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Abstract

Multimode Collocated Vibration Control with Multiple

Piezoelectric Transducers

In this thesis a new approach is presented to control vibrations for one-

and two-dimensional mechanical structures, as beam or thin plates, by means

of several piezoelectric transducers shunted with a proper electric network

system. The governing equations for the whole system are coupled to each

other through the direct and converse piezoelectric effect. The mechanical

equations are expressed in accordance with the modal theory considering n

vibration modes, that in need of control, and the electrical equations reduce

to the one-dimensional charge equation of electrostatics for each of n consid-

ered piezoelectric transducers. In this electromechanical system, a shunting

electric device forms an electric subsystem working as multi-degree of free-

dom damped vibration absorber for the mechanical subsystem. Herein, it is

introduced a proper transformation of the electric coordinates in order to

approximate the governing equations for the whole shunted system with n

uncoupled, single mode piezoelectric shunting systems that can be readily

damped by the methods reported in literature. A further numerical optimisa-

tion problem on the spatial distribution of the piezoelectric elements allows

to achieve an effective multi-mode damping. Numerical case studies of two

relevant systems, a double clamped beam and a fully clamped plate, allow

to take into account issues relative to the proposed approach for vibration

control. Laboratory experiments carried out in real time on a beam clamped

at both ends consent to validate the proposed technique.





“The unexamined life is not worth living”

(Plato, The Apology of Socrates [38a])





Whœver limiting his worldly ambitions

finds satisfaction in the speculative life

has in the approval of an enlightened and competent judge

a powerful incentive to labours,

the benefits of whi� are great but remote,

and therefore su� as the vulgar altogether fail to recognise.

To su� a judge and to his gracious attention

I now dedicate this work.





Preface

The immediate reason to draw up this thesis is the necessity to summarise

all the work done by me in three years of study, in accordance with my duty,

given that1:

“... non fa scïenza,

sanza lo ritenere avere inteso.”

Two are criteria that have driven me to write this thesis: comprehensibil-

ity and synthesis. I have chosen to provide both examples and explanations

in order to satisfy the first criterion, albeit these involve a larger length of

this work. It is true that Abbot Terrasson tells us that if the size of a book were

measured not by the number of its pages but by the time required to understand

it, then we could say about many books that they would be much shorter if they

were not so short. Examples and explanations certainly make easier to under-

stand the written but they also involve some inopportune effects. In fact, if

we are concerned with the distinctness and the comprehensibility of a volu-

minous whole of speculative cognition that yet coheres in one principle, then

we could just as legitimately say that many books would have turned out much

more distinct if they had not been intended to be quite so distinct that is, “clear”

in the popular sense —plenty of examples. For the aids to distinctness, while

helpful in parts of a book, are often distracting in the book as a whole. They

keep the reader from arriving quickly enough at an overview of the whole;

and with all their bright colours they do cover up and conceal the articula-

tion of the dissertation. However, if we are concerned with the synthesis, it

is worth saying that examples and explanations are necessary for a popular

publication but this report is written primarily for engineers, and they do not

1Dante Alighieri (1265–1321). La Divina Commedia, Par., V, 41–42.
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need of these facilities. Hence, as good as always, I have tried to achieve a

right balance taking into account all these points of view.
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Introduction

P
iezoelectric materials have been a great expansion in the engineering

application of structural control. One reason for this is that it may be

possible to create certain types of systems capable of adapting to or correct-

ing for changing operating conditions. The advantage of incorporating these

special types of material into the structure is that the sensing and actuating

mechanism becomes part of the structure.

In the last years the employ of structures more and more thin had made

arise numerous issues regarding vibrations. The challenge of reliability and

durability of mechanical structures is an important task for engineers, the

design of systems leading to the efficient control of structural vibrations in

order to reduce fatigue load, crack propagation and damage appears to be an

attractive opportunity. Then the object of this dissertation is to investigate the

possibility to reduce vibrations. Thus, the topics presented in this research

work are chiefly concerned with application to mechanical vibrations, sys-

tem identification, automotive, railway and aerospace industries. To take into

account a possible effective control, piezoelectric transducers are employed.

This is primarily due to their abilities but also to the growing availability

of more efficient piezoelectric ceramics. Smart structures using piezoelec-

tric material are successfully employed in reducing vibration [Alessandroni

et al., 2005; Dosch et al., 1992; Anderson and Hagood, 1994; Hollkamp and

Starchville, 1994; Badel et al., 2006; Wu, 1998; Tang and Wang, 2001; dell’Isola

and Vidoli, 1998; Thorp et al., 2001]. Piezoelectric materials produce a voltage

when strained and conversely strain when undergone to a voltage. This prop-

erty is very interesting, because a piezoelectric element can be indifferently

used either as a sensor or an actuator. Moreover, these piezoelectric element

skills can be simultaneously employed to obtain a collocated sensor-actuator

1
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control and to achieve with ease a stable control. The piezoelectric transduc-

ers coupled to mechanical structures can convey the mechanical energy flow

toward electric network systems where it is dissipated: it is a piezoelectric

shunt-damping. The use of the piezoelectric shunt damping technique for vi-

bration reduction in one and two dimensional flexible structures is a very

common practice because of the strong electromechanical coupling associ-

ated with currently available piezoelectric transducers. In this technique the

piezoelectric transducers, bonded on the flexible structure, are shunted by

a passive electric network that acts as a damped vibration absorber for the

host mechanical structure. A classical application of this method is a single

resonant piezoelectric shunting system studied in [Hagood and Flotow, 1991;

Wu, 1996]. The damper is formed by a piezoelectric element shunted with an

inductor and a resistor. The external shunt circuit with the inherent piezo-

electric capacitance is a RLC circuit. Its natural frequency is imposed equal

to one natural frequency of the host mechanical structure by maximising the

energy exchange. The resistance role is to maximise the electric dissipation

of the energy coming from the mechanical structure. Its main drawback is

the requirement of high-value inductors, 10–1000 H, working at high-voltage.

For this reason, passive components are simulated by active circuits, synthetic

impedances or alternatively admittances, which require an external feeding.

Subsequent applications involve one piezoelectric transducer coupled with

a multi-resonant electric network to damp a set of mechanical modes. Hol-

lkamp’s circuit is one of this kind [Hollkamp, 1994]. The shunt circuit consists

of a set of branches whose main is an RL circuit. The other branches are RLC

shunts. The number of controlled mechanical modes is equal to the number

of the branches. An issue of this technique is the necessity of retuning the

circuit when a branch is added. Indeed, in [Hollkamp, 1994] is proposed no

closed-form tuning solution. Further approaches use multiple piezoelectric

transducers by shunting each of them to a proper multi-resonant electric net-

work [Moheimani et al., 2004]. In practice, to account for the undesired cross

influence of the shunt circuits on the mechanical modes to be controlled, a

fine-tuning is due.

In [dell’Isola and Vidoli, 1998; Andreaus et al., 2004; Maurini et al., 2004;

Alessandroni et al., 2005] systems with periodically distributed piezoelectric

2 of 143
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transducers and modular shunting networks are considered. This approach

adopts homogenised continuum modelling and looks for periodic lumped

electric systems having, in the continuum limit, the same dynamic behaviour

of the mechanical structure to be controlled. The drawback of this “contin-

uum mechanics” approach is the requirement of a high number of piezoelec-

tric elements and complicated shunting networks, in order to approach the

continuum limit. Moreover, different types of structures, e.g. beams or plates,

demand the solution of specific design problems. The theoretical and numeri-

cal results provided optimal electric networks for damping flexural vibrations

of beams [Andreaus et al., 2004; Maurini et al., 2004] and plates [Alessandroni

et al., 2005]; in reference [dell’Isola et al., 2004] a first experimental implemen-

tation is presented.

The interpretation of piezoelectric shunt damping systems as a feedback

control problem allows to employ this technique to realise collocated vibra-

tion active control in which piezoelectric transducers are used both as sensors

and actuators. In [Tang and Wang, 2001], it is proposed the use of “negative

capacitance” carrying out with an active devise op-amp based. Other appli-

cations perform active control systems no-collocated, as reported in [Rizet

et al., 2000], where the implementation of a modal filtering on a DSP board

is proposed to control the flexural vibrations of a beam.

Semi-active techniques [Badel et al., 2006; Niederberger and Morari, 2006]

develop non-linear switching shunting to avoid the use of high-value induc-

tors and to obtain a wide-band damping, with reduced power requirements.

As showed in [Niederberger and Morari, 2006], the switch shunt is less per-

forming but more robust than the standard RL shunt.

In conclusion, as underlined in [Chopra, 2002; Moheimani, 2003], the de-

velopment of efficient and reliable techniques for control with multiple pie-

zoelectric transducers remains an open problem.

The aim of this study is to extend the resonant shunting techniques to

control multiple modes with multiple piezoelectric transducers by an electric

network which connects the whole set of piezoelectric elements. The key idea

in this thesis is to make the whole shunted system equivalent to a set of

independent, single resonant piezoelectric shunting systems. Therefore, it is

possible to use the widely investigated methods presented in literature.

3 of 143
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A Brief Digression on Piezoelectricity

In 1880, the brothers Pierre and Jacques Curie predicted and demon-

strated piezoelectricity2. They showed that crystals of tourmaline, quartz and

Rochelle salt (sodium potassium tartrate tetrahydrate) generate electrical po-

larisation from mechanical stress. Quartz and Rochelle salt exhibited the most

piezoelectricity. Converse piezoelectricity was mathematically deduced from

fundamental thermodynamic principles by Lippmann in 1881. The Curies

immediately confirmed the existence of the “converse effect”, and went on

to obtain quantitative proof of the complete reversibility of electro-elasto-

mechanical deformations in piezoelectric crystals. More exactly the piezo-

electricity is the aptitude of a material to show polarisation charges on cer-

tain faces as a result of the application of mechanical stress. This effect is

called direct piezoelectric or piezo-generator. It is reversible, indeed, if one

imposes an external electric-field vector, the body will be strained in a way

that depends on the direction and magnitude of electric vector. This is in-

verse piezoelectric effect or piezo-motor. The deformation is of the order of

nanometres, nevertheless piezoelectric materials find useful applications such

as the production and detection of sound, generation of high voltages, elec-

tronic frequency generation, microbalance, and ultra-fine focusing of optical

assemblies.

Necessary condition for existence of the piezoelectric phenomenon is the

anisotropy of the material. Piezoelectric materials are crystals not having a

crystallographic symmetric centre. Punctual groups not-centre-symmetric are

21 of the 32 crystallographic classes and, more exactly, if one represents them

by an international standard, are

1, 2, 3, 4, 6,

m, mm2, 3m, 4̄, 4mm, 4̄2m, 6̄, 6mm, 6̄2m, 4̄3m,

222, 32, 422, 622, 23, 432.

The piezoelectric phenomenon is possible only for 20 of these because the 432,

that belongs to the cubic system, even though not centre-symmetric, shows

characteristics of symmetry combining do not allow any piezoelectric effect.

2The word is derived from the Greek πιεζέω, which means I squeeze or press.
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Figure 1: The subfigure 1.1 shows a crystal having a ternary symmetry
axis with lack of external loads. In this crystal are depicted electric dipole
moments on a proper crystallographic plane. The vector sum of elec-
tric dipole moments is zero for each group of vectors. The subfigure 1.2
shows a crystal undergone a compression by force,~f, that generates a po-
larisation, ~P. The total vector sum of electric dipole moments is not more
zero.

The piezoelectric phenomenon can be explained by two different exam-

ples. The former is characterised by the presence of some electric dipole mo-

ments for each elementary cell, whose vector sum is zero. If one applies a

mechanical or electric load in a given direction, a polar moment not-null

arises. Figure 1 sketches a simplified illustration of this case. A hydrostatics

pressure does not allow the piezoelectric phenomenon because the load is the

same in all directions. The quartz (SiO2) is a member of this class. The latter

is distinguished, in lack of external perturbations, by an electric dipole mo-

ment not-null, and so by only one permanent polar axis. Figure 2 depicts a

sketch of this second mechanism. They have a related property known as py-

roelectricity. This property, known as early as the 19th century and named by

David Brewster in 1824, is the aptitude of certain mineral crystals to generate

electrical charge on their surfaces in case they undergo an uniform heating.

This electric charge is proportional to the difference of temperature and it

is the result of electric dipole magnitude variation. It is worth to note that

even crystals not pyroelectric can show a superficial electric charge if it is

heated not uniformly, as consequence of internal stress due to thermal ex-
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Figure 2: The subfigure 2.1 shows a crystal lattice having a permanent
polarisation, that is ferroelectric one in an undeformed state, where the
polarisation is due to the position not symmetric of the ion A+. The
subfigure 2.2 shows a lattice in presence of a compression force,~f, that
produced a variation of polarisation, ∆~P, the piezoelectric induced polar-
isation.

pansion. Only 10 of the 20 not-symmetric-centre classes, written above, are

pyroelectric. These crystals, differently by those not having polar axis, shows

piezoelectric properties even in case of hydrostatics pressure. Examples of

pyroelectric crystals are the tourmaline3 and zinc oxide (ZnO).

Ferroelectric materials are particular pyroelectric crystals which have got

the ability to invert own electric dipole moment through the application of

electric field with appropriate strength. The presence of a dipole moment

not-null, however, is not sufficient to guarantee the ferroelectricity. Besides,

not all pyroelectric crystals can be ferroelectric; the electric field necessary to

obtain the inversion of dipole could be too strong and cause the breaking of

material. The graph of induced polarization4, ~P, or of stored charge, Q, ver-

sus to applied voltage, V, in ferroelectrics has a hysteretic cycle, in contrast

to other dielectrics that show a linear relationship. There is in this cycle a

residual polarisation ~Pr, whose verse is depend on history of V, that is the

3Tourmaline have general formulae: AX3Y6(BO3)3Si6O18(O, OH, F)4. In this A means cal-

cium or sodium; X means aluminium, iron, lithium or magnesium; Y means aluminium, and

less usually chrome or iron.
4The polarisation is a vector quantity defined as the electric dipole moment per unit of

volume. Also called dielectric or electric polarisation.
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polarisation for V null. It occurs, moreover, to note a polarisation of satura-

tion, ~Ps, referring to high applied electric field5. The ferroelectric property is

typical at low temperatures because enhancing the thermic agitation motion

the arrangement of dipoles is destroyed. Over a certain temperature, called

transition temperature or Curie point, Tc, the material has a paraelectric be-

haviour or, easier, not-ferroelectric. The symmetry of the paraelectric phase,

being stable over Tc, is centre-symmetric and the transition that turns out for

cooling implies easily a reduction of symmetry, passing to a punctual group

not-centre-symmetric. This transition occurring at Tc is, indeed, an example

of phase transition order-disorder. Into ferroelectric crystals there are regions

in which adjacent electric moments are uniformly arrayed. These regions are

called domains. These have variable dimensions but usually are about tens or

a hundreds of angstroms; the thickness of boundary can be only one reticular

constant too. Inside each domain dipoles are arranged according to a unique

crystallographic axis. The total polarisation of a ferroelectric material is the

vector sum of polarisation of each domain. If one applies an external electric

field, such a field tries to align all dipoles in direction of the same field. The

condition of saturation is achieved when the alignment is whole. The Rochelle

salt (KNaC4H4O6 · 4H2O), the lithium niobate (LiNbO3) are examples of fer-

roelectric crystals. Often ferroelectric oxides are used in capacitors for their

high dielectric constants, in particular near to Tc.

Very important in applications are piezoelectric ceramics made of ferro-

electric micro-crystals, each of them being organised in many domains. These

materials are turned artificially piezoelectric; they are heated up to Curie

point and undergone, during the cooling, the high electric-field vector, that

lines up dipoles producing a stable polarisation in limits of the mechanical,

thermic or electric load of the material. During the process of the polari-

sation, the ceramic is subjected to an expansion in the direction of electric

field and a compression in the two orthogonal directions. Such variations

of dimension remain even after the removal of the electric-field vector. The

orientation process of dipoles referred to as “poling”, is analogous to the pro-

cess by which a piece of soft iron can be magnetised by a magnetic field.

5For instance the barium titanate (BaTiO3) has a saturation polarisation of 0.26 C m−2 at

temperature of 296 K.
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When the ceramic reaches the Curie point, it loses utterly and permanently

its piezoelectric properties. The Curie point provides the upper limit of the

temperature that can be achieved by a piezo-ceramic. The polarisation pro-

cess of the piezo-ceramics is explained by its ferroelectric properties. In the

ceramics, as it is comprehensible, a perfect alignment will never be obtained,

because of mechanical stresses and of defects in grains of the material that

does not allow the shift of the polar axis in the direction more favourable.

At first the piezo-ceramic was isotropic, owing to the random orientation of

micro-crystals; after the application of the electric field such isotropy is de-

stroyed in the direction of the polarisation axis, but it is maintained in the

plane orthogonal to it. Such a material is called orthotropic. It is undeni-

able that materials naturally piezoelectric have not grains with preferential

directions of polarisation, and so they have reduced capacity of macroscopic

deformation. The advantages of ceramic materials are summarised, without a

doubt, in high efficiency of transformation electro-mechanic, even above 50%,

in a good workable, in a lot of shapes obtainable, in a mass production. The

greater disadvantages are linked up to the possibility of depolarisation; cer-

tainly, significant electric fields in opposite directions to the polarisation, or

high alternating electric fields, or also important mechanical stresses, as well

as temperatures higher than Curie point involve the loss of the piezoelectric

property. It is important to note the phenomenon of the aging that is the

decrease of the piezoelectric properties with the pass of time from the polari-

sation. Solid solutions of lead titanate-zirconate Pb(Ti, Zr)O3, usually pointed

out with short form PZT, is the most popular piezoelectric material in use.

The success of these alloys stays on remarkable inducible polarisation and

in a high transition temperature, 493–623 K, that allows the variation of their

chemical composition by thermic treatments at high temperatures, changing

as a result also heavily any physic properties without a decay of piezoelectric

features. A PZT material shows strains of about 0.1% of the original dimen-

sion. They are divided into hard and soft PZT. The former has a narrow

hysteretic cycle, resists to high mechanical or electric loads, and besides ages

more slowly. It is suitable to be employed as generator and transducer with

high voltage or power. The latter has a large sensitivity and high dielectric

constants but the depolarisation and the heating turn out easy. It is used as
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sensor or transducer with high impedance.

Other materials with piezoelectric effect are piezo-polymers, as the poly-

vinyl difluoride, PVDF, and copolymers of vinylidene fluoride, VDF, trifluo-

roethylene, TrFE, e tetrafluoroethylene TeFE. Even they undergo a process of

poling completely analogous to that of piezo-ceramics. They are used at high

frequencies, in contrast with piezo-ceramics that cannot be used because too

fragile. These materials have a wide range of frequency of employment, a

low acoustic impedance, a high elastic deformation, as well as a high dielec-

tric strength6. They have, however, low acting temperatures and a modest

efficiency in the electro-mechanical conversion. In other words they are more

right as sensors rather than actuators. There are notable differences between

PVDF and PZT materials. For instance, on average, PZT is approximately

four times as dense, forty times stiffer, and has a permittivity one hundred

times as great as that of PVDF. Therefore, PVDF is much more compliant

and lightweight, making it more attractive for sensing applications, lessening

the insertion error. In contrast, PZT is often preferred as an actuator since it

exhibits a greater induced strain [Moheimani, 2003].

Finally there are piezo-composites too, or rather materials made of poly-

mers and piezo-ceramics.

Features of better consideration in a piezoelectric material are:

a) high efficiency of electro-mechanical transformation;

b) wide range of frequency of employment;

c) good stability at variation of environment conditions as the temperature

or the humidity;

d) easily workable;

e) several shapes obtainable.

Damages due to aging are typical of sensors and are negligible for ac-

tuators, because in actuators the material undergoes an electric-field vector

with the same direction of the polarisation. A further issue in piezoelectrics

6The maximum electrical field that a material can withstand without rupture; usually

specified in volts per millimetre of thickness. Also known as electric strength.
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is given by the creep. This last, however, is very small, at its maximum value

achieved in few hours it differs of 1% from last driven motion.

In the end, it is useful to note that electrostrictive materials are not pie-

zoelectric and possess no spontaneous polarisation. The electrostriction is a

form of elastic deformation of a dielectric induced by an applied electric field,

associated with those components of strain which are independent of reversal

of field direction, in contrast to the piezoelectric effect. It is found in all di-

electric materials although their deformations are usually too small, approxi-

mately between 10
−7% and 10

−5% of the original dimension, to utilise practi-

cally. Electrostrictive ceramics, based on a class of materials known as relaxor

ferroelectrics, however, show strains comparable to piezoelectrics, 0.1% of the

original dimension, and have already found application in many commercial

systems. When correctly used they can be virtually loss free up to hundreds

of kilohertzs.

10 of 143



CHAPTER I

Vibration Control Using Piezoelectric Transducers

Knowledge is of no value unless you put it

into practice.

Anton Chekhov (1860–1904)

Russian playwright

S
tructural vibration control is to implement energy dissipation devices

or control systems into structures to reduce excessive vibration. Specif-

ically, this chapter deals with control of one- and two-dimensional structures

to reduce vibrations related to multiple mechanical modes by shunting sev-

eral piezoelectric transducers with a multi-port electric system. Since each

of the piezoelectric transducers integrate actuation and sensing capabilities

within a single transducer, a collocated control is obtained. The electric net-

work can be a passive electrical impedance system that acts to increase the

mechanical damping. In spite of the passive nature of this control, however,

this network is commonly made with an active electrical device that estab-

lishes a certain relationship between voltage and current at its terminals be-

cause of actualisation issues; in fact, it turns out that very large inductors,

even about hundreds henries, are required. This technique, called “virtual

passive approach”, implements in an active manner the behaviour of passive

damping systems. It is possible for the collocated nature of the piezoelectric

transducers, see [Juang and Phan, 1992]. Besides, it is argued in [Moheimani,

2003] that the shunt damping technique can be interpreted as a multi-variable

feedback control problem, in which the impedance, or alternatively the ad-
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Chapter I. Vibration Control Using Piezoelectric Transducers

mittance of the electrical multi-port shunt, constitutes the feedback controller.

Herein, following this approach the control signal is assumed the current

flowing through each piezoelectric transducer and the measurement is as-

sumed the voltage on the same piezoelectric element. Thus, considering that

even for passive damping systems it is advantageous to mimic them with ac-

tive devices, the restriction of the passivity for the controller can be removed

by implementing also purely active control in which this arrangement is used

to obtain better performance.

I.1 Modal Approach to Modelling

Linearly elastic continua, such as beams or plates, can be modelled with

the same general formulation. Let w(x, t) be the displacement field, defined

for all point x over a domain A denoting the region occupied by system. The

partial differential equation describing the behaviour of these systems is

L [w(x, t)] +
∂

∂t
D [w(x, t)] + M(x)

∂2w
∂t2 (x, t) = f (x, t) (I.1)

in which L and M are linear homogeneous differential operators respectively

of orders 2k and 2m with k > m with respect to the spatial coordinate xi.

They constitute a model of the stiffness and the mass density of system. D

is a linear homogeneous differential operator of order 2k similar to L, used

to model a viscous damping. The term f describes an external distributed or

point load; in case of a point force, f is of type Fj(t)δ(x− xj) acting at point

xj, with δ the Dirac delta. The equation (I.1) is completed with the following

boundary conditions

Br [w(x, t)] = 0 r = 1,2, . . . k (I.2)

which must be satisfied at every point of the boundary ∂A of the domain A .

In Eqs. (I.2) Br are linear differential operators of orders ranging from zero

to 2k−1.

As above mentioned, piezoelectric devices can be used to reduce the vi-

brations of one or two dimensional systems and with the target of obtaining

a collocated control by means of a set of np piezoelectric transducers, they

can be used simultaneously as sensors and actuators. The Eq. (I.1) can be
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rewritten

Lp [w(x, t)] +
∂

∂t
Dp [w(x, t)] + Mp(x)

∂2w
∂t2 (x, t) =

= fd(x, t) +
np

∑
h=1

Ph [℘h(x)]
dφh

dt
(t) (I.3)

where fd(x, t) is the disturbance load to the structure; the second term on

the right hand side of Eq. (I.3) involves that each of np piezoelectric patches

applies a forcing input proportional to the time derivative of the flux linkage

φh, i.e. the terminal voltage of the h-th transducer. In particular Ph is a linear

homogeneous differential operator and ℘h(x) is a spatial function of piezo-

electric localisation that takes the value one where the piezoelectric element

is placed and zero everywhere else. As an example of Ph, for two dimen-

sional bending problems, it can be considered proportional to the Laplacian

operator [Koshigoe and Murdock, 1993]. Besides the subscript p in operators

Lp and Mp, and Dp, indicates the presence of the piezoelectric transducers

which cause a slight difference. As a first order of approximation, each piezo-

electric transducer is, according to Norton’s theorem, electrically equivalent

to a strain dependent charge generator in parallel with a capacitance Ch and

a resistance Rh [Yang and Jeng, 1996]. Dynamic equations for transducers,

implying the charge conservation, can thus be expressed as

Qh(t) = Ch
dφh

dt
(t) +

1
Rh

φh(t) +
∫

Ah

Ph [w(x, t)] dAh h = 1,2, . . . np (I.4)

in which Qh is the induced charge and each Ph, that represents the piezo-

electric effect, is integrated on the region Ah occupied by the h-th transducer.

