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Introduction

The aim of this thesis is to investigate from the analytical point of view some
hyperbolic-parabolic models arising in biology. Nowadays, mathematical
analysis of biological phenomena has become an important tool to explore
complex processes and to detect mechanisms that might be not evident to
the experimenters.

In the present work, we deal with description of the movement of some cell
populations on a biological �bres of extracellular matrix (namely a sca�old)
under the in�uences of external stimulus, generally called taxis. This prob-
lem has been studied by a biological point of view in [6]. From a mathemati-
cal point of view, a sca�old is described by an oriented network N composed
by a �nite number M > 0 of oriented compact intervals Ii, i = 1, . . . ,M ,
which are called the arcs of the network, and which intersect themselves in
some vertices called nodes of the network. Thus we will consider a set of
systems of hyperbolic-parabolic equations, each of them de�ned on an arc
of the network. The �rst di�culty of the model we consider here is the fact
that some compatibility boundary conditions must be given on the vertices
and the nodes of the network. Another feature of this model is also the fact
that cells can move in two di�erent oriented directions on the same arc, with
corresponding velocities ±λi on each arc Ii. This implies that on each arc
we have to consider equations for both verses of movement. Our aim is to
describe the evolution in time of density of cells along arcs of the network
under presence of an external signal changing in time and space.

We denote by the functions u±i (x, t) respectively the density of cells which
moves on arc Ii in the oriented direction corresponding to velocity ±λi.
Moreover, on each arc of the network we consider the presence of an external
chemoattractant φi(x, t) that in�uences the directions of cells movement.

The main novelty of this work is to consider a 1D model on a network.
More speci�cally, we consider the following system of hyperbolic-parabolic
equations, de�ned on each arc of the network


(u+
i )t + λ(u+

i )x = g+(u+
i , u

−
i ),

(u−i )t − λ(u−i )x = g−(u+
i , u

−
i ),

φit = Diφ
i
xx + aui − bφi,
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where functions g±(u+
i , u

−
i ) are smooth functions. We deal often with the

equivalent system

(0.0.1)


uit + vix = 0,

vit + λ2
iu
i
x = G(φi, φix, u

i)− vi,
φit = Diφ

i
xx + aui − bφi,

de�ned on Ii × [0, T ], T > 0, where i = 1, . . . ,M . Here λi, a, b and Di

are positive constants. In particular the coe�cients λi represent the speed
of cells, Di the di�usion coe�cients of the chemoattractants φi, a the rate
of release of chemoattractant, while b the characteristic degradation in time
of chemoattractant. The function G is a smooth function satisfying some
suitable assumptions. Here the functions ui, vi : Ii × [0, T ] → R are de�ned
as

ui(x, t) = u+
i (x, t) + u−i (x, t)

and
vi(x, t) = λi(u

+
i (x, t) + u−i (x, t)),

thus ui is the total density of cells on arc Ii and vi is the �ux on arc Ii. Our
aim is to study the existence and uniqueness of the solutions to the previous
model, after we have coupled it with initial data and suitable boundary
conditions for ui, vi and φi. In our studies, we always suppose that, given
an initial total mass of cells, it is preserved along time. Moreover, we have
to pay attemption especially to conditions we have to give on the node.

We have to specify something more about the transmission conditions
on the vertices which are common to two or more intervals, i.e., on each
node of the network. This is the most important point in order to study
the solutions to our model, since the behaviour of the solution will be very
di�erent according to the conditions we choose. Moreover, let us recall that
the coupling between the densities on the arcs are obtained through these
conditions. We consider a types of transmission conditions which impose
the continuity of the total �uxes of cells and chemoattractant on nodes of
network rather than the continuity of the densities. Let us observe that
in the study of this problem, we suppose no birth or death of cells which
move on the network, thus some conditions will be given on the transmission
coe�cients, in order to ensure the conservation of the total mass of the
system. The de�nition of the problem is complete after we have given also
initial data and boundary conditions on external vertices of the network
(the boundary points of the intervals which are common only to a single
arc). More speci�cally we impose the following transmission condition on
a node N of the network. Let N be a network composed of M arcs and ν
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nodes. Denoting by E the set of oriented arc Ii entering in a node N , and
by U the set of oriented arc Ii outgoing from the same node, we set

(0.0.2) u−i (N, t) =
∑
i∈E

ξi,ju
+
j (N, t) +

∑
j∈U

ξi,ju
−
j (N, t),

if i ∈ E for some transmission coe�cients ξi,j ∈ [0, 1], j = 1, . . . ,M , while

(0.0.3) u+
i (N, t) =

∑
i∈E

ξi,ju
+
j (N, t) +

∑
j∈U

ξi,ju
−
j (N, t),

if i ∈ U for other coe�cients ξi,j ∈ [0, 1], j = 1, . . . ,M . Moreover, as
we previously said, we impose the continuity of the total �ux vi(x, t), i =
1, . . . ,M on each node N , and so we ask that∑

i∈E
vi(N, t) =

∑
i∈U

vi(N, t).

The transmission coe�cients ξi,j represent the probability to choose the
j-th arc coming from the i-th. Thus we have that 0 ≤ ξi,j ≤ 1, for each
i, j = 1, . . . ,M . Moreover, the condition of the continuity of the total �ux
implies that the transmission coe�cients have to verify on each node that∑

i∈E∪U
λiξi,j = λj ,

for each j.
For the chemoattractants φi we choose the Kedem-Katchalsky transmis-

sion conditions

(0.0.4) φix(N, t) = α
∑
i 6=j

φj(N, t)− φi(N, t)

if i ∈ E, while

(0.0.5) φix(N, t) = α
∑
i 6=j

φi(N, t)− φj(N, t)

if i ∈ U . These conditions give the continuity of the spatial derivatives of
the total density of the chemical signal on each node, i.e.,∑

i∈E∪U
φix(N, t) = 0.
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Analysis and main di�culties

In this thesis we investigate the existence and uniqueness of local and
global solutions of (0.0.1) de�ned on a network in some various cases.

We begin assuming the gradient of the chemoattractants φi(x, t) to be
constant on each arc and equal on all the arcs to a positive constant α ∈
R+. Thus the last equation of (0.0.1) disappears and we consider the linear
hyperbolic problem

(0.0.6)

{
(u+
i )t + λ(u+

i )x = 1
2λi

((λi + α)u−i − (λi − α)u+
i ),

(u−i )t − λ(u−i )x = − 1
2λi

((λi + α)u−i − (λi − α)u+
i ),

i = 1, . . . ,M , coupled with initial data and boundary and transmission con-
ditions. The unknowns of our problem are the densities of �broblasts which
migrate on the sca�old; they can move on i-th arc of network in two verses,
left and right, with constant velocities respectively ∓λ.

We assume that the subcharacteristic condition α < |λi|, on each arc Ii
holds. The subcharacteristic condition is important in some problems be-
cause often guarantees that the operator associated to problem generates a
semigroup of contraction in some spaces. Thanks to the transmission condi-
tions (0.0.2), (0.0.3), (0.0.4), and (0.0.5) we have imposed on transmission
coe�cients on each node, we obtain that, also in this complex situation, the
operator associated to this problem generates a semigroup of contraction
in L1. This problem has been studied from a numerical point of view by
Natalini, Bretti and Ribot ([?]).

We show the global existence and uniqueness of solution (u+
i , u

−
i ), i =

1, . . . ,M , of the linear problem (0.0.6) belonging to (C([0, T ];BV (Ii)))
2 for

each i. In order to do this we �nd a priori L1-estimates for the solutions.
Of course, the main di�culty in �nding estimates is the presence of nodes.
Transmission boundary conditions on each node link functions on each arc to
the others, thus the only way in searching estimates is not to work separately
on each arc, but with all the functions of the network together. In this way of
proceeding, the conditions on transmission coe�cients and in particular the
assumption of continuity of total �ux on each node, play a fundamental role.
More precisely, we show L1-estimate for all functions of the network, together
with their spatial and temporal derivatives. In these two last estimates
we must be pay attemption to consider the right transmission conditions
for the derivatives of functions. By these estimates we are able to show
the uniqueness of solution and a comparison result for sub/sopra-solutions.
In order to prove the global existence of solutions, we build a sequence of
functions, each of these solution of problem (0.0.6) with constant boundary
conditions on each node for a time interval of size ∆t. We show that this
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sequence converge in C([0, T ];L1) to a vector function (u+
i , u

−
i ), i = 1, . . . ,M

belonging to (C([0, T ];BV (Ii)))
2. Finally we show the consistency of our

approximating sequence with the (unique) solution of the problem.
To complete the analysis of the linear problem (0.0.6) we study the sta-

tionary solution of the problem and the asymptotic behaviour of solution
characterized in having as initial data a small perturbation of a stationary
solution.

First we show that imposing only the transmission conditions on the
nodes, we may have a one-parameter family of stationary solutions, while
imposing also the total mass conservation, we have a unique positive sta-
tionary solution with the �xed total mass. We recall that in our problem we
have the total mass of density ui, i = 1, . . . ,M , preserved for all time. Given
an initial total mass µ, and considered the corresponding solution u±i (x, t),
i = 1, . . . ,M , we show that there always exists a stationary solution ũ±i (x),
i = 1, . . . ,M , such that we have

∑M
i=1 u

±
i (x, t) ≤

∑M
i=1 ũ

±
i (x), for each time

t ≥ 0.
Then we consider problem (0.0.6) coupled with initial data which are a

small perturbation of a stationary solution, with �xed total mass µ, and we
show that the solution to this problem tends asymptotically to the station-
ary solution with total mass µ, i.e., the stationary solution is asymptotically
stable under small perturbations. To prove this fact we follow we have to
pay attemption �rst to the fact that we work on compact closed intervals,
and also to boundary conditions on node: in fact, the asymptotic behaviour
of solution strictly depend on conditions on transmission coe�cients.

Next we consider the complete hyperbolic-parabolic system
uit + vix = 0,

vit + λ2
iu
i
x = G(φi, φix, u

i)− vi,
φit = Diφ

i
xx + aui − bφi,

de�ned on a network. In this case we consider a network composed of a
single node for simplicity of calculations, but results can be extended to
a general network. Of course, in this case we have to couple this system
with suitable transmission conditions also for the chemoattractants φi, i =
1, . . . ,M . As previously, we do not impose the continuity of the density of
chemoattractants, but only the continuity of the �ux at node. Therefore,
we use the Kedem-Katchalsky permeability conditions [21], which yields the
conservation of the �uxes at node.

We show the local existence and uniqueness of solution (ui, vi, φi), i =
1, . . . ,M to this problem in the functional space (C([0, T ];H1(Ii)))

3 under
the assumption of that the source term G is locally Lipschitz continuous.
In order to do this, we use some results of the semigroup theory. The most
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important fact is to prove that the operator A associated to this problem
generates a semigroup of contraction in H1, namely the operator has to be
monotone and maximal. The main di�culty consists in proving the mono-
tonicity of the operator because of the presence of the node. In doing this,
we found that some additional conditions on transmission coe�cients on the
node must be required. In particular, in the case of a network composed of
two arcs we �nd necessary and su�cient conditions for monotonicity, while
in case of a general network we only found su�cient conditions. Therefore
we show the maximality of the operator in H1. At this point, the local ex-
istence of solution follows by showing �rst the local existence of solution to
the homogeneous problem, and then by using a point �xed method to give
a local solution to the non-homogeneous problem.

The last part of the Thesis is devoted to prove the global existence of
solution to problem (0.0.1) choosing a particular locally Lipschitz continuous
source term G(ui, φi, φix), i = 1, . . . ,M . More speci�cally we choose a special
form of the function G arising in chemotaxis, i.e.,

G(ui, φi, φix) = uiχ(φi)φix,

where the function χ(φi) belongs to W 1,∞. To prove the global existence
Theorem, we have to look for a solution (ui, vi, φi), i = 1, . . . ,M belonging
to the functional space (C([0, T ];H2(Ii)))

3. Thus we are forced to impose
additional transmission conditions on the node for the spatial derivatives
of the functions on all arcs. Also in this case, we use some results of the
semigroup theory to prove the local existence of the solution in H2. We
need the monotonicity and the maximality of the operator associated to this
problem in H2, thus we have to couple the transmission coe�cients with new
conditions in order of having not only the monotonicity of the operator in
H1, but also the monotonicity in H2. Then we show the maximality of the
operator in this case, and the local existence and uniqueness of the solution
by a point �xed method.

Then we �nd suitable energy estimates for the local solution. As usual,the
main di�cult in �nding them is the presence of the node.

These estimates allow us to use the Continuation Principle estimating a
particular functional

∑M
i=1 F (ui, vi, φi) in order to extend the local solution

to a global ones, with small initial data. The presence of the node implies
that we can have a global solution only under some relations of direct pro-
portionality between the length of the arcs Ii and the velocities of cells ±λi.

Plan of Thesis

Chapter 1 and 2 are devoted to some analytical backgrounds that we will
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use in the follow and to the analysis of some important models of chemotaxis.
We also gives the de�nition of a network and we focus on the importance of
the compatibility conditions that we must give on the nodes of the network
in order to have a well de�ned model.

In Chapter 3 we consider model (0.0.1) assuming the gradients of chemoat-
tractants φix to be a positive constant α. So we deal with the linear system
of hyperbolic equations {

uit + vix = 0,

vit + λ2
iu
i
x = αui − vi,

de�ned on the arcs Ii of a network. We complete this system with initial and
boundary conditions, focusing on the reasons for the choice of transmission
conditions on the nodes of the network. We work with the equivalent system
of equations {

(u+
i )t + λ(u+

i )x = g+(u+
i , u

−
i ),

(u−i )t − λ(u−i )x = g−(u+
i , u

−
i ),

where the functions u±i represent respectively the densities of �broblasts
which moves on the right verse or on the left ones, on the i-th arc.

First we found some a priori estimates for the solutions of this problem,
and then we show a global existence and uniqueness Theorem for the solu-
tions. Then we studied the asymptotic behaviour of small perturbations of
stationary solutions: we begin giving the explicit expression of a stationary
solution of (0.0.6) considering a network composed of a single node, and then
we show the asymptotic stability of a small perturbation of it.

In Chapter 4 we consider the complete model (0.0.1) de�ned on a network
composed of a single node. We formulate appropriate transmission condi-
tions for the chemoattractants φi on the node and on external boundary
points, and we complete the problem with transmission conditions intro-
duced in Chapter 3 for ui and vi. Using the semigroup theory, we show that
the operator associated to our problem generates a semigroup of contrac-
tion on a Hilbert space under some assumptions on transmission conditions.
Then we prove the local existence of solution of (0.0.1) under the hypothesis
of local lipschitzianity of the source term G.

In Chapter 5 we consider problem (0.0.1) de�ned on a network composed
of a single node with a particular choice for the source term G. Under this
choice, we extend the local solution to a global ones. To do this, we found
some a priori energy estimates for the local solution, and we were be able to
prove global existence of solution for small initial data.

ix





Chapter 1

Notations and preliminaries

In this chapter we will present some notations and analytical backgrounds
which will be of use in the following (for more details, see [3], [41], [13], [15]).

1.1 Notations

Let us introduce some notations.
We denote by

• Rn, n ≥ 1, the n-dimensional vectorial space;

• Ck(A) the space of functions with k derivatives;

• C∞c (A) the space of in�nitely di�erential functions with compact sup-
port on a set A ⊆ Rn;

• |A| the cardinality of a set A;

1.2 Functional spaces

1.2.1 Some properties of Lp spaces

Let A ⊆ Rn, 1 ≤ p ≤ +∞, and let Lp(A) be the Lebesgue spaces of functions
with the usual norm

||u||Lp(A) = (

∫
A
|u|p)

1
p .

We recall the following property for Lp spaces.

1



Proposition 1.2.1. Let A ⊂ Rn a bounded set. Then

Lp(A) ⊂ Lq(A)

if p > q, 1 ≤ p,q ≤ +∞.

In the following, we will have to work with sequences of Lp functions and
we will have to establish if they are strongly compact in Lp. So we recall the
following important Theorems.

Theorem 1.2.1. Let X a Banach space with norm ||.||X , and let H ⊂
C([0, T ];X). If there exists a compact subset Y ⊆ X such that ∀f ∈ H,
∀t ∈ [0, T ], then f(t) ∈ Y and if H is equicontinuous, ∀f ∈ H, then H has
a compact closure in C([0, T ];X).

Theorem 1.2.2. (Riesz-Fréchet-Kolmogorov) Let F be a bounded set in
Lp(Rn), 1 ≤ p ≤ +∞. Let us suppose that ∀f ∈ F , ∀ε > 0, ∃δ > 0
such that ||f(x + h) − f(x)||Lp < ε, ∀h ∈ Rn, with |h| < δ. Then for each
bounded and measurable set Ω ⊂ Rn, the restriction to Ω of the functions of
F has compact closure in the space Lp(Ω).

Theorem 1.2.3. (Lebesgue average) Let us consider B(x, r) the ball of ra-
dius r and centered in the point x ∈ Rn. Let U ⊂ Rn, and a function
u ∈ L1

loc(U).
Then

(1.2.1) lim
r−→0

1

|B|

∫
B
|u(y)− u(x)|pdy = 0,

a.e. x ∈ U .

From the previous Theorem it follows this

Corollary 1.2.1. Let I = (a, b). For each N ∈ N , N > 0, let ∆t = b−a
N ,

tn = n∆t, n = 0, . . . , N . Let u ∈ L1(I), and let us de�ne the sequence of
functions

u∆t(t) =
1

∆t

∫ tn+1

tn

u(s)ds,

for each t ∈ [tn, tn+1). Then

(1.2.2) lim
∆t−→0

|
∫
I
|u∆t(t)− u(t)|dt = 0.

Proof. Let us �rstly observe that ||u∆t||L1 ≤ ||u||L1 , for each ∆t.
Now, let t ∈ I. For each �xed ∆t, then there exists m∆t such that

t ∈ [tm∆t , tm∆t + 1). In fact we can consider tm∆t = m∆t, m ≤ t
∆t ≤ m+ 1.

By Lebesgue average Theorem we have that

2



lim
∆t−→0

1

∆t

∫ tm∆t+1

tm∆t

|u(s)− u(t)|ds −→ 0,

thus

(1.2.3) lim
∆t−→0

u∆t(t) = u(t),

a.e. t ∈ I, i.e., ∀ε > 0, ∃δ > 0 such that |u∆t(t)−u(t)| < ε. a.e. t ∈ I. Thus
by Lebesgue dominated convergence Theorem we get the proof.

1.2.2 Sobolev spaces

Let I ⊆ R and u : I → R be a function. We will denote by u′ the �rst
derivative of u, and in general by uh the h-derivative of u.

We will consider the following functional space (see [3]).

De�nition 1.2.1. Let I ⊆ R an open interval of R, and let p ∈ R, with
1 ≤ p ≤ +∞. For every integer k, the Sobolev space W k,p(I) is de�ned by

W k,p(I) = {u ∈ Lp(I) : ∃g1 ∈ Lp(I), . . . , gk ∈ Lp(I) :

∫
I
uφh =

∫
I
ghφ,

∀φ ∈ C∞c (I), for each h = 1, . . . , k}.

We set

Hk := W k,2(I),

and we say that gh = uh is the h-th weak derivative of u.
In the Sobolev space W k,p(I) we consider the following norm:

||u||Wk,p(I) = ||u||Lp(I) +

k∑
h=1

||uh||Lp(I),

while in the space Hk(I) the scalar product

(u, v)Hk(I) = (u, v)L2(I) +

k∑
h=1

(uh, vh)L2(I)

is well de�ned, and the associated norm

||u||Hk(I) = (||u||2L2(I) +
k∑

h=1

||uh||2L2(I))
1
2

is equivalent to the norm of W k,2(I).
In the following, we will writeW k,p, Hk and Lp instead ofW k,p(I), Hk(I)

and Lp(I). We recall that the following Theorem holds.

3



Theorem 1.2.4. (Sobolev embeddings) There exists a positive constant C
(depending only on |I| ≤ +∞) such that

||u||L∞ ≤ C||u||W 1,p ,

∀u ∈W 1,p and ∀1 ≤ p ≤ +∞.
In other words, we have that W 1,p ⊂ L∞ and the injection is continue.
Moreover, if I ⊂ R is a bounded set, and denoting with I the closure of

I in R, we have

• the injection W 1,p ⊂ C(I) is compact if 1 < p ≤ +∞

• the injection W 1,1 ⊂ Lq(I) is compact if 1 ≤ p < +∞.

Lax Milgram Theorem

De�nition 1.2.2. Let H be a Hilbert space, and let a : H × H → H be a
bilinear form. We say that

• a is continues if there exists a positive constant C such that |a(u, v)| ≤
C|u||v|, for each u, v ∈ H;

• a is coercitive if there exists a positive constant D such that |a(u, u)| ≥
D|u|2, for each u ∈ H.

Let us denote by H ′ the dual space of H, and let us denote by < u, v >
the scalar product on H.

Theorem 1.2.5. (Lax Milgram) Let a : H × H → H be a continuous and
coercitive bilinear form. Then for each w ∈ H ′ there exists a unique u ∈ H
such that

(1.2.4) a(u, v) =< w, v >, for each v ∈ H.

1.2.3 Functions of bounded variation

Let I be a bounded set of Rn.

De�nition 1.2.3. A function u ∈ L1(I) has bounded variation if there exists
a constant C such that

|
∫
I
uφ′| ≤ ||φ||L∞(I),

∀φ ∈ C∞c (I).

Moreover, the following Proposition holds ([3]).
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Proposition 1.2.2. A function u ∈ L1(I), has bounded variation if and
only if there exists a constant C such that for each open set ω ⊂⊂ I and for
each h ∈ R with |h| less than the distance between ω and the complementary
of I,

||u(x+ h)− u(x)||L1(ω) ≤ C|h|.

These functions can be characterized in di�erent ways. In fact they are
di�erence of two increasing and bounded functions (eventually discontinues)
on I; or analogously, they are the functions u such that there exists a constant
C such that

k−1∑
i=0

|u(xi+1)− u(xi)| ≤ C,

for each sequence x0 < x1 < . . . < xk of I.
Otherwise, they can be represented as the functions u ∈ L1(I) which

have the distributional derivative a bounded measure.
We will denote the Banach space of bounded variation functions on a set

Ω ⊂ Rn as BV (Ω), n ≥ 1.
Now let us recall the following Theorem (for more details see [3] and

[15]), which is just a consequence of Riesz-Frechet-Kolmogorov Theorem.

Theorem 1.2.6. (Helly) The injection BV (Ω) ↪→ L1(Ω) is compact.

1.2.4 A Trace Operator

Let Ω ⊂ Rn be a bounded set, and u ∈ C1(Ω). Then there exists a trace
operator Γ : u → u|Γ, where Γ = ∂Ω, well de�ned from the space of func-
tions C1

c (Rn) to the space C(Γ). It has been proved that this operator is
extendable by density to a linear and continuous operator from BV (Ω) to
L1(Γ). This operator is by de�nition the trace of the function u on Γ, and
we indicate it as u|Γ or u(a, x), where a ∈ I ⊂ R and x ∈ J ⊂ Rn−1, with
Ω = I × J (see [15], [3]).

Moreover, in general it is possible to de�ne the trace of u ∈ W 1,p(Ω)
when Ω is an open bounded set with regular and bounded boundary ∂Ω. In
this case the trace of u, u|Γ ∈ Lp(Γ).

If u ∈ BV (Ω) the following properties hold.

Proposition 1.2.3. Let {un}n∈N ⊂ BV (Ω) be a sequence of BV -functions,
and let us suppose that it converges in the functional space L1(Ω) to a func-
tion u ∈ BV (Ω).

Then the traces u|Γ,n ∈ L1(Γ) of the sequence un converge to the trace of
u, u|Γ| in the norm of the space L1(Γ), i.e.
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lim
n→+∞

∫
Γ
|u|Γ,n − u|Γ| → 0.

Proposition 1.2.4. Let I ⊂ R be an open interval. Let u ∈ C([0, T ];BV (I))
such that (∂tu+a∂xu) ∈ C([0, T ];BV (I)), with a ∈ R. Then u ∈ BV ([0, T ]×
I).

Proof. Let {u}ε∈N be a sequence of functions such that the total variation
TV (u) ≤ TV (u), uε → u in C([0, T ];L1(I)), and such that (∂tu

ε +a∂xu
ε) ∈

L1(I × [0, T ]), for each t ∈ [0, T ]. Thus we have that∫ T

0

∫
I
(|uε|+ |auεx|)dxds ≤ T sup

t

∫
I
(|uε|+ |auεx|)dx ≤ C1T

because in particular the functions uε are bounded in BV for every t ∈ [0, T ]
and moreover (∂tu

ε+a∂xu
ε) ∈ C([0, T ];BV (I)) by de�nition of the sequence.

Then we have that∫ T

0

∫
I
|uεt |dxds ≤

∫ T

0

∫
I
(|uεt + auεx|+ |auεx|)dxds ≤ C2T.

Thus ∫ T

0

∫
I
(|uεt |+ |auεx|+ |uε|)dxds ≤ C3T.

By passing to limit when ε→ 0, we get the proof.

Stampacchia's Lemma

Let us recall that functions inW 1,1 are also called absolutely continuous.
It is useful to recall the following Lemma (for more details we refer to

[15], [3], [12]).

Lemma 1.2.1. (Stampacchia) Let Ω ⊆ Rn and let u ∈ W 1,1
loc (Ω). Then, for

each Lipschitz function f : R→ R

∂xif(u) = f ′(u)∂xiu(x),

for a.e. x ∈ Ω

Lemma 1.2.2. Let I ⊂ R be an open bounded interval and let u ∈ L∞((0, T ); I),
with (∂tu+ a∂xu) ∈ L∞((0, T ); I), a ∈ R. Then

sgn(u)(∂tu+ a∂xu) = ∂t|u|+ a∂x|u|.

Proof. Let ξ = x− at and τ = t. Then ∂τu = ∂tu+ a∂xu. From hypothesis
∂τu ∈ L∞, and in particular, u(ξ, τ) ∈ W 1,∞. So, using Stampacchia's
Lemma, choosing f(u) = |u|, we get the proof.
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1.3 Semigroup theory: some useful results

For more details, we refer to ([15]) and ([12]).
Let X be a real Banach space and consider the evolutionary ordinary

problem

(1.3.1)

{
du
dt = Au(t)

u(0) = u0,

where u0 ∈ X is given and A is a linear operator. More precisely, we
suppose that D(A), the domain of A, is a linear subspace of X, and A is a
linear unbounded operator A : D(A)→ X. We investigate the existence and
uniqueness of the solution u : [0,+∞]→ X to problem (1.3.1). The problem
consists in �nding conditions on A so that (1.3.1) has a unique solution for
each initial data and so that many interesting PDE can be cast into this
abstract form.

Usually, the solution of (1.3.1) is written as

u(t) = S(t)u0,

t ≥ 0, to display explicitly the dependance of u(t) on the initial value u0 ∈ X.
For each time t ≥ 0, the map S(t) is a map from X to X.

De�nition 1.3.1. A family {S(t)}t≥0 of bounded linear operators mapping
X into X is called a semigroup if the following conditions are satis�ed:

• S(0)u = u, for each u ∈ X;

• S(t+ s)u = S(t)S(s)u = S(s)S(t)u, for each t, s ≥ 0, and u ∈ X;

• the mapping t→ S(t)u is continuous from [0,+∞) to X.

We say {S(t)}t≥0 is a contraction semigroup if in addiction

||S(t)|| ≤ 1,

t ≥ 0; here we denote with ||.|| the operator norm. Thus

||S(t)u|| ≤ ||u||,

for each t ≥ 0, and u ∈ X.

It is possible to characterize the operators A which generate contraction
semigroups. Let us assume that {S(t)}t≥0 is a contraction semigroup. We
recall the following de�nition.
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De�nition 1.3.2. Write

D(A) := {u ∈ X : ∃ lim
t→0+

S(t)u− u
t

}

and

Au := lim
t→0+

S(t)u− u
t

,

u ∈ D(A).
Let us say that the operator A : D(A) → X is the generator of the

semigroup {S(t)}t≥0; D(A) is the domain of A.

Let us also recall the following Theorems (for the proof and details see
[15]).

Theorem 1.3.1. (Di�erential properties of semigroups) Let A : D(A)→ X
be the generator of a semigroup S(t). Assume u ∈ D(A). Then

• S(t)u ∈ D(A) for each t ≥ 0;

• AS(t)u = S(t)Au for each t > 0;

• the map t→ S(t)u is di�erentiable for each t > 0, and

• d
dtS(t)u = AS(t)u, for each t > 0.

Theorem 1.3.2. (Properties of generators) We have that

• the domain D(A) is dense in X;

• A is a closed operator, i.e. for each sequence {uk}k∈N ⊂ D(A) such
that uk → u and Auk → v as k → +∞, then u ∈ D(A) and v = u.

In particular, we will now consider as Banach space X, a Hilbert space
H. Now, we brie�y introduce the concept of maximal operators (see [3]).

De�nition 1.3.3. Let A : D(A) ⊂ H → H a linear not-bounded operator.
We say that A is a monotone operator if the scalar product

(Au, u)H ≥ 0

for each u ∈ D(A).
We say also that A is maximal and monotone if we have moreover ∀f ∈

H, ∃u ∈ D(A) such that
u+Au = f.
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We observe that for maximal and monotone operators the following prop-
erties holds .

Proposition 1.3.1. Let A a maximal and monotone operator. Then

• D(A) is closed in H;

• D(A) is dense in H;

• for each λ > 0 the map (Id+λA) : D(A)→ H is bijective, the inverse
map (Id+λA)−1 is a bounded operator (here the map Id is the identity
map), and the norm of the operator in the space of the linear operators,
||(Id+ λA)−1|| ≤ 1.

Remark 1.3.1. Let us observe that if A is maximal and monotone, then λA
is maximal and monotone for each λ > 0.

Now we recall the main result which connect evolution partial di�erential
equations and maximal monotone operators.

Theorem 1.3.3. (Hille-Yosida Theorem 1) Let A be a maximal monotone
operator on a Hilbert space H. Then A for each function u0 ∈ D(A) there
exists a unique function u ∈ C1([0,+∞);H) ∩ ([0,+∞);D(A)) such that

du

dt
+Au = 0,

with t ≥ 0, and
u(0) = u0.

We observe that the norm of a function in the space D(A) is the Hilber-
tian norm

||u|| = (||u||2H + ||Au||2H)
1
2 .

It can be possible to establish a bijective correspondence between con-
traction semigroups and maximal and monotone operators. In fact, the
following Hille-Yosida Theorem holds (see [15], [3], [12]).

