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A B S T R A C T

Cryptography (originally meaning “the art of secret communication”) is an ancient
discipline born in the past to satisfy some needs of the human being. Today the
world “cryptography” has a much broader meaning. In fact, the development of
the digital era (mainly due to the introduction of the digital calculators) and later
on of the Internet have created new scenarios of communications, generating
intriguing challenges for modern “cryptographers”.

In the past (say before the 80’s) the development of a “secure” system was
mostly based on intuition and experience. This approach led to a cut-and-mouse
game in which new schemes were proposed and (immediately after) new attacks
against them were found. A milestone in the development of a solid math-
ematical theory—turning cryptography from an art into a real science—is an
approach due to Goldwasser and Micali called “provable security”. The goal of
this approach is to state rigorous definitions of what “secure” means in a given
context and build cryptographic primitives able to satisfy these definitions in a
provable way. This is indeed a very strong guarantee.

It should be clear that the way one defines security is crucial for the results
being meaningful. In particular our mathematical model of reality should be
as close as possible to the real world, catching all possible attacks out there.
Unfortunately, it turned out that this is not always the case. There are in fact
attacks—so called side-channel attacks—which can be applied to an actual im-
plementation of a device and not to its mathematical abstraction. These attacks
have been shown to be very powerful, completely compromising security of
otherwise provably secure schemes.

A modern trend in theoretical cryptography is to try filling this gap between
theory and practice, building primitives which maintain their provably secure
guarantees even in the presence of a powerful adversary able to apply side-
channels. This area of research is evolving continuously and very quickly. The
thesis you are reading deals with some of these challenges and summarises
recent achievements in this topic.
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1 I N T R O D U C T I O N

The White Rabbit put on his spectacles. «Where shall I begin, please
your Majesty?» he asked. «Begin at the beginning,» the King said
gravely, «and go on till you come to the end: then stop.»

Lewis Carroll, Alice’s Adventures in Wonderland [Car65]

contents
1.1 A Beautiful Theory 2
1.2 The Cruel Reality 8
1.3 Thesis Contributions 12

C ryptography (originally meaning “the art of secret communication”) is
an ancient discipline born in the past to satisfy some needs of the

human being. A concrete example is in the military context, where two or
more parties (far away from each other) want to communicate secretly over an
insecure channel (eventually) controlled by the “enemy”. Solutions to this kind
of problems have a long and rich history, taking us back at the time of the Roman
emperor Giulio Cesare and even earlier.

Today the world “cryptography” has a much broader meaning. In fact, the
development of the digital era (mainly due to the introduction of the digital calcu-
lators) and later on of the Internet has created new scenarios of communications,
generating intriguing challenges for modern “cryptographers”.

In the past (say before the 80’s) the development of a “secure” system was
mostly based on intuition and experience. This approach led to a cut-and-mouse
game in which new schemes were proposed and (immediately after) new attacks
against break them were discovered. A milestone in the development of a solid
mathematical theory—turning cryptography from an art into a real science—is
an approach due to Goldwasser and Micali called “provable security”. The goal of
this approach is to state rigorous definitions of what “secure” means in a given
context and build cryptographic primitives able to satisfy these definitions in a
provable way. This is indeed a very strong guarantee.

1



2 introduction

It should be clear that the way one defines security is crucial for the results
being meaningful. In particular our mathematical model of reality’ should be
as close as possible to the real world, catching all possible attacks out there.
Unfortunately, it turned out that this is not always the case. There are in fact
attacks—so called side-channel attacks—which can be applied to an actual im-
plementation of a device and not to its mathematical abstraction. These attacks
have been shown to be very powerful, completely compromising security of
otherwise provably secure schemes.

A modern trend in theoretical cryptography is to try filling this gap between
theory and practice, building primitives which maintain their provably secure
guarantees even in the presence of a powerful adversary able to apply side-
channels.

This area of research is evolving continuously and very quickly. The thesis
you are reading deals with some of these challenges and summarises recent
achievements in this topic.

reader’s guide. In Section 1.1 we will give a brief overview of the modern
approach to cryptography, which will be also the starting point for the rest of the
thesis. Section 1.2 explains the principles behind side-channel attacks. Finally,
Section 1.3 emphasizes the contributions of this thesis.

1.1 a beautiful theory

Many applications today need to satisfy strict security requirements. Concrete
examples are credit cards, online banking and electronic voting. However, the
construction of a “secure” scheme is a difficult task. In fact, we would like our
scheme to be able to resist all known attacks. Ideally, we would actually like
that it will be hard to break the scheme also in the future, when new attacks are
discovered. How can this be possible? What makes the task of cryptographers
difficult, is that we should be able to predict how a malicious adversary will
abuse of our system in order to break it.

In the early days cryptographers were almost guided by experience and in-
tuition. Sometimes the consequences of this approach have been devastating,
leading to the massive use of presumably secure schemes that were violated
after some time. Concrete examples can be found in the GSM telephony sys-
tem [BBK03] and in the standard PKCS #1.5 as used in RSA [Ble98].
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Figure 1.1: Alice and the Rabbit want to communicate over an insecure channel con-
trolled by the Red Queen.

cryptography in wonderland. To change the above state of affairs, cryp-
tographers started to change radically the way to develop a secure system. A
cornerstone in this direction, is an approach of Goldwasser and Micali [GM82]
called provable security. The basic idea is to give a mathematical proof that a
given system is secure against an as large as possible class of attacks: This way
we don’t need to care about future attacks, our system will be able to face them
as long as the new attacks fall in the class of attacks against which we have
proven security.

Metaphorically, in this thesis we will identify the realm of provable security
with Lewis Carroll’s “Wonderland” [Car65]. The reason for this is that we should
always remember that we are dealing with a mathematical abstraction of reality.
Even if we believe that our abstraction represents reality quite well, we must
remember it is an abstraction. In particular, a result in the realm of provable
security maintains its validity only inside our “Wonderland” and we have to be
extremely careful whenever we decide to deploy a scheme in the real world. As
we will see in Section 1.2, any inconsistency between the real world and our
abstraction could have dramatic consequences, completely invalidating all our
“provable security” guarantees.

The most basic1 scenario in Wonderland sees Alice and the Rabbit exchanging
messages over an insecure channel for the purpose of communication. The

1 Let us mention that there are a lot of different security requirements in Wonderland (and thus
also in the real world). However, mentioning all of them is by far out of the scope of this thesis.
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Figure 1.2: Alice wants to prove her identity to the Cheshire Cat. The Red Queen aims
at impersonating Alice.

channel is controlled by the Red Queen, as shown in Figure 1.1. In this context
we might think of the following security requirements:

1. Confidentiality. Alice wishes to send a message m to the Rabbit in such a
way that the message content is somehow hidden: The Rabbit must be able
to read the message, but the Red Queen should not learn anything about
m’s content. (This is essentially the original purpose of cryptography, i.e.
secret communication.) The primitive used to achieve this task is called an
encryption scheme (cf. Section 2.2).

2. Message integrity. Alice wishes to send a message m to the Rabbit in such
a way that the message is received unchanged: The Rabbit must be con-
vinced that the message m is exactly the original message sent by Alice,
and the Red Queen should not be able to replace m with a different mes-
sage m∗ without the Rabbit being able to notice it. (This is important
when, for instance, the message m contains informations about a money
transfer from Alice to the Rabbit.) The primitive used to achieve this task
is a Message Authentication Code (MAC) or a digital signature scheme (cf.
Section 2.2).

A somewhat different scenario is the one of authentication. In this case Alice
would like to convince the Cheshire Cat of her identity. After exchanging mes-
sages over an insecure channel, the Cheshire Cat should be able to either accept
or reject Alice as “authentic” (cf. Figure 1.2). In the meanwhile, the Red Queen is
eavesdropping the channel: Her purpose is to replace Alice in the authentication
process, without the Cheshire Cat being able to notice it. A secure authentica-
tion scheme is a one where this is hard. (This is important for instance in the
context of electronic identity cards.)
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Figure 1.3: A security game formally defines security of a given cryptographic primi-
tive.

The techniques used in the realm of provable security to meet the above re-
quirements, fall into two main categories: symmetric techniques and asymmetric
techniques. In the former, one assumes that the two honest parties share a secret
key K. (How this is done is usually considered as a different problem.) In the
latter the honest parties do not share any a priori information. (However other
setup assumptions are necessary, cf. Section 2.2).

the recipe of provable security. On a very high level, the structure of a
proof that a given scheme is indeed “secure” is as follows:

1. Abstract reality away, defining an accurate mathematical model of the real
world in which the scheme is used.

2. Define rigorously what “secure” means in this model.

3. Prove that no adversary belonging to a certain class, acting following the
rules of the model defined in (1), is able to break the security definition
given in (2).

The way to obtain (1) and (2) is by introducing a security “game” between an
adversary and a challenger. In Wonderland, these are the Red Queen and the
Caterpillar: The Caterpillar behaves like an oracle abstracting away how the
Red Queen can attack the system (cf. Figure 1.3). At the end of this interaction,
the Red Queen attempts to “break”2 the system and the Caterpillar determines

2 Of course the precise meaning of what “break” means depends on the primitive considered, cf.
Section 2.2 for concrete examples.



6 introduction

whether she has won the game (i.e. she is successful) or not. We will thus say
that a scheme is secure when winning the security game for that scheme is in
some sense “hard”.3

The way point (3) is obtained, depends on the class of adversaries against
which we are willing to protect our scheme. There are two main classes:

• Computationally unbounded attackers. In this case we speak of perfect or un-
conditional security, a notion dating back originally to Shannon [Sha49].
There is no bound on the computational resources available to the adver-
sary. Roughly speaking the adversary is not able to break the system
because she has never enough “information” to do so.

• Computationally bounded attackers. In this case we speak of computational se-
curity. There is a precise bound on the computational resources available
to the adversary. The main idea is to rely on the fact that there are com-
putational problems which are hard to solve with limited resources; thus
one shows that a successful attack to the system can be “reduced” to an
efficient solution of the problem, which is impossible.

the reductionist approach. Mathematics is rich of hard problems. Famous
examples are integer factorisation and the computation of discrete logarithms
(see for instance [Ven09, Chapter 6 and Chapter 7]). Roughly speaking these
problems cannot be solved “efficiently”.4 In the world of computational security
the goal is to protect the system against “efficient” adversaries (To formalise the
meaning of “efficient” we will rely on computational complexity, cf. Section 2.2.)
An efficient adversary can only perform efficient attacks; in this sense she is
resource-bounded. The idea is to base security of a cryptographic scheme Π on
the hardness of a computational problem P, for which no efficient solution exists.
Then, in order to prove security, one is required to build a “reduction” showing
that any successful efficient attack against Π can be used to define an efficient
algorithm solving P: as long as we believe that P is hard this is a contradiction,
thus showing that our system is indeed secure.

In Wonderland, the reductionist approach is explained as follows (cf. also
Figure 1.4). The White Queen is given an instance of the problem P. Assume
that the Red Queen is able to win the security game defined for Π (cf. Figure 1.3).

3 The meaning of “hard” is still intentionally vague. We will formalise this later on in the thesis (cf.
Section 2.2).

4 It is not known whether an efficient solution exists at all. An answer to this question is ultimately
related to an unproven conjecture in complexity theory, cf. Section 2.2.
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Figure 1.4: Cryptographic reductions.

The White Queen will attempt to solve P using the Red Queen as a black-box:
She needs somehow to use the fact that the Red Queen is able to break Π to
produce a solution for P. In order to do so, she has to perfectly simulate the
“environment” for the Red Queen (who is expecting to attack Π). Once this is
done, we have an efficient algorithm for solving P. Since P is hard, we have
reached a contradiction. Thus we can conclude that it must be impossible to
break Π and security is proven.

Note that the approach of computational security leads to schemes that could
be broken in theory, disposing of enough time/computational power. One might
ask why we should rely on computational security if it is possible to achieve the
stronger notion of unconditional security. The reason for this is that, most of the
times, unconditionally secure schemes are inherently inefficient (and sometimes
even impossible). The approach of computational security is a natural way to
relax the security requirements in a meaningful way, yielding constructions with
reasonable efficiency and strong security guarantees.

a running example: the rsa cryptosystem. To give a flavour of a crypto-
graphic scheme, we briefly recap here the case of RSA [RSA78] for both (public
key) encryption and digital signatures. (The reader can refer to Section 2.2
for an informal overview of these concepts.) Let N = pq be the product of
two primes, each, say, κ/2 bits long. The scheme works over Z∗N, i.e. over the
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set of integers which are invertible5 modulo N. There is a public exponent e
and a secret exponent d which is part of the secret key of a given user (say
the Rabbit) together with the primes p and q. The exponents have to satisfy
e · d = 1 mod (p− 1)(q− 1); the RSA modulus N is public. (We don’t specify
here how the public key and the secret key are generated, however it is possible
to do this efficiently.)

To encrypt a message m for the Rabbit, Alice computes c = µ(m)e mod N
using the Rabbit’s public value e, and sends the result over to the channel. The
function µ is an invertible encoding mapping the message space to Z∗N; concrete
examples can be found in [BR96; Cor02]. The Rabbit can recover µ(m) = cd mod
N using the secret parameter d, and thus m inverting µ.6 Security of the scheme
follows from the hardness of factorising the integer N.7.

To sign a message m, the Rabbit8 computes σ = µ(m)d mod N and sends the
pair (m,σ) to Alice. Alice can use the public exponent e (of the Rabbit) to verify
the signature, as µ(m) = σe mod N. When the verification succeeds the message
can be considered as authentic. Again, the security of this scheme follows from
the hardness of factorisation.

1.2 the cruel reality

As we have briefly mentioned in the previous section, a result in the realm of
provable security maintains its validity only in Wonderland: If we are willing to
use a cryptographic scheme in practice, we need to ensure that all the assump-
tions we made in order to prove security are still satisfied!

Unfortunately, as people have noticed in the past, this is not always the case.
An example is given by the context of side-channel attacks. The main assumption
underlying the realm of provable security is that—in the security game played
by the Red Queen and the Caterpillar (cf. Figure 1.3)—the adversary has only

5 An integer x is invertible modulo N if there exists another integer x−1 such that x−1x = 1 mod N.
It is not hard to show that x ∈ ZN is invertible if and only if gcd(x,N) = 1.

6 Correctness follows from Euler’s theorem, i.e. from the fact that for any integer x in Z∗N we have
x(p−1)(q−1) = 1 mod N when N = pq.

7 This is not completely exact. Of course if one is able to factorise N, there is no hope of security.
However the other direction is not known to be true. One can prove that RSA is secure if it is
difficult to compute e-th roots modulo N, but no direct reduction to the problem of factorising N
is known, at least at the moment. (Though some result goes into that direction [AM09].)

8 It must be the Rabbit, because in our running example the parameters N,p,q, e,d are referred to
the Rabbit.
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black-box access to the primitive Π: she can specify an input X and get back
the corresponding output Y, but all the secrets stored “inside the box” are com-
pletely oblivious to the Red Queen. For example, if Π depends on a secret key K,
this assumption means that no information about K is leaked to the Red Queen.

In the 90’s, it turned out that this assumption is too strong and in fact not
satisfied in reality (at least not in a general sense). The main problem comes
from the fact that in practice the system is not a black-box, but a physical device
(e.g. a smart-card). Attacking such a device is significantly different than just
observing its input-output behaviour. There are two main distinction, discussed
below with some detail:

1. A passive adversary leaking informations on the secrets stored into the
device.

2. An active adversary injecting faults into the device and then obtaining the
output of the “tampered” computation.

passive attacks. During the late 90’s Kocher published two seminal papers
showing the devastating power of side-channels. In the first paper [Koc96] he
showed the vulnerability of many implementations against so-called timing at-
tacks. These attacks exploits the dependency between the secret key and the
time needed to perform certain cryptographic operations. If the time discrepan-
cies can be measured efficiently and reasonably accurately, they often allow to
recover the complete secret key at low cost.

A simple example of this fact can be found in the case of modular exponen-
tiation as used in RSA. The RSA decryption algorithm is based on modular
exponentiation modulo an integer N, where the exponent d is part of the secret
key. For efficiency reasons, modular exponentiation is often performed using
the “square-and-multiply” algorithm, as follows. Let d = (dn−1, . . . ,d0)2 be the
base-2 representation of the integer d. Suppose we want to compute cd mod N.
We can write:

cd ≡ c
∑n−1
i=0 di2

i ≡
n−1∏
i=0

(
c2
i
)di
≡
((
cdn−1

)2
cdn−2

)2
. . . cd0 (mod N).

In this way one needs to perform at most n ≈ log(d) modular multiplications.
It is not difficult to see that the running time of the above algorithm increases
linearly with the number of 1’s in the exponent. For RSA decryption this implies
that an adversary may easily learn the Hamming weight of the secret exponent.
In his paper, Kocher extended this attack and presented a method to learn the
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complete key when exponentiation is done with many different bases. Since
in RSA the base c of the modular exponentiation represents the ciphertext, to
perform Kocher’s attacks one just needs to run the decryption process on many
different ciphertexts.

In 1999 Kocher discovered another attack, based on power analysis [KJJ99].
Here the idea is to get some leakage on the secret key by exploiting the de-
pendency between the latter and the power consumption of a device. In the
most basic case this is done by visual inspection of a power trace. (This only
works if the adversary has detailed knowledge about the implementation of the
target device.) Assume that the order in which the instructions are performed
depends on the secret key. Then identification of operations in the power trace
may allow to learn the order of operations, and in turn allows to recover the
secret key. For example in the “square-and-multiply” the order of operations
(and the type of operations) is different depending on whether a key bit is 0 or
1. Hence, if the power traces allow to identify the type and order of operations,
the key can be recovered.

Even when the detailed description of the implementation is not given, it is
still possible to exploit power consumption in a differential power analysis attack.
Differential power analysis is a more advanced form of power analysis which
can be carried out even with very little information on the target implementation.
The details of this technique are outside the scope of this thesis and are therefore
omitted.

After Kocher’s seminal work, numerous other side-channel attacks have been
discovered, measuring for instance electromagnetic radiation [GMO01; QS01] and
even the sound [ST] emitted by a device.

active attacks. Until this point we have only considered the case where an
adversary obtains some leakage on the secret key by measuring some quanti-
ties related to a specific implementation of a cryptographic device. What about
active adversaries? Imagine an attacker injecting faults into a specific implemen-
tation: After she has tampered with the device, she can query it on input X thus
receiving the modified output Y ′ (potentially different from the normal output Y
because of the tampering).

One might hope that the output of a tampered device is not very useful. How-
ever, as shown in a seminal paper by Boneh, De Millo and Lipton [BDL01] this is
not quite true. Consider a smartcard producing RSA signatures. Let N = pq be
the RSA modulus. To sign a message m one has to compute σ = µ(m)d mod N
where d is part of the secret key. There is a trick mainly used to improve ef-
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ficiency based on the Chinese Reminder Theorem9 (CRT): To sign m one can
compute σp = µ(m)d mod p and σq = µ(m)d mod q, and finally recover σ as
σ = aσp + bσq mod N where a = q(q−1 mod p), b = p(p−1 mod q) are pre-
determined constants. Since σp = µ(m)d mod p = µ(m)d mod p−1 mod p, using
the CRT is much faster, because d is of the order of N whereas d mod p− 1 is of
the order of p.

The attack of [BDL01] is as follows. Let σ = µ(m)d mod N be a signature of
m computed using RSA with CRT thorough the values σp and σq. Let σ ′ be
a faulty signature of the same message m. Note that σ ′ is computed through
values σ ′p and σ ′q. Assume that the adversary has tampered with the smartcard
in such a way that an error occurs during the computation of only one of σ ′p
and σ ′q, e.g. σ ′p 6≡ σp mod p but σ ′q = σq. (We note that this is very easy to
achieve, provided that the implementation of the signature generation mecha-
nism is known.) This implies σ ≡ σ ′ mod q, but σ 6≡ σ ′ mod p. Thus

gcd(σ− σ ′,N) = q,

and N is factorised.

A simple modification of the attack, first pointed out by Lenstra [Len96],
shows that the correct signature is not needed when the message m is known to
the adversary. In fact µ(m) ≡ (σ ′)e mod q—where e is the public exponent in
RSA—but µ(m) 6≡ (σ ′)e mod p. Since σe ≡ µ(m) mod N, we have

gcd
(
µ(m) − (σ ′)e,N

)
= q.

The main result of [BDL01] is an extension of the above attack to work even
in the case where RSA is used without CRT. (For this to work more than a
single faulty signature on m is required.) Several other attacks are known by
tampering with the RSA public modulus [Sei05; Bri+06; Mui06; BCG08; Ber+09;
BCDG10; Bri+11].

For an overview of tampering attacks on other systems different from RSA
and how they can be realised in practice, we refer the reader to Section 3.1.

9 The Chinese Reminder Theorem is an old theorem about linear congruences which appeared
for the first time in a Chinese third-century AD book by Sun Tzu. We will not give the exact
statement here.
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1.3 thesis contributions

It is a recent trend in theoretical cryptography—inspired by seminal ideas of Mi-
cali and Reyzin [MR04]—to extend the realm of provable security in such a way
that one can prove strong security guarantees for a cryptosystem, even in the
presence of an adversary applying (an as large as possible class of) side-channels.
This effort tries to close the gap between theory and practice in cryptography,
providing formal security definitions better describing reality.

In the last few years a lot of results have been achieved in this sense. We will
review some of them in Section 2.2 (in the case of leakage) and in Section 3.5
(in the case of tampering). The results in this thesis fall exactly in this stream.
Moreover our purpose will always be to provide efficient constructions, so that
they can be employed in the real world. In this way theory and practice can
benefit from each other.

first contribution. The first question we look at is a very general one. Con-
sider a Boolean circuit C (just think of it as a smartcard) and imagine an adver-
sary injecting faults into the circuit and thus maintaining black-box access to the
faulty implementation. What kind of circuits can be protected? Which class of
adversaries allows for positive results? In [FPV11], building on an earlier result
of Ishai, Prabhakaran, Sahai and Wagner [Ish+06], we prove the following result:

Theorem 1 (Informal). It is possible to efficiently transform any Boolean circuit C
into another circuit Ĉ (with the same functionality) in such a way that Ĉ is secure
against an all-powerful adversary tampering with an unlimited number of wires, pro-
vided that: (i) every attack fails independently with some probability δ > 0, (ii) the
original circuit is still secure given a logarithmic amount of leakage on its secret state.

Our result exhibits a general paradigm showing that it is possible to “trade” a
small amount of leakage to achieve a strong form of tamper resilience. The good
news is that—as we will see in a later chapter—there are cryptosystems tolerat-
ing up to a constant fraction of leakage on the secret state. Our proof—similarly
to [Ish+06]—relies on the axiom that there exist small, stateless and computation in-
dependent tamper-proof components. (This means that the adversary is allowed
to tamper only with the inputs and the outputs of these components, but not to
touch their internals.) In essence, we reduce the problem of shielding arbitrarily
complex circuits to the problem of shielding a few simple components. (Exactly
two components in our transformation.)



1.3 thesis contributions 13

second contribution. Our second contribution shows that developing se-
curity definitions which better represent the real world, does not only help to
fill the gap between theory and practice, but may also lead to new techniques of
independent interest in other areas of cryptography. In particular, we will show
a surprising connection between the area of tamper-resilience and the area of
efficient authentication.

Starting from 2001, with the seminal work of Hopper and Blum [HB01], the
problem of efficient authentication received a lot of attention. Besides relevant
effort, an efficient round-optimal (i.e. with only 2 rounds) authentication proto-
col meeting the strongest notion of security (so called Man-in-the-Middle, MiM)
was still missing.

The main ingredient that makes the HB-style family of protocols efficient is
that security is based on a computational assumption which is very simple (and
well studied): The Learning Parity with Noise (LPN) assumption. Roughly
speaking, the LPN problem asks to distinguish several “noisy” inner products
of a secret vector with random vectors from a truly random element. (Cf. Sec-
tion 2.3 for a precise definition). All the protocols from this family only require
to compute inner products of bit strings, and are thus very suitable for applica-
tions with bounded resources (e.g. RFID technologies). In essence, LPN-based
authentication is able to provide a theoretical improvement in terms of prov-
able security in addition to providing better efficiency than approaches based
on more classical symmetric techniques that are not related to hard problems.
Usually we trade one benefit for the other, but here we hope to get the best of
both worlds.

Recently, Pietrzak [Pie10] has shown that LPN is robust against a powerful
adversary tampering with the secret vector and the random vectors used in
the definition of the LPN problem. This led to a variant of the LPN which is
seemingly more general, but actually equivalent to the standard LPN problem.
In [Kil+11], building on Pietrzak’s result, we answer some open questions in the
area of efficient authentication, developing a new family of protocols meeting
MiM security. Our approach shows a completely different approach how to
build an authentication protocol from LPN; in this sense our protocols are non-
HB style.

Theorem 2. (Informal) Under the LPN assumption there exist truly efficient round-
optimal authentication protocols meeting MiM security.

To achieve the above we provide the first practical construction of a MAC from
LPN.
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structure. The structure of the thesis is as follows:

in the second chapter we review some of the basic tools of cryptography
and some mathematical background on which we rely. This is almost for
the sake of completeness. A reader experienced in the field can easily skip
this chapter.

in the third chapter we start by giving an overview of how to apply tamper-
ing attacks in practice. We then give an overview of the results in [Ish+06]
and explain the “trading leakage” paradigm. Finally we describe our cir-
cuit transformation.

in the fourth chapter we start by describing Pietrzak’s result in more detail.
We thus show how to use it to get an efficient 2-round protocol achieving
MiM security.

appendices a-d contain some proofs missing from the main body. This is just
to make the thesis self-contained.
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«Manners are not taught in lessons,» said Alice. «Lessons teach you
to do sums, and things of that sort.» «And you do Addition?» the
White Queen asked. «What’s one and one and one and one and one
and one and one and one and one and one?» «I don’t know,» said
Alice. «I lost count.» «She can’t do Addition,» the Red Queen
interrupted.

Lewis Carroll, Trough the Looking Glass [Car71]
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I n this chapter, we take a detour to introduce the basic tools and tech-
niques that will be used in the thesis. Some of the tools come, for

instance, from probability theory and computational complexity. The material
presented here is by far not complete and should be intended as a basic intro-
duction mainly intended for the inexperienced reader. The experienced reader
may in fact easily skip this part.

reader’s guide. We introduce the basic notation in Section 2.1. Then, in
Section 2.2, we recall the basic security definitions for the primitives used in
the context of confidentiality and message integrity over an insecure channel.
We also give a brief overview of the area of leakage-resilient cryptography; this
quick overview is needed to understand the main result presented in Chapter 3.
Section 2.3 introduces a class of computational assumptions with broad use in
cryptography (and beyond), namely the class of “hard learning” problems; the
computational assumptions introduced here are a basic building block for the

15
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schemes presented in Chapter 4. We conclude this chapter, by recalling some
basic inequality in probability theory in Section 2.4.

