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Pharmacokinetics of Gemcitabine 

 

Introduction 

1. Pancreatic Cancer (PC) 

In spite of advances made in the management of the other more common 

cancers of the gastrointestinal tract, significant progress in the treatment of 

pancreatic cancer (PC) remains elusive. 

The pancreas is a coarsely lobulated yellowish gland that lies somewhat 

obliquely in the retroperitoneum, extending from the duodenal C loop and 

running cephalad to the splenic hilum. The gland is divided into somewhat 

arbitrary sections: the head (with a small, posterior uncinate process), neck, 

body, and tail. Tumors of the pancreatic head arise to the right of the superior 

mesenteric vein–portal vein confluence and include tumors of uncinate origin. 

Tumors of the pancreatic body arise between the superior mesenteric vein–

portal vein confluence and the left lateral aspect of the aorta. Tumors of the 

pancreatic tail are located lateral to the aorta, extending out to the splenic 

hilum [1]. 

 

 

Fig. 1 
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The prognosis for pancreatic cancer is unfavorable in the most of the cases 

and pancreatic adenocarcinoma occurs in 80% of the diagnosed patients, in 

only the 10% of them the disease is confined to the pancreas. Of the 

remaining patients, 40% have regional involvement at diagnosis and 50% 

demonstrate metastasis [1]. The surgical resection is the only chance for long-

term survival, but when the disease is metastatic or locally invasive, the 

surgery is no longer a feasible approach. Less than 20 % of the patients have 

resectable disease at diagnosis. Accurate preoperative staging is important in 

determining which patients will be able to undergo curative resection, because 

in many cases patients, who seemed to be operative candidates 

preoperatively, were subsequently found to have local spread or distant 

diseases. 

Despite the continuous progresses in the imaging diagnosis and the 

availability of new therapeutic system, the mortality rate for pancreatic cancer 

is still constant, if not increasing. Including all the stages of the disease, only 

the 20% of the patients survive within the first year and the 5 years survival 

rate is only 5%. The number of new cases of pancreatic cancer in 2007 

increased to 37,170 in the USA [2], with an almost identical rate of death, 

probably because most pancreatic cancer are advanced at the moment of the 

diagnosis, since many  early symptoms often are no recognized. Some of the 

common symptoms are abdominal pain, jaundice, anorexia, weight loss, and 

depression and they depend on the size and the location of the tumor and of 

the metastasis as well. In general in patients with liver metastasis, the clinical 

state deteriorates rapidly. 

 

Epidemiology, etiology and genetics aspects 

In the United States, incidence rates of PC increased threefold between 1920 

and 1978, an increase that has also been observed in other developed 

countries [3, 4].Rates for men and for women have modestly declined since 

1978 and appear to have stabilized at the current rates. A portion of the 

increased incidence may have been attributable to more accurate disease 
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diagnosis and less disease misclassification. Additionally, improved 

surveillance may account for a small portion of the increased incidence. 

A positive relationship exists between certain environmental exposures and 

cases of PC, including personal cigarette smoking, environmental tobacco 

smoke (ETS), and chemical exposures. [3, 4]  

It has been proved that tobacco smoke exposure plays a significant role in the 

development of PC. It has been estimated that tobacco smoking contributes 

to the development of 20% to 30% of PCs.[4] The strongest associations 

between cigarette smoking and PC have been observed when the pack-years 

smoked were within the previous 10 years.[3] Smoking cessation can reduce 

this risk. Indeed, Mulder et al. [5] have estimated that moderate reduction in 

smoking in Europe could save almost 68,000 lives that would otherwise be 

lost to PC by the year 2020. 

Also a certain number of demographic risk factors have been associated with 

the development of PC worldwide and they included are older age (most PCs 

occur between the ages of 60 and 80), African American race, low 

socioeconomic status, and Ashkenazi Jewish heritage (related to germline 

mutations) [4]. 

Several conditions such as a history of diabetes mellitus (DM), chronic 

cirrhosis, pancreatitis, a high-fat/cholesterol diet, and prior cholecystectomy 

[3, 4] have been associated with an increased risk of PC. The association 

between DM, pancreatitis, and the development of PC is complex because 

PC, by destroying the pancreatic parenchyma, can itself cause DM and 

pancreatitis. 

Metaanalysis of 20 epidemiologic studies on the association between DM and 

PC confirms that the pooled relative risk of PC in persons with DM for 5 years 

is double (relative risk, 2.0; confidence interval, 1.3 to 2.2) the risk of persons 

without DM [3]. The analysis further suggested that impaired glucose 

tolerance, insulin resistance, and hyperinsulinemia are involved in the etiology 

of PC. 

Ojajarvi, I.A., et al. performed a metaanalysis of 20 population studies of 

occupational exposures and PC from journal publications during the period 
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1969 to 1998 [6]. Exposure to chlorinated hydrocarbon solvents, nickel and 

nickel compounds, chromium compounds, polycyclic aromatic hydrocarbons, 

organochlorine insecticides, silica dust, and aliphatic solvents conveyed 

elevated risk ratios. Overall, the occupational etiologic fraction for PC was 

estimated at 12%, but it increased to 29% when the chlorinated hydrocarbon 

solvents were considered in a subpopulation. 

Elevated serum levels of organochloride compounds 

(dichlorodiphenyltrichlorethane, dichlorodiphenyldichloroethylene, and 

polychlorinated biphenyls), are also associated with the development of PC 

[7]. Approximately 90% of PC patients have an acquired K-ras oncogene 

mutation. In a case-control study, PC patients with K-ras mutations had 

significantly higher levels of dichlorodiphenyltrichlorethane, 

dichlorodiphenyldichloroethylene, and three polychlorinated biphenyl 

compounds compared to PC patients without the K-ras mutation and to those 

in the control group. These compounds are postulated to enhance the actions 

of K-ras rather than cause the mutation, suggesting a gene-environment 

interaction or effect modification. It may also be that these compounds interact 

with premalignant ductal precursor lesions and accelerate their malignant 

progression. 

Other possible factors that have been repeatedly studied, with no consistent 

association with the development of PC, include moderate alcohol intake, 

nonhereditary and acute pancreatitis, and coffee drinking. 

PC is characterized by inherited and acquired genetic mutations [8]. Genetic 

predisposition plays a small but significant role in PC risk. Activation of the 

oncogene K-ras plus inactivation of tumor suppressor genes (p53, DPC4, 

p16, and BRCA2) are associated with the development of PC. Nearly 90% of 

all cases of PC have p16 mutations, 75% have p53 mutations, and 55% have 

DPC4 mutations. Fewer than 4% of PC cases appear to involve dysfunction of 

the various DNA mismatch repair genes [microsatellite instability (MIN)]. 

It is estimated that 10% to 20% of PCs are hereditary or have a familial link. 

Multiple lines of evidence support this. Cohort studies have shown an 

increased risk of developing PC among individuals who report a family history 
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of PC. Tersmette et al. [9] have shown that this risk increases with the number 

of affected members in the family.  

 

Pathology aspects of PC 

PC is not a single disease, in fact, an array of biologically and clinically distinct 

neoplasms can arise in the pancreas. Neoplasms of the pancreas can be 

broadly grouped into those with predominantly exocrine differentiation and 

those with endocrine differentiation. The vast majority of malignancies of the 

pancreas are solid infiltrating ductal adenocarcinomas, and the term PC is 

therefore often used synonymously with infiltrating ductal adenocarcinoma. 

Exocrine neoplasms of the pancreas can be further subdivided into cystic and 

solid tumors. 

 Solid neoplasms of the exocrine pancreas – The most common solid 

neoplasms of the exocrine pancreas are the infiltrating ductal 

adenocarcinoma and variants of ductal adenocarcinoma, acinar cell 

carcinoma, and pancreatoblastoma. Infiltrating ductal 

adenocarcinomas are malignant epithelial neoplasms that show 

glandular or ductal differentiation [10]. Most arise in patients between 

the ages of 60 and 80 years, and men outnumber women (male-female 

ratio, 1.35:1.0). The majority of ductal adenocarcinomas arise in the 

head of the gland, but they can also arise in the body or in the tail or 

even diffusely involve multiple parts of the pancreas. Grossly, 

infiltrating ductal adenocarcinomas form firm, poorly defined white-

yellow masses. These carcinomas often extend beyond the grossly 

identifiable tumor, and invasion into large vessels and adjacent organs 

is common. 

 Cystic neoplasms of the exocrine pancreas – The most common cystic 

neoplasms of the pancreas include mucinous cystic neoplasms, 

intraductal papillary mucinous neoplasms (IPMNs), serous cystic 

neoplasms, and solid and pseudopapillary neoplasms. Mucinous cystic 

neoplasms are much more common in women (90%) than in men [11]. 

These distinctive neoplasms arise in the tail of the gland more 
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frequently than in the head of the gland. Grossly, mucinous cystic 

neoplasms are composed of large cysts that contain thick tenacious 

mucin [10, 11]. The cysts are separated by thick septae and do not 

communicate with the larger pancreatic ducts. These cysts are lined by 

a columnar mucin-producing epithelium, and the stroma surrounding 

the cysts has a histologic appearance similar to ovarian stroma. The 

epithelium can show varying degrees of cytologic and architectural 

atypia, and one-third of mucinous cystic neoplasms are associated with 

an invasive carcinoma, usually an invasive ductal adenocarcinoma. 

 

Endocrine pancreatic cancer, also known as islet cell cancer, is a rare cancer. 

Only about 5 percent of the total of the cases of pancreatic cancers begin in 

the islet cells. Endocrine pancreatic tumors are defined "functioning" or "non-

functioning" depending on their ability to secrete hormones. Most functioning 

islet cell tumors are benign, while non-functioning tumors are more likely to be 

malignant. Malignant tumors are called islet cell cancers or islet cell 

carcinomas. The three most common types are:  

 Gastrinoma, which causes a hypersecretion of the gastrin hormone, 

causing increased stomach acid and leading to ulcers. 

 Insulinoma, in which the excess of the production of insulin leads to 

hypoglycemia. 

 Glucagonoma, in which the excessive glucagons hormone causes the 

opposite condition, hyperglycemia.



 
 

Applications of Mass Spectrometry in Proteomics and Pharmacokinetics 

 
 

 
Chapter I – Pharmacokinetics of Gemcitabine 

 
 

2. Gemcitabine 

Pancreatic cancer was the first disease for which the Food and Drug 

Administration (FDA) approved a treatment on the basis of improved quality of 

life (QOL) rather than response rate to prolonged survival [11]. A three-way 

randomized clinical trial (RTC) in 1985 had shown that the treatment of 

metastatic pancreas cancer with bolus 5-fluorouracil (5-FU ) was as effective 

as the association of 5-FU with doxorubicin or as the combination plus 

mitomycin (MMC) [12]. Bolus 5-FU remained the standard therapy for 12 

years, until there was the evidence the gemcitabine treatment improved QOL 

in a prospectively randomized study that started in 1995 [13]. Even though 

there was no difference in survival between the two treatment the FDA 

approved gemcitabine hydrochloride for the palliative treatment of pancreatic 

cancer in May 1996, affirming the importance of QOL as a legitimate clinical 

end point in cancer chemotherapy [14].  

Gemcitabine is a synthetic nucleoside analog in which the hydrogens on the 2' 

carbons of deoxycytidine are replaced by fluorines (Figure 1). It is marketed 

as Gemzar by Eli Lilly. 
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Figure 2 

Mechanism of action 

Gemcitabine (or 2´,2´-difluorodeoxycitidine, dFdC) is a prodrug. After 

intravenous injection, it enters cells via active nucleoside transporters [15]. 

Then, plasma and liver cytidine deamidase convert gemcitabine to 2´,2´-

difluorodeoxyuridine (dFdU), a compound which has little cytotoxic activity. 
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Gemcitabine undergoes intracellular metabolism by deoxycytidine kinase to 

form the mono-phosphate, di-phosphate and tri-phosphate metabolites 

(Figure 2).  

 

Figure 2 

Metabolic scheme for gemcitabine showing conversion to its active and inactive metabolites. 

As with fluorouracil and other analogues of pyrimidines, the drug replaces one 

of the building blocks of nucleic acids, in this case cytidine, during DNA 

replication and reparation [16]. The process arrests tumor growth, as new 

nucleosides cannot be attached to the "faulty" nucleoside, resulting in 

apoptosis (cellular "suicide"). 

The active nucleosides are di-phosphate (dFdCDP) and tri-phosphate 

(dFdCTP) 2´,2´-difluorodeoxycytidine and they show a combined action which 

results in an effective cytotoxic effect at the tumor site. dFdCDP inhibits 

ribonucleotide reductase, the enzyme that catalyzed the generation of 

deoxynucleoside tri-phosphates for DNA synthesis. The result of this action is 

the reduction of the tri-phosphate deoxycytidine (dCTP) concentration. The 

triphosphate metabolite (dFdCTP) competes with dCTP for incorporation DNA 
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and the dFdCDP induced reduction of the dCTP concentration enhances the 

incorporation of dFdCTP into the DNA which causes chain termination with a 

mechanism known as masked chain termination [17], in which after the drug 

metabolite incorporation into the DNA chain, only one more deoxynucleotide 

is added [18]. This "extra" nucleotide may be important in hiding the dFdCTP 

from DNA repair enzymes, as the incorporated dFdCMP appears to be 

resistant to repair, so the ability of cells to incorporate dFdCTP into DNA is 

critical for gemcitabine-induced apoptosis [17]. The result is that DNA 

polymerase is unable to eliminate gemcitabine nucleotide and repair the DNA 

strain. It has been proved that in CEM T lymphoblastoid cells, gemcitabine 

induces internucleosomal DNA fragmentation which induces apoptosis [19]. 

Gemcitabine exhibits cell phase specificity, primarily killing cells undergoing 

DNA synthesis (S-phase) and also blocking the progression of cells through 

the G1/S-phase boundary. Furthermore, the unique actions that gemcitabine 

metabolites exert on cellular regulatory processes serve to enhance the 

overall inhibitory activities on cell growth. This interaction is termed "self-

potentiation" and is evidenced in very few other anticancer drugs [20]. 

 

Pharmacokinetics aspects 

Gemcitabine is administered as an intravenous infusion. The 

pharmacokinetics of the parent compound is largely determined by 

deamination, and the predominant urinary elimination product is the inactive 

metabolite dFdU. Gemcitabine has a short plasma half-life of approximately 

15 minutes, with women and elderly subjects having slower clearance [21]. 

Clearance is dose-independent but can vary widely among individuals. 

Incorporation into DNA is time and concentration dependent [22] and other in 

vitro and in vivo studies confirmed that the amount of gemcitabine 

incorporated into cellular DNA affects the cytotoxicity of the drug. These 

studies proved that the effective plasma concentration for gemcitabine is in 
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the range of 10umol/L and 20umol/L (2.99-5.99 ug/mL): in this range there is 

the maximum intracellular concentration of gemcitabine triphosphate.  

Conversion of gemcitabine to its active metabolite dFdCMP by deoxycytidine 

kinase is saturated at infusion rates of approximately 10 mg/m2 per minute, 

which produce plasma drug concentrations in the range of 15 to 20 M [16, 23]. 

The fixed dose rate (FDR) infusion is based on studies demonstrating that 

gemcitabine was saturable in peripheral blood mononuclear cells when 

gemcitabine was administered at different doses during a standard 30-min 

infusion [16, 21]. 

In an attempt to increase dFdCTP formation, the duration of infusion at this 

maximum concentration has been extended to 150 minutes. In contrast to a 

fixed infusion duration of 30 minutes, the 150-minute infusion produces a 

higher level of dFdCTP within peripheral blood mononuclear cells, increases 

the degree of myelosuppression, but has uncertain effects on antitumor 

activity [24]. 

The activity of dFdCTP on DNA repair mechanisms may allow for increased 

cytotoxicity of other chemotherapeutic agents, particularly platinum 

compounds. Preclinical studies of tumor cell lines show that cisplatin-DNA 

adducts are enhanced in the presence of gemcitabine, presumably through 

suppression of nuclear excision repair [25]. 

 FDR infusion of gemcitabine improved survival of patients with pancreatic 

cancer compared with the standard dose-intense protocol, according to the 

results of a randomized phase II prospective trial [24]. In this study 92 patients 

with locally advanced and metastatic pancreatic adenocarcinoma were treated 

with 2,200 mg/m2 gemcitabine over 30 minutes (standard arm) or 1,500 mg/m2 

gemcitabine over 150 minutes (FDR arm) on days 1, 8, and 15 of every 4-

week cycle. Time to progression and objective response were comparable in 

both arms of this study, but a modest overall improvement in survival –with an 

unusually high 1-, 2-, and 3-year survivorship – occurred in the patients of the 
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FDR arm, along with an advantage in accumulation of gemcitabine 

triphosphate proved by pharmokinetics studies. Even though this study didn’t 

definitively favor one regimen over the other, the results suggested the FDR 

administration technique could undergo further evaluation studies, either 

alone or in combination with other agents.  

Milella and other [26] have chosen a FDR infusion of gemcitabine for 100 

minutes with the dose of 1000 mg/m2, which is 33% less the dosage 

raccomended in Phase I Studies, gaining encouraging results in terms of 

patients survival and toxicity. Especially from a toxicity standpoint, this 

different regimen resulted in a consistently lower hematologic toxicity. In 

general this 100 minutes infusion is active and extremely well tolerated and 

gives encouraging survival and case based reasoning outcomes. 

Pharmacotoxicity 

Myelosuppression is the principal clinical toxic effect of gemcitabine. In 

general, the longer is the duration of infusion, the greater is the 

myelosuppression. Other kinds of toxicities not related with hematologic 

aspects include a flu-like syndrome, asthenia, and mild elevation in liver 

transaminases may occur in 40% or more of patients.  Severe toxicities are 

rare, but sometimes interstitial pneumonitis may occur and is responsive to 

steroids. Another rare but serious side is a slowly progressive hemolytic 

uremic syndrome in patients treated with gemcitabine for many months and it 

requires drug discontinuation [27]. Gemcitabine is a very potent 

radiosensitizer and should not be used with radiotherapy except in closely 

monitored clinical trials [28]. 
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Aim of the study 

The aim of the study was to evaluate if hepatic dysfunction leads to increased 

toxicity of gemcitabine at fixed dose rate and to characterize the 

pharmacokinetics of gemcitabine and its major metabolite 2´,2´-

difluorodeoxyuridine (dFdU). A hyphenated HPLC-MS/MS method has been 

developed in order to investigate the pharmacokinetics of the drug and its 

metabolite in human plasma. 
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Experimental 

1. Materials 

Gemcitabine (dFdC) and its major metabolite 2´,2´-difluorodeoxyuridine 

(dFdU) were provided by Eli Lilly (Lilly Corporate Center, Indianapolis, USA) 

for analytical and reference standards. HPLC grade acetonitrile was obtained 

from Carlo Erba (Milan, Italy). Filtered deionized 18Ω HPLC grade water was 

supplied via a MilliQ water purification system (Millipore, Amsterdam, The 

Netherlands). Analytical grade solvents such as iso-propanol and ethyl-

acetate were supplied by Sigma Aldrich (St Louis, MO, USA), along with 

ammonium acetate and the internal standard (I.S.) 2’-deoxycytidine (dC). 

Control human plasma samples, used to prepare daily standard calibration 

curves and quality control (QC) samples, were obtained from volunteers. 

 

2. Equipment 

Chromatography was conducted using an Agilent 1100 Series System 

(Agilent Technologies, Palo Alto, CA, USA) equipped with a binary pump and 

an automatic injector, vacuum on- line degasser. The HPLC was interfaced 

with an ion trap mass spectrometer Agilent 6300 (Agilent Technologies, Palo 

Alto, CA, USA). The mass spectrometer was equipped with an ESI source. 

The injection system of the Agilent 1100 was fitted with a 50 L PEEK loop and 

all tubing post injection was 0.05 mm PEEK. Software used for data acquisition 

and integration was Agilent ChemStation. 

 

3. Mass spectrometry optimization 

The mass spectrometer was operated in the positive ion mode. The optimized 

mass spectrometry conditions were the following: capillary voltage -3.5 kV; 

end plate offset voltage-500 V; capillary exit voltage 110.9 V; nebuliser 

pressure 70 psi; drying gas flow 12 L min_1; temperature 350°C. 

The mass spectrometry conditions for each compound were determined by 

direct infusion in water/acetonitrile (80/20, v/v) plus 0.5% acetic acid. 
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The mass spectrometer was operated in full scan and multiple reaction 

monitoring (MRM) modes performed by ion fragmentation over a range of 

100–300 m/z.. Quantitation was developed in positive MRM mode by 

monitoring determined transitions pairs of m/z 264 (molecular ion)/ 112 (major 

fragment ion) for gemcitabine, m/z 265 (molecular ion)/ 113 (major fragment 

ion) for dFdU and m/z 228 (molecular ion)/ 112 (major fragment ion) for the 

internal standard 2’-deoxycytidine (dC). 

 

4. Chromatographic conditions 

The chromatographic separation was carried out on a Symmetry C18 

(4.6*250mm I.D, 5µm particle size) protected by a sentry guard column 

Symmetry C18 (3.9*20mm). Mobile Phase: A, 0.5% acetic acid in water; B, 

0.5% acetic acid in acetonitrile. Gradient elution procedure: initial conditions – 

B  2% for 2 min, step 1 – B 2-50% in 10 min, step 2 – B 50-70% in 1 min,  

step 3 – B 70% for 4 min, return at the initial conditions – B 2% in 2 minutes 

and equilibration for B 2% for 10 minutes before the next injection. The 

injected volume was 20 uL. 

 

5. Sample collection 

Blood samples (5 to 10 mL each patient) were drawn via an indwelling 

peripheral catheter or via peripheral venipuncture, into tubes containing 

heparin. Tetrahydrouridine (Calbiochem-Novabiochem Corp La Jolla CA, 

USA), a cytidine deaminase inhibitor, was then added (0.1 ml of a 10 mg/ml 

solution) to prevent ex vivo Gemcitabine deamination. Samples were 

collected 30 minutes before Gemcitabine infusion, at 30, 60 and 80 minutes 

during the infusion, at the end of the infusion,  and at 5, 30, 90, 180 and 240 

minutes  after the completion of the infusion. 

Blood samples were immediately centrifuged at 1000 rpm at room 

temperature for 10 minutes. The resulting plasma was frozen and stored at     

-20°C until analysis. 
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6. Standards and quality control solutions 

For Standards a stock solution in methanol for each analyte was accurately 

prepared at the concentration of approximately 1 mg/mL. Purity and weight 

variations were adjusted by diluting approximately 1:10 to give an accurate 

stock solution of 0.1 mg/mL. All stock solutions were stored at -20°C. 

