
Università degli Studi di Roma “La Sapienza” 

 

 

Facoltà di Scienze Matematiche Fisiche e Naturali 

 

Tesi di Dottorato in Scienza dei Materiali 

PhD Thesis in Materials Science 

XXIII ciclo 

 

 

 

 

Anchoring and reactivity of calixarenes and rotaxanes on 

semiconductor and metal surfaces, studied by XPS, AFM and 

electrochemistry 

 

 

 

 

 

 

Candidate 

Dr. Alice Boccia 

 

Supervisor 

Prof. Robertino Zanoni 



 Abstract 

 

 
2 

 

ABSTRACT 

 

 

 

 

 This PhD thesis work deals with the extension to surfaces of the supramolecular 

concept of molecular recognition. Molecular recognition at interfaces is a key aspect in 

several important present and perspective applications, such as high-sensitivity sensors, drug-

delivery systems and molecular electronics. Specific and reversible binding of guest 

molecules from a solution to a surface pre-treated with host molecules is a recent and active 

field of research.  

 Self-assembled monolayers may result from supramolecular interactions between 

cavitands possessing suitable anchoring groups and properly functionalized surfaces, adding 

distinct functionalities to the resulting hybrid species. 

 A compared study by surface techniques on the application of calix[n]arenes in the 

production of new functional materials is given. These new materials include two series of 

hybrids, based on the functionalization of Si(100) and polycrystalline Cu surfaces with 

calixarenes and derivatives, and gold nanoparticles (AuNPs), synthesized with the help of 

calixarenes. A very attractive topological property of AuNPs is the possibility to anchor onto 

the metallic core suitable receptors in a radial tri-dimensional arrangement for the recognition 

of charged and neutral species. 

The anchoring systems chosen, calix[n]arenes (n=4,6), are one of the most relevant 

class of compounds in supramolecular chemistry, which own their popularity because of their 

flexibility as linkers, being, i.e., efficient building blocks for constructing molecular devices 

based on rotaxanes.  

New wet-chemistry recipes have been here developed and optimized to covalently 

anchor the appropriate molecules to Cu and Si substrates. The covalent functionalization on 

both Si(100) and polycrystalline Cu surfaces was obtained by making use of distinct, suitable 

terminations: a thiol (-SH) or C=C anchoring group, respectively for Cu or H-Si(100). In this 

latter case, an extra-mild photochemical activation via visible light was operated, which 

largely preserves the integrity of the molecular substrate. Anchoring on Cu was reached by 

dipping a clean substrate of this metal in a calixarene solution. Molecular adhesion has been 
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demonstrated by the presence and quantitation of XPS signals from specific elements in the 

molecules. The combination of different functionalities in a single SAM was tested on Cu by 

producing a mixed film. 

AFM measurements performed on Si(100)/calix[4]arenes have revealed morphology 

consistent with the presence of surface aggregates with of the calixarenes. The availability of 

the calix[4]arene cavity to reversibly host further species after anchoring has been 

demonstrated by the complexation reaction with Cs
+
 ions and a sequence of uptake and 

release cycles with pyridinium salts. 

Self-assembled monolayers of oriented calix[6]arene-based rotaxanes and 

pseudorotaxanes were prepared on polycrystalline Cu. When these SAMs are suitably biased 

at a specific potential (experimentally inferred from solution studies on the molecular 

substrates), fully assembled rotaxanes detach from Cu, while in the case of pseudorotaxanes a 

selective detachment of the wheel results from biasing.  

On Si(100) it can be observed that a nearly full monolayer can be obtained only in a 

two step-procedure, starting from the spontaneous formation of a mixed monolayer composed 

of pseudorotaxanes and axles, further reacted with a solution containing only the calixarenes. 

We cross-checked the reactivity of the thiol and alkene terminal anchoring groups on 

the Cu and Si surfaces. No molecular uptake was observed when the two surfaces were 

exchanged, while each calixarene chemisorbed on the expected surface. 

The characterization of a series of monolayer-protected gold nanoparticles (AuNPs) 

resulting from the reactions of monodentate, bidentate, tridentate and tetradentate thiolated 

calix[n]arene derivatives with the suitable percursor Au(III) compound, is reported. The 

compounds have been prepared by the research group led by prof. Pochini in Parma, 

following the Brust-Schiffrin synthesis. XPS, combined with TEM measurements, has shown 

that the particular multidentate structure of calix[n]arenes introduces a control element in the 

preparation of the gold nanoclusters. The interesting point is that such element allows, in the 

particular experimental conditions here reported, to obtain very small (< 1 nm) Au MPCs. 
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Chapter 1 

Introduction 

 

 

 

 

 

 This PhD thesis work deals with the extension to surfaces of the supramolecular 

concept of molecular recognition, which primarily implies self-organization of even complex 

chemical architectures via specific interaction and reversible assembling of molecular 

systems. Such an extension is very recent, and in the following an overview is preliminary 

given of both the basic concepts and the existing literature in the field. 

 

 

 

 1.1 – State of the art 

 

In the frame of supramolecular studies, the combination of suitable molecules and 

surfaces of inorganic solids which have been pre-organized to produce a host-guest 

interaction, is relatively new and may lead to nanomaterials with new, tuneable and improved 

properties for perspective applications. These hybrid nanomaterials may develop additional 

and more attractive properties than their separate counterparts, because of the reciprocal 

interactions between them.  

Supramolecular chemistry, established in 1980s, exploits the weaker and reversible 

non-covalent interactions between molecules. These forces include hydrogen bonding, metal 

coordination, hydrophobic and van der Waals forces, pi-pi interactions and electrostatic 

effects. Important concepts that have been demonstrated by supramolecular chemistry 

include molecular self-assembly, folding, molecular recognition, host-guest chemistry, 

mechanically-interlocked  and dynamic covalent chemistry.  

http://en.wikipedia.org/wiki/Hydrogen_bond
http://en.wikipedia.org/wiki/Hydrophobic_effect
http://en.wikipedia.org/wiki/Van_der_Waals_force
http://en.wikipedia.org/wiki/Pi-pi_interaction
http://en.wikipedia.org/wiki/Molecular_self-assembly
http://en.wikipedia.org/wiki/Molecular_self-assembly
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Nanotechnology emerged in the 1990s and involves the research and development of 

technology at the nanometer level. Nanoscience includes the study of objects and systems 

with dimension in 1-100 nm range. At these sizes, nanosystems can exhibit interesting and 

useful physical behaviours based on quantum phenomena (electron confinement,
1
 near-field 

optical effects,
2
 quantum entanglement,

3
 electron tunnelling

4
 and ballistic transport

5
) or 

subdomain phenomena (superparamagnetism,
6
 overlapping double layers in fluids

7
). 

Chemistry has played a key role in the achievements of nanoscience. The development of new 

synthetic methods has allowed to produce uniform nanostructures with new shapes (spheres, 

rods, wires, half-shells, and cubes) and compositions (organics, metals, oxides, and 

semiconductors). One distinguishing characteristic of nanoscaled structures is that, unlike 

macroscopic materials, they typically have a high percentage of their constituent atoms at the 

surface. This scaling behaviour leads, in the most extreme case, to structures where nearly 

every atom in the structure is interfacial. In some sense, nanostructures are “all-surface” 

structures. 

An important challenge of modern nanoscience and nanotechnology is obtaining 

molecular machines through the molecule-to-molecule bottom-up approach. The idea of 

constructing artificial molecular-level machines was first contemplated in 1959 by Richard 

Feynman in his historic address There’s a Plenty of Room at the Bottom.
8
 

Organic molecules are particularly interesting as nanoscale device elements because of 

our present ability either to manipulate their functional groups by synthesis, in order to satisfy 

rapidly changing technological requirements, and to achieve atomic-scale uniformity using a 

self-assembling process. When deposited on a substrate, organic molecules provide 

                                                           
1
 a) P. M. Petroff, A. Lorke, A. Imamoglu, Phys. Today 2001, 54, 46; S. A. b) Empedocles, R. Neuhauser, K. 

Shimizu, M. G. Bawendi, Adv. Mater. 1999, 11, 1243.  

 
2
 a) M. M. Alkaisi, R. J. Blaikie, S. J. McNab, Adv. Mater. 2001, 13, 877. b) J. Jiang, K. Bosnick, M. Maillard, 

L. Brus J. Phys. Chem. B 2003, 107, 9964.  

 
3
 a) A. N. Cleland, J. S. Aldridge, D. C. Driscoll, A. C. Gossard, Appl. Phys. Lett. 2002, 81, 1699. b) M. N. 

Leuenberger, D. Loss, Nature 2001, 410, 789.  

 
4
 a) J. A. Stroscio, D. M. Eigler, Science 1991, 254, 1319. b) W. Wang, T. Lee, M. A. Reed, Phys. Rev. B: 

Condens. Matter 2003, 68, 035416. 

 
5
 a) T. V. Torchynska, J. Appl. Phys. 2002, 92, 4019. b) A. I. Yanson, G. R. Bollinger, H. E. Van Den Brom, N. 

Agrait, J. M. Van Ruitenbeek, Nature 1998, 395, 783. 

 
6
 Q. A. Pankhurst, J. Connolly, S. K. Jones, J. Dobson, J. Phys. D: Appl. Phys. 2003, 36, R167. 

 
7
 R. Pericet-Camara, G. Papastavrou, M. Borkovec, Langmuir 2004, 20, 3264. 

 
8
 R. Feynman, There‟s Plenty of Room at the Bottom, 1959  
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functionalities and high selectivity for applications such as selective catalysis, sensoring, 

lithography and optoelectronics, to name only a few.  

A route to generate organized hybrid systems, such as inorganic-organic 

supramolecular structures, is to use inorganic solids with preorganized nanostructures and 

arrange functional molecules of different complexity on the scaffold. The functionalization of 

nanostructured solids with specific groups for the recognition of guests or for the switching of 

surface properties is a field where application of supramolecular concepts can be highly 

rewarding. Recent representative examples of hybrid frameworks that involve use of gold 

nanoparticles covered with functional alkanethiols have been reported for sensing. Astruc and 

coworkers described the electrochemical sensing of anions (Figure 1.1.1) by amidoferrocenyl 

moieties attached to AuNPs through simple alkanethiols
9
 or dendritic structures.

10
 

 

 

Figure 1.1.1: AuNPs functionalized with redox-active ferrocenyl units. 

 

The research groups of Beer and Pochini developed systems with increased sensitivity 

for anion, organic cation and ion pair detection by assembling metalloporphyrins
11

 and 

calix[4]arenes
12

 (Figure 1.1.2) on the surface of AuNPs. Complex chemical structures can be 

                                                           
9
 a) A. Labande, D. Astruc, Chem. Commun. 2000, 1007. b) A. Labande, J. Ruiz, D. Astruc, J. Am. Chem. Soc. 

2002, 124, 1782. 

 
10

 a) M.-C. Daniel, J. Ruiz, S. Nlate, J. Palumbo, D. Astruc, J.-C. Blais, Chem. Commun. 2001, 2000; b) M.-C. 

Daniel, J. Ruiz, S. Nlate, J.-C. Blais, D. Astruc, J. Am. Chem. Soc. 2003,125, 2617. 

 
11

 P. D. Beer, D. P. Cormode, J. J. Davis, Chem. Commun. 2004, 414 .  

 
12

 a) A. Arduini, D. Demuru, A. Pochini, A. Secchi, Chem. Commun. 2005, 645.b) T. R. Tshikhudo, D. Demuru, 

Z. Wang, M. Brust, A. Secchi, A. Arduini, A. Pochini, Angew. Chem. 2005, 117, 2973. 
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synthesized from simple building blocks. Especially attractive examples are those where 

reversible assembly/disassembly processes can be controlled.  

 

 

Figure 1.1.2: AuNPs functionalized with metalloporphyrins (a) and calix[4]arenes (b). 

 

A step towards controlled and directional assembly was achieved by Reinhoudt and 

co-workers. They adsorbed tetraguanidinium calix[4]arenes functionalized with four 

adamantine units onto a ciclodextrines monolayer on gold by a two-step recipe: first, a 

complexation of the adamantane with the hydrophobic cavity of the cyclodextrines was 

induced (Figure 1.1.3);
13

 second, tetrasulfonate calix[4]arenes were assembled onto the 

modified surface through electrostatic interactions.  

Reversible control of the assembly and disassembly of a supramolecular structure 

should also have promising applications in the construction of molecular devices and 

nanomachines. 

By covering surfaces and nanoparticles with an organic stabilizing shell, 2D self-

assembled monolayers (2D-SAMs) or monolayer-protected clusters (MPCs or 3D-SAMs) can 

be obtained, respectively. The enticing aspect of these systems is that the nature of both the 

inorganic and the organic layer can influence the properties of the resulting hybrid material.
14

 

During the last decade, it became progressively clear that supramolecular chemistry, through 

the application of a “bottom-up approach”, opens virtually unlimited possibilities to the 

design of nanomaterials and nanoscale objects.
 

                                                           
13

 F. Corbellini, A. Mulder, A. Sartori, M. J.W. Ludden, A. Casnati, R. Ungaro, J. Huskens, M. Crego-Calama, 

D. N. Reinhoudt, J. Am. Chem. Soc. 2004, 126, 17050. 

 
14

 A. B. Descalzo, R. Martinez-Manez, F. Sancenón, K. Hoffmann, K. Rurack, Angew. Chem. Int. Ed. 2006, 45, 

5924. 
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Figure 1.1.3: Tetraguanidinium calix[4]arene functionalized with four adamantyl units 

adsorbed on cyclodextrins monolayers and the subsequent assembly with tetrasulfonate calix[4]arene. 

 

The modification of semiconductor surfaces by the covalent attachment of organic 

molecules has been an active topic of investigation in the field of surface science. The most 

important elementary semiconductor material is silicon. Organic monolayers immobilized on 

silicon substrates are crucial for microelectronics and sensors. Organic monolayers formed 

through a covalent Si-C bond provide electronic coupling between organic functionalities and 

semiconductor, without interference interfacial oxide thin film.
15

 

Molecular recognition reactions at interfaces have been largely investigated in the past 

two decades, mainly by means of 2D-SAMs.
16

 Nature teaches that molecular recognition can 

                                                           
15

 a) J. M. Buriak, Chem. Rev. 2002, 102, 1271. b) D. D. M. Wayner, R. A. Wolkow, J. Chem. Soc. Perkin 

Trans. 2 2002. c) M. R. Linford, C. E. D. Chidsey, J. Am. Chem. Soc. 1993, 115, 12631. d) C. H. de Villeneuve, 

J. Pinson, M. C. Bernard, P. Allongue, J. Phys. Chem. B 1997, 101, 2415. e) B. J. Eves, Q.-Y. Sun, G. P. 

Lopinski, H. Zuilhof, J. Am. Chem. Soc. 2004, 126, 14318. f) B. Fabre, D. D. M. Wayner, Langmuir 2003, 19, 

7145.  

 
16

 a) A. Aurora, F. Cattaruzza, C. Coluzza, C. Della Volpe, G. Di Santo, A. Flamini, C. Mangano, S. Morpurgo, 

P. Pallavicini. R. Zanoni, Chem. Eur. J. 2007, 13, 1240. b) F. Tancini, D. Genovese, M. Montalti, L. Cristofolini, 

L. Nasi, L. Prodi, E. Dalcanale, J. Am. Chem. Soc. 2010, 132, 4781. (c) G. G. Condorelli, A. Motta, M. Favazza, 

E. Gurrieri, P. Betti, E. Dalcanale, Chem. Commun. 2010, 46, 288. (d) E. Biavardi, M. Favazza, A. Motta, I. L. 

Fragala, C. Massera, L. Prodi, M. Montalti, M. Melegari, G. Condorelli, E. Dalcanale, J. Am. Chem. Soc. 2009, 

131, 7447. 



 Chapter 1 - Introduction 

 

 
11 

 

be achieved much more efficiently at appropriate interfaces.
14

 In this framework, the use of 

versatile model surfaces of a high technological impact such as Si(100) to investigate 

molecular recognition can provide great insights into different classes of phenomena. The 

issue of immobilization on silicon oriented surfaces of molecules displaying single or multiple 

functions has grown rapidly in the last few years.
15a,16

 Grafting reactions of organic molecules 

and ligands have been reported, with an aim at progressing into advanced fields of research 

such as nanoelectronics, nanosensing and, more recently, biological interfaces at the 

nanoscale. The advantages offered by a substrate as silicon are numerous, not only in terms of 

its low cost and high availability, but also because of its biocompatibility. Moreover, silicon 

can work as a semiconductor electrode, with applications in sensors and biosensors or, in the 

case of electroactive surfaces, charge-storage devices.  

Supramolecular interactions have now started to diffuse into the realm of Si-anchored 

ligands, thus extending the control on reversibility typical for such type of chemical bond.
16 

Research studies on Si oriented surfaces
17 

looked at the establishment of a robust surface-to-

organics bond, in order to reach the best possible conditions of reproducibility, in addition to 

an easier approach to a thorough characterization via surface spectroscopies and 

microscopies. The combination of a stable anchoring bond at the interface with the 

supramolecular interaction offered by the attached ligands leads to specific recognizing 

systems, which can be considered prototypical of more complex inorganic-organic hybrids.
14

  

Literature on cavitands on Si(100)
16b-d 

already exists on resorcinarenes, which have 

been used to control the self-assembly process in multistep growth of supramolecular 

structures on silicon. 

Calix[n]arenes
19

 are another class of synthetic macrocycles extensively employed for 

the preparation of efficient and selective receptors for neutral and charged species. More 

recently, they have been proposed as wheels in the oriented synthesis of rotaxanes and 

pseudorotaxanes.
18

 Calix[n]arenes have found wide application as molecular platforms, on 

which a large variety of binding sites can be inserted and oriented in space, or as 

tridimensional receptors able to include into their aromatic cavities either neutral or charged 

species. They play an important role in molecular recognition as hosts for smal organic 

                                                           
17

 a) F. Cattaruzza, A. Llanes-Pallas, A. G. Marrani, E. A. Dalchiele, F. Decker, R. Zanoni, M. Prato, D. 

Bonifazi, J. Mater. Chem. 2008, 18, 1570. b) A. G. Marrani, E. A. Dalchiele, R. Zanoni, F. Decker, F. 

