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ABSTRACT

In the design and development of solid propellant rocket motors, the use of numerical tools able
to simulate, predict and reconstruct the behavior of a given motor in all its operative conditions
is particularly important in order to decrease all the planning times and costs.

This work is devoted to present an approach to the numerical simulation of SRM internal
ballistic during the entire combustion time (ignition transient, quasi steady state and tail-off)
by means of a Q1D unsteady numerical simulation model, named SPINBALL (Solid Propellant
rocket motor INternal BALListic).

SPINBALL comes out from the updating and further development of the numerical, mathe-
matical and physical models of the SPIT model (Solid Propellant rocket motor Ignition Transient),
that allows to extend the numerical simulation of the SRM internal ballistic, from the ignition
transient, to quasi steady state and tail-off.

SPINBALL core model is a quasi-1D unsteady gasdynamics model of the internal ballistic,
with source terms that take into account the contribution to the bore flowfield conditions due to
the igniter, the grain propellant and thermal protections. The flow is assumed as a non-reacting
mixture of perfect gases with space and time varying thermophysical properties (standard ther-
modynamics approach). The governing equations are discretized by a Godunov-type scheme,
first or second order in space and time. The use of a such approach allows to consider the addi-
tion into the chamber due to both ablation phenomena from thermal protections and combustion
reactions from the grain propellant, but even to take into account the equilibrium point of the
grain propellant exothermic reactions, as function of the local pressure and the variation from
that nominal condition, through the combustion efficiency.

This main model is completed by several sub-models, in order to describe all the driving
phenomena that lead the internal ballistic for the entire combustion time: an igniter model, an
heat transfer model for convection and radiation, propellant ignition criterion, a cavity model to
account submergence and slot regions, a grain combustion model with the pressure term (APN
model) and the erosive term (Lenoir-Robillard model with the modifications due to Lawrence
and Beddini). Some of them coming from the SPIT model.

Focusing on the driving phenomena that characterize the internal ballistic over the ignition
transient, it is known that, during quasi steady state and tail-off, the motor bore flowfield con-
ditions are led mainly by the grain burning surface evolution in time and the possible nozzle
throat area ablation phenomena.

The grain burning surface evolution model is a 3D numerical grain regression model (named
GREG) based on a full matrix level set approach, on both rectangular and cylindrical structured
grids, that gives to the gasdynamical model the evolution in time of port area, wet perimeter
and burn perimeter along the motor axis and in the submergence zone. The numerical scheme
for the numerical integration of the Level Set equation is built from the strong link between
Hamilton-Jacobi equations and conservation laws and it is a first or second order (minmod flux
limiter and Heun’s method) in time and space time marching scheme based of an exact Riemann
solver. The use of a 3D model is mandatory to carry out the grain burnback analysis in the case
of general and complex 3D grain shapes, as finocyl grains, whatever bore flowfield dimensional
model (oD or QiD) is adopted. GREG module can handle 3D complex geometries directly
from CAD tools, building up its initial condition as a narrow signed distance function from
STL (stereolithography) files of the grain propellant and the thermal protections and insulation
shapes by a completely automatic procedure. The grain burning rate can be variable, both in



Abstract

space and time. The use of grain propellant shape symmetries is exploited with the setting up of
mirroring, or periodic boundary conditions, reducing the computational costs. The evaluation of
the grain geometrical parameter, as areas, volumes and perimeters, is made with a robust second
order regularization of the Dirac Delta and Heaviside functions to avoid the typical problems
related with the use of the standard regularization techniques.

While potentially GREG module can be completely coupled with the Q1D unsteady flowfield
model, in this work, we will consider a decoupling between the grain burnback model and the
flowfield model, in order to reduce the computational cost required. GREG model is, hence,
used as a pre-processor that generates tables of pre-evaluated grain geometrical properties for a
constant burning rate in time and space. During the numerical simulation, these tables of port
area, wet perimeter and burning perimeter are then interpolated using the local increment of the
web variable, defined by the local grain burning rate, coming from APN and LR models.

The final objective is, hence, to develop an analysis/simulation capability of SRM internal
ballistic for the entire combustion time, with simplified physical models, in order to reduce
the computational cost required, but ensuring, in the meanwhile, an accuracy of the simulation
greater than the one usually given by oD quasi steady models. In this framework, the comparison
between the results obtained with a oD quasi steady chamber model and SPINBALL will be
made and the effects of the increased detail level of the internal ballistic simulation on the
overall prediction capability will be discussed for three SRMs: Zefiro 23 second stage of the
new European launcher VEGA and two military motors, NAWC n. 6 and 13, on which there are
different work in literature, and all motor data are available. Comparisons with the experimental
data and with other codes results will be also made.
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INTRODUCTION

N this introductory chapter a brief description of Solid Rocket Motors (SRMs) is presented,
I with the definition and characterization of the main driving phenomena of the SRM internal
ballistics operative phases. Hence, the importance of SRM internal ballistics models for the
prediction, reconstruction and analysis in SRM design and development is discussed. Later on,
the state of the art of the internal ballistics model and grain burning surface evolution model is
presented. Finally, a brief overview of the structure of this dissertation is shown.

1.1 SOLID ROCKET MOTORS

We can define “Propulsion System” a system able to achieve a prefixed state of motion: the
system must be able to determine the thrust (propulsive force) in one or more its features (in-
tensity, direction, verso and duration). All existing at present propulsion systems are based
on the action-reaction principle: generating a variation of the propulsive flow momentum, it is
achieved a momentum variation of the propulsion system itself. If part or all the propulsive
fluid is stored into the propulsion system the system is referred as “jet engine”; this broad def-
inition of jet engines includes air-breathing engines like turbojets, turbofans, ramjets, pulse jets
and pump-jets and nor-air-breathing engines like rockets. A rocket engine is a jet engine that
takes all its propulsive mass from within propulsion system itself.

Rocket engines can be classified according to the type of energy conversion from primary
energy to kinetic energy:

@ THERMAL ROCKET enthalpic energy is converted to kinetic energy by a thermodynamic
transformation.

@ ELECTRIC ROCKET electric energy is converted to kinetic energy by the application of
electrostatic or electromagnetic fields to electrical charged particles.

® NUucCLEAR ROCKET nuclear energy is converted to kinetic energy by the discharge of fast
moving particles (nuclear reaction products).

This thesis is focused only on the first type, the thermal rockets. More in depth there is
large variety of thermal rockets; we are interested in the chemical thermal rocket: the thermal
energy is obtained by the exothermic reactions that characterized combustion processes of rocket
propellants; the thermal energy is then transformed into kinetic energy by the propulsive nozzle.

At the present, the chemical thermal rocket engines constitute the motors of modern launch
vehicles. The word “launcher” means space vehicle, constituted by one or more propulsive
stages, able to give suitable velocity to its payload (in order to put the payload into the designed
orbit).

Among the different propellants of chemical thermal rockets we can distinguish between solid
propellants, liquid propellants and hybrid propellants. The Solid Rocket Motor type is concep-
tually very simple: the oxidizer and combustive agent are mixed together in a single “propellant



1.2 SOLID ROCKET MOTORS INTERNAL BALLISTICS

solid grain”; this propellants grain cannot burn itself: it has to be ignited by an external source
of energy, that are the igniter hot jets.

The simplest and well-known expression of the thrust,
scope of this propulsion system, is given by equation 1.1

Igniter
T =1y + (pj — Pa) Aj (1.1)

where 1 is the exhaust gas mass flow, u; is the actual jet
velocity at nozzle exit plane, p; is the static pressure at noz-
zle exit plane, pq is the ambient (or atmospheric) pressure
and A; is the flow area at nozzle exit plane. The simplic- Propellant
ity of this expression can cover up the fact that the thrust is ~ Grain
made up by the integral of the pressure over the combustion
chamber walls. Using the segmentation technique it is pos-
sible to develop very large SRM joining different segments
together: this technique allow the development of very high
thrust SRM. In rocketry specific impulse is defined as the
change in momentum per unit weight-on-Earth of the pro-
pellant I, = % where g is the acceleration at the Earth’s
surface.

The grain shape influences the behaviour of the thrust: be-
cause the mass flow rate and pressure of the gas generated
by grain combustion depends on the grain surface itself (and
on nozzle throat). This fact explains why the SRMs grain \,[
shapes are often very complex with the presence of three-
dimensional regions, allowing the suitable thrust curve re-
quired for the mission. The typical three-dimensional re- Figure 1.1: Generic SRM Scheme
gions are, in fact, “star-shaped” or “finocyl” (finocyl stands
for fins on cylinder), but the variety of grain propellant
shapes is quite wider.

The presented dissertation is focused on SRMs, and in particular on the modelling and nu-
merical simulation of the SRM internal ballistics. A simple scheme of a generic SRM is shown
in figure 1.1.

1.2 SOLID ROCKET MOTORS INTERNAL BALLISTICS

The SRMs internal ballistics studies the internal flowfield conditions inside a solid propellant
rocket motor during all its operative conditions, from motor start-up to burn-out, that completely
characterize and define motor behaviour, performance and its mission capabilities.

The overall Combustion Time (CT) of a given SRM can be separated into three main different
temporal phases, each of them characterized by different driving phenomena. Considering the
relation between thrust and time, or the same, pressure and time (fig. 1.2), the SRM internal
ballistics can be separated into the fol lowing different phases: Ignition Transient (IT), Quasi
Steady State (QSS) and Tail Off (TO), that will be briefly discussed.

1. IGNITION TRANSIENT

After the electric delay of the igniter, the impingement of the igniter jets on the propellant
surface causes, as result, the grain propellant ignition, with possible acoustic mode excite-
ment due to the interaction between the jets and the bore chamber geometry. After that,
so called “induction interval”, the flame spreading triggers the ignition of the entire grain
propellant surface, causing a greater and greater mass addition from the propellant and
consequent chamber pressure increasing. During this period so called “flame spreading
interval”, there are also two events that, typically, affect the internal ballistics: the igniter
stops to produce mass in the bore and the nozzle throat seal rupture occurs. Moreover, a
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Figure 1.2: Head-end pressure time history

pressure overpeak due to the erosive contribution (related to igniter gases high tangential
velocities respect to the grain surface) to the burning rate, as enhancing mechanism of the
grain propellant combustion process, and to the igniter inlet mass flow rate in the bore is
often exhibited. Finally, after that the burning surface is completely ignited, the chamber
filling and quasi steady state conditions are reached in the SRM chamber.

As a consequence, a model able to describe correctly the IT must necessarily account the
strongly unsteadiness of the aforementioned phenomena (with possible relevant multidi-
mensional effects related to the igniter jets[115]) in terms of fluid dynamics (acoustics and
gasdynamics phenomena), heating and the mixing of gases into the bore (pressurizing gas,
igniter gas products and grain combustion products). While, instead, during this operative
phase can be totally neglected the grain geometry variation due to combustion, so that the
bore geometry can be considered fixed at its initial configuration.

QUASI STEADY STATE

In this subsequent operative phase the internal ballistics is mainly led by the grain mass
addition and its variation in time due to grain combustion and burning surface recession
and evolution in time. However, even the nozzle throat geometry variations could not, in
general terms, be totally neglected. These phenomena, in fact, acting as passive thermal
control of the nozzle structure, are due to the erosion-ablation phenomena to which the
convergent zone, and the throat section are mainly subjected and occur in particular for
SRMs with long combustion time (more that some seconds) In a very secondarily manner,
the ablation phenomena interest also the inner parts of the chamber, which are discovered
during the grain propellant combustion and, consequently, exposed to the chamber hot
gases. In facts, the SRM metallic or composite casing structure is completely covered
inwards by ablative materials, acting as passive thermal control system.

During this phase, moreover, acoustics instability phenomena can cause low level, but sus-
tained, pressure and thrust oscillations [43] in the chamber due to the vortex shedding
related mainly to a shear layer instability. These phenomena arise as an acoustic longitudi-
nal mode excitation, that can occur depending mainly on the grain shape and its evolution
and on the flow velocity, as a typical hydrodynamic instability.

In order to describe all these phenomena, even because of the possible presence of vor-
tex shedding, a completely unsteady chamber dimensional (not oD) model is necessarily
required.
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Another possible instability phenomenon, which a smaller number of SRMs can be prone
to during their operative functioning, is instead the combustion instability. Its basic mech-
anism is related to a bulk-mode instability[72] due to the possible coupling between the
combustion of the solid propellant and the bulk-mode filling and emptying of the motor
chamber. Thus, depending also on the pressure regime in the bore, the perturbations in
the chamber produce fluctuations in the combustion processes and so in the propellant
burning rate. This can produce itself pressure fluctuations through the gas flow inlet in the
chamber, with a possible coupled mechanism.

Hence, assuming to neglect the modeling of instability phenomena (the aeroacoustics or
the combustion one), even simple approaches given by quasi steady oD models, can be,
not much accurate, but sufficient in the description of the motor behaviour, only if the
total pressure drops along the motor axis and the erosive burning are negligible, or lim-
ited. In fact, the significant grain geometry evolution time scales are much larger than
the time scales of the fluid dynamics. Otherwise, when erosive burning and/or total pres-
sure drops become important, at least Q1D models becomes mandatory. Moreover, the
grain and nozzle geometry evolution must be imperatively accounted, as they both lead
the bore flowfield conditions (the second with an effect that differs from motor to motor
and negligible in certain motor configurations). While the presence of a gas mixture in the
motor bore, coming from grain combustion and thermal protection ablation reactions, is
essentially negligible in its effects on the internal ballistics. And hence, the inlet mass flow
rate due to ablation phenomena occurring on the nozzle and case ablative surfaces can be
totally neglected.

3. TarL OFF

As the grain burning surface recedes and decreases in time, larger and larger parts of the
liner and the case Thermal Protections (TPs) are exposed to the action of the chamber hot
gases. Consequently, they are heated and because of ablative phenomena and begin to add
ablation products in the chamber, in a way that is more and more important, dependently
on the motor configuration. As the grain combustion products mass addition into the
chamber becomes smaller and smaller, a rapid decrease of the chamber pressure occurs,
with possible combustion fluctuations and sliver generation.

The tail-off phase, hence, is characterized by unsteady events, related to the chamber pres-
sure decrease in time, mixing of gases coming from the residual grain propellant combus-
tion and case thermal protections ablation. Hence, they need to be described correctly
by an accurate burning surface evolution evaluation. While the less important effect of
TPs mass addition due to ablative phenomena can be neglected, if not necessary for TPs
dimensioning.

1.3 INTERNAL BALLISTICS PREDICTION AND ANALYSIS IN SRM DESIGN
AND DEVELOPMENT

The design and development phase of a Solid Rocket Motor is typically defined by numerous
parametric studies conducted in order to optimize the motor design. Firstly technological and
then political and commercial problems influence the possible configurations investigated and
define constraints for the optimization problem.

Hence, once the optimum configuration is selected, detailed analyses examine critically the
design configuration: propellant, grain design and motor configuration, in order to predict the
full-scale motor performance. This target is obtained by using a combination of theoretical
performance prediction methods and models with the help of the numerical simulation of the
internal ballistics and motor performance. However, these prediction methods must be vali-
dated with the performance data obtained from subscale motor tests, or from previous firings
on the full-scale motor, or from similar design SRMs. Performance prediction methods and mod-
els must account, identify and possibly qualitatively evaluate the non-ideal conditions within a
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SRM that could define a lower than theoretical performance, by means of know-how assump-
tions on similar SRMs configurations. The full-scale motor behaviour is then experienced by
means of subscale and SFTs for the full-scale configuration, which validate and/or define the
distance between the designed/predicted and real performance, helping in the tuning of the
non-ideal parameters, when the real SRM behaviour is adequately predicted by the simulation
models. The incorrect or insufficient consideration for the differences between the theoretical or
the subscale motor behaviour and the resulting real performance of the full-scale SRM can re-
sult in costly redesign and schedule slippage, or totally compromise the SRM mission objectives
and/or the motor reliability[11].

Hence, in the design and development of Solid Rocket Motors, the increase of internal ballistics
prediction capabilities can improve the SRM reliability and reduce, in the meanwhile, the design
and development costs, related to experimental activities (especially Static Firing Tests (SFTs)).
Both these targets require an accurate numerical simulation and the consequent physical un-
derstanding of the main and complex interacting internal ballistics driving phenomena, that
characterize SRM performance and its mission capabilities, for the entire combustion time. In
the meanwhile, the availability of reliable and accurate SRM models can help in the prediction
of the in-flight real motor behaviour and performance, that can not be simply extrapolated by
the use of the SFT-configuration experimental data, because of the different motor set-up (e.g.
typically the truncation of the nozzle in the SFT with respect to the in-flight motor configuration
for second or third solid stages).

However, these needs have to face two competitive features. By one part they must have
the ability to represent in a detailed manner the main physical phenomena. But by the other,
these models need to have in their numerical representation reduced computational times, to
allow their use in the study of the SRM design options modifications impact in the mission
profile, as result of parametric analyses, beyond their employ in the SRM internal ballistics and
performance prediction and reconstruction.

In particular, this last constraint limits in a relevant way, the possibility to use fully dimen-
sional 3D models of the flowfield in the combustion chamber, because their high computational
cost for the typical combustion time of a SRM*. Their use is hence relegated to the accurate
numerical simulation of the bore flowfield conditions for limited time intervals of the entire
combustion time (i.e. the pre-ignition transient [115; 102; 97; 117; 116], or for some defined
configurations during the quasi steady state [109; 110; 118]).

In the meanwhile, the use of 2D models for the SRM internal ballistics is strongly restricted
to a certain class of simple motor configurations, since typically all recent configurations are
characterized by finocyl, or 3D star shaped grains, or complex 3D geometries. Hence, it is
possible to state that these kind of models are still computational expensive to simulate the
entire combustion time, with respect to the considered relevant approximations of the 3D motor
real geometry.

Moreover, in both 2D or 3D bore chamber models, some not trivial difficulties related to the
accounting of the moving boundaries, due to grain propellant regression, that must be faced in
the numerical simulation over the IT.

For the aforementioned reasons, a good compromise between the stated needs for the numer-
ical simulation of the whole combustion time, can be, therefore, the use of Quasi 1D (Q1D)
unsteady flowfield models. In fact, these chamber models have shown to be able to yield,
if equipped with different sub-models, accurate predictions and descriptions of the motor IT
[66; 76; 75; 70; 67; 103; 84; 91; 97]. In the meanwhile, they ensure an increasing of the modeling
capabilities with respect to oD models, largely adopted for the numerical simulation of the quasi
steady state and tail off.

By the point of view of the grain burnback analysis, which studies the evolution of the grain
propellant burning surface during time, instead, in general terms, all high performaces SRMs

1 for the pre-ignition transient, ~ 0.1 s, 3D models requires 1K + 1M hours on parallel High Performances Computers
(HPCs)
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involve the choice of complex 3D grain geometries to fulfill mission requirements. Thus, simpli-
fied oD, 1D or 2D regression models introduces representations of the grain surface, which are
unacceptable for the accuracy obtained. Hence, complete 3D models are required, for whatever
internal ballistics model and dimensional representation is chosen for the modeling of the bore
flowfield conditions.

In fact, only limited and particular cases involve simple grain geometries, like axisymmetric
grains or 2D grain, for which analytical or phase-based methods can be used (discussed briefly
in 1.5).

1.4 INTERNAL BALLIsSTICS MODELS OVERVIEW

1.4.1 oD QuAsI STEADY FLOWFIELD MODELS

A simple but useful modelling of the internal ballistic is represented by the so called zero di-
mensional models or lumped parameter, volume-filling models [8o]. Among many present in
literature [9; 6; 7] we will consider the one due to Salita [51]. It is based on considering a
spatially constant time dependent value of the flowfield properties in the bore, so that the ther-
modynamics properties of the gas are represented by total values. Under the hypothesis that the
combustion phenomena happens completely in a very thin zone near the ignited grain surface,
the gases in the bore can be treated as non reactive perfect gas.

These models historically were built to describe the behavior of a SRM during the Ignition
Transient. In order to accomplish this target, they need an empirical specification of an ignition
delay time and a flame spreading time [9; 6; 7], or some semi empirical tuning parameters to
simulate the igniter. Because of this simple chamber model, in general terms, they become quite
inaccurate for boosters with large length-to-diameter ratios and very low port area-to-throat area,
where large total and static pressure drops must be accounted.

Considering, in particular, this kind of models for the QSS modeling, under the simplified
assumptions that:

@ the nozzle flow is a choked adiabatic expansion

@ the flowfield characteristic time is far less than the burning surface evolution characteristic
time

® hence, the evolution of the thermodynamics properties of the gases in chamber can be seen
as an evolution of quasi steady states

it is possible to obtain from the mass balance, the evolution with time of the chamber pressure
(assuming for the burning rate the De Veille - Saint Robert expression), given in the classical
equation for the ballisticians 1.2.

1
*Sb (t) 1—n
Ay (t)

This expression can be used both in the direct numerical simulation of the quasi steady state
and tail-off phases. But, its use can be also extended for post firing test (or instrumental flight)
analyses, considering the introduction of some non-ideal behaviour parameters of the the SRM
(as will be explained in details in H, page b) if coupled with:

Pe (t) = Ppa (T, Up) c (1.2)

@ a chemical equilibrium model able to compute the value of the c* parameter
@ a grain burnback analysis model that gives the evolution in time of the burning surface Sy,

@ anozzle thermal protections ablation/erosion prediction model able to compute the evolu-
tion in time of the throat area
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1.4.2 Quasi 1D UNSTEADY FLOWFIELD MODELS

In order to accomplish a more accurate analysis of modern solid boosters internal ballistic,
featuring high length-to-diameter ratios and low port area-to-throat area ratios, unsteady one-
dimensional models are required. These class of chamber flowfield models exploit the major
dimension of the bore (along the motor axis) and describe the flowfield properties as dependent
on the spatial position along the motor axis and time [80; 12; 70; 111; 113].

We assume, then, that all chemical reactions occur in a very thin region near the propellant
surface, so that the combustion products enter in the main stream with zero axial momentum,
and considering the products as a perfect gas (or as a mixture of perfect gases). Thus, the
equations that describe the internal ballistic are the mass, momentum and energy conservation
equation written for a channel with area variations and sources terms, representing the mass and
energy addition from burning grain and igniter and the friction terms (as shown in equation 1.3).
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In order to describe all the aforementioned driving events that affect the internal ballistic,
during all the operative phases of a given motor (IT, QSS & TO), the model must necessarily be
completed with some other sub-models:

@ jgniter model

@ ignition criterion

@ heat transfer model: conduction in the solid propellant, convection and radiation
@ slots and submergence model

@ burning rate model

@ grain burnback model giving port area, burning perimeter and wet perimeter along the
motor axis in time

@ liner, nozzle and case thermal protections ablation/erosion models

1.4.3 2D-3D UNSTEADY FLOWFIELD MODELS

A general and even more complex modelling of a SRM combustion chamber considers the Eu-
ler or Navier-Stokes equations written for a completely 2D-3D unsteady flow. These kind of
modelling could be very accurate in the description of the propagative phenomena and igniter
jets that characterize the pre-ignition transient [103; 97; 115] and Ignition Transient, or the two-
phases flowfield features in the motor during some selected time instants during Quasi Steady
State[109; 118; 110]. On the other side, they are computationally very expensive, as they requires
1K + 1M simulation hours on parallel high performance computers for a typical pre-ignition
transient simulation. Moreover the accuracy of the results during the IT, in terms of head-end
pressure time history prediction, can be achieved even with Q1D models (that instead have 103
seconds of computational cost). Certainly, they become completely mandatory for the accurate
study of the jet features and of the flowfield conditions that occurs in the chamber during this
very unsteady phase.

Instead, the numerical simulation of the two-phases flowfield features during QSS requires
about the same computational time 1K + 1M hours on parallel high performance computers, for
achieving a steady state solution. Thus, all the resultant modelling accuracy of the motor internal
ballistics simulation can be not necessary during the entire SRM combustion time, respect to the
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required computational cost. Moreover, considering the complete simulation of the internal
ballistic over the IT, during QSS and TO some not trivial problems must be faced:

@ as the grain burning surface recedes in time, the flowfield computational domain changes
(the same problems are present to account the nozzle and case thermal protection and liner
consumption) and new bore volume must be accounted in the flowfield solver

@ a strong and complex coupling between the mesh of the grain burnback solver and the
main stream computational grid must be present

Hence, all these problems and peculiarities related to the 3D unsteady models of the bore
chamber strongly reduce their use in the numerical simulations of SRM internal ballistic over IT.

1.5 SRM INTERNAL BALLISTICS ANALYSIS AND PREDICTION: STATE OF THE
ART

At the present state of the art many different numerical tools are present in the literature to
simulate the internal ballistics of a given SRM. They have different degrees of accuracy, bore
chamber dimensional models and, often, prediction abilities restricted to temporal bounded
operating intervals (IT, QSS and TO), related to the sub-models connected to the gasdynamics
model. Typically, 3D unsteady models of the internal ballistics are considered for the simulation
of the Ignition Transient and for the two-phase and/or vortex shedding effects during particular
instants in the Quasi Steady State. Instead, the use of 2D models is quite restricted, because of
the typical grain configuration is 3D and 2D/axisymmetric configurations are quite limited in
their use for SRM applications, as discussed before. Moreover, while Q1D unsteady models are
potentially to be considered for the entire combustion time, in literature are present applications
only for the IT or for the QSS and TO. While the use of unsteady or steady oD model is restricted
only to the operational phases subsequent to the Ignition Transient.

Unfortunately, the list can not be a complete outline of the existing internal ballistics codes. In
fact, basically almost all the industries yielding SRM have own-made proprietary models which
are covered by industrial secret. While some other numerical tools are adaptation of commercial
tool tailored for the SRM numerical simulation. However, the internal ballistics models, classified
by means of the internal ballistics phases modeled, are:

@ for the Ignition Transient: SPIT [76], KUO [12], MUG [103; 97], ROCSTAR [86; 87];
@ for the Quasi Steady State: PIBALL [73], SPP [77], ROCBALLIST [108], ROCSTAR;
@ for the Tail Off: PIBALL, SPP, ROCBALLIST and ROCSTAR

The aforementioned internal ballistics numerical simulation models can be even classified by
their dimensional modeling type of the bore chamber flowfield: oD quasi steady or unsteady
models (PIBALL, SPP , ROCBALLIST o0-D); Q1D unsteady models (SPIT, KUO, ROCBALLIST
1-D); 2D-3D unsteady models (MUG, ROCSTAR).

Hence, typically for the analysis, study and prediction of SRMs internal ballistics are used
different numerical models for the Ignition Transient and for the subsequent operative phases:
unsteady 3D, 2D or Q1D models for the former phase and, instead, in order to limit the compu-
tational time required, oD unsteady or quasi steady models for the subsequent ones.

Concerning, instead, the grain burning surface evolution analysis, which is the main driving
phenomena for the QSS and TO, there are a variety of ways to numerically and/or analytically
represent the geometrical evolution of a 2D or 3D surface. The most popular one is certainly
the Solid propellant rocket motor Performance Program (SPP)[77; 29], which describes the grain
burning surface evolution by an analytical approach for 2D, axisymmetric and 3D geometries
[29]. Because of complexity and lengthy computational requirements in setting up 3D shapes,
users are encouraged to use 2D geometry rather that the 3D method, whenever possible. The 2D
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grain geometry design consists of defining several planar cross sections of the grain propellant,
with lines and arcs and the program assumes a linear transference of the port area, burning sur-
face between the defined sections[29]. The surface evolution is simply made for linear segments
using the normal to the line and arcs by adjusting the radius, assuming a spatially constant
burning rate. The axisymmetric grain design method is similar to 2D and assumes differently a
rotation around the motor axis. The geometrical properties are still evaluated using closed-form
analytical methods. The 3D geometry uses a combination of nine analytical shapes to define, as
intersection of them, the initial grain design: sphere, torus, plane, cylinder, cone, spheroid, hy-
perbolic torus, elliptical torus and parabolic torus. The method of analysis consists of mapping
the 3D surface to a 2D plane and checking several boundary conditions such as other burning
surfaces, insulation, or user-defined dummy boundaries [29].

Another different way is represented by phase-based methods (with a numerical layering
technique). When possible and appropriate, grid-based geometry methods can be replaced by
analytical methods, in order to reduce computational time required, hence, many analytical
methods have been developed for several simple and complex cross-sectional geometries using
numerical layering techniques [83; 78]. These methods describe the evolution of simple and
complex 2D grain shapes by means of their division in time periods, or phases, within which
the surface properties (port area, burn perimeter and wet perimeter) can be defined by a single
set of equations in closed form.

Another completely general method is represented by the Level Set Method (LSM) [31], for
which some recent interest has been considered for the grain burnback analysis [95; 98] and
which will be analyzed in a deepened manner in the chapter 3, page 32. Briefly, the level set
method embeds the interface as the zero level of a level set grid function defined on the domain
of interest in order to track the motion of the grain burning surface. The evolution of the level
zero is obtained evolving all the level set of the grid function, which is mathematically defined
by an initial value Partial Differential Equation (PDE) that is an Hamilton-Jacobi (H]J) equation.
This hyperbolic PDE is solved using entropy-satisfying schemes borrowed from the solution of
the hyperbolic conservation laws, which select the correct vanishing viscosity solution. The level
set method allows, in its general formulation, an easy evaluation of the motion of complex and
topology varying interfaces, with simple computation of the front curvatures and normal direc-
tion.

A recent Lagrangian method is represented by the Face Offsetting Method (FOM)[104], based
on a generalized Huygens’ principle. This method operates directly on a Lagrangian surface
mesh, without requiring an Eulerian volume mesh. Unlike traditional Lagrangian methods,
which move each vertex directly along an approximate normal or user-specified direction, the
face offsetting method propagates faces and then reconstructs vertexes through an eigenvalue
analysis. Locally at each vertex the motion of the interface is solved along the normal and tan-
gential directions of the interface itself simultaneously, in order to make a vertexes redistribution,
to maintain and/or improve the mesh quality, as the front enlarges during its motion.

An important remark is that the last two methods (LSM and FOM) can be used for constant
or space and time variable burning rate grain burnback analyses, as they perform a completely
general approach for solving the moving boundary problem. While the others can be used only
for spatially constant burning rate grain surface evolution evaluations.

1.6  MOTIVATIONS

The doctoral reseach presented wants to be a step on the numerical modeling and consequent
physical understanding on the SRM internal ballistics phenomena for the entire combustion
time, which define the SRM performance and consequently its mission capabilities. Accurate
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SRM performance models and prediction capabilities may, in fact, reduce the huge experimental
costs necessary for SRMs design and development.

The approach considered is to use reduced models for the complex interacting physical and
chemical phenomena that affect the combustion chamber conditions of a Solid Rocket Motor,
rather than direct, unfeasible, prime principle approaches. In fact, several key physical phenom-
ena are not still well understood. With the current state of the art of the numerical simulation
tools for the internal ballistics, indeed, even nominal performance prediction is still not possible
in many cases, because of the too simplified internal ballistics simulation models considered
up to now. As a matter of fact, in the open literature it is difficult to find Q1D studies of the
SRM internal ballistics for the entire combustion time, from motor start up to burn out which,
as the one that will be proposed in this work. At the present computational power available, in
fact, these models are the only way to perform numerical simulation for the whole combustion
time. Thus, the numerical simulation of the SRM internal ballistics is typically focused on the
QSS phase and the TO phase with the use of simple oD quasi steady or, at the most, unsteady
models. But these models are not able to describe some key phenomena, that may strongly affect
the SRM behaviour.

The objective proposed must certainly face the problem of the study of the 3D grain surface
evolution in time, due to the grain regression, defined by its combustion. In fact, these phe-
nomena principally lead the SRM internal flowfield conditions during Quasi Steady State and
Tail Off. This last achievement certainly opens a wider scenario in terms of more complex inter-
nal ballistics simulations, which can be done in order to have a better understanding of some
time-limited phenomena that can affects the SRM behaviour.

The final objective of this work is, hence, to develop and present a Q1D SRM internal ballistics
numerical simulation tool, coupled with a 3D grain burnback simulation model. The internal
ballistics model is able to perform SRMs internal flowfield conditions simulations and analyses,
predictions and reconstructions of the SRM behaviour, for the whole combustion time of a given
SRM.

1.7 STRUCTURE OF THE WORK

The present Ph. D. Dissertation is organized, excluding this introductory chapter, as following:

@® PART I: SRM INTERNAL BALLISTICS MODELS AND NUMERICAL SIMULATION: it de-
scribes the internal ballistics mathematical, physical and numerical models, necessary to
describe all the main driving phenomena of the SRM combustion chamber flowfield condi-
tions.

@ CHAPTER 2: SPINBALL MoDEL: it presents the Solid Propellant rocket motor Inter-
nal Ballistics, by a physical, mathematical and numerical point of view. It considers
the background work status and the developments carried on during this thesis work,
in order to make the numerical simulation of the internal ballistics for the SRM igni-
tion to burn out.

@ CHAPTER 3: GREG MoDEL: this chapter deals with the problem of evaluating the
evolution of the grain burning surface during time. It illustrates the main require-
ments that must be fulfilled by the technique chosen and the mathematical properties
of the problem of tracking interfaces and in particular, the application to the grain
burning surface evolution. A brief review of the state of the art in grain burnback
models is also made, and the technique developed during this work is presented,
remarking the main advantages and drawbacks. In particular, the techniques devel-
oped to describe the complex 3D grain propellant shape and to evaluated the grain
geometrical properties during its evolution in time are extensively discussed.

@ CHAPTER 4: SPINBALL/GREG CourLING: it describes the way in which the grain
burnback model and the internal ballistics model have been coupled in this thesis
work, considering the potential possible coupling ways, with their limits of application
and possible consequences on the computed internal ballistics solution.
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® ParT II: RESULTS : this part shows and analyzes the results on this research activity
provided by the models described in the PART .

@ CHAPTER 5: GREG VALIDATION: it draws out the test cases performed for the
validation of the grain burnback model, starting from some literature test cases, a test
for the accuracy of the numerical scheme chosen and the ones made for the validation
of the technique for the evaluation of the grain geometrical properties.

® CHAPTER 6: GREG REesuLTs: this chapter is dedicated to the analysis of the results
obtained by the grain burnback model for the study of the 3D evolution of the grain
burning surface in time for three SRMs.

@ CHAPTER 7: SPINBALL REsuLTs: it describes the analysis of SRMs internal ballis-
tics numerical simulations of three SRMs, yielded with the numerical tool devised in
this thesis work.

@® CONCLUSIONS : it presents the conclusions of the work performed.
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SPINBALL MoODEL

IN this chapter the physical, mathematical and numerical models of the Solid Propellant rocket
motor Internal Ballistics (SPINBALL) model for the internal ballistics numerical simulation
of the entire combustion time, from motor start-up to burn out, are presented.

The attention will be particularly focused on the models which describe the driving phenom-
ena over the IT: the gasdynamical model, the cavity model and the burning rate models, partially
developed during this thesis work. The other sub-models that are part of the SPINBALL model,
as heritage of the Solid Propellant rocket motor Ignition Transient (SPIT) model, will not be dis-
cussed. But they will be briefly mentioned for completeness and clarity in the following section
2.3, page 25, as they are not fundamental parts of this thesis work. Detailed descriptions of
these sub-models can be, however, found in the works [80; 76; 75; 66; 67]. In fact, the SPINBALL
model, devoted to the numerical simulation of the entire SRM combustion time, is an evolution
of the existing SPIT model, which is instead tailored to the numerical simulation of only the IT.

The grain burning surface evolution model is not directly embedded in the SPINBALL model.
It will be discussed in the chapter 3, page 32. While the possible integration and coupling
ways of the gasdynamical models of SPINBALL and the grain burnback analysis model will be
analyzed and described in the chapter 4, page 79.

21 GASDYNAMICAL MODEL

The phenomenological description of the internal ballistics flowfield features during the overall
combustion time, divided into Ignition Transient, Quasi Steady State and Tail Off, made in
paragraph 1.2, page 2, points out the main modelling capabilities, that the gasdynamical model
must describe.

The presence of different gases (igniter, pressurant gas and grain combustion products) is
particular important for the description of the IT phenomena, together with the ability of the
gasdynamics to capture strong unsteady and discontinuous flowfield features. In fact, both the
propagation velocity of the pressure waves and of the contact discontinuity and their energy
content can be altered, if the mixture nature of the bore gases is not taken properly into account.

In the same time, the possibility to consider the variations with the pressure of the grain com-
bustion products mixture thermophysical properties, and the ones due to the non-ideality of the
grain combustion processes, can be important during all the QSS and TO, since the flowfield
pressure condition may have a wide range of variation from the reaching of QSS conditions to
the motor burn-out. Moreover, the gasdynamical model formulation must take into account the
bore geometrical variations due to the grain burning surface evolution in time and, in case of
the nozzle geometrical evolution, due to relevant ablation phenomena of the nozzle Thermal
Protections surface.

The SPINBALL gasdynamical unsteady Q1D model is based on the assumption of an Eulerian
unsteady flowfield model with mass, momentum and energy addition and geometry evolution
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2.1 GASDYNAMICAL MODEL

in space and time. The SRM geometry is represented in the Q1D view of the problem with the
converging and diverging part of the nozzle, while the cross sectional area does not account
for the possbile presence of grain slots, floaters channels and submergence regions. The effect
on the Q1D flowfield conditions are represented as source terms in the Q1D mass and energy
equations (see paragraph 2.1.2, page 18). The thermophysical properties of the bore mixture are
considered variable in both space and time during the numerical simulation, with a mixture ther-
modynamics standard model, as described in the following. The assumption of a one-phase (gas
only) mixture of non-reacting perfect gases is also made, assuming that all the grain combustion
chemical reaction occur in an ideal thin layer on the grain propellant surface. The mass addition
of the grain propellant and from the slots, floaters or submergence regions is considered with
zero axial momentum, while the igniter jets effects on the momentum equation are taken into
account with an igniter sub-model.

Unlike the gasdynamical formulation used in SPIT, named 3-gases formulation, where there
are considered three mass conservation equations, one for each single species of the mixture
(igniter combustion products, pressurizing gas and propellant combustion products), and the
problem is focused on the concentration transport of species, in SPINBALL the point of view is
quite different. In the 3-gases model, in fact, the thermophysical characteristics of the mixture
is given by a weight average of the thermophysical parameters of the single species, assumed
to be spatial and time constant, with weights, the concentrations of the single species present in
the generic cell, at the considered time . Hence, the thermophysical characteristics of the bore
added gases are considered constant too.

Focusing again on the SPINBALL gasdynamical model formulation and assuming the previ-
ous hypothesis, the conservation equations for an compressible mixture of gases is are a set of
differential equations composed by: six mass conservation equations for each mixture compo-
nent, one momentum conservation equation and one energy conservation equation for the gases
mixture present in the bore (see equation 2.1); closed by perfect gases equation.

msAp  MigAp

0 (piAp) n 0 (piuAp)
Vv Vv

m ox fori=1,...,6

d(puAy)  O[(pu?+p)Ap]  0A,  MigApVing 1 5 (2.1)
TR ox TP T v TP '

9 (pEA}) n 9 [(pE+p) uA,]

migApHig n msApHs
ot 0x

=TpPpppHy + v v

Equation 2.1 is a system of hyperbolic Partial Differential Equations, characterized by strongly
non-linear source terms, for which the following remarks are given:

® the source terms including s are non zero in the flow regions nearby the grain slots,
floaters or submergence zone

@ the source terms accounting the mass, momentum and energy due to the igniter ;4 are
non-zero only in the its control volume, defined by the igniter and impingement region
sub-models

@ the source terms due to grain propellant combustion products inlet are non-zero when the
propellant is ignited (which is defined by an ignition criterion)

@ the friction term in the momentum equation are non-zero only in the nozzle and on the
propellant surface when it is not still ignited

The formulation considered in SPINBALL, named infinite-gases formulation, is not interested
in the spatial and time evolution in the chamber of the single mixture gas (igniter, pressurant or
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2.1 GASDYNAMICAL MODEL

propellant combustion products), as the one in SPIT does. In fact, it makes an evaluation of the
mixture properties present in each cell, space and time variables, considering the mass fluxes of
the mixture coming from adjacent cells, located at the left and right of the considered one, and
from the sources terms from the grain combustion reactions, the igniter and the cavity model.
Thus, the thermophysical properties of the mixture in a generic cell is given by a weigh average
of the gases mixture coming from left-right cells and source terms, with coefficients defined by
concentrations of each mixture present in the cell at considered time marching step.

