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Anything that happens, happens.
Anything that, in happening, causes something else to happen, causes something

else to happen.
Anything that, in happening, causes itself to happen again, happens again.

It doesn’t necessarily do it in chronological order, though.
D. Adams

Everything should be made as simple as possible,
but not simpler.

A. Einstein





Abstract

ONE of the main matter in Blind Source Separation (BSS) performed with
a neural network approach is the choice of the nonlinear activation
function (AF). In fact if the shape of the activation function is chosen as

the cumulative density function (c.d.f.) of the original source the problem is solved.
For this scope in this thesis a flexible approach is introduced and the shape of the
activation functions is changed during the learning process using the so-called

“spline functions”.
The problem is complicated in the case of separation of complex sources where

there is the problem of the dichotomy between analyticity and boundedness of the
complex activation functions. The problem is solved introducing the “splitting
function” model as activation function. The “splitting function” is a couple of
“spline function” which wind off the real and the imaginary part of the complex
activation function, each of one depending from the real and imaginary variable.

A more realistic model is the “generalized splitting function”, which is formed
by a couple of two bi-dimensional functions (surfaces), one for the real and one for
the imaginary part of the complex function, each depending by both the real and
imaginary part of the complex variable.

Unfortunately the linear environment is unrealistic in many practical appli-
cations. In this way there is the need of extending BSS problem in the nonlinear
environment: in this case both the activation function than the nonlinear distorting
function are realized by the “splitting function” made of “spline function”.

The complex and instantaneous separation in linear and nonlinear environment
allow us to perform a complex-valued extension of the well-known INFOMAX
algorithm in several practical situations, such as convolutive mixtures, fMRI signal
analysis and bandpass signal transmission.

In addition advanced characteristics on the proposed approach are introduced
and deeply described. First of all it is shows as splines are universal nonlinear
functions for BSS problem: they are able to perform separation in anyway. Then it is
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analyzed as the “splitting solution” allows the algorithm to obtain a phase recovery:
usually there is a phase ambiguity. Finally a Cramér-Rao lower bound for ICA is
discussed.

Several experimental results, tested by different objective indexes, show the
effectiveness of the proposed approaches.
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1
Introduction

—Since the real talent is having the answers
when the questions do not still exist.

A. Baricco

IN the last years Blind Source Separation (BSS) realized through Inde-
pendent Component Analysis (ICA) have raised great interest in the
signal processing community [44, 77, 159]. In this context the neural

network approach [76] (usually based on a single layer perceptron (SLP) or
a multilayer perceptron (MLP)) seems to be one of the preferred method-
ologies [15, 94]; this interest is justified by the large number of different
approaches and applications. As a matter of fact, in several fields, from
multimedia to telecommunication and to biomedicine, ICA is currently em-
ployed to effectively recover the original sources from their mixtures or to
remove interfering signals from the signal of interest. Initial studies on ICA
aimed at solving the well-known cocktail party problem, in a instantaneous
or slightly reverberant environment. Pioneering works in ICA appeared
at the beginning of the 90’s, when Jutten and Herault [94] presented their
“neurometric architecture” and Comon [50] published his often referenced
work.

Recently the problem of source separation has been extended to the
complex domain [35, 21, 68], due to the need of frequency domain signal
processing which is quite common in telecommunication [19] and biomedi-
cal applications [29, 30]. One of the most critical issues in ICA is the matching
between the probability density function (or pdf) of sources (usually un-
known) and the algorithm’s parameters [218]. In this way one of the most
important issues in designing complex neural networks consists in the defi-
nition of the complex activation function [20, 48, 101]. In order to improve
the pdf matching for the learning algorithm, the so called Flexible ICA was
recently introduced in [42, 67, 175, 208, 214]. Flexible ICA is the approach
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2 CHAPTER 1. INTRODUCTION

in which the activation function (AF) of the neural network is adaptively
modified during the learning. This approach provides faster and more ac-
curate learning by estimating the parameters related to the pdf of signals.
In literature it is possible to find several methods based on polynomials [5]
and on parametric function approaches [146, 176].

Moreover the main properties that the complex activation function
should satisfy [103, 214] are that it should be non linear and bounded and
its partial derivatives should exist and be bounded. Unfortunately the an-
alytic and boundedness characteristics are in contrast with the Liouville
theorem [48, 101]. In other words, according to this theorem, an activation
function should be bounded almost everywhere in the complex domain
[48, 112, 69, 99, 101, 102, 2].

In this context, spline-based nonlinear functions seem to be particularly
appealing as activation functions. In fact splines can model a very large
number of nonlinear functions and can be easily adapted by suitably varying
their control points, with low computational burden.

Unfortunately linear instantaneous mixing models are too unrealistic
and unsatisfactory in many applications. Recent studies on ICA in the real
domain showed that source separation can be effectively performed also
in the case of convolutive nonlinear mixing environments [95, 208]. In the
case of the complex domain only linear instantaneous mixtures have been
considered so far [21, 201, 30, 2].

A more realistic mixing system inevitably introduces a nonlinear distor-
tion in the signals. In this way the possibility of taking into account these
distortions can give better results in signal separation. The problem is that
in the nonlinear case the uniqueness of the solution is not guaranteed.

The solution becomes easier in a particular case, called Post Nonlin-
ear (PNL) mixture, well-known in literature in the case of the real domain
[183, 186]. In this context the solution is unique too. The work here exploited
extends the linear and PNL mixture to the complex domain (complex-PNL).
This extension requires proper modelling of the nonlinear distorting func-
tions and of the activation functions of a feed-forward network. In this work
this modelling has been performed by use of the splitting functions de-
scribed in [200]. Another important issue is the definition of the theoretical
conditions that grant the uniqueness of the solution.

1.1 The philosophy of BSS algorithm

ICA algorithms can be divided in two main and general classes: those
based on High Order Statistics (HOS) which measure a “distance” from the
gaussianity and those based on the Information Theory .

The HOS methods are based on a corollary of the Darmoi-Skitovitch
theorem [57, 173] which asserts that at most one source signal can have
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gaussian distribution: in this sense non-gaussianity has a key role in ICA.
Effectiveness measures of non-gaussianity are the high order cumulants
[33, 34, 37]. Usually the non-gaussianity is measured by the absolute value
of the kurtosis for its simplicity in estimation (the square of kurtosis can also
be used). These are zero for a gaussian variable and greater than zero for
most non-gaussian variables. The main problem is that kurtosis can be very
sensitive to outliers. Its value may depend on only a few observations in the
tails of the distribution, which may be erroneous or irrelevant observations.
In other words, kurtosis is not a robust measure of nongaussianity.

A second very important measure of non-gaussianity is given by ne-
gentropy (see Appendix A.4), based on the information-theoretic quantity
of (differential) entropy. The negentropy is always non-negative, and it is
zero if and only for a Gaussian distribution. Negentropy has the additional
interesting property that it is invariant for invertible linear transformations:
it is the optimal estimator of nongaussianity. The problem in using negen-
tropy is that it is computationally very difficult. Estimating negentropy
using the definition would require an estimate of the pdf. Therefore, some
approximations have to be used.

On the other side a different approach is based on application of entropic
contrasts, such as Joint Entropy (see Appendix A.1) and Mutual Informa-
tion (see Appendix A.3) [15, 88, 90, 218, 219] which provides a simple and
powerful approach to ICA.

The other side of the coin is the maximum likelihood (ML) approach [38, 33]
which leads to the same results of the information theory approach [111].

1.2 History of ICA and BSS

The technique of ICA, although not yet the name, was introduced in the
early 1980s by J. Hérault, C. Jutten, and B. Ans in [8].
The problem first came up in 1982 in a neurophyiological setting. A good
historical introduction to ICA can be found in [96].

All through the 1980s, ICA was mostly known among French researchers,
with limited influence internationally. The few ICA presentations in inter-
national neural network conferences in the mid-1980s were largely buried
under the deluge of interest in back-propagation, Hopfield networks, and
Kohonen’s Self-Organizing Map (SOM), which were actively propagated
in those times. Another related field was higher-order spectral analysis,
on which the first international workshop was organized in 1989. In this
workshop, early papers on ICA by J.-F. Cardoso [32] and P. Comon [49]
were given. Cardoso used algebraic methods, especially higher-order cumu-
lant tensors, which eventually led to the JADE algorithm [36]. The use of
fourth-order cumulants has been earlier proposed by J.-L. Lacoume [106].
In signal processing literature, classic early papers by the French group are
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[50, 52, 94, 179].
In signal processing, there had been earlier approaches in the related

problem of blind signal deconvolution [59, 170].
The work of the scientists in the 1980’s was extended by, among others,

A. Cichocki and R. Unbehauen, who were the first to propose one of the
presently most popular ICA algorithms [45, 46, 47]. Some other papers on
ICA and signal separation from early 1990s are [24, 133]. However, until the
mid-1990s, ICA remained a rather small and narrow research effort. Sev-
eral algorithms were proposed that worked,usually in somewhat restricted
problems, but it was not until later that the rigorous connections of these to
statistical optimization criteria were exposed.

ICA attained wider attention and growing interest after A.J. Bell and T.J.
Sejnowski published their approach based on the infomax principle [15, 14]
in the mid-90’s. This algorithm was further refined by S.-I. Amari and his
co-workers using the natural gradient [5], and its fundamental connections
to maximum likelihood estimation were established. A couple of years later,
A. Hyvärinen, J. Karhunen and E. Oja presented the fixed-point or FastICA
algorithm, [87, 86, 89], which has contributed to the application of ICA to
large-scale problems due to its computational efficiency.

Since the mid-1990s, there has been a growing wave of papers, work-
shops, and special sessions devoted to ICA. The first international workshop
on ICA was held in Aussois, France, in January 1999, and the second work-
shop followed in June 2000 in Helsinki, Finland. Both gathered more than
100 researchers working on ICA and blind signal separation, and contributed
to the transformation of ICA to an established and mature field of research.

1.3 Organization

This dissertation aims to introduce a flexible solution to the Blind Source
Separation problem and is organized as follows:

Chapter 2 introduces the Blind Source Separation (BSS) problem and some
basic introductory concepts on ICA. Moreover the chapter explains
the state of the art of the solution.

Chapter 3 explains the motivation and the usefulness in some practical
situations of a complex representation of the data. Some scenarios of
complex environment are given.

Chapter 4 extends the Blind Source Separation (BSS) problem and some
basic introductory concepts on ICA to the complex domain. Moreover
the chapter explains the state of the art of the complex BSS problem.

Chapter 5 introduces the problem of the complex activation function and
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the properties which have to be satisfied. Different solutions of imple-
mentation of a such function are shown.

Chapter 6 introduces a flexible realization of the activation function realized
through the so-called cubic spline functions. In this way the shape of
the activation function can be adaptively changed during the learning
process.

Chapter 7 introduces the de-mixing algorithms in the complex domain.
Several metrics are adopted in order to reach a good convergence
behavior. Moreover the different approaches ME and MMI are shown.

Chapter 8 explains some interesting results correlated to the previous algo-
rithms. It is shown that splines are universal functions for the blind
source separation problem and that the splitting solution allows the
algorithm to recover the original phase. Moreover it shows a Cramér-
Rao lower bound for ICA solution.

Chapter 9 shows several experimental results in different scenarios and
demonstrates the effectiveness of the proposed approaches, both in
real and in nonlinear environment.

Chapter 10 concludes the work and introduces some future other works
and perspectives.

Appendix A introduces some elements of the information theory, which
have been used in this thesis. In particular it defines the entropy of a
random variable, the joint and conditional entropy of several random
variables, the Kullback-Leibler divergence, the mutual information
and the negentropy.

Appendix B introduces some elements of the complex variables and func-
tions, which have been used in this thesis. In particular it is defined
some useful statistical properties of complex random variables (r.v.s).

Appendix C presents a complete mathematical derivation of the learning
rules for both ME and MMI approaches, and the demonstration of
Theorem 17 in the thesis.

Appendix D aims to introduce some quite obscure mathematical concepts,
which are sometimes not much known from usual readers, such as th
Kronecker product.





2
Background

—A common mistake people make when
trying to design something completely foolproof

is to underestimate the ingenuity of complete fools.
D. Adams

LET us consider M observed signals x1 [n] , . . . , xM [n] at time n, which
are assumed to be the mixtures of N independent source signals
s1 [n] , . . . , sN [n] at time n. The vectors s [n] = [s1 [n] , . . . , sN [n]]T

and x [n] = [x1 [n] , . . . , xM [n]]T are called the source vector and the observa-
tion vector respectively, T denotes the transpose operator. The observation
vector is obtained by an unknown mixing system F {•}: x [n] = F {s [n]}.
In the general form, F {•} may be nonlinear or may be convolutive. The
goal of Blind Signal Separation (BSS) realized by conventional ICA is to con-
struct a separating system G {•} in order to obtain from the output vector
u [n] = G {x [n]} the estimate of the original source vector (see Figure 2.2)
[90, 88, 159]. A classical example of sourse separation is the so-called “cock-
tail party problem” in which several people are speaking all together (see
Figure 2.1).

In BSS only one a priori assumption is requested: sources must be sta-
tistically independent. However, the probability density functions (pdf) of the
sources are usually unknown. The separating system G {•} is constructed in
such a way to obtain independent components, since the unique information
about the sources is their statistical independence. This fact justifies the use
of the Independent Component Analysis (ICA) approach in BSS.

The issue is to understand if the independence of the components of u
implies necessarily the separation of the sources s. Usually the approach
to the problem is completely blind and no other knowledge is available on
the mixing environment, it is possible only to make some hypotheses and
provide the solution for this particular problem. In other words, considering

7
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Fig. 2.1: The cocktail party problem

the space of all possible mixing environments, it is possible to grant that
output independence produces the separation of signals only making some
particular a priori assumption on the mixing environment.

Fig. 2.2: Model of the mixing/de-mixing system

2.1 The case of linear mixing model

First of all the linear and instantaneous mixing model is introduced.
In linear environment both the mixing and the de-mixing models are

linear. Under this condition the independence of the output insures the
separation of the sources. In other words, linear instantaneous mixtures are
separable. The separability and identifiability of the linear mixing model
is presented in [50, 64, 190] as an application of the Darmois-Skitovich’s
theorem. A consequence of this result is that the vector s must have at most
one Gaussian component.

By a linear instantaneous mixture we mean a mixture of the form

x [n] = As [n] (2.1)

where A is called the mixing matrix. Then a separating or de-mixing matrix W
must be estimated to generate independent component outputs

u [n] = Wx [n] (2.2)
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where u[n] is an estimate of the source vector s[n] and its components are as
independent as possible.

For simplicity we assume that the unknown mixing matrix is square
(M = N ). The linear mixing/de-mixing model is shown in Figure 2.3.

Although the solution is unique, it suffers for two kinds of ambiguities
[90, 88]: it is not possible to determine the variances (energies) of the inde-
pendent components, so we have a scaling ambiguity (in the complex case we
have a rotation ambiguity due to the phase); it is not possible to determine
the order of the independent components, so we have a permutation ambigu-
ity. Formally these two ambiguities can be represented as a permutation P
and a scaling Λ (diagonal) matrix:

WA = PΛ (2.3)

Formally it is useful to give the following

Definition 1 An invertible matrix Λ is said to be a scaling matrix, if it is diagonal.
An invertible matrix P is said to be a permutation matrix, if it has exactly only one
entry 1 in each row and each column and 0’s elsewhere.

2.2 The case of nonlinear mixing model

Since the linear mixing model is too poor and unrealistic in many appli-
cations, the complexity of the mixing model has been improved considering
non linear models.

If the mixing-separating system is nonlinear and no other assumption is
given for the mixing operator F {•}, a generic de-mixing model G {•} does
not assure the existence and uniqueness of the solution, so the separation
is not guaranteed. Hence, in general, non-linear mixing models with no
particular a priori assumptions are affected by a strong non-uniqueness
[61, 94, 193].

In order to better illustrate this aspect, see the following example.

Example 1.
Consider two independent random variables s1 with uniform distribution in [0, 2π)

and s2 with Rayleigh distribution, so that its pdf is ps2 (s2) = s2
σ2
2
e−
s22/2 with vari-

ance σ2
2 = 1 [144].

Given the two nonlinear transformations y1 = s2 cos s1 and y2 = s2 sin s1, the
random variables y1 and y2 are still independent but are Gaussian distributed,
so they cannot be separated as a consequence of the Darmois-Skitovich’s theorem
[95, 57, 173, 195]. In fact the Jacobian J of this transformation is:

det (J) = det

(
∂y1
∂s1

∂y1
∂s2

∂y2
∂s1

∂y2
∂s2

)
= det

(
−s2 sin s1 cos s1
s2 cos s1 sin s1

)
= −s2
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Fig. 2.3: Mixing (up) and de-mixing (down) models

so the joint pdf of y = [y1, y2] can be expressed as

py1,y2 (y1, y2) = ps1,s2 (s1,s2)

|det(J)| = 1
2π exp

(
−y

2
1+y2

2
2

)
=

=
(

1√
2π

exp
(
−y

2
1
2

))(
1√
2π

exp
(
−y

2
2
2

))
≡ py1 (y1) · py2 (y2)

This simple example shows that in many cases the independence con-
straint is not strong enough to recover the original sources, unless additional
assumptions about the transformation F(•) or the mixing and de-mixing
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model are taken.
In practice the main issue is to find the theoretical conditions in terms

of sources, mixing environment and recovering architecture capable of
guaranteeing the existence of the solution [193].

In [186] it has been presented an important result in nonlinear real val-
ued environments: the solution to the BSS problem exists and is unique if
we consider a particular mixing model called Post Non-Linear (PNL) Mix-
tures. This model consists in a cascade of a linear mixing stage and a set of
nonlinear functions. Hence the mixing system F(•) is (see left side of Figure
2.4):

x [n] = F {s [n]} = F (As [n]) = F (v [n]) (2.4)

where v [n] = As [n], the nonlinear function F(v[n]) = [f1(v1[n]), . . . ,
fN (vN [n])]T is the model of the nonlinear distortion and A is an N × N
matrix (aij ∈ R).

Fig. 2.4: The PNL model: mixing model (up) and de-mixing mirror model (down)

The de-mixing model G(•) is constructed by the well-known mirror model:
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the de-mixing system is the mirror image of the mixing one (see right side
of Figure 2.4):

u [n] = G {x [n]} = W ·G (x [n]) (2.5)

where the nonlinear function G (x [n]) = [g1 (x1 [n]) , . . . , gN (xN [n])]T is the
model of the nonlinear compensating functions and W is the de-mixing
matrix.

Taleb and Jutten have demonstrated in [186] that if A and W are regular
matrices, fi(vi) (i = 1, 2, . . . , N ) are differentiable invertible functions and
hi = gi ◦ fi satisfy the property that h′i (ϑ) 6= 0 (∀ϑ ∈ R and ∀i = 1, 2, . . . , N )
then the PNL mixtures are separable. However the proof in [186] contains
an inaccuracy which was solved by Theis and Gruber in [193].

2.3 Basic concepts

At this time is very useful introducing some basic concepts and defini-
tion on the identifiability, separability and uniqueness of the model above
described.

For m,n ∈ N let Mat(m× n; R) be the space of real m× n matrices, and

Gl (n) ≡ Gl (n; R) = {W ∈Mat (n× n) | det (W ) 6= 0}

be the general linear group of Rn.
Fundamental definitions on the matrix involved in the BSS problem can

be done [188, 195].

Definition 2 Let A ∈ Gl(n) be an invertible matrix. Then A is said to be mixing
if A has at least two nonzero entries in each row.

Definition 3 We say two matrices A,W ∈Mat(m× n) are equivalent, W ∼
A, if W can be written as W = APΛ with an invertible diagonal matrix (scaling
matrix) Λ ∈ Gl(n) and an invertible matrix with unit vectors in each row (permu-
tation matrix) P ∈ Gl(n). Note that permutation and scaling matrices commute,
so W = APΛ = AΛP.

And similarly

Definition 4 A is said to be scaling-equivalent to W, A ∼s W, if W = AΛ
holds, and A is permutation-equivalent to W, A ∼p W, if W = AP. There-
fore, if A is scaling- or permutation-equivalent to W, it is equivalent to W, but
not vice-versa.

In order to compare two m×n matrices A and B in Mat(m×n) with re-
spect to equivalence as defined above, we calculate the generalized crosstalk-
ing error E(A,B) of A and B defined by

E (A,B) := min
M∈Π(n)

‖A−BM‖ ,
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where ‖•‖ is a fixed matrix norm and Π(n) consists of all matrices with
exactly one non-zero entry in each row and each column.

Lemma 1 E(A,B) = 0 if and only if A is equivalent to B.

Proof. Note that Π consists of all n× n-matrices of the type ΛP, where Λ is
a non-degenerated diagonal matrix (scaling matrix) and P a permutation
matrix. If A is equivalent to B, then by definition there exists a M ∈ Π such
that A = BM, therefore E(A,B) = 0. Vice versa, if E(A,B) = 0, then there
exists M ∈ Π with ‖A−BM‖ = 0, i.e. A = BM.

In BSS problem a helpful index able to estimate the performance of sepa-
ration will be introduced by eq. (9.2), which is rewritten here for simplicity:

S(Q) =
N∑
i=1


N∑
k=1

|qik|2

max
p

[
|qip|2

] − 1

+
N∑
k=1


N∑
i=1
|qik|2

max
p

[
|qpk|2

] − 1

. (2.6)

where qij is the element of the matrix Q = WA and is known as the perfor-
mance index, often called crosstalking error [5] (see Section 9.1).

For the index (2.6) the following result holds

Lemma 2 Let Q ∈ Gl(n). S(Q) = 0 if and only if Q ∈ Π, i.e. if Q is the product
of a scaling and a permutation matrix.

Proof. Π consists of matrices with exactly one nonzero element per column
and per row. As Q is invertible, Q has at least one nonzero element per
column and row, and S(Q) = 0 obviously if and only if Q is of that type, i.e.
if Q ∈ Π.

With reference to the model (2.1) the couple A, s is called a representation
of r.vc. x. It is also assumed that representations are reduced in the sense that
columns in mixing matrices are not pairwise linearly dependent. No more is
assumed a priori about the ranks and the number of columns.

It is easily shown [97] that if x = As + a = Br + b for some constant
vectors a and b, then linear manifolds generated by the columns of A
and B coincide and the vector a− b belongs to this common manifold.
Therefore, rank[A] = rank[B], and adding constants to the model (2.1)
gives no additional generality since the constant could not be determined.
Also models of the form As + Br, where s and r are independent and
are comprised of independent variables, may be written as (AB)(sTrT)T.
Thus the usual “noisy” ICA model x = As + n, where n obeys multinormal
distribution (i.e., linear transformation of independent normal variables), is
just a special case of the general linear model (2.1).

The model of (2.1) is defined to be:
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1. identifiable, or the mixing matrix is (essentially) unique, if in every
reduced representations (A, s) and (B, r) of x, every column of A is
linearly dependent on some column of B and vice versa;

2. unique if the model is identifiable and further source r.vc.’s s and r
have the same distribution for some permutation up to changes of
location and scale;

3. separable, if for every matrix W such that Wx has m independent
components, we have ΛPs = Wx for some block diagonal matrix Λ
with nonzero diagonals and permutation matrix P. Moreover, such a
matrix W has to always exist.

It follows from the reduction assumption that the number of columns, i.e.,
the number of sources or the model order, is the same in every representation
of x in identifiable models. When there are more sources than mixtures, the
problem of estimating the model order is, to our best knowledge, largely
untackled.

If W is a separating matrix, then linear manifolds of ΛP and W must
coincide, and therefore p ≥ rank[W] = rank[ΛP] = m, i.e., there has to be
at least as many mixtures as sources in a separable model. By only requiring
that less than m sources are recovered, the separation in this sense becomes
possible [31] for some models with p < m. Any separable model will be
shown to be unique. However, the opposite is not true. In order to give more
intuition to the definitions, consider the following examples.

Example 2.
If components of s are i.i.d. normally distributed, then also ΛUs has independent
components (and is Gaussian) for any orthogonal matrix U and diagonal matrix Λ.
Therefore, any multinormal mixing is not identifiable.

Example 3.
As an example of a model which is identifiable but is not separable nor unique,

consider independent nonnormal r.v.’s sk, k = 1, . . . , 4. Let n1 and n2 be standard
normal and independent. Then also n1 + n2 and n1 − n2 are independent. Now

(
1 0 1 1
0 1 1 −1

)
s1
s2

s3 + n1

s4 + n2

 =

=
(
s1 + s3 + s4 + n1 + n2

s1 + s3 − s4 + n1 − n2

)
=

=
(

1 0 1 1
0 1 1 −1

)
s1 + n1 + n2

s2 + n1 − n2

s3
s4


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which shows that the model can not be unique. However, it is identifiable. R.v.’s of
the form s+ n, where n is Gaussian, are said to have a normal component.

2.4 Identifiability, Separability, and Uniqueness of Lin-
ear ICA Models

Main of the result of this paragraph can be found in [64, 62, 189, 195]
and traced back to [50].

Two theorems characterizing the distribution of r.vc.’s with linear struc-
ture of independent r.v.’s are presented in this section. These theorems
were mainly derived in mathematical statistics community in the 1960s. For
extensive treatment, additional theorems and proofs, see [97].

Theorem 1 Let (A, s) and (B, r) be two representations of a p-dimensional r.vc.
x, where A and B are constant matrices of dimensions p×m and p×n respectively,
p ≥ 2, and s = (s1, . . . , sm)T and r = (r1, . . . , rn)T are r.vc.’s with independent
components. Then the following properties hold.

1. If the i-th column of A is not linearly dependent on any column of B, then
si is normal.

2. If the i-th column of A is linearly dependent on the j-th column of B, then the
logarithms of the c.f.’s of si and rj differ by a polynomial in a neighborhood
of the origin.

In order to introduce the second theorem, we first introduce the (column-
wise) Khatri-Rao product � on matrices defined as matrix column-wise Kro-
necker product ⊗ (for the definition of such operators, see Appendix D).
If α1, . . . , αm and β1, . . . , βm are columns of A and B, respectively, then
A�B = (α1 ⊗ β1 · · ·αm ⊗ βm). The power (A�)qA is given naturally by
A� · · · �A (includes q times �) [97].

Theorem 2 Let a p-dimensional r.vc. x with nonvanishing c.f. have a represen-
tation (A, s), where A is a known p × m matrix and let q be the integer such
that rank[(A�)qA] = m > rank[(A�)q−1A]. Then the c.f. of each r.v. si is
determined up to a factor exp(Pi,q(t)), where Pi,q(t) is a polynomial of degree at
most q.
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2.4.1 Identifiability

In this section, the requirements for the identifiability of an ICA model
are given in a form of a theorem. In an identifiable ICA model the coefficients
of the mixing matrix may be determined from the mixtures alone up to
permutation and scaling of columns. The fact that this is also possible in
cases where we have more sources than mixtures is recognized by several
authors in the ICA community.

Theorem 3 (Identifiability) The model of (2.1) is identifiable among all repre-
sentations (B, r) of x that

1. do not contain any Gaussian source;

2. B is of full column rank and at most one source r.v. is normal.

It can be seen that the model in Example 4 is identifiable. The theorem is
further illustrated by the following example.

Example 4.
Consider independent nonnormal r.v.’s s1, s2, and standard normal r.v.’s n1 and n2.
Now

x =
(
s1 + s2 + 2n1

s1 + 2n2

)
=
(

1 1 0
1 0 1

) s1
s2 + 2n1

2n2

 =

=
(

1 1 1
1 0 −1

) s1 + n1 + n2

s2
n1 − n2


and the last column shows that the model is not identifiable. This shows why in
general not a single normal r.v. is allowed for identifiability.

2.4.2 Separability

Separability considers the traditional linear ICA model and recovery
of the sources. The following well-known theorem was proved in [31, 50]
assuming r.v.’s with finite second order moments. The theorem given in this
section relaxes the requirements imposed on the existence of the moments,
and thereby extends the applicability of ICA to the systems where sources
may have heavy-tailed distributions, [135].

Theorem 4 (Separability) The model of (2.1) is separable if and only if the mix-
ing matrix A is of full column rank and at most one source variable is normal.
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2.4.3 Uniqueness

Theorem 3 shows that if the number of sources is greater than the number
of mixtures and the sources are non-Gaussian, it is still possible to identify
the mixing matrix from the knowledge of x alone. However, it is not possible
to recover the sources s (separability). The question arises if it is possible to
determine also the distribution of s in such cases, i.e., are the models unique.

Uniqueness has also been implicitly used in the case when all sources
are assumed to be discrete [51, 143]. However, theoretical justification has
so far existed only for the finite alphabet discrete case [185], and there are
no other known conditions that guarantee, for instance, the uniqueness of
the likelihood function. The theorem given here extends the results of [185]
to cases where the sources are not necessarily discrete r.v.’s. It is said that
c.f. Φ has an exponential factor with a polynomial P , if Φ can be written as
Φ = ϕexp(P) for some c.f. ϕ.

Theorem 5 (Uniqueness) The model of (2.1) is unique if any of the following
properties hold.

1. The model is separable.

2. All c.f.’s of source r.v.’s are analytic (or all c.f.’s are nonvanishing), and none
of the c.f.’s has an exponential factor with a polynomial of degree at least 2.

3. All source r.v.’s are nonnormal with nonvanishing c.f.’s, and rank[A�A] =
m.

4. All source r.v.’s have nonvanishing c.f.’s without exponential factors with
a polynomial of degree n, 1 < n ≤ q, and rank[(A�)qA] = m >
rank[(A�)q−1A].

R.v.’s with analytic c.f.’s [116] are exactly those for which the moment
generating function exists (i.e., implies all moments exist). Analytic c.f.’s
have only factors which are analytic c.f.’s [116], and by Theorem of Marcin-
kiewicz [116] c.f.’s of the form exp(P(u)) are necessarily normal (or degen-
erate). Therefore, the analytic part of Case 2 in the above theorem could be
reformulated as that the model is unique if all c.f.’s are analytical and none
of the r.v.’s has a normal component (see Example 2).

Since the c.f. of a finite alphabet discrete r.v. does not contain an exponent
factor with a polynomial of degree more than one, Case 2 covers the finite
discrete distributions. This was proved in [185]. Additionally all r.v.’s with
distribution function that is bounded from the left and right e.g., uniform,
rectangular, and all truncated distributions, are covered by the property.

The number of source r.v.’s is unlimited in Case 2 of Theorem 5 for any
number of mixtures. In the last two cases, the maximum number is limited.
Since the number of independent rows in A�A can be at most p(p+ 1)/2,
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the maximum number m of sources for a given the number of mixtures p
in Case 3 is p(p+ 1)/2, and the minimum value p of mixtures for given the
number of sources m is obtained from p(p − 1)/2 < m ≤ p(p + 1)/2. It is
easily shown that these numbers are attainable, i.e., there exist matrices that
fulfill the requirement. Case 4 extends uniqueness to even more source r.v.’s
(with fewer mixtures) at the expense of fewer allowed distributions.

2.5 On the definition of linear ICA models

Given a random vector independent component analysis (ICA) tries to
find its statistically independent components. This idea can be used also to
solve the blind source separation (BSS) problem which is, given only the
mixtures of some underlying independent source signals, to separate the
mixed signals. It is necessary to introduce the definition of ICA rigorously
[188]. In this and in the following paragraphs we report the main results
from [188].

In independent component analysis, a random vector X : Ω → Rm

called mixed vector is given, and the task is to find a transformation f ◦X of
X out of a given analysis model such that X is as independent as possible.

In order to specify this more precisely, we need to introduce terminology
for the meaning of degree of independence. For this we introduce a contrast func-
tion. Suppose, we are given an analysis model τ ⊂ {f : Rm → Rn | f measurable}
and a real function κ called contrast function defined on random vectors,
then the goal is to optimize f 7→ κ(f ◦X), f ∈ τ .

A contrast is a measure of how elements of an analysis model can trans-
form a given random vector.

Definition 5 (Contrast) A contrast of an analysis model τ is a function κ : Dκ →
R, Dκ ⊂ L1(Ω,Rn), such that the following holds:

1. κ is a a probability theoretic notion, i.e. κ(X) = κ(Y ) if X,Y ∈ Dκ with
PX(X) = PY (Y ) almost sure.

2. τ is closed with respect to Dκ that is if g ◦X ∈ Dκ then g′ ◦X ∈ Dκ for all
X ∈ L1(Ω,Rm) and g, g′ ∈ τ (ττ−1Dκ ∈ Dκ).

3. PX ∈ Dκ and κ(PX) = κ(X) for any permutation P and X ∈ Dκ.

4. κ(g ◦X) ≥ κ(g′ ◦X) for all g′ ∈ τ if g ◦X is independent.

The contrast is said to be scaling-invariant, if LX ∈ Dκ and κ(LX) = κ(X)
for all invertible diagonal matrices L and X ∈ Dκ. We say that κ is translation-
invariant, if X + c ∈ Dκ and κ(X + c) = κ(X) for all c ∈ Rn and X ∈
Dκ. Furthermore, κ is said to be symmetry-invariant, if sym(X) ∈ Dκ and
κ(sym(X)) = κ(X) for all X ∈ Dκ.
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Transformations g ∈ τ that make X independent (g ◦X independent)
are maxima of κX . If κ is discriminating then those are the only maxima of
κX :

Definition 6 A contrast κ of τ is called discriminating if for all X ∈ D(τ,κ) the
following holds: κX(g) ≥ κX(g′) for all g′ ∈ τ then g ◦X is independent.

Independent Component Analysis deals with the question of how to
transform random vectors to make them as independent as possible. Using
the terminology of a contrast it is now possible to formulate what this should
mean in mathematical terms.

Definition 7 (ICA model) A pair (τ, κ) with an analysis model τ i.e. a subset
τ ⊂ {g : Rm → Rn|g measurable} and a contrast κ of τ is called an independent
component analysis model (ICA model). We then denote the analysis model τ
by demixing model. The ICA model is called overcomplete or underdetermined
if m < n; if m > n the model is called undercomplete or overdetermined; if
m = n we say the model is symmetric.

Definition 8 (ICA) Let X : Ω → Rm be a random vector and (τ, κ) an ICA
model. An independent component analysis (ICA) of (X, τ, κ) is an element
g ∈ τ such that g ◦ X ∈ Dκ and κ(g ◦ X) = κ(g′ ◦ X) for all g′ ∈ τ with
g′ ◦X ∈ Dκ. Then g ◦X is called an ICA vector of (X, τ, κ).

Denote ICA(X, τ, κ) the set of all ICAs of (X, τ, κ).

Definition 9 (ICA algorithm) Let (τ, κ) be an ICA model and D ⊂ D(τ,κ) ⊂
L1(Ω,Rm). A map ι : D → τ is called an ICA algorithm of (τ, κ) if ι(X) is an
ICA of (X, τ, κ) for all X ∈ D.

So an ICA algorithm says how to construct ICAs for a given set of
random vectors X . Indeed a given algorithm can sometimes be extended to
a larger definition set as the following lemma show.

Lemma 3 Let ι : D → τ be an ICA algorithm with D ⊂ L1(Ω,Rm) and
(τ, κ) a linear ICA model such that every X ∈ D is centered. Define D∗ :=
{X + c |X ∈ D| , c ∈ Rm}. Then ι induces a map

ι∗ : D∗ → τ
X 7→ ι∗ (X) := ι (X − E (X))

If κ is translation-invariant then ι∗ is an ICA algorithm of (τ∗, κ).

This lemma states that in linear ICA we only have to construct ICA
algorithms for centered random vectors - as long as the contrast is translation
invariant (which is the case for the mutual information for example).
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Lemma 4 Let ι : D → τ be an ICA algorithm with D ⊂ L1(Ω,Rm) and (τ, κ)
a linear ICA model such that every X ∈ D has a symmetric density. Define
D∗ := {X|sym(X) ∈ D}. Then ι induces a map

ι∗ : D∗ → τ
X 7→ ι∗ (X) := ι (sym (X))

If κ is symmetry-invariant then ι∗ is an ICA algorithm of (τ∗, κ).

This means that in the case of a symmetry-invariant contrast we can fur-
thermore restrict ourselves to symmetric random vectors when constructing
ICA algorithms in linear ICA.

Definition 10 Let X : Ω → Rm be a random vector and (τ, κ) an ICA model.
Then X is said to be separable in (τ, κ) if there exists an ICA g of (X, τ, κ) with
g ◦X independent.

Note that ICA generalizes PCA in the following sense:

Lemma 5 An ICA of a separable X in (τ, κ), where κ is discriminating, is also a
PCA of (X, τ).

2.6 On the definition of linear BSS

In blind source separation, a random vector X : Ω → Rm called mixed
vector is given; it comes from an independent random vector S : Ω → Rn

which will be called source vector, by mixing with a mixing function µ : Rn →
Rm, ie. X = µ◦S. Only the mixed vector is known, and the task is to recover
µ and then S, so the task is to find an ICA of X .

In the symmetric case (m = n), µ is usually assumed to be invertible,
so reconstruction of µ directly gives S via S = µ−1 ◦ X . This means that
if we assume that the inverse of the mixing function lies already in the
transformation space (µ−1 ∈ τ), then we know that the global maximum of
the canonical contrast function has value 0, so indeed a global maximum will
give us an independent random vector. Of course we cannot hope that µ−1

will be found because uniqueness in this general setting cannot be achieved.
This will usually impose a restrictions on the analysis model.

Definition 11 (BSS model) A blind source separation model (BSS model)
is a triple (f, τ, κ) with f : Rn → Rm and (τ, κ) an ICA model such that there
exists an independent random vector S ∈ L1(Ω,Rn) with f ◦S ∈ Dτ,κ. f is called
the mixing mapping.

Definition 12 (BSS) Let (f, τ, κ) be a BSS model and S ∈ L1(Ω,Rn) indepen-
dent, called source vector. A blind source separation (BSS) of (S, f, τ, κ) is an
ICA of (f ◦ S, τ, κ).
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So, in BSS f ◦ X as well as τ and κ are known and the goal is to find
estimates of f and S.

Denote BSS(S, f, τ, κ) the set of all BSSs (S, f, τ, κ), so by definition

BSS(S, f, τ, κ) = ICA(f ◦ S, τ, κ)

Definition 13 (BSS algorithm) Let (f, τ, κ) be a BSS model and D ⊂ D(τ,κ) ⊂
L1(Ω,Rm). An ICA algorithm ι : D → τ is then called BSS algorithm of (f, τ, κ)
if ι(X) ◦X is independent for every X ∈ D.

In this case for all X ∈ D we know that ι(X) is an ICA of (X, τ, κ).
We speak of linear BSS if both f and τ are linear. We speak of standard

linear BSS if f is linear and the underlying ICA model is standard linear.
Note that affine linear BSS can be easily reduced to linear BSS by centering
of all variables.

If we speak of overcomplete linear BSS however, we only want f to be
linear; since m < n linear elements in τ can only reconstruct m dimensions,
not necessary n dimensions.

2.6.1 Uniqueness of standard linear ICA

For standard linear BSS however, all different ICAs of a random vector
are equivalent in the sense introduced in section 2.4 given that not more
than one source is gaussian. This very important result represents one of
the key reasons for the success of linear symmetric BSS, because it says how
well BSS algorithms can recover the mixing matrix - essentially they can
find it except for scaling and permutation.

Uniqueness results are not so easy in more general mixing models; and
if the mixing models get too large, we will see that the set of ICAs gets too
large as well meaning that independence is too weak a criterion in order to
recover the sources.

If most one of the source variable Si := πi ◦ S is gaussian (πiRn → R
denotes the projection on the i-th coordinate) then for any solution to the
quadratic (m = n) BSS problem, i.e. any W ∈ Gl(n) such that W ◦ X is
independent, W−1 is equivalent to A [50]. Vice versa, any matrix W ∈
Gl(n) such that W−1 is equivalent to the mixing matrix A solves the BSS
problem taking into account the invariants under scaling and permutation
of coordinates.

The following theorem has been shown by Comon [47]; it is a corollary of
the Skitovitch-Darmois theorem (see theorem 31 presented in the Appendix
B.5). As the undercomplete mixing case (less sources than mixtures, m < n)
can be easily reduced to the symmetric case (m = n), we will state the
theorem only for m = n not m ≤ n as Comon.
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Theorem 6 (Comon) Let S ∈ L2(Ω,Rn) be an independent random vector with
at most one gaussian component, andA ∈ Gl(n). SetX := AS. Then the following
statements are equivalent:

1. X1, . . . , Xn are pairwise independent.

2. X is independent.

3. A ∈ Π(n), that is A is the product of a scaling and a permutation matrix.

We want to call the following corollary to Comon’s theorem again a
theorem because of its importance in standard linear BSS.

Theorem 7 (Uniqueness of standard linear BSS) Let A ∈ Gl(n) and S ∈
L2(Ω,Rn) be an independent random vector with at most one gaussian component.
Then

BSS(S,A,Gl(n),−I) = Π(n)A−1.

In fact it is easy to generalize this result to an arbitrary number of gaus-
sians in the sources - the mixing matrix is then determined uniquely expect
for permutation and scaling on all non-gaussian components. For this denote
given an n-dimensional random vector S and γ(S) the number of gaussians
in S, then we have a similar theorem as the Comon theorem.

Corollary 1 Let S be an independent n-dimensional random vector S and A ∈
Gl(n). Let X := AS. Then the following statements are equivalent:

1. X1, . . . , Xn are pairwise independent.

2. X is independent.

3. γ(X) = γ(S) and there exists a permutation P ∈ Gl(n) and λi 6= 0 with

PA =


λ1 ∗
· · · · · ·

λn−γ(S) ∗
0 ∗

 .

2.7 Identifiability, Separability, and Uniqueness of Non-
linear ICA Models

Main of the result of this paragraph can be found in [195, 193, 65] and
traced back to [186, 183].

