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Introduction

The Italian Space Agency (ASI) is significantly involved in the NASA’s Juno mission
(cf. Section 1). The Italian contribution consists in the funding of the development,
delivery and scientific support of two of the eight scientific instruments installed on the
spacecraft: the Jovian InfraRed Auroral Mapper (JIRAM) and the Ka-band Translator
System (KaTS), which is the core of the Gravity Experiment. The development and
manufacturing of the KaTS was awarded to Thales Alenia Space — Italia with the

scientific support of the Universities of Rome, Bologna and Forli.

This research aims to assess the performance attainable by the Juno gravity experiment

in terms of accomplishment of the scientific objectives.

The level-1 objectives of the gravity experiment are the determination of the mass of
the Jupiter core and the detection of the possible presence of deep-seated zonal winds

structures in the jovian atmosphere (cf. Section 2).

The level-2 requirements stated that the gravity field spherical harmonics coefficients

up to degree 14 had to be estimated with an absolute uncertainty of 107.
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Determining the gravity of a planet requires a system experiment (cf. Section 3),
involving a ground antenna (ground equipment), onboard instrumentation and
adequate orbit determination software. The ground antenna transmits a radio signal
towards the spacecraft orbiting the planet. The signal is received onboard and
coherently transmitted back by means of an onboard transponder. The radio signal
received on the Earth will keep the signature of the spacecraft dynamics in the Doppler
shift of its frequency. The orbit determination software is crucial for the reconstruction

of the dynamical perturbations determining the shift.

The radio system and the orbit geometry of Juno are realistically described in order to
carry out a numerical simulation of the experiment with the scope of performing a
covariance analysis of the fundamental parameters describing the gravity field of
Jupiter and the tidal deformation. The numerical simulations are a very important step
of the design process of the gravity science experiment because they offer the
opportunity to detect in advance the criticalities (as well as the opportunities) in the

orbit determination process much before the Jupiter arrival.

The early detection of criticalities allows corrections to the orbital geometry, mission
operations and data analysis strategy that would be otherwise impossible once in
Jupiter orbit. The decision to waive the level-2 requirements of the experiment, taken at
project level, is a direct consequence of the results obtained in this thesis (cf. Section 4).

The re-formulation of the requirements is currently in progress.

Moreover, it is possible to test the possibility to perform additional measurements not
taken into account during the mission design phase. For example it has been proved
that it is possible to obtain an estimate of the angular momentum of Jupiter from the
Doppler signal due to the relativistic Lense-Thirring precession (cf. Section 5). It is the
first time that General Relativity is used to constrain a geophysical parameter. This

measurement is a strong contribution to the scientific return of the Juno mission.
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This thesis collects the most important original results obtained during a multi-year
participation to the Juno Science Team. The results shown are confirmed by

independent studies of NASA-JPL.
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1 The Juno mission

The Juno mission is the second mission of the NASA New Frontiers program. The
spacecraft is a solar powered, spin-stabilized, polar orbiter of Jupiter devoted to the
improvement of the knowledge about the origin, evolution and composition of the

planet.

Juno was selected in May 2005 and initially scheduled for a 2009 launch, afterwards
slipped to August 2011 (Grammier, 2009). The institutions contributing to the Juno
mission are the NASA centers Jet Propulsion Laboratory and Goddard Space Flight
Center, the Southwest Research Institute, the Italian Space Agency, University of lowa,
Applied Physics Laboratory of the Johns Hopkins University, Malin Space Science
Systems, Danish Technical University and University of Wisconsin. Lockheed Martin is

responsible for the spacecraft assembly and launcher procurement.

Figure 1.1 Juno mission logo Figure 1.2 Juno artist's concept. Credit: NASA/JPL
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1.1 Scientific objectives

The Juno mission will host onboard a set of 9 (8+1, cf. Section 0) scientific instruments
that will collect important data about the atmospheric structure and composition, the
magnetic and gravity field, the polar magnetosphere. The key objectives of the

scientific investigation of the Juno mission are (Grammier, 2009):
1. Atmospheric composition:

Study of the formation of Jupiter’s atmosphere by measuring the global O/H ratio

(water abundance) and N/H ratio (ammonia).
2. Atmospheric structure:

Determination of the microwave opacity as a function of latitude and altitude, of the
depths of clouds and atmospheric features (zones, belts, spots) and characterization of

the microwave opacity of the polar atmosphere region.
3. Magnetic Field

Global mapping and determination of the long-term variations along with the

determination of its spectrum to provide information about the core dynamo.
4. Gravity field

Provide constraint on the core mass, detect the centrifugal response of the planet to its
own differential rotation (zonal winds structure) and the response to tides raised by

the satellites.
5. Polar Magnetosphere

Investigate the auroral processes; characterization of the field-aligned currents that
transfer angular momentum from Jupiter to its magnetosphere, of the auroral radio
and plasma wave emissions, of the nature, location and spatial scale of auroral

features.

10
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1.1.1 Radio Science experiment objectives

The radio science instrumentation onboard Juno is designed for the accurate sensing of
the Jupiter gravity field. In addition to its primary goal, it performed a solar
conjunction experiment (General Relativity Test, August 2012) and will be used during

the Earth Flyby to answer the unresolved question about the Earth anomaly.

1.1.1.1 Gravity Experiment

The gravity experiment in the scientific phase in orbit about Jupiter is the primary goal

of the radio science instrumentation.

The measurement of the low degree gravity field (J2, J4, Js) poses a radical constraint on

the mass of the planet’s core.

The determination of the finer structure of the gravity field will help in understanding
the magnitude and the extension in depth of the convective phenomena in the

atmosphere of Jupiter.

Radio science will also return a measurement of the response of Jupiter to tides raised

by satellites (in particular the Galilean moon Io).
The thesis focuses on this particular experiment. The results are shown in Section 4.

Under certain hypotheses it will be possible to attempt a measurement of the planet’s
angular momentum by assuming the general relativity correct and measuring the
Lense-Thirring acceleration acting on the spacecraft when flying close to Jupiter. The
Lense-Thirring effect is supposed to be large, given the mass of the planet and its
rotation period (approximately 10 hours). This particular measurement requires a
modification of the orbit determination code that will be exhaustively exposed in

Section 5.

11
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1.2 Scientific Payload

The scientific payload of the Juno mission is composed by 8 instruments and a camera

for education and public outreach (E/PO).

The nine instruments have been provided by different institutions in Europe and in the

USA, thus requiring a strong effort in the coordination of the activities.

The Gravity Science instrument is a joint product of JPL and the Italian Space Agency
(ASI). JPL developed the Small Deep Space Transponder (SDST) and the antenna
system, while ASI took the responsibility of the Ka-band Translator System (KaTS§)
manufactured by Thales Alenia Space — Italia. The instrumentation will be used to
determine the perturbation acting on the spacecraft, and the consequent Doppler shift
on the X and Ka band radio signal, due to the irregularities of the gravity field of

Jupiter (Bolton, 2010). The KaTS will be further descripted in Section 3.2.1.

The ASI contribution is not limited to gravity science but it funds also the Jupiter
Infrared Auroral Mapper (JIRAM), an instrument that will study the upper layers of
the Jupiter’s atmosphere at infrared wavelength (2-5 M) using an imager and a

spectrometer (Bolton, 2010).

The magnetometer (MAG) is a product of Goddard Space Flight Center. It will
accurately map the magnetic field of Jupiter. The instrument is composed by two Flux
Gate Magnetometers and two Advanced Stellar Compasses (ASC), procured by the
Danish Technical University (DTU), that will return the precise information on the

magnetometers location and orientation (Bolton, 2010).

The microwave radiometer (MWR) is provided by JPL. It will use six antennas
disposed on the spacecraft body that will measure the radiation from Jupiter at six
different wavelengths returning data on the water and ammonia abundance and on the

circulation of Jupiter’s deep atmosphere (Bolton, 2010).

12
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Jupiter Energetic-particle Detector Instrument (JEDI) is an instrument of the Applied
Physics Laboratory — Johns Hopkins University (APL). Its three sensing heads will sort
the incoming particles into mass, species and energy discriminating between ions and

electrons (Bolton, 2010).

Southwest Research Institute (SwRI) provides the Jovian Auroral Distributions
Experiment (JADE) and the Ultraviolet Spectrometer (UVS). The first instrument will
return the distribution of particles in the polar magnetosphere of Jupiter. It is
composed by a single head ion mass spectrometer and three electron energy per charge
analyzers. The ultraviolet spectrometer will use a 1024 256 micro channel plate (MCP)
detector to provide spectral images of the UV auroral emission in the polar

magnetosphere (Bolton, 2010).

The University of Iowa contribution to the Juno mission, the Plasma Waves instrument
(Waves), will measure the radio and plasma spectra in the auroral region. It is

composed by an electric dipole antenna and a magnetic search coil (Bolton, 2010).

The Visible Camera by Malin Space Science Systems, JunoCam, is a four filters color

camera that will be used for Educational and Public Outreach purposes (Bolton, 2010).

13
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1.3 The Juno spacecraft

Juno is a solar powered, spin-stabilized spacecraft. The choice of a solar powered
spacecraft is due to the cost and the uncertain availability of a radioactive power
source (Grammier, 2009). At Jupiter the solar power is nearly 2-3% the power available
for a spacecraft in orbit about the Earth, therefore the spacecraft had to be provided
with three large solar arrays (total area 60 m?, active area 50 m? (Nybakken, 2011)
disposed symmetrically about the main hexagonal bus. Moreover the cruise trajectory
and the science orbits have been designed in order to minimize the Sun occultation.
The limited power budget excluded the possibility of the selection of a three-axis
control on the spacecraft attitude, which would have required power-consuming
reaction wheels (Grammier, 2009). Hence the selection of a spinning spacecraft that
also brought the benefit of avoiding complex scan-platforms. An appropriate
distribution of the instruments sensors guarantees the necessary field of view
necessary for the measurements, avoiding also complex spacecraft maneuvers

(Grammier, 2009).

F-MGA

= _ HGA
F-LGA —» A\ -
JADE lon
JADE Electron (3) SRUSs (2)
JEDI Sensor (3] 3 [}
g X
; # " Ox Tank
/
[1] 8
Toggle Link (3) ~H ~ Pressurant Tank
B
Fuel Tank - . | / TR
/ a2As |
MEA Cover MWR Waves Electric Antenna

Figure 1.3 Exploded view of the Juno spacecraft with sensors and instrument location (Grammier, 2009).
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One of the greatest problems in the design of the spacecraft was the harsh Jupiter
radiation environment. The goal of the design is to survive the Jupiter environment
while at the same time containing the expanses maintaining heritage technology for the
instruments (Bolton, 2010). This has been achieved by designing a shielding titanium
vault (weighting nearly 157 kg) containing the more sensitive electronics and choosing
an orbital geometry which keeps the radiation dose to acceptable levels (Nybakken,

2011).

Figure 1.4 Electronics disposal within the radiation vault (2009) (Grammier, 2009).

The geometry of the first 15 orbits of the scientific phase ensures the minimum
radiation dose. In fact the observation of the instruments other than radio science are
concentrated in the early orbits. While the line of apses rotates northward the radiation

dose increases.

The first 15 orbits return global coverage with a 24° spacing in longitude. Considering

the latest orbits the spacing reduces to 12°.

15
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Inbound
to JOI

Figure 1.5 Juno orbit geometry with respect to Jupiter radiation belts (Grammier, 2009).

The communication system is composed by a suite of antennas, the X-band Deep Space
Transponder (DST) and the Ka-band Translator System (KaTS). As shown in Figure 1.3
the spacecraft is provided with a main High Gain Antenna (HGA), which will be used
as the main device for science measurements, a fore Medium Gain Antenna (MGA) ,
fore and aft Low Gain Antenna (LGA) and an aft toroid low gain antenna, enabling

communication during the main engine burns (Grammier, 2009).

The main engine will execute the most important maneuvers during the mission
(DSMs, JOI, PRMs) and is complemented by four rocket engine modules (REM) towers

each consisting of two lateral and one axial thrusters.

1.4 Trajectory

1.4.1 Launch phase

The spacecraft was launched in August 2011 on an Atlas V 551 from the Kennedy
Space Center, Florida. The launch period was 22 days (August 5-26) and it was
optimized to maximize the mass injected into the science orbits about Jupiter

(Nybakken, 2011).

16
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Figure 1.6 Juno launch on Atlas V 551 (Nybakken, 2012).

1.4.2 Cruise phase

After the launch phase and spacecraft separation, Juno was inserted in a 5 years AV-

EGA (Earth gravity assist) trajectory towards Jupiter.

The trajectory started with the phase called Inner Cruise 1. The first trajectory
correction maneuver (TCM) took place at launch + 20 days (Nybakken, 2011). It will be

followed by 12 other TCMs that will be executed in the throughout the trajectory.

The second cruise phase (Inner Cruise 2) started 63 days after the launch. The main
events of this phase are the two Deep Space Maneuvers (DSMs) that were scheduled to
be executed 13 months after the launch to get a first targeting towards the Earth Flyby.
These maneuvers worked as a test for the spacecraft main engine (ME) (Nybakken,

2011).

17
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The third cruise phase will be the Inner Cruise 3 where the Earth Flyby (EFB) will
occur, 26 months after launch. This phase will serve as a rehearsal for the science phase

(Nybakken, 2011).

Following the Inner Cruise 3 there will be a Quiet Cruise phase that will end with the
Jupiter Orbit Insertion (JOI). This burn will be executed by the main engine and will
insert Juno in a 107 days capture orbit about Jupiter, setting up the orbital geometry for
the scientific phase. The precise orbit period (10.9725 days) and perijove
synchronization with Goldstone DSS-25 visibility will be acquired by means of a

Period Reduction Maneuver (PRM) (Nybakken, 2011).

Jupiter
Approach
0JO!
Tilted Ecliptic Pole View, Vemal Equinox Up, Launch
at Start of 8/5-26 Launch Period, 30-day Tick Marks

Figure 1.7 Juno mission cruise phases (Nybakken, 2012).

18
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1.4.3 Scientific phase

The science phase of the mission consists in 32 highly eccentric (e =0.9466) polar
orbits (1=90°%£10°) about Jupiter (Grammier, 2009). The orbits 3 to 33 are science
orbits while orbit 1 and 2 contain cleanup for the JOI and a PRM. The orbits are
repetitive in an inertial reference frame, except for the argument of periapsis that drifts
northwards by 1 degree per orbit because of the effect of Jupiter’s oblateness. The
apoapsis is located at nearly 39 jovian radii, while the periapsis is approximately at
1.06 jovian radii. The orbit period guarantees a global coverage of the planet surface

with a spacing of 12 degrees in longitude, while minimizing the radiation dose.

The periapses dedicated to gravity science are the number 4 (early gravity science
orbit) and number 9 to 32 for a total of 25 gravity science orbits. The remaining orbits
are scheduled for MWR observations. Gravity science and MWR requires incompatible
spacecraft attitudes. During gravity science passes the spacecraft HGA must point the

Earth, while in MWR orbits the radiometer must point nadir.

RADIOMETER PASS

No Gravity Science
Radiometer antennas aligned
with nadir

i Solar Ar;ljays
$IC O el Eath  /
tory P12 HGA Sun /

Traje
S/C Orbit 17
Trajectory Plai

GRAVITY PASS
No Radiometry
HGA aligned with Earth

View from Jupiter North Pole

Figure 1.8 Juno different attitude during a radiometer or a gravity pass (Grammier, 2009).
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The mean altitude of the pericenters is 4000 km.

