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 “I do not know what I may appear to the world, 

but to myself I seem to have been only like a boy 

playing on the sea-shore and diverting myself in now and then 

finding a smoother pebble or a prettier shell than ordinary, 

whilst the great ocean of truth lay all undiscovered before me.” 

Isaac Newton 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“What is an ocean but a multitude of drops?” 

Adam Ewing (Cloud Atlas) 
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                                                            Preface 

 

 
 

he most basic example of charge transport  is represented by the collective motion of 

charge carriers in a conductive medium – valence electrons in a metal, ions and free 

electrons in a plasma – under the effect of an external electromagnetic field.  

However, more complex conductive working principles exist. For example, in the context of 

electromechanical devices, peculiar forms of charge transport labeled with the umbrella term 

electron shuttle are experienced by a relatively small group of specifically designed systems.  

The simplest configuration capable to realize such “shuttle mechanism” comprises a set of three 

conductors: two fixed electrodes and an oscillator element between them, separated by a dielec-

tric fluid. Under certain boundary conditions, such system exhibits a symmetry breaking: the 

oscillator starts vibrating and a limit-cycle can be established, in which a finite amount of elec-

trons per cycle is alternatively collected and released – shuttled – when approaching either the 

fixed electrodes. Consequently, a net current, whose absolute value is strictly related to the 

frequency of the mechanical oscillations, is produced. Notice that, since the existence of this 

form of charge transport does not depend on the mobility of unbound electrons, but relies on the 

motion of a vibrating element;  this latter constitutes, in the context of the shuttle mechanism, 

the archetype of a proper “mechanical charge carrier”. 

     Although the first realization of an electron shuttle device dates at least two centuries ago – 

the so-called “Franklin bells” represent a first example – only in recent times [Gorelik and 

Isacsson, 1998] it found reinvigorated interest in the field of nanotechnology, producing a whole 

novel branch of both theoretical and experimental research. In fact, the presence of quantum 

effects – in particular Coulomb blockade and quantum tunneling – opens the way to more inter-

esting – in some cases chaotic – dynamics for the vibrating element of such devices: motion 

regimes which are peculiar of the nanoscale and not accessible by macro systems. 

Collectively refer to these systems as Quantum Shuttle Modules (QSMs). 

     Many original architectures comprising one or more QSMs have been conceptualized and 

realized in the last decade. From this point of view, one of the most prolific research teams is 

the Blick‟s group. An especially promising application is contained in a patent [Blick and 

Marsland, 2008], in which the idea to realize logic circuits whose switching elements make use 

of the shuttle mechanism is proposed for the first time. In the inventor‟s claims, an information 

technology in which the flux of data relies on vibrating mechanical elements instead of solid 

state electronic components would have the advantages of low power consumptions, robustness 

to radiation and wider range of operating temperatures.  

In the depicted embodiment of the invention, a switching element is obtained by mechanically 

couple a set of QSM subsystems, whose vibrating elements are realized with a nanocantilevers 

geometry. Since each switching element is capable to reproduce the main functionalities of a 

conventional transistor – namely voltage-driven switching and current amplification – refer to 

one of them as a NanoMechanical Transistor (NMT).  

T 
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At the present day, the NMT is a mainly unexplored device: no experimental setup has been 

realized nor predictive theoretical models have been proposed yet. The situation is diametrically 

opposite in the field of QSMs, whose literature is rather wide, although recent, and a number of 

QSM devices have been realized at different scales, architectures and materials, exhibiting in 

most cases a behavior in agreement with the theoretical models. The work presented in this 

thesis is aimed to fill this gap, providing a first theoretical description of the NMT depicted in 

the cited patent, finalized to develop an early design stage. 

     The individuation of such a research topic derived from the opinion the NMT is a good 

example of concept design  introducing original ingredients from the dual point of view of  the 

core working principle – the electron shuttle – and the functional interaction between its consti-

tutive elements – the QSMs. In the Author‟s belief, these characteristics make the NMT worthy 

of theoretical investigations, independently from the factual chance to represent a step innova-

tion for both the electronic and information industry – as advocated in the patent claims – and 

from the technological issues in definitely producing a working prototype.  

     Notice that, since the NMT is composed by a set of QSMs, its study requires a preliminary 

comprehension of the dynamical regimes and electrical characterization of these systems. In 

turn, this will allow to:  i) choose the most appropriate typology of QSM to obtain the desired 

transistor functionalities;  ii) determine the characteristic scales of the device;  iii) select the 

correct analytical approach, form of equations and suitable approximations to simulate the 

dynamics of the whole NMT system with a series of numerical experiments. 

This thesis is consequently divided into two Parts: the first one focusing on a theoretical study 

of QSMs; the second one intended to assess the feasibility of a real application, the NMT. 

A brief description of the contents of this work is presented ahead. 

     In the introduction, a general, conceptual picture of the shuttle mechanism is given, with 

emphasis on its historical origins. Then, the influence of nanoscale-related phenomena on 

shuttle devices is discussed: follows a detailed analysis of recent landmarks in QSM literature 

and a preliminary overview of the NMT patent. 

     Part One begins with the description of some nanoscale devices exhibiting different forms of 

charge transport. Then, attention focuses on the shuttle mechanism, whose fundamental con-

cepts and classifications are presented, such as: shuttle and tunnel current contributions, elec-

tromechanical coupling, soft/hard nature of oscillations, tunneling region, transport factor.  

A prototypal architecture for a QSM, representing the most simple system capable to exhibit the 

shuttle mechanism at nanoscale, is introduced. As usual in literature, a concentrated parameters 

model is used, the state of the system reduced to a couple of lagrangian descriptors, namely the 

oscillator position and charge. Ordinary differential equations describe the evolution of the 

electromechanical system: both numerical and analytical approaches are used to investigate the 

dynamics of a QSM under the effect of different boundary conditions. In particular, it is possi-

ble to discern two distinct kinds of shuttle mechanism, called direct and inverse shuttle. 

In direct shuttle, a potential difference between two electrodes produces a self-excitation which 

sustains the motion of the vibrating element and results in a shuttle current between them. 

In inverse shuttle, the motion of the vibrating element is triggered by the parametric resonance, 

and a shuttle current is established between two electrodes maintained at the same voltage.  

The two described phenomenologies are somehow complementary and, since the more or less 

propensity of a system to the first or the second shuttle mechanism only depends on the bounda-

ry conditions, it means every QSM referring to the prototypal system presents a superimposition 

of these two basic forms of shuttle. Consequently, the possibility of hybrid shuttle is conceived. 

In these systems, the overall current can be obtained as a linear combination of and direct and 

inverse shuttle currents, weighted on the basis of the boundary conditions used. 
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     Part Two opens with a brief historical account of conventional – electronic – transistors. 

Follows a more detailed analysis of the NMT patent, aimed to critically discuss and delineate 

the best strategies to reproduce the main functionalities of a transistor. Consequently, the choice 

of the typology of QSM to be the best candidate as a subsystem of the NMT – direct shuttle 

with hard nature of oscillations and strong electromechanical coupling – is carried out. In turn, 

these preliminary design choices individuate the most appropriate form of equations – a semi-

classical continuous-charge model – to be used to describe the system dynamics. In particular, 

closed-form relations for capacitances, equivalent quantum tunneling conductances and force on 

the oscillator are produced. The attention paid to qualitatively include all the relevant physical 

effects and quantitatively relate them to the choice of the system parameters, leads to an high 

flexible set of equations which allowed to develop an interpretative analysis of the results com-

ing from a large number of numerical experiments.  

As a first step, a single QSM subsystem is analyzed. A distinction between internal, external and 

control parameters is suggested. A predictive model is proposed in which a QSM can be put into 

relation to a Turing machine whose present state is represented by the permanent motion regime 

established and the value on the input tape corresponds to the applied bias voltage: the control 

parameter. Transitions between different states occur in correspondence of some threshold 

values for the external parameter, whose values depend on the set of internal parameters. Also, 

an interpretative model for the activation/deactivation processes is presented, together with a 

physical explanation of the current-voltage hysteresis peculiar of hard shuttle regimes. Last, a 

general characterization of QSM systems is given, and a set of qualitative features of a QSM is 

defined and quantitatively related to its internal parameters. 

As a second and last step,     QSM subsystems are arranged to realize the multiple-module 

NMT, so that the whole system is described by        equations. Each QSM is considered 

electrostatically decoupled from the others, but mechanically coupled with its nearest neighbors. 

Once the distinction between the only drive module and the remaining   slave modules is 

introduced, a functional analysis of the NMT in reproducing both the current interruption and 

amplification features is presented. First, a rigorous definition of ON and OFF states is pro-

posed, then, peculiar motion regimes and failure conditions are individuated and investigated. 

This Part leads to synthetize a set of “thumb rules”: a basic control strategy aimed to obtain a 

system which correctly mimics the functionalities of an electrical switch and/or amplifier. Last, 

a black-box characterization of the NMT is outlined, its electric performances compared with 

conventional devices, and an heuristic procedure to estimate the current gain is suggested. 

     This completes the description of the thesis contents.  

Two main original contributions can be individuated in this work, as it is summarized ahead. 

i) The theoretical study of an innovative device, the Blick‟s NMT, developed through the 

consecutive steps of: equation modeling, numerical simulations, functional analysis and 

characterization of its black-box conductive properties. The whole process is synthetized 

by the proposal of a set of design requirements and control strategies. 

ii) The conceptualization and the quali-quantitative analysis of a form of shuttle mechanism 

triggered by parametric resonance (here termed “inverse shuttle”), able to realize a cur-

rent flow between two electrodes at the same voltage. This represents, differently from 

self-excited QSMs introduced by Gorelik (“direct shuttle”), a new archetype of shuttle.  

The study presented here constitutes the outcome of a period of fructuous collaboration of the 

Author with Gorelik himself at the CHALMERS University of Technology. 

 
 

Alessandro Scorrano                        Göteborg, August 24
th
, 2012 
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Mass and electric charge 
 

Mass and electric charge are fundamental properties of matter, whose presence manifests in a 

multitude of natural phenomena. In a classical frame, massive objects are subjected to the laws 

of Classical Mechanics, while electrically charged substances are governed by the Classical 

ElectroDynamics. 

     However, roles of mass and electric charge are not analogue: an important difference arises 

from the inertial/gravitational mass dichotomy. Actually, mass is not only the property of matter 

responsible for the gravitational interaction (gravitational mass), but it is also a quantitative 

measure of an object resistance to acceleration (inertial mass). These are two conceptually 

distinct physical effects, however, the universality of free fall (Galileian equivalence principle) 

guarantees their identity. In modern physics, this scenario is – if possible – more complex 
[1]

 and 

at least four distinct phenomena are related with such many attributes of mass: inertia, space-

time curvature †, Compton wavelength ‡, energy (Einstein‟s equivalence principle) ‡†; and only 

their proportionality individuates the abstract concept of (rest) mass ‡‡.  

On the other hand, the concept of electric charge still maintains an univocal interpretation 

because, even after the advent of Quantum ElectroDynamics ‡‡†, it is still related to only one 

physical phenomenology (the electromagnetic interaction), thus preserving its intuitiveness also 

in a contemporary frame. 

     In this context, it is not surprising that some formal classical definitions on electrodynamics 

are still valid today with minimal revisions. For example, introducing electric current as “flow 

of electric charge through a surface” provides the rather polite concept reassumed by formula 

          . However, electric charge, like mass, has a discrete space distribution localized in 

particles – charge carriers. Also, unlike mass, electric charge always appears quantized – in 

units of   . The last feature is important, since means that, in principle, one can simply count the 

net number of charge carriers          which cross through a surface in a given time, 

and then use the formula   ̅               . This is an alternative, operative, definition 

of current, which can be helpful in certain situations.  

Notice that both formulae can be interpreted from the given formal definition, the first one 

referring to an instant current, the second being the average one. Trivially, these two quantities 

match in the stationary case, the original definition regaining its original univocality.  

 

 

 

 
 

 

†     In General Relativity, gravitation is not a force,  and massive body interactions are actually an effect of the space-time curvature 

caused by their space distribution. Thus, mass is no more a property of matter on which a fundamental interaction relies. This 

produces two consequences: i) the inertial/gravitational mass dichotomy is apparently solved, since mass is a general feature of 

matter which – shaping of geodesics of minimal action – reassumes both the effects of resistance to acceleration and space-time 

curvature; ii) since gravitation is not a force, this can be the core reason for which all attempts to unify it with the other three 

fundamental interactions of the Standard Model within the frame of a unified theory has failed to the present day; also, it could 

explain why the existence of graviton, the hypothetical mediator for gravitation force, has not been proved yet. 

‡      Since        , being   the Compton wavelength,   the speed of light and   the quantum mass. 

‡†  Conversely to the erroneous common belief, mass cannot be transformed in energy, nor vice versa. The equivalence principle 

      simply states mass is a form of energy – or energy is a form of mass. In special relativity rest mass can be transformed 

in more mobile forms of mass, but remains mass, similarly for different forms of energy. An isolated system does not conserve 

the sum of mass and energy: instead, it conserves, independently both. If a not isolated system undergoes a variation of energy 

  , the same is for an amount of mass       . Matter, if considered as some types of particles, can be created or annihilated, 

but the whole obtained system retains both the original mass and energy [2]. 

‡‡   In recent years, the pedagogic importance of relativistic mass when dealing with Special Relativity is debated. Since, the “real” 

mass is referred to the invariant one, also called rest mass. 

‡‡† The Quantum ElectroDynamics is accredited as “the jewel of physics”, by Richard Feynman, due to the fact it was the first 

theory where full agreement between Quantum Mechanics and Special Relativity has been achieved. It describes phenomena 

involving electrically charged particles interacting by exchange of photons, elegantly generalizing Classical ElectroDynamics. 
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Different forms of charge transport: conceiving the shuttle mechanism 
 

Suppose we are interested to identify any conceptually distinct phenomenon able to produce a 

form of charge transport, thus – potentially – a current. We propose a thought experiment in 

which a flat surface of given area   and normal versor  ̂ – representing an ideal “charge detec-

tor” – is used to measure current in situations of increasing complexity.  

     Start by considering an ideal case in which a certain volume is filled with a charge carriers 

density  , each charge carrier moving with a velocity  ⃗   ̂. The current     is given by: 

 

      ̅   
  

  
                                                                    

 

Since the velocity field is uniform, the average and instant currents match, and a simple formula 

         relates the number of counted charge carriers    to their common velocity   .  

     Now consider a volume of real matter. Here, the charge carriers velocity field is all but 

uniform – though we can still assume for them a uniform density  . We can calculate current by 

the means of the current density  , in general arising from three contributions             . 

The term    represents the free-charge current density, and depends on the collective motion of 

charge carriers in the conductor: valence electrons, (if a metal) or ions and free electrons (if a 

plasma). Then,    represents the polarization current density  (produced by the rate of polariza-

tion in dielectric materials), and    the magnetization current density (related to circulations of 

magnetic dipole moments). Limit our analysis to a conductive material, so that the bound-

current density          is not present. In this case, our current detector measures a current 

   depending only on the mobility of free charge carriers. One obtains: 

 

        ∫        ̂   
 

 

                                                          

 

Since, in general, the velocity field is chaotic and time-variable, this relation gives an instant 

current which does not match its average value. However, it is possible to relate it to a single 

velocity       , the drift velocity, defined as the average velocity of charge carriers in the direc-

tion normal to   †. Trivially, (I) represents the special case of (II) in which the drift velocity    

is constant and corresponds to the actual, uniform velocity   of individual charge carriers. 

     So far, our analysis has been limited to continuum media. Now, extend our thought experi-

ment to a system composed by more elements.  

Consider a simple system composed by only two elements: a dielectric fluid and a solid conduc-

tor within it. Let the conductor a cylinder moving through the dielectric with a velocity   paral-

lel to its height    and normal to its surface   (Fig.Ia). Within the conductor, a uniform charge 

carrier density           exists, being    the defect of electrons (or excess of positive 

charge carriers). Electrons can‟t move towards the dielectric, thus    (or   ) is a constant. Place 

our charge detector normal to the velocity   and perfectly overlapping the body trajectory.  

     First, assume the velocity   is constant. To measure the current, let        , so that the 

whole body has passed through the surface and      . Therefore the current is: 

 

  ̅   
  

  
  

  

  
                                                                

 
 

†    The drift velocity is typically very slow, compared to the propagation of electromagnetic field. A current of some amperes in a 

copper wire corresponds to a drift velocity of the order of       . 
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Notice that relation (III) is analogous to (I), except now the uniform velocity field   is not 

consequent to the mobility of free electrons, but relies on the movement of a rigid body, which 

can be in this sense considered a “mechanical charge carrier” shuttling electrons with its motion. 

In this thesis we‟ll refer to this archetypal form of charge transport as electron shuttle. 

     Now consider the case in which the shuttling element undergoes oscillations of period   , its 

center moving back and forth describing positions   [                 ] , with 

    and    the fixed position of the charge detector. Similarly to (III), one can calculate: 

 

  ̅   
  

  
 {

                   
                  

                    

 

In this case, the time profile of instant current is trivially intermittent and with null mean value: 

if the observation lasts an integer number of oscillations, no average current is obtained, other-

wise, a residual value    exists, with      for     (Fig.Ib). 

     Generalize the latter case by considering a body with the same kinematics, but shuttling 

either    or    charge carriers depending on its motion direction (Fig.Ic). For simplicity‟s sake, 

let          . If the current detection lasts an integer number of oscillations, so that 

       , the current    can be calculated as: 

  

     ̅   
  

  
  

        

   
  

   

  
                                             

 

The latter term in (IV) is an expression to calculate the shuttle current    – namely its average 

value † in a cycle of oscillation – by knowing the shuttled charges per cycle        and the 

shuttling frequency         . The possibility of obtain a net shuttle current relies on having 

     : we‟ll discuss later about this possibility, in the meantime simply assume it as true. 

     Last, the concept of shuttle drift velocity    can be related to two alternative definitions. The 

first is similar to relation (III) for the drift velocity    , and depends on the actual charge carrier 

density           ; the second is analogous to (II) and comes by considering charge carriers 

distributed on the whole oscillation volume, so that         . The two definitions are: 

 

  
  

  
    

  
 

 
 ̅                  

   
  

   
   ̅                                               

 

The second definition is more convenient since the shuttle velocity matches the half-period 

average speed  ̅        , this formula invariant with the geometry and depending only on the 

oscillation frequency. Other advantages of such formulation will be clear in following Sections. 

This completes, for now, our thought experiment about possibilities of charge transport.  

 

 
Figure I – A conductor with geometry (a) oscillates back and forth. If the number of shuttled electrons is 

constant, the charge detector measures a null current (b). Otherwise, a non-zero current is produced (c).  

 
 

†     An important point about shuttle current is that only its average value can be calculated, while its instant value is undefined. 
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     In conclusion, the conceptualization of a form of charge transport relying on mechanical 

oscillations has been presented, calling it electron shuttle. Since it can be exhibited only in 

specifically designed systems comprising at least one vibrating conductor element, this mecha-

nism is alternative to conventional conduction phenomena which occur in natural media. 

 

 

Symmetry breaking and continuative oscillations: feasibility of a shuttle device 
 

The occurrence of a form of charge transport within a system is a necessary but not sufficient 

condition for such a system to produce a macroscopic current. This consideration is valid also in 

the case of electron shuttle: a shuttle device works when it is able to produce a current: i) not 

null, ii) in a continuative way. Distinctly analyze these two goals. 

     Consider the first one. Trivially, if electrons are shuttled back and forth by the moving con-

ductor body, the average current in a cycle is zero (Fig.Ib). To produce a net shuttle current 

    , one needs      : this condition was simply assumed possible when relation (III) has 

been presented. Here we discuss how to produce this fact: since    are the shuttled charges per 

cycle, we want a device in which some electrons are actually taken from one side and released 

to the other one (Fig.Ic). The system introduced in the previous Section, formed by a conductor 

oscillating within a dielectric, is obdurately symmetric: how to choose from which side electrons 

move to the other one? We are in the standard situation in which a symmetric system whose 

desired functionality requires directionality (current direction) demands for a symmetry break-

ing effect to univocally determine such a direction – and successfully achieve its goal. 

     From an engineering point of view, individuating the most effective symmetry breaking 

effect to make a device work, is a challenging clue. Many fascinating and instructive examples 

can be found in various disciplines of science, one of the most recent, for example, an intriguing 

way to obtain work from swimming bacteria by using asymmetrical gears 
[3]

. 

Depending on the case, the invasive introduction of a rectifying mechanism (a ratchet or one-

way clutch in a mechanical system, a non-return valve in a hydraulic circuit, a half-wave rectifi-

er in an electrical one) could be needed to break the symmetry; otherwise, the application of a 

certain field could be sufficient. A shuttle device belongs to the second case: we expect the 

presence of a certain electric field   in the direction parallel to the body velocity   is effective 

to provide the required symmetry breaking effect. To produce such an electric field, one needs 

to introduce two new conductors in the system to which a voltage       is applied. 

     Referring to Fig.II, consider two electrodes, labeled with   and  , fixed and placed to the 

leads of the trajectory of the shuttling element, marked with  . The three bodies are separated by 

the dielectric, except when   is in its reverse points: this means   alternatively touches   and   

during its oscillation. The depicted  - -  three-conductors system represents the most simple 

case producing not only the shuttle charge transfer, but also a net average current per cycle. 

The exact description of the phenomenology responsible for this current will be detailed in Part 

One. Here, it is sufficient to know that, if, for example,   is the positive biased electrode,   takes 

(loads) an amount    of electrons from   , shuttles them to   , and releases (unloads) the (in 

average) same amount    in   , and last shuttles them to   . This mechanism produces an   to   

electron transport corresponding to an   to   shuttle current (Fig.III) given by formula (IV). 

Vice versa, the same current flows from   to   when   is the positive biased electrode. 

     However, the application of a DC voltage between the leads of oscillation is only one of the 

possible symmetry breaking effects capable of shuttle charge transfer to produce a net current †.    

 
 

†    Notice that not every attempt to de-symmetrize a shuttle system leads an effective symmetry breaking effect: for example, not 

symmetrical oscillations of the shuttling body do not produce any current if the applied voltage is not present.  



A. Scorrano – Modelling of MEMS/NEMS Resonators and Functional Design of a Mechanical Transistor 

 

Introduction                                                                                                                                                                                     7 

 

Figure II – Schematic representation of the most basic shuttle device. 

 

     Once a shuttle device is able to produce a net current, such a current has to be produced in a 

continuative way. Since it relies on the motion of the shuttling element,  the second goal to build 

an actual shuttle device consists in specify how its continuative oscillations are guaranteed.  

In presence of a dissipative effect (always present in real systems), one needs to provide it a 

certain amount of energy per cycle, to maintain constant  the amplitude of the shuttling element 

oscillations. Depending on the process occurring, one can discern two situations: 

 Induced shuttle. A power source external to the core shuttle mechanism directly controls 

frequency and amplitude of the shuttling element. 

 Autonomous shuttle. Once the shuttle mechanism is triggered for the first time, the symmetry 

breaking effect itself provides the required energy to maintain the oscillating regime of the 

shuttling element. (Notice that, in this case, there is no way to directly control of the oscilla-

tions frequency and amplitude.) 

In this thesis we are mainly interested in investigating devices capable of autonomous shuttle, 

since they represent an interesting case of study from an exquisite mechanical point of view. 

Also, without further clarifications (which will be again detailed in Part One), here we only 

anticipate that, referring to the  - -  three-conductors system, the applied voltage itself – if 

some conditions hold – is sufficient to provide for the continuity of oscillations. 

     Therefore, the system depicted in Fig.II is a good candidate to be the scheme for an actual, 

autonomous, shuttle device whose dynamics has been reassumed in Fig.III. 

  

Figure III: Schematic representation of the shuttle mechanism as divided in four steps (a-d). 

 

Refer as a Shuttle Module (SM) to any device capable of the shuttle mechanism in which have 

been provided: i) a symmetry breaking effect; ii) a way to maintain continuative oscillations. 

Notice how the shuttle mechanism is a form of charge transport completely different from the 

traditional ones occurring in a continuous medium.  

This gives the opportunity to propose a new thought experiment.  

     Consider a black-box cylinder with length    and base area  . We want to characterize its 

electrical behavior. If no information is available on the charge transport mechanism occurring 

inside, one can only apply a certain voltage    at its terminals and measure the consequent    

current. Then, one can estimate a value for   and conclude the charge carriers inside the cylin-

der have an average velocity        . After a series of measurements, the external characteris-

tic of the cylinder        is obtained, its local derivative       giving the device conduct-

ance      for any value of  . This example represents the most general case.  

Now,  imagine we have the information about the nature of system inside the black-box. 
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     First consider the case in which the cylinder is a Conductive Solid (CS) (Fig.IVa). We know 

the only allowed charge transport mechanism is the movement of free electrons under the effect 

of an electric field. So, it is possible to use both relation (II) and Ohm‟s law and obtain: 

 

                                                                                 

 

where    is the free-charge conductance, which, from Pouillet law, is          . As it is 

well-known, in a CS the resistivity   is constant for a wide range of voltage values, so that the 

current-voltage dependence          is linear. Also, relation (VI) highlights the intuitive fact 

that the drift velocity    and the applied voltage   are proportional. Last, the application of an 

AC signal                 at the cylinder terminals produces periodic fluctuations in       

and       but no time averaged charge carrier movement since   ̅̅ ̅    , nor average current   ̅ †. 

     Now consider the case in which the cylinder is a complex system exhibiting shuttle: thus, a 

Shuttle Module (SM) (Fig.IVb). Conceptually, one can again apply – with a certain abuse of 

notation – the Ohm‟s law. Notice that, being the device a black-box, an external observer 

doesn‟t know the internal geometry of the system (the ratio    ): he can only assume a certain 

charge carrier density   is distributed all over cylinder volume , and relate the measured current 

   to the second definition proposed for the shuttle drift velocity,   
          . Summarizing: 

 

        
                                                                         

 

We refer to    as the shuttle conductance . To conclude, some considerations on (VI) and (VII).  

First, differently from    in (VI), here    is not, in general, constant: thus the external character-

istic of a SM is not linear.  

Second, since          , the shuttle current physically arises from the number of shuttled 

charge carriers   , which is different from zero only in presence of a symmetry breaking effect. 

In the case presented in Fig.II and Fig.III, this role is provided by the voltage   itself, so that 

        . However, in Part One, a different kinds of SMs will be presented, in which the 

symmetry breaking effect does not require the application of a DC voltage  . This means such 

exotic systems experience      and      also when    , thus, using the definition (VII), 

they are characterized by a conductance      . This possibility is unique of complex systems 

like SMs, and excludes natural materials.  

Third, formulae (VI)-(VII) require different approaches. In a CS, by knowing the visible geome-

try of the cylinder   and   , and one internal parameter (i.e.  ) one can anticipate    and calcu-

late the value of    by using (VI), and only later inference from it the drift velocity    . Instead, 

in the case of a SM, in addition to the visible geometry,   and   , one needs two internal pa-

rameters to anticipate the value of    (i.e.    , and  ), so that          and   
    ̅       : 

once the current has been calculated, one can finally compute    by using the Ohm‟s law.  

 

Figure IV – Black-box testing of a (a) Conductive Solid (CS) and a (b) Shuttle Module (SM). 

 
 

†     This situation inhibits the system to produce a net current in a manner analogous to a SM without a symmetry breaking effect. 
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Historical overview of shuttle devices at macroscale 
 

The first historical account of a shuttle device originates from the roots of electrostatics. The so-

called Franklyn bells (or lightning bells) were actually invented in 1742 by Andrew Gordon in 

Germany, although they are often referred to Benjamin Franklyn due to one of its famous at-

tempts to understand nature of static electricity related to atmospheric phenomena.  

A proposed reconstruction of their realization is in the photo in Fig.Va; however, no clear 

figurative documentation of the original installment is available.  

Franklyn mounted such device in his house to warn him of approaching thunderstorms, connect-

ing a first bell to a pointed rod on his chimney and a second one to the ground; then, a brass 

sphere was appended between the bells (Fig.Vb). Here a famous portrait of its experiment: 

 

“In September 1752, I erected an Iron Rod to draw the Lightning down into my House, 

in order to make some Experiments on it, with two Bells to give Notice when the Rod 

should be electrified. A contrivance obvious to every Electrician. I found the Bells rang 

sometimes when there was no Lightning or Thunder, but only a dark Cloud over the 

Rod; that sometimes after a Flash of Lightning they would suddenly stop; and at other 

times, when they had not rang before, they would, after a Flash, suddenly begin to ring; 

that the Electricity was sometimes very faint, so that when a small Spark was obtained, 

another could not be got for sometime after; at other times the Sparks would follow 

extremely quick, and once I had a continual Stream from Bell to Bell, the size of a 

Crow-Quill. Even during the same Gust there were considerable variations.” 
 

letter from Benjamin Franklin to Peter Collinson, 1753 

 

The explanation of these phenomenology is rather clear: the approaching clouds accumulated a 

potential difference between the two bells, which, when reached a threshold value, started to 

attract the brass sphere by electrostatic induction, triggering a first oscillation and then continua-

tively convert electrical energy into mechanical energy with a self-sustained shuttle mechanism.  

Franklyn bells represent the first historical – though rude –realization of an actual SM, working 

in a manner completely similar to the  - -  three-conductors system depicted in Fig.II and 

Fig.III. In fact, the two bells represent the fixed electrodes   and   , and the brass sphere is the 

shuttling element  : last the DC voltage which breaks the system symmetry is provided by the 

atmospheric electrostatic energy in bad weather conditions. 

 

 
Figure V – a) model of Franklyn bells; b) schematic reconstruction of the Franklyn experiment. 

 

     Centuries later, when electricity was understood and interpreted at a much deeper level, 

similar concepts were used in some electromechanical devices feasible of commercial applica-

tions like doorbells, school bells or security alarms, in some cases still used nowadays.  
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Some embodiments are similar to the device depicted in Fig.VIa. A restoring spring maintains 

the clapper element in contact with one of the electrodes. Then, a DC voltage is applied, and 

current start flow within the clapper. When the electric charge reaches a threshold value, the 

electrostatic repulsion surpasses the spring stiffness and suddenly the clapper is accelerated, 

knocking the opposite (grounded) electrode, and releasing to it the excess charges. Later, it 

returns in the initial position due to the restoring mechanical force. (Fig.VIb).  

Differently from the Franklyn bells, here oscillations are not continuous, but exhibit alternate 

periods of dwell (so that its motion law is much more similar to a shishi odoshi, see Fig.VIc), 

also, the triggering mechanism is completely different. 

 

Figure VI – (a) Old-fashioned doorbell; (b) schematics showing the three conductors and the torsional 

spring, labeled similarly to the SM in  Fig.II; (c) a shishi odoshi (from the Japanese, “scare the deer”) 

works in manner somehow similar to the shuttle mechanism: gravity plays the role of the restoring force 

and the movement of electrons is substituted by the flow of water. 

 

However, similarities between an electromechanical doorbell and Franklyn bells are not over. 

Both systems are composed by two fixed conductors and a moving one which represents the 

shuttling element, its motion being periodic and autonomous (since the required energy comes 

from the symmetry breaking effect itself), the symmetry breaking effect provided, in both cases, 

by a DC voltage. Differences in motion law only depend on the presence of a spring with differ-

ent rest position: in the center in the case of Franklyn bells, at one of the leads for the doorbell †.  

     Although the presence of a current is the very origin of the self-excitation mechanism which 

maintains oscillations, the presence of the current itself produces the drawback of discharging 

the two fixed electrodes. Therefore, if no external power supply is provided among the leads, 

oscillations stop after a brief transient, since the electrostatic-kinetic energy conversion cannot 

occur anymore (as in the case of Franklyn). This means that, ironically, in the two presented 

examples, the shuttle current is only a collateral effect of devices whose function is not charge 

transport, but respectively “advice of cloud approaching” and “emit sound”, and for which the 

presence of this current is a disturbance element. Considerably, this is a common feature of 

macroscopic shuttle devices: no convenient application for the conduction shuttle mechanism in 

se have been glimpsed to the present day. This fact, together with the connate simplicity of the 

working principle of these devices, has contributed to produce a desolate scenario in which the 

shuttle mechanism at macroscale has been relegated to a didactic trick in some school laborato-

ries, a mere gadget not worthy of further theoretical investigations.  

As we will see, this situation is going to change when electron shuttle is performed in a na-

noscale environment. 

 

 
 

 
 

†    Actually, the presence of a spring or a sort of centering mechanism is not needed at all to produce electron shuttle. In fact the 

shuttling element could be free and simply alternating moving back and forth due to the self-excited mechanism, with sawtooth-

profile oscillations. 
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Shuttle at nanoscale. Introduction to Quantum Tunneling and Coulomb Blockade 
 

Imagine to progressively reduce the scale of a shuttle device.  

When nanoscale is reached, two additional physical phenomena have to be considered:  

 a non-classical form of charge transfer, the Quantum Tunneling (QT); 

 charge quantization becomes considerable and can produce Coulomb Blockade (CB) effects. 

Both QT and CB imply huge consequences to the shuttle mechanism, which influence in a 

conceptually substantial way both the dynamical regimes and conduction properties of a shuttle 

device. Introduce these two concepts one by one. 
 

QUANTUM TUNNELING.    The minimum energy required to remove an electron from a solid is 

the work function   . These effects are well described by Classical ElectroDynamics †.  

At nanoscale, however, an additional phenomenon, the Quantum Tunneling (QT), is present, 

which allows an electron to escape a material also when a classical model would not allow so. 

QT is generally exhibited between two faced electrodes separated by a layer of dielectric. If a 

potential difference is applied, some electrons can move – tunnel – from one surface to the other 

one. This is even possible with amounts of energy below the work function  , provided a very 

thin distance – of the order of a few nanometers – between the electrodes yields. If this is the 

case, the two electrodes constitute a Tunnel Junction  (TJ). A more detailed explanation of the 

physics of QT will be presented in Chapter 1. In this Introduction, it is sufficient to deal with 

QT by considering the measurable, macroscopic effect it produces, which is equivalent to (but 

not strictly the same of, given the “complicate intercourse” between quantum mechanics and the 

concept of “motion”) admit the presence of an additional form of charge transport. 

     When does the phenomenon of QT occurs in a shuttle device? Consider the archetypal  - -  

three-conductors shuttle system depicted in Fig.VIIa. If the characteristic dimension of the 

device,   , is of the order of nanometers, the distance between the conductors is compatible 

with QT. If this occurs, when a voltage   is applied, a tunnel current    is established. This 

current does not affect the possibility to exhibit the shuttle mechanism, and can therefore coexist 

with the shuttle current    , so that an overall current            flows through the system.  

In a shuttle device, the tunnel current    is operatively defined as “the current which passes 

through   and   electrodes when the shuttling element is at rest”. It has to be remarked that this 

definition is not trivial as it appears and requires a couple of considerations.  

     First, since a shuttle device is formed by three conductors, the tunnel current    is the combi-

nation of two distinct phenomenologies: two partial “jumps”, among   and  , and then   and   

(short tunnel, Fig.VIIb); or a direct, single “jump” from   and   (long tunnel, Fig.VIIc). 

However, in an experimental setup, not only we cannot separate these two efforts to QT: there is 

even a practical difficulty in discerning the value of the whole tunnel current    with respect to 

the shuttle current   . In fact, by strictly applying the proposed definition, a direct measure of    

requires a shuttling element at rest: this is largely unfeasible since its oscillations depend by the 

same voltage   needed to detect    ; but, because of the nanoscale, we cannot simply “stop by 

hand” the oscillations. In this scenario the only way to experimentally measure the two contribu-

tions to current could be realize two twin embodiments, as detailed in Section 2.1.1. 

 

 

 
 

 

†    Phenomena related to the surpass of such energy threshold are labeled with the umbrella term emission. Two main kinds of 

emission exist: thermionic (hot) emission and field (cold) emission; in the first case the required energy is supplied by high tem-

peratures, in the second one by a strong (quasi)static electric field. Emission usually occurs in a myriad of natural or artificially 

induced phenomena and produces well-known manifestations in dielectric breakdowns like electric arcs or sparks. Actually, 

field emission was explained in a non-classical way by introducing quantum tunneling in the late 1920s. 

‡     As it will be clear in Chapter 1, long tunnel phenomenology is always negligible with respect to short tunnel. 
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Actually, the tunnel current can be more profitably estimated in a theoretical model, by calculat-

ing the overall current from   to   , and subtracting the shuttle contribution using formula (IV): 

 

     ̅                                                                         

 

Once we calculated the value of   , we can introduce the concept of tunnel drift velocity    in a 

way similar  to (V), assuming – compatibly with the definition of   
   – a charge carriers density 

  distributed on the whole oscillation volume: 

 

                                                                                    

 

     As a second point, the presence of QT in shuttle devices has a strong influence also when 

    . In fact, even in the case   is too large to allow both short and long tunnel, during its 

oscillations, the shuttling element   alternatively approaches to   and   at distances     

compatible with QT. This fact has an enormous impact on the functionality of a shuttle device. 

It means that, in nanoscale, the shuttling element does not require any contact with the fixed 

electrodes to make the device work – differently from macroscale shuttle devices like the Frank-

lyn bells – but it is only required it approaches to distances     , with   representing the char-

acteristic tunnel length. Both shuttle current and continuative oscillations (if it is an autonomous 

device) are guaranteed, but (refer now to Fig.III) the load/unload transients consist in a transfer 

of electrons from   ro   or from   to   which relies on QT instead of contact.  

In turn, this implies two further consequences.  

First, a nanoscale shuttle device has a more various dynamical behavior: oscillations of the 

shuttling element can, in principle, be modulated in amplitude in the range           

(this is not possible in absence of QT, when contact strictly requires      ); also, their 

shape can be more similar to a sinusoid since now collisions with electrodes are not required. 

Second, the total current      (needed to calculate the tunnel contribution    by using (VIII)) has 

to be calculated by using QT-related formulae. Thus, in a nanoscale shuttle device, both shuttle 

and tunnel currents, conceptually, rely on QT. This apparently paradoxical statement can be 

correctly understood if one carefully interprets the (in words) definition of tunnel current. 

 

 
Figure VII – Different kinds of QT in a shuttle device with geometry (a): short tunnel (b), long tunnel (c). 

 

    The described considerations are outstanding. A neat distinction between shuttle at mac-

roscale and the just described phenomenology, peculiar of nanoscale, is required at this point. 

Therefore, in the rest of this thesis, we‟ll refer to nanoscale shuttle devices characterized by the 

presence of QT as Quantum Shuttle Modules (QSM), to discern them from macroscale devices 

(like Franklyn Bells), for which we maintain the original Shuttle Modules (SMs) denomination. 

     To conclude this preliminary discussion about QT, we can extend our thought experiment 

dealing with the electrical characterization of a black-box cylinder, and obtain a complete 

overview of the charge transport mechanisms presented in this thesis.  
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     Start by considering a cylinder filled with a dielectric and with length      . In this case, an 

external observer could conclude he is in front of a TJ (Fig.VIIIa,b). Consequently, he expects a 

current coming from the only contribution of QT, so that, from (IX): 

 

                                                                                 

 

A number of models exist in literature to estimate the tunnel conductance   , usually dependent 

on both distance and voltage:           . In Part One and Appendix A we‟ll discuss some. 

     Last, if the black-box internal structure is that of a shuttle device and      , then the external 

observer recognizes in it a QSM (Fig.VIIIc,d) †. In this case, we expect two contributions to the 

total current. Thus, combining (VII) and (X) one obtains: 

 

                          
                                           

  

Imagine the observer is interested in estimate the tunnel current    . We already know it is not 

possible experimentally: applying a voltage at the terminals of the cylinder, one would measure 

an overall current      which cannot be decomposed. Its analytical calculation, also, is a compli-

cated procedure, reassuming the whole discussion about QT: first      is calculated as an average 

current per cycle by using formulae for QT; then    is defined as an average value from       ; 

last, their difference gives the average value of    ‡. Notice how this scenario is completely 

different from the direct procedure to calculate of the tunnel current in a simple TJ (relation 

(X)), where the mere usage of a closed-form formula for the conductance            is 

effective to calculate   . Another important point is that, while in a TJ it is possible to calculate 

the instant tunnel current       by knowing    , this is not the case of a QSM. In fact, from 

formula (VIII), since the shuttle current is defined only as an average quantity referred to a 

period   , and the tunnel current has to be calculated indirectly from the shuttle contribution, 

then the tunnel current inherits the lacking of an instant value, which remains undefined. 

Methodologies to calculate current in a QSM are analyzed more closely in Chapter 2. 

 

Figure VIII – Black-box testing of a Tunnel Junction (TJ) and a Quantum Shuttle Module (QSM). Curves 

(a) and (c) refer to the absence of Coulomb blockade; in (b) and (d) Coulomb staircase is visible. 

 

Formulae (VI), (VII), (X), (XI) and Fig.IV and Fig.VIII complete the scenario on the conduc-

tion mechanisms of interest for this thesis: free conduction (in a CS), shuttle (in a SM), tunnel 

(in a TJ), and shuttle-tunnel combination (in a QSM). 

 
 

†     Notice that more instances of the same QSM, can, in principle, compose the periodic structure of a metamaterial. 

‡    The tunnel current can be related to the tunnel drift velocity   ; which, in turn, can be combined with   
   – another reason for 

which   
   is preferable to   

  – to calculate the shuttle-current drift velocity      . 
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COULOMB BLOCKADE.    Consider relations (I), (II) and (IV). They respectively refer to an ideal 

flux of charge carriers, to the free electrons mobility in a real medium, and to a macroscopic 

SM. Set a value for    multiple of    and compare the formulae. Notice that, while the current 

obtained in the ideal environment with (I) is discrete, the effect of charge carriers quantization is 

lost when integrating a chaotic velocity field in (II) so that, in a real medium, the current can 

assume continuous values. Notice how, in (III), such discreteness is regained: over a period of 

oscillation, a SM shuttles an integer number of electrons. However, at macroscale, the effect of 

charge quantization is negligible, and formulae (I), (II) and (IV) are rather accurate.  

On the other hand, at nanoscale, we introduced another form of charge transport, the QT, and a 

SM becomes a QSM for which relations (X) and (XI) yield. In a QSM, the discrete nature of 

charge is not only detectable, but sometimes produces interesting effects. Such effects are not 

included in (X) and (XI), which rely on the continuous charge hypothesis. Specifically, the term 

Coulomb Blockade (CB) refers to charge quantization effects which occur in presence of QT. 

     Consider for example a TJ, the most simple device exhibiting QT. The effect of CB is that of 

increasing its resistance for very small values of the applied voltage, actually “blocking” the 

current. This means the external characteristic          has a null slope in     . 

     However, our case of interest is the QSM: since it can be considered as a couple of TJ with 

time-dependent distances, we anticipate here that the effect of CB is more complex than a TJ 

and is, in some sense, a generalization. In fact, in a QSM, CB manifests by producing a peculiar 

step-like structure in the current             , called Coulomb staircase.  

     We can conclude our thought experiment about the black-box cylinder, by considering a TJ 

and a QSM in presence of CB. Relations (X) and (XI) remain valid apart for the described 

minor effects related to charge quantization, and Fig.VIII sketches the differences in the exter-

nal characteristics          and              with (Fig.VIIIa,c) and without (Fig.VIIIb,d) CB. 

     When does CB effects appear in a QSM? Since CB is related with charge discreteness, one 

could conclude a QSM shuttling      electrons per cycle surely exhibits the Coulomb stair-

case effect. However, this statement is not correct, since, actually, the possibility of observe CB 

depends (such as in a TJ) on a series of requirements, the hardest to accomplish being a relation 

between temperature and the shuttling element self-capacitance.  (A complete overview of the 

requirements to observe CB will be given in in Section 1.2 for a TJ, and in 2.2.10 for a QSM). 

Therefore, “shuttle a small number of charges” is not (the only) good indicator to observe 

effects of their discreteness: depending on the case, CB occurs when tens, a few, or even only 

one electron are shuttled. Last, since the chance to observe CB involves temperature, the same 

device can, in principle, exhibit or not it depending on the environment.  

Also, differences introduced by CB are not preponderant as them produced by QT, which dif-

ferentiate a QSM from a SM. Therefore, consider a further distinction between QSM devices 

characterized by CB and others which are not, is inopportune in the context of this thesis. 
 

     In conclusion, Tab.I gives a picture of some general features of shuttle devices.  

Notice how CB can be exhibited by some QSMs, but never by SMs. Since we are interested to 

study nanoscale devices, from here now, the thesis is going to focus exclusively on QSM. 

 

Tab.I – Comparison between macroscale SM and nanoscale QSM. 

