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Chapter 1

Introduction

This thesis deals with the issue of parameter estimation when a mixed effect model

for longitudinal data with drop-out is entailed. In longitudinal studies, commonly two

kind of information are recorded: repeated measurements of a response of interest, and

realizations of a survival time which describes the individual participation to the study.

In the literature, see for instance Diggle et al. (1994), one possible model framework

to jointly consider these information is represented by shared parameter models (SPM);

in this framework we assume that the two processes, longitudinal and survival, are

dependent and that this dependence is due to sharing a set of coefficients (fixed and

random). One particular case of this class of models are the joint models (JM), where

the expected value of the response at time t is assumed to influence the hazard of the

event, see Wulfsohn and Tsiatis (1997).

The structure of this manuscript is as follows. In the context of maximum likelihood

(ML) estimation, one has to deserve attention to some crucial points; first, since some

modelling assumptions are untestable, one has to bear in mind that sensitivity of model

parameter estimates to these assumptions should be carefully analysed. Second, while

ML estimation for joint models when the longitudinal response is assumed to be Gaus-

sian are quite well studied from a theoretical and computational point of view (see for

instance the JM library in R), appropriate modelling and computational tools are lacking

when the response is still distributed according to a member of the exponential family

but it is not necessary Gaussian. This thesis aims at answering to both questions by

extending previous literature approaches in two directions: sensitivity in SPM models

and ML estimation in JM when the response is discrete-valued.

Chapter 2 describes the main model frameworks introduced in literature to describe

the variability of a longitudinal outcome with respect to a set of covariates/factors. Par-

ticular attention is on linear mixed models, where random coefficients are introduced to

account for dependence between repeated measurements corresponding to the same sub-

ject over time. These coefficients represent the influence of unobservable heterogeneity

on the adopted parametric structure.

On the other hand, during a longitudinal study, some individuals may drop-out
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2 Introduction

prematurely due to different reasons. A missing data analysis is therefore of interest.

Chapter 3 is devoted to the definition of missing data, to the explanation of the standard

taxonomy by Rubin (1976) and to the discussion of model frameworks to deal with

longitudinal response with drop-out.

Chapters 4 and 5 describe the main contributions of the thesis.

As far as standard shared parameter models and joint models are concerned (Chapter

4), and the longitudinal response is assumed to be a conditional Gaussian random

variable, the sensitivity of parameter estimates to the assumptions upon ignorability

of the survival process is explored. In the field of missing data, the latter represents a

relevant hypothesis which is however untestable, since it implies the dependence of the

drop-out mechanism on the unobserved longitudinal outcome values. A useful screening

tool in this context is the Index of local sensitivity to ignorability (ISNI), proposed

by Troxel et al. (2004) and extended by Ma et al. (2005). This index is based on a

Taylor expansion of the likelihood function (with respect to the longitudinal parameter

vector) of a non-ignorable model around the value which defines the ignorability of the

missing data. The sensitivity to non-ignorability has been evaluated through the ISNI in

different model frameworks, but not for SPMs. In Viviani et al. (2011) the extension of

the index to the shared parameter model framework is described. The objectives of this

analysis are several: to obtain an analytical formulation of the index in the case of shared

parameter models (see Appendix A), to compare the sensitivity of SPMs and JMs to

non-ignorability, to give solution to some interpretative issues through the formulation

of a relative index of non-ignorability.

The main results highlight a higher sensitivity for JMs with respect to SPMs, mainly

due to the fact that, in the former, the interpretation of parameter estimates for the

longitudinal sub-model changes whether one considers a non-ignorable or an ignorable

drop-out mechanism. On the other hand, the SPM is seen to be more sensitive as far

as the intercept estimate is concerned, leading to unbiased estimates of the covariates

effects when one moves from the ignorability to the non-ignorability assumptions. These

remarks are relevant in missing data models, since they allow to understand how pa-

rameter estimates are influenced by the assumption of non-ignorability of the drop-out

mechanism and, therefore, how inference could change when an ignorable procedure

rather than a joint model is adopted.

As far as the index interpretation is concerned, a relevant issue is that the ISNI is an

absolute measure of the change in parameter estimates, and this may cause difficulties

in assessing sensitivity of the parameter estimates. Ma et al. (2005) have dealt with this

issue by defining a relative index as the ratio between the ISNI and the standard error

of the estimate under ignorability. This formulation, though, can be computationally

unstable (the standard error could be very close to zero and it is not intended to give

an estimate of the ISNI variability); both a simulation study and applications to bench-

mark datasets deal with this issues in details. In Viviani et al. (2011), two alternative

tools are proposed: the ratio between the ISNI for a parameter and the correspond-

ing estimate under ignorability, and the ratio between the ISNI and an estimate of the
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corresponding sampling variability. The first formulation follows the principle that the

ISNI is a measure of parameter estimate changes when moving from ignorability to non-

ignorability; hence, the comparison to the value of the estimate under ignorability may

lead to a relative measure of change. The second formulation is based on the evalua-

tion of the index variability, which is estimated by considering two different methods:

a Monte Carlo approach and a regression based approach. The latter is based on an

approximation of the ISNI as the slope of the linear curve which describes the variability

of the longitudinal ML estimate as a function of the ignorability parameter. While the

ISNI is not a formal model parameter and therefore the notion of sampling variability

is somewhat questionable, we must notice that when moving from non-ignorability to

ignorability parameter estimates for JMs change interpretation; therefore, the sampling

variability observed under ignorability accounts mainly for this aspect. Empirical and

simulation results highlight an easier interpretation of these relative formulations with

respect to the existing relative formulation based on the ratio to the standard error of

the estimate under ignorability.

The second part of the manuscript deals with the extension of the model of Wulfsohn

and Tsiatis (1997) and of the R library JM, see Rizopoulos (2010), to the case of lon-

gitudinal responses with distribution belonging to the exponential family (Chapter 5).

This part answers to a twofold question: first, the need of a general model for describing

informative drop-out where discrete-valued responses and a discrete/continuous time

the drop-out event are observed. Second, to give a formal and a computational basis for

ML estimation to informative drop-out models when a discrete longitudinal outcome is

at hand. In the case when individuals may drop-out prematurely from the study and

one would adopt a joint modelling approach, not so much has been done in the litera-

ture and the available methods are mainly based on Bayesian approaches, usually fully

parametric and quite complex from estimation and interpretation perspectives. More-

over, there are no implemented libraries for parameter estimation in this context. Our

proposal is a new formulation of a joint model (for discrete responses) in the context of

maximum likelihood, referred to as Generalized Linear Mixed Joint Models (GLMJM).

The key idea is basically the same of the standard JM, i.e. that the expected value

of the outcome of interest at time t influences the hazard of the event (drop-out) at

that time, with the difference that the hazard function depends on a transformation of

the linear predictor instead of the linear predictor itself. The ignorability parameter is

then associated to the expected value of the response evaluated at time t and to the

corresponding effect on the hazard of the drop-out event at that time point. The model

is implemented for responses with Poisson and Binomial distributions, and parameter

estimation is conducted via an EM algorithm followed by a Quasi-Newton algorithm

for higher speed of convergence. The analytical formulation of the model is discussed

in Chapter 5, where ML estimation is also considered with particular emphasis on the

iterations of the EM algorithm, which has been structured in a set of functions to be

inserted in a further R library. Quasi-Newton steps are performed by using the optim

function in R. Several simulation studies and applications to benchmark datasets are
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presented to study the behaviour of the proposed approach under both mild and extreme

departures from the ignorable setting. Since the JM properly nests an ignorable drop-

out model, attention has been devoted to study the distribution of parameter estimates

when the ”true” drop-out process is based on a ignorable structure as well as when we

move by the hypothesis of ignorability.

The main results of the simulation study are that maximum likelihood estimates ob-

tained by fitting the GLMJM present a better behaviour than the corresponding esti-

mates under the hypothesis of ignorability when the ignorability parameter is different

from zero. On the other hand, when the latter is assumed to be null, the estimates

obtained from model based on ignorability and non-ignorability assumptions are quali-

tatively and quantitatively equivalent.

Applications to benchmark datasets lead to intuitive results. The first application is a

HIV study, see Goldman et al. (1996) and Carlin and Louis (2009), with the objective

of comparing the efficacy/safety of two antiretroviral drugs by recording a longitudinal

response (the CD4 cell count). The parameter estimates for the standard Joint Model,

where the CD4 cell counts are assumed to be conditionally Gaussian random variables,

are compared to the estimates obtained through the Poisson Joint Model, where the

response variable is assumed to follow a Poisson distribution. Both models suggest a

non-ignorable drop-out mechanism with a negative estimate for the ignorability param-

eter. The second dataset focuses on a MMT program, see Alfó and Aitkin (2000), where

heroin users are observed for 26 weeks and the longitudinal response is positivity to

morphine, a marker of recent heroin use. The GLMJM is compared to an autoregressive

model which does not account for the non-ignorability of the drop-out process. The

significant time effect in the autoregressive model agrees with the significance of the

non-ignorability parameter in the GLMJM, and their effect seems to represent a time

selection for patients who do not respond to the methadone treatment.

Finally, Chapter 6 give some concluding remarks and some suggestions for future

research developments in this field.



Chapter 2

Mixed Models for longitudinal

responses

In this Chapter, a review of standard models for longitudinal data is presented. In

Section (2.1), we introduce basic concepts and structures for longitudinal data and re-

lated issues. In Section (2.2) we briefly describe the General Linear Model with general

covariance structure, while in Section (2.3) we illustrate the main model framework for

repeated measurements when the response in not Gaussian. We give particular empha-

sis on generalized linear mixed models and related computational issues.

2.1 Longitudinal Data

Longitudinal data are a common product of several kind of studies, where measurements

of a response variable are taken on the same individuals over several occasions. The main

advantage with longitudinal data is that one can distinguish between changes over time

within individuals from baseline differences among subjects, see Diggle et al. (1994).

Hence, while some individuals could begin at a higher or a lower level of the variable of

interest, the evolution through time could follow a different pattern.

To deal with longitudinal observations, specific statistical methods are needed. In

fact, the set of observations corresponding to one subject measured at different time

points are usually associated; this correlation must be taken into account to draw valid

scientific inferences.

A nice field of application for longitudinal models is growth data, where biological

indexes are recorded for children at different ages and growth curves are drawn. When

each child is followed through time, this design is useful to make the distinction between

cohort-effects, i.e. cross-sectional differences between children of the same age, and age-

effects, i.e. the evolution of biological markers within each child. This phenomenon

is visible in Figure 2.1, where the plot of height (cm) for subjects followed from 0 to

25 years of age is shown. The children are born in early gestational age and do not
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6 Mixed Models for longitudinal responses

show catch-up growth; they are randomized between two levels of growth hormone, see

Willemsen et al. (2011).
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Figure 2.1: Growth curve of heights.

Let us now introduce some notation. Random variables are denoted by capital letters,

while observations are indicated by small letters; bold capital and small characters

represent matrices and vectors, respectively.

Let Yi(t) be the longitudinal outcome and xi(t) the p-dimensional vector of explana-

tory variables corresponding to subject i = 1, . . . , n observed at time t = 1, . . . , Ti. The
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expected value and the variance of the response variable are given by E[Yi(t)] = µi(t)

and V[Yi(t)] = vi(t).

The observations for a given individual i are collected into a Ti-vector yi(t) = [yi(1), . . . , yi(Ti)],

where Cov[yi(j), yi(k)] = vi(j, k) and Ri is the corresponding Ti×Ti correlation matrix.

The basic model for longitudinal analyses is the following linear model:

yi(t) = β0xi0(t) + β1xi1(t) + . . .+ βpxip(t) + εi(t), (2.1)

that is, in vector formulation:

yi = βTxi + εi, (2.2)

where β = (β0, . . . , βp) is a p-dimensional vector of unknown but fixed regression pa-

rameters, εi = (εi(1), . . . , εi(Ti)) is the vector of zero-mean errors and xi the row vector

of the design matrix. We will further discuss models for longitudinal data in Section

(2.2). As we will point out, model choice is not straightforward.

2.2 General Linear models

As described in Section 2.1, the basic linear model for repeated measurements is ex-

pressed by equation (2.1). In this paragraph, we will further deepen assumptions upon

the general linear model for longitudinal data and highlight structural and interpreta-

tion issues.

Let us indicate with Y = (y1, . . . ,yn) the matrix containing the longitudinal response

for subject i = 1, . . . , n, and assume to have a balanced design with t = 1, . . . , T mea-

sures for each individual, the generic individual vector being yi = (yi(1), . . . , yi(T )).

The general linear model for longitudinal data assumes Y to be a multivariate normal

variable, i.e.

Y ∼MVN(βTX, σ2V), (2.3)

where σ2V is a block-diagonal covariance matrix, with non null T ×T blocks σ2V0. The

block-diagonal covariance structure allows us to estimate the variation in the repeated

measurements among different occasions. Nevertheless, parametric assumptions could

sometimes represent a good approximation of the variance structure and may lead to

simplifications.

For instance, in some situations, it is realistic to assume a uniform correlation struc-

ture between any two occasions relative to the same subject, or either an exponential

correlation form.

2.3 Generalized Linear models

Different model frameworks are available to analyse longitudinal data. We will discuss

them in this Section, trying to critically revise model choice and estimation issues. In
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fact, before applying any specific model, one should conduct a preliminary analysis to

explore data structure.

Standard tools for exploring longitudinal data could be either analytical and graphical.

For instance, a basic display is the scatterplot of the response variable against time, for

all the individuals in the sample or alternatively for a representative subset. Figure 2.2

shows individual profiles for reading ability scores on 221 children and 4 occasions (data

avaible at http://www.duke.edu/curran/).

Figure 2.2: Individual profiles for reading ability.

This simple graph shows a number of important patterns; nevertheless, the huge

number of subjects makes it complicated from an interpretational perspective. To avoid

confusion, one could fit a mean curve, computed using different kind of smoothers (such

as lowess, splines or kernel) to highlight a common pattern. This simple solution involves

many relevant considerations about model choice.

2.3.1 Marginal models

The strategy of considering the mean behaviour is typical of marginal models, see for

instance Prentice (1988). This could be considered the model specification closer to a

cross-sectional study, see for instance Fitzmaurice et al. (2004). The focus is, in fact,

on finding a proper functional specification for the expected value of the response µi(t)

when considered separately from the variance vi(t) and the within-subject association
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expressed by the correlation matrix Ri.

This is a three part model that can be summarized by the following steps.

1. The expected value of the response depends on covariates through a link function:

g(µi(t)) = βTxi(t);

2. The variance of each outcome is a function of the mean and a scale parameter:

vi(t) = Φf(µi(t));

3. The correlation matrix is a function of an association parameter α and the mean:

Ri = {ρi(j, k) = a(α, µi(t, j, k))}.

The separate modelling of mean and covariance structure leads to population-averaged

interpretation of regression parameters. This means that conclusions about parameters

estimates can be related to the whole sample, not being influenced by the within subjects

correlation. Moreover, marginal models are valid under any distributional assumption,

by following a likelihood or a quasi-likelihood approach.

In this last respect, a convenient estimation procedure is GEE (Generalized Estimating

Equations), see Liang and Zeger (1986) and Zeger and Liang (1996) . The key idea of

this approach is to incorporate the covariance matrix into the usual score equations for

a generalized linear model. More specifically, as conditions 1−2 for the marginal model

are specified, the third is made by assuming the following Cholesky decomposition:

Vi = A
1
2
i RiA

1
2
i , (2.4)

where A
1
2
i is a diagonal matrix containing the standard deviation of the response variable√

Φf(µi(t)). Vi is referred to as as ‘working’ covariance matrix.

GEE estimation moves along the lines of Generalized least squares (GLS) for the linear

model, which leads to the solution

β̂ =

(
n∑
i=1

xT
i Σ−1

i xT
i

)−1 n∑
i=1

xT
i Σ−1

i yi,

where Σ is the true covariance matrix of the response.

The corresponding GEE estimator is given by solving the generalized estimating equa-

tions

n∑
i=1

DT
i V
−1
i (yi − µi) = 0, (2.5)

where Di = ∂µi

∂ηi

∂ηi

∂β
.

Because GEE depends on both β and α, a two-stages procedure is required.

1. Vi is estimated, given starting values for α and Φ, and the corresponding estimate

for β is obtained from (2.5);



10 Mixed Models for longitudinal responses

2. The current estimate β̂GEE is used to update α and Φ on the basis of studentized

residuals:

ei(t) = (yi(t)− µ̂i(t))/
√
vi(t) (2.6)

2.3.2 Transition models

As we have pointed out in the previous Section, marginal models and GLMs for cross-

sectional studies lead to similar conclusions in terms of parameter estimates. This leads

to simplificated interpretation, but, on the other hand, it causes a loss of information,

deriving from the individual evolution of the response over time.

An attempt to take into account the trend of the outcome of interest for each ob-

served subject are transition models, see Korn and Whittermore (1979), Wong (1986)

and Ware et al. (1988). The key idea of this group of models is to consider the influ-

ence of the past history Hi(t) on the current value of the response. Hence, the mean

µi(t)
C = E(Yi(t) | Hi(t)) and the variance vi(t)

C = V(Yi(t) | Hi(t)) of the response

are conditional on the past responses yt−1, . . . , yt−q up to a lag of order q, and a set of

covariates.

A particular case of transition models is the class of first order Markov chains, where

mean and variance at a given time are conditional on the value corresponding to

the previous occasion of the response, i.e. µi(t)
C = E(Yi(t)|†i(t − 1)) and vi(t)

C =

v(Yi(t)|†i(t− 1)).