In ordinary applications, the internal resistance Rh is very large and can be

neglected.

To simplify the theoretical analysis, a normalised flux linkage is defined

ψh =
√

Ch φh h = 1,2, . . . np (I.5)

Substituting (I.5) in equation (I.3) can then be obtained

Lp [w(x, t)] +
∂

∂t
Dp [w(x, t)] + Mp(x)

∂2w
∂t2 (x, t) =

= fd(x, t) +
np

∑
h=1
Ph [℘h(x)]

dψh

dt
(t) (I.6)
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where Ph = (1/
√

Ch)Ph. Besides, the Eq. (I.4) becomes

Qh(t) =
dψh

dt
(t) +

1
Rh Ch

ψh(t) +
∫

Ah

Ph [w(x, t)] dAh h = 1,2, . . . np (I.7)

being Qh(t) = (1/
√

Ch)Qh(t).

The displacement, w, of the considered system may be expanded in the

series

w(x, t) = ∑
i

Wi(x) ηi(t) with i = 1,2, . . . (I.8)

where Wi(x) are the mode shapes of the i-th normal mode of the undamped

system removing excitation fd and under short circuit condition, φ̇h = 0 , h =

{1, . . . np}1, i.e. the eigenfunctions that are obtained by solving the eigenvalue

problem

Lp [W(x)] = λ Mp(x)W(x) (I.9)

with its associated boundary conditions deduced from the (I.2). In order to

make the decomposition unique, the eigenfunctions are normalised to one.

The coefficient ηi(t) is the generalised coordinate describing the response of

the i-th normal mode. In accord with the procedures based on the modal

analysis, functions ηi(t)’s satisfy, taking nm normal modes into account, nm

ordinary differential equations that in matrix form can be written as

η̈ + D η̇ + Ω2 η− Γ̃ ψ̇ = f (I.10)

where, denoting each natural frequency of undamped oscillation under short

circuit condition with ωi, the nm × nm matrix Ω is defined as Ωih = ωi δih

with δih the Kronecker delta, the nm × nm damping matrix D is given by

Dih =
∫

A
Wi(x) Dp [Wh(x)] dA (I.11)

Note that the matrix D is symmetric if the operator Dp is self-adjoint. How-

ever a very typical case is light damping, in this situation, it is possible to

consider an approximate solution by neglecting the coupling of the normal

coordinates due to damping and, thus, ignore the off-diagonal elements in the

damping matrix D. The nm × np piezoelectric coupling matrix Γ̃ whose entries

Γ̃ih represent the coupling coefficient between the i-th normal mode shape

1The superscript dot denotes the derivative with respect to t.
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and the h-th piezoelectric transducer, being the operator Ph self-adjoint, is

defined by

Γ̃ih =
∫

A
Wi(x)Ph [℘h(x)] dA =

∫

A
℘h(x)Ph [Wi(x)] dA (I.12)

whilst the nm-dimensional vector f , representing mode forces, is given by

fi(t) =
∫

A
Wi(x) fd(x, t)dA (I.13)

In order to complete the description of considered electro-mechanic sys-

tem the Eqs. (I.7) may be rewritten in compact form, using the expression (I.8)

truncating higher frequency terms that lie out of the bandwidth of interest,

keeping in mind the definition (I.12) and differentiating with respect to t, as

follows

ψ̈ + Ξ ψ̇ + Γ̃T η̇ = ı (I.14)

where the np × np matrix Ξ is defined as Ξih = [1/(Rh Ch)] δih. The super-

scripted T indicates the transpose of a matrix. The column ı represents the

np-dimensional vector of normalised currents flowing through the piezoelec-

tric elements.

For future reference, it is convenient to introduce the unit-frequency nor-

malised coupling matrix Γ = Ω−1 Γ̃, so that the governing equations for the

electro-mechanic system can be summarised in the form




η̈ + D η̇ + Ω2 η−Ω Γ ψ̇ = f

ψ̈ + Ξ ψ̇ + (Ω Γ)T η̇ = ı
(I.15)

I.2 An Independent Modal-Space Shunt Damping Technique

It is indicated that the problem can be cast as a multi-variable feedback

control problem. The model of a flexible structure integrating multiple pie-

zoelectric transducers is made up considering as control signal the current

flowing through each piezoelectric transducer and the voltage on the same

piezoelectric element is the measurement. An alternative approach is to con-

sider as control signal the terminal voltages and as electric degree of freedom

to measure the charge. The chosen set up is primarily due to the following
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aspects: the easiness to measure high voltage and to supply current with re-

quired accuracy on a piezoelectric element, as well as the minor influence of

the hysteretic phenomena of the piezoelectric transducers driven by current

source.

Introducing the problem, we made the assumption that the number of

piezoelectric transducers, np, is different from the number of the modes, nm,

in need of control. At this point we want to relax this assumption and so

consider nm = np = n, in order to use each electric degree of freedom, ψh, to

control one mechanical degree of freedom, ηi.

It is significant to examine an undamped system. To this end, Eqs. (I.15)

become 



η̈ + Ω2 η−Ω Γ ψ̇ = f

ψ̈ + (Ω Γ)T η̇ = ı
(I.16)

Note that a small amount of mechanical damping is not relevant to design

a proper shunt network system because it does not produce a significant

change in the natural mechanica frequencies and modes. In addition, this

damping has beneficial effect both on control performance and stability prob-

lem. It is strongly recommended that the piezoelectric coupling matrix Γ is

not a singular matrix in order to avoid lack of controllability and observabil-

ity. In general Eqs. (I.16) represent a set of 2n simultaneous linear second-

order ordinary differential equations with constant coefficients. The analysis

of such a set of equations is not a simple task, and we wish to explore means

of facilitating it. To this end, the system can be express in a different set of

generalised electric coordinates χk(t) , k = {1, . . . n}, such that any coordinate

ψh(t) , h = {1, . . . n}, is a linear combination of the new coordinates χk(t).

Hence, let us consider the linear transformation

ψ = Uχ (I.17)

in which U is a constant orthogonal square matrix, referred to as a trans-

formation matrix. The matrix U can be regarded as an operator transforming

the vector χ into the vector ψ. The key idea is to obtain a set of equations

equivalent to Eqs. (I.16), consisting of n single mode piezoelectric shunting

systems, that is to say n uncoupled systems of two coupled equations, each

pair constituted by a mechanical equation and an electrical one [Hagood and
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Flotow, 1991; Wu, 1996]. It means that each component of χ influences only

the corresponding component of η and vice versa. In this case the electric co-

ordinate transformation U is employed as a “mode-filter”, making possible

to control a single mechanical degree of freedom without any effect on the

others. This uncoupling, thus, allows to use a single-mode vibration control

very easy to realise by methods that have been widely investigated in the

literature [Hagood and Flotow, 1991; Tang and Wang, 2001].

Because U is constant it also connects the vector χ̇ and the voltage vec-

tor ψ̇ and in the same way the second derivatives. Inserting Eqs. (I.17) into

Eqs. (I.16), it can write




η̈ + Ω2 η−Ω ΓU χ̇ = f

Uχ̈ + ΓTΩ η̇ = ı
(I.18)

Next, premultiplying both sides of the second equation by UT, the transpose

of U, and applying the orthogonal properties of U, it obtains2





η̈ + Ω2 η−Ω G χ̇ = f

χ̈ + (Ω G )T η̇ = z
(I.20)

where the matrix G = ΓU is the electro-mechanical coupling matrix in the new

electric coordinates, and thus the notation for a matrix Gik has the row index

labelling the i-th mechanical degree of freedom ηi(t) and the column labelling

the k-th electrical degree of freedom χk(t). The n-dimensional vector

z = UTı (I.21)

has for elements the new electric forcing terms associated with the coordi-

nates χk(t). Comparing Eqs. (I.20) with (I.16), it is possible to note that the

form of the system does not change for the orthogonality assumption of the

transformation matrix U. Besides, it is clear from equations (I.20) that if G

were diagonal, recalling that Ω is diagonal, it would be possible to identify

2The matrix UTU that multiplies the term χ̈ can be interpreted in a more natural manner

by considering the electric energy stored in the inherent piezoelectric capacitances. Indeed,

this energy can be expressed in the form

1
2

ψ̇Tψ̇ =
1
2

χ̇TUTUχ̇ (I.19)

where UTU is the capacitive matrix corresponding to the coordinates χk(t).
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n single mode piezoelectric shunting systems. In view of this, the object of

the transformation (I.17) is to produce a matrix G as diagonal as possible. In

other words, the purpose is thus to allow a satisfactory coordination in con-

trol actions of all piezoelectric transducers so that they work together in an

efficient way to control at the same time all mechanical degrees of freedom of

interest, i.e. no control effort is used unnecessarily.

Remark I.1. Generally the piezoelectric coupling matrix Γ, whose properties

depend on the configuration of piezoelectric transducers bonded on the host

structure, is not diagonal therefore the Eqs. (I.16) are coupled through the

piezoelectric coupling actions. In spite of it, if Γ were diagonal it would be

possible to identify immediately n uncoupled systems of two coupled equa-

tions without recourse to transformation U. But there would be something

inefficient with this arrangement. The action of a piezoelectric transducer is

local and so, working each of them on only one mechanical degree of free-

dom, the global damping is very weak. In addition, it is difficult to find an

optimal pattern of the piezoelectric set that makes Γ diagonal.

� � �

LetMn denote the vector space of all square matrices of order n over real

field R. It is useful to endowMn with the habitual inner product

A · B = trace(ABT) (I.22)

where A and B are any two elements of Mn. Accordingly, let us define the

Euclidean or Frobenius norm of A by the equations

‖A‖ = (A · A)
1
2 =

√√√√
m

∑
i=1

n

∑
j=1
|Aij|2 (I.23)

It gives also the distance of any matrix A from the null one.

We state here and prove later that given any square matrix Γ in Mn and

a matrix U belonging to the orthogonal group Orth(n), the problem of diag-

onalising G = ΓU admits solution if and only if the rows of Γ are mutually

perpendicular. If it does not occur, an exact diagonalisation of G is not feasi-

ble, so that a different approach is desirable. Herein it is proposed to find the

best transformation matrix U that makes G approximatively diagonal. Using
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the point of view of the set theory, let G be the set of all possible electro-

mechanical coupling matrix that is the set of the matrices ΓU as U varies over

the orthogonal group Orth(n) as well let Dn be the vector subspace of the

diagonal matrices of order n, the wanted U is the matrix which identifies the

Euclidean distance between these two sets. Such distance d(G,Dn) between

the sets G and Dn is defined as the infimum of all distances between any two

of their respective elements, ΓU and D, and can be expressed as

d(G,Dn) = inf
U∈Orth(n)

{
inf

D∈Dn
‖ΓU − D‖

}
(I.24)

where the expression inside the curly brackets defines the orthogonal pro-

jection of ΓU onto Dn and indeed represents the closest diagonal matrix to

ΓU. Thus, for any matrix U, there exists a unique matrix DΓU that belongs

to Dn that attain the infimum as D varies in Dn. Therefore, this infimum is a

minimum that can be written as

ε = min
D∈Dn

‖ΓU − D‖ = ‖ΓU − DΓU‖ (I.25)

The non-negative quantity ε identified by ‖ΓU − DΓU‖ represents the error

in the approximation of ΓU with a diagonal matrix.

To find the orthogonal projection DΓU for a given matrix Γ and any or-

thogonal matrix U, let B = {Di : i = 1,2, . . . n} be the standard basis of D

consisted of n diagonal matrices with one in the ii-th entry and zero else-

where. Then, since the matrix DΓU can be written in the form

DΓU = ∑n
h=1 αhDh (I.26)

the coefficients αh can be obtained by using the orthogonality of the projec-

tion (ΓU − DΓU) · Dh = 0 and the orthonormality of the unit matrices of the

chosen basis Dh · Dk = δhk to get αh = ΓU · Dh. Thus, the orthogonal projec-

tion of ΓU over D is the operation of taking the diagonal part of the matrix

ΓU.

The theorem of Weierstrass assures the existence of a matrix U that attain

the infimum of the expression (I.24) as U varies in Orth(n), it states in fact that

the real valued continuous function of the matrix U, ε, assumes a minimum

and a maximum value on the compact subset Orth(n) ofMn. Thus, the above

19 of 143



Chapter I. Vibration Control Using Piezoelectric Transducers

optimisation problem equivalently expressed in terms of squared distance

becomes

d(G,Dn)2 = min
U∈Orth(n)

‖ΓU − DΓU‖2 (I.27)

Taking the properties of the above inner product for granted, one can expand

the cost function for the optimisation problem (I.27) as follows

‖ΓU − DΓU‖2 = (ΓU − DΓU) · (ΓU − DΓU) =

= ΓU · ΓU − 2ΓU · DΓU + DΓU · DΓU

(I.28)

Next, being the matrix U orthogonal, it is easy to check that

ΓU · ΓU = Γ · Γ (I.29)

that is to say the norm of coupling matrix G = ΓU does not depend on

transformation matrix U. Once again taking into account the orthogonality of

the projection, it is possible to write

(ΓU − DΓU) · DΓU = 0 (I.30)

Therefore, introducing the Eqs. (I.29) and (I.30) into Eq. (I.28), it turns out that

‖ΓU − DΓU‖2 = Γ · Γ− DΓU · DΓU (I.31)

It is clear from the Eq. (I.31) that, for any fixed matrix Γ, the optimisation

problem (I.27) is equivalent to the problem

max
U∈Orth(n)

‖DΓU‖2 (I.32)

It is appropriate to pause at this point and reflect on the last results. It

turns out that any matrix G is associated with the transfer of power through

the piezoelectric elements between the mechanical degrees of freedom, ηi(t),

and the electric degrees of freedom, χk(t), employed to control vibrations.

The relation (I.29) shows that this power depend only on the matrix Γ and

therefore the piezoelectric placement. The role of the transformation matrix

U is thus not to increase the whole transferred power but to improve the way

of exchanging energy between the two linked systems. In fact, the two equiv-

alent optimisation problems (I.32) and (I.27) have the purpose to increase the

sum of squared on-diagonal entries of the coupling matrix G , i.e. to increase

20 of 143



I.2. An Independent Modal-Space Shunt Damping Technique

the exchanged power between one mechanical mode and the corresponding

electric degree of freedom that will be used to control the same mode, and

simultaneously to decrease the sum of squared off-diagonal entries of G , i.e.

to decrease the exchanged power between a mechanical mode and the not

corresponding electric degrees of freedom.

It remains to prove that if and only if Γ has the rows mutually perpen-

dicular, there exists a matrix U that makes G exactly diagonal. First, suppose

that Γ has the rows mutually perpendicular. Then taking the matrix U with

unit columns aligned with the rows of Γ, it is easy to see the diagonality of

G = ΓU. Now, suppose that G is diagonal. Thus, it follows that the rows of

G are mutually perpendicular. Finally, since the matrix U is orthogonal, also

the rows of Γ are mutually perpendicular, indeed ΓT = UG T.

Solving the optimisation problem (I.32), a matrix U that depends on a

given Γ is obtained. Therefore, a further optimisation step can be performed

varying Γ consistent with the constraints, to obtain an electro-mechanical

coupling matrix G as close as possible diagonal. These two proposed step of

optimisation, on U and Γ, are discussed in the following sections.

I.2.1 Linear Transformation for Independent Control

The optimisation problem (I.32) can be solved by using the method of

Lagrange multipliers. To this end, let ϑ(U) the objective function

ϑ(U) = DΓU · DΓU (I.33)

subject to the orthogonal constraint

UUT − I = O (I.34)

where I is the identity matrix and O the zero matrix both of size n. Now,

define the Lagrangian, Λ, as

Λ(U, S) = DΓU · DΓU − (UUT − I) · S (I.35)

where S is a symmetric matrix of undetermined multipliers. Setting the par-

tial derivatives of Λ with respect to U and S equal to zero, it is possible to

write the system of equations




SU = ΓTDΓU

UUT − I = O
(I.36)
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which solved yields the stationary values for the objective function (I.33). In

detail, the Lagrange multiplier matrix S can be expressed as

S = ΓTDΓUUT (I.37)

Since the matrix S must be symmetric

S = ΓTDΓUUT = UDΓU Γ = ST (I.38)

the first equation of the (I.36) becomes

(ΓU)TDΓU = DΓU ΓU (I.39)

Finally, taking only the significant equations of the (I.39) and (I.34), the equa-

tion set that solved the problem (I.32) consists of the following equations




∑
r,h

(
ΓirΓih − ΓjrΓjh

)
UirUjh = 0 ∀ i < j

∑
r

UirUjr = δij ∀ i ≥ j
(I.40)

that is a system of n2 quadratic equations in n2 unknown variables, Uij. There

is a geometric interpretation of this system. Each equation is a quadric in

n2-dimensional space and hence, the solution set is the intersection of these

quadrics.

� � �

On the other hand, multiplying S by ST, or changing the order ST by S, it is

found a matrix symmetric and positive definite S2 and thus S can be inter-

preted as the square root of this matrix, that is in a more compact form

S =
(

ΓTDΓU DΓU Γ
) 1

2
or S = U

(
DΓU ΓΓTDΓU

) 1
2 UT (I.41)

in which the orthogonal properties of the matrix U are used. Substituting the

expressions (I.41) into the first equation of the (I.36) an implicit formula for

U in terms of Γ can be expressed as follows

U =
(

ΓTDΓU DΓU Γ
)− 1

2
ΓTDΓU (I.42)

or equivalently

U = ΓTDΓU

(
DΓU ΓΓTDΓU

)− 1
2

(I.43)
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These two matrix expressions are very interesting because can be interpreted

as the polar decomposition theorem but with a diagonal weighting matrix

DΓU which is not constant. Therefore, in view of a numerical solution the

starting guess can be advantageously initialised to the orthogonal factor of

ΓT in accordance with the polar decomposition theorem.

It is undeniable that this first step of optimisation allows to obtain a ma-

trix G that is the best approximation of a diagonal matrix for a given matrix

Γ. Based on the above considerations, to improve the performance it is ap-

propriate a further step of optimisation for the matrix Γ.

I.2.2 Piezoelectric Placement for Independent Control

An additional optimisation problem can be performed varying Γ through

a placement modification of the piezoelectric transducers. This general pur-

pose can be accomplished by acting in two different directions. On the one

hand, we can improve the performance by a proper placement of the piezo-

electric elements increasing the transfer of power through the piezoelectric

elements, and on the other hand achieving a reasonable approximation for

uncoupling of the Eqs. (I.20). In particular, the former target is to enhance the

norm of the matrix Γ. The latter target is to diminish the error in the approxi-

mation of G with a diagonal matrix, see Eq. (I.25). It should be noted that such

error vanishes as the rows of Γ tend to be mutually perpendicular, in this case

indeed the matrix G is absolutely diagonal. To this end, consider the matrix

ΓΓT can be uniquely decomposed into the sum of two matrices, its diagonal

part, DΓΓT and its non-diagonal part, NΓΓT
3. In fact, the diagonal entries of

DΓΓT are the squared lengths of the rows of Γ and each of them represents

the whole power transferred related to the corresponding mechanical degree

of freedom. Recall that the row indexes of Γ are associated with mechanical

degrees of freedom and the column indexes with the piezoelectric transduc-

ers. Furthermore, the entries below or above the main diagonal of NΓΓT are

all the dot products between any two different rows of Γ and vanish only if

they are perpendicular. Hence, a natural objective function can be introduced

3The matrix NΓΓT is symmetric and belongs to the orthogonal complement D⊥ of D in

Mn, that is the set of all matrices that are orthogonal to every matrix in D.
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as

µ(Γ) = ‖DΓΓT‖ − b‖NΓΓT‖ (I.44)

where b is a proper positive real weight. Now, in accordance with the above,

the additional optimisation problem is to find the matrix Γ that maximises

the objective function (I.44), that is

max
Γ∈S

µ(Γ) (I.45)

in which S is the set of all possible Γ. Thus, the goal here is to find a matrix Γ

whose rows approach to be of maximum length and mutually perpendicular.

On the whole, these two proposed step of optimisation on U and Γ reduce the

error ε decreasing the unnecessary control effort and simultaneously enhance

the transfer power. I.3. TWO-EQUATION SYSTEMS UNCOUPLED

Mechanical

Structure

Piezoelectric

Transducers

Controller

Disturbing
force f (t)

Electric to
mechanical
coupling

Γ̃ ψ̇

Output
η(t),η̇(t)

Mechanical
to electric
coupling

Γ̃T η̇

Control
currents
ı(t)

Actual
voltages
ψ̇ (t)

FIGURE I.1: Block diagram of the electro-mechanical system.

I.3 Two-Equation Systems Uncoupled

As indicated before, the idea of control is to impose certain currents on

the piezoelectric transducers bonded on the considered structure, with a law

that depends on the actual terminal voltages of the same transducers, so as

to cause the system to exhibit satisfactory reduction of vibrations. The collo-

cated feedback control system of Fig. I.1 can be regarded as representing such a

system. In particular, equations (I.15) can be used to draw this block diagram.

The reference input is absent because it represents the desired output, i.e. no vi-

bration. In Section I.2.1, a change of the electric variable has been introduced

to obtain a set of n equation systems uncoupled, each consisting in two cou-

pled equations, one for a mechanical degree of freedom and the other for an

electric degree of freedom. Hence, the equations (I.20) will be used in place of

the equations (I.15). Now, recalling that G is quasi-diagonal and therefore ne-

glecting its off-diagonal entries, it is possible to set Gjk = gj δjk and, thus, the

equations (I.20) can be written in the scalar form





η̈j(t) + ω2
j ηj(t)− ωj gj χ̇ j(t) = f j(t)

χ̈ j(t) + ωj gj η̇j(t) = zj(t)
, j = 1, 2, . . . n (I.43)
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Figure I.1: Block diagram of the electro-mechanical system.

I.3 Two-Equation Systems Uncoupled

As indicated before, the idea of control is to impose certain currents on

the piezoelectric transducers bonded on the considered structure, with a law

that depends on the actual terminal voltages of the same transducers, so as to

cause the system to exhibit satisfactory reduction of vibrations. The collocated

feedback control system of Fig. I.1 can be regarded as representing such a sys-

tem. In particular, equations (I.15) can be used to draw this block diagram.
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The reference input is absent because it represents the desired output, i.e. no vi-

bration. In Section I.2.1, a change of the electric variable has been introduced

to obtain a set of n single mode piezoelectric shunting systems uncoupled.