Classically, linear BSS has been treated most thoroughly. With the grow-
ing popularity of ICA, more and more nonlinear algorithms have been
proposed, like for example algorithms for postnonlinear ICA [185, 111, 110],
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ideas based on various clustering algorithms to approximate the mixing
or unmixing models [143, 98] or Almeida’s pattern repulsion using density
uniformization [123].

A too general analysis model for the ICA leads to a high degeneration
thus making independence a too weak criterion. Hence, there are two ways
of how to proceed with nonlinear ICA: either use additional properties
of the given data like for example time structure [129, 126], or restrict the
unmixing model in order to break the degeneracy and achieve convergence
in nonlinear ICA algorithms. Since we only want to deal with ICA, we will
do the second, which is often called regularization.

There are many other nonlinear analysis model, although often not
explicitly specified in the literature. Candidates for this are for example
self-organizing maps (SOM) and generative topograpic mappings (GTM)
[142, 98]. Another unmixing model that only allows biholomorphic mappings
is used by Hyvärinen and Pajunen [91] in order to give uniqueness results.
This model however is problematic as it does not contain the linear model.

By definition, we speak of nonlinear BSS, when both the mixing map-
ping f and the analysis model τ of the BSS model (f, τ, κ) are nonlinear.
Nonlinear models are often either extensions of the linear model, as for
example postnonlinear (PNL) ICA, which we’ll talk about in more detail in
the following.

In practice, when recording signals there exist a lot of different sensors,
often with nonlinearities such that the mixtures are in principle a linear
mixture, only the output is again nonlinearly transformed. This type of
mixing model is the basis for postnonlinear BSS. For this let f1, . . . , fn : R→
(ai, bi) be n diffeomorphism, and A ∈ Gl(n). The mixing mapping fpnl then
is of the form

fpnl = (f1 × . . .× fn) ◦A.
The unmixing model τpnl then is of the form

τpnl := {B ◦ (g1 × . . .× gn)|B ∈ Gl(n), gi : (ai, bi)→ R diffeomorphism} .

The nonlinear BSS model (fpnl, τpnl, κ) is then called the postnonlinear BSS
model. Postnonlinear ICA was first introduced by Taleb and Jutten [184, 186]
and uniqueness results are known.

For the case of nonlinear mixing environment additional definitions and
theorems are required.

Definition 14 Let A ∈ Gl(n) be an invertible matrix, then A = (aij)i,j=1...n

is said to be absolutely degenerate if there are two columns l 6= m such that
a2
il = λa2

im for a λ 6= 0, i.e. the the normalized columns differ only by the signs of
the entries.

Definition 15 Given a function f : U → R assume there exist a, b ∈ R such that
at least one is not of absolute value 0 or 1. If f(ax) = bf(x) for all x ∈ U with
ax ∈ U ; then f is said to be (a, b)-homogeneous or simply homogeneous.
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The following lemma characterizing homogeneous functions is from [12].
However we added the correction to exclude the cases |a| or |b| ∈ {0, 1},
because in these cases homogeneity does not induce such strong results.
This lemma can be generalized to continuously differentiable functions, so
the strong assumption of analyticity is not needed

Lemma 6 (Babaie-Zadeh et al. [12]) Let f : U → R, be an analytic function
that is (a, b)-homogeneous on [0, ε) with ε > 0. Then there exist c ∈ R, n ∈ N∪{0}
(possibly 0) such that f(x) = cxn for all x ∈ U .

Definition 16 (Babaie-Zadeh et al. [12]) We call a random vector X with den-
sity pX(X) bounded, if its density pX(X) is bounded. Denote supp pX(X) :=
{x|pX(X) 6= 0} the support of pX(X) i.e. the closure of the nonzero points of
pX(X).
We further call an independent random vector X fully bounded, if supp pXi(Xi)
is an interval for all i. So we get supp pX(X) = [a1, b1]× · · · × [an, bn].

Since a connected component of supp pX(X) induces a restricted, fully
bounded random vector, without loss of generality we will in the following
assume to have fully bounded densities.

Definition 17 (Taleb and Jutten [186]) A function f : Rn → Rn is called di-
agonal or component-wise if each component fi(x) of f(x) depends only on the
variable xi.

In this case we often omit the other variables and write f(x1, . . . , xn) =
(f1(x1), . . . , fn(xn)) or f = f1 × · · · × fn.

Consider now the post-nonlinear blind source separation model in eq.
(2.4). We assume the components fi of f to be injective analytic functions
with nonvanishing derivatives. Then also the f−1

i are analytic.
Post-nonlinear BSS is a generalization of linear BSS, so the indetermina-

cies of post-nonlinear ICA contain at least the indeterminacies of linear BSS:
A can only be reconstructed up to scaling and permutation. Here of course
additional indeterminacies come into play because of translation: fi can only
be recovered up to a constant. Also, if Λ ∈ Gl(n) is a scaling matrix, then
f(As) = (f ◦Λ)((Λ−1A)s), so f and A can interchange scaling factors in
each component. Another indeterminacy could occur if A is not mixing,
i.e. at least one observation xi contains only one source; in this case fi can
obviously not be recovered. For example if A = I then f(s) is already again
independent, because independence is invariant under componentwise
nonlinear transformation; so f cannot be found using this method.

A not so obvious indeterminacy occurs if A is absolutely degenerate.
Then only the matrix A but not the nonlinearities can be recovered by look-
ing at the edges of the support of the fully bounded random vector.
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Example 5.

Consider the case n = 2, A =
(

1 1
2 −2

)
and the analytic function f(x1, x2) =

(x1 + (1/2π)sin(πx1), x2 + (1/π)sin(πx2/2)). Then A−1 ◦ f ◦ A maps [0, 1]2 onto
[0, 1]2. Since both components of f are injective, we can verify this by looking at the
edges.

f ◦A (x1, 0) =
(
x1 + 1

2π sin (πx1) , 2x1 + 1
π sin (πx1)

)
=

= (1, 2)
(
x1 + 1

2π sin (πx1)
)
,

f ◦A (0, x2) = (1,−2)
(
x2 + 1

2π sin (πx2)
)
,

f ◦A (x1, 1) = (1,−2) + (1, 2)
(
x1 − 1

2π sin (πx1)
)
,

f ◦A (1, x2) = (1, 2) + (1,−2)
(
x2 − 1

2π sin (πx2)
)
.

So we have constructed a situation in which two uniform sources are mixed by
f ◦A. They can be separated either by A−1 ◦ f−1 or by A−1 alone. It is possible to
show that the latter also preserves the boundary, although it contains a different
post-nonlinearity (namely identity) in contrast to f−1 in the former model. Nonethe-
less, this is no indeterminacy of the model itself, since A−1f(As) is obviously not
independent. So by looking at the boundary alone, we sometimes cannot detect
independence if the whole system is highly symmetric. This is the case if A is
absolutely degenerate. In our example f is chosen such that the non trivial post-
nonlinear mixture looks linear (at the boundary), and this was possible due to the
inherent symmetry in A.

If we however assume that A is mixing and not absolutely degenerate,
then we will show for all fully bounded sources s that except for scaling in-
terchange between f and A no more indeterminacies than in the affine linear
case exist. Note that if f is only assumed to be continuously differentiable,
then additional indeterminacies come into play.

2.7.1 Separability

In this section it is proven separability of postnonlinear BSS; it will be
seen how the two conditions from Definition 2 and Definition 14 turn out to
be necessary.

Theorem 8 (Separability of bounded postnonlinear BSS) Let A,W ∈ Gl(n)
and one of them mixing and not absolutely degenerate, h : Rn → Rn be a diagonal
injective analytic function such that h′i 6= 0 and let s be a fully bounded independent
random vector. If W(h(As)) is independent, then there exists a scaling Λ ∈ Gl(n)
and v ∈ Rn with ΛA ∼W−1 and h(x) = Λx + v.

So let f ◦A be the mixing model and W◦g the separating model. Putting
the two together we get the above mixing-separating model with h := g ◦ f .
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The theorem shows that if the mixing-separating model preserves inde-
pendence then it is essentially trivial i.e. h affine linear and the matrices
equivalent (up to scaling). As usual, the model is assumed to be invert-
ible, hence identifiability and uniqueness of the model follow from the
separability.

2.8 Entropic contrasts for BSS

In blind source separation (BSS), two different separation techniques
are mainly used: Minimal Mutual Information (MMI), where minimization of
the mutual output information yields an independent random vector, and
Maximum Entropy (ME), where the output entropy is maximized. However,
it is yet unclear why ME should solve the separation problem i.e. result in
an independent vector.

Yang and Amari have given a partial confirmation for ME in the linear
case in [218], where they prove that under the assumption of vanishing
expectation of the sources ME does not change the solutions of MMI except
for scaling and permutation.

With reference to Appendix A we can introduce some simple and basic
contrasts κ in section 2.5 to solve the BSS problem.

The relation between Mutual Information and Joint Entropy of a random
vector Y, can be expressed as (see [55] and Appendix A)

I(Y) =
N∑
i=1

H (Yi)−H(Y) (2.7)

A conceptual description of the eq. (2.7) can be described as followed and is
showed for N = 2 in Figure 2.5.

Because the equation (2.7) is formed by three terms, one can proceed
through three ways to reach the independence of the random variable Yi. It
is possible to minimize the left side I(Y) of eq. (2.7) obtaining the Minimal
Mutual Information or MMI approach; it is possible to maximize the joint
entropy H(Y) in eq. (2.7) obtaining the Maximum Entropy or ME approach

and it is possible to maximize the term
N∑
i=1

H (Yi) obtaining the Maximum

Non-Gaussianity or (MNG) approach.
The graphical representation of the relation between mutual information,

marginal entropy and joint entropy is shown in Figure 2.6 (and in Figure
A.1 in Appendix A or in [55]).

This figure shows that the independence between Y1 and Y2 is maxi-
mized when the intersection of the two sets is minimized, ideally vanished.
This fact is the same that maximizing the union of the two sets or max-
imizing the non-covered area of the two single sets. In other words, the
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Fig. 2.5: Relation between Mutual Information and Joint Entropy

independence is guaranteed if it is minimized the mutual information of
Y (MMI approach), maximized the joint entropy of Y (ME approach) or
maximized the marginal entropy of Y1 and Y2 (MNG approach), respectively.
See Figure 2.7 for more details.

The solution points of MMI are kept fixed by ME if no scaling in all layers
is allowed. In general, ME however might also change the scaling in the
non-output network layers, hence leaving the MMI solution points. So the
main question we are trying to answer in this chapter is: When is the entropy
a contrast? The following results have been presented in [191, 192, 194, 218].

Bell and Sejnowski [15] propose using the entropy as contrast i.e. max-
imizing the entropy (ME) of output units of a neural network that is to
approach the unmixing mapping. A different contrast however is given by
Comon [50]: the mutual information of the output because minimizing the
mutual information (MMI) induces statistical independence of the output.
This has to be compared with Bell and Sejnowski’s suggestion to maximize
the entropy of the output. As they note in [15], ME does not always in-
duce MMI and therefore statistical independence. ME performs best when
the nonlinear demixing function in the ME algorithm matches with the
cumulative distribution of the given source.

However, nowadays a lot of algorithms are based on the ME contrast
function like for example extensions of the infomax algorithm [6, 109]. The
question then was how this large branch of ME algorithms compares to the
MMI methods. For the linear case, Yang and Amari gave a partial answer to
that in [218]. They showed that at solution points of ICA determined by MMI,
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Fig. 2.6: Graphical relation between Mutual Information, Marginal Entropy and
Joint Entropy

ME algorithms will only change the demixing matrices by a scaling matrix
thus leaving any ME solution unchanged. This result can be interpreted as a
local justification for ME, showing that demixing matrices are stable fixed
points (except for scaling) of ME algorithms.

In the nonlinear case some algorithms have been proposed (for example
[123, 108, 110]), most of them based on the ME contrast function. It is shown
in [188, 191] that at certain solution points of MMI, ME will have a local
extremum thus only changing the solution in a well-known way (scaling in
all weight matrices).

First note that MMI is obviously better suited than ME in terms of finding
solutions; ME may terminate at points that do not represent demixing
functions. As mentioned above this has for example been shown in [133]
and [15].

The basic problem is that in the decomposition of the joint entropy
into the difference of the marginal entropies and the mutual information,
a transformed random vector with non-zero mutual information might
have higher marginal entropy than the sources resulting in a higher joint
entropy as well. Therefore even in the linear case [218] it can only be shown
that solutions of MMI are also solutions of ME. For this, the well-known



2.8. ENTROPIC CONTRASTS FOR BSS 29

Fig. 2.7: Graphical interpretation of MMI, ME and MNG approaches

uniqueness result by Comon [50] has to be used. Since no such uniqueness
results have been found in more general nonlinear settings, it is possible to
show only that special demixing functions are solutions of ME.

For a single layer neural netwok Theis has demonstrated in [188, 191]
the following

Theorem 9 Assume the expectation E(s) of the sources vanishes. Let f ∈ τ be a
scaled solution. If f is a BSS of (S, ν, τ,−I), then f is a local extremum of κX .

The theorem says that scaled solutions that are solutions of the BSS
problem are local extrema of ME. To be more precise: The ME algorithm
transforms scaled solutions that are solutions of BSS into scaled solutions.





3
Why a Complex Model?

—You have never given me a transverse look.
A. Chekhov

THE nature of some problem involves a natural solution in a complex
environment [121, 82], due to the need of frequency domain signal
processing which is quite common in telecommunication [19] and

biomedical applications [29, 30].
Recent breakthroughs in technology and biomedicine have highlighted

applications where nonlinearity, non-stationarity, multidimensional data
natures, and uncertainty play major roles. Subsequently novel signal pro-
cessing and machine learning theories have been rapidly developed in order
to cater for these new classes of problems.

Apart from the problems with nonlinearity, non-stationarity and noise,
novel applications in brain science, communications, and data and sensor
fusion are dealing with multidimensional (multichannel) measurements,
for which the on-line processing algorithms are essential [120]. If possible
(data dimensionality, computational power), the processing of such data
should be performed directly in the spaces where the data vectors reside
(Rn,Cn). Machine learning theories for multidimensional domains are still
being developed; this is especially in the presence of nonlinearity and noise.

Following a related study for nonlinear models [1], it is natural to ask
ourselves whether it is beneficial to use multidimensional solutions for
lower dimensional problems. The simplest, yet extremely important, case
to consider is whether complex valued solutions for real valued problems
provide a theoretical and performance advantage over standard real valued
solutions.

In applications of adaptive systems it is the signal magnitude that is
used as the main source of information [141]. Whereas this facilitates the

31
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established algorithms in R, it is important to realize that this way the full
information potential (phase information) within the signal is not utilized.
Indeed real world processes with the “intensity” and “direction” component
(radar, sonar, vector fields) require the consideration of such phase informa-
tion [121, 119]. Our question then boils down to whether the processing of
such real-valued data in the complex domain C, where the phase informa-
tion can be accounted for naturally, has advantages over straightforward
processing in R. For instance there are some interesting and recent results on
the modeling of wind profile [71, 72, 119], indicate that the processing in C
(simultaneously speed and direction as a complex vector) has major benefits
over the direct processing in (speed only), or in R2 (speed and direction as
independent processes).

3.1 Real against Complex

When it comes to the duality between real and complex processes, two
aspects of this duality are highlighted: the importance of phase (direction)
information, and the advantages of the simultaneous modeling of the “in-
tensity” and “direction” component of vector field processes in C over the so
called “dual univariate” modeling (where the component of such processes
are treated as independent random processes).

Complex valued data are complex either by their nature (e.g. communi-
cations) or by convenience of representation (e.g. phasors in circuit theory
[43]). Figure 3.1 illustrates such duality between the processing in R and
C. The nature of purely real and complex signals is obvious: real signals are
magnitude-only whereas complex signals comprise both magnitude and
phase components. Phase only signals are real signals formed from the phase
of a complex signal. Dual univariate signals are the components of a complex
signal that are processed separately as real valued quantities.

In order to transform a real signal into its complex valued counterpart,
it is convenient to make use of the delay or phase associated with the time
of arrival of the real valued signal (or vector field) at sensors. When trans-
forming a complex signal into its dual univariate representation, we need
to identify the heterogeneous (e.g. wind speed and direction) components
within the complex representation. Another interesting scenario is the “com-
plex to phase only” transformation for phase only modeling (tracking); this
is very practical for cases where the magnitude of the signal has small or
no variation [187]. There are a variety of other ways of transforming sig-
nals from R into C their domain counterparts, most of them are application
specific.

Oftentimes in machine learning our aim is to preserve or enhance the
phase of a signal(s); this plays major part in perception based modeling
(video, speech, haptic, multimodal). While the phase information in 1-D
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Fig. 3.1: Duality between signal processing in R and C

signals is subtly hidden, in 2-D signals such as images, the role of the phase
of a signal is more obvious [141].

It is therefore natural and convenient to conduct processing of images
based solely on their complex valued representation [9]. The subsequent
image processing can be now performed directly in C [82].

3.1.1 Does everyone agree?

In the early 90s several studies on complex random vectors are risen
[134, 149, 148] and a great initial excitement pervaded the authors of these
works. For example, the SP Forum in Signal Processing Magazine (March
1995) defined the work of Bernard Picinbono in [148] as a “recent extension
and refinement of an important concept...”

Straight after other authors disappointed these works because in their
opinion no advances were in such extension in the complex domain. It is the
case of Glenn Johonson which had a wide correspondence with Picinbono
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in Signal Processing Magazine [92, 93, 150].
Johonson does not agree with Picinbono on the usefulness of the com-

plex representation. In fact in [92] he said: “Engineering is applied science, has
a produce and we do not need to carry on “distinction without a difference” debates,
either for time series or complex data models. Ideally, authors submitting papers
to the IEEE journals have something to contribute to engineering. Contributions
include reporting upon techniques that proved effective for achieving an engineering
goal, comparing techniques, or explaining in a general context why techniques are
effective, and identifying limitations. I see a growing disconnect between scientists
and engineers, and the publications of academics, which are too often dubious math-
ematics. The reference paper supplies only abstract results, and if better examples
were used, it would be apparent to nearly all readers that the introduced terms are
unnecessary and overblown. The paper invents jargon to compensate for a lack of
a consistent definition for the common concept or “complex random number.” A
complex random number is nothing more than notation or pairs of random numbers,
a notation which simplifies many algebraic manipulations. Measurable physical
quantities, including those modeled as random variables, lake on values that are
real numbers. Imaginary numbers are, well, imaginary. [...]. The complex short-
hand is convenient for algebraic manipulation of, for example, analytic signals, but
this convenience does not make the results of any measurement complex. Complex
random numbers are a well accepted, often convenient, notation for pairs of real
random numbers. [...]. A real formulation is the correct formulation for engineering
problems, and consequently is the only linear estimate that need be considered.”

For models exhibiting circularity, the constrained “complex” estimates
coincide with the optimal estimates. But, circularity is only a sufficient, and
not a necessary condition for the constrained solution to coincide with the
optimal solution.

And Johonson continues: “I am not aware of a single system that is sub-
optimal because a design engineer mistakingly insisted upon solving the overly
constrained, “complex” optimization problem. None or the machinations introduced
in the cited reference are required if there is no insistence on making too much of the
complex notation for pairs of random variables. If there are notable applications of
circularity, [148] chooses not to enlighten us (And I do not count putting already
solved problems into new notation.)”

Therefore Picinbono answered back to Johonson and pointed out the
simplicity introduced in formulas by a complex representation. In fact he
said in [150]: “[...] the Laplace transform of the unit step function can be written
with two real numbers (a2 + b2)−1a and −(a2 + b2)−1b instead of s−1, where
s = a + jb. Fortunately, there are many people who think that s−1 is simpler
than its corresponding real and imaginary parts, and this is also my opinion.
This justifies the extended use of complex numbers in many fields of pure and
applied science. However, there is a risk when doing so, and this especially occurs
in estimation problems. I do not know of any book presenting statistical signal
processing applied, for example, to spectral analysis or antenna design that does
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not use complex notation. This notation considerably simplifies the presentation.
Furthermore, almost all the more mathematically oriented books present estimation
theory using complex random variables or processes. [...]. Therefore it is important
to know whether or not the circularity assumption is valid for practical problems.
One of the purposes of [148] is to study this question and to show for example that
circularity has some relationship with stationarity - a very common assumption
in random signal problems. However, there are some situations where circularity
cannot be taken for granted. Unlike Mr. Johnson, I am aware of some systems using
the classical solution where the circularity assumption may not be valid. These
systems therefore are not, in general optimum.”

And Picinbono continues: “Curiously, after criticizing the excess of allegedly
useless mathematics for engineers, Johnson states that circularity is a “sufficient”
condition and, without proof, that it is not “necessary”. As a matter of fact, this is
right and this point is fully analyzed in [148]. [...]. As an example, let us consider
the condition of circularity which implies that the classical solution is also optimal.
In complex notation it is simply written by the equation E

{
xxT

}
= 0. It is a

property of the complex matrix E
{
xxT

}
. Furthermore it has a very simple physical

meaning. Indeed, this condition implies that the vectors x and xexp(jα) have the
same second-order statistical properties for any α, which is the origin of the term of
circularity. In Johnson’s’ approach, one can write this matrix equation using two
real matrix equations. However, we must be consistent in philosophy and ignore the
complex vector x itself and only use its real and imaginary parts, say x = x1 + jx2.
In using these notations the circularity conditionE

{
xxT

}
= 0 becomes equivalent

to the set of equations

E
{
x1xT1

}
= E

{
x2xT2

}
and E

{
x1xT2

}
= −E

{
x2xT1

}
It is not clear why anyone would prefer these equations to the single one conveniently
written in complex notation. Furthermore, the physical interpretation indicated
above does not appear c1carly with real notations and requires a new calculation
in which exp(jα) is decomposed in its real and imaginary parts. Let us also note
that ignoring complex notations requires that we write the Fourier analysis with
cosine and sine functions instead of complex exponential functions; I do not know
of any scientist or engineer that would consider this progress when the analysis is
so simple and elegant with complex numbers.”

Consequently Johonson wrote another letter [93], where more moder-
ately he tried to explain the motivation of his previous considerations. In
fact he said: “I was, of course, criticizing [148], and not Gauss’, or anyone else’s,
use of complex notation. For those who have not read my letter [92], I would like to
emphasize that I stated that “Complex notation is a well accepted, often convenient,
notation for pairs of real random numbers”. My point was not to “completely ignore
the complex representation” as Picinbono writes [150], but to take issue with the
coinage of “circularity” as a valuable concept and to take issue with papers in engi-
neering journals that are of little use to engineers. [...]. These simple facts become
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obscured in the discussions of random vectors exhibiting “circularity.” These two
well understood cases, uniformly distributed and non-uniformly distributed random
phase, have been distorted into “circularity” and “non-circularity”, resulting in a
sequence of papers. These papers do nothing more than restate the two cases in a
more “complex” form. These papers contribute nothing but confusion to already
well developed signal processing solutions. I would like to see Picinbono’s definition
for a complex random variable that requires any modification to conventional formu-
lations of signal processing. [...]. Complex notation is useful. Nevertheless, the point
is that, beyond the obvious, there is nothing fundamentally different between real
and complex random variables. Picinbono tries to have it both ways, acknowledging
that there is no difference on one hand (“...that complex numbers are nothing else
but pairs of real numbers ....” [148] and claiming ground-breaking results on the
other (“...the estimation theory must be reformulated.” [148]. [...]. Why? What is
the distinction between a complex vector and “its real and imaginary parts”? (Bring
the glass and the water, but not the glass of water?!) My point was that it makes no
difference what notation is used-the optimal solution is the optimal solution. What
prevents me from freely changing notation between real and complex?”

And Johonson continues: “I can combine the temperature on top of Mount
Everest with the voltage from my wall outlet to form a “complex” signal vector. I
can choose a scale for the temperature measurement to make the resulting complex
signal “circular”. (Asserting that the temperature on Everest is uncorrelated with
the voltage of my wall outlet.) What has been added to signal processing by denoting
two uncorrelated signals as “circular”? The more widely recognized property of
correlation is the more fundamental, and useful, concept. What does inventing
jargon for special cases of uncorrelated random vectors add to applications of
signal processing? I defy advocates of “circularity” to provide a single example
from a prominent signal processing system such as a telephone network, a cellular
communication network, a direction finding or spectral estimation based system for
which the system would be improved if only the engineers involved had understood

“circularity”.”

In other words the complex formulation of a real problem is still an open
problem.

3.2 Some examples of scenarios in complex environ-
ment

As a matter of fact it is possible to depict three different scenarios as char-
acteristic examples of complex signal processing for BSS problem: namely
the separation of sources in convolutive environment, of fMRI mixtures and
of telecommunication signals.
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3.2.1 Convolutive mixture

A first example where the complex formulation is useful is the blind
separation in convolutive environment. As can be seen in Figure 3.2, in
closed environment, signals are degraded by the reverber and the distance
between the i-th source and the j-th sensor is characterized by the impulsive
response aij [n] [23].

Fig. 3.2: Scenario 1: convolutive mixtures

In this way the j-th mixture can be expressed as

xj [n] =
N∑
i=1

aij [n] ∗ si [n] =
N∑
i=1

L−1∑
k=0

aij [k] si [n− k] (3.1)

where ∗ is the convolution operator and L is the length of the impulsive
response between the i-th source and the j-th sensor [155].

A more compact matrix formulation of eq. (3.1) is the following one

x[n] = A[n] ∗ s[n], (3.2)

where

A [n] =


a11 [n] a12 [n] · · · a1N [n]
a21 [n] a22 [n] · · · a2N [n]

...
...

. . . · · ·
aN1 [n] aN2 [n] · · · aNN [n]


and aij [n] is the impulsive response defined above. Another way to write
the relation (3.1) is to express this mixing process using the FIR Linear Al-
gebra notation [107] if the impulsive response aij [n] is expressed as a FIR
filter or a Moving Average (MA) model. In FIR Linear Algebra, matrices are
composed of FIR filters instead of scalars and multiplication between two
such FIR matrix elements is defined as their convolution. By implication
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the multiplication of two FIR matrices will involve a convolve and accumu-
late procedure replacing the dot products we would compute for ordinary
matrices. In this way eq. (3.2) can be rewritten as x[n] = A[n]s[n].

The aims of BSS is to recover inverse filters wij [n] such that the signal
uj [n]

uj [n] =
N∑
i=1

wij [n] ∗ xi [n] =
N∑
i=1

L−1∑
k=0

wij [k]xi [n− k] (3.3)

is an estimate of the source signal sj [n].
The compact matrix formulation of eq. (3.3) is the following one

u[n] = W[n] ∗ x[n], (3.4)

where

W [n] =


w11 [n] w12 [n] · · · w1N [n]
w21 [n] w22 [n] · · · w2N [n]

...
...

. . .
...

wN1 [n] wN2 [n] · · · wNN [n]


and wij [n] is an estimate of the inverse impulsive response aij [n] defined
above.

Solving the ICA problem (3.2) in the time domain is more complex than
the instantaneous one (2.1) because it is necessary to recovery a set of impul-
sive responses. A more efficient solution can be obtained in the frequency
domain using the convolution theorem [155]: the convolution operator in the
time domain becomes a product operator in the frequency domain.

Using a short-time discrete Fourier transform (STFT), the mixing model
(3.2) is approximated as [174, 118, 16]

x(f, τ) = A(f)s(f, τ), (3.5)

where f denotes the frequency bin, τ is the frame index, s(f, τ) and x(f, τ)
are the short-time Fourier transform of the source vector s[n] and mixture
vector x[n] respectively. The separation process can be formulated in each
frequency bin as

u(f, τ) = W(f)x(f, τ). (3.6)

Eqs. (3.5) and (3.6) show that the solution of ICA problem in frequency
domain involves a solution of fmax instantaneous ICA problem, where fmax
is the number of frequency bins used (see Figure 3.3). Moreover the short-
time Fourier transform of the source vector s[n] and mixture vector x[n] are
complex-valued. So the vectors s(f, τ) and x(f, τ) are complex vector. This
justify the use of complex ICA [23].

In frequency-domain BSS, the scaling and permutation problem occurs
(see eq. (2.3)), i.e., the estimated source signal components are recovered
with a different order and gain in the different frequency bins. The scaling
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Fig. 3.3: An example of a spectrogram of two mixtures

invariance means that the scaling of every frequency bin can be different,
which will of course result in spectral deformation of the original sounds.
This problem can be remedied by forcing the determinant of the de-mixing
matrices to unity. The permutation invariance is a more difficult problem
which is still open to a satisfying solution. This problem is not evident in
all cases. For simple mixing filters all de-mixing matrices converge to the
same permutation. Using more complicated filters problems might rise.
In such cases careful selection of the adaptation parameters in addition
to decaying learning rate and momentum are very helpful since they can
eliminate random permutation changes in training and preserve the same
permutation throughout. Several solutions to permutation ambiguity were
proposed [118, 80], one powerful of them was that based on Direction Of
Arrivals (DOA) estimation [130, 131].

3.2.2 Functional magnetic resonance

A second example is the separation of signals recovered by the Functional
Magnetic Resonance Imaging or fMRI. fMRI is a noninvasive, powerful tool
that has been utilized in both research and clinical arenas since the early
1990s [138] and has provided valuable insights to the understanding of the
human brain function. fMRI has enabled researchers to directly study the
temporal and spatial changes in the brain as a function of various stimuli.
Because it relies on the detection of small intensity changes over time, fMRI
poses significant challenges for data analysis techniques. Traditional model-
based analysis approaches - such as linear regression - are robust, yet often
too rigid to capture the richness of the human brain activation. Independent
component analysis (ICA), on the other hand, is a datacentric approach that
provides a more flexible framework for the analysis of fMRI data.
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For simplicity and tractability, most fMRI analysis techniques to date
have discarded the phase of the fMRI data. However, the phase information
may be quite valuable for the analysis of the natively complex fMRI data.
ICA facilitates the analysis of fMRI data in its complex form by eliminating
the need to explicitly model the phase behavior. In what follows, we discuss
the application of real and complex-valued ICA to fMRI data analysis and
present two examples where ICA has proved particularly useful.

The main advantage of the ICA is the ability to model cognitive processes
for which detailed a priori models of brain activity are not available. We
present two such examples. The first example considers a paradigm that
involves simulated driving, i.e., study of a naturalistic behavior, that is very
difficult to model using standard regression-based approaches [132]. The
second example demonstrates the application of ICA to fMRI data in its
native, complex-valued form. It is particularly difficult to model complex
fMRI response using regression - based methods given that very little is
known about the phase characteristics of fMRI data.

Processing the fMRI data in its native complex form is attractive for a
number of reasons. Using both the magnitude and phase data is expected
to:

• increase sensitivity in the identified components;

• elucidate different brain networks while studying the brain connec-
tivity, as the magnitude and phase potentially activate different areas
can be stronger when the phase and magnitude of the data are jointly
processed;

• localize better the origin of the signal by helping distinguish larger
vessels from smaller ones [221].

Most fMRI studies involve a neurobehavioral paradigm in which a par-
ticipant is exposed to sensory stimuli and asked to perform a set of mental
and/or motor tasks. A given volume is then collected through slices within
a given repetition time, which is usually on the order of a few seconds. The
acquired data set includes a brain volume movie with a temporal resolution
specified by the time of repetition.

The MRI signal is acquired as a quadrature signal using two orthogonal
detectors as shown in Figure 3.4. The signal that is acquired in the complex
frequency space (k-space) is inverse Fourier transformed into the complex
image space. From this point on, almost all fMRI studies analyze only the
magnitude images from the MRI scanner, since these are better understood,
and discard the information contained in the phase images.

The data are analyzed to determine the voxels with significant temporal
signal change, which are then super-thresholded and overlaid on an anatom-
ical image. The volume data is then organized into a matrix X such that each
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Fig. 3.4: Scenario 2: functional magnetic resonance

row is formed by concatenation of the slices at a given time instant resulting
in the T × V matrix. ICA can be easily applied to cases when temporal
dynamics are not well understood, or are not available.

When applied to fMRI data, ICA assumes that there exists a set of non-
systematically overlapping (spatially independent) brain networks with
their associated time courses. This is referred to as spatial ICA and it is the
most popular form of ICA for fMRI data. Alternatively, one can look for
temporally independent sources, in which case the sources will correspond
to the time courses.

ICA approaches that rely on nonlinear functions to implicitly generate
the higher-order statistics (HOS) to achieve independence offer practical
and effective solutions to the ICA problem. Two such popular approaches
are based on maximum likelihood (ML) - which is equivalent to information
maximization - and maximization of negentropy (MN) [88]. It can be shown
that the two measures are equivalent when the mixing matrix is constrained
to be unitary. The developments in [3] and [136] present complex ICA algo-
rithms based on ML and MN, respectively.

There are several types of signals that can be encoded within the hemo-
dynamic signals measured by fMRI. Some of these were identified by McKe-
own in the first application of ICA to fMRI [127].

In general, fMRI data may be grouped into signals of interest and signals
not of interest [25, 27]. The signals of interest include task-related, function-
related, and transiently task-related. The task-related signal has already
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been mentioned and is the easiest to model. A reference waveform, based
upon the paradigm, is correlated with the data. The responses of the brain
to a given task may not be regular however, for example the signal may
die out before the stimulation is turned off or change over time as repeated
stimuli are applied, leading to a transiently task-related signal. It is also
conceivable that there are several different types of transiently task-related
signals coming from different regions of the brain. The function-related
signal manifests as similarities between voxels within a particular functional
domain (e.g., the motor cortex on one side of the brain will correlate most
highly with voxels in the motor cortex on the opposite side of the brain). An
exciting application of this is for identifying synchronous auditory cortex
activity [28]. Most of these fMRI signals have been examined with ICA and
other methods and have been found to be sub-Gaussian in nature (except
perhaps the artifacts mentioned in the next section).

The signals not of interest include physiology-related, motion-related,
and scanner-related signals. Physiology-related signals such as breathing
and heart rate tend to come from the brain ventricles (fluid filled regions of
the brain) and areas with large blood vessels present, respectively. Motion-
related signals can also be present and tend to be changes across large
regions of the image (particularly at the edges of images).

Fig. 3.5: Original data for fMRI

Using the basic knowledge of the statistical characteristics of the under-
lying sources, it is possible to simulate fMRI-like source images. In Figure
3.5 it is shown a typical data set of fMRI data, containing 5 super-gaussian
sources, a gaussian source and 2 sub-gaussian source. Each simulated source
is a 60× 60 image with 100-point time course. The image is reshaped into
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vectors by concatenating columns of the image matrix. This simulation was
done with the GIFT toolbox [53]. GIFT is a MATLAB-based ICA/BSS tool
that includes a number of analysis and visualization tools in a user friendly
graphical interface. The signals x observed by the detectors are considered
to be a mixture of these 8 source signals s

x [n] = As [n] . (3.7)

which is formally identical to eq. (2.1).

3.2.3 Telecommunications

A third useful example is represented by telecommunication: the trans-
mitted (band-pass) signals are represented by the complex envelope s[n] =
sR[n] + jsI [n] which is a complex signal. A sample scenario is depicted in
Figure 3.6.

Fig. 3.6: Scenario 3: telecommunications

Consider a band-pass signal s(t) whose Fourier Transform S(f) is non-
negligible only in a band of frequencies of total extent 2B, say, centered about
some frequency ±fc. We refer to fc as the carrier frequency. In the majority of
communication signals, we find that the bandwidth 2B is small compared
with fc and so we refer to such a signal as a narrow-band signal.

Let s+(t) be the analytic signal [155], then the complex envelope s(t) is
defined as

s(t) = s+(t)e−j2πfct (3.8)

Applying the frequency-shifting property of the Fourier Transform to eq.
(3.8) we find that the spectrum of the complex envelope s(t) is limited to the
band −B ≤ f ≤ B and centered at the origin. That is, the complex envelope
s(t) of a band-pass signal s(t) is a low-pass signal, which is an important
result.

We may thus express the original band-pass signal s(t) in terms of the
complex envelope s(t) as follows:

s(t) = Re {s(t)exp(j2πfct)} (3.9)
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In general, s(t) is a complex-valued quantity; to emphasize this property,
we may express it in the form

s(t) = sR(t) + jsI(t) (3.10)

where sR(t) and gI(t) are both real-valued low-pass functions; their low-
pass property is inherited from the complex envelope s(t). We may therefore
use Equations (3.9) and (3.10) to express the original band-pass signal S(t)
in the canonical, or standard, form:

s (t) = sR (t) cos (2πfct)− sI (t) sin (2πfct) (3.11)

We refer to sR(t) as the in-phase component of the band-pass signal s(t) and
to sI(t) as the quadrature component of the signal.

According to eq. (3.10), the complex envelope s(t) may be pictured as a
time-varying phasor positioned at the origin of the (sR, sI)-plane. With time t
varying, the end of the phasor moves about in the plane.

The effect of the channel and the multi-path effect on the multiuser trans-
mitted signal s = [s1, . . . , sN ]T is the received signal x = [x1, . . . , xN ]T

which consists in a mixture or a convolutive mixture of the original signals
s = [s1, . . . , sN ]T . In this sense the model of the received signal is

x [n] = As [n] (3.12)

which is formally identical to eq. (2.1).
Moreover in digital radio links, since on-board satellite power is a pre-

cious resource, to have an high efficiency, the transmitter high-power amplifier
(HPA) operates near the saturation point: nonlinearities are introduced that
can cause serious performance degradation of the received signal [156]. An
equalization step is the needed [19, 199].

The nonlinearity of a typical HPA, a traveling-wave tube (TWT) or a
GaAs FET amplifier, affects both amplitude (AM/AM conversion) and phase
(AM/PM conversion) of the amplified signal, and can be considered as mem-
oryless, i.e. the HPA is a nonlinear system without memory under a wide
range of operational conditions [161]. However, in practice, the transmitter
contains a pulse shaping circuit (modulator) at the baseband or at the inter-
mediate frequency (IF) stage virtually in all digital radio systems. Therefore,
the overall baseband-equivalent system (the cascade of transmitter, HPA
nonlinearity and receiver) is a nonlinear system with memory. In this sense
the received signal can be thought as a nonlinear mixture, expressed as in
eq. (2.4) by

x [n] = F (As [n]) (3.13)



4
BSS and ICA in Complex Environment

—I was born not knowing and
have had only a little time to

change that here and there.
R. Feynman

THE aim of this section is to extend the BSS problem introduced in
previous chapter 2 to the complex domain. In particular the condi-
tion of identifiability, separability and uniqueness are extended to

the complex environmente.

4.1 Introduction

Let us consider a vector s [n] = [s1 [n] , . . . , sN [n]]T ofN complex sources
at time n (s [n] ∈ CN ). The k-th source can be expressed as sk [n] = sRk [n] +
jsIk [n], where sRk and sIk are the real and imaginary parts of the k-th
complex-valued source signal and j =

√
−1 is the imaginary unit. The goal

of complex BSS is to recover the complex signal s [n] from observations of
the complex mixture x [n] = [x1 [n] , . . . , xN [n]]T , where the k-th mixture
can be expressed as xk [n] =xRk [n] +jxIk [n], xRk and xIk are its real and
imaginary part. In this way the model in eqs. (2.1) and (2.2) are still valid
but the mixing matrix A and the de-mixing matrix W are complex matrices
(aij ∈ C and wij ∈ C):

x [n] = As [n] (4.1)

for the mixing model and

u [n] = Wx [n] (4.2)

for the de-mixing model (see Figure 4.1).

45
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Fig. 4.1: The complex mixing (up) and de-mixing (down) models

In similar way we can describe the case of PNL mixtures where the
nonlinear function involved in the models are complex functions too:

x [n] = xR [n] + jxI [n] = F (v [n]) (4.3)

where v [n] = As [n], the nonlinear function F (v [n]) is the model of the
nonlinear distortion in the complex domain and F(v[n]) = [f1(v1[n]), . . . ,
fN (vN [n])]T , where fk (vk [n]) is the k-th complex nonlinear distorting func-
tion. For the mirror de-mixing model:

u [n] = uR [n] + juI [n] = Wr [n] = W ·G (x [n]) (4.4)

where r [n] = G (x [n]), the nonlinear function G (x) is the model of nonlin-
ear compensating function in the complex domain and G(x[n]) = [g1(x1[n]),
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. . . , gN (xN [n])]T , where gk (xk [n]) is the k-th complex nonlinear compensat-
ing function (see Figure 4.2).

Fig. 4.2: The complex PNL model: mixing model (up) and de-mixing mirror
model (down)

The separability, identifiability and uniqueness of the solution is demon-
strated in [189] and [66] in the linear and instantaneous case, while the PNL
mixtures is not treated yet in literature. It is intention of this thesis to extend
these results in the nonlinear environment.

4.2 Identifiability, separability and uniqueness of lin-
ear complex ICA

Referring to the model (4.1) and the topics in Appendix B, the couple
(A, s) is called a representation of r.vc. x. If no column in the mixing matrix A
is collinear with another column in the matrix, i.e., all columns are pairwise
linearly independent, the representation is called reduced. All representations



48 CHAPTER 4. BSS AND ICA IN COMPLEX ENVIRONMENT

are assumed to be reduced throughout this paragraph. Furthermore, a
reduced representation for the r.vc. x in the model (4.1) is called proper, if it
satisfies all the assumptions made about the model. Main of the results in
this section are taken by [66, 63].

The model of (4.1) is defined to be

1. identifiable, or the mixing matrix is (essentially) unique, if in every
proper representations (A, s) and (B, r) of x, every column of complex
matrix A is collinear with a column of complex matrix B and vice
versa;

2. unique if the model is identifiable and furthermore the source r.vc.s s
and r in different proper representations have the same distribution
for some permutation up to changes of location and complex scale;

3. separable, if for every complex matrix W such that Wx has m indepen-
dent components, we have ΛPs = Wx for some diagonal matrix Λ
with nonzero diagonals and permutation matrix P. Moreover, such a
matrix W has to always exist.

