SAPIENZA UNIVERSITA DI ROMA
DoTTORATO DI RICERCA IN INGEGNERIA INFORMATICA

XXII Cicro — 2011

Incorporating Usability Evaluation in Software
Development Environments

Shah Rukh Humayoun

SAPIENZA UNIVERSITA DI ROMA
DoTTORATO DI RICERCA IN INGEGNERIA INFORMATICA

XXII Cicro - 2011

Shah Rukh Humayoun

Incorporating Usability Evaluation in Software
Development Environments

Thesis Committee Reviewers
Prof. Tiziana Catarci (Advisor) Prof. Maristella Matera
Prof. Giuseppe De Giacomo (Co-Advisor) Prof. Giuliana Vitiello

Prof. Massimo Mecella

AUTHOR’S ADDRESS:

Shah Rukh Humayoun

Dipartimento di Informatica e Sistemistica “Antonio Ruberti”
“Sapienza” Universita di Roma

Via Ariosto 25, I-00185 Roma, Italy.

E-MAIL: humayoun@dis.uniromal.it

WWW: http://www.dis.uniromal.it/~humayoun/

To my late father Muhammad Yaqoob

Contents

Contents v
List of figures vii
List of tables ix
1 Introduction 1
1.1 Problem Statement and Motivation 1
1.2 Research Contributions 3
1.3 Thesis Organization 8
2 Preliminary Background 11
2.1 Agile Software Development 11
2.1.1 Agile Development Methods 13
2.2 The User-Centered Design (UCD) Philosophy 15
2.2.1 UCD Process Life-Cycle 16
2.2.2 User-Centered Design Activities 18
2.3 Usability Evaluation, 20
2.3.1 Usability Evaluation Methods 23
2.4 Task Analysis 26
2.4.1 Task Modeling Techniques 26
2.4.2 Task Modeling Languages 28

3 Integrating User-Centered Design into Agile Software Devel-
opment 31
3.1 Motivation 31
3.2 The Three-fold Integration Framework 33
3.3 The Life-Cycle Level Integration 37
3.3.1 Method Categories 37
3.3.2 Selection Criteria 38

3.3.3 A Life-Cycle for Involving UCD in Agile Development
Tteration oL 40

iii

3.4 The Iteration Level Integration 40
3.4.1 The Users’ Role in Software Development Processes 42
3.4.2 User Experience and The Development Processes 43

3.5 The Development-Environment Level Integration (UCD Man-
AGEMENE) .« o v o o 46

3.6 UEMan: A Tool for UCD Management in Integrated Develop-
ment Environmento o000 49
3.6.1 The UEMan Process for Managing and Executing Ex-

periments Lo ol
3.6.2 Automatic Measures using Development Aspects 55
3.6.3 UEMan Evaluation Studies 57

3.7 Related Work oo 61

3.8 Summary and Further Directions 64

Framework for Task Modeling Formalization 67

4.1 Motivation 67

4.2 Preliminary Background L. 69
4.2.1 Situation Calculus 69
4.2.2 Golog-family of High-level Programming Languages . . 71

4.3 A Dynamic Framework for Multi-View Task Modeling 79

4.4 Framework Concepts oL 80
441 Task Types 82
442 View Type 86
4.4.3 View Models 87
4.4.4 An Example for Task Modeling 88

4.5 TaMoGolog — A Formal Task Modeling Language 92
4.5.1 Task Modeling Golog (TaMoGolog) 93
4.5.2 TaMoGolog Set of Constructs 94
4.5.3 TaMoGolog Syntax and Semantics 100

4.6 A Framework for External Nondeterministic
Constructs 110

4.7 Summaryo e e e e 119

Task Model-based Usability Evaluation in Development En-

vironment 121

5.1 Motivation 121

5.2 TaMU Framework 123
5.2.1 TaMU Process Life-cycle. 124

5.3 The Role of TaMoGolog in conducting Usability Evaluation . . 127
5.3.1 Defining and Tagging Tasks and Variables at the Code

level 127
5.3.2 Benefits of TaMoGolog in Usability Evaluation 128

5.3.3 Modeling Usability Scenarios through TaMoGolog-based
Task Models 131
5.3.4 The Data Recording Process during Evaluation Experi-
ments e e 133
5.3.5 The Data Analysis Criteria using TaMoGolog-based Task
Models 134
5.3.6 The Role of TaMoGolog Formalism in TaMU Framework 137
5.4 TaMUlator: A Tool for Managing TaMU Process Life-Cycle . . 138
5.4.1 High-Level Modules Overview 139
5.4.2 TaMUlator APIs 140
5.4.3 How TaMUlator Works 141
5.4.4 The Analyzer Module 143
5.4.5 TaMUlator Evaluation Case Study 144
5.4.6 Evaluating TaMUlator 147
5.5 Related Work 151
5.6 Summary and Conclusions 153
6 Conclusions and Future Directions 157
6.1 Conclusions e 157
6.2 Future Directions 159
A Golog-family based High-level Program Syntax 163
B Prolog-based Code for IndiGolog Interpreter 171

C Labeling Framework Implementation 177

List of Figures

1.1 Thesis research contributions 6
2.1 Agile iteration life-cycle 13
3.1 Life cycle for involving UCD philosophy into agile development
iteration 41
3.2 Structural division of UCD methods 48
3.3 UEMan evaluation life cycle 50
3.4 UEMan experiment management 52
3.5 UEMan experiment execution 54
3.6 UEMan automatic measures using Development Aspects 58
3.7 UEMan preliminary evaluation study results 60
3.8 Average ranking of participants for each problem per heuristic 61
4.1 Relationship between framework concepts 82
4.2 A task model of Book-Purchasing from wuser-interactive view
perspective oL 90
4.3 A task model of Book-Purchasing from complete view perspective 91
5.1 TaMU framwork 124
5.2 TaMU process life-cycle 125
5.3 Relationship between evaluation experiment and the attached
taskmodels 131
5.4 TaMUIator high-level modules overview 139
5.5 Tagged set of tasks (activities) and variables. 141
5.6 Screenshot of a typical Aspectd hook 142
5.7 A task model written in TaMUlator 142
5.8 Analyzer output of an evaluation experiment 144
5.9 Time spent game playing 150
5.10 Time spent on users’ sessions 150
6.1 Hierarchy of thesis targeted areas 158

vii

List of Tables

3.1

4.1
4.2
4.3
4.4

5.1

Set of attributes for determining the selection of appropriate

UCD methods 38
Golog set of constructs [73] 72
ConGolog set of constructs [18] 73
GameGolog set of constructs [20] 74
TaMoGolog set of constructs 95
Example task model no. 2 - time measures 149

X

Chapter 1

Introduction

1.1 Problem Statement and Motivation

High-level usability is acknowledged as a significant feature of software prod-
ucts. On the other side, poor usability and inefficient design of the end product
are common causes, amongst others, for failed software products [4, 69, 86].
That’s why, one of the challenges in software development is to involve end
users in the design and development stages so as to observe and analyze their
behavior and to collect feedback in effective and efficient manner and then to
manage the ensuing development accordingly. One way to achieve this is by
applying user-centered design (UCD) [25, 43, 110] philosophy. This philosophy
puts the end users of the system at the centre of the design and evaluation
activities, through a number of methods and techniques. The UCD philosophy
is applied in software projects with the aims of increasing product usability,
reducing the risks of failure, decreasing long-term costs, and increasing overall
quality. The International Organization for Standardization (ISO) has also de-
fined the standard guidelines to deal with different aspects of human-computer
interaction (HCI) and UCD; in particular, ISO/DIS 13407 [116] provides the
guidance on user-oriented design process. Other relevant ISO standard guid-
ance are ISO 9241-11 [115] and ISO TR 16982 [117].

The agile approach [1, 2, 31] is one software development approach that
has emerged over the last decade. This approach is used for constructing
software products in an iterative and incremental manner; in which each iter-
ation produces working artifacts that are valuable to the customers and to the
project. This is performed in a highly-collaborative fashion to produce quality
products that meet the requirements in a cost-effective and timely manner.

Generally, in software development practice, software teams hesitate to
imply UCD activities due to their time-consuming and effort-intense nature.
Using the agile approach, in which customers and product owners lead the

1

2 CHAPTER 1. INTRODUCTION

prioritization of the development, helps developers overcome these hesitations.
By emphasizing the benefits common to both the end users and the developers,
UCD and the agile approach can be dynamically integrated to get benefits
from both, resulting in the development of high-quality and usable software
products.

We identified that agile development teams were often lacking a properly-
integrated approach that utilizes the UCD philosophy from end-to-end at all
levels. To overcome this gap, firstly, this thesis proposes a three-fold integra-
tion framework that incorporates UCD philosophy into agile software devel-
opment at three levels: the process life-cycle level, the iteration level, and the
development-environment level. This proposed framework identifies ways to
apply appropriate UCD activities alongside agile development activities, with
the aim of developing high-quality and usable products.

Integrating UCD activities into software development activities fuses the
user experience with the development process, attaining a high level of usabil-
ity in the resulting product. One of the challenges of this integration is the
management and automation of the usability evaluation along the develop-
ment process. Usability evaluation aims at involving users, especially product
end-users, in the evaluation process of a specific product to find usability flaws
and errors and refine the product according to the feedback. Usability eval-
uation is performed using existing rigorous approaches and techniques that
enable the process of defining and running experiments, collecting and ana-
lyzing results, and making decisions regarding which feedback to adopt and
to what extent [25]. Unfortunately, in many cases these usability evaluation
techniques are performed manually [63], and due to budget and schedule con-
cerns sometimes they are neglected or poorly defined. Automating evaluation
methods and techniques, and their application throughout the development
process, provides several benefits, e.g.; reduced development costs and time,
improved error tracing, better feedback, and increased coverage of evaluated
features [63].

To handle this challenge, the thesis proposes a way to define and auto-
mate usability evaluation from within the integrated development environ-
ment (IDE). The motivation behind this approach is clear. Defining evalua-
tion experiments and running them from within the IDE equips the software
development team with the mechanisms to monitor and control a continuous
evaluation process tightly coupled with the development process, thus receiv-
ing on-going user feedback while continuing development. This also enables
them to automatically collect and analyze users and system behavior to rec-
ognize usability flaws and errors in an efficient and effective way.

1.2. RESEARCH CONTRIBUTIONS 3

It is important to note that we use the term usability evaluation
for the evaluation of both product usability and functionality. We
use experiments to find usability issues and system problems, and
serve as a kind of acceptance test for the developed features.

The thesis also carries in-depth focus on formalization of modeling user and
system tasks and their behavior thus providing a mean of automatic analysis of
user and system recorded data during evaluation experiments. This is achieved
through structuring system activities, forming their relationship, and defining
how users can achieve the desired goals through performing these set of activi-
ties. For this purpose, an expressive, dynamic, and well-defined (syntactically
and semantically) formal task modeling language is required that gives us not
only the facility to model user and system behavior appropriately but also
provides the way to construct task models with properties; such as, precondi-
tion axioms for actions, postcondition effects on system states, and inclusion
of any domain knowledge; that we require for the automated analysis of the
recorded data. We achieve this by providing the definition of a formal task
modeling language TaMoGolog. This language was created on the foundations
of the Golog-family [18, 19, 20, 73, 107] of high-level programming languages.
Conducting usability evaluation at the IDE level through TaMoGolog-based
task models enables us to record user and system activities and behavior as
per the defined mode, to analyze automatically the results by comparing the
task models and the recorded data, and to draw conclusions to derive relevant
design and development tasks for further improvement in developing product.

1.2 Research Contributions

The thesis comes up with contributions towards three directions for achieving
the final goal, i.e., incorporating usability evaluation in software development
processes and environments. These three directions are: (i) towards integrat-
ing UCD activities in software development process; (ii) towards managing and
automating UCD activities at the IDE level related to usability evaluation
methods in general, and particularly, task model-based usability evaluation
approach for automatic analysis of the users and system data and behavior
to highlight usability issues; (iii) and towards defining a formal way for task
modeling to be used in task model-based usability evaluation. In this thesis,
we discuss thoroughly our contributions in these three directions. Following
we summarize these research contributions one-by-one.

Firstly, the thesis provides a three-fold integration framework to incorpo-
rate UCD philosophy into agile software development. This framework pro-
vides properly-integrated approach that utilizes the UCD philosophy from end-
to-end at all levels. The framework integration approach works at three levels:

4 CHAPTER 1. INTRODUCTION

at the process life-cycle level for the selection and application of appropriate
UCD methods and techniques in the right places at the right time; at the iter-
ation level for integrating UCD concepts, roles, and activities during each agile
development iteration planning; and at the development-environment level for
managing and automating the sets of UCD activities through automated tools
support.

Secondly, the thesis provides a generic conceptual framework for construct-
ing task models at different abstract levels. This framework provides definition
of a set of special concepts, such as task-types, view-type; to model user and
system activities and behavior at different abstractions. These created task
models are later used for conducting usability evaluation of the targeted ap-
plication for highlighting usability issues from several abstractions.

Thirdly, the thesis provides the definition of a well-defined (syntactically
and semantically) formal task modeling language, called TaMoGolog (Task
Modeling Golog), on the foundations of Golog-family of high-level program-
ming languages. This definition provides sets of predicates using situation
calculus to define the domain theory of writing task models. TaMoGolog uses
sets of constructs from Golog-family in addition to few its own defined con-
structs for structuring complex system behavior. Moreover, the thesis defines a
framework for the realization of external nondeterministic constructs, based on
the approach provided by GameGolog [20], a recent extension to Golog-family.
TaMoGolog uses GameGolog semantics at higher-level but differs slightly when
defining framework theory using situation calculus at lower level. The thesis
also provides the formal semantics of its own defined external nondetermin-
istic constructs using transition semantics [18, 102] approach. The support
of making nondeterministic decisions by external entities (external applica-
tion/systems or human users) is critical from task modeling and usability
evaluation perspective, as it provides a way to explicitly model external en-
tities’ participation during tasks execution. This helps in analyzing users,
external application/system, and the evaluated system activities and behavior
separately during evaluation experiments.

Fourthly, the thesis provides a conceptual process for defining evaluation
experiments and running these from within the IDE to equip the software team
with the mechanisms to monitor and control a continuous evaluation process,
tightly coupled with the development process. This consists of: defining ex-
periment entity meaning adding a new kind of an object in the development
area of software projects for creating and providing evaluation data; deriving
development tasks meaning defining new development tasks for forthcoming
iterations based on the analysis of the evaluation experiments results against
the targeted usability criteria; keeping code traceability meaning automating
the process of backward and forward traceability among different evolving
parts; and developing evaluation aspects meaning to add automatic evalua-

1.2. RESEARCH CONTRIBUTIONS)

tion hooks to the software under development for providing measures insights
about the users’ behavior.

Fifthly, the thesis provides a framework that defines an end-to-end life-
cycle to manage and automate task model-based usability evaluation at the
IDE level. For this, the thesis explains the role and effects of tagging tasks and
variables at the code level, the reflection of usability scenarios in evaluation
experiments through TaMoGolog-based task models, the role of TaMoGolog-
based task models in recording users and system activities and behavior during
execution of evaluation experiments and in performing automatic analysis of
the recorded data.

Lastly, the thesis provides the realization of the development-environment
level integration of our three-fold integration framework through two auto-
mated tools that support usability evaluation at the IDE level. The first tool
UEMan, an eclipse plug-in, manages and automates UCD activities alongside
the process of development in the development environment. The main capa-
bilities include, creating the experiment object as part of the software project;
deriving development tasks from the analysis of evaluation data; and tracing
these tasks to and from the code. Further, it also provides a library to enable
development of Java aspects for the creation of automatic measures to increase
the breadth of the evaluation data. The second tool, called TaMUlator, works
at the IDE level to provide the realization of end-to-end task model-based
usability evaluation life-cycle by providing a set of APIs and interfaces. The
thesis also presents case studies in which development teams used UEMan and
TaMUIlator to evaluate software projects they developed.

The concept of serving of evaluation experiments as the evalua-
tion of both the product usability and functionality and as a kind
of acceptance tests for the developed features is the novelty of our
approach towards usability evaluation, whereas the previous ones
considered only the product usability. The automation and man-
agement of UCD activities and usability evaluation at the IDE level
to integrate it fully with the development process, the usage of a for-
mal high-level language for task model-based usability evaluation,
modeling user and system tasks at multiple abstractions, and the
approach of tagging tasks and variables at the program code level
for using them during evaluation experiments for recoding user and
system data are the novel concepts provided by this thesis. More-
over, the usage of precondition axioms (that include all kinds of
constraints to be true before executing a task) and post-condition
effects to fluents (which explain how the fluents change their val-
ues in result of executing a task) for recoding user and system data
during evaluation experiments and the automated analysis based on

6 CHAPTER 1. INTRODUCTION

Golog-family of
High-Level
Programming

User-Centered
Design (UCD)
Philosophy

Agile Software
Development
Approach

Languages
1 1
............... :._._ e e ————————————
i
i
1 Agile-UCD Three-Fold Integration Framework ;
i’ a
: | Process Life-cycle Level Integration :
I i
i
; | Iteration Level Integration |-| I
| !
- !
i
\ Development-Environment Level : H
Integration 4 realized by |

v

UEMan
Tool

TaMU (Task Model-based Usability
Evaluation) Framework

Framework Concepts

TaMoGolog (Task Modeling Golog)

| TaMU Process Life-cycle | realized by

[

TaMoGolog-based Task Model
Usability Evaluation TaMUlIator

Tool

Task Modeling Framework \

Figure 1.1: Thesis research contributions

this is also one of the key difference between our approach and the
Previous ones.

Figure 1.1 shows the thesis research contributions. The clouds represent state-
of-the-art methodologies that we used for our frameworks, while inside the
dashed-line box are the contributions by this thesis. The arrows show which
contribution leads to the other one. The contributions listed above and basic
ideas from which this work has started are partially contained in the following
papers [26, 29, 30, 56, 57, 58, 59, 60]:
e Y. Dubinsky, S. R. Humayoun, T. Catarci, S. kimani [30]
Integrating user evaluation into software development environments

In Proceedings of the 2nd DELOS Conference on Digital Libraries, Pisa, Italy,
December 5-7, 2007.

e Y. Dubinsky, S. R. Humayoun, T. Catarci, S. kimani [26]
Managing User-Centered Design in Agile Projects
In the workshop on “Optimizing Agile User-Centered Desig”during the 26th
ACM SIGCHI Conference on Human Factors in Computing Systems (CHI’2008),
Florence, Italy, April 05, 2008.

1.2. RESEARCH CONTRIBUTIONS 7

e Y. Dubinsky, S. R. Humayoun, T. Catarci [29]
Eclipse Plug-in to Manage User Centered Design

In Proceedings of the 1st International Workshop on the Interplay between
Usability Evaluation and Software Development (I-USED 2008), In conjunc-
tion with the 2nd Conference on Human-Centred Software Engineering (HCSE
2008), Pisa (Italy), September 24, 2008.

e S. R. Humayoun, Y. Dubinsky, T. Catarci [58]
UEMan: A Tool to Manage User Evaluation in Development Environments

In Proceedings of the IEEE 31st International Conference on Software Engi-
neering (ICSE’2009), p. 551-554, Vancouver, Canada, May 16-24, 2009.

e S. R. Humayoun, Y. Dubinsky, T. Catarci [59]
A Three-Fold Integration Framework to Incorporate User-Centered Design into
Agile Software Development

Lecture Notes in Computer Science, 2011, LNCS Volume 6776, M. Kurosu
(Ed.): Human Centered Design, HCII 2011, p. 55-64, 2011.

¢ S. R. Humayoun, Y. Dubinsky, E. Nazarov, A. Israel, T. Catarci [60]
TaMUlator: A Tool to Manage Task Model-based Usability Evaluation in De-
velopment Environments

In Proceedings of TADIS Conference on Interfaces and Human Computer In-
teraction 2011 (IHCT'2011), July 20-26, Rome, Italy, 2011.

e S. R. Humayoun, T. Catarci, Y. Dubinsky [56]
A Dynamic Framework for Multi-View Task Modeling

In Proceedings of the 9th ACM SIGCHI Italian Chapter International Con-
ference on Computer-Human Interaction: Facing Complexity (CHItaly 2011),
Patrizia Marti, Alessandro Soro, Luciano Gamberini, and Sebastiano Bagnara
(Eds.). ACM, New York, NY, USA, 185-190, 2011.

e S. R. Humayoun, T. Catarci, Y. Dubinsky, E. Nazarov, A. Israel [57]
Using a High Level Formal Language for Task Model-Based Usability Evaluation

M. De Marco, D. Teeni, V. Albano, S. Za (Ed.): “Information Systems: Cross-
roads for Organization, Management, Accounting and Engineering”, Physica-
Verlag Heidelberg - Springer, ISBN: 978-3-7908-2788-0, 2011.

Moreover, the role of UCD philosophy in the three-fold integration framework
is partially influenced by the results of application of UCD activities in a
project [54, 55]. The UEMan and TaMUlator tools and their evaluation case
studies are author’s collaborative work with Dr. Yael Dubinsky, who taught
one year course “Annual Project in Software Engineering”in Computer Science
Department at Technion, IIT from 2008 to 2010.

8 CHAPTER 1. INTRODUCTION

1.3 Thesis Organization

The outline of the thesis is follow:

In Chapter 2, we provide the preliminary background of the related areas.
First, we provide an overview of agile software development approach. We then
go through UCD philosophy and different UCD activities that are performed
for carrying UCD in software development. We then focus on conducting
usability evaluation in software development. Finally, we shed lights on few
task analysis techniques and task modeling languages to give an overview of
the task analysis area.

In Chapter 3, first we introduce our three-fold integration framework for
incorporating UCD philosophy into agile software development. We survey
each level one by one for describing them in depth. Then we present UEMan
tool that manages and automates UCD activities at the IDE level along the
development process. We also present two evaluation studies in which software
development teams used UEMan for the software projects they developed.
Then we describe other approaches that also integrate UCD and usability
evaluation into software development processes. In the end, we conclude and
provide directions for enabling task model-based usability evaluation at the
IDE level.

In Chapter 4, we provide the theoretical foundation that we require for
our task model-based usability evaluation framework. First, this chapter gives
the background to those languages in Golog-family that are related to our
work. Then we introduce our general framework for structuring task models
following by detailed explanation of framework concepts, i.e., task, task type,
task model, view type, and view model. Then we provide the definition of
TaMoGolog task modeling language (the set of constructs, the syntax, and
the semantics). Moreover, we provide a framework for defining the formal
semantics of TaMoGolog external nondeterministic constructs based on the
approach provided by GameGolog [20]. We provide low-level implementation
details of the external nondeterministic constructs framework in the Golog-
family interpreter platform P-INDIGOLOG [105] in Appendix A, Appendix B,
and Appendix C.

In Chapter 5, first we introduce TaMU framework that provides our ap-
proach towards task model-based usability evaluation at the IDE level. Then
we describe the role of TaMoGolog for constructing task models for usability
scenarios in evaluation experiments and in recording user and system data
during execution of evaluation experiments. We also explain the role of Ta-
MoGolog-based task models in performing automatic analysis of the recorded
data to highlight usability issues and to test product functionalities. Then
we present TaMUIator tool and its evaluation study. TaMUlator works at the
IDE level to provide the realization of our end-to-end task model-based us-

1.3. THESIS ORGANIZATION 9

ability evaluation life-cycle. Finally, we describe other automated tools that
also implement task model-based usability evaluation, and shed lights on the
differences of our approach from the previous ones.

In Chapter 6, we present the conclusions of the thesis providing the out-
comes and limitations, and sketch the directions for future works for improving
the incorporation of usability evaluation in software environments in order to
develop high-quality and usable software products.

10

CHAPTER 1. INTRODUCTION

Chapter 2

Preliminary Background

This chapter is devoted to provide the preliminary background knowledge
about the four areas related to the thesis. These four areas are the agile devel-
opment, the user-centered design (UCD) philosophy, the usability evaluation
approach, and the task analysis. Each section provides the state-of-the-art in
each one of these areas. This chapter helps to understand the concepts and
the terminologies that are used in forthcoming chapters, where we provide our
work. In each forthcoming chapter, we provide more specific related work to
our approach.

The remainder of this chapter is structured as follows: In Section 2.1,
we provide background of agile software development and brief description
of few well-known agile development methods. In Section 2.2, we describe
user-centered design philosophy and different activities that are performed for
carrying UCD in software development. In Section 2.3, we describe usability
evaluation, usability engineering approach for managing usability, usability
evaluation process for conducting usability evaluation, and brief description
of few usability evaluation methods. Finally, in Section 2.4, we provide few
well-known task analysis techniques and task modeling languages.

2.1 Agile Software Development

The agile approach is one software development approach that has emerged
over the last decade. This approach is used for constructing software prod-
ucts in an iterative and incremental manner; in which each iteration produces
working artifacts that are valuable to the customers (a broad group that in-
cludes end users, stakeholders, shareholder, etc.) and to the project. This is
performed in a highly-collaborative fashion to produce quality products that
meet the requirements in a cost-effective and timely manner.

11

12 CHAPTER 2. PRELIMINARY BACKGROUND

Agile Manifesto

Agile development broadly came to focus when defined by Agile Alliance in
the Agile Manifesto [2] in 2001 with the twelve principles and four key values.
The four key values are [2]:

“Individuals and interactions over processes and tools;
Working software over comprehensive documentation;
Customer collaboration over contract negotiation;
Responding to change over following a plan”

It is noted in the manifesto that while there is a value in the items on the
right side, the items on the left side are valued more. The twelve principles
that describe agile values in much large detail from Agile Manifesto [2] are:

1. “Our highest priority is to satisfy the customer through early and con-
tinuous delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile pro-
cesses harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple
of months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the
project.

5. Build projects around motivated individuals. Give them the environment
and support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, devel-
opers, and users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances
agility.

10. Simplicity—the art of maximizing the amount of work not done—is essen-
tial.

11. The best architectures, requirements, and designs emerge from self orga-
nizing teams.

12. At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly.”

2.1. AGILE SOFTWARE DEVELOPMENT 13

Requirement Analysis

Design
Planning
timebox
. Acceptance Testing
Working Coding

Artefacts Unit Testing

Figure 2.1: Agile iteration life-cycle

Agile Nature of Working

Agile software teams are mostly made up of small self-organizing and cross-
functional teams [14], which work by breaking tasks into small increments
with minimal planning. Iterations are normally constraint within short time
frames, called timeboxes, which typically last from one to four weeks [1].
In each iteration, software team works through a full software development
cycle, as shown in Figure 2.1 including planning, requirement analysis, design,
coding, unit testing, and an additional acceptance testing for that iteration
when a working product is demonstrated to stakeholders/shareholders. It lets
the project adapt to changes quickly and the benefits are the reduction of
overall risks and time. Although, it is possible that single iteration may not
add enough functionalities to make it for the market release, but the goal is
to have an available release with minimum bugs at the end of each iteration.
Therefore, a product release can take multiple of iterations.

2.1.1 Agile Development Methods

There exist a number of methods, which share the agile manifesto’s principles
and key values under the umbrella of agile development. Each methodol-
ogy differs slightly from others, depending on different factors, but all are
lightweight with short-term iterations in incremental fashion and emphasize
continuous testing and planning with close teamwork. All agile methods fo-
cus on rich customers’ involvement for establishing, prioritizing, and verifying
the requirements throughout the whole development life cycle. Extreme Pro-
gramming (XP) [7], SCRUM [109], Feature Driven Development (FDD) [89],
Adaptive Software Development (ADP) [52], Crystal Clear [13], Dynamic Sys-

14 CHAPTER 2. PRELIMINARY BACKGROUND

tem Development Method (DSDM) [112] are few well-known agile methods.
Field surveys' in companies, which work with agile development, show the
overall improvement in nearly all areas of product development. Following are
brief description of few of the notable agile methods.

Extreme Programming (XP): Extreme Programming [7, 31] is one of the
well-known and commonly used agile development method. It is based on ex-
treme form of development like daily interaction, working parts of the system,
testing, etc. XP emphasizes on groupware style of software development in
which small team group (that include developers, managers, customers, etc)
collaborates on daily basis. In this approach, the emphasize is laid on com-
munication with customers, simplicity of the design, feedback through testing
from the start, and the courage to deliver early the working parts of the sys-
tem to customers and to makes changes as suggested by them. User stories,
a short textual description that tells what the users want from the system,
are used a way to plan requirements for the current iteration [7]. Usage of
“Class, Responsibilities, and Collaboration” (CRC) cards is a common prac-
tice for designing the system by the team. Pair programming, code the unit
test first, customer availability, collective code ownership, coding to agreed
standards, all code must pass all the unit testing are common practices during
the implementation and testing phases.

SCRUM: Scrum [109, 127] is one of the most popular agile methods. There
are three main roles in Scrum: the Scrum Master that is responsible to main-
tain the processes, the Product Owner that represents the customer group
and the business, and the Team that is made up of a small group (5-7 people)
who performs all the activities in iteration (i.e., analysis, design, implementa-
tion, testing, etc). Each iteration lasts from two to four weeks and produces
some working increment to the product. The project maintains a backlog that
contains the high priority requirements to be carried. During the planning
phase, the product owner decides which features from backlog will go for the
current iteration. The team then commits how much they can implement in
the current iteration. When it is decided then no one can make changes in the
backlog, so requirements for the current iteration remains unchanged.

Dynamic System Development Methods (DSDM): The SDM [112] ag-
ile methodology is based on Rapid Application Development (RAD) approach.
It divides project into three phases: pre-project phase that deals and resolves
issues like identifying the candidate projects, project funding, project com-

WersionOne, Inc., Ist to 4th Annual Survey: ”The State of Agile Development”. (2006
- 2009), available at http://www.versionone.net/

2.2. THE USER-CENTERED DESIGN (UCD) PHILOSOPHY 15

mitment, etc; project life-cycle phase consists of five stages (feasibility study,
business study, functional model iteration, design and build iteration, and
implementation) in which the work in the last three stages are done in itera-
tive and incremental fashion; and post-project phase for ensuring the proper
working of the developed system and deals with maintenance, enhancement,
and fixing problems. DSDM provides nine underlying principles: “user in-
volvement, empowering the project team, frequent delivery, addressing cur-
rent business need, iterative and incremental development, allow for reversing
changes, high-level scope being fized before project starts, testing throughout
the lifecycle, and efficient and effective communication” [112].

Feature Driven Development (FDD): The FDD agile development method-
ology [89] combines the agile development approach and the model-driven de-
velopment approach, and it is suitable for developing critical systems. It is a
short iteration in nature with regards to the process and consists of five basic
activities. These five activities are: developing overall model for providing
an overview of the developing system; building feature list where features are
small pieces of client valued functions, decomposed to a level to be finished
in normally two weeks duration; planning by feature for producing the devel-
opment plan based on the created feature list, designing by feature for the
production of design package for each of the feature and then allocating a set
of features to a small team that will be able to finish it in two weeks duration;
and building by feature for implementing and testing the developed features
and then promoting the successful features to the main build.

2.2 The User-Centered Design (UCD) Philosophy

The user-centered design (UCD) philosophy puts the real end users of the sys-
tem at the centre of designing and evaluation activities such as: by represent-
ing or modeling users in certain way through scenarios and personas; through
user testing of prototypes; by involving users in making design decisions (e.g.
through participatory design). UCD is applied in software projects with the
aim of increasing product usability, reducing the risks of failure, decreasing
long-term costs, and increasing overall quality.

The term “user-centered design” became widely known when Norman and
Draper use it in their book [88]. They focused on the usability of the design
and emphasized on the needs and interests of users during the development.
Later, Normal developed further the concept in [87] and provided four basic
suggestions for designing accordingly. The suggestions provided by Norman
were: making it easy to determine the possible actions at a moment, making
things more visible (e.g. alternative actions, results of actions), making it

16 CHAPTER 2. PRELIMINARY BACKGROUND

easy to evaluate the current state of the system, and following natural mapping
between intensions and the required actions; between actions and the resulting
effects, and between the information that is visible and the interpretation of
the system state. Norman also suggested seven principles of design that are
necessary to facilitate the designer task. These seven principles are: “use
both knowledge in the world and knowledge in the head, simplify the structure
of tasks, making things wvisible, get the mapping right, exploit the power of
constraints, design for error, standardize” [87].

Gould and Lewis [43] provided three principles, which are now accepted as
basis for user-centered approach [76], to lead usable and easy to learn computer
systems. These principles are later refined and extended by Gould in [41] and

Gould et al. in [42]. These four principles are:

e “Farly — continuous — focus on users”. This leads to understanding
of the users and their attributes such as; their needs, their behavior,
working environment, etc.

e “Early - and continual - user testing”. This continuously involves end
users with the system prototypes (simulated or working) throughout the
development and ensures measures are taken to measures, both qualita-
tively and quantitatively, their performance, behavior, reaction, etc.

e “lIterative design”. This implements an iterative approach for the user
oriented testing of the design, which leads to improvements, and car-
rying testing again to check the effects of fixed problems in the design
accordingly. This provides an iterative loop of “design, test, measure,
and redesign” .

o “Integrated design”. This leads to the evolution of all usability aspects
in parallel, under one focus.

Gulliksen at el. [45] identified a set of definition of twelve principles for de-
signing and developing systems with focus on UCD. These twelve principles,
which based on existing theory are: “user focus, active user involvement,
evolutionary system development, simple design representations, prototyping,
evaluate use in context, explicit and conscious design activities, a professional
attitude, usability champion, holistic design, process customization, a user-
centered attitude”.[45] (p.401-403)

2.2.1 UCD Process Life-Cycle

The International Organization for Standardization (ISO) has defined the
standard guidelines to deal with different aspects of HCI and UCD; in par-
ticular, ISO/DIS 13407 [116] provides the guidance on user-oriented design

2.2. THE USER-CENTERED DESIGN (UCD) PHILOSOPHY 17

process. It does not cover specific design approaches in detail and only pro-
vides how to incorporate UCD activities throughout the design process for
achieving usability quality. The standard identified four principles of design
process: ‘“the active involvement of users and a clear understanding of user
and task requirements, an appropriate allocation of function between users and
technology, the iteration of design solutions, and multi-disciplinary design”
[116]. The results of these principles are four design activities for developing
system projects. These four activities are: understanding and specifying the
context of use, specifying the user and organizational requirements, producing
design solutions, and evaluating design against requirements. Other relevant
ISO standard guidance are ISO 9241-11 [115], ISO TR 16982 [117].

Gulliksen at el. [45] also focused on process level and defined " user-centered
system design” (UCSD) a process as: “user-centered system design (UCSD) is
a process focusing on usability throughout the entire development process and
further throughout the system life-cycle” (p. 401). They defined a life-cycle
that consists of four phases: analyze for gathering requirements and observing
user needs, design for usability through prototyping (both paper and working),
evaluate for continuous evaluation while taking relevant measures and feedback
for making plans for the next iteration. This life cycle phases are helped by two
extra phases: wvision for planning, initial concepts elaboration and construct
for deploying the tested parts of target application.

Detweiler [23] provided a life-cycle for designing with UCD philosophy
through three iterative phases followed by the development phase. Before any
UCD phases, the first step is the innovation of the vision of the product. In
the first phase understand user, emphasize is given to understanding the users
and their requirements. As an iterative phase, it is recommended to start from
the existing database of users, research their population, environment, needs
and to involve them from the beginning. The theme of the second phase define
interaction is to define the interaction before initiating design phase. The user
research, conducted during phase one, is fed towards use cases that define the
usage of end product. The completed use cases are also validated with user
populations. The last phase in UCD life cycle is Design UI in which the user
interface is defined directly from the use cases, defined in previous phases. This
is performed in two stages: low-fidelity prototyping for rapid experimentation
and evaluation, and high-fidelity prototyping for final and formal behavior
preview of the product design. Finally, in the development validation, the
design is validated with two reviews, one before the development and one after
the development. If the design is successful in usability benchmark testing then
it is deployed, otherwise it is sent back for improvements and redesigning.

18 CHAPTER 2. PRELIMINARY BACKGROUND

2.2.2 User-Centered Design Activities

There UCD approach provides a variety of activities that are used in different
development phases for different purposes. Normally, all of these suggest and
recommend those methods that are common to Human-Computer Interaction
(HCI) literature. The main idea is to promote informal methods where there
is no need for intense training. As each method targets some particular con-
text at a specific phase; so, it is normally recommended to use a mixtures of
these to get maximum feedback. Here, we provide brief description of few of
the selected methods that are commonly used in UCD practice.

Card Sort: In this method, the items of information are written on indi-
vidual index cards and users are asked to sort these into different categories
according to predefined criteria [110]. Users explain the reasons behind their
sorted categories. This method is quick, cheap, and useful in early phases of
development, but lacks to reveal the real interface problems. Normally, it is
done with a group of 10-20 users.

Contextual Inquiry:[8, 53] This is a structural approach for gathering and
interpreting data fieldwork. The designers and the team members visit the
actual workplace to observe and analyze users’ working in their actual envi-
ronment and other encapsulating factors. This method is helpful in earlier
stages and gives the opportunity to see the real environment. On the other
side, it is often time consuming and informal in nature.

Focus Group: Normally group of three to ten users [110] participate with
the team and discuss various activities. The participants provide their ideas
and opinions about the target system. This method is good for analysis pur-
pose and churns a large amount of data, but it requires a good facilitator and
unbiased opinion to achieve accurate results.

Interview: This method is normally used in requirement and analysis phases.
There are variations in types and in number of participants. Generally, it is
categorized in unstructured for informal and open-ended questions, structured
for predefined questions, and semi-structured that uses both open and closed
questions [25, 110]. This method involves not only the end users but other
stakeholders and shareholders of the system. It is low-cost method and pro-
vides an effective mean to identify users’ need. On the other hand the results
dependent on participants’ memory, their opinion and sometimes can be time
consuming due to busy schedule and other commitments of the participants.

2.2. THE USER-CENTERED DESIGN (UCD) PHILOSOPHY 19

Paper Prototype Testing: A group of usually 4 to 8 users are asked to eval-
uate prototype of the system in paper form. They also explain their choices
and the possible task sequences for completing a scenario. This method is
economical, swift and useful early in the development when there is no exist-
ing prototype.. However, due to its informal level, user can make such choices
which are difficult to accommodate in the targeting system design.

Survey: In this method, users are asked standard set of questions through
some channel such as paper, telephone, email, etc. Through this, it is easy to
gather data but the drawbacks are the lack of reliable instrument, self report-
ing may not properly propagate users’ behavior, and there is a possibility that
most of the users may not give answer of open ended questions.

Log-File Analysis: The user activities are collected from log-files and are
analyzed normally with the help of automated tools, which provide different
patterns of users’ behavior. This method provides an easy and quick way to
gather users’ behavior data. However conversely, log files usually lack infor-
mation about the specific reasons behind user’ actions.

Task Analysis: This method is normally used to observe an existing sit-
uation [25, 110]. The designers observe users and their work, and also talk
with them to identify user tasks and specific goals attached to these tasks.
The participating users are normally more than five. This method reveals
new information and highlights the way users perform their tasks. But, it is
time consuming and needs an expert to observe the process overall and re-
quires expert users in order to give correct answers.

Usability Test: Users are asked to perform different tasks on the target
system. The experts and designers observe and record users’ activities, be-
havior, and performance. User can be asked to give any feedback during or
after the experiment. Automated tools support is also used to save time and
to get accurate data. There are many techniques that are used to check us-
ability level of the targeted system [63]. Each technique highlights a portion
of the usability issues from a specific perspective. Normally it is recommended
to use more than one technique to highlight maximum usability issues [63].
This method helps to identify numerous real usability problems early in the
development, but again, this method can be time consuming however, this can
be reduced through automated tools support.

Heuristic Evaluation:[25, 110, 84] The developing/developed system is an-
alyzed against a set of user-oriented heuristic principles, one such criterion is
provided by Nielsen [84]. This method is performed by usability and UI ex-

20 CHAPTER 2. PRELIMINARY BACKGROUND

perts. Generally, participation of multiple experts is recommended to identify
prevailing problems. This method is inexpensive, quick, and useful to identify
different /range of usability problems. The experts with preeminent knowledge
of HCI and the working of system are recommended for this exercise.

Walkthroughs: This method involves walking through a task with the sys-
tem and making note of the usability problems that occur [110]. In most of
these techniques, such as Cognitive Walkthrough [110, 84], normally system
and Ul experts perform these. In few cases, such as Guided Walkthrough,
users are also involved with the help of an expert/facilitator. In this case,
users are asked questions during and after the walkthrough in order to gauge
the user’s understanding of the system.

Expert View: In this method, the experts (Ul experts, system analysts,
etc) view and analyze the prototype or the actual working system and pro-
vide feedback based on their own expertise. This method is quick and useful
to resolve issues early, but largely depends on experts’ own knowledge of the
target system and expertise.

2.3 Usability Evaluation

Usability is defined by the International Organization Standardization (ISO)
as:

“the extent to which the product can be used by specified users to
achieve specified goals with effectiveness, efficiency, and satisfac-
tion in a specified context of use” [115]

Sharp et al. [110] defined usability as to achievement of six target goals:

“effective to use (effectiveness), efficient to use (efficiency), safe
to use (safety), having good utility (utility), easy to learn (learn-
ability), and easy to remember how to use (memorability)”

While Dix, et al. [25] divided principles to support usability into three cate-
gories:

e learnability category handles principles (e.g., “predictability, synthesiz-
ability, familiarity, genmeralizability, consistency” [25]) that scales the
level of learnability ease for the new user to interact with the system to
get the maximum performance and output.

2.3. USABILITY EVALUATION 21

o flexibility category handles principles(e.g., “dialog initiative, multi thread-
ing, task migratability, substitutivity, customizability” [25]) that defines
the possible ways for exchanging information between the user and the
system.

e robustness category provides principles (e.g., “observability, recoverabil-
ity” [25]) that assess the support provided to the users of the system for
achieving targeted goals.

We can conclude from the above definitions that usability is a concept that is
measured in a system against a set of predefined goals/principles. The purpose
is to understand and conclude the extent to which the system possesses these
goals/principles from user perspective. This is checked through some usability
criteria that enable to assess the level of these goals/principles, e.g. time to
complete a task (efficiency), in a particular system [110].

Usability Engineering

Usability engineering is a process of achieving usability goals in a particular
system through applying a set of methods and techniques during different de-
velopment phases. One of the main goals of usability engineering is to improve
the user interface of the targeted system [71, 83]. The usability engineering
process involves specifying the usability criteria, writing down formally this
in usability specification, and then assessing the system against such criteria
[25, 110].

Usability metrics are used for measuring quantitative usability aspects of
the targeted system [25], such as Whiteside, Bennett, and Holtzblatt [125] pro-
vided a list of measurement criteria for assessing the usability metrics. This
list includes criteria such as ”time to complete a task, percent of task com-
pleted, time spent in errors, number of commands use, number of good and
bad features recalled by users, number of times user expresses frustration or
satisfaction,. 7. This list can be used to quantitatively determine the level of
usability a system provides to its users. Whiteside, Bennett, and Holtzblatt
[125] also provided a list to set measurement levels to be used in usability
specification that go from level 1 to level 8. ISO standard 9241 [115] also
provides a list of usability metrics and categorizes these through their con-
tribution towards three aspects of ISO usability definition, i.e., effectiveness,
efficiency, and satisfaction. It is recommended to insert explicitly the usability
criteria early in the development so as to judge the final product against these
pre-defined criteria [25]. The target usability criteria and metrics’ values differ
from system to system [71]. Therefore, it is possible that the higher priority
usability aspects for a system may become lower priority aspects in another
system, for example, learnability and memorability is on higher priority for a

22 CHAPTER 2. PRELIMINARY BACKGROUND

system for disable people while effectiveness, efficiency and safety is on higher
priority for a payment system.

Deborah Mayhew [77] proposed a life-cycle for managing usability engi-
neering. It describes how to perform usability tasks and their integration in
software development life cycle. The Mayhew’s usability life-cycle consists
of three phases: requirement analysis, design/testing/development and instal-
lation. The usability goals are identified in the first phase through help of
different activities such as user profiling, task analysis, platform capabilities
constraints, and general design principles. These goals are then captured in
the style guide that is used throughout the whole development to ensure these
goals are achieved. The second phase deals with design, testing and deploy-
ment. This phase is divided into three levels where in the first level the major
usability flaws are eliminated through several activities during analysis, in the
second level it is ensured that usability goals are met in the developing system
during design and implementation, while in the third level, the desired usabil-
ity goals are ensured through detailed user interface design and its evaluation
activities during the testing of the system [110, 77].

