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Chapter 1

Introduction

This thesis is in the context of the physics astrophysics of compact stars. In this

work we explore in particular the thermal properties of white dwarfs and neutron

stars.

As we will show in chapter 3, the mass-radius relation of white dwarfs in the

zero-temperature approximation deviates considerably for masses . 0.7–0.8 M⊙

(see Fig. 3.1). Since the central densities of these white dwarfs are . 107 g cm−3,

where the degenerate approximation breaks down, it is natural to expect that such

deviations are the result of neglecting finite temperature effects. In addition, rela-

tivistic binaries formed by a neutron star and an ultra-low mass white dwarf with

masses . 0.2M⊙ have been recently discovered, which are the perfect arena to test

the equation of state of white dwarf matter. Thus, besides being interesting on their

own, the finite temperature effects on the equation of state and consequently on the

mass-radius relation of the white dwarf are very important. In this work, besides

to the Coulomb and special relativity effects, we consider also finite temperature in

the white dwarf equation of state and use it to construct equilibrium configurations

of non-zero temperature white dwarfs.

Turning to neutron stars, it is known that their cooling evolution could reveal

crucial information on the properties of matter at high density and pressure. So,

the modelling of the thermal structure evolution together with its observation allow

us, in a unique manner, to probe the microscopical and macroscopical properties

of neutron stars. This in turn might help us to understand better, for example, the

phase diagram of baryonic matter. This happens because the observed properties of

1
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neutron stars (mass, radius, rotation velocity, thermal evolution, etc.) are extremely

sensitive to the star’s composition. In this way, taking into account the analysis

of these properties, it is possible to constrain the equation of state of dense matter

and its composition. In particular, in this thesis we explore a new model for the

inner structure of neutron stars formulated by Belvedere et al. (2012), where it is

considered the condition of global charge neutrality of the neutron star instead of

local charge neutrality, which as will see significantly changes the star’s structure

and composition.

Therefore, we divided the thesis in two parts. In the first part of the work we

construct the equation of state of white dwarfs in the case of finite temperatures and

obtain the white dwarf mass-radius relation by integrating the hydrostatic equilib-

rium equations. In the chapter 2, we briefly review the most known approaches to

model the equation of state of white dwarfs and the relativistic generalization of

the Feynman-Metropolis-Teller treatment presented by Rotondo et al. (2011). We

describe the extension of this latter treatment to finite temperatures in the chapter

3, where we present the results of the numerical integration of the equations and

describe the general properties of the new equation of state. We also construct the

mass-radius relation of white dwarfs and apply the results to the description of the

ultra-low mass white dwarf orbiting the pulsar PSR J1738+0333.

The second part of the work consists in computing the thermal evolution of the

globally neutral neutron stars and to compare them with the locally neutral neutron

star cooling curves. So, the second part of the thesis is divided in three chapters. In

the chapter 4 we present a introduction about the new treatment of neutron stars,

formulated by Belvedere et al.(2012), which fulfills global and not local charge neu-

trality. We point out there the differences between the structure of the globally

neutral neutron star and the locally one. The thermal evolution equations are pre-

sented in the chapter 5, and all the main regulators of the cooling theory are also

discussed: the neutrino emission processes, the heat capacity and thermal conduc-

tivity. Finally, in chapter 6 the details about the cooling stages and the results of our

cooling simulations of the globally neutral neutron star are presented. We show the

cooling curves considering the isothermal approximation and considering the full
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cooling theory, comparing with the observed data taken from Yakovlev et al. (2004).
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Chapter 2

The Relativistic FMT treatment for

degenerate White Dwarf

In 1926, it was shown that the electrons obey what is now called Fermi-Dirac statis-

tics. Fowler (1926) [9] then, realized that the pressure supporting the white dwarfs

against gravity could be supplied by degenerate electrons. This pressure remains

even at zero temperatures, due to zero-point motion. This lead to the concept of

degenerate stars.

Noticing that at the extreme densities of white dwarfs the velocities of the elec-

trons must become relativistic, Anderson (1929) and Stoner (1930) [10] calculated

relativistic corrections to Fowler’s equation of state. In 1931, Chandrasekhar [11]

discovered that the relativistic “softening” of this equation of state leads to the

existence of a limiting mass, now called the “Chandrasekhar limit”, over which

gravitational forces overwhelm the pressure support, and no stable white dwarfs

can exist. Landau [12]arrived, independently, to the same conclusion in 1932. Some

of the basic assumptions adopted by Chandrasekhar and Landau in their idealized

approach, such as the treatment of the electron as a free gas without taking into ac-

count the electromagnetic interactions, as well as the stability of the distribution of

the nuclei against the gravitational interaction led to some criticisms by Eddington

[13].

Kathori (1931,1936,1938) studied the effects of Coulomb interactions on the equa-

tion of state and the structure of non-relativistic white dwarfs. Auluck and Mathur

(1959) extended this work by including exchange and correlation effects. Kirzhnits

5
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(1960) presented that the matter in white dwarfs should be in a condensate state

and Abrikosov (1961,1962) computed the properties of this crystal lattice phase. In

1961, Salpeter [8] provided a comprehensive discussion of the equation of state, pre-

senting results for energy and pressure of zero-temperature plasma, identifying the

Coulomb contributions. He followed an idea originally proposed by Frenkel [14];

to adopt in the study of white dwarfs the concept of a Wigner Seitz cell. Salpeter in-

troduced to the lattice model of a pointlike nucleus surrounded by a uniform cloud

of electrons, corrections due to the nonuniformity of the the electron distribution.

In this way Salpeter obtained an analytic formula for the total energy in a Wigner

Seitz cell and derived the corresponding equation of state of matter composed by

such cells, pointing out explicity the relevance of the Coulomb interaction.

The consequences of Coulomb interactions, int the determination of the mass

and radius of white dwarfs, was studied in a subsequent paper by Hamada and

Salpeter [7] by using the equation of state constructed in [8]. They found that the

critical mass of white dwarfs depends in a nontrivial way on the specific nuclear

composition: the critical mass of Chandrasekhar-Landau which depends only on

the mass to charge ratio of nuclei A/Z, now depends also on the proton number Z.

An alternative approach to the Salpeter treatment of a compressed atom was

reconsidered in [15] by applying for the first time to white dwarfs a relativistic

Thomas-Fermi treatment of the compressed atom introducing a finite size nucleus

within a phenomenological description [16].

The study of compressed atom was revisited in [1] by extending the approach

of Feynman, Metropolis and Teller [17] taking into account weak interactions. This

treatment takes into account also all the Coulomb contributions duly expressed rela-

tivistically without the need of any piecewise description. The relativistic Thomas-

Fermi model has been solved by imposing in addition to the electromagnetic in-

teraction also the weak equilibrium between neutrons, protons and electrons self-

consistently.

In this chapter we review the most known approaches to model the equation

of state and the relativistic generalization of the Feynman-Metropolis-Teller (FMT)

treatment presented by Rotondo et al. 2012 [1]. The main of this chapter is to give



2.1. THE EQUATION OF STATE 7

a introduction and motivation for the work presented in the chapter 3 where we

extended the relativistic FMT treatment to the case with finite temperatures.

2.1 The Equation of State

The equation of state ( hereafter EOS) tell us the relationship between pressure and

energy, and is fundamental to determining the macroscopic properties of the star.

There exists a large variety of approaches to model the equation of state of white

dwarf matter, each one characterized by a different way of treating or neglecting

the Coulomb interaction inside each Wigner-Seitz cell, which we will briefly review

here in order to construct the idea of the relativistic Feynman-Metropolis-Teller

(FMT) treatment, that are been used for us.

2.1.1 The Uniform Approximation

In the uniform approximation, the electron distribution as well as the nucleons are

assumed to be locally constant and therefore the condition of local charge neutrality

ne =
Z

Ar
nN , (2.1)

where Ar is the average atomic weight of the nucleus, is applied. Here nN denotes

the nucleon number density and Z is the number of protons of the nucleus. The

electrons are considered as a fully degenerate free-gas and then described by Fermi-

Dirac statistics. Thus, their number density ne is related to the electron Fermi-

momentum PF
e by

ne =
(PF

e )
3

3π2h̄3
, (2.2)
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and the total electron energy-density and electron pressure are given by

Ee =
2

(2πh̄)3

∫ PF
e

0

√

c2p2 +m2
e c

44πp2dp

=
m4

ec
5

8π2h̄3
[xe

√

1+ x2e (1+ 2x2e )− arcsinh(xe)] , (2.3)

Pe =
1

3

2

(2πh̄)3

∫ PF
e

0

c2p2
√

c2p2 +m2
ec

4
4πp2dp

=
m4

ec
5

8π2h̄3
[xe

√

1+ x2e (2x
2
e/3− 1)

+ arcsinh(xe)] , (2.4)

where we have introduced the dimensionless Fermi momentum xe = PF
e /(mec)

with me the electron rest-mass.

The kinetic energy of nucleons is neglected and therefore the pressure is as-

sumed to be only due to electrons. Thus the equation of state can be written as

Eunif = EN + Ee ≈
Ar

Z
Muc

2ne + Ee , (2.5)

Punif ≈ Pe , (2.6)

where Mu = 1.6604× 10−24 g is the unified atomic mass and Ee and Pe are given by

Eqs. (2.3)–(2.4).

Within this approximation, the total self-consistent chemical potential is given

by

µunif = ArMuc
2 + Zµe , (2.7)

where

µe =
Ee + Pe

ne
=
√

c2(PF
e )

2 +m2
e c

4 , (2.8)

is the electron free-chemical potential.

As a consequence of this effective approach which does not take into any account

the Coulomb interaction, it is obtained an effective one-component electron-nucleon

fluid approach where the kinetic pressure is given by electrons of mass me and their

gravitational contribution is given by an effective mass (Ar/Z)Mu attached to each

electron (see e.g. [18]). This is even more evident when the electron contribution

to the energy-density in Eq. (2.5) is neglected and therefore the energy-density is
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attributed only to the nuclei. Within this approach followed by Chandrasekhar [11],

the equation of state reduces to

ECh =
Ar

Z
Muc

2ne , (2.9)

PCh = Punif = Pe . (2.10)

2.1.2 The lattice model

The first correction to the above uniform model, corresponds to abandon the as-

sumption of the electron-nucleon fluid through the so-called “lattice” model which

introduces the concept of Wigner-Seitz cell: each cell contains a point-like nucleus

of charge +Ze with A nucleons surrounded by a uniformly distributed cloud of

Z fully-degenerate electrons. The global neutrality of the cell is guaranteed by the

condition

Z = Vwsne =
ne
nws

, (2.11)

where nws = 1/Vws is the Wigner-Seitz cell density and Vws = 4πR3
ws/3 is the cell

volume.

The total energy of the Wigner-Seitz cell is modified by the inclusion of the

Coulomb energy, i.e

EL = EunifVws + EC , (2.12)

being

EC = Ee−N + Ee−e = − 9

10

Z2e2

Rws
, (2.13)

where Eunif is given by Eq. (2.5) and Ee−N and Ee−e are the electron-nucleus and the

electron-electron Coulomb energies

Ee−N = −
∫ Rws

0
4πr2

(

Ze

r

)

enedr

= −3

2

Z2e2

Rws
, (2.14)

Ee−e =
3

5

Z2e2

Rws
. (2.15)

The self-consistent pressure of the Wigner-Seitz cell is then given by

PL = − ∂EL

∂Vws
= Punif +

1

3

EC

Vws
, (2.16)
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where Punif is given by Eq. (2.6). It is worth to recall that the point-like assumption of

the nucleus is incompatible with a relativistic treatment of the degenerate electron

fluid (see [19, 20] for details). Such an inconsistency has been traditionally ignored

by applying, within a point-like nucleus model, the relativistic formulas (2.3) and

(2.4) and their corresponding ultrarelativistic limits (see e.g. [8]).

The Wigner-Seitz cell chemical potential is in this case

µL = EL + PLVws = µunif +
4

3
EC . (2.17)

By comparing Eqs. (2.6) and (2.16) we can see that the inclusion of the Coulomb

interaction results in a decreasing of the pressure of the cell due to the negative

lattice energy EC.

2.1.3 Salpeter approach

A further development to the lattice model came from Salpeter [8] who studied the

corrections due to the non-uniformity of the electron distribution inside a Wigner-

Seitz cell.

Following the Chandrasekhar [11] approximation, Salpeter also neglects the

electron contribution to the energy-density. Thus, the first term in the Salpeter

formula for the energy of the cell comes from the nuclei energy (2.9). The second

contribution is given by the Coulomb energy of the lattice model (2.13). The third

contribution is obtained as follows: the electron density is assumed as ne[1+ ǫ(r)],

where ne = 3Z/(4πR3
ws) is the average electron density as given by Eq. (2.11), and

ǫ(r) is considered infinitesimal. The Coulomb potential energy is assumed to be

the one of the point-like nucleus surrounded by a uniform distribution of electrons,

so the correction given by ǫ(r) on the Coulomb potential is neglected. The electron

distribution is then calculated at first-order by expanding the relativistic electron

kinetic energy

ǫk =
√

[cPF
e (r)]

2 +m2
e c

4 −mec
2

=
√

h̄2c2(3π2ne)2/3[1+ ǫ(r)]2/3 +m2
ec

4

− mec
2, (2.18)
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about its value in the uniform approximation

ǫunifk =
√

h̄2c2(3π2ne)2/3 +m2
e c

4 −mec
2 , (2.19)

considering as infinitesimal the ratio eV/EF
e between the Coulomb potential energy

eV and the electron Fermi energy

EF
e =

√

[cPF
e (r)]

2 +m2
ec

4 −mec
2 − eV . (2.20)

The influence of the Dirac electron-exchange correction [21] on the equation of

state was also considered by Salpeter [8]. However, adopting the general approach

of Migdal et al. [22], it has been shown that these effects are negligible in the

relativistic regime [1]. We will then consider here only the major correction of the

Salpeter treatment.

The total energy of the Wigner-Seitz cell is then given by (see [8] for details)

ES = ECh + EC + ETF
S , (2.21)

being

ETF
S = −162

175

(

4

9π

)2/3

α2Z7/3µe , (2.22)

where ECh = EChVws, EC is given by Eq. (2.13), µe is given by Eq. (2.8), and α =

e2/(h̄c) is the fine structure constant.

Correspondingly, the self-consistent pressure of the Wigner-Seitz cell is

PS = PL + PS
TF , (2.23)

where

PS
TF =

1

3

(

PF
e

µe

)2
ETF
S

Vws
. (2.24)

The Wigner-Seitz cell chemical potential can be then written as

µS = µL + ES
TF

[

1+
1

3

(

PF
e

µe

)2
]

. (2.25)

From Eqs. (2.23) and (2.25), we see that the inclusion of each additional Coulomb

correction results in a further decreasing of the pressure. The Salpeter approach is
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very interesting in identifying piecewise Coulomb contribution to the total energy,

to the total pressure and, to the Wigner-Seitz chemical potential. However, it does

not have the full consistency of the global solutions obtained with the Feynman-

Metropolis-Teller approach [17] and its generalization to relativistic regimes [1]

which we will discuss in detail below.

2.1.4 The classic Feynman-Metropolis-Teller treatment

Feynman, Metropolis and Teller [17] showed how to derive the equation of state

of matter at high pressures by considering a Thomas-Fermi model confined in a

Wigner-Seitz cell of radius Rws.

The Thomas-Fermi equilibrium condition for degenerate non-relativistic elec-

trons in the cell is expressed by

EF
e =

(PF
e )

2

2me
− eV = constant > 0 , (2.26)

where V denotes the Coulomb potential and EF
e denotes the Fermi energy of elec-

trons, which is positive for configurations subjected to external pressure, namely,

for compressed cells.

Defining the function φ(r) by eV(r) + EF
e = e2Zφ(r)/r, and introducing the

dimensionless radial coordinate η by r = bη, where b = (3π)2/3(λe/α)2−7/3Z−1/3,

being λe = h̄/(mec) the electron Compton wavelength; the Poisson equation from

which the Coulomb potential V is calculated self-consistently becomes

d2φ(η)

dη2
=

φ(η)3/2

η1/2
. (2.27)

The boundary conditions for Eq. (2.27) follow from the point-like structure of the

nucleus φ(0) = 1 and, from the global neutrality of the Wigner-Seitz cell φ(η0) =

η0dφ/dη|η=η0 , where η0 defines the dimensionless radius of the Wigner-Seitz cell

by η0 = Rws/b.

For each value of the compression, e.g. η0, it corresponds a value of the elec-

tron Fermi energy EF
e and a different solution of Eq. (2.27), which determines the

self-consistent Coulomb potential energy eV as well as the self-consistent electron
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distribution inside the cell through

ne(η) =
Z

4πb3

[

φ(η)

η

]3/2

. (2.28)

In the non-relativistic Thomas-Fermi model, the total energy of the Wigner-Seitz

cell is given by (see [23, 17] for details)

Ews = EN + E
(e)
k + EC , (2.29)

being

EN = MN(Z, A)c
2 , (2.30)

E
(e)
k =

∫ Rws

0
4πr2Ee[ne(r)]dr

=
3

7

Z2e2

b

[

4

5
η1/2
0 φ5/2(η0)− φ′(0)

]

, (2.31)

EC = Ee−N + Ee−e

= −6

7

Z2e2

b

[

1

3
η1/2
0 φ5/2(η0)− φ′(0)

]

, (2.32)

where MN(Z, A) is the nucleus mass, Ee[ne(r)] is given by Eq. (2.3) and Ee−N and

Ee−e are the electron-nucleus Coulomb energy and the electron-electron Coulomb

energy, which are given by

Ee−N = −
∫ Rws

0
4πr2

(

Ze

r

)

ene(r)dr , (2.33)

Ee−e =
1

2

∫ Rws

0
4πr2ene(~r)dr

×
∫ Rws

0
4πr′2

ene(~r
′)

|~r−~r′|dr
′ . (2.34)

From Eqs. (2.31) and (2.32) we recover the well-known relation between the total

kinetic energy and the total Coulomb energy in the Thomas-Fermi model [23, 17]

E
(e)
k = Eunif

k [ne(Rws)]−
1

2
EC , (2.35)

where Eunif
k [ne(Rws)] is the non-relativistic kinetic energy of a uniform electron dis-

tribution of density ne(Rws), i.e.

Eunif
k [ne(Rws)] =

3

5
Z∗µe(Rws) , (2.36)
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with Z∗ defined by

Z∗ = Vwsne(Rws) , (2.37)

and µe(Rws) = h̄2[3π2ne(Rws)]2/3/(2me).

