general upper bound
for KL in terms of V.
K L can be expressed in function of L divergence:

(e 9]

KL (pi|lp2) = > 2L (my||p2)
v=0

where m, = 27"p; + (1 — 27) p2. Moreover K L can be bounded by A*:

1 * *
gA (p1llp2) < KL (p1]|p2) < log2 - A" (p1]|p2)

where A* is the quantity defined in the subsection about the triangular discrimination
of order v.
KL can also be bounded by V':

1,1 1
KL (p1|lp2) > 3 Z 2 3 (V (my]|p2))* = §V(p1\|1)2)
v=0
Theorem 4 of (281) shows another interesting inequality about K L:

KL (pillp2) < L(pllpa) + Log (5 (1+0))

where ¢ = mazrzex (%).

note KL is an istance of Ali — Silvey class with ¢ (x) = zlogx and f (z) = .
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A.1.2 J divergence

description

This measure was introduced to overcome the non-symmetry of the previous mea-
sure. In fact it can be expressed (as you can see in the following) as the sum of the
two K L distances evaluated on the couple p; and po. It was firstly introduced by
Jeffreys (see (147) and (148)). It is defined as the difference in the mean values of
the log-likelihood ratio under the two hypotheses.

formulation
b1
J (p1llp2) = Y (p1 — p2) log—
rzeX p2
= KL (p1|lp2) + KL (p2|lp1)
= FE1 [logLi(x)] — Eq [logLi (z)]
where E; is the expected value w.r.t. the distribution p; and Li(x) = % is the
likelihood ratio.
properties

The J divergence is symmetric (so it solves one of the problems of the previous
measure), but it is defined only whether p; and po are absolutely continuous w.r.t.
each other. It satisfies all the properties of a metric except the triangle inequality.
J is also additive.

identities and inequalities

As stated before, the J divergence can be expressed in function of K L divergence:

J (p1llp2) = KL (p1]|p2) + KL (p2||p1)

A.1.3 K divergence

description

This measure was introduced to overcome some drawbacks of the K L divergence. It
can be expressed in function of K L.
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formulation

B p1 ()
Kpille2) = 2 v @logr om0

properties

The K divergence is non negative but (as the K L) it is also not symmetric. It is
important to highlight that it is well defined for every . In addiction it is finite,
semibounded and bounded by 1. Another very interesting characteristic is the iso-
lation: K (lepg) =0 iffpl = pP2.

identities and inequalities

As stated before, K can be expressed in function of K L:

1 1
K (pi1|lp2) = KL <p1HQp1 + 21@2)

Theorem 1 in (177) states that:
1
K (pillp2) < 5 KL (pa]p2)

Theorem 2 in (177) states that:

K (pilpa) 2 maz {1, (V102 (Vi) )

Moreover it is possible to define an upper bound from V':

K (p1llp2) <V (p1llp2)

note

K divergence coincides with the f-divergence with

f (@) = alog (1)

1+x

A.1.4 L divergence

description

L divergence is also known as Capacitory discrimination. It was introduced to obtain
a symmetrized version of K divergence. As the J divergence can be seen as the sum
of the two K L distances evaluated on the couple p; and p2, so the same is for the L
divergence respect to the K divergence.

In some literature this measure is known as Jensen — Shannon divergence.
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formulation

(Pl \ |P2

<Z p1log —l— Z palog

zEX eX P1 +p2>
(p1llp2) + K (P2HP1)

Nw\

properties

L divergence is obviously symmetric. As the K divergence from which it de-
rives, L divergence is non negative, finite, semibounded and bounded (in particular
L (p1]|p2) < 2). It is of extreme importance to note that L divergence is the square
of a metric. Being the sum of the two K divergence measure on p; and ps, for L
divergence also holds isolation: L (p1||p2) = 0iff p; = ps.
Following the notation introduced in (104), if we consider the set M}r (A) of proba-
bility distributions where A is a set provided with some o-algebra, we can define L
as a function:

L: M} (A) x M} (A) — [0, oc]

recalling that L is the square of a metric, it is important to highlight that (M i (4), ﬁ)
is isometrically isomorphic to a subset in Hilbert space.