2.1 notation

basic notation. We let N, Z and R denote (respectively) the set of natural
numbers, the set of integers and the set of real numbers. Usually all the variables
represented by the letters i, j,k, l,m,n are integers. If n > 1, then we write [n]

for {1, . . . ,n}. Given a real value x ∈ R, we write bxc (resp. dxe) for the smallest
integer n ∈ Z such that n 6 x (resp. n > x). The absolute value of x ∈ R—
denoted |x|—is x if x is positive and −x otherwise. The absolute value satisfies
the triangle inequality, namely for every x,y ∈ R we have |x+ y| 6 |x|+ |y|.

We always write log(·) for the binary logarithm and ln(·) for the natural loga-
rithm.

Matrices and vectors are in boldface. Given a vector r, we write r[i] for the
element of r in position i. Vectors are intended as column vectors. The transpose
of a vector is denoted T. (If M is a matrix, M[i] is the i-th column of M.) Given
two vectors x, y of equal length, their inner product is xT · y. Given two binary
vectors x, y ∈ Zn2 their Hamming distance, 0 6 dH(x, y) 6 n, is the number of
positions in which x and y differ. The Hamming weight wH(x) of the string
x ∈ Zn2 is the number of 1’s in x, i.e. wH(x) = dH(x, 0n).

If S is a finite set, a string in S is an ordered tuple of elements in S. We will
mainly focus on S = {0, 1}, i.e. the binary alphabet. For any integer n >, the set
Sn is the set of length-n strings over S. We write S∗ for the set of all strings, i.e.
S∗ =

⋃
n>0 S

n. If x and y are strings, x||y is the string obtained by concatenating
x and y. If x is a string and κ > 0 is an integer, we write xκ for the concatenation
of κ copies of x. The length of x is |x|. When S is the binary alphabet, x⊕ y is
the xor of the strings x,y ∈ {0, 1}.

Events are denotes in small caps shape. If Event is an event, we write
P[Event] for the probability of Event; the negation of Event is denoted ¬Event.
If S is a set, we write s ∈ S for an element of S. The cardinality of S is #S. If S is
a distribution over a set S, then s← S means a random variable s is drawn from
S (if S has no distribution specified, then s $← S denotes a random variable with
uniform distribution over S). If S is an algorithm, then y← S(x) means that y is
the output of S on input x; in particular when S is probabilistic, y is a random
variable. We write A O(·) to denote an algorithm A with oracle access to O(·).
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random variables. Given a random variable X defined over domain X, we
write P[X = x] for the probability of X taking the value x ∈ X. The expected
value of X is E[X] =

∑
x∈X xP[X = x].

Given two random variables X,X ′ with finite domain X, their statistical dis-
tance is ∆(X,X ′) =

∑
x∈X |P [X = x] −P [X ′ = x]|. We say X and X ′ are ε-close, if

their statistical distance ∆(X,X ′) is at most ε.
The min-entropy of a random variable X is H∞(X) = − log(maxx P [X = x]).

Note that this implies maxx P [X = x] = 2−H∞(X).

asymptotic notation. The following notation will be very useful in the se-
quel.

Definition 2.1 (Asymptotic notation). Let f,g : R → R be two arbitrary func-
tions. We say that:

(i) f = O(g) if there is a constant c > 0 and a constant κ0, such that for every
κ > κ0 we have f(κ) 6 c · g(κ). (Intuitively, f is bounded by g from above,
up to a constant factor.)

(ii) f = Ω(g) if g = O(f). (Intuitively g is bounded by f from above, up to a
constant factor.)

(iii) f = Θ(g) if there are constants c1, c2 > 0 and a constant κ0, such that for
every κ > κ0 we have c1 ·g(κ) 6 f(κ) 6 c2 ·g(κ). (In other words, f = O(g)
and g = O(f), that is f is bounded by g both from above and from below.)

(iv) f = o(g) if for every c > 0 there is a constant κ0 such that |f(κ)| 6 c · |g(κ)|.
(Intuitively, f is dominated by g asymptotically.)

(v) f = ω(g) if g = o(f). (Intuitively, g is dominated by f asymptotically.)

We say a function negl : N → R is negligible if it goes to zero faster than
the inverse of any polynomial, that is for every c > 0 there exists a constant κ0
such that for every κ > κ0 we have negl(κ) < κ−c. A function poly : N → R is
polynomial if for every κ there exists a constant c such that poly(κ) < O(κc).

It is easy to check the validity of the following relations:

poly(κ) + poly(κ) = poly(κ) poly(κ) · poly(κ) = poly(κ)

negl(κ) + negl(κ) = negl(κ) negl(κ) · poly(κ) = negl(κ).
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2.2 basic cryptography

As we have mentioned in Section 1.1, the strongest security guarantee for a
cryptographic primitive is the notion of unconditional security, where there is no
limit on the computational power of the adversary attacking the system. Even
though there are schemes satisfying this strong notion (e.g., the well-known
One-Time Pad), such schemes are usually inherently inefficient. This is the main
reason why cryptographers stick to the weaker notion of computational security.
The main idea is to somehow limit the computational power of the adversary
attacking the system. This is possible by borrowing some ideas from the field of
computational complexity.

complexity theory & computational security. Computational complexity
addresses the question of which problems are efficiently and feasibly computable.
One might think that once we know that something is computable, it does not
matter whether it takes 5 seconds or 10 seconds to compute. However, this
conclusion would not be so obvious in the case of 5 seconds versus 55

5
seconds!

Such quantitative gaps are the main focus of complexity theory.
More precisely, complexity theory asks how the resources needed to solve a

problem scale with some measure κ of the problem size: “reasonably” (like say
κ or κ2), or “unreasonably” (like 2κ or κ!)? A good example is the case of in-
teger multiplication. Whereas it is possible to multiply κ-digit numbers very
efficiently (in ≈ κ2 computational steps using the grade-school method), the
fastest algorithm to factor a κ-digit number into primes takes ≈ 2κ1/3 computa-
tional steps.

Theoretical computer science calls an algorithm “efficient” (a.k.a. “polynomial-
time”) if its running time can be upper-bounded by any polynomial function of
κ. On the other hand an algorithm is said “inefficient” if its running time can
be lower-bounded by any exponential function of κ. Going further, the class P
(Polynomial-Time) is, roughly speaking, the class of all computational problems
that can be solved by a polynomial-time algorithm. The class NP (Nondeter-
ministic Polynomial-Time) is the class of all computational problem for which
a solution can be verified in polynomial-time, even though to find such a solu-
tion might be a very hard problem.1 (Think again at the problem of integer
factorisation).

1 Let us stress that NP does not stand for “Non-Polynomial”. There are problems that require more
than polynomial time, but the NP problems are not among those.



2.2 basic cryptography 19

Clearly P ⊆ NP, since every problem solvable in polynomial-time is also verifi-
able in polynomial-time. However, whether the inclusion is strict it is not known
and in particular the P vs. NP problem is one of the biggest open problems in
mathematics.2 If P = NP, then the ability to check the solutions to puzzles ef-
ficiently would imply the ability to find a solution efficiently. Since the above
scenario is very unintuitive, complexity theorist (and cryptographers) proceed
on the assumption that P 6= NP. This allows us to prove conditional statements,
based on the hardness of certain computational problems (e.g., integer factorisa-
tion).

Because of this assumption, in all the security definition (in the context of com-
putational security), the adversary is modelled as a PPT (Probabilistic Polynomial-
Time) Turing Machine. We will not give a precise definition of Turing Machine,
it suffices to know that a Turing machine is a theoretical device that manipulates
symbols on a strip of tape according to a table of rules. Despite its simplicity,
a Turing machine can be adapted to simulate the logic of any algorithm. A
Turing Machine is PPT if it uses some randomness as part of its logic (i.e., it is
probabilistic) and if its running time is polynomial in the length of its input.

symmetric encryption. We now introduce the main cryptographic primi-
tives to satisfy the requirements of confidentiality and message integrity (infor-
mally) introduced in Section 1.1. All the definitions will be given in the symmet-
ric setting, where Alice and the Rabbit share a secret key K belonging to a set K
of all possible keys.3

Suppose Alice wants to transmit over an insecure channel (controlled by the
Red Queen) a messagem belonging to a set M of all possible messages. To do so,
she first applies to the message m a transformation (possibly depending on the
secret key K) which turns the plaintext into a ciphertext c belonging to a space
C of all possible encrypted messages. In the decryption process the plaintext m
is recovered trough the secret key K and the ciphertext c. The formal definition
follows.

Definition 2.2 (Symmetric encryption scheme). Let M be the space of all pos-
sible messages, C be the space of all possible ciphertexts and K be the space of
all possible keys. A symmetric encryption scheme is a triple of PPT algorithms
ΠSKE = (KGEN, ENC, DEC) defined as follows:

2 In fact this is one of the seven million-dollar Clay Millennium Prize Problems, see www.claymath.

org/millennium/P_vs_NP/.
3 Of course such a key must be distributed in some way, but this is another issue.

www.claymath.org/millennium/P_vs_NP/
www.claymath.org/millennium/P_vs_NP/
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• Key Generation: Algorithm KGEN takes as input the security parameter
κ ∈ N (where κ represents the concrete security of the scheme), and out-
puts a key K ← KGEN(1κ)—with K ∈ K—shared between Alice and the
Rabbit.

• Encryption: Algorithm ENC : K×M→ C takes as input a messagem ∈M

and a key K ∈ K and outputs a ciphertext c = ENCK(m), with c ∈ C.

• Decryption: Algorithm DEC : K×C→M takes as input a ciphertext c ∈ C

and a key K ∈ K and outputs a plaintext m = DECK(c), with m ∈M.

Note that usually an encryption scheme is randomised; we write this as c ←
ENCK(m). Thus, encrypting a message m twice results in different ciphertexts
(with overwhelming probability). We say that ΠSKE has completeness error α if
for every κ ∈ N, for every K← KGEN(1κ) and for every m ∈M, we have

P [m = DECK(c) : c← ENCK(m),K← KGEN(1κ),m ∈M] > 1−α.

The standard security notion for symmetric encryption is Indistinguishability
against Chosen-Chiphertext Attacks (IND-CCA), where an adversary A attack-
ing ΠSKE with respect to a key K ∈ K is given oracle access to both ENCK(·)
and DECK(·). At some point the adversary chooses two messages m0,m1 ∈ M

with the same length and is given an encryption with key K of one of the two
messages. The goal of the adversary is to guess which one. This is formalised
trough the following experiment.

Experiment Expindcca
ΠSKE

(A , κ)
1. K← KGEN(1κ)
2. m0,m1 ← A ENCK(·),DECK(·)(1κ)

3. b $← {0, 1}, cb ← ENCK(mb)
4. b ′ ← A ENCK(·),DECK(·)(cb)

5. The experiment outputs 1 if and only if (i) b ′ = b, (ii) |m0| = |m1|

and (iii) cb is never asked to decryption oracle DECK(·)

(A weaker definition is Indistinguishability in the presence of Chosen-Plaintext
Attacks—IND-CPA—where the adversary is not allowed to ask decryption queries.)

We say that ΠSKE is (t,Q, ε)-IND-CCA-secure if for any adversary A running
in time t and asking a total of Q queries, we have

P

[
Expindcca

ΠSKE
(A , κ) = 1

]
6 ε.
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message authentication. Another basic security requirement is the one of
message integrity. Intuitively, here Alice would like to ensure that the message
m she sends over the channel reaches the Rabbit unchanged. To do so, she uses
the shared secret key to compute a tag φ on the message m and sends the pair
(m,φ). The main idea is that the Rabbit can now verify if the pair (m,φ) is valid
trough the secret key K.

Definition 2.3 (Message authentication code). Let M be the space of all pos-
sible messages, Φ be the space of all possible tags and K be the space of all
possible keys. A message authentication code (MAC) is a triple of PPT algo-
rithms ΠMAC = (KGEN, TAG, VRFY) defined as follows:

• Key Generation: Algorithm KGEN takes as input the security parameter
κ ∈ N (where κ represents the concrete security of the scheme), and out-
puts a key K← KGEN(1κ) — with K ∈ K — shared between Alice and the
Rabbit.

• Tagging: Algorithm TAG : K×M → Φ takes as input a message m ∈ M

and a key K ∈ K and outputs a tag φ← TAGK(m), with φ ∈ Φ.

• Verification: Algorithm VRFY : K ×M×Φ → {accept, reject} takes as
input a pair (m,φ) ∈ M×Φ and a key K ∈ K and outputs a value d ←
VRFYK(m,φ), with d ∈ {accept, reject}.

Note that when the verification algorithm is deterministic, it outputs 1 if and
only if φ = TAGK(m). Otherwise VRFY must be defined explicitly. We say that
ΠMAC has completeness error α if for every κ ∈ N, for every K← KGEN(1κ) and
for every m ∈M, we have

P [VRFYK(m,φ) = reject : φ← TAGK(m),K← KGEN(1κ),m ∈M] > 1−α.

The standard security notion for symmetric encryption is universal unforge-
ability against chosen meessage attacks (ufcma), where an adversary A attack-
ing ΠMAC with respect to a key K ∈ K is given oracle access to both TAGK(·)
and VRFYK(·, ·). At some point the adversary outputs a pair (m∗,φ∗) and she
wins if φ∗ is a valid tag for m∗, and the message m∗ is fresh, i.e. it has never
been queried to the TAGK(·) oracle. This is formalised trough the following
experiment.

Experiment Expufcma
ΠMAC

(A , κ)
1. K← KGEN(1κ)
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2. (m∗,φ∗)← A TAGK(·),VRFYK(·,·)(1κ)

3. The experiment outputs 1 if and only if (i) VRFYK(m∗,φ∗) = accept
and (ii) m∗ is never asked to the TAGK(·) oracle

We say that ΠMAC is (t,Q, ε)-ufcma-secure if for any adversary A running in
time t and asking a total of Q queries, we have

P

[
Expufcma

ΠMAC
(A , κ) = 1

]
6 ε.

asymmetric techniques. The main problem in the context of symmetric
cryptography is key distribution: every pair of users in the system must share
some key K ∈ K. How to distribute such a key is not discussed further here. (But
see for instance [NPR99; CKS05]). An alternative setup is the public key setting,
introduced for the first time by Diffie and Hellman [DH76]. Even though we will
not focus much on public key cryptography, we sketch briefly the main ideas
below.

The idea is to let every party hold two keys: say Alice has (pkA, skB) and the
Rabbit has (pkB, skB). The two keys (pkA, pkB) are public, whereas (skA, skB)
must kept secret. In this context, when Alice wants to send a message m ∈ M

to the Rabbit over an insecure channel, she will encrypt the message using pkB.
The Rabbit can thus recover m using its secret key skB. (The RSA cryptosystem
sketched in Section 1.1 is an example of an encryption scheme in the public key
setting.) In a similar fashion, to guarantee integrity of a message m ∈ M, Alice
will create a “digital signature” σ on m using her secret key skA. Everybody
having the corresponding public key pkA can thus verify the validity of the pair
(m,σ).4

Note that in this case the parties do not need to share any a priori secret, so
that the problem of key distribution is inherently solved. However, others set-
up assumption are needed, since, for example, Alice needs to be sure that the
Rabbit’s public key is authentic (see for instance [Bol+07]).

leakage resilience. As we have mentioned in the introduction, side-channel
attacks are a powerful means against (otherwise “provably” secure) cryptosys-
tems. In the passive case, an adversary can leak information on the secret key
by observing some characteristic of an implementation of a given primitive.

4 Note that in this sense digital signatures are transferable (whereas MACs are not). In fact, given
a valid tag (m,φ) only a party knowing the shared key K can verify the MAC.
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A large and growing body of research — in the so called area of leakage
resilient cryptography — is trying to fill this gap, by providing cryptographic
systems which remain secure even in the presence of (passive) physical attacks.
The main idea is to “ease” the goal of an adversary attacking a cryptographic
primitive, by giving her access to a leakage oracle revealing some information
on the secret key. Roughly, such a leakage oracle can be queried on input a func-
tion f and outputs the result of this function applied to the secret key. The first
ideas can be found in some papers on exposure-resilient cryptography [Can+00;
DSS01; ISW03], where one considers simple leakage functions that reveal just
a subset of the bits of the secret key. In this context, Ishai, Sahai and Wag-
ner [ISW03] show how to “compile” any cryptographic algorithm into one that
tolerates such types of leakage. In contrast to these works, that consider leak-
age functions acting locally, the focus of later works has been on more powerful
leakage functions that can perform some global computation on the secret key.
(As it will be clear in a moment, some restriction on the nature of the leakage
functions is necessary.) The work of Micali and Reyzin on “physically observ-
able” cryptography [MR04] was the first proposing to study formal models that
capture general types of leakage. This study has led to several models allowing
for positive results, described below.

• Bounded-leakage. In this model the adversary can submit to the leakage
oracle functions fi, as long fi is polynomially computable. However, the
range of every function is bounded by a parameter λi and the total amount
of information learned by the adversary is bounded. In particular, for a
secret key K, it must be

∑
i λi = λ < L = |K|. Note that the functions fi can

be chosen adaptively. There are both encryption schemes [AGV09; NS09;
BG10; Dod+10a; Cho+10] and signature schemes [KV09] tolerating up to
λ = (1− o(1)) · L bits of leakage.

• Continual-leakage. The main limitation of the bounded-leakage model, is
that, over time, it is not very reasonable to assume a bound on the leakage.
To overcome this problem, some papers [Dod+10a; Bra+10] allow the secret
key of the system to be refreshed (and the old one erased), while the public
key remains fixed (i.e., those who try to encrypt need not be aware of
the refreshes). The bound on the amount leakage, instead of being the
overall one throughout the lifetime of the system, is only between refreshes.
There is no bound on the total amount of information that can be leaked
during the lifetime of the system. In this model, it is possible to construct
encryption schemes and signature schemes tolerating up to (1− o(1)) · L
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bits of leakage between each refresh and a logarithmic (or even super-
logarithmic [LLW11]) amount of leakage during the refreshing phase.

• Noisy leakage. Another option (used for instance in [NS09; Fau+10b]) is to
ask that the leakage is not of bounded length, but it is guaranteed that the
secret key is still unpredictable given the leakage. This motivates a realistic
generalization that allows the adversary to learn any random variable (rep-
resenting the leakage information) that does not decrease the min-entropy
of the secret key too much.

• The auxiliary input model. A more general model is obtained by only assum-
ing that the secret key cannot be efficiently recovered given the leakage.
This approach was put forward by Dodis, Tauman Kalai, and Lovett [DKL09]
who studied the security of symmetric-key encryption schemes in the pres-
ence of leakage of the form f(K), where K is the secret key and f is any
exponentially-hard one-way function. Public key encryption schemes are
also known [Dod+10b].

• Other restrictions. Other (less general) models require that “only compu-
tation leaks information” [DP08; Pie09; Fau+10a; JV10; GR10] (i.e. only
the active part of the memory can leak), that the momory is diveded
into two parts and each of these parts leak individually [DDV10; KP10;
DF11; Dod+11], or that the leakage is computed by a space-bounded func-
tion [DKW11b; DKW11a].

2.3 hard learning problems

In this section we introduce a class of computational problems with several ap-
plications in cryptography and machine learning. Fix a string x ∈ Zκ2 . Given a
sequence of randomly chosen vectors r1, . . . , rn, along with the inner products
zi = rT · x, it is an easy task to recover x by Gaussian elimination. (In fact, poly-
nomially many samples are sufficient to have κ linearly independent equations
in x[i].) In the presence of noise, i.e. when each value zi is flipped independently
with probability 0 < τ < 1/2, the problem above is much more complicated and
is called the learning parity with noise (LPN) problem.

Let x ∈ Zκ2 be a random secret and denote with Bernτ the Bernoulli distribu-
tion with parameter 0 < τ < 1/2 (i.e. P[e] = τ if e $← Bernτ). We define Λτ,κ(x)
to be the distribution over Zκ+12 obtained by choosing r $← Zκ2 , e $← Bernτ and re-
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turning (r, rT ·x⊕e). The (computational) LPNτ,κ problem requires to compute x
given access to Λτ,κ(x). The (decisional) LPNτ,κ problem requires to distinguish
Λτ,κ(x) from the uniform distribution Uκ+1 over Zκ+12 .

We say that the LPN problem is (t,Q, ε)-hard if for all distinguishers D run-
ning in time t and asking Q oracle queries, we have∣∣∣P [DΛτ,κ(x) = 1 : x $← Zκ2

]
−P

[
DUκ+1 = 1

]∣∣∣ 6 ε.

In what follows, we will refer only to the decisional version of the problem. In
fact, the two versions are known to be equivalent, as shown by the following
lemma.

Lemma 2.1 ([KS06; KSS10], Lemma 1). Say there exists an algorithm D making Q
oracle queries, running in time t, and such that∣∣∣P [DΛτ,κ(x) = 1 : x $← Zκ2

]
−P

[
DUκ+1 = 1

]∣∣∣ > ε.

Then there exists an algorithm A making Q ′ = O(Q · ε−2 log κ) queries, running in
time t ′ = O(t · κ · ε−2 log κ), and such that

P

[
A Λτ,κ(x) = x : x $← Zκ2

]
> ε/4.

The best (known) algorithms for the LPN problem take exponential time
2κ/ logκ when τ > 0 is treated as a constant [BKW00; BKW03; LF06].

learning with errors. A natural generalization of the above problem is the
learning with errors (LWE) problem [Reg05]. The most appealing characteristic
of this problem is that it enjoys for certain parameters a worst-case hardness
guarantee [Reg05; Pei09].5 We informally recall the LWE problem below. Let
q > 2 be a prime and denote with Gauq,τ the so called “discretised normal
error” distribution parametrised by some τ ∈]0, 1[. This distribution is obtained
by drawing x ∈ R from the Gaussian distribution of width τ (i.e., x is chosen with
probability 1

τ exp(−πx2/τ2)) and outputting round(q · x) mod q. For a random
secret s ∈ Zκq, the (decisional) LWEq,τ,κ problem is to distinguish samples of the

form (r, rT · s + e) from uniformly random samples in Zκq ×Zq, where r $← Zκq,

e
$← Gauq,τ and all the operations are performed modulo q.

5 It is a well establish fact that cryptography requires problems that are hard to solve on the average,
so that when a cryptographic key is chosen at random, the corresponding function is hard to break
with high probability. Before a famous result of Ajtai and Dwork [AD97], all known cryptographic
functions almost invariably rely on average-case complexity assumptions. In this respect, lattice
problems are exceptional in their ability to provide provably secure cryptographic functions from
worst-case complexity assumptions.
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2.4 tail inequalities

Tail inequalities are a powerful tool in probability theory, with several appli-
cations in cryptography and beyond. Intuitively, these inequalities bound the
probability that a random variable with a bell-shaped distribution takes a value
in the tails of the distribution, far away from the mean.

Perhaps the simplest tail inequality was named after the Russian mathemati-
cian Andrey Markov.

Lemma 2.2 (Markov’s inequality). For every positive random variable X, we have

P [X > n] 6
E [X]

n
.

Proof. Note that

E [X] =
∑
x>0

P [X = x] x >
∑

06x<n

P [X = x] · 0+
∑
x>n

P [X = x] ·n

= P [X > n] ·n.

The above inequality can be generalised to the case where the random variable
X is the sum of n independent random variables. This yields the so called
Chernoff bound, which will be used repeatedly in Chapter 4.

Theorem 2.3 (Chernoff bounds). Let X1,X2, . . . ,Xn be independent random vari-
ables over {0, 1} and let µ =

∑n
i=1 E [Xi]. We have:

(?) ∀ δ > 0

P

[
n∑
i=1

Xi > (1+ δ)µ

]
6

(
eδ

(1+ δ)1+δ

)µ
(??) ∀ 0 < δ 6 1

P

[
n∑
i=1

Xi > (1+ δ)µ

]
6 e−µδ

2/3

(? ? ?) ∀ c > 6µ

P

[
n∑
i=1

Xi > c

]
6 2−c.

Proof. See Appendix A.



3 TA M P E R - P R O O F C I R C U I T S

«Be what you would seem to be»—or if you’d like it put more simply—«Never
imagine yourself not to be otherwise than what it might appear to others that what
you were or might have been was not otherwise than what you had been would have
appeared to them to be otherwise.»

Lewis Carol, Alice’s Adventures in Wonderland [Car65]
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W e have already seen the devastating power of some tampering at-
tacks against RSA, in Chapter 1. In this chapter we will study

tampering from a much more general point of view, referring to arbitrary Boolean
circuits and not to specific constructions.

Our goal is to develop new countermeasures using the techniques of the realm
of provable security. In a nutshell we would like to address the following ques-
tion.

Q: Is it possible to design an efficient procedure to transform any circuit
into another one (with the same input-output behaviour) provably resisting
a large (and meaningful) class of tampering attacks?

reader’s guide. The take-home message from years of experience in the area
of provable security is that for any theoretical model to be meaningful, it has to
describe reality quite precisely. Following this lesson, we start Section 3.1 by
describing how tampering attacks are applied in the real world. This will help
us to understand the power of the adversaries we need to consider. Then, in Sec-
tion 3.2 we describe the result of Ishai, Prabhakaran, Sahai and Wagner [Ish+06]

27
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and its limitations. To overcome these limitations, in Section 3.3 we introduce a
new framework for defining tamper-resilience and describe our transformation.
The security proof is given in Section 3.4. Some extensions and open problems
are finally considered in Section 3.5.

3.1 tampering in practice

Cryptographic devices are usually made of two components: a digital circuit car-
rying out the required functionality (e.g. signing) and memory cells that contain
the data to be processed and the secret key. Digital circuits are built from logical
cells, the smallest atomic unit in the circuit. They operate on Boolean values (i.e.
the values in 0, 1) and compute basic logical operations such as NOT, NAND and
so on.

In practice we need a representation for the Boolean values 0, 1. The value 1
is typically defined by the voltage supply level VDD; the value 0 is defined by
the ground voltage level VSS.