The self-consistent pressure of the Wigner-Seitz cell given by the non-relativistic

Thomas-Fermi model is (see [23, 17] for details)

PTF =
2

3

Eunif
k [ne(Rws)]

Vws
. (2.38)

The pressure of the Thomas-Fermi model (2.38) is equal to the pressure of a

free-electron distribution of density ne(Rws). Being the electron density inside

the cell a decreasing function of the distance from the nucleus, the electron den-

sity at the cell boundary, ne(Rws), is smaller than the average electron distribution

3Z/(4πR3
ws). Then, the pressure given by (2.38) is smaller than the one given by

the non-relativistic version of Eq. (2.4) of the uniform model of Subsec. 2.1.1. Such a

smaller pressure, although faint fully given by the expression of a free-electron gas,

contains in a self-consistent fashion all the Coulomb effects inside the Wigner-Seitz

cell.

The chemical potential of the Wigner-Seitz cell of the non-relativistic Thomas-

Fermi model can be then written as

µTF = MN(Z, A)c
2 + Z∗µe(Rws) +

1

2
EC , (2.39)

where we have used Eqs. (2.35)–(2.37).

Integrating by parts the total number of electrons

Z =
∫ Rws

0
4πr2ne(r)dr = Z∗ + I(Rws) , (2.40)

where

I(Rws) =
∫ Rws

0

4π

3
r3

∂ne(r)

∂r
dr , (2.41)

we can rewrite finally the following semi-analytical expression of the chemical po-

tential (2.39) of the cell

µTF = MN(Z, A)c
2 + Zµunif

e

[

1+
I(Rws)

Z

]2/3

+ µunif
e I(Rws)

[

1+
I(Rws)

Z

]2/3

+
1

2
EC , (2.42)
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where µunif
e is the electron free-chemical potential (2.8) calculated with the average

electron density, namely, the electron chemical potential of the uniform approxima-

tion. The function I(Rws) depends explicitly on the gradient of the electron density,

i.e. on the non-uniformity of the electron distribution.

In the limit of absence of Coulomb interaction both the last term and the function

I(Rws) in Eq. (2.42) vanish and therefore in this limit µTF reduces to

µTF → µunif , (2.43)

where µunif is the chemical potential in the uniform approximation given by Eq. (2.7).

2.1.5 The relativistic Feynman-Metropolis-Teller treatment

We briefly describe now the relativistic generalization of the classic FMT treatment

of compressed atoms recently achieved in [1]. One of the main differences is that,

in order to allow for the presence of a cloud of relativistic electrons (see e.g. [19,

20]), the point-like nucleus approximation must be abandoned. The relativistic

equilibrium condition of compressed atoms for the degenerate case is expressed by

EF
e =

√

c2(PF
e )

2 +m2
ec

4 −m2
ec

2 − eV(r) = constant > 0, (2.44)

where V denotes the Coulomb potential, PF
e is the electron Fermi momentum and

EF
e denotes the Fermi energy of electrons. In Ref. [1], we adopted a constant dis-

tribution of protons confined in a radius Rc = ∆λπZ
1
3 , where λπ = h̄/(mπc) is the

pion Compton wavelength, with mπ the pion rest mass, and Z is the number of

protons. The parameters ∆ is such that at nuclear density, ∆ ≈ (r0/λπ)(A/Z)1/3 ,

where r0 ≈ 1.2 fm and A is the atomic weight; so in the case of ordinary nuclei

∆ ≈ 1. The proton density can be then written as

np(r) =
Z

4
3πR3

c

θ(r − Rc), (2.45)

where θ(r − Rc) is the Heaviside function centered at the core/nucleus radius, r =

Rc. The electron density follows from Fermi-Dirac statistics and is given by

ne(r) =
(PF

e )
3

3π2h̄3
=

1

3π2h̄3c3
[V̂2(r) + 2mec

2V̂(r)]
3
2 , (2.46)
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where V̂ = eV̂ + EF
e and we have used the equilibrium condition (2.44).

By introducing the dimensionless quantities x = r/λπ , xc = Rc/λπ , χ/r =

V̂(r)/(h̄c) and replacing the particle densities into the Poisson Equation

∇2V = 4πe(np − ne), (2.47)

we obtain the relativistic Thomas-Fermi equation

1

3x

d2χ(x)

dx2
= − α

∆3
θ(xc − x) +

4α

9π

[

χ2(x)

x2
+

2me

mπ

χ(x)

x

]

3
2

. (2.48)

The above differential equation has to be integrated subjected to the boundary con-

ditions

χ(0) = 0,
dχ

dx

∣

∣

∣

∣

x=0

> 0,
dχ

dx

∣

∣

∣

∣

x=xWS

=
χ(xWS)

xWS
, (2.49)

where the latter condition ensures the global charge neutrality at the Wigner-Seitz

cell radius RWS, and xWS = RWS/λπ is the dimensionless cell radius.

The total energy of the Wigner-Seitz cell can be written as the sum of three

contributions

EWS = EN + Ek + EC, (2.50)

where

EN = MN(A,Z)c
2 , (2.51)

Ek =
∫ RWS

0
4πr2(Ee −mene)dr, (2.52)

EC =
1

2

∫ RWS

Rc

4πr2e[np(r)− ne(r)]V(r)dr, (2.53)

are the nucleus, kinetic, and Coulomb energy of the cell. For the nucleus mass,

MN(A,Z), we adopt experimental values, and Ee is the electron energy density

Ee =
2

(2πh̄)3

∫ PF
e

0

√

c2p2 +m2
e c

44πp2dp,

=
m4

e c
5

8π2h̄3
[xe

√

1+ x2e (1+ 2x2e )− arcsinh(xe)], (2.54)

where we have avoided double-counting of the electrons rest-energy and the nu-

cleus Coulomb energy which are already accounted for in the experimental values

of nuclear masses.
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The total pressure at the border of the Wigner-Seitz cell is exerted only by the

relativistic degenerate electron gas

Prel
FMT =

1

3

2

(2πh̄)3

∫ PF,WS
e

0

c2p2
√

c2p2 +m2
e c

4
4πp2dp,

=
m4

ec
5

8π2h̄3
[xe

√

1+ x2e (2x
2
e/3− 1) + arcsinh(xe)] (2.55)

where xe = PF,WS
e /(mec) ≡ PF

e (RWS)/(mec) is the dimensionless electron Fermi mo-

mentum, often called relativistic parameter, evaluated at the radius of the Wigner-

Seitz cell, RWS.

No analytic expression of the Wigner-Seitz cell chemical potential can be given

in this case, so we only write its general expression

µrel
FMT = Erel

FMT + Prel
FMTVws , (2.56)

where Erel
FMT and Prel

FMT are given by Eqs. (3.7) and (2.55) respectively. The above

equation, contrary to the non-relativistic formula (2.39), in no way can be simplified

in terms of its uniform counterparts. However, it is easy to check that, in the limit

of no Coulomb interaction ne(Rws) → 3Z/(4πR3
ws), EC → 0, and Ek → EChVws and,

neglecting the nuclear binding and the proton-neutron mass difference, we finally

obtain

µrel
FMT → µunif , (2.57)

as it should be expected.

In Fig. 2.1 we see how the relativistic generalization of the Feynman-Metropolis-

Teller treatment leads to electron density distributions markedly different from the

constant electron density approximation. The electron distribution is far from being

uniform as a result of the solution of Eq. (2.48), which takes into account the elec-

tromagnetic interaction between electrons and between the electrons and the finite

sized nucleus. Additional details are given in [1].
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Figure 2.1: The electron number density ne in units of the average electron number

density n0 = 3Z/(4πR3
ws) inside a Wigner-Seitz cell of 12C. The dimensionless ra-

dial coordinate is x = r/λπ and Wigner-Seitz cell radius is xws ≈ 255 correspond-

ing to a density of ∼ 108 g/cm3. The solid curve corresponds to the relativistic

Feynman-Metropolis-Teller treatment and the dashed curve to the uniform approx-

imation. The electron distribution for different levels of compression as well as for

different nuclear compositions can be found in [1].
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2.2 Mass-Radius Relation

In this section we present the gravitational equilibrium of white dwarfs using the

relativistic generalization of the FMT approach presented in the section 2.1.5. The

semi realistic formula for the radius of a white dwarf in terms of its mass can be de-

rived by balancing the degeneracy pressure of the electrons against the gravitational

pressure from the nucleon mass.

Assuming the spherically symmetric metric

ds2 = eν(r)c2dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2 , (2.58)

the entire system of equations describing the equilibrium of white dwarf, taking ac-

count the weak, the electromagnetic, gravitational interactions and quantum statis-

tics, all expressed consistently in general relativistic is given by [1]

√
g00µws = eν(r)/2µws(r) = constant . (2.59)

Outside each Wigner-Seitz cell, the system is strictly neutral and no global elec-

tric fields exist. Therefore, we can use the equation of state obtained with the

relativistic Feynman-Metropolis-Teller treatment to calculate the structure of the

star.

The equations of equilibrium to be integrated are the Einstein equations written

in the Tolman-Oppenheimer-Volkoff form [24, 25]

dν(r)

dr
=

2G

c2
4πr3P(r)/c2 + M(r)

r2
[

1− 2GM(r)
c2r

] , (2.60)

dM(r)

dr
= 4πr2

E(r)
c2

, (2.61)

dP(r)

dr
= −1

2

dν(r)

dr
[E(r) + P(r)] , (2.62)

where we have introduced the mass enclosed at the distance r through eλ(r) =

1− 2GM(r)/(c2r), E(r) is the energy-density and P(r) is the total pressure.

In order to compare with the newtonian cases we study the effects of the rela-

tivistic case on the inverse β-decay instability and on the general relativistic insta-

bility.
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2.2.1 Inverse β-decay instability and general relativistic instability

At high densities and very high electron Fermi pressures, electrons and protons

combine to form neutrons. This process, known as inverse beta decay and occurs

when the kinetic energy of the electrons exceeds the mass energy difference between

a initial nucleus (Z, A) and the final nucleus (Z − 1, A). The experimental values

of the threshold energy ǫ
β
Z are listed in Table 2.1.

In the uniform approximation, the critical density ρ > ρ
β
crit to trigger such pro-

cess is given by

ρ
β,unif
crit =

Ar

Z

Mu

3π2h̄3c3
[(ǫ

β
Z)

2 + 2mec
2ǫ

β
Z]

3/2 , (2.63)

where Eq. (2.9) has been used.

No analytic expression for ρ
β
crit can be found in the computation of the elec-

tron Fermi energy within the relativistic Feynman-Metropolis-Teller approach [1]

because involves the numerical integration of the relativistic Thomas-Fermi equa-

tion. Then, the critical density ρ
β,relFMT
crit is then obtained numerically by looking for

the density at which the electron Fermi energy (2.44) equals ǫ
β
Z.

In Table 2.1 we can see, correspondingly to each threshold energy ǫ
β
Z, the critical

density both in the Salpeter case ρ
β,unif
crit given by Eq. (2.63) and in the relativistic

Feynman-Metropolis-Teller case ρ
β,relFMT
crit .

Then, Rotondo et al.(2011) show that ρ
β,relFMT
crit > ρ

β,unif
crit as one should expect

from the fact that, for a given density, the electron density at the Wigner-Seitz cell

boundary satisfies nrelFMT
e < nunife . Therefore the electrons within the relativistic

Feynman-Metropolis-Teller approach must be subjected to a larger density with

respect to the one given by the approximated Salpeter analytic formula (2.63).

The effects of the relativistic FMT treatment on the general relativistic instability

was also checked by [1]. For Newtonian white dwarfs the critical mass is reached

asymptotically at infinite central densities of the object. One of the most important

general relativistic effects is to shift this critical point to some finite density ρGR
crit.

This general relativistic effect is an additional source of instability with respect to

the already discussed instability due to the onset of inverse β-decay which, contrary

to the present general relativistic one, applies also in the Newtonian case by shifting
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Decay ǫ
β
Z ρ

β,relFMT
crit ρ

β,unif
crit

4He →3 H + n → 4n 20.596 1.39× 1011 1.37× 1011

12C →12B →12Be 13.370 3.97× 1010 3.88× 1010

16O →16N →16C 10.419 1.94× 1010 1.89× 1010

56Fe →56Mn →56Cr 3.695 1.18× 109 1.14× 109

Table 2.1: Onset of inverse beta decay instability for 4He, 12C, 16O and 56Fe. The

experimental inverse β-decay energies ǫ
β
Z are given in MeV and they have been

taken from Table 1 of [4]. The corresponding critical density for the uniform electron

density model, ρ
β,unif
crit given by Eq. (2.63), is given in g/cm3 as well as the critical

density ρ
β,relFMT
crit for the relativistic Feynman-Metropolis-Teller case. The numerical

values of ǫ
β
Z are taken from [5], see also [6]

.

the maximum mass of Newtonian white dwarfs to finite densities (see e.g. [26]).

2.2.2 Numerical Results

The mass-central density relation and the mass-radius relation of general relativis-

tic 4He, 12C, 16O and 56Fe white dwarfs using the relativistic FMT approach were

presented in [1]. Here we show the results computed by them for a 4He and 12C

Newtonian white dwarf of Hamada and Salpeter [7], for the Newtonian white dwarf

of Chandrasekhar [11] and the general relativistic FMT equation of state [1].

Since the relativistic FMT approach takes into account self-consistently both β-

decay equilibrium and general relativity, it can be determined if the critical mass

is reached due either to inverse β-decay instability or to the general relativistic

instability.

A comparison of the numerical value of the critical mass as given by Stoner [10],

by Chandrasekhar [11] and Landau [12], by Hamada and Salpeter [7] and, by the

relativistic FMT treatment can be found in Table 2.2.

A conclusion obtained from the numerical integrations by Rotondo [1] is that
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Figure 2.2: Mass in solar masses as a function of the central density in the range

(left panel) 105–108 g/cm3 and in the range (right panel) 108–5× 1011 g/cm3 for 4He

white dwarfs. The solid curve corresponds to the present work, the dotted curves

are the Newtonian configurations of Hamada and Salpeter and the dashed curve

are the Newtonian configurations of Chandrasekhar.
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Figure 2.3: Mass as a function of the radius for 4He WDs. They show the config-

urations for the same range of central densities of the panels of Fig. 2.2. The solid

curve corresponds to the relativistic FMT, the dotted curves are the Newtonian

configurations of Hamada and Salpeter and the dashed curve are the Newtonian

configurations of Chandrasekhar.
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Figure 2.4: Mass in solar masses as a function of the central density in the range

(left panel) 105–108 g/cm3 and in the range (right panel) 108–1011 g/cm3 for 12C

white dwarfs. The solid curve corresponds to the present work, the dotted curves

are the Newtonian configurations of Hamada and Salpeter and the dashed curve

are the Newtonian configurations of Chandrasekhar.
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Figure 2.5: Mass in solar masses as a function of the radius in units of 104 km for 12C

white dwarfs. The left and right panels show the configurations for the same range

of central densities of the corresponding panels of Fig. 2.4. The solid curve corre-

sponds to the present work, the dotted curves are the Newtonian configurations of

Hamada and Salpeter and the dashed curve are the Newtonian configurations of

Chandrasekhar.



24CHAPTER 2. THE RELATIVISTIC FMT TREATMENT FORDEGENERATEWHITE DWARF

ρH&S
crit MH&S

crit /M⊙ ρFMTrel
crit MFMTrel

crit /M⊙
4He 1.37× 1011 1.44064 1.56× 1010 1.40906

12C 3.88× 1010 1.41745 2.12× 1010 1.38603

16O 1.89× 1010 1.40696 1.94× 1010 1.38024

56Fe 1.14× 109 1.11765 1.18× 109 1.10618

Table 2.2: Critical density and corresponding critical mass for the onset of gravita-

tional collapse of the Newtonian 4He, 12C, 16O and 56Fe white dwarfs of Hamada

[7], based on the Salpeter equation of state [8], and of the corresponding general

relativistic configurations obtained in this work based on the relativistic Feynman-

Metropolis-Teller equation of state [1]. Densities are in g/cm3 and masses in solar

masses. For the sake of comparison, the critical mass of Stoner and of the one

of Chandrasekhar-Landau are MStoner
crit ∼ 1.72M⊙ and MCh−L

crit ∼ 1.45M⊙, for the

average molecular weight µ = Ar/Z = 2. See [1] for further details.

4He and 12C white dwarfs satisfy ρGR
crit < ρ

β
crit (see Figs. 2.2 and Tables 2.1 and 2.2),

so they are unstable with respect to general relativistic effects. The critical density of

12C white dwarfs is ∼ 2.12× 1010 g/cm3, to be compared with the value 2.65× 1010

g/cm3 obtained from calculations based on general relativistic corrections applied

to polytropes (see e.g. [6]). And, it is worth to notice that the correct evaluation of

general relativistic effects and of the combined contribution of the electrons to the

energy-density of the system introduce, for 12C white dwarfs, a critical mass not

due to the inverse beta decay. When the contribution of the electrons to the energy-

density is neglected (e.g. Chandrasekhar [11] and Hamada and Salpeter [7], see

Eq. (2.9)) the critical density for 12C white dwarfs is determined by inverse β-decay

irrespective of the effects of general relativity.

2.3 Conclusions

In this chapter we presented the recently description of a compressed atom within

the global approach of the relativistic Feynman, Metropolis and Teller [1] consid-
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ering a Wigner-Seitz cell and applied to the construction of white dwarfs in the

framework of general relativity. This treatment was the first approach of white

dwarfs taking account gravitational, weak, strong and electromagnetic interactions.

The critical mass can be obtained only through the numerical integration of the

general relativistic equations of equilibrium with the equation of state obtained us-

ing the relativistic FMT, and no analytic formula can be derived. The critical mass

and radius becomes a function of the composition of the star. The results of the

relativistic FMT treatment have been compared and contrasted with the results of

the non-relativistic models of Chandrasekhar and Hamada and Salpeter [7].
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Chapter 3

The relativistic FMT treatment for WD

at finite temperatures

In the previous chapter 2, we present the generalization of the classic work of Feyn-

man, Metropolis and Teller (FMT) [17] to relativistic regimes, solving a compressed

atom by the Thomas-Fermi equation in a Wigner-Seitz cell [1]. The integration of

this equation does not admit any regular solution for a point-like nucleus and both

the nuclear radius and the nuclear composition have necessarily to be taken into

account [19, 20]. This introduces a fundamental difference from the non-relativistic

Thomas-Fermi model where a point-like nucleus is adopted. So, this approach im-

proves in the following aspects all previous treatments of the EOS of a compressed

atom, including the classic works based on the uniform approximation by Chan-

drasekhar [11] and the EOS by Salpeter [8]:

1. in order to guarantee self-consistency with a relativistic treatment of the elec-

trons, the point-like assumption of the nucleus is abandoned introducing a

finite sized nucleus;

2. the Coulomb interaction energy is fully calculated without any approximation

by solving numerically the relativistic Thomas-Fermi equation for each given

nuclear composition;

3. the inhomogeneity of the electron distribution inside each Wigner-Seitz cell,

4. the energy-density of the system is calculated taking into account the contri-

27
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butions of the nuclei, of the Coulomb interactions, as well as of the relativistic

electrons to the energy of the Wigner-Seitz cells;

5. the β-equilibrium between neutrons, protons and electrons is also taken into

account leading to a self-consistent calculation of the threshold density for

triggering the inverse β-decay of a given nucleus.