In fact, really the implementation of the six mass conservation equations in equation 2.1 hides
the so called infinite gases formulation for the mixture gas components, as will be explained in
the following.

gas mixture
cell j-1

Figure 2.1: SPINBALL infinite-gases model

Naming with the indices illustrated in figure 2.1, respectively:
@ 1] for the generic (j)-th cell
® 2 for the (j — 1)-th cell

3 for the (j + 1)-th cell

4 for the propellant combustion products gases

5 for the igniter combustion products gases
@ ¢ for the cavity exchanging mixture gases

we have the six mass conservation equation shown in equation 2.2, where the sources terms
are generically indicated with the symbol p.

9 (piAyp) . 0 (piuAp)
ot ox

The global mass equation written in 2.1, is simply obtained by equation 2.2, considering equa-
tion 2.3.

=P fori=1,...,6 (2.2)
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2.1 GASDYNAMICAL MODEL

6
p=) b (23)
i=1

In order to understand how the mixture formulation is able to deal with thermophysical
properties variable in space and time, we consider the equation for the mass conservation in a
discretized manner. Thus, the single equation for the i-th gas of the mixture can be discretized in
a conservative fashion integrating in space over the meshgrid cell and over time in the timestep
(as made in paragraph 3.4.1, page 44), as shown in equation 2.4 .

(AP = (AR} — 25 [(owuAp), ) — (ouAp) 1] +(00F  ¥i=1,..6  (@4)

For every timestep, it is supposed that the system is constituted by six gases, of which three
purely advected and the other three purely added to the main flow. The initial condition for
every timestep is that, focusing the attention on the j-th cell, it is defined only by the gas mixture
1, while the left and right cells, respectively by mixtures gases 3 and 2. Now, considering the
following simplification due to the nomenclature used for the indices and given the interface
velocity values for the solution of the Riemann problem (see paragraph 2.4.1, page 30), we have
that:

1. generic (j)-th cell

n . < x < X.
p?{ P; forx)i%\x\xw%

0 otherwise
p1 =0 Vx
(P1uAp)t { O iy <0 9
i+ (PU—AP)H% if U')'+% >0
N 0 1fu;1 1 >0
_ —z
(P1uAp)i” (puAp); 1™ iful ; <0
2 )=z
2. generic (j — 1)-th cell
o p)T‘_1 for X3 <x < X1
2 0 otherwise
pz :0 VX
| (2.6)
(pzuAp)H%:O Vjvn
A —z
(p2u p)J L (PuAp)inf% — (pzuAp)?H =0 if uin*% =0
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2.1 GASDYNAMICAL MODEL

3. generic (j + 1)-th cell

n
p?z{ i1 forxH%gxng%

0 otherwise
(2.7)
() ifu)T‘Jr] >O
Ap)lt 1 = .
P T (ouapy = oauAp T =0 it <0

(ngLAp);L%ZO Vi vn

4. propellant combustion products gases source term (depending on the grain ignition and
presence ')
py =0 Vjvn

04 70 pa = pp (TpPp);" Ax Vx

(2.8)
(P4UAp)?+%=O Vjvn

(pauAp)t 1 =0 Vjvn
P i—7

5. igniter combustion products gases source term (depending on the igniter and impingement
region model)
pr =0 Vjvn

p5 70 x

(2.9)
(psuAp)fl y =0 Vjvn
(psuAp)fl 1 =0 Vjvn

6. cavity exchanging mixture gases source term (depending on the cavity presence')

pg =0 Vjvn

pe #0 Vx

(2.10)
(PeuAp)fl y =0 Vjvn

(PeuAp)f 1 =0 Vjvn

Once evaluated the density partials values at the next timestep, we use equation 2.3 to update
the overall mixture density and we evaluate the new concentrations of gases present in the
generic cell by equation 2.11.

n+1
T Pi;
T T
P;
Then we evaluate the new thermophysical properties of the mixture of gases present in the
generic cell, as defined by equation 2.12, the gas mixture constant and the generic specific heat

(at constant pressure or volume) and then all the derived quantities.

(2.11)

1 see reference [80] for more details
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6 6 piTL+1RTL
n+1 _ n+lpn _ ) 1
Rt = e =y M
i=1 i=1 )
6 6 pntlcn
n+1 _ n+leon ) 1
CrHl=) e iCl =) — (212)
im1 i-1 P
6 6 pin+1 e
n+l _ N+l ) t
g =Y e =3
i=1 i=1 j

At last, we set the condition for the new iteration.

Thus, this approach allows to consider the presence in the bore of a non-reactive mixture of
perfect gases with thermophysical properties variable in space and time, as the thermophysi-
cal properties of the source terms can be variable and the mixture content and thermophysical
properties in each cell is update at every timestep. Consequently, it makes possible to evaluate
the variations with pressure of the thermophysical characteristics of added gases from grain
burning processes, supposing that the chemical equilibrium is reached. But even, through com-
bustion efficiency, the non-ideal equilibrium point of chemical burning reactions, that brings a
variation from ideal conditions of the source terms properties. Moreover, this approach allows
to consider, in potential, also the low but present mass addition into the bore caused by the cas-
ing Thermal Protections consumption due to ablation phenomena, related to their discovering
and chamber hot gases exposure, as the grain is consumed during time, if a suitable model is
introduced. The grain combustion products thermophysical properties, in fact, as well as the
combustion products enthalpy, are evaluated depending on local pressure value, taking into ac-
count the combustion efficiency, through the access to chemical equilibrium tables, generated
starting from the known grain propellant composition by chemical equilibrium models [38; 44].

2.1.1 INITIAL AND BoUNDARY CONDITIONS

As the Solid Propellant rocket motor Internal Ballistics model considers the numerical simula-
tion of the internal ballistics for the entire combustion time, the Initial Condition (IC) are very
simple to be imposed, since they are the physical and geometrical conditions of the SRM at
motor start-up. Hence, the geometrical Q1D configuration of the motor is set up starting from
the grain, nozzle and igniter geometrical data. While the other initial conditions are only related
to the initial state of the pressurizing gas, that typically has a pressure slightly higher that the
atmospheric pressure in order to preserve the chamber inner environment.

For what concern the BC, wall Boundary Conditions (BCs) are initially assumed at both the
head-end and the nozzle throat, in order to simulate the typical presence of the nozzle seal,
which scope is to protect to combustion chamber environment from the atmospheric or external
agents. When a prescribed differential pressure is reached (which is typically a design parameter
of the nozzle seal), the nozzle diaphragm is removed and the external pressure value is defined
at the nozzle exit section. Then, supersonic outflow BC is imposed with an extrapolation of the
solution from the inner flowfield, since for all typical SRM configurations, immediately after the
nozzle seal rupture, sonic conditions at the nozzle throat are reached.

2.1.2 CaviTy MODEL

The evaluation of the evolution for the cavities, so that slots, floaters and submergence region,
is obtained by means of the conservation equations volume averaging over the cavity, based
on the experimental and theoretical evidence that these regions are characterized by small flow
velocities with typical generation of flow recirculating zones. The resultant model, so called oD
model of the cavity, is defined by the mass and energy equations that bring to a system of two
Ordinary Differential Equations (ODEs). This model is an adaptation of the one implemented
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2.1 GASDYNAMICAL MODEL

in the SPIT model (see Ref. [80]), to take into account the formulation with thermophysical
properties variable.

For simplicity we consider a cavity whose length is exactly equal to one meshgrid cell defined
by the chamber discretization by the Q1D flowfield model, as represented in figure 2.2.

mesh cell

—————— | main flowfield motor axis _

pG) TG

\/

/S > _Ulteifa(;e

 grain /

propellant

/)

Propellant @
combustion P T
cav
products

\

combustion

\< ducts

Inhibited propellant

cavity

s

Figure 2.2: Cavity model sketch

propellant

Knowing the core flowfield conditions in the cell j-th of the Q1D computational mesh at a
given timestep n, we call the thermodynamics cavity fluid state with p{,, Tl, and pg,,. Note
that in a consistent manner with the infinite-gases formulation of the mixture in the combustion
chamber, we consider the mixture properties of the cavity known at timestep n, indicated with
index 1 (see figure 2.2). We have to evaluate the evolution of the cavity thermodynamics state
and mixture thermophysical properties at the next timestep n + 1 and the energy and mass
exchanging with the bore indicated with index 2 (which is seen by the infinite-gases formulation
of the Q1D gasdynamics model as source term 6). Moreover, the propellant combustion products
gas inlet is known, active if the grain propellant inside the cavity is ignited otherwise zero, and
named with index 3. In this manner, in fact, as for the given formulation of the Q1D unsteady
Euler equations, we can take into account the variation with pressure and combustion efficiency
of the thermophysical properties of the grain propellant combustion products. Hence, at the
generic given timestep in the cavity, we have only the mixture of gases indicated with index 1.

The coupling between the flowfield evolution along the chamber and the state evolution inside
the cavity is given by the evaluation of the mass and energy exchange, as a function of the
pressure jump at their interface. Since conservation equations are averaged on the cavity volume,
the amount of the mass exchange is calibrated, in order to obtain a delay corresponding to a finite
mass transfer velocity, as in real conditions.

The pressure inside the cavity at the next timestep is, hence, evaluated by equation 2.13, where
« is the calibration coefficient to tune the finite mass and energy transfer velocity.

p?(jv] = p?av - (pgav —-P ())n) (2.13)

Once we have an evaluation of the pressure inside the cavity, we can obtain also the variation of

the cavity enthalpy from timestep n to n+ 1, as defined by equation 2.14, where the single terms

n

are also expressed respectively, HZ,, the cavity enthalpy at the timestep n, H,. the enthalpy
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inlet by grain propellant combustion products and HZ{,! the cavity enthalpy at the timestep

n+1.

AHcav = — (Hgav + HDT - HI:LCJ{V])

n _ ~T n n
Hcav - Cpcﬂv "Meay 'Tcav
(2.14)
ng:r{)‘~ bop -At-TH
mn
n+l _.n | n+1@
H =c
cav Pcav Pcav R
cav

Now, by the sign of the AH¢ .y, it is possible to obtain the direction of the flow across the ideal
interface cavity-core due to the Q1D modelling of the combustion chamber.

® if AHcqy >0
We have a mass and energy spillage from the chamber to the cavity, and the updating of
the total mass of the gas mixtures 1, 2 and 3 is given in equations 2.15, 2.16 and 2.17.

Ameay, — 0 (2.15)
AHcqv

Am, = 2.16

v = L HT0) (2.16)

AMeay; =TpSpPp - At (2.17)

® if AHeqv <0
We have, as opposite, a mass spillage from the cavity to the chamber, and this time, the
updating of the total mass of the gas mixtures 1, 2 and 3 is given in equations 2.18, 2.19

and 2.20.
AH
Ameay, = % (2.18)
Pcav Cav
Amcay, =0 (2.19)
Amca\zg = TES{,‘pp At (2.20)

Hence, the single mixture of gases total masses in the chamber can be updated together with
the cavity total mass, density and temperature, and the new concentrations for the cavity mixture
components evaluated (see equations 2.21, 2.22, 2.23, 2.24 and 2.25)

n+1 n :
Mgy, = Méqy, T AMeay;  fori=1,...,3 (2.21)
3
n+1 _ § n+1
Meay = Meav; (2-22)
i=1
n+1
n+1 _ Mcav
PR = TS (223)
cav
. pn+1
n _ cav
cav. T onal . nid (2.24)

Reav - Peav
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+1
my,
n+1 cavy
Ceavi = i1 (2.25)

cav

Thus, by the concentrations, it is possible to evaluate the mixture thermophysical properties,
as given by equation 2.12, and for all the derived quantities.

Hence, the mass source term for the cavity interaction with the Q1D flowfield representation is
given by equation 2.16 or equation 2.18, depending on the sign of H 4+ and shown in equations
2.26 and 2.27. While the energy source term is given directly by equation 2.14 divided by the
term AxAt.

AHcay

g = if AH <0 .
s CpcavTc av - AxAt ! cav (2 26)

T‘h, _ A.I—{CG.V
* T cp () T() - AxAt
At last, the cavity properties are rearranged in order to give the initial formulation of the

mixture present in the cavity for the next timestep (so all the cavity gas is represented by the
index 1).

if AHcqyv >0 (2.27)

22 BURNING RATE MODEL

The combustion phenomena and mechanisms of solid propellants are quite complex and depen-
dent on many local fluid dynamics, chemical and thermal conditions to which the combustion
process occurs. Hence, far from deepened studies on combustion processes [53; 61; 63; 24; 371,
many propellant grain combustion model used for internal ballistics numerical simulations are
simplification of these dependencies, retaining the main ones. Focusing the attention on the
macroscopic results of the combustion phenomena given by the grain propellant regression rate,
so called grain burning rate. The grain burning rate can be defined as the the grain regression
distance per unit of time, perpendicular pointwise to the grain burning surface. In particular, a
wide assumption is to not consider at all the complex physical and chemical processes occurring
at the propellant surface nearby the combustion region, assuming in the chamber a non reacting
mixture of perfect gases, given by the grain combustion products at the chemical equilibrium.
Hence, the models for the grain burning rate, as the most important effect for the internal ballis-
tics, are typically given by semi-empirical expressions, where some experimental investigations
parameters must be evaluated and imposed for the grain propellant considered. Thus, the over-
all grain burning rate can be seen as the superposition of different effects, related to different
and separated phenomena that can describe the combustion processes. So the burning rate can
be split into three separated components: the quasi steady term, related to motor pressurization,
a non-linear unsteady term, dependent mainly on the pressurization rate and the erosive contri-
bution, related primarily to the crossflow flowfield velocity.

In Q1D models for the SRM internal ballistics simulation, the efforts of a more accurate inter-
nal ballistics model than oD ones, can account for effects related to the erosive burning, that oD
model can not describe at all. While the other two terms can be potentially modeled by both the
internal ballistics models.

The burning rate model adopted in SPINBALL, partial heritage of the SPIT model, is based
on the classical assumption that all the chemical reactions are very fast and occur in an ideal
thin layer, located at the surface of the solid propellant. The total burning rate is assumed
as the sum of a term dependent on the pressure, given by the classical APN expression, and
an erosive term dependent on the gas flow rate, with the classical formulation due to Lenoir
Robillard (LR)[4] (with the corrections due to Lawrence[10] and Beddini[15]), which will be
discussed in the following. A separated section is, instead, briefly dedicated to the dynamic
burning, based on the Zeldovich-Novozhilov (ZN) model, which is not yet implemented in the
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internal ballistics model, since in some discussed results in the chapter 7, page 130, it will help
the understanding of the yielded achievements, in comparison with the published ones.

2.2.1 QUASI-STEADY BURNING RATE

The most utilized quasi-steady pressure dependent model to predict solid propellant burning
rate is the so called APN model, which is a semi-empirical model. The APN model considers
the grain burning rate quasi-steady term as dependent on the mean local pressure, as given by
equation 2.28, named De-Vieille Saint Robert law.

T = a( La )“ (2.28)

Pref

Two semi-empirical parameters are introduced a and n which main dependencies are ex-
pressed in equation 2.29 for a given propellant.
a=a(p,Ti) = arefecp(TiiTTef)
(2.29)
n=n(p)

Typically, the a and n empirical coefficients are considered constant for wide pressure ranges,
and are experimentally evaluated in given pressure ranges, by means of the Crawford Bomb or
the BARIA testing. The introduced modeling for the grain initial temperature T; dependence
of the a parameter, defines the propellant temperature sensitivity, as related to o}, coefficient,
that must be evaluated experimentally too, together with the a,.¢ parameter at a reference
temperature T,c¢.

2.2.2 EROSIVE BURNING CONTRIBUTION

The erosive burning effects become important in SRMs with high gas crossflow velocities and
can strongly affect the SRM internal ballistics and performances. They define, in fact, an increase
on the quasi-steady burning rate, especially during the IT and also in the first part of the QSS,
for certain SRM configurations. This typically occurs in SRM with large length-to-diameter ratio
and low port area-to-throat area ratio and grain designed with star-aft configurations. More-
over, the occurrence of relevant erosive burning can define in unpredicted pressurization of the
combustion chamber and unequal web consumption of the propellant. These effects can heavily
modify the combustion surface evolution in time and result in a early exposure to hot gases of
parts of the motor case.

The erosive burning mechanism is believed to be caused by the increase in the gas to solid
heat feedback and by the turbulence enhanced mixing and reaction of the oxidizer or fuel rich
gases pyrolyzed from composite propellants [22; 24].

The erosive burning mechanism is quite complicated and, hence, many correlation theoretical-
experimental activities have been carried out in order to have a deep understanding of the
phenomenon [94; 48]. Notwithstanding, a very simple and successfull used model for the erosive
burning is the Lenoir Robillard model [4], that considers the main cause of the effects related to
an additional heat flux to the propellant.

The model assumes a splitting of the heat transfer to the grain propellant from the flame
zone into two separate independent mechanisms. The first is the heat transfer from the primary
burning zone, that depends only on the pressure local value (that can be modelled in term of
contribution to the burning rate with the APN model). The second one is due to the combustion
gases flowing over the surface and is only related, as stated before, to the crossflow velocities.
Since, these two mechanisms are assumed to be independent, the two burning rate terms are
additive 2.30 [108].

Tb =Tb, + T, (2.30)
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The erosive term for the LR model can, hence, following [4], be expressed by the equation 2.31,
where the  parameter can be assigned from empirical data or evaluated with equation 2.32.

(ou)08 —ProPy
To, = g5 € pu (2.31)
1 Ti—Tg

_ 0.2p.—2/3

o = 0.0288C,u " “Pr 7910 Cor T (2.32)

The equations 2.31 and 2.32 allow to evaluate the erosive burning contribution using only the

empirical value of the 3 parameter. This parameter accordingly to [4] is assumed to be 53; while
instead Lawrence et al. [10] use different values of this parameter to fit the experimental data.

However, it is known that for large scale SRM, the LR model overpredict the erosive burning

term [10; 15]. In particular, the overprediction has been attributed to the use of the distance from

the SRM head end for evaluating the Reynolds number characteristic length L in equation 2.31.

Hence, Lawrence et al. proposed a slight modification of the original Lenoir Robillard model,

that was found to be more accurate for large-scale SRMs. This modification replaced the axial

distance L with the hydraulic diameter Dy, as expressed in equation 2.33.

Bryep
u 08 _——*+

(pu)
S .

Tp, = &

Where the expression of the hydraulic diameter is given in the equation 2.34, using the wet
perimeter and the port area.

_ Ay
-~ Pu

A further improvement of the LR model is given by Beddini [15], in order to retain the original
LR model and further improve the model ability to predict the erosive burning effects on large
SRMs. It considers, again, the substitution of the L length with an empirical fitted function,
dependent on the hydraulic diameter, given in the equation 2.35.

Dy, (2.34)

f(Dp) = 0.90 + 0.189D, [1 + 0.043Dy, (1+0.023Dy, )] (2.35)

2.2.3 DyNaMIC BURNING RATE

The dynamic burning rate term represents a correction to the quasi-steady burning rate model,
in order to account the effects of non-steady combustion processes, due in particular to unsteady
phenomena occurring in the combustion chamber. Hence, the effects of the dynamic burning
must be expected to affect only transient phenomena of the SRM internal ballistics, thus: the
propellant ignition and initial pressurization during the IT, the tail off phase and possible motor
pulsing related to motor acoustic instability.

A very simple, but in the meantime, smart model to describe the non-quasi-steady burning
rate term in represented by the Zeldovich-Novozhilov model for the dynamic burning. It pro-
vides a simple way to represent the conductive heat feedback from the surface to the gas phase
[63], that modify in some manner the grain propellant combustion processes.

In the steady state, or the quasi steady state burning laws for the grain propellant, we have
that, in the assumption that the condensed phase is transformed into gaseous products in an
infinitely thin layer, the grain burning rate and the surface temperature of the grain burning
surface are known as functions (theoretically by flame models or experimentally) of the pressure
and the initial grain temperature (equation 2.36).
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Ty =Ty (P, Ti)
(2.36)
Ts=Ts (p, Ty)

We consider now the 1D steady heat equation with a moving interface, expressed by 2.37 with
the required BCs.

aT a’T
PrTo g = ko g2
T(—o0) =T
T(0)=Ts (2.37)
dT
ko —
di-r _ ’ dx x=0+ " pper
dx x=0" a %p

The equation 2.37 has an analytic solution in terms of temperature profile and heat flux at the
interface x = 0, as given by equation 2.38.

TpX
Tx)=Ti+(Ts —T)er
(2.38)
dT T
o =T
X |x=0+ Xp

Assuming that is not possible to use steady-state relations 2.36 directly in the theory of non-
steady burning, the key point of the ZN model is the following. The instantaneous state of the
gas-phase chemical reaction zone and the thin condensed phase in which chemical reactions
occurs, by no means depend on the temperature profile far from these regions [45]. Hence, to
consider the unsteady process it occurs to introduce, instead of the dependence on T;, some other
parameters of the condensed phase, that directly affects the combustion regions. This parameter
is identified in the surface heat flux. Therefore, the Zeldovich-Novozhilov model assumes and
consists of using the steady burning laws and the integral energy equations to transform the
steady burning laws into a from valid for the non-steady burning [108], by modifying just the
dependence from the T; parameter.

In the unsteady case, in fact, the heat equation with the unsteady term brings to the integral
expression given in equation 2.39 (by a simply integration over the condensed phase region).

0
% J_oo Tx)dx+1y (Ts —Ti) = ap 3—1- o (2.39)

We rearrange the equation 2.39 in a form similar to the expression of the heat flux in the quasi-
steady case, as expressed by equation 2.38, as this is the leading parameters of the phenomena.
Hence, in order to account the non-steady regime in the combustion processes, we introduce a
modification of the parameter grain initial temperature T; (see equation 2.40), with the introduc-
tion of an initial apparent temperature of the grain propellant, T;,. This quantity accounts for
the unsteady energy accumulation in the condensed-phase region, due to the heat feedback, to
the surface, from the gas phase.

T :T-—16JO T(x) dx (2.40)
1a 1 T'b at o '4

As stated before, in fact, the instantaneous state quick response of the grain combustion is

defined by the pressure and the temperature gradient at the interface of the condensed phase,

without setting a limit on the type of burning regime (steady or non-steady). Therefore, the

dependencies expressed for the steady burning are still valid for the unsteady burning regimes
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with a correction on the T; parameter, as expressed in equation 2.41. This correction, in fact,
accounts for the variation in the unsteady regimes of the surface heat flux in the condensed
phase.

19 (°
™o =Tp (P, Tia) =Tb (P,Ti— EEJ' T(x) dX)

(2.41)

—0oQ

10 (°
To =T (b, Tia) = Ts (p,Ti—TbatJ T (x) dx)

Hence, in order to evaluate T;,, we must solve the 1D Fourier unsteady equation in a moving
boundary, with given and imposed IC and BCs and couple the two timesteps of the Fourier
equation of the gasdynamical solver. When the dynamic model converges to quasi-steady state,
the Fourier equation solution can be avoided at all in the numerical algorithm, as the dynamic
burning effects are negligible in quasi steady regimes.

In particular, in [108] the APN law modification is made with the expression given in equation
2.42.

B T —Tq
T, = APN (Ts T ) (2.42)

We stress the reader that this model is not yet implemented in the SPINBALL model. However,
it is described for reasons of clarity and completeness, with respect to the results that will be
discussed in the chapter 7, page 130.

23 SPIT HERITAGE SUB-MODELS

The sub-models able to describe the IT phenomena will not discussed in this thesis. But as part
of the SPIT, and consequently with some small algorithmic differences present in the SPINBALL
model, they will be here briefly discussed (for more details see [8o; 76; 75; 66; 67]):

@® an IgNITION CRITERION for the solid propellant based on a temperature pressure depen-
dent of combustion phenomena activation;

@ an IGNITER MODEL to simulate the presence of the igniter, its configuration, its operative
conditions and its interaction with the chamber environment, as it has a strong impact on
the ignition sequence, and consequently on the chamber pressure time history, during the
IT;

® a HEAT TRANSFER MODEL between the propellant grain and the combustion chamber
gases, by convection and radiation, where local convective heat coefficients are evaluated
with different models, depending on the chamber region (impingement region or standard
region);

@ a ConpucTION HEAT TRANSFER MODEL into the solid grain propellant to characterize
the propellant surface heating, and hence, ignition.

24 NUMERICAL INTEGRATION TECHNIQUE

The numerical discretization method to discretize the PDE system 2.1 of the Q1D unsteady
flowfield model is a finite volume Godunov scheme first or second order (Essentially Non
Oscillatory (ENO) scheme) accurate, coupled with an exact Riemann solver. In particular, the
exact Riemann solver is modified to take into account the presence in the chamber of a mix-
ture of different gases (see paragraph 2.4.1, page 30). The main characteristics of this method
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2.4 NUMERICAL INTEGRATION TECHNIQUE

are the robustness and the capability to deal with flowfield affected by propagation phenom-
ena with strong discontinuities and source terms. The former becomes very important in order
to adequately represent the strong unsteady and complex interacting propagation phenomena
that occur during the Ignition Transient. While the latter is necessary in order to have a robust
numerical method, for integrating the Q1D Euler equations, with the time and space variable
source terms, even with wide variations, due during all the Quasi Steady State and the Tail Off
to the grain propellant combustion processes.

Obviously, the accuracy in describing the shape, strength and the propagation velocity of the
flow discontinuities during the IT is related to the spatial and time resolution adopted. In the
same manner, the accurate description of the grain geometrical evolution is defined by a proper
representation of the SRM flowfield conditions. Over the IT they are affected by the bore geome-
try due, mainly, to grain recession in time, whose accuracy is certainly related to the spatial grid
resolution and not to time resolution (the flowfield characteristics times are much smaller than
the geometrical variations characteristics time). Notwithstanding in this operative phase, the
numerical simulation must properly describe the flowfield phenomena related to SRM natural
frequencies (acoustic and/or combustion instabilities), which can, in a such manner potentially
be analyzed and studied. In every case, both phenomena must be accurately represented in
principle, in order to obtain and accurate numerical simulation of the internal ballistics for the
entire combustion time, with the former constraints more stringent than the latter.

For motor lengths ranging from 5 to 40 meters, a reliable simulation can be obtained with a
number of cells ranging from 100 to 1000 [80]. In fact, considering a wave propagation velocity
inside the combustion chamber ranging from about 300 to 1700 meters per second, about 25000
timesteps are needed for the numerical simulation of 1 second, and such spatial and temporal
discretization can accurately describe unsteady phenomena and the SRM natural frequencies
along the longitudinal axis (from 5 to 200 hertz).

The fundamental features of the Godunov methods relies on the fact that the discretization
of the conservation equations is obtained directly from their mathematical properties of the
integrated PDEs. In such a manner, even in problems with strong discontinuities the entropy
satisfying weak solution of the starting PDEs is naturally selected. In fact, Godunov schemes
can be considered as a generalization of the characteristics based methods for problem with
discontinuities.

Without lack of generality, consider the Euler conservation equation written on a uniform grid,
as expressed in equation 2.43, where the conservative variables and fluxes are given respectively
by equations 2.44 and 2.45.

ou oF(u)

ot 0x =0

(243)
u(0,x) =Up (x)

P
U= pu (2.44)
pE

Pu
F=| pu?+p (2.45)
puH

This system, closed by proper Boundary Conditions, is a PDEs system, non-linear, unsteady
and hyperbolic, as the eigenvalues of the Jacobian matrix are all real (see equation 2.46).

_oF

AW =<

(2.46)

Now, integrating the starting PDE system in a generic space and time domain [xj_ %541 } X
[0; At], with some algebra we have the expression given by equation 2.47.
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Xi41/2 Xi4+1/2 t+At
J U (x,t+ At) dx — J U (x,t) dx + J [F (xi+1/2,t> —F (xiq/z,t)} dt=0 (2.47)
Xi-1/2 Xi—-1/2 t

510X 1 }
(equation 2.48), we have that the starting system of PDEs has a natural discretized time marzchingj
solution given by equation 2.49, which evaluates the average of the solution in a given domain, if
one assume a proper relation for the time integration domain and the spatial integration domain,
which guarantee that the interface fluxes does not change in the time integration interval.

Introducing the average of the conservative variables vector in the generic x domain {x

Xj41/2
— 1
upr =1 (t) = A J U (x,t) dx (2.48)
Xj_1,2
At
1_
U = U - = { ?+1/2_F?71/2} (2.49)

Hence, the basic idea is to discretize the space support x by means of N finite volumes of
width Ax (in general not uniform), see figure 2.3. Through this discretization we can find an
approximation U (x,t) of the exact solution U (x,t) by projecting the exact solution over the
discretized grid, as expressed by equation 2.51, where U; (t) is the average of the exact solution
at time t over the cell j-th and I; (x) is the “projector” of the exact solution over the cell j-th,
equation 2.50.

1 VYV s .
= {5 =
~ N j—
Uit =Y W) L (x) (251)

i=1
Analysing the time marching discrete solution of the starting problem, equation 2.49, we can
recognize the 3 steps that constitute the finite volume Godunov schemes:

1. RECONSTRUCTION of the variables at the cell interfaces.
2. local EvoruTion of the solution at the cell interfaces (to find interface fluxes).

3. time INTEGRATION of the cell average variables (via equation 2.49).

RECONSTRUCTION In the reconstruction step a certain distribution of the variables in the cell
must be provided. This distribution is used in the second step to evaluate the discontinue values
of the solution at the interface in a given timestep.

In the finite volume scheme proposed by Godunov [5] the distribution of the solution in the cell
was considered as constant (figure 2.4a), so that the solution itself is represented by a piecewise
constant function. This reconstruction is simplest and it corresponds directly to only project the
solution on the discretized grid, by the projector operator (see equation 2.50). So if a constant
reconstruction is adopted there no other calculations are necessary: the reconstruction is directly
the U* approximation. Using this kind of reconstruction the method is first order accurate in
space.

For a higher reconstruction accuracy its order must be increased. If a linear piecewise recon-
struction (figure 2.4b) is used for the variables, a second order accuracy in space is reached. In
this kind of reconstruction a slope in each cell must be provided. In particular the slope of the
linear cell reconstruction is selected with respect to the average value of the cell U; and of the
contiguous cell U;_7 and Uj 7. Since the linear cell reconstruction can originate spurious non
physical oscillations, known as Gibbs phenomenon [2], and thus an unstable computed solution,
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Solution U (xa t)

attime t i 1/2

Figure 2.3: Approximation of the U (x,t) Solution at time t

a slope limiter must be used in order to ensure the stability of the numerical scheme, so Total
Variation Decreasing (TVD) condition.

In order to avoid the generation of non physical oscillations the slope into each cell must be
compared themselves. It is useful to define the parameter r of equation 2.52, which shows di-
rectly if the slope reconstruction is generating spurious oscillation of the reconstructed solution.

WU

2.52
U -4, (2.52)

-
In fact, if r < 1 the slope into the cell must be properly modified (figure 2.5).
Hence, with a linear reconstruction of the conservative variables, we can simply express the
value of the discontinuous (left and right) reconstructed solution at the interface j 4+ 1/2, as in
equation 2.53, where the o variables introduce is expressed in equation 2.54.

Ax
L _
uj+1/2 =Uj + Gi7
(2.53)
R Ax
U2 = U1 =051~
U, — U
05 = =0 (1) -
2.54
Ujpo — Uy
Oi+1 = #‘P (ri-H)

The function ¢ (1) is the slope limiter that must be provided.
There are a lot of different slope limiters, among these the MinMod Limiter is considered (see

equation 2.55).

@ (1) = max [0, min (|r], 1)] (2.55)
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Figure 2.4: Some Types of Reconstruction Algorithms
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(a) Piecewise Linear Reconstruction without Slope Lim- (b) Piecewise Linear Reconstruction with Slope Limiter

iter

Figure 2.5: Reconstruction Algorithms with and without Slope Limiter

Evorurion In the local evolution step the vector of fluxes must be evaluated at the interfaces.
In fact, the reconstruction step has provided two values of the solution at the same interface
Xj41,/2° U]RH /2 of the solution reconstruction in the cell j + 1 at the space abscissa x;_ ; ,,- and

the value U]!-H /2. Teconstruction in the cell j at the space abscissa x; , ; ,+. These two values
constitute a Riemann Problem. The value of interface Eulerian fluxes F; /; (t) is determined
by the local evolution of this discontinuity and, hence, in order to evaluate the fluxes at the
interfaces, a Riemann Problem must be solved, as illustrated in paragraph 2.4.1, page 30.

INTEGRATION  If the solution of the Riemann Problem is constant between time t™ (initial time
of the Riemann Problem) and time t™ + At, the fluxes computed in the evolution step are also
constant in this time interval; so the equation 2.49 is operative and gives a time marching expres-
sion to compute the problem solution in time, giving the integration step.

All these 3 steps must be repeated for each cell and for the necessary timestep.

As announced before, during the reconstruction step, in order to guarantee the stability of this
numerical algorithm the time step At must be related in some physical manner to the spatial
discretization of the problem. From each interface Riemann problem, three waves are generated,
hence, evaluating the time step At must ensure that the waves originated from one interface do
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2.4 NUMERICAL INTEGRATION TECHNIQUE

not reach the contiguous interfaces, otherwise the interface fluxes solution is no more constant
(into the assumed At).

Imposing this condition, we obtain the so called
Courant Friedrichs Lewy (CFL) condition, naming At
with Aqmax the fastest wave speed originated by
the Riemann Problem, the time step At must sat- X
isfy the CFL condition given in equation 2.56. b

Ax
At™ < n (2.56) i B

max
I

For the Q1D PDE system, describing the SRM At !
internal ballistics the discretized version, equation !
2.1, is given in equation 2.57, where generically 1 * i
the source terms have been indicated with the J J J
symbol S, the i index is considered fori=1,...,6
and the implementation algorithm given in equa-
tions 2.5, 2.6, 2.7, 2.8, 2.9 and 2.10 has to be con- Figure 2.6: Evaluation of the Time Step At:

sidered to take into account the formulation with CFL Condition
thermophysical properties variable in space and
time.
+1
PiAyp " PiAyp "
PUA, = pPuA, +
pEA, ; PEA, ;
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2.4.1 RIEMANN PROBLEM FOR MIXTURE OF GAS

The exact Riemann solver has been necessarily formulated, in order to account the discontinuities
arising from the solution of the Riemann Problem for different gases. In fact, with both the
SPIT gasdynamics model and the SPINBALL one, the adjacent cells contain gases with different
thermophysical properties, the former due to the mixture of the three gases (pressurant, igniter
gases and grain combustion products), while the latter related to the formulation for mixture
of gases with thermophysical properties variable in space and time. Hence, for every Riemann
Problem that must be solved for the Evolution step in the Godunov finite volume schemes, we
have that the state left and right at each interface are characterized by different specific heat ratio,
gas constant, molecular weight, and so on.

Assuming that, at a given time (or timestep) in the Godunov algorithm, we focus the attention
on the left and right side of the generic cell interface, we know the fluid dynamics field of these
two interface values by means of the Reconstruction step, that we called state 1 and 4 (see figure
2.7).

Now, the quantities given by equations 2.58, 2.59, 2.60, 2.61 can be evaluated. Where a; and
a4 represent the speed of sound of the left right states respectively, v is the value of the specific

heat ratio of the gas mixture crossing the interface.
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2
RZI =1Uuq (’Y]]) aj (258)
RiIV=u < 2 >a (2.59)
1 4 v 4 59
_y-1
B = 3y (2.60)

-1 B
= (5,=) (&) () w5
Y4 —1 ar /) \ps
This last can be evaluated considering the initial values of the pressure of the left right states,
as expressed by equation 2.62.

_{ Y1 %fm > Pg (2.62)
va ifpr <ps

The standard iterative algorithm for the exact solution of the standard Riemann problem can
now be used, adopting as iteration variable the velocity of the intermediate states (2 and 3) [58].
For every interaction, the left-side and right-side waves are evaluated separately, verifying if they
are shock waves or rarefaction waves and hence utilizing the Rankine-Hugoniot or the isentropic
relations[58], across states 1 — 2 and 4 — 3, until convergence is reached. The left-side solution
gives the status 2 (py, p2,u2,v2), while the right-side solution gives the status 3 (p3, p3, u3,v3).
The iterative procedure is triggered by an initial guess for the velocity of the intermediate states,

as expressed by equation 2.63.

At
U
A
1
=l u+a
=
. 5, 3 shock or
=t rarefaction
shock or 2 §l wave
rarefacti '6”
wave It
3
=l
1 : 4
|
D1, P1, U1, 71 D4, P4, Usg, V4 x
Figure 2.7: Riemann Problem for a mixture of gases
Z-RrI+Ry1V
W=="2 TR (2.63)

1+7
Once the iterative solution of the problem is found, under a convergence condition related to
the satisfying of the equality p, = p3, with a given tolerance, the direction of the flow across
the interface is known, together with all the interface state flowfield properties, which allow to
evaluate the interface fluxes. Hence, by the information of the interface velocity, the correct in-
formation for the gas mixture evolution inside each cell is provided. Hence, its thermophysical
properties are evaluated, as given in the paragraph 2.1, page 13, where the SPINBALL gasdy-

namical model is presented.

31



GREG MoDEL

THIS chapter is devoted to present a grain regression numerical model developed under this
thesis work, based on the Level Set Method, named Grain REGression model (GREG). A
first part will introduce the needs for the internal ballistics numerical simulation of the study of
the grain burning surface evolution and the requirements the technique for the grain regression
must fulfill. An introductory part will consider the more general problem than the grain burning
surface evolution problem, of tracking of a general whatever complex surface subjected to a
general motion field, in order to understand the geometrical and mathematical properties of the
problem that must be faced. Then, a brief analysis of the Lagrangian and the Eulerian solution
approach will be pointed out, remarking the main advantages and drawbacks of the techniques
considered. Hence, the description of the Level Set Method by a mathematical and numerical
point of view will be made, with the problem formulation specialized for the grain regression
problem. In the following, the description of the technique for building the Initial Condition
and to define the Boundary Conditions of the LSM will be made, with particular attention to
the grain burnback problem. Thus, a brief analysis of the Narrow Band Methods and of the
Extension of the Velocity off the interface will be considered, to give a larger perspective of the
LSM applied to the grain propellant evolution problem. At last, a detailed description of the
techniques for the extraction of the integral properties of the 3D grain surface from its Level Set
representation will be considered. These techniques, in fact, are necessary for the coupling of
the grain regression model with the SRM internal ballistics models, in particular, oD and Q1D
models.

3.1 GRAIN BURNBACK ANALYSIS TO GO OVER IGNITION TRANSIENT

Focusing on the problem of the evolution of the grain burning surface with time, so called grain
burnback analysis, the following remark are due:

@ for the whole ignition transient it is possible to obtain an accurate prediction of experimen-
tal measurements neglecting the evolution of the grain burning surface and of the geometry
inside the bore. In fact, the grain geometry is approximately fixed to its initial shape dur-
ing this phase. Thus, as stated before, during the ignition transient, the chamber volume
variations and grain burning surface regression with time and space is a secondary phe-
nomena, that does not affect directly the SRM start-up. These statements find their proof in
different works that considered for the numerical simulation of different motors start-up,
a fixed geometry approach [103; 101; 97; 96; 90; 91; 84; 76; 75; 66; 67; 74; 80]

@ in the operative phases subsequent to ignition transient, the quasi steady state and tail off,
instead, the driving events of the internal ballistics and of the flowfield conditions of the
motor bore are led by the grain recession in time. By one part through the modulation of
the injected burning mass flow rate and by the other through the geometrical variations of
the chamber free space.

32



3.2 INTERFACES TRACKING PROBLEM

A secondary role, however in general not negligible on the internal ballistics and on the
motor overall performances is given by the liner, case and, especially, the nozzle thermal
protections consumption. These cause a geometrical variation, especially of the nozzle
throat area, but even a further mass addition with thermophysical properties different
from the grain combustion products, in the main core flowfield. All these phenomena
must necessarily be accounted in the modelling of the SRM internal ballistics.

The grain burnback analysis is defined as the study of the grain burning surface evolution
with time. Hence, it has to provide to the chamber flowfield solver all the geometrical param-
eters necessary to solve the internal ballistics for each time, whose shall be constrained to the
dimensional characteristics of the chosen flowfield model (oD, Q1D, 2D, or 3D).

Whatever is the assumed combustion model, the grain propellant surface motion is deter-
mined by the knowledge of regression speed along the pointwise normal direction. As dis-
cussed in the paragraph 2.2, page 21, the value of the burning rate, that is defined as the motion
of the burning surface along its normal direction is constituted by a pressure dependent term,
an erosive term and a dynamic burning term [22; 24; 61; 37].

