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CHAPTER 1

INTRODUCTION

I
n the last years,under the boost of the recent technological advances in wireless

networking and miniaturizing of electro-mechanical systems, multiagent systems

are receiving a great and great attention. Such systems could find numerous and various

fields of applications like, for example, environmental monitoring of lands, seas or cities,

cleaning of parks, squares or lakes, mine clearance, critical structures surveillance, and

so on.

In this context, it is growing the number of application based on the development and

the use of large groups of autonomous vehicles, able to coordinate their actions by

exchanging data over had hoc communication networks. The control of the behavior

of such complex systems introduces interesting problems related with control theory,

data fusion, distributed computation, networking and so on. This Thesis faces the

problem of covering a given field of interest with a mobile sensor network. In this

case, the mobility is used to access all the points of the field within a prefixed time,

so that the coverage is guaranteed not at any time instant, like for static networks,

but within any prefixed time interval. The meaning of coverage obviously depends

from the considered sensing model; however, it is possible to claim that a given set of

interest is covered when all the significant information, distributed over the field as a

function of the coordinates, has been collected. Sensing ranges of instrumentation are

obviously limited and, if sensors have a fixed location, their number and the covered
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1.1 Wireless Sensor Networks

area are strongly related by a direct proportional relationship. On the other hand, once

the coverage is accepted over a time interval, then mobility can be used to expand the

sensor network range in the same same spirit of the sentries that walk coming and going

on the castles’ walls. However, mobility introduces challenging coordination problems.

In fact, in order to satisfy performance requirements like, for example, the collisions

avoidance, it is necessary to coordinate sensors motion introducing suitable constraints.

1.1 Wireless Sensor Networks

Sensor networks consist of individual nodes that are able to interact with their envi-

ronment by sensing or controlling physical parameters; these nodes have to collaborate

to fulfill their tasks as, usually, a single node is incapable of doing so; they use wire-

less communication to enable this collaboration. In essence, the nodes without such

a network contain at least some computation, wireless communication, and sensing

or control functionalities. Despite the fact that these networks also often include ac-

tuators, the term wireless sensor network has become the commonly accepted name.

Sometimes, other names like wireless sensor and actuator networks are also found.

Wireless sensor networks are powerful in that they are amenable to support a lot of

very different real-world applications as shown in Garca-Hernndez et al. (2007); Glaser

(2004); Lewis (2004); Mainwaring et al. (2002); Porter et al. (2005); they are also a

challenging research and engineering problem because of this very flexibility. In fact

there is no single set of requirements that clearly classifies all Wireless Sensor Networks,

and there is also not a single technical solution that encompasses the entire design space

as shown by the specialized literature (Akyildiz et al. (2002); Holger Karl (2005); Santi

(2005); Stojmenovic (2005)). Moreover, the number, price, and potentially low ac-

curacy of individual nodes is relevant when comparing a distributed system of many

sensor nodes to a more centralized version with fewer, more expensive nodes of higher

accuracy. Simpler but numerous sensors that are close to the phenomenon under study

can make the architecture of a system both simpler and more efficient.
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1.2 Area Coverage

1.1.1 Mobile Sensor Networks

Endowing nodes in a sensor network with mobility drastically expands the spectrum

of the network’s capabilities. Moreover, assuming that each mobile node possesses a

certain amount of decision making autonomy gives rise to a dynamic system with a

considerable amount of flexibility, depending on the extent to which the nodes can

cooperate in order to perform a mission. This flexibility, for example, allows us to

handle a large number of data source targets with a much smaller number of nodes

that can move and visit the targets over time to perform various tasks. Naturally,

mobility also implies an additional layer of complexity. For example, if communication

connectivity is to be maintained, we must ensure that each node remains within range

of at least some other nodes. We must also take into account that mobility consumes

a considerable amount of energy, which amplifies the need for various forms of power

control. Another interesting aspect of mobility is that the exact location of nodes is

not always available to other nodes or to a base station. This is especially true in

settings where GPS tracking is not applicable, such as locating people or important

equipment in a building. The location detection problem is a particularly challenging

one, although we do not discuss it in this paper. Taking a system and control theory

perspective, mobile networks provide the opportunity to exercise real-time cooperative

control involving their nodes Cassandras & Li (2005). The goal of cooperative control

is to coordinate the actions of the nodes so as to achieve a common objective. Its

most popular application to date has been in networks of autonomous vehicles Fiorelli

et al. (2004); Grocholsky et al. (2006); King et al. (2004); Stubbs et al. (2006); Tang &

Ozguner (2005); Wang & Hussein (2007).

1.2 Area Coverage

Coverage represents a key measure of the quality of service provided by a sensor net-

work. Area Coverage is always referred to a set, named set of interest, and to an action,

then, covering means acting on all the physical locations of the set of interest.

Within the several actions that can be considered, such as manipulating, cleaning,

watering and so on, sensing is certainly one of the most considered in literature.
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1.2 Area Coverage

1.2.1 Static Sensors

Considering static sensors, the coverage problem, as been addressed several point of

view.

Coverage Evaluation Several studies addressed the problem of evaluating how well

an area is monitored or tracked by sensors deployed in deterministic or stochastic

way. In Meguerdichian et al. (2001) a polynomial time algorithm for evaluation of

coverage obtained by a network of sensors with known positions is presented. The

algorithm is obtained by combination of computational geometry (Voronoy diagrams)

and graph theoretic techniques (graph search algorithms) is presented. Sensors with

uniform sensing ability are considered.

In Li et al. (2003) for the same problem a distributed algorithm is proposed. In addition

a more general sensing model is considered in which sensing ability diminishes as the

distance increases.

In Huang & Tseng (2005) the k-coverage evaluation problem is formulated as a decision

problem, whose goal is to determine whether every point in the service area of the sensor

network is covered by at least k sensors, where k is a predefined value. The sensing

ranges of sensors can be unit disks or non-unit disks. Moreover irregular sensing regions

are considered.

These approaches are deterministic, such as sensors positions are known. A different

idea is considering sensors that are deployed on the field of interest according with a

given probability distribution. The problem is then evaluating the coverage of a field

of interest achieved deploying a given number of sensors with a given distribution.

In Liu & Towsley (2004) area coverage for a large-scale randomly placed sensor network

under the Boolean sensing model (a point in the space is covered if it is sufficiently near

to one sensor) is obtained using results in stochastic geometry. The required sensor

density to achieve a target area coverage level is derived.

The problem of coverage evaluation of heterogeneous sensor networks is considered in

Lazos & Poovendran (2006). The coverage problem is formulated as a set intersection

problem and faced with tools of integral geometry. Sensors are deployed according to

an arbitrary stochastic distribution. Sensing areas of sensors can have any arbitrary

shape, moreover sensors need not have an identical sensing capability.
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1.2 Area Coverage

Energy Optimization Considering overdeployed sensor networks, the coverage prob-

lem can be formulated as choosing an optimal set of sensors needed to achieve coverage

of the field of interest. In this sense a centralized approximation algorithm that delivers

a suboptimal solution is presented in Zhou et al. (2004). Moreover a distributed version

of the algorithm is considered.

A fully distributed algorithm, that can be implemented with local information and low

message complexity is proposed in Hefeeda & Bagheri (2007). Moreover the algorithm

does not require that sensors know their locations.

For many kind of sensors it is possible to control the sensing range. Anyway a wide

sensing radius entails consumption of a lot of energy. For this sensors the coverage

problem can be formulated in terms to optimize energy consumption need to achieve

full coverage using a given set of pre-deployed sensors.

In Wang & Medidi (2007) two local sensing radii optimization schemes based on one-

hop approximation of Delaunay Triangulation are proposed in order to minimize the

energy consumption and extend the lifetime of networks .

Optimal Sensor Deployment If sensors need to be deployed, an interesting prob-

lem could be finding the deployment strategy that maximize the achieved coverage. If

a deterministic deployment is considered the problem became finding optimal positions

for sensors.

In Chakrabarty et al. (2002) grid coverage strategies for effective surveillance and target

location in distributed sensor networks are presented. The sensor field is represented as

a grid (two or three-dimensional) of points (coordinates). An integer linear program-

ming (ILP) solution for minimizing the cost of sensors for complete coverage of the

sensor field is proposed.

A polynomial time algorithm for the problem of deployment of sensor nodes to optimize

the coverage improvement is proposed in Hou et al. (2006).

An important result came from computational geometry Du et al. (1999). The so called

centroidal Voronoy configurations are proposed as optimal solution to the problem of

optimizing location for sensors with infinite ranges in which sensing ability diminishes

as the distance increases.
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1.2 Area Coverage

1.2.2 Mobile Sensors

The introduction of mobile sensors allow developing networks in which sensors, starting

from an initial random deployment, evaluate and move trough optimal locations.

In Li & Cassandras (2005) maximizing coverage using sensors with limited range, while

minimizing communications cost, is formulated as an optimization problem. A gradient

algorithm is used to drive sensors from initial positions to suboptimal locations.

In Howard (2002) an incremental deployment algorithm is presented. Nodes are de-

ployed one-at-at time into an unknown complex environment, with each node making

use of information gathered by previously deployed nodes. The algorithm is designed

to maximize network coverage while ensuring line-of-sight between nodes.

A stable, distributed, feedback control law, to drive sensors to centroidal Voronoy

configurations, that are, as said, critical points of the sensors locations optimization

problem (Du et al. (1999)) , is presented in Cortes et al. (2004).

In Sameera & Gaurav S. (2004) a distributed, scalable algorithm based on artificial

potential fields is presented. The constraint that each of the nodes has at least K

neighbors (sensors within its communication ranges), where K is a user-specified pa-

rameter, is considered.

Obstacles avoidance is considered in Zou & Chakrabarty (2003) and Wong et al. (2004).

In Tsai et al. (2004) the maximization of visibility information for mobile observers

when obstacles to vision are present in the environment has been studied in the level

set framework. Suboptimal solutions are proposed.

Moreover mobile nodes can be used to handle faults as proposed in Wang et al. (2006)

and in Sekhar et al. (2005)

Dynamic Coverage The natural evolution of these kind of approaches moves in the

direction of giving a greater motion capabilities to the network. And once the sen-

sors can move autonomously in the environment, the measurements can be performed

also during the motion (dynamic coverage). Then,under the assumption, reasonable

in many applications, that synchronous or asynchronous discrete time measures are

acceptable instead of continuous ones, the number of sensors can be strongly reduced.

Moreover, faults or critical situations can be faced and solved more efficiently, simply
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1.2 Area Coverage

changing the paths of the working sensors. Clearly, coordinated motion of such dy-

namic sensors network, imposes additional requirements, such as avoiding collisions or

preserving communication links between sensors. In order to better motivate why and

when a mobile sensor network can be a more successful choice than a static one, some

considerations are reported, even in an approximated way. If a dynamic network is

considered, the area covered by sensors is a time function and, clearly, it not decreases

as time passes. A simplified discrete time model of the evolution of the area still un-

covered, at (discrete) time t = k + 1, by a dynamic sensors network, can be given by

the following differences equation

Au(k + 1) =

(

1 −
ȦN

Atot

)

Au(k) (1.1)

where

ȦN =
vmax

2ρS
Atot

(

1 −

(

1 −
πρ2

S

Atot

)N
)

represents the area covered in the time unit by a number N of mobile sensors subject

to the maximum motion velocity vmax. Measurements are then modeled as obtained

deploying randomly N static sensors on the workspace every 2ρS

vmax
seconds. Denoting

by

Au(0) = Atot

(

1 −
πρ2

S

Atot

)N

the initial condition for area to be covered, at each discrete time t = k the fraction of

area covered is given by

A%(k) = 1 −
Au(k)

Atot
= 1 −





Au(0)

Atot

(

1 −
ȦN

Atot

)k


 (1.2)

The evolution computed using (1.2) with N = 5, N = 10 and N = 15 has been

compared with the results of simulations where the approach described in Chapter 5

of this Thesis is applied. In Fig. 1.1 this comparison is reported, showing that (1.2)

is a good model for describing the relationship between the area covered and the time

using a dynamic solution.

Then, referring to surveillance tasks, the model defined in 1.1 can be used to evaluate

the minimum number of sensors (with given ρS and vmax) required to cover a given

fraction Ã% of the area of interest according to a given measurement rate. In fact, it
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1.3 Thesis Outline
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Figure 1.1: Comparison between coverage evolution obtained by the model (1.1)

(dashed) and simulations of the proposed coverage strategy (solid) for different numbers

of moving sensors

is possible to write the relation between the maximum rate at witch the network can

cover the Ã% fraction of Atot and the number of moving sensors as

f =
log
(

1 − ȦN

Atot

)

log
(

1 − Ã%

)

−N log
(

1 −
πρ2

S

Atot

) (1.3)

Such a relationship between N and f is depicted in Fig. 1.2, showing, as intu-

itively expected, almost a proportionality between number of sensors and frequency of

measurement at each point of the area Atot.

The motivation and the support of the dynamic solution is evidenced by Fig. (1.1):

lower is the refresh frequency of the measurements at each point (that is higher are

the time intervals between measurements) and lower is the number of sensors required,

once sensors motion is introduced.

1.3 Thesis Outline

This work is organized in two parts.

Part I The fist part concerns optimal dynamic coverage, such as the problem of of-

fline evaluating controls for a mobile sensor network in order to maximize the area

8
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Figure 1.2: Maximum measure rate f in function of number of moving sensors.

covered during a time interval.

In Chapter 2, the optimal coverage problem is formulated in general. General formu-

lations of Optimal Control and Nonlinear Programming problems are recalled in order

to introduce notations useful for understanding following chapters.

In Chapter 3, the optimal overage control is considered for a single mobile sensor.

