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INTRODUCTION 
 

The availability of water resources for a long time determines the possibility of 

development of each civilization and quality of water for human consumption presides 

over the state of health of the population. The progress in knowledge on the 

interrelationships between water and human health and, in parallel, cultural evolution 

and ethics in the field of environmental protection and balance of biosystems, framed in 

an objective economic and social scenario, has been included on the regulatory side, in 

the current, consistent, acquis communitaire - faithfully transposed into national 

legislation – in where the health issues related to the uses of water resources are 

addressed same to the more strictly environmental, pertaining to the full protection of 

the waters, to regardless of their origin and nature. The two objectives of the joint 

European legislation matter, as articulated and complex this may appear, concern, in 

fact, on the one hand the achieve levels of water quality that do not result in 

unacceptable impacts or risk human health and the environment and, second, the 

guarantee of a water use that is sustainable in the long run . In this context, the 

protection and surveillance of the quality of water intended for human consumption is 

an essential measure for primary prevention against diseases with a high-pitched, 

mainly caused by microbiological contaminants, and chronic degenerative diseases, 

generally referable to chemicals. Just think, in proof that a simple practice such as 

disinfection of water has essentially eradicated many epidemic diseases that have 

plagued humanity for millennia, resulting in beneficial effects on the health of the 

population of similar importance, if not superior to that obtained with antibiotic therapy. 

The proliferation of cyanobacteria in water used for human consumption is an emerging 

issue in Italy in recent years, involving almost all the Regions, with potential impact on 

environmental and human health. Changes induced, directly or indirectly, by human 

activity in surface water bodies preside over, in fact, an abnormal proliferation of 

constituent bodies of aquatic biota, can cause undesirable or toxic metabolites 

(cyanotoxins), to affect the quality of water and cause a significant health risk - that 

requires proper management - water for the supply chain for the production of drinking 
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water. The activities undertaken in this PhD research have been mainly on risk from 

cyanobacteria in water with different uses. 

In this context, the research program has been aimed to assessment and management of 

risk from cyanobacteria in water to be used for consumption developing good practices, 

methods and procedures for the prevention, control and mitigation of the toxic in 

systems water.  

Particularly, the initial step of project focused on the elaboration of tools necessary for 

the prevention and control of complex phenomena related to the presence of 

cyanobacteria in a water body. The first section of this thesis concerns the analysis of 

the state of art of cyanobacteria presenting the key elements for risk assessment and 

analysis of the potential vulnerability of water bodies and water supply, taking into 

account environmental factors that govern the development and production of toxins. 

Specific treatment is still controversial given to the definition of toxic species and of 

biological activity and toxicity of different toxins. A further pivotal phase within the 

project involved the development, validation and application of a LC-/MS/MS method 

for simultaneous determination of different cyanotoxins in water intended for human 

consumption. In the experimental section the performance of a liquid chromatography-

tandem mass spectrometric method for analysis of 23 algal toxins in raw, treated and 

distributed water are reported. Data for a monitoring campaign conducted in the period 

2011-2013 in Vico Lake and drinking water chain following a recent water emergency 

associated with the presence of cyanobacteria in the basin are also shown.  

 As final activity of the research project, a new comprehensive approach for risk 

management throughout the supply chain and based on Water Safety Plan and Alert 

Level criteria. This approach is described in detail in the last section.
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1.1. Environmental factors presiding the proliferation 

of cyanobacteria 

Cyanobacteria are photosynthetic prokaryotes able to synthesize chlorophyll-a and 

several accessory pigments, such as phycobilins (allophycocyanin, phycocyanin and 

phycoerythrin) and carotenoids (such as beta-carotene, echinenone, canthaxanthin, 

myxoxanthofilla, zeaxanthin and oscillaxantina). 

These accessory pigments absorb light at wavelengths rarely used by other species of 

phytoplankton so that cyanobacteria have a greater ability to colonize different 

environments. Ecophysiological properties specific to the different cyanobacteria are 

very different and allow them to occupy different ecological niches in aquatic 

ecosystems. The understanding of their response to environmental factors is therefore 

crucial for the definition of the objectives of management of water bodies. 

However, the growth of cyanobacteria is influenced by different environmental factors 

like' light intensity, nutrients and hydrology of the basin. It is known that cyanobacteria 

prefer relatively high temperatures of the water and high level of light intensity (1, 2). In 

addition, there are some species, including major producers of toxins, which are 

exceptions to this generalization (3-5). 

For these reasons, any attempt to develop effective management strategies should 

include knowledge of the taxonomic composition and elements of site-specific ecology 

of the species concerned. 

The light intensity available in quantity and quality varies with depth. It decreases 

exponentially due to absorption and scattering caused by particles and colored 

compounds. In particular, the selective removal of some wavelengths causes changes in 

the spectral distribution of the light (6). The clear water absorbs light at the wavelengths 

of the red light, while the dissolved organic compounds and particles strongly absorb at 

the wavelengths of blue light. 

The phytoplankton changes the spectral distribution of the light: the green algae absorb 

little in the wavelengths of orange and yellow, which are absorbed by phycobilins. This 

is a competitive advantage for cyanobacteria which absorb light in a wide range of 

wavelengths including those used by the chlorophylls. 
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The ecological effects of temperature and light are essentially inseparable because of the 

interrelationship between metabolism and light saturation (7). The light intensity 

influences the rate of photosynthesis and therefore on the growth of cyanobacteria. The 

response to light is species-specific and cyanobacteria show a remarkable ability to 

adapt to changing light intensity. In general, the saturation value of light intensity of 

photosynthesis increases with the water temperature. 

Up to the saturation value, photosynthesis is limited by photochemical reactions that are 

relatively independent of the temperature, if not at very low temperatures (8). Reached 

the saturation value of light, photosynthesis is limited by biochemical enzymatic 

reactions that are governed by the temperature (9). Cyanobacteria are known to have a 

large capacity for adaptation to light and temperature, which allows them to occupy a 

wide range of environments. For example, Cylindrospermopsis raciborskii has proven 

to be able to grow in a large range of temperatures (20 to 35 °C) and light intensity (30-

400 µmol photons m
-2

 s
-1

) (10), even if the growth rates maximum occurring at about 

30 °C and 80 µmol photons m
-2

 s
-1

. Cyanobacteria need very little energy to maintain 

the function and structure of cells (11, 12) and this can be a competitive advantage for 

cyanobacteria against other algae. 

Experimental evidence shows that high temperatures, stratification induced by the 

temperature and the type of mixing, may affect the growth of the species with gaseous 

vacuoles and promote algal bloom. The growth of cyanobacteria can also take place at 

low temperature, even if the growth potential is significantly greater at temperatures 

above about 15 °C, while the maximum growth rates are achieved by most of the 

cyanobacteria at temperatures above 25 °C (2).
  

It has been shown that these optimum values of temperature are higher than those of 

green algae and diatoms (7). However, most of the studies upon which these 

assumptions have been made in warm water bodies and in conditions of thermal 

stratification, where it might just be the stratification, the more that the temperature, to 

represent the determining factor in the regulation of growth of cyanobacteria (6).
  

Cyanobacteria blooms occur frequently in eutrophic lakes, and therefore it is assumed 

that cyanobacteria require high concentrations of phosphorus (P) and nitrogen (N). High 

concentrations of phosphorus may indirectly support the growth of cyanobacteria, 
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increasing the amount of biomass that the resources of an ecosystem can support. 

However, cyanobacteria blooms have been identify even at low concentrations of 

dissolved phosphorus (13). 

Furthermore there is a serious difficulty in deciphering what fractions of phosphorus 

and nitrogen were measured in the different studies in the literature, which makes it 

difficult to understand the environmental conditions in which blooms occurred. 

Normally, the concentration of total P (TP) is measured to characterize the trophic status 

of a lake. One cause of confusion may arise from the measurement of P reactive instead 

of P total. The reactive phosphorus can be found abbreviated as FRP (filtered reactive 

phosphorus), SRP (soluble reactive phosphorus), DRP (dissolved reactive phosphorus) 

or RP (reactive phosphorus). 

Until fifty years ago it was considered that the reactive phosphorus represented the 

phosphorus in inorganic form, such as orthophosphate. However, it includes, besides 

that orthophosphate, but also other forms that react with the compounds used for the 

analysis (14). There are still open questions about the meaning of the RP, the 

composition of which probably varies from lake to lake (15), but the consensus is that 

the forms of phosphorus measured as the RP can be quickly metabolized by the 

organisms, so that the measured concentrations may be near zero or below the detection 

limit, even in the presence of a flowering. Therefore, the RP is considered a measure of 

the phosphorus available immediately, while the TP measures the amount of 

phosphorus present in a given body of water, either in solution within the plankton.  

Several studies have also shown that many organisms can utilize nutrients organic 

fractions (16), giving further support for the use of the TP to characterize the trophic 

status of a lake and to determine the conditions prevailing during the algae blooms. 

However, also as regards the measurement of TP, it should be noted that different 

values are obtained depending on the analytical technique used.  