Usability Evaluation Process

A usability evaluation process evaluates the targeted system against the de-
fined usability criteria using usability metrics. It checks whether the system,
and especially its user interface, possesses all those required usability aspects
and the extent of these. It tries to find-out through different approaches and
techniques if the product is easy to learn and use, whether it is efficient and
effective in achieving users’ goals, and if it helps the users to perform their
tasks [25, 82, 110]. The process aim is to find usability flaws and errors and
refine the product according to the feedback.

Usability evaluation is performed using existing rigorous approaches and
techniques that enable the process of defining and running experiments, col-
lecting and analyzing results, and making decisions regarding which feedback
to adopt and to what extent [25]. There are three main sources for performing
usability evaluation: users, usability experts/designers, and models [25]. The
activities in evaluation process can be separated into three phases; collecting
usability data, analyzing the data to identify the usability flaws, and sug-
gesting improvements [63]. The goal of usability evaluation varies in different
phases of development; as in earlier analysis and design phase the purpose is
to look into alternative user interface designs and then to identify and select
the preferred one, while in later stages the purpose is to check whether the
developed user interface and system meets the usability criteria defined earlier
[71].

2.3. USABILITY EVALUATION 23

Usability Evaluation Terms

Following are few terms that are used in usability evaluation process [25, 83,
110].

Usability testing: To evaluates the usability level of a system against a
defined usability criteria and to check at what extend the system posses these
usability aspects.

User testing: In this evaluation, end users of the system are asked explicitly
to perform different tasks using the system (paper prototype or working pro-
totype). Users’ performance and satisfaction are observed and recorded while
they perform tasks, and then it is analyzed to find out usability issues and to
suggest improvements.

Usability laboratory: The laboratory that is designed and used for per-
forming usability experiments.

Controlled experiments: These are also called as experimental evaluation
in which experiments are normally performed in laboratory environment and
are controlled by evaluator(s). In these experiments, different aspects like per-

forming tasks, time, and laboratory environment are controlled by evaluators
[110].

Analytical evaluation: In this evaluation, experts (e.g., Ul expert, sys-
tem analyst, designers) participate in evaluation testing rather than the end
users of the system. Walkthrough, heuristic evaluation, feature inspection are
few examples.

Predictive evaluation: In this evaluation type, theoretical models are used
to predict users’ possible performance on a system.

2.3.1 Usability Evaluation Methods

Different usability methods are used in the evaluation process depending on
the purpose of the evaluation and the phase of development [25, 80]. Dix at el.
[25] distinguished eight factors for selecting appropriate method at right place
in the development. These eight factors are: “the stage in the cycle at which
the evaluation is carried out, the style of evaluation, the level of subjectively
of the technique, the type of measures provided, the information provided, the
immediacy of the response, the level of interface implied, and the resources
required” [25] (p. 357). To discover maximum usability issues, more than

24 CHAPTER 2. PRELIMINARY BACKGROUND

one method is needed, as each method highlights only specific usability flaws
and errors. We already have described few of the usability methods (e.g., log-
file analysis, heuristic evaluation, walkthrough, expert view) in Section 2.2.2.
Following are brief descriptions of few other well-known usability evaluation
methods.

Thinking Aloud Protocol: In this method, the users are asked to talk
in loud voice about what they are thinking or what they are doing while they
perform work on the system. An observer observes it and takes notes. This
technique has the advantage of simplicity and does not require much expertise.
This is useful in early phases to elaborate the system actual working [25]. A
variation of this method is cooperative evaluation [79] in which user also see
him/her as collaborator and can ask questions to the evaluator if anything is
unclear.

Performance Measurement: In this method, the users are asked to perform
different tasks on the target system. During this, their activities are observed
and recorded through a number of techniques like through paper and pencil,
audio recording, video recording, computer logging, or user notebook [25, 63].
Then the user performance is analyzed against some predefined criteria such
as given by Whiteside, Bennett, and Holtzblatt [125].

Cognitive Walkthrough [96, 124]: This is a branch of walkthroughs tech-
nique and performed by system and UI experts [96, 84, 124]. The main focus is
on establishing learnability usability aspect that talks how easy the system is
able to learn through exploration [25]. There are four things that are needed to
perform usability evaluation through cognitive walkthrough: a detailed spec-
ification of the system prototype (either working partially or fully), scenarios
of the tasks that are supposed to be performed by users, sequences of actions
that are supposed to be followed by the users to be performed in certain way
for achieving each specific task, and the information about participating end
users, their experience, and knowledge level [25, 96]. The evaluator (normally
an analyst, Ul expert, or designer) observes user while he/she performs actions
to achieve each targeted task, and then evaluates user’s behavior towards se-
lecting right actions and progressing towards the solution. As the focus turns
towards learnability, so a critical point to analyze and highlight is what the
user knew before executing actions and what the user has learned after exe-
cuting actions.

Questionnaires: In this method, users are asked to use the system openly
(to perform different things) or closely (to perform given tasks) and then a
set of questions is given to them to take feedback. This technique has the

2.3. USABILITY EVALUATION 25

advantage of taking feedback from a wider participation group in short time.
There are several styles for questions that can be included in the questionnaire
[25], such as general for taking information about the user data, open-ended
for taking user own opinion, scalar to ask the user to rank a specific statement
numerically (e.g., from scale 1 to scale 5 where scale 1 means disagree and
scale 5 means agree), multi-choice to ask the user to select one from the listed
choices, and ranked for ordering a list of choices according to user’s own rank.

Model-based evaluation: In this evaluation, cognitive and design mod-
els are used that combine design specification and evaluation together [25].
Some model-based methods use task-models or user-models for evaluation
[10, 71, 91, 97]. In task model-based usability evaluation technique, task mod-
els attached to evaluation provide a mean of user and system tasks. When
user perform different tasks on the system, the user’s and system activities
are recorded and then analyzed against these created task models to highlight
different issues such as incomplete tasks, users’ performance, selection of a
particular path, etc.

Automating Usability Evaluation

Usability evaluation is time consuming and costly. Unfortunately, in many
cases the usability evaluation techniques are performed manually, and due to
budget and schedule concerns sometimes they are neglected or poorly defined.
Moreover, different techniques highlight different issues and it is also possi-
ble that the same technique produces notable variability in results when ap-
plied to different evaluation studies for the same system [78, 83]. Automating
evaluation approaches and techniques, and applying these throughout the de-
velopment process, provides several benefits, e.g.; reduced development costs
and time, improved error tracing, better feedback, and increased coverage of
evaluated features [63]. Support of possible automation for different usability
approaches varies due to different requirements for each approach. Balbo [6]
suggested taxonomy for categorizing automation approaches into four cate-
gories: none for approaches manually performed by experts of human factors,
capture for approaches capturing users and system activities through help of
automated tools, analysis for approaches identifying usability problems auto-
matically, and critique for approaches that also provide solution to the iden-
tified usability problems. Ivory and Hearst [63] conducted a detailed survey
on the state-of-the-art in the automation of usability evaluation techniques
at different levels. They analyzed 132 evaluation techniques using the tax-
onomy suggested by Balbo [6], both for Web and WIMP (Windows, Icons,
Pointer, and Mouse) interfaces, and found that only 33% of those techniques
are supported by automated tools. The survey concluded that there is a great

26 CHAPTER 2. PRELIMINARY BACKGROUND

under-exploration of usability evaluation methods automation and suggested
focusing the research on automation techniques.

2.4 Task Analysis

Task analysis [24] is a way to analyze the system’s working and then break it
down to low-level activities to determine what users need to know to perform
their jobs. The task analysis process emphasizes on three key elements that
are the actions people do, the things on which people act on, and the things
that people need to know [25]. Normally, task analysis is used for the existing
systems and procedures, not for the new ones [5, 24, 25, 110].

A task model structures and forms relationship between the low-level activ-
ities, recognized in analyzing system’s working during task analysis process,
and defines how the user can achieve the desired goals through performing
these sets of activities. Generally, task model can be categorized into two
types [80]: user task model that describes the task structure from users’ think-
ing to perform actions for the achievement of the desired goal(s), and system
task model that describes the task structure from the perspective of system
assumptions for performing the actions.

2.4.1 Task Modeling Techniques

Over time, various task analysis approaches have evolved such as Hierar-
chical Task Analysis (HTA) [5], Goals, Operations, Methods, and Selection
rules (GOMS) [11], Groupware Task Analysis (GTA) [122], Task Analysis for
Knowledge Description (TAKD) [24], Cognitive Task Analysis (CTA) [17], etc.

Dix et al. [25] distinguishes these approaches into three categories:

o Task-decomposition-based techniques that generally split tasks into sub-
tasks and order them according to their supposed execution path.

o Knowledge-based techniques that look in to the objects and actions that
user need to know to perform a task and the organization of this knowl-
edge.

o FEntity-relation-based techniques that look in to the actors and objects,
their relationships, and the actions performed by them.

Following are brief descriptions of four well-known task analysis approaches.

Hierarchical Task Analysis (HTA): Hierarchical Task Analysis [5] is the
most widely known and used technique for the task analysis. It breaks down

2.4. TASK ANALYSIS 27

tasks in low-level actions and defines their order to achieve some goal. The
tasks are divided into sub-tasks till we reach to the low-level basic actions.
These low-level actions are then structured according to the user goal where
plans describe in which order and how to achieve that specific goal [25]. The
leaves in HTA task model are concrete low-level actions (tasks), while the par-
ents are abstract tasks that normally manage the structure of sub-tasks. HTA
focuses on those tasks and actions that are physical in nature and are observ-
able; therefore, it also keeps those tasks that are not related to the software
[110].

Goals, Operations, Methods, and Selection (GOMS): Goals, Opera-
tions, Methods, and Selection [11] technique is helpful for modeling procedural
knowledge. It models tasks in terms of: a set of goals, a set of operators, a set
of methods, and a set of selection rules. In GOMS, Goals are the represen-
tation of users’ goals and describe what the users want to achieve. Operators
are the representation of low-level basic actions. These must be performed by
users when they interact with the system. These are of two kinds: first are
those that affect the system state (e.g., by giving some input to system), and
second are those that affect only user’s mental state (e.g., reading an output)
[11, 25]. Methods decompose goals into sub-goals and act like procedures for
accomplishing specific goals. Selection provides the rules that help the user
for selecting the appropriate method for achieving the desired goal. GOMS is
also useful for predicting the quality of prototypes or existing system [110].

Groupware Task Analysis (GTA): Groupware Task Analysis [122] ap-
proach talks about collaborating environments. It provides a rich set of con-
cepts; such as role, agent, object, task, event, goal; that are useful while mod-
eling task structure for the systems that collaborate for performing some com-
mon goal. The aim is to model the situation in which collaborating tasks are
performed [25].

Task Analysis for Knowledge Description (TAKD): Task Analysis for
Knowledge Description [24] is a knowledge-based task analysis technique that
involves building taxonomies based on objects and actions in the task. The
taxonomies act as hierarchical descriptions aimed at understanding the knowl-
edge required to perform a specific task. TAKD uses Task Descriptive Hierar-
chy (TDH)[24], a special form of taxonomy. TDH uses logical OR, AND, and
XOR for the branches in the taxonomy. The hierarchy system in TAKD is
based on genericity of knowledge where taxonomy is used to link similar tasks
[25]. That is why it is more useful for producing the teaching material and
the instructional manuals.

28 CHAPTER 2. PRELIMINARY BACKGROUND

2.4.2 Task Modeling Languages

Different notations have been suggested for writing task models such as User
Action Notation (UAN) [47] for in textual form and ConcurTaskTrees (CCT)
[92] for graphical representation. Following are brief descriptions of three task
modeling languages.

ConcurTaskTrees (CCT): ConcurTaskTrees [92, 90] is one of the well-
known techniques for writing task models in HCI community. It provides
graphical representation for different abstraction of tasks through a hierar-
chical based task tree, and specifies temporal relationships between tasks and
sub-tasks using operators based on LOTOS [118] formal notations. It supports
four kinds of tasks abstraction, called user tasks, abstract tasks, interaction
tasks, and application tasks.

In CCT, a task is defined by a set of attributes. These are name to iden-
tify unique name, type for representing any one of the four task types, objects
where each object has name, type, input and output object actions, iterative to
indicate whether the task is iterative in nature, first action for representing the
possible initial actions in the task, and last action for representing the possible
last actions in the task [92]. The CCT set of constructs includes “interleaving,
choice, concurrency with information exchange, order independence, deactiva-
tion, enabling, enabling with information passing, suspend-resume, iteration,
finite iteration, optional task, and recursion” [92] (p. 812). This represen-
tation technique is supported by CCTE (ConcurTaskTrees Environment), a
tool for creating task trees and building the relationship between different sub-
tasks in the task-tree according to the semantics of task model [80]. Sinnig
et al. [111] enhanced the set of temporal operators of CCT and added four
constructs: “stop, nondeterministic choice, deterministic choice, instance it-
eration operators” (p. 45).

User Action Notation (UAN): User Action Notation [47] is a textual task
modeling language that provides user- and task-oriented notations for describ-
ing the behavior of the user and the interface while both of these perform some
tasks together. The primary abstraction in UAN is a user task. The basic
concepts are task representing a target task, user action representing either a
primitive user action or task, and action set containing the union of all user
actions defined in the description of the attached task and is obtained by ap-
plying a projection function on the attached task [46].

The UAN uses modal logic for describing the temporal relationships between
tasks. UAN uses the quasi-hierarchical structure of asynchronous tasks for
representing an interface, where the sequences inside a task are independent
of sequences inside other tasks. The lowest level describes the user actions, the

2.4. TASK ANALYSIS 29

possible interface feedbacks, and any information related to changes in state.
The UAN set of constructs consists of sequence (A B), waiting (A(t > n)B),
repeating disjunction (A | B)*, order independence (A & B), interruptibility
(A — B), one-way interruptibility (A — B), mutual interleavebility (A < B),
and concurrency (A + B) [46].

Collaborative Task Modeling Language (CTML): CTML [128] is a
recent task modeling language for capturing the behavior dynamics of col-
laborative environments. The collaboration task expression in CTML is a
task tree with CTT-like notations. The task in CTML has a unique identifier
for its name, a precondition for adding execution constraints as the task is
considered to be in execution mode if the precondition is satisfied, and an
effect representing the state change due to the execution of the task. CTML
also provides a domain model for presenting domain specific concepts and to
associate these relevant roles in the collaboration. The CTML set of con-
structs includes choice, order independence, concurrent, enabling, disabling,
suspend/resumes, iteration, instance iteration, and optional [128].

30

CHAPTER 2. PRELIMINARY BACKGROUND

Chapter 3

Integrating User-Centered
Design into Agile Software
Development

3.1 Motivation

This chapter is devoted to define a conceptual framework for the integration of
user-centered design (UCD) philosophy [25, 43, 110] into agile software devel-
opment approach [1, 2] at different levels. This proposed approach identifies
ways to apply appropriate UCD activities alongside agile development activi-
ties, with the aim of developing high-quality and usable products.

One of the challenges in software development is to involve end users in the
design and development stages so as to collect and analyze their behavior and
feedback in an effective and efficient manner and to manage the ensuing devel-
opment accordingly. One way to achieve this is by applying UCD philosophy.
This philosophy puts the end users of the system at the centre of design and
evaluation activities, through a number of methods such as involving them
in Participatory Design or testing the Working Prototype [25, 110]. The phi-
losophy is applied in software projects with the aims of increasing product
usability, by involving the end users in design, development, and evaluation
activities; to aim at reducing the risks of failure, decreasing long-term costs,
and increasing overall quality.

The agile approach [1, 2, 31] is one software development approach that
has emerged over the last decade. This approach is used for constructing
software products in an iterative and incremental manner; in which each iter-
ation produces working artifacts that are valuable to the customers and to the
project. This is performed in a highly-collaborative fashion to produce quality
products that meet the requirements in a cost-effective and timely manner.

31

CHAPTER 3. INTEGRATING USER-CENTERED DESIGN INTO
32 AGILE SOFTWARE DEVELOPMENT

Generally, in software development practice, software teams hesitate to
imply UCD activities due to their time consuming and effort-intense nature.
Using the agile approach, in which customers and product owners lead the pri-
oritization of the development, helps developers overcome these hesitations.
By emphasizing the benefits common to both the end users and the develop-
ers, UCD and the agile approach can be dynamically integrated to get benefits
from both, resulting in the development of high-quality and usable software
products. We identified that agile development teams were often lacking a
properly-integrated approach that utilizes the UCD philosophy from end-to-
end at all levels. To overcome this gap, we propose a three-fold integration
framework that gives suggestions and recommendations for involving UCD in
agile software development at different levels.

This chapter provides our work towards the following directions:

e A three-fold integration framework to incorporate user-centered design
philosophy into agile software development. It provides integration at
three levels: (i) at the process life-cycle level for the selection and appli-
cation of appropriate UCD methods and techniques in the right places at
the right times; (77) at the iteration level for integrating UCD concepts,
roles, and activities during each agile development iteration planning;
and (4ii) at the development-environment level for managing and au-
tomating the sets of UCD activities through automated tools support.

e A conceptual process for defining evaluation experiments and running
them from within the integrated development environment to equip the
software team with the mechanisms to monitor and control a continuous
evaluation process, tightly coupled with the development process, thus
receiving on-going user feedback while continuing development.

e The realization of development-environment level integration through a
plug-in tool, called UEMan (User Evaluation Manager), for Eclipse devel-
opment platform [32] to manage and automate UCD activities alongside
the process of development at the integrated development environment
(IDE) level.

The rest of the chapter is organized as follows.

Section 3.2 introduces our three-fold integration framework that offers in-
tegration of UCD philosophy in agile software development.

Section 3.3 describes the most abstract level of integration, i.e., the process
life-cycle level integration. It provides suggestions and recommendations for
the selection and application of appropriate UCD methods and techniques
during development.

3.2. THE THREE-FOLD INTEGRATION FRAMEWORK 33

Section 3.4 provides detail for the second level of integration, i.e. the
iteration-level integration. It describes how UCD concepts, roles, and activities
can be integrated into agile development iteration activities. It also explains
the resulting effects into agile development to support the continuity of UCD
activities in the development iteration. These resulting effects are performing
iterative design activities, taking measures, and defining UCD roles.

Section 3.5 describes the concrete level of integration, i.e., the development-
environment level integration. It explains our understanding of the lack of
UCD management practices in software development environments and pro-
vides the conceptual framework for the management and automation of UCD
activities in the integrated development environment. This level integration
resulting effects are the creation of experiments including the use of evaluation
aspects, results analysis, and code traceability.

Section 3.6 presents the developed eclipse plug-in tool, called UEMan, and
describes how it can be used to managed and automate user evaluation along-
side software development. It also presents two evaluation studies of UEMan.

Section 3.7 discusses the related work that has been carried to provide
the integrated approaches. It describes other approaches and techniques for
integrating user-centered design in agile development.

Section 3.8 provides the concluding remarks and the directions and ratio-
nales for the work of forthcoming chapters.

The UEMan tool and the evaluation case studies presented in Section 3.6
are author’s collaborative work with Dr. Yael Dubinsky, who taught one year
course “Annual Project in Software Engineering”in Computer Science Depart-
ment at Technion, II'T from 2008 to 2010. The UEMan tool was developed by
one of the teams in the course session 2007/08 and an initial evaluation study
was also done during the course, while the second evaluation study was done
during the course session 2008/09.

3.2 The Three-fold Integration Framework

The UCD philosophy provides different activities as discussed in Chapter 2; for
example, by representing or modeling users in scenarios and personas, having
users test prototypes (either paper or working prototype), and involving users
in design decisions (e.g., thorough participatory design); aiming at designing
and developing systems with a focus on users’ needs [25, 43, 45, 110]. Addition-
ally, the International Organization for Standardization (ISO) has also defined
standard guidelines to deal with different aspects of HCI (Human-Computer
Interaction) and UCD [116, 115, 117]. One description of UCD that we find
particularly motivating is: “User-centered system design (UCSD) is a process

CHAPTER 3. INTEGRATING USER-CENTERED DESIGN INTO
34 AGILE SOFTWARE DEVELOPMENT

focusing on wusability throughout the entire development process and further
throughout the system life-cycle” [45] (p. 401). One thread common to all
methodological approaches come under umbrella of UCD is that the usability
evaluation must be carried out throughout the whole development life cycles;
it is more beneficial rather than the application of these techniques only during
the early or some specific phases of development.

Poor usability and inefficient design of the end-product are common causes,
amongst others, for failed software products [4, 69, 86]. Since software prod-
ucts are developed for the users, it’s likely they will fail if the users find them
difficult to operate, due to the lack of usability and inappropriate design. Nor-
mally in development practice, users are either involved at the very beginning
of the project when defining the requirements or at the end of the project
when testing the developing product. Furthermore, in the testing phase, the
project teams focus more on checking the functionality of the product (e.g.,
performance, reliability, security, robustness, etc.) rather than its usability
and design aspects. Checking usability or solving defects at the end of the
development process requires more time, effort, and money; hence, they are
not usually performed. Generally, in software development practice, and par-
ticularly, in iterative and incremental type of software development processes,
software teams hesitate to imply UCD activities due to their time-consuming
and effort-intense nature. Involving users from starting phases of development,
especially in the case of iterative and incremental development methods, can
help identify poor usability and design defects early in the development cycle,
and prevent product failure at the end [4, 66, 98]. As consequences, UCD ap-
proach emphasizes on methods and techniques for involving end users from the
early stages of development and guides the design of user interface (UI) and
its evaluation by integrating user experience as part of software development
process for improving overall product quality [123].

The agile approach [1, 2, 31] is used for constructing software products in
an iterative and incremental manner; in which each iteration produces working
artifacts that are valuable to the customers and to the project. This is per-
formed in a highly-collaborative fashion to produce quality products that meet
the requirements in a cost-effective and timely manner. When we look into
agile development methods, normally all focus heavily on working code of the
system rather than making documentation and other artifacts, which could
result in conflicts for the future understanding of requirements. They em-
phasize on significant customer collaboration, but the compressed time scales
for iterations sometimes make it difficult to get access to the right customer
at the right time to get the feedbacks on previous iterations and prototypes
[25]. Moreover, if the accessed customers are not the real end users then it
could lead to misunderstanding of the demands of real end users of the fu-
ture system. On the other side, UCD activities are normally time-consuming

3.2. THE THREE-FOLD INTEGRATION FRAMEWORK 35

and take extra efforts. Thus, there are risks of compromising attention on
usability in a too quick agile development. Examining UCD limitations, it is
sometimes perceived as waste of time and money when an intensive iterative
and paper-producing UCD development takes place.

Although these two approaches, UCD and agile software development, are
different approaches that were raised within different disciplines seems to con-
tradict each other from the top view, but when we examine in detail the
basic set of concepts and philosophy, we find no fundamental contradictions.
In fact, when we go into the details we find more similarities than the per-
ceived contradictions [9]; like, agile development approach focus on people is
similar to UCD focus on end users, the agile approach of intense customers’
collaboration is similar to the users’ involvement in UCD activities, both ap-
proaches emphasize on communication with customers or end users for better
understanding and proper designing of the product, both can change dynam-
ically their process according to the target environment, agile focus on ease
for customers’ needs is same as UCD focus on usability for end users, both
also emphasize on the design improvements based on customers or end users
continuous feedbacks.

Thus, by emphasizing the benefits common to both the end users and the
developers, UCD and the agile development approach can be dynamically inte-
grated to get benefits from both, resulting in the development of high-quality
and usable software products. Even the small investment of UCD activities in
agile development gives the benefits in large [23]. For example during devel-
opment, agile development team members participate in different roles and by
integrating UCD activities; it will increase their knowledge and understand-
ing about the domain and the end users [48], and as a result improves overall
quality of the end product.

There are many challenges in the way to produce a proper working inte-
grated approach; for example, due to the short iteration-time in agile devel-
opment there is no time for field studies or making alternative user interfaces
or testing prototypes and same is true for many other UCD activities [23].
Especially, in terms of agile development, more care is needed to be taken as
inappropriate integration may lead away from the basic philosophy of agile
approach. In spite of the growing research in both fields, we identified that
agile development teams were often lacking a properly-integrated approach
that utilizes the UCD philosophy from end-to-end at all levels.

The Three Levels of Integration

On the above findings to overcome the gap, we propose a three-fold integration
framework that gives suggestions and recommendations for involving UCD in
agile software development at three levels. Our approach emphasizes a tight

CHAPTER 3. INTEGRATING USER-CENTERED DESIGN INTO
36 AGILE SOFTWARE DEVELOPMENT

integration from top-to-bottom, in which shared ideas are combined at every
level, from the process life-cycle to the development environment, gaining the
benefits of both approaches. Our three-fold integration framework incorpo-
rates UCD into agile development at three levels: the process life-cycle level,
the iteration level, and the development-environment level.

1) The Life-Cycle Level Integration — Selection and Application of UCD Meth-
ods and Techniques in the Agile Process Life Cycle:

We define life-cycle level integration as performing appropriate UCD meth-
ods and techniques in the right places at the right times, alongside the other
development tasks. When integrating with agile methods, a careful selection
of UCD techniques at each phase of life-cycle is needed to achieve the maxi-
mum benefits. We distinguish UCD methods into elicitation and evaluation,
and suggest a number of attributes for selecting appropriate methods during
different phases of development. On the base of these recommendations, we
suggest a life cycle for integrating UCD into agile development.

2) The Iteration Level Integration — Integrating UCD Concepts, Roles, and
Activities in Agile Development Iteration:

This level of integration helps to align UCD concepts, roles, and activities
within the development iteration activities for maximum benefit. For example,
our framework suggests that UCD tasks exist in addition to the development
tasks in every iteration planning. Another example is integrating the role of
the “design evaluator” in development team whose responsibilities are to plan
the evaluation of the user interfaces design, gathering and analyzing evalua-
tion data, and recommending UCD tasks for next iterations accordingly. The
results of these tasks are presented in the iteration presentation. This level
integration resulting effects into agile development are performing iterative
design activities, taking measurements, and defining UCD roles.

3) The Development-Environment Level Integration — Managing and Automat-
ing User and Usability Fvaluation in IDE:

UCD guides integrating user experience into the software development pro-
cess. One of the challenges of this integration is to automate the management
of UCD activities during development. When we analyzed current software
design practices, we identified a lack of UCD management, which we define as
the ability to steer and control the UCD activities within the development en-
vironment of the project. Defining evaluation experiments and running them
from within IDE equips the software team with the mechanism to monitor and
control a continuous evaluation process, tightly coupled with the development
process, thus receiving ongoing user feedback while continuing development.

3.3. THE LIFE-CYCLE LEVEL INTEGRATION 37

It is interesting to note that although our framework targets toward agile-
based development approaches, but the given suggestions and recommenda-
tions are also applicable for other development approaches that come under
the umbrella of iterative and incremental development methodology. The fol-
lowing three sections discuss the aforementioned three levels of integration
in detail, followed by the tool that is based on the automation of the UCD
management concept.

3.3 The Life-Cycle Level Integration

Our integration framework suggests tighten integration of UCD methods and
techniques within the development life cycle. This means performing appro-
priate UCD methods and techniques in the right places at the right times,
alongside other development tasks. Selection of appropriate UCD methods
and techniques is critical due to the agile nature of development where there
are short iterations and focus is towards the working part of developing product
rather than investing much time on documentation. Following we categorize
UCD methods into two groups, suggest a number of attributes for selecting
appropriate methods, and a life-cycle for integrating UCD activities into agile
development activities.

3.3.1 Method Categories

We distinguished the different types of UCD methods into two groups, elicita-
tion and evaluation, based both on the way the methods perform and on their
impact on software project development.

Elicitation Methods: These UCD methods are used for eliciting require-
ments and design of the software project. Normally, the end users or UCD
experts are involved during the initial phases of development life cycle. They
are useful to get requirements properly and to identify the drawback early in
the design phase. We suggest using these in early activities of iterations to
give more attention to eliciting requirements and design. Among the different
elicitation methods, those that take less time, efforts, and give high feedbacks,
such as focus groups and card sort methods [110], are more suitable are more
suitable as they fit perfectly in agile development.

FEvaluation Methods: These UCD methods involve end users, UCD experts,
and automated tools and are used to evaluate developing/developed products
by identifying usability issues. Each type of evaluation method highlights
only parts of usability issues, and only to a certain extent, so using more than
one method is recommended [63] for covering a higher rate of usability issues.

CHAPTER 3. INTEGRATING USER-CENTERED DESIGN INTO

38 AGILE SOFTWARE DEVELOPMENT

Attribute Description

Automation The automated tools support and the level of automa-
tion (e.g., None, Capture, Analysis, Critique (taxonomy
by Balbo [6])

Effectiveness Feedback effects (Low, Medium, High) on design or devel-
opment

Dynamicity The ability of the method to be changed according to the
target environment (Low, Medium, High)

Time-cost How much minimum time is needed to complete this
method

Effort-cost How much efforts are needed to perform this method (e.g.,
man power, equipments, experiment place, other resources)

Ease of Learning | How easy it is to learn the method, both for responsible
persons on the development team and/or for the end users
who will perform it

Results Accuracy | Accuracy of results

Coverage Area The elicitation/usability issues covered by this method

Table 3.1: Set of attributes for determining the selection of appropriate UCD
methods

The evaluation methods performed by UCD experts are useful in early design
phases, in which only paper prototypes or only parts of working prototypes
are available, as these methods take less time and effort, both of which are
at a premium during these early phases of development. On the other hand,
evaluation methods performed by end users give better results when used on
working prototypes, as these prototypes help end users understand the system,
taking better advantage of the methods. Heuristic evaluation, question-asking
protocol, and performance measurement [25, 63| are all examples of evaluation
methods.

3.3.2 Selection Criteria

Our framework provides a set of attributes for selecting appropriate elicitation
and evaluation methods to apply during agile development phases. Table 3.1
shows these attributes and describes each one from the agile development per-
spective, i.e., short-time iterations, high-level of collaboration with customers,
focus on working artifacts, and dynamic processes.

The automation attribute tells us the nature of automation supported by
automated tools for the selected method. We use the taxonomy suggested by
Balbo [6] for the nature of automation, which consists of: None if no automa-
tion is supported, Capture in which the automated tool records and captures
users and system information, Analysis in which the automated tool provides
the automatic analysis of the recorded data such as some usability problems

3.3. THE LIFE-CYCLE LEVEL INTEGRATION 39

due to user interface, and Critique in which the automated tool also provides
the possible solutions to the identified problems. The more automation the
better, as it saves time and cost and provides much accurate results. The
effectiveness attribute is to assess the method’s impact on designing and/or
development. A method with high impact gets more priority than the lower
one, e.g., heuristic evaluation with usability experts on early prototypes can
have more impact on design improvements compare to other evaluation meth-
ods.

The agile processes are able to adopt the target-working environment;
therefore, methods with have higher degrees of dynamicity are natural al-
liance. The dynamicity attribute is to judge a method’s ability to change its
process of working according to the target environment. The time-cost at-
tribute is to determine the time needed to perform a particular UCD method.
This has a direct relation with the time frame of agile iteration. Therefore,
we suggest choosing those methods that can fit properly in the time frame of
the targeted iteration. The effort-cost talks about other resources (e.g., man
power, equipments, money, experiment place, etc) that are needed to perform
the selected method. This also has a direct relation with the targeted agile
iteration. For example, normally agile teams are made up with small set of
people and a particular method may not be suited well if it requires more man
power than the team’s capability.

The ease of learning attribute talks about a UCD method’s understand-
ability and learnability both for the responsible persons on the development
team and/or for the end users who will perform it. A method with higher ease
of learnability takes less time while performing it, hence compliment to agile
short nature of iterations. A method’s results act as feedbacks for the improve-
ments in the design and development of the developing product. They also
effect the forthcoming iterations’ planning. Therefore, the results accuracy of
a particular method can play a critical role in the success outcomes of agile
development iteration. Each UCD method covers only parts of the problem,
i.e., a usability method highlights usability issues from a certain perspective.
The coverage area describes the perspective of highlighting eliciting issues or
usability issues by a particular method. Therefore, it is better to select those
two methods that highlight issues from different perspectives rather than those
two who do from the same perspective.

Along these attributes, selecting an appropriate UCD method also depends
on other factors, such as life-cycle stage, availability of participants, etc. For
early design activities, we recommend an emphasis on paper-based or simple
UI prototype-based evaluation methods to improve design early. While in later
iteration activities, we recommend using formal evaluation methods, such as
task model-based usability evaluation method, to get formal results. We also

CHAPTER 3. INTEGRATING USER-CENTERED DESIGN INTO
40 AGILE SOFTWARE DEVELOPMENT

recommend using a mixture of evaluation methods, preferably supported by
automated tools and performed by end users and UCD experts for maximum
results. Automation tools support gives more accurate results and save time
and costs-all factors that complement agile development.

3.3.3 A Life-Cycle for Involving UCD in Agile Development
Iteration

On the basis of the above recommendations, we suggest a life cycle of four
UCD activities for involving UCD philosophy alongside the agile development
iteration. Figure 3.1 shows the UCD activities (solid ovals), in which agile ac-
tivities that are done per each user story or development task are represented
by dashed lines ovals. Sometimes a UCD activity overlaps one or more agile
activities.

UCD Involvement: The software team involves end users and UCD ex-
perts when appropriate, mostly through the use of elicitation methods during
work on requirements, design, and early prototypes.

Design-Artifacts Evaluation: The early design and prototypes are then
quickly evaluated through short-time consuming evaluation methods normally
by UCD experts (i.e., system analysts, usability evaluators, UI designers) and
sometimes by a small group of end users. The results of this phase become
input for the third phase.

Design Improvement: The software team corrects and improves the design
according to the feedback and performs implementation of the target modules.

Detailed Fvaluation: The developed modules are evaluated in detail by
end users and/or by UCD experts, normally through rigid evaluation meth-
ods with automated tools support. The results, feedback, and suggestions
serve as input for making plans for improvements in the design and for the
implementation of developing products in the upcoming iterations.

3.4 The Iteration Level Integration

This level integration helps to align UCD concepts, roles, and activities within
the development iteration activities for maximum benefit. Due to the short
time nature of agile iteration, a careful integration is needed in planning for
each iteration; hence, the evaluation feedbacks can be gathered effectively and
can be used to improve the product accordingly. In the following subsections,
first we highlight how the end user role specified in UCD philosophy differ from

3.4. THE ITERATION LEVEL INTEGRATION 41

The software team plans for the next i i

i Users and UCD Experts are involved ini
iteration based on the results oﬂ i i

Eeliciting requirements and develnpingi
detailed evaluation. i i

! Edesign through elicitation methods.

..---"R'é-ﬁur'remenrAnﬂfysf-s.“”"" Lo T /

Phase 1

UCD Involvement

Phase 2

Design-Artifacts

y rha] .. Evaluation

Detailed Evaluation ' / /!
\)4_"
v ¢

\ Phase 3 .
Design Improvement

7| coding”

p—

Early design & prototypes are
The developed modules are evaluated

evaluated by UCD Experts and
mostly by end users andfor by UCD v P

sometimes also by end users through
Experts through detailed evaluation v &

uick evaluation methods.
methods normally supported by 5

iautomated tools.

iThe software team improves the design in the

light of the results of prototypes evaluation.

Figure 3.1: Life cycle for involving UCD philosophy into agile development
iteration

CHAPTER 3. INTEGRATING USER-CENTERED DESIGN INTO
42 AGILE SOFTWARE DEVELOPMENT

the customer role in the agile development. Then we describe this level inte-
gration resulting effects into agile development through performing iterative
design activities, taking measures, and defining UCD roles. Lastly, we present
use cases as scenarios from the world of agile teams to represent the effects
of integration in the form of users’ involvement in development, evaluation of
the product, and design improvements. These use cases scenarios form the
foundation on which our framework lays the foundation of management and
automation of user evaluation in development environment (Section 3.5) and
the tool (Section 3.6) that we developed to realize it.

3.4.1 The Users’ Role in Software Development Processes

The standard ISO 9241-11 [115] identifies the following as the most useful
indicators for measuring the level of usability of a product:

e FEffectiveness in use, which encompasses accuracy and completeness thro-
ugh which users achieve certain results.

e FEfficiency in use, which is related with the resources utilized in relation
to accuracy and completeness.

e Satisfaction in use, which includes freedom from inconveniences and pos-
itive attitude toward the use of a product.

In light of this standard, we bring the perspective of the customer and the
user for whom the software is developed. We distinguish between the role of
the customer and the user while focus on the way users should be involved in
agile software development methods.

The Customer

The customer’s position in software development processes is one of the main
changes that the agile approach introduces into software development envi-
ronments. The customer role in agile software development environments is
central and is based on on-going communication between the customers and
the team members, both with respect to the requirements and the way testing
and checking of the developed product are performed. This communication
is established with the aid of several practices, one of which is the planning
session. During this session, the customer observes the current developed ar-
tifacts, gives feedback, and prioritizes the work for the next iteration.

The User

The agile approach for software development emphasizes ‘individuals and in-
teractions’ 2] during the process of software development [2, 7]. Asking soft-

3.4. THE ITERATION LEVEL INTEGRATION 43

ware practitioners who these individuals are, most of them mention roles like
system analysts, developers, and testers. The agile approach increases the
awareness to additional roles like the customers who are most important to
collaborate with. There are roles schemes that are used in different agile meth-
ods and are discussed for different goals, e.g., in [28] for the sake of an academic
project. The current agile development practice broads the customer role as a
group, which includes a number of stakeholders and shareholders like business
analysts, higher management, interaction designer, end users, QA persons,
etc. In spite of all, still, the end users themselves and the design that follows
their evaluation are somehow neglected. A common misconception and prac-
tice is not to include the end users in the customer group, and if included then
many times the attention is more focused towards others in the group rather
than end users, like higher management or business analyst, who have more
influence or direct communication with the development team.

Given that the attention is normally paid more towards those who some-
times pay for the software development (shareholders) or have other kinds
of interest with the development (stakeholders), the end users are the major
group of individuals from stakeholders in the context of most software projects.
But, generally in agile development practice, due to time constraints and other
circumstance, end users are either completely ignored or receive little atten-
tion. Combining UCD philosophy and agile approach pays more attention
towards end users’ needs and puts them, along other customers, at the center
of every interaction, and includes methods to deal with end users’ evaluations
and its implications to design and development.

3.4.2 User Experience and The Development Processes

The iteration level integration brings the following effects into agile develop-
ment:

o lterative design activities: In many cases, when UCD techniques are
used (if at all), the design of the system is refined according to the users’
evaluations mainly during the design phase. In the agile development
approach, the design is updated regularly as the product evolves. When
combining the UCD approach with agile development, the user evalu-
ation is fostered by performing UCD activities in each iteration of two
to four weeks, and the design is updated according to the evaluations’
ongoing outcomes.

e Measures: Taking measurements is a basic activity in software devel-
opment processes. When combining the agile and UCD approaches, a
set of evaluation tools is built and refined during the development pro-
cess and is used iteratively to complement the process and the product

44

CHAPTER 3. INTEGRATING USER-CENTERED DESIGN INTO
AGILE SOFTWARE DEVELOPMENT

measures.

Roles: Different roles are defined to support software development en-
vironments. The agile approach adds roles for better management of
the project [114]. Combining the agile and UCD approaches adds UCD
roles, such as the design evaluator or the usability expert, to support
and carry on UCD activities in the development.

The following are use cases as scenarios from the world of agile teams, in
three categories to represent the effects of UCD activities integration in agile
development iterations. In these use cases, the phrase User Perspective is used
to refer to the perspective that supports UCD management.

Users’ Involvement in Development Process

There is a need to involve end users in the process of development.

Following are examples for use cases that relate to this category:

e One of the tasks during the first planning session is as follows: “Ex-

plore the different kinds of users who should use the product that we
develop; what are their characteristics; what are their needs; what are
their expectations from the product.” A customer is selected from a gen-
eral customers’ group. The customer explains that he/she is unable to
represents all possible end users and even not certain of the exact re-
quirements. However, the selected customer asserts that the proposed
product has a great potential and is likely to attract customers. One
of the teammates asks to be assigned to this task and estimates it as
10 hours of work for this iteration. Presenting her results after two
weeks, she opens her development environment in the database of the
User Perspective and shows the list of 20 users she talked with (names,
titles, contact details, etc), main issues that were learned, and one new
task that has emerged for future iterations: “Prepare and run a ques-
tionnaire that will enable us to extract users’ needs.” The customer sets
high priority for this new task.

The project manager reviews the subjects for the upcoming reflection
session, and sees that one of the subjects is “ways to assess the usability
of our product”. She then sends invitations to seven users from the two
different kinds of user groups to join this meeting. During the reflection
session, one decision is made that two users will participate in each itera-
tion planning session and their responsibility will be to give feedbacks on
what is presented? In addition they will help in defining three measures

3.4. THE ITERATION LEVEL INTEGRATION 45

that will be automated thus enable teammates to receive an immediate
feedback during development.

User Evaluation

There is a need to perform user evaluation and to manage it along the process
of development.

Following are examples for use cases that relate to this category:

e The team leader browses over the details of the user experiment that is
planned for tomorrow. He sees the number of participant users that will
arrive, the names, and responsibilities of the two teammates that will
take care of this experiment. He checks the variables that were set and
the experiment flow.

e One of the teammates sees that the User Perspective flushes meaning
new data has arrived. He clicks on it and sees that the results of the
user experiment that was conducted yesterday are in. He is surprised to
find a new problem with high severity ranking. Examining results from
previous experiments, he observes that this is a new problem and adds a
note about it in the discussion area. During the next iteration planning,
the experiment results are presented and among others, a measure is
presented that shows two problems that have emerged by evaluating
end users, one in normal severity and one in high severity.

Design Improvement

There is a need to improve the design of the user interface or performance of
a module based on the evaluation results.

Following are examples for use cases that relate to this category:

e The designer of the user interface views the latest design diagrams and
tries different changes that adhere to the new task in this iteration.
The task was added due to the last problem that was found during the
evaluation by end users. Thinking of different options, she talks with two
users from evaluating end users group and receives their feedback. She
shows them the possible drawings of the new interface and asks them to
simulate using it, while thinking aloud. She summarizes the results and
sets her decision.

e One of the teammates browses over the system reports and sees for each
user experiment, which was conducted in the last two releases. He/she

CHAPTER 3. INTEGRATING USER-CENTERED DESIGN INTO
46 AGILE SOFTWARE DEVELOPMENT

looks the results and their implications on design, and the development
tasks created against each implication.

3.5 The Development-Environment Level Integra-
tion (UCD Management)

Our framework contributes the automation and management of UCD activi-
ties for user and usability evaluation in development environments to enable
the creation of experiments; including the use of evaluation aspects, analysis
of results, and code traceability. The motivation behind integrating and au-
tomating the evaluation process into the software development environment,
i.e., into the Integrated Development Environment (IDE), is clear. Defining
evaluation experiments and running them from within the IDE equips the
software development team (especially in the case of agile development) with
the mechanisms to monitor and control a continuous evaluation process tightly
coupled with the development process, thus receiving on-going users and UCD
experts feedbacks while continuing development. We argue that automating
and managing these activities at the IDE level will improve the efficiency of the
agile software development team so they are better equip to deal with sched-
ule and budget constraints, and produce software projects with an adequate
level of usability. This also helps in reducing the gap between the usability
evaluation side and the development side.