The computation of the EOS is done by calculating the dependence of all these

ingredients on the level of compression inside the star interior. In Ref. [27] has

been shown how all these effects together with general relativity are important in

the determination of the macroscopic structure of white dwarfs as well as for the

determination of their maximum stable mass against gravitational collapse. More

recently, the relativistic FMT EOS has been used to determine general relativistic

equilibrium configurations of rotating white dwarfs [28].

In Fig. 3.1 we show the mass-radius relation of T = 0 white dwarfs for the

relativistic FMT, Salpeter, and Chandrasekhar EOS and compare them with the

estimated masses and radii of white dwarfs from the Sloan Digital Sky Survey Data

Release 4 (SDSS-E06 catalog) [2]. It can be clearly seen that already for masses

. 0.7–0.8 M⊙ deviations from the degenerate treatments are evident. It is natural

to expect that such deviations could be related to the neglected effects of finite

temperatures on the structure of the white dwarf. Thus, besides being interesting

by their own, the finite temperature effects on the EOS and consequently on the

mass-radius relation of the white dwarf are very important. Here we are going to

extend our previous EOS [1], based on the degenerate relativistic FMT treatment,

by introducing the effects of finite temperatures and use it to construct equilibrium

configurations of white dwarfs at finite temperatures.

It is very interesting that there have been recently discovered ultra-low mass

white dwarfs with masses . 0.2M⊙, which are companions of neutron stars in rel-

ativistic binaries; see e.g. Refs. [29, 30]. These low-mass white dwarfs represent the

perfect arena to testing the EOS of compressed matter since the central densities of

these objects are expected to be . 106 g cm−3, where the degenerate approximation

breaks down and so temperature effects cannot be neglected. Using the mass-radius
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Figure 3.1: Mass-radius relations of white dwarfs obtained with the relativistic FMT,

Salpeter, and Chandrasekhar EOS and their comparison with the estimated masses

and radii of white dwarfs taken from the Sloan Digital Sky Survey Data Release 4

(SDSS-E06 catalog) [2].
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relation at finite temperatures, we analyze in this chapter the structure of the white

dwarf orbiting the pulsar PSR J1738+0333. We infer its mass, radius, surface gravity,

internal temperature, and compare and contrast them with previous estimates.

The generalization of the relativistic FMT model presented in this chapter will

be also useful to extend previous works in which the non-relativistic Thomas-Fermi

model has been used to describe the physics of the low density layers of neutron

stars including their atmospheres (see e.g. Ref. [31]). The proper treatment of the

relativistic and Coulomb effects corrects the over and underestimate of the total

pressure at high and low densities respectively, which occurs in non-relativistic

Thomas-Fermi models and in the approximate Coulomb corrections of Salpeter [8];

see [1], for further details.

In this chapter we describe the extension of the relativistic FMT treatment to

finite temperatures. We summarize the results of the numerical integration of the

equations and describe the general properties of the new EOS. Then, we construct

the mass-radius relation of white dwarfs, showing specifically the results for 4He

composition and we apply these results to the case of the ultra-low mass white

dwarf companion of PSR J1738+0333.

3.1 Generalization of the EOS to finite temperatures

We now consider the equations of equilibrium of a relativistic gas of electrons at

a temperature T 6= 0 surrounding a finite sized and positively charged nucleus

of mass and atomic numbers A and Z, respectively. The electron cloud is con-

fined within a radius RWS of a globally neutral Wigner-Seitz cell and the system is

isothermal.

Following the chapter 2 (sec.2.1.5), the proton number density can be written

as Eq. (2.45). And clearly, the electron number density follows from Fermi-Dirac

statistics and is given by

ne =
2

(2πh̄)3

∫ ∞

0

4πp2dp

exp
[

Ẽ(p)−µ̃e(p)
kBT

]

+ 1
, (3.1)
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where kB is the Boltzmann constant, µ̃e is the electron chemical potential without the

rest-mass, and Ẽ(p) =
√

c2p2 +m2
e c

4−mec
2, with p and me the electron momentum

and rest-mass, respectively.

Introducing the degeneracy parameter η = µ̃e/(kBT), t = Ẽ(p)/(kBT), and

β = kBT/(mec
2), we can write the electron number density as

ne =
8π

√
2

(2πh̄)3
m3c3β3/2 [F1/2(η, β) + βF3/2(η, β)] , (3.2)

where

Fk(η, β) ≡
∫ ∞

0

tk
√

1+ (β/2)t

1+ et−η dt (3.3)

is the relativistic Fermi-Dirac integral.

We consider temperatures that satisfy T ≪ mec
2/kB ≈ 6× 109 K, so we will

not take into account the presence of anti-particles. The Thomas-Fermi equilibrium

condition for the relativistic electron gas is in this case given by

µ̃e(r)− eV(r) = kBTη(r)− eV(r) = constant, (3.4)

where V(r) is the Coulomb potential.

By introducing the dimensionless quantities x = r/λπ , xc = Rc/λπ , χ/r =

µ̃e/(h̄c) and replacing the above particle densities into the Poisson Equation

∇2V(r) = 4πe[np(r)− ne(r)], (3.5)

we obtain the generalization of the relativistic Thomas-Fermi equation to finite tem-

peratures

d2χ(x)

dx2
= −4παx

{

3

4π∆3
θ(xc − x)−

√
2

π2

(

me

mπ

)3

β3/2 [F1/2(η, β) + βF3/2(η, β)]

}

.

(3.6)

The Eq. (3.6) must be integrated subjected to the same boundary conditions as

in the degenerate case, given by Eq. (2.49).

We turn now to compute the energy of the Wigner-Seitz cell. For the present

case of finite temperatures, the total energy of each cell can be split as

EWS = EN + Ek + EC, (3.7)
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where

EN = MN(A,Z)c
2 +Uth, Uth =

3

2
kBT, (3.8)

Ek =
∫ RWS

0
4πr2(Ee −mene)dr, (3.9)

EC =
1

2

∫ RWS

Rc

4πr2e[np(r)− ne(r)]V(r)dr, (3.10)

are the nucleus, kinetic, and Coulomb energy. For the nucleus mass MN(A,Z) we

adopt experimental values, Uth is the thermal energy of nuclei which we here adopt

as an ideal gas 1, and the electron energy density Ee is given by

Ee = mec
2ne

+

√
2

π2h̄3
m4

e c
5β5/2 [F3/2(η, β) + βF5/2(η, β)] . (3.11)

The total density and pressure are then given by

ρ =
EWS

c2VWS
, (3.12)

P = PN + Pe, (3.13)

where

PN =
2

3

Uth

VWS
=

kBT

VWS
, (3.14)

Pe =
23/2

3π2h̄3
m4

ec
5β5/2

[

F3/2(ηWS, β) +
β

2
F5/2(ηWS, β)

]

, (3.15)

being ηWS the value of η at the boundary of the Wigner-Seitz cell with volume

VWS = 4πR3
WS/3.

3.2 Numerical integration of the equations and the EOS

For a given chemical composition (Z, A), temperature T (i.e. β), and dimension-

less Wigner-Seitz cell radius xWS, the relativistic Thomas-Fermi equation (3.6) is

1Quantum corrections to the ideal behavior of the ions considered here can be straightforwardly

included following previous treatments such as [32, 33, 34]
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integrated subjected to the boundary conditions (2.49). We thus obtain both the

Coulomb potential and the function η inside the given Wigner-Seitz cell. With the

knowledge of ηWS, we proceed to evaluate first the energy of the cell by Eqs. (3.7–

3.11) and subsequently the values of the density and pressure through Eqs. (3.12–

3.15). For fixed chemical composition and temperature, we repeat the above steps

for different cell radii to obtain different compression levels of the system; this

leads to different densities and pressures, hence the EOS. These steps can be then

performed for different compositions and temperatures; the results are discussed

below.

3.2.1 Properties of the EOS

As we showed in Ref. [1], as a result of the Coulomb interaction duly accounted for

in the relativistic Thomas-Fermi treatment, the distribution of the electrons inside a

Wigner-Seitz cell is not uniform. In order to show the effects of the temperature, in

Fig. 3.2 we show as an example the electron number density inside a Wigner-Seitz

cell of 56Fe at a density of 30 g cm−3 and for temperatures T = [0, 107, 1010] K.

We can see in Fig. 3.2 how the effect of the temperature tends to homogenize the

electron distribution inside the cell. In addition, we notice that the larger the tem-

perature the larger the value of the electron density at the border of the Wigner-Seitz

cell, thus increasing the electron pressure. This effect can be clearly seen in Fig. 3.3

where we show the value of the electron number density evaluated at the cell radius,

RWS, as a function of the density for the temperatures T = [104, 105, 106, 107, 108] K,

for a given chemical composition, 12C.

The volume of the Wigner-Seitz cell, VWS = 4πR3
WS/3, determines the density

of the system ρ given by Eq. (3.12); the smaller the volume the larger the density.

In Fig. 3.4 we show the density of the system as a function of the Wigner-Seitz cell

radius RWS for a temperature T = 107 K and 12C chemical composition. Small devi-

ations of the R−3
WS behavior are due to the inhomogeneity of the electron distribution

inside the cell and to the contribution of the Coulomb and electron kinetic energy

to the density.
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Figure 3.2: Electron number density inside a Wigner-Seitz cell of 56Fe at a density of

30 g cm−3 at selected temperatures. Here nBohr = 3/(4πR3
Bohr) ≈ 1.6× 1024 cm−3,

where RBohr = h̄/(e2me) ≈ 5.3× 10−9 cm, is the Bohr radius. In this example we

have used both low density and high temperatures up to 1010 K in order to show

an extreme example of electron density flattening.
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Figure 3.3: Electron number density at the radius of a Wigner-Seitz cell of

12C as a function of the density (3.12) for the selected temperatures T =

[104, 105, 106, 107, 108] K.
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Figure 3.4: Total density (in g cm−3) of the system as a function of the radius of

the Wigner-Seitz cell (in units of the electron Compton wavelength λe = h̄/(mec) ≈
3.9× 10−11 cm) in the case of 12C at a temperature T = 107 K.
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In this line it is important to mention that often in the literature the density of

the system is approximated as

ρ =
A

Z
Mune, (3.16)

which corresponds to the rest-mass density of nuclei in the system and where a

uniform distribution of electrons is assumed. Here Mu = 1.6604× 10−24 g is the

unified atomic mass. We can see from Eq. (3.7) that this is equivalent to neglect

the thermal, kinetic, and Coulomb energy of the cells as well as the inhomogeneity

of the electron density. However, as we showed in Refs. [1, 27], the inclusion of

the Coulomb and electron kinetic energies are important at low and high densities,

respectively. In particular, the contribution of the kinetic energy of the electrons to

the energy density is fundamental in the determination of the critical density for the

gravitational collapse of 12C white dwarfs [27]. We show in Fig. 3.5 the effect on the

EOS of using as density of the system only the nuclei rest-mass, Eq. (3.16), instead

of the full mass density given by Eq. (3.12) which accounts for the total energy of

the Wigner-Seitz cell given by Eq. (3.7).

The effects of finite temperatures are clearly expected to be important at low den-

sities, where the system looses its degeneracy. The point where the EOS should start

to deviate from its degenerate behavior can be estimated by equating the degener-

ate and ideal gas pressures for the electron component. Assuming the electrons as

non-relativistic we have, nekBT = (3π2)2/3h̄2n5/3e /me, from which we obtain that

temperature effects are important for densities

ρ . 1.5× 103
(

T

107K

)3/2

g cm−3 , (3.17)

where we have used A/Z ≈ 2 and ρ ≈ AMune/Z. In Fig. 3.6 we compare the

relativistic degenerate FMT EOS [1, 27] and its generalization at finite temperatures

presented in this work, for the cases T = 107 and 108 K and 12C chemical com-

position. For these specific temperatures we see that deviations of the degenerate

EOS start at a density ρ ≈ 2× 104 g cm−3 and ≈ 106 g cm−3, respectively. For the

same temperatures, Eq. (3.17) estimate deviations from degeneracy at ρ ≈ 1.5× 103

g cm−3 and ≈ 4.8 × 104 g cm−3, respectively. Thus, the lower the temperature
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Figure 3.5: Total pressure as a function of the matter density ρ = AMune/Z, given

by Eq. (3.16), and ρ = EWS/(c
2VWS) given by Eq. (3.12) which includes the ther-

mal, kinetic, and Coulomb energy in the Wigner-Seitz cell. In this example the

composition is 12C and the temperature T = 104 K.
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the better the estimate given by Eq. (3.17); the reason for this is that for larger

temperatures the system will loose the degeneracy at larger densities where the

non-relativistic approximation for the electrons breaks down.
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Figure 3.6: Comparison of the EOS for 12C at temperatures T = [0, 107, 108] K.

In Fig. 3.7, we show the nuclei to electron pressure ratio in cells of 12C as a func-

tion of the density and for selected temperatures. It can be seen that for all temper-

atures the ratio approaches the same constant value in the low density regime. This

is due to the fact that at sufficiently low densities also the electron gas becomes an

ideal gas and consequently its pressure is approximately given by Pid
e = ZkBT/VWS.

Therefore, the nuclei to pressure ratio approaches the limit PN/P
id
e = 1/Z, where

PN is given by Eq. (3.14). In the example of Fig. 3.7 we have Z = 6 so PN/P
id
e ≈ 0.17.

It is clear that the density at which each curve reaches such a constant value in-

creases with the temperature, since at larger temperatures the electrons reach their

ideal gas state at higher densities.

We summarize the finite temperature generalization of the relativistic FMT EOS

in Fig. 3.8, where we plot as an example the total pressure (3.13) as a function of
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Figure 3.7: Nuclei to electron pressure ratio as a function of the mass density in the

case of 12 C white dwarf for selected temperatures in the range T = 104–108 K.
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the total density of the system (3.12) at temperatures T = [104, 105, 106, 107, 108] K

and for a chemical composition, 12C. All the above features of the EOS are general

and therefore applied also to chemical compositions other than 12C.
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Figure 3.8: Total pressure as a function of the mass density in the case of 12 C white

dwarf for selected temperatures in the range T = 104–108 K.

3.2.2 Inverse β decay and pycnonuclear reactions

We turn now to the finite temperature effects on the inverse β decay instability. The

critical density ρ
β
crit is obtained numerically by looking for the density at which the

electron energy equals ǫ
β
Z. In Table 2.1 we showed that, in the degenerate case, the

threshold energies to trigger the inverse β process for 4He, 12C, 16O, and 56Fe are

reached at densities, ρ
β
crit = 1.37× 1011, 3.88× 1010, 1.89× 1010, and 1.14× 109 g

cm−3, respectively.

For the present finite temperature case, from our numerical integration we found

that the critical densities for the occurrence of the inverse β decay instability are not

affected so that they are the same as in the degenerate approximation. This is due
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to the fact that the effects of temperatures T . 108 K become relevant at densities

ρ . 106 g cm−3, as can be seen from Figs. 3.6 and 3.8.

We turn now to the pycnonuclear reactions. In a nuclei lattice the nuclear re-

actions proceed with the overcoming of the Coulomb barrier between neighbor

nuclei. At zero temperatures, T = 0, the Coulomb barrier can be overcome due to

the zero-point energy of the nuclei (see e.g. [35, 36])

Ep = h̄ωp , ωp =

√

4πe2Z2ρ

A2M2
u

. (3.18)

The number of pycnonuclear reactions per unit volume per unit time increases

with the density of the system [35] and any effect that reduces the Coulomb barrier

will increase the cross-section of the reaction. The inclusion of the temperature

could then lead to thermo-enhanced pycnonuclear rates (see e.g. Refs. [35, 37]).

The astrophysical importance of pycnonuclear reactions e.g. in the theory of white

dwarfs relies on the fact that for instance the 12C+12C pycnonuclear fusion, leading

to 24Mg, is possible in a time scale shorter than a Hubble time, τpyc < 10 Gyr, for

densities ∼ 1010 g cm−3. Such a density turns to be larger than the critical density ∼
3× 109 g cm−3 for the double inverse β decay of 24Mg into 24Ne by electron capture

(see e.g. [8, 36]), which destabilize the white dwarf due to sudden decrease of its

electron pressure. Under such conditions, 12C+12C fusion will indirectly induce the

gravitational collapse of the white dwarf rather than to a supernova explosion.

Following the updated reaction rates of Ref. [37], we recently computed in [28]

the critical density for pycnonuclear instability in general relativistic uniformly ro-

tating 12C white dwarfs, at zero temperatures. It comes out that the instability agent

of white dwarfs can be either general relativistic effects or inverse β decay or pyc-

nonuclear reactions or rotation through mass-shedding or secular instabilities (see

[28], for details).

The electrons around the nuclei screen the positive charge of the nucleus reduc-

ing the Coulomb barrier; hence their proper inclusion could in principle increase

the reaction rates. On the other hand, we showed in Figs. 3.2 and 3.3 two different

effects owing to the finite temperature: 1) it tends to flatten the electron distribution,

thus changing the electron screening of the Coulomb potential with respect to the
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degenerate case; and 2) it increases the electron density hence the pressure at the

border of the cell. These effects clearly could lead not only to qualitative but also

to quantitative differences in the estimate of the rates of the pycnonuclear reactions

(see e.g. [38]).

However, the inclusion of these combined effects within the pycnonuclear reac-

tions treatment, following a fully relativistic approach of the electron gas and the

Coulomb interactions as the one presented here, is a most difficult and complex task

that deserves a detailed and separated analysis, and therefore will not be addressed

here.

3.3 Mass-Radius relation

General relativistic effects are important in the high density branch of white dwarfs;

for instance they lead to the gravitational collapse of the star prior to the trigger

of the inverse β decay instability in 12C white dwarfs [27].We here construct the

mass-radius relation of white dwarfs in their entire range of stability, so we use

the equations of hydrostatic equilibrium within the framework of general relativity

given by TOV equations; Eq. (2.62).

These equations can be integrated for a wide range of central densities, tem-

peratures, and for selected chemical compositions, for instance 4He, 12C, 16O, and

56Fe. In Figs. 3.9 and 3.10, we show in particular the mass-central density and mass-

radius relations of 4He white dwarfs in the range of densities and radii where finite

temperature effects are more important.