Most part of studies using an analytical technique that includes an oxidation step, which 

converts much of the phosphorus present in the sample in RP, and a subsequent 

spectrophotometric determination of the RP. Therefore different techniques of 

oxidation, or the application of different instrumental methods, can lead to find different 

values of TP (17). 
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Nitrogen, the main component in the construction of gas vesicles, is another important 

environmental factor that promotes the growth of cyanobacterial species (18). The algae 

utilize nitrogen mainly in the form of ammonia (NH4) which nitrate (NO3), while the 

nitrogen gas can be used only by species nitrogen-fixing tools (19). The fixation of 

atmospheric nitrogen will only happen if the other forms of nitrogen are not abundant. It 

is generally accept that a limitation of nitrogen favors species that produce heterocysts 

capable of fixing atmospheric nitrogen. 
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1.2. Cyanobacterial species  

The abundant growth of potentially toxic planktonic cyanobacteria (bloom) is a common 

occurrence in freshwater, brackish and marine areas having a direct impact on environment 

and health. Of the approximately 150 known genera of cyanobacteria, more than 40 

comprise species responsible for the production of cyanotoxins and precisely according to 

the ability to produce, these compounds are distinguished in producers and non-producers 

(1). In the last decades, the ability to synthesize toxins has also been confirmed in type 

benthic cyanobacteria and subaerial environment (2, 3). The most commonly toxins 

produced belong to the classes of hepatotoxins (microcystins and nodularins), neurotoxins 

(anatoxin-a, anatoxin-a (S) and saxitoxin), cytotoxins (cylindrospermopsins) and 

dermatotoxins (aplysiatoxins and debromoaplyatoxins) (4). In freshwater environments the 

microcystins are most commonly produced by species belonging to the Microcystis, 

Planktothrix (Oscillatoria) and Dolichospermum (Anabaena) genera (4). It was observed 

the production of microcystin by cyanobacteria belonging to the genus Nostoc from aquatic 

habitats and subaerial (5,6), and Hapalosiphon (7) and Phormidium (8) genera. In brackish 

environments such as in the Baltic Sea or salt lakes and estuaries such as in Australia and 

New Zealand, Nodularia spumigena produces the nodularin toxin (5, 9). Neurotoxins are 

generally produced by Dolichospermum (Anabaena) and Anabaena, Aphanizomenon, less 

commonly, by Lyngbya and Oscillatoria (4). Cylindrospermopsis, Anabaena, 

Aphanizomenon, Raphidiopsis and Umezakia produce cylindrospermopsins (10), while 

several species of Lyngbya, Oscillatoria and Schizothrix are mainly responsible of the 

dermatotoxins production (Table 1.1) (4). The toxic cyanobacteria may be responsible for 

the production of different types of toxins, and thus, it is possible that the same species may 

produce more than one type of toxin, as well as it is possible that a particular species can 

produce different variants of the same class of toxins (11). This is extensively described 

for Microcystis aeruginosa (12) and for populations of Planktothrix rubescens (13-17). 

Production of microcystin congeners may be related to the presence of various 

cyanobacteria populations and the occurence of producers and non-producers strains. In 

order to discriminate forms of Planktothrix rubescens active in the production of 
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microcystins are studies of molecular studies are conducted on genotypes containing myc 

genes responsible for the biosynthesis of microcystins (18). 

Table1.1: Classes and general characteristics of cyanotoxins and species responsible for their 
production (Rapporto Istisan 11/35 Pt. 1) 

Toxins Structures Generes Species 

    
Epatotoxins    

Mycrocystins Cyclic Eptapeptide  

Dolichospermum 
(Anabaena) 
Anabaenopsis 
Aphanizomenon, Aphanocapsa 
Hapalosiphon 
Limnothrix Microcystis 
Nostoc 
Planktothrix 
Oscillatoria 

D. circinale 
D. flos-aquae 
D. lemmermannii 
D. viguieri 
Anab. milleri 
Aph. ovalisporum 
Aphanoc.cumulus 
H. hibernicus 
L. redekeii 
M. aeruginosa 
M. flos-aquae 
M. viridis 
M. wesenbergii 
M. botrys 
P. agardhii, 
P. rubescens, 
O. tenuis 

Nodularins  Cyclic pentapeptide  Nodularia N. spumigena 

Neurotoxins    

Anatoxin-a 

 
Tropane-related 
alkaloids  
 

Dolichospermum (Anabaena) 
Aphanizomenon 
Cylindrospermum Oscillatoria 
Planktothrix 
Phormidium Raphidiopsis 

D. circinale  
D. flos-aquae  
D. planctonicum 
D. spiroides 
P. rubescens 
P. formosa  
Pho. formosum  
R. mediterranea  

Anatoxin-a(s) 
Guanidine methyl 
phosphate ester  
 

Dolichospermum 
D. flos-aquae,  
D. lemmermannii 

Saxitoxins 
Alkaloids carbamates  
 

Dolichospermum Anabaena 
Aphanizomenon 
Cylindrospermopsis Lyngbya 
Planktothrix 
 

D. circinale,  
D. lemmermannii  
D. spiroides  
A. perturbata var. 
tumida  
Aph. isatschenkoi,  
Aph. flos-aquae,  
C. raciborskii  
L. wollei  
Planktothrix sp. FP1 

Dermatotoxins (irritant) and citotoxins   

Cylindrospermopsins 
 
Guanidine alkaloids  
 

Anabaena 
Aphanizomenon 
Cylindrospermopsis  
Raphidiopsis, Umezakia 

A. bergii 
A. lapponica  
Aph. ovalisporum 
Aph. flos-aquae,  
L. wollei  
C. raciborskii  
R. curvata 
U. natans  

Lyngbyatoxin-a 
Alkaloid  
 

Lyngbya 
Oscillatoria Schizotrix 

L. majuscula 

Aplysiatoxins and 
debromoapsyatoxins 

Alkaloid  
 

Lyngbya  
Oscillatoria Schizotrix  

O. nigroviridis  
S. calcicola 

Irritating endotoxins     

Lipopolysaccharide toxins  Lipopolysaccharides  Part of cyanobacteria   
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1.1.1. Secondary metabolites 

Cyanobacteria are among the most promising microorganisms for the search for new 

bioactive compounds. These compounds are represented by a group of small linear or 

cyclic peptides with structural variability using both ribosomal and not-ribosomal 

biosynthetic pathways (19).  

In the last two decades a large number of these secondary metabolites obtained from 

cyanobacteria in natural samples and in isolated culture have been isolated and 

characterized. More than 600 peptides or peptide metabolites are know; these 

compounds are been isolated mostly from species belonging to the Oscillatoriales and 

Nostocales orders and, followed by Chroococcales and Stigonematales orders, while 

they are still little known metabolites produced by Pleurocapsales (20). 

These numbers are, however, determined by the availability of the strains and by the 

possibility of biomass analysis from natural environments. For example, the Lyngbya 

(Oscillatoriales) and Microcystis (Chroococcales) species are easily obtained and 

manipulated in terms of growth and abundance so that it’s possible get sufficient 

quantities for the determination of these secondary metabolites, while Pleurocapsa 

requires long times and labor-intensive interventions for the extraction of the same 

compounds. 

The majority of secondary metabolites produced by cyanobacteria are oligopeptides 

or compound with synthesized structures and they are synthesized through a completely 

non-ribosomal biosynthetic pathway (NRPS, Non-Ribosomal Peptide Synthetase) or 

partially non-ribosomal (NRPS / PKS, polyketide synthase). 

In Table 2 is reported the various classes of secondary metabolites list and their 

related synonyms and the various genres involved in the production of these 

compounds. Have been determined more than 200 variants, and these must be added a 

series of peptides of the new generation of class of cianobactine (20). 
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Table 1.2: Classes of secondary metabolites produced by cyanobacteria (Rapporto Istisan 11/35 Pt. 1) 

Classes  Synonyms  Origin  Variants  

Aeruginosins  microcina, spumigina  Microcystis, Nodularia, 

Planktothrix  

27  

Microginins  cianostatina, oscillaginina, nostoginina  Microcystis, Nostoc, 

Planktothrix  

38  

Anabaenopeptins  oscillamide, acido ferintoico, cheramamide, 

chonbamide, mozamide, nodulapeptina, 

plectamide, schizopeptina  

Anabaena, 

Aphanizomenon, 

Microcystis, Nodularia, 

Planktothrix, 

Plectonema, 

Schizothrix  

32  

Cyanopeptolins  aeruginopeptina, anabaenopeptilide, 

dolostatina, hofmannolina, microcistilide, 

micropeptina, nostociclina, nostopeptina, 

oscillapeptilide, oscillapeptina, 

planctopeptina, sciptolina, somamide, 

simplostatina, tasipeptina  

Anabaena, Lyngbya, 

Microcystis, 

Planktothrix, 

Scytonema, Symploca  

82  

Microviridine    Microcystis, Nostoc, 

Planktothrix,  

10  

Ciclamidi  aaniasciclamide, bistratamide, 

dendroamide, microciclamide, 

nostociclamide, obianamide, raociclamide, 

tenueciclamide, ulongamide, westiellamide  

Lyngbya, Microcystis, 

Nostoc, Oscillatoria, 

Stigonema, 

Westelliopsis  

21  

 

More than one hundred cianobactine found in cyanobacteria living in a free form or in 

symbiotic association with some species of ascidians species are described (19). The 

biosynthetic pathway of genes involved in the production of cianobactine has been 

described in species belonging to Anabaena, Lyngbya, Microcystis, Nostoc, Prochloron 

and Trichodesmium genera (19-23). In order to know and better understand the 

biosynthetic pathway of cianobactine has been conducted, recently, a study of molecular 

type of one of the genes responsible for the formation of cianobactine; this study has 

involved the use of 132 strains from brackish water and sweet including filamentous 

forms such as Planktothrix, Anabaena forms filamentous eterocistiche like, 

Aphanizomenon, Nodularia and colonial forms such as Microcystis and Snowella (24). 
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1.1.2. Geographical distribution of cyanobacteria in Italian lakes 

 Excessive fertilization of water basins has caused the massive growth of certain 

organisms, such as cyanobacteria and algae which in the maximum phase of their 

growth cause algal bloom (25). Cyanobacteria are the algal component that has a bigger 

impact on the frequency of these blooms in fresh water and can produce cyanotoxins 

can be dangerous for humans and for animals (26,27). Since 1970, in different parts of 

the world, there was a constantly increasing in the frequency of algal blooms also 

associated with species that produce toxins, increased frequency of episodes of 

poisoning of animals, including humans have been reported in different areas (26).
  

In Italy, blooms of toxic cyanobacteria species are causing ecological and health 

problems; these events have involved both in natural lakes and in reservoirs and have 

been related to the general increase in the trophic status of the various basins (28-31). 

Episodes due to the presence and development of blooms of toxic cyanobacteria in 

61 lakes and reservoirs in Italy are reported in literature. Planktothrix rubescens was 

found in the lakes of northern Italy (Figure 1.1). Extensive studies on the phytoplankton 

community of the deep subalpine Como, Garda, Iseo, Lugano and Maggiore Lakes have 

gathered many chemical, physical and biological data showing a state of degradation of 

water quality due to a gradual process of environments eutrophication. In addition, in 

most of the lakes of northern Italy have been observed, even species belonging to the 

Anabaena, Aphanizomenon and Microcystis genera (Figure 1.2) (32, 33). 

Algal blooms are also defined as oligotrophic bloom because it occurs even in 

environments with a low trophic level as Maggiore and Garda Lakes (34). 