Kind 
of 

device 

Presence of Load/unload 
transients 

occurring by 

Contributions 
to the overall 

current 

Oscillations 
amplitude 

Shape 
of   -  
curve 

symmetry 
breaking 

continuative 
oscillations 

QT CB 

SM yes yes no unable contact shuttle     smooth 

QSM yes yes yes 
no QT, contact QT, shuttle       smooth 

yes QT, contact QT, shuttle       staircase 
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State of the art: recent NEMS literature on shuttle 
 

We interrupted our historical overview on the shuttle mechanism by discussing the reasons 

beyond the limited scientific and industrial interest around shuttle devices at macroscale (SMs).  

     In the last Section, we highlighted the consequences of a relocation of such a working prin-

ciple to nanoscale devices (QSMs), in particular considering the presence of a novel kind of 

charge transport, the QT, and effects related to the quantization of charge, the CB. It can be 

remarked the archetype of electron shuttle can benefit from the shift SM   QSM . 

First, due to QT, dynamical regimes of a QSM are more rich of possibilities with respect to SM. 

Second, due to CB, electrical characteristics of a QSM exhibit non-linearities absent in SM. 

These two key-points together explain the renewed interest for the shuttle mechanism in the 

context of NEMS literature, demonstrated, in recent years, by a widespread of both theoretical 

and experimental papers. This research has already produced a number of original concepts and 

working prototypes, possibly bearer of technological innovation. In this Section, we resume our 

historical analysis on the shuttle mechanism by discussing the most important research land-

marks around nanoscale shuttle devices (QSMs). 
 

APPLICATIONS OF QT AND CB.     To begin, a brief reference to some less or more recent mile-

stones in electronics and nanotechnology involving QT and CB, to provide a general picture of 

the precursor scenario from which the NEMS literature around QSM will develop. 

     QT was predicted at the beginning of the XX century. In 1928, QT gave the first explanation 

for the alpha decay 
[4]

, although its complete acceptance arrived only after its first technological 

application: the tunnel diode 
[5,6]

, invented by Leo Esaki in 1957. Tunnel diode represents still 

today the most popular diode characterized by a negative resistance region, however, despite its 

working principle involves QT, it remains a conventional semiconductor electronic device. In 

1973, Esaki, Josephson and Giaever were awarded with the Nobel prize in physics 
[7]

 for the 

discovery of the tunneling of superconducting Cooper pairs. The same prize was granted to 

Binnig and Rohrer in 1986 
[8]

 for the invention of the Scanning Tunneling Microscope (STM). 

The STM represents the most sensible application of QT at present days, consenting to manipu-

late individual atoms to reach resolutions up to        . 

     In 1911, in his famous experiment with oil drops, Millikan was the first to observe single-

electron effects 
[9]

. Charge discreteness in QT was investigated in solids in 1968 by Giaever and 

Zeller 
[10]

, after being conjectured to interpret some data on the conductivity of granular thin 

films 
[11,12]

. Later named with the umbrella term CB, a first comprehensive theory of these 

effects in a TJ was given by Klein 
[13]

 and Shekter 
[14]

. In 1986 Averin and Likharev suggested 

the concept of the Single Electron Transistor (SET) by using a double-junction geometry 
[15]

. 

Since its core working principle is based on charge quantization, the SET is not only the first 

technological application of CB, but also represents the first electronic device whose concept 

truly relies on nanoscale. It is formed by a low-capacitance conductor (the island) separated 

from the output terminals by two TJ. By applying an appropriate voltage to the gate, if CB 

requirements hold, a drain-to-source current in which electrons are transferred one-by-one is 

triggered. (A more detailed description of the SET is given in Section 1.3.)  

First working SETs were realized in 1987 
[16,17]

, operating only in cryogenic environments due 

to the strict requirements to observe CB. In recent times, however, room temperature SET have 

been successfully developed 
[18,19,20]

 and some predictive theoretical models have been already 

proposed 
[21,22]

. Although the SET is one of the main successes of recent nanotechnology, it 

cannot be strictly considered a NEMS: it is a completely static device which doesn‟t involve any 

mechanical concept. Furthermore, up to the end of the 90s, the integration of mechanical ele-

ments and concepts in MENS/NEMS was typically limited to static devices, for example canti-

lever electrical switches actuated by Coulomb force or opto-mechanical applications 
[23,24]

. 
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GORELIK AND BLICK.     This is the general scenario in which the idea of using a shuttle charge 

transfer mechanism was suggested for the first time in NEMS literature. Two authors, in par-

ticular, are worthy of  the consequent success of this branch of research. In 1998, with a couple 

of most-cited articles, L. Y. Gorelik 
[25]

 and R. H. Blick 
[26]

 disclosed for the first time the enor-

mous potential electron shuttle could have in the context of NEMS. 

     From the abstract of “Shuttle mechanism for charge transfer in Coulomb blockade nanostruc-

tures” 
[25]

: “Room-temperature Coulomb blockade of charge transport through composite 

nanostructures containing organic interlinks has recently been observed. […] For a simple 

model system […] we show that self-excitation of periodic cluster oscillations in conjunction 

with sequential processes of cluster charging and decharging appears for a sufficiently large 

bias voltage. This new „electron shuttle‟ mechanism of discrete charge transfer gives rise to a 

current through the nanostructure, which is proportional to the cluster vibration frequency.” 

The paper opens by suggesting an explanation for the CB effects recently observed in some 

experiments involving a metallic cluster in organic interlinks. The measured current could not 

merely due to a SET-like phenomenon, thus Gorelik proposes a generalization of it, in which 

the island can oscillate. With a series of qualitative arguments, the possibility for such oscilla-

tions to produce the mechanism shown in Fig.III is suggested, this archetypal motion regime 

named “electron shuttle” †. In particular, the possibility of self-excitation induced by a DC 

voltage is re-demonstrated at nanoscale, where QT is present and plays a central role. To sup-

port this qualitative arguments, the article elegantly closes with analytical and numerical results 

confirming: i) the achievement of stable limit-cycles; ii) the existence of a novel current contri-

bution, the shuttle current, in addition to the tunnel one, already well-known in TJ devices. A 

central mark of the paper is the first proposition in literature of a formula like (IV), in which a 

current is proportional to a mechanical oscillation frequency. The work also analyzes how the 

presence of CB affects the conduction properties of the system. Summarizing, this article by 

Gorelik sets the theoretical starting point for the whole QSM literature. 

     On the other hand, Blick immediately recognized the applicative relevance this novel charge 

transport mechanism could have and, some months later, realized the first embodiment of a 

shuttle device. From the abstract of “A mechanically flexible tunneling contact operating at 

radio frequencies” 
[26]

: “Old fashioned doorbells apply simple electromechanical resonators to 

generate sound.[…] Naturally, many different realizations of bells exist, but basically we can 

notice that the combination of electrostatic and mechanical forces in such a bell lead to a 

resonant transport of electrons. Since the electron‟s charge is quantized a bell can in principle 

be used to count single electrons, much in the same way as in Millikan‟s famous experiment 

with oil drops or by using SETs. Here, we demonstrate a new technique for counting electrons 

with an electromechanical resonator, based on a mechanically flexible tunneling contact. In the 

case of macroscopic bells the granularity of the charge carriers is not observed, because of the 

large currents used. In our case the underlying idea is to scale down a classical bell - the reso-

nator - in order to build a „„quantum bell‟‟ with which single electrons can be transferred.”  

Aware of the historical macroscale origins of the shuttle mechanism, Blick conceives a device 

which benefits from charge quantization to count single electrons. In his paper, the results of an 

experimental apparatus in which the shuttling element – with a cantilever geometry (nanopillar) 

– shuttles           electrons per cycle, are presented. This work represents the first realiza-

tion of a shuttle device at nanoscale, but it doesn‟t exhibit self-excitation highlighted in 
[25]

: the 

nanopillar oscillations are forced by an external AC voltage – by using the Resonant Coulomb 

Force (RCF) methodology – applied at half its height, while electrons are shuttled by its tip  

 
 

†     So that, actually, in this work, when we refer to macroscopic devices like the Franklyn Bells as “shuttle” we use a generalization 

from this nomenclature first proposed by Gorelik, in this 1998 paper for nanoscale devices.  
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among another pair of electrodes. Thus, this shuttle device is not autonomous at all (see defini-

tion in Section 2.2.3). Nonetheless, at the end of its article, Blick mentions Gorelik, envisaging a 

future setup in which electron shuttle will be self-excited as suggested by him in 
[25]

. 

     Both authors, nearly independently, recognized the importance of nanoscale in electron 

shuttle, the first one focusing more on the theoretical chances given by the presence of QT on 

the motion regimes; the second one on the applicative usages coming from CB effects due to the 

discrete nature of electric charge. Still, both authors will continue to focus on their respective – 

and in some sense complementary – approaches to develop this branch of research. 
 

YEARS 1998-2004.     In the following years, Gorelik et al. introduce the concept of soft or hard 

shuttle regime (Section 2.2.8) and, in the latter case, the existence of an hysteretic effect in the 

current-voltage curve (see Section 2.2.11 and 3.3) is investigated through analytical and numer-

ical arguments 
[27,28]

. Shortly after, they generalize the geometry used in 
[25]

 by investigating a 

three-terminals shuttle system – partly inspired to a SET – exhibiting a chaotic behavior 
[29]

. 

     In the same years, Blick sets up a research team, the BLICK group 
[30]

 which will constitute a 

firm reference point for every experimental progress for nanoscale shuttle literature. In particu-

lar, the two-terminals geometry with a nanopillar under RCF continues to be investigated.  

At the beginning, the concept of “quantum bell” is further explored 
[31,32]

. Notice it is not the 

first time a single-charge detector is proposed in NEMS literature 
[33,34]

: SETs can conceptually 

operate as electron detectors, but the shuttle mechanism has better accuracy, working speed and 

resistance to electromagnetic shocks. Also, SET requires cryogenic temperatures and/or very 

small scale to work; while a quantum bell has to avoid collisions with the leads 
[32]

. Then, the 

non-linear dynamic behavior of the shuttling element is investigated from a more exquisite 

mechanical point of view, comparing the experimental results with those of an hardening Duff-

ing oscillator 
[35]

 and providing a first theoretical model for these phenomena 
[36]

.  

In 2002, new architectures are investigated, the Q-factor is regulated by mixing capacitive and 

magnetomotive effects (Q-tuning), and self-excitation possibilities start to be discussed, by 

introducing the concept of transport factor (see Section 2.2.9) 
[37]

 in the shuttle theory.  

In 2003, the possibility of coupling more double-clamped resonators is explored for the first 

time, both experimentally and numerically 
[38,39,40]

.  

In 2004, two twin papers by BLICK group [41,42] set some experimental achievements: i) the 

use of a new fabrication technique able to produce smaller gold-capped silicon nanopillars with 

a simpler two-steps etching process; ii) the superimposition of the AC voltage for RCF with a 

DC signal, to produce a better tuning of charge transport through mechanical mixing. With i) 

and ii), the original goal of obtaining a more stable single-electron shuttle is finally achieved. 

The same year, Blick‟s popularity grows, not only in the academic field – he writes the editorial 

“Focus on Nano-electromechanical Systems” for New Journal of Physics 
[43]

 – but also in popu-

lar press and media 
[44,45]

, where its latest setups are interpreted as “mechanical transistors” †. 

A consideration is needed at this point. The BLICK group experimental setups still make use of 

an AC excitation because, as explicitly reported in 
[41]

, a shuttling element realized with a canti-

lever geometry is too stiff to exhibit the self-excitation mechanism proposed by Gorelik (who, in 
[25]

, refers to a lighter metallic grain solution). Nicely, years later the BLICK group will contra-

dict itself by succeeding in the goal of nanopillar self-excitation. 

     In the meantime, others research groups begin to interest to the nanoscale shuttle, most from 

a theoretical point of view, by using different analytical approaches: Master equation/density 

matrices 
[46,47,48,49,50]

, quantum oscillator 
[51]

, semi-classical models 
[52,53]

, by exploring new 

geometries coupling a SET and a shuttling element 
[47]

, or rather exhaustive reviews 
[54]

. 

 
 

†    As it will be clear in the next Section, this term was, if not misleading, at least premature, in 2004. In fact, Blick proposes an 

“orthodox” mechanical transistor concept, working with a DC gate voltage, only in 2007-2008.  
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YEARS 2004-2011.     On one hand, Gorelik et al. 
[55,56,57]

 continue their theoretical researches. 

On the other hand, BLICK group produces new experimental goals. Here, we focus on them. 

     First, the presence of a modified Fowler-Nordheim field-emission is observed and attributed 

to the AC-driven pillar oscillations 
[58]

 after it was only glimpsed in a previous work 
[59]

.  

     In 2007, Blick et al. set a milestone in recent shuttle literature with: “A Nano-Mechanical 

Computer: Exploring New Avenues of Computing” 
[60]

. This is the first time the results of 

BLICK group on shuttle are explicitly related to the chance of a “new electronics” based on 

mechanical elements. From the abstract: “We propose a fully mechanical computer based on 

nanoelectromechanical elements. Our aim is to combine this classical approach with modern 

nanotechnology to build a nanomechanical computer (NMC) based on nanomechanical transis-

tors. The main motivation behind constructing such a computer is threefold: (i) mechanical 

elements are more robust to electromagnetic shocks than current dynamic random access 

memory (DRAM) based on metal oxide semiconductor (CMOS) technology, (ii) the power 

dissipated can be orders of magnitude below CMOS and (iii) the operating temperature of such 

an NMC can be an order of magnitude above that of conventional CMOS.”  

Most importantly, the article refers for the first time to some recent experiments in which DC 

self-excitation has been successfully achieved: “We estimate that operation with externally 

applied DC voltages is feasible. These voltages can be generated either by a battery or by a 

manually actuated battery charger. […] As we have found in recent measurements †,  self-

excitation can be exploited to generate mechanical oscillations without any AC excitation. 

Hence, DC voltages are sufficient to operate the NMC. Basically, a DC voltage creates an 

electric field to support mechanical oscillations of the nanopillars. […] It has to be noted that 

onset of the mechanical oscillations is induced by a thermal fluctuation, which is found to be 

enhanced, if the electrical field is inhomogeneous.”  

The paper continues by explaining the core elements of such a “mechanical computer” could be 

similar to the shuttling resonators he investigated in much of previous BLICK group works, 

describing how they can be combined in logic gates. With this article, Blick starts to be accred-

ited as the “father of the mechanical computer” 
[61,62]

. 

     After a few other papers, further investigating new geometries 
[63,64]

 and field-emission 
[65,66]

, 

in 2010 BLICK group finally presents its results on a self-excited electromechanical resonator 

in a most-cited article 
[67]

. From the abstract: “Self-excitation is a mechanism that is ubiquitous 

for electromechanical power devices such as electrical generators. This is conventionally 

achieved by making use of the magnetic field component in electrical generators, a good and 

widely visible example of which is the wind turbine farm. In other words, a static force, such as 

the wind acting on rotor blades, can generate a resonant excitation at a certain mechanical 

frequency. For nanomechanical systems, such a self-excitation mechanism is also highly desir-

able, because it can generate mechanical oscillations at radio frequencies by simply applying a 

DC bias voltage. This is of great importance for low-power signal communication devices and 

detectors, as well as for mechanical computing elements. For a particular system – the single 

electron shuttle – this effect was predicted some time ago by Gorelik et al”.   

In this experimental article, self-excitation of a nanopillar with a simple DC voltage is success-

fully achieved. It is not the first time a self-excited shuttle mechanism is produced since 1998 
[68,69]

, but it was never obtained by using a mechanical element characterized by the most-

versatile (and mechanically-representative) cantilever geometry. Another important clue of this 

paper is that both soft and hard self-excitation regimes are investigated, by using different pillar 

geometries, the latter case demonstrating the hysteretic effect on the current-voltage curve first 

theoretically anticipated by Isacsson, Gorelik et al. in 1998 
[27]

.  

 
 

†:    Here the abstract cites a submitted work by Blick et al. However, the actual publication of such results is in 2010. 
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     In recent years, Blick partly concentrated on collateral themes: thus, article 
[67]

 elegantly 

concludes, for now, this experimental race on electron shuttle produced by nanoscale resonators. 

     Other groups, in recent years, continued to explore the possibilities of QSMs, some propos-

ing architectures more complex with respect to the conventional two-terminals (preferred by 

Blick) or three-terminals (preferred by Gorelik) geometries. A brief, not comprehensive, list 

includes: Pistolesi and Fazio 
[70,71]

, Wang 
[72,73]

, Koenig 
[74,75]

. 

     To conclude this general picture around the state of the art of nanoscale shuttle, a brief 

technological discussion on how the shuttling element can be realized seems opportune.  

If the QSM is designed to shuttle a relatively large amount of electrons per cycle, it is sufficient 

a metallic grain or metallic cap on the tip of a nanopillar. However, in QSMs shuttling one only 

electron, such as in a SET, one needs to carefully conceive the shuttling element. A recurrent 

concept in nanotechnology satisfying exactly this need is that of Quantum Dot (Q-dot).  

A Q-dot is a small portion of semiconductor in which electrons are three-dimensionally con-

fined, and therefore exhibit a peculiar behavior, a sort of hybrid between a particle and a bulk 

material (in Section 1.4 a more detailed overview of Q-dots is given). Q-dots have been discov-

ered by Alexei Ekimov at the beginning of the 1980s 
[76]

, the most interesting application hap-

pened in the last decade. In particular, Q-dots easily show CB effects and some Q-dot-based 

SETs have been achieved. Last years, molecular-size Q-dots have been realized  and Q-bits 

application to “quantum computers” proposed (again, see Section 1.4 for references). 

 

 

Blick’s NanoMechanical Transistor consisting of a set of Quantum Shuttle Modules 
 

In the 2007 article “A Nano-Mechanical Computer: Exploring New Avenues of Computing”, 

Blick promotes an information industry in which the flux and stock of data relies on the vibra-

tion of mechanical elements – thus, on the shuttle mechanism. Notice how, since the fundamen-

tal brick of conventional computing  is the transistor †, similarly, a “mechanical computer” 

would demand for a specifically conceived “mechanical transistor”.  

Let us consider the QSM depicted in Fig.II and exhibiting the shuttle mechanism in Fig.III. 

Such a device exhibits an electrical behavior analogous to that of a mere non-linear passive 

circuital component, its external characteristic quali-quantitatively described by Fig.VIIIb,d and 

formula (XI), respectively. This is because the input symmetry-breaking voltage is applied 

among the same pair of terminals between which the output shuttle current is established.  

A transistor requires indeed two pairs of terminals: one for the input and one for the output. In 

order to answer this requirement, Blick, in the 2008 United States patent “Nanomechanical 

computer” 
[77]

 ‡, suggests the original concept for a transistor shuttle device whose internal 

architecture is necessarily more complex than the QSM described above.  

     The idea is to build a device assembled with a set QSMs similar to those in Fig.II. The first 

group of shuttling elements are called drives, and oscillate between a first pair of electrodes; the 

remaining resonators, being the slaves, oscillate between another pair of them.  

Blick proposes to realize the shuttling elements with the peculiar cantilever (nanopillars) ge-

ometry he investigated in many of its works listed in the previous Section. This allows to me-

chanically couple all the cantilevers in a simple way, by the means of a common torsional 

element – called web – to which all of them are clamped. 

Schematic drawings of this embodiment are reported in Fig.IX. 

 
 

†    In conventional electronics, both logic gates and memory elements are realized with different circuital topologies which often 

comprise at least a transistor. 

‡    In this patent, Blick also proposes the circuital topology for logic gates and memory elements whose core working principle 

relies on electron shuttle. 
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Figure IX: Images taken from 

[77]
 (United States Patent 7414437B1 – 2008). 

  

     The working principle described in the patent is briefly summarized as follows. When a 

sufficient DC voltage is applied on the gate, it triggers the self-excited shuttle regime of the 

drive resonator. Since all the nanopillars are mechanically coupled by the web, under certain 

resonance conditions the motion can be transmitted to the whole slave set. Thus, depending on 

the overall vibrational state achieved, such a system can potentially produce a current amplifica-

tion effect. On the other hand, the electronic switch operation is simply obtained by regulating 

the voltage of the gate to alternatively reduce or enhance the slave nanopillars vibrations, thus, 

inhibit or consent the output shuttle current, respectively. 

Since this particular embodiment purportedly mimics the electrical behavior of a conventional 

transistor, in the rest of this thesis we refer to it as the NanoMechanical Transistor (NMT). 

     Noticeably, this working principle has been introduced, in both 
[60]

 and 
[77]

, with mere quali-

tative arguments. Up to present day, at Author‟s knowledge, no theoretical investigations on 

such NMT systems have been realized, nor experimental evidence of the described phenome-

nologies to produce the desired functionalities exist.  

The entire Part Two of this thesis, is devoted to verify the functionality of such a device, pro-

posing a set of equation to numerical investigate its dynamical and functional behavior. In 

particular, the desired functionalities of a NMT are: i) electric switch, ii) current amplification. 

It has be remarked that the amplification feature, in Blick‟s opinion, is crucial to realize the 

“mechanical computer”, since each NMT which composes a logical circuit has to provide a 

certain fan-out †, when connected to the following element. In fact, from the article 
[60]

: “Key to 

any computing machine are logic elements. These require gain to provide a noise margin. It 

seems that gain might be achieved in a NEMSET ‡ by mechanically coupling two sets of pillars. 

One set, the input set, puts the output set in motion. Gain is achieved if the input set consumes 

less charge than the output set delivers to the load. This is implemented when the input set 

contains fewer pillars or if each pillar transfers less charge than a pillar in the output set.” 

Again, from the patent 
[77]

: “Greater charge transfer may occur between the second opposed 

electrodes than between the first opposed electrodes for each cycle of flexure of the pillars. It is 

thus an object of one embodiment of the invention to provide for gain or amplification as is 

necessary to allow adequate “fan-out” for the practical interconnection of logical devices”. 

However, we anticipate here that, while the switching operation (analyzed in Sections 10.1 and 

11.1) is evident to test in a numerical model;  the actual feasibility of the amplification process, 

mechanically controlled by resonant dynamics of the nanopillars, is not trivial at all (Sections 

10.2 and 11.2). In particular, in the conclusion of this thesis, we demonstrate that there is no 

clear convenience in increasing the number   of slave pillars to obtain a larger current gain.  

 

 
 

†     Fan-out means a (at least small) current amplification effect to compensate electrical dissipations. 

‡     Blick uses this abbreviation for NanoElectroMechanical SET.  
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Resume: overview of the thesis contents 
 

In this – necessarily substantial – Introduction, we presented all the fundamental concepts 

around electron shuttle which the rest of the work will deal with. In fact, as the thesis title hints, 

we are going to deal with the theoretical study of nanomechanical resonators, finalized to design 

a nanotransistor characterized by a mechanical working principle: the electron shuttle. In this 

sense, it is clear the thesis concept originated from the conjunction of a theoretical research by 

L. Y. Gorelik (on nanoscale shuttle, such as 
[25,27]

) and a practical application by R. H. Blick (on 

the mechanical transistor, 
[60,77]

). The structure of the thesis inherits this dichotomy as well.  

In fact, in Part One – “Theory of Mechanical Electron Transport” – theoretical investigations on 

Quantum Shuttle Modules are carried out, whereas in Part Two – “Application to the NanoMe-

chanical Transistor” – a preliminary design of the NanoMechanical Transistor is attempted. 

Consequently, this work denotes a dual nature. As a first step, the approach of a theoretical 

physicist is employed, investigating Quantum Shuttle Modules as mere dynamical systems 

whose stability properties depend on the values assumed by of a set of parameters. Then, in-

stead, the feasibility of motion regimes is critically assessed: equation parameters are con-

strained to measurable properties of a real device, leading to an exquisite design stage on the 

NanoMechanical Transistor, aimed to correctly reproduce its main functionalities – current 

switching and amplifications. Follows a brief overview of the thesis contents. 

     Part One begins by analyzing some nanoscale electron transport devices. Then, a prototypal 

architecture of Quantum Shuttle Module is presented. A concentrated parameters model is 

proposed to describe the system by using a couple of lagrangian coordinates: the shuttling 

element position and charge. Conductive and dynamical features are investigated with both 

analytical and numerical approaches. A systematic study of Quantum Shuttle Modules is at-

tempted by considering two kinds of symmetry breaking mechanisms. Notice how, all the 

historical examples of macroscale or nanoscale shuttle devices presented in this Introduction 

make use of the same symmetry breaking effect: a DC voltage applied between the two fixed 

electrodes. Instead, a different kind of symmetry breaking is proposed in Part One, in which the 

oscillator vibrates under a parametric resonance triggered by an AC voltage, and a shuttle cur-

rent can be established between two electrodes maintained at the same voltage. This is an inter-

esting point, since the black-box conductance of such Quantum Shuttle Module is infinite. 

     Part Two opens with an analysis of the NanoMechanical Transistor patent, more detailed 

with respect to the previous Section. Follows the selection of the characteristic scales of the 

device and the typology of Quantum Shuttle Module to be the best candidate as NanoMechani-

cal Transistor subsystem. An high flexible set of equations is obtained, allowing to carry out a 

large number of numerical experiments. First, a single Quantum Shuttle Module is considered: a 

predictive model inspired to a Turing machine is proposed, relating the bias voltage applied to 

the motion regimes consequently established. Then, more Quantum Shuttle Modules are ar-

ranged to realize the NanoMechanical Transistor: a functional analysis of the whole device is 

presented, its peculiar dynamical regimes are investigated, and a set of strategies aimed to 

correctly reproduce switching and amplification functionalities is proposed. Last, the electrical 

characterization of the NanoMechanical Transistor is outlined, together with an estimation of its 

current amplification properties. 

     Summarizing, Part One constitutes the theoretical foundation for a more applicative Part 

Two: once the theoretical properties of electron shuttle have been investigated, the Quantum 

Shuttle Module which is more appropriate to build a NanoMechanical Transistor can be chosen.
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Part One 

THEORY OF 

MECHANICAL ELECTRON TRANSPORT 
 

 

 

 

 
n the following Chapters the theoretical analysis of mechanical charge transport – namely 

electron shuttle – is carried out, with particular emphasis on the different QSM architec-

tures and the possible working principles able to achieve a form of shuttle mechanism. 

In Chapter 1, a number of nanoscale charge transport devices is investigated: after the Tunnel 

Junction and the Single-Electron Transistor, the Quantum Shuttle Module is definitely analyzed. 

In Chapter 2, a detailed description of Quantum Shuttle Modules is attempted: first a prototypal 

architecture is suggested, then the definition of their main features, the general terminology and 

the classifications are presented in detail. In particular, the following arguments are discussed: 

shuttle and tunnel current contributions, distinction between soft and hard shuttle, transport 

factor, autonomous or induced oscillations, electromechanical coupling, current-voltage hyste-

resis, effects of Coulomb blockade. In particular, two kinds of shuttle mechanism are discerned, 

depending on the voltage boundary conditions used: direct shuttle and inverse shuttle. The first 

one is characterized by self-excited vibrations, the second one relies on parametric resonance. 

In Chapter 3, an overview of the feasible analytical models and approximations is proposed. 

In Chapter 4, a direct shuttle Quantum Shuttle Module is investigated with numerical simula-

tions, and the occurrence of a current-voltage hysteresis, peculiar of hard systems is discussed. 

In Chapter 5, analytical and numerical approaches are used to study inverse shuttle Quantum 

Shuttle Modules. First, a “wide-gate” is used to investigate soft shuttle regimes, for which a 

more exquisitely “quantum” approach is preferred; then, the general case is investigated by 

using a “semi-classical” model. In both cases, similar results are obtained. Specifically, the 

chance to realize an AC shuttle current is analyzed and highlighted with numerical simulations. 

In Chapter 6, hybrid shuttle – the combination between direct and inverse shuttle – is suggested. 

To conclude, a general framework reassumes the conduction mechanisms treated in the thesis. 

I 



 

 

 



A. Scorrano – Modelling of MEMS/NEMS Resonators and Functional Design of a Mechanical Transistor 

 

Part One – Theory of Mechanical Electron Transport                                                                                                             25 

  

 

 1 
 

  

  
 

Chapter  

 

Charge transport devices at nanoscale 

 

 

1.1 Quantum Tunneling in a Tunnel Junction 
 

A first description of Quantum Tunneling (QT) has been presented in the Introduction. 

QT refers to a quantum mechanical effect which allow a particle to surpass a potential barrier 

also in the case the laws of classical mechanics would not allow so. 

     Consider a rectangular potential barrier   and a particle with energy  . In the classical 

frame, only a particle with     can surmount the barrier. In quantum mechanics, a non-zero 

probability to find the particle over the barrier exists, also in the case    . A simplistic, 

though useful interpretation of QT is that the particle “borrows” missing energy     from its 

surroundings, and this is repaid making the other reflected particles more energetic than they 

otherwise would have been 
[78]

. A more strict explanation relies the wave-particle duality, which 

involve the Heisenberg uncertainly principle, from which follows a particle position cannot be 

predicted nor excluded with absolute certainty. Quantum scenario also involves the particle does 

not strictly transit through the barrier, but simply “appears” – tunnels – on the other side. There-

fore, the “duration time” of QT is an highly debated argument, and produced some interesting 

results on the apparent superluminal “tunneling speed” 
[79,80]

. 

     The tunneling problem consists in solving the Schröedinger equation and integrate the wave 

function in the positions over the barrier to provide the probability for a particle to tunnel over 

barrier: this provides the QT transmission coefficient. Historically, the first important result was 

that of Fowler-Nordheim tunneling 
[81]

, referred to triangular barriers. For rectangular or piece-

wise barriers exact analytical solutions exist 
[82]

. Corrections for parabolic potential are long 

known also 
[83]

; while, for arbitrary shapes of practical interests, approximated solutions, mainly 

based on the WKB method, have been proposed 
[84,85]

. 

     When QT is referred to electrons, it is called electron tunneling, and its study is of particular 

interest in electronic devices. The most simple system exhibiting electron tunneling is a Tunnel 

Junction (TJ). A TJ is constituted by a couple of electrodes separated by a thin insulating layer. 

The dielectric produces a potential barrier electrons can tunnel through to reach the other con-

ductor. Since the architecture of a TJ is similar to a plate capacitor, the circuital equivalent of a 

TJ is formed by a resistor and a capacitor in parallel (Fig.1.1). The capacitance    may be calcu-

lated as usual. Instead, the current-voltage characteristic is peculiar of QT and highly non-linear, 

and different approaches are used in literature to model the TJ conductance    . 

 

Figure 1.1 – (a) Architecture, (b) circuital symbol and (c) circuital equivalent of a TJ. 
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The standard approach is that of assuming a conductance with a negative exponential depend-

ence from the insulator thickness: 

 

  
  

       
 
 
                                                                      

 

where    represents the contact conductance and   is the tunnel length. Both parameters can be 

determined by experiments by assuming a known, constant, potential difference   : typical 

values reported in literature are             and               
[25]

. Physically, these 

values depend on the electrodes average surface   and work function   . 

In order to take into account the dependence from the applied voltage, more accurate formulae 

are also available (see Appendix A). Such models (see Fig.1.2) can be useful to calculate QT 

equivalent conductances in the case one of the parameter (usually, the distance  ) varies in time. 

 

 
Figure 1.2 – Images from article 

[86]
. (a) Rectangular barrier. (b) Hyperbolic correction. (c) Some exem-

plificative curves represent equivalent QT conductances as a function of voltage and distance. 

 

One can fit the standard formulation (1.1a) with one of these approaches, in order to obtain a 

more neat relation in which the dependence from voltage is included within the tunnel length: 

 

           
 

 
                                                                    

 

where        is calculated for a system of known geometry and materials. Notice this formu-

lae are referred to a normal-conducting TJ †. 

 

 

1.2 Coulomb Blockade in a Tunnel Junction 
 

A brief comment on Coulomb Blockade (CB) effects has been presented in the Introduction.  

This name originates from an obsolete way to refer to electrostatic energy, as “Coulomb ener-

gy”, however, since CB is the manifestation of the discrete nature of charge in presence of QT, 

it is sometimes referred as quantized charge tunneling or single electron charging effect. 

 
 

†      Therefore, not super-conducting (in which Cooper pairs tunnel), nor semiconducting (when the transmission coefficient highly 

depends on temperature). 
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The term CB was originally introduced to indicate the increase of resistance in a TJ around very 

small voltages; however, it is now used extensively to group a number of CB-related effects 

which can be exhibited by NEMS devices comprising at least a TJ. In this paragraph, we start 

our analysis on CB by considering its effects on a single (normal-conducting) TJ.  

     Consider a TJ exhibiting QT, characterized by a capacitance    . An interpretation of the CB 

phenomenon is provided as follows (refer to Fig.1.3). Due to the discrete nature of charge, QT 

can be considered as a series of events in which exactly one electron tunnels  from the low-

biased electrode to the high-biased one, producing a discrete decrement of the potential differ-

ence        . Assume in a time      the potential difference between the electrodes is 

      . The event “tunnel of the  -th electron”, would produce a voltage drop to         

   . In the case      and/or    are very small,    could result negative, and in this case the QT 

of the  -th is inhibited. The black-box effect is that of an increase of the TJ resistance around 

very small voltages: a blockade which indeed summarizes the CB effect. This increment in 

resistance cannot provided by formulae and, if present, it has to be introduced in a theoretical 

model by using a discrete-charge approach (see Section 2.3). 

 

 
Figure 1.3 – Explanation of CB due to the QT of a single electron in a TJ: (a) before, (b) after the event. 

 

     However, to detect CB, some requirements have to be met. First, electrons receive energy 

not only from the electric field induced by an applied voltage, but also from thermal excitation. 

A temperature  , differently from the directional effect of an electric field, excites electrons 

randomly, producing fast, back-and-forth tunneling episodes between the two electrodes. Con-

sequently, at relatively high temperatures, effects of charge discreteness on the time scale of 

current measurement are not revealable. Second, one needs the TJ potential barrier is sufficient-

ly opaque that the electrons are actually “located somewhere” (in either the electrodes). This 

condition involves the Heisenberg uncertainty principle and requires a TJ resistance         

which allows a limited number quantum fluctuations over the time scale of the measurement. 

Therefore, in order to observe CB in a TJ, the following conditions have to subsist 
[21,87]

: 

 

  

  
                                                                              

   
  

 
                                                                            

 

where    and   are the Boltzmann and the Planck constants, respectively. Sometimes, (1.2a) is 

very restrictive: a TJ with              requires a temperature      . Thus, the chance 

to observe CB in a NEMS is constrained to miniaturization technological limits. 

 
 

†     We are excluding the co-tunneling occurrence. Actually, this assumption is not feasible if the applied voltage is relatively high. 
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1.3 Coulomb Blockade in a Double Junction: 

the Single-Electron Transistor  
  

By coupling two TJ, the presence of CB can be more relevant and produces interesting effects. 

Consider the device depicted in Fig.1.4: the element in the center labeled with   is called island. 

The island is separated from both the electrodes   and  , by a thin layer of dielectric. Therefore, 

a system characterized by this architecture is a Double Tunnel Junction (DTJ). 

 

 
Figure 1.4 – Two-terminals system representing a DTJ: (a) architecture, (b) circuital equivalent. 

  

In a DTJ, the interpretation of CB involving the discrete QT of electrons is still valid. The novel 

effect is that the application of a sufficiently small voltage between   and  , definitely prevents 

the contemporary tunneling of two or more electrons on the island (co-tunnel). Electrons are 

transferred one-by-one, since only when the first one has finished to tunnel from   to   (or    a 

second electron can tunnel from   (or    to  . This phenomenology is called single electron 

tunneling. Introduce the total capacitance of the island        (being    the capacitance of 

either two specular TJ), then, conditions (1.2a,b) generalize into: 

 

  

  
                                                                              

   
  

 
                                                                            

 

A DTJ in which both (1.3a) and (1.3b) hold, exhibits, consequently to the behavior explained 

above, a peculiar step-like shape of the current-voltage curve, called Coulomb staircase 

(Fig.1.5). Specifically, single electron tunneling occurs in correspondence of the first step of the 

curve. By applying increasing voltages, multiple electrons start to co-tunnel, towards/from the 

island and  this leads to a progressive smearing of the steps of the Coulomb staircase. 

 

Figure 1.5 – Effect of Coulomb Blockade on the  -  curve of a DTJ: (a) without CB, (b) with CB. In the 

second case, the Coulomb staircase is visible. 
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     However, the two-terminals system depicted in Fig.1.4 requires relatively high voltages 

          , to produce QT. This may prejudice the thermal equilibrium of the system: in order 

to overcome this inconvenient, a three-terminals device as that in Fig.1.6a can be proposed. 

A third electrode, the gate   , is capacitively coupled with the island  : now the gate voltage    

allows to regulate the electrostatic potential    , thus, to control the presence of CB in the sys-

tem. In presence of CB, this three-terminal geometry can exhibit single-electron tunneling, 

therefore we refer to it a Single Electron Transistor (SET). In such system, electrodes   and   

act as a conventional transistor drain   and source  . 

 

 Figure 1.6 – Three-terminals system representing a SET: (a) architecture, (b) circuital equivalent. 

 

     In a SET, a relatively a small gate voltage    can switch the device from the insulating to the 

conducting state (or vice versa): if correctly designed, a single electron is sufficient to con-

sent/prevent the one-by-one source-to-drain electron tunnel. 

Therefore, a SET requires an additional condition on the bias voltage, which needs to be as 

small as the first step of the Coulomb staircase: 

 

   
 

  
                                                                            

 

Triplet (1.3a,b,c) constitute the set of requirements to realize a working SET. 

     The SET represents the most important application of CB. Its concept was first suggested by 

in 1986 
[15]

, and was first successfully tested in a cryogenic environment 
[17]

 †. This is bacause 

condition (1.3a) imposes a temperature relatively small with respect to the capacitance    . The 

cryogenic limitation represented for many years a main concern about the technological feasibil-

ity of a SET device. However, with the recent improvements of nanotechnology, in mid 90s, the 

first SETs operating at room temperature were realized by progressively reducing the size of the 

island and by using different bottom-up approaches. 

Another issue in SETs is related to the co-tunnel leakage failures, which may be prevented by 

using multiple-TJ geometries 
[87,88,89]

 instead of a simple pair of TJs. 

     In a more general context, the fundamental importance of the SET as the basic component of 

a less energy-consuming information technology ‡ have been theoretically investigated in a 

number of works 
[90,91,92]

 but commercial (more stable) applications are yet to come and repre-

sents one of the most exciting challenges for future NEMS research. 

 
 

†    In this work, Fulton and Nolan noticed the high sensitivity of a SET current to the charge on the gate (Coulomb oscillations), 

and proposed an alternative use of the device as a single electrometer. 

‡   In a conventional MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) over one thousand electrons are needed to 

perform the same transistor functionality of a SET.  
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1.4 Technological feasibility of Coulomb Blockade: 

the Quantum Dot 
 

Pioneers of CB investigated its effects by measuring anomalies in the conductive properties of 

granular thin films 
[11,12]

. In their first SET prototype, dated 1987, Fulton and Nolan 
[17]

 made use 

of an aluminum structure to produce CB. In the following years, the advent of the STM promot-

ed a renewed interest for small grains 
[93]

, in particular single electron devices whose island 

consisted of a single nanocrystal 
[20,69]

. In 1996, single-electron tunneling was successfully 

exhibited at room temperature in self-assembled molecular nanostructures by Andres et al. 
[18]

, 

further explored by Soldatov 
[19,94,95]

 and recently reviewed by Joachim 
[96]

. In particular, interest 

focused towards carbon structures, from the versatile C60 molecules 
[97,98]

, to the recent realiza-

tions of SETs using carbon nanotubes, started in 2001 by Postma et al. 
[99]

 and whose research 

continues today producing interesting results 
[100,101]

. 

     All these examples constitute different ways to overcome the same technological needs: 

miniaturization of a (semi)conductor element in order to observe CB at room temperature, 

giving the chance to realize SET devices suitable for commercial electronic applications.  

There is no formal difference in the physics of most cases cited above: each of them represents a 

confined structure containing a small amount of electrons which exemplifies the concept of 

Quantum Dot (Q-dot). Although, strictly speaking, this term properly refers to a semiconductor 

nanostructure, such phenomenology is substantially similar to that of a cluster, a metallic parti-

cle, a grain, or a molecule. Both orthodox – i.e. realized in silicon – and not Q-dot devices have 

been proved to show CB effects 
[102]

, and can work as a SET 
[103,104,105]

. 

A rather complete review on Q-dots can be found in 
[106]

.  

     The peculiar conductive behavior of a Q-dot can be understood by using the band theory, 

which, how it is well-known, describes the behavior of electrons in solids by postulating the 

existence of energy bands in a material. Electrons, according to their fermionic nature and the 

Pauli exclusion principle (no more than one fermion can occupy the same state), occupy the 

available energy states by starting from the lowest one, following – under the “many-electrons 

approximation” – the Fermi-Dirac distribution. The Fermi level is the energy of the highest 

occupied energy level in a system of fermions (i.e. electrons) when      . In the case of 

electrons only two states are present in each energy level. 

     Referring to Fig.1.7, different possibilities arise, depending on the nature of the material. 

In metals (we are only interested with solid conductors), regardless temperature, a band partly 

empty and partly filled exists. In these material electrons have an high mobility. 

In insulators or semiconductors, the lowest almost fully occupied band is the valence band 

while the highest almost unoccupied band is the conduction band . Distance between these two 

bands is the bandgap. In insulators, such bandgap is large, in semiconductor is thin. 

 

 
Figure 1.7 – Band theory representation of different materials. 
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Since only the electrons excited to the conduction band can concur to electric current, in insula-

tors only a few electrons are found there and their electrical conductivity is lower. On the other 

hand, semiconductors can exhibit a more or less conductive behavior depending on the tempera-

ture, the required excitation of electrons coming from thermal energy.  

     Up to here, this is matter of basic solid-state physics. Introduce now to the concept of Q-dot 

in the context of band theory. In a macroscopic object (“bulk material” model), the discreteness 

of energy bands is not detectable (Fig.1.8a). However, the more the scale is reduced, the more 

the size of the bands increase. When the diameter of the objects of the order of nanometer 

(“nanoparticle” model) the bandgap becomes dependent on the size of the object. An electron 

behaves as if it were free when the dimension of the confining material is large respect to its De 

Broglie wavelength. Otherwise, a n-dimensional potential well due to the small material scale is 

observed: an effect called quantum confinement. Depending on the typology of the quantum 

confinement, different nomenclatures are used. A quantum well (Fig.1.8b) is a one-dimensional 

quantum confinement. A quantum wire (Fig.1.8c) is a two-dimensional quantum confinement †. 

Finally, if all three dimensions are confined, it is the case of a quantum dot (Fig.1.8d). 

 

 
Figure 1.8 – Distribution of energy levels in different cases of quantum confinement. 

 

     Summarizing, a Q-dot is obtained when an inclusion of a semiconductor material of the 

dimensions of its De Broglie wavelength – thus, exhibiting quantum confinement – is included 

within a larger semiconductor characterized by a larger bandgap (refer to Fig.1.7). The conduc-

tive behavior a Q-dot is therefore an hybrid between bulk conductors and discrete molecules: 

consequent to this it is often referred as an “artificial atom”. Since, due to an high extinction 

coefficient, their optical properties deviate from the bulk materials, Q-dots are often used in 

optical applications.  Last, semiconductor Q-dots can be easily connected to electrodes, differ-

ently from molecular clusters. 

     To conclude, two main Q-dots categories exist: little Q-dots (i.e. nanocristalline semiconduc-

tors in colloidal solutions), which have a characteristic diameters of a few nanometers and are 

composed         atoms; and self-assembled Q-dots, over    nanometers. 

 

 

 

 
 

†     Carbon nanotubes constitute an optimal embodiment to realize quantum wires, as first demonstrated in [107].  
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1.5 Double Junction with an oscillating island: 

         the Quantum Shuttle Module 
  
In 1998, Gorelik 

[25]
 first suggested to consider a DTJ system in which the island was free to 

oscillate between leads. In its article, the feasibility for such a device to exhibit a conduction 

mechanism based on the vibrational state of the island was theoretically demonstrated. This 

peculiar form of charge transport was named shuttle. A similar mechanism was already exhibit-

ed by some macroscale devices (see the Introduction), but this was the first time such a concept 

was explored in a NEMS, in presence of both QT and CB effects. In its paper, he suggests a 

minimal two-terminals geometry, composed by fixed electrodes   and  , and a shuttling ele-

ment   (Fig.1.9a). Years later, Isacsson 
[29]

 introduced a three-terminals shuttle device, more 

similar to a SET, in which a gate   is present also (Fig.1.9b).  

Both configurations have been later investigated in theoretical and experimental works, whose a 

detailed review have been already presented in the Introduction. 

 

 
Figure 1.9 – Schematic representation of a QSM: (a) two-terminals, (b) three-terminals configuration. 