Experiment Entity

Our approach towards automating the evaluation methods means that we can
add a new kind of an object in the development area of a software project.
These objects, following known as ezperiments because of the controlled envi-
ronment in which they are performed, can be created and executed to provide
evaluation data. Furthermore, an experiment’s results can be associated with
future development tasks as they emerge. We further divide these experiments
into three categories: expert-based experiments, user-based experiments, and
system-based experiments.

e FExpert-based experiments: These experiments are based on the eval-
uation methods performed by either UCD experts or system experts.
Normally in this case, these experts evaluate the usability of the system
with respect to certain standards or guidelines. Most of these methods
come under the Inspection type defined by [63] (p. 475). These kinds
of experiments are good to highlight a large portion of usability draw-
backs against defined standards and guidelines. Heuristic Evaluation

3.5. THE DEVELOPMENT-ENVIRONMENT LEVEL INTEGRATION
(UCD MANAGEMENT) A7

[83], Cognitive Walkthrough [74], Feature Inspection [84] are examples
of methods whose experiments fall in this category.

e User-based experiments: These experiments are performed by end
users of the developed/developing system. In these experiments, the
evaluating users are selected from a pool of end users on different basis
such as age, gender, expertise, etc. The evaluating users perform differ-
ent tasks on target system or evaluate the system based on any given
criteria. The resulting feedbacks; such as performance time, difficulties,
completed tasks, etc; are then analyzed and provide a mean to highlight
usability issues. In some cases, end users are asked deliberately to give
feedbacks after analyzing the evaluating system. Question-Asking Pro-
tocol [67] and Performance Measurement [83] (p.191-194) are examples
of methods whose experiments fall in this category.

o System-based experiments: These experiments use automated eval-
uation tools to record users’ and system behavior while end users work
on the system, and produce analysis of the recorded data. In these ex-
periments, normally end users are not asked deliberately to perform any
specific tasks. In many cases, users are even unaware of the type of
data collected by these automated tools. These automated evaluation
tools keep track of users’ and system activities and behavior while users
interact with the system. Few tools also analyze the recorded data and
produce analysis of these results, while others present the raw results in
a presentation form. Log File Analysis and Task-Environment Analysis
are examples of methods where the supported evaluation tools analyze
the recorded behavior of users’ log.

Figure 3.2 shows the overall structural division of UCD methods as described
above and in Section 3.3.1. The above described three categories come under
the evaluation methods type. The figure also shows the names of few standard
methods in each category, and our recommendations for using these during
specific development phases.

Derived Development Tasks

Each kind of evaluation experiment has its own criteria for judging the usabil-
ity level of the product. Support for the analysis of the experiments’ results
enables the comparison of these results against the targeted usability criteria.
If the results show a failure to achieve the target usability level, then new
development tasks can be defined accordingly. For example, if the system re-
sponse was slower than the expected time then a new suggested development
task might be to make improvement in it. Each development task is associated
with the relevant data, thus providing its rationale.

CHAPTER 3. INTEGRATING USER-CENTERED DESIGN INTO
48 AGILE SOFTWARE DEVELOPMENT

UCD Methods

| Examples: Focus Group, Card \I
| Sort, Interview, Questionnaire | 1 1
I
I

! In Agile: Reguirement Analysis,

Y R I
\ ™
Elicitation Evaluation
Methods Methods
Expert-based User-based System-based
Experiments Experiments Experiments

Examples: Heuristic Evaluation, ™ ! Examples: Question-Asking

Examples: Log File Analysis,

I

1 1! I
i itive Walkth h, Feat Prot I, P 1

| bognitive Walkirough, Feature -y - Frotocol, erformance) ! Task-Environment Analysis |

| Inspection, Standards Inspection | | Measurement, Remote Testing 1 In Agile: Testin

I _In Agile: Design, Testing _ _ _ _1 |_In Agile: Design, Testing _ _ _ _1 '_ " 2&0si=mg]

Figure 3.2: Structural division of UCD methods

Code Traceability

Generally, in all iterative and incremental development approaches and specif-
ically in agile development approach, the software product evolves through
iterative steps in which the design of the software project improves gradually.
Automating the process of backward and forward traceability among different
evolving parts, at the development-environment level provides a better trace-
ability of the refinement carried out in the design to improve the product.
Such parts could include code parts, experiments, and derived development
tasks. One of the benefits of this mechanism is that it helps to learn about
the impacts of the evaluation.

Developing Evaluation Aspects

Automating UCD activities in the development environment can enable devel-
opers to add automatic evaluation hooks to the software under development.
For example, an aspect could be created to control the use of a specific button
or key that is part of the developing software. These system-based methods
that include such measures provide insights about the users’ behavior.

3.6. UEMAN: A TOOL FOR UCD MANAGEMENT IN INTEGRATED
DEVELOPMENT ENVIRONMENT 49

A practical example of this is the usage of Aspect-Oriented Programming
(AOP) [68] to facilitate such automatic evaluation. In brief, AOP introduces
language constructs called aspects that separate cross-cutting concerns from
an object-oriented system and provide a mechanism to weave these aspects
into the underlying system.

3.6 UEMan: A Tool for UCD Management in Inte-
grated Development Environment

Our approach towards automating UCD activities helped us to shape a set of
requirements for the creation of a tool as well as guidelines and techniques to
accompany it. We found that no existing tools support UCD management as
part of the integrated development environment (IDE). We argue that UCD
management at the IDE level will improve the efficiency of the software devel-
opment team so they can better deal with scheduling and budget constraints.

We developed UEMan (User Evaluation Manager), a tool for managing
and automating UCD activities, especially related to the usability evaluation,
alongside the process of software development. The UEMan is an Eclipse [32]
plug-in, developed in the Eclipse IDE using its Plug-in Development Environ-
ment (PDE) [119] facility to extend and be integrated into the Eclipse IDE.
After becoming a part of the Eclipse IDE, the project team can view and
use its facilities from within the Eclipse IDE. The main capabilities include,
creating the experiment object as part of the software project; deriving de-
velopment tasks from the analysis of evaluation data; and tracing these tasks
to and from the code. Further, it provides a library to enable development of
Java aspects for the creation of automatic measures to increase the breadth
of the evaluation data.

The UEMan Evaluation Life-Cycle

In a nutshell, UEMan evaluation life-cycle consists of four phases that occur
iteratively.

e Phase 1 — Evaluation Definition: The evaluation is defined through
the following: different types of experiments (such as questionnaires,
heuristic evaluations, etc); experiment tasks (which end users/UCD ex-
perts need to perform during experiments); role holders who are involved
in experiments (e.g., end users, Ul experts, evaluators); and other man-
agement considerations (such as experiment details, time to execute,
ete).

e Phase 2 — FEvaluation FExecution: The evaluation is executed by
running the experiments either locally at the evaluation site or remotely

CHAPTER 3. INTEGRATING USER-CENTERED DESIGN INTO
50 AGILE SOFTWARE DEVELOPMENT

Software
Development

Evaluation Team

Phase 1:

Output: Evaluation ,Qutputs:
=New develppment Definition) =Evaluation experiment definition
tasks ’ =Experiment tasks

=Participants & role holders
Qutput: =Experiment management details
=Evaluation

experiments

Phase 2:
Evaluation
Execution

Phase 4:
Feedback to
Development

4 Outgu_t_s:
iy =Usability flaws and errors

=User/system behaviour

Users / UCD Experts

\

C\lutguts:
=Recorded data

=Results in presentational form
=Users/UCD experts feedbacks

Phase 3:
Evaluation
Analysis

Development
Team

Evaluation Team
Figure 3.3: UEMan evaluation life cycle

at the participant’s site; thus, tasks in the experiments can be performed
by participants and the results can be stored in the system.

e Phase 3 — FEvaluation Analysis: The results are analyzed by software
development team and/or evaluation team as per evaluation experiment
and any cross experiments to identify users’ and system behavior as well
as usability issues.

e Phase 4 — Feedback to Development: New development tasks for
upcoming iterations are derived according to the evaluation analysis for
improving the product, whereas connectivity is kept between the evalu-
ation results and the relevant code parts during development.

Figure 3.3 shows the evaluation life-cycle as described above, managed in UE-
Man. It also shows that the evaluation team works in the first, third and fourth
phase, users or UCD experts work in the second phase, while the development
team work with the evaluation team in the fourth phase to finalize the new de-
velopment tasks for further improvements. Sometimes, the development and

3.6. UEMAN: A TOOL FOR UCD MANAGEMENT IN INTEGRATED
DEVELOPMENT ENVIRONMENT 51

evaluation teams decide to perform further experiments based on the current
results as shown by the outputs going from phase four to phase one.

The UEMan Evaluation Experiments Support

The UEMan supports different experiments in three categories as described in
Section 3.5. The detail of supported experiments is presented below:

e Heuristics-evaluation experiment: In this experiment, UCD ex-
perts analyze the developing software to judge its usability level accord-
ing to the guidelines of Nielsen heuristic evaluation [83].

o Task-type experiment: In this experiment, users perform tasks from
a given list while using the developing/ developed software, without
any direct help from the evaluation team. During this experiment,
the UEMan measures different performance times and then the evalu-
ation/development team analyzes the results to judge the system’s us-
ability level. The evaluating user can also give feedback during or at the
end of experiment.

e Questionnaire-type experiment: The purpose of this experiment is
to evaluate the system according to the end users’ level of agreement,
after they use the developing/developed software, with the presented
statements.

e Logging-aspect experiment: The purpose of this experiment is to
record users’ behavior against the selected criteria (e.g., mouse clicks,
key presses, timings, etc) while they use the targeted software. The
UEMan then shows the recorded data for analysis purpose in different
forms.

3.6.1 The UEMan Process for Managing and Executing Ex-
periments

Following we describe UEMan capabilities in detail that can be used by the
software team to manage and automate UCD activities for a particular soft-
ware project.

UCD Role Holders:

UEMan provides the facility for creating and managing the team responsible
for usability evaluation and assign them related UCD roles. It manages the
evaluation team members into three categories: the users who participate in
the user-based and system-based evaluation experiments, the external UCD

CHAPTER 3. INTEGRATING USER-CENTERED DESIGN INTO
AGILE SOFTWARE DEVELOPMENT

52

|_:f_- Problems | @ Javadoc Eq) Dieclaration | “2 Skaff &3

7 lsers, 3 Team mates, 10 Total

;oo xR
o}

& 00880920
¥ 2ze05330

& 161215095
¥ 634364223
& 1 16864207
¥ 293a7a04E
& 950017931
£ 735019766
& 7o5052705
¥ za2108571

Role
Liser
Liser
Liser
User
Liser
UI Expeert
LI Expert
Adriin
Designer
Evalutor

First narne Last narne
Alberto Valero
Ugo Colesanti
Matteo Di Gioia
Gabrisle Randelli
Fabio Patrizi
Massimiliano de Leoni
Siric Scipioni
Shah Rukh Humayaun
Silvia Bonomi
Tlaria Bordino

{a) — List of users, UCD experts, and project
team members

Participating users:

d
200550920
22295330
161218095
634364223
116664207

First narme
Alberto
Lgao
Mattea
Gabriele
Fahio

Teammates in charge:

|
725932705

Firsk Marne
Silvia

Last name

Walerao

Colesanti Ramove

Di Gioia

Randelli
Patrizi

Last name
Bionarmi

Info

(¢) — Configuring users and team-mates for a

user-based experiment

Tasks:

Ll Rl

ﬂExpgri_m;rnt.E i3 B Mawigator | — B[®

= Tz=F Music Library
=3 304 - Music Album
ca5 Burning Albur CD
“opes Creating Album Cover Page
©Es Creating Music Library
iy Editing Music Album Details
307 - Music Alburn Questionnaire

(B

& Run Locally

#3

S Run Remotely

o Show Resulks

K Delete
& Share F
(b} —The Experiment Explorer
9 Ren
Editing Music Albun Details
Creating Albur Cover Page E
Burning Album CD |
Cl

(d}—Configuring experiment tasks for a task-
based experiment

Figure 3.4: UEMan experiment management

3.6. UEMAN: A TOOL FOR UCD MANAGEMENT IN INTEGRATED
DEVELOPMENT ENVIRONMENT 53

experts (e.g., Ul Expert, System Analyst, etc) who participate in the expert-
based evaluation experiment, and the project usability team members (e.g.,
Designer, Evaluator). Figure 3.4.(a) shows a project view displaying a number
of users, usability experts, and team members.

Management of Evaluation Experiments:

UEMan provides an Fxperiment Explorer that helps to create, manipulate,
and automate evaluation experiments for a specific project (shown in Figure
3.4.(b)). It also facilitates sharing the data from these evaluation experiments
among different projects.

Using the Experiment Explorer, the software team can run the evaluation
experiment either locally, i.e., on the server on which the data is stored; or
remotely, such that the enlisted users receive an email with the evaluation
experiment files attached and instructions for running the evaluation experi-
ment so that the final results cab be directed back to the server for storage.
Configuring an evaluation experiment is performed using the experiment’s
Configuration Wizard. Figure 3.4.(c) (part of the wizard) shows the option
for adding participating users and teammates responsible for the evaluation
experiment. Figure 3.4.(d) (part of the wizard) shows the list of tasks the
participating users have to perform while executing that task-type evaluation
experiment.While a user performs the evaluation experiment, UEMan mea-
sures different performance times to evaluate the usability level of the related
parts of the software product. Figure 3.5.(a) shows the results view of a task-
type evaluation experiment. You can see the average time (in seconds) and
the level of the users’ participation in performing each task.

Ezecution of Evaluation Ezxperiments by Participating Users:

The user-based category of evaluation experiments are executed by participat-
ing users, who use the developing system to judge its usability level. Figure
3.5.(b) shows a user selecting his/her name for executing the evaluation exper-
iment. An individual user at a remote site has only one user to choose from.
The user starts experimenting. Figure 3.5.(c) shows which task is currently
executing in a task-type experiment and different options for controlling the
execution. For example, if the user wants to give feedback during or after the
experiment then he/she can do it through giving notes, or if the user is unable
to complete the current task in the experiment then he/she an skip it and
move on to the next task.

Derivation of New Work Items and Code Traceability:

New work items (development tasks or evaluation experiments) can be de-
rived using the facility provided by the Ezperiment Explorer if the usability

CHAPTER 3. INTEGRATING USER-CENTERED DESIGN INTO
54 AGILE SOFTWARE DEVELOPMENT

Results
& Please select user
Zxperiment skakus: Completed Expermert started: _3/07/2C08 00 27:00
- elect user
3 uszrs have answered cut of 5 Expermert ended 3/07/2008 00 49:00 g
Please select the user who will perform the experiment:
eeRandeli |4

Murn... | Task Awzrace tining Parti:ipa:ion —

1 rezking Music Liorary 44.1 100% @ QK @ Cancel

2 Editing Music Album Detals 53,1 100%

3 Crecting Album Cowver Page 75.5 100%

4 Burring album CD 6l.7 £0%

(@). The experiments results view i), User selection for performing evaluation

experirment

)] New UTA2

44 output the guestion.

Samentare valume

r

 Creating Music Library &b Jul 13, 2008 12:56:01 Al
Press 'F2' For Focu

{d). Associated code is marked
(). User evaluation experiment view for
contralling task-type experiment execution

Figure 3.5: UEMan experiment execution

3.6. UEMAN: A TOOL FOR UCD MANAGEMENT IN INTEGRATED
DEVELOPMENT ENVIRONMENT 95

evaluation team is unsatisfied with the results of the evaluation experiments,
such as results showing that the parts of the developing product are below
the targeted usability level. UEMan also enables associating code files or code
parts to related work items, and vice versa, for the purposes of traceability.
These associations are important because on the basis of progress in the next
iteration, UEMan can associate the newly created code parts to the previously
derived work items, thus enabling continuous traceability. Figure 3.5.(d) shows
a code part highlighting its association with a specific experiment.

3.6.2 Automatic Measures using Development Aspects

UEMan provides an AspectJ library, called AutoMeasurement, for adding As-
pectJ! aspects to the software under development to support automatic mea-
sures that fit the developing product. These measures, as part of a logging-
aspect experiment, enable the developers to add automatic evaluation hooks
in the software under development to record different kinds of user behavior,
while using the evaluated software product. It uses Aspect-Oriented Pro-
gramming (AOP) [68] to facilitate such automatic evaluation. In a brief, AOP
introduces language constructs called aspects that separate cross-cutting con-
cerns from an object-oriented system and provide a mechanism to weave these
aspects into the underlying system. An aspect contains an action called ad-
vice and a definition of different events during the execution of the program
called join-points, where the action should be executed. AspectJ, which is an
extension to Java defines join-points such as method executions, method calls,
and assignments to variables. An AspectJ aspect defines relevant join-points
using pointcut descriptors. For example, we can define an aspect that logs
each method call during the execution of the program; its pointcut is the set
of all method calls in the program, and its advice simply prints a log entry
to a file. An Aspect] aspect also defines whether the advice should execute
before the advised join point executes or after it. Furthermore, an advice can
be of type around, meaning that it can be executed instead of the advised join-
point where the advice can then include a proceed statement that executes the
join-point.

Using the AutoMeasurement library in UEMan, the software developers
can create and implement AspectJ aspects that are customized for the specific
software. An aspect can be created to measure time of user activities or to
control the use of a specific button or key that is part of the developing soft-
ware. Running an experiment that includes such a measure provides insights
about the users’ behavior. The aspects in the library are abstract, so to uti-
lize these, corresponding concrete sub-aspects must be implemented. While
an abstract aspect generally defines the kind of measurement to handle, the

! AspectJ project, see http://www.eclipse.org/aspect]/

CHAPTER 3. INTEGRATING USER-CENTERED DESIGN INTO
56 AGILE SOFTWARE DEVELOPMENT

concrete implementing aspect connects the abstract measurement to a base
system by specifying the exact locations within the system’s code to which
the measurement is targeted. An example from the UEMan library for an ab-
stract Timer aspect that measures the duration of a defined time interval is
presented is presented in Listing 1.

Listing 1. An abstract Timer aspect that measures the duration
of a defined time interval.

1 public abstract aspect Timer {

2 private long time = O;

3 public abstract pointcut startPoint();

4 public abstract pointcut endPoint(Object obj);

5

6 after() : startPoint() {

7 time = Calendar.getInstance().getTimeInMillis();
8 }

9 after(Object obj) : endPoint(obj) {

10 time = Calendar.getInstance().getTimeInMillis() - time;
11 log(obj.getClass() + ": " + time/1000);

12 time = O;

13}

14

The Timer aspect measures the duration of a time interval defined by a start
point and an end point. It can be used, for instance, to measure the time
a user takes to complete a certain task or to locate a certain feature. As
seen in the listing, the aspect defines two abstract pointcuts startPoint() and
endPoint(). As explained, a pointcut construct defines a set of system events
(join-points). An abstract pointcut does not declare any join-points, and it is
the responsibility of the concrete pointcut within the implementing aspect to
specify these (e.g., a method call corresponding to completion of a user’s task
for the endPoint() pointcut). The advice actions in lines 6 and 9 declare the
action taken by the aspect when the pointcuts are matched. The code within
the first advice sets the current time after the start point is notified. Upon
activation of the end point, the second advice is activated and sets the time
difference and logs it, including the type of a system’s object that identifies
the operation.

Figure 3.6.(a) shows the creation wizard, including the type of the ab-
stract aspect to be implemented. Figure 3.6.(b) shows the code of the created
concrete aspect and the pointcuts to be implemented. Using the AutoMea-
surement Library, the development team can analyze automatically recorded
evaluation data to assist with the future design of the product. The recorded

3.6. UEMAN: A TOOL FOR UCD MANAGEMENT IN INTEGRATED
DEVELOPMENT ENVIRONMENT 57

data can be viewed as text or using visual graphs. For example, Figure 3.6.(c)
shows the UEMan graphical view of the time the user has spent in different
windows when evaluating the Lobo? Java web browser. This kind of logging-
aspect experiment provides a deeper insight of user involvement and shows
how UCD activities can be incorporated into software development.

3.6.3 UEMan Evaluation Studies

Evaluating UEMan is a challenge since UEMan itself is used to evaluate an
application under development. This implies that the goals of this evaluation
study are to assess UEMan usability and to check if and how it contributes to
the evaluation of the developed application. In the following we present two
evaluation studies. At first, during preliminary evaluation study, the team
who developed UEMan was asked to evaluate its own product using itself
(“eating its own cookies”). While in the second evaluation study, six software
development teams (each developed their version of the same application)
in academia conducted the evaluation (by other development teams) of the
developed application using UEMan.

Preliminary Evaluation Study

The evaluations goals were:

— Examining suspicious issues like adding new users to the system and ana-
lyzing the experiments’ results (specifically for the questionnaire-based exper-
iments).

— Receiving feedback on the graphical user interface (GUI) and how intuitive
it is.

— Examining the plug-in on a large scale project.

The team defined two experiments: a task-based experiment and a ques-
tionnaire based one. The participants were three students from another team
in the same course, and in addition all the six developers performed both
kinds of experiments. Each participant performed the experiment by him-
self/herself while one observer was sitting aside for writing notes. We focus on
the questionnaire-based experiment and comments of the observers and show
an example of a derived task that emerged for further development. Figures
3.7.(a) and 3.7.(b) show the results of the three participants from another
group and the results of the developers themselves respectively. Following are
few comments, for example, that were noted by the observers:

1). “In the questionnaire-view that is presented to the participant, long tasks
appear truncated.”

2Lobo web brwoser at http://www.lobobrowser.org/

CHAPTER 3. INTEGRATING USER-CENTERED DESIGN INTO

58

AGILE SOFTWARE DEVELOPMENT

Create a new Automatic Measurement

Clicking Finish will create a new aspect.

Thereafter you will proceed to implement the pointcuts

——

Action name; TEMPERATURA

Aspect type:

@ Mouse clicks (7) Key presses

0 Tirner

This aspect is intended to count the number of mouse clicks

during the specified action.

The following pointcuts need to be implemented:

- startPoint
- endPoint

{a). Creating an aspect

3 Lobo\fwr Liar Prativgl 5

Times on windows profile

Finish || Cancel |

Teanmine- st
[

e
RCLTEH

P
Swie

St | ety | Teres: o) e prohie | gal hohavios e |

Time spent on various windows

3atAsda s ol
pubklic aspect FeyPressesfeasurefreferencesHor

BoverE Tee
saw
* greturn The asscion nmme, a8 will be pee
s
public Socing getictiontems () |
eeiurn "Freferences hou keys®y
¥

sas
" Uhen: BEFORE the point whats Eha counte
* MWnan] The seunter will b sterced
Pulrlico polntoeut starcPeint () /7 TO00 Aur
saw

* Wneni AFTER tho point whare che oouncos

* UnALi The SounEsr Will e SToOppel (I

puklic peintout endPsine(j: /5 TOD0 Aueo

(b). Implementing the pointcuts

(). UEMan view showing the timer results using the Lobo browser

Figure 3.6: UEMan automatic measures using Development Aspects

3.6. UEMAN: A TOOL FOR UCD MANAGEMENT IN INTEGRATED
DEVELOPMENT ENVIRONMENT 29

2). “The participant did not know how to save the changes in the result page.
He searches for a save button like appears in other screens.”

3). “The names of the operations in the menu of the experiment view are not
clear.”

Analyzing the results of both experiments, associations to the specific re-
sults were presented for each conclusion, and then suggested development tasks
were associated to the conclusions. One of the finding, for example, was de-
tailed as follows: “It was found that there is a difficulty in identifying problems
in the product out of the information that is presented in the ‘results page’.
Participants find it hard to associate the results (as presented in the ‘results
page’) to the experiment goals and to the practical problems that were dis-
covered.”

Association to the results:

— In the questionnaire-based experiment, the two teams marked ‘Disagree’ for
statement 6 [The questionnaire result page displays the usability problems
discovered in a clear way].

— In the task-assignments experiment, it took long time, 84 and 177 seconds on
average for the two groups, to complete task 5 [According to the experiment
goals, try to assess the number of usability problems indicated by the results,
and write that number as a conclusion to this experiment)].

The development task that was defined using the plug-in is as follows:
“Enable determining thresholds for success and failure in an experiment and
present them clearly in the ‘results page.”

Detailed Evaluation Study

In the second case study, six development teams developed an application,
named FTSp? (Follow the Sun plug-in), to support synchronization between
distributed teams that have no synchronous communication between them
due to large time zone differences. Six development teams (each developed
their version of the same application) conducted the evaluation (by other de-
velopment teams) of the developed application using UEMan by defining and
executing the heuristics evaluation experiment and logging-aspect experiment.

The evaluation study was conducted as a team exercise. The members of
each team 4, in addition to running their evaluation exercise, served as inspec-
tors for team i-1 in the heuristics evaluation experiment and as users for team
1-2 in the logging-aspect experiment. This way, each team worked with twelve
participants, six for each experiment. Teams were asked to summarize the

3The project was developed by thirty-seven students working into six groups as part of
the course ‘Annual Project in Software Engineering’ during the session 2008/09 in Computer
Science Department at Technion, IIT.

CHAPTER 3. INTEGRATING USER-CENTERED DESIGN INTO
60 AGILE SOFTWARE DEVELOPMENT

Strongly Disagree Disagree Agree Strongly Agree

1. Logging in to the system is simple.] i}] &
z, Adding a user or a teammate ko the syskem is simple, 1 3 1 1
3 Switching bebween teammates is Fast and simple. 3 z] 1
4, The configuration page is inkuitive,] i} z 4
5, The Questionnaire result page displays the level of agreement {p...] i} 1 5
G, The Questionnaire result page displays the usability problems disc, .. 3 z] 1
7. The different editors and wiews of the plug-in are uniform and Foll. ..] 1 4 1
8. The different editars and views of the plug-in blend seamlessky in...] 1] 3 3
9, I would use this plug-in to test the usabilicy of an application in de...] 1 2 3
(a). Results of questionnaire-based experiments — participants from anocther team
Strongly Disagree Disagree Agree Strongly Agree
1. Logging in ka the syskem is simple, a 0 a i)
2, Adding a user ar a keammate to the system is simple, 1 3 1 1
3. Switching between keammates is Fast and simple, 3 2 a 1
4, The configuration page is inkuitive, a 0 z 4
5. The Questionnaire result page displavs the level of agreement (p... a 0 1 5
B, The Questionnaire result page displavs the usability problems disc. .. 3 2 a 1
7. The different editors and views of the plug-in are uniform and Foll... a 1 4 1
a. The different editors and views of the plug-in Blend seamlessly in... a 0 3 3
a, T would use this plug-in ko test the usability of an application in de... a 1 z 3

{b). Results of questionnaire-based experiments — team members are the participants

Figure 3.7: UEMan preliminary evaluation study results

results including their own evaluation and severity ranking, group brainstorm,
and final results. Based on the final results, teams were asked to suggest
three specific development tasks for forthcoming iterations. A total of twelve
experiments were conducted to evaluate F'T'Sp.

We focus on the heuristics evaluation experiments. The FTSp teams de-
fined the heuristics evaluation experiments and participants executed the ex-
periments, using the product freely and providing evaluation comments, ac-
cording to these heuristics: visibility of system status, matching between the
system and the real world, user control and freedom, consistency and stan-
dards, error prevention, recognition rather than recall, flexibility and efficiency
of use, aesthetic and minimalist design, helping users recognize, diagnose, and
recover from errors, and Help and documentation. A total of 206 comments
were reported for the six products (lowest 25, highest 51).

After a brainstorming session to discuss the final comments, participants
ranked the severity of the comments. Figure 3.8 shows the results of average
ranking of participants for each problem per heuristic; for example, two prob-
lems were found concerning heuristic no. 10 each is represented with a dot.
Each of these problems was ranked according to severity by all participants
and the average (in this case between 1.5 and 2) sets the dot in the vertical 'y’
coordinate. The team summarized that the highest severity ranking was given

3.7. RELATED WORK 61

Average of severity

4

XY

ey

* ?f & h *
. A o i R T8 o
2 # B e ! M = A z
i =3 i £ m
i ad H 4. -t

1 2 3 4 5 [} 7 8 k] 18
Heuristic #

Figure 3.8: Average ranking of participants for each problem per heuristic

to problems related to heuristics 1, 5, and 9 (as shown in Figure 3.8), which
are, respectively, visibility of system status, error prevention, and helping users
recognize, diagnose, and recover from errors. Accordingly, they derived three
development tasks from the problems: the first relates to working with the ba-
ton object, the second is adding indications to the sites’ communication status,
and the third relates to error prevention in case of communication problems.

Conclusions of the case study:

Different teams provided feedback on the contribution of the evaluation process
using UEMan. Among other comments, teams mentioned the good collabo-
ration between the team and the participants, the benefit of recognizing the
new issues raised that had not been seen before, and the ability of UEMan to
automate the results summary, enabling them to identify significant problems
and define development tasks accordingly. As part of the evaluation study, we
found that software team members engage in UCD management activities in
a natural and intuitive manner. They can easily analyze experiments’ results
for their project and derive significant development tasks accordingly.

3.7 Related Work

Integrating UCD philosophy into software development processes, and specif-
ically into the agile development approach, is not a new idea. Some earlier
studies focus on applying several UCD techniques to agile development, while
others focus on the benefits a particular technique can bring to agile devel-
opment. However, the literature lacks a consolidated approach to cover the
integration from all aspects.

CHAPTER 3. INTEGRATING USER-CENTERED DESIGN INTO
62 AGILE SOFTWARE DEVELOPMENT

Gulliksen et al. [45] proposed a definition of user-centered system design
(UCSD) that is ” User-centered system design (UCSD) is a process focusing
on usability throughout the entire development process and further throughout
the system life-cycle” [45] (p. 401). They identified 12 key principles for
the adoption of user-centered development process from the existing theory
and research. Gransson et al. in [40] and Gulliksen & Gransson in [44],
defined a usability design process that integrates their UCSD approach in [45]
with software development processes. Their defined process is iterative-in-
nature and works with well-planned iterative and incremental development
approaches, such as one provided for Rational Unified Process (RUP). Their
process is divided into three phases: requirements analysis, growing software
with iterative design, and deployment. Their proposed approach is not very
well suited for agile development, in which emphasis is given to the working
artifacts and small iterations.

Chamberlain et al. [12] described a framework for integrating UCD prac-
tices into agile development and provided a field study. They identified a set
of five principles as being significant in integrating the two approaches—user
involvement through a number of roles within team, collaboration and culture
through daily basis communication and customer as an active member of the
team, prototyping for giving rapid feedback to developers, project lifecycle for
giving enough time to incorporate UCD practices, and project management
for working both approaches together.

Constantine and Lockwood [16] described methods for usage-centered de-
sign and provided models to integrate usage-centered design practices [15] into
software engineering practice while focusing on agile development approach.
Pattern [94] proposed using of interaction design based on Constantine and
Lockwood’s usage centered design approach for Extreme Programming method
of agile development.

Sy [113] provided an approach for incorporating usability in agile develop-
ment. They added a cycle zero in the development for performing usability
investigation activities. The approach is based on the concept that for each
development cycle i there is need to perform usability testing of prototypes at
least a cycle i-1 and then the evaluated design is passed to developers in the
iteration ¢ for the implementation. The approach also suggests conducting the
contextual inquiry for workflows at least two cycles ahead, and recommends
the usability testing of the implemented working version.

Blomkvist [9] investigated the possible support of usability-enhancing ac-
tivities in agile development, provided a general integrated model, and recom-
mended a balanced integration for achieving benefits from both.

Hussain et al. in [61] proposed an approach of integrating UCD and Ex-
treme Programming [7] development method based on evaluating the usability
of user interfaces of developing application in small iterative steps. The ap-

3.7. RELATED WORK 63

proach is based on the concept of designing prototypes of user interfaces and
evaluating them throughout the development process, thus evolving the design
gradually.

Fox et al. provided a study [38] that researched participants experienced
in combining these two approaches and concluded that there can be a common
model from the existing models.

Ungar and White [121] provided a case study for merging the UCD and the
agile development while using one-day design studio approach. The targeted
agile development in their case study was Scrum [108] method.

There are also approaches with regard to integrating usability evaluation
into different phases of the software development processes. Several of them
suggest the integration of usability evaluation techniques in well-known pro-
cesses while the others give their own version of the processes that accommo-
date usability evaluation according to their approach.

Juristo et al. [65] and Rafla et al. [99] deal with the implications of
applying usability techniques during the requirements phase, and note the
resulting problems and impact on the development.

Anderson et al. [4] as well as Ferr [35] suggest approaches for integrating
usability techniques into the iterative nature of software development pro-
cesses, while Ferr et al. [36] give a general usability process that can be
applied by software teams after making slight variations to accommodate a
design-evaluate-redesign cycle.

Many problems and challenges arise when software teams work with in-
tegrated usability evaluation development processes, and many suggestions
have been presented to cope with these challenges and problems. For exam-
ple, Lohmann et al. [75] highlight the key issues and design concerns that need
to be considered while integrating users and their feedbacks during software
development. Hellman et al. [50] suggest the changes that are needed for
related development processes to support User experience (UX), specifically
for the mobile industry. Based on the research of three case studies, Uldall-
Espersen et al. [120] suggest that during software development, the usability
of the product should be considered at the user interface level and in relation
to organizational usability problems.

Few studies have investigated the impact of usability testing and evalua-
tion on development. Alshamri et al. [3] explore the effects of task design on
usability evaluation, since it can fundamentally influence the usability evalua-
tion results, while Law [70] defines an approach to determine the effectiveness
of user tests.

CHAPTER 3. INTEGRATING USER-CENTERED DESIGN INTO
64 AGILE SOFTWARE DEVELOPMENT

3.8 Summary and Further Directions

In this chapter, we have presented our three-fold framework for utilizing the
benefits of user-centered design philosophy while developing software projects
with agile approach. The proposed framework integrates the UCD philosophy
at three levels, i.e., the process life-cycle level, the iteration level, and the
development-environment level. We described in detail each of the integra-
tion level and explained the steps that are needed to achieve equal benefits
from both approaches for enabling the development of high-quality and usable
software products.

We suggested a set of attributes for selecting appropriate UCD methods
during different phases of development. We suggested a life-cycle for perform-
ing UCD activities alongside agile development activities. We also provided
suggestions for aligning UCD concepts, roles, and activities with the develop-
ment iteration activities for maximum benefits. At the lower level, we provided
the concept of UCD management for managing and automating UCD activi-
ties at the IDE level. This mechanism enables the software development team
to monitor and control a continuous evaluation process, thus receiving ongoing
user feedback while continuing development. The concept of UCD manage-
ment at the IDE level is one of the main differences between our approach and
the existing ones.

The framework recommendations and suggestions helped us to shape a
set of requirements for creation of a tool UEMan, which enables the software
development team to manage and automate the UCD activities at the IDE
level alongside the development activities. We also provided two evaluation
case studies of UEMan where in the first case study the UEMan was evaluated
by using itself, while in the second case study six software teams used it to
evaluate the software projects they developed. As part of the evaluation study,
we found that software team members engage in UCD management activities
in a natural and intuitive manner. They can easily analyze experiments’ results
for their project and derive significant tasks accordingly.

One of the main challenges we found in usability evaluation is to provide
automatic analysis of the evaluation results so to effectuate maximum benefits
from the automation process. One way to achieve this is by using task model-
based usability evaluation approach in which formal task models are used to
model user and system tasks. The created task models are then used as a mean
for producing automatic analysis of the recorded users’ and system data. Even
though UEMan provides an effective framework to perform and automate the
evaluation process, it lacks the ability to model user and system tasks and
behavior. Thus, the experiment itself is not formalized in a way that can
enable automatic analysis. To enable the automatic analysis of the evaluation
experiment data, we need to define user and system tasks in a formal way

3.8. SUMMARY AND FURTHER DIRECTIONS 65

through task models and then to use these as a basis to record users and
system data. We also need to provide the criteria for performing automatic
analysis to highlight usability issues. This leads us toward two goals. The
first one is to define a way to write the user and system tasks and behavior
in a formal, unambiguous, and accurate way. The second one is to perform
usability evaluation based on these task models and the automatic analysis of
the recorded data through comparing it with the created task models.

In the forthcoming chapters, we deal with these two goals one by one.
Firstly, we provide a way to write formal task models through a task modeling
language, called TaMoGolog, which works on the foundations of the Golog-
family [18, 19, 20, 73, 107] of high-level programming languages. Secondly, we
provide a framework for performing usability evaluation through TaMoGolog-
based task models. This framework also provides the automatic analysis of the
recorded users’ and system data by comparing the attached TaMoGolog-based
task models. We also provide the realization of this framework through a tool,
called TaMUlator, which works at the IDE level. This approach provides a way
to highlight usability issues in an efficient and effective manner, and helps to
produce software product with an adequate level of usability.

66

CHAPTER 3. INTEGRATING USER-CENTERED DESIGN INTO
AGILE SOFTWARE DEVELOPMENT

Chapter 4

Framework for Task Modeling
Formalization

4.1 Motivation

This chapter is devoted to define a general conceptual framework for construct-
ing task models from multi-view perspectives and to provide the definition of
TaMoGolog (Task Modeling Golog) task modeling language that was cre-
ated on the top of the foundations of Golog-family [18, 19, 20, 73, 107] of
high-level programming languages. This work provides a foundation that is
needed for our approach of automated task-model based usability evaluation
at the development-environment level.

Our three-fold conceptual integration framework, defined in Chapter 3,
emphasizes automating usability evaluation at the development-environment
level to collect and analyze users and system behavior and to recognize us-
ability flaws and errors in efficient and effective ways. Even though our tool
UEMan, also described in Chapter 3, provides an effective framework to per-
form and automate the evaluation process, it lacks the ability to model user
and system tasks. Thus, the experiment itself is not formalized in a way that
can enable automatic analysis. We require to formally model, user and system
tasks and behaviors for enabling automatic analysis on recorded data collected
during evaluation experiments. This is achieved through structuring system
activities, forming their relationship, and defining how users can achieve the
desired goals through performing these set of activities. For this purpose,
an expressive, dynamic, and well-defined (syntactically and semantically) for-
mal task modeling language is required that gives us not only the facility to
model user and system tasks and behaviors appropriately but also provides the
way to construct task models with properties; such as, precondition axioms
for tasks/actions, postcondition effects on system states, and inclusion of any

67

CHAPTER 4. FRAMEWORK FOR TASK MODELING
68 FORMALIZATION

domain knowledge; that we required for automated analysis of the recorded
data.

The existing task modeling languages in Human-Computer Interaction
(HCI) area are at high abstract levels and most of them lack well-defined
formal semantics. Another problem is the unavailability of characteristics,
such as properly defined precondition axioms for actions or postcondition
effects on system states, which we required for our usability evaluation ap-
proach. These reasons motivated us to provide a foundation, while utilizing
the work done in Artificial Intelligence (AI) field, for task modeling in order
to use it later for our task model-based usability evaluation framework. We
first provide a conceptual framework that defines how to model properly task
structures from different views perspectives. The use of task models from
different views perspectives in evaluation experiment helps us to figure out
usability issues at different layers. Then we provide a well-defined (syntac-
tically and semantically) formal language TaMoGolog, on the foundations of
Golog-family, that fills the gap found in existing task modeling frameworks
by enabling precondition axioms and postcondition effects to tasks, option to
define domain knowledge in task models, and by providing a rich set of op-
erators for constructing complex system behavior in the resulting task models.

Following is brief summary of each section:

Section 4.2 introduces some brief preliminary background of situation cal-
culus [102] and Golog-family of high-level languages. It also provides an
overview of the Golog-family interpreter platform P-INDIGOLOG [105], in rela-
tion to our work here. The purpose is to provide an overview to those readers
who are not much familiar with these topics.

Section 4.3 introduces our general framework for constructing task models
at different abstraction levels. The framework suggests it at the conceptual-
level through framework-concepts and at the representation-level through the
definition of a formal task modeling language.

Section 4.4 describes details of framework concepts for providing a con-
ceptual foundation to model and structure system activities from different
abstraction levels. It provides definition and details of a set of concepts; i.e.,
task, task type, view type, task model, and view model; to understand prop-
erly the proposed framework suggestions for constructing task models from
different views perspectives.

Section 4.5 provides the definition of TaMoGolog task modeling language.
TaMoGolog uses constructs and semantics from the Golog-family in addition
to few of its own defined constructs. This section first discusses the set of
constructs and then provides syntax framework using predicate structure of
situation calculus and the semantics. TaMoGolog evaluation semantics is also
based on the Golog-family.

4.2. PRELIMINARY BACKGROUND 69

Section 4.6 discusses the framework for external nondeterministic con-
structs. GameGolog [20], a recent extension in the Golog-family, provides a
way to model external agents’ participation in making decisions for nondeter-
ministic constructs. TaMoGolog uses GameGolog constructs and semantics at
higher-level but differs slightly when defining framework theory using situa-
tion calculus at lower level. This section also provides the Trans and Final
definition of TaMoGolog own defined external nondeterministic constructs.
The support for making nondeterministic decision by external entities is very
important from task modeling perspective, as it provides a way to model
explicitly end users’ participation during tasks execution that helps during
usability evaluation to analyze users and system behavior separately, while
making nondeterministic decisions.

Appendix A and Appendix B provide low-level implementation details of
external nondeterministic constructs, that are discussed in Section 4.6, in
two forms respectively: Golog-family based high-level program syntax, and
Prolog-based syntax targeting IndiGolog [19] interpreter implementation plat-
form P-INDIGOLOG [104, 105]. In Appendix C, we propose a labeling frame-
work to implement external nondeterministic constructs through passing la-
bels, representing program-parts, as parameters to external entities for making
nondeterministic decisions.

4.2 Preliminary Background

This section provides a preliminary background about the Golog-family of
high-level programming languages [18, 19, 20, 73, 107] that works on the the-
oretical foundation of situation calculus [102]. Our proposed task modeling
language TaMoGolog is built on top of the Golog-family and uses situation cal-
culus as a foundational framework, so we go through the situation calculus and
the relevant languages in the Golog-family in the following sub-sections. The
Golog-family of high-level programming languages aims to define and reason
on complex actions and processes by finding executable atomic actions. The
first language created in this family was Golog (alGOl in LOGic)[73], and since
then, several extensions have been proposed where each extension further en-
hanced certain constructs or functionalities. The extensions, we are interested
in, are: ConGolog (Concurrent Golog) [18], IndiGolog (incremental determin-
istic Golog) [19], GameGolog (Game Structure Golog) [20], and an extension
that formalizes the BDI (Belief-Desire-Intention) action theory [107].

4.2.1 Situation Calculus

Situation Calculus (SitCalc) [102] is a first-order logical language with second-
order features for representing and defining reasoning about the dynamic

CHAPTER 4. FRAMEWORK FOR TASK MODELING
70 FORMALIZATION

world. In SitCalc, changes in the world are due to the execution of actions
[18, 102]. As a result of executing these actions, the system moves from one
situation to another situation. A situation is represented by a first-order for-
mula that tells what is true in the current situation through the values of
fluents (functional and relational). The system, in fact, moves from one situ-
ation to another when values of these fluents change due to the execution of
some action «. Situation calculus defines a constant Sy to denote the initial
situation where there is no action has executed so far.

A history tells a sequence of execution of actions so far, and a point in the
history represents the situation at that point. The binary term do(a, s) rep-
resents the next situation after executing the action « in the current situation
s where the action may be parameterized; for example, print(X,N) may say
to the printer for printing file X for N number of times. In SitCalc, actions
are denoted as function symbols while situations as first-order terms. The ab-
breviation do([a1, ag, ..., ay], s) is used for the term do(ay,, do(an—1,,do(a1, s)))
where the current situation is obtained from situation s while performing the
actions in sequence as (ay, az, ., a,) [18, 102].

The properties, called fluents, that hold in a situation are categorized into
two kinds: relational fluents, which are predicates and take a situation term as
their last argument, for example, on(z, s) tells whether in the current situation
the specific bulb z is on or not; and functional fluents, which are function
symbols with additional situation argument, for example, “balance(acc,s) =
amount” tells the balance of a specific account in situation s. The changes in
the values of these fluents are specified through special set of axioms called
effect axioms or successor state axioms, which specify how the action execution
affects the value of these fluents. For each fluent F' there is a successor state
aziom that is of form [102]:

F(Z,do(a,s)) & ®p(Z,do(a, s), s)

Where @ (%, do(a, s), s) is a formula with free variables Z, « is an action, and
s represents a situation. For example, following the successor state axioms for
on(z,s) brings the bulb in an on state if that is not its current state already
and the action pushButton(z) is executed by someone.

on(x,do(a, s)) = —on(x,s) A a = pushButton(x) V on(z,s) A\ a #
pushButton(x)

SitCalc also specifies how to define action in some domain and under what
conditions the action is possible to be executed through set of precondition
axioms. A special predicate Poss(c,s) [102] is provided that states the set
of axioms that are needed to be true to execute the action. These action
precondition axioms have the form:

4.2. PRELIMINARY BACKGROUND 71

Poss(a, s) < T,(s)

Where formula II,(s) defines under what conditions the action « can be ex-
ecuted. For example, the following precondition axiom for an action deposit
says that the amount to be deposited in a bank account must be greater than
Z€ero.