Theorem 1.3.4. (Hille-Yosida 2) Let A be a monotone operator on a Hilbert
space H. Then it generates a contraction semigroup {S(t)}t≥0 if and only if
A is also a maximal operator on H.
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Chapter 2

Some mathematical models of

chemotaxis

In Nature there are a lot of species (insects, animals, bacteria and so on..)
which have an acute sense of smell for conveying information between mem-
bers of the species. Chemicals which are involved in this process are called
pheromones. For example, the acute sense of smell of many deep sea �sh is
particularly important for communication and predation. Generally, species
move in the direction of released chemical signal, and more precisely, in the
verse of increasing concentration of it. This chemically directed movement
is called chemotaxis and it directs the motion up a concentration gradient.
Chemotaxis is an important mean of cellular communication and determines
how cells arrange and organize themselves. We can have a positive or neg-
ative chemotaxis when the chemical signal attracts or not an organism. In
general, the chemical signal is called chemoattractant or chemorepellent.
Chemotaxis is crucial in biological processes: for example when a bacterial
infection invades the body it may be attacked by movement of cells towards
the source as a result of chemotaxis, or, moreover, leukocyte cells in the blood
move towards a region of bacterial in�ammation, to counter it, by moving up
a chemical gradient caused by the infection (see [22], [28]). It is being found
to be important in an increasing range of situations. Modeling chemotaxis
processes through mathematical models is very interesting because they in-
volve �uid mechanics and �ltration theory on quite di�erent scales at the
same time (Murray 1977). One of the �rst studies of chemotactic phenom-
ena involve the amoeba Dictyostelium discoideum where single-cell amoebae
move towards regions of relatively high concentrations of a chemical which
is produced by the amoebae themselves. Interesting wavelike movement and
spatial patterning are observed experimentally. Most mathematical models
for spatial patterning in Dictyostelium discoideum are based on continuum
models for the chemoattractants and the cells, while there are other models
in which the cells are considered as discrete entities with the chemoattrac-
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tant concentrations continuous (see [29], [23]). In multicellular organisms,
chemotaxis is extremely important: in fact it organizes cells migration and
distribution in various tissues, or it determines the cells position during the
embryonic development. Focusing on our point of view, chemotaxis is also
crucial in the movement of �broblast in a wounded region to start the healing
process. To derive an equation to describe chemotaxis it is supposed that the
presence of a gradient in an attractant, a(x, t), gives rise to a movement, of
the cells say, up the gradient. The �ux of cells will increase with the number
of cells, c(x, t), present. Thus it is reasonably to take as the chemotactic �ux

J = cχ(a)∇a,

where χ(a) is a function of the attractant concentration. The general con-
servation equation for c(x, t) is

∂c

∂t
+∇J = f(c),

where f(c) represents the growth term for the cells, and J is the �ux.
In general, in a lot of these processes, together with chemotaxis there is

a phenomena called reaction (or di�usion).
Unlike chemotaxis, in this kind of process particles, for example, cells,

bacteria, animals and so on, usually moves around in a random way. The
particles spread out as a result of this irregular individual particle's motion.
When this microscopic irregular movement results in some macroscopic or
gross regular motion of the group we can think of it as a di�usion process.
Of course there may be interaction between particles, for example, or the
environment may give some bias in which case the gross movement is not
simple di�usion. Continuum models of this process has been derived in terms
of a particle density or concentration. The classical approach to di�usion is
the Fickian di�usion. This says that the �ux, J , of material, which can be
cells, amount of chemical, number of animals and so on, is proportional to
the gradient of the concentration of the material. That is, in one dimension

J = −D ∂c

∂x
,

where c(x, t) is the concentration of the species and D is its di�usivity. The
minus sign simply indicates that di�usion transports matter from a high to
a low concentration. Equations of reaction and di�usion are characterized
by the presence of the gradient of the term �ux J ,

∂c

∂t
= f +∇J,

where f is a function of c, x, and t. If we want to describe a biological
process in which there are both chemotaxis and di�usion we will take a �ux
J = Jdiffusion + Jchemotaxis and the equation will become
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∂c

∂t
= f(c)−∇(cχ(a)∇a) +∇(D∇c).

We have said that the chemotaxis is crucial during the process of wound
healing by �broblasts. We have not said that the movement of �broblasts
is not random during this process but it follows some directions given by a
the extracellular matrix (ECM). We can mathematically represent this ECM
as a network. So we will have to work with a chemotaxis phenomena on a
network. Wound healing is a typical examples of cellular invasion, which
crucial steps are cellular migration and proliferation. The tissue engineering
works to make faster this process through production of arti�cial "sca�olds"
which play the role of the ECM on a damaged tissue. It has been shown that
the production of chemoattractant by �broblasts is strictly linked to direction
of �bres of ECM and it helps the right alignment of the �bres between the old
and new tissue. The ECM serves many functions such as providing support
and anchorage for cells. It regulates cell's dynamic behavior, apoptosis and
proliferation. It is composed of a mesh of �brous proteins as collagen and
provides directional information directly through the �bres along which cells
tend to align (this process is called contact guidance).

In the following sections, we present the derivation of some important
parabolic and hyperbolic chemotaxis models.

2.1 The Patlak-Keller-Segel Model

The spatial pattern potential of chemotaxis has been exploited in a vari-
ety of di�erent biological contexts. Mathematical models involving chemo-
taxis, with reaction di�usion models, are simply part of the general area of
integro-di�erential equation models for the development of spatial patterns.
The basic Keller�Segel continuum model was proposed by Keller and Segel
(1970). Their model is one of the most important chemotaxis model and
it describes chemotaxis at a macroscopic level considering the population of
living species as a whole. Their model arise from their studies about the for-
mation in the slime mould Dictyostelium discoideum. Then a discrete, more
biologically based, model for the aggregation with appropriate cell signalling
was developed giving oscillatory cyclic signalling in the development of this
slime mould. In their original model, Keller and Segel tried to deduce the co-
operative behavior of populations from their individual properties (see [28],
[22], [37], [38]). The model consists of reaction-di�usion equations in which
there are the interaction of four di�erent quantities, which are mathemati-
cally represented by four functions φ,u,η,c : Rn ×R+ → R, with n = 1, 2, 3,
which respectively represent:

• φ(x, t) the concentration of chemical signals at time t in the point x;
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• u(x, t) the density of the populations (cells);

• η(x, t) the concentration of an enzyme (acrasinae) that degrades the
chemoattractant;

• c(x, t) the concentration of a substance formed from reaction of chemoat-
tractant and the enzyme.

To derive their model, Keller and Segel made the following hypothesis:

• the total number of population remains �xed at any time t;

• the acrasinae is produced at a rate represented by a function r(φ, η);

• the chemical signal φ is produced at a rate represented by f(φ);

• η and φ react to form a complex c at a rate k1 (the inverse reaction is
indicated with a rate k−1); c dissociates to form η and other products
at a rate k2;

• φ, η and c move following the Fick's law;

• population moves in the direction of increasing gradient of φ.

From the fourth assumption, we have that φ, η and c follow the Fick's
law, so their associated �uxes J are given by

J = −Dm∇m,

with m = φ, η, c, and where the constant Dm is the coe�cient of di�usion.
From the hypothesis that cells move in the direction of increasing chem-

ical signal, the �ux Ju for the species u is di�erent from the others, and in
particular it has the form

Ju = −D∇u+ C∇φ;

the �rst term is given by the Fick's law, while the second term illustrates the
chemotactic phenomenon in response to the chemical signal φ. The di�usion
constant C may be positive or negative to indicate a chemoattractant or a
repellent. Imposing the balance of total mass in an arbitrary domain Ω ⊂ Rn,
they found that each variable must be satisfy the di�erential equation
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(2.1.1) ∂w(x, t) = −∇Jw +Gw,

for w = u, φ, η, c. Here the function Gw represent the mass of population in
a unite of time per unite volume, i.e. the birth or death of population in the
region. In fact, we must have that the change of mass in the total region
Ω is equal to the �ux out of the boundary plus the mass of population in a
unite time, i.e.

(2.1.2)
d

dt

∫
Ω
w(x, t)dx = −

∫
∂Ω
Jwnds+

∫
Ω
Gwdx;

using the divergence theorem, we obtain (2.1.1).
The total system of Patlak-Keller-Segel model is

(2.1.3)


∂tu = ∇(+D∇u− C∇φ)

∂tφ = ∇(Dφ∇φ) + uf(φ)− k1φη + k−1c

∂tη = ∇(Dη∇η) + ug(φ, η)− k1φη + k−1c+ k2c

∂tc = ∇(Dc∇c) + k1φη − k−1c− k2c.

In some articles the authors study in particular the populations' aggre-
gation process and some of them consider aggregation as a manifestation
of instability in a uniform distribution. Usually the population of cells is
assumed to be homogenous but biology and studies of the models and simu-
lations have shown that at some point of life cycle of cells the characteristic
of single cell change making the distribution unstable.

Keller and Segel did not consider this case and and moreover they as-
sumed:

• the complex c is in a steady state after a reaction;

• the total concentration of the enzyme η is a constant η0.

With these two conditions the system (3.0.4) becomes

(2.1.4)

{
∂tu = ∇(D(u)∇u− F (u)G(φ)H(∇φ)) + f(u)

∂tφ = 4φ+ ug(u)− φ,

which is the general Patlak-Keller-Segel model. The model is composed of
parabolic equations and its behavior is known: it has global solution in time
in one dimension, while in higher dimensions, if the initial data are small,
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then the solution exists globally for all times. Otherwise, it explodes in �-
nite time. The analytical and numerical studies of this model have a great
interest for mathematicians and biologists because this model re�ects and
can be applied to a lot of biological phenomena. In particular, chemotaxis is
one of the most common phenomenon in nature, because the movement of
species (cells, bacteria, etc..) is usually in�uenced by external signals: there
can be chemical signals produced by other cells which orient the direction of
population, or external sources (for example food) which in�uence movement
of cells. In the case we will study, chemotaxis is crucial because cells call
each other to start healing process and the presence of �bres of ECM gives
direction of movement to �broblast. Models based on the Patlak-Keller-
Segel equations have been developed to study whether chemotaxis may in-
�uence pattern formation process, as the formation of pigmentation patterns
in �shes and cell colonization (see [38]). Chemotaxis is also important dur-
ing formation of plaques in Alzheimer's disease, and it models some distinct
stages of tumor growth, such as the invasion of cancer cells, or macrophage
invasion into tumor (see [34]). There exists a lot of variations of Patlak-
Keller-Segel model, especially to understand the mathematical properties of
it and in particular which are the conditions under which specialization or
variations of the equations of the model form �nite-time blow-up or have
global solutions. Some of these di�erent models have been described basing
on additional biological realism: for example, there are models in which has
been introduced an additional parameter which regularize the problem such
that the solution exists globally. Di�erent values of this parameter give a
bifurcations diagram in which for some of these values the problem admits a
global solution, while for others pattern formation properties or non uniform
solutions. Usually, di�erent models show a global existence in time for the
solution in one dimension, while a blow up in higher dimensions. Choosing
small initial data and particular and smooth source terms, it can be possible
to have global existence in time in a general dimension.

We recall one of the most famous model and �rstly studied:{
∂tu+∇(D∇u− χu∇φ) = 0,

∂tφ = 4φ+ u− φ.

This model has globally existing solutions in one space dimension and a
threshold phenomenon with blow up solutions in higher dimensions.

2.2 Some biological backgrounds

In the present work, we deal with description of the movement of some cell
populations on a biological �bres of a sca�old under the in�uences by ex-
ternal stimulus, generally called taxis. From a mathematical point of view,
a sca�old is described by an oriented network composed of a �nite number
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of compact intervals, the arcs of the network, which intersect in some ver-
tices called "nodes". Thus we will consider a system of hyperbolic-parabolic
equations each of these is de�ned on an arc of the network. Of course some
compatibility boundary conditions must be given on the vertices of the net-
work. A particularity of this model is also the fact that cells can move in
two di�erent verses on the same arc, with di�erent velocities. Moreover, on
the network we consider the presence of an external taxis that in�uences the
directions of cells movement.

Several types of taxis are well known, but in this thesis we focus on
chemotaxis, the in�uence of chemical substances present in the environment
of the movement of cells, i.e., in our case, on the sca�old. In tissue engineer-
ing, a sca�old reproduces the �bres of Extracellular Matrix (ECM) which is
a kind of environment typically produced by cells themselves on which they
can move.

Sca�olds for tissue engineering play a critical role in regenerating func-
tional tissues and organs. Ideally, a sca�old will provide a substitute extra-
cellular matrix upon which cells can attach, proliferate, and organize as in
natural tissue. It is generally recognized that both biochemical composition
and microstructure of the sca�old a�ect cellular activity and organization
([2]). As the native ECM is comprised largely of proteins from the colla-
gen family, emphasis has been placed on fabricating sca�olds from collagen
and collagen-based composites. Gelatin, a biopolymer derived from native
collagens, is potentially useful as a sca�olding material due to its low im-
munogenicity, biodegradability, biocompatibility, and low cost. Gelatin is
widely used as a dressing for wound healing and as a sca�old for dermal tis-
sue engineering. Gelatin can be formed via a technique called electrospinning
into �brous sca�olds at a scale similar to native ECM, which makes these
sca�olds conducive for tissue engineering. Sca�olds become an environment
for cells in which they can move and also proliferate. It has been experi-
mentally observed that in addition to material composition, pore size, pore
orientation, �ber structure and �ber diameter of sca�olds a�ect proliferation,
cellular organization, and subsequent tissue morphogenesis ([11]).

One of the most important application of these biodegradable sca�olds in
biology is the acceleration of the dermal wound healing process. The most
important cells interested in dermal wound healing are called �broblasts,
which start the reepithelialization of the damaged tissue moving on �bres of
extracellular matrix. Both wound contraction and reepithelialization from
the margins of the wound play an important role in wound closure. Reep-
ithelialization is achieved by �broblasts proliferation and migration over the
extracellular matrix. In dermal wound healing several interacting events
are initiated, as in�ammation, tissue formation, angiogenesis and tissue re-
modelling. In each of these events it is crucial the interaction between cells
(�broblasts) and the extracellular matrix. There is a basement membrane
that has been shown to be an active regulator in epithelial�mesenchymal
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interactions during epithelial cell development (see [17]). Wound closure has
been studied both in vivo and in vitro. It has been observed that after the
blood clot has formed, during the in�ammatory response white blood cells
invade the wound region moving through the ECM, and subsequently �brob-
lasts migrate into the region moving on the ECM to replace the blood clot
with collagen. The new tissue is usually characterized by a new architecture
that di�ers from the original and is less functional than it. New tissue typi-
cally has fewer blood vessels supplying the denser connective tissue which is
less elastic, and it has di�erent orientation of the �brous matrix. The type
of the ECM-cells interactions changes during the process of wound healing,
and, although several of the ECM-cells interactions have been experimentally
studied, this area remains poorly understood. This is partly because all in-
teractions have not been found, but mainly because the processes involved
interact in a complex manner with non linear feedback. It is important to
say that one of the main questions still to be answered is how the �broblasts
are stimulated to migrate into a speci�c direction and how the reorganization
of the cell is induced.

In the study of cells movement on a sca�old, biologists in�uence it by a
phenomenon of chemotaxis. It is known that chemotaxis can lead to strictly
oriented or partially oriented and partially tumbling movements. The move-
ment towards a higher concentration of the chemical substance is called
positive chemotaxis, while the movement towards a lower concentration is
called negative chemotaxis. Substances that lead to positive chemotaxis are
chemoattractants, and those leading to negative chemotaxis are repellent. In
particular, chemotaxis that occurs on a sca�old is a positive chemotaxis be-
cause it has to be force and accelerate the movement of cells on the sca�old.

The idea of the acceleration of wound healing process is clearly impor-
tant, but it plays a fundamental role for diabetic patients. In fact, wound
healing in diabetes is a more complex process, because it is characterized by
a chronic in�ammation phase. The exact mechanism by which this occurs
is not fully understood, and whilst several treatments for healing diabetic
wounds exist, very little research has been conducted towards the causes of
the extended in�ammation phase. It has been known for many years that
wounds in diabetic patients can take longer to heal than similar wounds
in non-diabetics ([27]). Typically healing takes several months, and many
wounds do not heal for 12− 18 months or more. The normal wound healing
mechanism is obviously disrupted in some way, although despite intensive
research a comprehensive understanding of this disruption, or its extent, has
not yet been realized. There are, however, pieces of this complex process
which have been identi�ed and by combining these pieces together it be-
comes possible to present an initial model of the wound healing process as
a�ected by diabetes mellitus. As we have previously said, the �rst stage of
the wound healing process is the in�ammation stage ([36]), and macrophages
are among the �rst cells to arrive at the wound site in response to chemi-
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cal signals (growth factors) released by platelets. Growth factors stimulate
the chemotaxis and mitosis of both endothelial cells and �broblasts, and are
thus vital for the second stage of wound repair, the proliferative stage. In
diabetic patients, macrophages are known to persist past the in�ammatory
stage in chronic non-healing wounds, and experimental data shows that sig-
ni�cant numbers of these cells have been measured on day 28 of healing,
long after macrophages are no longer seen in similar wounds in the control
(non-diabetic) subjects. Macrophages themselves are di�erentiated mono-
cytes, and result from monocytes responding to certain chemical stimuli.
There are known to be three types of macrophage important to the wound
environment. Each type of macrophage produces di�erent growth factors.

It is the balance between the in�ammatory and repair macrophage popu-
lations that appears to be crucial for successful wound healing. Since mono-
cytes become repair macrophages in the presence of hyaluronan, and hyaluro-
nan is produced by �broblasts, it follows that if the balance between the
macrophage populations is disturbed, as suspected in diabetic wounds, then
the hypothesis is that there could be an insu�cient amount of hyaluronan
being produced by �broblasts, resulting in the repair macrophage population
being too low for healing to be completed.

The e�ects of diabetes on the wound healing process are the impairment
of cellular proliferation for most cell types, increased apoptosis of endothe-
lial cells, increased average blood glucose level, impairment of blood vessel
regrowth, inadequate �ow through blood vessels and decreased collagen de-
position at the wound site. Furthermore, it is likely that growth factor
expression is altered, and nitric oxide secretion and macrophage removal to
the lymph nodes may also be impaired. Mathematical models of wound re-
pair and healing have thus far been directed towards the proliferation and
repair stages of the wound healing process, but it is evident that for diabetic
wounds, the in�ammatory phase should be modelled in the �rst instance, as
this is when macrophages are most involved.

Mathematical modelling is a powerful tool designed to address such com-
plex feedback mechanisms, and, in particular, the movement of bacteria un-
der the e�ect of a chemical substance and the description of cell invasion
during a biological process have been a widely studied topic in Mathemat-
ics in the last decades, and numerous models have been proposed. Dermal
wound healing, angiogenesis and tumour invasion are typical example of cell
invasion, and cell migration and proliferation are the two key cell functions
responsible for cell invasion. As we previously said, in tissue engineering
healthy tissue is cultured to repair damaged tissue through invasion of cells
on a biodegradable sca�old. In recent years some mathematical models are
developed in order to describe the interactions between cells during a wound
healing process. For example, in [11], they assume that �broblast movement
is directed by the orientation of the matrix, a phenomenon known as �con-
tact guidance�, that the ECM a�ects the speed of the �broblasts, then the
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composition of the ECM alters the production of di�erent proteins by the �-
broblasts, and �nally that the ECM in the wound region contains a plethora
of growth factors which alter �broblast behaviour. They also assume that
�broblasts produce �bres of ECM aligned with their direction of movement
and that production and degradation are balanced, so that the ECM density
remains the same. Their model is the following

f(x, t) =
∑N

i=0w
i(x, t)

f it (t−τ)

||f it (t−τ)|| ,

f it = s vi(t)
||vi(t)|| ,

vi(t) = (1− ρ) + c(f i(t), t) + ρ
f it (t−τ)

||f it (t−τ)|| .

In this model, the function f i(x, t) represent the �bres of the extracellular
matrix, so the �rst equation determines the total ECM produced by N �-
broblasts. The functions wi(x, t) are weight functions in order to describe the
di�erent rates of productions of f i(x, t) for each cell i. The second and the
third equations of the model govern the cell motion, where ρ and s are posi-
tive constants, with s represents cells speed, and t a time lag. The function
c(f i(t), t) represents the presence of a chemoattractant gradient depending
on �bres of ECM. Chemoattractant generally is produced by leucocytes and
it is one of the parameters that determine trajectories of �broblasts when
they migrate towards the wound region. Using numerical approximations
they show that chemoattractant gradients lead to increased �bres alignment
at the interface between the wound and the healthy tissue. Results show
that there is a trade-o� between wound integrity and the degree of scarring.
The former is found to be optimized under conditions of a large chemoat-
tractant di�usion coe�cient, while the latter can be minimized when repair
takes place in the presence of a competitive inhibitor to chemoattractants.

Wound healing is usually described by continuum and discrete models
are developed in few years. Some of these models are developed to capture
the population-scale and cell-scale behaviour in a wound healing cell migra-
tion assay created from a scrape wound in a con�uent cell monolayer ([4]).
Usually, continuum models use a cell di�usivity function that decreases with
cell density and a logistic proliferative growth term: thus, these models in-
clude the two dominant mechanisms and characteristics of cell migration and
proliferation. Discrete models arise naturally from the continuum models.
Cells are simulated as random walkers with nearest-neighbour transitions,
together with a birth-and-death process ([11], [36]). The numerical simula-
tions generated by these models capture the contact inhibition of migration
e�ects and describe the formation of new tissue (usually called "scar tis-
sue") in dermal wound healing. It is important to observe that often it is
used a multiscale approach ([7]): the extracellular materials are modelled as
continua, while �broblasts are considered as discrete units.

In order to describe the movement of cells under the e�ect of a chemi-
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cal substance numerous models have been proposed. Moreover it is possible
to describe this biological phenomenon at di�erent scales. For example, by
considering the population density as a whole, it is possible to obtain macro-
scopic models of partial di�erential equations. One of the most celebrated
model of this class is the one proposed by Patlak in 1953 [35] and subse-
quently by Keller and Segel in 1970 [22]. In this model, the basic unknowns
are the density of individuals of the population and the concentration of
chemoattractant, and the basic assumption is that dynamical of individ-
uals is described by an equation coupled with an additional equation for
the chemoattractant, chosen to be elliptic or parabolic, depending on the
di�erent regimes to be described. Model is given by a coupled reaction-
advection-di�usion system for the space and time evolution of the density
u = u(x, t) of cells, and the chemical concentration φ = φ(x, t) at time t and
position x ∈ Rn,

{
∂tu = ∇(−D1∇φ+D2∇u),

∂tφ = ∇(Dφφ) + uf(φ)− kφφ,

where ∇ denotes the divergence respect to the spatial variable. The behavior
of this system is now quite well-known: in the one-dimensional case, the so-
lution is always global in time. In several space dimensions, if initial data are
small enough in some norms, the solution will be global in time and rapidly
decaying in time; while on the opposite, it will explode in �nite time at least
for some large initial data. The simplicity, the analytical tractability, and
the capacity to replicate some of the key behaviors of chemotactic popula-
tions are the main reasons of the success of this model of chemotaxis. In
particular, the ability to display auto-aggregation, has led to its prominence
as a mechanism for self-organization of biological systems.

In [8] they proposed a cell migration model in presence of a chemical
signal and some extracellular matrices,

{
∂u
∂t (x, t, v) + v · ∇u(x, t, v) = JBm(x, t, v) + JBc (x, t, v),
∂φ
∂t (x, t) = K4φ+ f(u, φ).

,

where u = u(x, t, v) is the density of cell population, v is the velocity, φ =
φ(x, t) is the chemical signal, JBm = JBm(x, t, v) is the function which repre-
sents the interaction between ECM and chemical signal, and JBc = JBc (x, t, v)
is the function which represents the interaction between cells and chemical
signal. They have shown how macroscopic continuum models can be derived
from the mesoscopic transport equation and focused on the so-called di�u-
sive approximation; moreover, numerical simulations have been shown the
ECM and environmental factors e�ects on cell migration.

In the following we will consider a system of equations of a particular

21



one-dimensional case of the previous model, which reads

(2.2.1)


uit + vix = 0,

vit + λ2
iu
i
x = G(φi, φix, u

i)− vi,
φit = Diφ

i
xx + aui − bφi,

where the index i varies on a �nite set and where λi, a, b and D are positive
constants. In particular the coe�cients λi represent the speed of cells, while
Di the di�usion coe�cients of the chemoattractants φi. The function G is
a smooth function satisfying some suitable assumptions. In Chapter 4 we
will prove a local existence Theorem for the previous system de�ned on a
network, while in Chapter 5 we will extend local solution to a global one
taking into account a particular choice of the function G.

As far the studies of models on networks, some papers concern with
�uidodynamic models for tra�c �ow. For example, in [10] they consider a
single conservation law de�ned on a network, and they study the correspond-
ing evolution problem. They have some �xed rules for the distribution of
tra�c and an optimization criteria for the �ux. They prove the existence
of solutions to the Cauchy problem and moreover they show that the Lip-
schitz continuous dependence by initial data does not hold in general, but
under special assumptions. Moreover, in [39], Valein and Zuazua study the
stabilization of the wave equation on a general 1D network. They use an
interpolation inequality to obtain the explicit decay estimate of the energy
for smooth initial data and then they show that the obtained decay rate
depends on the geometric and topological properties of the network.

2.3 Hyperbolic models

We have observed that the Patlak-Keller-Segel model, and all its variations,
is a system of parabolic equations. There are some biological phenomena
which cannot be described by these models. More precisely, Patlak-Keller-
Segel model is not su�ciently precise to describe some movement of cells
taking into account the �ne structure of the cell density for short times. To
describe these kind of phenomena, the parabolic equation for the population
density u in the Patlak-Keller-Segel model has to be a hyperbolic equation.
It follows that we have a hyperbolic-parabolic model, which has been widely
used in recent years because it gives more realistic descriptions of biological
phenomena. Hyperbolic equations can be obtained as �uid limit of trans-
port kinetic equation with a scale parameters, usually given by t → εt and
x → εx. Another important method to obtain a hyperbolic equation is the
moment closure method introduced by Hillen which reduces equations into
models depending on Cattaneo's law of heat conduction (see [14], and [5]).
The models obtained have �nite speed propagation.

22



The Cattaneo-Hillen Model

From biology it is known that some cells move in a certain direction
at an almost constant speed (run), suddenly they stop and choose a new
direction (tumble) to continue movement. This kind of movement is called
run and tumble and it can be modeled by a stochastic process which is
called velocity jump process. Denoting with ρ(x, t, v) the population density
at spatial position x ∈ Rn at time t ≥ 0 and with velocity v, we have that
although the most meaningful space dimensions are n = 1, 2, 3, the theory
which describes this kind of movement works for all n ∈ N . It is assumed
that individuals choose any direction with bounded velocity. Then the model
which describes this process is the following linear transport model

∂tρ(x, t, v) + v∇ρ = −µρ(x, t, v) + µ

∫
T (v, v′)ρ(x, t, v′)dv′,

where µ is the turning rate, and T (v, v′) is the probability to choose new
velocity v′. It is assumed to have particle conservation. If we want to de-
scribe a di�usion process with birth and death of population included, then
we have a reaction di�usion model. Depending on concrete experiments the
reaction may depend on particle velocity, hence we have a nonlinear reaction-
transport equation. It is interesting to observe that in biological applications,
in case of no birth or death reactions, the only conserved quantity is the total
particle number, but if we consider a transport equations appear in physics,
for example Boltzmann equations, we have that in this physical application
some quantities are conserved, for example energy, momentum and mass. A
technique to understand the dynamic properties of reaction-transport equa-
tions and Boltzmann equations is due to Cattaneo and Hillen and it is called
the moment method. Multiplying the previous linear transport equation by
powers of v and then integrating, it is possible to derive an in�nite sequence
of equations for the moments of ρ. Using this technique, an important and
well known problem appears because in the equation for the n-th moment,
the (n+1)-st moment appears. So we need an approximation of the (n+1)-st
moment. One of the most important theories to close the moment equations
is due to Hillen and it is based on a minimization principle.

Cattaneo also introduced the Cattaneo Law which is a modi�cation of
Fourier's law of heat conduction. It is used to describe heat propagation with
�nite speed. From this law, Hillen also derives models for chemosensitive
movement, for example chemotaxis of cells or bacteria. It has been observed
that in general cells and bacteria change their turning rate in response to
external stimuli but they do not change their turn angle distribution. So
the turning rate should depend on the velocity, on the concentration of the
external signal φ and on its gradient ∇φ, while it is assumed that the total
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number of cells is preserved (see [5]) In one dimensional case and assuming
two constant velocities ±λ, the Cattaneo-Hillen model is the following


∂tu

+ + λ∂xu
+ = −µ+(φ,∇φ)u+ + µ−(φ,∇φ)u−,

∂tu
− − λ∂xu− = µ+(φ,∇φ)u+ − µ−(φ,∇φ)u−,

∂tφ−D∂xxφ = −β + α(u+ + u−).

Functions u±�denote the densities of the right/leftmoving part of the
total population and φ is the external chemotactic stimulus which in�uence
the movement of the population itself. Parameters �λ and D, which are
assumed to be strictly positive constants, represent speed of propagation
of u±, and the di�usion of coe�cient for the chemoattractant respectively.
The terms µ± are called turning rates and they control the probability of
transition from u+ to u. and vice versa, i.e. the change of direction in the
movement of a single individual. It has been shown a �rst result of local and
global existence for weak solutions under the assumption of turning rate�fs
boundness is proved. Recently Guarguaglini et al. have proved more general
results for this model under weaker hypotheses, by showing a general result
of global stability of some constant states for both the Cauchy problem on
the whole real line and the Neumann problem on a bounded interval for small
initial data. These results have been obtained by using the linearized oper-
ators and the accurate analysis of their nonlinear perturbations (see [18]).

The Gamba-Preziosi Model

We recall that vasculogenesis is the process of blood vessel formation by
cells, endothelial cells and angioblasts. An analogous phenomenon is the
angiogenesis, the physiological process involving the growth of new blood
vessels from preexisting vessels. It is a normal and vital process in growth
and development, as well as in wound healing and in granulation tissue.
However, it is also a fundamental step in the transition of tumors from a
dormant state to a malignant one. Some biologists hypothesized that, if it
were possible to inhibit neovascularization, it might stop the growth of the
tumour or at least contain its growth to a dormant mass of around 2 to
3 mm in diameter. In particular, Folkman suggested that such antiangio-
genesis could be the basis for a new form of cancer therapy. A particularly
important aspect, from a cancer therapy point of view, is that anti angiogenic
therapy does not induce acquired drug resistance in experimental cancer un-
like chemotherapy. The �eld of anti-angiogenesis is now fast growing with
an increasing number of areas where modeling could be of some considerable
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value. In vasculogenesis, the ability to form networking capillary tubes is a
cell autonomous property of the endothelial cells, which need permissive but
not instructive signals from the extracellular environment. In recent years
many experimental investigations have been performed on the mechanism
of blood vessel formation. The in vitro studies try to replicate the type of
patterns observed in vivo, so models provide information on the mechanism
which operates in vivo. In general, cells are cultured on a gel matrix and
their migration and aggregation are observed through videomicroscopy. The
process of formation of a vascular network starting from randomly seeded
cells can be accurately tracked: individual trajectories in some experiments
shows marked persistence in the direction, with a small random component
superimposed. The motion is directed towards a zone of higher concentra-
tion of cells, suggesting that chemotactic factors play a role. Cells migrate
over distances which are an order of magnitude larger than their radius and
aggregate when they get in touch with one of their neighbors. In a time of
the order of 10 h they form a continuous multicellular network which can be
described as a collection of nodes connected by chords. The Gamba-Preziosi
model for vasculogenesis focuses on the development of vascular network for-
mation. Their mathematical model is based on the following assumptions:

• the chemical factors released by cells di�use and degrade in time;

• endothelial cells neither duplicate nor die during the process;

• endothelial cells show persistence in their motion;

• endothelial cells communicate via the release and absorption of a sol-
uble growth factor;

• closely packed cells mechanically respond to avoid overcrowding;

• cells are slowed down by friction due to the interaction with the �xed
substratum.

The equations are derived from the conservation laws of mass and mo-
mentum and they are


∂tρ+∇(ρu) = 0
∂t(ρu) +∇(ρu

⊗
u) = f

∂tφ = D4φ+ aρ− 1
τ φ.
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The �rst equation leads the mass conservation because of the assumption
that cells do not undergo mitosis or apoptosis during the experimental phe-
nomenon. The second equation assumes that cell motion can be obtained
on the basis of a suitable force balance, while the last equation is a di�usion
equation for the chemical factor. The source term f represents reasons which
may cause a change in cell persistence and it can be of various types (see
[8]).

2.4 The Preziosi-Chauvière Model

Now we want to describe an important model crucial for our studies. Firstly
we focus on the biological background that is strictly connected to the de-
velopment of the equation of model. Migration of cells plays a fundamental
role in both normal and pathological phenomena. For example it is crucial in
immune response and tissue homeostasis in mature multicellular organisms,
or in tumor invasion. Migration depends on intrinsic properties of cells, or it
results from their adaptation to the environment. Moreover, cell movement
is in�uenced by external factors such as chemical signals (chemoattractant
or repellent) or physical interactions between cells and ECM. In their model,
Preziosi and Chauviére study the amoeboid cell migration. They consider a
cell population which moves on a domain D ⊆ Rn, and in which each cell
has a velocity v ∈ V ⊆ Rn (V is the space of velocities). Moreover, they
suppose that the cells moves in presence of �bres of extracellular matrix.
The variables which interact in their model will be:

• p(x, t, v) is the number of cells at time t in the point x, with velocity
v;

• v ∈ |V | × Sn−1 are the velocities of cells assumed to be radial (here
Sn−1 is the unite sphere in Rn);

• m(x, n) is the function which represent the �bres of ECM; n ∈ Sn−1

is a unit vector that represent the �bre orientation.