 

     Different terminologies are used in literature to indicate devices which can be schematized 

by one of the geometries in Fig.1.9, or, by extension, which exhibit a similar phenomenology: 

nanomechanical charge shuttle, quantum electron shuttle, shuttle junctions.  

In this thesis, we univocally refer to them as Quantum Shuttle Modules (QSMs), whereas analo-

gous macroscale devices are simply named Shuttle Modules (SMs), to underline the strict con-

nection between these two categories and simultaneously remind their differences. 

     The dynamics and conductive properties exhibited by a QSMs differ from those of a SMs 

primarily for the presence of QT, while CB plays a secondary role (Introduction, Tab.I). This 

fact states an important difference with SETs (whose working principle relies indeed on CB): a 

QSM does not require any CB-related condition to operate. More specifically, the missing 

demand for condition (1.3a) bears a pair of advantages for QSMs. 

First, the working principle of a QSM not only is adapt to operate at room temperatures, but is 

refractory to high temperatures not compatible with conventional semiconductor electronics: 

this fact was often highlighted by Blick as a strong point of an information technologies based 

on QSMs instead of SETs 
[60]

. Second, the absence of a condition on having a maximum capaci-

tance, loosens the miniaturizing constraints of a QSM: in particular the shuttling element of a 

QSM can be realized with a certain versatility by using different shapes and technologies: from 

small silicon Q-dots transferring single electrons 
[108]

, to larger metallic Q-dots 
[109]

, metallic 

clusters in organic links 
[68]

, or even larger embodiments consisting in a metallic cap on the tip 

of a nanocantilever as preferred by Blick 
[26,31,32,36,37,41,42,52]

.  
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Chapter  

 

Approaching the Quantum Shuttle Module 

 

 

2.1 Prototypal architecture of a Quantum Shuttle Module 
 

The most general architecture of a QSM is represented by the three-terminals configuration in 

Fig.1.9b. The left and right electrodes   and   and the gate   are the fixed terminals, whereas a 

fourth conductor body, the shuttling element   , is free to oscillate between   and   . As usual in 

literature, QSMs are theoretically investigated by using a concentrated parameters model.  

     In the following considerations, refer to Fig.1.10 for the mechanical part of the system and to 

Fig.1.10b for its electrical counterpart. 

 

 
Figure 1.10 – Prototypal QSM architecture: (a) geometrical and (b) electrical schemes. 

 

     In this simple model, the evolution of a QSM can be described by using only two lagrangian 

coordinates: one mechanical, the position     , and one electrical. The choice of the electrical 

coordinate is more subtle: first of all, one can alternatively choose the shuttling element voltage 

or electric charge. Secondly, different analytical models arise depending from the use of a 

discrete- or a continuous-charge model. The approach proposed in this paragraph strictly refers 

to the latter case, however, with a certain abuse of notation, it can be adapted to a discrete-

charge model. When not conversely specified, in this thesis we prefer the continuous-charge 

approach which uses       as the electrical lagrangian coordinate. The simple relation       

       can be used, if needed, to switch between the two approaches. 

     In Fig.1.10a, (mechanical scheme) the shuttling element   is modeled as a single-DOF oscil-

lator with mass, damping and stiffness respectively   ,   and   . Being    the characteristic 

size of   and   the half-distance between   and  , in a symmetrical embodiment,   can occupy 

positions      [         ]. Last, we assume the distance   between   and   is constant.    

     In Fig.1.10b, (electrical scheme) the shuttling element   is capacitively coupled with  ,   

and   by the means of position-dependent capacitances       and       and a constant    † . 

 
 

†    Equivalent circuit in Fig.1.10b considers only nearest neighbors capacitances. Analyses carried out in Part One use this approx-

imation. In Part Two, a more accurate electrostatics involving a capacitance matrix is considered. 
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Other capacitive effects are neglected, so that the shuttling element self-capacitance is: 

 

                                                                              

 

Depending on the position  , the pairs   

  
  and   

  
  can alternatively form a TJ, thus exhibiting 

non-null equivalent tunnel conductances       and      , which, in this Part †, will be calcu-

lated by making use of simple formulae (1.1a,b) ‡ 

     Voltages of the three terminals are directly controlled by both DC and/or AC signals, so that: 

 

                                                                          
 

        
     

                                                                  

 

The selection of the six values    ,    ,    ,   
  ,   

  ,    sets the boundary conditions. 

Electrostatics of the whole system influences the shuttling element voltage, so that in general, 

one can calculate its potential by using the following formula: 

 

      
     

     
                                                                    

 

where      and      are appropriate positive quantities ‡†. Depending on the actual values of 

voltages and conductances, currents    and    are established, their instant value being: 

 

           [           ]                                                        
 

           [           ]                                                       

 

In this thesis the following convention is used for current directions:    is positive from   to   

and    is positive from   to   . These currents are the only ones included in this model ‡‡ . 

Conductances    and    rely on QT effect. Thus, they are calculated by making use of one of 

the relations (1.1a,b), dependent from position and potential differences: 

 

               |     |                                                     
 

               |     |                                                    

 

     Since the schemes in Fig.1.10 constitute the most general case of QSM, in the following 

Chapters of this Part we‟ll refer to it as the prototypal architecture. In fact, every specific em-

bodiment of a QSM differentiates from this most-general architecture only by the power rela-

tionships between its constitutive elements and the different choices on boundary conditions.  

 

 

 
 

†     In Part Two, more accurate models taking into account the voltage effects are introduced, by making use of Simmons formulae.  

‡    Except when a more exquisite quantum approach is attempted to determine QT. Here we refer to a quantum approach when the 

discrete nature of electric charge is considered. In this sense, QT cannot be modeled by the means of equivalent conductances, 

but with different approaches. 
‡†   This is an approximated, although effective relation often used in literature [27] and, in this thesis, only in Part One. 

‡‡  Here, we only consider QT currents since we are not interested in apparent currents coming from the charging of capacitors. 

Also, since QT between   and   is not included in the model, the geometrical properties and voltage boundary conditions of the 

system may to be selected appropriately. Again, in Part One we neglect long tunnel between   and   with respect to short tun-

nel between   and   or   and   : in Part Two, it is reintroduced as well. 
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2.2 General concepts on electron shuttle 
 

2.2.1 Shuttle and tunnel contributions to the macroscopic current 
 

Referring to the QSM prototypal architecture in Fig.1.10, the only currents are       and       . 

They represent microscopic currents,  whose instant values – calculated by using relations 

(1.7a,b) – do not generally match. However, when averaged over an appropriate period of time 

   †, their values coincide ‡, and a QSM exhibits a macroscopic current: 

 

 ̅  
 

  
∫         

     

  

 
 

  
∫         

     

  

                                            

 

When a QSM is considered as a black-box, current   ̅ represents the serviceable output conse-

quent to the electrodes and the gate voltage applications ‡† . To achieve the electrical character-

ization of the device, one can plot, for example, a family of  -  curves referred to the current 

(1.9) as a function of the (maintained constant:      ) bias voltage (1.5a), and by using 

stepped values of the (    ) gate voltage (1.5b). 

     Since, from (1.7a,b), both currents       and       rely on the equivalent QT conductances 

      and      , in a QSM the form of charge transport wherewith the shuttling element   

produces a macroscopic current   ̅is the QT. This fact states a first fundamental difference with a 

SM, where electrons are transferred, instead, by contact. The second difference is that in a QSM 

the current can be considered as the sum of two contributions, corresponding to as many distinct 

physical mechanisms: the shuttle current     and the tunnel current     , while in a SM only the 

first contribution is present, since QT is not present at macroscale. The term    represents the 

part of current which relies on the vibrational state of the shuttling element, while    is the part 

of current which is present also when the shuttling element is at rest. We already discussed the 

consequences related to this dichotomy in the Introduction (Tab.I). However, in this sub-

Paragraph we study in deep some last considerations.  

     Consider an experimental setup in which three device: a SM, a TJ and a QSM are present.  

In the SM, there is no QT effect, and the whole current is produced by the shuttle mechanism. 

On the contrary, in a TJ the island is at rest and the only contribution is from the tunnel current. 

In a QSM, the island (shuttling element) is free and QT effect is present: thus, there is a combi-

nation of both shuttle and tunnel currents. Summarizing, we are in front of this situation:  

 

                                                                                  
 

                                                                                  
 

                                                                                

 

where (1.10a,b,c) respectively refer to a SM, a TJ and a QSM. 

 
 

†     Usually it is sufficient to average over a single period of oscillation    to make quantities   ̅ and   ̅ coincide. However, this is 

not true in general: exotic cases of a QSM in which a longer averaging time       is required, exist indeed. A procedure to 

determine the appropriate    will be presented in the Section 2.2.2. 

‡   An heuristic, but effective argument to demonstrate this statement is presented ahead. Consider a QSM achieving a certain 

periodic motion regime: since   cannot accumulate electrons indefinitely, a stationary condition, in which   ̅ and   ̅ are going to 

match, has to be eventually reached. Such an asymptotic common value of the current can be either null or not. 

‡†   This fact is analogous to a SET. On the other hand, whereas a SET can easily work as a transistor (i.e. the gate voltage modu-

lates the current passage between a source and a drain), this is not straightforward in the case of a QSM, as has been anticipated 

in the Introduction, and as will be widely argued in the following Chapters of the thesis. 
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Relations (1.10a,b,c) seem to suggest the intuitive fact a QSM is a combination of a TJ and a 

SM: however this vision is misleading, since the definition of the tunnel current in (1.10b) for a 

TJ is different from that in (1.10c) for a QSM. In fact, the following relation holds for a TJ: 

 

                                                                                  
 

where closed-form formulae like (1.1a,b) can be profitably used to calculate the tunnel conduct-

ance    . One could conclude it is possible to do the same to estimate the tunnel contribution to 

current in a QSM in (1.10c), but this is wrong, because a QSM more resembles a DTJ, and there 

is no chance to use (1.11), which applies to a mere TJ. In conclusion, the instantaneous contri-

butions to current cannot be discerned (both theoretically or experimentally) in a QSM.  

     There is, however, the chance to distinguish the shuttle current from the tunnel one if consid-

ered as time-averaged quantities. Experimentally, the only possibility relies on realize two twin 

embodiments of the same system. In the first one, the shuttling element is free to oscillate; in the 

second, it is fixed in some way. A similar approach has been attempted in literature in at least 

one case 
[41]

. Clearly, this approach gives rather poor estimations of current contributions. The 

scenario is in fact more clear in a theoretical context. In the Introduction, relying on heuristic 

arguments , we already derived (formula (IVI), an operative relation for the shuttle current: 

 

  ̅                                                                                
 

In this,    is the shuttling frequency and    the number of (positive) charge carriers shuttled in a 

cycle. Relation (1.12a) was first introduced by Gorelik when, in 1998 
[25]

, he first suggested the 

archetype of a nanoscale QSM. However in (1.12a) the meaning of    needs to be further 

specified. Again in 
[25]

, Gorelik rigorously introduced the shuttle current as: 

 

  ̅  
 

  
∫              

     

  

                  
      (    

   

   
  )  ̇                     

 

In this formula,        
     is the mechanically mediated current, referred to a cross-section    

(       is the Dirac delta function). Therefore, due to the symmetry, the shuttle current has been 

defined as the mechanically mediated current in      averaged over a period of oscillation   . 

Definition (1.12b) matches the more generic (IV). Notice these relations are general and apply 

to both a SM or a QSM. Last, the tunnel current can be introduced in a residual way as: 

 

  ̅   ̅    ̅                                                                          
 

where   ̅ is calculated using one of (1.12a,b), while the total current   ̅comes from (1.9) †. 

In Tab.1.1 the overall scenario involving shuttle and tunnel current contributions is summed up.  

 

Table 1.1 – Determination of shuttle and tunnel currents in different devices. 

Device 
Current 

Contribution 
Experimental Setup Theoretical Model 

instant time-averaged instant time-averaged 

SM shuttle (1.10a) no (1.12a,b) 
TJ tunnel (1.10b) (1.1a,b) 

QSM 
total (1.10c) no (1.9) 

shuttle no “twin” devices no (1.12a,b) 
tunnel no “twin” devices no (1.13) 

 
 

†     Clearly, in order to apply (1.13), both currents   ̅ and   ̅have to be averaged on the same period of time    . 
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2.2.2 Phase plot representation: feasibility of the shuttle current 
 

Consider the prototypal QSM architecture in Fig.1.10. Assume the shuttling element undergoes 

a certain periodic motion regime       , in presence of some voltage boundary conditions   

compatible with (1.5a,b), periodic as well. From (1.7a,b), the evolution of charges         

only relies on       and      , in turn depending on     ,      ,      ,      . Notice that, if 

both   and   are known,   is univocally determined, since         . 

Let    the period of   , and    the period   . Then, the pair {   }  {          } generates a 

trajectory on the phase plane  -   which is completely travelled in a time: 

 

        (     )                                                               

 

where          is the least common multiple. Now introduce the ratio: 

 

  
  
  

                                                                            

 

and postulate a QSM whose dynamics is compatible with equations: 

 

{
 
 

 
          ̃ *

 

 
(
  

  
   )+

            ̃ (
  

  
 )         

                
   

        ]
                                 

 

Strict sinusoidal functions are not required, thus the symbol    ̃, which represents any wave-

form characterized by a null average value. Consequently, equations (1.16) exemplify a QSM 

characterized by a somehow symmetric behavior. Limit our analysis to equations (1.16) may 

seem a rather reductive assumption; however, most systems behave in such a symmetric way †.  

     Characteristic parameters   and   are respectively called characteristic ratio and character-

istic phase, and directly control the topology and shape of the phase curve. Also, in a QSM for 

which (1.16) hold,   and   play a fundamental role in determining the conduction properties of 

the system, specifically, they give strong hints on the magnitude of its shuttle current   ̅ ‡.      

     When       or | |    , the phase curve is diagonal and very narrow; whereas if | |      , 

the curve encloses a larger area and is symmetric with respect to both axes. Also,  the sign of   

determines the direction of the phase curve. This direction determines the sign of   ̅: compatibly 

with the convention used in Section 2.1,   ̅    (  to   current, which is   to   electron shuttle) 

if         , and vice versa if         . Last, the curve presents     self-crossings ‡† . 

From (1.12a),   ̅     , but, compatibly with (1.12b) and from the symmetry constraints given 

by (1.16),        ̃ |    |, being       (    )      the number of charge carriers (posi-

tive or negative depending on the motion direction) on the shuttling element   when it intersects 

the central cross-section (Fig.1.11). If   is an even number, the phase curve presents  a crossing 

in the origin, thus        and   ̅   ; instead, if   is odd, the area (with sign) enclosed within 

the phase curve is roughly proportional to the shuttled electrons per cycle, so that   ̃    ‡‡. 

 
 

†     The QSMs presented in Chapters 3 and 4 follow, for example, (1.16). This point will be better disclosed in Section 2.2.7.  

‡     Since, by definition, only the shuttle current depend on the motion regime, while the tunnel one is independent from it. 

‡†   An orbit in a phase plane cannot cross itself. Anyway, we are not dealing with orbits: since the state of a QSM is described by a 

triplet {      ̇         }, we are merely considering its projection on a plane  -  . This is a usual approach in QSM literature. 

‡‡   Further details on this proportionality will be discussed in Section 2.2.8. 
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Figure 1.11 – Qualitative representation of a QSM orbit shuttling      electrons per cycle. 

  

In conclusion, this analysis can be used to compare systems characterized by the same oscilla-

tion period    and characteristic ratio  . Consider two QSMs labeled with “1” and “2”. Since 

  ̃    and, from (1.12a),   ̅       , one obtains the following proportionality: 

 

 
   ̅  
   ̅  

 
  

  
                                                                        

 

Relation (1.17) is very useful, since it allows to estimate the relative magnitude of the shuttle 

current   ̅ of two isoperiodic QSMs with a quick look at their phase plots. 

In conclusion, Tab.1.2 summarizes the concepts described above with some examples. 

 

Table 1.2 – Overview of the shape of phase curves and magnitude of the shuttle current in correspond-

ence of different combinations of parameters   and   in formulae (1.16), with a sinusoidal waveform. 

Curve direction and self-crossings are highlighted in red. 
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2.2.3 Induced and autonomous shuttle 
 

Imagine the shuttling element of the prototype in Fig.1.10 with initial conditions        and 

 ̇     . In the case    , after a single oscillation,         is the mechanically dissipated 

energy and      the work done on the shuttling element. Trivially, a competition            

determines the increase or decrease of oscillations amplitude. When equilibrium is reached: 

 

                                                                               
 

and a permanent oscillating regime   is reached. It has to be remarked the existence of a shuttle 

current wholly relies on the chance to maintain in motion the shuttling element †. 

Depending on how the energy      is supplied, the considered QSM is characterized by: 

 induced shuttle:  if      comes from a power source exterior to the scheme in Fig.1.10; 

 autonomous shuttle:  if       comes from the voltage boundary conditions  . 

These definitions match with the more generic ones given in the Introduction.  

In turn, induced shuttle can be produced by: 

 forced oscillations:    is partly determined; 

 controlled oscillations:    is completely determined. 

We anticipate here (from Section 2.2.6) that autonomous shuttle can either refer to: 

 self-excited oscillations:  limit-cycle oscillations with a periodic   can be established; 

 parametric resonance:  in a linear resonator,   can diverge. 

Both induced and autonomous shuttle have been investigated in recent QSM literature. Shortly 

after the theoretical feasibility of self-excitation was demonstrated by Gorelik in 1998 
[25]

, this 

was experimentally confirmed by Tuominen 
[68]

 using a metallic cluster shuttling element. The 

first autonomous device with a nanopillar geometry, due to the intrinsic larger size, was realized 

only in recent times by Blick 
[67]

. Prior to this, Blick 
[26,31,32]

 and others 
[53]

 explored the shuttle 

mechanism by using a RCF (Resonant Coulomb Force) approach. They used a QSM character-

ized by a more complex architecture with respect to the prototypal one. A first pair of electrodes 

excite the shuttling element at half its height with an AC voltage, while the charge transport is 

operated at its tip between a second pair of electrodes, DC-biased instead (Fig.1.12). 

 

 
Figure 1.12 – Circuital scheme of a shuttle device working using RCF. 

 

     The dynamics of a QSM is described by the pair {   }  {          }. In Section 2.2.2, we 

discussed how, if (1.16) hold, it is possible to obtain information on the shuttle current from   

and   . However, in general, the conductive behavior   of a QSM is fully determined only if the 

boundary conditions   are also known:             Thus, depending on the role       

play in (1.18), a subtler induced/autonomous definition can be introduced. Consider   the output 

of a QSM. Then, in the case of autonomous shuttle, the only input is  , while in induced shuttle 

both   and   are the inputs. From now on, in this thesis, we‟ll focus on autonomous shuttle.  

 
 

†     In fact, if the shuttling element is at rest, only the tunnel current is present, and a QSM regresses in a DTJ. 
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2.2.4 Electromechanical coupling 
 

Consider an autonomous QSM reaching a (stable) limit-cycle oscillation with amplitude  . The 

energy related to the vibrational state of the shuttling element is              . Introduce: 

 

  
    

     
                                                                         

 

Since, in autonomous shuttle,              , then   is the ratio between an electrical and a 

mechanical energies. Consequently, of a QSM device, the value of   returns the magnitude of 

its electromechanical coupling. This is the complete casuistic: 

     (free oscillations):  all voltages are null,           
     

     . 

     (weak coupling):  damping ratio      √    . Sinusoid-like oscillations. 

       (strong coupling):       . Saw-tooth shape oscillations. 

     (ballistic motion):  the restoring mechanical force is not present,     . 

Cases     and     represent degenerate systems we are not going to deal with. Excluding 

them, having a weak coupling is important to develop approximated analytical solutions †. 

 

 

2.2.5 Symmetry breaking and continuative oscillations 
 

In autonomous shuttle the chances for a QSM to produce a macroscopic shuttle current relies on 

the feasibility of limit-cycles. In turn, a limit-cycle leads to a stable orbit characterized by a 

finite amplitude     whose existence requires two conditions: 

 the presence of a certain symmetry breaking effect, to select the current sign; 

 the chance to achieve continuative oscillations, depending on the energy balance (1.18).  

We investigate the physical origin of both conditions, limiting the analysis to autonomous QSM. 

     In Section 2.2.2, by postulating a dynamics compatible (1.16), the curve direction sets the 

sign of the shuttle current, and both rely on the sign of  . Since, in autonomous QSMs, the only 

input is the set of boundary conditions  , the symmetry of voltages application with respect to 

the cross-section in    , plays a fundamental role in determining the sign of  : 

 

        {
                                     

                                        
                                     

 

where           is the not symmetric part of  ; and    {      ̇   } and          the 

initial conditions of the system. In turn, the sign of   sets the direction of the shuttle current. 

On   also relies, in a less apparent way, the magnitude of the shuttle current.  

     In Section 2.2.3 we stressed the importance of the energy balance (1.18). In an autonomous 

QSM, the higher is the damping ratio  , the more the mechanical dissipation is huge, and in the 

balance (1.18), the term       is large. Therefore, the chance to achieve a continuative oscilla-

tions with finite amplitude     requires the injected energy      is large as well, thus, as 

stated in Section 2.2.4, on an appropriate voltage boundary conditions   . 

     Summarizing the discussion above, in an autonomous QSM, the choice of the voltage 

boundary conditions   has a crucial role in determining both its conductive properties    (direc-

tion of current) and dynamics {   } (vibrational state and evolution of charges). 

 
 

†   In Section 4.1 we are going to deal with analytical averaging methods for which having a small electromechanical coupling 

guarantees for a better approximated solution. 
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2.2.6 Boundary conditions: direct and inverse shuttle 
 

In Section 2.2.5, we discussed how the boundary conditions   influence  the symmetry breaking 

in a QSM. Actually, depending on the kind of symmetry breaking provided by the applied 

voltages, the prototypal system in Fig.1.10 differentiates in two main kinds of QSM families: 

 Direct (ordinary) shuttle (      ,       
     

    ):  self-excitation 

 Inverse shuttle (  
     ,          ):  parametric resonance 

The just introduced classification is fundamental in the whole thesis. Terms “direct” and “in-

verse” arise from the relative role the shuttling element voltage    plays in determining the 

microscopic currents       and       in (1.7a,b). In the first case, a DC voltage         is 

directly applied to   and   electrodes and the shuttling element maintains an intermediate 

voltage             whichever is its dynamical behavior: the value of    having a passive 

role. In the second case, an AC voltage   
     is applied to the gate  , directly modifying the 

voltage       also when it is in center position: since         , the role of       is active. 

     The definitions given above also state the chance to achieve continuative oscillation, in direct 

shuttle, is univocally provided by self-excitation (triggered by the DC bias voltage); and, in the 

case of inverse shuttle, it relies on parametric resonance (produced by the AC gate voltage). 

This situation is better explained by the schemes in Fig.1.13. 

 

 
Figure 1.13: Schematics of the different symmetry breaking effect in the case of direct shuttle (a-d) and 

inverse shuttle (e-h). In the first case (a-d), the current direction does not depend on the initial conditions, 

but only on the boundary conditions. The converse is for the second case (e-h). 

 

     Another consideration discussion is related to (1.20). In direct shuttle, since      , the 

boundary conditions are asymmetric and the direction of electron shuttle depends on sign of 

          itself. In this case the current direction is trivially predictable, since a positive     

produces a positive   ̅ and vice versa. On the other hand, in the case of inverse shuttle, since the 

gate is at the center of the system,   
   nor   

   do not de-symmetrize the system and the current 

sign depends from initial conditions    {      ̇   } and         . Clearly, this depend-

ence is more subtle and the shuttle current has a direction which is not trivially predictable.  

     Last, it is possible to conceive a combination of direct and inverse shuttle: 

 Hybrid shuttle:        ,   
     (both self-excitation and parametric resonance) 

     In Chapter 3, the case of self-excited oscillations (direct shuttle) is analyzed, whereas in 

Chapter 4 parametric resonance (inverse shuttle) is considered. Finally, in Chapter 5 the possi-

bility of achieving hybrid shuttle is outlined. 
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2.2.7 Shuttle mechanism: load/unload and oscillating transients 
 

In previous sub-Paragraphs, the compatibility of a QSM to a dynamics as (1.16) was postulated. 

Here, we suggest with qualitative arguments how equations like (1.16) arise from the peculiar 

boundary conditions   in (1.5a,b) and the symmetry inherent to the schemes in Fig.1.10a,b.  

     Begin by considering controlled oscillations. Thus, one has         , being the electro-

dynamics of the system wholly determined by mechanical oscillations and voltage boundary 

conditions. Assume a “symmetric”        compatible with the first of equations (1.16). 

Regarding the boundary conditions  , analyze distinctly direct shuttle and inverse shuttle. 

In the case of direct shuttle,      . The following discussion refers to        , but analo-

gous arguments are valid with the converse sign. For the leads and shuttling element voltages, 

generally holds:                           . Consider the following initial condi-

tions:          and         . Referring to formulae (1.7a,b), the electrodynamics 

occurring in a single oscillation of period    can be schematized in four steps: 

I) Load transient. Since       , a  -to-  current     , relying on QT, is established, 

progressively rising the value of    . The current stops when       . During this tran-

sient,          electrons are “loaded” on  . 

II) Oscillating transient.   moves towards   and reaches the same amplitude        .  

III) Unload transient. Since       , a  -to-  current     , relying on QT, is established, 

progressively reducing the value of    . The current stops when       . During this 

transient,         electrons are “unloaded” by  . 

IV) Oscillating transient.   moves towards    and reaches the same amplitude       .  

Consider now the case of inverse shuttle:   
     . The voltage of the shuttling element is 

capacitively influenced by the gate voltage and, in regime of small oscillations, one has 

        
          . Instead, for the leads,        . Again, let the initial condition 

     ,          . As it is detailed in Fig.1.14, one can notice that, under the assump-

tion          , the electrodynamics for a QSM exhibiting inverse shuttle follows the same 

phenomenology described above in the case of direct shuttle, summarized by steps I-IV. 

 

 
Figure 1.14 – A self-excited (a) and a parametric resonant (b) QSMs exhibit similar shuttle mechanism if, 

in the second case,         
           with          . 

 

     By now, we considered controlled oscillations in which a law        was imposed. Now 

refer to autonomous oscillations: as detailed in Section 2.2.5, the requirement to maintain con-

tinuative oscillations in presence of a damping    , is that the shuttling element receive an 

energy      sufficient to compensate a mechanical dissipation       . Such energy is supplied 

by the boundary conditions   and guarantees a constant amplitude  . This holds since, after 

every load/unload transient, the shuttling element tends to reach the same voltage of the close 

electrode. Thus, neglecting induction attraction, it receives an impulse due to the electrostatic 

repulsion. This guarantees the existence of stable orbits representing continuative oscillations. 
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Summarizing, we analyzed with qualitative arguments how the phenomenology exemplified by 

steps I-IV can produce microscopic currents       and       which, integrated over a cycle of 

oscillation, establish a not null macroscopic current  .̅ We underlined the not trivial fact that, 

QSMs in which the continuative oscillation are produced by different phenomenologies – self-

excitation or parametric resonance – share this peculiar electrodynamics in at least some cases. 

     One can be interested to discern which part of the macroscopic current   ̅ comes from the 

shuttle contribution. The answer is that it is completely due to the shuttle part   ̅, since the 

described phenomenology comprises two steps which rely on the motion of the shuttling mass. 

Therefore, steps I-IV are called shuttle mechanism. It has to be remarked the shuttle mechanism 

is not a prerogative of nanoscale QSMs, but it also applies, with minor differences, to macro-

scopic SMs. In fact the scheme introduced in Fig.IIIa,b,c,d to depict the working principle of a 

SM can refer as well to the transients I,II,III,IV of a QSM. The only difference is that, in a SM, 

during load (I) and unload (III) transients, the charge transfer between the shuttling element and 

the leads physically relies on contact, while in a QSM it usually † depends on QT (Tab.I).  

     In Fig.1.14, the evolution of    as a consequence of an autonomous oscillating motion and 

the imposed boundary conditions in shown, so that a relation         , leading to motion 

equations of the kind of (1.16) is no more postulated, but demonstrated as feasible. Referring to 

such equations, the first phase plot in Fig.1.14 corresponds to the curve sketched in Tab.1.2 in 

correspondence of {   }  {      }. From the discussion above, in the case of direct shuttle 

(self-excited QSM) a characteristic ratio     is the only possibility, whereas inverse shuttle 

(parametric resonant QSM) is compatible with every     , depending on the choice of   . 

A last difference involves the chance of quadrature between      and      , which corresponds 

to a characteristic phase        : this condition is important since, as it is clear from 

Tab.1.2 and relation (1.17), it maximizes the value of the shuttle current. Notice that, in direct 

shuttle, the establishment of a limit-cycle automatically tends to        ; instead, in inverse 

shuttle, the situation is more complex and will be analyzed in detail in Chapter 4. 

     To conclude, Tab.1.3 is a summary table of the QSMs classifications introduced up to this 

sub-Paragraph, and the conductive properties they give on such systems. 

 

Table 1.3 – Overview of the main QSMs classifications. 

Kind of 
QSM 

Nature of 
oscillations 

Symmetry 
breaking 
provided 

by… 

Energy to the shuttling ele-
ment coming from… 

[ : required,  : optional]: 

Allowed values 
of characteristic 

parameters 
(if small  ) 

[   ] 

Chance 
to pro-
duce 

shuttle 
current 

voltage boundary 
conditions ( ) 

external 
source 

          
     

            

autonomous  

self-excited                 
 

 
 yes 

parametric 
resonance 

              
          yes 

        no 

induced 

forced -                      yes 

controlled -                   yes 

at rest -           - - no 

 
 
 

†    Actually, collisions between the shuttling element and the electrodes may occur, and occasionally the charge transfer relies on 

contact also in the case of a QSM. Collisions are usually present in a strong electromechanical coupling.  
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2.2.8 Soft and hard shuttle regimes 
 

In Section 2.2.1, we introduced to the concepts of shuttle and tunnel current, and underlined 

how the macroscopic current (1.9) in a QSM is in general the sum of these two contributions.  

In Section 2.2.2 we discussed how a dynamics described by equations (1.16) leads to a shape of 

the phase curves    

  
   which are compatible, in principle, with the existence of a shuttle current. 

Last, in Section 2.2.7 we argued how the shuttle mechanism I-IV can produce, in autonomous 

QSMs, a dynamics like (1.16), and thus we highlighted the actual feasibility of a shuttle current. 

On the other hand, the presence of a tunnel current cannot be directly recognized from phase 

curves    

  
   . Since it is defined as the part of current not relying on the oscillating motion of the 

shuttling element, the tunnel current can be imagined as the current which can pass from   to   

and from   to   in a time scale small compared to that of the oscillation of the shuttling element. 

In this scenario, one could relate the ratio between shuttle and tunnel current contributions to a 

ratio between the period of oscillation and the characteristic time of the QT. 

The first one is provided by relation (1.12a)   ̅          . Introducing   ̅       , we also 

need a relation for the QT time scale   . In analogy with an RC circuit it is:                  

which represents the time constant of the DTJ constituted by a QSM with the shuttling element 

at rest in the center,       calculated from (1.4) and                     from (1.8a,b). 

Thus, a raw but effective estimation of the ratio between tunnel and shuttle currents is: 

 

  ̅

  ̅
 

  
  

 
       

       
                                                                 

 

This formula suggests to introduce a distinction among QSMs depending on such ratio. Consid-

er the following definitions: 

 Soft shuttle regime:                   

 Hard shuttle regime:                   

This classification was first suggested by Isacsson and Gorelik 
[27]

 and is largely used in electron 

shuttle literature. Originally, the soft/hard distinction – whose names arise from the theory of 

oscillations 
[110]

 – was introduced to underline the different transition from a stable rest condi-

tion a stable orbit by increasing the applied voltage    . It is a fundamental point, but, since it 

exclusively applies to the case of self-excited QSMs, it is discussed in Section 2.2.11 and vali-

dated in Chapter 3. Here, we limit our analysis on the soft/hard distinction by considering the 

consequences produces in both self-excited and parametric resonant cases.  

     First of all, in this thesis, we often refer to hard regime by stretching a little the definition and 

considering                 . In this way, it is possible to introduce an hard regime approx-

imation consisting in the assumption   ̅   , which means only the shuttle current    ̅ is present. 

By relating formulae (1.9) and (1.12a), a useful relation is obtained: 

 

 ̅  
 

  
∫         

     

  

 
 

  
∫         

     

  

         ̅                              

 

     Referring to the prototypal schemes in Fig.1.10, analyze which physical properties of a QSM 

influence terms   ,       and        . Oscillation frequency    and shuttling element capaci-

tance       are respectively inversely and directly proportional to the scale of the device  , 

making their product         independent from   and roughly of the order of        . There-

fore, the soft/hard regimes distinction relies on having a tunnel conductance larger or smaller 

than a threshold value           . In the term                    ,    is alternatively 
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given by the magnitude of the bias voltage     (if direct shuttle) or the AC signal from the gate 

  
   (if inverse shuttle). From Fig.1.2, the typical    corresponds to distances and voltages of a 

few nanometers and volts, respectively. Assuming constant voltages, soft QSMs are character-

ized by smaller scales whereas hard ones are larger (but still NEMS). Also, the dependence 

from   makes the soft/hard distinction not connate with the specific QSM embodiment, and a 

system in hard regime can, in principle, undergo a soft regime and vice versa. 

     The two limit cases of soft and hard regimes delimit the range of existence of a proper QSM. 

The soft limit                   is represented by a DTJ , since the island is at rest and 

    . On the other hand, a SM exemplifies the hard limit                   since, in it,   

is macroscopic and           . Notice how, even when the hard regime approximation (1.22) 

can be applied to a QSM, it still not similar to a SM, since charge transport still relies on QT 

(although inopportune collisions with the leads are more frequent than in soft QSM).  

     A QSM in soft regime can be characterized, from (1.21), by a considerable tunnel contribu-

tion to the overall current (1.9). However, the presence of such current does not affect the phase 

plot, since, by definition, it does not depend on oscillations. The tunnel current physically relies 

on the chance of having short tunnel from   to   and from   to   (or vice versa), that is a sta-

tionary current          [           ] which does not produce any increment nor decrement 

of the shuttling element charges      . Therefore, in a QSM characterized by soft regime, the 

shuttle mechanism discussed in Section 2.2.7 is not directly influenced by the tunnel current. 

     However, the typical evolution of       and the shape of phase curves on the plane    

  
   are 

distinguishable in the soft/hard cases, since differences arise by a more or less sharp occurrence 

of the microscopic currents (1.7a,b). In particular, the competition between mechanical and 

electrodynamical characteristic times and the peculiar QT dependence from distance together 

manifest by differentiate the power relationships among durations of the shuttle mechanism 

steps. Let introduce them as   ,    ,     ,    , respectively referred to steps I,II,III,IV, being    

the whole the period of oscillation. Respectively referring to a soft QSM, hard QSM and the 

hard limit exemplified by a macroscopic SM, the following casuistic stands: 

 

                                                                               
 

                                                                              
 

                                                                               
 

In (1.23c), the charge transfer relies on contact. Trivially, in each case,              . 

     A concept strictly related to the transients duration is that of tunneling region. Referring to 

Fig.1.11, the region   in which   oscillates is delimited by   and  , thus, for a stable orbit, 

      . Directly from the definition, in soft regime, the tunneling conductance    is relevant 

even when       : this means the load/unload regions overlap, since there‟s a region of space 

around     interested by both load and unload transients. In hard regime, instead, load/unload 

regions do not overlap, and in the hard limit (SM), these regions degenerate in a pair of points. 

Introduce the tunneling region   as the region of space where either load or unload transients 

happen. Then the following casuistic respectively refers to soft QSM, hard QSM and SM †: 

 

    [        ]                                                          
 

    [      ]                                                                 
 

  {         }                                                             
 
 

†     A certain abuse of notation is used in (1.24c), since in a SM, the charge transport does not rely on QT but on contact. 
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     The effect of relations (1.23a,b,c) on the duration of the shuttle mechanism steps are qualita-

tively highlighted in Fig.1.15, where the different shapes in a stable orbits phase curve are 

highlighted in the case of hard and soft oscillations. 

 

 
Figure 1.15 – Qualitative scheme depicting the phase plot representation of stable orbits in the case of: 

(a) hard and (b) soft oscillations. In the soft case, the load and unload transients partly overlap. 

 

Similarly, the effect of relations (1.24a,b,c) on the width of the tunneling region is qualitatively 

highlighted in Fig.1.16, again in the case of hard and soft oscillations. 

 

 
Figure 1.16 – Qualitative scheme showing the tunneling region  in: (a) hard and (b) soft oscillations. 

 

     In general, the electrodynamics         of a QSM depends from the vibrational state 

       and the voltage boundary conditions   : thus         . However, assuming a 

strict validity of relations (1.24) a powerful approach for the analytical study of a QSM is pro-

posed, in which a simplified dependence        holds. It is called two-states approximation. 

First, take into account the following approximations †: 

 

  ,
         ⁄                  

        [    
         

  ]

         ⁄                ̇  
                                               

                        

 

In other words, we are assuming that, when    , the characteristic QT frequency is much 

larger than the mechanical one (                ), and vice versa (                ) if 

    . This means a QSM behaves in a “very soft” way inside the tunneling region, and “very 

hard” outside. This vision is not in contradiction with the definition of soft/hard regimes. In fact, 

it refers to the quantities         and       , thus giving an “average” softness/hardness of a 

QSM; whereas (1.25) deals with the instantaneous soft/hard behavior of a QSM, which depends 

on         and      . A simple interpretation of (1.25) is that the charge on the shuttling ele-

ment       follows the voltage boundary conditions where possible, that is in correspondence 

of the region in which the electrodynamical time scale is small compared to the mechanical one. 

 
 

†     The term      can alternatively refer to one of the electrodes   or   depending on the load/unload transient considered. 
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The approach consists in assuming a neat alternation (“two states”) of formulas (1.25), in place 

of the real physics, which clearly relies on a smooth transition between the two limit considered 

cases. Though, this approximation is rather effective in many cases. 

     Refer to the symmetric dynamics given by equations (1.16), and start by considering a QSM 

in soft shuttle regime. From (1.24a), the tunneling region   coincides with the whole oscillation 

volume  , so that the first condition of (1.25) applies      . Consequently, the system dy-

namics is described by equations: 

 

,
         ̃                                                

           [             ]     ̃         
                                  

 

These equations are valid in direct as well inverse shuttle, due to the somehow similarity in their 

electrodynamics consequent to the different voltage application, as has been highlighted in 

Fig.1.14. In particular, in direct shuttle,    and    are constant and      , due to the peculiar 

electrostatics of the QSM, oscillates with a radian frequency constrained by the mechanical 

      : thus       and      are necessarily synchronized, meaning    . Instead, in in-

verse shuttle, by applying (1.6), one has               
          , while          ; 

thus,       oscillates with a free frequency depending on the choice of    . As highlighted in 

both Section 2.2.2 and Tab.1.2, only the cases       with   an odd number can produce a 

macroscopic shuttle current   ̅; otherwise, the microscopic currents       and       exist, but the 

net charge transport in a cycle is null. This discussion confirms the qualitative analysis per-

formed at the end of Section 2.2.7 on the allowable values of   in direct and inverse shuttle. 

     Now consider a QSM in hard shuttle regime. This time, from (1.24b), both options of (1.25) 

distinctly apply during each cycle of oscillation, thus the second equation of (1.26) is valid only 

when       ; otherwise, when the shuttling element passes near the center in the zone 

             , one has   ̇     . An interesting consequence of this fact holds in the case 

of inverse shuttle. In fact, by choosing       with     (or larger odd numbers, depend-

ing on how much the tunneling region is wide), the electrodynamics    exhibited by the system 

is the same of the case     , because the further oscillations of voltage happen when      

  and       remains substantially fixed. This curious phenomenology is explained in Fig.1.17. 

     Last, approach (1.26) applies as well to the hard limit case (exemplified by a SM). In this, 

(1.24c) hold, and the situation is complementary to the case of a soft QSM, since the second 

option of (1.26) never applies except when the shuttling element hits the leads. In that instant, 

its charge level is refreshed to a value proportional to the voltage of the leads           

(due to the device scale, it is not possible to consider the inverse shuttle phenomenology).  

     In conclusion, the shuttle mechanism requires oscillations for which    . Therefore, in 

order to exhibit a shuttle current, a QSM has to reach the tunneling region (activation problem). 

 

Figure 1.17 – A QSM subjected to hard oscillations for which (a)      , exhibits a dynamics similar to 

that with odd topology indexes, like (b)     . 
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2.2.9 Capacitance of the shuttling element and transport factor 
 

The self-capacitance    of the shuttling element   is an important feature in a QSM. Since    is 

directly related to the amount of charge carriers    which   can contain †, when other parame-

ters are fixed, it returns an estimation of the maximum shuttle current obtainable: 

 

      ̅                                                                         

 

Actually, being calculable from formula (1.4),    is a function of the position      ‡, and has to 

be referred to a value  ̅ corresponding to the average of amplitudes weighted on the magnitude 

of microscopic currents flowing, thus  ̅    . However, due to the exponential dependence of 

QT from distance, one can say  ̅   . From this, (1.27a) can be written in a more precise form: 

 

      ̅              |             |         ⁄   
                           

 

This relation can be put into relation with the formula (1.12a) for the actual shuttle current   ̅. 

Blick, in 
[37]

, introduced the transport factor   as the ratio between these two quantities: 

 

  
  ̅

      ̅ 
 

  

     
                                                            

 

This definition assumes an evident engineering importance since   can be considered as a sort 

of efficiency of the shuttle mechanism. In general, the flux of electrons on/from the shuttling 

element would continue until a potential difference |       |   . If this is the case, the 

dynamics is maximal efficient and   shuttles the maximum amount of electrons it could contain 

per cycle, leading to    . Otherwise, mechanical limitations do not allow the potential differ-

ence to vanish, and   shuttles only a fraction     of the electrons it could contain. 

     The strict relation between    and       is more clear by collecting formulae (1.12a), 

(1.12b) and using definition (1.28) 

 

  ̅  
 

  
∫  (    ) ̇           

     

  

                                              

 

It has to be remarked the proposed definition (1.28) for   is rather operative. Obtain an accurate 

prediction of   is often problematic, as stressed in 
[37]

. An analytical estimation of   arises by 

comparing the charge carriers transferred during a load/unload transients,       , with      . 

Consequently, if              , then    ; whereas if              , one has    . 

     Consider a QSM in hard shuttle. In this case, the load and unload tunneling regions do not 

overlap, thus, one can calculate        by integrating either (1.7a,b):  

 

       
 

 
∫        |             |

 

      

                                           

 
 

†     The quantity    was first defined in the Introduction and used in both relations (III) and (IV) as          , being     the 

shuttling element volume. Here, we refer to a more strict meaning. 

‡     In the regime of small oscillations,    can be considered constant and posed equal to      , this value roughly proportional to 

the diameter of the shuttling element    . However, directly from (1.24a,b), small oscillations for which       are compat-

ible with a shuttle mechanism producing a shuttle current   ̅    only in the case of soft shuttle, where charge transfer occurs 

also when        . Therefore, assuming          in (1.27a) is, in general, not allowed. 
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The tendency to have an inefficient shuttle, thus, from (1.30a), a relatively small       , relies on: 

i) brief transients            , ii) small conductances        , iii) small bias voltage |   

    |     . On the other hand, from (1.27b), a large       depends on: iv) large    , v) large 

self-capacitance      . Summarizing, the following estimation holds for   in hard QSMs: 

 

  
      

      
 

       

       
 

       

       
 

 
                                                      

 

where, in the last passage, relation (1.1b) has been used. Formula (1.31) makes clear that, com-

paring two hard QSMs characterized by the same ratio                 , inefficient shuttle is 

more feasible for smaller tunneling lengths     , which, in turn (Appendix A) relies on having 

a small bias voltage  . When this condition occurs, it is called hard inefficient shuttle. 

     Now consider a QSM in soft shuttle. This time, the load and unload tunneling regions partly 

overlap, therefore the expression for        combines both (1.7a,b): 

 

       
 

 
∫ |     [           ]       [           ]|

 

      

                     

 

In (1.30b), it is not trivial relate a small        with quantities         ,    ,       and  .  

However, if     , load/unload tunneling regions completely overlap, and, in the soft limit 

    , load and unload transients are completely merged, thus        vanishes. Since   depends 

on the applied voltage, the tendency           holds. In conclusion, in soft QSMs, a      

depends on having an extremely large bias voltage   : this is called soft inefficient shuttle. 

     In Fig.1.18, the qualitative comparison between efficient (   ) and inefficient (     

phase curves in the case of soft and hard QSMs is shown. 