Regarding the small subalpine lakes, a frequent development of cyanobacterial 

blooms was observed in those lakes compromised in terms of trophic evolution: an 

emblematic example is the Alserio, Pusiano and Varese Lakes in Lombardy Region. 
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Figure 1.1: Distribution of Planktothrix rubescens blooms in lakes and reservoirs Italian between 
1992 and 2009 (Rapporto Istisan 11/35 Pt.1) 
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Figure 1.2: Cyanobacteria species blooms belonging to the Dolichospermum, Aphanizomenon, 
Cylindrospermopsis and Microcystis genera in Italian lakes and reservoirs(1992-2010)    (Rapporto 
Istisan 11/35 Pt.1) 

 

 

Cecita: 

M.aeruginosa (60)

Caldonazzo: Aph.flos-aquae (48), M.aeruginosa (48)

Idro: D.spiroides (36)

Levico: Aph.flos-aquae (48)

Canzolino: M.aeruginosa (48)

Serraia: M.aeruginosa (48), Aph.flos-aquae (48), D.spiroides (36)

Como: D.flos-aquae (65,66), M.aeruginosa 

(65,79), M.flos-aquae (65)

Garda: D.lemmermannii (80), M.aeruginosa (78)

Iseo: D.flos-aquae (76), D.lemmermannii (79), 

M.aeruginosa (35), O.tenuis (76), L.redekei (76)

Lugano: Aph.flos-aquae (39,68), M.flos-aquae 

(76), L.redekei (76)

Monate: M.aeruginosa (81), D.spiroides (81)

Pusiano: M.aeruginosa (45), Aph.flos-aquae (45), 

D.viguieri (45)

Castreccioni: M.aeruginosa (45) 

Polverina: M.aeruginosa (60)

Albano: Aph.ovalisporum (73), C.raciborskii (53,54),

Nemi: Aph.flos-aquae v.klebahnii (71), L.redekei (71) 

Vico: Aph.ovalisporum (85), L.redekei (85)

Averno: 

Aph.ovalisporum o 

C.raciborskii (82)

Trasimeno: M.aeruginosa (60), 

C.raciborskii (53)

Massaciuccoli: 

M.aeruginosa (60)

Arancio: M.aeruginosa (83), 

M.wesenbergii (75)

Rosamarina: M.aeruginosa (84)

Piano degli Albanesi: 

M.aeruginosa (75)

Rubino: D.flos-aquae (75)

Soprano: D.flos-aquae (75), 

M.flos-aquae (75)

Maggiore: D.lemmermannii (80)

Aph.flos-aquae (68), M.aeruginosa (76)

Liscione:M.aeruginosa (60)

Bidighinzu: D.flos aquae (87), 

M.flos-aquae (87)

Casteldoria: D.flos aquae (87), 

M.aeruginosa (87), M.flos-aquae (87) 

Cedrino: D.planctonicum (87), C.raciborskii (53),

M.aeruginosa (60,87), Aph.flos-aquae (87)

Cixerri: D.planctonicum (87), M.aeruginosa (87)

Coghinas: D.flos aquae (87), M.aeruginosa (87), 

M.flos-aquae (87), Aph.flos-aquae (87)

Cuga: D.planctonicum (87), D.flos aquae (87), Aph.flos-aquae (87), M.aeruginosa (87)

Flumendosa: O.tenuis (59)

Flumineddu: D.planctonicum (86)

Gusana: M.aeruginosa (87)

Is Barroccus: Aph.flos-aquae (87)

Liscia: D.planctonicum (86), M.aeruginosa (87)

Monte Pranu: D.planctonicum (87), M.aeruginosa (87)

Monteleone Roccadoria: D.spiroides (87), M.aeruginosa (87)

Mulargia: D.planctonicum (86), D.flos-aquae (86), M.aeruginosa (87)

Nuraghe Pranu Antoni: M.aeruginosa (87), D.spiroides (87)

Omodeo: D.spiroides (87), M.aeruginosa (87), M.flos-aquae (87), 

Pattada: M.aeruginosa (87)

Posada: M.aeruginosa (87), D.flos-aquae (87)

Punta Gennarta: M.aeruginosa (87)

Santa Lucia: M.aeruginosa (87)

Simbirizzi: O.tenuis (59)

Surigheddu: Aph.flos-aquae (87)
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In these basins blooms of Planktothrix rubescens (Pusiano Lake) (35); Microcystis 

spp. and Anabaena spp. (Varese Lake) (36); Aphanizomenon flos-aquae (Alserio Lake) 

(37) are frequently reported.  

Even for some lakes of Trentin Region the most widespread species is P. rubescens; 

also the of Aphanizomenon flos-aquae and Microcystis aeruginosa presence was 

observed (12,38).
  

In central and southern Italy species P. rubescens is grow abundantly in volcanic 

lakes both Lazio (Albano, Nemi and Vico Lake) and Campania Region (Averno Lake) 

. Other cases of blooms have been detected in Fiastrone, Grazie, Borgia and Gerosa 

Lakes (39-41) and in Occhito Lake in Puglia Region (42-43). 

In central Italy, the only reports on the presence of Cylindrospermopsis raciborskii 

(44) involving the Trasimeno Lake in Umbria Region (45) and Albano Lake in Lazio 

Region (46). 

The abundant presence of cyanobacteria in lakes of Lazio Region has long been 

known and already in 1953 an episode of exceptional bloom of Aphanizomenon 

ovalisporum in Albano and Nemi Lake was identified (47). 

Recently, studies on the trophic conditions and the phytoplankton community of 

Albano Lake have shown critical conditions of water with a tendency towards a state of 

meso-eutrophic and biodiversity reduced coupled instead to the development of 

different species of cyanobacteria such as Planktothrix and Anabaena spp., which 

represented up to 47-65% of the total phytoplankton (48-50). 

The presence of cyanobacteria species responsible for blooms or potential producers 

of toxins has also been reported for the Nemi Lake (50) and St. Puoto Lake (51). 

Moreover, the presence of Microcystis aeruginosa is reported in other lakes of central 

Italy: Massaciuccoli Lake in Tuscany Region, Trasimeno Lake in Umbria Region, 

Liscione Lake in Molise Region and Polverina Lake in the Marche Region where it has 

been also possible to detect toxicity for MC-RR (52). Despite lakes and reservoirs 

located in the semi-arid parts of the Italian peninsula, represent the most important 

source of water for various human activities, the presence of toxic cyanobacteria blooms 

in the southern areas are still poorly reported and are not currently evaluated in their 

effective dissemination.  
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However, on the islands have been described blooms of P. rubescens in the Italian 

island: in the Orange, Pozzillo, Nicoletti, Garcia, Prizzi Lakes (Sicily Region) (53) and 

in lakes Simbrizzi, Flumendosa Mulargia and Torrei Lakes (Sardinia Region) (59,60).  

Furthermore, M. aeruginosa and Dolichospermun flos-aquae (54) have been reported 

as recurrent in most of the 27 lakes and reservoirs in Sicily, in which the formation of 

cyanobacterial blooms since 1979 has been encouraged by the growing phenomenon of 

eutrophication (56); while in Sardinia Region 36 basins affected by the presence and / 

or cyanobacteria blooms are numerous and monitored by time (Table 1.3). 

In summary, in Italy data on the presence of cyanobacterial toxic species are avaible 

only for 61 among the 500 lakes distributed throughout Italy (not counting the minor 

basis) in 13 out of 20 regions (Table 1.3). 

 Completely lack data on the rest of the lakes and reservoirs. 

Table 1.3: Cyanobacteria described in the literature from 1992 to 2010 (includes some species of 
cyanobacteria that were not always present in conjunction with the species considered toxic) 
(Rapporto Istisan 11/35 Pt.1) 

Lake Species 
  

Trentino-Alto Adige  

Idro Microcystis sp.
1
 

Caldonazzo Anabaena princeps
2
, Aphanizomenon sp.

3
 

Terlago Microcystis sp.
2
,Oscillatoria sp.

2
 

Lombardy  

Iseo Aphanotece clathrata
4
, Chroococcus limneticus

4
, Planktolyngbya limnetica

4
, 

Gomphosphaeria lacustris
4
, Aphanocapsa/Aphanothece

5
, 

Leptolyngbyoideae
5*

, Snowella spp.
5
, Pseudoanabaena limnetica

6
, Microcystis 

stagnalis
7
, Aphanothece clathrata

7
, Chroococcus minimus

7
, Chroococcus 

minutus
7
, Anabaena catenula

7
 

Garda Planktolyngbya limnetica
8
, Aphanocapsa/Aphanothece

5
, Limnotrichoideae

5
, 

Leptolyngbyoideae
5
*, Snowella cf. aracnoidea

9
, Limnothrix sp.

7
 

Como Planktolyngbya limnetica
10

, Chroococcus sp.
10

, Aphanocapsa/Aphanothece
5
, 

Pseudoanabaena limnetica
6
, Limnotrichoideae

5
, Limnothrix sp.

7
, Aphanothece 

clathrata
7
, Aphanothece nidulans

7
, Gomphosphaeria lacustris

5
, 

Leptolyngbyoideae
9
 

Pusiano Aphanothece clathrata
11

, Merismopedia tenuissima
11

, Pseudoanabaena sp.
11

 

Lugano Aphanocapsa/Aphanothece
5
, Pseudoanabaena limnetica

6
, Limnotrichoideae

5
, 

Leptolyngbyoideae
5*

, Gomphosphaeria lacustris
5
, Lyngbya limnetica

7
, 

Limnothrix sp.
7
 

follows  
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continues 

follows 

 

 

 

 

Lake Species 
  

Piedmont  

Maggiore Aphanocapsa/Aphanothece
5
, Limnotrichoideae

5
, Limnotrix sp.

7
, 

Leptolyngbyoideae
5*

, Gomphosphaeria lacustris
5
, Pseudoanabaena limnetica

6
 

Marche  

Castreccioni Aphanocapsa delicatissima
12

, Aphanocapsa incerta
12

,  
Aphanocapsa planctonica

12
, Chroococcus limneticus

12
, Merismopedia 

glauca
12

, Oscillatoria limosa
12

, Rhabdogloea smithii
12

, Spirulina gigantea
12

 

Lazio  

Nemi Pseudoanabaena limnetica
13

, Merismopedia trolleri
13

 

Bolsena Snowella-like
14

, Microcystis sp.
14

 

Albano Anabaena sp.
14

 

Molise  

Liscione Pseudoanabaena mucicola
15

, Aphanocapsa spp.
15

, Anabaena spp.
15

, 
Aphanothece spp.