Poss(deposit(ace, amount), s) = amount > 0

To specify a domain application through situation calculus, we need action
theories in the following form [18, 102]:

e Set of axioms describing the initial situation Sy.

e For each primitive action «, the set of precondition axioms characterizing
Poss(a, s).

e For each fluent F, set of successor state axioms describing under what
conditions the fluent F(Z,do(«, s)) holds as function of what holds in
situation s.

e Set of unique name axioms for the primitive actions in the domain theory.

e Set of foundational, domain independent axioms.

4.2.2 Golog-family of High-level Programming Languages

Golog-family provides a set of logic programming languages for specifying
high-level programs to reason and control complex actions and processes exe-
cution. The first language was Golog [73] and there are many variants currently
available that provide some extensions to the existing ones. The extensions
on which we focus are: ConGolog [18] for handling concurrency in Golog, In-
diGolog [19] for providing the look-ahead search operator, GameGolog [20] for
handling nondeterministic choices by external agents, and IndiGolog adoption
for BDI [107] to provide failure handling construct. Following are brief details
of constructs provided by each of them:

Golog

Golog [73] provides a set of constructs to control the complex action execution.
Table 4.1 summarizes those constructs and their meanings. The first construct
is a that stands for a situation calculus action; the ¢ construct stands for a
situation-suppressed formula thus evaluated in the current situation when the
program reaches to it; while the sequence construct d1; do describes that after
finishing certain action(s) successfully in program d; the action(s) in program
0o are next in the queue.

CHAPTER 4. FRAMEWORK FOR TASK MODELING

72 FORMALIZATION
Constructs Meaning
a primitive action
@7 wait for a condition
(61;02) sequence
(61 | 02) nondeterministic choice between actions
mx.0(x) nondeterministic choice of arguments
0* nondeterministic iteration
proc P((x))é end | procedure definition
P((@)) procedure call

Table 4.1: Golog set of constructs [73]

Golog provides few nondeterministic constructs. The first one is the choice
construct (01 | d2), where the system chooses nondeterministically either pro-
gram 01 or program d&s. The second construct is the choice of argument
mx.0(z), where the system nondeterministically chooses a variable z and binds
the program ¢ for that variable z and then performs the program §(z) accord-
ingly. The last nondeterministic construct is the iteration §*, where the system
performs program § zero or more times nondeterministically.

Golog also provides a mechanism for procedure definition and procedure
call through a second-order formula definition. A procedure is defined as:

proc P(?) § end

Where P is the name of the procedure, ¢ are its formal parameters, and ¢ is
the procedure body. P(é) is used for procedure call. Golog uses call-by-value
approach for parameter passing and lexical (or static) scope as the scoping
rule [18, 73].

ConGolog

ConGolog [18] (Concurrent Golog) is an extended version of Golog and provides
the concurrent execution in resulting high-level programs that was missing in
Golog. It models concurrent processes as interleaving of the primitive actions
in the component processes. It includes all constructs of Golog in addition to
the set of constructs listed in Table 4.2.

The (if ¢ then ¢; else d2) and (while ¢ do ¢) are the synchronized
version of the usual if-then-else and while-loop. They are synchronized in the
sense that testing the condition ¢ does not involve a new transition, instead
testing the condition and executing the first action in the selected program
is considered as unit transition. These can be achieved in Golog through
(97?501 | 773 92) and ([¢; d]*; —¢?) but here the condition part and the program
parts are considered as separate transitions.

4.2. PRELIMINARY BACKGROUND 73

Constructs Meaning

if ¢ then 6; else J; | synchronized conditional
while ¢ do § synchronized loop

01 || o2 normal concurrency
01))09 concurrency with priority
sl concurrent iteration
<¢p—4d> interrupt

Table 4.2: ConGolog set of constructs [18]

ConGolog provides three constructs for handling concurrency. The first
construct (01 || d2) is for normal concurrent execution (interpreted as inter-
leaving) of two processes d; and da. A process may be in the blocking condition
if it reaches to a state where the preconditions of one of its primitive actions are
not met or there is a wait action ¢?, which hasn’t yet reached true condition.
In this case, the other program in the concurrency keeps its execution. The
second construct (d1))da) is for priority concurrency, where the first process d;
has a higher priority than the second process o and the second process can
only start execution either the first finishes its execution or if it is in the block-
ing state. The concurrent iteration construct (dl) is like the nondeterministic
iteration where instances of process ¢ are executed concurrently.

The interrupt construct < ¢ — § > has a trigger condition ¢ and a body d.
When the interrupt gets control from the higher priority processes, it checks
the condition ¢ and if it is true in that situation then it executes its body
process 4. The interrupt gets ready to trigger again after the body part finishes
execution.

IndiGolog

IndiGolog (incremental deterministic Golog) [39, 19, 106] provides to the pro-
grammer the control of planning/lookahead in ConGolog high-level programs.
It supports online execution, sensing the environment, and execution monitor-
ing. Golog and ConGolog provide the off-line execution, so before executing a
program, they execute the entire program off-line and execute in reality only
if it is successfully executed off-line; otherwise, they give failure error. In-
diGolog provides a special construct, the search operator ¥(9), which specifies
that lookahead should be performed in such a way that the nondeterminis-
tic choice must be resolved so to guarantee the successful execution of the
program.

The programmer can define in the program the search blocks in which the
program will be executed through lookahead like as in the cases of Golog and
ConGolog, while outside of these search blocks the nondeterministic choices

CHAPTER 4. FRAMEWORK FOR TASK MODELING
74 FORMALIZATION

Constructs | Meaning

agt p1 | p2] | nondeterministic branch

agt wx.p) nondeterministic choice of argument
agt p*] nondeterministic iteration

agt p1 || p2] | concurrency

Table 4.3: GameGolog set of constructs [20]

are resolved externally from the program executor.

GameGolog

GameGolog (Game Structure ConGolog) [20] is a recent extension to ConGolog
for specifying game structures in which nondeterministic choices can be made
by some agent that has the control of the situation, where these decisions
are also recorded in the situation. Table 4.3 shows the set of constructs of
GameGolog.

The construct [agt p1 | pe] specifies that the agent agt, which has control
over the current situation, will choose whether to execute the program p; or
p2; the construct [agt mx.p] specifies that the agent agt decides the binding
for variable x and then the program p executes according to the binding; the
construct [agt p*] specifies that the agent agt decides the moment to stop the
iteration; while the construct [agt p1 || p2] states that the agent agt chooses
how to interleave the execution of p; and po during each step of execution.

Golog-BDI Adoption Approach

The BDI (Brief, Desire, Intention) approach uses event happening for select-
ing a plan from the plan library and then places it into the intension base
in order to commit the plan for achieving the goal [95]. There are agent-
oriented programming languages and platforms that support this approach,
such as AgentSpeak, Jason [100], and SPARK [81]. An approach described by
Sardifia and Lespérance [107], let say it Golog-BDI adoption approach, pro-
vides a way to use IndiGolog for implementing BDI programming paradigm.
We are interested in a construct provided by this approach for managing fail-
ure handling. The construct (d; &> d2) means that first the program ¢; should
be executed; and, in case of failure to finish it, the alternative program ds
will be executed leaving d; where it was. Following is the Trans and Final
definition from [107].

Trans([61 > 82],8,0",8') = (367.Trans(d1,s,07,8) A& =8 > d) V
—-361, 8". Trans(61, 5,01, 8") A Trans(ds, 5,8,).

4.2. PRELIMINARY BACKGROUND 75

Final([61 > 03], 8) = Final(61,s) V =367, s". Trans(61, 8,07, 8") A Final(d, s).

Execution Semantics of Golog-family-based High-level Program

The execution semantics of the Golog-family-based high-level program is ex-
pressed in terms of transition semantics (or computation semantics) [51, 85]
based on single-step execution [18], which defines how a program evolves after
executing an action in a step. It provides two predicates Trans and Final to
specify program transitions.

e The predicate Trans(d, s,d’,s'), given a program ¢ and a situation s, de-
fines the semantics of how the program evolves to the remaining program
0" with the latest situation s.

e The predicate Final(J, s) specifies when the program § can be considered
as finishing successfully in the situation s.

The predicate Trans for programs for the constructs of above Golog-family
languages without procedures is characterized by the following set of axioms
[18, 19, 20, 73]:

1. Empty program:

Trans(nil, s, 8, s') = false.
2. Primitive actions:

Trans(a, s,d',s') = Poss(a[s],s) A& = nil A s’ = do(als], s).
3. Golog wait/test action:

Trans(¢?,s,0',s") = ¢[s] A& =nilAs' = s.

4. Golog sequence:
Trans(81;02,8,0',s") =
37.8" = (7;62) A Trans(d1, s,7,s') V Final(61, s) A Trans(dz, s, 8, s").
5. Golog nondeterministic branch:

Trans(dy | 62,s,8",8") = Trans(61,s,8’,8) V Trans(da, 5,8, s").

6. Golog nondeterministic choice of argument:

Trans(mv.6,s,8',s') = 3x.Trans(62,s,8,s).

76

CHAPTER 4. FRAMEWORK FOR TASK MODELING
FORMALIZATION

10.

11.

12.

13.

14.

15.

Golog nondeterministic iteration:

Trans(6*,s,8',8') = Fy.(0' = v;6%) A Trans(d, s,~,s).

ConGolog synchronized condition
Trans(if ¢ then 6, else d,s,8",s") =
®[s] A Trans(61,s,8",8') V =d[s] A Trans(dz, 5,8,).
ConGolog synchronized loop:
Trans(while ¢ do d,s,0',s") =
J7.(8" = ~y; while ¢ do §) A ¢[s] A Trans(d, s,, s').
ConGolog concurrent execution:
Trans(8y || 62,s,0',8") =
Fy.6" = (v || d2) A Trans(61,s,7,8)V Iy.6" = (61 || v) A Trans(dz, s,7, s').
ConGolog prioritized concurrency:

Trans(61))da,5,6',8") =
Fy.0" = (v || d2) A Trans(61,s,7,5") V
Fy.8" = (61 || v) A Trans(d2, s,7,8") A —3s,s". Trans(1, 5,7, s”).

ConGolog concurrent iteration:

Trans(8l,s,0',s') = Fy.6' = (v || 61) A Trans(3,s,~, s).
GameGolog nondeterministic branch:

Trans(lagt p1 | pa,s,p',s") =
s’ =do(left(agt),s) A p' = p1 V s’ = do(right(agt),s) A p' = pa.

GameGolog choice of argument:
Trans([agt ©x.pl, s, p',s") = Fx.s' = do(pick(agt,x),s) A p' = p.

GameGolog iteration:

Trans([agt p*],s,p',8') =
s’ = do(continue(agt), s) A p' = p; [agt p*] V s’ = do(stop(agt), s) A p' = True?.

4.2. PRELIMINARY BACKGROUND 77

16. GameGolog concurrency:

Trans([agt py || p2], s, p',s") =
s’ = do(left(agt),s) A p' = [agt pi(|| p2] V
s’ = do(right(agt), s) A p' = [agt p1 ||)p2].

where:

Trans([agt pu(|| pel. s.p',s') = Trans(pr, s, ph, ') Ao = [agt o || pal-
Trans([agt pr [)pe]. 5.0, 8') = Trans(pz, s, ph,s') A o = [agt p1 || pb)-

The Golog-family uses Trans and Final predicates to provide a new defini-
tion to the Do(d, s, s”) predicate which defines that given the initial situation
s and a program ¢, holds if possible to repeatedly single-step the program 9,
obtaining a program ¢’ and a situation s’ such that ¢’ can legally terminate in
s’ [18]. Formally, it can be written as:

Trans(d, s, s') < 38'. Trans* (6, 5,6, 8") A Final(§', s).

Here Trans® is the reflexive transitive closure of Trans and it is possible to get
more than one s’ since programs based on ConGolog and extended versions
can be nondeterministics.

The IndiGolog Interpreter Platform: P-INDIGOLOG

P-INDIGOLOG [105] platform, originally developed at University of Toronto
based on LeGolog [72], is a logic-programming implementation of IndiGolog
for the incremental execution of high-level Golog-like programs [19, 104]. The
platform is developed in modular form and is extensible in order to deal with
external applications/systems through providing suitable interfacing modules.
The code of P-INDIGOLOG is mostly written in Vanilla Prolog but the overall
architecture was developed in open source SWE-Prolog [126], which provides
mechanism for interfacing with other programming languages such as Java
or C, allows multi-thread application development, and supports socket com-
munication and constraints solving [19]. The P-INDIGOLOG platform provides
a way for the real execution of Golog-based high-level programs on concrete
platforms or devices (e.g, a robot device), collects sensing output information,
and detects the exogenous actions generated by external applications/systems.
On the top level, the platform architecture is divided into six modules that
are:

e The Top-level Main Cycle: The top-level main cycle works as sense-
think-act loop [105] through three steps: first checks for exogenous ac-
tions occurred, then calculates the next program step, and finally exe-
cutes action if the step involves any action. The platform updates the

78

CHAPTER 4. FRAMEWORK FOR TASK MODELING
FORMALIZATION

history during the execution of actions. It provides predicate indigo/2,
where indigo(E, H) states that a high-level program E is to be executed
in history H.

The Language Semantics: This module deals with the semantics of
the language by using two main predicates final/2 and trans/2 that
implement Final and Trans relations for giving single-step semantics
to each program construct. When executing the actual program, this
module first checks whether the current program is terminating in the
current history through final/2 predicate, and if so the top-level pred-
icate indigo/2 succeeds. Otherwise, in the case if the program evolves
single step through trans/4 predicate then the history remains same if
no action execution is needed or is updated with the action execution
and sensing information.

The Temporal Projector: This module maintains the agent’s belief
about the world and evaluates a formula relative to a history. The
module implements a realization of predicate eval/3, where eval (+F,
+H, 7B) states the value B (either true or false) of formula F at some
history H.

The Environment Manager (EM): The EM is responsible to interact
with external devices/application/systems through providing a complete
interface. Through this interaction, it manages the execution of actions
in real world, collects sensing outcome information, and detects the gen-
eration of any exogenous action by external entities. The EM manages
action execution in three steps: firstly it decides which target external
entity will execute the action, then orders the selected external entity to
execute action, and finally collects the outcome sensing information. At
top-level main cycle it provides predicate exec/2, where exec(+A, -S)
states the execution of action A with returning sensing value S.

The Set of Device Managers: Each external entity (device / ap-
plication / system / environment / etc) that interacts with EM has a
device manager (a piece of software) that understands the infrastructure
of the external entity and knows how to talk with it. A device manager
interacts with the environment manager through TCP/IP sockets and
instructs the external entity to execute actions, and sends this back to
the EM sensing information and any event occurring.

The Domain Application: A domain application provides three key
objectives for implementing a complete system: a domain axiomatization
of dynamics of the world, a Golog-family based high-level agent program
to show the agents’ behaviors, and the information required to execute

4.3. A DYNAMIC FRAMEWORK FOR MULTI-VIEW TASK MODELING

the action in external entities; e.g., the external entity device manager,
how the action actually is to be executed, the translation between high-
level symbolic actions to low-level device manager representation, etc.

4.3 A Dynamic Framework for Multi-View Task Mod-
eling

Task Modeling provides a way to model the structure of sets of activities and
establish their relationships for defining how to achieve the desired objectives
through performing these sets of activities. These sets of activities and their
relationships are observed and obtained through different task analysis ap-
proaches. Over time, various task modeling techniques have evolved such as
Hierarchical Task Analysis (HTA) [5] for breaking down low-level actions and
defining their order to achieve some goal. Goals, Operations, Methods, and
Selection rules (GOMS) [11] are helpful for modeling procedural knowledge,
while Groupware Task Analysis (GTA) [122] is useful for modeling collabo-
rative work. Different notations have been suggested for writing task models
such as User Action Notation (UAN) [64] for in textual form, while Concur-
TaskTrees (CCT) [92] and JSD (Jackson Structured Design) diagram [64] for
graphical representation.

When we investigate previous work, we find lack of a generic framework to
structure task models at different abstraction levels. Each task model struc-
tures the system activities and behavior from a certain view and a system
can be described from several views at different abstraction levels. The dif-
ferentiation in notations and providing details at different granularity from
one technique to others, while modeling system activities from different view-
points at different abstraction levels, creates obscurity in describing system
structure and behavior accurately and unambiguously. Hence, it could lead to
misunderstanding and confusion amongst the stakeholders. To overcome this
lack, we propose a generic and dynamic framework for structuring and mod-
eling system activities and behavior. This framework provides the solution
at two levels: at conceptual-level through framework concepts for providing
a conceptual foundation to create and structure task models at different ab-
straction levels; and at representation-level through a formal task modeling
language with the ability to write dynamic and rich task models accurately
and unambiguously. The framework can be used for multiple purposes, from
system analysis to performing usability testing, due to its customizable and
extensible nature. Such a framework, which provides a uniform way to cre-
ate task models of system activities at different abstraction levels, gives an
unambiguous understanding of created task models to all stakeholders of the
system. The two main pillars of our proposed task modeling framework are:

CHAPTER 4. FRAMEWORK FOR TASK MODELING
80 FORMALIZATION

o Framework Concepts: A set of special framework concepts that pro-
vides a conceptual foundation to create and structure task models at
different abstraction levels from multi-view perspectives. The created
task models provide a comprehensive picture of the external interac-
tions, the internal structures and the behavioral responses from those
perspectives. We provide the definition of a set of concepts; i.e., task,
task type, view-type, task-model, and view-model; to understand properly
how to create and structure task models at different abstraction levels
from multi views perspectives.

e Task Modeling Formal Language: An expressive, dynamic, and well
defined (syntactically and semantically) language is required for creating
rich and powerful task models in order to model system activities and
behavior from all perspectives. For this reason, the framework provides
the definition of a formal language for task modeling that fills the gap
existed in previous languages, which usually are unable to fully express
the effects of executing tasks on the system and unable to cope with the
complexity of the targeted system behavior. This definition provides a
substantial foundation for defining complex system activities and behav-
iors in an appropriate, accurate, and unambiguous form, and provides
designers/analysts with the freedom to express domain knowledge repre-
sentation in rich task models. In the forthcoming Chapter 5, we use this
language to create task models for using it in our model-based usability
evaluation approach.

4.4 Framework Concepts

The behavioral response of a system depends on the external interaction and
the internal structure of the system. To provide a comprehensive picture of this
interaction, the internal structure and the behavioral response the system can
be modeled at different abstraction levels from multi-view perspectives. For
this, we suggest to model system activities from different views perspectives,
where each view reflects system structure and behavior with some context at
a specific abstraction level, which in turn provides a comprehensive picture of
the system from all perspectives.

The motivation behind creating task models from multi-view perspectives
at several abstraction levels is clear. Firstly, it decouples the complex struc-
tural and behavioral aspects as it suggests to model task structures and form-
ing their relationships from different views perspectives where each view deals
with only the related tasks interested to that view perspective. For example, a
task model from the interaction viewpoint may highlight and emphasize only
those system activities that interact with external entities. The following sub-

4.4. FRAMEWORK CONCEPTS 81

section provides details of these special framework concepts. Secondly, it gives
a comprehensive picture of the scenario by modeling it from many perspec-
tives for achieving the desired goals. In this case, it also provides the way to
understand how the underlying business logic is accomplished from each view
perspective.

Keeping the above idea, our task modeling framework provides the defi-
nition of five concepts: task, task type, view type, task model, and the view
model.

e A task is an abstract entity that hides its internal functionality, per-
forms one or more operations/actions, and provides an overall behavior
for achieving some goal. It can be defined at different abstraction levels
where a task at one abstraction level may contain a set of defined tasks
at lower abstraction level.

e A task type represents the kind of behavior provided by the task at
some abstraction level. For example, the tasks associated with the user
type are executed by human users.

e A view type specifies the modeling of system activities and behavior,
from a certain view perspective, for achieving some goal(s). The view
guides what kind of task types and associated tasks will be participated
in the resulting task model. For example, a user-interaction view may
focus on modeling those system tasks and activities where the system
interacts with external users.

e A task model provides the realization of system activities, their re-
lations, and the behavior to achieve some goal(s) from a certain view
perspective, and highlights the properties in that specific context.

e A view model combines a set of views where these views present task
models from different abstraction levels for achieving the same set of
goal(s). Each view model combines task models from those views that
are special interest to it.

Our framework suggests and implements the task model structure based on
hierarchical task decomposition method [5, 25], where the leaf nodes represent
atomic or executing tasks while the parent nodes handles the structure of the
task model. Figure 4.1 shows the relationship among above defined framework
concepts. The background of the relationship between these concepts is in-
spired from the conceptual model of architectural description by IEEE-P1471
[62]. The figure shows that a system structure and behavior can be described
by one or more view models where each view model contains task models from
different views perspectives for achieving a particular set of goals. It highlights

CHAPTER 4. FRAMEWORK FOR TASK MODELING
82 FORMALIZATION

System has Structure/Behaviour

described by 1...*

View Model

1
1.* -consists of

View Type

Task Model

specified by

Figure 4.1: Relationship between framework concepts

that each task model, in fact, is a special representation of system activities
and behavior from a certain view perspective at some abstraction level.

The Task Notion

In our framework, a task is an abstract entity that hides its internal functional-
ity, performs one or more operations/actions, and provides an overall behavior
for achieving some specific goal. It is possible to decompose this abstract entity
at lower abstraction levels until we reach the point where it actually performs
some action in an atomic way; like checking variable truth value, sending com-
mand. Generally, when we speak about an atomic task while residing at some
abstraction level, we refer to the overall functionality it provides in atomic
way at that level even though it can be decomposed into more atomic tasks
at lower abstraction levels. For example, a “print-page” command at the ap-
plication level can be decomposed into a series of atomic tasks at the device
level; such as, entailing the request, checking whether printer is available, etc;
in order to perform the required printing functionality. Therefore, we refer
“print-page” task as performing in atomic way at the application level.

4.4.1 Task Types

A task type associated to a task is a representation of the behavioral or struc-
tural aspects of the task. It is also used to group tasks with similar kinds of
abstraction. This categorization helps in constructing task models from some
specific view perspective. In our framework, a task type represents not only
the contextual behavior of the task but also highlights the kinds of properties

4.4. FRAMEWORK CONCEPTS 83

it may possess. At higher level, our task modeling framework differentiates
task types into two main categories, i.e., the basic category and the behavioral
category.

The Basic Category:

The basic category contain types based on hierarchical task decomposition
approach in which leaves of a task model are atomic tasks, while the upper
layers have complex tasks to handle the structure of the task model. In basic
category, we distinguish tasks into three types: unit, waiting, and composite.
In our framework, all tasks are supposed to belong to only one of these three
basic types at a certain abstraction level. It is noteworthy that a task can
belong to two different basic types at two different abstraction levels. For
example, a “print-page” unit task at application level can be a composite task
at device level. Unit and waiting tasks normally reside at leaf levels while
composite tasks reside at upper layers in the task hierarchy. Here we give
details of each basic type:

Unit Tasks: These tasks, at the current abstraction level, cannot be de-
composed further and are considered to perform in atomic manner to achieve
some particular goal. At lower abstraction level, they can be combination of
more than one task. Generally, when modeling system activities, all basic level
operations and functionalities are reflected through unit tasks. Unit tasks nor-
mally reside at leaf levels in task hierarchy.

Waiting Tasks: These are the tasks that wait either for a particular event
to happen or for some set of conditions to be fulfilled. They do not perform
any operation by themselves, but wait and as any event happens or the set of
conditions is fulfilled these are supposed to complete execution. For example,
a waiting task in a printer can be to wait for a printing request event or in
the case of an application it can be to wait for a free printing request slot in
the printer queue before sending print request. In our framework, these tasks
also reside at leaf levels in task hierarchy.

Composite Tasks: These tasks have complex behavioral structure and are
composed of sub-tasks (unit, waiting, or composite), so can be divided further
at the current abstraction level. In fact, these tasks do not perform opera-
tions/actions by themselves; instead, these handle the task model structure to
provide successful paths in order to reach the targeted goal. These use fluent
values, conditions checking, temporal operators, etc; to determine which di-
rection to follow next to achieve the targeted goal. For example, a composite

CHAPTER 4. FRAMEWORK FOR TASK MODELING
84 FORMALIZATION

task “payment” may decide which payment method to follow from credit card,
bank or cash methods through applying some condition and then the selected
method will perform the payment transaction. It is interesting to note that
at certain instances, at upper abstract level, these may act as unit tasks.

The Behavioral Category

The behavioral category contains those types that represent the behavioral
characteristics and possible functionalities of tasks. A task can have more
than one associated type in this category as it is possible that the behav-
ioral characteristics of a task may overlap to more than one type. In a task
model, normally, task to behavioral type association depends on the targeted
view perspective as the task models are created accordingly. We provide the
definition of a set of types in this category where each type possesses some
characteristics. A new type can be added in this set according to the model
requirements and the target environment. Here we give brief introduction of
few behavioral types:

System Task-Type: This type groups those tasks that are performed by
the system in question. Grouping tasks into system type is helpful to under-
stand which actions and operations are executed by the system in question
and which are by the external entities; especially, if the task model is being
created from the internal and external view perspective.

Services Task-Type: This category contains those tasks that are services
provided by external applications/systems. The system uses these to achieve
some goals. For this, the system requests to external applications/systems to
perform these tasks and then it is up to that external application/system how
to perform these. Normally, from the system perspective they are considered
as unit tasks, but at the external application/system level these can be any
type of the basic category. As an example, a Book Store system may ask an
external application to complete the payment transaction. From the Book
Store system perspective, this represents a unit task, but from the external
application perspective it may be a combination of more than one unit tasks
where each task is responsible for some functionality.

User Task-Type: This type belongs to those tasks that are performed by
human users either through direct interaction with the system or with some ex-
ternal application/system, generally in both environments: the electronic and
the physical one. For example, writing credit card information in payment
page, pressing some button in cars, or washing the tea kettle, etc. Through
these tasks, users also give inputs to the system to achieve the desired goal(s).

4.4. FRAMEWORK CONCEPTS 85

Interaction Task-Type: This type belongs to those tasks that interact out-
side the system boundaries with certain external entities (application/systems
or human users). The responsibility of these tasks is to handle the commu-
nications forward and backward to and from the external entities. These act
as a channel between the system and the external entities. For example, if a
system is interacting with some external system through a device manager and
system is using sendRequest task of the device manager to send the request
to the external system or a system is asking to some human user to select an
item from a list through selectltem task.

This type has two sub-types: service-interaction and user-interaction. We
divide external entities into two categories. The first one contains those exter-
nal applications/systems that provide services to the system or ask for services
from the system for themselves; e.g., a Book Store system may ask to an ex-
ternal application to complete the payment transaction. The second category
contains those external applications/systems that act as a channel between
the system and the human users. These provide an interface through which
human users interact for receiving or sending inputs to the system; e.g., A
Book Store system may use a Java applet to take user input for searching
a specific book or selecting a book from a list. The service-interaction type
deals with first category while the user-interaction type deals with the second.

e Services-Interaction Task-Type: This sub-category of the interac-
tion type contains those tasks which are responsible to interact with
external applications/systems where these applications/systems provide
services to the system or ask for services from the system. When the
external application/systems receive request through these tasks, they
execute services tasks in order to achieve the requested goal. On the
other side, the system executes some system task(s) when it receives
request from the external application/systems.

e User-Interaction Task-Type: This is a sub-category of both the in-
teraction type and the user type and contains the tasks whose targeted
interactive external entity is the human users of the system. This in-
teraction can be directly from the system or through some external ap-
plication/system, but in all cases these external applications/systems
act just a channel between the human user and the system. If the ex-
ternal application/system manipulates the user’s input and afterwards
sends it to the system then we consider the interaction is between the
human user and that external application/system, while the interaction
between that external application/system with the system in question
in this case is considered as service-interaction type. The user type con-
tains all those tasks that are performed by the human user of the system

CHAPTER 4. FRAMEWORK FOR TASK MODELING
86 FORMALIZATION

irrespective of interaction, while the user-interaction is a sub-type and
considers only those tasks that are performed by the human user but
through interacting with the system such as filling a form.

Exogenous Tasks: This type belongs to those tasks that are generated by
external applications/systems in order to provide some inputs or services to
the system behind the scene, where normally the system does not have con-
trol over generation of these. These tasks are not direct part of the system
structure and may be generated by the underlying operating system to provide
basic services or by some external applications/systems.

So far, we have provided just few of the selected types and a new type
can be added to the above set or any type can be redefined according to the
targeted system and environment. For example, there can be some types that
target some specific framework; like in the forthcoming sections, we define a
new type choice that deals with the decisions of external entities about the
selection of nondeterministic choice paths.

4.4.2 View Type

A view type presents task model from a specific view perspective at a partic-
ular abstraction level for achieving some targeted goal(s). The created task
model provides the task execution scenario from that certain view perspective.
For example, a view type from building the user interface perspective may em-
phasize on those tasks that interact or executed by human users. Each view
type, in general, specifies the purpose, the level of abstraction, the focusing
view perspective, and the interested task types to be used in modeling the
task structure for achieving some specific goal(s). For the same set of goal(s),
there can be multiple views where each view highlights the task structures and
task relationships from a certain view perspective at some abstraction level.

Here, we provide examples of few view types; i.e., system view, general-
interactive view, services-interactive view, human-interactive view, and com-
plete view. It is possible to create a new view type or can redefine these view
types in order to fit into the targeted environment.

System View: This view emphasizes on creating task models from the sys-
tem perspective; hence, all other tasks, outside the system boundaries, are
considered external to the system and are neglected or described at higher ab-
straction level. The purpose is to show how the system achieve some goal(s)
through performing a set of activities.

4.4. FRAMEWORK CONCEPTS 87

General-Interactive View: This view emphasizes on constructing task
models from interaction perspective in which those tasks are highlighted that
interact with external entities. The purpose is to focus on how the system in
question behaves while interacting with external entities for executing some
operations, giving feedbacks, or taking inputs. This kind of task models are
important during analysis and design phases of development as these focus
more on the critical points of interactions.

e Services-Interactive View: This is sub-category of general-interactive
view as it emphasizes the interaction with external applications/systems.

e User-Interactive View: This is also sub-category of general-interactive
view, and the purpose is create task model from the perspective of how
the users of the system perform tasks while interacting with the system
to achieve the desired goal(s). The users’ interaction with the system
can be through some user interface provided by the system itself or by
any external application/system.

Complete View: This view emphasizes on creating task models while keep-
ing every kind of tasks and their details. The purpose is to get an overall
picture of the task structure across the system boundaries for achieving some
targeted goal(s).

4.4.3 View Models

A view model combines a set of views where these views present task models
at several abstraction levels for achieving the same set of goal(s). Each view
model combines task models from those views that are of special interest to
it. Our framework leaves it to the responsible team to decide how many
views are needed within a view model in order to get a comprehensive picture.
For example, for user interface analysis and design, the team may combine
general-interactive, services-interactive, and user-interactive views. The basic
theme here is to organize and combine a set of task models from multiple
perspectives for achieving the same targeted set of goals while providing a full
understandability of these activities across different abstraction levels.

Here, we give a brief example of a view model for performing usability
evaluation, let say it usability-eval view model. Our objective is to check the
usability level of a targeted application through the performance of usability
evaluation experiments by the end users of the application; where in each
experiment, end users perform a number of tasks to achieve a certain set
of targeted goals. In this case, the view model may contain task models
created according to the user-interactive and system views; as it will help to
understand, during evaluation, the users’ interaction with the system and the

CHAPTER 4. FRAMEWORK FOR TASK MODELING
88 FORMALIZATION

system response. This kind of view model is useful in model-based usability
evaluation techniques where users perform a list of tasks for achieving the
targeted set of goals while using the evaluating application, and then the
automated evaluating tool records the users and the system activities and
behavior and produce results after analyzing these with actual task models
created according to the user-interactive and system views.

4.4.4 An Example for Task Modeling

In this subsection, we discuss an example and provide task models as sug-
gested by our proposed task modeling framework. The system in this example
is an “Online Book Store” that provides the facility to its users to buy book(s)
online. The user can select a book either by browsing the book-catalog or by
searching with some specific search criteria (such as author name, book title,
keyword) or by enquiring the system For the list of recommended books, where
the system recommendations are based on user’s history and some context cri-
teria. The system provides several other functionalities, such as user profiling,
writing reviews, but here we concentrate on one of the main scenario, i.e.,
book purchasing.

Book-Purchasing Scenario: The user selects a book through one of three
available options: by browsing the book-catalog, or by giving some specific
search criteria, or by asking the system to recommend a book for the user.
The user can repeat this until he/she finds the desired book. After that, the
user adds the selected book into the shopping cart and can search again another
book. The user can repeat this process (selecting a book and then adding it into
the shopping cart) as many times as he/she wants. At any time, when the user
has the desired list of books in the shopping cart, he/she can start checkout.
When the user starts checkout, firstly, he/she fills the shipping details form
(address, email, etc). The system generates the total price depends on VAT
and the shipping address. The user then selects a payment method from three
options; i.e., credit card, bank transfer, or voucher payment; and provides the
detail of the selected payment option. The system then moves to the final part
where it asks the user to check all the details. The user checks all details and
finalizes the order. The system completes the payment transaction by com-
municating to the selected payment system (Credit Card Company, Bank, or
Voucher System). After successful completion of the payment transaction, the
system sends a confirmation email to the user’s email account given previ-
ously in shipping details form. At any moment before completion of payment
transaction, the user can select the cancelation of the order. In this case, the
system asks the user for saving the shopping cart list in the user profile for
future use or removing the list. The system acts as wished by the user.

4.4. FRAMEWORK CONCEPTS 89

Tasks and Task Types

The following is a possible list of tasks taken from the given scenario, where we
represent each task in the form of task-name [basic-type, (behavioral-types)].

Book-Purchasing [composite, ()]

Book-Selection [composite, ()]

Catalog-Browsing [composite, (user, user-interaction)]
Catalog-Navigation [unit, (user, user-interaction)]
Picking-Book [unit, (user, user-interaction)]
Book-Searching [composite, ()]

Search-Criteria [unit, (user, user-interaction)]
Search-Results [unit, (system)]

Book-Suggestion [composite, ()]
Generate-Book-Suggestion [unit, (system)]
Adding-Book-To-Catalog [unit, (user, user-interaction)]
Making-Catalog [unit, (system)]

Checking-Out [composite, ()]

Shipping-Details [unit, (user, user-interaction)]
Asking-Book-Suggestion[unit, (user-interaction)]
Price-Generation [unit, (system)]

Payment-Method [composite, (external-choice)]
Pay-By-Card [unit, (user, user-interaction)]
Pay-By-Bank [unit, (user, user-interaction)]
Pay-By-Voucher [unit, (user, user-interaction)]
Finalize-Order [composite, ()]

Confirm-Order [composite, ()]

Confirm-Payment [unit, (user, user-interaction)]
Payment-Transaction [unit, (services, services-interaction)]
Transaction-Completed [waiting, (system)]
Transaction-Notification [unit, (exogenous)]
Send-Order-Confirmation [unit, (system)]

Cancel-Order [composite, (external-choice)]

Cancelation [unit, (system)]

Save-Details [unit, (system)]

We are not considering much lower abstraction level tasks. It is possible that
some of these unit tasks at this abstraction level become composite tasks
when we go to any lower abstraction level. For example, Pay-By-Card unit
task may become a composite task that contains more than one unit tasks
where each unit task deals with some specific kind of credit card. In the above
list, most of the tasks are related to the user behavioral category, as these are
performed by human users. Because these user-category tasks also provide a

CHAPTER 4. FRAMEWORK FOR TASK MODELING

Book-Purchasing
n. 2. . ‘4.
Book-Selection Adding-Book-To-Catalog Checking-Out Cancel-Order
[|]
[|] . 2. .3,
n.1. .2, 1.3. Shipping-Details Payment-Method Finalize-Order
Catalog-Browsing Book-Searching Book-Suggestions T
[[]
.2.1. .2.2. .2.3.
Pay-By-Card Pay-By-Bank Pay-By-Voucher
[1
1.3.1. n.3.2.
/Asking-Book-Suggestion Picking-Book 3.3.1 3.2
Confirm-payment Cancel-Order
[1
||1 2.1. n22. |
Search-Criteria Picking-Book lan 0: Do 1 & 2 one or more times. Then either do 3 or 4.

Plan 1: Do 1.1 or 1.2 or 1.3 one or more times.
Plan 1.1: Do 1.1.1, then optional 1.1.2.

n.1.1. n.1.2.
Catalog-Navigation Picking-Book

Plan 3: Do 3.1; then do 3.2, and 3.3.
Plan 3.2: Do either 3.2.1 or 3.2.2 or 3.2.3.
Plan 3.3: Do either 3.3.1 or 3.3.2.

Figure 4.2: A task model of Book-Purchasing from user-interactive view per-
spective

channel between the user and the system, so these belong to user-interaction
category. Few composite tasks, such as Book-Searching, have no behavioral
type, as these contain mixture of sub-types. This kind of composite tasks
can be associated to all the behavioral types of its sub-types. For example,
Checking-Out task can be associated to user, system, and services types.

Task Models, View Types, and View Model

If we look into the given scenario, we notice that most of the tasks are are
related to the categories where user interacts with the system , such as giving
the search criteria or filling the shipping details, or where the system performs
some operations, such as generating total price. Therefore, obviously we are
interested in a task model from the user-interactive view. Figure 4.2 shows a
task model, created in HTA [5, 25] form that describes the achieving of buying
book goal from the user perspective in the user-interactive view. While Figure
4.3 shows the task model from the complete view perspective, which contains
all the tasks involved in this scenario. So, we have:

View-Model: book-purchasing
View-Types: user-interactive, complete

Plan 1.2: Do 1.2.1 one or more times, then do optional 1.2.2.
Plan 1.3: Do 1.3.1 one or more times, then do optional 1.3.2.

4.4. FRAMEWORK CONCEPTS

91

’ Book-Purchasing

i

|

||1 Book-Selection

|FAdding-Book-To—Catalog

|r-l\llaking-Catang

4.
Checking-Out

[

]

n.1.

Catalog-Browsing

1.2

Book-Searching

3.
rBook-Suggestions

Cancel-Order

AN
|r Cancellation

.2.
Save-Details

[

]

4.1

Shipping-Details

4.2,

Price-Generation

4.3

Payment-Method

4.4
Finalize-Order

[

1

[

Confirm-Payment

Payment-Transaction

ITransaction-Completed

Send-Order-Confirmation

IPlan 0: Do 1, 2, and 3 one or more times. Then do either 3 or 4.
Plan 1: Do 1.1 or 1.2 or 1.3 one or more times.
Plan 1.1: Do 1.1.1, then optional 1.1.2.

Plan 1.2: Do 1.2.1 and 1.2.2 one or more times, then do optional 1.2.3.
Plan 1.3: Do 1.3.1 and 1.3.2 one or more times, then do optional 1.3.2.

Plan 4: Do 4.1,4.2,4.3, and 4.4.
Plan 4.3: Do either 4.3.1 or 4.3.2 or 4.3.3.
Plan 4.4: Do either 4.4.1 or 4.4.2.

Plan 4.4.1: Do 4.4.1.1 then do 4.4.1.2,4.4.1.3 and 4.4.1.4.

Plan 4.4.2: Do either 4.4.2.1 or 4.4.2.2.
Plan 5: Do either 5.1 or 5.2

1.3.1. 1.3.2. 1.3.2.
Generate-Books-Suggestion || [[Show-Books-Suggestion Picking-Book [‘ ‘
I I] 4.3.1. 4.3.2. 4.3.1.
Pay-By-Card Pay-By-Bank Pay-By-Voucher
2.1, n.2.2. n.2.3. i i i
Search-Criteria Search-Results Picking-Book [‘
4.4.1 h.4.2.
Confirm-Order Cancel-Order
n.1.1. 1.1.2.
Catalog-Navigation Picking-Book ’—I—‘
44.21. 4.4.2.2,
[‘ ‘ 1 Cancellation Save-Details
4.4.1.1. 14.4.1.2 14.4.1.3. 4.4.1.4.

Figure 4.3: A task model of Book-Purchasing from complete view perspective

CHAPTER 4. FRAMEWORK FOR TASK MODELING
92 FORMALIZATION

Task-Models: book-purchasing-user, book-purchasing-complete

This describes that in the book-purchasing view model, we have task models
from two different views to show the achieving of the same goal of this view
model, i.e., purchasing a book. We can have more task models in this view
model, depending on the scenario’s requirements. We keep this example in the
forthcoming sections to write its parts in our formal task modeling language.

4.5 TaMoGolog — A Formal Task Modeling Lan-
guage

An expressive, dynamic, and well-defined (syntactically and semantically) lan-
guage is required for creating rich and powerful task models in order to model
system activities and complex behavior accurately and unambiguously. We
require a task modeling language that supports knowledge representation to
provide domain knowledge in the created task models. Other than aforemen-
tioned qualities, we also want this language to be customizable or extendable
in order to fit for creating task models for different purposes and environments;
e.g., from system analysis to usability evaluation and from system design to
support of task-centric environment.

The existing task modeling languages in Human-Computer Interaction
(HCI) area are at high abstract levels and do not provide a comprehensive
mechanism for representing system structure, activities, and behavior in task
models from different viewpoints. Most of them lack well-defined formal se-
mantics; hence, can create ambiguity and misunderstanding. Another problem
is the unavailability of the domain knowledge representation, which results in
task models being unable to describe system domain behavior properly.

On the other side, in Artificial Intelligence (AI) there exist approaches and
languages; such as Hierarchical Task Network (HTN) [34, 33], STRIPS [37],
high-level agent programming languages [18, 73, 19, 102]; to construct systems
for autonomous agents in order to achieve the predefined set of goals. These
have many benefits; like, formally well-defined syntax and semantics, precise
definition of action rather than more abstract notion of task used in HCI,
powerful set of constructs for handling complex system structure and behav-
ior, facility to write knowledge representation, mature planning and inference
techniques, etc. However, normally they ignore the role of human users’ in-
teraction with the system as they focus more towards autonomous agents.
Sometimes, due to their complexity it is difficult to use them for creating task
models for other purposes (e.g., for analysis or designing interface).

To fill the gap, found in previous task modeling languages in HCI, by uti-
lizing the benefits of approaches in Al, we conclude that a better solution is to
use some existing Al approach to make it suitable for constructing task models

4.5. TAMOGOLOG - A FORMAL TASK MODELING LANGUAGE 93

as per our framework defined mode. This helps us to provide the definition of
a task modeling language having the following abilities:

— a well-defined formal representation (syntactically and semantically)

— the ability to write dynamic, complex, and rich task models at different ab-
stractions

— an expressive way to write the properties of tasks and task models as per
defined by our task modeling framework

— representing unambiguously domain knowledge in task models

— involving human users and external applications/systems interaction in task
models

— creation of executable task models

— customizable and extendable in order to suit for different purposes and en-
vironments

4.5.1 Task Modeling Golog (TaMoGolog)

Due to many of the characteristics, we fond the Golog-family [18, 19, 20, 73,
107] of high-level programming languages a worthy and suitable candidate for
the foundation of a task modeling language. The reasons for selecting the
Golog-family are:

— provides a rich foundation for reasoning about actions and complex pro-
cesses

— expresses knowledge representation through situation calculus, thus enabling
the facility to provide domain knowledge and the definition of system behavior
in accurate and unambiguous way

— provides powerful sets of constructs useful for describing complex system
structure and behaviors

— enables explicitly writing action precondition constraints and action execu-
tion effects on fluents

— provides a formal evaluation semantics and transition semantics for giving
an unambiguous definition of the system behavior

— provides the facility to write high-level nondeterministic programs where a
programmer can control the nondeterminism to control the execution

— extendable and customizable for different purposes

In spite of the above qualities, all previous versions, except a recent exten-
sion GameGolog [20], lack the mechanism for defining explicitly the external
entities’ role. Defining external entities role explicitly, especially the human
user role, for making decision on nondeterminism is important for engineering
task models in order to reflect how the external entities participate in per-

CHAPTER 4. FRAMEWORK FOR TASK MODELING
94 FORMALIZATION

forming tasks or making decisions to achieve the desired goals. GameGolog
provides an approach through which external entities, called agents, can de-
cide the nondeterministic branches of the program during the execution. The
approach provided by GameGolog is useful for describing external entities par-
ticipation in task models for making nondeterministic branch decisions or for
providing some input to the system.