The discrete model of cell motion is the following:

(2.4.1)
∂p

∂t
(x, t, v) + v∇p(x, t, v) = M(x, t, v),

where M is an integral operator which describes cell motion. From the
previous model they derive a continuum description in the following way. In
fact, they introduce the new variables:
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• cell density u(x, t) :=
∫
V p(x, t, v)dv, where v ∈ V ;

• the mean cell velocity U , de�ned as U(x, t) =
∫
V p(x,t,v)dv

u ;

• the �ux J = uU ;

• the �ber density F (x) = 1
2

∫
Sn−1 m(x, n)dn.

Usually, they supposed that the orientation of �bres is isotropic, so the
function F of distribution of �bres does not depend on the unit vector n, i.e,

m(x, n) =
1

π
F (x).

There are di�erent types of evolution equations for these macroscopic
variables that characterizes cell migration. In fact, it can be possible to
describe only the random migration of cells without considering the presence
of chemoattractant and ECM; or they describe a model in which there are
only the interaction between cells and ECM, or the interaction between cells
and chemoattractant, or a complete models with all these factors.

2.4.1 Random migration

This is the simplest model about cell migration. In this model the cells
move by smooth running interrupted at discrete times by an instantaneous
re-orientation, which is usually in�uenced by environmental factors. In this
kind of model, the source term of the equation (2.4.1) is

(2.4.2) M(x, t, v) = −µp(x, t, v) + µ

∫
V
T (v, v′)p(x, t, v′)dv′,

where the term −µp(x, t, v) describes turning cells away from velocity v with
frequency µ. The function T (v, v′) is the probability distribution for a cell
with previous velocity v′ to choose the new velocity v; so it must be satis�es

(2.4.3)
∫
V
T (v′, v)dv = 1.

Furthermore, it is always required the cell number conservation which yields∫
V
M(x, t, v)dv = 0.

In [8] there are some examples of choice for T . For example, a possible choice
for T is to decide that the probability to chose one velocity is the same of
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the probability to persist with the previous velocity. In other words, with
this kind of choice, it is supposed that re-orientation has no memory of the
past.

2.4.2 Contact guidance

Contact guidance is the interaction between cells and �bres of ECM, so
the model has to describe the movement of a cell on some given �bres. The
matrix gives a selection of preferred directions along with the cells can move.
The general expression of the migration operator M(x, t, v) is

M(x, t, v) = −L(x, t, v) +G(x, t, v),

where the function L is the rate at which cells turn away from velocity v,
and the function G gives the rate at which cells re-orient into velocity v. The
mass conservation is required also in this case. To describe contact guidance
process they assume that the realignment along the �bres does not appear at
a turning frequency, but it is caused by interactions between cells and ECM
at a constant rate η. So, a possible choice for the functions L and G is

L(x, t, v) = p(x, t, v)

∫
Sn−1

ηm(x, n′)dn′,

and
G(x, t, v) =

∫
V×Sn−1

ηψm(v′, v, n)p(x, t, v′)m(x, n′)dv′dn′,

where the function ψm(v′, v, n) is the probability to choose velocity v for a
cell with velocity v′. For simplicity they assumed that η is constant, and
that the alignment process along a �bre is independent of the prior velocity
v′. These assumptions imply that the migration operator M becomes

M(x, t, v) = ηF (x)[ρ(x, t)φ(v)
m(x, v)

2F (x)
− p(x, t, v)].

These choices permit to consider a smooth distribution φ which is useful for
numerical simulations (see [8]) because in other case a Dirac function must
be used.

2.4.3 Cell-cell interaction

It is very di�cult to describe interactions between cells because they may be
of di�erent types: for example, adhesion, contact inhibition, or repulsion. In
some of their works, Preziosi et al. focused on dynamical aspects and con-
sidered only the orientation e�ect from the interaction between two moving
cells. In this case, they took as migration function M the following one:

M(x, t, v) = G(x, t, v)− L(x, t, v)
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where the functions are G e L

L(x, t, v) = p(x, t, v)

∫
V
ηp(x, t, v′)dv′

and
G(x, t, v) =

∫
V×V

ηφ(v′, v′′, v)p(x, t, v′′)dv′dv′′;

in this case the function φ(v′, v′′, v) de�nes a transition probability distri-
bution for a moving cell with given velocity v′ to choose the new velocity
v when interacting with a cell with velocity v′′. Basing on this model and
choosing complex expressions for φ they are developed more sophisticated
aggregation models that give numerically and analytically the formation of
cell clusters.

2.4.4 In�uence of environmental factors

Environmental factors can be of various nature. They can be di�usible chem-
icals secreted into the environment that will cause a cell movement in re-
sponse. This response results from the external detection of a signal that
is transducted to internal pathways. Often there are also chemical signals
released by cells and felt by surrounding cells. Preziosi, Chauviére et al.
have proposed a mathematical description of the cell response to environ-
mental signals (the phenomenon called taxis), and focused in particular on
chemotactic cue. Chemotaxis is described using transport equations, and it
is introduced as a bias of the main movement which is often assumed to be
random motion. A �rst simple description of interaction between cells and
environment is the description of cell migration in ECM as a combination of
random motion, contact guidance and cell-cell interaction. In this case bias
is the ECM. Therefore, the equation which describes this case is (2.4.1) in
which M is the sum of the two source terms which describe cell-cell contact
and contact guidance described in the previous sections. To study the move-
ment of cells in presence of an external and general bias, there is a common
choice forM derived by Chauviére. The source terms studied in case of con-
tact guidance and in case of cell-cell interaction are extended respectively
to

(2.4.4) MB(x, t, v) = ηF (x)

and

(2.4.5) MB(x, t, v) = ηρ(x, t)

The function B(t, x) accounts for an external stimulus that modi�es the
rate at which a cell reorients into v�. Chauviére derived the simplest expres-
sion for B which is the following gradient-based bias (see [8]):
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(2.4.6) B(x, t, v) = ±
ΓSx(t, x) · v′′λ
βs + S(t, x)

.

In the previous expression

• Γ is a parameter which re�ects cell sensitivity;

• S is density of molecules's signal;

• the sign ± corresponds to a repellent or attractive e�ect in the direc-
tion of the gradient ∇S;

• βs > 0 is introduced to avoid singular behavior when S = 0.

One of the study about these various types of equations is the derivation
of macroscopic equations from the transport equation (2.4.1). This problem
was �rstly introduced in �uid dynamics. In one of their their work, Preziosi
and Chaviére use an asymptotic method that require the existence of a small
parameter ε for scaling process (Hilbert method, see [8]). Hillen and Othmer
detail the di�usion limit of transport equation derived from velocity-jump
processes (see [14]).

2.5 Hyperbolic models on networks

Let us introduce some important de�nitions.
We denote with Ii ⊂ R some closed and bounded intervals of R depending

on indexes i which varies in a �nite set. Let N ∈ N , N > 0, be positive
integer. Now we introduce the de�nition of network (we refer to [39], [10],
and [16] for more details).

De�nition 2.5.1. A one dimensional network N is a connected set of R3,
de�ned as

N =
M⋃
i=1

Ii,

where Ii = [a−i , a
+
i ], i = 1, . . .M are real closed oriented interval (a−i < a+

i ),
such that for j 6= i, the intersection Ii ∩ Ij is either empty or a common
boundary point. We denote by E = {Ij , 1 ≤ j ≤M} the set of arcs of N . We
call vertex any boundary point. In particular, a vertex belonging to two or
more arcs will be called node or internal vertex, and we will denote it by N .
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If N = a+
i , then the corresponding interval Ii will be called entering in the

node N , while if N = a−j , then the corresponding interval Ij will be called
outgoing from N . The other boundary points will be called external vertices,
and we will denote them simply by ai, i ∈ {1, . . . ,M}. Let V the set of the
vertices of N . We denote byVint = {Nh, h = 1, . . . , ν, ν < M} the set of
nodes of the network. For a �xed node Nh ∈ Vint, let ENh = {Ii : Nh ∈ Ii}
be the set of arcs having Nh as vertex.

We denote by

• ENh the set of incoming roads of a network in the node Nh;

• UNh the set of outcoming roads of a network from the node Nh;

• MNh = ENh ∪ UNh ;

• M=
⋃
hMNh ;

|ENh | < +∞ and |UNh | < +∞ the cardinality of the sets ENh and UNh
previously introduced.

The study of partial di�erential equations de�ned on a network is devel-
oped in recent years. This kind of problems arise from physical or biological
phenomena: in particular, we will focus our attemption to the movement of
some kind of population which is forced to move in certain directions. These
kind of problems describe for example the tra�c �ow on some roads in ur-
ban tra�c, or the movement of some kind of cells in presence on the �bres
of the extracellular matrix. In these kind of models, junctions between the
arcs of the network play a crucial role in the behavior of the solutions of the
equations. Indeed the interactions occur at junctions and there the problem
is undetermined. Usually, it is considered a planar network of elastic strings
that undergoes small perpendicular vibrations. The control, observation and
stabilization problems of these network have been the object of intensive re-
search (see [10]). One of the problem of interest studied in this years is the
stabilization of the network by means a damping term located on one single
exterior node. In one of their papers, Zuazua and Valein have developed a
systematic method to address this issue and to give a general result allow-
ing to transform an observability result for the corresponding conservative
system into a stabilization one for the damped one. More precisely, they
studied the stabilization of the wave equation on a general one dimensional
network. They transfer known observability results in the context of con-
trol of conservative systems into a weighted observability estimate for the
dissipative one. Then they used an interpolation inequality to obtain the
explicitly decay estimate of the energy of smooth initial data. The decay
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rate depends on the geometric and topological properties of the network. If
uj(x, t) is the function describing the transversal displacement in time t of
the arc Ij of the network, it must to satisfy the following system

(2.5.1)



∂2uj
∂t2

(x, t)− ∂2uj
∂x2 (x, t) = 0

uj(v, t) = ul(v, t)∑
j∈Ev

∂uj
∂nj

(v, t) = 0

ujv(v, t) = 0
∂ul
∂x (0, t) = ∂ul

∂t (0, t)

u(t = 0) = u0

∂u
∂t (t = 0) = u1,

where v is a vertex of the network and where ∂uj
∂nj

(v, t) stands for the outward
normal derivative of uj at the vertex v. The above system has been consid-
ered by several authors in some particular situations (see for example [39],
[10]), and explicit decay rates are obtained for networks with some special
structures. From an another point of view, there are studies of mathemati-
cal models for �uid-dynamics on networks. They are based on conservation
laws. In a lot of works, approximation of scalar conservation laws along arcs
is carried out by using conservative methods, such as the classical Godunov
scheme, or the discrete velocities kinetic schemes, with the use of suitable
boundary conditions at junctions. The study of tra�c �ow aims to under-
stand tra�c behavior in urban context in order to answer to some questions.
For example how long the cycle tra�c lights should be, or where to con-
struct entrances, exists and overpasses, where to install stop signals. Firstly,
network models of transport systems are assumed to be static, but with this
assumption they did not reproduce very well the urban road networks, so
recently tra�c engineers have started to consider some alternative models,
and new mathematical models have been arisen (tra�c simulation models).
However, the main problem of these models is the fact that they do not
properly reproduce the backward propagation of shocks. But there some
macroscopic models which deal with �uid-dynamic that with some tra�c
regulation strategies allow to observe the evolution of movement of popula-
tion on a network through waves formation (see [16]). In a single arc, the non
linear model is described by the following scalar and hyperbolic conservation
law:

∂tu+ ∂xf(u) = 0,

where u(x, t) is the density of population (cars) and the function f is the �ux
of population on the road. A common choice for the �ux f(u) is f(u) = uv,
where v is assumed to be a decreasing function, only depending on the den-
sity, and the �ux is a concave function. This kind of model seems to be the
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most appropriate to explain macroscopic phenomena as shocks formation.
However, they can develop discontinuities in a �nite time even with smooth
initial data (for more details, see [16]). We want to notice that in all clas-
sical works, only a single road is taken into account. More recently, some
models have been proposed for tra�c �ow on networks. We have previously
said that a network is composed of a �nite number of arcs represented by
intervals [ai, bi] that meet at some junctions. These junctions are crucial in
the study of the model, and they are undetermined even after prescribing
conditions on them, usually the conservation of cars, that can be written im-
posing the Rankine-Hougoniot conditions. In other words, they express the
equality of ingoing and outgoing �uxes. Giving boundary conditions on the
boundaries that are not junctions, and initial data, a boundary problem has
obtained. Some numerical methods have been developed to study the behav-
ior of the solution of the Riemann problem of the tra�c �ow on a network
composed of 4 arcs. In particular, Piccoli and Natalini ([32]) studied the
numerical approximation of the possibly discontinuous solutions produced
by this model. They introduced some suitable boundary conditions at the
junctions for classical numerical schemes and they used the Godunov scheme
and kinetic methods.

2.6 A hyperbolic chemotaxis model on networks

In the previous sections, we have introduced the Preziosi-Chauviére model,
and we have presented di�erent biological cases that modify the equations of
the model because of the variables they have to consider to reproduce these
biological phenomena. In these thesis, we consider an epidermal wound and
we study the process of healing repair by �broblasts. In normal epidermic
wound healing, �broblasts move on �bres of the extracellular matrix that
they produce on the damaged tissue. To start wound healing process, �-
broblasts move on the boundary of the damaged tissue and producing the
extracellular matrix begin to move in the heal. Moreover, they also produce
signals to call other cells if it necessary to wound healing process. At the
end of the process a new tissue, called scar tissue, is formed. We want to
recall that cells move along ECM-�bres in both verses. In recent years, some
biologists have produced in vitro �bres of the extracellular matrix and then
they have created a sca�old, a particular tissue composed of these �bres and
chemoattractants for �broblasts. Putting it on the damaged tissue, they
observed an important facts: �broblasts move faster on the damaged tissue,
because of the presence of chemoattractant and because of they have not to
produce �bres of ECM. So, wound healing process is faster and moreover the
new tissue is is better than the scar tissue.
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We want to describe the movement of �broblast during epidermal wound
healing in presence of a sca�old. So, referring to the Preziosi and Chauviére
models, we have to consider the case of the cell-�bre interaction, and in
presence of a chemoattractant. Fibres represent the �bres of a sca�old or the
ECM-�bres. From a mathematical point of view, the movement of cells along
the sca�olds is represented by a model on network, but we want to observe
that in this case, we can have two possible verses of movement along each
arc of the network. This case has ever been considered yet. The equations
that reproduce cells movement will be transport equations, coupled with a
parabolic equation that models the presence of a chemical signal. So, let
us consider an oriented network composed of M arcs Ii which intersect in
ν nodes Nh ∈ Vint. Let u±i : Ii × [0, T ] be the functions representing the
densities of cells on the arc Ii, which move respectively from left to right and
viceversa. Let us suppose that on each arc cells move can with two constant
velocities ±λi. We suppose that positive velocity +λi corresponds to positive
orientation, while the negative once to negative orientation. With refer to
Preziosi-Chauviére equations, let T iα,β be the function that represents the
distribution of probability in the i-th road to pass from velocity α to velocity
β. For each i ∈ ENh ∪UNh , denoting with + or − the velocity corresponding
to u±i , T

i has to be satisfy the condition

(2.6.1)

{
T i+,+ + T i+,− = 1

T i−,− + T i−,− = 1.

We assume that the probability to pass from velocity + to velocity − is the
same that the probability to stand in −, and that the probability to pass
from − to + is the same that the probability to stand in +, and it does not
depend on the point x ∈ Ii in which we calculate the probability. So we
want T i a constant, and

T i+,− = T i−,− =:
C−
2

and

T i−,+ = T i+,+ =:
C+

2
;

from conditions (2.6.1) we must have

(2.6.2) C+ + C− = 2.

For each function of cell density u±i , we recall that the general expression for
the source term (namely it M i

±(t, x), for each i = 1, . . . ,M) in the equations
of the model for the density ui± is
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M i
±(t, x) = −Li±(t, x, v) +Gi±(t, x, v),

for each i ∈ E ∪ U ; we supposed that for each arc cells move with constant
velocities ±λi, so we have in particular that

Li±(t, x, v) = Li±(t, x)

and
Gi±(t, x, v) = Gi±(t, x),

where Li± is the rate of change of verse and velocity caused by the interaction
with ECM and the presence of chemoattractant, while Gi± is the rate of
random re-orienting. On each arc i, the probability distribution T i represents
in this case the probability to choose velocity λ or −λ. Let us now consider a
function φi(t, x) which represents the chemical signal (chemoattractant) on
an arc Ii; thus the source terms M i

±(x, t) have the following expressions:

(2.6.3) M i
±(x, t) = ηm(x)[

C±
2

(u+
i (t, x) +u−i (x, t))(1 +Bi(x, t))−u±i (x, t)],

where the function Bi(x, t) represents the external stimulus, and so it is
a function of the chemoattractant φi(x, t), the cellular sensitivity Γ, and
the cell velocity ±λi, B = B(φ,Γ,±λ). We also assume the total mass
conservation, and so we impose that for each index i ∈ E ∪ U

M i
+(x, t) +M i

−(x, t) = −Li+(x, t) +Gi+(x, t))− Li−(x, t) +Gi−(x, t) = 0.

Moreover, we suppose that the chemoattractant φi(x, t) satis�es the parabolic
di�usion equation

(2.6.4) φit = Di4φi + f(ui+, u
i
−, φ

i),

where D is a positive constant and f a function which in�uences the di�usion
by its dependence on cell density and chemoattractant. So, for each arc Ii,
i ∈ ENh ∪ UNh and on each node Nh ∈ Vint of the network, we have the
following system of hyperbolic-parabolic equations.

(2.6.5)


ui+,t(x, t) + λiu

i
+,x(x, t) = M i

+(x, t)

ui−,t(x, t)− λiui−,x(x, t) = M i
−(x, t)

φit = Di4φi + f(ui+, u
i
−, φ

i),

where the source terms M i
± have the general form (2.6.3) previously intro-

duced. We consider a particular form for M i
±, i.e. we choose respectively

35



(2.6.6) M i
± := ± 1

2λi
((φi + λi)u

i
− − (λi − φi)ui+);

in other words, we choose ηm(x) = 1, the coe�cients C±
2 = 1

2 , and the
function Bi

± ≡ φi. Let us observe that if we introduce the quantities

ui := (ui+ + ui−)

and the �ux vi

vi := λ(ui+ − ui−),

the previous equations can be written in the equivalent way

(2.6.7)


uit + vix = 0,

vit + λ2
iu
i
x = −vi +G(ui, φi, φix),

φit = Di4φi + f(ui, φi),

for each i ∈ ENh ∪ UNh , where G is a smooth function, adding and then
subtracting the �rst two equations. This system models the movement of
cells on a network, in presence of a chemoattractant and with the hypothesis
that in each road we can have two possible verses of movement.

Our aim is the study of the existence and uniqueness of the solutions to
this system. Thus we have to impose initial and boundary conditions, with
a particular attention to boundary conditions on nodes Nh. In the following
Chapters, we will �rst study the linear problem in which we suppose that the
gradient of chemoattractant is constant on each arc Ii, and we will prove a
global existence Theorem in case of a general oriented network. Moreover, we
will study the asymptotic behaviour of perturbation of stationary solutions.

Then we will study the non linear system

(2.6.8)


uit + vix = 0,

vit + λ2
iu
i
x = −vi +G(ui, φi, φix),

φit = Diφ
i
xx + aui − bφi.

We will prove a local existence Theorem in case of local lipschitzianity of
the source term G(ui, φi, φix), and then we will extend the local solution to
a global solution in case of a particular choice of G.
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Chapter 3

A linear hyperbolic relaxation

model on a network

The aim of this chapter is the study of a linear relaxation model on a network.
Let us consider an oriented network N composed byM arcs Ii, i = 1, . . . ,M ,
and ν nodes Nh ∈ Vint, h = 1, . . . , ν, and external boundary points ai,
according to the de�nition (2.5.1). We recall that we denote by ENh the set
of arcs having a node Nh as a vertex. For each node Nh, and arc Ii ∈ ENh ,
let ENh be the set of arcs entering in the node Nh, and UNh be the outgoing
ones, and let MNh = ENh ∪ UNh . So we have that the set of total number
of arcs is denoted byM =

⋃
VintMNh .

Given T > 0 and Ii ∈ ENh , let u
±
i be functions de�ned on u±i : Ii ×

[0, T ] → R. The aim of this chapter is the study of the following linear
system of hyperbolic equations de�ned on N ,

(3.0.1)

{
u+
i,t + λiu

+
i,x = 1

2λi
((α+ λi)u

−
i − (λi − α)u+

i ),

u−i,t − λiu
−
i,x = − 1

2λi
((α+ λi)u

−
i − (λi − α)u+

i ).

Here x ∈ Ii, t > 0, and u±i : Ii × [0, T ] → R are functions representing
the population cell densities respectively on entering arcs in a node Nh and
on outgoing arcs; the parameter α is the concentration of chemical signal
assumed to be constant in this case. Introducing the Riemann invariants
ui(x, t) = u+

i (x, t) + u−i (x, t) and vi(x, t) = λi(u
+
i (x, t) − u−i (x, t)), for each

i = 1, . . . ,M , we can write the above linear model in the equivalent way

(3.0.2)

{
uit

+ + vix
+ = 0,

vit + λ2
i v
i
x = αui − vi,

i = 1, . . . ,M .
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Our aim is to prove the global existence and uniqueness of the solution
to problem (3.0.1). Then we study the asymptotic behavior of small pertur-
bations of stationary solutions on a network composed of a single node.

The model (3.0.1) is characterized by a �nite speed of propagation. In
particular we denote by ±λi the velocities of cell densities on each arc Ii,
respectively corresponding to densities u±i (x, t). Thus on each arc we can
have both verses of movement. Moreover we assume that

(3.0.3) α < |λi|,

for each index i ∈M.
This is the well known subcharactesitic condition, and it was �rstly in-

troduced by Whitham (see [40]) in order to study relaxation of hyperbolic
system

(3.0.4)

{
∂tu+ ∂xv = 0

∂tv + λ2∂xu = 1
ε (f(u)− v),

where f ∈ C1(R) and λ2 is a �xed constant. Let us �rstly observe that
the problem (3.0.1) is the linearized problem of (3.0.4). Relaxation systems
often arise in many physical situations, for example, gases not in thermody-
namic equilibrium, kinetic theory, chromatography, river �ows, tra�c �ows,
and more general waves. The study of a special class of hyperbolic sys-
tems with relaxation was developed in view of the numerical approximation
of discontinuous solutions of conservation laws. The 2 × 2 relaxation hy-
perbolic systems of conservation laws were �rst analyzed by Liu (see [20]),
who justi�ed some nonlinear stability criteria for di�usion waves, expansion
waves and traveling waves. The main stability criterion founded by Liu is
the so-called subcharacteristic condition, which for the previous system reads
|f ′(u)| < λ, for |u| ≤ M , M > 0. In the framework of general quasilinear
hyperbolic relaxation problems the subcharacteristic condition gives the cor-
rect limit in the general relaxation problems. The convergence of solutions
to the Cauchy problem for these systems to the unique entropy solution of
the Cauchy problem for limit equation and for arbitrary large initial data
was �rst given in [30] and [32] by using the monotonicity methods. Let us
consider the functions

M±(u) =
1

2
(u∓ f(u)

λ
).

The most important role played by subcharacteristic condition is the non
negative monotonicity of functionsM±(u). In fact, in [31] it has been proved
that the monotonicity condition is guaranteed by subcharacteristic condition;
this is important because in particular the monotonicity condition implies
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special stability properties of system (3.0.4); thanks to the monotonicity
condition, it has been proved that the evolution operator associated to this
problem is contractive in the L1-norm and the system is quasimonotone.
So, under monotonicity condition, problem has a unique uniformly bounded
solution for each ε > 0. Moreover, in [31] it has also been proved that the
sequence of solutions of (3.0.4), for each ε > 0 is a compact sequence in
C([0, T ];L1

loc(Rd)), d ≥ 1, T > 0.

This Chapter is organized as follows: in the �rst section, we will give a
presentation of the problem. The second section is devoted to some a priori
estimates for the solution of the problem, while in the third section we will
prove the existence and uniqueness of the solution on a network. Finally, in
the last section we will study the asymptotic behavior of the solutions when
the initial data are small perturbations of a stationary solution.

3.1 Formulation of the problem

Let N be an oriented network, composed ofM arcs Ii and ν nodes Nh ∈ Vint,
according to de�nition (2.5.1). Here we study the movement of densities
u±i of problem (3.0.1) on a network in presence of a chemoattractant with
constant gradient α and which move with constant velocities ±λi on each
arc Ii. In particular, the velocities ±λi refer to functions u±i respectively.
For each Ii ∈ ENh , according to de�nition (2.5.1), let ENh be the entering
arcs in the node Nh, UNh be the outgoing ones, and for each �xed node Nh,
MNh = ENh ∪UNh . We recall that we denote by ai the external vertices, or
boundary points. Let gi±(u+

i , u
−
i ) be the following functions

(3.1.1) gi±(u+
i , u

−
i ) := ∓(

1

2λi
((α+ λi)u

−
i − (λi − α)u+

i )).

We consider the linear hyperbolic problem de�ned on the sets Ii× [0, T ],
with T > 0 and i ∈M,

(3.1.2)


u+
i,t + λiu

+
i,x = 1

2λi
((α+ λi)u

−
i − (λi − α)u+

i ),

u−i,t − λiu
−
i,x = − 1

2λi
((α+ λi)u

−
i − (λi − α)u+

i ),

in which we assume that the subcharacteristic condition α < |λi| holds for
each i ∈M. We couple the system with initial conditions

(3.1.3) u±i (x, 0) = u±i,0 ∈ BV (Ii),
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and boundary conditions as follows: on the external boundary points ai we
impose

(3.1.4) u+
i = βaiu

−
i + bai(t),

if i ∈ EN ,

(3.1.5) u−i = βaiu
+
i + bai(t),

if i ∈ UN , where bai ∈ L1([0, T ]) and the coe�cients βai ∈ R.
Now we have to formulate the transmission condition at the nodes. This

is the crucial point because the behaviour of solutions to the problem strictly
depends by these conditions. So we introduce some transmission coe�cients
ξi,j ∈ [0, 1] for every index i,j belonging to ENh and UNh , and we impose the
following boundary transmission conditions on each node Nh: if i ∈ ENh , for
almost every t ≥ 0,

(3.1.6) u−i (Nh, t) =
∑

j∈ENh

ξi,ju
+
j (Nh, t) +

∑
j∈UNh

ξi,ju
−
j (Nh, t)

while if i ∈ UNh , for almost every t ≥ 0,

(3.1.7) u+
i (Nh, t) =

∑
j∈ENh

ξi,ju
+
j (Nh, t) +

∑
j∈UNh

ξi,ju
−
j (Nh, t).

The coe�cients ξi,j represent the probability to choose j-th root going from
the i-th.

Here we are not interested in the continuity of density functions u±i , but
we are interested in the continuity of the total �ux on each node Nh of the
network, which yields

(3.1.8)
∑
i∈ENh

λi(u
+
i (Nh, t)− u−i (Nh, t)) =

∑
i∈UNh

λi(u
+
i (Nh, t)− u−i (Nh, t)).

By conditions (3.1.6) and (3.1.7) we have that transmission coe�cients have
to verify

(3.1.9)
∑

i∈MNh

λiξi,j = λj ,

for each j ∈MNh , and on each node Nh.
Let us now introduce the following de�nition.
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De�nition 3.1.1. Let N be a network as in de�nition (2.5.1). Let u±0 ∈
BV (Ii), and let u±i : Ii × [0, T ] −→ R (T > 0), i ∈ M. For each i ∈ M, we
say that a couple of functions (u+

i , u
−
i ) ∈ C([0, T ];BV (Ii))×C([0, T ];BV (Ii))

is a BV-solution of the problem 3.1.2 de�ned on a network N , on Ii × [0, T ]
(T > 0) if we have

(3.1.10)
∫ T

0

∫
Ii

(u±i
∂φi
∂t
± λ∂φi

∂x
)dxdt+

∫
Ii

u±i,0(x)φi(x, 0)dx

+

∫ T

0
(u±i )|Γφi|Γdt =

∫ T

0

∫
Ii

g±i (u+
i , u

−
i )φi(x, t)dxdt,

where Γ = (∂Ii × [0, T ]) = ({ai, Nh} × [0, T ]), for each Nh ∈ Vint, for each
φi ∈ C∞0 (Ii,R+), and moreover the functions (u+

i , u
−
i ) verify the conditions

(3.1.4), (3.1.5), (3.1.6), (3.1.7).

According to de�nition (1.2.3) given in Chapter 1 we can de�ne the traces
u±i (ai, t) and u±i (Nh, t) of functions u±i (x, t) on Ii × [0, T ]. Given a solution
u±i : Ii × [0, T ] −→ R, then a solution of the problem (3.1.2) on the network
is the vector function U := (u±1 , . . . , u

±
M ).

The aim of this Chapter is to prove the following result.

Theorem 3.1.1. (Global existence and uniqueness) Let N be an oriented
network of arcs Ii, nodes N ∈ Vint, and boundary points ai ∈ Vext, according
to de�nition (2.5.1). Let us consider the problem (3.1.2), together with ini-
tial data (3.1.3), boundary conditions (3.1.4), (3.1.5), (3.1.6), (3.1.6), and
transmission coe�cients verifying 0 ≤ ξi,j ≤ 1 for each i, j ∈M. If

(3.1.11) |βai | ≤ 1,

then for each T > 0 there exists a unique global solution of (3.1.2) on N ,
u±i ∈ C([0, T ];BV (Ii)), i ∈M.

3.2 A priori estimates and uniqueness

We need some a priori estimates we shall use later. Let N be an oriented
network composed of M arcs Ii, ν nodes Nh ∈ Vint and boundary points ai.
From now on, let u±0 ∈ BV (Ii), bai ∈ BV ([0, T )) (T > 0).

Proposition 3.2.1. Let u±0 ∈ BV (Ii), and bai ∈ BV ([0, T )), T > 0. Given
the problem (3.1.2), with initial conditions (3.1.3), and with boundary condi-
tions (3.1.4), (3.1.5), (3.1.6), (3.1.6) and assuming the coe�cients |βai | ≤ 1,
then a BV-solution of this problem verify
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(3.2.1)
ν∑
h=1

(
∑

i∈MNh

∫
Ii

|u+
i |+ |u

−
i |dx) ≤

ν∑
h

(
∑

i∈MNh

∫
Ii

|ui+0 |+ |ui
−
0 |dx

+
∑
i∈MN

λi

∫ T

0
|bai(t)|dt),

where 1 ≤ ν ≤M is the total number of nodes.

• Proof. We begin with a network composed of a single node N . So E is the
set of entering roads in N while U is the set of outgoing ones.