Hence, the equations (I.20) can be used in place of the equations (I.15). Now,

recalling that G is quasi-diagonal and therefore neglecting its off-diagonal

entries, it is possible to set Gjk = gj δjk and, thus, the equations (I.20) can be

written in the scalar form




η̈j(t) + ω2
j ηj(t)−ωj gj χ̇ j(t) = f j(t)

χ̈ j(t) + ωj gj η̇j(t) = zj(t)
, j = 1,2, . . . n (I.46)

In feedback control, it is suitable to assume the control action zj = uj · ı does

not depend explicitly on t but on the electric degrees of freedom given by χ

and its derivatives. It is of great significance the case in which zj depends on

χj and its first derivative alone, or in detail

zj = zj(χj, χ̇j), j = 1,2, . . . n (I.47)

It should be noted that Eqs. (I.47) do not restrict the functions zj to being lin-

ear in the generalised coordinates χj and χ̇j and indeed this dependence can

be linear or not. The reduced systems (I.46) with two degrees of freedom and

the control laws (I.47) represent closed-loop equations. In contrast, Eqs. (I.46), in

which the generalised action zj depends explicitly on the time t and not on

the generalised electric coordinates χj and/or χ̇j, are referred to as open-loop

equations. The open-loop equations represent a set of n uncoupled systems

of two coupled equations. If the feedback control actions zj are defined as in

(I.47), then their effect is not to recouple the reduced systems. Hence, even the

closed-loop equations are a set of n uncoupled systems. As a consequence, the

design of the control laws (I.47) can be carried out with methods based on two

degrees of freedom electro-mechanical systems. Before addressing this sub-

ject, it will prove convenient to calculate also the state equations equivalent to

the (I.46). To this aim, the identities η̇j(t) ≡ η̇j(t) are adjoined to Eqs. (I.46), so

that, introducing the j-th state vector wj(t) = [ηj(t), η̇j(t), χ̇j(t)]T, Eqs. (I.46)

assume the following aspect

ẇj(t) = Λjwj(t) + aj f j(t) + bjzj(t), j = 1,2, . . . n (I.48)
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where

Λj =




0 1 0

−ω2
j 0 ωj gj

0 −ωj gj 0


 , aj =




0

1

0


 , bj =




0

0

1


 , j = 1,2, . . . n (I.49)

are coefficient matrices. In feedback control, it is customary to consider even

the relationship between the state vector, wj(t), and the considered output,

vj(t), defined as

vj(t) = cT
j wj(t), j = 1,2, . . . n (I.50)

in which assuming each variable χ̇j as system output

cT
j = [0 0 1], j = 1,2, . . . n (I.51)

At this point, it is worthy to recall the relation between the output vj and

the actual electric output ψ̇ , or in detail

vj(t) = χ̇j(t) = uj · ψ̇ (t), j = 1,2, . . . n (I.52)

where uj is the j-th unit length column of the transformation matrix U.

I.4 Controllability and Observability

In order to consider the controllability of the n systems (I.48) in need to

control, let us examine the controllability matrices

Cj =
[
bj

... Λj bj
... Λ2

j bj

]
=




0 0 ωj gj

0 ωj gj 0

1 0 −(ωj gj)2


 , j = 1,2, . . . n (I.53)

Equations (I.53) permit to state that the n reduced systems (I.48) are control-

lable if and only if each and every controllability matrix Cj is of full rank

3; this is clearly the case because the matrix Γ is invertible and, thus, each

element gj is different from zero.

Next, let us consider the concept of observability introducing for the gener-

alised voltage χ̇j the observability matrices

Oj =




cT
j

cT
j Λj

cT
j Λ2

j


 =




0 0 1

0 −ωj gj 0

ω3
j gj 0 −(ωj gj)2


 , j = 1,2, . . . n (I.54)
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The n reduced systems (I.48) are observable if and only if each and every

observability matrix Oj is of full rank 3. Thus, each system (I.48) is clearly

observable.

I.5 Vibration Control with a Single Piezoelectric Transducer

Let us return to the problem design of the control law (I.47). Each of the

systems (I.46) has the same form of the a single mechanical degree of free-

dom system with a single piezoelectric transducer having a unit inherent

capacitance. The problem of vibration control of these systems has been un-

der investigation for many years. The traditional approaches can be classify

in two way: one a passive approach in which the piezoelectric element are

integrated with an external shunt circuit, and the other an active approach

based on measured feedback signal and control actions. It is important to

note that shunting the piezoelectric in a passive way does not preclude the

use of shunted piezoelectric materials as active actuators allowing hybrid so-

lutions. This Section is dedicated to the available techniques for systems in

study adjusting classical results to the considered configuration.

I.6 Generalised Passive Approach

The key idea of passive control is to shunt a piezoelectric transducer with

an electrical impedance, or admittance. The last is more adequate for the

planned beforehand purpose because, recalling the spirit of virtual passive

approach, it is assumed to supply currents and to measure voltages. As the

base structure vibrates, a voltage appears across the electrodes of the pie-

zoelectric transducer, which causes the flow of electric current through the

admittance. For a strictly passive admittance, it involves a loss of vibration

energy. Hence, the electric admittance can be interpreted as a means of ex-

tracting mechanical energy from the host structure thanks to the piezoelectric

transducer. The passive shunt circuit realised with a resistor and an inductor

connected in series or in parallel were firstly proposed in [Hagood and Flo-

tow, 1991] and in [Wu, 1996], respectively. It has been shown that with proper

design of these components, one can obtain an electrical damper.
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I.6.1 Parallel Configuration

In the case of a shunt circuit with a resistor, rj, and an inductor, `j, con-

nected in parallel, the control action (I.47) is given by

zj = − 1
rj

χ̇j(t)− 1
`j

χj(t), j = 1,2, . . . n (I.55)

ýu����
�/ωi gi η̇i ↓
���������� �ÿ

� ci

���
�� �øzi �� �ÿ���� �ÿ

� `i

������� �ÿ
� ri

���ÿ
���

���� �ÿ������� �ÿ
û���� χ̇i

����� �ÿ���
�

������� �
Figure I.2: Equivalent circuit for a virtual passive shunt circuit in parallel

configuration.

Introducing the notation

1
`j

= v2
j ,

1
rj

= 2 vjζ j and β j =
vj

ωj
(I.56)

the closed-loop equations are written as follows




η̈j(t) + ω2
j ηj(t)−ωj gj χ̇ j(t) = f j(t)

χ̈ j(t) + 2 vjζ jχ̇j(t) + v2
j χj(t) + ωj gj η̇j(t) = 0

(I.57)

In the second equation of (I.57), it can be recognised the electric subsystem

constituted by the parallel of rj, `j and a unit capacitance, whose eigenfre-

quency is vj, and loss factor is ζ j.

Laplace transforming (I.57) and letting the initial condition be equal to

zero, it possible computing the mechanical mobility, defined as the ratio be-

tween the transformed mode velocity, L[η̇j], and the transformed disturbing

modal force, L[ f j], where the symbol L denotes the Laplace transform. Hence,

the closed-loop transfer function from modal disturbing force f j to mode ve-

locity η̇j is

Mj(s; β j, ζ j) =
s (s2 + 2 β j ωj ζ j s + β2

j ω2
j )

s4 + 2 β j ωj ζ j s3 + ω2
j (1 + β2

j + g2
j )s2 + 2 β j ω3

j ζ j s + β2
j ω4

j
(I.58)
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where the complex variable s defines the Laplace domain whilst β j and ζ j

are the tuning parameters. To deal with the problem of control efforts and

saturating actuators, it is opportune to introduce: the transfer function from

modal disturbing force f j to control action zj, defined as the ratio between

their Laplace transforms, that is

Szj(s) =
ωj gjs (2 β j ωj ζ j s + β2

j ω2
j )

s4 + 2 β j ωj ζ j s3 + ω2
j (1 + β2

j + g2
j )s2 + 2 β j ω3

j ζ j s + β2
j ω4

j
(I.59)

Herein two optimization way are showed. The former is based on the min-

imisation of the maximum value of the magnitude of the mobility. The latter

minimises the decay time of free oscillations by the proper assignment of the

closed-loop poles.

Optimal Control in the Frequency Domain: the Fixed Points Theory

The fixed points method was developed by Den Hartog in [Hartog, 1956]

for mechanical vibration absorbers. The theory can be used to determine the

optimal resonance circular frequency, vj, and damping ratio, ζ j, of the electric

subsystem, that reduces, without any increase, the modal velocity amplitudes

of the mechanical structure in the neighbourhood of its natural frequency,

ωj. The underlying principle of the theory is that for a certain fixed value

of vj in the mobility (I.58), of the composite system, primary structure and

shunt circuit, there exist two points that are common to all curves of the

mobility, regardless of the damping value in the shunt circuit. The locations

of the invariant points depend only on the inductance tuning, i.e. β j tuning.

Thus, it is possible to determine the optimum values of β j and ζ j one by

one. It is important to remark that, in general, such two fixed points exist for

continuous structures with well separated natural frequencies; here, this is

clearly the case thanks to the transformation U above specified. In order to

calculate the locations of the fixed points, setting s = ip, the magnitudes of

the mobility (I.58), are equated for two comfortable different values of ζ j

β2
j ω2

j p− p3

p4 −ω2
j (1 + β2

j + g2
j ) p2 + β2

j ω4
j

∣∣∣∣∣
ζ j=0

= − p
ω2

j − p2

∣∣∣∣∣
ζ j→∞

(I.60)

solving the (I.60) for the frequency p, the two fixed points are given by

pB,T j =
1
2

ωj

√
(2 + 2β2

j + g2
j )±

√
(2 + 2β2

j + g2
j )2 − 16β2

j (I.61)

29 of 143



Chapter I. Vibration Control Using Piezoelectric Transducers

where the subscript B is related to the minus and T to the plus. To calcu-

late the optimal ratio β j, letting ζ j approach infinity, the magnitudes of the

mobility (I.58) at these two fixed points are equated

pBj

ω2
j − pB

2
j

= −
pT j

ω2
j − pT

2
j

(I.62)

Hence, the optimal ratio β j is

β
opt
j = 1 (I.63)

Under the optimal ratio β j, the aforementioned two fixed points are situated

at

pB,T j =
1
2

ωj

√
(4 + g2

j )± gj

√
(8 + g2

j ) (I.64)

Finally, the optimal damping can be computed by taking the derivative of the

magnitude of the mobility with respect to the frequency p and equating such

derivative at the fixed points to zero so that the magnitude of the mobility has

the minimum possible value for its peak amplitudes. The optimal damping is

ζ
opt
j =

√
6

4
gj (I.65)

Obtained performances is characterised by small peak amplitudes; in partic-

ular, these peak amplitudes are the mobility magnitudes at fixed points, or

Mopt
j =

pBj

ω2
j − pB

2
j

= −
pT j

ω2
j − pT

2
j

(I.66)

An important index to evaluate the performance of this method is linked to

the relative distance between the fixed points. Indeed, as this distance in-

creases, peak amplitudes decrease. In this case such index is

pT
2
j − pB

2
j

ω2
j

=
1
2

gj

√
(8 + g2

j ) (I.67)

Pole Allocation

The closed-loop pole locations have a direct impact on time response char-

acteristics such as transient oscillations. In pole allocation method, these poles

are selected in advance following the criterion of maximising all closed-loop

pole distances from the imaginary axis, remaining on the left part of the
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complex plane. This means to obtain on the one hand a large gain margin

which guarantees asymptotic stability, on the other hand the largest decaying

of free oscillations. Now, the optimal tuning parameters, β j and ζ j, allowing

to reach the design specifications for making the closed-loop poles equal in

pairs, as they are complex conjugates. A more extensive discussion is pre-

sented in [Hagood and Flotow, 1991]. Hence, denoting the closed-loop poles

associated with the j-th system by

sj1,2 = aj + i bj, sj3,4 = aj − i bj (I.68)

the related characteristic polynomial is

(s− sj1)
2(s− sj3)

2 =

= s4 − 4 aj s3 + (6 a2
j + 2 b2

j )s2 − 4 aj(a2
j + b2

j ) s + (a2
j + b2

j )
2 (I.69)

Next, equating (I.69) to the denominator of the mobility (I.58) i.e. the char-

acteristic polynomial in s of the system (I.57), the optimal tuning parameters

can be found

β
opt
j = 1, ζ

opt
j = gj (I.70)

and the optimal real and imaginary part of the closed-loop poles are

aopt
j = −1

2
ωj gj, bopt

j = ±1
2

ωj

√
(4− g2

j ) (I.71)

whilst the optimal damping factor, equal for the four poles, is

ς
opt
j =

∣∣∣∣∣∣
aj√

a2
j + b2

j

∣∣∣∣∣∣
=

gj

2
(I.72)

On the Stability

At this point, it is possible to assemble the generalised control vector z

z = −R χ̇−L χ (I.73)

defining the diagonal matrices Rhk = (1/rh)δhk and Lhk = (1/`h)δhk. Thus,

the actual control law, ı, assumes the form

ı = −NR ψ̇ −NL ψ (I.74)
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Figure I.3: The root locus diagram shows the trajectories of the closed-
loop poles of the feedback system, with gj equal to 0.25, as ζ j varies
over a continuous range of values, unchanging the optimal value of β j.
The frequency are normalised with respect to ωj

utilising definitions (I.17) and (I.21) and setting

NR = UR UT NL = UL UT (I.75)

whereNR andNL are control gain matrices. Because rh and `h are strictly pos-

itive and the matrix U is orthogonal, it follows that the gain matrices NR and

NL are symmetric and positive definite. These two n× n matrices can represent

the inductive and the resistive part of a resistive-inductive network shunts to

the piezoelectric terminals. The column vectors uh’s of the matrix U can be

interpreted as their common eigenvectors, and (1/rh)’s and (1/`h)’s are the

corresponding eigenvalues. Besides, to assure their realization with purely

passive components, the control gain matrices should fulfil other conditions

as well as being symmetric and positive definite. A sufficient further condi-

tion is the property to be diagonally dominant matrices, see e.g. [Weinberg,

1962]. In the preceding discussion, this additional condition has not been con-

sidered, therefore, obtained gain matrices can require active components for

their actualization.

Now, inserting the control law (I.74) in the governing equations (I.16), it
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can be written 



η̈ + Ω2 η− Γ̃ ψ̇ = f

ψ̈ +NR ψ̇ +NL ψ + Γ̃T η̇ = 0
(I.76)

Next, multiplying on the left the first equation of the (I.76) by η̇T and the

second equation by ψ̇
T and rearranging, one obtains





d
dt

(
1
2

η̇Tη̇ +
1
2

ηTΩ2η

)
= η̇TΓ̃ ψ̇

d
dt

(
1
2

ψ̇
T

ψ̇ +
1
2

ψTNLψ

)
= −ψ̇

TNR ψ̇ − ψ̇
T

Γ̃T η̇

(I.77)

On the left hand side of the first equation it is possible identify the kinetic

energy expressed in terms of modal velocities and the potential energy ex-

pressed in terms of modal displacements; on the left hand side of the second

equation it is possible to recognise the electric energy stored in the piezo-

electric inherent capacitances and the electric energy associated to the “in-

ductive” gain matrix, NL. Last terms on the right hand side represent the

power through the piezoelectric elements toward the mechanical subsystem

in the first equation, and toward the electric subsystem in the second equa-

tion. Hence, the balance of power through the piezoelectric elements yields

η̇TΓ̃ ψ̇ − ψ̇
T

Γ̃T η̇ = 0 (I.78)

Next, exploiting the (I.78), Eqs. (I.77) can be rearranged as follows

d
dt

(
1
2

η̇Tη̇ +
1
2

ηTΩ2η +
1
2

ψ̇
T

ψ̇ +
1
2

ψTNLψ

)
= −ψ̇

TNR ψ̇ (I.79)

The expression inside the parentheses on the left hand side of Eqs. (I.79)

can be identified as the total energy of the system, including the effect of

the “inductive” matrix, NL. The objective of the feedback control is to drive

the total energy to zero. Being the “resistive” matrix NR positive definite, the

right hand side of Eqs. (I.79) is sure negative, except when ψ̇ vanishes. Thus,

the energy is being dissipated at all times until the whole structure is driven

to rest. Hence, in this case the electro-mechanical structure is guaranteed to

be asymptotically stable. Moreover, anyway being the gain matrices NR and

NL positive definite even an unconditional stability is assured.
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Figure I.4: Mobilities for a virtual passive shunt circuit realised with a
resistor and an inductor connected in parallel and with a generalised
coupling coefficient, gj, equal to 0.25.

I.6.2 Series Configuration

Another possible kind of shunt circuit is constituted by a resistor, rj, and

an inductor, `j, connected in series, as displayed in Fig. I.5. It can be shown

to have the governing equation

żj(t) +
rj

`j
zj(t) = − 1

`j
χ̇j(t), j = 1,2, . . . n (I.80)

consequently, the control action has the form

zj = −
∫ t

0

1
`j

e
− rj

`j
(t−h)

χ̇j(h) dh, j = 1,2, . . . n (I.81)

Let us denote

1
`j

= v2
j ,

rj

`j
= 2 vjζ j and β j =

vj

ωj
(I.82)

Before continuing, it is convenient to introduce the natural frequency of the

primary, mechanical structure under open circuit condition as

ω̃j = ωj

√
(1 + g2

j ) (I.83)
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Figure I.5: Equivalent circuit for a virtual passive shunt circuit in series

configuration.

This expression is computed by imposing zj equal to zero in (I.46).

In this case, the closed-loop transfer functions of interest are given by

Mj(s; β j, ζ j) =
s (s2 + 2 β j ωj ζ j s + β2

j ω2
j )

s4 + 2 β j ωj ζ j s3 + ω2
j (1 + β2

j + g2
j )s2 + 2 β j ωjω̃

2
j ζ j s + β2

j ω4
j

(I.84)

Szj(s) =
β2

j ω3
j gj s

s4 + 2 β j ωj ζ j s3 + ω2
j (1 + β2

j + g2
j )s2 + 2 β j ωjω̃

2
j ζ j s + β2

j ω4
j

(I.85)

Optimal Control in the Frequency Domain: the Fixed Points Theory

Going along the same procedure for the parallel connection again, the

magnitudes of the mobility (I.84), are equated for two comfortable different

values of ζ j

β2
j ω2

j p− p3

p4 −ω2
j (1 + β2

j + g2
j ) p2 + β2

j ω4
j

∣∣∣∣∣
ζ j=0

= − p
ω̃2

j − p2

∣∣∣∣∣
ζ j→∞

(I.86)

to obtain the locations of the fixed points

pB,T j =
1
2

ωj

√√√√√[2β2
j + 2(1 + g2

j )]±

√√√√[2β2
j + 2(1 + g2

j )]2 − 16β2
j

(
1 +

g2
j

2

)

(I.87)

Next, letting ζ j approach infinity and equating the magnitudes of the mobil-

ity (I.84) at these two fixed points

pBj

ω̃2
j − pB

2
j

= −
pT j

ω̃2
j − pT

2
j

(I.88)
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the optimal ratio β j is found to be

β
opt
j =

√
2

(1 + g2
j )√

2 + g2
j

(I.89)

and the two optimal fixed points are placed at

pB,T j =
1
2

ωj

√√√√√
(2 + 2 g2

j )
[
(4 + 3 g2

j )± gj

√
8 + 5 g2

j

]

2 + g2
j

(I.90)

On the contrary of the parallel connection, nevertheless, under the opti-

mal ratio β j, imposing that the magnitude of the mobility (I.84) has horizontal

tangents at two fixed points, leads one to obtain two different values of the

optimal damping factor ζ j. This means that only one peak amplitude equates

the value of mobility magnitude at one fixed point, whilst in the neighbour-

hood of the other fixed point the other peak amplitude is a little greater.

Recalling it, the peak amplitudes of mobility (I.84) are about the mobility

magnitudes at fixed points, or

Mopt
j
∼=

pBj

ω̃2
j − pB

2
j

= −
pT j

ω̃2
j − pT

2
j

(I.91)

and the before introduced performance index is

pT
2
j − pB

2
j

ω2
j

=

(
1 + g2

j

2 + g2
j

)
gj

√
(8 + 5 g2

j ) (I.92)

Pole Allocation

The optimisation criterion used in the case of parallel connection is still

valid for the present case as the mobility (I.84) has the same form of the (I.58).

Hence, equating the characteristic polynomial (I.69) with the denominator of

the new mobility (I.84), the optimal tuning parameters are

β
opt
j = 1 + g2

j , ζ
opt
j =

gj√
(1 + g2

j )
(I.93)

and the optimal real and imaginary part of the closed-loop poles can be writ-

ten as

aopt
j = −1

2
ω̃j gj, bopt

j = ±1
2

ω̃j

√
(4− g2

j ) (I.94)
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At the same time, the optimal damping factor, equal for the four poles, is

ς
opt
j =

∣∣∣∣∣∣
aj√

a2
j + b2

j

∣∣∣∣∣∣
=

gj

2
(I.95)

On the Stability

In this case, the generalised control vector z satisfies the differential equa-

tion

L ż + R z = −χ̇ (I.96)

defining the diagonal matrices Lhk = `hδhk and Rhk = rhδhk. The actual con-

trol law, ı, fulfils

NL ı̇ +NR ı = −ψ̇ (I.97)

utilising definitions (I.17) and (I.21) and setting

NL = UL UT NR = UR UT (I.98)

where NR and NL are control gain matrices. Because `h and rh are strictly

positive and the matrix U is orthogonal, the gain matrices NR and NL are

symmetric and positive definite. Similar considerations can be made even in

this case for the network interpretation.

To examine the stability of the system, it is not adequate to work with

the governing equations (I.16) that describe the system in terms of flux link-

age but the equivalent governing equations in terms of electric charge are

more easy. In these equations, each piezoelectric transducer is, according to

Thevenin’s theorem, electrically equivalent to a strain dependent voltage gen-

erator in series with a capacitance. Under these considerations, the governing

equations are 



¨̃η + Ω̃2 η̃−Λ q = f̃

q−ΛT η̃ = ψ̇
(I.99)

where, denoting each natural frequency of undamped oscillation under open

circuit condition with ω̃j the matrix Ω̃ is defined as Ω̃jh = ω̃j δjh and Λ is the

n× n piezoelectric coupling matrix, q(t) = [Q1, . . .Qh, . . .Qn]T is the charge

vector and η̃ is the n-dimensional vector of generalised coordinates describing
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the response of mechanical normal modes under open circuit condition, while

the n-dimensional vector f̃ , represents the corresponding mode forces. Now,

considering the relation, q̇ = ı, and inserting the control law (I.97) in the

governing equations (I.99), it can be written




¨̃η + Ω̃2 η̃−Λ q = f̃

NL q̈ +NR q̇ + q−ΛT η̃ = 0
(I.100)

Next, multiplying on the left the first equation of the (I.100) by ˙̃ηT and the

second equation by q̇T and rearranging, one obtains




d
dt

(
1
2

˙̃ηT ˙̃η +
1
2

η̃TΩ̃2η̃

)
= ˙̃ηTΛ q

d
dt

(
1
2

q̇TNL q̇ +
1
2

qTq
)

= −q̇TNR q̇ + q̇TΛT η̃

(I.101)

Last terms on the right hand side represent the power through the piezo-

electric elements toward the mechanical subsystem in the first equation, and

toward the electric subsystem in the second equation. Hence, from the bal-

ance of power through the piezoelectric elements, one obtains

˙̃ηTΛ q + q̇TΛT η̃ = 0 (I.102)

using the (I.102), Eqs. (I.101) can be rearranged as follows

d
dt

(
1
2

˙̃ηT ˙̃η +
1
2

η̃TΩ̃2η̃ +
1
2

q̇TNL q̇ +
1
2

qTq
)

= −q̇TNR q̇ (I.103)

Even in this case, the expression inside the parentheses on the left hand side

of Eqs. (I.103) can be identified as the total energy of the system, including

the effect of the positive definite “inductive” matrix, NL. Being the “resistive”

matrixNR positive definite, the right hand side of Eqs. (I.103) is sure negative,

except when q̇ vanishes. Thus, the whole structure dissipates energy contin-

uously. In view of above discussion, it is clear that the electro-mechanical

structure is asymptotically stable.

I.6.3 Comparisons

The effect of introduced shunt circuits is compared using two different

judgement tools. On one hand the ratio between the maximum mobility mag-

nitudes of the series and parallel connection, for the fixed points method; on
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Figure I.6: Mobilities for a virtual passive shunt circuit realised with a
resistor and an inductor connected in series and with a generalised cou-
pling coefficient, gj, equal to 0.25.
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39 of 143



Chapter I. Vibration Control Using Piezoelectric Transducers

0.5 1 2
−25

0

15

normalised frequency   p/ω
j

m
ag

ni
tu

de
  d

B

 

 
Parallel
Series

Figure I.8: Comparison between Sensitivity functions, Szj , for the pole
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the other hand the real part of the closed-loop poles, for the pole allocation

method.

The ratio between the optimal mobility peak amplitudes of the series and

of the parallel connection depends only on the generalised electro-mechanical

coupling coefficient gj. The plot of such ratio versus gj is shown in Fig. I.9.

Clearly, the series connection provides a greater reduction in the mobility

peak amplitude than the parallel one. Therefore, the performance of the series

connection is better than the other connection, even though the difference is

little.

Similar conclusions can be found comparing the aforementioned index

associated to the relative distance between the fixed points, actuality
(

1 + g2
j

2 + g2
j

)
gj

√
(8 + 5 g2

j )

∣∣∣∣∣
Series

>
1
2

gj

√
(8 + g2

j )
∣∣∣∣
Parallel

(I.104)

The real part of the closed-loop poles promotes again the series connection

1
2

ω̃j gj

∣∣∣∣
Series

>
1
2

ωj gj

∣∣∣∣
Parallel

(I.105)

But, even in this case, the difference has a slight evidence.
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Figure I.9: Ratio between the optimal mobility peak amplitudes of the
series and of the parallel connection, for the fixed points method.