Hence, the grain burnback analysis can be formulated into a more general problem of moving
a general given interface (the solid propellant surface) with the particular constraint given by the
case, or better the Thermal Protections inner surface, under a normally directed motion field.

Moreover, it is important to underline that, since all recent and practical SRMs grain con-
figurations (Ariane4 Solid Boosters, Arianes Solid Boosters, Zefirog, Zefiro23 & P8oFW) have
completely 3D complex shapes (finocyl or 3D star shaped grains), independently from the afore-
mentioned internal ballistics flow model, the grain burnback analysis must be necessarily three-
dimensional.

3.1.1 THE GRAIN BURNING SURFACE EVOLUTION: METHOD REQUIREMENTS

A grain burnback analysis technique must, hence, fulfill and have the following features:

@ capable in treating the motion of complex 3D geometries, such as completely 3D star
shaped grains or finocyl grains, with possible simple input of such 3D complex geome-
tries;

@ the ability in dealing with topology variations to describe particular grain shapes, like
multi-perforated grains or modular cartridge-loaded grains;

@ accurate in the reconstruction of the normal direction of the front during its motion, be-
cause the front moves exactly along this direction;

@® an accurate evaluation of the grain and bore surface geometrical properties of a “ballistic
interest”: areas, surfaces and perimeters;

@ a simple extension to High Order Schemes of the numerical solution for the motion equa-
tion, in order to increase the accuracy of results;

@ the ability in treating the presence of a sort of boundary condition for the grain motion,
exploited by the case boundary, or better, the liner and case TPs;

@ a simple coupling with oD and Q1D internal ballistics gasdynamics models, especially for
the second ones in terms of meshes coupling and data exchanging.

3.2 INTERFACES TRACKING PROBLEM
In order to appreciate the main properties of the problem of moving a general given interface,

consider as case problem [31; 28], the motion under a general normal oriented velocity field,
dependent eventually from the front local curvature K, V of a closed curve I in 9t2. The interface
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is parametrized by a curvilinear abscissa s € [0;S], such that the interior of the curve is on the
left of the direction of increasing s.
Let:
X(s,t) = [x(s,t);y (s, t)] (3.1)

we have that, being the curve closed

X(s=0,t) =X(s=S,t) vt (3.2)

The motion equation of the front can be
written down for the case under analysis
in the following manner, calling with fi the
pointwise normal vector of the front:

dx

(s, 1) 5 = VIK) (53)

Written in terms of X (s,t) = [x (s,1);y (s, t)],
we have:

oy . Or Oy
%:V(K)iais V(K)”:{Eva}
ot ox2 3y 2
oy 0s Qas (3.4)
3t =V (K) ﬁ Figure 3.1: A Propagating Curve
B3
with the Initial Condition:
X(s,0) =T Vsel0;S] (3-5)
and where K is the curvature of the front given by:
Pyox_22xdy
K= Jds< 0s d0s< 0s 6
ox2 | dy? 3/2 (3 :
(87 8)

A powerful formulation of the problem can be obtained considering now, the motion equation
written down in a different set. Following [28] and calling with 6 the arc length and g (s, t)
the metric, we have that the problem (see equations 3.3,3.4) can be formulated by the following
equations too:

ag

_— = K
m 0s V(K)
20 s (3-7)
— =——1[V(K
ot g 0s VK]
in which the following relations are valid:
oy 00
00 -1 Js ds
_— = _— = =— ‘8
3s tan ( g); ) K g (3.8)

Now, using equation 3.7, it is possible to obtain the following equation for the evolution of the
front curvature:

ot 0s
In the case that V (K) = 1 — €K, it is simplified as:

1
55 g|g VK (39)

K d [aV(K) 1]
g
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T EW +eK3 —K? (3.10)

This equation is a reaction-diffusion equation, in which the following terms can be inter-
pretable as follow:

® cK3 —KZ: is the reaction term which, as will be clear later on, can cause the solution

blow-up
2K
@ ea—2 : is the diffusion term, which instead smooths the solution
s

again, if € = 0, the resulting equation has the following solution:

_ K(s,t=0)
K(S,t) = m (3-11)

that means that the solution in terms of curvature becomes infinite (blow-up) in a finite time

) 1
tblowfup = —mn (K(st:())) (3'12)

anywhere the front curvature is initially negative (concave). This can be simply interpreted
considering the advection nature of the problem along the front normal direction. Exactly, if
the front is locally concave as initial condition, it brings to the formation of a corner, where the
interface is no longer differentiable, and the signals propagation direction falls into the corner
itself (shock formation).

This is strictly analogous to what happens in the Burgers equation (with the dissipative term
present € > 0):

ou ou 2u

3t +u& = €ﬁ (3.13)

when the numerical viscosity e — 0 (Riemann equation), and the solution creates shocks due
to characteristics directions intersection. In fact, the solution behavior of the equation 3.4 can be
summarized as follows:

@ with e = 0 the characteristic directions of the equation 3.13 are lines in the plane x —t
along which u is constant. If the initial data is uy, < 0 the characteristics intersect at

t = min (—1) (3.14)

U,
and a shock develops;

® with e > 0 the viscous term (diffusive term) on the right side, diffuses the steepening front,
consequently the shock is smeared out and the solution remains smooth.

Hence, the case of motion of a given interface with a normal directed motion velocity (indepen-
dent from its curvature), and the case of the Riemann equation 3.13 have similar mathematical
features and properties. In order to build-up the solution after the solution blowing-up, that is
possible in both cases, an entropy condition (that for the Riemann equation is that the character-
istics go into shock as time advance [56]) is necessary, for selecting the physically relevant weak
solution.
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3.2.1 LAGRANGIAN FORMULATION & LAGRANGIAN FRONT TRACKING TECHNIQUES

Consider again the problem of moving a given front I' under a known velocity field V (X) =
(u,v, w). The straightest way to accomplish that target is to consider the Lagrangian formulation
of the interface evolution, defined by the ODE 3.15:
dx -
— = V(KA () (3.15)
Since the interface I is analytically defined by an infinite number of points, the numerical
integration of equation 3.15 needs to follow the evolution of a proper discrete parametrization
of the interface I Hence, segments in 2D front problems and triangles (more often used) in

3D spatial dimensions problems. These techniques are called Marker particles or Nodal or String
Methods.

(a) Front to be evolved (b) Marker Particles on the Boundary
Figure 3.2: Marker Particles Method

The numerical integration of the motion equation 3.4 is made, hence, using a finite number of
front points as solution points (or markers), which without less of generality, can be considered
as equally spaced respect to the curvilinear abscissa. These techniques in every case will face the
following problems:

® the evolution of zones of the front where the curvature is negative (the front is locally
concave), evolving will cause a shock formation, as shown in the paragraph 3.2, page 33.
This brings to a markers approaching an each other, as the arc length between markers
decreases. As a consequence, the stability of the numerical method sets a timestep bound
more stringent, in such a manner, that it becomes excessively small and impractical;

® other zones in which the curvature is positive (the front is locally convex), as the time
increases, bring the markers to move far apart each other, making a very poor numerical
reconstruction of the front

@ the front topological changes are difficulty handled naturally, as the introduction of an
entropy condition is required. As an example, if the front is made on several parts that
merge together, it is difficult to decide which marker has to be deleted and which remains
alive.

Typically the remedies of such problems can be (with the exception of the last one in the
previous list, which will be discussed in the following):

® a smoothing of the speed function V, so that all markers remain far enough to allow
reasonable timesteps for the numerical technique;
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3.2 INTERFACES TRACKING PROBLEM

@ a periodic “regridding” of the markers along the front, according, for example, to the arc
length, in order to avoid that markers stay too far, or to close each other;

® the introduction of some filtering techniques, maintaining a practical stable timestep, to
remove oscillations in the particles position evolution

Unfortunately, all these techniques used in practice, are not appealing [59]. In fact, they alter
in a not obvious way the starting motion equation 3.15, introducing a smoothing process and,
practically, sacrificing interesting front properties, such front sharpening and curvature to make
the simulation alive.

This situation becomes even more critical in the case that the front velocity V is not a function
of the curvature K. In fact, where the front is locally concave, as seen before, during its evolution,
it forms sharp corners and an entropy condition is required to build the solution beyond the
corner generation (this situation is similar to the characteristics intersection occurring in a shock
formation for the Riemann equation). However, the necessary entropy condition is not included
in the Lagrangian formulation. Hence, the marker particles methods bring to the formation of
a so called swallow-tail solution. To prevent that kind of problems ad-hoc de-looping techniques
are necessary to introduce the required entropy condition while the front is moving. Even if
such algorithms are quite simple to be developed in 2D problems, because of their complexity,
are totally prohibitive in 3D ones (code can break down in complex situations).

3.2.2 EULERIAN FORMULATION & EULERIAN FRONT TRACKING TECHNIQUES

A completely different approach to solve the problem of moving a general closed boundary T,
under a given motion field V (that could be even depend on the local properties of the front
itself, as normal and curvature), is the Eulerian approach.

This kind of approach, in its different formulations, considers the interface embedded in one
more dimension space, in which the front moves. The front is, hence, represented by a proper
grid function ¢ (X, t), that assumes a different meaning for the two main Eulerian formulations:

® Volume of Fluid (VOF) Techniques / Cell Method / Method of partial fractions
@ Level Set Method

VoruME of FLuip(VOF)/CeLLs METHODS

The VOF technique is based on a grid function ¢ (X, t) given by the volume fraction of “matter”
inside the front, included in each cell. In this way the boundary itself is located as a discontinuity,
by all the cells that have a volume fraction between 0 and 1. In the same time all the cell com-
pletely inside the front have a cell volume given by 1; while all the cells outside are defined by a
¢ value of 0. In a such manner, we can say that, in terms of representation of the grid function,
the front itself is captured (as the approach is Eulerian) as a discontinuity (numerically smeared
out) (see fig. 3.3). Hence, these techniques suffer for all the problems related to make a recon-
struction of the discontinuity, starting from the cells volume representation. In particular, with
these techniques it is difficult to control the artificial spreading of the interface due to numerical
diffusion, related just to the reconstruction of the interface from its volume representation.

In fact, many different approximation techniques are used in literature to reconstruct the
boundary from the cell fractions.

The original one is known as the SLIC algorithm (Simple Line Interface Calculation) [13], even
if many elaborate ones have been developed to include pitch slopes and curved surfaces [17] [27]
[39] [36]. These techniques are known under many names, such as the “cell method” or “method
of partial fractions”. In order to move the interface, the cell fractions need to be updated under
the velocity field given by V, solving directly the advection equation of the front, in a such
manner that depends on the chosen reconstruction of the front. In their SLIC algorithm [13],
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interface
numerical

0 1 0 "=/ 1

(a) Mathematical Model (b) Numerical Model

Figure 3.3: VOF Interface Representation
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Figure 3.4: VOF - Volume of Fluid

Noh and Woodward have considered a methodology in which the updating of each cell fraction
is made through sweeps along each coordinate direction (see fig. 3.5 ), by means of a local
reconstruction of the front and exchange of “matter” between the cell under consideration and
the neighbor cells.

0.0 0.0]0.0 0.0 0.0 0.0
b
81 .5 ] .2 i 1.0, .7 | 4
1.0/ 1.0 1.0 1.0/ 1.0 1.0
(a) Volume Fractions (b) Reconstructed Front (c) Front Advection (d) New Volume Frac-

tions
Figure 3.5: SLIC - Advection Algorithm: Sweep in the T Direction with V = 0.2

Hence, the original SLIC algorithm was designed to compute the motion of a given interface
under a given general velocity field V, in a independent manner of the local properties of the
front itself.

A modification of this algorithm, proposed by Chorin [16; 26] instead, is able to compute the
interface motion even in the case of velocity field pointwise normally directed. In fact, in this
case, as seen for the marker particles methods, corners and cusps of the front may be generated
and in such cases an entropy condition must be invoked to select the physically relevant weak
solution. Chorin considered this by means of the use of the Huygens’ principle, in a proper
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3.2 INTERFACES TRACKING PROBLEM

formulation consistent to the VOF approach, seeing each spot on the front as a point source.
Thus, the new position of the boundary is built-up making the envelope of influence of all these
sources. Using a sufficient number of cells to approximate this source point, that correspond
to sufficient number of directions in the computational grid, as will be clear in the following, a
natural selection of the entropy condition occurs and the correct weak solution is so selected.

In its implementation of the Huygens’ principle, Chorin considered all the angles given by all
the neighbor cells of a given cell (8 cells in 2D problems, 26 in 3D ones):

(1-1)2n
L
Thus, he considers the upgrading of the grid function in the cell i-th j-th (2D problem, without
less of generality) given by:

x = 1=1,...,L (3.16)

oIt = max ¢{|, (3-17)

where d){‘j ’1 are the volume fraction in the cell i-th j-th at step (n + 1)-th, when cell volume is
moved in the 1-th direction with a motion field

V = Vcos aq; sin o] (3.18)

As L — oo and the mesh size goes to zero, this algorithm corresponds to draw a disk of a unit
radius from each spot. Thus, making the envelope it is possible to define the new position of the
front in the VOF representation of the problem.

In the case that V (K), it is enough obvious that the maximum allowable curvature is limited
by one cell width resolution of the front. In a such case, moreover, a method for determining the
curvature of the front, starting from cells volume fractions and based on the fitting osculating
circle, was developed by Chorin [27].

This technique, in its Eulerian nature, avoids many of the Lagrangian problems previously
underlined and, hence, has the following important advantages:

@ it is unchanged in several dimensions, especially in complex three-dimensions problems;

@ the topological changes of the front are handled naturally. In particular the front can break
and merge, without the need of ad-hoc techniques to face that situations, on the contrary
to Lagrangian approach;

@ in addition to that, in the case of motion along the front normal direction, a numerical
procedure based on the application of the Huygens’ principle applies in order to select the
correct weak solution (even if quite inaccurate).

In the meantime, there are some evident drawbacks:

@ such techniques are inaccurate, since the approximation of the front through volume frac-
tions is quite crude and a large number of cells is required to obtain reasonable results;

@ the evolution under complex speed motion fields is problematic (results are noticeably
dependent on the underlying orientation of the grid) and it become worse in the presence
of directional velocity fields (such as those arising from not-convex laws);

@ the calculation of the intrinsic geometric properties of the front, such as curvature and
normal direction, may be inaccurate;

® the calculation of the other geometrical properties of the boundary such as surfaces and
perimeters are difficult to perform directly and are strongly dependent by the reconstruc-
tion technique considered for the front (instead, volume calculation is straightforwardly
made by the sum of the grid function in the entire domain);
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@ a considerable work may be required to develop higher order versions of such techniques;

@ in higher dimensions, accurate calculations of the mean and Gaussian curvatures are diffi-
cult to perform, especially at saddle points.

LEVEL SET METHOD

Another Eulerian formulation of the interface motion, different from the VOF is the so called
Level Set approach. It considers again the introduction of a grid function, but with a completely
different representation of the front respect to VOF techniques. In this method, in fact, the grid
function is an implicit function ¢ (X, t) that represents the interface to be evolved I, with its zero
level for every time.

interface representation

™~

0 continuous grid function

Figure 3.6: Level Set Interface Representation

Consequently, all the problems related to the reconstruction of the interface from its discretized
value do not stand, as the front is not more seen as a discontinuity, as the VOF does, rather as
a level of a continuous grid function. As matter of fact, no spreading out of the front due to its
numerical representation stands. While as the numerical grid is refined a greater and greater
accuracy of the front representation is obtained.

Considering now, the Level zero of the grid function:

circular front T’ /

Figure 3.7: Level Set of a Circular Front

$(X(t),t) =0 (3.19)
X:d(X,t=0=0 <— xeT (3.20)
Differencing equation 3.20 in time:
ad) aXi .
St > x5 =0 (3.21)
%—fﬂfﬁq):o (3.22)
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The equation 3.22 properly stands the Eulerian formulation of the problem, as an advection
problem of the continuous grid function ¢, under the motion field V. It is referred in literature as
level set equation, introduced by Osher and Sethian [59] [79], but it is also popular in combustion
applications as the G-equation, due to Markstein [8; 1].

In addition to the above mentioned features related to its Eulerian approach (see paragraph

3.2.2,

37), the use of the Level Set Method in solving the problem of moving a general given

closed surface has the following relevant properties:

it relies on viscosity solution of the associated partial differential equations in order to
guarantee that the unique, entropy satisfying weak solution is obtained;

in the numerical solving of the equation 3.22, it can be seen as an hyperbolic system of
equations for partial derivatives of the ¢ function. It is, hence, possible to use numerical
schemes considered for numerical solution of Euler equations and borrow them in a quite
straightforward manner;

the intrinsic geometric properties of the front are easily evaluated, such as the normal and
the curvature of I, using the mathematical properties of implicit functions;

even if following the evolution in time of all the level set of ¢ is much computational
time and space consuming, efficient methods have been developed in order to limiting the
attention only on the zero level set of interest ([42; 57; 59], see paragraph 3.9, 61);

the evaluation of other geometric properties of the boundary in its evolution in time, such
as volumes, areas, surfaces and perimeters can be easily made directly with or without the
need of a previous reconstruction of the level of interest (the zero one, or everyone other),
from the grid function (see paragraph 3.11, 66).

In the evolution of the level set function ¢ (X, t) solving the equation 3.22, it could be inter-
esting to underline that: the velocity field effects on the interface motion is strictly related only to the
normal component of it, because of the term V & is for each point X defined normal to ¢ (X, t).

In fact, writing V by normal and tangential component respect to the level set function ¢, we

have:
V=Vt + Vit (3.23)
since:
Vo
fl= fl-1=0 (
= 3-24)
Vo)
by some calculations:
0 -
ai(f + (Vi +Vit) -V =0 (3.25)
d Vo o
9% _,_vnifb Vo = (3.26)
ot ‘Vd)’
o -
So+Va Vo = (3.27)

This last equation is still known, as equation 3.22, as the level set equation. Here V;, represents,
in general terms, the normal component of the velocity field. The equation 3.22 is part of the HJ
equations class.

As

in this dissertation, it is of interest the motion of interfaces under an internal generated

motion field, defined along the normal of the front at each point X, the equation 3.27 will be
referred in the following as the Level Set Equation. Finally, hence, it can be expressed as:
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b = |
a+v‘v¢’ —0 (3.28)
considering V the value of the velocity field at each point X.

For its generality and for all the relevant features related to the Level Set technique with
respect to the application of this tracking interface method to the grain burnback analysis, the
Level Set Method has been chosen to be implemented for the numerical simulation of grain
burning surfaces evolution. Hence, in the following paragraphs, it will be extensively analyzed
in terms of mathematical properties, numerical schemes for the integration of the LS equation
and the technique for evaluating grain geometrical properties from the LS front representation.

33 LEVEL SET EQUATION MATHEMATICAL PROPERTIES

3.3.1 MATHEMATICAL PROPERTIES OF THE LS EQuATION

The level set equation introduced in equation 3.28 is a partial differential equation, first order in
time and space. Ignoring cases for which V =V (d)x-lx)-) Vi,j=1...3, depending for example

by mean curvature, we consider only cases where almost V = VA with V = V(% t). As said
before, the level set equation 3.29 can be seen in the class of HJ equations, in the sense:

di+V|Ve| =0 Gi+ H (P, by, b2) =0 (3:29)

where:

H (% U 2, bx, by, b2, t) = V |V (3:30)

defining with H the Hamiltonian.

The previous equation 3.29 is also called eikonal equation for the characteristic term after the
temporal derivative and is a first order Hamilton-Jacobi type equation. Its solution is known to
have the following properties:

@ starting from a continuous and differentiable initial condition, the solution itself remains
always continuous for all time;

@ however the solution can loose its differentiability (as if the V¢ falls into a shock formation
with a solution blow-up);

@ in such cases, it is still possible to produce Lipschitz continuous solutions, but these “gen-
eralized solution” are not unique;

@ hence, it is required an entropy condition to select the vanishing viscosity solution.

It is possible, in fact, to prove [19] that the Huygens’ principle is nothing less than an ap-
proximation of the eikonal equation, in which a natural satisfaction of the entropy condition
occurs.

These remarks are very important in order to develop numerical schemes to discretize the
equation 3.28, since first order Hamilton-Jacobi equations are strictly related to conservation
laws (Euler equations for compressible flows, such as an example). Therefore, the numerical
schemes for the level set equation are taken from that ones largely adopted in the computational
solutions of the conservation laws.
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3.3.2 CONNECTION BETWEEN HJ] EQUATIONS AND CONSERVATION LAWS

Consider a one dimensional scalar conservation law 3.31, in which u is the conserved quantity
and F (u) the flux function:

ue + [F(u)l, =0 (3-31)

and a general one-dimensional HJ equation (¢ = ¢ (x, 1))

bt +H(dy) =0 (3-32)

Differencing 3.32 along X, and naming u = ¢, we have:

(dx) +H(dx)], =0 = ug +[H(u)], =0 (3-33)

Hence, a comparison between equations 3.31, 3.32 and 3.33 shows a direct correlation between
one dimensional level set equation and a general conservation law [59], in particular: the solution
of a conservation law is the derivative of the solution of the first order Hamilton-Jacobi one dimensional
equation. In a converse reasoning: the solution of the Hamilton-Jacobi equation is the integral of the
solution of a conservation law, where the flux function coincides with the Hamiltonian. This remark
allows to point out the following useful facts:

@® since the conservation law 3.31 admits from initial smooth conditions, discontinuous so-
lutions, and the integral of a discontinuity is a kink (discontinuity of the first derivative),
solutions of the Hamilton-Jacobi equations can develop kinks even if initial conditions are
smooth (as seen already in paragraph 3.2, page 33, for the general properties of the prob-
lem);

@ the solutions of the HJ equations can not be discontinuous, since the derivative of that kind
of solution would be a delta function. Thus, the solutions of the equation 3.32 are generally
continuous;

@® moreover, since the conservation laws can admit not unique solutions, an entropy-condition
is necessary to pick out the correct physically relevant viscosity vanishing solution, even
for the HJ equation 3.32. Hence, the numerical schemes used to solve it must account in
some manner an entropy condition to select the right weak solution.

The pointed out correlation between HJ equations and conservation laws can be exploited
even in multiple dimensions, as will be shown in the following.

Starting from:

di+H(Ve) =0 (H(Ve) =Hlbx by ¢2)) (3:34)
applying gradient:

v (%T) Ry (H (W))) —0 (3.35)

now, by chain rules, we have:

<L

(14 (59)) =59 (4 (59)) =1 (59) 7 1017 (4(0)) =7 (4(70)1) 630

It is, hence, possible to write the equation 3.34 in a familiar manner, similar to the conservation
laws:

(96), 49 (4 (%) 1) - -
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In fact, naming with U = V¢, it is simple to write the equation 3.3y with a structure simi-
lar to Euler conservation laws for inviscid fluid motion [55], expressed in the conservative form
(divergence form):

Ue+v-E(U) =0 (3-38)
where F (ﬂ) =[f; g; h]T is, in the correlation with the HJ equation, expressed by:

F(Ve) =H (Vo)1 (3:39)

Now, with some mathematical passages, it is also possible to consider the quasi linear form of
the gradient equation of the ¢ level set function 3.37, or that is the same for the equation 3.38.
This gives us information about the characteristic velocities (through the eigenvalues of the F,
G and H matrix) and the conserved quantities (through the corresponding eigenvectors) along
each coordinate direction:

ﬁ-g(ﬁ) - ﬁ-[?g’,ﬁ}_a[ég'? w:g(ﬂ) U =
= [e(u)ss (@) (b)) va= G.40)
= (1) ors (1) v (i)
where:
F(ﬂ)=§§ ; E(ﬁ):? ; H(ﬂ)ng (3.41)
so that:
e+ F(U) U+ 6 (U) Uy +H (W) Uz =0 (3.42)

or the equivalent formulation, in terms of the stated correlation conservation laws - gradient of
HJ level set equation:

(¥0) +E(v0) (V) +& (V) -(V8), +11(V0) (V) =0 Ga
Therefore, even in the case of multi-dimensional problems, a relation between the Hamilton-
Jacobi equations and the conservation laws is still valid, as well as all the mentioned remarks
made on the solution characteristics and the numerical scheme. Thus, it is still possible to think
the HJ as the conservation law “integrated once” .
This connection is particularly important because makes possible to build up numerical schemes
to solve the HJ equations, directly borrowed from the ones used for conservations laws, in
particular, as shown afterwards, because of the direct relation in the 1D case.

3.4 LEVEL SET EQUATION NUMERICAL INTEGRATION

3.4.1 LEVEL SET EQUATION: BUILDING UP THE NUMERICAL SCHEME

1-D HJ EQuUuATIONS

As shown in the paragraph 3.3.2, page 43, a strict relation between the one dimensional level set
equation 3.32 (as being part of the first order Hamilton-Jacobi class of equations) and the one

dimensional conservation laws 3.31 stands. This theoretical circumstance is very important in
building up the numerical schemes that allows to discretize the PDE 3.28:

GirHp) =0 = ¢t+V|¢x|—0<¢t+V¢E—O) (3.44)
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In fact, all robust numerical schemes largely developed and successfully used to numerically
solve the conservation laws can be considered to evaluate the second term of equation 3.44, as
we will see in the following.

Starting again from a scalar conservation law equation in conservative form

Wi+ F (W], =0 <(¢x)t+m(¢xnx_o — F(u)—H(cpr) (3.45)

there is a very straightforward way to build a numerical method that picks out the physically
relevant solution of the problem: the method considered must be, as the differential equation
that it numerically solves, in the conservation form:

U = = [P (U W W) = F (W W Wy )] G0

where let U be some “numerical version of the quantity” u, F the numerical flux function of
p + q + 1 arguments, k and h respectively timestep and mesh width, while j, n denote respec-
tively the generic mesh node and time step number. This generalized expression can be simply
considered in the case p = 0 and q = 1, so the numerical flux function depends only on two
variables and takes form:

k [« -
W = up - [F (g ) = F (W, )| (3-47)
The formulation 3.47, in fact, is a very natural manner to approximate the starting differential
equation, if U is seen as the cell average of the conserved quantity u over the j-th mesh cell:
Xj+1/2
ur =al = J u(x, tn) dx (3-48)
Xj—1/2

targeting the attention on the integral form of the conservation law:

Xj41/2 thi
J J (ue + [F(u)], ) dtdx =0 (3.49)
Xj—1/2 tn
Xj+1/2 Xj41/2 tntl thntt
J u(x, ther)dx = J u(x, tn) dx — J F (u (xjH/z,t)) dt— J F (u (xj,1/z,t)) dt
Xj—1/2 Xj—1/2 tn tnh
(3.50)
and, hence
1 thrt thi
_ 1 _
u}‘* =0 — n J F (u (xj+1/2,t)) dt— J F (u (xj,1/2,t>> dt (3.51)
tnh tnh

Comparing now, the equations 3.51 and 3.47, it is easy to see that it is possible to relate the
numerical flux function with the average of the analytical one over the time step [tn,; tn41]:

thpt
F (W, Ujtr) ~ % J F (u (Xj+1/2rt)> dt (3-52)
tn

Moreover, if a relation between the characteristic velocities (which carry signals along the
field), the timestep k and the mesh width h is considered, such that the state of the conserved
quantity at the cell interface x;_; /,,t is not changing during the time [ty ; tn 1], we have also:
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F (U5, Uj1) zF(u (Xj+1/2rt>) (353)

The relation 3.53 is an important and straightforward connection between the numerical flux
function and the analytical one, in order to build up numerical schemes for the Level Set equa-
tion.

In fact, a numerical scheme in the conservative form (equation 3.47) is related, as shown, to
the integral formulation of the conservation law 3.45, that is satisfied by any weak solution of
the starting PDE. What is missing now is to prove that the numerical scheme converges to
the vanishing viscosity weak solution. Moreover, building up the numerical solution of the
conservation law 3.45, the numerical flux function F of the conservative form must be consistent
to the analytical one, in a way such that in the case of constant flow, the function F reduces to F.
So that:

Fluu) =F(u) Yu = const € R (3.54)

Hence, in the case of a consistent and conservation form, the confidence of the solution of a such
numerical method and it is relation to a weak solution (that can not be unique) of the correspon-
dent conservation law is guaranteed by the Lax and Wendroff theorem [56]. Finally, the prove
that a numerical scheme converges to the vanishing viscosity solution and not to a non-physical
(non-entropy satisfying) weak solution, is guaranteed if the numerical scheme further to be con-

sistent and in a conservation form, is monotone too. That is to say mathematically that F (U]T‘, [SHA )

is a not decreasing function of its arguments [56].

The numerical Hamiltonian can be, thereby, expressed by an exact or an approximate Riemann
solver (Engquist-Osher, or Osher-Sethian, or Lax-Friederichs flux with its local version LF, SLF,
LLF, RF) [18] [5], with whatever temporal (multistep Runke-Kutta) and spatial (ENO, WENO)
accuracy order [59; 79; 35].

MuLti-D HJ EQUATIONS

In one dimensional problems, we pointed out that the numerical schemes for the HJ equations
(and hence the Level Set (LS) equation) are merely adaptations of the well-known ones for the
conservation laws 3.31. Instead, in several dimensions problems, in spite of the relation be-
tween Hamilton-Jacobi equation 3.34 and the conservation laws 3.38 (written for V) is still
effective, the building of numerical schemes is not directly borrowed from the ones developed
for multidimensional conservation laws for the numerical Hamiltonian building-up. This con-
sideration is due because of the difficulty to see, in multiple dimensions, the correlation between

the analytical Hamiltonian H (ﬁd)) and the numerical one, in some integral form of the related

conservation laws , since the relation between ¢ and U = V¢ is not simply a straightforward
integral operator.

(3.55)
H(Vo) VAN (Vo)

Fortunately for the multidimensional case, Crandall and Lions [20; 21] have shown that it is

still possible to build a discrete approximation of the general first order Hamilton-Jacobi PDE

3.34, with explicit marching schemes. These scheme have the form (for a two dimensional
problem, without any loss of generality for several dimensions):

d)}llj] =G (‘b)n—p k—r " /d))n+q+1 k+s+1) (3-56)
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which gives a computed solution with some relation in terms of “convergence”, with the
vanishing viscosity solution of the starting Hamilton-Jacobi equation. Let, in fact, consider the
following theorems and definitions, following references [20; 21].

Definition A numerical method

¢’n+1 = ( JTLP k—r " /¢?+q+1 k+s+1) (3.57)
for problems of the form:
+H(V
{ b H (V) =0 ) (3-58)
¢ (Xt =0) =do (X)
has a differenced form, if exists some function H such that:
G ( pkor T biga k+s+1> = djy — ALY H < . d’] —p k=1’ ¢1+q+1 kts+17
d)] —pk—1s " ¢]+q+1 k+s+1
(3.59)
where:
Thij =% (bix15— i) 5 ALdij==x(dije1 —dij) (3.60)

Definition A numerical scheme in differenced form is consistent if:

F(a---a;b---b)=H(a,b) VabeR (3.61)

Definition An explicit marching scheme in the form 3.56 or in its differenced form 3.59 is mono-
tone if

G (d)}ip k—r "7 ’d)JTIJqur] k+s+1) (3.62)

is a nondecreasing function of each argument, as long as the discrete derivatives along x and
y are bounded.

Theorem 3.4.1. Given a time marching numerical scheme

G ( ]Tlp k—r1 """ ,¢]Tl+q+1 k+s+1> (3.63)
with a differenced form, consistent and monotone ; let u be the viscosity solution of the Hamilton-Jacobi
equation type 3.58, then there is a constant c (depending only on sup |[ugl, H and N At™) such that:
’d))nk_u(szyk/ TlAtn)’ <c (V At“) (3.64)
for 0 <n < Nand Vj, k.
Note that theorem is still valid in the case of general Hamiltonian H (7‘(’, t, o, ﬁd)).

Hence, an important remark that can now be underlined in terms of the confidence of the
numerical solutions for the first order Hamilton-Jacobi in multidimensional problems is the
follow:

@ as mentioned before, for monodimensional Hamilton-Jacobi equations type, it is possible to
prove the convergence to the vanishing viscosity weak solution of a conservative, consistent
and monotone numerical scheme for equation 3.44;

47



3.4 LEVEL SET EQUATION NUMERICAL INTEGRATION

® passing to multidimensional problems 3.34 that statement, proved for monodimensional
ones, is still valid. In fact the last statement of the theorem 3.4.1 says proper that the limit,
as At — 0, of the numerical solution evaluated with a differenced form (like conservative
form for conservation law), consistent and monotone is the vanishing viscosity solution (or

that is the same: entropy satisfying solution), with a rate of convergence O (\/ At).

This fact allows to build convergent numerical schemes for several dimensional Hamilton-
Jacobi equations with the same techniques devised for the one dimensional type one, with the
sole complication due to multidimensional aspects, as will be shown in the following.

SOME REMARKS ON THE USE OF THE 1D RP FOR THE MULTI-D PROBLEM

The LS equation for the multi-D case and its solution by means of the use of 1D Riemann
problems along each coordinate direction allows to make some remarks if the starting problem
is seen as an advection problem.

The Level Set equation can, in fact, be written down explicitly in its quasi linear formulation for a
2D problem without less of generality (remember that the LS equation for an internally generated
motion field, pointwise normal to the interface, does not admit a conservative formulation, that
instead its “derivative version” has got):

d)X] X d)Xz

In other terms, considering the expressions of the normal components and its relation with
the ¢ function

b +V Gy, +V $x, =0 (3.65)

d)t +an1 : q)X] +an2 : Cbxz =0 (366)

that can be interpreted just in terms of an advection problem:

@ the characteristic direction along a given coordinate axis is given just by the local normal
correspondent component value

@® numerically, the decision about the stencil “upwind” direction can be done by a reconstruc-
tion of the local normal value

As a consequence, the use of 1D Riemann problems coupled with an unsplit technique [120]
allows to consider the multidimensional nature of the problem to build up a numerical approxi-
mation of the Hamiltonian term

V‘ﬁ(b’ :v\/m%v\/¢;1 ’jzk+ q);z{jzk (3.67)

2 2 . . .
(where ¢3, }j X ¢, |]. , are the solutions of 1D Riemann along x7 and x; axis )

In particular, this allows exactly (see figure 3.8) to make a “decision” about the local value of
the normal component along the correspondent axis, and select properly the right expression
for the upwind derivative. This happens except for the case of transonic expansion, where the
normal component is set to zero as an ambiguity of the normal stands on the correspondent 1D
problem along the chosen coordinate direction.

3.4.2 LEVEL SET EQUATION: NUMERICAL SCHEME
Focusing now the attention on the mentioned numerical schemes applied to the Level Set equa-

tion for an internally generated field of motion along the normal direction given by the 3.28, it
is now straightforward to consider the formulation of numerical schemes for the one-dimension
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and several dimensions level set equation with the desired order of spatial and time accuracy

[31].

In particular, considering the case of one space and time first and second order accuracy numer-

ical schemes, we have the following numerical time marching expressions.
ONE DIMENSIONAL LEVEL SET EQUATION

@ Space and Time First Order Scheme

For the one dimensional Level Set equation, it is immediately possible to write down the
following space and time first order numerical scheme. Pointing with V the motion velocity,
under the hypothesis for it to be convex (concave) in u = ¢ (in order to have a convex

(concave) Hamiltonian) * for the exact Riemann solver, we have:

c[)j“H = ¢} —Ath {max (Vj“,O) \/max (max (D*Xd))T‘, 0)2 , min (D*Xd)]ﬂ,O)z) +

+min (Vj“, 0) \/max (min (D_xd))n, 0)2 ,max (D*Xd)]n, 0>2> }

where:

Ax O _ &F — 0 ALG] 9 O

—X /M _ . +X4Hn
D5 Ax Ax ;DT Ax Ax

are the numerical derivatives of the Level Set function along the x direction.

2
1 a function f of one variable x and twice differentiable is convex (concave) if: j—xz >0 (<0) Vx
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The numerical scheme 3.68 is monotone under the CFL condition:

Ax

At 8%
max(‘Vj“‘)

(3-70)

@ Space and Time Second Order Scheme

If again the front motion velocity V is convex (concave), a second order in time and space
numerical scheme can be obtained considering: an ENO scheme for the building of the
numerical Hamiltonian, coupled with the exact Riemann solver and the Heun’s method for
the time derivative. Rearranging the expression of the numerical Hamiltonian as follows:

AL (VD xgr, Dol = {max (vr0) \/max (max (D—or, o)2 ,min (D+X¢]T‘,O>z>

+
+ min (Vj“, O) \/max (min (D*Xd)}i, 0)2 ,max (D*Xd))n, O)z) }
(3.71)

Its second order approximation by a second order ENO scheme is simply obtained substi-
tuting the numerical derivatives expressions with their second order approximations:

Ax
—X M _ —X M = —X—=XHN —X+xX HN
DXGF| =DM+ SEMINMOD (DX %R, D+ gn) -
3.72
D+x¢1_1’ — D+x¢1_1 _ gMINMOD (D+x+x¢n D+x—x¢n)
b 11 ) 2 U )

where the following symbolic notation is introduced:

DX X¢pM = D*Xd);ﬂ -D7 ;1—1 _ d);rl —2(]);1_1 + d);l—Z
) 2Ax 2Ax?

DF —D oty — 207 47,

2Ax 2AX2 573)

+x— —pD—x+ —
'D x X¢)‘]l’l_D XXd);’l._

DFXGR, —DIGF  bFy, — 200 + ¢f

DTxtxpn =
¢; 2Ax 2Ax?

. a if la/ < bl

f -b>0 .

s {b if |al > [b] (3.74)
if a-b<0 0

MINMOD (a, b) =
So that the resultant time marching expression of the numerical scheme is given by

1

+1 _
Ot = of — At 5

o n —X 4T +x 4 u n —x 4n+1 +x 4 n+1
] (v o] D] )+ R (v D D)

II
(375)
where the solution of the predictor step is given by

Ot = 0 — ARV, DR D) (79

and the CFL condition is expressed by equation 3.70.
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MULTI DIMENSIONAL LEVEL SET EQUATION

Without less of generality, we will consider to illustrate the multidimensional case, only the
case of a 2D problem in Cartesian uniform rectangular coordinates, as the case in cylindrical
coordinates will be discussed in the paragraph 3.4.2, page 52.

@ Space and Time First Order Scheme

Considering the case of V convex (concave) in u = ¢y ; v = ¢y (so that it gives a convex
(concave) Hamiltonian) ?, in order to build-up a numerical scheme for a multi-D prob-
lem, starting from the one-dimensional problem, the step is short. In fact, using an exact
Riemann solver for the spatial term and a one-step Runke-Kutta scheme, we have:

d)““ = ¢ — A" {max (V) L, 0) {max (max( XN, ) ,min (D+X¢]k, )2> +
2 2\12
+ max <max (D~vor,0) ", min (DT¥4R,,0) )} +
2 2
-+ min (V) k,O) {max (min( o, ) ,max (D*’%b}‘ ,0) ) +

+ max (min <D*y¢]ﬂk, 0)2 , max (D*Wb;‘ , )2)} ;}

(3-77)
where
- +
D xn — AP _ k=i DHrgn — AP ﬁlk—‘b?k
R N N Cof op 67
Dupn — ¥k Dk Pkl Drupn — v )k—H
ik Ay Ay ! ik Ay Ay

are the numerical approximations of the spatial derivatives.

The resultant numerical scheme is in a differenced form & consistent and is monotone and,
hence, convergent to the entropy satisfying weak solution [21] under the CFL condition:

At™ < min

— (3.79)
Vi (Mo ‘ ik “y ;k‘

Ax

where (nx)}lk and (ny)?k are numerical approximation of the normal of the Level Set
function d)]T‘k

@® Space and Time Second Order Scheme

Following what shown for the 1D second order numerical scheme, the time and space
second order scheme is obtained directly using the equations 3.75 and 3.76. Hence, con-
sidering again the Heun’s method for the time derivative, the ENO reconstruction for the
spatial derivatives and the exact Riemann solver, we have to give the expression of the
numerical Hamiltonian, which is:

2 a function of many variables f (x,y) is convex (concave) if its Hessian matrix is positive (negative) semidefinite Vx, y
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u n —X T +x /M — n + n —
ALV, D0, DY, D Vol DYVR, ) =

{max (ank/ O) {max (max (D*"(b}‘k, 0)2 ,min (D+X¢}‘k, 0)2) +
-+ max (max (D*y ¢l O) 2 ,min (D+9 ¢, O) 2)] : + (3-80)
2 2
+ min (Vj“k, O) {max (min (D*"cb}‘k, 0) ,max <D+Xc])]T‘k, O) > +

+ max (min (D*y W 0)2 ,max (D+y (OHW O>2>] : }

where the numerical derivatives must be defined by their second order expression given in
the equation 3.73 and the equations 3.74, 3.79 stand with the necessary modifications.