 

 
Fig.1.18 – Typical phase plots for: (a) hard, (b) soft efficient shuttle; (c) hard, (d) soft inefficient shuttle. 

 

     In conclusion, when    , the continuity of oscillations can be prejudiced. Specifically, the 

power supply on the shuttling element can be no more sufficient to sustain the current vibration-

al state (energy balance (1.18)) and the amplitude of oscillation is reduced due to a low transport 

factor. When   is smaller than a certain threshold, a saturation of the shuttle mechanism occurs, 

and both the vibrational state and shuttle current stop. In the case of hard saturation, this risk 

depends on a small bias voltage  , and the amplitude abruptly reduces from    to  . Instead, 

soft saturation, may occur at extremely high  , and the amplitude smoothly goes to   .  
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2.2.10 Effects of Coulomb Blockade 
 

In Sections 1.1.2 and 1.1.3 the effect of CB respectively in a TJ and a DTJ, have been analyzed. 

Since the architecture of a three-terminal QSM is analogous to a DTJ in which the island can 

move, relations (1.3a,b,c) directly generalize † into: 

 

  

     
                                                                          

 

 

  
                                                                             

 

|       |  
 

     
                                                                

 

The dependence of QT conductances and shuttling element capacitance from the position      

states an important point. In a QSM, differently from a TJ or a SET, once the physical parame-

ters are fixed, the presence of CB is no more a general feature of the system, but it is a property 

exhibited in some portions of the oscillation region.  In fact, from (1.32a,b,c) directly follows 

the definition of an amplitude     [     ] for which, when      [     ], one has  

              . Therefore, in presence of CB, the abstract concept of the tunneling region   

introduced in (1.24a,b,c) can be redefined in a more physically reasonable manner, assuming 

       , so that     [        ] , being   [        ] . By referring conditions 

(1.25) to this new definition for  , the approximated analytical approach (1.26) is far more 

feasible to return accurate estimations of the actual system dynamics. In fact, in presence of CB, 

the second equation of (1.25) become exact, since current is actually inhibited. 

     Clearly, as in a TJ or a SET, the troublesome CB requirement is (1.32a), for which only 

QSMs relatively small (with respect to temperature) are characterized by  a value       . 

Notice that, also when a QSM has a relevant CB effect, it does not affect its working principle. 

     Consider a QSM. Assume we are interested to the electrical characterization of the device 

considered as a black-box. Analyze direct (or inverse) shuttle, vary the voltage     (or    
  ) 

and detect the consequent  -to-  macroscopic current. In this, both shuttle   ̅ and tunnel   ̅ 

contributions exist and, from the arguments made in Section 2.2.1, these two parts are experi-

mentally undistinguishable. Plotting the  -  curve, one of the following behaviors are detected: 

I) if       , no current passes; 

II) if         then a Coulomb staircase effect appears; 

III) if         the  -  curve is smooth.  

Notice that the interpretation of points I),II) and III) is not trivial at all. In fact, since in general 

    is a function of the voltage boundary conditions   and the system geometry  , one has 

            , and the same system can be characterized a single  -  curve in which more 

behaviors among I)-II)-III) are exhibited, depending on the applied voltage   . 

     First, consider a system in which at least one of (1.32a,b) do not hold in     . In this case, 

the  -  curve presents a behavior III) for every boundary condition, even when low values of 

the applied voltages accomplish condition (1.32c). In this case, CB effects do not manifest at all. 

 

 

 
 

†   This generalization of the CB requirements from relations (1.3a,b,c) for a DTJ to position-dependent (1.32a,b,c) is somehow 

analogue to the less strict definition of the soft/hard character of a QSM involving the instantaneous ratio                 , 

compared to of the conventional, less general definition                 . Like in such case, in fact, by referring (1.32a,b,c) to 

the center position    , (1.3a,b,c) are obtained. 
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     Then, consider a system in which both (1.32a,b) hold in     . A more composite situation 

arises. Near the origin, (1.32c) is surely achieved, and the  -  curve exhibits the behavior I) . In 

autonomous QSMs, the applied voltage affects the amplitude of oscillation, usually in a mono-

tonic way, with     (or    
  ) related with requirement (1.32c), and   with (1.32b) and, less 

strictly, with (1.32a). By increasing     (or    
  ), the first condition which ceases to be accom-

plished is (1.32c), then behavior ii) appears and, if amplitude of oscillation is monotonic with 

the voltage, behavior iii) is definitely reached.  Instead, in the case the first requirement to be 

ceased is one of (1.32a,b), then the system transits directly from I) to III). 

     In Fig.1.19 the described scenario, in which zero, one or two threshold values for the voltage 

appear in the  -  curve, corresponding to so much transitions, is summarized.  

     Clearly, CB effects discussed here are not accounted – as for a TJ or a SET – by current 

relations (1.9) or (1.29). In order to take into account charge discreteness effect in a QSM, 

continuous-charge models has to be substituted by discrete-charge models (see Section 2.3). 

 

 
Figure 1.19 – Different qualitative  shapes of the  -  curve with behaviors I), II), III) highlighted. 

 

 

2.2.11 Hysteresis of the I-V curve and mechanical advantage 
 

Curves in Fig.1.19 can refer to autonomous or induced shuttle as well. However, from a me-

chanical point of view, some interesting considerations arise in the second case. 

     First, how was hinted by some authors, behavior II) is particularly interesting, since some-

how leads to have a “quantized” set of limit-cycles, because of discrete attractors corresponding 

to discrete amplitudes    and bias voltages   . Each of these threshold corresponds to a surpass 

of the i-th step of Coulomb staircase. This feature can be useful to modulate oscillations. 

     Second, limiting our analysis to the case of direct shuttle, the vibrational state of the shuttling 

element relies on self-excitation. Thus, referring to  -  curves in Fig.1.19b,c when          , 

the shuttling element cannot oscillate and remains in static regime. When            , in a soft 

QSM the transition from a static to a shuttle regime is indeed “smooth”, whereas in a hard QSM 

in “sudden”. In fact, in the latter case, for           a tunnel current starts to flow, but the 

shuttling element remains in static regime, since the center position is still a stable condition. 

Only by applying a value                a limit-cycle is triggered and the shuttle mecha-

nism is abruptly activated, producing a clearly detectable “macrostep” in the  -  curve. This 

step is not related with CB and/or Coulomb staircase effects (in fact, it persists in continuous-

charge models): it depends on the stability properties of the hard QSM, for which an orbit of 

amplitude   is stable only when        , with      corresponding to the application of a 

voltage      . This fact discloses an even more interesting behavior: if the voltage is lowered, 

the system returns in static regime only by applying a voltage                 , leading to 

an apparent hysteretic behavior, clearly visible by plotting two times the  -  curve, alternatively 

increasing and reducing     (Fig.1.20a). This fact was explained in 
[27]

 with both numerical 

simulations and stability analyses, which prove the presence of hysteresis in hard QSM. 
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     A last consideration arises from the fact that, in hard systems, the activation of the shuttle 

mechanism is quite detectable: all the current obtained for voltages          comes indeed 

from the only tunnel contribution. Notice how, in a hard QSM (Fig.1.20b), such tunnel current 

is very small (or completely absent, if CB conditions occur). In a soft system the current gradu-

ally rises and no neat activation voltage is present (Fig.1.20c). In a very soft QSM, one has the 

tunnel contribution for small voltages is even more considerable than the shuttle current to be 

established when          : in this condition, a gradually decrease of the overall current is 

obtained in correspondence to the soft oscillations triggering. This is because the tunnel current 

is interfered by the presence of mechanical oscillations, since, from Section 2.2.8 and due to the 

exponential QT dependence from distance, the term          [           ] is maximal when 

the shuttling element is at rest in the center (1.20d). 

 

 
Figure 1.20 – (a) Hysteresis of the shuttle current in a hard QSM, with voltage thresholds      and        

highlighted. Comparison between shuttle and tunnel current contributions in: (b) hard, (b) soft, (c) very 

soft systems. All  -  curves are smooth, thus either CB is absent or a continuous-charge model is used. 

 

     A deep understanding of qualitative plots in Fig.1.20 is required when approaching to the 

study of QSM. In fact, in an experimental setup, there is a certain difficulty in directly detect 

oscillations, so that the standard scenario common to many authors (see the Introduction for a 

list of articles), is that of an indirect estimation of the vibrational state, in which the vibrational 

regime of the shuttling element is supposed by only knowing the  -  curve. First, one measures 

the overall current   when a bias voltage   is applied; second, one estimates which part comes 

from the shuttle contribution   ; and, last, one uses formula (1.12a) to estimate the vibrational 

frequency. It is clear a preliminary theoretical study of these systems is really necessary in order 

to correctly interpret the conduction mechanism occurring in a QSM device. 

     Conductive properties of a QSM are, in general,  a function of the voltage boundary condi-

tions and the system geometry, so that         . Consider the overall current    generated in 

a system in which the shuttling element is fixed (    ) in the center (   ), and the current   

the same system exhibits when a stable orbit characterized by      with     is established. 

The ratio between these two currents is the mechanical advantage  : 

 

  
      

       
 

 |̅        

 |̅        

                                                          



From an engineering point of view,   is an important parameter, since it states the convenience 

of establishing the shuttle mechanism by undergo mechanical vibrations in a QSM, with respect 

to a DTJ in which the central element is at rest. Notice how it is not straightforward obtaining 

    in any working condition for a QSM. For example (Fig.1.20b), in very soft systems there 

is often no practical advantage in activating the shuttle mechanism, with respect to the rest 

condition. Usually, more hard is the system, the more the mechanical advantage is high, since 

the presence of the tunnel current reduces when the scale of the device is increased.  
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2.3 Analytical models and feasible approximations 
 

Various approaches are used in literature to model the dynamics of a QSM. A priori, none of 

them can be considered the most appropriate. In Fig.1.10a,b, for example, we made use, for the 

mechanical part, of a single-DOF oscillator; and, for the electrical part, of a circuital equivalent. 

The decision to use such a “classical-oriented” approach comes from the analyses to be present-

ed in Part Two of this thesis, where, since more QSM will be coupled together, a simple and 

practical modeling for any of its components is required. Nonetheless, the choices made for the 

models in Fig.1.10a,b are not straightforward. In this Paragraph, we indeed discuss how, in 

general, the selection of the most feasible theoretical approach to model a QSM depends on a 

preliminary analysis of the main features of the system, in particular: its characteristic scales, its 

soft/hard nature, and the presence of CB effects. 

     In general, in every concentrated parameters models, the QSM is schematically distinguished 

in two parts, due to its dual nature: the mechanical and the electrical part. Each of them refers to 

a set of concentrated parameters and one or more lagrangian coordinates. Some additional, 

environmental parameters, as (for example) the temperature, can be included as well. 

      From the mechanical point of view, a first choice comes from modeling the shuttling ele-

ment as either a classical or a quantum oscillator. The latter case could apply when the scale of 

the device is exceptionally reduced, in particular if the total energy of the oscillator is compara-

ble with the quantized packets        . Such an approach is used, for example, in 
[51]

. How-

ever, these models refer to a sub-   size of the shuttling element: although atomic-scale quan-

tum dots have been recently realized 
[111]

, model a QSM as a quantum oscillator can be still 

considered too much “exotic” to be profitably applied to the study of a real system. Then, one 

has to decide to model the system as a linear oscillator or not. Usually, non-linearities are negli-

gible when a regime of small oscillation can be assumed; however, in the case of hard shuttle, 

the shuttle mechanism does require large amplitudes, and, especially in the case of cantilever 

resonators, hardening non-linear oscillators should be considered 
[26]

. Again, in the case of a 

cantilever realization, one can take into account more vibrational modes or only the first one, 

respectively leading to   or       mechanical lagrangian coordinates.  

A more compelling issue is related to the part of oscillation which is due to stochastic thermal 

vibrations. Actually, this problem directly involves the design of the device, in addition to its 

theoretical modeling. Prior model a QSM, one should check which is the minimal amplitude of 

oscillations which is comparable with the expected value of thermal vibrations. By using the 

Fluctuation Dissipation Theorem (FDT) (see for example, 
[112]

), a simple estimation gives: 

   √      . A concentrated parameters model can deterministically describe only oscilla-

tions for which      . It has be remarked that the presence of thermal vibrations, as high-

lighted in 
[41]

, could be actually considered useful to activate the shuttle mechanism. 

     The feasibility of a classical circuital scheme is much more questioned in literature, with 

respect to the use of a classical oscillator. Solving the equivalent circuit does not guarantee an 

accurate description of the electrodynamics of a QSM at a   -scale, mainly due to the “macro-

scopic” concepts of capacitance and conductance. Thus, in QSM literature, the dependence of 

the shuttling element capacitance    from its position      is not always considered (differently 

from formula (1.4)). In these works, it is calculated as         (self-capacitance of a spheri-

cal conductor). Now consider the equivalent QT conductances between the electrodes and the 

shuttling element,   ,   . Closed-form relations as (1.1a,b) exist to estimate their values. How-

ever, this is only an abstraction which constraints the true nature of QT (a residual probability 

for an electron to surpass a certain potential barrier) to a classic concept (the conductance) by 

applying the ergodic hypothesis to a large population of electrons. Then, the tunneling probabil-
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ity (tunneling rate, indicated with  ) is put into relation with their ensemble behavior. If the 

number of electrons on the shuttling element is low, a more correct approach has to directly deal 

with the tunneling rates (for example, 
[25]

 and 
[27]

). Also, in this model, the effect of temperature 

  has to be considered by the means of the Fermi-Dirac distribution. 

     The number of electrical lagrangian coordinates to be used is strictly related to the concept of 

charge discreteness. If the number of shuttled electrons is high and/or CB requirements 

(1.32a,b,c) – which depend on capacitances and conductances – on are not met, a continuous-

charge model is appropriate 
[29]

. Otherwise, one can use a discrete-charge model in which the 

probability for any electron to undergo QT is related to the tunneling rates. In this case, the 

number of electrical lagrangian coordinates is that of the quantity of electrons       which can 

occupy the shuttling element. Two main strategies can be used. In the first one,       equations 

in terms of discrete variables       {   } are used. Simulation results can be postprocessed, 

using Montecarlo algorithms in order to get the ensemble behavior of a group of systems 
[25,27]

. 

In the second one, the discrete nature of charges is not completely considered, since it is as-

sumed the QT fluctuation of electrons are very fast with respect to the mechanical time scale. 

Under this assumption, a Master equation can be used, in which       equations in terms of the 

occupation probability of states       〈     〉  [   ] are considered. This approach is widely 

used in theoretical works such as 
[25,27]

. 

     The mechanical and electrical parts of the system are mainly coupled by the forcing term 

acting on the shuttling element   . Consequently, a central role is played by the model used in 

order to take it into account. In general, the coupling is electromagnetic. However, magnetism is 

neglected in most models, except when the effects of a Lorentz force arising from an applied 

magnetic field are deliberately introduced in the system. The remaining part is electrostatic, 

produced by the distribution of charges in the whole system. Different models can be used. The 

most simple assumes a constant electric field in the whole oscillating region 
[25,27,29]

, so that 

       . This approach does not include the electrostatic induction, which sometimes plays a 

central role, especially when         . If this is the case, a considerable force acts on the shut-

tling element also when no net charge is present on it. To introduce such effects in the model, 

the force has to be attained as the derivative of the electrostatic potential energy           .  

     A summarizing overview of possible analytical approaches and feasible approximations is 

given respectively in Tab.1.4 and Tab.1.5. 

 

Table 1.4 – Analytical approaches 

System part Description Equations Nature 
Lagrangian 

Coordinates 
Number of 

Coordinates 

Mechanical 
Quantum Schroedinger -    energy levels 

Classical Newton’s continue    modes 

Electrical 
Quantum 

Montecarlo algorithm discrete    states 

Master equation continue    〈  〉 states 

Semi-classical Ohm’s law continue    or    conductors 
 

Table 1.5 – Feasible approximations 

System part Description Model used Quantity Approximation feasibility 

Mechanical 
Oscillator 

nature 
linear    small oscillations 

non-linear (hardening)    
  (general case) 

Electrical 
Quantum 
tunneling 

equivalent conductances   large conductors 

tunneling rates   (general case) 

Electro-
mechanical 

Shuttling 
element force 

constant-field      small ratio     

accurate (electrostatic 
induction) 

       (general case) 
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Chapter  

 

Direct shuttle: 

a self-excited Quantum Shuttle Module 

 

 

3.1 Architecture and boundary conditions 
 

On the basis of the classifications and nomenclatures introduced in Chapters 1 and 2, let us 

consider an autonomous QSM, characterized by a two-terminals architecture, and exhibiting 

direct shuttle. Consequently, the shuttling element capacitance (1.4) and the set of voltage 

boundary conditions (1.5a) respectively specify into: 

 

                                                                                   
 

{ 
    

     
                                                                           

 

Whereas (1.5b) do not appear since the gate is not present in the system. 

To investigate such a system, refer to the mechanical and electrical schemes in Fig.1.21a,b, 

which represent a particular case of the prototypal architecture introduced in Section 2.1.  

 

Figure 1.21 – Two-terminals QSM exhibiting direct shuttle: (a) mechanical and (b) electrical schemes. 

 

Consequently to the arguments discussed in Section 2.2, we expect such a QSM is feasible to 

achieve motion regimes characterized by self-excited oscillations, establishing a macroscopic 

current whose direction is univocally determined by the symmetry breaking coming from the 

application of an appropriate bias voltage  .  

In this Chapter, numerical simulations are aimed to quantitatively verify these qualitative anal-

yses. Specifically, we are interested to highlight that: i) closed orbits on the phase plane  -   , 

representing stable motion regimes, can be described by equations (1.16) with characteristic 

parameters     and        ; ii) an hysteresis of the  -  curve can be experienced only in 

the case of hard shuttle, whereas in the case of soft shuttle is not possible. 
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3.2 Equations 
 

Referring to the analytical models and approximations discussed in Section 2.3, and compatibly 

with the schemes in Fig.1.21a,b, the equations used in this Chapter make use of a classical 

single-DOF mechanical model and a semi-classical continuous-charge circuital equivalent.  

     Let the first lagrangian coordinate the position       of the shuttling element, then, the me-

chanical part of the system in Fig.1.21a is described by the Newton equation: 

 

 
   

   
  

  

  
                                                                  

 

On the other hand, let the electrodynamics of the system described by the lagrangian coordinate 

     , representing the shuttling element total charge. From Ohm‟s law, the second equation is: 

 

   

  
                                                                       

 

In (1.35) and (1.36), terms    ,    ,    ,     ,    ,    require to be further specified. 

Directly from (1.34b), the left/right electrodes voltages are constant and respectively equal to: 

 

    
   

 
                    

   

 
                                                 

 

The voltage of the shuttling element    depends on both      and       . By applying (1.35a) 

and (1.37a,b) to the relation                       , one obtains: 

 

            
   [           ]

   

 
     

                                          

 

which specifies the general expression (1.6) with constants                  and     . 

The QT equivalent conductances are calculated by applying (1.8a,b) to (1.1a), so that: 

 

                
 
     

     
   
  

 
 
     

 
 
                                

 

where       
        . For the electrostatic force on the shuttling element   , we choose a 

simple model in which electrostatic induction effects are not included (  is the electric field): 

 

       
   

  
                                                                   

 

Substituting relations (1.37)-(1.40) into equations (1.35)-(1.36), the dynamics of the QSM in 

Fig.1.21 is described by the pair of coupled equations (time dependencies are omitted): 

 

{
 

  
   

   
  

  

  
    

   

  
                                                                                         

   

  
        (

 

 
)

  

     
    [    (

 

 
)      (

 

 
)
           

     
]    
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We assume the electrostatics of the scheme in Fig.1.21 is analogous to that of a sphere between 

two plates. Therefore, we model the capacitance terms    and    in the following way: 

 

            (   
 

     
)                                              

 

A value         can be calculated by best fitting curves coming from: 

 

           ∑

    *  (
 
 
 √  

    )+

    *   (
 
 

 √  

    )+

 

   

                                      

 

which represents a closed-form relation to calculate the capacitance of a sphere-plate capacitor, 

with   the sphere radius and     the plate-to-center distance †. 

Now, let the mechanical frequency   √    and introduce the non-dimensional quantities: 

 

                    
    

   
                  

     

 
 

 

  
 

  √  
            ̃  

 

 
            ̃  

 

 
                                                  

 

    
      

  

 
              

       
 

            ̃  
  

      
            ̃  

  

               
  

 

Plugging (1.44) into (1.41) the dimensional equations are: 

 

{

   

   
   

  

  
    ̃                                                                                          

   

  
   ̃ [      ]     ( ̃ )    ̃ [        ( ̃ )      ( ̃ )]   

              

 

     
  ̃  

    ̃          ̃
                     

 

     
  ̃ 

    ̃ [    ̃          ̃]
  

 

Referring again to Fig.1.21, the microscopic currents (1.7a,b), are: 

 

        
  

     
 
 
 
 [        

     ]                                            

 

and their dimensionless counterpart: 

 

        
       

  
  ̃  

  ̃ [      ][        
     ]                                 

 

      
         ̃    ̃

         ̃     ̃ 
                      

         ̃    ̃

         ̃     ̃ 
 

 
 

†     Relations (1.42a,b) are the simplest in which limits                       and                     distinctly hold. 
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In conclusion, the macroscopic non-dimensional current is defined, similarly to (1.9), by averag-

ing       or       on a single (dimensionless) period of oscillation  ̃      : 

 

 ̅  
 

 ̃ 
∫      

    ̃ 

  

   
 

 ̃ 
∫      

    ̃ 

  

   
 ̅

  
                                      

 

and its shuttle and tunnel contributions can be obtained, like in (1.12b) and (1.13), as follows: 

 

  ̅  
 

 ̃ 
∫  (    ) ̇           

    ̃ 

  

 
  ̅
  

                                            

 

  ̅   ̅  
 

 ̃ 
∫  (    ) ̇           

    ̃ 

  

 
  ̅
  

                                        

 

 

3.3 Numerical results and discussion 
 

In this Paragraph we show the results of a set of numerical simulations characterized by the 

same initial conditions but in which  different bias voltages     are applied. An  -  curve, 

reassuming the conductive black-box behavior of the QSM depicted in Fig.1.21, is produced.  

Actually, we investigated a pair of systems exemplifying the soft/hard shuttle phenomenology. 

Both cases share the following set of parameters:          ,        ,        . 

     The first QSM is characterized by a relatively small scale: 

 

                                                                                     
 

                                            

 

which corresponds to the following values for dimensionless quantities defined in (1.44):  

 

 ̃                ̃                ̃                       ̃                                 
 

In this case,  ̃              , therefore, compatibly with definitions given in Section 

2.2.8,  this choice of parameters individuates a QSM exhibiting a soft shuttle regime. Numerical 

results representing the dynamics and the  -  curve for such a system are shown in Fig.1.22.  

     The second investigated system is characterized by a relatively larger scale: 

 

                                                                                     
 

                                             
 

corresponding to: 

 

 ̃                ̃                ̃                       ̃                               
 

This QSM, since  ̃              , exhibits a (very) hard † shuttle regime. In this case, 

results of numerical simulations are shown in Fig.1.23. 

 
 

†    In a system like this, the “two-states approximation” (1.25) holds with a rather good precision, and equations (1.26) lead to an 

accurate estimation of the dynamics of this QSM. 
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All results in Fig.1.22 and Fig.1.23 refer to the same choice of initial conditions: 

 

      ̇                                                                                

 

 
Figure 1.22 – Results of numerical simulations for a soft QSM characterized by parameters (1.51a,b) and 

initial conditions (1.53), obtained by integrating equations (1.45). (a) evolution of shuttling element 

position      and charges       with        ; the phase curve is plotted also. (b) amplitude of oscilla-

tion   as a function of    . (c)  -  curve obtained by varying     , with   ̅calculated from relation (1.48): 

the shuttle (red curve, formula (1.49)) and tunnel (blue, (1.50)) contributions to the macroscopic current 

per cycle   ̅are highlighted. (d)  -  curve obtained by increasing voltage from        (red curve) or 

decreasing from         (blue), and considering the only shuttle part   ̅ . 

 

 
Figure 1.23 – Plots (a), (b), (c), (d) are analogous to those in Fig.1.22 except they refer to a (very) hard 

QSM characterized by parameters (1.52a,b). Here, the voltage in (a) is       . 

 

A discussion on the results in (Fig.1.22) and (Fig.1.23), in particular a comparative analysis of 

the mechanical and electrical properties exhibited by soft and hard QSMs, is presented. 

     From a mechanical point of view, the different transition from a rest condition to self-excited 

oscillations is well observable by comparing Fig.1.22b and Fig.1.23b: in the first plot amplitude 

smoothly increases with     , whereas in the second one the distinction between the rest and 

shuttle regimes is more neat. 
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     From the electrical point of view, in Fig.1.22c,d and Fig.1.23c,d some  -  curves are plotted,  

by using the activation/deactivation procedures explained here. The keyword “activation” 

indicates the case in which the system starts with a null voltage (compatible with a rest condi-

tion), and then a larger value     is applied to reach the shuttle mechanism. Instead, “deactiva-

tion” refers to a system starting with a voltage which guarantees the shuttle mechanism, and 

later a smaller value     is applied which stops the motion of the shuttling element. Fig.1.22b,c 

and Fig.1.23b,c, refer to the deactivation procedure, whereas Fig.1.22d and Fig.1.23d compare 

results coming from activation and deactivation. In Fig.1.22c and Fig.1.23c it is clearly visible 

that in soft QSM the tunnel current represents the main contribution, whereas in the hard case 

the current is quite inhibited until the shuttle contribution appears. By comparing plots in 

Fig.1.22d and Fig.1.23d, in the first case  (soft system), the activation/deactivation curves 

match, whereas in Fig.1.23d (hard system) they don‟t, producing an hysteresis of the  -  curve. 

     These differences between soft and hard regimes were already anticipated in Section 2.2.11 

and are here a confirmation through numerical simulations is provided. The simple, continuous-

charge model proposed in this chapter, highlights the fact that the main features related to the 

soft/hard distinction and, in particular, the chance of observing an hysteresis on the  -  curve, 

do not rely on the discrete nature of charge. Therefore, under the hypothesis CB-related effects 

are not present (formulae (1.32a,b,c) not accomplished) a continuous-charge model is feasible to 

provide an accurate description of the shuttle dynamics, also at nanoscale. Notice that all the 

properties discussed above are well-known in literature. In particular, a first analyses of the 

stability properties of a QSM in soft and hard regimes was first given by Isacsson and Gorelik 
[27]

, and results provided in this Chapter are according with this article. 

     A last, important fact has to be remarked: hysteresis of the  -  curve is not a constant feature 

in hard QSMs. This means the hard regime is a required but not sufficient condition in order to 

observe such hysteretic behavior. Instead, it depends on the choice of the initial conditions. In 

order to demonstrate this statement, in Fig.1.24a, different  -  “activation” curves are plotted 

for the same system, the only difference being the initial number of electrons on the shuttling 

element       . These curves are indeed different, and present a step (in correspondence to the 

emergence of the shuttle mechanism) on different thresholds                . In particular, 

the larger is the number of electrons, the more activation is favored and is exhibited for low 

values of      . Instead, from Fig.1.24b, the deactivation curve is unique and        does not 

depend on      . From a comparison between Fig.1.24a and Fig.1.24b follows that, when 

        , then             , and the hysteretic behavior is no more present. 

 

 
Figure 1.24 – (a) activation curves for a hard system with parameters (1.52a,b) and different initial 

conditions. (b) deactivation curve for the same system, independent from the initial conditions. 

 

The fact the  -  curve hysteresis “disappears” by simply choosing appropriate initial conditions 

hints to the fact the activation/deactivation transient does not involve any physical phenomenon 

which is intrinsically hysteretic; thus, hysteresis is only apparent. Consequent to this, in Section 

9.2 , an engineering satisfying interpretation of this behavior will be proposed. The subtle nature 

of hard QSM hysteresis is, at Author‟s knowledge, not enough pointed up in literature.  
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Chapter  

 

Inverse shuttle: 

a parametric resonant Quantum Shuttle Module 

 

 

4.1 Architecture and boundary conditions 
 

Let us investigate an autonomous QSM, this time in the case of inverse shuttle, thus feasible to 

trigger a parametric resonance. In order to do this, we consider a particular case of the prototy-

pal scheme in Fig.1.10, where the boundary conditions (1.5a,b) respectively specify into: 

 

{ 
    

     
                                                                           

 

,
  

    

  
    

                          
     

                                             

 

 Figure 1.25 – Three-terminals QSM exhibiting inverse shuttle: (a) mechanical and (b) electrical schemes. 

 

Referring to Fig.1.25 and compatibly with (1.6) and (1.54a), the shuttling element potential is: 

 

                                                                                
 

Let   the distance between the gate   and the shuttling element  . If     (wide-gate approx-

imation),   envelops around   an electric field almost uniform in the whole oscillating region, 

thus   does not depend on  , i.e.         (Fig.1.26a). Conversely, the gate influence is local 

and a term      has to be included (Fig.1.26b). In this Chapter, different analytical approaches 

are used. In Section 4.2 the wide-gate approximation is treated, in Section 4.3 the general case. 

 

 
Figure 1.26 – Qualitative shape of the electric field in the: (a) wide-gate approximation, (b) general case.  
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4.2 Wide-gate approximation: “quantum” analytical approach 
 

4.2.1 Introduction 
 

The “wide-gate” approximation is a very strong hypothesis on the structure of    , but is useful 

to carry out a preliminary analysis of inverse shuttle. Also, it leads to consider the following 

cascading consequences: 

i) In the qualitative scheme in Fig.1.26a, to maintain the miniaturization of the device, the 

design requirement     leads to consider a relatively small   instead of a large   . 

ii) By maintain a relatively small  , the system is probably in regime of soft shuttle, thus the 

QT characteristic frequency is larger than the mechanical frequency. 

iii) The limited oscillating space leads to consider a Q-dot realization of the shuttling element, 

instead that, for example, a nanopillar geometry, compatible with larger devices. Follow-

ing this, the shuttling element, in this Paragraph, is represented with the letter “ ”. 

iv) Due to the small scale, the presence of CB in the system is probable. To obtain a more 

accurate description of the system dynamics, we use a discrete-charge model and a descrip-

tion of QT based on the Fermi-Dirac distribution. Thus, with respect to Chapter 3, a more 

exquisite “quantum” analytical approach is used to describe the electrical part. 

v) The use of a “quantum” approach makes the circuital scheme in Fig.1.25 partly misleading. 

The following sub-Paragraphs refer to these preliminary points in order to: obtain equations for 

the system dynamics, estimate its conductive properties, produce numerical results, develop an 

approximated analytical solution, to the study QSM of interest. 

 

 

4.2.2 Equations and simplifying hypotheses 
 

By assuming the wide-gate approximation, the voltage of the Q-dot is, from (1.55): 

 

        
     

     
                                                                   

 

From this, the total energy can be calculated as (time dependences are omitted): 

 

      
    

 
    

  
 

      
   

 

 
                                            

 

The term    represents the quantum kinetic energy. Here we assume, for simplicity‟s sake,  

      † . It is possible to develop a Taylor expansion of         around     , up to the 

quadratic term. Since, for a symmetric realization of the device,              , linear terms 

disappear, and one finally obtains: 

 

 

     
 

 

     [  
 

      
       

   |
   

  ]
 

  
 

      
       

   |
   

  

     
            

 

In the last passage, the binomial approximation             has been used.  

 
 

†     In general,      . Assume a value for     leads to the consequence all plots that will be obtained here has to be simply 

scaled of a factor     on the    axis. Thus, assuming     doesn‟t introduce any further physical approximation. 
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Finally, the energy is: 

 

      
  

 

      
    

                             
 

      
 

       

   
|
   

           

 

Similarly to Chapter 3, the mechanical descriptor of the system is a continuous coordinate     , 

however, this time, we have a discrete-charge electrical model. Let              , so that: 

 

      
    

 

      
      

                                                      

 

The quantity       physically represents – in absolute value – the number of electrons on the 

Q-dot in a certain time. Every electron has a certain probability to tunnel from/towards it in a 

certain time, therefore a set of equations is needed, in general, to describe the electrodynamics 

of the system: this leads to use one of the “quantum” approaches discussed in Section 2.3 Here, 

we select the Master equation approach, and assume the system is in CB regime, so that only 

one electron can occupy the Q-dot:       {   }. In this case, the Master equation includes 

only the evolution for the occupation probability of a single electron: 

 

      〈     〉                                                                    

 

Consequently, the system is still described by a pair of equations: one mechanical, in terms of 

the continuous coordinate     ; and one electrical, in terms of the (continuous) ensemble       

of the (discrete) number of electrons      . In this context, as highlighted in point v) of Section 

4.2.1, the circuital scheme in Fig.1.25 is no more valid, the evolution of       given by relation: 

 

   

  
          (           )  (             )                                

 

whose terms, as conventional in NEMS literature, are modeled as follows (Fig.1.27): 

 

                  (  |       )                                               
 

                  (  |       )                                              
 

              [   (  |       )]                                               
 

              [   (  |       )]                                              

 

Electron rates       ,       ,        ,        play a role analogous to the microscopic currents   ,    , 

however, differently from them, ohmic-equivalent relations like (1.7a,b) do not hold anymore. 

 

 
Figure 1.27 – Evolution of the occupation probability of the Q-dot. Gate electrode not represented. 
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Instead, in equations (1.62a,b,c,d), equivalent QT conductances    and    are substituted by 

dimensionless tunneling rates    and    . They are calculated similarly to formulae (1.39a,b):  

 

           
 
 
                                                                   

 

where    is the charge fluctuation frequency.  

Last, the ohmic relations (1.7a,b) used to calculate the microscopic currents in the semi-classical 

case, are here substituted by formulae involving the Fermi-Dirac distribution   : 

 

    |           
 

   
  |         

   

                                            

 

In these,   |     is the energy of the Q-dot, calculable from (1.59b) by posing      , while 

   and    are respectively the chemical potentials of the left and right electrodes. Then,    is 

the Boltzmann constant, and   the temperature. Since the system is symmetric and   and   are 

maintained at the same (null) voltage, we can profitably assume          , so that, taking 

into account (1.62a,b,c,d) and (1.63a,b), equation (1.61) becomes: 

 

   

  
        (

 

 
) [ (  |       )    ]                                         

 

Let us introduce the chemical potential of the Q-dot as: 

 

   
  

      
                                                                    

 

Then, the explicit form of the argument of the Fermi-Dirac distribution is, from (1.59b): 

 

(  |       )                                                           

 

Now, in the place of the gate boundary conditions (1.54b), use the following relation: 

 

       
     

     
                              

    
     

 
                           

 

The physical meaning of using (1.54c), is clear: we are assuming the chemical potentials of the 

Q-dot and the left/right electrodes have been preliminary “put on a par” by applying an addi-

tional static voltage on the gate     
   . Consequently to the use of (1.54c), (1.67a) simplifies into: 

 

(  |       )          [  
     

          ]                                

 

and the explicit form of the Fermi-Dirac distribution appearing in (1.65) is:  

 

 (  |       )  
 

   
 
[         

      
          ]

   

                                

 

In conclusion, equation (1.65) where (1.68) holds, describes the electrical part of the system. 
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     For the mechanical equation, as in Chapter 3, we consider a simple single-DOF resonator:  

 

 
   

   
  

  

  
                                                                  

 

with        . However, in this Chapter, the electrostatic force    cannot be modeled in a 

simple way as in (1.40). In fact, regardless of having a term          , the term    is not 

null, since electrostatic induction effects – neglected in Chapter 3 – are present here. In order to 

take into account electrostatic induction in a simple way, calculate the force    as:  

 

    
   

  
  

 

  
*
    

 

      
      

         +        
                        

 

where only potential part of the energy (1.59b),          , have been used, obviously.  

Notice formula (1.70) depends on the actual number of electrons       , whereas we are using 

   〈  〉 as lagrangian coordinate for equation (1.65). In general, it is not possible directly 

substitute the term   
  with any function of    . To proceed, we need to introduce a further 

assumption (in addition to the flat-gate approximation), this one being a direct consequence of 

consideration ii) in Section 4.2.1. In fact, in this system, due to the relatively small scale, we can 

assume the charge fluctuation frequency is much larger than the mechanical one, thus: 

 

                                                                                
 

In the hypothesis (1.71) holds we are investigating a soft QSM †, and this leads to the following 

considerations. Since the mechanical time scale is slow, one can, in the mechanical equation 

(1.69), use an average force, neglecting faster electron fluctuations described by (1.65), so that: 

 

     
̅̅ ̅        

  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅        
 ̅̅ ̅̅ ̅        

̅̅ ̅̅                                       
 

The last passage is possible since, in this particular case,    can assume only the values {   } . 

Last, assuming the ergodic hypothesis holds, one can match a time average with an ensemble: 

 

  
̅̅ ̅        

̅̅ ̅̅       〈  〉                                                      
 

Therefore, by using definition (1.60) and consequently to (1.72a,b), the mechanical equation is: 

 

 
   

   
  

  

  
                                                               

 

which requires condition (1.71) is satisfied. Reassuming, equations (1.65) and (1.73) describe 

the dynamics of the whole system in Fig.1.25 if the shuttling element bears only one electron: 

 

{
 

   

   
  

  

  
             

   

  
        (

 

 
) [       ]      

            
 

   
 
[         

      
          ]

   

         

 
 

†     Terms    and          physically represent the same phenomenon, thus their values coincide, though they refer to a quantum 

and a semi-classical approach, respectively. From this follows that, compatibly with the definitions given in Section 2.2.8, in the 

case                  , we are in soft regime. 
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Equations (1.74) can be non-dimensionalized by introducing a set of dimensionless parameters: 

 

                    
    

   
 

 

 ̃  
 

  
               ̃  

    

   
            ̃  

   

 
           ̃  

  
 

                           

 

  
     

   
               

   
  

   
                    

   
  

   
            ̃  

  

 
 

 

In conclusion, a pair of non-dimensional equations is obtained: 

 

{

   

   
  ̃

  

  
    ̃                     

   

  
   ̃     ( ̃ ) [       ]

                  
 

    [                ̃  ]
            

 

and the electron rates (1.62a,b,c,d), expressed in terms of dimensionless parameters, become: 

 

              ̃ 
  ̃                                                             

 

              ̃ 
  ̃                                                            

 

           ̃ 
  ̃ [      ]                                                       

 

           ̃ 
  ̃ [      ]                                                      

 

Thus, the net left/right instant electron rates, similarly to the dimensionless microscopic currents 

introduced in (1.47) and with sign convention compatible with that defined in Section 2.1, are: 

 

                     ̃ 
  ̃ [       ]                                          

 

                     ̃ 
  ̃ [       ]                                         

 

The macroscopic non-dimensional current, analogously to (1.48), is obtained by averaging over 

a (dimensionless as well, and taken from formula (1.14)) time  ̃                 : 

 

 ̅  
 

 ̃   

∫      
    ̃   

  

   
 

 ̃   

∫      
    ̃   

  

   
 ̅

  
                         

 

The same is for the shuttle current contribution, calculable as in (1.49): 

 

  ̅  
 

 ̃   

∫  (    ) ̇           
    ̃   

  

 
  ̅
  

                                    

 

An important point is that, differently from direct shuttle, in inverse shuttle no tunnel current 

appears and  ̅    ̅ . In fact, since the bias voltage     is absent, when the Q-dot is at rest, no net 

current flows between   and  . The only chance to achieve a macroscopic current is matching a 

parametric resonance condition so that a limit-cycle performs the usual shuttle mechanism.  
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4.2.3 Parametric resonance conditions 
 

Compatibly with hypothesis (1.71), consider the limit:  ̃         into (1.76). Then, from 

the electrical equation, we directly obtain the relation: 

 

                                                                                 

 

 Which, substituted in the mechanical one, returns (time dependences are omitted): 

 

   

   
  ̃

  

  
    ̃                                                                

 

Now write the Fourier series of the Fermi-Dirac distribution in     up to the first harmonic: 

 

       
 

    [              ̃  ]
           ̃                                 

 

In regime of small oscillations (   ), expression (1.83) can be plugged into (1.82), obtaining: 

 

   

   
  ̃

  

  
     ̃   [  

 ̃  

   ̃  
     ̃  ]                                    

 

The constant term    produces a frequency shift of the oscillator, which is softened due to the 

presence of electrostatic induction and whose actual natural frequency is  √   ̃   . Conse-

quently, a parametric resonance is obtained when the value of  ̃ matches one of the: 

 

 ̃  
 

 
√   ̃                                                                         

 

As it is well-known from the classical theory of parametric resonance (see for example, 
[113]

) the 

strongest (and orthodox) parametric excitation corresponds to the choice     , whereas the 

cases     correspond to less evident resonance peaks. Therefore, the best mechanically-wise 

parametric resonance condition arises by accomplishing condition: 

 

 ̃  
  

 
  ̃   √   ̃                                                      

 

From a conductive point of view, however, applying (1.86a) is not appropriate. In fact, since the 

investigated system is in soft regime, formula (1.26) can be profitably used to estimate the 

system dynamics. In this, relation (1.86a) leads to consider a characteristic ratio     , which, 

from Tab.1.2, would lead to “8-shaped” orbits on the    

  
   plane. These, how has been widely 

discussed in Chapter 2, are not compatible with a net shuttle current: microscopic currents       

and       appear as well, but the net effect when integrating over a time  ̃    is a null macro-

scopic current. Summarizing, in order to actually achieve a shuttle current, a less mechanically-

effective parametric resonance condition has to be suggested. For example, using     : 

 

 ̃  
  

 
  ̃  √   ̃                                                        
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In this case, the characteristic ratio is     and, from Tab.1.2, this condition corresponds to an 

optimal shape of the phase curve    

  
  , with no crossings and with a maximal the shuttle current. 

Therefore, in the following analyses, we use the condition (1.86b) to select the value for   ̃ † . 

Consequently to this choice,       and, in (1.79) and (1.80),   ̃         (     )     . 

Also, it has be remarked the parametric resonance peak, is usually rather narrow. Again from 
[113]

, the following estimation can be obtained for the case     : 

 

√   ̃   
 

 
(

 ̃  

   ̃  
)
 

  ̃  √   ̃   
 

 
(

 ̃  

   ̃  
)
 

                          

 

     Some conclusive remarks. If the stationary part of the gate voltage     is null,        . 

This comes from the shape of the Fermi-Dirac distribution evolution       , which is character-

ized by an average value     for any choice of    . In Fig.1.28, some curves        are plotted, 

corresponding to different combinations of     and    ; and, from (1.86b), with  ̃    . 

 

Figure 1.28 – A number of        curves from formula (1.83) are plotted in the case  ̃    , by step-

varying     and for: (a)       , (b)       , (c)      . Negative     produce the same plots of 

positive     except they are symmetrical with respect to the horizontal line       . 

 

From Fig.1.28 it is clear the larger are     ,     , the more the shape of the distribution deviates 

from that of a sinusoid since the presence of higher harmonics  becomes considerable. Conse-

quently, since the whole procedure to estimate the parametric resonant matching conditions 

(1.86a,b) is based on the only contribution of the first harmonic, an accurate prediction of para-

metric resonance is possible only for relatively small values of the applied voltages   
   and   

   

with respect to the temperature  , which is, indeed, having small     and     . 

Last, it has to be remarked conditions (1.86a,b) match the parametric resonance only for small 

oscillations, since, from (1.83), we assumed     in the Fermi-Dirac distribution. The more   

increases, the more presence of the term     in        is not negligible and pushes the system 

out from the resonant peak. Notice that the chance of reaching stable orbits relies on having a 

certain positive  . In fact, in the limit case    , the oscillator is linear, and parametric reso-

nance (as it is well-known and differently from conventional resonance) leads oscillations to 

diverge. In conclusion, the effect of   is that of stabilize the Q-dot oscillations by progressively 

shift out the system from the resonant condition (1.86b) the more   ̅̅ ̅ is increases. 