In any case, it is impossible to change parameters so as to produce im-

provement in all performance indexes. Changes in parameters improving the

performance as measured by one criterion degrade the performance as mea-

sured by another criterion. The figures I.4 and I.6 show that the mobilities

obtained with the pole allocation method, in both cases, series and parallel

connection, have peak amplitudes larger than those obtained with the fixed

points method. Same result, but with roles reversed, occurs if the minimum

decay time is compared for two methods. On contrary, as regards the con-

trol effort, there are not differences of great significance, see Figs. I.7 and I.8.

Hence, there are limits to the performance improvement that can be achieved

by modifying parameters for the given configuration. In order to improve

further performances, it is advisable to redesign the control system.

I.7 Generalised Hybrid Approach

It is well known, in general, that the increase of the electro-mechanical

coupling coefficient improves performances of the passive damping. The rea-

son of it is clear, a larger electro-mechanical coupling allows a greater con-

version between vibration and electrical energy that is stored and dissipated

in the shunt circuit. Besides, a larger coupling coefficient implies a greater
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distance between two fixed points, therefore, a larger vibration suppression

can be achieved on a broader range of frequencies. Hence, it would be desir-

able to examine the possibility of enhancing the electro-mechanical coupling

coefficient. As stated previously by several authors [Bondoux, 1996; Tang and

Wang, 2001; Behrens et al., 2003], a compensation of the piezoelectric capac-

itive reactance in a piezoelectric shunt can increase the electro-mechanical

coupling coefficient. The key idea, here, is to reduce as closely as possible the

electric response of the piezoelectric transducer by means of a compensating

current to obtain a greater weigh for the response related to the mechanical

dynamic. This compensation is clearly active, therefore, adding it to passive

shunt circuits before mentioned, a hybrid control is accomplished.

Let us return, now, to the reduced generalised systems (I.46) of second

order. Denoting the ratio of the compensating action by κj with {j = 1,2, . . . n}
and adding the further feedback control generalised current, z̃j, it can be

written 



η̈j(t) + ω2
j ηj(t)−ωj gj χ̇ j(t) = f j(t)

χ̈ j(t) + ωj gj η̇j(t) = κjχ̈ j(t) + z̃j(t)
(I.106)

in which the unit coefficient of χ̈ j on the left hand side of the second equa-

tion plays the role of a generalised piezoelectric capacitance. To evaluate the

effect of a total or partial compensation of generalised piezoelectric capaci-

tance, it is important to compute the change of the coupling coefficient as κj

varies. To this end, it is possible to express, in general, the generalised electro-

mechanical coupling gj as function of natural frequencies of the mechanical

structure under short and open circuit conditions. From Eq.(I.83), this func-

tion can be defined as

gj =

√√√√ ω̃2
j −ω2

j

ω2
j

(I.107)

Next, setting z̃j equal to zero in the second equation of the (I.106) to calculate

the natural frequency of the mechanical structure under open circuit condi-

tion with the compensation, integrating respect to t and solving for χ̇ j, one

obtains

χ̇ j(t) = − ωj gj

(1− κj)
ηj(t) (I.108)
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Substituting in the first equation of the (I.106), it can write

η̈j(t) + ω2
j

[
1 +

g2
j

(1− κj)

]
ηj(t) = f j(t) (I.109)

Thus, the natural frequency of the mechanical structure under open circuit

condition in presence of compensating action is

(ω̃
κj
j )2 = ω2

j

[
1 +

g2
j

(1− κj)

]
(I.110)

In the end, observing that the natural frequency of the mechanical structure

under short circuit condition remains the same, the apparent coupling coeffi-

cient is

g̃j =

√√√√ (ω̃
κj
j )2 −ω2

j

ω2
j

=
gj√

1− κj
, (I.111)

Hence, with κj over the interval (0, 1), the apparent coupling coefficient is

more than when the compensation there is not. It should be remarked that

if κj is less than zero the coupling g̃j is still defined but smaller than before;

however, in this case instead to compensate the capacitive reactance, a further

generalised capacitance is added. On the other hand, κj must not be greater

than one because the compensation makes the system unstable. In addition,

it is worthy of consideration that the further control action z̃j does not need

to be a passive law.

Remark I.2. The capacitance compensation can be interpreted, roughly speak-

ing, as a “negative” capacitance that is added in parallel to the generalised

piezoelectric element. In [Tang and Wang, 2001] analogous considerations are

made with a “negative” capacitance connects in series, but with the differ-

ence that the “negative” capacitance increases the overall capacitance of the

shunt circuit. On contrary of the parallel connection, the compensation action

can not be totally because of a stability issue. Thus the apparent coupling

coefficient has an upper bound. In view of these considerations, then, it is

preferable to add “negative” capacitances in parallel, since the limitations for

the growth of the apparent coupling coefficient are less restrictive.

� � �
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I.7.1 A Passive Shunt Circuit with Compensating Action

To test the effectiveness of the compensation of the generalised piezo-

electric capacitance, it is used together with a shunt circuit constituted by a

resistor, rj, and an inductor, `j, connected in parallel. Similar discussion can

be made for the series connection.

ýu����
�/ωi gi η̇i ↓
���������� �ÿ

� ci

���
�� �øzi �� �ÿ���� �ÿ

� `i

������� �ÿ
� ri

���ÿ
���

���� �ÿ������� �ÿ
û���� χ̇i

����� �ÿ���
�

������� �

����� ����
/ ↑ κiχ̈i����� ����

Figure I.10: Equivalent circuit for a virtual hybrid shunt circuit with com-
pensating action.

The further control action, therefore, is given by

z̃j = − 1
rj

χ̇j(t)− 1
`j

χj(t) (I.112)

Replacing the control law (I.112) and the definition (I.111) in (I.106), one ob-

tains the closed-loop equations




η̈j + ω2
j ηj −ωj g̃j

√
1− κj χ̇ j = f j

(1− κj)χ̈ j +
1
rj

χ̇j +
1
`j

χj + ωj g̃j

√
1− κj η̇j = 0

(I.113)

In this case, it is better to work with the auxiliary variable, υj, defined as

υj =
√

1− κj χj (I.114)

and substituting in (I.113), it is possible to write




η̈j(t) + ω2
j ηj(t)−ωj g̃j υ̇ j(t) = f j(t)

ϋ j(t) + 2 vjζ jυ̇j(t) + v2
j υj(t) + ωj g̃j η̇j(t) = 0

(I.115)

where

v2
j =

1
`j (1− κj)

, 2 vjζ j =
1

rj (1− κj)
(I.116)

Comparing the equations (I.115) with the (I.57), it is clear that the application

of the fixed points theory or pole allocation method yields similar results

but with a coupling coefficient greater. The figure I.11 shows the mechanical

mobility with different values of κj.
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On the Stability

Following the approach of section I.6.1, the generalised control vector z

can be shown to have the form

z = K χ̈−R χ̇ −L χ (I.117)

in which the matrices K , R and L are defined by Khk = κhδhk, Rhk =

(1/rh)δhk and Lhk = (1/`h)δhk. Thus, the actual control law, ı, can be specified

as

ı = NC ψ̈ −NR ψ̇ −NL ψ (I.118)

where the control gain matrices, using definitions (I.17) and (I.21), are

NC = UK UT NR = UR UT NL = UL UT (I.119)

Because κh, rh and `h are strictly positive and U is orthogonal, the gain matri-

ces are all symmetric and positive definite.

Next, the power balance of the whole system whit the capacitance compen-

sation can be written as follows
d
dt

[
1
2

η̇Tη̇ +
1
2

ηTΩ2η +
1
2

ψ̇
T(I −NC) ψ̇ +

1
2

ψTNLψ

]
= −ψ̇

TNR ψ̇ (I.120)

The expression inside the parentheses on the left hand side of Eqs. (I.120)

can be recognised as the total energy of the system, including the effect of

the compensating matrix, NC and of the “inductive” matrix, NL. Hence, in

the case of compensating action, considering I as the identity matrix of order

n, the matrix (I − NC) must be positive definite to assure the asymptotic

stability as well as matrices NL and NR. Recalling the definition of NC, it is

possible to write

(I −NC) = U(I −K ) UT (I.121)

From which, it is clear that all diagonal elements of K must be less than one

to have the matrix (I − NC) positive definite, i.e. all its eigenvalues strictly

positive and so to ensure the stability of the whole system.

I.8 Generalised Active Control

In Section I.3, the state equations (I.48) for generalised reduced systems

have been introduced as

ẇj(t) = Λjwj(t) + aj f j(t) + bjzj(t), j = 1,2, . . . n (I.122)

45 of 143



Chapter I. Vibration Control Using Piezoelectric Transducers

0.5 0.8 1 1.25 2

−4

−2

0

2

4

6

8

10

12

14

16

normalised frequency   p/ω
j

m
ag

ni
tu

de
 d

B

 

 
κ

j
 = 0

κ
j
 = 0.5

κ
j
 =0.7

κ
j
 = 0.9

Figure I.11: Mobilities for a virtual hybrid shunt circuit with different
compensating actions and gj equal to 0.25 for κj null.
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Figure I.12: Sensitivity functions, Szj with different compensating actions
and gj equal to 0.25 for κj null.
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where wj(t) = [ηj(t), η̇j(t), χ̇j(t)]T is the state vector. The system is subject

to the mechanical disturbance, f j(t), and is driven by the control generalised

current, zj(t). Now, let us consider the case in which the control action de-

pends on the state wj. Therefore, denoting the 3-dimensional feedback gain

vector with dj, the state-feedback law is of type

zj(t) = −dT
j wj(t) (I.123)

Introducing Eq. (I.123) into (I.122), it is possible to write for state feedback

control

ẇj(t) =
(

Λj − bjdT
j

)
wj(t) + aj f j(t) (I.124)

From these equations it follows that the closed-loop poles depend on the

control gain vector dT
j whose entries are indicated by [dηj dη̇j dχ̇j ]. The closed-

loop poles, in fact, are the eigenvalues of (Λj−bjdT
j ). On the other hand, they

also are poles of the closed-loop mobility from modal disturbing force f j to

modal velocity η̇j, or

Mj(s) =
s (s + dχ̇j)

s3 + dχ̇j s2 + (ω2
j + ωj gj dη̇j + ω2

j g2
j )s + ω2

j dχ̇j + ωj gj dηj

(I.125)

and of the closed-loop transfer function from modal disturbing force f j to

control action zj, or

Szj(s) = −
s (dη̇j s + dηj −ωj gj dχ̇j)

s3 + dχ̇j s2 + (ω2
j + ωj gj dη̇j + ω2

j g2
j )s + ω2

j dχ̇j + ωj gj dηj

(I.126)

One of the most important objects of the control is to ensure the asymp-

totic stability, i.e. that the closed-loop poles lie in the left half of the complex

plane. Applying the Routh-Hurwitz criterion on the characteristic equation of

the closed-loop system (I.124), the asymptotic stability is guaranteed by the

conditions 



dχ̇j > 0

dη̇j dχ̇j + ωj gj dχ̇j − dηj > 0

ω2
j dχ̇j + ωj gj dηj > 0

(I.127)

Two of the most widely used methods for calculating control gains are

optimal control and pole allocation. These methods are discussed in the fol-

lowing sections.
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I.8.1 Optimal Control in the Time Domain

The optimal control problem can be defined as follows:

Determine an admissible control zj(t) causing the system to

go to rest, as close as possible, in accordance with an admissible

trajectory in the state space that minimises the cost function

J(zj) =
∫ t f

t0

h
[
wj(t), zj(t), t

]
dt (I.128)

in which h is a given function, t0 is the initial time and t f is the

final time. An optimal control can not exist, and if it exists there is

no guarantee that it is unique. However, it is possible to define a

variety of cost functions for a given system by choosing different

function h in order to obtain a suited result.

The Linear Regulator Problem

The linear regulator problem is an optimal control in which the control ac-

tion is a linear function of the state. So, the state-feedback law is of type (I.123)

and minimises the quadratic cost function

J(zj) =
1
2

∫ t f

t0

[
wT

j (t)Hj wj(t) + zj(t) εj zj(t)
]

dt (I.129)

subject to the system dynamics (I.122). The weight matrix Hj is real sym-

metric positive semi-definite and εj is a strictly positive scalar. The optimal

control problem characterised by the (I.129) can be interpreted as the prob-

lem of driven the initial state as close as possible to zero and at the same time

inserting a penalty on the control effort. A suited choice for Hj is

Hj =




ω2
j 0 0

0 1 0

0 0 1


 (I.130)

It should be noted that the first term of the integrand in the quadratic cost

function (I.129) represents, with the assumption (I.130), the total generalised

energy of the reduced system, as a matter of fact

1
2

wT
j (t)Hj wj(t) =

1
2

ω2
j η2

j +
1
2

η̇2
j +

1
2

χ̇2
j (I.131)
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The optimal feedback control gain vector has the form

dT
j = ε−1

j bT
j Kj (I.132)

where Kj is a 3×3 symmetric matrix that solves the Riccati equation. Being each

system (I.122) controllable and Λj, bj, Hj and ej constant, the Riccati equation

has a solution that approaches a constant value as the final time increases. In

this case the Riccati equation becomes

ΛTKj + KjΛ− Kjbjε
−1
j bT

j Kj + Hj = O (I.133)

which is an algebraic equation, also called steady-state matrix Riccati equation.

I.8.2 Pole Allocation with State Feedback Control

In pole allocation method, the closed-loop poles are chosen in advance

and the gains, [dηj dη̇j dχ̇j ], are computed so as to produce these poles. In the

addressed case the characteristic polynomial is of third order, thus, it admits

of a real root and a pair of complex conjugate roots. Therefore, denoting the

closed-loop eigenvalues associated with the j-th system (I.124) by

sj1,2 = aj ± i bj, sj3 = cj (I.134)

the related characteristic polynomial is

(s− sj1)(s− sj2)(s− sj3) =

= s3 − (2 aj + cj) s2 + (a2
j + b2

j + 2 aj cj) s− cj (a2
j + b2

j ) (I.135)

Next, equating (I.135) to the denominator of the mobility (I.125), i.e. the char-

acteristic polynomial of the system (I.124), the control gains can be calculated.

To this end, it is worth assuming

aj = −β j ωj ς j (I.136)

a2
j + b2

j = β2
j ω2

j (I.137)

cj = −αj ωj (I.138)

where αj, β j and ς j are strictly positive. These assumptions emphasise the

natural frequency of conjugate complex poles, β j ωj, and their damping factor
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Chapter I. Vibration Control Using Piezoelectric Transducers

ς j. The real part of all poles are imposed to be strictly negative to guarantee

asymptotic stability. Finally, the control gains are

dηj =
ω2

j

gj

[
αj (β2

j − 1)− 2 β j ς j

]
(I.139)

dη̇j =
ωj

gj

[
β2

j + 2 αj β j ς j − (1 + g2
j )
]

(I.140)

dχ̇j = 2 β j ωj ς j + αj ωj (I.141)

In the way indicated, by tuning of the parameters β j, αj and ς j, it is pos-

sible, on the basis of several criteria, to obtain a different performance of the

control system. For instance, a good choice for β j is 1 because it is not neces-

sary to alter the open-loop frequency ωj.
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Figure I.13: Mobilities for active control and with gj equal to 0.25. In pole
allocation method, parameters β j, αj and ς j are fixed equal to one.

I.8.3 State Estimation

In this section, the feedback controls discussed until now are based on the

assumption that the full state vector, wj(t), is available for measurement. But

under normal conditions, it is not practical to measure the full state vector.
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Figure I.14: Sensitivity functions, Szj for active control and with gj equal
to 0.25 and β j, αj and ς j equalt to one in pole allocation method.

In order to provide more flexibility and advantage, an estimated state is used

instead of the actual state. This estimate is obtained by means of a state esti-

mator, also known as observer. A state estimate, ŵj(t), can be provided by the

observer with equations

˙̂wj(t) = Λjŵj(t) + bjzj(t) + kj

[
χ̇j − cT

j ŵj(t)
]

(I.142)

where the 3-dimensional vector kj is the observer gain. The observer (I.142)

uses the known input, zj(t), and the measurement χ̇j(t) = uj · ψ̇ (t) to gener-

ate the state estimate ŵj(t). A block diagram of the observer is depicted in

Figure I.15. The use of an observer is possible thanks to the separation princi-

ple. It implies that the observer eigenvalues can be chosen independently of

the closed-loop poles of the system (I.124).

A deterministic approach allows to assign the observer poles. The ob-

server obtained in this way is usually known as a Luenberger observer. In order

to compute a Luenberger observer, the characteristic polynomial associated
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CHAPTER I. ACTIVE CONTROL OF ONE AND TWO DIMENSIONAL STRUCTURES

Reduced

System

Observer

f j(t)

ŵ j(t)

χ̇j(t)
zj(t)

FIGURE I.15: Block diagram of the observer estimate.

the matrix (Λj − kjc
T
j ) of the observer can be written in the form

det[sI −Λj + kjc
T
j ] =

= s3 + k3 j s2 + (ω2
j + ω2

j g2
j − ωj gj k2 j)s + ω3

j gj k1 j + ω2
j k3 j (I.140)

where k1 j, k2 j and k3 j are the components of the observer gain vector kj. Because

the observer (I.139) is a 3-dimensional system, it is suited setting the observer

poles in this parametric way

sj1,2
= −µj ωj σj ± i µj ωj

√
1− σ2

j , sj3
= −νj ωj (I.141)

in which µj, νj and σj are designing parameters real and positive. Hence, im-

posing that the (I.141) are roots of the polynomial (I.140) and solving for k1 j, k2 j

and k3 j, one obtains

k1 j =
1

gj

[
νj (µ2

j − 1)− 2 µj σj

]
(I.142)

k2 j =
ωj

gj

[
(1 + g2

j )− µ2
j − 2 µj νj σj

]
(I.143)

k3 j = 2 µj ωj σj + νj ωj (I.144)

I.9 Control and Observer Spillover

It is well known that a combination of control and observation spillover

due to the uncontrolled modes in a distributed parameter systems controlled
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Figure I.15: Block diagram of the observer estimate.

with the matrix (Λj − kjcT
j ) of the observer can be written in the form

det[sI −Λj + kjcT
j ] =

= s3 + k3 j s2 + (ω2
j + ω2

j g2
j −ωj gj k2 j)s + ω3

j gj k1 j + ω2
j k3 j (I.143)

where k1 j, k2 j and k3 j are the components of the observer gain vector kj.

Because the observer (I.142) is a 3-dimensional system, it is suited setting the

observer poles in this parametric way

sj1,2 = −µj ωj σj ± i µj ωj

√
1− σ2

j , sj3 = −νj ωj (I.144)

in which µj, νj and σj are designing parameters real and positive. Hence,

imposing that the (I.144) are roots of the polynomial (I.143) and solving for

k1 j, k2 j and k3 j, one obtains

k1 j =
1
gj

[
νj (µ2

j − 1)− 2 µj σj

]
(I.145)

k2 j =
ωj

gj

[
(1 + g2

j )− µ2
j − 2 µj νj σj

]
(I.146)

k3 j = 2 µj ωj σj + νj ωj (I.147)

I.9 Control and Observer Spillover

It is well known that a combination of control and observation spillover

due to the uncontrolled modes in a distributed parameter systems controlled

by a finite number of actuators and sensors can be cause of instability. In order
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to consider the effect of the control actions on the uncontrolled modes, refer-

ring to them as residual, they are denoted by the subscript R differently from

the controlled modes denoted by the subscript C. By separating the residual

modes from the controlled modes, the equations for the electro-mechanical

system has the matrix form




η̈C + Ω2
C ηC − Γ̃C ψ̇ = f C

η̈R + Ω2
R ηR − Γ̃R ψ̇ = f R

ψ̈ + Γ̃T
C η̇C + Γ̃T

R η̇R = ı

(I.148)

Next, it is possible to examine how the transformation U that solves the prob-

lem (I.32) affects the spillover. To this end, introducing U, the equations (I.148)

can be rearranged as

η̈C + Ω2
C ηC − Γ̃CU χ̇ = f C (I.149a)

η̈R + Ω2
R ηR − Γ̃RU χ̇ = f R (I.149b)

χ̈ + UTΓ̃T
C η̇C + UT Γ̃T

R η̇R = z (I.149c)

It is clear from (I.149b) that there is control spillover in the residual modes

due to the matrix product Γ̃RU. The residual modes, usually at high frequen-

cies, are more difficult to excite and therefore they generally can be ignored.

In the (I.149c) the term UT Γ̃T
R η̇R is responsible for the observation spillover

which clearly causes same performance degradation. In any case, observation

spillover can be greatly reduced by a proper design of control laws. Indeed,

if the control law affects only the frequency range in the neighbourhood of

the natural frequencies of controlled modes, as in the generalised passive

approach thanks to the tuning procedure, the spillover due to the residual

modes can be neglected. In the case of active control with state observer, this

last can be used as a filter in order to exclude the contribution of the resid-

ual modes. It is for this reason that the Luenberger observer has been used

instead of the more usual Kalman filter. Moreover, distributed sensors, like

piezoelectric patches, have a natural cutoff wavelength due to their finite sur-

face, therefore, there is a finite and limited number of modes that are actually

measured. Besides, any structure has a small amount of mechanical damp-

ing that increases the stability margin to be often sufficient to overcome the

observation spillover.
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CHAPTER II

Physical System Models

Everything should be made as simple as pos-

sible, but not simpler.

Albert Einstein (1879–1955)

German physicist

A
review is presented here of the physical systems that are pertinent to

material in later chapters. In this chapter it is explained and discussed

the model of a full clamped rectangular thin plate. In order to provide the

necessary elements to develop the proposed subject, first the model of thin

plate is introduced and soon afterward piezoelectric transducers employed

for control purposes are taken in consideration with the involving electro-

mechanical coupling with the plate.

II.1 First Order Theory of Thin Plates

II.1.1 Introduction

This section is dedicated to provide the governing equation of a thin plate

with small deflections [Timoshenko and Woinowsky-Krieger, 1959]. A very

satisfactory approximate theory of plate bending can be developed by ne-

glecting the shear energy with respect to the bending energy.

Let the no-strain configuration be the reference one for a rectangular plate

with boundary conditions completely clamped, see figure II.1. All introduced

vector valued functions or tensors, unless otherwise noted, are defined into
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II.1. First Order Theory of Thin Plates

Figure II.1: Reference configuration and reference frame.

domain P = [0, L1]× [0, L2]× [−h/2, h/2] and into C2(P) that is the class

of continuous functions in P together with their derivatives up to order 2.

It is worth identifying between two sub-problems which are uncoupled each

other, when the deformation motion of a plate is examined: one the in-plane

problem and the other the out-of-plane problem. The former is regarded as a

stretching problem; the latter is regarded as a bending problem. Herein, the

bending problem will be dealt for its importance with regard to vibrations.

In order to write the plate equation, it is assumed all points constituting the

plate configuration have a perpendicular motion with respect to the plane

x1x2. This displacement is called w(x1, x2, t), considering it as the restriction

of the total displacement field to the middle surface. The dependence by the

variable x3, that is to say the coordinate representing the distance with sign

between a certain point of the plate and the middle surface, is neglected

because one can assume the deflection w reasonable constant along x3, in

the theory takes in account. Let the displacement w be much smaller than the

uniform thickness, h, and let us assume that points of the plate lying initially

on a normal-to-the-middle plane of the plate remain on the normal-to-the-

middle surface of the plate after bending. In addition, it is assumed negligible
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the rotational inertia. This is justifiable, as to neglect the shear energy, only

at opportune low frequencies. That is to say an upper limit exists for the

range of interesting frequencies beyond that it is necessary to introduce into

model corrective contributions for both phenomena here neglected. These

assumptions are characteristic of the Kirchhoff model. As for the external loads,

they are assumed uniformly distribute.

It is reasonable admit the following components of stress tensor, T, are

zero because of the plane-stress hypothesis for the external faces1





T33 = 0 ∀ x1, x2, x3 ∈P

T13 = T23 = 0 ∀ x1, x2 ∈ A and x3 = ± h/2
(II.1)

where A = (0, L1)× (0, L2).