At first, after the introduction of a continuous time, the problem is formulated as an

optimal control problem. Because of the difficulty of solving that problem, an approx-

imation is performed introducing a discrete time model. Using this model optimal

coverage can be formulated as a nonlinear programming model. This formulation al-

lows to evaluate suboptimal solutions.

In Chapter 4, the approach adopted in Chapter 3 is extended to a mobile sensor net-

work. the usage of multiple mobile sensors introduce motion coordination problems

that are solved introducing distance constraints to the optimization problem. Particu-

lar attention is given to connectivity maintenance. Moreover heterogeneous sensors are

considered. Node fault robustness is also studied as a particular case.

Results presented in the first part of the thesis has been published as authors original

work in Gabriele & Di Giamberardino (2007a,b, 2008a,c,e,f); Gabriele & Giamberardino

(2008)

9
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1.3 Thesis Outline

Part II The second part of the thesis concerns approaches to dynamic coverage that

are suitable for online applications, such as, approaches based on the development of

feedback law driving the sensor network to cover the set of interest.

In Chapter 5, an artificial potential based control law that guarantees to drive a mobile

sensor network to totally cover the set of interest is proposed.

In Chapter 6, motion coordination is considered in order to satisfy collisions avoidance

and connectivity maintenance constraints. In particular a distributed strategy for con-

nectivity maintenance is proposed.

Results presented in the first part of the thesis has been published as authors orig-

inal work in Gabriele & Di Giamberardino (2008b,d,e)

In Chapter 7, conclusions and avenues for future research are given.

10



Part I

Optimal Dynamic Coverage
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CHAPTER 2

OPTIMAL COVERAGE

T
his chapter introduces the first part of this thesis, concerning the central-

ized approach to dynamic coverage of given set of interest within a time

interval. The point of view is similar to the one considered in robot motion

planning, where the objective is to find admissible path between a starting and final

configurations. In LaValle (2006) a complete description of robot motion planning is

given, coverage planning and optimal planning problems are also mentioned. In Choset

(2001) a survey on coverage planning for mobile robots is given. The basic idea of the

reviewed works is to exactly or approximately decompose the set of interest, in which

there are obstacles, into convex cells that can be covered via simple back-and-forth

motions. With the same approach in Acar et al. (2006) a coverage algorithm based on

the Morse cell decomposition is proposed.

In Cecil & Marthler (2004) the coverage path planning problem for multiple sensors is

studied, with a variational approach, in the level set framework. Obstacles occlusions

are considered, suboptimal solutions are proposed also in three dimensional environ-

ments (Cecil & Marthler (2006)).

In Wang (2003) various problems associated with optimal path planning for mobile

observers are considered. The existence of solutions is discussed first. Then, optimality

conditions are derived by considering local path perturbations. Numerical algorithms

for solving the corresponding approximate problems are proposed.

12



These works consider the problem under a geometric point of view, doing elaborations

on a map of the environment, without considering the dynamics of the mobile objects.

In Hokayem et al. (2007a) the problem of dynamic coverage control of a convex polygo-

nal region in the plane using N agents with bounded velocities is addressed. Trajectories

are planned by the agents through a distributed algorithm and then executed. Upper

bound on the completion time as well as the number of messages that need to be

exchanged by the agents are provided. With the same approach periodic coverage is

considered in Hokayem et al. (2007b).

A path planning algorithm for cooperative coverage for nonholonomic vehicles is pre-

sented in Ahmadzadeh et al. (2007). Constraints such as collision avoidance and spec-

ifications on initial and final positions are considered. An approximation of the trajec-

tories of vehicles using sequence of waypoints is performed. Each way point is treated

as a moving particle in the space. Interaction forces between the particles are defined.

Trajectories generated by the waypoints in the equilibria of the multi particle system

satisfy the constraints generating a suboptimal solution to the coverage problem.

Moreover, optimal coverage is strongly related with is one of the most widely known

combinatorial optimization problems, such as the traveling salesperson problem (TSP)

and in particular with its stochastic version. It concerns with finding a minimum length

closed path through a finite set of points randomly generated on a given set.

Stochastic TSP has been addressed for the Dubin vehicle in Savla et al. (2005), for

a double integrator in Savla et al. (2006), for the reeds-shepp car and the differential

drive robot in Enright & Frazzoli (2006). The main idea is tiling the set of interest

with geometric objects, named beads, constructed on the base of the mobile object

motion model. The mobile sensor sweep the whole set of interest visiting all the beads

rows in sequence top-to-down, alternating between left-to-right and right-to-left passes.

In this thesis an approach to Optimal Coverage Control is proposed. So, given a

generic mobile sensor (that can be view as composed by one or more mobile objects),

the objective is to evaluate how to optimally use its motion capabilities, in a given time

interval, in order to enlarge its range of measure.

A general definition of the optimal coverage problem in given in 2.1. Considering

continuous time dynamics for the mobile sensor, the problem can be formulated as an

13



2.1 Optimal Coverage Problem

finite-time optimal control problem. Section 2.2contain a basic definition of the generic

optimal control problem.

Analytical solutions of the optimal control formulation of the optimal coverage problem

are in general very hard to compute, so, it is possible to approximate the formulation

considering discrete time dynamics. In this case a more tractable nonlinear program-

ming formulation can be given. For this reason, in section 2.3 the basic nonlinear

programming problem is introduced .

2.1 Optimal Coverage Problem

Let W be a compact subset of the real Euclidean space called the set of interest. A

generic mobile sensor can be represented by:

• A configuration space C, that is the space of possible positions that the sensor

may attain.

• A dynamic model that describe the evolution of sensor configuration in time,

according to a control input u and that can be express by:

f(q̈(t), q̇(t), q(t), u(t)) = 0

• A visibility set M = M(q(t)) ⊆ W , that is the subset of W on witch the sensor

in configuration q(t) can do measures.

Let’s consider a time interval Θ = [ti, tf ] and the evolution of the sensor configuration

during such time interval time interval (q(t), t ∈ Θ).

The the subset of W on which the sensor do measures during Θ can be represented

as:

MΘ(q) =
⋃

t∈Θ

M(q(t)) (2.1)

The area covered by the sensor set during Θ is then the measure of MΘ(q):

AΘ(q) = µ(MΘ(q)) (2.2)

The general optimal coverage problem consists of evaluating the sensor trajectory, and

the correspondent input function, that maximize the area covered during the given time

interval.

max
(u,q)∈D

AΘ(q) (2.3)
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2.2 Optimal Control

The admissible set D is represented by:

D = {(u, q) : f(q̈(t), q̇(t), q(t), u(t)) = 0; g(q̈(t), q̇(t), q(t), u(t)) ≤ 0}

were g represents additional constraints that can be defined on the sensor input or con-

figuration. In the following chapters the optimal coverage problem will be formulated,

for specific senor models, at first as an optimal control problem ,then, after discretiza-

tion, as a non linear programming one. For this reason sections 2.2 and 2.3 will be

dedicated to introduce very basic definitions on this kind of problems.

2.2 Optimal Control

Let’s consider a dynamic system described by the following differential equation

ż(t) = f(z(t), u(t), t) (2.4)

where z(t) ∈ R
n is the state vector, u(t) ∈ R

p is the input vector and f is a function of

class C2 with respect to its arguments.

Let’s define some cost functional

J(z, u)

that depends from state and input trajectories in a given time interval Θ = [ti, tf ].

Let’s assume that starting and final state are constrained to belong to some open sets:

z(ti) ∈ Diz(tf ) ∈ Df

and that additional constraints are defined on state and input trajectories:

g[z(t), u(t), t] ≤ 0 ∀t ∈ [ti, tf ]

The general optimal control problem,that concerns the evaluation of admissible state

and input trajectories that minimize the cost functional, can be defined as follows:

min
(z,u)∈D

J(z,u) (2.5)

Where the admissible set D is represented by:

D ={(z, u) ∈ C̄1[ti, tf ] × C̄0[ti, tf ] : z(ti) ∈ Di; z(tf ) ∈ Df ;

h[z(t), ż(t), u(t), t] = ż(t) − f(z(t), u(t), t) ∀t ∈ [ti, tf ];

g[z(t), ż(t), u(t), t] ≤ 0 ∀t ∈ [ti, tf ]}
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2.3 Nonlinear Programming

Deep analysis of optimal control theory can be found in Bruni & di Pillo (1993);

Sontag (1998).

2.3 Nonlinear Programming

Let’s consider a scalar function J(v) defined as follows:

J : R
n −→ R

Let’s define a set D ⊆ R
n defined by the following equality constraints:

h(v) = 0 (2.6)

and inequality constraints:

g(v) ≤ 0 (2.7)

with h and g vectorial functions with dimensions µ < n and σ respectively.

Definition 2.3.1. A point v∗ ∈ D is said to be a constrained local minimum point of

J in D if exists a neighborhood S(v∗, ǫ) such that:

J(v∗) ≤ J(v) ∀v ∈ S(v∗, ǫ) : h(v) = 0, g(v) ≤ 0

Definition 2.3.2. A point v0 ∈ D is said to be a constrained global minimum point of

J in D if :

J(v0) ≤ J(v) ∀v ∈ R
n : h(v) = 0, g(v) ≤ 0

Obviously, every global minimum is also a local minimum, the converse, in general

is not true.

The general optimal control problem,that concerns the determination of existence

and the evaluation of a global minimum point of the cost function in the admissible set

D, can be defined as follows:

min
v∈D

J(v) (2.8)

Where the admissible set D is represented by:

D ={v ∈ R
n : h(v) = 0, g(v) ≤ 0}

Deep analysis of nonlinear programming can be found in Bruni & di Pillo (1993);

Nocedal & Wright (1999).
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CHAPTER 3

OPTIMAL COVERAGE FOR A

SINGLE MOBILE SENSOR

I
n this chapter the optimal coverage problem for a single mobile sensor is con-

sidered. At first a continuous time model and an optimal control formulation

of the coverage problem are proposed, then, after discretization, the problem is

reformulated and solved as a nonlinear programming one.

3.1 Continuous Time Formulation

3.1.1 Motion Model

Sensor is modeled, from a dynamic point of view, as a material point moving on R
2.

Planar motion is considered only for sake of simplicity, all results can be immediately

extended to the 3D motion case.

The classical simple equations of motion are the satisfied:

q̈ = u (3.1)

where q = (q1, q2)
T indicates the sensor configuration and u = (u1, u2)

T the input

force. For sake of simplicity mass is assumed to be unitary.

Linearity of 3.1 allow to write dynamics in the form:

17



3.1 Continuous Time Formulation

ż(t) = Az(t) +Bu(t)

q(t) = Cz(t) (3.2)

where

z = (q̇1, q1, q̇2, q2)
T

and

A =









0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0









B =









1 0
0 0
0 1
0 0









C =

(

0 1 0 0
0 0 0 1

)

The evolutions of state and output are related with the input one by the following, well

known equations:

z(t) = φ(z(0),u(t)) = eAtz(0) +

∫ t

0
eA(t−τ)Bu(τ)dτ (3.3)

and

q(t) = ψ(φ(z(0),u(t))) = Cφ(z(0),u(t)) (3.4)

3.1.2 Sensing Model

Proximity sensing model is considered, so the mobile sensor is assumed to take mea-

sures, at time t, within a circular area of radius ρ around its current position q(t).

The sensor field of measure is then a sphere of center q(t) and radius ρ:

M(q(t)) = {p ∈W : ‖q(t) − p‖ ≤ ρ} (3.5)

3.1.3 Coverage Problem Formulation

3.1.3.1 Objective Functional

In 2.1 the area covered by a mobile sensor during a time interval Θ is defined as the

union of the measure sets over Θ.

This quantity is very hard to compute, also for the simple measure set model introduced
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3.1 Continuous Time Formulation

in 3.1.2.

An alternative coverage measure is here introduced that is based on the concept of

distance between a sensor trajectory and a point. Let’s define the distance between a

point p ∈ W and a sensor trajectory q, within a time interval Θ = [0, tf ], as

dΘ(q,p) = min
t∈Θ

‖q(t) − p‖ (3.6)

It is easy to see that dΘ is a continuous functional of the sensor trajectory q. In general

dΘ is not convex in q.

Considering the proximity sensing model defined in 3.1.2, we can say that a point

p ∈ W is covered by the sensor during Θ if and only if:

dΘ(q,p) ≤ ρ

So, making use of the function

pos(χ) =







χ if χ > 0

0 if χ ≤ 0
(3.7)

that fixes to zero any non positive value, it is possible to define the following non

negative functional:

d̂Θ(q,p, ρ) = pos (dΘ(q,p) − ρ) (3.8)

A measure of coverage achieved by a trajectory q can be computed integrating func-

tional d̂ over the whole set of interest:

J(q) =

∫

W

d̂Θ(q,p, ρ) (3.9)

According with equation (3.4) the dependence of functional J from sensor state z

and the input functions u can be explicated:

J(z,u) =

∫

W

d̂Θ(Cz,p, ρ) =

∫

W

d̂Θ(Cφ(z(0),u),p, ρ) (3.10)

Functional J is continuous in its arguments. In general J is not convex.
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3.1 Continuous Time Formulation

3.1.3.2 Constraints

Physical limits on the actuators (for the motion) and/or on the sensors (in terms of

velocity in the measure acquisition) suggest to consider bounded inputs and velocities.