Cattaruzza, D. Bonifazi, M. Prato, Electrochimica Acta 2008, 53, 903. c) M. Cossi, M. F. Iozzi, A. G. Marrani, 

T. Lavecchia, P. Galloni, R. Zanoni, F. Decker, J. Phys. Chem. B 2006, 110, 22961. d) F. Decker, F. Cattaruzza, 

C. Coluzza, A. Flamini, A. Marrani, G. Andrea, R. Zanoni, E. A. Dalchiele, J. Phys. Chem. B 2006, 110, 7374. 

 
18

 H. E. Zaugg, W. B. Martin in Organic Reactions; Ed.: A. Cope, Wiley, New York, 1965; Vol. 14, pp 52-269. 
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molecules, for ions, clusters or neutral guests. The main applications of calixarenes reported 

up to date are their use as sensors.
19

 

Calix[6]arene derivatives functionalized with N-phenylureido groups have been 

recently employed as active components for the preparation of prototypes of molecular 

machines.
20

 Owing to their particular shape and size, these macrocycles can act as asymmetric 

wheels for N,N'-dialkyl-4,4'-dipyridinium salts (viologen), to give rise to self-assembled 

species belonging to the class of rotaxanes and pseudorotaxanes. These latter are 

supramolecular complexes characterized by high thermodynamic stability, which can be 

reversibly disassembled in solution by external electrochemical stimuli.
21 

From the viewpoint of research advancements on molecular machines, the most 

interesting complex is pseudorotaxane, since it can be reversible dissociated into a free ring 

host and a free axle guest, giving rise to dethreading/threading motion. The external stimulus 

employed to operate this machine can be chemical, photochemical or electrochemical. 

Rotaxane-based molecular machines have been of early interest for their potential use in 

molecular electronics as logic molecular switching elements and as molecular 

shuttles. These molecular machines are usually based on the movement of macrocycle on the 

dumbbell. 

The controlled production of organic SAMs on metal surfaces started in 1983, and is 

now a mature field. Early studies reported the behaviour of alkanethiols and dialkyl sulfide or 

disulfide on Au.
22

 Various examples of functional species have thereafter been proposed, such 

as redox species,
23

 biomolecules or selective receptors.
24

 Use of model surfaces of a high 

                                                           
19

 Calixarenes in the Nanoworld, Eds.: J. Vicens, J. Harrowfield, Springer, Dordrecht, 2007 and references 

therein. 

 
20

 a) M. Semeraro, A. Arduini, M. Baroncini, R. Battelli, A. Credi, M. Venturi, A. Pochini, A. Secchi, S. Silvi, 

Chem. Eur. J. 2010, 16, 3467. b) A. Arduini, R. Bussolati, A. Credi, G. Faimani, S. Garaudee, A. Pochini, A. 

Secchi, M. Semeraro, S. Silvi, M. Venturi, Chem. Eur. J. 2009, 15, 3230. c) B. Gadenne, I. Yildiz, M. Amelia, F. 

Ciesa, A. Secchi, A. Arduini, A. Credi, F. M. Raymo, J. Mater. Chem. 2008, 18, 2022. d) A. Arduini, A. Credi, 

G. Faimani, C. Massera, A. Pochini, A. Secchi, M. Semeraro, S. Silvi, F. Ugozzoli, Chem. Eur. J. 2008, 14, 98. 

e) A. Arduini, R. Bussolati, A. Credi, A. Pochini, A. Secchi, S. Silvi, M. Venturi, Tetrahedron 2008, 64, 8279. 

 
21

 V. Balzani, A. Credi, M. Venturi, Molecular Devices and Machines: Concepts and Perspectives for the 

Nanoworld, Wiley-VCH, Wienheim, 2008 and references therein. 

 
22

 J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, Chem. Rev. 2005, 105, 1103 and 

references therein. 

 
23

 a) S. Watcharinyanon, E. Moons, L. S. O. Johansson, J. Phys. Chem. C 2009, 113, 1972. b) A. A. Yasseri, D. 

Syomin, V. L. Malinovskii, R. S. Loewe, J. S. Lindsey, F. Zaera, D. F. Bocian, J. Am. Chem. Soc. 2004, 126, 

11944. c) J. Jiao, I. Schmidt, M. Taniguchi, J. S. Lindsey, D. F. Bocian, Langmuir 2008, 24, 12047. d) G. 

Fioravanti, N. Haraszkiewicz, E. R. Kay, S. M. Mendoza, C. Bruno, M. Marcaccio, P. G. Wiering, F. Paolucci, J. 

Am. Chem. Soc. 2008, 130. 

http://en.wikipedia.org/wiki/Molecular_switch
http://en.wikipedia.org/wiki/Molecular_shuttle
http://en.wikipedia.org/wiki/Molecular_shuttle
http://en.wikipedia.org/wiki/Molecular_motor
http://en.wikipedia.org/wiki/Macrocycle
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technological impact such as Cu to investigate molecular recognition reactions can provide 

great insights into different classes of phenomena.  

Molecular and nanoscale electronics are driven by the technological need for low cost 

devices or ever decreasing dimensions and the scientific desire to understand nanoscale 

charge transport. In molecular electronics, a critical issue is the establishment of a robust and 

reliable metal contact without damage of the organic layer or contamination of the interface 

(and Cu is a metal of choice for vias). In the literature, a few different methods are described 

to this aim, as producing Cu deposits on self-assembled monolayers (SAMs) covalently 

attached to a semiconductor as Si,
25

 or depositing Cu nanoparticles on semiconductor 

surfaces.
26

 We are interested in a selective functionalization procedure of a substrate as a key-

step towards controlled deposition of suitable metals (also as nanoparticles) on 

semiconductors. In the case of Cu and Si, distinct and selective anchoring groups towards the 

two moieties are needed in case a bridging bond should be established between, e.g., Cu 

nanoparticles and a pre-patterned Si surface. Moreover, investigations on the reactivity of 

polycrystalline Cu surfaces can be considered as preliminary to Cu single-crystal studies.
27

 

Supramolecular chemistry can play an important role also in the development of a 

class of emerging hybrid organic-inorganic materials: 3D self-assembled monolayers (3D-

SAMs). The members of this class, also known as monolayer protected clusters (MPCs), are 

compounds constituted by a discrete aggregate of metal atoms (inorganic core) of nanometric 

size, stabilized on the surface by an organic monolayer (shell). The properties of 3D-SAMs 

strongly depend on the nature of both the inner inorganic nanoparticle and the outer organic 

monolayer. The various functionalities of the latter (sensing, multivalency, solubility, etc.) 

makes nanoparticles excellent building blocks for the fabrication of new functional materials 

through the bottom-up approach of nanotechnology. 

                                                                                                                                                                                     
24

 a) B.-H.Huisman, E. U. T. van Velzen, F. C. M. van Veggel, J. F. J. Engbersen, D. N. Reinhoudt, Tetrahedon. 

Lett. 1995, 36, 3273. b) H. Schoenherr, G. J. Vancso, B.-H. Huisman, F. C. J. M. Van Veggel, D. N. Reinhoudt, 

Langmuir 1999, 15, 5541. c) F. C. J. M. Van Veggel, D. N. Reinhoudt, Chem. Eur. J. 1999, 5, 3595. d) C. 

Safarowsky, K. Wandelt, P. Broekmann, Langmuir 2004, 20, 8261. 

 
25

 D. Cahen, G. Hodes, Adv. Mater. 2002, 14, 789. 

 
26

 a) H.-F. Wang, Y.-G. Yan, S.-J. Huo, W.-B. Cai, H.-F. Wang, Y.-G. Yan, S.-J. Huo, W.-B. Cai, Electroch. 

Acta 2007, 52, 5950. b) O. Seitz, M. Dai, F. S. Aguirre-Tostado, R. M. Wallace, Y. J. Chabal, J. Am. Chem. Soc. 

2009, 131, 18159. 

 
27

 a) D. P. Woodruff, Appl. Surf. Sci. 2007, 254, 76. b) D. P. Woodruff, Surf. Sci. 2008, 602, 2963. 
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Recently, much attention has centered on colloidal metal nanoparticles because of 

their potential applications in areas of electronics, photonics, and catalysis.
28

  

In antiquity, colloidal gold were used in an ecological sense for both aesthetic and 

curative purposes. The physical properties of nanoparticles in the diameter range 1-10 nm 

(intermediate between the size of small molecules and that of bulk metal) are neither those of 

bulk metal nor those of molecular compounds, but they strongly depend on the particle size, 

interparticle distance, nature of the protecting organic shell, and shape of the nanoparticles.
29

 

Gold nanoparticles are the most stable metal nanoparticles. In particular, thiol-

stabilized gold nanoparticles have become an important model system in nanomaterial 

research due to their stability, easy preparation and chemical versatility. Despite increasing 

efforts in the past few years, it is still a great challenge to fabricate well-controllable 

nanostructures by using colloidal particles as the structural elements. A key to achieving this 

goal will be the ability to assemble nanoparticles onto a desired surface. Much work has been 

performed to design and produce position-controlled assemblies of nanoparticles on solid 

surfaces, which are essential for nanodevice studies.
30

 Silicon is clearly the most important 

material in modern technology, and several recipes reports have been published on the self-

assembly of nanometer-sized materials attached to a silicon surface through strong Si-C bonds 

(347 kJmol
-1

).
31

 As a notable example, in a paper published by Nishihara et al. ω-alkene-1-

thiol-functionalized gold nanoparticles covalently linked to a hydrogen-terminated Si(111) 

surface through a thermal hydrosilylation reaction are described (Figure 1.1.4).
32

 The authors 

demonstrated the formation of an ordered monolayer on the surface that prevented the 

aggregation of nanoparticles and preserved the surface after long-term exposure to ambient 

conditions. 

                                                           
28

 a) M. C. Daniel, D. Astruc, Chem. Rev. 2004, 104, 293. b) G. Schmid, B. Corain, Eur. J. Inorg. Chem. 2003, 

3081. b) A. C. Templeton, W. P. Wuelfing, R. W. Murray, Acc. Chem. Res. 2000, 33, 27. 

 
29

 M. Brust, C. J. Kiely, Some Recent Advances in Nanostructure Preparation from Gold and Silver: A Short 

Topical Review. Colloids Surf. A: Physicochem. Eng. Asp. 2002, 202, 175. 

 
30

 a) E. W. L. Chan, D.-C. Lee, M.-K. Ng, G. Wu, K. Y. C. Lee, L. Yu, J. Am. Chem. Soc. 2002, 124, 12 238. b) 

E.W. L. Chan, L. Yu, Langmuir 2002, 18, 311. c) H. X. He, H. Zhang, Q. G. Li, T. Zhu, S. F. Y. Li, Z. F. Liu, 

Langmuir 2000, 16, 3846. d) J. A. Harnisch, A. D. Pris, M. D. Porter, J. Am. Chem. Soc. 2001, 123, 5829 . e) T. 

Okamoto, I. Yamaguchi, J. Phys. Chem. B 2003, 107, 10 321. f) H. Tanaka, M. Mitsuishi, T. Miyashita, 

Langmuir 2003, 19, 3103. g) b) M. Yamada, H. Nishihara, Langmuir 2003, 19, 8050. 

 
31

 R. T. Sanderson, Chemical Bonds and Bond Energy, Academic Press, New York, 1976. 

 
32

 Y. Yamanoi, N. Shirahata, T. Yonezawa, N. Terasaki, N. Yamamoto, Y. Matsui, K. Nishio, H. Masuda, Y. 

Ikuhara, H. Nishihara, Chem. Eur. J. 2006, 12, 314 .  
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 Ideally, it would be desirable to immobilize gold nanoparticles onto the surface by 

non-covalent, reversible bonds. 

 

 

Figure 1.1.4: ω-alkene-1-thiol-functionalized AuNPs immobilized onto a hydrogen-

terminated Si(111) surface. 

 

The formation of mono- and multilayer films of small-ligand-stabilized metal 

nanoparticles is a significant research topic in the variety of possible applications (separations, 

chemical sensors) and their significance in fundamental science (such as the ligand 

dependence of electron-hopping conductivity within the films). 

 

 

 

 

1.2 – Aim and outline of this thesis 

 

The main object of this thesis is a compared study by surface techniques on the 

application of calix[n]arenes in the production of new functional materials. These new 

materials include two series of hybrids, based on the functionalization of Si(100) and 

polycrystalline Cu surfaces with calixarenes and derivatives, as discussed in Chapter 4 ad 5, 

and monolayer-protected gold clusters (MPCs), synthesized with the help of calixarenes, 

reported in Chapter 6. 

The anchoring systems chosen, calix[n]arenes (n=4,6), are one of the most relevant 

class of compounds in supramolecular chemistry, which own their popularity because of their 

flexibility as linkers, being, i.a., efficient building blocks for constructing molecular devices 

based on rotaxanes (Chapter 2).  
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The hybrids produced during the thesis work were mainly characterized by surface 

spectroscopy (XPS), and the experimental conditions and apparatus are described in Chapter 

3. In some selected cases this technique has been supported by Atomic Force Microscopy 

(AFM), in order to obtain information on surface coverage and arrangements, and by 

electrochemical measurements, which can both provide relevant data on the redox processes 

and evidence the conditions for stimulating surface reactivity, as in threading-dethreading 

processes.  

New wet-chemistry recipes, reported in Chapter 4 and 5, have been developed to 

covalently anchor the appropriate molecules to Cu and Si substrates, and optimized to obtain a 

high degree of coverage and to preserve surface from oxidation and contamination. The 

covalent functionalization on both Si(100) and polycrystalline Cu surfaces was obtained by 

making use of distinct, suitable terminations: a thiol (-SH) or C=C anchoring group, 

respectively for Cu or H-Si(100). In this latter case, an extra-mild photochemical activation 

via visible light was operated. Anchoring on Cu was reached by dipping a clean sample in a 

calixarene solution. Molecular adhesion has been demonstrated by the presence and 

quantitation of XPS signals from specific elements in the molecules. The availability of the 

calix[4]arene cavity to reversibly host further species after anchoring on both substrates has 

been demonstrated by a sequence of uptake and release cycles with pyridinium salts. 

Self-assembled monolayers of oriented calix[6]arene-based rotaxanes and 

pseudorotaxanes were prepared on polycrystalline Cu. When each SAM is suitably biased at a 

specific potential, the rotaxane attached on Cu loses the entire molecular substrate, while a 

selective detachment of the wheel results from the pseudorotaxane (Chapter 4). On Si(100) it 

can be observed that a mixed monolayer, composed of pseudorotaxanes and axles, further 

uptakes free calixarenes from a solution (Chapter 5). 

We cross-checked the reactivity of the different anchoring group on the Cu and Si 

surfaces. No molecular uptake was observed when the two surfaces were exchanged, while 

each calixarene chemisorbed on the expected surface. 

In Chapter 6, the characterization of a series of monolayer-protected gold clusters 

(MPCs) stabilized by monodentate and multidentate thiolated calix[n]arene derivatives, is 

reported. The compounds have been prepared by research group led by prof. Pochini in Parma 

following the Brust-Schiffrin synthesis. The combination of XPS and TEM measurements 

shows that the particular multidentate structure of calix[n]arenes introduces a control element 

in the preparation of the gold nanoclusters that allows, in the particular experimental 

conditions here reported, to obtain very small (< 1 nm) Au MPCs. 



 

Chapter 2 

Investigated Systems 

 

 

 

 

 

 2.1 – Inorganic substrates 

 

 Atoms or molecules at the surface of a material experience a different environment 

from those in the bulk and thus have different free energies, electronic states, reactivities, 

mobilities, and structures. Whitesides et al. believe that surfaces represent a fourth state of 

matter.
22

 

 

 

 

 2.1.1 - Silicon surface 

 

Silicon is the semiconductor most employed in electronics and nanotechnology, with 

an intrinsic conductivity of 4.3 × 10-6 Ω
-1

 cm
-1

, and a band gap of 1.12 eV at 300 K. The 

electronic properties, such as its conductivity, can be manipulated by altering the dopant type 

(p or n) or concentration. 

Silicon is a covalent solid that crystallizes into a face-centered cubic lattice structure, 

as illustrated in Figure 2.1.1.  
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Figure 2.1.1: The face centered cube geometry of the crystal silicon. 

 

Silicon forms a covalent solid, whose bonding is produced by the overlapping of 

highly directional electronic orbitals in a tetrahedral bonding configuration. While the 

diamond cubic lattice is preserved in the bulk, the solid is truncated on the surface of the 

material. The silicon surface reactivity is partly controlled by the unsaturated bonding 

orbitals, or dangling bonds, containing a single electron. On the surface, atoms can readjust 

themselves to minimize the total free energy of the system and eliminate or restrict the 

number of dangling bonds in a process known as “surface reconstruction”.
33

 Because of their 

importance in industry, the most common surface crystallographic orientations are Si(111) 

and Si(100) although other Si(hkl) orientations are known.
34

 In Figure 2.1.2, the (111) and 

(100) ideal orientations and their respective dangling bonds are illustrated. The two surfaces 

have markedly different surface structures.
33

 

 

 

Figure 2.1.2: The Si(111) (left side) and Si(100) (right side) orientations. 

 

The Si(100) surface reconstructs into 2x1 structure, where 2x1 designates the new 

periodicity of the surface atoms. The Si(100)-2x1 surface, illustrated in Figure 2.1.3, is made 

up of pairs of silicon atoms in adjacent rows that have bonded with each other, thereby this 

dimerization eliminates half of the dangling bonds. The Si(100)-2x1 dimers consist of a s 

                                                           
33

 a) J. J. Boland, Surf. Sci. 1991, 244, 1. b) A. Zangwill, Physics at Surfaces, Cambridge University Press, New 

York, 1988; c) C. B. Duke, Chem. Rev. 1996, 1237. d) H. N. Waltenberg, J. T. Yates Jr., Chem. Rev. 1995, 589. 

 
34

 a) H. N. Waltenburg, J. T. Yates, Chem. Rev. 1995, 95, 1589. b) 8 R. J. Hamers, Y. Wang, Chem. Rev. 1996, 

96, 1261. 
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bond (with a symmetry around the axis connecting the two atoms) and a p bond (with a nodal 

plane along the axis).
35

 In any case, the silicon dimers are highly reactive towards reactions 

involving unsaturated bonds and have shown to produce ordered organic monolayers. The 

surface energy is further reduced by a surface distortion, in which the dimers are tilted, 

forming the so-called „„up‟‟ and „„down‟‟ dimers.  