Taking in account these assumptions, by easy geometric argumentations,

one finds

u(x1, x2, x3, t) = −x3
∂w
∂x1

v(x1, x2, x3, t) = −x3
∂w
∂x2

(II.2)

where u and v are the displacement coordinates along x1 and x2 axes, respec-

tively. Made hypotheses for components of the small strain tensor, S, which

is symmetric, lead to

S11 ,
∂u
∂x1

= −x3
∂2w
∂x2

1

S22 ,
∂v
∂x2

= −x3
∂2w
∂x2

2

S12 ,
1
2

( ∂v
∂x1

+
∂u
∂x2

)
= −x3

∂2w
∂x1∂x2

S33 ,
∂w
∂x3

= x3
ν

1− ν

(∂2w
∂x2

1
+

∂2w
∂x2

2

)

S13 ,
1
2

( ∂w
∂x1

+
∂u
∂x3

)
= 0

S23 ,
1
2

( ∂w
∂x2

+
∂v
∂x3

)
= 0

(II.3)

where ν is the Poisson ratio. The component S33 has been calculated utilising

the Hook’s laws

Sij =
1 + ν

Y
Tij −

ν

Y
Tkkδij (II.4)

1See the observation at page 117 of the appendix A.1.
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where Y indicates the Young’s modulus and δij is the Kronecker symbol. The

repeated indexes, according to Einstein’s convention, imply the sum.

Remark II.1. It could seem contradictory to consider the dependence of S33 by

x3 differently from w, recalling that this strain component is defined as the

derivative of such displacement relative to x3. This apparent discrepancy can

be removed keeping in mind that the S33 series expansion has a zero constant

term and thus, it is not at all allowed to neglect the linear term, although it is

very small, with respect to zero. It is worth noting, on the other hand, that S33

is of the same order of magnitude as the S11 and S22. If one assumes it zero,

besides, a plane-strain hypothesis is made having yet considered a plane-

stress hypothesis. The two assumptions coexist if and only if the Poisson

ratio is zero.

� � �

II.1.2 Hamiltonian Formulation

Analytical Considerations

After removed all doubts on the hypotheses and on the restrictions of the

used model to describe the plate by means of the strong formulation2, the

governing equation of the plate will be derived by the Hamiltonian formula-

tion in view to add the piezoelectric transducers, that introduce discontinu-

ities in the stiffness and in the inertial term for which it is hard to consider a

law that describes appropriately the loads applied by them.

It is worth, however, before to go ahead recalling briefly some overture

elements. Assuming a motion M, known as true path, then, synchronous varied

paths, X, are all fictitious motions belong to the set of possible motions, F ,

having a small variation with respect to M and coinciding with it at the limits

of an arbitrary, but given, range of time I = [t0, t1]. In other words for any

generic instant t ∈ I the assuming configuration of the system during the

true path is extremely close to that one of varied paths having introduced in

F an adapted metric. This small variation can be arbitrarily chosen, provided

2See appendix A.1.
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it is compatible with the constraints. Defining on F the functional S

S(X) =
∫ t1

t0

(K−Π +W) dt (II.5)

where K represents the kinetic energy, Π the elastic strain energy, andW the

work done by the not conservative external forces, one is able to state the

Hamilton’s principle in the following form

δS = 0 (II.6)

It is significant to remark that the integral S calculated between the initial

instant, t0, and the final one, t1, assumes a certain value for all the possible

motions, true or varied. The equation (II.6) expresses the circumstance that

the variation in path δS , passing from a generic true path to any synchronous

varied path between the same initial and final configurations, is zero, that is

to say X is a stationary point in F of the functional S if and only if coincide

with M.

Mechanical Energy of the Plate

In order to apply the Hamilton’s principle, it is necessary the computation

of the mechanical energy for the system taken in account. The kinetic energy

of the plate occupying the domain P is given by

K =
1
2

∫∫

A
ρ h
(∂w

∂t

)2
dA (II.7)

where ρ is the mass density and dA is the element of measure in A ⊂ R2.

The elastic strain potential is

Φ =
1
2

Tij Sij (II.8)

Using the (II.4), it can be written in this fashion

Φ =
Y

2(1− ν2)

[
S 2

11 + 2ν S11 S22 + S 2
22 + 2 (1− ν) S 2

12

]
(II.9)

considering the (II.3) and integrating along x3 from −h/2 to h/2, one obtains

the two-dimensional elastic potential

ϕ =
B
2

[(∂2w
∂x2

1

)2
+
(∂2w

∂x2
2

)2
+ 2 ν

∂2w
∂x2

1

∂2w
∂x2

2
+ 2 (1− ν)

( ∂2w
∂x2∂x1

)2]
(II.10)
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where B is the flexural modulus. Finally, the integration on the open set A of

ϕ yields the strain energy of the plate

Π =
∫∫

A
ϕ dA (II.11)

Remark II.2. Note that into (II.8) the components of stress tensor T13 and T23

are different from zero as said in the remark A.1 at page 117. In order to

obtain the (II.9), however, the terms corresponding to such components have

been neglected because, in spite of the fact that they are different from zero,

representing the effect of the shear energy, they are smaller than terms cor-

responding to the bending energy, provided that the frequency range taken

into account has not an upper limit too high.

� � �

The work of external forces, p, acting on A is given by

W =
∫∫

A
p w dA (II.12)

Calculating variations of these terms and introducing them into (II.6), the

equation of the plate is obtained with the boundary conditions3. Summaris-

ing, the governing equation of the plate has the form

B ∇4w(x1, x2, t) + ρ h
∂2w
∂t2 (x1, x2, t) = p(x1, x2, t) ∀ x1, x2 ∈ A (II.13)

II.2 Piezoelectric Transducers

II.2.1 General Notices

The word transducer, in this circumstance, is used with the meaning of a

device that can transfer energy between one system and another. In case that

such a flow of energy is turned towards the system to control and the purpose

is to make work on this, the transducer behaves as actuator; on contrary, if the

energy moves in opposite direction and the purpose is to bring information,

then it has a behaviour of a sensor.
3See the appendix A.2.
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Piezoelectric materials can be used both as actuators and as sensors be-

cause of reversibility of the piezoelectric effect. Thanks to the direct effect a

piezoelectric patch is a sensor of strain, in a similar manner of a strain gauge,

or of a strain rate; for the converse effect it is able to impose local deforma-

tion by the application of suitable voltage or charge, that is to say it is an

actuator. Moreover, the piezoelectric element can be utilised even at the same

time in both the way, making it particularly attractive for many applications.

Here, piezoelectric transducers placed on the host plate in an antisymmetric

arrangement are employed as showed in figure II.2, in order to measure and

to induce only bending deformation. This arrangement is to avoid measuring

and exciting the in-plane motion, in order to reduce the observer or control

spillover.

Figure II.2: Piezoelectric transducers in bending configuration.

Hypotheses made with regard to these transducers for the nature of pie-

zoelectric material involve two different points of view: the mechanical and

the electrical one. The mechanical assumptions are similar to these made for

the thin plate and they are summarised by the following hypotheses:

a) the piezoelectric patches are perfectly bonded on the upper and lower

surfaces of plate with an antisymmetric arrangement;

b) the “fibres” of the piezoelectric items that are orthogonal to the middle
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surface of the plate in the no-strain reference configuration, keep remain-

ing orthogonal also in any other configuration, i.e. even for them are ne-

glected the shear deformations;

c) the thickness of piezoelectric transducers, hp, is assumed much less large

than the one of plate, h;

d) it is adopted a plane-stress hypothesis;

e) it is neglected rotational inertia.

As regards electrical assumptions, the full electromagnetic equations are

not needed under ordinary conditions. The quasi-electrostatic approximation

is adequate because the phase velocities of vibration waves are approximately

five orders of magnitude less than the velocities of electromagnetic waves.

Under these circumstances, magnetic effects can be shown to be negligible

compared to electrical effects. The electric field vector, ~E, is considered con-

stant along the x3 axis and only its Cartesian component on such axis, E3, is

supposed significant on basis of geometric considerations.

Constitutive relations of the piezoelectric continuous poled in the thick-

ness direction according to the linear theory of piezoelectricity [ANSI/IEEE

Std 176-1987] can be expressed, in agreement with summation convention, in

this way

Sij = sijklTkl + drijEr (II.14)

s and d are the compliance tensor with constant electric field and the piezo-

electric tensor, respectively. The (II.14) must be completed with the equation

concerning the electric displacement, ~D

Di = diklTkl + εijEj (II.15)

where ε is the dielectric tensor with constant stress.

In order to write the elastic and piezoelectric tensors in the compressed

matrix form, a different notation is introduced in place of the tensor one. This

matrix notation, referred to as Voigt, consists of replacing a couple of indexes

by one according to Table II.1. It should be remarked that when the Voigt

notation is used, the transformation properties of the tensors become unclear.

Hence, the tensor indexes must be employed when coordinate transforma-

tions have to be made.
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Table II.1: Index correspondences between tensor and Voigt notation.

tensor notation Voigt notation

11 1

22 2

33 3

23 or 32 4

31 or 13 5

12 or 21 6

Therefore, the constitutive relationships (II.14) and (II.15) in the new notation

can be simplified as

Sp = spqTq + drpEr (II.16a)

Di = dikTk + εijEj (II.16b)

Using this notation, thanks to the symmetry of tensors due to the transverse

isotropy of piezoelectric material4, the second order tensors of stress, T, and of

small strain, S, become 6-dimensional column arrays, the fourth order tensor

of compliance s a square matrix 6×6, and the three order piezoelectric tensor

a matrix 3×6. Besides, these matrices are not full, and can be typified in the

following way

s =




s11 s12 s13 0 0 0

s12 s22 s23 0 0 0

s13 s23 s33 0 0 0

0 0 0 s44 0 0

0 0 0 0 s55 0

0 0 0 0 0 (s11 − s12)




(II.17)

d =




0 0 0 0 d15 0

0 0 0 d24 0 0

d31 d32 d33 0 0 0


 (II.18)

4The piezoelectric material undergone the poling process, as this usually used, indeed, is

orthotropic.

62 of 143



II.2. Piezoelectric Transducers

ε =




ε11 0 0

0 ε22 0

0 0 ε33


 (II.19)

In order to derive a two dimensional theory from the three dimensional

one described above, the significant equations of the (II.16a), expressing the

components of s and recalling that T3 = 0 for the plane-stress hypothesis5, it

can be written 



S1 =
1

Yp
(T1 − νpT2) + d31E3

S2 =
1

Yp
(T2 − νpT1) + d32E3

S6 =
(1 + νp)

Yp
T6

(II.20)

where Yp is the in-plane Young’s modulus at constant electric field and νp

equal to −s12/s11 is the Poisson ratio of piezoelectric material; d31 supposed

identical to d32 is the piezoelectric strain constant with electric field along x3

axis and strain along x1 or x2 axes in the order given. Resolving the equa-

tions (II.20) for the variables Tj, one finds




T1 = Kmm(S1 + νpS2)− KmeE3

T2 = Kmm(S2 + νpS1)− KmeE3

T6 = Kmm(1− νp)S6

(II.21)

The material constants Kmm and Kme into (II.21) are given by

Kmm =
Yp

1− ν
2

p

Kme = d31
Yp

1− νp

(II.22)

The only significant component of the electric displacement, ~D, it yields

D3 = d31T1 + d32T2 + ε33E3 (II.23)

using the (II.21) the equation (II.23) can be rewritten as

D3 = Kme(S1 + S2) + KeeE3 (II.24)
5It should be noted that the same considerations made on T4 and T5 for the plate, are still

valid.
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where

Kee =
(

ε33 − 2 d 2
31

Yp

1− νp

)
(II.25)

For more details the reader is referred to [Mitchell and Reddy, 1995; Alessan-

droni et al., 2004; Gopinathan et al., 2000; Fernandes and Pouget, 2002].

II.2.2 Equations of Plate with Transducers

The Hamilton’s principle, used to obtain governing equations of plates

with the piezoelectric transducers in bending configuration, can be expressed

in the form

δ
∫ t1

t0

(K−Π + Lp +W) dt = 0 (II.26)

The kinetic energy of the plate, K, and the strain energy, Π, have been com-

puted above in section II.1.2. The modified Lagrangian function, Lp, is de-

fined as the difference between the kinetic energy of piezoelectric patches,

Kp, and their electric enthalpy, H. The kinetic energy of a piezoelectric pair is

Kp =
∫∫

A
ρp hp

(∂w
∂t

)2
℘ dA (II.27)

where dA is the element of measure on open set, A = (0, L1)× (0, L2), the

constant ρp is the mass density of the piezoelectric material and w has the

same meaning of above, i.e. the transverse displacement of the middle surface

of the plate. The function ℘(x1, x2) defined by

℘ = [H1(x1 − x1,i)− H1(x1 − x1, f )][H2(x2 − x2,i)− H2(x2 − x2, f )]

being H1(x1) and H2(x2) the Heaviside or unitary step functions, selects the

area, Ap = (x1,i, x1, f )× (x2,i, x2, f ), occupied by the pair of the patches.

The density of electric enthalpy, returning to the tensor notation and tak-

ing the Einstein’s convention in account, was defined by Maugin in 1985 as

follows

H (Sij, Ei) =
1
2

Tij Sij −
1
2

DiEi (II.28)

Next, neglecting the shear energy compared to the bending energy and sub-

stituting into (II.28) constitutive relations (II.21) and (II.24), the density of

electric enthalpy becomes

H =
1
2

Kmm

[
S 2

11 + 2 νp S11 S22 + S 2
22 + 2 (1− νp) S 2

12

]
+

− Kme(S11 + S22) E3 −
1
2

Kee E 2
3

(II.29)
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On the basis of a geometric analysis about transducers, the significant com-

ponents of the small strain tensor can be made explicit only inside of the area

delineated by the patches

S11 = −x3
∂2w
∂x2

1
S22 = −x3

∂2w
∂x2

2
S12 = −x3

∂2w
∂x2∂x1

(II.30)

recollecting that the electric field vector, ~E, is conservative, it is possible to

describe it in terms of its potential, V (x1, x2, x3), obtaining ~E = −∇V . Be-

sides, the voltage imposed at the electrodes of transducers is specified by

V = −(V |x3=hp+h/2 − V |x3=h/2) and, in agreement with made hypotheses,

the only significant component of the electric field is

E3 = ± V
hp

℘

where the plus sign corresponds to the upper patch and the minus sign to

the lower one. Carrying out the due substitutions in the (II.29), it has

H =
1
2

Kmm

[(∂2w
∂x2

1

)2
+
(∂2w

∂x2
2

)2
+ 2νp

∂2w
∂x2

1

∂2w
∂x2

2
+ 2(1−νp)

( ∂2w
∂x2∂x1

)2]
x2

3+

+

{
±Kme

(∂2w
∂x2

1
+

∂2w
∂x2

2

) V
hp

x3 −
1
2

Kee
V2

h 2
p

}
℘

(II.31)

Finally, integrating H on Ix3 = [−h/2 − hp,−h/2] ∪ [h/2, h/2 + hp] with

respect to the variable x3, the electric enthalpy can be written as

H(w, V) =
∫∫

A

{
Kmm

[(∂2w
∂x2

1

)2
+
(∂2w

∂x2
2

)2
+ 2νp

∂2w
∂x2

1

∂2w
∂x2

2
+

+ 2(1− νp)
( ∂2w

∂x2∂x1

)2]
(

h2 hp

4
+

h h2
p

2
+

h3
p

3

)
+

+Kme

(∂2w
∂x2

1
+

∂2w
∂x2

2

)
(h + hp) V − Kee

V2

hp

}
℘ dA

(II.32)

The last term of the (II.26), δW , represents the sum of the virtual external

mechanical work, δWm, and the virtual external electrical work, δWe. The

former is

δWm =
∫∫

A
p δw dA (II.33)

whilst the latter is

δWe =
∫∫

A
2q+ δV ℘ dA (II.34)

65 of 143



Chapter II. Physical System Models

where q is the density of the free electrical charge per unit of surface on the

electrodes of each patch. It should be noted that q is not the polarisation

charge showing on the opposite faces in the thickness direction of the piezo-

electric material. The superscripts “+” indicates the external electrodes of the

piezoelectric elements connected in parallel.

Elaborating the (II.26), the two governing equations for the plate equipped

with a double wafer transducer in bending configuration is given by




B̃∇4w + m̃
∂2w
∂t2 = p + Kme (h + hp) V∇2℘

2 q+ = 2CeeV + Kme (h + hp)
(∂2w

∂x2
1

+
∂2w
∂x2

2

) (II.35)

The first equation is defined in A , whilst the second is defined only on the

area covered by the pair of patches, in Ap, and both equations are valid for all

t in R+
0 . The constants appearing in the (II.35) are the capacitance per unit of

surface at null strain, Cee = Kee/hp. The total bending stiffness B̃ is the sum

of the plate bending stiffness B and the term due to the piezoelectric material

Kmm

(
h2 hp

2 + h h2
p + 2

3 h3
p

)
℘, similarly the total mass per unit of surface m̃ is

the sum of ρ h and 2ρp hp℘. In addition to the boundary conditions already

seen for the fully clamped plate (A.13), the further conditions are to be taken

into account for the transducers

2Kmm∆H2

[∂3w
∂x3

1
+ (2− νp)

∂3w
∂x1∂x2

2

]x1=x1, f

x1=x1,i

= 0 (II.36a)

2Kmm∆H1

[∂3w
∂x3

2
+ (2− νp)

∂3w
∂x2∂x2

1

]x2=x2, f

x2=x2,i

= 0 (II.36b)

[[
4Kmm(1− νp)

∂2w
∂x1∂x2

]x1=x1, f

x1=x1,i

]x2=x2, f

x2=x2,i

= 0 (II.36c)

Herein the notation [ f (x1)]
x1, f
x1,i = f (x1, f )− f (x1,i) has been used. As for ∆H1

and ∆H2, they are [H1(x1− x1,i)−H1(x1− x1, f )] and [H2(x2− x2,i)−H2(x2−
x2, f )], respectively. The first two boundary conditions indicate a generalised

force along the x3 axis that is zero on all the perimeter of each transducer;

whilst the last correspond to a twisting moment null on the corners.

The first equation of the (II.35) evidences the effect of piezoelectric trans-

ducers, i.e. an increase of the mass and of the bending stiffness placed on the

area covered by them, Ap, as well as a bending moment acting on the perime-

ter of the same area Ap and proportional to the voltage, V, imposed to the
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pair of patches connected in parallel. The second equation of the (II.35) repre-

sents the Coulomb’s theorem at a dielectric-conductor interface, q f ree = ~D · n̂,

where n̂ is the outward unit normal to the conductor surface. The free charge

per unit of surface on each external electrode is given by

q+ = −D3|x3=hp+h/2 = D3|x3=−hp−h/2 (II.37)

thus, summing the second and the third term of the (II.37) the result is exactly

the second equation of the (II.35), neglecting hp with respect to h/2.

Remark II.3. The electric displacement vector ~D satisfies the Maxwell’s equa-

tion for an insulator, assuming zero the components D1 and D2

∂D3

∂x3
= 0 (II.38)

By the analysis of the constitutive relation (II.24), being the electric field con-

stant, it is clear that the Maxwell’s equation (II.38) can not be satisfied owing

to the linear dependence of the small strain tensor on x3. The equation (II.38)

is valid if the electric potential, V , has a quadratic dependence on x3. Hence,

it should be written

V = a0(x1, x2) + a1(x1, x2) x3 + a2(x1, x2) x2
3 (II.39)

where the relevant coefficients, a1 and a2, can be estimated by the satisfaction

of the (II.38) imposing the boundary condition given by the voltage, V. Thus,

it has

a2 =− 1
2

Kme

Kee

(∂2w
∂x2

1
+

∂2w
∂x2

2

)

a1 =± V
hp
∓ a2(h + hp)

(II.40)

The double sign in this last equation is correlated to the antisymmetric con-

figuration of the patches. That upper is referred to the transducer on top and

that lower to the transducer on bottom. Moreover, in the usually applications

the coefficient a2 is negligible and thus V is considered linear in x3, like above.

� � �

Finally, it is possible to represent the dynamic of the plate with several
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transducers attached with an appropriate pattern for the control of vibrations





B̃∇4w + m̃
∂2w
∂t2 = p +

np

∑
r=1

Kme (h + hp)∇2℘r
dφr

dt

Qr = Cr
dφr

dt
+
∫

Ar

Kme (h + hp)
(∂2w

∂x2
1

+
∂2w
∂x2

2

)
dAr, r = 1,2, . . . np

(II.41)

in which electric equations are integrated on the area occupied by each pie-

zoelectric pair, np is the number of piezoelectric transducers bonded on the

plate, Qr is the induced charge on the r-th pair of patches and φr is the asso-

ciated flux linkage. Besides, Cr = 2CeeAr is the overall inherent capacitance of

the r-th piezoelectric pair. The total bending stiffness and the total mass per

unit of surface are respectively

B̃ = B +
np

∑
r=1

Kmm

(
h2 hp

2
+ h h2

p +
2
3

h3
p

)
℘r (II.42)

m̃ = ρ h + 2
np

∑
r=1

ρp hp℘r (II.43)

II.3 Modal Analysis

Making the substitution (I.5), equations (II.41) can be rewritten as follows





B̃∇4w + m̃
∂2w
∂t2 = p +

np

∑
r=1

Kme (h + hp)√
Cr

∇2℘r
dψr

dt

Qr =
dψr

dt
+
∫

Ar

Kme (h + hp)√
Cr

(∂2w
∂x2

1
+

∂2w
∂x2

2

)
dAr, r = 1,2, . . . np

(II.44)

In order to consider the eigenvalue problem (I.9), assuming the boundary

conditions of fully clamped edges for the transverse displacement, w, and the

short circuit condition for normalised voltage, ψ̇r, it is possible to write





w = 0 and
∂w
∂x1

= 0 along x1 = {0, L1}

w = 0 and
∂w
∂x2

= 0 along x2 = {0, L2}

ψ̇r = 0 r = 1, . . . np

(II.45)

68 of 143



II.4. Finite Element Model

Let us assume that the eigenfunctions W(x1, x2) defined by the relation (I.8)

are orthogonal and normalised to unit modal mass, thus they satisfy the re-

lations

∫

A
ρ h WiWj dA + 2

np

∑
r=1

∫

Ar

ρp hpWiWj dAr = δij (II.46a)
∫

A
B∇4[Wi]Wj dA +

+
np

∑
r=1

∫

Ar

Kmm

(
h2 hp

2
+ h h2

p +
2
3

h3
p

)
∇4[Wi]Wj dAr = ω2

i δij

(II.46b)

Substituting the expression (I.8) into the (II.44), the mode model of the smart

plate can be obtained 



η̈ + Ω2 η− Γ̃ ψ̇ = f

ψ̈ + Γ̃T η̇ = ı
(II.47)

where

Γ̃ir =
Kme (h + hp)√

Cr



∫ x(r)

2, f

x(r)
2,i

[
∂Wi

∂x1

]x(r)
1, f

x(r)
1,i

dx2 +
∫ x(r)

1, f

x(r)
1,i

[
∂Wi

∂x2

]x(r)
2, f

x(r)
2,i

dx1


 (II.48)

are entries of the electro-mechanical coupling matrix Γ̃ and considering the

unit-frequency normalised coupling matrix Γ

Γir =
1

ωi
Γ̃ir (II.49)

whilst

fi =
∫

A
p(x1, x2, t)Wi dA i = 1, . . . nm (II.50)

are generalised forces per unit of surface.

II.4 Finite Element Model

Once fixed the position of the piezoelectric elements, accurate estimate of

the natural frequencies and corresponding plate mode shapes, including ef-

fects of the piezoelectric transducers under short circuit condition, is obtained

by a finite element analysis. To this end, the commercial code ANSYSr is em-

ployed to perform this analysis. The finite element model, here elaborated, is

based on the choice of brick elements for the discretization of piezoelectric

patches and of quadrilateral shell elements for modelling the plate given that
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they are designed to model efficiently thin structures. Indeed, Ansys includes

3D solid elements with piezoelectric capabilities, but not piezoelectric plate or

shell elements. More in detail, the overall structure is modelled using elastic

shell elements, shell93, for the plate and 3D solid elements, solid226, with

piezoelectric capabilities for the transducers. The shell93 element is an eight

node structural shell element with six degrees of freedom at each node, three

for displacements and three for rotations. The solid226 element has twenty

nodes with four degrees of freedom per node, three for displacements and

one for the electric potential. It is clear that the connection between these

two kind of elements is a crucial problem for modelling overall structure.

The condition of bonding the piezoelectric material on the plate is realised

in Ansys by constraint equations, where node displacements of piezoelectric

element at the interface with the plate are imposed to make null the relative

displacement between the two types of element according to the hypothe-

ses of the Kirchhoff-Love model applied to the plate, as proposed in [Tliba

and Abou-Kandil, 2005]. In order to use the Kirchhoff-Love hypotheses, the

element mesh must ensure that each nodal point of the solid element for pie-

zoelectric transducers matches the nodal point of the related shell element at

the interface, see the figure II.3.