The minimum in these plots mark the transition from the ideal to the degenerate

behavior of the electron gas: from left to right in the M− ρc relation and from left

to right in the M− R relation. Thus these minimum can be used to give an estimate

of the minimum mass that a star should have to be able to burn stably a given

chemical composition since the condition of a stable burning requires that the gas

be non-degenerate. Consequently, stable burning requires that the star lies on the

branch of solutions on the left-hand side of the minimum of the M− ρc diagram or

on the right-hand side of the minimum of the M− R diagram. For instance, helium
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Figure 3.9: Total mass versus radius for 4He white dwarfs for selected temperatures

from T = 104 K to T = 108 K.

burning is triggered at a temperature THe+He ≈ 108 K, so we can obtain from the

solutions shown in Fig. 3.9 that the minimum mass for stable helium burning is

MHe+He
min ≈ 0.51 M⊙. The corresponding radius and density of this configuration is

4.54× 109 cm≈ 0.065 R⊙ and 6.59× 105 g cm−3, respectively. A similar analysis can

be done for the other compositions.

3.4 The ultra low-mass white dwarf companion of PSR

J1738+0333

It is clear that the effects of the temperature are particularly important at low densi-

ties, and hence for low-mass white dwarfs. We analyze here the specific case of the

white dwarf companion of the millisecond pulsar PSR J1738+0333. We refer to [30],

for details on the observations and technical aspects of the derivation of the binary

parameters.
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Figure 3.10: Total mass versus central density for 4He white dwarfs for selected

temperatures from T = 104 K to T = 108 K.
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Antoniadis et al. [30] obtained with the the Goodman High Throughput Spec-

trograph instrument of the Southern Astrophysical Research Telescope (SOAR) at

Cerro Pachón, Chile, a photometric radius of the white dwarf, RWD = 0.042±
0.004R⊙. On the other hand, the analysis of the white dwarf atmosphere spectrum

with the models of Ref. [39] led to an effective surface temperature, Teff = 9130± 150

K, and a logarithm of the surface gravity, log(g) = log(GMWD/R
2
WD) = 6.55± 0.1.

Using the evolutionary mass-radius relation of Painei et al. [40], the mass of the

white dwarf was estimated in Ref. [30] to be MWD = 0.181+0.007
−0.005 M⊙, and a corre-

sponding radius RWD = 0.037+0.004
−0.003 R⊙, in agreement with the photometric value.

A first attempt to obtain the mass of the white dwarf can be done directly from

the observed data by combining the spectral and photometric analysis. Assuming

the photometric radius as the star radius the mass of the white dwarf would be

MWD = gR2
WD/G ≈ 0.23M⊙, using the central values of RWD and g, which is

roughly consistent with the mass derived from the mass-radius relation of Ref. [40].

In order to compare our mass-radius relation at finite temperatures with the

above results and infer the internal temperature of the white dwarf, we plotted in

Figs. 3.11 and 3.12 our theoretical surface gravity-mass and radius relations for 4He

white dwarfs, together with the above observational constraints.

An inspection of Fig. 3.11 does not give us any information on the possible

internal temperature of the white dwarf since, in principle, we do not have any

a priori information on the mass. However, from Fig. 3.12 we clearly identify

that the interior temperature of the white dwarf core should be T ≈ 2–3 × 107

K. In Fig. 3.13 we plot the mass-radius relation for 4He white dwarfs with the

observational constraints of the companion of PSR J1738+0333. We can now com-

pare our results with an estimate obtained for instance using the relation found

by Koester in Ref. [41] between the central and surface temperatures of the white

dwarf, T4
eff/g = 2.05× 10−10T2.56

c . Using the value Teff = 9130 K and log(g) = 6.55,

this relation gives Tc ≈ 2.6× 107 K, in full agreement with our inference. In this

estimate we have neglected the contribution of the thickness of the envelope to the

total surface radius of the white dwarf. However, this approximation does not in-

troduce a large error since the envelope would be in this case at most ∼ 10−2 RWD
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Figure 3.11: Logarithm of the surface gravity, log(g) = log(GMWD/R
2
WD), as a

function of the mass for 4He white dwarfs for selected interior temperatures from

T = 104 K to T = 108 K. The horizontal dashed lines indicate the maximum and

minimum best-fit values log(g) = 6.55± 0.1.
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Figure 3.12: Logarithm of the surface gravity, log(g) = log(GMWD/R
2
WD), as a

function of the radius for 4He white dwarfs for selected interior temperatures from

T = 104 K to T = 108 K. The horizontal dashed and dot-dashed lines indicate the

maximum and minimum best-fit values of the surface gravity, log(g) = 6.55± 0.1

and photometric radii RWD = 0.042± 0.004R⊙, respectively.
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Figure 3.13: Logarithm of the surface gravity log(g) = log(GMWD/R
2
WD) as a func-

tion of the radius for 4He white dwarfs for selected interior temperatures from

T = 104 K to T = 108 K. The dashed and dot-dashed lines indicate the maximum

and minimum best-fit values of the surface gravity, log(g) = 6.55± 0.1 and photo-

metric radii RWD = 0.042± 0.004R⊙, respectively.

3.5 Conclusions

We have been generalized the Feynman-Metropolis-Teller treatment [1] of com-

pressed matter to the case of finite temperatures. We have thus obtained the

EOS formed by nuclei and electrons by solving the finite temperature relativis-

tic Thomas-Fermi equation (3.6) within globally neutral Wigner-Seitz cells. We

emphasize in this work on the electron component and the Coulomb interaction

between ions and electrons fully computed within a relativistic Thomas-Fermi ap-

proach with finite sized nuclei, and therefore applicable to any relativistic regime
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of the electrons and densities. This work generalizes other treatments based on

either a uniform distribution of electrons or the classic Thomas-Fermi treatment;

see e.g. [31]. The quantum corrections to the classic ideal ion fluid considered in

this work can be straightforwardly introduced in their corresponding ranges of rel-

evance as done in previous treatments; see e.g. [32, 33, 34, 42].

We have shown the general features of the new EOS and compared and con-

trasted the effects owing to the non-zero temperature with respect to the degener-

ate case. We have checked that the onset of the inverse β decay instability is not

modified for temperatures T . 108 K and therefore the zero-temperature critical

densities computed in Ref. [27] can be safely used. The enhancement and flattening

of the electron density inside the cell for larger temperatures could have relevant

effect in the pycnonuclear reaction rates in the interior of white dwarfs and/or in

the low density layers of accreting neutron stars.

Deviations from the degenerate EOS have been shown to occur in the regions of

interest of low-mass white dwarfs and in the outermost layers of neutron star crusts.

Ultra-low mass white dwarfs, MWD ∼ 0.2M⊙ [43, 30], have been found in binary

systems with neutron stars companions. These objects have central densities. 106 g

cm−3, where the degenerate approximation breaks down and so thermal effects can-

not be neglected. We have analyzed here the specific case of PSR J1738+0333, whose

mass and radius was estimated in [30] using the evolutionary mass-radius relation

of Painei et al. [40]. They obtained MWD = 0.181+0.007
−0.005 M⊙, RWD = 0.037+0.004

−0.003 R⊙, in

agreement with the spectrometric and photometric data. We inferred for this object

an internal temperature T ≈ 2–3× 107 K, and a mass MWD ≈ 0.2 M⊙ assuming for

instance the photometric radius, R = 0.042 R⊙, as the star radius. We checked also

our result using the relation by Koester [41] between the internal and surface white

dwarf temperatures, T4
eff/g = 2.05× 10−10T2.56

c . Using the surface temperature and

the logarithm of the surface gravity obtained from the spectral analysis, Teff = 9130

K and log(g) = 6.55, this relation gives Tc ≈ 2.6× 107 K, in full agreement with our

results.



Chapter 4

Globally and locally neutral neutron

stars

In this chapter we present the new treatment of neutron stars, formulated by Belvedere

et al.(2012), which fulfills global and not local charge neutrality. The equilibrium

equations in such a model take into account the strong, weak, electromagnetic, and

gravitational interactions within the framework of general relativity. The nuclear

interactions are described by the exchange of the σ, ω, and ρ virtual mesons. The

equilibrium conditions are given by the theoretical framework based on Einstein-

Maxwell-Thomas-Fermi (EMTF) equations which conserve the “klein potentials”

throughout the configuration. The solution of the EMTF coupled differential equa-

tions leads to a new structure of the star: a positively charged core at supranuclear

densities, ρ > ρnuc ∼ 2.7× 1014 g/cm−3, surrounded by an electron distribution

of thickness & h̄/(mec) and, at lower densities ρ < ρnuc, a neutral ordinary crust.

Which consequently, leads a new mass-radius relation that differs from the one

given by the Tolman-Oppenheimer-Volkoff equations that satisfy local charge neu-

trality.

4.1 General structure and composition

The neutron stars are the most compact stars in the universe. Owing to their very

high densities in their cores overcoming the nuclear density, they can be treated

as a unique astrophysical laboratories of superdense matter. Typical masses and

51
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radii of these stars are of the order of M ≃ 1.4M⊙ and R ≃ 10 km, respectively.

Since a neutron star can be subdivided into the three internal regions; the outer

crust, the inner crust and the core, the structure of the neutron star depends of their

composition. Below we briefly describe the structure of the neutron star.

1. Outer crust: extends from the bottom of the atmosphere to the layer of neu-

tron drip density ρdrip ≈ 4× 1011 g cm−3 and has a depth of a few hundred

meters [36]. It is composed of ions and electrons. A very thin surface layer

contains non-degenerate electron gas but in the deeper layers the electrons are

degenerate. At ρ . 104 g cm−3 the electron plasma may be non-ideal and the

ionization may be incomplete. At high densities the electron gas is almost

ideal and the atoms are fully ionized, being actually bare atomic nuclei. At

the base of the outer crust (ρ = ρdrip) the neutrons start to drip out from the

nuclei and form a free neutron gas.

2. Inner crust: extends from the density ρdrip up to approximately nuclear den-

sity where the supranuclear core starts. It is composed of the electrons, free

neutrons and neutron-rich atomic nuclei [44, 45]. The amount of free neutrons

increases with density.

3. Core: It extends from approximately nuclear density all the way up to supranu-

clear center. It is composed mainly of neutrons n, protons p and electrons e.

The composition of npe matter is determined mainly by the condition of β-

equilibrium with respect to the reactions n → p + e + ν̄e, p + e → n + νe,

where νe and ν̄e stand for electron neutrino and antineutrino, respectively. In

the traditional literature it is also imposed the condition of local charge neu-

trality, which requires that the electron and proton number densities be equal,

np = ne. The electrons are ultrarelativistic while neutrons and protons, which

interact via nuclear forces, constitute a strongly interacting Fermi-liquid.
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4.2 Locally neutral neutron stars: the TOV equations

The structure of a non-rotating neutron star that satisfy local charge neutrality, and

so it does not have any electromagnetic structure, is described by the hydrostatic

equilibrium equations for a spherically symmetric body in general relativity, that is

the Tolman-Oppenheimer-Volkoff (hereafter TOV) equations.

In the spherically symmetric case the spacetime metric is given by

ds2 = eν(r)c2dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2 , (4.1)

where the ν(r) and λ(r) are only functions of the radial coordinate r.

The Einstein equations can be reduced to the hydrostatic equilibrium equations

dν(r)

dr
=

2G

c2
4πr3P(r)/c2 + M(r)

r2
[

1− 2GM(r)
c2r

] , (4.2)

dM(r)

dr
= 4πr2

E(r)
c2

, (4.3)

dP(r)

dr
= −1

2

dν(r)

dr
[E(r) + P(r)] , (4.4)

where we have introduced the mass enclosed at the distance r through e−λ(r) =

1− 2GM(r)/(c2r), E(r) = c2ρ(r) is the energy-density and P(r) is the total pressure.

The TOV system of equations can be then integrated providing a closure relation

between the pressure and the energy density, namely the equation of state.

As it is well known the classic work of Oppenheimer & Volkoff (1939) addresses

the problem of equilibrium configurations composed only of degenerate neutrons.

In the case when the protons and electrons are also considered, all the scientific lit-

erature on neutron stars assume that the condition of local charge neutrality applies

identically to all points of the equilibrium configurations [46]. Therefore, the solu-

tions in this more general case are also obtained on the base of the TOV equations.

Using the concept of Klein potentials, Rotondo et al. (2011) have recently proved

the impossibility of imposing the condition of local charge neutrality in the simplest

case of a self-gravitating system of degenerate neutrons, protons and electrons in

β-equilibrium [47]: it has been shown that the consistent treatment of the above
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system implies the solution of the general relativistic Thomas-Fermi equations, cou-

pled with the Einstein-Maxwell ones; what they called Einstein-Maxwell-Thomas-

Fermi (EMTF) system of equations, being the TOV equations thus superseded.

4.3 Globally neutral neutron stars: equilibrium equa-

tions

In this section we present the equilibrium equations of non-rotating neutron star sat-

isfying global charge neutrality following the new approach formulated by Belvedere

et al.[3].

4.3.1 Core

Since neutron stars cores have densities much larger than the nuclear density ρnuc ∼
2.7× 1014 g/cm3, approaches for the nuclear interaction between nucleons based

on phenomenological potentials and non-relativistic many-body theories can not

be used (see [48, 49]). A self-consistent relativistic and well-tested model for the

nuclear interactions has been formulated in [50, 51, 48, 49]. Within this model the

nucleons interact with σ, ω and ρ mesons through Yukawa-like couplings and as-

suming flat spacetime the equation of state of nuclear matter can be determined.

It has been clearly stated in [47, 52] that, when we turn into the description of a

neutron star configuration, the global description of the Einstein-Maxwell-Thomas-

Fermi equations is mandatory. Associated to this system of equations there is

a sophisticated eigenvalue problem, especially the one for the general relativistic

Thomas- Fermi equation is necessary in order to fulfill the global charge neutrality

of the system and to consistently describe the confinement of the ultrarelativistic

electrons.

Assuming that the nucleons interact with σ, ω and ρ mesons through Yukawa-

like couplings and assuming flat spacetime one can write the equation of state of

nuclear matter. The relativistic mean field nuclear model of Boguta and Bodmer

[53] is adopted by assuming the strong interactions between nucleons, in minimal
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coupling approximation, with σ an isoscalar meson field that provides the attractive

long-range part of the nuclear force; a massive vector field ω that models the re-

pulsive short range and; in addition, a massive isovector field ρ that takes account

surface as well as isospin effects of nuclei (see also [53, 54]). The self-interacting

scalar field potential U(σ) is assumed as a quartic polynom with adjustable coeffi-

cients.

The total Lagrangian density of the system is written as

L = Lg + L f +Lσ + Lω + Lρ +Lγ + Lint, (4.5)

where the Lagrangian densities for the free-fields are (we use in this section units

with h̄ = c = 1)

Lg = − R

16πG
, (4.6)

Lγ = − 1

16π
FµνF

µν, (4.7)

Lσ =
1

2
∇µσ∇µσ −U(σ), (4.8)

Lω = −1

4
ΩµνΩµν +

1

2
m2

ωωµωµ, (4.9)

Lρ = −1

4
RµνRµν +

1

2
m2

ρρµρµ, (4.10)

where Ωµν ≡ ∂µων − ∂νωµ, Rµν ≡ ∂µρν − ∂νρµ, Fµν ≡ ∂µAν − ∂νAµ are the field

strength tensors for the ωµ, ρ and Aµ fields respectively, ∇µ stands for covariant

derivative and R is the Ricci scalar. For the fields Aµ, ωµ, and ρµ the Lorenz gauge

was adopted. The self-interaction scalar field potential U(σ) is a quartic-order poly-

nom (see e.g. [55]).

The Lagrangian density for the three fermion species is

L f = ∑
i=e,N

ψ̄i

(

iγµDµ −mi

)

ψi, (4.11)

where ψN is the nucleon isospin doublet, ψe is the electronic singlet, mi states for the

mass of each particle-specie and Dµ = ∂µ + Γµ, being Γµ the Dirac spin connections.

The interacting Lagrangian density is, given by

Lint = −gσσψ̄NψN − gωωµ J
µ
ω − gρρµ J

µ
ρ

+ eAµ J
µ
γ,e − eAµ J

µ
γ,N, (4.12)
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where the conserved currents are

J
µ
ω = ψ̄NγµψN, (4.13)

J
µ
ρ = ψ̄Nτ3γµψN, (4.14)

J
µ
γ,e = ψ̄eγ

µψe, (4.15)

J
µ
γ,N = ψ̄N

(

1+ τ3
2

)

γµψN. (4.16)

The gσ, gω and gρ are coupling constants of the σ, ω and ρ-fields, and e is the

fundamental electric charge. The Dirac matrices γµ and the isospin Pauli matrices

satisfy the Dirac algebra in curved spacetime (see e.g. [56] for details).

The mean-field approximation in which fermion-field operators are replaced by

their expectation values is adopted (see [57] for details). Within this approximation,

the full system of general relativistic equations can be written in the form

e−λ(r)

(

1

r2
− 1

r

dλ

dr

)

− 1

r2
= −8πGT0

0 , (4.17)

e−λ(r)

(

1

r2
+

1

r

dν

dr

)

− 1

r2
= −8πGT1

1 , (4.18)

V ′′ +
2

r
V ′
[

1− r(ν′ + λ′)
4

]

=

−4πe eν/2eλ(np − ne), (4.19)

d2σ

dr2
+

dσ

dr

[

2

r
− 1

2

(

dν

dr
+

dλ

dr

)]

=

eλ [∂σU(σ) + gsns] , (4.20)

d2ω

dr2
+

dω

dr

[

2

r
− 1

2

(

dν

dr
+

dλ

dr

)]

=

−eλ
(

gω J0ω −m2
ωω
)

, (4.21)

d2ρ

dr2
+

dρ

dr

[

2

r
− 1

2

(

dν

dr
+

dλ

dr

)]

=

−eλ
(

gρ J
0
ρ −m2

ρρ
)

, (4.22)

EF
e = eν/2µe − eV = constant, (4.23)

EF
p = eν/2µp + Vp = constant, , (4.24)

EF
n = eν/2µn + Vn = constant, , (4.25)
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where the last three equations are the conservation of the particle klein potentials,

and we have been introduced the notation ω0 = ω, ρ0 = ρ, and A0 = V for

the temporal components of the meson-fields. The chemical potential and number

density of the i-specie are, respectively, given by

µi = ∂E/∂ni =
√

(PF
i )

2 + m̃2
i (4.26)

and

ni = (PF
i )

3/(3π2) (4.27)

with Fermi momentum PF
i .

The nucleons effective mass is

m̃N = mN + gsσ, (4.28)

the effective electron mass is

m̃e = me (4.29)

and the effective potentials Vp,n are given by

Vp = gωω + gρρ + eV , (4.30)

Vn = gωω − gρρ . (4.31)

The Klein potentials derive from the thermodynamic equilibrium conditions

given by the statistical physics of multicomponent systems, applied to a system

of degenerate neutrons, protons, and electrons within the framework of general

relativity (see [52] for details). These constants are linked by the β-equilibrium

between the matter constituents

EF
n = EF

p + EF
e . (4.32)

The electron density ne is, via Eq. (4.23), given by

ne =
e−3ν/2

3π2
[V̂2 + 2meV̂ −m2

e (e
ν − 1)]3/2 , (4.33)

where V̂ ≡ eV + EF
e . Substituting Eq.( 4.33) into Eq. (4.19) one obtains the general

relativistic extension of the relativistic Thomas-Fermi equation recently introduced
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for the study of compressed atoms [58, 27], see chapter 2. This system of equations

has to be solved with the boundary condition of global neutrality; see [47, 52] and

below for details.