 

 

Figure 2.1.3: Si(100)-2x1 reconstruction, from DFT calculations. 

 

By heating them to sufficiently high temperature under the Ultra-High Vacuum, the 

surface atoms of Si(111) rearrange themselves to a more energetically stable configuration 

called 7x7. Even after reconstruction, both the Si(100)-2x1 and Si(111)-7x7 surfaces are 

highly reactive. If exposed to the air, single crystal silicon is soon coated by a thin, native 

oxide.  

In water solution silicon surfaces react quickly and result terminated -H, -OH and –O. In 

addition silicon wafer can be contaminated by metallic and organic species. Silicon surfaces 

can be made relatively stable in air for ten minutes, without any detectable growth of oxide 

(i.e. relatively resistant to oxidation) by hydrogen termination. It changes the surface 

structure, since Si–Si bonds of dimers are replaced by the stronger Si–H bonds, relaxing the 

surface reconstruction.
36

 Due to the strong bonding and passivating nature of hydrogen atoms 

at the interface, hydride terminated silicon does not reconstruct itself, revealing instead a 

nearly bulk-like periodicity of the surface silicon atoms. Since the formation of a layer of 

oxide should be avoided when a covalent Si-C bond is established, the H-terminated p-

Si(100), produced by wet chemistry procedures described in the Chapter 4, has been used as 

substrates for organic functionalization. 

                                                           
35

 J. J. Boland, Adv. Phys. 1994, 42, 129. 

 
36

 P. Allongue, V. Kieling, H. Gerisher, Electrochim. Acta, 1995, 40, 1353. 
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The photochemical activation of H-Si – The photochemical approach is considered to be 

the mildest for functionalization of H-terminated Si surfaces via hydrosilylation reactions of 

terminal alkenes and alkynes. Due to the mild reaction conditions requested (room 

temperature and short reaction time) it is the most likely to be used in presence of biological 

and labile moieties. In the case of porous silicon such an approach has been taken by Buriak 

et al. through the use of a white light-promoted reaction.
37

 It was demonstrated that excitons 

generated through illumination of the surface of photoluminescent porous silicon with white 

light (400 nm) are capable of driving a surface hydrosilylation reaction on hydride-terminated 

porous silicon, producing Si–C bonds. On the basis of the bond strength of the Si–H bond, a 

minimum energy of 3.5 eV (< 350 nm) is required to perform Si–H bond cleavage. Since 

Stewart and Buriak used wavelengths ≥ 400 nm, they concluded that the mechanism of 

hydrosilylation on porous silicon does not start with a homolytic cleavage of the Si–H bonds. 

For this reason a radical chain mechanism,
38

 as operative in the case of thermal and UV 

hydrosilylation, was rejected, and a new mechanism was proposed, which involves attack by a 

1-alkene or 1-alkyne on a surface-localized positive charge (the hole) in a nucleophilic 

fashion, resulting in Si–C bond formation (Figure 2.1.4). 

 

 

Figure 2.1.4: Proposed mechanism for the exciton-mediated hydrosilylation of porous Si. 

 

 It was thought that quantum confinement effects were crucial for this attachment reaction, 

which was thus thought to be limited to porous silicon. Zuilhof et al. hypothesized that this 

mechanism, tentatively rephrased in terms of surface plasmons, depicted in Figure 2.1.5, is 

                                                           
37

 M. P. Stewart, J. M. Buriak, J. Am. Chem. Soc. 2001, 123, 7821. 

 
38

 M. R. Linford, P. E. Fenter, P. M. Eisenberger, C. E. D. Chidsey, J. Am. Chem. Soc. 1995, 117, 3145. 
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also active for flat H–Si and as a proof they found that the required reaction time to obtain 

densely packed monolayers depends on the dopant concentration, this being in line with the 

effects of the dopant on the band bending.
39

 

 

 

 

Figure 2.1.5: Mechanism proposed by Zuilhof et al. for the hydrosilylation of H–Si(100). 

 

Our group, independently from Zuilhof and coworkers,
39

 was the first to apply the 

visible light approach to attach organic monolayers to flat H-terminated silicon surfaces.
40

 

Nevertheless, the recent results on the successfully attachment of saturated 

hydrocarbon chain on H-Si reported by us
17c

 strongly suggests that the hydrosilylation 

activated by visible light proceeds through a mechanism not yet described.  

 

 

 

2.1.2 - Copper surface and Self Assembled Monolayers 

 

Copper is reddish metal with face-centered cubic (fcc) lattice structure. It is a good 

electrical conductor, second only to silver, but it obviously represents the best compromise 

between technological properties and costs. Copper does not react with water, but it slowly 

reacts with atmospheric oxygen forming a layer of copper oxide. In contrast to the oxidation 

of iron by wet air, this oxide layer stops the further, bulk corrosion. Copper reacts 

with hydrogen sulfide and sulfide-containing solutions, forming various copper sulfides on its 

surface. Because of its positive electrochemical potential it does not dissolve in acids except 

HNO3 and H2SO4.  

                                                           
39

 (a) Q.-Y. Sun, L. C. P. M. de Smet, B. van Lagen, A. Wright, H. Zuilhof, E. J. R. Sudhölter, Angew. Chem., 

Int. Ed. 2004, 43, 1352. (b) Q.-Y. Sun, L. C. P. M. de Smet, B. van Lagen, M. Giesbers, P. C. Thune, J. van 

Engelenburg, F. A. de Wolf, H. Zuilhof, E. J. R. Sudhölter, J. Am. Chem. Soc. 2005, 127, 2514. 

 
40

 R. Zanoni, F. Cattaruzza, C. Coluzza, E. A. Dalchiele, F. Decker, G. Di Santo, A. Flamini, L. Funari, A. G. 

Marrani, Surf. Sci. 2005, 575, 260. 
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Copper is essential and irreplaceable in many applications for its chemical, physical and 

mechanical properties, as heat and electrical conductivity and its corrosion resistance. Bare 

surfaces of metals tend to adsorb adventitious organic materials because these adsorbates 

lower the free energy of the interface between the metal or metal oxide and the ambient 

environment. These adsorbates also alter interfacial properties and can have a significant 

influence on the stability of nanostructures of metals.  

Self-assembled monolayers are ordered molecular assemblies that form spontaneously by 

the adsorption of a surfactant with a specific affinity of its headgroup to a specific substrate. 

These layers potentially enable to tailor and to optimize the surface properties for a variety of 

technological applications as well as for fundamental studies of surface phenomena. Figure 

2.1.4 shows the constituents of a SAM molecule (headgroup, chain or backbone, endgroup).  

 

 

 

Figure 2.1.4: Schematic diagram of an ideal, single-crystalline SAM of alkanethiolates supported 

on a gold surface. 

 

The headgroup shows a special affinity for the substrate. In case of coinage metals 

surfaces, typical headgroups are thiols. Historically
22,41

 gold is the most studied substrate, then 

other metals have been modified, including copper. SAMs also consist of a tail with a 

functional group at the terminal end (endgroup). SAMs are created by the chemisorption of 

headgroups onto a substrate from either the vapor or liquid phase followed by a slow two-

dimensional organization of chains and endgroups. As the alkyl chains become longer, the 

assembly becomes more ordered, since the organization is driven by van der Waals attractive 

forces. Areas of close-packed molecules nucleate and grow until the surface of the substrate is 

covered in a single monolayer. Such assemblies at solid surfaces allow the fabrication of 

                                                           
41

 a) R. G. Nuzzo, D. L. Allara, J. Am. Chem. Soc. 1983, 105, 4481. b) C. D. Bain, J. Evall, G. M. Whitesides, J. 

Am. Chem. Soc. 1989, 111, 7155. 
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interfaces with a well-defined composition and structure. More complex systems can be 

constructed by coadsorbing several thiols with different terminal functional groups or 

different chain length. The ability to control interfacial processes has important implications 

from the point of view of both fundamental and technological advances.
42

 

To form an alkanethiol monolayer, a clean copper substrate, freed from organic 

impurities, is simply immersed into a dilute (∼ 10
−3

 M) solution of the thiol molecule in an 

organic solvent at room temperature. The immersion time varies from a few minutes to 

several hours, or even days, depending on the system (for experimental procedures see 

Chapter 4).  

Alkanethiols are strongly chemisorbed on the surface by the formation of a covalent-

like bond between copper and sulfur atoms following cleavage of a sulfur−hydrogen bond. 

The reaction of alkanethiole on Cu may be considered formally as an oxidative addition of the 

SH bond to the surface, followed by a reductive elimination of the hydrogen. When a clean 

surface is used, the proton probably ends as a H2 molecule. This can be deduced from the fact 

that monolayers can be formed from gas phase in the complete absence of oxygen: 

R – S – H + Cu → R – S – Cu + ½ H2 

The combination of hydrogen atoms at the metal surface to yield H2 molecules may be an 

important exothermic step in the overall chemisorption energetic.
43

 

The fate of the hydrogen of the SH groups still has not been determined 

unambiguously.
44

 It is widely believed that thiol adsorption is accompanied by SH bond 

scission.
45

 It seems probable that adsorption in vacuum leads to loss of the hydrogen in the 

form of dihydrogen. In solution, another possibility exists. If the thiol hydrogen is not lost in 

the form of H2, the presence of oxygen in the reaction medium might also lead to its oxidative 

conversion to water. 

In the case of oxidized copper, the alkanethiols are not adsorbed directly on the Cu
2+

O 

surface, but reduce the oxide layer with disulfide formation by the following reaction: 

                                                           
42

 a) A.-S. Duwez, J. Electr. Spectr. Rel. Phenom. 2004, 134, 97. b) F. Schreiber, J. Phys.: Condens. Matter 

2004, 16, R881. 
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44

 a) M. Hasan, D. Bethell, M. Brust, J. Am. Chem. Soc. 2002, 124, 1132. b) C. A. Widrig, C. Chung, M. D. 

Porter, J. Electroanal. Chem. Interfacial Electrochem. 1991, 310, 335. c) C.-J. Zhong, N. T. Woods, B. G. 

Dawson, M. D. Porter, Electrochem. Commun. 1999, 1, 17. d) J.-G. Lee, J. Lee, J. T. Jr. Yates, J. Am. Chem. 

Soc. 2004, 126, 440. e) W. Andreoni, A. Curioni, H. Gronbeck, Int. J. Quantum Chem. 2000, 80, 598. 
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Electroanalytical Chemistry; Bard, A. J., Rubinstein, I., Eds.; Marcel Dekker, Inc.: New York, 1996. b) R. K. 

Smith, P. A. Lewis, P. S. Weiss, Prog. Surf. Sci. 2004, 75, 1. 
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2 R – S – H + CuO → (R – S)2 + Cu + H2O 

or 

2 R – S – H + 2 CuO → (R – S)2 + Cu2O + H2O 

This reaction continues to reduce all the CuO layer, and the monolayer is formed on 

the reduced surface, by the following reaction: 

R – S – H + Cu → R – S – Cu + ½ H2 

or 

2 R – S – H + Cu2O → R – S – Cu + H2O 

A great amount of the thiols is changed to disulfides on the CuO surfaces. This surface 

reaction from thiol to disulfide may reduce the Cu
2+

O species to Cu
1+

2O or Cu. On this 

reduced surface, the alkanethiolate monolayers are formed. 

The kinetic behavior during the formation of the film consists of two distinct phases: a 

very fast step (adsorption of the molecules onto the substrate), which takes a few minutes, and 

a slower one (organization and structuration), which lasts several hours. 

The detailed nature of the interface structures in alkylthiolate SAMs has been largely 

unknown, there has been a tendency to assume that the metal surface is a passive spectator in 

self-assembly process. Woodruff et al. recently evidenced that the interaction of the thiols 

with all metal surfaces leads to major reconstruction of the outermost layer. Copper surface 

reconstruction is depicted in Figure 2.1.5.  

 

 

Figure 2.1.5: Schematic diagram of the pseudo-(100) reconstruction of Cu(111). The overlayer 

has been omitted from the lower right-hand side of the diagram to expose the underlying Cu(111) 

substrate. Only the S headgroup atoms of the thiolate are shown as the smallest spheres. 
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Cu(111) fcc substrate reconstructs in a pseudo-(100) surface, in which the S headgroup 

atoms occupy four-fold coordinated hollow sites within this layer. The reason for this type of 

reconstruction is that the four-fold coordinated site on a near-square surface structure is 

energetically favorite than adsorption on the unreconstructed surface, despite the strain energy 

associated with the interface between the outermost (111) substrate layer and the pseudo-

(100) reconstructed layer.
46

 

 

 

 

 

2.2 - Calixarenes in supramolecular chemistry  

 

Among the several classes of synthetic macrocyclic compounds currently used as 

receptors (hosts) in supramolecular chemistry, the calix[n]arenes
47

 have assumed a key role 

due to their synthetic accessibility and versatility. The name was introduced in 1978 by 

Gutsche and derives from the type of Greek vase known as calix crater. This “crater” or 

“basket” plays a very important role in shaping the entire architecture of calixarene for its 

function in host-guest chemistry.  

Calix[n]arenes belong to the class of metacyclophanes
48

 and are cyclic oligomers having 

para-alkylphenolic units linked by methylene bridges (Figure 2.2.1).  

 

                                                           
46
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Figure 2.2.1: Synthesis of p-tert-butyl-calix[n]arene compounds (n= 4, 6 and 8). 

 

These compounds are obtained in very high yield through a one-step condensation of 

formaldehyde with p-tert-butyl phenol in basic conditions. Depending on the reaction 

conditions (temperature and solvent media) and the nature of the base employed, it is possible 

to synthesize macrocycles that contain from four to eight phenol units in the ring, even though 

the most used ones are the calix[4]arenes and calix[6]arenes. The insertion of new functional 

groups on both rims (upper and lower, see Figure 2.2.1) of the macrocycle can be easily 

accomplished using common reactions typical of the organic chemistry. For this reason 

calix[n]arenes can be considered as useful building block for the synthesis of new advanced 

receptors.
47

 

In the current nomenclature, the bracketed number (i.e. p-tert-butylcalix[4]arene) 

indicates the number of phenol units present in the macrocycle. The prefix “p-tert-butyl” 

defines the type of para-alkylated phenol used during the synthesis. The nomenclature devised 

by the IUPAC for this class of macrocycles is too complicated for an ordinary use (the 

IUPAC name for p-tert-butyl calix[4]arene is 5,11,17,23-tetakis(1,1-

dimethylethyl)pentacyclo[19.3.1.1.1.1]octaosa1(25),3,5,7(28),9,11,13(27),15,17,19(26),21,23

-dodecaene-25,26,27,28-tetraol) and led Gutsche to introduce an unofficial but simpler 

nomenclature nowadays universally accepted. With this nomenclature, the macrocyles are 

numbered following the schemes gathered in Figure 2.2.2.  
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Figure 2.2.2: Conventional nomenclature of calixarenes devised by Gutsche. 

 

Calix[n]arenes are not rigid compounds and if not properly functionalized may adopt 

several conformations both in solution and in the solid state. These conformations are 

generated by the free rotation experienced by each aromatic ring with respect to the others. 

The conformational behaviour of calix[4]arenes has been extensively studied. The most 

important conformation adopted by these compounds is called cone conformation. In this 

conformation all the phenolic units are oriented in the same direction and a π-rich aromatic 

cavity is well defined. The four different possible conformations have been named by Gutsche 

as cone (u, u, u, u), partial cone (u, u, u, d), 1,3- alternate (u, d, u, d) and 1,2-alternate (u, u, 

d, d) (Figure 2.2.3).  

 

 

Figure 2.2.3: The four possible conformations of calix[4]arenes. 

 

To make them cavitands it is necessary to fix them in either a cone or a partial cone 

conformation replacing the hydrogens of the hydroxyl functions with larger groups. In the 

cone-partial cone equilibrium the cone conformation is stabilized by higher polar solvents.  

Historically, calix[n]arenes have played an important role in supramolecular chemistry as 

receptors for neutral and charged species in solution, in the gas-phase and in the solid state. 

Several applications of calixarenes as sensors regard their employment as a molecular 

platform, that is, a scaffold on which few binding sites can be arranged to specifically 

recognize a guest species. For example, the introduction of ester, amide or ketone functional 
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groups through the proper functionalization of the lower rim has generated a plethora of 

efficient and selective receptors for positively charged species spanning from alkaline and 

alkaline-earth cations to lantanides and actinides.
47c,d

 In low polar solvents the organic salts 

are present as tight ion pairs and the π-rich aromatic cavity of calix[4]arenes and 

calix[6]arenes can be employed as a soft binding site for the cation by exploiting weak 

intramolecular interactions called cation/π interactions.
49,50 

 

 

 

 

2.3 - Rotaxanes as molecular machines 

 

The recent developments of supramolecular chemistry
51

 have extended the concept of 

machines and devices down to the molecular level. A molecular machine is defined as an 

assembly of a number of molecular components that makes mechanical movements, designed 

to perform machine-like motions in response to appropriate external stimuli (chemical, 

photonics, electrochemical etc.).
52

  

Several molecular components have been successfully used to devise molecular machines. 

Among them, those belonging to the classes of rotaxanes and pseudorotaxanes seem to offer 

a wider potentiality.
53

 A rotaxane is a mechanically-interlocked molecular architecture 
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consisting of a dumbbell-shaped axle that is threaded through a macrocycle or a ring-like 

component (Figure 2.3.1).  

 

 

Figure 2.3.1: Schematic representation of pseudorotaxane and rotaxane. 

 

The name is derived from the Latin for wheel (rota) and axle (axis). The two end-groups 

of the dumbbell (the stoppers) are larger than the internal diameter of the ring, thus preventing 

the dethreading of the components since this would require significant distortion or cleavage 

of covalent bonds. When the axle bears only one or no stopper, the system is termed 

pseudorotaxane.
52

  

 

 

Figure 2.3.2: Formation of pseudorotaxanes form triphenylureido calix[6]arene-based wheel and 

monostoppered viologen-based axle. 