It is completely possible for the model (4.1) to be identifiable but not
unique nor separable as it is shown in the next example.

Example 6.
As an example of a model which is identifiable but is not separable nor unique,
consider independent non-normal r.v.s sk, k = 1, . . . , 4. Let η1, η2, and η3 be inde-
pendent standard normal r.v.s with the same circularity coefficient (see Definition 39).
Then also r.v.s η1 + η2 and η1 − η2 are independent. Now

(
s1 + s3 + s4 + η1 + η2
s2 + s3 − s4 + η1 − η2

)
=
(

1 0 1 1
0 1 1 −1

)
s1
s2

s3 + η1
s4 + η2

 =

=
(

1 0 1 1
0 1 1 −1

)
s1 + η1 + η2
s2 + η1 − η2

s3
s4


which shows that the corresponding model can not be unique. However, it is iden-
tifiable. R.v.s of the form s + n, where n is a normal r.v. independent of , are said to
have a normal component.

It follows from the reduction assumption that the number of columns,
i.e., the number of sources or the model order, is the same in every proper
representation of x in identifiable models. If W is a separating matrix, then
linear manifolds of ΛP and W must coincide, and therefore p ≥ rank[W] =
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rank[ΛP] = m, i.e., there has to be at least as many mixtures as sources
in a separable model. This fact also emphasizes that identifiability of the
model (4.1) depends also on the linear operator structure, and since the lin-
ear operators defined on R2n and Cn are not isomorphic, one can not simply
consider real-valued model with twice the observation dimension when
studying the complex ICA model (4.1). This is illustrated in the following
example.

Example 7.
By simply considering real-valued models with twice the dimension, it may actu-
ally seem that the complex separation is possible only under very strict conditions.
Indeed, let rk, k = 1, . . . , 4 be independent real-valued r.v.s, and let A1,A2,B1, and
B2 be 2× 2 nonsingular real matrices. Define s1 = A(r1 r2)T and s2 = A(r3 r4)T .
Now s1 and s2 are independent, but so are also y1 and y2(

y1
y2

)
=
(

B1 02×2

02×2 B2

)
P
(

A−1
1 02×2

02×2 A−1
2

)(
s1
s2

)
for any permutation matrix P. However, y1 and y2 are mixtures of s1 and s2 for
many permutations P.

The previous example is easily generalized to the ICA models that have
multidimensional independent sources, i.e., one is looking for independent
multidimensional subspaces. The example shows that such models can not
be identified or separated without additional constraints on the internal
dependency structure of the sources or the allowed mixing matrices.

Since linear operators in complex and real spaces are not isomorphic, the
classes of separable source r.v.s are not the same. That is, some source r.v.s
considered in complex mixtures can be separated although their real-valued
representations in real mixtures can not. This is shown in the next example.

Example 8.
Let η1, . . . , η2m be independent standard zero mean unit variance real Gaussian
r.v.s. Define

η =
(

1√
m+ 1

(√
mη1 + jηm+1

)
,

1√
m

(√
m− 1η2 + jηm+2

)
, . . . ,

1√
2

(ηm + jη2m)
)T

Now it is easily seen that η is a standard normal r.vc. with the distinct circularity
spectrum λ[η] = (m−1

m+1 ,
m−2
m , . . . , 0)T . If ηR is taken as the source r.vc. in the real-

valued ICA model, i.e., y = BηR and B is a 2n× 2m real-valued matrix, n ≥ m, the
model is not separable [64]. However, the complex model involving η itself, i.e.,
x = Aη and A is a n×m complex-valued matrix, is separable by Corollary 3.
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The following characterization theorem is the base of the identifiability
and uniqueness theorems. It is an extension of a real Theorem 1 [64] to
the complex case. The idea of the proof is similar to the proof of Darmois-
Skitovich theorem [188].

Theorem 10 Let (A, s) and (B, r) be two reduced representations of a n-dimensional
complex r.vc. x, where A and B are constant complex matrices of dimensions n×m
and n× q, respectively, and and are complex r.vc.s with independent components.
Then the following properties hold:

1. if the k-th column of A is not collinear with any column of B, then the r.v.
sk is complex normal;

2. if the k-th column of A is collinear with the l-th column of B, then the
logarithms of the cf.s of r.v.s sk and rk differ by a wide sense polynomial in a
neighborhood of the origin.

4.2.1 Separability

ICA is commonly used as a Blind Source Separation method, where the
problem is to extract the original signals from the observed linear mixture.
Therefore, separability of the ICA model is an important issue. The separa-
bility theorem for the complex ICA model below may be surprising, since it
allows also separation of some complex normal mixtures.

Theorem 11 The model of (4.1) is separable if and only if the complex mixing
matrix A is of full column rank and there are no two complex normal source r.v.s
with the same circularity coefficient.

If the source s has finite second order statistics and the circularity spec-
trum λ[s] is distinct, then the separation can be achieved by simply perform-
ing the strong-uncorrelating transform by Corollary 3. In this case, there is
no additional restrictions on the distribution of the source r.v.s, and therefore
some normal r.v.s can be also separated. An example of such a mixture is
seen in Example 9.

4.2.2 Identifiability

Identifiability considers reconstruction of the mixing matrix. This is
useful in some problems, where the immediate interest may not be in the
sources themselves but in how they were mixed (e.g., channel matrix in
MIMO communications).

Theorem 12 The model of (4.1) is identifiable, if

1. no source r.v. is complex normal, or
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2. A is of full-column rank and there are no two complex normal source r.v.s
with the same circularity coefficient.

There is a striking contrast between the two cases in Theorem 12. Namely,
if there are more sources than mixtures not a single normal r.v. is allowed
whereas in the other case all source r.v.s can be normal. The following ex-
ample shows the reason why we can not allow a single normal r.v. for
identifiability when there are more sources than sensors.

Example 9.
Consider independent non-normal r.v.s s1, s2, and standard normal r.v.s η1 and η2
with the same circularity coefficient. Now

x =
(
s1 + s2 + 2η1
s1 + 2η2

)
=
(

1 1 0
1 0 1

) s1
s2 + 2η1

2η2

 =

=
(

1 1 1
1 0 −1

) s1 + η1 + η2
s2

η1 − η2


and the last column shows that the model is not identifiable.

It is evident from the previous example and from the separation theorem
that another identifiability condition could be formulated by essentially
allowing a single normal r.v. and not allowing other source r.v.s to have
normal components with the same circularity coefficient. However, this
condition is unnecessarily complicated. Therefore, it is not stated in a formal
manner.

4.2.3 Uniqueness

Uniqueness considers the case where one is interested not only in the
mixing matrix but also in the distribution of the sources.

Theorem 13 The model of (4.1) is unique if either of the following properties hold.

1. The model is separable.

2. All cf.s of source r.v.s are analytic (or all cf.s are non-vanishing), and
none of the cf.s has an exponential factor with a wide sense polynomial
of degree at least two, i.e., no source r.v. has the cf. ϕ such that ϕ(z) =
ϕ1(z)exp(P(z, z∗)) for a cf. ϕ1(z) and for some wide sense polynomial
P(z, z∗) of degree at least two.

A non-unique but identifiable mixture was described in Example 7. By
slightly restricting the allowed mixing matrices, it is possible in the real case
to obtain more classes of unique models [64].
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4.3 Identifiability, separability and uniqueness of non-
linear complex ICA

The results on the identifiability, separability and uniqueness of the
solution in the case of post nonlinear (PNL) mixtures can be extended to the
complex domain too.

For m,n ∈ N let Mat(m× n; C) be the space of complex m× n matrices,
and

Gl (n; C) = {W ∈Mat (n× n; C) | det (W ) 6= 0}

be the general linear group of Cn.
Fundamental definitions on the matrix involved in the complex BSS

problem can be done [188, 195].

Definition 18 Let A ∈ Gl(n; C) be an invertible matrix. Then A is said to be
mixing if A has at least two nonzero entries in each row.

Definition 19 We say two matrices A,W ∈ Mat(m × n; C) are equivalent,
W ∼ A, if W can be written as W = APΛ with an invertible complex diagonal
matrix (scaling matrix) Λ ∈ Gl(n; C) and an invertible real matrix with unit
vectors in each row (permutation matrix) P ∈ Gl(n; R). Note that permutation
and scaling matrices commute, so W = APΛ = AΛP.

And similarly

Definition 20 A is said to be scaling-equivalent to W, A ∼s W, if W = AΛ
holds, and A is permutation-equivalent to W, A ∼p W, if W = AP. There-
fore, if A is scaling- or permutation-equivalent to W, it is equivalent to W, but
not vice-versa.

For the case of nonlinear mixing environment additional definitions and
theorems are required.

Definition 21 Let A ∈ Gl(n; C) be an invertible matrix, then A = (aij)i,j=1...n

is said to be absolutely degenerate if there are two columns l 6= m such that
a2
il = λa2

im for a λ 6= 0, i.e. the the normalized columns differ only by the signs of
the entries.

Definition 22 Given a function f = fR + jfI : U → C assume there exist
a, b, c, d ∈ R such that at least one is not of absolute value 0 or 1. If fR(axR) =
bfR(xR) and fI(cxI) = dfI(xI) for all x = fR + jfI ∈ U with axR, cxI ∈ U ;
then f is said to be (a, b)-homogeneous or simply homogeneous.

Let x = xR + jxI be a complex random variable, it is possible to define
its augmented representation as xR = [xR xI ]T (see appendix B.2). In this
way we can extend the definition 16 to the complex domain.
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Definition 23 We call a complex random vector X→ XR with density pXR(XR)
bounded, if its density pXR(XR) is bounded. Denote supp pXR(XR) :=
{x|pXR(XR) 6= 0} the support of pXR(XR) i.e. the closure of the nonzero points of
pXR(XR).
We further call an independent complex random vector X→ XR fully bounded,
if supp pXRi(XRi) is an interval for all i. So we get supp pXR(XR) = [a1, b1] ×
· · · × [an, bn].

Remembering the Definition 17 in section 2.7, it is possible to give the
following

Definition 24 A function f = fR(xR) + jfI(xI) : Cn → Cn is called diagonal or
component-wise if each component fRi(xR) of fR(xR) depends only on the variable
xRi and if each component fIi(xI) of fI(xI) depends only on the variable xIi.

In this case we often omit the other variables and write fR(xR1, . . . , xRn) =
(fR1(xR1), . . . , fRn(xRn)) or fR = fR1 × · · · × fRn and fI(xI1, . . . , xIn) =
(fI1(xI1), . . . , fIn(xIn)) or fI = fI1 × · · · × fIn.

Consider now the postnonlinear blind source separation model in eq.
(4.3). We assume the components fRi of fR and fIi of fI to be injective
analytic functions with nonvanishing derivatives. Then also the f−1

Ri and
f−1
Ii are analytic.

Complex postnonlinear BSS is a generalization of linear BSS, so the
indeterminacies of complex postnonlinear ICA contain at least the inde-
terminacies of linear BSS: A can only be reconstructed up to scaling and
permutation: the scaling ambiguity in complex case is reflected in a rotation
ambiguity too. Here of course additional indeterminacies come into play
because of translation: fRi and fIi can only be recovered up to a constant.
Also, if Λ ∈ Gl(n; C) is a scaling matrix, then f(As) = (f ◦Λ)((Λ−1A)s),
so f and A can interchange scaling factors in each component. Another
indeterminacy could occur if A is not mixing, i.e. at least one observation
xi contains only one source; in this case fi can obviously not be recovered.
For example if A = I then f(s) is already again independent, because inde-
pendence is invariant under component-wise nonlinear transformation; so f
cannot be found using this method.

If we however assume that A is mixing and not absolutely degenerate,
then we will show for all fully bounded sources s that except for scaling
interchange between f and A no more indeterminacies than in the affine
complex linear case exist. Note that if f is only assumed to be continuously
differentiable, then additional indeterminacies come into play.

4.3.1 Separability

In this section it is proven separability of postnonlinear BSS; it will be
seen how the two conditions from Definition 18 and Definition 21 turn out
to be necessary.
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Theorem 14 (Separability of bounded complex postnonlinear BSS) Let A,
W ∈ Gl(n; C) and one of them mixing and not absolutely degenerate, h : Cn →
Cn be a diagonal injective analytic function such that h′i 6= 0 and let s be a fully
bounded independent random vector. If W(h(As)) is independent, then there exists
a scaling Λ ∈ Gl(n; C) and v ∈ Cn with ΛA ∼W−1 and h(x) = Λx + v.

So let f ◦A be the complex mixing model and W ◦ g the complex sepa-
rating model. Putting the two together we get the above complex mixing-
separating model with h := g ◦ f . The theorem shows that if the mixing-
separating model preserves independence then it is essentially trivial i.e.
h affine linear and the matrices equivalent (up to scaling and rotation).
As usual, the model is assumed to be invertible, hence identifiability and
uniqueness of the model follow from the separability.

4.4 Entropic contrasts in the complex environment

The aims of this section is to extend to the complex domain the appli-
cation of the entropic contrasts, already introduced for the real domain in
Section 2.8.

Fig. 4.3: Graphical relation between Mutual Information, Marginal Entropy and
Joint Entropy in complex domain
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The methodology is the same that in the case of real mixture: in fact the
contrasts are real-valued function. In this sense such functions, like joint
entropy or mutual information, are estimated on the augmented representation
of the complex vectors YR. The relation between Mutual Information and
Joint Entropy of a random vector YR, can be expressed as (see [55] and
Appendix A)

I(YR) =
N∑
i=1

H (YRi)−H(YR) (4.5)

A conceptual description of the eq. (4.5) can be described as followed and is
showed for N = 2 in Figure 4.3.

Fig. 4.4: Graphical interpretation of MMI, ME and MNG approaches in complex
domain

Because the equation (4.5) is formed by three terms, even in the complex
domain one can proceed through three ways to reach the independence
of the random variable YRi. It is possible to minimize the left side I(YR)
of eq. (4.5) obtaining the Minimal Mutual Information or MMI approach; it
is possible to maximize the joint entropy H(YR) in eq. (2.7) obtaining the
Maximum Entropy or ME approach and it is possible to maximize the term
N∑
i=1

H (YRi) obtaining the Maximum Non-Gaussianity or (MNG) approach.

The Figure 4.4 shows that the independence between YR1 and YR2 is
maximized when the intersection of the two sets is minimized, ideally van-
ished. This fact is the same that maximizing the union of the two sets or
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maximizing the non-covered area of the two single sets. In other words, the
independence is guaranteed if it is minimized the mutual information of YR
(MMI approach), maximized the joint entropy of YR (ME approach) or max-
imized the marginal entropy of YR1 and YR2 (MNG approach), respectively.

Fig. 4.5: System to perform Blind Source Separation in linear environment

To give an idea of the particular system adopted in the solution of the
BSS problem, it is possible to see the Figure 4.5 for the linear environment
and the Figure 4.6 for the nonlinear environment, where W is the de-mixing
network while the functions hi, i = 1, . . . , N are utilized for evaluating the
above functional MMI, ME or MNG.

In particular given the complex network outputs y = yR + jyI , where
yR = [yR1, yR2, . . . , yRN ]T and yI = [yI1, yI2, . . . , yIN ]T , it is constructed the
augmented vector yR = [yR yI ]T on which evaluating the MMI, ME or
MNG contrasts.

Fig. 4.6: System to perform Blind Source Separation in nonlinear environment
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The Complex Activation Function

—All cultural products contain a mixture
of two elements: conventions and inventions.

J. G. Cawelti

ONE of the main issues in designing complex neural networks is the
presence of complex nonlinear functions involved in the learning
processing [30, 146], i.e. complex activation functions or distorting

functions (for the nonlinear mixing environment): to ensure the universal
approximation network capabilities, the activation functions should be
bounded and differentiable.

5.1 The main challenge

Let h(z) be a complex nonlinear activation function (AF), where z =
zR + jzI ∈ C, zR and zI are the real and imaginary parts of the complex
variable z.

The main challenge is the dichotomy between boundedness and analyt-
icity in the complex domain [103], as stated by the Liouville’s theorem (see 24):
complex functions, bounded on the whole complex plane, are either constant or not
analytic. Thus this kind of complex nonlinear functions are not suitable as
activation functions of neural networks.

Georgiou and Koutsougeras in [69] defined five properties which should
be satisfied by complex nonlinear functions in neural network applications:

1. h(z) = h(zR, zI) = hR(zR, zI) + jhI(zR, zI) is nonlinear in zR and zI ;

2. h(z) is bounded: |h(z)| ≤ c <∞;

3. hRzR , h
R
zI
, hIzR , h

I
zI

exist and are bounded;
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4. h(z) is not entire1;

5. hRzRh
I
zI
6= hRzIh

I
zR

,

where hR (zR, zI) and hI (zR, zI) are known as the real part function and
imaginary part function of the complex function h(z) respectively, while
hRzR = ∂hR

∂zR
, hRzI = ∂hR

∂zI
, hIzR = ∂hI

∂zR
, hIzI = ∂hI

∂zI
.

It should be noted that the properties in 1-5 require the boundedness of
the nonlinear function and its derivatives even when the function is defined
in a local domain [26]. By the Liouville’s theorem the cost for this restriction
is that the function is not analytic.

The boundedness of the AF is essential to prove the universal approx-
imation of a complex feed-forward neural network [104, 102, 100]. These
works have shown that, for the multilayer perceptron (MLP), a complex
counterpart of the universal approximation theorem can be realized with
activation functions that are entire (analytic for all values of z) but bounded
only almost everywhere. This is an extension of the real-valued result in
Cybenko in [56] to the complex case.

In this context Kim and Adali proposed in [104, 103, 101] the use of the
so-called elementary transcendental functions (ETF). They classified the ETFs
into two categories of unbounded functions, depending on which kind of
singularities2 they possess. The following functions are noted to provide
the nonlinear decorrelation required for ICA when used for the nonlinear
activation function h(z):

• Circular functions: tan (z), sin (z) and cot (z);

• Inverse circular functions: tan−1 (z), sin−1 (z) and cos−1 (z);

• Hyperbolic functions: tanh (z), sinh (z) and coth (z);

• Inverse hyperbolic functions: tanh−1 (z), sinh−1 (z) and cosh−1 (z).

As expected the trigonometric and the corresponding hyperbolic functions
behave very similarly.

These transcendental functions are entire (analytic) and bounded almost
everywhere, i.e. they are unbounded only on a set of points having zero
measure. If used as AFs in neural networks they assure convergence almost
everywhere.

1A function h(z) is said analytic in z0 if its derivative exists throughout some neighbour-
hoods of z0. If h(z) is analytic in all points z ∈ C, it is called entire.

2A singularity is a point in which a function is not analytic and thus not differentiable: if
lim
z→z0

h(z) → ∞ but the function is analytic in a deleted neighbourhood of z0 (that is a pole),

the singularity is said to be isolated; if lim
z→z0

h(z) exists it is isolated but removable; if none of

these cases are met, the function has an isolated essential singularity.
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Moreover, in signal processing applications where the domain of interest
is a bounded neighborhood of the unit circle these singular points scarcely
pose a problem.

Recently Adali et al. in [2] have used these above ETFs as complex ac-
tivation functions in BSS problems. In particular, the functions: tan−1 (z),
sin−1 (z), cos−1 (z) and tan (z), and their hyperbolic counterparts performed
consistently well over a wide range of input and mixtures, while the func-
tions: sin (z), cos (z), cot−1 (z), sinh (z), cosh (z) and coth−1 (z) exhibited
unstable behavior when used for ICA with the algorithm proposed by Bell
and Sejnowski in [15] and described later.

A compromised approach to process real and imaginary components of
complex signal jointly can be found in [69, 81]. These authors proposed joint-
nonlinear complex activation functions that process the real and imaginary
components as shown in the following equations:

h (z) =
z

c+ |z|
r

(5.1)

h (α · exp [jβ]) = tanh
(α/m) exp (jβ) (5.2)

where, c and r are real positive constants, andm is a constant that is inversely
related to the gradient of the absolute function |h| along the radius direction
around the origin of the complex coordinate for z = α · exp(jβ). However,
these functions are still not analytic and also preserve the phase. The in-
ability to provide accurate nonlinear phase response poses a significant
disadvantage for these functions in signal processing applications.

5.2 The splitting solution

According to the properties in 1-5 listed above, in order to overcome
the dichotomy between boundedness and analyticity, complex nonlinear
splitting functions have been introduced. In this approach real and imaginary
parts are processed separately by real-valued nonlinear functions [19, 174,
200]. The splitting function

h (z) = h (zR, zI) = hR (zR) + jhI (zI) (5.3)

avoids the problem of unboundedness of complex nonlinearities, as stated
above, but it cannot be analytic (see Figure 5.1).

Even though bounded, the complex activation function defined in this
way is not analytic and the back-propagation phase during the learning pro-
cess also takes split paths through disjoint real-valued gradients. As would
be expected, such a scheme will not be efficient when learning nonlinear
mappings of complex input/output pairs [104, 102, 100].
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Fig. 5.1: Splitting function realization of a complex activation function (AF)

The splitting model of a nonlinear complex valued function is not realis-
tic because usually the real and imaginary part are correlated. According
to this issue it is useful to perform a more realistic model of the nonlinear
functions. In this way, Vitagliano et al. in [214] proposed a complex neural
network based on a couple of bi-dimensional functions (Figure 5.2) called
generalized splitting function:

h (z) = h (zR, zI) = hR (zR, zI) + jhI (zR, zI) . (5.4)

We consider each part hR (zR, zI) and hI (zR, zI) as two functions of two
variables: one plays the role of the real part function and one of the imaginary
part function of the complex activation function. With regard to the “desired
properties” stated for the fully complex AFs we can note that the generalized
splitting function:

• it is a nonlinear function with respect to the coordinates; thus h(z) is a
nonlinear function with respect to zR and zI ;

• it has not singularities and it is bounded for each z = zR + jzI ;

• the partial derivatives hRzR , h
R
zI
, hIzR , h

I
zI

are continuous and bounded;

• the condition hRzRh
I
zI
6= hRzIh

I
zR

is verified.

Fig. 5.2: Generalized splitting function realization of a complex activation func-
tion (AF)

In this way h(z) is bounded but it is not analytic. The Cauchy-Riemann
conditions (hRzR = hIZI , hIzR = −hRZI ) are not satisfied by the complex func-
tion in eq. (5.4) itself, but can be imposed by an algorithm constraint dur-
ing the learning process: hRzR = hIzI =

(
hRzR + hIzI

)/
2 and hRzI = −hIzR =
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(
hIzR + hRzI

)/
2. Note that the Cauchy-Riemann conditions are equivalent to

the fifth property in 1-5.
Another approach for adapting the nonlinearity to the source distribu-

tion is introduced in [3]. It is based on the idea that the simple substitutions
zR = (z + z∗) /2 and zI = (z − z∗) /2j (where (•)∗ denotes the complex
conjugate) allow us to write a given pdf that is R × R → R in terms of a
function C× C→ R.

This approach is based on the Brandwood’s result [22]. Let we define
h : C × C → C as a function of a complex variable z and its conjugate z∗.
If treating z (respectively z∗) as a constant, h is analytic on z∗ (respectively
z), then we say that h satisfies the Brandwood’s analyticity condition (BAC).
Because the main interest is in functions h that are cost functions, it is
possible to consider the more special case of h : C× C→ R. Then the main
result of [22] for these class of functions can be expressed as [3]:

Theorem 15 Let f : R× R→ R be a function of real variables zR and zI such
that h(z, z∗) = f(zR, zI), where z = zR + jzI and that h satisfies the BAC.
Then, the partial derivative ∂h/∂z (treating z∗ as a constant in h) gives the same
result as (∂f/∂zR − j∂f/∂zI)/2 on substituting for z. Similarly, ∂h/∂z∗ =
(∂f/∂zR + j∂f/∂zI)/2.

In [3] the authors applied this result on the maximization of the complex
Likelihood for BSS application.
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Spline Functions

—Models are to be used, not believed.
H. Teil

A PROBLEM in choosing complex AF is the matching between the
shape of the AF and the cumulative density function (cdf) of
the unknown sources [218]. In fact the separation can be well

performed in the case that the AF coincides with the source cdf, as explained
hereinafter (see eq. (7.11)). The idea is to adopt a flexible solution [42]: the
shape of the AF is adaptively changed from data by the use of flexible
functions, performing the so-called Flexible ICA. This solution allows the
separation of signal with a no pre-defined cumulative density function (cdf)
and moreover increases the quality of the separation.

The problem addressed in this section is to find a nonlinear adaptive
function (or a curve), suitable for implementing an activation function,
that: 1) satisfies the boundedness constraint defined for activation functions
[41, 56, 85, 182, 181], 2) is able to retain the universal approximation property
and 3) is flexible enough to modify its shape by adapting a small number of
parameters.

6.1 Introduction

In the last years an increasingly interest in adaptive activation functions
has arisen. The simplest solution consists in involving a parametric gain and
slope of a sigmoid AF in the learning process. A different approach is based
on the use of polynomial functions which allows reducing the size of the
network and the connection complexity [201]. The digital implementation
of this kind of activation function through a look-up-table (LUT) keeps
the complexity under control [147] and is easy to realize. The LUT values
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can be seen as the curve sample points and one can think to iteratively
adapt them in order to change the function shape. Only after a certain
number of adaptation steps the shape of the activation function can reflect
the information represented by data.

However the direct use of a LUT activation function can lead to a huge
number of free parameters, so it is more desirable using a suitable interpola-
tion or approximation scheme. The choice of these schemes is not an obvious
one: a wrong choice of the interpolation scheme can lead to problems in the
development of the learning algorithm [19, 74, 201, 175, 177].

A good interpolation scheme should guarantee a continuous first derivate
and the capability to locally adapt the curve: such properties are exhibited
by the so-called piecewise polynomial spline interpolation scheme. For BSS we
prefer an interpolation scheme, due to its local characteristics, which avoids
the oscillatory behaviour of the global adaptation of the approximation
scheme. There are few splines that interpolate their control points. One that
also has a very low computational overhead is the so-called Catmull-Rom
cubic spline (CR) [39, 207, 201, 200]. There is a regularization property com-
mon to most of the polynomial spline basis sets called variation diminishing
property [54, 169, 124], which ensures the absence of unwanted oscillations
of the curve between two consecutive control points. So we can have an
exact representation of linear segments.

6.1.1 Spline in regularization theory

The reconstruction of a curve from the knowledge of a finite set, TN , of
samples is a typical ill-posed problem; in general, there are many possible
functions with good approximation capabilities on the pairs (xi, ti) and not
all of them can be considered in the same way. In fact, the presence of noise
in the measurements induces, in the space X , high-frequency components
that are only a disturbance. At the same time, in those regions of X in which
we donŠt have many samples, the neural network should give a smooth
approximation of the few available data, avoiding unjustified oscillations.

Regularization theory offers a way to choose a compromise between data
fitting and smoothness, through a regularizing term added to the classical
squared error and weighted by a constant:

H (f) =
N∑
i=1

[ti − f (xt)]
2 + λ ‖Pf‖2 (6.1)

where H(f) represents the functional to be minimized. The stabilizer P is
the differential operator determining the kind of smoothness and the shape
of the approximator, while ‖•‖ is a suitable norm. It is well known that the
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minimization of eq. (6.1) leads to

f (x) =
N∑
i=1

ciG (x− xi) (6.2)

G is the Green’s function corresponding to the operator P and ci are coeffi-
cients determined by solving the N ×N linear system (G + λI)c = t, where
G is the Green’s matrix, c is the column vector of the coefficients and t is
the column vector of the targets ti.

In particular, we are interested in the one-dimensional stabilizer

‖Pf‖2 =
∫
R

[
d2f (x)
dx2

]2

dx (6.3)

which corresponds to the kernel G(x) = |x|3. For the multidimensional case,
in [70] it is shown that we can use the same stabilizer, just decomposing the
function f in the sum of n functions, each in charge of one component of
the vector x

f (x) =
n∑
j=1

fj (xj) (6.4)

Then, the overall kernel is

Ḡ (x) =
n∑
j=1

µjG (xj) =
n∑
j=1

µj |xj |3 (6.5)

where µj , j = 1, . . . , n, are constants. The final aspect of the approximating
function is

f (x) =
N∑
i=1

ci

n∑
j=1

µjG (xj − xij) (6.6)

the symbol xij indicates the j-th component of the i-th input xi in TN . An
important extension of the previous function involves a change in the system
of coordinates for the space X ; as reported in [70], the choice of a proper
“point of view” can be important when representing a multivariate function
as the sum of a number of functions equal to the dimension of the input
space. Calling wj , j = 1, . . . , n, the vectors which determine the axis of
the new system and αij the new centers in such a system, we can write,
inverting the order of summation of eq. (6.6),

f (x) =
n∑
j=1

µj

N∑
i=1

ciG (wjx− αij) (6.7)

that is the starting point of our considerations.
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First of all, we need to evaluate the fixed parameters mj ; with no a
priori assumption we may use data-driven procedures, i.e., cross-validation,
which can be computationally expensive when applied to large nonlinear
models like most neural networks. Then a N × N linear system must be
solved in order to find the coefficients ci, i = 1, . . . , N ; in real applications,
the number N can be large and the problems related to the inversion of the
matrix (G + λI) can become quite hard. The large value of N is an obstacle
for hardware implementation, too, because we should use nN kernels (N
kernels for each of the n directions), which means nN neurons, a lot of
connections and, in the case of VLSI implementation, a large silicon area. Of
course, it is possible to reduce the number of centers from N to N ′ (N ′ < N )
using a sub-optimal solution of the minimization of eq. (6.1), but here we
will take a different approach.

Our idea consists in realizing a neuron with a more complex activation
function than the sigmoid, able to reproduce the shape of a whole cubic
spline along the directions specified by wj , j = 1, . . . , n.

φ (wjx) =
N∑
i=1

ci |wjx− αij |3, j = 1, . . . , n (6.8)

Then f(x) can be written as

f (x) =
n∑
j=1

µjφj (wjx) (6.9)

Now µj , and the components of wj , for all the indexes j, can be found
by backpropagation, thus solving the problem of the optimal set of the
parameters µj and of the ideal system of coordinates (although we can
get trapped in local minima). The open question is about ϕj . Once again,
the exact implementation of eq. (6.8) would require the knowledge of all
the coefficients ci, so we choose a different solution, that is using a cubic
spline of simpler structure. Its main characteristics are the adaptation of its
shape through some control points and a suitable degree of smoothness.
Notice that in our implementation a bias parameter wj0 similar to the one
used in sigmoidal neurons has been introduced and so we will deal with
a function ϕj(wjx + wj0). The last point to discuss is the approximation
capability of the function in eq. (6.8): of course, it will behave well on targets
which are likely to have an additive structure, but, in general, a number
of hidden units equal to the dimension of the input space is not enough
to obtain universal approximation of continuous functions on a compact
set. However, we can extend the idea of a neuron with a cubic and smooth
activation function to architectures involving a larger number of hidden
units (or even more than one hidden layer), though they cannot be directly
derived from regularization theory.
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6.2 Matrix formulation of Spline function

A planar spline curve is a two-dimensional vector, whose components
are piecewise polynomial univariate functions of the same degree: its math-
ematical formulation ensures both its continuity and the existence of its
derivatives, along the curve and in correspondence to the joining points
between the various curve spans [74]. Given a LUT as defined above, a
general spline expression for that curve would be

F (ν) =
[
Fu (ν) Fy (ν)

]T =
N−3
C
i=0

Fi (ν) (6.10)

where C is the concatenation operator and Fi(u) of i-th curve span (or patch).
The indixes C of the operator in (6.10) are valid only for cubic polynomials:
the choice of using cubic polynomials was made because of the trade-off
between the requested properties and the computational complexity. Figure
6.1 shows the superposition of N − 3 cubic spline spans.

Fig. 6.1: The AF as a superposition of N − 3 cubic spline spans

The parameter ν has the property of being local and its domain is 0 ≤
ν ≤ 1 for every curve span [74]. Hence, there must be a unique mapping
that allows us to calculate the local parameter ν, as well as the proper curve
span i, from the abscissa global parameter. In this way, we can represent any
point lying on the spline curve F (ν) as a point belonging to the single Fi(ν)
curve span. It follows (see [13]) that the i-th curve span can be described as
follows:

Fi (ν) =
[
Fui (ν) Fyi (ν)

]T =
3∑
j=0

Qi+jCj (ν) (6.11)
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where Cj(ν) are the spline polynomials. As in (6.10), each coordinate is de-
scribed by a univariate function, namely a cubic polynomial of the variable
ν.

Fig. 6.2: i-th tact of the spline function

Equation (6.11) resolves the link between the curve and the sample
points Qi which are called control points in the literature, as they control the
shape of the curve. The cubic polynomial functions Cj(ν), called spline basis
functions or blending functions, characterize the way the curve moves along
the path made up by the control points. The curve can interpolate or just
approximate its control points, depending on which blending function set
we rely on (see for example [13]).

Let u be the input of the activation function of a neuron; we have to
make the dependence between u and Fi(ν) explicit. There is a direct link
between u and one of the two components (a cubic polynomial function)
[74], namely

u = Fui(ν) (6.12)

Equation (6.12) plays a key role in finding a suitable activation function
architecture, as it is the main bottleneck of the overall structure: in fact, it is
the only link between the input u and nonlinear neuron output Fyi(ν), which
is given in term of the i ∈ [0, N ] value (which represents the LUT index)
and the ν ∈ [0, 1] value (which represents the offset of the i-th curve span).
Let y be the neuron output, we have to introduce a two-step procedure to
calculate y of a single neuron, given the input u [74]:

1. calculate ν and i from s by inverting (6.12);

2. substitute these values of ν and i in y = Fyi(ν).

Now there are several splines that interpolate their control points; one that
also has a very low computational overhead is the so called Catmull-Rom
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(CR) cubic spline basis [39], which is described by the following polynomials
[with reference to (6.11)]:

C0 (ν) =
1
2
(
−ν3 + 2ν2 − ν

)
C1 (ν) =

1
2
(
3ν3 − 5ν2 + 2

)
C2 (ν) =

1
2
(
−3ν3 + 4ν2 + ν

)
C3 (ν) =

1
2
(
ν3 − ν2

)
.

(6.13)

A quick inspection of (6.13) shows that all the multiplications, except for the
powers of the parameter ν, are by integer coefficients and that they should
be easily implemented in hardware (just one or two shifts or sum-and-shift
operations). This characteristics of the CR spline is important, as it simplifies
the structure of the nonlinear block. A common expression of (6.11), is the
following matrix notation:

Fi (ν) =
[
ν3 ν2 ν 1

] 1
2


−1 3 −3 1
2 −5 4 −1
−1 0 1 0
0 2 0 0




Qi
Qi+1

Qi+2

Qi+3

 (6.14)

which explicits the actual array structure of a curve span: a parameter vector,
a basis matrix and a control point vector, combined using row by column
multiplications.

The general result of (6.14) can be expressed as a pair of cubic polynomi-
als (where a, b, c and d are appropriate constants)

Fui (ν) = axiν
3 + bxiν

2 + cxiν + dxi

Fyi (ν) = ayiν
3 + byiν

2 + cyiν + dyi
(6.15)

In (6.12), the inversion of the first polynomial in (6.15) would be needed
to get the parameters ν and i, which is in turn necessary to generate the
neuron’s output. We could exploit the formulas for the solution of third-
order equations (algebraically or iteratively), but a serious overhead in the
calculations would be introduced. Moreover, this approach gives no valid
answer to the ordering problem that affects the abscissa control points.
There is, however, the regularization property called variation diminishing
property [54, 169, 124], which ensures the absence of unwanted oscillations
of the curve between two consecutive control points, as well as the exact
representation of linear segments. This second statement is particularly
important, as it suggests a simple possible solution to the inversion problem
(6.12): if we uniformly sample the abscissas along the x-axis, then the cubic
polynomial Fui(ν) becomes a first degree polynomial. This approach ensures
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both a fast computation of the local parameters ν and i, and the monotone
ordering of the abscissas, in the case when they are kept fixed.

In this case, let us consider a fixed sample step ∆u = qu,i+1 − qu,i: after
substituting the proper values of the abscissa control points in (6.14), the
function Fui(ν) has the following form:

Fui (ν) =
[
ν3 ν2 ν 1

] 1
2


−1 3 −3 1
2 −5 4 −1
−1 0 1 0
0 2 0 0




qu,i
qu,i + ∆u
qu,i + 2∆u
qu,i + 3∆u


(6.16)

The solution to this equation (6.16) is a linear mapping

Fui (ν) = ν∆u+ qu,i + ∆u = ν∆u+ qu,i+1 (6.17)

in which all the parameters are known. Expression (6.17) is very fast to
compute, and it leads to a negligible computational overhead. Moreover,
it is not necessary to store the qu,i in the table, as these values can now be
determined algorithmically (more on this later).

The (6.15) can now be written as

Fui (ν) = u = cxiν + dxi

Fyi (ν) = y = ayiν
3 + byiν

2 + cyiν + dyi
(6.18)

Operating the inversion ν = Fxi
−1(u), the output y can be computed as a

cubic polynomial which expresses a direct relation between the input u and
the output y of the CR-based nonlinear block

y = Fyi (u) =
ayi
c3
xi

u3 +
(
byi
c2
xi

− 3ayidxi
c3
xi

)
u2+

+
(

3ayid2
xi

c3
xi

− 2byidxi
c2
xi

+
cyi
cxi

)
u+

+
(
byid

2
xi

c2
xi

− ayid
3
xi

c3
xi

− cyidxi
cxi

+ dyi

) (6.19)

The expression (6.19), although simple to understand, cannot be effi-
ciently calculated in this form: it is for the sake of computational efficiency
that we will use (6.14) for the actual computation of Fyi(ν).

The result found in (6.17) is then employed to improve the efficiency of
the complete structure. Therefore, we constrain the control point abscissas
to be equidistant and, most important, not adaptable. Moreover, always for
the sake of efficiency, another constraint is imposed on the control points,
forcing the sampling interval to be centered on the x-axis origin. It is then
possible to represent the abscissa of each point of the activation function
using two parameters (the span index i and the local parameter ν), without
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storing the control points abscissas. All we need to know is how many
control points the curve has, and the sampling step ∆u.

In this sense it is possible to represent the abscissa of each point of the
activation function using two parameters: the span index i and the local
parameter ν. The i index is used to address the local control points, while
the fractional part ν is passed as normalized input to cubic spline function.

A spline approximating its control points is the so-called B-Spline [58,
151, 202]. A comparison between these two schemes is shown in Figure 6.3
which shows graphically the difference between Catmull-Rom Spline and
B-Spline for the mono-dimensional spline function; these expressions differ
only in the entries of the matrix M in eq. (6.22).

Fig. 6.3: Comparison of C-R spline and B-spline

A common expression of these spline activation functions derived from
(6.14), is the following matrix notation:

y = ĥ (i, ν) = Tν ·M ·Qi (6.20)

which makes explicit the actual parameter vector, a basis matrix and a control
points vector, combined using row by column multiplications, where

Tν =
[
ν3 ν2 ν 1

]
, Qi =


Qi
Qi+1

Qi+2

Qi+3

 (6.21)
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where Qi =
[
qu,i qy,i

]T , qu,i and qy,i are the coordinates of the i-th control
point Qi (contained in the two-dimensional vector y) and 0 ≤ ν < 1 is
the local abscissa. If the abscissas along the u-axis are uniformly sampled,
∆u = qu,i+1 − qu,i = const for every i, then the cubic polynomial becomes a
first degree polynomial and the vector y becomes a one-dimensional vector
containing only the y-axis of the curve. The matrix M determines which kind
of spline basis is used and has the following expression for the Catmull-Rom
spline and B-spline:

MCR =
1
2


−1 3 −3 1
2 −5 4 −1
−1 0 1 0
0 2 0 0

 , MB =
1
6


−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0


(6.22)

The entire approximation is represented through the concatenation of
local cubic spline functions each controlled by 4 control points defined by
the two local parameters: i and ν. Given an input value ū we can calculate
these parameters using two internal dummy variables ζ and ζ̄ as follows:

ζ̄ = ū
∆u + N−2

2

ζ =


1ζ̄ < 1

ζ̄1 ≤ ζ̄ ≤ N − 3
N − 3ζ̄ > N − 3

i = bζc
ν = ζ − i

(6.23)

where b•c is the floor operator that returns the highest integer less than or
equal to its input and N is the number of spline control points. In this sense
the spline neuron can be considered composed by two blocks: the first one
computes the two local parameters i and ν while the second one computes
the output neuron y by the local parameters, as shown in Figure 6.4

An additional and important constraint is to force the activation function
to be a limiting function, imposing to be constant for u → ±∞, while
maintaining the ability to modify its shape inside these constant values. We
can fix the first two and the last two control points, as shown in Figure 6.1.
So for each input ū, we can adapt two points on the left and two on the right,
while all the other control points are fixed.

We can generalize the theory discussed above to realize these functions
as hyper-surface interpolation of some control points using higher order
interpolants ([175, 177, 178]. In particular piecewise of cubic spline are here
employed in order to render the hyper-surface continuous in its partial
derivatives. The entire approximation is represented through the concatena-
tion of local functions each centered and controlled by 42 = 16 control points,
which lie on a regular 2D grid in R2, defined over the region 0 ≤ νR, νI < 1,
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Fig. 6.4: The spline neuron

and in matrix formulation it is expressed as follows:

y = ĥ(iR, iI ; νR, νI) = TνI ·M · (TνR ·M ·Q(iR,iI)
[2] )T (6.24)

where TνR =
[
ν3
R ν2

R νR 1
]
, TνI =

[
ν3
I ν2

I νI 1
]
, M is the same

defined in (6.22) and Q(iR,iI)
[2] is a structure collecting the local control points:

Q(iR,iI)
[2] =


Q(iR−1,iI−1) Q(iR−1,iI) Q(iR−1,iI+1) Q(iR−1,iI+2)

Q(iR,iI−1) Q(iR,iI) Q(iR,iI+1) Q(iR,iI+2)

Q(iR+1,iI−1) Q(iR+1,iI) Q(iR+1,iI+1) Q(iR+1,iI+2)

Q(iR+2,iI−1) Q(iR+2,iI) Q(iR+2,iI+1) Q(iR+2,iI+2)


whereQ(iR,iI) =

[
quR,i quI ,i qy,i

]T , quR,i, quI ,i are the abscissas along the
uR-axis and the uI -axis and qy,i is the ordinate of the control point Q(iR,iI).
If the abscissas along the uR-axis and the uI -axis are uniformly sampled, the
structure Q(iR,iI)

[2] becomes a simple 4× 4 matrix. An example of cubic 2D
spline is showed in the following Figure 6.5.