‖q̇(t)‖ ≤ vmax

‖u(t)‖ ≤ umax

Expressions above can be rewritten as inequality constraints, on generalized inputs

and state:

g1(z(t)) = ‖BT z(t)‖ − vmax ≤ 0 (3.11)

g2(u(t)) = ‖u(t)‖ − umax ≤ 0 (3.12)

According with missions it is possible to introduce several kind of geometric con-

straints. Box constraints can be introduced on the sensor configuration allowing the

sensor to move only within a box subset of R
2:

qmin ≤ q(t) ≤ qmax

Also this constraints can be expressed as inequality constraints on the sensor network

state.

g3(z(t)) = Cz(t) − zmax ≤ 0 (3.13)

g4(z(t)) = zmin − Cz(t) ≤ 0 (3.14)

Moreover staring and/or final positions can be fixed:

q(0) = qstart

q(tf ) = qend

An other interesting example is the closed trajectory constraint:

z(0) = z(tf )

Closed trajectories can be repeated in times, obtaining periodic coverage of the same

space, that can be very useful in surveillance missions. That constraints can be ex-

pressed as equality constraints on the starting and/or final state:

χ(z(0), z(tf )) = 0 (3.15)
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3.2 Discrete Time Formulation

3.1.3.3 Optimal Control Problem

Summarizing, the optimal coverage problem be formulated as an optimal control prob-

lem.

min
z,u

J(z,u) =

∫

W

d̂Θ(z,u),p, ρ)

(3.16)

(z,u) ∈ D

where the admissible set D is defined as:

D = {(z,u) ∈ C1 :χ(z(tf ), z(tf )) = 0

h(z, ż,u) = Az +Bu − ż = 0

g1(z(t)) = ‖BTz(t)‖ − vmax ≤ 0

g2(u(t)) = ‖u(t)‖ − umax ≤ 0

g3(z(t)) = Cz(t) − zmax ≤ 0

g4(z(t)) = zmin − Cz(t) ≤ 0}

The non convexity of the cost functional makes this problem not convex, so, several

suboptimal solutions may exist.

Anyway, in general, it is very hard to evaluate analytically one of this solutions. For this

reason in the next section discretization is introduced that allow to make the problem

tractable.

3.2 Discrete Time Formulation

3.2.1 Discrete Time Motion Model

If discrete time is considered the sensor motion model assumes the following expression:

z((n+ 1)Ts) = Adz(nTs) +Bdu(nTs)

q(nTs) = Cz(nTs)

where

Ad = eATs Bd =
∫ Ts

0 eAτBdτ
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3.2 Discrete Time Formulation

According with the introduced model it is possible to write state and output values

at time nTs as:

z(nTs) = Ad
nz(0) +

n−1
∑

k=0

Ad
kBdu((n− 1)Ts − kTs) (3.17)

and

q(nTs) = CAd
nz(0) + C

n−1
∑

k=0

Ad
kBdu((n− 1)Ts − kTs) (3.18)

Representing the sensor input sequence from time t = 0 to time tf = (nf − 1)Ts as:

unf
=











u(0)
u(Ts)

...
u((nf − 1)Ts)











and defining the following vectors

vnf
=

(

z(0)
unf

)

H(n) =
(

An
d An−1

d Bd . . . Bd 0 . . . 0
)

it is possible to rewrite equations 3.17 and 3.18 in the following compact form:

z(nTs) = H(n)vnf
(3.19)

and

q(nTs) = CH(n)vnf
(3.20)

Let’s represent state and output sequences with the following vectors:

znf
=











z(0)
z(Ts)

...
z(nfTs)











qnf
=











q(0)
q(Ts)

...
q(nfTs)











According with 3.19 and 3.20, vectors qnf
and znf

can be written as linear functions

of vector vnf
:

znf
= Hnf

vnf
(3.21)

and

qnf
= Cnf

Hnf
vnf

(3.22)

22



3.2 Discrete Time Formulation

where

Hnf
=











H(0)
H(1)

...
H(nf )











Cnf
=











C 0 . . . 0
0 C . . . 0
...

...
. . .

...
0 0 . . . C











3.2.2 Sensing Model

Space discretization is also performed. More precisely the set of interest W is divided

into square cells ck. Every cell is represented by its centroid pk. The sensor is assumed

to cover the cell ck at time nTs if its distance between its position q(nTs) and the cell

centroid il less than ρ. The sensor field of measure at time nTs is then the union of the

cells that have their centroids within a sphere of center q(nTs) and radius ρ:

M(q(nTs)) = {
⋃

k

ck : ‖q(nTs) − pk‖ ≤ ρ} (3.23)

3.2.3 Coverage Problem Formulation

3.2.3.1 Objective Function

Let’s define the distance between a cell ck and a sensor discrete trajectory q as

dΘ(q,pk) = min
n∈[0,nf ]

‖q(nTs) − pk‖ (3.24)

It is important to observe that considering the discrete time sensor dynamic, dΘ become

a scalar function of the sensor configurations sequence. This function is again, in

general, not convex.

As done for the continuous time formulation let’s define:

d̂Θ(q,p, ρ) = pos (dΘ(q,p) − ρ) (3.25)

A measure of coverage performance achieved by a discrete time trajectory q on can be

computed summing function d̂ over all the cells:

J(q) =
∑

k

d̂Θ(q,pk, ρ) (3.26)
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3.2 Discrete Time Formulation

According with equation (3.22) the dependence of function J from vector vnf
can

be explicated:

J(vnf
) =

∑

k

d̂Θ(qnf
,pk, ρ) =

∑

k

d̂Θ(Cnf
Hnf

vnf
,pk, ρ) (3.27)

Function J is again continuous in its arguments, but, in general, not convex.

3.2.3.2 Nonlinear Programming Problem

After discretization the optimal coverage problem can be formulated as a nonlinear

programming problem. The objective is to find, into an admissible set D, the vector

v∗
nf

that minimize the cost function:

v∗
nf

= min
vnf

J(vnf
) =

∑

k

d̂Θ(Cnf
Hnf

vnf
,pk, ρ)

v∗
nf

∈ D

Considering discrete time versions of constraints defined in 3.1.3.2 the admissible

set D can be defined as:

D = {vnf
∈ R

m(4+2nf ) :χ(z(0), z(nfTs)) = 0

g1,0(z(0)) = ‖BT z(0)‖ − vmax ≤ 0

...

g1,nf
(z(nfTs)) = ‖BT z(nfTs)‖ − vmax ≤ 0

g2,0(u(0)) = ‖u(0)‖ − umax ≤ 0

...

g2,nf
(u(nfTs)) = ‖u(nfTs)‖ − umax ≤ 0

g3,0(z(0)) = Cz(0) − zmax ≤ 0

...

g3,nf
(z(nfTs)) = Cz(nfTs) − zmax ≤ 0

g0,4(z(0)) = zmin − Cz(0) ≤ 0

...

g4,nf
(z(nfTs)) = zmin − Cz(nfTs) ≤ 0}
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3.3 Simulations

Suboptimal solutions can be computed using numerical methods. In the simulations

performed, the SQP (Sequential Quadratic Programming) (Appendix A) method has

been applied.

3.3 Simulations

In this section simulation results are presented that show the effectiveness of the pro-

posed methodology.

In all the simulations the following values are assumed for the mobile sensor pa-

rameters :
umax = 0.5 vmax = 1.5

ρ = 1

For the first three cases a time interval Θ = 15sec is considered. In the first simulation

the problem of optimal coverage of box shaped set of interest is faced. Both starting

and final state are free. The mobile sensor trajectory is displayed in subfigure 3.1(c).

On the background the coverage status of the set of interest is displayed, darker zones

represent the uncovered cells. In subfigures 3.1(a) and 3.1(b) evolutions of controls and

speeds are respectively displayed.

In the second simulations starting state is fixed to:

z(0) =









0
0
0
0









Results are displayed in figure 3.2.

In figure 3.3 the same scenario is considered on a disk shaped set of interest. In the

last simulation a time interval Θ = 25sec is considered.

the closed trajectory constraint is introduced, so:

z(0) = z(tf )

Results are displayed in figure 3.4.

As said before, the optimal control problem has been formulated as a non convex

optimization problem. For this problem the S.Q.P. method allow to evaluate solutions
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3.3 Simulations

that only locally optimal, as the ones displayed above. Anyway, intuitively, it seems

that the presented solutions are good even if suboptimal.
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3.3 Simulations
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Figure 3.1: One sensor covering a boxed area. (a) Control components evolution. (b) Speed

components evolution. (c) Sensor trajectory and coverage status of the set of interest
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Figure 3.2: One sensor covering a box shaped area with fixed starting point. (a) Control

components evolution. (b) Speed components evolution. (c) Sensor trajectory and coverage

status of the set of interest
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3.3 Simulations
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Figure 3.3: One sensor covering a circular area with fixed starting point. (a) Control compo-

nents evolution. (b) Speed components evolution. (c) Sensor trajectory and coverage status of

the set of interest
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Figure 3.4: One sensor covering a circular area making a cyclic trajectory. (a) Control com-

ponents evolution. (b) Speed components evolution. (c) Sensor trajectory and coverage status

of the set of interest
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CHAPTER 4

OPTIMAL COVERAGE FOR A

MOBILE SENSOR NETWORK

I
n this chapter the optimal coverage problem is formulated for a mobile sensor net-

work, such as, a set of m mobile sensors connected by an ad hoc communication

network. The use of multiple sensors introduces challenging motion coordination

problems. Coordination is needed to guarantee performances as, for example, avoidance

of collisions or maintenance of communication quality features. Particular attention is

given to the problem of maintaining connectivity of the communication network. In a

mobile sensor network the communication network must be modeled as a configuration

dependent dynamic graph in witch topology changes continuously while sensors moves.

In order to maintain connectivity it is then necessary to introduce constrains on the

relative positions of sensors. The simplest way to do that is maintaining the edges of

the starting communication graph that’s always assumed to be connected. An alterna-

tive way is imposing flocking behavior (Olfati-Saber (2006)) to sensors as in Hussein &

Stipanovic (2007b). Anyway, this approaches affect strongly the motion capability of

sensors. It is then more desirable to allow topology to change over time, even though

that introduce challenging dynamic graph control problems.

In Mesbahi (2004), starting from a class of problems associated with control of dis-

tributed dynamic systems, a controllability framework for state-dependent dynamic
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graphs is considered.

In Kim & Mesbahi (2005) the positions of a dynamic state-dependent graph vertexes

are controlled in order to maximize the second smallest eigenvalue of the Laplacian

matrix, also named algebraic connectivity and that has emerged as a critical parameter

that influences the stability and robustness properties of dynamic systems that operate

over an information network.

K-hop connectivity preservation is considered, in Zavlanos (2005), for a network with

dynamic nodes. A centralized control framework that guarantees maintenance of this

property is developed. Connectivity is modeled as an invariance problem and trans-

formed into a set of constraints on the control variable.

In this Chapter a centralized approach to connectivity maintenance is proposed, that

is based on preservation of the edges of a Spanning Tree of the communication graph .

In the framework introduced in Chapter 3 coordination can be implemented intro-

ducing constraints in the optimal coverage problem.

The approach is similar to the one proposed in Schouwenaars et al. (2001) for the prob-

lem fuel-optimal path planning of multiple vehicles. Here the basic problem is to have

the vehicles move from an initial dynamic state to a final state without colliding with

each other, while at the same time avoiding other stationary and moving obstacles. the

problem is formulated as a linear program with mixed integer/linear constraints that

account for the collisions avoidance.

Moreover the case of heterogeneous sensors is considered. Sensor network nodes

were called heterogeneous with respect to different aspects.

In ling Lam & hui Liu (2007), the problem of deploying a set of mobile sensor nodes,

with heterogeneous sensing ranges, to give coverage is addressed.

In Lazos & Poovendran (2006), evaluating coverage of a set of sensors, with arbitrary

different shapes, deployed according to an arbitrary stochastic distribution is formu-

lated as a set intersection problem.

In Hussein et al. (2007) the use of two classes of vehicles are used to dynamically cover

a given domain of interest. The first class is composed of vehicles, whose main respon-

sibility is to dynamically cover the domain of interest. The second class is composed of

coordination vehicles, whose main responsibility is to effectively communicate coverage

information across the network.
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4.1 General Formulation

The problem of deploying nodes, equipped with different sets of sensing units, is studied

in Shih et al. (2007) in order to cover a sensing field in which multiple attributes are

required to be sensed.

In this Chapter the case of different magnitudes to be measured on a given set of

interest is considered. In many applications,it is required to measure several feature

of the field of interest, then, mobile agents are often equipped with a multiple sensor

system. Heterogeneity between the network nodes is then considered, like in Shih et al.

(2007), with respect to the set of sensing units with witch they are equipped. Moreover

different sensors can have different sensing ranges.

The mathematical model needed to introduce heterogeneous sensors can be used to

face an other important problem for sensors networks such as node fault robustness.

In section 4.1 the dynamic sensor network is defined as a generic mobile sensor.

The optimal coverage problem is, at first, formulated in continuous time as an optimal

control problem (section 4.2), then, after discretization as a nonlinear programming

problem (section 4.3), as done for the single sensor case. Simulations results are pre-

sented in section 4.4.

4.1 General Formulation

Let W be the set of interest. Let Ξ = {ξ1, ξ2, . . . } be the set of magnitudes of interest

defined on W . A mobile sensor network is composed by agents, called sensors or nodes,

able to move, to do measures onW and to communicate with each other. More formally,

each sensor can be represented by:

• A configuration space C(i), that is the space of possible positions (q(i)) that the

sensor may attain.

• A dynamic model that describe the evolution of sensor configuration in time,

according to a control input u(i) and that can be express by:

f (i)(q̈(i), q̇(i), q(i), u(i)) = 0

• A set Ξ(i) ⊆ Ξ, that is the subset of magnitudes that the sensor can measure
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4.1 General Formulation

• For every magnitude ξj ∈ Ξ(i), a visibility set M
(i)
j = M

(i)
j (q(i)(t)) ⊆ W , that is

the subset of W within the sensor in configuration q(i)(t) can measure magnitude

ξj .

Looking at the whole network is possible to define generalized configuration q =

{q(1), q(2), . . . , q(m)} and generalized input u = {u(1), u(2), . . . , u(m)}.