The scalar density ns, within the mean-field approximation, is given by the fol-

lowing expectation value

ns = 〈ψ̄NψN〉 =
2

(2π)3 ∑
i=n,p

∫

d3k
m̃N

ǫi(p)
, (4.34)

where ǫi(p) =
√

p2 + m̃2
i is the single particle energy.

The energy-momentum tensor of free-fields and free-fermions Tµν of the system

is

Tµν = T
µν
f + T

µν
γ + T

µν
σ + T

µν
ω + T

µν
ρ , (4.35)

where

T
µν
γ = − 1

4π

(

F
µ
α F

αν +
1

4
gµνFαβF

αβ

)

, (4.36)

T
µν
σ = ∇µ∇νσ − gµν

[

1

2
∇σσ∇σσ −U(σ)

]

, (4.37)

T
µν
ω = −Ω

µ
αΩαν − 1

4
gµνΩαβΩαβ

+ m2
ω

(

ωµων − 1

2
gµνωαωα

)

, (4.38)

T
µν
ρ = −Rµ

αRαν − 1

4
gµνRαβRαβ

+ m2
ρ

(

RµRν − 1

2
gµνραρα

)

, (4.39)

T
µν
f = (E +P)uµuν −Pgµν, (4.40)

where the energy-density E and the pressure P are given by

E = ∑
i=n,p,e

Ei, P = ∑
i=n,p,e

Pi, (4.41)

being Ei and Pi the single fermion fluid contributions

Ei =
2

(2π)3

∫ PF
i

0
ǫi(p) 4πp2dp, (4.42)

Pi =
1

3

2

(2π)3

∫ PF
i

0

p2

ǫi(p)
4πp2dp. (4.43)
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NL3 NL-SH TM1 TM2

mσ (MeV) 508.194 526.059 511.198 526.443

mω (MeV) 782.501 783.000 783.000 783.000

mρ (MeV) 763.000 763.000 770.000 770.000

gs 10.2170 10.4440 10.0289 11.4694

gω 12.8680 12.9450 12.6139 14.6377

gρ 4.4740 4.3830 4.6322 4.6783

g2 (fm
−1) -10.4310 -6.9099 -7.2325 -4.4440

g3 -28.8850 -15.8337 0.6183 4.6076

c3 0.0000 0.0000 71.3075 84.5318

Table 4.1: Selected parameter sets of the σ-ω-ρ model.

It is important to recall that the equation of state (4.41)–(4.43) satisfies the ther-

modynamic law

E + P = ∑
i=n,p,e

niµi. (4.44)

The coupling constants gs, gω and gρ, and the meson masses mσ, mω and mρ are

usually fixed by fitting experimental properties of nuclei, e.g. saturation density,

binding energy per nucleon (or experimental masses), symmetry energy, surface

energy, and nuclear incompressibility. In Table 4.1 we present selected fits of the

nuclear parameters. In particular, we show the following parameter sets: NL3 [59],

NL-SH [60], TM1 [61], and TM2 [62].

The constants g2 and g3 that appears in the Table 4.1 are the third and fourth

order constants of the self-scalar interaction as given by the scalar self-interaction

potential

U(σ) =
1

2
m2

σσ2 +
1

3
g2σ3 +

1

4
g3σ4 . (4.45)

The non-zero constant c3 that appears in the TM1 and TM2 models corresponds to

the self-coupling constant of the non-linear vector self-coupling 1
4c3(ωµωµ)2. They

have not include such a self-coupling vector interaction in the general formulation

presented above.
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The core equations can be solved by numerical integration given a central den-

sity and the regularity conditions at the origin. Thus, the radius of the core Rcore is

given by E(r = Rcore)/c2 = ρnuc. These equations must be solved with the bound-

ary conditions given by the fulfillment of the condition of global charge neutrality

and the continuity of the Klein potentials of particles between the core and the

crust.

4.3.2 Core-crust transition

The mean-field approximation for the meson-fields is not valid any longer in the

crust. So, a full numerical integration of the meson-field equations of motion, tak-

ing into account all gradient terms, have to be made. We expect the core-crust

transition boundary-layer to be a region with characteristic length scale of the order

of the electron Compton wavelength ∼ λe = h̄/(mec) ∼ 100 fm corresponding to

the electron screening scale. Then, in the core-crust transition layer, the system of

equations (4.17)–(4.25) reduces to

V ′′ +
2

r
V ′ = −eλcoreeJ0ch , (4.46)

σ′′ +
2

r
σ′ = eλcore [∂σU(σ) + gsns] , (4.47)

ω′′ +
2

r
ω′ = −eλcore

[

gω J0ω −m2
ωω
]

, (4.48)

ρ′′ +
2

r
ρ′ = −eλcore

[

gρ J
0
ρ −m2

ρρ
]

, (4.49)

eνcore/2µe − eV = constant , (4.50)

eνcore/2µp + eV + gωω + gρρ = constant , (4.51)

µn = µp + µe + 2 gρρe−νcore/2 , (4.52)

due to the fact that the metric functions are essentially constant on the core-crust

transition layer and thus we can take their values at the core-radius eνcore ≡ eν(Rcore)

and eλcore ≡ eλ(Rcore).

The system of equations of the transition layer has a stiff nature due to the ex-

istence of two different scale lengths. The first one is associated with the nuclear

interactions ∼ λπ = h̄/(mπc) ∼ 1.5 fm and the second one is due to the aforemen-
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tioned screening length ∼ λe = h̄/(mec) ∼ 100 fm. Thus, the numerical integration

of Eqs. (4.46)–(4.52) has been performed subdividing the core-crust transition layer

in the following three regions:

1. a mean-field-like region where all the fields vary slowly with length scale

∼ λe,

2. a strongly interacting region of scale ∼ λπ where the surface tension due to

nuclear interactions dominate producing a sudden decrease of the proton and

the neutron densities and,

3. a Thomas-Fermi-like region of scale ∼ λe where only a layer of opposite

charge made of electrons is present producing the total screening of the posi-

tively charged core.

They have integrated numerically Eqs. (4.17)–(4.25) for the models listed in Table

4.1. The boundary conditions for the numerical integration are fixed through the

following procedure. Assuming a value for the central baryon number density

nb(0) = nn(0)+np(0). From the regularity conditions at the origin we have e−λ(0) =

1 and ne(0) = np(0).

The metric function ν at the origin can be chosen arbitrarily, e.g. ν(0) = 0, due

to the fact that the system of equations remain invariant under the shift ν → ν+

constant. The right value of ν is obtained once the end of the integration of the core

has been accomplished and duly matched to the crust, by fulfilling the following

identity at the surface of the neutron star,

eν(R) = e−λ(R) = 1− 2GM(R)

c2R
, (4.53)

being M(R) and R the total mass and radius of the star. Then, taking into account

the above conditions, we solve the system (4.20)–(4.25) at the origin for the other

unknowns σ(0), ω(0), ρ(0), nn(0), np(0), ne(0).

The initial conditions for the numerical integration of the core-crust transition

layer equations are determined by the final values given by the numerical integra-

tion of the core equations, i.e. taking the values of all the variables at the core-radius

Rcore.
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The equilibrium conditions given by the constancy of the Klein potentials (4.23)–

(4.25) throughout the configuration, impose in the transition layer the following

continuity condition

eνcore/2µcore
e − eVcore = eνcrust/2µcrust

e . (4.54)

where µcore
e = µe(Rcore), eVcore = eV(Rcore), and µcrust

e = µe(Rcore + δR), and

eνcrust ≃ eνcore .

The electron chemical potential and the density decrease, in the boundary in-

terface, until values µcrust
e < µcore

e and ρcrust < ρcore. For each central density,

an entire family of core-crust interface boundaries and, correspondingly, an entire

family of crusts with different mass and thickness, exist. The configuration with

ρcrust = ρdrip ∼ 4.3× 1011 g/cm3 separates neutron stars with and without inner

crust. In the so-called inner crust, the neutrons dripped from the nuclei in the crust

form a fluid that coexist with the nuclei lattice and the degenerate electrons [63].

The presence of the neutron fluid in the crust changes the nuclear surface tension

at the core radius, in close analogy to the reduction of the surface tension of the

nuclei in the crust due to the presence of the dripped neutrons, see e.g. [63]) for de-

tails. This reduction of the nuclear tension is not taken into account in the nuclear

parameters which are obtained to fit the properties of bare nuclei, see Table 4.1.

4.3.3 Crust

Turning now to the crust, it is clear from the recent treatment of white dwarfs [27]

that also this problem can be solved by the adoption of Wigner-Seitz cells and from

the relativistic Feynman-Metropolis-Teller (RFMT) approach [58] it follows that the

crust is clearly neutral. Thus, the structure equations to be integrated are the TOV

equations

dP
dr

= −G(E +P)(M + 4πr3P)

r2(1− 2GM
r )

, (4.55)

dM

dr
= 4πr2E , (4.56)

where M = M(r) is the mass enclosed at the radius r.
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The EOS by Baym, Bethe and Pethick (BBP) [63] was adopted. The crust material

is assumed to be formed by Wigner Seitz cells of nuclei surrounded by a uniform

background of degenerate electrons and at densities larger than the neutron drip

density also by degenerate neutrons.

In general, the matter energy density and the pressure can be written as the sum

of the contribution due to baryons (neutrons and protons) and electrons as follows

E = Ee + Eb, (4.57)

P = Pe + Pb, (4.58)

where the contribution due to degenerate electrons is given by

Ee =
2

(2π)3

∫ PF
e

0

√

p2 +m2
e4πp2dp, (4.59)

Pe =
1

3

2

(2π)3

∫ PF
e

0

p2
√

p2 +m2
e

4πp2dp. (4.60)

The total baryon energy density in this regime within the BBP model can be

written as

Eb = nNEN + (1−VNnN)En, (4.61)

Pb = n2
∂Eb/n

∂n
, (4.62)

where we have defined

EN = A[(1− Y)mn + Ymp] + E(k,Y) + EC + Esur f , (4.63)

En = nn[E(kn , 0) +mn], (4.64)

and EC and Esur f denote the Coulomb energy (including the lattice energy) and the

surface energy of the nucleus, respectively. The number of nucleons and protons

of the nucleus is denoted by A and Np respectively, nN is the number density of

nuclei, VN is the volume of the nucleus, the factor 1− VN nN is the fraction of the

total volume occupied by the neutron gas with wave number denoted by kn. The
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energy E(k,Y) is given by

E(k,Y) = Ek(k,Y) +

[

E(k, 1/2) − 3k2

10mn

]

(1− 3T4 + 2T6) (4.65)

+

[

s

(

k

k0

)2

− k2

6mn

]

T2(1− T2)2 +

[

E(k, 0)− 3 · 22/3
10

k2

mn

]

(3T4 − 2T6)

+

[

µ
(0)
p − µ

(0)
n + 22/3

k2

2mn

]

1

4
(T4 − T6)

and the parameter T is given as a function of Y through

Y =
1− T

2
≡ np

n
. (4.66)

In the above equations we have defined the quantities [63]

Ek(k,Y) =
3 · 22/3
10

k2

mn

[

Y5/3 + (1−Y)5/3
]

, (4.67)

E(k, 1/2) = −w0 +
K

2k20
(k− k0)

2, (4.68)

E(k, 0) ≃ 19.74k̃2 − k̃3
(

40.4− 11.088k̃3

1+ 2.54k̃

)

, (4.69)

µ
(0)
p = −k̃3

(

218+ 277k̃

1+ 8.57k̃2

)

, (4.70)

µ
(0)
n = E(k, 0) +

1

3
k

∂E(k, 0)

∂k
, (4.71)

where k̃ = k/(hc) ≃ 5.06× 103k is measured in fm−1, k is measured in MeV, and

the constants of the model fixed to fit experimental data on the masses of observed

nuclei, are given by w0 = 16.5 MeV, k0 = 1.43 fm1 , K = 143 MeV, and s = 33 MeV.

The equilibrium conditions of the system in this regime can be summarized as

Esur f = 2EC, (4.72)

µ
(N)
n − µ

(N)
p = µe − (mn −mp), (4.73)

µ
(N)
n = µ

(G)
n , (4.74)

P(N) = P(G), (4.75)

where µ
(N,G)
n is the neutron chemical potential in nuclei and in the gas outside

nuclei, and µ
(N)
p is the proton chemical potential inside nuclei. Here the chemical
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potential of protons and neutrons does not include their rest-masses, whereas the

electron chemical potential µe does. The pressure on a nucleus is denoted by P(N)

and P(G) is the outside neutron pressure.

For the EOS of the inner crust was constructed a polytropic-like form using the

numerical solutions. Denoting the pressure at nuclear density ρ0 by P0 , and the

pressure at neutron drip density ρdrip by Pdrip an accurate formula describing the

P− ρ relation for the inner crust within the BBP model is

P = K1 + K2ρΓ, k1 = Pdrip − K2ρΓ
drip, K2 =

P0 − Pdrip

ρ0 − ρdrip
, Γ ≃ 1.6926. (4.76)

4.4 Comparison with traditional TOV treatment

In the traditional TOV treatment local charge neutrality as well as the continuity of

the pressure and the density in the core-crust transition are assumed. This leads to

explicit violation of the constancy of the Klein potentials throughout the configura-

tion (see e.g. [47]). In such a case there is a smooth transition from the core to the

crust without any density discontinuity and therefore the density at the edge of the

crust is ∼ ρnuc ∼ 2.7× 1014 g/cm3. The so-called inner crust in those configurations

extends in the range of densities ρdrip . ρ . ρnuc while, at densities ρ . ρdrip,

there is the so-called outer crust. In Fig. 4.1, the density profiles of configurations

obtained from the traditional TOV treatment and with the treatment presented here

are compared and contrasted.

The markedly differences both in mass and in the thickness of the crust between

the ones obtained from the traditional TOV treatment and the new configurations

presented here, leads to a very different mass-radius relations which we compare

and contrast in Fig. 4.2.

4.5 Conclusions

We presented here the treatment of globally neutral neutron stars, formulated by

Belvedere et al.(2012) [3]. We have shown the equilibrium equations that take into
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Figure 4.1: Upper panel: electric field in the core-crust transition layer, in units of

the critical field Ec. Middle panel: particle density profiles in the core-crust bound-

ary interface, in units of cm−3. Lower panel: density profile inside a neutron star

with central density ρ(0) ∼ 5ρnuc. The structural differences between the solution

obtained from the traditional TOV equations (locally neutral case) and the globally

neutral solution formulated by Belvedere et al.(2012).
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Figure 4.2: Mass-radius relation obtained with the traditional locally neutral TOV

treatment case and the global charge neutrality configurations, with ρcrust = ρdrip

[3]. Configurations lying between the red and blue curves possess inner crust.

account the strong, weak, electromagnetic, and gravitational interactions within

the framework of general relativity. The equilibrium conditions based on EMTF

equations were also shown. This new treatment leads a new structure of the neutron

star, which consequently, leads a new mass-radius relation. We compared and

contrasted with the TOV-like neutron stars that satisfy local charge neutrality.
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Chapter 5

Neutron star thermal evolution

equations

Some properties of neutron stars, such as the EOS and the composition in their

cores are still uncertain. All the microscopic calculations are model dependent an

give us a variety of possible EOS with different compositions of the core. Since the

thermal evolution of a neutron star is strongly correlated to the composition and

EOS, simulating the neutron star cooling is one of the potential methods to probe

the interior structure of these objects. As we will see in this chapter, the theoretical

cooling curves depend on the adopted stellar interior, emissivities, heat capacity

and thermal conductivity.

Neutron stars are born with temperatures around 1011 K, but gradually cool

down in a process realized by two channels: neutrino emission from the stellar

body and heat conduction from the internal layers in the surface resulting in a

photon emission. We are neglecting the possible reheating mechanisms, the mag-

netic fields, and the superfluidity effects. All the considerations about the internal

structure, EOS and the mass-radius relation are discussed in the chapter4 where we

presented the new formulation of non-rotating neutron stars taking into account all

the fundamental interactions and fulfilling global charge neutrality (Belvedere et al.

2012). The goal of this part of the work is to compute the cooling curves, namely

the thermal evolution, of the neutron stars with global neutrality and to compare

them with the locally neutral neutron star (TOV-like) cooling curves.

69
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5.1 Basic Concepts

5.1.1 Observations

The detection of the thermal radiation is a complicated problem. Only midle-age

(t ∼ 103 − 104 yr) neutron stars can give us a reliably detected thermal radiation.

This happens due to the complication in the extraction of the thermal radiation

component from the observed spectra. For example, in young pulsars (t < 103

yr) processes in their magnetospheres may result in a strong nonthermal emission

obscuring the thermal radiation. In the case of old pulsars (t > 106 yr), hot po-

lar spots due to the pulsar activity produce radiation stronger than the thermal

emission from the rest of the cooler stellar surface.

The thermal surface photon luminosity is given by

L = 4πR2σT4
s , (5.1)

where σ is the Stefan-Boltzman constant, Ts and L are the effective surface tem-

perature and luminosity as measured in the source rest-frame. The gravitationally

redshifted luminosity and effective temperature observed at infinity, are

L∞ = Leν(R), (5.2)

T∞
s = Tse

ν(R)/2, (5.3)

where eν(R) = g00(R) = 1− rg/R, with g00(R) the 0− 0 component of the metric

and the Schwarzschild radius rg = 2M, being M and R, the mass and radius of the

star.

In order to compare observations with theory we need two important param-

eters of these stars, namely the effective surface temperature Ts and age t. In the

Table 5.1 and Fig.5.1 taken from Yakovlev at al. 2004 [64], we can see the age and

surface temperature of some isolated neutron stars and also where they can be

found in the cooling curve, i.e. Ts-T diagram. These are the observed data that will

be compared with the results of our simulations.
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Vela

Figure 5.1: Observations of surface temperatures and upper bounds for several

isolated neutron stars. The solid line is the basic theoretical cooling curve of a

nonsuperfluid neutron star with M = 1.3M⊙ (Taken from Yakovlev et al.(2004)).
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Table 5.1: Observational limits on surface temperatures of isolated neutron stars

(Taken from Yakovlev et al.(2004)).