Thanks to Lemma (1.2.2) applied to BV-functions, by considering the
absolute values of the functions u±i , solutions of the linear problem (3.1.2),
we have that

(3.2.2) ∂t(|u+
i |+ |u

−
i |) + λ∂x(|u+

i |+ |u
−
i |) ≤ 0,

Let i ∈ E. By integrating the previous equation on the set [ai, N ]× [0, T ]
and using the divergence theorem we have∫

Ii

|u+
i |+ |u

−
i |dx ≤

∫
Ii

|ui+0 |+ |ui
−
0 |dx

+λi

∫ T

0
(|u+

i (ai)| − |u−i (ai)|)dt− λi
∫ T

0
(|u+

i (N)| − |u−i (N)|)dt

≤
∫
Ii

|ui+0 |+ |ui
−
0 |dx+ λi

∫ T

0
(|βaiu−i + bai(t)| − |u−i (ai)|)dt

−λi
∫ T

0
(|u+

i (N)| − |
∑
j∈E

ξi,ju
+
j (N, t) +

∑
j∈U

ξi,ju
−
j (N, t)|)dt

≤
∫
Ii

|ui+0 |+ |ui
−
0 |dx+ λi

∫ T

0
(|βai | − 1)|u−i (ai)|dt+

∫ T

0
λi|bai(t)|dt

−λi
∫ T

0
(|u+

i (N)| − |
∑
j∈E

ξi,ju
+
j (N, t) +

∑
j∈U

ξi,ju
−
j (N, t)|)dt.

So, using the assumption that |βai | ≤ 1 we have that∫
Ii

|u+
i |+ |u

−
i |dx ≤

∫ N

ai

|ui+0 |+ |ui
−
0 |dx+

∫ T

0
λi|bai(t)|dt

−λi
∫ T

0
(|u+

i (N)| − |
∑
j∈E

ξi,ju
+
j (N, t) +

∑
j∈U

ξi,ju
−
j (N, t)|)dt.
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Analogously, we have that, if i ∈ U ,

∫
Ii

|u+
i |+|u

−
i |dx ≤

∫
Ii

|ui+0 |+|ui
−
0 |dx+λi

∫ T

0
(|βai |−1)|ui+(ai)|dt+

∫ T

0
λi|bai(t)|dt

+λi

∫ T

0
(|
∑
j∈E

βi,ju
j
+(N, t) +

∑
j∈U

γi,ju
j
−(N, t)| − |ui−(N, t)|)dt

≤
∫
Ii

|ui+0 |+ |ui
−
0 |dx+

∫ T

0
λi|bai(t)|dt

+λi

∫ T

0
(|
∑
j∈E

ξi,ju
+
j (N, t) +

∑
j∈U

ξi,ju
−
j (N, t)| − |u−i (N, t)|)dt.

Now, summing up on i ∈M, we obtain that∑
i∈M

∫
Ii

|u+
i |+ |u

−
i |dx

≤
∑
i∈M

∫
Ii

|ui+0 |+ |ui
−
0 |dx+

∑
i∈M

∫ T

0
λi|bai(t)|dt

−
∑
i∈E

λi

∫ T

0
|u+
i (N, t)|dt−

∑
i∈U

λi

∫ T

0
|u−i (N, t)|dt

+
∑
i∈M

∫ T

0
λi(|

∑
j∈E

ξi,ju
+
j (N, t) +

∑
j∈U

ξi,ju
−
j (N, t)|)dt

≤
∑
i∈M

∫
Ii

|ui+0 |+ |ui
−
0 |dx+

∑
i∈M

∫ T

0
λi|bai(t)|dt

−
∑
i∈E

λi

∫ T

0
|u+
i (N, t)|dt−

∑
i∈U

λi

∫ T

0
|u−i (N, t)|dt

+

∫ T

0

∑
j∈E

∑
i∈M

λiξi,j |u+
j (N, t)|+

∑
j∈U

∑
i∈M

λiξi,j |uj−(N, t)|)dt.

By the �ux conservation we get∑
i∈M

∫
Ii

|u+
i |+ |u

−
i |dx ≤

∑
i∈M

∫
Ii

|ui+0 |+ |ui
−
0 |dx

+
∑
i∈M

∫ T

0
λi|bai(t)|dt−

∑
i∈E

λi

∫ T

0
|ui+(N, t)|dt
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−
∑
i∈U

λi

∫ T

0
|ui−(N, t)|dt+

∫ T

0

∑
j∈E

λj |uj+(N, t)|+
∑
j∈U

λj |uj−(N, t)|)dt,

and we get the proof for a network with a single node.
Now, let N be a general network with arcs Ii, ν nodes Nh ∈ Vint, and

boundary points ai. Firstly, let us observe that in a general network we have
intervals as [ai, Nh], [Nh, ai], or intervals that connect two di�erent nodes,
[Nh, Nk]. Fix a node Nh ∈ Vint. Following the passages of the previous proof
with a single node, and then summing up on all nodes Nh ∈ Vint, we have
that

ν∑
h=1

(
∑

i∈MNh

∫
Ii

|u+
i |+ |u

−
i |dx) ≤

ν∑
h=1

(
∑

i∈MNh

∫
Ii

|ui+0 |+ |ui
−
0 |dx

+
∑

i∈MNh

∫ T

0
λi|bai(t)|dt

+λi

∫ T

0
(|
∑

j∈ENh

ξi,ju
+
j (Nh, t) +

∑
j∈UNh

ξi,ju
−
j (Nh, t)| − |u−i (Nh, t)|)dt

−λi
∫ T

0
(|u+

i (Nh)| − |
∑

j∈ENh

ξi,ju
+
j (Nh, t) +

∑
j∈UNh

ξi,ju
−
j (Nh, t)|))dt.

We observe that in the above inequality the arcs whose boundary points
are both nodes Nh, Nk, i.e., Ii = [Nh, Nk], are considered twice. But by
conditions of �ux conservation on each node terms on nodes disappear and
we get the proof.

Proposition 3.2.2. Let N be a network as in de�nition 2.5.1. Let T > 0,
and let u±0 ∈ BV (Ii), v

±
0 ∈ BV (Ii), bai ∈ BV ((0, T )), and bai ∈ BV ((0, T )),

for i ∈ M. Let βai ∈ R, and βai ∈ R, β, |βai | ∈ [0, 1]. Let us consider
problem (3.1.2) in (Ii×[0, T ]), and let us assume that u±i , v

±
i are BV solutions

of this problem, with initial condition u±i (x, 0) = u±i,0(x), v±i (x, 0) = v±i,0(x)

respectively, and respective boundary conditions u+
i (ai) = βaiu

−
i + bai(t),

and v+
i (ai) = βaiv

−
i + bai(t), if i ∈ ENh , and u−i (ai) = βaiu

+
i + bai(t),

v−i (ai) = βaiv
+
i + bai(t), if i ∈ UNh, and conditions on the node (3.1.6) and

(3.1.7) for both. Then for each i ∈M, we have

(3.2.3)
ν∑
h=1

∑
i∈MNh

∫
Ii

|u+
i −v

+
i |+|u

−
i −v

−
i |dx ≤

ν∑
h=1

(
∑

i∈MNh

∫
Ii

|ui+0 −vi
+
0 |+|ui

−
0 −vi

−
0 |dx
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+
∑

i∈MNh

λi

∫ T

0
|bai(t)− bai(t)|dt).

Proof. Let us de�ne w±i := u±i −v
±
i . They verify problem (3.1.2) with initial

conditions wi±(x, 0) = ui0±(x)− vi0±(x), and boundary conditions, if i ∈ EN

wi+ = βaiu
i
− − βaiv

i
− + bai(t)− bai(t),

and if i ∈ UN
wi− = βaiu

i
+ − βaiv

i
+ + bai(t)− bai(t),

and the transmission conditions (3.1.6) and (3.1.7). Proof follows from the
previous Proposition (3.2.1).

From the previous result, it easy to show the following corollary.

Corollary 3.2.1. (Comparison and uniqueness) In the same assumption of
the previous proposition, if we have that

u±i,0(x) ≤ v±i,0(x),

almost everywhere in Ii, and βai ≤ βai , and bai(t) ≤ bai(t), almost every-
where in [0, T ], then

(3.2.4) u±i ≤ v
±
i ,

almost everywhere in Ii × [0, T ], and for every i ∈ M. In particular, from
(3.2.4), we obtain the uniqueness to the solution of problem (3.1.2).

Now we estimate the time derivatives of solutions.

Proposition 3.2.3. Let N be an oriented network according to de�nition
(2.5.1). Given the linear problem (3.1.2), with initial conditions (3.1.3), and
boundary conditions (3.1.4), (3.1.5), (3.1.6), and (3.1.7) and assumed that
the coe�cients |βai | ≤ 1, then every BV-solution to the problem veri�es

(3.2.5)
ν∑
h=1

(
∑

i∈MNh

∫
Ii

|∂tu+
i |+ |∂tu

−
i |dx)

≤
ν∑
h=1

(
∑

i∈MNh

∫
Ii

|g+
i (x, 0)− λi∂xui+0 |+ |g

−
i (x, 0) + λi∂xui

−
0 |dx

+
∑

i∈MNh

λi

∫ T

0
|b′ai(t)|dt)
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Proof. Following proof of Proposition (3.2.1), we begin considering a net-
work composed of a single node N . Let us de�ne the functions w±i (x, t) :=
∂tu
±
i (x, t). Then, from the linearity of our problem, we have that these

functions verify {
w+
i t + λiw

+
i x = g+(w+

i , w
−
i )

w−i t − λiw
−
i x = g−(w+

i , w
−
i ),

for each i ∈M. Moreover the corresponding initial conditions are w±i (x, 0) =
g±(u+

i,0, u
−
i,0) ∓ λ∂xui,0±(x), while they verify on the boundary point ai, if

i ∈ E,
w+
i (ai) = βaiw

−
i (ai) + b′ai(t),

and if i ∈ U ,
w−i (ai) = βaiw

+
i (ai) + b′ai(t),

while on the node N , if i ∈ E

w−i (N, t) =
∑
j∈E

ξi,jw
+
j (N, t) +

∑
j∈U

ξi,jw
−
j (N, t)

and, if i ∈ U

w+
i (N, t) =

∑
j∈E

ξi,jw
+
j (N, t) +

∑
j∈U

ξi,jw
−
j (N, t).

Considering the absolute values of the functions, and thanks to Lemma
(1.2.2), we have that

∂t(|w+
i |+ |w

−
i |) + λ∂x(|w+

i |+ |w
−
i |) ≤ 0.

Let us consider i ∈ E.
Integrating on the set [ai, N ]× [0, T ] we have∫ N

ai

|w+
i |+ |w

−
i |dx ≤

∫ N

ai

|wi+0 |+ |wi
−
0 |dx

+λi

∫ T

0
(|w+

i (ai)| − |w−i (ai)|)dt− λi
∫ T

0
(|w+

i (N)| − |w−i (N)|)dt

and, using the boundary condition in ai,∫ N

ai

|w+
i |+ |w

−
i |dx ≤

∫ N

ai

|wi+0 |+ |wi
−
0 |dx+

∫ T

0
λi|b′ai(t)|dt

−λi
∫ T

0
(|w+

i (N)| − |
∑
j∈E

ξi,jw
+
j (N, t) +

∑
j∈U

ξi,jw
−
j (N, t)|)dt;
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Analogously, if i ∈ U , we obtain that∫ N

ai

|w+
i |+ |w

−
i |dx ≤

∫ N

ai

|w+
i,0|+ |w

−
i,0|dx+

∫ T

0
λi|b′ai(t)|dt

+λi

∫ T

0
(|
∑
j∈E

ξi,ju
+
j (N, t) +

∑
j∈U

ξi,ju
−
j (N, t)− ui−(N, t)|)dt.

If we sum on i ∈ E ∪ U , we have∑
i∈E∪U

∫ N

ai

|w+
i |+|w

−
i |dx ≤

∑
i∈E∪U

∫ N

ai

|w+
i,0|+|w

−
i,0|dx+

∑
i∈E∪U

∫ T

0
λi|b′ai(t)|dt

−
∑
i∈E

λi

∫ T

0
|w+
i (N, t)|dt−

∑
i∈U

λi

∫ T

0
|w−i (N, t)|dt

+
∑

i∈E∪U

∫ T

0
λi(|

∑
j∈E

ξi,jw
+
j (N, t) +

∑
j∈U

ξi,jw
−
j (N, t)|)dt.

By arguing as in the proof (3.2.1) we get the estimate on a single node an
moreover in a general network.

Now we �nd a priori estimate for the spatial derivatives of a solution to
problem (3.1.2).

Proposition 3.2.4. Let N be an oriented network according to de�nition
(2.5.1). Given the problem (3.1.2), with initial and boundary conditions
(3.1.3), (3.1.4), (3.1.5), (3.1.6), (3.1.7) and assumed that coe�cients |βai | ≤
1, for each index i, then the following estimate holds:

(3.2.6)
ν∑
h=1

(
∑

i∈MNh

∫
Ii

|∂xu+
i |+ |∂xu

−
i |dx) ≤

ν∑
h=1

(
∑

i∈MNh

∫
Ii

|∂xu+
i,0|+ |∂xu

−
i,0|dx

+
∑

i∈MNh

∫ T

0
|b′ai(t)|dt)

Proof. Following proof of Proposition (3.2.1), let us consider �rstly a net-
work composed of a single node N . Let us de�ne the functions v±i (x, t) :=
∂xu

±
i (x, t). From the linearity of the problem we have that v±i (x, t) verify{

v+
i,t + λiv

+
i,x = g+(v+

i , v
−
i )

v−i,t − λiv
−
i,x = g−(v+

i , v
−
i ),

for each i ∈ M, and we have that v±i (x, 0) = ∂xu
±
i,0(x). Moreover, on the

boundary points, we have that, if i ∈ E,
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v+
i (ai) =

1

λi
(g+
i − βaiu

−
i,t(ai)− b

′
ai(t)),

if i ∈ U ,
v−i (ai) =

1

λi
(−g− + βaiu

+
i,t(ai) + b′ai(t)),

and conditions on the node accordingly modi�ed. As in proposition (3.2.1)
we have that the functions v±i (x, t) verify∫ N

ai

|v+
i |+ |v

−
i |dx ≤

∫ N

ai

|v+
i,0|+ |v

−
i,0|dx

+λi

∫ T

0
(|v+

i (ai)| − |v−i (ai)|)dt− λi
∫ T

0
|v+
i (N)| − |v−i (N)|dt.

In the following, we denote u±i,t := ∂tu
±
i . Using the boundary and initial

conditions we can write the previous inequality as∫ N

ai

|v+
i |+ |v

−
i |dx ≤

∫ N

ai

|vi+0 |+ |vi
−
0 |dx

+

∫ T

0
|g+
i (ui+(ai), u

i
−(ai))− βai∂tui−|dt+

∫ T

0
|b′ai(t)|dt

−
∫ T

0
|g−i (ui+(ai), u

i
−(ai)) + ∂tu

i
−|dt

−λi
∫ T

0
|v+
i (N)| − |v−i (N)|dt ≤

∫ N

ai

|v+
i,0|+ |v

−
i,0|dx+

∫ T

0
|b′ai(t)|dt

+

∫ T

0
|βai∂tu−i + g−(u+

i (ai), u
−
i (ai))|

−
∫ T

0
|∂tu−i + g−(u+

i (ai), u
−
i (ai))|dt− λi

∫ T

0
|v+
i (N)| − |v−i (N)|dt

≤
∫ N

ai

|v+
i,0|+ |v

−
i,0|dx

+

∫ T

0
|b′ai(t)|dt+

∫ T

0
max{|βai |, 1}|∂tu−i + g−(u+

i (ai), u
−
i (ai))|

−|∂tu−i + g−(u+
i (ai), u

−
i (ai))|dt− λi

∫ T

0
|v+
i (N)| − |v−i (N)|dt

≤
∫ N

ai

|v+
i,0|+ |v

−
i,0|dx+

∫ T

0
|b′ai(t)|dt− λi

∫ T

0
|v+
i (N)| − |v−i (N)|dt.

If i ∈ U , analogously we have
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∫
Ii

|v+
i |+ |v

−
i |dx ≤

∫
Ii

|vi+0 |+ |vi
−
0 |dx+

∫ T

0
|b′ai(t)|dt

+λi

∫ T

0
|v+
i (N)| − |v−i (N)|dt.

Using the equations for λiu
±,i
x , and adding the above inequalities on

i ∈M, we obtain

∑
i∈M

∫
Ii

|v+
i |+ |v

−
i |dx ≤

∑
i∈M

∫
Ii

|vi+0 |+ |vi
−
0 |dx+

∑
i∈M

∫ T

0
|b′ai(t)|dt

−
∑
i∈E

∫ T

0
λi(|v+

i (N)| − |v−i (N)|)dt+
∑
i∈U

∫ T

0
λi(|v+

i (N)| − |v−i (N)|)dt

=
∑
i∈M

∫
Ii

|vi+0 |+ |vi
−
0 |dx+

∑
i∈M

∫ T

0
|b′ai(t)|dt

−
∑
i∈E

1

λi

∫ T

0
(|λi(−u+

i,t+g
+)|−|λi(u−i,t+g

+)|)dt+
∑
i∈U

∫ T

0

1

λi
(|λi(−u+

i,t+g
+)|−|λi(u−i,t+g

+)|)dt.

Now, substituting the boundary conditions on the nodeN in u−i,t, if i ∈ E,
and in u+

i,t, if i ∈ U , we obtain that

(3.2.7)
∑
i∈M

∫
Ii

|v+
i |+ |v

−
i |dx ≤

∑
i∈M

∫
Ii

|vi+0 |+ |vi
−
0 |dx+

∑
i∈M

∫ T

0
|b′ai(t)|dt

−
∑
i∈E

1

λi

∫ T

0
|λi(u+

i,t + g+)|dt−
∑
i∈U

1

λi

∫ T

0
|λi(u−i,t + g+)|dt

+
∑
i∈E

1

λi

∫ T

0
|
∑
j∈E

λiξi,ju
+
j,t +

∑
j∈U

λiξi,ju
−
j,t + λig

+|dt

+
∑
i∈U

1

λi

∫ T

0
|
∑
j∈E

λiξi,ju
+
j,t +

∑
j∈U

λiξi,ju
−
j,t + λig

+|dt

≤
∑
i∈M

∫
Ii

|vi+0 |+ |vi
−
0 |dx+

∑
i∈M

∫ T

0
|b′ai(t)|dt

−
∑
i∈E

1

λi

∫ T

0
|λi(u+

i,t + g+)|dt−
∑
i∈U

1

λi

∫ T

0
|λi(u−i,t + g+)|dt
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+
∑
i∈M

1

λi

∫ T

0
|
∑
j∈E

λiξi,ju
+
j,t +

∑
j∈U

λiξi,ju
−
j,t + λig

+|dt.

Now, using the conditions of �ux conservation for the coe�cients ξi,j , we
get the claim. Then, following the proof of (3.2.1), we get the estimate on a
general network.

3.3 Existence of the solution on a network

The aim of this section is to prove Theorem (3.1.1). So, let N be a network
composed ofM arcs Ii, ν nodes Nh ∈ Vint and boundary points ai, according
to de�nition (2.5.1). We recall that V is the set of all vertices of N , ENh is
the set of entering arcs a node Nh, while UNh is the set of outgoing ones and
MNh = ENh∪UNh ; so the total number of arcs is given byM =

⋃ν
h=1MNh .

Let us consider the linear problem

(3.3.1)

{
u+
i,t + λiu

+
i,x = 1

2λi
((α+ λi)u

−
i − (λi − α)u+

i )

u−i,t − λiu
−
i,x = − 1

2λi
((α+ λi)u

−
i − (λi − α)u+

i ),

i ∈ M, with initial conditions u±i (x, 0) = u±i,0(x) and boundary conditions
as follows: on the boundary points ai we set

(3.3.2) u+
i = βaiu

−
i + bai(t),

if i ∈ EN , and

(3.3.3) u−i = βaiu
+
i + bai(t),

if i ∈ UN , while on each node Nh we set

(3.3.4) u−i (Nh, t) =
∑

j∈ENh

ξi,ju
+
j (Nh, t) +

∑
j∈UNh

ξi,ju
−
j (Nh, t)

if i ∈ ENh , and

(3.3.5) u+
i (Nh, t) =

∑
j∈ENh

ξi,ju
+
j (Nh, t) +

∑
j∈UNh

ξi,ju
−
j (Nh, t),

if i ∈ UNh ; we assume the continuity of the total �ux on each node Nh, which
leads

(3.3.6)
∑

i∈MNh

λiξi,j = λj ,
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for each j ∈ MNh . Moreover, we recall the we impose the continuity of the
total �ux on each node Nh, i.e.,

(3.3.7)
∑
i∈ENh

λi(u
+
i (N, t)− u−i (N, t)) =

∑
i∈UNh

λi(u
+
i (N, t)− u−i (N, t)).

This condition forces the transmission coe�cients ξi,j to verify

(3.3.8)
∑

i∈MNh

λiξi,j = λj ,

for each j ∈MNh .

3.3.1 Case of one arc

We begin by reviewing the simple case M = 1, i.e. we study the existence
of the solution of our problem de�ned in the single interval [a,N ] × [0, T ].
In [33] authors studied a similar problem de�ned on the set [0,+∞)× [0, T ]
but this is easily extendible to a compact set [a,N ] × [0, T ]. They consider
the hyperbolic equation

ut + (f(u))x = 0,

for (x, t) ∈ [0,+∞) × [0, T ], T > 0, and for a smooth �ux function f , with
initial condition u(x, 0) = u0(x) and boundary condition u(0, t) = a0(t). He
proves uniform a priori estimates and convergence of relaxation approxima-
tion as the relaxation parameter tends to zero. So they prove the global
existence of solution of this problem. As a consequence of the result shown
in [33] we have that the following Proposition holds.

Proposition 3.3.1. Let a± ∈ L1([0, T ]), T > 0. Given the problem (3.1.2)
de�ned on [a,N ] × [0, T ), with initial and boundary conditions u±(., 0) =
u±0 ∈ BV ([a,N ]), and boundary conditions

u+(a, t) = β+(t)u−(a, t) + b+(t),

and

u−(N, t) = β−(t)u+(N, t) + b−(t)

then, there exists a unique solution u± ∈ C([0, T ];BV ([a,N ])), T > 0.
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3.3.2 The general case

The aim of this section is to prove the existence of a bounded variation
solution of the problem (3.1.2) de�ned on a network N with ν nodes Nh ∈
Vint and M arcs Ii.

Let Nh ∈ Vint. Let us consider a �nite partition of the interval [0, T ] of
length ∆t, with ∆t = T

K = |tn+1 − tn|, n = 0, . . . ,K, K ∈ N , and t0 = 0,
tK = T .

Now let us consider the problem (3.1.2) de�ned on the set Ii × [0, t1),
for each i ∈ M. For this problem, we impose initial conditions u±,1i (x, 0) =
u±(x, 0), and the following boundary conditions: on the external boundary
points ai we impose

u+,1
i (ai, t) = βaiu

−,1
i (ai, t) + bai(t),

if i ∈ ENh , and
u−,1i (ai, t) = βaiu

+,1
i (ai, t) + bai(t)

if i ∈ UNh .
Now, let us �x the transmission conditions on the node Nh and set ∆xi =

λi
∆t . On the node Nh we impose, for each t ∈ (0,∆t):

u−,1i (Nh, t) =
∑

j∈ENh

ξi,j
1

|∆x|

∫ Nh

Nh−∆x
u+
j,0(x)dx+

∑
j∈UNh

ξi,j
1

∆x

∫ Nh+∆x

Nh

u−j,0(x)dx,

if i ∈ ENh and,

u+,1
i (Nh, t) =

∑
j∈ENh

ξi,j
1

∆x

∫ Nh

Nh−∆x
u+
j,0(x)dx+

∑
j∈UNh

ξi,j
1

∆x

∫ Nh+∆x

Nh

u−i,0(x)dx

if i ∈ UNh . The above problem is well de�ned and from the previous section
it admits a unique solution u±,1 ∈ C([0, t1);BV (Ii)), i ∈MNh , Nh ∈ Vint.

Now let us consider problem (3.1.2) de�ned on the sets Ii × [tn, tn+1),
n ≥ 1, and for each index i, coupled with initial conditions u±,n+1

i (x, tn) =
u±,n(x, tn) and the following boundary conditions: on the boundary points
ai, on each interval [tn, tn+1), and for each t ∈ [tn, tn+1), we impose the
boundary conditions

u+,n+1
i (ai, t) = βaiu

−,n+1
i (ai, t) + bai(t),

if i ∈ ENh , and

u−,n+1
i (ai, t) = βaiu

+,n+1
i (ai, t) + bai(t)
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if i ∈ UNh , while on the nodes Nh we impose,

u−,n+1
i (Nh, t) =

∑
j∈ENh

ξi,j
1

∆t

∫ tn

tn−1

u+,n
j (Nh, s)ds+

∑
j∈UNh

ξi,j
1

∆t

∫ tn

tn−1

u−,nj (Nh, s)dsdt,

if i ∈ ENh and,

u+,n+1
i,h (Nh, t) =

∑
j∈ENh

ξi,j
1

∆t

∫ tn

tn−1

u+,n
j (Nh, s)ds+

∑
j∈UNh

ξi,j
1

∆t

∫ tn

tn−1

u−,ni (Nh, s)ds

if i ∈ UNh . Because of the problem (3.1.2) de�ned on the set Ii × [0, t1)
admits a unique solution u±,1i ∈ C([0, t1);BV (Ii)), i ∈ MNh , by itera-
tion we have that the (�nite) sequence of problems de�ned on sets Ii ×
[tn, tn+1) is well de�ned and each problem admits a unique solution u±,n+1

i ∈
C([tn, tn+1);BV (Ii)), i ∈MNh .

Now, for each �xed partition of length ∆t we de�ne on the set Ii× [0, T ],
for each index i, the functions u±i,∆t(x, t) de�ned as

(3.3.9) u±i,∆t(x, t) = u±,n+1
i (x, t), if t ∈ [tn, tn+1), n ≥ 1,

and
u±i,∆t(x, t) = u±,1i (x, t), if t ∈ [0, t1).

By construction, the function u±i,∆t(x, t) is a solution of (3.1.2) de�ned on
Ii× [0, T ), and it veri�es initial conditions u±i,∆t(x, 0) = u±i,0(x) and boundary
conditions on ai

(3.3.10) u+
i,∆t(ai, t) = βaiu

−
i,∆t(ai, t) + bai(t),

if i ∈ ENh , and

(3.3.11) u−i,∆t(ai, t) = βaiu
+
i,∆t(ai, t) + bai(t),

if i ∈ UNh , while on each node Nh it veri�es, on each interval [tn, tn+1) and
for each t ∈ [tn, tn+1) (n ≥ 1):

(3.3.12)

u−i,∆t(Nh, t) =
∑

j∈ENh

ξi,j
1

∆t

∫ tn

tn−1

u+
i,∆t(Nh, s)ds+

∑
j∈UNh

ξi,j
1

∆t

∫ tn

tn−1

u−i,∆t(Nh, s)ds,

if i ∈ ENh and
(3.3.13)

u+
i,∆t(Nh, t) =

∑
j∈ENh

ξi,j
1

∆t

∫ tn

tn−1

u+
i,∆t(Nh, s)ds+

∑
j∈UNh

ξi,j
1

∆t

∫ tn

tn−1

u−i,∆t(Nh, s)ds,
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if i ∈ UNh .

Now we show the following result of compactness which will be useful in
the follow. In the following Proposition we denote by TV (u(x, t)) the total
variation with respect to the variable x of a function u(x, t)

Proposition 3.3.2. (Compactness) Let T > 0, and let us consider coe�-
cients βai ∈ R, |βai | ≤ 1, and functions bai ∈ BV ([0, T ]), and u±i,0 ∈ BV (Ii),
for each i ∈ M. For each �xed ∆t, let the sequence {u±i,∆t} be a solution

of the problem (3.1.2), with the initial conditions u±,ni (x, 0) = u±i,0(x), and
boundary conditions (3.3.10),(3.3.12), (3.3.11), (3.3.13). Moreover, let us
assume that the transmission coe�cients 0 ≤ ξi,j ≤ 1 satisfy conditions
(3.3.8).

Then we have that

(3.3.14)
ν∑
h=1

(
∑

i∈MNh

∫
Ii

|u+
i,∆t|+|u

−
i,∆t|dx) ≤

ν∑
h=1

(
∑

i∈MNh

∫
Ii

|u+
i,0|+|u

−
i,0|dx+λi

∫ T

0
|bai(t)|dt),

(3.3.15)
ν∑
h=1

(
∑

i∈MNh

|TV (u+
i,∆t)(t)|+ |TV (u−i,∆t)(t)|)

≤ exp(C∆t)
ν∑
h=1

∑
i∈MNh

|TV (u+
i,∆t)(t−∆t)|+ |TV (u−i,∆t)(t−∆t)|,

for a positive constant C.

Proof. Fix Nh ∈ Vint and let i ∈ ENh . Following the Proposition (3.2.1) we
have that ∑

i∈ENh

∫
Ii

|u+
i,∆t|+ |u

−
i,∆t|dx ≤

∑
i∈ENh

∫
Ii

|u+
i,0|+ |u

−
i,0|dx

+
∑
i∈ENh

λi

∫ T

0
(|u+

i,∆t(ai)|−|u
−
i,∆t(ai)|)dt−

∑
i∈ENh

λi

∫ T

0
(|u−i,∆t(Nh)|−|u+

i,∆t(Nh)|)dt

≤
∑
i∈ENh

(

∫
Ii

|u+
i,0|+|u

−
i,0|dx+

∫ T

0
λi|bai(t)|dt−λi

∫ T

0
(|u−i,∆t(Nh)|−|u+

i,∆t(Nh)|)dt),

where in the last inequality we have used the de�nition of boundary condi-
tions on ai.

Analogously, if i ∈ UNh we have that
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∑
i∈UNh

∫
Ii

|u+
i,∆t|+ |u

−
i,∆t|dx ≤

∑
i∈UNh

∫
Ii

|u+
i,0|+ |u

−
i,0|dx+

∫ T

0
λi|bai(t)|dt

+
∑
i∈UNh

λi

∫ T

0
|u−i,∆t(Nh)| − |u+

i,∆t(Nh)|dt.

Now, summing up on i ∈MNh we get

∑
i∈MNh

∫
Ii

|u+
i,∆t|+ |u

−
i,∆t|dx ≤

∑
i∈MNh

(

∫
Ii

|u+
i,0|+ |u

−
i,0|dx+

∫ T

0
λi|bai(t)|dt)

−
∑
i∈ENh

λi

∫ T

0
(|u−i,∆t(Nh)|−|u+

i,∆t(Nh)|)dt),+
∑
i∈UNh

λi

∫ T

0
|u−i,∆t(Nh)|−|u+

i,∆t(Nh)|dt.

Using conditions of �ux conservation (3.3.8) on transmission coe�cients ξi,j ,
we get the proof for a single node. Then, summing up on the vertices Vint
we get the proof on a general network. We recall that when we sum up on
all the internal vertices Vint, the arcs connecting two nodes are considered
twice, but terms on each node vanish by condition of total �ux conservation.

Now we get the estimate (3.3.15). Let i ∈ ENh (calculus for i ∈ UNh
are analogous). First we have to observe that if i ∈ ENh , by de�nition of
the sequence {u±i,∆t}, the functions u

±
i,∆t(x, t) are not continuous through the

characteristics straight lines outgoing from the points (Nh, tn) and (ai, tn),
n ≥ 1.

Let us consider a partition of the interval Ii of length ∆x = [xl, xl + h],
such that each interval [xl, xl+h] intersects exactly one characteristic. Now,
let us consider the explicit expression of the functions u±i,∆t(x, t), in each
interval [t−∆t, t) of the partition of [0, T ], i.e.,

u+
i,∆t(x, t) = u+

i,∆t(x−λi∆t, t−∆t) exp(K+
i t)+K

−
i

∫ t

t−∆t
exp(−K+

i (t−s))u−i,∆t(x−λi(t−s), s)ds,

and

u−i,∆t(x, t) = u−i,∆t(x+λi∆t, t−∆t) exp(K−i t)+K
+
i

∫ t

t−∆t
exp(−K−i (t−s))u+

i,∆t(x+λi(t−s), s)ds,

for some positive constants K±i , i ∈M.
Now let us consider the function u+

i,∆t(x, t). First we have to observe that
if x ∈ [ai, ai + ∆x

λi
], from boundary conditions we have that
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u+
i,∆t(x, t) = βaiu

−
i,∆t(ai,

ai − x
λi

+ t) exp(K+
i (
ai − x
λi

)) + bi(t)

+K−i

∫ t

s
exp(−K+

i (
ai − x
λi

− τ))u−i,∆t(ai, τ)dτ,

for s ∈ [t−∆t, t). Thus we have that

|u+
i,∆t(xl + h, t)− u+

i,∆t(xl, t)| ≤ exp(K+
i t)TV (u+

i,∆t)(t−∆t)

+K−i

∫ t

t−∆t
exp(−K+

i (t− s))TV (u−i,∆t)(s)ds

+βai exp(K+
i (
ai − x
λi

))TV (u−i,∆t(ai, .))+K
−
i

∫ t

s
exp(−K+

i (
ai − x
λi
−τ))TV (u−i,∆t(ai, .))dτ.

