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Chapter 1 

 

 

Introduction 
 

It is well known that light, just like many other physical phenomena such as 

sound and fluids, can be described by means of waves.  These are regular 

solutions of the so – called wave equation, a partial differential equation 

which allows to analyse and predict the behaviour of such phenomena.   

We use to think at waves as oscillations propagating in space and time and 

represent them through their wave-fronts, that is the locus of points having 

the same phase.  However sometimes there are points or lines in space 

where a quantity describing the wave experiences jumps or becomes 

infinite; they are called singularities.  In particular, when these abrupt 

variations happen in the phase of a field, we deal with phase singularities or 

phase defects, which appear as a veritable tear in the wave-front.  

In 1974 Nye and Berry [1] studied and classified these singularities, 

assimilating them to the defects of crystal lattices and introducing in the 

physics of waves the crystallographic term “dislocation” to describe the 

structure of the wave-front.  In analogy with crystals, they therefore 

identified three main kind of phase defects: edge, screw and mixed edge – 

screw dislocations. 

Edge dislocations consist of semi-infinite lines of discontinuity introduced 

by enclosing a half plane in the wave-front (or in the crystal lattice);  on the 

other hand screw dislocations take their name from the spiralling path 

which the phase (or the crystal’s atoms) covers around the dislocation line.  

Finally, when a simple edge dislocation ends in a screw one, a mixed edge – 

screw dislocation is created. 
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In real wave trains we deal with physical quantities, and thus the amplitude 

of the considered field must be a continuous function of the spatial 

coordinates.  This implies that at the points of the phase singularity, i.e. 

where the phase in indeterminate, the field’s amplitude must vanish and the 

dislocation can be described as the locus of points where both the real and 

imaginary parts of the field equal zero.  This mean that optical singularities 

can be seen as the locus of zero intensity. 

Undoubtedly, the most fascinating and studied phase singularities are the 

vortices, which are the clearest example of screw dislocation.  Their typical 

feature is a helical phase distribution which entails the circulation of the 

wave’s energy around the dislocation line thus the presence of angular 

momentum.  

 

 
Figure 1.1. Dislocations in a crystal lattice.  The edge dislocation (A) appears as 

an extra half plane of atoms, while in the screw dislocation (B) the atomic planes 

compose a helical structure around the dislocation line. 

 

Vortices can be found in a large amount of physics branches, from classical 

fluids to quantum systems like super-fluids, to light. 

As a matter of fact in optics, the latter are commonly known as optical 

vortices (OVs) and, since the seminal paper of Nye and Berry on wave 

dislocations, they were deeply investigated because of their manifold 

applications. The helical phase distribution associated to OVs and the 

corresponding rotating energy flow, allowed to use these fields for particles 

trapping [2] and manipulation [3] (optical tweezers).  Furthermore, the 
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stability of such configurations is particularly suitable for optical 

computing, for the generation of optical solitons [4], and grants light by 

light wave guiding.  Moreover the dark core of the OVs makes theme 

suitable for both astronomical [5, 6] and microscopy applications [7].  

Finally, one of the most important features of OVs, the orbital angular 

momentum (OAM) of light, can play a considerable role in quantum 

information [8] for the generation of multi – dimensional quantum bits 

(qudits). 

From the non exhaustive list of applications of  OVs written above emerges 

that it is a crucial point to obtain an accurate control over features of OVs 

such as OAM.  In particular this allows to extend the ability of manipulating 

particles and, above all, to thoroughly develop the quantum information 

aspect, by using spatial degrees of freedom for encoding information. 

Consequently, the aim of this dissertation is to investigate different aspects 

of optical vortices, focusing on the generation and control of the orbital 

angular momentum both by means of linear and nonlinear interactions.  

Moreover, application of the studied techniques are proposed. 

This thesis can be divided in three main parts: a first general section about 

OVs and OAM; a second part, including chapters 3, 4 and 5, which deals 

with linear interactions; and a third part which tackles quadratic nonlinear 

processes and how they affect OAM. 

 

- Chapter 2 presents the general theory of optical vortices and orbital 

angular momentum, introducing the paraxial wave equation and 

Laguerre – Gaussian beams and the mathematical formalism used 

throughout the dissertation.  Furthermore the most common 

techniques for generating OVs are discussed. 

- Chapters 3 and 4 show two different methods which allow to 

generate optical vortex beams.  A first approach uses a 

programmable segmented metallic mirror capable of producing 

OVs with tuneable topological charge.  The second technique takes 

advantage of plasmonic interactions to generate a field with OAM. 

- Chapter 5 proposes an experimental technique for probing the 

topological charge of an optical vortex generated with the 

techniques discussed in chapters 3 and 4. 
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- Chapter 6 investigates the behaviour of beams carrying orbital 

angular momentum in a quadratic parametric interaction of seeded 

second harmonic generation (SHG).  Theory and numeric 

simulations are discussed. 

- Chapter 7 describes an experiment of non – collinear second 

harmonic generation by off-axis fractional vortex beams.  The 

focus is on the possibility of controlling the spatial configuration of 

the generated second harmonic field, holding the OAM to a zero 

value. 

- Chapter 8 draws the conclusions of the thesis by summing up all 

the salient results. 

All the topics discussed in chapters from 3 to 8 are subjects of published or 

to be submitted papers; furthermore regarding the device proposed in 

chapter 3 and 4 there are also pending patents.  
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Chapter 2 

 

 

The orbital angular momentum of light 
 

The mechanical properties of electromagnetic fields began to play an 

important role in physics since 1873, when James Clerk Maxwell published 

his Treatise on Electricity and Magnetism [9].  Only few years after, the 

idea that electromagnetic radiation may have a direct influence on material 

objects was seriously considered [10] and finally developed by Poynting 

[11], who predicted that a circularly polarized light beam could exerts a 

torque on a mechanical body.  Poynting previsions were confirmed by Beth 

in 1936 [12]: he measured the torque effect on a suspended quarter-wave 

plate hit by a beam of light with circular polarization and verified that, in 

agreement with both wave and quantum theories of light, there was an 

angular momentum transfer between the radiation and the plate.  It is a 

widespread opinion that Beth’s experiment laid the foundations for all the 

following works on the angular momentum (AM) of light, opening the way 

to this interesting branch of research.   

A crucial turn happened when, beside the spin component of the angular 

momentum (SAM), which is due to the circular polarization of light, the 

role of the orbital component was made known and related to the helical 

structure of the phase of beams like Laguerre – Gaussian (LG) modes [13].  

The work of Allen et al. [14] pointed out the correlation between the AM 

and the LG modes and the scientific community began to talk about these 

new, fascinating objects called optical vortices [15].  This, together with the 

theoretical bases developed by Nye and Berry [1, 16, 17], gave rise to that 

field of beam optics known as Singular Optics [18]. 
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2.1 General theory of the angular momentum of light 

According to the classical electromagnetic theory [19] the linear momentum 

density of an electromagnetic field is defined as: 

 0  E B . (2.1) 

From Eq. (2.1) the angular momentum density of the field can be calculated 

simply by choosing an appropriate reference point and, being R the defined 

arm, using the general expression of the cross product between the arm and 

the linear momentum: 

 0 j R . (2.2) 

The total angular momentum of the field is obtained by integrating over the 

whole space with the elementary volume dR 

  0 dR J R Π . (2.3) 

It is possible to distinguish two separate components of the total angular 

momentum J, a spin component S originated from the polarization of the 

electromagnetic radiation, and an orbital component L which depends, as 

will be shown later, on the spatial distribution of the field itself.  Therefore 

the first member of Eq. (2.3) can be rewritten as 

  J L S . (2.4) 

This distinction comes from the atomic physics where spin is referred to the 

rotation of a particle around its centre of mass, while with orbital is intended 

the rotation with respect to the origin of the reference system. 

The above equations have a general validity and can be used to evaluate the 

angular momentum of any field.  However in the most common situation of 

laser beams, we deal with transverse electromagnetic fields, thus it can be 
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appropriate to reconsider these results under the hypotheses of the paraxial 

approximation. 

 

2.2 Angular momentum of paraxial beams 

In beam optics the electromagnetic field is supposed to show a slow 

variation of  its transverse profile along the direction of propagation z.  This 

means that the considered light beam is well collimated and most of the 

field’s energy is concentrated around the propagation axis [20,21]. 

This consideration can be transposed in terms of the scalar wave equation 

by neglecting the second derivative of the field’s amplitude u(x,y,z) with 

respect to z.  As a matter of fact, a scalar field propagating mainly along z 

can be written as ( , , ) ikzE u x y z e , where k is the wave number.  

Writing the Helmholtz equation and separating the transverse and 

longitudinal parts of the Laplace operator the following equation is 

obtained: 

 

2
2 2

2
0T E k E

z

 
    

 
 (2.5) 

By substituting E in the above equation and making explicit the transverse 

Laplacian, after trivial algebraic passages Eq. (2.5) leads to 

 

2 2 2

2 2 2
2 0

u u u u
ik

x y z z

   
   

   
 (2.6) 

As pointed out before, the hypothesis of paraxiality implies that the field’s 

amplitude is slowly varying with z, so that the paraxial approximation can 

be expressed by imposing the condition 
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2

2

u u
k

z z

 

 
, (2.7) 

which allows to rewrite Eq. (2.6) as 

 

2 2

2 2

1

2

u u u
i

z k x y

   
   

   
. (2.8) 

It can be demonstrated [22,23] that, under the paraxial approximation, for a 

linearly polarized electromagnetic field, the magnetic component assumes 

the expression of 

 

0

ˆ ˆ ikzik i u
u e

k y

 
  

 
H y z  (2.9) 

while the electric field becomes 

 ˆ ˆ ikzi u
ik u e

k y

 
  

 
E x z  (2.10) 

By substituting Eqs. (2.9) and (2.10) in Eq. (2.1) the Poynting vector can be 

found as 

 
20

0
ˆ( * *)

2
u u u u k u

i

 
     Π z  (2.11) 

where the subscripted symbol T is omitted, thus  is intended to represent 

the transverse gradient operator.  Looking at equation (2.11) it can be 

noticed that the term in round brackets represents the transverse energy 

flow, while the term proportional to the square modulus of the amplitude u 

stands for the linear momentum density in the direction of propagation. 
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Of course this treatment can be generalized to the case of a circularly 

polarized field [22].  Calculations show that, besides the terms of Eq. (2.11), 

there is an additional contribution due to the mixed products – in Eq. (2.1) – 

of the orthogonal polarizations: this is the term responsible of the spin 

component of the angular momentum (SAM).  

From what has been said it is clear that paraxial beams find a preferential 

direction of propagation in the z axis, therefore the main component of the 

electromagnetic field is directed along the ẑ unitary vector.  From this 

follows that the arm for determining the angular momentum can be chosen 

in the transverse plane; hence we can replace R = (x,y,z) with r = (x,y).   

As a consequence, since the angular momentum is the cross product 

between the arm r and the linear momentum vector, emerges that its 

dominant component is indeed in the z direction. 

For the sake of this dissertation the contribution of the polarization to the 

optical angular momentum will be neglected and focus will be placed on the 

orbital component (OAM) by considering a linearly polarized paraxial 

beam.   

In this situation the AM that we indicated with J coincides with the OAM 

denoted by the symbol L. 

It can be easily seen that the cross product between the transverse vector r 

and the linear momentum density vector produces an angular momentum 

vector which is mainly directed along z; furthermore it can be noticed that 

the z component of the orbital angular momentum is totally bound to the 

transverse component of the linear momentum density. 

Since we are interested to the component of the AM along the direction of 

propagation, by substituting the transverse part of Eq. (2.11) in Eq. (2.3) the 

expression of the orbital angular momentum of the light beam along the 

propagation axis z can be found as: 

  0 * *
2

z z
L u u u u dr

i

 
       r . (2.12) 

The energy density of the field can be calculated by multiplying the z 

component of the linear momentum density by the speed of light c; 
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therefore it is possible to evaluate the orbital angular momentum of a single 

photon: 

 

 0

2

0

*
z

u u dr
L i

W kc u dr

 

 

 






r

, (2.13) 

being W the energy of the light beam. 

It was pointed out that the OAM in the z direction comes from the 

transverse part of the linear momentum vector.  In particular the tangential 

component of the energy flow is directly responsible for the orbital 

component of the angular momentum.  It will be shown later that the latter 

is a typical feature of the so called helical beams, which are solutions of the 

wave equations in a cylindrical reference frame.  Hence can be useful to 

reconsider the previous equations writing them in cylindrical coordinates.  

The transverse position vector thus becomes a function of the polar 

coordinates r = (r,θ) while the amplitude distribution will be u(r,θ,z). 

Looking at Eq. (2.12) it can be noticed that, in cylindrical coordinates, the 

cross product r equals the azimuthal derivative operator /   .  

Equation (1.12) can thus be rewritten as 

    0 * , ,zL u r u r rdrd
i


  

 




 . (2.14) 

The orbital angular momentum per photon can be determined from Eq. 

(2.13) and is 

 

   

 
2

* , ,

,

u r u r rdrd
i

u r rdrd

  


 







 (2.15) 

The symbol was introduced to point out the analogy with the quantum – 

mechanical operator of the z component of the OAM of a wave function 
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[23].  In this way Eq. (2.15) represents the expectation value of such 

quantum operator.  From Eq. (2.15) emerges the role of the tangential 

component of the Poynting vector in the OAM.  Therefore, as mentioned 

before, can be confirmed that while the spin angular momentum depends on 

the – circular – polarization of the light beam, the OAM is bound to the 

azimuthal field’ spatial configuration.  

Some considerations should be added about the nature of the orbital angular 

momentum.  Since the spin angular momentum is due to the polarization of 

the field, it does not depend upon the chosen reference frame, so it is said to 

be intrinsic.  This is not true about the OAM which has a strong dependence 

on the spatial field distribution thus is strictly related to the choice of the 

reference axis; hence it can be defined extrinsic [25].  However it is still 

possible to find conditions that allow to consider intrinsic the OAM [26].  

As a matter of fact, if the direction of the reference axis is chosen in order to 

make the transverse momentum zero, the orbital angular momentum does 

not depend anymore upon the lateral position of the axis.  It should be noted 

that this is always true when dealing with helical beams symmetric to the 

reference axis such as Laguerre – Gaussian beams.  Nevertheless the 

situation drastically changes if these kinds of beams lose their cylindrical 

symmetry, as, for example, if they are truncated by an aperture. 

 

2.3 Helical beams 

Undoubtedly,  the most important family of beams carrying orbital angular 

momentum are the so called helical beams.  These are paraxial light beams, 

which are solutions of the cylindrical wave equation, characterized by a 

spiral phase distribution which grows linearly with the azimuth angle θ, 

whirling around the propagation axis: this means that their wave fronts are 

helicoids.  The paraxial field distribution of such beams has the form of  

   0, , ( , ) ilu r z u r z e    (2.16) 
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where l is an integer index and u0(r,z) is a complex function rapidly 

decaying with increasing values of r.   

In such fields the phase follows a linear azimuth ramp, increasing, at a fixed 

value of r, from 0 to 2π as shown in Fig. 2.1.  However when r → 0 the 

phase becomes indeterminate, giving rise to a singularity point which is a 

screw wave front dislocation or, in other words an optical vortex.  From the 

definition of phase dislocation introduced in chapter 1 entails in 

correspondence to the defect’s axis, there is a point of destructive 

interference where both the real and imaginary parts of the field vanish.   

 

Figure 2.1.  Wave front of a helical beam.  The phase spirals around the beam’s 

axis, raising from 0 to 2π.  The axis corresponds to a line where phase is 

undetermined so that a screw dislocation is created. 

This makes the beam to appear as a annular spot with a dark core, a feature 

that made theme earn the name of “doughnut modes”.  

A parameter can be introduced to characterize such vortex beams: the 

topological charge Q defined by means of the circulation integral 

 
1

2
Q d


   (2.17) 

being Φ the phase of the field.  Here Q is an integer number, positive or 

negative, depending on the handedness of the helicoids, which represents 

the winding number of the phase around the dislocation line, or rather the 

number of 2π jumps which happen in a line enclosing the singularity. 

Among helical beams, Laguerre – Gaussian (LG) [27] modes are the most 

common, since they can be generated as modes of a circular laser resonator.  
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In a cylindrical coordinates system, a normalized LG mode can be written 

as: 

 
 21 22 1 arctan

2 ( )

, , 2

2 2
( , , ) r

l zik
i kz p lr

z lR z wLG il

p l p l p

r r
r z U e e e L

w w

 

   
      

     
   

     
  

 (2.18) 

where  

 

 ,

1 2 !
p l

p
U

w p l



 (2.19) 

are the normalized coefficients, w is the z-dependent spot size, R(z) is the 

radius of the wave front curvature for a fixed z, zr is the Rayleigh range, 
l

pL  

are the generalized Laguerre polynomials of indices p and l with argument 

2

2

2r

w
.  The distinctive indices p and l are integer numbers and represent 

respectively the number of nodes in the radial distribution and the phase 

change, modulo 2π, in a closed loop around the circumference of the beam 

axis, thus the topological charge Q. 

Besides Laguerre – Gaussian modes, another family of helical beams are the 

Bessel – Gaussian beams, which have a transverse profile modulated by 

Bessel functions of the first kind with argument r.  their inte 

The doughnut structure of such fields is produced by the rotation, during the 

wave oscillation, of the electric field around the beam’s axis; this, joined 

with the propagation along z generates a helical wave front and produces an 

orbital angular momentum.   

The presence of OAM can be easily explained thinking that the Poynting 

vector is always perpendicular to the wave front surface [18].  In the case of 

a helical beam, the wave front surface is a helicoid; this means that, locally, 

the Poynting vector is tilted of an angle proportional to the slope of the 

phase ramp.  Therefore there is a nonzero tangential component that results, 

as mentioned before, in orbital angular momentum. 

The orbital angular momentum of such helical beams can be easily 

determined if we refer to the field distribution expressed by Eq. (2.16).  
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Since OAM is a constant of propagation, it can be evaluated for any value 

of z, thus can be opportune to choose the plane z = 0.   

As a matter of fact, by substituting the expression of a generic helical beam 

in equation (2.14) we obtain 

  
2

0 0z

l
L u r rdrd 


   (2.20) 

It is possible to recognize that the integral in the above equation is the beam 

energy W.  The z component of the total orbital angular momentum of the 

electromagnetic field thus can be written in the following way: 

 
z

l
L W


  (2.21) 

The beam energy can also be expressed in terms of the number of photons 

N, as W N   which makes Eq.(2.21) become 

 zL lN  (2.22) 

 

Figure 2.2.  Intensity distribution of a LG01 mode and its corresponding 

transverse Poynting vector.  Due to the rotational effect around the beam’s axis, 

the presence of OV can be noticed.  By changing the sign of the topological 

charge, the arrows point to the opposite direction.  
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This means that each photon of the beam, as predicted by Eq. (2.15), carries 

an orbital angular momentum of l .  Moreover, the result of Eq. (2.22) 

entails that an optical vortex nested in a beam, carries an angular 

momentum per photon, in  units, equal to its topological charge.  This 

result can also be applied to LG modes, allowing to assert that these beams 

carry an OAM per photon corresponding to their azimuth index l. 

The rotational effects imposed by the presence of OAM can be hard to 

observe in typical vortex beams since they show circularly symmetric 

intensity distributions.  However it is possible to obtain different field 

profiles without circular symmetry and it can be noticed that, during the 

propagation they rotate around their propagation axis.   

In this situation, looking at Eq. (2.18), emerges that Laguerre – Gaussian 

beams form a set of orthogonal modes which are characterised by an 

intensity distribution which does not change with the free space propagation 

[20].  Therefore a generic paraxial field with a spatial distribution u(r,θ,z) 

can be written in terms of a modal decomposition of LG modes: 

   ,

0

, , ( , , )LG

pl p l

p l

u r z C r z  
 

 

  (2.23) 

where the expansion coefficients Cp,l are determined by the projection 

relation 

  
2

*

, ,

0 0

( , ,0) , ,0p l p lC u r r rdrd



   


   . (2.24) 

The expansion of Eq. (2.23) is a powerful tool which allows to study 

analytically even fields carrying orbital angular momentum per photon with 

non-integer values.  In fact, by substituting Eq. (2.23) in Eq. (2.15) and 

exploiting the orthonormality condition of such modes, after some algebra it 

can be found that the overall OAM is a weighted summation, performed 

over the radial and azimuthal indexes, of the angular momenta of the 

composing LG beams: 
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In such a way OAM become a basis, hence beams with fractional values of 

OAM per photon may form, from a quantum-mechanical point of view, a N 

dimensional superposition state, which makes it appealing in quantum 

information [8]. 

 

2.4 Generation of optical vortices 

There are many suitable techniques which allow to generate a screw phase 

dislocation, hence orbital angular momentum, in a light beam.  Most of 

these methods resort to diffractive optical element, however they can be 

divided in categories following mainly two different philosophies: one 

produces the vortex beam by operating on cavity modes of the kind of Eq. 

(2.18), while the other aims to nest the phase dislocation by directly 

imprinting on the field the helical phase structure.  Of course both of these 

techniques have their own flaws and advantages and their use depends on 

the application. 

 

2.4.1 Generation of pure Laguerre – Gaussian modes 

As mentioned above, LG beams are a solution of the paraxial wave equation 

for cylindrically symmetric reference system.  As a matter of fact they can 

be obtained in laser resonators under specific conditions [28].  However, 

despite the pureness of such modes, since they occur spontaneously, is 

difficult to control the generation process thus to determine precisely the 

topological charge.   

A more suitable way of generating LG modes, makes use of another kind of 

cavity modes, with rectangular symmetry and carrying zero orbital angular 

momentum, which are easier to obtain, the Hermite – Gaussian (HG) 

modes.  Both Laguerre – Gaussian and Hermite – Gaussian form a 
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orthonormal basis, therefore a relation between the two bases can be found 

in order to transform a mode in another of the other kind [29].  For this sake 

mode converters based on astigmatic cylindrical lenses were proposed [30, 

31].  These are made by a set of two cylindrical lenses separated by a fixed 

distance; an incident Hermite – Gaussian mode HGn,m (being n and m the 

indices corresponding to the number of horizontal and vertical nodal lines), 

rotated by 45° with respect to the optical axis of the lens, is transformed into 

a completely pure Laguerre – Gaussian mode whose indices are l = n – m 

and p = min(n,m).  Mode conversion was also obtained using an astigmatic 

fibre optic waveguide [32].   