Given a specific link function g, the generic transition model can be expressed by{
g(µi(t)

C) = βTxi(t) +
∑s

r=1 fr(Hi(t), α)

vi(t)
C = Φf(µi(t)

C),
(2.7)

i.e. the past outcomes are treated as additional covariates after the proper transfor-

mation through the function fr. If the model for the conditional mean is correctely

specified, the past responses can be considered as independent events.

Transition models can be fitted using a likelihood approach. The joint distribution of

the responses for subject i is

f(yi(1), . . . , yi(Ti); β, α) = f(yi(Ti) | yi(Ti−1), . . . , yi(1); β, α) · · · f(yi(2) | yi(1); β, α)f(yi(1); β, α),

that can be simplified to

f(yi(1), . . . , yi(Ti); β, α) = f(yi(Ti) | yi(Ti−1); β, α) · · · f(yi(2) | yi(1); β, α)f(yi(1); β, α),

for a first order Markov model.

For a GLM with a given link function, it is not straightforward to derive the distribution

f(yi(t) | yi(t−1)) without additional assumptions. An appealing approach is to consider

the conditional likelihood of Yi(2), . . . , Yi(Ti) given Yi(1), which is obtained by omitting

f(yi(1)) from the previous equation. The resulting estimates are less efficient than

MLEs. If the likelihood is still intractable, GEE are a valid alternative (see previous

paragraph for more details).
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2.3.3 Random effect models

The linear regression model in equation (2.3) defines the association between repeated

observations on the same subject through the covariance matrix, and could be seen as

an element of a wide class of models containing the specific parametrization of random

effects model, see Laird and Ware (1982). In fact, these models introduce correlation as

due to random variation in unobserved, subject-specific quantities called random effects

or random coefficients. The logical implications of this parametrization is that there

exists a natural heterogeneity among observed subjects, deriving either from unobserved

characteristics or different effects of measured covariates. This variability could include

genetic or environmental factors that are thought to be represented by a zero mean

random variable.

The basic assumption of a random effect model is that unobserved individual-specific

heterogeneity among individuals could be represented by the random variability in the

regression coefficients, where the following regression model holds:

yi(t) = (β0 + bi0) + β1xi1(t) + . . .+ βpxip(t) + εi(t),

and bi0 ∼ g(0, α2). In this case, random variability influences the intercept only, that is

a baseline variability among subjects is assumed.

The linear formulation of the random effects model could be extended to generalized

linear models with a given link function, leading to the following:

g(µi(t)) = (β0 + bi0) + β1xi1(t) + . . .+ βpxip(t),

where µi(t) = E[Yi(t)|bi0,xi)]. When a set of random regression coefficients is used, bi ∼
h(0,D), and the covariance matrix D needs to be estimated. It is worth noting that,

since in most cases the random coefficients correspond to some explanatory variables

only, random effects models can be referred to as mixed models, to highlight the difference

between random and fixed coefficients.

Formally, the basic assumptions for a random effect GLM are:

1. Conditional independence: given bi, the responses Yi(1), . . . , Yi(Ti) are indepen-

dent and follow an exponential family distribution with density f(yi(t)|bi), with

expected value µi(t) = E(Yi(t|bi,Xi)), where the model g(µi(t)) = xi(t)
Tβ +

di(t)
Tbi hold, and di(t) is a subset of xi(t).

2. bi, i = 1, . . . , n are i.i.d. zero-mean random variables with multivariate density

function h(·) and covariance matrix D.

3. bi and xi(t) are mutually independent.

The philosophy underlying a random effect model is opposite to marginal models. The

objective is, in fact, to make inference on individual behaviour rather than on population

average.
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2.4 Maximum Likelihood Estimation for GLMMs

In this Section we give some details on parameter estimation for GLMMs. In this field,

two main approaches have been proposed:

1. Conditional likelihood, where random effects are treated as fixed parameters, and,

conditionally, the response follows a standard multivariate exponential distribu-

tion, see Andersen (1973);

2. Maximum likelihood, where random effects are treated as random variables with

a multivariate distribution and must be integrated out of the likelihood. In this

case, h(·) is considered a zero mean gaussian distribution with variance-covariance

matrix D.

We will deepen the latter approach, leaving further details for the conditional likelihood

method to literature, see for instance McCullagh and Nelder (1989).

2.4.1 Maximum Likelihood

As it has been outlined before, in the likelihood framework the vector of random coef-

ficients bi is assumed to follow a given probability distribution h(·). This apparently

simple assumption leads to one relevant consequence: the possibility to estimate indi-

vidual trajectories over time. Thus, if heterogeneity in the sample is high, individual

estimation of model coefficient is more reliable; on the other hand, if variability between

subjects is slight, a population based approach could represent a good method for pa-

rameter estimation.

The likelihood as a function of both the fixed effect vector β and the random effects

covariance matrix D is defined by integrating out the random effects:

L(β,D; Y) =
n∏
i=1

∫
bi

Ti∏
j=1

f(yi | β)f(bi | D)dbi, (2.8)

In some cases, i.e. for Gaussian linear model with Gaussian random effects, (2.8) may

have a closed solution, but in most situations one must apply numerical integration

methods such as Gaussian quadrature (see Section 2.4.2).

To find maximum likelihood estimates, a common procedure is to use the EM algorithm,

see Dempster et al. (1977). This algorithm is based on the evaluation of the score

function through two steps:

1. The E-step, evaluates the expectation of the score function given observed data

and current values for model parameters;

2. The M-step solves the score functions updating parameters estimates.
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The observed data score functions to be evaluated are{
sβ(δ | Y) =

∑n
i=1

∑Ti

j=1 xij [yij − E {µij(bi) | yi}]
sD(δ | Y) = 1

2
D−1

{∑n
i=1 E

{
µij(bib

T
i ) | yi

}
D−1 − m

2
D−1

}
,

(2.9)

with respect to β and D, respectively.

2.4.2 Gaussian Quadrature

When bi has a limited dimension, a potential technique to solve the integral in (2.8) is

the Gauss-Hermite quadrature, introduced by Naylor and Smith (1982) in the Bayesian

framework and further extended to mixed models with binary data by Anderson and

Aitkin (1985). Liu and Pierce (1994) presented an interesting modification of the Gaus-

sian quadrature for transformed variables.

The term Gaussian quadrature is due to numerical approximation of the univariate

integral ∫ +∞

−∞
e−θ

2

f(θ)dθ

with a Gaussian-type polynomial (Gauss-Hermite formula)

K∑
i=1

ωif(θi)

where

ωi =
2K−1K!

√
π

K2 [HK−1(θi)]
2

and θi is the ith zero of the Hermite polynomial HK(θ), see Davis and Rabinowitz

(1967). For a suitably regular function h(θ), and

g(θ) = h(θ)
(
2πσ2

)− 1
2 exp

{
−1

2

(
θ − µ
σ

)2
}

it can be proved that ∫ +∞

−∞
g(θ)dθ ≈

K∑
i=1

wig(zi)

where wi = wk exp(θi)
√

2σ2 and zi = µ +
√

2σ2θi are the weights and the locations of

the Gaussian-Hermite quadrature. Table 2.1 shows the first 5 quadrature locations and

weights, see Salzer et al. (1952):
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k zi wi

2 ±0.707107 0.886227

3 0 1.18164

±1.22474 0.295409

4 ±0.524648 0.804914

±1.65068 0.0813128

5 0 0.945309

±0.958572 0.3936190

±2.020180 0.0199532

Table 2.1: Quadrature locations and weights for the Gauss-Hermite quadrature, k =

1, . . . , 5

By applying the previous concepts to the likelihood in (2.8), the integral is approxi-

mated as follows:

L(β,D; Y) ≈
n∏
i=1

K∑
k=1

[
Ti∏
j=1

f(yi | βk)

]
f(bk | D)πk. (2.10)

This means that the likelihood is approximately equal to the likelihood of a finite mixture

of component specific densities with known proportions πk and locations bi.

When the random coefficient vector is unidimensional, i.e. when random intercept

model are considered, bk represents one of the quadrature points and πk the probability

mass associated to it. On the other hand, when bk has dimension q > 1, i.e. with

random coefficients, bk = (bk1, . . . , bkq) is a vector of quadrature points with associated

probability mass πk =
∏q

j=1 πkj. In this case, a useful transformation of a multivariate

Gaussian random variable is

bi = D
1
2 b∗i ,

where bi ∼MVN(0,D) and b∗i ∼MVN(0, I). This allows us to work with the density

f(b∗i1, . . . ,b
∗
iq) =

∏q
j=1 f(b∗iq) ∼ MVN(0, I). Hence, the quadrature dimension is Kq.

For istance, for q = 2, at each pair (bij1, bij2) is associated a fixed weight πj1 · πj2.
To derive the score function expression, we rewrite the density function as follows:

∂f(yi | bk)
∂δ

= f(yi | bk)
∂ log f(yi | bk)

∂δ
,

obtaining

s(δ) ≈
n∑
i=1

K∑
k=1

wik(δ)
∂ log f(yi | bk)

∂δ
,

where

wik(δ) =
πkf(yi | bk)∑K
l=1 πlf(yi | bli)
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and
∑K

k=1wik(δ) = 1. The weights wik(δ) represent the posterior probabilities that the

ith unit belongs to the kth component.

An efficient way of computing the posterior weights is via the EM algorithm (see the

previous Section):

1. E-step: the expected value score function in (2.11) is computed conditionally based

on the current values of parameter estimates and observed data;

2. M-step: for given weights the likelihood is maximized through a Fisher scoring

algorithm;

It is interesting to note that for n,K → ∞, the estimates of δ are consistent and

asymptotically normal the under usual regularity conditions.

Numerical issues may hold for Gaussian quadrature since locations and correspond-

ing weights are fixed, and this may cause an improper approximation when the inte-

grand function is not suitably regular. An alternative approach is the adaptive Gaussian

quadrature, where the integration points are resampled in subintervals of the integra-

tion domain. For instance, the Gauss-Kronrod quadrature, see Kronrod (1964), is an

adaptive Gaussian quadrature method where error is estimated by evaluating special

points, see Kronrod points. By suitably picking these points, abscissas from the previ-

ous iteration can be reused as part of the new set of points, whereas usual Gaussian

quadrature would require recomputation of all abscissas at each iteration. This is par-

ticularly important when some specified degree of accuracy is needed but the number

of points needed to achieve this accuracy is not known ahead of time, Calvetti et al.

(2000).

When the integral in (2.8) has large dimension, a Monte Carlo approach could be

computationally more efficient , given that the complexity of the algorithm depends only

linearly on the number of dimensions q. For a nice review of Monte Carlo methods, see

for instance James (1980). In this case the likelihood assumes the form:

L(δ) ≈ 1

K

K∑
k=1

f(yi | bik),

bik are K realizations of the multidimensional random variable b∗i , a zero-mean ran-

dom variable with covariance matrix I and density h∗(·, I). Assuming a known density

h∗(·, I), the integral is computed as the arithmetic mean of g∗(·, I) corresponding to the

simulated values of the random coefficients b∗i . In this case, the score function can be

written as follows:

s(δ) =
n∑
i=1

K∑
k=1

wik(δ)
∂ log [f(yi | bi)]

∂δ
, (2.11)

where wik(δ) = f(yi | bik)/
(∑K

l=1 f(yi | bil)
)

. Hence the derivatives ∂ log [f(yi | bi)] /∂δ
can be computed following the same procedure as for the Gaussian quadrature, but sub-

stituting bk with their realizations bik and applying the same EM algorithm.
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Chapter 3

Missing Data

Longitudinal data may suffer from missingness. This means that subjects may not be

measured in some of the planned occasions, or exit the study at a given time before the

end of the study. In this Chapter, we will deal with both these situations and describe

models to treat data with some unobserved entries.

3.1 Missing data issues

Let us suppose to observe a balanced longitudinal study, where i = 1, . . . , n subjects are

observed at t = 1, . . . , T occasions. The response is usually organized in a matrix form

as follows:

Y =

 y1(1) . . . y1(T )

. . .

yn(1) . . . yn(T )

 , (3.1)

i.e. in a rectangular matrix. We will deal with statistical analysis when the Y matrix

includes some unobserved entries. We will refer to these issues as statistical analysis

with missing data, see Little and Rubin (2002). The basic idea of missing data models

is that in several contexts, a missing information could represent an additional infor-

mation. To make this point clearer, we illustrate the following example.

Example 3.1.1. Let us consider the longitudinal study (analysed by Rizopoulos and

Ghosh (2011)) on chronic kidney disease, where patients underwent transplantation with

a graft. The longitudinal outcome is the Glomerular Filtration Rate (GFR), measured

during a 10-years follow-up. From Figure 3.1 it is evident that subjects who complete

the study present different response patterns, when compared to subjects who drop out

from the study. More precisely, dropped-out patients present a mean profile which de-

creases more quickly than the profiles corresponding to the whole sample and to those

who complete the study.

Different ideas may be derived from the previous example. First of all, the data

matrix in (3.1) can be subject to dropout, and subjects may exit the study and do not

17
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Figure 3.1: Mean profiles of GRF for the overall sample (solid line), patients who

complete the study (dotted line) and patients who drop out from the study (dashed

line).

re-enter. For a set of nd drop-outs, the occasions Td1, . . . , Tdnd
are ordered by rows such

that Td1 ≤ Td2 ≤ . . . ≤ Tdnd
≤ T . The data matrix looks like the following:

Ydrop =



y1(1) . . . y1(Td1) NA NA . . . NA
...

ynd
(1) . . . ynd

(Tdnd
− 1) ynd

(Tdnd
) NA . . . NA

ynd+1(1) . . . ynd+1(Tdnd
− 1) ynd+1(Tdnd

) ynd+1(Tdnd+1) . . . ynd+1(T )
. . .

yn(1) . . . yn(T )


.

(3.2)

In this case, the missing-data mechanism is referred to as attrition (or monotone drop-

out), and it is quite common in clinical trials, where patients drop out from the study for

side effects that can be related to the drug, to lack of efficacy or to healing. Molemberghs
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and Kenward (2007) defined these subjects as lost to follow-up. The pattern of attrition

is called monotone, because data can be arranged as in matrix (3.2) such that nd subjects

are potentially missing and the remaining n − nd are completers. As Little and Rubin

(2002) point out, the missing pattern is rarely monotone, but often it can be close

enough to.

On the other hand, the missing pattern could be intermittent, i.e. subjects may not

participate only to some non contiguous occasions, leading to non-monotone missing

endpoints. In this case, the missingness may be due to patients skipping a visit for

practical or administrative reasons or to measurement equipment failure. It is than

evident that the reasons behind these pattern are more complicated to be modelled.

Just to give an example, the majority of clinical trials present dropout, and a small

fraction of them non-monotone patterns. For these reasons, in this work we will put the

emphasis on issues related to dropout.

Another important assumption we make is that the missigness process hides true values

that could be meaningful for the analysis. In this context, we focus on three common

procedures applied to handle missingness:

1. The complete cases analysis (CC): it simply eliminates the dropped obser-

vations, by including in the analysis only the completers. Even if this approach

is of immediate application, it leads to severe inference complications. First of

all, it causes a relevant loss of information, which may lead to inefficient estima-

tors. Moreover, in some cases (these will be discussed in the following paragraph),

inferences based on CC may suffer from bias.

2. The imputation method: it substitutes the missing values with other values

derived through some procedures. As Dempster and Rubin (1987) pointed out,

methods from this class are both seductive and dangerous. In fact, they may create

the illusion that the dataset is complete afterall, making the implicit assumption

that imputed and complete observations contain the same kind of information.

3. The last observation carried forward (LOCF) analysis: it represents a

special imputation method that, in presence of drop-out, carries the last observed

value for all the remaining occasions until the end of the follow-up. The assumption

that patients remain with the same response level since drop-out all along the study

is quite unrealistic, expecially for clinical trials, where it is reasonable to expect

that individual profiles change after leaving the current treatment. Further, like

for imputation methods, it could be problematic to treat imputed subjects in the

same way as completers.

These methods can be defined as ad-hoc practical procedures rather than as methods

based on statistical principles, and the underlying hypotheses are strong and often unre-

alistic. This is of course against the previous assumption of meaningflulness of missing

values, and we will not further deepen these approaches.
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3.2 Rubin’s taxonomy

In this Section we give some definitions regarding the missing data process. First, to

clarify what we mean for missing data mechanism (or process) we define the missing

indicator as

δi(t) =

{
1 if yi(t) is missing

0 if yi(t) is present.
(3.3)

Hence, it is clear that the dropout event can be treated as a random variable describing

a stochastic process varying through time for each individual. As we will further deepen

in the next paragraphs, this concept can be extended also to include survival analysis

model when continuous time.

Literature on missing data has so far been based on specific definition of the missing

process. By indicating with yoi the observed and ymi the unobserved outcome, Rubin

(1976) defined missing data as:

• Missing Completely At Random (MCAR), when the distribution of the miss-

ing data indicator do not depend either on observed or unobserved data, i.e.

P (δi(t)|yoi ,ymi ,xi) = P (δi|xi)

• Missing At Random (MAR), when the event depends only on the observed

information (response, covariates or both), that is

P (δi|yoi ,ymi ,xi) = P (δi|yoi ,xi)

• Missing Not At Random (MNAR), when the event is assumed to be related

both with the observed and unobserved response.