While achieving a good coverage in longitude, this kind of trajectory allows only a

limited coverage in latitude.

When flying on a highly eccentric orbit the limited coverage in latitude can be a
possible source of problem in gravity science experiments, since the spacecraft will be
effectively sensitive to the fine structure of the gravity field only in a small region

about the pericenter, leaving therefore uncovered vast regions of the surface.

21
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Figure 1.12 Altitude vs time at closest approach (orbit 22)

Figure 1.13 Juno gravity science orbits ground tracks (one hour about the pericenter). The red dots
indicate the perijoves.
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A crucial factor in gravity science experiment is the orientation of the orbit plane with
respect to the line-of-sight with the Earth. The experiment relies on the measurement of
the radial velocity of the spacecraft, hence it is important to have the orbit plane almost
aligned with the Earth direction in order to maximize the Doppler signal coming from
the projection of the spacecraft velocity onto the line-of-sight. The need of a constantly
illuminated orbit drove the choice of the inertial orientation towards a plane nearly
orthogonal to the Sun direction. From Jupiter, the Earth and the Sun have a very small
angular separation; therefore the orbit plane results nearly orthogonal also to the Earth
direction, thus not achieving the best scenario for radio science measurements. Figure
1.14 shows the angle between the orbit plane and the line-of-sight with the Earth for all

the 25 gravity science orbits.
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Figure 1.14 Angle between the orbit plane and the line-of-sight with the Earth.

1.44 De-orbiting

The final maneuver of the mission will be executed during orbit 34 and will insert Juno
in an orbit that will plunge the spacecraft in the jovian atmosphere, in observation to

the planetary protection regulation (Nybakken, 2011).
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2 The planet Jupiter

2.1 Formation

The giant planets are rich in primary cosmic elements hydrogen and helium, therefore
they must have formed early in the process of planetary formation. After their
formation they contributed to shape the solar system dynamical environment due to

their gravitational action.

The two competing theories on the formation of Jupiter are the gravitational disk
instability or (direct collapse) and the nucleated instability. Both the theories try to explain
how the giant planets formed out from the proto-nebula, which resulted by a stellar

explosion (Lunine et al., 2004).
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The gravitational disk instability theory postulates that when the proto-nebula started
to cool and condense, small particles of gas and dust started to aggregate, generating
regions of density instability. One of these instabilities was able to gravitationally
attract more and more gas and dust becoming a giant gaseous proto-planet. Not all the
density instabilities become proto-planets. The instability must be stable with respect
to disruptive forces (solar tides, pressure perturbations, etc.). The mass of the proto-
planet might have been much larger than the final planetary mass. The external gas
layers may have been removed by solar UV radiation or extra-solar evaporation. The
final planet is entirely gaseous with no solid core. All the processes involved in the
direct collapse theory do not explain the abundance of heavy elements on Jupiter with
respect to the solar abundance. As a consequence the direct collapse seems to be the

less probable theory for the Jupiter formation (Lunine et al., 2004).

The nucleated instability theory hypothesizes that a terrestrial planet embryo formed
in the Jupiter region of the solar nebula. The mass of the planet embryo had to grow to
a certain minimum size (critical mass) to permanently capture the gas of the nebula,
while enough gas mass is present in the region (nebula lifetime 10 million years). The
result of this process is a differentiated planet with a solid core and a gas envelope. For
a distance of 5 AU the minimum critical masses ranges from 1.5 Mk (Earth masses) to

20 Mk (Lunine et al., 2004).

Measuring the low degree gravity field will help determining the size of the Jupiter’s
core (if any) giving an important contribution to the comprehension of the origin of the

planet.
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2.2 Interior

Jupiter is at first order a gas giant of helium and hydrogen in hydrostatic equilibrium.
The temperature of the interior is nearly 20 000 K result of the transformation of the
nebula gas gravitational energy into heat by means of contraction. The contraction
proceeds at a rate of 3 cm per year the interior, while the interior is cooling at a rate of 1
K per million years. The cooling and contraction process implies a fluid interior since it
causes a significant intrinsic energy flux, demonstrated by the fact that Jupiter emits
more energy than it receives from the sun, and convective motions in most of the

interior (Bagenal et al., 2004).

The convective motions are responsible for the homogeneity of the planet and cause

the internal dynamo generating the external magnetic field (Bagenal et al., 2004).

Jupiter composition closely resembles the Sun. The main difference is the abundance of
heavy elements. While the Sun only has the 2% of its mass in elements other than
hydrogen and helium, for Jupiter models return an abundance of heavy elements
ranging from 3% to 13%. Half of this mass is supposed to be oxygen, which is the third
most diffuse species in the universe. An important measurement necessary to
understanding the Jupiter interior composition is the bulk water abundance. This
measurement combined with the high accuracy gravity and magnetic fields mapping,

will be crucial to understand the Jupiter internal composition (Bagenal et al., 2004).
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~.|Molecular hydrogen

\ Molecular/metallic hydrogen transition
Metallic_hydrogen mantle

Possible_rocky core

Figure 2.1 Jupiter internal structure schematics (Bagenal et al., 2004).

2.3 Atmosphere

Jupiter is provided of the largest atmosphere in the Solar System. Conventionally the

atmosphere is defined as the region extending down to 20 bars (Seitf et al., 1998).

A layer of clouds, composed of ammonia crystals and hydrosulfide, covers the planet.
The clouds are distributed in zonal bands circulating at different speed and direction.
The white bands are called zones while the dark ones are called belts. The mutual
interaction between the bands generates storms and turbulence, which manifest as
ovals on the planet surface. The zonal bands show an annual variation of width,
intensity and color but remain stable on larger timescales. Different hypotheses have
been formulated on the extension in depth of the banded structure (Ingersoll et al.,

2004).

In the traditional view, the winds are shallow. The zones and ovals, where the cloud
deck is higher, are features were the air is warmer than in the surrounding same
pressure region. The warm air tends to rise while the cold air in the belts sinks;

therefore the cloud deck is higher in the warmer zones (Ingersoll et al., 2004).
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On the other hand, a different theory states that if the fluid is at constant temperature

on constant pressure surfaces, the winds could be the external manifestation of

differentially rotating cylinders concentric with the planet’s polar axis. In this theory

the winds extend much deeper in the planet interior (Ingersoll et al., 2004).

The Galileo Entry Probe penetrated the cloud layer in 1995. It registered the presence

of zonal winds at its deepest penetration (0.2% of the planet equatorial radius) (Kaspi et

al., 2010).
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Figure 2.2. Wind speed profile at different penetration depth (Porco et al., 2003;Atkinson et al., 1998).

The observation of flashes of lightning in the atmosphere could be the evidence of the

presence of a thin water clouds layer below the ammonia clouds. The water polarity

creates the conditions for the charge separation needed to produce lightning (Elkins-

Tanton, 2006).
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2.4 Magnetic Field

The Jupiter’s inner mantle is composed by metallic conductive hydrogen under
convective motion. A dynamo effect converts part of the energy involved in the
conductive motion in the energy necessary to create a magnetic field. The more
energetic is the convective motion the more intense is the dynamo effect and the

resultant magnetic field.

The magnetic field of Jupiter is substantially a dipole, with the axis tilted by 9.6° with

respect to the polar axis (Guillot et al., 2004).

The magnetic field B is expressed as the gradient of the scalar potential W, whose

spherical harmonic expansion is (Guillot et al., 2004):

W= Rei(&jw i{g,’f cos(mg)+h" sin(mq))}an cos(®)

m=0

The coefficients g and h" are called magnetic moments.

n m g, h,

1 0 4.208 0.000
11 -0.660 0.261
2 0 -0.034 0.000
2 1 -0.759 -0.294
2 2 0.483 0.107
30 0.000
301

3 2 0.263 0.695
3 3 -0.069 -0.247

Table 2.1. Jupiter magnetic moments in Gauss (Connerney et al., 1982).
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The strong magnetic field along with the Jupiter fast rotation generates a huge a
magnetosphere (the largest in the Solar System), extending to a distance of 100 Jupiter
radii. It is traditionally divided into inner magnetosphere, the region below the 10 Jupiter
radii, middle magnetosphere, from 10 to 40 Jupiter radii, and outer magnetosphere, from 40
to 100 Jupiter radii. The uniqueness of the Jupiter magnetosphere comes from the fact
that it derives much of its plasma internally from the moon Io. Without the
contribution of the Io plasma the magnetosphere would extend only up to nearly 42

Jupiter radii (Khurana et al., 2004).

Since Jupiter has no solid surface, the rotational period of Jupiter is determined from
the radio emission at decametric or decimetric wavelengths from the plasma trapped
in the Jupiter’s magnetic field. Some of the radio sources are fixed with respect a
particular system of longitudes called System III. The rotation period of the radio

sources define the rotation period of the planets itself (Khurana et al., 2004).

2.5 Gravity Field

2.5.1 The ellipsoidal gravitational potential

The planet Jupiter is a gas giant spinning very fast (10 hours rotation period) about its
polar axis. The rotation deforms the planet so that its shape is closer to an ellipsoid

than to a sphere and this will affect the external gravitational potential.

W.B. Hubbard (Hubbard, 2012) describes a simplified model of the hydrostatic interior
of Jupiter considering a scaled Maclaurin model. The resulting ellipsoid is described in
terms of spherical harmonics by a series of even zonal harmonics. Their magnitude

decreases exponentially with the degree of the zonal harmonic.

Jn-10° (calculated) Jn-10¢ (observed)

Hubbard 2012 Jacobson 2003
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2 14696.43 14696.43 + 0.21
4 -587.14 -587.14 £ 1.68
6 30.82 34.25+5.22
8 -1.862

10 0.1227

12 -8.573-103

14 6.253-10+

16 -4.711-10%

18 3.641-10°

20 -2.873-107

22 2.304-10

24 -1.873-10°

26 1.534- 1010

28 -1.154- 101

30 6.358-1013

Jn (unnormalized)

1.E+00
1E-01
1.E-02
1.E-03
1.E-04
1.E-05
1.E-06
1.E-07
1.E-08
1.E-09
1.E-10
1.E-11
1E-12
1.E-13
1.E-14
1E-15
1.E-16
1.E-17
1E-18

1.E-19

Table 2.2. Jupiter ellipsoid gravity model coefficients (Hubbard, 2012).

= {l= Hubbard 2012 Jupiter model

A Jacobson 2003 observed

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
degree of the zonal harmonic

Figure 2.3. Jupiter ellipsoid gravity model (cf. Table 2.2).
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2.5.2 The zonal winds potential

In addition to the rotation other factors intervene in the definition of the
gravitational potential of Jupiter.

Direct observational data of the cloud layer on Jupiter surface returned
evidence of the presence of strong winds zonally distributed on the planet
surface. The winds speed is supposed to exponentially decrease in the radial
direction proportionally to the scale height (Kaspi et al., 2010).

If the zonal winds extended at high pressures (large scale height) they would
involve a significant amount of the planetary mass. Therefore the gravitational
signature of the winds increases with the depth. If the winds were very shallow
the gravitational signature would be almost negligible. On the other hand if
they penetrate in depth inside the planet their gravitational signature would be

relevant (Kaspi et al., 2010).
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Figure 2.4. Gravity spectrum for different winds penetration depth (Kaspi et al., 2010). H (km) is the
scale height of the exponential attenuation.

32



Numerical Simulations of the Juno gravity experiment

Component of the power spectrum of the zonal winds can be found also in the tesseral
and sectoral moments of the spherical harmonics expansion, even if rapidly decreasing

in magnitude with the order.
The goal of the Juno gravity experiment is to exploit the sensitivity of the instrument

onboard the spacecraft to take proof of the extension in depth of the zonal winds.

2.5.3 Jupiter Love numbers

Further contribution to the exploration of the planet Jupiter will be given by the
measurement of the tidal deformation of the body under the combined effect of its

satellites (mainly the galilean moon Io) and the Sun.

Perturbing GM Semi-major Revolution Tidal
body (km?/s?) axis (km) period (dd) parameter
Io 5959.9 421 800 1.796 2.29-107
Europa 3202.7 671 100 3.551 3.06-108
Ganymede 9887.8 1070 400 7.155 2.33-10%
Callisto 7179.3 1882 700 16.69 3.10-10°
Sun 1.3273-10" 778 412 020 4330.6 8.11-101

Table 2.3 Tidal parameters of Jupiter with respect to the Galilean satellites and the Sun

The gaseous nature of the planet, allows assuming a constant proportionality factor for

the tidal deformation at every frequency and direction.

2.6 Satellites and rings

A Rings system and a large number of moons surround the planet Jupiter. In the XVII
century, Galileo Galilei observed 4 moons orbiting the giant planet. In recent times,
astronomers have observed other 63 Jupiter moons and the long-exposure Voyager 1

images detected the ring system (Smith et al., 1979).
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Jupiter moons divide into 3 main groups: inner moons or ring-moons, Galilean moons,

outer or irregular moons.

Four small bodies named Metis, Adrastea, Amalthea and Thebe compose the inner
moons group. The dust separating from these bodies and pulled inward or outward by

orbital stability forms the ring system (Burns et al., 2004).

The ring system is composed by three main components: the halo, the main ring and the

two gossamer rings.

The main ring extends from 1.70 to 1.803 jovian radii. It is the brightest ring and is
formed by dust particles from Adrastea and Metis pulled inward towards Jupiter. At
the inner limit of the main rings there is a transition toward the region known as halo.
The halo ring rapidly increases in thickness up to 20 000-40 000 km opening in a torus
which disappears at 1.4 Jovian radii. The thickness refer to the highest height at which
material can be observed, but the most of the material in the halo is concentrated in a
few hundreds km from the equatorial plane. The inner gossamer ring is composed by
material coming from Amalthea while the outer ring is alimented by dust from Thebe

(Burns et al., 2004).

Adrastea B
Metis

Gossamer Rings B
Halo <
Main Ring S o

.
Amalthea

Figure 2.5 Jupiter inner moons and rings system (Burns et al., 2004).
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The Galilean moons are named lo, Europa, Ganymede and Callisto. They are the
largest natural satellites of Jupiter and concentrate most of the mass of the moons
system. This group of moons is characterized by a complex geology (Bagenal et al.,

2004).

Io is the most volcanically active body of the solar system. The strong tidal heating
aliments the volcanic process. Io is supposed to be composed by a silicate crust and
mantle with an iron rich metallic core. The magnetic field of Jupiter induces a magnetic
field in the Io melted mantle. The absence of an intrinsic magnetic field suggests a non-

convecting core (Bagenal et al., 2004).

Europa has an ice crust characterized by intense tectonism that produces a fast
resurfacing. The presence of an induced magnetic field requires a liquid water shell
beneath the ice crust. The mantle is composed by silicate while the core is metallic even

if its size and composition is unknown (Bagenal et al., 2004).

Ganymede is the largest moon of the system. It is the only Galilean moon which show
an intrinsic magnetic field that must be alimented by a dynamo in the liquid iron-rich
core. The ice crust is characterized by tectonic resurfacing but the presence of impact
craters suggest that the resurfacing is slower than for Europa. Between the ice crust

and the silicate mantle there is a liquid water layer (Bagenal et al., 2004).

The surface of Callisto shows many impact craters that are an index of slow
resurfacing. The induced magnetic field requires a water layer beneath the ice crust

(Bagenal et al., 2004).
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©

Figure 2.6 Possible models for the interior structure of the Galilean moons. Top left is Io, bottom left is
Europa, top right is Ganymede and bottom right is Callisto (Bagenal et al., 2004).