Higher order LG modes can be obtained with interference converters in 

which the output mode is produced by the superposition of an HG mode and 

an auxiliary beam. 

It should be noted that these methods ensure a total mode conversion, thus 

the output beams are a real LG modes.  However the proposed mode 

converters do not offer a compact solution and require a cumbersome 

experimental setup. 

 
Figure 2.3.  Cylindrical lenses based mode converter.  The astigmatic lenses 

transform the HG modes in an LG one by introducing a π/2 phase difference 

between the modes of the superposition. 

 

2.4.2 Screw dislocations imposed by phase device 

Since OAM beams possess, as pointed out throughout this dissertation, a 

helical wave front, it is possible to nest the phase defect by imposing the 
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helical structure on the phase of the field.  Therefore several diffractive 

optical devices were designed to accomplish this task. 

One of the most common and simple technique is based on holograms 

imprinted with the interference pattern of a LG beam and a plane wave [33 

– 35].  These holograms, commonly known as “fork holograms”, show 

themselves as an edge dislocation enclosed in the lattice of the interference 

fringes which appears as a bifurcation.  The number of “forks” in the fringe 

pattern is proportional to the topological charge – the index l –  of the 

incident Laguerre – Gaussian beam.   

 

Figure 2.4. a) Interference pattern between a plane wave and a LG01 beam: the 

charge 1 OV produces a single bifurcation; b) holographic fork binary diffraction 

grating : when illuminated by a Gaussian beam it generates the recorded LG 

beam.  

As a matter of fact when the hologram is illuminated by the reference field, 

a diffracted beam is generated with the phase fronts of the original LG 

mode.  Notwithstanding it is possible to use phase holograms, a more 

efficient way is to employ amplitude holograms, i.e. binary diffraction 

gratings reproducing the interference pattern.  On the output side of the 

grating, several diffraction orders are present, each of them carrying an 

optical vortex with a proportional topological charge.   

Therefore the optical element acts as a transparency function of the kind 

    
0

1
1 sin

2

r
T r qx m

r


 
   

 
, (2.26) 
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where r0 is a transmission parameter and q is the diffraction order.  Since a 

simple binary diffraction grating can be used, the hologram can be easily 

calculated and generated by a computer (CGH) [36].  A more flexible and 

practical way of using the hologram technique relies on the spatial light 

modulators (SLM),  liquid crystal based devices which can be configured in 

the shape of the fork grating.  Differently from the transmission holograms, 

SLM is used as a reflective device, hence the incident beam is reflected 

from the grating into a set of diffraction harmonics.  Furthermore SLM is 

completely real time driven by a computer, therefore it can be easily 

programmed in order to generate the desired OV beam.  However, since 

SLM rely on liquid crystals, they have an intrinsic limit due to the power of 

the incident beam, which should not reach high values. 

Because of the small dimensions and the tuning possibilities fork holograms 

offer an efficient solution to generate beams with orbital angular 

momentum, even though they do not produce pure Laguerre – Gaussian 

modes.  Nonetheless they require precise alignment between the incident 

beam’s axis and the central point of the grating, in order to imbed the 

singularity in the centre of the field distribution, thus to obtain, as will be 

shown later, an integer value of the OAM.  Moreover it was pointed out that 

multiple diffraction orders are generated; among them the zero order beam 

– propagating along the same axis of the incident field and carrying zero 

orbital angular momentum – is present, hence it, together with the higher 

order harmonics, should be blocked so that the desired OV beam can be 

selected. 

A simple, although less flexible diffractive optical element is the spiral 

phase plate (SPP), which is a transparent device which acts directly on the 

phase of the incident field imposing the helical structure of the wave front 

[37- 40].  The SPPs, as depicted in Fig. 2.5, have a staircase structure with a 

thickness which grows linearly from the base value h0 to an upper value hs.  

Therefore the optical path depends on the azimuth coordinate θ, thus 

imposing an azimuthal phase dependence.   
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Figure 2.5.  The spiral phase plate: the thickness of the device has a linear 

azimuthal dependence 

These devices can be modelled as if they impose on the illuminating beam a 

transmission function acting only on the phase, which can be expressed as 

  , iQT r e    (2.27) 

being Q the topological charge, thus the OAM, imprinted on the beam.  The 

physical features of the device are the step height hs the refractive index n of 

the SPP and the background index n0.  Since the topological charge Q is 

bound to the optical path, it can be determined as 

 
 0

s

n n
Q h




 . (2.28) 

This means that, with a fixed SPP, the generated OV can be tuned both by 

changing the wavelength λ or by properly choosing the background 

medium, as in the experiments of Beijersbergen et al. poposed in ref. [31], 

where the spiral phase plate was immersed in a cell filled with an index 

matching fluid; in this situation a further degree of freedom was introduced 

by varying the background index through the control of the cell’s 

temperature. 

SPPs can be made of polymers and fabricated with micro machine 

moulding techniques [38] or can be produced with lithographic processes 

[41, 42].   

However, since SPPs aim to impose the helical structure on the phase 

profile, there is a limit in realizing a true screw dislocation, that is a point  

phase singularity on the optical axis.  As a matter of fact, in all the 
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fabrication techniques proposed there is a small area surrounding the optical 

axis, which cannot be controlled, hence introducing an height anomaly [38].  

Nevertheless optical vortices of good quality can be generated.  Ref. [37] 

shows that neither this devices can be considered as mode converters since 

they do not produce pure LG modes.  Spiral phase plates are less tunable 

device with respect to the CGHs, especially if compared with SLM; 

however a certain degree of tuning can be obtained in polymer SPPs by 

changing the step height by means of a mechanical deformation [43].  The 

tuning restrictions of this device is given by the elastic limit of the plate 

material. 

A completely different way of generating orbital angular momentum is the 

use of the so called Q – plates [44].  These are optical devices which are 

both anisotropic and inhomogeneous and convert spin angular momentum 

into OAM.  This means that for a circularly polarized light beam, which 

carries SAM, incident on a Q – plate coupling of the SAM with OAM 

happens and a helical wavefront is generated.  Of course the sign of the 

generated OAM depends on the input polarization direction.  On the other 

hand, the absolute value of the OAM per photon is bound to the 

configuration of the Q – plate as shown in figure 2.6, or better by the local 

orientation of the optical axis in terms of two parameters.   

 

 
 

Figure 2.6. Different Q – plates configurations which generate OAM per photon 

equal to l = ±1 (a) and l = ±2 (b, c) depending on the direction of the 

polarization. Source Ref. [42]. 

These plates can be realized using both liquid crystals, polymers, or sub – 

wavelength gratings. 
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Chapter 3 

 

 

Helical reflection: optical vortices 

generated by a programmable spiral 

phase mirror 
 

In the previous chapter several techniques were discussed for adding orbital 

angular momentum to a paraxial light beam.  It was shown that all of them 

are valid methods notwithstanding they have their own advantages and 

drawbacks.  In particular, looking at the devices previously described, it 

emerges that a common feature is undoubtely the lack of tunability in terns 

of topological charge, orbital angular momentum and operating wavelength, 

that is the difficulty of reaching a fast, easy and accurate control over the 

vortex charge, hence over the OAM of the output beam.   Furthermore, all 

of the optical devices are macroscopic objects and tipically must be 

employed in experimental setup requiring a certain degree of alignment, 

therefore they are not thougt to operate as integrated optical elements. 

The research path of this PhD, brought to study and design devices able to 

overcome the above limits, aiming both at the achievement of a good 

control of the OAM and at the integration features of OV generation 

devices. 

This chapter and the following one will introduce two different techniques 

suitable for creating helical beams.  The former is an adaptive segmented 

mirror controlled by electrcally driven actuators capable to configure itself 

in order to obtain a perfect tunability of the topological charge and OAM 

imposed on an incident beam by operating on its phase profile.   
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The second proposed device, which will be discussed in chapter 4, takes 

advantage of plasmonic interactions for generating a beam with OAM, 

starting from a circularly polarized light field;  this allows the creation of 

OVs at the nanoscale, opening the way for integrated singular optics. 

 

3.1 Programmable spiral phase mirrors 

It was shown before that among all the techniques suitable to obtain OAM, 

the most commonly used are undoubtely the fork hologram (or its tunable 

analogous SLM) and the spiral phase plate.  However both of them are 

affected by a common defect, that is the reduced possibility of a fast 

reconfiguration which allows to change in real time the properties of the 

output OV.  Moreover SPPs are tightly bound to the wavelength of the 

incident field, because they operate on the optical path; on the other hand 

CGHs produce, in addition to the desired one, several diffraction orders 

which should be suppressed.  Other than this limitation, SLMs can not 

sustain beams with excessive power, since they are made of liquid crystals.  

It was mentioned before that attempts to produce adjustable spiral phase 

plate have been undertaken by Rotschild et al. in Ref. [43].  They produced 

a SPP made of a plexiglass plate where is made a cut which goes from an 

edge to the center of the structure.  The plate is then mounted on a rigid 

frame and one side of the cut is strained by means of screws: this technique 

allows to change the optical path, hence the SPP can be adapted to different 

wavelengths and, with fixed λ, can produce multiple values of the 

topological charge.  Although this is a simple method to tune OAM it shows 

serious limits due to the elastic limit of the material which leads to the 

breakage of the device for too high values of the topological charge.  Ref. 

[43] reports that this effect can take place even for Q greater than 3. 

Alternative techniques for imprinting helical wavefronts take advantage of 

reflection based devices instead of transmission ones.  This is the case of 

helical mirrors which operate on the incident beam by introducing a suitable 

phase difference with an azimuth dependence.  As a matter of fact the 

mirror surface can be designed in order to vary linearly with the azimuth 
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coordinate, thus introducing an height difference between the extremes 

angular values. 

Following this simple principle the helical surface of the device can be 

actively deformed by changing its pitch, hence making it an adaptive helical 

mirror (AHM). 

Ghai et al. [46,47] designed and produced an AHM by using a technique 

similar to the one presented in Ref. [43].  In fact they made a radial cut, 

which goes from the edge to the center, onto a circular flat metallic mirror.  

Then a tubular piezoelectric transducer (PZT) deforms the mirror along its 

optical axis and stretches the edges of the cut in the shape of a helix.  A 

voltage applied on the tubular PZT is responsible of its deformation and 

makes it elongate or contract along its length.  This allows to control exactly 

the total helical deformation of the above mounted mirror which changes 

the helix pitch linearly with the applied voltage. 

 

Figure 3.1.  Continuous adaptive helical mirror. A radially cut flat mirror is 

mounted on a tubular PZT.  The helical deformation is directly driven by the 

applied voltage. 

In this way the AHM, differently from the common spiral phase plates, has 

a continuous helical surface which entails a better quality of the generated 

optical vortices.  However the continuous nature of the helical mirror 

surface at issue entails an intrinsic limit to the programmability of the 

topological charge.  As a matter of fact there is a maximum height 



 

3. Helical reflection: optical vortices generated by a programmable spiral phase mirror 

30 
 

difference between the edges of the cut, corresponding to the breaking point 

of the mirror, which does not allow to exceed the absolute value of Q = 4.  

Moreover other issues concern the generation of OVs with opposite 

topological charge because of the depolarization limits of the transducer 

which may be depolarized if an excessive reverse voltage is applied on it. 

More flexible solutions were proposed introducing segmented mirrors as 

OV generators [48].  Tyson et al. report the generation of optical vortices 

by reflection from a segmented mirror made of hexagonal cells.  These 

segments were driven by actuators in order to configure the mirror as a 

spiralling surface.  This system allows to tune the topological charge in the 

mechanical limits of the actuators which, in this situation do not show 

depolarization problems.  Generation of OVs up to charge 5 was reported 

together with the possibility of producing vortices with fractional OAMs. 

However, since helical wavefronts are purely azimuthal objects, the 

geometry proposed in Ref. [48] may not be optimal for the generation of 

OVs.  In fact the hexagonal cells must be controlled both in the radial and 

azimuthal direction requiring a more complex control of the actuators.  

Furthermore the hexagonal geometry introduces a certain degree of 

approximation in reproducing the helical structure, especially in terms of 

the central anomaly.  

From what showed above it can be understood that the philosophy of 

segmented mirrors may be a good solution to obtain a tunable topological 

charge device capable to operate on multiple wavelengths and which can be 

rapidly reprogrammed.   

In this research work it was found a more suitable geometry of deformable 

mirror where the segmentation is made along the azimuth coordinate, hence 

resulting in a series of reflecting “slices” whose height can be driven 

independently by actuators.  Since its main feature is to generate helical 

wavefronts, this device can be addressed as a programmable spiral phase 

mirror (SPM). The azimuthal steps can be thus configured both as helical 

ramps (single or multiple), then generating OAM, or as arbitrary 

azimuthally dependent profiles which can shape the beam’s intensity 

distribution in order to perform a sort of spatial encoding. 

In this dissertation the design of the device is proposed, together with the 

corresponding numerical simulations which take into account both the 
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generation of OAM and the beam shaping configurations.  Since the device 

is currently being fabricated, a possible experimental setup is also 

presented. 

Finally it should be noted that there is a patent pending and a journal paper 

to be published. 

 

3.2 Design of the spiral phase mirror 

As pointed out before the issued device is composed by a number N of 

azimuthally distributed segments of metallic mirror which can be displaced 

independently from their original position by actuators, i.e. piezoelectric 

transducers.  The azimuthal slices may be obtained by deposition of a metal 

layer which can be radially cut with a period of 2π/N.  Figure 1 shows an 

outline of the structure and one of its possible configurations. 

 
Figure 3.2. Schematic representation of the azimuthally segmented helical mirror 

composed by N = 40 steps.  a) Perspective view: the steps are displaced in helical 

configuration; b) top view. 

Looking at Fig. 1 it can be noticed that a central hole is present in the 

mirror.  This is intrinsically bound to the fabrication process which cannot 

produce perfect wedges.  However if the radial dimensions of the 

programmable SPM are large enough, the effect of the central hole can be 

neglected.  Since the proposed device is intended to be a macroscopic 

object, the above conditions are always true. 
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The spiral phase mirror can be modelled similarly to SPP by treating it as a 

simple reflection function affecting only the phase of the field:  we thus 

assume that, when an incident beam is reflected by the mirror, its 

disturbance results multiplied by a linearly azimuthally dependent phase 

function hence the amplitude remains unaffected.  It was pointed out that 

the mirror’ steps undergo  to a displacement from their original position 

which deforms the mirror surface along the z axis, that is the propagation 

axis of the incident beam.  Since each slice corresponds to a fixed discrete 

value of the azimuth coordinate, when the mirror is deformed, at each 

azimuth angle is associated a height displacement Δz.  Therefore the mirror 

surface can be considered as if it undergoes to a displacement function 

Δz(θ) which is responsible of the phase change experienced by the reflected 

field.  

If a paraxial light beam with amplitude E(r,θ,z) impinges on the mirror with 

normal incidence, the field ER resulting from the reflection experiences an 

additional propagation distance which depends on the angular coordinate as 

follows: 

      
, , , ,

ik z

RE r z E r z e


 


 , (3.1) 

being k the beam’s propagation constant.  Looking at Eq. (3.1) it is evident 

that the programmable SPM can be configured in order to assume an 

arbitrary azimuthally dependent height displacement. 

If an optical vortex has to be generated, as it is known, a helical phase 

distribution is required; this means that, as happens for the spiral phase 

plates, the mirror’ steps should be arranged in a staircase fashion, spiralling 

along the optical axis.  The position of the segments composing the mirror 

thus grows linearly with the angle θ, creating the desired helical path. 

It can be helpful to remind that an OV beam is characterized by a phase 

distribution which goes as exp[iQθ], hence, in order to obtain a vortex of 

topological charge Q, the phase change along θ should be Q times 2π. 

In this situation a simple formula describing the mirror profile Δz, which 

relates the height of each step, the operating wavelength λ and the 

topological charge Q, can be derived by comparing the phase term of Eq. 
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(3.1) with the expression of the helical wavefront.  Therefore, equalling the 

terms 

  ik z iQ   , (3.2) 

it can be found that the overall displacement is 

  
2

z Q


 


  , (3.3) 

which can be clearly identified as a helical ramp.  Since the steps are 

distributed along θ, this direction can be made discrete and, by associating 

each step with an increasing integer index dependent on the θ coordinate, 

Eq. (3.3) can be easily written in terms of the step index j which ranges 

from 1 to N: 

 
( 1)

j

j Q
z

N


   (3.4) 

Of course this implies an approximation of the spiral ramp, since there is a 

jump corresponding to the angle 2π (or 0) thus the displacement never 

reaches the value λQ.  However the larger is the steps number N, the better 

is the spiral distribution, because the discrete angle asymptotically tends to 

assume the value 2π at the jump coordinate. 

The helical mirror’s profiles of Eqs. (3.3) and (3.4) may result difficult to 

obtain when higher topological charges are considered, thus limiting the 

operability of the device, as happened for the adaptive helical mirror of Ref. 

[46, 47].  As a matter of fact, a high value of the topological charge entails 

a large amount of displacement which cannot exceeds the maximum 

elongation of the actuators; furthermore large height differences result in 

longer re-configuration times, since the actuators would take more time to 

change their state of such amounts.  

This problem can be overcome, provided that the mirror is composed by a 

suitable number N of segments [50], if the SPM displacement function is 

programmed as a saw – tooth profile with a number of periods equal to the 

desired topological charge.  In this way, each ramp imprints an azimuthally 
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dependent phase shift of 2π, reducing drastically the maximum 

displacement of the steps, therefore eliminating the problems associated 

with common adjustable helical devices.  This allows to reduce the 

situation to the unitary topological charge case.  An example of multiple 

ramps configuration is depicted in Fig. 2 where a perspective view of the 

SPM programmed to generate a topological charge Q = 5:  the displacement 

of each ramp introduces a phase difference of 2π. 

 

Figure 3.3. Programmable spiral phase mirror configured in the saw – tooth 

profile with Q = 5; the steps are arranged in five linear ramps along the azimuth 

coordinate, introducing an equal number of 2π phase shifts.  

It was mentioned that the adaptive helical mirror proposed by Ghai et al. 

[47] suffered of problems regarding the inversion of the sign of topological 

charge because of hysteresis issues of the piezoelectric actuator.  The 

programmable SPM overtakes these limits; in fact, in order to obtain a 

topological charge of opposite sign, it is sufficient to invert the direction of 

the ramps.  In terms of the displacement function this means that the 

symmetric Δz function should be considered. 

Of course the independence of the segments allows to program the mirror 

with an arbitrary azimuthal height function, a thing that entails the 

possibility of generating different field’ space profiles.  For example, by 

grouping steps together, it is possible to reduce the discretization of the 

helical ramp, going below the minimum number of steps suitable to 

represent a fixed topological charge.  As a matter of fact, if the slices are 
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less than what was predicted in reference [50] the OAM per photon 

decreases from its starting value which, it is reminded, equals the 

topological charge.  Therefore a further degree of tunability of the orbital 

angular momentum is added. 

Other examples of configurations see the height profile arranged as a 

square, triangular, or trapezoidal wave profile:  it is clear that all of these 

are techniques capable to tune the angular momentum and to configure the 

intensity distribution, entailing the possibility to introduce a system of 

spatial encoding. 

 

3.3 Numerical simulations 

In order to estimate the features of the designed mirror, numerical 

simulations were performed which allowed to observe the field’s amplitude 

and phase profiles produced by the device and the corresponding orbital 

angular momentum.  For this sake a simplistic but efficient and accurate 

paraxial model was considered so that the following setup can be 

represented.  Supposing the SPM on the z = 0 plane, the profile of the 

incident field was considered to accumulate an optical path Δz, 

corresponding to the displacement function, and dependent on the azimuth 

coordinate θ.  The so – obtained disturbance is then let propagate in free 

space and by passing through a lens of focal length f  placed at a distance 

equal to f the far field pattern is observed.  Finally, since it is a propagation 

constant, the OAM per photon is evaluated 

By letting a Gaussian beam hit the mirror, it acquires the phase dependence 

expressed by Eq. (3.3).  If we suppose that the incident beam hits the mirror 

in its waist, the diffracted beam on the back focal plane of the lens will be 

proportional to the Fourier transform of the reflected beam, that is the 

incident profile times the phase function exp[iΔz(θ)] [27]: 
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where ξ and η are the transverse Cartesian coordinates in the plane of the 

mirror (z = 0) and w is the spot size of the incident Gaussian beam.  Note in 

Eq. (3.5) the azimuth coordinate was written in terms of its Cartesian 

component so that the field expression can easily be handled by the 

simulation.   

On the Fourier plane we therefore calculate the OAM per photon of the 

diffracted field, in ħ units, as the ratio of the total orbital angular 

momentum and the field’s energy as reported in chapter 2.  For simplicity 

the expression used in the evaluation of the OAM per photon is reported, 

written for Cartesian coordinates, as follows: 

 

     

 
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


. (3.6) 

Calculating the OAM through Eq. (3.6) allows to generate a rectangular  

numerical mesh over which the field distribution u(x,y) is defined. 

For this purpose we considered a mirror composed by N = 360 steps, so that 

a high discretization degree is achieved; in this way large topological 

charges can be tested and height profiles with different complexities may 

accurately be reproduced.  It should be noted that a high discretized 

azimuthal mesh requires an even larger number of spatial samples in the x 

and y direction in order to conserve the slice structure near the central point 

of the staircase, i.e. the singularity point, where the azimuthal steps become 

very small.  If this condition is not satisfied defects appear in the reflected 

far field profile, producing effects similar to the anomalies of the common 

spiral phase plates.  This may result more evident particularly when the 

circular symmetry is broken as happens for non-integer OAMs or when 

complex displacement functions are programmed. 

Within this research work several SPM’s configurations were tested by 

holding fixed the topological charge and varying the number of the 

composing steps and by modulating the height profile Δz.  Since the 

considered mirror possesses an azimuthal segmentation of 1 degree, the 
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simulations were performed by grouping multiple slices, so that SPMs with 

less steps could be represented.   