Here the focus is on understanding whether the dropout process is related to the mea-

surement process, see Diggle and Kenward (1994). In case of a mechanism generating

MCAR missing data, a CC analysis may lead to less efficient but still valid estimators,

since the dropout is assumed to be random and it does not add any information suitable

for inference. On the other hand, the MAR hypothesis, when adopting a likelihood

based approach based on the observed information only, is equivalent to the assumption

of MCAR. When the dropout is assumed to be MNAR, standard inference procedures,

lead other than to inefficiency, to potential bias in parameter estimates. While the

former definition entails the mechanism generating missing data, a further taxonomy

could be of interest when the influence of such missingness is inspected with regards to

parameter estimates. In this case, a dropout process is defined to be:

• Ignorable when a combination of MAR and separability in model parameters

between the measurement and the dropout processes hold;
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• Non-ignorable (or informative) when either parameter separability or a MNAR

missing data mechanism hold.

According to Shafer (1997), by parameter separability we mean that the joint parameter

space (η, ξ) is the Cartesian product of the individual parameter spaces for η and ξ, where

η represents the parameter vector for the longitudinal process and ξ the parameter vector

for the missing data process.

A nice review of the objectives and assumptions of models to treat longitudinal data

with drop-out is given by Diggle and Henderson (2007). In particular, they consider

the simple case where a quantitative response Y should potentially be measured at two

occasions, t = 1, 2, but could not be recorded at t = 2 for subjects who drop-out. By

focusing on the estimation of η(t) = E[Y(t)], parametrizations so far can be described

by the following model: 
Y(1) = µ(1) + ε(1)

Y(2) = µ(2) + ε(2)

E(ε(1)) = E(ε(2)) = 0,

(3.4)

where Y(t) is the response at time t. To be more specific, at t = 2 we can distinguish

between the unobserved part of the response Ymiss(2) and the outcome corresponding

to subjects who complete the study Yobs(2). Then, a model for the outcome can be

formulated as 

Y(1) = µ(1) + ε(1)

Yobs(2) = µobs(2) + εobs(2)

Ymiss(2) = µmiss(2) + εmiss(2)

p(δi(2) = 0 | X) = π(X)

E(ε(1)) = E(εobs(2)) = E(εmiss(2)) = 0,

(3.5)

where δi(2) is the drop-out indicator at time t = 2, µ(1), µmiss(2) and µobs(2) are

the marginal expectations of Y(1), Ymiss(2) and Yobs(2), respectively. Given model

structure (3.4), the different objectives in missing data models can be summarized as

follows:

• Model the realized second response, which is given by

Y(2) = δi(2)Yobs(2) + (1− δi(2))Ymiss(2). (3.6)

Most of published studies are implicitly based on the strong and untestable as-

sumption that Ymiss(2) = Yobs(2). This hypothesis may hold when the drop-out

does not affect the measurement process other than making the response unob-

served. Otherwise, it could lead to misleading inference about Y(2). For istance,

when dropout is caused by death, the missing response at t = 2 can not be hy-

pothetically measured after that time, and model 3.6 is meaningless. Thus, one
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should pay attention to the nature of drop-out, to choose the proper parametriza-

tion.

• Model the conditional second response, i.e. make inference on the response at

t = 2 conditional on not dropping out:

Y(2) =

{
Yobs(2) if δi(2) = 0

undefined if δi(2) = 1.
(3.7)

Hence, only completers contribute to inference. This objective is perfectly proper,

when the goal is to study the response for completers.

• Model the hypothetical second response, i.e. assume

Y(2) = Yobs(2). (3.8)

This approach differs from the one proposed in (3.7) because the latter is based on

the conditional distribution of the response at t = 2, whereas model (3.8) focuses

on the marginal one. Thus, if we assume Yobs(2) = Ymiss(2) the realized and

hypothetical response simply coincide.

In practice, a combinations of objectives may also be appropriate. For instance, Kur-

land (2005) discuss an application where two causes of drop-out are considered: death

and possibly informative loss to follow-up. Inference is conducted on the hypothetical

distribution of the response in absence of loss due to follow-up, by conditioning on not

being died (combination of models (3.7) and (3.8)).

Most methods proposed in the literature, see for istance Hogan and Laird (1997),

Hogan et al. (2004) and Davidian et al. (2005), can be summarized in the following

categories:

1. Procedures based on Complete Cases or Imputation analysis, already described in

Section 3.1. In the case of MCAR these procedures do not lead to biased estimates.

2. Weighting procedures, common in population based surveys and based on the mod-

ification of the Horvitz and Thompson (1952) estimator for the population mean

as
n∑
i=1

(πip̂i)
−1yi/

n∑
i=1

(πip̂i)
−1 ,

where πi is the (known) probability of inclusion in the sample for the i-th unit,

while p̂i is the estimate of the probability of the response being observed for the

i-th unit, usually the proportion of responding units in a subclass of the sample.

This approach can be placed in the framework of a MAR drop-out model, given

that the goal is to estimate p̂i, leaving unspecified the relationship between Yobs

and Ymiss.
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3. Model-based procedures, aiming at model the joint distribution of the measurement

process yi and the dropout process (Ti, δi), where Ti is either the follow-up dura-

tion when δi = 0 or the time-to-drop-out (due to several reasons) when δi = 1.

Different models correspond to different factorizations of the joint distribution.

It is straightforward that these procedures can be adequate to handle MNAR

mechanisms. We will further deepen this approach in Section 3.3.

In this context, a relevant issue entails hypothesis testing. In fact, it is potentially

infeasible to verify whether the missing mechanism is dependent on unobserved data.

Diggle (1990) and Ridout (1994) developed an hypothesis testing considering a MCAR

based null hypothesis against a MAR based alternative hypothesis. More recently, sen-

sitivity analysis approaches has been developed, see for instance Verbeke et al. (2001),

Troxel et al. (2004), Ma et al. (2005) and Creemers et al. (2010). In Chapter 4 we will

explore this approach on a theoretical point of view and will focus on how the assump-

tions on the drop-out process affect parameter estimates of the longitudinal process.

This is of interest if one is not interested in establishing the realism of the hypotheses

on the missing process, but, more practically, their potential effects on inference.

3.3 Model frameworks

While the taxonomy in Section (3.2) entails the classification of missing data mechanisms

and their effect on corresponding inferences, in this Section we will discuss the procedures

to joint model the distribution for the primary (longitudinal) and the drop-out processes.

Lee and Nelder (2009) notice that:

”In the statistical literature unobservables appear with various names

such as random effects, latent processes, factor, missing data, unobserved

future observations, potential outcomes, and so on.”

These names often correspond to different model structures, that sometimes represent

the final product of a philosophical point of view rather than an appropriate step-to-

step procedure. As pointed out by Henderson et al. (2000), an optimal model choice in

the missing data framework is cumbersome to be obtained, given that the underlying

assumptions are frequently untestable.

A general scheme for existing models is shown in Table 3.1, where the joint distri-

bution of the longitudinal and the drop-out processes, P (yi, δi|µ, φ), is specified.

More precisely, one can distinguish between:

• Pattern-Mixture Models, that formulate separate sub-models for (Yobs | δi(t) = 0)

and (Yobs,Ymiss | δi(t) = 1). Hence, valid inference for Yobs, and conditional

(on δi(t) = 1) inference for Ymiss. This is appealing for studies where the main

objective is to compare the response distribution in subgroups with possibly dif-

ferent drop-out times. It can be less immediate when one would allow drop-out to
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Models P (yi, δi|η, φ) References

Pattern

Mixture P (yi|δi, η)P (δi|φ) Little (1993)

Selection P (yi|η)P (δi|yi, φ) Diggle et al. (1994)

Shared

Parameter
∫
bi
P (yi|bi, η)P (ri|bi, φ)P (bi)dbi Wu and Carrol (1988)

Table 3.1: Avaliable models for longitudinal data with dropout.

depend on the history of subjects only, since it allows dependence on the future

also.

• Selection Models, see Diggle et al. (1994), based on an explicit model to handle

the distribution of the drop-out process given the measurement mechanism. In the

specific case of model (3.4) with two time occasions, by assuming (Y(1),Y(2)) ∼
N(0, σ2V), where V represent the corresponding correlation matrix, the drop-out

process distribution is given by:

P [δi(2) = 1] =
exp(β0 + β1Y(1) + αY(2))

1 + exp(β0 + β1Y(1) + αY(2))
, (3.9)

with the assumption Y(2) = Yobs(2) = Ymiss(2). Hence, drop-out is MAR when

α = 0. The inference on Ymiss(2) is based on estimating P [Y(1),Y(2)] with

its conditional expectation, derived from the conditional distribution of (Y(2) |
Y(1)). On the other hand, correct inference depends on untestable assumptions

of normality for (Y(1),Y(2)) and on the use of a logistic model for the drop-out.

• Shared Parameter Models. If the omitted covariates substantially contribute to

the response distribution, a mixed model for the longitudinal process could be

appealing. When the unobservable heterogeneity is assumed to be shared by the

measurement and the drop-out processes, a shared parameter model holds. By

following the model in (3.9), i.e. assuming a logistic model for the probability

of drop-out, in the simple case of two measurement occasions the model can be

written as follows: 

Y(1) = µ(1) + b + ε1

Y(2) = µ(2) + b + ε2

b ∼ N(0,D)

(ε1, ε2) ∼ N(0, σ2)

P [δi(2) = 1] =
exp{β0 + αb}

1 + exp{β0 + αb}
,

(3.10)

where independence between b, ε1 and ε2 and conditional independence between

Y(1) and Y(2) given the random effects hold. The basic idea is to define a more
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general model than (3.9), where sources of dependence between the longitudinal

and the drop-out processes can be expressed also through unobsered or omitted

covariates, accounting for quite general, at least in theory, missing data process.

Even if these models are directly identifiable, the distributional assumptions are

generally untestable. We will explore this approach in detail in Section (3.4).

3.4 Shared parameter models

In this Section, we give a detailed review of the wide class of models referred to as

shared parameter models. The first formulation was probably introduced by Wu and

Carrol (1988), where the focus was on longitudinal data subject to right censoring due to

participants’ death or withdrawal. They referred to this phenomenon as primary right

censoring process, and propose to model this kind of event through a probit model. In

formulas, they assume the response follow a random effects model of the form{
yi = xibi + εi

P (δi, T ; ξ,bi) = Φ(ξTbi)
(3.11)

where bi are normally distributed random effects, T is the predefined length of the study,

ξ the set of regression parameters for the dropout process and Φ the normal cumulative

density function of a standard Gaussian random variable. Hence the longitudinal and

the right-censoring primary processes are assumed to share some sources of unobserv-

able individual-specific variability; in other words, the individual biological variability

is assumed to depend only on the fact that different subjects have different propensity

to drop-out, or, more correctly, that the underlying heterogeneity influence both the

measurement and the censoring mechanisms.

The shared parameter model has been further developed, among others, by Follmann

and Wu (1995) and Wulfsohn and Tsiatis (1997). Follmann and Wu (1995) assume that

the influence of missing data on the random effect distribution can be summarized by

a location change which appear to influence the primary response, while Wulfsohn and

Tsiatis (1997) focus mainly on how the parameters of the drop-out process, modelled

through a Cox regression model, are influenced by missing values in time dependent

covariates.

An nice overview of existing methods is given by Tsiatis and Davidian (2004), where

joint modelling of a longitudinal continuous response and a measure of possibly censored

time-to-event are discussed. The longitudinal process may be considered as a time

dependent covariate in the time-to-event process, leading for instance to a proportional

hazard model of the form

λi(t) = λ0(t) exp{ξTWi + αYi(1, t)}

where Wi are baseline covariates (for instance the treatment) and Yi(1, t) is the history

of the longitudinal process up to time t. Yi(1, t) can be considered as a surrogate marker,
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see Prentice (1989), i.e. satisfying the following conditions: i) treatments must have an

effect on the time-to-event, ii) treatment must have an effect on the marker, and iii) the

effect of the treatments should manifest through the marker, i.e. the risk of an event

given a specific marker trajectory should be independent of treatment. Inference on ξ

and α is pursued by maximizing the partial likelihood

n∏
i=1

[
exp{ξTWi + αYi(t)}∑n
i=1 exp{ξTWi + αYi(t)

]
.

As stressed before, however, the longitudinal marker Yi(t) may include missing values

due to drop-out or withdraw from the study. To consider this mechanism, a shared

parameter model is postulated by defining a random effect model for the longitudinal

outcome:

EYi(t) = f(t)Tbi,

where f(t) is a vector of functions of time, and bi are independent Gaussian random

effects representing between-subjects variation in the features of the true longitudinal

trajectories. The corresponding model for the time-to-event is therefore

λi(t) = λ0(t) exp{ξTWi + αf(t)Tbi}. (3.12)

This is the most used parametrization in the context of shared parameter models. Self

and Pawitan (1992) propose a longitudinal model of the form (3.12) with the term

exp{ξTWi} replaced by 1 + ξTWi to make the hazard depend linearly on bi, while

Pawitan and Self (1993) consider a parametric model for the hazard in (3.12).

A limiting aspect of shared parameter models is that they assume a perfect correla-

tion between the random effects in the longitudinal and in the drop-out processes. To

solve this problem and propose a more general and flexible approach, Rizopoulos et al.

(2008b) introduce dependence between the dropout and the longitudinal random effects

through copula functions, see Nelsen (1999). This parametrization is similar to the one

in Henderson et al. (2000), where a bivariate, correlated Gaussian process is introduced

to account for dependence. Hence, the bivariate (joint) random effect density takes the

form:

p(byi, bti | δi) =

{
p(bti; ξ), if δi(ti) = 0

C(p(byi; η), p(bti; ξ)) if δi(ti) = 1,

where C(·, ·) is the density of the copula C(·), byi and bti are the (correlated) random

effects for the longitudinal and the time-to-event processes.

Among others, Huang et al. (2009) discuss diagnostic methods to check random effect

model misspecification.
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We now present the likelihood formulation for a shared parameter model. We define
p(δi(t) | bi, ξ) as the density of the dropout process,

p(yi(t) | bi, η) as the density of the longitudinal process,

p(bi | D) as the density of the random effects,

usually a zero centered multivariate Gaussian.

The likelihood function can be written as

L(yi, δi,bi; θ) =
n∏
i=1

∫
bi

p(δi(t) | bi, ξ)p(yi(t) | bi, η)p(bi | D)dbi, (3.13)

where θ is the vector of all model parameters. Numerical approximations of the integral

in (3.13), such as Gaussian Quadrature described in Section 2.4.2, are usually needed.

On the other hand, some authors stress that parametric assumptions (usually normality)

on bi may be restrictive and sometimes incorrect. For instance, Tsiatis and Davidian

(2001) propose a conditional score approach, that does not make any distributional

assumptions upon the underlying random effect distribution, leading to unbiased esti-

mates of ξ and η treating bi as a nuisance parameter and conditioning on a sufficient

statistic. Song et al. (2002a) follow a semi-parametric likelihood approach where bi
is assumed to have a conditional density in a class H that account for skewness, and

includes multi-modal distributions (the Gaussian distribution is a specific case of this

class).

Example 3.4.1. In the framework of shared parameter models, Joint Models (JM),

introduced by Wulfsohn and Tsiatis (1997), may represent a useful parametrization.

This model assumes, for a continuous longitudinal response yi(t), a linear mixed model

of the form

yi(t) = βTXi(t) + bT
i Zi(t) + εi(t).

Let us indicate by mi(t) = βTXi(t) + bT
i Zi(t) the expected value of the longitudinal

process; the corresponding hazard for the event at time t is given by

λi(t) = λ0(t) exp{γTwi + αmi(t)}.

In this sense, the (error-free) ”true” pattern of the longitudinal outcome rather than the

observed value is assumed to influence the hazard of an event. By ”true” pattern we

mean the value of the predicted process at time t, as postulated by the underlying model

(which may also include with splines or other functional forms).

Interesting enough, in this parametrization both the fixed and the random effects are

shared by the two processes of interest. This means that the maximum likelihood estimate

for β has a contribution from both the longitudinal and the drop-out processes. Thus,

parameter separability holds only when α = 0; the same is true for the ignorability of

the missing data process.
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Chapter 4

Local sensitivity to nonignorability

in shared parameter models

In this Chapter we study the sensitivity of shared parameter models to assumptions

about nonignorability of the dropout process. In Section 4.1, we give a general descrip-

tion of what we mean by sensitivity analysis, and why such analysis should be performed

in presence of missing data. In Section 4.1.1 we give an overview of the main sensitivity

tools proposed in literature so far. We introduce the Index of Local Sensitivity to ingnor-

ability (ISNI) in Section 4.2, while in Section 4.3 we describe a new proposal concerning

local sensitivity which is defined to deal with shared parameter models. The adopted

parameterizations are described in Section 4.4, where we further derive our proposed

sensitivity approach for this class of models. Sections 4.5, 4.6 and 4.7 discuss the use

and properties of the approach in a series of benchmark datasets, while 4.8 deals with a

large scale simulation study designed to analyse proposed indexes behaviour in a vari-

ety of empirical situations. Section 4.9 gives concluding remarks and outlines potential

developments.

4.1 What is a sensitivity analysis?

Sensitivity analysis aims at assessing to what extent the conclusions that can be drawn

by adopting a particular modelling structure are dependent on the (explicit or implicit)

assumptions one makes on it. By definition, it is clear that several approaches are

plausible, depending on which modeling assumptions the researcher is interested in,

and which procedures he/she choices. In this paragraph, we will mention the more

interesting sensitivity approaches proposed in the literature where dependence between

the longitudinal outcome and the missing data mechanism is concerned, with a particular

emphasis on those defined to check for assumptions about the dropout process in shared

parameter models, see Section 3.4.

29
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4.1.1 Sensitivity tools

Several approaches have been proposed to investigate the sensitivity of model parameter

estimates to assumptions regarding the drop-out mechanism, but the majority of those

has been focused on Selection and Pattern Mixture Models (SeM and PMM), see e.g.