Figure 3.1: NMOS.

cmos technology. Logical cells are built from
transistors. A transistor is a semiconductor1 device
used to amplify and switch electronic signals. There
are different types of transistors; however, today most
of the digital integrated circuit are built using Field
Effect Transistor (FET) in the so-called Complementary
Metal-Oxide-Semiconductor (CMOS) technology. The
words “complementary-symmetry” refer to the fact
that the typical digital design style with CMOS uses
complementary and symmetrical pairs of p-type and
n-type metal oxide semiconductor FETs for building
logical functions. The main attractive of CMOS technology is that it has high
noise immunity and low static power consumption.

Figure 3.1 shows an NMOS transistor: A small voltage at the gate terminal can
control or switch a current between the source and drain terminals. (A PMOS
transistor is identical, but without the small empty circle at the end of the gate.)
Applying a low level voltage (i.e. a 0) to the gate of a PMOS transistor, generates
a low resistance between its source and drain contacts (thus current can flow)

1 A semiconductor is a material that is neither fully isolating (like plastic) nor fully conducting (like
metal). Silicon is by far the most commonly used semiconductor material.
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and viceversa. On the other hand, a low level voltage (i.e. a 0) to the gate of
an NMOS transistor, generates a high resistance between its source and drain
contacts and viceversa.

The way CMOS circuits are constructed is such that a PMOS transistor always
has either an input from the power supply or from another PMOS transistor.
In a similar fashion, all NMOS transistors must have either an input from the
ground or from another NMOS transistor. Current reduction is accomplished
by complementing every NMOS with a PMOS and connecting both gates and
both drains together. In this way, a high voltage on the gates will cause the
NMOS to conduct and the PMOS not to conduct while a low voltage on the
gates causes the reverse. This arrangement greatly reduces power consumption
and heat generation.

Figure 3.2: CMOS inverter.

Figure 3.2 shows a NOT gate (i.e. an inverter)
in CMOS logic. When the input is a 0, the NMOS
is not conducting. On the other hand, the PMOS
transistor is conducting, resulting in a path from the
voltage level to the output, and setting the output
to 1. The situation is reversed when the input is a
1: Only the NMOS is conducting in this case, result-
ing in a path from the output to the ground level
and setting the output to 0. In short, the outputs
of the PMOS and NMOS transistors are complemen-
tary such that when the input is low, the output is
high, and when the input is high, the output is low.
Because of this behavior of input and output, the
CMOS circuits’ output is the inversion of the input.
The other Boolean gates can be constructed in a sim-
ilar way, see [Bak10] for details.

memory cells. Until now we have only focused on computation. One of
the most common technology for storing and managing data is Static Random
Access Memory (SRAM), shown in CMOS style in Figure 3.3. Each bit in an
SRAM is stored using two inverters. The word line (WL) controls the two access
transistors T5 and T6. In turn the access transistors control whether the cell
should be connected to the bit lines: BL and BL. The latter are used to transfer
for read/write operations.

An SRAM can be in one of 3 different states: standby, reading and writing.
When the word line is not asserted, the cell is isolated from the bit lines and the
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SRAM is in standby. Until the power supply is applied the two inverters will
continue to store one of the two stable states: Either S = 0 and S = 1 (i.e. the
cell is storing 0) or S = 1 and S = 0 (i.e. the cell is storing 1). The two inverters
configuration is called flip-flop and it is widely used in digital electronics.

Figure 3.3: SRAM in CMOS style.

To write a value on the memory
(say a 1), the value 1 is applied to
BL and the opposite is applied to BL
and the word line is enabled. This
will cause the flip-flop to change state,
overwriting the previous value.

To read a value, both the bit lines
are precharged to 1. If the memory
content is 0 (resp. 1), BL will be pulled
toward 0 (resp. 1) and BL toward 1

(resp. 0).

fault injection. By fault attack
(a.k.a. tampering attack), we mean any
method/approach/algorithm, which

is given a device and which returns secret data. During the attack, an adver-
sary may run the target device several times while inducing faults into memory
cells or other structural elements. These faults are induced by some physical
attack, exposing the machine to some sort of physical stress. As a reaction, the
device malfunctions (e.g., memory cells change their current or structural ele-
ments are damaged). All these effect will be referred to as faults. We say that
a fault attack induces faults into a device, such that the output of the attacked
device is faulty, i.e. it has a value different than expected.

The most common techniques to mount a physical attack (and their effects)
are described below.

• High-energy radiation. Cosmic rays are very high-energy subatomic parti-
cles originating in outer space. They are comparable to high-energy pro-
tons and neutrons produced by large particle accelerators. It has been
experimented that cosmic rays can cause a bit flip [GA03]. However, since
the equipment needed to simulate cosmic radiation is not available to the
public, to exploit this source an attacker has to wait that a single bit is
flipped by a cosmic ray by chance. This is very unlikely.
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Other methods of inducing a bit flip exists based on α-particles, β-particles
and X-ray radiation. However all these methods are not very effective and
difficult to use with standard commercial equipment. Thus, we will not
say more about them. The interested reader can refer to [GA03].

• Heat. Every electronic device has a range of temperatures under which it
works reliably; forcing the device to work outside this range of tempera-
tures can induce faults. A simple attack of this kind against a standard PC
has been shown in [GA03] using just a 50 Watt spotlight clip-on lamp. The
problem with this approach is that it is difficult to target a single bit with
high precision. Moreover, when not finely tuned, the attack can cause the
operating system to crash, requiring a complete re-installation.

The use of heat to inject faults into a device dates back to earlier works on
tampering attacks, see [BDL97; Pet97].

• Optical attacks. These attacks need the smartcard to be unpacked, i.e. it is
necessary that the silicon layer is visible. In this case it is possible to use
UV light to destroy individual structures of the chip [KK99].

However, also non-destructive attacks are possible. The physical principle
exploited here, is that semiconductor transistors are sensitive to coherent
light (e.g. the light emitted by a laser) in a way similar to the fact they are
sensitive to cosmic radiation. Relying on this principle, a simple attack is
shown in [SA02] using an intense light source (namely a photoflash lamp),
a microscope and aluminium foil. The targeted device is an SRAM cell
(cf. Figure 3.3). If the transistor T3 is opened for a very short time by
an external stimulus, then it could cause the flip-flop to change state. By
exposing the transistor T4 , the state of the cell would be changed to the
opposite. Thus one is allowed to set or unset individual chosen bits of the
memory.

• Eddy currents. It has been known for a long time [AK97; Pet97; KK99] that
placing a device in an electromagnetic field may influence the transistors
and memory cells behaviour, inducing faults. A more recent attack [QS02],
showed that it is possible to generate a magnetic field inducing Eddy cur-
rents on the surface of a conducting materials. Eddy currents are present
in everyday life and used for a variety of applications such as for the pur-
pose of measurements and for melting materials.

It is possible to show that Eddy currents can modify the number of elec-
trons inside a transistor’s oxide grid. This changes the threshold voltage
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of the transistor, such that it cannot be switched anymore. Depending on
the actual transistor, this can be used to ensure that a memory cell contains
the value 0 or 1.

tampering in wonderland. To develop a good theoretical model, it is im-
portant to abstract away common characteristics of fault attacks. A good char-
acterisation has been proposed in [Ott04]. On a high level, tampering attacks
differ in the power to locate and time the induced faults, in the number of bits
affected, in the effect of an attack, in the probability of the implied effect of an
induced fault and in the duration of an effect. This is specified more carefully
below:

• Location. Every attack has a certain precision. Some attacks are able to
target selected bits very precisely.

• Number of bits. Tampering can effect a single bits or more than one bit.

• Fault type. A single bit can be set to 1, reset to 0 or flipped (meaning that the
value on the targeted wire is changed, whatever the initial value was).

• Probability. Usually an attack is not guaranteed to be successful, it is only
so most of the time.

• Duration. We differentiate between transient faults, permanent faults and
destructive faults. Destructive faults cannot be reversed and occur when
the adversary destroys part of the physical structure on the chip. On the
other hand, permanent and transient faults do not modify the hardware
of the device, thus allowing the device to recover from the induced faults
after a certain period of time. Permanent faults change an affected variable
until that variable is explicitly overwritten, whereas transient faults are
faults where after a given amount of time, the effect ceases to exist and the
correct value is present again.

We start with an arbitrary (probabilistic) Boolean circuit C; a Boolean circuit C
is a directed acyclic graph whose vertices are standard Boolean gates and whose
edges are the wires. The depth of C, denoted depth(C), is the longest path from
an input to an output. We say a circuit is clocked if it evolves in clock cycles (or
rounds). The input and output values of the circuit C in clock cycle i are denoted
by Xi and Yi, respectively. A circuit is probabilistic if it uses internal randomness
as part of its logic. We call such probabilistic logic randomness gates and denote
them with $. In each clock cycle $ outputs a fresh random bit.
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As we have seen, additionally, a circuit may contain memory gates. Memory
gates, which have a single incoming edge and any number of outgoing edges,
maintain state: at any clock cycle, a memory gate sends its current state down
its outgoing edges and updates it according to the value of its incoming edge.
Any cycle in the circuit graph must contain at least one memory gate. The state
of all memory gates at clock cycle i is denoted by Mi, with M0 denoting the
initial state. When a circuit is run in state Mi−1 on input Xi, the circuit will
output Yi and the memory gates will be in a new state Mi. We will denote this
by (Yi,Mi)← C[Mi−1](Xi).

Given any (probabilistic) Boolean circuit, we will consider adversaries that
can adaptively tamper in Q clock cycles with up to t wires (for some constant
t ∈ N). We are particularly interested in the case where t is unbounded, i.e. the
adversary can tamper with an arbitrarily large number of wires in the circuit
in every round. For each wire we allow the adversary to choose between the
following types of attacks: set, i.e. setting a wire to 1, reset, i.e. setting a wire to 0

and toggle, i.e. flipping the value on the wire. For each wire such an attack fails
independently with some probability. This is captured by the global parameter δ,
where δ = 0 means that the attack succeeds always, and δ = 1 that no tampering
takes place. When an attack fails for one wire the computation continues with
the original value on that wire. Note that the adversary can tamper the same
wire several times, but only once in-between every two invocations. However,
as tampering is persistent, after a sufficiently large number of attempts the tam-
pering will succeed almost certainly, i.e. with probability 1− δl after l rounds.

Notice that once a fault is successfully placed it stays permanently. Let us
stress that we do allow the adversary to “undo” (with zero error probability)
persistent attacks induced in previous rounds (this captures so called transient
faults).

We call such an adversary, that can adaptively tamper with a circuit for up
to Q clock cycles attacking up to t wires per round, an (t, δ,Q)-adversary and
denote the attack strategy for each clock cycle as W = {(w1,a1), ..., (wt,at)}. The
first element in each such tuple specifies which wire in the circuit is attacked and
the second element specifies the type of attack (i.e. set, reset or toggle). When the
number of faults per clock cycle is unbounded, we will explicitly write t =∞.



34 tamper-proof circuits

3.2 the result of ishai et al.

The question whether an arbitrary (probabilistic) Boolean circuit C can be trans-
formed in such a way that a tampering adversary is defeated with high proba-
bility has been addressed for the first time in [Ish+06]. Since our transformation
will be based on several ideas of Ishai et al., in this section we take a detour and
summarise their result.

The main idea is to rely on a circuit compiler Ψ. Such a compiler is just a set
of rules how to transform any Boolean circuit C into another (eventually bigger)
circuit Ĉ. Notice that these rules basically need to specify how to transform:
(i) The values carried by the wires in C and (ii) the gates in C. (Without loss of
generality the NAND gate suffices, since it is well known that NAND is universal.)

More formally, a circuit transformation Ψ takes as input a security parameter
κ, a (probabilistic) circuit C and an initial state M0 and produces a transformed
initial state M̂0 and a transformed (probabilistic) circuit Ĉ. This is denoted
by (Ĉ, M̂0) ← Ψ(C,M0). Let us stress that the transformation itself can be
randomised and we let rΨ denote the random coins of the transformation.

The first (natural) requirement we want from Ψ is that Ĉ maintains the same
functionality as the original circuit C: For all C,M0 and any set of public inputs
X1,X2, . . . ,XQ the original circuit C starting with state M0 and the transformed
circuit Ĉ starting with state M̂0 result in an identical output distribution. In
this case we say that Ψ is functionality preserving. The second requirement we
want from Ψ is that it should have some form of tamper-resilience, as discussed
below.

the definition of ishai et al. The model considered by [Ish+06] takes only
care of (t, 0,Q)-adversaries. Recall this means that the adversary A is allowed to
set/reset/toggle the value of up to t wires in the circuit (for some small constant
t ∈ N, so t 6= ∞) but attacks are always successful (i.e. δ = 0). The way
Ishai et al. define tamper-resilience of Ψ is via simulation.2 The basic idea is
to compare two different “worlds”. The first one is the real world where the
attack against Ĉ takes place; thus the first world features an (t, 0,Q)-adversary
A tampering with Ĉ. The second world features a simulator S having just
black-box access to the original circuit C; thus S applies inputs to C and learns
the corresponding outputs, without injecting any faults. Informally, Ψ is tamper-
resilient if whatever A learns in the first world, is in some sense “equivalent” to

2 Simulation-based definitions are a very well-known paradigm how to define security of some
cryptographic primitives, e.g. zero-knowledge proof systems [GMR85].
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what the simulator S learns in the second world: This essentially means that
tampering is “useless”, since what A can learn by tampering with Ĉ can be
perfectly “simulated” having only black-box access to the original circuit C.

To make this idea formal we need to introduce two experiments describing
what happens in the two worlds sketched above and then to compare the output
of the two experiments.

In the real world experiment, the adversary A can, in each round i, adaptively
specify an input Xi and an attack strategy Wi that is applied to the transformed
circuit Ĉ when run on input Xi with secret state M̂i−1. The output Yi resulting
from the (possibly) faulty computation is given to the adversary and the state is
updated to M̂i for the next evaluation. To formally describe such a process we
introduce a special oracle, which we call Θ, that can be queried on (Xi,Wi) to
return the result Yi. More precisely, for any (t, 0,Q)-adversary A , any circuit C
and any initial state M0 , consider the following experiment:

Experiment ExpReal
Ψ (A ,C,M0)

1. (Ĉ, M̂0)← Ψ(C,M0)

2. Output A Θ(Ĉ,M̂0,·)(C)

In the second experiment the simulator S simulates the adversary’s view,
however, she has to do so without having tampering access to the transformed
circuit. More precisely, the simulator only has oracle access to C[M0](·). For
a simulator S consider the following experiment for any circuit C, any initial
state M0 and any (t, 0,Q)-adversary A :

Experiment ExpSim
Ψ (S ,C,M0)

1. Output S C[M0](·)

When the outputs of the two experiments (as random variables depending on
the coin tosses of the circuit, of the compiler and of the adversary) are statisti-
cally close (cf. Section 2.1) we say Ψ is tamper-resilient. (Note that the adversary
here is all-powerful, i.e. we aim at unconditional security.)

Definition 3.1 (Tamper-resilient compiler [Ish+06]). A circuit compiler Ψ is ε-
tamper-resilient if for any (t, 0,Q)-adversary A , for every circuit C and any
initial state M0, there exists a simulator S such that

∆(ExpReal
Ψ (A ,C,M0), ExpSim

Ψ (S ,C,M0)) 6 ε,

where the probabilities are taken over all the random coin tosses involved in the
experiments.
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achieving the definition. To build a compiler Ψ satisfying Definition 3.1,
the transformation of [Ish+06] relies on a fundamental axiom, stated below.

Axiom 1 (Tamper-proof gadgets). There exists small, stateless and computation
independent tamper-proof gadgets of size linear in the security parameter κ.

The gadgets above are fixed, standard and universal elements that can be
added to once standard cell library. This is far better than designing over and
over task specific tamper-proof components. The above axiom means that an ad-
versary is not allowed to tamper with the internal of the gadgets, but only with
their inputs and outputs. Assuming simple components that withstand active
physical attacks has been frequently made in the literature [Gen+04; Fau+10b;
GR10; JV10]. Of course, the simpler the components are, the stronger is the result
that one gets.

Hence, the main idea is to detect faulty computation combining randomised
computation with redundant encodings applied to the values in the circuit. The
gates in the original circuit C are replaced by the corresponding tamper-proof
gadgets able to compute with the encodings itself. Moreover, if tampering is
detected, a self-destruction mechanism is triggered that overwrites the complete
state, so that, from there on, regular and tampering queries to the circuit can
be trivially simulated. One difficulty that needs to be addressed is that this
self-destruction mechanism itself is exposed to tampering attacks. In particular,
an adversary could just try to cancel any trigger for self-destruction and from
then on apply arbitrary attacks without being in danger of detection. Ishai et al.
face this problem by spreading and propagating errors that appear during the
computation. As discussed later we will use similar techniques in our compiler
(cf. Section 3.3).

We can now state the main result of Ishai et al. [Ish+06].

Theorem 3.1 (Main theorem of [Ish+06]). Let κ > 0 be a security parameter. There
exists a compiler Ψ that is ε-tamper-resilient against (t, 0,Q)-adversaries, where ε =

2−κ. The compiler blows-up the circuit by a factor O(κ3t) and requires O(κ2) bits of
fresh randomness in every invocation.

3.3 our transformation

The transformation of Ishai et al. has some limitations that makes it not prac-
tical. The first issue is that their construction is only suitable to resist (t, 0,Q)-
adversaries. Whereas Definition 3.1 can be easily extended to cover the case of
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(∞, δ,Q)-adversaries, as soon as the adversary is allowed to tamper with more
than t wires in the compiler of [Ish+06] (in a single invocation), she is able to in-
ject faults without being detected. However in practice it is not clear why there
should be an upper bound on the number of wires the adversary can “touch” in
every invocation of Ĉ. Hence the question:

Q1: Can we build a compiler secure against adversaries able to tamper with
an unbounded number of wires in the circuit in every invocation?

Note that an adversary able to tamper successfully with all the wires in C could
just “re-program” the circuit in such a way it outputs the secret key, leaving no
hope for security. To avoid this attack we will rely on the fact that the adversary
is a (∞, δ,Q)-adversary for some δ > 0, i.e. every attack fails (independently)
with some probability δ. Recall that this actually describes what happens in a
real attack (cf. Section 3.1).

The second issue we want to address is efficiency. In fact the compiler of Ishai
et al. is not very efficient: The compiled circuit has a big blow-up factor and
requires a huge amount of randomness in each invocation.

Q2: Can we get anything better in terms of efficiency and randomness? Can
we use smaller tamper-proof gadgets?

the “tading leakage” paradigm. To address the above questions, our ap-
proach is to relax Definition 3.1 by “helping the simulator” as follows. Instead
of giving S just black-box access to C[M0], we allow it (once, at the beginning
of the experiment) to learn a “small” amount of leakage Λ on the secret state
M0. Thus we say that a compiler Ψ is tamper-resilient if whatever an (∞, δ,Q)-
adversary learns tampering with Ĉ can be simulated having only black-box ac-
cess to the original circuit and given the leakage Λ.3 Now, if the original circuit C
remains secure even given Λ, we can conclude that Ψ is tamper resilient. As we
have seen in Section 2.2 there are several cryptosystems which are resilient to an
amount of leakage as large as a constant fraction of the secret key. Essentially
we are “trading” a small amount of auxiliary information on the secret state to
achieve tamper-resilience. As we will see this small amount of leakage improves
efficiency drastically.

Let’s make the above idea more formal. The real world experiment is ex-
actly the experiment ExpReal

Ψ (A ,C,M0) introduced in Section 3.2, where the

3 Note that if |Λ| = |M0|, simulation is trivial. In other words, the challenge is to achieve the
definition using only a small amount of leakage.
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adversary A is now an (∞, δ,Q)-adversary. Moreover, we let the simulator Sλ
depend on a parameter λ, where λ will be the amount of auxiliary informa-
tion given as hint. Besides having black-box access to C[M0](·), at the begin-
ning of the experiment the simulator additionally chooses an arbitrary function
f : {0, 1}∗ → {0, 1}λ and learns the result of f evaluated on input the secret state
M0, i.e. Λ = f(M0). For a simulator Sλ we define the following experiment for
any circuit C, any initial state M0 and any (∞, δ,Q)-adversary A :

Experiment ExpSim
Ψ (Sλ,C,M0, A )

1. f← Sλ(A ,C) where f : {0, 1}∗ → {0, 1}λ

2. Output S
C[M0](·)
λ (Λ) where Λ = f(M0)

We say a compiler is tamper-resilient if the outputs of the two experiments
are statistically close.

Definition 3.2 (Trading leakage for tamper-resilience). A circuit compiler Ψ is
(λ, ε)-tamper-resilient if for any (∞, δ,Q)-adversary A , for every circuit C and
any initial state M0, there exists a simulator Sλ such that

∆(ExpReal
Ψ (A ,C,M0), ExpSim

Ψ (Sλ,C,M0, A )) 6 ε,

where the probabilities are taken over all the random coin tosses involved in the
experiments.

We now describe our compiler in detail. Instead of computing with bits the
compiled circuit Ĉ will operate on redundant and randomised encodings of bits.

encodings. Our transformation is based on three encoding schemes, where
each is used to encode the previous one. The first encoding, so called Manchester
encoding, can be described by a deterministic function that takes as input a bit
b ∈ {0, 1} and has output MC(b) = (b,b). Decoding is done just by outputting
the first bit.

The output (b,b) is given as input to the next level of our encoding procedure,
where we use a probabilistic function mask : {0, 1}2 × {0, 1}2 → {0, 1}4. Such
a function uses as input additionally two random bits for masking its output.
More precisely, we have mask(MC(b), (r, r ′)) = (b⊕ r, r,b⊕ r ′, r ′), with (r, r ′) $←
{0, 1}2. We denote with MMC ⊂ {0, 1}4 the set of valid masked Manchester
encoded bits, and with MMC = {0, 1}4 \MMC the non-valid encodings.

Our final encoding consists of κ independent masked Manchester encodings:

Encode(b, r) = mask(MC(b), (r1, r ′1)), . . . , mask(MC(b), (rκ, r ′κ)),
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Figure 3.4: A global picture of our compiler in the case κ = 3. In the red-coloured parts
we rely on gadgets of constant size, whereas in the blue-coloured parts
gadgets of linear size (in the security parameter κ) are used.

with r = (r1, r ′1, r2, r2, . . . , rκ, r ′κ) ∈ {0, 1}2κ. Thus it has length 4κ bits and uses
2κ bits of randomness. When the randomness in an encoding is omitted, it
is uniformly sampled, e.g. Encode(b) denotes the random variable Encode(b, r)
where r $← {0, 1}2κ is sampled uniformly at random. Again, we denote with
ENC ⊂ {0, 1}4κ the set of all valid encodings and with ENC = {0, 1}4κ \ ENC the
non-valid ones.

the compiler. Consider any (probabilistic) Boolean circuit C that consists of
Boolean NAND gates, randomness gates $ and memory cells. We assume that
the original circuit handles fanout4 through special Copy gates taking one bit as
input and outputting two copies. If κ copies are needed, the original value is
passed through a subcircuit of κ− 1 Copy gadgets arranged in a tree structure.
Let us first describe the transformation for the secret state. On factory setup 2κ
random bits rΨ = (r1, r ′1, . . . , rκ, r ′κ) are sampled uniformly. Then, each bit of
the secret state mi is encoded as in Encode(mi, rΨ). Putting all these encodings
together we get the initial transformed secret state M̂0. The encoded secret state
will be stored in the memory cells of Ĉ, but we will discuss this below. Notice
that we use the same randomness for each encoding.

The global picture of our transformer consists of four different stages: the
encoder, the input/output cascade phase, the transformation for the core and the
decoder. These stages are connected as shown in Figure 3.4 and are described
below.

4 By fanout we mean the maximum number of inputs that can be driven correctly by the output of
a logical gate.
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Figure 3.5: The cascade phase for error propagation and self-destruction. Every cascade
gadget (in blue) has size linear in the security parameter κ.

• The encoder and the decoder. Since the compiled circuit computes with val-
ues in encoded form, we need to specify how to encode and decode the
public inputs and outputs of Ĉ. The encoder (which is deterministic and
build from copy and negation gates) encodes every bit of the input using
randomness rΨ:

Encoder(x1, . . . , xn) = (Encode(x1, rΨ), . . . , Encode(xn, rΨ)) ,

where x1, . . . , xn ∈ {0, 1}. The decoding phase Decoder simply outputs the
XORs of the first two bits of every encoding.

• The input and output cascade phases. For self-destruction we use a tool al-
ready introduced by [Ish+06]—the cascade phase (cf. Figure 3.5). In our
construction we make use of two cascade phases: an input cascade phase
and an output cascade phase. As shown in Figure 3.4 on the preceding
page the input cascade phase takes as input the output of the encoder and
the encoded secret state. The output cascade phase takes as inputs the
output of the core and the updated secret state.5 As discussed later in Sec-
tion 3.4, for technical reasons we require that the secret state is always in
the top part and the public output is always on the bottom part of the cas-
cade phase. For ease of description we call the part of the cascade phase
that takes the inputs as the first half and the part that produces the outputs
as the second half. This is shown in Figure 3.5.

5 Notice that the input and the output cascade phases might have a different number of in-
puts/outputs.
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Figure 3.6: The compiler Ψ applied to a concrete circuit C (in the top left picture). The
top right picture shows one of the subcircuits Ĉr,r ′ in the core of the com-
piled circuit Ĉ. The gadgets used in Ĉr,r ′ are all of constant size. Finally the
bottom picture shows the output cascade phase.

Inside the cascade phase we make use of special cascade gadgets Ξ : {0, 1}8κ →
{0, 1}8κ. The gadgets behave like the identity function if the inputs are valid
encodings using randomness rΨ, and output 08κ otherwise, i.e.

Ξ(A,B) =

{
A,B if A,B ∈ {Encode(0, rΨ), Encode(1, rΨ)}

0 otherwise.

The gadgets are assumed to be tamper-proof, i.e. the adversary is allowed
to tamper with their inputs and outputs, but she cannot modify their in-
ternals (cf. Axiom 1).

• The core. With N̂ANDr,r ′ : {0, 1}2×4 → {0, 1}4 we define a NAND gate which
works on masked Manchester encodings using randomness r, r ′ (on in-
put and output). If the input contains anything else than a valid masked
Manchester encoding, the output is 04 ∈ MMC. The truth table of these
gadgets is given in Table 3.1. Similarly we denote with Ĉopyr,r ′ : {0, 1}4 →
{0, 1}2×4 a Copy gate which takes as input a masked Manchester encod-
ing using randomness r, r ′ and outputs two copies of it. Whenever the
input contains anything else than a masked Manchester encoding using
randomness r, r ′, the output is 08 ∈MMC.