The following numerical simulations were carried out by taking into 

account an operating wavelength of 830 nm.  Furthermore for every 

considered situation are reported both the configuration of the spiral phase 

mirror, its corresponding field’s intensity and phase distributions observed 

in the far field region.  Studied profiles include the simplest helical profile, 

the saw-tooth and the triangular displacement functions, for different values 

of the ramp’ slope. 

 

Helical profile 

In order to investigate the basic configuration of the SPM, the simplest case 

of a topological charge Q = 1 has been chosen and, to verify the behaviour 

of the azimuthal discretization, the N steps were subdivided into groups 

containing segments with the same displacement; in such a way larger 

sectors can arranged to form the well-known spiral distribution of Fig 3.2.  

Figure 3.4 reports the phase profiles imposed by the mirror on the incident 

field, together with the diffracted field’s intensity for different numbers of 

the macro sectors Nꞌ composing the helical staircase. 

 

Figure 3.4. Phase distribution imposed by an helical mirror programmed for 

generating a topological charge Q = 1 (upper row) and the corresponding far field 

intensities of the reflected field (bottom row) for growing numbers of steps:         

a) Nꞌ = 3; b) Nꞌ = 4; c) Nꞌ = 8; d) Nꞌ = 16. 
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It can be noticed that for higher step values (Nꞌ >16) an intensity 

distribution similar to the LG01 mode appears while, on the contrary, when 

the slices are fewer the helical behaviour is lost. Similarly the orbital 

angular momentum grows with the steps number approaching its final 

value, thus equalling the topological charge. 

Particular attention should be lent to the possibility of tuning the 

wavelength.   

As a matter of fact Eq. (3.3) predicts that the vortex is generated when the  

overall optical path equals the wavelength.  Therefore a helical staircase of 

fixed pitch produces the programmed OV only at a certain wavelength.  

This is the main problem related to most of the OV devices discussed 

above.  Clearly the SPM overcomes this issue, allowing to adjust the 

spiral’s pitch so that the same topological charge can be obtained even 

when the operating wavelength is changed.  Moreover, since the spiral 

phase mirror is made of metal coated slices, a flat spectral response can be 

considered over a wide range of wavelengths in terms of both reflectivity 

and absorption.  This entails that index matching conditions imposed by 

devices such as spiral phase plates result no more necessary.  Furthermore 

its metallic features reduces the power constrains;  in fact the above 

discussed devices are often made of polymers (SPPs) or liquid crystals 

(SLM), thus the power of the incident beam should not overstate the 

melting threshold of the material.  On the other hand metal coatings 

withstand major levels of power, hence optical vortices can be easily 

generated even in more intense beams. 

Of course this remains true when different height profiles are considered, 

making the SPM an optical vortex generators flexible in terms of 

topological charge and operating wavelength. 

 

Saw tooth profile 

It was pointed out before that, in order to reduce the problems related to an 

excessive step displacement arising when high topological charge are 

programmed, non-unitary helical wave-fronts are better obtained by 

assembling Q linear azimuthal 2π phase ramps instead of a single staircase 

with a 2πQ displacement.  In this situation the maximum height difference 

should be fixed at Δz = λ, or multiples of the incident wavelength (always 
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reminding to not reach high values), for each ramp;  therefore the unitary 

helical ramp so created can be replicated Q times in the whole azimuth 

distribution.  Of course the simplest and most efficient configurations is 

obtained, provided that an enough coarse segmentation is defined, when 

unitary ramps are considered.  This corresponds, along the coordinate θ, to 

a saw tooth profile, where the number of periods corresponds to the overall 

topological charge and the slope of the ramp is proportional to Q. 

 

Figure 3.5.  Helical mirror configured as a saw tooth profile;  phase profiles are 

reported (first column) together with the corresponding diffracted intensities 

(second column), the displacement Δz as a function of the azimuth coordinate θ 

(third column and the perspective view of the distribution of the mirror’ steps 

(fourth column).  a) Q = 1, OAM =1; b) Q = 2, OAM = 2; c) Q = 3, OAM = 3; d) 

Q = 5; OAM = 5. 
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Figure 3.5 reports the mirror’s displacement profiles and their 

corresponding generated intensities and phases calculated for values of the 

topological charge ranging from 1 to 5.  Equation (3.6) was used to 

numerically evaluate the angular momentum of the fields considered and 

was found that it is always verified that ℓ = Q.  Obviously the condition on 

the number of steps for discretizing the helical surface remains valid even 

though should be applied to each composing ramp. 

 

Triangular wave profile 

In this case the slices are arranged in a triangular wave, i.e. the 

displacement grows linearly (positive slope) until it reaches a phase shift of 

2π and then decreases to zero with a negative slope coefficient m.  

Therefore, with respect with the saw tooth case, here the number of ramps 

is doubled.   

In the simulations the positive ramp’ slope was held fixed and the 

maximum height difference was chosen in order to obtain a 2π phase shift.  

Then, by changing the steepness of the negative ramp from m = 1, which 

corresponds to a symmetric triangular wave, to higher values,  the analysis 

of the intensity distribution and its corresponding OAM was carried out.  In 

other terms, considering the saw tooth profile discussed in the previous 

section, it can be noticed that it corresponds to the particular case of a 

triangular wave whose negative ramp has infinite steepness.  Therefore in 

the performed numerical simulations, starting from a saw tooth profile with 

fixed topological charge Q, the negative slope has been reduced until it 

reaches a symmetric distribution along the azimuth coordinate.  This means 

that, while the slope becomes less steep, the number of periods decreases, 

as can be clearly seen from Fig. 3.6. 

As the symmetric case is approached the phase jumps which separate the 

ramps are gradually removed.  Therefore the positive phase accumulated in 

a fixed azimuthal arc begins to be compensated by the descending ramp.  

The complete compensation happens when the ramps have the same slope, 

entailing a zero net topological charge, hence a zero orbital angular 

momentum.  A further reduction of the negative slope joined with an 

increasing positive ramp, leads to an inversion of the vortex charge.   

 



 

Matteo Braccini            Optical control of the orbital angular momentum of light: techniques and devices  

 

41 
 

 

Figure 3.6.  Triangular wave profile with different slope coefficients m; the 

maximum topological charge, i.e. the saw tooth profile, is Q = 4.  From left to 

right: imprinted phase profile, far field intensity of the reflected beam, 

displacement function Δz(θ).  a) m = 1, OAM = 0; b) m = 3, OAM = 0.5; c) m = 

20, OAM = 2.23; d) m = 100, OAM = 4. 
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In all the intermediate cases between the saw tooth and symmetric 

triangular wave, the resulting OAM is proportional to the net difference 

over the azimuth circumference of the positive and negative phase 

contributions.  

In figure 3.6 are again depicted the phase and intensity profiles of the 

reflected beams and the displacement function for increasing slopes 

(modulus) of the descending ramps.   

The steps arrangement was omitted since it is analogous to what was 

showed in Fig. (3.5).   It can be observed that, the steeper is the slope, the 

higher is the OAM, until it reaches its maximum value equal to the number 

of periods of the saw tooth situation. 

Looking at Fig. (3.6) it clearly emerges that these configurations can be 

thus used in order to perform a tuning of the orbital angular momentum 

which can be simply controlled by the slopes of the azimuthal profile.  

Therefore, keeping fixed the maximum topological charge, it is possible to 

tune the OAM by adjusting the negative ramp’ slope. 

It is clear that the capability of displacing the mirror’ slices independently 

allows to use the spiral programmable mirror for manifold applications; 

several configurations of the height function can be arranged, depending on 

the desired target which may be the generation of an optical vortex with a 

chosen topological charge, or the adjustment of the OAM. 

Regarding the latter application, another tuning procedure can be 

performed.  As a matter of fact it is possible to hold fixed the number of 

ramps, that is the number of periods, and varying both the positive and 

negative slopes.  This possibility is illustrated in Fig. 3.7 where, as usually, 

the phase, intensity and displacement profiles are showed in the case of a 

triangular wave made of four periods.   

As happened in the previous situation, the steps’  configuration spaces from 

the saw tooth to the symmetric wave distribution.   

The difference with the above case is that now, both the ramps change their 

slope independently in order to keep unaltered the number of periods.  

However, also in this case the increasing slope corresponds to an increasing 

OAM which tends to assume the integer value Q when the slope coefficient 

m becomes infinite.  All the techniques discussed so far focus on the tuning 

of the angular momentum or of the topological charge.   
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Figure 3.7.  Triangular wave profile with different slopes and fixed number of 

periods L.  From left to right: imprinted phase profile, far field intensity of the 

reflected beam, azimuthal displacement function Δz(θ).  The OAM per photon 

grows as the descending ramp increases, in absolute value, its slope coefficient 

m.  a) m = 1, OAM = 0; b) m = 2, OAM = 0.7; c) m = 3, OAM = 1.3; d) m = 128, 

OAM = 4. 
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Figure 3.8.  Phase (left column), far field intensity (centre column) of the field 

reflected by the spiral phase mirror with symmetric triangular wave displacement 

function (right column).  The symmetric configuration entails a zero OAM 

whichever is the number of periods L.  The far field pattern depends on the parity 

of the periods: even periods generated a doubled number intensity lobes with 

respect to odd number of periods. 

In fact the attention can be moved from the OAM, which is held constant, 

to the spatial distribution, so that a programmable beam shaping technique 

is introduced which may put the basis for a kind of spatial encoding. 

Nevertheless the flexibility of the SPM may be exploited to generate 

arbitrary transverse spatial field’s distributions with azimuthal symmetry. 
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As a matter of fact, if the OAM is chosen to be, for example, zero, hence, as 

discussed above, arranging the segments of the SPM in positive and 

negative ramps with symmetric slopes, the spatial profile may be modified 

by changing the number of periods of the triangular wave.  

In this situation a radial symmetric pattern can be generated; it is 

characterized by a number of intensity lobes proportional to the number of 

period L. 

Figure 3.8 represents the intensity distributions corresponding to the phase 

profiles imprinted by the spiral phase mirror programmed with a symmetric 

triangular wave displacement function.   

It can be observed that the diffracted field’s transverse spatial profile is 

different, depending on the parity of the number of periods L:  typical 

reflected intensity patterns can be associated univocally to even and odd 

values of L. 

Looking at Fig. 3.8 it can be clearly observed that an even number of 

periods corresponds to intensity distributions made of 2L lobes, while fields 

reflected by a mirror whose steps are arranged in an odd number of periods, 

show L intensity maxima in the far field region.  Therefore it is evident that 

both the number of periods L and its parity can be considered as parameters 

capable of controlling with an excellent degree of accuracy the field’ spatial 

distribution in order, for example, to achieve a sort of spatial encoding 

suitable for optical communications. 

It should be noted that what was discussed until now are only some possible 

configurations that can be programmed on the SPM;  as a matter of fact the 

slices of the mirror can be arranged in many other fashions which allow to 

control both the topological charge, thus the orbital angular momentum, 

and the spatial profile. 

Since the reflection by the mirror affects, as stated in the previous sections, 

the incident beam only for a phase factor, the considered mathematical 

model  allows to evaluate analytically simple displacement profiles and 

remains a useful and efficient numerical tool suitable to investigate more 

complex height functions because of the simple integrability of Eqs (3.5) 

and (3.6). 
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3.4 Experimental setup 

Differently from most of optical vortex generators like the already cited 

mode converters, fork holograms and spiral phase plate, which operate on 

the phase of a transmitted beam, the SPM works by imposing a helical 

phase dependence on a reflected beam, similarly to what happens using 

spatial light modulators.  Therefore a suitable experimental setup should be 

employed in order to properly collect the helical beam reflected by the 

mirror.   

A possible solution is the one sketched in Fig. 3.9, where a laser beam at 

the operating wavelength, consistent with the programmed displacement 

function, passes through a 45 degrees beam splitter cube and hits the 

mirror, which is controlled by a computer.  A software allows to program 

the desired height profile, assigning a specified displacement value to each 

slice.   

 
Figure 3.9.  Experimental setup for the SPM.  The incident beam is reflected by 

the mirror and sent back to the beam splitter cube.  The helical shaped beam hits 

again the 45 degrees beam splitter and is partially reflected with a propagation 

direction perpendicular to the original.  The beam’s intensity is then collected. 
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This is then translated in an electrical signal which is transmitted to the 

actuators which effectively displace the segments of the mirror. 

The helical beam produced by the reflection on the spiral phase mirror 

propagates in the backward direction until it reaches the beam splitter cube.  

Here part of the beam is transmitted and part is reflected at an angle of 90 

degrees, allowing an easy collection of the generated optical vortex which 

can be sent to the rest of the setup. 

In the previous sections the spiral phase mirror (SPM) was presented as an 

optical device capable of generating optical vortices.  This device, by 

means of a series of independent electrically driven slices disposed in the 

azimuth direction, is suitable to adjust and control OVs’ features like 

topological charge and orbital angular momentum, and can be adapted for a 

wide range of operating wavelengths.   

It was shown that the possibility of controlling each azimuthal step 

independently leads to an easier tuning of the optical vortex and, since a 

smaller displacement is required when the device is programmed to 

reproduce a saw tooth height profile, it allows to obtain higher values of the 

topological charge with respect to former adjustable devices and faster 

reconfiguration times.   

Moreover the sign of the OV can be reversed by simply inverting the 

direction, or the slope, of the ramps. 

Furthermore arbitrary step displacement functions can be programmed; this 

means that it is possible to perform a continuous tuning of the OAM or, on 

the other hand, to produce well controlled transverse spatial field 

distributions which can be employed for spatial encoding. 
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Chapter 4 

 

 

Surface plasmons assisted optical 

vortex generation: the Plasmonic Spiral 

Phase Plate 
 

One of the optical vortex generation techniques adopted the philosophy of  

converting the spin component of the angular momentum (SAM) into the 

orbital one through a liquid crystal based optical device, the q-plate[44].  

Throughout this dissertation it was pointed out that liquid crystal devices 

are limited in terms of input power and cannot be fabricated by integration 

processes.  Both this limits can be overcome by moving to the nanoscale 

optics.  This means that light would interact with matter with sub-

wavelength features.  Therefore a new field of optics comes into play: 

plasmonics.  Plasmons are electromagnetic waves coupled with collective 

oscillations of electrons in metals and allow the control of electomagnetic 

fields on a subwavelength scale. 

The research on plasmonics has reached very advanced levels that many 

plasmon-based devices were proposed and built. Many of these devices 

exploit the phenomenon of extraordinary transmission studied by Ebbesen 

et al. [52] to manipulate the electromagnetic field such as waveguides, sub-

wavelength diffraction gratings [61], nanoslits, nanoholes [52, 53] and 

nanoantennas [54, 55].  The capability of controlling the sub-wavelength 

interactions allowed to design more complex devices suitable for beam 

shaping as plasmonic lenses [56, 57].  Even singular optics took  advantage 
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of plasmonics for creating vortex devices [58]; furthermore OV 

measurement techniques were proposed [59].   

In this chapter the design of an optical vortex plasmon based generator is 

presented.  Differently from the plasmonic vortex lens (PVL) proposed by 

Kim et al., which generates a vortex – a point phase singularity – in the 

surface plasmon field, the issued device produces an OV beam propagating 

in the free space and carrying OAM.   

This device, which can be called Plasmonic Spiral Phase Plate (PSPP), 

operates a conversion between spin and orbital angular momentum when is 

illuminated by a circularly polarized beam (thus carrying SAM); under 

these conditions plasmonics interactions take place and a field with OAM is 

radiated. 

 

4.1 The Plasmonic Spiral Phase Plate: general description  

Recalling what was said in paragraph 2.3 about the energy circulation in 

helical beams, it can be remarked that OAM is related to a tangential 

component, in the transverse plane, of the Poynting vector.  As a matter of 

fact an electromagnetic field whose wave-fronts are helicoids is associated 

with a linear momentum vector locally tilted from the propagation direction 

of an angle α, in order to be always orthogonal to the wave-front’ surface.  

This implies that the Poynting vector twists around the main propagation 

axis, thus resulting in a vortex-kind behaviour.   

The main idea behind the PSPP is to reproduce this phenomenon by means 

of an array of light sources equally spaced along a circumference, each of 

them radiating with a constant tilt angle α with respect to the propagation 

direction z as sketched in Fig. 4.1.  The fields so generated compose, giving 

rise to an overall field distribution where the energy circulates around the z 

axis, thus creating an optical vortex.   

As mentioned in the previous paragraph, light sources can be considered as 

plasmonic antennas, illuminated by a field with suitable polarization, so 

that surface plasmons are triggered and the directional emission takes place.  

In the next sections the details and the structure of these sort of nano  



 

Matteo Braccini             Optical control of the orbital angular momentum of light: techniques and devices  

 

51 
 

antennas will be discussed; however a general description of the device is 

given in Fig. 4.2 where a perspective view of the PSPP is outlined.   

 

Figure 4.1. Outline of the working principle of a plasmonic spiral phase plate.  

An azimuthal array of light sources radiate a light field locally tilted of a constant 

angle with respect to the propagation axis z.  The resulting Poynting vector 

rotates around the propagation direction. 

The plasmonic plate is made of a metallic structure where deep slits are 

radially etched.  In order to exploit plasmonic interactions, the slits’ width 

is far below the operating wavelength; furthermore the tilt in the emission 

pattern is obtained by unbalancing the output edges of the slits.  In practice 

for each slit, the input plane, i.e. the plane illuminated by the incident beam, 

sees aligned borders, while on the output face the borders of the aperture 

are misaligned so that one side is higher than the remaining.  In this way 

along the azimuth coordinate the height of the output surface can be 

described by a square profile. 

An incident circularly polarized field, propagating from the bottom side of 

Fig. 4.2, scattered by the edges causes the excitation of surface plasmon 

(SP) modes; these surface waves propagate along the air-metal interface, 

penetrating inside the sub-wavelength aperture and causing the 

extraordinary transmission.  The SPs on the walls of each slit are guided 

along the thickness of the metal plate until they reach the output face (upper 

side of Fig. 4.2) where they couple again with air, being radiated by the 

structure.  Since there will be an optical path difference between the SP on 
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the short side and the SP on the long side, an interference interaction occurs 

and the phase front will result tilted with respect to the z axis.  Therefore 

the Poynting vector, which must keep the orthogonality with respect to the 

wave-front, will also be tilted of the same amount. 

 

Figure 4.2. Perspective view of the PSPP.  The azimuthal unbalanced apertures 

acts as an array of light sources with tilted emission pattern.  The incident field 

illuminates the device from the bottom side. 

 

4.2 Theoretical model 

It was stated that the issued device aims to generate orbital angular 

momentum from a circularly polarized (CP) incident beam.  This happens 

by conveniently placing a discrete number N of electromagnetic field’ 

sources, each of them producing a skew Poynting vector, hence with a 

transverse component directed along the azimuth coordinate.  The fields 

generated from these emitters compose as they diffract, originating a 

combined field whose linear momentum vector spirals about the 

propagation axis z;  therefore a significant tangential component will be 

present.  It is indeed this tangential component which entails the OAM, as 

can be seen from Fig. 4.3.  In the far field region it can be thus expected to 
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observe a typical vortex-like pattern, with a central dark spot surrounded by 

a bright intensity distribution. 

 

Figure 4.3.  Projection on the transverse  plane of the Poynting vector 

components corresponding to the azimuthal distribution of light sources.  The 

composition of this source gives rise to an overall intensity vector which rotates 

around the propagation axis, thus entailing OAM. 

In order to obtain desired pattern, the N emitters should be placed on the 

same plane and separated of a fixed angular distance.  However this 

condition is not sufficient for producing OAM; as a matter of fact a helical 

wavefront is also necessary.  This requisite can be satisfied by introducing 

among the light sources a constant azimuthal phase shift varying between 0 

and 2π.  In fact, if each emitter radiates with a phase difference of 2π/N 

with respect to the next, on the circumference the overall phase changes, 

discretely, of  2π, thus originating the equivalent of an optical vortex with 

unitary topological charge.  This task can be accomplished by activating 

sequentially the emitters with a retardation of  2π/N, a thing which can be 

done if these sources are driven by a circularly polarized incident field.  

The electric field vector of a CP beam rotates around the z axis as it 

propagates, hence light sources distributed on a circumference are 

illuminated sequentially as the rotation takes place. 

The field generated by this circular array will have an angular momentum 

converted from SAM to OAM, therefore the generated orbital momentum 

per photon will be ±ħ, depending on the incident polarization handedness . 
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As pointed out in the previous chapters, OAM entails a torque effect; in this 

situation this phenomenon can be more evident if the inclination of the 

emitted field is increased, thus raising the tangential component of the 

Poynting vector.  In the following paragraph more details about the nature 

of the emitters involved in the SAM to OAM conversion process will be 

provided. 

 

4.3 Surface plasmon polaritons 

The principle of operation described in the previous section have a 

completely general validity since the tilting effect can be obtained with 

whatever kind of emitter, regardless the dimensions or the underlying 

physical phenomena.  Nevertheless nanoscale should be reached so that 

integrability of the device may be achieved; this implies that the most 

suitable emitters take advantage of plasmonic interactions which allow to 

use metal structure with sub-wavelength features. 

Plasmons are collective oscillations of electrons inside a metal.  Particularly 

surface plasmon polaritons (SPP) are electromagnetic modes propagating 

on the surface of an interface between a dielectric and a metal confined in 

the direction orthogonal to the metal surface.  The conductor can be 

described using the free electron gas model, in which electrons are free to 

move inside the metal.   

 

Figure 4.4.  Metal – dielectric interface.  The surface plasmon propagates along x 

and is confined in the z direction 
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Surface plasmons (SP) can be excited by properly coupling an incident 

electromagnetic field and the plasma oscillations of the metal [60] through 

a suitable matching condition which accounts for the momentum 

conservation principle. 

In order to understand the physical phenomenon, a simple structure 

composed by an interface metal – dielectric on the plane z = 0 may be 

considered.   

As suggested from figure 4.4 it can be supposed that the surface plasmon 

propagates in the x direction; moreover the electromagnetic mode should 

have an evanescent wave dependence (i.e. imaginary component of the 

wave vector) along z  and does not vary along the  y axis.   

The field can thus be written as: 

    , , i xx y z z e E E  (4.1) 

being β the plasmon polariton’s propagation constant, i.e. the wave vector 

component along the propagation direction.   