To complete the general discussion about the LS equation numerical integration, here is briefly
discussed the case of non-convex motion velocities V. This is not the case of the grain burnback
analysis problem, where V assumes the meaning of the grain burning rate (always positive, at
the most zero) which value does not depend on the normal direction, but only on time and
space. So that, in this case the Hamiltonian is also an homogeneous function of degree one
inu = ¢x,v = ¢y. In other words, in the case of a non-convex motion velocity, the expres-
sions of the numerical Hamiltonian for the 1D and the Multi-D problems can be given by the
analytical expression, with the spatial derivatives approximated by the average value of the left-
/right numerical derivatives (first or second order approximations) with the additional terms of
numerical viscosity in order to have a stable scheme, in a Lax Friedrichs fashion (or its local
variations)[35; 59] (see appendix J , page f).

A completely general discussion and overview of the numerical schemes for the HJ equations
can be however found in the appendix J, page f.

LEVEL SET EQUATION IN CYLINDRICAL COORDINATES

For the SRM grain burnback analysis applications, the Level Set equation 3.28 can be written in
a useful manner, in cylindrical coordinates (see equation 3.81), in order to exploit the grain and
case periodicity and/or symmetry properties, as usual for typical grain configurations.

b a0 \*  [1ad\?  [ad\*
at+rb\/<a1‘> +<T’ae) +(az> =0 (3.81)

where the grid function is represented in cylindrical coordinates ¢ = ¢ (r, 6, z), with z motor
axis.

The numerical scheme expressions are the same given in the paragraph 3.4.2, page 51, for
the first and second order of accuracy in time and space, considering that the grain burning
rate is always positive, at most zero. For clarity, the first order in time and space is expressed
in equation 3.82, where the i-index is along the azimuthal direction 0, the j-index is along the
radial direction r and k-index is along the motor axis direction z.
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2 2
1 a
q){‘;;z] = o5, — AT { b5k [max (max (T] ed)uk, > ,mm( D*ed)uk, ) ) +

2 2
+ max (max (D’r {;k,O) ,min (D“d)uk, ) >+

+ max (max (D*Zd)‘fjk, 0)2 min (D*Zd)l)k, )2)} :
(3-82)

3.5 ERRORS SOURCES: A LARGER PERSPECTIVE

In this section we want to analyze in a deepened manner the errors sources of the Level Set
approach for tracking an interface motion under a given velocity field.

Three different and separated error sources in this kind of approach [59] are present:

@ Initialization error
This error is associated to the building-up of the initial condition of the Level Set problem
(see paragraph 3.6, page 53). It is due in particular to the generation, starting from the
problem given on the interface T, of the problem in the computational domain, where the
level set, that represents I" with its zero level, is defined (a problem in one more dimension).

@® Motion Error or Update Error
This error is due to the numerical solution of the time-dependent Level Set equation 3.28,
that needs the use of one of the many techniques described in paragraph 3.4.1, page 44
and paragraph 3.4.2, page 48. As known, each numerical scheme is characterized by its
own spatial and time accuracy orders, which affect the error introduced in tracking the
boundary motion.

@ Measurement Error or Reconstruction Error or Extraction Error
This kind of error is associated to the fact that in the Eulerian point of view the interface
itself does not really exist, if not seen as part of the Level Set. Hence, any application that
wants to know where is the interface, or defines any integral or differential property of it,
at any time, must extract or make a reconstruction of the boundary, considering the Level Set
field at the same time. As a consequence, accomplishing this work numerically, an error
is unavoidably introduced (this operation may be fulfilled by means of contour plotter or
other diagnostics [30; 68], or the technique that will be analyzed in paragraph 3.11, page
66). For some applications, truly, this last operation can be avoided, directly extracting, by
proper numerical techniques (that will be seen later on, see paragraph 3.11, page 66), the
searched geometrical properties of the interface during its motion. The numerical errors
that are introduced by that kind of numerical techniques are classified as measurement error.

While it is hard to decide how to remove the first and the third error sources, and hence some
caution is needed for them, the second one is quite simple to control by means of the choice of
the numerical scheme spatial and time accuracy.

Considering also that the numerical scheme accuracy order of the Level Set equation must be
at least consistent with the numerical algorithm to build-up the initial condition and to extract,
if necessary, the boundary and its properties, and vice versa.

3.6 LS INITIAL CONDITION

The level set equation needs a level set to evolve as initial condition, which as the sole constraint
and relation with the boundary to evolve to have its zero level coincident with the initial given
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front. Hence, giving the initial front to be evolved, only the level zero of the level set is defined.
This condition leaves an arbitrary choice on the initialization of the level set starting from the
front known initially. Even if some remarks can be done dependently on the considered problem
(considering the general case of a 3D problem).

@® Surface known analytically
This is the less applicative, but simplest case, in which the starting front is given by an an-
alytic function. The level set is automatically given by the analytic function that represents
the boundary, considered in an implicit fashion.

@® Surface known numerically
In this case there are different possible manners to build-up the initial condition for the
level set equation. Considering that the boundary is known in a discrete manner (at zero
order of approximation, by points, at first order, by a triangular tessellation of the surface,
and soon ...), we can:

@ consider an implicit function fashion, starting from a point-to-point knowledge of the
surface, along a particular direction of the boundary (for example the motor axis for
the grain propellant of a solid rocket motor) from which the level set is evaluated
(note that the surface itself must be monovalued, considering the particular direction
variable as dependent);

@ inijtialize the grid function ¢ as a Signed Distance Function (SDF) from the front TI'.
This is defined by the following expression:

SDF (X,T) = & min (d (X,x7)) VX e Q (3.83)
vxiEr
where
d(x,xi) =[x —xill, (3-84)

and the sign of the SDF is positive if the point is inner of the surface and negative
otherwise, or vice versa (note that this choice defines the outer and the inner, by
means of the definition of the normal outward direction).

This last option, as can be applied for a general, even complex given surface, needs some other
remarks.
In fact, the use of a Signed Distance Function as initial condition of the LS problem is advised
in order to solve numerically the equation 3.28, through the techniques shown before. It has, as
matter of fact, the following relevant properties:

@ it keeps the level set smooth near the tracked front;
@ it allows to build well-posed numerical approximation of the Level Set derivatives;

@ it defines a uniform separation for the Level Sets around the front in order to accurately
evaluate front properties, as normal direction and curvature.

These characteristics are particularly important when building-up a differenced approxima-

tion of the grid function space derivatives, to keep the numerical solution well defined and
accurate.
However, the numerical evaluation of the Signed Distance Function is quite algorithmic time
consuming expansive. Hence, some attentions are needed to implement it in real applications.
In fact, the accuracy on the initial condition is required only near the zero level (that is to say the
front to evolve, as the interesting is often limited to it), in a band dependent by the numerical
scheme stencil (that is, its spatial accuracy), and hence a discrete value based in grid distances
can suffice far away.
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3.6.1 SDF BUILDING FOR 3D AND AXISYMMETRIC GRAIN GEOMETRIES

As said in the last paragraph, the only constraint given by the Level Set Method to its Initial
Condition is that its level zero is the front to be moved. Hence, the choice and the its building
up, can be defined by means of:

@® a computational effectiveness point of view, in order to reduce the computational cost of
the resultant grain burnback analysis algorithm;

@ and by a numerical point of view to have a well position of the related discretized problem.

As a matter of fact, far from trivial cases, we can expect that the design of the grain initial
shape, as a trade off between several mission requirements (defined thrust time trend, grain
stress analysis as principal ones, and so on...), will be made through an iterative Computer
Aided Design (CAD) design process. So that at a given step, the grain initial surface is given
in a numerical discrete manner. Hence, to be of practical use, the IC for the LS technique must
be built up starting from a numerical known surface. Preferably with a general and automatic
procedure from the CAD representation of the grain initial burning surface, and the case or the
Thermal Protections inner profile.

A very useful, general and computerised way to do that is just to compute the Signed Distance
Function from the grain initial shape I" given by the equation 3.83, that has the relevant property

that ‘ﬁd)’ =1, with the aforementioned advantages and drawbacks.

An important remark, that deserves a particular discussion, is that as underlined and used
by a recent work [108; 107], the Initial Condition built up as Signed Distance Function from the
front is directly the solution of the problem, if the grain burning surface velocity is assumed
constant in space, as will be shown in paragraph 3.8, page 60.

The main drawback of this way to solve the problem stands in the computational cost neces-
sary to obtain it numerically. In fact, as far from trivial cases, the SDF must be evaluated for
each boundary point, for all the points of the domain of interest.

Our idea is, hence, to recover and highly reduce the com-
putational cost required to set numerically the initial condition
as Signed Distance Function, considering a computation of it,
banded only near the Level zero of interest. The band dimen-
sion has to be set dependently on the numerical scheme stencil,
in a such manner that, the number of levels considered suffices
to build up well posed spatial derivatives and will not affect in
the front evolution the solution of the problem.

As input of the algorithm that builds the numerical banded
SDF, as made in the work [107], we have considered a
StereoLithography (STL) file format as input file, supported by
several CAD tools as output format of surfaces representation. A
STL representation of a surface is an unstructured discrete tes-
sellation of a surface by means of triangles, listed in the file as
vertexes and normal direction to the face, in a such manner that
the normal definition follows the right-hand rule of vertexes sort-
ing (see fig. 3.9).

The computation of the banded SDF can be, hence, done by means of the evaluation of the
minimum distance, in a local grid subdomain for each STL mesh element. For each generic
1-th face of the STL surface representation (triangle plane, lines and vertexes, composing it) the
distance is evaluated from each grid point (i,j, k) in its block of influence, created locally around
the selected face (see figure 3.10):

Figure 3.9: STL Representa-
tion of a Sphere
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DFy (i1,j1, ki,1) = min (Piyj i, — A1) 5d (Piyj kg — PLPL) S

(Pil jike — PL P13) ;d (Pil ik — PPy ) ’ (3.85)
Pk = Pu) s d (P —Pu);s

(Pivjii —Pu)}

\‘\rrr"Nfﬁn'e_ﬁalr(?ylindrical Mesh
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(a) STL Input (b) STL Mesh
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Figure 3.10: Banded SDF Building from STL file: Triangle Mesh Blocks of Competence

where:
® P =P (i1, j1, ki) is the generic grid point in the block of competence of the face 1;
@ d (Pi1 ik — Al) is the distance between P;_ j, , and the triangle face plane Ay;

@ d (P;Ll ikt — Pl Pln) the distance between the grid point and the vertexes connection lines,
for m,n=1,2,3 with m #n;

® and d (Pi;j, k, — P1,,) the distance between the grid point and the generic face vertex, for
m=1,23.

Hence, the resulting numerical Banded Signed Distance Function is given by:
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SDF (i,j,k) =+ min (DR ik b)) (3.86)
VEDF (i kD) (15,k) ElPminiPmax]

where ¢min; $Pmax represent the positive and negative band cut-off values. These depend
on the chosen block of influence dimension selected for the Signed Distance Function and the
sign is chosen positive or negative, if the point lies in or out the initial grain surface.

In this way, the evaluation of the initial condition is less computational time consuming than
performing the solution of the complete SDF in all the domain, considering the cut-off value
and, as consequence, the band initialization limited to the numerical scheme requirements. In
the meanwhile, some tests underlined that, with a band enough thick for the building of well
posed spatial numerical derivatives of the grid function, the solution is not altered by a banded
initialization itself.

Some tests also shown that, even in the case of spatially constant burning rate, where the solu-
tion is given by the equation 3.89, it is convenient by a computational point of view, to evaluate
the solution, not directly by the SDF evaluation, but as SDF banded evaluation and full matrix
LS equation integration in the domain of interest.

Moreover, in order to represent the axisymmetric surfaces of Thermal Protections of the SRM
case, a reduced algorithm to build 2D SDFs from a given tabulated list of points has been
developed. This is a simplification of the equations 3.85 and 3.86 considering the bi-dimensional
nature of the problem. As the computational cost of this procedure is very low, for the typical
grids used in GREG, a complete (not-banded) SDF initialization is considered in this case in one
of the azimuthal planes. Then the grid of the Thermal Protections is sweet all over the azimuthal
planes to obtain the TPs complete grid function.

SDF USE FOR AUTOMATIC 3D MESH GENERATOR

The SDF representation of surfaces in 3D cylindrical or rectangular grids has been exploited
also to generate in a automatic way the 3D meshes for a 3D Eulerian Computational Fluid
Dynamics (CFD) code with cylindrical multi-blocks structured orthogonal (rectangular and cylin-
drical grids) grids, able to simulate the pre-ignition transient of SRM[115]. It considers directly
as input for the grid generation, the output from the standard CAD (STL) representation of the
SRM components: igniter, grain propellant and nozzle. Thus, the generation of the numerical
grid is made by the construction of the Signed Distance Function from the CAD surfaces. Once
the physical domain has been discretized into each finite volume the SDF from the closest CAD
surface is computed and the finite volume is tagged as grain, igniter, nozzle, or bore cell, accord-
ing to the sign of the distance. This technique lets to an almost fully-automatic grid generation:
the user must set only the domain discretization. This technique has been developed with the
support of Ph.D. Ing. Stefano Zaghi in the framework of his Ph.D. Thesis[115], from which the
figures of the generated meshes are extracted (see figure 3.11).

3.7 LS BOoUNDARY CONDITIONS

Naturally the use of finite computational grid to capture the interface motion and solve the
Level Set equation requires some boundary conditions at the borders of the numerical lattice.
Normally, the numerical solution of the Level Set equation 3.28 by means of up-wind numeri-
cal schemes (as in its generalization version given by Godunov schemes) will naturally set the
outward-flowing one-sided differences at the boundaries for front that expand under the motion
velocity V. Hence, there is not the need of particular attention for these cases.

Other discussions deserve instead the cases of general velocity fields V and also particular start-
ing front symmetries (periodic or mirror symmetric fronts), which particular boundaries con-
ditions can be required for. In particular, in the latter case, it could be important for motion
velocity fields that preserve the interface symmetry during its evolution, to exploit these condi-
tions in order to decrease the number of grid points and, consequently, the computational costs.
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Courtesy of Stefano Zaghi, Ph.D. Thesis[115] Courtesy of Stefano Zaghi, Ph.D. Thesis[115]

(a) CAD Input (b) Mesh Generation

o SR = \
Courtesy of Stefano Zaghi, Ph.D. Thesis[115] Courtesy of Stefano Zaghi, Ph.D. Thesis[115]

(c) Mesh Details (d) Mesh

Figure 3.11: Output of Mesh and Initial Conditions Generator of the MUG Code

This is, in fact, the typical situation of 3D or 2D grain shapes, receding under a constant in space
or constant in the section burning rate (for Q1D internal ballistics models), for which mirroring
BCs can be exploited during the grain surface motion.

Hence, the following Boundary Conditions types may represent all the practical cases, limiting
the treatment to computational domains with boundaries along the coordinate directions, which
in the Eulerian nature of the technique can be achieved in whatever case. The BCs will be
expressed for a simple 2D case in rectangular coordinates (x,x2) (with indices along the x;
direction j = 1,...,n and along the x, direction k = 1,...,m), but it is straightforward their
implementation in cylindrical coordinates as well.

@ Extrapolation BC
The ghost node values of the grid function over the boundaries are simply set to a linear
extrapolation of the inner node values. This is completely equivalent to consider constant
along the considered boundary the cross spatial derivatives (see figure 3.12).

58



3.7 LS BouNDARY CONDITIONS

Along x7 lower boundary
djo=dj1 +

@ Along x7 upper boundary

bj2 — b1

X2|j2 - X2|j]

Gjm —djm_1

(X2|0k — x2l; 1) — DX2|X]:X1]()W = const

d))'m+1 :¢jm+

Along x; lower boundary

b2k —dP1x

X1l — x1lyx

box = b1+

Along x, upper boundary

Gk —Pn_1x

Xz\jm* X2|5m71

x _
(X2|jm+] - xz\jm,1) D 2|X1:x§‘P = const

(X] |0k — X1 |1 k) «~— DX ‘xzlezow — const

Gni1ke =Pnrt+

@ Periodic BC

X1 |nk - X1 |nf1 k

(x1lhg1x = X1lh_1%) = D |x2:x‘2‘P = const

The ghost node values are set as direct copy, step to step, to the correspondent alias nodes
along the periodicity axis. This is particularly useful when the starting front and the
velocity motion field keep the interface periodicity property, to avoid the wasting of com-
putational costs for the simulation (see figure 3.12).

@ Along x7 lower boundary

Pjo =djm—1 with  xal50 = x2l5; — (Xz\jm— X2|)‘m_])

@ Along x1 upper boundary

$jm+1 =¢j2 with X2|5m+1 = X2|5m+ (Xz‘jzf Xz\ﬂ)

@ Along x, lower boundary

Pox = Ppn_1x with X]‘Ok:X1|1k*(xl|nk*X1‘n71k)

@ Along x, upper boundary

Pk =02k with  x9l 1 = X1l + (X1l — %107 1)

@ Mirroring BC

The ghost nodal values are set, in this case, as direct copy of the correspondent alias nodes
along the mirroring axis. This becomes useful again in order to reduce computational
costs of front evolution problems that have and preserve this geometrical properties of the
interface along its motion (see figure 3.12).

@ Along x7 lower boundary
dj0 = dj2

@ Along x1 upper boundary
Gjmr1 = djm—1

@ Along x, lower boundary
ok = b2k

@ Along x, upper boundary

b1k =Pn-1%

with X2|j m+1 =2Xz\jm— X2|jm_1

with X1 1k =2 %1 — X111
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Figure 3.12: Samples of BCs in Moving Interfaces with the LSM

3.8 LS EQUATION SOLUTION IN THE CASE OF SPACE-CONSTANT VELOCITY
MOTION FIELD

Consider now the problem of solving the Level Set equation 3.28, here written again in equation
3.87, in the special case of a motion velocity field directed along the local value of the normal to
front itself, for which this form stands, constant in space and time.

2 +v ‘Vcb‘ —0
(3.87)
V(X,t) =V = const

In this case, there is a one-to-one correspondence between the time variable and the motion
length of the interface along its normal direction. In the applications to solid propulsion prob-
lems, this distance of regression along its normal direction by the burning surface is called, for
practical reasons, web.

Hence, it is possible to consider in a joint manner the problem as formulated in the time
variable or in the web variable, with the same initial and, if necessary, boundary conditions, as
expressed by the equation 3.88.

0

¢+v\v¢‘fo e dw=Vdt < gji

=0 (3.88)

It is simple to check that this equation (3.88) has the following analytic solution:

¢ (X,w) =SDF (X,T) —w = j:vnginr(d(i{,x’{))—w VX eQ (3.89)

Xi€
where the SDF (X, T') is the Signed Distance Function of the point X in the domain of integra-
tion Q from the considered starting interface I'. The Signed Distance Function, in fact, has the

property ‘ﬁd}‘ = 1in a “general sense” (the “general sense” attribute is necessary considering

that is known, by all said before, that the gradient may become undefined where the interface
develops kinks).

Thus, in this special case, neglecting the interface topology and shape, the problem of the
motion of a boundary along its normal direction admits an analytic solution, given by the trans-
lation in web of the Signed Distance Function to the front. The problem stands, now, on the
evaluation of the Signed Distance Function to the starting front itself. This is known analytically
only in trivial cases, so that, for general problems, a numerical algorithm for the evaluation of
the numerical SDF from a general closed surface is required and computationally very expansive
to be computed (as discussed in the paragraph 3.6, page 53).
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39 NARROW BAND TECHNIQUES

The simplest manner to implement the Level Set Method is to solve the Level Set equation 3.28 in
the entire computational domain, where the problem is initially defined (note that the tracking
of the interface motion is limited by the finite computational domain). This is the so called [59]
[46] Full Matrix (FM) approach. This approach, in fact, considers a tracking of all the levels of
the starting front (for all the possible manners to generate them, starting from the initial front
3.6) updating the “entire matrix” of the grid function in the computational domain. Using the
FM approach there are some advantages and drawbacks in solving the starting problem of the
moving a given interface:

@ data structures and operations are extremely clear and simple to be implemented in Level
Set codes;

@ if only the Level zero of the grid function is interesting in its evolution, a time computa-
tional wasting stands, as really only some grid nodes around the level zero are needed to
fulfill the simulation target and build the solution in time (clearly if all the levels are them-
selves important this is the unique possible approach, considering the use of the Level Set
method).

For this last drawback, some efficient implementations of the problem, which consider to
work only strictly in a compact support nearby the time-variable considered boundary, have
been developed by different authors [42; 57]. These techniques, known as Narrow Banding (NB)
approaches or methods, can be seen as an attempt to reach an hybrid Eulerian (as the LS method
is in capturing the interface in a fixed numerical lattice)- Lagrangian (for the motion of the
compact support attached to the level of interest) motion interface method. In particular, the NB
techniques can be distinguished in their manner to build-up the compact support around the
zero level:

@ a way [42] considers a block (a square in 2D problems, a cube in 3D ones) of mesh nodes
where computing the SDF and solving the LS equation;

@ the other one [57], instead, develops the compact support basing on bounds (upper and
lower) of the levels value.

Level Set of a circular front

0.5 SDF: -04-03-02-01 0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8

z

/g\ WO Level Set of a circular
T el Flo front in the
circular front I B Narrow Band
I:gﬁi circular front T—
(a) Full Matrix SDF (b) Narrow Band SDF

Figure 3.13: Full Matrix (FM) & Narrow Banding Techniques

The computational advantages and drawbacks of the use of these kind of techniques can be
listed as:

® Saving the overall computational costs
Considering a d-dimensional interface, it has O (kN4~1) points, with N the grid point
number along a single coordinate direction. The numerical algorithmic computational
costs of the full matrix and the Narrow Band approach for a SDF and a non-SDF initialization
are shown (evolution costs are per timestep for the evolution phase) in the table 3.1.
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3.9 NARROW BAND TECHNIQUES

Initialization Evolution (per timestep)
LS FM (SDF IC) O(kN4-T.Nd) O(N9)
LS NB (SDF IC) O(kNd—T.Nd=T) O(kNd—T)
LS FM (non SDF IC) O(kNd) O(Nd)
LS NB (non SDF IC) O(kNd=T) O(kNd—T)

Table 3.1: Computational Cost for the NB and FM approaches

For instance, in 3D problems the full matrix approach has a computational cost per timestep
of evolution that is O(N3), while for the narrow band methods is O(kN?). Moreover we
have a very different computational cost also for the initialization phase. This is O(kN#)
for the Narrow Banding methods and O(kN®) for the full matrix approach, for a SDF
initialization. Instead, for a non-SDF initialization, the computational costs are O(kN3) for
the FM approach and O(kN?) for the NB one.

Hence, it is evident that the use of a compact support that follows the boundary motion,
allows to drastically reduce the computational costs, both in the initialization phase and in
the evolution phase (Level Set equation solution), for the case in which a SDF initialization
is required. A different speech is needed, instead, for the case of a non-SDF initialization, as
a trade off between the advantages and drawbacks is more necessary. Even if, as discussed
before the first one is a completely general method to develop the Level Set IC, with
whatever boundary to evolve.

Note that the width of the compact support depends on the Narrow Band technique con-
sidered, but above all the numerical scheme stencil dimension, in terms of involved nodes.

“Local” timestep evaluation

The choice of the timestep is made in both the approaches (FM & NB) under the CFL con-
dition of the numerical scheme adopted to solve the Level Set equation. But, in a simplified
speech, it is possible to state that it applies in response to the maximum characteristics ve-
locity, not simply in response to the front velocity. This means that in the FM approach the
timestep can be limited by no interesting grid zones, where the levels are thickened. Con-
sidering in such a manner, a useless restriction for the time-marching numerical scheme.
Therefore, the Narrow Banding method, performing the timestep calculation only in the
moving compact support nearby the level of interest, allows timesteps fitted to the problem
itself.

In some cases the number of the “narrow band nodes” can decrease during the compu-
tation, allowing to strongly reduce the computing cost per timestep, as the simulation
advance (as in the case of a constant motion velocity field normally directed [28]).

Increase of the data structures complexity and need of periodic re-initialization

The data structures necessary to manage the band and its motion in time and the computa-
tional costs to access them are more complex with respect to the FM approach. Moreover,
as the band is moved (since the level set is updated only in the band), in order to avoid
to use non-updated nodes of the LS function a re-initialization technique is necessary to
assign the value to that nodes. Hence, the solution must be stopped to assign, after a band
motion step, a definition of a “sense value” to the new nodes of the band. This can be
made by means of the use of so called re-initialization techniques [79; 41; 60; 52; 65]. These
solve the problem of the definition of the level set function in the band through the solution
of an HJ equation of the type given in the equation 3.90, until steady state is reached and,
hence, a SDF in the band is obtained.

bo-+sign (0) ([Vo|-1) =0 (3.90)
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Unfortunately all these techniques are not so much simple to implement. In fact, they
tend to move the level of interest to some degree, perturbing it from it’s reached location.
In such a manner that volumes in or out the interface are not preserved (for that reason
different and more complex versions of the previous equation are used in order to limit
this effect, that plagued some implementation of the re-initialization techniques).

Concluding it is possible to say, in general terms, that the use of the Narrow Banding tech-
niques can undoubtedly decrease computational costs of the Level Set Method, in the case that
a SDF initialization is strongly needed during the front motion. While in the cases that the use
of a SDF initialization can be avoided, the need of NB methods may be carefully evaluated. In
fact, the aforementioned problems must be faced in terms of volume budget of the resultant
technique, and the complication of the algorithm necessary for the re-initialization technique.
Hence, in this work, even if some preliminary tests have been performed underlining some of
the above-mentioned troubles, the NB methods are not implemented. In fact, the computational
time required for each simulation is quite bounded, even with the use of the FM approach, for
the typical grids used for the grain burnback simulation.

3.10 EXTENSION OF THE VELOCITY FIELD OFF THE LEVEL ZERO

Recalling again the basic idea of the Level Set Method, in the Eulerian approach to the tracking
interface problem, we represent the front by an higher dimensional representation related to
it: the Level Set function, which Level Zero for all time represents the front itself. This means
that passing by the initial front to the Level Set IC, we have to deal with a higher dimensional
problem in solving the Level Set equation (recalled in equation 3.91). Hence, even the velocity
field of motion (for a front evolving along its normal direction) of the front must be defined in
the higher dimensional space, where the problem is solved (see figure 3.14).

¢ = ()

d)t + Vext ﬁd)‘ - 0 :> { Vext — Vext ()—6) (391)
(ERERNY
— ] N
1T // 0
V() i
/)
N LT T~ o r

¢ = ¢ (7) .
V(f):V(f)ﬁ \V’fEF {‘/6$t:‘/ea:t(f) \V/ZL'EQDF

(a) Interface Propagating along its Normal Direction (b) Level Set Formulation of the Problem

Figure 3.14: Extension of the Velocity Field

The choice of the definition of the Ve field in the domain is, again, as in the case of the Level
Set Initial Condition, with some degrees of freedom. In fact, it must only ensure that on the
interface itself ,it is coincident with the front motion velocity field (see equation 3.92).

Vext (X(1)) =V (X(t)) vX(t)eTl = d(X(t) =0 vx(t)eTl (3-92)

In general, there are three different reasons for building a particular choice of the extension
velocity field [59]:
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® In some physical problems, the velocity is given only on the interface itself, and there is no
natural extension of the velocity off the front, since it is not clear what means physically
this definition. In these cases, an extension of the velocity must be specifically constructed.

@ In other cases, the speed of the interface changes very rapidly and/or with discontinuities
as it moves in the domain. In such cases, the exact location of the Level of interest, where
the velocity is defined, determines the speed. Hence, a definition of the velocity from the
position itself, rather than from a coarse grid is desirable to describe properly the problem
under study.

® Under some other kind of velocity fields (typical of fluid dynamics application of the LSM)
instead, the Level Set can tend to bunch up or spread out, that makes the Level Set function
very steep or flat. For these cases, the definition of the extension velocity, maintaining the
constraint given by equation 3.92, can be made to keep the grid function a Signed Distance
Function, even during the evolution of the front. The reason for doing this particular def-
inition of the Vex¢ is to benefit from all the properties of the SDF definition of the Level
Set (paragraph 3.6, page 53). It maintains, in fact in the same time, a uniform separation
of the Level Set, avoiding in the same time the use of re-initialization techniques (and the
problems connected, see paragraph 3.9, page 61).

This can be achieved defining the Vext (X) numerically, by the solution of the partial differ-
ential equation 3.93.

VVext - Vi =0 (3-93)

We follow [54], in which the algorithm to solve the extension velocities equation 3.93 is
presented. Suppose that the Level Set function is a SDF, using the Level Set equation 3.91,
we have:

_ 4 (6. 90) - 20¢. VO _
dt  dt (vd) W))_zvd) dt (3.94)

vo))

= -2V - VVext

V|~ 296 ¥ (Vext

Now, the first term is zero because the building of the extension velocities given by the
equation 3.93. In the meanwhile the second term is zero too, because the initial condition
is given by a SDF. Hence, the Level Set with the extension velocities, given by the equation
3.93 is kept a Signed Distance Function, if it has an IC given by a SDF.

@ In cases for which the problem of the re-initialization is not present, another possibility to
construct the Vet field during the Level Set motion is a PDE based method, as suggested
in [57]. This method solves an advection equation of the velocity field off the interface, as
defined by the equation 3.95.

a\geXt + sign (¢) & - VVext =0 (3.95)
‘ vl

This is an Hamilton-Jacobi equation that can be solved with all the robust and accurate
numerical schemes presented in the paragraph 3.4.1, page 44 and the chapter ], page f (for
example a first order Riemann solver can be used to determine the advection direction of
the terms sign () ny and sign (d) ny).

In the case that the velocity field is constant, or it is dependent by the front curvature (or
other intrinsic properties of the front itself), the V = V¢, is globally defined and there are not
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3.10 EXTENSION OF THE VELOCITY FIELD OFF THE LEVEL ZERO

particular problems to be faced.

In this thesis work, the grain burnback technique results will be shown only for space and
time constant (even if the time independence of the velocity field can be simply relaxed) motion
fields of the grain burning surface. The reasons for this choice will be discussed in the chapter 4,
page 79, where the coupling between the grain burnback analysis model and the SRM internal
ballistics model is illustrated.

Notwithstanding, an extension velocity algorithm has been implemented, based on equation
3.95 in a module of GREG. The results of this activity, as not coupled directly with the internal
ballistics numerical simulation, will not be shown at all.

However, with respect to the completed coupled solution of the internal ballistic model with
the grain burning surface evolution model, some brief remarks can be made. In fact, the typical
grain burning rates, that define the V field of the surface motion, are relatively small (of the
order of millimeters or tenth of millimeters at the most for practical applications) and with flat
variations in the bore during grain burning. Hence, small perturbations of the Level Set function
from a SDF are expected even in the case of the definition of the extension velocities from the
Q1D model SPINBALL, as defined by equation 3.96 (see figure 3.15).

GREG computational domain

/

o (2)lg1p

Figure 3.15: Extension Velocities Definition for the Coupling between QiD Internal Ballistics
Model and 3D Grain Burnback Analysis Model

Vext (1,0,2) = 11 ( z)|Q1 D where z is the motor axis (cylindrical coordinates are used)

(3.96)
Thus, no particular problems have to be faced in these cases, and the extension of the velocities
off the interface can be made in a simpler manner or, in case, with the solution of the equation

3-95.
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311 EVALUATION OF THE INTERFACE GEOMETRICAL PROPERTIES

This section is dedicated to the description of the numerical methods able to evaluate the glob-
al/integral properties of the surface at different timesteps. This step is mandatory in order to
couple the grain burning surface evolution model with oD and/or Q1D internal ballistics model.
In fact, up to this point, we have only the evolution of the 3D grain shape in time, with a given
motion velocity, in terms of its Level Set representation and not yet the evolution of the integral
grain geometrical parameters, which are necessary for the oD and Q1D SRM flowfield models.

As stated before, one of the major advantages of the Level Set Method stands in its ability to
evaluate some global interface properties, as volumes, areas and perimeters. But even, it has
the skill to simply define the interaction of the grain burning surface with the its motion limit,
defined by the Thermal Protections inner surface.

In fact, for the other tracking interface motion techniques (described in the paragraph 3.2.1,
page 36 and 3.2.2, page 37), an accurate evaluation of such front properties and the interaction
with the TPs boundary surface become very difficult to be accomplished in a simple manner
(neglecting for a while the other aforementioned drawbacks in tracking the interface motion
with such techniques), as instead the LS approach does.

As matter of fact, it is possible to use
some relevant properties of the implicit func-

tions that numerically represents the Level Qr (¢ >0)
Set, proper to numerically evaluate areas, vol-
umes and perimeters, starting form the lattice
discrete form of the ¢ function.
Hence, the evaluation of the grain geomet- !
\W4

rical parameters, for the application of the

level set to grain burning surface evolution

with time and its coupling with a Q1D and/or

oD internal ballistics numerical model (see the

sections 1.4, page 6; 1.5, page 8 and 3.1, page

32), can be done considering the development

in a discrete fashion the following equations I' (¢ =0)
for a 3D implicit function.

For the evaluation of the volume contained
in the generic surface described by the Level
Zero of the Level Set ¢ (X), we introduce the
use of the Heaviside function, as the equa-
tions 3.97 and 3.98 show.

Figure 3.16: Evaluation of Integral Geometrical
Properties of an Implicit Function

V:JH—WW¢Wmd% (3-97)
Q

where h (¢) is the Heaviside function defined as:

(0 ifd<0
niol={ § fosg (.99)

and Q is the complete domain: Q = QT UQ ™.
While, for the area evaluation, instead, we have to use the Dirac Delta function (see equations
3.99 and 3.100)
A= |50 m) [Vo|ex (3.99)
Q
where 6 () is the Dirac delta function defined as:
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dh ()
dé
In a straightforward manner, volumes and areas evaluation become respectively areas and
perimeters evaluation equations if the problem is reduced to a 2D one.

5(d) = (3.100)

Moreover the implicit functions, as are the way in which Level Set represents the interface
to be moved, make both boolean operations and more advanced constructive solid geometry
operations very easy to apply (see the table 3.2, where ¢ (X) and ¢ (X) are two generic implicit
functions).

Boolean Operator ~ | Mathematical Expression

Union min (¢q (X), b2 (X))
Intersection max (¢ (X), 2 (X))
Complement —1 (¥)

Subtraction (¢ — ¢1) max (1 (X), =2 (X))

* . . .
operators are referred to the interior region

Table 3.2: Boolean Operators for Implicit Functions

In fact, these particular properties provide a very simple mathematical and geometrical rep-
resentation of the limit, on the grain burning surface evolution, constituted by the Thermal
Protections initial surface, as will be shown in the following.

A not trivial matter, instead, is the implementation of the equations 3.97 and 3.99 in a numer-
ical fashion. In fact, the definition of the Heaviside and Dirac Delta, by the numerical point of
view, can not directly be made from the equations 3.97 and 3.993. In the same time, these general-
ized functions must have, in their discrete fashion, some regularity and convergence properties,
in order to ensure confidence on the extracted data, as the grid is refined, both in rectangular
and in cylindrical systems of coordinates (with major importance given to the second, for its
practical applications to the grain burnback analysis).

The standard approximations typically used by the Level Set community stand on a regular-
ization of the Dirac Delta and the Heaviside function. These spreads out the singular definition
of these mathematical entities to a meshgrid dependent compact support, by the use of different
regularization functions, dependent on the ¢ (X) value, related by the equation 3.100.

Analytical Numerical
S(p(X) <= bc(d(Xijk)) withe=rkAx (3.101)
h (d) (7_(')) <— he (CI) (’zi,j,k)) with € = kAx

We will focus, now, the attention only on the discretization of the Dirac Delta, which is the
most difficult between the two, as the Heaviside one will follow the first. For 1D problems in
rectangular coordinates, far from not completely trivial applications of the Level Set Method,
the regularization functions define a discretization that has a numerical error ¢ of the computed
measure of the front, which is related to its moment properties @ [89] (see equation 3.102).

+o0
1, =0
@(0c)=q <= AxZooée(xj—x)(xj—x)r—{O,]<T<q = (< CAxY (3.102)

Some regularization functions, which general form is expressed by the equation 3.103, are
then shown in the table 3.3 and figure 3.17.

a direct application of the equation 3.99 in a numerical fashion will produce, for whatever numerically represented
implicit function, a zero area, while for the equation 3.97 a well defined in terms of regularity and convergence, but very
rough evaluation of the Level Zero internal volume
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x
Ib.(:) E<1‘ € = KAx
dc (x) = (3.103)
0 ‘}>1‘ € = KAX
€
Function Formula Moment Error Domain
P (%) min (1+%,1-%) @=2 | (=0(Ax?) | e=kAx
Peos (%) ]Z (14 cos (%)) =1 (=0(Ax) | e= KTHAX
=32 +3 ]2 o<z <
Ve (%) @=4 | (=0(Ax*) | e=2Ax
- E =L 1<z <2

Table 3.3: Some choices for the Dirac Delta regularization [14; 85]
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Figure 3.17: Some Choices for the Dirac Delta Regularization [14; 85]

Hence, in these simple 1D problems the regularity and convergence properties of the built
regularization of the Dirac Delta and, consequently, of the Heaviside functions are quite simple
to be defined.

The not trivial step is represented to how build up the Dirac Delta discretization for multidi-
mensional problems, from the 1D discretization seen before. A very common technique [79; 59],
with applications for the Level Set Method, for extending the regularized 1D Dirac Delta func-
tion to multidimensional problems, is based simply to define the Delta Dirac depending on the
grid function value. This, in fact, is simply related to the grid distance value from the front I'
of the grid point itself (see equation 3.104) [89; 85], with a compact support e = Ax (k =1) or
e =2Ax (k=2).
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8e (F,T) = 6¢ (d(Z,T))
\U—a
$ (%) = (X—Ro) -V + CIK— %ol
y
PR c1
y
5 (%,1) — 5 (d(%,T)) — 5 | 21X

The problem of using this kind of regularization is, as found in [85], that such a choice may
result an O (1) error in computing the length of the front in 2D problems, or the front surface
in 3D ones. This means a completely lack of convergence regularity of the resultant numerical
technique, that has been also found with different tests in this thesis work (see paragraphs 5.3,
94). To fix this problem, many different authors in some recent works published in literature
([88; 89; 85; 81; 99; 82]) have underlined this fact and proposed different types of regularizations
of the Dirac Delta function, with applications to the Level Set Methods.

In particular, the techniques proposed by Engquist et al. in [88] considered tow different and
possible approaches. The first algorithm considers a tensor product of the regularized 1D Dirac
Delta functions. While the second one, and simpler among the two, defines a regularization as
in the 1D case with a variable compact support of regularization, that depends on the orientation
of the front with respect to the computational grid (see equation 3.105).

Vd(x,T) \ 1
‘ €1D (3.105)

€MultiD (ﬁd (%, F)) i E—
Va )
Where [-|; is the 1-norm and the definition of d (X, T") from the Level Set function ¢ (X) follows
from the equation 3.104. The resultant techniques are shown to be respectively with a second
and first order of accuracy [88], for averaged measures of different interfaces with small irregular
shifts in the computational grid.

A quite different approach is, instead, presented by Smereka in [99]. The construction uses
the technique developed by Mayo [23] in solving the Poisson’s equation for elliptic problems
with discontinuities. The definition of the Dirac Delta function is, hence, obtained building the
numerical solution of the Laplace’s equation written by an equivalent problem subject to jump
conditions, taking into account the presence of the discontinuity (represented by the Dirac Delta).
This approach used in 1D problems brings to a definition of the regularized function that coin-
cides with the linear regularization aforementioned " (%) (see table 3.3). But, it can be simply
extended to 2D or 3D dimensions in a straightforward manner, by solving the Laplace’s equation
subject to the jump conditions through the interface discontinuity in 2D or 3D respectively. The
resultant interface measure can be first or second order accurate, depending on the numerical
finite differences approximation of the Laplace operator, as proved in [99] with some 2D and 3D
tests, with the results averaged for small shifts of the computational grid with respect to the front.

In the definition of the technique for evaluating the grain geometrical integral properties,
all the mentioned regularization methods of the Dirac Delta (and Heaviside) have been imple-
mented and tested for both rectangular and cylindrical systems of coordinates, as will be shown
in the paragraphs 5.3, 94. Unfortunately, all these methods, even the variations due to Engquist
and Smereka, have found to be too sensitive with respect to the front position on the compu-
tational grid, in a manner that does not allow to have a sufficient regularity property of the
computed surface (for 3D problems) or perimeter (for 2D problems). We remember that the
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Dirac Delta regularization?, in particular, since defines the burning surface and perimeters along
the motor axis (which relevantly affect the internal ballistics numerical simulation) must be well
defined in terms of convergence with mesh refinements, but also of regularity of the computed
quantities.