Troxel et al. (2004), Ma et al. (2005), Molenberghs and Verbeke (2005) and Molemberghs

and Kenward (2007), with minor contributions to the framework of Shared Parameter

Models. In this Section, we will discuss the main sensitivity tools proposed in the liter-

ature, focusing on Shared Parameter Models (SPMM in the following).

As we have previously mentioned, sensitivity means exploring the robustness of a given

model to one or more model assumptions. From this perspective, one should decide

which assumptions are to be considered; this depends on either the aim of the analysis

or the prior knowledge of the researcher about which assumptions are weaker or more

questionable from a theoretical and/or empirical point of view.

For instance, it is known that shared parameter models are based on the longitudinal and

drop-out process sharing one or more random effects. Rizopoulos et al. (2008a) explore

the sensitivity of shared parameter models to assumptions upon the random effect dis-

tribution when parameter estimates and corresponding standard errors are considered.

The authors find out that, as the number of repeated measures per individual in the

longitudinal process increases, the maximum likelihood estimator of model parameters η̂

under any distributional assumptions upon the random effects tends to converge to the

maximum likelihood estimator under the correct model for b∗i . The reason for this result

is that, as the number of repeated measures increases, the longitudinal measumerement

process becomes the dominating part of the posterior distribution p(bi | yi, δi; θ), im-

plying that the choice of the prior distribution has a minor role. On the other hand,

the effect on estimated standard errors of this distributional assumption could be more

prominent.

Another important issue in SPM regards the definition of the dependence structure be-

tween the longitudinal and the dropout process. As it has been pointed out in Section

3.4, the standard SPM postulates the existence of a perfect correlation between the two

mechanisms, given that they share the same random coefficients. It is clear that this

hypothesis may not appropriately describe the data structure. It may happen that, for

instance, the correlation between the random coefficients of the two processes exists but

it is different from 1. Sensitivity of shared parameter models to the association between

the missing and the longitudinal processes has been conducted by Rizopoulos et al.

(2008b). The authors describe the dependence structure between the random effects

through the application of copulas, see Section 3.4. The results show that different kind

of copulas, chosen to describe the association structure, can significantly alter parameter

estimates.

In the context of missing data, a relevant but usually untestable assumption is the ignor-

ability of the drop-out process. It is known that SeM, PMM and SPM assume that the

drop-out mechanism is MNAR and model potential dependence through the introduc-
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tion of non-ignorable parameters (SeM and SPM) or through conditioning the observed

response on the observed pattern of participation to the study (PMM). In this context,

one may wonder whether the parameter estimates obtained through the corresponding

MAR model are different from the parameter corresponding to the MNAR assumption,

i.e. if the parameter estimates are sensitive to the assumption of non-ignorability.

Alfó et al. (2010) propose an informal approach to check sensitivity of parameter esti-

mates from mixed logistic model when missing data are supposed to be non-ignorable

and evaluate the results in a simulation study. They consider binary longitudinal data

and focus on how much significance of parameter estimates changes, when a pattern

mixture model (with interaction between the length of the participation to the study

and all the other covariates in the model) is fitted as preliminary sensitivity tool. The

following example will clarify this concept.

Example 4.1.1. Let us consider a simulation study where the binary longitudinal re-

sponse is defined according to

yi(t) | xi(t),bi ∼ Bin(1, πit),

logit(πit) = (β0 + bi1) + xi(t)β1 + zi(t)(β2 + bi2) i = 1, . . . , n

t = 1, . . . , T

where Xit ∼ N(0, 3) and Zit ∼ N(0, 1.5) are the design matrices for the fixed and

random effects, respectively, bi ∼ MVN

(
0,

[
1 0

0 1.2

])
are the random coefficients

and n = {100, 200, 500} the sample sizes. Moreover the measurement occasions are

T = {10, 15} and the fixed effects are β0 = 0.5, β1 = 0.5 and β2 = −0.7. The drop-out

process is described by an exponential random variable ti ∼ Exp(λi) where three MNAR

mechanisms are considered:

1. λi = exp(
∑T

t=1 yit) = exp(
∑
y0
it + ymit )

2. λi = exp(ρW + bi2), W ∼ N(0, 1), ρ = 2

3. λi = exp(ρW + bi1)
′′,

while ignorable assumptions are expressed by the following scenarios:

• MCAR: λi = λ

• MAR: λi = exp(
∑Si

t=1 yit) = exp(
∑
yoit)

The fitted pattern mixture model of the form

y = (β0 + b1) + β1X + (β2 + b2)Z + γ0S + γ1X ∗ S + γ2Z ∗ S

, where S =
∑T

t=1 1−δi(t), where δi(t) = 0 if the individual is observed at time t, δi(t) = 1

otherwise. The variable S plays a central role to understand how the propensity to stay
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in the study influences parameter estimates and their significance. The authors guess

that a significant estimate for γ0, γ1 or γ2 implies that the missing data mechanism is

non ignorable as far as parameter estimates in the ”main” model, i.e. β0, β1 and β2 are

concerned. Tables 4.1 and 4.2 represent the PMM parameter estimates when MCAR,

MAR and MNAR assumtions hold.

Setup Parameters perc. sign.

n T β̂0 β̂1 β̂2 γ0 γ1 γ2

100 10 0.447 0.480 -0.633 0.070 0.040 0.050

100 15 0.572 0.523 -0.650 0.060 0.100 0.110

MCAR 200 10 0.540 0.488 -0.694 0.079 0.050 0.109

200 15 0.556 0.483 -0.654 0.094 0.059 0.084

500 10 0.483 0.499 -0.651 0.062 0.047 0.016

500 15 0.432 0.461 -0.621 0.134 0.045 0.149

100 10 0.883 0.466 -0.734 0.08 0.04 0.100

100 15 0.636 0.483 -0.703 0.14 0.02 0.190

MAR 200 10 0.798 0.529 -0.634 0.07 0.09 0.050

200 15 0.712 0.478 -0.716 0.1 0.07 0.070

500 10 0.739 0.493 -0.592 0.125 0.028 0.069

500 15 0.635 0.487 -0.657 0.122 0.068 0.041

Table 4.1: PMM for the longitudinal process. MCAR and MAR case

The proportion of simulated samples where the γs, representing the interaction be-

tween covariates (intercept included) and the length of the observed individual sequence,

S, are significant at a prespecified α level, say α = 0.05, are substantially higher, when

the dropout is MNAR. To sum up, PMM can be viewed as a sensitivity analysis tool to

gain information on the dependence link between the two processes, as well as on the

potential effects of this dependence on parameter estimates for the longitudinal process.

When a random intercept model is used for the longitudinal process, MNAR data lead,

at most, to biased intercept estimates, as shown by Table 4.2, case MNAR3. In this

case, we do not really need shared intercept parameter models.

In the following Sections, we will consider another approach based on the concept

of local sensitivity, that focuses on the changes of maximum likelihood estimates as one

moves from the MAR to the MNAR assumption.

4.2 Local sensitivity to non-ignorability

In this Section, we review the general formulation of the Index of Local Sensitivity to

Nonignorability (ISNI), proposed by Troxel et al. (2004) and extended by Ma et al.

(2005). Other interesting extensions of this approach to Selection Models are dealt with
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Setup Parameters perc. sign.

n T β̂0 β̂1 β̂2 γ0 γ1 γ2

100 10 1.615 0.481 -0.735 0.550 0.06 0.070

100 15 1.266 0.511 -0.678 0.570 0.06 0.090

MNAR1 200 10 1.318 0.508 -0.669 0.851 0.104 0.119

200 15 1.366 0.478 -0.712 0.845 0.068 0.078

500 10 1.461 0.492 -0.654 1.000 0.029 0.059

500 15 1.256 0.483 -0.64 0.990 0.04 0.070

100 10 0.617 0.537 0.302 0.090 0.060 0.710

100 15 0.448 0.512 0.259 0.090 0.060 0.820

MNAR2 200 10 0.590 0.475 0.299 0.020 0.030 0.900

200 15 0.444 0.496 0.247 0.110 0.070 0.970

500 10 0.499 0.506 0.404 0.045 0.036 0.991

500 15 0.516 0.499 0.306 0.087 0.058 1.000

100 10 1.904 0.532 -0.712 0.830 0.07 0.070

100 15 1.813 0.562 -0.867 0.870 0.05 0.130

MNAR3 200 10 1.573 0.497 -0.677 0.995 0.035 0.139

200 15 1.281 0.471 -0.647 1.000 0.06 0.104

500 10 1.902 0.511 -0.659 1.000 0.078 0.097

500 15 1.645 0.507 -0.698 1.000 0.047 0.047

Table 4.2: Average parameter estimates and proportion of samples where parameter

estimates are significant at level 0.05. MNAR case.

by Xie (2008), Xie (2009) and Qian and Xie (2010). The ISNI is defined to measure the

local sensitivity of ML parameter estimates to departures from the MAR assumption, i.e.

to investigate how much maximum likelihood parameter estimates for the longitudinal

process are influenced by the hypothesis about ignorability of the drop-out mechanism.

We will start by adopting the modelling structure given by Wulfsohn and Tsiatis (1997).

In this Chapter, the interest will lie only on the parameters for the longitudinal process,

described by a linear mixed model.

Let β̂(α) and γ̂(α) denote the ML estimates for the longitudinal and the survival

process parameters in a general shared parameter model, when a non null value of α is

kept fixed. On the other hand, let β̂0 and γ̂0 be the corresponding ML estimates under

the MCAR model obtained by setting α = 0. The ISNI measures the rate of change of

β̂(α) from β̂0, for a unit displacement of α from 0; it is based on the derivative of β̂(α)

with respect to α, evaluated at β̂0, γ̂0 and α = 0. To derive the index, the likelihood

function is expanded around (β̂0, γ̂0, α = 0); by writing θ = (θ1, θ2, θ3) = (β, γ, α), we
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have:

L(β, γ, α) ≈ L(β0, γ0, α) +
[
(β − β̂0)

′, (γ − γ̂0)
′, α
]
∇L

+
1

2

[
(β − β̂0)

′, (γ − γ̂0)
′, α
]
∇2L

[
(β − β̂0)

′, (γ − γ̂0)
′, α
]′
,

where ∇L = {∇Li}i=1,2,3 and ∇2L = {∇2Lij}i,j=1,2,3 represent the score vector and the

Hessian matrix for the parameter vector. The index of sensitivity to nonignorability is

defined as follows:

ISNI = ∇β̂(α)
∣∣
α=0

= −(∇2L11)
−1∇2L13

∣∣
α=0

. (4.1)

The main advantage of this approach is that it does not actually require to fit the MNAR

model, but only to compute the corresponding Hessian matrix. The previous expansion

allows us to write the ML estimate of β as a function of α; according to Xie (2008) we

may write:

β (α) ∼= β0 +
∂β (α)

∂α
α. (4.2)

yielding to the following approximation:

ISNI ∼=
1

α
(β (α)− β0) , (4.3)

which represents the ratio of the difference between the MNAR and the MAR estimates

to the value of the nonignorability parameter. Xie (2008) extend the ISNI methodology

to handle longitudinal non-Gaussian data subject to non-ignorable dropout, by assuming

a Selection Model. The author considers the approximation β1(α) = β1(0) + ISNIα for

the MNAR parameter estimate and observes that this approximation seems to be related

to the drop-out proportion. However, as it can be easily noticed, the proposed ISNI

represents an absolute measure and therefore can be hard to interpret. In fact, we need

to assess whether the observed ISNI value could be due to a substantial departure of the

MNAR estimates from the MAR ones, or rather to sampling variability in the index,

since when a SPM is fitted, α = 0 means that the β estimates change interpretation.

For this purpose, many relative formulations have been proposed; for instance, Troxel

et al. (2004) consider the ratio of the ISNI to the standard error of the corresponding

MAR estimate, stating sensitivity when this ratio is greater than 1. However, as it

can be evinced by looking at expression (4.3), the standard error of the MAR estimate

clearly understates the index variability, since it neglects the variability of the ISNI,

which could be present also when the adopted model is the true one and α = 0.

An interesting alternative for a relative formulation of the ISNI is the relative ISNI

(isni), based on the ratio of the absolute ISNI to the corresponding MAR estimate; for

example, if the j-th element of β is considered, the isni is defined as follows:

isniβj
=
ISNIβj

β̂0j

. (4.4)
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Since the ISNI is the rate of change of a parameter estimate, it could be reasonable

to compare this change to the corresponding MAR estimate; this ratio would help in

assessing the effective weight of the displacement, due to α moving away from zero. We

suggest to consider a value of |isni| ≥ 0.5 as indicating some sensitivity; this means that,

for a unit change of the association parameter from zero, the ML parameter estimate

varies by 50% of its actual value. The isni represents a direct comparison between the

index and the corresponding parameter estimate calculated under MAR assumption and

leads to a direct and straightforward interpretation. However, some concerns could raise

when the MAR estimate is near to zero; in this case, an interesting alternative could be

represented by the ratio of the ISNI to a measure of its sampling variability. As it can

easily observed by looking at (4.2), this variability can not be consistently estimated by

the standard error of the MAR estimate. Rather, we propose to estimate the ISNI as

the slope in the regression model (4.2) by using, as a formal response, the parameter

estimates β̂(α) calculated for the data at hand (generated from the MAR hypothesis,

with true α = 0), by fixing α to a set of predetermined values. These values serve

as a covariate in the regression model, where β̂0 represents the intercept, the ISNI is

the corresponding slope and the index variability could be approximated by the slope

standard error. This may lead to an estimate of the sampling variability for the index,

since, for α = 0, the only source of variability is the one around the ISNI mean value.

4.3 Local sensitivity in shared parameter models

In this Section, we study the sensitivity of inferences to assumptions regarding the

drop-out mechanism when a shared parameter model is considered. The majority of

literature on sensitivity to the assumptions upon ignorability of drop-out process has

focused on Selection and Pattern Mixture Models, see e.g. Troxel et al. (2004), Ma

et al. (2005), Molenberghs and Verbeke (2005) and Xie (2008). Not too much has been

done so far for the Shared Parameter Model, with the only exception of the recent work

by Creemers et al. (2010). In the latter, the authors consider various specifications for

a SPM, obtained by varying the random effect structure. In these parameterizations,

they introduce a scale parameter which is not identifiable, representing the effect of

the dependence between the missingness process and the missing observations given the

observed ones. This parameter plays the role of sensitivity parameter ; only by fixing

the sensitivity parameter the model can be fitted. A grid in the sensitivity parameter

space is defined, and for each of the values, the model is fitted and the missing response

is imputed using conventional multiple imputation procedures. Re-fitting the model us-

ing these imputations, and summarizing the different inferences resulting from different

imputations into a single set of inference, purports to sensitivity analysis. However, the

obtained results represent a function not only of the random effect structure but also of

the adopted imputation procedure. Therefore, we cannot distinguish between sensitivity

to model structure and/or missing data imputation procedure.
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For this reason, we focus on local sensitivity and extend the Index of Local Sensitivity

(ISNI), see Section 4.2, to shared parameter models framework; our goal is at measuring

how much the maximum likelihood estimates are influenced by assumptions regarding

the dependence between the longitudinal outcome and the drop-out mechanism. The

main advantage of this approach is that it does not require a complete shared parameter

model to be fitted but, rather, it is based on quantities that can be calculated by fitting

a missing at random (MAR) model.

As far as the model structure is entailed, we will discuss two different parameterizations.

First, the standard Shared Parameter Model, where subject-specific random effects in-

duce association between the longitudinal and the survival process. Second, the so called

Joint Model, where the expected value of the primary (longitudinal) response influences

the current risk of the event; in this model structure, fixed and random effects are shared

by the longitudinal and the survival model. Since the ISNI is an absolute measure of

changes in parameter estimates induced by departures from the MAR assumption, we

propose a relative formulation based on the ratio between the ISNI and the correspond-

ing MAR estimate, highlighting potential interpretation and drawbacks of this (relative)

index. Next, we focus on the sampling variability of the index, providing different es-

timates for the corresponding standard error; this will help us define a further relative

index, defined as the ratio of the ISNI to the sampling variability when the true model is

MAR. We will discuss three longitudinal studies to highlight different conclusions about

sensitivity and ISNI behaviour. The first one is a clinical trial concerning AIDS, see

Goldman et al. (1996) and Carlin and Louis (2009), with the objective of comparing

the efficacy/safety of two antiretroviral drugs by recording a longitudinal response (the

CD4 cell count) and the time to death of 467 HIV infected patients. We are particularly

interested in investigating how much the longitudinal evolution of the CD4 cells count

and the occurrence of the event are related. As a second example, we consider the

primary biliary cirrhosis (PBC) data, see Murtaugh et al. (2002), where 312 patients

have been considered to test for treatment effect on survival after adjusting for the lon-

gitudinal bilirubin levels. Third, we consider a longitudinal study on chronic kidney

disease, see Rizopoulos et al. (2008a), where 407 patients undergoing a primary renal

transplantation with a graft in the University Hospital of Leuven (Belgium) between

1983 and 2000 have been considered. Further, we discuss the performance of abolute

and relative indices through a simulation study where several scenarios for the number

of subjects, the random effect covariance structure, the association structure between

the longitudinal and the survival process are considered. This would help us study in-

dices behaviour when the model is correctly specified and when it is partially/globally

misspecified.



4.4 Shared Parameter Models for Gaussian Random Variables 37

4.4 Shared Parameter Models for Gaussian Random

Variables

In this Section we describe two particular parametrizations of the Linear Shared Pa-

rameter Models we are interested in.