Source t [kyr] T∞
s [MK] Confid. References

PSR J0205+6449 0.82 <1.1 b) Slane et al. (2002)

Crab 1 <2.0 b) 99.7% Weisskopf et al. (2004)

RX J0822–4300 2–5 1.6–1.9 a) 90% Zavlin et al. (1999)

1E 1207.4–5209 &7 1.1–1.5 a) 90% Zavlin et al. (1998)

Vela 11–25 0.65–0.71 a) 68% Pavlov et al. (2001)

PSR B1706–44 ∼17 0.82+0.01
−0.34

a) 68% McGowan et al. (2004)

Geminga ∼340 0.56+0.07
−0.09

b) 90% Halpern & Wang (1997)

RX J1856.4–3754 ∼500 <0.5 – Pavlov & Zavlin (2003)

PSR B1055–52 ∼530 ∼0.7 b) – Pavlov (2003)

RX J0720.4–3125 ∼ 1300 ∼ 0.5 a) – Motch et al. (2003)

a) Inferred using a hydrogen atmosphere model

b) Inferred using the black-body spectrum

5.1.2 Thermal evolution equations

The general relativistic equations of thermal evolution that governs the cooling the-

ory include the energy balance and the energy transport equations [65]. Following

Gudmundsson et al.1983 [66], it is convenient to separate the neutron star in two

parts: the hight density interior, which we shall call isothermal core1, containing

practically all the mass and thermal energy of the star, and an insulating envelope,

which surrounds the core and which has no sources or sinks of energy. In what fol-

lows we will denote surface values by the subscript s and inner boundary values (at

1We call this region isothermal core although in the early, t < 10− 100 yr, thermal evolution of

the neutron star the full isothermality of this part is not achieved; see section6.1 for details.
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the envelope-isothermal core boundary) by subscript b. In this physical separation

the redshifted temperature, Teν/2, in the core is uniform, whereas in the envelope

there are temperature gradients.

At the temperatures of interest here (T . 109 K), neutrinos have a mean free

path much larger than the radius of the star, and thus leave the star once they are

produced. Thus, do not transport energy from one part to another.

The energy transport equation is so given by

Lde
ν/2

4πr2κ
= −

√
1− 2m/r

∂(Teν/2)

∂r
, (5.4)

where Ld is the luminosity due the thermal conduction and radiation and κ is the

thermal conductivity. Notice that an isothermal configuration, within the general

relativistic framework, is defined by eν/2T = constant, insted of T = constant.

We can write the neutrino luminosity equation as

∂(Lνe
ν)

∂r
= − 4πr2√

1− 2m/r
ǫνe

ν, (5.5)

where ǫν is the neutrino emissivity per unit of volume. In non accreting neutron

stars, there is no nuclear burning, and the equation of energy conservation can be

written as
∂(Leν)

∂r
= − 4πr2√

1− 2m/r
cv

∂(Teν/2)

∂t
, (5.6)

where L is the net luminosity, L = Ld − Lν; cv is the specific heat per unit volume

and t is the time measured by an observer at infinity, which is at rest with respect

to the star. So, the energy balance equation is given by

∂(Lde
ν)

∂r
= − 4πr2√

1− 2m/r

[

ǫνe
ν/2 + cv

∂(Teν/2)

∂t

]

. (5.7)

We have two boundary conditions required by the equations (5.4) and (5.7). The

corresponding boundary conditions for Ld at the center, r = 0, is

Ld(r = 0) = 0, (5.8)

and the boundary condition associated with the temperature Tb at the inner bound-

ary, r = Rb to the luminosity lb in this layer

Tb = Tb(Ld). (5.9)
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The location of this inner boundary layer is chosen such that Lb is equal to the

total photon luminosity of the star at the surface, Lb = Ld(r = R) ≡ L ≡ 4πR2σT4
s .

Therefore, we can write the equation (5.9) as Tb = Tb(Ts); this “Tb − Ts” relationship

is discussed further in the chapter 6.

In our calculations, following the results of [67, 68, 69] we set the envelope-core

boundary at a density of 1010 g cm−3, and our results of thermal evolution will be

presented using the effective temperature at infinity, T∞
s given by Eq.5.3 and related

with the luminosity at infinity L∞ through the radiation radius R∞ ≡ Re−ν(R)/2 by

L∞ ≡ 4πR∞2σT∞4
s . (5.10)

In the following sections, we present the main physical properties that determine

the cooling theory, as well as a briefly review of the main cooling regulators, i.e. the

neutrino emissivities, ǫν, specific heat, cv, and thermal capacity, κ.

5.1.3 Physical properties that determine the cooling

The cooling of neutron stars is mainly determined by the neutrino emissivity, heat

capacity and thermal conductivity. All these ingredients depend on the composi-

tion and the stellar interior. The superfluidity, the magnetic fields and the presence

of light elements on the surface are also important regulators which however we

will not consider here. In this work we include all the relevant process of neutrino

emission: in the core we consider the direct and modified Urca processes, neutron-

neutron (nn), proton-proton (pp) and neutron-proton (np) Bremsstrahlung and in

the crust, plasmon decay, e−e+ pair annihilation, and electron-nucleus (eN) Brem-

strahlung. The heat capacity is given by electrons, protons and neutrons in the core

and by electrons, atomic nuclei and free neutrons in the crust as well as the thermal

conductivity in the core is a sum of the conductivities of electrons and neutrons in-

stead in the crust is assumed to be as a result of the electrons scattering off atomic

nuclei [70, 65].

The aim of the cooling theory is to calculate the thermal evolution, i.e. the

evolution of the temperature with time (cooling curves) and compare with the ob-

servations. We can divide the cooling curve in three main different cooling phases:
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1. The thermal relaxation phase (t . 10− 100yr): the heat flows inward from

the crust to the core on a conduction time-scale, as a cooling wave propagates

from the core to the crust. During this stage the crust is hotter than the core,

and they remain thermally decoupled. At the end of this phase, the scenario

is a neutron star with an isothermal core, at r < Rb, and a radiative envelope,

at Rb ≤ r ≤ R, where Rb is the boundary radius of the isothermal core with

the envelope and corresponds to a density ρb ≈ 1010 g cm−3. More details will

be given in the section 6.1.

2. The neutrino cooling phase (t . 105yr): in this phase the neutrino emission

from the stellar interior is the mainly responsable to produce the cooling,

whereas the surface temperature adjust to the internal one. Namely, Lν ≫ Lγ

where Lγ = Ld is the photon luminosity.

3. The photon cooling phase (t & 105yr): during the photon cooling phase the

neutron star cools mainly by photon emission from the surface. Namely, Lν ≪
Lγ.

Further details about the cooling curves and the different phases can be found

in the chapter 6.

5.2 Neutrino emission process

The dominant cooling mechanism is the neutrino emission from the interior of the

neutron star. There are several processes that produces neutrino in their interiors,

we are going to briefly describe the most important here.

Since the core and the crust have different compositions, the neutrino emission

processes in the crust or in the core have to be studied separately.

5.2.1 In the core

We can write the total neutrino emissivity in the core, ǫcoreν , as

ǫcoreν = ǫν,DU + ǫν,MU + ǫν,BR, (5.11)
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where ǫν,DU , ǫν,MU and ǫν,BR are the neutrino emissivities due to the direct Urca

(DU), modified Urca (MU) and Bremsstrahlung processes (BR).

Direct Urca process

The called Urca reactions are

n → p+ e+ ν̄e, (5.12)

p+ e → n+ νe, (5.13)

which bring nucleons into beta-equilibrium, where the chemical potentials satisfy

the equality µn = µp + µe ([71]).

The emissivities for this process are given by [72]

ǫν,DU = 4.0× 1027
(

YenB
n0

)

m∗
nm

∗
p

m2
n

T6
9 Θ erg cm−3 s−1, (5.14)

where Ye = ne/nB is the electron fraction, nB is the baryon number density, and

n0 = 0.16 fm−3 is the equilibrium density of nuclear matter, T9 is the temperature

in units of 109 K, m∗
n and m∗

p are the effective neutron and proton mass respectively.

Θ is the threshold factor, that can be 1 or 0 depending if the reaction takes place or

not.

This is the simplest and most powerful neutrino emission process. The direct

Urca processes, are only possible in neutron stars if the proton fraction exceeds

a critical threshold. Otherwise, the energy and momentum cannot be conserved

simultaneously for these reactions. So, the Direct Urca Process can only take place

if the following triangle inequality is satisfied [71]

KFn < KFp + KFe, (5.15)

where KF
n , K

F
p , and KF

e are the Fermi momentum of the neutron, proton and electron

respectively.

Modified Urca process

If the proton fraction is below the threshold given by the inequality (5.15), the direct

Urca process is not possible. In this case is necessary a bystander particle to allow



5.2. NEUTRINO EMISSION PROCESS 77

the momentum conservation. This processes was proposed by Chiu and Salpeter

(1964). The called modified Urca processes are described by the reactions [71]

n+ n → n+ p+ e− + ν̄,

p+ n → p+ p+ e− + ν̄.

The emissivities are given by

ǫν,MU,n = 8.55× 1021
(

m∗
n

mn

)3(m∗
p

mp

)(

ne
n0

)1/3

T8
9 αnβn erg cm−3 s−1, (5.16)

ǫν,MU,p = 8.53× 1021
(

m∗
p

mp

)3(
m∗

n

mn

)(

ne
n0

)1/3

T8
9 αpβp Fp erg cm−3 s−1, (5.17)

where

Fp =
(n1/3e + 3n1/3p − n1/3n )2

(8n1/3e n1/3p )
, (5.18)

and αn = αp = 1.76− 0.63(nn/n0)
−2/3 and βn = βp = 0.68.

Nucleon-nucleon Bremsstrahlung process

Neutrinos can be generated by nucleon-nucleon scattering in the core, this process

is called nucleon-nucleon Bremsstrahlung. This reactions becomes possible when

neutral currents are considered and have been studied by Flowers et al. (1975) and

Friman and Maxwell (1979). The nucleon-nucleon Bremsstrahlung reactions are [71]

n+ n → n+ n+ ν + ν̄,

n+ p → n+ p+ ν + ν̄,

p+ p → p+ p+ ν + ν̄.

The emissivities are given by

ǫν,BR,nn = 7.33× 1019
(

m∗
n

mn

)4(nn
n0

)1/3

T8
9 erg cm−3 s−1, (5.19)

ǫν,BR,pp = 1.70× 1019
(

m∗
p

mp

)4(
np

n0

)1/3

T8
9 erg cm−3 s−1, (5.20)
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ǫν,BR,np = 7.33× 1019
(

m∗
nm

∗
p

mnmp

)2(
np

n0

)1/3

T8
9 erg cm−3 s−1. (5.21)

Summarizing, the processes that we have in the core are: modified Urca and

nucleon-nucleon Bremsstrahlung and the direct Urca where the triangle inequality

(5.15) is satisfied.

5.2.2 In the crust

As we saw in the chapter 4, the main differences between the globally neutral neu-

tron star and the TOV-like neutron stars are in the mass and thickness of the crust.

The crust is composed by neutrons, electrons and ions in the inner crust and by

electrons and ions in the outer crust. Since the number density of neutrons in the

inner crust is smaller than the electron density in most of the inner crust and much

more massive than the electrons, the contribution of the neutrons to the emission

properties of the inner crust are usually neglected. Therefore, the total neutrino

emissivities in the crust is given by

ǫcrustν = ǫν,BR + ǫν,pair + ǫν,pl , (5.22)

where we are considering the emissivities of the electron Bremsstrahlung process,

ǫν,BR, the e−e+ annihilation, ǫν,pair, and due the plasmon decay ǫν,pl , which we

describe below.

Electron Bremsstrahlung

The electron Bremsstrahlung is one of the major energy loss process in the neutron

star crust. Here, the neutrinos are emitted due the electromagnetic interactions

of electrons with the atomic nuclei. The mechanism was proposed by Pontecorvo

(1959) and by Gandel’man and Pinaev (1959), and it can be written as

e+ (Z, A) → e+ (Z, A) + ν + ν̄. (5.23)

The neutrino emissivity due the electron Bremsstrahlung, according to Kaminker

et al. [73] is given by

ǫν,BR = 10x erg cm−3 s−1, (5.24)
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where x = 11.204 + 7.304τ + 0.2976r − 0.37τ2 + 0.188τr − 0.103r2 + 0.0547τ2r −
6.77 log(1 + 0.228ρ/ρ0) and τ ≡ log T8, ρ0 = 2.8× 1014 g cm−3, r ≡ ln ρ12 with

ρ12 = ρ/1012, and ρ is the rest-mass density.

e−e+ Annihilation

The positrons and electrons annihilate producing neutrino pair emission in a pro-

cess that can be written as

e+ e+ → ν + ν̄. (5.25)

This process is most efficient at high temperature plasmas and low densities. It

was proposed by Chiu and Morrison (1960) and independently by M. Levine (1964).

The neutrino emissivity from e−e+ annihilation has a complicated expression, see

e.g. [74], but for our purpose it is enough to adopt

ǫν,pair ≈ Qc ≡
G2
F

ℏ

(mec

ℏ

)9
≈ 1.023× 1023 erg cm−3 s−1, (5.26)

where Qc is the Compton neutrino emissivity and GF is the Fermi weak interaction

constant.

Plasmon decay

A free electron cannot emit a neutrino pair, it is forbidden by the energy momentum

conservation. However, such a process is allowed if the electron interacts with the

surrounding medium. Plasmon decay is an example of this process [71]. Following

a treatment of the proper collective modes in terms of the plasmons, we can write

the process as

Γ → ν + ν̄, (5.27)

where Γ is the plasmon. This mechanism is efficient at hight temperatures but not

at high densities. It was first considered in detail by Inman and Ruderman (1964)

and the neutrino emissivity is given by

ǫν,pl = 0.9248
Qc

96π4α

(

T

Tr

)9

(16.23 f 6p + 4.604 f 7.5p )e− fp , (5.28)
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where the electron relativistic temperature Tr = mec
2/kB ≈ 5.93× 109 K, and the

electron plasma parameter fp is given by

fp ≡
ℏwpe

kBT
=

ℏ
√

4πe2ne/µe

kBT
, (5.29)

being µe the electron chemical potential and wpe =
√

4πe2ne/µe is the electron

plasma frequency.

5.3 Heat capacity

The heat capacity per unit volume of the particle specie j is

cv,j =
k2B
3h̄3

Tµj KFj, (5.30)

where µj =
√

K2
Fj +m∗2

j is the chemical potential and KFj is the Fermi momentum.

The heat capacity in the core is the sum of the contributions from neutrons,

protons and electrons. In the crust it is given by neutrons, electrons and atomic

nuclei (vibration of ions in Coulomb lattice). The explicit expression for the heat

capacity of the core and crust are presented below [64, 70].

5.3.1 In the core

The total heat capacity per unit volume can be written as

ccorev = cv,e + cv,p + cv,n, (5.31)

where cv,e is the specific heat for the electrons, cv,p for the protons and cv,n for the

neutrons. The specific heat for the electrons is given by

cv,e =
K2
B

3ℏ3
T
√

K2
Fe +m2

e KFe, (5.32)

and the one for protons and neutrons can be written as

cv,i =
k2B
3ℏ3

T
√

K2
Fi +m∗2

i KFi, i = p, n. (5.33)
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5.3.2 In the crust

The total heat capacity per unit volume in the crust is given by

ccrustv = cv,e + cv,n + cv,ion, (5.34)

with cv,e and cv,n have the same expression as the specific heat of the electrons

and neutrons in the core given by the Eqs.5.32 and 5.33 respectively, and cv,i is the

specific heat contribution from the plasmon which we adopt from [75]. At low

temperatures, when T ≪ Tp electrons dominate (Tp = ℏwion/kB is the ion plasma

temperature and wion = (4πe2nionZ
2/m∗

ion)
1/2 is the ion plasma frequency), but

the phonon contribution can became important where T ≃ 108 − 109 K. For a

temperature T . 0.45Tp the contributions from lattice is given by

cv,ion =
2π2

15

(

T3

ν3l
+

2T3

ν3t

)

, (5.35)

with the longitudinal velocity of the lattice phonon denoted as νl and the transverse

velocity as νt.

If the strong interactions between the neutrons and the ion lattice are not taken

into account, the velocities can be easily calculated as νl =
√

Kion−e/ρ, where the

bulk-modulus of the electron-ion system is Kion−e = ρ∂(Pion + Pe)/∂ρ and the ion

mass density ρ = Amn nion, where A is the number of bound nucleons in the ion.

Since, Pe ≫ Pion, we can write the velocities

νl =

√

∂Pe
∂ρ

=
wion

KTFe
, (5.36)

and

νt =

√

Σ

ρ
= a

wpion

qD
, (5.37)

where nion = 3/4πa3 is the number density of ions, m∗
ion is the effective mass, the

electron screening momentum KTFe =
√
4e2/πKFe, the ion Debye momentum is

qD = (6π2nion)
1/3, Σ is the shear modulus of the lattice and the constant a = 0.4 is

obtained by numerical calculations of a Coulomb crystal. We have that νl ≫ νt, then
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the contributions from the longitudinal modes to cv,ion can be neglected. According

to this, the lattice contribution can be written as

cv,ion =
12π4

5
nion

(

T

0.45Tp

)3

. (5.38)

5.4 Thermal Conductivity

5.4.1 In the core

For the thermal conductivity in the core we adopt the results by Flowers and Itoh

(1981) [76]. For T < T
p
F , where T

p
F is the proton Fermi temperature, the thermal

conducitivity is well fitted by

κcore = 1023 ρ14 T
−1
8 erg cm−1 s−1 K−1, (5.39)

where ρ14 = ρ/1014 and T8 = T/108.

5.4.2 In the crust

When the interior temperature of the neutron star, T, is smaller than the critical

temperature for the onset of superfluidity, Tc, the number of thermally excited neu-

trons is exponentially suppressed and we can neglect the contributions to the ther-

mal conductivity by the neutrons in the inner crust (more details can be found in

[75]). The dependence of the critical temperature with the density was computed

by Page and Reddy (2012) and found that the critical temperature for the crust is

around 109 K. Since the neutron stars are born with temperatures around 1011 K

but rapidly cool down to temperatures less than 109 K (as we will see in the section

6.1), the relation T ≪ Tc is always satisfied. So the conductivity in the crust is given

only by electron-ion scattering.

The general formula of the thermal conductivity can be written as [65]

κcrust =
cvvl

3
, (5.40)

where cv is the specific heat, v is the particle velocity and λ the transport mean free

path.
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Using Eq.(5.30) and l = v/νe, where νe is the effective relaxation frequency

which depends on the ions properties at each density [77], the thermal conductivity

in the crust can be written as

κcrust =
π2K2

BTne

3
√

(m2
e + k2e )νe

. (5.41)

Since the frequency νe depends on several electron scattering mechanisms such

as electron-ion, electron-electron, and electron-impurity scatterings no simple ana-

lytic form can be found. We use in this work the numerical results of [78].