Generalized dynamic model can written as:

f(q̈, q̇, q, u) = 0

The subset of W on which the sensor network in configuration q(t) can measure

magnitude ξj is given by

Mj(q(t)) =
⋃

i:ξj∈Ξ(i)

M
(i)
j (q(i)(t))

Considering a time interval Θ and a generalized trajectory of the sensor network

(q(t) t ∈ Θ) Let’s denote with q(Θ) the evolution of the generalized network configu-

ration during a given time interval Θ. It is possible to define the the subset of W on

witch the magnitude ξ has been measured as:

Mj,Θ(q) =
⋃

t∈Θ

Mj(q(t)) (4.1)

Looking at the whole magnitudes set, the subset of W on witch all magnitudes ξ ∈ Ξ

have been measured by the network can be defined as:

MΘ(q) =
⋂

ξ∈Ξ

Mj,Θ(q) (4.2)

The area covered by the sensor network with respect to the whole magnitudes set during

Θ is then the measure of MΘ(q):

AΘ(q) = µ(MΘ(q)) (4.3)

Node Fault Robustness Robustness w.r.t node faults is, obviously, a very desirable

characteristic for a sensor network (Hazon & Kaminka (2005)). For dynamic sensor net-

works robustness can be achieved online, by dynamically changing sensors trajectories

when a node fault happen, or outline, by oversizing the sensor network and planning
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4.1 General Formulation

sensors trajectories in order to guarantee coverage performances in case of faults. The

second approach is the one considered here. In particular is possible to see how robust

trajectories planning can be view as a particular heterogeneous sensor network trajec-

tory planning. Let’s consider a magnitude ξ defined on the sensor network workspace

W , that can be measured within a radius ρξ. Let’s assume that m sensors allow to

reach the desired coverage performances w.r.t. the magnitude ξ. As said, it is possible

to reach robustness oversizing the sensor network, such as augmenting the number of

sensors.

Let’s want to make the network robust to the fault of h sensors, then, at least m + h

sensors must be used. To plan sensors trajectories customize the coverage problem

adding
(

m+h
m

)

− 1 auxiliary magnitudes, measurable within the same radius of ξ. Let’s

call ξ̂j j = 1, 2, ...,
(

m+h
m

)

the new set of magnitudes of interest. Let’s consider all

the combination of m sensors and let’s call them {σ}j j = 1, 2, ...,
(

m+h
m

)

. Let’s

associate magnitudes to sensors with the following law:

ξ̂j ∈ Ξ(i) ⇐⇒ i ∈ {σ}j

The multiple magnitudes coverage problem , so customized, is equivalent to the robust

coverage problem w.r.t the magnitude ξ. In case of multiple magnitudes of interest the

same operation must be done with respect to every magnitude.

4.1.1 Communication

Sensors can be view as nodes of communication network that con be represented by

the graph

G(t) =< VG, EG(t) >

where VG = {1, 2, . . . ,m} indicate the vertexes set and EG(q) indicates the edges set.

Edges set depends from the network generalized configuration. While sensors moves

network configuration changes in time, so the communication graph, and in particular

its edges set, is time varying.
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4.2 Continuous Time Formulation

4.2 Continuous Time Formulation

4.2.1 Motion Model

Every sensor is modeled, from a dynamic point of view, as described in section 3.1.1.

So, adding apexes and pedexes to the notation introduced in for the single section case,

we can say that the generic i− th sensor moves under the following motion model

ż(i)(t) = A(i)z(i)(t) +B(i)u(i)(t)

q(i)(t) = C(i)z(i)(t)

Considering the whole network the vector

z(t) =
(

z(1)(t) z(2)(t) · · · z(m)(t)
)T

can be defined to denote the generalized configuration, and the vector

q(t) =
(

q(1)(t) q(2)(t) · · · q(m)(t)
)T

to denote the generalized position that is represented, for each t, by m points in

the Euclidean space.

At the same manner the generalized input is defined as as:

u(t) =
(

u(1)(t) u(2)(t) · · · u(m)(t)
)T

Generalized dynamics for the whole network can, then, be written as:

ż(t) = Az(t) +Bu(t)
q(t) = Cz(t)

where:

A =











A(1) 0 . . . 0

0 A(2) . . . 0
...

...
. . .

...

0 0 . . . A(m)











B =











B(1) 0 . . . 0

0 B(2) . . . 0
...

...
. . .

...

0 0 . . . B(m)











C =











C(1) 0 . . . 0

0 C(2) . . . 0
...

...
. . .

...

0 0 . . . C(m)










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4.2 Continuous Time Formulation

According with 3.3 and 3.4, generalized configuration evolution and network generalized

trajectory are related with generalized input by:

z(t) = Φ(z(0),u(t)) =











φ1(z
(1)(0),u(1)(t))

φ2(z
(2)(0),u(2)(t))

...

φm(z(m)(0),u(m)(t))











(4.4)

and

q(t) = Ψ(Φ(z(0),u(t))) =











ψ1(φ1(z
(1)(0),u(1)(t)))

ψ2(φ2(z
(2)(0),u(2)(t)))

...

ψm(φm(z(m)(0),u(m)(t)))











(4.5)

.

4.2.2 Sensing Model

As done in section 3.1.2 proximity sensing model is assumed for every sensor.

It is assumed that at every time t the generic i-th sensor can measure magnitude

ξj ∈ Ξ(i) in a circular area of radius ρj around its current position q(i)(t). The sensor

field of measure respect to ξj is than a disk of center q(i)(t) and radius ρ
(i)
j :

M
(i)
j (q(i)(t)) = {p ∈W : ‖q(i) − p‖ ≤ ρ

(i)
j ξj ∈ Ξ(i)} (4.6)

4.2.3 Communication Model

For communication between sensors the well known proximity model is assumed, such

as, two sensors communicate directly if they are enough near. The communication

network can then be modeled as an Euclidean graph.

G(t) =< VG, EG(q(t)) >

where

• VG = {1, . . . ,m} represents the vertexes set.

• EG(q(t)) = {(i, j) : ‖q(i)(t)−q(j)(t)‖ ≤ ρC} represents the edges set. It depends

from the sensor network configuration and then it is time varying.
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4.2 Continuous Time Formulation

There is an edge between two sensors if the distance between them is smaller than a

given communication radius ρC .

In case of homogeneous communication radia, that is the one considered in this

paper, the communication network graph G is undirected in fact:

(i, j) ∈ EG(q(t)) ⇐⇒ (j, i) ∈ EG(q(t))

4.2.4 Coverage Problem Formulation

4.2.4.1 Objective Functional

With respect to every magnitude of interest ξj , it is possible to define the distance

between a point p ∈ W and a sensor network generalized trajectory q, within a time

interval Θ = [0, tf ], as

dj,Θ(q,p) = min
t∈Θ; i:ξj∈Ξ(i)

‖q(i)(t) − p‖ (4.7)

Considering the proximity sensing model defined in section 4.2.2, we can say that

magnitude ξj can be measured on point p ∈ W is covered by the sensor during Θ if

and only if:

dΘ(q,p) ≤ ρj

So, making use of the function

pos(χ) =







χ if χ > 0

0 if χ ≤ 0
(4.8)

that fixes to zero any non positive value, it is possible to define, for every magnitude,

the following non negative functional:

d̂j,Θ(q,p, ρj) = pos (dj,θ(q,p) − ρj) (4.9)

A measure of the coverage achieved by a trajectory q, with respect to a magnitude ξj ,

can be computed integrating functional d̂j,Θ over the whole set of interest:

Jj(q) =

∫

W

d̂j,Θ(q,p, ρj) (4.10)
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4.2 Continuous Time Formulation

Looking at the whole magnitudes of interest set Ξ, a possible evaluation how a given

generalized trajectory q(t)t ∈ Θ cover the set of interest W , can be doune using the

following functional:

J(q) =
∑

j

Jj(q) (4.11)

According to equation (4.4) the dependence of functional J from sensor state z and

the input functions u can be explicated:

J(z,u) =
∑

j

∫

W

d̂j,Θ(Cz,p, ρj) =
∑

j

∫

W

d̂j,Θ(Cφ(z(0),u),p, ρj) (4.12)

Functional J is continuous in its arguments. In general J is not convex.

4.2.4.2 Constraints

As done in section 3.1.3.2 physical limits on the actuators (for the motion) and/or on

the sensors (in terms of velocity in the measure acquisition) must be considered.

‖q̇(i)(t)‖ ≤ v
(i)
max

‖u(i)(t)‖ ≤ u
(i)
max

Looking at the whole network,

‖q̇(t)‖ ≤ vmax

‖u(t)‖ ≤ umax

where

vmax =
(

v
(1)
max v

(2)
max · · · v

(m)
max

)T

and

umax =
(

u
(1)
max u

(2)
max · · · u

(m)
max

)T

Expressions above can be rewritten as inequality constraints, on generalized inputs

and state:

g1(z(t)) = ‖BT z(t)‖ − vmax ≤ 0 (4.13)

g2(u(t)) = ‖u(t)‖ − umax ≤ 0 (4.14)
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4.2 Continuous Time Formulation

At the same manner for box constraints on sensors positions are expressed, for every

sensor, by:

q
(i)
min ≤ q(i)(t) ≤ q

(i)
max

Looking at the whole network, constraints on the generalized configuration have the

following structure:

qmin ≤ q(t) ≤ qmax

where

qmax =
(

q
(1)
max q

(2)
max · · · q

(m)
max

)T

and

qmin =
(

q
(1)
min q

(2)
min · · · q

(m)
min

)T

Also this constraints can be expressed as inequality constraints on the sensor network

state.

g3(z(t)) = Cz(t) − zmax ≤ 0 (4.15)

g4(z(t)) = zmin − Cz(t) ≤ 0 (4.16)

Moreover equality constraints on starting and/or final sate of the sensor network

can be introduced in order to instroduce box constraints on sensors positions as in or

to impose closed trajectories.

χ(z(0), z(tf )) = 0 (4.17)

Motion Coordination While using multiple sensors it became necessary to coordi-

nate motion in order to avoid conflicts and to guarantee sensor network performances.

One of the basic requirements can be avoiding collisions between moving sensors.

So, distance between sensors must be lower bounded. For every couple of sensors the

following distance constraints must be introduced

‖q(i) − q(j)‖ ≥ ρB

Those distance constraints can be rewritten as inequality constraints on the sensor

network state:

g
(i,j)
5 (z(t)) = ρB − ‖C(z(i) − z(j))‖ ≤ 0 (4.18)
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4.2 Continuous Time Formulation

Several requirements can be done on the structure of the communication network.

For example, it is possible to impose a fixed network topology. That can be useful,

for example, to fix the level of redundancy on the communication link an than to

reach node fault tolerance. To maintain a fixed network topology every sensor must

maintain direct communication with a subset of its starting neighbors that is fixed in

time. Indicating with Gd =< VG, EGd
(t) > the graph that represents desired topology,

where EGd
(t) ⊆ EG(t) ∀t ∈ Θ.

According to section 4.2.3, for every edge of Gd a distance constrain between a

couple of sensors must be introduced, so maintaining a desired topology Gd means to

satisfy the following constrains set ∀t ∈ Θ :

‖q(i) − q(j)‖ ≤ ρC ∀ (i, j) ∈ EGd
(t) (4.19)

An other important requirement on the communication network is connectivity.

Communication network connectivity is necessary for data exchange and transmission,

but also for sensor localization, coordination and commands communication. Fixed

topology maintenance is, obviously, a particular case of connectivity maintenance if

the desired topology is connected. Anyway, this approach introduces strong constrains

on sensors motion. These constraints can be relaxed if only connectivity is needed,

allowing network topology to change over time.

As said before, the communication model introduced in section 4.2.3 makes the commu-

nication graph G(t) to be undirected. A undirected graph is connected if and only if it

contain a spanning tree. So it is possible to maintain network connectivity constraining

every sensor just to maintain direct communication links that corresponds to the edges

of a spanning tree of the communication tree.

Assigning a weight at every edge of EG is possible to define the Minimum Spanning

Tree of G as the spanning tree with minimum weight (Figure 4.1). In particular being

G an Euclidean graph it come natural to define the edges weights as:

w(i, j) = ‖q(i) − q(j)‖

in this case the minimum spanning tree is said Euclidean (EMST). The EMST can

be easily and efficiently computed by standard algorithms (such as Prim’s algorithm

or Kruskal’s algorithm). Indicating the EMST with T(t) =< VT, ET(t) >, whereVT =
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4.2 Continuous Time Formulation

Figure 4.1: Minimum Spanning Tree for a planar weighted undirected graph

VG and ET(t) ⊆ EG(t), maintaining the communication network connectivity means

satisfying the following constrains ∀t ∈ Θ :

‖q(i) − q(j)‖ ≤ ρC ∀ (i, j) ∈ ET(t) (4.20)

The minimum spanning tree of the communication network graph changes while

sensors moves, so the neighbors set of every node change over time making the network

topology dynamic.

Both fixed topology and connectivity maintenance can be rewritten as inequality

constraints on the sensor network state

g
(i,j)
6 (z(t)) = ‖C(z(i) − z(j))‖ − ρC ≤ 0 (4.21)

4.2.4.3 Optimal Control Problem

Summarizing, the optimal coverage problem be formulated as an optimal control prob-

lem.

min
(z,u)∈D

J(z,u) (4.22)
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4.3 Discrete Time Formulation

where the admissible set D is defined as:

D = {(z,u) ∈ C1 :χ(z(tf ), z(tf )) = 0

h(z, ż,u) = Az +Bu − ż = 0

g1(z(t)) = ‖BTz(t)‖ − vmax ≤ 0

g2(u(t)) = ‖u(t)‖ − umax ≤ 0

g3(z(t)) = Cz(t) − zmax ≤ 0

g4(z(t)) = zmin − Cz(t) ≤ 0

g
(i,j)
5 (z(t)) = ρB − ‖C(z(i) − z(j))‖ ≤ 0

g
(i,j)
6 (z(t)) = ‖C(z(i) − z(j))‖ − ρC ≤ 0}

The non convexity of the cost functional makes this problem not convex, so, several

suboptimal solutions may exist.