Ĉopyr,r ′(A) =

{
A,A if A ∈ {mask(MC(0, r, r ′)), mask(MC(1, r, r ′))}

08 otherwise.
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1st Input 2nd Input Output
mask(MC(0, r, r ′)) mask(MC(0, r, r ′)) mask(MC(1, r, r ′))
mask(MC(0, r, r ′)) mask(MC(1, r, r ′)) mask(MC(1, r, r ′))
mask(MC(1, r, r ′)) mask(MC(0, r, r ′)) mask(MC(1, r, r ′))
mask(MC(1, r, r ′)) mask(MC(1, r, r ′)) mask(MC(0, r, r ′))

? ? 04

Table 3.1: Truth table of N̂ANDr,r ′ : {0, 1}2×4 → {0, 1}4.

Finally we let $̂r,r ′ denote a randomness gadget outputting a fresh masked
Manchester encoded random bit.

With Ĉr,r ′ we denote the circuit we get by replacing every wire in C with
4 wires (carrying an encoding in MMC using randomness r, r ′) and every
NAND gate (resp. Copy gate, $ gate) in C with a N̂ANDr,r ′ (resp. Ĉopyr,r ′ ,
$̂r,r ′). Similar to the Ξ gadgets, we require the N̂ANDr,r ′ , Ĉopyr,r ′ , $̂r,r ′

gadgets to be tamper-proof, i.e. the adversary is allowed to tamper with their
inputs and outputs, but cannot modify the internals (cf. again Axiom 1).
Note that if we want to avoid the use of $̂r,r ′ gadgets we can derandomise
the original circuit C replacing the $ gates with the output of a Pseudo-
Random Generator (PRG).6 The core of the transformed circuit consists of
the κ circuits Ĉr1,r ′1

, . . . , Ĉrκ,r ′κ (where the ri, r ′i are from rΨ).

To sum up, our compiled circuit has a blow-up of O(κ) and requires only 2κ
bits of randomness during production (no randomness at run-time is needed).
Also note that we need tamper-proof gadgets of linear size (in κ) only in the
cascade phase, whereas the core relies on gadgets of constant size in κ. In
contrast, the transformation of [Ish+06] requires tamper-proof gadgets of linear
(in κt) size in the entire circuit, albeit simpler ones than we do.7 See Figure 3.6
for a concrete example how the compiled circuit looks like in a simple case.

6 A PRG is a deterministic algorithm taking a small random seed as input and producing an output
which is indistinguishable from random [KL07, Chapter 6].

7 More precisely, in the core they need tamper-proof NAND gadgets taking 4κt bits as input.
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3.4 security proof

To prove security of our transformation, we construct an efficient simulator Sλ
that—having only black-box access to the original circuit C—can simulate access
to the transformed circuit Ĉ = Ψ(C) including adversarial tampering queries.
The main challenge here is consistency, that is, answers computed by Sλ must
have the same distribution as an adversary would see when tampering with C.

When A tampers with C, a subsequent invocation of C can have one of three
different outcomes:

1. Nothing happens: The invocation goes through as if no tampering did hap-
pen (this is e.g. the case if a wire is set to 0, but its value during the
invocation is 0 anyway).

2. Self-destruct: The redundancy added to C “detects” tampering, and the
entire state is deleted.

3. Successful tampering: The outcome of C changes as a consequence of the
tampering, and this tampering was not detected.

In a first step, we show that case (3) will not happen but with exponentially small
probability. To show this, we use the fact that tampering with any particular
wire fails with probability δ, and moreover that every bit carried by a wire in
C is encoded in Ĉ with a highly redundant and randomised encoding. This
guarantees that the chance of an adversary to change a valid encoding of a bit
to its complement is tiny: either she has to be lucky—in the sense that she
tampers with many wires at once and all attacks succeed—or she has to guess
the randomness used in the encoding.

As we ruled out case (3), we must only build a simulator Sλ that simulates C
as if no tampering has happened (i.e. case (1)). This is easy as Sλ has access to
C which is functionally equivalent. Moreover, at some point Sλ has to simulate
a self-destruct (i.e. case (2)). Unfortunately there is no way for the simulator
to know when the self-destruct happens (as the probability of this event can be
correlated with the secret state). To avoid this impasse, we will provide the exact
point of failure as auxiliary input to Sλ. (As we will see later in the proof, the
point of failure can be easily encoded using a logarithmic amount of leakage on
the secret state.)

Note that the simulator has to continue simulation even after the self-destruct.
This seems easy, as now all the secret state has been deleted. There is one im-
portant technicality though. As tampering is permanent, even after self-destruct
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the simulator Sλ must simulate a circuit in a way that is consistent with the
simulation so far. A priori the simulator only knows which wires the adversary
tried to tamper, but recall that each tampering is only successful with probabil-
ity 1− δ. For this reason, we let the simulator choose all the randomness used,
including the randomness of the compiler (which generates Ĉ from C) and the
randomness that determines the success of the tampering attacks. Knowledge of
this randomness, allows the simulator to continue simulation after self-destruct.
Note that the above-mentioned auxiliary information (i.e. the point at which
self-destruct is triggered) can be computed—once and for all at the beginning of
the simulated experiment—as a function of this randomness, and the random-
ness used by the adversary.

the bad events. Consider the experiment ExpReal
Ψ (A ,C,M0). We will say

that the adversary “triggered” the self-destruct, if in an invocation of Ĉ we get
(as a consequence of tampering with Ĉ) an invalid encoding at the input to
a cascade gadget Ξ. The high level idea behind our circuit compiler, which
will make simulation possible, can be summarised as follows: (i) Any kind of
tampering attempt is much more likely to trigger self-destruct than to succeed
in changing a valid encoding of b into an encoding of 1− b and (ii) Once self-
destruct is triggered, the entire secret state of Ĉ gets erased with overwhelming
probability.

The reason the latter could actually fail is that even though we have an invalid
encoding at the input to Ξ, the adversary can also tamper with its output (which
will be all zeros), potentially changing it back to a valid encoding. We define
two event Bad1 and Bad2 which hold if the first or second of the unlikely cases
above occurs.

Bad1 = 1 if in the experiment ExpReal
Ψ (A ,C,M0) at some point the encoding

Encode(b, rΨ) occurs either at the output of the core of Ĉ or within a cascade
phase, whereas in the un-tampered circuit this value should be Encode(1−
b, rΨ). Moreover this happens before self-destruct was triggered.

Bad2 = 1 if self-destruct is triggered, but “un-done” before the entire state has
been erased. Notice that if the Ξ gadget where self-destruct is triggered
lies in the first half of the (input or output) cascade phase, then the entire
state is erased if the inputs to all the following Ξ’s in this phase are not
valid, as in this case the output of the cascade phase is all zeros. If the
Ξ gadget lies in the second half of the input (resp. output) cascade phase,
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Figure 3.7: Cascade gadgets in the second half of the output cascade phase are assigned
a label in [1,n]. The auxiliary information Λ includes the label n∗ of the first
cascade gadget where 08κ appears as an input.

then the state is erased if all inputs to the Ξ gadgets in the first half of the
next output (resp. input) cascade phase are not valid encodings.

description of Sλ . The simulator Sλ must “fake” a run of the experiment
ExpReal

Ψ (A ,C,M0), which basically means to simulate the answers coming from
the tampering oracle Θ(Ĉ, M̂0, ·, ·), having only black-box access to C[M0](·).

The simulator starts by sampling all the coin tosses for the experiment. This
includes the following uniform coin tosses: The coins rA for the adversary and
the coins rΨ for the transformation. Additionally, Sλ samples a sufficiently long
string rE which will model the failure of each tampering attempt. The bits of
rE are i.i.d. and each bit is 1 with probability δ (rE[i] = 1 meaning the i-th
tampering attempt fails).

Next, the simulator can define the auxiliary input function f : {0, 1}∗ → {0, 1}λ.
The function f gets M0 as input, and thus can completely simulate the exper-
iment ExpReal

Ψ (A ,C,M0) using the randomness just sampled. This experiment
defines the following three values, which are f’s output:

• Abort ∈ {0, 1} is a predicate which is 1 if either of the predicates Bad1 or
Bad2 (as defined above) is 1.

• Q∗ ∈ [1,Q] specifies the round (if there is any) in which a self-destruct
is triggered, that is, the first round where an input from ENC appears as
input to a cascade gadget Ξ.

• n∗ ∈ [0,n] specifies which cascade gadget this is, as illustrated in Fig-
ure 3.7. If this is not one of the gadgets computing the final (public and
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secret) output we set n∗ = 1. If this is one of the gadgets computing the
secret output we set n∗ = 0. Otherwise n∗ specifies the gadget exactly.

After getting this auxiliary input the simulator checks if Abort = 1, in this case
it stops with output “simulation failed”. Otherwise Sλ runs the experiment
ExpReal

Ψ (A ,C,M0) using rA as A ’s randomness. We will show in Lemma 3.2 be-
low that Sλ can do so perfectly. Then we show in Lemma 3.3 that the probability
that Abort = 1 is very low.

Lemma 3.2. There exists a simulator Sλ such that whenever Abort = 0 the simula-
tion is perfect, i.e. the output is exactly the output of the experiment ExpReal

Ψ (A ,C,M0)

(where the experiment uses the same randomness as sampled by Sλ).

Lemma 3.3. The probability that f returns Abort = 1 is at most 3(1− δ/2)κ.

These lemmas, whose proofs we postpone for a moment, imply our main
theorem.

Theorem 3.4 (Tamper-resilience against (∞, δ,Q)-adversaries). Let 0 < δ < 1/2,
κ > 0. Consider an arbitrary Boolean circuit with n bits of public output. The compiler
Ψ of Section 3.3 is (λ, ε)-tamper-resilient, where λ = log(Q) + log(n + 1) + 1 and
ε = 3(1− δ/2)κ.

Proof. Let R be the randomness space of the experiment ExpReal
Ψ (A ,C,M0). For

r ∈ R let ExpReal
Ψ (A ,C,M0)[ r ] denote the outcome of the experiment when us-

ing randomness r. Similarly let ExpSim
Ψ (Sλ,C,M0, A )[ r ] denote the outcome of

the experiment ExpSim
Ψ (Sλ,C,M0, A ), assuming Sλ initially samples random-

ness r. For any r where Abort = 0 we have by Lemma 3.2

ExpSim
Ψ (Sλ,C,M0, A )[ r ] = ExpReal

Ψ (A ,C,M0)[ r ].

By Lemma 3.3 for a random r ∈ R we have Abort = 1 with probability at most
ε. This implies that for a random r, the output of the two experiments is ε-close,
i.e.

∆
(

ExpSim
Ψ (Sλ,C,M0, A ), ExpReal

Ψ (A ,C,M0)
)
6 ε,

as claimed.

proof of lemma 3.2. We have to specify how (in the case Abort = 0) the
simulator answers A ’s queries to the Θ(Ĉ, M̂0, ·, ·) oracle. The answers must be
exactly the same as the answers in the experiment ExpReal

Ψ (A ,C,M0)[ r ] when
using the same randomness r = {rE, rA , rΨ} as chosen by Sλ.
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• The firstQ∗− 1 queries. For i = 1, . . . ,Q∗− 1, if A makes the query (Xi,Wi)

the simulator forwards Xi to C[M0](·) and gives the output Yi to A .

• QueriesQ∗+ 1 toQ. As Abort = 0 (and thus Bad2 = 0), in the query Q∗ or
Q∗+ 1 there is some point in the evaluation of Ĉ where all wires are 0, and
the simulator knows this point (from Q∗,n∗). Moreover, as the simulator
chooses the randomness r of the experiment, she knows the state of Ĉ
exactly, in particular which wires were successfully tampered. Thus from
the point where all wires are 0, the simulator can continue to compute the
answers of the Θ(Ĉ, M̂0, ·, ·) oracle itself.

• The Q∗-th query. We haven’t yet covered the query Q∗. This query is a
hybrid between the two cases considered above. If n∗ = 0 (i.e. the self-
destruct is triggered at the end of the output cascade phase after the public
output is already computed) we can handle this query exactly like the first
Q∗ − 1 queries. Also if n∗ = 1 (i.e. self-destruct is triggered early in the
query, before the cascade gadgets outputting the final public output were
invoked), this query can be handled like in the previous case.

If n∗ > 1 the simulator first queries (as in the first Q∗ − 1 queries) for YQ∗ ,
but before forwarding this value to A it must adapt it to take into account
that parts of it were deleted: the first n∗− 1 bits of YQ∗ remain unchanged,
the others are set to 0.

• Finalising. Finally Sλ outputs whatever A outputs.

By inspection, the queries above have exactly the same distribution as the
outputs of the Θ(Ĉ, M̂0, ·, ·) oracle in the experiment ExpReal

Ψ (A ,C,M0)[ r ].

proof of lemma 3.3. Recall that Abort = 1 if either Bad1 or Bad2 (as de-
fined at the beginning of this section) are 1. We upper bound the probability
that Bad1 = 1 and Bad2 = 1 below. We will first state some properties of the
transformed circuit Ĉ which will be used in the proof of the lemma.

We first show (Lemma 3.5 below) that tampering with (a non-empty subset
of) four wires holding a masked Manchester encoded value — where tampering
with a wire fails independently with probability δ and the adversary may know
the encoded value, but not the randomness used in the encoding — will result
in an invalid value with probability δ/2.

Let 0 < δ < 1/2 and consider the following game.

• An adversary chooses b ∈ {0, 1,⊥} and four functions f1, f2, f3, f4 : {0, 1}→
{0, 1} of which at least one is not the identity function.
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• If b = ⊥ set (x1, x2, x3, x4) = (0, 0, 0, 0), otherwise sample random r, r ′ ∈
{0, 1} and let (x1, x2, x3, x4) = mask(MC(b), (r, r ′)) be the masked Manch-
ester encoding of b.

• For each i ∈ {1, 2, 3, 4}, with probability 1− δ set yi = fi(xi) and yi = xi
otherwise.

Lemma 3.5 (Tampering with MMC). The probability that at the end of the experi-
ment just described, (y1,y2,y3,y4) ∈MMC (i.e. it is not a valid masked Manchester
encoding) is at least δ/2.

Proof. We first look at the case where at least one of the fi’s — for concreteness
say f4 — is a toggle function, i.e. f4(x4) = 1− x4. The main observation is that
any subset of three bits of a masked Manchester encoding uniquely determine
the fourth. In particular, if (y1,y2,y3,y4) ∈ MMC then y1 ⊕ y2 ⊕ y3 ⊕ 1 = y4.
Recall that y4 = x4 with probability δ (i.e. we don’t apply f4) and y4 = 1− x4
with probability 1− δ. In one of the two cases we get (y1,y2,y3,y4) ∈ MMC,
thus the encoding is invalid with probability at least δ.

Consider now the case where at least one of the fi’s — for concreteness say
f4 — is a set function, i.e. f4(x4) = 1 (the proof for the reset case is identical).
As P[x4 = 0] = 1/2 and y4 = x4 = 0 with probability δ, we get P[y4 = 0] = δ/2.
Again, only in one of the two cases (y4 = 0 or y4 = 1) we get (y1,y2,y3,y4) ∈
MMC, thus the encoding is invalid with probability at least δ/2.

By Lemma 3.5, tampering with the output wires of a N̂ANDr,r ′ (or Ĉopyr,r ′)
gate (which is 04 or mask(MC(b), r, r ′)) will result in an invalid encoding with
probability at least δ/2. We next show a general composition lemma, which es-
sentially states that the property proven in Lemma 3.5 composes to an arbitrary
subcircuit made of masked Manchester gadgets as used in Ĉ.

Lemma 3.6 (Tampering with the core of Ĉ). The probability that in the experiment
ExpReal

Ψ (A ,C,M0) we have an encoding Encode(b, rΨ) at the output of the core, where
in the un-tampered circuit this values would be Encode(1 − b, rΨ) and this happens
before self-destruct is triggered, is at most (1− δ/2)κ.

Proof. Recall that the core of Ĉ is made of κ independent subcircuits {Ĉri,r ′i},
each using independent randomness ri, r ′i. The output of each subcircuits when
no tampering took place, consists of the original output in masked Manchester
encoded form (masked using the same randomness).

The first important observation is that if the adversary wants to change one of
the encodings at the output of the core, she must tamper with every subcircuit
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(either in a single round or in different rounds). Consider the very last level
where the adversary applies a tampering attack in a given subcircuit, say 1 6
` 6 depth(Ĉri,r ′i).

8 The value ` = 1 means that the adversary tampers only with
the input of the subcircuit, whereas the value ` = depth(Ĉri,r ′i) means that the
attack involves also the encoded output. Since any tampering strategy ending at
level ` involves the output of some masked Manchester gadget, Lemma 3.5 says
that the output of that gadget is in MMC with probability at least δ/2. The key
observation here is that, since ` is the last level where the adversary applies an
attack, the invalid encoding will propagate to the output of the subcircuit. Thus
the output of that subcircuit has at least one value in MMC with probability at
least δ/2. Moreover this argument applies to all the subcircuits since they use
independent randomness. As a consequence with probability at least 1 − (1 −

δ/2)κ one of the wire bundles at the output carries a value in ENC, and thus
triggers self-destruct.

Note that the above lemma does not cover all cases of the Bad1 = 1 case.
The other possibility to get Bad1 = 1 is by tampering within the cascade phase,
hoping to change Encode(b, rΨ) into Encode(1−b, rΨ). A similar argument as the
one used in the proof of Lemma 3.6, shows that in this case the probability of
success can also be bounded by (1− δ/2)κ. Taking both cases into account, we
get

P [Bad1 = 1] 6 2(1− δ/2)
κ.

It remains to bound P[Bad2 = 1]. Recall that Bad2 = 1 if the adversary
manages to change the output 08κ of a Ξ gadget (which was queried on an
invalid input) back to something valid, i.e. Encode(b, rΨ), Encode(b ′, rΨ) for some
bits b,b ′ ∈ {0, 1}. Even in the case δ = 0 (i.e. when tampering always succeeds),
we can upper bound the probability that the adversary can “un-do” tampering
on one particular Ξ gadget by 2−2κ. To see this, assume an adversary changes
08κ to a valid encoding with advantage ε. In this case we can extract rΨ from
its tampering queries, but as rΨ ∈ {0, 1}2κ is uniform (and the answers from the
Θ oracle are independent of rΨ), it follows that the adversary has 2κ bits min-
entropy about rΨ and thus ε 6 2−2κ. Taking into account that the adversary
can use different guesses for rΨ on the outputs of the different Ξ gadgets, the
probability that Bad2 = 1 is l · 2−2κ where l is the number of Ξ gadgets in Ĉ.

8 Since the transformation in the core is gate-by-gate the depth of Ĉri,r′i is the same as the depth
of the original circuit C.
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Assuming l · 2−2κ 6 (1− δ/2)κ (which is the case for any interesting range of
parameters) we get

P [Bad2 = 1] 6 (1− δ/2)κ.

This finishes the proof.

3.5 extensions and open problems

In this section we discuss some further extensions and open problems in the
area of tamper resilience.

the case δ = 0. The “trading leakage” paradigm introduced in this chap-
ter allows for efficient compilers of arbitrary Boolean circuits, resilient against
(∞, δ,Q)-adversary. It is a natural question to ask weather it is possible to
achieve a similar efficiency improvement for the case where δ = 0 (i.e. attacks
are always successful) and the attacker is allowed to attack only up to t wires
per invocation. (Recall that this is exactly the model considered in [Ish+06].)

Before we discuss the details of our new compiler Ψt, let us outline why the
transformation from Section 3.3 is not secure when the failure probability of
attacks on individual wires is highly correlated (the model of [Ish+06] is such
a case). In a nutshell, the reason is that the gadgets in the core operate on
encodings of constant length c. A (t, 0,Q)-adversary can successfully tamper
with such encodings if c 6 t (e.g. she can fix it to a fixed encoding). In this
section we outline how to significantly improve the efficiency of the compiler
ΨIPSW when a small amount of leakage is tolerated.

For readers familiar with [Ish+06] we recall the compiler ΨIPSW here. The
transformation ΨIPSW uses randomisation and redundant encodings and works
in two steps. First, using the transformation9 ΨISW from [ISW03] the origi-
nal circuit C[M0] is transformed into a randomised circuit C ′[M ′0]. That is,
each wire w in C is represented by a κ-bit wire bundle in C ′ of the form
(r1, . . . , rκ−1, r1 ⊕ . . .⊕ rκ−1 ⊕w). The gates in C are replaced by gadgets that
operate on such randomised encodings. The gadgets have to satisfy the invari-
ant that learning up to κ− 1 wires does not reveal any information about the

9 The transformation ΨISW has the property that the compiled circuit Ĉ is still secure against a
passive adversary probing up to t wires in each clock cycle. The main trick used by [ISW03] is
to reduce the tampering strategy of a (t, 0,Q)-adversary to a probing attack against Ĉ. Tamper-
resilience thus follows from the security of ΨISW.
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1st Input 2nd Input Output
02kt 02kt 12kt

02kt 12kt 12kt

12kt 02kt 12kt

12kt 12kt 02kt

? ? 0kt1kt

Figure 3.8: Truth table of a N̂AND gad-
get in the case of (t, 0,Q)-
adversaries.

1st Input 2nd Input Output
02kt 02kt (02kt, 02kt)
02kt 12kt (02kt, 12kt)
12kt 02kt (12kt, 02kt)
12kt 12kt (12kt, 12kt)
? ? (0kt1kt, 0kt1kt)

Figure 3.9: Truth table of a cascade
gadget in the case of
(t, 0,Q)-adversaries.

encoded computation. This first transformation blows up the size of the circuit
by O(κ2).

The circuit C ′ uses standard Boolean gates. In the next step each wire in C ′

(that is part of a wire bundle) is encoded with a 2κt bit long redundant encoding.
The encoding that is used maps 0 to 02κt and 1 to 12κt. The value 0κt1κt is a
special invalid state. The Boolean gates in C ′ are then replaced using the N̂AND
gadgets given in Figure 3.8. These gadgets compute with the encoding just
outlined above. This concludes the description of the core of the transformed
circuit Ĉ. The output of the core is given as input to a cascade phase. This is
essentially identical to the one described in Section 3.3 but built with the cascade
gadgets shown in Figure 3.9. Notice that the gadgets in Figure 3.8 and 3.9 are
not atomic. Instead, they can be built from standard Boolean gates and tamper-
proof AND gates that take 4κt bits as input. The result of the above outlined
transformation gives us Ĉ[M̂0].

If we allow the tampering adversary to learn a small amount of informa-
tion, then we can eliminate most of the overhead resulting from the first step.
Our transformation Ψt essentially follows the transformation ΨIPSW with two
changes. First, instead of randomizing each wire in C with κ− 1 random bits (to
achieve statistical security with security parameter κ), in C ′ we use only a single
bit of randomness. More precisely, each wire wi in C is represented in C ′ by
two wires that carry the values (wi ⊕ ri, ri). The computation in C ′ is done in
such a way that learning the value of a single wire in C ′ does not reveal informa-
tion. This can be done with the techniques introduced in [ISW03] (i.e. replacing
each gate in C by gadgets that are constructed from standard Boolean gates and
probabilistic gates). Second, the gadgets in Figure 3.8 and 3.9 are tamper-proof.
That is, an adversary can tamper with its inputs and outputs but the internals
are not subject to attacks. These tamper-proof gadgets can be implemented in
size linear in κt.
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We give some further details below. For security parameter κ we define
the probabilistic encoding scheme Encodet : {0, 1} → {0, 1}4κt as Encodet(b) =

(b2κt ⊕ r2κt, r2κt), where r $← {0, 1}. Each bit b of the initial secret state M0 is
then replaced by Encodet(b). Hence, the memory cells in C are replaced by 4κt
memory cells.

As in the transformation of Section 3.3, Ĉ is structured in three phases: the
encoder/decoder, the input/output cascade phases and the core. The encoder
encodes every input bit b with Encodet. The decoder takes the first bit of the en-
coding and the (2κt+ 1)-th bit and outputs the XOR. The input/output cascade
phase is similar to the one described in Section 3.3, with the difference that it
makes use of the tamper-proof cascade gadgets of Figure 3.9.

Essentially, Ĉ ← Ψt(C) operates with encodings Encodet instead of plain bits.
To achieve this it proceeds in two steps. First every gate in C is replaced by
gadgets (built from Boolean and randomness gates) that operate with masked
bits, i.e. (b⊕ r, r). This can for instance be done with the transformation ΨISW

from [ISW03]. Next each gate in C ′ is replaced with N̂AND gadgets of Figure 3.8.
This gives us the transformed circuit Ĉ. Notice that even if the original circuit C
was deterministic, the transformed circuit Ĉ will contain randomness gates (this
is due to the transformation ΨISW). We can use the PRG construction proposed
in [Ish+06] to de-randomize Ĉ.10

It is easy to see that changing the transformation ΨIPSW as outlined above
decreases the size of Ĉ by a factor of O(κ2). Also, the amount of randomness is
decreased from O(|C| · κ2) to O(|C|) (where |C| is the size of C).

We prove security of Ψt using the “trading leakage” paradigm of Section 3.3.
This requires to show that any attempt to change a valid encoding in the core
(or the cascade phases) results with high probability in an invalid encoding at
the output of Ĉ’s core.

Lemma 3.7 (Tampering with the core and/or with the cascade phase of Ĉ).
Consider any circuit C and its transformation Ĉ = Ψt(C). Every (t, 0,Q)-adversary
tampering inside the core of Ĉ either lets the computation in Ĉ unchanged or results
with probability at least 1− 2−2κ to an invalid encoding on some wire bundle at the
output of the core.

10 Notice that here we require a special PRG (namely the one from [Ish+06]), while in Section 3.3
we could just use any PRG for de-randomization. The reason for this is that in Section 3.3, if C is
deterministic, then so is Ĉ. On the other hand if C is probabilistic we can make it deterministic
using any standard PRG, and only afterwards apply our transformation.
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Proof. Since Ĉ only uses tamper-proof N̂AND and cascade gadgets, the attack
strategy of the adversary can only include the inputs and outputs of such gad-
get. Notice that the minimal Hamming distance between two valid encodings
is dH(02κt, 12κt) = 2κt. Since the adversary is only allowed to tamper with at
most t wires in every round, either fixing or changing an encoding will require
2κ rounds. The main observation is that the randomness of the masking is re-
freshed in each round. Hence, the adversary is successful in each round with
probability at most 1/2. This concludes the proof.

Similar to the proof of Theorem 3.4 we can use Lemma 3.7 to show tamper-
resilience against (t, 0,Q)-adversaries.