6.2.1 Different spline basis

The spline curve can interpolate or just approximate its control points,
depending on which blending function set we rely on [13]. In this sense
there are different spline basis matrix M except those in eq. (6.22).

Here a non comprehensive list of spline basis is related.
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Fig. 6.5: An example of 2D C-R spline

1. Catmull-Rom spline basis

MCR =
1
2


−1 3 −3 1
2 −5 4 −1
−1 0 1 0
0 2 0 0

 (6.25)

2. B-spline basis

MB =
1
6


−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

 (6.26)

3. Bezier spline basis

MBez =
1
6


−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

 (6.27)
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4. Hermite spline basis

MH =


2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

 (6.28)

5. Beta spline basis, which depends on two parameters β1 and β2

Mβ =
1
∆


−2β3

1 2β2 + 2β1

(
β2

1 + β1 + 1
)
−2
(
β2β

2
1 + β1 + 1

)
2

6β3
1 −3β2 − 6β2

1 (β1 + 1) 6β2
1 + 3β2 0

−6β3
1 6β1 (β1 − 1) (β1 + 1) 6β1 0

2β3
1 4β1 (β1 + 1) + β2 2 0


(6.29)

where ∆ = [(2β1 + 4)β1 + 4]β1 + β2 + 2.

6. Overhauser spline basis, which depends on two parameters α and β

MOV =


− (1−α)2

α β + 1−α
α −1−α

1−β
β2

1−β
2(1−α)2

α −2(1−α)+αβ
α

2(1−α)−β(1−2α)
1−β − β2

1−β

− (1−α)2

α
1−2α
α α 0

0 1 0 0

 (6.30)

6.3 General properties of Spline functions

Spline functions satisfies a certain number of general properties which
make them an interesting tool in many domains. It is helpful to introduce
these properties in this point.

For modeling or interpolating a function, we can use polynomial models.
However, if the order of the polynomial is too small, it will not result in a
good approximation for the rapid varying parts of the function. Conversely,
if the order is chosen too large, the estimated function may be too varying
in the other points. In other words, as shown in [58]

Proposition 1 In a polynomial approximation, if the function to be approximated
is badly behaved anywhere in the interval of approximation, then the approximation
is poor everywhere.

However, by using low order splines (2nd degree or 3rd degree piecewise
polynomial functions) we can well approximate rapid varying parts of a
function (provided that there is enough knot points in that region), without
affecting the other parts of the function.

Another nice property of the splines, is the minimum curvature property
of the cubic splines [4, 83], expressed by the following:
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Theorem 16 (Holladay) Let the mesh a = x0 < x1 < . . . < xN = b and a set of
real numbers {yi}Ni=0 are given. Among all the functions f(x) with a continuous
second order derivative on [a, b] and f(xi) = yi (i = 0, . . . , N), the cubic spline
sp(x) with the knot sequence {xi} and the end conditions sp′′(a) = sp′′(b) = 0 is
the function which minimizes the integral:

b∫
a

∣∣f ′′ (x)
∣∣2dx

Proposition 2 Any k-th order spline with the knot sequence ξ = {ξi}l+1
1 can be

represented as the sum:

sp(x) = a1B1(x) + a2B2(x) + . . .+ aNBN (x)

where Bi(x) are some predetermined and fixed splines which are determined only
by knowing the knot sequence. In other words, {Bi(x)} are the basis functions of
the linear space of the splines with a known knot sequence.

Because of this property, the splines Bi(x) are usually called B-splines.
This property also shows that if we model a function on an interval

(with some predetermined knot sequence), the model is a linear model with
respect to the parameters of the model (i.e. the coefficients ai).

Proposition 3 For a CR-spline the curve tangency lines, at the points Qi+1 and
Qi+2, are parallel to the straight lines passing through the points Qi and Qi+2 and
through the points Qi+1 and Qi+3, respectively (see Fig. 6.6)

Proof. Doing the derivatives of (6.20) with respect of ν, we obtain

∂y
∂ν

∣∣∣
ν=0

= 1
2 (−Qi +Qi+2)

∂y
∂ν

∣∣∣
ν=0

= 1
2 (−Qi+1 +Qi+3)

This justifies the property, as can be seen from Figure 6.6.

Proposition 4 The spline function and its derivative are continuous in their con-
trol points Qi.

Proof. For the i-th span Fi(ν) it is easily to show that

lim
ν→0

Fi (ν) = lim
ν→1

Fi−1 (ν)

lim
ν→1

Fi (ν) = lim
ν→0

Fi+1 (ν)

lim
ν→0

∂Fi(ν)
∂ν = lim

ν→1

∂Fi−1(ν)
∂ν

lim
ν→1

∂Fi(ν)
∂ν = lim

ν→0

∂Fi+1(ν)
∂ν
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Fig. 6.6: Spline property in proposition 3

6.4 Spline implementation of the Complex Activation
Function

The new idea is to use spline-based functions for hR(•) and hI(•) in eq.
(5.3). Thus, remembering the spline matrix formulation in eq. (6.20) we can
use two mono-dimensional spline functions. First we calculate the indexes
span iR and iI , and the local parameters νR and νI , as stated by equations
(6.23), then the AF in eq. (5.3) can be written as follows using eq. (6.20):

yk = hRk (uRk) + jhIk(uIk) = T(uRk) ·M ·QR
iR

+ jT(uIk) ·M ·QI
iI

(6.31)

where yk = yRk + jyIk is the k-th complex output corresponding to the k-th
input uk = uRk + juIk of the k-th activation function, QR

iR
and QI

iI
collect

the control points of the real and imaginary curve, respectively. The data
path is reported in Figure 6.7.

This AF is known as splitting activation function (SAF) and the correspond-
ing neural network is called Complex valued Adaptive Spline Neural Network
(CASNN).

Unfortunately the real and imaginary parts of a complex signal are
usually correlated, not split in separate channels. In this way we need
a better model of the complex AF. In this way, Vitagliano et al. in [214]
proposed a complex neural network based on bi-dimensional spline AF.
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Fig. 6.7: Mono-dimensional spline data path of a complex activation function
(AF)

If we consider the expression (5.4) of a complex function in relation to the
real and imaginary part, we can render each of the two bi-dimensional real
functions hR(uR, uI) and hI(uR, uI) with bi-dimensional splines: one plays
the role of the real part and one the imaginary part of the complex activation
function. This AF is known as generalized splitting activation function (GSAF)
[214, 164].

Using the compact matrix formulation in eq. (6.24) we have for the k-th
AF

yRk = hRk (uRk, uIk) = TνI(uIk) ·M · (TνR(uRk) ·M ·Q
(iR,iI)
[2]R )T ,

yIk = hIk(uRk, uIk) = TνI(uIk) ·M · (TνR(uRk) ·M ·Q
(iR,iI)
[2]I )T ,

yk = yRk + jyIk.

(6.32)

Both the real and imaginary part of the k-th input signal uk are evaluated
by two flexible and bi-dimensional functions. The output of each function is
real-valued; we impose these two outputs to be the real and the imaginary
part of the output of the complex activation function respectively. The data
path is reported in Figure 6.8.
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Fig. 6.8: Bi-dimensional spline data path of a complex activation function (AF)





7
The Flexible Solution

—We often think that when we have completed
our study of one, we know all about two,

because “two” is “one and one”. We forget
that we have still to make a study of “and”.

Sir A. Eddington

EFFICIENT design of the de-mixing strategy requires the choice of a
proper de-mixing model, a cost function able to measure the inde-
pendence of the outputs and an effective optimization method. In

this section a feed-forward neural network will be proposed and investi-
gated as effective de-mixing model. Network parameters will be iteratively
adapted (i.e. learned) on the basis of a measure of the output independence.

As said in Chapter 1 several approaches to blind separation of sources
exist, but in this chapter we focus the attention on a set of algorithms which
are based on the INFOMAX principle introduced by Bell and Sejnowski
in [15]. This learning algorithm maximizes information transferred by the
nonlinear network shown in Figure 7.1, assuming no knowledge on input
vector distribution.

7.1 The INFOMAX algorithm

INFOMAX addresses the problem of maximizing the mutual informa-
tion I(y,x) [55], between the input vector x and an invertible nonlinear
transform of it, y obtained as

y = h (u) = h (Wx) (7.1)

where W is an N × N matrix and h (u) = [h1 (u1) , . . . , hN (uN )]T is the
nonlinear function vector (see the sixth chapter in [77]). Because the mapping

81
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Fig. 7.1: The nonlinear network used to introduce the INFOMAX principle

in eq. (7.1) is deterministic, maximizing I(y,x) is the same that maximizing
the joint entropy H(y). In fact the following relation holds:

I (y,x) = H (y)−H (y|x) (7.2)

where H(y|x) is whatever entropy the output has which did not come from
the input. In the case that we have no noise (or rather, we do not know
what is noise and what is signal in the input), the mapping between x and
y is deterministic and H(y|x) has its lowest possible value (it diverges to
−∞). This divergence is one of the consequences of the generalization of
information theory to continuous variables. What we call H(y) is really the
“differential” entropy of y with respect to some reference, such as the noise
level or the accuracy of our discretization of the variables in x and y. The
above equation can be differentiated as follows, with respect to a parameter,
w involved in the mapping from x to y:

∂

∂w
I (y,x) =

∂

∂w
H (y) (7.3)

because H(y|x) does not depend on w.
In this way INFOMAX is equivalent to the entropy maximization.

The aim of INFOMAX algorithm is to adapt the entries of the matrix W
maximizing the joint entropy H(y) in (7.2). In order to derive the learning
algorithm let we pose px (x) and py (y) the probability density functions
(pdf) of the network input and output respectively which have to satisfy the
relation [144]:

py (y) =
px (x)
|det J|

(7.4)

where |•| denotes the absolute value and J the Jacobian matrix of the trans-
formation: J = [∂yi/∂xj ]ij .
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Fig. 7.2: Nonlinearities hi used in the recovering network

The nonlinear transformations hi(ui) are necessary for bounding the
entropy in a finite range [218]. Indeed, when hi(ui) is bounded c ≤ hi(ui) ≤
d (see Figure 7.2), for any random variable ui the entropy of yi = hi(ui) has
an upper bound:

H(yi) ≤ ln(d− c)
Therefore, the joint entropy of the transformed output vector is upper
bounded:

H(y) ≤
N∑
i=1

H(yi) ≤ N ln(d− c) (7.5)

In fact, the above inequality holds for any bounded transforms, so the
global maximum of the entropy H(y) exists. H(y) may also have many
local maxima determined by the functions hi used to transform u.

Since the joint entropy of network output is defined asH (y) = −E {ln py (y)}
[55], where E {•} is the expected value operator, substituting into it the (7.4)
we obtain:

H (y) = E {ln |det J|}+H (x) . (7.6)

Now we can note that ∂yi
∂xj

= ∂yi
∂ui

∂ui
∂xj

= h′i (ui) · wij , so we obtain

ln |det J| = ln det W +
N∑
i=1

ln
∣∣h′i∣∣. (7.7)

Hence, the expression of the joint entropyH(y) (ignoring the expected value
operator E {•}, replacing by instantaneous values) is:

H (y) = H (x) + ln det W +
N∑
i=1

ln
∣∣h′i∣∣. (7.8)

The maximization (or minimization) of a generic cost function L{Φ}
with respect a parameter Φ can be obtained by the application of the stochas-
tic gradient method at (l + 1)-th iteration

Φ (l + 1) = Φ (l) + ηΦ
∂L {Φ (l)}

∂Φ
= Φ (l) + ηΦ∆Φ (l) (7.9)
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where ηΦ is the learning rate.
Remembering that H(x) is not affected by the parameters that we are

learning, it is possible to write the learning rule for the matrix w using the
stochastic gradient method in (7.9) as follows:

∆W =
∂H (y)
∂W

= W−T + ΨxT (7.10)

where W−T =
(
W−1

)T , Ψ = [Ψ1, . . . ,ΨN ]T and Ψk = h′′k (uk)/h′k (uk).
But what is the relationship between INFOMAX and ICA?

For this scope we can introduce the mutual information of the linear outputs
u as the Kullback-Leibler distance [55] of the output distribution I (u) =
E
{

ln
(
pu (u)

/∏N
i=1 pui (ui)

)}
, where pu(u) is the joint pdf of the output

vector u and pui(ui) are the marginal pdfs. Using this relation and the (7.7)
in the definition of entropy, after some easy passes:

H (y) = −
∫
py (y) ln py (y)dy = −E {ln py (y)} =

= −E

ln pu(u)
N∏
i=1
|h′i|

 = −E {ln pu (u)}+ E

{
ln

N∏
i=1
|h′i|
}

=

= −E {ln pu (u)}+ E

{
ln

N∏
i=1

pui (ui)
}
− E

{
ln

N∏
i=1

pui (ui)
}

+ E

{
ln

N∏
i=1
|h′i|
}

=

= −E

ln pu(u)
N∏
i=1

pui (ui)

+ E

{
N∑
i=1

ln |h′i|
pui (ui)

}
=

= −I (u) + E

{
N∑
i=1

ln |h′i|
pui (ui)

}
we obtain:

H (y) = −I (u) + E

{
N∑
i=1

ln
|h′i|

pui (ui)

}
. (7.11)

Thus if |h′i| = pui (ui) (∀i) then maximizing the joint entropy H(y) is equiv-
alent to minimizing the mutual information, that is the Kullback-Leibler
divergence (which is a measure of the independence of the ui signals) and
so the ICA problem is solved. In this way hi(ui) should be the cumulative
density function (cdf) of the i-th estimated source. The use of an adaptive
AF can successfully fulfills the matching of hi(ui) to the cdf of the i-th source
[166].

Moreover remembering the eq. (7.5), the use of a cdf-like function for
the hi functions allows the joint entropy H(y) to have in H(y) = 0 its global
maximum (because c = 0 and d = 1), see Figure 7.2.

From (7.11) the INFOMAX algorithm can be performed by two equiv-
alent approach: maximizing the joint entropy of the network output (ME
approach) or minimizing the mutual information (MMI approach) [218, 191].
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Fig. 7.3: The overall model in the linear case

Our approach performs separation by maximization of the joint entropy
of the network outputs y, extending the conventional real-domain INFO-
MAX algorithm to the complex domain [26]. The choice of the ME approach
is supported by the fact that the joint entropy is an intuitively meaningful
contrast function (an objective function for source separation, which mea-
sures the statistical independence), it usually allows simple learning rules
and it is closely related to several other approaches [111].

7.2 The demixing algorithm in the linear environment

The overall system is shown in Figure 7.3, while the architecture used to
realize the model W in (4.2) is particularized in Figure 7.4.

Let we consider first the case of using the splitting activation function in
(5.3) realized through the mono-dimensional spline activation function in
(6.31) [166], assuming

y = h (u) = hR(uR) + jhI(uI)
yk = yRk + jyIk = hRk(uRk) + jhIk(uIk)

(7.12)

where h is the activation function vector and yk is the k-th element in y, the
expression of the complex output vector y can be rewritten by using only
real terms:

ỹ =
[

yR [n]
yI [n]

]
=
[

hR (uR [n])
hI (uI [n])

]
. (7.13)

In this way ỹ is a real vector of 2N elements. Considering a de-mixing model
with parameters Φ = {wij ,Φh |∀i, j }, where wij are the entries in matrix W
and Φh =

{
QhR, Q

h
I

}
are the spline control points for the real and imaginary
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Fig. 7.4: De-mixing model in linear environment. The activation functions are
realized with splitting functions

part of the AF, the cost function to be maximized is the joint entropy of the
signals after the activation functions, similarly to the eq. (7.6):

L{y [n] ,Φ} = H (ỹ) = −E {ln (pỹ (ỹ))} = H (x̃) + E
{

ln
(
J̃
)}

. (7.14)

In eq. (7.14) the output pdf pỹ (ỹ) can be expressed using eq. (7.4) as a
function of the model’s parameters and of H(x̃) which does not depend
on the model’s parameter. In this case the Jacobian of the transformation
between x̃ and ỹ can be expressed as follows:

det
(
J̃
)

=
N∏
k=1

˙̃yk det
(
W̃
)
. (7.15)
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In eq. (7.15) ˙̃yk is the derivative of the k-th elements of ỹ.
Having explored the mixing model, the associated cost function and the

recovering network, the next step is to derive the learning rules. Substituting
eq. (7.15) in eq. (7.14) we obtain the cost function whose derivation with
respect the elements of Φ leads to

∂

∂Φ
L{y,Φ} =

∂

∂Φ

[
ln
(

det
(
W̃
))

+
N∑
k=1

ln ẏRk +
N∑
k=1

ln ẏIk

]
(7.16)

where ˙̃yRk and ˙̃yIk denote the derivative of the k-th real and imaginary parts
of the network output y. In eq. (7.16) expected values have been replaced
by instantaneous values.

Maximization of eq. (7.16) by the stochastic gradient method in eq. (7.9)
yields three learning rules (see [200] for major details). The learning rule for
the network’s weights is:

∆W = ∆WR + j∆WI = W−H + ΨxH (7.17)

whereH is the Hermitian operator, W−H =
(
W−1

)H , Ψ = ΨR+jΨI , ψR =
[ΨR1, . . . ,ΨRN ]T , ψI = [ΨI1, . . . ,ΨIN ]T , ΨRk = ÿRk/ẏRk, ΨIk = ÿIk/ẏIk, ẏRk
is the derivative of the k-th real part element of y while ÿRk is the second
order derivative and similarly for the imaginary counterpart ẏIk and ÿIk. Us-
ing the matrix notation in eq. (6.20) the terms ΨRk and ΨIk can be expressed
as follows:

ΨRk = 1
∆uR

T̈νRMQh
R

ṪνRMQh
R

,

ΨIk = 1
∆uI

T̈νIMQh
I

ṪνIMQh
I

(7.18)

where ṪνR =
[

3ν2
R 2νR 1 0

]
, T̈νR =

[
6νR 2 0 0

]
and similar for

the imaginary counterpart ṪνI and T̈νI .
The learning rules for the spline activation functions are:

∆Qh
R,k,i+m

= ṪνR(uRk)(M)m
ṪνR(uRk)MQh

R,k,i+m

,

∆Qh
I,k,i+m

= ṪνI(uIk)(M)m
ṪνI(uIk)MQh

I,k,i+m

(7.19)

where (M)m is the m-th column of the M matrix.

7.2.1 The use of the generalized splitting function

We can generalize this algorithm using the generalized splitting function
in eq. (5.4) realizing the complex AFs with the bi-dimensional spline function
in eq. (6.32) [164, 165, 166] shown in Figure 7.5. In this case the algorithm is
formally very similar to the previous case: the learning rule for the matrix
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weights wij is formally identical to eq. (7.17), but the generic k-th terms ΨRk

and ΨIk of the vector Ψ contain the partial and cross derivatives of network
outputs yRk and yIk (outputs of bi-dimensional functions) with respect the
two variables uRk and uIk:

ψiR = 2
∂yiR
∂uiR

∂2yiR
∂u2
iR

+
∂yiR
∂uiI

∂
∂uiR

∂yiR
∂uiI(

∂yiR
∂uiR

)2
+
(
∂yiR
∂uiI

)2

ψiI = 2
∂yiR
∂uiI

∂2yiR
∂u2
iI

+
∂yiR
∂uiR

∂
∂uiI

∂yiR
∂uiR(

∂yiR
∂uiR

)2
+
(
∂yiR
∂uiI

)2

(7.20)

Using the matrix notation in eq. (6.24) the terms ΨRk can be expressed as

Fig. 7.5: De-mixing model in linear environment. The activation functions are
realized with generalized splitting functions
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follows:

ψiR = 2
∆

( (
TIi·M·(ṪRi·M·QRi)T

)(
TIi·M·(T̈Ri·M·QRi)T

)
(
TIi·M·(ṪRi·M·QRi)T

)2
+(ṪIi·M·(TRi·M·QRi)

T )2
+

+
(ṪIi·M·(TRi·M·QRi)

T )
(
ṪIi·M·(ṪRi·M·QRi)T

)
(
TIi·M·(ṪRi·M·QRi)T

)2
+(ṪIi·M·(TRi·M·QRi)

T )2

) (7.21)

and similarly for ΨIk.
The learning rule for the real activation function becomes

∆Qh
R,k,iR+mR,iI+mI

=
∂ ln

((
∂yiR
∂uiR

)2
+
(
∂yiR
∂uiI

)2
)

∂Qj,iR+mR,iI+mI
=

=


0 i 6= j

2
∂yjR
∂ujR

∂
∂Qj,iR+mR,iI+mI

∂yjR
∂ujR

+
∂yjR
∂ujJ

∂
∂Qj,iR+mR,iI+mI

∂yjR
∂ujI(

∂yjR
∂ujR

)2

+

(
∂yjR
∂ujI

)2
i = j

(7.22)
Using the matrix notation in eq. (6.24) we obtain

∆Qh
R,k,iR+mR,iI+mI

= 2

 (
TνI ·M·

(
ṪνR·M·Q

(iR,iI )

[2]R

)T)(
TνI ·MmJ

·(ṪνR·MmR)T
)

(
TνI ·M·

(
ṪνR·M·Q

(iR,iI )

[2]R

)T)2

+

(
ṪνI ·M·

(
TνR·M·Q

(iR,iI )

[2]R

)T)2 +

+

(
ṪνI ·M·

(
TνR·M·Q

(iR,iI )

[2]R

)T)(
ṪνI ·Mm

J
·(TνR·MmR)T

)
(

TνI ·M·
(
ṪνR·M·Q

(iR,iI )

[2]R

)T)2

+

(
ṪνI ·M·

(
TνR·M·Q

(iR,iI )

[2]R

)T)2


(7.23)

where Mk is a matrix in which all the elements are zero, except the k-th
column, which is equal to the k-th column of the matrix M. A similar
equation can be resulted for the imaginary surface ∆Qh

I,k,iR+mR,iI+mI
. For a

complete derivation of the learning rules see appendix C.1 and [165].

7.3 The choice of the de-mixing model in the nonlin-
ear case

In designing the de-mixing model in the nonlinear environment, it is
important to find the theoretical conditions in terms of sources, mixing envi-
ronment and recovering architecture capable of guaranteeing the existence
of the solution [183].

The model of nonlinear complex compensating functions G (x [n]) and
the activation functions (AF) considered in this chapter are realized by
splitting function according to (5.3) (technical details on the implementation
of splitting functions will be given in the following sections).
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Let U be the set of all complex vectors u with joint pdf pu(u) (see Figure
2.4) having independent components ui with marginal pdf pui(ui) [166]

U =

{
u

∣∣∣∣∣pu (u) =
∏
i

pui (ui); u = G {x} = G ◦ F {s} = H{s}

}
(7.24)

where H(•) is an unspecified application with a non-diagonal Jacobian
matrix in general. As a matter of fact, it is possible to find an infinite number
of models G(•) such that u = G {x} ∈ U , but not all of them have a diagonal
Jacobian matrix. So most of the solutions in U are not of interest, meaning
that output independence by itself is a weak approach to the BSS problem
in a general nonlinear environment.

Considering the splitting realization of the complex nonlinear distorting
function F (v [n]) = FR (vR [n])+jFI (vI [n]), FR(vR[n]) = [fR1(vR1[n]), . . . ,
fRN (vRN [n])]T and FI (vI [n]) = [fI1 (vI1 [n]) , . . . , fIN (vIN [n])]T , the com-
plex domain mixing environment in (4.3), represented in [211, 212], can be
rewritten in the following way:

x̃ [n] =
[

xR [n]
xI [n]

]
=
[

FR (vR [n])
FI (vI [n])

]
,

ṽ [n] =
[

vR [n]
vI [n]

]
=
[

AR −AI

AI AR

] [
sR [n]
sI [n]

]
= Ãs̃

(7.25)

where AR and AI are the real and imaginary parts of the complex mixing
matrix A = AR + jAI .

Equations (7.25) have the very attractive property of involving only real
quantities, thus making it possible to convert complex mixing models into
real models of increased size.

It is now possible to define the de-mixing models and to design the
network performing the source separation. In particular, a priori knowledge
about the mixing model is exploited to design the recovering network. So
the mirror model in eq. (4.4) has been introduced to grant the existence and
the uniqueness of the solution (up to the trivial indeterminacy of the ICA
approach to BSS) as described in [208, 212].

The nonlinear complex compensating functions G (•) have been re-
alized as splitting functions according to eq. (5.3): G (xR [n] + jxI [n]) =
GR (xR [n]) + jGI (xI [n]).

Similarly to eq. (7.25) it is possible to express the complex de-mixing
model in eq. (4.4) by using real expressions only:

ũ =
[

uR [n]
uI [n]

]
=
[

WR −WI

WI WR

] [
GR (xR [n])
GI (xI [n])

]
= W̃ · G̃ [x̃] (7.26)

in which GR (xR [n]) = [gR1 (xR1 [n]) , · · · , gRN (xRN [n])]T and GI (xI [n]) =
[gI1 (xI1 [n]) , · · · , gIN (xIN [n])]T are the real and imaginary parts of the non-
linear compensating functions while WR and WI are the real and imaginary
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parts of the complex mixing matrix W = WR + jWI . Equation (7.26) rep-
resents a real-valued PNL model and preserves all the properties of PNL
BSS in the real domain. In particular it is possible to extend to the complex
domain the results of [186] for the real PNL case (already applied in [208]
for the real convolutive PNL mixture, also known as C-PNL), specifically
the proof of existence and uniqueness of the solution.

For the problem herein considered, elements of set U , under proper
constraints, differ only for a trivial ambiguity if the mixing model is eq. (4.3)
and the de-mixing model is eq. (4.4). This is shown in the following theorem
[212, 166].

Theorem 17 Given the nonlinear complex mixing model F {A,F} in eq. (4.3)
and the recovery model G {G,W} in eq. (4.4), let us assume that:

a A is a non-singular matrix of non zero entries (both for real and imaginary
part) and not absolutely degenerate;

b fRi(·), fIi(·), gRi(·), gIi(·) (i = 1, . . . , N ) are diagonal, differentiable, in-
vertible and zero preserving monotonic functions;

c s[n] = sR[n] + jsI [n] is a complex random vector in which sR[n], sI [n] ∈ R.
The components of s[n] are statistically independent and have finite support;

d the pdf of si[n] (i = 1, . . . , N ) vanishes for at least one complex component,
i.e. i = l.

Then the components of the output vector u[n] = uR[n] + juI [n] are independent
if and only if:

u [n] = PΛs [n] =P

 λ1 0
. . .

0 λN

 s [n] (7.27)

In eq. (7.27) P is a real permutation matrix and Λ is a complex diagonal matrix
such that each element can be only purely real or imaginary.

Proof. See Appendix C.2.
Theorem 17 ensures the existence and uniqueness of the solution at the

expense of strong constraints on the real and the imaginary parts of the
signals.

7.4 The demixing algorithm in the nonlinear environ-
ment

The overall system is shown in Figure 7.6 while the architecture used to
realize the model G {G,W} in eq. (4.4) is particularized in Figure 7.7.
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Fig. 7.6: The overall model in PNL case

Fig. 7.7: De-mixing model in nonlinear environment

7.4.1 The ME algorithm

In the same way as the case of linear environment the de-mixing algo-
rithm is based on an extension of the INFOMAX algorithm [15], performing
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the ME approach.
The network output y is similar to eq. (7.12) [210, 209, 166]. The network

parameters are Φ = {wij ,Φh,ΦG |∀i, j }, where wij are the entries in matrix
W, Φh =

{
QhR, Q

h
I

}
are the spline control points for the real and imaginary

part of the AF and ΦG =
{
QGR, Q

G
I

}
are the spline control points for the real

and imaginary part of the nonlinear compensating functions G(•). So using
eq. (7.13) the cost function L{y [n] ,Φ} to be maximized is the joint entropy
in eq. (7.14).

In this case the Jacobian of the transformation between x̃ and ỹ can be
expressed as follows:

det
(
J̃
)

=
N∏
k=1

˙̃yk ˙̃rk det
(
W̃
)
. (7.28)

In eq. (7.28) ˙̃yk and ˙̃rk are the derivative of the k-th element of ỹ and r̃
respectively.

Inserting eq. (7.28) in the derivation of the cost function eq. (7.14) with
respect to the elements of parameters Φ we obtain

∂

∂Φ
L{y,Φ} =

∂

∂Φ

[
ln
(

det
(
W̃
))

+
N∑
k=1

ln ẏRk +
N∑
k=1

ln ẏIk +
N∑
k=1

ln ṙRk +
N∑
k=1

ln ṙIk

]
.

(7.29)
In eq. (7.29) expected values have been replaced by instantaneous values.

Maximization of eq. (7.29) by the stochastic gradient method eq. (7.9)
yields to five learning rules (see [212] for major details). The learning rule
[210, 209, 166] for the network’s weights is:

∆W = ∆WR + j∆WI = W−H + ΨrH (7.30)

that is formally identical to eq. (7.17) and Ψ is defined analogously. The
learning rules for the spline activation functions are:

∆Qh
R,k,i+m

= Ṫν(uR)(M)m
Ṫν(uR)MQh

R,k,i+m

,

∆Qh
I,k,i+m

= Ṫν(uI)(M)m
Ṫν(uI)MQh

I,k,i+m

(7.31)

where (M)m is a vector composed by the m-th column of the matrix M. The
learning rules for the spline compensating functions are:

∆QG
R,k,i+m

= Ṫν(uR)(M)m
Ṫν(uR)MQG

R,k,i+m

+ Re
{
Ψ
(
WH

)
k

}
1
2Tν (uR) (M)m ,

∆QG
I,k,i+m

= Ṫν(uI)(M)m
Ṫν(uI)MQG

I,k,i+m

+ Im
{
Ψ
(
WH

)
k

}
1
2Tν (uI) (M)m

(7.32)
where (W)m is a vector composed by the k-th column of the matrix W,
Re {•} and Im {•} are the operators that return the real and imaginary parts
of their inputs, respectively. For a complete derivation of the learning rules
see Appendix C.3 and [212].
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Fig. 7.8: The demixing model for the MMI algorithm

7.4.2 The MMI algorithm

An alternative algorithm can be obtained using the MMI approach de-
ducing similar learning rules. This approach is presented in [211] and Ap-
pendix C.4.

The de-mixing model in nonlinear case and using the MMI approach is
shown in Figure 7.8, where the differences with the ME approach are clear:
the presence of the “Score Function Estimation” block and the absence of the
Activation function.

The cost function is the Mutual Information that is the Kullback-Leibler
divergence between the joint pdf pu(u) and the product of its marginal

pdfs
N∏
i=1

pui (ui) (see eq. (7.11)). In this way we can measure the statistical

independence directly. Therefore the cost function is

L{ũ[n],Φ} = I (ũ[n]) = E {log (px̃ (x̃))} − E
{

log
(

det
(
J̃
))}

+

−
N∑
i=1

E {log (pũ (ũ))}
(7.33)

Given the free parameters Φ =
{
wij ,Qg,QSC

}
, eq. (7.33) leads to learning
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rules for matrix weights wij and nonlinear compensating function QNL
G that

are formally identical to those obtained (eqs. (7.30) and (7.32)) from the ME
approach. In the learning rule for the matrix weights:

∆W = ∆WR + j∆WI = W−H + ΨrH (7.34)

the term Ψ = ΨR + jΨI , where ΨRk = ṗuRi(uRi)/puRi(uRi) and ΨIk =
ṗuIi(uIi)/puIi(uIi) contains the derivatives of the pdf of the i-th estimated
source and are known as score functions (SF)1.

The problem is now the estimation of these score functions: for this
reason the block “Score Function Estimation” is inserted in the network in
Figure 7.8.

In the totally blind case there is no a priori information on the hidden
sources or output pdf. This is the reason why the output pdf should be
estimated only during the learning phase, since output signals may change.
Using a predetermined SF based on some a priori estimation is theoretically
possible but leads to worse convergence performance. As a matter of fact,
the matching between signals’ pdf and the corresponding SFs is a critical
issue for the learning algorithm, since it determines the performance in
separation. In [183] the Gram-Charlier approximation was compared to
the MLP estimator in estimating the pdf and the SFs. In [67] a polynomial
function with adaptively learning coefficients was proposed. In [146, 40]
a linear parametric estimation model based on a projection in a subspace
spanned by nonlinear functions was described. All these approaches are
limited by the fact that learning is not local and in several cases is performed
off-line.

In [40] direct estimation of SFs by the least mean square (LMS) algorithm
[75] was described. Parameters were estimated by minimizing the mean
square error εk for each output channel k

εk =
1
2
E

{[
Ψ̃k (uk,Φ)− ṗuk (uk)/puk (uk)

]2
}
, k = 1, . . . , N (7.35)

In eq. (7.35) Ψ̃k(uk,Φ) is the spline model of the SF, while E {•} is the
expectation operator.

Derivation of the cost function as shown in Appendix C.4 yields the
gradient expression for the spline control points QSC :

∂ε
∂QSCR

= TRMTRMQSC
R − 1

∆ṪRM
∂ε

∂QSCI
= TIMTIMQSC

I − 1
∆ṪIM

(7.36)

where ∆ is the difference between the abscissas of adjacent control points.

1Sometimes score functions are defined in literature with minus sign.
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7.5 The Renyi’s Entropy

An analogue algorithm can be obtained considering the Renyi’s Entropy
of order α which is denoted by HRα [217, 158]:

HRα =
1

1− α
log

 +∞∫
−∞

(py (y))α dy

 (7.37)

It is useful to remember that lim
α→1

HRα (y) = H (y), that is the classical

Shannon entropy [55, 77].
Applying the eq. (7.37) to the joint network output py(y) and following

the calculation proposed in the previous sections (see Appendix C.5), we
obtain:

∆W ∝ ∂HRα

∂W
= − α

1− α
[
W−H + ΨxH

]
(7.38)

We can see that eq. (7.38) is formally identical to eq. (7.17) or (7.30): the only
thing that changes is a constant term which can be adsorbed in the learning
rate.

Some authors used the Renyi’s entropy of order α = 2, called quadratic
entropy [152, 153, 77]. The use of Renyi’s Mutual Information was also pro-
posed [79].

7.6 Other approaches

Before showing experimental results we want to summarize briefly other
approaches to the problem of BSS in complex domain. The aim of this section
is not to describe each approach (see references for this scope) but only to
have an overview of the most meaningful results showing the progress of
the research in this field. The existent approaches perform separation only
in linear and instantaneous environment.

In 2000 a complex-valued version of the well-known Fast ICA algorithm
algorithm was proposed [21]. This algorithm is based on a non-Gaussianity
maximization derived from the Negentropy [55] but it works well only for
circular sources [148, 134].

Recently in [113] a class of complex-valued ICA algorithms by maximiz-
ing the kurtosis cost function is derived.

Moreover Cardoso and Adali in [38] proposed an approach based on
the maximization of the log-likelihood function extended in [114]. This
approach is strongly linked with the INFOMAX principle [111]. A maximum
likelihood (ML) solution to BSS problem was first derived in [146].

Lately Novey and Adali in [137] solved the limit on circularity in the
complex Fast ICA using complex analytic functions by introducing the
complex maximization of non-Gaussianity (CMN) algorithm. The authors also
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showed the connection among ICA methods through maximization of non-
Gaussianity, mutual information and maximum likelihood (ML) for the
complex case.

7.7 Natural gradient adaptation

The stochastic gradient technique is widely used in literature for maxi-
mizing or minimizing a cost function. It is a very simple approach but, if
data lies in a Riemannian space S = {ϑ ∈ C}, the convergence can be very
slow or the solution can fall in a local solution.

To avoid these problems the natural gradient is introduced [6, 77] for an
arbitrary functional J(ϑ) defined in the space S:

∇̃J(ϑ) = G−1(ϑ)∇J(ϑ) (7.39)

where ∇J(ϑ) is the standard stochastic gradient, G−1(ϑ) is the inverse of
the metric tensor and ∇̃J(ϑ) is the natural gradient.

Amari has demonstrated in [6] that the inverse of the metric tensor in
(7.39) is a very simple expression in the Lie group, i.e. the space of invertible
matrices Wn×n, namely GL(n,R). It is simply

∇̃J(W ) = ∇J(W )W TW (7.40)

Using (7.40) the ME algorithm (7.17) becomes the following one:

∆W = (I + ΨuH)W (7.41)

This algorithm is numerically more efficient than the classical one since that
it avoids the inversion of the W matrix.

In addition some new riemannian metrics are introduced in [10] and
[180], in order to improve the convergence speed. The authors introduced
four additional and alternative algorithms in a riemannian space. The new
idea is based on an alternative natural gradient formulation, imposing that
the inner product in a riemannian space be invariant under translation in
such space. In this way five different natural gradient expression can be
derived:

∇̃RJ(W ) = ∇J(W )W TW (7.42)

∇̃LJ(W ) = WW T∇J(W ) (7.43)

∇̃LRJ(W ) = (WW T )∇J(W )(W TW ) (7.44)

∇̃RRJ(W ) = ∇J(W )(W TW TWW ) (7.45)

∇̃LLJ(W ) = (WWW TW T )∇J(W ) (7.46)

namely the right natural gradient (7.42), which is the standard natural gra-
dient (7.40) introduced in [6], the left natural gradient (7.43), the right/left
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natural gradient (7.44), the right/right natural gradient (7.45) and the left/left
natural gradient (7.46) rispectively.

Using (7.43)-(7.46) the ME algorithm (7.17) becomes [167]:

∆W = W(I + WHΨxH) (7.47)

∆W = WWH(I + ΨuH)W (7.48)

∆W = (I + ΨuH)WHWW (7.49)

∆W = WWWH(I + WHΨxH) (7.50)

It should be noted that algorithms (7.48)-(7.50) do not satisfy the equiv-
ariance property [35].

7.7.1 The equivariance property

When a transformation on the data is equivalent to a transformation
of the parameter, the notion of equivarihnce is of relevance. An estimator
behaves “equivariantly” if it produces estimates that, under data transforma-
tion, are transformed accordingly.

Definition 25 An estimator A for A (Â = A(X)) is said to be equivariant if for
every non-singular matrix M it satisfies:

A (MX) = MA (X) (7.51)

The key property shared by equivariant estimators for source separation
is that they offer uniform performance. This is to be understood in the follow-
ing sense. Assume that the source signals are estimated as ŝ(t) = Â−1x(t),
where Â is obtained from an equivariant estimator. Then,

ŝ (t) = (A (X))−1 x (t) = (A (AS))−1 As (t) =

= (AA (S))−1 As (t) = A (S)−1 s (t)
(7.52)

where we have only used the equivariance property in eq. (7.51).
The last equality reveals that source signals estimated by an equivariant

estimator A for a particular realization S depends only on S but do not
depend on the mixing matrix A. It follows that in terms of signal separation,
the performance of an equivariant algorithm does not depend at all on the
mixing matrix.

This fact implies that, posing C = WA, the natural gradient algorithm
(7.41) depends only on C:

∆W ·A = (I + ΨuH)WA = (I + ΨuH)C (7.53)

It is clear that the expression of ∆W depends only on C.
This property is not satisfied by all the other algorithms (7.47)-(7.50).

Let we suppose that the mixing matrix A is a unitary matrix (AAH =
AHA = I), then:
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1. ∆W ·A = W(I + ΨxH)A;

2. ∆W · A = WWH(I + ΨuH)WA = WAAHWH(I + ΨuH)C =
CCH(I + ΨuH)C;

3. ∆W ·A = (I + ΨuH)WHWWA = (I + ΨuH)WHAHAWC = (I +
ΨuH)CHCC;

4. ∆W ·A = WWWH(I + ΨxH)A.

We note that the left and left/left algorithms in eqs. (7.47) and (7.50) respec-
tively do not satisfy the equivariance property: we expect a poor perfor-
mance behavior (see the experimental tests in Section 9.4).





8
Special Topics

—Gather up the fragments that remain, that
nothing be lost.

John 6:12

IN this chapter three interesting results are shown. In particular we show
that splines are universal functions for the blind source separation
problem: the flexibility of this kind of function makes splines suitable

for separation of both super-gaussian and sub-gaussian sources. A second
result is that the splitting solution allows the proposed algorithm to recover
the original phase. Moreover it shows a Cramér-Rao lower bound for ICA
solution.

8.1 The universality of spline function

A main issue in Blind Signal Separation (BSS) problem is the stability
analysis of the algorithm [7, 215, 125] and the properties which have to be
satisfied by the nonlinear function involved in the learning process.

Several studies on the convergence of the algorithm (7.41) exist and it
is pointed out that the function Ψ(u) must satisfy the following equation
[7, 215, 125]

E
{

Ψ
′
(u)
}
E
{
u2
}

+ E
{
Ψ(u)uT

}
> 0 (8.1)

In order to demonstrate that spline function satisfy the eq. (8.1) it is useful
to introduce some results on score functions (SC) derived from [11].