The group of the irregular moons is composed by a large variety of small bodies whose

orbits are characterized by large semi-major axis and eccentricity. They divide in two

main classes: prograde and retrograde.
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3 Orbit determination

techniques

3.1 Radiometric observables

The measurement of the spacecraft position and velocity is carried out by means of a
tracking system, which measures the properties of the radio signal travelling from the
transmitter to the receiver. The role of transmitter and receiver may be taken from the
ground station or from the spacecraft telecommunication system depending on the

chosen operative mode (Montenbruck et al., 2000).

If the link consists only of a downlink signal from the spacecraft to the ground station
the observable is called one-way. Alternatively, the ground station irradiates a radio
signal towards to the spacecraft, which receives and retransmits it to the same ground
station in two-way mode. For missions to the outer solar system may occur that the
round trip travelling time between the ground station and the spacecraft is greater than
the visibility period from the ground station. Therefore the returning signal is received
not by the ground station transmitting the signal but from a second one (three-way

mode) (Montenbruck et al., 2000).
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The radiometric observables divide in three main categories (Montenbruck et al., 2000):

e Angular observables
e Range observables

e Range-rate observables.
The Juno mission tracking system will use only two-way range and range-rate

observables. During Ka-band tracking only range-rate measurements will be collected.

3.1.1 Two-way Range observables

3.1.1.1 Multi-tone ranging

The two-way range observable is a measurement of the round trip light time of a signal

emitted from the ground station to the spacecraft and transmitted back to the station.
The ranging signal modulated onto the carrier is substantially a sine wave:
s, = Asin(27 fyt)

When the signal is received at the ground station it is demodulated by the ranging
demodulator and the phase of the incoming tone is compared to the phase of the
outgoing one. The received phase will result shifted by a quantity dependent by the

distance travelled by the signal (Montenbruck et al., 2000).

s, = Asin(Zﬂf0 (t—z—pjj
c

The phase difference is proportional to the round trip light time.

ACI):27rf02—p

c
RTLT=2—p: AD
c 2rf,
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The phase shift can only be measured in an interval [0,271'] therefore ambiguity

problems arise when converting from phase to range. To solve the ambiguities minor
tones derived from the major tone are coherently modulated onto the carrier.
Considering that the accuracy in the phase determination is independent by frequency,
the shortest wavelength defines the range accuracy while the low frequency tones

resolve the ambiguities (Montenbruck et al., 2000).

3.1.1.2 Pseudo-noise code ranging

An alternative to multi-tone ranging is to modulate onto the carrier a random-like
binary code. The code is repeated after a predefined number of bits known as code
length. When the signal is received and demodulated by the ground station and the
received code is correlated with a replica of the uplink code, to determine the phase
shifting. The chip length gives the accuracy in the range determination while the code

length resolves the ambiguities (Montenbruck et al., 2000).

3.1.2 Two-way Range-rate observables

The two-way range-rate observable is a measurement of the Doppler shift of a signal.
The signal is transmitted from the ground station at a frequency f, and it is received
by the spacecraft with a certain Doppler shift due to the relative motion of the two
participants. The onboard transponder coherently transmits it back with a frequency
multiple of the received one (turn-around ratio 7") in order to avoid interference with
the incoming wave. When the signal is finally received at the ground station at a
frequency f,. The received frequency is mixed with a reference frequency and a low

pass filter returns the Doppler frequency f, — f,,, (Montenbruck ef al., 2000).

The Doppler shift cannot be measured instantaneously, but it is instead measured by
counting the accumulated cycles of zero-crossings over a count time 7, . The

observable built in this way is the Integrated Doppler which is different by the

instantaneous Doppler (Montenbruck et al., 2000).
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The number of cycles the Doppler frequency accumulates in a count time interval

T.=[t.1,] is

NI for)

The reference frequency is assumed constant over the count time interval and

proportional to the transmitted frequency.
f;ef = TfT

The received frequency can be approximated as
2(
fo= Tfr[ £ ]
c
where /; is the average range-rate over the count time.

The cycles count is rewritten as

N= I{Tfr( _] Tff}dt——ijszdt_—TfT 2P (1, —1)= TfTiTC
C

The average range-rate is therefore related to the cycles count

3.2 Instrumentation

3.2.1 Onboard instrumentation

The instrument enabling the high accuracy measurements of the Juno gravity science

experiment is the onboard Ka-band translator (Simone et al., 2009).
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The instrument is able to receive a radio signal from the ground station and transpond
it back to the station in coherent mode. It is characterized by a high frequency stability

which allows high accuracy Doppler measurements (3 um/s at 1000 s integration

time).
The modules composing the Kat are:

e Receiver analog module
e Digital module
e Transmitter analog module

e Baseplate module

A 3D view of the instruments and the functional block diagram are reported:

Figure 3.1. KaT 3D model (Simone et al., 2009).
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Figure 3.2. KaT top-level block diagram (Simone et al., 2009).

The frequency plan is based on a particular Phase-Locked Loop (PLL) called Flexible
PLL.

The internal frequency reference is given by an Oven Controlled Quartz Oscillator

(OCXO).

The KaT characteristics are:

Figure Specification Test Results  Notes
Turn-around ratio 3360/3599

Acquisition Threshold  -130 dBm @ 4 kHz/s -132 dBm

Tracking threshold -135 dBm @ 1.2 kHz/s -139 dBm

Tracking Range +3MHz >+7 MHz

Noise Figure <5dB <4 dB

Output Power 34 dBm @ 32 GHz 34.5 dBm
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Allan Deviation

e 1sec 1013 (goal) 3.04-103
Measured @
e 10sec 104 (goal) 3.11-104
-130 dBm
e 100 sec 4-1015 3.08-101°
e 1000 sec 4-1016 -

Table 3.1. KaT performance test results (Simone et al., 2009).

The instrument has been manufactured by Thales Alenia Space — Italy (TAS-I) and
funded by the Italian Space Agency (ASI).

3.2.2 On ground instrumentation

When close to pericenter, the Juno spacecraft will be tracked from DSS-25 (NASA -
DSN). It is located at the Apollo site of the Goldstone Deep Space Communication

Complex in Fort Irwin, California.

Figure 3.3. DSS-25, Goldstone Deep Space Communication Complex, Fort Irwin (CA).
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DSS-25 is 34-m beam waveguide (BWG) antenna and its design and basic performance
parameters are similar to those of the 34-m high efficiency (HEF) antenna. 5 precision
radio frequency mirrors reflect the signals along a beam-waveguide from the vertex of

the antenna to the underground equipment room (deepspace.jpl.nasa.gov, 2006).

Beam Waveguide
Antenna Design
Shaped-Surface
11 Subreflector
/ 34 meter
Shaped-Surface
Reflector
Geometric Foci
Beam Waveguide
T e— /Azlmulh Track
Pedestal Room
f3 B =)
MICTOWAVE =
Packages L

Figure 3.4. 34-m BWG antenna design (deepspace.jpl.nasa.gov, 2006).

This station is also equipped with an Advanced Media Calibration System (AMC),
which provides calibration of the dry and wet component of the troposphere. The
system includes water vapor radiometers, digital pressure sensors and microwave

temperature profilers, which are symmetrically installed at short distance from the

antenna (Tortora et al., 2004).

44



Numerical Simulations of the Juno gravity experiment

Figure 3.5. Advenced Media Calibration System - Water Vapour Radiometer at DSS-25.
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3.3 Error budget for the Juno mission

Radiometric measurements are affected by several noise sources. It is important to
quantify the error expected on the observables (error budget) in order to faithfully

reproduce the results of the experiment.

The gravity experiment of the Juno mission will be carried out using range-rate
measurements only, therefore the link budget will focus on the Doppler observable.
The disturbances on the Doppler signal are due to instrumental noises, propagation

noises and systematic errors.

The instrumental noises are random errors introduced by the on-ground and the

onboard instrumentation.

An electromagnetic signal propagating trough a media with random refractive index
fluctuations undergoes a change of direction and velocity propagation, which reflects

on the signal phase, frequency and polarization (Asmar, 2005).

Possible systematic effects are due to a residual orbital signature or biases in the

calibrations.

The signal and the noises enter the observation with different transfer functions
depending on the Doppler mode (one/two/three-way). The observation are represented
by a time series y(t) of fractional Doppler fluctuations, that is the change in frequency

between the received and reference signal, divided by the nominal frequency of the

Doppler link.

Af (@)

t)= .
==

The index chosen to represent the frequency stability of the radio signal is the Allan
variance, which is a time domain measure of fractional frequency fluctuation as a

function of averaging time (7).
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7:()=5 (P57 )= [ 25, Smﬂf’gf)df

S, (f) is the power spectral density of the fluctuations (Asmar, 2005).

Usually it is a function of the kind S| (f)=hr".

Section 3.3.1 contains an operative computation of the expected noise for the Juno

radio link.

3.3.1 Instrumental noise

The power input at the receiving antenna can be computed using the following

equation:
EIRP -G,y

e Ly LesLpLcLpoy
where
EIRP = P,,G,, Equivalent Isotropically Radiated Power
P Transmitted Power
Gy Transmitting antenna gain
Gy Receiving antenna gain
L, Atmospheric attenuation
L Free space attenuation
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L, Pointing loss
L. Circuit loss
Ly, Polarization loss.

The antenna gain is defined as

DY
o)

where

n Antenna efficiency
D Antenna diameter

A Signal wavelength

Free space losses depend on the distance between the two antennas.

4R\’
b= (Tj

The power associated to the disturbing noise is expressed by

N =KT,,.B=N,B

where

N Noise power
K=138-107J/K Boltzmann constant
Ty System temperature

B Instrument bandwidth
N, Noise power density
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The SNR is the ratio between received and noise power Py, /N, .

Uplink frequency 34.4 GHz

Downlink frequency 32 GHz

Uplink wavelength 8.7 mm

Downlink wavelength 9.4 mm

Ground Station

Tx Power 755 \W (Slobin, 2010)
Antenna diameter 34 M (Slobin, 2010)
Antenna efficiency 0.6

System noise temperature 39.62 K (Slobin, 2010)
PLL Bandwidth 0.1 Hz

Spacecraft

Antenna diameter 2.5 m

Antenna efficiency 0.6

Tx Power 2.5 \W (Simone et al., 2009)
Distance from the Earth 6 AU

System noise temperature 300 K TAS-I

PLL bandwidth 1 Hz TAS-I

Table 3.2. Radio link input data.

3.3.1.1 Uplink

Using the equations in section 3.3.1 with the inputs of Table 3.2 it is possible to

evaluate the link budget for the uplink leg.

Ground Station

Tx Power 28.78 dBW

Antenna gain 79.54 dBi
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EIRP 108.32 dBW
Polarization loss 0.08 dB
Pointing loss 0.12 dB (Slobin, 2010)

Propagation loss

Free Space loss 302.22 dB

Atmospheric attenuation 0.37 dB (Slobin, 2010)
Spacecraft

Antenna gain 56.87 dBi

Circuit loss 1.69 dB

Pointing loss 0.2 dB

System noise temperature  24.77 dBK

Received Power -139.49 dBW

Noise Power density -203.83 dB

SNR 64.34 dBHz

Table 3.3. DSS25 - Juno HGA link budget (uplink).

3.3.1.2 Downlink

Spacecraft

Tx Power 3.98 dBW

Antenna gain 56.24 dBi

EIRP 60.22 dBW

Circuit loss 1.69 dB

Pointing loss 0.2 dB (Slobin, 2010)

Propagation loss

Free Space loss 301.59 dB
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Atmospheric attenuation 0.37 dB (Slobin, 2010)

Ground station

Antenna gain 78.91 dBi

Polarization loss 0.08 dB

Antenna axial ratio 1 dB (Slobin, 2010)
Pointing loss 0.12

System noise temperature = 15.98 dBK

Received Power -165.92 dBW

Noise Power density -212.63 dB

SNR 46.71 dBHz

Table 3.4. Juno HGA - DSS25 link budget (downlink).

3.3.2 Troposphere

The troposphere is a portion of the Earth atmosphere extending from sea level to
approximately 42 km. It is composed mostly by neutral gas and the fluctuations of the
refractive index are due mostly to temperature, pressure and partial pressure of water

vapor.

At microwaves frequencies the troposphere is a non-dispersive medium hence the

refractive index does not depend on the frequency of the signal.

Tropospheric refraction has two components: A dry component due to dry air

contribution and a wet component due to water vapor.

Long period observations of the tropospheric refractive index show a seasonal
fluctuation of the wet component. Fluctuations are larger in summer daytime and

smallest in winter nighttime (Asmar, 2005).
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The wet component effect can be removed at the level of nearly 90%, using the
Advanced Media Calibration (AMC) instrumentation (Resch et al., 2002;Tanner, 2003),

which is substantially based on the use of water vapor radiometers.
The calibration of the dry part of the troposphere base on (Asmar, 2005)

e Surface metrology
e Assumption that the atmosphere is in hydrostatic equilibrium

e Elevation dependent model of dry component

Allan dev (1000 s) 2-way

Tropospheric scintillation (winter night) 1310 +43.10™"

Tropospheric scintillation after AMC 32:107"

Table 3.5 Tropospheric noise contribution (Asmar, 2005).

3.3.3 Ionosphere

The ionosphere is a layer of the atmosphere extending from 50 km up to 1000 km. It is
composed of plasma of ions and free electrons, generated by the absorption of the solar

ultraviolet radiation.

Free electrons play a key role in the fluctuations of the refractive index of the
ionosphere. The electrons concentration increases with height, as the solar radiation is
stronger. The maximum is located at 300 km. After this point the concentration
decreases due to the reduction of the atmospheric density. Seasonal and diurnal

variations affect the electron density profile.

A simplified model of the ionospheric refractive indices leads to (Jeske 1988)

2 2
zl_lf_p : ~1+lf_p
ph 2f2 8r 2f2
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fma [
m,€,
where
/, plasma frequency
d, electron number density
e, electron charge
m, electron mass
g, vacuum dielectric constant

The total electron content (TEC) is defined as the integral of the electron number

density along the line of sight ( observer — spacecraft direction ).
0

TEC = [d,(s)ds
N

It is expressed in TECU =10"m™>.

The range correction due to ionospheric refraction is

Ap= _T(ng ~1)ds = 40'3];#
N

while the signal phase correction is

A < 403-TEC
2—21 = [(n,—1)ds =- ==

n
2
s f
Since global ionospheric models do not provide the sufficient calibration accuracy, it is

important to locally measure the total electron content.
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The corrections become weaker as the frequency of the signal increases (Ka-band is
more convenient than S or X band). Being a dispersive medium, the ionosphere allows

its complete calibration by the use of multifrequency links.

In the Juno case the link will be Ka-band only. The effect of the ionosphere is limited

but not completely removed.

3.3.4 Interplanetary plasma

The Sun continuously ejects charged particles in the outer space. The particles interact

with the electromagnetic signals propagating in space.

In the solar wind there are density fluctuations that, convected by the solar wind speed
cross the line between the signal source and the receiver. The solar wind density
fluctuations cause random fluctuations of the refractive index. The only component of
the solar wind speed affecting the signal is the component perpendicular to the line of
sight (Iess et al., 1983). There is clearly a dependence on the relative position of solar
wind source, the Earth station and the spacecraft. The relative position is expressed by

the Elongation angle or, in the outer solar system Sun-Earth-Probe (SEP) angle.