Anyway, in general, it is very hard to evaluate analytically one of this solutions. For this

reason in the next section discretization is introduced that allow to make the problem

tractable.

4.3 Discrete Time Formulation

4.3.1 Sensors Discretized Dynamics

The discrete time motion model of the generic i − th sensor is well described by the

following equations:

z(i)((n+ 1)Ts) = A
(i)
d z(i)(nTs) +B

(i)
d u(i)(nTs)

q(i)(nTs) = C(i)z(i)(nTs)

Looking at the whole network generalized dynamics can be written as:

z((n+ 1)Ts) = Adz(nTs) +Bdu(nTs)

q(nTs) = Cz(nTs)
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4.3 Discrete Time Formulation

where:

Ad =













A
(1)
d 0 . . . 0

0 A
(2)
d . . . 0

...
...

. . .
...

0 0 . . . A
(m)
d













= eATs

Bd =













B
(1)
d 0 . . . 0

0 B
(2)
d . . . 0

...
...

. . .
...

0 0 . . . B
(m)
d













=

∫ Ts

0
eAτBdτ

According with the introduced dynamic model it is possible to write generalized

state and output values at time nTs as:

z(nTs) = Ad
nz(0) +

n−1
∑

k=0

Ad
kBdu((n− 1)Ts − kTs) (4.23)

and

q(nTs) = CAd
nz(0) + C

n−1
∑

k=0

Ad
kBdu((n− 1)Ts − kTs) (4.24)

Representing the generalized sensor network input sequence from time t = 0 to time

tf = (nf − 1)Ts as:

unf
=











u(0)
u(Ts)

...
u((nf − 1)Ts)











and defining the following vectors

vnf
=

(

z(0)
unf

)

H(n) =
(

An
d An−1

d Bd . . . Bd 0 . . . 0
)

it is possible to rewrite equations 4.23 and 4.24 in the following compact form:

z(nTs) = H(n)vnf
(4.25)

and

q(nTs) = CH(n)vnf
(4.26)

44



4.3 Discrete Time Formulation

Let’s represent generalized state and output sequences with the following vectors:

znf
=











z(0)
z(Ts)

...
z(nfTs)











qnf
=











q(0)
q(Ts)

...
q(nfTs)











According with 4.25 and 4.26, vectors qnf
and znf

can be written as linear functions

of vector vnf
:

znf
= Hnf

vnf
= (4.27)

and

qnf
= Cnf

Hnf
vnf

(4.28)

where

Hnf
=











H(0)
H(1)

...
H(nf )











Cnf
=











C 0 . . . 0
0 C . . . 0
...

...
. . .

...
0 0 . . . C











4.3.2 Sensing Model

As done for a single sensor the workspace is divideded into square cells ck identified by

thei centroids pk. The generic i − th sensor is assumed measure magnitude ξj on cell

ck at time nTs if its distance between its position q(i)(nTs) and the cell centroid il less

than ρ
(i)
j . The i-th sensor field of measure, with respect to magnitude ξj , at time nTs is

then the union of the cells that have their centroids within a sphere of center q(i)(nTs)

and radius ρ
(i)
j :

M
(i)
j (q(i)(nTs)) = {

⋃

k

ck : ‖q(i)(nTs) − pk‖ ≤ ρ
(i)
j } (4.29)

4.3.3 Coverage Problem Formulation

4.3.3.1 Objective Function

With respect to every magnitude of interest ξj it is possible to define the distance

between a cell ck and a generalized sensor network discrete trajectory q as

dj,Θ(qnf
,pk) = min

n∈[0,nf ]; i:ξj∈Ξ(i)
‖q(nTs) − pk‖ (4.30)
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4.3 Discrete Time Formulation

Considering discrete time dynamic, dj,Θ become a scalar function of the generalized

sensor network configurations sequence. This function is again, in general, not convex.

As done for the continuous time formulation let define:

d̂j,Θ(qnf
,p, ρj) = pos

(

dj,Θ(qnf
,p) − ρj

)

(4.31)

A measure of coverage performance achieved by a discrete time generalized trajectory

q, with respect to magnitude ξj , can be computed summing function d̂j,Θ over all the

cells:

Jj(qnf
) =

∑

k

d̂j,Θ(qnf
,pk, ρj) (4.32)

Looking at the whole magnitudes of interest set Ξ, a possible evaluation how a given

generalized trajectory q(t)t ∈ Θ cover the set of interest W , can be doune using the

following function:

J(qnf
) =

∑

j

Jj(qnf
) (4.33)

According with equation (4.28) the dependence of function J from vector vnf
can

be explicated:

J(vnf
) =

∑

j

∑

k

d̂j,Θ(qnf
,pk, ρj) =

∑

j

∑

k

d̂j,Θ(Cnf
Hnf

vnf
,pk, ρj) (4.34)

Function J is again continuous in its arguments, but, in general, not convex.

4.3.3.2 Nonlinear Programming Problem

After discretization the optimal coverage problem can be formulated as a nonlinear

programming problem. The objective is to find, into an admissible set D, the vector

v∗
nf

that minimize the cost function:

v∗
nf

= min
vnf

J(vnf
)

vnf
∈ D
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4.4 Simulations

where the admissible set D is defined as:

D = {vnf
∈ R

m(4+2nf ) :χ(z(0), z(nfTs)) = 0

g1,0(z(0)) = ‖BTz(0)‖ − vmax ≤ 0

...

g1,nf
(z(nfTs)) = ‖BT z(nfTs)‖ − vmax ≤ 0

g2,0(u(0)) = ‖u(0)‖ − umax ≤ 0

...

g2,nf
(u(nfTs)) = ‖u(nfTs)‖ − umax ≤ 0

g3,0(z(0)) = Cz(0) − zmax ≤ 0

...

g3,nf
(z(nfTs)) = Cz(nfTs) − zmax ≤ 0

g0,4(z(0)) = zmin − Cz(0) ≤ 0

...

g4,nf
(z(nfTs)) = zmin − Cz(nfTs) ≤ 0

g
(i,j)
5,0 (z(0)) = ρB − ‖C(z(i)(0) − z(j)(0))‖ ≤ 0

...

g
(i,j)
5,nf

(z(nfTs)) = ρB − ‖C(z(i)(nfTs) − z(j)(nfTs))‖ ≤ 0

g
(i,j)
6,0 (z(0)) = ‖C(z(i)(0) − z(j)(0))‖ − ρC ≤ 0}

...

g
(i,j)
6,nf

(z(nfTs)) = ‖C(z(i)(nfTs) − z(j)(nfTs))‖ − ρC ≤ 0}

The non convexity of the cost functional makes this problem not convex, so, several

suboptimal solutions may exist.

In the simulations performed, the SQP (Sequential Quadratic Programming) (Appendix

A) method has been applied to find some of those solutions.

4.4 Simulations

In this section simulation results for different cases are displayed to show the effective-

ness and the generality of the proposed method. The first case concerns the coverage
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4.4 Simulations

of a box shaped workspace, within a time interval Θ = 15 sec, with a sensor network,

with three homogeneous nodes. A single magnitude in then considered. The following

values are assumed for sensors parameters:

umax = 1.5 vmax = 1.5 ρB = 0.5

Sensors range is assumed to be unitary. Communication between two nodes is assumed

to be reliable within a maximum range of

ρc = 5.5

Both collisions avoidance and connectivity maintenance constraints are considered. The

mobile sensors trajectories are displayed in subfigure 4.2(d). On the background the

coverage status of the set of interest is displayed, darker zones represent the uncovered

cells. In subfigures 4.2(a) and 4.2(b) evolutions of controls and speeds are respectively

displayed. In subfigure 4.2(c) evolutions of the relative distances between sensors are

plotted. As is visible, collisions are avoided.

In the second simulation an heterogeneous sensor network covering a box shaped

workspace within a time interval Θ = 15 sec is considered. Three magnitudes of interest

are defined,

Ξ = {ξ1, ξ2, ξ3}

Sensors can measure the three measure within the following radia, so ∀i

ρ
(i)
ξ1

= 2 ρ
(i)
ξ2

= 1 ρ
(i)
ξ3

= 3

The following values are assumed for sensors parameters:

umax = 1.5 vmax = 1.5 ρB = 0.5

Communication between two nodes is assumed to be reliable within a maximum range

of

ρc = 5.5

The sensor network is composed by 4 nodes, with different sensing capabilities.

Ξ1 = {ξ1, ξ2} Ξ2 = {ξ2, ξ3}

Ξ3 = {ξ1, ξ2} Ξ4 = {ξ2, ξ3}

48



4.4 Simulations

Both collisions avoidance and connectivity maintenance constraints are considered.

Results are displayed in figure 4.3. Subfigures 4.3(d),4.3(e) and 4.3(f) show dynamic

coverage with respect to each magnitude of interest. So, for each ξj trajectories of

sensors able to measure it (q(i) : ξj ∈ Ξ(i)) are plotted. In subfigure 4.3(g) the whole

magnitude set is considered. The coverage status of the set of interest is displayed on

the background. Coverage with respect to the magnitude set is represented by a color

code displayed in the side color bar.

In the third simulation a similar scenario but with a generic shaped workspace is

considered. Results are displayed in figure 4.4

In the fourth and last simulation the case of node fault robustness requirement

is considered. A three nodes sensor network measuring a single magnitude on a box

shaped workspace is considered. The following values are assumed for sensors param-

eters:

umax = 1.5 vmax = 1.5 ρB = 0.5

Sensors range is assumed to be unitary. Results are displayed in figure 4.5 Subfigures

4.5(d),4.5(e) and 4.5(f) show the case of fault of one of the three sensors
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Figure 4.2: Coverage of a box shaped workspace with a dynamic sensor network with three

homogeneous nodes. (a) Control components evolution. (b) Relative distances between all

vehicles, the red line represents minimum distance for collisions avoidance (rhoB). (c) Sensors

trajectories and coverage status of the set of interest.
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Figure 4.3: Coverage of a box shaped workspace with an heterogeneous dynamic sensors

network. (a) Control components evolutions. (b) Relative distances between all vehicles, the

red line represents minimum distance for collisions avoidance (rhoB). (c)-(d)-(e) Dynamic

coverage w.r.t. each magnitude. (f) Nodes trajectories and coverage status w.r.t the whole

magnitudes set
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Figure 4.4: Coverage of a generic shaped workspace with an heterogeneous dynamic sensors

network. (a) Control components evolutions. (b) Relative distances between all vehicles, the red

line represents minimum distance for collisions avoidance (rhoB). (c)-(d)-(e) Dynamic coverage

w.r.t. each magnitude. (f) Nodes trajectories and coverage status w.r.t the whole magnitudes

set
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Figure 4.5: Robust area surveillance with a mobile sensors network
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Part II

Distributed Dynamic Coverage
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CHAPTER 5

DISTRIBUTED COVERAGE

CONTROL

T
he second part of the Thesis concerns approaches to dynamic coverage that

are suitable for online applications, such as, approaches based on the de-

velopment of feedback laws. At every time step the sensor network must

evaluate how to move according to its configuration, such as the positions of its nodes,

and to the coverage status of the set of interest (sensors will move toward uncovered

areas).

In Burgard et al. (2005) the problem of choosing appropriate target points for a team

of mobile robots so that they simultaneously explore different regions of the environ-

ment is considered. A centralized approach for the coordination of multiple robots,

which takes into account the cost of reaching a target point and its utility, is proposed.

Whenever a target point is assigned to a specific robot, the utility of the unexplored

area visible from this target position is reduced. In this way, different target locations

are assigned to the individual robots. Global knowledge of both positions of all the

robots and of the coverage status of the workspace, represented by an occupancy grid,

is assumed.

In Franchi et al. (2007) a randomized approach to multirobot exploration is considered.

Each robot of the team explore the workspace autonomously. When two robots meet,
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such as they are so close to communicate, they exchange all informations about their

past configurations. In that every robot can take into account the presence of the others

and plan its motion toward areas which appear to be unexplored by itself as well as

the rest of the team.

Dynamic coverage by mobile sensor networks is considered also in Hussein & Stipanovic

(2006). Agents move in order to increase the area covered with time until every point

in the given area has been covered with a prescribed coverage level termed effective

coverage. The agents try to collectively minimize an error function that indicate how

well the area has been covered up to time t by moving along the negative gradient of

that function. However, this gradient-based approach might possibly drive the agents

to a local minimum of the error function where they get stuck. A strategy for escaping

those trapping situations is proposed.

The same author, taking inspiration from the study of active sensing performed in Gro-

cholsky (2002), presented in Hussein (2007) a control strategy based on the discrete

Kalman filter. Here, the problem of estimating a spatially-decoupled scalar field using

a network of finite-range sensor vehicles is considered. The approach relies on using

the Kalman filter to estimate the field and, on the filter’s prediction step to plan the

vehicles next move to maximize the quality of the field estimate. A strategy for avoid-

ing converging to local minima of the coverage cost is proposed.

A common feature of the cited works is the fact that global information on at least the

coverage status of the workspace are required. Communication is, in general used to

exchange those informations.

There exist particular cases in which these global informations are not necessary as

shown in Pavone & Frazzoli (2007). Here coverage of a circular and obstacle-free

environment is achieved using a control policy that is static (i.e., memoryless), decen-

tralized, and does not rely on coverage maps or other global informations.

In this Chapter an artificial potential based control law, that guarantees to drive

a mobile sensor network to totally cover the set of interest is proposed. Very weak

assumptions are needed on the sensing model, so increasing the applicability of the

proposed solution.