Working solutions (A-G) (see Table 1) containing both analytes, to obtain the 

standard points of the calibration curves and working solutions (L, M and H, 

see Table 2) to prepare quality control (QC) samples were obtained by 

combining different amounts of the stock solutions and control human plasma 

samples obtained from healthy volunteers. The human plasma samples were 

spiked with each working solutions to obtain dFdC and dFdU at the final 

concentration reported in Table 1 and Table 2. 

 

Table 1 – Standard samples 

Standard 

dFdC 

(ug/mL) 

dFdU 

(ug/mL) 

 

A 5 5 100 uL stock solution dFdC (100ug/mL) + 
100 uL stock solution dFdU (100ug/mL)  + 
1800 uL plasma 
 

B 2.5 2.5 1000 uL A + 1000 uL plasma 

 

C 1.25 1.25 1000 uL B + 1000 uL plasma 

 

D 0.625 0.625 1000 uL C + 1000 uL plasma 

 

E 0.31 0.31 1000 uL D + 1000 uL plasma 

 

F 0.15 0.15 1000 uL E + 1000 uL plasma 

 

G 0.08 0.08 1000 uL F + 1000 uL plasma 
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Table 2 – QC samples 

 

Quality 
control 
Standard 

dFdC 

(ug/mL) 

dFdU 

(ug/mL) 

 

H 3.2 3.2 64 uL stock solution dFdC (100ug/mL) + 
64 uL stock solution dFdU (100ug/mL) + 
1872 uL plasma 
 

L 0.8 0.8 80 uL H + 240 uL plasma 

 

M 0.2 0.2 80 uL B + 240 uL plasma 

 

 

The stock solution for the internal standard (IS) was 20 ug/mL. The IS working 

solution was prepared at 20ug/mL by diluting the stock solution with methanol. 

10 uL of the IS working solution has been added to 200 uL of each sample. 

 

7. Plasma samples preparation 

Plasma samples (200 uL) were mixed with 200 ug of IS (10 uL of 20 ug/mL) 

and added with 200 uL of isopropyl alcohol and 400 uL of ethyl acetate in a 

1.5 mL Eppendorf tube. After vortexing samples were allowed to stay at room 

temperature for 5 minutes. Then the mixture was centrifuged at 4°C for 10 

minutes at 13000 rpm. The supernatant was collected and transferred to a 

second Eppendorf tube to be dried under nitrogen. The samples were 

reconstituted in water plus 0.5% acetic acid and after brief vortexing 

centrifuged at 4000 rpm for 10 min. 

 

8. Data handling and calculations 

Quant Analysis software was used to process the quantitative data. A 

calibration curve for each analyte was determined using linear square 

analysis in order to quantify plasma concentrations for Gemcitabine and 

dFdU. The two analytes concentration were calculated from the ratio of the 

Gemcitabine and dFdU peaks area  to the area of IS using least squares 

linear regression.  
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9. Assay validation 

The linearity of the calibration curves was validated over three days and 

calculated by the ratio of the HPLC-MS/MS peaks areas for dFdC/IS and 

dFdU/IS to the nominal total amount of dFdC and dFdU in the sample. The 

linearity was determinated by a regression model and by calculating the 

Pearson’s correlation factor R2 and by a comparison of the true and back-

calculated concentrations of the calibration standards. Within-day and 

between-day variabilities were measured as coefficient of variation. The 

recovery of the extraction was calculated by comparing the peak areas of 

each standard concentration against equivalent absolute standard dilutions. 

Lower limit of quantitation (LLOQ) was for both Gemcitabine and dFdU 

determined by successive standard solution dilutions calculating the signal to 

noise ratio, the limit set for detection was a signal/noise ratio of 3. 

 

10. Pharmacokinetics parameters 

Pharmacokinetic parameters were estimated by non-compartmental method 

analysis from plasma concentrations of Gemcitabine and its major metabolite. 

at different timing before, during and after the FDR infusion. 

The analysis of Gemcitabine e dFdU pharmacokinetics focused on: 

 Plasmatic peak concentration (Cmax, μg), determined graphically from 

the observed experimental values; 

 Area Under the plasma concentration-time Curve (AUC, µg d/ml) from 

the first to the last sampling time: calculated according to the 

trapezoidal rule  

 Total body clearance (Cl, Lh/m2): calculated as ration of dose in 

μg/AUC (µg h/ml) 

 Half-Time (t1/2,d): calculated as ln2/Kel (d-1) 

 Rate of Elimination (Kel, d-1): calculated as the negative slope of the 

log-linear elimination phase of the plasma concentration–time. 

 

 

Results and Discussion 
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1. Sample Preparation 

Precipitation of plasma proteins was the most practical and effective sample 

preparation procedure: since these nucleosides are polar, after protein 

precipitation they most likely stay in the supernatant. To optimize the protein 

precipitation procedure we tried different ratios of the two solvent isopropyl 

alcohol and ethyl acetate (1:1, 1:2, 1:3). We also tried to add a mixture of the 

two solvents and comparing the obtained results with the results obtained 

from consecutive addition experiments inverting the order of the solvents. The 

addition of isopropyl alcohol and then ethyl acetate in the relative ratio 1:2, 

followed by 5 minutes of standing of the sample at room temperature and a 

centrifugation step at 4°C for 10 minutes at 13000 rpm, showed the best 

results in terms of recovery and reproducibility. After centrifugation we 

evaluated the presence or absence of a clear supernatant by visual inspection 

and we proceeded to dry the supernatant under a nitrogen stream. After 

reconstitution of the sample with an HPLC compatible buffer, we centrifuged 

again the sample to assure the complete clearness of the sample. This 

extraction method requires a short time and allowed us to process a quite 

large number of samples at the same time more cost effectively compared to 

other method previously reported in literature [29-31]. Samples from the same 

patient were treated at the same time. 

 

2. Recovery 

The recovery of dFdU and dFdC extracted from the human plasma is shown 

in Table 3. The sample deproteinization leaded to a good percentage of 

recovery always ≥80% evaluated over three concentrations and in triplicate. 

The absence of significant variations (<6%) for the areas of both analytes 

exclude the possibility of any matrix effects of ion suppression or 

enhancement. 
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Table 3 

Spiked 

concentration 

ug/mL 

Recovery Ratio 

(%) ± SD 

CV%

dFdC   

0.200 84.3 ± 2.0 2.0 

0.500 87.2 ± 2.3 2.9 

4.000 82.3 ± 2.3 2.7 

dFdU   

0.200 86.7 ± 3.1 5.0 

1.000 83.2 ± 2.7 3.6 

5.000 80.1 ± 3.1 4.9 

 

 

3. Mass Spectrometry 

Most of the methods reported in the literature are based on UV detection and 

show a sensitive range between 0.1 and 50 ug/mL [32-34]. Some methods 

also involve diode array detection [29, 30, 35]. This proved to be insufficient 

for the detection of gemcitabine as long infusion [30, 33, 35], because of the 

lack of sensitivity and selectivity of the detection, absolutely necessary for the 

presence of possible random endogenous peaks visible in the UV detection 

that can interfere with the quantitative determination of the analytes. Multiple 

reaction monitoring as acquisition mode guarantees high sensitivity and 

selectivity. 
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Figure 4 shows a typical full scan spectrum of dFdC and figure 5 shows the 

mass spectrum of dFdU. The signal at 264 m/z for dFdC and 265 m/z for its 

metabolite are clearly the most intense and they both correspond to the 

molecular ions [M+H]+. No adducts were observed corresponding to [2M+H]+, 

[M+Na]+ or [M+K]+. The same situation was found in the dC (IS) mass 

spectrum, in which the molecular ion corresponded to the signal at 228 m/z. 

In MS isolation and fragmentation experiments of the ions, the primary 

fragments for each of them resulted to be 112 m/z for dFdC, 113 m/z for dFdU 

and 112 for dC, due to the loss of the sugar moiety of the nucleoside and the 

synthetic nucleoside analogs (Fig. 6). 

 

 

Figure 6 
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Secondary minor fragments resulting from rearrangement of the primary 

fragments (loss of oxygen or nitrogen group) were also detected, but their 

intensity was too low to be considered, therefore the MRM parameters have 

been optimized on the transitions from the molecular ion to the primary 

fragment. 

Figure 7 reports a typical MRM chromatogram showing the quantifier 

transition (m/z 264  112 for dFdC, m/z 265  113 for dFdU) for an 

extracted human plasma sample containing both dFdC and dFdU. 
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Since dFdU and dFdC are both highly hydrophilic, their separation could 

result a challenge, if a selective and relatively fast chromatographic method is 

required like in pharmacokinetics studies. We worked under reversed-phase 

(RP) mode with 0.5% acetic acid added, since volatile additives should be 

used in MS instead of non-volatiles which can cause signal suppression. 

Mobile phase A (water, 0.5% acetic acid) and mobile phase B (acetonitrile, 

0.5% acetic acid) were pumped at 1ml/min with gradient elution at the initial 
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conditions of A/B 98/2 for 2 minutes. The percentage of mobile phase B was 

linearly increased from 2 to 50% in 10 min and the analytes were eluted in this 

step as expected. In order to remove all plasma contaminants, mobile phase 

A was further decreased to 30 % and this ratio between the two mobile 

phases was kept for 4 min. Under these analytical conditions retention times 

for dC, dFdC, and dFdU were 2.3, 3.8 and 6.5 min, respectively. As judged by 

the chromatographic parameters (Table 4) obtained for gemcitabine and its 

metabolite, investigated peaks were well resolved under the chromatographic 

conditions described, and they all exhibit a notable symmetrical shape, thus 

making their electronic integration easy and precise which is necessary for a 

correct quantification of the analytes in the human plasma in 

pharmacokinetics studies. 

Table 4 

 TR K’ Asymmetry factor Tailing Factor 

dFdC 6.91 4.16 1.27 1.25 

dFdU 8.19 5.82 0.73 1.45 

 

5. Calibration curves 

Figure 8 shows the calibration curves for dFdC and dFdC for each day of the 

validation study and Table 4 reports the accuracy and precision for each 

standard. The peak area ratios of analytes/IS to the concentrations were 

plotted and a least squares linear regression weighted by the reciprocal of the 

concentrations was applied to generate calibrations curves. 
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Table 5 

Calibration 

curves 

parameters 

dFdC dFdU 

R 0,99822 0,99847 

X-coefficient 635,95908 ± 16,9 631,1 ± 17,5 

Y-intercept 237608,97 ± 115835,6 298006,5 ± 128592,3 

The calibration curves (Figure 5) were prepared on three different days and 

showed good linearity and acceptable data over a wide range of 

concentrations (0.050 ug/mL to 16 ug/mL for both dFdU and dFdC), with 

Pearson’s coefficient of correlation R2 equal or greater than 0.993. Mean 

accuracy was always close to 100% (range 90.0%–104.3%) 

6. Clinical samples 

Patients characteristics 

The patients (n = 8) were divided into two cohorts depending on their hepatic 

condition, defined on the basis of their serum bilirubin and AST (Aspartate 

aminotransferase) levels. Three patients had normal serum bilirubin level and 

AST level less than two times the upper limit of normal (ULN)  (Cohort I);  four 

patients had bilirubin level from 1.6 to 7.0 mg/dL and normal AST level, one 

patient had serum bilirubin level less than 1.6 mg/dL and AST level greater 

than two times the ULN (Cohort II). The PK parameters measured were 

plasmatic peak concentration Cmax, area under the plasma concentration-

time curve (AUC), total plasma clearance (CL) and half life (t1/2) and they are 

all represented in Table 5. 

Patients characteristics were: median age 62 yrs (range 28-75), male/female 

4/4, median cycle cohort I: 6 cycles (3-6), median cycle cohort II: 3 cycle (1-5), 

median follow-up: 30 weeks (range 3-79) and median weeks of treatment: 14 

(1-25).The rate of dose reduction was the same in the two cohorts, as the rate 

of omitted administration. Patients with liver dysfunction tolerated gemcitabine 
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without increased toxicity and neither AST nor bilirubin elevation was 

observed after drug administration. Pharmacokinetics parameters were 

calculated at the first and at the second cycle and the results are presented in 

Table 6. 

All patients were evaluated for toxicity. All toxicities were reversible, no 

hospitalization due to severe adverse events was required, and no treatment-

related deaths occurred. Results from all patients are summarized in Table 7. 

The pharmacokinetics of gemcitabine at fixed dose rate in patients with 

impaired liver function seems similar to control; no difference in terms of 

toxicity and dose reduction was required for this subset of patients. 

Table 6:  

 # 
Pts 

C max (µg/ml) AUC exp (µg 
h/ml) 

t 1/2 (h) Cl p (L h/m2) 

Cohort  dFdC dFdU dFdC dFdU dFdC dFdU dFdC dFdU
I          

Mean 
cy 1 

3 6.18 63.00 8.09 138.48 0.15 4.24 124.38 7.29 

Mean 
cy 2 

3 5.81 49.90 5.60 107.46 0.05 3.00 181.73 10.62

II          
Mean 

cy 1 
5 6.74 52.47 7.81 117.65 0.11 3.14 179.05 8.59 

Mean 
cy 2 

3 5.88 100.53 5.86 205.54 0.21 1.74 175.32 7.92 

          
Mean 
CV% 

 2.09 -17.34 198.38 47.80 29.94 2.83 -33.78 20.82

 

CV = coefficient of variability; cy = cycle; Cl p = plasmatic clearance
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Table 7 

Cohort I   C max (µg/ml) AUC exp (µg h/ml) AUC inf (µg h/ml) t ½ (h) Cl p (L h/m2) 
Patient Dose 

(mg) 
DAY dFdC dFdU dFdC dFdU dFdC dFdU dFdC dFdU dFdC dFdU 

SA 1000 1 5.49 64.90 7.65 155.91 8.16 494.08 0.10 5.62 130.779 6.41 
PR 1000 1 5.90 72.02 7.62 135.39 8.52 433.04 0.18 5.35 131.299 7.39 

DAR 1000 1 7.14 52.09 9.00 124.14 9.83 194.91 0.17 1.76 111.052 8.06 
Mean   6.18 63.00 8.09 138.48 8.84 374.01 0.15 4.24 124.38 7.29 

SD   0.86 10.10 0.79 16.11 0.88 158.08 0.04 2.16 11.54 0.83 
 

S.A 1000 2 4.03 44.29 4.63 76.32 4.82 346.19 0.05 5.76 216.157 13.10 
P.R 1000 2 7.23 53.31 6.22 167.97 6.54 238.51 0.05 2.33 160.717 5.95 

D.A.R 1000 2 6.16 52.09 5.94 78.10 6.15 114.75 0.06 0.91 168.325 12.80 
Mean   5.81 49.90 5.60 107.46 5.84 233.15 0.05 3.00 181.73 10.62 

SD   1.63 4.89 0.85 52.41 0.90 115.81 0.01 2.50 30.05 4.04 
 

Cohort II   C max (µg/ml) AUC exp (µg h/ml) AUC inf (µg h/ml) t 1/2 (h)  Cl p (L h/m2) 
Patient Dose 

(mg) 
DAY dFdC dFdU dFdC dFdU dFdC dFdU dFdC dFdU dFdC dFdU 

PM 1000 1 12.61 68.70 14.54 125.48 14.61 242.08 0.02 2.72 68.796 7.97 
SE 1000 1 7.14 52.09 8.38 117.87 9.24 188.47 0.18 1.75 119.334 8.48 
CP 1000 1 2.72 30.87 2.57 117.20 3.38 266.58 0.11 5.08 388.541 8.53 
ER 1000 1 3.58 40.76 4.95 97.29 5.62 221.90 0.11 4.30 202.206 10.28 
MT 1000 1 7.65 69.95 8.59 130.43 9.35 314.94 0.16 1.83 116.369 7.67 

Mean   6.74 52.47 7.81 117.65 8.44 246.79 0.11 3.14 179.05 8.59 
SD   3.92 17.12 4.52 12.64 4.28 47.64 0.06 1.49 126.56 1.01 

 
PM 1000 2 5.01 207.92 5.15 420.96 6.24 639.46 0.25 1.71 194.159 2.38 
SE 1000 2 7.60 52.09 7.27 118.43 8.47 191.11 0.25 1.80 137.642 8.44 
CP 1000 2 5.01 41.58 5.15 77.24 5.52 179.72 0.12 1.71 194.159 12.95 

Mean   5.88 100.53 5.86 205.54 6.74 336.77 0.21 1.74 175.32 7.92 
SD   1.50 93.15 1.22 187.69 1.54 262.21 0.07 0.06 32.63 5.30 
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Discovery of Ovarian Cancer Biomarkers 

 

Introduction 

1. Biomarkers and Ovarian Cancer 

In the last few decades a consistent amount of funds have been invested in 

the research of biomarkers for cancer early detection. The increased number 

of early diagnosis of malignancies or in some cases even premalignant 

lesions can be ascribed to mere and more efficient screening procedure and a 

different clinical practice. The final diagnosis is still possible only after biopsy 

of the tissue, which involves a quite invasive procedure that would be avoided 

for a large number of patients if one or more specific biomarker were available 

for each cancer diseases. The ideal tumor biomarkers should be a protein or 

a fragment of a protein easy to identify in biological specimens – e.g. urine or 

serum – and should show a different expression among healthy individuals 

and cancer patients. 

In 1965, Joseph Gold and his group presented the first test recognized for a 

known type of cancer [1]: he found that the same protein in colon cancer 

patients was normally expressed in the fetal tissues and he named it 

carcinoembryonic antigen (CEA). By the end of the ‘70s, several potential 

serum tests had been developed for a series of different tumors [2].Further 

biomarkers have been identified during the ‘80s such as CA 19-9 [3] for 

colorectal and pancreatic carcinoma, CA 15-3 for breast cancer [4] and CA-

125 for ovarian cancer [5]. Unfortunately these biomarkers are present also in 

normal patients and they increase significantly only when the tumor mass is 

already extremely relevant. In addition these molecules are not specific for a 

particular cancer; in fact some women can show particularly high levels of 

CEA or CA-125 due to different and not oncological gynecological conditions 

[6, 7]. 

PSA (prostate-specific antigen) is the most well known biomarkers and it has 

been and it still is used for early detection of prostate cancer. The use of the 

PSA test in the clinical practice in the last few years leaded to a tremendous 

increase of the early diagnosis of the disease [8]. The maximum limit for PSA 
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was established as 4 ng/mL, but in the 33% of the cases in which the PSA 

level was within 4 and 10 ng/mL, the cancer spreads in other organs, 

therefore the chemio-therapy and radio-therapy result inefficient. Even though 

the presence of PSA brings a suspect of the malignancy, only the biopsy can 

give an accurate diagnosis; each individual with levels of PSA in the range 4-

10 ng/mL should undergo the clinical procedure of histological analysis of a 

collected tissue and the lower limit for PSA have been reduced to 2.5 ng/mL 

[9]. A higher level of PSA is also correlated with the condition of benign 

prostatic hyperplasia, so the presence of PSA not necessarily indicates the 

presence of cancer. The lack of specificity of the PSA for values less than 4 

ng/mL is about 25% and as a consequence many men undergo to an 

unnecessary biopsy [10].  

Despite the success of the PSA as tumor biomarker, there is not a specific 

biomarker that predicts the presence of cancer for the most of the tumoral 

forms. The PSA itself has his major application in the detection of recidivism.  

A perfect biomarkers should have 100% sensitivity and 100% specificity and 

the PSA is very specific, but not that sensitive. 

The future of the cancer treatment seems to be extremely dependent on the 

use of biomarkers that should lead the clinicians in each stages of the 

disease, from the early detection to the prognosis, through the prediction of a 

recidivant disease. The biomarkers would be able to direct the pharmaceutical 

treatment towards one drug or another, basing the choice on the prediction of 

the outcome of the response to the therapy or the instauration of resistance. 

Probably the most important aspect of the biomarkers is the early detection, 

so that could be possible to intervene in the very initial stages of the cancer, 

when the cure rates are higher than in the later stages.  

In despite the fact that just few biomarkers are now used in the clinical 

practice, technologic improvements in genomics and proteomics have 

produced a series of potential markers. Calcitonin is one of them and its level 

in the serum is higher in patients with malignancy in medullary thyroid 

carcinoma. Calcitonin is a hormone secreted from the thyroid parafollicular C 

cells and it’s envolved in the regulation of the blood levels of calcium. 
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Medullary thyroid carcinoma is often an hereditary disease, therefore in 

patients with family history of this cancer, an elevated amount of the hormone 

in the blood could indicate the presence of a very early stage of the disease 

[11]. Secretion of calcitonin has been observed also in lung cancer, but the 

hormone is not used to monitor this cancer [12]. 

Several biomarkers have been reported to be not very sensitive and so they 

cannot be useful as a general screening tool, on the other hand they can be 

used to monitor patients that present the particular type of cancer that seems 

to over-express the biomarker itself. One of these biomarkers is CA-125 for 

the ovarian cancer present in a subtype of ovarian cancers [13-17]. CA-125 is 

elevated also in other benign gynecological conditions, such as 

endometriosis, and it allows only the detection of 50% of first stages of 

diseases and it cannot be used to generically screen for ovarian cancer, but in 

those patients that show a CA-125 positive tumor, the use of CA -25 reflects 

the recurrence in the population [18]. 

The interest in the biomarkers field is not over and in the next years we should 

see still huge effort in the intent of finding molecules able to help in the 

diagnosis, prognosis and prediction especially for those diseases that show 

their symptoms when the cancer is already difficult to treat, both surgically 

and pharmaceutically. 

Ovarian cancer is one example of these insidious diseases and it is often 

called the "silent killer” because the lack of visible symptoms until the disease 

has progressed to an advanced stage that makes very difficult its diagnosis in 

the first and more responsive to treatment stages. 

Ovarian cancer affects about 200,000 women every year and kills more than 

120,000 in accordance with the International Agency for Research on Cancer 

(http://www-dep.iarc.fr/). Ovarian cancer is the fifth leading cause of death 

connected to gynecological diseases and is the second most diagnosed 

malignancy among women. Unfortunately the diagnosis is often at advanced 

stages, when the disease is not confined to the ovary, therefore the cure rates 

decreases dramatically to 20-30%. On the other side patients with cancer that 

hasn’t invaded other organs can be successfully treated in the 70-90% of the 

http://www-dep.iarc.fr/
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cases [19], even because many effective new therapeutics have been 

developed and have come into the clinical use.  

2. Serum Proteomics in Biomarkers Research 

The results that research in the biomarkers field has achieved until today are 

not completely satisfactory, but in the few years proteomics profiling 

techniques proved to be able to delivery consistent and interesting results in 

the identification of proteins correlated with early stages of cancer [20-22].  

The fraction of serum proteome defined as Low Molecular Weight (LMW, 

approximately up to 6000 Da) is awakening some interest since it seems quite 

plausible that this region of the proteome contains fragments of proteins 

resulting from pathological or physiological events that take place in every 

perfused tissue[23]. Proteinase generates fragments from characteristic 

proteins of the pathological stage released into the tissue micro-environment 

by particular kind of cell, for example by tumoral cell or by immuno-cell as a 

response to the presence of the tumor. The biomarkers fragments are 

released into the circulation by passive diffusion and they are protected from 

the renal clearance thank to the interaction with bigger proteins (e.g. albumin).  