The interplanetary plasma is a dispersive medium therefore the effect on the signal

depends on the frequency.

As for the ionosphere the dependency on the frequency is F , hence at Ka-band the

plasma contribution is 16 time smaller than at X-band (Asmar, 2005).
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Figure 3.6. Power spectral density of proplasma phase scintillation at £=0.001 Hz versus SEP angle (red
circles and crosses), approximate level of uncalibrated tropospheric scintillation noise (blue) and limits
to antenna mechanical noise (green) (Asmar, 2005).

The right hand scale of Figure 3.6 is the equivalent Allan deviation at 1000 s integration

time.

The interplanetary plasma scintillation can be completely calibrated by means of a
multifrequency link, as already done during the Cassini Solar Conjunction Experiment
in 2002, using a triple link X/X, X/Ka, Ka/Ka. A dual frequency link allows plasma

removal at a level of 75%.

3.3.5 Error budget summary

The following tables summarize the noise sources descripted in the previous section
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Type o, (IOOOS) (07 h Reference
two-way

Media

Troposphere (with AMC) nominal 3.2-10 -2/5 9.8-102

Troposphere minimum (without AMC) 1.4-10 -2/5 4.7-107%
Plasma/ionosphere (SEP = 30°) 4.7-101 -2/3 1.1-10%
Plasma/ionosphere (SEP = 150°) 1.4-107° -2/3 1.1-10%

Ground Segment

Antenna wind loading 22-10 0 2.3-102
Antenna gravity deflection 4.7-101° 0 1.8-10%
Antenna thermal deformation 3.7-101 0
BWG mirror deformation 1.7-10% 0
Frequency standard 1.0-1015 0
Ground receiving chain 2.3-10" 2
Ground transmitting chain 5.7-10" 2
Spacecraft Segment
KaT and onboard amplifiers 4.0-101° 2 5.8-103°
Antenna System 5.0-10"7 0 3.6-10%
Diplexer and Triplexer 2.3-10" 2
Passive RF components (waveguides) 1.6-101° 0
OD system

25107
Station location, Earth tides and

8.0-10 @ 1.16 -

polar motion

10° Hz
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Total RSS best

6.2-101°
(SEP =150°; calibrated troposphere)
Total RSS worst

1.6-10%

(SEP = 30° uncalibrated troposphere)

Table 3.6. Error budget summary for the Juno mission

The estimate of the total end-to-end Allan variance has been obtained by summing the

variances from all the contributions.

The total expected power spectral density for the best and worst case are

10 g T T T T T — T T T T T
E ——-Troposphere
L, Plasma

107 ——~-White frequency nois¢
E White phase nois¢

—Total
0%
107

Power spectral density [1/ Hz
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T
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Figure 3.7. Doppler residuals expected power spectral density — best case.

57



Numerical Simulations of the Juno gravity experiment

107 T L T T T T L N A T
E ——-Troposphere

E Plasma

10" ——~-White frequency nois¢
= White phase nois¢

—Total

Power spectral density [1/ Hz

T 1T AR UTTTY BN RETTT MO RUTTIY NI RETITY M WUTTIT MARARUTIT ANCARTIT]

10 Ll Lol Lol el il I Mt eSO | L
10" 10° 10" 10° 10° 10" 10° 10’ 10

frequency [Hz]

Figure 3.8. Doppler residuals expected power spectral density - worst case.

The Doppler integration time will be 60 s. This region of the spectrum is not dominated

by thermal noise. Thermal noise will not significantly affect the gravity measurements.

The 60 s Allan deviations for best and worst case are

Case o, (1000s) o, (60s)
Best 6.2-101" 2.3-10
Worst 1.6-10 4.0-101

Table 3.7 Best and worst case allan deviation for 60 s and 1000 s integration time.
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3.4 Orbit determination problem

The accurate determination of a spacecraft orbit is crucial problem in space missions.
The mission operations have to rely on an affordable reconstruction of the spacecraft

trajectory to plan maneuvers and observations.

The classical orbit determination problem based on the assumption that the bodies
move along keplerian trajectories (conics), that is under the only influence of the

gravity of a central body, determining the evolution of their motion.

A keplerian conic is defined by 6 parameters, were they the body position (3
parameters) and velocity (3 parameters) at a given epoch or the 6 classical elements
(semi-major axis, inclination, eccentricity, right ascension of the ascending node,

argument of pericenter and mean anomaly at a given epoch).

The problem can be solved by realizing 6 observations of the body state vector and

therefore solving a determined system of 6 equations in six unknowns.

The motion of a celestial body (planet or satellite) is generally closely approximated by
a keplerian orbit, but this is not true for other bodies such as artificial satellites or
asteroids. In these cases the equations of motion depart significantly from the central
body law. Non-gravitational accelerations and the gravity corrections due to

asphericity of the central body or to third body effects start to play a key role.

The equation of motion is therefore more complicated and the analytical solution is
generally not available. It is therefore necessary to approximate the dynamics of the
problem (usually linearizing). Even in this case the problem can be solved iteratively
having the availability of a number of observables equal to the number of parameters

and an initial guess solution close enough to the actual one.

This approach neglects the fact that the observations are not perfect but are affected by
random and systematic errors characterized by a certain statistics. Moreover, also the

knowledge of the dynamics regulating the trajectory propagation is not perfect.
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The errors are, as a matter of fact, additional unknowns of the system. Being m the
number of observations and n the dimension of the state vector, there are m equations
for m + n unknowns and the system results to be always underdetermined (Tapley et

al., 2004, p.12).

A statistical approach is needed to obtain the solution which best approximate the
actual one. This solution is not coincident with the actual trajectory, but is the best

approximation on the basis of the observational data.

Y

Estimated

Vehicle Trajectory

_________________________ l True

—_——

Nominal
Trajectory

Tracking Station
at (Xj, ¥; )

JY

e NN A R
P o~ UM -

Figure 3.9. Orbit determination problem schematics. The nominal trajectory is the first guess solution
required by the iterative solution method (Tapley et al., 2004, fig.1.2.1).

3.4.1 Mathematical formulation

The following mathematical formulation is based on Chapter 4 of (Tapley et al., 2004).

The differential equation regulating the spacecraft dynamics is a non-linear function of

state and time
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where X(7)is the spacecraft state vector (position and velocity). The minimal set of

parameters constituting the state vector is the spacecraft state and velocity. It can be

expanded to include model parameters, e.g. the central body GM.

Real observations are non-linearly dependent by the state and time and are corrupted

by random errors.

where ¢, are the observation epochs, Y is the actual observation (observed observable),

G is a model of the observable in terms of the state vector of the spacecraft and € is the

observation error.

This two set of equations can be expanded in a Taylor series arrested at the first order

about a nominal known trajectory X, (¢) (time dependence from time omitted for the

sake of clarity):

oF oF

. 2
X= F(X*,t)+(a—Xl(X—X*)+0((X—X*) )= F(X*,t)+(a—Xl(X—X*).
This expression can be rewritten in terms of the trajectory correction x = X — X, :

X, =F(X..1)

oF
X (E)X)*x

oF
where A= (— is the square matrix of the partial derivatives of the dynamics with
respect to the spacecraft trajectory.

The solution of the differential equation has the form
x(1)=®(1,,1)x, ’ x, = x(t,)

X(t) = X*(t)+(I)(t0,t)(X(t0)—X*(to))
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CD(IO,I) is an n-by-n matrix linearly linking the state at a given epoch ¢, to the state at a

general epoch 7. It takes the name of state transition matrix.
This matrix enjoys the following properties

1. ®(ty,1,)=1
2. @7 (1,,t)=D(1.,1,)
3. q)(tl’tz)q)(to’tl):(D(to’tz)

Even the observation equations are linearized about the nominal trajectory and

expressed in terms of observation residuals vector y:

Yl.zG(X*,.,ti)+(g—)G(j (X, —X.,)+¢& ;5 Y., =G(X..t)

yi:ﬁixi+8i i=1,...,1

where H is a 1-by-n mapping matrix, Y,; is the observable computed on the nominal

trajectory X, at epoch f, (computed observable).

Each residual can be expressed in terms of the state vector of the spacecraft at the

epoch =1,

v, = H®(ty,1,)x, +& = Hx, +& i=1,..,1
rewriting everything in matrix form

Y [ H ] &
y= = X, + :HX0+8.
Vi [ H, ] &

H takes the name of normal matrix and contains the partial derivatives of the

observables with respect to x,, y is the residuals vector and € is the observation

error vector.
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The objective of the statistical orbit determination is to find the correction x,, which

minimizes a certain cost function of the observation errors. Propagating the estimated

correction X, , it is possible to get the trajectory best approximating the actual trajectory

followed by the spacecraft at each time.

The observation error statistics is assumed a priori to be white Gaussian, therefore
E(e)=0 : E('¢)=| : . i |=R

This means that the observation error distribution is zero mean and that errors at

different times are not correlated.

It is now time to introduce the concept that the observables are not equally accurate.

Each observable has to be weighted differently in regard of its intrinsic accuracy:

WYy =W" Hx, + W"e WV2=Rr"= = -
It is straightforward that the smaller the standard deviation associated to an

observable, the larger its weight is.

The cost function to be minimized is the sum of the squares of the observation errors,

taking into account the relative weights (weighted least squares filter):

1/o} - 0

where W is called weighting matrix.

The cost function can be expressed as function of the unknown correction X, :
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J(x,)= %(y—on ) W (y—Hx,)= %(yTWy—xgHTWy—yTWHxO +x! H"WHx, )

to get the minimum of the function :

aJ (x,)
ox,

=—H"Wy+H"WHx, =0

The correction satisfying this constraint is the best estimate :
S T Lo
%, =(H"WH) H"Wy.

Usually an a priori solution X, with a certain associated covariance matrix P is

available. The a priori information is useful in order to better condition the solution

avoiding symmetries intrinsic in the non-linearity of the problem.

The cost function expression is slightly different from the previous case, since it

contains a penalty for the solution departing significantly from the a priori one.

J(xo)z%(y—HxO)TW(y—HxO)+%(x0 _J_CO)

T -

=

1(xo _fo)

% =(H'WH+P™") (H'Wy+P'x,)

The a priori covariance matrix of the a priori solution plays a key role. If its element are
too large, the a priori solution loses its conditioning of the solution. On the other hand,
if its elements are too small they will tend to overcome the information content coming

from the data and the estimate will result bonded to the a priori solution.

The matrix (H "WH + 13_') is called information matrix. Thanks to the assumption made

on the weighting matrix, it is easy to demonstrate that the inverse of the information
— -1

matrix, P = (H "WH + P_l) , is the covariance matrix associated to the estimated

solution.

64



Numerical Simulations of the Juno gravity experiment

At this point, the trajectory propagated from the estimated correction can be used as a

new nominal trajectory and the whole process can be iterated until convergence occurs.

3.4.2 Consider parameters

The consider parameters is a set of model parameters which are not included in the
estimated parameters vector. Their value is characterized by an uncertainty that can

influence the uncertainty associated to the estimated parameters.

The equation of the least squares filter must be adapted. In the following equations the
subscript x indicates quantities relative to the estimated parameter while the subscript
c is for consider parameters quantities. The formulation for consider parameters is

from Chapter 6 of (Tapley et al., 2004).

Assume a given set of a priori deviations for the consider parameter, ¢, and the

relative a priori uncertainty, P,

cc’/

is given

y=Hx+Hz+e ; P=(HWH +P') ; S =P'HWH,

X X
X.=x+S.c
T
PX)C = P.)L + SXCP(‘CSXC

where X,is the new estimate accounting for the deviation in the consider parameters

and P, is the new covariance matrix including the effect of the uncertainties in P, .

The matrix S is called sensitivity matrix. From the sensitivity matrix it is possible to

build the perturbation matrix,
I'=S§ diag (O'C)

which returns the correction to the estimate for a 1 sigma deviation in the consider

parameters.
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3.4.3 Multiarc approach

Often the observables set is composed by observables collected along arcs of trajectory
that are not dynamically coherent. This happens for example in the Juno mission
where after each passage at pericenter and outside the Ka-band tracking period there is
an orbit trim maneuver (OTM), followed by 11 days in which the spacecraft flies far
from the influence of the perturbations of the gravitational field of Jupiter. Integrating
a single arc of trajectory requires high accuracy in the modeling of all the perturbations
affecting the spacecraft trajectory in the period between two consecutive Ka-band
passes. This modeling effort does not add much to the information about the gravity

field of Jupiter, that is the object of the investigation.

An alternative approach consists in dividing the trajectory in several arcs, dynamically
independent one from the others. Each arc will be characterized by a state vector
containing a different initial state vector (local parameters) but a common set of model
parameters (global parameters). This results in an over parametrization of the problem,
despite of a loss of accuracy in the determination of the spacecraft positions a velocities

since the single arcs are not constrained to belong to a coherent trajectory.
Mathematically, the formulation is similar to the case of the single arc estimation.

For each arc n, the subset of local and global parameters is individuated

y,=Hx, +E&, ; 8 n=1,..,n

I
<
8
b}
2

Rearranging :
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i Il *u
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The minimization process leads formally to the same results for the best estimate of the

parameters vector and its associated covariance.

For the Juno mission it has been chosen to select from the nominal trajectory 25
independent arcs. Each arc starts 12 hours before the closest approach with Jupiter and
ends 12 hours after it. The arcs of trajectory contain 1 Ka-band tracking pass each. The
multiarc approach will be used selecting as local parameters the Juno position and
velocity at the beginning of the arcs, and as global parameters the gravity field

coefficients of Jupiter.

3.4.4 Orbit Determination Software

The key tool of the analysis is the NASA-JPL operative software package for
interplanetary spacecraft Navigation : DPTRAJ-ODP (Double Precision Trajectory —
Orbit Determination Program). It is a collection of routines each fulfilling one of the
tasks required in the orbit determination process. The heart of the software is

constituted by two particular routines:

e The trajectory and trajectory partials numerical integrator (DIVA)

e The routine for the observables and regression partials computing (REGRES).

The DPTRAJ-ODP least squares filter routine has not be conceived for an extensive use
of the multi-arc approach. Therefore the Laboratorio di Radio Scienza of Sapienza,
Universita di Roma developed a new routine for the least squares filter, ORACLE,

particularly performing if used for multiarc orbit determination.
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The operation of comparing the values of two observables to compute the residual and
the finite representation of the variable time are the principal sources of the numerical
noise that the code introduce in the residuals due to the limited number of digits. The
necessity to limit this behavior led JPL to the choice to develop a new operative code
for navigation, MONTE, which is the code that will be actually used to analyze the

Juno tracking data.

The analyses presented in this work have been realized with DPTRAJ-ODP
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4 The Juno gravity experiment

simulation

The measurement of the gravity anomalies on the surface of Jupiter is one of the main

goals of the Juno mission.

In order to find the most efficient estimation strategy, an in depth analysis of the
problem must be carried out, identifying the criticalities and the opportunities for

further science.

The first step in this process is the realistic simulation of the environmental conditions
in which the Juno spacecraft will be at experiment epoch. The accelerations that will
significantly affect the spacecraft trajectory must be accurately modeled (cf. Section

4.1).

The second step is to model the radio signal characteristics, reproducing the effective

radio link and data quality (cf. Section 4.1.6).

The third step is to find the correct estimation strategy allowing the achievement of the

goals established for the experiment. (cf. Section 0)
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Figure 4.1. Data simulation and experiment simulation process.