Figure II.3: A frame detail of a plate modelled as shell elements and a
piezoelectric transducer modelled as solid elements.

The element mesh is sufficiently fine in order to have acceptable accuracy.

To assess accuracy, the mesh is refined until the results shows little change.

For higher accuracy, the aspect ratio of the elements is assigned as close to

unity as possible. For this reason and to avoid excessively increasing the num-
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ber of elements and the time of computation, piezoelectric transducers are

modelled using solid elements with twenty nodes, specifically consisting of

one element along the direction of minimum thickness.

The short circuit condition for the piezoelectric elements is modelled by

imposing a null voltage on both electrodes of each patch.
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CHAPTER III

Numerical Simulations

For everything you have missed, you have

gained something else, and for everything

you gain, you lose something else.

Ralph Waldo Emerson (1803–1882)

American Poet

N
umerical case studies are considered in this chapter to determine features

of proposed vibration controls. At first a numerical analysis is performed

on a thin beam with both ends clamped. To further illustrate characteristics

of these controls a second case is considered involving a rectangular fully

clamped plate. Herein, a most important assumption is to consider for each

mechanical mode in need of control two identical thin slice of piezoelectric

material bonded symmetrically onto either faces of the thin structures and

connected in parallel. They are bonded with inverted polarization directions

in order to produce opposite deformations and to induce pure bending. In

this way each transducer pair is associated to one electric degree of freedom

because of the parallel connection.

III.1 Clamped-Clamped Beam Case Study

The clamped-clamped beam is made of aluminium with a rectangular

cross section of height h equal to 2.9 × 10
−3 m and width 2 × 10

−2 m and

having length L equal to 0.45 m. Three pairs of piezoelectric elements are

bonded on the beam to implement the proposed technique on three mechan-
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ical modes. The modes of interest are the lowest because they are prominent

in the dynamics of interest. The piezoelectric transducers are assumed to be

of ceramic material with properties given in table III.1. The example results

given below are for piezoelectric patches of width bp equal to 1.8× 10
−2 m

and thickness hp equal to 2.67 × 10
−4 m. Table III.2 displays lengths of the

piezoelectric transducers and their positions defined as the distance of each

piezoelectric pair from the left end of the beam.

Table III.1: Material characteristics of the piezoelectric transducers.

symbol value unit

Permittivity at constant Stress ε33 3800 ε0

Piezoelectric Strain Constant d33 650× 10
−12 m V−1

d31 −320× 10
−12 m V−1

Density Mass ρpe 7800 kg m−3

Young Modulus Y3 50× 10
9 Pa

Y1 62× 10
9 Pa

Poisson’s Ratio νpe 0.31

The derivation of governing equations for the beam with piezoelectric patches

involves more discussion than is worthwhile here [Maurini, 2005]. Indeed, a

mode model of the beam with piezoelectric transducers has the same form

presented in chapter I




η̈ + Ω2 η−Ω Γ ψ̇ = f

ψ̈ + (Ω Γ)T η̇ = ı
(III.1)

In agreement with classical results [Park, 2003; Maurini et al., 2006], the ex-

pression for the entries of the normalised piezoelectric coupling matrix Γ are

Γjr =
d31 Y1 (h + hp) bp

ωj
√

Cr

[
∂Wj

∂x1

]x(r)
1, f

x(r)
1,i

(III.2)

where the notation [ f (x1)]
x1, f
x1,i = f (x1, f ) − f (x1,i) has been used, x(r)

1,i and

x(r)
1, f represent respectively the start and end of the r-th pair of transducers,

∂Wj/∂x1 is the mode rotation function of the beam for the j-th mechanical
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mode under short circuit condition and ωj is the natural frequency associated

with it. These entries are also proportional to the average mode curvature of

the region covered by the piezoelectric patches. The r-th capacitance of the

two-element piezoelectric transducer, according to assumption of section II.2,

is

Cr = 2
(

ε33 − 2 d 2
31 Y1

) ar bp

hp
(III.3)

Locations of piezoelectric transducers are important to ensure an accept-

able level of vibration reduction. This can be achieved by placing the two-

element piezoelectric transducers in order to enhance the coupling between

each transducer and the mechanical modes of interest. To this end, the expres-

sion (III.2) has been used to compute the piezoelectric coupling Γir with the

approximation to use the mode shapes of the Euler-beam without changes

due to the piezoelectric mass and stiffness.

Table III.2: Specifications of the piezoelectric transducers.

piezo length ar (m) location x(r)
1,i (m)

1 0.036 0.003

2 0.07 0.155

3 0.036 0.411

Given any piezoelectric transducer, it is possible to calculate the piezoelectric

coupling with different modes and to display it as a function of the piezoelec-

tric length and the piezoelectric position on the beam. The obtained graphs

for each of the first three mechanical modes are showed in the left hand

side of the figure III.1. Also the mode rotations and curvatures of these three

modes, i.e. derivatives of mode shapes respectively of orders one and two, are

displayed at right hand side for their significance. The analysis performed on

these graphs justifies the chosen locations that are summarised in table III.2.

Indeed two piezoelectric pairs are placed near to the clamps of the beam and

one is located close to, but not exactly, the middle section to sense or excite

even the second mode. The lengths are chosen to obtain coupling coefficients

with comparable values of wavelengths of modes of interest.

In previous sections the assumption that the system possesses negligible
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Figure III.1: On the left hand side are depicted the plots of piezoelectric
coupling between one piezoelectric transducer and the first three me-
chanical modes, as the length of piezoelectric element and its position
vary on the beam. On the right hand side are displayed rotations and
curvatures for the first three modes.

mechanical damping is made. At this point the damping effect is included.

Introducing this effect and recalling the relation (I.5) to make explicit the

electric flux linkage φ, the governing equations for the whole system assume

the form 



η̈ + D η̇ + Ω2 η = P φ̇ + f

C φ̈ + ℵp φ̇ = −PT η̇ + ι̃
(III.4)

in which Ω is the diagonal matrix of natural frequencies under the short-

circuit condition, φ̇ = 0; the matrix P defined as

P = Ω Γ
√

C (III.5)

is the piezoelectric coupling matrix; f is the modal mechanical forcing vector.

The vector η has as elements the modal coordinates. In this case the damping

is assumed of the proportional type. This implies that the matrix D is diagonal

and can be expressed as

Dij = 2ξ jωjδij (III.6)

where ξ j is the damping ratio of the j-th mode assumed equal to 4× 10
−3

for all modes and δij is the Kronecker symbol. The second equation is the
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current balance at the electrodes of the piezoelectric elements. The matrix

C is a diagonal positive definite matrix of piezoelectric capacitances, whose

elements Chδhk represent inherent capacitances of piezoelectric patches at

blocked modal deflections, η̇ = 0, the matrix ℵp is a diagonal positive def-

inite matrix , whose entries are (1/Rh)δhk being Rh the internal resistances

assumed all equal to 10 MΩ; the term ι̃ =
√

C ı represents the currents flow-

ing through the piezoelectric transducers. With the chosen electromechani-

cal state variables, the conservative piezoelectric coupling appears in a gyro-

scopic form. In the mechanical equation, the term P φ̇ represents the mechan-

ical modal forces due to the piezoelectric voltages. In the electric equation, the

term PT η̇ may be interpreted as a set of current generators in parallel con-

nection with the inherent piezoelectric capacitances whose current intensities

are proportional to the mechanical modal velocities.
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Figure III.2: Simulink diagram of the studied system.

The system (III.4) can be modelled in Simulink and the diagram III.2

shows this model. A great care has been devoted to set up the model in or-

der to allow Simulink to execute it faster and more accurately. This numeric

scheme is based on two feedback loops that simulate the interaction between

the host mechanical system and the piezoelectric transducers and between

these and the control device, i.e. an electric admittance. The forcing input to

the mechanical system under short circuit condition is the sum of the me-
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chanical disturbing forces and the piezoelectric coupling actions. The electric

behaviour of each transducer is modelled by the inherent capacitance of the

piezoelectric patch in parallel with the internal resistance. To take account

of the spillover problem the system model is characterised by five mechan-

ical modes instead of three. The Simulink model permits both to calculate

all frequency response functions, FRF, of interest and to predict the output

time history due to a known input like an impulse. The main objective in this

analysis is to estimate input-output relationships. A dual channel FFT anal-

ysis of the input and output of a system is performed to calculate a function

FRF which describes its dynamic behaviour, assuming the system is linear.

Indeed, this function characterises the system independent of the input sig-

nal. The locations used to excite the beam and to compute its response have

been chosen to avoid the nodes appearing for low frequency bending modes.

In the simulation the beam is exited by an impulse with a frequency spec-

trum covering a frequency range from near zero to fmax that is 1200 Hz at

8× 10
−2 m from one end of the beam. To model the impulse, the disturbance

force is a half sine. This force is characterised by its peak value F0 and time

duration τ. The peak value is assumed equal to 1 N and the time duration

τ is equal to 2.78× 10
−4 s so that 1/τ = 1.5 fmax. The time of simulation T

is equal to 10.49 s, thus the frequency analysis has a frequency resolution ∆ f

equal to 0.1 Hz. A fixed-step solver is considered because requires less mem-

ory to implement and is faster than the variable-step solver. The simulation

step size equal to the discrete sample time is 1/12500 s to avoid computation

errors. The output is the velocity at the point x1 equal to 0.333 m.

III.1.1 Numerical Results

The unit-frequency normalised coupling matrix Γ has been computed, ac-

cording to the formula (III.2), using the mode shapes and natural frequencies

of the double clamped beam provided by a finite element model realised with

Ansis. The same assumptions of the plate in section II.4 are used for the An-

sis model of the beam. The frame of the system is modelled with a uniform

mesh consisting in 153×7 shell elements for the beam, 12×7×1 solid elements

for each piezoelectric patch at the beam ends and 24×7×1 elements for the
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central piezoelectric patches. Therefore, the matrix Γ is

Γ =




−0.111 0.133 −0.111

0.096 −0.097 −0.099

−0.081 −0.102 −0.083


 (III.7)

Solving the equation set (I.40) using the matrix (III.7), it obtains a transforma-

tion matrix

U =




−0.404 0.642 −0.652

0.656 −0.293 −0.696

−0.638 −0.709 −0.302


 (III.8)

that yields the new coupling matrix

G =




0.202 −0.032 0.013

−0.040 0.160 0.035

0.018 0.037 0.149


 (III.9)

Here, the second step of optimisation introduced in section I.2.2 has not been

performed and the rows of Γ are not mutually perpendicular. In fact, the

angles ϑij between the i-th row and the j-th row of Γ are

ϑ12 = 0.619 π

ϑ13 = 0.455 π

ϑ23 = 0.369 π

(III.10)

For this reason, the entries below and above the main diagonal of G are only

an order of magnitude less than the diagonal entries, so the undesired pie-

zoelectric cross actions decrease but do not vanish. In this case, the proposed

method exploits the fact that in vicinity of a natural frequency, the behaviour

of the beam is dominated by a single mode, as for most mechanical systems.

The piezoelectric shunting controller acts almost independently on the var-

ious modes in part by the effect of the transformation U and in part by a

proper designing that introduces damping in the near of the resonances of

interest without cross actions. Therefore, the controller is designed to affect

only those frequency ranges close to the resonances of mechanical modes in

need of control. Hence, even though it is impractical to make the rows of Γ

mutually perpendicular, a useful performance can be obtained for a most part

of mechanical systems whose poles are well spaced in frequency domain. On
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the contrary, this last feature is unnecessary if the rows of Γ can be made

mutually perpendicular.

Figures from III.3 to III.6 display the transfer mobilities of the uncontrolled

beam with short-circuited piezoelectric elements and the beam with the op-

timal shunts outlined in sections I.6, I.7 and I.8. It is shown that at the first,

second and third eigenfrequencies the controlled beam mobility decreases

of about 20 dB for the passive controllers and even 30 dB for active con-

trollers. Figures III.7-III.9 shows the comparison between impulse response

of the controlled and uncontrolled beam. The controlled response decreases

faster than the uncontrolled one. In fact, at 0.15 s the controlled response

reduces of about 99% for all cases, instead of the uncontrolled one that de-

creases of 98% at 1 s.

The active controllers reach better performance than the passive controllers

but with a greater control effort. In other respect, the passive controllers are

unconditionally stable.
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Figure III.3: Mobility of the uncontrolled beam and the comparison with
proposed control for the passive approach in parallel configuration
implemented on the first three modes.
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Figure III.4: Mobility of the uncontrolled beam and the comparison with
proposed control for the passive approach in series configuration im-
plemented on the first three modes.
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Figure III.5: Mobility of the uncontrolled beam and the comparison with
proposed control for the hybrid approach with capacitance compen-
sation (CC) of 30% and 60% applied on the first three modes.
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Figure III.6: Mobility of the uncontrolled beam and the comparison with
proposed control for the active approach implemented on the first
three modes.
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Figure III.7: Impulse response of the uncontrolled beam and the com-
parison with proposed control for the passive approach in parallel
configuration.
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Figure III.8: Impulse response of the uncontrolled beam and the compar-
ison with proposed control for the hybrid approach with capacitance
compensation (CC) of 30% and 60%.
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Figure III.9: Impulse response of the uncontrolled beam and the compar-
ison with proposed control for the active approach.
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III.2 Fully Clamped Plate Case Study

The plate investigated in this case study is a rectangular fully clamped alu-

minium plate with multiple piezoelectric transducer pairs in bending config-

uration according to figure III.10. In order to control five mechanical modes,

the proposed control uses five piezoelectric transducer pairs. Let the five

transducer pairs be identical, consisting of thin rectangular laminae thickness

polarised, piezoelectric ceramic, covered by metal electrodes with negligible

mechanical properties. The model used below is based on that developed

in chapter II. The domain A = [0, L1]× [0, L2] denotes the region occupied

by the plate and Ak = [x(k)
1,i , x(k)

1, f ] × [x(k)
2,i , x(k)

2, f ] is the region occupied by the

k-th transducer pair. Tables III.3 and III.1 report the material and geometric

characteristics of the plate and of the piezoelectric elements.

Figure III.10: Plate with five piezoelectric transducer pairs in bending
configuration.

III.2.1 Piezoelectric Transducer Allocation

This section presents an example that illustrates the optimisation prob-

lem of the transducer allocation on the plate using the procedure outlined

in section I.2.2 based on the index (I.44), which reduces the error ε of a G
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Table III.3: Geometric and material characteristics of the plate.

symbol value unit

Length L1 0.297 m

Width L2 0.210 m

Thickness h 0.001 m

Density mass ρ 2700 kg m−3

Young modulus Y 69× 10
9 Pa

Poisson’s ratio ν 0.33

non-diagonal. To set up the problem, one piezoelectric pair out of five, A1,

is placed right in the middle of the plate a priori. The other four piezoelec-

tric pairs are located to form a symmetric pattern as shown in figure III.10.

Lengths, a, and widths, b, of the piezoelectric laminae are fixed equal and

comparable with wave lengths of the modes of interest. Thus, the edges of

the piezoelectric elements are 3.6× 10
−2 m, whilst the thickness hp is equal to

2.67× 10
−4 m. These choices allow to make a parameterisation of the trans-

ducer arrangement by means of two scalar parameters [α1, α2] which repre-

sent the coordinates of left lower corner, [x(2)
1,i , x(2)

2,i ], of the piezoelectric pair

A2. Holding their symmetry the positions of piezoelectric pairs from A2 to

A5 are dependent only on the position of A2. Thus, the goal in this example

is to find a set of values [α̃1, α̃2] that maximise the index (I.44), that is

µ(Γ) = ‖DΓΓT‖ − 1
2
‖NΓΓT‖ (III.11)

as parameters [α1, α2], subject to the constraint to avoid overlap between

transducers, vary in a quarter of the plate. Remind that the matrix Γ is related

to the distribution of the piezoelectric transducer pairs, indeed, it can write

Γ = Γ(α1, α2).

To solve this two-dimensional problem, it is necessary to calculate the

coupling matrix, Γ, which requires the computation of the mode shapes and

the natural frequencies of the plate under short circuit condition. The con-

sidered case study has not an eigenvalue problem that leads to closed-form

solutions, owing to boundary conditions as well as mass and stiffness distri-

butions that are non-uniform and non-linear for piezoelectric pairs. Thus, it
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is opportune to seek approximate solutions as for mode shapes and natural

frequencies. For this reason, the entries of Γ have been computed, according

to the formula (II.49), using the mode shapes and natural frequencies of the

plate provided by finite element model realised with Ansis. The frame of the

system is modelled with a uniform mesh consisting in 75×53 shell elements

for the plate and 9×9×1 solid elements for each piezoelectric patch. The plate

is constrained at its border where displacements and rotations are zero, and

the piezoelectric electrodes are short-circuited that is their reference potential

is imposed equal to zero.
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Figure III.11: Piezoelectric placement objective function µ(Γ) for a quar-
ter of plate.

This optimisation is iterative and requires the computation of the whole fi-

nite element model at each step, thus it is very expensive. For this reason,

a roughly analysis is previously performed using mode shapes and natural

frequencies of the plate without transducers. This analysis based on the pro-

cedure described in appendix A.3, permits to make faster the following finite

element analysis using as initial guess for the parameter vector [α1, α2] the

optimal parameter vector obtained in this preceding step, see figure III.11.

Thus, the starting guess is initialised to [6.22, 5.50] × 10
−2 and the optimal

parameter vector obtained with the finite element model is

[α̃1, α̃2] = [6.76, 5.54]× 10
−2 (III.12)

85 of 143



Chapter III. Numerical Simulations

which corresponds to the position of the piezoelectric elements represented in

figure III.10. Note that the finite element analysis yields little different result

from the preliminary one, so it could be safely ignored.

III.2.2 Numerical Results and Comparisons

The unit-frequency normalised coupling matrix Γ for the plate is given by

Γ =




0.196 0.0849 0.0849 0.0849 0.0849

0 0.151 −0.151 −0.151 0.151

0 0.149 0.149 −0.149 −0.149

0.212 −0.121 −0.121 −0.121 −0.121

0 0.198 −0.198 0.198 −0.198




(III.13)

the transformation matrix U is

U =




0.754 0 0 0.657 0

0.328 0.5 0.5 −0.377 0.5

0.328 −0.5 0.5 −0.377 −0.5

0.328 −0.5 −0.5 −0.377 0.5

0.328 0.5 −0.5 −0.377 −0.5




(III.14)

and the coupling matrix in the coordinates χk(t) becomes

G =




0.250 0 0 9.75× 10
−4

0

0 0.302 0 0 0

0 0 0.297 0 0

7.84× 10
−4

0 0 0.323 0

0 0 0 0 0.396




(III.15)

In this case the second step of optimisation introduced in section I.2.2 has

been performed and the rows of Γ are all mutually perpendicular, although

the angle ϑ14 between the first row and the fourth row of Γ is a slightly

different, it is in fact 0.498π.

To validate damping performances of the proposed control, a Simulink

model with the same layout used for the beam is employed. In detail, the

plate is excited by an impulse with a frequency spectrum over a frequency

range from near zero to fmax that is 1000 Hz. The mobility is considered be-

tween the transversal force applied at the point Pf shown in figure III.10, and
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the transversal velocity calculated at the same point. The position of the point

Pf is chosen to excite and observe all modes in the frequency range of interest

by avoiding nodal lines as more as possible. The impulse has a peak value F0

of 1 N and a time duration τ of 3.33× 10
−4 s so that 1/τ = 1.5 fmax. The time

of simulation T is equal to 10.49 s, thus the frequency resolution ∆ f is 0.1 Hz.

The simulation step size is set equal to 1/12500 s to avoid computation er-

rors. To take into account the spillover problem the system model consists of

ten mechanical modes instead of five. Figures from III.12 to III.14 display the

point mobilities of the uncontrolled plate with short-circuited piezoelectric el-

ements and the controlled plate with the optimal shunting networks outlined

in sections I.6, I.7 and I.8. It is shown that at the first five eigenfrequencies the

controlled plate mobility decreases of about 25 dB for the passive controllers

and even 26 dB for active controllers. The proposed control is equally effec-

tive on all modes acting simultaneously on five picks. Similar considerations

to the ones presented for the beam can be made about the plate.

� � �

141 227 355 391 429 612 689 820

−70

−60

−50

−40

−30

−20

−10

0

10

M
ob

ili
ty

 M
od

ul
us

 (
dB

 r
e 

1 
m

 s
−

1 /N
)

 

 

141 227 355 391 429 587 689 760
−1

−0.5

0

0.5

1

Frequency (hertz)

P
ha

se
 (

ra
d/

π)

 

 

Uncontrolled
Fixed points
Pole allocation

Figure III.12: Mobility of the uncontrolled plate and the comparison with
proposed control for the passive approach in parallel configuration
implemented on the first five modes.
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Figure III.13: Mobility of the uncontrolled plate and the comparison with
proposed control for the hybrid approach with capacitance compen-
sation (CC) of 30% and 60% applied on the first five modes.
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Figure III.14: Mobility of the uncontrolled plate and the comparison with
proposed control for the active approach implemented on the first
five modes.
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Figure III.15: Impulse response of the uncontrolled plate and the com-
parison with proposed control for the passive approach in parallel
configuration.
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Figure III.16: Impulse response of the uncontrolled plate and the compar-
ison with proposed control for the hybrid approach with capacitance
compensation (CC) of 30% and 60%.
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Figure III.17: Impulse response of the uncontrolled plate and the com-
parison with proposed control for the active approach.

Several authors extended the technique of the single shunt to damp multi-

ple mechanical modes [Hollkamp, 1994; Wu, 1998; Behrens et al., 2003]. They

shunt a single piezoelectric element with a circuit including several resistors,

capacitors, and inductors, to obtain a multi-resonant behaviour.

Figure III.18: A single shunt for multi-modal current flowing control.

Among the different solutions, the current flowing shunt circuit proposed

in [Behrens et al., 2003] seems the most efficient thanks to the modular cir-
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cuital pattern and the reduced number of elements. The shunt has as many

parallel branches as the number of mechanical modes to be damped. Each

branch is a series composed of two inductors L̂i, L̃i, a capacitor Ki and a re-

sistor Ri. The series L̂iKi behaves as a passband filter centred at the eigenfre-

quency ωi of the i-th mechanical mode; in that frequency interval, the series

L̃iRi operates in a similar way as in a resistive-inductive single resonant cir-

cuit. Ideally, with this configuration each branch controls a single mechanical

mode, without affecting the others. With this assumption, the optimal induc-

tance for i-th mode would have the following expression

Li = L̂i + L̃i =
1

ω 2
i

(
1
Ki

+
1

Ch

)
(III.16)

where Ch is the capacitance of the piezoelectric transducer. To account for

the undesired cross influence of the branches on the mechanical modes to be

controlled, a further numerical fine-tuning is applied. Also, the additional ca-

pacitances Ki’s are set approximately to 10% of the piezoelectric capacitance

Ch, considering that additional capacitances worsen the electro-mechanical

coupling and smaller capacitances requires larger inductances. Finally, the

Table III.4: Parameters of the five current flowing circuits identical used
for comparison.

I branch II branch III branch IV branch V branch

Li H 89.61 33.98 13.97 11.14 8.84

Ri kΩ 4.5 3.5 1.7 1.5 1.5

Ki nF 14.6 14.6 14.6 14.6 14.6

performance of the proposed shunting controls is compared with this multi-

modal shunting technique. To make this method comparable with the pro-

posed shunting technique, the single-shunt approach is generalised for the

use of multiple piezoelectric patches. Consequently, the five piezoelectric ele-

ments are shunted with five identical multi-resonant current flowing circuits.

Table III.4 reports the corresponding numerical values for the circuital com-

ponents in figure III.18. The inductances of each shunt are chosen according

to (III.16), with a further numerical fine-tuning. The resistances Ri’s are opti-
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mised numerically to minimise the maximum amplitude of the plate mobility

function around each natural frequency.
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Figure III.19: Mobility of the uncontrolled plate and the comparison be-
tween the proposed control for passive approach in parallel configu-
ration and the current flowing control on the first five modes.

Figure III.19 shows that with this approach the maximum reduction in the

magnitude of mobility is of about 15 dB instead of 25 dB. The main feature of

the proposed technique is to exploit the coupling of the different piezoelectric

transducers in an optimal way, by the maximisation of the transfer power and

improvement of the energy flux efficiency between the mechanical and electri-

cal system. Furthermore, the proposed approach does not employ additional

capacitances which reduce the efficiency of electromechanical coupling.
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CHAPTER IV

Laboratory Experiments

If we were not ignorant there would be no

probability, there could only be certainty. But

our ignorance cannot be absolute, for then

there would be no longer any probability at

all. Thus the problems of probability may be

classed according to the greater or less depth

of our ignorance.