 
 

†     Different numerical simulations, not reported in the thesis, have been carried out using condition (1.86a) as well. In these cases, 

as predicted, the system underwent a stronger parametric resonance, i.e. smaller values of voltages are sufficient to overcome a 

certain mechanical damping. However, the drawback anticipated here is confirmed, and those simulations showed no net cur-

rent flowing between the   and   electrodes. Then, an interesting solution has been also attempted, by considering a double 

signal applied to the gate,      
     

               
               , the harmonic   

    
 providing for an effective para-

metric resonance, while   
        guaranteed a de-symmetrization of the “8-shaped” orbit, in order to allow a non-zero shuttle 

current was exhibited by the system. In conclusion, in such simulations, both (1.86a,b) were accomplished at different weights: 

by varying the ratio   
        

    
 it was possible to regulate the QSM conductive behavior. For example, if   

        
       a 

small current passed but a strongest resonance was obtained, whereas   
        

       the converse conditions were met.  
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4.2.4 Approximated analytical methods 
 

The existence of stable orbits for a system described by equations (1.76) can be analytically 

demonstrated by using again the soft regime assumption (1.71), for which the second equation 

of (1.76) is completely determined since relation (1.81) holds. One only equation remains: 

 

   

   
  ̃

  

  
   

 ̃ 

    [                ̃  ]
                                        

 

For this, assume a solution in the form       ̃      [ ̃      ] † . The “slowly varying 

approximation” for variables  ̃    and      can be assumed in case of weak electromechanical 

coupling, corresponding to both  ̃    and  ̃    ‡ , which leads to introduce the constraint: 

 

 ̇̃      ̃      ̃ ̇      ̃                                                      
 

Thus, one can employ an averaging method which, after some calculations, leads to the follow-

ing pair of equations in terms of  ̃    and      : 
 

{
 

  ̇̃  
 ̃ ̃

 
  

  

  

 ̇   
  

  ̃
           

                                                                   

 

In these,   is the Hamiltonian, whose expression (after a change of variables    ̃   ) is: 

 

 ( ̃  )   
    ̃  

  ̃
 ̃  

 ̃

    ̃
∫   [     ̃                      ]

  

  

            

 

Therefore, the explicit form of (1.90) is the following integro-differential set of equations: 

 

{
 
 

 
   ̃

  
 

 ̃ ̃

 
 

 ̃ ̃

   ̃
∫

        

    [  ̃                      ]

  

  

                

  

  
 

    ̃  

  ̃
 

 ̃

   ̃
∫

     

    [  ̃                      ]

  

  

    

                

 

Notice equations (1.92) completely describe the system dynamics, since we previously assumed 

             and       ̃      [ ̃      ]. Also, they represent the direction field of a 

dynamical system which can be investigated by using standard methods.  

     First, individuate the stationary points. By posing { ̇̃  ̇}  {   } in (1.92), it happens that 

solutions always occur in pairs: to any stationary point    { ̃    } corresponds a conjugated 

one   ̅  { ̃      }. Then, the total number of stationary points 2  depends on the values 

assumed by   
   and   

   . Four stationary solutions,    {     },    {      }, and their 

conjugates   ̅ and   
̅̅̅ , appear for any value of the parameters and represent a rest condition. An 

additional pair of solutions    { ̃    } and   
̅̅̅ , with  ̃   , correspond to periodic regimes 

and appear only when    
         

   , with    
         and    

      
     . 

 
 

†     Notice that this is the same form introduced in Chapter 2 in both (1.16) and in (1.26), for somehow similar reasons. 

‡   Since  ̃ represents the damping and  ̃ is the electrically-normalized forcing term, from the definition of electromechanical 

coupling proposed in Section 2.2.4, both conditions are required in order to have     . 
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     As a second task, a stability analysis can be performed by calculating the eigenvalues of the 

Jacobian matrix in correspondence to the stationary solutions. If    appears, it is stable and both 

   and    are unstable. In the case    is not present, two situations arise: if      ,    and    

are respectively stable and unstable, whereas if      , then    and    are unstable and stable.  

In every case, conjugate pairs of points share the same stability properties. 

     In Fig.1.29, phase portraits on the plane  ̃-  of systems characterized by certain parameters 

combinations are depicted, highlighting separatrices and basins of attraction of stable solutions.  

Also, the loci of stable stationary points when varying     and     is shown. 

 

 
Figure 1.29 – Stability analysis of the dynamic system described by equations (1.92) and fulfilling 

resonance condition (1.86b). In (a), the phase portraits for a system with parameters  ̃     ,      , 

 ̃        ,  ̃      ,         ,        ,        (left plot) and        (right) are shown. 

In both cases,    
         

   , stable points    and   ̅ are present, their basins of attractions 

respectively colored in red and blue. In both phase diagrams,    ,   ̅ ,     , and   ̅ are unstable. 

In general, separatrices originate from    and   ̅ when       and from    and   ̅ if       . 

Arrows indicate the separatrices direction. Trivially, the portraits are   -periodic for the phase  . 

In (b), the position of the stable point    { ̃    } is plotted as a function of the applied voltages, 

in a QSM characterized by the same parameters choices as in (a). Curves are obtained by increasing 

     from    
  to    

   . In the case        (blue curve), one has    
         , while if         (red),  

then    
   appears to be infinite. In general, if       , one has          , whereas if      , 

then              ; again, when      , one has       , with    originating from    , 

while if      , then      has a finite value, and    both originates from and terminates in    . 

In (c), one of the curves obtained for        is magnified in a qualitative plot. Its trajectory 

is particularly important, since two additional characteristic conditions for    can be individuated. 

A first point,    , obtained by applying a value    
 

    
      , corresponds to the minimal distance 

from the phase        and represents an orbit which exhibits a maximally efficient shuttle mechanism 

(see Chapter 2). The second characteristic point,    , is obtained for    
     

       and corresponds to 

an orbit with the maximal amplitude, thus, maximal current, due to the exponential dependence of QT 

conductances from distance. In conclusion, the part of curve between    and    , in neat analogy to the 

power band in an engine, the loci of the best “working points” for a QSM operating in inverse shuttle. 
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     One can be interested to calculate the macroscopic current established by the system when it 

achieves a stable orbit corresponding to a stationary point   . Since (1.71) leads to  ̃   , 

relation (1.79) is not feasible to do that. Therefore, to obtain a current estimation compatible 

with equations (1.92), a perturbative method has to be used for the second equation: 

 

     
    (

 

 ̃ 
)  

    (
 

 ̃ 
)

 

  
                                                       

 

In this, compatibly with (1.71),    ̃    is the perturbation parameter. The zero order approx-

imation corresponds to the case           , already discussed in Section 4.2.3 and not viable 

to obtain a current estimation. Consequently, a first-order approach                is 

attempted, which, after some calculations, leads to an expression for the instant (left) current: 

 

       ̃   ̃ ̃                                                                  
 

      
  [  ̃                      ]

{    [  ̃                      ]}
                 

   ̃                    

     ( ̃ ̃     )
 

 

From this, by applying (1.79), the macroscopic current can be finally obtained: 

 

 ̅   (̅ ̃  )  
 

 ̃ 
∫         

    ̃   

  

 
 ̃

  
∫ [   ̃ ̃               ]  

    

    

            

 

Since we used    ̃  as a small parameter, this formula is independent from the choice of   ̃, and 

can be profitably used to calculate the current   ̅established by stable orbits corresponding to any 

stationary point    . Notice that, from the structure of (1.94a,b), conjugate orbits    { ̃    } 

and   
̅̅̅  { ̃      } produce currents about equal in absolute value but different in sign †. 

This fact is clearly visible in Fig.1.30, where a pair of contour plots for the current  ̅   (̅ ̃  ) 

are shown for different choices of     and     . In any case, these plots are symmetric with 

respect to the value    , present a maximum current, in absolute value, around       , 

and a null current for  ̃    and/or        , with     . 

 

 
Figure 1.30 – Dimensionless macroscopic current   ̅as a function of the amplitude  ̃ and the phase   . 

Contour plots obtained from (1.94b), by matching resonance condition (1.86b), and with the following 

parameters:  ̃    ,      ,  ̃     ,        . In (a)           , in (b)       and       . 

 
 

 

†    This fact confirms the anticipation made in Chapter 2, for which a QSM characterized by the same phase plot of another one, but 

walked in different direction (conjugate orbits with phases    and      ), produces the same current, but with different sign. 
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4.2.5 Results comparison and discussion 
 

A series of numerical simulations have been carried out by integrating dimensionless equations 

(1.76) and accomplishing parametric resonance condition (1.86b). In every case, the established  

macroscopic current has been calculated by using formula (1.80).  

Results in this Paragraph refer to the following choices of fixed dimensionless parameters: 

 

 ̃                ̃                   ̃                ̃                                        
 

corresponding to the set of physical properties of the system: 

 

                                                                                  
 

                                                      

 

These numbers appear realistic for a quantum Q-dot realized with a gold nanoparticle (values 

for  ,  ,   are compatible with 
[109]

,   with 
[27]

 and    gives a resistance according with 
[27]

. Last, 

the relation  ̃[   ]        [   ]
  , valid in CGS units, individuates a correct device scale). 

We considered a pair of sensible values for the temperature:   {      }   . These choices 

respectively correspond to the non-dimensional parameter: 

 

  {      }                                                                     
 

The dimensionless quantities related to the applied voltages,     and     , have been treated as 

free parameters. We considered them within the following ranges: 

 

    [     ]                    [    ]                                              
 

which correspond to voltages of the order of            , depending on the value of   (or  ).  

     It has be remarked that, compatibly with the single-electron assumption made at the begin-

ning of Section 4.2.2, the CB requirements (1.32a,b,c), have to be fulfilled. In particular, by 

using relation          †, such entire triplet of inequalities is largely verified for any combi-

nation of the fixed parameters and the allowable choices for     ,     ,   . 

     An analysis of the numerical simulations, specifically the time histories for      and       

under different initial conditions, provides a preliminary scenario of parametric excitation under 

the wide-gate assumption. We expect if        the Q-dot remains at rest:       . In this 

static regime, not only the shuttle current is null, but also the tunnel one, since no bias voltage is 

applied ‡. Consequently, the macroscopic current   ̅, calculated from (1.95), is null as well. 

On the other hand, if       , a parametric excitation can be triggered. When a stable orbit is 

reached, the current flows in either direction depending on initial conditions, specifically the 

initial phase      between mechanical oscillations       ̃      [ ̃      ] and gate volt-

age                   ̃  . This point makes clear that it is not engineering feasible to 

foresee (and set) the direction of the current established by a QSM under parametric resonance. 

In an experimental setup, every time the signal is switched-on, the system undergoes a transient 

which, compatibly with the analyses in Fig.1.29, leads to a stable orbit with expected amplitude 

 ̃  but a phase randomly    or     , representing the conjugated stationary points    and   
̅̅̅ . 

 
 

†    This is the formula for the self-capacitance of a sphere of radius  , conventionally used in the QSM literature to calculate the 

capacitance of a Q-dot shuttling element. Also, we couldn‟t use formula (1.4), since it holds only in semi-classical models. 

‡    Another explanation is that, in a symmetrical system, the application of an AC voltage on the gate cannot break the symmetry. 

This result is expected, since in parametric resonance the central position is a stationary (though unstable) point (see Fig.1.29). 
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     In Fig.1.31a,b, the results of a couple of simulations obtained by integrating equations (1.76) 

with initial conditions            are shown (the trivial case        is not reported here). 

In both cases, the behavior of the system confirms the discussion presented above, in particular, 

stable orbits characterized by the same amplitude but opposite phase produce phase portraits 

which are symmetrical with respect to the vertical axis and (not reported) opposite currents. 

 

 
Figure 1.31 – Inverse shuttle produced by accomplishing parametric resonance condition (1.86b). Time 

histories for      and       obtained by integrating equations (1.76) with initial conditions         

and (a)            , (b)           . Fixed parameters as in (1.95a), free parameters       , 

      ,     . Closed orbits representing stable periodic regimes are depicted on a phase plane    

  
  . 

 

Numerical results in Fig.1.31 correspond to the parametric resonance condition (1.86b), for 

which  ̃   . As glimpsed in Section 4.2.3, the orthodox parametric resonance (1.86a) for 

which  ̃    establishes stable orbits characterized by a characteristic ratio     (see Section 

2.2.2), and this (from Tab.1.2) is not feasible to produce a shuttle current. In Fig.1.32, these 

considerations are confirmed with a numerical simulation in which the same system in Fig.1.31 

undergoes a parametric resonance (1.86a) in the place of (1.86b). This time, a faster transient 

leads to an “8-shaped” orbit compatible with instant charge transfer but that, independently from 

the initial conditions, produces a null macroscopic current when averaged over a time  ̃    . 

 

 
Figure 1.32 – Inverse shuttle produced by accomplishing parametric resonance condition (1.86a).  

Parameters as in Fig.1.31, and initial conditions         and           . Time histories for      

and       establish a stable orbit on phase plane    

  
   unable to produce a net current. 
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     By now, focus our attention only on the case of parametric resonance (1.86b), that is  ̃    . 

We carried out a series of numerical simulations similar to those in Fig.1.31 in order to system-

atically investigate the properties of the stable orbits reached in inverse shuttle. 

In particular, in Fig.1.33, curves representing the asymptotic values for the amplitude  ̃ and 

phase  , are plotted as a function of    , for a fixed value of     and different temperature. 

These results refer to permanent regimes established in numerical simulations obtained by 

integrating equations (1.76) with initial conditions            and parameters as in (1.95a). 

 

 

Figure 1.33 – Curves  ̃     ,        plotted for         and parameters (1.95a), obtained from a set 

of numerical simulations by integrating (1.76) with         ,            , and fulfilling (1.86b). 

The cases of room (    , red lines) and cryogenic (     , blue) temperatures are compared. 

 

A quick look to plots in Fig.1.33 confirms two facts respectively glimpsed in Sections 4.2.4 and 

4.2.3: i) the parametric instability is triggered for voltages        
  , whereas, for        

  

the system remains at rest; ii) the parameter   has a stabilizing effect on the parametric excita-

tion, reducing the amplitude of oscillation  ̃, but does not influence the phase   nor    
  .  

Consequently, once parameters (1.95a) are set, the threshold voltage    
  remains a function of 

    only, and the curve    
       plays a crucial role, because it separates a plane    -    into 

two regions:  ̃    and  ̃    . It is therefore clear the estimation of the function    
       

represents an exceptional instrument to foresee the dynamics of a QSM in inverse shuttle. 

     Here, we can obtain the relation    
       by using two somehow complementary criteria. 

The first one, “numerical”, produces a series of confidence intervals based on the results of a 

collection of numerical simulations, obtained by integrating equations (1.76) similarly to 

Fig.1.33, by choosing an appropriate initial conditions       . The second approach, called 

“analytical”, is based on a closed-form estimation similar to the approximated methods seen in 

Section 4.2.4. In particular, by using a perturbative analysis of the generatrix Hamiltonian (1.91) 

with a small parameter  ̃ , it is possible to develop the following criterion of instability:  

 

 ̃

 ̃
 

        

   ̃
∫

       

    [               ]

  

  

                                        

 

In this,    represents the phase of stationary solutions compatible with an incipient parametric 

instability, thus, from the stability analysis discussed in Fig.1.29,             ,     . 

Then, once the values for  ̃,  ̃,  ̃ ,    are set, relation (1.96) can be profitably solved for     

with the sign “ ”, providing an analytical estimation of the curve    
       . 

In Fig.1.34, the numerical and analytical methods are used to determine the function    
      , 

for a system with parameters (1.95a), in the cases of cryogenic and room temperatures.  
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Figure 1.34 – Threshold voltage      as a function of     for a system with parameters (1.95a) and 

fulfilling (1.86b), individuates the region (in grey). The red curve comes from numerical simulations from 

equations (1.76) with       ; the blue curve by solving the instability criterion (1.96) for     with sign 

“ ”. A comparison between: (a) room (    ), and (b) cryogenic (     ) temperature, is shown.  

 

The red and blue curves † in Fig.1.34 show a very good agreement in the whole considered 

range of    : this validates all of perturbative methods exposed in Section 4.2.4. However, by 

applying larger voltages (results not shown here), the validity of these analytical approaches 

worsens, since the presence of higher order harmonics in the forcing term becomes more rele-

vant, and the parametric resonance condition (1.86b) is less accurate. This is also the reason for 

which only the investigation of the threshold voltage    
  is feasible, whereas    

   not. 

     Last, one is interested to understand the overall conductive performances of the system. 

To achieve this goal, in Fig.1.35, contour plots showing the absolute value of the current 

 ̅    ̅        , are obtained by using the numerical approach (same set of simulations to which 

the red intervals in Fig.1.34 are referred) with parameters (1.96a) and different values of   . 

 

 

Figure 1.35 – Absolute value of the dimensionless current   ̅as a function of applied voltages     and    . 

Results refer to a collection of numerical simulations based on equations (1.76) with       . 

System parameters as in (1.95a) and accomplishing resonance condition (1.86b). 

A comparison between: (a) room (    ), and (b) cryogenic (     ) temperature, is shown. 

 

Plots in Fig.1.35 are highly non-symmetric with respect to the application of the voltage     . 

This unusual behavior is explained with a comparative analyses with the previous results. From 

Fig.1.29b, the sign of     has a strong influence on the phase  : negative     are more feasible 

to produce limit-cycles with a phase around       ; this, from Fig.1.30, corresponds to the 

maximizing condition for the current. In conclusion, use a negative value for     is profitable. 

Again, the current   ̅in Fig.1.35 is depicted in absolute value, since its sign depends on the initial 

conditions of the system, which, in an experimental setup, are not controllable. Last, the effect 

of decreasing   (that is, increasing  ) was that (from Fig.1.33) to increase the amplitude of 

oscillations  ̃: this fact is inherited by the current  ,̅ which (from Fig.1.35) is indeed promoted. 

 
 

†     Actually, the blue curve is the same in both Fig.1.34a,b, since formula (1.96) is independent from the parameter  . 
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4.3 Generic gate distance: “semi-classical” analytical approach 
 

4.3.1 Introduction 
 

In this paragraph, a generalization of the results obtained in Section 4.2 is considered. This 

comes by considering the dependence of the shuttling element voltage    from its position     , 

thus, in relation (1.55), the term      is no more a constant.  

Since in the model in Fig.1.25, we assumed no QT occurs between   and   † , the characteristic 

gate distance   has to be considerably larger than the tunneling distance   . Follow that, if one is 

interested to investigate the effect of a relevant dependence     , then has to consider a system 

for which       . The latter condition justifies the choice, made indeed in this Paragraph, 

to investigate an inverse QSM in the hard regime, differently from Section 4.2, which was 

referred to the soft case. This leads to the following general considerations: 

i) The scale of the device is now sufficient to consider a nanopillar realization of the shuttling 

element. Thus, in this Paragraph, the shuttling element is indicated with the letter “ ”. 

ii) Due to the larger scale, we are not in CB regime. Therefore, a continuous-charge model is 

acceptable and is here used. In particular, the circuital scheme in Fig.1.25 is again valid. 

According to Section 2.3 and similarly to Chapter 3, the electrodynamics of the system is 

indeed described by equivalent QT conductances calculated with one of relations (1.1a,b). 

iii) As in Chapter 3, the external force on the pillar is due to electrostatic induction, and an 

assumption like (1.70) is used. However, the averaging procedure (1.72a,b) based on the 

hypothesis (1.71) is no more required here. Also, it would be not feasible, because, in the 

hard regime, the electrodynamics/mechanical frequency ratio is less than unity. 

iv) In this system it is not trivially possible to consider a small oscillations regime       

(which would allow to neglect again the dependence       ). In fact, due to the classi-

cal model used, no stabilizing effect is present in the system: a term  , in Section 4.2.3, 

provided for this, but here is not present, since we are using a semi-classical electrical 

model, and there is no role for the Fermi-Dirac distribution (from which   physically 

arouse). However, in a linear system (without the hardening effect of  ), a resonator under 

parametric resonance would increase its oscillations amplitude indeterminately. 

v) Consequently, to avoid a divergence of the system, we have to take into account some 

nonlinear effects introduced ad hoc and which could be neglected in Section 4.2.3, also be-

cause we were under the hypothesis of small oscillations. 

 

 

4.3.2 Equations 
 

Since the circuital model in Fig.1.25 is now valid, equations refer to the same general form of 

(1.36a,b). In these, terms    ,    ,    ,     ,    ,    have to updated to the present case. 

First, from (1.54a), the leads voltages are identically null:         . Then, the instant 

voltage of the pillar    has the general structure (1.55). In this case, it specifies into: 

 

            
       

     
                                                       

 

since         and           . This confirms that       , differently from Section 4.2. 

 
 

†    This condition is analogous to a SET, but different, for example, from a more general architecture investigated by Isacsson [29] 

and comprising, indeed three TJ. That article demonstrates in such case, a chaotic dynamics can be exhibited by the system. 
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Then, QT is introduced by using equivalent conductances         modeled as in Chapter 3: 

 

           
   
  

 
 
     

 
 
                                                     

 

     From point iii) of Section 4.3.1, follows that the external force on the pillar has to be calcu-

lated from the electrostatic potential energy  . Actually, one has to subtract the effect of the 

voltage application on the gate. Thus: 

 

 ̃         
         

 

      
 

    
 

 
                                           

 

    
  ̃

  
  

         
 

 

 

  
[

 

     
]                                          

 

Now, similarly to (1.58), we develop a Taylor expansion of the forcing term around the center 

position, obtaining a linearized forcing term: 

 

                  
                    

 

   
    

       

   
|
   

                     

 

Then, to take into account the hardening effects which are neglected in        , we deliberately 

add a non-linear term in the mechanical equation, obtaining a non-linear Duffing oscillator with 

    , so that a relation               holds. This approach (separation between a linear 

electrostatic force and an ad hoc non-linear term) has been used because: i) differently from 

Section 4.2.3, we now have to (this is explained in point v) of Section 4.3.1) include non-linear 

effects in our model; ii) an expression in which the coupling parameter   appears is still useful 

to calculate the parametric resonance condition.  

In conclusion, collecting relations (1.98)-(1.100), the whole QSM is described by equations: 

 

{
 

  
   

   
  

  

  
                   

  

   

  
   

  

     
    (

 

 
)                         

                                    

 

in these, from (1.54b) the gate voltage is further specified in      
     

           . 

     The electrostatics of the system can be modeled similarly to Chapter 3. In this case, referring 

to the scheme in Fig.1.36, the fixed electrodes can be considered as plate conductors, whereas 

the cap of the pillar (representing the shuttling element), is a spherical one. 

 

 
Figure 1.36 – Electrostatic scheme of the QSM depicted in Fig.1.25, in the case of generic gate distance. 

Terminals   ,   ,   are modeled as plate conductors, while the cap of the pillar   is considered a sphere. 
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Then, the capacitances of the system are calculated as follows (a value         , which best 

fits relation (1.43), is used for them): 

 

                         [    (
 

     
 

 

     
 

 

   
)] 

 

            (   
 

     
)                  (   

 

   
)                 

 

Define the following set of non-dimensional parameters: 
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and introduce the non-dimensional function: 
 

      
    ̃ (

 
   ̃  

 
 ̃   ̃)

    ̃ (
 

   ̃   
 

 
   ̃   

 
 

 ̃   ̃)
                                   

 

Then, a dimensionless set of equation is obtained (time dependencies omitted): 

 

{

   

   
  ̃

  

  
    ̃    ̃[               ̃  ]   

   

  
    ̃          ( ̃ ) [               ̃  ]

                              

 

The dimensionless microscopic currents are: 

 

        
       

  
   ̃  

  ̃         [                  ̃  ]                 

 

From these, the macroscopic non-dimensional current and its part due to the shuttle contribution 

are calculated similarly to (1.79)-(1.80) by averaging over the dimensionless time  ̃    : 
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4.3.3 Parametric resonance conditions 
 

Due to the different structure of the voltage of the pillar    , and to the multiple-electron shuttle 

exhibited by the considered system, the electrostatic forcing term in equations (1.104) is formal-

ly different from that analyzed in Section 4.2.3 †. In fact, the first equation produces: 

 

   

   
  ̃

  

  
 (  

 ̃   
 

 
  ̃   

 ),  
  ̃

   ̃   
    ̃   

 
                       

 

 *  
                    ̃   

   
 

 
      ̃               ̃  +-    ̃     

 

In such situation, the study of parametric resonance is more complex with respect to Section 4.2. 

In fact, as much as  five oscillating terms appear: those in the square brackets in formula (1.108). 

     Start our analysis by considering a regime of small oscillations (     ). In this case, charge 

transport is not activated ‡ and         : thus, oscillating terms which depend on the       

cannot play a role in the parametric excitation, and the nonlinear term  ̃   can be neglected.  

Therefore, the mechanical equation (1.108) simplifies into: 

 

   

   
  ̃

  

  
 (  

 ̃   
 

 
),  

  ̃

   ̃   
 *

   
 

 
      ̃               ̃  +-              

 

On the other hand, the prototypical equation for a standard parametric resonance is: 

 

 ̈      [      (
  

 
 )]                                                           

 

Let us investigate under which requirements (1.109) is compatible with the general structure 

(1.110), by taking into account that: i) in equation (1.109), condition  ̃    is necessary to have 

a system whose stable orbits are able to produce a macroscopic current (see Section 2.2.2); ii) in 

equation (1.110), condition     achieves the most effective excitation (see Section 4.2.3). 

Focus our attention on equation (1.109): two terms, depending on the choice of  ̃ , can trigger 

the parametric resonance. The overall casuistic is summarized in Tab.1.6. 

 

Table 1.6 – Parametric resonance conditions achievable by a system described by equations (1.109). 

Condition 
Dimensionless  

forcing frequency 
Parametric resonance achievable by the term: 

   
       ̃                 ̃   

I  ̃    no no 

II  ̃    no  yes,     

III  ̃    yes,     yes,     

IV  ̃      yes,     yes,     

…  ̃      yes,     yes,      
 

Although two terms are feasible to trigger a parametric instability in the system, from a design 

point of view, it is preferable optimize the system to reach resonance with only one of them. 

Only in such case, in fact, the structure of (1.109) can resemble (1.110), and an univocal reso-

nant condition (similar to (1.86a,b)), to accomplish by selecting an appropriate  ̃, is obtained. 

 
 

†     Notice how, in particular, here it is not possible to assume    ̃    as in the perturbative approaches carried out Section 4.2. 

‡     This is because since we are in hard regime (from Section.4.3.1), then (from Section 2.2.8) one has  ̃      . 
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In order to do this, introduce the following constraints †: 

 
   

|   |
                   

   

|   |
                                                  

 

     Consider (1.111a): in the limit case      , only the first term in (1.109) remains. Then, 

from Tab.1.6, a parametric resonance can be obtained with conditions III, IV, or the consequent 

ones. Neatly, the best choice is condition III, because it fulfills both     (the most effective 

parametric excitation for the first term) and  ̃    (feasibility of a net macroscopic current). 

Substituting     in equation (1.109), the following resonant matching condition is obtained: 

 

 ̃  √   ̃
   

 

 
                                                              

 

     Now consider (1.111b). In this case, only the second term in the square brackets of (1.109) is 

important, and parametric resonance can be obtained, referring to Tab.1.6, by using conditions 

II, III, IV, and so on. One could select again condition III by fulfilling (1.112a): this is compati-

ble with a macroscopic current (since  ̃   ); but, this time, corresponds to a less effective 

excitation and more narrow resonant peak (because, for the second term,    ). Otherwise, one 

could select condition II, which is unfeasible to produce a current (since  ̃   ); but produces 

the most effective parametric resonance for the second term (for which    ). Condition II is 

achieved by matching the following resonance:  

 

 ̃   √   ̃
   

 

 
                                                              

 

The situation is summarized as follows. If constraint (1.111a) holds, condition III in Tab.1.6 is 

the best from both the conductive and mechanical points of view, and is obtained by fulfilling 

(1.112a). Instead, constraint (1.111b) leads to select among condition III  or condition II, respec-

tively achieving the conductive or mechanical goals, and obtained with (1.112a) or (1.112b).  

Last, if none of (1.112a,b) holds, no clear resonance condition can be obtained. 

In conclusion, from a design point of view, constraint (1.111a) seems straightforwardly prefera-

ble , thus, the limit case       is taken into account in the next sub-Paragraph numerics. 

     Up to here, our analysis was limited to a regime of small oscillations. This was useful to 

understand better the incipient dynamics of the system. However, once a parametric excitation 

has been triggered, the amplitude of oscillations grows indefinitely. When the assumption       

does not hold anymore, the system cannot be further described by the equation (1.109), and its 

complete form (1.108) should be considered: this produces two main physical consequences. 

The first one is that the hardening effects of the nonlinear term  ̃   are now relevant, gradually 

shifting the system out from the resonant peak and stabilizing the amplitude of oscillation.  

The second effect is that, over a certain amplitude threshold  ̃  (we are in hard shuttle regime), 

QT phenomena become important, the shuttle mechanism is activated, and the effect of the 

oscillating terms which contain       “dirties” the (standard) parametric resonance, producing 

not predictable effects on the system dynamics and conductive properties. These phenomena 

will be disclosed in the following sub-Paragraph. 

 
 

†   In (1.111b), the limit case       should be avoided, since in such condition both oscillating terms disappear, making a 

parametric excitation unfeasible. 
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4.3.4 Numerical results and discussion 
 

The structure of equations (1.104) does not allow analytical approaches based on perturbative 

methods which assume    ̃  as a small parameter, as it was the case of Section 4.2.4. Thus, 

inverse shuttle is investigated with direct numerical simulations based on equations (1.104). 

Also, as anticipated in the previous sub-Paragraph, the parametric resonance situation is now 

more various than in Section 4.2, and generalizes the results obtained under the “wide-gate” 

assumption, which constituted, in this sense, a special case of the results presented here. 

     Compatibly with the larger device scale (Section 4.3.1), consider the physical quantities: 

 

                                                                                  

 

Select a tunneling length          ; then, respectively from (1.198a,b) and (1.102): 

 

                                                                                 

 

Therefore, the following values for the non-dimensional parameters in (1.103a) are set: 

 

 ̃                ̃               ̃               ̃                  ̃                 ̃   ̃                 

 

The only free parameters are     and     , which are considered within in the intervals: 

  

    [    ]                    [       ]                                            

  

These ones correspond to applied voltages   
   and   

   with values of the order of some volts. 

Last, referring to Tab.1.6, we choose the parametric instability condition III: the exact value for 

 ̃ is calculated from (1.112a) to match the resonant peak. Settings (1.114a,b) and resonance 

condition (1.112a) are used to carry out all the numerical simulations  in this sub-Paragraph. 

     To achieve a preliminary understanding of the dynamics, postulate oscillations in the form: 

 

      ̃      ̃                                                                

 

where  ̃      and   is the phase with respect to the voltage signal                  ̃  . 

Then, in a first set of simulations, plug the ansatz (1.115) into the second equation of (1.104) 

and integrate it for      . Such approach tests the electrodynamical response of a system to a 

motion regime determined by a given combination   ̃   , using relation (1.106) to calculate the 

corresponding macroscopic current   ̅. In Fig.1.37, some charts  ̅    ̅ ̃    are shown. 

 

 
Figure 1.37 – Current   ̅as a function of  ̃ and   from (1.115), plugged in the second equation of (1.104), 

solved for      , with        . Contour plots obtained using relation (1.106), by matching resonance 

condition (1.112a), and parameters as in (1.114a). In (a)        and       , in (b)           . 
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It has be remarked the existence of mechanical oscillations like (1.115) requires  the weak 

electromechanical coupling assumption (already used in Section 4.2.4), then (from the definition 

given in Section 2.2.4) relatively low values for  ̃ and  ̃ , coherent with the choices in (1.114a). 

Analyze the contour plots in Fig.1.37. First of all, they are substantially identical, meaning the 

presence of a stationary voltage on the gate does not perturbate the electrodynamics of a system 

characterized by a known vibrational regime. Second, these plots, at small amplitudes, present a 

macroscopic current which is maximum, in absolute value, in correspondence of     (nega-

tive in sign), and      (positive). This states a different behavior with respect to Section 

4.2.4, in particular Fig.1.30, in which the maximum absolute current is around        . Such 

contrast arises from the different structure of the forcing term in the mechanical equation of 

(1.76) versus (1.104), due to the single-electron hypothesis introduced in Section 4.2. Last, 

contour plots in Fig.1.37 states an orbit with parameters   ̃    exhibits the same macroscopic 

current, with different direction, of an orbit   ̃     . This resembles the discussion around 

the conjugated stable solutions     and   
̅̅̅ , in Section 4.2.4 as well: in turn, it suggests that, also 

in this case, initial conditions have a role in selecting which specular asymptotic behavior   ̃    

or   ̃      is achieved, and, consequently, which is the direction of the macroscopic current. 

To conclude the analysis of Fig.1.37, notice that, while in Fig.1.30 the emergence of the current 

is gradual when the amplitude is increased, since the system was soft; this is not the case of 

Fig.1.30, where, due to the hard nature of the investigated QSM, a considerable current appears 

only when a certain threshold amplitude  ̃  is reached. Notably, this fact could produce a proper 

“transition” among two different vibrational states: in order investigate this possibility, we 

require a tout court analysis of the QSM dynamics, in which      is not imposed as in (1.115). 

     Consequently, consider another series of numerical simulations coming from the simultane-

ous integration of both mechanical and electrodynamical equations in (1.104). We again refer to 

the parameters (1.113a,b) and (1.114a,b). In Figg.1.38-1.41, the results of some exemplificative 

numerical simulations are shown, corresponding to different combinations of the gate voltages 

    and     and equations solved with opposite initial conditions     with           . In 

all plots, time histories for pillar position      and electrons       are shown, together with the 

post-processed phase and macroscopic current †, showed in both cases of initial conditions. 

In Fig.1.38,        and      : these boundary conditions are sufficient to trigger a para-

metric instability and a conventional shuttle mechanism characterized by amplitude  ̃      is 

definitely achieved. Depending on the initial conditions selected, the phase   establishes around 

  (         ) or   (         ). This, compatibly with the discussion around Fig.1.37, 

produces a macroscopic current   ̅flowing in either directions but equal in absolute value. 

In Fig.1.39,           : the system dynamics and conductive properties are the same of 

Fig.1.38, except for average value of electrons on the pillar, which oscillates around a value 

         . Since, in Fig.1.38, the mean value was          , one understands that, while 

establishing a stable shuttle mechanism, the value of    tends to the value      . Actually, this 

is the only effect of the presence of a static voltage    : in particular, directly from (1.111a,b), 

in the case           , the transient duration to make         can dramatically increase. 

In Fig.1.40,        and      : a parametric instability is again triggered, but a different 

vibrating regime, corresponding to a novel kind of shuttle mechanism, is established. In fact, 

such a high voltage makes the pillar to surpass the amplitude  ̃ , reaching the tunneling region. 

The consequent sudden increase in the charge transport phenomena (something not experienced 

in soft shuttle) produces a phase   which does not stabilize but shifts with time, instead. In other 

words, an exotic shuttle mechanism, achieving a macroscopic AC current, is obtained.  

The same arguments hold for Fig.1.41, where           , except for the shifted electrons 

oscillating range                          (in Fig.1.40 it was                 ).  
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Figure 1.38 – Time histories of position      and electrons       given by integrating equations (1.104). 

Phase      and macroscopic current   ̅   by using initial conditions: (a)           , (b)          . 

System parameters as in (1.114a), resonance condition (1.112a), and voltages        ,      . 

 

 
Figure 1.39 – Same description as in Fig.1.38, except for voltages           . 
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Figure 1.40 – Same description as in Fig.1.38, except for voltages        ,      . 

 

 
Figure 1.41 – Same description as in Fig.1.38, except for voltages           . 
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     In conventional situations like those highlighted by Fig.1.38 and Fig.1.39, the shuttle mecha-

nism produces a stationary macroscopic current: 

 

  ̅                                                                           

 

In both Fig.1.40 and Fig.1.41 current (and, in all the similar simulations performed), a new 

archetype of shuttle mechanism produces an alternate current whose the waveform highly 

resembles a sinusoid; therefore, and can be therefore described as: 

 

  ̅           ̃                                                               

 

with  ̃       being its dimensionless frequency. Notice that the frequency  ̃  is not equal to 

that of the exciting     voltage,  ̃ : instead, it is considerably smaller in any situation, so that a 

relation  ̃   ̃  always hold. In turn, such “slow” oscillations modulate the oscillations ampli-

tude which cannot stabilize, but slightly oscillates around a mean value. Last, in Fig.1.40 and 

Fig.1.41, one can notice the phase   shifts: i) linearly, ii) increasingly; both circumstances being 

independent from the initial conditions. Such a behavior for the phase shift hints the forced 

mechanical frequency is constantly slightly slower with respect to the exciting voltage frequen-

cy: this means we are in the case the mechanical oscillations are de-synchronized from the 

voltage oscillations. Such desynchronization comes from the huge charge transport dynamics 

achieved, and definitely explains the existence of such an unusual kind of shuttle mechanism. 

In conclusion, we demonstrated that, in some situations, the application of an AC voltage on the 

gate is sufficient to produce a parametric resonant shuttle mechanism, but may be no more an 

appropriate way to achieve a symmetry  breaking for the system, since, by averaging over a 

period of time multiple of     ̃  , no net charge transfer is achieved between the leads. 

     Summarizing, equations (1.104) describe a QSM which is able to establish permanent mo-

tion regimes which can be classified depending on the kind of shuttle regime performed: 

 no shuttle: the parametric instability is not triggered and no shuttle regime is possible; 

 DC shuttle: the parametric instability achieves the usual shuttle mechanism, in turn pro-

ducing a macroscopic DC current (1.117a); 

 AC shuttle: the parametric instability achieves an unconventional shuttle mechanism, in 

turn producing a macroscopic current (1.117b). 

In order to systematically investigate the occurrence of these three behaviors, a series of numer-

ical experiments has been carried out, testing a QSM under the same initial conditions and by 

using different values of     (    is maintained constant †). Results are collected in Fig.1.42. 

Generally, one can notice the occurrence of the three dynamical behaviors listed above occurs at 

increasing voltages. In particular, similarly to the analysis performed in Section 3.3, it is possi-

ble to introduce two threshold values,    
  and    

      
 . In the case        

  , “no shuttle” is 

performed; if    
         

   the conventional “DC shuttle” occurs; whereas, when        
   

the unconventional “AC shuttle” mechanism producing an alternate current is achieved ‡. 

One can notice that, in correspondence to    
  the amplitude of oscillation  ̃ gradually deviates 

from   and the phase   increases from an incipient value      , producing a gradually increas-

ing current    . Instead, the reach of the threshold    
   individuates a sudden increase in the 

amplitude  ̃ , the disappearance of the stationary current     in favor of a larger alternate current 

whose both amplitude     and frequency  ̃  linearly increases with     . 

 
 

†     In fact, from Figg.1.37-1.41, the effect of     on the dynamical transients is limited and even null on the conductive features. 

‡    Notice how, while the DC shuttle phenomenology intuitively performs the functionality of a rectifier (as already stressed by 

some Authors, such as Pistolesi and Fazio [70]), the AC shuttle casuistic can result in perhaps more interesting applications. 
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Figure 1.42 – Curves  ̃     ,       ,         ,         ,         plotted for       , obtained from a 

set of numerical simulations by integrating (1.104) with initial conditions         ,           , 

parameters as in (1.114a) and fulfilling (1.112a). Voltage thresholds    
  and    

   are highlighted. 

 

In general (again similarly to Section 3.3) the voltage thresholds    
  and    

   depend on    . 

This is shown in Fig.1.43, where a graph obtained by collecting a large number of numerical 

results summarizes the occurrence of “no shuttle”, “DC shuttle” and “AC shuttle”, by portraying 

such regions on a    -    plane and highlighting curves    
     

       and    
      

        . 

 

 
Figure 1.43 – Curves    

     
       and    

      
       , from a set of numerical results by integrating 

(1.104) with initial conditions         ,           , fulfilling (1.112a) and parameters (1.114a). 
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First, the graph in Fig.1.43 is horizontally symmetric, meaning the sign of     is not important. 

Second, the dependence from     of the voltage thresholds    
  and    

   is, differently from 

Section 3.3, rather small. Actually, by assuming the proper † initial condition            , 

the effect of     on both    
  and    

   is completely null, and, on a    -    plane, the regions 

corresponding to “no shuttle”, “DC shuttle” and “AC shuttle” would be horizontal bands. 

     Therefore with the experience gained through the whole numerics in this paragraph, one can 

glimpse the shape of  ̃-  phase plots referred to the investigated systems in applied voltages 

different conditions. In order to do this, the permanent regime established by a QSM has been 

tested by using initial conditions              while varying  ̃    and     . 

The results of this latter series of simulations are in Fig.1.44, together to qualitative portraits of 

phase plots, partly inspired to those (analytically obtained) in Fig.1.29 of Section 3.3.  

 

 
Figure 1.44 – Induced from a set of numerical experiments on the same system with              , 

phase plots referred to voltage levels (a-d) are qualitatively drawn on a plane  ̃- . Basins of attraction 

(“no shuttle” in gray, “DC shuttle” in red, “AC shuttle” in blue: different shades for conjugate basins), 

separatrices (red), stationary points (stable in red, unstable in blue) and exemplificative phase curves 

(dashed black) are portrayed. As for Fig.1.29, plots are horizontally   -periodic and conjugated loci are 

shifted by  . The “no shuttle” basins of attraction lead to stationary points    and    (or conjugates   ̅ 

and   ̅), DC shuttle to    (or   ̅), AC shuttle to a curve   (actually a closed orbit, due to the periodicity). 

 
 

†    Since, as highlighted in Figg.1.38-1.41, the application of a static voltage     stabilizes, after a sufficient period of time, an 

amount of electrons on the pillar    just equal to the quantity      . 
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 5 
 

  

  
 

Chapter  

 

Hybrid shuttle: some general considerations 

 

 
Let us consider a QSM characterized by the combination of the voltage boundary conditions 

(1.34a) (used in Chapter 3) and (1.54a,b) (Chapter 4). Consequently, relations (1.5a) specify 

into (for simplicity‟s sake, we assume here   
     and      †): 

 

{ 
    

     
                                                                        

 

,
  

    

  
    

                          
                                                 

 

Then, compatibly with (1.117a,b), refer to the three-terminals architecture in Fig.1.45a,b. 

 

 Figure 1.45 – Three-terminals QSM able to exhibit both direct and inverse shuttle phenomenologies:  

(a) mechanical and (b) electrical schemes. 

 

From the analyses carried out in Chapter 2, one can expect a QSM individuated by boundary 

conditions (1.117a,b), could experience both the self-excited and parametric resonance shuttle 

mechanisms, somehow constituting a combination of the direct and inverse shuttle phenome-

nologies. The term hybrid shuttle refers to such scenario. Actually, in this thesis, we are not 

going to deal with a theoretical (nor analytical or numerical) investigation of hybrid shuttle, and 

this Chapter is only devoted to suggest some general considerations. 

     Suppose the hybrid QSM portrayed in Fig.1.45 undergoes stable oscillations characterized by 

amplitude   and frequency   . This motion regime is feasible to establish a macroscopic shuttle 

current       , which can be assumed to be the linear combination of two terms: 

 

                                                                            

 
 

†    In the analyses carried out in Chapter 4, we demonstrated a stationary voltage on the gate is unessential (it does not influence the 

conductive behavior) and an exciting signal with the same frequency of the mechanical oscillations is preferred (since     ). 
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In formula (1.118a), symbols      and      represent the shuttle currents achieved by a direct 

and an inverse QSMs, respectively, achieving the same dynamics of the hybrid QSM (amplitude 

  and frequency   ), whereas      and      are appropriate constants. 

     From the analyses carried out in Section 2.2.2, one understands that, independently from the 

physical mechanism guaranteeing the continuity of oscillations (self-excitation for direct shuttle, 

parametric resonance for inverse shuttle, and both for hybrid shuttle), the conductive behavior   

of a QSM depends only on the electrodynamics  ; this, in turn, is univocally determined by the 

vibrational regime   and the voltage boundary conditions  . Summarizing,         .  

Follows that, if one considers three QSMs, a direct, an inverse and an hybrid one, all character-

ized by the same vibrational state  , a relation like (1.118) relates their macroscopic currents, 

and terms      and      can be appropriately put in relation with the boundary conditions: 

 

     
   

      
                                                                

 

Relations (1.119a,b) are a consequence of the fact that, in a direct shuttle, the macroscopic 

current      is solely produced by a self-excited mechanism, consequently to the application of 

a bias voltage    ; whereas in an inverse shuttle,      comes from a parametric excitation 

triggered by an alternate voltage   
  . Thus, the two described phenomenologies are comple-

mentary and, the more or less propensity of a system to the first or the second mechanisms only 

depends on the relative weights of the voltage boundary conditions. Summarizing, every hybrid 

QSM presents a combination of these two basic forms of shuttle, and its overall current can be 

estimated by using relations like (1.118) and (1.119). Further notice that, while in direct shuttle 

the current direction is set by the boundary conditions, in inverse shuttle it depends on the initial 

conditions: thus, in the definition for       it is not possible foresee the correct sign. As a 

consequence of this, in an experimental setup comprising a sample of hybrid QSMs character-

ized by the same voltage boundary conditions, if one measures the macroscopic current pro-

duced, the population arranges around two different characteristic values: 

 

     
                        

          
    

   
  

      
                                  

 

To conclude, in Fig.1.46 the hybrid shuttle mechanism is schematized similarly to Fig.1.13, 

highlighting it is a real superimposition of the direct and inverse shuttle basic phenomenologies.  