Definition 26 (Score Function) The score function of a scalar random variable

101
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x is the log derivative of its density1:

ϕx (x) ∆=
d

dx
ln px (x) =

p′x (x)
px (x)

(8.2)

In conjunction with this definition, we define two different types of score
functions for a random vector x = [x1, . . . , xN ]T :

Definition 27 (MSF) The Marginal Score Function (MSF) of x is the vector of
score functions of its components. That is:

φx (x) ∆= [φ1(x1), . . . , φN (xN )]T (8.3)

where

φi (xi)
∆=

d

dxi
ln pxi (xi) =

p′xi (xi)
pxi (xi)

Definition 28 (JSF) The Joint Score Function (JSF) of x is the gradient of
lnpx(x), that is:

ϕx (x) ∆= [ϕ1(x1), . . . , ϕN (xN )]T (8.4)

where

ϕi (xi)
∆=

∂

∂xi
ln px (x) =

∂
∂xi
px(x)

px (x)

Lemma 7 The components of a random vector x = [x1, . . . , xN ]T are independent
if and only if

ϕx(x) = φx(x)

Lemma 8 Let x be a random variable with the PDF px(x) and the score function
ϕx(x). Moreover, let f be a continuously differentiable function and lim

x→±∞
f (x) px (x) =

0. Then
E {f (x)ϕx (x)} = E

{
f ′ (x)

}
(8.5)

Corollary 2 For a bounded random variable x, we have:

E {ϕx (x)x} = 1 (8.6)

Therefore it is helpful to give the following

1Sometimes score functions are defined in literature with minus sign.

ϕx (x)
∆
= − d

dx
ln px (x) = −p′x (x)

px (x)
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Proposition 5 Let u = Ax, where x and u are random vectors and W is a
non-singular square matrix. Then

ϕu(u) = W−Tϕx(x) (8.7)

Proof. From u = Ax we have

pu(u) =
px(x)
|detW|

⇒ lnpx(x) = lnpu(u) + ln |detW|

Therefore, for i = 1, . . . , N we ca write

ϕx,i (x) = − ∂

∂xi
ln px (x) = − ∂

∂xi
ln pu (u) =

= −
N∑
k=1

∂

∂uk
ln pu (u) · ∂uk

∂xi
=

N∑
k=1

wkiϕu,k (u)

where ϕx,i(x) and ϕu,i(u) denote the i-th components of the joint score
function of x and y, respectively. From the above relation, we have ϕu(u) =
W−Tϕx(x), which proves the property.

In Section 7 we have seen that the flexible activation functions hi(xi)
adapt their shape to the shape of the cumulative density function (cdf) of
the original sources [162]. In this way it is evident that for the real-valued
case the terms Ψi of Ψ vector in the learning rule, coincides with the score
functions. In fact

Ψi =
h′′i
h′i

=
p′xi
pxi
≡ ϕi

This fact justifies the following

Theorem 18 The spline function previous introduced always satisfies the condition
(8.1).

Proof. It is possible to explicitly quantify the single terms in eq. (8.1). From
eqs. (8.6) and (8.7) we obtain

E
{
Ψ (u) uT

}
= E

{
W−TΨ (x) xTWT

}
=

= W−TE
{
Ψ (x) xT

}
WT = W−TWT = I

and therefor for each component E {Ψi (ui)ui} = 1,∀i = 1, . . . , N . More-
over

E
{
u2
}

= σ2
u ≥ 0

From eq. (8.5) we can obtain

E
{
Ψ′ (u)

}
= E

{
Ψ2 (u)

}
≥ 0
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This result justifies eq. (8.1), hence the theorem.
This result allows us to consider splines as the universal functions for

the Blind Source Separation problem: in fact the flexibility of this kind of
functions makes splines suitable for separation of both super-gaussian and
sub-gaussian sources [162]. In this way the constraint in eq. (8.1) is alway
satisfied, as stated by Theorem 18.

Performing some simple mathematical manipulation is not too difficult
to demonstrate Theorem 18 in the complex domain. In this case the terms
ΨRi and ΨIi of the complex vector Ψ are a little more complicated than the
real-valued case.

8.2 Phase recovery

As we have seen in Chapter 4 the scaling ambiguity in the complex domain
causes a rotation ambiguity too. In this sense it is not possible to recover the
original phase of the original source generally. In this section we introduce
two constraints that allows the proposed algorithms to recover the phase
information [78].

In conventional BSS using an algorithm such as the complex INFOMAX
algorithm, the recovered complex source signals may have undetermined
component order and phase. While component order may be recoverable us-
ing some side information in practice (e.g., sources with different signal con-
stellations or some frame-level information), phase rotation is undesirable in
communications signal. In such applications, we can usually assume that the
complex signals have independent I/Q components [17, 18, 205, 204, 213].
Note that this assumption holds for equally likely points in square quadrature
amplitude modulation (QAM) constellations but not for phase shift keying (PSK)
constellations. If channel coding is involved, strict I/Q independence may
not hold, although approximate I/Q independence may be a reasonable
assumption. To recover the phase rotation of each source at the time of
source separation, a constrained BSS technique can be defined to separate
sources as well as recover source phases for I/Q-independent sources. The
basic idea of this constrained I/Q BSS algorithm is as follows: since the
I/Q components of each source are statistically independent, they are also
independent of I/Q components of other sources, and the original complex
source mixtures can be considered as 2n real source mixtures. These 2n real
source mixtures are composed of mutually independent I/Q parts of the
n independent complex sources. Source separation techniques can then be
applied to separate the 2n independent real signals. Because of the order
indeterminacy of BSS methods, special constraints are required so that the
separated signals retain correct I/Q association [78].

Without loss of generality, consider the case of two independent com-
plex sources with independent I/Q components. The two complex source
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mixtures can be considered as four real mixtures of the I/Q parts of the two
complex sources.

Let we pose x = [x1, . . . ,xN ]T e xi = [xRi, xIi]
T , and similarly s =

[s1, . . . , sN ]T e si = [sRi, sIi]
T . The BSS model can be expressed as

x1R

x1I

x2R

x2I

...
xNR
xNI


=



a11R −a11I a12R −a21I · · · a1NR −a1NI

a11I a11R a12I a12R · · · a1NI a1NR

a21R −a21I a22R −a22I · · · a2NR −a2NI

a21I a21R a22I a22R · · · a2NI a2NR

...
...

...
...

. . .
...

...
aN1R −aN1I aN2R −aN2I · · · aNNR −aNNI
aN1I aN1R aN2I aN2R · · · aNNI aNNR


·



s1R

s1I

s2R

s2I

...
sNR
sNI


(8.8)

Eq. (8.8) can be rewritten in a more compact form as
x1

x2

...
xN

 =


A11 A12 · · · A1N

A21 A22 · · · A2N

...
...

. . .
...

AN1 AN2 · · · ANN

 ·


s1

s2

...
sN

 (8.9)

where Aij =
[
aijR −aijI
aijI aijR

]
and det (Aij) = a2

ijR + a2
ijI = |aij |2.

We assume a similar structure for the de-mixing model

y1R

y1I

y2R

y2I

...
yNR
yNI


=



w11R −w11I w12R −w21I · · · w1NR −w1NI

w11I w11R w12I w12R · · · w1NI w1NR

w21R −w21I w22R −w22I · · · w2NR −w2NI

w21I w21R w22I w22R · · · w2NI w2NR

...
...

...
...

. . .
...

...
wN1R −wN1I wN2R −wN2I · · · wNNR −wNNI
wN1I wN1R wN2I wN2R · · · wNNI wNNR


·



x1R

x1I

x2R

x2I

...
xNR
xNI


(8.10)

Eq. (8.10) can be rewritten in a more compact form as
y1

y2

...
yN

 =


W11 W12 · · · W1N

W21 W22 · · · W2N

...
...

. . .
...

WN1 WN2 · · · WNN

 ·


x1

x2

...
xN

 (8.11)

where Wij =
[
wijR −wijI
wijI wijR

]
and det (Wij) = w2

ijR + w2
ijI = |wij |2.

By imposing the constraint given in (8.10) and (8.11) on the structure
of the real separating matrix Wk at each iteration k of an adaptive BSS
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algorithm seeking the real independent source signals, the correct I/Q
association can be obtained.

At each iteration of an unconstrained adaptive BSS algorithm, an up-
dated real separating matrix is first obtained, in which each sub-matrix
block is denoted as Wu

ij with the entries wuijk (k = 1, 2, 3, 4). To enforce the
constraint of (8.11), we impose the modification in the following lemma
9 for each sub-matrix Wu

ij . The resulting constrained separation matrix is
used in the next iteration.

Lemma 9 The model (8.11) allows the separation of I/Q sources under the follow-
ing constraint

Wij =
1
2
{
Wu

ij + det
(
Wu

ij

)
· (Wu

ij)
−T} (8.12)

where (Wu
ij)
−T denotes [(Wu

ij)
T ]−1.

Proof. Eq. (8.12) is derived from the particular structure of (8.9) and (8.11).

In fact every sub-matrix block has the same structure
[
wijR −wijI
wijI wijR

]
. A

generic matrix
[
α β
γ δ

]
could be transformed in the desired one by the

following summation [
α β
γ δ

]
+
[

δ −γ
−β α

]
.

But we have[
δ −γ
−β α

]
= Agg

([
α β
γ δ

]T)
= det

([
α β
γ δ

])
· inv

([
α β
γ δ

]T)
,

from that eq. (8.12) can be directly derived by a division for 2.

It can be shown that by using the constrained I/Q BSS, we can maintain
the correct I/Q association for each I/Q-independent source, with only π/2-
phase ambiguity possible during the whole process of simultaneous source
separation and phase recovery. The reason for the remaining π/2-phase
ambiguity is that a sign indeterminacy remains for the separated source
components. The π/2 ambiguity can be handled by differential encoding in
communications.

As discussed above, constrained I/Q BSS in the complex INFOMAX
algorithm can separate sources and recover source phases. Alternatively,
we can apply the I/Q independence property implicitly in the choice of
the component scalar complex-valued nonlinear function h in the complex
INFOMAX algorithm to achieve source phase recovery. We call this the con-
strained nonlinear function method. In this method, the scalar complex-valued
nonlinear function for the complex INFOMAX algorithm is constrained to
have the decomposition stated in the following
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Theorem 19 The de-mixing model obtained by eq. (8.12) is equivalent to the
complex model where the nonlinearity h(z) (the activation function) is of the
following type

h (z) = hR (zR) + jhI (zI) (8.13)

In other words we adopt the splitting function in eqs. (7.12) and (5.3).

Proof. It is possible to show that the model (8.13) is equivalent to the model
(8.12). For semplicity we consider the trivial case of only one complex source
x = As obtaining wk+1 = wk − µ

{
[1 + hy∗]wk

}
, where h = hR + jhI .

Considering the model (8.12) we obtain

wk+1 = wk+1
R + jwk+1

I =
(
wkR + jwkI

)
+

−µ
{

[1 + (hR + jhI) (yR − jyI)]
(
wkR + jwkI

)}
=

= wkR − µ
[
(1 + hRyR + hIyI)wkR + (hRyI − hIyR)wkI

]
+

+j
{
wkI − µ

[
(1 + hRyR + hIyI)wkI + (hIyR − hRyI)wkR

]}
and considering the real and imaginary part respectively:

wk+1
R = wkR − µ

[
(1 + hRyR + hIyI)wkR + (hRyI − hIyR)wkI

]
wk+1
I = wkI − µ

[
(1 + hRyR + hIyI)wkI + (hIyR − hRyI)wkR

] (8.14)

Considering the model (8.13) instead, we obtain:

[
wk+1

11 wk+1
12

wk+1
21 wk+1

22

]
=
[
wk11 wk12

wk21 wk22

]
+

−µ
{([

1 0
0 1

]
+
[
hR
hI

] [
yR −yI

]) [ wk11 wk12

wk21 wk22

]}
=

=
[
wk11 wk12

wk21 wk22

]
+

−µ
{[

1 + hRyR −hRyI
hIyR 1− hIyI

] [
wk11 wk12

wk21 wk22

]}
=

=
[
wk11 wk12

wk21 wk22

]
+

−µ
[

(1 + hRyR)wk11 − hRyIwk21 (1 + hRyR)wk12 − hRyIwk22

hIyRw
k
11 + (1− hIyI)wk21 hIyRw

k
12 + (1− hIyI)wk22

]
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using the constraint in eq. (8.13), it is possible to recover the coefficients:

wk+1
R =

1
2

(
wk+1

11 + wk+1
22

)
=

=
1
2

{(
wk11 + wk22

)
− µ

[
(2 + hRyR − hIyI)wkR − (hRyI − hIyR)wkI

]}
=

= wkR − µ
{(

1 + hRyR+hIyI
2

)
wkR −

(
hRyI−hIyR

2

)
wkI

}
wk+1
I =

1
2

(
wk+1

21 − wk+1
12

)
=

=
1
2

{(
wk21 − wk12

)
− µ

[
(hRyI + hIyR)wkR + (2 + hRyR − hIyI)wkI

]}
=

= wkI − µ
{(

hRyI−hIyR
2

)
wkR +

(
1 + hRyR+hIyI

2

)
wkI

}
(8.15)

It can be seen that eq. (8.15) is formally identical to eq. (8.14) for less than
some scaling factors. This fact demonstrates the Theorem 19.

Fig. 8.1: Scatter plot of signals using a complex tanh(z) activation function

The constrained nonlinear function approach does not require doubling
of the dimension (from complex to real) and does not impose a separate
constraint on the W updates.

The same consideration can be done on another blind source separation
algorithm: the EASI algorithm [35] with similar results.

Figure 8.1 shows an example of separation of a 8-PSK signal, a 4-QAM
signal and a uniform noise utilizing a complex tanh(z) activation function
as described in [2] and not a splitting solution. It is evident from the figure
the the phase is not recovered: in fact the scatter plot of the recovered signal
(third row) is rotated with respect the original signal (first row).
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Fig. 8.2: Scatter plot of signals using a splitting activation function

Figure 8.2 shows an example of separation of a 8-PSK signal, a 4-QAM
signal and a uniform noise utilizing a splitting activation function as de-
scribed in [200, 165, 212]. It is evident from the figure the the phase is now
recovered: in fact the scatter plot of the recovered signal (third row) is not
rotated with respect the original signal (first row).

Remain a doubt on the validity of the Theorem 19 for strongly non-I/Q
signal. For demonstrate the validity of this approach we perform separation
of a Bernoulli’s lemniscate, which is an artificial signal, but has the real and
imaginary part strongly correlated. Figure 8.3 shows the effectiveness of the
phase recovery in this case, too.

8.3 The Cramér-Rao lower bound for ICA

It is highly useful to have a lower bound for the statistical variability
(accuracy) of an estimator. Cramér-Rao bound (CRB) provides a lower bound
on the covariance matrix of any unbiased estimator of a parameter vector.
CRB, which is the inverse of the Fisher information matrix (FIM), can be
used e.g., to show that an unbiased estimator is uniformly minimum variance
unbiased (UMVU) estimator. CRB is also related to asymptotic optimality
theory.

Despite of the increased interest in ICA during the past two decades, a
closed-form expression for the CRB for the de-mixing matrix estimation has
been established very recently in [139, 140] and in [198, 197, 196]. CRB is de-
rived indirectly in [33, 115, 145, 171, 220] via asymptotic approximations of
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Fig. 8.3: Scatterplot of strongly non-I/Q signals using the splitting activation
function

the likelihood or via asymptotic covariance matrix of the maximum-likelihood
(ML) estimator of a transformed parameters such as the interference-o-signal
ratio.

Suppose i.i.d. observations x1, . . . , xN are distributed as x having the
pdf pθ(x) with parameter vector θ ∈ Θ. The inverse of the FIM of θ

Iθ = E
{
∇θ ln pθ (x) [∇θ ln pθ (x)]T

}
(8.16)

where ∇θ is the gradient operator, gives, under regularity conditions, the
CRB on the covariance matrix of an unbiased estimator θ̂ of θ in the sense
that

cov(θ̂) ≥ n−1I−1
θ (8.17)

Above, for symmetric matrices B and C, the notation B ≥ C implies that
B − C is positive semidefinite. The CRB (8.17) thus implies, for example,
that var(θ̂i) ≥ n−1(I−1

θ )ii, where θ̂i denotes the i-th component of θ̂ and
(I−1
θ )ii the i-th element of I−1

θ . CRB is also related to asymptotic optimality
theory in the sense that asymptotic covariance matrix of the ML estimator
coincides with I−1

θ . Recall however that there may not exist an unbiased
estimator that attains the CRB for all θ ∈ Θ.

Recall the scaling, sign and permutation ambiguity of the ICA prob-
lem: if Λ is a n × n diagonal matrix and P is a n × n permutation matrix,
then x = (AP−1Λ−1)(ΛPs), where ΛPs has independent components as
well. Therefore, scales of si’s can be fixed, e.g., by imposing var(si) = 1,
i = 1, . . . , N . This scaling convention is common in ICA and it renders A
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(respectively, W) unique up to permutation and sign of its columns (respec-
tively, rows).

First we form the parameter vector

θ = vec
(
WT

)
=
[
wT

1 , . . . ,w
T
n

]T ∈ Rn2
(8.18)

where wi ∈ Rn are the row vectors of and the “vec” is the well-known
vectorizing operator [117], namely, if B is n×m matrix, then vec(B) is a nm-
dimensional vector formed by stacking the column vectors of the matrix B
on top of each other. The pdf of x = As is pθ (x) = |det (W)|

∏N
i=1 pi

(
wT
i x
)
,

where pi denotes the pdf of si. Use of matrix derivatives gives

∂

∂WT
ln pθ (x) = A− xϕ (Wx)T (8.19)

where ϕ(s) = (ϕ1(s1), . . . , ϕn(sn))T and ϕi(si) = −p′i(si)/pi(si) is the score
function of the i-th IC. The Fisher score of the parameter (8.18) in the ICA
model can now be calculated by

∇θ ln pθ (x) = vec
{

∂

∂WT
ln pθ (x)

}
(8.20)

The following assumptions on i-th IC si for i = 1, . . . , N are made.

1. si has zero mean E {si} = 0 and unit variance var(si) = E
{
s2
i

}
= 1

and only one of the IC’s s1, . . . , sn can have a Gaussian distribution.

2. The pdf pi of si satisfy:

(a) pi is continuous with contiguous support, pi(s) > 0 and p′i(s) =
(d/ds)pi(s) exist ∀s on the support of the density pi;

(b) spi(s) tends to zero as s tends to the boundaries of the support of
pi.

3. The following variances:

κi = var {ϕi (si)} = E
{
ϕ2
i (si)

}
= −

∫
ϕi (s)p′i (s) ds (8.21)

λi = var {ϕi (si) si} = E
{
ϕ2
i (si) s2

i

}
− 1 = −

∫
ϕi (s) p′i (s)s2ds− 1

(8.22)
exist and are finite.

The assumption of finite variance in 1) turns out to be crucial for the
existence of the FIM. Such a restriction necessarily excludes, for instance, the
Cauchy distribution which does not possess finite variance. The mean of si
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is irrelevant and is, for ease of exposition, assumed to be zero. The necessity
of at most one Gaussian component is a necessary restriction in ICA [50].

Assumption 2(a) is mainly needed for the existence of the Fisher score
(8.20). Assumption 2(b) is not very restrictive and quite reasonable for den-
sities with infinite support. 2(b) implicitly implies that pi(s) tends to zero as
s tends to the boundaries of the support of pi, which subsequently implies
that E {φi (si)} = −

∫
p′i (s)ds = 0. Hence, 2(b) may not often be satisfied

for densities with finite or semi-finite support. Clearly, e.g., the (zero mean)
uniform distribution and the exponential distribution do not satisfy 2). Note
that the zero mean Laplace distribution satisfies 2(b) but it does not satisfy
1(b) since it is not differentiable at s = 0. Nevertheless, Laplace distribution
can be approximated to within arbitrary precision by a valid pdf that does
satisfy 2).

For finiteness of the variances in (8.21) and (8.22), the respective inte-
grands in (8.21) and (8.22), i.e., li(s) = ϕi(s)p′i(s) and gi(s) = ϕi(s)p′i(s)s

2 =
li(s)s2 need to decay rapidly enough to zero as s tends to ±∞ in case of
infinite support sources, or, be bounded in case of finite support sources.
For example, the zero mean Rayleigh distribution which is commonly used
in communications theory satisfies assumptions 1) and 2), but not 3). It can
be shown that κi ≥ 1 with equality if and only if si is a Gaussian random
variable and that λi > 0.

If p′′i (s) (second derivative of pi) exists at all s, then using the result in
Lemma 8 (eq. 8.5), κi can be calculated by

κi = E
{
ϕ′i (si)

}
provided that

4. p′i(s)→ 0 as s tends to the boundaries of the support of pi.

Note that 4) is satisfied for all infinite support sources. Thus, the assumption
4) should be checked for distributions with finite or semi-finite support only.
Similarly, if we assume that p′′i (s) exists at all s, then

λi = E
{
ϕ′i (si) s2

i

}
+ 1

providing that

5. p′i(s)s
2 → 0 as s tends to the boundaries of the support of pi.

Note that 4) implies 5) if pi has finite support, but not in the case of infinite
or semi-finite support.

We may calculate the FIM (8.16) using the expression

Iθ = E

{
vec

[
A
(
I− sϕ (s)T

)]
vec

[
A
(
I− sϕ (s)T

)]T}
=

= (I⊗A)E
{

vec
[
I− sϕ (s)T

]}
×

×vec
[
I− sϕ (s)T

]T (
I⊗AT

) (8.23)
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where I denotes the identity matrix. Here we applied eq. (8.20) and algebraic
properties involving the vec transformation and the Kronecker product and
that x follows ICA model (2.1), i.e., x = As and Wx = s.

A compact expression of FIM is revealed by the following [139]

Theorem 20 In the ICA model (2.1) and under Assumptions 1)-3), the FIM Iθ
of θ = vec(WT ) is a n2 × n2 block matrix with (i, j)-block being equal to n× n
matrix:

Iθ [i, j] =

{
λiaiaTi + κi

∑n
l=1
l 6=i

alaTl if i = j

ajaTi if i 6= j

The whole n2 × n2 matrix Iθ can be constructed using the above n× n
blocks Iθ[i, j].

Using Theorem 20, a simple and compact expression for the inverse of
the FIM can now be presented [139].

Theorem 21 In the ICA model (2.1) and under Assumptions 1)-3) and denoting
θ = vec(WT ), I−1

θ exists and is a n2 × n2 block matrix with (i, j)-block being
equal to a n× n matrix:

I−1
θ [i, j] =

{ 1
λi

wiwT
i +

∑n
l=1
l 6=i

κl
κiκl−1wlwT

l if i = j

− 1
κiκj−1wjwT

i if i 6= j

Note that diagonal blocks I−1
θ [i, i] give the CRB for an unbiased estima-

tor ŵi of the de-mixing vector wi:

cov {ŵi} >
1
n
I−1
θ [i, i] (8.24)

for i = 1, . . . , n. Theorem 21 shows that the CRB depends on the distribu-
tions of si only through the scalars κi and λi for i = 1, . . . , n. Theorem 21
also implies that only one of si’s can be Gaussian: if the first and second
component, say, are Gaussian, then κ1 = κ2 = 1 and κ2/(κ1κ2 − 1) is not
defined. Still, even in this case, any other block I−1

θ [i, i] for i ≥ 3 exists (since
the denominators κiκl − 1, i 6= l ∈ {1, . . . , n}, do not vanish), indicating
that all the remaining rows of W expect the first two can be consistently
estimated. That is, the presence of two Gaussian sources does not eliminate
the possibility to recover the other sources.

In ICA, the performance of the separation is often investigated via (see
also Section 9.1 and in particular eq. (9.2))

Q̂ = (q̂1, . . . , q̂n)T = ŴA (8.25)

since the estimated i-th source is ŝi = ŵT
i x = q̂Ti s =

∑n
j=1 q̂ijsj . Thus,

q̂ij and var {q̂ij} = E
{
q̂2
ij

}
for i 6= j represent the magnitude and the
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average power of interference of th source in the estimated i-th source
signal. Since E {q̂ij} = 1, the variance var {q̂ij} reflects how accurately the
presence of i-th source itself is estimated. The CRB for ϑ̂ = vec(Q̂T ) is
independent of the parameter W as it is a nonsingular linear transformation
of θ̂ = vec(ŴT ), i.e., ϑ̂ = (I⊗AT )θ̂, where ⊗ denotes the Kronecker product:
for any matrix A and B, A ⊗ A is a block matrix with (i, j)-block being
equal to aijB. Therefore, cov(ϑ̂) = (I ⊗AT )cov(θ̂)(I ⊗A), which by (8.17)
and (8.23) indicate that

cov
(
ϑ̂
)
≥ n−1

(
I⊗AT

)
I−1
θ (I⊗A) = n−1I−1

I (8.26)

where II denotes the value of Iθ at θ = vec(I) (i.e., at W = I). Hence,
cov(q̂i) ≥ n−1I−1

I [i, i], and Theorem 21 gives the following bounds:

δi =
n∑
j=1
j 6=i

var (q̂ij) ≥ n−1
n∑
j=1
j 6=i

κj
κiκj−1

var (q̂ii) ≥ n−1 1
λi

(8.27)

where δi may be interpreted as the average power of interfering source
signals to the estimated i-th source.

The fact that the CRB for elements of Q̂ is independent of A is in agree-
ment with the equivariance property [35] shared by many ICA estimators (see
Section 7.7.1).

To be more specific, let Ŵ = Ŵ(Xn) be an estimator of W based upon
i.i.d. data set Xn = (x1, . . . ,xn) from the ICA model (2.1). Thus, the n×m
data matrix Xn can be factored as Xn = ASn, where Sn = (s1, . . . , sn) is
an i.i.d. data set distributed as s. Equivariant estimator satisfies Ŵ(Xn) =
Ŵ(Sn)A−1 and thus Q̂ = Ŵ(Xn)A = Ŵ(Sn) is independent of A. This
property is nicely reflected in the above derived bound (8.26) for Q̂ [60].

The problem of the procedure described in eq. (8.27) is that the com-
pact formulation of the Cramèr-Rao Lower Bound is calculated since the
numerical quantities κi and λi which are defined on the score functions of
the original source si. Unfortunately we do not know the original sources si
and so the score functions ϕi. But if we adopt the flexible solution, i.e. spline
functions, as described in Section 7, we have the result that the activation
functions hi are an estimate of the cdfs of the estimated sources. In this way
the flexibility of spline functions allows the proposed network to make an
actual estimate of the CRLB.

Form the i-th activation function, it is possible to derive an estimate
ϕ̃i(ui) of the true score functions ϕi(si):

ϕ̃i (ui) =
h′′i (ui)
h′i (ui)

(8.28)
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In this way we can calculate an estimated version of κi and λi in eqs.
(8.21) and (8.22) respectively. From Lemma 5 we derive

ϕs(s) = (WA)Tϕu(u) (8.29)

From eqs. (8.29) and (2.3) and considering the case in which we have no
permutation ambiguity (P = I in (2.3)), it is possible to write the following
relation for the single marginal score function

ϕ̃i(si) = αiϕ̃i(ui) (8.30)

where αi is the non-zero entry in the matrix WA. Moreover for the i-th
source of the vector s = (WA)−1u holds that:

si = [(WA)−1]i ui (8.31)

where [(WA)−1]i is the i-th row of the WA product matrix. If we considering
again that only the scaling ambiguity is present, then eq. (8.31) can be
rewritten as

si = α−1
i ui (8.32)

The relations in eqs. (8.30) and (8.32) allow us to express an estimate κ̃i and
λ̃i of the two previous quantities κi and λi:

κ̃i = E
{
ϕ̃2
i (ui)

}
(8.33)

λ̃i = E
{
ϕ̃2
i (ui)u2

i

}
− 1 (8.34)

Therefore substituting the quantities in eqs. (8.33) and (8.34) in formulas
(8.27) we are able to perform the Cramér-Rao Lower Bound for the elements
in Q̂.

If we perform the MMI approach (see Section 7.4.2) we have not the
activation function hi(ui) but a direct estimate ϕ̃i(ui) of the score functions
by the Least Mean Square (LMS) algorithm, through eqs. (7.35) and (7.36),
and so we can reuse the (8.33) and (8.34) in formulas (8.27) for calculating
the CRLB.





9
Results

—The most difficult part of a trip is to
cross the doorway

P. Terentius Varro

THIS section collects some experimental results in order to demon-
strate the effectiveness of our complex domain approach both in
linear and nonlinear environment. Examples of application of the

new Riemannian metrics are also proposed.

9.1 Performance evaluation

There are no standardized method to realize performance analysis but
there exist several indexes and algorithms less or more diffused in literature;
the best choice is to select the index adequate to the problem and to the
mixing/de-mixing environment.

In order to compare performances we adopt the index introduced in
[168], which evaluates the presence of the desired signal for each channel.
In this way the quality of separation of the k-th separated output can be
defined by the Signal to Interference Ratio (SIR) as (see Figure 9.1)

SIR (k) = 10 log

E{(|u|σ(k),k

)2
}/

E

∑
i 6=k

(
|u|σ(k),i

)2


 . (9.1)

In eq. (9.1) ui,k is the i-th output signal when only the k-th input signal sk is
present, while σ(k) is the output channel corresponding to the k-th input.
This index is able to provide the evaluation of separation results without
considering the particular mixing/de-mixing structure but only the original
sources and the recovered signals. This is a very attractive characteristic

117
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which leads this index to be used to compare the performance of separation
also in case of different mixing/de-mixing models.

Fig. 9.1: Evaluation of SIR index

Another way to evaluate the performance of an algorithm in linear case
only is to analyze the matrix product WA which has to be close to the
product of a diagonal matrix and a permutation matrix. Thus according
to the desired solution to BSS problem, only one element in each row and
column can be substantially a non zero element. Let us assume qij the generic
element of the matrix Q = WA, we can define the following performance
index [5]

S =
N∑
i=1


N∑
k=1

|qik|2

max
p

[
|qip|2

] − 1

+
N∑
k=1


N∑
i=1
|qik|2

max
p

[
|qpk|2

] − 1

. (9.2)

The index in eq. (9.2) is a non-negative number and it is equal to zero only
for perfect separation. For other details see eq. (2.6) and Lemma 2.

9.2 Performance test in linear mixing environment

The subsection is dedicated to the evaluation of algorithm proposed to
solve the BSS problem in linear environment. The free parameters of algo-
rithm are the following ones: the number Nh of spline control points used in
eq. (6.23), the learning rate ηW involved in the adaptation of the entries in
the de-mixing matrix, the learning rate ηh involved in the adaptation of the
spline control points and the number of runs (or epochs) of the algorithm
nR.

9.2.1 First Test

In the first experiment we adopt the algorithm with the bi-dimensional
AF in eq. (6.32), using the following four complex sources: s1 is a 8-PSK
(Phase Shift Keying) modulation, s2 is a uniform random noise and s3 is a
4-QAM modulation [154].
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The mixing environment in eq. (4.1) is:

A =

 1.5− j0.5 −0.4 + j0.6 0.5 + j0.1
0.5 + j1 0.4 + j0.2 −0.1 + j0.3

0.2− j0.4 −0.6 + j1 1.3 + j0.6


while the free parameters are summarized in the following Table 9.1. In

Nh ηW ηh nR
21 2, 3 · 10−3 5 · 10−4 100

Table 9.1: Free parameters in test 1

Figure 9.2 we present the joint pdf of the original signals (the first row), of
the mixtures (the second row) and of the separated signals (the third row).
In Figure 9.3 we report the performance of the algorithm. Comparing the
two performance graphics we can note that the algorithm converge in about
20 epochs and the SIR index for the separated signals is between 25 dB and
40 dB; the performance are confirmed by the Performance Index (9.2) in the
second row of figures. We can compare this result with respect the same test
done with a fully-complex tanh(z) AF as described in [2] (see Figure 9.4);
in this case the training was stopped after 1000 epochs. We do not report
the scatter plot of signals because these are very similar to the first ones. We
can note that in the case of the fully-complex tanh (z) AF the convergence is
slower (about 200 epochs), while the performance is between 15 dB and 25
dB.

While the quality of separation is very similar, the flexible approach is
faster.

9.2.2 Second Test

In the second experiment we adopt the algorithm with the bi-dimensional
AF in eq. (6.32), using the following four complex sources: s1 is a 8-PSK
(Phase Shift Keying) modulation, s2 is a 16-QAM (Quadrature Amplitude
Modulation) modulation, s3 is a 4-QAM modulation and s4 is a uniform
random noise [154].

The mixing environment in eq. (4.1) is:

A =


1.5− j0.5 −0.4 + j0.6 0.5 + j0.1 0.1

0.5 + j 0.4 + j0.2 −0.1 + j0.3 0.2 + j0.5
0.2− j0.4 −0.6 + j 1.3 + j0.6 0.4 + j

0.2 + j −0.7 + j0.1 −0.1− j0.1 0.8− j0.7


while the free parameters are summarized in the following Table 9.2.

In Figure 9.5 we present the joint pdf of the original signals (the first
row), of the mixtures (the second row) and of the separated signals (the third
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Fig. 9.2: Scatter plot of original signals (first row), mixtures (second row) and
separated signals (third row)

Nh ηW ηh nR
21 2, 3 · 10−3 5 · 10−4 100

Table 9.2: Free parameters in test 2

row). In Figure 9.6 we report the performance of the algorithm. Comparing
the two performance graphics we can note that the algorithm converge in
about 50 epochs and the SIR index for the separated signals is between 26
dB and 37 dB. We can compare this result with respect the same test done
with a fully-complex tanh(z) AF as described in [2] (see Figure 9.7); in this
case the training was stopped after 1000 epochs. We do not report the scatter
plot of signals because these are very similar to the first ones. We can note
that in the case of the fully-complex tanh (z) AF the convergence is slower
(about 200 epochs), while the performance is between 25 dB and 39 dB.

While the quality of separation is very similar, the flexible approach is
faster.

9.2.3 Third Test

In the third experiment we adopt the algorithm with the bi-dimensional
AF in eq. (6.32) using the following three complex sources: s1 is a 8-PSK
modulation, s2 is a 4-QAM modulation and s3 is a uniform random noise.
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Fig. 9.3: Performance indexes for the first experiment

Then we modified these signals in order to correlate the real and imaginary
part, in order to simulate the effect of a communication channel [163]. The
correlation between the real and imaginary part is obtained by varying the
length M of a moving average FIR filter (FIRMA). In this way each sample
of the imaginary part of the k-th signal sIk is obtained as the mean over M
past samples of its real part sRk:

sIk (n) =
1
M

M−1∑
p=0

sRk (n− p). (9.3)

The mixing environment in eq. (4.1) is:

A =

 1.5− j0.5 −0.4 + j0.6 0.5 + j0.1
0.5 + j 0.4 + j0.2 −0.1 + j0.3

0.2− j0.4 −0.6 + j 1.3 + j0.6


while the free parameters are summarized in the following Table 9.3. The
correlation coefficients between the real and imaginary part of the original
source are shown in Table 9.4
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Fig. 9.4: Performance indexes in the case of tanh(z) activation function

Nh ηW ηh nR
21 2, 3 · 10−3 5 · 10−4 100

Table 9.3: Free parameters in test 3

In Figure 9.8 we present the joint pdf of the original signals (the first
row), of the mixtures (the second row) and of the separated signals (the
third row).

In Figure 9.9 we report the performance index in eq. (9.2) of the algorithm
versus the M parameter in eq. (9.3) comparing this result with respect the
same test done with the algorithm described in [2] using the tanh(z) AF; in
this case the training was stopped after 1000 epochs.

Comparing the two performance graphics we can note that the conver-
gence is more accurate and stable even the parameter M is varied.
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Fig. 9.5: Scatter plot of original signals (first row), mixtures (second row) and
separated signals (third row)

M 4-QAM 8-PSK WN
0 0.0179 0.0155 0.0085
1 0.6950 0.4842 0.7183
5 0.3676 0.3811 0.4092
15 0.2123 0.2713 0.2101
25 0.1317 0.1557 0.1309

Table 9.4: Correlation coefficients vs. M parameter

9.2.4 Fourth Test

A fourth test is performed adopting the three signals involved in the
previous example but varying the number Nh of spline control points in
the following set of values: {13, 16, 21, 31, 61}. The other parameters are the
same that in Table 9.3.

Figure 9.10 shows the separation index in eq. (9.2) for the five different
values of Nh. The index profile shows that Nh = 21 points is the best choice.
If the number of control points is large the quality of separation is bad while
if it is too small the index has an oscillatory behavior.

9.2.5 Fifth Test

As fifth test we have proposed a comparison of the Performance Index
in eq. (9.2) varying the spline basis: Catmull-Rom spline, B-Spline, Bezier
spline and Hermite spline (see eqs. (6.25)-(6.28)).

Figure 9.11 shows that Bezier spline basis and hermite spline basis are
not suitable for blind source separation applications, while good results were
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Fig. 9.6: Performance indexes for the second experiment

found in the case of usage of Catmull-Roma or B-Spline basis, even if this
latter is sometimes unstable and take the algorithm away the convergence
for a certain number of epochs.

9.2.6 Comparison with other approaches

In this experiment we compare the proposed complex and flexible IN-
FOMAX with two different approaches well known in literature: the max-
imization of the kurtosis [113, 114] and the maximization of Negentropy
[137]. These approaches are two counterpart of the complex maximization of
non-Gaussianity (CMN) algorithm (see section 7.6).

Figure 9.12 shows the results of these two different approaches using
the Performance Index in eq. (9.2). The profile of the figure assures that the
proposed method is faster and more accurate than the other ones.
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Fig. 9.7: Performance indexes in the case of tanh(z) activation function

9.2.7 Convolved speech signals

In this experimental test we use the following three signals: s1 is a reader,
s2 is a radio recording and s3 is a uniform noise. All signals were sub-
sampled at a frequency of 4 kHz. The convolutive environment was trans-
formed in a multidimensional complex-valued and instantaneous source
separation problem, as described is Section 3.2.1.

Figure 9.13 shows the SIR Index in eq. (9.1) for the three separated
sources. The profile shows that two of the sources are well separated, while
the radio recording is still quite confuse.

9.2.8 fMRI signals

In this experimental test we use the 8 fMRI signals, each composed by
61 × 61 pixels. This environment was transformed in a multidimensional
complex-valued and instantaneous source separation problem, as described
is Section 3.2.2.
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Fig. 9.8: Scatter plot of original signals (first row), mixtures (second row) and
separated signals (third row)

Figure 9.14 shows the Performance Index in eq. (9.2) for the separated
sources. The profile shows that also in this case the proposed algorithm can
reach excellent degree of separation.

9.3 Performance test in nonlinear mixing environment

This subsection is dedicated to the evaluation of the algorithm proposed
to solve the BSS problem in nonlinear environment. The free parameters of
algorithm are the following ones: the number Nh and NG of spline control
points used for the complex activation functions and the nonlinear com-
pensating functions, the learning rate ηW involved in the adaptation of
the entries in the de-mixing matrix, the learning rate ηh involved in the
adaptation of the activation functions, the learning rate ηG involved in the
adaptation of the nonlinear compensating functions and the number of runs
(or epochs) of the algorithm nR.

9.3.1 First Test

For the first test we adopt the algorithm with the mono-dimensional
AF in eq. (6.31) using a 4-QAM signal, a uniform random signal and a PSK
signal. The mixing environment in eq. (4.3) is:

A =

 0.90− j0.30 −0.24 + j0.36 0.30 + j0.06
0.30 + j0.60 0.24 + j0.12 −0.06 + j0.18
0.12− j0.24 −0.36 + j0.60 0.78 + j0.36

 ,
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Fig. 9.9: Performance index vs. the length M of the MA filter: the flexible gener-
alized splitting activation function (top) and a tanh(z) activation function (bot-
tom)

F [v] =

 f1 [v1] =
(
vR1 + 0.7v3

R1

)
+ j

(
vI1 + 0.7v3

I1

)
f2 [v2] =

(
vR2 + 0.7 tanh

(
3v3
R2

))
+ j

(
vR2 + 0.7 tanh

(
3v3
R2

))
f3 [v3] =

(
vR3 + 0.7v3

R3

)
+ j

(
vR2 + 0.7 tanh

(
3v3
R2

))


while the free parameters are summarized in the following Table 9.5.

Nh NG ηW ηh ηG nR
31 31 5 · 10−5 5 · 10−6 5 · 10−6 400

Table 9.5: Free parameters in test 1

The effectiveness of the separation is evidenced in Figure 9.15 that shows
the joint pdf of the original sources (first row), of the nonlinear mixture
(second row) and finally of the separated signals (third row).

Figure 9.16 shows that after about 200 epochs the training became stable
and more accurate. So the profiles of the separation index SIR(k) in eq. (9.1)
for each channel assures the effectiveness of the learning.
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Fig. 9.10: Performance index vs. the number of spline control points

Fig. 9.11: Performance Index for different spline basis

9.3.2 Second Test

The effectiveness of the separation is evidenced in Figure 9.17 that shows
the joint pdf of the original sources (first row), of the nonlinear mixture
(second row) and finally of the separated signals (third row).

Figure 9.18 shows that after about 100 epochs the training became stable
and more accurate. So the profiles of the separation index SIR(k) in eq. (9.1)
for each channel assures the effectiveness of the learning.

9.3.3 Third Test

A second test is done with 16-QAM signal, a 8-PSK signal and an artificial
Bernoulli’s lemniscate signal. The choice of this particular and strange signal
is due to the fact that we are interested in test our algorithm in signal with a
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Fig. 9.12: Different ICA approaches: Negentropy and Kurtosis maximization
(up) and Flexible INFOMAX (bottom)

Fig. 9.13: SIR of convolved speech signals
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Fig. 9.14: Performance Index of fMRI signals

real and imaginary part strongly correlated.

The mixing environment in eq. (4.3) and the free parameters are the same
values of the previous test, see Table 9.5.

The effectiveness of the separation is evidenced in Figure 9.19 that shows
the joint pdf of the original sources (first row), of the nonlinear mixture
(second row) and finally of the separated signals (third row).