We have now to estimate the total variation in time for the function u−i,∆t(ai, s),
s ∈ [t−∆t, t). We have that

u−i,∆t(ai, s) = u−i (ai + λi[(s− t) + ∆t], t−∆t) exp(K−i t)

+K+
i

∫ t

t−∆t
exp(−K−i (t− θ))u+

i,∆t(ai + λi(t− θ), θ)dθ;

thus

TV (u−i,∆t(ai)) = |u−i,∆t(ai, s+k)−u−i,∆t(ai, s)| ≤ exp(K−i t)TV (u−i,∆t)(t−∆t)

+K+
i

∫ t

t−∆t
exp(−K−i (t− θ))TV (u+

i,∆t)(θ)dθ.

Collecting together the above estimates we get

TV (u+
i,∆t)(t) = |u+

i,∆t(xl + h, t)− u+
i,∆t(xl, t)| ≤ exp(K+

i t)TV (u+
i,∆t)(t−∆t)

+K−i

∫ t

t−∆t
exp(−K+

i (t− s))TV (u−i,∆t)(s)ds

+βai exp(K−i t+K+
i (
ai
λi

))TV (u−i,∆t)(t−∆t)

+(K+
i βai exp(K+

i (
ai
λi

))+K−i )

∫ t

t−∆t
exp((K+

i +K−i )(t−θ))(TV (u+
i,∆t)(θ)+TV (u−i,∆t)(θ))dθ

+K−i K
+
i

∫ t

t−∆t
exp(K+

i +K−i (t− θ))TV (u+
i,∆t)(θ)dθ.
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Now, let us consider the total variation of the function u−i,∆t(x, t). In this
case, we have that, if x ∈ [Nh − ∆x

λi
, Nh], from transmission conditions on

the node Nh, we have that

u−i (x, t) = exp(K−i (
x−Nh

λi
))(

∑
j∈ENh

1

∆t

∫ t

t−∆t
ξi,ju

+
j,∆tds+

∑
j∈UNh

1

∆t

∫ t

t−∆t
ξi,ju

−
j,∆tds)

+K+
i

∫ t

s
exp(−K−i (

x−Nh

λi
− τ))u+

i (Nh, τ)dτ,

for s ∈ [t − ∆t, t); let us observe that, by de�nition of the sequence, the
function u−i,∆t(Nh, t) is constant on each interval (Nh, t), t ∈ [t−∆t, t], thus
its total variation in time is zero. So we have that

TV (u−i,∆t)(t) = |u−i,∆t(xl + h, t)− u+
i,∆t(xl, t)| ≤ exp(K−i t)TV (u−i,∆t)(t−∆t)

+K+
i

∫ t

t−∆t
exp(−K−i (t− s))TV (u+

i,∆t)(s)ds

+K+
i exp(K+

i (
Nh

λi
))

∫ t

t−∆t
exp((K+

i +K−i )(t− θ))TV (u+
i )(θ)dθ

+K−i K
+
i

∫ t

t−∆t
exp(K+

i +K−i (t− θ))TV (u−i )(θ)dθ.

Collecting together the above estimates we obtain that, for each i ∈M,

(TV (u+
i,∆t)(t)+TV (u−i,∆t)(t)) ≤ exp(Ci,1t)(TV (u+

i,∆t)(t−∆t)+TV (u−i,∆t)(t−∆t))

+Ci,2

∫ t

t−∆t
exp(Ci,3(t− s))(TV (u+

i,∆t)(s) + TV (u−i,∆t)(s))ds,

where

Ci,1 = max{(K+
i +K−i ),

K+
i ai
λi
},

Ci,2 = max{K+
i K

−
i ,K

+
i exp(

K+
i Nh

λi
) +K−i },

and
Ci,3 = max{K+

i +K−i }.

Thus, applying the Gronwall's Lemma, and summing up on h = 1, . . . , ν and
on i ∈M, we get the proof.

Now, we need to recall the following important Lemma due to Kruzkov
(see [31] and [32]).
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Lemma 3.3.1. (Kruskov's Lemma) Let Ω ⊆ Rn be a bounded convex open
set and set Ωk0 = {x ∈ Rn : d(x,Ω) < k0} for some �xed k0 > 0. Let
u ∈ BV (Ωk0 × [0, T )), T > 0, and let uΩ ∈ C([0, k0)) be a non decreasing
function, with uΩ(0) = 0, such that for every t ∈ (0, T ) and |k| ≤ k0

(3.3.16)
∫

Ωk0

|u(x+ k, t)− u(x, t)|dx ≤ uΩ(|k|).

Assume the following condition holds

(3.3.17) |
∫

Ω
(u(x, t+ τ)− u(x, t))φ(x)dx| ≤ CΩτ ||φ||C2 ,

for any t,(t+ τ) ∈ (0, T ), τ > 0, for any φ ∈ C2(Ω) and some constant CΩ.
Then for any 0 ≤ t ≤ t+ τ ≤ T we have that

(3.3.18)
∫

Ω
|u(x, t+ τ)− u(x, t)|dx ≤ τC|k|,

for some positive constant C.

Let us observe that from the previous Compactness Lemma, for each
�xed ∆t the function u±i,∆t veri�es hypothesis of Kruzkov's Lemma. As a
consequence of it we have that the sequence {u±i,∆t}∆t is time equicontinuos.
In fact the following Proposition holds.

Proposition 3.3.3. (Time equicontinuity) Given the sequence {u±i,∆t}∆t,
then it veri�es

sup
t

∑
i∈M

∫
Ii

|u±i,∆t(x, t+ k)− u±i,∆t(x, t)|dx ≤ Ck,

for a positive constant C and for each k > 0.

Proof. Firstly let us observe that u±i,∆t veri�es (3.3.16) thanks to the estimate
(3.3.14). We have to show that u±i,∆t veri�es (3.3.17). So, for each i ∈M, let
ui∆t = u+

i,∆t + u−i,∆t and v
i
∆t = λi(u

+
i,∆t − u

−
i,∆t). Thus (ui∆t)t + λi(v

i
∆t)x = 0.

We have

∑
i∈MNh

|
∫
Ii

(ui∆t(x, t+τ)−ui∆t(x, t))φi(x)dx| ≤
∑

i∈MNh

τ |
∫
Ii

(ui∆t)t(x, t)φ
i(x)dx|

=
∑

i∈MNh

τλi|
∫
Ii

(vi∆t)x(x, t)φi(x)dx| = τ(
∑

i∈MNh

λi|
∫
Ii

vi∆tφ
i
xdx
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+
∑
i∈ENh

λiv
i
∆t(Nh)φi(Nh)−

∑
i∈UNh

λiv
i
∆t(Nh)φi(Nh)−

∑
i∈ENh

λiv
i
∆t(ai)φ

i(ai)

+
∑
i∈UNh

λiv
i
∆t(ai)φ

i(ai)|);

now, using the assumption that |βai | ≤ 1 and by de�nition of the functions
u±i,∆t(Nh, t) we have that

∑
i∈MNh

|
∫
Ii

(ui∆t(x, t+ τ)− ui∆t(x, t))φi(x)dx| ≤ τ(
∑

i∈MNh

λi(||vi||L1 ||φi||C2(Ii)

+||bai ||L1[0,T ]||φi||C2(Ii)

+||φi||C2(Ii)λi(
∑
i∈ENh

ξi,j
∑
n

1

∆t

∫ tn

tn−1

u+,n
i dt+

∑
i∈UNh

ξi,j
∑
n

1

∆t

∫ tn

tn−1

u−,ni dt)

≤ τ
∑

i∈MNh

λ2
i (||ui∆t||L1 + ||bai ||+

∑
i∈ENh

ξi,j
∑
n

1

∆t

∫ tn

tn−1

u+,n
i dt

+
∑
i∈UNh

ξi,j
∑
n

1

∆t

∫ tn

tn−1

u−,ni dt))||φi||C2(Ii).

Summing up on h = 1, . . . , ν we get the estimate on all the network.
Now, from the Kruskov's Lemma we get the proof.

Now we can prove the following Theorem.

Theorem 3.3.1. (Existence of a solution on a network) Let N be a network
composed of M arcs Ii, i = 1, . . . ,M , ν nodes Nh ∈ Vint, and external
boundary points ai. Let T > 0, βai ∈ R, |βai | ≤ 1, bai ∈ BV ([0, T ]),
and u±i,0 ∈ BV (Ii), i ∈ M. Given the problem (3.1.2), de�ned on sets
Ii × [0, T ], i ∈ M, with initial conditions (3.1.3) and boundary conditions
(3.1.4), (3.1.5), (3.1.6) and (3.1.7), then there exists a unique solution u±i ∈
C([0, T ];BV (Ii)), i ∈M, T > 0.

Proof. Fix a node Nh ∈ Vint. Let {u±i,∆t}∆t be the sequence de�ned in
(3.3.9). By construction, for each �xed partition of length ∆t the function
u±i,∆t is a BV solution of (3.1.2) with initial conditions u±i,∆t(x, 0) = u±i,0(x)
and boundary conditions (3.3.10), (3.3.11), (3.3.12), (3.3.13). In particular,
it veri�es

(3.3.19)
∫ T

0
(

∫
Ii

(u±i,∆t
∂φi
∂t
± λ∂φi

∂x
)dxdt+

∫
Ii

u±i,0(x)φi(x, 0)dx
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+

∫ T

0
(u±i,∆t)|Γφi|Γdt =

∫ T

0

∫
Ii

g±(u+
i,∆t, u

−
i,∆t)φidxdt,

where Γ = {ai, Nh} × [0, T ], for each i ∈ M and for each function φi ∈
C∞c (Ii × [0, T ]). Now, given the sequence {u±i,∆t}∆t, let us assume that for
each index i it converges to a function (u+

i , u
−
i ) ∈ (C([0, T ];BV (Ii)))

2 when
∆t→ 0. Thus we have that∫ T

0

∫
Ii

|u±i,∆t − u
±
i |dxdt −→ 0,

when ∆t −→ 0, and in particular, by the traces properties of BV functions,
we have that the traces of the sequence converge to the traces of the limit
function u±i , i.e. ∫ T

0
|u±i,∆t(ai, t)− u

±
i (ai, t)|dt −→ 0,

∫ T

0
|u−i,∆t(Nh, t)− u−i (Nh, t)|dt −→ 0.

We claim that if the limit function u±i exists, then it is the unique BV
solution of problem (3.1.2), and so it veri�es (3.1.10), and the conditions
(3.1.4), (3.1.5), (3.1.6), and (3.1.7). From the condition (3.3.19) the �rst
assert follows immediately passing to the limit on ∆t −→ 0; so u±i veri�es
(3.1.10). We have to show now that the limit function veri�es the boundary
conditions, i.e. ∫ T

0
|u+
i (ai, t)− βaiu−i (ai, t)− bai(t)|dt = 0,

if i ∈ ENh , ∫ T

0
|u−i (ai, t)− βaiu+

i,h(ai, t)− bai(t)|dt = 0,

if i ∈ UNh , and∫ T

0
|u−i (Nh, t)−

∑
j∈ENh

ξi,ju
+
i (Nh, t)−

∑
j∈UNh

ξi,ju
−
i (Nh, t)|dt = 0,

if i ∈ ENh ,∫ T

0
|u+
i (Nh, t)−

∑
j∈ENh

ξi,ju
+
i (Nh, t)−

∑
j∈UNh

ξi,ju
−
i (Nh, t)|dt = 0,

if i ∈ UNh . Let i ∈ ENh . On the boundary points ai we immediately get
the claim by de�nition of boundary conditions of the function u±i,∆t and the
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convergence of the traces of u±i,∆t to the traces of u±i . Let us study the
boundary conditions each node Nh ∈ Vint. Let i ∈ ENh . We have

∫ T

0
|u−i (Nh, t)−

∑
j∈ENh

ξi,ju
+
j (Nh, t)−

∑
j∈UNh

ξi,ju
−
j (Nh, t)|dt

≤
∑
n

∫ tn+1

tn

|u−i (Nh, t)−
1

∆t

∫ tn+1

tn

u−i (Nh, s)ds|dt

+
∑
n

∫ tn+1

tn

| 1

∆t

∫ tn+1

tn

u−i (Nh, s)ds− u−i,∆t(Nh, t)|dt

+
∑
n

∫ tn+1

tn

∑
j∈ENh

ξi,j |
1

∆t

∫ tn

tn−1

u+
j,∆(Nh, s)ds− u+

j,∆(Nh, t)|dt

+
∑
n

∫ tn+1

tn

∑
j∈UNh

ξi,j |
1

∆t

∫ tn

tn−1

u−j,∆(Nh, s)ds− u−j,h,∆(Nh, t)|dt

+
∑
n

∫ tn+1

tn

∑
j∈ENh

ξi,j |u+
j,∆(Nh, t)− u+

j (Nh, t)|dt

+
∑
n

∫ tn+1

tn

∑
j∈UNh

ξi,j |u−j,∆t(Nh, t)− u−j (Nh, t)|dt

≤
∑
n

∫ tn+1

tn

|u−i (Nh, t)−
1

∆t

∫ tn+1

tn

u−i (Nh, s)ds|dt

+
∑
n

∫ tn+1

tn

|u−i (Nh, t)−u−i,∆t(Nh, t)|dt+
∑
n

∫ tn+1

tn

|u−i (Nh, t)−u−i,∆t(Nh, t)|dt

+
∑
n

∫ tn+1

tn

∑
j∈ENh

ξi,j |
1

∆t

∫ tn+1

tn

u+,n
j (Nh, s)ds− u+,n

j (Nh, t)|dt

+
∑
n

∫ tn+1

tn

∑
j∈UNh

ξi,j |
1

∆t

∫ tn+1

tn

u−,nj (Nh, s)ds− u−,nj (Nh, t)|dt

+

∫ t1

0

∑
j∈ENh

ξi,j |u+
j,∆t(Nh, t+ ∆t)− u+

j,∆t(Nh, t)|dt

+

∫ t1

0

∑
j∈UNh

ξi,j |u−j,∆t(Nh, t+ ∆t)− u−j,∆t(Nh, t)|dt
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+
∑
n

∫ tn+1

tn

∑
j∈ENh

ξi,j |u+
j,∆(Nh, t)− u+

j (Nh, t)|dt

+
∑
n

∫ tn+1

tn

∑
j∈UNh

ξi,j |u−j,∆t(Nh, t)− u−j (Nh, t)|dt.

Thanks to the property of trace convergence of bounded variation func-
tions, we have that the quantities

∑
n

∫ tn+1

tn

|u−i (Nh, t)− u−i,∆t(Nh, t)|dt→ 0,

∑
n

∫ tn+1

tn

∑
j∈ENh

ξi,j |u+
j,∆(Nh, t)− u+

j (Nh, t)|dt→ 0,

∑
n

∫ tn+1

tn

∑
j∈UNh

ξi,j |u−j,∆t(Nh, t)− u−j (Nh, t)|dt→ 0,

and ∑
n

∫ tn+1

tn

|u−i,∆t(Nh, t)− u−i (Nh, t)|dt→ 0,

go to zero when ∆t→ 0.
Then, using the average Lebesgue Theorem (1.2.3) introduced in Chapter

1, we have that the quantities

∑
n

∫ tn+1

tn

∑
j∈ENh

ξi,j |
1

∆t

∫ tn+1

tn

u+,n
j (Nh, s)ds− u+,n

j (Nh, t)|dt→ 0,

∑
n

∫ tn+1

tn

∑
j∈UNh

ξi,j |
1

∆t

∫ tn+1

tn

u−,nj (Nh, s)ds− u−,nj (Nh, t)|dt→ 0,

go to zero when ∆t→ 0.
Moreover, thanks to Theorem (1.2.1), we have that

∑
n

∫ tn+1

tn

|u−i (Nh, t)−
1

∆t

∫ tn+1

tn

u−i (Nh, s)ds|dt→ 0,

goes to zero when ∆t→ 0.
Then let us observe that the following quantities∫ t

0

∑
j∈ENh

ξi,j |u+
j,∆t(Nh, t+ ∆t)− u+

j,∆t(Nh, t)|dt→ 0
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and ∫ t

0

∑
j∈UNh

ξi,j |u−j,∆t(Nh, t+ ∆t)− u−j,∆t(Nh, t)|dt→ 0

go to zero when ∆t→ 0 by the shift property of L1-functions.
Then, if i ∈ UNh the way of proceeding is the same.
In this way we have shown that if the sequence {u±i,∆t}∆t converges to

a limit in the space of functions C([0, T ];L1(Ii)), for each i ∈ M, then this
limit function belongs to C([0, T ];BV (Ii)) and it is a solution of the problem
we are considering (3.1.2). We have to show now that the sequence {u±i,∆t}
admits a limit u±i in the space C([0, T ];L1(Ii)) for each i ∈M. Thanks to the
Compactness's Lemma previously proved, we have that the sequence {u±i,∆t}
is bounded in the space of functions C([0, T );L1(Ii)), with its derivatives.
Moreover we have shown that it is equicontinuos in time, thus by the Riesz-
Frechet-Kolmogorov Theorem it has compact closure in C([0, T ];L1(Ii)), for
each i ∈ M. Then there exists a subsequence of it which converges to a
function (u+

i , u
−
i ) in (C([0, T ];L1(Ii)))

2. But we have previously shown that
the function (u+

i , u
−
i ) must be a BV solution of our problem. Then, by the

boundness of the sequence {u±i,∆t}∆t, it cannot admit diverging subsequences;
moreover because of the uniqueness of solution there is not a subsequences
converging to a limit function di�erent from the solution of our problem. So
all the sequence converges and the claim follows.

3.4 Asymptotic behavior of perturbation of station-

ary solutions

In this section we consider an oriented network composed of M arcs and
only one node N . So, this section is devoted to the study of the asymptotic
behavior of small perturbations of stationary solutions of the linear problem
(3.1.2) de�ned on an oriented network N , composed of M arcs and a single
node N , according to de�nition (2.5.1). Let E and U be respectively the
entering arcs in the node N and the outgoing ones, and let M := E ∪ U .
We begin observing that introducing the new variables

ui := u+
i + u−i ,

and
vi := λi(u

+
i − u

−
i ),

we can write model (3.1.2) in the equivalent way

(3.4.1)

{
uit + vix = 0

vit − λ2
iu
i
x = αui − vi,
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for each i ∈ M. In these new variables, the initial conditions become
ui(x, 0) = u+

i,0 + u−i,0, and vi(x, 0) = λi(u
+
i,0 − u−i,0) and boundary condi-

tions (3.1.4), (3.1.5), (3.1.6), and (3.1.7) must be opportunely transformed.
Let us recall that the transmission coe�cients ξi,j ∈ [0, 1], for each i, j ∈M,
satisfy the condition of conservation of total �ux in the node N , which yields

(3.4.2)
∑
i∈M

λiξi,j = λj ,

for each j = 1, . . . ,M . This condition ensures that the global mass is con-
served along the time, namely

(3.4.3)
∑
i∈M

∫
Ii

ui(x, t) = µ0 :=
∑
i∈M

∫
Ii

ui(x, 0),

for all t > 0.

We need some Lemmas which will be useful in the following.

Lemma 3.4.1. Let u±i,1 and u±i,2, i ∈M be solutions of problem (3.1.2) with
initial conditions u±i,1(x, 0) = u±i,1,0(x) ∈ BV (Ii) and u±i,2(x, 0) = u±i,2,0(x) ∈
BV (Ii) and boundary conditions (3.1.4), (3.1.5), (3.1.6), (3.1.7) for both.
Then

(3.4.4)∑
i∈M

∫
Ii

|u+
i,1−u

+
i,2|+ |u

−
i,1−u

−
i,2|dx ≤

∑
i∈M

∫
Ii

|u+
i,1,0−u

+
i,2,0|+ |u

−
i,1,0−u

−
i,2,0|dx

−
∑
i∈M

∫ t

0

∫
Ii

Li(x, s)dxds,

where

Li(x, s) := [sgn(u+
i,1−u

+
i,2)−sgn(u−i,1−u

−
i,2)][

λi − α
2λi

(u+
i,1−u

+
i,2)−λi + α

2λi
(u−i,1−u

−
i,2)].

Proof. Let z±i = u±i,1 − u
±
i,2. Then the functions z±i veri�es problem (3.1.2)

with initial conditions z±i (x, 0) = u±i,1,0−u
±
i,2,0 and zero boundary conditions.

Now, let us multiply equation for z+
i by sgn(u+

i,1−u
+
i,2) and equation for

z−i by sgn(u−i,1 − u
−
i,2); adding the two equations and following the proof of

estimate (3.2.1), we get the proof.
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Remark 3.4.1. Let us observe that from the subcharacteristic condition

α < |λi|,

for each i ∈M, we have that the quantity

−λi + α

2λi
≤ 0, and λi−α

2λi
≥ 0.

Thus we have that the quantity

Li(x, s) ≥ 0

for each i ∈M.
As a consequence of this fact and of the above estimate (3.4.4), we are able

to prove that also in this new case the semigroup generated by the problem
(3.1.2) is contractive in (L1(Ii))

2, i ∈ M. Let us observe that in proving
this, the transmission conditions on the node play a fundamental role.

Now let us recall some de�nitions and results which will be useful in what
follows.

De�nition 3.4.1. LetMn(R) be the space of square matrix of order n, n ≥ 1,
and let A = {ai,j} ∈Mn(R). We say that A is reducible if there exists a per-
mutation matrix P such that

PAP T =

(
B C
0 D

)

where B, C and D are square matrices.
We say that A is irriducible if is not reducible.

De�nition 3.4.2. Let A = {ai,j} ∈ Mn(R), with enters ai,j ≥ 0. We say
that A is primitive if there exists m > 0 such that Am > 0.

Theorem 3.4.1. (Perron-Frobenius) Let A = {ai,j} ∈ Mn(R), ai,j ≥ 0, be
a square irriducible and primitive matrix of order n n ≥ 1. Then

• the largest eigenvalue ν is real and positive;

• ν has algebraic multiplicity equal to one;

• the corresponding eigenvector to ν has positive components;

• the corresponding eigenvector is the only non negative eigenvector of
the matrix.
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In order to study the asymptotic behaviour of perturbations of stationary
solutions, we observe that the general stationary solutions of the problem
(3.4.1) are the functions

(3.4.5) (ui, vi) = (Ci exp(
αx

λ2
i

)− vi(x)

λ2
i

, vi(x)),

i ∈M, for some constants Ci, i ∈M, depending on the boundary conditions.
We have that the following Proposition holds.

Proposition 3.4.1. Let us consider the problem (3.4.1) coupled with con-
ditions (3.1.6), (3.1.7), with coe�cients ξi,j satisfying (3.4.2), and no �ux
boundary conditions at the boundary points ai, i.e.,

(3.4.6) u+
i (ai, t) = u−i (ai, t),

i ∈M. Let us assume that the transmission coe�cients are strictly positives,
0 < ξi,j ≤ 1, for each i, j ∈M. Then the general stationary solution

(ui, vi) = (Ci exp(
αx

λ2
i

), 0)

to the problem is a one-parameter stationary solution.

Proof. The general stationary solutions of (3.4.1) are

(ui, vi) = (Ci exp(
αx

λ2
i

)− vi(x)

λ2
i

, vi(x)),

for some constants Ci which depend on boundary conditions. From the
no-�ux boundary condition vi(ai, t) = 0 for each i follows that the only
stationary solution for the function vi is the null function

vi(x, t) ≡ 0,

for each (x, t) ∈ Ii× [0, T ], i ∈M, which implies that the stationary solution
ui(x, t) = ui(x) is the function

ui(x) = Cie
αx

λ2
i ,

and that the stationary solutions u±i (x) = ui(x)
2 for each i ∈ M. In order

to determine the constants Ci, we recall that the stationary solutions must
be verify the boundary conditions on the node N . Thus, we insert the
stationary solutions u±i (x) in the boundary conditions at the node N , (3.1.6),
and (3.1.7). In this way we obtain a system in the unknowns Ci, i.e., we
have that for each i ∈M
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(3.4.7) 0 = Ci exp(
αN

λ2
i

)−
∑
j∈M

ξi,jCj exp(
αN

λ2
j

)

= Ci exp(
αN

λ2
i

)(1− ξi,i)−
∑
j 6=i

ξi,j exp(
αN

λ2
j

)Cj .

This is a linear system of M equations in the M unknown constants Ci.
The matrix of the system is

B =



(1− ξ1,1) exp(αN
λ2

1
) −ξ1,2 exp(αN

λ2
2

) ... −ξ1,M exp(αN
λ2
M

)

−ξ2,1 exp(αN
λ2

1
) (1− ξ2,2) exp(αN

λ2
2

) ... −ξ2,M exp(αN
λ2
M

)

... ...
. . . ...

... ...
. . . ...

−ξM,1 exp(αN
λ2

1
) ... ... (1− ξM,M ) exp(αN

λ2
M

)


We claim that the rank of B is M − 1. To do this we �rst prove that

the rows are linearly dependent. In fact consider the following vector linear
combination of the rows with coe�cients λi, i = 1, . . . ,M , we have that

(exp(
αN

λ2
1

)(λ1 −
∑
i∈M

λiξi,1), . . . , exp(
αN

λ2
M

)(λM −
∑
i∈M

λiξi,1)) = (0, . . . , 0)

by conditions (3.4.2). Thus we have that the rank of B is at most M − 1.
Now let us consider the following matrix of a system equivalent to (3.4.7):

B =


λ1(ξ1,1 − 1) λ1ξ1,2 ... λ1ξ1,M

λ2ξ2,1 λ2(ξ2,2 − 1) ... λ2ξ2,M
... ...

. . . ...
... ...

. . . ...
λMξM,1 ... ... λM (ξM,M − 1)


Let us denote by B

T
the transpose matrix of B. We have to show that

dimKerB = 1 or equivalently that dimKerB
T

= 1. So let v ∈ KerB
T
,

v = (v1, . . . , vM ). Computing B
T
v = 0, we have that

M∑
i=1

λiξi,jvi = λjvj ,

67



for each j = 1, . . . ,M . Let us observe that we can rewritten the above
expression as

M∑
i=1

λi
λj
ξi,jvi = vj .

The above equalities imply that we have that v ∈ KerBT
if and only if v

is an eigenvector associated to the eigenvalue ν = 1 for the matrix A = {ai,j}
with elements ai,j =

λj
λi
ξj,i. Now, from conditions of �ux conservation

(3.4.8)
M∑
i=1

λiξi,j = λj ,

we have that the norm of A, ||A||∞,

||A||∞ := max
i=1,...,M

M∑
j=1

|ai,j | = max
i=1,...,M

M∑
j=1

|λj
λi
ξj,i| = 1.

So, denoting by ν1, . . . , νs, s ≥ 1, the eigenvalues of A, from ||A||∞ = 1
we deduce that the spectral radius ρ(A) = max1≤i≤s(|νi|) ≤ 1. Let us also
observe that conditions (3.4.8) imply that the vector vν = (1, . . . , 1)T is an
eigenvector associated to the eigenvalue ν = 1. Therefore, we have the exact
equality ρ(A) = 1.

Now, we have that the elements of the matrix A, ai,j =
λj
λi
ξj,i are all

strictly positives, thus A is a primitive matrix. Moreover, under assumption
that 0 < ξi,j ≤ 1, clearly A is irriducible. Then by the Perron-Frobenius
Theorem we have that the eigenvalue ν = 1 has algebraic multiplicity equal
to one, i.e., is a simple eigenvalue. Because of v ∈ KerB

T
if and only if

v is an eigenvector associated to the eigenvalue ν = 1 for A, we have that
the dimension of the eigenspace generated by the eigenvector v associated to
eigenvalue ν = 1 is equal to dimKerB

T
. Thus dimKerB

T
= dimKerB =

1.
Thus the system (3.4.7) has a one-parameter solution (C1, . . . , CM ) not

identically equal to zero, and we get the proof.

Now we have that the following Proposition holds.

Proposition 3.4.2. Let us consider the one-parameter stationary solution
of (3.4.1) and let us assume that 0 < ξi,j < 1 for each i, j ∈M. Then, given
µ0 > 0, there exists a unique positive stationary solution (ui(x), 0) of (3.4.1)
such that

∑
i∈M ui(x) = µ0.

Proof. By de�nition of one-parameter solution of a linear and homogeneous
system, we have that the coe�cients (C1, . . . , CM ) of the stationary solu-
tion of (3.4.1) are of kind (r1Cj , r2Cj , . . . , Cj , . . . , rMCM ), where ri ∈ R,
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i = 1, . . . ,M − 1. Let us observe that from the system (3.4.7) and using
conditions 0 < ξi,j < 1, by substitution one obtains that ri is positive for
each i = 1, . . . ,M − 1.

In order to �x the parameter Cj from which the solution is depending,
we have to couple the system (3.4.7) with another condition. Imposing the
condition of mass conservation (3.4.3), we have∑

i∈M
ui(x)dx =

∑
i∈M

Ci exp(
αx

λ2
i

)dx = µ0;

so
Cj(
∑
i 6=j

∫
Ii

ri exp(
αx

λ2
i

)dx+

∫
Ij

exp(
αx

λ2
j

)dx) = µ0,

and therefore

Cj =
µ0∑

i 6=j
∫
Ii
ri exp(αx

λ2
i
)dx+

∫
Ij

exp(αx
λ2
j
)dx

.

We have that Cj > 0, and so we get the proof.

From now on let (ui(x), 0), i ∈ M, the stationary solution such that∑
i∈M ui(x)dx = µ0, for a constant µ0. We recall that in the variables

u±i (x) we have u+
i (x) = u−i (x) = ui(x)

2 .
Now we want to prove an uniform estimate for functions u±i (x, t), for

each i ∈M.

Proposition 3.4.3. Let N be a network composed of M arcs and a single
node N . Given a solution of (3.1.2) coupled with initial conditions u±i,0 ∈
L∞(Ii) i ∈ M, and boundary conditions (3.4.6), (3.1.6), and (3.1.7), then
there exist stationary solutions ui,1(x) and ui,2(x) such that

u±i (x, t) ≤ u±,1i (x),

and
|(u±i (x, t))t| ≤ u±,2i (x),

for each i ∈M, and t ≥ 0.

Proof. Given a positive constant µ0, we have previously shown that condition

(3.4.9)
∑
i∈M

∫
Ii

Ci exp(
αx

λ2
i

)dx = µ0,

implies that the coe�cients Ci, i = 1, . . . ,M are all positive, so the unique
stationary solution ui(x) with total mass µ0 is positive for each i = 1, . . . ,M .
Thus, from (3.4.9) we deduce that
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(3.4.10) if the total mass µ0 → +∞, then Ci → +∞, for each i ∈M.

Now, let us consider the initial data of (3.1.2), u±i,0 ∈ L∞(Ii), i ∈M, and
let us de�ne K := maxi∈M{||u+

i,0||L∞ + ||u−i,0||L∞}. By property (3.4.10) we
deduce that

given K > 0, ∃µ0,K > 0 such that mini∈M{Ci} > K, ∀µ > µ0,K .

Thus there exists a stationary solution u±,1i (x), i ∈M such that

max
x∈Ii

u±i,0(x) ≤ u±,1i (x),

for each i ∈M. Then by Proposition (3.2.1) we get the �rst estimate.
Now, let us consider the time derivatives of u±i , (u±i )t, i ∈ M. They

verify problem (3.1.2) with boundary conditions (3.4.6), (3.1.6), and (3.1.7),
and initial data given by

(u±i (x, 0))t = g±(u+
i,0, u

−
i,0)∓ λi(u±i,0)x.