Longitudinal studies often record two types of outcomes: repeated measurements of

a response of interest, and realizations of a time-to-event process representing drop-out.

An example can be derived from AIDS studies, where interest lies in the longitudinal

evolution of markers such as the CD4 cells count. In this setting, the longitudinal re-

sponse is directly related to the event process, where the event could be represented

by sieroconvertion, dropout due to several reasons, or death; after an event has oc-

curred, longitudinal measurements are no longer collected or considered nonrelevant,

therefore inducing dropout. In many cases, the dropout process may depend on the

unobserved values of the longitudinal response, thus corresponding to a missing not at

random framework. Literature has so far concentrated on three modeling frameworks for

the joint analysis of a longitudinal outcome and a (nonrandom) dropout process, these

have been have reviewed in Chapter 3: Selection Models, Pattern Mixture Models, and

Shared Parameter Models. Even though these models can be quite flexible in the spec-

ification of the dropout mechanism, not too much trust must placed on corresponding

inferences due to potential sensitivity of parameter estimates to (unverifiable) modelling

assumptions. For istance, Little (1995) suggest sensitivity analyses to assess the effect

on inferences of alternative assumptions about the drop-out process about target quan-

tities. In particular, as it has been pointed out, among others, by Molemberghs and

Kenward (2007), the MNAR model is not fully verifiable from the data, since it is based

on the assumption that the dropout mechanism depends on unobservable variables. This

phenomenon is complicated by the fact that, for every MNAR model fitted to a set of

data, there is a MAR counterpart providing exactly the same fit. This can be proved

for shared parameter model through the following steps:

1. The likelihood for the MNAR model is

L(·) =
n∏
i=1

∫
bi

p(yi | η,bi)p(δi | φ,bi)p(bi | D)dbi.

This leads to the maximum likelihood estimates η̂, φ̂ and D̂ for the longitudinal

and dropout model parameters and the random effects covariance matrix.

2. The hypothetical fit to the fully observed data is

p(yi, δi | η̂, φ̂, D̂ =

∫
bi

p(yi | η,bi)p(δi | φ,bi)p(bi | D)dbi.

3. The dropout mechanism is MAR if

p(δi | φ,bi) = p(δi | φ).
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This means that the random effects are not shared by the dropout and the longitu-

dinal processes, but represent only between subjects variation in the longitudinal

process due to repeated measurements taken at different time points on the same

individuals.

4. The fit obtained from a MNAR model is exactly riproducible from a MAR model

given that

L(·) =
n∏
i=1

∫
bi

p(yi | η,bi)p(δi | φ,bi)p(bi | D)dbi (4.5)

=
n∏
i=1

p(yi | η)p(δi | φ), (4.6)

which means that it is possible to find η∗ and φ∗ such that the second equivalence

in (4.5) is verified.

The basic assumption of shared parameter models is that of conditional independence,

expressed by the following equations:

p(Ti, δi, yi | bi; θ) = p(Ti, δi | bi; θ)p(yi | bi; θ)
p(yi | bi; θ) =

∏
j

p{yi(tij) | bi; θ}.

That is, conditionally on the random effects, the repeated measurements for the generic

individual are independent, and the same is true for the longitudinal and the survival

processes. The random coefficients allow for within-individual dependence in the longi-

tudinal process, and for dependence between the longitudinal and the survival processes.

Let Yi(t) represent a longitudinal continuous response recorded for the ith subject

(i = 1, . . . , n) at time t and let yi(t) be the corresponding observed outcome. First, we

will assume that Yi(t) follows a linear mixed model of the form:

Yi(t) = βTxi(t) + bT
i zi(t) + εi(t), (4.7)

where εi(t) ∼ N(0, σ2) is the measurement error, bi ∼ MVN(0, D) is a set of random

coefficients, while xi(t) and zi(t) are the design vectors corresponding to fixed and ran-

dom effects, respectively. The random terms bi and εi are assumed to be independent;

the first is time-invariant and shared by the response for the i-th subject i responses,

while the latter represents unstructured, time-varying, random variation from the true

individual signal. Often, longitudinal outcomes are not observed for the whole study

period since some individuals may leave the study before its designed end, potentially

due to a secondary event. That is, the occurrence of the event at time t may induce

dropout in the longitudinal outcome since no longitudinal measurements are collected

at time t or afterwards. The dropout is said to be non random if the probability of

dropout, conditional on the observed unit characteristics, still depends, either directly
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or indirectly, on the unobserved longitudinal responses. In this case, standard estimation

procedures may lead to inconsistent parameter estimates. Formally, let yoi and ymi de-

note the observed and the missing longitudinal responses for the i-th unit, i = 1, . . . , n.

Let us denote by Ti = min(T ∗i , Ci) the observed failure time for the ith individual, taken

as the minimum between the true event time T ∗i and the censoring time Ci, in most em-

pirical cases the study completion time; δi is the corresponding event indicator defined

by δi = I(T ∗i ≤ Ci). The longitudinal response yi is therefore observed before Ti and

is missing at and after Ti, and the observed failure time Ti may represent either a true

event time or a censoring time. Typically, we assume that the longitudinal process is

associated with T ∗i , i.e with the true event time, but is independent of Ci. According

to this framework, dropout could be due to the occurrence of a particular event (with

T ∗i ≤ Ci and δi = 1) or to censoring due to potentially noninformative events (with

T ∗i > Ci and δi = 0). In this sense, a clear distinction should be made between dropouts

due to events where longitudinal responses are no longer available (eg death events which

may represent censoring events) and dropouts where longitudinal responses could have

been registered should the subject have been participating to the study. Our aim is

to account for potentially informative dropouts and investigate their effect on model

parameter estimates for the longitudinal outcome; shared parameter models (SPMs)

represent an appealing framework for joint modeling of longitudinal and survival pro-

cesses, since the repeated measurements and the time to dropout are assumed to share

a set of time-invariant, subject-specific random effects, which induce dependence in the

univariate profiles as well as between the two processes.

To be more general, the association between the longitudinal (primary) and the

dropout (secondary) process is defined by adopting two different parametrizations: the

first one, referred to as the joint model, introduces the expected value of the longitudinal

process in the model describing the hazard function for the survival process. The second

one, referred to as the standard shared parameter model, postulates that a set of random

effects is shared by the longitudinal and the survival model. In both cases, the survival

process is assumed to follow a proportional hazard model, Cox (1972). Let us first

consider the joint model as formulated by Fawcett and Thomas (1996) and Wulfsohn

and Tsiatis (1997); here, the risk of experiencing the event at time t depends on the

expected value of the longitudinal outcome at the same time, where random biological

is not considered. The model can be expressed by a set of two equations, one for the

longitudinal and the other one for the survival part:{
Yi(t) = mi(t) + εi(t)

hi(t |Mi(t),wi) = h0(t) exp{γTwi + αmi(t)}, i = 1, . . . , n
(4.8)

where mi(t) = βTxi(t) + bTi zi(t) is the expected value of the longitudinal process at

time t for the ith individual, Mi(t) = {mi(u), 0 ≤ u < t} represents the history of mi(t)

until time t, Wi is a row vector of baseline covariates and h0(t) denotes the baseline risk

function. The degree of dependence between the longitudinal and the survival processes
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is measured by the association parameter α, which is introduced to assess potential

nonignorability of the missing data mechanism. As it can be easily noticed, in model

(4.8), the survival process share the set of fixed and random effects defining the linear

predictor for the longitudinal response. Thus, we have two potential sources of non-

ignorability: when α 6= 0 the two processes are not independent, since they share the

same set of random coefficients; furthermore, fixed effects β appear in both submodels

and parameter distinctiveness does not hold. Adopting a different perspective, we may

look at standard SPMs, where the two submodels share only a set of random coefficients;

the aim here is to study how unobserved individual-specific variability in the longitudinal

process influences the time to the event. In this case, the hazard function can be defined

as follows:

hi(t | bi,Wi) = h0(t) exp{γTWi + αTbi}
= h0(t) exp{γTWi + α1b1i + . . .+ αkbki}. (4.9)

This model structure can be of interest should the focus be on identifying the in-

fluence on time-to-event of subject-specific unobservable characteristics, when distin-

guished from the observed ones. In this case, α represents a vector of k elements, and

each of its components is the nonignorability parameter for the corresponding random

effect. A relevant issue concerns the meaning of a (near) null estimate for α. In both

models (4.8) and (4.9), this leads to a missing completely at random (MCAR) model,

that is, to the assumption that the dropout mechanism, once conditioned on available

covariates, does not depend on the longitudinal response, either observed or missing.

In fact when α = 0 model parameters in the two submodels are distinct, the joint

probability of the dropout and the longitudinal processes can be factorized as follows:

p (Ti, δi, Yi(t)) = p(Ti, δi)p(Yi(t)).

The same can be done with the log-likelihood function with respect to the fixed effects

in the longitudinal process. As we adopt a maximum likelihood approach to parameter

estimation, we know that parameters estimates derived from maximizing the likelihood

of the longitudinal process, that is p(Yi(t)), yield maximum likelihood estimates that

are valid under both MCAR and MAR assumptions, i.e. under the hypothesis that the

dropout mechanism depends on the observed responses only. Thus, while α = 0 implies

a MCAR mechanism, it leads to parameter estimates that are still valid under MAR

hypotheses.

To illustrate that a shared parameter model corresponds to a MNAR mechanism,

let us suppose that T ∗i denote the event (e.g. drop-out) time for the i-th individual, i.e.

Ti = min(T ∗i , Ci), and let us indicate with yoi and ymi the set of observed (before time

Ti) and missing (at and after time Ti) longitudinal measurements for the i-th subject.

The missing data mechanism, i.e. the conditional distribution of the dropout process
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given the complete longitudinal data vector (yoi ,y
m
i ), is given by:

p(Ti | yoi ,ymi ) =

∫
p(Ti | bi)p(yoi ,ymi | bi)p(bi)dbi∫

p(yoi ,y
m
i | bi)p(bi)dbi

=

∫
p(Ti | bi)p(bi | yoi ,ymi )dbi, (4.10)

which depends on ymi through the posterior distribution of the random effects.

4.4.1 ISNI in Shared Parameter Models

In this section, we present the general formulation of the ISNI for shared parameter

models, when association structures (4.8) and (4.9) are considered. A more detailed

derivation can be found in Appendix A. The log-likelihood function for a general SPM

can be written as follows:

`(θ) = `(θ | Ti, δi,yi) =
∑
i

log

∫
bi

p(Ti, δi | bi; θ)p(yi | bi; θ)p(bi; θ)dbi, (4.11)

where

p(Ti, δi | bi; θ) = p(Ti | bi; θ)δiS(Ti |Mi(t),Wi; θ)
1−δi

= h(Ti |Mi(t),Wi; θ)
δiS(Ti |Mi(t),Wi; θ),

and θ is the overall model parameter vector. If a joint model parameterization is adopted,

the survival function at time t is given by

S(t |Mi(t),Wi; θ) = exp

{
−
∫ t

0

h0(s) exp
{
γTWi + αmi(s)

}
ds

}
, (4.12)

while, if the association between the longitudinal response and the time to dropout is

based on sharing random coefficients, the survival function can be written as follows

S(t | bi,Wi; θ) = exp

{
−
∫ t

0

h0(s) exp
{
γTWi + αTbi

}
ds

}
. (4.13)

The integral in (4.12) does not have an analytical solution, while the one in (4.13)

has a closed form. To calculate the ISNI, we need the second order derivatives of the

log-likelihood. For a general shared parameter model, see e.g. Rizopoulos et al. (2009),
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the score function takes the form :

s(θ) =
∂`(θ)

∂θ
=
∑
i

si(θ) =
∑
i

∂

∂θT
log

∫
p(Ti, δi | bi; θ)p(yi | bi; θ)p(bi; θ)dbi

=
∑
i

1

p(Ti, δi, yi; θ)

∂

∂θT

∫
p(Ti, δi | bi; θ)p(yi | bi; θ)p(bi; θ)dbi

=
∑
i

1

p(Ti, δi, yi; θ)

∫
∂

∂θT
p(Ti, δi | bi; θ)p(yi | bi; θ)p(bi; θ)dbi

=
∑
i

∫ [
∂

∂θT
log {p(Ti, δi | bi; θ)p(yi | bi; θ)p(bi; θ)}

]
× p(Ti, δi | bi; θ)p(yi | bi; θ)p(bi; θ)

p(Ti, δi, yi; θ)
dbi (4.14)

=
∑
i

∫
q(θ,bi)p(bi | Ti, δi, yi; θ)dbi,

where

q(θ, bi) =
∂

∂θT
log p(Ti, δi, yi, bi; θ)

=
∂

∂θT
{log p(Ti, δi | bi; θ) + log p(yi | bi; θ) + log p(bi; θ)} .

For the index pair (u, v) and the i-th individual, the generic element in the Hessian

matrix takes the following form:

∂si(θu)

∂θv
=

∂

∂θv

∫
q(θu,bi)p(bi | Ti, δi, yi; θu)dbi

=

∫
∂q(θu,bi)

∂θv
p(bi | Ti, δi, yi; θ)dbi + I1,

where

I1 =

∫
q(θu,bi)

{
∂ log p(bi | Ti, δi, yi; θu)

∂θv

}T

p(bi | Ti, δi, yi; θu)dbi

=

∫
q(θu; bi)

{
∂ log p(Ti, δi | bi; θu) + log p(yi | bi; θu) + log p(bi; θu)

∂θv
−

∂ log p(Ti, δi, yi; θu)

∂θv

}T

p(bi | Ti, δi, yi; θu)dbi

=

∫
q(θu,bi) {q(θv,bi)− si(θv)}T p(bi | Ti, δi, yi; θu)dbi.

and, as outlined before, si(θ) is the score vector for the ith subject. To calculate the

ISNI, we have to consider the matrix with (u, v)-th element given by

Hθuθv =
∂si(θu)

∂θv

∣∣∣
α=0

(4.15)
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Here, α is a constant or a vector depending on the adopted model structure, i.e. on the

sources of variability that induce dependence between the two processes.

When we adopt a joint model, α is a constant and the ISNI is a vector, while when we

adopt a shared parameter model, α is a vector and the corresponding ISNI is a matrix

with j = 1, . . . , K columns, each representing the ISNI with respect to a generic element

αj in α (see Appendix A for further details). From a computational point of view, we

have to analytically compute the score vector with respect to the parameters of interest

and then proceed to numerical derivation. To calculate the Hessian, we apply Gauss–

Hermite quadrature since the integral with respect to bi in the score function (4.14)

does not have a closed form.

4.4.2 Assessing ISNI variability

A further key question concerns how to assess the sampling variability of the ISNI, when

the MAR assumption it true. This could be of interest for different reasons: first, to

assess the precision of the ISNI estimate; second, it could lead to a valid alternative for

a relative index of sensitivity, rather than comparing the absolute ISNI to the standard

error of the MAR estimate, as in Troxel et al. (2004).

Moreover, Shared Parameter Models are based on the so called non-separability of pa-

rameter estimates. This means that, for any value of α, there could be sensitivity to

non-ignorability even if the proportion of dropout is null. In this case, we have δi = 0,

and

p(Ti, δi | bi) = hi(t)
δiSi(t) = Si(t),

where Si(t) = exp{−
∫ t

0
h0(t) exp{γTWi + αmi(t)}} for the joint model parametriza-

tion and Si(t) = exp{−
∫ t

0
h0(t) exp{γTWi + αbi)}} for the standard shared parameter

model. Hence, the dependence between the two processes still holds, and α could as-

sume a non-null estimate also in case of no subjects dropping out.

Previous considerations allow us to suggest that an estimate of ISNI variability calcu-

lated under the MAR assumption could be an appealing measure of the behaviour of the

index, and the relative formulation ISNI/se(ISNI) may account for the index variability

and for interpretational issues due to parameter non-separability. As it can be noticed

by looking at the simulation study we will illustrate at the end of this paragraph (see

Table 4.3), the standard error of the ISNI when α is assumed to be null is different from

zero, meaning that the ISNI is not exactly null under non-ignorability.

To find a measure of the ISNI variability, we may approximate the ISNI as the slope of

the regression model in equation (4.2), where β(α) is computed from the joint model

by fixing a priori different values for the nonignorability parameter, and β0 is fixed at

the MAR estimate. By definition, the ISNI represents the slope of the tangent curve to

β(α) at α = 0.

The approximation in equation (4.2) gives an interesting framework to obtain an es-

timate of the ISNI standard error. To show that, we performed the following small
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simulation study. We have drawn samples from the joint model (4.8) with α = 0 fol-

lowing the simulation design in Section 4.8. We define α as a vector containing equally

spaced values in the range [−2, 2], compute β0 as the MAR estimate from the simulated

data and β(α) as the MNAR estimates corresponding to fixed values for α. We esti-

mate the ISNI from model (4.2) and calculate the corresponding standard error with

respect to the time variable. This procedure has been repeated for B = 100 samples.

The resulting standard error estimate, the Monte Carlo estimate of the standard error

obtained from the simulation study discussed in section 4.8 when data are generated

according a true MAR model, i.e. with α = 0, and the standard error of the MAR

estimate are shown in Table 4.3 with respect to the time variable effect.

Regression 0.041

Monte Carlo 0.072

MAR 0.004

Table 4.3: Simulation results. Estimates of the standard error of the ISNI under a

MAR assumption: regression model estimate, Monte Carlo estimate, standar error of

the MAR estimate for the time effect.