If Eq. (4.1) is substituted in the Helmholtz equation the following well 

known relation is found [74,75]: 
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where k0 is the wave number in vacuum and ε is the dielectric constant of 

the medium.   

Making explicit the harmonic time dependence i
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Maxwell’s relations, which correlate the electric and magnetic component 

of the light field, a set of equations for all the vectorial components of the 

electromagnetic field can be written: 
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 (4.3) 

which allow solutions for wave with different polarizations.  There are two 

main sets of solutions: the transverse magnetic (TM) or p modes, where the 

only nonzero components are Ex, Ez and Hy, and the transverse electric (TE) 

or s modes, where all the components are zero excepts Hx, Hz and Ey.  By 

means of simple algebraic passages  in which the continuity conditions of 

the electromagnetic field at an interface is considered, it can be 

demonstrated that surface plasmons, that is waves propagating along x with 

an evanescent dependence in the z direction, can exist only for TM 

polarization.   

In order to have SP propagation on a metal – insulator interface the 

continuity condition requires that the two media should have the real part of 

their electric permittivity of opposite sign.  

If the metal is modelled following the Drude model, its permittivity is given 

by the relation 
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being ωp the plasma frequency of the metal and γ the collision frequency of 

electrons.  Looking at Eq. (4.4) can be noticed that below the plasma 

frequency the condition Re[ε]<0 is generally verified for a metal, while 

typically Re[ε]>0 for a dielectric.  Therefore a dispersion relation for 

surface plasmons propagating at a single interface is given by 

 0
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 (4.5) 

where εm and εd are respectively the permittivities of the metal and of the 

dielectric.  In real metals the permittivity possesses even an imaginary part, 

hence also β is complex.  This implies that the plasmonic mode propagating 

along the interface would be attenuated;  a characteristic length which takes 

into account this attenuation can be identified as   
1

2ImL 


 , the 

so-called propagation length.  Typically, in the visible regime, L ranges 

from 10μm to 100μm.  Moreover, from Eqs. (4.4) and  (4.5), the equation 

relating  β and the z component of the wave vector kz can be deduced: 
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 (4.6) 

Equation (4.6) entails that the confinement of the wave on the metal surface 

is tightly bound to the length of propagation L: higher confinements of the 

radiation correspond to smaller propagation distances.  Therefore a high 

confinement can be reached by considering high values of the propagation 

constant β.  In this regime the SP propagates with a characteristic frequency 

ωsp given by 
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For our purposes it is useful to understand how plasmonic interactions work 

in geometries composed by multiple interfaces, as happens in multi-layered 

structures.   

 

Figure 4.5.  Multilayer structure. A medium with permittivity ε1 is sandwiched 

between to symmetric half infinite media of dielectric constant ε2. 

Figure 4.5 shows the typical situation of a system composed by a dielectric 

layer with thickness a and dielectric constant εd sandwiched between two 

half infinite layers of metal whose dielectric function εm is given by Eq. 

(4.4) thus constituting a metal – insulator – metal (MIM) interface.  The 

study of such a structure can of course be applied to the opposite 

configuration of an insulator – metal – insulator interface (IMI) by simply 

exchanging the dielectric constants’ indices.  However, since the 

electromagnetic sources studied in this dissertation are sub-wavelength 

slits, the following analysis is carried out by limiting to consider the MIM 

case, where the central dielectric is air. 

In this structure the surface plasmons propagating at each metal – dielectric 

interface interact with each other, originating coupled modes.  The 

dispersion relation of Eq. (4.5) therefore changes and is split in two 
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equations describing the conditions of existence of SP modes with even and 

odd vector parities.   
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 (4.8) 

Equation (4.8) express the dispersion relation respectively of odd modes (Ex 

is an odd function of z while Ez and Hy are even) and even modes (Ex is 

even, Ez and Hy are odd).   

Looking at these relation it is evident that the thickness of the dielectric 

layer a influences directly the propagation of such modes.  As a matter of 

fact the lower is this thickness the higher is the coupling of the plasmons at 

the two interface; on the other hand, when a increases, the situation can be 

traced back to the problem of two separate metal – dielectric interfaces.   

From Eq. (4.8) it can be easily seen that the fundamental odd mode has no 

cut-off frequency as the thickness a decreases.  This entails that very high 

values of the propagation constant β can be reached, hence the field can be 

highly localized on the metal surface even for frequencies far below the 

characteristic frequency ωsp, provided that very thin core layers are 

considered.  This feature allows to excite high confined surface plasmons 

even in the infrared regime. 

The capability of SPs of achieving such high field localizations leads to the 

possibility of confining the electromagnetic energy in volumes which are 

far smaller than the diffraction limit; it is indeed this fact behind the 

phenomenon of extraordinary transmission observed by Ebbesen et al. [52] 

and from which the device discussed in this work takes advantage.  In fact 

in a sub-wavelength structure, as can be a nanoslit or a nanohole array, light 

can couple with SPs which propagate on the metal surface, thus crossing 

these sub-wavelength channel; on the other side of the structure the SP 

couples again with the electromagnetic radiation in the background medium 

thus re-emitting light. 
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It was pointed out that the presence of a SP mode is related to the 

evanescent behaviour in the z direction.  To fulfil this requirement the z 

component of the wave vector should be imaginary so that the field decays 

exponentially from the surface.   

Looking at Eq. (4.6) it can be noticed that this happens when the 

propagation constant of the SP is smaller than the wave number in the 

insulator.  Therefore, in order to couple light with a surface plasmon, kd  

must be greater than  β.  This means that  is impossible to excite plasmons 

with standard techniques; as a matter of fact, if a flat metal - dielectric 

interface is considered, a light beam propagating in the dielectric half space 

and incident on the metal surface with an angle θ will have a wave number 

in the direction of propagation sinx dk k   which is always smaller than 

the value of β given in Eq. (4.5) even at grazing incidence. 

It is thus necessary to employ suitable techniques in order to excite a SP 

mode with incident light. 

One of the simplest methods is the prism coupling used in the Otto 

configuration, where a prism is placed upon the metal layer leaving a thin 

air gap.   If light hits the prism with an angle such that total internal 

reflection is achieved, an evanescent wave with wave number xk   

tunnels the air gap and excites the surface plasmon at the metal interface.  

Reversely the same phenomenon can be exploited to couple the guided 

plasmon to light, thus radiating. 

 

Figure 4.6.   Prism coupling in the Otto configuration.  Light hits the glass – air 

interface under total internal reflection conditions.  The evanescent wave tunnels 

to the metal – air interface achieving phase matching with the SPP. Source ref. 

[60]  
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Nevertheless the most important solution, especially in the  aim of this 

dissertation, to the issue of SP excitation, sees the generation of surface 

polaritons by means of suitable gratings.   

This technique allows to achieve phase matching conditions, i.e. equalling 

the light and the plasmon propagation constants, by providing an extra 

momentum due to a grating patterned on the metal surface.   

A periodic perturbation of the metal surface, which may be a shallow 

grating (a corrugation) etched on the metal or even made by a dielectric 

material deposed on the metallic layer, or a periodical hole (or slit) array 

with a lattice constant a, adds to the incident light a momentum component 

dependent on the lattice vector.   

 

Figure 4.7.  Grating coupling scheme.  The momentum mismatch is compensated 

by the grating momentum vector. 

Therefore plasmon excitation takes place when the condition 

 sink ng    (4.9) 

is fulfilled, being 
2

g
a


  the reciprocal vector of the grating and n is an 

integer indices which can be 1, 2, 3....  As happens for the prism coupling a 

periodic grating can be used in the reverse process of emission of a 

propagating plasmon.   
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The advantage of these method is the capability of tailoring the plasmonic 

interactions and the possibility of modelling them via analytical and 

efficient mathematical tools [61 - 63]. 

The momentum gap necessary to the plasmon excitation can also be filled 

by non-periodic surface perturbations.  As a matter of fact a scatterer 

element present on the metal surface, when hit by the incident field, scatters  

light in all directions, thus producing a wide momentum spectrum.  In this 

way it is possible to produce the extra momentum in the propagation 

direction Δkx needed to fulfil the phase matching condition 

 sin xk k    (4.10) 

Naturally other techniques exist to couple light with surface plasmon 

polaritons, but they are beyond the scope of this thesis.  However for 

completeness’ sake will be briefly mentioned.  One of them involves tightly 

focused optical beams obtained with a high numerical aperture objective, 

which possess large angular spreads, covering angles greater than the 

critical angle.  Another method takes advantage of near field microscopic 

techniques to excite plasmons in sub-wavelength areas which configure as 

point sources (hence with enough high momentum).  These techniques 

make use of probe tips with apertures far below the plasmon wavelength 

made of tapered optical fibres [64]. 

 

4.4 Transmission of light through a sub-wavelength slit 

A simple slit with sub-wavelength features etched in a metal slab, from a 

plasmonic point of view, may be considered as a multi-layered structure 

discussed in the previous paragraph, where a dielectric medium – air in this 

case –  is sandwiched between two half infinite (compared to the operating 

wavelength) blocks of metal.  It was shown that in such metal – insulator – 

metal system the plasmonic fundamental mode with odd parity propagates 

regardless the thickness of the core layer.  It was also pointed out that this 

phenomenon is the basis of the so-called extraordinary transmission of light 

through sub-wavelength apertures.   
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When one side of the aperture is illuminated by a light beam with TM 

polarization, thus having the electric field vector orthogonal to the MIM 

interfaces, as shown in Fig. 4.8, the edges of the slit behave as scatterers, 

providing the phase matching conditions necessary to excite SPPs on the 

metal surface.  Practically these corners can be considered as point sources 

of surface plasmon polaritons. 

 

Figure 4.8.  Slit with sub-wavelength width g.  A TM polarized field hits the 

metal slab on the bottom side.  The electric component is orthogonal to the MIM 

interfaces while the magnetic field is parallel to the aperture walls. 

When the metal thickness is small in the x direction electromagnetic 

radiation tunnels the metal layer and is transmitted on the other side of the 

slab without the assistance of SP modes.  The guided plasmonic 

interactions become relevant when the metal layer is enough thick so that 

light is prevented from direct tunnelling.  As mentioned above, the scattered 

radiation activate plasmon modes which propagate along the inner walls of 

the aperture analogously to a waveguide.  If the gap g of the slit is very 

narrow – far below the incident wavelength – there will be coupling 

between the SPPs on the two interfaces air – metal:  they thus propagate 

with a common propagation constant β.  Nevertheless the momentum 

spectrum provided by the interaction with the edges at the input plane 

possess enough spatial components to excite plasmons modes which 

propagate along the external surface of the slit, that is in the y direction.  If 

the metal structure if sufficiently extended in the horizontal direction – 

more than the surface plasmon propagation length – and there are no 
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scattering elements on the SPPs propagation path, they do not interact with 

the channelled modes, thus not affecting the transmission. 

 When the guided SPPs reach the upper side of the MIM channel, they 

interact again with the edges of the output plane; these, on their turn, 

provide the momentum components necessary to fulfil the phase matching 

conditions, allowing the coupling of SPPs with air:  therefore light is re-

emitted in air [65].  On the other hand the interaction with the output 

corners causes a reflection of the plasmonic wave in the backward 

direction, thus inside the channel.  This mechanism is repeated when the 

reflected surface mode reaches the edges at the input plane and so on.  

Therefore multiple reflections are generated inside the aperture which give 

rise to an interference pattern of the plasmonic wave on the slit’s walls.  

Moreover there will be other components of the electromagnetic field 

which are emitted in air on the bottom side and which propagates on the 

input surfaces.   

 

Figure 4.9.  Transmission of the electromagnetic field through a sub-wavelength 

slit in a metal layer.  The TM polarized incident wave excites surface plasmons 

as interacts with the slit’s corners.  The generated SPPs propagate inside the 

aperture and are radiated on the other side of the slit.  Part of the power is 

reflected back.  Additional SP modes propagate on the input and the output metal 

surfaces. 
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Similarly, on the output side, a portion of the upcoming plasmonic wave 

crosses the corner and propagates on the upper metal surface, as can be 

seen in Fig. 4.9.  Looking at Fig. 4.9 it can be noticed that there is a strong 

localization of the field inside the aperture and that the light emitted on the 

output plane of the slit is radiated with an isotropic pattern.  

If we consider a sub-wavelength slit similar to the one discussed so far but 

with misaligned edges on the output plane, the emission pattern on the exit 

plane changes from being isotropic to a tilted directional profile. 

 
Figure 4.10.   Unbalanced sub-wavelength aperture.  The left edge on the output 

plane is higher than the right one. 

Figure 4.10 depicts a three dimensional view of the structure: the left edge 

is placed at a difference height with respect to the other border.  As shown 

from Fig. 4.10 the nano aperture configures as an infinite slit in the z 

direction, that is the direction orthogonal to the plane of Fig. 4.9; in this 

way spatial uniformity can be considered along this axis, thus simplifying 

the analysis.  From now on this kind of misaligned slit will be referred as 

the unbalanced slit. 

Similarly to the previous situation, on the input side an incident TM 

polarized electromagnetic field (with the E vector perpendicular to the 

aperture walls) illuminates the edges of the metallic structure.  As is known 

surface plasmons are excited and part of them propagate inside the aperture 

with a propagation constant β.  Since the considered slit has a very narrow 

width, of the order of some tens of nanometres, the SPPs are guided with a 

common mode index.  When the surface waves reach the other side of the 

slab interaction with the corners takes place; however the plasmon guided 
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on the higher side (left, referring to Fig. 4.10) will be scattered after it 

propagated for a longer path with respect to the mode on the other wall.  

Moreover, when the height of the lower corner is passed, the SPP on the 

left wall propagates decoupled from the other one as happens in a single 

metal – dielectric interface.  Therefore while in the common waveguide 

stretch the surface plasmons are coupled, hence are guided with a common 

β, in the remaining stretch the surviving plasmon propagates with a 

propagation constant ksp given by the single interface dispersion relation of 

Eq. 4.5.  When studying the field at the output plane multiple reflections 

inside the channel can thus be neglected, since they are common to the 

plasmons on both the walls;  the only relevant factor is the path difference 

related to the constant ksp  of the single interface stretch. 

The edges of the slit therefore will emit light into air with a phase 

retardation equal to kspd, being d the height difference between the borders.  

If a two dimensional structure is considered, a corner where plasmonic 

interaction takes place, can be treated as a point light source; the three 

dimensional geometry discussed above can thus be represented as a linear 

distribution of point sources along the z direction.  Consequently the 

problem of the emission of the unbalanced aperture can be modelled as a 

diffraction problem involving two point sources, one for the left and one for 

the right edge, emitting light with a relative phase difference of kspd [66]. 

A solution of the first order for determining the emission pattern of the 

unbalanced plasmonic slit, following the above considerations, can be 

obtained by means of a Fresnel – Kirchhoff diffraction integral where two 

out of phase point sources are taken into account.  For simplicity’ sake can 

be conveniently chose the reference frame, as shown in Fig. 4.11, aligning 

it to the plane containing the slit borders.  Therefore under the rotated 

reference system  ', ', 'x y z the diffracted field emitted from the slit can be 

expressed as 

  
'1

' ' ' ' '
' 2 2

sp

ikr
ik d

F

e a a
E z y e y dy dz

i r
  



    
       

    
  (4.11) 
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being k the wave vector of the radiated electromagnetic field, kspd is the 

phase difference between the two sources and 2 2a g d  is the distance 

of the two edges on the output plane. 

 
Figure 4.11.  Unbalanced nano slit etched in a silver layer.  The reference frame 

on the output side is tilted so that alignment with the emitters plane is achieved.  

The radiated electromagnetic field is tilted with respect to the incident beam 

propagation direction. 

The emitted field will have a component of polarization parallel to the 

incident field and one perpendicular.  In order to determine the emitted 

radiation pattern in the far field region, the Fraunhofer approximation may 

be used; equation (4.11) therefore becomes 
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 
 (4.12) 

It can be easily verified that the scalar field expressed by Eqs. (4.11) and 

(4.12) is effectively deflected with respect to the aperture’s axis, i.e. the x 

axis, proportionally to the ratio a/d.  This means that exists a dependence 

which relates the inclination of the emitted field, the width g of the slit and 

the height difference d between the output edges.  Without losing general 
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validity this result can be extended to the three dimensional case, where the 

slit, as pointed out before, extends indefinitely along z, by considering that 

the far field pattern of Eq. (4.12) is the same for any value of z. 

This simple scalar analytical model can obviously be applied to the 

balanced slit case, where the height difference is zero: it can be clearly seen 

that in this situation the field results un-deflected with respect to the x axis. 

 

4.5 Azimuthal distribution of plasmonic light sources 

It is convenient to recall that the aim of the device discussed in this chapter 

is to convert a light beam carrying spin angular momentum into a field with 

orbital angular momentum.  It was showed that this can be done by mean of 

a superposition of opportunely distributed and, eventually, tilted light 

beams.  The suitable arrangement of such sources sees theme disposed in an 

azimuthal array and activated with a fixed angular phase retardation. 

From what was showed until now it can be easily understood that these 

emitters will be obtained from the unbalanced plasmonic slits presented in 

the previous paragraph, which, once illuminated by a locally TM polarized 

incident field, produce a deviation of the radiated field from the direction of 

propagation.   

In order to accomplish this task, the issued device will be fabricated by 

opening slits in a sufficiently thick – in order to avoid tunnelling of light –  

metal layer.  Each of these apertures should have its edges parallel to the 

radial direction; moreover each slit should be rotated about a pivot point 

placed in the symmetry centre of a constant incremental angular amount, as 

sketched in Fig. 4.12.  It should be noticed that the helical wave front can be 

obtained both with balanced and unbalanced nano apertures, provided that a 

suitable illuminating field is considered; nevertheless unbalanced slits 

guarantee an additional torque effect since the more tilted Poynting vector 

possesses a higher tangential component. 

Since the excitation of surface plasmons requires that the magnetic field H 

is parallel to the metal – dielectric interface, that is a TM polarization, a 

suitably polarized incident field should be chosen so that every slit receives 
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the correct illumination.  This means that a linearly polarized beam is not 

appropriate to trigger surface plasmons in the whole device. 

 

Figure 4.12.  Outline of the plasmonic spiral phase plate (top view).  The 

azimuthal distribution of nano apertures results in a metallic slice array.  Each of 

the N slits is rotated of an angle 2π/N with respect to its preceding neighbour thus 

forming the equivalent of an azimuthal periodical grating.  The illuminating field 

EF must be orthogonal to the slit’s walls, hence directed along the azimuth 

coordinate. 

As a matter of fact, a linearly polarized beam would have its electric 

component orthogonal only to the walls of two opposite slits, while the 

other apertures would see a tilted or even parallel electric field.  It becomes 

thus necessary to illuminate the structure with a field whose polarization is 

such that the electric field vector is locally orthogonal to each slit.  Since 

the plasmonic channels are distributed along the azimuth direction, it is 

evident that the incident field can have only circular or azimuthal 

polarization.  The latter is a polarization state in which the polarization 

vector points, at every position, in the azimuth direction; therefore the 

orientation of the polarization vector varies spatially while locally remains 
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linear, that is, at a fixed time all the points in the space see an electric field 

vector directed along θ with the same phase. 

Nevertheless the fundamental requirement for generating OAM is to have a 

constant phase difference among the azimuthal sources, so that between the 

first and the last emitter a 2π phase shift is accumulated.  Therefore the only 

polarization state suitable to excite plasmons in every slit is the circular 

polarization (with left or right handedness) because it guarantees, as 

happens for the azimuthal state, an electric field locally orthogonal to the 

walls and, since the field vector completes a rotation in a length λ, 

illuminates each aperture with a phase retardation equal to 2π/N, being N 

the number of slits.  As stated above, the latter feature is not present when 

the field is azimuthally polarized.  

The field generated by such an array can be evaluated by making use of the 

mathematical model proposed in the former paragraph for the single slit.  

As a matter of fact, Eq. (4.12) can be used for each slit accounting a 

convenient rotation of the reference frame.  Hence the contributes of the 

separate slits can be composed in order to obtain the overall field.  Looking 

at Fig. 4.12 a general reference system (x, y, z) can be chosen to represent 

the whole device, then Eq. (4.12), written for the local slit output frame 

 ', ', 'x y z , can be rearranged by firstly rewriting it according to the frame 

aligned with the slit’s wall,  then again to the main reference system.  For 

simplicity’s sake the main frame can be chosen coincident with the 

reference system at the input (x, y, z) of the first slit.  Therefore two 

rotations are necessary to write the field of a generic aperture in the main 

reference system.  A first rotation of an angle φ = arcsin(d/a) should be 

performed around the z’ axis of figure 4.11 thus aligning with the slit’s 

walls; the second rotation of the angle θ  = j*(2π/N) is then performed about 

the x axis of the reference system showed in Fig. 4.12.  Hence the two 

following rotation matrices can be applied sequentially to Eq. (4.12) 

 
cos sin cos sin

                      
sin cos sin cos

   

   

    
   
   

 (4.13) 
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in order to obtain the field, in the Fraunhofer approximation, emitted by 

each aperture, evaluated in the reference frame of Fig. 4.12. 

If the simpler case of the balanced slits is considered, the φ rotation is not 

present since d = 0 and the reference system at the output plane coincides 

with the one at the input plane of the aperture.  The electromagnetic field is 

polarized so that the electric field vector is orthogonal to the channel’s 

walls, thus along y; the polarization state is the same for each slit.  The field 

radiated from the jth plasmonic waveguide forming an angle θj with the z 

axis will be : 
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 (4.14) 

where ŷ and ẑ are the unitary vectors respectively along the y and z axis.  

It can be convenient to write the polarization vector expressed by the last 

term of  Eq. (4.14) in a cylindrical coordinate system having the origin 

coincident with the centre of the device; it can easily be found that the 

polarization state of EFj is directed along the azimuth direction θ̂ . 

The fields emitted by the azimuthally distributed sources compose as they 

diffract, giving rise to an overall diffracted field given by the sum of the N 

contributions EFj written in the device reference system. 