The proposed approach is suitable for distributed implementation. In a distributed
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5.1 Sensors Motion Model

control architecture each sensor evaluates its inputs with only locally available infor-

mations. For networked agents, the concept of locally available informations must be

related not only to space but also to time in the sense that also those informations, that

are intrinsically not local in the space, can flow trough the communication network be-

coming available to all the sensors under a certain time delay, once that the connectivity

of the communication network is assumed and assured. For this reason, in the next

Chapter, particular attention will be given to communication connectivity maintenance.

In section 5.1 a simplified motion model for mobile sensors is defined. In section 5.2

a general sensing model is defined, it is then shown how it can it include well known

coverage models. The coverage control law is described in section 5.3 that is shown

to drive the sensor network to totally cover the set of interest. Simulations results are

presented in 5.4.

5.1 Sensors Motion Model

Sensors are modeled, from the dynamic point of view, as material points moving on on

the Euclidean plane (Q = R
2). Planar motion is considered only for sake of simplicity,

all results can be immediately extended to the 3D motion case. Every sensor is assumed

to satisfy the following simple discrete-time kinematic equation of motion:

q(i)((n+ 1)TS) = q(i)(nTS) − TSu(i)(nTS) (5.1)

with

i = 1, . . . ,m

where q(i) indicate the position of sensor i. The control velocity of sensor i is denoted

with u(i), it is assumed to be bounded

‖u(i)‖ ≤ umax (5.2)

Bounds on control velocity represent the actuators limits. For simplicity they are

assumed to be equals for all the sensors, in general different bounds (u
(i)
max) can be

considered to describe the case of sensors equipped with different actuators. Looking
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5.2 Sensing Model

at the whole network a generalized configuration and generalized input can be defined

as:

q =







q(1)

...

q(m)






u =







u(1)

...

u(m)







5.2 Sensing Model

Let’s indicate with W ⊂ R
2 the set of interest, that must be covered with sensors mea-

sures and that is discretized into a set of cells. Every cell ck is identified by its centroid

pk

Proximity measure model is considered, so every mobile sensor is assumed to take

measures within a circular set of radius ρ around its current position q(i). Such a set

under sensor visibility will be denoted as

M (i)(n) = {pk : ‖q(i)(nTS) − pk‖ ≤ ρ} (5.3)

The measure set of the whole network is given by the union of the measure sets of every

sensor

M(n) =
⋃

i

M (i)(n) (5.4)

5.2.1 Residual Information

On every cell centroid pk a variable γk(n) is defined that indicate the residual infor-

mation contained into the cell ck at time nTS . Measurement on cell ck are modeled as

reductions of the corresponding residual information γk.

In order to more precisely define the residual information γk, let’s do the following

assumptions:

1. γk(n) is positive and not decreasing in time

γk(n) ∈ R
+ γk(n+ 1) − γk(n) ≤ 0
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5.2 Sensing Model

2. If pk is in the visibility set of the sensor network, γk(n) decrease and became zero

within a finite number N of time steps.

γk(n) > 0 ∧ pk ∈M(q(n)) → γk(n+ 1) − γk(n) < 0

pk ∈M(q(n+ ν)) ν = 0, . . . , N → γk(n+N) = 0

As said γk represents the residual information contained in cell ck and then it is a

measure of how much cell ck is uncovered. A measure of the residual information of the

whole set of interest is, then, given by:

Γ(n) =
∑

k

γk(n)

Full coverage is achieved if and only if Γ = 0.

Coverage definition can be done choosing opportunely γk and its evolution law. In the

following paragraphs two examples are proposed for well known coverage definitions.

Effective Coverage The definition of effective coverage was introduced in Hussein

& Stipanovic (2006). For every sensor an instantaneous coverage function Ai(qi,pk) is

defined, with the following properties:

Ai(qi,pk)

{

> 0 if pk ∈M (i)

= 0 otherwise

The effective coverage achieved by sensor σi on point pk is given by:

Ti(pk, n) =
∑

ν=1,2,...,n

Ai(qi(ν),pk)

For this definition of coverage γk assumes following structure

γk(n) = pos(C∗
p −

∑

i

Ti(pk, n))

where C∗
p is a positive constant and

pos(ξ) =

{

ξ if ξ ≥ 0

0 if ξ < 0
(5.5)
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5.2 Sensing Model

A particular case of effective coverage is K-coverage in which it is required that

every point is measured K at least times. In this case:

Ai(qi,pk) =

{

1 if pk ∈M (i)

0 otherwise

γk(n) = pos

(

K −
∑

i

Ti(pk, n)

)

Is easy to see that that assumptions on γk are verified.

Stochastic Coverage Let’s assume that the sensor network goal is to estimate a

spatially decoupled scalar field x defined on W. The field is assumed to be static but

measurements are corrupted by noise. On every point pk the value of xk = x(pk)

can be view as a random variable. The network is assumed to estimate the value of

such variables using a Kalman filter. The evolution model is described by the following

equation

xk(n+ 1) = xk(n) (5.6)

Every sensor that make measures on xk(n) with the following observation model:

z
(i)
k (n) = H

(i)
k (n) ∗ xk(n) + v

(i)
k (n) (5.7)

where v
(i)
k (n) is a zero mean Gaussian observation noise with variance R

(i)
k (n) =

E[v
(i)
k

2
(n)], and

H
(i)
k (n) =

{

1 if pk ∈M (i)(n)

0 otherwise

The whole network observation model have the following structure:

zk(n) = Hk(n) ∗ xk(n) + vk(n) (5.8)

At every time step the estimation of xk(n) is updated following the well known law:

x̂k(n+ 1) = x̂k(n) + Kk(n) (zk(n) − Hk(n) ∗ x̂k(n))

Where Kk(n) is the Kalman gain at time nTS .

The covariance of the estimation assumes the following expression:

Pk(n+ 1) = (1 − Kk(n)Hk(n))Pk(n)
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5.3 Coverage Control

Estimation covariance decrease asymptotically to 0. Defining a maximum acceptable

value Pmax for estimation covariance the residual information γk can be defined as:

γk(n) = pos(Pk(n) − Pmax)

Is easy to see that that assumptions on γk are verified.

5.2.1.1 Distributed Computation

It is important to remark how the knowledge of the residual information evolution al-

low each sensor to take into account the behavior of the others and then, to implicitly

cooperate with them. Anyway, in order to evaluate γk(n) it is necessary, in general to

know the evolution of the generalized configuration of the whole sensor network from

time 0 to time nTS . In a distributed control architecture the assumption that every

sensor knows the full network configuration q(nTS) at time nTS can not be used.

A more realistic case is the one in which every sensor can evaluate the sensor network

configuration q((n − δi)TS)with a certain delay δi. The delay depends from the com-

munication network topology that, necessarily, must be always connected.

Every sensor can, then, evaluate, with only locally available informations, a delayed

residual information:

γ̂
(i)
k (nTS) = γk((n− δi)TS)

Obviously, γ̂
(i)
k satisfies all the assumptions done in 5.2.1. Moreover it is easy to see

that γ̂
(i)
k overestimates γk, so:

Γ̂(i) = 0 =⇒ Γ = 0

where Γ̂(i) =
∑

k γ̂
(i)
k .

Once the delayed residual information is zero, full coverage is achieved.

5.3 Coverage Control

According with the considered proximity based sensor model, every dynamic sensor

is assumed to be subject, for every cell ck, to a virtual potential that depends from

‖q(i) − pk‖, other than, as is reasonable from the residual information γk.

Anyway, knowledge of exact residual information it is not required. So, in the rest
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5.3 Coverage Control

of this section we will consider an overestimating approximation ,as, for example the

delayed residual information defined in 5.2.1.1.

The coverage potential function, that can be evaluated with only local communica-

tion, has the following structure:

f
(i)
k = γ̂

(i)
k pos

(

1

β
−

1

‖q(i) − pk‖α

)

(5.9)

where α > 1, and β ∈ R
+ is positive constant, necessary to avoid singularity points

and small as needed.

Considering the whole workspace every dynamic node is subject to the following

potential:

f (i) =
∑

k

f
(i)
k (q(i)) (5.10)

The control strategy proposed, as in the classical potential based approaches, is to

drive sensors in the direction of the negative gradient of f (i).

u(i)
cov = −

∂f (i)

∂q(i)
(5.11)

where

∂f (i)

∂q(i)
=















∑

k γ̂
(i)
k (n) q(i)−pk

‖q(i)−p‖α+1 if ‖q(i) − pk‖ ≥ β

0 otherwise

(5.12)

The motion model of the generic i-th sensor can then be written as

q(i)((n+ 1)TS) = q(i)(nTS) − TS
∂f (i)

∂q(i)

∣

∣

∣

∣

∣

nTS

(5.13)

A global potential function for the sensor network can then be defined as:

f =
∑

i

f (i) (5.14)

Function f is positive and vanish only when the whole workspace is covered, such as,

when Γ̂ = 0.

The gradient of f respect to the generalized configuration q is given by

∂f

∂q
=















∂f (1)

∂q(1)

∂f (2)

∂q(2)

...
∂f (m)

∂q(m)















(5.15)
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5.3 Coverage Control

the coverage control law can then be written for the whole network as:

q((n+ 1)TS) = q(nTS) −K
∂f

∂q
TS (5.16)

In order to show that, under the proposed control strategy, the sensor network is

driven to totally cover the set of interest, it is sufficient to show that:

∆f(nTS) = f((n+ 1)TS) − f(nTS) < 0

According with 5.14 and 5.10 the variation of function f within a time step can be

written as:

∆f(nTS) = f((n+ 1)TS) − f(nTS)

=
∑

i

∑

k

∆f
(i)
k (nTS)

=
∑

i

∑

k

[f
(i)
k ((n+ 1)TS) − f

(i)
k (nTS)]

As shown in 5.9 functions f
(i)
k can be written as:

f
(i)
k (nTS) = f

(i)
k (γ̂

(i)
k (n),q(i)(nTS))

Then, according with the well known expression of Taylor series for functions of

several variables, it is possible to write the increment of function f
(i)
k as:

∆f
(i)
k (nTS) =

∂f
(i)
k

∂γ̂
(i)
k

∣

∣

∣

∣

∣

nTS

∆γ̂
(i)
k (n) +

∂f
(i)
k

∂q(i)

T
∣

∣

∣

∣

∣

∣

nTS

∆q(i)(nTS) + o(TS
2)

From equation 5.13 follows:

∆f
(i)
k (nTS) =

∂f
(i)
k

∂γ̂
(i)
k

∣

∣

∣

∣

∣

nTS

∆γ̂
(i)
k (n) +

∂f
(i)
k

∂q(i)

T
∣

∣

∣

∣

∣

∣

TS

∂f (i)

∂q(i)

∣

∣

∣

∣

∣

nTS

+ o(TS
2)
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According with the expression above the variation of function f can be rewritten

as:

∆f(nTS) =
∑

i

∑

k

∂f
(i)
k

∂γ̂
(i)
k

∣

∣

∣

∣

∣

nTS

∆γ̂
(i)
k (n) −

∑

i





∑

k

∂f
(i)
k

∂q(i)

∣

∣

∣

∣

∣

nTS





T

∂f (i)

∂q(i)

∣

∣

∣

∣

∣

nTS

+ o(TS
2)

From equation 5.10 follows:

∆f(nTS) =
∑

i

∑

k

∂f
(i)
k

∂γ̂
(i)
k

∣

∣

∣

∣

∣

nTS

∆γ̂
(i)
k (n) −

∑

i

∥

∥

∥

∥

∥

∂f (i)

∂q(i)

∥

∥

∥

∥

∥

2
∣

∣

∣

∣

∣

∣

nTS

+ o(TS
2)

From equation 5.14 follows:

∆f(nTS) =
∑

i

∑

k

∂f
(i)
k

∂γ̂
(i)
k

∣

∣

∣

∣

∣

nTS

∆γ̂
(i)
k (n) −

∥

∥

∥

∥

∂f

∂q

∥

∥

∥

∥

2
∣

∣

∣

∣

∣

nTS

+ o(TS
2)

From the equations above follows that:

∆f(nTS) < 0 ⇐⇒
∑

i

∑

k

∂f
(i)
k

∂γ̂
(i)
k

∣

∣

∣

∣

∣

nTS

∆γ̂
(i)
k (n) −

∥

∥

∥

∥

∂f

∂q

∥

∥

∥

∥

2
∣

∣

∣

∣

∣

nTS

< 0

Observing that, from equation 5.9,

∂f
(i)
k

∂γ̂
(i)
k

= pos

(

1

β
−

1

‖q(i) − pk‖α

)

≥ 0
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and, as assumed in 5.2.1,

∆γ̂
(i)
k (n) = γ̂

(i)
k (n+ 1) − γ̂

(i)
k (n) ≤ 0

it is possible to see that:

∑

i

∑

k

∂f
(i)
k

∂γ̂
(i)
k

∣

∣

∣

∣

∣

nTS

∆γ̂
(i)
k (n) +

∥

∥

∥

∥

∂f

∂q

∥

∥

∥

∥

2
∣

∣

∣

∣

∣

nTS

≤ 0

Then, in order to exclude the possibility of local minima, it is necessary to study

stationary points, such as points in wich:

∑

i

∑

k

∂f
(i)
k

∂γ̂
(i)
k

∣

∣

∣

∣

∣

nTS

∆γ̂
(i)
k (n) +

∥

∥

∥

∥

∂f

∂q

∥

∥

∥

∥

2
∣

∣

∣

∣

∣

nTS

= 0

Obviously the condition above is verified when the whole workspace is covered and

then f = 0. Excluding the trivial case mentioned above, we can say that, to be verified

it is necessary that :

∂f

∂q
= 0

Lemma 5.3.1. Points qe : ∂f
∂q

∣

∣

∣

qe

= 0 are not local minima points of f(q).