In all probability proteins are attacked by circulating enzymes and also in this 

case the result is the generation of protein fragments with the tendency to 

associate with big proteins. 

One of the mot suitable techniques to investigate the protein fraction in 

tissues is mass spectrometry and has been used to analyze serum from 

patients with ovarian cancer [24] and in other cancer and not cancer diseases 

[21, 22]. Preliminary studies showed a high abundance of information in the 

LMW fraction of the proteome due to the presence of specific proteins or 

peptides characteristic for a given pathololgy. Mass spectrometry studies of 

the LMW fraction of the serum leaded to the identification of unknown proteins 

that could be potential new biomarkers proving the importance of this fraction 

of the serum.  

Assuming that the LMW fraction of the serum contains important diagnostic 

information, the research of biomarkers with low molecular weight involved 

the previous elimination of the proteins with high molecular weight (e.g. 
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albumin, thyreoglobulins and immunoglobulins) in order to obtain an 

enrichment of the LMW fraction [25-27].  

The LMW molecules free in the circulation are rapidly metabolized by the 

renal system a that could bring a dramatic decrease of their concentration and 

they could even become undetectable, but the most of these LMW molecules 

associate with larger proteins that act as efficient carriers not metabolized by 

the renal clearance. The association with protein carriers extends the half-life, 

because it becomes the same half-life of the carrier protein which is higher of 

several orders of magnitude. The circulating proteins become though a 

reservoir for the enrichment and the amplification of biomarkers (fig. 1). 

 

 

 

Fig. 1 
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Considering the binding reaction between the biomarker (b)  and the carrier 

protein (C): 

kF

bC
1 

b + C 
kR

 

The binding reaction is regulated by constant of velocity kF and the reverse 

reaction (dissociation) by the constant of velocity kR. 

The mass action kinetics is proper to describe the interaction between carrier 

and biomarker, because the carrier protein in normal conditions does not bind 

more than one biomarker, since the carrier exists in a so great relative 

abundance. So it is possible to assume that the kinetics of the formation of the 

complex bC1 is proportional to the product of the concentration [b] of the 

biomarker and the constant of velocity kF . The constant of dissociation is 

proportional to the concentration [bC] of the complex for the constant kR. 

Therefore the equations for the binding reaction and the reverse reaction are 

the following 

RF = kF [b][C] 

RR = kR [bC] 

 

Considering the extremely large access of the carrier protein ([C]>>[b]), it is 

correct to affirm that just a small part of it will be involved in the binding 

reaction, therefore the concentration of the carrier protein [C] can be 

considered as constant. The concentration of the free carrier can be included 

in the constant of velocity of the binding reaction: 

RF = kF* [b] 

 where kF* = kF [C]. 

The reaction reaches an equilibrium when 

RF  = RR         or 

kF* [b] = kR [bC]. 
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The absolute great abundance of the carrier protein enhances kF* of the 

binding reaction and makes it greater of several orders of magnitude than kR  

of the reverse reaction. The equilibrium is strongly shifted towards the 

formation of the complex bC and the equilibrium ratio will be: 

[bC] 
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This equilibrium ratio underlines that the biomarker tends to exit bound to the 

carrier protein, even when the binding capacity is not great. 

 

3. Mass Spectrometry based approach in Proteomics 

Different approaches exit in proteomics. The gel approach provides a method 

that is both qualitative and quantitative resolving a complex protein mixture to 

single and discrete spots [28, 29]. While the lack of reproducibility and the 

strong limitations in the application of the mono-dimensional technique for 

protein expressed at low levels reduce its use in clinical samples, new 

improved bi-dimensional techniques seem to have better reproducibility and 

the possibility of an higher throughput [29, 30]. 

The most important advances in proteomics in the last few years have been 

recorded instead in the gel-free methods, such as mass spectrometry that 

shows better sensitivity and high throughput; mass spectrometry can give 

information on the molecular weight of the isolated protein which is a peculiar 

characteristic of the molecule itself and reflects the gene sequence and 

possible post-translational modifications. Mass spectrometry offers a wide 

range of possible solutions to identify different categories of proteins possibly 

related to particular pathological condition, for example identifying post 

translational modifications (PTMs) that  with all probability play in important 

role in the disease development. 

eq 
[b] 

= = 
k*F 

kR 
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Proteomics mass spectrometry techniques can be divided in four principal 

categories: (i) LC-MS [30], (ii) LC-FTICR-MS [31, 32], (iii) SELDI-TOF-MS 

[33], (iv) MALDI-TOF-MS [34]. 

The research in this field is evolving in two principal directions: the first of 

them consists in protein profiling studies in order to find diagnostic pattern 

[35], instead the second one provides characterization information obtained 

by LC-MS and MALDI-TOF platforms [36]. Other two fields recently are 

recalling the general attention: immuno-technology based MS assay [37] with 

the study of interaction of specific antigen-antibody interaction on opportunely 

modified surface and metabolomics which has already been applied in an 

ovarian cancer studies [38]. 

The identification and the validation of biomarkers often includes MS-based 

technologies, in particular two ionization techniques are the most used and 

they are MALDI (MATRIX-ASSISTED LASER DESORPTION/IONIZATION) and ESI 

(ELECTROSPRAY IIONISATION). The MALDI technique has the important 

advantage of being able to screen quite quickly a large number of samples 

estimating the molecular weight of peptides and proteins with a TOF (TIME OF 

FLIGHT) analyzer. The recent developments in the design of new MALDI-TOF 

instruments assure higher sensitivity and higher accuracy in the determination 

of the molecular weight. In MALDI-TOF the one protonated peptide is 

observed in the most of the time, while with the ESI multiple charged 

molecules can be observed on the spectrum. ESI usually shows resolution 

and sensitivity with a previous enzymatic digestion (e.g. trypsin), and is often 

associated with LC (LIQUID CHROMATOGRAPHY). Some examples of the 

utilization of capillary LC-FTICR-MS (LIQUID CHROMATOGRAPHY-FOURIER 

TRANSFORM ION CYCLOTRON RESONANCE MASS SPECTROMETRY) in association 

with sophisticated bioinformatics analysis have been described [39] in the last 

few years. 

SELDI-TOF MS (SURFACE-ENHANCED LASER DESORPTION/IONIZATION), first 

developed by Hutchens and Yip [40] in 1993, allows the analysis of samples 

applied directly on differential binding surface without removing salts or 

detergents, because just what remains attached to the surface of activated 
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surface will be analyzed. Petricoin et al. demonstrated the utility of this 

technique in the discovery of differentially expressed proteins and peptides 

[21] part of a proteomic pattern identified by an algorithm able to classify 

correctly cancer samples and non-cancer samples. 

A new exiting field that is capturing interest in the scientific community is the 

direct MS imaging [41]. This technique is an alternative to the microdissetion 

lysate MS and it permits to avoid the microdissetion and the solubilization of 

the tissue. The tissue slice dries on a MALDI plate, then coated with the most 

suitable energy-absorbing ionization matrix and finally analyzed with a laser in 

a vacuum chamber. MALDI imaging has already been used in lung cancer 

studies [41] and in human tumor tissue sections [42]. 

All the cited techniques can be used as high-throughput technologies that 

need bioinformatic analysis in order to accelerate the discovery of new 

biomarkers and their validation as well. Bioinformatics find classifying patterns 

and algorithms able to discriminate completely cancer and non-cancer 

samples based on the change in the proteomic profile as a result of 

physiological and biochemical conditions due to presence or absence of the 

tumor itself. Proteomic patterns in serum have showed to be a powerful tool to 

discriminate confirmed ovarian cancer samples and samples from women 

with high risk of being affected by the disease [21, 43-45].  

 

In conclusion, since oncology practice in the next few years will be mostly 

controlled by factors of economic nature, biomarkers should have crucial 

importance in the management of all the cancer diseases, potentially they will 

help in the choice of a therapeutic treatment over another or in the 

identification of earlier and earlier stages of cancer. More likely there will be 

not just a single biomarker for each disease, but a panel of 6 to 10 molecules 

able to give an accurate description of the state of the disease and a 

prediction of the possible metastatic spreading. 
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Aim of the study 

The aim of the study was to identify and characterize potential biomarkers for 

ovarian cancer. In order to obtain valuable results a number of serum samples 

from both ovarian cancer patients and women indicated as high risk subject 

were analyzed with mass spectrometry and the data obtained were objects of 

bioinformatics investigation to indicate a classifying pattern of potential 

biomarkers. Finally the selected molecules were characterized. 
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Experimental 

1. Materials 

The ovarian cancer study sample set consisted of 352 from Northwestern 

University (Illinois, USA) under IRB (INSTITUTIONAL REVIEW BOARD) approval, 

using standard protocols developed by the institution. An addition sample set 

of 63 specimens were obtained from the Division of Gynecologic Oncology, 

University of Brescia (Brescia, Italy). The set was constituted of 205 biopsy 

confirmed ovarian cancer and 190 high risk samples (women with a first 

degree relative with ovarian cancer, women who had other cancers or women 

who had pelvic masses). High performance liquid chromatography grade 

solvents (Water and Acetonitrile) were purchased from EMD (Madison, WI 

USA). Sinapic Acid was from Sigma-Aldrich (St. Luois, MO, USA), the 

detergent beta -octyl glucoside (BOG) and SuperBlock were from Pierce. 

Phosphate-Buffered Saline (PBS) 7.4 (10X) liquid came from Invitrogen Corp., 

while Trifluoroacetic acid (TFA) was purchased from Pierce. IgG Thyroid 

Simulating Hormone (TSH) and anti-TSH were purchased from Seradyn Inc. 

Indianapolis, IN, USA. 

Reagents 
High performance liquid chromatography grade solvents (Water and 

Acetonitrile) were purchased from EMD (Madison, WI USA. Alpha-Cyano-4-

hydroxycinnamic acid and standard peptides were from Sigma-Aldrich (St. 

Luois, MO, USA), the detergent beta -octyl glucoside (BOG) was from Pierce 

as Trifluoroacetic acid (TFA). Magnetic beads were DynaBead-RPC18 

(Invitrogen Corp., Campbell, CA, USA). 

Serum sample were fractionated on BondElute LCR C18 (Varian Inc., Palo 

Alto, CA, USA) and 218TP C18, 2.1*250mm I.D, 5µm particle size (Vydac, 

Deerfield, IL, USA). 
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2. Equipment 

The sample processing has been completely performed on the Halmiton Star 

Robot (Hamilton Company, Reno, NV, USA) and a Dynal magnetic patirticles 

concentrator (Invitrogen) has been used to facilitate the removal, washing and 

elution steps. MALDI-MS experiments were performed in positive ion mode 

using a PrOTOF (PerkinElmer, Boston, MA, USA). Sample were lyophilized 

on Freezemobile 12XL – The Virtis Company, New York, USA). Two 

chromatography systems have been used: UltiMate System (Dionex, 

Sunnyvale, California, USA), consisting of dual gradient pump, a degasser, a 

flow manager, a UV detector, a well-plate autosampler Famos and an 

automatic fractions collector Probot and Agilent 1200 Series (Agilent 

Technologies, Palo Alto, CA, USA). 

 

3. Methods 

3.1 Proteomic Profiling Study 

3.1.1 MALDI-TOF analysis 

Specimen processing – Sample processing was performed on the Hamilton 

Star liquid handling workstation, equipped with multiple pipetting, labware 

gripping devices, shaker device and magnet. All workstation functions and 

integrated third-party devices are controlled by the Venus software (Hamilton 

Robotics, Reno, Nevada, USA). The serum samples have been diluted 1: 5 

with running buffer (aqueous solution 0.1% Trifluoroacetic acid (TFA)-octyl 

glucoside 500M) into a 96-well microtiter plate. The C18 magnetic beads 

(Dynabeads RPC 18, Invitrogen) were washed three times with 200 L of 

running buffer, before samples (100 L) were added to each well of the 

microtiter plate. The plate was washed an additional three times, before 

elution from the beads in a new 96-well plate using the energy absorbing 

matrix solution (5 mg/mL -cyano-4-hydroxyciunamic acid, CHCA, in 50% 

acetonitrile/water with 0.1% TFA). The eluted fraction were spotted on the 

MALDI target and air dried. Each sample was analyzed in duplicate. 
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High resolution MALDI-TOF analysis – The prOTOF 2000 MALDI O-TOF 

Mass Spectrometer (PerkinElmer) was used to obtain serum proteomic 

profiles of the samples with the following settings: 

Laser Shot: 80 

Laser Energy: 65% 

Laser rate: 100.0 Hz 

Declustering: 30,0 V 

Cooling flow: 190 mL/min 

Mass Range: 720-6000 Da 

Expected high mass: 6000 Da 

Focusing flow: 212.0 mL/min 

Acceleration Voltage: 16 kV (+) ion 

Detector: 2300 V 

Laser pattern: 2 mm, rings 02 + 04, 32 spots 

A 2-points external calibration will be performed using 

angiotensin and ACTH fragment 18-39.  

3.1 Proteomic Pattern Analysis 

Spectral Preprocessing – Due to the high resolution of the prOTOF, there was 

no drift effect, therefore no peak alignment was required. The intensities of 

each spectrum were scaled with adjust coefficient so that the total ion current 

(TIC, that can vary across different spectra) of the scaled spectrum was equal 

to the average TIC of all the spectra. The cut-off limit for spectra was 

established as the value 3 and all the spectra with TIC or adjust coefficient <3 

were consider as outliers and excluded from further analysis. The spectra 

were binned with a linear growing window size and the data points were 

reduced to about 10,000 for each spectrum. 

Pattern Analysis – Preprocessed data were randomly divided in training set 

(70%) and testing set (30%), so that the duplicate spectra of each sample was 

assigned to the same group. The classification of the samples was performed 

using a proteomic biomarker discovery system developed by the Clinical 

Proteomics Reference Laboratory (NCI-SAIC Frederick Inc., Frederick, 

Maryland, USA), which consists in the combination of three different and 
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independently trained machine learning tools: Partial Least Square regression 

(SAS Institute, Inc., Cary, North Carolina, USA), Support Vector Machine 

(Chih-Chung Chang and Chih-Jen Lin, LIBSVM: A library for support vector 

machines, 2001) and C5 decision tree from RuleQuest (St Ives, NSW, 

Australia). The classification result for a sample was determined using the 

major vote of the six classification results from those three algorithms on the 

duplicate spectra of the sample. In presence of a tie, the classification was 

declared unknown. 

3.2 Identification Study 

3.2.1 Peptides Isolation 

Sample Processing – The serum samples were fractionated using BondElute 

LCR C18 (Varian, Inc.)  solid-phase extraction cartridges. The C18 cartridges 

were preconditionated with acetonitrile (2 mL, two times) and washed with 

0.1% TFA (2 mL, four times). The sample diluted 1:2 in 0.1% TFA was loaded 

onto the column (500 L of serum to a final volume of 1 mL). The column was 

washed three times withTFA 0.1% (2 mL each wash) and the peptides were 

eluted with 50% acetonitrile, 0.1% TFA (2 mL, two times). The eluted samples 

were frozen for 2 hours at -80°C and then lyophilized (Freezemobile 12XL – 

The Virtis Company, New York, USA) over night and then reconstituted with 

30 L of water 0.1% formic acid. 0.5 L of the obtained sample solution was 

diluted 1:10 and spotted on a MALDI target in order to analyze the sample on 

the prOTOF to confirm the presence of the investigated peptides before 

proceeding to further investigation. 

HPLC fractionation – The chromatographic separation was carried out on a 

Vydac 218TP C18 (2.1*250mm I.D, 5µm particle size) on a UltiMate System 

(Dionex, Sunnyvale, California, USA), consisting of dual gradient pump, a 

degasser, a flow manager, a UV detector, a well-plate autosampler Famos 

and an automatic fractions collector Probot. The flow was of 200 L/min. 

Mobile Phase: A, 0.1% formic acid; B, acetonitrile, 0.1% formic acid. Gradient 

elute procedure: initial conditions – B  0% for 15 min; step 1 – B 0-80% in 80 

min; step 2 – B 80-100% in 5 min;  step 3 – B 100% for 5 min; return at the 

initial conditions – B 0% in 2 minutes and equilibration for B 2% for 8 minutes 
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before the next injection. The injected volume was 30 L and the wavelength 

used to monitor the elution was 206 nm, which is within the range of 

wavelengths 180-230 nm for the peptide bond. From each diluted serum 

aliquot a total of 96 fractions (1 minute fraction, 200 L each) were collected 

into a microtiter plate and later checked with the PrOTOF to identify the 

fraction containing the investigated peaks. The peptides of interested were 

eluted in presence of  about 12-14% organic modifier, therefore the 

corresponding peak presented a TR around 12-14 min. this fractionation 

procedure was repeated a total of X times in order to collect a discrete 

amount of the potential biomarker peptides for the following procedure; finally 

a total amount of 2 mL of serum were fractionated. 

3.2.2 CapLC-ESI MS analysis  

CapLC conditions – The capLC separation was performed on Agilent 1200 

Series System, that consisted in a binary pump, a degasser and a 

autosampler. Mobile Phase: A, 0.1% formic acid; B, acetonitrile 0.1% formic 

acid. The flow rate was 3 L/min and the injection volume was 2 L. The 

HPLC fraction from the previous experiment has been lyophilized and 

reconstituted with the 0.1% formic acid for the direct CapLC-MS/MS analysis. 

Before the CapLC fractionation a small aliquot of the 0.5% formic acid 

peptides solution was spotted on a MALDI target along with CHCA matrix 

solution to verify the presence of the investigated peaks. 

The purified peptide fractions of interest were applied on the Phenomenex 

Jupiter (4u, 90A) Proteo Micro-HPLC Column, 150 x 0.30 mm (Phenomenex, 

Sydney, Australia) and separated using gradient elution. The column was 

connected to a LCQ mass spectrometer (ThermoQuest, San Jose, CA) 

equipped with an electrospray ion source and operated in the positive ion 

mode. The instrument was tuned by direct infusion (FIA) of standard peptides 

(ACTH 18-39 2465.198 Da; Angiotensin I, 2465.198 Da) in 0.1% formic acid, 

2 pmol/L.Source corrent was 80 A. Source voltage was held at 5 kV, tube 

lens offset was -4.25 V. The heated capillary was kept at 250°C with a voltage 

of 23 V. The LCQ was set to acquire a full MS scan between 200 and 3000 

m/z followed by full MS/MS scans of the top three ions from the preceding full 
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MS scan. Activation time for CID was 30 ms and the relative collision energy 

was set to 42%. Dynamic exclusion was enabled with one repeat count, 

repeat duration of 30 s and 30 sec exclusion duration window. Spectra were 

searched with the Bioworks software against selected database. 
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Results and Discussion 

The first part of this study involved a proteomic profiling investigation of 415 

samples from patients affected by biopsy confirmed ovarian cancer and a 

population of high risk subjects; the number for each group was equally 

distributed. The proteomic profiles of the samples were obtained with a high 

resolution MALDI-TOF experiment in which the low molecular weight fraction 

was isolated using reverse phase magnetic beads chromatography (FIG).  

 

FIG. 2 

1 – Wash and remove unwanted components; 2 – desorbtion followed by magnetic 
separation; 3 – Possible further fractionation; 4 – Peptides fraction. 

 
 

 
 
 
 
 

 

48



 
Applications of Mass Spectrometry in Proteomics and Pharmacokinetics 

 
 

 
Chapter II – Discovery of Ovarian Cancer Biomarkers 

 
 

The samples diluted with the acidic buffer (running buffer) were added directly 

to the pre-washed beads. A mixture of proteins and peptides in the serum 

adsorbed to beads and then the complex beads-protein/peptides was easily 

washed with the same acidic buffer, eliminating unwanted components such 

as salts and other not adsorbed substances. Peptides and small proteins 

were desorbed in one single step using a small volume matrix solution that 

contained 50% acetonitrile in order to reduce a potential loss of low molecular 

weight components of the serum and to reduce the time of analysis; this 

expedient helped also in the concentration of the analytes before the MALDI 

analysis and improved the high throughput of the technique, compare to other 

precedent experience [46]. Figure 3 shows a typical spectrum obtained from 

human serum with this technique.  

 

FIG. 3 
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We analyzed the samples on the high resolution PrOTOF mass spectrometer 

(FIG). The PrOTOF combines orthogonal injections (A) to introduce sample 

ions from the MALDI source to the TOF with a reflectror TOF (B), providing 

high resolution in a wide range. Differently from conventional axial MALDI-

TOF systems, in the PrOTOF the MALDI source is decoupled from the TOF, 

increasing the instrument’s accuracy, resolution and sensibility. Ions entering 

the mass analyzer have reduced energy distribution for collitional cooling 

focusing (C). Lower energy distribution improves sensitivity of the system.  

  

 

FIG. 4 

 

Proteomic modelling successfully distinguished ovarian cancer patients’ 

samples from high risk samples (TAB) and used the top 100 up-regulated and 

the top 100 down-regulated peaks with the lowest p-value to build the 

classifiers, with sensitivity of 82.1% and Specificity of 86.2%.  

Table 1 

 Predicted as 
Unknown 

Predicted as      
High Risk 

Predicted as 
Cancer 

High Risk 5 44 7 

Cancer 3 10 46 
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The bioinformatics indicated a list of top and down-regulated peaks and the 

ones that showed higher reproducibility underwent further investigation in 

order to identify their amino acid sequence. Four of them were particularly 

interesting both for the quite constant presence and also because apparently 

somehow correlated. The peaks in question showed respectively m/z 3191, 

3207, 3262 and 3278. The difference between the first and the second peak 

was of 16 Da, which can be correlated to an oxidation, and the same 

difference was found between the third and fourth peak. Not less interesting 

was the difference between the first and the third peak – corresponding to the 

not oxidized peaks – that was of 71 Da, that could be due to the delation of 

one amino acid, in particular of the alanine, therefore  the same 71 Da 

difference was found between the second and the fourth peak. The resolution 

and the accuracy of the instrument was determinant for the confidence in the 

results. Another down-regulated peak was 2769. 