    
1 1

ˆ( , , ) , , , , , ,
N N

T Fi i Fi i

i i

x y z x y z E x y z 
 

  E E θ  (4.15) 

Since each field is directed along the azimuth coordinate, emerges that the 

generated field will have azimuthal polarization, as expressed by Eq. (4.15).  

Figure 4.13 reports the intensity pattern of the overall field, estimated with 

the above mathematical model, generated by a plasmonic plate made of 32 
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slits and observed after a propagation distance of about 5mm.  It can be 

noticed that the beams’ deflection operated by the plasmonic sources results 

in an azimuthal distribution of the involved fields, as predicted from Fig. 

4.3. 

 

Figure 4.13.  Intensity distribution of the field radiated by the plasmonic spiral 

phase plate observed after some millimeters of propagation.  The fields emitted 

by the slits displace laterally with respect to the plate’s axis originating a vortex-

like distribution. 

A final remark regarding the simplistic mathematical tool used until now 

should me mentioned.  In fact this model refers only to the emission of the 

plasmonic light sources, aiming to determine the final diffracted generated 

field; thus all the underlying physical plasmonic phenomena present in the 

slits before that the interaction between the SPPs and the output edges takes 

place are not taken into account.   

Therefore this model retains its validity until the slits can be considered as 

separated, not interacting objects.  In this case more complex considerations 

should be made.   

The non-interaction condition is fulfilled whenever sufficiently large 

distances from the centre of the device are considered.  This means that, 

aside from technological remarks,  the device should be fabricated with a 

central pillar enough wide to separate the nanoapertures. 
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4.6  Torque effect 

It was shown in the previous sections that each unbalanced sub-wavelength 

slit emits an electromagnetic field with a tilted Poynting vector with respect 

to the aperture’s axis.  A non-negligible transverse component of such a 

vector will be present, growing with the height difference between the 

output borders of the slit.  This entails that the metal structure undergoes to 

a net force which opposes to the Poynting vector.  Since the slits are 

azimuthally distributed, the overall Poynting vector is, as shown in Fig. 4.3, 

rotating about the symmetry axis, resulting in a torque effect on the device. 

This effect, as expected, is related to the square modulus of the magnetic 

field; the torque can thus be expressed as follows 

 
 

 
max

2

0

0

R
m h

C N d H r rdr
c

   (4.16) 

where c is the speed of light in vacuum, h the thickness of the metallic base 

of the structure, H0 is the generated magnetic field, N is the number of 

apertures, d the height difference between the edges, Rmax is the maximum 

radius of the plasmonic spiral phase plate, and m is a parameter dependent 

on the base’s thickness. 

The device can be designed in order that the produced torque effect is such 

to exert a rotation on the structure, provided that it is suspended in a liquid 

background. 

If I is the moment of inertia of the PSPP, considering it composed by a 

solid half-disc, due to the upturned sides of the slits, superposed to the full 

disc of the base, it can be found that 
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being ρ the mass density per unit volume of the metal.  Therefore the whole 

structure illuminated by a circularly polarized field undergoes to an angular 

acceleration equal to 

 
C

I
   (4.18) 

which, as can be noticed by looking at equations (4.16) and (4.17), can be 

dimensioned as a function of the typical features of the plasmonic phase 

plate. 

 

4.7 Numerical Simulations  

The PSPP behaviour can be further investigated, with a more precise degree 

of accuracy with respect to the simplistic model proposed in section 4.5, by 

modelling the output face of the slit on the plane z = constant (referring to 

the frame of Fig. 4.12) as an electric dipole aligned with the line linking the 

edges, and making use of a vectorial electromagnetic model.  The slit, 

indefinitely extended along z can thus be represented as a linear distribution 

of oscillating tilted electric dipoles which have the typical radiation patterns 

with their maxima on the plane orthogonal to the dipole’s axis, as can be 

seen from Fig. 4.14. 

 

Figure 4.14.  Oscillating dipole’s radiation pattern for vertical (a) and tilted 

dipoles (b).  The electric field is maximum on the orthogonal plane of  the 

dipole’s axis.  If the dipole is tilted also the pattern undergoes to an inclination of 

the same angle. 
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Therefore the overall device can be seen as an azimuthal array of tilted 

oscillating dipole lines radiating on their local azimuth plane.  This entails 

that the PSPP can be interpreted as a azimuthal distribution of 

nanoantennas.  Figure 4.15 gives an outline of the device according to the 

dipole model. 

 

Figure 4.15.  Electric dipoles model.  The azimuthal array of sub-wavelength 

apertures is represented as a distribution of line dipoles tilted with respect to the z 

axis. 

It may be convenient to adopt a cylindrical reference system for describing 

the dipoles distribution.   

In the far field region, the electric field radiated by the aperture will have 

only the θ component, hence, using the frame of Fig. 4.15,  it may be 

written as[67] 
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which entails a Poynting vector given by 
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being pz the dipole moment along the z direction. 

The effective amplitude associated to each dipoles line can be obtained by 

multiplying Eq. (4.19) by a suitable parameter related to the transmission 

coefficient of the plasmonic plate, under the hypothesis that it is illuminated 

by an unitary amplitude field.  The latter can be evaluated numerically with 

tools such as the finite elements method.   

Starting from Eqs. (4.19) and (4.20) numerical simulations were performed 

in order to calculate the far field radiation pattern of the device.  At the 

same time, other simulations were carried out for estimating the 

transmission behaviour of each slit. The obtained data were then merged so 

that a single numerical model capable of testing and dimensioning the 

overall device is obtained. 

In this way the analysis of the structure was decomposed into two separated 

problems of interaction and emission, thus allowing to strongly reduce the 

computing resources.  As a matter of fact, the issued structure has a 

complex geometry which requires a very high simulation’s detail, i.e. a 

very tight mesh, in order to observe the plasmonic interactions which 

operate on lengths far below the illuminating wavelength.  Therefore, since 

the device’s dimensions are of the order of microns, the ratio of device’s 

features and mesh elements’ size would be very high, requiring a huge 

amount of spatial samples, thus making difficult to perform simulations 

with electromagnetic numerical tools as, for example, the Green method. 

As pointed out before, the fields emitted by the apertures compose as they 

diffract, giving rise to a continuous field distribution with a rotating 

intensity vector;  it was also noted that the larger is the number of slits, the 

higher would be the accuracy in producing an output helical wave front 

profile. 

Looking at the emission problem, the device output behaviour was 

numerically simulated by calculating the electromagnetic field radiated by 

an azimuthal distribution of N = 16 dipole lines, each of them emitting an 

electric field expressed by Eq. (4.19), placed on the same plane z = constant 

and with a relative phase shift of 2π/N between two neighbouring nano-

apertures.   
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Therefore a vectorial propagation operator was applied in order to evaluate 

the intensity and phase patterns in the far field region.   

 

Figure 4.16.  Modulus (a) and phase (b) of the z component (propagation 

direction) of the electric field generated by the azimuthal array of 16 light sources 

emitting with a relative phase shift of 2π/N, evaluated in the far field region, after 

500μm of propagation.  The phase whirls around a central point ranging from –π 

to π, hence an optical vortex is present on the propagation axis. 

Figure 4.16 reports the modulus and phase of the electric field along the 

direction of propagation after it propagated for 500μm from the device 

plane, while in Fig. 4.17 it is shown the time averaged Poynting vector 

projected on the transverse plane. 

It can be seen that even with only 16 slits the vortex – like behaviour is well 

reproduced since the phase spirals around the z axis changing its value of 

2π; as a consequence also the dark central spot can be noticed in the 

intensity profile. 

4.8 Dimensioning of the PSPP  

When projecting the PSPP, the first issue concerns the metallic material 

used for the fabrication of the device which should be suitable for 

plasmonic applications.  At an operating wavelength of 830nm, which is 

typical of common light sources as Ti:Sapphire femtosecond laser, one of 
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the most suitable metals is silver (Ag), since it does not introduce high 

losses.   

 

Figure 4.17.  Time averaged Poynting vector on the transverse plane (x, y) .  A 

tangential component is present, entailing the rotation about the propagation axis 

z, where the phase singularity is nested. 

Dimensioning with other metals as gold (Au) is also possible provided that 

a proper wavelength is employed.  At the chosen λ Ag has an electric 

permittivity of -25.22 and an electric conductivity of 3629 S/m [69].   

The slits were designed in order to maximize at the operating wavelength 

the transmission coefficient, i.e. the percentage of the incident beam 

reaching the output plane, and the tilt angle of the generated field.  The 

considered procedure can be followed with any wavelength or metal. 

The main features of the plasmon based light source, that is width of the 

aperture and thickness of the metal layer, are determined by numerically 

creating a two dimensional map which relates the transmission coefficient 

with such parameters.   
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Figure 4.18.  Transmission coefficient of a sub-wavelength slit etched in a silver 

layer as a function of the aperture’s width and of the metal thickness, evaluated 

for three different wavelengths: a) 561nm; b) 830nm; c) 1500 nm.   
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For simulating the sub-wavelength slit the software COMSOL Multiphysics 

was used, carrying out parametric simulations where, for each value of the 

thickness h (see Fig. 4.8) the gap g varies, hence the ratio of the transmitted 

and incident fields is evaluated.  In each simulation the aperture’s width 

ranges from 20nm to 80 nm while the thickness changes from 100nm to 

300nm.  This procedure was then replicated for three significant 

wavelengths: 561nm, 830nm and 1500nm.   

Figure 4.18 reports the transmission maps for a single slit cut in a silver 

layer.  It can be noticed that a strong transmission peak is present for some 

thickness and gap values; this peak moves toward higher values of the 

thickness h as the incident field’s wavelength increases.   

As mentioned before, the main interest is toward the wavelength of 830nm, 

therefore the optimum parameters were chosen according to the 

transmission map of Fig. 4.18.  Keeping in mind the practical and 

technological limits which do not allow to grow with high precision metal 

layers or to etch apertures whose thickness and width are too small, it was 

chosen as the optimal dimensioning point the couple of values 200nm and 

35nm respectively for the metal thickness and the aperture’s gap. 

As a matter of fact, with a fixed value of h, as it is shown in Fig. 4.19a, a 

maximum in the transmission curve can be found corresponding to a slit 

35nm wide.   

 

Figure 4.19.  a) Transmission coefficient (modulus) of the slit as a function of 

the gap size: a plasmonic resonance peak is present at 35nm; b) Averaged 

horizontal component of Poynting vector of the emitted electromagnetic field: 

positive values correspond to right tilted vector, negative values to left tilting.  
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It should be noticed that the transmission do not increase linearly as the gap 

becomes wider but has a distinct peak; this is because the value of 35nm 

corresponds, for the selected metal and thickness, to a plasmonic resonance 

which boosts the transmitted field. 

Once thickness and gap are determined the height difference d between the 

borders on the output face of the slit has to be found.  This can be done by 

holding fixed h and g, hence evaluating a quantity representative of the 

tilting of the generated field.  For this sake the horizontal component of the 

Poynting vector is particularly suitable because the more is the beam tilted, 

the higher will be this component.  These tilting index can be further 

improved if an average is performed on a semicircle, with a radius large 

enough to enclose the aperture, which covers a portion of the output half –

plane.  Positive values of the averaged x component of the Poynting vector 

thus correspond to a beam tilted toward right, while negative values 

indicate left oriented tilted beams.  In the issued simulations it was chosen a 

semicircle with radius of about 10μm, so that plasmons propagating on the 

upper face of the slits are enough attenuated, thus not contributing to the 

calculated average.  The considered nanoslit, as shown in figures 4.10 and 

4.11, has the higher edge on the left side, therefore it can be expected that, 

as d grows, the positive x component of the Poynting vector increases, 

entailing a right tilting of the output field.   

Looking at Fig. 4.19b, the curve relating the averaged x component of the 

Poynting vector and the step (height difference) size is shown.  With fixed 

gap and thickness the parameter d was changed from 0nm (balanced slit) to 

150nm.  It can be seen that a quasi linear dependence exists, thus allowing 

to choose the value of d corresponding to the desired tilting.  However there 

are some considerations which limit the choice of the step size d.  As a 

matter of fact, as d increases higher order surface plasmon modes propagate 

along the aperture’s wall which produce nodes in the field distribution on 

the metal surface.  If one of these node correspond to the upper edge of the 

slit, coupling with light in air is reduced, entailing a minimum in the 

radiated field.  Furthermore higher order modes cause the existence of 

multiple emitting points of the metal surface, thus introducing fringes in the 

generated pattern and, as a consequence, reducing the directivity of the 

device. 
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Figure 4.20 depicts the magnetic component of the field interacting with the 

unbalanced nanoaperture dimensioned as follows: base thickness h of 

200nm, aperture’s width g = 35nm, height difference between the edges 

equal to d = 150nm.  It is evident how the generated field results deflected 

toward the right direction.  It can be also seen that the surface plasmons 

propagating on the input (lower) and output (upper) faces of the slit are 

enough attenuated before they reach the borders, thus preventing the 

existence of undesired reflections. 

 

Figure 4.20.  Contour map of the amplitude of the overall magnetic field at a 

wavelength λ = 830nm for a silver nano aperture 35nm wide, etched in a metal 

layer of 200nm and with a step size of 150 nm. 

The simulations discussed in paragraph 4.7 made use of the transmission 

coefficient within from the interaction problem for evaluating the effective 

amplitude of the field emitted by the dipole lines. 

The chosen values for the device’s salient parameters, reported also in Fig. 

4.21 which collects the results obtained from the simulations discussed until 

now, allow to estimate the torque effect by applying Eqs. (4.16) and (4.18).  

In fact it can be found an overall torque C = 3.5 10
-21

 Nm and an angular 
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acceleration α = 2 10
-4

 rad/s
2
 which are sufficient to make a free PSPP to 

rotate about its axis. 

The device presented in this chapter therefore configures as an angular 

momentum converter which transforms a SAM incident field in a beam 

carrying OAM.  Furthermore it is a device working on the micro- and nano-

scale, allowing to employ it for generating optical vortices within the field 

of integrated optics.  Moreover, since the size of the PSPP is particularly 

reduced, the torque effect present in all the OAM generating devices, is no 

more negligible, allowing to take advantage of it for micromachining 

purpose.  As a matter of fact the rotating effect can assimilate the PSPP to a 

micro helix which can be exploited, for example, as a micro gear or even as 

a micro turbine. 

 

Figure 4.21.  Outline of the sub-wavelength slit etched in silver layer, optimized 

for maximum transmission and tilting of the electromagnetic field. 
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Chapter 5 

 

 

Measurement of the topological charge 

of an optical vortex by single slit 

diffraction 

 

Until now we focused on the problem of generating optical vortices, hence 

orbital angular momentum.  However, a fundamental issue concerns the 

possibility of measuring the salient features of the generated OVs, like the 

magnitude and the sign of their topological charge. 

Clearly this is not a novel field of research because the topological charge 

was measured since the beginnings of singular optics.  As a matter of fact 

are indeed information coming from such techniques that allow to correctly 

generate vortices.  

The most common and proved methods for measuring topological charges 

rely on interferometry.  In 1992 Bazhenov et al. [35], in one of the seminal 

papers on singular optics, showed that the interference pattern obtained 

from the interaction of a reference plane wave incident with an angle 2θ 

and a helical beam, is a grating with a dislocation nested in its centre.  

Differently from the interference pattern of two plane waves, one of the 

fringes disappears (or originates) in the centre of the grating, thus distorting 

the periodic pattern.  An intensity given by the following equation was 

found: 

    
2

2 2

0 0 0, , 2 cosP PI z E E e E e        (5.1) 
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being A related to the initial conditions.  The experimental pattern obtained 

by this interference scheme is reported in Fig. 5.1. It is worth noting that 

this technique allows also to measure the sign of the dislocations: different 

signs cause different orientations of the bifurcation in the fringe pattern. 

 

Figure 5.1. Experimental intensity pattern of the interference between a plane 

wave propagating with an inclined incident angle and a helical beam with non-

integer topological charge. 

This result suggested the idea of generating optical vortices by nesting a 

dislocation in their phase profile, leading to the well-known fork hologram.  

In fact, reversing the problem Bazhenov et al. proposed to reconstruct the 
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screw dislocation wave-front by using the diffraction of a plane wave by a 

synthetized grating including the dislocation itself.  Since 1992 this 

technique was improved, and computer generated holograms became the 

most used technique for generating optical vortices.  They were overcome 

only when liquid crystals based spatial light modulators, working on the 

same principles, were employed. 

Since then, the many alternative solutions were proposed in order to avoid 

the use of experimental setups requiring accurate alignment of the 

interfering beams.  Therefore simpler interferometric setups were used, 

starting, for example, from a Young’s double slit experiment [78].  In this 

paper, the bending and orientation of the interference fringes originated by 

illuminating a double-slit screen with a Laguerre-Gaussian beam, is used as 

a measuring parameter for the magnitude and sign of the topological 

charge. This bending is due to a non-uniform  phase term between the 

edges of the slits and related to the presence of a helical wave-front.  

However in reference [78] are not reported measurements of topological 

charges higher than 1.  Moreover, from the amount of the bending would be 

difficult to distinguish accurately the magnitude of the OV. 

In recent years other configurations, always relying on diffraction by 

apertures, were proposed.  The most interesting works see characterization 

of the optical vortex by studying the diffraction pattern produced by annular 

[79], hexagonal [80] or triangular apertures [81].  All of the techniques 

proposed by references [79-81] performing a spatial spectral analysis of the 

beam, allow to detect without any ambiguity both the magnitude and the 

sign of the topological charge of the incident vortex, even when high values 

of the topological charge are involved.   

Nevertheless it was demonstrated that a simple setup of a single-slit 

diffraction experiment, can be sufficient to characterize the optical vortex 

beam [82].  In this experiment, light fields carrying OVs were let to 

illuminate a screen with a single slit.  Because of the non-uniform phase 

term discussed in Ref. [78], there is, as expected, bending of the 

interference fringes; their orientation reveals the sign of the topological 

charge.  However the dark spot of the OV beam causes also the presence of 

a nodal line at the centre of the pattern; this, besides the bending, allows to 

measure also the magnitude of Q, since the number of nodal lines directly 
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depends on the topological charge itself.  Ghai et al. [82] specify that, since 

the dark core widens, with this technique, is difficult to perform 

measurements on OV with Q higher than 2. 

In this chapter an evolution of the latter technique is discussed, in order to 

overcome the limits intrinsically related to what proposed in Ref. [82]. 

5.1 Diffraction from a single slit 

For determining the field diffracted by a narrow aperture, if the dimensions 

of the slit are significantly larger than the incident wavelength, an 

elementary optical model based on transmission functions can be used. 

If a plane wave illuminate a slit infinitely extended along the y dimension 

and with an aperture, along the x axis of 2a, is considered, it is well-known 

that the diffracted field in the Fraunhofer region will be proportional to the 

Fourier transform of the field emerging from the aperture.  Modelling the 

slit with a rect transmission function, the emerging field will have a 

disturbance given by 

 
x

U rect
a

 
  

 
 (5.3) 

which, in the far field region, will produce an intensity pattern with a sinc
2
 

dependence on the transverse coordinate. 

Considering as the incident field, a plane wave carrying a phase singularity, 

i.e. with a helical wave-front, the emerging field can be simply written as 

 
ilx

U rect e
a

 
  

 
 (5.4) 

The diffracted field can be calculated by using the Fraunhofer integral 

which gives the profile expressed by Eq. (5.5).  
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In Eq. (5.5) the additional phase term δ accounts for the non-uniformity of 

the helical phase and is proportional to the difference of the phase evaluated 

in the left and right sides of the slit.  This term is responsible for the 

bending of the interference fringes discussed in the above references. 

Looking at the intensity pattern, it was pointed out that a single slit 

illuminated by a plane wave produces a sinc
2
 diffraction pattern.  However 

when a vortex beam illuminates the slit, the dark core entails the splitting of 

the sinc in the far-field region, causing a nodal line separating the two 

central intensity lobes.  Increasing the topological charge lead to doubling 

the nodal lines, giving information about the magnitude of optical vortex. 

When topological charge is larger than 2 or 3, the dark core of the OV 

beam begins to cover completely the slit, making difficult to produce 

distinguishable patterns.   

However, if the slit is moved in the horizontal direction, a full scan of the 

vortex beam can be performed, thus realising a sort of tomography which 

allows to measure higher values of Q.  As a matter of fact, by moving the 

slit in the x direction, diffraction fringes are dynamically modified, 

reducing to the simpler case of single (or small) topological charge. 

5.2 Numerical simulations 

In order to verify the possibilities related to the proposed method, an 

experimental setup as described in Fig. 5.2 was numerically simulated. 

As usual, Laguerre-Gaussian modes are used for modelling optical vortex 

beams.  These illuminate a narrow slit, several microns wide, placed in the 

plane z = 0.  The emerging field, given by the product of the incident beam  

on the plane z = 0 and the transmission function, is expressed by Eq. (5.6)  
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 (5.6) 

where ξ0 is the centre of the slit, ξ and η are the transverse coordinate on the 

plane z = 0.  Field given by Eq. (5.6) is then propagated in the free space.  

A lens of focal length f performs a Fourier transform on the field, so that 

the light collected on a screen is the far-field intensity distribution. 

 

Figure 5.2.  Sliding single slit experiment.  A vortex beam illuminates a narrow 

slit.  The diffracted light is collected by a lens of focal length f which realises a 

far-field transformation.  A screen is placed on the back focal plane of the lens.  

The intensity profile is a sinc2 with its central lobe split by a nodal line.  The slit 

is moved along the horizontal direction. 

Simulations were performed by using a rectangular 300×300 spatial mesh, 

which resulted at the same time, accurate and easy to handle numerically, 

since a matrix based integration was used to calculate Fourier transforms. 

Far field pattern on the back focal plane of the lens was evaluated by 

solving the Fraunhofer diffraction integral: 
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Eq. (5.7) was numerically integrated for every position of the slit, that is the 

parameter ξ0 is let free to change in order to scan the whole beam’s 

transverse profile. 

 

Figure 5.3.  Incident field (left column) and calculated far field pattern (right 

column) obtained from the sliding single slit experiment for a vortex with 

topological charge Q = 1.  As the slit moves from left to right, the fringes move 

from the bottom to the upper part of the figure. a) ξ0 = -32μm; b) ξ0 = 0μm; c) ξ0 

= 32μm 
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In the considered setup, the incident beam is chosen with an operating 

wavelength of 1μm and a spot size of 500μm; the slit is 50μm wide and 

infinitely extended in the vertical direction.   