It is evident that the proposed approximation to the ISNI standard error and the

Monte Carlo estimate of the same quantity seem to agree; therefore, this could be in-

terpreted as the sampling variability of the ISNI around its mean value when α = 0, i.e.

under a MAR model, due to parameter non-separability. Whereas, the standard error

of the MAR estimate is much smaller.

Finally, Figure (4.1) represents the regression approximation of the ISNI and corre-

sponding current values of β(α) with varying α.

It is clear that the linear approximation is better as α approaches 0.

4.5 AIDS data

We look back at the motivating example briefly mentioned in Section 4.3, see Goldman

et al. (1996) and Carlin and Louis (2009). The longitudinal study on 467 HIV infected

patients with the aim at comparing the efficacy and safety of two randomly assigned

antiretroviral drugs: didanosine (ddI) and zalcitabine (ddC). The longitudinal response

is the CD4 cell count, recorded at the randomization time and after 2, 6, 12 and 18

months. By the end of the study, 188 patients have died, corresponding to 60% censoring.

For the longitudinal process, we consider a linear mixed model of the form:

yit = β0 + β1xi1 + β2xi2 + b0i + b1ixi1 + εit, (4.16)

where xi1 and xi2 represent time and interaction between treatment and time, respec-

tively. For the survival part, Weibull proportional hazard model is adopted,

hit = ξtξ−1 exp{γ0 + γ1wi + αmi(t)}.
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Figure 4.1: Linear approximation of the ISNI.

For this and the following analysed dataser, we will focus only on sensitivity of JM

parameters estimates, since the objective will be the evaluation of the performance of

the ISNI rather than the comparison of the sensitivity between the two parametrizations.

Table 4.4 shows the values of the absolute and the relative ISNI for the AIDS dataset.

β̂0 se(β̂0) β̂ ISNI ISNI/β̂0 ISNI/se(β̂0)

Intercept 2.512 0.042 2.554 -0.022 -0.009 -0.524

Time -0.037 0.004 -0.041 0.036 -0.972 9.000

Treat*Time 0.008 0.006 0.005 -0.003 -0.375 -0.500

Table 4.4: Absolute and relative ISNI for the AIDS data set. α = −0.844, standard

deviation of the longitudinal response σ̂ = 0.368 and random effects covariance matrix

D1 = (0.7594,−0.0005,−0.0005, 0.0013.

The joint model seems to be quite robust to misspecification of the nonignorabil-

ity parameter, suggesting that small departures from α = 0 slightly affect parameters

estimates. If one looks at the parameters estimates under the MAR and the MNAR

joint model, it is clear that they do not experience a wide change. This aspect is visible
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also in the ISNI and ISNI/θ̂0 formulations, whereas the ISNI/se(β̂0) may be misleading

with respect to the time covariate. For this reason, in Table 4.5 we show the alternative

relative version of the ISNI, i.e. ISNI/se(ISNI) and the regression based estimates of

the standard error of the index, se(ISNI).

ISNI/se(ISNI) se(ISNI)

Intercept -2.200 0.010

Time 0.400 0.090

Treat*Time -0.428 0.007

Table 4.5: Regression based relative ISNI for the AIDS data set. α = −0.844.

Comparing the absolute and the regression based relative version of the ISNI, we can

conclude that, for this dataset, fitting a MAR model would not result in large changes

in the parameter estimates for the longitudinal process.

4.6 Primary Biliary Cirrhosis data

A second example comes from the primary biliary cirrhosis (PBC) data collected by the

Mayo Clinic from 1974 to 1984, see Murtaugh et al. (2002). PBC is a fatal liver desease

characterized by inflammatory destruction of the small bile ducts within the liver, which

may lead to cirrhosis of the liver. In this study, 312 patients are considered; 158 were

randomly assigned to recieve D-penicillamine and 154 placebo. By the end of the study,

140 patients (45%) died, 143 (46%) were alive and 9% were transplanted. We are

interested in testing for treatment effect on survival after adjusting for the longitudinal

bilirubin levels. Given that the distribution of the observed bilirubin serum shows a

certain skeweness, we consider its natural logarithm. Here, we model the longitudinal

dependence of the the bilirubin serum and the survival of enrolled patients by employing

the following model for the bivariate (longitudinal and survival) process:

{
log(yit) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + b0i + b2ixi2 + εit

hit = h0(t) exp{γ0 + γ1iwi1 + αmi(t)}
, (4.17)

where xi1, . . . , xi5 represent treatment, time, interaction between treatment and time,

age and gender covariates, while wi1 is the treatment. The aim is at exploring sensitivity

of parameter estimates in the longitudinal model to the assumption about the missing

(survival) data process. The results of the sensitivity analysis are shown in Table 4.6.

This dataset presents a similar situation to the previous one. Even though a quite

significant change in parameter estimate is experienced by the gender covariate effect,

the ISNI/β̂0 and the ISNI/se(β̂0) present high values for the interaction between time

and treatment. On the other hand, the other parameters do not experience relatively



4.7 Chronic Kidney Disease data 47

β̂0 se(β̂0) β̂ ISNI ISNI/β̂0 ISNI/se(β̂0)

Intercept 0.739 0.349 0.893 -0.021 -0.028 -0.060

Treatment -0.141 0.117 0.118 0.023 -0.163 0.196

Time 0.179 0.018 0.174 0.003 0.017 0.166

Age 0.001 0.006 -0.006 1e-04 0.100 0.016

Gender -0.202 0.180 -0.102 0.014 -0.069 0.078

Treat*Time -0.004 0.025 -0.007 -0.049 12.271 -0.960

Table 4.6: Absolute and relative ISNI for the PBC data set. α = 1.261

wide changes. At this point, we show in Table 4.7 the regression based standard errors

for the ISNI and the relative formulation of the index proposed in this Section.

ISNI/se(ISNI) se(ISNI)

Intercept -0.697 0.0301

Treatment 1.074 0.0214

Time 0.214 0.014

Age 0.002 0.0474

Gender 1.272 0.0110

Treat*Time -0.379 0.0129

Table 4.7: Regression based relative ISNI for the PBC data set. α = 1.261.

This relative formulation allows us to highlight the change in the gender parameter

estimate change and thus it seems a more appropriate sensitivity tool.

4.7 Chronic Kidney Disease data

Last, we turn back to the third example introduced in Section 4.3. This longitudinal

study entails 407 patients suffering from chronic kidney disease who underwent, between

1/21/1983 and 8/16/2000, a primary renal transplantation with a graft from a deceased

or living donor at the University Hospital of the Catholic University of Leuven (Bel-

gium), see Rizopoulos et al. (2008a). Chronic kidney disease, also known as chronic

renal disease, is a progressive loss of renal function which can be described by using five

stages; each stage is a progression through an abnormally low and progressively worse

glomerular filtration rate. The clinical interest is focused on the long term performance

of the new graft, and, in particular, on analyzing the time to graft failure, if any. For

these purposes, during the follow-up period, patients were periodically tested for the

condition and performance of their kidneys; for this purpose, the Glomerular Filtration

Rate (GFR), that measures the filtration rate of the kidneys, is considered as a longi-
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tudinal response. By the end of the study, 126 patients have suffered for a graft failure,

corresponding to 31% of patients exiting the study.

We consider the following formulation for the longitudinal process:

yit = β0 + β1xi1 + β2xi2 + b0i + b1ixi1 + εit, (4.18)

where xi1 and xi2 represent time since transplantation and gender, respectively. Fur-

thermore, we postulate a Weibull proportional hazard model for the survival process,

with hazard function:

hi(t) = ξtξ−1 exp{γ0 + γ1wi + αmi(t)},

where the association is defined according to model structure (4.8), where wi represents

patients’ age. Table 4.8 shows MAR (α = 0) and MNAR (α 6= 0) estimates as well as

the values of the absolute and relative ISNI computed for the kidney dataset.

MAR MNAR JM

Longit. Proc. β̂0 se(β̂0) β̂ se(β̂)

Intercept 7.169 0.161 7.144 0.028

Time -0.101 0.015 -0.012 0.002

Gender -0.417 0.104 -0.676 0.033

ISNI ISNI/(β̂0) ISNI/se(β̂0) ISNI/se(ISNI)

Intercept -0.078 -0.011 -0.484 0.490

Time 0.007 -0.071 0.467 1.207

Gender 0.012 -0.029 0.115 0.722

Table 4.8: MAR and MNAR parameter estimates for the kidney data set. α̂ = −1.395.

Also in this example, the relative ISNI calculated by the ratio of the absolute index

and the regression standard error leads to a clearer interpretation of the effective change

in parameter estimates, where one moves from MAR to MNAR assumptions, i.e. from

α = 0 to α 6= 0.

4.8 Simulation study

To investigate the empirical behaviour of the ISNI when a shared parameter model is

considered, we performed the following simulation study.

4.8.1 Study design

We simulate the longitudinal response yi(t) from a Gaussian distribution with mean

mi(t) = β0 + β1x1i + β2x2i + bi0 + bi1x1i and standard deviation σ = 0.37, for a sample
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of n = 467 individuals observed for T = 5 or T = 15 occasions, respectively. For the

drop-out process, we have adopted the hazard function

hi(t) = h0(t) exp{γ0 + γ1wi + αmi(t)}, (4.19)

for the joint model, and

hi(t) = h0(t) exp{γ0 + γ1wi + α0b0i + α1b1i}, (4.20)

for the standard shared parameter model. In this study, x1i represents the time and

x2i the interaction between time and treatment, wi is randomly drawn from a standard

Gaussian distribution, while the design matrices have been simulated according to the

AIDS dataset, discussed in Section 4.5. A Weibull baseline hazard function is adopted,

i.e. h0(t) = ξtξ−1. Fixed effects for the longitudinal process are equal to β0 = 2.51,

β1 = −0.37, β2 = 0.82, σ = 0.37, γ0 = −3.31, γ1 = 0.15. Individual censoring times have

been randomly drawn from an exponential distribution with mean chosen to result in

about 50% censoring. To investigate the effect of the random effect covariance structure

on parameter estimates, we have considered two different covariance matrices:

D1 =

(
0.7594 −0.0005

−0.0005 0.0013

)
,

and

D2 =

(
0.5 0.01

0.01 0.5

)
.

While D1 is the estimated random effect covariance matrix for the AIDS dataset, D2

describes a homoscedastic random effect covariance structure with a positive association

between bi1 and bi2 and a higher variability in bi2 (comparable to the variability in bi1).

To account for different degrees of dependence between the longitudinal and the dropout

processes, we have simulated data according to different values for the nonignorability

parameter; namely, we used α = 0 (MAR model), α = −0.5, α = −1 and α = −1.5 for

model (4.19) and α = (0, 0), α = (0,−1), α = (0,−1.5), α = (−1, 0), α = (−1.5, 0),

α = (−1,−1), α = (−1.5,−1.5) for model (4.20). The median number of observed

measurements per individual is ni = 3 (when T = 5) and ni = 7 (with T = 15).

On each simulated dataset, we have computed the ISNI, the isni, the ISNI/se(θ0);

when parametrization (4.19) was used, the ISNI is calculated through the R package

JM, Rizopoulos (2010), while R code written by the author (available on request) has

been used for model (4.20). Further, we performed a sensitivity analysis to model

misspecification, simulating observed data from model (4.19) and computing absolute

and relative indexes of parameter estimates for model (4.20), and viceversa. The aim is

to assess robustness of parameter estimates to model specification; this is quite a major

point, since the ISNI is known to measure departures from the MAR estimates only

when the fitted model is the true one.
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4.8.2 Results

Figure 4.2 shows 2.5%, 50% and 97.5% percentiles over N = 1000 simulated samples

of the three indices ISNI, ISNI/θ0 and ISNI/se(θ0), corresponding to the parameters

of the longitudinal process when the joint model parameterization is adopted. We may

observe a higher sensitivity in the results as α deviates from 0; we may also notice

that the length of the observed individual sequence, denoted by the median number of

available responses, ni, has a substantial effects on the sensitivity of parameter estimates,

all other parameters kept fixed. In particular, for T = 15, ie ni = 7, the joint model

is considerably more robust when compared to the setting where T = 5 and ni = 3.

Higher the absolute value of the nonignorability parameter, higher the variability in

the ISNI values. On the contrary, the random effect covariance structure does not

seem to produce substantial effect on the ISNI distribution; the results corresponding

to covariance matrix D2 are further explored in Table 4.10.

Results for the shared parameter model are illustrated in Figures 4.3 and 4.4, and

in Figure 1 in the supplementary material.

Table 4.9 shows the mean and the median for the MAR parameters estimates and the

corresponding standard errors and quantiles, while Table 4.10 contains the simulation

results for each value of α in the JM.

The ISNI is computed with respect to the association parameter vector α = (α1, α2),

where the two elements correspond to the intercept (α1) and the time effect (α2). As

a first point, it may be observed that the results seem to be slightly affected by the

structure of the random effect covariance matrix.

For what concerns the interpretation of the three indexes, the ratio between the

ISNI and the standard error of the corresponding MAR estimate assumes widely large

values, since the standard error is, in most analysed cases, close to zero, or, to be more

precise, on another scale than the ISNI; also, the absolute index might be misleading,

as the corresponding values can not be directly interpreted. On the other hand, in this

simulation study, the proposed relative index (isni) leads to a clearer interpretation,

since it provides a direct comparison of potential changes in parameter estimates to the

corresponding MAR estimates. As can be evinced by looking at Figures 4.3 and 4.4

when compared to Figure 4.2, the observed sensitivity of β2 estimates is reduced with

ISNI values approaching to zero. This empirical evidence could suggest that fixed effect

estimates are not influenced by the presence of MNAR mechanisms if the SPM is the

true model. Furthermore, these findings should help reconsider the wide use of SPMs to

recover potential bias due to misspecified missing data mechanism when fixed effects are

the main focus of the analysis. On the contrary, when estimates of β1 are considered, the

corresponding sensitivity is quite high in both the joint and the shared parameter model

structures, even if it is decreasing with increasing length of the individual sequence. The

sensitivity is often negligible but when α2 = −1 in the SPM structure with covariance

matrix D1. In all other cases, with a higher number of time occasions, only the intercept

shows some sensitivity to wrong assumptions about the missing data mechanism.
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Figure 4.2: Simulation study, results for the joint model on 1000 samples. The circle

denotes the median and the edges the 2.5% and 97.5% percentiles of absolute and

relative ISNI for ni = 3 (thin line) and ni = 7 (bold line). The dashed line corresponds

to y = ±0.5 for ISNI and ISNI/θ0 and y = 0 for the ISNI/se(θ0). Covariance matrix

D1.

When sensitivity to model misspecification is considered, the results in Figure 4.6

show a higher sensitivity when the joint model is the true one, when compared to

the standard shared parameter model; the sensitivity is found to be decreasing with

α1 = α2 = α, where α1 and α2 are the association parameters for the SPM formulation,

while α represents the association parameter for the JM structure, with the intercept

showing the highest sensitivity. However, the median of absolute and relative ISNIs is

close to zero; therefore, we may conclude that both proposed modelling structures are

quite robust to model misspecification. This represents an appealing result given the
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Figure 4.3: Simulation study, absolute ISNI for shared parameter model on 1000 samples,

covariance matrix D1. The points denotes the median and the edges the 2.5% and

97.5% percentiles of the ISNI for ni = 3 (circle) and ni = 7 (cross). The dashed lines

corresponds to y = ±0.5.

wide use of SPM in empirical and theoretical contexts, see Follmann and Wu (1995),

Pulkstenis and Landis (1998) and Ten Have et al. (1998).

4.9 Discussion

In this Chapter, we have discussed a local sensitivity analysis based on deriving the

ISNI for the general class of shared parameter models, considering several structures

to account for dependence between the longitudinal outcome and the time to dropout

processes. We have focus on changes registered in model parameters for the longitudinal

process due to potential misspecification in the missing data mechanism and in the

dependence structure. The data application and the simulation study have shown a

slight sensitivity of model parameter estimates for the joint model when the departure
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Figure 4.4: Simulation study, ISNI/θ̂0 for shared parameter model on 1000 samples,

covariance matrix D1. The points denotes the median and the edges the 2.5% and

97.5% percentiles of the index for ni = 3 (circle) and ni = 7 (cross). The dashed lines

corresponds to y = ±0.5.

from MAR is not too large, and a decreasing effect of the assumptions of ignorability

for the missing data mechanism when the length of the individual sequences increases.

The random effect covariance structure does not seem to play a substantial role. On the

other hand, the standard shared parameter model has performed well with respect to

sensitivity, but it has experienced a slight dependence on the random effects covariance

structure. In addition, the sensitivity with respect to model misspecification seems to

be larger when the true model is the joint model, compared to the case when the true

model is the standard shared parameter model.