Figure 9.20 shows that after about 200 epochs the training became stable
and more accurate. So the profiles of the separation index SIR(k) in eq. (9.1)
for each channel assures the effectiveness of the learning.

9.3.4 Recovering of the nonlinearities

The aim of this experimental test is to show as the proposed network is
able to recover the estimate gi(•) of the inverse of the distorting function
fi(•).

Figure 9.21 proposes the graphic of the distorting nonlinear function
f1(v1[n]) of the first test in Section 9.3.1

f1 [v1] =
(
vR1 + 0.7v3

R1

)
+ j

(
vI1 + 0.7v3

I1

)
in the first row, the graphic of the recovered inverse g1(x1[n]) function in the
second row and the composition of the two previous functions g ◦ f in the
third row. As we can see, the composition is quite linear and so the network
was able to recover the inverse of the nonlinear f function quite well.
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Fig. 9.15: Scatter plot of original sources (first row), mixtures (second row) and
separated sources (third row)

9.3.5 Absolutely degenerate mixing matrix

In this test we adopt the following absolutely degenerate mixing matrix
(see Definition 14)

A =

 1.5− j0.5 −0.4− j0.4 1.5− j0.5
−0.5 + j0.4 1.4 + j0.9 0.5− j0.4
0.2− j0.4 −0.6 + j0.8 0.2− j0.4


As stated in Section 2.7, when we have an absolutely degenerate mixing
matrix we can at least recover the source only, but not the nonlinearities. This
fact is demonstrated by Figure 9.22 where an estimate of the inverse g1(x1[n])
function is represented. As we can see this figure shows a quite linear
function, which is not the true inverse of the original distorting function.

9.3.6 Comparisons with other approaches

Last experimental test collects the results of comparison between the
algorithm here introduced for PNL mixtures (named Flexible Complex Post
Non-Liner ICA or FC-PNLICA) and another algorithm. Unfortunately in
literature there is not any algorithm working on PNL mixtures in the com-
plex case. In this sense we can compare the results only with an algorithm
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Fig. 9.16: Separation index during training for the first experiment in PNL mix-
ing environment

working on linear mixtures. The algorithm chosen for the comparison is that
described in a previous section and proposed by [2] that uses the ETFs (here
named Complex Linear ICA or C-LICA). The comparison has been performed
both in linear mixing environment and in the nonlinear one. Here, the Sepa-
ration Index has been evaluated for both algorithms modifying the shape
of the nonlinear distorting functions. Just to simplify the exposition of the
results, parametric non linear function have been used for this test:

F [v, α, β, γ] =

 f1 [v1, α] =
(
vR1 + αv3

R1

)
+ j

(
vI1 + αv3

I1

)
f2 [v2, β] =

(
vR2 + β tanh

(
3v3
R2

))
+ j

(
vR2 + β tanh

(
3v3
R2

))
f3 [v3, γ] =

(
vR3 + γv3

R3

)
+ j

(
vR2 + γ tanh

(
3v3
R2

))
 .

(9.4)
The following table collects the Separation Index in eq. (9.1) after 600
epochs with the same learning rate of test 9.3.1 but random starting con-
ditions with different value of [α, β, γ] in eq. (9.4) such that [α, β, γ] ={

[0, 0, 0] [0.4, 0.4, 0.4] [0.7, 0.7, 0.7] [1, 1, 1]
}

.

SIR(k) α = β = γ ≤ 0 α = β = γ ≤ 0.4 α = β = γ ≤ 0.7 α = β = γ ≤ 1
FC-PNLICA [77.70,49.84,101.10] [20.14,40.15,26.70] [30.94,14.53,8.94] [26.65,12.09,6.59]

C-LICA [80.16,39.84,120.38] [6.02,24.55,36.91] [25.02,1.40,-7.72] [-6.37,-6.58,-9.52]

Table 9.6: Comparison of SIR values for two algorithms

The results collected in Table 9.6 show how the separation performance
of the algorithm FC-PNLICA and the C-LICA are comparable if the pa-
rameter of non-linear distortion are α = β = γ ≤ 0.4. With higher level
of distortion the C-LICA is no more able to reach the separation but the
FC-PNLICA is able to guarantee still good results.
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Fig. 9.17: Scatter plot of original sources (first row), mixtures (second row) and
separated sources (third row)

9.4 Performance test with new riemannian learning rules

In order to test our architecture, we used a 8-PSK (Phase Shift Key-
ing) signal, a uniform noise signal and a 4-QAM Quadrature Amplitude
Modulation) signal, each with 1000 samples. In all the experiments we
use the following parameters: the learning rate for the W matrix is set to
ηW = 0.0001, while the learning rate for the spline control points is set to
ηQ = 0.0005. The spline step is ∆ = 0.3 and the algorithm runs for 100
epochs. The results are mean over 30 runs.

The results of the first experimental test are summarized in the following
table 9.7 [167].

We perform a second test using a 16-PSK (Phase Shift Keying) signal,
a 4-QAM (Quadrature Amplitude Modulation) signal and a 16-QAM sig-
nal, each with 1000 samples. In all the experiments we use the previous
parameters. The results of this test are summarized in the following table
9.8.

Table 9.7 shows that the standard stochastic gradient provides a quite
good separation performance, but the learning is slow: it is stable after about
50 epochs. Better is the solution with the standard natural gradient (right
natural gradient): the value of SIR is higher and the learning is faster (about
25 epochs). More performance is the use of right/left and right/right natural
gradient: good SIR and very fast (about 15 and 23 epochs respectively); while
worst is the case of left and left/left natural gradient: bad SIR, but quite fast
(better than the standard stochastic gradient) as provided in section 7.7.1.
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Fig. 9.18: Separation index during training for the second experiment in PNL
mixing environment

Fig. 9.19: Scatter plot of original sources (first row), mixtures (second row) and
separated sources (third row)

Softly worst are the results in the second test (table 9.8), due to the
presence of two similar distributed signals (8-PSK and 16-PSK), but the
trend is similar to the first test.

The use of the generalized splitting activation function realized with the
bi-dimensional spline functions improve more the convergence speed with
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Fig. 9.20: Separation index during training for the third experiment in PNL mix-
ing environment

Gradient SIR (dB) Sep. Index Convergence
s1 s2 s3 ×10−3 (epochs)

Standard 37,99 8,11 22,96 238 50
Right 50,48 40,05 34,35 2,29 25
Left 42,73 18,55 24,02 33 30
Right/left 39,24 33,14 37,26 1,63 15
Left/left 9,37 9,56 9,55 752 20
Right/right 45,41 34,45 40,40 1,041 23

Table 9.7: Results of the test 1

respect a fix function, comparing our tests with the ones in [180].
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Gradient SIR (dB) Sep. Index Convergence
s1 s2 s3 ×10−3 (epochs)

Standard 30,02 17,08 20,40 62 60
Rigth 35,95 42,61 29,85 3,46 35
Left 34,71 10,87 5,98 45 25
Right/left 33,22 13,70 10,11 2,03 35
Left/left 17,68 21,57 12,06 380 15
Right/right 23,87 38,10 23,21 2,10 30

Table 9.8: Results of the test 2

Fig. 9.21: The distorting nonlinearity a); its inverse estimation b) and the compo-
sition of the two functions c)
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Fig. 9.22: A nonlinearity in the case of an absolutely degenerate mixing matrix





10
Conclusions

—Looks like we’ve made it,
Look how far we’ve come, my baby.

You are still the one that I love,
The only one I dream of.

S. Twain

CONSIDERING the evolution of ICA algorithms in solving BSS prob-
lems it is important to underline that, although several studies
exist in the real domain, in the case of the complex domain the

state of art it is not so advanced. This thesis collects a first trial to enhance
the state of art of mixing environment for which ICA algorithms can provide
a solution.

In this thesis a novel complex model of mixing environment has been
introduced and described even in linear that in nonlinear mixing model. The
BSS problem in this new environment is solved by exploiting an ICA-based
algorithm. The proposed approach extends the well-known INFOMAX
algorithm, based on the Maximum Entropy and Minimal Mutual Information
approaches, to the complex domain and is based on the use of flexible spline
networks to perform local on-line estimation of the activation functions and
nonlinear compensating functions.

The usefulness of a complex representation is also investigated and three
interesting examples are shown: speech mixtures in reverberant environ-
ment, functional Magnetic Resonance Imaging (fMRI) signals and band-pass
telecommunication signals. The disagreement of such a representation is
also emphasized in paragraph 3.1.1.

It is deeply analyzed the dichotomy between analyticity and bounded-
ness in the choice of the nonlinear activation function (AF) and the advantages
of adopting a splitting solution or, at best, a generalized splitting solution. In this
case the complex activation function is obtained as the complex sum of two

139
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real-valued functions, mono-dimensional or bi-dimensional respectively.
Moreover the INFOMAX algorithm is equivalent to the ICA, if and only if,

the shape of the activation function is identical to the shape of the cumulative
density function (cdf) of the corresponding original source. This fact justifies
the adopting of a flexible solution: the activation function, or better the real
and imaginary part - splitting solution - of the activation function, are
realized by spline function. Splines are a superposition of a certain number
of pieces of polynomial functions. In this way the shape of the complex
activation functions is iteratively changed during the learning process.

A complete derivation of the learning algorithms, both in linear and
nonlinear domain, is then presented. It is shown that these learning rules
are formally very simple and of simple implementation, although their
analytical derivations are very hard. Different cost functions are utilized:
joint entropy, mutual information (or Kullback-Leibler divergence) and Renyi’s
entropy. In a first phase the classical stochastic gradient algorithm is imple-
mented in the optimization process. In order to overcome to the problem of
this kind of gradient rule, a natural gradient learning rule is also proposed.
The natural gradient assures a faster and more accurate convergence of
the algorithm. In addition four new recent Riemannian algorithms were pro-
posed. These algorithms provide an even more faster behavior. The existence
and uniqueness of the solution for the proposed algorithm in the nonlinear
environment is demonstrated also.

In the last chapter of this thesis three interesting topics are introduced.
First of all, it is shown that the spline function assures an universal behav-
ior in the Blind Source Separation problem. The flexibility of this kind of
function makes splines suitable for separation of both super-gaussian and
sub-gaussian sources. A second problem in BSS problem is the scaling am-
biguity that in complex domain gives birth to a phase ambiguity too. It is
shown that a splitting solution is able to recovery the phase information.
The calculation of the Cramèr-Rao Lower Bound (CRLB) is then investigated.

Quality of the separation has been evaluated in terms of separation index
(SIR) and performance index in a number of experimental tests, both in linear
and in nonlinear environment. The profiles of these graphics demonstrate
the effectiveness of the proposed approach and the proposed algorithms.

10.1 Future research directions

This is an initial work on efficient and flexible neural architectures for
Blind Signal Separation in complex environment. Necessary extensions of
the research in BSS to complex domain environments via ICA approach
must be addressed to improvements of the mixing models. A first necessary
extension is the employment of the generalized splitting function in the non-
linear case, even if the learning rules could seem to be very hard. Secondly
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it could be interesting to extend the flexible methods to other approaches,
i.e. the complex maximization of non-Gaussianity (CMN) algorithm.

Another fundamental extension is an approach based on a complex and
convolutive environment in order to better model real world application, as
telecommunication applications.

More advances in new Riemannian metrics and in the formalization of
a compact formulation for the Cramèr-Rao Lower Bound in the nonlinear
environment are needed, in order of better understanding the nonlinear
domain.

Recently I am working on a Post Nonlinear (PNL) extension to the
problem of Blind Source Extraction (BSE), which is not reported in this thesis.
In BSE problem only one source is recovered from mixtures at every turn of
the algorithm, according to its statistical property. The BSE is very helpful
in such applications where a great number of mixtures are available but one
is interested in a very small number of sources, like biomedical applications
(ECG, EEG, etc.). It is very interesting and useful to place these new results
in the general framework of the complex BSS.
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A
Elements of Information Theory

—Beyond each corner new directions lie in wait.
Stanislaw Lec

IN this appendix we introduce some elements of the information theory,
which have been used in this thesis. In particular we must define the
entropy of a random variable, the joint and conditional entropy of

several random variables, the Kullback-Leibler divergence and the mutual
information ([144], [55], [105]).

In fact when the neural weights elaborate the inputs, the information
transported by these will be maximized. Clearly, the information theory (IT)
is one of the powerful formal instrument of the neural networks theory.

A.1 Entropy

Let X be a random discrete variable, say

X = {xk |k = 0,±1, . . . ,±K }

where we have 2K + 1 levels. We define the probability of the event X = xk
as follows

pk = P {X = xk}

where obviously 0 ≤ pk ≤ 1 and
K∑

k=−K
pk = 1.

If the event X = xk has probability equal to 1, we have no surprise and
so there is not any information, transported by the X random variable. On
the contrary, if pk < 1 we have some uncertainty and so some information.
Thus, the information is inversely proportional to the probability of the
event.
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Definition 29 If the event X = xk has probability pk, the following quantity is
defined as information gain:

I(xk) = ln
(

1
pk

)
= − ln pk (A.1)

For the natural logarithm this quantity is measured in nat, while for loga-
rithm with base 2 is measured in bit.

The information gain has the following three properties:

1. I(xk) = 0 for pk = 1;

2. I(xk) > 0 for 0 ≤ pk < 1;

3. I(xk) > I(xj) for pk < pj .

The less probable event takes more information.

Definition 30 The entropy H(X) of the random variable X is the mean value of
the information gain I(xk):

H(X) = E {I(xk)} =
K∑

k=−K
pkI(xk) = −

K∑
k=−K

pk ln pk (A.2)

The discrete entropy has the following properties:

1. 0 ≤ H(X) ≤ 2K + 1;

2. H(X) = 0 if and only if pk = 1,∀k;

3. H(X) = log2(2K + 1) if and only if pk = 1/(2K + 1), ∀k.

From the third property , the entropy is maximum if we have an uniform
distribution.

Lemma 10 For two distributions pk and qk of a random variable, we have that the
following quantity ∑

k

pk ln
(
pk
qk

)
≥ 0 (A.3)

is equal to zero if and only if pk = qk, for every k.

We can extend these concepts for the random continuous variables:

Definition 31 The differential entropy h(X) of a random continuous variable
with probability density function (pdf) fX(x), is defined as

h(X) = −
∞∫
−∞

fX(x) ln fX(x)dx = −E {ln fX(x)} (A.4)
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This definition of the differential entropy can be derived from the entropy
definition as a limit case. We can assume that xk = kδx and that δx → 0, thus
X is constant in [xk, xk + δx] with probability fX(x)δx. Then the entropy of
X can be written as

H(X) = − lim
δx

∞∑
k=−∞

fX(xk)δx ln[fX(x)δx] =

= lim
δx→0

[
∞∑

k=−∞
fX(xk) [ln fX(xk)] δx +

∞∑
k=−∞

fX(xk)δx

]
=

= −
∞∫
−∞

fX(x) ln fX(x)dx− lim
δx→0

ln δx
∞∫
−∞

fX(x)dx =

= h(X)− lim
δx→0

ln δx → h(X)

remembering that
∞∫
−∞

fX(x)dx = 1. The problem for the term lnδx can be

eliminated by the concept of the differential entropy, where the term −lnδx
is assumed as a reference term.

The differential entropy has the following properties:

1. h(X) = h(X + c), where c is a constant;

2. h(aX) = h(X) + ln|a|, where a is a scaling factor;

3. h(AX) = h(X) + ln|detA|, for vector random variables.

For a uniform random variable we have the following

Lemma 11 The differential entropy of a uniform random variableX in the interval
[0, a], is h(X) = lna

Proof. Directly we have

h(X) = −
∞∫
−∞

1
a

ln
1
a
dx = −1

a
ln

1
a

a∫
0

dx = ln a

If we have a multidimensional random vector X = [x1, x2, . . . , xN ], we
can give the

Definition 32 If we have a multidimensional random vector X, we define the joint
entropy as the following expression:

H(X) = −
∫
x1

∫
x2

. . .

∫
xN

fX(x1, x2, . . . , xN ) ln fX(x1, x2, . . . , xN )dx1 · dx2 · . . . · dxN

(A.5)

The joint entropy represents the mean information transported by the N
random variables.
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A.2 Kullback-Leibler divergence (KLD)

An important distance measure between two density probability func-
tions is the Kullback-Leibler divergence, defined from the following [55]

Definition 33 Let fX(x) and gX(x) be the density probability functions (pdf)
of the multidimensional random variable X, then the following quantity is the
Kullback-Leibler divergence (KLD):

DfX‖gX =

∞∫
−∞

fX(x) ln
(
fX(x)
gX(x)

)
dx (A.6)

The Kullback-Leibler divergence has the following properties:

1. DfX‖gX ≥ 0, and is zero if and only if fX(x) = gX(x);

2. The DfX‖gX is invariant for the following transformation on X :

(a) Permutation of the elements of X ;

(b) Scaling;

(c) Non linear and monotonic transformation.

Now we have to introduce the concept of marginal random variable:

Definition 34 The i-th marginal pdf of the Xi element of X, is defined as

f̃xi(xi) =

∞∫
−∞

fX(x)dx(i), i = 1, 2, . . . ,m (A.7)

where x(i) is the vector without the i-th element Xi.

Now we can introduce the Kullback-Leibler divergence between the pdf

fX(x) and the product of its marginal distributions
m∏
i=1

f̃xi(xi), defined as

DfX‖f̃X =

∞∫
−∞

fX(x) ln

 fX(x)
m∏
i=1

fXi(xi)

dx (A.8)

This expression can be rewritten as

DfX‖f̃X =

∞∫
−∞

fX(x) ln fX(x)dx−
m∑
i=1

∞∫
−∞

fX(x) ln f̃Xi(xi)dx
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In the second term we can pose dx = dx(i)dxi, so we have

∞∫
−∞

fX(x) ln f̃Xi(xi)dx =

∞∫
−∞

ln f̃Xi(xi)

∞∫
−∞

fX(x)dx(i)dxi

But the internal integral is the marginal distribution of Xi, so we have

∞∫
−∞

fX(x) ln f̃Xi(xi)dx =

∞∫
−∞

f̃Xi(xi) ln f̃Xi(xi)dxi =− h̃(Xi), i = 1, 2, . . . ,m

where ˜h(Xi) is the i-th differential and marginal entropy.
Finally we obtain the following expression for the DKL:

DfX‖f̃X = −h(X) +
m∑
i=1

h̃(Xi) (A.9)

This expression is very important in many applications, such as blind signal
separation.

A.3 Mutual Information

Let us consider a system with X and Y the input random variable
and the output random variable respectively. H(X) is the measure of the
uncertainty on the input X . We would know the uncertainty on input X if
we have the observation Y . We have to give the following

Definition 35 The conditional entropy H(X|Y ) of the random variable X given
the random variable Y , is expressed as

H(X |Y ) = H(X,Y )−H(Y ) (A.10)

The conditional entropy represents the amount of uncertainty on X after we
have observed the output Y . It has the property:

0 ≤ H (X |Y ) ≤ H(X)

Hence, we can deduce that H(X)−H (X |Y ) represents the uncertainty on
the input X given by the observation Y . This latter quantity is described as

Definition 36 We define the mutual information I(X,Y ) between the two discrete
random variables X and Y the following quantity:

I(X;Y ) = H(X)−H (X |Y ) =
∑
x∈X

∑
y∈Y

p(x, y) ln
(
p(x, y)
p(x)p(y)

)
(A.11)
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The entropy is the mutual information when Y = X : H(X) = I(X;X).
The mutual information has the following property:

1. I(X;Y ) = I(Y ;X), it is symmetric;

2. I(X;Y ) ≥ 0 it is non-negative; it is zero if and only if X and Y are
statistically independent;

3. I(X;Y ) = H(Y )−H (Y |X ), it is reciprocal.

The relation between the mutual information I(X;Y ) and the entropies
H(X), H(Y ) and H(X,Y ) is shown in the following figure

Fig. A.1: Relation between I(X;Y ), H(X), H(Y ) and H(X,Y )

We can extend the concept of mutual information for continuous random
variable, as follows

Definition 37 We define the mutual information I(X,Y ) between the two con-
tinuous random variables X and Y the following quantity:

I(X;Y ) =

∞∫
−∞

∞∫
−∞

fX,Y (x, y) ln
(
fX(x |y)
fX(x)

)
dxdy (A.12)

where fX,Y (x, y) is the joint pdf of X and Y , while fX(x|y is the conditioned pdf
of X given Y .

Similarly the mutual information for continuous random variable has the
following properties:
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1. I(X;Y ) = h(X) − h(X |Y ) = h(Y )− h(Y |X) = I(Y ;X) , it is sym-
metric and reciprocal;

2. I(X;Y ) ≥ 0, it is non-negative and it is zero if, and only if X and Y
are statistically independent.

The differential conditioned entropy can be calculated as follows:

h (X |Y ) = −
∞∫
−∞

∞∫
−∞

fX,Y (x, y) ln fX(x |y)dxdy (A.13)

Now noting that fX,Y (x, y) = fY (y |x)fX(x) and remembering the expres-
sion of the Kullback-Leibler divergence, we can write

I(X; Y) =

∞∫
−∞

∞∫
−∞

fX,Y (x,y) ln
(
fX,Y (x,y)
fX(x)fY (y)

)
dxdy = DfX,Y ‖fX ·fY

(A.14)
So the mutual information corresponds to the Kullback-Leibler divergence
between the joint pdf fX,Y (x, y) and the product of its marginal pdf’s fX(x)
and fY (y).

We give two important and useful theorem [144]:

Theorem 22 Given an n-dimensional gaussian random variable X, with mean µ
and covariance matrix K, such that

fX(x) =
1(√

2π
)n |K|1/2 e− 1

2
(x−µ)TK−1(x−µ)

then we have that
H(x) =

1
2

ln [(2πe)n |K|] (A.15)

Theorem 23 The entropy of a n-dimensional random variable X is smaller than
the entropy of a n-dimensional gaussian random variable with equal mean and
covariance matrix:

H(x) ≤ 1
2

ln [(2πe)n |K|] (A.16)

We remember that the covariance matrix K is defined as K = E
{
xxT

}
.

A.4 Negentropy

The negentropy can be seen as a very important measure of nongaussia-
nity, and it is described as



168 APPENDIX A. ELEMENTS OF INFORMATION THEORY

Definition 38 The negentropy J(X) of a random variable X is

J(X) = H(Xgauss)−H(X) (A.17)

where Xgauss is a Gaussian random variable of the same covariance matrix as X.

The negentropy has the following properties:

1. J(X) ≥ 0, it is zero if and only if X has a Gaussian distribution;

2. J(MX) = J(X), it is invariant for any invertible linear transforma-
tions.

Proof. Using the relation (A.15) we obtain:

J (Mx) = 1
2 ln

∣∣det
(
MKMT

)∣∣+ n
2 [1 + ln 2π]− (H (x) + ln |det M|) =

= 1
2 ln |det K|+ 21

2 ln |det M|+ n
2 [1 + ln 2π]−H (x)− ln |det M| =

= 1
2 ln |det K|+ n

2 [1 + ln 2π]−H (x) =
= H (xgauss)−H (x) = J (x)

The negentropy is the optimal estimator of nongaussianity. The problem
in using negentropy is that it is computationally very difficult. Estimating
negentropy using the definition would require an estimate of the pdf. There-
fore, some approximations have to be used.
The classical method of approximating negentropy is using higher-order
moments as follows:

J(y) ≈ 1
12
E
{
y3
}2 +

1
48
kurt(y)2 (A.18)

The random variable y is assumed to be of zero mean and unit variance.
However, the validity of these approximations may be rather limited. In par-
ticular, these approximations suffers from the non robustness encountered
with kurtosis.



B
Elements of Complex Variables

—Climb mountains to see lowlands.
Old Asian Proverb

IN this appendix we introduce some elements of the complex variables
and functions, which have been used in this thesis. In particular we
have to define some useful statistical properties of complex random

variables (r.v.s). A good text for complex variables can be found in [160, 172,
157, 114], while most of the results of this appendix are drawn from [66].

B.1 Complex variables and vectors

Let we pose z = zR+jzI a complex variable (z ∈ C), where zR, zI are the
real and imaginary parts of the complex variable z rispectively and j =

√
−1

is the imaginary unit.
We denote with z∗ = zR − jzI the complex conjugate of z, while its

modulus is denoted as |z| =
√
zz∗ =

√
zR2 + zI2.

This representation of complex numbers is called Cartesian form; there
exists another representation known as polar form: z = mejϑ, where m >
0, ϑ ∈ R. The number m coincides the modulus of the complex variable z
while the number ϑ is called an argument of z; the argument ϑ = Arg(z)
such that −π ≤ ϑ < π is called the principal argument. We can pass through
the Cartesian form to the polar form using the following relations:

m =
√
z2
R + z2

I

ϑ = atan zI
zR

(B.1)
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and vice versa from polar representation to the Cartesian one using:

zR = m cosϑ
zI = m sinϑ

(B.2)

The real part of a complex variable can be obtained as zR = Re {z} while
the imaginary part as zI = Im {z}.

A vector of complex variables zk (k = 1, . . . , N ) is denoted by the bold
face lower case letter z = (z1, z2, . . . , zN )T , where T is the ordinary transpose
operator. The real part of a N -dimensional complex vector z is denoted by
zR = Re {z} and similar for the imaginary part zI = Im {z}. The Euclidean
norm of the vector z is denoted by ‖z‖2 = 〈z, z〉 = zzH , where 〈·, ·〉 is the
inner product and the superscript H denotes the conjugate transpose.

A complex matrix C ∈ CN×N is termed symmetric if CT = C and
Hermitian if CH = C. Furthermore, the matrix C is orthogonal if CTC =
CCT = I and unitary if CHC = CCH = I, where I denotes the identity
matrix.

B.2 The Augmented representation

Let C = CR+ jCI ∈ Cm×n and z = zR+ jzI ∈ Cn. We use the following
notation

CR =
(

CR −CI

CI CR

)
and zR =

(
zR
zI

)
(B.3)

for the associated 2m×2n real matrix and 2n-variate real vector, respectively.
The mapping z 7→ zR gives naturally a group isomorphism between the ad-
ditive Abelian groups Cn and R2n.In the case m = n = 1, the mapping given
by C 7→ CR defines a field isomorphism between the complex numbers and
a subset of real two dimensional matrices.

Now consider the mapping

Cz 7→ (Cz)R = CRzR (B.4)

it is continuous and therefore preserves the topological properties, i.e., it is
a homeomorphism. Let diag(z) denote the diagonal matrix with components
of z in its main diagonal and zeros elsewhere. Since Cn is a vector space,
where the scalar multiplication for c ∈ C is given by

cz ∆=

 cz1
...
czn

 = diag
((

c · · · c
))

z (B.5)

the mapping (B.4) defines a vector space isomorphism between the standard
n-dimensional complex vector space and a 2n-dimensional real-valued vec-
tor space given by the mapping. It is important to realize that this associated
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real-valued vector space is not isomorphic to the standard real vector space
R2n. Furthermore, by equating z1

H with C in (B.4) it is easily verified that
the mapping C → R2 : zH1 z2 7→

(
zH1
)

R (z2)R associates a (complex) inner
product for R2n. Therefore, the mapping (B.4) is also a Hilbert space isomor-
phism. Again, it should be emphasized that the inner product given by the
mapping is not the standard Euclidean inner product in R2n. However, the
vector norms, and hence metrics, are equivalent in both.

The following properties are easily established.

Lemma 12 Let C ∈ Cn×n and z ∈ Cn, then

1. |det(C)|2 = det(CR);

2. C is Hermitian iff CR is symmetric. Then det(C)2 = det(CR) and 2 ×
rank(C) = rank(CR);

3. C is nonsingular iff CR is nonsingular;

4. C is unitary iff CR is orthogonal;

5. zHCz = zR
TCRzR;

6. C is Hermitian positive definite iff CR is symmetric positive definitive;

7. any polynomial with complex coefficients in variables zR can be equivalently
given in variables (z, z∗).

Proof. These properties are direct consequences of the isomorphism. The last
property follows from the identities zR = 1

2 (z + z∗) and zI = −j
2 (z− z∗).

Since the variables (z, z∗) in Lemma 12, 7) are dependent, we call such
complex polynomials wide sense polynomials. The idea of using also the
complex conjugate variable has turned out to be highly useful in.

B.3 Complex functions

Let f(z) be a complex function, where z = zR + jzI ∈ C, then it is
possible to write

f(z) = u(zR, zI) + jv(zR, zI) (B.6)

where u(zR, zI) is the real part function and v(zR, zI) is the imaginary part
function.

The fundamental result for the differentiability of the complex-valued
function (B.6) is given by the Cauchy-Riemann equations:

∂u
∂zR

= ∂v
∂zI

,
∂v
∂zR

= − ∂u
∂zI

(B.7)
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which summarize the conditions for the derivative to assume the same value
regardless of the direction of approach when ∆z → 0. These conditions,
when considered carefully, make it clear that the definition of complex
differentiability is quite stringent and imposes a strong structure on u(zR, zI)
and v(zR, zI), the real and imaginary parts of the function, and consequently
on f(z). Also, obviously most cost (objective) functions do not satisfy the
Cauchy-Riemann equations as these functions are typically f : C→ R and
thus have v(zR, zI) = 0.

An elegant approach due to Wirtinger [216, 114] relaxes this strong
requirement for differentiability, and defines a less stringent form for the
complex domain. More importantly, it describes how this new definition can
be used for defining complex differential operators that allow computation
of derivatives in a very straightforward manner in the complex domain, by
simply using real differentiation results and procedures.

In the development, the commonly used definition of differentiability
that leads to the Cauchy-Riemann equations is identified as complex differ-
entiability and functions that satisfy the condition on a specified open set
as complex analytic (or complex holomorphic). A fundamental result for the
analytic functions is the following

Theorem 24 (Liouville) If f(z) is entire and bounded on the complex plane C,
then f(z) is a constant function.

The more flexible form of differentiability is identified as real differentia-
bility, and a function is called real differentiable when u(zR, zI) and v(zR, zI)
are differentiable as functions of real-valued variables zR and zI . Then, one
can write the two real-variables as zR = (z + z∗)/2 and zI = −j(z − z∗)/2,
and use the chain rule to derive the operators for differentiation given in
the theorem below. The key point in the derivation is regarding the two
variables z and z∗ as independent from each other, which is also the main
trick that allows us to make use of the elegance of Wirtinger calculus. Hence,
we consider a given function f : C → C as f : R× R → C by writing it as
f(z) = f(zR, zI), and make use of the underlying R2 structure. The main
result in this context is stated by Brandwood as follows [22].

Theorem 25 Let f : R × R → C be a function of real variables zR and zI such
that g(z, z∗) = f(zR, zI), where z = zR + jzI and that g is analytic with respect
to z and z∗ independently. Then,

1. the partial derivatives

∂g
∂z = 1

2

(
∂f
∂zR
− j ∂f∂zI

)
,

∂g
∂z∗ = 1

2

(
∂f
∂zR

+ j ∂f∂zI

) (B.8)

can be computed by treating z∗ as a constant in g and z as a constant,
respectively;
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2. a necessary and sufficient condition for f to have a stationary point is that
∂g/∂z = 0. Similarly, ∂g/∂z = 0 is also a necessary and sufficient condi-
tion.

Therefore, when evaluating the gradient, we can directly compute the deriva-
tives with respect to the complex argument, rather than calculating individ-
ual real-valued gradients as typically performed in the literature (see, e.g.,
[114]). The requirement for the analyticity of g(z, z∗) with respect to z and
z∗ is independently equivalent to the condition on real differentiability of
f(zR, zI) since we can move from one form of the function to the other using
the simple linear transformation given above [157]. When f(z) is complex
analytic, that is, when the Cauchy-Riemann conditions hold, g(·) becomes
a function of only z, and the two derivatives, the one given in the theorem
and the traditional one coincide.

The case we are typically interested in the development of signal process-
ing algorithms is given by f : R× R→ R and is a special case of the result
stated in the theorem. Hence we can employ the same procedure—taking
derivatives independently with respect to z and z∗, in the optimization of a
real-valued function as well. In the rest, we consider such functions from
the general f : R× R→ C case for completeness.

Example 10.
As a simple example, consider the function g(z, z∗) = zz∗ = |z|2 = zR

2 + zI
2 =

f(zR, zI). We have (1/2)(∂f/∂zR + j(∂f/∂zI)) = zR + jzI = z, which we can also
evaluate as ∂g/∂z∗ = z, that is, by treating z as a constant in g when calculating the
partial derivative.

The complex gradient defined by Brandwood [22] has been extended
by van den Bos [206] to define a complex gradient and Hessian in C2N by
defining a mapping

z ∈ CN 7→ z̃ =


z1

z∗1
...
zN
z∗N

 ∈ C2N (B.9)

Note that the mapping allows a direct extension of Wirtinger’s result to
the multidimensional space through N mappings of the form (zR,k, zI,k) 7→
(zk, zk∗), where z = zR + jzI , so that one can make use of Wirtinger deriva-
tives. Since the transformation from R2 to C2 is a simple linear invertible
mapping, one can work in either space, depending on the convenience of-
fered by each. In [206], it is shown that such a transformation allows the
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definition of a Hessian, hence of a Taylor series expansion very similar to
the one in the real case, and the Hessian matrix H defined in this man-
ner is naturally linked to the complex CN×N Hessian G in that if λ is an
eigenvalue of G, then 2λ is the corresponding eigenvalue of H. The result
implies that the positivity of the eigenvalues as well as the conditioning of
the Hessian matrices are shared properties of the two matrices, that is, of
the two representations.

B.3.1 Optimization in the Complex Domain

Vector case

We define 〈·, ·〉 as the scalar inner product between two matrices W and
V as

〈W,V〉 = Trace(VHW) (B.10)

so that 〈W,W〉 = ‖W‖2Fro, where the subscript Fro denotes the Frobenius
norm. For vectors, the definition simplifies to 〈w,v〉 = vHw.

We define the gradient vector∇z = [∂/∂z1, ∂/∂z2, . . . , ∂/∂zN ]T for vec-
tor z = [z1, z2, . . . , zN ]T with zk = zR,k+jzI,k in order to write the first-order
Taylor series expansion for a function g(z, z∗) : CN × CN → R,

∆g = 〈∆z,∇z∗g〉+ 〈∆z∗,∇zg〉 = 2Re {〈∆z,∇z∗g〉} (B.11)

where the last equality follows because g(·, ·) is real valued.
Using the Cauchy-Schwarz-Bunyakovski inequality [128], it is straight-

forward to show that the first-order change in g(·, ·) will be maximized
when ∆z and the gradient ∇z∗g are collinear. Hence, it is the gradient with
respect to the conjugate of the variable,∇z∗g, that defines the direction of the
maximum rate of change in g(·, ·) with respect to z, not∇zg as sometimes
noted in the literature. Thus the gradient optimization of g(·, ·) should use
the update

∆z = zt+1 − zt = −µ∇z∗g (B.12)

as this form leads to a nonpositive increment given by ∆g = −2µ ‖∇z∗g‖2,
while the update using ∆z = −µ∇zg results in updates ∆g = −2µRe {〈∇z∗g,∇zg〉},
which are not guaranteed to be nonpositive.

Based on (B.11), similar to a scalar function of two real vectors, the
second-order Taylor series expansion of g(z, z∗) can be written as

∆2g =
1
2

〈
∂g

∂z∂zT
∆z,∆z∗

〉
+

1
2

〈
∂g

∂z∗∂zH
∆z∗,∆z

〉
+
〈

∂g

∂z∂zH
∆z∗,∆z∗

〉
(B.13)

Next, we derive the same complex gradient update rule using another
approach, which provides the connection between the real and complex
domains. We first introduce the following fundamental mappings that are
similar in nature to those introduced in [206].
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Proposition 6 Given a function g(z, z∗) : CN × CN → R that is real differen-
tiable and f : R2N → R such that g(z, z∗) = f(w), where z = [z1, z2, . . . , zN ]T ,
w = [zR,1, zI,1, zR,2, zI,2, . . . , zR,N , zI,N ]T , and zk = zR,k+jzI,k, k ∈ {1, 2, . . . , N},
then

∂f
∂w = UH ∂g

∂z̄∗
∂2f

∂w∂wT = UH ∂g
∂z̄∗∂z̄T

(B.14)

where U is defined by z̄ ∆=
[

z
z∗

]
and satisfies U−1 = (1/2)UH .

In the following two propositions, we show how to use the same mappings
we defined above to obtain first- and second-order derivatives, and hence
algorithms, in CN in an efficient manner.

Proposition 7 Given functions g and f defined as in Proposition 6, one has the
complex gradient update rule

∆z = −2µ
∂g

∂z∗
(B.15)

which is equivalent to the real gradient update rule

∆w = −µ ∂f
∂w

(B.16)

where z and w are as defined in Proposition 6 as well.

Proposition 8 Given functions g and f defined as in Proposition 6, one has the
complex Newton update rule

∆z = −
(
H∗2 −H∗1H

−1
2 H1

)−1
(
∂g

∂z∗
−H∗1H

−1
2

∂g

∂z

)
(B.17)

which is equivalent to the real Newton update rule

∂2f

∂w∂wT
∆w = − ∂f

∂w
(B.18)

where

H1 =
∂2f

∂z∂zT
, H2 =

∂2g

∂z∂zH
. (B.19)

Matrix case

The extension from the vector gradient to matrix gradient is straight-
forward. For a real-differentiable g(W,W∗) : CN×N × CN×N → R, we can
write the first-order expansion as

∆g =
〈

∆W, ∂g
∂W∗

〉
+
〈

∆W∗, ∂g
∂W

〉
=

= 2Re
{〈

∆W, ∂g
∂W∗

〉} (B.20)



176 APPENDIX B. ELEMENTS OF COMPLEX VARIABLES

where ∂g/∂W is an N ×N matrix whose (i, j)-th entry is the partial deriva-
tive of g with respect to wij . By arranging the matrix gradient into a vector
and by using the Cauchy- Schwarz-Bunyakovski inequality [128], it is easy
to show that the matrix gradient ∂g/∂W∗ defines the direction of the maxi-
mum rate of change in g with respect to W.

For local stability analysis, Taylor expansions up to the second order is
also frequently needed. Since the first-order matrix gradient takes a matrix
form already, here we only provide the second-order expansion with respect
to every entry of matrix W. From (B.13), we obtain

∆2g = 1
2

(∑ ∂g
∂wij∂wkl

dwijdwkl+
∑ ∂g

∂w∗ij∂w
∗
kl
dw∗ijdw

∗
kl

)
+

+
∑ ∂g

∂wij∂w∗kl
dwijdw

∗
kl

(B.21)

We can use the first-order Taylor series expansion to derive the relative
gradient update rule for the complex case, which is usually directly extended
to the complex case without a derivation. To write the relative gradient
rule, we consider an update of the parameter matrix W in the invariant
form (∆W)W. We then write the first-order Taylor series expansion for the
perturbation (∆W)W as

∆g =
〈

(∆W) W, ∂g
∂W∗

〉
+
〈

(∆W∗) W∗, ∂g
∂W

〉
=

= 2Re
{〈

∆W, ∂g
∂W∗WH

〉} (B.22)

to determine the quantity that maximizes the rate of change in the function.
The complex relative gradient of g at W is then written as (∂g/∂W∗)WH to
write the relative gradient update term as

∆W = −µ ∂g

∂W∗W
HW (B.23)

Upon substitution of ∆W into (B.20), we observe that ∆g = −2µ
∥∥(∂g/∂W∗)WH

∥∥2

Fro
is a nonpositive quantity, thus a proper update term. The relative gradient
can be regarded as a special case of natural gradient [6] in the matrix space,
but provides the additional advantage that it can be easily extended to
nonsquare matrices. It is possible to show how the relative gradient update
rule for independent component analysis based on maximum likelihood
can be derived in a very straightforward manner in the complex domain
using (B.23) and Wirtinger calculus.

B.4 Complex random variables

A n-variate complex random vector (r.vc.) x is defined as an r.vc. of the
form

x = xR + jxI (B.24)
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where xR and xI are n-variate real r.vc.s, i.e., measurable functions from
a probability space to Rn. This is equivalent for x to be measurable from
the probability space into Cn due to the separability of the complex space.
Therefore, the probabilistic structure of the r.vc.s in Cn and the probabilistic
structure of the r.vc.s in R2n is the same. However, the operator structure
is different as it is evident from the previous section. This gives distinct
properties to the r.vc.s with complex values, and justifies studying them
separately. Throughout this appendix all complex r.vc.s are assumed to be
full. This means that the support of the induced measure of a n-dimensional
r.vc. is not contained in any lower dimensional complex subspace.

Since the probabilistic structures of r.vc.s in Cn and in R2n are the same,
also the operator structure of r.vc.s in Cn can be studied by first using the
isomorphism (B.4) and then applying the concepts associated with the real
r.vc.s. However, we define these associated concepts directly on Cn, since
this approach is notationally more convenient. The expectation E[·] of a
complex r.vc. x is defined as

Ex[x] = ExR [xR] + jExI [xI ] (B.25)

and the distribution function or cumulative density function (cdf ) Fx is given as

Fx(z) ∆= FxR(zR), where z = (z1, . . . , zn)T ∈ Cn and FxR denotes the distri-
bution of real-valued r.vc. xR. Then for independent r.v.s s = (s1, . . . , sn)T ,
we have

Fs (z) = FsR (zR) =
n∏
k=1

F(sk)R
((zk)R) =

n∏
k=1

Fsk (zk) (B.26)

The same way we define the probability density function or pdf fx (if it exists)

of a n-dimensional complex r.vc. as fx(z) ∆= fxR(zR), and the characteristic
function (cf ) [116] as

ϕx (z) ∆= ϕxR (zR) = ExR [exp (j 〈zR, xR〉)] =
= Ex [exp (jRe {z, x})]

(B.27)

It follows directly from (B.26) that for independent complex r.v.s s = (s1, . . . , sn)T

ϕs (z) =
n∏
k=1

ϕsk (zk) (B.28)

Using a standard property of real cf.s and the properties of the isomorphism
(B.4), we have a useful relation for the cf. of an r.vc. x and the cf. of the
linearly transformed r.vc. Cx. Namely, for any complex matrix C, we have

ϕCx (z) = ϕ(Cx)R
(zR) = ϕCRxR (zR) = ϕxR

(
(CR)T zR

)
=

= ϕxR

((
CH
)

R zR
)

= ϕxR

((
CHz

)
R
)

= ϕx

(
CHz

) (B.29)

Finally, a cf. ϕx(z) is called analytic if ϕxR(zR) is an analytic cf., i.e., the real
cf. has a regular extension defined on in some neighborhood of the origin.
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B.4.1 Second-Order Statistics of Complex Random Vectors

An r.vc. x has finite second order or weak second order statistics ifEx

[
|〈x, z〉|2

]
<

∞ for all z ∈ Cn. This is clearly equivalent to the existence of finite second
order statistics for both real r.vc.s xR and xI . All r.vc.s in this section are
assumed to have finite second order statistics. Such r.vc.s are in general
called second-order complex r.vc.s.