 

Different rings and axles can be employed to form a rotaxane. In the recent years the 

research group of Prof. Pochini (University of Parma) has extensively used a triphenylureido 
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calix[6]arene derivative as a wheel for the synthesis of rotaxanes and pseudorotaxanes
54

 

(Figure 2.3.2) with axles based on derivatives of 4,4‟-bipyridinium salt (viologens).  

Calix[6]arene derivatives such as the one depicted in Figure 2.3.2 have, as important 

peculiarity, a truncated cone structure where an axle could, in principle, enter form the 

narrower or wider side, giving rise to oriented pseudorotaxanes or rotaxanes characterized by 

the univocal orientation of the wheel side with respect to the two termini of the axial 

component. It is possible to govern the threading process from the macrocycle upper rim 

using monostoppered asymmetrical axle to yield oriented pseudorotaxanes and rotaxanes.
53b

 

In low polar media the access of the axle into the cavity from the lower rim is prevented for 

sterical reasons by the inward orientation of the three methoxy groups present on the rim, but 

the access of the axle from the upper rim is favoured by the presence of three hydrogen bond 

donor ureido groups that are able to separate the ion-pair, thus pivoting the entrance of the 

bipyridinium axle into the cavity. The access to the cavity can be also controlled varying the 

polarity of the media where the threading process is carried out. In more polar media like 

acetonitrile, the threading process occurs also from the lower rim and it is thus possible to 

obtained almost equimolar mixture of the two different oriented pseudorotaxanes that can 

than be converted after the stopping reaction in the respectively mixture of the two oriented 

rotaxanes.
55

 

These pseudorotaxanes are capable of complexing the counteranions
56

 of the bipyridinium 

guest through hydrogen-bonding interactions with the NH ureido groups. Such an anion 

complexation has been clearly evidenced by X-ray crystallography in the solid state
53c

 and by 

1
H-NMR spectroscopy in solution

53b
 for the pseudorotaxane. It can be expected that the 

counteranions of the dicationic guest play an important role in the formation of the 

pseudorotaxane, from both a thermodynamic and a kinetic viewpoint, for the following 

reasons: (i) in the apolar solvents employed for the self-assembly process, the bipyridinium 

species can form tight ion pairs with their anions, and (ii) the size and binding properties of 

the wheel cavity are suitable for the inclusion of only the dicationic portion of the axle. 

Therefore, it is reasonable to assume that separation of the dicationic thread from its 
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counteranions has to take place before insertion into the cavity of the calixarene wheel. The 

simultaneous recognition of cations and anions
57

 is crucial to achieve an efficient threading 

process in low-polarity solvents
58

 and can provide an additional means for controlling self-

assembly.
50,59 

 

 

 

 

2.4 - Gold nanoparticles  

 

Monolayer Protected Clusters (MPCs),
22,28

 also known as 3D Self-Assembled 

Monolayers (3D-SAMs), represent an emerging class of organic–inorganic hybrid materials. 

Differently from colloids, MPCs are constituted by a discrete aggregate of metal atoms (called 

inorganic core) stabilized by a shell of organic molecules (arranged like a monolayer around 

the metal surface), that maintain them stable in solution and prevent aggregation phenomena 

(Figure 2.4.1).  

 

 

Figure 2.4.1: Schematic representation of a monolayer protected cluster (MPC). 
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Among the plethora of MPCs synthesized so far, those characterized by a core of gold 

atoms (AuMPCs) and stabilized with a layer of thiolated ligands have attracted the largest 

interest of the scientific community because of their facile preparation, stability, and solubility 

in both aprotic and protic solvents.
28

 

A very attractive topological property of MPCs is the possibility to anchor onto the 

metallic core a discrete number of suitable receptors in a radial tri-dimensional arrangement.
14

 

AuMPCs stabilized with thiolated calix[4]arene derivatives can be successfully employed as 

multivalent hosts for the recognition of organic salts both in organic
60

 and aqueous media,
61

 

when the calix[4]arene aromatic cavities, which represent potential recognition units, are 

exposed to the bulk and not toward the surface (Figure 2.4.2).  

Another aspect of potentially great importance is associated with quantum size effects 

arising from the confinement of electrons in very small nanoclusters (< 1 nm).  

 

 

Figure 2.4.2: AuMPCs stabilized with thiolated ligands. 

 

The important role assumed nowadays by AuMPCs is, however, strictly derived from 

the more ancient studies on gold colloids. The first study dates back to 1857, when Faraday 

reported on the formation of deep red solutions of colloidal gold by reduction of an aqueous 

solution of chloroaurate (AuCl4
-
) using phosphorus in CS.

28,62
 The reduction of HAuCl4 with 
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sodium citrate has been for the long time the most used method to prepare water soluble 

nanoparticles. The first versatile and reproducible method for the synthesis of lipophilic 

AuMPCs was reported by Brust and Schiffrin in 1994.
63

 

This method allowed for the synthesis of gold nanoparticles (ranging in diameter 

between 1.5 and 5 nm) stabilized with n-dodecanthiol chains, which were thermally and air-

stable. The AuMPC prepared with this method could be repeatedly isolated and redissolved in 

most organic solvents without irreversible aggregation or decomposition. This new materials 

could be easily handled and functionalized just as stable organic and molecular compounds. 

The method is inspired by the Faraday‟s two-phase system
61

 and it employs thiolated ligands 

as stabilizers of the gold surface due to the soft Lewis character of both Au and S.  

AuCl4
-
 (aq) + N(C8H17)4 + (org) → N(C8H17)4 + AuCl4

-
 (org),  

AuCl4
-
 (org) + nC12H25SH (org) + 3m e

-
 → 4m Cl

-
 (aq) + [Aum(C12H25SH)n] (org).  

The aurate AuCl4
-
 is initially transferred to the toluene phase using 

tetraoctylammonium bromide as phase-transfer catalyst and reduced in situ by NaBH4, 

previously dissolved in water, in the presence of dodecanethiol. During this step the organic 

phase changes its colour from orange to deep brown within a few seconds upon addition of 

NaBH4.  

Murray et al. have later shown that large thiol/gold molar ratios give smaller average 

core sizes.
64

 Following this author, indeed, the MPC synthesis reaction in the organic phase 

(toluene) is a two-step process here summarized:  

AuCl4
-
 (toluene) + RSH →(-Au

I
SR-)n (polymer), 

(-Au
I
SR-)n + BH4

-
 → Aux(SR)y.  

In the first step, the aurate is reduced to Au
I
 by the thiols and inserted in a polymeric 

structure where the Au
I
 species are coordinated by two sulphur groups. During the second 

step, this polymeric structure is reduced by the hydride with the formation of the nanocluster. 

The two steps are consistent with a “nucleation–growth–passivation process” and large 

thiol/gold mole ratios, fast addition of NaBH4 and short reaction times produce AuMPCs 

characterized by very small core sizes (< 2 nm). The same authors have shown that a high 
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abundance of very small clusters is obtained also using bulky ligands.
65

 A series of 

monolayer-protected clusters gold (MPCs) stabilized by monodentate and multidentate 

thiolated calix[n]arene derivatives was prepared by using the Brust-Schiffrin synthesis and 

characterized with transmission electron microscopy (TEM) and X-ray Photoelectron 

Spectroscopy (XPS).
50 
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 3.1 – X-ray Photoemission Spectroscopy 

 

Photoemission spectroscopy was first developed by the Nobel Prize in Physics Kai 

Siegbahn, starting in 1957. When a material is irradiated by a source of sufficient energy, the 

emission of electrons is observed, with a kinetic (KE) energy determined by the Einstein 

relation:  

KE = hv - BE,  (3.1) 

where hv is the photon energy and BE the characteristic binding energy.  

In case of UV irradiation, only valence electrons can be ejected (UPS, Ultraviolet 

Photoelectron Spectroscopy), but to ionize more tightly bound (or “core”) electrons X-rays 

are required (XPS, X-ray Photoelectron Spectroscopy). The structures observed in a 

photoemission spectrum relates to the ionized state. According to the Koopmans rule: IE = -

εk, where the ionization energy IE (i.e the energy difference between the final and the initial 

state) can be identified with the negative orbital energy -εk, neglecting orbital relaxation (the 

“final state effect”) and relativistic effects. The photoemission process is extremely rapid (10
-

16 
s).  

The variations observed in the binding energy provide chemical information, since 

they are associated with bonds between atoms. This change is called “chemical shifts”.  

Photoemission technique is sensitive to the outermost 10 nm of a surface: while 

photons typically penetrate the solid for hundreds of Å, obviously depending on the material 

type and photon wavelength, the thickness of the surface layer investigated by XPS is given 
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by λcosθ, where θ is the angle between the surface normal and the analyzer (polar angle or 

take-off angle), as depicted in Figure 3.1.1.  

 

 

Figure 3.1.1: Different thickness surface layers at varying the take-off angle. 

 

The value of λ (IMFP, Inelastic Mean Free Path) is limited by electron-electron 

scattering, i.e., the excitation of collective modes (plasmons), and by recombination processes 

(Auger), while the electrons escape into vacuum from the solid. Thus, a fraction of 

photoelectrons (primary electrons) escapes into vacuum without suffering scattering and 

energy losses, while a large part of photoexcited electrons (secondary electrons) scatter and 

suffer various energy losses. The escape depth of electrons depends on their kinetic energy. 

There is a decrease in λ with a rather flat minimum in the 50-500 eV range, and finally a 

progressive increase beyond about 1000 eV (λ = aE
–2

 + bE
0.5

). 

There are analytical functions derived for different materials, as shown in Figure 3.1.2. 

Seah and Dench
66

 in their analysis of attenuation lengths provide a set of relations for 

different classes of materials over the energy range 1 eV-6 keV. These relations can be 

written as 

λ = aE
–2

 + bE
0.5

  (3.2) 

where a and b are constant factors depending on the type of material (elements, inorganic 

compounds, organic compounds). 

 The photoelectron spectrum provides qualitative and quantitative information on all 

the elements present in the investigated sample. 
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Figure 3.1.2: Inelastic mean free path in a solid, as a function of electron energy. 

 

The intensity of transition due to ionization of level x of a sample is: 

Ix = I(hv) Ni σn,l(hv) λs(Ek) F(Ek,Ea) T(Ek,Ea) D(E) G,  (3.3) 

where I(hv) is the flux of incident photons with energy hv, Ni is the atomic density of the i 

species, σn,l is the ionization cross-section for the level n,l, λ is the IMFP for electrons with 

kinetic energy Ek, F(Ek,Ea), T(Ek,Ea), D(E) and G are factors depending from the experimental 

configuration and spectrometer. Ea and E are characteristic energies for the spectrometer. 

Typically, relative atomic ratios are determined, not the absolute values.
67

  

  

Surface coverage on Copper - Surface coverage on Cu substrate has been estimated 

by making use of the model for quantitative interpretation of XPS data.
68

 

The intensity ICu from a solid support covered by an overlayer of thickness t: 

ICu = R(θ)Cu ρCu XCu ΛCu
S
 exp[ - t / Λ°Cu sin θ]   (3.4) 

Intensity IS from a monolayer of atoms covered by an overlayer of thickness t:  

IS = R(θ)S rσS XS exp[ - t / Λ°S sin θ] / sin θ   (3.5) 

In the above expressions, R(θ)k is the instrument response function at take-off angle θ, Fk is 

the number density of atoms that emit into line k, σk is the surface density of emitting atoms 

(atoms/area), r is a roughness factor. The product rσk represents the effective surface density 

of atoms as seen by the instrument‟s analyzer. Xk is the photoionization cross section, ΛCu
S
, 
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Λ
O

Cu and Λ
O

S are Inelastic Mean Free Paths (IMFPs) for photoelectrons in the solid support 

and overlayer, respectively, and t is the overlayer thickness. The electron IMFP values for the 

compounds investigated are absent in the literature, thus we calculated it according to the eq. 

3.2. SAM rσS values were obtained from experimental IS2p/ICu2p ratios, using eq. (3.5) divided 

by eq. (3.4). 

 

Surface coverage on Silicon - The coverage ratio Ф related to the molecular moiety 

has been calculated according to the following equation:
69

 

Ф = ( Iml / σml)* ( σSi2p / ISi2p) *(AFml / IFSi(100) ),  (3.6) 

where Iml and ISi2p are measured intensities (areas) of XPS peaks of a characteristic atom of 

the organic monolayer and of the Si 2p region, respectively. σml and σSi2p are their 

corresponding cross-section values or their relative sensitivity factors (RSF). The parameter 

AFml is the attenuation factor of the intensity of the photoelectrons emitted from the 

monolayer due to the monolayer itself, and is given by: 

AFml = exp[(-dml/ λml cosθ)],  (3.7) 

where dml is the thickness of the molecular monolayer and λml is the IMFP of electrons 

emitted from the monolayer passing through the monolayer itself. The electron IMFP values 

for the compounds investigated are absent in the literature, thus we have calculated it 

according to the eq. 3.2. The parameter IFSi(100) is the intensity ratio which takes into account 

the attenuation of electrons emitted from Si both due to the monolayer and to the Si itself. It is 

given by: 

IFSi(100) = 1 – exp[(-dSi(100)/ λSi cosθ)],  (3.8) 

where dSi(100) is the thickness of the first monolayer of the oriented Si(100) surface, that is 

0.136 nm,
70

 while λSi is the IMFP of Si 2p electrons through Si, that is 2.5 nm for Al kα 

monochromated X-ray source. Due to the approximation in the λml and dml values the eq. 3.6 

is affected by a large error. Hence, Φ values are only indicative and they should not be read as 

“absolute” values but used only for comparisons. 

 

 

X-ray photoelectron spectroscopy results have been obtained on an experimental 

apparatus in UHV consisting of a modified Omicron NanoTechnology MXPS system with an 
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XPS chamber equipped with a monochromatic X-ray source (Omicron XM-1000) and an 

Omicron EA-127 energy analyzer. Samples were transferred between the various 

experimental areas by means of linear magnetic transfer rods or manipulators. X-ray sources 

employed were Al Kα (1486.6 eV) and its monochromatic emission (1487.7 eV) and Mg Kα 

(1253.6 eV), emitted by aluminum or magnesium target, generated operating the anode at 14-

15 kV, 10-20 mA. All measurements have been conducted in the least possible time after 

sample preparation. Samples were transferred to the XPS facility in Schlenk tubes under 

vacuum, and introduced in the XPS chamber. No sizable sign of sample degradation after 

extended acquisition times under the X-rays was observed for the samples. XPS atomic ratios 

for the functionalized hybrids have been estimated from experimentally determined area ratios 

of the relevant core lines, corrected for the corresponding theoretical atomic cross-sections 

and for a square-root dependence of the photoelectrons kinetic energies. The effects on 

quantitative analysis possibly due to photoelectron diffraction at preferential directions of 

electron collection were minimized by mounting the sample always with the same orientation 

with respect to the analyzer axis. The sampling depth has been varied by collecting spectra at 

11° (sampling depth 2.37 nm) and 81° (1.17 nm) with respect to the sample surface normal. 

 

 

 

3.1.1 - XPS of small nanoparticles  

 

Photoemission from non-conducting solids, as small nanoparticles passivated by an 

organic layer, is affected by charging. This charging effect leads to a general shifting of the 

spectrum on the energy scale, leading to difficulties in interpreting chemical states. In case of 

static charging the overall spectrum is rigidly shifted. A differential charging in different 

regions may cause a broadening or a splitting of peaks. The first situation is easy to control: 

photoemission leaves a positive static charge potential (C) on the non-conducting sample, so 

the apparent binding energy BE‟ is related to the true binding energy BE by the relationship 

BE=BE‟- C.
67 

Although static charging can significantly shift the binding energy of the 

photoelectron peaks, it does not necessarily preclude the determination of the true binding 

energy, provided that the value of C can be established from a calibration peak. We used C 1s 

of the organic mojety referenced at 285 eV (see Chapter 5).  
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For nanoparticles of dimension < 10 nm a shift towards a higher binding energy and a 

broadening of FWHM are observed with decreasing particle size.
71

 A small metal particle 

exhibits a positive core-level binding energy with respect to the bulk material. The origin of 

this effect has been debated.
72

 Most widely accepted is the interpretation by Wertheim et al,
73

 

in which the final state Coulomb charge is responsible for the shift. In more detail, in order to 

screen the core hole created by the photoemission process, conduction electrons are pulled 

towards the hole. This will produce a charge of +e on the surface of the cluster. If this charge 

is not neutralized by the substrate within the core-hole lifetime (10
-15 

s), the binding energy of 

the entire spectrum is raised by an amount of e
2
/2r, with r the cluster radius. For large 

particles the screening is very effective. Only at the smallest diameters of the particles, the 

screening efficiency should decrease to the limit of no-conduction electron. 

 

 

 

 

3.2 – Atomic Force Microscopy 

 

Atomic Force Microscopy (AFM) or Scanning Force Microscopy (SFM) is a very high-

resolution type of scanning probe microscopy. The AFM utilizes a sharp probe moving over 

the surface of a sample in a raster scan, which bends in response to the force between the tip 

and the sample. Since the tip obeys Hooke's law for small displacements, the interaction force 

between the tip and the sample can be found. The movement of the tip or sample is performed 

by an extremely precise positioning device made from piezoelectric ceramics. 

The three main classes of interaction are contact mode, tapping mode and non-contact 

mode. As the name suggests, in the contact mode the tip and sample remain in close contact as 

the scanning proceeds. When operated in tapping mode the cantilever is oscillated at its 

resonant frequency and positioned above the surface so that it only taps the surface for a very 

small fraction of its oscillation period. This is still contact with the sample in the sense 

defined earlier, but the very short time over which this contact occurs means that lateral forces 

are dramatically reduced as the tip scans over the surface. In non-contact method the 
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cantilever must be oscillated above the surface of the sample at such a distance that it is no 

longer in the repulsive regime of the inter-molecular force curve.  

 

 

A needle-sensor atomic force microscope (VT-AFM, Omicron NanoTechnology) was 

used, which is attached to a UHV chamber where XPS measurements were also run. The 

silicon nitride microfabricated tip had a nominal curvature radius < 10 nm and a resonance 

frequency of 997,500 kHz. The values of average z-height and root mean square (rms) 

roughness (defined as the standard deviation from the average z-height values), were 

determined by Scala Pro software (Omicron NanoTechnology). 