Henri Poincaré (1854–1912)

French physicist

E
xperimental results are presented in this chapter for a thin beam with

both ends clamped to illustrate the effectiveness of proposed controls.

First, a system parameter identification is accomplished for obtaining an ad-

equate understanding —both mechanical and electrical— of the laboratory

prototype through a multi-degree-of-freedom curve-fitting. Comparison be-

tween numerical simulations and experimental measurements is shown. Fi-

nally, the proposed control is tested and proved to be reliable.

IV.1 Experimental Set Up

The test system is a uniform aluminium beam with rectangular cross sec-

tion and experimentally clamped boundary conditions at both ends. Great

attention has been devoted to fix end points of the beam to ground, in order

to ensure that the whole assembly gives repeatable results. One of the tackled
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problems is the change in stiffness due to axial load caused by environment

temperature variations. To avoid this problem the axial displacement at one

end is allowed. Three pairs of piezoelectric ceramic rectangular patches are

bonded symmetrically to either side of the beam surface. Each pair is con-

nected in parallel. They are used as actuator to provide disturbing force, as

sensor and also as shunting layer. Experimental structure is displayed in fig-

ure IV.1 and is the same described in chapter III.

Figure IV.1: Experimental beam.

IV.1.1 Mobility Estimations

To estimate mobilities of interest, the beam is excited by one piezoelec-

tric actuator with a random band-limited signal so as to excite four bending

modes with a frequency spectrum covering a range from near zero to 700 Hz.

A power amplifier to drive the piezoelectric actuator with voltage is used.

The National Instruments PCI-6711 board is used as an arbitrary waveform

generator. The analog outputs of this board have a resolution of 12 bits with

an update rate of 1 megasample per second, a maximum voltage range of

±10 V and a range accuracy of 8.62 mV. It is well known that the piezoelec-

tric material presents a non-linear behaviour when the level of excitation is

very high. To check for non-linearity a particular mobility measurement has
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IV.1. Experimental Set Up

been repeated a number of times using different levels and types of excita-

tion. Thus, a level of excitation equal to 1 V has been chosen to avoid non-

linearity. A Polytec scanning laser vibrometer PSV-400 provides the output at

the point with a distance 0.33 m from the left end of the beam. The National

Instruments PCI-4552 board is the data acquisition device that have a reso-

lution of 16 bits with a frequency accuracy of ±25 ppm and sampling rates

from 5 to 204.8 kilosample per second in increments of 190.735 microsample

per second. The analysis is performed with a frequency resolution of about

195 mHz and 64 averages. The sample frequency is 3.2 kHz to avoid alias-

ing. The nominal estimate of the mobility function magnitudes,
∣∣Ĥ( f )

∣∣, and

phases, α̂( f ), are shown in figures IV.2-IV.4 using each of the three piezo-

electric transducers as actuator. The coherence data advise that the estimate

mobility magnitudes and phases involves random or bias errors. However,

it should be noted that the coherence is near unity at most frequencies and

there are significant notches also at frequencies that coincide with notches in

mobility magnitudes as it is expected.

In the figures, it is shown also the uncertainty regions at all frequencies.

Assuming 3 standard deviations of the normal distribution, there is a 99.6%

probability that the true response is within the uncertainty band. The random

error is directly related to the coherence function γ̂2
xy( f ) and the number of

averages nd used in calculations of the spectral density estimates. The nor-

malised random error of the mobility magnitude
∣∣Ĥ( f )

∣∣ and the standard

deviation of the mobility phase α̂( f ), in accordance with [Bendat and Piersol,

1980], are given by

ε
[∣∣Ĥ( f )

∣∣] =

√
1− γ̂2

xy( f )
∣∣γ̂xy( f )

∣∣√2nd
σ[α̂( f )] = arcsin{ε

[∣∣Ĥ( f )
∣∣]} (IV.1)

Specifically, the magnitude |H( f )| and the phase α( f ) can be expressed with

the 99.6% confidence interval by

|H( f )| =
∣∣Ĥ( f )

∣∣ (1± 3 ε
[∣∣Ĥ( f )

∣∣])
α( f ) = α̂( f )± 3 σ[α̂( f )]

(IV.2)
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Figure IV.2: Mobility function for beam experiment using as actuator the
first piezoelectric double element.
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Figure IV.3: Mobility function for beam experiment using as actuator the
second piezoelectric double element.
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Figure IV.4: Mobility function for beam experiment using as actuator the
third piezoelectric double element.

IV.2 System Identification

IV.2.1 Mechanical Parameters

The mobility functions estimated are collected as magnitude and phase

vectors depending on the frequency. Denoting the generic mobility measured

data with a complex vector Ĥ(Ωl) at each circular frequency Ωl of the mea-

sure, modal parameters, that is resonance frequencies, damping ratios and

modal constants, are extracted from the actual measured data by perform-

ing multi-degree of freedom curve fits. To this end, consider the following

mobility evaluated at the same frequencies

H(Ωl) =
4

∑
r=1

i Ωl PrhWr(x1,m)
ω2

r −Ω2
l + 2 ξrωri Ωl

+
i Ωl

KRes
(IV.3)

where the quantity KRes is the residual stiffness due to the high frequency

modes, see [Ewins, 1984]. The coefficients PrhWr(x1,m), ωr, ξr, KRes are all to

be determined as the index r varies over the modes of interest taking into

account the h-th piezoelectric actuator. The modal constant PrhWr(x1,m) is the

product of the coupling matrix entry Prh and the mode shape of the beam
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evaluated at the measure point x1,m. This non-linear curve-fitting problem is

solved in least-squares sense defining the cost function

E =
N

∑
l=1

wl(Ωl)
∣∣∣
(

Ĥ(Ωl)− H(Ωl)
)2
∣∣∣ (IV.4)

in which wl(Ωl) is a weighting factor, and N is the number of the data points.

The curve fit process has to determine the values of the unknown modal

parameters such that the error E is minimised.

After performing the curve fits, to evaluate the goodness of fit the R2 indi-

cator has been examined separately for the magnitude and phase of mobility

functions. Indeed, R2 can take on any value less than or equal to one, with

a value closer to one indicating a better fit. In particular, the R2 is adjusted

based on the residual degrees of freedom, V, defined as the number of data

values N minus the number of fitted coefficients F. Therefore, the degrees of

freedom adjusted R2 is defined as

R2 = 1− SSE (N − 1)
SST (V)

(IV.5)

in which SSE is the sum of squares due to error and represents the total

deviation from the fit to the response values whilst SST is also called the sum

of squares about the mean and represents the total deviation from the mean

to the response values.

During the estimation process, uncertainty information is taken into ac-

count. The coherence function, γ̂2
xy(Ωl), is chosen as weighting function wl .

In figures IV.5-IV.10, it is shown the comparison between the measured mo-

bility functions and the regenerated curves obtained by the extracted modal

parameters. The obtained modal parameters of interest are summarised in

tables IV.2 and IV.1. In table IV.2 are presented also the resonance frequen-

cies obtained by the finite element analysis for comparing experimental and

numerical results.

Table IV.1: Damping ratio of the bending modes.

mode 1 mode 2 mode 3 mode 4

(3.48± 0.04)10
−3 (2.97± 0.06)10

−3 (2.30± 0.06)10
−3 (4.2± 0.1)10

−3
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Figure IV.9: Comparison of measured mobility with the third piezoelec-
tric actuator and curve fit.
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Table IV.2: Resonance frequencies of the beam.

experimental (Hz) numerical (Hz) discrepancy (%)

mode 1 75.2± 0.2 74.6 0.8

mode 2 210.3± 0.3 209.6 0.3

mode 3 405.9± 0.2 405.6 0.08

mode 4 661.0± 0.7 662.4 0.2

IV.2.2 Piezoelectric Parameters

Piezoelectric parameters can be extracted from electric impedances of

the piezoelectric transducers by performing multi-degree of freedom curve

fits. The piezoelectric impedances to be measured is obtained by applying a

broad-band random excitation current over a frequency range near zero to

700 Hz and then measuring the resulting voltage response on the same pi-

ezoelectric transducer. This type of test requires a current source which is

voltage driven. By using a Fourier analysis, the electric impedance, Ẑh(Ωl),

can be estimated as a complex vector for the h-th piezoelectric transducer at

each circular frequency Ωl of the measure. The analysis is performed with a

frequency resolution of 0.1 Hz and 15 averages. Piezoelectric parameters, that

is capacitances and coupling coefficients, can be obtained directly by fitting

the actual measured data with the following impedance

Zh(Ωl) =
Gm

i Ωl

(
Ch +

1
i Ωl RN

+
4

∑
r=1

P2
rh

ω2
r −Ω2

l + 2 ξrωri Ωl

)−1

(IV.6)

where Gm, equal to 0.0065 S, is the transconductance1 of the voltage controlled

current source and RN is its Norton’s equivalent resistance. The coefficients

P 2
rh and Ch are all to be determined. This non-linear curve-fitting problem

is solved in least-squares sense as made for the mobility functions. The nor-

malised piezoelectric coupling coefficients are computed by the following re-

lationship

Γjh =
Pjh

ωj
√

Ch
(IV.7)

1Transconductance, also known as mutual conductance, is the ratio of the current at the

output port and the voltage at the input ports of certain electronic components.
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The obtained piezoelectric parameters are summarised in tables IV.3 and

IV.4. In figures IV.11-IV.16, it is shown the comparison between the mea-

sured piezoelectric impedances and the regenerated curves obtained by the

extracted piezoelectric parameters.

Table IV.3: Curve-fitting estimated piezoelectric coupling coefficients.

piezo 1 piezo 2 piezo 3

mode 1 −0.093± 0.005 0.111± 0.005 −0.100± 0.003

mode 2 0.075± 0.002 −0.084± 0.003 −0.090± 0.002

mode 3 −0.063± 0.001 −0.084± 0.002 −0.073± 0.002

mode 4 −0.042± 0.001 −0.123± 0.002 0.046± 0.001

Table IV.4: Curve-fitting estimated piezoelectric capacitances (nF).

pair 1 pair 2 pair 3

100.4± 0.5 204± 2 96.6± 0.4

� � �

Alternatively it is possible to perform an identification procedure based

on one-mode approximation to measure the piezoelectric coupling param-

eters exploiting the classical results based on the inductive-resistive single

resonant piezoelectric shunt circuit and the fixed point theory. For further

details the reader is referred to the paper [Porfiri et al., 2007]. The beam is ex-

cited through one piezoelectric transducer by a voltage source using a chirp

signal of amplitude 1 V which rises linearly in frequency nearly to the me-

chanical eigenfrequency of interest for a time of 10 s. A second two-element

piezoelectric transducer is used as sensor, to obtain the frequency response

function of the system. The last piezoelectric transducer is shunted with a

series RL tuned circuit where the inductor is a variable device op-amp based.

According with the fixed point theory, the coupling parameters are calculated
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Figure IV.11: Comparison of measured electric impedance of the first pi-
ezoelectric transducer and curve fit.

−50 0 50 100 150 200
−220

−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

Real axis

Im
ag

in
ar

y 
ax

is

mode 1

mode 3mode 4

mode 2

Figure IV.12: Nyquist plot of impedance of the first piezoelectric trans-
ducer and curve fit.

104 of 143



IV.2. System Identification

73.5 207.5 401.7 655.8

5

10

15

20

25

30

35

40

45

M
ag

ni
tu

de
  (

dB
−

re
f.:

 0
 d

B
 =

 1
  V

/V
)

 

 

73.5 207.5 401.7 655.8
−2

−1.5

−1

−0.5

0

0.5

1

frequency,  Hz

P
ha

se
,  

ra
d

Measured data
Regenerated curve

R2 =0.999920

R2 =0.994826
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piezoelectric transducer and curve fit.
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Figure IV.15: Comparison of measured electric impedance of the third
piezoelectric transducer and curve fit.
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ducer and curve fit.

106 of 143



IV.3. Control Validation

using the following relation

Γjr =

√√√√√−β2
jr +

√√√√β4
jr +

(
ω2

T −ω2
S

)2

ω4
j

(IV.8)

where β jr is the ratio of the electric resonance of the RLC shunt circuit on

the r-th piezoelectric transducer and the mechanical eigenfrequency ωj. The

frequencies ωS and ωT are the fixed points as depicted in figure IV.17. The

inductance is tuned to have a ratio β jr equal to one. The obtained results are

shown in table IV.5. In table IV.6 are shown the coupling coefficients obtained

via a finite element model and the comparison between direct measurement

and prediction.

Table IV.5: Normalised piezoelectric coupling coefficients.

piezo 1 piezo 2 piezo 3

mode 1 −0.095± 0.007 0.12± 0.02 −0.105± 0.007

mode 2 0.083± 0.005 −0.09± 0.01 −0.090± 0.009

mode 3 −0.068± 0.007 −0.09± 0.01 −0.078± 0.008

mode 4 −0.05 ± 0.01 −0.14± 0.03 0.06 ± 0.01

Table IV.6: Predicted normalised piezoelectric coupling coefficients.

piezo 1 ∆1 (%) piezo 2 ∆2 (%) piezo 3 ∆3 (%)

mode 1 -0.1106 14 0.1327 9 -0.1105 5

mode 2 0.0965 14 -0.0973 7 -0.0987 9

mode 3 -0.0802 15 -0.1025 12 -0.0828 6

mode 4 -0.0637 21 -0.1417 1 0.0610 2

IV.3 Control Validation

IV.3.1 The Control System

To test the proposed control, laboratory experiments carried out in real

time. Specifically, the MathWorks xPC Target is used to create a real-time
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Figure IV.17: FRF of the beam with shunt circuit on the central piezoelec-
tric pair close to the first beam mode to measure coupling coefficients
by fixed points, ωS and ωT .

controller using a standard PC. The xPC Target is an environment that uses

a target PC, separate from a host PC, for running real-time applications. In

this environment a desktop computer is used as a host PC with Matlab and

Simulink to create a model using Simulink blocks. After creating this model

with I/O blocks, it is possible to use the host PC with a C/C++ compiler to

create executable code. It is downloaded from the host to the target PC run-

ning the xPC Target real-time kernel. Target applications created with xPC

Target run in real time on target PC without using a Windows operating sys-

tem. It should be noted that model size, complexity, and target PC hardware

affect maximum speed or minimal sample time of execution. The model em-

ployed, see figure IV.18, can run with a sample time as fast as 33.3 µs, i.e.

30 kHz.

IV.3.2 Results

This section presents the results obtained applying the control technique

described in chapter I. To check the validity of control, a dual channel FFT

analysis is performed to calculate a transfer inertance function which de-

scribes the dynamic behaviour of the system. The disturbance actuator is the
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Figure IV.20: Inertance function of the beam and comparison with pro-
posed control for the first and the third modes.
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Figure IV.21: Inertance function of the beam and comparison with pro-
posed control for the second and the third modes.
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first piezoelectric pairs driven by a linear chirp waveform with a frequency

range from 50 Hz to 800 Hz and an amplitude equal to 3 V. This kind of exci-

tation is chosen instead of a random signal, because the real time application

is not stable for long time acquisition. Therefore, a random analysis, that re-

quired a long time to be representative, is not suitable for this experiment. The

National Instruments PCI-6733 board is used to imposed the forcing inputs.

The analog outputs of this board have a resolution of 16 bits with an update

rate of 1 megasample per second, a maximum voltage range of ±10 V and a

range accuracy of 2.24 mV. A Brüel & Kjær accelerometer is used to measure

the response of the system and, therefore, to estimate inertances. The Na-

tional Instruments PCI-6052E board is the data acquisition device that have a

resolution of 16 bits with a memory on board of 512 samples, a range accu-

racy of 4.747 mV and a sampling rate of 333 kilosample per second. The other

two piezoelectric transducers are utilised to control the beam vibrations. To

implement the shunt control network, voltage-controlled current sources are

employed in conjunction with the PCI-6733 board as shown in figure IV.18.

The measurement time is 10 s, hence the frequency analysis has a frequency

resolution ∆ f = 0.1 Hz. The figures from IV.19 to IV.21 shows the transfer

inertance functions and the comparison between the system without control

and with the control applied on two modes. It is shown also as the virtual

passive network system used to control two modes acts over different pair of

modes attesting to be equally able to accomplish the purpose of reducing

vibrations.
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Conclusions

T
his research work is concerned with modelling and analysis of devices

for control of mechanical structure vibrations using piezoelectric trans-

ducers. It casts into the framework of advanced technology and engineering

science and a special attention is devoted to the control of vibrations of one or

two dimensional elastic continua as beam or plate equipped with piezoelec-

tric transducers connected to electric network systems. The main result of this

thesis is an extension of the known piezoelectric shunt damping techniques.

A specific technique has been presented for controlling a certain num-

ber of structural modes by an identical amount of piezoelectric transducers

shunted with a multi-terminal electric network system. The design of the sys-

tem for control vibrations is based on the intent to make the whole consid-

ered system equivalent to a set of independent, single resonant piezoelectric

shunting systems, referred to as generalised piezoelectric shunting systems. A

particular attention is devoted to a passive approach using different kinds

of generalised piezoelectric shunting system with resistive-inductive circuits,

parallel and series configurations. Two methods are considered for optimis-

ing the generalised electrical circuit of control: (i) the fixed points theory and

(ii) pole allocation. Comparisons of the results are discussed in details. Dif-

fering from existing approaches which consider several shunts separately, the

proposed shunting technique consider a multi-terminal network which inter-

connects the piezoelectric transducers for a spatial, simultaneous control of

different mechanical modes. In the case of the passive approach, the shunting

network forms, with the inherent piezoelectric capacitances at blocked modal

deflections, a multi-degrees of freedom electric system having the following

modal properties: (i) the same natural frequencies of the set of mechanical

modes to be controlled, (ii) optimal damping ratios to absorb the mechanical
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energy, (iii) eigenvectors that maximise the spatial coupling with the original

mechanical modes having the same eigenfrequency.

Two optimization problems were shown. By introducing a proper trans-

formation of electric coordinates, a one to one correspondence between the

modal mechanical and new electric degree of freedom is approximately at-

tained in order to regard the whole system as a set of the generalised piezo-

electric shunting systems. Further, the distribution of the piezoelectric trans-

ducers is improved to maximise the damping performance. Two numerical

cases, a double clamped beam and a fully clamped plate, was developed to

validate the technique. Specifically, mobility functions are computed for the

mechanical systems with piezoelectric transducers connected to optimal elec-

tric shunt networks and comparisons to uncontrolled systems place the effi-

ciency of the control in evidence. The numerical simulations, performed with

Simulink, show that the damping performance is considerably increased

with respect to existing techniques for reducing vibrations in a wide range of

frequencies. This is mainly due to two reasons: the effective optimal use of

all the transducers for all the modes, the avoidance of the usage of additional

external capacitors, which decrease the electromechanical couplings.

Besides, an experimental test case was accomplished in order to test the

effectiveness of the proposed control: an aluminium double clamped beam

with rectangular cross section and equipped with three pairs of piezoelectric

elements. In experimental implementations, the required shunting network

was obtained by an active feedback control, measuring the voltages at pie-

zoelectric electrodes and using multiple voltage-controlled current sources to

impose the forcing signal in order to mimic the behaviour of the designed

network. This control was carried out on real time with the help of a desktop

computer and Matlab and Simulink software. The present damping tech-

nique can be classified as a virtual passive damping in the sense of [Juang and

Phan, 1992]. The main advantage with respect to purely active approaches

is the unconditionally stability of the system. The formulation is model-

independent in the sense that a very accurate knowledge of the system dy-

namics, linear or non-linear, is not an essential requisite in the design process,

therefore this approach is robust with respect to parameter variations. An im-

portant feature of this formulation is that the controller gains have physical
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interpretation. Therefore, one can visualise how the controller is removing

energy from the system and tune the controller gains accordingly. Since pi-

ezoelectric elements exhibit actuation and sensing abilities within a single

transducer, this approach is feasible considering it requires the collocation of

sensors and actuators.

Suggestions for Future Works

Herein most attention is devoted to a passive approach even for the pro-

vided advantages. On the other hand, the suggested technique can be applied

for active structural control which, in spite of a major control effort and stabil-

ity issues, allows to obtain better performance. In section III numerical sim-

ulations involving active controllers are performed and comparisons of the

results are commented but now, to check the validity of this active approach

experimental test cases are needed.

The proposed technique for designing control systems reducing vibra-

tions is based on a good understanding of the mechanical structure endowed

with piezoelectric transducers and its environment. However, in a number

of instances, the structure to be controlled is too complicated and the basic

physical processes in it are not fully understood. Control design techniques

then need to be augmented with an identification technique aimed at obtain-

ing a progressively better understanding of the structure to be controlled. It

is, thus, intuitive to aggregate system identification and control. In this dis-

sertation, the two steps are taken separately. Therefore, I suggest as line of

approach for further development the use of adaptive controllers that is cen-

tred around a fixed-structure controller of the same kind presented herein

but with adjustable parameters, i.e. controllers possess a mechanism for auto-

matically adjusting parameters based on system identification and posterior

information. The use of adaptive control is justified on complex systems ex-

hibiting non-linear and time-varying dynamics or when the use of a fixed

controller cannot achieve a satisfactory compromise between robust stability

and performance.

Finally, as a further application, it is possible to consider the problem of

acoustic radiation. Noise reduction of panels is increasingly required in air-

crafts, cars, ships, buildings, etc., to provide a comfortable living environment.
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APPENDIX A

Rectangular Plates

A.1 Newtonian Formulation

In order to write the governing equation of the plate take a rectangular

element, ABCD, out of plate, whose sides are parallel to coordinate axes and

having lengths arbitrary small, respectively ∆x1 and ∆x2, and corner A with

coordinates (x̃1, x̃2). In this case the only significant loads are: the shear forces

V1 and V2; the bending moments M1 and M2; the twisting moment M12.

They are considered per unit of length. Single subscripts are representative

for the normal to side on which they act. See the figure A.1 for agreements

with signs. Let f3 be an arbitrary load per unit of surface acting orthogonally

to middle surface. The basic tool in applying Newton’s second law is the

free-body diagram. Free-body diagram allows to write the equilibrium of the

forces along the x3 axis for the element ABCD
∫ x̃2+∆x2

x̃2

[V1(x̃1 + ∆x1, x2, t)−V1(x̃1, x2, t)] dx2 +

+
∫ x̃1+∆x1

x̃1

[V2(x1, x̃2 + ∆x2, t)−V2(x1, x̃2, t)] dx1 +

+
∫ x̃2+∆x2

x̃2

∫ x̃1+∆x1

x̃1

f3(x1, x2, t) dx1 dx2 = 0

(A.1)

taking in account the definition of partial derivative and grouping together

the terms, it can be shown that
∫ x̃2+∆x2

x̃2

∫ x̃1+∆x1

x̃1

(∂V1(x1, x2, t)
∂x1

+
∂V2(x1, x2, t)

∂x2
+ f3(x1, x2, t)

)
dx1dx2 = 0

(A.2)
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Figure A.1: Free-body diagram. Agreements with positive signs of load
per unit of length acting on arbitrary plate element.

owing to the arbitrary chosen of ∆x1 and ∆x2 and because the integrand

function is continuous the (A.2) is equivalent to the equation at any point

into A

∂V1(x1, x2, t)
∂x1

+
∂V2(x1, x2, t)

∂x2
+ f3(x1, x2, t) = 0 ∀ x1, x2 ∈ A (A.3)

Equilibrium of the moments with respect to the pole A projected on the

x1 axis can be developed in this way
∫ x̃1+∆x1

x̃1

[M2(x1, x̃2 + ∆x2, t)−M2(x1, x̃2, t)] dx1 +

+
∫ x̃2+∆x2

x̃2

[M12(x̃1 + ∆x1, x2, t)−M12(x̃1, x2, t)] dx2 +

−
∫ x̃2+∆x2

x̃2

V1(x̃1 + ∆x1, x2, t)(x2 − x̃2) dx2 +

+
∫ x̃2+∆x2

x̃2

V1(x̃1, x2, t)(x2 − x̃2) dx2 +

−
[ ∫ x̃1+∆x1

x̃1

V2(x1, x̃2 + ∆x2, t) dx1

]
∆x2 +

−
∫ x̃2+∆x2

x̃2

∫ x̃1+∆x1

x̃1

f3(x1, x2, t)(x2 − x̃2) dx1dx2 = 0

(A.4)

using the (A.3) and integrating by parts the last addend of the (A.4) it obtains
∫ x̃2+∆x2

x̃2

∫ x̃1+∆x1

x̃1

(∂M2(x1, x2, t)
∂x2

+
∂M12(x1, x2, t)

∂x1
−V2(x1, x2, t)

)
dx1dx2 = 0

(A.5)
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and likewise said for the (A.3)

∂M12(x1, x2, t)
∂x1

+
∂M2(x1, x2, t)

∂x2
−V2(x1, x2, t) = 0 ∀ x1, x2 ∈ A (A.6)

Proceeding in the same way for the equilibrium of the moments along the x2

axis with respect to the pole A, it can be written

∂M1(x1, x2, t)
∂x1

+
∂M12(x1, x2, t)

∂x2
−V1(x1, x2, t) = 0 ∀ x1, x2 ∈ A (A.7)

At this point differentiating the (A.7) with respect to x1, the (A.6) with respect

to x2, summing term to term and using the (A.3), the governing equation of

plate in terms of moment is

∂2M1

∂x2
1

+ 2
∂2M12

∂x1∂x2
+

∂2M2

∂x2
2

+ f3 = 0 ∀ x1, x2 ∈ A (A.8)

The relationships between considered loads and the stress tensor compo-

nents are given by

M1 ,
∫ h

2

− h
2

T11 x3 dx3, M2 ,
∫ h

2

− h
2

T22 x3 dx3

M12 ,
∫ h

2

− h
2

T12 x3 dx3

(A.9)

V1 ,
∫ h

2

− h
2

T13 dx3, V2 ,
∫ h

2

− h
2

T23 dx3 (A.10)

Remark A.1. It is important to note from the (A.10) that if T13 and T23 are

identically null along the thickness, h, shear forces will be zero. It is absolutely

essential, however, to hold that they are different from zero for the above.