 

 
Figure 1.46 – Schematics of the hybrid shuttle mechanism in the alternative definitions of (1.119b): 

(a) with a “ ” sign, achieving a larger current (1.120a); (b)“ ” sign, smaller current (1.120b).  
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Conclusions & General framework 

 

 
Part One opened with a brief overview of charge transport nanoscale devices, up to a detailed 

study of the conduction mechanism of interest for this thesis: the mechanical electron transport. 

In particular, in Chapter 3 we investigated the direct shuttle phenomenology exhibited by a two-

terminals self-excited QSM; in Chapter 4, it was the case of inverse shuttle, achieved by a three 

terminals QSM triggering a parametric instability. Both configurations originated from the 

prototypal architecture introduced in Section 2.1, and, although oscillations are triggered in a 

different way, in the case of a characteristic ratio    , they are characterized by a similar 

electrodynamics (as widely demonstrated in Chapter 2 and schematically depicted in Fig.1.13). 

The two basic direct and inverse shuttle phenomenologies are somehow complementary, mean-

ing every QSM derived from the prototypal scheme presents a superimposition of such two 

basic mechanisms. Consequently, in Chapter 5 the concept of hybrid shuttle was suggested: in 

this, we argued the overall current can be considered a linear combination of direct and inverse 

shuttle contributions, weighted on the basis of the specific boundary conditions used. 

Since direct, inverse, and hybrid shuttle complete the scenario of autonomous shuttle devices, 

the main intent of Part One of the thesis – a theoretical analysis of QSMs – is fulfilled. 

     Part Two is devoted to a more practical aim: the functional design of a NMT, for which the 

preliminary study of its constitutive elements – QSMs indeed – was required. Nonetheless, 

some of the results achieved in Part One are of particular interest, since they are going to consti-

tute the starting point for some analyses to be presented in Part Two. These are listed ahead. 

In Chapter 2, the quali-quantitative study on the shuttle mechanism will be useful to perform the 

functional analysis of a single QSM (Chapter 9), and the whole NMT (Chapter 10), while the 

definitions and classifications presented will be critically examined in Chapter 7 in order to 

individuate some preliminary design choices. In particular, the concept of tunneling region and 

the two-states approximation (formulae (1-25) and (1.26)) will be useful, in Section 9.4, to 

introduce a neat Turing machine interpretation of the motion regimes established by a QSM. 

Related to this, the hysteresis of the  -  curve peculiar of the hard shuttle regimes, numerically 

demonstrated in Chapter 2, will be analyzed in a more deep detail in Section 9.2.3, where a 

physically satisfying interpretation of is suggested. Also, the coherency of numerical results in 

Chapter 2 constituted the validation for the semi-classical model to be introduced in Chapter 8, 

that – with some substantial enhancements – will be diffusely used to describe both the single 

QSM and the whole NMT. Last, the analytical and numerical quantitative analysis carried out in 

Chapters 3, 4, respectively for the direct and inverse shuttle, represent the know-how required to 

understand at a deep detail the electron shuttle phenomenology, and appropriately select the 

main characteristics of a QSM to be the optimal candidate as a basic element of the NMT. 

As a final result, the numerical simulations which are going to be discussed in Part Two, will 

lead to synthetize a number of so-called “control strategies” for the NMT which constitutes the 

main achievement of Chapter 10 and of the whole thesis, indeed. 

     To conclude, the general framework in Tab.1.7 represents a comparison table which summa-

rizes all the charge transport phenomenologies analyzed in Part One. 
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Table 1.7 – General framework of conduction mechanisms considered in the thesis. 

 
 

 

†     Consider, for the AC-driven case, an external excitation coming from:         
     

           .
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Part Two 

APPLICATION TO THE 

NANOMECHANICAL TRANSISTOR 
 

 

 

 

 
he following Chapters focus on the assessment of realizing a NanoMechanical Transis-

tor composed by a set of Quantum Shuttle Modules, correctly reproducing some of a 

conventional transistor functionalities, such as switching and current amplification. 

In Chapter 6, a brief historical introduction on transistors, including some more or less recent 

proposals involving unconventional (non-electronic) working principles is presented. 

In Chapter 7, a detailed analysis of the Blick‟s NanoMechanical Transistor patent is presented, 

leading to some preliminary design choices on the Quantum Shuttle Modules composing it. 

In Chapter 8, an analytical model for a single Quantum Shuttle Module is suggested, more 

accurate with respect to Part One, in which electrostatics is modeled by using a capacitance 

matrix (Appendix A), QT conductances consider the voltage dependence (Appendix B), and 

electrostatic induction effects are included (Appendix C). Equations are then generalized to the 

case of an array of coupled Quantum Shuttle Modules realizing the NanoMechanical Transistor. 

In Chapter 9, the functional analysis of a single Quantum Shuttle Module is carried out includ-

ing: the definition of a set of reference parameters, the investigation of transient and permanent 

motion regimes, a predictive static-machine model, characteristic charts and working points. 

Also, an engineering satisfying explanation of the current-voltage curve hysteresis is proposed.   

In Chapter 10, the functional analysis is extended to the whole NanoMechanical Transistor: a 

set of control strategies aimed to correctly reproduce both the voltage-driven switch and the 

current amplifier functionalities are suggested and demonstrated with numerical simulations. 

Last, in Chapter 11, the electric performances of the NanoMechanical Transistor are compared 

with those of electronic devices and a method to estimate the maximal current gain is proposed.

T 
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Chapter  

 

Transistors: state of the art 

 

 
6.1 Classifications and main functionalities 
 

Transistors are often considered as the most influential invention of the XX century. This is 

probably true, since they constitute the fundamental brick for the entire modern information 

technology: the gadget which put into reality the computing algorithm of a Turing machine, 

promoting the jump from pioneering analogic calculators towards digital computing †. 

     Any active circuital element characterized by three electrodes, and in which a signal applied 

on the input electrode can control a conveniently larger signal between the output ones, is called 

“transistor” (such signals can be either voltages and/or currents). This generic function can be 

achieved by devices characterized by different working principles and architectures. 

A Bipolar Junction Transistor (BJT) is formed by a sandwich of N- and P-type semiconductors 

(PNP- or NPN-configuration), separated by two junctions, its working principle involving two 

kinds of charge carriers in a doped semiconductor: electrons and holes. In a BJT, the input 

electrode is named Base (B), and the output ones Emitter (E) and Collector (C) (see Fig.2.1a). 

A Field-Effect Transistor (FET), uses either electrons or holes (N-channel or P-channel FET) 

for conduction, thus it is a unipolar transistor. Two FET typologies exist: Junction (JFET) and 

Insulated Gate (IGFET, also known as Metal-Oxide Semiconductor: MOSFET). In a FET, the 

input electrode is labeled Gate (G), and the output ones Source (S) and Drain (D) (Fig.2.1b). 

BJTs and FETs represent the two main families of conventional (electronic) transistors. 

In addition to these, non-conventional transistors involving mechanics-specific concepts have 

been recently proposed: generally refer to them as NanoMechanical Transistors (NMTs). Since 

NMTs are unipolar and their working principle involves an electric field, their electrodes inherit 

the same names and symbols used for a FET: Gate (G), Source (S) and Drain (D) (Fig.2.1c).  

 

 
Figure 2.1 – Circuital symbols for a: (a) BJT, (b) FET, (c) NMT. The NMT symbol, inspired to 

[60,77]
, is 

originally suggested in the thesis and extensively used in the followings. 

 
 

†    Both logical operations and memory access, in fact, can be achieved by arranging a set of transistors, respectively exemplified 

by logic gates (AND, NOT, OR, and their combinations) and memory elements (for example flip-flop circuits).       
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     Transistors can constitute the central element of circuits specifically designed to achieve the 

most-representative functionalities of: voltage-driven switching and current amplification. 

When an input voltage is used to inhibit/consent an output current, a transistor acts as a switch. 

If the input is used to regulate a proportional output, it works as an amplifier. Standard amplifier 

topologies comprise the common-collector (Fig.2.2a) and common-source (Fig.2.2b,c) ones. 

 

 
Figure 2.2 – Standard circuital topologies in which the central element is a transistor: (a) basic NPN BJT 

common-collector circuit; (b) basic N-channel FET common-source circuit with biasing detail and 

source degeneration; (c) a NMT plugged into a common-source circuit similarly to conventional devices. 

 

     The (static) conductive behavior of a transistor can be summarized by a series of characteris-

tic curves on a  -  plane. In BJTs, the output is current-controlled, thus (referring to the no-

menclature presented above) these plots conventionally show a discrete group of collector-to-

emitter current curves       as a function of the output collector-emitter potential difference     , 

for step values of the input base current      (see Fig.2.3a). Instead, FETs are voltage-controlled, 

and a set of drain-to-source output current curves       as a function of the output drain-source 

potential difference    , for different values of the input gate voltage      are used (Fig.2.3b). 

An  -  curve in which the current     (or    ) is nearly suppressed for small values of    and    

(or    and   ) is optimal for the switch operation. Instead, in current amplifiers, what plays a 

central role is the linearity of the  -  curve. Typically, FETs are characterized by a higher 

switching speed, while BJTs by a good linearity: consequently FETs (especially MOSFET) are 

conventionally used to produce logic gates, whereas BJTs in amplifying circuits. 

 

 
Figure 2.3 – Typical characteristic  -  curves for a: (a) current-driven BJT, (b) voltage-driven FET. 
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6.2 Historical resume of conventional transistors 
 

Although its recent application in computing industry, transistor history is over one century old. 

A chronological resume of the most important theoretical and technological landmarks for 

conventional (electronic) transistors is presented in this Paragraph. 

     In 1906, L. De Forest invented a special thermionic valve, the audion (today known as 

triode), realized within a vacuum tube, capable of amplifying signals. American leading compa-

ny AT&T acquired the De Forest patent and used such a device to solve the main technological 

issue related to both the emerging (wired) telephony and (wireless) telegraphy: the signal loss 

due to long-distance transmissions. However, thermionic valves were not a reliable solution: 

they required too much power to work, thus were characterized by an excessive Joule effect. 

     Following years, proposals for solid-state replacements for the triode spread. In particular, 

the physicist J. E. Lilienfeld filed a patent for a FET in 1925 in Canada and, later, in USA, but 

never published research articles nor produced any working prototype. A somehow similar 

transistor device was later invented in 1934 by O. Heil in Germany. 

     In 1940s, at AT&T‟s Bell laboratories, a point-contact transistor was realized. A first, not 

working prototype, was designed by team‟s leader W. Shockley in 1945, and was improved and 

positively tested by J. Bardeen and W. Brattain in 1947. In 1948, Shockley developed the first 

actual BJT, together with a first comprehensive theory of transistors †. Bell Laboratories de-

manded for an original name to advertise their new invention: after some initial proposals (such 

as “semiconductor triode”, “surface states triode” and “iotatron”), the term “transistor” was 

coined in 1948 by J. R. Pierce, joining the words “transfer” and “resistor”. 

     In 1954, Texas Instruments produced the first silicon-based transistor. In 1958-1959, J. 

Kilby, a Texas Instruments employer, first glimpsed the possibility to produce any circuital 

component in silicon. He realized and patented the first Integrated Circuit (IC). 

     In 1960, Bell‟s laboratories produced the first MOSFET, and F. Wanlass patented the Com-

plementary Metal-Oxide Semiconductor (CMOS) technology in 1967. MOSFETs slowly substi-

tuted BJTs in ICs, which had popularized since decades, and nowadays still constitute the most 

popular and widespread family of transistor devices.  

 

 

6.3 Recent proposals involving unconventional concepts 
 

Electronic industry incessantly pulls towards innovation and new concept designs, in order to 

solve a main need: miniaturization. In turn, miniaturization allows lower power consumptions 

and better performances per volume unit of an IC. This trend is well reassumed by the popular 

(first) Moore‟s law, for which “the number of transistors on ICs doubles approximately every 

five years” ‡. Its prediction revealed unexpectedly accurate also because it is nowadays used in 

the computer industry to guide long-term planning and set miniaturization landmarks in semi-

conductor research and production. For example, the International Technology Roadmap for 

Semiconductors, states that the next target for the average half-pitch of a memory cell will be a 

  -nm technology node, to be reached within 2013-2014.  

 
 

†   Controversies arouse among Shockley, Bardeen and Brattain when the point-contact transistor was patented. The Shockley's 

invention overshadowed the work of Bardeen and Brattain, who eventually left Bell Labs. However, they all received the Nobel 

prize in physics in 1956, accounting for  “their researches on semiconductors and their discovery of the transistor effect”. 

‡     Actually, the first version of Moore‟s Law [114] cited “18 months”. This trend was reformulated in 1970s. 
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     Inevitably, this miniaturization trend is going to decelerate if no step-innovation will be 

proposed: approaching to   -size transistors introduces undesired quantum effects which limits 

conventional electronic functionalities. Consequently, industry started to consider new frontiers 

of computing, in which the presence of quantic phenomena such as Quantum Tunneling (QT) or 

Coulomb Blockade (CB) is deliberately used as the working principle of increasingly small 

transistors which can be considered, in these sense, unconventional. Between 1970s and 1980s, 

the conception of the Single-Electron Transistor (SET) (see Section 1.3 for references) was a 

first step in this sense. Only in recent times room-temperature SETs have been realized. The 

SETs seem to solve the main needs of electronic industry: miniaturization, low power consump-

tion, and higher performances; however, the main concerns around them, highlighted by some 

authors 
[60]

, are the low robustness and reliability. These issues still relegate SETs to research 

purposes and, to present day, no SET device has been commercially produced yet. 

     In order to overcome this impasse, a part of NEMS research is focusing, in recent years, to 

realize NanoMechanical Transistors (NMTs). One of the most notable concepts in this sense 

was suggested in 2007-2008 by Blick in both an article 
[60]

 and a patent 
[77]

, and makes use the 

shuttle mechanism (see the Introduction). Blick‟s proposal consists in properly arrange an array 

of Quantum Shuttle Modules (QSMs) to produce logic gates and memory elements of a so-

called “mechanical computer”. Since the idea to couple more QSMs to realize a NMT is a 

matter of interest of this thesis (in particular of Part Two), the Blick‟s NMT will be analyzed in 

detail in Chapter 7; in this Paragraph, instead, we briefly list a number of recent alternative 

proposals of nanotransistors involving mechanical concepts. 

For example, the recent enthusiasm around Carbon NanoTubes (CNTs) – first, in 1990s – and 

graphene – then, in 2000s – led to some experimental setups in which charge transport is actu-

ated by modifying the mechanical stress conditions of a CNT 
[115]

 or by distort graphene sheets 
[116]

. Inspired by these, CNT-based nanotransistors have been conceived 
[117]

. In more recent 

times, a very high temperature (500°C) working transistor has been produced by simply statical-

ly deflect some micrometer-scale silicon carbide levers and cogs 
[118]

; however, this embodiment 

requires very high activation voltages. In 2011, a Japanese team proposed the novel concept of 

an atomic transistor 
[119]

, which works by shuffling individual copper atoms within the device, 

regulating the conductive path within the source and drain electrodes. 

Notice these papers do not make use of a shuttle mechanism. There are, indeed, other proposals 

which make use of the shuttle mechanism, but in which the shuttling element is excited in a 

different manner from the Blick‟s NMT proposal, for example by using a magnetically induced 

Lorentz force. A brief list of such articles includes 
[120,121,122,123,124,125]

: some of them are analo-

gous to Blick‟s  architectures, others try to be more “single-electron” specific. 

     A completely different branch of research involves non-mechanical unconventional transis-

tors, namely Optical Transistors (OT). They work by using materials characterized by a non-

linear refractive index. First conceived in 1976, 
[126]

 OTs could be arranged into optical logic 

circuits 
[127]

 and, thus, could represent the fundamental brick for optical (or photonic) comput-

ers. A first demonstration of optical computing was achieved in 2011 
[128]

. 

     The SET, NMT and OT research fields are somehow “in competition” to individuate the best 

NEMS technology to produce faster and more reliable computing devices. Nonetheless, up to 

the present day, no single embodiment seems to stand out as the best one. Remarkably, all these 

devices still belong to the classical scenario of digital computing. Actually, a further step inno-

vation, that of quantum computing, first glimpsed by Richard Feynman in a memorable talk 

held at MIT in 1981 
[129]

, could represent the ultimate frontier of information technology.  

Though, such a topic is wide far from the matter of interest (and pretenses) of this thesis. 
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Chapter  

 

Preliminary design choices 

 

 
7.1 Analysis of Blick’s NanoMechanical Transistor 
 

Robert H. Blick, in the 2007 article “A Nano-Mechanical Computer: Exploring New Avenues 

of Computing” 
[60]

 and in the 2008 US patent: “Nanomechanical Computer” 
[77]

, suggests  the 

original architecture for a NMT whose constitutive elements are QSMs †. 

     The central idea is that of realizing an array of nanopillar-shaped resonators, mechanically 

coupled through a common basis, the “web”, and with a conductive cap on their tip constituting 

the shuttling elements. A first subgroup of resonators, called “drives” oscillates under the effect 

of the transistor‟s input gate voltage among a first pair of biased electrodes; whereas a second 

subgroup, named “slaves”, vibrates among a second pair of electrodes, producing a macroscopic 

output current, which flows between the drain and source terminals. 

In Blick‟s claims, if such shuttling elements are properly designed and coupled and the elec-

trodes appropriately biased, the described device (see Fig.2.4) could mimic both the voltage-

driven switch and current amplification functionalities of a conventional (electronic) transistor. 

An detailed analysis of the NMT described above is presented ahead. 

 

 
Figure 2.4 – Architecture of Blick‟s NMT with main elements highlighted. 

The case of a single drive pillar and a common-source amplifier topology is depicted. 

 
 

†     Some original drawings of the proposed embodiment, from [77] have been reported in Fig.IX of the Introduction. 
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     Consider a NMT characterized by a single drive resonator †, and let   the number of the 

slave ones. Since every shuttling element oscillates between a pair of fixed electrodes, the whole 

NMT can be imagined as formed by a set of     QSMs, each one similar to the two-terminals 

device introduced in Section 1.5. Label each conductor of the  -th QSM with a series of increas-

ing subscript numbers             : the Left (  ) and Right terminals (  ) and the Pillar 

resonators (  ); the same is for any other constant or variable referred to them (see Fig.2.5a). 

Compatibly with the conventions used in Part One, let the left electrodes positive-biased, so that 

          ; the macroscopic currents    consequently positive when flowing towards right.  

The potential difference and the current flowing between the drive electrodes    and    are: 

 

                                        ̅                                                 

 

Notice the slave electrodes      and      are connected together and represent a single pair of 

conductors. Their potential difference and the overall current flowing through them are: 

 

                                    ̅    ̅      ̅                               
 

Summarizing, the system in Fig.2.5b has a four-terminals geometry, in fact two currents,     

and    , distinctly flow through the drive and slave pillars sets. Since a transistor is a three-

terminals device, an electrical connection between two of these terminals is required, to make 

this system an actual NMT. Therefore, referring to the standard topologies shown in Fig.2.2, 

and compatibly with the scheme in Fig.2.4, we conventionally use a common-source solution, 

for which the gate   and drain   are the positive-biased input and output terminals respectively, 

and the source the (both input and output) negative terminal, usually grounded (Fig.2.5c).  

The obtained system properly resembles a transistor, consequently the DC current gain can be 

introduced by using the standard definition: 

 

                                                                                   
 

The nomenclature, definitions, sign conventions and circuital connections presented in this 

Paragraph will be used extensively in the next Chapters of this thesis. 

 

 
Figure 2.5 – Zooming out a NMT: (a)  -th two terminals QSM, (b) Blick‟s NMT, (c) common-source 

circuital connection  of a NMT with the source grounded. 

 
 

†     In the patent, the non-mandatory chance of using more drive pillars is considered; in this thesis, however we omit such option. 
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7.2 Selecting the best Quantum Shuttle Module 
 

In the previous Paragraph we highlighted the Blick‟s NMT is formed by an array of QSMs. 

Since the goal of this Chapter is to provide a preliminary design for the NMT, a first step in this 

direction consists in selecting the QSM to be the best candidate to be its fundamental module. 

Specifically, we are interested to design a NMT system actually able to mimic both the most 

representative functionalities of a transistor, namely current switching and amplification.  

     In Part One, specifically in Chapter 2, we introduced some fundamental QSM classifications.  

Among the others, the most important were: 

 continuative oscillations:  autonomous VS induced oscillations; 

 voltage boundary conditions:  direct VS inverse shuttle; 

 nature of shuttle mechanism:  soft VS hard shuttle regime; 

 force on the shuttling element:  weak VS strong electromechanical coupling. 

We consider these options as “preliminary design choices”. Analyze them one by one.  

     The first two choices are rather straightforward. Differently from some of its early experi-

mental setups (see Introduction), Blick, in both 
[60,77]

 explicitly indicates the autonomous nature 

of the nanopillar elements motion. Due to the two-terminals geometry for each QSM (Fig.2.5a), 

the voltage boundary conditions have to be compatible with direct shuttle, producing a self-

excited mechanism of the shuttling element of the kind investigated in Chapter 3. 

The choices between soft/hard shuttle and weak/strong coupling, are rather less trivial. 

     As widely discussed in Chapter 2, in a QSM the overall current is the sum of two physically 

different contributions: the shuttle and the current parts. In general, the same feature is inherited 

by the macroscopic currents (2.1a,b) flowing in a NMT: 

 

                                                                                  
 

                                                                                   

 

Quantities       and       are directly related with the motion regime established by the drive and 

slave pillars; also, since relations analogous to (1.12a) hold, when the drive and/or slave pillars 

are at rest, then         and/or         . On the other hand, tunnel contributions       and      , 

in general, continue to flow independently from the pillars motion. Notice that, since in a NMT 

the slave current is the output, having no control on its inhibition, limits the possibility for the 

whole system to correctly mimic the voltage-driven switch functionality. In order to be sure a 

tunnel slave current       can be partly controlled by the vibrational regime of the slave pillars, 

one requires the slave QSM are in (very) hard regime. In this condition, in fact, when the oscil-

lation of each slave pillar does not reach the tunneling region   (see Section 2.2.8), or (in the 

limit case) if the slave pillars are at rest, then         and the interrupting state of a switch can 

be correctly performed by the NMT †. In order to achieve hard shuttle regime, the device scale 

has to be sufficiently large, that is     . 

Schemes in Fig.2.6 highlight the slave oscillations amplitudes compatible with different conduc-

tive states of the device.  In particular, the first of them represents the output (slave) current 

interruption state. On the other hand, notice that, when a NMT reproduces the functionality of a 

current amplifier, the fraction of slave pillars which reach the threshold amplitude    gives an 

information on the magnitude of the current gain  . 

 
 

†     The hard shuttle regime becomes a particularly strict requirement if the NMT is part of a logic circuit. 
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Figure 2.6 – Qualitative schemes representing a NMT in whose QSMs are in (very) hard regime:  

(a) interrupting state, (b) partial conduction state, (c) complete conduction state. They respectively 

correspond to the following casuistic: none, some or all slave pillars reach the tunneling region. 

 

     Provided an appropriate mechanical coupling between different pillars, physically, the num-

ber of slaves which reaches a considerable amplitude of oscillation depends on the drive voltage 

   . In the invention description, Blick 
[77]

 explicitly mentions the motion regime of the slave set 

is excited by the drive pillar oscillations by resonance. In particular, when the voltage    , self-

excites the drive pillar to a frequency which does not match the natural frequency of the slave 

set, their amplitudes remain small and no shuttle current       (which, in the case of hard shuttle, 

is the only one contribution) passes (Fig.2.6a). Otherwise, if a resonance condition is matched, 

the slave pillars reach the maximum amplitude, the tunneling region is reached by some 

(Fig.2.6b) or all of them (Fig.2.6c), and a conductive state is reached for the NMT. 

     From the considerations above, follows that, since the vibrational regime of the drive pillar 

plays a crucial role in enhancing the output current of the NMT, a drive pillar which is more 

responsive to the voltage     is a preferred condition. The relation between applied voltages and 

mechanical response is given by the electromechanical coupling (see Section 2.2.4). Conse-

quently, the last design choice consists in having (at least) the drive resonator characterized by a 

strong electromechanical coupling:     . From its definition (1.19), a large damping is, in turn, 

required for the drive oscillator, thus, one assumes a large damping is present in the whole 

NMT. Therefore, we set every QSM is characterized by a strong electromechanical coupling. 

     In conclusion, Tab.2.1 summarizes the design choices discussed in this paragraph about the 

fundamental QSM of a NMT. 

 

Table 2.1 – Preliminary design choices for the fundamental QSM of a NMT. 

Characteristic Best choice Design requirement 

continuative oscillations autonomous continuative energy supply 

voltage boundary conditions direct shuttle DC voltage on the leads 

nature of shuttle mechanism hard regime large device scale 

Electromechanical coupling strong large damping 
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7.3 Shuttling element realization and 

characteristic size of the system 
 

In this Paragraph we discuss how the actual realization of the shuttling elements influences the 

order of magnitude of some fundamental quantities of the QSMs in the NMT. 

The two main fabrication possibilities for the shuttling element are: a Q-dot embedded within 

soft molecular links (metallic grain, Fig.2.7a) or a cantilever geometry with a conductive cap on 

its tip (pillar, Fig.2.7b). Although the patent 
[77]

 explicitly suggests the second realization, here 

we question this choice by analyzing in in detail the related advantages and disadvantages.  

 

 
Figure 2.7: Alternative realization of the shuttling element: (a) metallic grain, (b) pillar. 

 

The typical diameter    is, in the case of a metallic grain realizing a Q-dot, of the order of      
[109]

, whereas the metallic cap of a cantilever geometry is at least one order of magnitude larger 

(for example, see 
[41]

). Assuming a rather constant value for the ratio        , this leads to the 

general consideration that the first option is characterized by a smaller scale with respect to the 

second one. Consequences of this fact have been partly discussed in Sections 4.2.1 and 4.3.1 

and are summarized in Tab.2.2.  

 

Table 2.2 – Preliminary estimations † of system properties related to the shuttling element realization. 

Shuttling 
element 

realization 

Characteristic 
dimensions 

(   ) 
[  ] 

Characteristic 
frequencies 

[  ] 

Kind of 
shuttle 
regime 

Coulomb 
blockade 

Max. number of 
shuttled electrons 

per cycle 

Quantum 
dot 

          
        

           
                   

soft or 
hard 

present         

Pillar 
         
          

         
                    

hard 
not 

present 
         

 
 

†    In this table, mechanical frequencies are referred to Blick‟s and Gorelik‟s works, while the charge fluctuation frequency comes 

from a capacitance calculated from          , and QT conductance from (A.1). These estimations refer to an applied volt-

age of    , a tunneling length         , a contact conductance       , and the shuttling element in center position. Esti-

mations on the number of electrons    arise from (1.27b) by assuming             and using a capacitance      calculated 

from one of the formulae (1.42a,b), with            . Last, presence of CB refer to the fulfillment of conditions (1.32a,b,c), 

whereas the soft/hard distinction make use (compatibly with the definitions introduced in Section 2.2.8) of the ratio          . 
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Since a mandatory design requirements is the presence of hard shuttle regime, from Tab.2.2, the 

pillar option is preferred. Also, the pillars set has to be mechanically coupled: this coupling can 

be realized in a simple (and more proficiently modelable) way by using the “exquisitely me-

chanical” cantilevers-web realization. In conclusion, each shuttling element is definitely realized 

as a Pillar (  ), in agreement with Blick‟s proposal 
[77]

.  

Besides, in order to accomplish the design requirement regarding a strong electromechanical 

coupling, from definition (1.19) follow the estimations †: 

 

  
     

     
 

        

   
 

  

     
 

 

  
                                               

 

In turn, (2.3) states it is convenient to maintain the scale of the device sufficiently small (com-

patibly with the pillar realization): only in this way, in fact, a large   can be obtained by apply-

ing relatively small bias voltages. Consequently to this, and referring to the scheme in Fig.2.7b, 

a geometrical and mechanical characterization of the pillar is suggested ahead. 

     The supporting cantilever is realized in silicon (            ), whereas the cap is in 

gold (             ). Due to the “mushroom-like” mass distribution, we consider only the 

first mode of vibration. The modal mass  , neglecting that of the silicon cantilever, and using 

the inferior dimensional limit in Tab.2.2,         , is assumed to be              . 

The stiffness, instead, depends only on the silicon cantilever. For a round cross-section and 

using        ,      , one obtains             (          for silicon). Such mass 

and stiffness correspond to a natural frequency   √                  which appears to 

be a good compromise among Gorelik‟s and Blick‟s preferred realization of the resonator ele-

ment: a metallic grain at            
[25]

, and a cantilever at           
[26,36,41,67]

.  

     It has be remarked the selected cantilever thickness is a only a little beyond some recently 

proposed sub-10nm fabrication techniques 
[130,131]

. However, such a flexural behavior is rather 

more feasible by using single- or multi-walled CNT 
[132,133]

 (which also opens the way to new 

architectures 
[131]

). Research on nanowires and nanopillars in different boundary conditions 

(single- or double-clamped) and materials (both silicon and CNTs) is producing in recent years 

exceptional advances in fabrication techniques and further promising perspectives. One of the 

most recent and suggestive landmarks is about the direct wiring of CNTs 
[134]

. 

 

 

7.4 Verification of the thermally-induced vibrations 
 

Pillars in a NMT oscillate in air at room temperature. In this condition, they all exhibit a thermal 

stand-by motion. It is important to verify that this noise vibration regime is sufficiently small 

with respect to the controlled oscillations. The mean expected displacement can be calculated, 

as in Section 2.3, with the help of the Fluctuation Dissipation Theorem. Assuming, compatibly 

with Section 7.3, the following set of parameters:         ,            ,         , 

one obtains a ratio             . This value appears acceptable and allows to neglect thermal 

vibrations with respect to the forced pillar oscillations. 

 

 

 
 

†     In the last passage, it is assumed:           ,       ,      . 
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Chapter  

 

Modelling the NanoMechanical Transistor 

 

 
8.1 Suitable analytical approach 
 

Once the characteristic scales of the fundamental QSM have been selected, it is possible to 

choose the best analytical approach to investigate the whole NMT dynamics. 

This decision consists, referring to Section 2.3 and in particular to Tab.1.4, in modeling the 

mechanical and electrical part of the system by using quantum or (semi)classical approaches. 

     First, a classical approach for mechanical vibrations is definitely feasible. In fact, for the 

parameters specified in the last paragraph, the pillar kinetic energy is                  , 

quantized in units of                 . The ratio            allows to neglect any mechan-

ical quantum effect, even considering exceptionally large forced frequencies    . 

     Secondly, the use of a semi-classical circuital model, which involves capacitances and 

equivalent QT conductances, depends on the feasibility of a continuous-charge model. Referring 

to Tab.2.2, this option is suitable for a pillar realization of the shuttling element, since the di-

mension of the conductive cap allows a relatively large quantity of electrons    could be shut-

tled per cycle. For bias voltages      ,           : this number is sufficient to neglect 

any charge quantization effects and justifies the use of a continuous-charge model. In particular, 

presence of CB effects depend on accomplishing conditions (1.32a,b,c). By using a capacitance 

        and a conductance                  , (1.32a) is fulfilled at room temperature, 

whereas the (1.32b) not, and (1.32c) only for voltages        . The fact in both the mechanical 

and electrical part of the system quantum effects could be neglected causes the discrete set of 

eigenfrequencies of the pillar can be considered continuous 
[26]

. 

     In conclusion, referring to Tab.1.4, each QSM composing the NMT can be described by a 

simple pair of equations. The first one is the Newton‟s law referred to a classical oscillator, the 

second one the Ohm‟s law applied to an equivalent circuit. Consequently, the pillar position 

     and the total charge on the three conductors,       ,       and       are the lagrangian 

coordinates: these, under feasible approximations, can be reduced to the pair      and      . 

 

 

8.2 Equations for a single Quantum Shuttle Module 
 

For each of the     QSMs forming the NMT, we refer to scheme in Fig.2.8. 

The presented scheme is different from the QSM prototypal architecture introduced in Part One. 

In particular, more accurate models and feasible approximations are considered for: 

 equivalent QT conductances: the effect of the potential difference is taken into account; 

 capacitances: electrostatic effects are calculated using a capacitance matrix approach; 

 force on the pillar: electrostatic induction effects are included as well. 
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Figure 2.8 – Schematic representation of a single QSM of a NMT. 

 

No linearization is considered, except for the pillar motion, which is modeled as a single-DOF 

linear oscillator †. Last, collisions between the pillar and leads is this time accounted due to the 

extremely hard nature of shuttle, by using a simple, but numerically efficient model ‡ . 

In order to describe the electrical part of the system, it is convenient introduce the arrays: 

 

  {

     

     

     
}                   {

     

     

     
}                   {

   

   

   

}                   

{
  
 

  
 
      

      

      

      

      

      }
  
 

  
 

           

 

With these definitions, it is possible to write the electrodynamical equations in matrix form: 

 

                            [         ]                                              

 

where    and   are conductance matrices. The first one, with constant coefficients, describes 

classical circuital effects, the second one is indeed specialized to for QT (see Appendix A). 

In the most general model, charges and voltages are related by a capacitance matrix  : 

 

                        [    ]                                                          
 

The three-conductors electrostatics is modeled as that of a system of three spheres or radii   and 

    , respectively representing the pillar  cap and the fixed electrodes (see Appendix B).  

Finally, the relation between currents and charge variations is: 

 

 ̇                                                                                   
 

where   is a simple matrix of units and zeroes. The mechanical equation is: 

 

  ̈    ̇                                                                        
 

The force on the pillar    is calculated by using the electrostatic energy   (see Appendix C). 

 
 

†     Mechanical nonlinearities are negligible with respect to stronger capacitive and conductance effects when approaching leads. 

‡     Collision between the pillar and the fixed electrodes is assumed elastic and modeled by using small and stiff repelling springs. 
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Eliminating   and   by combining (2.5)-(2.8), the QSM is described by: 

 

{
  ̈    ̇            

 ̇                  
                                                           

 

that is a set of 4 scalar equations in terms of charges      ,      ,       and position     . 

This formulation represents the most general description of the system. 

However, some simplifications can be introduced in (2.9): 

 

                                          {
     
     

                                   

 

Conditions (2.10a,b,c) physically correspond to: absence of “long” QT, insulated pillar, bias 

voltage directly applied on the electrodes. Then,    and    can be expressed in terms of   : 

 

   
(                 )   (         )   

             
 

                                      

 

   
(                 )   (         )   

             
 

                                      

 

where   is the bias voltage, such that               and              , and      are 

the elements of the elastance matrix      . By substituting (2.11a,b) into (2.9), the QSM can 

be described by using a simple pair of equations (similarly to Chapters 3 and 4): 

 

{
  ̈    ̇                                                                               

 ̇                [                     ]   
                        

 

   
                      

          
 

             
 

               
    (         )      (         )

             
 

 

 

 

8.3 Equations for the whole NanoMechanical Transistor 
 

The NMT device depicted in Fig.2.4 is obtained arranging a set of QSM modeled as in Fig.2.8. 

Extend the nomenclature presented in the previous Paragraph by considering subscript   is for 

the drive QSM quantities, and           for the slave ones. As hinted in Section 7.1, all 

pillars are mechanically coupled through an elastic web at which their basis are clamped.  

Referring to the schemes in Fig.2.9, the whole mechanical part of the NMT can be still de-

scribed by using a concentrated parameters model. The  -th pillar is characterized by an equiva-

lent mass   , a flexural stiffness   , and is clamped on a portion of the web with inertia    . 

The displacement       of the cap of the  -th pillar depends on the local rotation of the web 

      at the pillar clamp and on the flexural deflection       of its tip, consequently a relation 

                    holds, being    is the clamp-tip height of the pillar.  

Finally, neighbor pillars interact by the torsional stiffness of the web represented by    terms. 

Due to the boundary conditions, notice that            .  
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Figure 2.9 – (a) Concentrated parameters model for the web and pillars, (b)  -th pillar cap deflection. 

 

The Lagrangian associated to the mechanical part of the system is: 

 

      [∑
 

 
  (   ̇   ̇ )

 
 

   

 ∑
 

 
   ̇ 

 
 

   

]  [∑
 

 
    

 

 

   

 ∑
 

 
           

 

   

   

]         

 

that produces a set of        equations in terms of    and    , omitted here. 

     Some particular physical configurations allow to reduce the description of the mechanical 

vibration of each pillar to a single Lagrangian variable. Qualitative schemes in Fig.2.10 exem-

plify two particular conditions. In the first case (Fig.2.10a), pillars are clamped on a rigid foun-

dation, allowing to neglect the effect of rotations       on      ; in the second (Fig.2.10b), a 

large flexural stiffness allows to neglect tip deflections       on      . These are the two limit 

conditions for which torsional and flexural modes are weakly coupled and the system can be 

still described (as in the previous Section) by using one only mechanical equation per pillar.  

In particular, the coordinates    now indicate the pillars cap positions, alternatively representing  

the flexural displacement as in Fig.2.10a, or the torsional angle as in Fig.2.10b. 

 

 
Figure 2.10 – different realization and boundary conditions of the web geometry:  

(a) flexural-like coupling between neighbor pillars;  (b) torsional-like coupling. 

 

Then, equations (2.12) (as well parameters     ,     , omitted) generalize into (          ): 

 

,
   ̈     ̇             (                )                         

 ̇        (           )     [    (           )  (           )]          
            

 

This is a set of        equations in terms of       and        . The electrical quantities refer 

to the i-th QSM, each one assumed to be electrically decoupled from the others. Last,        

is the voltage on the drive QSM, while                is the common slaves voltage. 
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Chapter  

 

Functional analysis of a Quantum Shuttle Module 

 

 

9.1 Role of parameters: the reference system 
 

Under assumptions (2.10a,b,c), the evolution of a single QSM is described by equations (2.12), 

and, at a time  , its configuration is provided by the coordinates:     ,  ̇   ,              . 

On the other hand, system parameters can be classified depending on the role they play, as: 

 internal parameters:   are constant geometrical, mechanical and electrical quantities which 

constitute the physical attributes of the device ; 

 external parameters:   are environmental quantities, whose value is subjected to unexpected 

fluctuations. They are the temperature   and the mechanical damping ratio      √   ; 

 control parameters:   are the parameters whose value can be deliberately changed by the 

observer. The only control parameter is the bias voltage      . 

Notice that, in principle, disturbances due to the effect of external parameters may be included 

in the model taking into account a not deterministic system. However, the reduced time scale in 

which the device operates justifies the assumption to consider both   and   constant quantities, 

treating them similarly to internal parameters. Also, pillar thermal fluctuations can be neglected 

under the estimations made in Section 7.4: this definitely justifies the classical and deterministic 

approach used here, which assumes one only parameter varies in time, the bias voltage     . 

     The situation is summarized in Tab.2.3 . The variation range is shown for system coordi-

nates, external and control parameters, whereas in the case of internal parameters, a reference 

value (compatibly to the preliminary design choices made in Chapter 7) is specified. 

 

Table 2.3 – Variables describing a QSM configuration and parameters classification. 

Classifications 
Variable/parameter Reference value 

or variation range Symbol Description 

system 
coordinates 

     pillar position |    |      

 ̇    pillar velocity - 

      electrons on the pillar - 

internal 
parameters 

   distance between the fixed electrodes       

   pillar’s cap diameter      

   fixed electrodes characteristic size       

  mass of the pillar            

  natural frequency of the pillar            

  average QT surface        

  conductors work function      

external parameter   mechanical damping ratio            
control parameter      bias voltage between the fixed electrodes       † 

 
 

†    The bias voltage has to be larger than the maximum value compatible with CB effect (1.32c), which, for the reference system, is 

         . Otherwise, charge quantization can‟t be neglected and the semi-classical approach (2.12) is not accurate anymore.   
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A QSM for which all internal parameters are set to their reference value is the reference system. 

     Since a QSM is finalized to produce a non-zero (averaged over a period) macroscopic cur-

rent  ,̅ such quantity, in the formalism of systems theory, can be considered the output, and the 

voltage application   the input. Thus, a black-box conductance         can be introduced as: 

 

        
 ̅

    
                                                                   

 

This conductance is strictly related with the transfer function on the system, whose form is, in 

turn, determined by the set of internal parameters and expected value for the external one.  

Opening the box, the conductive behavior of a QSM depends on the motion regimes established 

by the pillar, in particular by the possibility to trigger the peculiar shuttle mechanism. 

     In Part One, we already investigated the electron shuttle dynamics, focusing on the stability 

analysis of a QSM considered as a dynamical system. This exquisite mathematical vision can be 

helpful for a first description of the system, but is no more appropriate in a design stage: in this 

chapter, a more “engineering” approach is used, finalized to investigate the conditions which 

promote the chance to perform continuative transitions between different motion regimes. 

     Following the nomenclature suggested in 
[27]

, the dynamics of a QSM can refer to a pair of 

different “classes” of permanent motion regimes: 

 static regimes: the shuttling element is at rest and no electron shuttle occurs; 

 shuttle regimes: a stable orbit, achieving the peculiar shuttle mechanism, is established. 

Using terms already introduced in Chapter 3, the transitions between these regimes are called: 

 activation transient: passage from a static to shuttle regime; 

 deactivation transient: passage from a shuttle to a static regime. 

In Paragraph 2, the analysis of transient regimes is carried out, and some considerations lead to 

a practical (and more effective) interpretation of the    

  
  hysteresis typical of hard shuttle only 

(see Section 3.3), and to a more deep understanding of the shuttle mechanism itself. Then, in 

Paragraph 3, we test the dynamical response of a QSM when subjected to different bias voltages 

    , and discuss the consequently established permanent motion regimes. A simple, but neat,  

predictive model is suggested in Paragraph 4, which interprets such motion regimes as the states 

and the voltages as the input tape of a Turing machine whose evolution depends on a transition 

function involving some threshold voltages. Last, in Paragraph 5, the concepts of modulability 

and reactivability are disclosed, together with quantitative definitions. 

     In conclusion, this Chapter focuses on a single QSM, yet. This will be helpful, in the next 

Chapter, to carry out a functional analysis for the whole multiple-QSM device: the NMT.  

 

 

9.2 Transient motion regimes 
 

In general, transitions between the two fundamental permanent motions – static regime and 

shuttle regime – can be performed by simply change the level of the bias voltage. In an experi-

mental setup, one is interested to manage the conductive behavior of the QSM (thus, the value 

of     ) by varying the level of   (the only control parameter); then the core practical issue is 

about “how to guess” the correct (minimal) voltage required in order to correctly reach a 

shuttle regime by starting from a static one. Refer to this statement as the activation problem 

(the deactivation problem is instead trivial: it is surely achieved by applying a null bias voltage). 
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     By definition, the soft/hard nature of shuttle (see Section 2.2.8) is strictly related to the way 

the activation process is achieved. In Chapter 3, it has been highlighted the hard option produc-

es, accordingly with 
[27]

, an hysteretic  -  curve. This means, if a hard QSM performs deactiva-

tion with any voltage         , activation requires        , with             .  

We demonstrated with numerical experiments (Fig. 1.24) that the nature of such hysteresis is 

rather subtle: actually, the value of      depends on the initial conditions (in particular,      ) 

so that, if       reaches a certain value, the  -  curve hysteresis disappears, and            .  

On the other hand, soft QSMs do not present any hysteresis, whichever is the initial condition. 

The dependence of hard QSM hysteresis from the initial conditions,  in Author‟s opinion, has 

not been sufficiently investigated in literature yet. Therefore, in this paragraph, an interpretation 

of the whole activation problem is proposed, which leads to explain the apparent hysteresis and 

provide a more deep (and physically genuine) comprehension of activation/deactivation process. 

 

 
Figure 2.11 –Three simulations highlight different outcomes of activation transient in a hard QSM.  

Time histories for bias voltage     , pillar position      and electrons       are shown. Yellow bands 

highlight the tunneling region  . Internal parameters as in reference system and damping ratio      . 

Results obtained by integrating equations (2.12) and initial conditions:       ̇      ,          . 

The voltage is maintained null up to a time    , then it is raised to a value   . 