The second-order statistics between two real r.vc.s may be described
by the covariance matrix. The complex covariance matrix cov[x1,x2] of two
complex r.vc.s x1 and x2 may be defined as

cov [x1,x2] ∆= Ex1,x2

[
(x1 −mx1) (x2 −mx2)H

]
(B.30)

where mx1 = Ex1 [x1] and mx2 = Ex2 [x2].
However, considering the real representations of the complex r.vc.s, it

can be seen that the complex covariance matrix does not give complete
second order description. For that we define the pseudo-covariance matrix
pcov[x1,x2] [148] as

pcov [x1,x2] ∆= Ex1,x2

[
(x1 −mx1) (x2 −mx2)T

]
= cov [x1,x∗2] (B.31)

Two complex r.vc.s x1 and x2 are uncorrelated if real r.vc.s (x1)R and (x2)R
are uncorrelated, i.e.,

cov [(x1)R , (x2)R] = O2n×2n (B.32)

where O2n×2n denotes the 2n × 2n matrix of zeros. Then, by using the
properties from the previous section, the following lemma follows directly.

Lemma 13 Complex r.vc.s x1 and x2 are uncorrelated if and only if cov[x1,x2] =
pcov[x1,x2] = On×n.

As it is the case with real r.vc.s, the internal correlation structure of a single
r.vc. x may be of interest in addition to correlation between two r.vc.s. Then

we define cov[x] ∆= cov[x,x] and pcov[x] ∆= pcov[x,x], and call them the
covariance matrix and the pseudo-covariance matrix of an r.vc. x, respec-
tively. It is easily seen that the covariance matrix cov[x] is Hermitian and the
pseudo-covariance matrix pcov[x] is symmetric. Since all r.vc.s are assumed
to be full, the covariance matrix cov[x] is also positive definite. R.vc. x is said
to have uncorrelated components if all its marginal r.v.s xk and xl, k 6= l, are
uncorrelated. The following lemma is a simple consequence of Lemma 13.

Lemma 14 A complex r.vc. x has uncorrelated components if and only if its
covariance matrix and pseudocovariance matrix are diagonal.
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An r.vc. x is said to be spatially white, if cov[x] = σ2In for some σ > 0. If
pcov[x] = On×n, then the r.vc. is called second-order circular (or circularly
symmetric). Some authors prefer the term proper [148, 203, 134]. A stronger
definition of circularity is based on the pdf of the complex random variable
such that for any α, the pdfs of the r.v. x and ejαx are the same. Circular r.vc.s
have gained most of the attention in the literature of complex r.vc.s. This is
likely due to the fact that all the second order information of circular r.vc.s is
contained in the covariance matrix, which, on the other hand, behaves like
the covariance matrix for the real r.vc.s. However, in this appendix we need
the complete second order description to be derived next. Our approach is
to our best knowledge novel, mainly based on the following theorem.

Theorem 26 Any full complex n-dimensional r.vc. x with finite second order
statistics can be transformed by using a nonsingular square matrix C such that the
r.vc. s = (s1, . . . , sn)T = Cx has the following properties [203]:

1. cov[s] = In;

2. pcov[s] = diag(λ[s]), where λ[s] = (λ1, . . . , λn)T denotes a vector such
that λ1 ≥ . . . ≥ λn.

Since cov[x] = cov[xR]+cov[xI] and pcov[x] = cov[xR]−cov[xI]+2jcov[xR,xI]
for any r.v. x = xR+jxI , it follows by Theorem 26 that cov[Re {sk} , Im {sk}] =
0 and 1 ≥ λk = cov[Re {sk}]− cov[Im {sk}] ≥ 0, k = 1, . . . , n.

The r.vc.s satisfying the properties of Theorem 26 have a special structure,
and they are here called strongly uncorrelated. Any strongly uncorrelated r.vc.
is white with cov[s] = In, but the converse is not true. In general, for a given
r.vc. x, the strongly uncorrelated r.vc. s and the strong-uncorrelating transform
C given by Theorem 26 are not unique. However, we have the following.

Theorem 27 For a given r.vc. x, the vector λ[s] in Theorem 26 is unique.

The previous theorems lead to a useful characterization of second-order
complex r.vc.s.

Definition 39 The vector λ[x] ∆= λ[s] = (λ1, . . . , λn)T in Theorem 26 is called
the circularity spectrum of an r.vc. x. An element of the circularity spectrum
corresponding to an r.v. is called a circularity coefficient.

Any r.vc. x is clearly second order circular if and only if its circularity
spectrum is a zero vector, i.e., λ[x] = On×1.

Corollary 3 If the circularity spectrum of an r.vc. has distinct elements, all rows
corresponding to nonzero circularity coefficients of the strong-uncorrelating trans-
form are unique up to multiplication of the row by −1. A row corresponding to the
zero coefficient is unique up to multiplication of the row by ejθ, θ ∈ R.
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Lemma 15 Let x and y be uncorrelated second-order complex r.v.s. Then

1.
0 ≤ λ [cx] = λ [x] =

|pcov [x]|
cov [x]

≤ 1

for any nonzero constant c ∈ C;

2. λ[x] = 1 if and only if x = c(sR + jα) for some unit variance real r.v. sR
and deterministic constants 0 6= c ∈ C, α ∈ R;

3.
λ [x + y] =

|pcov [x] + pcov [y]|
cov [x] + cov[y]

≤ max {λ [x] , λ [y]}

with the equality if and only if λ[x] = λ[y] and Arg(pcov[x]) = Arg(pcov[y])
if λ[x] 6= 0.

B.4.2 Complex Normal Random Vectors

There are no commonly agreed definitions of what is meant by complex
normal r.vc.s. It is natural to require that a r.vc. x is normal (Gaussian) if the
real r.vc. xR is multivariate normal. Such r.vc.s are generally called wide sense
normal r.vc.s [203]. Since the real complex normal r.vc. is completely char-
acterized by its mean vector and covariance, the results from the previous
section show that a wide sense complex normal r.vc. is completely specified
by its mean, covariance matrix, and pseudo-covariance matrix.

However, all wide sense normal r.vc.s do not possess all the properties
that real normal r.vc.s do. Only a special subclass of wide sense normal r.vc.s
has a density function similar to the real r.vc.s, i.e. maximizes the entropy.
Such r.vc.s are called narrow sense normal r.vc.s [203]. They are wide sense
normal r.vc.s such that the real and imaginary parts of any linear projection
of the r.vc. are independent and have equal variances. This condition is
equivalent to the requirement that a wide sense normal r.vc. is second order
circular (see, e.g., [134]).

In order to establish the properties of the complex ICA model, neither
wide sense normal in its full generality nor narrow sense normal is adequate,
and a more specific characterization of complex normal r.vc.s is needed.

The main result is the following decomposition theorem for complex
normal random vectors.

Theorem 28 A r.vc. n is complex normal with circularity spectrum λ if and only
if

n = C (ηR + jηI) + µ (B.33)

for some nonsingular matrix C, a complex constant vector µ, and multinormal real
independent r.vc.s ηR ∼ N

(
0n×1,

1
2In + 1

2diag (λ)
)

and ηI ∼ N
(
0n×1,

1
2In − 1

2diag (λ)
)
.

Also cov[n] = CCH, pcov[n] = Cdiag(λ)CT, and En[n] = µ.



B.4. COMPLEX RANDOM VARIABLES 181

A complex normal r.vc. η such that C = In and µ = 0n×1 in the repre-
sentation (B.33), i.e., η = ηR + jηI , is called standard complex normal with
the circularity spectrum λ. Clearly any centered and strongly uncorrelated
complex normal r.vc. is standard. Also, it is seen that any complex normal
r.vc. may be alternatively specified by the mean, the circularity spectrum,
and the (inverse of) strong-uncorrelating matrix C.

The previous decomposition allows the derivation of differential entropy
of a complex normal r.vc. in a closed form. Entropy h(n) of an r.vc. x is
defined as the entropy [55] of the real r.vc. xR. The following result has been
implicitly derived without reference to circularity coefficients.

Corollary 4 The differential entropy h(n) of a zero-mean complex normal r.vc. n
with the circularity coefficients λk 6= 1, k = 1, . . . , n is given by

h (n) = log (det (πecov [n])) +
1
2

n∑
k=1

log
(
1− λ2

k

)
(B.34)

Since the summation term on the right of (B.34) is always nonpositive and
the entropy of real r.vc.s with the given covariance is maximized for Gaus-
sian r.vc.s [55], it may be seen that the entropy of complex r.vc.s with the
given covariance is maximized for a narrow sense complex normal r.vc.
[134], i.e., for a complex normal r.vc. with zero pseudo-covariance. Theorem
28 allows also an easy derivation of the cf. of a complex normal r.vc. [149],
[203].

Corollary 5 The characteristic function of a complex normal r.vc. n is given by

ϕn (z) = exp
(
−1

4zHcov [n] z− 1
4Re

{
zHpcov [n] z∗

}
+ jRe

{
zHEn [n]

})
=

= exp
(
−1

4 (Re {〈z, cov [n] z + pcov [n] z∗〉}+ jRe {〈z, En [n]〉})
)
(B.35)

Corollary 5 shows in particular that the second characteristic function ψx
∆=

logϕx of a complex r.vc. x is a second-order wide sense polynomial in vari-
ables (z, z∗). Theorem 28 can be also used to derive the density function of
a complex normal r.vc. However, unlike the cf., the density function of a
wide sense normal r.vc. does not appear to have a simple form. See [149]
for expressions for the density function in terms of the covariance and the
pseudo-covariance matrices.

Example 11.
Let the components of n be uncorrelated complex normal r.v.s with the same circu-
larity coefficient λ. Now for a diagonal matrix Λ the r.vc. Λn is standard complex
normal with the circularity spectrum (λ, . . . , λ)T , and for any (realvalued) orthonor-
mal matrix O

cov [OΛn] = Ocov [Λn] OH = OInOT = In
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and
pcov [OΛn] = Opcov [Λn] OT = O (λIn) OT = λIn

Therefore, the r.vc. OΛn is also standard complex normal.

B.5 Some useful theorems for complex random vari-
ables

The following theorem is a direct consequence of the multivariate version
of the real Marcinkiewicz theorem. The theorem shows essentially that
a complex normal r.v. is the only r.v. whose second cf. is a wide sense
polynomial.

Theorem 29 (Complex Marcinkiewicz) If in some neighborhood of zero the cf.
ϕx of a complex r.v. x admits the representation

ϕx (z) = exp (P (z, z∗)) (B.36)

where P is a wide sense polynomial, then the r.v. x is complex normal.

Also the well-known Cramer’s theorem has a direct complex counterpart.

Theorem 30 (Complex Cramer) If s1 and s2 are independent r.v.s such that
s1 + s2 is a complex normal r.v., then each of the r.v.s s1 and s2 is complex normal.

Lemma 16 Consider the equation, assumed valid for |z1| , |z2| < ε

n∑
k=1

ψk (z1 + ckz2) = h1 (z1) + h2 (z2) (B.37)

where ψk, k = 1, . . . , n, h1 and h2 are continuous complex-valued functions of
complex variables and the nonzero complex numbers ck, k = 1, . . . , n, are distinct.
Then all the functions in (B.37) are wide sense polynomials in (z, z∗) of degree not
exceeding.

One of the main characterization theorems for real r.v.s is the well-known
Darmois-Skitovich theorem. The theorem is fundamental for proving the
identifiability of real ICA models [50], [64]. Here we extend the theorem to
complex r.v.s.

The complex extension of Darmois-Skitovich theorem has exactly the
same form as the real theorem with the wide sense complex normal r.v.s
taking the role of real normal r.v.s. Hence, this theorem is an example where
the analogy between theories of narrow sense complex normal r.v.s and real
normal r.v.s is broken.
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Theorem 31 (Complex Darmois-Skitovich) Let s1, . . . , n be mutually inde-
pendent complex r.v.s. If the linear forms (the r.v.s)

x1 =
n∑
k=1

αksk

and

x2 =
n∑
k=1

βksk

where αk, βk ∈ C, k = 1, . . . , n are independent, then r.v.s sk for which αkβk 6= 0
are complex normal.

Although narrow sense complex normal r.v.s had to be admitted to the com-
plex Darmois-Skitovich theorem, it may still appear in the view of Corollary
3 that complex normal r.v.s appearing in the theorem can not be completely
arbitrary. That is, it may appear that some of the circularity coefficients of
normal r.v.s should be equal. It is true if n = 2. However, it is not generally
true as it is shown in the next example.

Example 12.
Let η1 = (n1, n2, n3)T be standard complex normal r.vc. with the circularity spec-
trum λ[η1]. Then

η2 =
1

5
√

2

(
3 5 4
3 −5 4

)
η1

is also standard complex normal r.vc. with the circularity spectrum λ [η2] =
(

1
5

1
5

)T .
Thus marginals of η2 are independent, and the Darmois-Skitovich theorem applies.
However, the circularity spectrum of η1 is distinct. Notice also that by Example
12, the r.vc. obtained from η2 by multiplying with any orthogonal matrix is also
standard complex normal r.vc. with the same circularity spectrum.

Other useful results are the following.

Lemma 17 Suppose independent complex r.v.s s1 and s2 are independent of com-
plex normal r.v.s n1 and n2. If s1 + n1 is independent of s2 + n2, then also n1 and
n2 are independent.

Lemma 18 If complex r.v.s n and s are independent and n+ s is independent of
n, then n is degenerate (i.e., a constant).





C
Proofs

—The truth is rarely pure, and never simple.
Oscar Wilde

IN the following rows I will present a mathematical derivation of the
learning rules for the weights matrix W and for the control points
adaptation.

First it is explained the feed-forward phase and the then backward phase,
so I can derive the w-rule for the weights matrix. Finally it is derived the
control points adaptation. The algorithm is derived by maximizing the
mutual entropy of the output vector y.

Then the Amari’s natural gradient adaptation rule is rapidly presented.

C.1 The Linear Case

C.1.1 The feed-forward phase

Here we present the proofs of (7.17) and (7.19). For notation we use the
symbols in Figure C.1. See also [165].

All the signals in this architecture are complex-valued signals, and the i-
th observed signal is represented by: xi = xiR+ jxiI . The complex unmixing
matrix is the following:

W = WR + jWI =

=


w11R + jw11I · · · w1jR + jw1jI · · · w1NR + jw1NI

...
. . .

...
. . .

...
wi1R + jwi1I · · · wijR + jwijI · · · wiNR + jwiNI

...
. . .

...
. . .

...
wN1R + jwN1I · · · wNjR + jwNjI · · · wNNR + jwNNI


185
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Fig. C.1: The entire system

The output of the un-mixing matrix W, the signal ui, is a linear combination
of the observed signals and the un-mixing matrix elements:

ui = uiR + juiI =
N∑
k=1

(wijR + jwijI) (xjR + jxjI) =

=
N∑
k=1

(wijRxjR − wijIxjI + j (wijRxjI + wijIxjR)) =

=
N∑
k=1

(wijRxjR − wijIxjI) + j
N∑
k=1

(wijRxjI + wijIxjR)

(C.1)

Then the signal (C.1) achieves the complex spline function (the Catmull-Rom
spline in this case) and we obtain the output signal yi described by:

yi = yiR + jyiI = ui (uiR, uiI) + jvi (uiR, uiI) (C.2)

C.1.2 The backward phase

For the Infomax principle, proposed by Bell & Sejnowski [15], we can
reach the separation of the input complex-valued signals maximizing the
joint entropy [55] of the output signal vector

y = yR + jyI (C.3)

composed by the N stochastic complex variables (C.2).
This vector has a probability density function (pdf) given by

py (y1R, . . . , yNR, y1I , . . . , yNI) =
N∏
i=1

pyi (yiR, yiI) (C.4)

if the N stochastic variable are independent.



C.1. THE LINEAR CASE 187

Using expression (C.4) the joint entropy of the output vector (C.3) is
[144]:

H (y) = −
∫
py (y1R, . . . , yNR, y1I , . . . , yNI)·

· ln (py (y1R, . . . , yNR, y1I , . . . , yNI)) · dy1R, . . . , dyNR, dy1I , . . . , dyNI =
def
= −E (ln (py (y1R, . . . , yNR, y1I , . . . , yNI))) =
= E (− ln (py (y1R, . . . , yNR, y1I , . . . , yNI)))

(C.5)
For (C.5) the Infomax principle is simply:

max
W

E (− ln (py (y1R, . . . , yNR, y1I , . . . , yNI))) (C.6)

Because the law between y (the output vector) and x (the input vector) is the
un-mixing matrix W and u, we can derive the probability density function
of the output vector from the probability density function of the input vector
by [144]:

p

([
yR
yI

])
=
p

([
xR
xI

])
det (J)

(C.7)

where J is the Jacobian of the transformation:

J =



∂y1R
∂x1R

· · · ∂y1R
∂xNR

∂y1R
∂x1I

· · · ∂y1R
∂xNI

...
. . .

...
...

. . .
...

∂yNR
∂x1R

· · · ∂yNR
∂xNR

∂yNR
∂x1I

· · · ∂yNR
∂xNI

∂y1I
∂x1R

· · · ∂y1I
∂xNR

∂y1I
∂x1I

· · · ∂y1I
∂xNI

...
. . .

...
...

. . .
...

∂yNI
∂x1R

· · · ∂yNI
∂xNR

∂yNI
∂x1I

· · · ∂yNI
∂xNI


(C.8)

The single elements of (C.8) are calculated using (C.1) as:

∂yiR
∂xjR

= ∂yiR
∂uiR

∂uiR
∂xjR

+ ∂yiR
∂uiI

∂uiI
∂xjR

= ∂yiR
∂uiR

wijR + ∂yiR
∂uiI

wijI
∂yiR
∂xjI

= ∂yiR
∂uiR

∂uiR
∂xjI

+ ∂yiR
∂uiI

∂uiI
∂xjI

= ∂yiR
∂uiR

(−wijI) + ∂yiR
∂uiI

wijR
∂yiI
∂xjR

= ∂yiI
∂uiR

∂uiR
∂xjR

+ ∂yiI
∂uiI

∂uiI
∂xjR

= ∂yiI
∂uiR

wijR + ∂yiI
∂uiI

wijI
∂yiI
∂xjI

= ∂yiI
∂uiR

∂uiR
∂xjI

+ ∂yiI
∂uiI

∂uiI
∂xjI

= ∂yiI
∂uiR

(−wijI) + ∂yiI
∂uiI

wijR

(C.9)

Substituting the expressions (C.9) in the Jacobian (C.8), we can calculate it
splitting the Jacobian J in the product of two matrices. In fact, applying the
Cauchy-Riemann conditions [122]:{

∂yiR
∂uiR

= ∂yiI
∂uiI

∂yiR
∂uiI

= − ∂yiI
∂uiR

(C.10)
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we obtain the following relation

det (J) = det



∂y1R
∂u1R

· · · 0 − ∂y1I
∂u1R

· · · 0
...

. . .
...

...
. . .

...
0 · · · ∂yNR

∂uNR
0 · · · − ∂yNI

∂uNR
∂y1I
∂u1R

· · · 0 ∂y1R
∂u1R

· · · 0
...

. . .
...

...
. . .

...
0 · · · ∂yNI

∂uNR
0 · · · ∂yNR

∂uNR


·

·det



w11R · · · w1NR −w11I · · · −w1NI
...

. . .
...

...
. . .

...
wN1R · · · wNNR −wN1I · · · −wNNI
w11I · · · w1NI w11R · · · w1NR

...
. . .

...
...

. . .
...

wN1I · · · wNNI wN1R · · · wNNR



(C.11)

where the last matrix in (C.11) can be expressed as

det



w11R · · · w1NR −w11I · · · −w1NI
...

. . .
...

...
. . .

...
wN1R · · · wNNR −wN1I · · · −wNNI
w11I · · · w1NI w11R · · · w1NR

...
. . .

...
...

. . .
...

wN1I · · · wNNI wN1R · · · wNNR


=

= det
(

WR −WI

WI WR

)
= det

(
W̃
)

(C.12)

and the matrix W̃ is in the canonical form.
The first determinant in (C.11) can be calculated remembered that (see

[73])

det
(
A B
C D

)
= det(D) · det(A−BD−1C) (C.13)

where A ∈ Rs×s, D ∈ Rr×r are invertible matrices, B ∈ Rs×r, C ∈ Rr×s.
Hence, because det(AB) = det(A) · det(B), we derive from (C.13)

det(D) ·det(A−BD−1C) = det(DA−DBD−1C) = det(DA−BC) (C.14)

the last identity is justified for the diagonal nature of all matrices, thus the
matrix product is commutative. Now because A = D and C = −B and the
matrices are all diagonal, so that the n-th power of a diagonal matrix is a
matrix with only the diagonal elements nonzero and each equal to the n-th
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power of each element, from (C.14) we obtain directly:

det



∂y1R
∂u1R

· · · 0 − ∂y1I
∂u1R

· · · 0
...

. . .
...

...
. . .

...
0 · · · ∂yNR

∂uNR
0 · · · − ∂yNI

∂uNR
∂y1I
∂u1R

· · · 0 ∂y1R
∂u1R

· · · 0
...

. . .
...

...
. . .

...
0 · · · ∂yNI

∂uNR
0 · · · ∂yNR

∂uNR


=

= det





(
∂y1R
∂u1R

)2
0 · · · 0

0
(
∂y2R
∂u2R

)2
· · · 0

...
. . . . . .

...

0 · · · 0
(
∂yNR
∂uNR

)2


+

+



(
∂y1I
∂u1R

)2
0 · · · 0

0
(
∂y2I
∂u2R

)2
· · · 0

...
. . . . . .

...

0 · · · 0
(
∂yNI
∂uNR

)2




=

= det



(
∂y1R
∂u1R

)2
+
(
∂y1I
∂u1R

)2
0 · · · 0

0
(
∂y2R
∂u2R

)2
+
(
∂y2I
∂u2R

)2
· · ·

...
...

. . . . . . 0

0 · · · 0
(
∂yNR
∂uNR

)2
+
(
∂yNI
∂uNR

)2


=

=
N∏
i=1

[(
∂yiR
∂uiR

)2
+
(
∂yiI
∂uiR

)2
]

(C.15)
Using (C.15) the final expression of (C.11) is:

det (J) = det
(
W̃
)
·
N∏
i=1

[(
∂yiR
∂uiR

)2

+
(
∂yiI
∂uiR

)2
]

(C.16)

Adaptation of W matrix

Maximizing the joint entropy (C.6) as proposed by Bell e Sejnowski [15],
can be rewritten as follows:

max
W

(
ln
(

det
(
W̃
)
·
N∏
i=1

[(
∂yiR
∂uiR

)2
+
(
∂yiI
∂uiR

)2
]))

=

max
W

(
ln
(

det
(
W̃
))

+
N∑
i=1

ln
[(

∂yiR
∂uiR

)2
+
(
∂yiI
∂uiR

)2
]) (C.17)
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Hence we calculate the increment ∆W of the demixing matrix, deriving
(C.17) with respect to the mixing matrix W. It is possible to split ∆W as
∆WI + ∆WII. So we can write

∆W = ∆WI + ∆WII ∝

∝
(

N∑
i=1

∂
∂W ln

[(
∂yiR
∂uiR

)2
+
(
∂yiI
∂uiR

)2
])

+
(

∂
∂W ln

(
det
(
W̃
))) (C.18)

We first calculate:

∆WI ∝
N∑
i=1

∂

∂W
ln

[(
∂yiR
∂uiR

)2

+
(
∂yiI
∂uiR

)2
]

(C.19)

We do the derivatives in (C.19):

∂
∂W ln

[(
∂yiR
∂uiR

)2
+
(
∂yiI
∂uiR

)2
]

=

= 1(
∂yiR
∂uiR

)2
+
(
∂yiI
∂uiR

)2
∂
∂W

((
∂yiR
∂uiR

)2
+
(
∂yiI
∂uiR

)2
)

=

= 2(
∂yiR
∂uiR

)2
+
(
∂yiI
∂uiR

)2

(
∂yiR
∂uiR

∂
∂W

∂yiR
∂uiR

+ ∂yiI
∂uiR

∂
∂W

∂yiI
∂uiR

)
=

= 2(
∂yiR
∂uiR

)2
+
(
− ∂yiR
∂uiI

)2

(
∂yiR
∂uiR

∂
∂W

∂yiR
∂uiR

+
(
−∂yiR
∂uiI

)
∂
∂W

(
−∂yiR
∂uiI

))
=

= 2(
∂yiR
∂uiR

)2
+
(
∂yiR
∂uiI

)2

(
∂yiR
∂uiR

∂
∂W

∂yiR
∂uiR

+ ∂yiR
∂uiI

∂
∂W

∂yiR
∂uiI

)
(C.20)

We note that ∆WI is a complex matrix so we can split it in the real and
imaginary part:

∆WI = ∆WI
R + j∆WI

I (C.21)

and we can calculate these two terms separately.

Hence we have:

∆WI
R ∝

N∑
i=1

∂

∂WR
ln

((
∂yiR
∂uiR

)2

+
(
∂yiR
∂uiI

)2
)

(C.22)
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The elements of the matrix (C.22) are calculated as follows:

∂
∂wijR

ln
((

∂yiR
∂uiR

)2
+
(
∂yiR
∂uiI

)2
)

= 2

(
∂yiR
∂uiR

∂
∂wijR

∂yiR
∂uiR

+
∂yiR
∂uiI

∂
∂wijR

∂yiR
∂uiI

)
(
∂yiR
∂uiR

)2
+
(
∂yiR
∂uiI

)2 =

= 2

((
∂yiR
∂uiR

)[
∂

∂uiR

∂uiR
∂wijR

∂yiR
∂uiR

+ ∂
∂uiI

∂uiI
∂wijR

∂yiR
∂uiR

]
+
(
∂yiR
∂uiI

)[
∂

∂uiI

∂uiI
∂wijR

∂yiR
∂uiI

+ ∂
∂uiR

∂uiR
∂wijR

∂yiR
∂uiI

])
(
∂yiR
∂uiR

)2
+
(
∂yiR
∂uiI

)2 =

= 2

((
∂yiR
∂uiR

)[
∂uiR
∂wijR

∂2yiR
∂u2
iR

+
∂uiI
∂wijR

∂
∂uiI

∂yiR
∂uiR

]
+
(
∂yiR
∂uiI

)[
∂uiI
∂wijR

∂2yiR
∂u2
iI

+
∂uiR
∂wijR

∂
∂uiR

∂yiR
∂uiI

])
(
∂yiR
∂uiR

)2
+
(
∂yiR
∂uiI

)2 =

= 2

(
∂yiR
∂uiR

)[
xjR

∂2yiR
∂u2
iR

+xjI
∂

∂uiI

∂yiR
∂uiR

]
+
(
∂yiR
∂uiI

)[
xjI

∂2yiR
∂u2
iI

+xjR
∂

∂uiR

∂yiR
∂uiI

]
(
∂yiR
∂uiR

)2
+
(
∂yiR
∂uiI

)2 =

= 2xjR

∂yiR
∂uiR

∂2yiR
∂u2
iR

+
∂yiR
∂uiI

∂
∂uiR

∂yiR
∂uiI(

∂yiR
∂uiR

)2
+
(
∂yiR
∂uiI

)2 + 2xjI

∂yiR
∂uiI

∂2yiR
∂u2
iI

+
∂yiR
∂uiR

∂
∂uiI

∂yiR
∂uiR(

∂yiR
∂uiR

)2
+
(
∂yiR
∂uiI

)2 =

= xjRΨiR + 2xjIΨiI

(C.23)
where we have posed:

ΨiR = 2
∂yiR
∂uiR

∂2yiR
∂u2
iR

+
∂yiR
∂uiI

∂
∂uiR

∂yiR
∂uiI(

∂yiR
∂uiR

)2
+
(
∂yiR
∂uiI

)2

ΨiI = 2
∂yiR
∂uiI

∂2yiR
∂u2
iI

+
∂yiR
∂uiR

∂
∂uiI

∂yiR
∂uiR(

∂yiR
∂uiR

)2
+
(
∂yiR
∂uiI

)2

(C.24)

Now putting together all the elements (C.23) ∂
∂wijR

ln
((

∂yiR
∂uiR

)2
+
(
∂yiR
∂uiI

)2
)

,

we reconstruct the matrix (C.22):

∆WI
R ∝

N∑
i=1

∂
∂WR

ln
((

∂yiR
∂uiR

)2
+
(
∂yiR
∂uiI

)2
)

=

=
N∑
i=1

ΨiR


0T
...

xTR
...

0T

+ ΨiI


0T
...

xTI
...

0T



 = ΨRxTR + ΨIxTI

(C.25)

where the matrices 
0T
...

xTR
...

0T

 and


0T
...

xTI
...

0T





192 APPENDIX C. PROOFS

are N ×N matrices with zero rows except the i-th row, which is formed by
the elements of the vectors xR and xI, the real and imaginary part of the
observed signals.

Similarly we calculate the matrix ∆WI
I :

∆WI
I ∝

N∑
i=1

∂
∂WI

ln
((

∂yiR
∂uiR

)2
+
(
∂yiR
∂uiI

)2
)

=

=
N∑
i=1

−ΨiR


0T
...

xTI
...

0T

+ ΨiI


0T
...

xTR
...

0T



 = −ΨRxTI + ΨIxTR

(C.26)

Rejoining these two terms we obtain (C.21):

∆WI = ∆WI
R + j∆WI

J ∝ ΨRxTR + ΨIxTI + j
(
−ΨRxTI + ΨIxTR

)
=

= (ΨR + jΨI)
(
xTR − jxTI

)
= ΨxH

(C.27)
where the H operator is the Hermitian, and Ψ = ΨR + jΨI .

Now we have to calculate the matrix ∆WII :

∆WII = ∆WII
R + j∆WII

I ∝
∂
∂W ln

(
det
(
W̃
))

=

=
(
W̃T

)−1
=
(

∆WII
R −∆WII

I

∆WII
I ∆WII

R

) (C.28)

This because [73]
∂

∂wij
ln(detW ) =

cof(wij)
detW

(C.29)

where det(W ) =
∑

j wijcof(wij) for any row i. For a full weight matrix,
remembered that the adjoint matrix, adj(W), is the transpose of the matrix
of cofactors, we use the definition of the inverse of a matrix, so from (C.29)
we have:

∂

∂W
ln(detW ) =

(adj(W ))T

detW
=
[
W T

]−1
(C.30)

In the complex case we can write:

(
uTR uTI

)
=
(

xTR xTI
)
·
(

WT
R WT

I

−WT
I WT

R

)
⇓{

uTR = xTRWT
R − xTI WT

I

uTI = xTRWT
I + xTI WT

R

(C.31)

because the complex signals ui are obtained by the product of the observed
signals x for the demixing matrix W.
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If we invert this linear system (C.31), we obtain:
(
WH

)−1
=

=


(
WT

I

)−1
(
WT

R

(
WT

I

)−1
+ WT

I

(
WT

R

)−1
)−1

−
(
WT

R

)−1
(
WT

R

(
WT

I

)−1
+ WT

I

(
WT

R

)−1
)−1

(
WT

R

)−1
(
WT

R

(
WT

I

)−1
+ WT

I

(
WT

R

)−1
)−1 (

WT
I

)−1
(
WT

R

(
WT

I

)−1
+ WT

I

(
WT

R

)−1
)−1

 =

=

(
∆WII

R −∆WII
I

∆WII
I ∆WII

R

)
(C.32)

In a compact form we can pose

WH = WT
R − jWT

I (C.33)

Introducing a complex matrix A

A = AR + jAI (C.34)

such that

AWH = I

thus we write from (C.33) and (C.34):{
ARWT

R + AIWT
I = I

−ARWT
I + AIWT

R = 0
(C.35)

where
AR =

(
WT

I

)−1
(
WT

I

(
WT

R

)−1
+ WT

R

(
WT

I

)−1
)−1

(C.36)

and
AI =

(
WT

R

)−1
(
WT

I

(
WT

R

)−1
+ WT

R

(
WT

I

)−1
)−1

(C.37)

Hence from (C.36), (C.37) and the solution of (C.31), ∆WII can be written
as follows

∆WII ∝ ∂

∂W
ln
(

det
(
W̃
))

=
(
WH

)−1
(C.38)

Finally, the expression for the adaptation (C.18) of the demixing matrix is
derived joining (C.27) and (C.38):

∆W = ∆WI + ∆WII ∝ ΨxH +
(
WH

)−1
(C.39)

This expression proves the algorithm (7.17).

Adaptation of control points

To adapt the control points of the spline functions, we have to use the
ME approach (7.11), maximizing the joint entropy [55] of the output vector
H(y) with respect to each control point

∆Qj,iR+mR,iI+mI ∝
∂H(y)

∂Qj,iR+mR,iI+mI
=

= ∂E{ln(det(J))}
∂Qj,iR+mR,iI+mI

+ ∂H(x)
∂Qj,iR+mR,iI+mI

(C.40)

where mR,mI = 0, . . . , 3. We have
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∂H(x)
∂Qj,iR+mR,iI+mI

= 0

because H(x) does not depend by the control points of spline functions.
Then we can do the following reduction:

∂E {ln (det (J))}
∂Qj,iR+mR,iI+mI

≈ ∂ ln (det (J))
∂Qj,iR+mR,iI+mI

(C.41)

accepting a small error, because we have not the probability density function
of the quantity in the braces.

Applying (C.41), the adaptation algorithm of the control points (C.40) is
expressed as

∆Qj,iR+mR,iI+mI ∝
∂ ln (det (J))

∂Qj,iR+mR,iI+mI

=
1

det (J)
∂ det (J)

∂Qj,iR+mR,iI+mI

(C.42)

Now using (C.16) we have

ln (det (J)) = ln
(

det
(
W̃
)
·
N∏
i=1

((
∂yiR
∂uiR

)2
+
(
∂yiR
∂uiI

)2
))

=

=
N∑
i=1

ln
((

∂yiR
∂uiR

)2
+
(
∂yiR
∂uiI

)2
)

+ ln
(

det
(
W̃
)) (C.43)

Because W does not depend by Q we have that

∂ det(W̃)
∂Qj,iR+mR,iI+mI

= 0

For the linearity property, we can exchange the summation in (C.43) with
the derivatives, thus

∂ ln

((
∂yiR
∂uiR

)2
+
(
∂yiR
∂uiI

)2
)

∂Qj,iR+mR,iI+mI
=

=


0 i 6= j

2
∂yjR
∂ujR

∂
∂Qj,iR+mR,iI+mI

∂yjR
∂ujR

+
∂yjR
∂ujJ

∂
∂Qj,iR+mR,iI+mI

∂yjR
∂ujI(

∂yjR
∂ujR

)2

+

(
∂yjR
∂ujI

)2
i = j

(C.44)
where i 6= j is the case of derivatives between independent variables.

Using the spline approximation in matrix notation, we calculate the
derivatives in (C.44) as the derivatives of the bi-dimensional spline func-
tions with respect to the real and the imaginary input (remembering that is
Tν,1(νR) and Tν,2(νI)): ∂yiR

∂uiR
= ∂yiR

∂νiR
∂νiR
∂uiR

= 1
∆νiR

Tν,2i ·M ·
(
Ṫν,1i ·M ·QiR

)T
∂yiR
∂uiI

= ∂yiR
∂νiI

∂νiI
∂uiI

= 1
∆νiI

Ṫν,2i ·M · (Tν,1i ·M ·QiR)T
(C.45)
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where ∆νR and ∆νJ are the sample steps of the spline functions.
So using (C.45) the terms in expression (C.44) become

∂
∂Qj,iR+mR,iI+mI

∂yjR
∂ujR

= ∂
∂Qj,iR+mR,iI+mI

∂yjR
∂νjR

∂νjR
∂ujR

=

= 1
∆νjR

∂Tν,2i·M·(Ṫν,1i·M·QiR)T
∂Qj,iR+mR,iI+mI

= 1
∆νjR

Tν,2i ·MmI ·
(
Ṫν,1i ·MmR

)T
(C.46)

and

∂
∂Qj,iR+mR,iI+mI

∂yjR
∂ujI

= ∂
∂Qj,iR+mR,iI+mI

∂yjR
∂νjI

∂νjI
∂ujI

=

= 1
∆νjI

∂Ṫν,2i·M·(Tν,1i·M·QiR)T

∂Qj,iR+mR,iI+mI
= 1

∆νjI
Ṫν,2i ·MmI · (Tν,1i ·MmR)T

(C.47)

where Mk is a matrix in which all the elements are zero, except the k-th
column, which is equal to the k-th column of M.

Introducing (C.46) and (C.47) in the expression (C.44), and choosing
∆νjR = ∆νjJ for simplicity, the adaptation equation of the control points
(C.40) is written as follows:

∆Qj,iR+mR,iI+mI = 2ηQ

( (
Tν,2j ·M·(Ṫν,1j ·M·QjR)T

)(
Tν,2j ·MmI

·(Ṫν,1j ·MmR)T
)

(
Tν,2j ·M·(Ṫν,1j ·M·QjR)T

)2
+
(
Ṫν,2j ·M·(Tν,1j ·M·QjR)T

)2 +

+

(
Ṫν,2j ·M·(Tν,1j ·M·QjR)T

)(
Ṫν,2j ·Mm

I
·(Tν,1j ·MmR)T

)
(
Tν,2j ·M·(Ṫν,1j ·M·QjR)T

)2
+
(
Ṫν,2j ·M·(Tν,1j ·M·QjR)T

)2

)
(C.48)

where ηQ is the learning rate, a real and positive constant.
The expressions (C.44) and (C.48) prove the algorithms (7.22) and (7.23).
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See also [212].

Sufficient condition: existence of the solution.
Given the channel model (4.3), it is easy to verify that if s[n] is a spatially

independent complex random vector, under the given assumptions, u[n]
will be spatially independent too because the channel does not produce
any mixing. Given the mixing model F(A,F), assumptions a), b), and c)
guarantee that there exists a matrix W and N functions gi(•) such that:

G {F {As [n]}} = As [n]
WAs [n] = PΛs [n]

(C.49)

Based on (C.49), the input-output transformation can be written as

WG [F {As [n]}] = PΛs [n]
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Necessary condition: uniqueness of the solution.
This condition proves that if u[n] is a spatially independent random

vector, the channel model must be (4.3).
The complex transformation which maps s into y is:

y [n] = WG [F {As [n]}] =

= W


gR1

(
fR1

(
N∑
i=1

a1isi [n]
))

+ jgI1

(
fI1

(
N∑
i=1

a1isi [n]
))

...

gRN

(
fRN

(
N∑
i=1

aNisi [n]
))

+ jgIN

(
fIN

(
N∑
i=1

aNisi [n]
))


(C.50)

It is possible to rewrite the complex map (C.50) in a real form as follows:

ũ =
[

uR [n]
uI [n]

]
=
[

WR −WI

WI WR

] [
GR {xR [n]}
GI {xI [n]}

]
[

xR [n]
xI [n]

]
=
[

FR {vR [n]}
FI {vI [n]}

]
ṽ [n] =

[
vR [n]
vI [n]

]
=
[

AR −AI

AI AR

] [
sR [n]
sI [n]

]
= Ãs̃

(C.51)

in which Ã =
[

AR −AI

AI AR

]
and W̃ =

[
WR −WI

WI WR

]
are 2N × 2N ma-

trices. It is important to underline that in (C.51) there are only real elements.
For assumption (a) matrix A is non singular, then due to its structure it is
evident that Ã has to be non singular too.

The pdf of s̃ can be written as a function of the pdf of ũ:

ps̃ (s̃) =
N∏
i=1

psRi (sRi) psIi (sIi) =

=
N∏
i=1

pRui


N∑
j=1

wRijgRj

[
fRj

(
N∑
m=1

aRjmsRm −
N∑
m=1

aIjmsIm

)]
+

−
N∑
j=1

wIijgIj

[
fIj

(
N∑
m=1

aIjmsRm +
N∑
m=1

aRjmsIm

)]
 puIi (yIi)

∣∣∣J̃∣∣∣ ∀s̃ ∈ R2N

(C.52)
in which J̃ is the Jacobian matrix of the application which maps s̃ into ỹ.

From assumption (d)∃s̄ ∈ CN such that ps(̄s) ≡ 0. Then considering
s̃ [n] = [sR [n] , sI [n]]T in which sR[n], sI [n] ∈ R the assumption (d) can be
reformulated as follows: ∃¯̃s ∈ R2N

∣∣ps̄ (̄̃s
)
≡ 0.