As a further contribution, we have proposed a relative index of local sensitivity, given

by the ratio of the ISNI values to the corresponding parameter estimates under the MAR

model, that seems to lead to a clearer interpretation of parameters sensitivity, while the

classical ISNI and ISNI/se(θ̂0) may be misleading, at least in some cases when a shared
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Figure 4.5: Simulation study, ISNI/se(θ̂0) for shared parameter model on 1000 sam-

ples, covariance matrix D1.The points denotes the median and the edges the 2.5% and

97.5% percentiles of the index for ni = 3 (circle) and ni = 7 (cross). The dashed lines

corresponds to y = 0.

parameter model is adopted. By using an approximation developed by looking at the

ISNI definition, we have provided an estimate of the sampling variability of the index

when the MAR hypothesis is true, which could help define a further relative measure

of parameter sensitivity to departures from the MAR assumption. This approach is

based on the empirical evidence that, also when the MAR hypothesis is true, the ISNI

may take non null values; therefore, this absolute measure of displacement should be

compared to a measure of its sampling variability, which may be linked to parameter

non-separability. In conclusion, as illustrated in the three benchmark data examples,

the sensitivity analysis based on the ISNI relative formulations can be helpful to avoid

inefficient uses of shared parameter models.
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True Mean Median se 2.5% Quantile 75% Quantile

α = 0

Intercept 2.512 2.511 2.483 0.036 2.484 2.535

Time -0.375 -0.375 -0.376 0.009 -0.382 -0.369

Time * Treatment 0.821 0.814 0.822 0.009 0.815 0.827

α = −0.5

Intercept 2.512 2.489 2.487 0.042 2.463 2.519

Time -0.375 -0.380 -0.380 0.010 -0.387 -0.374

Time * Treatment 0.821 0.799 0.799 0.017 0.788 0.813

α = −1

Intercept 2.512 2.493 2.493 0.052 2.462 2.525

Time -0.375 -0.381 -0.380 0.008 -0.388 -0.372

Time * Treatment 0.821 0.793 0.793 0.016 0.778 0.807

α = −1.5

Intercept 2.512 2.492 2.491 0.048 2.462 2.524

Time -0.375 -0.381 -0.380 0.012 -0.389 -0.374

Time * Treatment 0.821 0.783 0.783 0.021 0.767 0.800

α = 0.5

Intercept 2.512 2.571 2.487 0.042 2.542 2.600

Time -0.375 -0.367 -0.366 0.021 -0.379 -0.354

Time * Treatment 0.821 0.782 0.799 0.029 0.762 0.802

α = 1

Intercept 2.512 2.612 2.614 0.044 2.584 2.641

Time -0.375 -0.402 -0.403 0.038 -0.423 -0.377

Time * Treatment 0.821 0.707 0.702 0.065 0.662 0.754

α = 1.5

Intercept 2.512 2.629 2.630 0.043 2.602 2.658

Time -0.375 -0.508 -0.509 0.097 -0.571 -0.454

Time * Treatment 0.821 0.618 0.621 0.160 0.532 0.703

Table 4.9: Simulation study: descriptive statistics for the MAR parameter estimates
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α = 0, ω = 0.56

β true β MAR se(β) ISNI se(ISNI) min(|ISNI|) max(|ISNI|)
Intercept 2.510 2.474 0.035 -0.027 0.016 7.7e-04 0.085

Time -0.370 -0.384 0.026 0.027 0.015 1.4e-04 0.052

Time*Group 0.820 0.850 0.022 0.032 0.012 1.7e-05 0.041

α = −0.5, ω = 0.50

Intercept 2.510 2.425 0.042 0.828 0.130 2.0e-05 0.582

Time -0.370 -0.534 0.031 0.439 0.125 1.4e-03 0.560

Time*Group 0.820 0.628 0.035 -1.433 0.224 4.9e-04 1.199

α = −1, ω = 0.50

Intercept 2.510 2.284 0.043 1.409 0.141 8.8e-05 0.608

Time -0.370 -0.605 0.034 0.380 0.152 3.7e-04 0.695

Time*Group 0.820 0.607 0.039 -0.998 0.261 1.4e-03 0.975

α = −1.5, ω = 0.48

Intercept 2.510 2.423 0.044 -0.353 0.187 6.8e-03 0.809

Time -0.370 -0.585 0.027 -0.404 0.213 0.001 1.114

Time*Group 0.820 0.519 0.034 -0.198 0.335 3.2e-04 1.776

α = 0.5, ω = 0.257

Intercept 2.510 2.551 0.045 -0.003 0.023 5.6e-06 0.118

Time -0.370 -0.378 0.023 -0.02 0.051 2.5e-05 0.242

Time*Group 0.820 0.778 0.031 0.05 0.040 2.2e-04 0.183

α = 1, ω = 0.124

Intercept 2.510 2.605 0.045 -0.015 0.033 5.4e-05 0.134

Time -0.370 -0.398 0.032 0.077 0.094 4.6e-06 0.339

Time*Group 0.820 0.745 0.056 0.131 0.129 5.7e-05 0.567

α = 1.5, ω = 0.100

Intercept 2.510 2.645 0.045 -0.061 0.043 5.3e-07 0.157

Time -0.370 -0.483 0.032 -0.002 0.173 3.5e-07 0.889

Time*Group 0.820 0.802 0.056 0.274 0.307 1.2e-07 1.482

Table 4.10: Simulations results corresponding to JM for each value of α, covariance

matrix D2 and proportion of dropout ω.
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Figure 4.6: Simulation study, results for model misspecification on 1000 datasets and

covariance matrix D1. The circle denotes the median and the edges the 2.5% and 97.5%

percentiles of absolute and relative ISNIs with respect to α1 when the true model is the

SPM and the ISNI is computed for the JM (thin line) and vice versa (bold line). The

dashed line corresponds to y = 0.
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Chapter 5

Joint modeling for discrete

longitudinal responses and time to

drop-out

Several studies in different disciplines collect longitudinal non-Gaussian data, such as bi-

nary or counted outcomes; an interesting review in this context is given by Molenberghs

and Verbeke (2005). As in studies with Gaussian responses, it is common for some sub-

jects to drop-out prematurely; the occurrence of such drop-outs leads to missing data

and poses an additional challenge to draw correct statistical inference. One appealing

approach to treat this statistical issue is by extending the joint models described in

Chapter 4 to non-Gaussian responses. In this context, although some proposals have

been introduced, see for instance Rizopoulos and Ghosh (2011) in the Bayesian frame-

work, very limited statistical software is available. In this Chapter, we illustrate one

proposal of Joint Model for non-Gaussian data and show how parameter estimation can

be performed with ad hoc R code.

The Chapter is organized as follows. Section 5.1 illustrates the Bayesian approach to

multivariate Joint modelling proposed by Rizopoulos and Ghosh (2011), while Section

5.2 describes the proposed Generalized Linear Mixed Joint Model from an analytical

point of view. The computational issues are dealt in Section 5.2.1. Sections 5.2.2

and 5.2.3 introduces the GLMJM in the cases of Poisson and Binomial longitudinal

outcomes. To investigate the behaviour of parameter estimates a simulation study is

adopted in Section 5.3, while applications to benchmark datasets are available in Sec-

tions 5.5 and 5.4. Finally, Section 5.6 gives some concluding remarks and possible future

developments.

5.1 The Bayesian multivariate joint model

When a discrete longitudinal outcome is recorded together with a survival time de-

scribing the participation to the study, joint modelling could represent properly the

59
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association between the two processes. However, not many proposals can be found in

literature in this field. A Bayesian approach has been proposed by Rizopoulos and

Ghosh (2011). In their paper, the authors postulate a joint model for a multivariate

longitudinal outcome (with both discrete and continuous) and a time-to-event. By in-

dicating with Yi = (yT
i1, . . . ,y

T
iK) the K-variate response matrix for the ith subject,

i = 1, . . . , n, they allowed each longitudinal response to be recorded at different time

points tij,k. The longitudinal response is assumed to follow a generalized linear mixed

effects model, where the conditional distribution of Yik given a vector of random ef-

fects bik is assumed to be a member of the exponential family, with linear predictor

fik = gk[E(yik | bik)], where gk(·) is a known one-to-one link function, yik(t) is the value

of the longitudinal outcome for the ith subject at time t, and fik is an unknown function

which is assumed to describe the true, possibly non linear, longitudinal profile for the

kth outcome. This last function is approximated using a spline-based approach. Let

λk = {λlk; l = 1, . . . , Lk} represent an increasing sequence of knot positions, then

fik = Bik(β
(1)
k , b

(1)
ik ) +Hik(t; β

(2)
k , b

(2)
ik , λk).

Hence, fik is approximated by the sum of two parts: a time independent part, Bik(·),
which contains a set of baseline covariates with corresponding vector of fixed effects β

(1)
k

and random effects b
(1)
ik ; and a time dependent part, Hik(t), approximated by a natural

cubic spline function with knots at λlk, while fixed and random coefficients β
(2)
k and

b
(2)
ik are used to include possible interactions of baseline covariates with time-dependent

terms.

The interaction between the longitudinal outcome and the survival time is captured via

a relative risk model of the form

hi(t | FHi (t),wi) = h0(t) exp

{
wiγ

T +
K∑
k=1

mik {fik(t), αk}

}
,

where FHi (t) = {fik(s), 0 ≤ s ≤ t, 1 ≤ k ≤ K} is the history of the true and unobserved

longitudinal process up to time t, wi denotes the vector of baseline covariates with re-

gression coefficients γ and mik(·) specifies which components of the longitudinal process

for the k-th outcome is related to the survival time, and is assumed to follow different

parameterizations. Moreover, αk represents the effect of the longitudinal outcome on

the risk function.

The authors adopt a Bayesian formulation for the proposed semiparametric multivariate

joint model, since the random effect dimensions is large and a classical maximum like-

lihood approach could lead to cumbersome expressions. The posterior distribution of

the parameters, conditional on the observed data is derived using an MCMC algorithm

which can be written as follows:

p(θ,bi | yi, Ti, δi) ∝

[
K∏
k=1

nik∏
j=1

p(yij,k | bik : θy)

]
p(Ti, δi |mi(·); θt)p(bi; θb)p(θy, θt, θb).

This approach is particularly useful when the longitudinal response is high-dimensioned

and has seen to lead to interesting results both in simulation and application studies.
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5.2 The generalized linear mixed joint model

In this Section, our aim is at proposing an approach called generalized linear mixed

model, which represents an extension of the linear joint model of Wulfsohn and Tsiatis

(1997) to non-Gaussian responses. This approach is simple and takes into account one

longitudinal response which is joint modelled with a survival time, but in a likelihood

based context. In the proposed parametrization, the mean value of the longitudinal

outcome at time t is assumed to influence the survival process. Let Y ∼ EF (θi(t)), i.e.

let Y be a random variable with distribution belonging to the exponential family; then,

the following generalized linear mixed joint model (GLMJM) may be defined:{
g(mi(t)) = βTXi(t) + bT

i Zi(t)

hi(t |Mi(t),Wi) = h0(t) exp{γTWi + αmi(t)},
(5.1)

where mi(t) = g−1(βTXi(t) + bTi Zi(t) = m(θi(t)) and θi(t) is the canonical parameter

of the distribution and g(·) is a given link function. For canonic links, g(mi(t)) = θi(t),

where θi(t). In general, model (5.1) can be used when one would study how the expected

value of the longitudinal process influences the risk of the drop-out event. Following the

theory described in Chapter 4, the log-likelihood for model (5.1) is given by

`(θ) = `(θ | Ti, δi,yi) =
∑
i

log

∫
bi

p(Ti, δi | bi; θ)p(yi | bi; θ)p(bi; θ)dbi, (5.2)

where

p(yi | bi; θ) = exp {B(θ)yi − A(θ) + C(yi)} ,

i.e. the density belongs to the exponential distribution family, and the time-to-event

process is defined as

p(Ti, δi | bi; θ) = h(Ti |Mi(t),Wi; θ)
δiS(Ti |Mi(t),Wi; θ) (5.3)

where the random effects bi are assumed to follow a Gaussian distribution, i.e. they

account for dependence among the repeated measurements over time corresponding to

the same individual, see Molemberghs et al. (2011).

The corresponding score vector can be written as follows:

s(θ) =
∑
i

∫
q(θ,bi)p(bi | Ti, δi, yi; θ)dbi, (5.4)

where

q(θ, bi) =
∂

∂θT
{log p(Ti, δi | bi; θ) + log p(yi | bi; θ) + log p(bi; θ)} .
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5.2.1 The EM algorithm

In this section we focus on the estimation of θ = (θy, θt, θb), i.e. the parameter for

the longitudinal, the survival and the latent processes, respectively. The maximum

likelihood estimates in the joint modeling are typically obtained using standard maxi-

mization algorithms such as the EM and the Newton-Rapson. The key component to

apply these two algorithms is the score vector in (5.4). It can be noted that the observed

data score vector is expressed as the expected value of the complete data score vector

with respect to the posterior distribution of the random effects. From a computational

point of view, this implies that when the score equations are solved with respect to θ

with p(bi | Ti, δi, yi; θ) calculated on the basis of the value of θ derived at the previous

iteration, leading to the EM algorithm.

More specifically, the algorithm can be summarized as follows.

for i ∈ 1 : iter.EM do

E-STEP: Compute the posterior random effects distribution p(bi | Ti, δi, yi; θ),
through the conditional distributions p(Ti, δi | bi; θ), p(Ti, δi | bi; θ) and p(bi; θ).

M-STEP: Compute the maximum likelihood estimates for the random effect co-

variance matrix D, the longitudinal parameters β and the survival parameters θt
as follows:

D̂ = n−1
∑

iCov(bi1, bi2 | Ti, δi, θ)

β̂i+1 = β̂i −
{

∂
∂βTS(β̂i)

}−1

S(β̂i)

θ̂t,i+1 = θ̂i,t −
{

∂
∂θT

t
S(θ̂t,i)

}−1

S(θ̂t,i)

if convergence then

break.

end if

end for

while !convergence do

QUASI-NEWTON STEP θ̂ = arg max
θ
`(θ)

(optim function in R)

end while

The joint model can be specialized by specifying a particular member of the exponential

family.

5.2.2 The Poisson case

Let us assume yi(t) values have been recorded for subjects i = 1, . . . , n at time t =

1, . . . , T ; if yi(t) are the observed values of a Poisson random variable, the density
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function for the response is

p(yi(t) | bi) =
exp(−λi)λyi(t)

i

yi(t)!
,

where λi = exp(βTXi(t) + bT
i Zi(t)) = E(Yi(t)) = V(Yi(t)). Hence,

log p(yi(t) | bi; θ) = − exp(βTXi(t) + bT
i Zi(t)) + yi(t)(β

TXi(t) + bT
i Zi(t))− log[yi(t)!].

The survival model, assuming a Weibull distribution is given by (5.3), where the hazard

function is

hi(t |Mi(t),Wi; θ) = ξtξ−1 exp
{
γTWi + α exp(βTXi(t) + bT

i Zi(t))
}

(5.5)

and the survival function is

S(t |Mi(t),Wi; θ) = exp

{
−
∫ t

0

hi(s)ds

}
.

The score vector for the fixed effects in the longitudinal models can be written as

s(β) =
n∑
i=1

∫
bi

−xi exp
{
βTx + bT

i zi)
}

+ xiyi −
∫ t

0

h0(s)αxi exp
{
βTxi + bT

i zi
}

exp
{
γTwi + α exp(βTxi + bT

i zi)
}

dsdbi,

while the Hessian matrix assumes the form

∂s(β)

∂β
=

n∑
i=1

∫
bi

−xT
i xi exp

{
βTxi + bT

i zi
}

+ δiαxT
i xi exp

{
βTxi + bT

i zi
}

−
∫ t

0

h0(s)αxi exp
{
βTxi + bT

i zi
}

exp
{
γTwi + α exp(βTxi + bT

i zi
}

ds

−
∫ t

0

h0(s)α
2xi exp

{
βTxi + bT

i zi
}

xT
i exp

{
βTxi + bT

i zi
}T

exp
{
γTwi + α exp(βTxi + bT

i zi)
}

dsdbi.

5.2.3 The Binomial case

When the primary outcome is distributed as a binomial random variable of size n,

yi(y) successes and probability of success pi(t), the corresponding density function on

logaritmic scale is

p(yi(t) | bi) = log

(
n

yi(t)

)
+ yi(t) log pi(t) + (n− yi(t)) log(1− pi(t)),

where pi(t) =
exp(βTXi(t) + bT

i Zi(t))

1 + exp(βTXi(t) + bT
i Zi(t))

. The survival time follows a Weibull dis-

tributed hazard of the following form:

hi(Ti | bi) = h0(t) exp

{
γTWi + α

exp(βTXi(t) + bT
i Zi(t))

1 + exp(βTXi(t) + bT
i Zi(t))

}
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is the hazard function, and

S(Ti | bi) = exp

{
−
∫ Ti

0

h0(s) exp

{
γTWi + α

exp(βTXi(t) + bT
i Zi(t))

1 + exp(βTXi(t) + bT
i Zi(t))

}}
is the survival function.

The score vector and the Hessian matrix are given by, respectively:

s(β) = yi(t)xi − nxT
i

exp
{
βTxi + bT

i zi
}

1 + exp
{
βTxi + bT

i zi
} + δiαnxT

i

exp
{
βTxi + bT

i zi
}[

1 + exp
{
βTxi + bT

i zi
}]2

−
∫ t

0

h0(s)x
T
i

exp
{
βTxi + bT

i zi
}[

1 + exp
{
βTxi + bT

i zi
}]2αn exp

{
γTwi +

exp
{
βTxi + bT

i zi
}

1 + exp
{
βTxi + bT

i zi
}} dsdbi,

and

∂s(β)

∂β
= −nxT

i xiB + δiαnxiB

−
∫ t

0

h0(s)xiAα
2n exp

{
γTwi +

exp
{
βTxi + bT

i zi
}

1 + exp
{
βTxi + bT

i zi
}}xT

i Bdsdbi,

where

A =

[
2xi exp

{
βTxi + bT

i zi
}] [

1− 2xi exp
{
βTxi + bT

i zi
}
− 1/2xi exp

{
βTxi + bT

i zi
}2
]

[
1 + exp

{
βTxi + bT

i zi
}]4 ,

and

B =
exp

{
βTxi + bT

i zi
}[

1 + exp
{
βTxi + bT

i zi
}]2 .

5.3 Simulation study

To study the behaviour of parameter estimates for model (5.1) we have drawn a simu-

lation study. In Section 5.3.1 we describe the simulation settings while in Section 5.3.2

we illustrate the main results.