In order to identify the peaks it has been necessary to concentrate and to 

isolate as much as possible the investigated peptides. The first step in this 

process was to separate the LMW fraction of the serum again with a reverse 

phase method. The C18 solid-phase extraction method was found to be the 

most efficient and the less expensive to up-scale and the elute from the 

cartridges was easy to concentrate by lyophilization. With this quick and 

reproducible method it was possible to eliminate the salts and the large 

proteins naturally present in the serum and that can interfere with the 

detection on mass spectrometry. The dried samples were reconstituted in a 

buffer suitable for the HPLC fractionation and fractions from the outlet of the 

column were collected after UV detection into a 96 well plate. The robot 

collection of the samples assured a complete recovery of the whole elute. The 

fig 5 shows a typical chromatogram obtained fractionating the extracted LMW 

proteins and peptides. The peptides of interest were eluted in presence of 12-

18% of organic modifier (12-18 minutes). 
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All the collected fractions were checked on the mass spectrometer and the 

ones containing the peaks were controlled and they showed a dramatic 

increase of the signal definitively reflecting an increase in the concentration of 

the peptides. The figures 6 and 7 show the spectrum relative to an isolated 

fraction containing the four peaks of interest isolated by HPLC from human 

serum. 
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We tried to identify the peaks of interest using LC-MS/MS and the technique 

was successful for the identification of the peptide with m/z 2770. Data-

dependent MS/MS was generated using a 0.5-sec MS survey scan and 2.5-

sec MS/MS scans on the three most abundant peaks found in the survey 

scan. The collision-induced dissociation (CID) energy was between 25 and 65 

eV depending on the mass and charge state of the precursor ion. Dynamic 

exclusion was applied in the data depending acquisition to prevent that the 

most abundant ion was constantly subject to tandem mass spectrometry 

(MS/MS), so if the peptide was selected for the MS/MS scan, it wasn’t 

selected again for a certain time, so that other less intense ion could have 

been analyzed. Peptides fragment in a predictable way in the collision-

induced dissociation that occurs in tandem mass spectrometry. This peculiar 

aspect allows the use of algorithms able to correlate the experimental 

fragmentation pattern with the theoretical pattern in order to identify the 

protein. For this purpose the software Bioworks 3.3.1 (Thermo Scientific, 

Waltham, Massachusetts, USA) has been used. First of all, Bioworks matches 

amino acids sequence in the database and the measure mass of the peptide 
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and then calculate a cross-correlation value to give an estimate of the quality 

of the match between the experimental data and the database. For the peak 

2770 a list of B and Y ions (Tab. 2, fig. 8) has been identified and the list has 

been correlated with a sequence of 25 amino acids (Ions 12/48, P (pep) = 

2.09E-3). The sequence is a fragment of fibrinogen alpha chain, which has 

been associated with ovarian cancer by many scientists [46-49]. 

 

Table 2 

AA B Y 
 S  8.803.930.485 - 
 S  1.750.713.333 2.681.196.159 
 S  2.621.033.617 259.416.413 
 Y  4.251.666.902 2.507.132.102 
 S  5.121.987.186 2.344.068.773 
 K  6.402.936.816 2.257.036.745 
 Q  7.683.522.591 2.128.941.782 
 F  915.420.673 2.000.883.205 
 T  1.016.468.351 1.853.814.791 
 S  110.350.038 1.752.767.112 
 S  1.190.532.408 1.665.735.084 
 T  1.291.580.087 1.578.703.055 
 S  1.378.612.115 1.477.655.377 
 Y  1.541.675.444 1.390.623.348 
 N  1.655.718.371 122.756.002 
 R  1.811.819.482 1.113.517.093 
 G  1.868.840.946 9.574.159.815 
 D  1.983.867.889 9.003.945.178 
 S  2.070.899.917 7.853.675.748 
 T  2.171.947.596 6.983.355.464 
 F  231.901.601 5.972.878.679 
 E  2.448.058.603 450.219.454 
 S  2.535.090.631 3.211.768.609 
 K  2.663.185.594 2.341.448.325 
 S  - 1.060.498.695 
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Fig. 8 

 

 

The interesting four peaks (3191, 3207, 3262 and 3278, Fig. 7) showed an 

absolutely not satisfactory ionization in electro-spray, therefore further 

analysis will be performed on these analytes in order to determinate their 

amino acidic sequence. The most suitable technique seems to be MALDI-

TOF/TOF mass spectrometry, since the peptides already showed a good 

degree of ionization in MALDI.
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MALDI Mass Spectrometry Automated Immuno Precipitation test 

of Monoclonal Antibody specificity  

 

Introduction 

1. Origin and Application of the Monoclonal Antibodies 

In 1890 Emil von Behring and Shibasaburo Kitasato discovered that 

resistance to diphtheria could be transferred from one animal to another by 

taking blood serum from an immunized guinea-pig and injecting it into another 

animal [1]. They concluded that the immune serum contained a substance 

able to deactivate the diphtheria toxin and they called it anti-toxin. Later the 

anti-toxin was defined antibody and in 1901, the first Nobel Prize for 

Physiology and Medicine was awarded to Emil von Behring for "his work on 

serum therapy against diphtheria".  For many years animal sera were 

considered the treatment of excellence for microbical infectious disease and 

for neutralization of toxins in man [2]. In more recent times the serum therapy 

has been replaced with rodent monoclonal antibodies. In the 1970s the B-cell 

cancer multiple myeloma was known, and it was understood that these 

cancerous B-cells all produce a single type of antibody (a paraprotein). This 

was used to study the structure of antibodies, but the first real production of 

monoclonal antibodies to a specific antigen was described by Schwaber and 

Cohen in 1973 [3]. They observed that even though hybrids between two 

distinct differentiated cell types keep on producing enzymes necessary for the 

metabolism of the cell, the specific proteins production is suppressed. They 

were able to isolate a myeloma X lymphoma cell lines that showed to continue 

the secretion of immunoglobulin. The isolated hybrid clone resulted from the 

fusion of a mouse myeloma cells secreting known specific immunoglobulin 

and human peripheral blood lymphocytes not secreting detectable 

immunoglobulin. The hybrid cells did not just secreted the mouse 

immunoglobulin but also the human immunoglobulin. Schwaber is widely cited 

as the inventor of the technique, but there are some controversies about the 

priority of the invention [4] and Georges Köhler, César Milstein, and Niels Kaj 
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Jerne shared the Nobel Prize in Physiology and Medicine in 1984 for the 

discovery. Köhler and Milsten described the manufacture of predefined 

specific antibodies from hybrid cell – fusion of mouse myeloma cell and 

mouse spleen cell from an immunized donor – secreting anti-sheep red blood 

cell [5]. 

The most important trait that makes of the monoclonal antibodies (MoAb) 

such a valuable tool in biochemistry and in medicine is their specificity. This 

distinguishing feature renders MoAbs absolutely helpful in several fields, for 

example in the therapy and in the diagnosis of many different diseases, 

detecting the presence of abnormal substances in the body. 

The use of MoAbs in therapy has been possible only after improvement of the 

manufacture technology in order to overcome the limitation of the use of 

mouse antibodies due to the induced immunity by the foreign substances in 

the treated patients; the achievement of humanization and chimerization of 

mouse Abs brought to the improvement in 1995  of the first antibody for the 

treatment of cancer: that was Edrecolomab [6] and today there are 20 or so 

antibodies involved in clinical trials and 10 of them have advanced to Phase III 

trials or even further [7]. Antibodies can be used in therapy as naked 

antibodies – without any drug or radioactive material attached to them – or as 

conjugated MoAbs – with a drug or any other active substance attached to 

them. Their naked forms have also been used in combination with cytotoxic 

drugs and it has led to controversial outcomes as in the case of Herceptin that 

has synergistic antitumor activity with cisplatin and carboplatin [8, 9] and 

additive benefits in combination with other drugs such as doxorubicin and 

cyclophosphamide, however the association of this MoAb therapy and the 

anthracycline drug with cyclophosphamide has been associated with a 

significant increase in cardiotoxic effects [10]. 

Several strategies for monoclonal antibodies therapy are now used or under 

investigation (Fig. 1).  One of the mechanisms is the enhancement of the 

antibody dependent and/or complement dependent cytotoxicity, in which the 

tumor cell killing is activated by the interaction between the FC region of the 
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Ab bound to the cell and the FC receptor on the immuno effector cell. This 

mechanism could be very useful in the treatment of minimal residual disease 

and metastatic disease in the attempt to overcome the lack of accessibility 

and the limited penetration of solid tumor by antibodies [11, 12]. The probably 

most explored approach is the direct arming by covalent linkage of active 

molecules to the antibody that acts as a vehicle for targeted therapy; although 

this strategy showed in many cases unacceptable high levels of toxicity [13],   

Gemtuzumab ozogamicin (Mylotarg) has been approved in 2000 for acute 

myelogenous leukemia [14]. On the other hand also indirect arming is a 

possible approach, for example attaching liposomes containing active drugs to 

the MoAb [15] or bispecific antibodies (BsAbs) that are not natural antibodies 

able to bind both a tumor associated antigen and a trigger antigen on a 

immuno effector cell, in order to activate the immuno system against a tumor 

cell that otherwise would have been ignored. BsAbs showed some interesting 

results in ovarian cancer trials [16]. The pre-targeting approach provides a 

selective delivery of radionuclides using the high affinity interaction between 

streptavidin and biotin [17, 18] or of progrugs [19, 20] that should be ideally 

converted in drug only inside the tumor. 
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Figure 1 

Strategies for monoclonal antibodies therapy 

 

 

The use of MoAbs in the diagnosis and in the prognosis of diseases does not 

involve the use of humanized antibodies; simple mouse antibodies that can be 

easily obtained in large quantities are sufficient to create sensitive and 

selective tests for potentially any molecule. This peculiar aspect has been 

utilized for example in the development of tests for cancer biomarkers, e.g. 

Prostate-specific antigen (PSA) [21]. In March 2000 the Food and Drug 

Administration approved the first automated PSA test (Hybritech Tandem-R, 

Beckman Coulter Inc.), based on the use of two monoclonal antibodies for the 

determination of the free and the total PSA, producing equimolar results with 

reliable consistency, sensitivity and specificity. The CA-125 test instead is an 

example of the use of monoclonal antibodies to monitor the course of a 

particular disease [22-24], in other words of the prognosis of the disease. The 

Roche test for the antigen CA-125 is an sandwich ELISA (ENZYME-LINKED 
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IMMUNOSORBENT ASSAY) assay in which the secondary antibody is in a 

detectable form due to the electrochemiluminescence of Ruthenium(II) 

complexes with tripropylamine (TPA).  

Since it is possible to obtain MoAbs virtually for any type of molecule, it is also 

possible to develop the appropriate ELISA assay for a quantitive 

determination of the investigated molecule, so it could be an ELISA assay for 

a potential molecule involved in cancer development [25], or for a particular 

drug [26], an endogenous factor [27]. Recently some interesting applications 

of MoAbs in ELISA assays have been described such as sensors of specific 

proteins in solution [28], for the detection of botulinum neurotoxin type A [29] 

and for post translational modification of cytosolic proteins [30]. The key in any 

of the described applications of the MoAbs is the specificity of the antibody 

itself that could be obtained and tested with different techniques, more or less 

sophisticated. 

 

2. Monoclonal Antibodies Production 

Given such a diversity of uses for the MoAbs, their production in pure 

quantities has long been the focus of scientific investigation. The conventional 

method was to inject a laboratory animal with an antigen and then, after 

antibodies had been formed, collect those antibodies from the blood serum 

(antibody-containing blood serum is called antiserum). The most widely used 

MoAbs production technology is the hybridoma technique – first developed by 

Kohler and Milstein in 1977 [5] – which involves the fusion of myeloma cells 

and spleen cells from most typically a rodent – commonly mouse, sometimes 

rat – or lately also a rabbit, in either cases the animals have been previously 

immunized with the desired antigen. Myeloma is a tumour of the bone marrow 

that can be adapted to grow permanently in cell culture. The fusion is usually 

mediated by the presence of polyethylen glycol [31], but the success rate is 

very low, so the selection of the fused cells is necessary. The growth of 

spleen cells will eventually stop because of their limited life span; instead for 

the myeloma cell the loss of ability to synthesize hypoxanthine-guanine-
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phosphoribosyl transferase (HGPRT) will be exploited to select the hybrid 

cells. HGPRT is the enzyme that allows the synthesis of purines using an 

extracellular source of hypoxanthine as a precursor; in normal conditions the 

absence of the enzyme can be overcome by the activation of an alternative 

biochemical pathway, but if the cells are exposed to the folic acid analogue 

aminopterin, the alternative pathway is locked and in this way the myeloma 

cells survival is completely denied. The selective culture medium is called 

HAT medium because it contains Hypoxanthine, Aminopterin, and Thymidine. 

However, hybridoma cells are able to grow indefinitely because the spleen cell 

partner supplies HGPRT and the myeloma partner is immortal because it is a 

cancer cell. In this way immortal hybridomas have been obtained and they will 

continually produce antibodies. These antibodies are called monoclonal 

because they derivate from the preparation containing only one kind of clone 

– the hybridoma – instead the polyclonal antibodies come from preparation 

with many kinds of cells, therefore the monoclonal antibodies are potentially 

more pure than the polyclonal antibodies obtained with conventional 

techniques, perhaps more specific. In the monoclonal antibodies production, 

the hybrid clones are diluted and clones are grown from single parent cells. 

Antibodies produced by each different clones are tested and only the selected 

clone are use in the next step that is the propagation of the antibody, that 

could be performed in vitro or in vivo injecting the hybridoma cells in mice – in 

the peritoneal cavity – where they produce tumours containing an antibody-

rich fluid called produce large ascites fluid. 
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Over a quarter century ago the development of murine hybridoma technology, 

with its capacity to produce large quantities of well-characterized monoclonal 

antibodies, revolutionized diagnostic and therapeutic medicine. For many 

applications in transfusion medicine, however, the production of serological 

reagents in mice has certain biological limitations relating to the induction of 

anti-mouse immune responses. Human hybridoma formation presented 

several technical difficulties that have led to novel molecular approaches that 

do not require cell fusion, immortalization or even immunization of individuals. 

These technologies, referred to as 'repertoire cloning' or 'Fab/phage display', 

are a relative new combination of molecular techniques for the display of 

proteins and they have been introduced by Smith in 1985 [32]. In this 

technique the genetic material encoding the antigen is inserted into a 

filamentous phage that will be hosted by Escherichia Coli [33]. E.Coli is an 

expression and display system. The only one prerequisite for this technique is 
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that the immunoglobulin gene of the species has to be sufficiently sequenced 

in details so the PCR amplification is possible. In the phage approach the 

lymphocyte cells are isolated from the spleen – just like for the hybridoma 

technique – but from the bone marrow as well; the immortalization concerns 

just the DNA region encoding the immunoglobulin of interest and not the 

whole cell. RNA is prepared from the lymphocytes and by reverse 

transcriptase it is transcripted into cDNA of the variable regions of 

immunoglobulins that can be amplified by PCR. Combining phage libraries 

prepared from various immunized animals can provide very large antibody 

libraries. Many techniques can be used to enrich the population of E.Coli and 

also binding affinity of phage antibodies can be enhanced by optional in vitro 

affinity maturation. When the specifically binding phage is identified, the Ab 

can be expressed in soluble form in E.Coli without phage and in large 

quantities. 
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Figure 2 

 

The evaluation of antibody binding is generally performed by ELISA or 

Western Blotting, but other techniques such as Surface Plasmon Resonance 

(SPR) [34-36] or Immuno Precipitation Mass Spectrometry could be extremely 

useful to determinate of the presence of interaction between antigen and 

antibody. 
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Aim of the Study 

This study is part of the five-year National Cancer Institute (NCI) Clinical 

Proteomic Technologies for Cancer (CPTC) Initiative initiative to build a 

foundation of technologies, data, reagents, reference materials, analysis 

systems, and infrastructure needed to systematically advance protein biology 

for the diagnosis, treatment and prevention of cancer. As part of the CPTC 

initiative, that involves several structures in North America and Europe, 

monoclonal antibodies have been raised to potential protein biomarkers to 

provide a series of renewable and highly characterized affinity binding 

reagents to the research community. 

The goal is to determine an analytical assay that provides information about 

the specificity of the IgG mouse monoclonal antibodies using mass 

spectrometry. The assay has to be automated to allow the analysis of many 

antigen/antibody pairs in the same assay with the lowest possibility of error. 

The Immuno Precipitation Mass Spectrometry approach has been selected in 

order to integrate other analytical techniques involved in the choice of the best 

monoclonal antibody for the specific antigen, in particular Western Blot and 

Surface Plasmon Resonance. The selected monoclonal antibodies will be 

involved in the development of ELISA assays for the screening of clinical 

samples, in order to clinically validate the potential biomarker and obtain easy 

and accessible diagnostic tools, for a rapid, specific and selective kit that 

should be available in the clinics. 
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Experimental 

1. Material  

Magnetic beads 

Three different types of beads were tested: MagnaBind Protein A Beads and  

MagnaBind Goat Anti-Mouse IgG Beads (Pierce, Rockford, IL, USA) and 

Dynabeads Pan Mouse (Invitrogen Corp., Campbell, CA, USA). 

 
Reagents 
High performance liquid chromatography grade solvents (Water and 

Acetonitrile) were purchased from EMD (Madison, WI USA). Sinapic Acid was 

from Sigma-Aldrich (St. Luois, MO, USA), the detergent beta -octyl glucoside 

(BOG) and SuperBlock were from Pierce. Phosphate-Buffered Saline (PBS) 

7.4 (10X) liquid came from Invitrogen Corp., while Trifluoroacetic acid (TFA) 

was purchased from Pierce. IgG Thyroid Simulating Hormone (TSH) and anti-

TSH were purchased from Seradyn Inc. Indianapolis, IN, USA. 

2. Equipment 

The sample processing has been completely performed on the Halmiton Star 

Robot (Hamilton Company, Reno, NV, USA) and a Dynal magnetic patirticles 

concentrator (Invitrogen) has been used to facilitate the removal, washing and 

elution steps. MALDI-MS experiments were performed in positive ion mode 

using a Voyager DE-PRO (Applied Biosystems, Framingham, MA, USA). 

3. Methods 

Automated Immunoaffinity test of Antibody specificity – A complete automated 

run allows the analysis of 48 Antigen/Antibody pairs in duplicate in the same 

experiment. The robotic method was performed on the Hamilton Robot. Both 

antigen and antibody solution of each duplicate analysis came from the same 

vial in order to reduce variability due to the preparation of the solution. 

Different types of beads have been tested to define the more convenient from 

the standpoint of efficacy, reproducibility and economic suitability. 

The assay was performed placing a dilution of beads suspension in PBS 

1x/BOG 500 M (running buffer), for a final volume of 250 L and a 

concentration of 1mg/mL.  The beads were washed two times with PBS 
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1x/BOG 500 M (200 L each). The robot provided also a distribution of the 

MoAbs from 500 L tubes to a different 96 well plate, picking 120 L of 

solution and dividing it into two equal aliquots of 60 L in two contiguous wells 

on the plate. The positive control MoAbs was anti-TSH, in a dilution 1:20 of 

the stock solution 4.75 mg/mL in running buffer. In the next step the robot 

added 50 L of the MoAbs solution to the washed beads, the plate was 

covered with a lid and mixed for 40 minute at room temperature. At this point 

the MoAbs should have been capture by the beads surface (Protein A, GAM 

or PAN Mouse) and further three washes with PBS 1x/BOG 500 M (200 L 

each) were executed. In the blocking experiments, after attachment of the 

antibodies on the surface of the beads, the beads are treated with SuperBlock 

(3 times, 200 L each) and washed again with running buffer. The robot 

distributed also the antigen from the 500 L tubes into a new 96 well plate, 

following the same procedure used for the antibodies distributions, so it was 

possible to add a volume of 50 L of antigen into the beads plate. The 

following incubation involved the only manual step of the procedure: the plate 

was cover with a lid and manually transfer into a cold room (4°T) for slow tilt 

agitation for 1 hour. At the end of the incubation the plate was again manually 

transferred to the robot and three washes were executed with PBS 1x/BOG 

500 M (200 L each), followed by three more washes with water to eliminate 

the salt and the detergent that could affect the mass spectrometry 

determination. The elution of the antigens and of the antibodies from the 

beads was performed automatically and directly adding 35 L of a matrix 

solution to the beads (Sinapic Acid 10 mg/mL, 0.1% TFA/Acetonitrile, 60/40) 

and then from the plate the elute solutions were spotted directly onto the 

surface of the MALDI target (2 L each spot). The plate was left to dry at room 

temperature and when completely dry it was introduced into the MALDI-MS 

analyzer to determine the molecular weight of the eluted antigen. 
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MALDI-MS conditions – Mass spectra were acquired with a Voyager-DETM 

PRO Biospectrometry Workstation. This instrument was equipped with a 

nitrogen laser (337 nm), and data were obtained by using the linear 

acquisition mode under delayed extraction conditions. The laser spot size on 

target was approximately circular, with a diameter of 25 lm. Instrument 

settings were an accelerating voltage of 25 kV, 91.5% grid voltage, 0.15% 

guidewire voltage, delay time of 600 nsec, and bin size of 4 nsec. 50 shots per 

spectrum were collected with m/z range 5,000-100,000. 
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Results and Discussions 

We tested three kinds of beads with different properties and from different 

companies. The aim of these screening was to select the most suitable beads 

for the purpose of the study. In table one the beads’ properties are 

summarized. 

 

Tab 1 

Company Name Coating 

Molecule 

Specificity Composition Magnetization type Beads 

size 

Concentration 

Pierce MagnaBind 

Protein A 

Beads 

Protein A Fc-part of 

IgG1, IgG2 

and IgG4 

Silanized 

iron oxide 

 

Superparamagnetic 1-4 �m 

 

5 mg/mL 

Pierce MagnaBind 

Goat Anti-

mouse IgG 

beads 

GAM Goat 

Anti-mouse 

IgG (GAM) 

Both heavy 

and light 

chains to 

IgG 

Silanized 

iron oxide 

 

Superparamagnetic 1-4 �m 

 

1 mg/mL 

Invitrogen Dynabeads 

Pan Mouse 

IgG 

Monoclonal 

human 

Anti-mouse 

IgG 

Mouse IgG 

subclasses, 

Fc specific 

Polystyrene Superparamagnetic Uniform 

4.5 �m 

 

10 mg/mL 

 

 

The differences between the three kinds of beads are basically due to their 

sizes, which affects the amount of available area for the binding with the 

monoclonal antibodies with indirect proportion with the beads diameter, and to 

the molecule coating the surface of the beads. Pan Mouse IgG and the 

Protein A [41] beads are specific for IgG subclasses and Fc specific, while 

Pierce GAM antibodies cannot guarantee the correct orientation of the 

secondary antibody – in this case the monoclonal antibody to be tested – but 

they have been tested anyway because of their extremely reduced cost, that 

calculated on a complete single assay results at least twenty-five time less 

that the other beads (Fig. 4). In the washing and incubating steps of the assay 

it was introduced the use of a small amount of detergent BOG which showed 

to lead to a greater intensity of the signal due to the antigen in the MALDI MS 

spectra, probably due to the increment of the solubility of the species involved 
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in the binding reaction, therefore the improvement of the efficacy of the 

washes. 