15
 

Siciliy  

Arancio Dolichospermum smithii
16

, Anabaena solitaria f.planctonica
17

, Microcystis 
panniformis

18
, Gomphosphaeria nägeliana

19
, Pseudoanabaena sp.

19
, 

Sphaerospermopsis aphanizomenoides
17

, Dolichospermum crassum
17

, 
Anabaena spp.

17
, Coelosphaerium kuetzingianum

17
, Raphidiopsis 

mediterranea
17

, Woronichinia naegeliana
17

 

Disueri Oscillatoriales
17

, Chroococcales
17

 

Pozzillo Anabaena nodularioides
17

, Microcystis sp.
17

, Oscillatoriales
17

 

Prizzi Anabaenopsis elenkinii f. circularis
17

 

Rosamarina Aphanizomenon sp.
17

, Planktothrix sp.
17

, Merismopedia spp.
17

 

Villarosa Microcystis sp.
17

, Chroococcales
17

 

Piana degli Albanesi Anabaena solitaria f.planctonica
17

, Dolichospermum crassum
17

,  

Gammauta Dolichospermum smithii
16

, Dolichospermum crassum
17

, Chroococcales 
17

 

Rubino Planktothrix sp.
17

, Anabaena spp.
17

, Oscillatoriales
17

 

Soprano Anabaenopsis elenkinii
17

, Aphanotece sp.
17

, Oscillatoria spp.
17

,  
Phormidium sp.

17
, Oscillatoriales

17
 

Gorgo Anabaena sp.
17

, Anabaenopsis elenkinii f. circularis
17

, Oscillatoriales
17

 

San Giovanni Microcystis spp.
17

, Anabaena spp.
17

, Anabaenopsis elenkinii f. circularis
17

, 
Oscillatoriales

17
 

Castello Planktothrix sp.
17

 

Trinità Anabaena spp.
17

, Coelosphaerium kuetzingianum
17

, Oscillatoriales
17

 

Scansano Dolichospermum spiroides
17

, Oscillatoriales
17

, Anabaena spp.
17  

Microcystis spp.
17

 

Guadalami Dolichospermum smithii
17

, Dolichospermum crassum
17

, Planktothrix sp.
17

, 
Chroococcales

17
, Oscillatoriales

17
 

Biviere di Cesarò Oscillatoria spp.
17

 

Santa Rosalia Anabaena spp.
17

, Oscillatoriales
17

 

Olivo Anabaena nodularioides
17

 

Cimia Merismopedia spp.
17

 

Vasca Ogliastra Anabaena spp.
17

, Microcystis spp.
17

 

Biviere di Gela Microcystis spp.
17

, Lyngbya spp.
17

 

Ogliastro Oscillatoria spp.
17

 

Pergusa Oscillatoria spp.
17

, Spirulina sp.
17

, Chroococcales
17

 

Comunelli Lyngbya spp.
17

, Phormidium sp.
17
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continues 

Lake Species 
  

Sardinia  

Flumendosa Oscillatoria mougetii
20

, Oscillatoria spp.
21

; Gomphospaeria aponina
21

; 
Aphanothece spp.

21
 

Simbirizzi Anabaena sp.
15

 

Mulargia Anabaena spp.
15

, Oscillatoria mougetii
20

; Oscillatoria spp.
21

 

Gusana Aphanocapsa spp.
15

, Lyngbya sp.
15

 

Liscia Gomphospaeria aponina
21

 

Monteleone Anabaena sp.
15

, Microcystis sp.
15

, Aphanocapsa spp.
15

, Aphanizomenon spp.
15

 

Cucchinadorza Lyngbya sp.
15

, Anabaena sp.
21

, Aphanocapsa sp.
15

 

Torrei Aphanizomenon spp.
15

, Lyngbya sp.
15

 

Bidighinzu Aphanocapsa sp.
21

 

Posada Anabaena spp.
15

, Aphanocapsa sp.
15

, Pseudoanabaena mucicola
15

; Lyngbya 
sp.

15
, Microcystis spp.

15
, Gomphospaeria aponina

21
; Oscillatoria spp.

21
 

Govassai Merismopedia sp.
15

; Aphanocapsa sp.
15

, Aphanothece spp.
21

 

Cedrino Microcystis spp.
15

 

Benzone Lyngbya sp.
15

, Aphanocapsa sp.
15

, Oscillatoria spp.
21

 

Pattada Aphanizomenon spp.
15

, Woronichinia spp.
15

, Anabaena spp.
15

, 
Gomphospaeria spp.

21
; Aphanocapsa sp.

21
, Oscillatoria spp.

21
 

Cuga Pseudoanabaena mucicola
21

 

Omodeo Merismopedia punctata
21

, Aphanothece spp.
21

 

Monteleone Roccadoria Pseudoanabaena mucicola
21

, Aphanocapsa sp.
21

, Gomphospaeria aponina
21

 

Bunnari alto Merismopedia punctata
21

, Aphanocapsa sp.
21

 

Casteldoria Anabaena spp.
21

 

Santa Lucia Aphanothece spp.
21

, Oscillatoria spp.
21

, Gomphospaeria aponina
21

 

Monte Pranu Oscillatoria spp.
21

 

Coghinas Aphanocapsa sp.
21

 

Cixerri Oscillatoria spp.
21

, Pseudoanabaena mucicola
21

 

Is Barroccus Aphanothece spp.
21

, Aphanocapsa sp.
21

 

Surigheddu Oscillatoria spp.
21,

  

Monteponi Aphanocapsa sp.
21

 

Medau Zirimilis Oscillatoria spp.
21

 

Sos Canales Anabaena spp.
21

 

Bau Pressiu Aphanothece spp.
21

 

Barzolu Anabaena spp.
21

 

Corongiu Aphanocapsa sp.
21

 

Leni Aphanocapsa sp.
21
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1.3. Cyanobacterial toxins 

The cyanotoxins are a group formed by natural toxins different from both chemical and 

toxicological point of view; they are responsible for both acute and chronic poisoning in 

animals and humans. 

The main classes include: the hepatotoxins (microcystins and nodularins), neurotoxins 

(anatoxin-a, homoanatoxin-a, anatoxin-a (s), saxitoxin, BMAA), the cytotoxins such as 

cylindrospermopsin, gastrointestinal toxins and compounds with acute skin effects such 

as aplysiatoxin, debromoaplysiatoxin and lingbiatoxin produced by marine 

cyanobacteria and lipopolysaccharide endotoxin (LPS), potentially irritating (1, 2). 

In general, the MC and Nod are frequently toxins found. 

1.3.1. Microcystins 

Chemical structures and properties  

 

The microcystins (MCs) are monocyclic heptapeptides with low molecular weight, 

consisting of a carbohydrate locking, seven amino acid residues and one 

methylamine.This class of compounds are two L-amino acid variables (L-R1 and L-R2) 

(Figure 1.3).  

  

Figure 1.3: Chemical structure of microcystins most common 

MC-LR  R= CH(CH3)2 

MC-RR  R= CH2 CH2NHC(NH2)=NH 
MC-YR  R= C6H4-p-OH 
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In the world more than 80 different variants from the first toxin identified, the MC-

LR, have been isolated (2).  

MCs are soluble in water, methanol and ethanol, insoluble in acetone, ether, 

chloroform and benzene; they are resistant to hydrolysis and chemical oxidation at 

neutral pH values. A rapid chemical hydrolysis can occur only in controlled laboratory 

conditions such as in the presence of 6M HCl at high temperatures; they are instead 

oxidized by ozone and other strong oxidizing agents.  

The MCs are very stable to sunlight, while the UV light to the values of maximum 

absorption of the MC-LR and MC-RR degrades rapidly (3).  

Toxicity 

Mechanism of action 

 

The MC-LR and most of its congeners are highly water soluble and generally not 

able to cross cell membranes of vertebrates and need, therefore, to a carrier protein 

dependent adenosine-triphosphate (ATP).  

Through the ileum and the system of organic anion transporting, the MC-LR reaches 

the liver (3); here, into hepatocytes, carries out its activity as a potent inhibitor of 

phosphatases 1 and 2A.  

This inhibition, at high doses, leads to hyperphosphorylation of the cytoskeletal 

proteins and final rupture of the ultrastructure of the liver. The liver swells to double its 

volume due to a large hemorrhage intrahepatic lobular center, preceded by swelling of 

hepatocytes and the rupture of the liver sinusoids. At lower doses there is induction of 

cell proliferation and hypertrophy of the liver.  

 Certain chemicals have been used experimentally in laboratory animals to prevent 

hepatotoxicity of MC. These include cyclosporine A, rifampin and silymarin. Their 

effectiveness is greatest when given before or simultaneously with toxin (4). The 

intestines and kidneys are other organs that can accumulate significant amounts of the 

toxin.  
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Some Japanese authors (5) have determined the toxicity of 21 variants of MC and 

NOD on the basis of their ability to inhibit the phosphatase 2A (IC 50: Concentration 

Inibitory = 50%). 

 The results indicate that the MC-LR is the most potent inhibitor of phosphatase 2A. 

 On the basis of these inhibition values the authors have calculated a conversion factor 

to calculate the concentrations of MC and NOD as equivalents of MC-LR, as reported 

in Table 1, using the following formula:  

Conversion factor = IC 50 MC-LR/IC50 MC considered.  

 Some published studies suggest that MC could act as tumor promoters, agents that do 

not cause cancer, but they stimulate the proliferation of cancer cells. In June 2006, the 

IARC (International Agency for Research on Cancer) has assembled a group of experts 

to assess the toxicity of MC-LR and NOD (6, 7). The committee concluded that there 

was adequate evidence in experimental animals for the carcinogenicity of MC-LR. 