Proof. Let us consider a stationary point qe : ∂f
∂q

∣

∣

∣

qe

= 0 and consider a perturbation

∆q such that ∆q = q−qe. Assuming, without loss of generality that γ̂
(i)
k is constant,

the value of f(q) for q = qe can be written as

f(qe) = f(q) +
∂f

∂q

T

(q − qe) + o(‖q − qe‖
2)

Introducing the following notation

rk = q − pk re,k = qe − pk

the variation of value of f from qe to q can be written as:
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∆f = f(qe) − f(q)

= −
∂f

∂q

T

∆q + o(‖∆q‖2)

= −
∑

i

∑

k

γ̂
(i)
k

r
(i)
k

T
∆q(i)

‖r
(i)
k ‖α+1

+ o(‖∆q‖2)

= −
∑

i

∑

k

γ̂
(i)
k

(

r
(i)
k,e + ∆q(i)

)T

∆q(i)

[(r
(i)
k,e + ∆q(i))T (r

(i)
k,e + ∆q(i))]

α+1
2

+o(‖∆q‖2)

= −
∑

i

∑

k

γ̂
(i)
k

(

r
(i)
k,e

T
∆q(i) + ‖∆q(i)‖2

)

[

‖r
(i)
k,e‖

2 + ‖∆q(i)‖2 + 2r
(i)
k,e

T
∆q(i)

]
α+1

2

+o(‖∆q‖2)

if ‖∆q(i)‖ is sufficiently small

≈ −
∑

i

∑

k

γ̂
(i)
k

r
(i)
k,e

T
∆q(i)

[

‖r
(i)
k,e‖

2 + 2r
(i)
k,e

T
∆q(i)

]
α+1

2

≥ −
∑

i

∑

k

γ̂
(i)
k

r
(i)
k,e

T
∆q(i)

‖r
(i)
k,e‖

α+1

=
∂f

∂q

∣

∣

∣

∣

T

qe

∆q = 0

So there exist points q in a neighborhood of qe such that f(qe) ≥ f(q) and then

points qe cannot be local minima of f .

To avoid stationary situations, and achieve monotonic decreasing of f and then

guaranteed full coverage of the set of interest, it is sufficient to perturb sensors config-

urations. It can be done, for example, adding a random signal r(nTS) to the control

input.

q((n+ 1)TS) = q(nTS) −∇fqTS + r(nTS) (5.17)
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5.4 Simulations

In this section simulations are discussed in order to put in evidence the effectiveness

of the proposed methodology. The sensor network is assumed to be composed of eight

nodes having unitary sensing radius (ρS = 1) and unitary bounded inputs (umax = 1).

Moreover nodes are assumed to share the residual information map γk ∀k. As said in

5.2.1.1 this hypothesis is very strong, anyway, the aim of this section is only to show

how the proposed control law drives sensors to totally cover the set of interest. As said

in 5.3, that does not depend from the particular choice of γk.

The global knowledge assumption will be relaxed in the next Chapter where, once that

communication connectivity will be assured by motion coordination, an approximation

of γk, that can be computed in distributed way, will be used.

In the first simulation K-coverage is considered withK = 15, so the residual information

γk is defined as in 5.2.1. In figure 5.1 the evolution of the sensor network configuration

is displayed together with the residual information map.

Figure 5.2 shows the evolution of the percentage residual information.

In the second simulation stochastic coverage is considered. The sensor network is

asked to estimate the static scalar field x displayed in figure 5.3(a).

In figure 5.4 the evolution of the sensor network configuration is displayed together

with the estimations of the residual information and of the field x.

Figure 5.3(b) shows the evolution of the percentage residual information.
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Figure 5.1: K-Coverage. Evolution of the sensor network configuration and residual

information map (K=15).
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Figure 5.2: K-Coverage. Evolution of the percentage residual information of the set of

interest.
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Figure 5.3: Stochastic Coverage. Static scalar field x to be estimated. Evolution of the

percentage residual information of the set of interest.
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Figure 5.4: Stochastic Coverage. Evolution of the sensor network configuration, esti-

mation of the residual information map (left column), and estimation of the scalar field

x (right column).
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CHAPTER 6

DISTRIBUTED MOTION

COORDINATION

I
n this chapter motion coordination is considered. As previously said the usage of

multiple mobile sensors introduce challenging coordination problems. In Chapter

4 coordination was implemented introducing constraints to the optimal coverage

problem. In a distributed control architecture, as the one proposed in the second part

of this thesis, coordination must be achieved using online feedback.

Distributed motion coordination is a popular topic for multi-agent systems.

In Leonard & Fiorelli (2001) a framework for coordinated and distributed control of mul-

tiple autonomous vehicles using artificial potentials and virtual leaders is introduced.

Artificial potentials define interaction control forces between neighboring vehicles and

are designed to enforce a desired inter-vehicle spacing. A virtual leader is a moving

reference point that influences vehicles in its neighborhood by means of additional

artificial potentials. Virtual leaders can be used to manipulate group geometry and

direct the motion of the group. The approach provides a construction for a Lyapunov

function to prove closed-loop stability using the system kinetic energy and the artificial

potential energy. Dissipative control terms are included to achieve asymptotic stability.

This approach is then applied in gradient climbing tasks for mobile sensor networks in

Ogren et al. (2004).
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In Olfati-Saber & Murray (2002a,b) distributed stabilization of formations of multiple

vehicles using structural potential functions is addressed. The key idea in formation

stabilization is using natural potential functions obtained from structural constraints

of a desired formation in a way that leads to a collision-free, distributed, and bounded

state feedback law for each vehicle obtained from the desired formations graphs.

In these approaches the interaction topology is maintained fixed.

In Jadbabaie et al. (2003), starting from the study done in Vicsek et al. (1995) on

the motion of interacting particles, an approach to motion coordination of autonomous

vehicles based on the nearest neighbor rules is proposed.Possible changes in nearest

neighbors over time and then in interaction topology are explicitly taken into account.

In Olfati-Saber (2006) a deep study of the problem of flocking of multi-agent dynamic

systems is presented. Here, a systematic method for construction of cost functions (or

collective potentials) for flocking is provided. It is shown that migration of flocks can

be performed using a peer-to-peer network of agents, i.e. flocks need no leaders. A uni-

versal definition of flocking for particle systems with similarities to Lyapunov stability

is given.

A survey on collective motion problems and algorithms for sensor networks is presented

in Ganguli et al. (2005).

Artificial potential based strategies for motion coordination of mobile sensor networks

while dynamically covering a given field of interest are proposed in Hussein & Stipanovic

(2007a), in order to guarantee collisions avoidance, and in Hussein & Stipanovic (2007b)

in order to guarantee flocking behavior.

In this Chapter a motion coordination strategy is proposed in order to assure some

desired features of the sensor network. Very weak assumptions are needed on the

constraint model, so increasing the applicability of the proposed solution. Particular

attention is given to collisions avoidance and communication connectivity maintenance.

In particular a distributed approach to connectivity maintenance is presented. Every

sensors evaluate constraints on its position using, only, information on its neighbors. To

do that a subgraph of the communication network graph is computed in distributed way

at every time. This graph is showed to be connected, because it contains a minimum

spanning tree. Maintenance of edges of this graph entails communication network
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connectivity. This approach introduces less motion constrains respect to flocking or

fixed topology maintenance.

6.1 Motion Constraints

While performing coverage tasks a sensor network is often asked to satisfy many kind

of constraints on the generalized configuration q, and then on sensors positions.

q ∈ Ω ⊂ R
2m

The following assumptions are done on the functional structure of constraints:

1. Function g explode if the network configuration approaches to a not admissible

configuration:

∀q̃ /∈ Ω ‖q − q̃‖ → 0 =⇒ g(q) → ∞

2. The sum of the partial gradients of g(q) with respect to every sensor configuration

q(i) is null:
∑

i

∂g

∂q(i)
= 0

Examples of such constraints are given in the following subsections.

6.1.1 Collisions Avoidance

In order to avoid collisions between sensors it is necessary to introduce minimum dis-

tance constraints

‖q(i)(nTS) − q(i)(nTS)‖ ≥ ρB

Taking inspiration from Stipanovic et al. (2007), for every couple of sensors the following

potential function is defined:

g
(i,j)
coll (q(i),q(j)) =

pos(RB − ‖q(i) − q(j)‖)

pos(‖q(i) − q(j)‖ − ρB)
(6.1)

where RB > ρB can be view as an activation radius, so the collisions avoidance

potential has effect only if

ρB ≤ ‖q(i) − q(j)‖ ≤ RB
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If RB ≤ ρC , such as, the activation radius of avoidance potential is less than the

communication radius of sensors, as is reasonable, avoidance potential can be evaluated

with only local informations.

The derivative of the potential function is given by:

∂g
(i,j)
coll

∂q(i)
=

ρB −RB

(‖q(i) − q(j)‖ − ρB)2
q(i) − q(j)

‖q(i) − q(j)‖

Every sensor is subject to the following collisions avoidance potential

g
(i)
coll(q) =

∑

j 6=i

g
(i,j)
coll (q(i),q(j)) (6.2)

Looking at the whole network the collisions avoidance potential is given by:

gcoll(q) =
∑

i

g
(i)
coll(q) (6.3)

observing that

∂g
(i,j)
coll

∂q(i)
= −

∂g
(i,j)
coll

∂q(j)

it is easy to see that gcoll(q) satisfy assumptions done in 6.1.

6.1.2 Connectivity Maintenance

The proximity model is again assumed for the communication between mobile sensors.

Let’s recall the definition of the communication graph:

G =< VG, EG(q) >

where

• VG = {1, . . . ,m} represents the vertexes set.

• EG(q) = {(i, j) : ‖qi − qj‖ ≤ ρC} represents the edges set. Edges are weighted

with the Euclidean distance between nodes:

w(i, j) = ‖q(i) − q(j)‖
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Being G an undirected graph that’s assumed to be connected at time t = 0, it is possible

to maintain network connectivity just maintaining links that belong to a minimum

spanning tree. For exactly evaluating the minimum spanning three the knowledge of

the configuration of the whole network, and then of the positions of all the sensors,

is needed. This approach can be used only in a centralized control architecture, in

which a central computer, that has global informations, evaluates inputs for all the

network nodes. In a distributed architecture, every sensor must evaluate constraints

on its position using only locally available informations. As done for the distributed

evaluation of the residual information, it would be possible to use communication in

order to collect all the needed global informations. In this sense, many strategies

has been proposed in past years, as for example in Awerbuch (1987); Gallagher et al.

(1983); Garay et al. (1996). However, this approach is not suitable for connectivity

maintenance of state dependent networks because of delays. The distributed evaluation

of the minimum spanning tree, in fact, require that sensors exchange a certain number

of messages that depends from the size of the network. During the information flow, the

sensor network configuration must not change and that can strongly affect the motion

capabilities of sensors. In order to overcome this difficulties an alternative solution is

proposed.

Let’s introduce some useful notations (6.1):

• Gi is the the Euclidean graph that has the node i and its neighbors as vertexes

(obviously Gi ⊂ G) .

• TGi is a MST of Gi.

• Ei
G
⊂ EGi

⊂ EG is the set of edges of TGi connected with qi.

The graph TG
∗ is defined as:

TG
∗ =< VTG

∗ , ETG
∗ >

where:

• VTG
∗ = VG

• ETG
∗ =

{

ei,j ∈ Ei
G

| ei,j ∈ TGi

}
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(a) G (b) G
∗

i

(c) TGi (d) Ei
G

Figure 6.1: Construction of the approximated MST TG
∗

It’s well known that a spanning tree T must satisfy the following property named

cycle property:

Property 6.1.1. For any cycle C in G, if the weight of an edge e of C is larger than

the weights of other edges of C, then this edge cannot belong to T.

Using the cycle property is possible to prove the following theorem.

Theorem 6.1.1. TG
∗ contain a minimum spanning tree TG of G.

Proof. Let (i, j) ∈ Ei
G

be an edge TG that is not contained in TG
∗ .

It must exist a cycle Ci ⊂ Gi such that, it is composed by (i, j) and by a subset of the

edges of the local MST TGi, with the corresponding nodes.

Being TGi an MST, for the cycle property, (i, j) must be the edge of Ci with largest

weight. Then, because TG is an MST too, and must satisfy the cycle property, it can’t

contain edge (i, j). That contradict the starting assumption, so if an edge is contained

in TG, it must also be contained in TG
∗ .

Every sensor can then compute constraints necessary to maintain, at every time,

edges of TG
∗ and then communication network connectivity, just knowing the position

of its neighbors

76

Chapter5/Chapter5Figs/./figs/G.eps
Chapter5/Chapter5Figs/./figs/G_i.eps
Chapter5/Chapter5Figs/./figs/T_G_i.eps
Chapter5/Chapter5Figs/./figs/E_T_G_i.eps


6.1 Motion Constraints

.