Thus
|(u±i (x, 0))t| ≤ |g±(u+

i,0, u
−
i,0)|+ λi|(u±i,0)x|.

Following the previous proof there exists a stationary solution u±,2i (x) such
that

max
x∈Ii

(|g±(u+
i,0(x), u−i,0(x))|+ λi|(u±i,0(x))x|) ≤ u±,2i (x),

and we get the second uniform estimate for the time derivative of solution
u±i (x, t), i ∈M.

The aim of this section is to prove the following Theorem.

Theorem 3.4.2. Let us consider the linear problem (3.1.2) de�ned on a
network N composed of M arcs Ii and a single node N , and coupled with
initial conditions u±i (x, 0) = u±i,0 ∈ BV (Ii), i ∈M, and boundary conditions
(3.4.6), (3.1.6), and (3.1.7). Let ψ±i ∈ BV (Ii) and µ ∈ R+. Let u±i,0 :=
ui

2 + ψ±i (x) be the initial data such that

(3.4.11)
∑
i∈M

∫
Ii

(ψ+
i (x) + ψ−i (x))dx = µ,

and let u±i (x, t), i ∈M, the corresponding solution. Then
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(3.4.12) lim
t→+∞

∑
i∈M

∫
Ii

|u+
i (x, t)− ũi

2
|+ |u−i (x, t)− ũi

2
|dx = 0,

where ũi(x) is the stationary solution corresponding to the mass µ0 + µ.

The �rst part of the proof of the above Theorem follows the tecniques
used in [24]: we consider the set of accumulation points of the solution to
problem (3.1.2), and we have to show that it is composed of the station-
ary solution ũi(x) only. The novelty is in the second part of the proof: in
order to show that the set of accumulation points is composed only by the
stationary solution, we show that the solutions to problem (3.1.2), u±i (x, t),
are continuous because they are uniformly bounded together to their spatial
derivatives. Then, using the fact that we know the explicit expression for
the stationary solution, and the L1 contractivity of the evolution operator
associated to this problem, we �nd our goal.

Proof. For each i ∈M, let ui(x, t) = u+
i (x, t) +u−i (x, t). Let us �rst observe

that from the condition of mass conservation (3.4.3) we have that∑
i∈M

∫
Ii

ui(x, t)dx = µ0 + µ =
∑
i∈M

∫
Ii

ũi(x)dx

for each t ≥ 0. From Propositions (3.2.1), and (3.2.4) we have that the
sequence {u+

i (., t), u−i (., t)}t>0 is compact in BV (Ii)
2, for each i ∈ M, so

it admits convergence subsequences. Thus, for each t ≥ s the set Bi
s of

accumulation points of the sequence {u+
i (., t), u−i (., t)}t≥s is not empty for

each i ∈M. Moreover, the set

A :
⋃
i∈M

Ai :=
⋃
i∈M
∩s≥0B

i
s,

it is not empty too, since the setsAi are the intersection of a decreasing family
of not empty compact sets. Our aim is to show that A ≡ {ũ+

1 (x), ũ−1 (x),i =
1, . . . ,M}.

So, let a±i (x) ∈ Ai, i ∈M; by de�nition of Ai there exists a subsequence
{tn}n∈N such that

lim
n→+∞

∫
Ii

|u±i (x, tn)− a±i (x)|dx = 0.

Now, from the Proposition (3.2.1) applied to functions u±i (x, t) and ũ±i (x)
we have that the application

(3.4.13) t −→
∑
i∈M

∫
Ii

|u±i (x, t)− ũ±i (x)|dx
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is decreasing in t and thus admits limit K ≥ 0 as t→ +∞. Now, considering
the above subsequence {u±i (x, tn)}n∈N , and taking into account (3.4.13), we
have that

∑
i∈M

∫
Ii

(|a+
i (x)− ũ+

i (x)|+ |a−i (x)− ũ−i (x)|)dx = K;

let us observe function ũ±i (x) verify the boundary conditions (3.1.6) and
(3.1.7) in the node. Now let us observe that by construction we have

∑
i∈M

∫
Ii

a+
i (x) + a−i (x)dx = µ0 + µ =

∑
i∈M

∫
Ii

ũi(x)dx.

Our aim is to prove that K ≡ 0 and that all the sequence {u±i (x, t)}t≥0

converge to a±i (x) for each i ∈M.
So, let a±i (x, t), with i = 1, . . . ,M , be the solution of the problem (3.1.2)

with initial data a±i (x) and boundary conditions (3.4.6), (3.1.6), and (3.1.7).
Let us observe that the functions a±i (x, t) belong to Ai, for each i ∈M and
for each t ≥ 0, because the set A is invariant under the �ow generated by
the contraction semigroup of (3.1.2); so for each �xed t ≥ 0, a±i (x, t) also are
accumulation points for u±i (x, t), and in particular we have that

∑
i∈M

∫
Ii

|a+
i (x, t)− ũ+

i (x)|+ |a−i (x, t)− ũ−i (x)|dx = K.

To show that a±i (x, t) = ũ±i (x), for each t ≥ 0 and i ∈ M, �rst of all we
remark that on the boundary points this is true by construction.

Then, we show that functions u±i (x, t) are continuous and Lipschitz in
Ii; the goal is obtained if we prove that the family {u±i (x, t)}t≥0 is uniformly
bounded together with their spatial derivatives (u±i (x, t))x. From Propo-
sition (3.4.3) we have that functions u±i (x, t) and (u±i (x, t))t are uniformly
bounded for each i ∈M and t ≥ 0. Then, by equations for u±i , we have that

(u±i )x =
∓(u±i,t) + g±(u+

i , u
−
i )

λi
,

so they are uniformly bounded too.
Thus functions u±i are continuous in Ii, i ∈M, and as a consequence we

have that a±i (x, t) are continuous too.
Now, applying Proposition (3.4.1) to solutions a±i (x, t) and ũ±i (x) we

have that

K =
∑
i∈M

∫
Ii

|a±i (x, t)−ũ±i (x)|dx ≤
∑
i∈M

∫
Ii

|a±i (x)−ũ±i (x)|dx−
∫ T

0

∫
Ii

I(x, s)dxds
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= K −
∫ T

0

∑
i∈M

∫
Ii

Li(x, s)dxds

for each t ≥ 0, so since I(x, s) ≥ 0, we must have that Li(x, s) = 0 for each
x ∈ Ii, t ≥ 0, i ∈M. By de�nition of Li(x, s) this implies that

(3.4.14) sgn(a+
i (x, t)− ũ+

i (x)) = sgn(a−i (x, t)− ũ−i (x)),

or

(3.4.15) a±i (x, t) = ũ±i (x),

since functions a±i (x, t) and ũ±i (x) are continuous. Let us assume (3.4.14) to
be true while (3.4.15) to be false. So, denoting by (ũ±i )−1(x) the inverse of
function ũ±i (x), for each i ∈M, let us consider the following functions:

h±i (x, t) := (ũ±i )−1(a±i (x, t)) =
2 log(

αa±i (x,t)

λ2
i

)

Ci
.

The above functions are well de�ned because constants Ci > 0 for each
i ∈M. We claim that h+

i (x, t) = h−i (x, t) for each index i. In fact, assuming
for example h+

i < h−i , for some index i and for some (x, t) ∈ Ii×R+ and let
h+
i (x, t) < hi,0(x, t) < h−i (x, t). Then, by continuity of ũ±i (x), we have

sgn(a±i (x, t)− ũ±i (hi,0(x, t))) = sgn(ũ±i (h±i (x, t))− ũ±i (hi,0(x, t)))

= sgn(h±i (x, t)− hi,0(x, t)) = ∓1,

but this is impossible because, in the above expression, (3.4.14) is violated.
So we have that h+

i (x, t) = h−i (x, t) for each i ∈ M and (x, t) ∈ Ii × R+,
which implies that

a+
i (x, t) = a−i (x, t),

for each (x, t) ∈ Ii × R+. In particular, we have that vi(x, t) = λi(a
+
i −

a−i )(x, t) ≡ 0, thus, because of functions a±i are solutions of the problem
(3.1.2), from the �rst equation of it, we deduce that a+

i (x, t) = a−i (x, t) =
a±i,0(x) for each t ≥ 0. Then a±i must a stationary solution of (3.1.2). Because
of the total mass of a±i is equal to the total mass of ũ±i (x), by the uniqueness
of a stationary solution of a �xed positive total mass, we conclude that

a±i (x, t) = ũ±i (x),

for each (x, t) ∈ Ii × R+, i ∈M, and this conclude the proof.
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Chapter 4

The hyperbolic-parabolic

model on a network

This chapter is devoted to the study of existence of solutions of a non linear
hyperbolic-parabolic problem de�ned on a networkN composed ofM arcs Ii,
i = 1, . . . ,M , and a single node N , according to the de�nition (2.5.1). Before
starting we resume some results about hyperbolic problems with boundary
conditions.

4.0.1 Boundary values problems

Let us consider the general semilinear boundary values problem of the form

(4.0.1)


∂tu+∇v = 0,

∂tv + λ2∇u = F (u)− v,
u(x, 0) = u0(x), v(x, 0) = v0(x),

v(0, t) = vb(t),

where in general the functions u, v ∈ I ⊂ Rn × [0, T ], (T > 0, n ≥ 1), for
x ≥ 0, t ≥ 0 and F ∈ C1(I). The parameter λ is the characteristic �nite
speed of propagation of the densities u and v. This model is characterized
by a �nite speed of propagation and it is based on the so-called Cattaneo
system. The numerical approximation of the above initial boundary value
problem for conservation law has been studied by several authors. It has been
studied numerical schemes for multi-dimensional discretizations for scalar
equations and their convergence has been proved in various situations using
for example the �nite volume method, or the �nite element method. Usually,
the hyperbolic problem (4.0.1) is approximated by a sequence of problems
of the form
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(4.0.2)

{
∂tu

ε + ∂xv
ε = 0,

∂tv
ε + λ2∂xu

ε = 1
ε (F (uε)− vε),

and it is coupled with boundary and initial conditions:
vε(0, t) = vb(t),

uε(x, 0) = u0(x),

vε(x, 0) = F (u0(x)).

It has been shown numerically the existence and uniqueness of the solution
of this problem. Convergence of the method holds under strong restrictions:
in fact the initial boundary data must be a small perturbation of a constant
state (ũ, ṽ), which is supposed such that F ′(ũ) 6= 0. In case of particular
boundary data, Natalini and Terracina have been proved convergence of the
scheme without the previous restrictions (see [33], [31], [19]). Moreover, their
results have been extended to the case of any set of velocities by Milisic ([25]).
The case of systems is an open problem. In a recent work ([26]), Milisic has
discretized the problem (4.0.2) with a particular choice for F , in such a way
that when ε → 0, he obtains a convergent numerical scheme for the initial
boundary value problem for the conservation law (4.0.1). Such scheme is a
kinetic scheme �rstly introduced in the framework of Boltzmann approach
of hydrodynamics problems.

We want to recall that it is known that the boundary conditions of the
general system (4.0.1) cannot be imposed in general, and one looks for a
condition which is to be e�ective only in the in�ow part of the boundary.
Several attempts have been done in this direction in the scalar case as well as
for systems. In some cases, it has been proved global existence and unique-
ness of bounded variation solutions thanks to their property of having strong
traces. More recently, Otto gave a formulation of boundary conditions which
allows to prove existence and uniqueness for bounded and measurable data
([9]). Another possibility is to consider the half Riemann problem in the
quarter space x > 0, t > 0 and it has been used Godunov scheme to solve
this boundary value problem.

In the previous Chapter we have studied the existence and uniqueness
of solution of a linear hyperbolic system of equations de�ned on a network
N composed of M arcs Ii, and nodes Nh ∈ Vint, and we have shown that
transmission boundary conditions must be imposed in a way which ensures
the total �ux conservation on each node of the network. This model arise
from biology and it describes the movement of a cell population on �bres
of extracellular matrix, namely a sca�old, and with two possible verses of
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movement on each arc Ii characterized by two possible velocities ±λi. The
movement of cells is generally in�uenced by presence of a chemoattractant
φi(x, t), but in the previous Chapter we have assumed to be characterized
by a constant gradient all over the network.

In this Chapter we will study the non linear hyperbolic-parabolic system
arising after considering a chemical signal φi(x, t) variable in space and time
on each arc Ii of the network. Chemical signal di�usion follows heat di�usion
at rate Di, so we assume that it veri�es on each arc Ii the parabolic heat
equation

φit = Diφ
i
xx + a(ui+ + ui−)− bφi,

where Di, a and b are positive constants. Such kind of models are based
on an adaptation to the chemotactic case of the so-called hyperbolic heat
or Cattaneo or telegraph equation, adding a source term accounting for the
chemotactic motion in the equation for the �ux.

So, let N be an oriented network composed of M arcs Ii , i = 1, . . . ,M ,
and a single node N . According to de�nition (2.5.1), let E be the set of
incoming road in the node N , and U be the outcoming ones, and let E∪U =
M. We model the movement of a cell population ui, i ∈M on N , in�uenced
on each arc by the presence of a chemical signal φi(x, t). On each arc of
the network we have two possible verses of movement for the densities of
cells u+

i and u−i , with velocities ±λi respectively. Let ui = u+
i + u−i , and

vi = λi(u
+
i − u

−
i ), i ∈ M. We consider the following hyperbolic-parabolic

system of equations

(4.0.3)


uit + vix = 0,

vit + λ2
iu
i
x = −vi +G(ui, φi, φix),

φit = Diφ
i
xx + aui − bφi,

for i ∈ M, where x ∈ Ii, t ≥ 0. The functions ui : Ii × R+ → R, represent
the total density of cell population on each arc, vi : Ii×R+ → R the �uxes of
population on each arc, and the functions φi : Ii×R+ → R the concentrations
of the chemical signal on each arc Ii, which in�uence movement of cells.
The parameters λi represent the �nite speeds of propagation of the cells on
each arc Ii. The positive constants Di are the di�usion coe�cients of the
chemoattractants, while the positive coe�cients a and b, are respectively
the production and the degradation rate. The source term G(ui, φi, φix) is a
smooth function. Then, system (4.0.3) is coupled with initial and boundary
conditions opportunely de�ned.

As previously observed, this problem is a more general case of (3.1.2)
studied in Chapter 3, because previously we have supposed that the gradient
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of chemoattractant, φix, to be constant on each arc and equal to α; in this
more general case we have a variable chemical signal φ(x, t) in space and
time.

In this Chapter we will prove the local and global existence of solutions of
this problem under some assumptions about the source terms G(ui, φi, φix),
i ∈ M. Chapter is organized as follows: in the �rst section we give an
exactly formulation of the problem. Then we begin proving local existence
and uniqueness of solution of the problem under the assumption of the local
lipschitzianity of the function G. To do this, we will use some results of
semigroup theory and a �xed point theorem; in particular we will show the
monotonicity and maximality of the operator associated to problem (4.0.3).
Then, in the last section we will show that it is possible to extend local
solution to a global one in case of a particular choice of the source term
G(ui, φi, φix).

4.1 Formulation of the problem

Let us consider an oriented network N with M arcs Ii, i = 1, . . . ,M , and
a single node N and let u±i = 1

2(ui ± vi

λi
) such that ui = u+

i + u−i and
vi = λi(u

+
i − u−i ). We consider system (4.0.3) written in the equivalent

diagonal way

(4.1.1)



u+
i t + λiu

+
i x = 1

2λi
((g−(φi, φix, u

−
i )− g+(φi, φix, u

+
i )),

u−i t − λiu
−
i x = − 1

2λi
(g−(φi, φix, u

−
i )− g+(φi, φix, u

+
i )),

φit = Diφ
i
xx + a(u+

i + u−i )− bφi,

where u±i ∈ C(R+;H1(Ii)), φi ∈ C(R+;H2(Ii)), the coe�cients λi,Di, b,
a are positive constants, and g±(φi, φix, u

±
i ) are smooth functions; together

with this system we consider initial data

(4.1.2) ui(x, 0) = u+
i (x, 0) + u−i (x, 0) = (u+

i,0 + u−i,0) ∈ H1(Ii),

(4.1.3) vi(x, 0) = λi(u
+
i (x, 0)− u−i (x, 0)) = λi(u

+
i,0 − u

−
i,0) ∈ H1(Ii),

(4.1.4) φi0(x) = φi0(x) ∈ H2(Ii),

and boundary conditions as follows. On the outer boundary points ai for
each i ∈M we impose �ux null conditions vi(ai, t) = 0, i.e.,
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(4.1.5) u+
i (ai, t) = u−i (ai, t).

On the outer boundaries, we also consider no-�ux Neumann boundary con-
ditions for φi,

(4.1.6) φix(ai, t) = 0,

i ∈M. This condition could be generalized, for example in the case when we
assume that there is a production of cells on the boundary. Let us describe
how to de�ne the conditions at a node; this is an important point, since the
behaviour of the solution will be very di�erent according to the conditions we
choose. So, on the node N we impose the following transmission conditions
for the functions u±i :

(4.1.7) u−i (N, t) =
∑
j∈E

ξi,ju
+
j (N, t) +

∑
j∈U

ξi,ju
−
j (N, t)

if i ∈ E, and

(4.1.8) u+
i (N, t) =

∑
j∈E

ξi,ju
+
j (N, t) +

∑
j∈U

ξi,ju
−
j (N, t),

if i ∈ U , where the constant ξi,j ∈ [0, 1] for each index i, j are the transmission
coe�cients. We are not interested in having the continuity of the densities
at the node but we are interested in having the continuity of the �uxes at
the node, which yields

(4.1.9)
∑
i∈E

λi(u
+
i (N, t)− u−i (N, t)) =

∑
i∈U

λi(u
+
i (N, t)− u−i (N, t)),

so transmission coe�cients have to verify

(4.1.10)
∑
i∈M

ξi,jλi = λj ,

for each j ∈ M. This condition leads the global mass conservation at any
time t > 0,

(4.1.11)
∑
i∈M

∫
Ii

ui(x, t)dx =
∑
i∈M

∫
Ii

ui0(x).

Now let us consider the transmission conditions for φi. Also in this case,
we do not impose the continuity of the density of the chemoattractants, but
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only the continuity of the �ux at node N . Therefore, we use the Kedem-
Katchalsky permeability conditions [21], which has been �rst proposed in
the case of �uxes through a membranes: denoting with ∂nφ

i the partial
derivative along the normal direction of a surface, they set

Di∂nφ
i =

∑
j 6=i

ki,j(φ
j − φi),

i ∈ M. The condition ki,j = kj,i, i, j = 1, . . . ,M yields the conservation of
the �uxes through the membrane, i.e.,

(4.1.12)
∑
i∈M

Di∂nφ
i = 0.

Here we choose ki,j ≡ α, where α is a positive constant. So we set

(4.1.13) Diφ
i
x(N, t) = α

∑
j 6=i

(φj(N, t)− φi(N, t)),

if i ∈ E, and

(4.1.14) Diφ
i
x(N, t) = α

∑
j 6=i

(φi(N, t)− φj(N, t)),

if i ∈ U .
In the following we turn to variables ui, vi, φi, i ∈M, and so we turn to

consider the equivalent problem (4.0.3)

(4.1.15)


uit + vix = 0

vit − λ2
iu
i
x = −vi +G(ui, φi, φix)

φit = Diφ
i
xx + aui − bφi,

with initial and boundary conditions opportunely transformed.

4.2 The homogeneous case

Let N be an oriented network composed of M arcs Ii, i = 1, . . . ,M , and a
single node N , and let E be the set of incoming arcs in the node, and U be
the outcoming ones, and E ∪ U = M. The aim of this section is to prove
the uniqueness and global existence of the solutions of the following linear
problem
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(4.2.1)


uit + vix = 0,

vit − λ2
iu
i
x + vi = 0,

φit = Diφ
i
xx − bφi,

de�ned on N , with initial and boundary conditions (4.1.2), (4.1.3), (4.1.4),
(4.1.5), (4.1.6), (4.1.7), (4.1.8), (4.1.13), and (4.1.14) previously introduced.
To prove this, we will use some results of the semigroups theory (see Chapter
1). We will show that the evolution operator A associated to system (4.2.1)
generates a contraction semigroup S(t) on an Hilbert space. Thanks to
semigroup theory (see Chapter 2), we have that the solutionWi = (ui, vi, φi),
i = 1, . . . ,M of (4.2.1) can be written, for each t > 0, as

Wi(t) = S(t)Wi(0).

We will prove that A is a monotone and maximal operator on a particular
Hilbert space. In this way, we can use the Hille Yosida Theorem to have the
existence of the solution of (4.2.1) through the generation of a contraction
semigroup.

4.2.1 Monotonicity of the operator

We need some preliminary results which we will use in the following. Let us
�rst focus on the fact that in order to show the monotonicity and maximal-
ity of the operator associated to problem (4.2.1), e need to work with the
symmetrized problem of (4.2.1). Thus, from now on, we denote by

ui = u+
i + u−i ,

and
vi = u+

i − u
−
i .

Making this change of variable, the problem (4.2.1) is equivalent to the
symmetric problem

(4.2.2)


uit + λiv

i
x = 0

vit + λiu
i
x + vi = 0

φit = Diφ
i
xx − bφi,

with initial and boundary conditions opportunely transformed. For each
index i ∈M we are looking for solutions (ui, vi, φi) belonging to the Banach
space (C(R+;H1(Ii)))

3, i ∈M.
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Remark 4.2.1. For each �xed t ≥ 0, the norm of a vector Zi(., t) =
(ui(., t), vi(., t), φi(., t)) ∈ (C(R+;H1(Ii)))

3 is de�ned as

||Zi(t)|| := ||ui(., t)||H1(Ii) + ||vi(., t)||H1(Ii) + ||φi(., t)||H1(Ii).

Now, let us observe that for each i = 1, . . . ,M , we can rewrite (4.2.2) as
the evolution problem

(4.2.3) Zit +AiZ
i = 0

where for each index i the function Zi is the vector Zi := (ui, wi, φi). We
have denoted by Ai the di�erential operator given by the following matrix

 0 λi∂x 0
λi∂x 1 0

0 0 −Di∂xx + b

 ,

De�nition 4.2.1. For each i ∈ M, let D(Ai) the domain of the operator
Ai (4.2.1). We have that

(4.2.4) Ai : D(Ai)→ L2(Ii)× L2(Ii)× L2(Ii),

for each i ∈M; let us de�ne

(4.2.5) D(Ai) := {(ui, vi, φi) ∈ H1(Ii)×H1(Ii)×H2(Ii)such that (4.1.5),

(4.1.6),(4.1.7),(4.1.8),(4.1.13), (4.1.14) hold}.

Moreover let us de�ne the set

(4.2.6) D(A) :=
⋃
i∈M

D(Ai),

and let A be the di�erential operator

A : D(A)→
⋃
i∈M

L2(Ii)× L2(Ii)× L2(Ii),

such that

(4.2.7) A|D(Ai) = Ai.
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We introduce the following notation. Let W = (w1, . . . , wk) and Z =
(z1, . . . , zk). We denote by W ·Z the inner product of W and Z in the space
L2(Ii)× . . . , L2(Ii), i.e.,

W · Z :=

k∑
i=1

∫
I
ziwidx.

Our aim is to �nd conditions on the transmission coe�cients ξi,j , i, j =
1, . . . ,M , in order to have the monotonicity of the operator A (4.2.7) on its
domain D(A), which yields

M∑
i=1

AiZi · Zi ≥ 0,

where Zi = (ui, wi, φi), i = 1, . . . ,M .

So, computing
∑M

i=1A
iZi · Zi we obtain

M∑
i=1

AiWi·Wi =
∑

i∈E∪U

∫
Ii

λi(u
ivi)xdx−

∫
Ii

Diφ
i
xxφdx+

∫
Ii

(vi)2dx+

∫
Ii

b(φi)2dx

≥
∑
i∈M

(

∫
Ii

λi(u
ivi)xdx−

∫
Ii

Diφ
i
xxφdx) ≥

∑
i∈M

(λiu
i(N)vi(N)−Diφ

i
x(N)φi(N))

=
∑
i∈E

(λi((u
+
i (N))2 − (u−i (N))2)−

∑
i∈U

(λi((u
+
i (N))2 − (u−i (N))2)

−
∑
i∈E

Diφ
i
x(N)φi(N) +

∑
i∈U

Diφ
i
x(N)φi(N).

From now on, we denote by

S1 :=
∑
i∈E

(λi((u
+
i (N))2 − (u−i (N))2)−

∑
i∈U

(λi((u
+
i (N))2 − (u−i (N))2)

−
∑
i∈E

Diφ
i
x(N)φi(N) +

∑
i∈U

Diφ
i
x(N)φi(N).
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Case of two arcs

We begin studying the simpler case M = 2. In other words, we are
considering the simpler network composed of only two arcs represented by
the closed intervals [a1, N ] and [N, a2].

In this case, the boundary conditions on the node N are

u−1 (N, t) = ξ1,1u
+
1 + ξ1,2u

−
2 ,

u+
2 (N, t) = ξ2,1u

+
1 + ξ2,2u

−
2 ,

D1φ
1
x(N, t) = α(φ2(N, t)− φ1(N, t)),

and
D2φ

2
x(N, t) = α(φ1(N, t)− φ2(N, t)).

The condition of �ux conservation becomes in this case

(4.2.8) λ1 = λ1ξ1,1 + λ2ξ1,2, λ2 = λ1ξ2,1 + λ2ξ2,2;

while the term S1 becomes

(4.2.9) S1 = λ1((u1
+(N))2 − (u1

−(N))2)− λ2((u2
+(N))2 − (u2

−(N))2)

−D1φ
1
x(N)φ1(N) +D2φ

2
x(N)φ2(N).

In this case we can �nd necessary and su�cient conditions in order to have
S1 ≥ 0. In fact we have that the following Proposition holds.

Proposition 4.2.1. Let M = 2 and let us assume that condition (4.2.8)
holds. Given the di�erential operator A (4.2.7), then it is monotone on its
domain D(A) if and only if the following conditions hold:

(4.2.10) ξ2,2 =
λ1(ξ1,1 − 1)

λ2
+ 1

(4.2.11) max{0, λ1 − λ2

λ1 + λ2
} ≤ ξ1,1 ≤ 1,

Proof. Let us study the non negativity of the term S1. Let us assume that
(4.2.11), and (4.2.10) hold. Substituting the transmission conditions on the
node in 4.2.9 we get

S1 = λ1((u1
+(N))2− (ξ1,1u

1
+ + ξ1,2u

2
−)2)−λ2((ξ2,1u

1
+ + ξ2,2u

2
−)2− (u2

−(N))2)
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+(α(φ2(N, t)−φ1(N, t)))(φ2(N, t)−φ1(N, t)) = λ1((u1
+(N))2−(ξ1,1u

1
++ξ1,2u

2
−)2)

−λ2((ξ2,1u
1
+ + ξ2,2u

2
−)2 − (u2

−(N))2) + α(φ2(N, t)− φ1(N, t))2;

now let us observe that thanks to the conditions on the node for the functions
φ1
x and φ2

x and the choice α > 0, we obtain that the quantity α(φ2(N, t) −
φ1(N, t))2 is always non negative. So we have to study the non negativity of
the quantity

λ1((u1
+(N))2 − (ξ1,1u

1
+ + ξ1,2u

2
−)2)− λ2((ξ2,1u

1
+ + ξ2,2u

2
−)2 − (u2

−(N))2).

We have that

λ1((u1
+(N))2 − (ξ1,1u

1
+ + ξ1,2u

2
−)2)− λ2((ξ2,1u

1
+ + ξ2,2u

2
−)2 − (u2

−(N))2).

= (λ1(1− ξ2
1,1)− λ2ξ

2
1,2)(u1

+)2 − 2(λ1ξ1,1β2,1 + λ2ξ1,2ξ2,2)u1
+u

2
−

+(λ2(1− ξ2
2,2)− λ1ξ

2
2,1)(u2

−)2.

Thus we have obtained a bilinear form in the variables (u1
+,u

2
−), and we

want it is semide�nite positive. Denoting by B1 := λ1(1 − ξ2
1,1) − λ2ξ

2
1,2,

B2 := λ1ξ1,1ξ2,1 +λ2ξ1,2ξ2,2, and B3 := λ2(1− ξ2
2,2)−λ1ξ

2
2,1, then the matrix

B associates to bilinear form is

(
B1 B2

B2 B3

)

From the condition of �ux conservation (4.2.8) we have

(4.2.12) ξ1,2 =
λ1

λ2
(1− ξ1,1), ξ2,1 = λ2

λ1
(1− ξ2,2),

so we have
B1 = λ1(1− β2

1,1)− λ2β
2
1,2

= λ1(1− β1,1)(1 + β1,1)− λ2
λ2

1

λ2
2

(1− β1,1)2

=
λ1

λ2
(1− β1,1)(λ2(1 + β1,1)− λ1(1− β1,1));

now, substituting condition (4.2.11) we get B1 ≥ 0. Analogously, substitut-
ing (4.2.12) and (4.2.10) in B3 we get B3 ≥ 0. Now we study det(B):

det(B) = B1B3 −B2
2
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= (λ1(1− ξ2
1,1)− λ2ξ

2
1,2)(λ2(1− ξ2

2,2)− λ1ξ
2
2,1)− (λ1ξ1,1β2,1 − λ2ξ1,2ξ2,2)2

= (1−ξ1,1)(1−ξ2,2)((λ2−λ1)+(λ2+λ1)ξ1,1)((λ1−λ2)+(λ1+λ2)ξ2,2)−(λ1ξ1,1ξ2,1−λ2ξ1,2ξ2,2)2.

De�ning the new variables x := ξ1,1, y := ξ2,2 and ν := λ1
λ2

> 0, from
conditions (4.2.11) and (4.2.16) we have that

(4.2.13)
ν − 1

ν + 1
≤ x ≤ 1,

(4.2.14)
1− ν
ν + 1

≤ y ≤ 1,

and det(B) as

det(B) = (1−x)(1−y)[(1−ν)+(1+ν)x][(ν−1)+(ν+1)y] ≥ [x(1−y)+νy(1−x)]2.

Let us rewrite det(B) de�ning the function

(4.2.15)
Fν(x, y) = (1−x)(1−y)[(1−ν)+(1+ν)x][(ν−1)+(ν+1)y]−[x(1−y)+νy(1−x)]2;

developing the above expression with respect to powers of ν, we �nd

−ν2(1− x)2 + 2(1− x)(1− y)ν − (1− y)2 ≥ 0,

i.e.,
−(ν(1− x) + (1− y))2 ≥ 0

which is veri�ed if and only if

ν(1− x) + (1− y) = 0,

i.e., condition (4.2.10) holds. Now, let us assume the positivity of the quan-
tity (4.2.9), i.e., the matrix B previously de�ned is semide�nite positive.
Thus we have that B1 ≥ 0, B3 ≥ 0 and det(B) ≥ 0. It is easy to see
that the positivity of B1 imply condition (4.2.11), while we have previously
shown that det(B) ≥ 0 if and only if (4.2.10) holds, studying the sign of the
function (4.2.15). Moreover, condition B3 ≥ 0 implies that

(4.2.16) max{0, λ2 − λ1

λ1 + λ2
} ≤ ξ2,2 ≤ 1,

which is satis�ed if (4.2.10) holds.
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Case of M arcs

Let us consider the case of a network N composed of M arcs Ii, M ≥ 3,
and a single node N . In this case the monotonicity of the operator A (4.2.7)
is given by the non negativity of the quantity

(4.2.17) S1 =
∑
i∈E

(λi((u
+
i (N))2−(u−i (N))2)−

∑
i∈U

(λi((u
+
i (N))2−(u−i (N))2)

−
∑
i∈E

Diφ
i
x(N)φi(N) +

∑
i∈U

Diφ
i
x(N)φi(N).

We observe that in this general case we �nd only su�cient conditions for
the non negativity of term S1. In fact the following Proposition holds.