 

 

 

 

3.3 - Electrochemical measurements 

 

In this thesis, electrochemistry has been applied mainly for the determination of reduction 

potentials by means of cyclic voltammetry. 

Cyclic voltammetry (cv) is a type of potentiodynamic electrochemical measurement. 

In a three-electrode cell, the controlling electronic is designed to adjust the potential 

between the reference and the working electrodes, but the big impedance between these two 

electrodes forces the resulting current to flow through the counter electrode. During a cyclic 

voltammetry experiment, the potential is scanned back and forth linearly with time between 

two extreme values (V1 and V2), the switching potentials. When the potential of the working 

electrode is more positive than that of the redox couple, the corresponding species may be 

oxidized and produce an anodic current (ia). Similarly, if the redox couple is reversible, on the 

return scan, as the working electrode potential becomes more negative than the reduction 

potential of the redox couple, the reduction may occur to produce a cathodic current (ic). As a 

result, information about the redox potential and electrochemical reaction rates of the 

compounds can be obtained.   

A typical cyclic voltammogram recorded for a reversible single electrode transfer reaction 

is shown in Figure 3.1.1. 
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Figure 3.3.1: Current as a function of voltage in a typical CV. 

 

Reversible couples will display a ratio of the peak currents passed at reduction (ip,c) 

and oxidation (ip,a) that is near unity (1 = ip,a/ip,c). When such reversible peaks are observed 

thermodynamic information in the form of half cell potential E°1/2 can be determined from the 

reduction (Ep,c) and oxidation peak (Ep,a): E°1/2 = (Ep,c + Ep,a)/2. 

 

 

 All electrochemical measurements were performed with a three-electrode cell using an 

Autolab Electrochemical Analyzer (model PGSTAT 12, Eco Chemie BV, The Netherlands). 

The counter electrode was a platinum coil wire, and a silver wire immersed in 0.01 M 

AgNO3/0.1 M TBAP in CH3CN, separated from the main solution by a porous fritted glass + 

agar plug, served as a reference electrode. All potentials reported will be henceforth referred 

to this reference.  

 

 

 

 

 



 

Chapter 4 

Production and characterization of  

organic-inorganic hybrids based on  

calixarene derivatives on copper 

 

 

 

 

 

 The following are the first reported examples of calixarene-based hybrids on Cu. 

SAMs of calixarene and rotaxane derivatives have been produced in solution and 

characterized by means of XPS and electrochemistry. 

 

 

 

 4.1 - Adsorption of thiols on copper 

 

The preliminary step of cleaning the polycrystalline copper plates (Cu 99.99%) 

(18x15x1 mm
3
) was performed through this recipe: 

i. 15 min sonication in acetone, to eliminate organic contaminants; 

ii. 30 sec immersion in HNO3 (32.5%), to oxidize the surface and remove adsorbed 

species;  

iii. 2x5 sec rinsing in distilled water; 

iv. 30 min immersion in HCl (3.7%), to dissolve oxides; 

v. 3 min 30 sec rinsing in distilled water; 

vi. 30 sec rinsing in acetone. 
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Successively, a weighted amount of the selected calixarene or rotaxane was dissolved 

in toluene. We used a 0.2 mM solution for calixarenes, 0.4 mM for rotaxane, in order to 

maintain the same concentration of sulfur. 

  A Cu plate was dipped in the molecular solution at room temperature for controlled 

time (typically 4 hours). The functionalized sample was rinsed with toluene for 2x5 min to 

eliminate physisorbed molecules, and dried under a stream of dry N2. Concentration and 

immersion time were optimized in order to obtain a monolayer coverage and to limit 

physisorption and Cu oxidation at the same time. 

As a reference, a Cu plate was covered with undecanethiol (45 mM solution for 17 hr, 

to form a self-assembled monolayer). A mixed film was prepared by ligand exchange: the Cu 

substrate functionalized with calix[4]arene was immersed in the undecanethiol solution for 4 

hr. XPS analysis was accomplished to evaluate the monolayer composition.  

Calix[6]arene wheel and viologen axle were previously assembled in toluene and 

dichloromethane to form rotaxane. An equimolar quantity of the desired axle was added to a 

calixarene solution under stirring. In few min the colour of solution changed to orange. The 

mixture was stirred at room temperature for 30 min and then filtered off to remove the excess 

of solid axle.  

The reactivity of the rotaxane and pseudorotaxane was investigated in toluene and 

dichloromethane, in order to possibly evidence the influence of a different polarity of the 

solvent on the threading of the adducts and their assembling on Cu surface. The kinetics of 

formation of the adducts is favoured in a dichloromethane solution,
54a

 but the larger solubility 

of the charged axle may favour the anchoring of the bare axle directly to the surface. 

 

Calix[4]arene complexation – We tested the reactivity on Cu of the anchored 

calix[4]arene which bring on the upper rim a phenylureido group (Figure 4.1.1) in a series of 

experiments. The hybrids were obtained after a first cycle of immersion of Cu in a solution of 

N-methylpyridinium iodide, followed by rinsing in CH3OH acidified with HCl and by a 

second immersion of the same Cu plate in the solution of the same salt. 

 

In Figure 4.1.1 calixarenes and rotaxanes anchored on polycrystalline Cu are shown. 

The introduction of calix[n]arenes on polycrystalline Cu surfaces requires the 

functionalization of the calixarene macrocycle with appropriate anchoring points. The high 
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affinity of sulfur for Cu has been largely documented,
74

 therefore we chosen calix[n]arene 

derivatives that are characterized by the presence of two or three ω-thiolated chains on their 

lower rim (Figure 4.1.1). A monostoppered axle (Figure 4.1.1e) and an unstoppered axle 

(Figure 4.1.1f) were used for the formation of rotaxane and pseudorotaxanes, respectively, by 

threading reactions with the calix[6]arene wheel (Figure 4.1.1d). Thanks to the thiol groups 

present on one ending of the axles, the corresponding rotaxanes can be covalently anchored 

on the polycrystalline Cu surface.  

 

 

Figure 4.1.1: Calixarene and rotaxane derivatives for the functionalization of polycrystalline 

Cu surfaces: a) calix[4]arene, b) calix[4]arenePhenylUrea, c) calix[6]arene, d) 

calix[6]arenePhenylurea, e) N,N′-dialkylviologen (monostoppered axle), f) N,N′-dialkylviologen (not 

stoppered axle). Rotaxane results from the assembling of d) and e), while pseudorotaxane from d) and 

f). 

 

 

 

                                                           
74

 H. Sellers, A. Ulman, Y. Shnidman, J. E. Eilers, J. Am. Chem. Soc. 1993, 115, 9389. 
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4.2 - Results and discussion: XPS investigation 

 

X-ray Photoemission Spectroscopy (XPS) is a well established tool for the 

characterization of the molecular structure and atomic composition of organic films. XPS 

survey spectra can be used to check for the presence of the desired elements in the film and to 

evaluate its relative atomic composition. Relative atomic ratios have to be interpreted with the 

help of a quantitative model, since photoelectrons arising from atoms underneath others on 

the substrate are attenuated by the overlying material. 

 

 

 

4.2.1 - Characterization of calix[4,6]arenes on copper 

 

The chemisorption experiments have been systematically conducted on polycrystalline 

Cu surfaces, which have been preliminarily characterized by XPS. The relevant region of 

adsorbed calixarenes is S 2p, which is reported in Figure 4.2.1, together with the spectrum of 

undecanthiol (C11SH), which we took as the reference compound for the present investigation, 

since it is known to form a nearly ideal SAM on Cu.
75  

 

 S 2p/eV S-Cu/Cu σ (nm
-2

) SH/S-Cu C/S (theor.) 

calix[4]arene 
162.7 

163.9 
0.45 3.1 0.12 28 (25) 

calix[6]arene 
162.2 

163.3 
0.47 3.2 0.10 34 (34) 

undecanethiol 
162.2 

163.3 
0.51 3.8 0.03 12 (11) 

Mixed 

calix[4]arene + 

undecanethiol 

162.3 

163.3 
0.49 3.4 0.12 17 

 

Table 4.2.1: XPS peak positions and quantitative ratios (± 10%), and values of the surface 

coverage (σ) for Cu/calixarene, Cu/C11SH and mixed film. 

                                                           
75

 P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y.-T. Tao, A. N. Parikh, R. G. Nuzzo, J. Am. Chem. Soc. 1991, 

113, 7152. 
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Figure 4.2.1: S 2p XPS spectra taken at 11° from the surface normal of Cu/thiolate ligand. 

The main spin-orbit split component is due to thiolate. The cross-hatched areas identify the component 

due to SH. a) calix[4]arene, b) calix[6]arene and c) undecanthiol. 

 

Two S 2p spin-orbit split doublets are always evident, which refer to the formation of 

thiolate and, at an higher binding energy (BE), to the presence of residual thiol groups. These 

last could belong to calixarenes chemisorbed via a different thiol group and/or to purely 
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physisorbed molecules. The relative amount of this component does not exceed ~10% for 

calixarenes, and it is much smaller in the case of C11SH (3%).
 

The surface coverage, σ, was estimated by means of a literature model,
68

 by making 

use of the SCu(thiolate)/Cu ratio (Table 4.2.1). The Inelastic Mean Free Paths (IMFPs) were 

calculated according to Seah and Dench (see Paragraph 3.1).
76

 The atomic ratios of 

calixarenes are, within the experimental error, closely similar to the case of C11SH. The 

coverages fall in the same range, hinting at a close-to-ideal monolayer coverage. These results 

are consistent with the passivation of Cu surfaces. In fact, only Cu(0) and Cu(I) components 

are present in the Cu LMM Auger spectra, while a Cu(II) component was never found in the 

Cu 2p spectrum (Figure 4.2.2).  

 

 

Figure 4.2.2: Cu 2p and Cu LMM Auger lines of Cu/calixarene: a) calix[4]arene and b) 

calix[6]arene. 

 

                                                           
76

 M. P. Seah, W. A. Dench, Surf. Interf. Anal. 1979, 1, 2. 
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A clear indication that molecules adsorb intact on the surface with no added 

contamination comes from inspection of Table 4.2.1, where a perfect match can be seen 

between theoretical and experimental C/S ratios. We took this encouraging result as a 

reference in the study of a mixed monolayer, which was produced in order to demonstrate the 

feasibility of a double functionalization. Such monolayer was obtained by ligand exchange, 

starting from a calix[4]arene/Cu surface, which was eventually contacted with C11SH. The 

experimental C/S value is 17, right in between calix[4]arene and C11SH, which hints at a 1:1 

monolayer on Cu. 

 

 

 

4.2.2 - Recognition reactions of N-methylpyridinium ion-

pairs towards anchored heteroditopic calix[4]arene receptors 

 

We tested the reactivity of heteroditopic calixarenes anchored on Cu with a series of 

experiments. To this aim, we selected calix[4]arenePhenylUrea in order to extend to surfaces 

the solution studies on its reactivity towards N-methylpyridinium and salt.
77

 This previous 

study evidenced how a phenyluerido group in the upper rim of a calixarene macrocycle allows 

for a combined effect (a cooperative heteroditopic effect) on the recognition reaction of a 

salt.
78

 The combination of a hard H-bond, which can be established by the urea group with an 

anion, with a soft calix-cation -bond,
79

 through the methyl group of the pyridinium, reduces 

the ionic interaction in the salt, as testified, e.g., by the fact that N-methylpyridinium chloride 

(NMPCl), when it acts as a guest, is a ligand-separated ion pair, in the solid state.
79b 

By testing 

a series of NMP salts with different anions, such as tosylate, Cl
-
, I

-
, trifluoroacetate, the 

binding constants at RT for the formation of 1:1 adducts in CHCl3 were determined, which 

evidenced that the phenylurea group increases the affinity for the NMPX salt by up to two 

orders of magnitude with respect the monotopic receptor.
79a 

                                                           
77

 a) L. Pescatori, A. Arduini, A. Pochini, A. Secchi, C. Massera, F. Ugozzoli, Org. & Biomol. Chem. 2009, 7, 

3698. b) L. Pescatori, A. Arduini, A. Pochini, A. Secchi, C. Massera, F. Ugozzoli, CrystEngComm 2009, 11, 

239. 

 
78

 A. Arduini, E. Brindani, G. Giorgi, A. Pochini, A. Secchi, J. Org. Chem. 2002, 67, 6188. 

 
79

 a) K. Zhu, S. Li, F. Wang, F. Huang, J. Org. Chem. 2009, 74, 1322. b) C. M. G. dos Santos, T. McCabe, G. W. 

Watson, P. E. Kruger, T. Gunnlaugsson, J. Org. Chem. 2008, 73, 9235. c) L. Kovbasyuk, R. Kramer, Chem. 

Rev. 2004, 104, 3161. 
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Figure 4.2.3: Sequence of N 1s XPS spectra taken at 11° from the surface normal of 

Cu/calix[4]arenePhenylUrea, after immersion in a CH2Cl2 solution of NMPI (a), after subsequent 

rinsing in a CH3OH solution, acidified with HCl (b), after a new immersion in the above solution (c) 

(the gray areas identify the component due to N
+
). 

 

A sequence of N 1s XPS spectra of Cu/calix[4]arenePhenylUrea is reported in Figure 

4.2.3. They have been obtained after a first cycle of immersion in a CH2Cl2 solution of N-

methylpyridinium iodide (NMPI), followed by rinsing in CH3OH acidified with HCl and by a 

second immersion in the solution of the pyridinium salt.  
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Each N 1s spectrum of this sequence is complex, and three components result from 

curve fitting. The main component, also present in the initial sample, before complexation, is 

assigned to the NH of the calixarene phenylureido group, on the basis of the literature.
80

 A 

second peak component at a higher BE, characteristic for N
+
,
81

 appears after each immersion 

cycle, while it is absent upon rinsing with acidified CH3OH. Such component necessarily 

relates to the coordination of pyridinium cation by the calix[4]arene (Figure 4.2.3a,c). The 

minor component at 398 eV is assigned to a direct coordination to the Cu surface of neutral 

pyridine molecules,
82

 an impurity which may accompany the synthesis of methylpyridinium. 

This assignment of the component is further supported by its disappearance upon acid rinsing 

in CH3OH. 

The N 1s XPS spectra for Cu/calix[4]arenePhenylUrea before and after immersion in 

the pyridine solution are closely similar, as a result of the presence of ammonium (coming 

from the synthesis) in the former. In this sample, the rinsing procedure applied to the 

sequence of samples in Figure 4.2.3 was not effective in removing ammonium, because of the 

poor solubility of this cation in CH3OH. We recall here that water rinsing cannot be applied. 

Notice that the N
+
 component in the two cases comes from distinct species, ammonium and 

pyridinium, respectively. 

We have established the extent of such recognition reaction by taking the experimental 

relative atomic ratios between the two N 1s components, reported in Table 4.2.2. Such ratios 

differ from the value expected from stoichiometry, indicating that the filling of the calix sites 

by the pyridinium amounted to 60-70%. The establishment of the recognition reaction and the 

molecular integrity are confirmed by the close match, within the experimental error, of 

experimental and theoretical C/N values (Table 4.2.2). 

The S 2p spectrum of Cu/calix[4]arenePhenylUrea is reported in Figure 4.2.4, where 

the two spin-orbit split doublets, already assigned above, are present in a SH/SCu 0.27 ratio. 

The larger amount of physisorbed molecules, with respect to the simpler calix[4]arene, is 

expected because of the presence of phenylureido group. A coverage of 0.43 nm
-2

 can be 

calculated from the SCu/Cu ratio.
68,76

 The reduction in surface coverage with respect to the 

case of calix[4]arene could result from a larger surface disorder, due to the combined effects 

of polarity and flexibility of the phenylureido group. 

                                                           
80

 R. J. J. Jansens, H. Van Bekum, Carbon 1995, 33, 1021. 

 
81

 D. Schulze, K. H. Hallmeier, D. Wett, R. Szargan, J. Electron. Spectros. Rel. Phenom. 2006, 151, 204. 
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 S 2p/eV N 1s/eV NH/N
+
 C/N 

Cu/calix[4]arenePhenylUrea 

+ NMP (1st cycle) 

161.9 

163.2 

398.0 

399.3 

401.8 

3.0 (2) 21.2 (21.3) 

After rinsing 
161.9 

163.2 

398.0 

399.3 

401.8 

- 27.4 (29) 

Cu/calix[4]arenePhenylUrea 

+ NMPI (2nd cycle) 

161.9 

163.2 

398.0 

399.3 

401.8 

2.6 (2) 24.1 (21.3) 

 

Table 4.2.2: XPS peak positions and NH/N
+
 quantitative ratios (± 10%) for 

Cu/calix[4]arenePhenylUrea as prepared and as a function of progressive NMP
+
 uptake from a 

solution and rinsing. 

 

 

Figure 4.2.4: S 2p XPS spectrum taken at 11° from the surface normal of 

Cu/calix[4]arenePhenylUrea. The main spin-orbit split component is due to thiolate. The cross-

hatched areas identify the component due to SH. 

 

As for the I
-
 anion, its quantitative ratio to N

+
 was lower than expected for the 

anchored calix[4]arenePhenylUrea. The N
+
/I

-
 ratio further diminished after rinsing, and a Cl

-
 

peak became visible in the XPS spectrum. We interpret this as a result of the anion exchange, 

which takes place during the rinsing cycle in a CH3OH solution acidified with HCl to free the 

aromatic cavity of calix[4]arenePhenylUrea (Figure 4.2.5). 
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Figure 4.2.5: Schematic representation of the recognition process occurring between 

calix[4]arene heteroditopic receptors anchored on Cu surface and N-methylpyridinium cation (NMP
+
).  

 

 

 

4.2.3 - Self-assembling of rotaxane and pseudorotaxane 

species on copper 

 

The recognition reaction in solution of N,N‟-dialkylviologen-based axles with 

triphenylureidocalix[6]arene-based wheel,
54b

 followed by immersion of Cu in the above 

solution, resulted in the first reported example of rotaxane and pseudorotaxane species self-

assembled on Cu. To this aim, two similar though conceptually different pre-formed systems 

were used. As shown in previous solution studies
17b,54a

 the rotaxane that originates by 

threading the wheel with the mono-stoppered axle in low polar solvent such as toluene, is an 

oriented pseudorotaxane bearing the phenyl stopper and the -SH function at the upper and 

lower rim, respectively (Figure 4.2.6). In these same conditions, the threading reaction carried 

out by using the axle that lacks the stopper, yields the pseudorotaxanes which has the SH 

function oriented toward the macrocycle upper rim. This means that the anchoring of these 
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two different systems yields in one case an oriented rotaxane, in which the Cu surface acts as 

a stopper, and a reversely oriented pseudorotaxane in the other (Figure 4.2.6). 