4.1 Data Simulation Process

4.1.1 Relevant accelerations

The simulation focuses on the orbital phase of the spacecraft about Jupiter. The arcs of
trajectory considered start at one day before the periapsis and end one day after.
Therefore only the perturbations that significantly affect the trajectory in these periods
are considered. The following table shows the order of magnitude of the most

important accelerations at the closest approach with Jupiter.

Gravitational forces are dependent exclusively on the mass of the probe they are acting

on.
Gravitational acceleration Maximum value (km/s?)
Jupiter monopole 2.5-10?
Jupiter oblateness ( J2) 4.5-10%
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Galilean satellites monopole 3.5-107
Jupiter tidal deformation ( k2 and ks) 6.0-10°
Lense-Thirring 1.0-1010

Table 4.1. Gravitational accelerations order of magnitude at closest approach with Jupiter

Non-gravitational accelerations strongly depend on the surface of the spacecraft they
interact with. The large surface of the solar arrays makes Juno particularly sensitive to

this kind of forces.

Non-gravitational acceleration Maximum value (km/s?)
Solar radiation pressure 9.0-1012
Thermal IR planetary emission pressure 1.2-1012
Jovian albedo 6.0-1013

Table 4.2. Non-gravitational accelerations order of magnitude at closest approach with Jupiter

4.1.2 Nominal Trajectory

The nominal trajectory has been provided by the NASA - Jet Propulsion Laboratory by
means of dedicated SPICE kernels to all the scientific teams involved in the Juno

project.
In the analysis, the 25 arcs relative to the gravity science pericenters are isolated from

the nominal trajectory. The initial conditions are taken at perijove - 12 hours.

4.1.3 Jupiter gravity field simulation

The gravity field of Jupiter, main object of the investigation, is simulated by
superimposing the ellipsoidal gravity field and the gravitational figure of the zonal

winds for a medium penetration depth (about 1000 km).
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The ellipsoidal gravity field is simulated to be exactly what predicted by W.B. Hubbard
(Hubbard, 2012). For the zonal winds gravity perturbation Y. Kaspi provided a set of
gravity field coefficients computed considering the maximum possible extension in
depth. This set of values is the result of the participation of the entire mass of the
planet to the zonal winds motion therefore does not represent a realistic scenario. It is
adopted as the a priori uncertainty limit for the magnitude of the zonal winds
correction. For the simulation of the gravity field it has been chosen to scale this

realization by a factor of 1/10.

Only the zonal coefficients are considered in the analysis, since the author has no
available prediction for a realistic value of the tesseral and sectoral coefficients at 1000
km depth. The non-zonal contribution is considered to be negligible. Obviously this is
a strong hypothesis since it reflects directly onto the number of gravity moments to

estimate.
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Figure 4.2. Unnormalized ACIm for the maximum penetration depth (Kaspi Y., private
communication,2011).
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Figure 4.3. Unnormalized ASIm for the maximum penetration depth (Kaspi Y., private

communication,2011).

The simulated gravity coefficients are reported in Table 4.3:

Coefficient Zonal winds AJ Total value
J2 1.252237940150419- 10 1.469768223794015- 102
Js -5.799646196902762 - 10 -5.799646196902762 - 10
Ja 1.582914824151301- 108 -5.871241708517585 - 10
Js 2.507218245087703 - 10 2.507218245087703 - 10
Je 1.142661182476699- 107 3.093426611824767 - 105
J7 6.889535749280466- 108 6.889535749280466- 108
Js -2.930791600868505 - 10+ -1.891307916008685 - 10+
Jo -3.959003838096452 - 10 -3.959003838096452 - 10
Jo -2.046454392842821- 10® 1.022354560715718 - 107
Ju 4.097572138760080- 10 4.097572138760080- 10
Ji2 -6.813089218623050- 10® -1.538608921862305 - 10
Jis -2.194601291076683 - 10 -2.194601291076683 - 10
Ja -3.331522786988295- 10°° -2.706222786988295 - 10
Jis 6.766118930368163- 10 6.766118930368163- 10
Jae 9.406368185924863 - 10 9.359258185924863 - 10
J17 -3.868747716403672- 10° -3.868747716403672 - 10
Js 4.679111543428224-10° 4.682752543428224-10°
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Jao 1.591009318726042 - 10~ 1.591009318726042 - 10

J20 -1.627169077921347 - 10 -1.627456377921347 - 10
Jz 7.333917468071332- 10-1° 7.333917468071332- 1010
J2 3.982849659430137 - 10 3.982872699430137 - 10°

J2s 1.372107355060810- 10~ 1.372107355060810- 10

J2u -4.890096797989601 - 10 -4.890098670989601 - 10
J2s -4.496337983161392 - 10-1° -4.496337983161392-10-1°
J26 -1.178175530319418 - 10 -1.178175376919418 - 10
J27 8.271938184315541 - 10-1° 8.271938184315541 - 1010
J2s -5.996900416620652 - 10-1° -5.996900532020652 - 10-1°
J2o -3.155342388029311- 10 -3.155342388029311- 10
Js0 4.751608532116014 - 10-1° 4.751608538474014 - 10-10

Table 4.3 Simulated zonal gravity coefficients (unnormalized).

4.1.4 The spacecraft model

The presence of large surfaces exposes the Juno spacecraft to the relevant perturbations
coming from surface forces of non-gravitational origin. The spacecraft does not host an
accelerometer that could calibrate this kind of perturbations therefore an accurate

modeling of this dynamical noise must be achieved.

In the Juno case five main surfaces have been identified: the three solar arrays, the
spacecraft bus and the high gain antenna. All these surfaces are considered
independent one from the other since the focus is on the resultant acceleration of the
spacecraft center of mass and not the attitude dynamics of the body. The characteristics

of these components are briefly reported.
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Figure 4.4. Juno spacecraft main surfaces.

n Component Model Direction Size

1 Solar array Flat plate ~ Normal pointing Earth Area =18 m?

2 Solar array Flat plate ~ Normal pointing Earth Area =18 m?

3 Solar array Flat plate ~ Normal pointing Earth Area =18 m?
Radius =1.25m

4 HGA Antenna Axis pointing Earth
Depth = 0.47

5 Bus Cylinder  Axis pointing Earth

Table 4.4. Spacecraft components dimensions.

The optical properties of the surfaces must also be specified. A certain ratio r of the
incoming radiation is reflected. The reflected radiation is in part reflected specularly

(s), while the remaining portion is diffuse reflection. The specular reflectivity

coefficient is rs/2 while the diffuse coefficient is (r(l—s)+k(l—r))/3, where k is a

coefficient modeling backside reradiation. The same optical properties are applied for

solar radiation pressure, albedo and planetary IR emission.
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n Component Specular coefficient Diffuse coefficient
1 Solar array 0.016 0.1226
2 Solar array 0.016 0.1226
3 Solar array 0.016 0.1226
4 HGA 0.036 0.1760
5 Bus 0.036 0.1760

Table 4.5. Spacecraft components optical properties.

The spacecraft mass changes during the mission because of the fuel consumption for
the maneuvers necessary to orbit maintenance. For the simulation purposes, it is

sufficient to keep the mass of the spacecraft fixed at a level of 1282.8 kg.

4.1.5 Non-gravitational accelerations

The non-gravitational accelerations constitute a possible source of dynamical noise that

must be carefully calibrated in order to ensure the success of the experiment.

The perturbations present in the simulation are the solar radiation pressure, the
planetary albedo and the Jupiter infrared thermal emission. Among these, only the
solar radiation pressure can produce a significant effect on the spacecraft trajectory.
The spacecraft attitude during the gravity science orbits places most of the surface
(solar arrays) facing the Earth (which from Jupiter is angularly close to the Sun) and

nearly orthogonal to the nadir direction.

4.1.5.1 Solar radiation pressure

The acceleration exerted on the spacecraft by the light coming from the sun can be

expressed as (ODP User's Manual v.1, p. 113)
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2 2

D0 kg km’
C, is the solar flux constant at 1 AU (Cl = —uliav — 1 020506244 - 10° -2 j
c m"s

is the Sun-spacecraft distance ( km ).

m is the mass of the spacecraft ( kg ).

P is the Sun shadow factor
= 0 if the spacecraft is in the umbra.
<1 if the spacecraft is in the penumbra.
= 1 if the spacecraft is in clear sunlight.

F is the vector of geometry/reflectivities.

4.1.5.2 Planetary Albedo

The elemental acceleration caused by the sunlight reflected by a point P on the surface

of Jupiter is expressed by (ODP User's Manual v.1, p. 128)

mr.

cs

—CK o
d,yy = =2V A(Z FyN, + Fyf,y jcz%;//dS

ps
where

C, is the solar flux constant at 1 AU.

T is the planet-Sun distance ( km ).
m is the mass of the spacecraft ( kg ).
K is the Sun shadow function

= 0 if the spacecraft is in the shadow.

= 1 if the spacecraft is in clear sunlight.
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L is the point P to spacecraft distance ( km ).

fps point P to spacecraft direction.

v, is the Sun-planet center-point P angle.

74 is the angle between the planet center-point P and point P-spacecraft direction
vectors.

N ; is the spacecraft component i orientation vector (surface normal or axes).

F,, Fy, are quantities depending upon the shapes of the spacecraft components.

A is the albedo coefficient. Generally it is expanded in terms of spherical

harmonics in order to describe the different reflectivity of the particular planet surface

regions.

A=Y (C;:l cosmA+ S sin m/l)le (sing)

where
@,A  are the latitude and longitude of the point P.
B

is the associated Legendre function.

m

In the case of the Jupiter it has been chosen that the albedo coefficient has the same

value for each point on Jupiter surface.

Lm=0 Cl\=052

| A =0.52. (Allen et al., 2000, table 12.8)
Im#0 C, =0

4.1.5.3 Jupiter thermal infrared emission

The planet emits power in the form of thermal radiation at infrared frequency.
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The elemental acceleration is expressed similarly to what already shown for the albedo

(ODP User's Manual v.1, p. 128).

drIR = 4m Ri" ps

Crg E(ZFTiNi+F 7 )CZL;”dS

ps
The symbols have the same meaning as in Section 4.1.5.2.

E is the planet emission coefficient. It is expressed in terms of spherical harmonics to

represent the variability of the power emitted over the planet surface.

E= ii(c{; cosmA+ S, sin ml)le (sing)
=0 m=0

The power emission is not uniform over the spherical surface. The emissivity is larger

at the equator and smaller at the poles (Gierasch, 1999).
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Figure 4.5. Emergent thermal flux for Jupiter and Saturn (Gierasch, 1999).
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Moreover, the infrared mapping of Jupiter from the NASA Infra-Red Telescope Facility
shows that the power emission is zonally differentiated. This behavior can be

represented by a zonal expansion of the emission coefficient.

The realization in Table 4.6 is not representative of the real Jupiter emission. The
coefficients are computed by approximating the latitudinal variability of the flux with
superimposed higher degree variations. This kind of modeling is useful to study

possible interference of the perturbation with the gravity signal (mainly zonal).

1 M C/,

0 0 1.02

1 0 5.63- 102
2 0 -4.74-10"
3 0 -1.06- 10"
4 0 6.90- 103
5 0 7.82-102
6 0 -1.10- 10"
7 0 -5.99- 107
8 0 1.28-10?
9 0 8.78-103
10 0 -1.14- 102

Table 4.6. Emission coefficient zonal harmonic expansion.
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Enmissivity coefficients wrt latitude
T T T T T
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Figure 4.6. Emission coefficient wrt latitude (coefficients in Table 4.6)

4.1.6 Data simulation

The models presented in Section 4.1 are used to integrate the Juno trajectory when

flying close to perijoves.

The integrated trajectory, along with the Earth station inertial position, is the input for

the precise solution of the light-time problem and the observables computation.

The Juno gravity experiment will be carried out using range-rate (Doppler) observables

only, collected in a period of six hours about the pericenter.

The Ka-band signal will be sent from ground and coherently transmitted back by the

onboard Ka-band transponder.

The Doppler observables will be corrupted by noise coming from several sources. An
error assessment has been given in Section 3.3. The frequency spectrum of the noise is
not completely white but shows components with spectral index -2/5 and -2/3

dominant at low frequencies.
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The instrument requirements state that the expected error in the Doppler observable

should not exceed 5-10° mm/s two-way at 1000 s integration time. This error

corresponds to a two-way Allan deviationof 0O, (1000 s) =1.67-107".

The ODP does not allow the generation of observables in Ka-band. An equivalent X-
band is adopted. The Allan deviation is calculated for a signal in Ka-band, but the
frequency is X-band (7.2 GHz). The effective frequency deviation can be computed

using the following equations:

o, (605)= %ay (10005) = 6.8-10™"

8f=0,(605)- fx, =049 mHz

The first relationship comes from the scaling in time of white frequency noise while the

second is an approximation of the definition of Allan deviation.

An additive white gaussian noise with standard deviation 8f is applied to the

generated data.

82



Numerical Simulations of the Juno gravity experiment

4.2 Gravity field estimation

The data simulation process substitutes what in 2016-2017 will be the tracking data
acquisition from DSS-25. The final output is a tracking data file entirely similar to what

would be return in the real mission.

The first step of the estimation process is to build a model of universe able to represent
the accelerations affecting the spacecraft trajectory and consequently the observables.
This model has to rely on present day accepted measurements and geophysical

assumptions.

The second step is to define the weight to apply to the observables. In real data
processing, this step is an iterative process requiring a continuous update of the
weighting matrix until convergence to a level close to the noise RMS. In simulated data
analysis it is possible to use the correct weighting matrix from the beginning, since the

standard deviation of the noise is already known.

The third step is the choice of the set of model parameters to estimate.

4.2.1 Model of the jovian system

In a real case, each model of acceleration will be only an approximation of the actual
one. Therefore we have to deal with multiple sources of mismodeling, even if most of
the models are sufficiently accurate to calibrate the real accelerations at the observable

precision.

On the other hand, the most inaccurate of them must be corrected in the estimation

process even if their determination is not the main objective of the experiment.

As a starting point, it has been chosen that the model of universe for the estimation
process is exactly equal to the model used to generate the observables, except for the

accelerations object of the experiment.
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Therefore all non-gravitational accelerations result perfectly calibrated once the
estimated trajectory sufficiently approximates the actual one. It is equivalent to state
that the models, which are not of interest, are adequate enough to calibrate the real

accelerations at the data accuracy.

The investigation focuses on the Jupiter gravity field and tidal deformation.

4.2.1.1 Trajectory initial conditions

The initial conditions of the trajectory are the same used while simulating the

observables.
Therefore no initial error is assumed for the spacecraft position and velocity.

However, the acceleration acting on the spacecraft in the two cases is different. Hence,

the propagated trajectories are not coincident.

4.2.1.2 Gravitational accelerations

The gravity field of Jupiter is the main object of the study. It is initially set to the

following values.

Body Parameter Value

5 GM 1.267127648382719- 108 km’/s’
599 2 6.572442857220718 - 10

599 Ja -2.432734712710358 - 107

599 Ja -1.957134305251665 - 10+

599 J 9.499311632060060 - 10

599 ke 0.5

599 ks 0.5

501 GM 5.959916033410404- 10° ki’ /s’
502 GM 3.202738774922892- 10° km’[s*
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503 GM 9.887834453334144- 10° km’ /s’

504 GM 7.179289361397270- 10° km’/s”

Table 4.7. Gravity field initial conditions (Jacobson, 2003). The Body ID 5 refers to Jupiter system, 599
to Jupiter as a planet. Body ID 501 to 504 identify the 4 galilean satellites Io, Europa, Ganymede and
Callisto.