Theorem 3.8 (Tamper-resilience against (t, 0,Q)-adversaries). Let κ > 0 be the
security parameter and t ∈ N. Consider an arbitrary Boolean circuit C with n bits of
public output. For any Q = Q(κ), the compiler Ψt described above is (λ, ε)-tamper-
resilient, where λ = log(Q) + log(n+ 1) + 1 and ε = 2−2κ.

Proof. The proof is along the lines of Theorem 3.4 and is therefore omitted.

using only gadgets of constant size. It is an interesting open problem
to reduce the size of the tamper-proof gadgets used in the transformation. Even
though our compiler uses tamper-proof gadgets of constant size in the core of Ĉ
(in contrast to [Ish+06]), the cascade phase still relies on tamper-proof gadgets
of linear size. One is tempted to “open-up” the gadgets, implementing them
using smaller (tamper-proof) gadgets. However, it is not difficult to see that the
composition argument we used in the core of Ĉ fails in this case.

Another interesting approach would be to rely on the following “babushka
doll construction”.11 The main idea is to let every cascade gadget of size 8k be
replaced by a smaller cascade phase using gadgets of size 4k. In the same fash-
ion, every such a gadget “contains” a smaller cascade phase relying on gadgets
of size 2k and so forth, until only gadgets of constant size are used. However,
we don’t know how to build the simulator for this construction and we can only
conjecture its security.

beyond (∞, δ,Q)-adversaries. In this chapter we looked at the general case
where the adversary is allowed to tamper with every part of the circuit. A
simpler case is when the adversary can only tamper with the memory. Below

11 The name is inspired by the so called matryoshka doll, or babushka doll, a Russian nesting doll
which is a set of wooden dolls of decreasing size placed one inside the other.
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we sketch some results regarding this model and make a comparison with the
general setting considered in this chapter.

• Algorithmic Tamper-Proof (ATP) security. Gennaro et al. [Gen+04] consider a
model where an adversary can attack a circuit C with secret state M; the
circuit C could e.g. compute digital signatures whereM contains the secret
key. The adversary can make regular queries to the cryptosystem, where
on input X she receives C[M](X). Additionally she can make “tamper”
queries, where she chooses a function f, and the secret state is replaced
with f(M).

The solution they propose is to sign the state. More precisely, they compile
the circuit/state pair C,M into Ĉ, M̂ where the new state M̂ = {M,σ}
contains a digital signature σ on the memory M. The circuit Ĉ(M̂) parses
M̂ = {M,σ}, checks if σ is a valid signature on M, and if so, outputs C(M);
otherwise it “self-destructs”. The main advantage of this solution is that
it works for any efficient tampering function f, but some problems remain.
For example C has to be stateless (i.e. it cannot overwrite its state) as the
public Ĉ cannot contain the secret signing key. Moreover, as in our work,
the attacker can learn some information about M by using tamper-queries
(though at most log(Q) bits where Q is the number of tamper-queries).

• Non-Malleable (NM) codes. In [DPW10] the notion of “non-malleable codes”
is proposed. It is shown that by encoding the state M (instead of append-
ing a signature) one can avoid most of the problems in [Gen+04], albeit
one must settle for more restricted families of tampering functions (not all
efficient functions as in [Gen+04]). See [DPW10] for the details.

• Related-Key Attacks (RKA). A special case of tampering attacks are “related-
key” attacks, where an adversary is allowed to query a primitive not only
under the target key, but under other “related” (chosen by her) keys de-
rived from it. A theoretical framework for this setting has been developed
for pseudorandom functions and permutations [BK03; Luc04; BC10], one-
way functions, hard-core predicates and pseudorandom generators [GL10],
symmetric key encryption [AHI11], weak pseudorandom functions, public
key encryption, identity-based encryption and signatures [BCM11]. Most
of known construction of RKA-secure primitives, assume that the ensem-
ble of tampering function is claw-free, this meaning that any two distinct
functions in the set disagree on all inputs. Note that if the set of admissible
tampering functions contains both the function able to set a certain bit of
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the key to zero, and, say, the identity function then this set is not claw-free.
Moreover, any ensemble containing the function that can set the key to
a constant value is also not claw-free. The assumption of claw-freeness
is removed in [BCM11], where a more general (but still limited) class of
tampering function is allowed.

• Tamperable and leaky memory. Kalai, Kanukurthi and Sahai [KKS11], con-
sidered a model where (i) all memory is leaky and leakage can be an
arbitrarily chosen (efficient) function of the memory, (ii) all memory is
tamperable and the tampering can be an arbitrarily chosen (efficient) func-
tion applied to the memory. In other words, they consider the case where
the memory is both leaky and tamperable (arbitrarily). In this model they
construct a signature scheme and an encryption scheme that are provably
secure against such attacks, assuming that memory can be updated in a
randomised fashion between episodes of tampering and leakage.

There are two fundamental difference between our work and the line of re-
search presented in [BK03; Gen+04; Luc04; BC10; GL10; DPW10; AHI11; KKS11;
BCM11]. On the one hand the adversary considered in the latter papers is much
stronger, since she can apply tampering attacks from a much larger class of
tampering functions (in the work of [Gen+04; KKS11] even arbitrary polynomial
time functions). On the other hand, we (as well as [Ish+06]) consider adversaries
that tamper with the entire computation. This is in contrast to [BK03; Gen+04;
Luc04; BC10; GL10; DPW10; AHI11; KKS11; BCM11], where the adversary is
restricted solely to attack the memory, but the computation is assumed to be
completely tamper proof.

It is an open problem to build a compiler achieving the best of both worlds,
namely security against adversaries able to tamper with the whole circuit apply-
ing arbitrary functions to the bits in the circuit.





4 E F F I C I E N T A U T H E N T I C AT I O N F R O M
H A R D L E A R N I N G P R O B L E M S

«... Now I’ll give you something to believe. I’m just one hundred and
one, five months and a day.» «I can’t believe that!» said Alice. «Can’t
you?» the Queen said in a pitying tone. «Try again: draw a long
breath, and shut your eyes.» Alice laughed. «There’s no use trying,»
she said: «one can’t believe impossible things.»

Lewis Carroll, Trough the Looking Glass [Car71]
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I n this chapter, we show that looking at stronger security models (such
as leakage-resilience and tamper-resilience) is not only important to

fill the gap between theory and practice (thus delivering better security defi-
nitions, closer to reality) but could also yield new powerful techniques with
broader applications in theoretical cryptography. In this sense, theory and prac-
tice can thus benefit from each other.

The context we will focus on is (secret key) authentication (cf. Figure 1.2):
Alice (a.k.a. the prover P) wants to authenticate herself to the Cheshire Cat
(a.k.a. the verifier V ) using a previously shared secret string s ∈ Zκ2 . As we
will see in this chapter there are very well-defined models and paradigms for
this purpose, based on other basic cryptographic primitives such as encryption
schemes and digital signatures. However, in practice, there are cases in which
devices are resource-constrained; this is e.g. the case of RFID devices.1 In such

1 Radio-frequency identification (RFID) is a technology that uses radio waves to transfer data from
an electronic tag, called RFID tag, attached to an object, through a reader for the purpose of
identifying and tracking the object.
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cases, it is not possible to rely on the aforementioned paradigms. Hence, the
question:

Q: Can we design truly efficient authentication protocols?

Starting from a tampering-related question, we will develop new techniques
able to address the question above.

An influential paper in the area of efficient authentication is a paper of Hop-
per and Blum presented for the first time at Asiacrypt 2001 [HB01]. The protocol
introduced by Hopper and Blum is based on the LPN problem (cf. Section 2.3)
and started an entire line of research trying to construct (highly efficient) au-
thentication protocols meeting stronger and stronger security notions. However,
after more than 10 years, a round-optimal protocol based on LPN and meeting
the strongest notion of security, was still missing.

In [Kil+11] we have solved the above open problem. The starting point for
our contribution is the LPN problem in the presence of a powerful tampering
adversary. A recent result of Pietrzak [Pie10] shows that LPN is robust against
a certain class of tampering attacks. Building on Pietrzak’s result, we are able to
construct (truly efficient) authentication protocols meeting the strongest security
notion.

reader’s guide. The context of secret key authentication is reviewed in Sec-
tion 4.1, together with some known paradigms how to construct authentication
protocols based on other basic primitives. In Section 4.2 we describe the state of
the art for authentication protocols based on LPN. Our protocol is introduced
and analysed in Section 4.3, starting from the result of Pietrzak on tampering
with LPN. In Section 4.4 we explain what are the difficulties of turning our pro-
tocol into a MAC and we explain how to solve them, thus yielding the first
MAC based on LPN. We conclude this chapter comparing our protocols to the
other known solutions and stating some open problem for future research (cf.
Section 4.5).

4.1 secret key authentication

In an authentication protocol, Alice (in what follows, the prover P) wants to
convince the Cheshire Cat (in what follows, the verifier V ) of her identity. To
achieve this goal, the two parties exchange messages over an insecure channel
controlled by the Red Queen (in what follows, the adversary A ). See also Fig-
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ure 1.2 on page 4 for a graphical representation. In all the schemes considered
in this chapter, we focus on computational security (cf. Section 2.2), thus P , V
and A are all PPT algorithms.

More formally a (secret key) authentication protocol has associated a key gen-
eration algorithm KGEN which takes as input the security parameter κ and out-
puts a secret vector s ∈ Zκ2 shared between P and V . Then P and V start
exchanging messages over the channel (possibly depending on the secret s). At
the end of the interaction, the verifier outputs a value in {accept, reject} depend-
ing on the fact it accepts or not the prover as authentic.

We say an authentication protocol has completeness error α if, for every se-
cret s ← KGEN(1κ), a honest execution of the protocol ends with the verifier
returning accept with probability 1−α.

security notions. The most basic scenario is the one of a passive attack. A
passive attacker runs in two phases. In the first phase, the adversary eavesdrops
the channel, observing a polynomial2 number of honest executions of the pro-
tocol between P and V . Then, in the second phase, she tries to convince the
verifier replacing the prover in the protocol. We say an authentication protocol
is (t,Q, ε)-secure against passive attacks, if no PPT adversary A running in time
t and observing Q honest execution of the protocol, can convince the verifier
with probability better than ε.

A slightly more general scenario is what we call an active attack. In an active
attack, the adversary is additionally given the opportunity to replace the verifier
in the first phase. In particular this means that A can arbitrarily deviate from
the protocol while interacting with the prover. In the second phase, she is given
a single shot to convince the verifier (exactly as in the passive case). We say
an authentication protocol is (t,Q, ε)-secure against active attacks, if no PPT
adversary A running in time t and interacting Q times with the honest P in
the first phase, can convince the verifier with probability better than ε.

The strongest security notion for authentication protocols is security against
Man-in-the-Middle (MiM) attacks. Here the adversary can initially interact (con-
currently) with any number of provers and—unlike in an active attacks—also
verifiers. The adversary gets to learn the verifiers accept/reject decisions. (In
the concurrent setting, many protocols sessions are executed at the same time,
involving many verifiers which may be talking with the same provers simulta-
neously.)

2 Whenever we say “polynomial”, we mean polynomial in the security parameter κ. This is without
loss of generality, since A must be efficient.
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the “challenge-and-response” paradigm. A very well known paradigm
to construct authentication protocols is the “challenge-and-response” paradigm.
Essentially, in a first message the verifier sends a challenge to the prover. Then
the answers from the prover, together with the secret s, is used by the verifier to
generate the output in {accept, reject}.

The good news is that following the above paradigm yields provably secure
authentication protocols meeting security against MiM attacks [BCK98]. These
protocols rely on basic building blocks such as (symmetric key) encryption
schemes and MACs (cf. Section 2.2).3

In what follows, we discuss a simple solution based on any secure MAC.
Let ΠM = (KGEN, TAG, VRFY) be a message authentication code with message
space M and key space K. The idea is to let V challenge P asking the MAC
of a randomly chosen message m ∈ M. A honest prover can compute the tag
φ corresponding to m, using the shared key K ∈ K. The protocol is shown in
Figure 4.1.

P(K ∈ K) V (K ∈ K)

m
$←M

m←−
φ← TAGK(m)

φ−→
if VRFYK(m,φ) = 1, accept

Figure 4.1: Authentication using a MAC.

Theorem 4.1 (Security of protocol in Figure 4.1). If ΠM is (tMAC,Q, εMAC)-secure
against uf-cma adversaries, the authentication protocol in Figure 4.1 is (t,Q, ε)-secure
against active attacks, where

t ≈ tMAC ε 6 εMAC +
Q

#M
.

Proof. See Appendix B.

Note that the protocol of Figure 4.1 is not secure against MiM attacks since
there is one easy way for the adversary to make the verifier accept: play “man in

3 More precisely, Bellare et al. [BCK98] define their protocols in the public-key setting, relying
on asymmetric encryption and digital signatures. However, the analysis for the symmetric-key
analogues is very similar.
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the middle” between the verifier and some prover instance, relaying messages
back and forth between them until the verifier accepts. Yet, it is clear that this
is not really an attack; there is no harm in the verifier accepting under these
conditions since in fact it was actually talking to the prover. A possible solution
comes from the idea of using “matching session ids” [BPR00]: View a session
id shared between a prover instance and the verifier as a “connection name”,
enabling the verifier to differentiate between different prover instances. It is not
secret, and in particular will be given to the adversary. (Session ids are public
in the sense that the adversary gets to see those created by any instances with
which it interacts.) In the absence of an adversary, the session ids output by a
prover instance and the verifier at the end of their interaction must be the same,
but with high probability no two different prover instances should have the
same session id, since otherwise the verifier cannot tell them apart. Victory for
the adversary now will correspond to making the verifier accept with a session
id not held by any prover instance. Moreover we let the adversary be successful
also if she “confuses” the verifier by managing to make two different prover
instances output the same session id.

P(K ∈ K) V (K ∈ K)

mV
$←MV

mV←−−
mP

$←MP

φ← TAGK(mP ||mV)
mP ,φ−−−→

output sidP = mP ||mV output sidV = mP ||mV
and d← VRFYK(mP ||mV ,φ)

Figure 4.2: MiM-secure authentication using a MAC.

The full protocol is shown in Figure 4.2 and its security is proven below.
(The result is known to be folklore and no explicit proof appears in the liter-
ature [Bel+01].) Note that now both the prover and the verifier choose a random
challenge in the message spaces MP and MV (respectively); the MAC is the de-
fined over the message space M = MP ×MV . Recall that the verifier accepts if
and only if d = 1 and sidP = sidV .
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Theorem 4.2 (Security of protocol in Figure 4.2). If ΠM is (tMAC,Q, εMAC)-secure
against uf-cma adversaries, the authentication protocol in Figure 4.2 is (t,Q, ε)-secure
against MiM attacks, where

t ≈ tMAC ε 6 εMAC +
Q

#MV
+
Q2 −Q

2 · (#MP)
.

Proof. See Appendix B.

4.2 the hb family

Note that the overall efficiency of the protocol in Figure 4.2, in the end, depends
on the efficiency of the MAC ΠM. Thus, whether we can use the protocol in
practice or not it depends on the context. At some point people started to ask if
it is possible to construct highly efficient authentication protocols, to be deployed
in resource-constrained scenarios.

A milestone in this line of work is a seminal paper of Hopper and Blum [HB01].
Essentially, the main observation is that building an authentication protocol
based on the LPN assumption (cf. Section 2.3) yields very efficient schemes,
since LPN relies on simple arithmetic modulo 2. On the practical side, LPN-
based authentication schemes are strikingly efficient, requiring relatively few
bit-level operations. Indeed, in their original proposal, Hopper and Blum sug-
gested that humans (without the help of any calculator) could perform the com-
putation in their provably-secure scheme, even with realistic parameters. The
efficiency of LPN-based schemes also makes them suitable for weak devices like
RFID tags, where even evaluating a blockcipher may be prohibitive.

For convenience, we briefly recall the (decisional version of the) LPN problem
here. Let x ∈ Zκ2 be a random secret and denote with Bernτ the Bernoulli
distribution with parameter 0 < τ < 1/2 (i.e. P[e] = τ if e $← Bernτ). We
define Λτ,κ(x) to be the distribution over Zκ+12 obtained by choosing r $← Zκ2 ,
e

$← Bernτ and returning (r, rT · x⊕ e). The Λτ,κ problem requires to distinguish
Λτ,κ(x) from the uniform distribution Uκ+1 over Zκ+12 .

the HB protocol. Let s ∈ Zκ2 be the secret shared between the prover and the
verifier. The protocol of Hopper and Blum is sufficiently simple to be described
in one sentence. The verifier chooses a random vector r $← Zκ2 and sends it to
P ; the prover replies with z = rT · s⊕ e (where e ← Bernτ). Thus, V accepts if
and only if z = rT · s.
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Pτ,n(s ∈ Zκ2) Vτ ′,n(s ∈ Zκ2)
R $← Zκ×n2

R←−
e $← Bernnτ

z = RT · s⊕ e
z−→

if wH(z⊕RT · s) < τ ′ ·n, accept

Figure 4.3: The HB protocol, secure against passive adversaries.

In the basic version described above, the protocol has a large completeness error
(i.e. the probability that a honest P is rejected) τ and a large soundness error
(i.e. the probability that a random answer z is accepted) 1/2. However, the
solution to these issues is just to repeat the protocol n times, either sequentially
or in parallel. The parallel version (which is the most compact) is denoted HB
and is shown in Figure 4.3. Basically, the vector r is now replaced by a matrix
R ∈ Zκ×n2 . Similarly, the value z is now a vector z = RT · s⊕ e, where e $← Bernnτ
is a vector of length n in which every component is drawn independently from
Bernτ. The verifier outputs accept if and only if the Hamming weight of the
vector z⊕RT · s is less than τ ′ · n for a threshold parameter τ < τ ′ < 1/2. For
concreteness we can set τ ′ = τ/2+ 1/4.

The completeness error is the probability ατ,n that a vector e $← Bernnτ has
more than a fraction τ ′ ·n of 1 values. An application of the Chernoff bound (cf.
Section 2.4, Theorem 2.3) yields

ατ,n = P

[
wH(e) > τ ′ ·n : e $← Bernnτ

]
6 2−cτ·n = 2−Θ(n), (4.1)

for some constant cτ only depending on τ. In a similar fashion, the soundness
error is the probability α ′τ ′,n that a random string y $← Zκ2 has Hamming weight
6 τ ′ ·n. Applying again the Chernoff bound we get

α ′τ ′,n = 2−n
bτ ′·nc∑
i=0

(
n

i

)
< 2−c

′
τ·n = 2−Θ(n), (4.2)

for some constant c ′τ depending only on τ.
The security proof for the sequential case is due to Juels and Weis [JW05]. The

parallel version was analysed for the first time by Katz and Shin [KS06; KSS10],
who proved the following theorem.
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Theorem 4.3 (Passive security of HB). If the LPNτ,κ problem is (tLPN,n · (Q +

1), εLPN)-hard, the HB protocol is (t,Q, ε)-secure against passive attacks, where

t = O(tLPN) ε = εLPN + 2−Θ(n).

Proof. See Appendix C.

the HB+ protocol. It is not hard to show that HB is not secure against active
attacks. To see this, consider the sequential version of the protocol. An active
adversary interacting with P in the first phase, can just replace the random
vector r with a fixed vector, say δ = (1, 0, . . . , 0). Repeating n times and taking
majority yields one bit of secret information s[1] = δT · s.

To overcome the above limitation, a modification of the HB protocol was pro-
posed by Juels and Weis [JW05]. (This is actually the paper where the notion
of active adversaries was introduced.) The idea is to rely on two shared se-
crets s1, s2 ∈ Zκ2 . The prover starts the interaction by drawing a random vector
r1

$← Zκ2 . The verifier chooses a random vector r2
$← Zκ2 . Thus, P computes the

answer z = rT
1 · s1 ⊕ rT

2 · s2 ⊕ e, where e $← Bernτ and V accepts if and only if
z = rT

1 · s1 ⊕ rT
2 · s2.

Pτ,n(s1, s2) Vτ ′,n(s1, s2)

R1
$← Zκ×n2

R1−→
R2

$← Zκ×n2
R2←−

e $← Bernnτ
z = RT

1 · s1 ⊕RT
2 · s2 ⊕ e

z−→
accept if
wH(z⊕RT

1 · s1 ⊕RT
2 · s2) 6 τ ′ ·n

Figure 4.4: The HB+ protocol, secure against active attacks.

Again, the protocol, in its basic form, has a large completeness and soundness
error, but they can both be reduced by repetition. The parallel version, denoted
HB+, is depicted in Figure 4.4. The soundness and completeness errors for the
parallel version are the same as in HB.
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Theorem 4.4 (Active security of HB+). If the LPNτ,κ problem is (tLPN,n ·Q, εLPN)-
hard, the HB+ protocol is (t,Q, ε)-secure against active attacks, where

t = O(tLPN) ε2 = εLPN + 2−Θ(n).

Proof. See Appendix C.

Unfortunately, the HB+ protocol is not secure against MiM attacks, as shown
for the first time in [GRS05]. An attacker can choose a vector δ ∈ Zκ2 and each
time a challenge r2 is sent, she can replace this vector with r2 ⊕ δ. At the end of
the corresponding round, A has learned the value z = rT

1 · s2⊕ (r2⊕ δ)T · s2⊕ e.
Hence, the acceptance/rejection decision of V at the end of the protocol, yields
one bit of secret information. In fact, if at the end of the n rounds the verifier
outputs accept (resp. reject), with high probability it must be δT · s2 = 0 (resp.
δT · s2 = 1). Using this trick, we can recover s2 bit-by-bit changing δ opportunely.
Once s2 is known, we can recover s1 using the same attack used in the case of
HB.

state of the art. In spite relevant effort [BCD06; MP07; BC08; GRS08d;
GRS08a; GRS08c; Gol+08; LMM; OOV08], an authentication protocol based on
LPN, secure against MiM attacks is still missing.

Moreover there are a few open problems also in the case of active security.
Note that HB+ requires 3 rounds (i.e. it is not round-optimal). In principle, since
the matrix R2 is chosen independently of R1, we could drop the first message of
the verifier and let P send the matrix R1 together with the answer z in the last
message. However, the security proof for HB+ does not carry over the modified
version of the protocol. The reason is that the original proof needs to rewind
the adversary at the point she already chose the matrix R2 (cf. Appendix C for
details).

The rewinding approach has also the disadvantage of a non-tight security
reduction (this is where we loose the factor

√
ε).4

The main contribution of [Kil+11] is a solution to all the above issues.

4.3 non hb-style authentication

In this section we introduce a new (round optimal) authentication protocol based
on LPN. Our protocol has active security and a tight reduction to the LPN prob-

4 Another issue is that proofs based on rewinding do not carry over the quantum setting [VDG98].
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lem, thus solving the main issues of HB+ (cf. the discussion at the end of the
previous section). The main ingredient of the new protocol, is a “new” hardness
assumption introduced by Pietrzak and showed to be actually equivalent to the
LPN assumption in [Pie10]. We give a flavour of Pietrzak’s result below.

tampering with lpn. We stick only to a special case of the result in [Pie10];
for a more detailed discussion see Appendix D. Imagine an adversary A tamper-
ing with the LPN secret x ∈ Zκ2 , as follows. Instead of just seeing LPN samples
of the form (r, rT · s⊕ e), i.e. samples drawn from Λτ,κ(x), the attacker can now
ask for inner products not only with the secret x, but even with the related se-
cret x ′ = A · x⊕ b where A ∈ Zκ×κ2 and b ∈ Zκ2 can be adaptively chosen, but
A must have sufficiently large rank. This models a tampering adversary able to
inject faults into the memory and then interacting with the “machine” generat-
ing the LPN samples. Does such an adversary A gain any advantage in telling
apart samples drawn from this modified distribution and samples drawn from
the uniform distribution?

More formally, for a minimal dimension d 6 κ, a secret x ∈ Zκ2 and A ∈ Zκ×κ2 ,
b ∈ Zκ2 , consider the following distribution:

Γτ,κ,d(x, A, b) =

{
⊥ if rank(A) < d

Λτ,κ(A · x⊕ b) otherwise

and let Γτ,κ,d(x, ·, ·) be the oracle that on input A, b outputs a sample from
Γτ,κ,d(x, A, b). The Subspace LPN (SLPN) problem, is to distinguish (adaptively
chosen) samples from Γτ,κ,d(x, ·, ·) from the uniform distribution over Zκ+12 .

Definition 4.1 (Subspace LPN assumption). Let κ,d ∈ Z, where d 6 κ. The (de-
cisional) SLPNτ,κ,d problem is (t,Q, ε)-hard if for every distinguisher D running
in time t and asking Q queries∣∣∣P [DΓτ,κ,d(x,·,·) : x $← Zκ2

]
−P

[
DUκ+1(·,·)

]∣∣∣ 6 ε,

where Uκ+1(·, ·) on input a pair (A, b) outputs a sample from Uκ+1 when
rank(A) > d and ⊥ otherwise.

The following lemma states that the Subspace LPN problem mapping to di-
mension d+ g is almost as hard as the standard LPN problem with secrets of
length d. The hardness gap is exponentially small in g.
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Lemma 4.5 (LPN ⇒ SLPN). For any κ,d,g ∈ Z (where κ > d+ g), if the LPNτ,d

problem is (tLPN,Q, εLPN)-hard then the SLPNτ,κ,d+g problem is (t,Q, ε)-hard where

t = tLPN − poly(κ,Q) ε = εLPN +
2Q

2g+1
.

Proof. See Appendix D.

We also need a special case of the SLPN problem where the adversary does
not ask for inner products with x ′ = A · x⊕ b for any A (of rank > d) but only
with subsets of x (of size > d). We call this variation the Subset LPN problem.
Formally, for x, v ∈ Zκ2 , let diag(v) ∈ Zκ×κ2 denote the zero matrix with v in the
diagonal and define the distribution:

Γ∗τ,κ,d(x, v) = Γτ,κ,d(x, diag(v), 0κ)

{
⊥ if wH(v) < d

Λτ,κ(x ∧ v) otherwise

Definition 4.2 (Subset LPN assumption). Let κ,d ∈ Z, where d 6 κ. The (deci-
sional) SLPN∗τ,κ,d problem is (t,Q, ε)-hard if for every distinguisher D running
in time t and asking Q queries∣∣∣P [DΓ∗τ,κ,d(x,·) : x $← Zκ2

]
−P

[
DUκ+1(·)

]∣∣∣ 6 ε,

whereUκ+1(·) on input a vector v outputs a sample fromUκ+1 whenwH(v) > d
and ⊥ otherwise.