‖q(i) − q(j)‖ ≤ ρC (i, j) ∈ Ei
G (6.4)

6.1.2.1 Potential Function

As done in 6.1.1 a potential function is defined that describe the connectivity main-

tenance constraint. For every constrained couple of sensors the following potential

function is defined:

g(i,j)
conn(q(i),q(j)) =

pos(‖q(i) − q(j)‖ −RC)

pos(ρC − ‖ q(i) − q(j)‖)
(6.5)

where RC < ρC can be view as an activation radius, so the collisions avoidance

potential has effect only if

RC ≤ ‖q(i) − q(j)‖ ≤ ρC

The derivative of the potential function in given by:

∂g
(i,j)
conn

∂q(i)
=

ρC −RC

(ρC − ‖q(i) − q(j)‖)2
q(i) − q(j)

‖q(i) − q(j)‖

every sensor is, then, subject to the following connectivity maintenance potential

g(i)
conn(q) =

∑

j : (i,j)∈Ei
G

g(i,j)
conn(q(i),q(j)) (6.6)

Looking at the whole network the connectivity maintenance potential is given by:

gconn(q) =
∑

i

g(i)
conn(q) (6.7)

observing that, because communication links to be maintained are undirected,

∂g
(i,j)
conn

∂q(i)
= −

∂g
(i,j)
conn

∂q(j)

it is easy to see that gconn(q) satisfy assumptions done in 6.1.
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6.2 Constrained Coverage Control

Motion coordination potentials defined int the previous section can be combined with

the dynamic coverage strategy proposed in Chapter 5. To do that a potential function

that take into account both coverage and constraints is defined. For each network node

this new potential function assume the following structure

F (q) = f(q) + g(q) (6.8)

where f represents the coverage potential function defined in 5.3. The control strategy

proposed in order to both achieve coverage and satisfy constraints is, again, to drive

sensors in the direction of the negative gradient of the potential function F .

q((n+ 1)TS) = q(nTS) −∇FqTS

The control input for every sensor is then given by:

u(i) = −
∂F

∂q(i)
= −∇f

(i)

q(i) −
∂g

∂q(i)
(6.9)

as done in 5.3, to show that, under the proposed control strategy, the sensor network

is driven to totally cover the set of interest, it is sufficient to show that:

∆F (nTS) = F ((n+ 1)TS) − F (nTS) < 0

Moreover if the condition above holds and if at time 0 the sensor network configuration

q(0) is admissible, for the assumptions made on the g function structure, constraints

will be satisfied for every time.
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∆F (nTS) =
∑

i

∑

k

∂f
(i)
k

∂γ̂
(i)
k

∣

∣

∣

∣

∣

TS

∆γ̂
(i)
k (n) +

∑

i





(

∂f (i)

∂q(i)
+

∂g

∂q(i)

)∣

∣

∣

∣

∣

TS





T

∆q(i)(nTS) + o(TS
2)

from equation 6.9 follows

=
∑

i

∑

k

∂f
(i)
k

∂γ̂
(i)
k

∣

∣

∣

∣

∣

TS

∆γ̂
(i)
k (n) −

∑

i

∥

∥

∥

∥

∥

∥

(

∂f (i)

∂q(i)
+

∂g

∂q(i)

)∣

∣

∣

∣

∣

TS

∥

∥

∥

∥

∥

∥

2

+ o(TS
2)

From equations above it follows that

∆F (nTS) < 0 ⇐⇒
∑

i

∑

k

∂f
(i)
k

∂γ̂
(i)
k

∣

∣

∣

∣

∣

TS

∆γ̂
(i)
k (n) −

∥

∥

∥

∥

∂F

∂q

∥

∥

∥

∥

2

TS

< 0

It is, then, necessary to study only stationary points, such as

qe : ∇Fq=qe = 0

Lemma 6.2.1. Points qe : ∇Fq=qe = 0 are not local minima of F (q).

Proof. Let’s consider a stationary point qe : ∇Fq=qe = 0 and consider a perturbation

∆q = q − qe such that

∆q(1) = ∆q(2) = · · · = ∆q(m) = ∆

The value of F (q) for q = qe can be written as

F (qe) = F (q) + ∇F T
q (q − qe) + o(‖q − qe‖

2)

Introducing the following notation

rk = q − pk re,k = qe − pk

the variation of value of F from qe to q can be written as:
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∆F = F (qe) − F (q)

= −∇F T
q ∆q + o(‖∆q‖2)

= −
∑

i

∑

k

γ̂
(i)
k

r
(i)
k

T
∆q(i)

‖r
(i)
k ‖α+1

−
∑

i

∂g

∂q(i)

T

∆q(i) + o(‖∆q‖2)

= −
∑

i

∑

k

γ̂
(i)
k

r
(i)
k

T
∆q(i)

‖r
(i)
k ‖α+1

−

[

∑

i

∂g

∂q(i)

]T

∆ + o(‖∆q‖2)

for property 2

= −
∑

i

∑

k

γ̂
(i)
k

r
(i)
k

T
∆q(i)

‖r
(i)
k ‖α+1

+ o(‖∆q‖2)

= −
∑

i

∑

k

γ̂
(i)
k

(

r
(i)
k,e

T
∆q(i) + ‖∆q(i)‖2

)

[

‖r
(i)
k,e‖

2 + ‖∆q(i)‖2 + 2r
(i)
k,e

T
∆q(i)

]
α+1

2

+o(‖∆q‖2)

if ‖∆q(i)‖ is sufficiently small

≈ −
∑

i

∑

k

γ̂
(i)
k

r
(i)
p,e

T
∆q(i)

[

‖r
(i)
p,e‖2 + 2r

(i)
p,e

T
∆q(i)

]
α+1

2

≥ −
∑

i

∑

k

γ̂
(i)
k

r
(i)
p,e

T
∆q(i)

‖r
(i)
p,e‖α+1

= ∇fT
q=qe

∆q = 0

So there exist points q in a neighborhood of qe such that F (qe) ≥ F (q) and then
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points qe cannot be local minima of f .

To avoid stationary situations it is, then, sufficient to perturb sensors configurations.

6.3 Simulations

This section presents simulation results for constrained coverage control.

Motion coordination is introduced in the same cases considered in the previous chapter.

Once connectivity maintenance of the communication network is assured it is possible

to relax the hypothesis of global knowledge. So every sensor configuration evolves with

the following law:

q(i)((n+ 1)TS)=q(i)(nTS) + u(i)
cov(nTS)

+
∑

j 6=i

∂g
(i,j)
coll

∂q(i)
+

∑

j : (i,j)∈Ei
G

∂g
(i,j)
conn

∂q(i)

Being RB < ρC evaluating collisions avoidance constraints require the knowledge of

only a subset of the neighbors of the generic i-th sensor.

The following values are assumed for the parameters of connectivity maintenance and

collisions avoidance constraints:

ρB = 0.5 RB = 1

ρC = 5.5 RC = 4

In the first simulation the K-Coverage sensing model is considered (K=15). Under

the hypothesis of communication network connectivity the global configuration of the

sensor network can be locally available with a certain delay δ. Every sensor can then

evaluate an approximation of the residual information of the workspace. In particular

the generic i-th sensor is assumed to know the following approximated sensor network

configuration:

q̂i(nTS) =

















q(1)(nδTS)
...

q(i)(nTS)
...

q(m)(nδTS)
















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with:

nδ =

{

n− δ if n > δ

0 if n ≤ δ

The value chosen for the delay is δ = 8 that is the worst case if unitary delay is assumed

for the communication channel.

Every sensor can evaluate γ̂
(i)
k , for every cell ck, with only locally available informations.

In figure 6.2 the evolution of the sensor network configuration is displayed together

with the estimation of the residual information made by one of the sensors, that’s

represented with a bigger dot. Communication network constraints are also shown, in

particular the edges that must maintained constraining distances between sensors are

displayed as black lines. The communication network topology changes but connectivity

is preserved.

In figure 6.3(a) distances between sensors are displayed, the constant indicates the

collision radius. As shown collisions between sensors are avoided.

Relaxing the hypothesis of global knowledge obviously affect the coverage dynamic,

in figure 6.3(b) the evolution of the percentage residual information of the whole inter-

est set is displayed and compared with the case of global knowledge.

In the second simulation stochastic coverage is considered. The sensor network is

asked to estimate the static scalar field x displayed in figure 5.3(a).

As said in 5.2.1, the residual information of a generic cell is given by the covariance

Pk of the estimation of the value of xk.

The generic i-th sensor is assumed to know the delayed sensor network configuration

q̂i(nTS) and the corresponding measures, so:

ẑk(n) =



















z
(1)
k (nδ)

...

z
(i)
k (n)

...

z
(m)
k (nδ)



















Ĥk(k) =



















H
(1)
k (nδ)

...

H
(i)
k (n)
...

H
(m)
k (nδ)



















where

Hj
k(nδ) =

{

Hj
k(n− δ) if n > δ

0 otherwise
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Figure 6.2: K-Coverage with collisions avoidance and connectivity maintenance con-

straints. Evolution of the sensor network configuration and estimation of the residual

information made by one sensors (bigger dot). The black lines indicate the edges of the

communication network that must maintained constraining distances between sensors

in order to assure global connectivity.
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Figure 6.3: Stochastic Coverage. (a) Evolution of the percentage estimated residual

information of the whole set of interest (solid). Comparison with the case of global

knowledge (dashed). (b) Relative distances between sensors.

In figure 6.5 the evolution of the sensor network configuration is displayed together

with the estimations of the residual information and of the field x made by one of the

sensors that is represented with a bigger dot.

In figure 6.4(a) distances between sensors are displayed to show the avoidance of

collisions. In figure 6.4(b) the evolution of the percentage residual information of the

whole interest set is displayed and compared with the case of global knowledge. As

in the previous case there is a loss of performances with respect to the case of global

coverage.
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Figure 6.4: Stochastic Coverage. (a) Evolution of the percentage estimated residual

information of the whole set of interest (solid). Comparison with the case of global

knowledge (dashed). (b) Relative distances between sensors.
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Figure 6.5: Stochastic Coverage with collisions avoidance and connectivity maintenance

constraints. Evolution of the sensor network configuration, estimation of the residual

information map (left column), and estimation of the scalar field x (right column) made

by one sensors (bigger dot). The black lines indicate the edges of the communication

network that must maintained constraining distances between sensors in order to assure

global connectivity.
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CHAPTER 7

CONCLUSIONS

T
his chapter summarizes the main results of the thesis, and indicates possible

future extensions.

Summary

This thesis concerns the problem of dynamic coverage with mobile sensor networks.

Once the loss of continuous measurements is acceptable, as happen in many applica-

tions, mobility can be used to expand the sensor network range. Anyway controlling

multiple mobile agents introduces challenging coordination problems. In this thesis

motion coordination is considered especially in terms of collisions avoidance and con-

nectivity maintenance.

In the first part optimal dynamical coverage is considered. Here the objective is evalu-

ating optimal controls for the mobile senors in order to maximize the area covered by

the network in given time interval. The problem is formulated at first an an optimal

control problem, then, after discretization, as a nonlinear programming problem. The

proposed formulation allow to handle many cases including, for example, closed tra-

jectories, suitable for periodic coverage and surveillance. Moreover the case of mobile

nodes with non homogeneous sensing capabilities is considered. As a particular case

redundant coverage for achieving robustness to node faults is addressed. In this context
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motion coordination is implemented introducing constraint to the resulting optimiza-

tion problems. Because of its computational complexity, this approach can be used

only offline and only for small networks.

In the second part a distributed solution to dynamic area coverage is presented. A

feedback control law is proposed that that can be evaluated by each sensor with only

locally available informations and that is shown working with also very general sensing

and constraint models.

In a distributed control architecture connectivity of the communication network is a

crucial aspect. For this reason the problem of distributed connectivity maintenance

for is considered. A solution based on the evaluation of an approximated MST of the

communication network is proposed. The approximated graph contain the MST and

then it is connected. Maintaining its edges entails, then, connectivity maintenance.

While the performances are lower than a centralized approach (but still effective) both

computation and data transfer (since only local data are required) are considerably

reduced, making possible the implementation of such a result for large senor networks

and online real time applications.

Future Improvements

A major challenge posed to the forthcoming research consists in relaxing the simplifying

assumptions done in this work.

• The motion model assumed, especially in the developing of the distributed control

strategy is very simple. A more complicated model could be considered including,

for example, nonholonomic constraints.

• The sensing model based on proximity, is not suitable for describing several real

sensors as, for example, cameras. It could be generalized including non symmetric

models.

• Assumptions on the communication model can be relaxed allowing unidirectional

communication links.
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• Coverage is considered only with respect to static magnitudes. When considering

time varying magnitudes the coverage measure of a given point must decrease in

time while the point is not in the sensing range of the network. Including this

case could be an important improvement.

• The set of interest is always assumed to be free. Including obstacles could be an

interesting topic for future research.

Moreover sensors cooperation could be improved. In the proposed approach the

cooperation between sensors is implicit. Excluding coordination tasks as collisions

avoidance and connectivity maintenance the behavior of a sensor is not directly condi-

tioned by the ones of the others.

In fact, for evaluating coverage control every sensor consider only its position and the

coverage status of the set of interest. The evolution of the coverage status (or of the

residual information) of the set of interest depending from the behavior of all the sen-

sors implement that implicit cooperation. Probably explicit cooperation could improve

the senor network performances.
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APPENDIX A

SEQUENTIAL QUADRATIC

PROGRAMMING

T
his appendix presents basic notion on sequential quadratic programming

methods. A detailed description can be found in Nocedal & Wright (1999).

In A.1 the general constrained optimization problem has been defined as:

min
v∈D

J(v) (A.1)

Where the admissibile set D is represented by:

D ={v ∈ R
n : h(v) = 0, g(v) ≤ 0}

Referring to the problem A.1 the Lagrange function is defined as the following

linear combination of the objective function and of the constraints functions:

L(v, λ, η) = L(v) + λTh(v) + ηT g(v)

where λ ∈ R
µ and η ∈ R

σ are called multipliers.
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As the name implies, sequential quadratic programming (SQP) methods are iter-

ative methods which solve at each iteration a quadratic programming problem (QP).

For the problem A.1 at the k − th iteration (starting from the current iterate vk) the

following problem must be solved for the next search direction:

min
p

1

2
pTWkp + ∇JT

k p

s.t.∇h(vk)
Tp + h(vk) = 0

∇h(vk)
Tp + h(vk) = 0

Here Wk is usually a positive semi-definite approximation of ∂2L
∂v2

∣

∣

∣

k
.

The subproblems above can be efficiently solved using the well known QP techniques.
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