Because of all these remarks and requirements necessary for our implementation of the front
measure method, we decided to use a different approach for it, that is computationally more
expansive, but that has the required properties for both convergence and regularity. All the
above mentioned approaches, in fact, work on the regularization of the discrete Dirac Delta and
Heaviside in order to define the integral properties through a capturing of the front (the level
zero), from the nodal values of the grid function. On the contrary, this approach defines the
Dirac Delta and Heaviside discrete operators by means of a direct evaluation of the perimeters,
areas, or volumes, that uses a direct determination (fitting) of the Level zero position through
an interpolation of the grid function. This technique (presented in the next paragraph) is based
on the recent works of Min and Gibou [106; 114], which allow a simple and straightforward
implementation in both Cartesian and cylindrical coordinates.

3.11.1 MULTIDIMENSIONAL DIRAC DELTA AND HEAVISIDE DISCRETIZATION

In this paragraph, we follow the works published by Min and Gibou in [106; 114].

The approach for evaluating the position (and hence, the areas, volumes and perimeters prop-
erties) of the Level Zero, from the Level Set numerical representation of the 3D surface, is based
on a decomposition of each grid cells into a union of simplices. This technique applies for
both Cartesian and cylindrical computational grids and gives, as proved by the authors, and
enforced in the paragraph 5.3, page 94, a robust second order accurate discretizations of Dirac
Delta and Heaviside functions, independent of the underlying grid and therefore stable under
perturbations (or small movements) of the interface [106; 114].

A simplex, or n simplex is a convex hull of a set of (n+ 1) affinely independent points, so a
triangle in 2D and a tetrahedron in 3D problems.

Simplices provide a very straightforward manner to compute perimeters, areas and volumes
of an implicit function defined on their vertexes. The generic (Cartesian or polar) 2D four-sided
cell can be decomposed into simplices in a very simple through the diagonal, as shown in the
figure 3.18 and the equation 3.106.

0,112 = APooP1oP11 U APooPo1P11

(3.106)
0,112 = APooP10Po1 U AP10Po1P11
Py Py, Py Pi1 Po Pi1 Py Py
Poo Py Py Pro Poo Py Poo P

(a) Cartesian Coordinates (b) Polar Coordinates

Figure 3.18: 2D Mesh Cell Decomposition into Simplices

4 the problem is less important, but present also for the Heaviside function
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The generic (Cartesian or polar) 3D cell with six-sided faces, instead, can be decomposed into
five tetrahedrons by the so called middle cut triangulation [25], see figure 3.19 and equation

3.107.

0,17 = APoooP100Po10Po00 U AP110P100Po10P111 U AP101P100P111P001 U
U APo11P111Po10P0o01 U AP111P100P010P001
(3.107)
0,17 = APo01P101Po11Po01 U AP111P101Po11P110 U AP100P101P110P000 U
U APo10P110P011Pooo U AP110P101Po11Pooo

Piig Piio

Poor Poor

(b) Cylindrical Coordinates

Figure 3.19: 3D Mesh Cell Decomposition into Simplices

Hence, in a such manner the problem is moved in the definition of the interface position on a
generic simplex. In fact, the decomposition of the generic cell into simplices does not create new
vertexes, in which the grid function must be defined.

Now, the intersection of the front I' with a generic simplex S (SNT) and the inner volume
included between the interface and the simplex (S N (QQ™) are defined by polytopes (for example
convex hulls of five vertexes), which areas and volumes are not simple to be evaluated. But,
again they can be decomposed into simplices, for which the evaluation of volumes and areas is
straightforward.

In fact, the volume of the generic n-simplex in the space (x1,- -, xn) ! is given by the equation
3.108, that gives the expression in 3D of the volume of the tetrahedron and in 2D, the triangle
area. While, to evaluate the areas in 3D and the segment lengths in 2D, the simple geometrical
expressions for a triangle area and the distance between two points can be used.
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1 (x1ly = x1lp) -+ (xaly = x1lo)
Vol (S) = = det : : (3.108)
(Xn|1 - Xn‘o) te (Xn‘n - Xn|o)

At this point, what remains to do is to study all possible cases of intersections between the
front I" and the generic simplex, in function of the grid function values. Using the grid function
values on the simplex vertexes, we linearly interpolate ¢ on S, thus, I' and QO™ are geometri-
cally hyperplane and halfspace. We remark that two geometrical configurations given by the
intersection between a simplex S and a hyperplane I' and between a simplex S and a halfspace
Q7 are equivalent if they have the same number of vertexes below or above, the hyperplane T'.
Therefore, in order to classify all the possible configurations, it suffices to count the number of
negative or positive values of the grid function ¢ in each simplex, as given by the equation 3.109
[106].

N(d,S)=n(Pi:d(Py) <0 VPyeS) (3-109)

Hence, in 2D the possible values of n (¢,S) are 0, 1, 2 or 3, and the geometrical entities that
defines the hyperplane SN T and the hyperspace SN Q™ necessary to compute them are shown
in the tables 3.4,3.5 and figures 3.20,3.21.

n(,S) $o ¢ ¢2 Qo Q1
0 + + +
1 — + + Po1 Po2
2 - - + Po2 P12
3 _ _ _

Table 3.4: Geometrical Entities that define SN T in 2D

n(¢,S) o o} ¢2 Qo Q1 Q2
0 - - +
1 — + + Po Po1 Po2
2 — — + Po Pq Po2
Po2 P12 Po2
3 - - - Po P, P,
Table 3.5: Geometrical Entities that define SN Q™ in 2D
Py (+) Py (+) Py(+) Py(-)
Foz P Pz
P, P P, Py P
) PH ) P oRA@ O P ) =)
(@mn(d,S)=0 ®)n(d,S) =1 @©n(d,Ss)=2 @n(p,S)=3

Figure 3.20: Geometrical Entities that define SNT in 2D

The position of the generic P;; point, intersection between the interface I' and the generic
simplex S is simply given by a linear interpolation of the grid function values at the segment
nodes, as the equation 3.110 shows.

¢ (Py)

(P — b (Py) (3-110)

Py = —Pi
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Py (+) Py(+) Py(+) Py(-)
P, P,
('*?) Py (+) (Ijo) Po Pi(+) (j) Pi(-) (Ijo) P (=)

@ n(,S)=0 (b)n(¢,S) =1 @n($,S)=2 (d)n(d,S)=3

Figure 3.21: Geometrical Entities that define SN Q™ in 2D

The expression of SNT and SN Q™ can be resumed in the following expressions 3.111 [114].

J' dQ =Hy+H;+Hy =Hg
ONAPyP1 P,

(3.111)
J dQ =85+ 61+ 02 =065
FMAPyP1 P,

The generic coefficients Hj; ; are functions of the six arguments. As the discretization in the
equation 3.111 is not dependent on the order of the indexing of the vertexes, only the expression
of one coefficient suffices so that all the other coefficients expressions directly follow it (see
equations 3.112, 3.113 and 3.114) with an indices permutation.

HO = HO (d)O/ d)]/(bZ/ PO/ P1/P2)
112
{ 60250 (d)O/q)]/d)Z/PO/P]/PZ) (3 )

{ H] ((bO/ d)]/q)Z/PO/P]/PZ) = HO (¢1/¢0/ q)ZI P]/PO/PZ)

Ha (o, b1, &2, Po, P1, P2) = Ho (b2, do, b1, P2, Po, P1) (3-113)
{ 01 (bo, 1, d2,Po, P1,P2) =80 (b1, o, 2, P1,Po, P2) (3.114)
62 (d)O/ C])],Cl)z, PO/P1/P2) = 6O (¢)2/ d)O/ Cb]/PZ/ PO/P1) '

Therefore, the expressions of the Hp and 6 are given in the table 3.6.

n (q)rs) (bO d)l ¢’2 HO (d)O/ q)]/d)ZI PO/ P]/PZ) 60 ((bO/ d)lld)ZI PO/P1/P2)
0 + + =+ 0 0
_ A(Po1Po2Po) b2 ¢4 L(Po1Po2) [P b1
! ++ 3 (1 t po—as T ¢1—¢o) 7 (¢z—d>o + d>1—d>o)
2 _ + A(PoP1P2)  A(Pp2P12P3) 2 L(Po2P12) &>
3 $2—bo 2 b2—bo
3 . . . A(P0;1P2) 0

* note that & (¢p) =& (—d) and H (¢p) = —H (—¢)
™ all the other cases can be obtained by an indices permutation

Table 3.6: Heaviside and Dirac Delta expressions in 2D of Hy and 6¢
For 3D problems, the possible values of 1 (¢,S) are 0, 1, 2, 3 or 4. Hence, the geometrical

entities that define the hyperplane S N T" and the hyperspace SN Q~, necessary to define them
are shown in the tables 3.7,3.8 and figures 3.22,3.23.
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n(¢,S) $o ¢ $2 ¢3 Qo Qs Q2
0 + + + -
1 — + + + Po1 Po2 Pos
2 - - + + Po2 Po3 P13
Po2 P12 P13
3 - - - + Po3 P13 P23
4 _ _ _ _
Table 3.7: Geometrical Entities that define SNT in 3D
n@,S) | do| d1 | d2] d3| Qo Qs Q2 Qs
0 + | +] +] +
1 — + + + Po1 Po2 Po3
2 — — + + Po Pq Po2 P13

P12 Py Po2 P13
Po Po3 Po2 P13
3 — — — + Po Pq Py P13
Po Pos P2 P13
P23 Po3 P2 P13
4 — | - — | =] P P P, P3

Table 3.8: Geometrical Entities that define SN Q™ in 3D

Ps(+)
Py
(+)
Py
(+)
Py (+)
(@n(d,S)=0 b)yn($,S)=1 ©@n($,S)=2
Py (+) Ps(—)
P.
Pos “ 2
P2 P2
(-) (=)
Py P
-) (=)
Pi(-) Pi(-)
(dn(d,S)=3 (e)n(d,S)=4

Figure 3.22: Geometrical Entities that define SNT in 3D

Similarly to 2D cases, the coefficients of the Dirac Delta and Heaviside discretized functions
depend on eight arguments, in a independent manner by the order of them. So the equations
3.115, 3.116, 3.117, 3.118 stand directly, as the in 2D case.
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Ps(+) Ps(+)

Py

Py(+)

@mn($,S)=0 ®)n(d,S) =1 ©n(d,S)=2

Pi(-)

(d)n(p,S)=3 ©n(p,S)=4

Figure 3.23: Geometrical Entities that define SN Q™ in 3D

J' dQ =Hy+H;+Hy+Hsz =Hg
ONAPyP1P,P3

(3.115)
J dQ =69+ 067 +062+ 063 =05
’NAPoP;P,P;
{ Ho = Ho (bo, &1, d2, d3,Po, P1, P2, P3) (3.116)
60 = 6O (CbO/ d)]/(bZ/ Cb?)/ PO/ P]/PZ/ PS)

= HO (d)]ld)OI ¢)2/ ¢>3/P]/P0/ PZ/ P3)
=Ho (2, o, &1, d3,P2,Po, P1,P3) (3.117)
= HO (d)3/ d)()/ ¢1rd)2/ P3/ PO/ P]/PZ)

H q)Or d)hd)Z/ ¢31P0!P11P2! P3

H d)O/ cb]/d)Zr ¢3/PO/P1/P2/ P3

61 ¢)O/ d)]/CbZI ¢)3/PO/ P1/P2/ P3 = 60 (d)]/d)()/ (bZ/ d)3/ P]/POI PZI P3)

52 =00 ($2, o, b1, d3,P2,Po, P1,P3) (3.118)
63 d)O/ d)1/d)21 ¢3/P0/ P]/PZI P3 = 6O (¢31 cb()r ¢1I¢2/ P3/ PO/ P1/P2)

H] (¢)O/ Cl)] ’ CbZI ¢)3/ PO/ P1 ’ PZ/ P3
2
3
(
(o, 1, P2, b3,Po, P1, P2, P3
(
And the expressions of the Hp and 8¢ are given in tables 3.9 and 3.10.

—_—— — —_—— —
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n(d,S) | do | d1 | d2 | ¢3 Ho (do, d1, b2, 3, Po, P1,P2,P3)
0 + + + + 0
1 o T+ n V(PoPoLPozpm) (] + ¢1¢J¢o + ¢zdiz¢>o)
V(PoPo2Po3P13) b2 b3

7 (1 + oo T ¢3*¢0> +

2 _ o + + +V(PoPojP1P13) 1+ ¢2412¢0)+
JrV(PozP1P1zP13] D)
4 $2—do

3 — | = | = | + V(PoP1PaP3)  V(Po3P13P23P3)  ¢g3

4 4 b3—Po
4 _ _ _ _ V(P0P4P2P3)

* note that & (¢p) =6 (—¢d) and H (¢p) = —H (—)
™ all the other cases can be obtained by an indices permutation

Table 3.9: Heaviside expressions in 3D of Hy

n (d)rs) ¢)0 d)] d)z ¢3 60 (¢)O/ d)]/cbZ/ ¢)3/PO/P1/P2/ P3)
0 N 0
N A(Po1Po2Po3) [0} [0)] b3
A 3 $1—Fo T Ba-do T B3—bo
_ - A(Po1Po2P03) b1 [0 b3
2 + o+ 3 $1—bo T Pa—bo T B3
3 _ _ _ + A(Po3P13P23) &3
4 3 $3—do

* note that & (¢p) =& (—d)

™ all the other cases can be obtained by an indices permutation

Table 3.10: Dirac Delta expressions in 3D of 8¢

Note that with this procedure, it is also possible to extract the Level zero from the Level Set
grid function, with a STL representation. In fact, the surface I'N S is represented by a series of

triangles, as the discrete StereoLithography representation of a surface needs.

3.11.2 0D & Q1D GRAIN/BORE GEOMETRICAL PROPERTIES EVALUATION

In order to apply the aforementioned numerical procedures to compute the grain flowfield cou-
pling geometrical properties, some other clarifying remarks are needed. In fact, not all of them
have the same importance in the main target to allow the numerical simulation of the internal

ballistics over the IT:

@ The burning surface (Sp) for oD models) and the burning perimeter (Py) for Q1D models
(burning perimeter) leads the burning mass flow rate entering in the bore, defining the mo-
tor pressure time history and the global mass balance of the numerical simulation. Hence,
a rude and not consistent evaluation of these parameters strongly influence the accuracy
of the internal ballistics numerical simulation, especially if mass balance is not respected.

@ Instead the port area (A},) and the wet perimeter (P,,) for Q1D internal ballistic models and
the wet surface (S,,) for oD models are necessary to account respectively geometrical bore
variation, friction terms and the amount of uncovered liner and case thermal protections
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(for TPs optimal dimensioning). Therefore, even not much accurate evaluation of these
parameters can be accepted, even if desired, as they influence, in a very secondary manner,
the flowfield properties in the bore.

Now, using the robust numerical definition of the Dirac Delta and the Heaviside shown in
the paragraph 3.11.1, page 70, all the grain and bore geometrical parameters for oD and Q1D
internal ballistics models can be easily obtained with the use of the boolean algebra of the
implicit surfaces. The inputs for them are given:

@ by the Level Set at the given timestep evolved by the LSM, which its level zero is the grain
burning surface at the given time;

@ Dby the case grid function initialized as a SDF from a 3D STL file, or an axisymmetric profile
(see paragraph 3.6.1, page 55).

For the oD geometrical parameters, we have that the evolution of the volume bore Vy, (t), of
the grain volume Vj (t), of the burning surface Sy, (t) and of the wet surface S,y (t) are given
respectively by the equations 3.119, 3.120, where the subscripts g and ¢ means respectively grain
and case.

th) = Z Hijx = Z Z Hsg (max (cb{;k‘g , ¢iik|c>> (3.119)

ijk ijk \S€Aiji
¢iik\c)>) (3.120)

) =) dip=2 | 2 s (¢uk| maX( Uk‘gfd)iik’c) = ‘b?jk‘g) (3.121)

ijk ijk \S€Aj

ik ijk \S€Ai

M=) Siyk=)_ ( > 8 <max(¢%k’g,¢ijk{c)>) (3.122)

ijk ijk \S€Ayr
Here the first sums are made over the meshgrid cells with the indices 1, j and k. While the

sums over the index S for S € Ajji are referred to all the simplices in which the generic cell is
decomposed, given by the middle cut triangulation (see figure 3.19, page 71).

The Q1D geometrical parameters, port area A, (x,t), burning perimeter Py, (x,t) and wet
perimeter P,, (x,t) are defined by the equations 3.123, 3.124 and 3.125, where the k-index identify
the computational grid nodes along the motor axis.

(k, t™) ZHU = Z Z Hs (max (d){ljf{‘g, ¢iﬂ~<‘c)> (3.123)

ij S EAii

Pb (E,tn) :Zéu = Z ( Z 65 ( Uk’g : max (d)l)k’ d)lllz
ij

ij \SeAy

(k,t") Zéu = Z Z 8s (max( {;E’g , (bij'z'c)) (3.125)

ij S eAij
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For the definition of a burning perimeter, in a consistent manner with respect to the burning
surface, the local burning perimeter given by the equation 3.124 is completed with the definition

of a consistent burning perimeter Py, ( k k+1, t“), given by the equation 3.126.

. - 1
Py, (k:k—H,t“) = Z Okt Az
ijkk+1
1
Z Z ds <¢ijk’g : max <<b{§k'g, ¢ijk|c) = d)%k‘g) Az

iikik+1 \S€AG
(3.126)

In this case, the burning perimeter is defined along the motor axis as an “averaged value” of

the burning perimeter contained in the k k41 planes orthogonal to the motor axis. In such a
manner that the burning surface between such planes is defined simply by the multiplication of
it for the grid discretization along the motor axis.
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HE grain burnback model GREG is able to give to the SPINBALL flowfield Q1D unsteady
T model all the Q1D geometrical parameters necessary to compute the bore geometry and the
propellant grain products inlet flow, due to combustion processes. Hence, with the technique
discussed in the paragraphs 3.11, page 66, it evaluates the port area, burn perimeter and wet
perimeter along the motor axis and their evolution in time, even for the submergence zone, if
present. In this brief chapter we discuss the way in which the two models are coupled in order
to simulate the overall combustion time of a given Solid Rocket Motor.

In principle, the problem of solving the internal ballistics and the grain burning surface evolu-
tion are completely coupled to each other. By a part the coupling is through the aforementioned
evolution of the Q1D geometrical parameters given by the 3D grain burning surface evolution
model of the chamber and by the other through the local burning rate values (see equations 2.1
and 3.28).

A first decoupling, related to the solution of the numerical problem in a discretized manner, is
to stagger the time solution of a problem with respect to the other. In fact, it is possible to assume
that during the flowfield timestep the flowfield conditions in the chamber are not influenced, in
a relevant manner, by the grain geometrical evolution during that time interval. This hypothesis
indeed introduces a very small approximation in the internal ballistics solution, considering that
the burning surface evolution occurs at a significantly slower rate (grain burning rate, of the
order from millimiters to tenth of millimiters per second) than the flowfield development ones
(that are of the order of meters per seconds).

Taking this reasonable assumption, since GREG can deal with space and time variables burn-
ing rates, two ways of coupling can be now considered. The first one is to consider a so called
“on-line coupling” between the bore flowfield solver and the grain burnback model. In this ap-
proach, the solution of the flowfield and of the grain evolution problem are made during the
simulation in a staggered manner (see figure 4.1). Hence, this requires a coupling algorithm for
the two models and a grain burnback analysis model able to accomplish the 3D grain burning
surface evolution with space and time variable motion velocities (the grain burning rate). More-
over, the two models (grain burnback and flowfield solver) have to march with the same timestep,
that is typically defined by the internal ballistics solver one (the order of magnitude of a typical
timestep for the Q1D model for a meshgrid with a Ax = O (cm) is 107 s). A dual timestep can
be also used, exploiting the remarked fact that the characteristic times of the grain burnback are
much wider that the ones of the internal ballistics, in order to reduce the computational time
required for the coupled simulation. In such a manner that the geometrical evolution is updated
for the Q1D solver only once for different timesteps of the flowfield solver itself. Note that in
this way of coupling, as the grain burning rate is defined spatially constant in each section of the
3D grain regression model, the properties of symmetry and/or periodicity of the grain shape
are preserved. Hence, these properties can be exploited in the grain burnback analysis, in order
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to make accurate meshgrids of a slice of the azimuthal domain using cylindrical coordinates. At
now, there is not any work in the literature on the internal ballistics numerical simulation using
this coupled approach.

Q1D Internal 7 (& ) 3D Grain Burning
isti Surface Evolution
Ballistics Model
AP (Ia t) Model
Py (z,t)
P, (z,t)

Figure 4.1: On-line coupling grain burnback analysis and internal ballistic solver

The second coupling way, instead, considers a so called “off-line” coupling between the two
models. In this approach, the evolution of the grain burning surface is made with a constant
burning rate, once for all times for a given motor, prior to the execution of the numerical simula-
tion of the internal ballistics. In such a manner, the grain burnback solver GREG is used in order
to create tables of the bore and grain geometrical properties in the web variable, in terms of
port area, burning perimeter and wet perimeter and in the cavities (submergence, slots, floaters),
when present (see figure 4.2). The coupling with the Q1D internal ballistics solver is, hence,
obtained by means of the access to these tables through an interpolation procedure, during the
internal ballistics numerical simulation. The input for the table access is given by the local web
variable, as defined in equation 4.1.

t
web (x,t) = Jo T (%, 1) dt (4.1)
Q1D Internal rp (2,1) ‘;Z’ ((;E: ;i:g)) 3D Grain Burn%ng
Ballistics Model |- Py (, web) Surface Evolution
A, (z,t)| tables Model
Pb (.T, t)
Py, (z,t)

Figure 4.2: Off-line coupling grain burnback analysis and internal ballistic solver

This second approach assumes certainly some approximations on the evolution of the grain
combustion surface related to the grain burning rate variations along the motor axis, that can be
due to the total pressure drops and to the erosive burning. Some kind of motor configurations
in fact are subjected to these phenomena that can strongly lead the SRM internal ballistics,
especially when high velocities in the bore establish. With this “off-line” approach, hence, the
variations with the axial direction of the burning rate are accounted during the flowfield solution.
While their effects are neglected for the 3D burning surface evolution, as this is made with a
constant burning rate before the internal ballistics simulation.

Hence, in the case of relevant variations along the motor axis of the grain burning rate, these
approximations may become important in terms of the evolution of the bore geometry, but above
all in the evolution of the overall burning surface in time, in particular during the tail off phase.
This phase, in fact, as described in the paragraph 1.3, page 4, in mainly led by the decreasing
of the grain burning surface in time, that depends strongly on the reconstruction of the grain
burning surface evolution in time during the Quasi Steady State. Hence, all the approximations
introduced by this coupling way are expected, in such cases, to introduce small approximations
during the QSS, while even relevant approximations during the TO phase. From another point
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of view, with this kind of coupling, the grain burnback evolution can be made once for all for
a given motor in an accurate manner. Under these hypotheses, we remember that, as shown in
the paragraph 3.8, page 60, the solution for the grain burning surface evolution is known to be a
signed distance function from the initial grain surface, as used in [107] and remarked in [113].

In both cases, then, as expressed during the description of the on-line coupling and for the
same reasons related to the staggering of the internal ballistics solution with respect to the grain
burning surface regression, the updating of the grain geometry can be made at every timestep of
the flowfield solution, or only every defined small interval of time, freezing the geometry during
them. In the on-line coupling, this reasonable solution has a strong impact on the computational
time required for the overall numerical simulation, since the 3D grain burning surface evolution
has computational time greater than the internal ballistics solver.

Instead, in the off-line coupling, this has less important effects on the computational time,
since the interpolation procedure and the access to the grain geometrical tables can be made
using the fact that, by its definition, the web (x, t) variable is an increasing function of the time
Vx. In the meantime, the computational cost for the 3D grain burnback analysis of the given
SRM is always the same, as it is made once for all the internal ballistics simulation of a such
SRM.

In this work, we consider the off-line coupling at each timestep between the grain burnback
module and the flowfield Q1D unsteady model. Hence, the solution of the grain burning surface
evolution with time (web) is built up by means of the integration of the Level Set equation with
a constant burning rate, starting from the banded SDF initial condition, defined by the STL
files of the grain and TPs surface. Then, the GREG model generates tables of the Q1D grain
geometrical properties that the SPINBALL module for the geometrical updating interpolates
during the internal ballistics simulation. We remark that, the solution for the problem of the
3D evolution of the grain burning surface, it is known to be a SDF for the grain propellant
starting shape. However, the way to solve the Level Set equation has found to be faster than
the setting up the whole SDF. Moreover, this approach is more general and can be useful, in
further developments for the on-line coupling between the grain burnback analysis model and
the internal ballistics one.

4.1 SPINBALL & GREG MEsHGRIDS COUPLING

The coupling between the 3D mesh of the GREG model and the 1D mesh of SPINBALL is
obtained by defining a nodal congruence relation between the SPINBALL mesh and the GREG
mesh along the motor axis, from motor head to nozzle throat area section. The GREG mesh is
typically more or equally refined with respect to the first (see figure 4.3).

This coupling between the two meshes is necessary in order to define the correct interface
value of the nozzle throat area. In fact, this is particularly important in order to ensure the
“physical” outflow mass from the nozzle throat area and, hence, to define correctly the quasi
steady flowfield conditions during the Quasi Steady State. This relation is chosen, also, in
order to avoid an interpolation of the geometrical quantities computed by the GREG model. In
particular, in this manner the definition of the burning perimeter for the Q1D model can be
easily obtained by the equation 4.2.

p,. — =101 Svin)

) Ax
Where with 1 are indicated the indices of the GREG axial grid, with j the ones of the SPINBALL
grid and 1i(j) are the indices of the GREG grid that are in the j-th SPINBALL cell. We remember
that the definition of the grain burning perimeter becomes very important in order to define the

correct inlet mass flow rate into the chamber due to grain combustion, and thus to characterize
the SRM bore flowfield conditions.

(4-2)
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) Nozzle throat section
GREG computational mesh

SRM head section

< SPINBALL computational Mesh

Figure 4.3: SPINBALL & GREG computational meshes coupling

Figure 4.4: GREG-SPINBALL motor axis meshes coupling
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In fact, the cell inlet grain propellant mass flow rate is directly given, in a consistent manner
with the definition of the total burning surface, by the equation 4.3, evaluated with the definition
of the cell burning perimeter given by the equation 3.126.

Tpj = PpThjPojAx (4-3)

The updating of the grain geometrical properties necessary to the SPINBALL gasdynamics
model (port area, burning perimeter, wet perimeter and the geometrical parameters of the cavi-
ties, where present) is, then, made by means of a linear interpolation of the off-line tables created
by GREG, at each timestep of the flowfield solution.
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GREG VALIDATION

In this section some results, carried out through the use of the Level Set Method, will be shown.
In particular some 2D test cases present in literature are discussed, as validation of the numerical
scheme built-up to solve the Level Set equation 3.28 for pointwise normal directed motion field.
Moreover subsequently, some other test cases will be shown to describe the properties of the
numerical techniques presented in the paragraph 3.11, page 66, able to define the front integral
properties of the level zero, from the level set representation of the front.

The numerical scheme adopted for all the test cases is a Godunov-type scheme first or second
order (ENO with minmod flux limiter) with an exact Riemann solver for the approximation of
the spatial term of the Level Set equation and a one-step Runge-Kutta method (Euler method,
first order) or a Heun’s method (second order) for approximation of the temporal derivative (see
paragraph 3.4.2 , page 51). The overall numerical scheme is a space and time first or second
order accurate explicit time-marching numerical scheme, with a 3 grid nodes for the first order
and a 5 grid nodes for the second order, “up-sided down T” stencil. A constant front motion
velocity V =1 is considered for all the cases.

Hence, to summarize, the numerical tests that will be performed are:

@ a 1D Test Case as validation and accuracy order tester [31];
@ two 2D Test Cases as validation with qualitative [31] and quantitative comparisons [49];

@ some test cases for the characterization of the techniques for the grain geometrical proper-
ties evaluation, presented in paragraph 3.11, page 66.

It is important to underline that for the Level Set method, the presented test cases are the only
ones which have been found in literature in order to validate the method and the numerical
code, for the case of constant motion velocity field.

In particular, about the application of the LSM to the grain burnback analysis, instead, only
recently this technique has been applied for this particular purpose. Hence, even if some recent
works have been presented [95; 98; 107], it is impossible to take out from them detailed, quanti-
tative and not trivial test cases in order to accomplish code-to-code comparisons, except for the
one that will be presented in the paragraph 6.2, page 112.

5.1 1D TEST CASE
The accuracy order of the space and time first or second order numerical scheme (see paragraph
3.4.2, page 48 ) is tested considering a simple 1D test case, present also in literature [31], of a

cosine curve motion (V = A = V = 1), as given by the equation 5.1.

¢ (x,t =0) = cos(2mx) 0<x«1 (5.1)
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The Level Set equation, that has to be integrated numerically, is for an explicit fashion level
set function, given by the equation 5.2. Periodic boundary conditions are imposed at x = 0 and
x = 27, as naturally the problem itself suggests.
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Figure 5.1: Cosine Curve Evolution in Time

As made in [31], in order to characterize the numerical schemes accuracy order, we consider
now a Richardson’s extrapolation. Hence, we assume that the solution can be expressed as:

% (x,1) = O™ (x,t) + ChR + 0 (R*H1) (53)

where:
@ ¥ (x,1t) is the exact solution;
@® ¢M(x,t) — is the numerical solution yielded with a mesh width h.

The accuracy order of the numerical solution R can be evaluated by means of the Richardson
Extrapolation through the expressions 5.4.

B_4h
R(o" 9%, 01) = 1;(2) log (M) (5.4)

The accuracy order, obtained directly on the computed level set functions for a sequence of
dyadic grids with different levels of resolution, is shown in table 5.1. The second column reports
the results for the first order numerical scheme, while the third column the ones for the second
order scheme. The results are obtained using a discrete 2-norm, as did in [31].

Mesh size (cells number) | R; (d)h, on/2, d)h/4) R, (d)h, on/2, d)h/4)
100, 200,400 0.95262 1.7548
200,400, 800 0.96603 1.8228

400, 800, 1600 0.97722 1.8852
800, 1600, 3200 0.98558 1.9294
1600, 3200, 6400 0.99123 1.9587

Table 5.1: Accuracy order of the first and second order scheme for a 1D
cosine evolving curve
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For this test case, the analytical solution does not exist and, consequently, no direct evaluation
of the truncation error is possible.

Moreover, the reference test case is a little different with respect to the one reproduced here.
In fact, in [31] the authors introduced a small diffusion, due a small dependence of the velocity
along the normal direction from the front local curvature and used an approximate Riemann
solver instead of the exact one (the so called Osher-Sethian, see the appendix J, page f for more
details). However, it is possible to argue that the results obtained are in line with the reference
ones and, as expected, around the first and second order of accuracy respectively.

5.2 2D TEsT CASES

The 2D test cases that are considered to validate and evaluate the aforementioned numerical
scheme are:

® the Wenzel's test case [49]: a Double saw-teeth

@ the Osher-Sethian’s Test Case [31]: a 2D Star shaped front

5.2.1 WENZEL'S TEST CASE

The double saw-teeth front is known analytically. Hence, the Initial Condition is directly ob-
tained by means of putting in an implicit function fashion the two rectilinear segments of the
interface, which are given in the equation 5.5.

AY
} } } } P
T 21T 311 411 51t

Figure 5.2: Wenzel’s test case: double saw-teeth

x+y—-nm=0 0<x<m

—x+y+nm=0 nw<x<2n (5:5)

(b (Xry/tzo) = {

Wenzel, in solving this test problem, considered a spectral method to evaluate the left-right
side derivatives, coupled with an exact formulation of the Riemann solver given by Hirsch [55],
for two mesh resolutions for computing the solution (32-points grid and 64-points grid).

For the simplicity of the front, however the solution of the interface evolution is known even
analytically.

In fact, in order to obtain the analytical solution of the problem, it is simply necessary to
divide the domain, into (see figure 5.4):

@ a subdomain which is not influenced by the rarefaction fan that develops at leading edge;

@ and a subdomain which is influenced of it.

Into each subregion the spatial derivatives can be simply calculated

Vi
V2

@ for the subdomain influenced by the rarefaction fan: 0 < x < < 7, we have
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(Vt)? —x2 Y
. . . . Vit
@ while for the subdomain not influenced by the rarefaction fan: ﬁ <x<m

od od

— =1 — =1 .

ox oy (5.7)

Hence, by the Level Set equation 3.28 also the time derivative of the ¢ function can be evalu-
ated, as given by the equation 5.8.

2
-V 1-I-Xf for nggﬁ
A, [(30)T (b (Vo2 —x2 2
ot 0x dy o Vi 5.
—VV2 for — <x<«<m
V2
Integrating in time the equation 5.8, the solution is hence obtained:
2
d(xy,t=0)—x—1/(Vt)2—x2 for tg@
¢ (xy,t) = (5.9)
d)(X/U/t:O)*V\ﬁt for t} @

In particular, Wenzel considered two probe points of the solution and he follows their position
in time. These points correspond to the two basic features that the problem has to capture, as
validation of the numerical scheme considered, according to the Huygens’ principle (see figure

5.4):
1. the cusps at the back of the front must retain their shape;

2. the circular rarefaction waves must develop at the leading edges.
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Figure 5.4: Propagation of the front according to the Huygens’ principle

As shown in the figure 5.5, the GREG results agrees completely with Wenzel's results for
tracking the point subjected to the expansion fan in time (note that the different time scale for
Wenzel may be due to a non dimensional time). While our results are even better than the ones
presented by Wenzel for the cusp tracking. This is in particular due to these main facts:

@ the spectral methods are known to perform quite poorly results when discontinuities are
present in the solution and for a small number of mesh points [49]

@ even if spectral method have an infinite theoretical accuracy order, what we are seeing is
the precision of the scheme, not the accuracy order

In the figure 5.6, some grid function fields for different times are presented for the 64 grid,
with a computational domain in the x, direction from 0 to 27, where the level zero is highlighted
with a black thick line.
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——————— 32 grid x=0
----------------------------- 64 grid x=0
— x=0exact
——————— 32 grid x=2.945
————————————————————————— 64 grid x=2.945
x=2.945 exact

! | ! | ! ! | ! | !

2 4 6 8

(a) GREG results

(b) Wenzel’s results

Figure 5.5: Wenzel’s Test Case results comparison
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Figure 5.6: Some fields for different timesteps
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5.2.2 OSHER-SETHIAN TEST CASE

As second qualitative validation, we perform another calculation present in literature due to
Osher and Sethian [31].

The test case is represented by the evolution along the normal direction of a star-shaped front,
given by the following equation.

Rc +Rf R —R¢
-T2 T2

In the equation 5.10, R¢ is the star fillet radius, R the star cusp radius and n, the number of star
points, as referred also in the figure 5.7.

The IC can be simply set exploiting the front in an explicit manner, with respect to the radius
variable, as expressed by the equation 5.11.

¢ (r,9t=0)=0:1) sin (npd) de[0; 27 (5.10)

R.+Rf R;—R
2 T2

We propose the same example shown in [31], considering the following data:

d(r,dt=0=r— ( € sin (npﬁ)) 9 € [0; 2n] (5.11)

Re =0.035 R¢=0.165 n, =7

in a Cartesian rectangular mesh with 300 x 300 points.
Note, as underlined, that the initial front de-

velops sharp corners which then open up as

the front itself burns, approaching a circle as  4-

t — oo [28]. In the original article Osher and

Sethian used a second order Hamilton-Jacobi

scheme (the so called Osher-Sethian scheme, 2

see the appendix ], page f for more details)

with a constant timestep t = 0.0005 that ful- ‘ '
fills for all time the CFL-condition. Instead > 0-

we tested our time and space first order ac-

curate scheme with the exact Riemann solver.

As no quantitative comparison can be made -2

from what published in the original article,
only our results are showed (however in a
R B

qualitative agreement with the one obtained
by the cited authors).

It is important to note that in all cases a rect- X
angular mesh grid can never be able to follow
correctly the evolution of a star-shaped front
in the case of V = const and 1, odd (as gen-
erally used in Solid Rocket Motors). In fact, whatever rectangular mesh is unable to respect the
corners formation lines, in correspondence of the star cusps.

For this reason, in order to study the evolution of these particular geometries, that are very
common also in solid rocket motor grain shapes (2D and, especially, 3D grains), some other
tests have been performed considering a polar Cartesian meshgrid. A star shaped front with the
following properties is thus considered:

FNE

|
2

Figure 5.7: Star shaped front

Re=12 Rg=24 n,=9

for which the following tests are performed:

® a complete evolution for all the front (figure 5.9), with a periodic boundary condition for
the azimuth in © = 0 rad and 0 = 27t rad;
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Figure 5.10: Comparison between periodic and mirroring boundary conditions of the star-
shaped front

@ a test respecting the front periodicity figure 5.10, with periodic boundary conditions for

2
the azimuth in @ =0 rad and 0 = n—ﬂ rad, with a 200 x 400 grid points;
P
@® a test considering the front mirror properties of a star slice figure 5.10, with mirroring
boundary conditions for the azimuth, with a 100 x 400 grid points.

From the results of the simulations, with periodic and mirroring boundary conditions, the
solutions are exactly alike at round-off machine precision, as expected. Note that the use of that
kind of boundary conditions of the problem allows to hardly decrease the grid points number,
and consequently the computational costs for the simulation.

53 EVALUATION OF GRAIN GEOMETRICAL PROPERTIES: TECHNIQUES VAL-
IDATION

The evaluation of the level zero interface properties in 2D sample problems has been defined at
the beginning by considering the standard regularized Dirac Delta and Heaviside function used
in the Level Set community [79; 59]. These technique are extracted from a previous work [14],
in which the discrete Delta Dirac is represented by a cosine function (see table 3.3 and figure
3.17). The definition of the Heaviside regularization follows the one of the Dirac Delta function,
considering their relation, given by the equation 3.100, page 67.

A grid convergence analysis is hence carried out for the numerical technique of areas, volumes
and perimeters evaluation, in order to find out the reliability of the computed grain geometrical
parameters, as output of the grain burnback analysis. As shown in the paragraph 3.11, page 66,
the technique is for computing areas and perimeters for 2D problems and volumes and surfaces
for 3D ones. Hence, it is possible to consider simple 2D test cases to obtain results valid even for
3D cases in order to evaluate the technique properties, without lack of generality.
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5.3 EvALUATION OF GRAIN GEOMETRICAL PROPERTIES: TECHNIQUES VALIDATION

Hence, a simple test case is chosen, in which the analytical computation in well known. This
consists in a simple circular front not evolving, which grid function can be in a straightforward
manner built as SDF. Area and perimeter of this circle were, hence, evaluated for different grid
resolutions and different value of the front smearing parameter €, using a rectangular Cartesian
coordinate system (see figure 5.11).

—=—— Rect e= Ax
——— Rect e= 1.5Ax
——— Rect £=2.0Ax
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(a) Area Evaluation (b) Perimeter Evaluation

Figure 5.11: Percentage Error for Areas & Perimeters evaluation techniques

Making reference to the figure 5.11, it is possible to underline the following remarks:

® the area evaluation technique has an asymptotic convergence as the grid is refined, in
a independent manner from the smearing factor or the coordinate system used. This is
reasonable considering that the procedure is not much sensible to how much the front
itself is smeared out. The smearing of the Heaviside function through the level zero helps
in diminishing the procedure error with respect to a simple “completely in” area evaluation
procedure (only cells that are not interested by the interface are accounted). However, an
asymptotic convergence behaviour of the technique can be ensured just by the “completely
in” part of the area computation expression, as the grid is refined. But, the precision of the
technique should be very low in such a rough choice of the discretized Heaviside function.

@ The perimeter calculation technique, instead, does not behave regularly and a grid asymp-
totic convergence is not ensured for any value of the smearing parameter. In particular,
this behaviour can be ascribed to the high sensitivity of the Dirac delta approximation to
the position of the front respect to grid. Hence, some care must be devoted to the use of
the perimeters (or surfaces in 3D) evaluation as grid is refined, since grid convergence may
not be present. Despite this less of asymptotic convergence, it is possible to underline that
the error even for wide grids has a percentage error less than 0.5%.