  

Fig. 4a – Protein A beads 
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Fig 4b – GAM beads 
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Fig 4c – PAN Mouse Beads 

 

The three types of beads have been compared using a commercial 

monoclonal antibody anti-TSH and the correspondent antigen TSH and the 

results are showed in figure 5. 
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Figure 5 
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The results in figure 1 showed that the best outcomes were obtained with 

Pierce Protein A beads and Invitrogen Pan Mouse IgG. We were expecting 

better results for the Protein A beads instead of the PAN Mouse due to the 

fact that the surface of Protein A beads is higher  in average (1-4 m 

diameter) than the surface of the Pan Mouse IgG (4.5 m diameter), providing 

more available area for the binding between the primary and the secondary 

antibody. A higher surface leads to higher possibility of specific binding 

between the monoclonal antibody and the antigen, therefore a higher 

concentration of the antigen in the elute from the beads, but in this study the 

beads with lower surface – PAN mouse – showed better results, probably due 

to the nature of the coating molecule and its strong interaction with the IgG 

(MoAbs) to be capture. The beads were eluted directly with the matrix solution 

which is acidic enough (pH ≤ 2) to dissolve the non covalent interaction 

between primary antibody, secondary antibody and antigen. Direct elution 

also avoids a further dilution of the antigen and also time delay. The matrix 

solution of choice is sinapic acid, indicated for large molecular weight protein, 

in a concentration of 10 mg/mL in 0.1% TFA/ACN 60/40 that allows a good 

crystallization without spreading of the material over the edges of the spot on 

the MALDI target in the automated spotting procedure (2 L for each spot). 

In order to narrow the selection to just one bead type, the two candidate kinds 

of beads – Pierce GAM beads and Invitrogen Pan Mouse IgG – have been 

tested for non specific binding and cross-reaction with the control couple anti-

TSH and TSH and two series of testing monoclonal antibodies for two specific 

antigens. The two antigens were Metastasin 100 calcium-binding protein A4 

(Calvasculin) and Ras-related C3 botulinum toxin substrate 1 (rho family small 

GTP binding protein Rac1) and they were indicated respectively as Ag 10337 

and Ag 10295. 

Ras-related C3 [42] belongs to the Rac family of small GTPases, known to be 

responsible for the regulation of actin cytoskeletal structures and the influence 

on  the cellular processes of integrin-mediated adhesion and migration. RAC3 

as a factor associated with adhesion and migration signaling pathways has 
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been indicated by Baugher at al. as involved in human breast cancer along 

with RAC1, correlating high endogenous Rac activity with the progression of 

the disease. On the other hand Calvasculin or S100A4 [43, 44] belongs to the 

family of EF-hand calcium-binding proteins and it shows to be expressed in 

cancer cells and to contribute to tumor cell motility and metastatic progression 

as well, even though the exact underlying mechanisms remain elusive. The 

two antigens are part of a group of proteins considered to have a high 

potential as putative biomarkers and they represent just examples on how the 

IPMS assay can be conducted. The importance of the use of authentic 

material to develop the IPMS methods is due to the fact that these two 

antigens with the corresponding monoclonal antibodies are the prototype of 

what a regular sample would be delivered and ready for IPMS testing from the 

standpoint of concentration and buffer used for dilution after purification. 

The test for the non specific binding has been performed incubating the 

antigen directly with the beads, with or without the use of a blocking step. 

Again the PAN beads showed a better signal and visible non specific binding 

effect due to the not monoclonal antibody conjugated surface of the beads 

(fig. 6). The effect has been completely eliminated in the PAN Mouse beads 

blocking the surface of the beads that had not reacted with the antibodies with 

BSA or similar mixture, we decided to use a commercial solution commonly 

used in ELISA, the SuperBlock by Pierce. The blocking step involves another 

variable and a higher degree of complexity which is not always the most 

desirable approach, but in this case it was necessary because the aim of the 

test was to evaluate only the specific interaction between MoAb and the 

correspondent antigen. The not specific binding effect shown by Protein A 

beads was higher and the blocking expedient did not provide an acceptable 

elimination or attenuation of the not specific binding (fig .7). 
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Fig. 6 

Non specific binding of antigen 10337 in PAN Mouse beads 
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Fig. 7 

Non specific binding of antigen 10337 in Protein A beads 
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The next set of experiments was a titration of the monoclonal antibodies in 

order to test the appropriate amount of antibody needed on the surface of the 

selected beads, Pan Mouse IgG. The starting amount was 12.5 g in 50 L of 

solution (0.25 g/L) which is an extremely high excess to assure a complete 

capture of the secondary antibody, but it also means an unnecessary waste of 

material. The titration (fig. 3) was from the starting amount of antibody 

(amount 12.5 g) to 0.002 g/L (amount 0.1 g), a concentration that 

supposedly should not have showed enough binding coverage, while the 

concentration of the antigen was kept constant (200 ng/L). The selected 

concentration of the MoAb to be conjugated to the surface of the beads was 

0.020 g/L (amount 1 g), concentration that guarantees the necessary 

saturation of the beads surface without wasting of materials. 

The same antigens have been used to test the cross-reactivity: beads 

conjugated with one MoAb have been incubated with the not correspondent 

antigen and none of the MoAbs showed any cross-reactivity effects as shown 

in figure 4 for Antigen 10295 with MoAbs specific for the Antigen 10337. 
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Fig. 8 

Cross-reactivity on PAN Mouse beads 
Antigen 10295 with MoAbs specific for Antigen 10337 
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The optimized test has been used to evaluate the specificity of the MoAbs for 

Metastasin 100 calcium-binding protein A4 (Calvasculin) and Ras-related C3 

botulinum toxin substrate 1. Figure 9 shows how Immuno Precipitation Mass 

Spectrometry (IPMS) can provide information about the specificity of the 

monoclonal antibodies and the peculiar aspect of this technique is the 

possibility to obtain information about the structure of the antigen captured by 

the monoclonal antibody: in this case the three selected MoAbs for the 

antigen 10337 are able to capture not only the antigen in its monomeric form 

(12 KDa), but also in its dimeric conformation (24 KDa). 

This study proved IPMS has a high potential as a complementary tool of 

crucial importance in the selection of the monoclonal antibody, in association 

with other techniques such as Surface Plasmon Resonance (SPR), Western 

Blotting and Enzyme-Linked ImmunoSorbent Assay (ELISA). The monoclonal 

antibodies selected with the combination of the mentioned techniques will be 

used in the development of ELISA based assay to be applied in the screening 

of a consistent number of human specimens for the clinical validation of 

proteins indicated in literature as potential biomarkers. If the biomarker will be 

estimated sensitive and specific, it will be a powerful tool in clinics in the 

diagnosis as well as in the prognosis and in the prediction of different 

diseases. 
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Fig. 9 
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Session 1. Plenary lecture 

LMW PROTEIN FRAGMENTS 
MAY DETECT EARLY STAGE BREAST CANCER 

Gordon Whiteley (a), Sally Rucker (a), Chenwei Liu (a), Simona Colantonio (a), Andrea Sacconi (a), 
Enzo Mammano (b), Giorgia Marconato (b), Cosimo Di Maggio (b), Donato Nitti (b), Mario Lise (b,c), 
Claudio Belluco (c) 
(a) Clinical Proteomics Reference Lab, NCI-Frederick, Gaithersburg, MD, USA 
(b) Department of Oncological and Surgical Sciences, University of Padova, Padova, Italy 
(c) CRO- IRCCS, National Cancer Institute, Aviano, Italy 

Introduction 

Breast cancer is the leading cause of cancer mortality in women worldwide. While screening 
by mammography has been shown to reduce breast cancer mortality, this test is not as useful in 
early stages of disease where the lesions are smaller or in cases where the breast tissue is denser 
(1). Detection at early stages also results in a more favorable outcome, especially in women 
with pT1a tumors. The search for early biomarkers using conventional techniques has been 
largely unsuccessful. Recently, serum proteomic profiling has emerged as a technology with 
great potential for early detection of disease with reports of patterns for a variety of cancers and 
other disease conditions. (2-4). The advances in mass spectrometry, computer bioinformatics, 
robotics and more powerful computers have made these discoveries possible (5). 

The goals of the Clinical Proteomics Reference Lab are to develop and validate proteomics 
pattern recognition methods to the standards of the FDA. In doing so, we utilize serum sample 
sets that are well characterized and have valid clinical data for comparison. The serum sets that 
were obtained first from the University of Padova and then from several additional sites in Italy 
provided us with such a set that could not only be used for the development of new methods but 
also help validate some of our earlier findings. 

Sample processing and mass spectrometry 

There were a total of 369 samples analyzed in this study. The first group were 324 consisting 
of 154 normal samples and 170 early stage cancer samples. The second group consisted of 15 
normal samples and 30 early stage cancer samples received approximately one year after the 
first study. Samples were thawed and 10 µl aliquots were obtained. These were used 
immediately for high resolution surface enhanced laser desorption ionization (SELDI) using an 
IMAC surface which is known to have a high affinity for albumin. Albumin was targeted 
because of the association of low molecular weight peptides and proteins with carrier proteins 
and the fact that these may be the source of diagnostic information (6). All steps were carried 
out on a Tecan Genesis 200 robotic processor to ensure reproducibility. A 5 µl aliquot was 
applied to the surface and incubated for 30 minutes. After washing with PBS and water, CHCA 
was applied as the matrix and was dried. The arrays were then read in an ABI Q-Star XL 
equipped with a Ciphergen P1000 interface. The spectra were extracted into an SQL database 
for processing. All spectra were examined for quality and spectra showing low total ion current 
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were eliminated. Spectra were then normalized to total ion current and randomly split into a 
training set (70% of samples each from the normal and cancer groups) and a testing set (30% of 
samples). 

Pattern bioinformatics 

The bioinformatics developed at the CPRL utilize two basic paths as outlined in Figure 1. 
For the first method, each data point is examined in the groups of training samples and a 
Wilcoxon test is used to determine if there is any discriminating potential. The top 250 peaks 
showing the greatest power are selected and they are then used to build three classifiers as 
outlined below.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. CPRL Classification methods 

The second method of peak selection involves the possibility of classification based on post 
translational modifications (PTM’s). This method looks at peak ratios at given distances that 
would correlate with a PTM: 1 (deamidation), 2 (disulfide bond formation) and 80 
(phosphorylation). These three have been shown to be associated with cancer (7-9). The ratios 
of each peak pair in the normal samples are compared with the peak pair ratios in the cancer 
group. Those pairs showing a significant difference are then selected to be fed into the 
bioinformatics classification tools outlined below. 

The classifiers consist of three very different methods: C 5.0 decision tree (Clementine), 
partial least squares (SAS) and the support vector machine (libsys SMV). Each of these 
classifiers is independently trained on a training set of samples and the best model for each 
algorithm is selected to classify samples held in an evaluation set of samples. These samples 
have not been part of the training and are used simply to evaluate sensitivity and specificity. 
When the samples are classified, each method “votes” on the classification of the unknown 
samples. Where there is agreement, the samples are classified as cancer or normal; where there 
is no agreement, the samples are called “unknown”. 
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Results of studies and discussion 

The demographics of the breast cancer samples used are outlined in Table 1. The training, 
testing and masked validation sets all showed similar age ranges with the average age ranging 
from 55 to 60 years. However, the masked validation set had a larger number of stage T1a 
samples than the earlier training and testing sets.  

Table 1. Demographics of study samples  

Group Number Average age 
(range) 

Stage of disease 
(number) 

Training set    
Normal 109 55.0 (36-80)  
Cancer 126 59.1 (38-88) 1a (8) 

1b (39) 
1c (79) 

Masked Testing Set    
Normal 45 60.8 (37-75)  
Cancer 44 59.8 (39-79) 1a (3) 

1b (13) 
1c (28) 

Masked Validation Set (14 months later)    
Normal 15 60.5 (47-75)  
Cancer 30 58.6 (36-77) 1a (16) 

1b (11) 
1c (3) 

 
 
The predicted performance was calculated for each model based on a 10% cross validation 

within the training set of samples and the results for each individual method are outlined in 
Table 2. 

Table 2. Predicted performance of each model 

Model Sensitivity Specificity 

C5.0 decision tree 83.61% 91.80% 
SVM 78.69% 86.89% 
Partial Least Square 83.61% 90.16% 
C5.0+SVM +PLS 90.32% 90.32% 

 
 
The performance was then validated using the 30% of samples that were held and not used 

as part of training. This showed performance of 83.3% sensitivity and 96.8% specificity based 
on 61 samples. A blinded set of samples was collected over the next year and was then used to 
evaluate the algorithm to demonstrate the stability of the system. Although the sample numbers 
were low (15 normal and 30 cancer), the age distribution was similar to the previously used 
samples and the sensitivity of 97% and specificity of 80% were very similar to that observed 
one year earlier (Table 3). 
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Table 3. Performance of algorithm over 14 months 

C5nn+pls+svm 0-normal 1-cancer 

Original Results*   
Normal 30 1 
Cancer 5 25 

Results on new samples 14 months later**   
Normal 12 3 
Cancer 1 29 

*Sensitivity: 83.3%, specificity: 96.8%. 
**Sensitivity:97%, specificity: 80%. 

The top peaks used by the C5.0 decision tree are shown in Figure 2. Although there are 
differences seen between the normal and cancer groups, the differences are not sufficient for 
any single peak to be used. Only a combination of these peaks could give sensitivity and 
specificity confirming that a single biomarker for breast cancer probably does not exist. 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Top peaks used in the C5.0 Decision Tree 

The performance of this test was compared with mammography using BI-RADS score 
demonstrating that many samples that would be missed by mammography were detected by this 
method (Table 4). This suggests that a blood test would be a valuable adjunct to imaging tests 
like mammography especially for early stages of the disease where treatment is more successful. 

Table 4. Classification of serum cancer samples from masked testing set by proteomic pattern 
according to BI-RADS mammogram 

 Cancer Normal 

BI-RADS 3 3/3 0/3 
BI-RADS 4 16/17 1/17 
BI-RADS 5 13/14 1/14 
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Identification of some of the peptides and proteins that are carried on albumin and may be 
associated with disease was carried out. Albumin was separated from serum samples using 
cibachrome blue capture, washing and then elution by acetonitrile. The resulting solution was 
dried, reconstituted, trypsin digested and analyzed by LC MS/MS using nanospray as previously 
described (10). This revealed many peptide fragments that have not been found in serum before 
and could be associated with cancer. A list of these is found in Table 5. Since the time of this 
study, further protein fragments have been identified and it would appear that the patterns seen 
would be useful as tools to guide identification of those proteins that are associated with disease 
and could be early markers. 

Table 5. Protein fragments found only in early stage breast cancer pool 

Parental Protein Accession ID 

Alpha-amylase 2B precursor P19961 
Alpha-amylase, salivary precursor P04745 
Alpha-mannosidase IIx P49641 
Cellular repressor of E1A-stimulated genes O75629 
Cystatin A P01040 
Cystatin SN precursor P01037 
Glucosamine-6-phosphate isomerase P46926 
Kallistatin precursor P29622 
Olfactory receptor 9Q1 Q8NGQ5 
Prolactin-inducible protein precursor P12273 
Protein Plunc precursor Q9NP55 
Short palate, lung and nasal epithelium carcinoma associated protein 2 precursor Q96SN8 
Calcium binding protein 1 (calbrain) Q8N6H5 
Solute carrier family 13, member 3 Q8WWT9 
Von Ebner’s gland protein precursor P31025 
CDK5 regulatory subunit associated protein 2 Q96SN8 
Myeloid/lymphoid or mixed-lineage leukemia protein 4 Q9UMN6 
Phosphatidylinositol 3-kinase regulatory beta subunit O00459 
Tumor protein p73 O15350 

 
 
In order to refine this guidance, we utilized a more sophisticated mass spectrometer system 

than our original profiling study. This system is outlined in Figure 3 and involves the specific 
targeting of fragments that are associated with albumin.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. ProXpression™ Methodology 
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The albumin is first captures on cibachrome blue plates, washed and the load is eluted into 
solution. The peptides and protein fragments are then recovered and concentrated on a ZipPlate 
with a C18 base. This is then eluted and directly spotted on a target using a solution of CHCA 
matrix in acetonitrile and using a 3µl volume. The target is then analyzed in a PerkinELmer 
prOTOF mass spectrometer. This instrument has an orthoganol design that yields high 
resolution data that is very tolerant of rough target surfaces. The collisional cooling keeps 
fragments in tact, something that we utilized in our data analysis (2). Our assumption was that 
post-translational modifications would also be intact and could be detected by the instrument. 
We therefore specifically looked for these modifications and looked for peak pair ratios rather 
than differences between normal and cancer sera that were shown by individual peaks. In 
looking for peak pair ratios corresponding to phosphorylation, deamidation and disulfide bond 
formation, we had demonstrated that a low number of peak pairs could be identified that 
differentiated ovarian cancer and cutaneous t-cell lymphoma samples from normal samples. We 
therefore analyzed the breast cancer samples to see if this was also the case. Our findings 
showed that a sensitivity of 93.5% and a specificity of 91.69% could be attained using 24 peak 
pairs (48 peaks total). This information can now be used to specifically target these peak pairs 
for identification from the long list of potential peptides and protein fragments that have been 
randomly identified in these samples as well as the long list of peaks that were used in our first 
analysis. 

Conclusions 

The use of profiling in early diagnosis is still a long way from being practical in the routine 
clinical lab setting. It requires specialized equipment, laboratories and a highly trained and 
diverse staff to be successful. However, we have demonstrated that it is feasible both on the 
basis of long-term algorithm stability and the use of algorithms that are simple and utilize 
knowledge of the disease mechanism. The results of the PTM study target very specific proteins 
and peptides for identification and hopefully panels of tests can be developed that will have 
routine clinical lab application and practicality. 
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ABSTRACT

Background: Gemcitabine (dFdC) can be administered at standard 30 minutes infusion or at fixed 

dose rate (FDR) infusion to maximize the rate of triphosphate accumulation, its major intracellular 

metabolite.  The standard 30 minutes  infusion requires  dose adjustment  in  patients  with organ 

dysfunction, especially in patients with baseline elevated bilirubin levels. On the other hand, FDR 

infusion is burdened by increased hematological toxicity. 

Materials  and  Methods:  In  this  prospective  study,  patients  with  pancreatic  or  biliary  tract 

carcinoma and normal  or impaired liver  function tests  were considered eligible.  Patients  were 

accrued according to the following criteria: 1) serum bilirubin <1.6 mg/dl, and AST, ALT <2 ULN 

(cohort I): 2) serum bilirubin >1.6 mg/dl, and/or AST, ALT >2 ULN (cohort II). Gemcitabine 

1000  mg/m2  at  FDR  infusion  was  administered  on  days  1,8,15  every  28  days.  The 

pharmacokinetic  analysis  of  gemcitabine  and  its  metabolite  difluorodeoxyuridine  (dFdU)  was 

performed with HPLC assay at cycle 1 and 2. 

Results: Thirteen patients were enrolled, four in cohort I and nine in cohort II. All patients were 

assessable for toxicity and pharmacokinetic analysis. Grade and rate of toxicities were similar in 

both groups, and patients with elevation of bilirubin and/or transaminases did not require dose 

reduction of gemcitabine. Pharmacokinetic analysis revealed a reduction of the experimental area 

under  the  concentration  time  curve  (AUCexp)  for  dFdC and  dFdU  in  patients  with  hepatic 

dysfunction  when  compared  with  patients  with  normal  liver   function.  All  the  other 

pharmacokinetic  parameters  results  similar  in  the  two  cohorts  .  No  statistical  difference  was 

demonstrated for all the parameters evaluated between cycle 1 and cycle 2 in the two groups.

Conclusion: Gemcitabine 1000 mg/m2 at fixed dose rate infusion can be administered in patients 

with  altered  hepatic  function  without  causing  additional  toxicity  compared  with  patients  with 

normal liver function.  

2



INTRODUCTION

GEMCITABINE (2,2-difluorodeoxycytidine,  dFdC) is a fluorinated analog of deoxycytidine , which 

has shown a broad spectrum of activity against several solid tumors, such as non-small cell lung 

cancer and pancreatic adenocarcinoma [1, 2].

dFdC is a prodrug that requires intracellular activation: after its uptake, the nucleoside analog is 

converted by deoxycitidine kinase in its monophosphate form (dFdCMP), followed by subsequent 

phosphorilation steps to diphosphate (dFdCDP) and triphosphate forms (dFdCTP) [3]. Gemcitabine 

undergoes  also  intracellular  and  extracellular  metabolism  by  cytidine  deaminase  (CDA),  the 

enzyme that converts the prodrug into its inactive metabolite difluorodeoxyuridine (dFdU). The 

rate-limiting step in the intracellular accumulation of  dFdCDP e  dFdCTP is the conversion of 

dFdC in dFdCMP by deoxycitidine kinase [4]. It has been demonstrated that deoxycytidine kinase 

has a saturable kinetic and the optimal plasma  dFdC concentration to obtain maximal  dFdCTP 

formation and accumulation by mononuclear cells is 10-20µM [5]. 

Several studies have reported that the range from 1000 to 1500 mg/m2 of gemcitabine is active and 

well tolerated when given over 30 minutes on a weekly schedule [6,7], although patients receiving 

doses  ranging  from 800  to  2600  mg/m2 as  30  minutes  intravenous  infusion  generate  plasma 

concentrations of dFdC >60µM. Under these conditions, triphosphate accumulation process may 

be saturated [5,8] and target cells may not use a substantial portion of the drug due to metabolic 

clearance. Fixed dose rate (FDR) of 10 mg/m2/min has been proposed to escape this hitch and 

achieve plasma steady-state  concentrations  from 10 to 20  µM  [4,8],  optimizing the intracellular 

dFdCTP accumulation [9-12]. 

A phase II trial [13], which compared gemcitabine 30 minutes (2200 mg/m2) with FDR infusion 

(1500  mg/m2 over  150  minutes)  in  patients  with  pancreatic  adenocarcinoma,  revealed 

improvement in survival and clinical benefit in favor of FDR infusion, with an increased incidence 

of hematological toxicity and grade 3 hypertransaminasemia in the FDR arm. Despite this initial 

promising  result,  other  studies  with  gemcitabine  alone  or  in  combination  with  other  drugs 

(cisplatin, carboplatin, paclitaxel) failed to show any clinical benefit in favor of FDR infusion [7].

The FDR gemcitabine infusion implies a linear increase of dFdCTP intracellular concentration and 

its intracellular area under the concentration-time curve (AUC) is higher following the prolonged 

infusion compared with the standard 30 min infusion schedule [14].

The pharmacokinetic of gemcitabine, as clearance or metabolic capacity, can be influenced by 

abnormal hepatic function due to liver metastases from pancreatic/biliary tract carcinoma or other 

hepatic diseases (cirrhosis, hepatitis). Venook et al. [15] explored the pharmacokinetic disposition of 

gemcitabine given as 30 minutes standard infusion in patients with liver and renal impairment, 

suggesting a dose reduction for patients  with elevated bilirubin levels,  due to elevated risk of 

hepatic toxicity. Supported by their PK and clinical results, Venook et al. suggested to initially 
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treat  patients  showing  elevated  bilirubin  levels,  with  gemcitabine  800  mg/m2,  escalating 

subsequently the dose, if well tolerated. 