On the basis of the above characteristics, we provide the definition of a task
modeling language, called TaMoGolog (Task Modeling Golog), on the top
of the foundations of the Golog-family of high-level programming languages.
TaMoGolog gives a solid foundation for writing task models of complex system
structures and behaviors in an appropriate, accurate, and unambiguous form;
and provides the freedom to designers/analysts to express domain knowledge
representation in the created task models. TaMoGolog tries to fill the gaps
found in existing task modeling languages in HCI in order to write well-defined,
rich, and unambiguous task models.

The following subsections describe TaMoGolog set of constructs, mainly ob-
tained from Golog-family in addition to few own defined constructs, and the
syntax and semantics of the language. While the forthcoming section (Section
sec:ExtNDConstructs) discusses our approach for the framework of external
nondeterministic constructs based on GameGolog approach. The resulting im-
plementation of this framework is provided in Appendix A, Appendix B, and
Appendix C.

4.5.2 TaMoGolog Set of Constructs

For defining complex and dynamic system structures and scenarios in task
models, TaMoGolog provides a rich set of constructs mostly obtained from the
Golog-family along with some additional constructs. It contains all the con-
structs of Golog [73] and ConGolog [18], the off-line search block construct
from IndiGolog [19], the failure handling construct from Golog-BDI adop-
tion approach [107], and the external nondeterministic choice constructs from
GameGolog [20]. Along with these sets of constructs, it also provides the def-
inition of some additional constructs on the basis of the constructs provided
by GameGolog and Golog-BDI adoption. Table 4.4 shows the set of all these
constructs (obtained from Golog-family along with TaMoGolog own defined
constructs). In Table 4.4 v represents a unit task, ¢ represents a condition
or a conjunction of conditions, w represents a waiting task (in TaMoGolog
semantics, waits either for an event to happen or for some condition(s) to
become true), and I" represents a composite task that may have one or more
sub-tasks.

In Table 4.4, TaMoGolog constructs are categorized into nine categories

4.5. TAMOGOLOG - A FORMAL TASK MODELING LANGUAGE 95

Constructs Meaning Origin
1 - Basic task category

v unit task GL

w waiting task GL/TG

r composite task GL
2 - Condition

@7 waiting/testing action GL
3 - Sequence

I'y; Ty sequence GL
4 - Optional category

INREEY internal nondeterministic choice GL

agtTy | Ty external nondeterministic choice GG

if ¢ then I'y else T's] | if-then-else condition CG

mx.I(x)] internal nondeterministic choice of arguments | GL

agt mz.I'(z)] external nondeterministic choice of arguments | GG
5 - Cycling/iteration category

r* internal nondeterministic iteration GL

agt T|* external nondeterministic iteration GG

while ¢ do T conditional (while-do) loop CG
6 - Time-sharing category

[T || T normal concurrency CG

')y concurrency with priority CG

Ll concurrent iteration CG

agt Ty || Tg) external every-step decision concurrency GG

agt T1()T'5] external selected priority concurrency TG

agt T'1(|)Ts) external first-step decision concurrency TG

[agt Tl external selected concurrent iteration TG
7 - Off-line search

¥(T) off-line search block IG
8 - Interrupt

<p—T> interrupt call to a task CG
9 - Fatlure handling

I > Ty online alternative execution GB

I >y Ty off-line alternative execution TG

Table 4.4: TaMoGolog set of constructs

CHAPTER 4. FRAMEWORK FOR TASK MODELING
96 FORMALIZATION

due to their nature of handling tasks structure; and the last column shows the
origin of the construct where GL stands for Golog, CG stands for ConGolog,
GG stands for GameGolog, IG stands for IndiGolog, GB stands for Golog-
BDI adoption approach, and TG stands for TaMoGolog. In most cases, the
meaning of constructs is the same as defined by the Golog-family discussed
early in Section 4.2. In few cases, TaMoGolog provides its own customized
definition of those obtained constructs. Following are brief description of these
construct from the TaMoGolog perspective.

The basic task category represents three basic task types: unit task, wait-
ing task, and composite task. TaMoGolog treats waiting task as a separate
task where the start of execution, it waits for some particular event to happen
or checks some set of conditions. As the particular event happens or the set of
conditions becomes true, it finishes its execution. In fact, it does not perform
any action by itself and does not change any fluent value.

The waiting/testing condition (¢?) and sequence [['1;T'2] constructs are
from Golog with the same definition; where waiting/testing condition also
provides realization of a waiting task and sequence describes that the second
task starts execution when the first task finishes its execution.

The optional category contains those constructs that deal with choice op-
tion between two or more tasks either nondeterministically (internally or ex-
ternally) or through applying some condition.

e The internal nondeterministic choice construct [['1 | I's], obtained from
Golog, represents nondeterministic system choice where the system choo-
ses any one of these in nondeterministic way. For example, the choice
between two credit cards where the system decides nondeterministically
which card to be used for the payment transaction.

e The external nondeterministic choice construct [agt I'y | I'g], from Game-
Golog, involves an external agent for making the nondeterministic choice
and then the system executes the selected task. This is important from
task modeling perspective as it involves human user or external appli-
cation/system in making the choice decision. In this case, the agt is
the external entity (human user or some external application/system)
that makes this choice decision. TaMoGolog assumes that there will be
some communication channel between the system and the external entity
through which the system asks and receives this decision. If we take the
previous example of payment by credit cards then this time the selection
of the card will be done by some external entity at run time.

4.5. TAMOGOLOG - A FORMAL TASK MODELING LANGUAGE 97

e The construct [if ¢ then I'y else I's] is a synchronized if-then-else con-
struct from ConGolog where the condition checking is considered as part
of the first action execution of the selected task.

e The internal nondeterministic choice of argument construct [rx.I'(x)]
from Golog and external nondeterministic choice of argument construct
[agt mx.I'(x)] from GameGolog have same definitions as described early
in Section 4.2.2; that is, the system or agent chooses binding of variable
z and the task I' is executed after binding it to this variable .

The cycling/iteration category deals with repetition of same task (or set
of tasks) zero or more times either nondeterministically or through some con-
dition checking.

e The internal nondeterministic iteration construct [I']*, from Golog, rep-
resents the execution of task I' zero or more times nondeterministically
decided by the system. It is useful in those places where there is need
to execute the same task more than once.

e The external nondeterministic iteration construct [agt I'*, from Game-
Golog, is the same as the previous one, the only difference is that the
external entity agt decides how many times the task will be executed.
Each time after finishing execution, the system asks to the external entity
whether to execute it again or not; e.g., [human-user addBookToCart|*
says that the external entity human-user can add book to shopping cart
as many times as it wants.

e The conditional loop construct [while ¢ do I'] from ConGolog is a
synchronized version of usual while-do loop where the task (or set of
tasks) repeats execution till the condition is true. For example, [while
requestInfueue do printRequest]| says that till there is some request
for printing in the queue, the printer keeps printing the request.

The time-sharing category provides many constructs to deal with concur-
rency. As the Golog-family supports the interleaving form of concurrency
[18]; hence, TaMoGolog also assumes the same support of concurrency where
tasks may interleave through wunit or waiting tasks. It assumes that at one
time only one unit or waiting task keeps execution. This category provides
seven constructs where the first three are from ConGolog, fourth one is from
GameGolog, while the last three are provided by TaMoGolog on the foundations
of GameGolog approach.

e The construct [I'; || I'2] deals with normal form of interleaving concur-
rency where the system nondeterministically takes a unit or waiting task

98

CHAPTER 4. FRAMEWORK FOR TASK MODELING
FORMALIZATION

(action) from either of tasks and then executes it. The system repeats
this till one of them finishes execution and then the remaining task is
executed as normal.

The construct [I'1))T'e] provides priority form of concurrency where the

task I'1 has more priority over task I'y. Task I's only starts execution

either after completion of task I'y or if the task I'; is in some blocking

state. This is useful where there is need to show different priority be-

tween a set of tasks. For example, in the case of [firedlarm))I'1))T'2))
.))T'y] the task fireAdlarm has higher priority than any other task.

The construct [[']ll represents the concurrent iteration of task, which
means the same task participates in concurrency if the system selects it
for more than once. So, it acts like [nil | T | [T || T] | [T | T | T]]|...].
This construct is useful where there is need to create concurrent instances
of the same task to handle the same thing within different instances; such
as creating sessions for different users at the server side.

The every-step external decision concurrency construct [agt T'y || T'g]
from GameGolog asks to the external entity at every step of interleaving
to decide which task will be the next one amongst the concurrent tasks
to perform some action. The system keeps asking this from external
entity till only one task remain.

The following three constructs in time-sharing category are TaMoGolog

own defined constructs on the foundations of GameGolog approach.

e The external selected priority concurrency construct [agt I'1()T'2] asks

to the external entity to decide the priority amongst given tasks, and
then the system executes tasks in concurrency with that priority level.

The first-step external decision concurrency construct [agt I'1(|)T'o] is
different from the every-step external decision construct in the regard
that in this case, the external entity decides the task to perform the first
step and then the remaining parts execute with normal concurrency. So,
if the external entity chooses I'y then the first action will be from this
task. If the selected task is in blocking state then the other task will
not perform any action till the selected task finishes the first action; and
after that remaining execution will be with normal form of concurrency
and will act like [T} || T'2] or [I'y || T'y] where I’} or Iy are remaining
parts in case of selection. This is useful in those cases where other tasks
depend on the starting of any particular task in concurrency.

The external selected concurrent iteration construct [agt T']ll represents
the nondeterministic concurrent iteration but here the external entity

4.5. TAMOGOLOG - A FORMAL TASK MODELING LANGUAGE 99

decides rather than system that how many instances of the task will
participate in the concurrent iteration.

The off-line search construct X(I'), from IndiGolog, deals with off line ex-
ecution. TaMoGolog follows IndiGolog for the normal execution as online exe-
cution; especially, those parts that deal with external entity decisions because
they cannot be executed off-line due to the nature of making decision at run
time. So, TaMoGolog uses IndiGolog off-line search operator ¥(I') to provide
off-line search block, which indicates that the task(s) inside this block will be
executed after checking if it is possible to finish these successfully. If it is not
possible to finish any possible path successfully then the system does not start
its execution. This is very useful in many cases where there is need to check
whether the task(s) will be able to finish successfully before starting execution.
For example, if we have a scenario with three tasks that are: the user selects
a book, the system automatically transfers money from user’s bank account
to the credit card, and then the system completes the payment transaction
automatically. It is possible that the payment system may not accept the
given credit card and as the first two tasks were executed successfully before
reaching to this point, so the money has already been transferred to the credit
card; hence can not be back to the bank account. In these kinds of situa-
tions, it is better to put these tasks into off-line search block where they are
checked firstly and if any successful path exists then the system will follow that
particular path. The IndiGolog uses regression formulas to determine off-line
searching.

TaMoGolog also uses ConGolog interrupt construct < ¢ — I' > for defining
interrupt related conditions and tasks. It uses the same concept as provided
by the ConGolog for interrupts; that is, if the interrupt gets control from
higher priority processes when the condition is true then the task starts its
execution; otherwise, if the condition never becomes true then the task is never
executed. Most of the task modeling languages in HCI ignore this important
factor. Through this approach, it is feasible to model them appropriately in
the resulting task model; e.g., < (temp > 20) — startAdlarm > says that
when the temperature is above 20 then the startdlarm task will start its
execution.

The failure-handling category provides constructs deal with alternative
path(s) in the case if the current path fails to finish for achieving the desired
goal(s). In normal online execution, if the path (here path means a task or set
of tasks for achieving a particular goal) fails to finish then it is considered the
failure of the targeted goal, but Golog-BDI adoption approach [107] provides
a construct to deal with it. TaMoGolog uses online alternative execution con-

CHAPTER 4. FRAMEWORK FOR TASK MODELING
100 FORMALIZATION

struct from Golog-BDI adoption approach and also provides another construct
for off-line failure-handling.

e The construct [['; > I's], taken from Golog-BDI adoption, is for online
failure-handling and defines that the task I'; starts its execution and
if it finishes successfully then the task I'y will not be executed at all;
otherwise, if I'; fails anywhere during its execution then I'y will start
its execution from that point. This is useful for providing alternative
solution(s) if the current solution fails for achieving the desired goal.
TaMoGolog assumes online execution in this form, so there is no back
tracking. The system leaves the failed task as it is and starts the al-
ternative solution. For example; [payByCard > payByBank]| tells that if
payment transaction by card fails to finish, may be due to insufficient
funds, then the system will complete the payment transaction through
bank account.

e TaMoGolog provides off-line alternative execution construct [I'y >y I'o].
This construct checks off-line while using IndiGolog search construct (%)
before performing task I'y and if I'; is able to finish successfully then
I'y will start execution; otherwise, I'y will be dropped and the alter-
native solution will be executed. TaMoGolog uses two variants of off-
line support: partially off-line in which only the task I'y is checked
through search operator, and fully off-line in which task I's is also
checked through search operator. This solution is applicable only at
those places where there is not any online block in that part of the
task model. If we take the previous example with this construct then
[payByCard >y, payByBank| with partial online means that before going
forward to start payByCard task, the system first checks whether it is
possible to complete payment transaction by this task, and if so, then it
starts executing this task; otherwise, it drops payByCard and completes
the payment transaction through payByBank. Whereas, [payByCard >y ¢
payByBank| with fully online means that payByBank will also be checked
from IndiGolog search operator before execution.

4.5.3 TaMoGolog Syntax and Semantics

This section provides TaMoGolog syntax framework and its semantics for con-
structing task models. TaMoGolog uses situation calculus [102] to provide
predicates structure for defining different properties of the task model. It also
uses Golog procedure definition and the set of constructs, provided in Table
4.4, to define tasks structure and their relationships in a task model. Using
predicate framework of situation calculus, it is possible to customize or to

4.5. TAMOGOLOG - A FORMAL TASK MODELING LANGUAGE 101

extend TaMoGolog given syntax structure to accommodate it to any targeted
environment.

On the semantics side, at the top level for tasks execution, TaMoGolog
uses transition semantics for single-step execution and evaluation semantics
for complete execution [51, 85, 18, 102], same as in the Golog-family, and
assumes high-level program execution [19] where program (in our case, a task
model) evolves after executing an action (in our case, a unit task, waiting task,
condition checking, or any task performed in atomic way) in a step.
Following are the details of the TaMoGolog syntax and its semantics:

Task Model Framework Structure

TaMoGolog provides a set of predicates to denote the various objects of inter-
ests for the task modeling framework. These domain independent predicates
are:

ViewModel(n): n is a view model

ViewType(p): p is a view type

TaskModel(m): m is a task model

ModelContainer(n,p): the view model n contains view type p
ViewModelTask(p,m): the view type p is realized by a task model m

The following definitions of above last two predicates define relations between
framework concepts, as described early in Section 4.4.

ModelContainer(n,p) = ViewModel(n) A ViewType(p)
ViewModel Task(p,m) e ViewType(p) N TaskModel(m)

The first defines the relation between wview model and view type, while the
second one defines relation between view type and task model.

Continue Example: For the example described in Section 4.4.4, we provide:

ViewModel (book-purchasing) .

ViewType (user-interactive) .

ViewType (complete) .

TaskModel (book-purchasing-user) .

TaskModel (book-purchasing-complete) .

ModelContainer (book-purchasing, user-interactive).
ModelContainer (book-purchasing, complete).
ViewModelTask(user-interactive, book-purchasing-user) .
ViewModelTask(complete, book-purchasing-complete).

© 00 NO Ok WN -

CHAPTER 4. FRAMEWORK FOR TASK MODELING
102 FORMALIZATION

Task and Task Types

TaMoGolog provides a set of domain independent predicates for defining tasks
and categorizing their types. TaMoGolog categorizes task, as defined by our
framework, into three basic types; i.e., unit, waiting, and composite; and
provides predicates for each of these.

UnitTask(v): v is a unit task
Waiting Task(w): w is a waiting task
CompositeTask(I'): T'is a composite task

For specifying any other task in the task model, whose exact basic category is
not yet known, TaMoGolog provides predicate:

Task(a): « is a task

It is still possible to associate this task to some behavioral type. This is useful
where there is not full knowledge of basic type or where someone wants to
extend the basic categories through defining a new category of tasks.

TaMoGolog provides two predicates for defining task types, other than the
above basic types, and to associate tasks to those defined types:

Type(t): t is a task type, normally represents behavioral category
TaskType(a, t): a is a task of type ¢

A task that is associated with some type firstly must be defined as a task of

either some basic type or from the predicate Task. Formally:

TaskType(a, t) <
Ao {(Task(a') V UnitTask(a') vV WaitingTask(a') vV Composite Task(a'))A
a=ao} NI Type(t') Nt =t}

Continue Example: Few tasks from our continuing example (Section 4.4.4):

UnitTask (Adding-Book-To-Catalog) .

UnitTask(Payment-Transaction) .

WaitingTask(Transaction-Completed) .

CompositeTask(Payment-Method) .

Type(services) .

Type (system) .

Type (user) .

Type (user-interaction).

TaskType (Adding-Book-To-Catalog, user).
. TaskType(Adding-Book-To-Catalog, user-interaction).
. TaskType(Payment-Transaction, services).
. TaskType(Transaction-Completed, system).

©O© 0 NO Ok W N -

N
N = O -

4.5. TAMOGOLOG - A FORMAL TASK MODELING LANGUAGE 103

Composite Task Definition

TaMoGolog uses Golog procedure definition for providing composite task defi-
nition. The following is procedure definition taken from Golog [73] where P is
the name of procedure, ¥ is parameter list, and § is a program providing the
structure of procedure:

proc P(%)d end

At parent-level, the composite task is called through Golog procedure call
definition; that is, by the name of the procedure F(é) and the parameter
passing is through call-by-value [18, 73].

TaMoGolog assumes that for each composite task, there will be a procedure
definition against it to define its structure.

CompositeTask(I'(Z)) < 3P(y), 6, n.{proc P(y)d end A" = PA |, (z; = y;)}

Where |, (z; = y;) stands for the conjunction of (z1 = y1) A (x2 = y2) A ... A
(xn = yn) and provides substitution in the form Pg . Note that we use this
same definition following in other places.

TaMoGolog restricts that each composite task can have only one procedure
definition against it in a task model.

Composite Task(I'(Z)) A (proc P(%)0 end) A (proc Q(Z)d end) A (I' =
PINT =Q)A3n. [y (mi =y Nai = z) = P(y) = Q(2)

Which specifies that only one procedure definition is possible for each com-
posite task with the same parameter list. It is possible to have two composite
tasks in a task model with same name but with different parameter list. In
that case, these are treated as two separate composite tasks.

Continue Example: Book-Purchasing and Payment-Method composite tasks
definition from the Book-Purchasing complete-view task model (Section

4-4-4):

proc Book-Puchasing
[Human-User (Book-Selection;
Adding-Book-To-Catalog; Making-Catalog)]*;
[Human-User (Checking-Out | Cancel-Order)]
end

proc PaymentMethod
[Human-User (Pay-By-Card|Pay-By-Bank|Pay-By-Voucher)]
end

© 00 NO O WN -

CHAPTER 4. FRAMEWORK FOR TASK MODELING
104 FORMALIZATION

Top Hierarchy

The predicate TaskModel(m) with name m provides the top hierarchy of the
tasks structure in a task model. The realization is defined by a composite task
with the same name as the task model name. This composite task resides at
the top level in the task hierarchy of the task model. Formally:

TaskModel(m(Z)) = 3n,T'.{ CompositeTask(I'(y)) N m=TA | (x; = vi)}

TaskModel(m(Z)) A CompositeTask(I'(§)) A CompositeTask(I'(Z)) Am =
CAm=T'A3n. ", (z;=vyi Nz, = z;) = T'(y) =T"(2)

The above statements defines that there exists only one composite task with
the same name and parameter list as the name and parameter list of the task
model.

Waiting Task Definition

TaMoGolog treats waiting task as one from the basic task category. The
Golog-family provides a waiting/test action as a situation calculus formula
where the system checks whether it meets the condition or not and as the
condition becomes true the system moves to the new state, which in fact
remains the same. The Trans definition of waiting/test action from [73] is
given in Section 4.2.2.

TaMoGolog uses the same semantics for the waiting task, but provides a
way to model them as a basic type category in the task model through Wait-
ingTask predicate. This is useful when there is need to model this explicitly as
a separate task in a task model. In this case, this is modeled through Waiting-
Task predicate; otherwise, this can also be modeled as part of the composite
task structure rather than defining it separately.

FEach waiting task, defined through WaitingTask predicate, will have a
Golog procedure definition that will contain the related Golog waiting/test
action through a situation calculus formula. Formally:

Waiting Task(w (Z)) < 3P (Y), pw, n.{proc P(§)¢? end A w = PA |]-,
(i = yi)}

WaitingTask(w(Z)) A (proc P(§)¢-? end) A (proc P(2)¢5? end) A (w =
P)N(w=Q)AIn. [y (zi =y Nzi = 2;) = P(y) = Q(2)
External Entities

TaMoGolog defines external entities as those applications, systems, or human
users outside of the system boundaries, which interact with the system in or-
der to execute tasks requested by the system, generate exogenous actions, or

4.5. TAMOGOLOG - A FORMAL TASK MODELING LANGUAGE 105

participate in making nondeterministic decisions. TaMoGolog provides follow-
ing predicates to denote the various objects of interests related to external
entities:

Agent(agt): agt is an external entity (called as agent) that interacts with the
system

AgtEnv(agt, s): agt has control in situation s for making decision in external
nondeterministic constructs

Responsible(agt, «): external entity agt is responsible for executing task

Here, the predicate Responsible defines the relation between the external entity
and the task in a task model for which external entity is responsible. Formally:

Responsible(agt, o) < Jagt’ {Agent(agt') A agt = agt'} A I/ {(Task(a’) V
UnitTask(a) V WaitingTask(a) V CompositeTask(a/)) A a = o'}

The frameworks for managing and implementing execution of actions/tasks by
external entities are normally domain dependent and vary from one domain
to another. An example of such a framework is provided by de Leoni et al.
[22, 21]. Their framework provides and implements an approach for adap-
tive process management systems where the tasks are executed by external
services. The framework for how the external entities make decision for exter-
nal nondeterministic constructs will be discussed in the forthcoming Section
4.6. Here, we will not divulge into the details of how to define these at low-
level; but, the frameworks can be defined easily by using situation calculus to
describe low-level details targeting some particular domain and environment.

Continue Fxample: Agents and some of their responsible tasks from the
Book-Purchasing complete-view task model (Section 4.4.4):

Agent (Human-User) .

Agent (CreditCardSystem) .

Agent (Bank) .

Agent (VoucherSystem) .

Responsible (Human-User, Search-Criteria).

Responsible (Human-User, Shipping-Details).
Responsible(CreditCardSystem, Payment-Transaction).
Responsible(CreditCardSystem, Transaction-Notification).
Responsible(Bank, Transaction-Notification).

© 0 NO Ok WN -

Exogenous Tasks

These are the actions that are directly not part of the target system. These are
generated by external entities (e.g., some external application or system) for

CHAPTER 4. FRAMEWORK FOR TASK MODELING
106 FORMALIZATION

notifying particular inputs or for providing few services while running behind
the scene and the system in question has no direct control over their generation.
Golog-family calls these as exogenous actions [18] and TaMoGolog also uses
the same notation. These can be defined in a task model while using the
predicates Type (exog) and TaskType (a, exog), where ezrog type is reserved
for exogenous actions/tasks.

Continue Example: Transaction-Notification is an exogenous task in the
Book-Purchasing complete-view task model (Section 4.4.4) that is generated
by credit card system, bank, or voucher system when the transaction has been
completed successfully.

1. Type(exog).
2. TaskType(Transaction-Notification, exog).

Fluents

TaMoGolog uses Golog-family approach for defining both kinds of fluents: re-
lational and functional. It provides these three predicates for defining fluents
using situation calculus.

Fluent(f): f is a fluent either functional or relational
FluentDef (f, d): fluent f is defined by definition d
FluentInit(f, z): initially, fluent f has value z

In above predicates, FluentDef is used when a fluent has a definition formula to
evaluate its value. For example, FluentDef(fireDanger,temp > 40) provides
definition of fluent fireDanger and the value of this fluent depends on provided
definition; i.e., becomes true if temp > 40, otherwise false. The predicate
FluentInit defines the values of fluents at the initial time of the task model.
TaMoGolog also provides a predicate InitialState that defines the state of the
task model at initial state when no task from the task model has been executed
so far.

InitialState(m)= Qp,

Where m stands for the name of the task model, while situation calculus
formula €2, is a conjunction of all fluents’ initial states and may have other
axioms that provide some knowledge about the initial state of the task model.
This predicate is equivalent to Golog initial situation predicate Sp.

Precondition Axioms and Postcondition Effects

TaMoGolog uses situation calculus approach [102] for defining the set of pre-
condition axioms for each unit task and the postcondition effects on fluents

4.5. TAMOGOLOG - A FORMAL TASK MODELING LANGUAGE 107

after execution of a unit task. For defining the precondition axioms, it provides
predicate:

Precondition (v) =11,

Which is equivalent to situation calculus predicate Poss(a, s) = I1,(s), where
formula II,, is a conjunction of all conditions under which the unit task is pos-
sible to execute and is equivalent to situation calculus formula II, by restoring
situations s.

For defining the postcondition effects on fluents after execution of a unit task,
TaMoGolog uses predicate:

Postcondition (v, F(Z),Qp(Z)) = Op(X)

Which defines that executing task v has an effect on fluent F' under any con-
dition Qp and the new value of fluent F' becomes according to the situation
calculus formula ® r, and Z provides free variables in the predicate. This pred-
icate is equivalent to the successor state axioms in situation calculus defined
as F(Z,do(a, s)) = Op(Z,do(a, s),s) where O is a combination of ®r and
Q. TaMoGolog emphasizes on simple syntax form (more near to Prolog style)
for writing postcondition effects on fluents as per nature required for our task
modeling framework.

Continue FExample: Few examples of fluents, the precondition axioms, and
the postcondition effects to fluents from the Book-Purchasing complete-view
task model (Section 4.4.4):

1. Fluent(OrderPrice). FluentInit (OrderPrice, 0).

2. Fluent (ShoppingCartList) . FluentInit(ShoppingCartList, {}).
3. Fluent(ShippingPrice). FluentInit(ShippingPrice, 0).

4. Fluent (BooksPrice). FluentInit (BooksPrice, 0).

5. Fluent(CardSelected). FluentInit(CardSelected, false).

6. Fluent(BankSelected). FluentInit (BankSelected, false).

7. Fluent(VoucherSelected). FluentInit(VoucherSelected, false).
8. Fluent(SelectedBook) . FluentInit(SelectedSelected, {}).
9.

10.Precondition(Confirm-Payment) = CardSelected V BankSelected V
11. VoucherSelected.

12. Precondition(Price-Generation) = —(ShoppingCartList = {}).

13.

14 .Postcondition(Adding-Book-To-ShippingCart,ShoppingCartList,true)=
15. ShoppingCartList U {SelectedBook}.
16.Postcondition(Price-Generation,OrderPrice,true)=

17. BooksPrice + TotalVAT + ShippingPrice.

CHAPTER 4. FRAMEWORK FOR TASK MODELING
108 FORMALIZATION

Failure Handling: Off-line Alternative Execution Construct

TaMoGolog uses Golog-BDI adoption approach [107] for providing failure han-
dling constructs where in the case of the failure of a task path to achieve
some goal, the system adopts the alternative path. The alternative path may
suggest a new path to achieve the goal or may ask to try the same path, it
entirely depends on what is in the alternative path. TaMoGolog provides two
constructs: the first one is online alternative execution construct [I'y > I'g]
directly taken from Golog-BDI adoption [107]; while the second one off-line
alternative execution construct [I'y >y T's] is defined by TaMoGolog based
on the Golog-BDI adoption approach by using the IndiGolog off-line search
construct. TaMoGolog provides two kinds of Trans definition for the off-line
alternative execution construct [I'; >y I's]. They are:

This first Trans definition supports partially off-line in the sense that off-line
search block is used explicitly just on the first path. The alternative path may
have its own search block, but not explicitly provided by the Trans definition.
So:

Trans([I'y >y, 9], 5,1V, s") =
(Ary.Trans(I'y, 5,1, s") AT =T >x, To A3s*.Do(I', s', s%))V
(=3s*.Do(T'y, s,8*) A Trans(T'a, s, I, §)).

Which implies that the transaction will be from I'; if and only if there exists
some path that leads this selected task towards the finishing state; otherwise,
I'y will be discarded and the transaction will be from I's. The subscript ¥, in
the construct stands for partial-searching.

This second Trans definition supports fully off-line in the sense that off-line
search block is applied explicitly on both paths, the first one and the alterna-
tive path. So:

Trans([['y >3, To], 8,1, 8') =
(3Ar).Trans(l'y, s, T,) NIV =T >x, Ta A3s*.Do(I', 8, s))V
(—3s*.Do(T'1, s, s*) A Trans(Ts, s,T7,s") A Is*™*.Do(T", ¢, s**)).
This implies that the transaction will be from I'; if and only if there exists some
path that leads this selected task(s) towards the finishing state; otherwise, I';
will be discarded. Then I'y will also be checked for the existence of some
path in it that leads it to the finishing state. If such a path exists then the
transaction will be from it; otherwise, it will be assumed as the failure of the
whole path. The subscript Xy in construct stands for full-searching.

The Final definition is same for both cases, where it is assumed to be in final
if I'y is in final form or in the second case when there is no success path in I'y
and I's is in final state.

4.5. TAMOGOLOG - A FORMAL TASK MODELING LANGUAGE 109

Final([l'1 >y o], s) = Final(T'y1,s)V —3s..Do(T'1, s, sx) A Final(Ts, s).

Goals in a Task Model

A task-model structures system activities (tasks) and forms relations between
them to define how to achieve some targeted goal (or a set of goals) through
performing these set of activities. In Golog-family, a high-level program pro-
ceeds till it finishes its execution successfully and provides the end state.
Whereas, a goal is a state of the system that is described by a set of flu-
ents with particular values that we want to achieve. If we reach to a state
where the task model finishes successfully after executing a series of tasks,
says [a1, g, ..., ap] where ay is executed before ap and so on, and the set of
fluents representing the goal is subset of the set of fluents of the current state
of the system, and the goal formula satisfies the conjunction of the goal related
fluents’ current states; then we say that our task model finished successfully
and also achieved the targeted goal.

Keeping in this view, TaMoGolog provides the following predicate to write
goal(s) in a task model.

Goal(g) = Ay

Where g stands for goal name and A, is a situation calculus formula for
representing state of set of fluents that must be achieved at the finishing state
of the task model to achieve the desired goal. It is possible to reach more than
one ending states due to the nondeterministic branches of the task model; so,
there may be more than one path to achieve the same goal or there may be
more than one goal to be achievable through one task model. In TaMoGolog,
a task model is considered to be successful if any one of these goals have been
achieved along the finishing state of the task model; otherwise, it is considered
to be the failure of task model.

Overall, the task model must satisfy the Do predicate provided in ConGolog
specification [18], which represents the successful execution of the task model
m starting from situation s and finishing in situation s’ . In TaMoGolog, at
finishing situation s’ some goal must also be satisfied. Formally:

Do(m,s,s") = Im' Trans*(m,s,m’,s') A Final(m/,s") A 3g.Ay(s).

Domain of a Task Model

The above provided predicates are used to define properties of a task model.
Additional predicates can be added to define low-level details and to provide
any domain knowledge in task models. In summary, Drjs is a domain of a
task model in TaMoGolog that is specified by a theory in the following form:

CHAPTER 4. FRAMEWORK FOR TASK MODELING
110 FORMALIZATION

e Axioms describing task modeling framework structure

e Set of tasks and axioms describing their types

e Set of fluents and axioms for defining fluents’ definition and initial values
e For each unit task, set of precondition axioms

e For each unit task, set of postcondition effects (successor state axioms)
that describe how the execution of the task changes the values of effected
fluents

e Definition of each composite and waiting task through Golog procedure
definition

e Axioms describing external entities (agents) and their responsible tasks
(e.g., exogenous tasks)

e Axioms describing predicates for any domain knowledge
e Set of interrupts and their definitions
e Axioms describing the initial state of the task model

e Axioms describing the set of goals of the task model

4.6 A Framework for External Nondeterministic
Constructs

GameGolog [20], a recent extension to the Golog-family, provides a way to
model external entities, called agents, participating in making decisions for
nondeterministic constructs. TaMoGolog uses constructs from GameGolog along-
side its own three constructs based on the approach defined by GameGolog. At
the higher level, TaMoGolog uses the same semantics as defined by GameGolog,
but it differs slightly when defining the domain theory using situation calculus
at lower level.

First, we provide some common assumptions. Following, when we talk
about agent, we mean it as some external entity that can be another system,
some external application, or some human user (which, in fact, interacts with
the system through some interface provided by the system itself or by some
external application/system, and this interface acts just as a communication
channel between the human user and the system; e.g., when a user decides
a payment method on a web page, the web page provides a communication
channel between the user and the system). Another assumption, when we say
the system; we mean it as the system in question that is reflected by the task

4.6. A FRAMEWORK FOR EXTERNAL NONDETERMINISTIC
CONSTRUCTS 111

model or the main user program in the case of Golog-family based high-level
program. Following is TaMoGolog approach for defining the framework for
external nondeterministic constructs.

Nondeterministic Decision Environment and Agent Environment

TaMoGolog defines a way to give the control to the agent for making nondeter-
ministic decision. We say, nondeterministic decision environment is a point in
a task model or in a high-level program where there comes a nondeterministic
choice branch. TaMoGolog assumes that in normal circumstances, the system
(normally the user program in Golog-family) controls over the nondetermin-
istic decision environment, unless otherwise stated. In the cases of internal
nondeterministic constructs, as the system controls over environment so, ide-
ally, it makes the decision of the branch nondeterministically. Sometimes,
this nondeterministic decision depends on the implementation environment or
based on some conditions.

In the case of external nondeterministic constructs, TaMoGolog assumes
that the system gives the control to the interested agent for making the non-
deterministic decision. Then, the system performs as instructed by the agent.
TaMoGolog calls it as agent environment where the agent has been given the
control to make decision in nondeterministic decision environment. The pred-
icate AgtEnv is used to define an agent environment. An agent can make the
decision only if it has control over the agent environment and then it makes the
system aware of such decision. At this point the system takes the control back
from the agent and performs as instructed by the agent. It is also noted that at
any given moment, only one agent can have the control of agent environment
and the system manages this control in order to avoid any collision.

Actions Type

For this framework, TaMoGolog differentiates actions into three categories:
controlling actions that are used to manage the control of agent environment,
choice actions based on GameGolog approach that indicate the agent’s deci-
sions; and normal actions/tasks that, in fact, are all other actions and are
executed as part of the program to perform different things. GameGolog pro-
vides the foundation for these using a specialization of situation calculus where
each action has an agent parameter along other parameters. TaMoGolog as-
sumes that only the controlling and choice actions have an agent parameter
explicitly in order to record the decision made by an agent.

CHAPTER 4. FRAMEWORK FOR TASK MODELING
112 FORMALIZATION

Agent Environment Framework

TaMoGolog provides actions, fluents, and predicates using situation calculus
for managing the agent environment to give the control to the agent for mak-
ing nondeterministic decision. For this, TaMoGolog provides two controlling
actions; one that gives control to a particular agent for making the nondeter-
ministic decision, and the second is to take the control back from the agent.
TaMoGolog assumes that an agent can only make the nondeterministic de-
cision after attaining the control of agent environment and during this time
when an agent has control over the environment; no other agent can take the
control of the environment or make any nondeterministic decision. The two
controlling actions are:

startControl(agt): the agent agt has been given the control of the agent
environment

endControl(agt): the control of the environment has been taken from agent
agt

We assume that these actions do not affect fluents in any other way than
the ones’ defined below. TaMoGolog provides a domain independent fluent
Free(s) that indicates whether the agent environment is free to take control
by any agent for making nondeterministic decision. Initially, the Free is true
and as an agent gets the control, it becomes false. The system gives control
to an agent only if the Free is true; that means, currently no other agent has
control over environment; otherwise, if the Free is false then the requesting
agent waits till it becomes true. When an agent leaves the control, the Free
becomes true so any other agent is eligible to get the control. The effect axioms
for Free fluent are:

Free(do(Jagt.endControl(agt), s))
—Free(do(3agt.startControl(agt), s))

These describe that the fluent Free becomes false when the agent has been
given the control through startControl action, while becomes true again after
the control has been taken from the agent through endControl action. The
success state axioms for the fluent Free are:

Free(do(a,s)) =
Jagt.a = endControl(agt) V (Free(s) A =(Jagt.a = startControl(agt)))

TaMoGolog provides a functional fluent control Agt(s) that provides the name
of the agent who currently has control over the agent environment. TaMoGolog
also provides a special functional defined fluent sysAgt(s) that gives the name
of the system, as when the control is taken from any agent, it is given back
to the system and at this stage the controlAgt (s) contains the system name.
The sysAgt (s) is defined as:

4.6. A FRAMEWORK FOR EXTERNAL NONDETERMINISTIC
CONSTRUCTS 113

sysAgt(s) = sys = SysAgent(sys)

In a task model, there can be only one system agent defined through sysAgt
predicate. Formally:

sysAgt(sys) A sysAgt(sys’) = sys = sys’
The successor state axioms for controlAgt (s) are:

control Agt(do(a, s)) = agt =
a = startControl(agt) V (3agt’.a = endControl(agt’) A agt = sysAgt(s))V
(controlAgt(s) = agt A (a # startControl(agt) V a # endControl(agt)))

TaMoGolog provides a special predicate AgtEnv(agt, s) that takes an agent
name and tells whether currently the agent has control over the agent envi-
ronment. In a situation s, only one agent can have control over the agent
environment. The effect axioms for AgtEnv are:

AgtEnv(agt, do(startControl(agt), s))
—AgtEnv(agt, do(endControl(agt), s))

Which say that an agent gets control of agent environment after the system
gives the control through startControl action and the agent does not stay any
longer in it after the system takes back the control through endControl action.
The successor state axioms for the predicate AgtEnv are:

AgtEnv(agt,do(a,s)) =
a = startControl(agt) V (Agt Env(agt, s) A a # endControl(agt))

The axiomatization of AgtEnv predicate contains the following properties:

1. An agent keeps control of agent environment between startControl and
endControl actions, and it is possible that the system performs some
choice actions between these controlling actions.

AgtEnv(agt, s) < Ja, s, 8", 8" {
s = do(startControl(agt), s")A
(s" = do(endControl(agt), s) N ~AgtEnv(agt,s"))V
(ChoiceAct(a)) N Poss(a, s) A s” = do(a, s) N AgtEnv(agt, s") N " =
do(endControl(agt), s") N = AgtEnv(agt, s"))

}

2. If an agent gets control over agent environment and any action other
than endControl happens, the agent still controls the agent environment
in new state.

CHAPTER 4. FRAMEWORK FOR TASK MODELING
114 FORMALIZATION

AgtEnv(agt, s) <
3s',Va{s' = do(a, s) A a # endControl(agt) A\ Agt Env(agt,s’)}

3. In a situation s, only one agent has the control over agent environment
to make nondeterministic decision.

AgtEnv(agt, s) N AgtEnv(agt’, s) = agt = agt’

The precondition axioms for controlling actions are:

Poss(startControl(agt), s) = Free(s) N ~AgtEnv(agt, s)
Poss(endControl(agt),s) = —Free(s) A AgtEnv(agt, s)

The startControl action is possible if the agent environment is free to given
control to any agent. The endControl action is possible if the agent environ-
ment is not free and currently the same agent controls it.

Choice Actions

TaMoGolog uses the approach for choice actions same as described by GameGolog
[20]. These are special actions to model the decisions of agents. These actions
have an agent parameter in order to save agent’s decision in the history and to
make sure that only the controlling agent is making the decision. TaMoGolog
uses the following set of choice actions from GameGolog:

left(agt) : the agent decides to select the left choice
right(agt) : the agent decides to select the right choice
continue(agt) : the agent decides to continue the iteration
stop(agt) : the agent decides to stop the iteration
pick(agt,) : the agent picks a binding for variable z

TaMoGolog provides this one extra choice action:

number(agt,num) : the agent gives the number num for telling that how
many instances will participate in the concurrent iteration

TaMoGolog provides a special predicate ChoiceAct(c) where c¢ is a choice ac-
tion. Only the agent that has control over agent environment can perform it.
Formally:

do(c(agt), s) N ChoiceAct(c(agt)) = AgtEnv(agt,s)

The precondition for a choice action is that the same agent has control over
the agent environment. So:

Poss(c(agt), s) = ChoiceAct(c(agt)) N AgtEnv(agt, s)

4.6. A FRAMEWORK FOR EXTERNAL NONDETERMINISTIC
CONSTRUCTS 115

External Nondeterministic Decision Framework

The above sets of predicates and actions provide the foundation for the frame-
work of external nondeterministic constructs. In order to make a nondeter-
ministic decision, TaMoGolog assumes the execution of three actions, the first
one is a controlling action for giving the control to the agent, the second one is
a choice action performed by the agent to make the nondeterministic decision,
while the last one is again a controlling action to take back the control from
the agent. So:

do(endControl(agt), do(c(agt), do(startControl(agt), s)))

Where ¢ (agt) is a choice action performed by agent. It is interesting to note
that in the case of concurrency, if a process is in the agent environment then
any other process cannot enter into the agent environment as we are using a
single predicate Free for all processes for controlling the agent environment.
If any other process wants to get control over the agent environment then it
needs to wait till the first one leaves the control.

The Trans function of a choice action in GameGolog is equivalent to:
1. Trans(caa, s, cae, §') = Poss(caa, s) N s’ = do(cga, s) N cpe = nil

Where cgq is a choice action in GameGolog. On the other side; in TaMoGolog,
a choice action is executed between the controlling actions. Formally:

2. Do(drGend, S,s') = Jagt, s”,s" {
Poss(startControl(agt), s) A 8" = do(startControl(agt), s)A
Poss(cra, s") N s = do(era, s") A Poss(endControl(agt), s")A
s' = do(endControl(agt), s")}

Where d7rgend is a program in TaMoGolog that contains a sequence of three
actions; i.e., startControl(agt), crg(agt), endControl(agt); and cr¢ is a choice
action in TaMoGolog. So, we can define Do(drgend, S, ') as:

3. Do(drGend, s,s') =
s' = Jagt.do(endControl(agt), do(cra, do(startControl(agt), s)))

In other words, Do(d7Gend, S, $') in terms of three Trans functions:

4. Do(d1Gend, s,s") = 3s", 8" {
Trans(tra, s, thhq, s") N Trans(cra, 8", dpg, ') N Trans(tra, s, e, §)}

Where tr¢ and crg are controlling action and choice action respectively, and
their Trans definitions are:

CHAPTER 4. FRAMEWORK FOR TASK MODELING
116 FORMALIZATION

5. Trans(tra, s,thq, s') = Poss(tra, s) N s’ = do(tra, s) A the = nil
6. Trans(cra, s, e, ') = Poss(cra, s) N s' = do(erg, s) A e = nil

If we compare definition 1 with 2 and 4, the difference is the controlling actions
before and after the choice action. As controlling actions do not affect fluents
other than ways described above; so, we can define a transformation function
that can transfer a GameGolog choice action into TaMoGolog program (d7¢Gend)
for external nondeterministic decision:

7. Y(cga) = O1Gena = startControl(agt); cra; endControl(agt)
Performing Y(cqq) is:
8. do(Y(cgq), s) = do(endControl(agt), do(cra, do(startControl(agt), s)))
Therefore:

For every choice action in GameGolog, we have a transfor-
mation function that can transfer GameGolog choice action
into TaMoGolog program for external nondeterministic dec-
1ston,; where the Do and Final are:

Do(Y(cai), s,8") = Do(0rGend, S, 5)
Final(Y(cgq), s) = Final(drGend, S)

Here, cga stands for a choice action in GameGolog and O7Gend
stands for a program for external nondeterministic decision
in TaMoGolog as defined in definition 7.