 

 

Figure 4.2.6: Schematic representation of the threading reaction between calix[6]arene-based 

wheel and viologen-based axles. In toluene solution, the mono-stoppered axle gives rise to oriented 

rotaxane and pseudorotaxanes.  

 

The assembling on Cu of preformed pseudorotaxanes was preferred to a 2-step 

reaction (adsorption of axles on Cu followed by threading of the calix, by progressively 

reacting Cu with each of the two solutions) because of the poor adsorption of N,N‟-

dialkylviologen on the surface, likely due to repulsive interactions between the positive 

charge of the axle. 
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Figure 4.2.7: S 2p XPS spectra taken at 11° from the surface normal of a) rotaxane and b) 

pseudorotaxane on Cu. The main spin-orbit split component is due to thiolate. The cross-hatched areas 

identify the component due to SH. The doublet at high BE is assigned to tosylate. N 1s XPS spectra of 

c) rotaxane and d) pseudorotaxane on Cu. The experimental curve is displayed as dotted line, with the 

NH and N
+
 peak components, resulting from curve-fitting, as solid lines.  

 

Figure 4.2.7 reports the N 1s and S 2p peaks of the rotaxane and pseudorotaxane 

adducts, respectively. NH and N
+
 peak components are again present, indicating the 

anchoring of these species at the Cu surface. The NH/N
+ 

ratio is in the range of 3, as expected 

from the stoichiometric value in the absence of dethreading (Table 4.2.3). 

 We also found no sizeable dethreading of the pseudorotaxanes by inspection of the 

values of the NH/N
+
 and C/N ratios, which fall in the range expected for intact chemisorbed 

rotaxanes. The S 2p photoemission region displays the two couples of spin-orbit components 

with the same meaning and assignment reported above, apart from the presence at high BE of 

the peak component related to the tosylate counterion. The relative intensity of this last peak 

to the rest of the S 2p signal follows the stoichiometry of the salt. 
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Table 4.2.3: XPS peak positions and experimental and theoretical (reported in brackets) 

quantitative ratios (± 10%) and surface coverage for rotaxane and pseudorotaxane on Cu. 

 

 

Figure 4.2.8: Cu 2p and Cu LMM Auger lines of Cu/rotaxane(a) and Cu/pseudorotaxane (b). 

 

The Cu 2p spectra in Figure 4.2.8 evidence the absence of Cu(II). In the Cu LMM 

Auger spectra only Cu(0) and Cu(I) components are present, with a different amount of the 

two states because of the different surface coverage and arrangement of the systems on Cu. 

 S 2p/eV N 1s/eV NH/N
+
 C/N S-Cu/Cu  (nm

-2
) 

Cu/rotaxane 

162.5 

163.8 

167.7 

400.0 

402.3 

2.8 

(3) 

15.3 

(18.1) 
0.32 1.6 

Cu/pseudorotaxane 

161.8 

163.1 

167.7 

399.8 

402.0 

3.4 

(3) 

16.4 

(16.2) 
0.44 2.8 
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The surface coverage, calculated from the S-Cu/Cu ratio,
68,76

 is comparable to that of 

calixarenes and consistent with the increased complexity of the molecular system. 

 

 

 

 

4.3 – Electrochemical study 

 

Electrochemical polarization represents a valuable tool for triggering host-guest 

interactions, since it can change the oxidation state of the guest or the host, a parameter which 

can be crucial for bonding. In fact, in such host-guest systems it could be present an 

electroactive unit which exhibits reversible redox processes, and the other component could 

be sensitive and answer to the electrochemical tate of the the electroactive unit. This second 

property allows for the investigation of the complexation/decomplexation process by means, 

for example, of voltammetric techniques. 

 

 

Figure 4.3.1: one-electron reduction and subsequent dethreading of pseudorotaxane. 

 

Pseudorotaxanes in which the threading/dethreading of the axle and wheel components 

can be controlled by appropriate stimuli constitute basic prototypes of molecular machines. 

The valuable redox properties of the viologen unit can be exploited to trigger the 

assembly/disassembly of the corresponding pseudorotaxanes.  

In a previous study, Credi et al. demonstrated the possibility to electrochemically 

switch the threading-dethreading process in solution of viologen-calix[6]arene 

pseudorotaxane systems by means of cyclic voltammetry (Figure 4.3.2).
83

  

 

                                                           
83

 A. Credi, S. Dumas, S. Silvi, M. Venturi, A. Arduini, A. Pochini, A. Secchi, J. Org. Chem. 2004, 69, 5881. 
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Figure 4.3.2: Cyclic voltammetry of a) viologen, b) pseudorotaxane and c) rotaxane (from ref. 

83). 

 

The axles exhibited two monoelectronic and reversible reduction processes (E1/2° = -

0.29 V, E1/2° = -0.81 V vs. SCE) of the viologen unit, and no oxidation process. The inclusion 

into the cavity caused a large negative shift of the first reduction potential of the viologen unit 

of the axle (Figure 4.3.2). In other words, the axle became more difficult to reduce, reflecting 

the stabilization offered by the wheel. The second reduction process occurred at the same 

potential as for the free axle in the pseudorotaxane (Figure 4.3.2), whereas it was shifted to 

more negative values in the rotaxane (E1/2° = -1.18 V). 

These results show that one-electron reduction of the axle promotes its dethreading in 

case of the pseudorotaxane. The examined pseudorotaxanes can be disassembled in a fast and 

reversible manner by one-electron reduction of their axle components. 

On the basis of this study, we investigated in detail the controlled release of rotaxanes 

and pseudorotaxanes anchored on Cu by application of a suitable potential. It is known that 

the reduction of the bypiridinium N
+
 center induces the dethreading of the wheel from the 

viologen axle in pseudorotaxanes.
83

  

We first measured the reduction potentials of pseudorotaxane chemisorbed on Au 

microelectrode via cyclic voltammetry (Figure 4.3.3). Au microelectrode was preferred to Cu 

because of the high reduction current displayed by the latter. We found two well separated 
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peaks at -0.7 and -1.2 V (vs. Ag/Ag
+
 in acetonitrile), which we assigned, on the basis of the 

literature,
83,84 

to the two N
+
 reductions of the viologen-based axle.  

 

 

Figure 4.3.3: Cyclic voltammetry of pseudorotaxane on Au microelectrode (scan rate: 500 

mV/s). 

 

We compared the behaviour of rotaxane and pseudorotaxane on Cu by keeping the two 

samples biased at -1.7 V (vs. Ag/Ag
+
 in acetonitrile) for 1 min. XPS results before and after 

polarization can be compared in Table 4.3.1. The diminishing of the thiolate component of S 

2p in case of rotaxane (Figure 4.3.4) is a clear indication of the release of approximately half 

of the rotaxanes, induced by the breaking of Cu-S bonds. This is accompanied by the drastic 

fall of intensity displayed by the tosylate anion, likely due to its reduction, in addition to the 

loss of rotaxane. The reduction of the viologen N
+
 appears in the N 1s spectrum as a new 

component at ~398.9 eV (Figure 4.3.4). Its energy separation with respect to triphenylureido 

N is consistent with the electron-withdrawing effect exerted on N by the C=O group in the 

latter. 

The nearly constant ratio between the NH group from the triphenylurea and the S of 

the anchored species, NH/(SH + S-Cu) in Table 4.3.1 indicates the residual presence of intact 

rotaxanes at the surface.  

 

                                                           
84

 K. Nikitin, E. Lestini, M. Lazzari, S. Altobello, D. Fitzmaurice, Langmuir 2007, 23, 12147. 
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Figure 4.3.4: N 1s and S 2p XPS spectra of Cu/rotaxane before (a) and after (b) after 1 min 

biasing. The main spin-orbit split S 2p component in is due to thiolate and the cross-hatched areas 

identify the component due to SH. 

 

 OTs
-
/Cu S-Cu/Cu NH/(SH + SCu) N

+
/(SH + SCu) 

Cu/rotaxane 0.17 0.18 3.8 0.89 

Cu/rotaxane
a
 0.03 0.11 3.0 0.74 

Cu/pseudorotaxane 1.1 0.44 4.5 1.3 

Cu/ 

pseudorotaxane
a
 

0.10 0.43 1.9 0.57 

Cu/ 

pseudorotaxane 
0.96 0.40 5.3 1.5 

Cu/ 

pseudorotaxane
b
 

0.10 0.38 2.8 0.64 

a 
1 min bias; 

b 
3 min bias. 

Table 4.3.1: XPS quantitative ratios (± 10%) for rotaxane Cu/rotaxane and Cu/pseudorotaxane 

before and after biasing. 
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In the more complex case represented by pseudorotaxane, a clear evidence for 

dethreading of the wheel as the largely prevailing effect of biasing comes from the sizeable 

lowering of the ratio NH/(SH + S-Cu) in Table 4.3.1. Notice the constancy in the S-Cu/Cu 

atomic ratio, which excludes loss of the whole pseudorotaxane. We still notice the drastic loss 

of tosylate anion, with the same meaning as above (Figure 4.3.5).  

 

 

 

Figure 4.3.5: N 1s and S 2p XPS spectra of Cu/pseudorotaxane before (a) and after (b) after 1 

min biasing. The main spin-orbit split S 2p component in is due to thiolate and the cross-hatched areas 

identify the component due to SH. 

 

This general trend is further confirmed by extending the biasing to 3 min. The low BE 

component in the N 1s spectrum increases with respect to 1 min biasing (Figure 4.3.6 and 

Table 4.3.1).  
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Figure 4.3.6: N 1s and S 2p XPS spectra of Cu/pseudorotaxane before (a) and after (b) after 3 

min biasing. The main spin-orbit split S 2p component in (b) and (d) is due to thiolate and the cross-

hatched areas identify the component due to SH. 

 

The absence of any further dethreading of the wheel comes from the comparable 

decrease of the NH/(SH + S-Cu) ratio after 1 and 3 min. We interpret this last result as due to 

the second reduction of the radical cation axle, from which the wheel has departed after the 

first reduction.
83
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4.3 – Conclusions 

 

We have prepared and studied by means of XPS the first examples of calixarenes, 

rotaxanes and pseudorotaxanes supramolecular systems self-assembled on polycrystalline Cu 

surfaces. Covalent functionalization of calix[4,6]arenes on Cu was reached using a dip-

coating procedure which allowed for good surface coverages and Cu passivation. Molecular 

adhesion has been demonstrated by the presence and relative quantitation of XPS signals from 

specific elements in the molecules. We have successfully tested the combination of different 

functionalities by producing a mixed film, prepared by ligand exchange of calix[4]arene with 

undecanethiol. The availability of the calix[4]arene cavity to reversibly host further species 

after anchoring on Cu has been demonstrated by a sequence of uptake and release cycles with 

pyridinium salts. Pseudorotaxane species, composed of a calix[6]arene wheel derivatized with 

N-phenylureido groups on the upper rim, and viologen-containing axle, have been anchored 

on Cu via the SH-termination of the axle. XPS demonstrated the successful self-assembling of 

fully threaded rotaxanes and pseudorotaxanes and the effectiveness of controlled release upon 

biasing of full rotaxanes and of the pseudorotaxane wheel. 



 

Chapter 5 

Production and characterization of organic-

inorganic hybrids based on  

calixarene derivatives and H-Si(100) 

 

 

 

 

 

 5.1 - Hydrogenation of Si(100) 

 

H-terminated Si(100) can be prepared via either ultra-high vacuum methods, requiring 

a careful cleaning of the substrate and exposure to atomic hydrogen, or following wet-

chemistry procedures. We have applied the latter approach, which lends itself to a much more 

versatile use with different, even complex chemicals presenting low volatility or even 

unsuitable to exposure in a vacuum because of decomposition.  

Si(100) wafers of ~ 400 μm thickness, p-doped (boron-doped, single-side polished, 1
-

10
 Ω  cm resistivity) with areas of ~ 1 cm

2
 have first been washed in boiling 1,1,2-

trichlorethane for 10 min and subsequently in ethanol at room temperature, with sonication 

for 5 min. They were oxidized in H2O2/HCl/H2O (2:1:8) at 353 K for 15 min and rinsed 

copiously with ultra-pure de-ionized water (Water Plus). These solutions cleaned the surface 

from organic and metallic contaminations. The resulting surfaces were hydrogenated by 

etching with 10% aqueous HF for 10 min, rinsed with ultra-pure water again, dried under a 

stream of N2 and immediately used in the functionalization process.  

Considering the nature of the molecular systems to be anchored, which could suffer 

from exposure to UV radiation, all hybrid systems were produced via an extra-mild, visible-

light induced photochemical functionalization, described in its general aspects in Chapter 2. 
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In the following, the details of the methods as it applies to the molecules here investigated are 

exposed. 

 

 

 

 

5.2 - An extra-mild photochemical functionalization 

for the establishment of a Si-C covalent anchoring 

bond 

 

The photochemical approach is considered to be the mildest route to the 

functionalization of H-terminated Si surfaces, and it has generally been applied via 

hydrosilylation reactions of terminal alkenes and alkynes (Paragraph 2.1).  

Freshly etched Si samples were always used as the substrates for anchoring. The 

functionalization experiments on the surface-activated samples were carried out using 

standard preparative Schlenk-line procedures (Figure 5.2.1).  

 

 

Figure 5.2.1: Photochemical functionalization of Si wafers in a Schlenk-line. 

 

The suitable calixarene or pseudorotaxane was dissolved in toluene (10 mM 

concentration or calixarene, 5 mM concentration for pseudorotaxane instead). H-Si was 
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dipped in the preventively deoxygenated molecular solution through 3 freezing-pumping-

annealing cycles, and kept under N2, to preserve silicon from surface oxidation. The sample 

was subjected to a 35 mW/cm
2
 visible irradiation for 4 h from a quartz-iodine lamp. After 

functionalization, all samples were subjected to the same cleaning procedure, consisting of 

two sonication cycles, 5 min each, with dichloromethane, and drying in a stream of N2, to 

eliminate physisorbed molecules. Care was taken in order to reduce all sources of O2 and H2O 

contamination in preparation steps.  

The pseudorotaxane was prepared by adding equimolar amounts of calixarene wheel 

and viologen axle to a toluene solution under stirring. In few min the colour of the solution 

changed to orange. The mixture was stirred at room temperature for 30 min and then filtered 

off to remove the excess of solid axle.
54b,c 

 

Calix[4]arene complexation – We tested the availability of the calix[4]arene 

substituted with a phenylureido group to further reactions, once anchored on Si (Figure 5.2.2). 

The tests were performed after a first cycle of immersion of a Si(100) wafer in a solution of 

N-methypyridinium iodide, followed by rinsing in CH3OH acidified with HCl (to remove 

species from the cavity) and by a second immersion in the solution of the same salt, which 

was requested for the reaction to be completed (see infra). Iodide was chosen as the anion 

because, in addition to its high binding constant for the formation of the adduct with N-

methylpyridinium,
77a

 its characteristic XPS signals do not interfere with those from Si peaks, 

thus allowing for an easier quantitation. 

 

Pseudorotaxane threading from solution – After the functionalization reaction, H-

Si(100)-pseudorotaxane samples were dipped in the calixarene-wheel solution in toluene for 

15 min. 

 

In Figure 5.2.2 the investigated calixarenes and rotaxanes anchored on H-Si(100) are 

shown. 

In order to evaluate the feasibility of the Si surface functionalization with calixarene 

derivatives, we tested compounds which present on their lower rim suitable anchoring 

terminations. In particular, calix[4]arene and calix[6]arene are characterized by the presence 

of two and three ω-alkenyl chains on their lower rim, respectively. Moreover, the two 

macrocycles present some heteroatoms in their structure. XPS signals due to heteroatoms are 
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diagnostic for the characterization of the functionalized surface. Calix[4]arene is characterized 

by the presence of two bromine atoms (Figure 5.2.2a) or phenylureido groups (Figure 5.2.2b), 

and calix[6]arene possesses three nitro groups on its upper rim (Figure 5.2.2c). 

From solution studies it is known that calix[6]arenePhenylUrea wheel (Figure 5.2.2d) plus 

N,N′-dialkylviologen (bearing a ω-alkenyl anchoring group) (Figure 5.2.2e) axle give rise to 

the formation of stable pseudorotaxanes in apolar solvents (logK > 6).
17d,54a

 

 

 

Figure 5.2.2: Calixarenes derivatives and pseudorotaxane for the functionalization of H-

Si(100) surfaces: a) calix[4]areneBr2, b) calix[4]arenePhenylUrea, c) calix[6]areneNO2, d) 

calix[6]arenePhenylUrea, e) N,N′-dialkylviologen. Pseudorotaxane results from the assembling of d) 

and e). 
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5.3 - XPS investigation: Results and discussion 

 

 

5.3.1 - Characterization of calix[4,6]arenes on Si(100) 

 

The initial H-Si(100) surfaces were routinely checked via XPS, in order to control 

their quality and reproducibility. 

We first investigated the behaviour of calix[6]areneNO2 on Si(100). Curve-fitting of 

the Si 2p peak shows separated signals for bulk silicon (cross hatched areas) and for its 

surface contributions (white areas). The absence of signals possibly related to Si oxides shows 

that we produced a functional hybrid with preservation of the surface (Figure 5.3.1a). The 

distinctive XPS region of the organic moiety is N 1s. The spectrum is complex and contains 

the typical signal of aromatic -NO2 group (principal peak and its shake up)
85

 to the high 

binding energy side (Figure 5.3.1b). The surface coverage, estimated from substrate 

attenuation by making use of the NO2/Si ratio (Table 5.3.1), is 27%,
69

 which may be 

considered as good, once we consider that only the methyl group is able to form a full 

monolayer on Si.
86

 

 

 N 1s/eV NO2/Si Ф (%) 

Calix[6]areneNO2 
407.0 

408.5 
0.032 27 

 

Table 5.3.1: XPS peak positions and quantitative ratios (± 10%), and values of surface 

coverage (Ф) for Si/calix[6]areneNO2. 