For vectors x, v ∈ Zκ2 , we write x↓v to denote the vector in ZwH(v)
2 obtained by

projecting x on the coordinates where v is 1. For instance if x = (1, 0, 1, 0, 0, 0, 1)
and v = (0, 0, 1, 1, 1, 0, 0), then x↓v = (1, 0, 0). Samples from Γ∗τ,κ,d(x, ·) are pairs of

the form (r, rT
↓v · x↓v⊕ e) ∈ Z

κ+1
2 , where e $← Bernτ. Observe that to compute the

value of the inner product, only the vector r↓v ∈ Z
wH(v)
2 is relevant. We will use

this observation to improve the communication complexity of our authentication
protocol (and of our MACs).

our protocol. In the protocols of the HB family, the prover must compute
LPN samples of the form RT · s ⊕ e, where R is the challenge chosen by the
verifier in the first message. We take a different approach. Instead of sending
R, we now let the verifier choose a random subset of the bits of s to act as the
“session-key” for this interaction. In other words, V send to P a binary vector
v ∈ Z2 that acts as a “bit selector” of the secret s. The prover then picks R by
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itself and computes noisy inner products of the form RT · s↓v ⊕ e. Curiously,
allowing the verifier to choose which bits of s to use in each session is sufficient
to prevent active attacks. We only need to add a few sanity-checks that no
pathological v or R were sent by an active adversary. The protocol is detailed
below.

Public parameters. The authentication protocol has the following public pa-
rameters, where τ, τ ′ are constants and n depends on the security param-
eter κ.

κ ∈ N length of the secret key s ∈ Z2κ2
τ ∈]0, 1/2[ parameter of the Bernoulli error distribution Bernτ
τ ′ = 1/4+ τ/2 acceptance threshold
n ∈ N number of parallel repetitions (we require n 6 κ/2)

Key Generation. Algorithm KGEN(1κ) samples s $← Z2κ2 and returns s as the
secret key.

Authentication Protocol. The 2-round authentication protocol with prover
Pτ,n and verifier Vτ ′,n is given in Figure 4.5.

Pτ,n(s ∈ Z2κ2 ) Vτ ′,n(s ∈ Z2κ2 )
v←− v $← {x ∈ Z2κ2 : wH(x) = κ}

if wH(v) 6= κ abort
R $← Zκ×n2 ; e $← Bernnτ

z = RT · s↓v ⊕ e ∈ Zn2
(R,z)−−→ if rank(R) 6= n, reject

if wH(z⊕RT · s↓v) > n · τ ′, reject
else accept

Figure 4.5: Two-round authentication protocol with active security from the LPN as-
sumption.

We first prove that our authentication protocol has a negligible completeness
error α 6 ατ,n + 2−κ+n = 2−Θ(n), where the term ατ,κ is given in Eq. (4.1). The
verifier performs two checks. In the first verification step, V outputs reject if the
random matrix R has not full rank. The lemma below shows this happens only
with probability 6 2−κ+n.
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Lemma 4.6 (Technical lemma). For n,d ∈ Z, let ℘(n,d) denote the probability that
a random matrix in Zn+d×n2 has rank less than n. Then,

℘(n,d) 6 2−d.

Proof. Assume we sample the columns of a random matrix in Zn+d×n2 one by
one. For every i = 1, . . . ,n let Indepi be the event that the first i columns are
linearly independent. We have

P [¬Indepi | Indepi−1] =
2i−1

2n+d
= 2i−1−n−d,

since ¬Indepi happens if and only if the i-th column (sampled from a space
of dimension 2n+d) falls into the space (of size 2i−1) spanned by the first i− 1
columns. We conclude

℘(n,d) = P [¬Indepn] =

n∑
i=1

P [¬Indepi | Indepi−1] =

n∑
i=1

2i−1−n−d 6 2−d.

In the second verification step the verifier needs to check that wH(e) 6 n · τ ′,
where e = RT · s⊕ z is the noise added by the prover Pτ,n. From Eq. (4.1), we
know that this check will fail only with probability ατ,n. This completes the
proof of completeness.

We now prove active security of our protocol under the hardness of the
SLPN∗τ,2κ,d problem (and hence under the LPN assumption, cf. Lemma 4.5),
where d = κ/(2+γ) for some constant γ > 0. (Concretely, γ = 0.1 should do for
all practical purposes.)

Theorem 4.7 (Active security of protocol in Figure 4.5). For any constant γ > 0,
let d = κ/(2 + γ). If the SLPN∗τ,2κ,d problem is (tSLPN,nQ, εSLPN)-hard, then the
authentication protocol of Figure 4.5 is (t,Q, ε)-secure against active adversaries, where
for constants cγ, cτ > 0 that depend only on γ and τ respectively,

t = tSLPN − poly(Q, κ) ε = εSLPN +Q · 2−cγ·κ + 2−cτ·n = ε+ 2−Θ(n).

Before going into the proof, we give some intuition. It is quite natural to try
reducing the security of the protocol to the hardness of the Subset LPN problem:
Given an adversary A breaking the protocol we want to build a distinguisher D

for the Subset LPN problem. The adversary D has access to an oracle O which
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is either the Γ∗τ,2κ,d(x, ·) (for some unknown x $← Z2κ2 ) or the uniform oracle
U2κ+1(·), and it is asked to tell the two oracles apart. To do so, D will “fake”
the environment for the adversary A who is expecting to attack the protocol as
in an active attack.

Note that in principle, when O is the Subset LPN oracle, we can perfectly
simulate the first phase of an active attack as follows. When A asks a query
v ∈ {y ∈ Z2κ2 : wH(y) = κ}, we query O on input v for n times. Let (R̂ ∈
Z2κ×n2 , z ∈ Zn2 ) be the n outputs from the oracle. The pair (R = R̂↓v, z) is
distributed exactly as in the protocol, where the secret is s = x. On the other
hand when O is the uniform oracle, A sees just uniformly random vectors.

However, in the second phase of the simulation, we need to challenge A on
a vector v∗. Let (R∗, z∗) be A ’s answer. The idea would be to distinguish the
Subset LPN oracle from the uniform oracle based on the verification of this
answer. The problem is that we are unable to verify whether this answer is
correct or not, because we don’t know the secret x.

To solve this problem we build the reduction in such a way that, when O is a
Subset LPN oracle Γ∗τ,2κ,d(x, ·) with secret x, the simulated answers have exactly
the same distribution as the answers of a honest prover Pτ,n(s ∈ Z2κ2 ) where

s = (x∗ ∧ v∗)⊕ (x ∧ v∗), (4.3)

for randomly chosen s∗, v∗. Thus one part of s’s bits come from x∗, and the
other part is from the unknown secret x (for which we use the oracle O). In
the second phase we give A the challenge v∗. As s↓v∗ = (x∗ ∧ v∗)↓v∗ = x∗↓v∗
is known, we will be able to verify if A ’s answer is correct and to finalise the
simulation.

On the other hand, if O is the uniform oracle U2κ+1(·), then after the first
phase x∗ ∧ v∗ is information theoretically hidden, and thus A cannot come up
with a valid forgery but with exponentially small probability.

Proof. For a constant γ, let d = κ/(2+ γ) as in the theorem. We define a few
terms that we will need later in the security proof. As in Eq. (4.2) we let α ′τ ′,n
denote the probability that a random bitstring y $← Zn2 has Hamming weight
wH(y) 6 n · τ ′. Recall that the Chernoff bound (cf. Theorem 2.3) implies that
there exists a constant cτ > 0 (only depending on τ) such that α ′τ ′,n 6 2−cτ·n.

Moreover, let α ′′κ,d denote the probability that a random substring of length
κ chosen from a string of length 2κ with Hamming weight κ, has a Hamming
weight less than d. Using the fact that the expected Hamming weight is κ/2 =
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d(1+ γ/2) = d(1+Θ(1)), one can show that there exists a constant cγ > 0 (only
depending on γ), such that

α ′′κ,d =

∑d−1
i=0

(
κ
i

)(
κ
κ−i

)(
2κ
κ

) 6 2−cγ·κ. (4.4)

Since we already discussed the intuition, we now proceed with the formal
proof. Given a PPT adversary A breaking active security of the protocol with
advantage ε, we build an efficient distinguisher D for the Subset LPN prob-
lem with advantage greater than εSLPN, where εSLPN is as in the theorem state-
ment (contradiction). The adversary D has access to an oracle O which is either
Γ∗τ,2κ,d(x, ·) or U2κ+1(·) and has to tell the two cases apart. The algorithm for
DO is given below.

Setup. Initially DO samples

x∗ $← Z2κ2 v∗ $← {y ∈ Z2κ2 : wH(y) = κ}.

First phase. In the first phase DO invokes A who expects access to Pτ,n(s ∈
Z2κ2 ). We now specify how DO samples the answer (R, z) to a query v ∈
{y ∈ Z2κ2 : wH(y) = κ} made by A . Let

u∗ = v ∧ v∗ u = v ∧ v∗.

1. DO queries its oracle n times on the input u. If the oracle’s output
is ⊥ (which happens if and only if wH(u) < d), DO outputs 0 and
stops. Otherwise let R̂1 ∈ Z2κ×n2 , z1 ∈ Zn2 denote the n outputs of
the oracle.

2. Sample R̂0
$← Z2κ×n2 and set z0 = R̂T

0 · (x∗ ∧ u∗).

3. Return (R = R̂↓v ∈ Zκ×n2 , z = z0 ⊕ z1 ∈ Zn2 ), where R̂ is uniquely
determined by requiring R̂↓v∗ = R̂0 and R̂↓v∗ = R̂1.

Second phase. Eventually, A enters the second phase of the active attack,
expecting a challenge from Vτ ′,n(s ∈ Z2κ2 ).

1. DO forwards v∗ as the challenge to A .

2. A answers with some (R∗, z∗).

3. DO checks if

rank(R∗) = n and wH(z∗ ⊕R∗T · x∗↓v∗) 6 n · τ ′. (4.5)
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The output is 1 if both checks succeed and 0 otherwise.

Of course D runs in polynomial time tSLPN ≈ t. Moreover if A asks Q queries
in the first phase of an active attack, D queries the oracle nQ times. We distin-
guish two cases depending on the O oracle.

Claim 1. If O = Γ∗τ,2κ,d(x, ·), then DO outputs 1 with probability ε−Q ·α ′′κ,d.

Proof of Claim. We start by showing that D outputs 1 with probability > ε if the
Subset LPN oracle accepts subsets of arbitrary small size (and does not simply
output ⊥ on inputs v where wH(v) < d), i.e.,

P

[
DΓ

∗
τ,2κ,0(x,·) = 1

]
> ε. (4.6)

Then we’ll upper bound the gap between the probability that D outputs 1 in the
above case and the probability that D outputs 1 when given access to the oracle
that we are interested in as:∣∣∣P [DΓ∗τ,2κ,d(x,·) = 1

]
−P

[
DΓ

∗
τ,2κ,0(x,·) = 1

]∣∣∣ 6 Q ·α ′′κ,d. (4.7)

Eq. (4.6) holds as:

• The answers (R, z) that DΓ
∗
τ,2κ,0(x,·) gives to A ’s queries in the first phase of

the attack have exactly the same distribution as what A would get when
interacting with an honest prover Pτ,n(s ∈ Z2κ2 ) where the “simulated"
secret s is defined in Eq. (4.3).

To see this, recall that on a query v from A , the distinguisher DΓ
∗
τ,2κ,0(x,·)

must answer with (R, z = RT · s↓v ⊕ e), where R = R̂↓v is the compressed
form of R̂. In the first step, D queries its oracle with u = v∧v∗ and obtains
noisy inner products (R̂1, z1) with the part of s↓v that contains only bits
from x, i.e.,

z1 = R̂T
1 · (x ∧ u)⊕ e = R̂T

1 · (s ∧ u)⊕ e.

In the second step, D samples n inner products (R̂0, z0) (with no noise)
with the part of s↓v that contains only bits from the known x∗, i.e.,

z0 = R̂T
0 · (x∗ ∧ u∗) = R̂T

0 · (s ∧ u∗).
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In the third step, D then generates (R̂, R̂T · (s ∧ v)⊕ e) from the previous
values where R̂ is defined by R̂↓v∗ = R̂0 and R̂↓v∗ = R̂1. Using v = u⊕ u∗,
we get

z = z0 ⊕ z1

= R̂T
0 · (s ∧ u∗)⊕ R̂T

1 · (s ∧ u)⊕ e

= R̂T · (s ∧ v)⊕ e

= RT · s↓v ⊕ e.

• The challenge v∗ sent to A in the second phase of the active attack is
uniformly random (even given the entire view so far), and therefore has
the same distribution as a challenge in an active attack.

• DΓ
∗
τ,2κ,0(x,·) outputs 1 if Eq. (4.5) holds, which is exactly the case when A ’s

response to the challenge was valid. By assumption this probability is at
least ε.

It remains to prove Eq. (4.7). Note that Γ∗τ,2κ,0(x, ·) behaves exactly like Γ∗τ,2κ,d(x, ·)
as long as one never makes a query v where wH(v ∧ v∗) < d. Since v∗ $← {y ∈
Z2κ2 : wH(y) = κ}, for any v, the probability that wH(v ∧ v∗) < d is (by defini-
tion) α ′′κ,d as defined in Eq. (4.2). Using the union bound, we can upper bound
the probability that wH(v ∧ v∗) < d for any of the Q different v’s chosen by the
adversary as Q ·α ′′κ,d.

It thus follows from the triangle inequality applied to Eq. (4.6) and Eq. (4.7)
that

P

[
DΓ

∗
τ,2κ,d(x,·) = 1

]
> ε−Q ·α ′′κ,d. (4.8)

Claim 2. If O = U2κ+1(·), then DO outputs 1 with probability 6 α ′τ ′,n.

Proof of Claim. If R∗ does not have full rank then D outputs 0 by definition.
Therefore, we now consider the case where rank(R∗) = n. The answers (R, z)
that the adversary A obtains from DU2κ+1(·) are independent of x∗ (i.e., z =

z0 ⊕ z1 is uniform as z1 is uniform). Since x∗↓∗v is uniformly random and R∗ has
full rank, the vector

y = R∗T · x∗↓v∗ ⊕ z∗
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is uniformly random over Zn2 . Thus the probability that the second verification
in Eq. (4.5) does not fail is P[wH(y) 6 n · τ ′] = α ′τ ′,n. We conclude

P

[
DU2κ+1(·) = 1

]
6 α ′τ ′,n. (4.9)

Putting together Eq. (4.8) and Eq. (4.9) we get∣∣∣P [DΓ∗τ,2κ,d(x,·) = 1
]
−P

[
DU2κ+1(·) = 1

]∣∣∣ > ε−Q ·α ′′κ,d −α
′
τ ′,n = εSLPN,

against the assumption that the Γ∗τ,2κ,d problem is (tSLPN,nQ, εSLPN)-hard.

Pτ,n(s, bv, bz) Vτ ′,n(s, bv, bz)
v←− v $← Z2κ2

R $← Z2κ×n2 ; e $← Bernnτ

z = RT · (s ∧ (v⊕ bv))⊕ bz ⊕ e
z,R−−→ if wH(RT · (s ∧ (v⊕ bv))⊕ bz) > n · τ ′

reject otherwise accept

Figure 4.6: By blinding the values v, z with secret random vectors bv, bz ∈ Z2κ2 we can
avoid checking whether wH(v) = κ and rank(R) = n as in the protocol from
Figure 4.5.

avoid checking. One disadvantage of the protocol in Figure 4.5, compared
to HB style protocols, is the necessity to check whether the messages exchanged
have the right from: the prover checks if v has weight κ, while the verifier must
make the even more expensive check whether R has full rank. Eliminating such
verification procedures can be particularly useful if for example the prover is
an RFID chip where even the simple verification that a vector has large weight
is expensive. We note that it is possible to eliminate these checks by blinding
the exchanged messages v and z using random vectors bv ∈ Z2κ2 and bz ∈ Zn2
respectively, as shown in Figure 4.6. The security and completeness of this
protocol is basically the same as for the protocol in Figure 4.5. The security
proof is also very similar and is therefore omitted.
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4.4 a mac from lpn

In this section we show how to adapt the protocol from Figure 4.5 to get a MAC.
Recall that this immediately implies a round optimal authentication protocol
secure against MiM attacks (cf. Theorem 4.2). Notably, this is also the first
construction of a MAC from the LPN assumption.5

As a first attempt, let us try to view our authentication protocol as a MAC.
That is, a MAC tag is of the form φ = (R, z = RT · fs(m)⊕e), where the secret key
derivation function fs(m) ∈ Zκ2 first uniquely encodes the message m into v ∈
Z2κ2 of weight κ and then returns s↓v by selecting κ bits from secret s, according
to v. However, this MAC is not secure: given a MAC tag φ = (R, z) an adversary
can ask verification queries where it sets individual rows of R to zero until
verification fails: if the last row set to zero was the i-th, then the i-th bit of fs(m)

must be 1.6 (In fact, the main technical difficulty to build a secure MAC from
LPN is to make sure the secret s does not leak from verification queries.) Our
solution is to randomise the mapping f, i.e. use fs(m,ω) for some randomness
ω and compute the tag as φ = π(R, RT · fs(m,ω)⊕ e,ω), where π is a pairwise
independent permutation (contained in the secret key). We can prove that if
LPN is hard then this construction yields a secure MAC. (The key argument is
that, with high probability, all non-trivial verification queries are inconsistent
and hence lead to reject.) However, the security reduction to the LPN problem
is quite loose since it has to guess the value v from the adversary’s forgery. (In
the context of identity-based encryption (IBE) a similar idea has been used to
go from selective-ID to full security using “complexity leveraging” [BB04].) In
our case, however, this still leads to a polynomial security reduction when one
commits to the hardness of the LPN problem at the time of the construction.

To get a strictly polynomial security reduction (without having to commit to
the hardness of the LPN problem), in our second construction we adapt a tech-
nique originally used by Waters [Wat05] in the context of IBE schemes that has
been applied to lattice based signature [Boy10] and encryption schemes [ABB10].
Concretely, we instantiate the above MAC construction with a different secret
key derivation function fs(m,ω) = s0 ⊕

⊕
i:v[i]=1 si (where v = h(m,ω) and

h(·) is a pairwise independent hash). The drawback of our second construc-

5 Prior to our work, the only known way to construct an LPN-based MAC was via a relatively
inefficient generic transformation [GGM86] (that works with any pseudorandom generator). See
also Section 4.5 for a discussion on this point.

6 Note that a similar strategy yields a MiM attack against the protocol from the previous section,
showing that this protocol is not MiM-secure.
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tion is the larger key-size. Our security reduction uses a technique from [Boy10;
ABB10] based on encodings with full-rank differences (FRD) by Cramer and
Damgard [CD09].

first construction. Our first MAC is based on the 2-round authentication
protocol from Section 4.3. We prove that if the LPN problem is ε-hard, then
no adversary asking Q queries can forge a MAC with probability more than
Θ(
√
ε ·Q).

Recall the 2-round authentication protocol from Figure 4.5. In the protocol the
verifier chooses a random challenge subset v. To turn this interactive protocol
into a MAC, we will compute this v from the message m to be authenticated as
v = C(h(m,ω)), where h is a pairwise independent hash function,7 ω ∈ Zν2 is
some fresh randomness and C is some encoding scheme. The code C is fixed
and public, while the function h is part of the secret key.

The authentication tag φ is computed in the same manner as the prover’s
answer in the authentication protocol. That is, we sample a random matrix
R ∈ Zκ×n2 and compute a noisy inner product z = RT · s↓v ⊕ e, where e $←
Bernnτ . As observed before, using (R, z) as an authentication tag would not be
secure, and we need to blind these values. This is done by applying an (almost)
pairwise independent permutation (PIP) π—which is part of the secret key—to
(R, z,ω) ∈ Zκ×n+n+ν2 .

The message authentication code Π1M = {KGEN, TAG, VRFY} with associated
message space M is defined as follows.

• Public parameters. Π1M has the following public parameters.
κ, τ, τ ′,n as in the authentication protocol from Figure 4.5
µ ∈ N output length of the hash function
ν ∈ N length of the randomness
C : Zµ2 → Z2κ2 encoding, where ∀ y 6= y ′ ∈ Zµ2 we have wH(C(y)) = κ

and wH(C(y)⊕C(y ′)) > 0.9κ.

7 A family H = {h : D → R} is a pairwise independent hash function family if ∀ x,y ∈ D (with
x 6= y) and ∀ α,β ∈ R

P [h(x) = α∧ h(y) = β] =
1

(|R|)2

For example, when D = R = Z2κ the following is a family of pairwise independent permutation
(PIP)

H = {πa,b(x) = a · x+ b : a,b $← Z2κ }.

Truncating the output at any κ ′ < κ we have a pairwise independent hash function.
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• Key generation. Algorithm KGEN(1κ) samples s $← Z2κ2 , an (almost) pair-
wise independent hash function h : M × Zν2 → Z

µ
2 and a pairwise in-

dependent permutation π over Zκ×n+n+ν2 . It returns K = (s,h,π) as the
secret key.

• Tagging. Given secret key K = (s,h,π) and message m ∈ M, algorithm
TAG proceeds as follows.

1. R $← Zκ×n2 , ω $← Zν2 , e $← Bernnτ
2. v = C(h(m,ω)) ∈ Z2κ2
3. Return φ = π(R, RT · s↓v ⊕ e,ω)

• Verification. On input a secret-key K = (s,h,π), message m ∈ M and
tag φ, algorithm VRFY proceeds as follows.

1. Parse π−1(φ) as (R ∈ Zκ×n2 , z ∈ Zn2 ,ω ∈ Zν2 ). If rank(R) 6= n, then
return reject

2. v = C(h(m,ω))

3. If wH(z⊕RT · s↓v) > n · τ ′ return reject, otherwise return accept

The code C can be constructed as follows. We first sample a random matrix
C ∈ Zµ×κ2 and map y ∈ Zµ2 in C(y) = (c ∈ Zκ2 , c ′ ∈ Zκ2) where c = CT · y and c ′

is the “inverse” of c. A random code C has high distance with high probability
and C(y) = (c, c ′) has weight exactly κ.

Using an argument similar to the one used to derive the completeness error
of the protocol in Figure 4.5, it is easy to show that Π1M has completeness error
2−cτ·n, where cτ > 0 depends only on τ.

Theorem 4.8 (Security of Π1M). For µ = ν ∈ N, a constant γ > 0 and d = κ/(2+

γ), if the SLPN∗τ,2κ,d problem is (tSLPN,nQ, εSLPN)-hard then Π1M is (t,Q, ε)-secure
against uf-cma adversaries, where

t ≈ tSLPN εSLPN = min
{
ε

2
−
Q2

2µ−2
,

ε

2µ+1
− 2−Θ(n)

}
.

We now give an intuition for the proof of Theorem 4.8. Every query (m,φ) to
VRFY and query m to TAG defines a subset v (as computed in the second step
in the definitions of both VRFY and TAG). We say that a forgery (m,φ) is “fresh”
if the v contained in (m,φ) is different from all v’s contained in all the previous
VRFY and TAG queries. The proof makes a case distinction and uses a different
reduction for the two cases where the forgery found by the adversary is more
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likely to be fresh, or more likely to be non-fresh. In both cases we consider a
reduction DO which has access to either a uniform oracle O = U or a Subset
LPN oracle O = Γ∗. The distinguisher DO uses an adversary A who can find
forgeries for the MAC to distinguish those cases and thus break the Subset LPN
assumption.

In the first case, where the first forgery is likely to be non-fresh, we can show
(using the fact that a pairwise independent permutation is used to blind the
tag) that if DO ’s oracle is O = U, even a computationally unbounded A cannot
come up with a message/tag pair (m,φ) that contains a non-fresh v. Thus we
can distinguish the cases O = U and O = Γ∗ by just observing if A ever makes
a VRFY query (m,φ) that contains a non-fresh v (even without being able to tell
if (m,φ) is valid or not).

If the forgery found by A is more likely to be fresh, we can use a similar argu-
ment as in the proof of our authentication protocol in Section 4.3. An additional
difficulty here is that the reduction has to guess the fresh v ∈ Zµ2 contained in
the first forgery and cannot choose it as in the protocol. This is the reason why
the reduction looses a factor 2µ.

Proof. As in the theorem statement, we set µ = ν (but for clarity we will keep
the different letters µ for the range of h and ν for the length of the randomness).
Let A be an adversary that (t,Q, ε)-breaks the uf-cma security of Π1M. Let Qtag

and Qvrfy denote the number of queries that A makes to the oracles TAGK(·)
and VRFYK(·, ·) respectively, such that Q = Qtag +Qvrfy. We assume that A

never makes the same VRFY query twice (since VRFY is deterministic, repeating
queries gives no additional information to A ) and also that she never makes a
VRFY query (m,φ) where φ was received as the output from TAG on input m.
Since the completeness error of Π1M is 2−Θ(n), this is basically without loss of
generality (as the answer would almost certainly be accept).

Every query (m,φ) to VRFY and query m to TAG defines a subset v (as com-
puted in the second step in the definitions of both VRFY and TAG). By defi-
nition, in the uf-cma experiment, with probability ε the adversary A at some
point makes a VRFY query (m,φ) where: (i) φ was not received as output on a
TAG query m, and (ii) VRFYK(m,φ) = accept. We say that such a forgery (m,φ)
is “fresh” if the v defined by (m,φ) is different from all v’s defined by all the
previous VRFY and TAG queries.

Let Fresh denote the event that A finds a fresh forgery. As A finds a forgery
with probability ε and every forgery must be either fresh or not, we have that:

P [Fresh] +P [¬Fresh] = ε.
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We will consider the two cases where P[Fresh] > ε/2 and P[Fresh] 6 ε/2

separately.

the case P[Fresh] 6 ε/2. Given A , we will construct an adversary DO
1 who

can distinguish O = Γ∗τ,2κ,d(x, ·) from O = U2κ+1(·) (as in Definition 4.2) with
advantage8

ε/2−
Q2

2µ−2
. (4.10)

Setup. The adversary DO
1 samples π,h (but not s) as defined by KGEN. Next,

it invokes A (who expects to attack Π1M with a key (s,h,π)) answering its
queries as follows.

Tag queries. If A makes a TAG query m, then DO
1 does the following:

1. Sample ω $← Zν2 and compute v = C(h(m,ω)).

2. Query the oracle O for n times on input v. For i = 1, . . . ,n let
(R[i], z[i]) $← O(v).

3. Return φ = π(R, z,ω) where R = (R[1], . . . , R[n]) and z = (z[1], . . . , z[n])
to A .

Verification queries. If A makes a VRFY query (m,φ), then DO
1 simply an-

swers with reject.