Proposition 4.2.2. If we have that

(4.2.18)
∑
j∈M

ξi,j = 1,

then the operator A (4.2.7) is monotone on its domain D(A).

Proof. Let us study the non negativity of the term S1. Substituting the
boundary conditions for the functions ui± and φi on the node N and devel-
oping the calculus in S1, we �nd

S1 =
∑
j∈E

λj(u
+
j )2 +

∑
k∈U

λk(u
−
k )2 −

∑
(j,k)∈E×E

(
∑

i∈E∪U
λiξi,jξi,k)u

+
j u

+
k

−
∑

(j,k)∈U×U

(
∑

i∈E∪U
λiξi,jξi,k)u

−
j u
−
k − 2

∑
(j,k)∈E×U

(
∑

i∈E∪U
λiξi,jξi,k)u

+
j u
−
k

+α
∑
i 6=j

(φj(N, t)− φi(N, t))2.

Thanks to the choice α > 0, and by the structure of transmission conditions
for φix on the node, we get that the quantity

α
∑
i 6=j

(φj(N, t)− φi(N, t))2 ≥ 0.

Now, let hj,k =
∑

i∈E∪U λiξi,jξi,k, and let us assume that the incoming
arcs are denoted by 1, . . . , R while the outcoming ones by R+ 1, . . . ,M . We
have that term in u±i is a bilinear form in the variables u+

1 , . . . , u
+
R, u

−
R+1, . . . , u

−
M ;
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we want su�cient conditions in having it semide�nite positive. The diagonal
of the matrix of this bilinear is composed by terms λj , j ∈ E, λk, k ∈ U ,
and hj,k, so we note that a necessary condition to have the non negativity
of the form is that for each i ∈M, we must have

λi − hi,i ≥ 0.

Under the previous condition, a su�cient condition is that the matrix must
be diagonal dominant and so to have the positive of the matrix we put

(4.2.19) λi ≥
∑

j∈E∪U
hi,j ,

for each i ∈ E ∪ U . Using the condition of �ux conservation we have∑
j∈M

λjξi,j = λi ≥ hi,i =
∑
i∈M

λjξ
2
i,j ,

namely ∑
j∈M

λjξi,j(1− ξi,j) ≥ 0.

This is satis�ed if 0 ≤ ξi,j ≤ 1 for each i, j ∈ M. We also rewrite the
condition (4.2.19) as∑

j∈M
λjξi,j = λi ≥

∑
i∈M

hi,j =
∑
i∈M

λjξ
2
i,j ,

namely ∑
j∈M

λjξi,j(1−
∑
i∈M

ξi,j) ≥ 0;

these conditions are satis�ed if

0 ≤
∑
j∈M

ξi,j ≤ 1,

for each i ∈ M. Now, using the �ux conservation and summing up for
j = 1, . . . ,M , we obtain ∑

j∈M
λj =

∑
j∈M

∑
i∈M

λiξi,j ,

so we have that ∑
j∈M

λj =
∑
j∈M

∑
i∈M

λiξi,j ≤
∑
i∈M

λi.

Since λi > 0, we can therefore conclude that the previous inequalities are all
equalities, and so we have that su�cient conditions for monotonicity of A
are
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∑
j∈M

ξi,j = 1,

for all i ∈M. Thus we get the proof.

4.2.2 Global existence of solutions of the homogeneous prob-

lem

Let N be an oriented network composed of M arcs Ii and a single node
N , according to de�nition (2.5.1), and let us consider the problem (4.2.2)
with initial and boundary conditions (4.1.2), (4.1.3), (4.1.4), (4.1.7), (4.1.8),
(4.1.13), (4.1.14), (4.1.5), and (4.1.6). In the previous section we have found
that if the transmission coe�cients ξi,j , i, j ∈M satisfy

(4.2.20)
∑
j∈M

ξi,j = 1,

then the linear and unbounded operator A is monotone on its domain D(A).
Now we will prove that the operator A is monotone and maximal on D(A)
(for more details see de�nitions of Chapter 1).

Proposition 4.2.3. Let us consider the problem (4.2.2) with initial and
boundary conditions (4.1.7), (4.1.8), (4.1.13), (4.1.14), (4.1.5), and (4.1.6),
and let ξi,j, i, j ∈ M, verifying (4.2.20). Let A be the linear and unbounded
operator (4.2.7). Then A is monotone and maximal on its domain D(A).

Proof. We have previously shown that A is monotone on D(A). Now, for
each i = 1, . . . ,M , let f i = (f i1, f

i
2, f

i
3) ∈ L2(Ii) × L2(Ii) × L2(Ii). We have

to show that for each �xed f i, i ∈M, the problem

(4.2.21)


ui + λiv

i
x = f i1,

vi + λiu
i
x + vi = f i2,

φi −Diφ
i
xx + bφi = f i3,

i ∈M, coupled with boundary conditions (4.1.7), (4.1.8), (4.1.13), (4.1.14),
(4.1.5), and (4.1.6), admits a unique solution (ui, vi, φi) ∈ (H1(Ii)

2×H2(Ii)),
for each i ∈ M. Let us �rstly consider the last equation, which does not
depend by each others,

(4.2.22) φi −Diφ
i
xx + bφi = f i3,

with its boundary conditions. The linear and non-limited operator associated
to this form is
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Aφ(φ1, . . . , φM ) := (−D1φ
1
xx, . . . ,−DMφ

M
xx)

, for each i ∈M.

Let

D(Aφ) = {H2(I1)× . . . H2(IM )such that (4.1.13),(4.1.14),(4.1.6) hold}.

Let us consider the bilinear form a : (H2(I1)× . . . H2(IM )2 → R de�ned as∑
i∈M

∫
Ii

(1 + b)φiψi +Diφ
i
xψ

i
xdx−

∑
i∈E

Diφ
i
x(N)ψi(N)

+
∑
i∈E

Diφ
i
x(N)ψi(N).

We have that∑
i∈M

∫
Ii

(1 + b)φiψi +Diφ
i
xψ

i
xdx−

∑
i∈E

Diφ
i
x(N)ψi(N)

+
∑
i∈E

Diφ
i
x(N)ψi(N) ≤

∑
i∈M

1 + b+Di

2
||φi||2H2(Ii)

||ψi||2H2(Ii)
,

thus the bilinear form a is continue on (H2(I1)× . . . H2(IM )2. Moreover∑
i∈M

∫
Ii

(1 + b)(φi)2 +Di(φ
i
x)2dx−

∑
i∈E

Diφ
i
x(N)φi(N)

+
∑
i∈E

Diφ
i
x(N)φi(N) ≥

∑
i∈M

(1 + b+Di||φi||2H2(Ii)
;

in the above inequality we have used the fact that, thanks to the transmission
conditions on the node for Diφ

i
x, we have that the following equality holds:

−
∑
i∈E

Diφ
i
x(N)φi(N) +

∑
i∈E

Diφ
i
x(N)φi(N) = α

∑
i 6=j

(φj(N, t)− φi(N, t))2.

Thus the bilinear form a is coercitive too. So applying the Lax-Milgram The-
orem we have that (4.2.22) has a unique solution (φ1, . . . , φM ) ∈ H2(Ii)

M .
Now let us consider the system

(4.2.23)

{
ui + λiv

i
x = f i1,

vi + λiu
i
x + vi = f i2,
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i ∈ M, with boundary conditions previously de�ned. Proceeding as above,
we have that the associated operator is

Au,v((u
1, v1), . . . , (uM , vM )) = {(λivix, λiuix), i ∈M}.

Let
D(Au,v) := {(H1(I1)×H1(I1)), . . . , (H1(IM )×H1(IM ))

such that (4.1.7),(4.1.8),(4.1.5) hold}.
Let us consider the bilinear form a : ((H1(I1) × H1(I1)), . . . , (H1(IM ) ×
H1(IM )))2 → R de�ned as

a((ui, vi), (ui, vi)) =
∑
i∈M

∫
Ii

uiui + vivi + λi(v
i
xu

i + uixv
i)dx.

We claim that this form is continuous and coercitive on D(A). In fact we
have

|a((ui, vi), (ui, vi))| ≤
∑
i∈M

(1 + λi)(||ui||H1 ||ui||H1 + ||vi||H1 ||vi||H1)

and moreover

|a((ui, vi), (ui, vi))| ≥
∑
i∈M

(||ui||2H1 + ||vi||2H1).

To obtain the above inequality we have used the fact that the quantity

λi(v
i
xu

i + uixv
i)dx ≥ 0

is non negative thanks to conditions (4.2.20), as we have shown in the Propo-
sition (4.2.2). Thus by Lax-Milgram Theorem (see Chapter 1) there exists a
unique solution of (4.2.23) belonging in (H1(I1) × H1(I1)), . . . , (H1(IM ) ×
H1(IM )). Observing that the solution {(ui, vi, φi), i = 1, . . . ,M} belongs to
D(A) we get the proof.

We have now proved that the operator A is monotone and maximal
on its domain D(A). Thanks to proposition (1.3.1) in Chapter 1, we get
in particular the density of the domain D(A) and the closure of A in the
Hilbert space

⋃
i∈M(L2(Ii))

3. Now we are ready to prove the main Theorem
of this Chapter.

Theorem 4.2.1. Let us consider the problem (4.2.2), with initial and bound-
ary conditions (4.1.2), (4.1.3), (4.1.4), (4.1.7), (4.1.8), (4.1.13), (4.1.14),
(4.1.5), and (4.1.6), and let ξi,j, i, j ∈M, verifying (4.2.20), i.e,

∑
j∈M ξi,j =

1. Then there exists a unique global solution w = (w1, . . . , wM ), such that,
for each i the function wi = (ui, vi, φi) veri�es

wi ∈ (C1([0,+∞);H1(Ii)))
3 ∩ ([0,+∞);D(Ai)).
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Proof. We have previously shown that under su�cient conditions (4.2.20)
the operator A is monotone, closed and that its domain D(A) is dense in the
functional space

⋃
i∈M(H1(Ii))

3. So A generates a semigroup of contraction
S(t) on D(A); thus applying the Hille-Yosida Theorem, we get the proof.
Moreover we observe that we can write the solution of the problem as w(t) =
S(t)w(0).

Remark 4.2.2. Let us observe that the Hille-Yosida Theorem ensures that
if we choose an initial data wi0 ∈ D(Ai), i ∈ M, then the solution w(t) to
the problem (4.2.2) belongs to D(A) for each time of existence t ≥ 0.

4.3 Local existence of solutions to the general non-

homogeneous case

Let N be an oriented network composed of M arcs Ii, i = 1, . . . ,M , and a
single node N . As in the previous sections, let E the incoming arcs in the
node, U the outcoming ones and E ∪ U = M, as in de�nition (2.5.1). We
turn to consider the non homogeneous problem

(4.3.1)


uit + λiv

i
x = 0,

vit + λiu
i
x = −vi +G(ui, φi, φix),

φit −Diφ
i
xx = aui − bφi,

for each i = 1, . . . ,M , where the functions ui,vi,φi : Ii × R+ → R, and the
coe�cients λi > 0 and a,b > 0, while G : H1 ×H1 ×H1 → H1 is a locally
Lipschitz map. We complete the problem with initial and boundary condi-
tions (4.1.2), (4.1.3), (4.1.4),(4.1.7), (4.1.8), (4.1.13), (4.1.14), (4.1.5), and
(4.1.6), and transmission coe�cients ξi,j , i, j ∈M, verifying

∑
j∈M ξi,j = 1.

From now on, for each i ∈M, let us denote by

F i = (0, G(ui, φi, φix), aui),

the source terms of problems (4.3.1).

4.3.1 Local existence of the solution

Our aim is to prove the existence and uniqueness of the solution of problem
(4.3.1) using a �xed point method.

Theorem 4.3.1. Let us consider the problem (4.3.1), coupled with initial
data and boundary conditions (4.1.2), (4.1.3), (4.1.4),(4.1.7), (4.1.8), (4.1.13),
(4.1.14), (4.1.5), and (4.1.6), and transmission coe�cients ξi,j, i, j ∈ M,
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verifying
∑

j∈M ξi,j = 1. Let us assume that the function G(ui, φi, φix) is a
locally Lipschitz map for each i ∈M. Then there exists a time T ∗ > 0 such
that the problem (4.3.1) has a unique solution (ui, vi, φi), i ∈M.

(4.3.2) wi = (ui, vi, φi) ∈ (C([0, T ];H1(Ii))
3,

for each i = 1, . . . ,M .

The proof follows two steps:

1. �rstly we show the global existence of the solution under the assump-
tion that the functions G is a globally Lipschitz map;

2. then we consider the case of local lipschitzianity.

Proof. Let wi0(x, 0) = (ui0, v
i
0, φ

i
0) ∈ D(Ai), i ∈ M, be the initial data of

(4.3.1), and let S(t) be the semigroup of contraction generated by the opera-
tor A on D(A). By the monotonicity of the operator A (4.2.7) on its domain
D(A) follows that, by the semigroup theory and the Duhamel principle, we
can write the solution of our problem as∑

i∈M
wi(x, t) =

∑
i∈M

S(t)wi0(x) +

∫ t

0
S(t− s)F ids,

where wi(x, t) = (ui(x, t), vi(x, t), φi(x, t)), wi0(x) = (ui0, v
i
0, φ

i
0), and {S(t)}t≥0

is the contraction semigroup generates by the operator A. In the following
we will write ||.||L2 = ||.||, when no confusion arises.

Let G be a globally Lipschitz map with Lipschitz constant K > 0. Thus
G veri�es ∑

i∈M
||G(ui1, φ

i
1, φ

i
1,x)−G(ui2, φ

i
2, φ

i
2,x)||

≤
∑
i∈M

K(||ui1 − ui2||+ ||φi1 − φi2||+ ||φi1,x − φi2,x||),

for each vector wi = (ui1, φ
i
1, φ

i
1,x) and w̃i = (ui2, φ

i
2, φ

i
2,x). First of all we

show that for each i ∈M, F i is globally Lipschitz too. In fact we have∑
i∈M
||F i(wi)− F i(w̃i)||

=
∑
i∈M

a||ui − ũi||+ ||G(ui, φi, φix)−G(ũi, φ̃i, φ̃ix)||

≤
∑
i∈M

a||ui − ũi||+K(||ui − ũi||+ ||φi − φ̃i||+ ||φix − φ̃ix||)
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≤
∑
i∈M

(a+K)||ui − ũi||+K||φi − φ̃i||+K||φix − φ̃ix||)

≤
∑
i∈M

max{a+K,K}(||ui − ũi||+ ||φi − φ̃i||).

Let K = max{a2 +K,K}.
Our aim is to use a �xed point method to prove the existence of the

solution, thus we have to �x a set in which solutions are well de�ned. Let
w = (u1, v1, φ1, . . . , uM , vM , φM ) and let L > 0. Let us de�ne the set

B = {w ∈ D(A)such that
∑
i∈M

(||ui(t)−ui0||+||vi(t)−vi0||+||φi(t)−φi0||) ≤ L};

this is a non empty set because the initial data wi0 belongs to B for each
index i ∈M. Now let us de�ne the map M on B such that

M(w) := w̃ =
∑
i∈M

(S(t)wi0(x) +

∫ t

0
S(t− s)F i(wi, φix)ds).

We have to prove that, for small times t > 0, the map M is a contraction on
B. Firstly we prove that B is an invariant set. We have that

∑
i∈M

(||ũi(t)− ui0||+ ||ṽi(t)− vi0||+ ||φ̃i(t)− φi0||) ≤
∑
i∈M
||S(t)wi0 − wi0||

+
∑
i∈M

||
∫ t

0
S(t− s)F i(wi, φix)ds||.

Because of S(t) is a contraction semigroup, then there exists t > 0 such that,
for each t < t, ∑

i∈M
||S(t)wi0 − wi0|| ≤

L

2
.

Thus we have∑
i∈M

(||ũi(t)−ui0||+||ṽi(t)−vi0||+||φ̃i(t)−φi0||) ≤
L

2
+
∑
i∈M

∫ t

0
||Si(t−s)F i(wi, φix)||ds

≤ L

2
+
∑
i∈M

K

∫ t

0
(||ui||+||vi||+||φi||)ds ≤ L

2
+
∑
i∈M

tK sup
0≤s≤t

(||ui||+||vi|+||φi||).

Let us observe that the vector function (u1, v1, φ1, . . . , uM , vM , φM ) ∈ B,
and so we have∑

i∈M
||wi(t)|| ≤

∑
i∈M

(||ui(t)− ui0||+ ||vi − vi0||+ ||φi − φi0||)
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+
∑
i∈M

(||ui0||+ ||vi0||+ ||φi0||) ≤
∑
i∈M

3L+ (||ui0||+ ||vi0||+ ||φi0||);

so ∑
i∈M
||w̃i(t)− wi0|| ≤

L

2
+
∑
i∈M

tK(3L+ ||ui0||+ ||vi0||+ ||φi0||).

If we choose a time t∗ such that t∗ ≤ L
2(K(3L+

∑
i ||ui0||+||vi0||+||φi0||))

, then we

have ∑
i∈M
||w̃i(t)− wi0|| ≤ L;

thus B is an invariant set. Now we have to prove that the mapM is contrac-
tion on the set B, i.e. ||M(w1)−M(w2)|| ≤ h||w1 − w2||, with the positive
constant h < 1. For each w1, w2 ∈ B, we have

||M(w1)−M(w2)|| ≤
∑
i∈M

∫ t

0
||S(t− s)(F i(wi1, φi1,x)− F i(wi2, φi2,x))||ds

≤
∑
i∈M

K

∫ t

0
(||ui1 − ui2||+ ||vi1 − vi2||+ ||φi1 − φi2||)ds

≤
∑
i∈M

Kt sup
0≤s≤t

(||ui1 − ui2||+ ||vi1 − vi2||+ ||φi1 − φi2||).

If we choose t∗ such that t
′
< 1

K
, then for t ∈ (0, t

′
),

||M(w1)−M(w2)|| ≤
∑
i∈M

h sup
0≤s≤t

(||ui1 − ui2||+ ||vi1 − vi2||+ ||φi1 − φi2||),

with h < 1, therefore for small t the map M is a contraction on the set
B. Thus by the �xed point Theorem, the map M has a unique �xed point
w on B. Moreover, the �xed point w belongs to D(A) because the initial
data wi0 ∈ D(Ai), i ∈ M, i.e. the problem (4.3.1) has a unique solution
in (0,min{t∗, t′)}. Thanks to the global lipschitzianity of the functions F i,
we can iterate this procedure considering problem (4.3.1) with initial data
wi(x,min{t∗, t′)}); thus we obtain a global solution in time.

Now let wi0 ∈ D(Ai), and let us assume that the map G(ui, φi, φix) is
locally Lipschitz, i.e., for each compact set CL

CL = {(ui, φi, φix)such that
∑
i∈M
||ui||+ ||φi||+ ||φix|| ≤ L},

there exists a constant KL such that∑
i∈M
||G(ui1, φ

i
1, φ

i
1,x)−G(ui2, φ

i
2, φ

i
2,x)|| ≤

∑
i∈M

KL(||ui1−ui2||+||φi1−φi2||+||φi1,x−φi2,x||),
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for each vector (ui1, φ
i
1, φ

i
1,x) and (ui2, φ

i
2, φ

i
2,x) belonging in CL. Let us ob-

serve that local lipschitzianity of G implies local lipschitzianity of F i for each
i, with Lipschitz constant KL = max{a + KL,KL}. Now let us �x L0 > 0
and let us consider the set

BL0 = {(ui, vi, φi) :
∑
i∈M
||ui||+ ||vi||+ ||φi|| ≤ L0};

let us denote with KL0 the Lipschitz constant of F i on BL0 ; now let wi0 =
(ui0, v

i
0, φ

i
0) ∈ BL0 be the initial data of (4.3.1). Now, let χ[0,1] : R+ → R be

the characteristic function of interval [0, 1]. For each i ∈ M, let us de�ne
the function

F i(ui, φi, φix) = χ(
||ui||+ ||φi||+ ||φix||

L0
)F i(ui, φi, φix) ={

F i, on BL0

0, on Bc
L0
;

Let us denote by F
i

= (0, G(ui, φi, φix), aui), where

G(ui, φi, φix) =

{
G, on BL0

0, on Bc
L0
;

Let us consider the problem (4.3.1) with source term F i, i.e.
uit + λivix = 0

vit + λiuix + vi = G(ui, φi, φix)

φit −Diφixx = aui − bφi,

for each i ∈M, with boundary conditions (4.1.7), (4.1.8), (4.1.13), (4.1.14),
(4.1.5), and (4.1.6), and initial data (ui0, v

i
0, φ

i
0) ∈ BL0 . The new map F i is

globally Lipschitz on BL0 , so, from the above proof, this new problem has a
unique global solution (ui, vi, φi), i = 1, . . . ,M . We claim that there exists
a time t∗ such that the solution (ui, vi, φi), i = 1, . . . ,M belongs to BL0 for
t ∈ [0, t∗). In fact, let wi = (ui, vi, φi), i = 1, . . . ,M . We have that

∑
i∈M
||wi|| ≤

∑
i∈M
||S(t)wi0||+

∫ t

0
||S(t− s)F i(ui, vi, φi)||ds

+

∫ t

0
||S(t− s)F i(ui, vi, φi)||ds

≤
∑
i∈M
||wi0||+

∑
i∈M

KL0t sup
0≤s≤t

(||wi||).

96



Thus we have that ∑
i∈M

sup
0≤s≤t

(||wi||) ≤
∑

i∈M ||wi0||
1− tKL0

,

with t < 1
KL0

, which implies that if t∗ < 1
KL0

, then

∑
i∈M

sup
0≤s≤t

(||wi||) ≤ L0.

By de�nition of F i, we have that F i = F i, i ∈ M, on BL0 , then from the
uniqueness of the solution, we have that wi = wi, for each i = 1, . . . ,M for
t ∈ [0, t∗). Moreover, we have that wi belongs to D(Ai), i ∈ M, because
wi0 ∈ D(Ai), i.e. we get a local solution of the problem (4.3.1), and this
conclude the proof.

4.4 Global existence of solutions in the case of a

quadratic source term

4.4.1 The H2-semigroup

Let N be an oriented network according to de�nition (2.5.1) of Chapter
2, composed of M oriented arcs Ii, i = 1, . . . ,M , and a single node N .
As before, we denote by E the set of arcs entering in the node, while by
U the set of outgoing ones and we denote by M = E ∪ U . Moreover,
let ai, i = 1, . . . ,M , be the outer boundary points of N ; we denote by
[ai, N ] an entering arc, and by [N, ai] an outgoing arc. In the previous
section we have proved the uniqueness and local existence of the solution
to problem (4.3.1), with initial data and boundary conditions respectively
given by (4.1.2), (4.1.3), (4.1.4), (4.1.7), (4.1.8), (4.1.13), (4.1.14), (4.1.5),
and (4.1.6) under the assumption of local lipschitzianity of the source term
G(ui, φi, φix), for each i ∈ M. In doing so it was su�cient to work with
functions which for each t ≥ 0 take values in the functional space H1(Ii),
ui(t), vi(t), φi(t) ∈ H1(Ii), and so we found a local solution (ui, vi, φi) ∈
(C([0, t∗];H1(Ii)))

3, t∗ > 0, for each i ∈M.
The aim of this section is to extend local solutions to the problem (4.3.1)

to a global solutions. To do this we have to work with functions which
take values in the functional space H2(Ii) to have a better control of the
conditions at node, as we shall see in the following. In the following, given
a network N , we denote by (u, v, φ) ∈ (C([0, T ];X(N )))3 a solution de�ned
on N , which take values on a Banach space X.

So we are looking for a solution (u, v, φ) ∈ (C([0, T ];H2(N )))3. First
we prove the existence and uniqueness of the local solution of (4.3.1) in
H2(Ii), i ∈ M, i.e., (ui, vi, φi) ∈ ([0, T ];H2(Ii)))

3, T > 0, for each i ∈ M.
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To achieve this result we have to introduce some supplementary boundary
conditions, which manage the transmission of the derivatives. Therefore we
extend our solutions to global solutions in time by considering the following
map G(ui, φi, φix):

(4.4.1) G(ui, φi, φix) = uiχ(φi)φix,

for each i ∈ M, where the function χ(φi) veri�es some properties. So, for
each i ∈M, we consider the symmetric hyperbolic-parabolic problem

(4.4.2)


uit + λiv

i
x = 0,

vit + λiu
i
x = −vi + uiχ(φi)φix,

φit = Diφ
i
xx + aui − bφi,

where ui is the density on each arc Ii, vi is the average of the �ux on Ii,
and φi the density of the chemical signal. Parameters λi, Di, a, and b
are, respectively, the �nite speed of propagation, the di�usion coe�cient
of chemical signal, the rate of release, and the rate of degradation on each
interval Ii.

Let us assume that the function χ : Ii × R+ → R belongs to W 1,∞(Ii ×
R+), i.e., that there exist positive real constants χ0, χ1 and χ2 such that

(4.4.3) |χ(φ)| ≤ χ0, |χ′(φ)| ≤ χ1.

We have seen that the di�cult of this model comes from the presence
of the node which forced us to choose speci�c transmission conditions on
transmission in order to have the existence of the solution. In this Chapter we
will prove a global existence results for solutions to (4.4.2), �nding suitable
energy estimates of functions in H2.

Let ui = u+
−+u−i , v

i = u+
−−u−i as in (4.2.1), and let us consider problem

(4.4.2) coupled with initial conditions

(4.4.4)
ui(x, 0) = ui0 ∈ H2(Ii), v

i(x, 0) = vi0 ∈ H2(Ii), φi(x, 0) = φi0(x) ∈ H3(Ii)

and boundary conditions as follows. On the outer boundary points we put
no �ux conditions

(4.4.5) ui+(ai, t) = ui−(ai, t),

and

(4.4.6) φix(ai, t) = 0.
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On the node N we impose, as previously, the transmission conditions

(4.4.7) u−i (N, t) =
∑
j∈E

ξi,ju
+
j (N, t) +

∑
j∈U

ξi,ju
−
j (N, t),

if i ∈ E, and

(4.4.8) u+
i (N, t) =

∑
j∈E

ξi,ju
+
j (N, t) +

∑
j∈U

ξi,ju
−
j (N, t),

if i ∈ U . Let us assume that transmission coe�cients ξi,j verify condition

(4.4.9)
∑
i∈M

λiξi,j = λj .

for each j ∈M which guarantees the continuity of total �ux on the node N ,
i.e.,

(4.4.10)
∑
i∈E

vi(N, t) =
∑
i∈U

vi(N, t),

and the global mass conservation at any time t > 0,∑
i∈M

∫
Ii

ui(x, t)dx =
∑
i∈M

∫
Ii

ui0(x).

Let us also assume the transmission coe�cients verify the monotonicity con-
dition that

(4.4.11)
∑
j∈M

ξi,j = 1.

On the node N we also impose the continuity of the total �ux of φi. For
each index i ∈M we impose the Kedem-Kadtchasky transmission conditions

(4.4.12) Diφ
i
x(N, t) = α

∑
j 6=i

(φj(N, t)− φi(N, t)),

if i ∈ E, and

(4.4.13) Diφ
i
x(N, t) = α

∑
j 6=i

(φi(N, t)− φj(N, t)),

if i ∈ U , where α > 0 is a positive constant. This condition implies that∑
i∈U

Diφ
i
x(N, t) =

∑
i∈E

Diφ
i
x(N, t).
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Now let us observe that the choice of looking for solutions inH2(Ii) forced
us to impose other transmission conditions at the node for the problem. We
�rst impose that

(4.4.14) Diφ
i
xx(N, t) = β

∑
i 6=j

(φjx(N, t)− φix(N, t)),

if i ∈ E, and

(4.4.15) Diφ
i
xx(N, t) = β

∑
i 6=j

(φix(N, t)− φjx(N, t)),

if i ∈ U , for a positive constant β > 0.
Then, as in the case of transmission conditions for functions u±i , we want

that on each arc Ii, each spatial derivative of u±i is a linear combination
of each other spatial derivatives of functions on the other arcs. So we are
looking for some coe�cients ξ̃i,j such that

(4.4.16) ∂x(u−i )(N, t) =
∑
j∈E

ξ̃i,j∂x(u+
j )(N, t) +

∑
j∈U

ξ̃i,j∂x(u−j )(N, t)

if i ∈ E, and

(4.4.17) ∂x(u+
i )(N, t) =

∑
j∈E

ξ̃i,j∂x(u+
j )(N, t) +

∑
j∈U

ξ̃i,j∂x(u−j )(N, t),

if i ∈ U .
Now, we recall that we are looking for global solutions, and in order to

do this, we impose the following crucial transmission condition on the node
N :

(4.4.18)
∑
i∈E

λ2
i (∂x(vi,2))(N, t) =

∑
i∈U

λ2
i (∂x(vi,2))(N, t).

Up to now, this condition has only a technical meaning but its role will be
clear in the following. Computing the above conditions on the �uxes, we
�nd that the transmission coe�cients ξ̃i,j , i, j ∈ M, have to satisfy some
compatibility conditions.

We �rst begin showing conditions on transmission coe�cients ξ̃i,j in the
case of two arcs.

Case of two arcs: transmission conditions for coe�cients ξ̃i,j
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We have that in this case the conditions for the spatial derivatives of
functions u−1,x(N, t) and u+

2,x(N, t) on the node are

(4.4.19) u−1,x(N, t) = ξ̃1,1u
+
1,x(N, t) + ξ̃1,2u

−
2,x(N, t),

and

(4.4.20) u+
2,x(N, t) = ξ̃2,1u

+
1,x(N, t) + ξ̃2,2u

−
2,x(N, t),

for some coe�cients ξ̃i,j , i, j = 1, 2. Then, in this case, condition (4.4.18)
becomes

(4.4.21) λ2
1v

1(N, t)v1
x(N, t) = λ2

2v
2(N, t)v2

x(N, t);

From the condition of �ux conservation (4.4.10) we have that λ1v
1(N, t) =

λ2v
2(N, t), thus we must have that

(4.4.22) λ1v
1
x(N, t) = λ2v

2
x(N, t),

i.e., we are asking the continuity of the spatial derivatives of total �ux on the
node N . Substituting in the above expression the transmission conditions
(4.4.19) and (4.4.19) we �nd the following conditions on coe�cients ξ̃i,j ,
i, j = 1, 2:

(4.4.23) λ1ξ̃1,1 + λ2ξ̃2,1 = λ1,

and

(4.4.24) λ1ξ̃1,2 + λ2ξ̃2,2 = λ2.

Let us observe that the above conditions are of the same type that the condi-
tion (4.4.9) for coe�cients ξi,j that we found in order to have the continuity
of the total �ux at node.

Case of M arcs: transmission conditions for the coe�cients ξ̃i,j

In this case, we want to show that condition (4.4.18) can be satis�ed,
i.e.: there exist some transmission coe�cients ξ̃i,j , i, j ∈M such that

(4.4.25)
∑
i∈E

λ2
i v
i(N, t)vix(N, t) =

∑
i∈U

λ2
i v
i(N, t)vix(N, t).
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Let us introduce the new variables

βi,j :=

{
ξi,i − 1, if i = j
ξi,j , if i 6= j

and γi,j :=

{
ξ̃i,i − 1, if i = j

ξ̃i,j , if i 6= j

Let us observe that from conditions (4.4.9) and (4.4.11) on transmission
coe�cients ξi,j , i, j ∈M, we have that∑

i∈M
λiβi,j = 0, for each j ∈M

and ∑
j∈M

βi,j = 0, for each i ∈M.

Now, from conditions (4.4.7), (4.4.8), (4.4.16), (4.4.17) we have that in the
above variables

vi(N, t) = −
∑
i∈E

βi,ju
+
j (N, t)−

∑
i∈U

βi,ju
−
j (N, t), if i ∈ E,

vi(N, t) =
∑
i∈E

βi,ju
+
j (N, t) +

∑
i∈U

βi,ju
−
j (N, t), if i ∈ U

and
vix(N, t) = −

∑
i∈E

γi,ju
+
j,x(N, t)−

∑
i∈U

γi,ju
−
j,x(N, t), if i ∈ E,

vix(N, t) =
∑
i∈E

γi,ju
+
j,x(N, t) +

∑
i∈U

γi,ju
−
j,x(N, t)if i ∈ U.