All not listed gravity coefficients are initially set to zero.

4.2.1.3 Spacecraft model and non-gravitational accelerations

The spacecraft and non-gravitational accelerations models are identical to what used to
simulate the tracking data. Obviously the acceleration is dependent on the spacecraft
state vector at each integration node. In principle if the integrated trajectory coincides

with the actual one no acceleration difference would come from this models.

A mismodeling of the spacecraft properties or of the non-gravitational accelerations
may be inserted to test the sensitivity of the solution to these perturbations. The
characteristics of models used for the spacecraft, solar radiation pressure, albedo and

thermal IR emission can be found in Sections 4.1.5.

4.2.2 Data weighting

The weight applied to the observables is defined as (Tapley et al, 2004)
WEIGHT =1/0" .

18
For the Doppler observable 0 = RMS-| 1+ >
(E+1)

where

RMS is the noise RMS

E is the data point elevation.
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The elevation dependent factor is introduced to de-weight those data collected when
the spacecraft is at an elevation below 20 degrees. In this cases the radio signal has to
travel along a wide portion of the atmosphere resulting less accurate than data

received when the spacecraft is at the zenith (90 degrees elevation).
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Figure 4.7. Elevation dependent correction factor wrt elevation.
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Figure 4.8. Effect of the elevation dependent correction on the weight.
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The noise RMS is chosen equal to the simulated noise RMS. The software automatically

computes the correct weight for each data point on the basis of the elevation.

4.2.3 Estimated parameters set

The parameters that are included in the estimation are listed in Table 4.8, Table

4.9Table 4.10Table 4.11 with the associated a priori uncertainty.

Since the multi-arc approach will be used, it is necessary to specify which are the local

and the global parameters.

The local parameters are the state vector components at the start epoch of each arc. Xi
and DXi are the initial position and velocity vectors for arc i (6 components per arc).

The reference frame is Jupiter System Barycenter, Earth Mean Equator at epoch J2000.

State vector component A priori uncertainty
Xi(i=1,...,25) 10 km
DXi(i=1,...,25) 10° km/s

Table 4.8 Local parameters and their a priori uncertainty.

The Jupiter GM, the gravity field spherical harmonics coefficients and the Love
numbers of degree 2 and 3 compose the global parameters set. The gravity field
coefficients are normalized allowing a faster computation of the partial derivatives.
Low degrees tesseral coefficients (up to degree 5) are accounted in to consider the

uncertainty that could come from the their possible presence.

A priori A priori
Parameter . Parameter .
uncertainty uncertainty
GM 2 km3/s? C5,4 1.780-10%
J2 9.391-107 S5,4 1.418-107
Cc21 1.681-10° C5,5 7.734-10%
52,1 3.056-10° S5,5 3.692-107
C2,2 2.609-10° Jo 1.448-10°
52,2 1.174-10° J7 1.779-10%
J3 3.402-10° J8 7.108-107
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C3,1 6.620-10° J9 9.083-107
S3,1 5.582-10°¢ J10 4.466-107
C3,2 8.490-107 J11 8.544-107
53,2 4.299-107 J12 1.363-107
C3,3 1.657-10° J13 4.224-107
S3,3 1.348-10% J14 6.186-108

J4 5.600-10° J15 1.215-107
C4,1 2.097-10° J16 1.637-107
54,1 3.977-10°¢ J17 6.539-108
C4,2 9.914-107 J18 7.692-108
54,2 5.581-107 J19 2.548-108
C4,3 2.276-108 J20 2.541-10
54,3 1.410-107 J21 1.118-10%
C44 1.071-107 J22 5.937-108
S4,4 3.254-107 J23 2.001-10°

J5 7.560-108 J24 6.986-108
C5,1 5.012-108 J25 6.296-10°
S5,1 3.256-107 J26 1.618-10%
C5,2 1.710-10° J27 1.115-10%
S5,2 8.891-107 J28 7.943-10°
C5,3 5.999-107 J29 4.108-10
S5,3 1.512-107 J30 6.084-10°

Table 4.9 Gravity field global coefficients with associated a priori uncertainty (normalized).

In the ODP the Love numbers are defined by degree and order, to allow the
determination of a different tidal deformation relatively to the corresponding gravity

field coefficient.

In formulas, the tidal correction to the gravity field coefficient is given by (Gavrilov et

al., 1976):

n+l
(57" kst

AC _ ' n n+l l’
L :2(n m)!( m_ | s (ij kP (cosd) cosm ,
AS (n+m)\ M, \a )\ R e sinmA
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m,M, perturbing body and Jupiter mass.

s, Jupiter mean radius.

a, Jupiter equatorial radius.

RO A perturbing body spherical coordinates in a Jupiter centered Jupiter fixed
frame.

The degree n Love number is therefore expressed by n+1 parameters. In the current
analysis each group of n+l parameters is a priori correlated with correlation index
equal to 1 (or a value close to 1 to avoid singularities) in order to have a unique
parameter describing the tidal gravity field distortion of degree n. Henceforth the
author will refer to the single parameter k2 or ks without further specifying the order

subdivision.

Love number A priori uncertainty
k2 0.5
ks 0.5

Table 4.10 Global Love numbers and associated a priori uncertainty.

The GMs of the galilean satellites are inserted in the estimation process as consider

parameters. They are not estimated but their a priori uncertainty is considered.

Parameter A priori uncertainty (102 km?3/s?)
Io GM 1.2
Europa GM 0.9
Ganymede GM 1.7
Callisto GM 1.3

Table 4.11 Consider parameters: the galilean satellites GM a priori uncertainty.

Concluding, the estimation will count 150 local parameters, 65 global parameters and 4

global consider parameters, for a total of 215 estimated parameters and 4 consider.
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4.2.4 Estimation results

The results of the gravity field estimation will be shown in terms of gravity spectrum

and surface gravity.

The Table 4.12 and the plot in Figure 4.9 shows the results for the zonal gravity

spectrum.
Parameter = Formal uncertainty Estimation Error Estimated value

J2 2.02-101° 3.78-101 6.57300335696616 - 10
J3 1.62-1010 2.19-101 -2.19424688710042 - 108
J4 1.08-1010 4.29-101 -1.95708014002502 - 10
J5 1.76-101° 1.67-101° 9.23303568556361 - 10-1°
J6 3.02-101° 1.79-1010 8.57944323547712- 10
J7 5.52-101° 6.84-1010 1.84726400413802- 108
J8 9.93-101 6.27-1010 -4.59336528185576- 107
Jo 1.73-10° 8.91-1010 -8.19170843615847 - 10
J10 2.88-107 5.08-101° 2.18017153608362- 108
Jj11 4.56-107 3.90-101° 8.93359265100151 - 10
J12 6.79-107 9.43-101 -2.13373345818863 - 10
J13 9.52-10° 1.19-10° -5.41700081855902 - 10
J14 1.25-108 3.36-107 2.85375441953438 - 10
J15 1.52-108 2.90-10° -1.68123498362022 - 10
J16 1.70-108 3.95-107 5.58257820545857 - 10
J17 1.75-10% 1.72-10° -2.37886724407397 - 10°
J18 1.61-108 1.66-10° 2.42609796583061 - 10
J19 1.34-108 2.73-1010 5.27967584275388 - 1010
J20 1.05-108 3.78-101° 1.24143085549203 - 101
J21 8.97-107 1.99-1010 3.11094514672530- 10-1°
J22 9.37-107 1.49-10° 2.08535182277297 - 10
J23 8.69-107 6.89-1010 -4.89203281850926 - 10-1°
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J24
J25
J26
J27
J28
J29
J30

7.65-107
5.56-10°
5.58-10°
5.56-10°
5.30-10°
3.17-10°
2.04-10°

1.80-10°
3.48-1010
1.07-10°
4.12-1010
7.83-1010
8.47-101
5.43-1010

1.09795377693858 - 10

2.85117078965368 - 10-1°
9.08903605044376- 10-10
5.23579192389037 - 10-1°
7.03555980452321 - 10-1°
-3.26075340031098 - 1010
6.03525431155385- 101

e Simulated true value

1.E-01

1.E-02

1.E-03

1.E-04

1.E-05

1.E-06

normalized value

1.E-07

1.E-08

1.E-09

1.E-10

1E-11

Table 4.12 Zonal gravity estimation results.