Figure 5.3 and 5.4 report the intensity profiles of the calculated far field for 

different values of the slit’s displacement, together with the relative 

position of incident field and aperture.  Figure 5.3 shows the experiment for 

a topological charge Q = 1, while figure 5.4 for Q = 1. 

 

Figure 5.4.  Incident field (left column) and calculated far field pattern (right 

column) obtained from the sliding single slit experiment for a vortex with 

topological charge Q = -1.  As the slit moves from left to right, the fringes move 

from the upper to the bottom part of the screen. a) ξ0 = -32μm; b) ξ0 = 0μm; c) ξ0 

= 32μm 

It can be seen that for a positive value of the topological charge, as the slit 

moves from left to right, the sinc
2
 pattern moves from down to up, while, 
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when Q has opposite sign, the fringes move toward the lower part of the 

screen.  Looking at these figure, the bending of the diffraction fringes can 

be also noticed. 

However such results are not surprising since can be obtained also from the 

fixed single slit experiment, as happened in reference [82].  The advantages 

of this technique can be appreciated when higher topological charges are 

taken into account, as shown in Fig. 5.5 and 5.6. 

As the slit moves, the fringes move following the same trajectories of the 

case of unitary topological charge.  However the number of central 

intensity maxima increases.  As a matter of fact, when unitary topological 

charge was considered, the far field intensity pattern revealed two main 

lobes separated by a dark nodal line.  On the other hand, in this case, the 

horizontal movement of the aperture reveals 4 lobes separated by 3 nodal 

lines which appear sequentially. 

Of course this can be expanded also to higher topological charges.  

Therefore, the magnitude of the topological charge of an optical vortex can 

be measured by counting the number of main intensity maxima appearing 

during the scan.  It is found that Q equals exactly the number of nodal lines 

separating the lobes.  The sign of topological charge, is given by the 

direction along which the fringes move. 

5.3 Rectangular aperture 

A further improvement of this technique can be found considering a 

rectangular aperture, i.e. a slit limited in both horizontal and vertical 

directions. 

In this case the non-uniform phase term is accumulated not only between 

the left and right side of the aperture, as happened for the one dimensional 

slit, but also between the upper and lower side.  In the situation of a slit 

infinitely extended along one direction, the diffraction pattern showed bent 

fringes because the term δ is accumulated only in the limited direction.   

As pointed out before, δ depends on the phase difference between the 

edges.   
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Figure 5.5.  Incident field (left column) and calculated far field pattern (right 

column) obtained from the sliding single slit experiment for a vortex with 

topological charge Q = 3.  As the slit moves from left to right, the fringes move 

from the bottom to the upper part of the screen. a) ξ0 = -32μm; b) ξ0 = 0μm; c) ξ0 

= 32μm 
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Figure 5.6.  Incident field (left column) and calculated far field pattern (right 

column) obtained from the sliding single slit experiment for a vortex with 

topological charge Q = -3.  As the slit moves from left to right, the fringes move 

from the upper to the bottom part of the screen. a) ξ0 = -32μm; b) ξ0 = 0μm; c) ξ0 

= 32μm 
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Since in a helical beam the phase changes uniformly of 2π on a 

circumference around the singularity, when an aperture limited in both 

horizontal and vertical direction is considered, as its aspect ratio approaches 

unity, δ tends to become the same along x and along y.  This implies that, in 

a square or circular aperture, the additional phase term is compensated, and 

the bending of the fringes in the diffraction pattern disappears.   

Apparently this may appears to be limiting for the sign determination of the  

topological charge.  However, since there is spatial limiting in both 

directions, more spectral components are included in the far field pattern, 

allowing to easily measure the magnitude of higher topological charges, by 

sacrificing the possibility of determining the sign. 

Adopting the setup proposed in this chapter, where the aperture moves with 

respect to the incident field, thus performing an horizontal scan of the beam 

itself, may overcome this limitation. 

As a matter of fact, by following the dynamics of the intensity maxima 

appearing on the far-field screen, it is possible to distinguish between two 

opposite orientations of the optical vortex.  As described in the previous 

paragraph, if the intensity lobes migrates from the bottom to the upper part 

of the screen a positive topological charge is present, otherwise the sign of 

Q is negative (or vice versa , depending on which direction is chosen as 

positive). 

 

Figure 5.7.  Sliding rectangular aperture experiment.  A vortex beam illuminates 

a rectangular aperture.  The diffracted light is collected by a lens of focal length f 

which realises a far-field transformation.  A screen is placed on the back focal 

plane of the lens.  The intensity profile is a sinc2 with its central lobe split by a 

nodal line.  The aperture is moved along the horizontal direction. 
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Also for this case numerical simulations were performed, referring to a 

setup, depicted in Fig. 5.7, similar to the one described in the previous 

paragraph. 

For this sake an aperture with a moderate aspect ratio1:4 was chosen, under 

analogous illuminating conditions of the previous situation, i.e. wavelength 

of 1μm and spot size of 500μm.  The transmission function of such aperture 

will be: 

 0
0 rect rect

a b

  


   
   

  
 (5.8) 

Multiplying Eq. (5.8) for the LG beam in the plane z = 0 the field U0 

emerging from the aperture is obtained.  By substituting it into Eq. (5.7) 

and performing numerical integration, the far-field diffracted intensity 

pattern is found.  Some results are shown in Fig. 5.8, 5.9 and 5.10 where the 

diffraction patterns for different values and sign of the topological charge 

are numerically calculated.   

In these figures are respectively considered cases of topological charge 

equal to 2, -2 and 3.  It can be easily observed that there is no more bending 

in the fringes, and that the trajectory of the intensity maxima follows what 

was already observed in the vertically infinite narrow slit discussed before. 

The numerical model based on transmission functions adopted in this 

chapter, allowed to test a simple techniques for measuring magnitude and 

sign of even large topological charge optical vortices.   Its simplicity relies 

on the well-known diffraction experiment of single slit diffraction, hence it 

does not require particular care to be performed.  Furthermore, numerical 

simulations showed that better results can be obtained if a rectangular 

aperture is used.  Although the technique of  diffraction by apertures was 

already studied (using different geometries), the dynamic method proposed 

in this chapter allows to measure not only the magnitude, but also the sign 

of topological charge. 
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Figure 5.8.  Incident field and slit position (left column) and calculated far field 

pattern (right column), obtained from diffraction by a rectangular aperture sliding 

in the horizontal direction. The aperture is illuminated by a vortex beam with 

topological charge Q = 2.  Phase uniformity avoids bending of the fringes.  As 

the slit moves from left to right, the fringes move from the bottom to the upper 

side of the screen. a) ξ0 = -150μm; b) ξ0 = -50μm; c) ξ0 = -10μm; d) ξ0 = 0μm; e) 

ξ0 = 10μm; f) ξ0 = 50μm. 
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Figure 5.9.  Incident field and slit position (left column) and calculated far field 

pattern (right column), obtained from diffraction by a rectangular aperture sliding 

in the horizontal direction. The aperture is illuminated by a vortex beam with 

topological charge Q = -2.  Phase uniformity avoids bending of the fringes.  As 

the slit moves from left to right, the fringes move from the upper to the lower 

side of the screen. a) ξ0 = -150μm; b) ξ0 = -50μm; c) ξ0 = -10μm; d) ξ0 = 0μm; e) 

ξ0 = 10μm; f) ξ0 = 50μm. 
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Figure 5.9.  Incident field and slit position (left column) and calculated far field 

pattern (right column), obtained from diffraction by a rectangular aperture sliding 

in the horizontal direction. The aperture is illuminated by a vortex beam with 

topological charge Q = 3.  Phase uniformity avoids bending of the fringes.  As 

the slit moves from left to right, the fringes move from the lower to the upper 

side of the screen. a) ξ0 = -200μm; b) ξ0 = -100μm; c) ξ0 = -50μm; d) ξ0 = -20μm; 

e) ξ0 = 0μm; f) ξ0 = 20μm. 
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Chapter 6 

 

 

Nonlinear parametric control of 

Orbital Angular Momentum 
 

It was pointed out several times in this dissertation that it is important to 

achieve precise control over the orbital angular momentum of light.  As a 

matter of fact this may be helpful in applications such as optical tweezers 

where particle manipulation requires accurate control; another important 

application concerns quantum information, where OAM states are used as a 

basis for n-dimensional qubits.   

Undoubtedly it was done a lot of work concerning this topic, focusing 

especially on the study of dynamics and linear interactions of optical 

vortices [83-86].  In fact propagation dynamics were thoroughly 

investigated, showing many interesting aspects of objects like optical 

vortices:  Indebetouw [83] demonstrated that OV behave like charged 

particles directly affecting OAM. 

It was shown that vortices with topological charges of opposite sign tend to 

attract one each other during propagation.  If their initial distance is 

sufficiently small they may collide, interfering destructively and hence 

annihilating each other: this obviously leads to the vanishing of the angular 

momentum.  On the other hand, if topological charges are of the same sign, 

the vortex distribution remains invariant with the propagation (i.e. the 

distances among the vortices are conserved) and it simply rotates rigidly as 

a solid body, as a consequence of OAM.  The array also expands or 

contracts together with the host beam. 
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The result obtained studying the propagation dynamics led to move the 

investigation on nonlinear interactions [87-90].  This topic revealed as an 

interesting tool for controlling the dynamics of optical vortices.  As a matter 

of fact, a wide variety of effects has been analyzed and observed, such as 

the rising of vortex solitons [91], splitting of solitons [92], and creation and 

annihilation of vortices due to the interaction of the singularities in 

nonlinear media by means of the dislocations’ dynamics. 

Some of the nonlinear processes which affect the propagation dynamics of 

optical vortices are parametric frequency conversion in quadratic nonlinear 

media [93]. 

Among them, second harmonic generation in a collinear scheme was also 

copiously studied since the beginnings of singular optics.  In these papers a 

purely Laguerre-Gaussian mode was used to illuminate a nonlinear crystal 

in order to generate a second harmonic field [94-97].  Scope of these works 

was mainly the demonstration of the conservation of orbital angular 

momentum in frequency conversion processes.  It was indeed observed that 

a LG01 beam which undergoes to second harmonic generation (SHG), 

doubles its azimuthal index, becoming a LG02, hence its topological charge. 

To the writer’s knowledge further studies were done on nonlinear 

interactions, exploring parametric down-conversion processes.  It was 

found that, differently from what happens in SHG processes, in down-

conversion OAM is not conserved [98-99]. 

As it was mentioned before, one of the most intriguing applications of 

vortex beams’ interactions is the possibility of getting control not only on 

the vortices and their position, but also on the field distribution, hence on 

the OAM. 

In this chapter will be discussed a study done on the behaviour of orbital 

angular momentum in a seeded second-harmonic process.  Aim of this 

work is to provide a fast and efficient method which allows to tune 

continuously, at a suitable value, the OAM of a field.  This techniques takes 

advantage of easy-to-control parameters such as intensity of the interacting 

beams, type and length of the involved nonlinear crystal.   In what follows 

will be presented a detailed analysis of the method, testing it with fields 

carrying both integer and fractional OAMs.  As will be shown below, 

integer OAM beams are obtained simply by nesting an OV in a Gaussian 
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beam, while fractional values of OAM are achieved both by impressing in a 

beam a mixed screw – edge dislocation, or by displacing an integer optical 

vortex from the propagation axis [23]. 

Particular attention was dedicated to fractional OAM beams because they 

play an important role as application to quantum information. 

To fully understand the problem, in this chapter a theoretical analytical 

model will be developed to describe the evolution of OVs in quadratic 

parametric processes.  On the other hand, numerical simulations were 

performed, using a beam propagation method for solving the coupled 

nonlinear equations written for the interacting fields.  In order to have the 

clearest view of the situation, both phase matched and non-phase matched 

interactions are considered.  Finally analytical and numerical results are 

compared. 

 

6.1 Second order parametric processes 

Nonlinear optical phenomena occur when the optical properties of a 

material system are modified by the presence of light, and the response of 

the system depends in nonlinear manner on the strength of the optical field 

[100].  It is common knowledge that this feature is accounted by the 

Polarization P of the material system, that is the dipole moment per unit 

volume.  This term is usually linearly related to the applied field by means 

of the permittivity ε0 and of a constant of proportionality known as linear 

susceptibility, which is indicated by the symbol χ
(1)

.  However, more 

generally, Polarization can be expanded in a power series, introducing 

higher order terms (second, third, etc.) which have a nonlinear dependence 

on the electric field: 

                  1 2 1 22

0 ... ...t t t t t        
 

P E E P P  (6.1) 

Higher order polarization terms are thus related to the electric field by the 

corresponding order susceptibilities, as χ
(2)

 and so on.  Obviously second 

order processes depend on the presence of χ
(2)

 which is a third rank tensor 

measured in m/V (the inverse of the electric field) and the corresponding 
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polarization term can be referred as second-order nonlinear polarization 

       2 2 2

0P t E t  .  Usually it is referred to the second-order 

susceptibility with the symbol deff = ½ χ
(2)

. 

Second-order polarization plays the role of a source of different 

components of the electromagnetic field.  This can be easily understood by 

taking into account Maxwell’s Equations and combining them in order to 

obtain the wave equation which, in this case, becomes a nonlinear wave 

equation: 

 

 22 2 2
2

2 2 2 2

0

1n E P
E

c t c t

 
  

 
 (6.2) 

Considering an electric field given by 

 ( ) .i tE t Ee c c   (6.3) 

if it interacts with a nonlinear crystal with second-order susceptibility χ
(2)

, a 

nonlinear polarization term is created, according to Eq. (6.1): 

 
      2 2 2* 2 2

0 0( ) 2 . .i tP t EE E e c c        (6.4) 

which has components at different frequencies, one at zero frequency (first 

term), and one oscillating at double frequency with respect to the incident 

field (second term).  Therefore, looking at Eq. (6.2), it can be noticed that 

the interaction with the nonlinear crystal causes the generation of a field 

component at the second-harmonic frequency. 

More generally an incident field composed of multiple frequencies can be 

considered: 

   1 2

1 2 . .
i t i tE t E e E e c c  

    (6.5) 
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Analogously to what happened before, the corresponding second-order 

polarization will be: 

 

       

     

1 21 2

1 2

2 2 22 2

0 1 2 1 2

2* * *

1 2 0 1 1 2 2

2

2 . . 2

i ti t i t

i t

P t E e E e E E e

E E e c c E E E E

  

 

 

 

  

 

  


   


 (6.6) 

Looking at Eq. (6.6) terms at multiple frequencies can be identified.  First 

two terms in the square bracket oscillate at twice the frequency of the 

incident fields, therefore are related to Second-Harmonic generation. The 

third term has a frequency given by the sum of ω1 and ω2: this corresponds 

to Sum-Frequency generation.  The frequency of the fourth term is the 

difference of the two input frequencies, hence the corresponding nonlinear 

process is called Difference-Frequency Generation.  The remaining term, 

outside the square bracket has zero frequency and is called Optical 

Rectification. 

Typically when a nonlinear interaction takes place only one of the above 

processes is enough efficient to generate an appreciable signal.  This 

because the nonlinear polarization can efficiently produce an output signal 

only if certain phase-matching condition is satisfied.  Usually this condition 

can be satisfied only for a certain frequency.  Therefore, since phase 

matching depends on polarization and on the orientation of the nonlinear 

crystal, these features must be selected according to the desired generated 

frequency.  

 

6.2 Difference – frequency generation 

In a more general fashion an interacting field, as the one of Eq. (6.5), is a 

superposition of frequencies, hence, by making explicit the harmonic time 

dependence,  it can be expressed as 

      , , . .ni t

n n

n n

t t e c c


   E r E r E r  (6.7) 
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This implies that all the quantities related to the electrical field of Eq. (6.7), 

as linear a nonlinear polarization, are given by a similar superposition.  

Therefore, by substituting such expressions in the wave Eq. (6.2), a 

nonlinear wave equation that is valid for each frequency can be obtained: 

        
2 2

2

2 2

0

NLn n
n n n n

c c

 
 


   E r E r P r  (6.8) 

In a difference-frequency generation process there is the interaction of 

fields with three different frequencies, each of them has to satisfy Eq. (6.8).  

These fields can be considered as plane waves whose amplitudes change as 

they propagate inside the crystal along the z direction.  Figure 6.1 shows an 

outline of the process indicating the interacting fields: 

 

Figure 6.1.  Sketch of Difference-frequency generation 

Therefore, the involved fields are: 

      
, . .i ii k z t

i iE z t A z e c c


   (6.9) 

with i = 1, 2.  Field at frequency ω3 is usually much more intense than the 

other two: this means that it is substantially unaffected by the energy 

exchange which happen in the nonlinear interaction. In this situation the 

second order polarization at the difference-frequency is  

 

deff= ½ χ(2) 

ω1 

ω3 

ω1 

ω3 

ω2 = ω3  - ω1 
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*

1 0 3 2

*

2 0 3 1

4

4

eff

eff

P d E E

P d E E








 (6.10) 

By substituting Eqs. (6.9) and (6.10) into Eq. (6.8), after some algebraic 

passages, and under the hypothesis that the amplitudes of the interacting 

fields vary slowly (Slowly Varying Envelope Approximation, SVEA), the 

coupled equations describing difference frequency generation are obtained. 

 

2

1 *1
3 22

1

2

2 *2
3 12

2

2

2

eff i kz

eff i kz

i ddA
A A e

dz k c

i ddA
A A e

dz k c













 (6.11) 

where  

 3 1 2k k k k     (6.12) 

is the momentum mismatch and is related to the phase matching condition:  

when phase matching is fulfilled this term is zero.  Supposing that phase 

matching condition is verified, these equations can easily be de-coupled by 

substituting one into the other, hence leading to the following equation 

 

2 2 22
1 2 * 22

3 3 2 22 4

1 2

4 effdd A
A A A A

dz k k c

 
   (6.13) 

Since κ is a real constant, the solution of this equation is a superposition of 

hyperbolic functions 

      2 sinh coshA z B z C z    (6.14) 
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where B and C are integration constants depending on the boundary 

conditions.  Typically the difference-frequency field is not present at the 

input plane of the nonlinear crystal, hence A2(0) can be taken as 0, while a 

suitable input value can be chosen for A1.  Solution for both field can thus 

be found as: 

 

   

 

1 10

*31 2
2 10

2 1 3

cosh

sinh( )

A z A z

An
A z i A z

n A











 (6.15) 

Which are both exponentially growing function.  From Eq. (6.15) can be 

noticed  that E1 always undergoes to amplification while E2 is amplified 

with a phase dependent on the phases of the other interacting fields. 

There can exist a particular case where frequencies ω1 and ω2 are equal: this 

degenerate case is a down-conversion interaction which can be interpreted 

as the reverse of the second harmonic generation process.  Normally in this 

situation it is not possible to write separate equations for the fields, unless 

the degeneration is removed by making the field distinguishable, for 

example by polarization. 

 

6.3  Composition of fields with different orbital angular 

momentum 

Recalling what was said in chapter 2 about the orbital angular momentum, a 

linearly polarized field with a helical phase dependence, possess only 

OAM.  For convenience Eq. (2.15) expressing the OAM per photon of a 

light beam, calculated with respect to the propagation axis z, is reported 

 

   

 
2

* , ,

,

u r u r rdrd
Li

Wu r rdrd

  


 



 



 (6.16) 
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where the nature of the terms of the ratio is emphasized.  As a matter of 

fact, OAM per photon is obtained by dividing the total (orbital) angular 

momentum L, related to the spatial distribution, by the field’s energy W.  

This distinction may be helpful for calculating the OAM of a linear 

superposition of two or more fields. 

In particular, it can be taken into account the case of a field obtained by the 

sum of two beams carrying different angular momentum ℓ1 = l and ℓ2 = m, 

with the following spatial distribution: 

   1 2, il imu e i e   A - A  (6.17) 

Such a field configuration was chosen by looking at the results obtained in 

the previous paragraph, considering a composition of fields involved in a 

parametric amplification process.  However this will become clearer in the 

following sections. 

In order to evaluate the OAM per photon, in ħ units, corresponding to the 

superposition field of Eq. (6.17), the latter must be substituted in Eq. (6.16).   

Indicating with L1, W1 and L2, W2 respectively the total orbital angular 

momentum and the energy of the fields u1 and u2, after simple algebraic 

passages an expression for the total OAM per photon can be obtained: 

 

    
 

 

 

 

1 2 1 2

2

1 2 1 2

sin

sin
2

i m l i m l
m l

L L me le
m l

m l
W W

m l

 




 
    




   


AA

A A

(6.18) 

Equation (6.18) is quite difficult to handle and does not provide a simple 

analytical expression of the total OAM per photon in terms of the angular 

momentum of the composing fields.  However some consideration can be 

done, in order to drastically simplify it. 

As a matter of fact the terms on the right side of Eq. (6.18) show a sinc 

function dependence with the difference (m-l) as argument.  It can be 

noticed that, in particular cases when l and m assume integer values or 



 

6. Nonlinear parametric control of the Orbital Angular Momentum 

114 
 

when m = l (i.e. the argument of the sinc is 0), these terms vanish and the 

OAM depend only on the total angular momentum and energy of the 

separate composing fields.  Under these circumstances Eq. (6.18) can be re-

written as 

 1 2

1 2

L L

W W





 (6.19) 

Therefore total OAM per photon of a superposition of fields is given by the 

weighted summation (in terms of energy) of the OAM of the composing 

fields.  As a matter of fact, when fields u1 and u2 have the same amplitude 

the OAM corresponding to their superposition is the arithmetical average, 

that is (ℓ1+ ℓ2)/2;  on the contrary, when one of the beams is far more 

intense than the other, the overall OAM reduces to the angular momentum 

of the dominant field.  As mentioned before, the result expressed by Eq. 

(6.19) will be applied in the next paragraph to determine the OAM of fields 

interacting in a nonlinear parametric process. 

What was found until now can be easily applied to superposition of optical 

vortices.  In section 2.3 it was pointed out that every field distribution can 

be expressed by means of a superposition of Laguerre-Gaussian modes, 

since the constitute an orthonormal basis, as expressed by Eq. (2.23), 

reported here below.   