Thus, computing (4.4.25) yields∑
i∈E

λ2
i v
i(N, t)vix(N, t)−

∑
i∈U

λ2
i v
i(N, t)vix(N, t)

=
∑
i∈E

λ2
i (
∑
i∈E

βi,ju
+
j (N, t)+

∑
i∈U

βi,ju
−
j (N, t))(

∑
i∈E

γi,ju
+
j,x(N, t)+

∑
i∈U

γi,ju
−
j,x(N, t))

−
∑
i∈U

λ2
i (
∑
i∈E

βi,ju
+
j (N, t)+

∑
i∈U

βi,ju
−
j (N, t))(

∑
i∈E

γi,ju
+
j,x(N, t)+

∑
i∈U

γi,ju
−
j,x(N, t)) = 0.

The above expression is an inde�nite bilinear form in the variables (u+
i , u

−
j , u

+
i,x, u

−
j,x),

i ∈ E, j ∈ U . Therefore it is identically null if and only if all its coe�cients
are equal to zero. By developing calculation we obtain the following result.
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Proposition 4.4.1. Let us consider the coe�cients βi,j and γi,j, i, j ∈ M,
de�ned as

βi,j :=

{
ξi,i − 1, if i = j
ξi,j , if i 6= j

and γi,j :=

{
ξ̃i,i − 1, if i = j

ξ̃i,j , if i 6= j

The condition (4.4.18) is satis�es if the following condition holds

(4.4.26)
∑
i∈E

λ2
iβi,jγi,h −

∑
i∈U

λ2
iβi,jγi,h = 0,

for each j, h ∈M. Moreover, for each set of coe�cients βi,j, i, j ∈M, such
that (4.4.26) holds, it is possible to �nd a non empty set of values for the
coe�cients γi,j, i, j ∈M.

Proof. We have shown that condition (4.4.18) is satis�es if (4.4.26). Now we
have that for each �xed h ∈ M, the expression (4.4.26) is a linear and ho-
mogeneous system in the variables (γ1,h, . . . , γM,h), whose associated matrix
is



λ2
1β1,1 . . . λ2

|E|β|E|,1 −λ2
|E|+1β|E|+1,1 . . . −λ2

MβM,1

... . . . . . .
. . . . . . . . .

... . . . . . .
. . . . . . . . .

... . . . . . .
. . . . . . . . .

... . . . . . .
. . . . . . . . .

λ2
Mβ1,M . . . λ2

|E|β|E|,M −λ2
|E|+1β|E|+1,M . . . −λ2

MβM,M


The rows of the above matrix are linearly dependent thanks to condition

that
∑

j∈E βi,j = 0, for each i ∈ M. Thus, for each h ∈ M, the above
system admits non trivial solutions.

The reminder of this section is organized as follows: �rst we will show the
uniqueness and local existence of solution to (4.4.2), (u, v, φ) ∈ (C(R+;H2(N )))3

under the new boundary conditions with a monotonicity requirement on co-
e�cients. Then we will �nd suitable energy estimates for the local solutions
(u, v, φ) in order to prove the global existence Theorem. Proof of this Theo-
rem is based on a Continuation Principle and on the estimates a particular
functional in the vector variables (ui, vi, φi), i ∈M.
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Local existence of smooth solutions

Let us consider the restriction of the di�erential operators Ai associated
to problem (4.4.2) and de�ned in (4.2.1) to the set Dχ(Ai),

Dχ(Ai) := {(ui, vi, φi) ∈ H2(Ii)×H2(Ii)×H3(Ii) : (4.4.5), (4.4.6), (4.4.27)

(

4.4.7), (4.4.16), (4.4.8), (4.4.17), (4.4.12), (4.4.13), (4.4.14), (4.4.15),uix(ai, t) =
0 hold}.

and the restriction of the operator A de�ned in (4.2.1) to the set Dχ(A),

(4.4.28) Dχ(A) :=
⋃
i∈M

Dχ(Ai) ⊂ D(A).

We have that

(4.4.29)
Ai(Dχ(Ai)) ⊂ (H1(Ii)×H1(Ii)×H1(Ii)) ⊂ (L2(Ii)× L2(Ii)× L2(Ii)),

and
(4.4.30)
A(Dχ(A)) ⊂

⋃
i∈M

(H1(Ii)×H1(Ii)×H1(Ii)) ⊂
⋃
i∈M

(L2(Ii)×L2(Ii)×L2(Ii)).

The aim of this section is to prove the following Theorem.

Theorem 4.4.1. Let us consider the hyperbolic-parabolic problem (4.4.2),
with initial and boundary conditions (4.4.4), (4.4.5), (4.4.6), (4.4.7), (4.4.16),
(4.4.8), (4.4.17), (4.4.12), (4.4.13), (4.4.14), (4.4.15), and the function χ ∈
W 2,∞, which veri�es (4.4.3). Let us assume that the transmission coe�cients
verify (4.4.11) for each i ∈M, and that

(4.4.31)
∑
j∈M
|ξ̃i,j | ≤ 1,

for each i ∈ M. Then there exists a time t∗ such that there exists a unique
solution (ui, vi, φi) ∈ (C([0, t∗);H2(Ii)))

3, i ∈M.
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The strategy of the proof is the following: we show the monotonicity
and maximality of the operator A on its domain Dχ(A), thus A generates
a contraction semigroup on D(A); then we use a point �xed Theorem to
prove local existence of solution of (4.4.2). Let us observe that to prove local
existence of solutions we do not need of condition (4.4.18). This condition
is only needed to prove the global existence of solutions.

Proof. First we have to show that the operator A is monotone and maximal
on its domain Dχ(A). Let us observe that the maximality of A on Dχ(A)
follows as in the proof of Proposition (4.2.3). Moreover, in the previous
section we have shown that A is monotone on D(A), thus to establish the
monotonicity of A on Dχ(A) we have to prove that the inner product

(4.4.32)
∑
i∈M

(AiZi)x · Zix ≥ 0,

where Zi = (ui, vi, φi), i ∈M. Computing the �rst derivatives with respect
to the variable x of the problem (4.4.2) we obtain that

(4.4.33)
∑
i∈M

(AiZi)x · Zix =
∑
i∈E

λiu
i
xv
i
x(N)−

∑
i∈U

λiu
i
xv
i
x(N)

−
∑
i∈E

Diφ
i
xx(N)φix(N) +

∑
i∈U

Diφ
i
xx(N)φix(N).

We recall that uix(ai, t) = 0. First let us consider the hyperbolic part,
namely

S2 =
∑
i∈E

λiu
i
x(N)vix(N)−

∑
i∈U

λiu
i
x(N)vix(N).

We recall that for each i ∈M we have ui = u+
i + u−i and vi = u+

i − u
−
i ,

so substituting these quantities in the above expression we get

(4.4.34) S2 =
∑
i∈E

λi((u
+,i
x )2 − (u−,ix )2)−

∑
i∈U

λi((u
+,i
x )2 − (u−,ix )2);

We recall that conditions at the node are

∂x(u−i )(N, t) = −
∑
j∈E

ξ̃i,j∂x(u+
j )(N, t) +

∑
j∈U

ξ̃∂x(u−j )(N, t)

if i ∈ E, and

∂x(u+
i )(N, t) =

∑
j∈E

ξ̃i,j∂x(u+
j )(N, t)−

∑
j∈U

ξ̃i,j∂x(u−j )(N, t),
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if i ∈ U . Substituting conditions at the node in (4.4.34), we �nd the following
bilinear form∑

j∈E
λj(u

+
j,x)2 +

∑
k∈U

λk(u
−
k,x)2 −

∑
(j,k)∈E×E

(
∑
i∈M

λiξ̃i,j ξ̃i,k)u
+
j,xu

+
k,x

−
∑

(j,k)∈U×U

(
∑
i∈M

λiξ̃i,j ξ̃i,k)u
−
j,xu

−
k,x

−2
∑

(j,k)∈E×U

(
∑
i∈M

λiξ̃i,j ξ̃i,k)u
+
j,xu

−
k,x.

Following the proof of monotonicity of A (4.2.2), we have that a su�cient
condition in order to have the non negativity of the above quantity is∑

j∈M
|ξ̃i,j | ≤ 1,

i.e., condition (4.4.31) is satis�ed. Thus we have concluded the study of the
hyperbolic part.

Now we have to study the non negativity of the quantity

Sφ = −
∑
i∈E

Diφ
i
xx(N)φix(N) +

∑
i∈U

Diφ
i
xx(N)φix(N).

Substituting the conditions (4.4.14), and (4.4.15) in the above expression,
and following the proof of (4.2.2) we obtain that

Sφ = β
∑
i 6=j

(φjx(N, t)− φix(N, t))2,

which is always non negative thank to choice of β > 0.
So we have obtained that the operator A is monotone on Dχ(A). Now,

let us observe that in this case the boundary condition uix(ai, t) = 0 follows
from the boundary conditions vi(ai, t) = 0 and φix(ai, t) = 0. Moreover, we
observe that the source terms uiχ(φi)φix, i ∈M, are locally Lipschitz maps.
So, following the proof of Theorem (4.3.1), we have that there exists a time
t∗ > 0 such that we get the local existence and the uniqueness of solution to
(4.4.2), (ui, vi, φi) ∈ (C([0, t∗);H2(Ii)))

3. i ∈M.

4.4.2 Global existence of smooth solutions

The aim of this section is to prove the global existence of solution to problem
(4.4.2). To prove this fact, we observe that condition (4.4.18) for the total
�ux in the node N is crucial.

In order to do this, �rst of all we recall that a local solution to (4.4.2),
(ui, vi, φi) ∈ (C([0, t∗);H2(Ii)))

3, t∗ > 0, exists and in particular it belongs
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to Dχ(A) for each time of its existence. Then we will �nd a priori uniform in
time estimates for the local solution. We observe that we are working with
the norm of the codomain of the operator A,

⋃
i∈M(H1(Ii))

3. Therefore,
thanks to these uniform estimates, we can extend the local solution to a
global one. Finally, this solution belongs to D(A) for each time t ≥ 0 thanks
to Theorem (1.3.1) (see Chapter 1).

Thus we want to prove the following Theorem.

Theorem 4.4.2. Let us consider the hyperbolic-parabolic problem (4.4.2),
coupled with initial and boundary conditions (4.4.4), (4.4.5), (4.4.6), (4.4.7),
(4.4.16), (4.4.8), (4.4.17), (4.4.13), (4.4.14), (4.4.15), and the function χ ∈
W 2,∞, which veri�es (4.4.3). Let us assume that condition (4.4.18) is satis-
�ed, and that transmission coe�cients ξi,j and ξ̃i,j satisfy conditions (4.4.11)
and (4.4.31).

Then there exists a unique global solution ui ∈ (C([0,∞];H2(Ii)), vi ∈
(C([0,∞];H2(Ii)), φi ∈ (C([0,∞];H2(Ii)), i ∈M.

For the following, we recall the following Continuation Principle for local
solutions (see [19] and [1]).

Theorem 4.4.3. (Continuation Principle) Let T = Tmax < +∞ the max-
imal time of existence of a local solution of the problem (4.4.2), coupled
with initial and boundary conditions (4.4.4), (4.4.5), (4.4.6), (4.4.7), (4.4.8),
(4.4.16), (4.4.17), (4.4.13),(4.4.14), (4.4.15), and the function χ ∈ W 2,∞,
which veri�es (4.4.3). Then

lim sup
t→T−

∑
i∈M

(||ui||H2(Ii) + ||vi||H2(Ii) + ||φi||H2(Ii)) = +∞.

Proof. Let (ui, vi, φi), i = 1, . . . ,M a local solution on the maximal interval
of time [0, Tmax). Let us consider a time T > Tmax, and suppose that there
exists an a priori estimate for the solution (ui, vi, φi) such that∑

i∈M
sup

[0,Tmax)
(||ui||H2(Ii) + ||vi||H2(Ii) + ||φi||H2(Ii)) ≤ K.

Let (ui0, v
i
0, φ

i
0), i = 1, . . . ,M , such that

∑
i∈M ||ui0||H2(Ii) + ||vi0||H2(Ii) +

||φi0||H2(Ii)) ≤ K be initial data for our problem, and let TL
2 > 0 be the

maximal time of existence of the corresponding solution of this problem.
Then there exists a time t̃ ∈ (Tmax − TL

2 , Tmax) such that we can consider
our problem with initial data (ui(x, t̃), vi(x, t̃), φi(x, t̃)), with i = 1, . . . ,M .
So, the corresponding solution of this new problem extends the solution
with initial data (ui0, v

i
0, φ

i
0), i = 1, . . . ,M , and exists for a maximal time

T̃ = t̃+ TL
2 > Tmax, but this is a contradiction.
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By the Continuation Principle, if we �nd a priori uniform estimates in
time for the local solution to (4.4.2), then it exists for all times t ≥ 0.

Now, let wi(x, t) := (ui, vi, φi), i = 1, . . . ,M , be the local solution of
(4.4.2). For each i = 1, . . . ,M , let us de�ne the following functionals:

(4.4.35) F 2
i (t) := sup

0≤s≤t
||wi(s)||2H1 +

∫ t

0
||wi(s)||2H1ds,

and

(4.4.36) F 2(t) =
∑
i∈M

F 2
i (t).

The proof of the global existence Theorem (4.4.2) follows two principal steps:

1. for each �xed time t ≥ 0, we will �nd suitable energy estimates in
the space H1(Ii) × H1(Ii) × H1(Ii) for functions (ui(t), vi(t), φi(t)),
i = 1, . . . ,M ;

2. then, we will �nd and estimate for the functional F 2(t) using the energy
estimates for (ui, vi, φi), i = 1, . . . ,M , in order to use the Continuation
Principle to extend the local solution to (4.4.2) to a global one.

We recall the following Lemma due to Nishida (see [19]).

Lemma 4.4.1. (Nishida) Let F 2(t) be the functional de�ned in (4.4.36).
Let T > 0 and let wi = (ui, vi, φi), i ∈ M be a local solution to the problem
(4.4.2) in the interval [0, T ]. Let us assume that there exist positive constants
k > 0 and C > 0 such that if F 2(t) ≤ k, then

(4.4.37) F 2(t) ≤ C(F 2(0) + F 3(T )).

Then the solution wi, i ∈M exists for all times t ∈ [0,+∞].

We start with an energy estimate for the function φi, i ∈M, which will
be useful in the following.

Lemma 4.4.2. (Energy estimate for
∫ t

0 ||φ
i
xx||2L2(Ii)

ds) Let φi, i ∈ M, be a
local solution to the problem (4.4.2). Then for each i ∈M it veri�es

(4.4.38)∫ t

0
||φixx||2L2(Ii)

ds ≤ (
a(a+ b)

Di
+ αa)

∫ t

0
||ui||2H1 +

b(a+ b)

Di

∫ t

0
||φi||2L2

+α(Diαβ + a+ b)

∫ t

0

∑
i∈M
||φi||2H1ds+ ||φi0||2H1 .
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Proof. From the equation for φi, we have that, for each i ∈M,

Diφ
i
xx = φit − aui + bφi.

Let i ∈ E (calculus for i ∈ U are analogous). Multiplying by φixx and inte-
grating on Ii and [0, t], we have that, using the Cauchy-Schwartz inequality,

(4.4.39) Di

∫ t

0
||φixx||2L2 ≤

a

2ε

∫ t

0
||ui||2L2 +

b

2ε

∫ t

0
||φi||2L2

+
ε(a+ b)

2

∫ t

0
||φixx||2L2 +

∫ t

0

∫
Ii

φitφ
i
xxdxds.

We have

∫ t

0

∫
Ii

φitφ
i
xxdxds =

∫ t

0
φix(N, s)φit(N, s)ds−

1

2

∫ t

0

∫
Ii

∂t((φ
i
x)2)dxds

=

∫ t

0
φix(N, s)(Diφ

i
xx(N, s) + aui(N, s)− bφi(N, s))ds+

1

2
||φi0||2H1 .

We have

Di

∫ t

0
φix(N, s)φixx(N, s)ds ≤ Diαβ

∫ t

0

∑
j 6=i

(φj(N, s)−φi(N, s))
∑
j 6=i

(φjx(N, s)−φix(N, s))

≤ Diα
2β

2

∫ t

0

∑
i∈M
||φi||2H1(Ii)

ds.

Moreover, we have that

a

∫ t

0
φix(N, s)ui(N, s)ds ≤ αa

2

∫ t

0

∑
i∈M
||φi||2H1(Ii)

+ ||ui||2H1ds,

and

b

∫ t

0
φix(N, s)φi(N, s)ds ≤ αb

2

∫ t

0

∑
i∈M
||φi||2H1(Ii)

ds.

Substituting the above inequalities in (4.4.39) we get

(Di −
ε(a+ b)

2

∫ t

0
||φixx||2L2 ≤

a

2ε

∫ t

0
||ui||2L2 +

b

2ε

∫ t

0
||φi||2L2

+
Diα

2β + αa+ αb

2

∫ t

0

∑
i∈M
||φi||2H1(Ii)

ds

+
αa

2

∫ t

0
||ui||2H1ds.

Now, choosing ε = a+b
4Di

we get the proof.
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Lemma 4.4.3. (Zero order estimate for the functions (ui, vi, φi), i = 1, . . . ,M)
Let (ui, vi, φi), i = 1, . . . ,M , be the local solution to the problem (4.4.2).
Then it veri�es

(4.4.40)
∑
i∈M

(||wi||2L2 +

∫ t

0
||vi||2L2ds) ≤

∑
i∈M

(2||wi0||2L2 +
a

2

∫ t

0
||ui||2L2ds

+(
a

2
− b)

∫ t

0
||φi||2L2 +

χ0

2λi
sup

0≤s≤t
||ui||H1

∫ t

0
||φix||2L2 + ||vi||2L2ds).

Proof. For each i ∈ M, let wi := (ui, vi, φi) be the local solution to (4.4.2).
Multiplying the problem (4.4.2) for the vector wi and integrating on Ii we
have that

∂t

2

∫
Ii

(wi)2dx ≤ −
∫
Ii

(vi)2dx+

∫
Ii

uiχ(φi)φixv
idx+a

∫
Ii

uiφidx−b
∫
Ii

φi,2dx;

we observe that we have no in�uence from the boundary terms for (ui, vi, φi)
thanks to the monotonicity of the operator A (4.2.7) founded in the previous
sections. By the Cauchy-Schwartz inequality and the boundness of the func-
tion χ(φi), and then integrating on 0 and t, we get the following estimate:

(4.4.41) ||wi||2L2 +

∫ t

0
||vi||2L2ds ≤ 2||wi0||2L2 +

a

2

∫ t

0
||ui||2L2ds

+(
a

2
− b)

∫ t

0
||φi||2L2 +

χ0

2λi
sup

0≤s≤t
||ui||H1

∫ t

0

∫ t

0
||φix||2L2 + ||vi||2L2ds.

Summing up on i ∈M we obtain

(4.4.42)
∑
i∈M

(||wi||2L2 +

∫ t

0
||vi||2L2ds) ≤

∑
i∈M

(2||wi0||2L2 +
a

2

∫ t

0
||ui||2L2ds

+(
a

2
− b)

∫ t

0
||φi||2L2 +

χ0

2λi
sup

0≤s≤t
||ui||H1

∫ t

0

∫ t

0
||φix||2L2 + ||vi||2L2ds),

and we get the proof.

Lemma 4.4.4. (First order estimate for the functions (ui, vi, φi), i = 1, . . . ,M)
For each i ∈ M, let wi := (ui, vi, φi) be the local solution to the problem
(4.4.2). Let us assume that transmission coe�cients ξ̃i,j, i, j ∈ M, verify
(4.4.31). Then wi, i ∈M, satis�es

(4.4.43)
∑
i∈M

(||wix||2L2 +

∫ t

0
||vix||2L2ds) ≤

∑
i∈M

(2||(wi0)x||2L2 +
a

2

∫ t

0
||uix||2L2ds
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+(
a

2
− b)

∫ t

0
||φix||2L2ds+

χ0

2

∫ t

0
||uix||2L2ds+

χ0

4

∫ t

0
||vix||4L2ds

+
χ0

4

∫ t

0
||φix||4L2ds+

χ1

2
sup

0≤s≤t
||ui||H1

∫ t

0
(||vix||2L2 + ||φix||4L2)ds

+
χ0

2
sup

0≤s≤t
||ui||H1

∫ t

0
(||vix||2L2 + ||φixx||2L2)ds.

Proof. Deriving with respect the spatial variable x the system 4.4.2 we obtain

(4.4.44)


uixt + λiv

i
xx = 0,

vixt + λiu
i
xx = −vix + uixχ(φi)φix + uiχ′(φi)φi,2x + uiχ(φi)φixx,

φixt = Diφ
i
xxx + auix − bφix,

for each i ∈ M. Multiplying the above equations for the vector wix =
(uix, v

i
x, φ

i
x), and integrating with respect to Ii and s ∈ [0, t] and summing

up on i ∈M we have that

∑
i∈M

(

∫
Ii

(wix)2dx+

∫ t

0

∫
Ii

(λi(u
i
xv
i
x)x −Diφ

i
xxxφ

i
xx)dxds

+

∫ t

0

∫
Ii

(vix)2dx) ≤
∑
i∈M

(2||(wi0)x||2L2 +
a

2

∫ t

0
||uix||2L2ds

+(
a

2
− b)

∫ t

0
||φix||2L2ds+

χ0

2

∫ t

0
||uix||2L2ds+

χ0

4

∫ t

0
||vix||4L2ds

+
χ0

4

∫ t

0
||φix||4L2ds+

χ1

2
sup

0≤s≤t
||ui||H1

∫ t

0
(||vix||2L2 + ||φix||4L2)ds

+
χ0

2
sup

0≤s≤t
||ui||H1

∫ t

0
(||vix||2L2 + ||φixx||2L2)ds,

where we have used the Cauchy-Schwartz inequality.
Now let us consider the term

S3 =
∑
i∈M

∫ t

0

∫
Ii

(λi(u
i
xv
i
x)x −Diφ

i
xxxφ

i
xx)dxds.

We have that

(4.4.45) S3 =

∫ t

0

∑
i∈E

λiu
i
xv
i
x(N)−

∑
i∈U

λiu
i
xv
i
x(N)ds

−
∫ t

0

∑
i∈E

Diφ
i
xx(N)φix(N) +

∑
i∈U

Diφ
i
xx(N)φix(N)ds.
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Let us observe that there are no in�uence for terms on boundary points ai
since from boundary conditions vi(ai, t) = 0 and φix(ai, t) = 0, it follows that
uix(ai, t) = 0. Then we have that the above expression is always non negative
under the assumptions (4.4.31), thanks to the monotonicity of the operator
A on Dχ(A). In conclusion, we found that under conditions (4.4.31), the
�rst order estimate (4.4.43) holds, and we get the proof.

Energy estimate for
∫ t

0 ||u
i||2H1

To prove Theorem (4.4.2) we also need to estimate the quantity∫ t

0
||ui||2H1 .

Let us �rst observe that using the Poincarè inequality we have that

(4.4.46)
∫ t

0
||ui||2L2 ≤ C

∫ t

0
||uix||2L2 ,

for a positive constant C.

Now we estimate
∫ t

0 ||u
i
x||2L2 .

Lemma 4.4.5. Let wi = (ui, vi, φi), i ∈M, be a local solution to the problem
(4.4.2), and let ui = u+

i + u−i . Let us assume that the �uxes on the node N ,
vi(N, t), i ∈M, verify condition (4.4.18).

Then we have

(4.4.47)
∫ t

0
||uix||2L2ds ≤ (||ui0||2H1 + ||vi0||2H1) + λi||vi||2H1

+2λi

∫ t

0
||vi||2H1ds+

χ0

λi
sup

0≤s≤t
||ui||H1

∫ t

0
(||uix||2L2 + ||φix||2L2)ds.

Proof. For each i ∈ M, let us consider the second equation of problem
(4.4.2),

(4.4.48) vit + λiu
i
x = −vi + uiχ(φi)φix.

Let i ∈ E (calculations for i ∈ U are analogous). Multiplying this equation
for λiuix and integrating with respect to x and t, we have that

(4.4.49)

λ2
i

∫ t

0

∫
Ii

(uix)2dxds = −λi
∫ t

0

∫
Ii

vitu
i
xdxds−λi

∫ t

0

∫
Ii

viuixdxds+λi

∫ t

0

∫
Ii

uiuixχ(φi)φixdxds.
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We have

−
∫ t

0

∫
Ii

viuixdxds ≤
1

2δ

∫ t

0
||vi||2L2ds+

δ

2

∫ t

0
||uix||2L2ds,

and we have∫ t

0

∫
Ii

uiuixχ(φi)φixdxds ≤
χ0

2
sup

0≤s≤t
||ui||H1

∫ t

0
(||uix||2L2 + ||φix||2L2)ds.

Moreover we have to study the term

−λi
∫ t

0

∫
Ii

vitu
i
xdxds.

We have

vitu
i
x = (viuix)t − viuixt = (viuix)t − (viuit)x + (vix)2.

Thus

−λi
∫ t

0

∫
Ii

vitu
i
xdxds = −λi

∫
Ii

(vi(t)uix(t)− vi0uix,0)dx− λi
∫ t

0
||vix||2L2ds

+λ2
i

∫ t

0
vi(N, s)vix(N, s)ds

≤ λi
2

(||ui0||2H1 + ||vi0||2H1) +
λi
2η
||vi||2L2 +

λiη

2
||uix||2L2

+λ2
i

∫ t

0
vi(N, s)vix(N, s)ds.

Thus, substituting in (4.4.49) and summing up on i ∈M, we obtain

∑
i∈M

(λi −
η

2
− δ

2
)

∫ t

0
||uix||2L2ds ≤

∑
i∈M

(
1

2
(||ui0||2H1 + ||vi0||2H1) +

1

2η
||vi||2H1

+
1

2δ

∫ t

0
||vi||2H1ds

+
χ0

2
sup

0≤s≤t
||ui||H1

∫ t

0
(||uix||2L2 + ||φix||2L2)ds)

+
∑
i∈E

λ2
i

∫ t

0
vi(N, s)vix(N, s)ds−

∑
i∈U

λ2
i

∫ t

0
vi(N, s)vix(N, s)ds.
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Thanks to condition (4.4.18) we have that the term∑
i∈E

λ2
i v
i(N, s)vix(N, s)ds−

∑
i∈U

λ2
i v
i(N, s)vix(N, s) = 0.

So, choosing η = δ = λi
2 , we get:∫ t

0
||uix||2L2ds ≤ (||ui0||2H1 + ||vi0||2H1) + λi||vi||2H1

+2λi

∫ t

0
||vi||2H1ds+

χ0

λi
sup

0≤s≤t
||ui||H1

∫ t

0
(||uix||2L2 + ||φix||2L2)ds.

Existence and uniqueness of global solutions: proof of the The-

orem (4.4.2)
For each index i ∈ M, let wi = (ui, vi, φi), and let us consider the

functionals

(4.4.50) F 2
i (t) := sup

0≤s≤t
||wi||2H1(Ii)

+

∫ t

0
||wi||2H1ds,

and

(4.4.51) F 2(t) :=
∑
i∈M

F 2
i (t).

We have that the following Lemma holds.

Lemma 4.4.6. There exist positive constants Ki
0, K

i
1, K

i
2, K

i, Ki
3, and K

i
4

depending only on initial data and coe�cients of the problem such that the
functional F 2(t) satis�es the following estimate

(4.4.52) F 2(t) ≤
∑
i∈M

(Ki
0F

2
i (0) +Ki

2(a, λi)F
2
i (t) +Ki

3F
3
i (t) +K4F

4
i (t)).

In particular, we can choose

Ki
2(a, λi, α, β) =

a

2
+ 2λi +Diα

2β

Proof. Collecting together all the energy estimates of the previous section
we easily get the proof.

Now we can prove Theorem (4.4.2). The proof is divided into two
steps. In the �rst step we show that we have to choose the coe�cient∑

i∈MKi
2(a, λi, α, β) < 1 together with small initial data in order to have

the global existence of the solution. In the second step we show that there
exist change of variables in which the corresponding problems admit global
solutions for small initial data.
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Proof. Step one: From the previous Lemma, we have that the functional
F 2(t) veri�es

F 2(t) ≤
∑
i∈M

(Ki
0F

2
i (0) +Ki

2(a, λi)F
2
i (t) +Ki

3F
3
i (t) +K4F

4
i (t)).

Using Nishida's Lemma, we have that, if the term F 2
i (0) is su�ciently

small and the the coe�cient
∑

i∈MKi
2(a, λi, α, β) veri�es the condition∑

i∈M
Ki

2K
i
2(a, λi, α, β) < 1

, (4.4.53)

then we get a global estimate in time for the local solution (ui, vi, φi), i ∈M.
Therefore, by Nishida's Lemma we can extend the local solution to a global
one. Choosing small initial data wi0 = (u1

0, v
i
0, φ

i
0), i ∈ M, we can make

the coe�cient Ki
0F

2
i (0) small as we want, and choosing coe�cients λi, a, α,

and β such that condition (4.4.53) holds, then we get a global solution to
problem (4.4.2).

Step two: Now we want to show that there exist change of variables such
that for small initial data the corresponding problems admit global solutions.

We have that

Ki
2(a, b,Di, α, β, λi) =

a

2
+ 2λi +Diα

2β

Now, for each i ∈M, let us consider the change of variables

y =
x

x̃
, t = t

t̃
,

U i =
ui

ũi
, V i = vi

ṽi
, and Φi = φi

φ̃i
,

where t̃, x̃, ũi, ṽi, φ̃i will be chosen in the following.
Thus the equations of our problem become in these new variables, for

each i = 1, . . . ,M ,

(4.4.54)


U i
t̃

+ λi t̃ṽi

x̃ũi
V i
y = 0,

V i
t̃

+ λi t̃ũi

x̃ṽi
U iy = −t̃V i + ũi t̃φ̃i

λiṽi
U iχ(Φi)Φi

x,

Φi
t = Di t̃

x̃2 Φi
yy + at̃ũi

φ̃i
U − bt̃Φi.

Let us choose
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ũi = ṽi,

for each index i, and
t̃ = φ̃i = 1.

So the system becomes

(4.4.55)


U i
t̃

+ λi
x̃ V

i
y = 0,

V i
t̃

+ λi
x̃ U

i
y = −V i + 1

λi
U iχ(Φi)Φi

x,

Φi
t = Di

x̃2 Φi
yy + at̃ũiU − bΦi.

With the previous equations we have obtained an equivalent problem,
de�ned on new scaled intervals Ĩi = x̃Ii, and with new coe�cients λ̃i, ã, b̃,
D̃i, de�ned as

ã = aũi, b̃ = b, D̃i = Di
x̃2 , and λ̃i = λi

x̃ .

In the new variables, the coe�cient Ki
2(a, b,Di, α, λi) becomes, for each i ∈

M,

Ki
2 =

aũi

2
+

2λi
x̃

+
Diα

2β

x̃2
.

Now, let us observe that choosing the parameter ũi such that

(4.4.56)
∑
i∈M

ũi <
∑
i∈M

(
2

a
(1− 2λi

x̃
− Diα

2β

x̃2
)),

and the parameter x̃ such that

(4.4.57) x̃ > min{4λi,
√

2Diα2β},

then the term
∑

i∈MKi
2(a, λi, α, β) < 1.

Thus we can conclude the proof of the Theorem. We have that choosing
the change of variables such that conditions (4.4.56) and (4.4.57), and for
small initial data, then there exist constants C > 0 and k > 0 such that
F 2(t) < k and

F 2(t) ≤ C(F 2(0) + F 3(t) + F 4(t)).

Thus, from Nishida's Lemma, we have that there exists a unique global
solution (ui, vi, φi), i ∈M, to problem (4.4.2).
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