In (a),          and       . In (b),         and      . In (c),         and       . 
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Focus on the numerical results in Fig.2.11, obtained by integrating equations (2.12). The same 

QSM achieves three activation attempts (internal parameters as in the reference system, see 

Tab.2.3), characterized by different initial conditions and voltage applications. In all cases, the 

pillar starts in center position at rest, with a number of electrons   . Then, the voltage is in-

creased to a value   . Combinations of    and    determine the activation process outcomes: 

 Fig.2.11a:        ,           successful activation  

 Fig.2.11b:       ,           failed activation 

 Fig.2.11c:        ,           failed activation 

In Fig.2.11a, after a brief transient (in which the pillar hits one of the fixed electrodes), a stable 

orbit characterized by an amplitude    is established; therefore, the number of initial electrons 

and activation voltage are sufficient to trigger and maintain the shuttle mechanism. In Fig.2.11b 

the pillar deflects, but no microscopic current flows since the distance from the electrodes is too 

large and is not compatible with QT. In this case, the system returns at rest in a not centered 

position, since, due to an insufficient number of initial electrons, the shuttle mechanism has not 

been triggered at all. In Fig.2.11c, the pillar deflects sufficiently to trigger the shuttle mecha-

nism, which is indeed performed for a limited number of oscillations; however, the activating 

voltage is not sufficient to maintain such self-excited regime, and, after a brief transient, the 

pillar returns at rest (its final position depending on the details of the last QT episode). 

     From the analysis of these three exemplificative simulations follows that the activation of a 

QSM is a process which requires, in general, to accomplish two distinct physical requirements: 

I) shuttle mechanism triggering: a first QT episode has to be performed, that is a first 

complete electron transfer occurs near one of the fixed electrodes; 

II) shuttle mechanism maintaining: a limit-cycle is established, leading to a stable orbit 

whose amplitude and frequency depends on the applied bias voltage. 

On the other hand, with no need of any exemplificative simulation, it is straightforward that, the 

chance for a QSM in shuttle regime to correctly perform a deactivation process only relies on 

not fulfilling (II). Summarizing, the activation and deactivation problems can be summarized as: 

 

                                                                                  

 

 

9.2.1 Shuttle triggering: reaching the tunneling region 
 

Since QT has a strong dependence on the distance, (I) is a mere geometrical requirement. Using 

the symbols introduced in Section 2.2.8, let   [          ], with         , the interval 

where the pillar oscillates, and     [      ] the tunneling region, in which QT is relevant. 

Consider a QSM is static regime: the shuttle mechanism is triggered if the pillar deflects up to 

the tunneling region: in symbols, if   |    |    ⁄ . Since the pillar motion depends on the 

electrostatic force acting on it, accomplish (I) depends on both    and    . In particular, a value 

              exists for which, if the        , then     . Reassuming, (I) is fulfilled if: 

 

                                                                                
 

Notice that in a soft QSM, by definition,    . In such case,     , then        whichever 

is the initial condition    . Therefore, condition (I) is sensible only for hard systems. 

Some brief arguments to conclude. First, the abscissa    can be reached also in a transient over-

elongation: this means having a small damping ratio generally promotes activation. Last, except 

for electrostatic induction effects, in the case      activation is not possible, since       . 
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9.2.2 Shuttle maintaining: energy balance 
 

Once the tunneling region has been reached, the shuttle mechanism is maintained only is the 

electrostatic pumping on the pillar is sufficient to overcome the mechanical damping. Condition 

(II) represents such energetic requirement: to analyze which is the corresponding inequality to 

fulfill, let      the electrostatically energy injected on the pillar per cycle of oscillation, and 

    the mechanically dissipated one. These terms are respectively calculable as follows: 

 

     ∫      ̇   
 

 

                     ∫  ̇    
 

 

                                     

 

being   a single period of oscillation. Assuming the shuttle mechanism is completely efficient 

(compare with the transport factor definition in Section 2.2.9),      increases with  . On the 

other hand,         . Also, both terms in (2.18a,b) depend in a not trivial way from the 

amplitude of oscillation, so that                and             . Consider a QSM in 

shuttle regime: the amplitude of oscillation evolves depending on the competition among      

and    : when         , then   increases; vice versa if          ,   decreases.  

Assume a constant voltage    is set; then a limit-cycle is established and definitely leads to a 

stable orbit by amplitude    which accomplishes the energy balance (see Section 2.2.3): 

 

      
             

                                                             
 

Since    is the minimal amplitude compatible with the shuttle regime, it is possible to define a 

value      that, if        , from (2.19) produces      . Thus, requirement (II) depends on: 

 

                                                                                

 

 

9.2.3 Physical explanation of the activation/deactivation hysteresis 
 

Consider a QSM is static regime: with the aim to correctly perform an activation transient, at a 

time     , the voltage is raised to a value   . Then consider the same QSM in shuttle regime: 

to achieve a deactivation transient, at       the voltage is lowered to    . Consequently, 

referring to (2.16a,b) and playing a little with propositional logic, the chance to correctly 

achieve activation/deactivation processes can be related to conditions (2.17) and (2.20):  

 

      (         )                                                             

 

At this point, it is straightforward, the  -  curve of a QSM exhibits an hysteretic behavior when 

          . In the case of soft shuttle,     (see Section 2.2.8), thus, from Section 9.2.1, 

follows        ; then, since       , one obtains           and hysteresis is not possible. 

This definitely explains why the  -  curve hysteresis only appears in the case of hard QSMs. 

In Chapter 3, specifically in Fig.1.24, numerical experiments showed the number of initial 

electrons has a certain role in the hysteretic behavior of hard QSMs. Since the voltage threshold 

     in (2.21a,b) depend on    , one can find a formal relation between    and the hysteresis. 

Introduce       as the unique value of    for which     (     )       . Follows that: 
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Quantity       plays a crucial role in the design of a hard QSM. At the beginning of an activa-

tion process, if          , no hysteresis occurs, since relation (2.22) guarantees           . 

A last consideration. Since the voltage threshold      which fulfills (I) is a function of    , one 

can shift the point of view and use the analogous concept of electron threshold, introducing a 

quantity            
  . An alternative formulation of (2.17) follows, for which, in the case 

         
  , shuttle triggering is achieved †. Notice that, in a soft QSM,        . 

     In conclusion, in this Chapter we demonstrated with simple heuristic arguments that the 

apparent hysteretic behavior often cited in QSM literature is only apparent and does not rely on 

some intrinsically hysteretic physical phenomena, but is a mere consequence of the not com-

plementary conditions to be accomplished to perform an activation or a deactivation. 

 

 
Figure 2.12 – Qualitative plots      show activation attempts for soft and hard QSMs starting at      , 

achieved with the same voltage      , and matching energy balance (2.19) for an amplitude    . In the 

soft case the tunneling region   (in yellow) occupies the whole oscillating space (    ), and activation 

is always successful. Instead, in the case of a hard QSM, the   can be reached or not, depending on    .  

In this sense, the tunneling region behaves as the basin of attraction of the stable orbit with amplitude   . 

 

 

9.3 Permanent motion regimes 
 

In this Paragraph we test the dynamical response of a QSM at different levels of voltage     . 

In particular, we analyze the established motion regimes and consequent conductive behavior.  

A preliminary digress is required. Differently from Part One (and from most theoretical articles 
[25,27,29]

) equations (2.12) take into account the dependence        to model the QT (Appen-

dix A). This approach is useful to correctly compute QT conductances when varying the voltage 

within a single simulation. A direct consequence is that (as hinted in Section 2.2.8) the value 

assumed by      influences the soft/hard nature of the system. Two possibilities arise: 

 if a QSM exhibits a soft behavior when     it remains soft at increasing voltages ; 

 if a QSM is hard when    , it transits towards the soft condition when a certain 

threshold voltage value        is surpassed . 

For example, the reference system (see Tab.2.3), belongs to the second category of QSMs, and 

exhibits a hard soft transition around a value         .  

 
 

†    It has be remarked quantities       and       
   should not be confused: besides they mean two distinct concepts,       is a 

peculiar feature of a system with known parameters; while       
   is a property related to an activation attempt performed at a 

voltage   . Then, any QSM is characterized by a unique      , whereas      can assume any positive value, depending on   . 
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In Fig.2.13, the numerical results referred to a simulation for the reference system are shown. A 

number of permanent motion regimes are exhibited, consequent to step applications of the bias 

voltage     , each variation occurring after a period of time sufficient to complete any transient. 

 

 
Figure 2.13 – Numerical results for a single QSM obtained by direct integration of equations (2.12) with 

initial conditions:       ̇      ,           . Internal parameters as in the reference system, 

external parameter (damping ratio)       and step-variable (voltage) control parameter. 

Time histories for the following quantities are reported: bias voltage  , pillar position   ,  

pillar electrons    , leads electrons   ,    , potential differences     ,      and     ,  

microscopic currents     and     , and macroscopic average current   ̅. 

  

The permanent motion regimes established by the system are discussed ahead in detail. 

At the beginning, the bias voltage is not present: the pillar is at rest in center position and no 

current passes if (time period labeled with “   ”). Then, the voltage is raised to a relatively 

small value (   ) and the pillar deflects, but activation is not performed and a mere static de-

flection is obtained, thus, again,        . At larger voltage (       activation is achieved and 

the shuttle mechanism is both triggered and maintained, since condition (2.21a) is fulfilled. The 

self-excited oscillation frequency is usually larger than the natural one; in fact, the larger is the 

bias voltage, the faster are the oscillations. Thus,   influences not only the oscillations ampli-

tude   (as discussed in Section 9.2.2), but also the frequency  . At last, the reverse point defi-

nitely reaches the leads, and a shuttle regime with continuative collisions is performed (    ).  

In this first part of the simulation,      and the QSM exhibits hard shuttle. When larger 

voltages are applied, the shuttle nature becomes soft. However, this fact is not trivially detecta-

ble if the system remains in shuttle regime (as in Fig.2.13), since the soft/hard distinction is only 

related to the different properties of the activation transient (as discussed in Paragraph 2). 
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Clearly, the bias voltage value   affects the pillar oscillation frequency also in the soft range. 

This trend continues indefinitely, until the shuttle mechanism is no more completely efficient 

(that means    : see the transport factor definition in Section 2.2.9). In fact, for extremely 

large voltage applications (    ), the self-excited frequency of the pillar is often one or two 

order of magnitude larger than the natural one; this definitely leads (    ) to an inefficient 

shuttle † (   ). The sign of the occurrence of this (rare) condition is in the fifth plot, where it 

is clearly visible the potential differences     ,      no more vanish during each QT episode. 

For even larger voltage applications (     ), the shuttle mechanism becomes so much ineffi-

cient that the energy pumping is no more sufficient to overcome the mechanical damping, thus 

condition (II) is no more accomplished, an energetic balance like (2.19) no more holds, and 

deactivation occurs. Consequently, a new rest condition, due to a somehow “saturative” effect, 

is obtained. From a mechanical point of view, this situation is completely similar to the rest 

condition corresponding to null bias voltage; however, from the electrical point of view, they 

present completely different characteristics, since this new rest condition has occurred after the 

hard soft transition ‡. In both cases, the shuttle current contribution is null, but, in the first one 

(   , hard) this is also per the tunnel one, whereas in the second (     , soft), a huge current, 

produced by the tunnel contribution (and even larger than the inefficient shuttle case), is present 

(look at the last plot). In the latter case, in fact, the tunneling region extends over to central 

position in which the pillar is at rest, bringing a current independent from its vibrational motion. 

     Since they range over both the hard and soft nature, plots in Fig.2.13 exemplify the peculiar 

motion regimes a QSM can establish for different values of the bias voltage. From this point of 

view, the presented simulation provides a rather complete scenario of the phenomenologies 

(both dynamics and conductive behavior) for a direct (thus, self-excited) QSM. In the following 

paragraphs, in order to indicate the archetypical behaviors discussed above, we refer to the tags 

and keywords listed here (which further specify the static/shuttle regime nomenclature): 

 CENtered (   ):  static regime in centered position (   ) ; 

 STatic Deflection (   ):  static regime in deflected position (   ) ; 

 Normal SHuttle (   ):  efficient shuttle regime with no collisions (     ) ; 

 Collision SHuttle (   ):    efficient shuttle regime with collisions (    or     ) ; 

 Inefficient SHuttle (   ):  inefficient shuttle regime (    ) ; 

 SATuration (   ):    static regime due to severely inefficient shuttle (     ) . 

These motion regimes have been achieved, in Fig.2.13, for the values of the voltage indicated 

within the parentheses. However, one could be interested to understand the general correlation 

between the applied   and the consequent motion regime established. This would provide an 

exceptional predictive instrument to foresee the dynamical (and, consequently, the conductive) 

behaviors of a QSM, giving the chance to govern the pillar motion with targeted voltage appli-

cations. This point has been partly disentangled in Paragraph 2, in fact, activation and deactiva-

tion transitions related to the threshold voltages      and      can now be referred to passages 

from/to a static regime (one of the subgroup:    ,    ,    ) to/from a shuttle regime (   , 

   ,    ). Nonetheless, to obtain the predictive model suggested above, further transitions – 

corresponding to any possible passage among    ,    ,    ,    ,    ,     – should be 

related some additional threshold voltages. 

In order to do this, further investigations on  the dependence         are required. 

 
 

†     Since the variation of      makes the QT conductance curves          and          to tend to be horizontal and match. 

‡    Exceptionally, saturative rest regimes occur in the hard region. In this case, the conductive behavior of a static regime with no 

bias voltage and a saturative static one are undistinguishable. Numerical simulations show most systems behave as in Fig.2.13. 
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     In Section 9.2.2, we said that, if the shuttle mechanism is fully efficient (   ), the electro-

statically injected energy      monotonically increases with  . This fact is indeed true, con-

firmed by a large set of numerical results (not shown here) and from those in Fig.2.13 as well.  

However, over a relatively large value of the bias voltage (in Fig.2.13, between      and     ), 

the shuttle mechanism becomes inefficient (   ): in such situation,         can decrease.  

Consequently, a new threshold voltage can be introduced,    , indicating the transition between 

efficient and inefficient shuttle. In general,       , the point M indicating the maximum of 

the curve        , also corresponding to the maximal energy pumping on the pillar. Another 

threshold,     , is the highest voltage compatible with inefficient shuttle. For       , the 

energy pumping is no more sufficient to guarantee the balance (2.19), and a saturative deactiva-

tion is performed. These arguments involving    ,      and      are summarized in Fig.2.14. 

 

 
Figure 2.14 – Qualitative sketch of the curve         with the indication of the shuttle regimes efficiency. 

The existence of shuttle regimes depends on the possibility to guarantee an energy balance like (2.19). 

Such energy balance can be achieved only for amplitudes      . The line         represents the dissi-

pated energy in correspondence of a shuttle regime with amplitude    , consequently, the equivalence 

                individuates the two particular voltages,      and      , which delimit the range of 

existence for the shuttle regimes. In turn, the threshold voltage    [       ] separates the subregion 

[       ], characterized by efficient (   ) shuttle, from the subregion [       ], inefficient (   ). 

 

A last voltage threshold,     , corresponds to the incipient condition for which the amplitude of 

the mechanical oscillations reach the maximum amplitude         . When       , a 

shuttle regime with continuative collisions occurs. 

     In conclusion, one can answer the question: “it is possible to foresee the motion regime 

established by a QSM by only knowing the applied bias voltage  ?”. The next Paragraph show 

that, if the voltage thresholds     ,     ,     ,    and      are known, the answer is indeed yes. 

 

 

9.4 Static machine interpretation 
 

A QSM characterized by a set of internal parameters   , and subjected to the external parame-

ters   , evolves its coordinates       depending on the control parameters      . This descrip-

tion applies to any deterministic system, and specifically refers to a QSM if (from Section 9.1): 

 

      {      ̇         }        {             }        { }           {    }         

 

Besides, one can notice the investigated system presents convenient characteristics, due to the 

fact the shuttle mechanism is produced by using self-excitation (and not parametric resonance).  
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First, it is sufficient to apply a constant voltage to have a QSM undergo a certain permanent 

motion regime. Second, different voltage levels may correspond to one of the peculiar motion 

regimes listed in the last Paragraph. Last, each transition between different permanent regimes 

consists in a brief transient regime which lasts a limited number of periods of oscillation. 

The situation described above hints to a description of a QSM characterized by the formalism: 

   (state): permanent motion regime exhibited by the system; 

   (event): any imposition in bias voltage; 

   (transition): transient motion regime between two states and induced by an event. 

Then, (assuming each bias voltage imposition is separated by an interval of time    sufficient to 

conclude any transient regime), the dynamical behavior of the device can be assimilated to that 

of a static machine receiving as input a succession of events    , and producing as output a 

succession of states   , interspersed with transitions    (  potentially goes from   to infinity). 

By using these definitions, the functionality of a single QSM is formally analogue to the typolo-

gy of Turing machine described in 
[135]

. In this variant, the “events tape” can only advance 

(        , and the behavior of the whole system is properly described by the 7-uple:  

 

    〈              〉                                                          
 

where: 

   (set of states)   all the possible permanent motion regimes; 

   (set of events)   all the acceptable values for the external voltage; 

     (subset of regulations)   events which not produce a change in the current state; 

       (subset of maneuvers)   events which produce a change in the current state; 

      (initial state) ; 

     (subset of final states): permanent regimes refractory to further transitions; 

             (transition function)   prescribes how the system evolves. 

The extensional definition of the set of states is: 

 

  {                       }                                                          
 

where the abbreviations above correspond to the motion regimes defined in Paragraph 3. 

Notice that, among these, no final states exist, therefore such subset is void: 

 

                                                                               

 

The set of events comprises all the acceptable bias voltages. Thus, its intensional definition is: 

 

  {   }                                                                                   
 

By using this formalization, states and transitions consequent to an event can be portrayed on a 

phase plane {    }  [           ]         , with         , and    and    being the 

number of electrons present on the left and right fixed electrodes, respectively.  

In this convention, states   correspond to points if they refer to one of the static regimes, while 

are closed trajectories when they portray shuttle regimes (transitions   could be also represented 

with curve bows which connect two consequent states representations). 

In Fig.2.15 a schematic picture of the possible states is depicted on the phase plane {    }. 
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Figure 2.15 – Points and closed trajectories on the phase plane {    } portraying the possible states. 

 

     The formal description of the QSM is completed by an extensive definition of the transition 

function in Tab.2.4, which involves the voltage thresholds      ,      ,      ,    ,      . 

 

Table 2.4 – Tabular definition of the transition function   for a QSM. 

Current state 
(  ) 

Event 
(  ) 

Transition performed 
(  ) 

Consequent state 
(    ) 

    
 

    
 

    

    centering     

                   failed activation     

                      activation     

          collusive activation     

          inefficient activation     

       saturative failed activation     

    
 

    
 

    

    deactivation     

         partial deactivation     

            modulation     

          collusive modulation     

          inefficient modulation     

       saturative deactivation     

 

In Fig.2.16, a schematic flow-chart representation of a QSM IS SHOWN. States are represented 

by closed figures, arrows connecting them correspond to transitions consequent to events.  

 

 
Figure 2.16 – Flowchart representation of possible states and transitions for a QSM. 



A. Scorrano – Modelling of MEMS/NEMS Resonators and Functional Design of a Mechanical Transistor 

 

 

122                                                                                                 Part Two – Application to the NanoMechanical Transistor 

 

9.5 Role of voltage thresholds: typical attitudes 
 

The transition function defined in Tab.2.4 provides for a bijective correspondence between the 

application of a bias voltage and the consequently established motion regime. However, the 

usage of such predictive instrument requires the preliminary knowledge of the five voltage 

thresholds     ,     ,     ,    and     . Their values depend on the specific QSM considered; in 

particular, on both its internal and external parameters and, only for     , on its configuration: 

 

                                                                                                         

 

In particular,      depends on the number of electrons    precedent to any activation attempt. 

Remarkably, such peculiarity makes the determination of      problematic. In fact,    depends 

on the details of the last deactivation process, and this, differently from other transitions (i.e. 

activation), is a somehow aleatory process. Since the actual value of    is unknown to the 

observer, one can only obtain a partial estimation of the voltage threshold               . 

Also, the fact one of the voltage thresholds depends on the initial condition   , makes the static 

machine interpretation introduced in Paragraph 4 conceptually (though not formally) ill-posed. 

     Referring to Section 9.2.3. If one assumes a condition          holds, from (2.22) follows 

that          . Consequently, the term      becomes irrelevant on the success of the activa-

tion process (which now depend only on     ) and does not represent a voltage threshold any-

more: in both (2.21a) and Tab.2.16, the term “              ”, transforms in “    ”.  

In the followings, refer to condition          as the “convenient deactivation hypothesis” †. 

Reassuming, in a QSM under the convenient deactivation hypothesis the voltage threshold 

evolves its states independently from     , so that: i) the estimation of      is no more required, 

ii) the static machine interpretation of a QSM is conceptually well-posed. From both i) and ii) 

follows Tab.2.4 is definitely able to provide a deterministic provisional model. 

     Assume for now the convenient deactivation hypothesis holds ‡. We are in the situation in 

which only four voltage thresholds determine a QSM dynamics:     ,     ,   ,     . In princi-

ple, since different systems are characterized by a different set of parameters, they could present 

different relative ratios between the voltage thresholds. Instead, a large number of numerical 

simulations using realistic (compatible with Section 9.1) values of    and    , led to the same 

casuistic which characterize the reference system (as for the simulation in Fig.2.13): 

 

                                                                         

 

A QSM for which (2.27a) holds exhibits a normal attitude. As it is clear by a quick look to the 

definition of the transition function in Tab.2.4, such systems are able to perform the entire set of 

states   {                       } depending on the applied voltage   . 

 

 
 

†     Notice how, in particular, the assumption          is also useful to avoid the most adverse situation in which, at the end of a 

deactivation transient, exactly zero electrons remain on the shuttle element (    ). Conversely, in the frame of the rigorously 

formal scheme introduced in Section 9.4, the state     should be further split in two states: a first one, properly tagged    , 

representing the case     ; and a second one,     , for which      . The latter leads to the limit       , therefore 

would correspond to a state refractory to further transitions, the definition (2.25b) becoming   {    } . The convenient de-

activation hypothesis prevents these complication as well. 

‡    The physical requirements promoting the feasibility of the convenient deactivation hypothesis will be analyzed in a more deep 

detail in Section 9.6.1. In the meantime, we simply postulate it. 
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     Exotic choices of parameters or extremely small device sizes, sometimes produce situations 

in which the pillar can‟t reach the maximum amplitude          . In these cases, following 

the definition proposed in Section 9.3,      should remain undefined; however, let conventional-

ly set         , so that the definition of the transition function in Tab.2.4 is still valid. Thus: 

 

                                                                         

 

In this case, a QSM presents a diminished attitude, since no choice   can perform the state    . 

     Reducing a little more the scale can lead to the condition         , that is no efficient 

shuttle regime can be achieved. Consequently: 

 

                                                                         

 

This condition is called inefficient attitude, since the only shuttle regime possible is     . 

     Last, exceptional cases lead to the situation for which no shuttle regime is possible at all; this 

means      is not defined, but can be conventionally posed equal to      : 

 

                                                                         

 

In Tab.2.5 the overall casuistic is summarized. Clearly, from an engineering point of view, the 

typical or diminished attitudes are the preferred conditions for a QSM. 

 

Table 2.5 – Overview of the typical QSM attitudes under the assumption          . 

Typical 
attitudes 

Voltage thresholds 

                          

Normal                         

Diminished                                         

Inefficient                                                

Refractory                                                       

 

     Remarkably, each of the typical attitudes can be related to a peculiar qualitative behavior of 

the curves         and      in the range of voltages compatible with a shuttle regime. Let    

the voltage corresponding to the maximum point M of the curve        , achieving the shuttle 

regime with the largest energy injection on the pillar. In general, the amplitude of oscillation 

     is comprised between the superior horizontal line          , and the inferior limit 

           , which is a decreasing line † , intersecting the line     in the point T, corre-

sponding to the hard soft transition voltage    . In a system characterized by the normal atti-

tude (Fig.2.17a), the shuttle regime is efficient up to a value      , and the hard soft transi-

tion occurs at           . In the case of diminished attitude (Fig.2.17b), the shuttle mecha-

nism is efficient up to           , the hard soft transition at            . In the 

inefficient attitude (Fig.2.17c), shuttle is always inefficient since        , the transition occur-

ring at       . Last, a refractory attitude QSM has                   for any  : conse-

quently, shuttle regimes are not possible, and the pillar merely statically deflects up to       . 

 
 

†     Term       indicates the tunneling region lower limit. Its value (due the QT dependence from distance) shifts linearly with   . 
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Figure 2.17 – Qualitative schemes of the curves         and      summarize the different situations 

peculiar of a QSM with: (a) normal, (b) diminished, (c) inefficient, (d) refractory attitudes.  

 

 

9.6 Reactivability and modulability in the hard regime 
 

One of the design requirements discussed in Section 7.2 was about the hard nature of shuttle. 

Only in such case, the macroscopic current completely vanishes with slave pillars in static 

regime. In fact, dealing with hard systems has the practical advantage that (see Section 2.2.11) 

the macroscopic current depends only on the shuttle contribution (no tunnel current is present), 

so that      . Thus, the chance to achieve a not null conductance      uniquely depends on 

triggering the shuttle mechanism: specifically, the current is proportional to the mechanical 

frequency (formula (1.12a)). We highlighted in Paragraph 3 how an initially hard system trans-

its towards the soft condition for large bias voltages. From the conductive point of view, the 

surpass of the voltage    corresponds to a breakdown of the system, since, over such value, the 

current interruption is no more guaranteed. 

     In the most-experienced normal and diminished attitudes analyzed in the previous Paragraph, 

      : follows that only QSMs in soft regime (    ), can perform a saturative deactivation 

or establish an inefficient shuttle mechanism. Instead, in this Paragraph we limit our analysis to 

the hard regime (    ), so that increasing bias voltages surely correspond to a larger energy 

pumping in the system. Then, we will focus on two distinct problems: 

 perform continuative transitions between static/shuttle regimes (activation and deactivation); 

 modulate the oscillation properties of a system in the     state. 

These points are respectively related to concepts of reactivability and modulability of a QSM. 
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9.6.1 Reactivation index 
 

Set two design voltage levels,     and      : the first one to be selected with the aim to correct-

ly perform an activation transient, whereas the second a deactivation one.  

The reactivability of a QSM can be conceptually introduced as the tendency for a system to 

perform continuative transitions (both activation and deactivation) between static and shuttle 

regimes by alternatively apply two voltage levels      and          .  

However, in Paragraph 2 we demonstrated the activation (        ) is a more problematic 

transient with respect to the deactivation (        ). In particular, if one selects        , 

this choice surely fulfills the deactivation requirement (2.21b). Consequently, in order to inves-

tigate reactivability, emphasis is given only on the activation process. Directly from (2.21a), 

follows that an activation attempt is successful when two conditions on     are satisfied: 

 

                                                                                  

 

The first condition (2.28a) can be achieved by simply selecting, in a design stage,          . 

On the other hand, the second one (2.28b) is particularly subtle, since it depends on the initial 

number of electrons    . In a succession of static/shuttle regimes,    is a consequence of the 

details of the last deactivation transient. From a practical point of view, we widely discussed in 

Paragraph 5 that    is an aleatory quantity: since there is no way to foresee  the details for a 

deactivation transient, there is no way to guarantee the success of any consecutive activation 

attempt. Nonetheless, in this Paragraph we explain how to obtain some estimations on it. 

For example, the deactivation process consequent to a shuttle regime characterized by a number 

of shuttled electrons per cycle     leads to a number of residual electrons        . Also 

notice that, in the case of a QSM with normal or diminished attitudes, shuttle is surely efficient: 

this means that, by substituting     in definition (1.28),            . Using the same 

nomenclature of Paragraph 2, assume (2.28b) is accomplished for         . Summarizing, 

one can say a system for which         is never reactivable. Conversely, the more the ratio 

        is large, the higher is the probability of success of the  -th activation attempt.  

In conclusion, one can introduce a quantitative definition for the reactivability as follows: 

 

  
       

         
                                                                    

 

The quantity   is called reactivation index. If the selection of the voltage     leads to    , 

reactivation is not possible; conversely, if     reactivation is possible, and the higher is a   

the more successful reactivations are probable. 

     From definition (2.29) it is clear that   depends on the design choice of    . However, some 

systems tend to be more “reactivable” than others: which is they are inclined to achieve positive 

values of   in correspondence to smaller choices of    . For example, plots in Fig.2.18 high-

light the different outcome of the same system performing a succession of activa-

tion/deactivation transients corresponding to a different choice of the external parameter. Re-

markably, in the first case (   , Fig.2.18a) all the activation (green bands) and deactivation 

(red) transients are correctly performed, whereas in the second case (     , Fig.2.18b), only 

the first activation is successful, and the system remains in static regime after any of the conse-

quent activation attempts (so that, clearly, no deactivation is performed also). These simulations 

show a larger damping ratio promotes higher values of  . Actually, this is a tendency frequently 

exhibited by QSMs, confirmed by a large series of numerical simulations (not reported here). 
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Figure 2.18 –Two simulations show different outcomes of a series of activation/deactivation attempts for 

the reference system. Time histories of voltage     , pillar position      and electrons       are present. 

Results obtained by integrating equations (2.12) with initial conditions:       ̇      ,          . 

In both simulations the voltage is alternatively set to        and a     compatible with     state. 

Simulations differ for the damping ratio values: in (a)     and in (b)       . 

 

One explanation could be that, when   is high, a larger voltage   is required to establish a 

shuttle regime: the term         in (2.29) being larger as well. This argument can be general-

ized by noticing a larger static deflection occurs in systems for which the electrostatic force is 

relatively large with respect to the elastic one. Thus, the more a QSM is characterized by a 

strong electromechanical coupling (Section 2.2.4), the more it is reactivable. In symbols, the 

general tendency             holds. In conclusion, while in Paragraph 5 we a priori 

assumed the convenient deactivation hypothesis          held, here we demonstrated that 

(for         ), such hypothesis is far more viable in the case of large   and/or   . 

 

 

9.6.2 Modulation index 
 

In Section 9.2.2 we briefly discussed how the applied voltage  , by the means of an energetic 

balance of the kind of (2.19), is able to influence the oscillations properties of a pillar perform-

ing a shuttle regime. Since, from Section 9.5, hard QSMs in normal and diminished attitudes 

cannot perform the     state, follows the only admitted shuttle regimes are     and     . 

In real systems, collisions between the pillar and the fixed electrodes are inopportune †, and  

 
 

†   There are two main reasons for this. From a theoretical modeling point of view, collisions lead to a more complex dynamical 

behavior, with huge dependence on initial conditions and weaker stability properties. On the practical perspective, achieving 

continuative high-frequency collisions may largely prejudice the device integrity. It is difficult to estimate the actual occurrence 

of the pillar-electrodes collisions, however, there is no clear opinion on how much the system durability is actually prejudiced. 
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establishing the     state is the preferred possibility. In this context, modulability of a QSM 

can be conceptually introduced as the capacity for the bias voltage to vary its shuttle regime 

oscillation properties (i.e. the amplitude and/or frequency) by modifying the bias voltage. 

The modulability can be therefore tested comparing the shuttle performances of a system excit-

ed by    -compatible voltages   [           , corresponding to amplitudes   [           

and (forced) frequencies    [           . In particular,         and          . 

     In Fig.2.19, modulability in the same system, characterized by different choice of the exter-

nal parameter, is highlighted. One can notice amplitude slightly varies in both cases: it is more 

interesting (and it is also related to one of the design requirements discussed in Section 7.2), 

analyze the modulation in frequency. In the first case (   , Fig.2.19a), the frequency corre-

sponding to the case           is approximately twice with respect to the minimal one, 

obtained when        . In the second plot (     , Fig.2.19b), this difference is rather small. 

One can quantitatively relate the modulability of a QSM to the formula: 

 

    
    

    
                                                                      

 

in which quantity   is the modulation index. In a system for which     the frequency can be 

largely modulated, whereas this possibility is rather poor when     . 

     The general tendency, confirmed by the simulations in Fig.2.19 as well (and by other ones 

not reported here), is that systems characterized  by a large mechanical damping   are more 

modulable than others. This is because, since the mechanically dissipated energy     is larger, 

higher voltages are required to balance it with the term         and establish stable orbits. 

 

 
Figure 2.19 –Two simulations show different modulation features exhibited by the reference system.  

Time histories, equations used and initial conditions as in Fig.2.18.  

Simulations differ for the damping ratio values: in (a)     and in (b)       . 



A. Scorrano – Modelling of MEMS/NEMS Resonators and Functional Design of a Mechanical Transistor 

 

 

128                                                                                                 Part Two – Application to the NanoMechanical Transistor 

 

9.7 Characteristic chart and working points 
 

The analyses performed in this Chapter encourage for a description of a QSM based on the 

control parameter      as a function of the external one      . Specifically, every QSM 

characterized by a certain set of internal parameters    can be associated to a pair of character-

istic curves on a  -  plane:         and         . These curves separate the plane in three parts: 

             : the     region ; 

                     :      region ; 

             :      region . 

Any couple {   } locates a point on the  -  plane which belongs to one of these regions. Con-

sidering the damping ratio   as an environmental quantity, one can use the characteristic curves 

        and         as a characteristic chart to select the free parameter, the bias voltage  , by 

using a proper criterion. Since the     state represents the optimal “working condition” for a 

QSM, if one choose   to match the     region, the couple {   } individuates a working point. 

     Consider a working point   {     } . Referring to the scheme Fig.2.20a, introduce: 

 

         (
             

      
)(

             

      
)                                       

 

The quantity        is the robustness index associated to a working point  : in fact, it returns 

the extension of the     region around the point  . A system operating in correspondence of a 

working point for which     is less refractory to (environmental or control) disturbances on 

the design values (   and   ), with respect to one for which    . Characteristic charts in 

Fig.2.20b,c,d (produced by arranging the results of a set of numerical experiments) show the 

characteristic curves         and         for three QSM associated to as much different choices 

of the   s. A QSM is correctly designed if such   s produce characteristic curves that maximize 

the value      for the expected value of    : the proper voltage    to be consequently selected. 

 

 
Figure 2.20 – (a) Qualitative characteristic chart with a working point   highlighted. (b-d) Characteristic 

curves obtained from numerical simulations based on equations (2.12), with reference values: (b) for all 

parameters, (c) except for          and          , (d) except for         and         . 
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 10 
 

  

  
 

Chapter  

 

Functional analysis of a NanoMechanical Transistor 

 

 
In this Chapter the possibility of reproducing some features of a conventional transistor by using 

a multiple-QSM is investigated. All numerical results refer to the equations set (2.14). 

By assuming the mechanical coupling among the different pillars is relatively small with respect 

to the oscillation energy, one can consider, in a first approximation, the dynamics of each reso-

nator is functionally described by using the arguments presented in Chapter 9. Also, we assume 

each QSM accomplishes the design requirements discussed in Chapter 7, in particular, those 

listed in Tab.2.1. We make use of these hypothesis in order to delineate a set of control strate-

gies required to make the whole NMT work. 

Namely, we consider both the voltage-driven switch and the current amplifier functionalities, 

distinctly discussed in Paragraph 1 and Paragraph 2, respectively. 

 

 

10.1 Switch operation 
 

10.1.1 States and commutations 
 

Consider a NMT composed by only two QSMs. This is the simplest architecture able of repli-

cating a voltage-driven switch functionality. The first module is the drive (subscript  ) and the 

second is the only slave (subscript  ). Since   the number of slaves, in this case    . 

The core working principle for this device has been briefly described in Chapter 6: a bias volt-

age applied to the drive        could influence the macroscopic current  flowing through the 

slave       ̅. In a switch, two design voltage levels for    have to be selected, corresponding to 

as much conductive behaviors for the device †: 

 

                    ̅                                                            
 

                   ̅                                                            

 

Relation (2.32a) refers to the OFF state, instead (2.32b) represents the ON state. 

Name the transitions between the interrupting and conducting states as: 

 switch-ON commutation:  OFF state   ON state 

 switch-OFF commutation:  ON state   OFF state 

In order to correctly reproduce the voltage-driven switch functionality, a NMT has to perform 

two main tasks: i) correctly reproduce OFF and ON states, ii) be able to perform an indefinite 

succession of consecutive switch-ON and switch-OFF commutations. 

 
 

†      Notice the current   ̅ is symmetrical with respect to the voltage    (no diode-effect); thus, in the followings, only positive values 

for voltages and currents are considered. 
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10.1.2 Control strategies 
 

The experience gained by running a large number of numerical simulations, led to synthesize a 

set of five thumb rules which allows to realize the voltage-driven switch functionality: 

 

I) Resonant matching:                             
 

II) Correctly perform the ON state:                 |      
      

 

III) Correctly perform the OFF state:                 |       
      

 

IV) Avoid the switch-ON failure:                           
 

V) Avoid switch-OFF failure:                        

 

Since accomplish conditions (I)-(V) is required in order to correctly mimic the functionalities of 

a switch, they can be considered as the control strategies to be paired up with the design re-

quirements discussed in Chapter 7. The physical meaning of (I)-(V) is commented ahead. 

     First of all, since          , one can introduce the resonant voltage    as the particular 

value of    for which the slave reaches resonance, that is             . As a first approxima-

tion, one can calculate      in absence of the coupling with the drive pillar: 

 

     

√     
 √

  
  

  
                                                              

 

Then, condition (I) involves the possibility to match such resonance condition. In order to do 

this, two requirements have to be fulfilled: one has to select a proper voltage        compat-

ible with a shuttle regime for the drive, that is           . To be simultaneously kept, these 

conditions require special combinations of parameters    ,    ,    ,    ,    ,    and     . Notice 

that, in the case of identical pillars or same electrodes distance, point (I) does not easily hold. 

     Condition (II) is referred to correctly perform the conducting ON state (2.32a). In this case, 

      , and the slave pillar, in order to trigger a shuttle regime, has to reach the tunneling 

region       [          ] . To provide the minimal amplitude   , values for    ,    ,      

and    have to be selected appropriately. 

     On the other hand, condition (III) refers to the interrupting OFF state (2.32b). If         , 

it is required the slave pillar doesn‟t reach the tunneling region, so that the current passage is 

inhibited. Again,    ,    ,      and    have to be selected properly to fulfill this requirement. 

     In order to correctly reproduce both the OFF and the ON states (conditions (II) and (III)), a 

certain modulability in frequency for the drive pillar is required (see Section 9.6.2), so that 

frequencies          and         are sufficiently far to fulfill/dismiss the resonant matching 

between the drive and the slave resonators.  In general, there are three possibilities to accom-

plish this, depending on how the values for      and     are selected: 

 sub-resonant OFF state:                        ; 

 super-resonant OFF state:                        ; 

 static OFF state:                          . 

The latter choice seems to be the best from the point of view of power consumptions. However, 

this option leads to severe difficulties in performing continuative transitions between states.  
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In fact, in this condition, after a switch-OFF commutation is completed, the subsequent switch-

ON is not guaranteed (switch-ON failure). This issue is completely analogous to the reactivation 

problem investigated in Section 9.6.1, since it depends on the residual charges on the drive at 

the end of the latter switch-OFF commutation. This suggests the better option is that of a sub-

resonant OFF condition: in this case, in fact, the drive pillar remains in shuttle regime even 

when the current on the slave is inhibited, so that the repeatability, from the point of view of 

switch-ON transients, is guaranteed (condition (IV)). 

     Finally, condition (V) is required in order to guarantee the feasibility of switch-OFF commu-

tations. This problem has no analogies with the analysis of a single QSM. The point is that, in a 

multiple-QSM device, it is required the slave(s) self-excitation regime does not rely on electro-

static forces (as it is for the drive), but rather on the resonant response elastically excited by the 

drive. Otherwise, a switch-OFF failure condition occurs, where the slave(s) remains in the 

shuttle regime also when the drive voltage is lowered to         . In the following parts, we 

concisely refer to this inopportune condition as locking. In order to avoid locking, an upper limit 

has to be considered for the slave voltage,          which identifies condition (V).  

The value       is indeed defined as the minimum voltage    for which locking occurs, i.e. the 

electrostatic forces on the slave are just sufficient to sustain its shuttle regime, independently 

from the drive motion. Notice that, except for severe locking conditions (        ), the 

switch-OFF is often possible by using “emergency” maneuvers, for example, by imposing 

voltages         , or even      . 

     In conclusion, an overview of the possible working regimes a single-slave NMT can estab-

lish is qualitatively sketched in Fig.2.21. In particular, the chance of correctly perform ON and 

OFF states or undergo to switch-ON or switch-OFF failures exclusively depends on accom-

plishing or dismissing conditions (I)-(V), respectively. 

 

 
Figure 2.21 – Schematic representation of possible working conditions for a single-slave NMT.  

The yellow line describes the locus of admitted turning points in the oscillation of each pillar. 

 

  



A. Scorrano – Modelling of MEMS/NEMS Resonators and Functional Design of a Mechanical Transistor 

 

 

132                                                                                                 Part Two – Application to the NanoMechanical Transistor 

 

10.1.3 Role of damping in collisions: durability 
 

A further question is related to the possible occurrence of inopportune collisions, both on the 

drive and/or the slave resonators, when correctly performing ON or OFF states. For the drive, 

this possibility is related to the surpass of a voltage        . For the slave it is instead related to a 

more complex dynamics occurring when    is close to       . Since collisions may reduce the 

durability of the device, they would be preferably avoided at the design stage. This introduces a 

somehow optional condition, in addition to the (I)-(V) previously discussed: 
 

VI) Prevent pillars collisions (improve durability):          {
                               

                               
 

 

Limit our analysis to the drive (condition (VIa)), and to the case of a sub-resonant OFF state 

(                  ) . Since          , it is always possible to select             , 

so that collisions are limited to the only ON state, and (VIa) specifies into            . The 

feasibility of the latter inequality is related to the choice of the damping ratio   . In fact, conse-

quently to the analysis performed in Section 9.6.2, a QSM characterized by      generally 

manifests a better modulability in frequency, since it is characterized by a larger interval 

             . Conversely, in the case     , then              , and, to achieve a sufficient 

modulability in frequency †, one has to select            : the latter inequality dismissing 

condition (VIa). Reassuming, in general, the achievement of condition (VIa) is possible only for 

relatively large values of the damping ratio for the drive. 

     On the other hand, a low damping ratio    is preferred for the slave. In fact, conditions (II) 

and (III) imply a sufficiently sharp resonant response, naturally associated to low dissipations.  

The previous considerations lead to consider two different design options: 

 Different-damping system:                 (condition (VIa) is satisfied) ; 

 Equal-damping system:                 (condition (VIa) is not satisfied) . 

Notice how the first option improves the durability of the whole NMT, but it is technologically 

complex to achieve. The converse considerations hold for the second option. 

 

 

10.1.4 Numerical experiments 
 

In order to verify the switch functionality for a NMT with a single (   ) slave module, in the 

next pages we show the results of a series of numerical experiments carried out by fulfilling 

conditions (I)-(V). In every simulation, a succession of switch-ON and switch-OFF commuta-

tions is attempted by switching the drive voltage    between two design values     and      : 

the desired functionality is achieved if a series of consecutive ON and OFF states, respectively 

consenting and inhibiting the current passage on the slave   , are alternatively performed. 

     In Fig.2.22a and Fig.2.23a the whole succession of switch-ON and switch-OFF transients is 

successfully achieved, correctly establishing ON and OFF states. In Fig.2.22b and Fig.2.23b 

switch-ON failure occurs. Last, Fig.2.22c and Fig.2.23c show a switch-OFF failure (locking).  

Plots in Fig.2.22a,b,c refer to a different-damping system, whereas those in Fig.2.23a,b,c are in 

the case of an equal-damping. Remarkably, in Fig.2.22a,b,c, differently from Fig.2.23a,b,c, the 

ON state is characterized by continuative collisions of the drive pillar with the fixed electrodes, 

because the different-damping condition is not compatible with condition (VIa). 

 
 

†     Since, from conditions (II) and (III), the ON state forced frequency has to be sufficiently far from that in the OFF state. 
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Figure 2.22 – a single-slave (   ), different-damping (       ,       ) NMT, undergoes 4 switch-

ON attempts. Time histories of three different simulations (a,b,c) based on equations (2.14) are reported: 

bias voltages (  ,   ), pillar positions (  ,   ), pillar electrons (    ,     ), macroscopic currents (  ̅,   ̅). 

Simulations only differ for voltage applications: (a)          ,          ,       ; 

(b)         ,          ,        ; (c)          ,          ,       , with           .  