   ,

0

, , ( , , )LG

pl p l

p l

u r z C r z  
 

 

  (6.20) 

This means that each integer OAM state is orthogonal, hence can be treated 

as separate from other OAM states.  Moreover, Eq. (6.20) allows to include 

in this analysis even fractional OAMs since they are superposition of 

integer values. 

Clearly this analytical treatise can be extended to superposition of 

whichever number of fields carrying OAM; the hypotheses made for 

obtaining Eq. (6.19) retain their validity also for fractional values. 
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6.4 Seeded Second-Harmonic Generation 

Using second order nonlinear processes for controlling light reveals as a 

powerful tool, and is a valid alternative to intensity dependent changes 

induced in cubic nonlinear material [101-102] for at least two reasons: 

speed, and, primarily, because of low-loss properties, in contrast with third-

order processes.  As a matter of fact third-order interactions take advantage 

of the nonlinear susceptibility χ
(3) 

which is typically smaller than second 

order susceptibility, therefore the related processes may be far less efficient. 

The possibility of lossless operation is attractive, because  it can help to 

revive the idea of fast control of light-by-light for all optical signal 

processing.  A large number of devices exploiting these phenomena have 

been proposed; among them, for example, in Ref. [103] was discussed a 

way of controlling the reflectivity of a field at fundamental frequency (FF) 

under conditions of a second harmonic (SH) beam far more intense than the 

FF, and under suitable phase matching conditions. 

Vortex dynamics in presence of phase screw dislocations in a beam 

together with nonlinear interaction, have been also studied.  In reference 

[90] a parametric interaction in a quadratic nonlinear medium has been 

reported under the fundamental field weak depletion regime; it has been 

shown that, by changing the relative amplitude and phases of the fields at 

the input plane of the nonlinear crystal, a control of the vortex dynamic can 

be performed.  However from here emerges that this research was focused 

only on OV’s dynamics, but nothing is reported about the control of OAM 

carried by each beam. 

Scope of this work is to show the evolution of the orbital angular 

momentum of fields propagating in a nonlinear crystal, interacting in a 

seeded second harmonic generation process.  While in normal second 

harmonic generation interactions there is only a pump field at FF which is 

incident on the nonlinear crystal, in seeded SHG both the FF and SH beams 

are present at the input interface of the crystal.  This transforms the 

nonlinear interaction in a parametric amplification process where, 

depending on the initial phase of the involved fields, amplification or de-

amplification can occur.   
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Nevertheless the case discussed in this dissertation can be more properly 

treated as parametric down conversion,  since an un-depleted pump beam 

(i.e. not affected by the interaction) at SH frequency impinges, together 

with a field at FF, on a second-order nonlinear crystal.  Therefore an energy 

transfer from SH to FF field will be present, modifying the properties of the 

latter. 

In what follows, will be considered a collinear parametric interaction 

involving fields carrying OAM, both co-propagating in a nonlinear crystal, 

under two different conditions, i.e. phase-matching and non-phase-

matching.  The analysis is performed by combining fields, both carrying 

angular momentum, with different input amplitude, then the more suitable 

conditions for controlling the OAM carried by the beams is determined. 

Considering two fields at the input plane of a χ
(2) 

nonlinear crystal at 

frequency ω and 2ω, both of them must satisfy the nonlinear wave equation 

given by Eq. (6.8).  Differently from what was discussed in section 6.2, this 

time the amplitude of such fields depends both on z and on the transverse 

coordinate r = (ρ,φ). Therefore they can be written in the form of  

      
, , , . .i ii k z t

i iE z t A z e c c


 r r  (6.21) 

By substituting Eq. (6.21) into the nonlinear wave equation, a set of 

coupled equations for the interacting fields is obtained: 
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 (6.22) 

being  
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2

2
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the wavenumber, A1 and A2 the complex envelopes of the interacting fields, 

deff  is the effective coefficient accounting for the nonlinearity, ∇2
T is the 

transverse Laplace operator, Δk is the momentum mismatch given by 

Eq. (6.12), ω1 and ω2 are the frequencies of FF and SH fields 

respectively. 

For simplicity’s sake, the coupled equations were solved under phase-

matching conditions (Δk = 0).  Furthermore, the main hypothesis is 

that SH field is far more intense than FF: the second harmonic field can 

thus be treated under the un-depleted approximation, that is A2 

constant with z. 

It is possible to account for the OAM by making explicit the helical phase 

dependence, hence decomposing the complex envelope in a part depending 

mainly on z, and in another with a phase purely depending on the azimuth 

coordinate φ.  Since main interest is on the evolution of OAM, the involved 

envelopes can be considered as plane waves with a screw phase singularity 

nested within.  Therefore the dependence on the radial coordinate can be 

neglected, so amplitudes become: 
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 (6.24) 

Since un-depleted SH field approximation is considered, the set of coupled 

equations reduces to only the first of Eqs. (6.22) which, by substituting Eqs. 

(6.24), takes the form of: 
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 (6.25) 

Equation (6.25) can be solved by separating the real part of A1 from its 

imaginary part.  After some simple algebraic passages it is found that the 

solution for the complex envelope of the FF field shows, according to the 

theory presented in section 6.2, a hyperbolic dependence on the propagation 

coordinate z.   
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where A1(0,φ) A2 constant account for the boundary conditions. 

Therefore the complete solution for the field at fundamental frequency 

becomes: 
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 (6.27) 

The OAM of the fundamental field expressed by Eq. (11) can be estimated 

by making use of what was found in the previous section and expressed  by 

Eq. (6.19), considering the two terms of the envelope of Eq. (6.27) as the 

fields of the linear superposition of Eq. (6.17).  As a matter of fact, by 

simply looking at Eq. (6.27) to separate contributions to the OAM can be 

found: these are the terms with helical dependence.  

By separately substituting the two terms of the superposition of Eq. (6.27) 

in Eq. (6.16), the following values can be obtained:  the OAM per photon of 

the first term is l, while is m – l for the second term;  since there is no z 

dependence inside such components, clearly their values remain constant 

during propagation. 

As the field propagates inside the crystal, for small values of z, the 

hyperbolic cosine is dominant, as can be seen from Fig. 6.2, hence the 

overall momentum corresponds with the OAM of the first term of Eq. 

(6.27), that is l, the starting OAM of the field at fundamental frequency.  

When z increases, the second term, proportional to the hyperbolic sine, 
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grows, tending asymptotically to reach a value comparable with the first 

term. 

 

Figure 6.2.  Hyperbolic cosine (dashed line) and hyperbolic sine (solid line).  For 

small values of z the cosine is dominant.  As z increases both function tend to a 

common asymptote. 

Therefore, for large propagation distances, the weights of the two 

contributions become equivalent, and the total OAM per photon is given by 

half the summation of the two OAMs, i.e. [l + (m – l)]/2 = m/2, namely half 

of the orbital angular momentum of the second harmonic field.  This result 

should not be surprising since momentum conservation must be fulfilled. 

Looking at Eq. (6.27) it can be noticed that amplification is strongly 

dependent on the SH field amplitude which exponentially affect the growth 

of FF field.  This implies that, by changing the input SH intensity, the 

distance over which the energy of the two OAM contributions becomes 

equivalent is modified:  the higher is the SH amplitude, the shorter is this 

length. 

In Fig. 6.3 is plotted the behaviour of the OAM per photon, in ħ units, of 

the FF field with the propagation distance z for different starting values of 

the angular momentum of both the SH and FF beams and for different 

amplitudes of the second harmonic signal.  Cases considered include 

interaction of  both integer and fractional values of the OAM per photon.  It 

should be noted that, in order to use Eq. (6.19), that is to simplify Eq. 

(6.18), when dealing with fractional OAMs same starting values for 

fundamental and second harmonic fields must be chosen. 
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It is evident that, regardless of its starting value, the momentum of the FF 

changes with propagation, in order to match half of the momentum of the 

SH field. 

 

Figure 6.3. OAM per photon of the fundamental field vs. Propagation length 

inside the nonlinear crystal, for didderent input values of the SH and FF OAMs, 

and different amplitudes of the SH field; Blue: 7×106 V/m, Red: 2×107 V/m, 

Black: 4×107 V/m. a) FF with ℓ = 0, SH with ℓ = 2; b) FF with ℓ = 1, SH with ℓ = 

0; c) FF with ℓ = ½ , SH with ℓ = ½ .  During the interaction the FF field changes 

its OAM from its starting value to half the OAM of the SH field. 

Looking at Fig. 6.3 can be easily seen that the SH amplitude affects the 

distance over which FF reaches its final value.  Of course such length can 

be controlled also by changing the nonlinear coefficient, which means 

changing the nonlinear crystal.  Furthermore it is evident that if a crystal is 

chosen, whose length is smaller than the “regime” length, fundamental 

frequency fields emerges from the crystal with an intermediate value of 

OAM. 

All these can be considered as parameters on which can be used in order to 

control the output orbital angular momentum. 
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6.5 Numerical simulations 

6.5.1 Model 

In order to verify what was predicted by the analytical solution of the 

seeded second harmonic generation process discussed in the previous 

section, numerical simulations were performed, solving the coupled 

equations (6.22) by means of a beam propagation method.  Since an 

accurate and efficient numerical model is used, integration of Eqs. (6.22) 

was directly carried out, not considering the un-depleted approximation for 

the SH field.  The only hypothesis taken into account is the Slowly Varying 

Envelope Approximation, that is field amplitudes do not change abruptly 

along z. 

Starting from the nonlinear wave equation, the set of coupled equation 

(6.22) can be rearranged in a more suitable fashion, writing them in 

Cartesian coordinates;  in this way numerical integration results simpler 

since a rectangular mesh of spatial samples can easily be defined: 
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 (6.29) 

where ω is the FF field frequency, 2ω is the SH field frequency, d
(2)

 is the 

nonlinear coefficient, nω and n2ω are respectively the spatial dependent 

refractive indices at the frequencies ω and 2ω, nb is the background 

refractive index, k0 is the vacuum wave vector and Aj(x,y,z) is the complex 

envelope of each interaction field. 

Last terms in the square brackets of Eqs. (6.28) and (6.29) can be simplified 

by making explicit the phase dependence of the complex envelope, hence 

using | ( , , ) | exp( ( , , ))j j jA A x y z i x y z  , being j the index related to 

each field; in this way, in the first equation, the dependence from the input 

fields and from their relative phase becomes evident.  This is important 

since, as pointed out before, relative phase between the interacting fields, 

determines whether an amplification nor de-amplification process occurs. 

Looking at Eq. (6.29) it can be noticed that, when the SH input signal is 

more intense than the FF input beam, the last term in the square brackets is 

small if compared to the linear part of the equation;  therefore the second 

harmonic field behaves essentially as if non-depletion approximation was 

considered.  On the other hand, in Eq. (6.28), the intense SH signal 

enhances the nonlinear term, resulting in a strong nonlinear dependence of  

the FF field on A2.  Moreover a strong relative input phase dependence of 

the two signals is also expected. 

In the numerical analysis carried out in this section, equations (6.28) and 

(6.29) are solved directly using a beam propagation method, based on a 
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Fast Fourier Transform (FFT) algorithm with a 200×200 mesh in the 

transverse plane. 

6.5.2 FFT Beam Propagation Method 

This numerical scalar tool works under the hypotheses of linear polarization 

and of main propagation along the z axis, with a slowly varying profile 

along the transverse direction x, and along z; this means only fields 

satisfying the paraxial approximation can be simulated. 

Starting from the wave equation, applying the SVEA approximation and 

considering a paraxial field propagating along z, of the form 

0( , ) ( , ) bin k z

yE x z x z e , where ξ is the complex envelope, the following 

equation can be obtained: 
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 (6.30) 

Where is emphasized the spatial dependence of the refractive index: this 

allow to define propagating structures, such as waveguide, rather than 

homogeneous media.  Furthermore, n(x,y,z) must be slowly varying along z. 

Since Eq. (6.30) is a spatial wave equation, it does not allow to study 

propagation together with reflections; in order to handle reflections, time 

dependence must be considered. 

In order to solve Eq. (6.30) two operators are defined: one, indicated with 

the symbol D̂ , includes the spatial derivatives, while the other, identified 

by V̂ , is a potential operator  which accounts for the refractive index step 

with respect to the background [104]. 
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Beam Propagation Method assumes that the field profile at the input plane 

ξ(x,y,z
0
) is known; solving equation (6.30) allows to evaluate the field on 

the plane z = z0 + dz. 

 
ˆ( )

0 0( , ) ( , )D V dzx z dz e x z    (6.32) 

Since it is not easy to calculate operators D and V, the exponential term of 

Eq. (6.32) can be expanded in Taylor series, thus leading to: 

 
ˆ ˆ ˆ ˆ( ) /2 /2 3( )D V dz Vdz Ddz Vdze e e e dz    (6.33) 

Observing Eq. (6.33) it can be noticed that the integration step (D+V) has 

been split into three separate terms: the first accounts for the interaction 

with the medium by half of the spatial step dz; second term accounts for the 

free space propagation of a full spatial step; last term covers the interaction 

with the remaining half spatial step. 

At this point, since operator D contains spatial derivatives, it can be 

evaluated in the Fourier Domain as 
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This allows to take advantage of the efficiency of Fast Fourier Transform 

algorithm, since ξ evaluated in the plane z = z0 + dz becomes 

  ˆ ˆ/2 1 /2
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where FT represents the Fourier Transform which, numerically can be 

implemented by means of the already mentioned FFT algorithm. 

Therefore the BPM work in the following way: the refractive index 

distribution in the whole space is defined; for each spatial sample of z Eq. 

(6.35) is integrated using the field distribution evaluated in the previous 

step. 

In order to include in BPM nonlinearities the wave equation can be 

rewritten as 
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When considering a second order nonlinear process, such as second 

harmonic generation the total field can be written as the superposition of 

the FF and SH fields: 
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Referring to section 6.2, the nonlinear polarization limited to the SH is 

given by 
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While the linear polarization is 

   0 0 2 2, , ( , , ) ( , , )LP x y z E x y z E x y z         (6.39) 

By substituting Eqs. (6.39)-(6.41) into the wave equation (6.38) a set of 

coupled equations similar to Eqs. (6.28) and (6.29) is obtained.  These can 
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be solved by means of BPM in a way completely analogous to the linear 

case, provided that operators D and V are correctly defined [105]. 

As a matter of fact for each step of the propagation length fields at FF and 

SH are updated, and each of them contributes to the new value of the 

opposite field. 

6.5.3 Input conditions 

In all the simulations FF and SH wavelengths are 800nm and 400nm 

respectively, both propagating collinearly in a type I nonlinear crystal with a 

nonlinear coefficient d
(2)

 50pm/V; same effects considered in this analysis 

can also be obtained by selecting a crystal with different nonlinear 

coefficient, as BBO or LiNbO3 [106], adjusting the total crystal length and 

the SH intensity level.  Furthermore it is assumed a beam waist for the FF of 

the order of 10μm, while for the SH is considered the same value reduced of 

a factor √2. 

In order to emphasize the role of the intensity of the SH field in controlling 

the OAM of the FF beam, several simulations were carried out, changing in 

each one the intensity level of the SH beam and choosing them sufficiently 

high, with respect to the FF, in order to avoid consistent energy transfers 

from the fundamental to the second harmonic field. 

Moreover three case were investigated in which the fields carry different 

combinations of OAMs, as happened for Fig. 6.3.  in the first situation, at 

the input plane of the nonlinear crystal, there are FF and SH fields with 

angular momentum per photon respectively equal to 0 and 2.  In the second 

case, the SH field carries zero angular momentum while the fundamental 

field has an OAM ℓ = 1and, in the last scenario, both fields carry a 

fractional orbital angular momentum equal to 0.5. 

The first two cases, where interacting fields possess integer OAMS, purely 

azimuthal Laguerre-Gaussian modes (LG0l) were used;  the OAM per 

photon of such beams is, as pointed out in previous chapters, equal to their 

azimuthal index l.  On the other hand, when dealing with fractional OAMS 

(third case), the fields are modelled by displacing an integer phase 

singularity with unitary topological charge from the beam’s axis, in order to 

obtain an angular momentum per photon of 0.5 in ħ units.  As a matter of 
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fact, it can be reminded that reference [23] shows that the intrinsic OAM of 

a beam with a displaced OV reduces through a Gaussian law with the 

extents of the displacement:   Q exp(-2 rv
2
/w0

2
), being rv the displacement 

of the singularity, w0 the spot size and Q the topological charge. 

In this dissertation the analysis of the fractional case is limited to the 

interaction of a FF field and its corresponding collinear SH generated beam;  

according to the Gaussian dependence of the OAM on the displacement, it 

can be easily found for a first fundamental field with ℓ = 0.5 that, because of 

the momentum conservation, its collinear SH field should possess an OAM 

of 0.5ħ per photon, that is the same as FF.  Therefore this situation is still 

consistent with the hypothesis of equal fraction OAMs which brought from 

Eq. (6.18) to Eq. (6.19). 

The transverse input beam profiles u(ρ,φ) of the FF fields are reported in 

Fig. 6.4 (first row), together with the corresponding SH input profiles 

(second row). 
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Fig. 6.4.  Intensity profiles of the interacting fields at the input plane.  First row: 

FF input beams; second row: SH input beams.  a) FF with ℓ = 0, SH with ℓ = 2; 

b) FF with ℓ = 1, SH with ℓ = 0; c) FF with ℓ = ½ , SH with ℓ = ½ . 

Figure 6.5 shows the phase profiles corresponding to the interacting fields 

of Fig. 6.4: when OAM is nonzero, the phase winds around a singularity; in 

Fig. 6.5c can be noticed the displaced optical vortex and the doubled 

topological charge of its corresponding second harmonic field. 

 

Figure 6.5.  Phase profiles of the interacting fields at the input plane.  First row: 

FF input beams; second row: SH input beams.  a) FF with ℓ = 0, SH with ℓ = 2; 

b) FF with ℓ = 1, SH with ℓ = 0; c) FF with ℓ = ½ , SH with ℓ = ½ . 

The off-axis OV beam was modelled via an LG decomposition, using Eq. 

(6.20); this field was numerically evaluated by integrating the coefficients 

of the superposition with a 200×200 mesh, over a distance five times larger 

than the beam waist. 

In all of the three situations, the numerically evaluated transverse fields’ 

profiles were propagated in a nonlinear crystal using the FFT BPM to solve 

Eqs. (6.28) and (6.29).  Equation (6.27) predicts that the length over which 
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the change in OAM happens is strongly dependent on the amplitude of the 

SH field.  Therefore, in order to keep the computational requirements low, 

i.e. reasonably short propagation distances, simulations were performed by 

taking both the FF and SH input beams with very high amplitudes, of the 

order of 10
6
V/m to 10

7
V/m.  clearly it is possible to consider lower 

intensities (or higher nonlinearities) provided that larger propagation 

distances, i.e. longer crystals, are chosen. 

6.6 Results 

Looking at Eqs. (6.28) and (6.29), in phase-matching conditions and with a 

relative input phase of –π/2, an amplification process of the FF occurs.  In 

the simulations it was followed the propagation of the fields over a total 

length of 300μm, with a SH field amplitude ranging from about 10 to100 

times higher than the field at fundamental frequency, keeping the 

propagation away from the spatial soliton threshold. 

 

Figure 6.6.  OAM per photon (in ħ units) vs. propagation distance in the 

nonlinear crystal for a FF with an amplitude of 3×105V/m and different input 

amplitudes of the second harmonic field.  Blue: 7×106V/m, Red: 2×107V/m, 
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Black: 4×107V/m.  a) FF with ℓ = 0, SH with ℓ = 2; b) FF with ℓ = 1, SH with ℓ = 

0; c) FF with ℓ = ½ , SH with ℓ = ½ . 

In Fig. 6.6, similarly to what happened in Fig. 6.3, the value of the 

fundamental field’s OAM per photon, in ħ units, is plotted versus the 

propagation distance z, for different levels of the SH amplitude.   

In all the considered cases it can be seen that the OAM of the FF field 

varies with an hyperbolic dependence on the propagation distance, until it 

reaches half of the OAM of the second harmonic beam; on the other hand, 

the momentum of the SH signal remains unaffected, as it was expected. 

In fact, the SH input field is such intense to propagate almost un-depleted, 

even though an energy transfer to the FF field, which undergoes to 

amplification, happens. 

It can be noticed that these results are in perfect agreement with what was 

predicted in section 6.4 (Fig. 6.3).   

 

Figure 6.7.  Intensity profiles of the three FF fields of Fig. 6.4 after 30μm (first 

row) and 300μm (second row) of propagation in the nonlinear crystal, with high 

SH input amplitude: after a suitable propagation length, the OAM per photon of 
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the FF is half of the SH OAM.  As they carry OAM, field profiles rotate with the 

propagation;  rotation is not present when OAM vanishes. 

Again, from Fig. 6.6, emerges that the distance over which the value of FF 

OAM changes, depends on the amplitude level of the SH.  Of course higher 

amplitudes if the SH input field lead to larger amplification of the 

fundamental beam, with a consequent faster variation of the momentum. 

The change in the OAM due to the nonlinear interaction affects also the 

spatial transverse profile of the FF field.  Figures 6.7 and 6.8 show 

respectively the intensity and phase profiles of the FF fields in the three 

considered combinations of OAMs, after different distances of propagation;  

SH field amplitude is taken as 100 times higher than the fundamental field. 

 

Figure 6.8.  Phase profiles of the three FF fields after 30μm (first row) and 

300μm (second row) of propagation in the nonlinear crystal, with high SH input 

amplitude:  the OAM is bound to the presence of OVs.  In the second case the 

final OAM is 0, and an edge dislocation is present. 

In particular, looking at the second situation, where the final OAM tends to 

zero, it is possible to notice that the field distribution does not rotate with 
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the propagation, a typical feature of fields with zero OAM.  On the 

contrary, in the other cases, where the final OAM is different from zero,, 

the field profile rotates as the propagation distance increases.  In these 

situations the field distribution is found, after 300μm of propagation, 

rotated of a larger amount with respect to the second case.  Looking at Fig. 