6 7 8 9

Zonal gravity spectrum

= === A priori uncertainty @ Formal uncertainty (1-sigma)

~~~~~~ Estimation error (estimated-truth)

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Degree of the zonal harmonic

Figure 4.9 Zonal gravity spectrum. The black continuous line represents the simulated "true" gravity
field. The dashed red line is the a priori uncertainty corresponding to the gravity perturbation
produced if the whole planet’s mass participate to the zonal winds motion (multiplied by 10). The red
continuous line and the dotted blue line are relatively the formal uncertainty associated with the

estimation and the true estimation error (estimated value - true value).

The 1-sigma formal uncertainty is at a level of 10-° for the low degree zonal harmonics.

This level of uncertainty is sufficient to pose a strong constraint on the mass of the core

of Jupiter. Right after J+ the uncertainty starts to increase rapidly until a priori

saturation around Jie. All the harmonics beyond Jw are below the formal uncertainty

curve and therefore cannot be correctly determined.
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This kind of behavior is well known to gravity data analyst, and shows up whenever

the spacecraft cannot uniformly sample the gravity field in the whole range of latitudes

(cf. Milani et al., 2010, pp. 339-344). The issue has a mathematical origin. The spherical

harmonics basis of functions is defined to be orthonormal on a spherical surface. This

property is not valid on a limited subspace of the sphere. Spherical harmonics are

therefore not orthonormal in the latitude belt covered by the Juno gravity data (cf.

section 0). This problem reflects in correlation factors among the parameters close to 1.
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Figure 4.10 Global parameters correlation matrix. The color scale ranges from white for the minimum
values to red for values close to 1.
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Figure 4.11 Detail of the correlation matrix for the low degree gravity field (deg 2 to 5).
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Figure 4.12 Detail of the correlation matrix for zonal coefficients. Note the high correlation spot starting
at Ja.
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Figure 4.13 Detail of the correlation matrix for Love numbers.

Largely distributed correlations are an index of information dispersion that causes

large values of the uncertainties of the estimated parameters.
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In circular orbit cases one of the possible approaches is to define a new basis of
functions that preserves locally the orthonormal property on the sampled region of the
sphere. This basis is called Slepian basis (Albertella et al., 1999). The basis is localized
only at a fixed distance from the planet. This approach is not applicable to the Juno
case since the orbit is highly elliptical and consequently the jovicentric radius changes

continuously during the tracking pass.

Another possible approach is to define local mass anomalies (e.g. ring mass
concentrations) whose mission is to absorb the high degree zonal gravity signal. This
technique might result particularly expensive if longitudinal variations of the gravity

field must be taken into account.

A more practical approach is to build a Singular Value Decomposition filter, which

eliminates from the estimation the unobservable linear combination of parameters.

Figure 4.14, Figure 4.15, Figure 4.16, Figure 4.17 show the results for the gravity

spectrum of the low degree tesseral coefficients. The results are also reported in Table

4.13.
Parameter = Formal uncertainty Estimation Error Estimated value
J2 2.02-101 -3.78-101 6.57300335696616 - 103
C2,1 9.42-101 5.53-101 -5.52509549062068 - 1011
S2,1 1.15-101° -3.52-10™M 3.52421007269847 - 1011
C2,2 2.77-1010 -3.54-1010 3.53698797709013 - 10-1
$2,2 2.64-101° 1.47-101° -1.47016657238934 - 10-1°
J3 1.62-101° 2.19-101 -2.19424688710042- 108
C3,1 6.92-101 -2.96-101 2.96421488643824 - 10
S3,1 6.07-101 4.25-101 -4.24588420382452 - 1011
C3,2 1.96-101° 2.83-101 -2.83002003785853 - 10-1°
S3,2 1.87-101° -2.47-1010 2.47416348744034 - 1010
C3,3 1.15-101° 7.05-101 -7.04635971432487 - 1011
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S3,3 1.20-10-1° 4.33-101 -4.33364645217834 - 10-11

J4 1.08-10-10 -4.29-10-1 -1.95708014002502 - 104
C4,1 9.82-101 -1.65-10-1 1.64577298567752 - 1011
54,1 8.69-101 5.92-101 -5.92019866084788 - 10-11
C4,2 8.26-101 4.89-101 -4.88908295743290- 10-11
54,2 9.50-101 2.81-101 -2.80716347040418- 1011
C4,3 1.24-10-1° -1.90-10-1 1.90477444878097 - 101
54,3 1.42-10-1° -1.48-101° 1.47991388048020- 101
C4,4 7.05-101 -1.56-101° 1.56280926583448 - 10-10
S4,4 6.64-101 8.39-101 -8.38519398704783 - 10-11

J5 1.76-10-1° -1.67-101° 9.23303568556361 - 10-1°
C5,1 8.04-101 -1.11-101° 1.11182326108961 - 10-1°
S5,1 7.11-101 -5.42-10-1 5.42395303668732 - 10!
C5,2 5.33-101 -4.57-101 4.56833452823353 - 10!
S5,2 5.71-101 1.23-10-10 -1.23362010768213 - 1010
C5,3 8.15-101 8.04-101 -8.03518277276331 - 10-11
S5,3 7.77-101 6.04-10-1 -6.03847833293863 - 1011
C5,4 5.37-101 -4.06-10-1 4.05811944422247- 101
S5,4 5.33-101 -1.64-101° 1.64440467913456- 1010
C5,5 3.35-101 -1.60-10-1 1.59910249131640- 1011
S5,5 3.27-101 9.60-101 -9.59582467016234 - 1013

Table 4.13 Low degree tesseral gravity spectrum estimation results.
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Figure 4.14 Full degree 2 gravity spectrum.
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Figure 4.15 Full degree 3 gravity spectrum.
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Figure 4.16 Full degree 4 gravity spectrum.
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Figure 4.17 Full degree 5 gravity spectrum.
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The low degrees normalized 1-sigma formal uncertainty is at a level of 10°. The
tesseral coefficients are simulated with a null value. If Jupiter will show low degrees
normalized tesseral harmonics larger than 101, these will be correctly determined and
absorbed. Estimating the tesseral coefficients causes a dispersion of the data
information on a larger number of parameters and consequently larger overall
uncertainties. If the tesseral gravity field will be significantly large even at high degrees
and a larger number of them must be included in the estimation, the formal
uncertainties of all the parameters could worsen even by order of magnitudes (up to a

priori saturation).

The knowledge of the GM of Jupiter is not improved by the experiment. The formal

uncertainty is practically equal to the a priori uncertainty (cf. Table 4.14).

Parameter = Formal uncertainty Estimation Error Estimated value
GM
1.98 -0.225 1.26712765063660 - 108
(km?/s?)

Table 4.14 Jupiter System GM estimation results.

Table 4.15 and Figure 4.18 show the estimation results for the Love numbers.

Parameter = Formal uncertainty Estimation Error Estimated value
ke 2.56-10° 5.63-10* 5.29437303684238 - 10!
ks 4.54-10° -1.78-10+* 2.00178224136132- 10

Table 4.15 Love numbers estimation results.
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Love numbers estimation
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Figure 4.18 Love numbers estimation details.

The tidal deformation produces a velocity perturbation that is mainly directed
orthogonally to the orbit plane. Most of the signal is therefore aligned with line-of-

sight direction leading to a very good determination of these coefficients.

The gravity field estimation results can also be represented in terms of surface gravity
uncertainty. The representation in the spatial scale has the advantage of collecting the
information distributed among several parameters into a single scalar function

independent from the basis of functions chosen to describe the gravity field.

The surface gravity 1-sigma uncertainty is presented in Figure 4.19 while Figure 4.20

shows the estimation error.
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Radial Surface Gravity 1-sigma Uncertainty

o

Figure 4.19 Radial surface gravity 1-sigma uncertainty. The color scale is log. Red dots mark the
pericenters locations.
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Radial Surface Gravity Estimation Error

o

Logm(mGaI)

Figure 4.20 Radial surface gravity estimation error (absolute value). The color scale is log. Red dots
mark the pericenters locations.

It is evident from the uncertainty plot that the accuracy has a minimum located in the
latitude belt 6.5° to 33°, where pericenters are concentrated. The uncertainty increases
rapidly moving from the minimum towards the poles. The maximum uncertainty is at
the south pole, since the latitude belt covered by Juno is located entirely in the northern
hemisphere. The estimation error is compliant with the uncertainties, in particular in

the minimum uncertainty region where a very accurate reconstruction of the surface

gravity field is possible.
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Zonal winds induced gravity anomalies of the order of 1 mGal can be easily detected in
the region of minimum uncertainty. If the gravity anomalies will be smaller the
measurement will be too uncertain. Small gravity anomalies may require a smaller
estimated parameter set to fit the data, since high degrees zonal coefficients might be
too small to cause any perturbation on the Doppler signal. This would lead to smaller
surface gravity uncertainties that could enable the observation of the zonal winds
signal. On the other hand, data fitting might require a larger number of tesseral and
sectoral coefficients in the estimated parameters set. This would have a negative effect
on the uncertainty on the reconstructed gravity since it would amplify the information

dispersion.

The estimation strategy is strongly dependent on the expected shape and magnitude of
the gravity field. At the moment the indications from geophysicist do not offer enough
constraints. It is impossible at the moment to return a definitive prediction of the
uncertainty expected from the Juno gravity experiment. The presented analysis is
based on reasonable geophysical assumptions and is at the moment the best prediction

possible.
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5 Angular Momentum estimate

by Lense-Thirring precession

5.1 The Lense-Thirring effect

In Newton’s mechanics a body rotates or not with respect to an absolute fixed space.
Ernst Mach proposed a different view eliminating the concept of absolute space. The
rotational state of a body is defined by the rotational state of the other bodies in the
universe, that is a body rotates or not with respect to the other bodies in the universe.
This is called the Mach’s principle and was an inspiring idea for Albert Einstein in the
formulation of General Relativity. According to Newton, a body spinning in the
proximity of a rotating central mass does not experience any acceleration but the
gravitational attraction and therefore its plane of rotation remains constant. On the
other hand, general relativity states that the rotation of the central body modifies the

surrounding space-time and therefore alters the rotation plane of the spinning body.

The Lense-Thirring precession or frame dragging is the relativistic effect that describes the

interaction between a rotating mass and the surrounding space-time.
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In the weak field and slow motion approximation, the non-linear Einstein field
equations can be linearized to resemble the linear equations of electromagnetism. The
mass density takes the place of charge density while the mass current density plays the
analogue of the charge current densities. There are differences due to the fact that
gravity is mediated by a spin-two field and is only attractive while a spin-one field

mediates electromagnetism (attractive and repulsive) (Chashchina et al., 2009).

Defining with E the gravitoelectric field and with H the gravitomagnetic one the

gravitational analogue of the Maxwell equations is (Chashchina et al., 2009) :

V-E:—47sz,

VXE:Q

V.H=0,

Vxﬁ:4[—4ﬂGﬂ+la—E}.
c ¢ ot

The Lense-Thirring effect is a manifestation of the gravitomagnetic field and can be

considered as the gravitational analogue of the Lorentz force, that is a force orthogonal

to the direction of the mass current (angular momentum, J ) generating the
gravitomagnetic field and to the velocity of the test mass (ODP User's Manual v.1, p.
89):

7,V planetocentric coordinates of the test mass
c speed of light
P direction of the planet north pole

J planet angular momentum vector
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14 General Relativity ¥ parameter

G universal gravitational constant

The net effect of this acceleration is a precession of the rotation plane of the gyroscope,

in the direction of the rotation of the central body.

The Lense-Thirring effect has been measured with the LAGEQOS satellites in Earth orbit
with an accuracy of nearly 10% of the value predicted by General Relativity (Ciufolini
et al., 2006). The measurement consists in the determination of the sum of the nodes of
two counter-rotating satellites (LAGEOS and LAGEOS 2). This approach allows
decoupling the precession due to the Lense-Thirring effect from the precession due to
the gravity field. The estimate is going to be improved thanks to the recent launch of

the LARES satellite (February, 2012).

5.1.1 Lense-Thirring precession of the Juno orbit

Jupiter is the most massive body of the solar system, apart from the Sun, and it is

characterized by a very fast rotation period (9.925 hours). Given a Jupiter polar

moment of inertia (C / MRZ) it is possible to derive the angular momentum. In Table

5.1 are reported two different estimates of the angular momentum:

C/MR? Angular momentum (kg km-s) Reference
0.26401 4.5041-10% (Hubbard et al., 1989, Table II)
0.40000 6.8242-10* (Soffel et al., 2003)

Table 5.1 Jupiter angular momentum.

The Juno orbit about Jupiter makes it particularly sensitive to the frame dragging. The
high velocity at pericenter (nearly 60 km/s) combined with a relatively low pericenter
altitude (3000 — 5000 km) makes the Lense-Thirring acceleration acting on Juno nearly
3000 times greater than that experienced by the LAGEQOS satellites in Earth orbit even

if concentrated only at the pericenter.
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The approach used with the LAGEQOS satellites is not applicable to the Juno spacecraft.
The orbit trim maneuvers (OTM) and the repointing maneuvers destroy the dynamical
coherence of the Juno trajectory. Therefore, it is not possible to estimate the total
displacement of the node of the orbit over one year of mission, as initially proposed by

L. Torio (Iorio, 2010).

In order to get the sensitivity of the relativistic effect on the Doppler signal, two
trajectories were compared. One of the two trajectories was integrated taking into
account the Lense-Thirring effect, while the second one did not include it. The velocity
difference between the two trajectories, projected along the line of sight with the Earth

is reported in Figure 5.1.

Lense-Thirring perturbation on SIC velocity - Orbit4-32 Envelope

LOS velocity (mm&)
o

-0.25 1 1 1 1 1 J
-3 -2 -1 0 1 2 3

Time from pericenter (hr)

Figure 5.1 Projection on the line of sight of the velocity variation due to the Lense-Thirring effect. The
plot shows a curve for each pericenter pass from orbit 4 to 32 (arrow direction).
The mean peak-to-peak signal is 0.35 mm/s, which is much greater than the instrument
sensitivity. The detection of this relativistic signal is aided by the fact that the velocity
variation is orthogonal to the orbit plane and therefore is mainly directed along the line

of sight with the Earth.
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It is not possible to set up a general relativity to probe the Lense-Thirring effect with
the Juno mission, because of the large uncertainties on the Jupiter angular momentum
and gravity field. The assessment of the magnitude of the acceleration (that is detecting
any violation of General Relativity) cannot be decoupled by the estimate of the angular
momentum, without an independent measurement of this last quantity. On the other
hand, it is possible to assume that the General Relativity is the correct theory of
gravitation and therefore using the Lense-Thirring signal to estimate the Jupiter
angular momentum. If an independent measurement of the Jupiter angular
momentum (e.g. from the determination of the polar precession constant) will show up
in the future, then it would be possible to read the Juno estimate as a General Relativity

test.

The goal of this section is to assess the uncertainties attainable in the estimation of the

angular momentum of Jupiter.

5.2 Correction to the Orbit Determination process

The DPTRAJ-ODP integrates the spacecraft trajectory in a relativistic reference frame
centered on the barycenter of the Jupiter system. The relativistic metric tensor does not
account for the off-diagonal components responsible for the Lense-Thirring precession.
Hence, it is necessary to include an apparent acceleration that corrects the spacecraft
trajectory, and to adjust the orbit determination problem mathematical formulation (cf.
Section 3.4.1) in order to consider dynamical models not included in the standard
trajectory integration. This step is necessary since the DPTRAJ-ODP is no more going
to be updated from the JPL’s Navigation Software Group since all the efforts are
currently being spent in the transition to the new orbit determination code MONTE (cf.
Section 3.4.4). Nor it can be done in first person since the source code distribution is

strictly subjected to the ITAR (International Traffic in Arms Regulation).
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A second modification is required in order to estimate the Jupiter angular momentum
since the DPTRAJ-ODP does not allow its estimation (as obvious, since it does not
include the Lense-Thirring acceleration model). Hence some effort must be spent in
computing the partial derivatives of the observables with respect to angular

momentum.

5.2.1 Trajectory corrections

Let us consider two trajectories X" and X. The first is the trajectory integrated by
DPTRAJ-ODP with its standard models, while the second is a trajectory integrated
considering all the standard dynamical models plus the Lense-Thirring small

perturbation.

X.

X

Figure 5.2 Trajectory deviation because of the Lense-Thirring perturbation. X" is the nominal DPTRA]J-
ODP integrated trajectory, while X is the trajectory integrated considering the Lense-Thirring effect.

The differential equations describing the two trajectories are:

X' =F(X")
X=F(X,t)+a,(X,t)

The solution to the first equation is an output of DPTRAJ-ODP while it is impossible to
integrate directly the second equation. Assuming that the Lense-Thirring perturbation
is small relatively to the gravitational accelerations (it is actually 10 times smaller than
the smallest gravitational perturbation, the tidal deformation), it is possible to linearize

the second equation onto the solution of the first one.
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X = F(X*,t)+a” (X*,t)+M
o )

(x-x)

Passing to the corrections:

x:( ; _X*):M x+aLT(X*,t):Mx+aLT(X*,t)

%

Differently from section 3.4.1 this equation is not homogeneous. Its integral is

constituted by the solution of the homogeneous equation plus a particular solution

x(1)=@,, (t,to)xo +Xp.

5.2.1.1 Solution of the homogeneous equation: variational equations
integration

. _OF
The solution of the homogeneous equation X = ——| xis generally computed in the

k3

form x()= (I)(t,to)xo .

Define q as the vector of the parameters

subdivided in state vector parameters X (r is the jovicentric position) and non-state

parameters a. When evaluated at the initial epoch these quantities are written as

The state transition matrix takes the form
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X X oX oX oX

o _9q _ dX, Oda | = = | .

(1) === =| dX, da |= o
dg, | da  da

0X, da 0 01

The derivative of the state vector X with respect to the parameters vector qo is the result

of the integration of the acceleration partials (Moyer, 1971):
F=F(r..q,)

OF _0F or o oF  JF
dq, OJrdq, Ordq, IJq,

r,;F=const

Let
aqo ar ar aqo r,F=const
_i_
. dq, VA z 0
7Z=AZ+BZ+C = g_X: v =] e :[2 113} R P