If any TAG or VRFY query contains a v which has appeared in a previous query,
DO
1 outputs 1 and 0 otherwise. (Note that DO

1 can compute the value v in a
VRFY query as it knows π,h.)

Claim 3. If O = Γ∗τ,2κ,d(x, ·), then DO
1 outputs 1 with probability > ε/2.

Proof of Claim. The answers to the TAG queries of A computed by DO
1 have ex-

actly the same distribution as in the uf-cma experiment (where the secret key
is K = (s,h,π) and s = x is the secret of the Subset LPN oracle.). The answers
to the VRFY queries (which are always reject) are correct as long as A does not
query a valid forgery. From our assumption, the probability that A finds a valid
forgery that is not fresh is > ε/2, which is thus a lower bound on the probability
that DO

1 outputs 1.

Claim 4. If O = U2κ+1(·), then DO
1 outputs 1 with probability < Q2/2µ−2.

8 In this case where P[Fresh] 6 ε/2, we can even distinguish a Γ∗τ,2κ,κ oracle (i.e., for d = κ) from
U2κ+1(·).



80 efficient authentication from hard learning problems

Proof of Claim. The answers that A obtains on a TAG query m from D
U2κ+1(·)
1 (i.e.

π(R, z,ω) where R, z,ω are sampled uniformly) are uniformly random, and in
particular independent of h or π. The answers to VRFY queries are always reject,
and thus contain no information about h,π either. Then, we have that vi = vj
(where vi = C(h(mi,ωi)) is defined by the i-th TAG or VRFY query) if and only
if h(mi,ωi) = h(mj,ωj).

Recall that A makes a total of Q queries. Assume that up to the (i − 1)-
th query, all the v’s were distinct. If the i-th query is a TAG query, a fresh
ωi is sampled which will be distinct from all previous ωj (for any j < i)
with probability 1− (i− 1)/2ν. Assuming this is the case, the probability that
h(mi,ωi) = h(mj,ωj) for any j < i can be upper bounded by i/2µ (here we
use the fact that the answers that A gets from D

U2κ+1(·)
1 are uniformly random,

and thus A has no information about h).
If the i-th query is a VRFY query (mi,φi), then using the fact that π is a

pairwise independent permutation (and A has no information about it) we can
show that the probability that φi contains an ωi which is equal to some ωj (s.t.
φj 6= φi) is 6 i/2ν+1. If this is the case then (mi,ωi) 6= (mj,ωj) for all j < i
with overwhelming probability.9 As in the previous case, we can then upper
bound the probability that h(mi,ωi) = h(mj,ωj) for any j < i by i/2µ.

Using the union bound over all i, for 1 6 i 6 Q, we get the bound Q2/2ν−2 =
Q2/2µ−2 (recall that µ = ν) as claimed.

the case P[Fresh] > ε/2. In this case, A will make TAG, VRFY queries,
where with probability > ε/2, at some point she will make an accepting VRFY
query (m,φ) that defines a fresh v. We now construct an adversary DO

2 that uses
A as a black-box, and can distinguish O = Γ∗τ,2κ,d(x, ·) from O = U2κ+1(·) (as in
Definition 4.2) with advantage

ε

2µ+1
−Qtag ·α ′′κ,d −Qvrfy ·α ′τ ′,n. (4.11)

The construction of DO
2 is very similar to the adversary D that we constructed

in the proof of Theorem 4.7 (where we proved that the authentication protocol
in Figure 4.5 is secure against active attacks). The queries to the prover in the
first phase of an active attack directly correspond to TAG queries. However, we
now have to additionally answer VRFY queries (we will always answer reject).
Furthermore, we cannot choose the challenge v∗ (as in the 2nd phase of an active

9 Note that for j < i where φi = φj we must have that mi 6= mj since we assume that A does not
repeat queries and does not ask VRFY queries (m,φ) if φ was the output of a TAG query m.
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attack). Instead, we will simply hope that (in the case where O = Γ∗τ,2κ,d(x, ·))
the v contained in the first valid VRFY query (i.e. forgery) that A makes is
fresh (which by assumption happens with probability ε/2). Moreover, we will
hope that it is the unique v∗ (out of 2µ possible ones) for which DO

2 can verify
this. This gives us a distinguishing advantage of nearly ε/2µ+1 as stated in
Eq. (4.11). We do loose an additional additive term Qtag · α ′′κ,d as there is an ex-
ponentially small probability that the transformation of Subspace LPN samples
to TAG queries will fail, and moreover an exponentially small term Qvrfy · α ′τ ′,n
which accounts for the probability that A correctly guesses an accepting tag
even in the case where O = U2κ+1(·).

Setup. The adversary DO
2 samples π,h (but not s) as defined by KGEN, and

y∗ $← Z
µ
2 , x∗ $← Z2κ2 . Let v∗ = C(y∗). Next, DO

2 invokes A and answers
its queries as follows (the intuition for the sampling below is given in the
proof of Claim 5).

Tag queries. The answer φ to a TAG query m ∈ M is computed by DO
2 as

follows:

1. Sample ω $← Zν2 and compute v = C(h(m,ω)). If v = v∗, output 0
and stop. Let u = v ∧ v∗ and u∗ = v ∧ v∗.

2. Query n times O on the input u. Let R̂1 ∈ Z2κ×n2 , z1 ∈ Zn2 denote
the n outputs of the oracle.

3. Sample R̂0
$← Z2κ×n2 and set z0 = R̂T

0 · (x∗ ∧ u∗).

4. Return φ = π(R = R̂↓v ∈ Zκ×n2 , z = z0 ⊕ z1 ∈ Zn2 ,ω ∈ Zν2 ) to
A , where R̂ is uniquely determined by requiring R̂↓v∗ = R̂0 and
R̂↓v∗ = R̂1.

Verification queries. If A makes a VRFY query (φ, m), then DO
2 always an-

swers reject, but also makes the following check:

1. Parse y = π−1(φ) as (R ∈ Zκ×n2 , z ∈ Zn2 ,ω ∈ Zν2 ) and compute
v = C(h(m,ω)).

2. If v 6= v∗, processing this query is over, otherwise go to the next step.

3. If rank(R) = n and wH(RT · x∗↓v∗ ⊕ z) 6 n · τ ′ (i.e. we have a forgery)
output 1 and stop.

If A has finished its queries, DO
2 stops with output 0.

Claim 5. If O = Γ∗τ,2κ,d(x, ·), then DO
2 outputs 1 with probability > ε/2µ+1.
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Proof. The proof of this claim is similar to the proof of Claim 1. The adversary

D
Γ∗τ,2κ,d(x,·)
2 perfectly simulates access to TAGK(·), VRFYK(·, ·) oracles with key

K = (s,h,π) where s = (x∗ ∧ v∗)⊕ (x ∧ v∗) and h,π are sampled by DO
2 . By

assumption, in this case, A outputs a valid fresh forgery with probability ε/2.
Conditioned on this, with probability 2−µ, this fresh v will be v∗ and therefore
DO
2 will output 1.

Claim 6. If O = U2κ+1(·), then DO
2 outputs 1 with probability 6 Qvrfy ·α ′τ ′,n.

Proof of Claim. The proof of this claim is almost identical to the proof of Claim 2,
except that here we have an additional factor Qvrfy as we have to take the union
bound over allQvrfy queries, whereas in Claim 2 the adversary was (by definition
of an active attack) only allowed one guess.

Summing up, using A we can break the Subset LPN assumption with advan-
tage which is given either by Eq. (4.10) or Eq. (4.11), i.e.

εSLPN = min
{
ε

2
−
Q2

2µ−2
,
ε

2µ+1
−Qtag ·α ′′κ,d −Qvrfy ·α ′τ ′,n

}
.

We can derive the following corollary, whose proof is straightforward.

Corollary 4.9 (Concrete security of Π1M). Choosing µ s.t. 2µ = Q2 · 24/ε in
Theorem 4.8, we get εSLPN = min{ε/4, ε2/(25Q2) − 2−Θ(n)}. The 2nd term is the
minimum here, and solving for ε gives

ε =
√
32 ·Q ·

√
εSLPN + 2−Θ(n). (4.12)

Note that to get security as claimed in the above corollary, we need to choose
µ as a function of Q and εSLPN such that 2µ ≈ Q2 · 24/ε for ε as in Eq. (4.12). Of
course we can just fix Q (as an upper bound to the number of queries made by
the adversary) and εSLPN (as our guess on the actual hardness of Γ∗τ,2κ,d). But a
too conservative guess on µ (i.e. choosing µ too small) will result in a construc-
tion whose security is worse than what is claimed in the above corollary. A too
generous guess on the other hand will make the security reduction meaningless
(we don’t have any actual attacks on the MAC for large µ though).
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second construction. As noted above, the main disadvantage of Π1M, is
that one needs to fix the hardness of the LPN problem at the time of the con-
struction. Our second construction has no such issues and achieves better se-
curity Θ(ε ·Q). The efficiency of this construction is similar to that of the first
construction, but a larger key is required.

The main difference to Π1M is the way we generate the values s(v). In the new
construction, we define s(v) = s0 ⊕

⊕
i:v[i]=1 si, where each si is a part of the

secret key. The construction uses ideas from Waters’ IBE scheme [Wat05], and
parts of the security reduction use simulation tricks from [Boy10; ABB10] that
we need to adapt to the binary case.

The message authentication code Π2M = {KGEN, TAG, VRFY} with associated
message space M is defined as follows.

• Public parameters. Π2M has the following public parameters.
κ, τ, τ ′,n as in the authentication protocol from Figure 4.5
µ ∈ N output length of the hash function
ν ∈ N length of the randomness

• Key generation. Algorithm KGEN(1κ) samples si
$← Zκ2 (for 0 6 i 6 µ)

and chooses a pairwise independent hash function h : M×Zν2 → Z
µ
2 , as

well as a pairwise independent permutation π over Zκ×n+n+ν2 . It returns
K = (s0, . . . , sµ,h,π) as the secret key.

• Tagging. Given secret key K = (s0, . . . , sµ,h,π) and message m ∈M, algo-
rithm TAG proceeds as follows.

1. R $← Zκ×n2 , ω $← Zν2 , e $← Bernnτ
2. v = h(m,ω)

3. s(v) = s0 ⊕
⊕
i:v[i]=1 si

4. Return φ = π(R, RT · s(v)⊕ e,ω)

• Verification. On input a secret key K = (s0, . . . , sµ,h,π), message m ∈M

and tag φ, algorithm VRFY proceeds as follows.

1. Parse π−1(φ) as (R ∈ Zκ×n2 , z ∈ Zn2 ,ω ∈ Zν2 ). If rank(R) 6= n, then
return reject

2. v = h(m,ω)

3. s(v) = s0 ⊕
⊕
i:v[i]=1 si

4. If wH(z⊕RT · s(v)) > n · τ ′ return reject, otherwise return accept



84 efficient authentication from hard learning problems

Again, it is straightforward to see that the completeness error of Π2M is 2−cτ·n

where cτ only depends on τ.

Theorem 4.10 (Security of Π2M). If the SLPNτ,κ,κ problem is (tSLPN,nQ, εSLPN)-
hard, then Π2M is (t,Q, ε)-secure against uf-cma adversaries, where

t ≈ tSLPN εSLPN = min
{
ε

2
−
Q2

2µ−2
,
ε

4Q
− 2−Θ(n)

}
.

We first give an intuition for the proof of Theorem 4.10. Similar to the proof
of Theorem 4.8, we distinguish fresh and non-fresh forgeries. Here the new and
interesting case is the fresh forgery. The idea is that in the reduction to the
SLPN problem we define the function s(v) = A(v) · s⊕ b(v) (where s = x is
the SLPN secret) such that the following holds with non-negligible probability:
(i) For each vi from the TAG queries, A(vi) has full rank κ and hence the tags
can be simulated using the provided Γτ,κ,κ(s, ·, ·) oracle; (ii) For the first fresh
forgery we have A(v) = 0 such that s(v) is independent of s and the reduction
can check the forgery’s correctness. The above two properties allow to maintain
the simulation.

The setup of the function s(·) is the crucial step and here we adapt a technique
recently introduced by Boyen [Boy10] based on homomorphic encodings with
full-rank differences that allows us to arbitrarily control the probability that the
above simulation works.

Proof. Let A be an adversary that successfully forges in the uf-cma experi-
ment with probability ε. We make the same conventions and the definition
of freshness as in the proof of Theorem 4.8 and split the forging probability as
P[Fresh] +P[¬Fresh] = ε.

the case P[Fresh] 6 ε/2. We now give the description of DO
1 attacking the

standard LPN problem, i.e. DO
1 can distinguish O = Λτ,κ(s) from O = Uκ+1

with advantage
ε

2
−
Q2

2µ−2
. (4.13)

Setup. Adversary DO
1 samples π,h (but not s) as defined by KGEN and bi

$←
Zκ2 , for 0 6 i 6 µ. Next, it implicitly defines s0 = s ⊕ b0 (where s is
unknown) and si = bi. It is easy to see that with this setup of K =

(s0, . . . , sµ,h,π) we have that for each v ∈ Zµ2 ,

s(v) = s⊕ b(v), where b(v) = b0 ⊕
⊕

i:v[i]=1

bi. (4.14)
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Note that adversary DO
1 cannot evaluate s(v) but looking ahead, it will use

its oracle O to answer A ’s queries as follows.

Tag queries. If A makes a TAGK(·) query for message m ∈ M, then DO
1 does

the following:

1. Samples ω $← Zν2 and compute v = h(m,ω). Compute b(v) as in
Eq. (4.14).

2. Query the oracle O for n times. Let R ∈ Zκ×n2 , z ′ ∈ Zn2 denote the n
answers from the oracle.

3. Return φ = π(R, z,ω), where z = z ′ ⊕RT · b(v).

Verification queries. If A makes a VRFYK(·, ·) query (m,φ), then DO
1 simply

answers with reject.

Finally, if any TAG or VRFY query contains a v which has appeared in a previous
query, DO

1 outputs 1 and stops. Otherwise, it outputs 0. Note that if O = Λτ,κ(s),
then DO

1 perfectly simulates the TAGK(·) oracle.
The following two claims are the analogues of Claims 3 and 4, respectively.

Their proofs are essentially the same and are therefore omitted.

Claim 7. If O = Λτ,κ(s), then DO
1 outputs 1 with probability > ε/2.

Claim 8. If O = Uκ+1, then DO
1 outputs 1 with probability < Q2/2µ−2.

Before we start dealing with the case P[Fresh] > ε/2, we recall the concept of
encodings with full-rank differences over general finite fields F. (For our proof
we will only be interested in the case F = Z2.)

Definition 4.3 (Encoding with full-rank differences). Let l > 1 be an integer
and F be a finite field. A mapping ϕ : Fl → Fl×l is an encoding with full-rank
differences (FRD) over F, if

• ϕ is computable in polynomial time (in l);

• For all distinct vectors a, b ∈ Fl, we have that ϕ(a) −ϕ(b) is an invertible
matrix.

Further, ϕ is homomorphic if for all vectors a, b ∈ Fl, we have that ϕ(a) +ϕ(b) =
ϕ(a + b).
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Cramer and Damgard [CD09], provided the following construction of an en-
coding with FRD. Let f be some polynomial of degree l in F[X] that is irreducible.
Recall that if h is a polynomial over F[X], the polynomial h mod f has degree less
than l and therefore coefs(h mod f) can be viewed as a vector in Fl. For an input
a = (a[0], . . . , a[l− 1]) ∈ Fl define the polynomial ga(X) =

∑l−1
i=0 a[i]Xi ∈ F[X].

Let,

ϕ(a) =


coefs(ga)

coefs(X · ga mod f)
coefs(X2 · ga mod f)

...
coefs(Xl−1 · ga mod f)

 ∈ Fl×l

As proved in [CD09], this is an encoding with FRD. Furthermore, it is also
homomorphic since coefs(Xi · ga+b mod f) = coefs(Xi · ga mod f) + coefs(Xi ·
gb mod f). Thus, in particular, we have that for any prime q > 2 and integer
l > 1, there exists an homomorphic encoding with full-rank differences over Zq.

the case P[Fresh] > ε/2. We will use games, denoting by Gi the output of
the experiment in the i-th game.

Game 0: The uf-cma security experiment with the modification that it only
returns 1 in case Fresh happens. By assumption, we have that P[G0 =

1] > ε/2.

Game 1: Let l = dlog2(2Q)e. The experiment is the same as in Game 0 with
the following differences.

• Key Generation. Algorithm KGEN additionally picks ai
$← Zl2 (0 6

i 6 µ) and defines

a(v) = a0 ⊕
⊕

i:v[i]=1

ai ∈ Zl2. (4.15)

• Tagging. For a query m ∈M, algorithm TAG proceeds as follows. As
in the last game, it computes tag φ and all the intermediate values. If
a(v) = 0l ∈ Zl2 then the experiment stops and outputs 0. Otherwise,
it outputs tag φ.

• Verification. For a query (m∗,φ∗), algorithm VRFY proceeds as
follows. As in the last game, it first computes the output of the real
VRFY algorithm, together with all intermediate values. If the output
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is out = accept and a(v∗) 6= 0l ∈ Zl2, then it stops and outputs 0.
Otherwise, it returns out.

Claim 9. P[G0 = 1] = 2Q ·P[G1 = 1].

Proof. Let Fail be the event that the execution in Game 1 stops, but not in
Game 0, i.e.,

Fail = a(v∗) = 0l ∧ a(v1) 6= 0l ∧ . . .∧ a(vQ) 6= 0l,

where vi is the v value appearing in the i-th TAG query and v∗ is the v
value of the first fresh VRFY query. We use a variant of [Boy10, Lemma
27] to show that

1

2l

(
1−

Q

2l

)
6 Pa [Fail] 6

1

2l
, (4.16)

where the probability is taken over a = (a0, . . . , aµ)
$← (Zl2)

µ+1. Note
that a(·) from Eq. (4.15) is essentially pairwise independent over Zl2, i.e.
for each vi 6= v∗ ∈ Z

µ
2 , we have Pr[a(v∗) = 0l] = 1/2l and Pr[a(vi) =

0l|a(v∗) = 0l] = 1/2l. Then Eq. (4.16) follows by applying the union
bound. The claim now follows by the definition of l = dlog2(2Q)e.

Game 2: Oracle TAGK(·) now internally uses uniform (R, z) ∈ Zκ×n2 ×Zn2 to
generate tag φ on message m.

Claim 10. P[G1 = 1] −P[G2 = 1] 6 εSLPN.

Proof. Assume there exists an adversary A that can distinguish between
the two games. We now describe adversary D

O(·,·)
2 that (tSLPN,nQ, εSLPN)-

breaks the SLPNτ,κ,κ problem (cf. Definition 4.1).

• Setup. Let l = dlog2(2Q)e and ϕ : Zl2 → Zl×l2 be an homomorphic
encoding with full-rank differences over Z2 from Definition 4.3. The
adversary DO

2 picks ai
$← Zl2, bi

$← Zκ2 (for i = 0, . . . ,µ) and (implic-
itly) defines si = Ai · s⊕bi, where s = x is the (unknown) secret from
the oracle Γτ,κ,κ(s, ·, ·) and

Ai =



ϕ(ai)︸ ︷︷ ︸
∈Zl×l2

0 · · · 0

0 ϕ(ai)
...

...
. . .

...
0 · · · ϕ(ai)


∈ Zκ×κ2 .
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(Here we assume that l | κ. If that is not the case, the matrix Ai
is truncated.) This way we have that s(v) = A(v) · s⊕ b(v), where
A(v) = A0⊕

⊕
i:v[i]=1Ai and b(v) = b0⊕

⊕
i:v[i]=1 bi. Define a(v) =

a0 ⊕
⊕
i:v[i]=1 ai as in Eq. (4.15). By the properties of the homomor-

phic encoding with FRD we have that

A(v) =

{
0κ×κ if a(v) = 0l

full-rank matrix if a(v) 6= 0l
(4.17)

• Tag queries. Next, DO
2 invokes A . The answer (R, z) to a TAGK(·)

query m ∈M by A is computed by DO
2 as follows.

1. Sample ω $← Zν2 and compute v = h(m,ω).

2. Compute a(v), b(v) and A. If a(v) = 0l, then stop and output 0.
If a(v) 6= 0l we have that A(v) is a full-rank matrix by Eq. (4.17).

3. Query O(·, ·) for n times on input (A(v), b(v)). Let R ∈ Zκ×n2 ,
z ∈ Zn2 denote the n answers from the oracle.

4. Return φ = π(R, z,ω) to A .

• Verification queries. If A makes a verification query consisting of
m∗ and a tag φ∗ = π(R∗, z∗,ω∗), then DO

2 computes v∗ = h(m∗,ω∗).
If a(v∗) 6= 0l then DO

2 returns reject. Otherwise, we have that s(v∗) =
b(v∗) does not depend on the unknown secret s anymore and DO

2 can
perform the real check which is

rank(R∗) = n and wH(z∗ ⊕R∗T · b(v∗)) 6 n · τ ′. (4.18)

The output is 1 if both checks succeed and 0 otherwise.

We now analyse DO
2 . If O(·, ·) = Γτ,κ,κ(s, ·, ·) is the real Subspace LPN

oracle, then the answers that DO
2 gives to A ’s queries in the first phase of

the attack have exactly the same distribution as what A would get in Game
1. (That is, the z from the oracle is of the form z = RT · (A(v) · s⊕ b(v))⊕
e = RT · s(v)⊕ e, as in Game 1.) Hence P[DΓτ,κ,κ(s,·,·)

2 = 1] = P [G1 = 1].

If O = Uκ+1(·, ·) is the uniform oracle, then all the outputs made by the
TAG oracle are uniformly random. Hence P[DUκ+1(·,·)2 = 1] = P [G2 = 1].

We next bound the probability that the experiment in Game 2 outputs 1.



4.5 extensions and open problems 89

Claim 11. P[G2 = 1] 6 α ′τ ′,n = 2−Θ(n).

Proof of Claim. If R∗ does not have full rank then the experiment outputs 0
by definition. So, from now on, we only consider the case where rank(R∗) =
n. In Game 2, the answers (R, z) adversary A obtains from the TAG oracle
are independent of the secrets s0, . . . , sµ. Since s(v∗) is uniformly ran-
dom and R∗ has full rank, the vector R∗T · s(v∗)⊕ z∗ is uniformly random
over Zn2 . Thus the probability that the second verification wH(z∗ ⊕R∗T ·
s(v∗)) 6 n · τ ′ fails is P[wH(x) 6 n · τ ′] = α ′τ ′,n = 2−Θ(n).

To sum up, in the case P[Fresh] > ε/2 (putting all together the terms in
Claim 9 - 11), we can use A to break the Subspace LPN assumption with advan-
tage ε/(4Q) − 2−Θ(n). On the other hand in the case P[Fresh] 6 ε/2, we have
an advantage as given in Eq. (4.13). Thus

εSLPN = min
{
ε

2
−
Q2

2µ−2
,
ε

4Q
− 2−Θ(n)

}
,

as desired.

4.5 extensions and open problems

We have provided new constructions of authentication protocols and even MACs
from LPN. Unlike previous proposals, our constructions are not ad-hoc, and we
gave a reduction to the LPN problem. We conclude this chapter with some
extensions and open problems.

trading key-size for communication complexity. A disadvantage of the
schemes proposed in this chapter is their large communication complexity. For
example, in the authentication protocol from Section 4.3 the prover has to send
the entire κ×n matrix R to the verifier. Similarly, in the MACs from Section 4.4,
the tag is computed by permuting a string of the form (R, RT · fs(m)⊕ e,ω),
where again R is an κ×n matrix.

We now explain a simple efficiency trade-off that is originally due to Gilbert
et al. [GRS08b]. Consider the authentication protocol from Figure 4.5. Let 1 6
c 6 n be an integer parameter and let ns = c and nr = n/c. The idea is
to use a larger secret matrix S ∈ Z

2κ×ns
2 (instead of just one vector s) and

a smaller random matrix R ∈ Z
κ×nr
2 (instead of R ∈ Zκ×n2 ). The resulting
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P(S, τ,nr,ns) V (S, τ ′,nr,ns)
v←− v $← {y ∈ Z2κ2 : wH(y) = κ}

if wH(v) 6= κ abort
R $← Z

κ×nr
2 ; e $← Bernnr×nsτ

z = RT · S↓v ⊕ e
z,R−−→ if rank(R) 6= nr, reject

if wH(RT · S↓v ⊕ z) > nr ·ns · τ ′
reject else accept

Figure 4.7: A generalisation of the protocol from Figure 4.5 where we trade a larger key
(which now is a matrix S ∈ Z2κ×ns2 ) for lower communication and random-
ness complexity. The protocol is as secure as the protocol from Figure 4.5
(wich is the special case where nr = n and ns = 1) with n = nr ·ns.

protocol is illustrated in Figure 4.7. Similar extensions can be easily derived
for the MACs of Section 4.4, where the tradeoff is more important due to the
pairwise independent permutation π which is the computational bottleneck of
the protocol. See Figure 4.1 for a comparison of the resulting complexities. The
proof of Theorem 4.7, Theorem 4.8 and Theorem 4.10, can be adapted to show
the same security and completeness results.

generalization to lwe. All the protocols discussed in this chapter are based
on the hardness of the LPN problem. A natural generalization of this problem is
the learning with errors (LWE) problem [Reg05]. The most appealing character-
istic of this problem is that it enjoys for certain parameters a worst-case hardness
guarantee [Reg05; Pei09].

The Subspace/Subset version of the LWE problem can be defined exactly in
the same fashion as for LPN. It was showed in [Pie10] that the Subspace/Subset
LWE problems are equivalent to the LWE problem. All the protocols in this pa-
per can be generalized to Zq and proven secure under the hardness of the Subset
LWE assumption (and hence the standard LWE assumption). This requires us
to sample all the elements from Zq (instead of Z2), replace Bernτ with Gauq,τ

and perform all the operations involved modulo q.