6.8a it can be noticed that, as the OAM changes from zero to its ending 

value, OVs are created and, as the field propagates, the phase begins to 

whirl around the singularities, as also happens in Fig. 6.8c;  on the other 

hand (Fig. 6.8b) a zero ending OAM entails the splitting of the initial vortex 

distribution and leads to a non-rotating phase profile. 

Therefore the effect of the SH field is to modify the propagation length 

along which the OAM value changes from its starting value to half of the 

SH OAM.  In this way, with a fixed crystal length, by properly choosing the 

SH intensity level, it is possible to tune the output OAM of the FF field at 

one of the possible intermediate values between its starting and the ending 

value. 

If a non-phase-matched process is considered (in this case a coherence 

length of 1μm was selected, taking nω = 2.7 and n2ω = 2.9) the behaviour of 

the FF field distribution is rather different from the phase-matched case. 

 

Figure 6.9.  OAM per photon (in ħ units) of the FF and SH fields when ℓFF = 1 

and ℓSH = 0:  the OAM of the FF field remains constant during the propagation. 
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Figure 6.9 shows the evolution of the OAM versus the propagation length 

in non-phase-matching conditions: the behaviour of the fields in the 

nonlinear interaction is independent on the initial phase difference between 

the FF and SH beams and, as is shown in Fig. 6.9 for the case of FF with 

unitary OAM, the orbital angular momentum of the fundamental field is 

held constant during the propagation. 

A parametric process of seeded second harmonic generation has been 

analyzed both analytically and numerically.  Comparing Figs. 6.3 and 6.6 

perfect agreement between numerical simulations and theoretical model can 

be observed.  It was demonstrated that, as the interaction takes place, the 

orbital angular momentum of the field at FF frequency changes, tending to 

reach half of the SH OAM over a distance controlled by the amplitude of 

the SH beam [105]. 

Therefore, using a seeded second harmonic phase-matched interaction, it is 

possible to reach a fast and efficient control of the orbital angular 

momentum of a field at fundamental frequency, by simply changing the 

momentum of the input SH field and operating on a parameter such as the 

input fields’ amplitude. 
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Chapter 7 

 

 

Off-axis optical vortices in a 

noncollinear Second Harmonic 

Generation Process 
 

Recalling what was said in the previous chapter, propagation dynamics of 

optical vortices offer an interesting tool, useful for obtaining control over 

the orbital angular momentum. 

Among nonlinear optical interactions, undoubtedly second order 

interactions, such as second-harmonic generation and parametric processes 

concerning fields carrying optical vortices have attracted interest because 

the grant a flexible possibility of manipulating the dynamics of the phase 

singularities [93-99].  This means that, together with the frequency 

doubling, the SH-generated field shows phase defects correlated to the ones 

present in the pump beam.  Properties of orbital angular momentum in 

nonlinear interactions of OV beams have been widely investigated both in 

parametric processes, such as down-conversion and parametric 

amplification, as described in Chapter 6, and in collinear second harmonic 

generation.  Studies on the latter were mainly focused on experimental 

schemes where an on-axis vortex pump beam impinged on a quadratic 

nonlinear crystal.  In Ref. [97], collinear SHG was studied using as pump 

field, Laguerre-Gaussian beams.  It was shown that the second harmonic 

field generated from a purely azimuthal LG mode of the kind LG0n (n is an 

integer), doubles its OAM, thus verifying momentum conservation.  As a 

matter of fact, a purely azimuthal LG beam has an helical phase 
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dependence exp(inθ);  under first order approximation, SH generated field 

can be considered, as suggested in paragraph 6.1, as proportional to the 

square of the incident electric field.  Therefore can be easily verified that 

the squared azimuthal dependence becomes exp(i2nθ), hence doubling the 

topological charge and, as a consequence, the orbital angular momentum. 

However, there are no studies on non-collinear SHG schemes especially 

involving beams carrying fractional OAMs per photon, and only little 

attention was placed on parametric processes with field with off-axis 

vortices nested [90]. 

In this chapter an experiment of non-collinear second-harmonic generation  

will be presented, where two pulsed femtosecond input beams, at the first 

fundamental frequency of 830nm, carrying a fraction OAM, impinge on a 

Type I nonlinear BBO crystal [100].  The non-integer angular momentum is 

obtained by means of a fractional spiral phase plate (SPP) [45], which 

impresses on the incident field a mixed screw-edge dislocation; the latter is 

then displaced from the beam’s axis.  The interacting beams are chosen so 

that they impinge on the nonlinear crystal with opposite OAM, in a 

“specular “configuration.  It will be shown that the resulting second-

harmonic field have always a zero angular momentum, even though the 

spatial profile can be different from case to case. 

7.1 Half-integer orbital angular momentum 

During this dissertation, it was pointed out several times that OAM states 

constitutes an orthonormal basis which can be used for representing with 

infinite degrees of freedom superposition states of light.  Therefore OAM 

offers a multidimensional basis also for representing the quantum of 

information, thus overcoming the limit to which qubits are subjected.  As a 

matter of fact, qubits are referred to polarization states which constitute a 

two dimensional space.  Preparing a state of the electromagnetic field given 

by a superposition of n-dimensional states, allows to obtain a quNit, that is 

a N dimension quantum of information [8, 106].   

From here the importance of studying nonlinear interactions of fractional 

OAM beams, since they are the most evident example of superposition 

states of the orbital angular momentum. 
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As mentioned before, fractional beams can be obtained by displacing a 

screw phase singularity from the beam’s axis.  It is worth to remind that 

when displacement happens, particular care should be used about the 

calculation of the OAM.  In fact, the relevant quantity is the intrinsic OAM, 

i.e. not dependent on the choice of the axis.  This can be calculated by 

properly choosing a reference frame that guarantees a zero transverse 

momentum [25].  When dealing with off-axis vortices, the choice of the z 

axis as reference for calculating OAM, is not so obvious:  the  right choice 

should be fixing the origin in the centre of mass of the vortex beam.  

However the vorticity is introduced by the singular optical device (SPP, 

hologram, etc.) into the field, which generally is a Gaussian beam.  Hence it 

is possible to choose the z axis parallel to the propagation axis of the beam, 

and to place the origin at the centre of the beam in the near field [23]. 

In this way, following a general treatment, the angular momentum density 

can be defined as usual and the OAM per photon is again given by the 

expression of Eq. (6.16). 

In the following, a situation where a Gaussian beam illuminates the centre 

of a spiral phase plate that impresses on the field an OAM per photon ℓ = 

0.5 (in ħ units) is considered.  The beam’s propagation axis coincides with 

the optical axis of the device.  As pointed out before, in this situation, in the 

beam is nested a mixed screw-edge dislocation.  It is possible to represent 

the field produced by such a SPP via the decomposition of Eq. (6.20).  This 

modal expansion allows also to simply calculate the OAM with respect to 

the z axis as expressed by Eq. (2.25) reported below. 

 
2

,

0

p l

p l

l C
 

 

  (7.1) 

Oemrawsingh et al. [23] observed that, displacing a fork hologram from the 

beam’s axis, would result in a decrement of the OAM  of the field.  In a 

very similar fashion, the OAM can be tuned by moving an SPP off the axis: 

the momentum obtained from the fractional SPP can be varied between ½ 

and 0, by means of the displacement of the SPP itself.  The output 

momentum thus results smaller, following the Gaussian law predicted in 
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Ref. [25]:   Q exp(-2 rv
2
/w0

2
), where Q is the topological charge 

impressed by the device, rv is the extent of the displacement, and w0 is the 

spot size of the incident beam.  In this way the OAM can be tuned to a 

well-defined value.  The decomposition of Eqs. (6.20) and (7.1) are still 

valid to model an off-axis dislocation and to evaluate its OAM. 

7.2  Non-collinear Second-Harmonic Generation  

7.2.1 Experiment 

In this work is considered a non-collinear SHG scheme in which two 

fraction helical beams generated by an SPP impinge with opposite OAMs 

on a nonlinear crystal (Type I BBO) with small angles of incidence.   

 

Figure 7.1.  Experimental setup of non-collinear SHG.  The collimated beam 

impinges on the SPP, and then is split and focused on the nonlinear crystal, 

impinging on it with relative angles of ±3.5° (total 7°).  In the bottom left corner 

is illustrated the scan of the Gaussian beam performed by moving the SPP in the 

horizontal direction. 
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If the incidence angle is small enough, under a first-order approximation, 

this scheme can be treated similarly to a collinear scheme.  Therefore  a 

scalar model can be adopted for modelling the involved fields; in this case 

these are considered to fulfil the paraxial approximation. 

The nonlinear interaction generates a second-harmonic signal carrying 

information on the input phase’s dislocations.  The evolution of the SH 

field’ spatial distribution was followed as the SPP is displaced from the 

beam’s axis.  At the same time the OAM of the generated beam was 

evaluated.  Subsequently the experimental results were compared with the 

numerical simulations performed using the modal expansion of Eq. (6.20). 

Figure 7.1 shows the experimental setup for the non-collinear SHG 

interaction, together with the one used for displacing the SPP (inset).   

In the experiment, the output of a mode-locked femtosecond Ti:sapphire 

laser system, tuned at λ = 830 nm with 76 MHz repetition rate and 130fs of 

pulse width, is collimated by a telescope, and spatially filtered by means of 

a 50μm pinhole.  The so-prepared laser beam illuminates a spiral phase 

plate with a spot size of about 500μm.  The distance between the lens and 

the SPP is 50cm, so as the distance from the lens to the BBO crystal.  The 

SPP was designed to operate at a wavelength of 830nm introducing a 

fractional topological charge, hence an OAM per photon in ħ units of ½. 

The centre of the SPP is dominated by the finite size of the height anomaly 

[44], which is of the order of 50μm; the diameter of the SPP is about 8mm. 

The generated vortex beam is then split in two separate beams of about the 

same intensity.  These beams are reflected by mirrors M1 and M2;  the 

tightly focused beams intersect in the focus region with an angle of 7°, with 

respect to one another, on a BBO crystal 1mm long. 

The spiral phase plate is mounted on an XY translational stage, in order to 

perform a full scan of the device.  Therefore the plate can be displaced from 

the beam’s propagation axis both in the horizontal and vertical directions, 

in a 8mm×8mm range, with a 100μm step.  Displacing the SPP, causes the 

horizontal movement (besides the vertical one) of the mixed screw-edge 

dislocations enclosed in the fields reflected by mirrors M1 and M2, in 

opposite directions.  With the chosen configuration, fields at the FF 

frequency, impinge on the nonlinear crystal with OAMs of the same 

magnitude but of opposite signs.  
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Figure 7.2.  Non-collinear SHG signal obtained by displacing the SPP along the 

x axis at  y = 0, for six different displacement values.  a) Numerically simulated 

near field profiles; b) numerically simulated far field profiles; c) experimental 

results. 
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As a matter of fact, because of the reflections introduces by mirrors M1 and 

M2, and by the beam splitter, one of the two pump beams experiences an 

even number of reflections, thus maintaining its initial OAM.   

On the contrary the other beam is first transmitted through the beam 

splitter, then it undergoes only to one reflection by the mirror M2; since 

OAM is obtained as a cross product, it is a pseudo-vector, hence a 

symmetry operation, such as reflection, results in a change of sign.  

Therefore the second pump beam arrives on the nonlinear crystal with an 

opposite OAM with respect to the other FF beam. 

At the output plane of the crystal, the two FF fields come out with their 

collinear SH signals, propagating with the same angle that they had at the 

input plane, while the outgoing non-collinear SH signal propagates along 

the bisector of the total incidence angle.  The latter is finally filtered and 

collected by a CCD camera about 30cm away from the BBO crystal.  The 

non-collinear SHG occurs under Type I phase-matching conditions. 

An example of experimental results is shown in Fig. 7.2, where the 

horizontal displacement of the SPP gives rise to an SH field with different 

configurations.  The experimental results (bottom row) come from the 

horizontal scan in the central area of the SPP, i.e. for y = 0.  The upper row 

is the near-field distribution calculated numerically, and the middle row is 

the far-field SHG distribution which will be discussed in the next section. 

Looking at Fig. 7.2 it can be noticed that a slight difference is present 

between experimental and numerical results.  On the writer’s opinion, it can 

attributed to the finite size of the height anomaly of the SPP which 

produces a non-perfectly helical beam. 

Since interacting fields possess opposite values of OAM, it can be expected 

that, at the output plane of the crystal, the second-harmonic field carries an 

orbital angular momentum given by the sum of the OAMs of the pump 

fields, which therefore should be zero. 

7.2.2 Numerical Simulations 

Numerical results are obtained by modelling the input fields by means of 

the modal decomposition of Eq. (6.20).  This was used for evaluating the 

beam profiles both for the on-axis and for the off-axis cases. 



 

7. Off-axis optical vortices in a non-collinear Second Harmonic Generation Process 

142 
 

Coefficients Cp,l were calculated by numerically integrating Eq. (2.24), 

using rectangular mesh with 200×200 spatial samples.  The integration 

dominion is chosen five times the beam waist, in order to include all the 

field spatial components. 

The near-field shape of the intensity profile of the FF beams is shown in 

Figs. 7.2a and 7.2b, where the on-axis situation is considered, that is, when 

the Gaussian beam is located exactly at the centre of the spiral phase plate, 

thus generating an OAM per photon equal to 0.5ħ. 

 

Figure 7.3.  Numerically estimated near-field intensity profiles of the FF beams, a) 

and b), and of the corresponding non-collinear SH beam;  in FF beams the 

singularity shifts in opposite directions.  The SH beam’s profile carries the 

singularities of both the FF beams, maintaining their original orientation. 

 

Figure 7.4.  Phase plots of the electric field for the FF pump beams, a) and b), 

and for the SH signal c), corresponding to the configuration of fields given in Fig. 

7.3.  The phase ranges from 0 (blue) to 2π (red). 
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Considering a phase-matched interaction, neglecting walk-off, and under 

paraxial approximation [94, 96], the near-field non-collinear second 

harmonic intensity is given by 

 
2 2

1 0 2 0| ( , , ) ( , , ) |I E r z E r z     (7.2) 

where E1 and E2 are the two near-field transverse distributions of the input 

beams.  An example of SH’s near-field intensity distribution is depicted in 

Fig. 7.3c, corresponding to the input conditions of Figs. 7.3a and 7.3b. 

The phase of the FF and SH fields is shown in Fig. 7.4, where the presence 

of phase singularities is evident.  It can be noticed that the SH signal (Fig. 

7.4c) carries both the phase singularities of the incident fields, but with 

helical phases whirling in opposite directions. 

This result, which comes out from the simplistic model adopted in 

reference [94] is not surprising.  As a matter of fact it is widely known that, 

when a nonlinear interaction takes place, the phases of the interacting input 

beams are added; hence, the singularities compose in order to cancel each 

other [83]. 

In order to perform a comparison among experimental result and numerical 

modelling, far-field calculations of the second-harmonic signal have been 

carried out;  in this way, still under paraxial approximation, the intensity of 

the SH field in a plane transverse to the non-collinear SH field’s 

propagation direction is give by 
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
 (7.3) 

being (x’,y’) the transverse coordinates on the plane z = z0.  Relevant results 

are shown in Fig. 7.2 (middle row).  

For each step of SPP’s displacement OAM of the SH generated field was 

numerically calculated by means of Eq. (6.16).  As expected, the OAM of 

the generated field is conserved, hence producing a beam with an orbital 
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angular momentum equal to the sum of the individual OAMs of the two 

input beams:  as a consequence, ℓSH is found to be always 0. 

Obviously, since the dislocation is not purely a screw type, in the generated 

field only the screw components of the singularity cancel, while the edge 

dislocations of both fields, which do not possess an orientation, remains 

unaffected, thus creating the nodal lines that can be seen in all the figures 

above. 

 

Figure 7.5.  OAM of pump and SH fields versus SPP’s displacement.  As the 

device is moved from the beam’s axis, both the FF beams (blue, upper, and black, 

lower, lines) reduce the absolute value of their OAM from the initial value that 

they have when on-axis (±0.5).  OAM of the SH field (red, middle, line) is 

always given by the sum of other two, that is zero. 

The behaviour of the OAM of second-harmonic signal, as a function of the 

SPP’s displacement, is depicted in Fig. 7.6, together with the orbital angular 

momentum of the corresponding interacting pump beams at the 

fundamental frequency.  As pointed out before, the value of the OAM of 

the SH is always zero, whichever is the displacement, hence regardless of 

the fundamental field’s momentum. 

The absence of orbital angular momentum in the generated second-

harmonic field can also be emphasized by calculating the Poynting vector 
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using the transverse part of Eq. (2.11) which, for convenience’ sake is 

reported below 

  
2* *0 02

i k
u u u u u

 

 
     P z  (7.4) 

The transverse Poynting vector of  SH field, obtained when the 

displacement of the spiral phase plate is zero is shown in Fig. 7.6.  

 

Figure 7.6.  Transverse Poynting vector of the SH field generated in the case of 

on-axis SPP.  The absence of rotation of arrows implies that there is no screw 

dislocation, hence there is no OAM. 

From Fig. 7.6 can be observed that the arrows are directed along the linear 

trajectories entailing the absence of a tangential component of the Poynting 

vector.  Therefore orbital angular momentum is zero. 

Aim of this experiment was to investigate the process of non-collinear 

second harmonic generation involving beams carrying phase singularities 

generated by a half-integral spiral phase plate.  The study focused mainly 

on the possibility of reaching, starting from fields with a certain OAM, 
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different spatial configurations, all characterized by the absence of OAM, 

simply by displacing the spiral phase plate from the beam’s axis[107]. 

Experimental results were obtained performing a transverse scan of the SPP 

and by letting interact fields with opposite OAMs.  These results were then 

successfully compared to numerical simulations based on a naive model, 

which validity exists for small incidence angle, and neglecting the walk-off. 

It was found that the OAM of the generated non-collinear second-harmonic 

field is always zero and is independent on the extent of the displacement of 

the SPP.  Moreover, the transverse component of the Poynting vector of the 

SH beam was calculated in order to evidence that the energy of the 

considered field does not circulate, providing a further evidence of the 

absence of orbital angular momentum in all the spatial configurations 

obtained. 
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Chapter 8 

 

 

Conclusions 
 

Throughout this PhD thesis the intriguing topic of Orbital Angular 

Momentum of light was thoroughly analysed on many aspects. 

The first part of the dissertation introduced the theoretical basis of the 

angular momentum.  The chapters included in the second part dealt with the 

generation of optical vortices, hence of the OAM.  Two devices (with 

related patents pending), based on different physical phenomena were 

proposed. 

First was discussed the design of a macroscopic diffractive optical element 

constituted by a metallic segmented programmable mirror.  This device 

produces helical wave-fronts on an incident beam by means of an 

azimuthally dependent reflection obtained by means of an azimuthal array 

of metallic slice whose height is adjusted by actuators.  A simple theoretical 

model, based on a reflectance function, was provided to describe its 

operating principle.  It was shown that, by configuring the mirror into a 

series of multiple azimuthal ramps higher values of topological charge can 

be obtained, together with short reconfiguration times.  Moreover segments 

can be programmed in manifold fashions, allowing to produce well-defined 

spatial profiles of the reflected field.  These features make this device 

suitable both for generating optical vortices, and for generating intensity 

distributions which can be employed for spatial encoding. 

The second proposed device takes advantage of plasmonic interactions to 

realize a circular array of nanoantennas which allow to generate orbital 
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angular momentum.  Each antenna is made of a sub-wavelength slit etched 

in a metal layer.  Two main operating principles were discussed referring to 

this device.  As a matter of fact it can be used as a spin-to-orbital angular 

momentum converter: this happens when a circularly polarized incident 

beam is present on one of the faces of the device.  Circular polarization 

triggers plasmons, activating the nanoantennas with a suitable relative 

phase retardation of 2π/N.  This entails the production of an helical wave-

front on the output side, thus generating an optical vortex of unitary 

topological charge, hence OAM. 

At the same time, a step between the edges of the slits can be added on the 

output side.  This makes the antennas to radiate with a tilted angle, hence 

emitting light field with a non-negligible tangential component of the 

Poynting vector.  As discussed in the introductory chapters, a circular 

distribution of locally tilted Poynting vectors creates orbital angular 

momentum.  It is worth noting that the OAM generation related to the tilted 

emission of the nano-light sources can be cumulated with the conversion 

effect between SAM and OAM, thus allowing to opportunely tune the 

angular momentum. 

This device moves the field of singular optics to the nanoscale, entailing a 

series of fascinating applications such as micromachining and micro-

helixes. 

The  central part of the thesis is dedicated to the measurement of the 

topological charge of optical vortices.  A simple method based on the 

diffraction by a single narrow slit is proposed, in order to overcome the 

limitations connected with the issue of measuring sign and magnitude of the 

topological charge.  It was shown that this method, taking advantage of a 

sort of tomography of the OV, allows to measure even high values of Q. 

Last part of this work dealt with nonlinear processes and how they 

influence optical vortices dynamics. 

First a method to achieve a nonlinear accurate control OAM was proposed.  

It is based on a parametric amplification process where the angular 

momentum and the intensity of a second harmonic beam is used as control 
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parameter to adjust the orbital angular momentum of the field at 

fundamental frequency.  Furthermore an analytical theoretical model was 

provided in order to investigate superposition of OAM states and their 

evolution during nonlinear interactions. 

Finally an experiment of non-collinear second harmonic generation 

involving off-axis optical vortices was described.  It allowed to understand 

momentum conservation when dealing with fields carrying non-integer 

values of the orbital angular momentum.  It was shown that, under certain 

hypotheses, OAM is conserved also in non-collinear processes, regardless 

of the amount of OAM of the interacting input fields. 

All topics and results discussed in this PhD thesis were obtained during 

three years of research.  Most of the issues included in these chapters were 

presented to the scientific community as journal papers, as well as oral 

presentations or posters in conferences and PhD schools. 

At the time of writing the works related to the proposed devices have 

patents submitted to the Italian Patent Office;  a paper on the helical 

segmented mirror was also submitted to specialized journal, while the 

article on the plasmonic spiral phase plate is in preparation. 

Both the topics described in chapter 6 and 7 were published respectively on 

Optics Communications and on the Journal of Optical Society of America 

B (see Publications list).  Finally, on November 2011, the article relative to 

chapter 7 was reviewed on OSA Spotlight On Optics. 
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