Based on the above mentioned hepatic toxicity  [13] by gemcitabine at FDR infusion and on the 

recommendation  suggested  by Venook in  patients  with  high bilirubin  levels,  we performed a 

pharmacological  study  to  evaluate  the  safety  of  gemcitabine  1000  mg/m2  at  10  mg/m2/min 

infusion on days 1, 8 and 15 every 4 weeks, in patients with normal and impaired hepatic function. 

The principal aim of this study was to define the pharmacokinetic disposition of dFdC and dFdU 

in the two cohorts of patients. Secondary end points were to evaluate the toxicity in both groups, 

starting  from  the  same  dose  of  gemcitabine,  and  to  confirm  the  repeatability  of  the 

pharmacokinetic parameters analyzed within the same patient in two different cycles.

MATERIALS AND METHODS

Patient Selection
Patients  with  cytological  or  histological  diagnosis  of  recurrent  or  metastatic  pancreatic 

adenocarcinoma  or  biliary  tract  carcinoma  were  included  into  the  study.  Eligibility  criteria 

included: age ≥ 18 years; WHO Performance status of 0 to 2; life expectancy of two months or 

longer; more than 4 weeks since prior systemic chemotherapy, major surgery or radiation therapy; 

granulocyte  >1,500 cells/µL, platelet  count >100,000 cells/µL, albumin level  >2.0 g/dl,  serum 

creatinine level less than 1.6 mg/dl;  compliance of the patients  with testing. To limit entry to 

patients  with hepatic  dysfunction,  other  eligibly criteria  were:  AST/ALT level  greater  than or 

equal to two times the upper limit of normal with normal bilirubin levels; total bilirubin levels 1.6 

to 7.0 mg/dL with any AST/ALT level. All patients signed an informed consent approved by the 

Institutional Ethical Committee.

Exclusions criteria included: prior treatment with gemcitabine; known untreated brain metastases; 

uncontrolled or severe cardiac disease; concomitant medication that could affect hepatic function; 

pregnant  or  lactating  patients;  patients  with  reproductive  potential  not  implementing  adequate 

contraceptives measures; patients who cannot be regularly followed up for psychological, social, 

familial or geographic reasons. 

Patients  were enrolled in two different  cohorts:  control  patients  with normal liver  function in 

cohort  I  (serum  bilirubin  level  less  than  1,6  mg/dl  and  aspartate  aminotransferase/alanine 

aminotransferase (AST/ALT) level less than two times the upper limit of normal (ULN)), and 

patients with impaired liver function in cohort II (serum bilirubin level less than 1.6 mg/dL and 

AST/ALT level greater than or equal to two times the upper limit of normal; or bilirubin level 

from 1.6 to 7.0 mg/dL with any AST/ALT/AP level).
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Study Design
This single centre study focused on gemcitabine 1000 mg/m2 at FDR infusion administered on 

days 1,8,15 every 28 days  until  progressive  disease or  unacceptable  toxicity,  in  patients  with 

normal and hepatic dysfunctions. Drug toxicity and pharmacokinetics were analyzed in patients 

with impaired hepatic function and compared with patients with normal  liver parameters.  The 

safety dose of gemcitabine and the dose reduction required, were evaluated for a maximum of 6 

cycles. Sampling for PK analysis were performed at day 1 of cycle 1 and repeated at day 1 of 

cycle 2, to calculate the variability of PK parameters in the same patient (each patient being his 

own control).

No systemic  anticancer  agent  other  than the study drug was administered,  and a  concomitant 

treatment with corticosteroids was discouraged at least from day -2 to day 2 at cycle 1 and 2. 

Granulocyte-colony stimulating factors (G-CSF) were not allowed in the first two cycles. 

Clinical biochemistry and hematology were assessed within 7 days before starting treatment; in 

particular,  a complete blood and platelet  count as well as liver function tests (serum total and 

fractionated bilirubin,  AST/ALT level)  were obtained at  baseline and weekly during treatment 

course.  A physical  examination  and a  record  of  concomitant  medications  were  carried  out  at 

baseline and before every cycle. An electrocardiogram and chest X-ray were obtained at baseline, 

at discontinuation off the study treatment, and at any time when clinically indicated during the 

trial. Patients with measurable disease were assessed for response every three cycles with CT scan 

or  ultrasound  of  the  abdomen  (and  of  other  disease  sites  as  appropriate).  Responses  were 

documented using RECIST criteria  [16].  After the off-treatment visit,  patients were followed up 

monthly with clinical and instrumental evaluation.   

Values of white blood cells, platelets, hemoglobin, red blood cells, neuthrophils, PT (protrhombin 

time), PTT (partial thromboplastin time), bilirubin, AST/ALT, AP (alkaline phosphatase), total 

protein  and  albumin  were  recorded  at  baseline  and  every  each  cycle  to  evaluate  a  possible 

relationship between blood value, drug disposition and toxicity.

Evaluation of toxicity and dose modifications
The starting dose of gemcitabine was 1000 mg/m2 infused at 10 mg/m2/min; dose modifications 

were applied on the basis of toxicity. Administration of gemcitabine was delayed on day 1, until 

hematological recovery (ANC ≥1500/µL and/or PLT ≥100,000/µL and/or Hb ≥9 g/dL) up to a 

maximum of 3 weeks; for day 8 and 15 the dose was reduced as follows: ANC ≥1500/µL and/or 

PLT ≥100.000/µL: full  dose;  ANC:1.500-1.000/µL and/or PLT:99.999-75.000/µL: 75% of full 

dose; ANC:1.000-500/µL and/or PLT: 74.999-50.000/µL: 50% of full dose; ANC ≤500/µL and/or 

PLT≤50.000/µL: omission. Patients who required a delay of >2 weeks but <3 weeks received dose 

reduction of 25%. If ANC ≤500/µL, PLT ≤50,000/µL, Hb≤ 7g/dL for a period longer than 5 days, 

in any case of febrile neutropenia or stomatitis toxicity ≥G3 the doses of gemcitabine was reduced 
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by 25% in the next cycles. A 25% dose reduction was planned for gastrointestinal grade 3 and 4 

toxicities.  For liver toxicity, doses of gemcitabine were delayed when bilirubin and AST/ALT 

levels were >2.5 and >5 from baseline (the starting values of each patients), respectively; doses 

were reduced by 50% when bilirubin and AST/ALT levels were from 1.5 to 2.5 and from 2.5 to 5 

respectively from baseline; doses were reduced by 25% when bilirubin level was from 1.5 to 2.0 

from baseline, and AST/ALT levels were from 2.5 to 5 from baseline. Patients who require a delay 

of >2 weeks but <3 weeks will receive dose reduction of 25%; patients who were not recover after 

3 weeks were considered off protocol.

Pharmacokinetic Sample Acquisition and Handling
Blood samples (5 to 10 mL each patient) were drawn via an indwelling peripheral catheter or 

peripheral  venipuncture,  into  tubes  containing  heparin.  Tetrahydrouridine  (Calbiochem-

Novabiochem Corp La Jolla Ca), a cytidine deaminase inhibitor, was then added (0.1 ml of a 10 

mg/ml solution) to prevent ex vivo Gemcitabine deamination. Samples were collected 30 minutes 

before Gemcitabine infusion, at  30,  60 and 80 minutes  during the infusion,  at  the end of the 

infusion, and at 5, 30, 90, 180 and 240 minutes after the completion of the infusion.

Blood samples were immediately centrifuged at room temperature for 10 minutes at 1000 rpm. 

The resulting plasma was frozen and stored at -20°C until analysis.

Determination of Gemcitabine and dFdU
All  the  analysis  was  performed  at  the  Regina  Elena  National  Cancer  Institute,  Rome,  Italy. 

Gemcitabine and dFdU plasma levels were determined using the hyphenated technique HPLC-

MS/MS  (high  performance  liquid  chromatography  tandem  mass  spectrometry).  Gemcitabine 

(Ly188011)  and  dFdU (Ly198791)  were  kindly  supplied  by  Eli  Lilly  Co,  (Indianapolis,  IN), 

2’-deoxycytidine (dC) was purchased at Sigma Aldrich. 10 µl of Internal Standard (20γ/ml) were 

added to 0,2 ml of each plasma sample and the mixture was extracted with 200µl of Isopropilic 

Alchool and then 400μl of Ethyl Acetate.  Samples were vortexed and then centrifuged for 10 

minutes.  The supernatant  was transferred to a glass tube and the organic phase evaporated to 

dryness under nitrogen stream. 200μl of HPLC grade Water with 0.5% Acetic Acid, were added to 

each sample to reconstitute the dried residue and the mixture was vortexed and then centrifuged 

for ten minutes at 4000g. 20 µL of the reconstituted solution were injected into HPLC system. 

HPLC analysis  was performed by using an Agilent 1100 series system (Agilent Technologies, 

Palo Alto, CA, USA) equipped with a binary pump, an automatic injector and vacuum degasser. 

The separation was carried out on a Symmetry C18 (4.6*250mm I.D, 5µm particle size) protected 

by a sentry guard column Symmetry C18 (3.9*20mm).  Mobile Phase: A, 0.5% Acetic Acid in 

Water; B, 0.5% Acetic Acid in Acetonitrile. Gradient elute procedure: B 2% for 2 min, B 2-50% in 

10 min, B 50-70% in 1 min, B 70% for 4 min, B 2% in 2 min, B 2% for 3 min. The flow-rate was 

1 mL/min and the HPLC output was directly interfaced to the ESI ion source, the LC/MSD ion 
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trap mass spectrometer 1100 (Agilent Technologies). The mass spectrometer was equipped with 

an ESI source and operated in the positive ion mode. The ESI conditions were the following: 

capillary voltage -3.5 kV; end plate offset voltage-500 V; capillary exit voltage 110.9 V; nebulizer 

pressure 70 psi; drying gas flow 12 L min_1; temperature 350°C.

The ESI-MS analyses were MRM (multiple reaction monitoring) experiments, performed by ion 

fragmentation (Gemcitabine: 264→112 m/z, dC (2’-deoxycytidine)): 228→112 m/z; dFdU: 265→

113 m/z) and the scan range was from m/z 100–300. In these analytical conditions, retention times 

for dC, Gem and dFdU were respectively 2.3, 3.8 and 6.5 minutes.

The extraction and the analysis were carried on modifying previously published methods [17,18].

Quant  Analysis  software  was used to process  the  quantitative  data. Plasma concentrations  for 

Gemcitabine and dFdU were calculated from the ratio of the Gemcitabine and dFdU peaks area to 

the area of Internal Standard using least squares linear regression. Lower limit of quantitation was 

for both Gemcitabine and dFdU was 0.05 μg/ml and linearity was assessed from 0.078 μg/ml and 

15 μg/ml. Within-day and between-day variability (measured as coefficient of variation) was < 

12.00%. 

Pharmacokinetic Analysis
Principal PK parameters were estimated for each patient by non-compartmental method analysis; 

parameters include: plasmatic peak concentration (Cmax, μg/mL), determined graphically from 

the observed experimental values; experimental area under the plasma concentration-time curve 

(AUCexp, µg*h/ml), calculated according to the trapezoidal rule, from the first to the last sampling 

time; infinite AUC (AUCinf µg*h/ml ) area under plasma concentration-time curve extrapolated to 

infinity; total plasma clearance (Cl, L*h/m2), calculated as ratio of dose in µg and AUC; rate of 

elimination (K, h-1),calculated as the negative slope estimated from the log-linear regression of the 

terminal part of the plasma concentration–time curve; terminal half life (t1/2 ) defined as ln2/K. The 

pharmacokinetics of gemcitabine was described by all the above parameters; for dFdU only Cmax 

and AUCexp have been calculated according to the sampling period performed (until 4 hours  after 

the completion of the infusion) and the documented terminal half life of the metabolite, reported to 

be >10 h [5]. 

Statistical Analysis
Summary statistics are presented as mean, standard deviation, coefficient of variation, median and 

range or frequency for descriptive purposes. Differences between cohort I and II were analyzed 

with  analysis  of  variance  (ANOVA)  for  continuous  variables  at  the  1st cycle.  The  normality 

assumptions for ANOVA were assessed with the tests available. If the normality assumption was 

violated, the Mann-Whitney U non-parametric test was used. Paired t tests were used to compare 

Cmax, AUCexp, AUCinf, t1/2, clearance and K at different time for a given group. A repeated 

measures ANOVA for all PK parameters using patient, cohort and cycle factors as variables has 
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been performed. The Kaplan-Meier method was used to calculate overall survival and progression-

free survival, reported with their 95% confidence interval. All analyses were done with SPSS 11.0. 

Degree of myelosuppression, defined by %G, was defined as ([pretreatment granulocyte number – 

granulocyte numbed after week 1] /pretreatment granulocyte number) x 100%. 

RESULTS
Thirteen  patients  were  enrolled  into  this  study;  all  of  them were  assessable  for  toxicity  and 

pharmacokinetic analysis at cycle one. The characteristics of the 13 patients are listed in Table 1. 

Seven of them were females and the median age was 63 years (range, 27 to 75 years).  Seven 

patients  had  locally  advanced  or  metastatic  pancreatic  adenocarcinoma,  three  had  biliary  tree 

carcinoma and the remainder three presented advanced gallbladder adenocarcinoma. None of them 

received prior chemo- or radiotherapy, and liver was the major site of metastatic disease. The 

median ECOG performance status was 1 (range 0-2). Four patients had normal hepatic function 

with serum bilirubin <1.6 mg/dl, and AST, ALT <2 upper normal limit (UNL (cohort I); nine 

patients  had hepatic dysfunction with serum bilirubin >1.6 mg/dl,  and/or  AST,  ALT >2 UNL 

(cohort II). All patients received gemcitabine 1000 mg/m2/min at FDR days 1,8,15 every 4 weeks. 

One patient in the control arm had a 25% dose reduction at the second cycle due to hematological 

toxicity,  while  two  patients  in  the  experimental  arm never  started  the  second  cycle,  one  for 

disseminated intravascular coagulation (DIC) after the first cycle and the other for deterioration of 

general  conditions  (rapid  worsening  of  his  performance  status).  The  baseline  laboratory 

parameters   are  listed  in  Table  2.  The  only  statistical  significant  difference  in  the  baseline 

laboratory values between the two cohorts was in two  hepatic function parameters, total bilirubin 

level (p=0,04) and  AST level (p=0,01), whereas no significant difference was observed for ALT 

level (p=0,16) and for  all other blood parameters reported on Table 2. . Only the total bilirubin 

level had statistical significant decrease from the first to the second cycle in cohort II (5,29 mg/dl 

vs 1,90 mg/dl, p= 0.03), while all other laboratory values had comparable means between the first 

two cycles in both groups of patients.  

The main toxicities were reported after the first cycle and detailed on Table 3. Although more 

patients in cohort II experienced grade 3 toxicities, this difference did not result to be statistically 

significant  (figure  1);  moreover  patient  with  bilirubin  and/or  transaminases  elevation  did  not 

require  dose  reduction  of  gemcitabine.  Even  though  no  patient  experienced  grade  4  toxicity, 

hematological  toxicity  represented  the  major  side  effect.  Two  patients  experienced  grade  3 

neutropenia in the control arm, one patient grade 3 thrombocytopenia and one patient grade 3 

anaemia in the cohort II. Laboratory toxicities were low in both groups, although two episodes of 

transient grade 3 elevation in serum bilirubin and transaminases from baseline values were seen in 

one  patient  in  cohort  II.  Other  toxicities  concerned  mainly  asthenia  and fever.  A decrease  in 
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variation of %G after 1 week (mean ± SD) was greater for the cohort II (10% ± 13) compared to 

the cohort I (2% ± 13).

All  patients  met  criteria  for  measurable  disease;  one  complete  response  was  observed  in  the 

control group, three patients had partial response, two stable disease and six patients experienced 

progressive disease. One patient was not evaluable for response due to a serious adverse event 

(DIC) after the first cycle. At a median follow-up of 19 weeks (1- 167) the median progression-

free survival was 15 weeks (95% C.I. 9-22) and the median overall survival was 20 weeks (95% 

C.I. 12-50).

Pharmacokinetic Results
Pharmacokinetic analysis was performed on 13 patients at the first cycle and on 11 patients at the 

second cycle. Two of the patients never started the second cycle due to adverse events. All patients 

were studied at dose of 1000 mg/m2 at the fixed dose rate infusion of 10 mg/m2 per minute (FDR). 

Patients in cohort I had normal hepatic function (serum bilirubin <1.6 mg/dl, and AST, ALT <2 

UNL), and patients in cohort II had impaired liver function (serum bilirubin >1.6 mg/dl, and/or 

AST, ALT >2 UNL). A descriptive analysis of the pharmacokinetic results is listed in Table 4. 

With normal or impaired hepatic function, the mean of the maximum gemcitabine concentration 

was similar in the two groups: 6,83 µg/ml (± 0,73) and 7,76 µg/ml (± 1,77) respectively (Figure 

2). The variability in peak plasma concentration was not very high, ranging from 6.0 to 7.7 µl/ml 

for gemcitabine and from 6.5 to 12.2 µl/ml for dFdU. The peak plasma concentration of dFdU was 

measured in all patients at the end of gemcitabine infusion (after 100 minutes from the start of 

infusion) or after 5 minutes from the end of infusion. After the end of fixed-rate infusion the 

plasma concentration of gemcitabine declined rapidly in all patients (Figure 3). The overall mean 

clearance (± SD) of gemcitabine was 88.12 (± 18.65) and 127.27 (± 37.43) L h/m2 in cohort I and 

II  respectively,  with  no  significant  difference  between  the  two  groups.  The  clearance  of 

gemcitabine in the two groups is reported in Figure 4, whereas the relationship between clearance 

and  bilirubin  level  is  illustrated  in  Figure  5.  No  relationship  has  been  found  between  serum 

bilirubin concentration and gemcitabine clearance.  A regression analysis has been performed for 

other variables of hepatic function, such as transaminases, alkaline phosphatase, total bilirubun, 

PT, PTT, but none of them was statistically significant. The mean of expected total area under the 

plasma  concentration-time  curve  for  gemcitabine  was  higher  in  patients  with  normal  hepatic 

function  (11,75  µg*h/ml)  than  in  patients  with  impaired  liver  function  (8,43  µg*h/ml),  this 

difference results statistically significant (p=0.04). The results of AUCexp in the two cohorts is 

illustrated in Figure 6. When the area under the plasma concentration-time curve of gemcitabine 

was extrapolated from zero to infinite, the mean values results 12,13 µg*h/ml and 8,87 µg*h/ml 

for cohort I and II, respectively (p=0.07). The mean of dFdU AUCexp for cohort I was 37,70 µ

9



g*h/ml and for cohort II was 25,14  µg*h/ml; the difference between the two AUC values was 

statistically significant, p=0.01. There were no significant differences in the terminal half-life of 

gemcitabine in both cohorts. Similarly, there were no significant differences among the cohorts in 

the elimination rate constant for gemcitabine (3,35 h-1 in control group and 5,41 h-1 in patients with 

altered liver function).  

In 11 out of 13 patients the pharmacokinetic analysis was performed also at the second cycle, in 

order to evaluate the variability of the PK parameters in two consecutive cycles.  No statistical 

difference was verified for all the parameters analyzed between cycle 1 and cycle 2 in the two 

groups (Table 5). The linkage of gemcitabine clearance and dFdU AUCexp between cycle 1 and 2 

is reported in Figure 7. 

Finally we investigated whether pharmacokinetic alterations could be associated with any altered 

toxicity profile. We identified four patients with grade ≥3 myelotoxicity, two in the control arm 

and two in the experimental arm; only one patient in cohort II had grade ≥3 hyperbiliribinemia. 

The Cmax of dFdU resulted significantly higher (p=0.02) in patients with grade 3 hematological 

toxicity.  The patient  with hepatic side effects presented an higher dFdU AUCexp value when 

compared with all the other patients in the same cohort (AUCexp 34,63 µg*h/ml vs 28,5 µg*h/ml) 

DISCUSSION

The pharmacokinetics and the toxicity profile of chemotherapeutic agents are usually evaluated in 

phase  I  studies  and  in  patients  with  normal  organ  function.  This  methodology  precludes  the 

possibility  to  evaluate  specific  dose  recommendations  in  patients  with  organ  dysfunctions. 

Gemcitabine is a drug with a broad spectrum of activity and a favorable toxicity profile. Literature 

data reported an increased incidence of transient hepatic toxicity in patients with liver metastases 
[19] and a phase I escalation study of gemcitabine over 30 minutes recommend to reduce the dose to 

800 mg/m2 in patients with elevated bilirubin level[15].

Gemcitabine infusion at the FDR of 10 mg/m2/min has been demonstrated to maximize the rate of 

triphosphate  accumulation,  its  major  intracellular  metabolite  [8,9].  Despite  this  robust 

pharmacological data, several phase II and III studies comparing different doses of gemcitabine in 

standard 30 minutes and FDR infusion, have failed to demonstrate a substantial clinical benefit for 

the main outcome

Based on these data, we were interested in evaluating the hepatic toxicity of gemcitabine at FDR 

infusion in patients already affected by impaired liver function. This is a frequent condition in 

patients with pancreatic and biliary tree carcinoma: hepatic function is compromised directly by 

cancer. We decided to use gemcitabine at 1000 mg/m2 in patients with pancreatic and biliary tree 

carcinoma, based on a current lack of evidence that gemcitabine activity is improved by increasing 

its dose [20]. 
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Our  primary  aim  was  to  evaluate  the  safety  of  gemcitabine  starting  from  the  same  dose 

administered at FDR infusion in patients with hepatic dysfunction compared with those displaying 

normal  liver  function.  The secondary end-point was to assess  whether  a dose adjustment  was 

required in this  subset  of patients.  We observed grade 3 myelosuppression  in both cohorts of 

patients and a slight increased incidence of non-hematological toxicity in patients with hepatic 

dysfunction. The only dose reduction was performed in a patient with normal hepatic function. 

Although the limited number of patients included does not allow us to extrapolate any tolerability 

data in patients with impaired hepatic function, we can conclude that in our series all toxicities 

occurred  were  manageable  and patients  experienced  grade  3  side effects  in  cohort  II  did  not 

require dose adjustment . In spite of this clinical data, a major variation of %G was observed in 

cohort II, when compared with cohort I (10% vs 2% vs  in decrease of %G variation). Moreover 

we have not identified a PK parameters that correlate with a pharmacodynamic outcome, such as 

myelosuppression.    