Trans and Final Predicates for External Nondeterministic Con-
structs

TaMoGolog uses GameGolog choice actions with transformation function where
these come in the definition of Trans and Final. For example, the GameGolog
choice action left(agt) is replaced with Y(left(agt)) that transfers it into
(startControl(agt);left(agt); endControl(agt)).

So, the Trans and Final definition of GameGolog external nondeterministic
branch construct [agt I'; | T'2] in TaMoGolog is:

Trans([agtTy | To], 8,17, 5") =
s =do(Y(left(agt)),s) NT' =T1 Vs = do(Y(right(agt)),s) NT' =Ty

Final([agtT1 | Tg],s) = Flse

4.6. A FRAMEWORK FOR EXTERNAL NONDETERMINISTIC
CONSTRUCTS 117

The same rule applies to other external nondeterministic constructs that are
taken from GameGolog. The Trans and Final definitions of them are already
defined in Section 4.2.2. The difference is that in the places of choice actions,
TaMoGolog uses the transformation function definition.

Here, we provide Trans and Final definitions of TaMoGolog own defined
external nondeterministic constructs.

1. External selected priority concurrency [agt T'1 ()T'9]:

Trans(lagt T1 ()], s, TV, s") =
s =do(Y(left(agt)),s) AT = (T'1))'9)V
s' = do(Y(right(agt)),s) NT" = (T'2))T'1)

Final(jagt T'1()T'9], s) = False

The Trans definition says that the agent chooses to go to the left or to
the right, and then the remaining task structure is the normal concurrent
priority with the chosen task has higher priority.

2. External first-step decision concurrency [agt T'1(|)T2]:

Trans(lagt T1(|)T2], s, TV, s") =
s =do(Y(left(agt)),s) NT" = (T1({| T2)V
s' = do(Y(right(agt)),s) NI = (T2 [))T'1)

Trans(T1({| Tg,s, IV, s') = Ar,.I" = (I} || T'2) A Trnas(Ty,s,T7, s')
Trans(T'y |))Te, s, 17, ¢") = A0L.1" = (T'1 || T%) A Trnas(Te, s,T%, s')

Final([agt T'1(|)T2], s) = False
Final(T'1({| T3, s) = Final(T'1, s) A Final(Ty, s)
Final(T'; |))T9, s) = Final(T'1,s) A Final(T'2, s)

These above definitions say that whichever choice the agent chooses, the
next transition will be from the chosen task, and then the remaining part
is a concurrent tasks structure between the remaining part of the chosen
task and the unselected task. To handle this, TaMoGolog introduce new
“auxiliary” constructs (I'1((| I'2) and (I'; |))T"2) that model this state of
computation after the agent chooses to go left or right respectively. It is
interesting to note that these two new “auxiliary” constructs are in final
state only if both participated tasks are in final states.

CHAPTER 4. FRAMEWORK FOR TASK MODELING
118 FORMALIZATION

3. External selected concurrent iteration [agt T

Trans([agt T, 5,17, 5') =
s" = do(Y (number(agt)), s)A
((num =0AT =True?)V (num > 0AT = [F]“"um))

Final([agt T, s) = False

The Trans definition describes that the external entity gives the number
it wants the task instances in the concurrent iteration, and then the
remaining tasks structure is the concurrent iteration of the task with
that given number of instances.

Mapping to ConGolog Program

As defined in [20], GameGolog programs that do not involve the external
every-step concurrency construct can be expressed directly into the ConGolog
programs. For this, it defines a translation function 0 by induction on the
structure of GameGolog program. We apply a translation function dp¢, after
amending the original translation function 0 defined in [20], by induction on
TaMoGolog programs. Interestingly, TaMoGolog own defined concurrency re-
lated constructs except the external first-step decision concurrency construct;
i.e. [agt T'1{|)T'2], can also be expressed directly in ConGolog programs. Here
we define these except those two constructs (external normal concurrency and
external first-step decision concurrency):

Ora(a) =«
Orc(9?) = ¢?
Ora(T'1;T2) = 0rq(T1); Ora(T2)

Orc([agt ' [To]) =
startControl(agt); [le ft(agt); endControl(agt); Ora(I'1) |
rigt(agt); endControl(agt); Orc(T2)]

Ora(lagt mx.T)) =
startControl(agt); mx.pick(agt, x); endControl(agt)Ora(T)

Ora(lagt TT") =
startControl(agt); (continue(agt); endControl(agt); Org(T'); startControl(agt))*;
stop(agt); endControl(agt)

Ora(lagt T1()T'2]) =
startControl(agt); [le ft(agt); endControl(agt); Ora(I'1))2) |
rigt(agt); endControl(agt); Ora(T'2))I'2)]

4.7. SUMMARY 119

Orc(lagt) =
startControl(agt); number(agt, num); endControl(agt); [(num = 0)?; True |
(num > 0)?; dra([T)1"™)]

Implementation of the Framework for External Nondeterministic
Constructs

We provide the low-level implementation details of the framework for exter-
nal nondeterministic constructs, defined above, in two forms. Appendix A
provides Golog-family based high-level program syntax and Appendix B
provides Prolog-based syntax targeting IndiGolog interpreter implementation
platform P-INDIGOLOG [104, 105]. The Prolog-based coding of the framework
can be used directly in P-INDIGOLOG platform for utilizing external nonde-
terministic constructs in Golog-family based user programs. The program-
mer needs to define in the device manager of the agent platform (external
application or system) the interpretation of framework actions (e.g., choice
actions) in order to receive requests from the system for making nondeter-
ministic decisions and to feed back responses. As discussed earlier in this
section, all other external nondeterministic constructs except two are defined
directly in ConGolog-based high-level programs. For TaMoGolog own defined
two “auxiliary” constructs (I'1((| I'2) and (I'; |))T'2), we provide Trans and
Final definitions at the P-INDIGOLOG platform level in Appendix B. Further-
more, Appendix C provides a way to implement external nondeterministic
constructs through our defined labeling framework. This is critical considering
the practical and implementation constraints of the platform.

4.7 Summary

This chapter has presented a framework for task modeling. The framework
provides a set of concepts for establishing a conceptual foundation to structure
task models from different abstractions. There was need of an expressive, dy-
namic, and well-defined (syntactically and semantically) language to construct
task models as suggested by the proposed framework. We provided the defini-
tion of a formal task modeling language, called TaMoGolog, on the top of the
foundations of Golog-family for constructing dynamic and rich task models.
In the first part of the chapter, after the preliminary background we pro-
vided the details of the proposed framework concepts with an example. The
second part of the chapter provided the formalization details of the TaMoGolog.
First, it provided the TaMoGolog set of constructs mostly obtained from Golog-
family with addition to few of its own defined constructs. Secondly, it provided
the formal syntax and semantics framework of the TaMoGolog. Thirdly, it de-
fined the formalization of framework for external nondeterministic constructs

CHAPTER 4. FRAMEWORK FOR TASK MODELING
120 FORMALIZATION

at the language level using the GameGolog approach. This enables to model
the external entities’ participation in making nondeterministic decisions at run
time. The low level implementation of the framework for external nondeter-
ministic constructs are provided in Appendix A, Appendix B, and Appendix
C.

Overall, this chapter provides a foundation that is used in the subsequent
chapters for our work of task model-based usability evaluation at the develop-
ment environment level.

Chapter 5

Task Model-based Usability
Evaluation in Development
Environment

5.1 Motivation

This chapter is devoted to describe TaMU (Task Model-based Usability Eval-
uation) framework, which defines how to manage and automate experiments at
the Integrated Development Environment (IDE) level for conducting usability
evaluation based on task models created in TaMoGolog.

Usability evaluation aims at involving users, especially product end-users,
and experts (e.g., Ul experts, system analyst, etc) in the evaluation process of
a specific product to find usability flaws and errors and refine the product in
accordance with the feedback. Usability evaluation is performed using exist-
ing rigorous approaches and techniques that enable the process of defining and
running experiments, collecting and analyzing results, and making decisions
regarding which feedback to adopt and to what extent [25]. Unfortunately, in
many cases these usability evaluation techniques are performed manually [63],
and due to the budget and schedule concerns sometimes they are neglected
or poorly defined. In addition, the evaluation is performed, in many cases, at
the end when it is difficult to make changes in the design [25]. Automating
evaluation methods and techniques, and applying them throughout the de-
velopment process, provides several benefits, e.g.; reduced development costs
and time, improved error tracing, better feedback, and increased coverage of
evaluated features [63].

121

CHAPTER 5. TASK MODEL-BASED USABILITY EVALUATION IN
122 DEVELOPMENT ENVIRONMENT

It is important to note that we use the term usability evaluation
for the evaluation of both product usability and functionality. We
use experiments to find usability issues and serve as a kind of ac-
ceptance test for the developed features.

The motivation behind integrating and automating the evaluation process into
the software development environment, i.e., into the IDE, is clear. Defining
evaluation experiments and running them from within the IDE equips the
software development team with the mechanisms to monitor and control a
continuous evaluation process tightly coupled with the development process,
thus receiving on-going user feedback while continuing development. This was
already suggested in our three-fold integrated framework in Chapter 3 and
the UEMan tool presented there includes, among others, traceability between
conclusions of a specific evaluation experiment to the appropriate parts of code
that implement the conclusions, and vice versa. Even though UEMan provides
an effective framework to perform and automate the evaluation process, it
lacks the ability to model formally user and system tasks and behavior. Thus,
the experiment itself is not formalized in a way that can enable automatic
analysis. Here, we focus on how we can formally model user and system
tasks and their behavior thus providing automatic analysis of user and system
recorded data.

To achieve the above goal, we propose a way to define task model-based
usability evaluation from within the IDE thus providing development teams
with the ability to receive users’ on-going feedback during development, and
enable them to automatically collect and analyze users and system behavior
to recognize usability flaws and errors in an efficient and effective way.

This chapter is organized as follows:

Section 5.2 introduces TaMU framework that defines our approach towards
task model-based usability evaluation and describes an end-to-end life-cycle
to manage and automate this evaluation process at the IDE level.

Section 5.3 describes the role of TaMoGolog as task modeling language in
TaMU framework. It explains the effects of tagging tasks and variables at the
code level, benefits of TaMoGolog for usability evaluation, the reflection of sce-
narios in evaluation experiments through TaMoGolog-based task models, the
role of TaMoGolog-based task models in recording users and system activities
and behavior during execution of experiments, and the process of performing
automated analysis with the help of task models.

Section 5.4 presents TaMUIlator, a java-based tool, that works at the IDE
level to provide the realization of TaMU process life-cycle through providing
a set of APIs and interfaces. It also presents a case study in which six devel-
opment teams used TaMUIlator to evaluate a software project they developed.

5.2. TAMU FRAMEWORK 123

Section 5.5 highlights related work, especially those automated tools that
also provide task model-based usability evaluation.

Section 5.6 concludes and explains the differences of our approach from
the previous ones.

The TaMUIator tool and the evaluation case study presented in Section 5.4
is author’s collaborative work with Dr. Yael Dubinsky, who taught one year
course “Annual Project in Software Engineering”in Computer Science Depart-
ment at Technion, IIT from 2008 to 2010. The TaMUlator tool presented here
was developed by one of the six teams during the course session 2009/10.

5.2 TaMU Framework

High-level usability is acknowledged as a significant feature of software prod-
ucts. For this, we provide a framework, called TaMU (Task Model-based
Usability Evaluation), for managing and automating evaluation experiments
at the IDE level based on formal task models and then analyzing the recorded
data to highlight usability issues. The TaMU framework handles it at three lev-
els: process-level, model-level, and tool-support-level. Figure 5.1 shows TaMU
framework and its three pillars.

o At the process-level, the framework describes an end-to-end eval-
uation life cycle, called TaMU life-cycle, for describing and managing
evaluation experiments using TaMoGolog-based task models at the IDE
level.

e At the model-level, the framework uses TaMoGolog-based task mod-
els to implement model-based usability evaluation approach. The frame-
work uses TaMoGolog to model the interested set of user and system tasks
and their complex behavior for evaluating the targeted application. The
created task models provide a way to record users and application data
while evaluating the targeted application, and a mean for the analysis
of the recorded data to highlight usability issues.

e At the tool-support-level, the framework provides an automated
tool support, called TaMUlator (Task Model-based Usability Evalua-
tor), for the realization of framework’s evaluation life-cycle at the IDE
level. This tool enables defining TaMoGolog-based task models, running
evaluation experiments, recording user and system behavior as per the
defined mode, and analyzing automatically the task models and recorded
data for highlighting usability issues.

CHAPTER 5. TASK MODEL-BASED USABILITY EVALUATION IN
124 DEVELOPMENT ENVIRONMENT

TaMoGolog-
based formal
task models

TaMU
Framework

Automated too
support -
(TaMUlator)

TaMU Process
Life-Cycle

Figure 5.1: TaMU framwork

5.2.1 TaMU Process Life-cycle

The TaMU framework provides the definition of an end-to-end life-cycle, called
TaMU life-cycle, for managing the process of usability evaluation using Ta-
MoGolog-based formal task models in the development environment. The
TaMU life cycle consists of five phases: Tag, Task Model Creation, Evaluation-
Ezperiment Creation, Run & Record, and Analysis as shown in Figure 5.2. The
TaMU process life cycle approach is best suited for iterative and incremental
types of development (especially for agile development approach), thus em-
phasizing that the inspection of results (either automated or manual) should
forward input to the development process and enable improvements in the
product during the next iteration. For this reason, the figure shows that the
outputs of the last two phases become the input to the developing application.
The details of each phase follow.

Phase 1 - Tag: The software development team tags the program at the
code level with the set of relevant tasks and those variables (fluents) that can
be part of precondition axioms or postcondition effects. Through this, the
software team can define the abstraction of task at multi-levels. For example,
in the case of printing functionality, at upper-level the whole function can be
defined as a task “printPage”, while at lower-level this can be a series of three

5.2. TAMU FRAMEWORK 125

Tag

Phase-1 : Tagging tasks
. »andvariables (fluents) at

Suggestions for the code level

improvements

Phase-2 : Creating TaMoGolog-

Auto-analysis based task models

results Task Model

Creation

Raw results

6=5_: Automated analysis of recorded
data while

using attached task models Phase-3 : Creating experiment
and associating task mpdels t
Analysis them
Evaluation-
Experiments
Creation

Run & Record

Phase-4 : Executing experiments and
recording user and system data

Figure 5.2: TaMU process life-cycle

CHAPTER 5. TASK MODEL-BASED USABILITY EVALUATION IN
126 DEVELOPMENT ENVIRONMENT

tasks named as “checkPrinter”, “sendRequest”, and “confirmPrint”.

Tagging tasks and variables in the code gives the opportunity to define
task models at different abstraction levels, which help to evaluate the prod-
uct from these abstraction levels. The developed tool TaMUlator provides the
functionality of tagging tasks and variables at the code level. These tagged
sets of tasks and variables are then available for using in task models.

Phase 2 - Task Model Creation: The evaluator creates TaMoGolog-based
task models for each planned usability scenario, where each task model con-
structs the structure of corresponding scenario at a certain abstraction, in
order to highlight usability issues related to that scenario. It is up to the
evaluator to decide how many task models at different abstraction levels are
required for a particular usability scenario. TaMU framework assumes that
only those tasks and variables that were tagged in the previous phase can be
used in constructing task models. The task models reflect the structure of
the scenarios that are supposed to be followed from the point of view of the
evaluator, irrespective of the system implementation. This helps analyzing
users’ behavior and finding flaws in the implemented application.

Phase 3 - Evaluation-Ezperiment Creation: The evaluator creates eval-
uation experiments and links the related TaMoGolog-based task models, con-
structed in previous phase, to the created experiments. In each experiment,
evaluating users are supposed to achieve a list of goals through performing
tasks (where each goal reflects a scenario-path, e.g., achieving a goal of de-
positing money in the bank account) while using the developing/developed
product to evaluate. This explains why the Figure 5.2 shows the developing
product as input to this phase. We have already described details of such
evaluation experiments in Chapter 3 using the developed plug-in tool UEMan.

Phase 4 - Run & Record: The evaluating users execute the created exper-
iments and perform tasks on the evaluating application. During executing
experiments, the user actions and the evaluated-application data is recorded
as suggested in the previous section.

Phase 5 - Analysis: During this phase, the logged data of users’ activi-
ties and the evaluated-application is analyzed (manually or with the help of
some automated tool, e.g., TaMUlator), through some analysis criteria. The
analysis results; for example errors and flaws (e.g., preconditions not fulfilled,
skipped tasks, etc), usability problems (e.g., any other path selection by user
that was not mentioned in the task model for achieving the targeted goal), and
the user and the system behavior (e.g., user inputs, user trend for a particular
path, variables values after executing tasks), etc; are created through applying

5.3. THE ROLE OF TAMOGOLOG IN CONDUCTING USABILITY
EVALUATION 127

appropriate statistical techniques based on some analysis criteria.

The evaluation team inspects the results and then suggests improvements
and development tasks for the next phase of development. Figure 5.2 shows
this link from experiments’ results to the application (for the coming iteration’s
development tasks), which we already have explained in details in Chapter 3
using the UEMan tool.

5.3 The Role of TaMoGolog in conducting Usability
Evaluation

TaMoGolog task modeling language, described in Chapter 4, provides a solid
foundation for defining complex system behaviors and scenarios in an appropri-
ate, accurate, and unambiguous form. It provides the facility for constructing
dynamic and rich task models from different views perspectives at different
abstraction levels that can be used for variety of purposes such as system
analysis, system design, model-based usability evaluation. It fills the gap in
existing task modeling languages by providing a well-defined formal syntax and
semantics, enabling precondition axioms to tasks, postcondition effects to flu-
ents (variables), defining the way to include domain knowledge in task models,
and providing a rich set of operators for handling complex system structure.
These are the reasons amongst others, e.g., explicit external entities partici-
pation in making nondeterministic choices, for the section of TaMoGolog as
our framework’s task modeling language for conducting model-based usability
evaluation.

The TaMU framework uses TaMoGolog-based task models for two purposes:
to model user and system tasks and behavior for usability scenarios in order
to provide a way to record interested data, and to analyze the recorded data
while comparing with these created task models to highlight usability issues
and to draw conclusions. In the following subsections, we describe our ap-
proach for tagging interested tasks and variables (fluents) at the application
code level, the benefits of using TaMoGolog in usability evaluation, the con-
struction of TaMoGolog-based task models for usability scenarios, the process
of recoding user and system data during executing the evaluation experiment,
and finally the analysis criteria for highlighting usability issues and for drawing
conclusions.

5.3.1 Defining and Tagging Tasks and Variables at the Code
level

Our three-fold integration approach, described in Chapter 3, and the evalua-
tion framework both insist the integration and automation of the evaluation

CHAPTER 5. TASK MODEL-BASED USABILITY EVALUATION IN
128 DEVELOPMENT ENVIRONMENT

process into the software development environment, i.e., into the IDE. We
have earlier described the rationales behind this. Keeping the idea, TaMU
framework suggests defining and tagging at the code level in the development
environment the interested tasks and variables to be used in task models.
Through this, it is possible to evaluate a usability scenario in an evaluation
experiment from different views perspectives where each view describes the
usability scenario in the task model at some certain abstraction level.

We describe a task as an abstract entity that hides its internal functional-
ity, performs one or more operations/actions, and provides an overall behavior
for achieving some specific goal. When tagging tasks at the code level, we can
define tasks at multiple abstraction levels. For example, we can define press-
ing a button, selecting an option from two inputs, checking the card validity
as atomic tasks. While on the other level, we can also define the complete
payment transaction functionality as an atomic task. In each case, we also
tag the interested set of those variables (fluents) that are either part of pre-
condition axioms or postcondition effects of executing these tasks. This gives
us the flexibility to create task models from different abstraction levels for the
same usability scenario, thus enables us to evaluate the targeted application
from several abstractions.

The tagging at the code level enables us to define user tasks and system
internal functionalities separately in the resulting task models. This helps us
to record users’ actions and system internal behavior during evaluation exper-
iments. It is useful in two aspects: the first one is related to usability issues, as
sometimes the problem arises due to the system internal actions not working
properly and through this process we can check it easily; the second one is
testing the system internal actions and functionalities, as recording the rele-
vant data enables us to find out testing issues such as performance, accuracy,
etc. For example, if the system is using an algorithm to manage something
internally and the execution of another task depends on the implementation of
this algorithm and it may be possible that the task is executing slowly due to
the slow response of the algorithm. Therefore, this approach, in fact, provides
a way to test product functionalities during evaluation experiments. Hence,
through this it also reduces the time and cost needed to spend later during
the testing phase. This approach of testing system functionalities through
usability experiments fits perfectly to agile development, where there is due
to short-nature of iteration life-cycle these experiments can also acts as an
acceptance tests for the product features.

5.3.2 Benefits of TaMoGolog in Usability Evaluation

This subsection describes the reasons and the benefits for selecting and using
TaMoGolog in the TaMU evaluation framework.

5.3. THE ROLE OF TAMOGOLOG IN CONDUCTING USABILITY
EVALUATION 129

Defining task models at different abstraction levels for a usab-
i1lity scenartio: TaMoGolog and defining tasks at the code level provides
a way to construct task models from multi-view perspectives at different ab-
straction levels, for achieving the same set of goals. So, more than one task
model for a usability scenario, where each task model lays at a certain abstrac-
tion, can be attached to an evaluation experiment. This gives us the chance
to record users’ and system behavior and to highlight usability issues from
several aspects.

Precondition azioms for tasks: TaMoGolog, as based on Golog-family
[18, 19, 20, 73, 107], provides a way of writing explicitly the precondition ax-
ioms for atomic tasks. These precondition axioms attached to a task define
constraints that should be met before execution of the task. This defining of
precondition axioms is very important from usability evaluation perspective,
as it enables to record whether the user or the system fulfilled these constraints
before executing the attached task. If these constraints are not fulfilled then
there are higher chances of the failure of the attached task or there is a usability
issue that the interface was unable to prevent the user to fulfill all constraints
before executing that task. For example, a precondition constraint for the
task withdrawMoney(amount) can be that the amount should be greater than
zero. In this case, ideally the interface should prevent the user to give an
amount zero or less than zero, and if the user is able to do it then the task will
not work correctly. Through precondition axioms, we can find out where the
user or the system violated these constraints while executing the attached task.

Postcondition effects on wvariables (fluents): The postcondition ef-
fects on variables (fluents) in TaMoGolog-based task model provide a way to
check whether the executed tasks have been performed in the way we expected.
These postcondition effects tell what should be the new value of these variables
if we execute the associated task. Through providing this in the attached task
model, we are able to record their values before the execution of task and after
the execution. This enables us to check whether the task performed correctly
as it supposed to be or it violated these postcondition rules. Interestingly, this
provides a testing of the system functionalities while performing evaluation
experiments.

Ezternal entities participation in nondeterministic decisions:

TaMoGolog, using GameGolog approach [20], provides a way to define and
model explicitly the external entities (external applications/systems or hu-
man users) participation in making nondeterministic decisions. From evalua-
tion perspective, this enables to record participated external entities behavior
during making these decisions and the resulting effects. For example, (a; [agt

CHAPTER 5. TASK MODEL-BASED USABILITY EVALUATION IN
130 DEVELOPMENT ENVIRONMENT

blc]; d) is a task structure representing that the goal is achieved either exe-
cuting tasks in the order a;b;d or in the order a;c;d where external entity agt
decides to choose between task b or task c. If the results indicate that most of
the participated users chose task b but they spent more time to finish the task
b compare to those participated users who chose task ¢, we can conclude that
the users prefer to choose task b as initially it looks to them more suitable
but then they find it more difficult to finish, compared to the choice of task
c. These behavioral data is important from usability perspective as it enables
us to find out the right solutions for the right users.

Modeling exzogenous tasks: Exogenous tasks are executed by external ap-
plications/systems to either let the targeted system know their input or for
providing services behind the scene. TaMoGolog provides the facility to write
them and their effects on variables explicitly in task models, which enables us
to record their effects on variables after their execution during evaluation ex-
periments. This is useful from evaluation perspective, as it tells us their effects
on variables and other tasks, e.g., it is possible that due to some exogenous
task execution some precondition axiom for a task is no longer true and that
was the reason behind the failure of that particular task.

Defining goal(s) in task models: We can define the target set of goals
in TaMoGolog-based task models in which the task model is considered suc-
cessful if it is finished successfully and any of the goal in the attached set
is achieved. In usability evaluation, the attached set of goals is in fact the
evaluation-scenario’s set of goals. This enables us to know whether the user
was able to achieve any goal from the targeted set of goals while performing
these tasks. It is also possible that a user performed the tasks as modeled by
the task model but was unable to achieve any of the goals, or on the other
side the user was able to achieve any of the the targeted goals but following
some other path, which was not mentioned in the task model.

Representing domain knowledge in task models: This enables us to mo-
del any domain specific knowledge in the attached task models that can be
helpful during analysis of the experiment’s recorded data. This can be used to
get some specific knowledge about the users and the system behavior in order
to understand usability issues properly.

Customizable and extensible: The customizable and extensible nature of
TaMoGolog is useful in the regard that it can be fitted into different environ-
ments for usability evaluation. It is possible to define new predicates using
situation calculus [102] to extend it or to redefine the previous predicates.

5.3. THE ROLE OF TAMOGOLOG IN CONDUCTING USABILITY
EVALUATION 131

Evaluation Experiment contains 1. | Usability-Scenario

modeled by 1_.*

TaMoGolog-based Task Model

Figure 5.3: Relationship between evaluation experiment and the attached task
models

Rich and powerful set of constructs: TaMoGolog powerful and rich set
of constructs, mostly obtained from the Golog-family as described in Chapter
4, enables the construction of task models for complex usability scenario un-
ambiguously and accurately. From evaluation perspective, it is important to
have accurate and unambiguous task models because the analysis is carried
on the basis of recorded data and the attached task models.

5.3.3 Modeling Usability Scenarios through TaMoGolog-based
Task Models

A wusability-scenario in evaluation experiments provides a scenario where the
user much achieves some targeted set of goals by performing a series of tasks.
The purpose of the experiment is to check usability aspects such as ease, ef-
ficiency, ability to learn and memorize, performance, and error handling of
the targeted application. This is checked by applying appropriate usability
metrics such as time to complete a task and time spent dealing with errors.
Users perform tasks on the evaluating application to achieve targeted set of
goals, while during this the evaluators or the automated tools log users’ ac-
tions and system responses and then the recorded data is analyzed to check
usability aspects against the targeted metrics. Model-based usability evalua-
tion techniques use task-models [91] that describe how the set of activities are
supposed to be executed in order to achieve the targeted set of goals. Then
the recorded data is analyzed against the attached task models for finding out
usability issues using some predefined usability metrics. The TaMU frame-
work uses TaMoGolog, as described early, to construct task models for each
usability-scenario. Through TaMoGolog, it is possible to construct different
task models for the same usability scenario, where each task model reflects
the usability scenario at some particular abstraction level and shows how to
achieve the targeted set of goals through performing series of tasks. This helps
to record data from several asbtraction levels during execution of the evalu-

CHAPTER 5. TASK MODEL-BASED USABILITY EVALUATION IN
132 DEVELOPMENT ENVIRONMENT

ation experiment and enables us to highlight usability issues from multiple
abstractions. Figure 5.3 shows that an evaluation experiment is used to ana-
lyze one or more usability scenarios where each usability-scenario is modeled
by one or more task model at different abstraction levels that are used for
analyzing the experiment results. An example of a task model for a scenario
of managing bank account is given in Section 4.5.3.

Example: Managing-Bank-Account Task Model

Here, we provide a brief example of a task model of a scenario for managing
bank account in which a user can view account details, or can deposit money in
the account, or can withdraw money from the account. The system allows the
user to perform any one of these tasks, in any particular order, after the user
login to the system. The user can perform these tasks as many time as he/she
wants till log out from the system. The TaMoGolog-based task model below
(in brief form) provides the realization of this scenario. It defines three goals
where each goal is in fact corresponding to each of the main task (viewing,
depositing, withdrawing). We can divide this scenario into three sub-scenarios
i which each scenario will deal with a particular goal, e.g., to view account,
or to deposit money in the account, or to withdraw money from the account.

TaskModel (managing_bank_account) .

Fluent (userAge) .

Fluent (balance) .

Fluent (amount) .

UnitTask(login).

UnitTask(logout) .

UnitTask(view_account).

UnitTask(deposit (amount)) .

UnitTask(withdraw(amount)) .
CompositeTask(managing_bank_account) .
CompositeTask(manage_account) .

Agent (customer) .

Precondition(login) = userAge > 18.
Precondition(view_account) = TRUE.

Precondition(deposit) = amount > O.
Precondition(withdraw) = (balance - amount) > O.
Postcondition(deposit, balance, true) = balance + amount.
Postcondition(withdraw, balance, true) = balance - amount.
Goal(viewingAccount, balance) = balance.

©O© 0 NO Ok WN -

I e e e e i il el i
O O 00 NO Ol WN = O

Goal (depositMoney, balance) = balance + amount.

N
[

Goal(withdrawMoney, balance) = balance - amount.

5.3. THE ROLE OF TAMOGOLOG IN CONDUCTING USABILITY
EVALUATION 133

22 proc managing_bank_account

23 login;

24 [customer manage_account]*;
25 logout

26 end

27 proc manage_account
28 [customer (view_account|deposit(amount) |withdraw(amount))]
29 end

5.3.4 The Data Recording Process during Evaluation Experi-
ments

The TaMU framework uses evaluation experiments to highlight usability issues
that also serve as a kind of acceptance test for the developed features. The
TaMU framework suggests usage of task models attached to the evaluation
experiment and the tagged tasks and variables at the code level for recording
desirable data during execution of the evaluation experiment. This recorded
data describe users’ and system activities and behavior, and are used for anal-
ysis purposes in order to highlight usability issues through applying some
usability metrics. TaMU framework suggests to record data through following
steps:

e When the user or the system starts any task (either it is modeled in any
of task models attached to that evaluation experiment or it is a tagged
task at the code level), the task is checked in the attached task models
and if it exists there then the values of precondition axioms are recorded.

e As any task (modeled in any of the attached task models or tagged at the
code level) starts execution, information about the task; such as starting
time, previous task, etc; are recorded and when it successfully finishes
execution then again relevant information, such as ending time, are also
recorded. The TaMU framework approach of handling the tagging of
tasks and variables at the code level gives the flexibility to record differ-
ent kinds of information that help in the phase of automatic analysis of
the logged data.

e When a task completes execution, firstly, it is checked in the attached
task models and if it exists there, then the values of postcondition related
variables are recorded.

e When an external entity (some external application/system or human
user) gives some input or participates in any nondeterministic decision,
the input or the decision is also recorded.

CHAPTER 5. TASK MODEL-BASED USABILITY EVALUATION IN
134 DEVELOPMENT ENVIRONMENT

e At the beginning and the ending of the evaluation experiment, values
for all of those variables that come in any of the attached task models
are recorded, which represent task model initial state values and ending
state values.

e During the experiment, if the user quits a task due to inability to finish
it properly, the values of the variables related to precondition axioms
and postcondition effects are also recorded.

5.3.5 The Data Analysis Criteria using TaMoGolog-based Task
Models

Usability metrics are used for measuring quantitative usability aspects of the
targeted system [25], such as Whiteside, Bennett, and Holtzblatt [125] pro-
vide a list of measurement criteria; e.g., time to complete a task, time spent
in errors, ratio of successes to failures, etc; that can be used to determine
the quantitative level of usability a system provides to its users. ISO stan-
dard 9241' also provides usability metrics and categorizes them through their
contributions towards three aspects: effectiveness, efficiency, and satisfaction.
Normally model-based usability evaluation approaches, such as [71] and [91],
use different quantitative attributes on the recorded data as the analysis cri-
teria to highlight usability issues.

TaMU framework focuses on those quantitative measurements in the anal-
ysis criteria that can be obtained accurately through some automated tool
support using the attached TaMoGolog-based task models. Here, we briefly
describe how the TaMoGolog-based task models attached to an evaluation ex-
periment help in analyzing the recorded data of the experiment.

e Many of measurements suggested by Whiteside, Bennett, Holtzblatt
[125]; such as time to complete a task, per cent of task completed, per
cent of task completed per unit time, ratio of success to failure, per cent
of number of errors, frequency of help and documentation use, per cent
of favorable/unfavorable user comments; can be obtained directly from
the experiment’s recorded data or computed through applying the ap-
propriate statistical techniques on the recorded data.

o We categorized tasks in the experiment’s recorded data into four cate-
gories for the analysis purpose:

— Completed-and-successful: A task is considered completed-and-
successful if it finished execution properly and the recorded at-

'ISO 9241-11: Ergonomic requirements for office work with visual display terminals
(VDTs)— Part 11: Guidance on usability

5.3. THE ROLE OF TAMOGOLOG IN CONDUCTING USABILITY
EVALUATION 135

tached postcondition variables’ values satisfy the attached post-
condition effect axioms to this task in the task model. For exam-
ple, if the task deposit(amount), the example defined previously in
Managing-Bank-Account task model, finishes successfully and the
recorded value of the attached variable balance to this task satisfies
the attached postcondition effect to this task in the task model, i.e.,
the new balance is the previous balance plus the current depositing
amount, then this task is considered completed-and-successful in
the analysis result. We also verify that the precondition axioms to
this task in the task model are also satisfied in order to know that
the specific task performance was not affected due to the violation
of certain precondition axiom.

Completed-and-unsuccessful: A task is considered completed-
and-unsuccessful when it finished execution properly but the recorded
attached postcondition variables’ values do not completely satisfy
the attached postcondition effect axioms to this task in the task
model. Here, we are interested in those variables that violated at-
tached postcondition effect axioms to this task. For example, in the
above described example if the new value of the attached variable
amount does not satisfy the attached postcondition effect axiom to
the task deposit(amount) in the task model, then we consider this
task as completed-and-unsuccessful. We also check the precondition
axioms as it is possible that the violation is due to some unsatisfying
precondition axiom.

— Failed: A task is considered failed when it failed to finish suc-
cessfully or the user abandoned it in the midway. First, we check
precondition axioms attached to this task in the task model and are
interested in any violated axioms, as these can be the main reason
behind the failure of the task. For example, in the above described
example it is possible that the task deposit(amount) failed because
the attached precondition variable amount violated the attached
precondition axiom to this task in the task model, i.e., the value
of depositing amount should be greater than zero. Here, we sepa-
rate the satisfying attached postcondition variables to unsatisfying
attached postcondition variables to this task in order to know how
much the progress had been done in the task execution when the
user decided to leave this task. By analyzing both satisfying and
unsatisfying the attached pre- and post-condition axioms we can
conclude the reasons for the failure of the task.

— Awvoided: A taskis considered avoided when it was in the ezecution-
path, but the user did not try to perform it. There can be two cases

CHAPTER 5. TASK MODEL-BASED USABILITY EVALUATION IN
136 DEVELOPMENT ENVIRONMENT

for this: in the first case, the user chose an alternative path and the
task was not in that chosen alternative execution-path while in the
second case, the user chose the defined execution-path but decided
not to perform it. In the second case, we can get hint from the
system state at that point the reason behind the user decision not
to perform this task.

e The postcondition effect axioms attached to system tasks in the task
model are also used to check the correctness of system functionalities.
Each system task in the task model is a representation of some system
function/action. The attached postcondition variables’ values are used
to tell after comparing them with the attached postcondition effect ax-
ioms to this task in the task model whether this system function/action
has performed as it was supposed to be. For example, the task sum-
Value in a task model represents a system function “sum(a,b) = ¢”that
sums the value of two variables into the third variable. But, if the value
of variable ¢ after the execution of system function sum violates the
postcondition effect axiom of task sum Value to this variable in the task
model then its mean that the system function is not working properly.

e The users’ selection of tasks and the task structure in the task model are
used for the analysis of users’ execution-path selection behavior; such as
the users who selected execution-path as mentioned in the task model
and were able to successful finish, the users who selected execution-path
as mentioned in the task model but were unable to successful finish,
the users who selected some alternative execution-path but were able to
successful finish, the users who selected wrong execution-paths, etc.

e The goals in the attached task model help in finding out whether users
were able to achieve the targeted goal through some predefined execution-
path in the task model or through some alternative execution-paths.

e The task structure in the attached task model also helps finding users’
trend, behavior, and pattern for some particular execution-path selection
and their performance in each execution-path.

e The analysis of exogenous actions’ recorded data is useful to check their
effect on system states and on other tasks. We can check whether ex-
ecution of a particular exogenous action made precondition axioms of
some other task in satisfied mode or in unsatisfied mode. This is useful
in order to know if the reason behind failure of a task is the execution
of some exogenous action.

5.3. THE ROLE OF TAMOGOLOG IN CONDUCTING USABILITY
EVALUATION 137

In addition to the above, the TaMU framework also uses other information such
as user groups, their particular preferences, and so forth; which are provided
in the attached task models for different data analysis purposes.

5.3.6 The Role of TaMoGolog Formalism in TaMU Framework

The above subsections have described TaMoGolog critical role in TaMU frame-
work for modeling user and system tasks, for recording data during evaluation
experiment as per defined mode, and the criteria that uses TaMoGolog-based
task models for the automatic analysis of the experiment recorded data. In
the forthcoming sections, we provide its realization through our developed
TaMUIlator tool and its usage in a case study. In Chapter 4, we provided
the rationales behind providing task modeling framework and the definition
of TaMoGolog task modeling language. Here, we describe briefly the role of
TaMoGolog formalization, provided in Chapter 4, in relation to our usability
evaluation approach.

The provided TaMoGolog formalism is useful for different purposes from
communication amongst members of development team and evaluation team
to performing automatic analysis of the recorded data. Firstly, the formaliza-
tion provides a standard syntax for writing task models and semantics and also
to elucidate its meaning within appropriate context. This is also important
from communication perspective as it enables the team members (both from
development and evaluation) to create the accurate task models of user and
system activities and behavior, and it helps in unambiguous understanding of
the created task models which reduces the understanding gap.

The provided formalization is especially useful and critical from our usabil-
ity evaluation perspective. First, the semantics formalism guides the compiler
in automated tool for the compilation of the task models written in TaMoGolog.
Through this, it is possible to use the same task models in different automated
tools if each of these follows the provided semantics specification. After the
compiler in an automated tool compiles the task model within the provided
specification, the tool records the user and system activities according to the
stipulations of the evaluator. Without a formal specification of language syn-
tax and semantics, it can be possible that the evaluator thinks differently from
how the tool actually handles it. However, if followed appropriately, a well
defined formal specification, as we provided in Chapter 4, the understanding
of task models during evaluation experiments will be the same both of for the
evaluator and the tool.

As the TaMoGolog semantics is based on transition semantics for single-
step execution, so the TaMoGolog-based task models are evaluated at each
unit task execution. In our TaMU framework, we define tasks at the code level
that can be at any abstraction, e.g., pressing a button in a function can be a

CHAPTER 5. TASK MODEL-BASED USABILITY EVALUATION IN
138 DEVELOPMENT ENVIRONMENT

task or the whole function itself can be defined as a task. It helps to record
the system states at each execution step as defined by the attached task model
during the execution of the evaluation experiment. This enables us to analyze
at each step the system state in verisimilitude and for the attached task model.
The task model reflects what the system state should be ideally at each point;
hence, it enables to find the differences between the ideal state and the actual
state during the execution state of experiment. These differences provide a
mean to look up the usability problems at those points.

Finally, the external nondeterministic constructs’ formal specification helps
us to understand users and external systems/applications participation in
tasks execution and in making nondeterministic decisions. Through this, it is
possible to merge system and user tasks in the same task model so to record
the user and the system activities and behavior at the same time. This also
provides a mean to record and analyze users’ behavior more appropriately,
e.g. how many users preferred a particular execution path or how many users
picked a particular value for some task.

In the forthcoming sections, first we describe that our developed tool
TaMUIator uses the formal specification to compile the TaMoGolog-based task
models and then uses these compiled task models to record users and system
activities and finally during automatic analysis of the results. Secondly in the
case study, we also provide few examples of task models that we used to record
user behavior and to highlight usability issues.

5.4 TaMUlator: A Tool for Managing TaMU Pro-
cess Life-Cycle

We present a tool, called TaMUlator (Task Model-based Usability Evaluato
r), for managing and automating TaMU process life cycle at the IDE level, i.e.,
defining the experiments using TaMoGolog-based task models, and running the
created experiments. This enables us to record user and system behavior as per
the defined mode. TaMUlator is a Java-based tool that provides a set of APIs
and interfaces to work at the IDE level, thus fitting in different development
environments.

TaMUIlator allows the development team to tag wunit tasks and variables
(possible candidates to be used in precondition axioms and postcondition ef-
fects) of interest at the code level. It provides an API, called TTag-API
(Task Tagging API). Developers can use it or any other facility, such as As-
pectJ?, to tag unit tasks and variables in the code. This tagging facility can
be used during any stage of the development process, and does not require any

2http://www.eclipse.org/aspectj/

5.4. TAMULATOR: A TOOL FOR MANAGING TAMU PROCESS
LIFE-CYCLE 139

]]]

] TaMoGolog Compile Recorder <<uses>> Analyzer
I
I
1
| T
] ; |
I
| ccysess> <<logs>> I
| I
|
| |
i 1.* |
| 1
| 1..* |
L e e |
Task Model <<containss> Experiment <<ysess>

Figure 5.4: TaMUlator high-level modules overview

internal intervention in the program code. TaMUlator provides an easy and
dynamic way to define different usability scenarios for the evaluation. This is
achieved by compiling TaMoGolog-based task models that can be aggregated
into evaluation experiments, which can be evaluated at any time by the built-
in Analyzer using the recorded data of these experiments, or can be manually
evaluated by exporting the recorded data into a CSV (comma-separated val-
ues) format for analysis. The analysis results (either automated or manually)
help the software development team in drawing conclusions to derive relevant
development tasks for further improvements in the developing product.

5.4.1 High-Level Modules Overview

TaMUIlator comprises five main modules. Figure 5.4 presents a high-level mod-
ules view showing five modules and the relationships between them. The five
modules are: Task-Model for tagging tasks and variables at the IDE level
and keeping task models for each usability scenario; TaMoGolog-Compiler for
compiling TaMoGolog-based script of task models; FExperiment for creating
and managing evaluation experiments to be performed by evaluating users;
Recorder for recoding interested data during the execution of evaluation ex-
periment; and Analyzer for automatic analysis of the experiment data. Fol-
lowing is description of each module.

TaMoGolog-Compiler: This module is responsible for compiling the Ta-
MoGolog-based script to a Task-Model interpretation that can be understood
by other modules. The current version supports only a subset of TaMoGolog
constructs (i.e., waiting, sequence, nondeterministic internal choice, and non-
deterministic external choice) and provides limited support for writing domain
knowledge in task models.

CHAPTER 5. TASK MODEL-BASED USABILITY EVALUATION IN
140 DEVELOPMENT ENVIRONMENT

Task-Model: This module contains specific usability scenarios that were
specified in TaMoGolog-based task models and were created by compiling the
scripts in TaMoGolog-Compiler module. It provides developers with the op-
portunity to associate task models with the created evaluation experiments.

Experiment: This module manages evaluation experiments so that evalu-
ating users can perform different tasks on the target application to achieve
the desired goals. Each experiment is associated with one or more task mod-
els in the Task-Model module, and is independently responsible for managing
its own task models. This is a self-manageable module, and can be indepen-
dently enabled and disabled.

Recorder: This module is responsible to record all the activities that were
reported to the TaMUIlator. While the evaluation experiment executes, each
tagged task that was enabled by an evaluating user or the system and the val-
ues of variables related to precondition axioms (before executing the task) and
postcondition effects (after completing the task) are reported and recorded.
The recorded data related to each evaluation experiment can be retrieved and
analyzed.

Analyzer: This module takes the evaluation experiment from the Fxperi-
ment module and the related recorded data from the Recorder module, and
gives feedback after analyzing the data together with the original task models
associated with the evaluation experiment.