These results have underlined some problems with respect to the technique itself. Hence,
a deepened understanding has been suggested and carried on the problem itself, through a
literature review of the recent techniques of the Dirac Delta and Heaviside function numerical
representation. In fact, these results have been found to be expected considering the recent
mathematical support given by some authors” work [88; 89; 85; 81; 99; 82]. As a matter of fact,
all the referenced works confirm the aforementioned remark on the lack of the grid convergence
property in the computation of perimeters in 2D problems (or surfaces in 3D ones), when the 1D
Dirac Delta function is directly used in multidimensional problems.
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We remember that we expect to have some confidence on the convergence properties of the
technique itself. But also, for the use of these geometrical parameters (perimeters, areas, vol-
umes) in the internal ballistics numerical simulation, we must ensure some regularity properties
of the computed quantities in time and space.

Hence, we have tested with very simple problems, using or not, the Level Set for the evolution
of the interface, the techniques presented by different authors [88; 89; 85; 81; 99; 82]. The target
of this investigations is to understand which technique can ensure all the aforementioned prop-
erties we want for the Dirac Delta regularized function in multidimensional problems®.

For this purpose, the multidimensional Dirac Delta functions built with the technique de-
scribed by Engquist [88; 89; 85; 81] and Smereka [99; 82] have been obtained in polar coordinates
in order to investigate their use in the grain burnback problem?. The results yielded are dis-
cussed hereunder: only the figures for the cosine regularization are shown, as the same results
are valid also for the linear regularization (refer to the paragraph 3.11, page 66).

The tests matrix considers only 2D problems, without lack of generality, in both Cartesian and
Polar system of coordinates (see table 5.2).

Coordinates System Interface Level Set use
Cartesian Line parallel to one axis no
Cartesian Circle no

Polar Circle no
Polar Osher-Sethian Star yes

Table 5.2: Test Matrix for the evaluation of the multidimensional
Delta Dirac regularizations

The techniques considered are:

@ the standard 1D Dirac Delta regularizations: with the cosine and the linear smearing func-
tions;

® the Engquist technique to account in the 1D Dirac Delta the front multidimensional effects
with 1D cosine regularization (but same results are also obtained with a linear regulariza-
tion);

® the Smereka technique.

The following remarks can, hence, be made considering the results shown in the figures 5.12,
5.13, 5.14 and 5.15, which refer to the circle test case in Cartesian rectangular coordinates and to
the Osher-Sethian test case in polar coordinates.

As expected for a line moving in a Cartesian rectangular grid, parallel to a coordinate axis,
the line itself is measured at round off error, with respect to its exact length (in a not dependent
manner from the compact support in which the Dirac Delta is defined (refer to the table 3.3,
page 68)). In fact, this represents a 1D problem in such a computational grid (results not shown
as the percentage error is at round-off).

For a spreading circle in a Cartesian rectangular grid which account multidimensional aspects,
the regularizations given by Smereka and Engquist 5.13 define a better convergence behaviour
of the computed interface measure with respect to the classic 1D techniques 5.12. However, this
convergence behaviour must be interpreted in an averaged sense (as remarked by the authors)
and, hence, for small motions of the front with respect to the grid (see figure 5.13). The classic

note that the problem in terms of Heaviside regularization is less felt, as underlined before, and however, the Heaviside
definition follows from the one of the Dirac Delta function
we remember that the use of cylindrical coordinates is preferred in SRM grain applications
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Figure 5.12: Percentage Error for a circle spreading in a rectangular grid: standard technique

1D Dirac Delta regularization, instead, does not behave regularly as the grid is refined 5.12.

For the spreading circle in a polar grid, as the problem becomes again 1D, we have again a
round off evaluation error with respect to the exact solution, as proof of the correct implementa-

tion of discrete Dirac Delta metric correction.
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Figure 5.13: Percentage Error for a circle spreading in a rectangular grid: multidimensional Dirac

Delta

Instead for a Osher Sethian star, evolving with the Level Set Method along its normal direction,
the results are very different considering the multidimensional corrections due to Engquist or
Smereka 5.15 with respect to the 1D Dirac Delta regularization as explained in figure 5.14.

These differences are underlined the more the multidimensional aspects of the interface with
respect to the grid are present. The solid thick lines with symbols in the figures 5.14 and 5.15
define the level zero measure with a linear interpolation procedure on the meshgrid.
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Figure 5.14: Perimeter Evaluation for a Star evolving along its normal direction in a polar grid:

standard technique

Note that, the regularity for grid refinements of the computed front length is improved for
what concern the convergence properties in average, with the Engquist and Smereka regulariza-
tion techniques 5.15. However, the regularity property of the computed perimeter during the
front evolution is still too sensitive to small movement of the front within the computational lat-
tice. Hence, the numerical noise in the solution is still high, moreover the precision with respect
to the interpolated solution is quite low, in such a manner that becomes difficultly useful for its
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direct application to the grain burnback problem by a numerical point of view.
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Figure 5.15: Perimeter Evaluation for a Star evolving along its normal direction in a polar grid:

multidimensional Dirac Delta

Hence, as underlined, even the multidimensional corrections of the regularized Dirac Delta
function appear to not fulfill the requirements needed for evaluating the interface geometrical
properties. Especially considering that the computed quantities have to be used in an internal
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ballistics code, which results can suffer the noise and the precision of the grain burnback input.
In fact, while an averaged grid convergence regularity is obtained, the techniques are still too
sensible to small movements of the front in the numerical lattice. In particular, the perimeter
evolution in time (or web, in case of constant motion velocity) is affected by an high numerical
noise, which becomes intolerable for the target.

Obviously, a Level zero interpolation technique to build Dirac Delta and Heaviside function,
as the one presented in the paragraph 3.11.1, page 70, is much expensive in terms of the compu-
tational time required ,to evaluate the interface integral geometrical properties, than a regular-
ization of the Dirac Delta and Heaviside. However, it ensures both a pointwise grid convergence
regularity, and not in the mean, and a regularity in the time evolution of the computed geo-
metrical quantities. These characteristics, in fact, are necessary in order to use the computed
geometrical data within the internal ballistics numerical simulation, in order to avoiding the
introduction of numerical noise, that could affect the numerical simulation itself. Moreover the
precision obtained, consequent to the direct reconstruction of the level zero location from the
grid function values in the cell grid, ensures in the same time a precision higher than with the
previous techniques. This again becomes important in order to have and ensure confidence in
the internal ballistics numerical simulation.

All this is also clear considering the figure 5.16. In this figure in fact, the procedure discussed
in the 3.11.1, page 70 for constructing the Dirac Delta and Heaviside functions is compared to
the Engquist one for a 3D test finocyl grain shown. In particular, the evolution of the burning
surface in the web variable, and of the wet perimeter and the burning perimeter are compared
in some locations along the motor axis.

At last, on the new implemented technique for the evaluation of the level zero oD and Q1D
properties, a simple test case of a moving cylinder in a cylindrical mesh is shown. Even if
the solution is known analytically, the problem is solved with the Level Set approach. Results
confirm the second order of spatial accuracy of the technique, as defined in [106; 114], both for
the Volume Evaluation and the Area Evaluation, as shown in the figure 5.17.

In the table 5.3, moreover, the average values of the percentage error is shown for the area and
the volume computation, as given by the equation 5.12 for a generic variable f.

Grid Area €9, Volume &9,
10 | -1,142267E-002 | -4,568636E-002
20 | -2,855744E-003 | -1,142286E-002
40 | -7,139884E-004 | -2,85583E-003
80 | -1,784556E-004 | -7,138814E-004

Table 5.3: Area and Volume Percentage Er-
rors for grid refinements

Grid | Area Accuracy Order | Volume Accuracy Order

10,20,40 1,999983 1,999805
20,40,80 1,999747 1,999871

Table 5.4: Area and Volume Accuracy Orders for the dyadic
grids

While the resultant accuracy orders for the dyadic grids are given in table 5.4, in which the
expression of the accuracy order by the Richardson analysis given in the equation 5.4 is used.

fexact — fnumerical 100

(5.12)

eo/ =

()

fexact

The meshes have been refined in a dyadic way to check the grid convergence, only in the
azimuthal direction, to which the technique for evaluating the Level zero properties is sensitive.
In fact, in the direction along the cylinder axis, the problem is simply the same with no grid
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Figure 5.17: Grid Convergence Analysis for a Cylinder moving with constant velocity in a cylin-
drical mesh

sensitivity. Along the radial direction, the Level Set representing the evolving cylinder is linear
and hence no effects of the grid convergence can be seen, using a major number of points, or
even, the second order numerical scheme implemented.
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GREG REsuULTS

THIS chapter will present some results carried out with Grain REGression model for the 3D
grain burning surface evolution with time. In all cases the grain surface evolution is not
directly coupled with the internal ballistics numerical solver SPINBALL. Hence, a constant in
time and space motion velocity along the normal direction is imposed for the grain evolution.
The results of the grain burnback analysis are then used for the internal ballistics simulation,
using the off-line coupling presented in the chapter 4, page 79. The grain burnback analysis will
be presented for three SRMs, which internal ballistic simulations, performed with the SPINBALL
model, will be analyzed in the chapter 77, page 130:

@ Zefiro 23 (Z23), second stage of the new European launcher Veicolo Europeo di Gener-
azione Avanzata (VEGA), that the European Space Agency (ESA) is developing;

@ NAWC Motor n. 6 and NAWC Motor n. 13: two tactical SRMs simulated and experimented
at the Naval Air Warfare Center, which grain shapes and geometrical data are available in
literature [108; 107; 64], since intense testing and simulation activities have been made
recently.

The 3D evolution of the grain shapes for the three motors will be shown, together with the
oD and Q1D grain geometrical paramaters necessary for the oD and/or Q1D internal ballistics
numerical simulation. A grid convergence analysis on the computed oD parameters will be
made. Moreover, where published data are present, a comparison with the literature data will
be made: in particular for NAWC Motor n. 6 a code-to-code comparison will be carried out.
For what concern the first SRM, Zefiro 23, all the data related will be shown in non-dimensional
scales for non-disclosure reasons, since the VEGA launcher is still under development®.

6.1 ZEFIRO 23

Zefiro 23 grain is a 3D aft-finocyl grain with a complex Thermal Protections axisymmetric sur-
face, as grain boundary, as shown in figures 6.2 and 6.3>.

The Zefiro 23 grain burnback analysis has been made with the GREG model, considering
a constant burning rate in space and time. In fact, as stated in the chapter 4, page 79, an
off-line coupling between the grain regression model (GREG) and the internal ballistics model
(SPINBALL) is considered in this thesis work.

The grain starting configuration and the TPs initial surface, as limit for the grain evolution,
are obtained directly as STL surfaces, from CATIA software. In particular, the TP initial surface
is an axisymmetric surface, and hence it has been simplified in a given profile of points (radius
versus motor axis), directly given in a tabulated manner by CATIA (see figure 6.1).

1 for all the geometrical data related to Zefiro 23 the author want to thanks AVIO Group S.p.a. for the courtesy
2 the author want to thanks AVIO Group S.p.a. that grants all the required motor data
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Figure 6.1: Z23 Thermal Protections Surface
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Figure 6.2: Z23 STL initial grain surface representation

The grain initial surface is an aft-finocyl grain with 11 star points, given by about 43000 trian-
gles in the unstructured STL representation of the 3D grain initial surface (see figure 6.2).

Both the grain starting surface and the TPs surface are initialized as SDF in the chosen grid,
coupled along the axial direction with the SPINBALL one. In particular, only a part of the
360 degrees are meshed in the GREG cylindrical grid, exploiting the star periodicity. Hence,
mirroring BCs are imposed on the theta planes to the Level Set function at each timestep, so
that the domain meshed is ranging, in terms of theta angle, from 0 degrees to 360/22 degrees, as
clear in the figure 6.3.

Figure 6.4 shows the 3D evolution obtained by GREG, under the constant burning rate as-
sumption, for different web values. The computational mesh considered is composed by 50 cells
along the azimuthal direction, 100 cells along the radial direction and 400 cells along the head-
nozzle throat axial direction, in cylindrical coordinates, as shown in the figure 6.3.

For the Zefiro 23 grain burnback analysis, a grid convergence analysis has been made too
with respect to the evaluation of the global oD parameters: burning surface, wet surface and
bore volume evolution in the web variable (see figure 6.5). The grids considered are defined by
25 x 50 x 200 cells, 50 x 100 x 400 cells, 100 x 200 x 800 (the first number defines the number of
cells along the azimuthal direction, the second, along the radial direction and the third, along
the motor axis from head to nozzle throat section) in the computational domain given in the
figure 6.3 (360/22 degrees for the azimuthal direction).

We remark that the algorithm proposed for the grain burning surface evolution is enough
fast. As matter of fact, the aforementioned grid resolutions have required for the Zefiro23 SRM,
respectively, about 2 minutes, 12 minutes and 2 hours on a commercial single processor machine
(2.40 GHz), with about the same order of magnitude of computational time required to set-up
the initial conditions.
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6.1 ZEFIRO 23

Figure 6.3: Z23 SDF initial grain surface level zero for grain and TP surface in the computational
domain

In the figures 6.6 and 6.7, some visualizations of the Level Set grid function for different web
values are shown, for the intersection of the grain grid function and the case one (built from the
Thermal Protections inner profile), as defined in paragraph 3.11, page 66.

In figure 6.5, it is possible to remark a convergence behaviour of the oD computed quantities,
as the mesh is refined. In particular, the numerical noise in the burning surface area, present
for the low grid level resolution, disappears as the grid is refined, due to the greater accuracy
through which the grain and TPs surface are represented in their interaction. In the table 6.1,
moreover, the percentage errors for the three meshgrid between the STL grain initial surface and
the GREG computed ones are shown, as defined by the equation 6.1.

_ Svlsm— Sv (web =Ollgre 1 (6.1)

€9
SvlstL

The results underline that a good representation of the initial burning surface is obtained
already starting with the first level of grid resolution and, considering the higher grid resolutions,
the IC burning surface is in a grid convergence behaviour.

Grid Percentage Error
25 x 50 x 200 -0.3320
50 x 100 x 400 -0.0323
100 x 200 x 800 -0.0076

Table 6.1: Percentage Error on the Initial Burning Surface (STL-GREG)

To conclude the grain burnback analysis, the curves of the Zefiroz3 port area, burning perime-
ter and wet perimeter, along the motor axis and for different web values are shown in the figures
6.8, 6.9 and 6.10, for the aforementioned middle grid dimension (50 x 100 x 400). The definition
of burning and wet perimeter is consistent with the overall burning and wet surface, as equation
(6.2) explains.

Sbj Swj
Poi= a4 Wit A (62)

This is particularly evident in the rising of the perimeters values in the rear part of the star
fins, that gives, as concentrated in one cell for the mesh chosen, a high value of the computed
burning perimeter, in a consistent manner with the definition 6.2.
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6.1 ZEFIRO 23

(a) non-dimensional web = 0 (b) non-dimensional web = 0.1059

(e) non-dimensional web = 0.4239 (f) non-dimensional web = 0.5299

(g) non-dimensional web = 0.6358 (h) non-dimensional web = 0.7417

(i) non-dimensional web = 0.8478 (j) non-dimensional web = 1

Figure 6.4: Z23 grain burning surface evolution
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Figure 6.6: Z23 Level Set function evolution: axial slices
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Figure 6.7: Z23 Level Set function evolution: radial slices
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Figure 6.9: Z23 cell burning surface evolution
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Figure 6.10: Z23 cell wet surface evolution
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62 NAWC MOTOR N. 6

NAWC tactical motor n. 6 grain burnback is simulated using the GREG model. This motor
has been analyzed using the initial motor and grain configuration given in two literature works

[107; 64] and reported in the figure 6.11.

Forward End | !

Faces Inhibited [

|~
[~

OOOOWHO

Figure 6.11: NAWC Motor n. 6 geometry

The SRM geometrical data are given in the table 6.2.

Section | x[mm] | wlmm] | Ry [mm] | Ry[mm] | R3[mm] | Rg[mm] | n[°] | £[°] | n
A 4.826 15.24 48.26 63.5 48.26 — 30 0 6
B 30.226 | 39.7002 | 23.7998 63.5 23.7998 — 30 0 6
C 146.812 | 39.8272 | 23.6728 63.5 23.6728 — 30 0 6
D 299212 | 39.8272 | 15.6972 63.5 23.6728 4.8768 30 0 6
E 375412 | 28.2702 | 15.6972 63.5 34.7218 4.8768 30 0 6
F 1670.812 | 27.559 15.748 63.5 35.941 49276 30 0 6
G 1696.212 | 27.559 35.941 63.5 35.941 — 30 0 6

Table 6.2: NAWC Motor n. 6 Geometrical Data

The geometrical entities necessary to define the section star-shaped
configuration of the finocyl grain are defined in the figure 6.12, with
the classical seven stars parameters: n number of star points (6), R
grain outside radius, R4 cusp radius, R fillet radius, w web thickness,
star angle and 1 star point semi-angle (in the table 6.2 in the figure 6.12
are also given some others parameters given present in the original
references to characterize the SRM grain geometrical configuration).

The forward end faces of the grain propellant have been inhibited
in order to allow the pulsers and the instrumentation to be open to
the chamber at all times. The throat diameter for NAWC Motor n. 6
is Dy =46.736mm.

The grain shape is a finocyl grain with a high length-to-diameter
ratio, of about 15 (SRM length is about 1.8 meters and the case diam-
eter about 0.12 meters), and with a low port-to-throat area ratio. The
3D representation of the SRM grain propellant shape is given in the
figure 6.13.

The STL file of the grain initial surface is defined by about 4000
triangles in the unstructured tessellation of the grain finocyl shape.
From this representation of the grain shape, the Level Set IC is built
as a Signed Distance Function, using the technique presented in the
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(a) Case

(b) Mandrel

(c) Grain
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(d) Grain Forward View (e) Grain After View

Figure 6.13: NAWC Motor n.6 Motor Geometry
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6.2 NAWC MOTOR N. 6

paragraph 3.6.1, page 55. The case surface is, instead, simply defined by a cylindrical shape.
Hence, it is initialized as an implicit grid function in a very straightforward manner as SDF,
through its analytical representation (see equation 6.3).

bc (1,6,2) = de (1) =7 — Rease (6.3)

In the figure 6.14 the Initial Condition for the Level Set solution of the grain burnback is
shown, in which again the star symmetry is exploited in order to limit the computational cost
required for the same grid spatial discretization. Hence, mirroring BCs are imposed along the
azimuthal directions 0° and 30°, while for the other boundaries, extrapolation BCs are defined.

P Computational Domain

Level Zero Initial Surface

Figure 6.14: NAWC Motor n. 6 Level Set Initial Grain surface representation

As made in the paragraph 6.1, page 102 for Zefiro 23, a convergence analysis has been made to
check the results sensitivity to mesh refinements, on both the Initial Condition and the computed
solution, in terms of integral parameters3. In the table 6.3, the percentage error of the STL file
and the computed Level zero grain shape burning surface is shown as given by the equation
6.1. It points out a higher sensitivity to the mesh resolution along the motor axis, as expected
for the aspect ratio of the SRM than along the others directions (in particular along the radial
direction). This is underlined in the table 6.3, comparing the percentage error for the 100 x 200 x
400 meshgrid with respect to the 50 x 100 x 800 meshgrid.

Grid Percentage Error
10 x 25 x 50 -1.9210
25 x 50 x 100 -0.8116
50 x 100 x 200 -0.4385
50 x 100 x 400 -0.2820
100 x 200 x 400 -0.2220
50 x 100 x 800 -0.1808

Table 6.3: Percentage Error on the Initial Burning Surface (STL-GREG)

For this SRM a code-to-code comparison is also possible. In fact, the NAWC Motor n. 6 grain
burnback has been made also in [107], and the results are given in terms of the oD grain geo-
metrical parameters, grain burning surface and bore volume. In [107], the authors consider a
grain burning surface evolution with time and space constant burning rate too, with a different
method to accomplish the 3D grain evolution. In fact, they exploit the fact that, in the case of
a uniform constant burning rate assumption, the solution of the problem, as underlined in the
paragraph 3.8, page 60, is known analytically. This is given by the SDF from the front, that
however, must be constructed in a numerical manner. They use the STL 3D surfaces represen-
tation to built up the SDF in a rectangular computational grid, with a technique to which the

we remember that the first number defines the number of cells along the azimuthal direction, the second, along the
radial direction and the third, along the motor axis from head to nozzle throat section
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6.2 NAWC MOTOR N. 6

initialization technique for defining the GREG Initial Condition has been inspired, with some
modifications. The results of the burning surface grid convergence are drawn out in the figure
6.15, where at the right plot the comparison with Rocgrain[107] is also presented.
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Figure 6.15: Burning Surface Grid convergence analysis and comparison with Rocgrain code

As in the case of Zefiro 23, a global grid convergence behaviour can be underlined. In fact, as
the meshgrid is refined, the burning surface in web plot leans toward the last refined grid. For
the comparison with the Rocgrain[107] code instead, an accordance between the GREG model
and the Rocgrain one is shown, especially in the last part of the two curves. While in the rest
the accordance is not so good, if not in a global trend. Unfortunately, it is not possible to argue
the reasons for that differences, because there are not enough details in [107] to understand
what Cartesian rectangular grid dimensions have been chosen to produce the results published.
Notwithstanding, considering the wider grid 10 x 25 x 50, we see a similar behaviour in the first
part. In the same time, a different initial value (lower for Rocgrain) for the grain burning surface
is also shown. This can be due to two different reasons: a different CAD model for the initial
grain* and/or a discrepancy between the STL grain surface model and the grid dependent grain
representation, in terms of grid function. In all cases, we remark that the GREG representation of
the initial surface is enough accurate (see table 6.3) and the confidence on the computed results
can be given by the good results of the convergence analysis performed.

The bore volume (combustion chamber volume) evolution in the web variable is shown in the
figure 6.16, where the left plot represents the grid convergence analysis for the same computa-
tional grid shown before While the right plot is the comparison with the Rocgrain code[107].

Moreover, it is possible to underline that the initial and final values for the combustion cham-
ber volume seem to be underestimated by Rocgrain with respect to GREG code. While the slopes
of the curves are quite near considering the wider grid for GREG>. The same remarks made be-
fore are still valid. Hence, the global behaviour of the two curves is quite similar, but since no
details of the computational grid used in [107] is presented, whatever deepened analysis cannot
be made.

Two last remarks are however possible. The use of a rectangular grid cannot preserve at all
the grain periodicity during its evolution (or its sliding in the web variable, see equation 3.89,
page 60), with some effects on the 3D evolution computed that are greater the wider is the com-
putational mesh considered. The use of cylindrical coordinates for the problem discretization,
instead, as GREG does, allows to consider computational meshes that are very thick if compared
to rectangular grids. For the latter, in fact, all the 360° must be discretized, while instead in the

4 the authors in [107] used Pro-E software
5 this is not surprising, considering that the derivative of the volume bore evolution is just the burning surface evolution
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Figure 6.16: Bore Volume Grid convergence analysis and comparison with Rocgrain code

case of cylindrical meshgrids, appropriate mirroring Boundary Conditions can be imposed to
solve the problem®.

However, also the bore volume integral for
the GREG code shows a convergence regu- -
larity, as the meshgrid is refined. Moreover, 6.5E405
we underline that as the grain goes to burn i
out, the volume for the different computa- I
tional meshes tends to approximate the case
cylinder volume (the case shape for NAWC
Motor n. 6), as expected. The spatial accu-
racy obtained for this value, as proved in the
paragraph 5.3, page 94, is second order. The
grid convergence is also shown in the figure 3
6.17 for the wet surface, pointing out a reg-
ular behaviour in terms of convergence and 5.0E+05 |
the known second order of spatial accuracy of ‘ L - L L L

. . . 0 10 20 30 40 50

the technique for evaluating areas, perimeters web [mm]
and volumes, as the grain is totally consumed.

In the figures 6.18, 6.19 and 6.20, the evolu- Figure 6.17: Wet Surface Grid convergence anal-
tion of the Q1D grain geometrical pointwise ysis
parameters: port area, burning perimeter and
wet perimeter is shown for the middle grid
50 x 100 x 200.

The 3D visualizations of the NAWC Motor n. 6 grain burning surface evolution are shown in
the figures 6.21 and 6.22. Whereas, in the figure 6.23, some plots of the grid function evolution
in web are drawn out.

6.0E+05 |-

5.5E+05 -

Wet Surface [mm ?]

Grid 10x25x50
Grid 25x50x100
Grid 50x100x200
Grid 100x200x400

6 for example the last meshgrid in cylindrical coordinates is 100 x 200 x 400; it “corresponds”, if a correspondence can
be made, to at least a 1200 x 200 x 400 meshgrid in rectangular coordinates
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Figure 6.18: NAWC Motor n. 6 Port Area evolution in web
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Figure 6.19: NAWC Motor n. 6 burning perimeter evolution
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Figure 6.20: NAWC Motor n. 6 wet perimeter evolution
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Figure 6.21: NAWC Motor n. 6 grain burning surface evolution
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Figure 6.22: NAWC Motor n. 6 grain burning surface evolution (cont.)
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Figure 6.23: NAWC Motor n. 6 Level Set function evolution
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6.3 NAWC MOTOR N. 13

63 NAWC MOTOR N. 13

The same analysis performed for Zefiro 23 and NAWC Motor n. 6 is performed also for NAWC
Motor n. 13, for which the geometrical data are reported in literature [108]. The NAWC Motor
n. 13 has a simple conical shape of the grain propellant and a very simple cylindrical case, as
shown in the figure 6.24. The coordinates of the tagged points in the figure 6.24, necessary for
the definition of the grain profile are given in the table 6.4. The nozzle throat has a diameter
of 26416 mm and the case, a diameter of 121.92 mm, while the SRM is length about 860 mm.
NAWC Motor n. 13 3D view is drawn out in the figure 6.25.

Forward End A
Faces Inhibited | /(a) (b) (C) (d)
\

N .

Figure 6.24: NAWC Motor n. 6 geometry

Point | motor axis abscissa [mm] | Radius [mm]
(@) 152.4 60.96
(b) 152.4 38.1
(c) 809.498 38.1
(d) 850.392 46.5582

Table 6.4: NAWC Motor n. 6 geometry data

Hence, the grain and case grid functions are initialized as 2D SDF in the plane rx in cylindrical
coordinates. As the problem is axisymmetric, the solution in easily computed in a 2D fashion,
with very low computational cost (see figure 6.26).

The same analyses performed for the previous SRMs have been made in terms of: conver-
gence to the analytical initial burning surface for a mesh refinement process (see table 6.5) and
convergence behaviour of the oD grain integral parameters (see figure 6.27).

Grid Percentage Error
25 x 50 0.38082646
50 x 100 0.06104255

100 x 200 0.00667573
200 x 400 0.00006648

Table 6.5: Percentage Error on the Initial Burning Surface (analytical-GREG)

The convergence of the initial burning surface is due only to the way in which the meshgrid
dependent Level Set function of the conical shape is representing the connection between the
starting grain cylinder-cone shape. In fact, no efforts have been done in order to position a mesh
node of the connection itself, as it will move during the front evolution.

For the oD geometrical parameters grid convergence, we remark a grid dependent effect on
the computed burning surface due to the on-off selection of a grid grain surface with respect to
the grain and case surface, as defined in the paragraph 3.11.2, page 76. This effect, in fact, is less
evident as the computational grid is refined. Certainly a more refined and smooth evaluation
of the grain surface from the grain and case level set functions, can reduce this grid effect, that
however is very limited enhancing the mesh points number. This case is particularly prone to
this effect because of the fact that the combustion surface evolution is nearly parallel to the coor-
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(a) Case

(b) Mandrel

(c) Grain

(d) Grain Forward View (e) Grain After View
Figure 6.25: NAWC Motor n.13 Motor Geometry
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6.3 NAWC MOTOR N. 13

(a) Grain

(b) Case

Figure 6.26: NAWC Motor n.13 Level Set IC

dinates lines (cylindrical mesh). Hence the grain propellant surface and case surface interaction
define the experienced behaviour of the burning surface curve.

Instead, the wet surface and the bore volume evolution are very well represented in all cases,
to be almost unnoticeable from a mesh grid to another.

Then, the 3D evolution of the NAWC Motor n. 13 burning surface and the Level Set function
evolution are shown for different web values in the figures 6.28, 6.29 and 6.30. While the evolu-
tion of the Q1D grain and bore geometrical parameters are given, for the 100 x 200 grid, in the
figures 6.31, 6.32 and 6.33.
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Figure 6.27: Grid Convergence Analysis for NAWC Motor n. 13 oD grain geometrical parameters
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Figure 6.28: NAWC Motor n. 13 grain surface and Level Set function evolution
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Figure 6.29: NAWC Motor n. 13 grain surface and Level Set function evolution (cont.)
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Figure 6.30: NAWC Motor n. 13 grain surface and Level Set function evolution (cont.)
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Figure 6.32: NAWC Motor n. 13 Cell Burning Surface evolution in web
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Figure 6.33: NAWC Motor n. 13 Cell Wet Surface evolution in web
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SPINBALL REsuULTS

IN this chapter the internal ballistics numerical simulation yielded with Solid Propellant rocket
motor Internal Ballistics model will be presented for the SRMs which grain burnbacks are
provided by the Grain REGression model model in the chapter 6, page 102:

@ Zefiro 23;
® NAWC Motor n. 6 and NAWC Motor n. 13.

In all cases, the coupling between the grain burnback model and the Q1D unsteady internal
ballistics solver, provided by SPINBALL, is made with an off-line coupling, as explained in the
chapter 4, page 79.

The results will investigate the capability of the SPINBALL model to predict and reconstruct
the behaviour of the analyzed SRM. The comparison will be made with the experimental data
provided by SFTs of the SRMs. Moreover, the capability of the model presented will be analyzed
in terms of a more accurate representation of the internal ballistics flowfield conditions, during
the entire combustion time, with respect to simpler oD internal ballistics models.

For Zefiro 23 SRM all the experimental data, motor configuration and grain propellant prop-
erties have been kindly provided by AVIO Group S.p.a., which the author want to thank. For
the NAWC Motors n. 6 and n. 13, all the motor configuration data, propellant composition
and the available experimental measures performed are extracted from different works recently
published in literature [62; 50; 108]. These motors have been fired in the Naval Air Warefare
Weapons Division (NAWCWD) at China Lake in order to develop an improved understanding
of linear and non linear combustion instability in solid propellant rocket motors. This very
intense experimental and numerical simulation activity has been provided in the literature, in
several works [50; 100; 62; 92; 72; 71; 64; 47; 108] published during the last decade, which allow to
place the presented SPINBALL model in the landscape of the SRM internal ballistics numerical
simulation tools.
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7.1 ZEFIRO 23

7.1 ZEFIRO 23

The results shown in this section are related to the numerical simulation of the SRM Zefiro23
internal ballistics, by means of the presented SPINBALL model. Zefiro 23 is the second solid
stage of the new European launcher VEGA, that the European Space Agency is developing
(see figure 7.1). The SRM grain configuration and grain burnback have been already illustrated
and analyzed in the paragraph 6.1, page 102. Zefiro 23 charges a HTPB1912 propellant, for a
propellant mass of about 23 tons, with a finocyl grain and a submergenced nozzle. It is long
about 6 meters, with a burning time of about 77 seconds, a vacuum specific impulse of 288
seconds, a maximum vacuum thrust of 1200 kN, a MEOP of 106 bars and a nozzle expansion
ratio of 25[105]. The SRM geometrical configuration of grain shape and casing, already shown
in paragraph 6.1, page 102, is a finocyl aft-star grain configuration with a submergenced nozzle
and a complex TPs internal surface.

N Y un --- ' % ™
I (3 miEnnz== o - | \
TS = ' ' B

(b) P8oFW (c) Zefiro 23 (d) Zefiro 9

Figure 7.1: VEGA launcher solid stages

A 3D view of the SRM is shown in the figure 7.2.

Thermal Protections

Nozzle

%
<X

Finocyl Grain v
Igniter

Figure 7.2: Zefiro 23 geometrical configuration

In this paragraph the Q1D model presented will be used in the reconstruction phase of the
Zefiro 23 SRM Static Firing Test. In fact, Z23, as will be underlined in the following, is a motor
prone to a large nozzle throat variation during motor operative condition. At now, a prediction
simplified model for the nozzle ablation phenomena is not yet implemented and integrated in
the SPINBALL code. However, the relevant nozzle throat area evolution of the motor must be
certainly taken into account in the numerical simulation, in order to define realistic SRM internal
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7.1 ZEFIRO 23

ballistics flowfield conditions. Hence, before the numerical simulation of the SRM with the Q1D
model, the SRM non-ideal parameters (hump and combustion efficiency) of the motor will be
evaluated, together with the nozzle throat area evolution law in time, as they affect the SRM
internal ballistics during the QSS and TO phases in a relevant manner, as will be shown in the
following. In particular, this will be made through the SFT reconstruction of Zefiro 23 SRM with
the technique presented in the appendix H, page b. As clear in the presentation of the oD SFT
reconstruction model, in fact, all the output parameters of the model represent a unique set of
possible reconstruction of the experimental data. These set of data will be then applied in the
Q1D numerical simulation, as input.

The effects of the use of such a chain of reconstruction will be discussed and motivated in
the light of the achieved results by the Q1D model, with respect to the experimental data (repre-
sented by the Head End Pressure time history).

7.1.1 oD RECONSTRUCTION OF THE SFT

The oD quasi steady state model for the SRM SFT (or SRM experimental data) reconstruction,
presented in the appendix H, b, is used to evaluated the non-ideal behaviour parameters of the
Zefiro 23 internal ballistic (the hump law and the combustion efficiency) and the nozzle throat
area evolution in time.

The inputs for the Zefiro 23 are imposed as the nominal conditions defined for the SFT. The
propellant characterization of the APN law is considered an input, coming from the Crawford
Bomb experimental studies on the SRM propellant. While the evolution in web of the burning
surface comes directly from the GREG model (see paragraph 6.1, page 102). The head end
pressure (HEP) trace, coming from the SFT pressure transducers and used in the oD model as
input, together with the SRM thrust measure (which is not shown as of no relevance in this
work), is shown in the figure 7.4 (red curve).
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Figure 7.3: Zefiro 23 oDQSS SFT reconstruction output

In particular, in the figure 7.3, the output curves of the hump, with the scale factor included,
and the nozzle throat area evolution in time are shown.

A combustion efficiency 1+ is also obtained. While the ¢, evolution in time will be not given,
as it is not scope of this work to characterize the nozzle performances, while instead the SRM
internal ballistics.

From the figure 7.3, it is possible to underline the following remarks: the hump shape is less
or more, the classical “hump shape” and the SRM has a very relevant variation of the nozzle
throat area, that is about 24.5% with respect to its initial value. Hence, for this type of SRM,
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the nozzle throat erosion must be estimated in some manner and can not totally neglected in
performing the numerical simulation of the motor internal ballistics.

7.1.2 SPINBALL RESULTS: INTERNAL BALLISTIC OF THE WHOLE COMBUSTION TIME

The Zefiro 23 internal ballistics numerical simulation with the SPINBALL model is here pre-
sented.

The same inputs used for the oD reconstruction model have been imposed. Hence, the propel-
lant characterization in terms of APN coefficients, the grain propellant density and the combus-
tion products thermophysical properties variation with pressure (by the assumption of chemical
equilibrium) are given.

A first numerical simulation is considered without any calibration parameter (no hump, no
combustion efficiency and a linear throat area evolution, between the final and initial values).
The results obtained in terms of computed head end pressure time history are shown in the
figure 7.4, in comparison with the experimental curve and the computed pressure for the quasi
steady oD model without calibration parameters (which chamber pressure estimation is simply
given by the equation H.1).

As expected, with the assumption of a

rough evolution of the nozzle throat area and T ‘ — =
without any other parameter characterizing o V\\X SPNBALL
the SRM non-ideal behavior, both the models ﬁ | \ 0Dass
(oD and Q1D) have a displacement of the nu- &’ o8 Q

merical pressure from the experimental one. 2

The interesting fact consists, however, in the ﬁ 06 \

very small displacement between the pressure § '

curves of the two different models (Q1D and E \
oD), which causes will be analyzed in the fol- 204

lowing. Note that, certainly, some difficulties & ‘
for the quasi steady oD model are related and % 0z \
underlined in the HEP numerical curve for <z=>

the very rough evaluation of the IT effects, on I

the whole combustion time. These effects will o
be analyzed with the use of the SPINBALL Non dimensional Time

model in the paragraph 7.1.3, page 138, re-
lated to the inability of the oD model to repre-
sent the Ignition Transient phenomena.

For what concern the IT (see figure 7.5),
even a rough calibration of the Q1D unsteady
model gives, as strong heritage of the SPIT model, a very good accordance with the experimen-
tal data during the motor start-up. In this IT simulation the effect during this phase of the
combustion efficiency is not considered, as it is a global parameter. While instead the geometri-
cal evolution of the grain propellant surface is activated.

Figure 7.4: Zefiro 23 SFT HEP Experimental-
Numerical No Calibration Compari-
son

In the following, the use of the oDQSS calibration parameters, coming from the SFT reconstruc-
tion, will be analyzed as input for the SPINBALL model. The attention is particularly focused on
the benefits and drawbacks of their use and their dependence on the modelling chosen, as well
as on the reconstruction of the experimental results obtained. Therefore, the hump vs web and
nozzle throat area evolution in time, presented in the figure 7.3, together with the combustion
efficiency have been used in the Q1D internal ballistics model.

Figure 7.5 shows the comparison between the new numerical curve and the experimental one,
which the oD quasi steady model commands to be the solution of the problem in the oD SFT
reconstruction. A strong benefit in the accordance between the two curves is clearly obtained,
as expected, and the reasons of this effect is investigated by means of the analysis of the Q1D
results.
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Figure 7.5: Zefiro 23 HEP Experimental-Numerical comparisons

In fact, as shown in the figure 7.6, Z23 is a slow SRM in terms of combustion velocity, with low
flowfield velocities along the motor axis, far from nozzle entrance and from the ignition transient.
Consequently, we have low values of the flowfield Mach number, so that the total pressure drops
are low. Moreover, as the velocities are low, the erosive burning is totally negligible with respect
to the APN term (see figure 7.6(c)), that is the predominant term of the burning rate; again
except from the IT phase which will be analyzed in a deepened manner in the following. In
particular, the figure 7.6(b) wants to draw the effects on the temperature flowfield, for different
times, of the pressure dependent thermophysical properties of grain propellant products and
the combustion efficiency. They have the effect to change the enthalpy of the source terms put
in the chamber and hence the temperature of the mixture of gases in the bore, as the pressure
varies in time.

In order to analyze the little differences between the oD and the Q1D model internal ballistics
simulations, we consider now the comparison between some equivalent entities: the instanta-
neous and global mass budget in the SRM, the burning rate and the grain burning surface.
These are shown in the figures 7.7 and 7.8. Where the figure 7.8 is a magnification of figure 7.7
in the non-dimensional time interval 0.05-0.6, where the HEP pressure traces show the major
disagreement. All these quantities characterize in the oD quasi steady model the pressure point
of work of the SRM, and hence are used to understand and outline the reasons of the small
differences between the HEP traces shown by the oD and the Q1D model.

As matter of facts, comparing the steady mass flow rate of the oD with the Q1D propellant
inlet mass flow rate and the outlet mass flow rate in the nozzle throat area (see figures 7.7(a)
and 7.8(a)), it is possible to underline two facts. Firstly, the differences between the Q1D inlet
mass flow rate from grain and outlet from the nozzle are negligible but present. They can be
quantified more or less all under the 0.5% of the instantaneous mass flow rate, as expected for
the quasi steady state phase. The second important fact is that the Q1D mass flow rate is under
the oD one, except during the tail off.

Min = ) ppPpjTejAx Moutlthroat = PtUtAL (7.1)

j
This is not attributable directly to the difference of the computed instantaneous combustion
surface (see figures 7.7(d) and 7.8(c)), which are very similar. On the contrary, for the Q1D
model the computed burning surface is a few greater than the oDQSS one. Instead, the driving
parameter to explain the small difference in the HEP is rather the difference of the burning rate
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values of the oD model and the equivalent burning rate of the QiD. These remarks, moreover,
underline that for the SRM considered, the assumption of the off-line coupling does not insert a
relevant approximation in the coupling between the Q1D flowfield solver and the grain surface
evolution one. In fact, we have the very small variations along the motor axis of the burning rate,
as underlined also by the figure 7.6).
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Hence, the difference between the SPINBALL HEP and the experimental one can be explained
considering the comparison between the average Q1D burning rate and the oD burning rate,
defined in the equation (7.2) and equation (7.3), respectively.