The pharmacokinetic analysis revealed no significant difference for Cmax, Cl and t1/2 between the 

two cohorts, but reveals a significant low AUCexp for gemcitabine and dFdU in patients with 

impaired liver function when compared to control group. Although the sample size  is too small to 

confirm or refuse a meaningful difference  of this parameter, the overall drug exposition is lower 

in patients with hepatic dysfunction. Another aim of this study was to verify and confirm the 

repeatability of the pharmacokinetic parameters analyzed within the same patient in two different 

cycles. For all the variables analyzed, no one appears significantly different from cycle 1 to cycle 

2,  therefore,  despite  the  considerable  inter-patient  variability  in  both  cohorts,  the  intra-patient 

variability results small. 

Finally, we investigated whether patients with increased toxicity, compared with patients with a 

better tolerability, presented a different pharmacokinetic disposition of gemcitabine and/or dFdU. 

Actually, our analysis failed to reveal statistically significant difference in the pharmacokinetics of 

both agents in patients with altered toxicity profile, except for the AUCexp of gemcitabine and its 

inactive metabolite. This observation may reflect the fact that gemcitabine is not the active drug 

but a pro-drug, that requires a series of activations to be transformed into its triphosphate form. 

Therefore,  more  accurate  relationship  between  toxicity  and  triphosphate  disposition  should 

provide some interesting correlation between pharmacodynamic and pharmacokinetic properties of 

this  drug.  This  simple  correlation  between  plasma  gemcitabine/triphosphae  form and  toxicity 

seems to be unlikely, as prospected by other studies[21]. For example, it has been demonstrated that 

high dose of gemcitabine (2,800 mg/m2) is not correlated with a corresponding high grade of 

toxicity. This is possibly explained by the saturable mechanism of accumulation of gemcitabine 

triphosphate  into  the  cells.   A  weak  relationship  between  plasma  gemcitabine  levels  and  its 

triphosphate form has been reported also recently by Grimson et al.[15]. Moreover these Authors 
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observed an autoinduction of dFdCTP accumulation during the second week infusion, underlying 

the importance to perform pharmacological study beyond week one. 

Only one patient presented a transient elevation of bilirubin and transaminases in cohort II. This 

singular  evidence  is  not  enough  to  confirm  the  transient  hepatic  toxicity  observed  in  the 

Tempero’s study[13] in the FDR arm, and the reason of the temporary hepatic dysfunction remains 

unclear. The analysis of the gemcitabine and dFdU disposition in this specific patient revealed, 

compared with all other patients included, a significant high level of the inactive metabolite in the 

blood,and a faster clearance of the gemcitabine. . We are unable to extrapolate this information 

from the only case observed, but we are currently analyzing other patients with transient hepatic 

toxicity in order to confirm this data.    

Although  the  small  sample  size  of  our  control  group,  the  PK  parameters  analyzed  are  not 

dissimilar  from  the  same  data  reported  in  the  literature.  In  fact,  the  AUC  of  gemcitabine 

administered  at  1000  mg/m2  range  from  9.5  µg  h/ml  and  3.8  µg  h/ml  [5] and  our  analysis 

demonstrated  a  range  from  9.11µg  h/ml  to  15.22  µg  h/ml;  similarly   terminal  half  life  and 

clearance of gemcitabine reported in the literature range from 5 to 11 minutes and from 39 to 

1,239 L/h-m2[5].   

Our results seem to exclude a possible increased toxicity of gemcitabine when administered at 

FDR infusion in patients with impaired hepatic function. Nevertheless, we believe that patients 

with organ dysfunction do require specific studies to verify the correct drug dose and tolerability. 

These  data  can  not  be  extrapolated  from  conventional  phase  I  trials  and  deserve  further 

specifically designed investigations.
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Table 1. Patient Characteristic

Characteristic Cohort I Cohort II
Patients entered 4 9
Age, median, years 59 67
Sex, n. of patients

Male 1 5
Female 3 4

WHO PS
0-1 3 7

2 1 2
Diagnosis, no of patients

Pancreas 2 5
Biliary tree 2 1

Cholecyst - 3
Locally advanced disease 1 6
Metastatic disease 3 3
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Table 2. Baseline Laboratory Values

Parameters Cohort I 

Mean (±SD)             Range

Cohort II 

Mean (±SD)            Range
WBC count, x103cells/µL 6,27 (2,06) 4,81-9,30 11,86 (7,08) 5,90- 28,00
PLT count, x103cells/µL 159,000 (65,15) 96,000-236,000 369,000 (232,55) 146,000-775,000
Hgb, g/dL 11,7 (1,91) 10,3- 14,5 11,16 (1,43) 9,3- 14,0
Total bilirubin level, mg/dl 0,80 (0,35) 0,55-1,33 5,29 (3,83) 0,66-14,24
Direct bilirubin level, mg/dl 0,39 (0,39) 0,15- 0,85 2,58 (1,41) 0,22-4,52
AST level, U/L 32 (14) 16- 46 70 (48) 23- 168
ALT level, U/L 39 (18) 17-62 92 (32) 43-134
AP level, U/L 710 (487) 365-1055 1278 (625) 420-2258
Creatinine level, mg/dl 0,72 (0,08) 0,66-0,85 0,73 (0,35) 0,05-1,21
Total protein, g/dl 6,50 (0,60) 6,10-7,20 6,58 (0,72) 5,10-7,50
PT time, % 99 (6,4) 95-107 97 (9,8) 86-115
PTT, time, sec 31 (2,6) 29-34 32 (4,2) 28-41
Abbreviations: WBC: white blood cells; PLT: platelet; AST: aspartate transaminase; ALT: alanine transaminase; AP: 

alkaline phosphatase; PT: prothrombin time; PTT: partial thromboplatin time; SD: standard deviation  
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Table 3. Toxicity Summary (n. of patients)

Toxicity per Patient Cohort I

Grade 2             Grade 3

Cohort II

Grade 2          Grade 3
Anemia 1 - 1 1
Neutropenia - 2 1 -
Thrombocytopenia - - - 1
AST/ALT 1 - - 1
Bilirubinemia - - - 1
Asthenia 1 - - 1
Fever - - 1 -
Nausea/vomiting - - 1 -
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Table 4. Pharmacokinetic results

Cmax (µ

g/ml)

AUCexp 

(µg h/ml)

AUCinf 

(µg h/ml)

t1/2

(h)

Cl

(L h/m2)

K

(h-1)
Gem dFdU Gem dFdU Gem Gem Gem Gem

Cohort I
Mean cy1 6,82 11,07 11,75 37,70 12,13 0,92 88,12 3,35
Range 6,00-

7,70

8,80-

12,40

9,11-

15,22

34,01-

41,83

9,20-

16,42

0,08-

2,77

65,70-

109,80

0,25-

8,27
SD 0,73 1,58 2,61 3,74 3,12 1,25 18,65 3,62
Cohort II
Mean cy1 7,76 8,93 8,43 25,14 8,87 0,18 127,27 5,41
Range 6,50-

12,20

5,40-

14,0

5,06-

12,54

13,80-

35,14

5,15-

13,17

0,06-

0,35

79,76-

197,59

0,30-

12,18
SD 1,77 2,39 2,29 8,12 2,50 0,10 37,43 4,11

Cmax: plasmatic peak concentration; AUCexp: experimental area under the plasma concentration-

time curve; AUCinf: infinite area under the plasma concentration-time curve; t1/2:terminal  half life; 

Cl: total plasma clearance; K: rate of elimination (K); Cy1: cycle 1; SD: Standard Deviation.
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Table 5. Total pharmacokinetic results at cycle I and cycle II

Cmax (µ

g/ml)

AUCexp 

(µg h/ml)

AUCinf

(µg h/ml)

t1/2

(h)

Cl

(L h/m2)

K

(h-1)
Gem dFdU Gem dFdU Gem Gem Gem Gem

Mean cy1 7,47 9,59 9,45 29,00 9,88 0,41 115,22 4,77
Mean cy2 7,26 8,73 8,14 27,01 8,73 0,25 128,45 5,36

Cmax: plasmatic peak concentration; AUCexp: experimental area under the plasma concentration-

time curve; AUCinf: infinite area under the plasma concentration-time curve; t1/2: terminal half-

life; Cl: total plasma clearance; K: rate of elimination (K); Cy1: cycle 1; Cy2: cycle 2.
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Figure 1. Cumulative grade 2 and 3 toxicity in patients for cohort I and II 
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Figure 2. The maximum concentration (Cmax) of gemcitabine (dFdC) and its metabolite (dFdU) 

in cohort I and II
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Figure 3. .Plasma concentration-time profile of gemcitabine (dFdC) (a) and of dFdU (b) at the first 

cycle in patient with normal hepatic function (cohort I) and in patients with altered hepatic 

function (cohort II)
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Figure 4. Clearance of gemcitabine in cohort I and II
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Figure 5. Regression of dFdC (gemcitabine) and dFdU clearance as function of total bilirubin
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Figure 6. AUCexp of gemcitabine and dFdU in cohort I and II
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Figure 7. Relationship of gemcitabine clearance and dFdU AUC in cycle 1 and 2 
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Abstract:  
 
The potential of using mass spectrometry profiling as a diagnostic tool has been 

demonstrated for a wide variety of diseases.  Various cancers and cancer related diseases 

have been the focus of much of this work due to both the paucity of good diagnostic 

markers as well as the knowledge that early diagnosis is the most powerful weapon in 

treating cancer.  However, the implementation of mass spectrometry as a routine 

diagnostic tool has proven to be difficult, primarily because of the stringent controls that 

are required for the method to be reproducible.  Because this technology had not been 

studied for factors that could influence the end result, there was a need to examine a 

series of conditions including sample bias, pre-processing, instrument controls, 

environmental conditions, post-analysis classification to name a few.  When these were 

examined, it became clear that while the method was feasible, implementation of mass 

spectrometry as a routine clinical testing method was unlikely.  In the meantime, 

however, the method is evolving as a powerful guide to the discovery of biomarkers that 

could, in turn, be utilized either individually or in an array or panel of tests for early 

disease detection.  Using proteomic patterns to guide biomarker discovery and the 
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possibility of deployment in the clinical lab environment on current instrumentation or in 

a hybrid technology has the possibility of being the early diagnosis tool that is needed.    

 
Proteomic patterns are revealed: 
 
The potential of mass spectrometry (MS) patterns as a diagnostic tool was first described 

in 2002 33 and was hailed as a breakthrough in diagnostic medicine.  While this first 

report was a concept paper, many interpreted it as a completed test ready for 

commercialization.  A resulting storm of controversy criticizing the concept was based 

largely on theoretical concerns 5,12.   At the same time proteomic patterns for a long list 

of additional diseases were reported9,15,46  and the debate continued.  Indeed, there are 

still reports of proteomic patterns that are being discovered for diseases but with a heavy 

focus on early cancer detection 41,42 .  There was and still is a lack focus on the true 

development of a method that is well understood and controlled and could be used in a 

clinical study to determine the true feasibility of this technology as a diagnostic tool.  

There are however several breakthroughs both in the understanding of proteomic patterns 

from the laboratory testing of samples and in the bioinformatics analysis that will result 

in clinically useful information for diagnosis and further understanding of the disease 

process.   

 
The role of SELDI in proteomics awareness:  
 
The term proteomics first appeared in the early 1990’s but did not become common in the 

scientific literature until much later in that decade1.  At about the same time, the SELDI 

(surface enhanced laser desorption ionization) system was introduced by Ciphergen 

(Fremont, CA now BioRad).  This technique was a fusion of sample fractionation and 
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MALDI (matrix assisted laser desorption ionization) mass spectrometry.  The company 

had made both the sample preparation and instrumentation simple to use and convenient 

for processing large numbers of samples.  For the first time, it was possible for scientists 

in the biological sciences to investigate mass spectrometry in their laboratories without 

having to tackle the complexities of the other mass spectrometer instruments available.  

The SELDI arrays were designed with an increased surface area within a series of 8 

circles surrounded by a hydrophobic membrane (see figure 1).  Samples were processed 

on 12 arrays that were held in a device that gave the standard 96 configuration of a 96 

well microtiter plate.  This allowed for high throughput processing and adaptation to 

robotic platforms designed for ELISA (enzyzme linked immunosorbant assay) tests.  The 

arrays were then read by the compact (for that time) mass spectrometer instrument.  A 

user friendly software gave presentation of results in formats familiar to biologists such 

as the “gel view” graphic representation of spectra in a density plot 33,40.    

In a ground breaking report, Petricoin et al reported the use of this system to test a group 

of ovarian cancer patient samples and a group of samples that were free of ovarian 

cancer33.  Once the spectra had been collected from the sample sets, a genetic algorithm 

and self-organizing cluster analysis was used to find differences in the spectral patterns 

between the two groups.  Masked samples were then used to test the discovered patterns 

and the results gave a startling sensitivity and specificity of 100% and 95% respectively.  

This report was followed rapidly by reports from many authors finding patterns for other 

cancers and diseases and new patterns are being reported even now2,16,25,41,42. 
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SELDI goes high resolution: 
 
One of the disadvantages of the SELDI system is that the resolution is not sufficient for 

identification of peptides.  This was overcome when Ciphergen produced a SELDI front-

end to a high resolution instrument, the ABI Q-star.  It allowed the SELDI arrays to be 

read with higher resolution but the throughput was low and did not allow for large sample 

sets to be easily processed.  As biologists became more comfortable with mass 

spectrometry, profiling was evaluated on this platform with results that appeared to be 

absolutely accurate compared to the original results found on the Ciphergen 

instrumentation10(table 1).  There were a total of 4 models that gave 100% sensitivity and 

specificity but it was noted that there were several peaks common to all of the algorithms 

that gave high accuracy results.  As both excitement and criticism grew over the 

possibility of using this technology for early detection of cancer and other diseases, the 

need for evaluation of reproducibility, robustness, control and understanding of the 

mechanism of the method became more urgent.   

Principle of the test: 
 
The most fundamental issue before dealing with reproducibility and robustness was the 

question of the principle of the test and what exactly was being measured.  What was 

curious in the initial reports was that the potential biomarkers being measured could be 

detected by a mass spectrometer whose sensitivity is some 2 orders of magnitude less 

than the standard ELISA technique (Saul, RG and Whiteley, GR unpublished data, 2005).  

It just did not seem possible to measure products of small primary stage tumors in the 

large volume of plasma using this technique.  However, this was soon explained by the 

possibility that biomarkers were being collected and concentrated in the serum by high 
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abundance carrier proteins such as albumin 29.  Albumin is known to be a carrier protein 

and one with a relatively long half life of 19 days 20.  Traditional mass spectrometry 

concentrated on the removal of the high abundance proteins in order to detect the low 

concentration peptides and proteins in serum hoping that these would yield biomarkers 

for disease.  However, the revolutionary thought that the biomarkers may indeed be 

discarded with the removal of the carrier proteins led to the discovery that there were ion 

species correlating with cancer such as ovarian cancer associated with these carrier 

proteins.  By isolating the albumin and then dissociating low molecular weight peptides 

and proteins, a further large number of cancer related proteins and peptides along with 

new unique peptides were also found 27.  This discovery was instrumental in the 

development and approach of other studies that have since shown patterns of albumin 

associated peptides for Alzeheimer’s disease 25, ovarian cancer 26, cutaneous T-cell 

lymphoma, 23 and breast cancer 8.  It has also provided the basis for the isolation and 

concentration of peptides that are now being studied as potential biomarkers.   

 

Automation of the process:  
 
One of the earliest tools for making the SELDI and other MALDI platforms more robust 

was automation of sample preparation thereby eliminating bias introduced by person to 

person technique variability.  Early in the proteomic profiling studies using the Ciphergen 

system, automation was a key to both ease of high throughput processing and 

reproducibility.  The Beckman Biomek system was originally packaged with the 

Ciphergen system and sold as part of the system.  This microplate processor platform was 

easy to program and the design of the 96 spot microplate layout made the adaptation of 
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the system simple.  However, we had observed that the matrix application timing was 

critical to reproducibility and this observation was confirmed by others 18.  Furthermore, 

we had found that the drying time of the sample on the arrays was also critical and this 

finding was also observed by others 3.  These factors needed to be taken into account 

when selecting a robotics system.   

The weak point of the original Biomek system was that the matrix application was done 

one spot at a time and it took close to one hour to apply matrix to all 96 positions.  We 

later converted to the Tecan Genesis system (TecanAG, Switzerland) and had 

programmed a system of serpentine matrix application that substantially reduced the 

application time.   This along with the installation of the robot in a laboratory that was 

both temperature (±2°C) and humidity (± 5%) controlled led to an improvement in the 

robustness of the technology 8.  Our final adaptation to robotic processing was done using 

the Hamilton Star robot (Hamilton, Reno, NV).  This robot utilizes a unique method to 

pick up pipette tips and has a 96 head pipettor capable of application of 1µl of matrix to 

all positions with great precision.  That allowed the simultaneous application of matrix 

and eliminated the matrix addition timing as a potential source of variability.  This robot 

became the basis for both SELDI and MALDI studies done within our lab 11,23.   

 
Reproducibility and robustness factors: 
 
While the adaptation of sample processing was an important factor in stabilizing 

reproducibility, it was only one of many factors that were key.  Indeed, many of the top 

level requirements were outlined in an editorial in 2005 (table 2) 17.  This sobering reality 

brought attention beyond the analytical platform to issues of sample acquisition and 
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handling along with the data processing, both critical components of technology 

robustness.   

The influence of pre-sampling factors on the human proteomic pattern has not been 

thoroughly studied.  There are studies emerging on the manipulation of the proteome 

through factors such as diet in fish 28 and and rats37 with the expected result that there are 

changes in the proteome induced by diet changes.  Some of the identified proteins 

involved are apolipoprotein A and aldolase both of which have been identified as 

potential sentinels of disease 4.  One can also assume that other factors such as 

medication, diet and hormonal status could disrupt the human proteome and therefore 

must be either accounted for or diluted out in studies of disease through proteomic 

patterns 35.  The careful selection of patient populations becomes a critical part of these 

studies especially during the validation of any proteomic pattern 6.   

The next set of issues involves the acquisition, handling processing of samples before 

testing.  Here there are some studies that have been done on various aspects but no 

standard procedure has been set.  A comparison of serum and plasma as sources 

demonstrated expected differences in the two samples 7.  It was also observed by Banks 

et al that there was significant alteration of the profiles when there was a delay in the 

time between sample acquisition and processing.  Clotting time for serum was found to 

be significant and it was suggested that a time greater than 30 minutes was necessary for 

all of the changes resulting from clotting were at a steady state.  There has also been an 

observation that the many possible additives to tubes show potential for differences in 

observed ions 13 and the only tubes that appeared to be suitable for serum were glass 

tubes without additives.  Storage is another issue.  Freezing was shown to not impact the 
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patterns 43.  We had also found that freezing and thawing did not impact the patterns but 

time stored refrigerated did show a significant drop in the an area of the spectra around 

the 3800 to 4000 m/z range (Shand, WB and Whiteley, GR unpublished data).  

Additional studies done in animals also demonstrate the issues of sample handling and 

processing and their impact on spectra 47.   

Sample preparation for mass spectrometry can have yet a further impact on the spectra.  

We had found that temperature and humidity were critical issues for the drying of 

samples and matrix 8 and these findings were confirmed in a more formal study 43.  The 

influence of pH, buffer concentration and surface selected can also cause shifts in 

proteomic pattern 5 and these can be misinterpreted as lack of reproducibility 21.  What is 

clear is that there needs to be definition of not only the factors that can influence 

reproducibility but also the limitations of each of these factors.  Controls or indicators of 

these factors can assist researchers in guiding data interpretation so that patterns can be 

reliably reproduced.   

 

Demonstrations of reproducibility:  

Despite all of the above issues, there have been very promising demonstrations of the 

power and reproducibility of proteomic patterns.  The earliest comprehensive report 

appeared in 2005 where 6 sites were asked to prepare and test samples using a standard 

protocol after a rigorous calibration with known proteins (insulin and IgG) a standardized 

pooled sample.  Known peaks were evaluated for intensity, resolution and signal to noise 

ratio.  After this,  sites were asked to test 14 prostate cancer and 14 non-cancer samples 

and analyze the data using a standardized method.  Their results showed that, under these 
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conditions, they were able to show agreement between laboratories to a high degree of 

confidence 38.  Another study demonstrated reproducibility of a pattern for breast cancer 

over a 14 month period  using the same instrumentation, method and highly controlled 

conditions 8.  This was the first time that the potential of patterns being stable over time 

had been reported.  Within patient stability of profiles has also been demonstrated 39.  In 

this study, individual patient samples taken over a three year period were examined.  

Although some peaks showed high CV values, the authors concluded that there were 

sufficient peaks with good reproducibility that the spectra from this group of patients 

were stable.  It should be noted however that these samples were all run at the same time, 

thus reducing the issues regarding control of the sample processing and instrumentation 

listed above.     

 
The use of Bioinformatics to find patterns 
 
The complexity of mass spectra compounded with a significant number of samples within 

each of a “training group” dictates that sophisticated computer analysis methods be 

employed to find patterns that correlate with disease.  Most of the techniques used were 

originally designed for other purposes involving pattern recognition to extract 

information from surveillance and other data.  The first mass spectrometry patterns were 

revealed wih the use of genetic algorithms and self-organizing maps33.  Since that time, a 

number of programs have been developed by mass spectrometry manufacturers such as 

the Cipergen Biomarker Wizard software.  An earlier version of this software was used 

to identify biomarkers for ovarian cancer34 and these are the basis for a series of markers 

now in clinical evaluations by Vermillion that has been filed with the FDA 

(http://ir.ciphergen.com/preview/phoenix.zhtml?c=121814&p=irol-
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newsArticle&ID=1169372&highlight=).  The same types of software have also been used 

in the world of genetic analysis to reveal gene patterns that are indicative of disease 45.   

However, mass spectra are so complex that before analysis there must be some 

processing of the data.  This involves the separation of true signal from noise that can be 

the result of both chemical and / or spectral baseline noise.  Each of these can in 

themselves cause problems with the data analysis unless particular care is taken.  One of 

the great assets of mass spectral data is its high dimensionality but this is also one of the 

great issues in efficient data mining.  In order to reduce the dimensionality, binning of 

data is usually done.  This can be done by the addition of peaks at fixed distances along 

the spectrum but is much better performed when the data is binned in a growing window 

taking advantage of the higher resolution of instruments at the lower mass / charge (m/z) 

range and compensating for the lower resolution at the high m/z end of the spectrum.  

Algorithms for binning have also been developed using only areas between two valleys in 

the spectrum23.  This method helps preserve peaks and avoid loss of resolution due to the 

accidental addition of separate peaks because of their location within a fixed m/z range.  

Once this is done, pattern analysis can be performed.    