5.5 Conclusion

The theoretical cooling curves depend on the adopted stellar interior, the neutrino

emissivities, the heat capacity and the thermal conductivity. In this chapter we

presented all the main regulators of the cooling theory. We reviewed all the relevant

process of neutrino emission; in the core, the direct and modified Urca processes,

neutron-neutron (nn), proton-proton (pp) and neutron-proton (np) Bremsstrahlung

and in the crust, plasmon decay, e−e+ pair annihilation, and electron-nucleus (eN)

Bremstrahlung. The heat capacity is given by electrons, protons and neutrons in

the core and by electrons, atomic nuclei and free neutrons in the crust as well as

the thermal conductivity in the core is a sum of the conductivities of electrons and

neutrons instead in the crust is assumed to be as a result of the electrons scattering

off atomic nuclei [70].
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Chapter 6

Neutron star cooling curves

As we already mentioned in the chapter 5, the main goal of the cooling theory is

to calculate the T∞
s (t) or L∞

γ (t) diagrams, and compare them with observations.

In the cooling curve we can distinguish three different cooling stages: the thermal

relaxation phase, the neutrino cooling phase, and the photon cooling phase, e.g. see

section 5.1.3 and Fig.6.1.

In this chapter we present more details about the cooling stages and the results

of our cooling simulations of the newmodel of neutron star, satisfying global charge

neutrality instead of local charge neutrality (see chapter 4). We compute the cooling

curves considering the isothermal approximation as well as using a more complete

cooling theory that includes the thermal relaxation phase. Our results are compared

with the observed data taken from Yakovlev et al. (2004) shown in the table 5.1.

6.1 Thermal relaxation phase

At birth, the neutron star core starts to cool quickly by neutrino emission, while

the crust stays hot. So, at the beginning there exist a large temperature gradient

inside the star. The heat gradually flows from the crust to core as a cooling wave

propagation from the core to the crust. The time needed for the neutron star to

become isothermal (apart from a non-isothermal thin envelope), is called thermal

relaxation time. Consequently, the thermal relaxation time, tw, is defined as a time

for the cooling wave to reach the star surface.

Lattimer et al.[79] found by numerical simulations a scaling relation for the re-

85
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Figure 6.1: The basic theoretical cooling curve of a nonsuperfluid neutron star with

M = 1.3M⊙ (Taken from Yakovlev et al.(2004)) and the respective cooling phases.
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laxation time, tw, and the crust thickness, ∆Rcrust

tw ≈ αt1, (6.1)

where

α =

(

∆Rcrust

1 km

)2

(1− rg/R)
−3/2, (6.2)

and t1 is the normalized relation time which depends on the microscopic properties

of matter, such as the thermal conductivity and heat capacity [79].

This results can be understood as follows. We can write the dependence of tw on

the heat capacity, cv, and thermal conductivity, κ using the general formula of the

thermal conductivity Eq.(5.40) and the velocity v = l/tw. The thermal relaxation

time is then given by the simple estimate [70]

tw = Cvl
2/κ, (6.3)

where l is the width of a uniform slab, so l = ∆Rcrust/
√

1− rg/R. The other factor
√

1− rg/R comes from the gravitational time dilatation.

As an example we show in Fig.6.2, taken from Gnedin et al. (2001), the thermal

relaxation phase of a 1.7 M⊙ neutron star. We can notice that, until the age of 1 yr,

the region around 4× 1011 g cm−3 cools more effectively. The inner crust remains

hotter if we compare with the outer crust that cools to 109 just in some days. After

the first year, the gradient between the core and crust is wasted, as the cooling wave

reaches the surface and the star forms an isothermal state in 50 yr.

Therefore, we can probe the internal properties of the neutron star crust ob-

serving the epoch of the thermal relaxation. In Fig.6.3, also taken from Gnedin et

al.(2001), we can check the sensitivity of the relaxation time to test the variations of

the physical properties, of the crust of a neutron star with 1.5M⊙. The values of tw

and t1 are presented in the Tab.6.1.

6.2 Neutrino and photon cooling phases

At the end of the thermal relaxation phase, the neutron star thermal structure is

composed by an isothermal core and a radiative thin envelope. The subsequent
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Figure 6.2: The gravitationally redshifted temperature ˜T = T
√

1− rg/R profiles in

the 1.7 M⊙ neutron star without superfluid effects. Contours are at 0, 10−5, 10−4,

10−3, 10−2, 10−1, 2, 5, 10, 20, and 50 yr. This figure was taken from Gnedin et

al.(2001).
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Figure 6.3: Thermal relaxation for the 1.5 M⊙ model of Gnedin et al. (2001) without

superfluid effects. Solid line: the real cooling curve. Dotted lines: switched off

neutrino emission from the crust (upper) or infinite thermal conductivity at ρ > 1010

g cm−3 (lower). The dashed curve Cn = 0: removed neutron heat capacity in the

crust. Another dashed curve: the thermal conductivity κ in the crust is for point-

like nuclei. Two other dashed lines: removed all neutrino mechanisms in the crust

except either plasmon decay (pl) or electron-nucleus bremsstrahlung (eZ).
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Table 6.1: Relaxation time tw and normalized time t1 for neutron stars with different

crust models

test crust model taw (yr) ta1 (yr) tb1 (yr)

real model, no SF 52.4 28.8 33.9

no crust neutrinos 253.5 139.2 134.9

only plasmon decay neutrinos 67.6 37.1 41.6

only eZ neutrino bremsstr. 58.3 32.0 34.5

no neutron heat capacity 15.3 8.4 6.7

cond. for point-like nuclei 131.8 72.4 102.3

real model, weak crust SF 20.2 11.1 3.3

no Cooper neutrinos 29.0 15.9 19.0

weak core+crust SF 22.3 12.2 25.7

real model, strong crust SF 15.0 8.2 6.7

no Cooper neutrinos 15.5 8.5 6.9

strong core+crust SF 10.7 5.9 5.8

a for the 1.5 M⊙ model, with α = 1.821

b for the 1.3 M⊙ model, with α = 2.875

thermal evolution (cooling) of the neutron star can be divided in a "neutrino cooling

phase“ followed by a ”photon cooling phase“, in which the dominant sink of energy

is the neutrino emission from the isothermal core or the photons from the envelope,

respectively.
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6.2.1 Neutrino cooling phase: slow and fast cooling

In order to understand in simple terms this part of the thermal evolution, let us

write the energy balance equation (5.7) in the Newtonian limit

∂Ld
∂r

= −4πr2
(

ǫν + cv
dT

dt

)

, (6.4)

where we have used the fact that at this stage the system is isothermal and so the

temperature depends only on time. Integration of the above equation in space leads

to

Cv
dT

dt
= −Lν − Lγ, (6.5)

where Lγ ≡ Ld(R) = 4πR2σT4
s is the surface photon luminosity, Lν =

∫

ǫνd
3r is the

total neutrino luminosity, and Cv =
∫

cvd
3r is the total heat capacity.

We define the neutrino cooling phase as the stage during the thermal evolution

of the neutron star where Lν ≫ Lγ. In this phase we have that Eq.(6.5) becomes

approximately

Cv
dT

dt
≈ −Lν. (6.6)

As we have seen in the previous chapter, the neutrino emissivities in the supranu-

clear core (which are dominant) are proportional to the interior temperature to some

power n whose value depends on the process. So we have ǫν ∝ Tn, see Eqs.(5.14)

and (5.16-5.21).

On the other hand, the heat capacity per unit volume of degenerate fermion gas

is proportional to the temperature, so we have cv ∝ T; see Eq.(5.30).

Therefore, assuming a system at constant density we can write the total neutrino

luminosity and heat capacity as

Lν = NTn, (6.7)

Cv = CT, (6.8)

where N and C are constants. Introducing Eqs.(6.7) and (6.8) into Eq.(6.6) we obtain

dT

dt
= −N

C
Tn−1, (6.9)
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from which we have after integration

T = T0

[

1+
N

C
(n− 2)Tn−2

0 (t− t0)

]− 1
n−2

, (6.10)

where T0 is the temperature at the initial time t0.

Since in this neutrino cooling phase, T ∝ t−
1

n−2 , the velocity at which the neutron

star cools is dictated by the value of the index n. The direct Urca process has

n = 6 while the modified Urca and Bremsstrahlung have n = 8, so for these cases

we obtain that the temperature decreases with time as T ∝ t−1/4 and T ∝ t−1/6,

respectively. This implies that if the direct Urca process is active the neutron star

cools much faster. For this reason, the direct Urca process is often known in the

literature as a fast cooling mechanism and, correspondingly, the modified Urca,

the Bremsstrahlung and any other mechanism with n > 6 are called slow cooling

mechanisms.

6.2.2 Photon cooling phase

The neutrino luminosity Lν has a strong dependence on the interior temperature;

see Eq.(6.7). So the luminosity Lν decreases strongly even for a small decrease of

temperature. It is thus expected that at some point of the neutrino cooling phase

the neutrino luminosity be of the order of the photon luminosity Lγ, and for further

decrease of the temperature, Lγ ≫ Lν. This latter stage is known as photon cooling

phase.

In this case the balance equation (6.5) can be written approximately as

Cv
dT

dt
≈ −Lγ. (6.11)

The photon luminosity is Lγ = 4πR2σT4
s where Ts is the surface temperature of

the neutron star, which is related to the interior temperature of the isothermal core

by some Ts − T relation that depends on the physics of the envelope.

Embracing the physics of the envelope in an index Λ such that Ts ∝ T0.5+Λ, the

photon luminosity can be written in terms of the interior temperature as

Lγ = 4πR2σT4
s =

S

C
T1+4Λ, (6.12)
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where we have used Eq.(6.8). Integrating Eq.(6.12) from some time t = t1 at which

T(t1) = T1, we obtain

T = T1

[

1+
4ΛS

C
(t− t1)

]− 1
4Λ

. (6.13)

As we will see below, Eq.(6.15), for neutron star envelopes Λ ≪ 1 thus the

thermal evolution during this photon cooling phase is very sensitive to the envelope

physics through Λ and S.

6.3 The heat-blanketing envelope and Tb − Ts relation

The problems of solving the hydrostatic equilibrium and thermal evolution equa-

tions, can be simplified by dividing the neutron star into two regions [66]: the

interior (r < Rb), which we call isothermal core and the ”heat-blanketing“ envelope

(Rb ≤ r ≤ R).

The heat-blanketing envelope is an upper thin layer in which a strong tempera-

ture gradient exists. It is defined as the layer extending from the surface, deep to the

boundary density ρb, above which the star is isothermal. At this point the luminos-

ity in the envelope is equal to the surface photon luminosity, Lb(Rb) = Ld(R) = L.

The surface photon luminosity is related with the effective surface temperature by

the equation (5.10). Therefore, these boundary conditions give us a relation between

the temperature, at the isothermal core-envelope boundary at r = Rb(ρ = ρb), Tb,

and the surface temperature, Ts. This relationship is called “Tb − Ts relation”.

As shown by Gudmundsson et al. [66], we can reduce the full set of structure

and thermal evolution equations to a single one in the envelope. This equation,

which determines the thermal structure of the envelope, can be written as

dT

dP
=

3

16

k

T3

T4
s

gs
, (6.14)

where P is the total pressure and k is the total opacity of the stellar matter.

Numerical calculations of this relation, obtained by integration of this equation,

were first presented by Gudmundsson et al. [80, 66]. The following Tb − Ts relation
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for a heat blanketing iron envelope was obtained

Tb = 1.288× 108(T4
s6/gs14)

0.455 K, (6.15)

where gs14 is the surface gravity gs = GM
R2

√

1− rg/R in units of 1014 cm s−2 and

Ts6 = Ts/(106 K). This relation is accurate within 1.5% for 3.2× 105g1/4s14 . Ts .

3.2× 105g1/4s14 or equivalently 1.6× 107 K . Tb . 109 K. Therefore, the index Λ in

Eq. (6.12)

Potekhin et al.[78] extended these results to lower temperatures considering also

light elements in the composition of the envelope. Since the thermal conductivity

of the light element is higher than that of iron, a light element envelopes produces

a higher effective temperature Ts and a higher luminosity L for a given isothermal

core temperature Tb.

Hereafter we use the heat-blanketing envelope Ts−Tb relation by Gudmundsson

et al.[80] given by Eq.(6.15).

6.4 Results

In this section we present our results of the thermal evolution of globally neutral

neutron stars. We also computed the fraction of the core where the direct Urca pro-

cess is active for the case of the NL3 parameterization of the σ-ω-ρ nuclear model.

As a first step towards the full calculation of the thermal evolution, we computed

their evolution in the isothermal stage, which follows the thermal relaxation phase

and we contrast the cooling curves with some observational data of middle-ages

isolated neutron stars. Then, we present the our full cooling curves considering

also the early phases where the star is far from isothermality and which reveals

crucial information from the properties of the crust of the neutron star.

6.4.1 Occurrence of the direct Urca process

As shown in section 5.2.1 the direct Urca process, n → p+ e+ ν̄e and p+ e → n+ νe,

is possible in neutron star cores only if the fraction of particles involved in the re-

action are such that the energy and momentum can be conserved simultaneously.
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The process is then possible if the triangle inequality, KFn < KFp + KFe, is satisfied,

where KF,n,p,e are the Fermi momenta of neutrons, protons, and electrons, respec-

tively.

We computed the region in the core of the globally neutral neutron stars shown

in Fig. 4.1 where the direct Urca process occurs. In Fig. 6.4 we show the size and

mass fraction of the neutron star core where the process occurs as a function of the

total mass of the star.
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Figure 6.4: Fraction of the mass and size of the core of a globally neutral neutron

star where the direct Urca process occurs.

6.4.2 Isothermal approximation

Most of the available observational data on the surface temperature of isolated neu-

tron stars correspond to middle-ages, t ∼ 104–106 yr, see e.g. [64]. By that times,

the neutron star has already passed the thermal relaxation phase following the

neutron star birth. The temperature gradient between the core and the crust has

vanished and the thermal structure of the neutron star can be described as formed
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by an isothermal core and a thin insulating envelope from where photons scape.

The isothermal core extends from the center up to a boundary layer at density

ρb ≈ 1010 g cm−3 [66], and the envelope is found at the lower density layers and

where large temperature gradients exist.

The thermal relaxation epoch in which the isothermal core with temperature

Tb is developed is of the order of ∆t . 100 yr (see e.g. [70]), a time well within

the ages of the observed isolated neutron stars, t ∼ 104–106 yr. Therefore, lacking

observational data at the early phases, we can start our thermal evolution, as a first

approximation, from the point where the star already has reached the isothermality,

so without considering the relaxation phase.

In the isothermal core, the energy balance and transport equations (5.4) and (5.7)

become

ǫνe
ν + cv

∂(Teν/2)

∂t
= 0,

∂eν/2T

∂r
= 0. (6.16)

Considering all the neutrino emission processes and heat capacity discussed in

the chapter 5, we computed the cooling curves by integrating numerically Eq. (6.16)

with initial condition the temperature Tb. The surface temperature is calculated

using the Tb − Ts relation by [66] given by Eq.(6.15).

In the following we show our results for the surface temperature as observed

at infinity, T∞
s = eν(R)/2Ts where eν(R)/2 =

√
1− 2M/R. In Fig. 6.5 we show the

surface temperature Ts as a function of the time t for a global neutrality neutron

star with and without considering the occurrence of the direct Urca process in the

core. It can be seen that when active, the direct Urca reactions make the star to cool

faster with respect to the case when they are absent. The reason for this is, that this

process has a neutrino emissivity ǫν ∝ T6 while the other processes have ǫν ∝ T8,

which leads via Eq. (6.16), to T ∝ t−1/4 and ∝ t−1/6 respectively; see discussion

in section 6.5 for details. The corresponding neutrino and photon luminosities are

shown in Figs. 6.6 and 6.7, respectively.

We show in Fig. 6.8 the cooling curves for selected neutron star masses, 1.4 M⊙

and 2.0 M⊙, at the same central temperature, while Fig. 6.9 shows the evolution of

a neutron star with 1.4 M⊙ for two different central temperature, T = 3× 109 K and
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Figure 6.5: Surface temperature at infinity T∞
s as a function of time t in yr with

(blue curve) and without (red curve) considering Direct Urca process (DU).

T = 5× 109 K. We contrast our theoretical curves with some isolated neutron stars

observational data taken from Ref. [64].
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Figure 6.6: The logarithm of the neutrino lumminosity L∞
ν as a function of the time

t (in yr) considering direct Urca process (DU), blue curve, and without considering

the direct Urca, red curve.
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Figure 6.7: The logarithm of the photon lumminosity L∞
γ as a function of the time

t (in yr) considering direct Urca process (DU), blue curve, and without considering

the direct Urca, red curve.
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Figure 6.8: Surface temperature at infinity T∞
s as a function of time t in yr for

two neutron star with slected masses, 1.4 M⊙ and 2.0 M⊙, at the same central

temperature T = 3× 109 K.
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1.4 M⊙.
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6.4.3 Full cooling curves

Nowwe present the complete thermal evolution of the globally neutral neutron star.

The isothermal approach was abandoned and all the thermal evolution equations

have been solved numerically. The thermal relaxation phase is present, which is

crucial to reveal informations from the properties of the crust of the star. Then

we can compare and contrast the differences between the cooling evolution of the

globally and locally neutral neutron star since, as we have shown in chapter 4, the

main difference between them is in the mass and size of the crust.

As we mentioned in the chapter 4, the new structure of the globally neutral

neutron stars is very different from the traditional configurations obtained through

the TOV equations (see Fig. 4.1): the core is positively charged as a consequence of

the balance between gravitational and Coulomb forces that results in the appear-

ance of a Coulomb potential energy eV ∼ mπc
2 deep. The core-crust transition

starts at ρ = ρnuc. The transition is marked by the existence of a thin, ∆R ∼few

hundreds fm, electron layer fully screening the core charge. In this transition layer

the electric field becomes overcritical, E ∼ m2
πc

3/(eh̄), and the particle densities de-

crease until the base of the crust, which is reached when global charge neutrality is

achieved. Consequently, the core is matched to the crust at a density ρcrust ≤ ρnuc;

in Fig. 6.10 we present the density profiles of globally neutral neutron star with

mass M approx1.4 M⊙ for selected values of the density at the base of the crust,

ρcrust.

Configurations with ρcrust > ρdrip possess both inner and outer crust while in the

cases with ρcrust ≤ ρdrip the neutron star have only outer crust. In the limit ρcrust →
ρnuc, both ∆R and E of the transition layer vanish, and the solution approaches the

one given by local charge neutrality (see Figs. 3 and 5 in [3]). All the above features

lead to a new mass-radius relation of neutron stars; see [3] and Fig. 4.2.

Using a Fortran 90 code provided by Prof. R. Negreiros we computed the full

cooling curves for globally neutral neutron star with mass 1.4M⊙ for different val-

ues of ρcrust. In the Fig. 6.11 we can see the surface temperature at infinity T∞
s as a

function of time t in yr for the neutron star configurations shown in Fig. 6.10 and
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Figure 6.10: Density profiles of globally neutral neutron star with mass M ≈ 1.4 M⊙

for selected values of the density at the base of the crust, ρcrust. Notice that the

transition to the crust occurs at the nuclear saturation density, ρnuc.
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the Fig. 6.12 show the temperature at the base of the crust as a function of t for the

same configurations. The Fig. 6.13 is an enlargement of the evolution of the sur-

face temperature, T∞
s , around its drop at the end of the thermal relaxation phase,

for the neutron stars shown in Fig. 6.12. We can see in this figure that the time to

the temperature drop is different for the star with densities higher and lower than

5× 1013 g cm−3.