F;Q1D = Min (7-2)
Pp Z]’ Py; Ax
nQss
TboD = Z‘%b (7:3)
P

Figure 7.8(b) justifies the small difference between the two pressure traces, as related on the
difference of the computed burning rates. The Q1D model, in fact, takes into account the small
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total pressure drops and the evaluation of the APN with the static pressure, which depends on
the motor bore geometry and the grain burning surface along the motor axis. All these effects
become lower as the time advances and the grain propellant reaches the thermal protections.
In fact, we have a better agreement of the SPINBALL HEP curve with the experimental one,
according to the figure 7.5, which is just related to the lower pressure total drops as the grain
propellant is consumed in time, that can be related to the Mach field in time (see figure 7.8(d)).
Moreover, as the contribution of erosive burning is completely negligible (see figure 7.6(c)), there
is also a very small, but present, contribution of the unsteady effects, that the oDQSS does not
take into account.

Certainly, as consequence, the tail off of the two HEP curves are different. In particular, the
Q1D curve has a small delay with respect to the o0DQSS one. This is due to the fact that the
former computed HEP history is all under the latter for the time interval before the TO, while as
constraint, the nominal propellant mass is the same. In fact, we have different burning surfaces
evolution during this phase and a consequent delay between the two outflow mass flow rate
curves. Moreover, the unsteady effects, that the oD quasi steady model does not account at all,
during tail off become important in describing the depressurization of the combustion chamber.

All the analyses performed on Z23 SRM show that the set of the non-nominal SRM behaviour
parameters is dependent in a slight manner on the internal ballistics simulation model itself.
Hence, the use of the non-ideal reconstruction parameters and the nozzle throat area evolution
in time, as calibration parameters for the Q1D model proposed is possible and permitted for
this SRM. But, this fact depends directly on the analyzed motor characteristics and chamber
flowfield conditions enabled by the Q1D model. In the same time, in a such kind of SRMs type,
the use of a more refined internal ballistics model can be a further proof of the SRM nominal
behaviour with respect to simpler oD quasi steady models. Moreover, it has the advantage to
be a single tool to perform the internal ballistics numerical simulation for the entire combustion
time.

Note that the total propellant masses discharged during the SRM simulation, for the oD model
and the Q1D model, differ only about 0.02% of the total propellant mass charged. This difference
can be considered to have negligible effects on the numerical simulations and, in particular, to be
due to the different interpolation on the grain propellant geometrical tables given by the GREG
model.

7.1.3 EFFECTS OF THE GEOMETRICAL EVOLUTION DURING THE IT

This section is devoted to analyze in a deepened manner the effects of the bore geometry vari-
ations during the IT. Moreover, the effects of the IT simulation on the overall SRM simulation
mass budget are investigated. In fact, a simple quasi steady, but even, unsteady oD model, is
not able to describe at all the IT phenomena, both in the prediction and in the reconstruction
of the internal ballistics of a SRM. The results shown in the figure 7.10 refer to the simulation
which numerical HEP has been shown in the figure 7.5 previously (left figure). In that simu-
lation, we remember that the combustion efficiency is not active and a constant value of the
hump is used. As supposed in [108] and as figure 7.9 underlines, the flame spreading and the
igniter jets impinging directly on the motor burning surface have some effects in terms of non-
uniform regression of the motor grain geometry during the motor start-up. This is underlined
in particular in the web field curves in time during the IT (see figure 7.9(a)). While, figure 7.9(b)
draws out the overall burning rate field and the erosive component contribution to it, for some
instans during the IT. As shown in figure 7.9(b), the phenomenon of a non-uniform regression
is particularly located in the impingement region of the plume of the igniter radial nozzles jets,
where the flowfield velocities are high. In fact, the igniter jets impinging with high velocity
on the burning surface define a high burning rate, with an erosive contribution with the same
order of magnitude, or even predominant, with respect to the APN term. While, for the grain
regions where the igniter jets are not impinging directly, the burning rate is defined by a smaller
burning rate, due mainly to the APN term. Hence, in these regions the non-uniformity of the
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grain regression is due to the flame spreading effects, that defines different ignition times along

the motor axis.

In figure 7.10(b), the ignition transient effects on the overall motor mass budget are shown.
During this phase, in fact, the overall mass outlet through the nozzle is, for the case under
analysis, about 1% of the overall propellant mass.
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Another remark is the fact underlined in figure 7.10(b). In fact, considering only the simulation
of the IT, a blocked geometry approach for the grain geometry during the motor start-up is, as
expected, an acceptable assumption, as the burning surface evolution has some effects only in
the final part of the IT. While, as shown in figure 7.9(a), the port area evolution is quite bounded.
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IT

Certainly, all the described effects have a difficultly evaluable consequence in the use of the oD
reconstruction parameters for the calibration of the Q1D unsteady model. In fact, the interval of
time in which the IT happens is very small with respect to the quasi steady state, for this class
of SRMs. However, the proposed Q1D model enabling the numerical simulation of the overall
SRM combustion time, goes towards a finest numerical simulation and understanding of the
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overall SRMs internal ballistics and, hence, towards a better characterization of these non-ideal
parameters.

7.1.4 EFFECTS OF THE COMBUSTION EFFICIENCY VARIATION

This very brief section wants to illustrate the differences in the computed Head End Pressure
due to a small and reasonable variation of the combustion efficiency. As presented in the para-
graph 2.1, page 13, these effects can be taken into account by the infinite gases approach of the
gasdynamical flowfield model developed in SPINBALL.

Hence, for the same simulation with the same input, a small variation of the combustion
efficiency is considered between around 0.97 to 0.99. The resultant computed Head End Pressure
time history are shown in figure 7.11, where small but, however, considerable differences are
present in two pressure traces, as expected.

A similar difference, in terms of HEP curves, must be expected also considering a constant
thermophysical properties assumption for the grain combustion gases, with respect to the one
considered in SPINBALL, as dependent by the local pressure value. Certainly these effects are
dependent on the propellant type and on the range of the pressure, which the SRM experiences
during its operative time. However, the differences could be, as shown, of the order of 1 to 10
bars. Hence, they can be relevant in a fine tuning calibration of the internal ballistics model for
SFTs or real flights reconstructions and in the consequent determination of the SRM non ideal
parameters.

Head End Pressure Time History

I | | I I | I

Time

Figure 7.11: Effects on the HEP for a small variation of the combustion efficiency
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72 NAWC MOTOR N. 6

NAWC Motor n. 6 is a useful motor to underline the effects of the erosive burning in the SRM
internal ballistics and in the motor flowfield conditions during time. Hence, it is a useful SRM
to be simulated in order to check and validate the results obtained with the proposed QiD
model. Moreover, this is a SRM analyzed quite in depth in literature [47; 50; 64; 62; 92; 100], for
reasons related to the combustion instability testing and the understanding of the phenomena
itself, carried out at the NAWCWD in China Lake.

The motor grain and its geometrical configuration, shown in the paragraph 6.2, page 112, is
a aft-finocyl grain with a cylindrical case and a very low initial value of the ratio port to throat
area (around 1 for the initial configuration).

The propellant used is a reduced smoke propellant with additives, which composition is re-
ported in table 7.1. It has a burning rate of 0.678 cm/s at 6.9 MPa, a pressure exponent of the
APN law of 0.36 and a density of about 1800 Kg/m3 [62; 50].

Component Mass Percentage
AP 82 %
HTPB 12.5 %
RDX (ciclotrimethylene-trinitramine) 4 %
carbon black 0.5 %
ZrC 1%

Table 7.1: NAWC Motor n. 6 Propellant Composition

The thermophysical properties of the grain propellant combustion products are evaluated
starting from propellant composition with the CEA code [38; 44]. The assumption made is the
reaching of the chemical equilibrium condition for the combustion reactions, evaluated for some
pressure values, in the pressure operative range of the motor (from about 1 to about 140 bars).
No nozzle area variation is evidenced by the experimental results. Hence, a constant value of
the nozzle throat diameter and a fixed nozzle configuration is considered during the internal
ballistics numerical simulation.

A first attempt is considered in order to pre-
dict the head end pressure time history of
NAWC motor n. 6, with a simple oD quasi
steady model. This model is simply based
on the classical oD equilibrium pressure, com-
ing from mass flow rate equilibrium condition
(see equation 7.4), without the use of any cal-
ibration and non-ideal parameter (hump and
combustion efficiency).
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The comparison of the numerical simula- L .

tion yielded with the nominal input data re- 2 Time Is]
ported in the literature for the SRM, and the

experimental measure of the head end pres- Figure 7.12: HEP numerical/experimental com-

sure time history is illustrated in figure 7.12. parison: Numerical oD quasi steady
In the same figure 7.12, the HEP of the and RocballistoD [108]

RocballistoD code is shown, as published in
[108], in order to have a comparison with an-
other internal ballistics numerical simulation
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code with a similar model. The oD quasi steady code curve should be translated in time, as its
validity is over the IT, when quasi steady state conditions for the SRM are reached. However, in
the NAWC motor n. 6 HEP experimental trace is quite difficult to define the reaching of quasi
steady state conditions. Hence, we plotted the numerical curve not translated in time, as this
choice does not alter the comparisons we are going to made.

Really, RocballistoD code is more complete with respect to the one we are considering now. In
fact, it is an unsteady and not quasi-steady model of the bore flowfield. Moreover, it considers
a modelling also of the dynamic burning effect on the overall burning rate, based on the ZN
model (discussed in the paragraph 2.2.3, page 23).

The comparison of the numerical results (figure 7.12) with the experimental one shows that
both oD numerical modelling of the internal ballistics do not describe at all the initial and
relevant pressure spike, that brings the pressure inside the bore to about 140 bars. In fact,
both the oD numerical simulations define a pressure trend that is led by the behaviour of the
grain combustion surface, shown and analyzed in the paragraph 6.2, page 112, which has after
the Ignition Transient, a trend due to a progressive grain. Also the inclusion of the unsteady
term in the mass balance equation and the dynamic burning effects during the unsteady motor
start-up by RocGrainoD code do not explain the huge pressure peak and the following pressure
decreasing experienced by the experimental analysis, with a behaviour opposite with respect to
the burning surface that is instead increasing.
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Figure 7.13: HEP numerical /experimental comparisons for oD models with modified APN law

Some speculations on the cause of the pressure peak, that can be found in literature, range
from the erosive burning to the igniter ejection during the motor start-up [108; 64].

Even the artificial enhancing of the a constant of the APN burning rate quasi-steady model,
also made in [108], as expected, does not give a better correlation with the experimental pressure
trace, as illustrated in the figure 7.13 for both the oD models.

The second step, hence, is the numerical simulation of the NAWC Motor n. 6 with the Q1D
model. As expected, in fact, because of the star-aft motor design and low port to throat area
configuration, the erosive burning contribution is present for the motor under analysis. Effect
that simple oD quasi steady or unsteady numerical models are not able to describe at all.

Hence, the NAWC Motor n. 6 is numerically simulated also with the SPINBALL model,

including and not including the erosive burning effect on the internal ballistics. The computed
HEP time history of the numerical simulation with SPINBALL is shown in the figure 7.14(a),
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where the erosive burning effect in accounted as presented in the paragraph 2.2.2, page 22.
We use the standard LR model with the modifications due to Lawrence and Beddini, with the
standard value for the 3 empirical parameter (3 = 53), as suggested by Lenoir-Robillard[4]
and used in [108]. In the figure 7.14(b), instead, the HEP curves are shown together with the
experimental one, for the NAWC Motor n. 6 numerical simulations yielded with different codes:
SPINBALL, RocballistiD[108] and SPP[64].
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Figure 7.14: HEP numerical experimental comparisons for Q1D internal ballistics modeling

Unfortunately, even if the SRM data are widely published in literature, it has not been possible
to recover any information about the igniter configuration. Hence, even if possible with the
SPINBALL code, no numerical simulation of the Ignition Transient is performed to obtain the
Q1D results. For this reason, the grain burning surface is ignited with different imposed time
chains: from an instantaneous ignition, to a spatial delayed of ignition from the head end to
the after end of the grain propellant, with different reasonable times for the complete ignition
of the combustion surface. Notwithstanding, all these tests have shown to result with a very
small effect on the positioning of the numerical initial pressure spike. Hence, this means that
the numerical curve may be in the comparison with the experimental one, slightly translated in
time, of a time interval related to the error made in the IT imposed for the numerical simulation.
This is very similar to what done in [108], since the Rocballist1D has not the ability to simulate
the IT phenomena. While, no details are reported in [64] in order to understand which kind of
erosive burning model is implemented in the SPP code, neither if the IT numerical simulation is
performed.

It is interesting to note that even if a fine tuning of the erosive burning rate model is not
performed, a very good correlation with the HEP experimental data is achieved with SPINBALL
code. In particular, we have a very good reconstruction of the initial pressure peak, of the
pressure following decreasing and the following plateaux, up to the knee of the pressure curve,
before the TO. While the lack of agreement shown during the Tail Off is attributable, instead, in
part to the differences between the two curves accumulated during the QSS and to the missing
of the dynamics burning model that may have some effects in unsteady phase, even if it has a
small one during the IT. But the main cause, to which is related the lack of agreement during the
TO phase, can be probably due to the way in which the grain burnback model and the internal
ballistics model are coupled, as will be analyzed in the following.

However, as said before, the global trend of the experimental curve is well captured in a very
satisfactory way. Hence, the pressure spike (missed of about 10 bars), the pressure decreasing

143



72 NAWC MOTOR N. 6

and the successive plateaux (disagreement of about 10 bars again) are quite well simulated espe-
cially for a not-tuned simulation, while the tail off chamber blowing down is quite overestimated.

Comparing, now, the results of the different codes reported in literature in [108; 64], for respec-
tively, Rocballist1D and SPP, we seem to have a better capturing of the experimental HEP trend.
In fact, both the numerical simulations with the other codes miss the global curve behaviour; the
second code in a very relevant manner.

Considering the figure 7.15, now, a quantification of the effects of the erosive burning on
the chamber flowfield conditions during the whole combustion time can be made. Figure 7.15
explains, in particular, the SRM behaviour shown the first part of the QSS, when the pressure
spike is present. In fact, considering the components of the overall burning rate, separated into
the APN component and erosive burning component plotted for different times (see figure 7.15),
it is underlined just the wide effect on the burning rate of the erosive burning, especially during
the first part of the QSS. When the burning rate variation along the motor axis is strongly defined
by the erosive burning effects rather than to the APN term. So that, as pointed out also in [108],
it is possible to state that the pressure spike, but more in general, the overall internal ballistics
of NAWC motor n. 6 is led by the erosive burning. While the effect of the dynamic burning,
even if present in the initial unsteady phase, is so small to be a second order effect. During the
subsequent phases, in fact, as the port area increases, the flowfield velocity inside the chamber
are lower, reducing consequently the erosive burning contribution, which is however present
until almost the last part of the tail off (see again 7.15).

This effect can be seen moreover considering the Mach field evolution, together with the bore
geometry evolution, given in terms of port area, in figure 7.16. This underlines the wide total
pressure drops to which the SRM is prone, especially at its start-up ( (about 20 bars), because
of the low port to throat area of the initial grain design. While during the grain combustion we
have their decreasing because of the bore geometrical variations (with an enlarging of the port
to throat area ratio) and the mass addition variations in time and space.

Moreover, the figures 7.16 and 7.14 underline the big non-uniform geometrical evolution to
which the grain burning surface is prone, especially in the first part of the QSS. These are
due because of two competitive effects. The first one is related to the total pressure decreasing
along the motor axis, which defines also a decreasing of the pressure of the APN term. While
the second effect is the increasing of the flowfield cross velocities, that enhances the erosive
burning effect. The wide variations in the burning rate along the motor axis define that the
off-line coupling, through which the grain burnback solver GREG and the SPINBALL internal
ballistics solver are coupled, represents an approximation on the 3D grain geometry evolution,
especially during the TO phase. In fact, the effects of non-uniformity of the burning rate are
partially accounted in the evolution of the 3D burning surface of the grain propellant with the
off-line coupling, as discussed in the chapter 4, page 79. We remember that, however, up to
now a completely coupled 3D grain burnback/internal ballistics flowfield solver have not been
yet published in literature. Notwithstanding, certainly the off-line coupling has an effect on the
predicted tail off curve shape, because in this phase the accuracy of the grain surface evolution
in time becomes more relevant than in the previous SRM operative phases. This fact is believed
to be the main cause for the displacement between the SPINBALL HEP and the experimental
one, during the Tail Off.

Moreover, as also suggested in [108], and underlined in the paragraph 7.1.3, page 138, the
effects of the IT numerical simulation on the predicted HEP and in general on the internal
ballistics should give a augmented description capability of the SRM behaviour. As they account
also the non-uniformity of the grain evolution related to the SRM ignition sequence and the
igniter simulation.

In particular, a finest representation of the initial pressure overpeak during the motor start-up
can be obtained considering also some IT effects on it. We refer mainly to the possible effects
of the igniter and of the possible further grain erosive burning on the igniter jets impingement
region (as experienced in paragraph 7.1.3, page 138); but also to the small, but present (as
underlined in [108]), dynamic burning effect. These phenomena can modify in the direction of
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an further enhancement on the SRM HEP spike in the last phase of the IT. However, it is clear by
the analyses carried out that the pressure spike is for the major part driven by the grain erosive
burning effect, due to the main flow in the combustion chamber, as shown.

In addition to possible modeling improve-
ments, unknowns on the experimental and
nominal input data used for the numeri-
cal simulation may also contribute, in an
indeterminable way, to the disagreement
between experimental and numerical pres-
sure traces. However, as discussed be-
fore, the global trend of the experimen-
tal curve is successfully taken and these
effects seem to be refinements of the in-
ternal ballistics numerical simulation pre-
sented. Thus, the results of the nu-
merical simulation could be certainly im-
proved in terms of agreement with the
experimental data by a fine tuning ex- 0

40 -

Experimental
SPINBALL
RocBallistic1D
SPP

Head End Pressure Time History [bar]
o o o o o

n
o
™

3
ercise of the empirical and input coeffi- Time [s]
cients of internal ballistics numerical simula-
tion. Figure 7.17: HEP numerical experimental com-
parisons without erosive burning:
As last analysis on the erosive burning SPINBALL, Rocballist1D[108] and

driven behaviour of the SRM, the Q1D numer- SPP [64]

ical simulation without the erosive burning ef-

fect is compared with the ones published in [108; 64], yielded with Rocballist1D and SPP deacti-
vating the erosive burning (see figure 7.17). The differences between the SPINBALL model with
and without the erosive burning are so evident, and quite widely discussed before. Moreover,
the comparisons between the instantaneous grain inlet mass flow rate and the burning surface
evolution in time are shown in figure 7.18, for the oD quasi steady model and the Q1D model
(with and without erosive burning). We want in fact to stress the attention on the effects of
the different modelings in the characterization of the motor HEP evolution and to underline the
huge differences obtained with a Q1D model with respect to a oD model, in terms of prediction
capability and description of the internal ballistics driving phenomena.

These enforce how all the SRM internal ballistics is driven by this phenomena, because of
the grain shape and also how the combustion surface evolution in time changes because of the
erosive burning effects. While all the small, but present, differences, especially in the first part
of the QSS, between the SPINBALL without the erosive burning contribution and the oD quasi
steady model, are related to the total pressure drops along the motor axis already analyzed, that
the oD model can not take into account. Certainly these effects result in different evolutions in
time of the burning surface, propellant mass inlet and averaged burning rate, as defined in the
equation 7.2, and shown in figure 7.18.
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73 NAWC MOTOR N. 13

NAWC Motor n. 13 is also analyzed in order to further test the SRM internal ballistics simulation
tool developed. The SRM data are available in literature [47; 62; 108; 71], as for the previous
motor NAWC n. 6.

The motor grain and its geometrical initial configuration, shown in the paragraph 6.3, page
123, is represented by a simple cylindrical grain, with a cone shape at the aft-end of the motor.
The case is a simple cylindrical case.

The propellant used in motor n. 13 is the NWR11b propellant, which composition is reported
in the table 7.2. It has a burning rate of 0.541 cm/s at 6.9 MPa, a pressure exponent of the APN
De Vieille Saint Robert of 0.461 [62; 108] and a density of about 1700 Kg/m? [93; 71].

Component | Mass Percentage
AP 83 %
HTPB 11.9 %
Oxamide 5%
carbon black 0.1 %

Table 7.2: NAWC Motor n. 13 Propellant Composition

As for the NAWC motor n. 6, the thermophysical properties of the grain propellant combus-
tion products have been evaluate starting from the propellant composition with the CEA code
[38; 44], for some pressure values, in the pressure operative range of the motor (from about 1
to about 50 bars). No nozzle area variation is defined by the experimental results. Hence, a
constant value of the nozzle throat diameter and the nozzle configuration is considered during
the internal ballistics numerical simulation.

As for the NAWC n. 6, a first attempt to make the numerical simulation of the SRM internal
ballistics is considered with a simple oD quasi steady model (as expressed by the equation 7.4),
without any kind of calibration parameter.

The nominal input available in literature is considered.
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Figure 7.19: HEP experimental numerical comparisons for oD internal ballistics models

The comparison between the HEP obtained with the oD quasi steady model and the exper-
imental pressure trace is shown in figure 7.19(a). While the figure 7.19(b) considers also the
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numerical pressure trend published in [108], with a oD unsteady model with and without the
dynamic burning contribution (named RocballistoD).

As for the NAWC n. 6, all the details related to the igniter configuration miss in the SRM
description of the SRM present in the literature. Hence, the ignition transient is not simulated
in all the numerical simulations here presented. However, the oD quasi steady model and the
RocballistoD unsteady model are not able to describe the IT phenomena. Hence, in order to
compare the numerical HEP curve with the experimental one, a translation of the numerical
simulation of about 0.33 s (in accordance with [108]) is made for the simulation timeline. Figure
7.19 shows that using the nominal input, as reported in literature, the simulated pressure trace
is be all higher with respect to the experimental one. This fact is experimented also in [71],
where a oD internal ballistics model with the ZN and an empirical flame modelling for the grain
combustion processes, are considered to simulate NAWC Motor n. 13.
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Figure 7.20: HEP experimental numerical comparisons for oD internal ballistics models

Thus, in order to catch a better correlation of the numerical simulation with the experimen-
tal data, a parametric study based on the variation of a calibration parameter K is made (see
equation 7.5). This study is made in order to account for all non-idealities with respect to the
nominal parameters. By a part to consider, through the hump, the burning rate uncertainties
related to a scale factor effect and by the other to describe the chemical non-equilibrium of the
grain combustion processes, with the combustion efficiency (the K parameter want to be the
product of the two, in order to catch the numerical results yielded in [108]).

Sp (web (1)) 77
Sl (o))

p(t) = (pp a(Ty) Ke* (1)
(7-5)

K =h(web (t))nc+

Results on this investigation with the use of the oD quasi steady model can be seen in the figure
7.20. These indicate that a very good correlation, in terms of numerical simulation performed
with RocballistoD model, can be achieved by means of the use of a K value of 0.875. In the
same time, difficultly these difference can be attributable to unsteadiness effects during the
QSS accounted with one model with respect to the other. Note that the numerical noise in the
oD quasi steady numerical pressure traces is due directly to the numerical noise present in the
combustion surface input given by GREG, already discussed in the paragraph 6.3, page 123. This
evidence certainly puts in some doubts the input values reported in literature, because seems to
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7.3 NAWC MOTOR N. 13

be quite unrealistic the low value found, to be attributable only to the combustion efficiency or
to the scale factor.

Hence, as suggested in [71], a oD simulation has been made considering a constant, pressure
independent, flame adiabatic temperature of 2300 K, in order to have some correspondence with
the experimental pressure trace. Even if, as also underlined by the authors, this seems to be too
low with respect to the ideal adiabatic flame temperature of the propellant. The results of this
simulation are shown for the oD quasi steady model in the figure 7.21.

Notwithstanding, some remarks on the
SRM internal ballistics numerical simulation 60
can surely be done. The global QSS be-
haviour of the motor is quite well captured
with both the oD models (RocballistoD and
the oD model used). The dynamic burning
has not effects on the overall burning rate dur-
ing the QSS, so that the slope of the pres-
sure rising is quite well defined, since related
only to the progressive behaviour of the grain
shape. The pressure peak occurring during
the end of the IT, not present in both the oD
quasi steady model and RocballistoD with the
solely APN contribution to the burning rate,
seems to be related to a dynamic burning ef-
fect. This result is also obtained in other dif-
ferent articles [71; 72] where simple oD mod-
els have been used too, but this point will be Figure 7.21: HEP Experimental-Numerical Com-
also discussed in the following. The last part parison: nominal and modified adi-
of the experimental pressure trace, where we abatic flame temperature
see a pressure rising, suddenly before the tail
off phase and the consequently the tail off phase are not captured at all and are quite difficult to
be explained, as in countertrend with the burning surface evolution.
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Hence, for the problems encountered with respect to the input data found in literature, the
Q1D numerical simulations are made considering a modified adiabatic flame temperature of the
grain propellant of 2300 K, as discussed before. In fact, the determined K parameter, in a oD
model can be seen as the product of the combustion efficiency by the scale factor parameter, and
hence it can be attributable in an undefined manner to their product. While in the Q1D model
this difference becomes relevant, as the combustion efficiency and the scale factor have different
effects of the pressure trace, as experienced by some numerical simulations performed.

The pressure traces for the Q1D model, with and without the erosive burning activated, can
be seen in the figure 7.22, where also the burning surface, the average burning rate and the
propellant grain mass flow rate are shown.

Hence, it is possible to remark that for the NAWC Motor n. 13, on the contrary to the motor
n. 6, the total pressure drop effect is very small. In fact, they have a a maximum value, that can
be estimated in around 0.5 bar, during the initial phase of the QSS. This is certainly related to
the small values of the Mach number realized in the combustion chamber (see figure 7.23). In
the meantime, the small, but present, differences between the pressures trace, yielded activating
the erosive contribution to the burning rate and not, are, instead, attributable for the majority
to the small effects of the erosive burning (as underlined in figure 7.23). Surely, with respect to
the NAWC Motor n. 6, the effect of the erosive burning, as expected, is quite bounded. In fact,
the predominant contribution to the grain burning rate is given by the quasi-steady pressure
term of the APN De Vieille Saint Robert law, as figured out in figure 7.23. Moreover, during the
grain recession, the crossflow velocities responsible for the erosive burning effect, decrease, as
the port area increases (see the Mach number field). Hence the initial small contribution of the
erosive burning decreases in time. These effects are responsible of the differences, in figure 7.22,
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7.3 NAWC MOTOR N. 13

between the two average burning rates (see figure 7.22(c)). Consequently we have the presence
of small differences in the burning surface evolution in time (figure 7.22(b)), and at the end, to a
different pressurization history of the combustion chamber between the case of the activation of
the erosive burning and not (figure 7.22(a)).

Another relevant fact, present in the experimental HEP trace that deserves some remarks, is
related to the pressure spike experienced in this motor, at the end of the Ignition Transient.
In fact, on the contrary to the NAWC n. 6 motor, the pressure spike is not captured at all in
the Q1D numerical simulation with the erosive burning activated. Two main mechanisms are
proposed in the literature for the explanation of this pressure spike. The first one is associated
to the low value of the characteristic length of this motor, given by equation 7.6, as the ratio
between the bore volume and the nozzle throat area. This has shown to induce a so called bulk-
mode instability due to the coupling of the bulk-mode pressure oscillations with the combustion
dynamic burning effects [72; 71].

W
= A (7.6)

In [108; 72], indeed, the pressure spike is simulated with success with a simple oD unsteady
numerical simulation of the chamber flowfield conditions, using the dynamic burning model
of Zeldovich-Novozhilov (see paragraph 2.2.3, page 23). In particular in the second one [108],
with a Q1D unsteady model of the internal ballistics, the pressure peak is captured deactivating
the erosive contribution of the burning rate and using the ZN model to describe the dynamic
burning.

The second explaining mechanism for the pressure spike is, instead, attributed to an ignition
phenomena and/or as caused by an erosive burning effect [47; 64]. In other words, the phe-
nomenon is similar to what is experienced for the numerical simulation of the Zefiro 23 Ignition
Transient, illustrated in the paragraph 7.1.3, page 138. This is related to the combined effects:
the igniter jet erosive burning of the grain propellant surface and the igniter tail off, during the
end of the IT.

Unfortunately, as no details are given of the igniter configuration for the NAWC motor n.13,
it is not possible to perform a numerical simulation during the IT. Hence, it is quite difficult
to have a clear idea of the nature of the pressure spike in this case, as also a dynamic burning
model, at the state of the art, is missing in the SPINBALL model.

L*

A part from the problems experienced and underlined (also in [72]) with the motor input
data, the Q1D and oD models draw out both a quite well prediction of the global motor be-
haviour. This can be resumed by the comparison between the experimental and numerical HEP,
underlining the effects of the various phenomena on the internal ballistics numerical simula-
tion for this SRM. Certainly, in order to have a better agreement between the numerical and
the experimental pressurization history, some other investigations on the nominal input data
and on the semi-empirical models fine tuning should be required. However, what remains at
this point something related to a complete non-nominal behaviour of the NAWC motor n. 13,
that is not predictable by our models, but also by the ones published in the literature [108; 72],
is the pressure trend just before the tail off phase. In [72], the authors hypothesized that this
SRM behaviour could be accounted considering the axial variation of the burning rate, arising
from the inclusion of the erosive burning, and also the total pressure drops for this motor (that
their oD can not describe). In the light of the results yielded with the SPINBALL model and the
Rocballist1D[108], this hypothesis seem to be excluded. Hence, we suppose that this experienced
pressure trace in the last part of the SRM QSS could be seen in a non-nominal behaviour of the
motor. In fact, the rest of the internal ballistics of the SRM is quite well captured. This hypoth-
esis, however, should need an intense study to be proved in terms its possible causes (however
possible with the presented tool), that goes over the scope of this work.

153



0.005

0.0045

0.004

0.0035

0.003

0.0025

0.002

Burning Rate [m/s]

0.0015

0.001

0.0005

0.005

0.0045

0.004

0.0035

0.003

0.0025

0.002

Burning Rate [m/s]

0.0015

0.001

0.0005

0.005

0.0045

0.004

0.0035

0.003

0.0025

0.002

Burning Rate [m/s]

0.0015

0.001

0.0005

7.3 NAWC MOTOR N. 13

r 0.1
L RB [m/s] |
F APN [m/s] 1
o RBeros [m/s] 1
- — — — Mach Number —0.08
I a
[ 4 -
- » 7 V40063
5 - \ €
I \ S
- - =
I -,
F - 5
- s i <
n P 0.042
F 7z
- e
- Ve
[ 7
L 7
- s -10.02
e
I e
- e
[ 7
I s
| Y R | S P
0.2 0.4 0.6 0.8
x[m]
(a) time =043 s
r 0.1
I RB [m/s] |
r APN [m/s] 1
I ———— RBeros [m/s] 1
- — — — - Mach Number —0.08
g .
- -0.063
N £
I S
- N =
<
F - \ g
- _ ~0.048
N e
- e
— re
o 7~
- -
- re
- - -10.02
- -~
- e
- -
I e
-
e
a1 1,
0.2 0.4 0.6 0.8
x[m]
(c) time=2s
r 0.1
- 40.08
- -0.063
s £
o RB [m/s] 3
F APN [m/s] =
I ——— RBeros [m/s] E]
F — — — - Mach Number 7004=
o ~ 7N\
— - N
F -
~
I -~
5 -
o - -0.02
r ~
I -
L -
r -
" ~
I ~
I ~
Lle 71 I — 0
0.2 0.4 0.6 0.8
x [m]

(e) time =4 s

0.005

0.0045

0.004

0.0035

0.003

0.0025

0.002

Burning Rate [m/s]

0.0015

0.001

0.0005

0.005

0.0045 -

0.004

0.0035

0.003

0.0025

0.002

Burning Rate [m/s]

0.0015

0.001

0.0005

0.005

0.0045

0.004

0.0035

0.003

0.0025

0.002

Burning Rate [m/s]

0.0015

0.001

0.0005

r 0.1
I RB [m/s] 1
F APN [m/s] l
F RBeros [m/s] 1
- — — — - Mach Number —0.08
F ™
b .
F 0 0.063
r ~ £
- \ £}
F - \ E
[ 7
[ [%]
F e g T 0-042
[ 7
[ 7
r -
[ 7
. e
F - -0.02
[ e
[ e
— 7
[ 7
F Ve
L1 1 L L | ! 1 0
0.2 0.4 0.6 0.8
x [m]
(b) time=1s
r 0.1
F 0.08
s .
F ~0.063
I £
L RB [m/s] 3
F APN [m/s] =
F ———— RBeros [m/s] g
F — — — - Mach Number _ - % 0045
5 _ J
I -
L -
F -
[ -
[ -~
- _ - —0.02
|- ~
I -
r -
F -
F -
-
-
L lo | L L L | 1 L 0
0.2 0.4 0.6 0.8
x [m]
(d) time =3's
r 0.1
F -o0.08
F |
r n
= -0.063
L 1 £
L RB [m/s] LI
F APN [m/s] L —
L ———— RBeros [m/s] [ ]
F — — — = Mach Number 7)0.045
F 1
- ~ " NH
F -
. _ - - 1
F Phe —0.02
[ -~
I - B
I -
= - N
-
F -
F - B
Ll 71 | . n 0
0.2 0.4 0.6 0.8
x [m]
(f) time=5s

Figure 7.23: Burning Rate components and Mach Number field for different instants for the
SPINBALL simulation with erosive burning
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CONCLUSIONS

N this study a Q1D unsteady internal ballistics numerical simulation model has been devel-
I oped to simulate the Solid Rocket Motors internal flowfield conditions during all the motor
combustion time, from ignition to burn out. The main result is a main step towards a major
understanding and modeling capability of main physical, chemical, complex interacting phe-
nomena that lead SRMs behaviour and, consequently their performaces and mission capabilities.
Some of these phenomena, in fact, are still not well understood, at the present state of the art of
the SRMs modelling capabilities.

In particular, the result of the research activities carried out can help all the design and devel-
opment phases related to the realization of a SRM, as propulsion system for space applications,
by both research and industrial points of view. The internal ballistics simulation tool developed
can, in fact, overcome the modeling lacks related to the use of simple oD quasi-steady or un-
steady models, typically used up to now, for the SRM internal ballistics analyses during Quasi
Steady State and Tail Off phase. In the same time the Q1D model keeps the computational time
required for the entire combustion time numerical simulation bounded. Hence, it can be used
as a simulation tool both for refined design feasibility and parametric studies with the variation
of the main SRM design options, and for the prediction and the post-firing test reconstruction
analyses of a given SRM.

At the state of the art of the open literature, in fact, it is quite difficult to find SRM internal
ballistics models able to simulate the entire motor combustion time, from the Ignition Transient
to Tail Off. Hence, the original idea of this thesis work is to present a model, more accurate
than the ones typically used up to now for the numerical simulation of the SRM simulations. By
an industrial point of view, this can help in reducing the huge experimental analyses related to
their development and design. But also, by an academic point of view, it represents an analysis
and simulation capability of the overall SRM internal ballistics, useful in order to have a better
understanding of a motor nominal and off-design performances key driving mechanisms.

The activities which have led to this final goal can be summarized into two main steps, de-
scribed as follows.

The first step has been the development of a numerical simulation model, able to accurately
describe the grain burning surface evolution during time. In fact, the main driving mechanism
that dictates the SRM internal ballistics is represented by the grain burning surface evolution and
the bore geometrical variations, related to the solid propellant combustion processes occurring
the motor chamber.

In particular, the choice of the technique developed and implemented has gone towards a
completely general method for the tracking interface problem solution. In fact, it has applications
more far and away distant than the application to the grain burnback analysis. This has allowed
to have a completely general method, useful to deal with the motion along the normal direction
of whatever complex 3D grain shape, even with topological changes, with possible merging and
breaking of the grain surface, by means of the Level Set Method. Even if the scientific audience,
in recent works, has considered the use of the Level Set technique with applications to the grain
burnback analyses, the way in which this method has been developed for the purpose is quite a
novel and never presented approach for the considered problem.

Typically, in fact, the other published works using the Level Set Method for the study of the
grain burning surface evolution in time, consider the numerical integration of the Level Set
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equation in Cartesian rectangular grids. In such a manner, the symmetry and/or periodicity
properties the grain shapes, held even by the more complex and 3D grain propellant geometries,
are not exploited at all. Hence, these properties are not respected during the front motion, if
maintained because of particular grain velocity along the normal direction (for example constant,
for the majority of the published works).

In the numerical model developed, instead, the Level Set equation integration has been made
in cylindrical meshes, exploiting, in the same time, the grain propellant shape symmetry prop-
erties during its motion. This allows moreover to limit the computational domain, or for the
same computational grid dimension, to have a higher accuracy in the numerical simulation of
3D grain burning surface evolution.

Moreover, in order to deal with the typical complex 3D grain shapes used in real motor appli-
cations, as finocyl grains, a novel, smart and automatic initialization technique of the Level Set
problem has been developed. This is based on a banded Signed Distance Function construction,
that uses directly the CAD representation of the grain propellant combustion surface. In such a
manner, the grain burnback analysis can be directly made from the grain design and production
process of the mandrel. In fact, the input necessary to set the Level Set Initial Condition is given
by the grain surface StereoLithography representation, in which the introduced approximations
are related only to the numerical approximation of a 3D surface by its triangular tessellation.
Hence, for ballisticians applications no difficult for the 3D grain surface prototyping or mod-
eling is necessary. The same procedure, moreover, can be utilized also to build an automatic
cylindrical structured mesh for a 3D CFD numerical simulation of the flowfield conditions dur-
ing the motor start-up.

At last, in order to couple the 3D grain burnback solver with the SRM internal ballistics model,
an intense review of the Dirac Delta and Heaviside regularization techniques with application
on Level Set technique (and other applications too), has been made. This study has been made
in order to avoid the known problems of regularity and convergence of the standard methods,
widely used in the Level Set community, to extract the level zero geometrical properties, such
areas, surfaces, volumes and perimeters. In fact, this has carried to the implementation of a com-
pletely automatic and robust second order Dirac Delta and Heaviside regularization method that
applies to both Cartesian rectangular and cylindrical structured grids, due to Min and Gibou and
recently appeared in relevant publications. Moreover, in this framework, the use of the boolean
algebra of the implicit functions to evaluate the grain and case/Thermal Protections casing in-
terfaces interaction is a novel solution, that seems to be not explicitly used and published until
now, in the open literature.

All these novel aspects in solving the problem of the grain burnback analysis have been intro-
duced and implemented in a completed automatic numerical simulation model, for the study
of the grain burning surface evolution in time, named GREG (completely developed starting by
scratch). The GREG model, as results, is able to deal with whatever complex grain initial shape
and Thermal Protections boundary surface and to describe its motion along the normal direction.

In the second part, the development and updating of the mathematical, physical and numerical
models of an existing internal ballistics numerical simulation model, named SPIT, have been
carried out. This work has been necessary in order to overcome the limits of the code to yield,
with very successfully results, numerical simulations of the solely IT phase.

In this direction, a re-formulation of the gasdynamical solver has been made with the target
to account for the variations with pressure of the grain combustion products and the non-ideal
chemical equilibrium of the exothermic grain combustion processes, through the combustion
efficiency. In such a manner, the potential possibility to account also the effect, especially during
the final part of the QSS and during the TO, of the motor casing Thermal Protections ablation
phenomena is ensured, if the introduction of a proper ablation model for them, will be intro-
duced.

A review and updating of the grain burning rate models has also been made, in order to
represent the effects, in some cases very relevant, of the erosive burning on the SRM internal
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ballistics. These effects, in fact, can be important not only during the IT, as SPIT considers, but
also during QSS phase.

All these activities have been defined the implementation and the development of a Q1D nu-
merical simulation tool for the SRM internal ballistics numerical simulation, during the entire
combustion time, named SPINBALL. This model has been, hence, coupled with the 3D grain
burning surface evolution model GREG. The result can be considered, at now, a novel approach
for the overall combustion time numerical simulation of SRMs.

Thus, the analysis and the numerical simulation of three SRMs has been made: Z23, NAWC
Motors n. 6 and 13. The results yielded by SPINBALL have shown that the presented approach
can be successfully used for the numerical simulation of the entire SRM combustion time, from
the motor start-up to its burn-out. Hence, the developed numerical tool can be used both for
preliminary analyses, for selecting the motor main motor design options, but also for the recon-
struction and prediction of selected SRMs configurations.