Dol o V4 Z C
a%

This equation is integrated with initial conditions

0X . 0X .
O:[a—XO : £]:[I : 0]
0

When considering the additional Lense-Thirring acceleration the differential equation

x
a%

of the acceleration partials becomes:
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r=F(X,q,,t)+a,;(X,q,,1)

oF _a(F+aLT) or +8(F+aLT) or +8(F+aLT)|
dq, Jar 9dq, Jf  9dq, aq,

r=const

The DPTRAJ-ODP allows the access to the A, B, and C matrices at each epoch. These
matrices must be corrected for the additional terms coming from the Lense-Thirring

acceleration model.

Let

A=)y 04 g pa
or or

p=OF*ay)_p 0oy _p. p
or or

-~ J(F+

C= (F +ay) =B+aai =C+AC
aqo r,F=const aqo r,;F=const

The variational equations can now be rewritten as
z z 0
“es = |: O I } cee + e
5 A+AA B+AB 7 C+AC

In order to compute the partial derivatives of the trajectory with respect to the Jupiter

angular momentum, the q vector must be extended

q
, , 0X
q = ; VAR a -
J q
oF ) da
c’'=| C — =l C : 0 . AC'=| AC %
a‘] r,F=const |: :| a‘] r,F=const
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The initial conditions for the integration do not change

The matrices AA, AB are straightforwardly computed using the dyadic form

3 (1+7)GJ

o =61 27 h) )+ (x89)

AA = aazz;T _30+y) GJ[%(?TIS)(x:\? F)FT (- F) BT — (7T )x +

X7 ><=f’-§)ﬂ

AB LT:aa%r :—(l+y)GJ|:

or c*r’

The matrix AC is generally null except for the angular momentum J and pole location

parameters (ao, Gtys 80 000 Wi, W, ) .

ac, =%

_(1+ 7)
By,

6 e ) )

—sin(e, + o'cot)cos(é'o + Sot)
AC, = % = (1;:3/) GJ[%(xzﬁ : ?)FT - xzﬁ} cos(er, + dot)cos(50 + Sot)
0 1r ;=const
| 0
ac, =%l _ac,
a ao r,;=const
—cos(a, + o'cot)sin(c?O + SOI)
AC;, = %‘;ﬂ - (1;:3/) GJ|:%(XV F)FT - ><=\7} —sin (ct, + 6t sin (3, + 5yt
0 T, F=const .
005(50 + 50t)
da
AC, =—H =ACy t
60 850 ri =const 60
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dd dd
AC, =L =0 ; AC, =—1Lr =
" a WO r,F=const "o a WU r,;=const

o
Jaulo

If the angular momentum is supposed to be the result of differential rotation

phenomena, it can be considered independent from the rotation rate of Jupiter System

IIT and the last derivative is null.

Once obtained the integrated solution, the state transition matrix @, (t,to) is

straightforwardly obtained.

5.2.1.2 The particular solution

The particular solution is solution of the linearized trajectory for initial conditions

x, =0

It is computed by directly integrating the equation
x=Mx+a,, (X*,t)

with initial conditions x, =0.

5.2.2 Observables correction

Once the trajectory correction has been computed, it is necessary to compute the

correction to the observables.

The process of the observables linearization is the same as in Section 3.4.1.

The xi solution can be rewritten in terms of the trajectory correction computed in the

previous section.
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Y, =H (P (1.1,) %, +x, )+ & = H®,, (t.1,) x) + Hx, +&,.

It is not possible to access directly the H ; matrix. The available ODP product is the
matrix H, = H D (cf. Section 3.4.1), along with the state transition matrix @ .
Consequently H ,=H®". In doing this operation one must remember that the matrix

H ; computed in this way is one element shorter in the parameters direction since it

does not account for the partials with respect to the angular momentum. The

observables are not explicitly dependent on the value of J, hence

Fll:[ﬁ. : 0}

1

The term H Xpbecomes a known quantity that can be summed to the computed

observables to account for the Lense-Thirring effect

Y- (Y +Hx,)=H®,x,+¢ ;Y =Y +Hx,

~ g

Y=Y, =y, =H;;x,+¢ ; Hp, = I:Ii(DLT =HO 'O,

l

5.2.3 Least squares filter

Now the trajectory, the computed observables and the observables partial derivatives

are available. The least squares filtering can be carried out as in Section 3.4.1.
5.3 Jupiter angular momentum estimation

The Lense-Thirring acceleration model is included in the dynamical model to be used
for the observed data simulation. The value adopted in the simulation is 4.5041-10* kg
km2s1 (cf. Table 5.1). The net signal due to the additional model is reported in Figure
5.3.
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Ka-band Lense-Thirring Doppler signal
Mol factor = 0.26401
004 T

Hz
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hrs from pericenter

Figure 5.3 Ka-band Doppler signal due to the Lense-Thirring model (orbit no. 4). The peak-to-peak
value is compliant with the velocity difference shown in Figure 5.1.
The estimation process setup is the same presented in Section 0. The angular
momentum of Jupiter is inserted in the estimated global parameters set with a value of
6.8242 - 102 kg km? s' and an a priori uncertainty of 8.5302 - 102 kg km? s,

corresponding to a moment of inertia factor of 0.5. The estimation results are reported

in Table 5.2 and Figure 5.4.
Formal uncertainty (1-sigma) Estimation Error Estimated value
kg km2s1 kg km2s1 kg km2s?
1.0591-10% 3.0881-10% 4.8129-10%

Table 5.2 Jupiter angular momentum estimation results.
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Jupiter angular momentum estimation

B Simulated true value ZA priori uncertainty E Formal uncertainty (1-sigma) Estimation error (estimated-truth)

1.E+35
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1E+32

3-sigma uncertainty
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Figure 5.4 Jupiter angular momentum estimation results.

The estimate of the angular momentum is compliant with the formal uncertainty to a 3-
sigma level, corresponding to a relative uncertainty of about 7% of the simulated true
value. The large estimation error is probably due to the linearized process used for the

trajectory integration and observables computation.

Figure 5.5 shows the correlation index between the angular momentum and the other

global parameters.
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Correlation Index between angular momentum (J ) and global parameters
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Figure 5.5 Correlation Index between the Jupiter angular momentum and the other gobal parameters
(GM and zonal gravity field).

Only the correlation with the GM and the zonal coefficients are relevant (up to 0.65 at

J5). Correlations with tesseral coefficients and Love numbers are negligible.
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6 Conclusions

The Juno gravity experiment is an hard challenge from the point of view of the data
analysis. The Ka-band Translator allows collecting very high quality Doppler data
(accurate to 5 pum/s at 1000 seconds integration time) but unfortunately the orbit

geometry is unfavorable to the fulfillment of the experiment scientific requirements.

The gravity field perturbs the spacecraft velocity along-track, which is a direction that
lies on the orbit plane. The angle between the line-of-sight and the normal to the orbit

plane is very small thus significantly reducing the observable Doppler signal.

Moreover the highly elliptical polar orbit does not guarantee a uniform coverage of the
planet surface. The spacecraft is sensitive to the gravity field perturbations only when
actually close to pericenter. Since the orbit pericenter rotates northward by one degree
per orbit, the surface coverage is substantially limited to 25 points. If one makes the
assumption that the gravity field is mainly zonal, the 25 points define a latitude belt,

corresponding to the 21.6% of the planet surface.
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When the spherical harmonics are used to describe a function on a limited region of the
sphere, they lose the property of being mutually orthonormal. The description of the
gravity field in the belt is therefore not unique in terms of spherical harmonics
functions. The level-2 requirements, expressed in terms of accuracy on the spherical
harmonics coefficients, as presented in the Introduction are no more adequate to pose
constraints to the performance of the experiment. A reformulation must be considered
in terms of uncertainty on the detection of gravity anomalies, at least for the
requirements regarding the detection of the zonal winds signal, since gravity

anomalies are independent from the basis of functions chosen to represent them.

The numerical simulations have been carried out under the assumption of mainly
zonal gravity field. The uncertainty on the reconstructed gravity field in the sampled
region is about 0.1 mGal increasing by many orders of magnitude towards the poles
(nearly 30 mGal at the south pole). These results take into account the possible
presence of a detectable low degree tesseral gravity field (up to degree 5). If the
detectable signal from the tesseral gravity required a greater number of coefficients the

uncertainty on the global gravity field would be larger.

Along with the static gravity field, the tidal deformations of Jupiter have been
estimated. Tides dynamically perturb the gravity field of the planet and consequently
the spacecraft trajectory. The expected velocity variations are mainly out-of-plane, thus
projecting a large signal onto the line-of-sight. The high sensitivity to the tidal
perturbations reflects into a very good determination of the degree 2 and 3 Love

numbers. k2 is determined with an accuracy of 2.6 - 103 while ks uncertainty is 4.5-1073.

The Juno gravity experiment will compensate the unfavorable orbit geometry with an
excellent quality of the Doppler data. For sure, the attainable accuracies are sufficient
to constrain the mass of the Jupiter core. It is a geophysicists’ job to return an
affordable estimate of the gravity signal expected from the atmospheric dynamics only
(the signal that can uniquely be attributable to this gravity source without
contamination with the gravity field of the hydrostatic ellipsoid). The question is at the

moment an open issue.
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This work has shown the possibility to enhance the scientific return of the mission by
estimating the mean angular momentum of the planet by detecting the Doppler signal
of the Lense-Thirring precession of the spacecraft trajectory. Usually space mission put
General Relativity to test in order to find confirmations or deviations from Einstein’s
formulation. The Juno mission has not the possibility to set up a relativity experiment
for the frame dragging effect because the angular momentum of Jupiter is unknown.
On the other hand, LARES will measure the relativistic effect with a relative
uncertainty of 1%. If no deviations of General Relativity will be individuated, it is
possible to make the assumption that the Einstein’s formulation is correct for the Juno
gravity experiment accuracy level. At that point, the signal would be deterministic and
could be used to estimate the angular momentum. For the first time General Relativity

is used to estimate a geophysical parameter.

The JPL’s Orbit Determination Program does not contain the model of the Lense-
Thirring acceleration for planets other than the Earth. Much of the work consisted in
identifying a consistent mathematical formulation for small corrections to the orbit
determination process and the consequent software coding able to interact with the

ODP products.

The test results show an accuracy of 1-10% kg km?s!in the determination of the
angular momentum, which is about the 2% of the expected value. The estimation error

is compliant with the formal uncertainty to a 3-sigma level (7% relative accuracy).

This work can be further expanded by studying the effects of mismodeling in the
dynamical model used in the estimation process. Non-gravitational accelerations are

the main candidates for dynamical model inaccuracies.

The KaTS results determinant for the accomplishment of the scientific results proposed
for the Juno mission gravity science experiment. Without the crucial contribution of the

Italian instrument none of the objectives would be achieved.
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Appendix A : Gravity Mapping

A.1 Gravitational potential and acceleration

The gravitational potential is expressed in terms of spherical harmonics functions. Its

gradient is called gravitational acceleration.

l+1
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Let us change notation in favor of a vector formulation in order to ease the

computations of the gravity related quantities.
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1(1) (5)2“1)

(N + 1IN +1) | (5)N+2 I2N + 1)
r

the gravitational acceleration is rewritten as:

fgr _ GM ((5)2 +]TLCY>

~RZ\\r
— GM
g(r: 0:(p) =9 gdo = F(]TCDQY)

_ GM
9¢ = R2sing

UTcD,Y)
A.2 Normal and anomalous gravitational potential

The normal gravity potential is the potential of the reference figure

+1

N l
Uy = _M Z Z (g) Pyn (cos8)[Ch,cos(me) + Shsin(me)]

In the case of a triaxial ellipsoid only the coefficients Cjy, and S}y, with even 1 and m are
not null. A good approximation consists in considering only the coefficients €5, and

N
CZ,Z'

The anomalous potential T is defined as the difference between the measured

gravitational potential U and the normal potential Un.

T = U - UN
oM [ & py y .
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The harmonic coefficients result

CIY;n = (Clm - Cllyn) SlCn = (Slm - Sll\rln)

1 -0 T
0 0
0 0
0 0
C2o Clo
Ch C31
Let us define Jy = SN and J; = ST,
) 3,
S22 32
2o Cio
SI\A/,,N— Sﬁ,N-

A.3 Shape

A.3.1 Reference figure (Ellipsoid)

The starting point of the geoid definition is the generation of the reference figure. This
surface is particularly important because it defines the general shape of the planetary
figure. For a synchronous satellite the ellipsoid is defined as the equipotential surface

under the action of three different fields:

J its own gravity field

o the rotational (centrifugal) field

J the tidal field from the central planet

The last two potentials can be expressed in terms of degree 2 spherical harmonics,
while the gravitational potential of the reference figure is by definition the normal

potential:
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R +1

N1
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Uy = ~— R z Z (;) [CYim + Sty Yi—m]

1 1
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1GM; 1
0= [t = 375a)

where R is the reference radius, a the semi-major axis of the orbit and Mc the mass of
the perturbing body. The general expression of the potential must be constant (level

tigure):
U:UN+UT+Ut:U0

Regrouping the terms having the same angular dependence:
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and introducing the rotational (g,-) and tidal (gq;) parameters:
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GM 1,7 R\? , 1,73 1,73
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The radius r must describe an equipotential surface of the potential U.

Approximating the ratio r/R and R/r with 1, and solving for r :

1 v 1 1 y 1
=R 1+§qr+[C20—§q7«+gqt]yz_o+[sz_ﬁfh]yz,z

N l
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A.3.2 Particular case 1: Spheroid (C}, only)

o

\-l
=
Il
. 1
00000 ONZO OO K
o

1 v 11 1
Tsph = R {1 + §Qr + [Czo - §Qr + g‘h] Yo0 — [E‘h] Yz,z}
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A.3.3 Particular case 2: Triaxial Ellipsoid (€Y, and €%, only)

— 1 -
0
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0
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cy,
0
0

A.4 The geoid

The geoid is defined as an equipotential surface of a planetary body. It could be
described as the surface of an ideal ocean, with no waves, currents or atmospheric
influence, hence at constant pressure. Deviations of a planetary surface from the geoid
provide information on the interior structure. The geoid also defines the zero of the

topographic altitude.

The equations for the geoid computation are the same shown for the reference figure

where the normal potential is substituted with the actual body gravitational potential.

2
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1 1 1
= R{l +5qr + [Czo 34 +g‘h] Yoo+ [sz —E‘h] Y22

+ (C21Y2,1 + 5,1V, 4 + Szzyz,—z) + Z Z [Clel,m + Slel,—m]}
123 m=0

The geoid heights are defined as the differences between the geoid and the reference

figure
Argh =Tgeo — Tref
=R {[Czo — CIoYa0 + [Coy — C51Ya 0

+ [(C21 - Cﬁ)yz 1+ (821 — 5?’1)1/2 -1+ (S — Sévz)yz,—z]
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- 9o

In vector notation:

Argp = RU”II:Y}
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A.5 Gravity

A.5.1 The spherical approximation

When computing gravity and geoid deviations with respect to a reference figure (e.g.
ellipsoid) one must consider that the reference figure deviates from a sphere only by
quantities of the order of the flattening. Therefore if the reference ellipsoid is treated as
a sphere when dealing with the anomalous potential, the relative error in the equations

will consequently be of the same order as the flattening.

This approximation is used only in the computation of small quantities and does not
imply that the reference figure is a “sphere” in a geometrical sense. The reference
figure is an ellipsoid but the ellipsoidal equations are expanded in power series of the
flattening, where all the terms containing the powers of the flattening are neglected. In
particular this approximation is adopted for the computation of the anomalous

potential, geoid heights, gravity anomalies and disturbances.

(Heiskanen et al., 1967, pp. 96-97)

A.5.2 Gravity disturbances

Adopting the spherical approximation, the gravity disturbance is defined as:

59(r. 6. 0) = oT
g\ e, @)= or
=— 27 z z (I+1) (;) le(cosﬁ)[ancos(mqo) + Slesin(mgo)]
122 m=0

on the geoid r=R
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N 1
6g(R,0,p) = — % z z 1+ 1)P1m(c059)[Cl7;ncos(m(p) + Slesin(mgo)]

R
122 m=0

GM
= - F(]TLY)

A.5.3 Gravity anomalies

Analogously, the gravity anomalies are defined as:

Ag(r,0,p) = or 2 T =
G\aLo ) ==, T T
=7z z z (1-1 (;) le(cosﬁ)[ancos(mqo) + Slesin(mgo)]
122 m=0
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N 1
GM - _
Ag(R,0,9) = Rz z z (1— 1)le(cost9)[Clmcos(m<p) + Slmsm(mgo)] =
122 m=0

GM .
=~ 2z Ur(L —2DY)

A.6 Computation of the uncertainties

Define the vector of the estimated gravity parameters x as:

X1 M
X

x = [ :2 — ]2.,0
Xp N,—N

= Y3 (52 (55 ) covteum = (32)cor (32)

]
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We need to apply this procedure to evaluate the uncertainty associated to the geoid

heights, surface gravity acceleration, gravity disturbances and anomalies.

A.6.1 Geoid Heights

Argn = R{TY}
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A.6.2 Surface gravity

GM
gr = _F(l +JTLY)

GM
g(R,0,¢9) = gdo = F(]TDQY)

GM
= Tp,Y
9o = R2sing Urp, )
( 29y 09y T
agzr - (ax )COV(ax )
290 090
- (20)cor (32}
a2, =) OV |5
d 9g,\"
aj(p = (%) cov (%)

99 [99r 091 [9r O99r] [ 1 GM

ax lagMm a]]_ [GM W]_ [_E(HITLY) _FYTL]
990 [996 399] _ [99 699] _ [ 1 . GM T]

ax laem oy 1= lem a7 1T [gzU Pe¥) Rz DeY

99¢ _[99¢ agw] _ [«9_<ﬂ agrp]
ax laGM 9] GM 9]

1
= ™DyY) ———D YT]
[stinH (U7DyY) R2%sing %

The total surface gravity module is |g| = / 97 + 95+ 95
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A.6.3 Gravity disturbances

GM
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A.6.4 Gravity anomalies

GM
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A.7 Example
C20

Suppose we have a set of estimated parameters | = | C2, | with associated covariance
C30

a6, C G
cov=|C o, Cs

2
C, C3  o¢,,

C2o|  [C20
We define the ellipsoid by setting the normal coefficients to Jy = |¢cl, [ = [szl.
0 0

C30 0

The resultant anomalous field is J; =] — Jy = |C], | = [ 0 ]
T C

C30 30

133



Numerical Simulations of the Juno gravity experiment

Ellipsoid:

1 v 11 1
Teu =R {1 + qu + [Czo - §Qr + g‘h] Yoo+ [sz - E‘h] Yz,z} =

1 1 1 1
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Geoid:

1 1 1 1
Tgeo = R {1 + 39 + [Czo 34 + g‘h] Yoo+ [sz - E‘h] Yo, + C30Y3,0}

The ellipsoid is a reference surface and has no associated uncertainty.

On the other hand the geoid is defined by the estimated parameters:
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—agw:R[Yzo Yoo Yaol
x

ar, ar, T
O-T?geo = ( 990) COV( aieo) = RZ[YZO Y22 Y30] C1 0'52‘22 C3 Y22

2
0¢y0 Gy G [YZOI
0x Yao

G, C3 0530
= R¥0¢, Yo + 08,,Y2s + 08, Yo + 2C1Yz0Yaz + 2C3Y30Ys0 + 2C3Y32 Y30}
The geoid heights are
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their uncertainty is:
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