For both the drive and slave modules the reference values of internal parameters (Tab.2.3), except for 

              (gold cap),         (silver cap),               ,           . 
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Figure 2.23 – a single-slave (   ), equal-damping (         ) NMT, undergoes 4 switch-ON 

attempts. Time histories of three different simulations (a,b,c) based on equations (2.14) are reported for 

the same quantities as in Fig.2.22. Simulations only differ for voltage applications: (a)         , 

        ,       ; (b)         ,         ,        ; (c)         ,         ,       , 

with             . Simulations share the same internal parameters of Fig.2.22 except             . 
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10.2 Amplifier operation 
 

10.2.1 Single slave module (   ) 
 

Consider the same NMT investigated for the switching operation, in which a single slave mod-

ule is present (   ). Since we are interested in the current amplification, consider   ̅ and   ̅ as 

the input and output signals, respectively. From (2.1c), the current gain can be introduced as: 

 

  
  ̅

  ̅
                                                                             

 

However,   ̅   ̅        (see Section 11.1.1 for details). Therefore, the gain can be estimated as 

        . Since, from (V),          , the incipient locking condition maximizes the gain: 

 

        (
  ̅

  ̅
)  

     

      
                                                        

 

In conclusion, for    , the chance of an effective current amplification relies on condition: 

 

                                                                               

 

Notice that devices characterized a large electromechanical coupling for the drive    manifest a 

relatively smaller        , whereas those with smaller    a relatively larger      . Follows that, 

in general, condition (2.35b) appears to be more easily satisfied for larger       ratios.  

However, a large number of numerical experiments never exhibited a larger-than-unity gain, 

even exploring several configurations where drive and slave were characterized by far-different 

internal parameters. For example, in the simulations in Fig.2.22 (different-damping system) we 

obtained     ̅   ̅      , whereas in Fig.2.23 (equal-damping)     ̅   ̅      . 

In order to improve the current amplification performances of a NMT, the natural strategy 

seems to be, as suggested in Blick‟s patent 
[77]

, adding more slave QSMs; thus, increase   . 

 

 

10.2.2 Set of slave modules (   ) 
 

Consider a NMT consisting of a single drive and     identical slave modules. From (2.1a,b): 

 

                      ̅                                        ̅    ̅      ̅          

 

Analogous symbols are used for all the parameters, thus replacing subscripts   and   (from the 

case    ), with    and   , respectively. All considerations made for     can be general-

ized to the case    : in particular, control strategies (I)-(V) and the optional requirement (VI) 

still apply, and a direct generalization of the correctly performed and failure working conditions 

portrayed in Fig.2.21 is possible. Nonetheless, two additionally possibilities exist when    : 

 consequently to a switch-ON commutation, only some of the slave pillars establish the 

shuttle regime, whereas the others remain in static regime (partial switch-ON); 

 after to a switch-OFF, only some slave pillars reach the static regime, the others continuing 

to perform the shuttle regime (partial switch-OFF failure, that is a “partial locking”). 
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Figure 2.24 – Schematic representation of the possible working conditions for a multiple-slave NMT 

(   ) as a direct generalization single-slave case (   , Fig.2.21). The yellow line describes the 

locus of admitted turning points in the oscillation of each pillar.  

 

Notice that (differently from the partial switch-OFF) the partial switch-ON is not a failure 

condition, since it could be used to modulate the current amplification (the gain). In fact, de-

pending on the effective number of slave pillars which reach the tunneling region and achieve 

the shuttle mechanism, the overall current flowing through the slave set      can be regulated. 
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10.2.3 Design requirements to produce actual amplification  
 

The presence of a large number of slave QSMs does not automatically benefit the current ampli-

fication performances. In order to make presence of a multitude of slave pillars effective to 

produce a larger-than-unity current gain, a few additional conditions, not related with the device 

control, but with its preliminary design, has to be introduced. 

     First, the strategy of controlling the slaves vibration through resonant excitation tuned by the 

drive is still the key control strategy. Consequently, the first additional requirement is: 
 

VII) Similar slave pillars geometry:                                       

 

Notice as this condition is consistent with the assumption of using identical slave pillars. If 

condition (VII) holds, one can assume   ̅    ̅      ̅ and relations (2.35a,b) generalize into: 

 

        (
   
   

)   
     

       
                                                     

 

                                                                               

 

Accomplish inequality (2.37b) is less trivial than it appears. In fact, while         is constant by 

definition, several numerical simulations show       varies with  , so that adding more slave 

modules does not produce a better amplification effect. Since the dependence                

is an intrinsic characteristic of a system, (2.37b) can be satisfied only by systems for which: 
 

VIII) Current amplification increases with  :                              
 

The upper bound for the current amplification is obtained in the hypothesis                : 

in this case directly follows, from (2.37a),        (since         is constant by definition). 

To conclude, notice that, generalizing again from the case     to     , the ratio         

possibly plays a role in controlling the ratio               and, therefore, the value of      . 

 

 

10.2.4 Numerical experiments 
 

Simulations in Fig.2.25 and Fig.2.26 exemplify the dynamic response in the case of     slave 

modules, in the different and equal-damping case, respectively †. 

In both cases, the system undergoes some switch-ON and switch-ON transients: the ON state is 

performed by using a slave voltage          , in order to maximize the gain and compatibly 

guarantee repeatability (in particular, avoid the switch-OFF failure). These simulations show a 

phenomenology analogous to those already discussed in Paragraph 1 about the switch operation.  

During the ON states, the advantage of having     in the current gain is neatly visible by 

comparing such results with those in Fig.2.22a and Fig.2.23a. In the different-damping case, the 

gain increases of about     by passing from   (Fig.2.22a) to   slaves (Fig.2.25). In the equal-

damping case, the gain doubles by adding only one slave module (Fig.2.23a, Fig.2.26). Several 

numerical simulations show the effect of increasing   on the current gain is usually relevant in 

the equal-damping case. In such systems, a larger-than-unity gain can be reached, as in Fig.2.21. 

 
 

†     Generalizing definitions given in Section 10.1.3 to the case     and fulfilling requirement (VII), we consider all the slave set 

characterized by the same damping ratio: this value is the same (equal-damping) or different (different-damping) of the drive. 

‡     Although minimal parameters adjustments are required to keep conditions (I)-(VIII) when the number of slaves   is increased. 
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Figure 2.25 – a multiple-slave (   ), different-damping (        ,         ) NMT correctly per-

forms OFF and ON states. Time histories for: bias voltages (   ,    ), pillar positions (  ,   ,   ,   ,   ), 

pillar electrons (    ,     ,     ,     ,     ), macroscopic currents (  ̅,   ̅,   ̅,   ̅,   ̅), and current gain 

     ̅    ̅    ̅    ̅    ̅ are shown. Internal parameters as in Fig.2.22. By selecting a value for     

near to      , current amplification is maximized, but the gain still doesn‟t reach the unity (     ). 

 

 
Figure 2.26 – a multiple-slaves (   ), equal damping (           ) NMT correctly performs OFF 

and ON states. Time histories for: bias voltages (   ,    ), pillar positions (  ,   ,   ), pillar charges 

(    ,     ,     ), average currents (  ̅,   ̅,   ̅), and current gain      ̅    ̅    ̅ are shown. Internal 

parameters as in Fig.2.25, except for         and        . By selecting a value for     very near 

to       , current amplification is maximized, and a slightly larger-than-unity gain is achieved (     ). 

 

Although having a large   can play a crucial role in enhancing the amplifier functionality, large 

gain values     appear to be unfeasible. A first reason for this is that the selection of the 

internal parameters to accomplish conditions (I)-(VIII) is far less trivial than in the case     . 

Actually, the more subtle reason is that it is never possible to perfectly fulfill the requirement 

(VIII). This will be investigated in the following Chapter by using simple energetic arguments. 
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Chapter  

 

Electric performance of a NanoMechanical Transistor 

 

 

11.1 Switch functionality with respect to conventional devices 
 

This Paragraph is devoted to investigate the electric characteristics of a NMT, focusing on its 

voltage-driven switching performances, thus, we consider a single-slave device (   ). 

In order to obtain a first-order evaluation, we compare its black-box properties with those of an 

ideal switch. In electronics, an ideal switch is characterized by: i) no current limit during the ON 

state, ii) no voltage limit during the OFF state, iii) zero rise and fall time between commutation 

transients, iv) absence of “bouncing” during commutations. In the following sub-Paragraphs we 

analyze these points one by one. At the end of the Paragraph, the external characterization of the 

NMT is completed by drawing some characteristic  -  curves. 

 

 

11.1.1 ON state current limit 
 

In hard shuttle, the tunnel current is negligible. Conversely, in the soft case both the shuttle and 

tunnel contribution to current can be considerable; in particular, a not null current passes inde-

pendently from the vibrational state of the pillar. Consequently to this, in Chapter 7, the hard 

nature of shuttle was set as one of the design requirements for each QSM composing a NMT.  

This choice enables for a simple estimation of the the maximum current achievable during the 

ON state. From formula (1.29), the shuttle current is proportional to the mechanical vibration 

frequency:  ̅    ̅        . From (1.27b),     , then, assuming efficient shuttle (   ), 

follows  ̅    . During the ON state, both the drive and the slave pillars undergo the shuttle 

regime, therefore   ̅       and   ̅      . From condition (I), constraint         leads to 

  ̅   ̅        †; during the ON state, in turn, one has             . Last, again from (I) 

           ; while, from condition (V) about the locking failure,           .  

Combining the estimations above, the ON state output (slave) current limit is obtained: 

 

       
     

  ̅
      

                                                                 

 

In conclusion, during the ON state, one expects an output current            
     (notice how 

this inequality is consistent with relations (2.35a) ‡, and, by extension, with (2.37a)). 

Remarkably, since from relation (2.15)          ̅        , once the internal parameters for the 

drive QSM are set, the limit        
     only depends on       . 

 

 
 
 

†     This is the proportionality used in Section 10.2.1 to produce formula (2.35a). Here, it has been demonstrated. 
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11.1.2 OFF state voltage limit 
 

We already investigated the occurrence of the locking failure, which introduces a practical limit 

to the output (slave) voltage       during the ON-state. The existence of such a constraint during 

the OFF-state is strictly related on the soft or hard nature of self-excitation.  

However, from Chapter 9, we showed how a system exhibiting hard shuttle for low voltages can 

transit towards the soft behavior over a certain value of the bias voltage    . Consequently, for 

the slave module, one has to observe the constraint: 

 

      
                                                                          

 

As hinted in Section 9.6, the quantity    can be considered the breakdown voltage for a switch, 

since, when       , the interrupting state cannot be correctly performed anymore. 

Further notice that, for a proper set of internal parameters (use to the reference settings for 

internal parameters in Tab.2.3), the hard soft transition occurs at relatively large voltages, so 

that          ; from this, in turn,       . This means that the locking condition usually 

occurs before the ON-state voltage limit       is reached (condition (V)): follows that the NMT 

remains in the hard regime in any practical condition, and the locking (and not the breakdown) 

voltage remains the “bottleneck” to perform the interrupting state of a switch. 

 

 

11.1.3 Commutation speed 
 

A conventional voltage-driven switch is a static device, therefore its commutation speed de-

pends on electrical rise and fall times, their order of magnitude being that of the time constant of 

a capacitor with the characteristic size of the switch electrodes. On the other hand, a NMT 

operating as a switch is not a static device, and its commutations speed in inversely proportional 

to the duration of its mechanical transients. 

At resonance, the slave pillar amplitude of oscillation    increases linearly with time: 

 

      
     

   √    
      

 
            

 √    
 √    

                                      

 

Then, the duration of any switch-ON commutation can be estimated as the period of time re-

quired for    to go from   (the worst case) to       (the shuttle amplitude for excess). 

Substituting     
         into (2.37a), the rise time    is: 

 

   
 

    

√    
 √                                                              

 

With the choices of internal and external parameters used in numerical simulations in Fig.2.22 

and Fig.2.23, one obtains rise times    of the order of some    , corresponding to a commuta-

tion speed not faster than       .  
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11.1.4 Bouncing 
 

In an electrical switch, the phenomenon of bouncing can occur during both switch-ON or 

switch-OFF commutations, and consists in an intermittency between the two states before the 

final state is stabilized. Bouncing can dramatically decrease the commutation speed of a switch. 

In a NMT bouncing occurs also, but only during switch-ON commutations. It consists in a 

period of time during which the slave pillar alternatively entering/exiting the tunneling region.  

However, this phenomenon is rather rare and generally promoted by a severe collision episode 

during the rise time of the slave. For this reason, bouncing only appears for relatively large slave 

voltages, usually in near-locking conditions:          . 

In the first part of the simulation in Fig.2.27 a switch-ON transient which bouncing is achieved. 

It appears the slave pillar undergoes a sort of beat and intermittently enters/exits the tunneling 

region, until the ON state is definitely stabilized. During this transient, charge transport is in-

termittent also. Then, a second switch-ON commutation realized with a slightly smaller   , is 

correctly performed without any bouncing phenomenon. Transient durations are highlighted in 

yellow: one can notice the difference between the two switch-ON transients durations. 
 

 
Figure 2.27 – a single-slave (   ), different-damping (       ,        ) NMT undergoes 2 switch-

ON commutations, (           ,          ) . In the first one,          and bouncing occurs;  

in the second one,          and switch-ON is correctly performed. Internal parameters as in the 

reference system, except for              ,        ,               ,           . 

 

 

11.1.5 External characteristic: I-V curves 
 

Referring to Section 6.1, a NMT, due to its working principle, is a voltage-controlled transistor.  

Consequently, in its external characterization, an input voltage produces a current as the output. 

In particular, a set of  -  curves can be plotted, each one corresponding to a certain input (drive) 

voltage    , with the output (slave) current     as a function of the output voltage     . Different 

choices of the internal and the external parameters individuates a specific set of  -  curves. 

Consider the equal-damping and single-slave NMT to which results in Fig.2.23 were referred †. 

The plot in Fig.2.28 portrays a set of  -  curves for the considered system, by using the data 

collected in Tab.2.6, coming from a series of numerical simulations, in which the NMT was 

tested under different bias voltages    and   , and the consequent currents   ̅ and   ̅ measured. 

 
 

†    Both the drive and slave modules have reference values for the internal parameters (Tab.2.3), except for               , 

        ,               ,           . Also,           . 
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Table 2.6 – electrical characterization of a single-slave (   ), equal-damping (         ) NMT. 

Data obtained from a set of numerical simulations based on equations (2.14) with different voltage 

applications. Simulations share the same internal and external parameters as in Fig.2.23. 

Cells highlighted in yellow refer to simulations in which “intermittent shuttle” (continuative beats) is 

performed. Cells highlighted in grey, refer instead to locking failure conditions. 

      
 ̅        [ ̅      ] 

                                         

0.25 0.77  [16.99] 0.32  [22.66] 1.10  [28.46] 1.26  [35.26] 1.45  [43.47] 

0.5 1.55  [17.00] 0.75  [22.67] 2.19  [28.46] 2.52  [35.26] 2.90  [43.47] 

0.75 2.32  [17.00] 1.07  [22.67] 3.38  [28.66] 3.87  [36.06] 4.36  [43.47] 

1 3.22  [17.70] 2.48  [22.67] 4.51  [29.30] 5.16  [36.06] 5.93  [43.46] 

1.25 4.02  [17.70] 4.86  [23.35] 5.65  [29.30] 6.59  [36.86] 7.40  [44.42] 

1.5 3.28  [17.71] 5.84  [23.35] 6.96  [30.12] 8.08  [36.87] 8.90  [44.44] 

1.75 3.15  [18.42] 7.01  [24.04] 8.12  [30.13] 9.42  [37.65] 10.82  [46.36] 

2 3.86  [18.70] 8.25  [24.73] 9.54  [30.97] 10.99  [38.47] 12.37  [46.34] 

2.25 4.35  [19.13] 9.79  [26.10] 11.32  [32.65] 12.62  [39.27] 14.19  [47.32] 

2.5 5.82  [19.83] 11.17  [26.79] 12.56  [32.65] 14.33  [40.06] 16.10  [48.29] 

2.75 10.98  [21.96] 12.60  [27.47] 14.17  [33.50] 16.38  [41.66] 18.07  [49.27] 

3 12.36  [22.67] 14.43  [28.85] 15.85  [34.33] 18.21  [42.47] 20.08  [50.21] 

3.25 14.24  [24.09] 16.01  [29.54] 18.00  [36.00] 20.09  [43.23] 22.20  [51.49] 

3.5 15.78  [24.79] 18.04  [30.91] 20.24  [37.65] 22.44  [44.87] 24.36  [52.80] 

3.75 17.87  [26.21] 19.76  [31.60] 22.22  [38.53] 24.46  [45.69] 26.59  [54.11] 

4 19.58  [26.92] 21.98  [32.98] 24.73  [40.12] 26.57  [46.46] 28.85  [55.41] 

 

One can compare the NMT characteristic  -  curves in Fig.2.28 to those of a conventional 

(electronic) voltage-driven transistor, like the FET in Fig.2.3b. In the case of a NMT the ohmic 

region is wide and presents a rather good linearity. Also, reaching of the locking region does not 

produce any visible effect on the conductive properties of the system. Last, the pinch-off region 

is obtained by applying drive voltages smaller than          . Notice that the saturation 

region is not reached, since, in the simulations performed, from (2.39), we used            . 

 

 
Figure 2.28 – Characteristic  -  curves for the NMT whose data in Tab.2.6 are referred. 

Data highlighted in yellow refer to intermittent shuttle, while those in grey, refer to the surpass of       . 
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11.2 Energetic considerations on the amplifier functionality 
 

In Section 10.2, the chance for a NMT to mimic the functionality of a conventional amplifier, 

with the gain   defined as the ratio between the slave and drive current, has been discussed. In 

particular, the feasibility to achieve an actual amplification     in a single-slave (   ) and 

a multiple-slave (   ) depends on satisfying inequalities (2.35b) and (2.37b), respectively. 

However, simulations shown in Fig.2.25 and Fig.2.26 highlight a certain difficulty for a NMT to 

obtain a large current amplification (   ). This is because the effect of adding more slave 

pillars, explicitly suggested in the patent 
[77]

, has the drawback the to lower the threshold      , 

so that (2.37b) cannot be trivially accomplished by “wildly” increase the number of slaves   . 

This means the design condition (VIII) cannot be accomplished neither. 

Since reaching the locking failure plays the role of bottleneck in achieving a large gain, some 

energetic considerations to estimate the value of       can be useful achieve a more deep under-

standing of the limitations in direct current amplification of a NMT.  

     Consider a single-DOF damped oscillator. Respectively let      and       the amounts of 

pumped and (considered positive) dissipated energy per cycle. In general, a stable orbit is estab-

lished only when an energy balance            is reached. In a QSM, the oscillator is the 

shuttling element (the pillar). The energy is injected via electrostatic self-excitation, thus 

            , being   the bias voltage (see Section 9.2.2). On the other hand, in the limit of 

weak electromechanical coupling, the mechanically dissipated energy per cycle is, by definition: 

 

      
        

 
                                                              

 

Where        is the quality factor, and                the total energy stored in oscil-

lations of amplitude   . In general electromechanical coupling conditions,     remains an 

increasing function of both   and   . Reassuming, a QSM triggers a limit-cycle which establish-

es a stable orbit with amplitude    when the following balance is reached: 

 

             
                                                                  

  

In the hard-limit approximation, constraint              holds, being         the min-

imal amplitude compatible with QT (where the tunneling region begins), and         . 

Following the nomenclature proposed in Chapter 9,         when        and         

when        . However, as shown in Fig.2.19, the amplitude modulability of a QSM is usual-

ly more weak with respect to the frequency modulability. This means in (very) hard systems, 

          ; and, consequently, the amplitude can be assumed constant and in proximity of to 

the leads. In conclusion, in these systems, the mechanically dissipated energy per cycle     can 

be considered constant with respect to the more relevant variations in the term      . 

The arguments and demonstrations presented in this Paragraph are thus valid under the approx-

imation the term     is constant. In particular, in the following sub-Paragraphs, we distinctly 

analyze the cases     and     . 
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11.2.1 Estimation of the locking voltage with     
 

Consider one drive and     slave modules. If the mechanical coupling is not present, a shut-

tle regime is achieved in both the drive and slaves when two distinct energy balances hold: 

 

,
                

                
                                                                

 

Now, add the mechanical interaction. Once every beat-like phenomenon is concluded, a net 

stationary energy exchange between the two systems is established. Indicate this amount of 

energy with the term      . If one assumes the pillars share the same internal parameters, in 

particular the same geometry, then                    , and one obtains: 

 

,
                           

                           
                                                 

 

First consider the case in which the ON state is performed. Then: 

 

                ,
                             

                               
                                

 

Notice that, since             , the sign “   ” refers to an ON state achieved with con-

tinuative collisions, whereas “   ” establishes shuttle regimes with       . The case of 

minimal energetic injection is the most interesting (and it surely accomplishes condition (VI), 

also). By posing     , from equations (2.45a) useful relations are obtained: 

 

              ,
                            

                                           
                                  

 

During the OFF state, equations (2.44) specify into either of the following: 

 

                    ,
                               

                                 
                           

 

                    ,
                                         

                              
                             

 

Equations (2.46a) refer to a sub-resonant OFF state, whereas (2.46b) to a static OFF state. 

Last, the locking failure is characterized by the balances: 

                 

                    ,
                               

                                 
                           

 

                    ,
                                         

                              
                            

 

Similarly, (2.47a) refer to locking failure consequent to attempting a sub-resonant OFF state, 

while (2.47b) is for a static OFF state.   
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Again, useful relations are obtained in the less energetic condition (incipient locking): 

 

                  ,
                                       

                                       
                       

 

                  ,
                                                 

                                    
                           

 

Focus on relations (2.46a,b) and (2.47c,d). Since locking is a failure condition, assume we are 

interested to find the maximizing condition for       . From (2.47c), one would prefer the limit 

                    , however, from (2.46a), one understands this occurs correspondingly 

to the condition of minimal electrostatic energy injection, which is when              is mini-

mal, compatibly with the shuttle regime of both pillars. Similar considerations are valid by 

comparing (2.47d) with (2.46b).  

Consider the situation in which                , with      . Then, introduce: 

 

                                     {
                                     

                                                 
         

 

Now,           can be estimated by applying (2.48) to the energy balances (2.46b) and (2.47c). 

     First treat the sub-resonant case. From (2.48),             , and let              . 

Summing up the two equations in (2.46b) and in (2.47c), one respectively obtains: 

 

    (          )                                                                
 

    (       )      (         )                                                   

 

Combining (2.49a) and (2.49b), the following estimation is attained: 

 

    (         )      (         )        (      )                                   

 

     Now consider the static OFF state. From (2.48),        , then, let            . Sum up 

equations in (2.46b), and impose, in (2.47c),                     . Follows that: 

 

    (       )                                                                     
 

    (         )                                                                    

 

From (2.51a) and (2.51b), one obtains: 

 

    (         )            (       )                                            

 

In conclusion, relations (2.50) and (2.52) allow for an estimation of the maximum value of 

voltage which leads to a locking failure,           . 
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11.2.2 Feasibility of current amplification with     
 

The maximum gain in a single-slave NMT is, from (2.35a),                  . However, one 

can demonstrate      is strictly related with the different- and same-damping design options. In 

fact, neglecting the mechanical coupling and using (2.41), stable oscillations are achieved for: 

 

                                                                             

 

If         increases with   (see Section 9.5), then       , and, analogously,       . Thus: 

 

     
  
  

                                                                         

 

and in a different-damping NMT amplification is discouraged, since         (Section 10.1.3). 

     From the increasing monotonicity of         another relevant consideration follows. In fact, 

one can assume                               (      ) , thus concluding: 

 

                    (         )      (      )                                  

 

First consider the case of sub-resonant switch-OFF. Applying (2.49b) to (2.55), one obtains: 

 

                    (         )       (      )                             

 

Now consider the case of static switch-OFF. By using (2.52), relation (2.53) specifies into: 

 

                    (      )       (      )                                  

 

Let us discuss the estimations achieved above. The first inequality, (2.56a), is hardly verified, 

especially if    is low. Unfortunately,      is a preferred condition, since from (2.54), ampli-

fication is promoted by using           , and, simultaneously, condition      is required to 

provide a sufficient (mechanical) amplification of the slave oscillations. This holds for a sub-

resonant switch-OFF. The second inequality (2.56b), instead, is neatly impossible, since both 

     and       are positive quantities. In conclusion, we stated the difficulty, and, in some 

situations, the impossibility, to obtain amplification in a NMT with a single slave     ). 

 

 

11.2.3 Estimation of the locking voltage with     
 

Naturally extend our discussion to a case in which     slave QSMs are present in the NMT. 

It is possible to directly generalize many results from Section 11.2.1 by assuming the amount of 

energy coming from the oscillation of the drive is equally distributed into each of the slave 

resonators †. Thus, each of the   slave pillars receives a stationary amount of energy per cycle: 

 

                     
                

 
                                                

 
 

†     Actually, this condition is strictly verified only in a parallel configuration among the drive and slaves, while the case of study is 

that of a series coupling between pillars. However, this is a simple approximation which produces neat and useful results. 
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In a manner completely similar to Section 11.2.1, energy balances (2.43)-(2.47) can be general-

ized to the case    . Also, under the hypothesis (from condition (VII)) that each slave pillar 

is geometrically similar to the others, it is possible to estimate the value of           by using a 

demonstration which leads to final results analogous to relations (2.50) and (2.52). Thus, omit-

ting analytical details, for a sub-resonant OFF and a static OFF state, one respectively obtains: 

 

    (         )  
    (          )      (       )

 
                             

 

    (         )         
    (       )        

 
                                 

 

 

11.2.4 Feasibility of current amplification with     
 

From relation (2.37a), the maximum obtainable gain in the case     is: 

 

      
         

       
                                                                

 

Also, if         is an increasing function,                               (       ) , and: 

 

                     (         )      (       )                                 

 

Consider both of sub-resonant and static switch-OFF cases. Respectively plugging (2.58) and 

(2.59) into (2.61), one obtains a couple of relations completely analogous to (2.56a,b): 

 

                    (          )       (       )                            
 

                    (       )      (       )                                  

 

It has be remarked the term   has disappeared in both (2.62a,b). This fact states the fundamen-

tal point that, in a first approximation and, limited to the case of same geometry between drive 

and slave pillars, increasing the number of slaves   does not trivially produce a positive effect 

on the amplification performances. One can say that, due to energetic arguments, the locking 

voltage       has a decreasing dependence from the number of slaves  . Additionally, in this 

Chapter we demonstrated that, at least in some situations,       is inversely proportional to  : 

 

        

        
 

 

 
                    

 

 
                                               

 

Statements (2.63) are visibly in disagreement with the amplification requirement (VIII).  

     For completeness sake, one can consider a more general context in which more drive mod-

ules are consented. For a NMT with       drives and       slaves, holds the relation: 

 

           

    
|
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Conclusions & Perspectives 

 

 
In this thesis, the main subjects behind a compelling technological challenge – achieving the 

transistor functionalities from a mechanical working principle – have been explored and investi-

gated. The properties of two nanomechanical devices, respectively pioneered by the fundamen-

tal works of Gorelik and Blick, have been analyzed: a single QSM and a composite NMT.  

Specifically, the latter, in the Author‟s knowledge, is not investigated in NEMS literature, yet. 

Consequently, the main original contribution of this research work is the theoretical study of the 

NMT, synthetized by the suggestions of a set of design requirements and control strategies. 

Both the voltage-driven switch and the current amplification functionalities have been analyzed. 

     Numerical simulations carried out in Chapter 10 demonstrate how the switching operation 

can be definitely mimicked, at least from a functional point of view. However, as indicated by 

Blick in 
[60]

 and confirmed here in Chapter 11, the characteristic working frequencies of a NMT 

could not compete with top-category conventional microchips, but are surely compatible with 

some mundane applications. Thus, multiple NMTs arranged in specifically designed circuital 

topologies could represent a step innovation in the computing industry, assembling shuttle-

based logic gates, characterized by some peculiar advantages highlighted already in the Preface. 

     On the other hand, consequently to some numerical results shown in Chapter 10 and the 

more rigorous motivations explained in Chapter 11, the functionality of a conventional amplifier 

seems to be much more difficult to be reproduced. First of all, it has been showed a larger-than-

unity current gain can be obtained only by using more than one slave resonator (   ). At the 

moment, by increasing the number of slave pillars in numerical simulations, only a slight ampli-

fication effect has been experienced (however sufficient to provide the minimal fan-out effect, 

as highlighted in 
[77]

). To the aim of enhancing the amplification performances, further investi-

gations continuing the work of the present thesis are definitely required. 

In particular, since, by increasing  , the success in obtaining an actual amplification effect is 

related to a precise selection of the NMT internal parameters, a rigorous study of energy ex-

changes among the drive and the slave set has to be approached through a general methodology. 

As a second question, different – and potentially more effective – mechanical couplings be-

tween resonators can be considered. For example (see Fig.2.29), a parallel configuration among 

the slave pillars and the drive can possibly enhance the stability and repeatability of operation, 

with respect to a series one (which is the one proposed in 
[60,77]

 and investigated in this thesis). 

 

 
Figure 2.29 – Sketch of a: (a) series, (b) parallel configuration between the slaves and drive pillar. 
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Advantages of a parallel configurations would be: i) better control of the slave pillars vibrations, 

leading to a reduction of unpredicted collisions with leads, thus enhancing the device durability; 

ii) better energetic equipartition among the slave pillars with respect to a series coupling, which 

lowers the risk of a resonance condition not contemporarily reached by all the slaves. 

This second point, in particular, highlights that, if   is increased in a series configuration, the 

energetic considerations presented in Sections 11.2.3 and 11.2.4, and in particular inequalities 

(2.62a,b) actually represent a “best case”, whereas they are accurate if they refer to a parallel 

configuration, for which hypothesis (2.57) is much larger reliable. On the contrary, if (2.57) 

does not correctly hold, at least 2 failure conditions, peculiar of the case    , should be 

considered: i) partial switch-ON failure, ii) partial switch-OFF failure (“partial locking”); 

respectively associated to any switch-ON or switch-OFF attempt. All these considerations, lead 

to prefer a parallel coupling. As a last consideration, a drawback of increasing   (shared by 

both the series and parallel configurations), is that the switch-ON or switch-OFF commutation 

durations results roughly proportional to   . This means the effort in increasing the amplifica-

tion performances in a NMT is antagonist to its switching speed: another challenging question 

which surely requires additional studies. For all these reasons, the convenience in using of 

    slave pillars can be considered a debated point, since it introduces much more design 

issues with respect to the case of a single slave pillar, sufficient for the switching operation. 

     Actually, it can be remarked that it is always possible to obtain a considerable current ampli-

fication             by simply skipping condition (V) about switch-OFF failure. For ex-

ample, by using               , one obtains     , but the drawback is that a severe 

locking regime is established, compromising the switching-OFF functionality of the whole 

NMT and, thus, the repeatability of operation, which clearly represents a design requirement. 

     In conclusion, this work remains exquisitely theoretical. To the Author‟s conviction, attempt-

ing an experimental activity prior of having an intimate comprehension of the basic behaviors of 

such complex systems would have been premature. In fact, due to the absence of pre-existing 

benchmark, any experimental setup would have demanded for wise design choices, in turn 

requiring a tout-court theoretical analyses: this is the strategy I attempted to follow in the thesis. 

     In the wait of the first experimental validations, natural perspectives of the research present-

ed in this thesis include: i) theoretical investigation on the hybrid shuttle phenomenology 

(which, in Chapter 5, has been only outlined); ii) the develop of more accurate analytical models 

to describe both the mechanical and electrical parts of the system (additional modes of vibra-

tion, pillars coupling, electrostatics); iii) both QSM and NMT testing and optimization using 

COMSOL
®
 (or similar multiphysics software); iv) definitive design of the NMT (with emphasis 

to the manufacturing process and technological limits). 
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Appendix  

 

Quantum tunneling equivalent conductances 

 

 
The QT effect can be profitably included in a semi-classical circuital model by using a non-

linear equivalent conductance    . Many closed-form relations have been proposed in literature. 

In this thesis, we use one of the most most-cited approaches: the Simmons formulae 
[86,136]

. They 

return an accurate estimation of           , depending on the insulator thickness   and the 

applied voltage   (specifying the tunneling length dependence        hinted in (1.1b)). In 

particular, we use the formula referred to a “rectangular barrier with image force included”: 
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and   is the Planck constant,     the electron mass,   the electrodes working function,   their 

average area, and   the insulator permittivity. Though Simmons analytically derived this formu-

lae decades ago, they are in good agreement with experimental data. In Fig.A.1, the conduct-

ance    is plotted as a function of   and for stepped values of   by using formula (A.1). Notice 

that, although the dependence of    from the voltage   is important †, but the most relevant one 

is that from the distance  , exponential indeed. The latter represents a peculiarity of QT already 

highlighted in the first works of Fowler-Nordheim, which explains why its effect produces 

sensible consequences only within distances of a few nanometers. 

 

 
Figure A.1 – curves         in logarithmic scale, obtained from formula (A.1). 
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Last, the dependence of          is particularly interesting to perform numerical simulations 

in which the bias voltage is not constant. 

Relation (A.1) can be further specified to calculate QT conductances    ,     and     , in turn 

representing the coefficients of the conductance matrices   and    to be used in (2.5): 
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Appendix  

 

Capacitance matrix 

 

 
In the most general case, the electrostatics of an  -conductors system is completely described 

by a     symmetrical capacitance matrix  . Its coefficients depend only on the conductors 

geometry and their reciprocal positions. Two standard – and equivalent – definitions are used in 

literature to introduce such capacitance matrix: 

 

  [

             
             
    

             

]                                                         

 

  [

                       

                       

    
                       

]         

 

The first definition, (B.1a), refers to the ground capacitance matrix, its terms      are usually 

called electrostatic induction coefficients and do not have any immediate physical interpretation.  

On the other hand, (B.1b) is the lumped capacitance matrix, its coefficients    representing the 

self-capacitances (capacitance of a spherical conductor with respect to the surroundings), 

whereas coefficients     correspond to the floating capacitances (capacitance of the capacitor 

formed by the conductors   and  ). The latter definition is used in the followings.  

     In absence of sharp edges or vertexes, it is feasible to approximate the capacitance matrix of 

an  -conductors system by using   equivalent spheres with same surfaces and relative position. 

Under this assumption, the investigated three-conductors QSM can be profitably described by 

the means of a     (lumped) capacitance matrix: 

 

  [

                        

                             
                        

]               

 

Therefore, in (B.2), self- and floating capacitance terms are associated to a system composed by 

three conductive spheres: the left electrode, the pillar‟s cap and the right electrode. This ap-

proach allows to use simple closed-form expressions to complete the whole capacitance matrix. 

In fact, all the coefficients in (B.2) can be determined on the basis of the Maxwell-Kirchhoff 

formulation for spherical conductors †, exposed ahead. 

 
 

†    The original formulation by Russell [137] has been recently revised by many authors. Here, we report, among the others, second 

the approach used in [138]. 
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Consider two conductive spheres of radii   and  , with     and a center-to-center distance 

     . The     capacitance matrix referred to such two-spheres system is: 
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Then, it is possible to calculate the floating capacitance of the capacitor associated to the pair of 

spherical conductors   and   with: 
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 (    )  
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whereas the self-capacitance of a sphere of radius   is simply: 

 

  
    

                                                                             

 

By using relations (B.4) and (B.5) it is possible to compute the self- and floating capacitance 

terms which appear in matrix (B.2) for any position   of the pillar:  

 

       
                                                                        

 

       
                                                                       

 

       
                                                                           

 

        
    

                                                                
 

     
    

                                                                         

 

where   is the radius of the pillar‟s cap, and     that of the left and right electrodes. 
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  C 
 

  

  
 

Appendix  

 

Electrostatic force 

 

 
Different approaches can be considered to model the electrostatic acting on the pillar, some take 

into account the effect of electrostatic induction, some others not. Depending on the ratios     ,  

    and         a model can result more feasible than others or vice versa. 

     The simplest case arises by assuming the voltage applied through the fixed electrodes gener-

ates an electric field which is uniform in the whole oscillating region   [        ]:  

 

   
     

  
                                                                      

 

     A first model introducing the dependence from position      comes by using the classical 

Coulomb law and considering the total charges       ,       and       as concentrated in the 

center of the three spherical conductors   ,   and   , respectively (time dependences omitted): 

 

   
 

   
[

  

        
 

  

        
]                                          

 

Formulae (C.1) and (C.2) represent, in some cases, rather poor approximations. In particular, the 

uniform field assumption is not accurate when the pillar is close to the leads. Remarkably, these 

regions are crucially important since the most relevant QT currents occur just when the pillar-

electrode distance is minimal. On the other hand, the proposed Coulomb force approach pro-

vides for a good approximation in the limit the center-to-center distance between the spheres is 

much larger than their radii, namely in the validity of limit      . In particular, in the case 

      , the charge distribution on the left and right spheres is not homogeneous at all and the 

effect of the Coulomb law is that to underestimate the force on the pillar. 

     Consequently, it is possible to introduce a first-order correction which assumes the total 

charge in the left and right spheres is concentrated in a point deviated from their centers, so that 

formula (C.2) transforms in: 

 

   
 

   
{

  

[          ] 
 

  

[          ] 
}                               

 

The symbol   represents an appropriate correction factor, introduced in order to take into 

account the charge displacements due to electrostatic induction effects. Since left and right 

electrodes polarity are opposed,   assumes a positive value, specifically      .  

A suitable expression for   can be determined by using the procedure † described above. 

 

 
 

†     The method presented here is partly inspired to [139]. 
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Consider the two-conductors system comprising only the left and right electrodes and construct 

the capacitance matrix       associated to them, then, calculate the inverse matrix. The electro-

static force between them comes by applying the definition of electrostatic force: 
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Then, the correction factor is calculated by comparing     with the Coulomb law: 
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The (attractive) force     between left and right electrodes has been calculated in the hypothesis 

the presence of the pillar is negligible. This is reasonable, since usually     and         . 

     Formula (C.3) provides an accurate estimation of    for every     ratio. However, it doesn‟t 

include electrostatic induction effects on the pillar, which are considerable if condition       

does not hold †. Since, in general,     and        , the electrostatic induction on the pillar 

can be relevant, whereas that produced by the pillar is negligible. Therefore, it is still possible to 

consider the total charges    and    as concentrated in little spheres of radii      , with 

centers in           and         , respectively. The electrostatic force on the pillar 

is consequently split into two parts, the left-pillar force     and the pillar-right     : 

 

                                                                                

 

In turn, these terms can be calculated by using an approach analogous to (C.3) and alternatively 

neglecting the presence of the remaining sphere ‡ : 
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Procedure (C.4) may seem laborious but, as it is highlighted ahead, it returns results consistent 

with the more orthodox one (C.3).  

     In Fig.C.1, a comparison among the electrostatic force calculated by using formulations 

(C.1), (C.2), (C.3) and (C.4) is portrayed. Curves refer to different: QSM geometries     and 

    (with       ), voltages         {       }  , electrons    {      } are shown. 

 
 

†    Notice that characteristic times for electron redistribution in the pillar‟s metallic cap are considerably smaller with respect to the 

mechanical period of oscillation of the pillar itself. 

‡     This procedure is justified since the electrostatic induction among the large spheres is already included in the corrective term   . 
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Figure C.1 – electrostatic force           as a function of the pillar position           . Various 

combinations of applied voltages  , electrons   , and QSM geometries (a)       ,       ; (b) 

       ,        ; (c)       ,        ; (d)        ,         , are shown, with       . 
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A brief analysis of plots in Fig.C.1 demonstrates the consistence of all the approaches (C.1), 

(C.2), (C.3) and (C.4). In particular, formulation (C.4) coincides to (C.3) in the limit       ; 

in turn (C.3) matches with (C.2) in the case       . Last, notice how formula (C.2) does not 

trivially collapse in (C.1), which represents a rather raw approximation.  

     Electrostatic induction effects are more relevant if       and/or      , and produce not-

symmetric forces. Equations (C.4) constitute the most general and accurate model, in which 

electrostatic induction on the pillar produces a non-zero force on the pillar also in absence of a 

net charge on its cap (    ). The validity of the latter statement is highlighted in Fig.C.2. 

 

 
Figure C.2 – electrostatic force    as a function of the pillar position           , in the case     . 

 Formulation (C.4) is used for QSM geometries: (a)       ,       ; (b)        ,        ;  

(c)       ,        ; (d)        ,         ; with        . 

 

Arguments above suggest to use the latter approach to calculate the electrostatic force term   . 

Therefore, the whole numerics presented in Part Two of this thesis makes use of formula (C.4).
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                                Abstract (extract from the Preface) 

 

 
 

The most basic example of charge transport is represented by the collective motion of free 

charge carriers in a conductive medium. In the context of electromechanical devices, more 

complex forms of charge transport, labeled with the umbrella term electron shuttle, exist. 

The simplest system exhibiting a shuttle mechanism comprises a set of three conductors: two 

fixed electrodes and a vibrating element between them. Under certain boundary conditions a 

limit-cycle is established, and the oscillator alternatively takes and releases a finite amount of 

electrons while approaching the electrodes. Since this form of charge transport relies on the 

presence of mechanical vibrations,  the described phenomenon constitutes the archetype of a 

“mechanical charge carrier”. 

     Although the first concept of electron shuttle is over two centuries old, only in recent times 

[Gorelik and Isacsson, 1998] it found reinvigorated interest in the field of nanotechnology, 

producing a novel branch of both theoretical and experimental research. In fact, the introduction 

of quantum effects in shuttle devices produces interesting motion regimes peculiar of nanoscale. 

Refer to such systems as Quantum Shuttle Modules (QSMs). 

     Many original architectures have been conceptualized and realized in the last decade. A 

promising application is contained in a patent [Blick and Marsland, 2008] which proposes a 

switching element based on electron shuttle and capable of reproducing the main functionalities 

of a conventional transistor, depicted as composed by an array of mechanically coupled QSM 

subsystems, whose vibrating elements are nanocantilevers. Refer to this invention as the Nano-

Mechanical Transistor (NMT). At the present day, the NMT is an unexplored concept: no 

experimental setup has been realized nor theoretical model has been proposed yet. 

     The research work contained in this thesis is intended to provide a first theoretical descrip-

tion and an early design stage for such NMT device. Notice that, since the NMT is composed by 

a set of QSMs, a preliminary study of these systems is needed. This work is consequently divid-

ed in two Parts: the first one focuses on the QSMs with an exquisitely theoretical approach, 

while the second one is intended to assess the feasibility of a real application, the NMT.  

A brief description of the thesis contents is presented ahead. 

     Part One begins by introducing the fundamental concepts of quantum tunneling and Cou-

lomb blockade. Then, the general scheme of a QSM is presented. As usual in literature, a con-

centrated parameters model is used, and the state of the system is reduced to a couple of lagran-

gian descriptors: the oscillator position and charge. Conductive and dynamical properties are 

investigated with both analytical and numerical approaches. Then, a systematic study of QSMs 

is attempted by considering two basic shuttle mechanisms: in the first case, the oscillator is self-

excited by a shuttle current between electrodes at different voltages; in the second case, the 

oscillator vibrates under parametric resonance and a shuttle current is established between two 

electrodes at the same voltage. The portrayed phenomenologies are complementary, meaning 

each QSM presents a combination of these two fundamental forms of electron shuttle.  



 

 

xxxviii 
 

     Part Two opens with an overview of the conventional transistors and an analysis of the NMT 

patent. Follows the choice of the characteristic scales of the device and the typology of QSM to 

be the best candidate as NMT subsystem. Under suitable approximations, closed-form formulae 

for capacitances, quantum tunneling and electrostatic force are produced. A flexible set of 

equations is obtained, allowing to perform a large number of numerical experiments. First, a 

single QSM subsystem is considered: a predictive model is proposed in which a QSM is related 

to a Turing machine whose admitted states are represented by the feasible motion regimes. 

Then, more QSM subsystems are arranged to realize the NMT: each module is electrostatically 

independent but mechanically coupled with its nearest neighbors. A functional analysis of the 

whole system is presented, in which peculiar motion regimes are investigated, and a set of 

design and control strategies aimed to correctly reproduce switching and amplification function-

alities is proposed. Last, the black-box electrical characterization of the device is outlined. 

     In conclusion, the main original contributions of this research work are:  i) the theoretical 

study of a novel device – the NMT – which has led to synthetize a series of design requirements 

and control strategies;  II) the conceptualization of a parametric resonant QSM, which – differ-

ently from the self-excited one – constitutes a new archetype of electron shuttle. 





 

 

  



 

 

  



 

 

 
 

 

 

 

“An expert is a person who has made all the mistakes 

that can be made in a very narrow field.” 

Niels Bohr 

 

 

“Science is the belief in the ignorance of experts.” 

Richard Feynman 

 

“If we knew what it was we were doing, 

it would not be called research, would it?” 

Albert Einstein  

 

“If you thought that science was certain, 

well, that is just an error on your part.” 

Feynman 

 

“As I have said so many times, 

God doesn't play dice with the world.” 

Einstein 

 

“God was invented to explain mystery. 

God is always invented to explain those things 

that you do not understand.” 

Feynman 

 

 “The most incomprehensible thing about the world 

is that it is at all comprehensible.” 

Einstein 

 

“I think I can safely say that nobody 

understands quantum mechanics.” 

Feynman 

 

 

 

 

“A witty saying doesn't prove anything.” 

Voltaire 
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