From (C.50), for a non null Jacobian J̃, there exists some ũ0 = [u0
R1, . . . ,

u0
RN , u

0
I1, . . . u

0
IN ] ∈ R2N such that

N∏
i=1

puRi
(
u0
Ri

)
puIi

(
u0
Ii

)
= 0. Consequently

there exists at least one integer i such that puRi
(
u0
Ri

)
= 0 or puIi

(
u0
Ii

)
= 0.
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This leads to the following equation:

ũ0
i =

N∑
j=1

wRijgRj

[
fRj

(
N∑
m=1

aRjmsRm −
N∑
m=1

aIjmsIm

)]
+

−
N∑
j=1

wIijgIj

[
fIj

(
N∑
m=1

aRjmsIm +
N∑
m=1

aIjmsRm

)] (C.53)

in which ũ0
i is the i-th element of the vector ũ0. Solutions of (C.53) lie on

Hi(̃s), which is a hyper-surface in R2N . It is evident that ∀s̃ ∈ Hi (̃s) ⇒
ps̃ (̃s) = 0. For a given i,Hi(̃s) is parallel to the hyperplane orthogonal to the
axis s̃i (considering as s̃i the i-th element of the vector s̃). Suppose thatHi(̃s)
is not parallel to any s̃i = 0 plane. The projection ofHi(̃s) onto s̃i = 0 should
be R: ∀s̃i ∈ R∃s̃1, . . . , s̃i−1, s̃i+1, . . . , s̃N , . . . , s̃2N : s̃ ∈ Hi ⇒ ps̃ (̃s) ≡ 0. This
cannot be true since

∫
S ps̃ (s̃) ds̃ = 1. Without loss of generality, it can be

noted that:
N∑
j=1

wRijgRj

[
fRj

(
N∑
m=1

aRjmsRm −
N∑
m=1

aIjmsIm

)]
+

−
N∑
j=1

wIijgIj

[
fIj

(
N∑
m=1

aIjmsRm +
N∑
m=1

aRjmsIm

)]
= bσ(i)

(
s̃σ(i)

)
, i = 1, . . . , N

N∑
j=1

wIijgRj

[
fRj

(
N∑
m=1

aRjmsRm −
N∑
m=1

aIjmsIm

)]
+

+
N∑
j=1

wRijgIj

[
fIj

(
N∑
m=1

aIjmsRm +
N∑
m=1

aRjmsIm

)]
= bσ(i)

(
s̃σ(i)

)
, i = N + 1, . . . , 2N

(C.54)
where bσ(i)

(
s̃σ(i)

)
is a generic function depending only on s̃σ(i) (that is

the source for the i-th output). Then without any loss of generality taking
σ(i) = i

N∑
j=1

wRijgRj

[
fRj

(
N∑
m=1

aRjmsRm −
N∑
m=1

aIjmsIm

)]
+

−
N∑
j=1

wIijgIj

[
fIj

(
N∑
m=1

aIjmsRm −
N∑
m=1

aRjmsIm

)]
= bi (s̃i) , i = 1, . . . , N

N∑
j=1

wIijgRj

[
fRj

(
N∑
m=1

aRjmsRm −
N∑
m=1

aIjmsIm

)]
+

+
N∑
j=1

wRijgIj

[
fIj

(
N∑
m=1

aIjmsRm −
N∑
m=1

aRjmsIm

)]
= bi (s̃i) , i = N + 1, . . . , 2N

(C.55)
Derivation with respect to s yields[

ḃ1 (s1) 0
0 ḃ2N (s̃2N )

]
= W̃

[
ḟR1 [fR1 (vR (̃s))] 0

0 ġIN [(xI (̃s))]

]
·[

ḟR1 (vR (̃s)) 0
0 ġIN (vI (̃s))

]
Ã

(C.56)
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Considering s̃1 and s̃2 as coordinates of the hypersurface H(s̃), (C.56) can
be evaluated in s̃1 and s̃2 in as follows:{

D (̃s1) = W̃ΛĠ (̃s1) ΛḞ (̃s1) Ã
D (̃s2) = W̃ΛĠ (̃s2) ΛḞ (̃s2) Ã

→
{

D (s1) = W̃ΛĠḞ (̃s1) Ã
D (s2) = W̃ΛĠḞ (̃s2) Ã

(C.57)

Then eliminating W̃:

Ã D−1 (̃s2) D (̃s1)︸ ︷︷ ︸
d11 (̃s2, s̃1) 0

. . .
0 d2N2N (̃s2, s̃1)



= Λ−1
ḞĠ

(̃s2) ΛḞĠ (̃s1)︸ ︷︷ ︸
λ11 (̃s2, s̃1) 0

. . .
0 λ2N2N (̃s2, s̃1)



Ã

.

As Ã =
[

AR −AI

AI AR

]
is regular and non singular, for each pair of non zero

elements of Ã it is possible to write:{
ãij [djj (̃s2, s̃1)− λii (̃s2, s̃1)] = 0
ãhj [djj (̃s2, s̃1)− λhh (̃s2, s̃1)] = 0

⇒ λii (̃s2, s̃1) = λhh (̃s2, s̃1) ∀s̃2, s̃1 ∈ H

(C.58)
in which ãij for i, j = 1, . . . , 2N is an element of Ã. From (C.58) it follows:

˙̃gi

[
ˆ̃
fi

((
Ã
)
σ(i)

s̃1

)]
˙̃̂
fi

((
Ã
)
i
s̃1

)
˙̃gh
[ ˆ̃
fh

((
Ã
)
h

s̃2

)] ˙̃̂
fh

((
Ã
)
h

s̃2

) = C, i = 1, . . . , 2N, ∀s̃2, s̃1 (C.59)

where g̃i is the i-th element of the vector [GR,GI ]
T , ˆ̃
fi

((
Ã
)
i
s̃1

)
= αf̃i

((
Ã
)
i
s̃1

)
and C is a constant. For the two linear forms in (C.58)

(
Ã
)
i
s1

(
Ã
)
h

s2

are independent as assumed in (a), it is possible to express the (C.58) in the

following way: ˙̃gi
[ ˆ̃
fi (x)

] ˙̃̂
fi (x) = C ˙̃gh

[ ˆ̃
fh (y)

] ˙̃̂
fh (y) , ∀x, y ∈ R. This can

be true if and only if g̃i (·) is the inverse of f̃i (·), up to a scaling factor.
From (C.51), by previous results it follows:

ũ [n] = W̃

 ξ1

. . .
ξ2N

 Ãs̃ [n] (C.60)

where ξ1, . . . , ξN are scaling coefficients.
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This method reduces the mixing-demixing non linear channel (C.49) to
the simpler, linear model (C.60). By considering:

W̃′ = W̃

 ξ1

. . .
ξN


ũ [n] = W̃

 ξ1

. . .
ξ2N

 Ãs̃ [n]

(C.61)

(C.60) can be transformed into ũ = W̃′Ãs̃. For this formulation independent
outputs can be obtained if and only if

W̃′Ã = P̃

 ε1

. . .
ε2N

 (C.62)

where P̃ is a 2N × 2N permutation matrix.

Considering the structure of Ã =
[

AR −AI

AI AR

]
and W̃′ =

[
WRD1 −WID1

WID2 WRD2

]
in which D1 =

[
ξ1 0
0 ξN

]
and D2 =

[
ξN+1 0

0 ξ2N

]
are N ×N matrices, it

is possible to rewrite (C.62) in the following way:

[
WRD1 −WID1

WID2 WRD2

] [
AR −AI

AI AR

]
=
[

PR −PI

PI PR

] ε1

. . .
ε2N


(C.63)

in which the permutation matrix P̃ has four blocks, PR and PI are them-
selves permutation matrix of dimension N ×N .
For the independence of output signals the generic element pij of the matrix

P̃ is such that
{
pi,j 6= 0⇔ pi+N,j+N 6= 0
pi,j+N 6= 0⇔ pi+N,j 6= 0

i, j ∈ 1, . . . , N .

With simple considerations eq. (C.63) proves the Theorem 17.

C.3 The Nonlinear Case: ME Algorithm

This section presents the derivation of the learning rule for the complex
algorithm (see also [212]). We define the following symbols (see Fig. 4.2 and
Fig. 7.7):

s = sR + jsI : independent input sources in the complex domain;

x = xR + jxI : mixed signals, input of the neural network for separation;
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u = uR + juI : estimate of the input sources;

y = yR + jyI : neural network outputs;

W = WR + jWI : neural network weights.

Let u = uR + juI be a vector of N complex random variables (c.r.v.). Its pdf
can be indicated as pu(uR1, . . . , uRN , uI1, . . . , uIN ). The subscripts R and I
indicate the real and imaginary part respectively.

The N c.r.vs. are statistically independent iff their joint pdf can be ex-
pressed as

pu(uR1, . . . , uRN , uI1, . . . , uIN ) =
N∏
i=1

pui (uRi, uIi) (C.64)

The nonlinear complex activation function used in this algorithm is based
on the use of flexible spline neurons. They are used to introduce an upper
bound for the entropy of output signals which is naturally unbounded.
Let y = yR + jyI such that, using the splitting model (5.3):

yi = yRi + jyIi = hRi (uRi) + jhIi (uIi) (C.65)

be the c.r.v. at the output of the activation function, then it is possible to

consider the real variable ỹ defined as ỹ ∆= [yR,yI ]
T .

In this way it is also possible to express the pdf of ỹ as a function of the

pdf of x̃: pỹ

([
yR

yI

])
=

px̃

 xR

xI


det(J̃) , being J̃ the Jacobian matrix of the

nonlinear application:

ỹ =
[

yR [n]
yI [n]

]
=
[

hR {uR [n]}
hI {uI [n]}

]
ũ [n] =

[
WR −WI

WI WR

] [
GR {xR [n]}
GI {xI [n]}

]
= W̃G [x̃]

(C.66)

The joint entropy of ỹ can be defined as:

H (ỹ) = −
+∞∫
−∞

pỹ (yR,yI) ln (pỹ (yR,yI)) dyRdyI (C.67)

According to the INFOMAX principle, separation can be obtained by max-
imizing the output entropy H(ỹ) [55] of the network represented in Fig.
7.7 with respect to the network’s weights, i.e. the elements of the set Φ ={
W,QNL

G ,QSC
h

}
. QNL

G =
{

QNL
Re(G),Q

NL
Im(G)

}
and QSC

h =
{
QSC
hR
,QSC

hI

}
are

the control points of the spline neurons; in particular QRe(.) and QIm(.) are
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the control points of the real part and the imaginary part of the spline
neurons respectively. So the cost function L{ỹ,Φ[n]} is:

L{ỹ,Φ [n]} = E {− ln (pỹ (yR1, . . . , yRN , yI1, . . . , yIN ))} (C.68)

Maximization is performed by the stochastic gradient method

Φ [n+ 1] = Φ [n] + η∇ΦL {Φ, ỹ [n]} (C.69)

It is possible to rewrite the network’s input-output relationship as follows:

uRi + juIi =
N∑
k=1

(wRikgRi (xRk)− wIikgRi (xIk))+

+j
N∑
k=1

(wRikgIi (xIk) + wIikgRi (xRk))
(C.70)

or in a more compact form as:

[
uR
uI

]
=
[

WR −WI

WI WR

] [
rR
rI

]
⇒ ũ = W̃r̃ = W̃G [x̃]

z̃ = ϕ [ỹ]
(C.71)

in which rR = [rR1, . . . , rRN ]T = [gR1(xR1), . . . , gRN (xRN )]T and similarly
for the imaginary counterpart rI and h(ũ) = [hR1 (uR1) , . . . , hRN (yRN ) , . . . ,
hI1 (yI1) , . . . , hIN (yIN )]T is the vector of activation functions. Then consider-
ing (C.71), the Jacobian matrix is defined as:

det
(
J̃
)

= det



∂yR1
∂xR1

· · · ∂yR1
∂xI1

· · · ∂yR1
∂xIN

...
. . .

...
. . .

...
∂yI1
∂xR1

· · · ∂yI1
∂xI1

· · · ∂yI1
∂xIN

...
. . .

...
. . .

...
∂yIN
∂xR1

· · · ∂yIN
∂xI1

· · · ∂yIN
∂xIN


(C.72)

Each element of the Jacobian matrix can be rewritten as follows:

∂yRi
∂xRk

= ∂yRi
∂uRi

(
∂uRi
∂rRi

∂rRi
∂xRk

+ ∂uRi
∂rIi

∂rIi
∂xRk

)
∆= ẏRiwRikṙRk

∂yRi
∂xIk

∆= −ẏRiwIikṙIk
∂yIi
∂xRk

∆= ẏIiwIikṙRk
∂yIi
∂xIk

∆= ẏIiwIikṙIk

(C.73)
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Substitution of (C.73) into (C.72) yields

det
(
J̃
)

= det


ẏR1wR11ṙR1 · · · −ẏR1wI11ṙI1 · · · −ẏR1wI1N ṙIN

...
. . .

...
. . .

...
ẏI1wI11ṙR1 · · · ẏI1wR11ṙI1 · · · ẏI1wR1N ṙIN

...
. . .

...
. . .

...
ẏINwIN1ṙR1 · · · ẏINwRN1ṙI1 · · · ẏINwRNN ṙIN

 =

det


ẏR1 · · · 0 · · · 0

...
. . .

...
. . .

...
0 · · · ẏI1 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · ẏIN

det
∣∣∣∣ WR −WI

WI WR

∣∣∣∣det


ṙR1 · · · 0 · · · 0

...
. . .

...
. . .

...
0 · · · ṙI1 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · ṙIN


(C.74)

Then it follows

det
(
J̃
)

=
N∏
k=1

ẏRkẏIkṙRkṙIk det
(
W̃
)

(C.75)

Considering (C.75) in (C.68), neglecting the expectation and the pdf px(x)
(which does not depend on learning parameters), the objective function
becomes:

max
Φ

[L] = max
Φ


N∑
k=1

ln ẏRk +
N∑
k=1

ln ẏIk+

+
N∑
k=1

ln ṙRk +
N∑
k=1

ln ṙIk + ln
(

det
(
W̃
))

 (C.76)

The learning rule for the complex matrix W is composed by two expressions,
for the real part and for the imaginary part: ∆W = ∆WR + j∆WI . A
simpler derivation is possible by considering the 2N × 2N real matrix W̃ so:

∆W̃ =
∂L (ỹ,Φ)
∂W̃

=
N∑
k=1

∂

∂W̃
ln ẏRk +

N∑
k=1

∂

∂W̃
ln ẏIk +

∂

∂W̃
ln
(

det
(
W̃
))

(C.77)
The gradient of the first two terms with respect to WR and WI gives

N∑
k=1

∂ ln ẏRk
∂WR

= ΨRrTR;
N∑
k=1

∂ ln ẏIk
∂WR

= ΨRrTI
N∑
k=1

∂ ln ẏRk
∂WI

= −ΨRrTI ;
N∑
k=1

∂ ln ẏIk
∂WI

= ΨIrTR

(C.78)
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in which ΨR =

 ÿR1/ẏR1
...

ÿRN/ẏRN

 and ΨI =

 ÿI1/ẏI1
...

ÿIN/ẏIN

. From the last part

of (C.77) results:
∂

∂W̃
ln
(

det
(
W̃
))

=
(
W̃T

)−1
(C.79)

Considering that W̃ ∆=
[

WR −WI

WI WR

]
, it is easy to show that:

(
W̃T

)−1
=
[

WT
R WT

I

−WT
I WT

R

]−1

=
[

Re
{
W−H} −Im

{
W−H}

Im
{
W−H} Re

{
W−H} ]

Starting from the learning rules (C.78) and (C.79) for the real matrix W̃ it is
possible to obtain the learning rule for the complex matrix W:

∆W = ∆WR + j∆WI = W−H + ΨrH (C.80)

where Ψ = ΨR + jΨI .
The learning rule (C.80) is similar to the one obtained for signals in real
environment. The only difference is the substitution of the (•)T transposition
operator with the Hermitian operator (•)H .

In the same way it is possible to derive the learning rules for the control
points QNL

G =
{

QNL
Re(G),Q

NL
Im(G)

}
. Derivation of the cost function (C.76) with

respect to the parameters yields:

∆QNL
Re(G),l,i = ∂L(ỹ,Φ)

∂QNL
Re(G),l,i

= ∂
∂QNL

Re(G),l,i

[
N∑
k=1

(ln ẏRk + ln ẏIk) + ln ṙRl

]
∆QNL

Im(G),l,i = ∂L(ỹ,Φ)

∂QNL
Im(G),l,i

= ∂
∂QNL

Im(G),l,i

[
N∑
k=1

(ln ẏRk + ln ẏIk) + ln ṙIl

]
(C.81)

in which h = 1 . . . N is the number of the spline neurons, i is the index of
the interval of the spline function involved in the learning and m = 1, . . . , 4
is the number of the control points inside the selected interval. Moreover

∆QNL
Re(G),l,i+m =

Ṫl

(
uRe(xl)

)
(M)m

Ṫl

(
uRe(xl)

)
MQRe(G),l,i+m

+

+Re
[
Ψ
(
WH

)
l

]
1
2Tl

(
uRe(xl)

)
(M)m

∆QNL
Im(G),l,i+m =

Ṫl

(
uIm(xl)

)
(M)m

Ṫl

(
uIm(xl)

)
MQIm(G),l,i+m

+

+Im
[
Ψ
(
WH

)
l

]
1
2Tl

(
uIm(xl)

)
(M)m

(C.82)

In (C.82) the expression (M)m is a vector composed with the m-th columns
of the matrix M.
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In the same manner derivation with respect to the parameters QSC
h ={

QSC
hR
,QSC

hI

}
yields

∆QSC
hR,l,i

= ∂L(ỹ,Φ)

∂QSC
hR,l,i

= ∂
∂QNL

hR,l,i

N∑
k=1

ln ẏRk

∆QSC
hI ,l,i

= ∂L(ỹ,Φ)

∂QSC
hI ,l,i

= ∂
∂QNL

hI ,l,i

N∑
k=1

ln ẏIk
(C.83)

and then

∆QSC
hR,l,i+m

=
Ṫl

(
uRe(yl)

)
(M)m

Ṫl

(
uRe(yl)

)
MQ

hR,l,i+m

∆QSC
hI ,l,i+m

=
Ṫl

(
uIm(yl)

)
(M)m

Ṫl

(
uIm(yl)

)
MQ

hI ,l,i+m

(C.84)

C.4 The Nonlinear Case: MMI Algorithm

This section presents the derivation of the learning rule for the complex
algorithm in the case of application of Minimization of Mutual Information
(MMI) algorithm.

Given the model in the following Figure C.2 using the splitting function
(5.3) we can write:

Fig. C.2: PNL mixing-demixing model

x[n] = fR(vR[n]) + jfI(vI [n]) (C.85)

where v[n] = vR[n] + jvI [n] = As = (AR + jAI)(sR + jsI).
For the de-mixing model we have:

r[n] = gR(fR(vR)) + jgI(fI(vI)) (C.86)

u[n] = uR[n] + juI [n] = Wr = (WR + jWI)(rR + jrI) (C.87)

or esplicitely [
uR
uI

]
=
[

wR −wI

wI wR

] [
rR
rI

]
So the n-th output is

un[n] =
N∑
k=1

(wRnkrRk[n]− wInkrIk[n]) + j
N∑
k=1

(wInkrRk[n] + wRnkrIk[n])

(C.88)
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Now the Mutual Information [55] of the network output is

I(ũ) = I(uR,uI) =
∫
pu(u) log pu(u)

N∏
i=1

pui (ui)

du =

= E {log(pu(u))} −
N∑
i=1

E {log pui(ui)}
(C.89)

under the assumption that the real and imaginary random variable are
independent:

pui(ui) = puRi(uRi) · puIi(uIi)

Let we pose

ũ =
[

uR
uI

]
(C.90)

so the contrast function L can be written as

L = I(ũ) = E {log pũ(ũ)} −
N∑
i=1

E {log puRi(uRi)}+

−
N∑
i=1

E {log puIi(uIi)}
(C.91)

Because is [144]

pũ(ũ) =
px̃(x̃)

det
∣∣∣J̃∣∣∣ (C.92)

from (C.92) we obtain

L = E {log px̃(x̃)} − E
{

log
∣∣∣J̃∣∣∣}+

−
N∑
i=1

E {log puRi(uRi)} −
N∑
i=1

E {log puIi(uIi)}
(C.93)

The Jacobian matrix J̃ can be expressed as

det J =



∂uR1
∂xR1

· · · ∂uR1
∂xRN

∂uR1
∂xI1

· · · ∂uR1
∂xIN

...
. . .

...
...

. . .
...

∂uRN
∂xR1

· · · ∂uRN
∂xRN

∂uRN
∂xI1

· · · ∂uRN
∂xIN

...
. . .

...
...

. . .
...

∂uIN
∂xR1

· · · ∂uIN
∂xRN

∂uIN
∂xI1

· · · ∂uIN
∂xIN


(C.94)

The single terms can be obtained as

∂uRk
∂xRn

= ∂uRk
∂rRn

· ∂rRn∂xRn
= ġRn(xRn)wRkn

∂uIk
∂xRn

= ∂uIk
∂rRn

· ∂rRn∂xRn
= ġRn(xRn)wIkn

∂uRk
∂xIn

= ∂uRk
∂rIn

· ∂rIn∂xIn
= −ġIn(xIn)wIkn

∂uIk
∂xIn

= ∂uIk
∂rIn
· ∂rIn∂xIn

= ġIn(xIn)wRkn
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so the expression of the Jacobian (C.94) becomes

det J =


wR11ġR1 · · · wR1N ġRN −wI11ġI1 · · · −wR11ġIN

...
. . .

...
...

. . .
...

wRN1ġR1 · · · wRNN ġRN −wIN1ġI1 · · · −wINN ġIN
...

. . .
...

...
. . .

...
wIN1ġR1 · · · wINN ġRN wRN1ġI1 · · · wRNN ġIN

 =

= det


(

WR −WI

WI WR

)


ġR1

. . .
ġRN

ġI1
. . .

ġIN




=

= det(W̃)
N∏
i=1

ġRi
N∏
i=1

ġIi

(C.95)
Let we pose Φ =

{
wi,j , Q

NL
G

}
the free network parameter, we ha the follow-

ing learning rule:

∂L
∂Φ = − ∂

∂Φ log
[
det
(
W̃
)]

+

−
(

∂
∂Φ

N∑
i=1

log ġRi(xRi)− ∂
∂Φ

N∑
i=1

log ġIi(xIi)
)

+

−
N∑
i=1

(
ΨRi(uRi)∂uRi∂Φ + ΨIi(uIi)∂uIi∂Φ

)
= A+B + C

(C.96)

where A, B and C are the three terms of the previous equation (C.96).
For the learning rule of the W we need the terms A and C:

∂C
∂WRn,k

= ΨRn(uRn)rRk + ΨIn(uIn)rIk
∂C

∂WIn,k
= −ΨRn(uRn)rIk + ΨIn(uIn)rRk

(C.97)

Using (C.97) we obtain:

∆W = ∆WR + j∆WI =

=
N∑
i=1

ΨRi


0T
...

rTR
...

0T

+ ΨIi


0T
...

rTI
...

0T



+ j
N∑
i=1

ΨIi


0T
...

rTR
...

0T

−ΨRi


0T
...

rTI
...

0T



 =

= (ΨR + jΨI) (rR − jrI) = ΨrH

(C.98)
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Similarly for the term A we have ∂A
∂W̃

= W̃−T , from which we derive:

∂A

∂W
= W−H (C.99)

Using the equation (C.98) and (C.99) we obtain the learning rule for the
adaptation of the W matrix:

∂L
∂W

= −
(
W−H + ΨrH

)
(C.100)

For the learning rule of the QNL
G we need the term B:

∂B

∂QNLGR,n,m
= − 1

ġRn
· ∂

∂QNLGR,n,m
· ġRn−

N∑
i=1

ΨRi
∂uRi

∂QNLGR,n,m
−

N∑
i=1

ΨIi
∂uIi

∂QNLGR,n,m
(C.101)

and remembering that

∂uRi
∂QNLGR,n,m

= ∂uRi
∂rRn

· ∂rRn
∂QNLGR,n,m

= wRinTRnMm

∂uIi
∂QNLGR,n,m

= ∂uIi
∂rRn

· ∂rRn
∂QNLGR,n,m

= wIinTRnMm
(C.102)

Using (C.101) and (C.102) we obtain the learning rule for the real part of the
QgR :

∂B

∂QNLGR,n,m
= − ṪRnMm

ṪRnMQNL
GR,n,m

−
N∑
i=1

(ΨRiwRin + ΨIiwIin)TRnMm (C.103)

And similarly for the imaginary part:

∂B

∂QNLGI ,n,m
= − 1

ġIn
· ∂

∂QNLGI ,n,m
· ġIn−

N∑
i=1

ΨRi
∂uRi

∂QNLGI ,n,m
−

N∑
i=1

ΨIi
∂uIi

∂GI , n,m
NL

(C.104)
and remembering that

∂uRi
∂QNLGI,n,m

= ∂uRi
∂rIn
· ∂rIn
∂QNLGI,n,m

= −wIinTInMm

∂uIi
∂QNLGI,n,m

= ∂uIi
∂rIn
· ∂rIn
∂QNLGI,n,m

= wRinTInMm
(C.105)

Using (C.104) and (C.105) we obtain the learning rule for the real part of the
QgI :

∂B

∂QNLGI ,n,m
= − ṪInMm

ṪInMQNL
GI ,n,m

−
N∑
i=1

(−ΨRiwIin + ΨIiwRin)TInMm (C.106)
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The learning rules for the score functions are obtained in a direct way [208]
minimizing the following mean square error:

εj =
1
2
E

{∣∣∣∣Ψ̃j −
ṗũj (ũ)
puj (ũ)

∣∣∣∣2
}

(C.107)

where ũ =
[

uR
uI

]
, ΨR = ṗuR(uR)

puR(uR) and ΨI = ṗuI(uI)
puI(uI) . In order to obtain the

learning rules, we do the derivative of εj with respect to the generic vector
QSC :

∂εj
∂QSC

= E

{(
Ψ̃j −

p′uj (uj)

puj (uj)

)
· ∂Ψ̃j
∂QSC

}
=

' Ψ̃j
∂Ψ̃j
∂QSC

+ ∂2Ψ̃j
∂uj∂QSC

(C.108)

where we have approximated the expectation value and we have used the
Lemma (8.5).

Finally using (C.108) we obtain the learning rules:

∂ε
∂QSCR

= TRMTRMQSC
R − 1

∆ṪRM
∂ε

∂QSCI
= TIMTIMQSC

I − 1
∆ṪIM

(C.109)

C.5 Algorithm with Renyi’s Entropy

An analogue algorithm can be obtained considering the Renyi’s Entropy
which is denoted by HRα :

HRα =
1

1− α
log

 +∞∫
−∞

(py (y))α dy

 (C.110)

In fact applying the eq. (C.110) to the joint network output py(y) and re-
membering eq. (C.7), we obtain:

HRα =
1

1− α
log

 +∞∫
−∞

(
px (x)
|J|

)α
dx

 (C.111)
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Now the Jacobian matrix J can be expressed as follows:

|J| =

∣∣∣∣∣∣∣∣∣
w11g

′
1 w12g

′
1 · · · w1Ng

′
1

w21g
′
2 w22g

′
2 · · · w2Ng

′
2

...
...

. . .
...

wN1g
′
N wN2g

′
N · · · wNNg

′
N

∣∣∣∣∣∣∣∣∣ =

=

∣∣∣∣∣∣∣∣∣
w11 w12 · · · w1N

w21 w22 · · · w2N
...

...
. . .

...
wN1 wN2 · · · wNN

∣∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣∣∣
g′1 0 · · · 0

0 g′2
. . . 0

...
...

. . .
...

0 0 · · · g′N

∣∣∣∣∣∣∣∣∣∣
=

= |W| ·
N∏
i=1

g′i

(C.112)

Introducing eq. (C.112) in eq. (C.111) it is possible to write:

HRα = 1
1−α log

+∞∫
−∞

 px(x)

|W|·
N∏
i=1

g′i

α

dx

 =

=
log

(
+∞∫
−∞

pαx(x)dx

)
−α log|W|−α

N∑
i=1

log g′i

1−α

(C.113)

Since the first term does not depend by the matrix weights wij , the learning
rule for the W matrix becomes:

∆wij ∝ ∂HRα
∂wij

= − α
1−α

[
∂

∂wij
log |W|+ ∂

∂wij

(
N∑
i=1

log g′i

)]
=

= − α
1−α

[
∂

∂wij
log |W|+

N∑
i=1

g′′i
g′i
xj

] (C.114)

The eq. (C.114) can be rewritten in matrix notation as:

∆W ∝ ∂HRα

∂W
= − α

1− α
[
W−H + ΨxH

]
(C.115)

We can see that eq. (C.115) is formally identical to eq. (C.39): the only thing
that changes is a constant term which can be adsorbed in the learning rate.





D
Mathematical Background

—If knowledge can create problems,
it is not through ignorance that we can solve them.

I. Asimov

THE aims of this appendix is to introduce some quite obscure mathe-
matical concepts, which are sometimes not much known from usual
readers, such as the Kronecker product. See [117] for more details.

D.1 Vectorization operator

In mathematics, especially in linear algebra and matrix theory, the vector-
ization of a matrix is a linear transformation which converts the matrix into
a column vector. Specifically, the vectorization of an m× n matrix A, denoted
by vec(A), is the mn× 1 column vector obtain by stacking the columns of
the matrix A on top of one another:

vec(A) = [a11, . . . , am1, a12, . . . , am2, . . . , a1n, . . . , amn]T (D.1)

Here aij represents the (i, j)-th element of matrix A and the superscript T
denotes the transpose operator. Let we give an easy example.

Example 13.

For the following 2× 2 matrix A =
[

1 2
3 4

]
, the vectorization is

vec (A) =


1
3
2
4


211
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The vec operator is very useful in computational applications.

D.2 Kronecker product

In mathematics, the Kronecker product, denoted by ⊗, is an operation
on two matrices of arbitrary size resulting in a block matrix. It is a special
case of a tensor product. The Kronecker product should not be confused with
the usual matrix multiplication, which is an entirely different operation. It is
named after German mathematician Leopold Kronecker.

If A is an m×n matrix and B is a p× q matrix, then the Kronecker product
A⊗B is the mp× nq block matrix

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 (D.2)

More explicitly, we have

A⊗B =



a11b11 a11b12 · · · a11b1q · · · · · · a1nb11 a1nb12 · · · a1nb1q
a11b21 a11b22 · · · a11b2q · · · · · · a1nb21 a1nb22 · · · a1nb2q

...
...

. . .
...

...
...

. . .
...

a11bp1 a11bp2 · · · a11bpq · · · · · · a1nbp1 a1nbp2 · · · a1nbpq
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...
am1b11 am1b12 · · · am1b1q · · · · · · amnb11 amnb12 · · · amnb1q
am1b21 am1b22 · · · am1b2q · · · · · · amnb21 amnb22 · · · amnb2q

...
...

. . .
...

...
...

. . .
...

am1bp1 am1bp2 · · · am1bpq · · · · · · amnbp1 amnbp2 · · · amnbpq


In other words, each entry of A is replaced by a scaled multiple of B. We
show a simple example of how do the Kronecker product.

Example 14.
It is calculated the Kronecker product of the following two matrices:

[
1 2
3 4

]
⊗
[

0 5
6 7

]
=


1 · 0 1 · 5 2 · 0 2 · 5
1 · 6 1 · 7 2 · 6 2 · 7
3 · 0 3 · 5 4 · 0 4 · 5
3 · 6 3 · 7 4 · 6 4 · 7

 =


0 5 0 10
6 7 12 14
0 15 0 20
18 21 24 28


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In particular, if A is the identity matrix Im of order m, then Im ⊗B is a
block diagonal matrix with B repeated along its diagonal:

Im ⊗B = diag

 B, B, . . . , B︸ ︷︷ ︸
m times


On the other hand, A⊗ In is not a block diagonal matrix, as shown by the
following

Example 15.

If m = n = 2, A =
[
a11 a12

a21 a22

]
and B = I2, then we obtain

A⊗ I2 =


a11 0 a12 0
0 a11 0 a12

a21 0 a22 0
0 a21 0 a22



One of the main uses of Kronecker products is that they allows us to
replace matrix operations by vector operations.

The following Lemma is a non-comprehensive list of useful properties
of Kronecker products.

Lemma 19 Considerm×m and n×nmatricesA andB and let {αi, i = 1, . . . ,m}
and {βj , j = 1, . . . , n} denote their eigenvalues, respectively. The matrices be real
or complex-valued. Then it holds that:

1. The Kronecker product is a special case of the tensor product, so it is bilinear
and associative

A⊗ (B + C) = A⊗B +A⊗ C,
(A+B)⊗ C = A⊗ C +B ⊗ C,
(kA)⊗B = A⊗ (kB) = k (A⊗B) ,
(A⊗B)⊗ C = A⊗ (B ⊗ C) ,

where C is an opportune matrix and k a scalar.

2. The Kronecker product is not commutative: in general, A⊗ B and B ⊗ A
are different matrices.

• However, A⊗B and B ⊗A are permutation equivalent, meaning that
there exist permutation matrices P and Q such that

A⊗B = P (B ⊗A)Q
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• If A and B are square matrices, then A ⊗ B and B ⊗ A are even
permutation similar, meaning that we can take P = QT .

3. If C and D are matrices of such size that one can form the matrix products
AC and BD, then

(A⊗B)(C ⊗D) = AC ⊗BD.

4. If A and B are invertible, then

(A⊗B)−1 = A−1 ⊗B−1

5. (A⊗B)T = AT ⊗BT as well as (A⊗B)∗ = A∗ ⊗B∗.

6. Tr(A⊗B) = Tr(A)Tr(B).

7. Rank(A⊗B) = Rank(A)Rank(B).

8. det(A⊗B) = (detA)n(detB)m.

9. (A⊗B) has mn eigenvalues ad they are equal to all combinations {αiβj},
for i = 1, . . . ,m and j = 1, . . . , n.

10. For any matrices A,B,C of compatible dimensions, it holds

vec(ABC) = (CT ⊗A)vec(B)

There are two other useful formulations:

• vec(ABC) = (I ⊗AB)vec(C) = (CTBT ⊗ I)vec(A);
• vec(AB) = (I ⊗A)vec(B) = (BT ⊗ I)vec(A).

In addition if A is n × n, B is m ×m and Ik denotes the k × k identity
matrix then we can define the Kronecker sum, ⊕, by

A⊕B = A⊗ Im + In ⊗B. (D.3)

We have the following formula for the matrix exponential which is useful
in the numerical evaluation of certain continuous-time Markov processes

eA⊕B = eA ⊗ eB.

The Kronecker product can be used to get a convenient representation
for some matrix equations. Consider for instance the equation AXB = C,
where A,B and C are given matrices and the matrix X is the unknown. We
can rewrite this equation as

(BT ⊗A)vec(X) = vec(AXB) = vec(C)

It now follows from the properties of the Kronecker product that the equa-
tion AXB = C has a unique solution if and only if A and B are nonsingular
[84].
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D.3 Tracy-Singh product

Let them×nmatrixA be partitioned into themi×nj blocksAij and p×q
matrix B into the pk × ql blocks Bkl with of course

∑
imi = m,

∑
j nj = n,∑

k pk = p and
∑

l ql = q.
The Tracy-Singh product [84] is defined as

A ◦B = (Aij ◦B)ij = ((Aij ⊗Bkl)kl)ij (D.4)

which means that the (i, j)-th sub-block of the mp × nq product A ◦ B is
the mip × njq matrix Aij ◦ B, of which the (k, l)-th sub-block equals the
mipk × njql matrix Aij ⊗Bkl. Essentially the Tracy-Singh product is the pair-
wise Kronecker product for each pair of partitions in the two matrices. We
will introduce these concepts with the following example.

Example 16.
If A and B both are 2× 2 partitioned matrices, e.g.:

A =
[
A11 A12

A21 A22

]
=

 1 2 3
4 5 6
7 8 9

 , B =
[
B11 B12

B21 B22

]
=

 1 4 7
2 5 8
3 6 9


we get:

A ◦B =
[
A11 ◦B A12 ◦B
A21 ◦B A22 ◦B

]
=


A11 ⊗B11 A11 ⊗B12 A12 ⊗B11 A12 ⊗B12

A11 ⊗B21 A11 ⊗B22 A12 ⊗B21 A12 ⊗B22

A21 ⊗B11 A21 ⊗B12 A22 ⊗B11 A22 ⊗B12

A21 ⊗B21 A21 ⊗B22 A22 ⊗B21 A22 ⊗B22

 =

=



1 2 4 7 8 14 3 12 21
4 5 16 28 20 35 6 24 42
2 4 5 8 10 16 6 15 24
3 6 6 9 12 18 9 18 27
8 10 20 32 25 40 12 30 48
12 15 24 36 30 45 18 36 54
7 8 28 49 32 56 9 36 63
14 16 35 56 40 64 18 45 72
21 24 42 63 48 72 27 54 81



D.4 Khatri-Rao product

Let them×nmatrixA be partitioned into themi×nj blocksAij and p×q
matrix B into the pk × ql blocks Bkl with of course

∑
imi = m,

∑
j nj = n,∑

k pk = p and
∑

l ql = q.
The Khatri-Rao product [84] is defined as

A ∗B = (Aij ⊗Bij)ij (D.5)
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in which the (i, j)-th block is the mipi × njqj sized Kronecker product of
the corresponding blocks of A and B, assuming the number of row and
column partitions of both matrices is equal. The size of the product is then∑

imipi ×
∑

j njqj . With an example:

Example 17.
Proceeding with the same matrices as the previous example we obtain:

A ∗B =
[
A11 ⊗B11 A12 ⊗B12

A21 ⊗B21 A22 ⊗B22

]
=


1 2 12 21
4 5 24 42
14 16 45 72
21 24 54 81



A column-wise Kronecker product of two matrices may also be called the
Khatri-Rao product. This product assumes the partitions of the matrices are
their columns. In this case m1 = m, p1 = p, n = q and ∀j : nj = pj = 1. The
resulting product is a mp× n matrix of which each column is the Kronecker
product of the corresponding columns of A and B. Let we explain that with
an example.

Example 18.
Using the matrices from the previous examples with the columns partitioned:

C =
[
C1 C2 C3

]
=

 1 2 3
4 5 6
7 8 9

 ,
D =

[
D1 D2 D3

]
=

 1 4 7
2 5 8
3 6 9

 ,
so that:

C ∗D =
[
C1 ⊗D1 C2 ⊗D2 C3 ⊗D3

]
=



1 8 21
2 10 24
3 12 27
4 20 42
8 25 48
12 30 54
7 32 63
14 40 72
21 48 81


.



Acknowledgements

—Thank you India
Thank you terror

Thank you disillusionment
Thank you frailty

Thank you consequence
Thank you, thank you silence.

A. Morissette

FIRST of all I have to say a big thank you to my Ph.D. supervisor, Prof. Aurelio
Uncini, which is a continuous and successful source of new inspiration.
I have to confess that his interest in research is exceptional for me, very

motivational.
Secondly I have to say thank you to all my new colleagues which encourage

me in new and new interesting problems. In particular my esteem goes, in random
order, to Antonello Rizzi, Massimo Panella, Fabio Massimo Frattale Mascioli and
Raffaele Parisi, which are not only friends and colleagues but above all “magistri
vitae”.

A great thanks goes to Daniele Vigliano which taught to me the particular topics
of this thesis and gave me the opportunity to begin the work.

I cannot release to thank you my friends and colleagues in Ph.D. studentship,
which support me in my doubts and give me lots of helpful suggestions. Thanks to
Gabriele Bunkheila, Albenzio Cirillo, Mario Antonelli, Nicola Buccino and Timothy
Battisti.

A very special thanks goes to my girlfriend Corinna, who has borne me in this
difficult and very stressful time being close to me, and has found the sweet and exact
words of encouragement: thanks a lot!

Thanks to my family who has supported me for all this long time, in my studies,
and has allowed me to arrive so far.

217



218 APPENDIX D. MATHEMATICAL BACKGROUND

Thanks a lot to all my friends, both visible and concrete, that invisible and
surreal, which, with their existence, allowed me to be what I am like.



Biographical Sketch

MICHELE SCARPINITI was born in Leonberg, Germany, on Febru-
ary 3rd, 1978. At the age of 6 he returned to Torre Melissa,
near Crotone, Italy, where he lived till the age of 19. Here he

attended high school (Liceo Scientifico statale “FILOLAO”). Then he moved
to Rome in 1997 to attend the School of Engineering (University of Rome
“La Sapienza”) where he obtained his degree “cum laude” in Electronical
Engineering in 2005.

Then he worked on a Ph.D. in Electrical Engineering with the department
of Information and Communication (INFOCOM) of the University of Rome
“La Sapienza”. His research interests include ICA and blind signal processing
as well as adaptive filters, audio processing and neural networks for signal
processing.

From 2005 to 2007 he was an associate engineer at the Central Institute
for Marine Research (ICRAM), where he developed algorithms and source
codes for the processing of bio-acoustic data.

From 2008 he is an assistant professor at the INFOCOM department of
the University of Rome “La Sapienza”, where he continues his studies on
ICA, BSS and Blind Signal Processing.

He attended to several international conferences and workshops on Inde-
pendent Component Analysis (ICA), Blind Signal Processing and Adaptive
Signal Processing.

219





Index

Absolutely Degenerate, 23, 52, 129
Accuracy, 109
Activation Function, 57, 63, 89

Adaptive, 84
Generalized Splitting, 78
Splitting, 77

Adaptive
Activation Function, 84

AF, 57
Adaptive, 63
Complex, 66

Algorithm
BSS, 21
EASI, 108
Fast ICA, 96
Infomax, 92
LMS, 95

Ambiguity
Permutation, 9
Rotation, 53, 104
Scaling, 9, 104
Translation, 24, 53

Analysis
Stability, 101

Analytic, 175
Analytic Signal, 43
Analyticity, 57

Brandwood, 61
Approach

CMN, 96, 122
ME, 26, 55, 84, 93
ML, 3, 97
MMI, 26, 55, 84, 94
MNG, 26, 55

Approximation
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