For stars with ρ . 5× 1013 g cm−3: the thicker the crust the shorter relaxation

time. In the case of stars with ρ > 5× 1013 g cm−3: the thicker the crust the longer

the relaxation time. Since the latter behavior is in agreement with the results of

Lattimer [79] given by Eq. (6.1) and Eq. (6.2), the former behavior found at densities

ρ . 5 × 1013 g cm−3, is in clear contrast. The reason for this is that in a very

thin crust with a small or absent inner crust, some neutrino emission processes are

blocked. This leads to a crust that is kept hotter for longer times.
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Figure 6.11: Surface temperature at infinity T∞
s as a function of time t in yr for the

neutron star configurations shown in Fig. 6.10.
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Figure 6.12: Temperature at the base of the crust as a function of time t in yr for the

neutron star configurations shown in Fig. 6.10.
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its drop at the end of the thermal relaxation phase, for the neutron stars shown in

Fig. 6.12.
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6.5 Conclusions

We presented in this chapter the results of our cooling simulations of globally neu-

tral neutron star. The cooling curves have been computed considering the isother-

mal approximation, which was not take into account the thermal relaxation phase,

as well as considering the complete cooling theory.

The size and mass fraction of the neutron star core where the direct Urca is

active for the case of NL3 parametrization of the σ-ω-ρ nuclear model was also

computed.

Considering the isothermal approximation, our results for the surface temper-

ature Ts as a function of the time t for a global neutrality neutron star with and

without considering the occurrence of the direct Urca process in the core have been

shown. As was expected, the direct Urca reactions make the star to cool faster with

respect to the case when they are absent. The corresponding neutrino and photon

luminosities were also shown.

The full cooling curves were computed using a Fortran 90 code provided by Prof.

R. Negreiros and we noticed different behavior at the end of the thermal relaxation

phase, where the temperature drop, for the star with densities higher and lower

than 5× 1013 g cm−3. We concluded that in a very thin crust with a small or absent

inner crust, some neutrino emission processes are blocked keeping the crust hotter

for longer times.



Chapter 7

Conclusion

In the chapter 2 we presented the recently description of a compressed atom within

the global approach of the relativistic Feynman, Metropolis and Teller treatment [1]

considering a Wigner-Seitz cell and applied to the construction of white dwarfs in

the framework of general relativity. This treatment was the first approach of white

dwarfs taking account gravitational, weak, strong and electromagnetic interactions.

The results of the relativistic FMT treatment have been compared and contrasted

with the results of the non-relativistic models of Chandrasekhar and Hamada and

Salpeter [7].

We have been generalized, in the chapter 3, such a relativistic Feynman-Metropolis-

Teller treatment [1] to the case of finite temperatures. We have thus obtained the

EOS of a system of nuclei and electrons by solving the finite temperature relativis-

tic Thomas-Fermi equation (3.6) within globally neutral Wigner-Seitz cells. We have

shown the general features of the new EOS and compared and contrasted the effects

owing to the non-zero temperature with respect to the degenerate case. We have

checked that the onset of the inverse β decay instability is not modified for temper-

atures T . 108 K and therefore the zero-temperature critical densities computed in

Ref. [27] can be safely used. The enhancement and flattening of the electron density

inside the cell for larger temperatures could have relevant effect in the pycnonu-

clear reaction rates in the interior of white dwarfs and/or in the low density layers

of accreting neutron stars.

Deviations from the degenerate EOS have been shown to occur for masses <

0.7M⊙ (or densities ρ < 107 g cm−3) therefore of interest for low-mass white dwarfs

107
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and the outermost layers of neutron star crusts. We have analyzed the specific case

of the ultra low-mass white dwarf companion of the pulsar PSR J1738+0333. We in-

ferred for this object an internal temperature T ≈ 2–3× 107 K, and a mass MWD ≈
0.2 M⊙ assuming for as radius the photometric value, R = 0.042 R⊙; in full agree-

ment with the previous estimate, MWD = 0.181+0.007
−0.005 M⊙ and RWD = 0.037+0.004

−0.003 R⊙,

obtained in [30] using the evolutionary mass-radius relation of Painei et al. [40]. We

checked also our result using the relation by Koester [41] between the internal and

surface white dwarf temperatures, T4
eff/g = 2.05× 10−10T2.56

c . Using the surface

temperature and the logarithm of the surface gravity obtained from the spectral

analysis, Teff = 9130 K and log(g) = 6.55, this relation gives Tc ≈ 2.6× 107 K, also

in line with our predictions.

In the chapter 4 we turned to neutron stars. We described the treatment of glob-

ally neutral neutron stars formulated by Belvedere et al.(2012) [3]. We have shown

the equilibrium equations that take into account the strong, weak, electromagnetic,

and gravitational interactions within the framework of general relativity. The equi-

librium conditions based on Einstein-Maxwell-Thomas-Fermi equations were also

shown. This new treatment leads a new structure of the neutron star, which con-

sequently, leads a new mass-radius relation. We compared and contrasted with the

TOV-like neutron stars that satisfy local charge neutrality.

In the chapter 5 we presented all the main regulators of the thermal evolution

of neutron stars. The theoretical cooling curves depend on the adopted stellar in-

terior, the neutrino emissivities, the heat capacity and the thermal conductivity.

We reviewed all the relevant processes of neutrino emission; in the core, the di-

rect and modified Urca processes, neutron-neutron (nn), proton-proton (pp) and

neutron-proton (np) Bremsstrahlung and in the crust, plasmon decay, e−e+ pair an-

nihilation, and electron-nucleus (eN) Bremstrahlung. The heat capacity is given by

electrons, protons and neutrons in the core and by electrons, atomic nuclei and free

neutrons in the crust as well as the thermal conductivity in the core is a sum of the

conductivities of electrons and neutrons instead in the crust is assumed to be as a

result of the electrons scattering off atomic nuclei [70].

We presented in the chapter 6 the results of our cooling simulations of globally
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neutral neutron stars. The cooling curves have been computed first considering the

isothermal approximation, and then accounting for the thermal relaxation phase, in

which the core and the crust of the neutron star are thermally decoupled.

The size and mass fraction of the neutron star core where the direct Urca is

active for the case of NL3 parametrization of the σ-ω-ρ nuclear model was also

computed.

Considering the isothermal approximation, our results for the surface temper-

ature Ts as a function of the time t for a globally neutral neutron star with and

without considering the occurrence of the direct Urca process in the core have been

shown. As expected, the direct Urca reactions make the star to cool faster with

respect to the case when they are absent. The corresponding neutrino and photon

luminosities were also shown.

In the case of the full cooling curves with the initial relaxation phase, we noticed

a different behavior of the thermal relaxation time, tw, as a function of the crust

thickness, ∆R, with respect to known results in the literature [79], where tw ∝ ∆R2.

We find that for neutron stars with densities at the base of the crust lower than

5× 1013 g cm−3, tw decreases with increasing ∆R, while for densities larger than

this value the traditional result is recovered. We concluded that in a very thin crust

with a small or absent inner crust, some neutrino emission processes are blocked

keeping the crust hotter for longer times. It is clear that the above result tell us

that accurate observations of the relaxation phase of neutron stars would lead to

valuable information on the properties of the crust which, in turn, as we have shown

in this work give us information on the properties of the core-crust transition.
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bution near super-charged nuclei. Soviet Journal of Experimental and Theoretical

Physics, 45:436–+, March 1977.

[23] J. C. Slater and H. M. Krutter. The Thomas-Fermi Method for Metals. Phys.

Rev., 47:559–+, 1935.

[24] R. C. Tolman. Static Solutions of Einstein’s Field Equations for Spheres of

Fluid. Physical Review, 55:364–373, February 1939.

[25] J. R. Oppenheimer and G. M. Volkoff. On Massive Neutron Cores. Phys. Rev.,

55:374–381, February 1939.

[26] B. K. Harrison, M. Wakano, and J. A. Wheeler. Onzieme Conseil de Physisque de

Solvay, 1958.

[27] M. Rotondo, J. A. Rueda, R. Ruffini, and S.-S. Xue. Relativistic Feynman-

Metropolis-Teller theory for white dwarfs in general relativity. Phys. Rev. D,

84(8):084007, October 2011.

[28] K. Boshkayev, J. A. Rueda, R. Ruffini, and I. Siutsou. On General Relativistic

Uniformly Rotating White Dwarfs. ApJ, 762:117, January 2013.

[29] J. Antoniadis, P. C. C. Freire, N. Wex, T. M. Tauris, R. S. Lynch, M. H. van

Kerkwijk, M. Kramer, C. Bassa, V. S. Dhillon, T. Driebe, J. W. T. Hessels, V. M.

Kaspi, V. I. Kondratiev, N. Langer, T. R. Marsh, M. A. McLaughlin, T. T. Pen-

nucci, S. M. Ransom, I. H. Stairs, J. van Leeuwen, J. P. W. Verbiest, and D. G.

Whelan. A Massive Pulsar in a Compact Relativistic Binary. Science, 340:448,

April 2013.

[30] J. Antoniadis, M. H. van Kerkwijk, D. Koester, P. C. C. Freire, N. Wex, T. M.

Tauris, M. Kramer, and C. G. Bassa. The relativistic pulsar-white dwarf binary

PSR J1738+0333 - I. Mass determination and evolutionary history. MNRAS,

423:3316–3327, July 2012.



118 BIBLIOGRAPHY

[31] A. Thorolfsson, O. E. Roegnvaldsson, J. Yngvason, and E. H. Gudmundsson.

Thomas-Fermi Calculations of Atoms and Matter in Magnetic Neutron Stars.

II. Finite Temperature Effects. ApJ, 502:847, August 1998.

[32] W. Stolzmann and T. Bloecker. Thermodynamical properties of stellar matter.

I. Equation of state for stellar interiors. A&A, 314:1024–1040, October 1996.

[33] G. Chabrier and A. Y. Potekhin. Equation of state of fully ionized electron-ion

plasmas. Phys. Rev. E, 58:4941–4949, October 1998.

[34] A. Y. Potekhin and G. Chabrier. Equation of state of fully ionized electron-ion

plasmas. II. Extension to relativistic densities and to the solid phase. Phys. Rev.

E, 62:8554–8563, December 2000.

[35] E. E. Salpeter and H. M. van Horn. Nuclear Reaction Rates at High Densities.

ApJ, 155:183, January 1969.

[36] S. L. Shapiro and S. A. Teukolsky. Black holes, white dwarfs, and neutron stars:

The physics of compact objects. 1983.

[37] L. R. Gasques, A. V. Afanasjev, E. F. Aguilera, M. Beard, L. C. Chamon, P. Ring,

M. Wiescher, and D. G. Yakovlev. Nuclear fusion in dense matter: Reaction

rate and carbon burning. Phys. Rev. C, 72(2):025806, August 2005.

[38] A. Y. Potekhin and G. Chabrier. Thermonuclear fusion in dense stars. Elec-

tron screening, conductive cooling, and magnetic field effects. A&A, 538:A115,

February 2012.

[39] D. Koester. White Dwarf Spectra and Atmosphere Models. arXiv:0812.0482,

December 2008.

[40] J. A. Panei, L. G. Althaus, and O. G. Benvenuto. Mass-radius relations for white

dwarf stars of different internal compositions. A&A, 353:970–977, January 2000.

[41] D. Koester. Convective Mixing and Accretion in White Dwarfs. A&A, 52:415,

November 1976.



BIBLIOGRAPHY 119

[42] A. Y. Potekhin and G. Chabrier. Equation of state for magnetized Coulomb

plasmas. A&A, 550:A43, February 2013.

[43] J. Antoniadis, P. C. C. Freire, N. Wex, T. M. Tauris, R. S. Lynch, M. H. van

Kerkwijk, M. Kramer, C. Bassa, V. S. Dhillon, T. Driebe, J. W. T. Hessels, V. M.

Kaspi, V. I. Kondratiev, N. Langer, T. R. Marsh, M. A. McLaughlin, T. T. Pen-

nucci, S. M. Ransom, I. H. Stairs, J. van Leeuwen, J. P. W. Verbiest, and D. G.

Whelan. Science, 340:6131, 2013.

[44] J. W. Negele and D. Vautherin. Neutron star matter at sub-nuclear densities.

Nuclear Physics A, 207:298–320, June 1973.

[45] C. J. Pethick, D. G. Ravenhall, and C. P. Lorenz. The inner boundary of a

neutron-star crust. Nuclear Physics A, 584:675–703, February 1995.

[46] P. Haensel, A. Y. Potekhin, and D. G. Yakovlev, editors. Neutron Stars 1 :

Equation of State and Structure, volume 326 of Astrophysics and Space Science

Library, 2007.

[47] M. Rotondo, Jorge A. Rueda, R. Ruffini, and S.-S. Xue. Phys. Lett. B, 701:667–

671, 2011.

[48] R. L. Bowers, J. A. Campbell, and R. L. Zimmerman. Relativistic Many-Body

Theory for Strongly Interacting Matter. Phys. Rev. D, 7:2278–2288, April 1973.

[49] R. L. Bowers, J. A. Campbell, and R. L. Zimmerman. Model Equation of State

for Strongly Interacting Superdense Matter. Phys. Rev. D, 7:2289–2299, April

1973.

[50] H.-P. Duerr. Relativistic Effects in Nuclear Forces. Physical Review, 103:469–480,

July 1956.

[51] J. D. Walecka. A theory of highly condensed matter. Annals of Physics, 83:491–

529, 1974.



120 BIBLIOGRAPHY

[52] J. A. Rueda, R. Ruffini, and S.-S. Xue. The Klein first integrals in an equilibrium

system with electromagnetic, weak, strong and gravitational interactions. Nucl.

Phys. A, 872:286–295, December 2011.

[53] J. Boguta and A. R. Bodmer. Relativistic calculation of nuclear matter and the

nuclear surface. Nuclear Physics A, 292:413–428, December 1977.

[54] P. Ring. Relativistic mean field theory in finite nuclei. Progress in Particle and

Nuclear Physics, 37:193–263, 1996.

[55] T. D. Lee and G. C. Wick. Vacuum stability and vacuum excitation in a spin-0

field theory. Phys. Rev. D, 9:2291–2316, April 1974.

[56] T. D. Lee and Y. Pang. Fermion soliton stars and black holes. Phys. Rev. D,

35:3678–3694, June 1987.

[57] R. Ruffini and S. Bonazzola. Systems of Self-Gravitating Particles in General

Relativity and the Concept of an Equation of State. Physical Review, 187:1767–

1783, November 1969.

[58] M. Rotondo, J. A. Rueda, R. Ruffini, and S.-S. Xue. Relativistic Thomas-Fermi

treatment of compressed atoms and compressed nuclear matter cores of stellar

dimensions. Phys. Rev. C, 83(4):045805–+, April 2011.

[59] G. A. Lalazissis, J. König, and P. Ring. New parametrization for the Lagrangian

density of relativistic mean field theory. Phys. Rev. C, 55:540–543, January 1997.

[60] M. M. Sharma, M. A. Nagarajan, and P. Ring. Rho meson coupling in the

relativistic mean field theory and description of exotic nuclei. Physics Letters B,

312:377–381, August 1993.

[61] Y. Sugahara and H. Toki. Relativistic mean-field theory for unstable nuclei

with non-linear σ and ω terms. Nuclear Physics A, 579:557–572, October 1994.

[62] D. Hirata, H. Toki, and I. Tanihata. Relativistic mean-field theory on the xenon,

cesium and barium isotopes. Nuclear Physics A, 589:239–248, February 1995.



BIBLIOGRAPHY 121

[63] G. Baym, H. A. Bethe, and C. J. Pethick. Neutron star matter. Nucl. Phys. A,

175:225–271, November 1971.

[64] D. G. Yakovlev and C. J. Pethick. Neutron Star Cooling. ARA&A, 42:169–210,

September 2004.

[65] Rodrigo Picanco Negreiros. Numerical Study of the Properties of Compact

Stars (PhD thesis) . 2009.

[66] E. H. Gudmundsson, C. J. Pethick, and R. I. Epstein. Structure of neutron star

envelopes. ApJ, 272:286–300, September 1983.

[67] K. Nomoto and S. Tsuruta. Cooling of young neutron stars and the Einstein

X-ray observations. ApJL, 250:L19–L23, November 1981.

[68] A. Ray. Thermal conduction across neutron star crusts and cooling of young

neutron stars. Nuclear Physics A, 356:523–532, March 1981.

[69] M. B. Richardson, H. M. van Horn, K. F. Ratcliff, and R. C. Malone. Neutron

star evolutionary sequences. ApJ, 255:624–653, April 1982.

[70] O. Y. Gnedin, D. G. Yakovlev, and A. Y. Potekhin. Thermal relaxation in young

neutron stars. MNRAS, 324:725–736, June 2001.

[71] D. G. Yakovlev, A. D. Kaminker, O. Y. Gnedin, and P. Haensel. Neutrino

emission from neutron stars. Phys. Rep., 354:1–155, November 2001.

[72] M. Prakash, M. Prakash, J. M. Lattimer, and C. J. Pethick. Rapid cooling of

neutron stars by hyperons and Delta isobars. ApJL, 390:L77–L80, May 1992.

[73] A. D. Kaminker and P. Haensel. Neutrino emission due to electron

bremsstrahlung in superfluid neutron-star cores. Acta Physica Polonica B,

30:1125–1148, April 1999.

[74] D. G. Yakovlev, A. D. Kaminker, O. Y. Gnedin, and P. Haensel. Neutrino

emission from neutron stars. Phys. Rep., 354:1–155, November 2001.



122 BIBLIOGRAPHY

[75] D. Page and S. Reddy. Thermal and transport properties of the neutron star

inner crust. ArXiv e-prints, January 2012.

[76] E. Flowers and N. Itoh. Transport properties of dense matter. III - Analytic

formulae for thermal conductivity. ApJ, 250:750–752, November 1981.

[77] J. M. Ziman. ”ordinary” Transport Properties and the Shape of the Fermi

Surface. In W. A. Harrison and M. B. Webb, editors, The Fermi Surface, page

296, 1960.

[78] A. Y. Potekhin, G. Chabrier, and D. G. Yakovlev. Internal temperatures and

cooling of neutron stars with accreted envelopes. A&A, 323:415–428, July 1997.

[79] J. M. Lattimer, K. A. van Riper, M. Prakash, and M. Prakash. Rapid cooling

and the structure of neutron stars. ApJ, 425:802–813, April 1994.

[80] E. H. Gudmundsson, C. J. Pethick, and R. I. Epstein. Neutron star envelopes.

ApJL, 259:L19–L23, August 1982.