Actually, considering the (II.1), it is clear that the terms of order zero and

first, in which it is possible to expand such components of the stress tensor in

a Taylor series, are null. Hence, it is necessary to consider the terms of higher

order, that, albeit small, it is not allowed to neglect with respect to zero. It

can establish by some elementary considerations that the quadratic term is,

on the contrary, different from zero.

� � �
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Using the (II.4) and the (II.3), the relationships between displacements and

moments can be written as

M1 = −B
(∂2w

∂x2
1

+ ν
∂2w
∂x2

2

)

M2 = −B
(∂2w

∂x2
2

+ ν
∂2w
∂x2

1

)

M12 = −B (1− ν)
( ∂2w

∂x1x2

)

(A.11)

where B is the flexural modulus and it is defined by

B =
Yh3

12 (1− ν2)

In accord with the D’Alembert’s principle, to obtain the motion equation

is sufficient to relate f3 with the inertial force per unit of surface. It is given

by

f3 = −ρ h
∂2w
∂t2 + p(x1, x2, t)

where ρ is the mass density, constant for the homogeneity and p(x1, x2, t) is

any external pressure. Substituting the (A.11) into (A.8), finally the governing

equation of the plate assumes the form

B ∇4w(x1, x2, t) + ρ h
∂2w
∂t2 (x1, x2, t) = p(x1, x2, t) ∀ x1, x2 ∈ A (A.12)

The boundary conditions are given by




w(x1, x2, t) = 0 ∀ x1, x2 ∈ ∂A and ∀ t ≥ 0

∂w
∂n̂

(x1, x2, t) = 0 ∀ x1, x2 ∈ ∂A and ∀ t ≥ 0
(A.13)

and to complete the partial differential problem, the initial conditions take

the following form




w(x1, x2, 0) = w0(x1, x2) ∀ x1, x2 ∈ A

∂w
∂t

(x1, x2, 0) = ẇ0(x1, x2) ∀ x1, x2 ∈ A
(A.14)

Into (A.13) and (A.14), the n̂ indicates the normal to ∂A , w0 and ẇ0 represent

the initial configuration and the initial velocity, respectively.
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A.2 Hamiltonian Formulation

Hamilton’s principle, so as many other equivalent principles, called of

minimum action, on the contrary of Newtonian formulation reduces dynamic

problems to the investigation of a scalar integral. Such approach, also named

weak, not only are easier to employ, but are invariant with respect to the refer-

ence frame used. A variational principle, furthermore, provides the boundary

conditions compatible with made hypotheses. For instance, think with regard

to the generalised transverse shear force of the plate with the boundary con-

ditions completely free [Vasiliev, 2000]. In some cases the Newtonian formu-

lation, also called strong, is not applicable because it is not at all easy to find a

law that expresses correctly the acting force model. In the strong formulation,

if any term has discontinuities, it is not allowed to look for the solution that

satisfies the problem at all points, because does not exist. On contrary, it is

allowed to search solutions for the weak problem, in which weaker properties

are required.

At this point, Hamilton’s principle needs of greater investigation. In sec-

tion II.1.2, the expressions of the kinetic energy (II.7), the strain one (II.11) and

the virtual work of external forces (II.12) for a flexible thin plate are derived.

Maintaining the same meaning for symbols, if one introduces them into the

expression of the Hamilton’s principle (II.6) obtains

∫ t1

t0

{ ∫∫

A
ρ h

∂w
∂t

δ

(
∂w
∂t

)
dA +

−
∫∫

A
B
[

∂2w
∂x2

1
δ

(
∂2w
∂x2

1

)
+

∂2w
∂x2

2
δ

(
∂2w
∂x2

2

)]
dA +

−
∫∫

A
B ν

[
∂2w
∂x2

2
δ

(
∂2w
∂x2

1

)
+

∂2w
∂x2

1
δ

(
∂2w
∂x2

2

) ]
dA +

−
∫∫

A
2B (1− ν)

[
∂2w

∂x1∂x2
δ

(
∂2w

∂x1∂x2

)]
dA +

+
∫∫

A
p δw dA

}
dt = 0

(A.15)

Assuming the operator δ and the derivatives, both spatial and temporal, are

commutative, that it is possible to interchange the integrations made with

respect to the time and these with respect to spatial variables, it can integrate
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by parts and obtain

IK = −
∫∫

A

(∫ t1

t0

ρ h
∂2w
∂t2 δw dt

)
dA (A.16)

where IK indicates the first addend of the (A.15) related to the kinetic en-

ergy. Here, δw is assumed equal to zero at t = t0 and t = t1 considering

synchronous varied paths. Indicating with IΠi the five terms of the (A.15)

related to the strain energy, it can be written

IΠ1 =
∫ t1

t0

∫ L2

0

[
−B

∂2w
∂x2

1
δ

(
∂w
∂x1

)
+

∂

∂x1

(
B

∂2w
∂x2

1

)
δw
]x1=L1

x1=0
dx2 dt +

−
∫ t1

t0

[∫∫

A

∂2

∂x2
1

(
B

∂2w
∂x2

1

)
δw dA

]
dt

(A.17)

IΠ2 =
∫ t1

t0

∫ L1

0

[
−B

∂2w
∂x2

2
δ

(
∂w
∂x2

)
+

∂

∂x2

(
B

∂2w
∂x2

2

)
δw
]x2=L2

x2=0
dx1 dt +

−
∫ t1

t0

[∫∫

A

∂2

∂x2
2

(
B

∂2w
∂x2

2

)
δw dA

]
dt

(A.18)

IΠ3 =
∫ t1

t0

∫ L2

0

[
−Bν

∂2w
∂x2

2
δ

(
∂w
∂x1

)
+

∂

∂x1

(
Bν

∂2w
∂x2

2

)
δw
]x1=L1

x1=0
dx2 dt +

−
∫ t1

t0

[∫∫

A

∂2

∂x2
1

(
B ν

∂2w
∂x2

2

)
δw dA

]
dt

(A.19)

IΠ4 =
∫ t1

t0

∫ L1

0

[
−Bν

∂2w
∂x2

1
δ

(
∂w
∂x2

)
+

∂

∂x2

(
Bν

∂2w
∂x2

1

)
δw
]x2=L2

x2=0
dx1 dt +

−
∫ t1

t0

[∫∫

A

∂2

∂x2
2

(
B ν

∂2w
∂x2

1

)
δw dA

]
dt

(A.20)

IΠ5 =
∫ t1

t0

[[
−2B(1− ν)

∂2w
∂x1∂x2

δw
]x1=L1

x1=0

]x2=L2

x2=0

dt +

+
∫ t1

t0

∫ L2

0

[
2B(1− ν)

∂3w
∂x1∂x2

2
δw
]x1=L1

x1=0
dx2 dt +

+
∫ t1

t0

∫ L1

0

[
2B(1− ν)

∂3w
∂x2

1∂x2
δw
]x2=L2

x2=0
dx1 dt +

−
∫ t1

t0

[∫∫

A
2B(1− ν)

∂4w
∂x2

1∂x2
2

δw dA

]
dt

(A.21)
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where [ f (x1)]
L1
0 = f (L1)− f (0). Substituting the (A.16)-(A.21) into (A.15) and

remembering that they are defined ∀w ∈ F , it leads to the equation

B
(

∂4w
∂x4

1
+ 2

∂4w
∂x2

1∂x2
2

+
∂4w
∂x4

2

)
+ ρh

∂2w
∂t2 = p (A.22)

this equation being defined into open set A ×R+
0 . It also can be written

∫ L2

0
B
[(

∂3w
∂x3

1
+ (2− ν)

∂3w
∂x1∂x2

2

)
δw
]x1=L1

x1=0
dx2 = 0 (A.23a)

∫ L1

0
B
[(

∂3w
∂x3

2
+ (2− ν)

∂3w
∂x2∂x2

1

)
δw
]x2=L2

x2=0
dx1 = 0 (A.23b)

∫ L2

0
−B

[(
∂2w
∂x2

1
+ ν

∂2w
∂x2

2

)
δ

(
∂w
∂x1

)]x1=L1

x1=0
dx2 = 0 (A.23c)

∫ L1

0
−B

[(
∂2w
∂x2

2
+ ν

∂2w
∂x2

1

)
δ

(
∂w
∂x2

)]x2=L2

x2=0
dx1 = 0 (A.23d)

[[
−2B(1− ν)

∂2w
∂x1∂x2

δw
]x1=L1

x1=0

]x2=L2

x2=0

= 0 (A.23e)

from which all possible boundary conditions can be derived. It is opportune

to note that the equation (A.23e), only defined on the corners of the plate,

takes in account the twisting moment that is not important all times that on

the ∂A is zero δw, as in the case completely clamped.

A.3 Vibration of Fully Clamped Plates

The transverse vibrations of a thin plate have a behaviour described by

the equation (II.13). This last, for free vibrations, assumes the form

B ∇4w(x1, x2, t) + ρ h
∂2w
∂t2 (x1, x2, t) = 0 ∀ x1, x2 ∈P (A.24)

being P the open set equal to (0, L1)× (0, L2). The boundary conditions on

all ∂P , that is the border of P , are given by a clamped edges for all t in R+
0

and more precisely, they are




w(x1, x2, t) = 0

∂w
∂n̂

= 0
(A.25)
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where n̂ represents the unit normal at the domain boundary ∂P . The initial

conditions are




w(x1, x2, 0) = w0(x1, x2) ∀ x1, x2 ∈P

∂w
∂t

(x1, x2, 0) = ẇ0(x1, x2) ∀ x1, x2 ∈P
(A.26)

With the intention to use the Fourier’s method to solve the differential

problem (A.24), (A.25) and (A.26), let the generic stationary wave be ex-

pressed by

w = W(x1, x2)η(t) (A.27)

Substituting the particular solution (A.27) into the equation (A.24), assuming

that w 6= 0 there where w is defined, one finds

− η̈(t)
η(t)

=
B

ρ h
∇4W(x1, x2)

W(x1, x2)
= ω2 (A.28)

where ω2 represents an eigenvalue of the problem obtained from the last

relation of the (A.28)




B
ρ h
∇4W = ω2W ∀ x1, x2 ∈ P

W = 0 ∀ x1, x2 ∈ ∂P

∂W
∂n̂

= 0 ∀ x1, x2 ∈ ∂P

(A.29)

The operator∇4 is self-adjoint1 and positive definite2 thus the problem (A.29)

has the same properties and its eigenvalues are a numerable infinite spectrum

of values all positive, i.e. ω2.

Exact solutions for the problem (A.29) are not representable with an ele-

mentary closed form; only when at least one pair of opposite sides is simply

1A linear operator, L, is self-adjoint in P if and only if ∀ u(x1, x2) and v(x1, x2) functions

opportunely smooth is valid
∫∫

P
v L(u) dx1 dx2 =

∫∫

P
u L(v) dx1 dx2

2A linear operator, L, is positive definite in P if and only if ∀ u(x1, x2) opportunely smooth

is valid ∫∫

P
u L(u) dx1 dx2 ≥ 0

and the integral is equal to zero if and only if u is identically null.
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supported, it is suitable to look for exact solutions in closed form. For other

edge constrains approximate methods are to be employed which at least con-

sent to satisfy the geometric boundary conditions. It is crucial to note that if

eigenfunctions are representable only with proper series of the some orthogo-

nal and complete system, it is very hard to handle them for whatever purpose

though they are suitably truncated. In order to find approximate solutions,

utilisable with ease, the Rayleigh’s principle can be employed. It asserts: “The

vibration frequency of a conservative system close to a configuration of stable equi-

librium has a stationary value in the neighbourhood of a natural mode”. In other

words, given a harmonic motion in the form (A.27), the first variation of E ,

computed as the difference between the maximum strain energy, ΠMax, and

the maximum kinetic energy, KMax, must be null ∀ eigenfunction W, that is a

natural mode. More precisely, E has this aspect

E (W) =
1
2

∫∫

P

{
B
[(∂2W

∂x2
1

)2
+
(∂2W

∂x2
2

)2
+ 2 ν

∂2W
∂x2

1

∂2W
∂x2

2
+

+ 2(1− ν)
( ∂2W

∂x1∂x2

)2
]
−ω2ρhW2

}
dP (A.30)

The equation

δE = 0 (A.31)

is equivalent to the problem (A.29), indeed, if the variational calculation is

developed, then the same problem is obtained. In order to determine an ap-

proximate solution, it is reasonable to search for the optimum separable so-

lutions of the type W(x1, x2) = α(x1)β(x2). The factor functions are called

plate characteristic functions. This allows to write, from the equation (A.31),

two ordinary differential equations to solve simultaneously, with consider-

able simplifications because the linearity of the equations and the constancy

of their coefficients. For more details the reader is referred to [Rajalingham

et al., 1996, 1997]. In general, this factorisation is not at all allowed, here there

is the approximation. The variational formulation aids to understand what it

is doing. In truth, the solutions of these two ordinary equations are the best

approximations of the natural modes taking in account the constrain referred

to the factorisation. That is to say, defining an appropriate distance into the

space of the considered functions, this approximation minimises the errors.
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In order to put the problem in dimensionless form, it needs execute a

proper chance of variables. Let the new variables be

ξ1 = x1/L1 ξ2 = x2/L2 (A.32)

developing the (A.31) with the new variables, as above specified, two ordinary

differential equations are obtained




1
λ2 B(00)αIV + 2B(02)αI I − (v2B(00) − λ2B(04))α = 0

λ2A(00)βIV + 2A(02)βI I − (v2A(00) − 1
λ2 A(04))β = 0

(A.33)

where v = ωL1 L2(ρ h/B)1/2 is the dimensionless circular frequency, whilst

λ = L1/L2 is the aspect ratio and the coefficients are defined by

A(mn) =
∫ 1

0

dmα

dξm
1

dnα

dξn
1

dξ1 B(mn) =
∫ 1

0

dmβ

dξm
2

dnβ

dξn
2

dξ2 (A.34)

The boundary conditions become




α(0) = 0 α′(0) = 0 α(1) = 0 α′(1) = 0

β(0) = 0 β′(0) = 0 β(1) = 0 β′(1) = 0
(A.35)

The general solution of the system (A.33) is representable in the following

way

α(ξ1) = C1 cos(p1ξ1) + C2 sin(p1ξ1) + C3 cosh(p2ξ1) + C4 sinh(p2ξ1)

β(ξ2) = D1 cos(q1ξ2) + D2 sin(q1ξ2) + D3 cosh(q2ξ2) + D4 sinh(q2ξ2)
(A.36)

The characteristic parameters, p1, p2, q1 and q2, can be calculated by the impo-

sition of the boundary conditions (A.35) and by the congruence relations ob-

tained enforcing the (A.36) to be solutions of the (A.33) by means of the (A.34).

At this point, it is opportune to observe that for the symmetry of the plate and

of the boundary conditions, the two solutions (A.36) can be subdivided each

in two subset: symmetric, (S), or antisymmetric, (A), with respect to ξ1 = 1/2

and ξ2 = 1/2. In other words, the solutions assume this shape

α(ξ1) =





cosh[p2(ξ1 − 1/2)]
cosh(p2/2)

− cos[p1(ξ1 − 1/2)]
cos(p1/2)

(S)

sinh[p2(ξ1 − 1/2)]
sinh(p2/2)

− sin[p1(ξ1 − 1/2)]
sin(p1/2)

(A)
(A.37)
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along the ξ1 axis. Similar expressions can be found for the solutions in the

variable ξ2, substituting p1 and p2 with q1 and q2, respectively. The integra-

tion constants Cj and Dj are been computed imposing the condition of null

displacement on all the perimeter of the plate, separating the odd and the

even terms in order to obtain the solutions (S) and (A). Keep in mind that

eigenfunctions are defined unless of the multiplicative constant. Besides, im-

posing the conditions on the first derivatives on all the perimeter of the plate,

one finds

P(p1, p2) = 0 (A.38)

where

P(p1, p2) =





p2 tanh(p2/2) + p1 tan(p1/2) (S)

p1 tanh(p2/2)− p2 tan(p1/2) (A)
(A.39)

The congruence relations, mentioned above, assume the appearance

p 2
2 − p 2

1 = 2 λ2 B(q1, q2) (A.40)

in particular, it has

B(q1, q2) =
B∗ + 1

2 (q 2
2 − q 2

1 )[
(q 2

2 −q 2
1 )

2q 2
2 q 2

1

]
B∗ − 1

(A.41)

where

B∗ =





1− [1− p2 tanh(p2/2)]2 (S)

1−
[

1− p2

tanh(p2/2)

]2

(A)
(A.42)

Operating in the same manner for β(ξ2), from the conditions on the first

derivatives, it arrives to

Q(q1, q2) = 0 (A.43)

being, as it is easy to prove, Q(q1, q2) = P(q1, q2). Moreover, the congruence

relations allow to write

q 2
2 − q 2

1 =
2

λ2 A (p1, p2) (A.44)

with A (p1, p2) = B(p1, p2). Again, from the congruence relations, it can be

written

v2 =
1

λ2 p 2
2 p 2

1 + λ2q 2
2 q 2

1 −
1
2
(p 2

2 − p 2
1 )(q 2

2 − q 2
1 ) (A.45)

125 of 143



Appendix A. Rectangular Plates

From the equations (A.38) and (A.40) as well as from the (A.43) and (A.44), it

is possible calculate the characteristic parameters, and again, from these with

the (A.45), the approximate values for the natural circular frequencies can be

computed. It should be noted that if ( p̃1, p̃2) are characteristic parameters,

even ( p̃1,− p̃2), (− p̃1, p̃2) and (− p̃1,− p̃2) are possible parameters; however,

the sign of these is not crucial considering the (A.37). Thus, without loss of

generality, the characteristic parameters are assumed positive.

In order to computing the characteristic parameters it is possible to follow

the iterative scheme given below:

1) the equation (A.40) is solved with respect to p2;

2) the expression of p2 is introduced into the (A.38), thus p1 is calculated and

afterward p2;

3) knowing the couple (p1, p2), it can compute A ;

4) the equation (A.44) is solved for q2, that is substituted in the (A.43) to

calculate the couple (q1, q2);

5) with this last B is calculated and then, the points 1) and 2) as well as 3)

and 4) are repeated up to convergence;

6) setting B equal to zero as first step, the (A.38) becomes equivalent to the

frequency equation of the fully clamped beam.

Characteristic functions of a rectangular plate having aspect ratio, λ, a

sufficient difference from one denote a good approximation for the eigen-

functions of the problem (A.29). On contrary, in the case in which the aspect

ratio is close to one, it should be remarked some detail in addition. The reader

more careful has, of course, seen that characteristic functions have nodal lines

straight and parallel to Cartesian axes; but there can be vibrational modes

having nodal lines very bending. This occurs because the square plate has

eigenvalues with algebraic multiplicity greater than one, hence, the eigen-

functions referred to these eigenvalues constitute a space with dimension

greater than one. In other words, modal shapes correlated to these eigen-

values can be defined not in unique manner, as a set of functions linearly
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dependent, but with whatever set of functions mutually orthogonal in num-

ber equal to the dimension of the eigenfunction space. Linear combinations

of functions with nodal lines straight can have got nodal lines bending. On

the other hand, in these cases so as to improve the approximation, it possible

to use the Rayleigh-Ritz method proper with the characteristic functions, that

assure a faster convergence.

Table A.1: SS mode parameters for aspect ratio λ =
√

2.

mode p1 p2 q1 q2 v

(1, 1) 4.0774 8.0738 4.4914 5.652 39.305

(3, 1) 10.831 12.774 3.8334 10.638 103.15

(1, 3) 3.4834 20.184 10.952 11.435 178.07

(5, 1) 17.21 18.442 3.5638 16.629 227.14

Table A.2: SA mode parameters for aspect ratio λ =
√

2.

mode p1 p2 q1 q2 v

(1, 2) 3.651 14.024 7.7688 8.4565 94.447

(3, 2) 10.533 17.016 7.3615 12.304 154.24

(5, 2) 17.046 21.551 7.0412 17.681 274.97

(1, 4) 3.3974 26.413 14.111 14.482 289.68

Table A.3: AS mode parameters for aspect ratio λ =
√

2.

mode p1 p2 q1 q2 v

(2, 1) 7.5572 10.213 4.1022 7.8794 63.247

(4, 1) 14.035 15.548 3.6689 13.593 157.95

(2, 3) 6.9192 21.02 10.84 12.667 199.58

(4, 3) 13.599 23.959 10.55 16.736 287.37
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Table A.4: AA mode parameters for aspect ratio λ =
√

2.

mode p1 p2 q1 q2 v

(2, 2) 7.1614 15.248 7.5733 10.065 116.62

(4, 2) 13.816 19.156 7.1817 14.895 207.17

(2, 4) 6.7741 27.04 14.04 15.472 310.93

(6, 2) 20.246 24.123 6.9331 20.579 357.33

A.2.1: SS plate characteristic function with v = 39.305.

A.2.2: AS plate characteristic function with v = 63.247.
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A.2.3: SA plate characteristic function with v = 94.447.

A.2.4: SS plate characteristic function with v = 103.15.

A.2.5: AA plate characteristic function with v = 116.62.

Figure A.2: Plate characteristic functions with aspect ratio λ =
√

2. On

the left hand side are exhibited the graph of the first five characteristic

functions. On the right hand side are displayed their isolines.
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A.4 Modal Analysis with the Finite Element Model

The following figures are the first five mode shapes of the plate intro-

duced in section III.2 computed with the finite element model of section II.4.

Soon afterward the mode rotations around axes X and Y are showed for

their importance. They, specifically, are used to determine the entries of the

coupling matrix Γ computing the integrals of the relation (II.48). Perform-

ing a modal analysis of an undamped plate with the finite element model

above mentioned, it is fairly straightforward to determine natural frequen-

cies and mode shapes. Besides, modal rotations around the axes x1 and x2,

respectively ROTXi and ROTYi, for each mode are available and given the

following relations 



∂Wi

∂x1
= −ROTYi

∂Wi

∂x2
= ROTXi

(A.46)

it is possible, finally, to compute the above integrals numerically on the grid

of the nodal points.

Figure A.3: The first mode shape for a plate in study.
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Figure A.4: The second mode shape for a plate in study.

Figure A.5: The third mode shape for a plate in study.
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Figure A.6: The fourth mode shape for a plate in study.

Figure A.7: The fifth mode shape for a plate in study.
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Figure A.8: The first mode rotation around the axis X.

Figure A.9: The second mode rotation around the axis X.
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Figure A.10: The third mode rotation around the axis X.

Figure A.11: The fourth mode rotation around the axis X.
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Figure A.12: The fifth mode rotation around the axis X.

Figure A.13: The first mode rotation around the axis Y.
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Figure A.14: The second mode rotation around the axis Y.

Figure A.15: The third mode rotation around the axis Y.

136 of 143



A.4. Modal Analysis with the Finite Element Model

Figure A.16: The fourth mode rotation around the axis Y.

Figure A.17: The fifth mode rotation around the axis Y.
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