 

 

 

Table 1.4: Conversion factors and IC50 values for 21 variants of microcystins and nodularin  
(Rapporto Istisan11/35 Pt.1) 

Toxin  IC50 (nM) Conversion factor  

MC-LR 0,032±0,004 1,000 

MC-RR 0,056±0,002 0,571 

MC-FR 0,069±0,003 0,464 

MC-LF 0,096±0,0019 0,333 

[D-Asp
3
]MC-HtyR 0,098±0,006 0.327 

[D-Asp
3
, (Z)-Dhb

7
]MC-HtyR  0,110±0,008 0,291  

MC-LW 0,114±0,003 0,291 

[D-Asp
3
, (E)-Dhb

7
]MC-HtyR 0,122±0,005 0,262 

MC-YR 0,125±0,005 0,256 

MC-LA 0,161±0,002 0,199 

[D-Asp
3
, (Z)-Dhb

7
]MC-LR  0,164±0,010 0,195  

[Dha7]MC-LR 0,167±0,003 0,192  

MC-WR 0,179±0,011 0,179 

[D-Asp
3
, (E)-Dhb

7
]MC-LR 0,201±0,003 0,159 

[D-Asp
3
, Dha

7
]MC-RR 0,220±0,012 0,145 

[D-Asp
3
, Dha

7
]MC-LR 0,254±0,004 0,126 

[Dha
7
]MC-RR 0,293±0,012 0,109 

[D-Asp
3
]MC-RR 0,300±0,009 0,107 

[Dha
7
]MC-YR 0,379±0,003 0,084 

NOD 0,540±0,063 0,059 

[6-(Z)-ADDA
5
]MC-RR 0,126±0,314 0,003 
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Pharmacokinetics 

The liver appears to be the main target organ both as regards the accumulation that the 

excretion of the MC. In tissue distribution studies on laboratory animals following 

intravenous and intraperitoneal administration of MC-LR, 50-70% was recovered in the 

liver, another 7-10% in the intestine and the remaining amount distributed throughout 

the body. It is likely that the transport can also occur in the kidney, since this organ also 

has a transport system of bile, similar to that of the intestinal cells of the rats. The MC 

are resistant to enzymatic hydrolysis and thus the degradation in tissues (8), and their 

excretion in the bile occurs as toxins as such or as a result of their conjugation (9). The 

liver has a crucial role on the detoxification of these toxins (10). The detoxification 

products were detected in the urine and feces. Have identified three metabolic products 

derived from conjugation reactions respectively with glutathione, with cysteine and with 

the diene ADDA oxidized (11). Following studies in mice has resulted in a 

biexponential plasma elimination of MC-LR, with half-lives of 0.8 and 6.9 minutes 

(12). The MC-LR is excreted rapidly, 75% of the total excretion occurs within 12 hours. 

The remaining 24% is excreted after 6 days, of which 9% in the urine and 15% more 

slowly with the feces (13). 

Human Exposure 
 

Humans can be exposed to toxins orally or through the consumption of water through 

the intake of supplements based on algae or dermal through contact with contaminated 

water from lakes and rivers during sports activities (4).
 
A minor source of exposure is 

inhalation through the showers and during water sports (inhalation of spray and 

droplets) (2).  

Short-term effects 
 

Several incidents of acute poisoning by consumption of contaminated water from 

MC with implications for human health from gastroenteritis to death are reported in 

literature (14). The consumption of fish living in water presenting blooms of 

cyanobacteria, especially of its liver, can cause the Haff syndrome, vomit, production of 

dark brown urine, muscle pain, death from respiratory failure (4). Humans can also be 
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exposed through the consumption of food supplements based on algae, potentially 

hazardous if they contain some toxic species of cyanobacteria. Many of these products 

contain Aphanizomenon flos-aquae, blue green algae which coexists with Mycrocistis 

aeruginosa, which can thus enter into the composition of these products for human 

use. The Departments of Health and Agriculture in Oregon (USA) have established a 

legal limit of 1 µg/g for the presence of MC in the products based on blue-green algae 

and the obligation of tests to detect the presence of algal toxins (15). Dermal exposure, 

however, may take place during the course of recreational activities, or during the use of 

showers fed with water contaminated. 

This exposure can cause production of blisters on the lips and allergic reactions such 

as contact dermatitis, asthma, hay fever and conjunctivitis (4).  

Long-term effects 
 

Health effects resulting from chronic exposure to low doses of MC are not known 

(1). In China, studies in order to determine the importance of the MC as a risk factor in 

the development of hepatocellular carcinoma in humans have been conducted. The 

incidence of this disease in China is very high, with a variable geographic distribution. 

The cyanobacteria blooms, for example, are very abundant in the surface waters in the 

south-east China, where the incidence of this tumor is the highest in the country (10).  

NOAEL and TDI estimation 
 

In 1998, the World Health Organization has drawn up a provisional guideline value 

for the presence of the only MC-LR in water intended for human consumption (16). In 

the conclusions of WHO guidelines on drinking water was highlighted that guideline 

values for other MCs could not be fixed. This impossibility is still valid. The limit for 

the MC-LR in waters for human consumption derived from a NOAEL (No Observed 

Adverse Effect Level), for liver damage, of 40 µg/kg of body weight obtained from 13 

weeks long study in mice treated with water watering containing MC-LR. Considering 

this value has been derived a TDI (Tolerable Daily Intake) of 0.04 µg/kg body weight/ 

day, using a safety factor of 1000 (100 for the differences between species and intra-

species and 10 for the low level of available data). From TDI has been obtained a 
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guidance value (Guidance Value, GV) of μg/L for the concentration of MC-LR, having 

considered that the intake through drinking water represents 80% of the total 

intake (Allocation Facto, AF 0.80) and a consumption of 2 L of water / day for a 

person weighing 60 kg (10).This value is supported by a 44 days long study on pigs 

watered with water containing an extract of M. aeruginosa producing MC-LR. 

If other MCs are present, the use of the Toxicity Equivalent Factor (TEF) may be 

necessary; this factor express the toxicity of the mixture containing different MCs in 

MC-LR equivalents. Wolf and Frank (17) have calculated the values of TEFS for other 

MCs on the basis of the value of LD 50 (Lethal Dose 50%) from acute toxicity studies in 

mice intaperitoneal. The bibliography toxin can be considered the MC-LR, so that its 

TEF is = 1. The TEF individual of a toxin X can be calculated from the ratio between 

the value of LD 50 of MC-LR toxin and X, according to the equation: 

TEF X = LD 50 MC-LR / LD 50 (X) 

the same value of MC-LR was adopted for the MC-LA,-YR and-YM, for the MC (D-

ASP
3
 (E)-Dhb

7
)-RR and RR values were 0.2 and 0.1 respectively. 

 

1.3.2. Nodularins 

Chemical structures and properties 
 

The nodularins (NODs) (Figure 1.4) are monocyclic pentapeptide with a structure 

similar to the MC, containing the amino acid ADDA (18): to date few congeners are 

known, identified for the variability of the only L-amino acid present at position 2, in 

addition to small structural changes such as demetilation. The various congeners may 

have very different toxicity; a no-toxic variant contains the 6Z-stereoisomer of Adda has 

been also identified. In the sponge of marine origin Thenella swinhoei was found an 

analogue of NOD called motuporina, which has in place of the hydrophobic L-valine 

instead the polar L-arginine. The motuporina could be of cyanobacterial origin since the 

sponge that produces welcomes cyanobacterial symbionts. The NOD is only produced 

by Nodularia spumigena, cyanobacterium living in brackish waters. Saito et al. (19) 
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have isolated and identified a new NOD, called NOD-Har, which presents the 

homoarginine instead of arginine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Chemical structure of nodularin 

Toxicity 

The toxicity mechanism of the NOD is very similar to that of MC; they are potent 

hepatotoxic. The toxins enter immediately into the bloodstream through the ilium 

transported by bile acid transporters that convey toxins through the mucosa. 

Subsequently, the toxins are transported preferentially in hepatocytes via the bile and 

finally toxins induce changes in actin microfilaments, in the elements of the 

cytoskeleton of the cells with the result of a dense aggregation of microfilaments in the 

vicinity of the center of the cell. The loss of the cellular support cause cell swelling and 

rupture of the cells endothelial sinusoids. In some cases, the destruction of the 

parenchymal cells of the liver sinusoids and can cause lethal intrahepatic hemorrhage in 

a matter of a few hours or liver failure within a few days (15). The hepatotoxic and 

carcinogenic activity, as in the case of MC, is associated with inhibition of phosphatase 

1 and 2 (20, 21). The NOD induces bleeding liver in mice, with an LD 50 of 50 µg/kg 

(intraperitoneal). At lower doses may act as a tumor promoter by favoring the division 

of liver cells (22). 
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Effects on humans 
 

There are no data on the toxic effects on humans of N. spumigena (3). In 1991 in the 

Alexandrina Lake (Australia), some people showed eczema skin after contact with 

water containing toxins mainly from Microcystis and Nodularia (23). 

NOAEL and TDI estimation 
 

It was developed a NOAEL for NOD due to lack of suitable toxicological data. Since 

the mechanism of toxicity of MC-LR and NOD is very similar, the guide value for the 

MC-LR may also be used for the NOD. 

1.3.3. Cylindrospermopsins 

Chemical structures and properties  

The cylindrospermopsin (CYN) belongs to the class of guanidine alkaloids.The 

molecule consists of a guanidico tricyclic group combined with hydroxymethyl-uracil 

(Figure 1.5). It is consider as a cytotoxin, since it produces both cytotoxic nephrotoxic 

effects nephrotoxic, although other organs (thymus and lung) may be damaged by 

exposure to the toxin (1, 2) is also considered a potential carcinogen (24). The orally 

administered can cause gastroenteritis due to injury to the walls of the intestine, 

hepatitis to liver cell damage, dysfunction in the functioning of kidneys for renal cell 

damage and hemorrhage to damage to the blood vessels. 

Eight species of cyanobacteria producers of CYN have been identified: 

Cylindrospermopsis raciborskii, Aphanizomenon ovalisporum and Aphanizomenon flos-

aquae, Umezakia natans, Rhaphidiopsis curved and Anabaena bergii, Anabaena 

lapponica, and Lygnbya wollei (25). 

Among these Cylindrospermopsis raciborskii is the species that is the major problem 

on a global scale (26). The CYN is highly hydrophilic, and its intestinal absorption 

requires active transport systems as well as entry into hepatocytes, using as the bile 

transport system. Since the small size of the molecule, a passive diffusion can occur, 

even if limited, through the cell membrane, as shown by in vitro studies demonstrate 
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that the cytotoxic effects on a cell line without the presence of bile as the transport 

system (27). 