 

                                                           
85

 G. Distefano, M. Guerra, D. Jones, A. Modelli, F. P. Colonna, Chem Phys. 1980, 52, 389. 

 
86

 E.J. Nemanick, P.T. Hurley, L.J. Webb, D.W. Knapp, D.J. Michalak, B.S. Brunschwig, N.S. Lewis, J. Phys. 

Chem. B 2006 110, 14770. 
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Figure 5.3.1: Si 2p (a) and N 1s (b) XPS spectra of Si(100)/calix[6]areneNO2 taken at 11° 

from the surface normal. The cross-hatched areas in a) identify the component due to reacted Si. 

 

 

Figure 5.3.2: Si 2p XPS spectra taken at 11° from the surface normal of 

Si(100)/calix[4]areneBr2. The main spin-orbit split component is due to bulk Si. The cross-hatched and 

grey areas respectively identify the components due to C-Si and Br-Si bonds. 

 

Figure 5.3.2, where the XPS spectrum of the Si 2p region of the most reactive 

molecule in the investigated series, calix[4]areneBr2, is displayed, shows only a small amount 

of Si oxide. This last could have resulted from the short exposure to air, which was 

unavoidable when introducing the samples from a Schlenk tube, where the preparation has 

been conducted, to the UHV apparatus. In the same spectrum, in addition to the main 2p3/2,1/2 

peaks due to bulk Si, two couples of spin-orbit split peaks are present, at 100.1 and 100.5 eV, 
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which are assigned, on the basis of the literature, to Si-C and Si-Br bound components, 

respectively.
87

 

 

 

Figure 5.3.3: Br 3d XPS spectra taken at 11° (a) and 81° (b) from the surface normal of 

Si(100)/calix[4]areneBr2. Notice the relative enhancement of the Br-C component at a more grazing 

(i.e., more surf. sensitive) angle. 

 

 Br 3d/eV Br/Si Ф (%) 

Calix[4]areneBr2 
69.8 

71.0 
0.018 16 

 

Table 5.3.2: XPS peak positions and quantitative ratios (± 10%), and values of surface 

coverage (Ф) for Si/calix[6]areneBr2. 

 

                                                           
87

 J. Terry, R. Mo, C. Wigren, R. Cao, G. Mount, P. Pianetta, M. R. Linford, C. E. D. Chidsey, Nucl. Instrum. 
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The corresponding Br 3d peak for the same sample (Figure 5.3.3b) is the sum of two 

spin-orbit split components, which were resolved via curve-fitting with the same peak 

constraints (ΔE = 1.05 eV, 2:3 peak area ratio). The two components are assigned to Br-Si 

(spin doublet at 69.7 and 70.8 eV, shadowed in the graph) and Br-C (spin doublet at 71.0 and 

72.0 eV), on the basis of the literature.
17a,88

 The assignment is further confirmed by the 

dependence of the relative intensity of the two peaks upon the photoelectron collection angle 

(Figure 5.3.3a,b). In fact, at a more grazing angle (i.e., in more surface-sensitive conditions) 

the Br-C component is relatively enhanced, as expected for the species located at a further 

distance with respect to the surface.  

The surface coverage was estimated from substrate attenuation by making use of the 

Br/Si ratio (Table 5.3.2), as in the previous case.
69

 

A Br-Si component indicates that some decomposition of the calixarene ligands has 

occurred during the functionalization, with abstraction of bromine from the calixarene rim. 

Decomposition of the molecular substrate was not unexpected, since we found similar results 

in the case of Br-undecene.
17a

 More quantitatively, a Br-Si/Br-C ratio of 0.28 is obtained at 

11° photoelectron collection angle (0.14 at 81°). Interestingly, NMR analysis of the residual 

solution of calix[4]areneBr2 resulting from the anchoring reaction excluded the presence of 

de-brominated calixarenes, suggesting that the fraction of calixarenes which has lost bromine 

is anyhow present on the Si surface, after reaction.  

These findings have two major implications. First, in order to reduce decomposition of 

the organic moiety, a milder route to hydrosilylation of organics, obtained by us via white-

light exposure, can be more effective than UV-photostimulation, applied before.
15a,15e,89 

Secondly, bromine abstraction could result in direct bonding of the calix through its upper rim 

to the Si surface
89

 which would hamper host-guest reactions. We checked for the surface 

orientation of the calix, and found them standing up, which again hints at different 

photoassisted reactivity when using white-light vs. UV.  

To this aim, we made use of two series of calix[4]arenes, the mono- and di-bromo 

substituted, and tested their reactivity towards Cs
+
 picrate.  

                                                           
88
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89
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In solution, the partial-cone and 1,3-alternate conformers of calix[4]arenes show 

remarkable selectivity in the complexation of cesium ion
90

 and, for this reason, are promising 

in the 
135

Cs removal from radioactive waste (Figure 5.3.4). 

 

 

Figure 5.3.4: Complexation of the cesium cation by calix[4]arene in the 1,3-alternate and 

partial cone interconverted conformations. 

 

The calculated Cs/Br atomic ratios matches, within the ± 10% experimental 

uncertainty associated to XPS semiquantitative measurements, the values expected from 

stoichiometric ratios, respectively 0.43 (theor.: 0.5) and 0.93 (theor.: 1.0) (Figure 5.3.5).  

These results unequivocally show that the chemisorbed calix[4]arenes are available to 

guest species. In fact, the small difference between theoretical and experimental couples of 

values here above is not compatible with the Br-Si/Br-C ratio of 0.28. 
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Figure 5.3.5: Cs
+
 XPS spectra of Si(100)/calix[4]areneBr2 after complexation with cesium 

picrate. 

 

 

 

5.3.2 - Recognition reactions of N-methylpyridinium ion-

pairs towards anchored heteroditopic calix[4]arene receptors 

 

We tested the reactivity on Si(100) of anchored heteroditopic calixarene-based 

receptors
49

 with a series of experiments. To this aim, we selected the calix[4]arenePhenylUrea 

systems (Figure 5.2.2), in order to study their reactivity towards N-methylpyridinium
77

 

(NMP) salt. The availability of a phenyluerido group in the upper rim of a calix allows for a 

combined effect on the recognition reaction of a salt (a cooperative heteroditopic effect).
79

 In 

fact, the ionic interaction in the salt is reduced by the proper combination of a hard H-bond, 

which can be established by the amido group of the phenylurea unit with an anion, with a soft 

calix-cation π-bond, through the methyl group of the pyridinium. Testing a series of NMP 

salts with different anions evidenced that the phenyl-urea increases the affinity for the NMPX 

salt by up to two orders of magnitude.
77a 
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 NH/N
+
 

Si(100)/calix[4]arenePhenylUrea 7.4 

Si(100)/calix[4]arenePhenylUrea + NMPI (1st cycle) 4.8 

Si(100)/calix[4]arenePhenylUrea after rinsing 8.5 

Si(100)/calix[4]arenePhenylUrea + NMPI (2nd cycle) 2.1 

Si(100)/calix[4]arenePhenylUrea + NMPI (theor.) 2 

 

Table 5.3.3: XPS NH/N
+
 quantitative ratios for Si(100)/calix[4]arenePhenylUrea as prepared 

and as a function of progressive NMP
+
 uptake from a solution and rinsing. 

 

 

 

Figure 5.3.6: a) N 1s XPS spectra of a Si(100)/calix[4]arenePhenylUrea sample as such 

(dotted line) and after immersion in a solution of NMP
+
I

-
 (solid line). Notice the relative enhancement 

of the N
+
 component at higher binding energies; b) I 3d XPS spectrum from the same sample. 
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The contemporary presence in the N 1s region of two peak components, shown in 

Figure 5.3.6a, due to both the NH group and the N
+
 from the pyridine ring (NMP

+
), calls for 

the establishment of the recognition reaction between these reactants, to an extent which was 

quantified by taking the experimental relative atomic ratios between the two N 1s 

components.  

As reported in Table 5.3.3, a small amount of N
+
 was already present in the anchored 

calix[4]arene before contacting with NMPI, which was likely due to the surface anchoring 

process on H-Si. The ratio matched the value expected from stoichiometry already at the 

second cycle of filling-depleting of the calix.  

 

 

Figure 5.3.7: Schematic representation of the recognition process occurring between 

calix[4]arene heteroditopic receptors anchored on silicon surface and N-methylpyridinium cation 

(NMP
+
).  

 

As for the I
-
 anion (Figure 5.3.6b), its quantitative ratio to N

+
 was lower than expected 

from stoichiometric ratios for the anchored calix[4]arene. The ascertained presence, in this 

sample, of deprotonated surface SiO
-
 groups, which can substitute for the anion in the ion-pair 
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interactions with NMP
+
, offers a likely explanation of this effect.

40,91
 The N

+
/I

-
 ratio further 

diminished after rinsing, and a Cl
-
 peak became visible in the XPS spectrum. We interpret this 

as a result of the anion exchange, which takes place during the rinsing cycle to free the 

calix[4]arene cavity, operated with a CH3OH solution acidified with HCl (Figure 5.3.7). 

 

 

 

5.3.3 - Self-assembling of pseudorotaxane species on Si(100) 

 

A further recognition reaction was successfully tested by producing the first example 

of a pseudorotaxane species on Si(100). The species obtained is based on an N,N′-

dialkylviologen-calix[6]arenePhenylUrea adduct. We explored two approaches. We first 

started by reacting (via a photoassisted recipe strictly analogous to the one reported above) the 

N,N′-dialkylviologen axle, carrying a terminal C=C group and synthesized in high yield, with 

H-Si(100) (Figure 5.2.2).  

The result was, however, poor, as testified by the low N/Si atomic ratio from XPS 

measurements. No silicon oxidation was detected. A likely explanation for the poor adhesion 

is because of the charge present on each axle, which does not allow for a compact monolayer 

to form on Si, thus exposing Si to further reactions.  

We then started directly from the pseudorotaxane in a toluene solution, by reacting the 

same calix[6]arene wheel and the viologen-based axle. H-Si(100) was reacted with the above 

solution under the usual photoassisted conditions (Figure 5.3.8). This two-step reaction 

successfully produced a threaded rotaxane covalently bound on Si, as shown by the XPS 

results (Figure 5.3.9). 
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Figure 5.3.8: Threading reaction in toluene between viologen axle and calix[6]arene wheel. 

The resulting pseudorotaxane was anchored on Si(100) surface in a two-step process. 

 

Figure 5.3.9 reports the N 1s peak, where NH and N
+
 peak components are again 

present, indicating the anchoring of the pseudorotaxane at the Si surface. The NH/N
+
 ratio is 

2, which should be compared with an expected stoichiometric value of 3 in the absence of 

dethreading. Since we are aware that UV light can induce viologen reduction and affect 

dethreading,
92

 we tested different experimental conditions, in order to obtain a monolayer of 

pseudorotaxane on Si(100). In order to identify the role of visible light in affecting 

dethreading, we performed a parallel experiment on H-Si(100) and on a polycrystalline Cu 

surface at RT, with the same contact time (see Chapter 4). Both surfaces were contacted with 

a preformed adduct of a calix[6]arene with a suitable axle (a C=C or SH-terminated C11 

chain). The reaction was photoassisted for Si(100), while no illumination was necessary for 

the reaction to be completed on Cu. In the latter case, we found no sizeable dethreading of the 

                                                           
92
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pseudorotaxanes. This was inferred from the NH/N
+
 ratio, equal to 3.0, the value expected 

from stoichiometry. On Si(100), a value of 2.0 was, instead, found. We then further operated 

the anchoring reaction on Si(100) under the same illumination conditions, but at a solution 

temperature closer to the experimentally determined value for dethreading of the pure adduct 

in a solution. This resulted in a drop to 1.5 of the NH/N
+
 ratio. In Figure 5.3.8, the XPS 

spectrum of the Si 2p region, is displayed, showing the presence of Si oxide. This last could 

have resulted from the short exposure to air during preparation and from the lower passivation 

of the surface due to the pseudorotaxane size. 

 

 

Figure 5.3.9: Si 2p (a) and N 1s (b) XPS spectra of a Si(100)/pseudorotaxane. The cross-

hatched areas in a) identify the component due to reacted Si. In b) the experimental curve is displayed 

as dotted line, with the NH and N
+
 peak components, resulting from curve-fitting, as solid lines. 

 

In order to overcome the limitations inherent to the experimental conditions needed for 

surface anchoring of the pseudorotaxane, we post-reacted the Si(100) surface covered with a 

mixed layer of pseudorotaxane and axle with a solution only containing the calix[6]arene 

wheel. The NH/N
+
 ratio increased to 2.8, which indicates that the mixed monolayer reacts to 

produce a nearly full threading of the residual axles. Notice that, following this recipe, we 

came to the same conditions obtained on Cu of a full monolayer of anchored pseudorotaxane. 

A mixed monolayer on Si(100), composed of pseudorotaxanes and axles, can further 

uptake free calixarenes from a solution, resulting in a self-assembled monolayer of rotaxane.  

 

 

 



 Chapter 5 - Production and characterization of organic-inorganic hybrids based on  

calixarene derivatives and H-Si(100) 

 

 
79 

 

5.4 – AFM investigation: Results and discussion 

 

Application of in situ AFM allowed assessing the surface morphology of the reacted 

Si surfaces. Here are reported the AFM image recorded from the hybrid H-

Si(100)/calix[4]areneBr2, for which the XPS Si 2p and Br 3d spectra are displayed in Figures 

5.3.2 and 5.3.3.  

The image is representative of the total area explored. The surface revealed a 

homogeneous morphology, consisting of globular assemblies. The rms roughness value 

obtained from the image is 0.13 nm. Linear cross-section profiles as the one evident in Figure 

5.4.1, taken from a measured area of 0.82 x 0.86 µm
2
, reveal sub-micrometric grains with an 

average height equal to ~2.3 nm, which closely compares with the length for a calix[4]arene 

molecule, ~2.2 nm. 

 

 

Figure 5.4.1: AFM results on H-Si(100)/calix[4]areneBr2. AFM image from a 0.82  0.86 

µm
2
 area is reported at (a), with the corresponding analysis of a linear cross-section profile, (b), taken 

along the marked segment. A 3D image from the same area is reported in (c). 
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5.5 – Cross-exchanging of surfaces 

 

We also checked for the extent to which the anchoring process of thiols (and alkene) 

terminal groups is selectively realized on Cu (or Si, respectively) surface sites. We separately 

contacted a Cu polycrystalline surface with calix[4]areneBr2 (C=C termination), and a Si(100) 

wafer with calix[4]arene (-SH termination). The results are reported in Figure 5.5.1. No 

molecular uptake was observed in both cases, from the absence of the characteristic peak in 

the relevant photoemission regions (Br 3d and S 2p). The result is significative for possible 

extension of our approach to the patterning of Si(100) surfaces containing Cu vias. 

 

Figure 5.5.1: XPS S 2p spectra Cu/calix[4]arene (a) and Si/calix[4]arene (b), Br 3d spectra of 

Si/calix[4]areneBr2 (c) and Cu/ calix[4]areneBr2 (d). The features in (b) and (d) are due the raising 

background. 
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5.6 – Conclusions 

 

We have studied the covalent functionalization of Si(100) with calix[4]arenes and 

pseudorotaxane-based calix[6]arene, which were obtained through a wet chemistry recipe. We 

made use of an extra-mild photochemical activation, which makes use of photoassisted 

anchoring via visible light of C=C terminated anchoring arms. Our recipe largely preserves 

the integrity of the molecular substrate, as verified by XPS, also allowing for a full monolayer 

of pseudorotaxane to be formed on Si(100), along a two-step reaction. Molecular adhesion has 

been tested and the recipes improved by the feedback assistance of XPS, through assignment 

and relative quantitation of signals from specific elements in the molecules, and by AFM 

results. Mixed monolayer on Si(100), composed of pseudorotaxanes and axles, can further 

uptake free calixarenes from a solution. This result opens up to the realization of more 

complex mixed monolayer, by employing suitably substituted calixarenes. 

A covalent functionalization on both Si and Cu surfaces requires the molecules to be 

differently modified: a thiol (-SH) or C=C termination is respectively suitable for Cu or H-

Si(100). We cross checked the reactivity of the different anchoring group on the Cu and Si 

surfaces. No molecular uptake was observed when each of the two surfaces was exposed to 

the molecular system suitable for the other. Each calixarene only chemisorbed on the 

expectedly right surface. 



 

Chapter 6 

XPS characterization of nanometric and 

subnanometric calixarene protected gold 

nanoparticles 

 

 

 

 

 

 6.1 – Introduction 

 

 

6.1.1 - Synthesis 

 

Gold nanoparticles (AuNPs) were synthesized at the Università di Parma by the group 

of Prof. Pochini. Taking advantage of the two-phase synthetic procedure reported by Brust 

(see Paragraph 2.4),
63

 the reduction of the aurate was accomplished with NaBH4 in a toluene 

solution containing the thiolated calixarene ligand. Nanoclusters were prepared for each 

ligand using different S:Au molar ratios of 3:1, 1:3 and 1:6. In these ratios S expresses the 

equivalents of thiolated alkyl chains present in the solution regardless the nature of the 

multidentate ligand. In this way, the outcomes of the synthesis carried out using the same 

S:Au ratio become independent by the absolute amount of the calixarene employed and, most 

important, directly comparable with the literature data relative to monodentate thiolated 

ligands.  

The ratio of alkanethiol to Au controls the size of the resulting nanoparticles by 

adjusting the relative rates of particle nucleation and growth (higher ratios yield smaller 

particles). AuNPs protected with multipodand thiolated calix[n]arene ligands bearing one, 
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two, three or four convergent ω-undecanthiol chains on their lower rim were produced and 

characterized (Figure 6.1.1).  

 

 

Figure 6.1.1: Structural formulae of monodentate (1), bidentate (2), tridentate (3) and 

tetradentate (4) thiolated calix[n]arenes. 