In this framework, certainly, some characterization activities on the semi-empirical parameters
of the sub-models used are necessary. But this can be achieved by means of some parametric
analyses, which the proposed approach allows, thank to the low computational time required to
perform each simulation. Notwithstanding, the motor NAWC n. 6 and 13 have shown an accept-
able level of correlation with the experimental data, provided by blind numerical simulations
with the use of the nominal motor input parameters, without a fine tuning of the sub-models.

Moreover, the use of the SPINBALL model, for the simulation of the Z23 SFT, allows to state
the ability of the model as reconstruction tool of a motor behaviour, if the necessary non-ideal
parameters characterization (hump and combustion efficiency) and nozzle throat area evolution
is made. In particular, it has been used to validate the oD quasi steady model, underlining the
possible effects of a more accurate modelling, on the SRM internal ballistics reconstruction.

Then, the numerical simulation of the ignition transient of Z23 has underlined as the taking
into account for the grain geometrical variations has very low effects on the IT numerical simula-
tion. However, it may have, instead, sensible effects in the mass budget for full internal ballistics
computations.

The Z23 IT numerical simulation has, moreover, shown that the causes of the pressure spike,
during the last part of the IT, are related to the combined concurrent effects of the igniter Tail Off
and of the erosive burning, due to igniter jet impingement on the grain surface. While, during
the QSS, the erosive burning effects for this motor are very small, almost negligible, with respect
to the quasi steady burning rate contribution.

The numerical simulation of the two NAWC motors n. 6 and 13 have enforced the ability
of the model in capturing and representing the main driving internal ballistics phenomena. In
particular, the NAWC motor n. 6 simulation has defined, in agreement with a previous published
work, that the nature of the pressure peak immediately after the IT is due to a very relevant
erosive burning, due to the motor selected configuration. This effect for this motor is particularly
relevant, in such a manner, to deviate the pressure trace from the one related to the progressive
grain surface design, affecting completely the internal ballistics of the motor. The results have
underlined a good agreement of the predicted HEP time history with respect to the experimental
one, with a quantitative and qualitative agreement of the motor real behaviour.

In the opposite, the numerical simulation of motor NAWC n. 13, has shown that the erosive
burning effect is not directly responsible for the pressure peak at the end of the Ignition Transient.
This, instead, can be attributable to both dynamic burning effects and erosive/ignition transient
effect, similar to what experienced in Z23. While, during the Quasi Steady State of the motor,
the erosive burning contribution to burning rate is small, but with a not completely negligible
effect on the motor behaviour.

In conclusion, a general, robust, efficient and automatic 3D model for the study of the grain
burning surface evolution has been presented with successfull results. This model can be easily
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coupled with oD and Q1D models to study the internal ballistics of SRMs. A Q1D unsteady
model to study and analyze the internal ballistics of SRM from motor start-up to burn-out has
also been presented. This model has shown great potentials and, thus, represents a promising
tool to obtain a more accurate representation of the internal ballistics driving phenomena and
their characterization, with respect to more simple oD models, typically used for the simulation
of the SRMs during the QSS and TO.

Certainly, the path for a complete understanding of the SRM issues related to internal ballis-
tics is far to be closed. In fact, the involved phenomena are typically multi-physical non-linear
and complex interacting with each other. In this framework, the need of the implementation of
a dynamic burning model, such the one suggested by Zeldovich-Novozhilov is quite straightfor-
ward and possible. In fact, it should allow to study the so called L* effects, related to combustion
stability and flowfield /combustion coupled phenomena.

Moreover, the implementation of a nozzle Thermal Protections ablation model able to char-
acterize the phenomena which can affect typically the SRM behaviour should be considered.
This model could be a reduced and simplified representation of the more complex ablation/ero-
sion phenomena, with semi-empirical parameters, coming from experimental tests and/or more
refined models of the coupled ablation/flowfield mechanisms.

Another step could be related to the description of the possible acoustic instabilities related
to vortex shedding/acoustic coupling phenomena, to which some SRMs configurations area
prone (P80FW and Ariane 5) during QSS. In fact, these bring typically to a chamber main
acoustic frequencies excitation and thrust oscillations, small but sustained, that are important
at the system level of a SRM design. In order to characterize these phenomena, a reduced
model of the vortex sound, that is generated by the shear layer instability could be considered.
It should describe the two loops involved in the driving mechanism of the vortex shedding
phenomena, as they appear in specific geometrical and flowfield conditions during QSS. Hence,
the presented Q1D model becomes mandatory, in order to try the representation of such acoustic
effects. Moreover, the 3D grain burnback model presented can also help in the understanding of
such phenomena, giving to 3D flowfield Navier Stokes models, the 3D geometrical configuration
of the SRM, during which the buffets happen.

At last, a complete coupled grain burnback/internal ballistics flowfield model with the on-line
coupling way is a result at the horizon. Such an approach for the SRM numerical simulation
has been never published, until now, in the open literature. It could be very useful, in fact, in
order to have a finest representation of the effects on the internal ballistics, in case of burning
rates with high axial non-uniformity, as experienced and underlined in the results analysis of
the NAWC motor n. 6.
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oD QuaAsi STEADY MODEL

A quasi steady oD model has been developed by Department of Mechanics and Aeronautics
(DMA) Space Propulsion quasi Research (SPqR) Team for the determination and reconstruction,
during the QSS and TO phases, of the non-ideal parameters behavior of the motor and the nozzle
throat area evolution. These parameters take into account the non-ideal behaviour of a SRM with
respect to:

@ the grain propellant combustion rate, typically coming from small tests for the propellant
characterization and the uncertainties on the grain propellant burning surface evolution,
both taken into account with the hump parameter;

@ the non-ideal equilibrium point of the grain combustion products exothermic chemical
reactions, considered in the combustion efficiency;

@ and the nozzle efficiency to characterize, typically, divergence, boundary layer losses and
frozen flow effects in the nozzle expansion flow.

In particular, the procedure presented here, since used in this thesis work, is able to evaluate
the hump law, the nozzle throat erosion/ablation, the combustion and nozzle efficiency, in the
assumption of a simple oD quasi-steady model for the internal ballistics. It considers as input
the following experimental data:

@ the grain propellant mass loaded;
@ the initial and final nozzle throat area values;

@ the propellant combustion characterization in terms of a and n of the APN combustion
law;

@ the combustion products characterization and the adiabatic flame temperature evaluation,
by means of the chemical equilibrium assumption for the grain propellant combustion
reactions;

@ the propellant density;

@ the nominal evolution of the combustion surface in web, assuming a spatially constant
burning rate, in accordance with the oD model;

® and the head end pressure and thrust measures, from the SRM firing data (typically SFT).

The SFT reconstruction, in terms of the mathematical procedure, can be described, as follows.
Assuming the use of a oD quasi steady state model, the pressure in the chamber is given by the
equation (H.1). Where the non-ideal parameters have been introduced and the explicit depen-
dence of the quantities is given.
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The burning rate model is the classical APN model given by the equation (H.2).
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The combustion efficiency and the characteristic velocity are, then, defined in the equations
(H.3) and (H.4), respectively.
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Where all the propellant combustion products thermophysical properties and the adiabatic
flame temperature are assumed to be variable with pressure. These parameters are given by the
chemical equilibrium evaluation of the propellant exothermic reactions products (evaluated, for
example, with the computer program for calculation of complex Chemical Equilibrium compo-
sitions and Applications (CEA)[38; 44] code).

The nozzle efficiency, therefore, is given by the equation (H.5), where with “tilde” are indicated
the measured data of the head end pressure pressure and of the SRM thrust.

_ F(t)

cr (1) P (t) Ac (1)

Hence, the equations (H.1), (H.3) and (H.5) represent a set of 2N + 1 equations, where N is the
number of the chosen samplings of the reconstruction in time.

In this set of equations, the unknowns are 3N + 1: the evolution of the nozzle throat area
At (t), the combustion efficiency n¢+, the nozzle efficiency n¢; (t) and the hump law h (web (t)).

The problem, hence, is mathematically unclosed without any further assumption. The sim-
plest assumption on the unknowns can be set on the throat area evolution law, considering the
following constraints: the experimental data define its initial and final value and this law can be
assumed to be monotone increasing.

To set these N values, with imposed starting and final values, a simple model for the abla-
tion/erosion of the nozzle throat area can be considered [40]. It assumes that the mass flow rate
and, consequently, the regression velocity of the throat area is dependent through a calibration
coefficient on the heat fluxes due to convection from the chamber hot gases, as expressed in the
equation (H.6). Thus, the convective heat flux coefficient can be given by semi-empirical laws,
like the Bartz[3] one.

Nee (1) (H.5)

Dthro at — k(1bhc (Tthroat - Twall) (H6)

At last, we consider the case that the attention is only focused on the internal ballistics, without
the availability of the experimental thrust data, i.e. in the case of an instrumented flight. The
problem can be, in this case, rearranged in terms of N + 1 equations (pressure and combustion
efficiency definition) and 2N + 1T unknowns (hump law, nozzle throat evolution and combustion
efficiency), without any characterization of the nozzle efficiency. The problem, hence, is still
unclosed and can be closed in the same manner of the previous one: modelling or choosing a
nozzle throat evolution in time, with the constraints of its final and initial values.



INSTABILITY OF THE MARKER PARTICLES SEEN IN
A HAMILTON-JACOBI FASHION

In this section we follow what analyzed in [31]. We want to to show in some details the aforemen-
tioned difficulties of the marker and particles techniques in solving a class of problems, which
can be described by an Hamilton-Jacobi equation (the case of motion velocity along the normal
direction included). In fact, these Lagrangian techniques do not embed in their formulation an
entropy condition, which is required for the solution of the problem and present, instead, in the
Level Set formulation.

Consider, hence, the general first order 1D Hamilton-Jacobi equation, with a smooth initial
condition:

{ $t+H(dbx) =0
¢ (x, t=0) = (xo(s),0) = dbo(s)
Differencing this respect to x, we have an hyperbolic equation similar to conservation laws (as

shown in the paragraph 3.3.2, page 43)
Oy OH (dx)

(I.1)

ot ox O
The method of the characteristics says that:
dx dH
¢x = const along T dgiX)
Introducing, now, the metric g and the azimuth 6:
g(s,t)=+/x3+y2 where x =x(s,t)
0 =tan~! (2—2) d=0d(st)

it is possible to write down immediately for the case of V = 1 (equation 3.4), the following
equation, which is a particular form of the equation 3.7:

tace = o)1V oll5],

This last is a slightly ill-posed non-strictly hyperbolic system, which solution is simply given
by:
{ 0 =00 (s)
g=go(s)+t8}(s)

It is ill-posedness is clearly manifested as g (s, t) — 0, condition that corresponds to a charac-
teristics coalescence of the starting problem that occurs for the time:
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. (90(s)
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This may be even seen for the general 1D Hamilton-Jacobi equation L.1 when the second
derivatives of the ¢ (x) loses to be monovalued, as a consequence of the intersection of different
characteristics (note that the problem may create shock in its derivative formulation):

calling u = ¢y the derivative form of the equation 1.1 is

ou OH (u) PN ou  OHOou

ot O ot Towox O
considering the solution blowing-up:
OH(u)
OH(u) _ oH(u)dxo (u) _ “oxg
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0x
now, by the integration in time of the characteristic line equation
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consequently the blow-up time is:

tblow—u]o = 2
max < o-H

320
o2 u=uy ox2

This time, considering the Hamiltonian expression for the given problem

H(dbx) = Vy/1+d2

assumes the expression:

1 . 1
Fotowup = =)
(Po)xx

3
(1+(00))*
where K is the curvature of the front. This equation is exactly alike the equation 3.12, obtained
in another way.

max



SOME SCHEMES FOR THE HAMILTON-JACOBI
EQUATION

11 1D HAMILTON-JACOBI EQUATIONS

The general form of a numerical scheme for the one dimensional Hamilton-Jacobi equation can
be expressed as:

¢],n+1 - q)]ﬂ“ —AtH (¢, d3) J.1)
so that, in order to give the expression of a particular numerical scheme, it suffices to show
the form of the correspondent numerical Hamiltonian H (¢ ; d5f).

Lax-FriepricHs (LF) [21]

For the Lax Friedrichs (LF) scheme, we have':

ul 4+ u 1
SLF o+ L —) j j + —
H; (uj ,u].)—H<2 —zoc<u]. —u].) (J.2)
where: ( )
T (U E S
u- =D"¢5 = iiAx
e |aH@s] dH (u)’
by e [d,&nin;d);nax] dd)x ue [umin;umax] du

The scheme is monotone for:
ui c [umml_ LLmax}

The maximum and the minimum values in the previous expressions are chosen over the en-
tire computational domain. Hence, the main consequence of this “global approach” is that the
same value of the dissipation coefficient o (that control the numerical viscosity introduced by
the method?) is used in regions where the “velocities” (dH/d (1)) are small and large indiffer-
ently. This decreases the quality of the solution because of the increasing of the amount of the
numerical dissipation in regions where this is not necessary (so while the method is stable and

1 other such schemes of this general type, like Lax-Wendroff and Fromm’s method, could be used too
2 note:

ulf —ur dzd)
j j 24
f:AxchbNAdez
so that: ,
1 . d¢
o (wf —w) meax gy
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will give an accurate solution as the mesh is refined, it can be smeared out and lost accuracy in
some parts in a mesh).

The previous disadvantage of use of global dissipation coefficient is passed by the introduction
of a local evaluation of the o, as given in the equation J.2. This allows to introduce the following
derived scheme from the LF one:

@ Stencil Lax-Friedrichs (SLF)
The evaluation of the dissipation coefficient is made only considering grid points in a
neighbourhood of the generic point (i.e. for x; — [xj_ 3, X+ 3} ).

@® Local Lax-Friedrichs (LLF) [33]
ul 4 u 1
CLLF (o + .- ) j j + - + -

where, this time:

w(wf ) = max o) ‘
and the interval I is so defined:
I (u; , u;r) = {min (u]’ , uf) ,max (u)’ , u;r)} (J.4)

Similarly to LF-scheme, Local Lax Friedrichs (LLF) is monotone (for the prove of it, see the
appendix of [35]) if:

U.:t c [uminl, urnax:|

where the maximum and the minimum values are calculated inside the stencil domain of
each numerical scheme.

RoE-Fix (RF) [33] [35]
The Roe-Fix [79] [35] scheme uses the Roe’s upwind method, with built-in numerical artificial dis-

sipation, with a LLF entropy correction to avoid entropy violating expansion shock developing
at sonic points. The numerical Hamiltonian for Roe Fix (RF) scheme is hence given by:

| =

" . * TRET: dH/du <0 if dH/du does not change
H (u) with Ui = . o
) if dH/du>0 + 4+ +signinuw e I (u—;ut)

H (U.-+ , u-_) = L
) ) w +u; .
H ( j j ) . % o (u;-, u;) (uf _u',) { if dH/du changes

£

) ) signinu €I (u;u™)
J.5)
The RF-scheme, as LF and LLF, has the property to be monotone (for the prove of it see
appendix of [35]) for:

ui c [uminl_ LLmax}

where is considered the evaluation of the maximum and minimum values inside the numerical
scheme stencil.

Gopunov (G) [5]

Considering a piecewise constant initial data, it is possible to consider a numerical method that
gives the exact (the lowest dissipative scheme) solution for the one dimensional conservation law
3.31, evaluating the exact solution of the Riemann problems arising at cells interfaces [5]. The
correspondant numerical Hamiltonian is given by:
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l:i]-G (u)*, u]_) = ext H (u) (J.6)

uGI(u; ,u;)

where the operator ext is given by the following expression:

min if < u]f
t el ] 17)
ex = . _ .
(R I i I e

Note that the numerical Hamiltonian l:le with the ext operator could also be found in the
equivalent formulation given in [31] [34]:

o G + — _ _ . + — . . + —
H; (u- , Wi ) = exf H (u) =sign (uj — ) min (51gn (uj — U ) H (u))

u.el(uj ,u;r) ueY(uj ,uj*)
where:
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The numerical scheme, in its equivalent formulations, is monotone if:
Ax

dH
max

At <

du

In the case of the Hamiltonian is convex, for that is valid d2H / du? > 0(<0) WVu, the exact
solution of the Riemann problem is given by the known cases [18]:

(i) fully supersonic

AS (wou ) =H(u ) f (jﬁl J>o;‘;': ]+>o>

u;

(i) fully subsonic

Hf(uj,u;):H(u;) if (‘i}: ]_<o,-‘;ﬂ ]+<o>

.

H.G(u*,u.—)zo i (4 <o<@
) ) ) du u- du ut
) )
(iv) transonic shock
H(u._) i (SH S 50 dH
_ ) du |, - du |+
AE (w5 ) = aH| aH|
H(w) i (S0 20>we> o) <o
) du |, - U+
) )

where wy is the shock velocity. This can be evaluated by the use of the Rankine-Hugoniot
jump condition (coming from the integral form of conservation law 3.45) [56]:

W = Hu )—H(u ) [H(W)] 18)
U — Uy [u]
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In the special case that H(u) =h (uz), it is possible to combine all the cited cases in a most
straightforward form to be implemented in one algorithm. It is, hence, possible to write down
the previous expressions in the elegant form3 [79] [18] [69]:

if L <0 = H)-G =H (min (min (u;,O)z,max (uf,0)2>>

a . e 09
if m >0 = Hj =H (max (max (u]. ,0) ,min (u). ,0) ))
considering that the characteristic direction* is given by:
dH  dH d(u?) dH
W add) du Ma) L

EnGQuisT-OsHER (EO) [18]

In the case of an “Hamiltonian-flux” function convex, it is possible of easily approximate the
numerical Hamiltonian thought the Engquist Osher scheme. For that the flux is given by:

i
HEO (U um) = - T in ((4H —
Hj (uj s ) = H (u]. ) —I—L? min (du’o) du =
)
ut
dH
= H(u' —i—J " max (,O)du
()], me (G 0.11)
n 2 2 LL; du
considering all the possible cases rising from the expression J.11, we have:
dH
(a) fully supersonic dH e — H{°% =H (u)_)
— 0
du |+ g
)
dH
— 0
: dufy; ) MEO +
) —
(b) fully subsonic aH o = H;yY =H (u]. )
du |+
)
dH
aul, <0 aH| \~'
(c) transonic expansion — HFO = —
dH ) du,_
du wh
dH
a0 aH| \~!
(d) transonic shock ) = HFO =H (uf) +H (ufr) —H{|—
an - M / J Ao
du |+
)

Note that the approximation of the scheme is only in the case of a transonic shock (case (d)).

j
locity sign (which comes out from the Rankine-Hugoniot condition J.8), and introducing some

For this case, the exact solution is either H (u._) or H (uf), depending on the shock wave ve-

3 that is particularly fitted to the level set equation (both in one-dimensional and in several dimensions versions of it).
4 in the shown relation between Hamilton-Jacobi and conservation law
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diffusion. While for all the other cases, the scheme picks out the exact solution of the Riemann
problem.

In the special case of an Hamiltonian such a function of u:
H(u) :h(uz) ; Hu=0)=0

the EO approximate Riemann solver can be also put in the elegant unique formulation [31] [59]
[18]:

~ 2 2
if T ((1H2) <0 = H9=H (min (uj_,O) ) +H (max (uf,o )
u
o ) 5 5 (J.12)
ifm>o = H).EO :H(max (uj’,O) )+H<min (u;_ro) )

OsHER-SETHIAN (OS) [31]

If the Hamiltonian H (u) is a quadratic function of u, so that H (u) = H (uz), over the EO exists
another approximate Riemann solver due to Osher and Sethian. This is very similar to the first
J.12, hence it is an upwind monotone scheme, given by the following expression of its numerical
Hamiltonian:

if d?:z) <0 = }:leS =H (min (u;,())z + max (u;r,O)z) -
1
if d?:z) >0 = FIJ.OS =H (max (u;,O)z + min (u].*,o)z> ’

that is monotone with the CFL condition:

Ax

dH
2max

At <

From the equation J.13, it is possible to argue the strong relation between the OS and EO
scheme. In particular, it is simple to see that in the case of fully subsonic and supersonic flow and
transonic expansion the two numerical schemes gives both the exact Riemann solution. In the
presence of a transonic shock, instead, there is a little difference expressed by the fact that:

H (uj_z +u)-+2> £H (u]-_2> +H (u;r2>

except from the case in which the Hamiltonian is a linear operator respect to u?. The advan-
tage of the use, respect to others, of the OS numerical scheme stands on that is easily generaliz-
able to several space dimensions (see paragraph J.2, page n).
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Now, it is possible to show, in a very simple manner, that the OS Riemann solver, in the case
of the 1D Level Set equation, is even less dissipative than the EO. In fact, considering the case of
transonic shock (in all the other cases the OS and the EO give the exact solution), we have that:

transonic shock — u;r <0,u; >0

(E9) 1y = yfmax (15,0)" + yfmin (u7,0)" =/ (u) "+ (s)" =

ma
(HJQS)LS = \/max (u;,O)z + min (u;F,O)Z = \/(u]-)z +

- \/W: | ifws = \/(u,*)j:\/_(u) >0
e Y L) i (GO

by the chain rules of inequalities:

so it is proved what stated.

Since this point, in all the numerical schemes introduced, it is considered a first order Euler
forward time marching methods and a first order space upwind approximations for derivatives ¢ and
¢y . A way to improve the spatial numerical accuracy to high-order approximations is to use
ENO or Weighted Essentially Non Oscillatory (WENO) methods (respectively third and fifth
order for example), thought the essentially non oscillatory polynomial interpolation of the ¢
function and its weighted version. Unfortunately the ENO and WENO schemes are not TVD,
but only Total Variation Bounded (TVB). However, this condition fortunately is sufficient to
guarantee convergence of the overall numerical method.

Practical experience suggests that more efforts must be considered to develop numerical
schemes with an accurate reconstruction of spatial derivatives. While less one attention is nec-
essary for temporal discretization, because of its less impact on the solution degradation. If in
some application it is necessary to an accurate time derivatives reconstruction, it is possible to
consider Runge-Kutta method, especially TVD ones that ensure no-formation of spurious oscilla-
tions. TVD Runge-Kutta schemes are obtained simply taking convex combination of Euler steps,
that are TVD by assumption.

12 MUuLTI-D HAMILTONIAN JACOBI EQUATIONS

For the several dimensional Hamilton-Jacobi equations, the same techniques devised for the
one dimensional type one can be used with some little complications due to multidimensional
aspects (for simplicity will be valuated formulations only for the two dimensional case).

Lax-Friepricus (LF) [21] [79]

For LF scheme, from the monodimensional form ]J.2, it is easy to write down the expression of
the numerical Hamiltonian l:{].LE:

+ — + —

wlh +ury, vi v
~LF — _ jk jk jk jk
H).Lk(uj*k,ujk,vj*k,vjk) = H( , +

2 2 (J.14)

_lax(uyt —u— V1Y (v v
5 & (ujk ujk)zoc (v).k ij)
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where:
4 + (bjx1—djn) . 4 + (b5 k1 —Pj 1)
Wi =D d”'k:iT A d)jk:iT
X aH (d)X/ (by) aH (u/ V)
X = max —_— | = max R a—
u€elA;B] ve[C;D] 0y u€e[A;B] ve[C;D] ou
v _ OH (dx, dy) | OH (u,v)
X7 = max —_——— | = max R
u€l[A;B] ve[C;D] by u€lA;B] ve[C;D] ov
This scheme is monotone for:
ut € [A;B] ; vEe[CD]

For the same pointed out considerations made for one dimensional LF numerical method, it is
preferable to use some modified versions of the original LF, in order to avoid too much smearing
out of the solution where is not necessary:

@ Stencil Lax-Friedrichs (SLF)
The dissipation coefficients «*, a¥ are determined including only grid points in a neigh-
bourhood of the generic point; for Xj i, for example the stencil:

— — xX . — — y
Xi3wXj3k] — foroafy o [Ke-zXres] — for o'y,

that contains all the points necessary to build a WENO scheme. Or in alternative to the
previous dimension by dimension evaluation of dissipation coefficients, it is possible to
use the following form, that considers a rectangular grid points domain:

— — — — x . y
[xj k—3,%; k+3] X [xj,g K Xi4+3 k] — for both oy ; x5y

® Local Lax-Friedrichs (LLF) [33]

Searching even more local values of the dissipation coefficients brings to:

+ — + —
w. . +u. V..tV
OLLF (4 = oyt oy _ ik Tk Gk Gk
Hyy (ujk,ujk,vjk,v].k) = H( 3 , 3 +
1 4% + — + — (J.15)
—2 %5y ujk’ujk) (ujk_ujk)+

[ P VR AN + _
2%k Wik Vi) Wik V5

where, this time:

X OH (u,v)

X = max —_—
uel(u—;ut) vel[C;D] ou

y oH (u,v)

X7 = maxXx R a—
uelA;Bl vel(v—vt) ov

and the interval I is given by the expression J.4. Similarly to the one-dimensional LLF, it is

monotone for:
ut € [A;B] ; vFe[CD]

@ Local Local Lax-Friedrichs (LLLF) [35] Even more local and so less dissipative is the Local
Local LF, where the numerical Hamiltonian is formally given by the same expression J.15
of the Local LF:

+ N R
_ B B Wi Fup Vi Fvey
HijLF(ufkrujkrV;rk/"jk) — H(J i ik i 2) n
- )+ (J.16)

1 x + + +
2%\ W Vi) (W Wk

_1.y + .+ + -
2%k W Vi) Vi VY5
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and with dissipation coefficients defined as:

X OH (u,v)

X" = max —_—
uel(u—ut)vel(v—;vt) ou

y OH (u,v)

X7 = maxXx e e—
uel(u—ut) vel(v—;vt) ov

Unfortunately that scheme is not monotone.

Note that when the Hamiltonian H is separable in the sense of:

H (4, dy) = HX (0) +HY (0y)  (H(wv) =H' () +H2 (v))

then the LLLF reduces to the LLF scheme.

Roe-Fix (RF) [33] [35]

The RF scheme uses the same building block of its one-dimensional version: Roe with LLF

entropy correction near sonic points:

case (a): H (u;“ k,v;k)

+ [
u. . +u.
. jk ik 1 x + - + =
L. case (b): H f"’jk T2 A\ W W) (W T Wy
H(ujk,vjk): + —
e VTR 1w o ) (o e
case (¢): H(uj v | T 2%k (Vj k7 VYj k) ("j Kk VK

. [LLF [ + — ot
case (d): ij (uik,ujk,vjk,v.k>

where the four cases are defined as follow:

H H
(a) if 9 éﬁ'v) and 9 é:’v) do not change signinu e [ (u™;ut),vel(v;vh)

(u,v)

(b) otherwise and if E)HT does not change signinu € [A;B] ,ve (v ;v")

(c) otherwise and if w

does not change sign inu € I(u™;ut),v e I[C; D]
(d) otherwise

while uf, and v}, are given by:

) uh if Léﬁ"’) <0 ) Vi if V) é:"’) <0
Yk = _ .. 0H(wv) 7 Vik = _ .. 0H(uwv)
LL]-k lfT>O V]-k lfT>O

Similarly to the one-dimensional formulation, this scheme is monotone for:
ut € [A;B] ; vEe(GD]

Gopunov (G) [5] [34] [32]

The multidimensional Hamilton-Jacobi formulation of the Godunov exact Riemann solver, pre-

viously analyzed in its mono-dimensional form, is given by:

l:{]-Gk (u)fk Uy ,v;rk , vj_k) = ei<t X ej<t X H (u,v)
uel(uj KoY k) VEI(VJ- e k)
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in which the ext operator is given by expression J.7. This is a monotone scheme for:

1

<
B 51 I T
ou n ov
Ax Ay

An important remark is that, in general, the operators ext are not commutable in sense that>
extextH # extextH
u v v ou
So that, it is possible to obtain different versions of J.18, changing the operators order®.

In the special case that the Hamiltonian H is a quadratic function in both its variables: h (uz ; vz) ,
the following expression for the numerical Hamiltonian can be considered: [69]:

i (a§§2)>o,a?;2)>o) 2 o
= H <<max (uj_k)+, (u;“k)> ; max ((vj_k>+, (V]Jrk)>)
oH oH

if (a(uz) >0, a(vz) <0

—H (max ((u]- o (' k)2> s min (<ij>2’ <V"+k>i>) -19)

G + ) _
i (i) = . ( oH oH

0 (u?) =70 ("22) 5 2 2
(o (52 )7 ) 5 () (54)°))

Where the following notation has been used:

x_ =min(x,0) ; x; = max(x,0)
OsHER-SETHIAN (OS) [31]
In the special case of:

H(uw,v)=h (uz,vz>

it is easy to extend, in a straightforward manner, the Osher Sethian approximate Riemann
solver J.13 to several dimensions. Hence, the numerical Hamiltonian takes the form:

the notation used is:

Ul

ext = ext ; ext= ext
uel(u;k,u;rk) v vEI(v;k,v;rk)

6 if the Hamiltonian is splittable, in the sense mentioned before, the commutative property of the operator ext stands.
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. oH oH
if <a(u2) >0, m >O>

= H (max (uj’k, 0>2 + min (u].*k, O)2 ,max (vj’k,O)z + min (v].*k, O)z)

. oH oH
if (a(uz)>0,a(\)z)<0>

—H (max (uj’k, 0)2 + min (u].*k, 0)2 ,min (V;k/ 0)2 + max (v].*k, 0)2>

. oH oH
if <a(u2) <0, a(TZ) >O>

= H <min (uj_k,O)z + max (u;rk, 0)2 ,max (v]._k,O)z + min (v;rk, O)z>

if (a?ljz)<o’a?$)<o>

= H <min (uj_k,())2 + max (u;rk, 0)2 ,min (v]._k, O)z + max (v;rk, 0)2>

which is monotone subjected to the CFL restriction:

(J.20)
At < !
B max a—H max oH
) ou ov
Ax Ay

All the remarks made on the possibility, thought ENO or WENO and Runge-Kutta schemes,
to built higher order accurate, in space and time, numerical schemes are still valid in multiple
dimensions numerical techniques just shown.



INSTABILITY OF CENTRAL DIFFERENCES USED IN
1D-LS EQUATION

In this section, the instability of the numerical scheme for the numerical solution the simple 1D
Level equation, based on the use of central differences for the spatial derivative approximation
is demonstrated [59].

Starting from the known 1D Level Set equation, with the initial condition:

o
St +V/1 —l—d)i =0
%—x for x < %

d)(x,t_O)_{ x—3% for x>1

The solution of this problem is known, by the Huygens’s principle, to remain a sharp “V”
corner, located at x = 1/2.

Considering, now, a building-up of the numerical solution with the use of the central differ-
ence for the spatial derivatives and of the Euler’s method for the time derivative (considering
V=-1)

n n 2
+ l|.+ l‘.—
Cl)|;1 ! - (b‘;l VAtJ 1 -+ <] L =1

we have clearly a blowing up of the code for a finite number of timesteps, due to the spurious
oscillations, induced just by the use of the central differences.
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(a) Exact Solution
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(b) Central differences At = 0.005

(c) Central differences At = 0.0005

Figure K.1: Marker particles method

In fact, while for all nodes x # 1/2 the eikonal term is exactly evaluated as 1/2; for the point
at x = 1/2 for even points number, the calculation of the eikonal term is completely wrong,
no matter how many computational points (see figure K.1), or how much small is the timestep
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we consider. This is simply due to how the spatial derivative is evaluated. As a consequence
of this wrong approach in approximating spatial derivatives, as the calculation progress, these

miscalculations of the slope affect all the mesh points causing spurious oscillations (see figure
K.1).



SMART LS METHOD FOR A CLASS OF GRAINS

We consider in this section, the particular case that the grain is described, for all its motion, by a
monovalued function, respect one of the independent spatial variables (x,y,z for the rectangular
Cartesian system coordinate; 7,6,z for the cylindrical one, where z represents the motor axis).
In this case, the Level Set problem can be formulated in a simpler manner, with a one less
dimension, saving consequently the computational time, re-sampling the Level Set function in
an explicit fashion.

Starting from the Level Set equation in the general case (3.27), we consider without lack of
generality that:

¢ (x(t),y(t),z(t),t) =x[z(t) = f(x(t),y(t))] (L.1)

We have, with simple calculations [31] the Level Set equation, considering along the dependent
variable the use of the equation L.1:

z¢ =V /T2 412 +1=0 (L.2)

Hence, the problem can be computed in only two independent variables, not three, in a similar
manner, as direct “Lagrangian” approaches, with the advantages of an Eulerian technique. This
is, in particular, due to the fact that, as the surface itself can be written in an explicit fashion,
the derivative along the z axis is know for all time to be ¢, = 1. In fact, this can be seen by the
related PDE and initial condition (being z a dependent variable for the front, V (z) =V (x,y)):

(L.3)

(0P _
{ (b2)y + Vs bz =0
¢, (x,y,t=0)=1 IC

Since the initial condition is defined with the application of L.1 for the 3D Level Set problem.

The reduction of the problem, as stated even before, is restricted in its application to initial
grain shapes that can be represented in a explicit fashion (analytically or numerically). Moreover,
they must remain described by an explicit function during their motion, or in other words, the
motion field velocity that leads their evolution, must leave them defined by an esplicit function.
Hence, for example inhibited grains, difficultly can be treated with this technique. While finocyl
grains, today commonly used in modern SRM can be efficiently computed with this reduction.
Note that the numerical technique and the CFL condition are the one expressed in the equation
3.77, 3.79, with variations due to the problem simplification.

As matter of fact, in the case that the problem reduction is possible, for the given time and
spatial varying motion field, no other difficulties are implied in applying the Level Set technique.
In fact, the surface is discretely represented by the grid explicit function f (x,y).

Moreover, the boundary in the grain surface motion defined by the case boundary is simply
obtained. In the same time, the procedure for evaluating the grain geometrical properties are
directly given by the discrete tessellation of the surface.
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At last, the problem reduction is effectively recommended when the problem allows it. It
is, in fact, a smart computationally efficient application of the Level Set technique to a class of
not-inhibited grains, which can be represented by a surface in an explicit fashion form for one
of the spatial variables (simply the motor axis). Its limitation can be viewed in the fact that
difficulty the grain shape is represented numerically in a selection of points coordinate with the
desired grid discretization. Hence, some efforts must be made to computerize the initialization
procedure. We can use, for example, the banded SDF calculation, which the grain initial shape
is extracted from and thus by means of an interpolation procedure, define in such a manner, the
correspondent grid points of the reduced problem. But more efficient implementation can be
made.

As sample of the illustrated technique, the figure L.1 shows the 3D evolution of an analyt-
ical finocyl grain, given by an Osher-Sethian star (see paragraph 5.2.2, page 92) with variable
parameters along the motor axis, in cylindrical coordinates.
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Y Y Y
z z z

(a) web =0 (b) web = 0.02561 (c) web = 0.05526
(d) web =0.09053 (e) web =0.1324 (f) web =0.1814

(g) web = 0.2378 (h) web = 0.3005 (i) web = 0.3687

() web = 0.4418 (k) web = 0.5194 (1) web = 0.6024

(m) web = 0.6918 (n) web = 0.7156

Figure L.1: Finocyl grain 3D evolution
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GREG CoDpE OVERVIEW

The mathematical and numerical models presented in the chapter 3, page 32 have been imple-
mented into the Grain REGression model model and code. GREG code is an “home-made” code
entirely written by the author during this research work. In this chapter, some details of the
GREG code are presented. GREG code is written in standard Fortran 95, with partial use Object
Oriented Programming (OOP) style. The computational costs for each simulation are quite low
and hence, at now, no parallelization of the code has been required. GREG is made up by 3
different softwares:

1. Mesh and Initial conditions Generator (GREGPreP)
2. Level Set Equation solver (GREG)
3. Post-processing Output Generator (GREGPP)

The workflow is the following: first the mesh and the initial conditions are generated using
GREGPreP; then GREG loads the outputs of GREGPreP and the simulation starts; finally the
GREG outputs are post-processed by GREGPP in order to obtain synthetic data like images,
graphs and movies, more easy to understand (figure 3.11).

m.1 GREGPREP coDE

The GREGPreP code is able to deal directly with the CAD output, defined by the STL fileformat
and/or with radius versus motor axis tabulated points values, for axisymmetric grains and TPs
initial surface configurations. Also the inputs as predefined analytic functions are allowed, in
order to make tests in rectangular meshes and/or in cylindrical meshes. After the STL (ascii or
binary STL format are supported) and/or the tabulated axisymmetric points files of the grain
propellant initial surface and the TP initial surface are loaded, the GREGPreP code generates the
numerical mesh. As option of the code, this can be user defined: as bounds, number of cells
along each coordinate direction, or fitted in terms of bounds to the SRM geometry, in order to
avoid the use of point of the mesh where not necessary. In the code structure, the meshes can
be only orthogonal meshes, stretched or not, even if at now, only uniform meshes have been
used. In the future, it will be however possible to consider the stretching of the mesh in order
to allocate more points where the geometrical features of the grain evolution want to be better
represented.

The generation of the IC for the grain surface is made by means of the construction of the
SDF for the grid. Typically the bounds are fitted to the grain and the Thermal Protections
configuration, with the algorithm described in chapter 3.6.1, page 55.

The mesh output and the grain and TPs surface are saved into a GREG geometric binary
standard file. This kind of file is loaded, as input, by GREG and GREGPP. In particular, the
Level Set Method Initial Conditions are saved into a file identical to the solution output file of



M.2 GREG CcODE

the GREG solver: there is no distinction between an IC and a solution at a certain timestep. This
choice makes easy to restart an interrupted simulation, if required.

m.2 GREG cobpE

The GREG code is the main software, within the Level Set model is implemented with a Full
Matrix approach. Thus, it make the numerical integration of the Hamilton-Jacobi equation with
the first or second order numerical schemes presented in the chapter 3, paragraph 3.4.2 (page
51), in rectangular grids and paragraph 3.4.2 (page 52) for the cylindrical grids. Two different
Riemann Solvers are supported: the exact one and the Osher-Sethian one (see paragraph J.2,
page n). The one typically used in all the simulation made, as there is not a difference in the
computational cost required, is the exact Riemann solver. The Object Oriented Programming
style allows to integrate in a simple manner future developments of the code, as for example,
an extension velocity module and Narrow Banding techniques. The grain and bore chamber
geometrical properties can be evaluated directly with the techniques presented in the chapter
3, paragraph 3.11 (page 66), as option in the main code, without saving all the Level Set fields.
A particular option, moreover, enables a specific output format to save the Q1D grain and bore
geometrical parameters to be used in SPINBALL internal ballistics numerical simulations. The
visualization can be made then using the post processing code GREGPP, in order to save the hard-
disk space for the simulation. At now, the computational costs required for each simulation are
quite bounded (at the most some hours on a single processor). Then a code parallelization is
not required, but however possible for future needs. The workflow of the code is shown in the
figure M.1.

w3 GREGPP copE

After the GREG code has completed the simulation, the Level Set fields are stored into a binary
compressed files in order to limit the hard-disk space use (3D simulations can produce huge
output files). This kind of files can be post-processed and converted into a more understandable
file format, like images, graphs and movies. This task is made by the Post-processing Output
Generator code: GREGPP. The GREGPP code loads as inputs, the output of GREGPreP and
GREG and produces as output, the selected post-processing conversions. It evaluates also, if
user requires it as input option, the grain and bore geometrical parameters from the Level Set
representation of the front, as presented in the chapter 3, paragraph 3.11 (page 66).

The post-processing of the Level Set fields can be saved over the whole simulated volume, or
over slice along one coordinate direction. These field outputs can be exported into 2 different
visualization file formats:

1. Tecplot file format.(ascii and binary formats are supported?)
2. VTKS3 file format (ascii and binary formats are supported?)

Although Tecplot is very powerfull, it is a commercial, closed software. So the better choice is
VTK open source file format. In particular, the possibility of VIK-exporting allows the use of
a powerfull open-source visualization software based on VIK: Paraview*. The most part of the
3D visualization of this dissertation are made with Paraview.

The grain and bore geometrical parameters, if evaluated as option, are saved for visualization
in the Tecplot file format, for checking and visualizing the evaluated quantities and/or in the
SPINBALL compatible file format.

1 Tecplot is commercial visualization software widely used into CFD engineering.

2 binary is preferred as limits the hard disk space required

3 The Visualization Toolkit (VTK) is an open source graphics toolkit. It is a platform independent graphics engine with
parallel rendering support. VTK has an active development community that includes laboratories, institutions and
universities from around the world. http:/ /www.vtk.org/

4 ParaView is an open source, freely available program for parallel, interactive, scientific visualization.
http:/ /www.paraview.org
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