We need also to specify how to replace the verification steps involving the
computation of Hamming weights wH(·). Given a vector e ∈ Znq sampled from
Gaunq,τ (where e has the form z−RT · s↓v mod q for a honest execution of the pro-
tocol from Section 4.3 or z − RT · s(v) mod q for the schemes from Section 4.4),
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Construction Security Complexity Key-size Reduction
Communication Computation

HB [HB01] passive (2 rnd) κ ·n/c Θ(κ ·n) κ · c ε (tight)
HB+ [JW05] active (3 rnd) κ ·n · 2/ c Θ(κ ·n) κ · 2 · c

√
ε

Π § 4.3 active (2 rnd) κ ·n · 2.1/c Θ(κ ·n) κ · 4.2 · c ε (tight)
Π1M § 4.4 MAC→ MIM (2 rnd) κ ·n · 2.1/c Θ(κ ·n) + PIP κ · 12.6 · c

√
ε ·Q

Π2M § 4.4 MAC→ MIM (2 rnd) κ ·n · 1.1/c Θ(κ ·n) + PIP κ · µ · c ε ·Q
GGM [GGM86] PRF→ MIM (2 rnd) µ Θ(κ2 · µ) Θ(κ) ε · µ

Table 4.1: A comparison of our new authentication protocol and MACs with the HB,
HB+ protocols and the classical GGM construction. The trade-off parameter
c, 1 6 c 6 n and the term PIP are explained below.

this can be done by checking that the (squared) Euclidean norm of e, i.e., the
quantity ||e||2 =

∑n
i=1 |e[i]|

2, does not exceed n
⌊
q
2

⌋
· τ ′ (which will happen with

overwhelming probability by the standard tail bound on Gaussians).
Thus the change of domain from Z2 to Zq buys us security based on a differ-

ent assumption, which is known to be equivalent (for a proper choice of param-
eters) to the hardness of well-studied (worst-case) lattice problems. This comes
at the price of a higher computational complexity, which may be a problem in
the context of resource bounded devices.

efficiency issues. Our authentication protocol is roughly as efficient as the
HB+ protocol but has twice the key length. Our MACs perform roughly the
same computation as the authentication protocol plus one evaluation of a pair-
wise independent permutation of an ≈ 2κ bit domain, where κ is the length of
an LPN secret.

Figure 4.1 gives a rough comparison of our new protocol and MACs with
the HB, HB+ protocols and, as a reference, also the classical tree-based GGM
construction [GGM86]. The second row in the table specifies the security notion
that is (provably) achieved under the LPNτ,κ assumption. The value µ is also
a security parameter and n denotes the number of “repetitions”. Typical pa-
rameters can be κ = 500,µ = 80,n = 250. Computation complexity counts the
number of binary operations over Z2. Communication complexity counts the
total length of all exchanged messages.10 The last row in the table states the
tightness of the security reduction, i.e. what exact security is achieved (ignoring
constants and higher order terms) assuming the LPNτ,κ problem is ε-hard.

10 For MACs, we consider the communication one incurs by constructing a MIM secure 2-round
protocol from the MAC by having the prover compute the tag on a random challenge message.
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The prover and verifier in the HB, HB+ and our new protocols have to perform
Θ(κ · n) basic binary operations, assuming the LPNτ,κ problem (i.e., LPN with
secrets of length κ) is hard. This seems optimal, as Θ(κ) operations are neces-
sary to compute the inner product which generates a single pseudorandom bit.
We will thus consider an authentication protocol or MAC efficient, if it requires
O(κ · n) binary operations. It is well known that one gets a length-doubling
PRG under the LPNτ,κ assumption with Θ(κ2) binary operations [FS96]. Via the
classical GGM construction [GGM86], we obtain a PRF and hence a MAC. This
PRF, however, requires Θ(κ2 · µ) operations per invocation (where µ is the size
of the domain of the PRF) which is not very practical. (Recall that κ ≈ 500.)

As we have discussed above, for all constructions except GGM, there is a
natural trade-off between communication and key-size, where for any constant
c (1 6 c 6 n), we can decrease communication by a factor of c and increase
key-size by the factor c. For the first three protocols in the table, the choice of
c does not affect the computational efficiency, but it does so for our MACs: to
compute or verify a tag one has to evaluate a pairwise independent permutation
(PIP) on the entire tag of length ` = Θ(κ ·n/c).

The standard way to construct a PIP π over Z2` is to define π(x) = a · x+ b ∈
Z2` for random a,b ∈ Z2` . Thus the computational cost of evaluating the PIP is
one multiplication of two ` bit values: the PIP term in the table accounts for this
complexity. Asymptotically, such a multiplication takes only O(` log ` log log `)
time [SS71; Für09], but for small ` (like in our scheme) this will not be faster
than using schoolbook multiplication, which takes Θ(`2) time. For parameters
κ = 500,n = 250 and trade-off c = n (which minimizes the tag-length `) we
get ` ≈ 1200 for Π1M (i.e., 1200 = 2κ plus some statistical security parameters)
and ` ≈ 600 for Π2M. Hence, depending on the parameters, the evaluation of the
PIP may be the computational bottleneck of our MACs. It is an interesting open
problem how to get rid of the PIP π in our construction, thus getting a more
efficient construction.

Very recently, building on our ideas, a new variant of the HB protocol—called
HBn—is introduced in [BHN11], exploiting a bilinear variant of the LPN assump-
tion (also this variant can be proven equivalent to the standard LPN assump-
tion). This construction directly achieves MiM-security, however it has similar
efficiency as our MACs.



A P R O O F O F T H E C H E R N O F F B O U N D

In this appendix we recall the (standard) proof of the Chernoff bound.

Proof of Theorem 2.3. Define X =
∑n
i=1 Xi. If we denote with pi = P[Xi = 1],

we have µ =
∑n
i=1 pi. We prove only the first inequality, the other one can be

proved similarly. We introduce a parameter t, which role will be clarified in a
moment. We have

P [X > (1+ δ)µ] = P

[
etX > et(1+δ)µ

]
.

Markov’s inequality (cf. Lemma 2.2) yields

P [X > (1+ δ)µ] 6
E
[
etX
]

et(1+δ)µ
. (A.1)

Note that since the random variables Xi are mutually independent, we can
write

E
[
etX
]
= E

[
et
∑n
i=1Xi

]
= E

[
n∏
i=1

etXi

]
=

n∏
i=1

E
[
etXi

]
. (A.2)

Moreover the term etXi can be upper bounded exploiting the fact that ex > 1+ x
and that Xi ∈ {0, 1}:

E
[
etXi

]
= pie

t + (1− pi) = 1+ (et − 1)pi 6 e
(et−1)pi .

Substituting in Eq. (A.2), we get

E
[
etX
]
<

n∏
i=1

e(e
t−1)pi = e

∑n
i=1(e

t−1)pi = e(e
t−1)µ,

and putting this expression in Eq. (A.1) yields

P [X > (1+ δ)µ] 6
E
[
etX
]

et(1+δ)µ
<
e(e

t−1)µ

et(1+δ)µ
=
(
ee
t−1−t(1+δ)

)µ
.

The last equation is valid for every t. To prove (?), it suffices to find the
optimal value of t which makes the above inequality tight. In other words, we
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need to minimise et − 1− t(1+ δ) as a function of t. Forcing the first derivative
to be 0, we get

d

dt
(et − 1− t(1+ δ)) = et − 1− δ

!
= 0,

and we obtain the unique solution t = ln(1+ δ). Thus

P [X > (1+ δ)µ] <
(
eδ−(1+δ) ln(1+δ)

)µ
=

(
eδ

(1+ δ)1+δ

)µ
,

as desired.
To prove (??) we write the Mclaurin series1 of ln(1+ δ), i.e.

(1+ δ) ln(1+ δ) = (1+ δ)
∑
i>1

(−1)i+1
δi

i
= δ+

∑
i>2

(−1)iδi
(

1

i− 1
−
1

i

)
.

Now, if 0 6 δ < 1, we can ignore the higher order terms and write

(1+ δ) ln(1+ δ) > δ+
δ2

2
−
δ3

6
> δ−

δ2

3
.

Hence,

P [X > (1+ δ)µ] <
(
eδ−(1+δ) ln(1+δ)

)µ
6 e−

δ2µ
3 (0 6 δ < 1),

as desired.

1 In mathematics, a result due to Taylor allows to approximate a function around a certain point in
the space, trough an expression involving some special polynomials with coefficients depending
only on the value of the derivatives of f in the given point. More precisely, let f : [a,b]→ Rn be
a function which is differentiable n times in [a,b] and let x0 ∈ [a,b]. Then,

f(x) =

∞∑
i=0

f(i)(x0)

i!
(x− x0)

i,

where we write f(i)(x0) for the i-th derivative of f at point x0. When x0 = 0 we speak of the
Mclaurin series. A simple calculation shows

ln(1+ x) =
∞∑
i=1

(−1)i+1
xi

i
when −1 < x 6 1.
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It remains to show (? ? ?). Let c = (1 + δ)µ. When c > 6µ we have δ =

c/µ− 1 > 5, thus using the result in (?) we have

P [X > c] 6

(
eδ

(1+ δ)1+δ

)µ
6

(
e

1+ δ

)(1+δ)µ

6
(e
6

)c
6 2−c.





B K N O W N PA R A D I G M S F O R S E C U R E
A U T H E N T I C AT I O N

In this appendix we prove security of the protocols from Figure 4.1 and 4.2.

Proof of Theorem 4.1. The proof is by reduction: Given a PPT adversary A run-
ning in time t and breaking active security of the protocol with advantage ε,
we build a PPT forger F against ΠM. The adversary F runs in the experiment
Expufcma

MAC,ΠM(F , κ) and has to “fake” the environment for A , who is expecting to
execute an active attack against the protocol of Figure 4.1. Thus, F uses A as
follows:

1. Run A (1κ).

2. When A replaces V (in the first phase of an active attack), receive the chal-
lenge m sent by A . Query the tag oracle on m, obtaining φ ← TAGK(m)

(for some unknown key K ∈ K) and send φ as a response to A ’s challenge.

3. When A tries to be authenticated in place of P (in the second phase of an
active attack), choose a random challenge m∗ $← M and send it to A . Let
φ∗ be A ’s response. Output the forgery (m∗,φ∗).

Of course F runs in polynomial time. Moreover, it is not difficult to see that
the simulation provided by F is perfect, as long as the message m∗ is distinct
from all the messages seen by A in the first phase (otherwise the forgery output
by F is not fresh). Let Fresh be this event and Auth be the event that A is
authenticated. We can write:

ε = P [Auth] = P [Auth ∧¬Fresh] +P [Auth ∧ Fresh]

= P [Auth ∧¬Fresh] +P
[
Expufcma

MAC,ΠM(F , κ) = 1
]

6 P [¬Fresh] +P
[
Expufcma

MAC,ΠM(F , κ) = 1
]

6 [since A asks Q queries]

6
Q

#M
+P

[
Expufcma

MAC,ΠM(F , κ) = 1
]

6 [since ΠM is secure]
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6
Q

#M
+ εMAC,

as desired.

Proof of Theorem 4.2. We present only a sketch of the proof, since it is similar
to the proof of Theorem 4.1. Given a PPT adversary A running in time t
and breaking security of the protocol in a MiM attack with advantage ε, we
build a PPT forger F against ΠM. The adversary F runs in the experiment
Expufcma

MAC,ΠM(F , κ) and has to “fake” the environment for A , who is expecting
to execute a MiM attack against the protocol of Figure 4.1. Thus, F uses A as
follows:

1. Run A (1κ).

2. Whenever A replaces V , receive the challenge mV sent by A . Draw a
random mP

$← MP and query the tag oracle on mP ||mV , obtaining φ ←
TAGK(mP ||mV) (for some unknown key K ∈ K) and send φ as a response
to A ’s challenge. Output sidP = mP ||mV .

3. Whenever A tries to be authenticated in place of P , choose a random
challenge m∗V

$← MV and send it to A . Let (m∗P,φ∗) be A ’s response.
Output the forgery (m∗P ||m

∗
V ,φ∗).

Of course F runs in polynomial time. Moreover, it is not difficult to see that the
simulation provided by F is perfect, as long as the message m∗P ||m

∗
V is fresh.

Let Fresh be this event and Auth be the event that A is authenticated. Define
also the event Confused as the event that A manages to make two different
prover instances output the same session id (at any time). We can write:

ε = P [Auth] +P [Confused]

= P [Auth ∧¬Fresh] +P [Auth ∧ Fresh] +P [Confused]

6
Q

#MV
+ εMAC +P [Confused] .

It remains to bound P[Confused]. The probability of Confused is the prob-
ability that, in Q queries, two instance of the prover output the same value
sidP = mP ||mV in the simulation above. Given two sids, they are equal with
probability 1/#MP; given a third value, this will be equal to one of the other two
with probability 2/#MP and so forth. Thus

P [Confused] =

Q−1∑
i=1

i

#MP
=

1

#MP
· Q(Q− 1)

2
,
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finishing the proof.





C S E C U R I T Y O F T H E H B FA M I LY

In this appendix we recall the security proof of HB and HB+ as given by Katz
and Shin [KS06]. We will only deal with the case τ ′ < 1/4, and refer the reader
to [KSS10] for the proof of the general case.

Proof of Theorem 4.3. We show that, if there exists a PPT attacker A breaking pas-
sive security of the HB protocol with probability ε, then we can build another
PPT attacker D (using A ) solving the decisional version of LPNτ,κ with prob-
ability better than εLPN as in the theorem statement. The distinguisher D has
access to an oracle which returns strings in Zκ+12 and must decide if the oracle
is Λτ,κ(s) (for some s $← Zκ2) or the uniform oracle Uκ+1. To do so, D relies on
A as follows:

1. Whenever A asks to see a transcript of a honest execution of the HB pro-
tocol, query the oracle n times, obtaining pairs (R[i], z[i]) with i = 1, . . . ,n.
Let R = (R[1], . . . , R[n]) and z = (z[1], . . . , z[n]). Give (R, z) back to A .

2. When A tries to impersonate P , query the oracle again for n times, ob-
taining pairs (R ′[i], z ′[i]) with i = 1, . . . ,n. Use R ′ = (R ′[1], . . . , R ′[n]) as a
challenge for A and receive the answer z ′′.

3. Let z ′ = (z ′[1], . . . , z ′[n]). Output 1 if and only if wH(z ′ ⊕ z ′′) 6 2τ ′ ·n.

We distinguish two cases.

the oracle of D is Uκ+1 . In this case A sees just uniformely random strings.
Hence, the string z ′ ⊕ z ′′ has uniform distribution over Zκ2 . Applying the Cher-
noff bound, there exists a constant c ′′τ (depending only on τ) such that the prob-
ability that D outputs 1 is 2−n ·

∑2bτ ′·nc
i=0

(
n
i

)
= 2−c

′′
τ ·n.

the oracle of D is Λτ,κ(s). In this case, D ’s simulation in the first phase
of A ’s attack is perfect. Denote with z∗ = (R ′)T · s the vector containing the
values of the true inner products (i.e., without noise) z∗[i] = (R ′[i])T · s. Since
A impersonates P with probability ε, we have that with probability at least ε
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the vectors z ′′ and z∗ differ in at most τ ′ ·n values. On the other hand, since the
vector z ′ satisfies z ′ = (R ′)T · s⊕ e where e $← Bernnτ , the vector z ′ is distributed
as in a honest answer of P and thus (since the protocol has completeness error
ατ,n) z ′ and z∗ differ in at most τ ′ · n values with probability at most ατ,n. We
conclude that the probability that z ′ and z ′′ differ in at most 2τ ′ · n values is at
least ε−ατ,n.

Putting all together we have shown,∣∣∣P [DΛτ,κ(s)(1κ) = 1
]
−P

[
DUκ+1(1κ) = 1

]∣∣∣ > ε−ατ,n − 2−c
′′
τ ·n,

and thus D solves the decisional Λτ,κ problem with probability at least εLPN =

ε−ατ,n − 2−c
′′
τ ·n = ε− 2−Θ(n), as desired.

Note that the proof yields a meaningful result only when τ < τ ′ < 1/4, since
when τ > 1/4 we have 2τ ′ ·n > 2τ ·n > n/2 and thus 2−n

∑2bτ ′·nc
i=0

(
n
i

)
> 1/2.

We now turn to the proof of security for the HB+ protocol.

Proof of Theorem 4.4. We show that if there exists a PPT adversary A breaking
active security of the HB+ protocol with probability ε, then we can build a
different attacker D (using A ) able to solve the decisional version of the Λτ,κ

problem with probability εLPN as in the theorem statement. The adversary D

has access to an oracle returning strings in Zκ+12 and must distinguish if this
oracle is Λτ,κ(s1) (for some s1

$← Zκ2) or the uniform oracle Uκ+1. To do so, D

uses A as follows:

1. Sample s2
$← Zκ2 .

2. When A replaces V (in the first phase of an active attack), query the oracle
n times, obtaining (R1[i], z[i]) with i = 1, . . . ,n. Thus, send the matrix
R1 = (R1[1], . . . , R1[n]) to A . Given the answer R2 of A , set z = RT

2 · s2⊕z,
where z = (z[1], . . . , z[n]) and send this value to A .

3. When A replaces P (in the second phase of an active attack), receive the
challenge R1 = (R1[1], . . . , R1[n]). Sample R ′2

$← Zκ×n2 and send R ′2 =

(R ′2[1], . . . , R ′2[n]) to A . Let z ′ = (z ′[1], . . . , z ′[n]) be the answer of A .

4. Rewind A to the point it already chose R1 and sample a different chal-
lenge R ′′2

$← Zκ×n2 , where R ′′2 = (R ′′2 [1], . . . , R ′′2 [n]). Let z ′′ = (z ′′[1], . . . , z ′′[n])
be the new answer of A .
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5. Set z⊕ = z ′ ⊕ z ′′, and R∗[i] = R ′2[i]⊕R ′′2 [i], R∗ = (R∗[1], . . . , R∗[n]). Com-
pute z∗ = (R∗)T · s2. Return 1 if and only if z⊕ and z∗ differ in at most
2τ ′ ·n values.

We need to distinguish two cases.

the oracle of D is Uκ+1 . In the first phase, the values z[i] are all random.
Thus, the answer z simulated by D is also random and in particular independent
on s2.

Note that in this case also the vector z⊕ is random. Since the vectors R∗[i] (for
i = 1, . . . ,n) are independent and uniformly distributed, they are also linearly
independent with probability 2n/2κ.1 When this happens, the vector z∗ is also
random and the probability that z∗ and z⊕ differ in at most 2τ ′ · n values is
exactly 2−n ·

∑2bτ ′·nc
i=0

(
n
i

)
= 2−c

′′
τ ·n (applying the Chernoff bound). Hence, D

returns 1 with probability at most 2n/2κ + 2−c
′′
τ ·n.

the oracle of D is Λτ,κ(s1). In this case the simulation of the first phase is
perfect. Let ω be the randomness used to simulate the first phase of A ’s attack
(this includes the vectors s1, s2, the randomness of A and the randomness used
to answer A ’s queries). For a fixedω, let εω be the probability (over the random
choice of R2[1], . . . , R2[n] in R2) that A is successful. Note that the probability
that A answers correctly to both the challenges R ′2 and R ′′2 is ε2ω. Averaging
and applying Jensen’s inequality2 we get

Eω
[
ε2ω
]
> (Eω [εω])2 = ε2.

1 The argument is similar to the one in the proof of Lemma 4.6. Let {ri}ni=1 be random vectors in
Zκ2 and denote with Depi the event that vector ri is linearly dependent on one among r1, . . . , ri−1
(for i = 0 this is the event that r1 is the zero vector). Since the subspace spanned by i− 1 vectors
has dimension at most 2i−1, the probability of Depi is at most 2i−1/2κ. Applying the union
bound, we get

P

[
n∨
i=1

Depi

]
6 2−κ

n−1∑
i=0

2i <
2n

2κ
,

as desired.
2 In probability, Jensen’s inequality states that if X is a random variable and f is a convex function,

then
f(E [X]) 6 E [f(X)] .
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Thus, assuming that A is successful in both cases, we conclude that the vector
z ′ and the vector containing the correct answers

ξ ′ = RT
1 · s1 ⊕ (R ′2)

T · s2
=
(
R1[1]T · s1 ⊕R ′2[1]

T · s2, . . . , R1[n]T · s1 ⊕R ′2[n]
T · s2

)
,

differ in at most τ ′ ·n values. Similarly, the vector z ′′ and the vector containing
the correct answers

ξ ′′ = RT
1 · s1 ⊕ (R ′′2 )

T · s2
=
(
R1[1]T · s1 ⊕R ′′2 [1]

T · s2, . . . , R1[n]T · s1 ⊕R ′′2 [n]
T · s2

)
,

differ in at most τ ′ ·n values. Hence, the vector z ′ ⊕ z ′′ = z⊕ and the vector

ξ ′ ⊕ ξ ′′ = RT
1 · s1 ⊕ (R ′2)

T · s2 ⊕RT
1 · s1 ⊕ (R ′′2 )

T · s2
=
(
R ′2[1]

T · s2 ⊕R ′′2 [1]
T · s2, . . . , R ′2[n]

T · s2 ⊕R ′′2 [n]
T · s2

)
=
(
(R ′2[1]⊕R ′′2 [1])

T · s2, . . . , (R ′2[n]⊕R ′′2 [n])
T · s2

)
= (R∗)T · s2 = z∗,

differ in at most 2τ ′ · n. We conclude that in this case D outputs 1 with proba-
bility ε2.

Putting all together, we have shown∣∣∣P [DΛτ,κ(s1)(1κ) = 1
]
−P

[
DUκ+1(1κ) = 1

]∣∣∣ > ε2 − 2n
2κ

− 2−c
′′
τ ·n,

and thus D solves the Λτ,κ problem with probability at least εLPN = ε2+ 2−Θ(n),
as desired.
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In this appendix we give a proof of Pietrzak’s theorem on tamper resilience of
LPN.

Proof of Lemma 4.5. We start with an adversary DSLPN solving the SLPNτ,κ,d+g

problem, and we build an adversary D against the LPNτ,d problem. Note that
the adversary D is given access to an oracle Λτ,d(x) (for some unknown x $←
Zd2 ) and needs to simulate the answers from the Γτ,κ,d+g(·, ·) oracle for another
(unknown) vector x̂ $← Zκ2 .

Whenever DSLPN asks a query (A, b), adversary D checks that rank(A) >
d+ g; if this is not the case it returns ⊥. Otherwise, it first queries the Λτ,d(x)
oracle to get an LPN sample (r, rT · x⊕ e). Then, it samples W $← Zκ×d2 , w $← Zκ2
and (implicitly) defines x̂ = W · x⊕w. Define the set S ⊆ Zκ2 of solutions to the
system of linear equations:

S =
{

y : y ·A ·W = rT} .

Note that whenever A ·W has rank > d, the set S is not empty as the system
of linear equations above is overdefined. At this point D samples r̂ $← S and
outputs the sample

(r̂, rT · x⊕ e⊕ z),

where z is computed from known values as z = r̂T ·A ·w⊕ r̂T · b.
For the analysis, note that D runs in time t ≈ tSLPN. It remains to show that

simulation performed by D is correct. This is shown in the following claims.

Claim 12. If V = A ·W has rank > d, then r̂ $← S is uniformly random (given
A, b, W, w).

Proof. Recall that V ∈ Zκ×d2 . Fix some v ∈ Zκ2 such that wH(v) = d and V↓v
has full rank. (Such v exists, since V has rank at least d.) We know that r̂ $← S

is a random solution to the equation r̂ · V = rT. Using the fact that r̂ · V =

r̂↓v ·V↓v ⊕ r̂↓v ·V↓v, we can write

r̂↓v ·V↓v = rT ⊕ r̂↓v ·V↓v. (D.1)
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Hence, we can sample a random r̂ as follows. We first choose a random r̂↓v
$←

Zκ−d2 . The remaining d positions are then uniquely determined by r and given
by the solution of Eq. (D.1). Since V↓v is a full rank square matrix, Eq. (D.1)
defines a bijection between r̂↓v and r. As r is random and r̂↓v are both random,
so is r̂↓v and thus r̂.

Claim 13. Adversary D perfectly simulates access to the oracle SLPNτ,κ,d+g(·, ·), with
respect to secret x̂ = W · x⊕w.

Proof. This is because,

r̂, r̂T · (A · x̂⊕ b)⊕ e = r̂, r̂T · (A · (W · x⊕w)⊕ b)⊕ e
= r̂, r̂T ·A ·W · x⊕ r̂T ·A ·w⊕ r̂T · b⊕ e
= [since r̂ ∈ S]

= r̂, rT · x⊕ r̂T ·A ·w⊕ r̂T · b︸ ︷︷ ︸
z

⊕e

= r̂, rT · x⊕ e⊕ z.

Claim 14. With probability at least 2−g the set S is not empty.

Proof. Recall that the set S is empty when V = A ·W ∈ Zκ×d2 has rank less than
d, where A ∈ Zκ×κ2 has rank rank(A) > d+ g and W $← Zκ×d2 .

Denote with ℘(d,g) the probability that a random matrix in Z
(d+g)×d
2 has

rank less than d. Since the matrix A has rank at least d + g, we can assume,
without loss of generality, that the first d+ g rows of A are linearly independent.
Since the matrix W is random, the upper (d + g)× d matrix of V = A ·W is
random in Z(d+g)×d

2 and thus it has rank less than d with probability at most
℘(d,g). We conclude that V has rank strictly less than d exactly with the same
probability. Using Lemma 4.6, we see that this probability is bounded by 2−g.

Applying the union bound, we can upper bound the probability that for any
of the Q queries the matrix V = A ·W has rank less than d by Q · 2−g. This
error probability is thus an upper bound on the gap of the success probability
εSLPN of DSLPN and the success probability ε we get in breaking LPN using the
transformation.

Finally, we need to consider the fact that the queries (A, b) chosen by DSLPN

are chosen adaptively. To show that adaptivity does not help in picking an A
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where A ·W has rank < d we must show that the view of D is independent of
W (except for the fact that so far no query was made where rank(A ·W) < d).
To see this, first note that x̂ = W · x⊕w is independent of W as it is blinded
with a uniform w. In fact, the only reason we use this blinding is to enforce this
independence. The r̂ are independent as they are uniform given W as shown in
the first claim in the proof.

extensions. The result of Pietrzak [Pie10] is actually more general than the
one we have proved here. The reduction still hold even if the adversary can
(adaptively) choose arbitrary affine transformations φr(r) = Ar · r ⊕ br and
φx(x) = Ax · x⊕ bx and learn

(r,φr(r)T ·φx(x)⊕ e),

as long as the matrices Ax, Ar overlap in a subspace of dimension at least d+ g.
Moreover the result is still valid if we replace Z2 with Zq (where q is a prime

or a prime power), and Bernτ is replaced by any distribution χ over Zq such
that the LWE problem with distribution χ is hard (for instance the “discretised
normal error” distribution Gauq,τ in the case of LWE).
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