 

 

 

 

 

 

Figure 1.5. Chemical structure of cylindrospermopsin 

Toxicity 

At low doses the CYN suppresses the glutathione-conjugated protein synthesis, 

probably by inhibiting ribosomal translation by binding to a protein associated with 

eukaryotic translation system, but at higher concentrations dominates the process as 

quickly as toxic, metabolism-dependent (28, 29) and its acute toxicity appears to be 

mediated by cytochrome P 450 metabolites - generated (30). It has an acute and 

progressive delayed. The acute hepatic injury is located in the center lobular areas with 

vacuolization of hepatocytes and increased pigmentation of the nuclei and the 

cytoplasm. The main actions toxic to the kidney occur with necrosis and increased cross 

section of the proximal tubules and alteration of the glomeruli. The CYN could also act 

as endocrine disruptor as a study showed that the toxin might alter the relation 

progesterone/estrogen in women (31). 

 Studies on laboratory animals are in favor of a possible genotoxic (32) and 

carcinogenic effects (33). 

Pharmacokinetics 
 

Studies in mice treated intraperitoneally with 0.2 mg / kg of 
14

C CYN have shown 

that most of the radioactivity was excreted in the first 12 hours (70.9%), mainly in the 

urine (59.6% in animals that showed toxic effects and 70.5% in animals without toxic 



 

31 

 

effects). The accumulation occurred mainly in the liver with a peak of 20.6% after 6 

hours, and to a lesser extent in the kidneys (34). 

Effects on humans 
 

The oral exposure with contaminated water can cause gastrointestinal disturbances 

such as bloody diarrhea, severe dehydration with loss of protein, electrolytes, glucose 

and ketones in the urine. All cases of people exposed to CYN needed of hospitalization, 

where they received intensive treatment with intravenous therapy. 

NOAEL and TDI estimation 
 

Two studies have been used for the calculation of a NOAEL / TDI. The first 90-day 

long study in mice given water with contaminated water produced a NOAEL of 150 

µg/kg body weight, and based on this value has been calculated a TDI of 0.3 g / kg bw / 

day using a safety factor 500 (10 for intraspecies variability, 10 for that interspecies and 

5 for the duration of exposure less than the duration of the life of the animal). TDI was 

obtained from a GV of 9 g / L having considered that the intake through drinking water 

represents 100% of the total intake and consumption of 2 L of water / day for a person 

weighing 60 kg (33). 

The second study was conducted on mice treated by gavage for 11 weeks, with a 

NOAEL of 30 µg/kg body weight and a TDI of 0.06 g / kg bw/day using a safety factor 

of 500 (10 for the intraspecies variability, 10 for that interspecies and 5 for the duration 

of exposure less than the duration of the life of the animal). TDI was obtained from a 

GV of 1.8 g / L having considered that the intake through drinking water represents 

100% of the total intake and consumption of 2 L of water / day for a 60 kg person 

weight (35). Some authors recommend an additional safety factor of 10 for potential 

genotoxic effects. 
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 1.3.4. Anatoxins 

Chemical structure and properties 

The anatoxin-a (ANA-a) and the in-homoanatoxin are low molecular weight 

alkaloids characterized by neurotoxic action. In particular, the ANA-a is a bicyclic 

amine alkaloid with a molecular weight of 165 Da, a secondary amine 2-acetyl-9-

azabicyclo (4-2-1) non-2-ene) (36). It is produced by Anabaena flos-aquae, Anabaena 

spp. (Flos-aquae-lemmermannii group), planktonica Anabaena, Oscillatoria, and 

Aphanizomenon Cylindrospermum, is synthesized in the cell from the amino acid 

ornithine via putrescine with the participation of the enzyme ornithine decarboxylase. 

The ANA-in is not susceptible to enzymatic hydrolysis by cholinesterase since it is not 

an ester. The homoanatoxin-a (179 Da) is an analogue of the ANA-in and is isolated 

from a strain of Oscillatoria formosa (Phormidium formosum). It has a propionyl group 

in position C-2 instead of the acetyl group present in ANA-a (1, 23).
.
The ANA-a (s) has 

a different chemical structure being a phosphoric ester of N-hydroxy guanidine. 

Toxicity 

 

Mechanism of action 

 
The ANA-a is a potent pre- and postsynaptic depolarizing agent. It binds to 

acetylcholine receptors in the central nervous system and peripheral neuromuscular 

junctions, causing block the transmission of nerve impulses following by death from 

muscle paralysis and asphyxiation. The acute effects seem to be the main risk to human 

health. The ANA-a (s) inhibits the acetylcholinesterase activity only in the peripheral 

nervous system.The blockades of hydrolysis causes acetylcholine accumulate resulting 

in nerve hyperexcitability. The type of action is similar to that of many 

organophosphates, commonly used as pesticides (2, 3, 37).  
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Effects on humans 
There are no data available on humans, although a recent episode of accidental death 

of a boy occurred in the United States has been attributed to the ingestion of 

contaminated water with ANA-a during recreational activities. 

NOAEL and TDI estimation 
There are insufficient data to obtain a NOAEL or LOAEL and calculate a TDI. 

1.3.5. Aplysiatoxin, Debromoaplysiatoxin and Lingbiatoxin  

The lingbiatoxin-a, found in a strain of Lyngbya majuscola present in surface water, 

has been linked to the onset of dermatitis and severe oral and gastrointestinal 

inflammation in humans. It can also act as a promoter of skin tumors (39). 

The characteristic symptoms resulting from poisoning by aplysiatoxin and 

debromoaplysiatoxin consist of intestinal disorders and severe irritation of the mouth 

and throat (39)
 
. 
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1.4. Available methods for the analysis of cyanotoxins 

1.4.1. Sampling for the detection of algal toxins 

Cyanotoxins in a water body are mainly contained within the toxin-producer-cells 

(intracellular toxins), although high concentrations of toxins can be released into the 

water primarily as a result of senescence and cell lysis (extracellular toxins or free). 

The risk associated with the presence of cyanotoxins in freshwater and drinking 

water can be significantly reduced by removal or filtration of algal biomass in the water 

(1). However, treatments used for the removal of the cells as well oxidation processes 

for water treatment, responsible for cell lysis, may increase the release of extracellular 

toxins within the water body. 

The choice of the determination of total, intracellular or extracellular toxin 

concentration is primarily relate to the specific needs of the risk assessment, for 

exposure assessment or the efficiency of water treatments. In adopting precautionary 

principles for the protection of human health, especially during an intense algal bloom, 

it is advisable to determine the total concentration of toxins that may be present both in 

freshwater and drinking water. 

For screening and / or confirmatory analyses, storage of samples must be carried out 

in line with the requirements for determining the total (intracellular + extracellular) and 

/ or free (extracellular) toxin concentration. 

As containers for water sampling are indicated polyethylene or glass dark bottles 

washed with ultrapure water without traces of the analytes (1). The samples must be 

stored in the dark and at temperatures in the range 1-10 °C to prevent degradation of the 

analytes due to the action of light and microbiological agents. In these conditions, 

storage is limited to 24h as maximum time; on the other hand freezing of the samples 

will be necessary for longer periods of storage.  
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 Analysis of the total level of toxins 

Store samples in polyethylene or glass bottles and proceed at least one cycle of 

freezing-thawing to promote cell lysis. In case of necessity of filtration use 

filters black band. 

 

 Content analysis of extracellular toxins 

Store samples in polyethylene or glass bottles in the dark and at temperatures 

in the range 1-10 °C for 24h as maximum time. In case of necessity of 

filtration, the porosity of the filters must not be above 0.45 mM in order to 

retain the algal cells. 

1.4.2. Methods of screening 

In risk management, it is useful to have screening methods for early detection both of 

the presence of cyanotoxins and the type of the class produced. The screening methods 

are biological methods, immunological and biochemical qualitative and / or semi-

quantitative those do not require external analytical standards. Screening methods must 

ensure adequate sensitivity to the level of toxicological interest, simplicity of execution 

and the possibility to quickly and inexpensively analyze a large number of samples. 

Generally they are able to identify the class of toxins, but not specifically the single 

compound. 

The same considerations previously described for risk assessment associated with the 

total content or extracellular toxins are valuable for screening methods. Water sample 

must be stored and pretreated in agreement with the requirements reported for the 

analysis of total toxins or free. 

In Italian guideline for cyanobacteria in water for human consumption, the authors 

reported a selection of screening methods (1). 

Biological assays in vivo 

The mouse assay (Mouse BioAssay, MBA) has been in the past the in vivo test most 

commonly used to determine the toxicity of samples containing cyanotoxins. 
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The MBA is an economic test and it can provide information on the overall toxicity 

of the sample within a few hours, including the toxicological class to which the toxin 

belongs to epatotoxin and neurotoxin (2, 3). The MBA disadvantages are the lack of 

sensitivity and selectivity, and last but not least, ethical issues related to the use of 

laboratory animals. In recent years other methods have been developed based on the use 

of shellfish, traditionally used in ecotoxicological assays, such as Daphnia spp., Moina 

spp. And Thamnocephalus platyurus between those freshwater (4-6) and Artemia salina 

among those marine.These assays have a fast response (24 hours) and are easy to 

perform; however they have the same limitations of the MBA and are also not able to 

discriminate between the classes of toxins, because the toxicity is expressed only in 

terms of EC50. 

 

Immunological methods 
 

The enzyme immunoassay ELISA method (Enzyme Linked Immunosorbent Assay) 

allows cyanotoxins determination in freshwater and drinking water, including spring 

waters, swimming pool water and those used for the production of water for dialysis, 

according the definitions listed in the regulations. On the market are available ELISA 

kit for the analysis of microcystins (MCs) and cylindrospermopsin (CYN). 

For MCs kits are available that can determine concentrations ranging from 0.1 to 5.0 

g/L of MC-LR, while for CYN the concentration range is from 0.04 to 2.0 µg/L. 

Higher concentrations of analytes can be measured after dilution of the sample; many 

analytical protocols have been validated on the analysis of real water sample. The 

reliability and sensitivity of an ELISA essentially depend on the type of antibody used 

and its ability to bind to target compounds. The choice of the most suitable ELISA test 

is dependent on the need to determine a specific compound (monoclonal antibodies) or 

to be effective as screening for a class of substances (polyclonal antibodies). 

The most widespread polyclonal test for MCs determination employs specific 

antibodies able to recognize and bind to the Adda, the amino acid representative of the 

class of MC and nodularins (NOD) and is therefore not able to discriminate between the 

different congeners. The results are expressed as equivalents of MC-LR, and the total 
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amount of MC in the sample is determined by interpolation on the calibration curve. 