5.4.2 TaMUlator APIs

TaMUIator provides APIs and interfaces of a Java library to work at the IDE
level. Following is brief description of each API:

TTag-API (Task Tagging API): This API provides a set of interfaces,
classes, and methods that are used for tagging tasks and variables in the
application code. Tagging facility through this can be used during any stage
of the development process, and does not require any internal intervention in
the program code.

TM-API (Task Model API): This API is provided by the Task-Model mod-
ule. Developers use it to change task model parameters (e.g., task name) and
export these task models structures as a tree using the Java JTree? class.

3http://download.oracle.com/javase/1.4.2/docs/api/javax /swing/J Tree.html

5.4. TAMULATOR: A TOOL FOR MANAGING TAMU PROCESS

LIFE-CYCLE 141
Available Activities Available Vanam
. =M
!‘createSEssiunFromTP Exd numorSelectedGames
Play = userfge
‘Ingnut — haveGames: bool
||create_sessinn TPCreated: hool
createTrainingProgram sessionNotEmpty: bool
lagin = doctorAdvice: hool =

Figure 5.5: Tagged set of tasks (activities) and variables

EExp-API (Evaluation-Experiment API): This API is provided by the Ez-
periment module. Developers use it to manage the associated task models
inside the Ezperiment module.

5.4.3 How TaMUlator Works

TaMUIator allows the development team to tag tasks (after tagging, the tasks
are treated as unit tasks) and variables (possible candidates to be used in
precondition axioms and postcondition effects) of interest at the program code
level. Only the tagged set of tasks and variables are later available for using
in task models. Figure 5.5 shows a TaMUlator screen-shot of available tagged
set of tasks (called activities in the TaMUIlator environment) and variables for
an evaluating application.

To perform tagging, developers need to “wire” their programs in “interest-
ing” locations (for tasks and variables) throughout their code. The TaMUlator
tool leaves it to the software team to define those points of interest (e.g.,
method invocations, object state changes, or certain events). For this, De-
velopers can use the TTag-API, provided by the TaMUlator, or through the
AspectJ facility. Aspect] is a Java extension and provides one of the sim-
plest ways in Java-based platforms to enable support for this type of events.
It supports the aspect constructs separating cross-cutting concerns from an
object-oriented system and provides a mechanism to merge these aspects into
the underlying system. Through this, developers can define multiple pointcuts
and advices that inject small snippets to let TaMUlator know that an event has
occurred. Figure 5.6 shows a screen-shot of the TaMUIator demonstrating a
typical AspectJ hook. In the case of using TTag-API, the TaMUlator receives
data as any tagged event occurs or if any tagged variable changes its value.

After developers have “wired” their code to TaMUlator, it is time to define
task models for usability scenarios (currently, TaMUlator supports only one
task model per scenario). The process of defining task models in TaMUla-

CHAPTER 5. TASK MODEL-BASED USABILITY EVALUATION IN
142 DEVELOPMENT ENVIRONMENT

poirntout login{logitMEnager frarework) -
call jpublic UserProfile LogirMenager.logind..))
&& targpt (frameworls) ;

aftar (Togiknager Srarework) @ logindframwwork) |
try |
if (taskbdileloaded)
taskibdule. activityoooured (M login™) ;
} cabch (Taskbdil eBsoeption) |
Syetem.err.printlnie. getessage ()) 7
i

Figure 5.6: Screenshot of a typical AspectJ hook

Task Name |PIayingTrainingProgram

Precondition-axiomns(login = userAge = 55;

| abel PlayingTrainingProgram| {
login;
create TrainingProgram;
[haveGames? createSessionFrom TR]
Play;

Creafe Task |

Figure 5.7: A task model written in TaMUIator

tor is very easy; simply write a TaMoGolog-based script, using the available
set of tagged tasks and variables, that defines the tasks structure with tem-
poral relations in tasks, precondition axioms, and postcondition effects and
let TaMUlator compile it through the Compiler module. Figure 5.7 shows a
TaMUIator screen-shot of a simple task model written in TaMoGolog (Note that
the current TaMUlator environment uses Label name(parameter-list)body
for defining composite task or waiting task that is in fact equivalent to Golog
[73] procedure definition proc name (parameter-list)body end).

After compilation, TaMUlator keeps these task models in Task-Model mod-
ule from where they are used in evaluation experiments and for automatic anal-
ysis of results. Using TM-API, developers can change compiled task model
parameters (e.g., task’s name) and export these task models structures as a

5.4. TAMULATOR: A TOOL FOR MANAGING TAMU PROCESS
LIFE-CYCLE 143

tree using the Java JTree? class.

During the third phase of TaMU life-cycle, the evaluation team creates
evaluation experiments, using TaMUIlator, so that evaluating users can perform
different tasks on the target application. Each of these experiments contains
one or more usability scenarios the evaluation team wishes to track, where
each scenario is reflected by already created task model in the previous step.
Each experiment is associated with one or more task models in the Task-Model
module, and is independently responsible for managing its own task models.

During the next phase, while the evaluation experiment is executed by the
evaluating user, each tagged task (a task is also called an activity in TaMU-
lator environment) that was enabled by the user, and the values of variables
related to precondition axioms and postcondition effects (before executing the
task and after completing the task) are reported and recorded by TaMUlIator.
In the current environment of TaMUlator, any task record comprises the fol-
lowing 4-tuple: (name, time-stamp, precondition axioms’ status, task-model
set?), while variable records for checking postconditions comprise a 3-tuple:
(name, new value, time-stamp).

TaMUIator provides a built-in automatic Analyzer to evaluate the experi-
ment results after comparing with associated task models, or can export the
recorded data into a CSV format for manual analysis. At any time, the de-
velopment team /evaluator can issue an analysis of the recorded data against
any task model or experiment. Figure 5.8 shows a TaMUlator screen-shot of
Analyzer output.

5.4.4 The Analyzer Module

TaMUIlator provides the Analyzer module to analyze the recorded data it has
collected when users performed evaluation experiments. The development
team/evaluator can directly view the information related to a specific task
model or experiment after retrieving the recorded data in a CSV format from
the Recorder module, or can ask the Analyzer to provide results after analyzing
the data automatically according to the analysis criteria described in Section
5.3.5.

The Analyzer compares and analyzes the structure of the attached task
models to the recorded data. Thus, the Analyzer checks whether the recorded
data is consistent with the task structure, by checking that the appearance of
the recorded tasks are in the same order as in the task structure (for checking
execution-path selection), making sure that precondition axioms were met and
postcondition variables possess the desired values. If any of these conditions
are not met, the scenario for the task model is considered as not properly

*http://download.oracle.com/javase/6/docs/api/javax /swing/J Tree.html
5All task models that have the mentioned activity.

CHAPTER 5. TASK MODEL-BASED USABILITY EVALUATION IN
144 DEVELOPMENT ENVIRONMENT

Analyzation Resuits

\ Task Name Activity Name | Variable Name ariable value Preconditions met?
‘ i
\ luserAge 0
‘] ! |]
| ; ‘userAge 109
Recording of reported /\fuserlo P TT” | The userAge is 109, thus
variable change. ‘7% | | the precondition
idustorAdvice 0 "userAge>55" was met.
doctorAdvice 1
TPCreated 1
PlayingTrainingProgram |(login \ |0 Yes
| !dnttnmdvice |0
ihaveGames 1
TPCreated 1

Reported "login" task
happened. I lhavatiamae 1

[eomnpmn |

Figure 5.8: Analyzer output of an evaluation experiment

fulfilled, compared to what the evaluator wanted. This helps the development
team/evaluator to find usability issues in the targeted application, and is es-
pecially useful for locating the points where users normally make mistakes,
so the development team can take care of those places in next development
iteration.

5.4.5 TaMUlator Evaluation Case Study

We present a case study in which six development teams (composed of 6-7 stu-
dents each) used TaMUIator to evaluate the software project they developed®.
We gathered the data using the course material, e.g., product requirements
and exercises; project artifacts, e.g., task models and experiments’ results;
and written material by team members, e.g., communication in web forums,
feedback on roles, and the final course retrospective. We analyzed the data
using a qualitative comparison of triangulated data sources.

The project, named “Brain Fitness-Room”, aims to develop a system that
supports maintaining and strengthening memory and brain capabilities as well
as identifying any decline in these capabilities. The motivation for such a
system includes retaining and improving brain capabilities, detecting brain
illness, specifically dementia syndrome [103], slowing down the progress of

5The team members were 4th year CS-major students participating in the “annual project
in software engineering” course of the Computer Science Department at Technion, IIT.

5.4. TAMULATOR: A TOOL FOR MANAGING TAMU PROCESS
LIFE-CYCLE 145

known and unknown afflictions, and preventing brain illnesses. The system
includes a pool of games that fits in with its goals, thus providing, among
other goals, fun for the users and enabling the collection of data for future
studies.

The main components were defined as follows:

e The application provides three types of user interfaces for three types of
users: players, doctors, and administrators. Players can log in, play a
session or a specific game, view history, or get advice.

e A session builder can be used to create a session for the player in which
he/she plays and is advised.

e A game pool is provided. The games can be run on the system and can
be added separately. A standard is required so all games can run on all
systems (belonging to the six teams). The two game types:

— Left hemisphere medium/long-term memory game; e.g., study a list
of random words for a few minutes, then, after half an hour, write
down as many as you remember.

— Right hemisphere short-term memory game; e.g., study a random
shape for one minute, then draw it from memory.

e An automated built-in system advisor can issue warnings and suggestions
by analyzing the collected data.

History and statistics are stored in a database and can be viewed upon request.

In addition to the above-mentioned requirements, the subject of usabil-
ity evaluation using formal task models was presented to the teams. In the
first development iteration (see forthcoming subsections), all teams had to de-
velop a tool to enable writing basic task models in TaMoGolog. An end-to-end
scenario was defined, to develop evaluation experiments based on TaMoGolog-
based task models using an editor, execute them while recording user and
system activities and behavior, and analyze the results based on a compari-
son between the attached task model and the recorded data while perform-
ing the experiment. The following task model shows a scenario to evaluate
session execution that was provided to the development teams as their first
TaMoGolog-based task model.

TaskModel (PlayingSession) .
// unit tasks:
UnitTask(Activate-Session).
UnitTask(Game-Playing) .
UnitTask(Game-Stopping) .

g s N -

CHAPTER 5. TASK MODEL-BASED USABILITY EVALUATION IN
146 DEVELOPMENT ENVIRONMENT

6 // composite tasks:

7 CompositeTask(PlayingSession).

8 // fluents (Variables):

9 Fluent(setOfGameForCurrentUser) .

10 Fluent (currentGame) .

11 // precondition axioms

12 Precondition-axioms(Activate-Session) =

13 setOfGameForCurrentUser # empty.
14 Precondition-axioms(Game-Playing) =
15 currentGame € setOfGameForCurrentUser.

16 Precondition-axioms(Game-Stopping) = TRUE.
17 // task model main structure:

18 Label PlayingSession (){

19 Activate-Session;

20 Game-Playing;

21 Game-Stopping

22 }

Based on the teams’ work, one tool was selected and all teams used this
selected tool (TaMUIlator) during two iterations of evaluation.

Development Method

Here, we describe the development method we used while working with the
teams. The approach is based on agile development [2, 14] and is presented
using three main perspectives: human/social (H), organizational (O), and
technical (T). More information about the HOT framework that provides case
analysis using these three perspectives can be found in [49]. As part of the hu-
man/social perspective, the main ideas we foster are teamwork, collaboration,
and reflection. Teams meet every week for a four-hour compulsory meeting in
which they communicate regarding the product development and the process
management. Periodically, team members reflect on their activities.

As part of the organizational perspective, the project was defined for two
releases. Each was composed of two iterations of three weeks; i.e., four devel-
opment iterations. Roles were ascribed to each of the team members as part of
his/her team management; e.g., in charge of unit testing, tracking, designing
(see more details regarding the role scheme at [27]). Each of the role holders
presented measure(s) for the relevant responsibilities.

As part of the technical perspective, the following practices were used:
automated testing, continuous integration, and refactoring to ensure simple
design. The role scheme supported these practices by emphasizing the appro-
priate practices for specific iterations and changing the role scheme accordingly

5.4. TAMULATOR: A TOOL FOR MANAGING TAMU PROCESS
LIFE-CYCLE 147

in other iterations. For instance, the person in charge of continuous integra-
tion worked mainly at the first iteration to provide the infrastructure and work
procedure; refactoring activities were the responsibility of the designer at the
third iteration, and so on.

The usability evaluation of the product that is being developed is yet an-
other practice that was implemented as part of this project. Based on the ex-
perience with guiding the implementation of the agile approach [27, 49, 114],
and the integration of User Center Design (UCD) techniques in the last four
years in agile projects in the industry and academia [30, 49], following are
the main practices we used (also part of our three-fold integration framework
described in Chapter 3):

1. Iterative design activities that include cycles of development, which con-
tain development tasks that were derived from usability evaluation.

2. Role holders in the subject of usability evaluation and using TaMUIator.

3. Measurements that were taken by the role holders as part of fulfilling
their responsibilities.

5.4.6 Evaluating TaMUlator

TaMUIator was used in the third and fourth iterations to evaluate the system
that was developed. Here, we present some of the evaluating scenarios and
results from the fourth iteration when teams were more experienced with using
TaMUIator and with usability evaluation in general.

Example Task Models

The following TaMoGolog-based task models are examples of the use of TaMU-
lator for usability evaluation and for functionality evaluation of the Brain Fit-
ness Room product:

(i1). Evaluate the way advice is viewed by the player.

1 Label Main (){
2 Patientlogin;
3 Selection;
PatientLogout
}
Label Selection (){
[(AdvisroStateIsNormal)? ; ViewNormalAdvice |
(AdvisroStateIsWarning)? ; ViewWarningAdvice |
(AdvisroStateIsDanger)? ; ViewDangerAdvice]

© 00 N O O

CHAPTER 5. TASK MODEL-BASED USABILITY EVALUATION IN
148 DEVELOPMENT ENVIRONMENT

(ii). Evaluate time spent in different brain-games.

1 Precondition-axioms(Login) = numberOfSession = 5.
2 Label Session (){

3 Login;

4 ActivateSession;

5 Gamel; Game2; Game3;
6 SessionEnded;

7 Logout

8 }

9 Label Gamel (){

10 SessionGamePalying; GameStopping
11 }

12 Label Game2 (){

13 SessionGamePalying; GameStopping
14 }

15 Label Game3 (){

16 SessionGamePalying; GameStopping
17 }

(iii). Ewvaluate user behavior using two task models.

Precondition-axioms(Login) = userAge > 55.
Label Behavior-Scenario (){

[user (Bad-Scenario | Good-Scenario)]
}

Label Bad-Scenario (){

Login;
CreateTrainingProgram;
[(haveGame)? ; FreeSession];
Play

© 0 NO O W N -

10 }

11 Label Good-Scenario (){

12 Login;

13 CreateTrainingProgram;

14 [(haveGame)? ; CreatSessionFromTP];
15 Play

16 }

5.4. TAMULATOR: A TOOL FOR MANAGING TAMU PROCESS

LIFE-CYCLE 149
Activity Average Time (sec)
Login until logout for regular user | 412.55
Login until logout for doctor 56.88
Login until start of game session 63.77
Average game time for all games 74.38
Bird game average play time 43.66
Piano Kombat average play time 121.22
Pirate Memory average play time 107.83
Silly Color game average play time | 24.8

Table 5.1: Example task model no. 2 - time measures

(iv). Evaluate the correct flow of session creation.

1 Precondition-axioms(Login) = userAge > 55.

2 Precondition-axioms(AddGameToSession) = TRUE.

3 Precondition-axioms(Play) = gameInSession > O.

4 Precondition-axioms(Logout) = TRUE.

5 Postcondition-axioms (AddGameToSession, gameInSession, TRUE) =
6 gameInSession + 1.
7 Label Main (){

8 Login;

9 AddGameToSession; Play;

10 Logout

11 }

Using Task Models to Analyze User Experience

Given the task model definition, the evaluator can define and run evaluation
experiments. As long as the experiments are activated, user and system ac-
tivities are recorded and stored. The user and system behavior are analyzed
by comparing the recorded behavior to the task model for a specific scenario.

Here, we present the analysis of an example task model, which is an exam-
ple of usability evaluation through time spent in different situations when the
precondition of five active sessions is met (see above example task model no.
2). Four measures were derived from the user experience: a) Time elapsed
between login and first play activation (as one indicator of the usability of the
main menu), b) Time spent on each game and whether the user completes
the game, c¢) Average session time, and d) Average time in the system. The
summary of results is shown in Table 5.1, Figure 5.9, and Figure 5.10.

Based on these results, the development team reached several conclusions
and suggested several development tasks accordingly. Following are two ex-

CHAPTER 5. TASK MODEL-BASED USABILITY EVALUATION IN

150 DEVELOPMENT ENVIRONMENT
P Start->End
Start->End SESSIon Ga?':e4(sri]”y Login_

Game3(Pirea
t Memory)
30%

Color) >Session
7% GameStart
18%

Start->End
Gamel
(Birds)

12%

Figure 5.9: Time spent game playing

500
400
300
200
100

Doctor Session Regular User
(Sec) Session (Sec)

Figure 5.10: Time spent on users’ sessions

5.5. RELATED WORK 151

amples: 1) The average time from login until start of game session (63.77
seconds) is relatively high since all that was required from a new user (player)
is to select the default session and start playing. The team suggested chang-
ing the user interface in a way that it will be clear that you cannot press the
‘play’ button before selecting a session. This included a new arrangement of
the ‘session’and ‘play’ buttons and a change in the usage of the ‘session’ check
box in cases the user needs the default session. 2) The average play time of
the Silly Color game (24.8 seconds) is too short. The team suggested adding
a higher difficulty level to increase game effectiveness.

We presented the automated analysis when a precondition is met and time
is measured. Automated analysis in the case of the other example task models
yields different types of results, e.g., in example task model no. 1) we receive
a measure for how many times a user viewed advices in general and specific
advices (normal, warning, danger) in particular. This is automatically com-
pared with the behavior of other users thus enables reaching a comprehensive
conclusion.

In the final retrospective on the course, team members were asked to grade
their satisfaction between 1 to 5 (very satisfied) with respect to the project
topic, course methodology (agile, time management and early detection of
problems, emphasis on testing and usability), tools that were used (Trac and
Moodle), and the services in the physical lab they worked in. 32 team mem-
bers answered and the average grade for the methodology was high (4.09)
(for project topic 4.36, tools 3.98/3.28 respectively, and for lab services 2.66).
Specifically, regarding the roles that concerned with usability, team members
referred to the importance of learning and dealing with usability while devel-
oping. Following are some of their comments on this matter: “It is important
to get feedback from the users...”, “It does not matter how good the product
is, [people] will use it only if it is simple and user friendly. A lot of things
that seem clear to developers are not clear to the end users”, and “The role of
being in charge of the evaluation experiment was an important role with which
we specified the usage of our system by the user”.

The limitations of this case study is that it was done as part of a project in
which the TaMUlator was developed hence students were aware of the benefits
and wanted to succeed in using it.

5.5 Related Work

Automating usability evaluation is not a new phenomenon. Plenty of method-
ologies have evolved and suggestions have been given to automate the eval-
uation process in software development life cycles to reduce time and cost
and to get feedback more effectively and efficiently. Ivory and Hearst [63]

CHAPTER 5. TASK MODEL-BASED USABILITY EVALUATION IN
152 DEVELOPMENT ENVIRONMENT

conducted a very detailed survey on the state-of-the-art in the automation of
usability evaluation techniques at different levels. They analyzed 132 eval-
uation techniques, both for Web and WIMP (Windows, Icons, Pointer, and
Mouse) interfaces, and found that only 33% of those techniques are supported
by automated tools using the taxonomy (none, capture, analysis, and critique)
suggested by Balbo [6] to distinguish the level of automation, supported by
these tools. The survey concluded that there is a great under-exploration of
usability evaluation methods automation and suggested focusing the research
on automation techniques.

The task model-based usability evaluation area is still underexplored as
there are only a handful of tools available that support and automate the
process of usability evaluation through task models at different abstraction
levels.

ConcurTaskTrees (CCT) [92] is the most widely used technique for writing
task models in model-based usability evaluation. It provides graphical repre-
sentation for different abstraction of tasks through a hierarchical-based task
tree, and specifies temporal relationships between tasks and sub-tasks using
operators based on LOTOS [118] formal notations. It supports four kinds
of tasks abstraction, called user tasks, abstract tasks, interaction tasks, and
application tasks. This representation technique is supported by CCTE (Con-
curTaskTrees Environment), a tool for creating task trees and building the
relationship between different sub-tasks in the task-tree according to the se-
mantics of task model [80]. The created task model can be saved in a different
format, e.g., as a JPEG image or in XML format. The tool also provides a
simulator environment for better analyzing the dynamic behavior of created
task models. Sinnig et al. [111] enhanced the set of temporal operators of CCT
(by adding stop, nondeterministic choice, deterministic choice, and instance
iteration operators), and also provided a concept for expressing a special kind
of cooperative task model that distinguishes the different roles and the actors
who perform those roles.

The first automated usability evaluation tool based on CCT is USINE
(USability INterface Evaluator), developed at CNUCE-NCE (Pisa) [71]. For
input, USINE takes the task models (generated in XML format in CCT) and
the logs generated by users (through the log recording tool “Replay”), and
then the designer creates a log-task table in USINE for mapping physical
actions performed by users to the basic tasks of the task model. USINE then
creates the precondition table automatically, emphasizing the possibility of
doing one task before others. When users perform tasks, the tool takes the
users’ log files and gives the result after analyzing the user data with the task
model, log-task table, and precondition table. This whole process is divided
into three phases: the preparation phase, the automatic analysis phase, and
the evaluation phase [71].

5.6. SUMMARY AND CONCLUSIONS 153

RemUSINE (Remote USINE) [91] is an extension of USINE and provides
the support of remote usability evaluation, an enhanced methodology, and the
facility to analyze a large set of usability data. A recent enhancement is the
MultiDevice RemUSINE tool [93] for mobile applications that includes the
possibility of detecting those environment conditions that could affect users’
interaction with mobile applications such as battery level consumption, data
exchange rate, disconnection problems, and the surrounding environment.

AWUSA (Automated Website USability Analyzer) [10] focuses on remote
task-based usability evaluation and targets websites rather than system appli-
cations. It works on already built websites, so it is the evaluator/architect’s
duty to discover task models of the target website. It takes three inputs: the
website, the discovered task structure (which defines the business model of
the website), and the captured logging information of users (generated by the
website server).

ReModEl (REmote MODel-based EvaLuation) [10] has a client-server ar-
chitecture for remote usability evaluation where the server contains task mod-
els (using the concept of CCT) and the targeted task models are delivered to
the client via a corresponding graphical user interface. The designer creates
a dialog graph (for the specific device, e.g., PDA or notebook) based on the
server-side task models, to provide a corresponding concrete user interface.
On the client side, the system captures users’ interactions with the proposed
user interface and returns them to the server, which analyzes them with the
created task models. So the AWUSA applies reverse engineering for usability
evaluation of the web site while ReModEl uses forward engineering by trans-
forming task models to multi-model interfaces for usability evaluation of the
target application.

DiaTask [101] is used to develop a dialog graph to represent the naviga-
tion structure of the application, based on the already specified task model.
This tool creates the first prototype of the application and helps build the re-
quirements properly as it analyzes the results when users interact with these
prototypes. The approach has been further enhanced in [97] for usability
evaluations of smart environments.

5.6 Summary and Conclusions

In this chapter, we presented a framework, called TaMU, for managing and
automating task model-based usability evaluation in software development
environments. The framework uses TaMoGolog-based task models to record
users and application data while evaluating the target application, and a mean
for the automatic analysis of the recorded data to highlight usability issues.

CHAPTER 5. TASK MODEL-BASED USABILITY EVALUATION IN
154 DEVELOPMENT ENVIRONMENT

We also presented TaMUIator tool that manages and automates end-to-end
TaMU process life cycle at the IDE level, and provides the automatic analysis
of the users and the application behavior. We also presented a case study
where six development teams used our framework to evaluate their developing
product.

Our TaMU framework approach for usability evaluation differs from previ-
ous approaches in many aspects.

Firstly, TaMU framework considers usability evaluation for the evaluation
of both product usability and functionality, and uses experiments to find us-
ability issues and system problems that serve as a kind of acceptance test for
the developed features. The other approaches simply focus on usability aspects
during performing evaluation experiments. As TaMU framework focuses both
on product usability and functionality during evaluation experiments thus also
works as acceptance testing to the product functionalities along finding usabil-
ity issues, hence it is not required to perform a complete testing separately,
which saves time and cost in the long run. Due to these reasons, TaMU frame-
work fits very well in agile nature of development processes where there are
normally short-time natures of development iterations.

Secondly, TaMU framework emphasizes the automation and management
of usability evaluation at the IDE level to integrate it fully with the develop-
ment process as described previously in Chapter 3. This integration at the IDE
level enables the software development team with the mechanisms to monitor
and control a continuous evaluation process tightly coupled with the develop-
ment process, thus receiving ongoing user feedback and product functionality
testing while continuing development. This also enables us to derive relevant
development tasks for the forthcoming iterations for further improvements in
the developing product. Due to this, TaMU framework can be worked very
effectively in iterative and incremental type of development approaches.

Thirdly, TaMU framework approach suggests tagging tasks and variables
at the program code level in the development environment. Through this, it
is possible to model both the user and the system tasks in the task models
attached to evaluation experiments. This enables us to capture both the user
and the system activities and behavior during the evaluation experiment for
finding usability issues and testing product functionalities. Also, tagging tasks
at the code level enables us to abstract our task notion at different abstraction
levels, e.g., we can define one computation step as a task or can enhance its
abstraction by defining a complete functionality as a task. This task tagging at
different abstractions is used to evaluate product usability and functionality at
different abstraction levels; hence, helps in finding usability issues from several
aspects.

Fourthly, the definition of a well-defined (syntactically and semantically)
formal language, TaMoGolog, for modeling usability scenarios in evaluation

5.6. SUMMARY AND CONCLUSIONS 155

experiments and then using it for the automated analysis of the recorded
data. We have already described in details the benefits of using TaMoGolog
for usability evaluation in Section 5.3.2. In brief, the benefits of TaMoGolog for
usability evaluation that were lacking in previous approaches are: the powerful
set of operators for constructing task structures for complex system behavior
unambiguously and accurately, the extendable and customizable nature of the
language through the predicate system of situation calculus, provision of user
and system tasks in the same task model or in separate task models that helps
to model and capture their activities and behavior together or separately, the
precondition axioms for task include all those conditions that must be true
in order to execute the related task are extremely useful in finding out the
reasons behind the failure of the task and to highlight the related usability
issues, the task postcondition effect axioms to variables enable to test product
functionalities, and the facility to write domain knowledge in the task model
can also help in highlighting usability issues more effectively and accurately.

CHAPTER 5. TASK MODEL-BASED USABILITY EVALUATION IN
156 DEVELOPMENT ENVIRONMENT

Chapter 6

Conclusions and Future
Directions

6.1 Conclusions

The theme of this thesis is incorporating user experience as part of the devel-
opment process. This is achieved through involving end users in the evaluation
process of a specific product so as to collect their feedback and then to manage
the ensuring development accordingly for enabling high-level usability in the
end product. We broke down this theme into three levels, tackled one by one
from high level to low level. Firstly, to overcome the gap between software
development practice and user experience, we provided a three-fold integra-
tion framework that incorporates user-centered design (UCD) philosophy into
agile software development at three levels: (i) the process life-cycle level, (i)
the iteration level, and (#4) the development-environment level. Secondly,
we targeted our focus towards the development-environment level integration
to tackle the challenges of UCD management from within the integrated de-
velopment environment (IDE). This helps the software development team to
automatically collect users and system behavior and feedback to recognize
usability flaws and errors in an efficient way. Thirdly, we focused towards
automating task model-based usability evaluation through recording the user
and system activities and behavior as per the defined mode with the help of
TaMoGolog-based formal task models. This enables the process to analyze au-
tomatically the results by comparing the task models and the recorded data
to highlight usability issues in an effective manner, and to draw conclusions to
derive relevant design and development tasks for further improvements in the
developing product. Figure 6.1 shows the hierarchy of our targeted three levels.

157

158 CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS

Integrated Agile-UCD Three-fold Framework

UECD Monogement at the IDE-level

Task Madel-bazsed Usahility
Evaluation

Figure 6.1: Hierarchy of thesis targeted areas

Firstly, we provided the preliminary background knowledge about the four
areas related to the thesis. These four areas are the agile development, the
user-centered design (UCD) philosophy, the usability evaluation approach, and
the task analysis.

We presented our three-fold framework for utilizing the benefits of user-
centered design philosophy while developing software projects with agile ap-
proach. We suggested a number of attributes for selecting appropriate UCD
methods during different phases of development. We suggested a life-cycle
for performing UCD activities alongside agile development activities. We also
provided suggestions for aligning UCD concepts, roles, and activities within
the development iteration activities for maximum benefits. We further dis-
cussed other approaches and techniques that integrate user-centered design in
agile development at different granularities.

We provided the concept of UCD management for managing and automat-
ing UCD activities at the IDE level. This mechanism enables the software de-
velopment team to monitor and control a continuous evaluation process, thus
receiving ongoing user feedback while continuing development.

We presented a tool UEMan that enables the software development team
to manage and automate the UCD activities at the IDE level alongside the
development activities. We also presented two case studies where in the first
case study the UEMan was evaluated by using itself, while in the second case
study six software development teams used it to evaluate the software projects
they developed.

We presented a framework for task modeling. This framework provides
a set of concepts; i.e., task, task type, view-type, task-model, and view-model;
for laying out a conceptual foundation to structure task models from different
abstractions. We categorized task types into two categories: the basic category
and the behavioral category. We provided definition of sets of task types
and view types. We also presented an example to further elucidate our task
modeling framework concepts.

We provided the definition of a formal task modeling language, called Ta-
MoGolog, on the top of the foundations of Golog-family [18, 19, 20, 73, 107] of

6.2. FUTURE DIRECTIONS 159

high-level programming language for constructing dynamic and rich task mod-
els. We provided the formalization details of the TaMoGolog. For this, firstly
we presented the TaMoGolog set of constructs. Secondly, we provided the for-
mal syntax and semantics framework of TaMoGolog. Thirdly, we defined the
formalization of the framewrok for external nondeterministic constructs at the
language level using GameGolog [20] approach. This enables to model the ex-
ternal entities’ participation in making nondeterministic decisions at run time.
Fourthly, we provided the low level implementation of the framework for exter-
nal nondeterministic constructs in the Golog-family Prolog-based interpreter
P-INDIGOLOG [105].

For the automatic analysis of the evaluation, task model-based usability
evaluation approach uses formal task models to model the user and the system
tasks and behavior. These task models are then used as a mean for produc-
ing automatic analysis of the recorded users’ and system data. We presented
a framework, called TaMU framework, for managing and automating task
model-based usability evaluation in software development environments. We
described the role of TaMoGolog as task modeling language in TaMU frame-
work. We explained the effects of tagging tasks and variables at the code level,
benefits of TaMoGolog for usability evaluation, the reflection of TaMoGolog-
based task models through scenarios in evaluation experiments, the role of
TaMoGolog-based task models in recording users and system activities and
behavior during execution of experiments, and the process of performing au-
tomated analysis with the help of TaMoGolog-based task models.

Finally, we presented TaMUIlator tool that manages and automates an end-
to-end TaMU evaluation life-cycle at the IDE level, and provides the automatic
analysis of the user and the system behavior. Also, we presented a case study
where six development teams used our TaMU framework and TaMUIator tool
to evaluate their developing product. Moreover, we discussed other techniques
and tools that perform task model-based usability evaluation and highlighted
the differences of our approach from these.

6.2 Future Directions

The thesis provides foundations on which a number of future research direc-
tions arise. In this thesis, we conducted our research work towards three
dimensions aims at achieving the targeted theme. These three dimensions
are: incorporating UCD philosophy into agile software development approach,
managing and automating UCD activities and usability evaluation at the IDE
level, and defining a task modeling framework and a formal task modeling lan-
guage to support the automated usability evaluation analysis process. Here,
we are summarizing the possible future directions:

160 CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS

Towards the integrated framework approach:

e The application of proposed framework in small- to large-scale software
projects within the industry to evaluate its effectiveness. Ome of the
challenges in this regard is to perform empirical evaluation studies of
the framework for projects of different scales.

e The enhancement in the framework to accommodate changes that can
make it applicable for other iterative and incremental natured software
development processes.

Towards management and automation of UCD activities and usability
evaluation:

e An evaluation study of the TaMU framework for estimating the efforts
required for utilizing it (e.g., time and efforts required for tagging in
the code, creating task models, conducting experiments, etc) and for
assessing the effectiveness of it for capturing usability issues and different
human behaviors.

e Detailed empirical comparative study of TaMU framework with tradi-
tional usability evaluation methods for checking its efficiency and effec-
tiveness.

e The support for a wide range of UCD activities and usability evaluation
methods at the automated tool level.

e The complete support of TaMoGolog language in TaMUIator tool as cur-
rently it only implements a subset of TaMoGolog functionalities. One
future direction would be integrating these two tools (TaMUlatore and
UEMan) to provide all the relevant functionalities under one umbrella.

e The current TaMUlator automated analysis covers parts of the usability
issues. To cover a wide range of usability issues, there is need to enhance
the TaMUlator Analyzer module to cover fully the analysis criteria sug-
gested in Section 5.3.5. An important objective is to provide the results
with help of robust statistical techniques in order to highlight usabil-
ity issues more accurately and to recognize/analyze different users’ and
system behavioral patterns.

e The support of automatic critiqgue [6] in the usability evaluation frame-
work (and in the resulting automated tool); which provides the facility
to automatically suggest the possible solutions, recommendations, and
improvements after analyzing the usability issues. This would be very
useful for working with agile development to save time and cost.

6.2. FUTURE DIRECTIONS 161

e Providing a simulation environment where Golog-family based autonomous
agents would act like end users of the developing/developed product for
participating in evaluation experiments. This kind of simulation envi-
ronment can give a large amount of evaluation data in short-time, and
also saves cost as conducting usability with real end users incurs cost
and time.

Towards task modeling framework and TaMoGolog:

e Task modeling techniques are used in other areas such as in software
engineering to help designers analyze and develop their system designs.
For example, Reichart et al. [101] suggest transformational (pattern-
guided) model-based development for interactive systems, using task
models amongst other models. There is need to analyze the usage of
proposed task modeling framework and TaMoGolog language in other
areas, e.g. for collection of requirements or for model-driven development
purposes.

e Providing the support in TaMoGolog towards constructing task models
for collaborative environments.

e The graphical representation of TaMoGolog language and a task model-
ing environment. This task modeling environment would allow writing
task models in textual or graphical form and exporting the created task
models in different formats.

Most of the above possible future research directions target only one of the
three dimensions, while few of these target a combination of two or all of the
three dimensions.

162 CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS

Appendix A

Golog-family based High-level
Program Syntax

This appendix provides implementation of the external nondeterministic con-
structs framework in Golog-family based high-level program syntax. We are
not going to domain specific low-level details. We provide here the set of ax-
ioms for predicates, fluents, and actions; and provide the procedure definition
for each of those constructs that can be directly transferred into Golog-family
based programs as discussed in Section 4.6.

Predicates for Agents

First, we provide predicates for defining agents (e.g., external application/
systems).

Agent (agt)
SysAgent (sys)

The Agent predicate is for defining external agents (applications/systems) that
participate in making nondeterministic decisions, while the predicate SysAgent
is to define the system (or the user program) name that controls the agent
environment when no external agent has control over it.

Primary Actions

The following primary actions are used by the system for managing the control
of agent environment and for sending the requests to external agents.

startControl(agt): gives control to agent agt

endControl(agt): takes control from agent agt

requestExtCh(agt, lz'gt): requests to agent agt to make a choice and the list
contains left and right program parts

163

APPENDIX A. GOLOG-FAMILY BASED HIGH-LEVEL PROGRAM
164 SYNTAX

requestltr(agt): requests to agent agt to make decision on iteration
requestPick(agt): requests to agent agt to pick a binding for the variable
requestNum(agt): requests to agent agt for making decision that how many
instances of the program the agent wants in the concurrent iteration

The first two actions manage agent environment, while the purpose of remain-
ing actions is to give required signals to the agent for making the nondeter-
ministic choice decision. It is also possible to send other information to agents
during request by adding parameters in the requesting actions in order to
understand the request properly.

Exogenous Action

The following choice actions are generated by agents, through which they let
the system know of their decisions. In ConGolog, actions generated by external
applications/systems are regarded as exogenous actions.

agtLeft(agt): agent agt chooses left-sided choice

agtRight(agt): agent agt chooses right-sided choice
agtContinue(agt): agent agt chooses to continue the iteration
agtStop(agt): agent agt chooses to stop the iteration

agtPick(agt, x): agent agt gives a value for the variable z
agtNumber(agt, num): agent agt gives the number for the concurrent
iteration

Defined Fluents

sysAgt(s) = sys o SysAgent(sys)
The sysAgt fluent provides the name of the system (or user program) that
controls the agent environment when no external agent controls it.

Functional and Relational Fluents

We divide fluents into three categories: the first category manages the control
of the agent environment, the second category checks whether the agent has
made the decision, while the third category deals with the decisions of agents.

e Fluents related to controlling the agent environment are:

Free(s): provides whether the agent environment is occupied or not
control Agt(s) = agt: gives the name of agent who currently controls
the agent environment

AgtEnv(agt, s): given the agent name, it tells whether this agent
currently controls the agent environment or not

165

e The second category contains:

ExtChSelected(s): becomes true when the agent selects the choice
ItrSelected(s): becomes true when the agent makes the iteration
decision

PickSelected(s): becomes true when the agent picks a binding for the
variable z

NumSelected(s): becomes true when the agent selects the number for
the concurrent iteration

These fluents becomes true when the agent makes some decision based
on request. The agent generates an exogenous action in response to
the request and the related fluent becomes true, which is used to make
further decisions.

e The third category contains:

Left(s): becomes true if the agent selects left-sided program

Right(s): becomes true if the agent selects right-sided program
Continue(s): becomes true if the agent decides to continue the
iteration

Stop(s): becomes true if the agent decides to stop the iteration
pickMade(agt, s) = x: contains the binding for the variable z provided
by agent

numMade(agt, s) = num: contains the number provided by agent for
the concurrent iteration

These fluents becomes true or contain values according to the decisions
taken by agents. These change their values when agents generate exoge-
nous actions in order to let the system know their decisions.

Initial Values of Fluents

The following are values of fluents at the initial history when no action has
been executed so far. This state is represented by Sy in Golog-family. Initially,
Free and Stop have value true, while others relational fluents have false value.
On the other side, initially the controlling agent name is the system (or user
program) name. The last axiom says that initially all agents have no control
over the agent environment.

Free(s)
control Agt(s) = sysAgent
~EztChSelected(s)

APPENDIX A. GOLOG-FAMILY BASED HIGH-LEVEL PROGRAM
166 SYNTAX

—PickSelected(s)

-~ NumSelected(s)

—Left(s)

- Right(s)

—Continue(s)

Stop(s)

Yagt.Agent(agt) A pickMade(agt, s) = nil
Yagt.Agent(agt) A numMade(agt, s) = nil
Yagt.Agent(agt) N = Agt Env(agt, s)

Precondition Axioms for Actions

The following are precondition axioms for each primary and exogenous action.

Poss(startControl(agt), s) = Free(s) N ~AgtEnv(agt, s) A Agent(agt)
Poss(endControl(agt), s) = —Free(s) AN AgtEnv(agt, s) A Agent(agt)
Poss(request ExtCh(agt, ZZE;)? s) = AgtEnv(agt, s) A ﬂ(ﬂf =3)
Poss(requestPick(agt), s) = Agt Env(agt, s)
Poss(requestItr(agt),s) = AgtEnv(agt, s)

Poss(request Num(agt), s) = AgtEnv(agt, s)

Poss(agtLeft(agt),s) = AgtEnv(agt, s)

Poss(agtRight(agt), s) = AgtEnv(agt, s)

Poss(agtContinue(agt), s) = AgtEnv(agt, s)

Poss(agtStop(agt), s) = AgtEnv(agt, s)

Poss(agtPick(agt,x),s) = AgtEnv(agt, s)

Poss(agt Number(agt, num), s) = AgtEnv(agt, s) A num > 0

As stated, the startControl is possible if the agent environment is free and
currently the requested agent does not control the environment, while in order
to take the control back from the agent the reverse is the precondition. For
all other actions, the precondition is that the agent, receiving the request
or that making the decision, must have control over the agent environment.
The precondition for the agtNumber choice action also checks whether the
given number is zero or greater than zero as iteration cannot be of a negative
number.

Effect Axioms for Relational Fluents

Here are the effect axioms for each relational fluent, as stated in [102], in order
to describe under which actions’ execution these fluents change their value to
true or false through situation calculus formulas Y1 (Z, o, s) and =Y (%, «, 5).

Free(do(3agt.endControl(agt), s))

167

—Free(do(Jagt.startControl(agt), s))
AgtEnv(agt,do(startControl(agt), s))

—AgtEnv(agt, do(endControl(agt), s))
ExtChSelected(do(Jagt.agtLe ft(agt), s))
ExtChSelected(do(3agt.agtRight(agt), s))
~EztChSelect(do(Jagt, lz?f.requestE:vtCh(agt, lz_si), s))
ItrSelected(do(3agt.agtContinue(agt), s))
ItrSelected(do(Jagt.agtStop(agt), s))
—[trSelect(do(Jagt.requestltr(agt), s))
PickSelected(do(Jagt, x.agt Pick(agt,), s)
—PickSelect(do(3agt.request Pick(agt), s))
NumSelected(do(Jagt, num.agt Number(agt, num), s))
-~ NumSelected(do(Jagt.request Num(agt), s))
Left(do(3agt.agtLeft(agt), s))

—Le ft(do(Jagt.agtRight(agt), s))
Right(do(Jagt.agtRight(agt), s))
—Right(do(3agt.agtLe ft(agt), s))
Continue(do(Jagt.agtContinue(agt), s))
~Continue(do(Jagt.agtStop(agt), s))
Stop(do(Jagt.agtStop(agt), s))
—Stop(do(agt.agtContinue(agt), s))

)

Successor State Axioms for Fluents

The following are successor state axioms for each fluent (relational and func-
tional) while using situation calculus formula F(¥, do(a, s)) < ®p (&, do(a, s), s)
as described in [102].

Free(do(a, s)) =
Jdagt.(a = endControl(agt)) V (Free(s)=(Jagt.a = startControl(agt)))

AgtEnv(agt,do(a, s)) =
a = startControl(agt) V (AgtEv(agt, s) A a # endControl(agt))

control Agt(do(a, s)) = agt =
a = startControl(agt) V (3agt’,a = endControl(agt’) A agt = sysAgt(s))V
(control Agt(s) = agt A (a # startControl(agt) V a # endControl(agt)))

ExtChSelected(do(a, s)) =
agt.(a = agtLeft(agt) V a = agtRight(agt))V

- —
(ExtChSelected(s) N —(3agt, list.a = request ExtCh(agt,list)))

APPENDIX A. GOLOG-FAMILY BASED HIGH-LEVEL PROGRAM
168 SYNTAX

ItrSelected(do(a, s)) =
agt.(a = agtContinue(agt) V a = agtStop(agt))
(ItrSelected(s) N =(Jagt.a = requestItr(agt)))

PickSelected(do(a, s)) =
Jagt, x.a = agtPick(agt,z)V
(PickSelected(s) A —~(Jagt.a = request Pick(agt)))

NumSelected(do(a, s)) =
Jdagt, num.a = agt Number(agt, num)V
(numSelected(s) A =(Jagt.a = request Num(agt)))

Left(do(a,s)) =
Jdagt.a = agtLeft(agt) V (Left(s) A ~(3agt.a = agtRight(agt)))

Right(do(a, s)) =
existsagt.a = agtRight(agt) V (Right(s) A ~(3agt.a = agtLeft(agt)))

Continue(do(a, s)) =
Jdagt.a = agtCotinue(agt) V (Continue(s) A =(Jagt.a = agtStop(agt)))

Stop(do(a, s)) =
Jdagt.a = agtStop(agt) V (Stop(s) A =(Jagt.a = agtContinue(agt)))

pickMade(agt,do(a,s)) =z =
a = agtPick(agt,z) V (pickMade(agt, s) = x A a # agtPick(agt,x))

NumMade(agt,do(a, s)) = num =
a = agt Number(agt,num) V (numMade(agt, s) = num A a #
agt Number(agt, num))

Procedure Definitions for External Nondeterministic Constructs

Following are proper Golog-family based procedure definitions for each of ex-
ternal nondeterministic constructs using the above defined sets of predicates,
actions, fluents, and axioms.