5.3.1 Simulation design

For the Poisson case, we simulate N = 100 samples of the longitudinal response through

the canonical model function:

log(mi(t)) = (β0 + bi0) + (β1 + bi1)xi1(t) + β2xi2(t), (5.6)

where β0 = 0.65, β1 = 0.04, β2 = −0.69. Moreover, xi1 is a sequence from 0 to t.maxi,

where t.maxi is the maximum follow up time for subject i and xi2 is a binary random

variable with parameter p = 0.5, representing a treatment variable. The random effects
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are drawn form a multivariate Gaussian random variable with triangular covariance

matrix D = (0.640, 0.006, 0.005).

The simulated survival times are drawn from the hazard function:

hi(t) = ξtξ−1 exp {γ0 + γ1xi2 + αmi(t)} ,

where xi2 contains the baseline values of xi2(t) in (5.6), ξ = 1.8, γ0 = −3.2 and

γ1 = −0.5.

In the case of a binomial longitudinal outcome, we simulate N = 100 samples of 550

units for a binomial response with size n = 11 with the same covariates as in the Poisson

simulation design, and the expected value of the longitudinal process is given by

mi(t) =
exp {θi(t)}

1 + exp {θi(t)}
, (5.7)

and

h(Ti | bi) = h0(t) exp γTWi + αmi(t).

5.3.2 Simulation results

The mean of the parameter estimates for the Poisson joint model and the corresponding

MAR estimates are shown in Table 5.1.

βTRUE β̂0 β̂ SE Q0.25 Q0.75

α = 0, α̂ = −0.036 and ω = 0.985

Intercept 0.65 0.655 0.655 0.076 0.601 0.713

Time 0.04 0.041 0.042 0.012 0.034 0.052

Group -0.69 -0.698 -0.708 0.123 -0.789 -0.645

α = 1.2, α̂ = 0.805 and ω = 0.695

Intercept 0.65 0.419 0.580 0.391 0.423 0.583

Time 0.04 -0.018 0.031 0.106 0.001 0.032

Group -0.69 -0.468 -0.463 0.307 -0.561 -0.351

α = −1.2, α̂ = −0.911 and ω = 0.987

Intercept 0.65 0.378 0.475 0.108 0.315 0.535

Time 0.04 0.059 0.032 0.032 0.026 0.055

Group -0.69 -0.429 -0.507 0.106 -0.589 -0.448

Table 5.1: Mean and quantiles of the longitudinal parameter estimates for the Poisson

joint model and the corresponding MAR model for different values of α, the ML estimate

α̂ and proportion of dropout ω.

It can be noted that, as α is fixed to zero, i.e. in the ignorability case, the param-

eter estimates under MAR and MNAR models are close to each other and to the true
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values. On the other hand, as α moves from zero, the MAR model becomes less precise.

This phenomenon can be recognized also in the empirical distribution of the parameter

estimates shown in Figure 5.1.
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Figure 5.1: Simulation results: Poisson longitudinal response, empirical distribution for

ML estimates under MAR (left side) and MNAR (right side) assumptions.

While the MAR model does not include the true parameter value in the interquartile

range either for the intercept and the time effect, the joint model leads to more precise

parameter estimates for these effects. Moreover, it can be noticed that the group effect

(β2) is estimated well both from the MAR and the MNAR model. This may happen

because the variable is not time dependent.

Parameter estimates for the Binomial model corresponding to the MAR and the

MNAR assumptions are shown in Table 5.2.

In this case, α is fixed to a value close to zero, but the empirical distribution of the

parameter estimates is still more precise than the ones corresponding to MAR estimates,

as it can be seen in Figure 5.2.

5.4 The AIDS data set

In this Section, we compare the parameter estimates for the standard Joint Model

applied to the AIDS dataset (see Section 4.5), where the CD4 cell counts are assumed
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βTRUE β̂0 β̂ SE Q0.25 Q0.75

α = 0, α̂ = 0.001 and ω = 0.678

Intercept 1.05 1.040 1.061 0.080 0.996 1.120

Time -0.15 -0.156 -0.159 0.007 -0.166 -0.153

Group -0.39 -0.381 -0.356 0.116 -0.431 -0.280

α = 0.25, α̂ = 0.6560 and ω = 0.352

Intercept 1.05 1.051 1.084 0.132 0.993 1.174

Time -0.15 -0.149 -0.164 0.077 -0.159 -0.148

Group -0.39 -0.401 -0.411 0.159 -0.531 0.327

α = −0.25, α̂ = −0.519 and ω = 0.132

Intercept 1.05 1.010 1.047 0.136 0.956 1.173

Time 0.15 0.142 0.143 0.203 0.137 0.149

Group -0.39 -0.387 -0.409 0.009 -0.556 -0.228

Table 5.2: Mean and quantiles of the longitudinal parameter estimates for the Binomial

joint model and the corresponding MAR model for different values of α, the ML estimate

α̂ and proportion of dropout ω.
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Figure 5.2: Simulation results: Binomial longitudinal response, empirical distribution

for ML estimates under MAR (left side) and MNAR (right side) assumptions.
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to come from a Gaussian distribution, to the Poisson Joint Model, where this variable

is assumed to follow a Poisson distribution.

β̂MAR β̂JM SE z-value p-value

PJM, α̂ = −0.16 and ω = 0.6

Intercept 1.747 1.766 0.034 52.216 < 0.001

Time -0.031 -0.022 0.003 -6.620 < 0.001

Group 0.069 -0.014 0.044 -0.311 0.756

Time * Group 0.003 -0.010 0.005 -2.121 0.034

NJM, α̂ = −0.297 and ω = 0.6

Intercept 6.951 7.062 0.173 40.863 < 0.001

Time -0.159 -0.179 0.022 -8.259 < 0.001

Group 0.482 0.299 0.269 1.108 0.268

Time * Group 0.021 0.004 0.124 1.151 0.901

Table 5.3: Longitudinal parameter estimates for the Poisson joint model (PJM) and the

linear mixed model (NJM).

Both results suggest that dropout process is ignorable at least approximately, while

the parameter estimates are on a different scale, see Table 5.3.

5.5 MMT Data

In this Section, we consider a dataset of n = 136 heroin users enrolled in a methadone

maintenance treatment (MMT) program at a clinic in western Sidney in 1986; they have

been observed once a week for 26 weeks, see Alfó and Aitkin (2000). At the end of the

study, 51 events are oberved, resulting in 62.5% censoring. The response is the recorded

test, which can be positive, yi(t) = 1, or negative, yit = 0, to morphine, the biological

marker of heroin use. This data were previously analysed by Chan et al. (1998), with the

aim at investigating the relationship between varying daily dose of methadone, duration

of treatment and heroin use as detected by urine testing. They noted that beyond the

first six months of treatment non-random drop-outs begin to appear, with patients who

continued regular heroin use being more likely to leave the programme. This results have

been confirmed by Alfó and Aitkin (2000) through the use of a first order autoregressive

model with random effects.

Our approach is different, and consider the whole history of the response, mi(t),

instead of only considering the response at time t − 1. In the following, we will apply

the generalized linear mixed model to the MMT data and make a comparison with the

estimates of the autoregressive model discussed in Alfó and Aitkin (2000).

In the Joint Model approach, we consider a random coefficient associated to the dose

variable. Hence, the individual heterogeneity in the effect of the methadone dose is also
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assumed to be shared by the process that generates the time-to-event. The following

GLMJM holds:{
logit(mi(t)) = (β0 + bi0) + (β1 + bi1) log(dosei(t)) + β2timei(t)

hi(t |Mi(t),Wi) = ξtξ−1
i exp{γ1dosei + αmi(t)},

(5.8)

We compare the GLMJM parameter estimates to the first order autoregressive model

in Alfó and Aitkin (2000), which does not account for non-ignorability of the drop-ou

process. The results are shown in tables 5.4, together with longitudinal parameter

estimates for the MAR model .

β̂MAR β̂auto β̂JM p-value

Intercept -0.111 -1.498 -0.1633 0.842

(0.401) (0.335) (0.818)

log(Time) -0.512* -0.271* -0.136 0.460

(0.071) (0.069) (0.184)

Dose -0.018* -0.028 -0.027 0.694

(0.005) (0.023) (0.069)

yi(t− 1) 1.431*

(0.139)

Table 5.4: MMT data: longitudinal parameter estimates for the Bernoulli joint model

and the corresponding autoregressive and MAR model (standard errors in brackets.

α̂ = 5.602∗. The symbol ∗ stand for significant coefficients.

The autoregressive and the joint models both lead to intuitive results. While the

dose effect is not significant and close to zero, the time effect is significant for the

autoregressive model and not significant for the joint model. The role of this effect,

together with the one corresponding to the response measured at the previous time point

(t−1), is coherent with the non-ignorability parameter that is estimated as significantly

different from zero. This in fact suggests that in the autoregressive model, where the

drop-out is not considered, the time each patient spent in the follow-up is a relevant

explanation variable, while when a non-ignorability parameter is considered, the time

effect is included in the time-to-event process. Therefore, the time may be not significant

in itself, but rather due to the non-ignorability of the drop-out process.

5.6 Discussion

In this Chapter, a Generalized Linear Mixed Model has been proposed to deal with

discrete longitudinal outcomes. While Rizopoulos and Ghosh (2011) consider a mul-

tivariate response which can be either discrete or continuous, our approach is focused

on the formulation of a model when interest lies in the joint modeling of one discrete
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longitudinal outcome and a time-to-event. The main findings concern the behaviour

of the GLMJM, that have been seen to be more reliable than the MAR model when

the ignorability parameter is different from zero, while presenting a similar empirical

distribution when α = 0. Applications to benchmark datasets have suggested that the

GLMJM lead to intuitive results as far as the assessment of the ignorability of the drop-

out process is concerned. Further it highlighted the possible fields of application of the

proposed model.

Nevertheless, some computational limitations have been encountered, mainly due to the

fact that the expected value of the random variable is always positive and, in some

cases, this could lead to an overly high risk of the event. Potential developments refer to

consider the assumption that the linear predictor of the response influences the hazard

function.



Chapter 6

Concluding remarks

In this thesis our aim was at describing a general approach to deal with longitudinal

data in presence of drop-out, which represents a common statistical issue. The basic

concept underlying the missing data models is that drop-out represents an information

in itself, and that inferences that do not take this information into account results in less

efficient (by not considering the process underlying the drop-out) and, sometimes, biased

estimates. This may happen when the drop-out mechanism is non-ignorable, which

means that it has an influence on (and thus modify) overall model inferences. Several

model frameworks have been proposed to take into account the dependence between the

longitudinal and the drop-out mechanisms. We focused on shared parameter models,

introduced by Wu and Carrol (1988) and further developed by Follmann and Wu (1995),

Wulfsohn and Tsiatis (1997), Henderson et al. (2000) and Rizopoulos et al. (2008b),

just to mention a few. The key idea is that unobservable individual specific sources of

heterogeneity, described by a set of a random coefficient, is shared by the longitudinal

and the drop-out processes; here and conditionally on the random coefficients the two

processes are independent. Thus, the ML estimation conditional on a set of values for

the random effects can be based on standard (univariate) methods. This model structure

presents some relevant advantages but also some disadvantages. First, non-ignorability

is assessed by a single parameter, and this leads to a straightforward interpretation;

on the other hand, the corresponding parameter estimates could be affected by the

non-ignorability assumption. Second, sharing the same random coefficients results in a

parsimonious model, but the assumption of a perfect correlation between the random

effects in the two processes may be not always realistic. Third, in the joint model

parametrization the effect on the hazard of the whole past history of the response is

assumed to be summarized by the current expected value, thus the effect of the response

at a given past time t − j is not directly captured. Finally, while plenty of theory and

software is available to deal with shared parameter models with continuous Gaussian

longitudinal responses, not so much has been done for discrete outcomes.

In this manuscript, we have focused mainly on the first and the last issues, discussed

in Chapter 4 and 5, respectively. The main results are reported above.
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Chapter 4 dealt with the issue of defining an Index of Local Sensitivity to Non-

Ignorability when a shared parameter model is considered. The index was based on

the ISNI proposed by Troxel et al. (2004) and was proposed in the literature only for

selection models; however, the simple dependence structure which is implied by using

the SPMs and the availability of relevant computational routines for fitting such models

pushed to the need for defining reliable sensitivity tools also in this context. The topic

was covered by extending the ISNI to SPMs, by defining alternative relative versions of

the index and by studying the corresponding empirical behaviour through simulation

and real studies.

In Chapter 5, a Generalized Linear Mixed Model was proposed to deal with discrete

longitudinal outcomes. While Rizopoulos and Ghosh (2011) considered multivariate

responses which can be either discrete or continuous, our approach was focused on the

formulation of a model where the main interest lies in the joint modeling of one discrete

longitudinal outcome and a time-to-event. The main findings concerned the behaviour

of the GLMJM, that was seen to be more precise than the corresponding MAR model in

simulated samples when the ignorability parameter is assumed to be different from zero,

while presented a similar empirical distribution when α = 0. Applications to benchmark

datasets suggested that the GLMJM leads to intuitive results as far as the assessment

of the ignorability of the drop-out process was concerned and highlighted possible fields

of application of the proposed model.

Nevertheless, some computational limitations were encountered, mainly due to the fact

that the expected values of the response variable are always positive and, in some cases,

this could lead to an overly high risk of the drop-out event. Potential developments

are to consider that the linear predictor for the longitudinal response influences the

hazard function, to consider more general failure time processes (e.g. piecewise constant

baseline hazard models), and to take into account the past (observed) response history

in the hazard specification.



Appendix A

Calculations for Chapter 4

A.1 Calculating the ISNI for the Shared Parameter

Models

The score vectors with respect to the longitudinal fixed effects and the association

parameter for the joint model assume the form

sJM(β) =
n∑
i=1

δiαX
T
i (Ti)−

∫
bi

∫ Ti

0

h0(si)αX
T
i (si) exp

{
γTWi + αmi(si)

}
dsi

+XT
i σ
−2 (Yi −mi(ti)) p(bi | Ti, δi, yi; θ)dbi,

and

sJM(α) =
n∑
i=1

δimi(ti)−
∫
bi

∫ Ti

0

h0(si)mi(si) exp
{
γTWi + αmi(si)

}
dsi

p(bi | Ti, δi, yi; θ)dbi.

For the shared parameter model the score vectors with respect to β and α can be

written as

sSPM(β) =
n∑
i=1

∫
bi

XT
i σ
−2 (Yi −mi(ti)) p(bi | Ti, δi, yi; θ)dbi,

and

sSPM(α) =
n∑
i=1

∫
bi

(
δibi −

∫ Ti

0

h0(si)bi exp
{
γTWi + αTbi

})
p(bi | Ti, δi, yi; θ)dbi,

respectively. The posterior distribution of the random effects is given by

p(bi | Ti, δi, Yi; θ) =
p(Ti, δi | bi; θ)p(yi | bi; θ)p(bi)

p(Ti, δi, yi)
.
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We derive the ISNI for the joint model as follows:

ISNIJM(β) = −

(
σ−2XT

i Xi −
n∑
i=1

∫ Ti

0

h0(si)α
2Xi(si)

TXi(si)µ1,bi(si)dsi + I1

)−1

×
n∑
i=1

δiXi(ti)−
∫ Ti

0

[h0(si)Xi(si)µ1,bi(si)] [1 + αmi(si)] dsi + I2,

where µ1,bi(ti) = Ebi|Ti,δi,yi

[
exp

{
γTWi + αmi(ti)

}]
,

I1 =

∫
bi

q(β, bi)
{
q(β, bi)− sJM

i (β)
}T

p(bi | Ti, δi, yi),

and

q(β, bi) = αδiXi −
∫ Ti

0

h0(si)αXi(si) exp
{
γTWi + αmi(si)

}
dsi

+XT
i σ
−2(Yi −mi(ti)),

while I2 =
∫
bi
q(β, bi)

{
q(α, bi)− sJM

i (α)
}T

p(bi | Ti, δi, yi) and

q(α, bi) = δimi(ti)−
∫ Ti

0

h0(si)mi(si) exp
{
γTWi + αmi(si)

}
dsi.

The ISNI for the shared parameter model can be written as

ISNISPM(β) = −

(
n∑
i=1

σ−2XT
i Xi + I3

)−1

×
n∑
i=1

σ−2XT
i

[
µ2,bi − µ3,bi

∫ Ti

0

h(si)dsi

]
,

where µ2,bi = Ebi|Ti,δi,yi
[bi(yi −mi(ti))], µ3,bi = Ebi|Ti,δi,yi

[
bi exp

{
γTWiα

Tbi
}

(yi −mi(ti))
]
,

I3 =

∫
bi

q∗(β, bi)
{
q∗(β, bi)− sSPM

i (β)
}T

p(bi | Ti, δi, yi),

and

q∗(β, bi) = σ−2XT
i (yi −mi(ti)).

In the latter formulation, the ISNI represents a matrix with columns equal to the

number of random effects inserted in the survival model. For instance, if we consider a

model with p fixed effects β1, . . . , βp and two random effects b1i and b2i, the association

parameter is a vector α = (α1, α2) and the ISNI is a matrix whose {i, k}th element is

given by

ISNIJM(β) =

{
−
(

∂2L

∂βi∂βj

)−1
∂2L

∂βi∂αk

}
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where i, j = 1, . . . , p and k = 1, 2.

Finally, it is relevant to note that the ISNI for the shared parameter model depends on

α only through the first derivative of the posterior distribution of the random effects.

This implies that the random effects covariance matrix may have an effect on the index

computation.
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