Our approach has been to simplify or have redundant analysis as much as possible in 

order to have confidence in patterns that were observed in order to avoid the pitfalls of 

each of the methods that are well documented.  The method is described in detail in the 

publication by Liu et al 23.  Briefly, peaks that showed significant intensity differences 

between disease and non-disease groups were selected.   Then three classification 

methods were used:  partial least square regression, support vector machine and the C5.0 

decision tree.  Each of the test samples were classified by the three methods and then a 
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voting scheme was used for the final classification.  Where disagreement occurred, the 

samples were classified as unknown.  The classification showed that complex patterns 

existed showing differences between these two groups.  However, a simpler approach 

took advantage of the true power of mass spectrometry – the ability to detect very small 

differences in a molecule caused by a post-translational modification.  Using this method, 

an algorithm of peak pair ratios selected peak pairs correlating with post-translational 

modifications associated with cancer that showed significant differences between patients 

with ovarian cancer and patients without disease.  The result was that 4 peak pairs (8 

peaks) could differentiate between these two groups in a test group of samples.  This 

finding showed that there were potential biomarkers of disease markers to be discovered 

in these samples.   

Proteomic patterns as potential diagnostic tools 

This appears to be extremely challenging and will probably require significant 

breakthroughs in all areas:  mass spectrometry, computer software, understanding of 

sample issues and methods of controlling all aspects of testing.  Despite this, we did 

assess the feasibility of the technology using a set of patient samples and the algorithm 

developed above.  The original algorithm was developed from samples collected at 

Northwestern University under their protocol.  Samples were stored at -80°C until 

testing.  A set of blinded samples were collected and processed at a second institution 

(Duke University).  There was no review of the sample collection and processing 

protocol to make it consistent with that of Northwestern University.  The samples were 

also frozen at -80°C before testing.  The method for sample preparation and testing was 

consistent in the laboratory and all tests were done on the same instrumentation under the 
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same conditions.  The spectra were processed and classified according to the algorithm 

above.  The final results had been blinded up until this point.  The results showed that 

there was a significant agreement between the classification and clinical diagnosis when 

un-blinded although the sensitivity and specificity were much lower than in the test group 

(table XXXX).  While this clearly shows that the methodology needs substantial 

development before it could be used in a clinical trial, it does demonstrate that there are 

potential biomarkers that should be investigated.   

 
 
Guided biomarker discovery using proteomic patterns: 
 
Once a pattern has been found, it is not a trivial task to identify the proteins that are the 

source of the pattern.  However, using high resolution MALDI results such as those 

obtained above, it is conceivable to sort through the spectra of the sample collection and 

select individual samples with high intensities of the peaks of interest as well as samples 

with extremely low intensities of these same peaks.  Using these samples, the process of 

fractionation and the search for the identity begins with the knowledge that the MALDI 

database identification can confirm a more definitive methodology.   

Several methods have been successfully used to identify proteins.  These include 

conventional chemical methods such as Edman’s degradation but the more sophisticated 

and less laborious mass spectrometry techniques are now more commonly used.  

Probably the most important aspect of mass spectrometry in proteomics is the 

possibility to obtain tandem mass spectrometry experiments (MS/MS or MSn) on 

selected instruments. In tandem mass spectrometry inducing ion fragmentation is 

possible and the m/z of the daughter ions can be measured. The capability of this 

method has been largely explored since the early 1990’s especially in ion traps 
14,22,24, although also FT ICR 36,48 and MALDI TOF–TOF  have shown interesting 

results 19.  
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Generally, a fractionation of the complex protein mixture is done that would mimic the 

fractionation done before the original spectral patterns are generated.  This is then 

followed by further fractionations to reduce the complexity of the samples.  These 

fractionations can be done using methods such as electrophoresis (either 1 or 2 

dimensional) or liquid chromatography followed by mass spectrometry on either digested 

fragments or the intact material.             

 
 
 
Deployment of patterns into the clinical laboratory: 
 
The migration of this technology to the clinical environment will not be an easy task.  

There are, however, several possibilities that could accommodate the knowledge gained 

by these studies and merge them with technology that is currently accepted or could be 

adapted to the clinical lab environment.  Certainly the immunoassay in its many forms is 

a well understood and accepted platform for clinical sample testing.  Techniques such as 

the ELISA (enzyme linked immunosorbant assay) have exquisite sensitivity.  However, 

they do not have the capability of easily and accurately detecting small changes in 

molecules that are possible markers of disease. Mass spectrometry has the capacity to 

detect these very minor changes but lacks the sensitivity of the immunoassay techniques.  

It would therefore seem logical to explore the fusion of these techniques.   

Exploration of the affinity concentration and mass spectrometry techniques has been 

done as a way of biomarker definition and discovery.  Several different solid phases have 

been used in a basic scheme as outlined in figure 2.  These have included magnetic beads 

44, affinity pipette tips 31 and gold surfaces30.  In each case, antibodies were used as 
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affinity capture reagents to fractionate and concentrate proteins and peptides from more 

complex solutions.  In the case of the magnetic beads and affinity pipette tips, the process 

was automated on a robotic system and proteins captured by the antibodies were eluted 

and analyzed by mass spectrometry.  The results show that these two techniques together 

are powerful and provide an information rich output that not only shows different 

isoforms of proteins but also quantitative information.   

The use of gold surfaces adds yet another dimension 30,32.  This allows for the label free 

detection of proteins captured through SPR (surface plasmon resonance) and then 

utilizing the same surface the proteins can be encapsulated in matrix and MALDI mass 

spectrometry interrogation can be performed.  Thus, samples can be tested to see if they 

contain a particular binding partner to the affinity surface and then the form of the protein 

can be determined by mass spectrometry.  The sensitivity of SPR is somewhat less than 

more sensitive amplification methods.  However, this type of hybrid technology increases 

the value of the data collected through the addition of another dimension of separation 

and detection.   

 

Summary:   

Mass spectrometry patterns are a rich source of potential biomarkers for a wide variety of 

diseases.  Although they have been described more than 5 years ago, the understanding of 

the source of the patterns and the identity of the majority of the proteins remains largely 

unknown.  The host of factors that must be considered when using these patterns for 

biomarker discovery or potential diagnostic testing is extensive and still largely 

unexplored.  However, the enormous potential for this technology in both discovery and 
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early diagnosis is clear.  The path forward will require a tremendous amount of 

development work and careful clinical validation.  The promise of new insight into 

disease mechanisms and early detection using the technique or hybrid forms with other 

synergistic technologies calls for additional time and effort that will result in positive 

patient benefit.   
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Figure 1:  The SELDI array consisting of 8 spots (sliver) surrounded by a hydrophobic 
membrane (brown).  Twelve of these arrays can be held together in a configuration that 
has the footprint of a microtiter plate.   
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Table 1:  Four computer models that identified test sets of samples with ovarian cancer 
with a sensitivity and specificity of 100%.  Note the repeating ions that appear in more 
than one of the models.  Adapted from 10.   
 

 
 



 

Table 2:  Recommended practices for clinical applications of protein profiling by 
matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. 
(Adapted from Hortin28) 
 
Preanalytical 

 Evaluate optimum patient preparation 
 Identify optimum procedures for specimen collection and processing 
 Analyze specimen stability 
 Develop criteria for specimen acceptability 

Analytical 
 Prepare calibrators for mass, resolution, and detector sensitivity 
 Use internal standards 
 Automate specimen preparation 
 Optimize methods to yield highest possible signals for peaks of interest 
 Identify sequences of peaks of interest 
 Develop calibration materials for components of interest 
 QC: prepare/identify at least two concentrations of control material 
 Evaluate reproducibility (precision) 
 Evaluate limits of detection and linearity 
 Evaluate reference intervals 
 Evaluate interferences such as hemolysis, lipemia, renal failure, acute-phase 

responses 
 Develop materials or programs for external comparison/proficiency testing of 

analyzers 
Postanalytical 

 Analyze each spectrum to identify peaks before applying diagnostic algorithms 
 Develop criteria for the acceptability of each spectrum based on peak 

characteristics 
 Use peaks rather than raw data as the basis for diagnostic analysis 
 Use caution in interpretation of peaks with m/z<1200 
 Select peaks with high intensities and sample stability for diagnosis 
 Select approximately equal numbers of peaks that increase and decrease in 

intensity as diagnostic discriminators 
 In developing a training set for diagnosis, careful clinical classification of patients 

is essential 
 Clinical validity depends on having a typical rather than highly selected 

population of patients 
 The number of training specimens should be at least 10 times the number of 

measured values 
 Any clinical application should use a fixed training set and algorithm for analysis 
 Any analysis should provide a numerical value 
 Diagnostic performance should be evaluated with ROC curves to select cutoffs 
 A sensitivity analysis should be performed of the necessary precision for accurate 

diagnostic performance 
 There should be QC procedures for daily verification of software performance 
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Table 3:  Classification of blinded samples from study site 2 using a classification system 

derived from samples collected at study site 1.  Classification was done using the 
peak pair algorithm and involved 4 peak pairs (8 peaks total)23.  Note the high 
number of “unknown” results.   

 
 
 
       Classification  
 
Clinical Diagnosis 

Normal Cancer Unknown 

Normal n=30 23 2 5 
Cancer n=29 4 20 5 
 
Sensitivity:   83% 
Specificity: 92%
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Figure 2:  Immunocapture of proteins from more complex solutions followed by the 
analysis of the captured material by MALDI mass spectrometry.  The mass spectrometry 
can be done directly on the same surface or in a more concentrated fashion by elution of 
the captured material.   
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Background: Amplification of the HER-2/neu gene (HER-2), overexpression of the
HER-2 protein, or both, occur in 20% to 30% of primary breast cancers (BC) and have
been correlated with high histologic grade, increased mitotic activity, negative
estrogen-receptor (ER) status. Fluorescence in situ hybridization (FISH) is used to
detect HER-2 amplification. The FDA-approved PathVysion test includes a second
probe for the centromeric region of chromosome 17 (CEP17) and allows a correction
of the HER-2 gene copy number to the number of copies of chromosome 17 (HER-2/
CEP17 ratio). PathVysion test is positive (HER-2 amplified) when HER-2/CEP17 ratio
is >2 but a wide variability in the ratio of amplification can be observed in clinical
practice.

Methods: Our evaluation was performed on 28 female early stage BC patients (pts)
treated with curative surgery at Istituto Clinico Humanitas from August 2001 to
January 2005, randomly taken from the archives of Pathology. Patients characteristics
were: median age: 55 (range: 36–73); invasive ductal carcinoma: 24 (86%), invasive
lobular: 3 (11%); mixed (ductal and lobular) type: 1 (3%).

Results: Seventeen pts had HER-2 amplification with HER-2/CEP17 ratio ranging
2.1–8.5, whereas 11 FISH negative pts represented the control group. Patients with
FISH positive were divided into two groups according to the HER-2/CEP17 ratio of
HER-2 amplification: low-level HER-2 amplification (HER-2/CEP17 ratio 2.1–3.9)
and high-level HER2 amplification (ratio 4–8). Relevant histopathologic features of
tumors in the three groups (no amplification/low-amplification/high-amplification,
respectively) were as follows: high histologic grade (G3): 36/33/63% (P 0.07
Mantel–Haentzel test); vascular invasion present: 45/44/75%, high proliferative
MIB-1 index (MIB-1 protein >20%): 27/44/63%. No significant difference was
observed for ER and/or progesterone-receptor status.

Conclusions: This is the first observation of a possible correlation between the level of
HER-2 amplification and some relevant histopathological features of BC. Basing on
this pivotal experience conducted on a small numbers of pts, we think that the level of
HER-2 amplification may have a prognostic role in pts with early stage BC.

C10 A PHARMACOKINETIC STUDY OF GEMCITABINE
AT FIXED DOSE RATE INFUSION IN PATIENTS WITH
IMPAIRED HEPATIC FUNCTION

Felici A1,2, Di Segni S2, Colantonio S2, Milella M1, Ciccarese M1, Cecere FL1,
Nuvoli B2, Ferretti G1, Citro G2 & Cognetti F1

1Divisione Oncologia Medica A, Istituto Nazionale Tumori Regina Elena,
Roma; 2Laboratorio di Farmacocinetica, Istituto Nazionale Tumori Regina
Elena, Roma, Italy

The aim of this study was to evaluate if hepatic dysfunction leads to increased toxicity
at fixed dose rate of gemcitabine (gem), and to characterize the pharmacokinetic (PK)
of gem and its major metabolite (29,29-difluorodeoxyuridine- 2dFdU) in patients with
normal and altered liver function. Eight patients with metastatic solid tumor were
treated with: gem 1000 mg/m2 at 10/mg/m2/min fixed rate days 1, 8, and 15 every 28
days for a maximum of six cycles. Three pts had normal serum bilirubin and AST level
(Cohort I); four pts had bilirubin level from 1.6 to 7.0 mg/dl and normal AST level,
one pt had bilirubin level less than 1.6 mg/dl and AST level greater than two times the
ULN (Cohort II). Patients characteristics were: median age 62 yrs (range 28–75),
male/female 4/4, median cycle cohort I: 6 cycle (3–6), median cycle cohort II: 3
cycle (1–5), median follow-up: 30 weeks (range 3–79) and median weeks of
treatment: 14 (1–25). The rate of dose reduction was the same in the two cohorts, as
the rate of omitted administration. Patients with liver dysfunction tolerated gem
without increased toxicity and neither AST nor bilirubin elevation was observed
after drug administration. Analysis was performed by HPLC/MS.

The pharmacokinetic results are shown in the table below:

No
pts

C max
(lg/ml)

AUC exp
(lg h/ml) t 1/2 (h)

Cl p
(L h/m2)

Gem 2dFdU Gem 2dFdU Gem 2dFdU Gem 2dFdU

COHORT I
Mean cy1 3 6.18 63.00 8.09 138.48 0.15 4.24 124.38 7.29
Mean cy2 3 5.81 49.90 5.60 107.46 0.05 3.00 181.73 10.62

COHORT II
Mean cy1 5 6.74 52.47 7.81 117.65 0.11 3.14 179.05 8.59
Mean cy2 3 5.88 100.53 5.86 205.54 0.21 1.74 175.32 7.92

Mean CV%* 6 2.09 �17.34 198.38 47.80 29.94 2.83 �33.78 20.82

*Coefficient of variability; cy, cycle; Cl p, plasmatic clearance.

The PK of gem at fixed dose rate in patients with impaired liver function seems similar
to control and PK data are comparable between cycles in both cohorts; no difference in
terms of toxicity and dose reduction was required for this subset of patients.

C11 EFFECTIVENESS OF THE CRCAPRO PROGRAM IN
IDENTIFYING PATIENTS SUSPECTED FOR HNPCC

Galizia E, Bianchi F, Bracci R, Belvederesi L, Loretelli C, Giorgetti G, Ferretti C,
Bearzi I, Porfiri E & Celerino R
Istituto di Medicina Clinica e Biotecnologie Applicate, Oncologia Medica,
Università Politecnica delle Marche, Ancona, Italy

Background: Subjects affected by Hereditary Non-Polyposis Colorectal Cancer
(HNPCC) exhibit a high susceptibility to colon and extracolonic (particularly
endometrial) tumours, due to MisMatch Repair genes (MMR) defects. Revised
Bethesda criteria are used to select patients candidates to genetic tests. For hereditary
breast and ovarian cancer, BRCAPRO is a useful tool in selecting patients to be studied:
recently the CRCAPRO model has been developed, based on family history of
colorectal and endometrial cancers. Our study aims to evaluate the reliability of
CRCAPRO in identifying mutation carriers.

Patients and methods: We used CRCAPRO program to evaluate carrier probability
risk in 99 patients fulfilling Amsterdam or Bethesda guidelines.MLH1 andMSH2 were
studied by direct sequencing in all the 99 patients and, when tumour tissue was
available, the study of microsatellite instability and of MMR proteins expression was
performed.

Results: Nine MLH1 and 9 MSH2 germline mutations were identified. Five out of
the 9 patients with MLH1 mutation showed a CRCAPRO risk evaluation of less than
20%. The same happened for 4 out of nine patients with MSH2 mutation. On the
other hand, of the 17 patients with an estimated risk superior to 80%, only 4 harboured
a mutation, all in the MSH2 gene. The highest risk calculated by the CRCAPRO
system in the 9 carriers of a MLH1 mutation has been 31.7%.

Conclusion: Sensitivity and specificity of the CRCAPRO program appears to be low in
our experience but needs to be further evaluated in larger samples.

C12 REVERSE TRANSCRIPTASE INHIBITORS INDUCE CELL
DIFFERENTIATION AND ENHANCE THE IMMUNOGENIC
PHENOTYPE IN HUMAN RENAL CELL CARCINOMA

Landriscina M1, Altamura SA1, Roca L3, Piscazzi A1, Fabiano A2, Maiorano N1,
Ranieri E3, Barone C4 & Gesualdo L3

1Medical Oncology and 2Endicrinology Units, Department of Medical Science;
3Nephrology Unit, Department of Biomedical Sciences; School of Medicine,
University of Foggia, Foggia; 4Medical Oncology Unit, Catholic University,
School of Medicine, Rome, Italy

Two classes of repeated genomic elements, retrotransposons and endogenous
retroviruses, encode for endogenous non-telomeric RT, a gene which is down-regulated
in differentiated cells, but is highly expressed in embryonic and transformed tissues. Two
non-nucleosidic RT inhibitors such as efavirenz and nevirapine, widely used in the
therapy of HIV infection, have been shown to reversibly down-regulate tumor growth
and induce differentiation in several human tumor cell models. Since renal cell
carcinoma (RCC) is an aggressive neoplasm, poorly responsive to anticancer treatments,
we evaluated efavirenz and nevirapine as a differentiating molecular-targeted treatment
to enhance the immunogenic phenotype in RCC Shaw cells as well as in primary cultures
of human RCC. We observed that the two RT inhibitors reversibly down-regulated cell
proliferation by 70–80%, without inducing either apoptotic or necrotic cell death.
Interesting, pharmacological inhibition of RT activity correlated with the appearance of
a more differentiated phenotype and with the up-regulation of the vitamin D receptor,
a gene which is known to co-regulate cell proliferation, differentiation and apoptosis in
RCC. Interestingly, RT inhibitors induced the protein expression of HLA-I and CD40,
twomolecules involved in antigen presentation and T-lymphocytes stimulation. Indeed,
co-cultures of nevirapine-treated RCC cells and autologous T lymphocytes as well as the
evaluation of PBMC-specific interferon-c release by ELISPOT demonstrated
a significant T cell lymphocytes activation, with the up-regulation of the CD3/CD56/
CD16 NK subpopulation and the down-regulation of CD3/CD4/CD25 T-reg cells,
which are involved in the suppression of the immune response. These data suggest that
the pharmacological inhibition of RT may represent a new strategy able to enhance the
sensitivity to immune therapy in human RCC.

C13 THE PROGNOSIS OF BRCA1/2 RELATED CANCERS.
ANALYSIS OF 70 CASES DIAGNOSED AT MODENA CANCER
CENTER FOR FAMILIAL BREAST AND OVARIAN CANCER

Cortesi L1, Calista F2, Ruscelli S1, Cavazzini G3, Artioli F4, Turchetti D5,
Pasini G6, Medici V1, Rashid I1 & Federico M1

1Dipartimento di Oncologia ed Ematologia Università di Modena e Reggio Emilia;
2U.O. Oncologia Medica Università degli Studi L’Aquila; 3Oncologia Medica
Ospedale C. Poma, Mantova; 4Servizio di Oncologia, Ospedale Carpi; 5Cattedra
ed U.O. Genetica Medica Policlinico S. Orsola–Malpighi Bologna;
6U.O.Oncologia ed Oncoematologia, Ospedale Infermi Rimini, Italy

The BRCA1 breast cancer (BC) are often characterized by an aggressive tumor
phenotype with a worse prognosis for BRCA1 than BRCA2 carriers. To assess the
behavior of BRCA related cancers we performed a comparison between BRCA and
sporadic BC observed at the Modena Cancer Registry (MCR). Between 1996 and 2005,
403 index cases were analyzed for BRCA1/2 mutations at our center. Out of 403
analysis, 80 (20%) were found carriers, of which 16 were ovarian cancers. Out of the 64
BRCA related BC, 40 resulted BRCA1 and 24 BRCA2 carriers. All the patients were
analyzed for clinical–pathological profile and 5-year survival rates were compared with
a series of 5587 sporadic BC registered by the MCR in the same time frame. The median
age at diagnosis was 38 in the BRCA group and 61 years in the control one (P < 0.001).
The most frequently hystotype was DCI (72%) as in the control group (75%). The
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A pharmacokinetic study of gemcitabine at fixed dose 
rate infusion in patients with impaired hepatic function  
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Ferretti, G. Citro and F. Cognetti  

Regina Elena National Cancer Institute, Rome, Italy  
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Background: The aim of this study was to evaluate if hepatic dysfunction leads to 
increased toxicity of gemcitabine (gem) at fixed dose rate, and to characterize the 
pharmacokinetic (PK) of gem and its major metabolite (2`,2`-difluorodeoxyuridine- 2dFdU) 
in patients (pts) with normal and altered liver function. Methods: Eight pts with metastatic 
pancreatic or biliary tract cancer were treated with the followed schedule: gem 1000 
mg/m2 at 10/mg/m2/min fixed rate days 1,8, and 15 every 28 days for a maximum of six 
cycles. Three pts had normal serum bilirubin level and AST level less than two times the 
upper limit of normal (ULN) (Cohort I); four pts had bilirubin level from 1.6 to 7.0 mg/dL and 
normal AST level, one pt had serum bilirubin level less than 1.6 mg/dL and AST level 
greater than two times the ULN (Cohort II). The PK parameters measured were: plasmatic 

peak concentration (Cmax), area under the plasma concentration-time curve (AUCexp), 
total plasma clearance (Cl p) and half life (t1/2). Results: Patient characteristics were: 
median age 62 yrs (range 28–75), male/female 4/4, median cycles cohort I: 6 cycles (3–6), 
median cycles cohort II: 3 cycles (1–5), median follow-up: 30 weeks (range 3–79) and 
median weeks of treatment: 14 (1–25). The rate of dose reduction was the same in the two 
cohorts, as the rate of omitted administrations. Patients with liver dysfunction tolerated 
gemcitabine without increased toxicity and neither AST nor bilirubin elevation was 

observed after drug administration. PK parameters were calculated at the first cycle and 
the results are presented below (see table). Conclusions: The pharmacokinetics of 
gemcitabine at fixed dose rate in patients with impaired liver function seems similar to 
control; no difference between the two cohorts was observed in terms of toxicity and dose 
reduction. 
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The results of the proteomics profiling studies have been presented in two different 

occasions. 

The oral presentation “A comparison of SELDI and High Resolution MALDI serum profiling 

with CA-125 in High Risk and confirmed Ovarian Cancer samples” has been held on July 

10th, 2007 at the Workshop Italy-USA Program on Oncoproteomics, in Rome at the Istituto 

Superiore di Sanità. 

“Advances in Proteomic Profiling for Biomarker Discovery” was presented at the NCI-

Frederick, MD, USA as an event part of Advanced Technology Program Staff Seminar 

Series in January 30th, 2008. 
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