The qualitative and quantitative analysis is based on a colorimetric reaction between a 

reagent and peroxidase bound to MC-LR. These tests meet all the ADDA-containing 

analytes, including possible degradation or conjugation compounds. For this reason, 

together with the impossibility of knowing the specific reactivity of the different MC-

LR congeners, these tests are considered semi-quantitative and not useful for a risk 

assessment of the toxicological potential of the different MC variants. 

Similar considerations can be made on the polyclonal ELISA for CYN, for which it 

has also been found an overestimation of one order of magnitude compared to chemical 

methods (7, 8) in the presence of Aphanizomenon sp. In this case, cross-reaction with 

isomers or congeners of CYN was assumed. 

The tests for MC using monoclonal antibodies are based on the indirect competition 

between a protein complex of the MC (eg. a conjugate with bovine serum albumin - 

Bovine Serum Albumin: MC-LR-BSA) that functions as an antigen, and that contained 

in the sample. 

Both types of ELISA are based on spectrophotometric detection, then the test 

sample, must be free of any endogenous compound or reagent capable of interfering 

with the colorimetric response. 

In the most popular ELISA kit adopted for MC determination to levels close to their 

detection limits, false positive in varying degrees 6-17% was estimated (9). 

Recently, methods of analysis based on the realization of synthetic receptors capable 

of reacting with the MC-LR were described. These Molecularly Imprinted Polymers 

(MIPs) are very sensitive (detection limit of 0.1 µg/L) but show little reactivity towards 

other MC congeners (10). These methods have also been used as materials for 

extraction. 

Biochemical methods 
 

MCs and NOD are potent natural inhibitors of protein phosphatases (serine / 

threonine) PP1 and PP2A (11). Inhibition test enzymatic activity are available with a 

good sensitivity for the determination of cyanotoxins; thus, it’s possible to use both the 



 

41 

 

PP1 is the PP2A, with different performance in terms of sensitivity (12, 13) but still 

adequate to WHO limits without the need for pre-treatment of the sample. 

The quantification of the inhibition can be made with different spectrophotometric 

(range of response from 0.1 to 2.5 µg/L) or radiometric techniques (14). This latter are 

more sensitive than spectrophotometric techniques. 

Biochemical methods are not selective enzyme inhibition against several congeners 

of MC, as the immunological tests; however, the response is proportional to the total 

toxicity of the sample and can then be used to assess the potential toxicological risk 

associated with these compounds. 

1.4.3. Confirmatory methods for the determination of 
cyanotoxins 

 

Confirmatory methods are based on the determination of physico-chemical properties 

such as molecular weight, presence of chromophores or functional groups able to give 

specific reactions. The physico-chemical methods of confirmation, if sufficiently 

selective, may allow the simultaneous analysis of MCs, CYN and anatoxin-a (ANA-a) 

and compounds of degradation and/or structurally similar, such as the homo-anatoxin, 

the dihydro- and epoxy- anatoxin (15) and deoxy-cylindrospermopsin. 

For an accurate analysis of cyanotoxins in freshwater and drinking water and for a 

proper management of water treatments, it is advisable to estimate both the amount of 

intracellular toxins and the dissolved fraction in the water. 

If instrumentation with high sensitivity and selectivity is available, the direct 

injection of the sample in the detection system are preferred because they minimize the 

possibility of alteration of the sample and error propagation (16, 17). However, in these 

cases, it is necessary to take into account the influence of the aqueous sample may have 

on the accuracy and reliability of the method, with particular bibliography to "matrix 

effects", reproducibility and robustness of the method. 

In the analyses of cyanotoxins with chemical methods, however, the pretreatment, 

the extraction and pre-concentration of the sample are often necessary to achieve both 

adequate sensitivity and to perform a simultaneous purification from organic and 

inorganic compounds present in the water. 
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It is advisable to make use of analytical protocols involving the use of a process 

standard or internal standard, in order to ensure the reliability of the analysis and 

compensate for any errors in the preparation step of the sample. The standard process 

should be virtually absent in the sample to be analyzed and structurally similar to the 

analytes to be determined. It is recommend, when available, the use of isotopes or 

compounds similar. For the analysis of MCs, the NOD can be used as a standard 

process, after confirmation of its absence in the samples to be analyzed. 

The commercial availability of certified analytical standards remains a weak link in 

the chemical determination of cyanotoxins. Currently, there are standards of 12 different 

MCs of about 80 known congeners, 8 of saxitoxin, 2 of cyanopeptolins (CYP), 2 of 

anabaenopeptins, 5 of microginins, 2 of anatoxin and 2 of CYN. 

Sample preparation for cyanotoxins determination 

Storage and pre-treatment 
 

The water sample must be stored according to the analytical method adopted for the 

determination of extracellular or total toxin concentration. 

In the case of water samples subjected to purification process, the residual oxidant 

compound, typically free chlorine, can alter the result of the analysis. The removal of 

the residual chlorine can be obtained by treatment with a solution of sodium thiosulfate. 

If the analytical method involves the use of a standard process, this must be added 

after the treatment with the antioxidant. 

Often the procedures provide that the pH of the water sample is modified depending 

on the type of interactions between these analytes and the stationary phase used in the 

preparation of the sample. 

If a filtration step is required, different types of filters must be used for the 

determination of the concentration of extracellular or total cyanotoxins. In the first case, 

filters of porosity of not more than 0.45 m should be used for retaining the algal cells. 

In the case of the analysis of the total content, if necessary, the sample can be filtered 

with a black band filters. 
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Extraction and purification 
 

The most common techniques of extraction and pre-concentration are based on solid 

phase extraction (Solid Phase Extraction, SPE), through the use of a cartridge filled 

with several stationary phases (18). The most used materials are C-18 (19), polymeric 

materials in a divinylbenzene-polystyrene, also functionalized with polar groups (HLB) 

(20, 21) and Graphitized Carbon Black (GCB) (20,22). It was also proposed the 

simultaneous extraction of MCs and ANA-a by using ion pair chromatography (23). 

Cartridge with immunosorbent anti-MC-LR (24) and from MIP (25) have also been 

used. 

In contrast, for the extraction of polar compounds such as ANA and CYN-in, 

including similar compounds (eg. homo-anatoxin) and degradation products, polar 

stationary phases, such as ion exchangers have been used (26, 27). A faster alternative 

to the cartridges for SPE provides the use of discs for extraction consisting of similar 

stationary phases; moreover, these procedures have been effectively used for the 

extraction of contemporary MCs and ANA-a (28). 

By adopting this technique, the pretreated and the filtered sample are transferred 

directly onto the cartridge. The volume of the sample depends on the limits of detection 

to be achieved and the detection system used. In general, the range of volumes is 

between 0.1 L and 1 L. 

Analytes are extracted from the cartridge generally after a washing step to remove 

potentially interfering compounds in the matrix. The most common organic phases used 

for the extraction of MCs are constituted by methanol, acetonitrile, dichloromethane-

methanol solutions spiked with different acid or basic modifiers (20, 29). 

For the re-elution of CYN and ANA-a, the solvent most frequently used is water, 

generally acidified, in conjunction with mixtures of water/methanol (30, 31).  

For aqueous matrices, extraction by SPE is generally adopted as effective steps of 

purification. However, the possible presence of endogenous compounds is capable of 

interfering with the final determination. In the case of detectors with a low selectivity, it 

is necessary a second passage on SPE cartridges that should be made of different 
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materials than those used in the extraction step. In general, the scheme applicable to the 

analysis of MCs, involves the use of hydrophobic materials during extraction step and 

hydrophilic materials for purification step, such as silica. 

The extracted solution from the SPE cartridge is usually subjected to further 

concentration by evaporation in water baths at temperature  50 °C. The residue is 

reconstituted, filtered in the case where the turbidity makes it necessary, and an aliquot 

is injected into the detection system. 

In literature are available methods for the analysis of the intracellular, extracellular or 

total (sum of intracellular and extracellular) toxin level. The methods available for the 

determination of the content of extracellular cyanotoxins generally involve the filtration 

of the sample with filters not greater than 0.45 μm. The analysis of the intracellular 

content should be carried out by extracting the target compounds from the residue of the 

filtration step. These procedures, however, are generally less reliable with a low 

reproducibility. Alternatively, it is possible to determine the total content of toxins and, 

for difference, the intracellular toxins level after cell lysis obtained by means of 

sonication and/or cycles of freeze-thawing. This is preferable to the first approach 

because the performance of the methods for the determination of extracellular and total 

content of toxins are comparable, as it is possible to use the same protocol analysis 

except for the pretreatment step of the sample. 

 
 
Detection systems 
 

High performance liquid chromatography (HPLC) - coupled to spectrophotometric, 

amperometric or mass spectrometric detectors - is the system of choice for the chemical 

determination of cyanotoxins. Methods of analysis based on Ultra Performance Liquid 

Chromatography (UPLC) have recently been developed; this technique reduces 

significantly the time of determination by increasing the resolution and the number of 

theoretical plates (22, 32). Analytical standards of individual toxins are required for the 

qualitative and quantitative analysis, based on a comparison with the retention times and 

detector signals.  
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The use of C-18 as stationary phase and water, methanol and acetonitrile as mobile 

phases are generally adopted as chromatographic conditions. For the separation of 

cyanotoxins hydrophilic, as ANA-a, it is also possible to use polar columns (33), type 

HILIC (Hydrophilic Interaction Liquid Chromatography). Acidic agents are commonly 

used to facilitate the chromatographic separation and the increase in the signal when 

using the mass spectrometer as a detector in positive ionization mode. In this case can 

be used formic acid in concentration ranging from 1 to 20 mM (14, 15, 34, 35), while 

for the UV detection is preferred to use trifluoroacetic acid (TFA) (36) because it 

ensures a background noise lowest in the region of wavelengths typical of MCs (220-

240 nm), ANA-a (227 nm) and CYN (260 nm). 

UV detection has found many applications even if it is necessary the availability of a 

photodiode array detector (DAD) to ensure the necessary selectivity (17, 18,24, 31, 37), 

especially for the identification of individual variants of MCs (17, 24, 31). The use of 

fluorescence detection (FLD) with a process of derivatization (30) allows achieving 

high sensitivity and selectivity, with detection limits of the order of ng/L. 

However, for an unambiguous identification of the individual variants of 

cyanotoxins, it is necessary the use of mass spectrometry (MS). Three-dimensional and 

linear ion traps (LIT), single spectrometers and especially triple quadrupole (LC-

MS/MS) (17, 19, 20, 38-40), are the most suitable detectors for reliable, sensitive and 

specific analysis of cyanotoxins. Thus, the high selectivity ensures a very low 

probability of the presence of signals due to interfering compounds; however in some 

cases it is still necessary to pay attention to chromatographic and mass- spectrometric 

problem, as in the case of possible erroneous identification of ANA-a in place of amino 

acid phenylalanine (19, 25, 41). 