1 - Ezxternal Nondeterministic Choice [agtD'y | T'g):

proc Ext N DChoice(agt,T'1,Ts)
startControl(agt); request ExtCh(agt, [I'1,2]); ExtChSelected?;
[Left?;endControl(agt);T'1 | Right?;endControl(agt); 's]

end

169

The ExtNDChoice procedure takes three parameters: the agent name and two
programs (tasks). After giving the control to the agent, the system (or user
program) sends a request to the agent for selecting a program between two
given programs. The system waits until the agent generates exogenous action
to tell the decision, either agtLeft or agtRight, which makes the fluent FxtCh-
Selected true. The system then takes back the control and starts execution of
the selected program. Note that the process of taking the control back from
the agent is carried, after deciding left or right side in order to avoid any wrong
value due to concurrent processes.

2 - Ezxternal Nondeterministic Choice of Argument [agtmwx.I'(x)]:

proc ExtNDChArg(agt,T’)
startControl(agt); request Pick(agt); PickSelected?;
nx.{pickMade(agt) = x7; endControl(agt); T'(z)}
end

The ExtNDChArg procedure takes two parameters: the agent name and the
program. After giving the control to the agent, the system (or user program)
asks the agent for picking a binding for the variable. The fluent pickMade
contains the picking binding and the system binds this with the program and
then executes the program according to this binding.

3 - Ezternal Nondeterministic Iteration [agtT']*:

proc ExtN DItr(agt,T")
startControl(agt); requestItr(agt); ItrSelected?;
while (Continue A =Stop)
do (endControl(agt);T'; startControl(agt); requestltr(agt); [trSelected?)
endControl(agt);
end

The FExtNDIrt procedure uses Continue and Stop fluents in order to keep the
loop of executing program. If the agent generates agtContinue action, then
the while-condition becomes true and the do-part starts execution; otherwise,
when the agent generates agtStop action then the while-condition becomes
false and the system takes control back from the agent.

APPENDIX A. GOLOG-FAMILY BASED HIGH-LEVEL PROGRAM
170 SYNTAX

4 - Exzternal Nondeterministic Selected Priority [agtI'i()I'2]:

proc ExtNDSelPrt(agt,T'1,T'2)
startControl(agt); request ExtCh(agt, [I'1,2]); ExtChSelected?;
[Left?;endControl(agt); (I'1))I's) | Right?; endControl(agt); (I'2))T'1)]
end

The ExtNDSelPrt procedure deals with priority concurrency. If the agent
chooses left side then the left-sided process gets higher priority and vice versa.

5 - External Nondeterministic Selected Concurrent Iteration
[agt T)I:

proc ExtNDConltr(agt,T")
startControl(agt); request Num(agt); NumSelected?;
[((NumMade(agt) = 0)?; endControl(agt) | (NumMade(agt) > 0)7;
mn.{ NumMade(agt) = n?; endControl(agt); [T]I"}]
end

The FExtNDSelPrt procedure checks if the agent has selected zero number then
it takes the control back from the agent and does nothing. Otherwise, if the
given number is greater than zero, then it creates instances of the program for
that given number of times and then executes these in the concurrent iteration
form.

6 - External Nondeterministic First-Step Decision Concurrency
[agt Ty (|)T2):

proc Ext N DFirstStepCon(agt,T'1,T')
startControl(agt); request ExtCh(agt, [I'1,T'2]); ExtChSelected?;
[Left?;endControl(agt); (I'1({| I'2) | Right?;endControl(agt); (I'1 |))I'2)]
end

The external first-step decision concurrency construct also uses two new “aux-
iliary” constructs to model the selected type of concurrency. The Trans and
Final definition, at the interpreter level, of these two “auxiliary” constructs
is provided in the Appendix B. In ExtNDFirstStepCon procedure, if the
agent decides the left side then it calls the left-side-first auxiliary construct
(T'1{{| I'2); in which, the first executed action will be from left side and the
remaining will be the normal concurrency between the remaining part of left
side program and the right side program. The right-side-first auxiliary con-
struct (I'; |))T'2) performs the first action from right side program and then
the normal concurrency between both.

Appendix B

Prolog-based Code for
IndiGolog Interpreter

This appendix provides the Prolog-based corresponding code of the Golog-
family based program parts provided in the Appendix A. The targeted plat-
form is IndiGolog interpreter implementation P-INDIGOLOG [104, 105]. This
code implementation can be used directly in user programs created for P-INDIGOLOG
platform provided the handling of actions at agent’s side. In P-INDIGOLOG
platform, external entities (applications/systems/devices) communicate with
the system through Environment Manager module and each of these external
entities is responsible to define internally how to handle the action execu-
tion. The Environment Manager sends action execution commands and also
receives exogenous action generation signals from external entities and let the
system know as it receives. Here, we are not going into the domain dependent
low-level details related to the execution of requests by external entities, it
receives from the system, for making nondeterministic choice decision and the
relaying back such decision. We assume that the user program and the related
external entity will provide these domain-dependent low level details.

Predicate for Agents

FEach agent will be define by the agent predicate, but there will be only one
definition of the system agent through the sysAgent predicate.

agent (agt) .
sysAgent (sys) .

Relational and Functional Fluents

The predicate rel_fluent stands for relational fluent, while predicate fun_fluent
stands for functional fluent.

171

APPENDIX B. PROLOG-BASED CODE FOR INDIGOLOG
172 INTERPRETER

fun_fluent (sysAgt) .

rel_fluent(free).

rel_fluent (extChSelected) .
rel_fluent(itrSelected).
rel_fluent(pickSelected) .

rel_fluent (numSelected) .
rel_fluent(left).

rel_fluent(right).
rel_fluent(continue).

rel_fluent(stop).

fun_fluent (controlAgt).
rel_fluent(pickMade(Agt)) :- agent(Agt).
rel_fluent (numMade (Agt)) :- agent(Agt).
rel_fluent(agtEnv(Agt)) :- agent(Agt).

Primary Actions

To define each primary action.

prim_action(startControl (Agt)) :- agent(Agt).
prim_action(endControl(Agt)) :- agent(Agt).
prim_action(requestExtCh(Agt, List)) :- agent(Agt).
prim_action(requestItr(Agt)) :- agent(Agt).
prim_action(requestItr(Agt)) :- agent(Agt).
prim_action(requestPick(Agt)) :- agent(Agt).
prim_action(requestNum(Agt)) :- agent(Agt).

Exogenous Action

The choice actions are treated as exogenous actions.

exog_action(agtLeft(Agt)) :- agent(Agt).
exog_action(agtRight (Agt)) :- agent(Agt).
exog_action(agtContinue(Agt)) :- agent(Agt).
exog_action(agtStop(Agt)) :- agent(Agt).
exog_action(agtPick(Agt, X)) :- agent(Agt).
exog_action(agtNumber (Agt, Num)) :- agent(Agt).

Preconditin Axioms for Actions

Precondition axioms for each primary and exogenous action, where in predicate
poss(Action, Cond), Cond provides precondition axioms.

173

poss(startControl (Agt), and(free, neg(agtEnv(Agt)))).
poss(endControl(Agt), and(neg(free), agtEnv(Agt))).
poss(requestExtCh(Agt, List), agtEnv(Agt)) :- noEmpty(List).
poss(requestPick(Agt), agtEnv(Agt)).
poss(requestItr(Agt), agtEnv(Agt)).
poss(requestNum(Agt), agtEnv(Agt)).

poss(agtLeft (Agt), agtEnv(Agt)).

poss(agtRight (Agt), agtEnv(Agt)).
poss(agtContinue (Agt), agtEnv(Agt)).
poss(agtStop(Agt), agtEnv(Agt)).

poss(agtPick(Agt), agtEnv(Agt)).

poss (agtNumber (Agt, Num), and(agtEnv(Agt), Num >= 0)).

Initial Values for Fluent

The predicate initially(Fluent, InitValue) provides initial value of each fluent.

initially(sysAgt, Sys) :- sysAgent(Sys).
initially(free, true).

initially(controlAgt, Sys) :- sysAgent(Sys).
initially(agtEnv(Agt), false) :- agent(Agt).
initially(extChSelected, false).
initially(pickSelected, false).
initially(numSelected, false).
initially(left, false).

initially(right, false).

initially(continue, false).

initially(stop, true).
initially(pickMade(Agt), [1) :- agent(Agt).
initially(numMade (Agt), 0) :- agent(Agt).

Successor State Values of Fluents

P-INDIGOLOG provides three predicates for defining successor state values for
fluents.

causes_true(Action, Fluent, Cond) provides information when a relational flu-
ent becomes true.

causes_false(Action, Fluent, Cond) provides information when a relational
fluent becomes false.

causes_value(Action, Fluent,Value, Cond) provides information when a func-
tional fluent gets a new value.

causes_true(endControl (Agt), free, true).

APPENDIX B. PROLOG-BASED CODE FOR INDIGOLOG
174 INTERPRETER

causes_false(startControl(Agt), free, true).
causes_true(startControl (Agt), agtEnv(Agt), true).
causes_false(endControl (Agt), agtEnv(Agt), true).
causes_true(agtLeft (Agt), extChSelected, true).
causes_true(agtRight (Agt), extChSelected, true).
causes_false(requestExhCh(Agt, List), extChSelected, true).
causes_true(agtContinue(Agt), itrSelcted, true).
causes_true(agtStop(Agt), itrSelcted, true).
causes_false(requestItr(Agt), itrSelcted, true).
causes_true(agtPick(Agt, X), pickSelcted, true).
causes_false(requestPick(Agt), pickSelcted, true).
causes_true (agtNumber (Agt, Num), numSelcted, true).
causes_false(requestNum(Agt), numSelcted, true).
causes_true(agtleft(Agt), left, true).
causes_false(agtRight (Agt), left, true).
causes_true(agtRight (Agt), right, true).
causes_false(agtLeft(Agt), right, true).
causes_true(agtContinue (Agt), continue, true).
causes_false(agtStop(Agt), continue, true).
causes_true(agtStop(Agt), stop, true).
causes_false(agtContinue(Agt), stop, true).
causes_val (agtPick(Agt, X), pickMade(Agt), X, agtEnv(Agt)).
causes_val (agtNumber (Agt, Num), numMade(Agt), Num,

and (agtEnv(Agt), Num >= 0)).
causes_val (startControl (Agt), controlAgt, Agt, true).
causes_val (endControl(Agt), controlAgt, sysAgt, true).

Procedure Definition for External Nondeterministic Constructs

1. Eazternal Nondeterministic Choice [agt T | T'a]:

proc (ExtNDChoice(Agt, Progl, Prog2),
[startControl(Agt), requestExtCh(Agt, [Progl, Prog2]),
while(not (extChSelected), wait),

ndet ([?(left), endControl(Agt), Progi],

[?(right), endControl(Agt), Prog2])1).

Here, P-INDIGOLOG predicate 7(¢) stands for waiting action, while ndet stands
for internal nondeterministic choice. As P-INDIGOLOG platform based on Pro-
log, so it starts execution from the left side and it first checks whether the first
program is able to execute. If so, then it executes the first one, otherwise; it
backtracks and tries the second program.

175

2. External nondeterministic Choice of Argument [agt mx.I'(z)]:

proc (ExtNDChArg(Agt, Prog),
[startControl (Agt), requestPick(Agt),
while(not (pickChSelected), wait),
endControl (Agt), Pi(p, pickMade, Prog)l).

The P-INDIGOLOG predicate pi(V, D, P) is for internal nondeterministic choice
of argument where V stands for variable for binding with program while D is
domain from which the system selects the variable, and P is the program to
which the system do binding.

3. External nondeterministic Iteration [agt I'|*:

proc (ExtNDIt(Agt, Prog),
[startControl(Agt), requestItr(Agt),
while(not (ItrChSelected), wait),
While(and(continue, not(stop)),
[endControl(Agt), Prog, startControl(Agt), requestItr(Agt),
while(not (ItrChSelected), wait)]), endControl(Agt) 1).

4. External nondeterministic Selected Priority [agt 'y ()I'2]:

proc (ExtNDSelPrt (Agt, Progl, Prog2),
[startControl(Agt), requestExtCh(Agt, [Progl, Prog2l),
while(not (extChSelected), wait),
ndet ([?(left), endControl(Agt), pconc(Progl, Prog2)],
[?(right), endControl(Agt), pconc(Prog2, Progl)])]).

The predicate pconc(P1, P2) is for priority concurrency where P1 gets higher
priority than P2.

5. External nondeterministic Selected Concurrent Iteration [agt Tll:

proc (ExtNDConItr (Agt, Prog),
[startControl(Agt), requestNum(Agtl),
while(not (numSelected), wait),
ndet ([? (numMade (Agt)=0), endControl(Agt)],[?(numMade(Agt)>0),
while ((numMade (Agt)>0),
[numMade (Agt) is numMade(Agt) - 1, append(Prog, List, List)]),
endControl (Agt) ,rrobin(List)])]).

Here, when the agent returns number greater than zero, the program is added
in the list that given number of times through Prolog function append (Prog,
List, List). The P-INDIGOLOG predicate rrobin/1 takes a list of programs
and performs concurrency in round robin fashion.

APPENDIX B. PROLOG-BASED CODE FOR INDIGOLOG
176 INTERPRETER

6. External nondeterministic First-Step Decision Concurrency [agt I'1(|)T2]:

proc (ExtNDFirstStepCon(Agt, Progl, Prog2),
[startControl(Agt), requestExtCh(Agt, [Progl, Prog2l),
while (not (extChSelected), wait),
ndet ([?(left), endControl(Agt), lsfconc(Progl, Prog2)],
[?(right), endControl(Agt), srfconc(Progl, Prog2)])]).

The predicates 1sfconc and rsfconc (define below) provide the left-side-first
concurrency and right-side-first concurrency at interpreter level.

Trans and Final for lsfcon (I';{{| I'y) and rsfcon (I'; |))I's)

The external first-step decision concurrency construct definition uses two new
“auxiliary” constructs to model the selected type of concurrency. Following is
their Trans and Final definition at P-INDIGOLOG platform level.

trans(lsfconc(E1l, E2), H, E, H1) :-
trans(E1, H, E3, H1), E = conc(E3,E2).

trans(rsfconc(E1, E2), H, E, H1) :-
trans(E2, H, E3, H1), E = conc(E1,E3).

Here, 1sfconc stands for left-side-first concurrency (I';((| I'2) while rsfconc
stands for right-side-first concurrency (I'y |))T'2). The Trans of 1sfconc says
that the program makes transaction of E1 and the remaining part E is then a
normal concurrency between E3 and E2. The Trans of rsfconc makes trans-
action of E2 and the remaining part E is then a normal concurrency between
E1l and E3. Following is Final definitions of both, where they are in final state
if both E1 and E2 are in the final state.

final (1sfconc(E1l, E2), H) :- final(E1l, H), final(E2, H).
final(rsfconc(E1l, E2), H) :- final(E2, H), final(El, H).

Appendix C

Labeling Framework
Implementation

In this appendix, we provide a way to implement external nondeterministic
constructs through a labeling framework. In the implementation provided in
Appendix A and Appendix B, when the system (or user program) requests the
agent for making nondeterministic decision, the requesting action also contains
program parts as parameters to let the agent know about choices for making
the final decision. In practice, normally when it is asked to an external agent
for making decision, it is not supposed to send the full program parts; rather
than, only labels or names of choices are sent, the agent then makes decision
and tells back to the system about the decision through the chosen label or
choice name. Another important consideration is that it is possible to have
more than two choices and sending program-parts as parameters does not look
a better solution.

To tackle this problem, here briefly, we define a framework that provides a
set of predicates using situation calculus to give labels to program parts, which
can also be sent to the agent rather than program parts. The agent makes
decision and sends this back by selecting the decided label. The following are
predicates for defining labels to program parts.

label(l): 1 is a label
chProg(T,): T is a program-part that is represented by a label.
attaching(l,T'.) : label [represents a program-part I'..

The following functions are used to find different properties of above label
predicates.

attached(l,T;): given a label | and program-part I, it tells whether the
label is attached to a program-part or not.

177

178 APPENDIX C. LABELING FRAMEWORK IMPLEMENTATION

getChProg(l) =T : given a label [, this function returns the program-part
I'. attached to the label.

getLabel(T';) = [: given a program-part I'., this function returns back the
label [attached to it.

We assume that a label can be attached to only one program-part and vice
versa. Formally:

attached(l,T.) A attached(l',T.) =1 =1
attached(l,T'.) A attached(l,T") = T, =T,

We assume that previous defined fluents and their successor state axioms, ac-
tions, and their precondition axioms are valid in this framework too. Below,
we provide only the additional set of fluents and their successor state axioms,
actions and their precondition axioms, and procedure definition for the exter-
nal nondeterministic choice construct. We are not going into detail of every
external nondeterministic construct; however, this approach can be used for
implementing other external nondeterministic constructs.

Actions

—
request ExtChoice(agt, list): requests to agent agt to make a choice from the
—
list that contains labels of all participant program parts.

Exogenous Actions

selectionM ade(agt, choice): agent agt chooses from the list of labels, where
choice represents a label attached to some program-part.

Fluents

chList(s) = list: contains the current list of labels sent to agent for making a
choice
choiceMade(s) = choice: contains the choice made by agent from the list of
labels

ExtSelected(s): becomes true when the agent makes the decision
Initial values of fluents

chList(s) = nil
choiceMade(s) = nil
—FExtSelected(s)

Precondition axioms for Actions

Poss(request ExtChoice(agt, lz—s{f), s) = AgtEnv(agt, s) A ﬂ(lz_st> =3)
Poss(selectionMade(agt, choice), s) = AgtEnv(agt, s) A choice € chList(s)

179

Effect axioms for relation fluents

ExtSelected(do(Jagt, choice.selectionM ade(agt, choice), s))
— —
~ExtSelect(do(3agt, list.request ExtChoice(agt, list), s))

Successor State Axioms for Fluents

ExtSelected(do(a, s)) =
Jdagt, choice.a = selectionM ade(agt, choice)V
(ExtSelected(s) N =(agt, li?t.requestEth’hoice(agt, lz—si)))
chList(do(a,s)) = (list) =
Jdagt.a = request ExtChoice(agt, ﬂf)\/

— —
(chList(s) = list A =(Jagt.a = request ExtChoice(agt,list)))
choiceMade(do(a, s)) = choice =
Jdagt.a = selectionM ade(agt, choice)V
(choiceMade(s) = choice A 3(3agt.a = selectionM ade(agt, choice)))

Procedure Definition
Ezternal Nondeterministic Choice [agtT'y | T'g]:

proc Ext N DChoiceLabels(agt, [l1,12, ..., 15])
startControl(agt); request ExtChoice(agt, [l1,11, .., ,]); ExtSelected?;
nlc[(get Prog(choiceMade) = T'c)?; endControl(agt); T']

end

The ExtNDChoiceLabels procedure takes two parameters: the agent name and
a list of labels, where each label is attached to the corresponding program.
After giving the control to the agent, the system (or user program) sends a re-
quest to the agent with a list of labels for making choice from that list. The sys-
tem waits until the agent generates exogenous action selectionMade(choice)
in which parameter choice contains label chosen by agent. The system then
takes the corresponding program through function getProg and executes the
selected program. It is noteworthy that the control is taken back from the
agent after taking the corresponding program from function getProg. This is
important in order to avoid any collision in the case of concurrency. As the
fluent choiceMade keeps the latest choice selected by an external agent; so, if
we take control before taking the selected attached program then it may be
possible that the process gets back control after some other concurrent pro-
cess executes some external nondeterministic construct. In which case, the
fluent choiceMade will have a new value. However, in the above-defined pro-
cedure, no other concurrent process can use nondeterministic construct until
the process, who uses this procedure, takes the selected attached program.

180 APPENDIX C. LABELING FRAMEWORK IMPLEMENTATION

Prolog-based Code
The following are labeling-functions definitions in Prolog-based syntax.

attached(L,P) :- label(L), chProg(P), attaching(L,P).
getLabel(P,L) :- chProg(P), attaching(L2,P), label(L2), L=L2.
getChProg(L,P) :- label(L), attaching(L,P2), chProg(P2), P=P2.

Here is Prolog-based code for the procedure FxtNDChoiceLabels for the P-INDIGOLOG
platform.

proc(extNDChoiceLabels(Agt, List),

[startControl(Agt), requestExtChoice(Agt, List),

while(not (extSelected), wait),

pi(prog, [7?(getChProg(choiceMade,prog)), endControl(Agt), progl)].

Bibliography

1]

P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta. Agile software
development methods - review and analysis. Technical Report 478, VI'T
PUBLICATIONS, 2002.

Agile-Alliance. Manifesto for agile software development. Technical re-
port, 2001. http://www.agilealliance.org.

M. Alshamari and P. Mayhew. Task design: Its impact on usability test-
ing. Internet and Web Applications and Services, International Confer-
ence on, 0:583-589, 2008.

J. Anderson, F. Fleek, K. Garrity, and F. Drake. Integrating usability
techniques into software development. IEEFE Software, 18(1), 2001.

J. Annett and K. Duncan. Task analysis and training design. Occupa-
tional Psychology, 41:211-221, 1967.

S. balbo. Automatic evaluation of user interface usability: Dream or re-
ality. In In S. Balbo, Ed., Proceedings of the Queensland Computer- Hu-
man Interaction Symposium, Bond University, Queensland, Australia,
August 1995.

K. Beck and C. Andres. Faxtreme Programming Fxplained: FEmbrace
Change (2nd Edition). Addison-Wesley Professional, 2004.

H. Beyer and K. Holtzblatt. Contextual design: defining customer-
centered systems. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1998.

S. Blomkvist. Towards a model for bridging agile development and user-
centered design. In A. Seffah, J. Gulliksen, and M. C. Desmarais, editors,
Human-Centered Software Engineering Integrating Usability in the Soft-
ware Development Lifecycle, volume 8 of Human-Computer Interaction
Series, pages 219-244. Springer Netherlands, 2005.

181

182

BIBLIOGRAPHY

[10]

[11]

[12]

G. Buchholz, J. Engel, C. Martin, and S. Propp. Model-based usability
evaluation - evaluation of tool support. In HCI (1), pages 1043-1052,
2007.

S. K. Card, A. Newell, and T. P. Moran. The Psychology of Human-
Computer Interaction. L. Erlbaum Associates Inc., Hillsdale, NJ, USA,
1983.

S. Chamberlain, H. Sharp, and N. Maiden. Towards a Framework for
Integrating Agile Development and User-Centred Design. pages 143-153.
2006.

A. Cockburn. Crystal clear a human-powered methodology for small
teams. Addison-Wesley Professional, first edition, 2004.

A. Cockburn. Agile Software Development: The Cooperative Game (2nd
Edition) (Agile Software Development Series). Addison-Wesley Profes-
sional, 2006.

L. L. Constantine and L. A. D. Lockwood. Software for use: a prac-
tical guide to the models and methods of usage-centered design. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1999.

L. L. Constantine and L. A. D. Lockwood. Usage-centered software
engineering: an agile approach to integrating users, user interfaces, and
usability into software engineering practice. In Proceedings of the 25th
International Conference on Software Engineering, ICSE '03, pages 746—
747, Washington, DC, USA, 2003. IEEE Computer Society.

B. Crandall, G. Klein, and R. R. Hoffman. Working Minds: A Practi-
tioner’s Guide to Cognitive Task Analysis (Bradford Books). The MIT
Press, 1 edition, July 2006.

G. de Giacomo, Y. Lespérance, and H. J. Levesque. Congolog, a con-
current programming language based on the situation calculus. Artif.
Intell., 121:109-169, August 2000.

G. de Giacomo, Y. Lespérance, H. J. Levesque, and S. Sardina. In-
diGolog: A high-level programming language for embedded reason-
ing agents. In R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-
Seghrouchni, editors, Multi-Agent Programming: Languages, Platforms
and Applications, chapter 2, pages 31-72. Springer, New York, USA,
2009. ISBN: 978-0-387-89298-6.

BIBLIOGRAPHY 183

[20]

[21]

[22]

[26]

[27]

[28]

[29]

[30]

31]

G. de Giacomo, Y. Lespérance, and A. R. Pearce. Situation calculus
based programs for representing and reasoning about game structures.
In KR, 2010.

M. de Leoni, G. D. Giacomo, Y. Lespérance, and M. Mecella. On-line
adaptation of sequential mobile processes running concurrently. In SAC,
pages 1345-1352, 2009.

M. de Leoni, M. Mecella, and G. D. Giacomo. Highly dynamic adapta-
tion in process management systems through execution monitoring. In
BPM, pages 182-197, 2007.

M. Detweiler. Managing ucd within agile projects. Interactions,
14(3):40-42, 2007.

D. Diaper. Task analysis for knowledge description (takd): the method
and an example. In D. Diaper, editor, Task Analysis for Human-
Computer Interaction, chapter 4. Ellis Horwood.

A. Dix, J. E. Finlay, G. D. Abowd, and R. Beale. Human-Computer
Interaction (3rd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 2003.

Y. Dubinsky, T. Catarci, S. R. Humayoun, and S. Kimani. Managing
user-centred design in agile projects. In In the workshop on “Optimizing
Agile User-Centered Desig”during the 26th ACM SIGCHI Conference
on Human Factors in Computing Systems (CHI’2008), Florence, Italy,
2008.

Y. Dubinsky and O. Hazzan. A framework for teaching software devel-
opment methods, volume 15. 2005.

Y. Dubinsky and O. Hazzan. Using a role scheme to derive software
project metrics. J. Syst. Archit., 52:693-699, November 2006.

Y. Dubinsky, S. R. Humayoun, and T. Catarci. Eclipse plug-in to manage
user centered design. In [-USED, 2008.

Y. Dubinsky, S. R. Humayoun, T. Catarci, and S. kimani. Integrating
user evaluation into software development environments. In 2nd DELOS
Conference on Digital Libraries, Pisa, Italy, 2007.

T. Dyba and T. Dingsgyr. Empirical studies of agile software develop-
ment: A systematic review. Inf. Softw. Technol., 50:833-859, August
2008.

184

BIBLIOGRAPHY

[32]

[33]

[34]

[35]

Eclipse-Platform. http://www.eclipse.org/platform/. The Eclipse Foun-
dation.

K. Erol, J. Hendler, and D. S. Nau. Semantics for hierarchical task-
network planning. Technical report, College Park, MD, USA, 1994.

K. Erol, J. Hendler, and D. S. Nau. Htn planning: Complexity and
expressivity. In In Proceedings of the Twelfth National Conference on
Artificial Intelligence (AAAI-9/, pages 1123-1128. AAAT Press, 94.

X. Ferr. Integration of usability techniques into the software development
process, 2003.

X. Ferré, N. Juristo, H. Windl, and L. Constantine. Usability basics for
software developers. IEEE Softw., 18:22-29, January 2001.

R. Fikes and N. J. Nilsson. Strips: A new approach to the application
of theorem proving to problem solving. In IJCAI pages 608-620, 1971.

D. Fox, J. Sillito, and F. Maurer. Agile methods and user-centered
design: How these two methodologies are being successfully integrated
in industry. In Proceedings of the Agile 2008, pages 63—72, Washington,
DC, USA, 2008. IEEE Computer Society.

G. D. Giacomo and H. Levesque. An incremental interpreter for high-
level programs with sensing. In Logical Foundations for Cognitive
Agents, pages 86—102. Springer, 1998.

B. Goransson, J. Gulliksen, and I. Boivie. The usability design process
- integrating user-centered systems design in the software development
process. Software Process: Improvement and Practice, 8(2):111-131,
2003.

J. D. Gould. Human-computer interaction. chapter How to design usable
systems, pages 93-121. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1995.

J. D. Gould, S. J. Boies, and J. Ukelson. Human-computer interaction.
chapter How to design usable systems. Amsterdam: FElsevier Science
B.V, 1997.

J. D. Gould and C. Lewis. Designing for usability: key principles and
what designers think. Commun. ACM, 28:300-311, March 1985.

J. Gulliksen and B. Goransson. Usability design: Integrating user cen-
tered system design in the software development process. In INTER-
ACT, 2003.

BIBLIOGRAPHY 185

[45]

[54]

[55]

J. Gulliksen, B. Goransson, I. Boivie, S. Blomkvist, J. Persson, and
A. Cajander. Key principles for user-centred systems design. Behaviour
& IT, 22(6):397-409, 2003.

H. R. Hartson and P. D. Gray. Temporal aspects of tasks in the user
action notation. Hum.-Comput. Interact., 7:1-45, March 1992.

H. R. Hartson, A. C. Siochi, and D. Hix. The uan: a user-oriented
representation for direct manipulation interface designs. ACM Trans.
Inf. Syst., 8:181-203, July 1990.

A. Hauser. Ucd collaboration with product management and develop-
ment. interactions, 14:34-35, May 2007.

O. Hazzan and Y. Dubinsky. Agile Software Engineering. Springer Pub-
lishing Company, Incorporated, 1 edition, 2008.

H. Hellman and K. Rnkk. Is user experience support effectively in ex-
isting software development processes?. In 5th COST294-MAUSE Open
Workshop Meaningful Measures: Valid Userfil User Experience Measur-
ment VUUMOS, June 2008.

M. Hennessy. The Semantics of Programming Languages. John Wiley
& Sons, 1990.

J. A. Highsmith, I1I. Adaptive software development: a collaborative
approach to managing complex systems. Dorset House Publishing Co.,
Inc., New York, NY, USA, 2000.

K. Holtzblatt and S. Jones. Contextual Inquiry: A Participatory Tech-
nique for System Design. In D. Schuler and A. Namioka, editors, Par-
ticipatory Design. Principles and Practices., pages 177-210. Lawrence
Erlbaum Associates., Hillsdale, New Jersey, 1993.

S. R. Humayoun, T. Catarci, M. de Leoni, A. Marrella, M. Mecella,
M. Bortenschlager, and R. Steinmann. The workpad user interface and
methodology: Developing smart and effective mobile applications for
emergency operators. In HCI (7), pages 343-352, 2009.

S. R. Humayoun, T. Catarci, M. de Leoni, A. Marrella, M. Mecella,
M. Bortenschlager, and R. Steinmann. Designing mobile systems in
highly dynamic scenarios: The workpad methodology. Knowledge, Tech-
nology and Policy, 22:25-43, 2009. 10.1007/s12130-009-9070-3.

S. R. Humayoun, T. Catarci, and Y. Dubinsky. A dynamic framework
for multi-view task modeling. In Proceedings of the 9th ACM SIGCHI

186

BIBLIOGRAPHY

[57]

[58]

[61]

[62]

[63]

Ttalian Chapter International Conference on Computer-Human Interac-
tion: Facing Complexity, CHltaly, pages 185-190, New York, NY, USA,
2011. ACM.

S. R. Humayoun, T. Catarci, Y. Dubinsky, E. Nazarov, and A. Israel.
Using a high level formal language for task model-based usability eval-
uation. In M. De Marco, D. Teeni, V. Albano, S. Za (Ed.): “Infor-
mation Systems: Crossroads for Organization, Management, Accounting
and Engineering”. Physica-Verlag Heidelberg - Springer, 2011.

S. R. Humayoun, Y. Dubinsky, and T. Catarci. Ueman: A tool to
manage user evaluation in development environments. In Proceedings of

the 31st International Conference on Software Engineering, ICSE 09,
pages 551-554, Washington, DC, USA, 2009. IEEE Computer Society.

S. R. Humayoun, Y. Dubinsky, and T. Catarci. A three-fold integration
framework to incorporate user centred design into agile software devel-
opment. In Lecture Notes in Computer Science, LNCS Volume 6776, M.
Kurosu (Ed.): Human Centered Design, HCII 2011, pages 55—64, 2011.

S. R. Humayoun, Y. Dubinsky, E. Nazarov, A. Israel, and T. Catarci.
Tamulator: A tool to manage task model-based usability evaluation in
development environments. In Proceedins of IADIS Conference on Inter-
faces and Human Computer Interaction 2011, IHCI 2011, Rome, Italy,
July 2011.

Z. Hussain, H. Milchrahm, S. Shahzad, W. Slany, M. Tscheligi, and
P. Wolkerstorfer. Integration of extreme programming and user-centered
design: Lessons learned. In W. Aalst, J. Mylopoulos, N. M. Sadeh, M. J.
Shaw, C. Szyperski, P. Abrahamsson, M. Marchesi, and F. Maurer, ed-
itors, Agile Processes in Software Engineering and Extreme Program-
ming, volume 31 of Lecture Notes in Business Information Processing,
pages 174-179. Springer Berlin Heidelberg, 2009.

IEEE-P1471. Recommended practice for architectural description. Tech-
nical standard, Institute of Electrical and Electronics Engineers. http:
//www.iso-architecture.org/ieee-1471/introducing-p1471.pdf.

M. Y. Ivory and M. A. Hearst. The state of the art in automating
usability evaluation of user interfaces. ACM Comput. Surv., 33:470-516,
December 2001.

M. A. Jackson. Principles of Program Design. Academic Press, Inc.,
Orlando, FL, USA, 1975.

BIBLIOGRAPHY 187

[65]

[66]

[67]

[71]

[72]

[73]

[74]

N. Juristo, A. Moreno, and M.-I. Sanchez-Segura. Guidelines for elic-
iting usability functionalities. IEEE Trans. Softw. Eng., 33:744-758,
November 2007.

N. J. Juzgado, H. Windl, and L. L. Constantine. Guest editors’ intro-
duction: Introducing usability. IEEE Software, 18(1):20-21, 2001.

T. Kato. What ”question-asking protocols” can say about the user in-
terface. International Journal of Man-Machine Studies, 25(6):659 — 673,
1986.

G. Kiczales. Aspect-oriented programming. In ICSE, page 730, 2005.

T. K. Landauer. The Trouble with Computers: Usefulness, Usability,
and Productivity. The MIT Press, 1996.

E. L.-C. Law. A multi-perspective approach to tracking the effectiveness
of user tests: A case study. In Proceedings of the Workshop Improving the
Interplay of Usability Fvaluation and User Interface Design of NordiCHI
2004, Oct. 2004.

A. Lecerof and F. Paterno. Automatic support for usability evaluation.
IEEE Trans. Software Eng., 24(10):863-888, 1998.

H. Levesque and M. Pagnucco. Legolog: Inexpensive experiments in
cognitive robotics. In Proceedings of the International Cognitive Robotics

Workshop (COGROBO), pages 104-109, Berlin, Germany, 2000.

H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl.
Golog: A logic programming language for dynamic domains. J. Log.
Program., 31(1-3):59-83, 1997.

C. Lewis, P. G. Polson, C. Wharton, and J. Rieman. Testing a walk-
through methodology for theory-based design of walk-up-and-use inter-
faces. In Proceedings of the SIGCHI conference on Human factors in
computing systems: Empowering people, CHI ’90, pages 235-242, New
York, NY, USA, 1990. ACM.

S. Lohmann and A. Rashid. Fostering remote user participation and
integration of user feedback into software development. In I-USED,
2008.

J.-Y. Mao, K. Vredenburg, P. W. Smith, and T. Carey. The state of
user-centered design practice. Commun. ACM, 48:105-109, March 2005.

188

BIBLIOGRAPHY

[77]

(78]

D. J. Mayhew. The usability engineering lifecycle: a practitioner’s hand-
book for user interface design. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1999.

R. Molich, A. D. Thomsen, B. Karyukina, L. Schmidt, M. Ede, W. van
Oel, and M. Arcuri. Comparative evaluation of usability tests. In CHI
’99 extended abstracts on Human factors in computing systems, CHI "99,
pages 83-84, New York, NY, USA, 1999. ACM.

A. Monk, P. Wright, J. Haber, and L. Davenport. Improving Your
Human-Computer Interface: A Practical Approach. Prentice Hall In-
ternational, Hemel Hempstead, 1993.

G. Mori, F. Paterno, and C. Santoro. Ctte: Support for developing
and analyzing task models for interactive system design. IEEE Trans.
Software Eng., 28(8):797-813, 2002.

D. N. Morley and K. L. Myers. The spark agent framework. In AAMAS,
pages 714-721, 2004.

J. Nielsen. The usability engineering life cycle. Computer, 25:12-22,
March 1992.

J. Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1993.

J. Nielsen and R. L. Mack. Usability inspection methods. Wiley, 1 edition,
April 1994.

H. R. Nielson and F. Nielson. Semantics with Applications: A Formal
Introduction. John Wiley & Sons, 1992.

D. Norman. Why doing user observations first is wrong. interactions,
13:50—F, July 2006.

D. A. Norman. The Psychology Of Everyday Things. Basic Books, June
1988.

D. A. Norman and S. W. Draper. User Centered System Design; New
Perspectives on Human-Computer Interaction. L. Erlbaum Associates
Inc., Hillsdale, NJ, USA, 1986.

S. R. Palmer and M. Felsing. A Practical Guide to Feature-Driven De-
velopment. Pearson Education, 1st edition, 2001.

F. Paterno. Model-Based Design and FEvaluation of Interactive Applica-
tions. Springer-Verlag, London, UK, 1st edition, 1999.

BIBLIOGRAPHY 189

[91]

[100]

[101]

[102]

[103]

F. Paterno and G. Ballardin. Remusine: a bridge between empirical and
model-based evaluation when evaluators and users are distant. Interact-
ing with Computers, 13(2):229-251, 2000.

F. Paterno, C. Mancini, and S. Meniconi. Concurtasktrees: A diagram-
matic notation for specifying task models. In INTERACT, pages 362—
369, 1997.

F. Paterno, A. Russino, and C. Santoro. Remote evaluation of mobile
applications. In TAMODIA, pages 155-169, 2007.

J. Patton. Hitting the target: adding interaction design to agile software
development. In OOPSLA 2002 Practitioners Reports, OOPSLA ’02,
pages 1-ff, New York, NY, USA, 2002. ACM.

M. E. Pollack. The uses of plans. Artif. Intell., 57(1):43-68, 1992.

P. G. Polson, C. Lewis, J. Rieman, and C. Wharton. Cognitive walk-
throughs: a method for theory-based evaluation of user interfaces. Int.
J. Man-Mach. Stud., 36:741-773, May 1992.

S. Propp, G. Buchholz, and P. Forbrig. Task model-based usability
evaluation for smart environments. In TAMODIA /HCSE, pages 2940,
2008.

K. Radle and S. Young. Partnering usability with development: How
three organizations succeeded. IEEFE Softw., 18:38-45, January 2001.

T. Rafla, P. N. Robillard, and M. Desmarais. A method to elicit archi-
tecturally sensitive usability requirements: its integration into a software
development process. Software Quality Control, 15:117-133, June 2007.

A. S. Rao. Agentspeak(l): Bdi agents speak out in a logical computable
language. In MAAMAW, pages 42-55, 1996.

D. Reichart, P. Forbrig, and A. Dittmar. Task models as basis for re-
quirements engineering and software execution. In TAMODIA, pages
51-58, 2004.

R. Reiter. Knowledge in Action: Logical Foundations for Specifying and
Implementing Dynamical Systems. MIT Press, September 2001.

R. Restak. The New Brain: How the Modern Age Is Rewiring Your
Mind. Rodale Books, 2003.

190

BIBLIOGRAPHY

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

S. Sardinia. Indigolog: An integrated agent arquitecture. Programmer
and user manual, University of Toronto, 2004. http://sourceforge.
net/projects/indigolog/.

S. Sardina. P-indigolog: An integrated agent arquitecture. Programmer
and user manual, University of Toronto, 2005. http://sourceforge.
net/projects/indigolog/.

S. Sardina, G. De Giacomo, Y. Lespérance, and H. J. Levesque. On the
semantics of deliberation in indigolog: from theory to implementation.
Annals of Mathematics and Artificial Intelligence, 41:259-299, August
2004.

S. Sardina and Y. Lespérance. Golog speaks the bdi language. In PRO-
MAS, pages 82-99, 2009.

K. Schwaber. Agile Project Management with Scrum. Prentice Hall,
2004.

K. Schwaber and M. Beedle. Agile Software Development with Scrum.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 2001.

H. Sharp, Y. Rogers, and J. Preece. Interaction Design: Beyond Human-
Computer Interaction. 2 edition, March 2007.

D. Sinnig, M. Wurdel, P. Forbrig, P. Chalin, and F. Khendek. Practical
extensions for task models. In TAMODIA, pages 42-55, 2007.

J. Stapleton. DSDM: Business Focused Development, 2/E: DSDM Con-
sortium. Addison-Wesley Professional, 2003.

D. Sy. Adapting Usability Investigations for Agile User-Centered Design
- International Journal of Usability Studies. Journal of Usability Studies,
2(3), May 2007.

D. Talby, O. Hazzan, Y. Dubinsky, and A. Keren. Agile software testing
in a large-scale project. IEEE Softw., 23:30-37, July 2006.

I[SO. ISO 9241-11: Ergonomic requirements for office work with visual
display terminals (vdts). The international organization for standard-
ization, 1998.

ISO. ISO/DIS 13407: Human centered design for interactive systems.
The international organization for standardization, 1999.

BIBLIOGRAPHY 191

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

ISO. ISO TR 16982: Ergonomics of human-system interaction - human-
cantered lifecycle process descriptions. The international organization
for standardization, 2002.

ISO (1998). Information Processing Systems - Open Systems
Interconnection - LOTOS - A Formal Description Technique Based
on Temporal Ordering of Observation Behavior. ISO/IS 8807, ISO
Central Secretariat, 1988.

The-Eclipse-Plugin-Development-Environment.
http://www.eclipse.org/pde/. The Eclipse Foundation.

T. Uldall-Espersen and E. Frkjr. Usability and software development:
Roles of the stakeholders. In J. Jacko, editor, Human-Computer Interac-
tion. Interaction Design and Usability, volume 4550 of Lecture Notes in
Computer Science, pages 642—651. Springer Berlin / Heidelberg, 2007.

J. Ungar and J. White. Agile user centered design: enter the design
studio - a case study. In CHI ’08 extended abstracts on Human factors
in computing systems, CHI 08, pages 2167-2178, New York, NY, USA,
2008. ACM.

G. van der Veer and M. van Welie. Task based groupware design: putting
theory into practice. In Proceedings of the 3rd conference on Designing
interactive systems: processes, practices, methods, and techniques, DIS
’00, pages 326-337, New York, NY, USA, 2000. ACM.

K. Vredenburg, J.-Y. Mao, P. W. Smith, and T. Carey. A survey of
user-centered design practice. In Proceedings of the SIGCHI conference

on Human factors in computing systems: Changing our world, changing
ourselves, CHI ’02, pages 471-478, New York, NY, USA, 2002. ACM.

C. Wharton, J. Rieman, C. Lewis, and P. Polson. The cognitive walk-
through method: a practitioner’s guide, pages 105-140. John Wiley &
Sons, Inc., New York, NY, USA, 1994.

J. Whiteside, J. Bennett, and K. Holtzblatt. Usability engineering: Our
experience and evolution. In Handbook of Human-Computer Interaction,
pages 791-817. M. Helander, ed., Elsevier Science Publishers, Amster-
dam, 1988.

J. Wielemaker. An overview of the swi-prolog programming environ-

ment. In WLPE, pages 1-16, 2003.

E. Woodward, S. Surdek, and M. Ganis. A Practical Guide to Distributed
Scrum. IBM Press, 1st edition, 2010.

192 BIBLIOGRAPHY

[128] M. Wurdel, D. Sinnig, and P. Forbrig. CTML: Domain and task mod-
eling for collaborative environments. j-jucs, 14(19):3188-3201, 2008.
http://www. jucs.org/jucs_14_19/ctml_domain_and_task.