identities and inequalities

As stated before, L divergence derives from K divergence, which, in turn, derives
from K L. So:

L (p1||p2) = K (p1llp2) + K (p2||p1)
1 1 1 1 1 1
— KL - - “KL - -
5 <p1||2p1 + sz) +5 <p2|2p1 + 2p2>

It is simple to find a relation between this measure and the J divergence:

1
L (p1]lp2) < §J(p1HP2)
Theorem 3 in (177) states that:

L (p1lp2) < v (p1l|p2)

It is important to observe that L divergence can be expressed as a function of the
Shannon entropy function (represented by H):

p1 + P2
2

Lipllps) =2 (P02 )~ H (o)~ H ()
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Considering the Information Transmission Rate we have:

11
L —or(= -
(p1]lp2) <2,2>

L can be expressed in function of the triangular discrimination of order v (Theorem
1 from (281)):

L(pillp2) = 2y(2i—1)A” (p1llp2)
v=1

A.1.5 Jensen-Shannon divergence

description

This measure allows to assign a different weight to each probability distribution. This
makes Jensen — Shannon divergence particularly suitable for decision problems
where the weights could be the prior probabilities.

formulation

JSr (p1llp2) = H (mip1 + map2) — m1H (p1) m2H (p2)

where 1 and 7o are the weights of the two probability distributions p; and po, re-
spectively.
m,mg > 0,1 +m2 =1

properties

Since H is a concave function, according to Jensen’s inequality, J.S; (p1||p2) is non-
negative and for it holds isolation: JS; (pi||p2) = 0 when p; = ps. JS can be
generalized to provide such a measure not only for two, but for any finite number of
distributions. It is important to note (see following paragraph) that JS' divergence
provides both lower and upper bounds to the Bayes probability of error; from these
bounds it is possible to note that J.S is also buonded by 1.

identities and inequalities

Theorem 4 and 5 in (177) state that:

Pe (p1,p2) < 5 (H (m1,72) — JSr (p1llp2))

= ol

P (p1,p2) > ~ (H (m1,m2) — JSr (p1][p2))?

— 4
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where H (71, m2) = —milogm; — melogms and P, is the Bayes probability of error:

P (p1,p2) = Y, min (mip1, maps)
zeX

So it is possible to derive (P, is non negative):

JSx (p1llp2) < H (71, m2) — 2P (p1,p2) < H (71, m2) <1

note

As stated before, this measure can be generalized for any finite number of distribu-
tions (not only two):

ISy (01D ) — H (Z - <w>> SN H (@)
=1 =1

It is possible again to provide bounds to the Bayes probability of error(Theorem
6 and 7 in (177)):

(H (m) = JS (p1,p2,---,Pn))

=N e

> oD (H (7) = JS (p1,p2,- - »pn))”

where:

= Z p(x) (1 —max (p(ci|z),p(c2lx),...,p(cnlx)))

rzeX

A.1.6 Other distance measures

We briefly present other distanc measures which are interesting for the inequalities
with the measures already presented.

Triangular discrimination

p1 \ !p2

Triangular discrimination of order v

3 Ip1 () — p2 (z)]

= (o1 (2) +q (@)

Ay (p1llp2) =
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Variational distance

Vipillp2) = > Ip1 (@ (z)]

rzeX

Kolmogorov Variational distance

KVz (pillp2) = Y Imip1 () — mapa ()]
zeX

where 7y, m9 > 0 and m + w2 = 1.

Kendall’s 7

sign [(p1 (z) — p2 (y)) (p1 (x) — p2 (v))]
Tl = 3 SR

Hellinger distance

H (palps) = J (FF)

A.1.7 General inequalities

In this section are presented some inequalities which relate together some of the
measures introduced in the previous section.

iL (p1|’p2) S Imaz S Rmm S R (M) S L (lep2)

Combining some inequalities already introduced, we can also obtain:

1 1
-V (p1||p2) S ZA (p1||p2) § iL (P1||p2) S Imam § Rmzn §

< L (p1||p2) < log2- A (p1llp2) < log2 -V (p1|p2)
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