 

The investigation tool used in this thesis for the characterization of NPs was X-ray 

Photoelectron Spectroscopy (XPS). A more detailed characterization (Transmission Electron 

Microscopy (TEM), UV-Vis Spectroscopy, Dinamic Light Scattering, Elemental Analysis and 

13
C-NMR) has been accomplished by the research group of Prof. Pochini at Università di 

Parma, but only the results from TEM are discussed here, for their relevance in the 

interpretation of XPS results.
93

 

Each set of NPs was designated as Cxm(RS)n-Au, where m (4 or 6) and n (1 to 4) 

identify the calixarene macrocycle and its denticity, respectively. To distinguish among 

nanoparticles stabilized with the same ligand but prepared using different S:Au ratios, the 

index s, m or l was used. This index would represent the relative core size (s = small, m = 

medium and l = large), of the nanoparticles with respect the 3:1, 1:3 and 1:6 S:Au molar ratio 

used for their synthesis (Table 6.1.1). 

                                                           
93

 L. Pescatori, A. Boccia, F. Ciesa, F. Rossi, V. Grillo, A. Arduini, A. Pochini, R. Zanoni, A. Secchi, Chem. 

Eur. J. 2010, 16, 11089. 
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6.1.2 - TEM measurements 

 

We report in the following on the TEM results because of their primary use as 

reference to the outcomes of XPS. The core size distribution of the synthesized AuNPs was 

determined through TEM measurements. This analysis showed that for each ligand used, the 

mean core size (dTEM) of the corresponding nanoclusters is inversely proportional to the 

S:Au ratio employed during the synthesis (Table 6.1.1). This was an expected result since the 

effect of the ligand concentration on the size of the resulting nanoclusters has been already 

verified.
64

  

 

NP Ligand Designation S:Au
a 

dTEM (nm) 

[Cx4(RS)-Au] 1 1s 3:1 1.5 ± 0.3 

[Cx4(RS)2-Au] 2 2s 3:1 0.8
b
 ± 0.2 

[Cx4(RS)2-Au] 2 2m 1:3 1.6 ± 0.4 

[Cx4(RS)2-Au] 2 2l 1:6 2.5 ± 0.7 

[Cx6(RS)3-Au] 3 3s 3:1 1.0  0.2 

[Cx6(RS)3-Au] 3 3m 1:3 2.0  0.5 

[Cx6(RS)3-Au] 3 3l 1:6 2.6  0.5 

[Cx4(RS)4-Au] 4 4s 3:1 1.0  0.2 

a
 equivalents of alkylthiol chains per aurate. 

b
 HAADF-STEM measurements. 

Table 6.1.1: Designation, composition and mean core size of the calix[n]arene-protected 

AuNPs. 

 

The effect of the ligand denticity on the size of the nanocluster is well evidenced by 

comparing the dTEM and the size distribution diagrams (Figure 6.1.2) determined for 1s, 2s 

and 3s samples obtained using the same S:Au molar ratios.  

Interesting results were obtained by comparing the TEM images taken from the three 

sets of nanoparticles 1s, 2s and 3s, which were prepared using an identical S:Au ratio of 3:1, 

but having the monodentate 1, the bidentate 2 and the tridentate 3 calixarene as protecting 

thiolate ligand, respectively (Figure 6.1.1). The core size distribution diagrams corresponding 
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to each TEM image clearly evidence that the nanoparticles present in the samples 2s and 3s 

are endowed with a mean core size (dTEM < 1 nm) smaller than those present in 1s (dTEM  

1.5 nm, Figure 6.1.2). The latter nanoclusters were characterized by dTEM comparable to 

those reported for n-dodecanthiol-protected NPs prepared using the identical S:Au ratios.
64c 

The dTEM of 4s sample resulted equal to that of 2s and 3s (Table 6.1.1). 

 

Figure 6.1.2: TEM images and core size distribution diagrams of calixarene-protected AuNPs 

prepared using a S:Au = 3:1. a) 1s (dTEM = 1.5 ± 0.3 nm), b) 2s (dTEM = 1.0 ± 0.3 nm,), c) 3s 

(dTEM = 1.0 ± 0.2 nm); d) HAADF-STEM image and core size distribution diagram of 2s (dSTEM = 

1.2 ± 0.3 nm). 

 

Most important, the distribution analysis revealed that the use of a threefold excess of 

alkylthiol chains per aurate (S:Au = 3:1) for the multidentate ligands induces the formation of 

very small clusters. HAADF-STEM analysis evidenced the presence of subnanometric 

icosahedral Au13 NPs (d  0.8 nm) (Figure 6.1.2). These results support the hypothesis that 

the size distribution of the calix[n]arene protected AuNPs is affected by the denticity of the 

ligand. 

We propose that the observed reduction in the core size of the nanoparticles stabilized 

with the multidentate ligands 2, 3 and 4 is due to the convergent arrangement and the elevated 

effective molarity of the (two, three or four, respectively for 2, 3 or 4) thiolate chains to the 

growing gold core, after the formation of the first Au-S bond, which increases the passivation 

rate. In fact, a constant S:Au stoichiometric ratio 3:1 was chosen in the synthesis of the full 
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series of 1s, 2s, 3s, in order to keep the number of thiol chains constant, by adding the proper 

amount of the ligand. 

 

 

 

 

6.2 - Results and discussion: XPS investigation 

 

The XPS analysis has been conducted on the series of s, m, l NPs in Table 6.1.1 and 

on the ligand exchanged Au11 NPs (2ex). The latter nanoparticles were obtained through 

ligand-place exchange reaction by reacting Au11(PPh3)7Cl3 undecagold clusters with an excess 

of thiolate calix[4]arene 2 (Figure 6.1.1). These solid compounds were spread over a graphite 

tip attached to the XPS sample holder and analyzed. 

The relevant XPS regions for the investigated systems are those of Au 4f and S 2p, 

which appear as complex peaks and required curve-fitting procedures (Figures 6.2.1-Figure 

6.2.6).  

As evidenced by a rigid energy shift of the overall spectrum, the nanoclusters 

experienced static charging under X-rays to different amounts, which were quantified and 

corrected by referencing the C 1s signal of the calixarene at 285.0 eV (see Paragraph 3.1). 

Such static charging only affected m and s NPs, to comparable extents. 

XPS measurements have shown that gold is present in the core in different chemical 

states. Theoretically reconstructed Au 4f peaks invariably show three spin-orbit split 

components (Table 6.2.1), while two main components were expected, one due to the Au-S 

bonds and the second to Au-Au (both central and surface atoms) (Figure 6.2.1-Figure 6.2.3). 

Their assignment is further complicated by the fact that the three Au components happen to 

follow at different BEs, depending on the cluster size. We assign the Au electronic states for l, 

m and s NPs by first considering the typical energy separation between Au 4f7/2 components, 

as extracted from the relevant literature:
94

 Au-Au(I) (1.4 ± 0.4 eV) and Au(I)-Au(III) (1.7 ± 

0.4 eV). These values are consistently reproduced by peaks Au(a), (b) and (c) (Table 6.2.1), 

which are present with different relative ratios in the series, depending on the mean dimension 

                                                           
94

 a) F. Demoisson, M. Mullet, B. J. Humbert, J. Colloid Interface Sci. 2007, 316, 531. b) M. C. Bourg, A. Badia, 

R. B. Lennox, J. Phys. Chem. B 2000, 104, 6562. c) D. G. Castner, K. Hinds, D. W. Grainger, Langmuir 1996, 

12, 5083. 
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of NPs. The minor Au(c) component can be assigned to Au(III) species likely deriving from 

AuCl4
-
.  

 

 

 

Figure 6.2.1: Au 4f XPS spectral regions of a) 2s, b) 2m, c) 2l and d) 2ex. Experimental curve 

(dots) and Au 4f7/2,5/2 curve-fitted components: Au(a) (dash line), Au(b) (solid line), and Au(c) (dot 

line). 

 

 In the 3l sample, Au(III) species is predominant, resulting in a different spectrum 

profile (Figure 6.2.2c). The Au(c) component experienced a differential charging under X-

rays and its position was not stable during the measurement. So the correct binding energies 

of Au(b) and Au(c) determined from the fit are not reliable. The depth profile analysis 

revealed that the Au(III) species lies at the surface of the NP, as its signal increases at grazing 

take-off angle (81°) (see Paragraph 3.1) (Figure 6.2.2d). 
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Figure 6.2.2: Au 4f XPS spectral regions of a) 3s, b) 3m, c) 3l (11°), d) 3l (81°). Experimental 

curve (dots) and Au 4f7/2,5/2 curve-fitted components: Au(a) (dash line), Au(b) (solid line), and Au(c) 

(dot line). 

 

  

 

Figure 6.2.3: Au 4f XPS spectral regions of a) 1s and b) 4s. Experimental curve (dots) and Au 

4f7/2,5/2 curve-fitted components: Au(a) (dash line), Au(b) (solid line), and Au(c) (dot line). 
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Table 6.2.1: XPS binding energies for Au 4f and S 2p and relative quantitative ratios (± 10%) 

for different series of calixarene-stabilized AuNPs. 

 

 It is expected on the simple basis of the decreasing trend of surface/bulk atomic ratio 

in a cluster as a function of its increasing nuclearity that the Au(a)/Au(b) ratio is the largest 

for l and the smallest for s NPs, as indeed found, with the m ones lying definitely closer to the 

latter.  

 
Au 4f S 2p 

dTEM 
label BE Au(b)/Au(a) label BE S/Au 

1s 

Au(a) 

Au(b) 

Au(c) 

82.9 

84.7 

86.7 

6 Au-S 162.9 0.7 1.5 

2s 

Au(a) 

Au(b) 

Au(c) 

83.5 

84.8 

86.5 

10 
Au-S 

S-S 

163.2 

165.3 
1.0 1.0 

2m 

Au(a) 

Au(b) 

Au(c) 

82.8 

84.1 

85.6 

5 Au-S 162.4 0.6 1.6 

2l 

Au(a) 

Au(b) 

Au(c) 

84.0 

85.5 

86.8 

0.1 Au-S 162.3 0.3 2.5 

2ex 

Au(a) 

Au(b) 

Au(c) 

83.3 

84.6 

87.1 

8 Au-S 163.0 1.0 1.0 

3s 

Au(a) 

Au(b) 

Au(c) 

82.8 

84.1 

85.4 

9 
Au-S 

S-S 

162.3 

163.6 
1.5 1.0 

3m 

Au(a) 

Au(b) 

Au(c) 

82.8 

84.1 

85.5 

7 
Au-S 

S-S 

162.4 

163.7 
0.4 2.0 

3l 

Au(a) 

Au(b) 

Au(c) 

84.0 

84.9 

86.3 

0.4 
Au-S 

S-S 

163.0 

164.1 
0.3 2.6 

4s 

Au(a) 

Au(b) 

Au(c) 

83.3 

84.5 

86.1 

10 Au-S 163.2 1.8 1.0 
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The main Au4f7/2 component in all the spectra is invariably associated with a relative 

shift to the main S 2p3/2 component equal to 78.3 ± 0.1 eV in almost all cases, a value found 

in the literature as characteristic for S-bound Au atoms.
93

 The S 2p spectra present a major 

component due to thiolate-Au bond, accompanied in the case of 2s, 3s, 3m and 3l NPs by a 

small contribution from distinct sulphur species (Figure 6.2.4-Figure 6.2.6). We assign this 

minor component to disulphide bridges connecting distinct calixarenes,
95

 since NMR analysis 

excludes the alternative assignment in terms of free thiols, because of the absence of SH 

groups in the NPs. Relevant quantitative results [S:Au and Au(b):Au(a)] are reported in Table 

6.2.1.  

 

 

 

Figure 6.2.4: S 2p XPS spectrum of a) 2s, b) 2m, c) 2l and d) 2ex. Experimental curve (dots) 

and S 2p3/2,1/2 curve-fitted components: S-Au major components (solid line), disulphide bridges (dot 

line). 

 

                                                           
95

 a) S. W. Joo, S. W. Han, K. Kim, J. Colloid Interface Sci. 2001, 240, 391. b) S. W. Joo, S. W. Han, K. Kim, J. 

Phys. Chem. B 2000, 104, 6218. c) S. W. Joo, S. W. Han, K. Kim, Langmuir 2000, 16, 5391. d) S. W. Joo, S. W. 

Han, K. Kim, J. Phys. Chem. B 1999, 103, 10831. 
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Figure 6.2.5: S 2p XPS spectrum of a) 3s, b) 3m and c) 3l. Experimental curve (dots) and S 

2p3/2,1/2 curve-fitted components: S-Au major components (solid line), disulphide bridges (dot line). 

 

 

 

Figure 6.2.6: S 2p XPS spectrum of a) 1s and b) 4s. 

 

 The S 2p spectra of 3s in Figure 6.2.5a showed an excess of disulphide with S-S/S-Au 

ratios of 4.6. This implies an excess of calixarenes not bound to gold, resulting from a not 

successful purification. 

The S 2p major component due to thiolate-Au bond is also fully compatible with the 

structural motif (staple) first seen in the external organic shell of the X-ray structure of the 



 Chapter 6 - XPS characterization of nanometric and subnanometric calixarene 

protected gold nanoparticles 

 

 
92 

 

Au25 nanoclusters protected with phenylethanthiolate groups reported by Murray,
96

 and 

confirmed in subsequent reports.
97

 The staple motif can be described as Au-thiolate moieties 

in the form of –SR-Au-SR-. We note that Au BEs and relative quantitative ratios for 2ex are 

closely comparable to 2s, 3s and 4s, and distinct from the m, l series and 1s. More in detail, 

the S:Au and A(b):Au(a) ratios obtained for 2ex, and expected for a Au11 cluster, are only 

reproduced in the cases of 2s, 3s and 4s, within the typical experimental error (± 10%). The 

S:Au ratios of 3s and 4s are also affected by a not effective purification (S:Au > 1 points out 

an excess of sulphur). A value equal to 1 means that all the gold atoms of the core are 

involved in Au-S bonds.  

As for BEs, Au(a) 4f7/2 values for s and m NPs fall in the range of 82.8-83.5 eV, i.e. at 

consistently negative BE shift with respect to bulk Au (84.0 eV). Their interpretation in terms 

of a negatively charged Au central atom is supported by previous literature reports.
98

  

We can take the relative abundance of Au(a) together with S:Au ratios as an indirect 

measure of the cluster nuclearity, allowing for a distinction to be made between s, m and l. In 

fact, the experimental S:Au and Au(b):Au(a) ratios are inversely proportional to the size of 

the nanoclusters. This trend is consistent with the observation that the smaller is the core size 

of the NPs, the larger the percentage of surface Au atoms bound to S. In addition to that, we 

could tentatively infer the NPs nuclearity by comparing the present results with the expected 

values in the notable cases of previously reported Au11, Au13, Au25(SR)18
-
, Au38/Au40, Au55, 

Au68, Au102, and Au144 clusters.
96

  

On the basis of the S:Au and Au(b):Au(a) ratios data in Table 6.2.1 (~ 1 and ~ 10:1, 

respectively), the nuclearities of 2s, 3s and 4s are likely assigned to Au11 or Au13 (which can 

be hardly distinguished by XPS only), furthermore their dTEMs show a subnanometric core, 

while m NPs belong to higher nuclearity species. As regards to l, the S:Au and Au(b):Au(a) 

ratios are too small to find a correspondence with the above range of Au nuclearity, thus 

hinting at a larger range of cluster diameters. We also note that, in the case of l, while TEM 

measurements clearly distinguish a larger average dimension of the particles, XPS results are 

distinct from the analogous s and m, but they could be mainly related to the outer shell of the 

                                                           
96

 M. W. Heaven, A. Dass, P. S. White, K. M. Holt, R. W. Murray, J. Am. Chem. Soc. 2008, 130, 3754. 

 
97

 a) R. Jin, Nanoscale 2010, 2, 343. b) R. L. Whetten, R. C. Price, Science 2007, 318, 407 and references 

therein. 

 
98

 H. Tsunoyama, N. Ichikuni, H. Sakurai, T. Tsukuda, J. Am. Chem. Soc. 2009, 131, 7086.  
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particle, since its experimental diameter range becomes comparable to the inelastic mean free 

path for Au 4f photoelectrons, at the photon energy applied. 

 The MPC synthesis reaction described by Murray considers the reduction of aurate to 

Au(I) by the thiols and the formation of a polymer where the Au(I) species are coordinated by 

two sulphur groups.
64

 The reduction of this polymeric structure gives the nanocluster (see 

Paragraph 2.4). We analyzed the product of the synthesis before the addition of the NaBH4 

reducer. The Au 4f spectrum revealed the presence of a single Au species assigned to Au(I), 

confirming the hypothesis of the formation of the polymer (Figure 6.2.7). 

 

 

 Figure 6.2.7: Au 4f XPS spectral regions of non reduced product of synthesis. 

 

 

 

6.3 – Conclusions 

 

A series of differently sized AuNPs stabilized by monodentate, bidentate, tridentate 

and tetradentate thiolate calix[n]arene ligands prepared by the Brust-Schiffrin two-phase 

synthesis were characterized by TEM and XPS. The experimental data showed that the 

multidentate structure of calix[n]arene derivatives introduced a control element in the 

preparation that allows to obtain very small (< 1 nm) AuNPs. 

XPS measurements have shown that gold is present in the core in different chemical 

states assigned on the basis of their energy separation: Au (Au-Au, central and surface atoms), 

Au(I) (Au-S) and Au(III) (due to residual AuCl4
-
). The S 2p spectra presented a major 

component due to thiolate-Au bond compatible with the staple motif evidenced by the X-ray 
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structure of the Au25 nanoclusters reported in the literature, and accompanied in some cases 

by a small contribution of disulphide bridges.  

Since smaller NPs have a larger percentage of surface Au atoms, we can take the 

experimental S:Au and Au(b):Au(a) ratios as an indirect measure of the cluster nuclearity: 

they were found inversely proportional to the size of the nanoclusters. 

We also characterized NPs obtained from Au11 clusters exchanged with bidentate 

calix[4]arene. The Au 4f and S 2p spectra and the quantitative ratios of this sample are closely 

comparable to that of 2s, 3s and 4s, supporting the assignment to Au11 or Au13 subnanometric 

clusters. 

The analysis of Au 4f of the product of the synthesis before the addition of NaBH4 

revealed the presence of a Au(I) species, compatible with the polymeric -AuSR- structure, 

hypothesized by Murray. 
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