Useful information about the presence of MCs can be obtained from the presence of 

a fragment ion at m/z 135, characteristic of the MCs and arising from the break of the 

amino acid fragment ADDA. The presence of multiple basic sites may give rise to 

multi-charged molecular ions, as in the case of the MC-RR group, which contains two 

arginine residues. It is therefore important to consider as scan range, even during the 

optimization phase of the instrumental conditions, both the single charged ions, 
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corresponding to molecular weights, and the double charged ions, with m/z in the range 

400-700 (20, 21). 

Recently, the high-resolution mass spectrometer, using as detectors the time of flight- 

quadrupole (Q-TOF ) (31), Matrix Assisted Laser Desorption Ionization - ToF (MALDI 

- ToF ) (42, 43) or Orbitrap ™ (44, 45) has provided much useful information on the 

identification of new variants of MCs and / or degradation products. The qualitative 

analysis is very fast because the detector is so specific that it is often possible to 

eliminate the sample preparation step and can then be used as a screening for the 

presence of advanced cyanotoxins. For quantitative analysis, however, it is necessary 

the availability of analytical standards. 
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1.5 International strategies for controlling 
cyanobacteria-related risks: Water Safety Plan 
(WSP) and Alert Level Framework (ALF) 

1.5.1. WSP for risk assessment and management in the drinking water 
supply chain 
 

During the last years, the criteria and strategies of quality control systems related to 

water for human consumption, until now characterized by a surveillance over more or 

less defined segments of the catchment  treatments  distribution  users cycle 

and/or by a random monitoring on distributed waters, have been substantially redefined. 

The development of risk analysis knowledge has, indeed, definitely moved the interest 

towards the creation of a global risk management system involving the entire water 

supply chain, from catchment to the final user point.  

This is the approach included in the WSPs recently introduced by the WHO during the 

review of the guidelines concerning the drinking water quality (1) and strengthened in 

the following editions until the most recent of 2011 (2). This approach has been 

implemented at regulatory level in several Countries of the European area and it has 

been proposed for a possible introduction in the review of Directive 98/83/EC 

concerning the quality of water for human consumption. 

The WSPs model, extremely straightforward in its general aspects, is aimed to 

drastically reduce waters contamination chances at the catchment, to diminish or 

eliminate chemical and microbiological risk factors through properly designed water 

treatments, carried out and controlled and, eventually, to prevent possible 

recontaminations during water storage stage and distribution to the final user point. 

The strategy presents a high flexibility and it can be applied to any production and 

distribution system regardless of its nature, legal form, policy, size and complexity. 

The principles contained in the WSPs, and synthetically reported in Table 1.5, can be 

considered as a reassessment and reorganization of several criteria and management 

procedures that, until now, have led to the production and distribution of waters with an 

adequate quality for human consumption, especially when based on quality assurance 
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systems equivalent to ISO 9001:2001; among them, it is found the multi barrier control 

system based on an integrated process to prevent microbiological contamination of 

water. At the same time, there have appeared crucial elements of risk analysis and 

management borrowed from other productive sectors and, mainly, from the HACCP 

system (Hazard Analysis and Critical Control Points), compulsory for the food industry 

and standardized at regulatory level (3). 

Table 1.5: Synthetic representation of WSPs principles 

Plan stage  Purpose  

Creation of a multidisciplinary 
team with identification of 
roles and responsibilities  

 To establish the risks related to each single component/stage of 
the water system.  

 To evaluate the system effectiveness in granting appropriate 
hygiene and sanitary quality standards.  

Water system description   To represent the system and all its components/stages in detail 
(flow chart): catchment area, catchment, treatments, storage 
and distribution network, internal distribution systems.  

 To identify users segments and uses of distributed waters.  

Risks analysis and 
identification of risk priorities  

 To identify potential factors of biological, physical and chemical 
risk related to different elements of the system and the possible 
events that can cause a health risk for final users.  

 To establish a risk priority scale based on potential effects and 
likelihood of occurrence, as basis of each decision-making 
process.  

Definition and validation of 
adequate measures for 
monitoring risks  

 To identify and verify actions so as to monitor each significant 
risk, through physical barriers or appropriate activities to 
prevent, eliminate or reduce the likelihood of occurrence or 
mitigate consequences.  

Control and monitoring 
measures  

 To carry out, on a systematic basis, a series of process and 
products controls so as to ensure the effectiveness of the 
system  
in taking the risk under control: each control measure must be 
planned in terms of implementation procedures, safety limits and 
corrective actions to be taken in case of significant deviations 
from those limits.  

Plan testing   To evaluate the overall effectiveness of plan in granting water 
compliance - at user point – to hygiene and sanitary quality 
standards.  

Papers and review   To ensure and document, over time, plan functioning 
effectiveness, based on the results obtained or following to the 
occurrence of accidents or emergencies.  

 

A WSP should, due to its nature, be developed for each specific water system. 

Several difficulties in plan designing and implementation stage, can be especially 

observed in small size water supply systems (Small Water Supplies, SWS) which 

represent a significant part of the Italian aqueduct system and that also find a specific 

place in WSPs application manuals (2, 4). 
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1.5.1. WSP for cyanotoxins monitoring 

Cyanobacteria blooms can occur in undamaged natural environments and, more 

frequently, in water bodies affected by human interferences which directly or indirectly 

favour algal development. In many cases, this is encouraged by the introduction of 

nutrients with consequent eutrophication due to agricultural, livestock activities or 

wastewater, or, in other circumstances, by the change in river course due to the creation 

of reservoirs for water catchment which increase the retention time and the exposure of 

the water body to the sunlight (5). Even climate change plays its role in the expansion of 

algal bloom phenomena related to cyanobacteria. It not only influences temperatures but 

it can also entail drastic changes in the hydrodynamic regime of reservoirs, as in the 

case of shallows rapidly followed by flood flows freeing the nutrients tied up in the 

sediments (6-9). 

The massive development of toxic cyanobacteria frequently occurs in reservoirs 

previously not affected by proliferation phenomena; on the other hand the reoccurrence 

of blooming phenomena in already affected reservoirs, has to be considered as normal. 

In fact, in this last case, populations of cyanobacteria, once installed, persist in the 

aquatic environment and tend to proliferate in favourable environmental conditions 

(10). The likelihood to interrupt the occurrence of these phenomena, over time, is 

related to complex long term ecological recovery measures such as the monitoring of 

nutrients introduction, the limitation of sedimentation activity or sediments removal. 

The scope of these interventions, the discussion of which goes beyond the purpose of 

these guidelines, entails the involvement of many functions within the global 

management of internal water, environmental policy, and resources development and 

allocation strategies. 

Figure 1.6 represents a series of preventive interventions and monitoring measures 

that can be realized in the water body and in the drinking water supply chain so as to 

eliminate or reduce the possible occurrence of cyanotoxins in water for human 

consumption; the scheme gives the idea of how the measures have been divided – seen 

as multiple barrier control in the different stages of the chain –, of the nature of different 
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measures, also in terms of interventions space and time extension and, at the same time, 

of the need to merge the different actions in a sole integrated and global prevention and 

control strategy based on WSPs and WHO principles (1, 2, 11).  

The structuring of a cyanotoxins monitoring based on WSPs approach, whose main 

elements have been previously recalled, offers some crucial advantages that can be 

summarized as follows: 

 

– The preventive approach allows reducing the exposure related to possible 

overcoming of toxins levels in the distributed water that, in the event of 

monitoring of distributed water, could be backwardly noticed. 

 

– The preventive measures adopted for cyanotoxins risk are effective for water 

protection compared to several other risk factors, for example the monitoring of 

livestock waste prevent other problems related to the eutrophication as well as the 

spreading of oro-fecal transmission disease agents and protozoa (ex.: Giardia, 

Cryptosporidium). 

 

– Similarly, treatment measures adopted to mitigate risks due to cyanotoxins (ex.: 

activated charcoal filtration) contribute to the monitoring of other critical 

parameters such as disinfection by-products and trihalomethans which tend to 

gather due to the higher concentration of organic substance in the water caused by 

the algal mass. 
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Figure1.6: Preventive and control measures in the water body and in the supply chain hydro-
drinking to eliminate or reduce the risks of the presence of cyanotoxinsin the water distributed for 
human consumption (Rapporto Istisan 11/35 Pt.2) 

1.5.2. ALF approach for cyanotoxins monitoring 

From the healthcare point of view, the main consequence of the events related to 

cyanobacteria proliferations, is associated to drinking water use. The risk is determined 

by the possible presence in the water of toxic metabolites produced by phytoplanktonic 

organisms. Cyanotoxins, in fact, which are found in significant concentrations under 

intra-cellular and/or dissolved form, in water for human consumption, if not efficiently 

removed from the drinking water treatments chain, could persist reaching the final 

consumer and, if in concentrations exceeding the safety levels, could represent a risk 

factor for water consumption. 

From the surveillance point of view, cyanotoxins represent, in each regard, chemical 

risk factors. However, the systematic determination of these lasts in the water, contrary 

to what happen with other parameters which are normally subject to monitoring, is not 

regularly carried out. Cyanotoxins are not expressly included among the parameters to 

be monitored in compliance with Directive 98/83/EC and with its implementation at 
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national level, Legislative Decree 31/2001 and amendments. On the other hand, based 

on specific risk assessments, some Countries have judged useful to establish a 

cyanotoxins monitoring obligation within the regulation on drinking water quality (10).
  

In general terms, being the cyanobacteria proliferation generally confined to limited 

time intervals, the presence of toxins in potentially significant concentrations for human 

health persists just for short-term periods and, therefore, a periodical control during the 

entire year could be inappropriate from the point of view of resources allocation. To 

this, it can be added that within the blooming periods, cyanotoxins levels can 

significantly change in few days, with the consequent need of a close surveillance 

whereas a standard continuous control over the year should necessarily envisage 

prolonged time intervals between samplings and could not be able to identify health risk 

conditions. Toxins monitoring methods for confirmation purposes are, at present, not 

available for the overall territory and demand costly instrumental and human resources. 

According to this, there have been implemented several monitoring and risk 

management strategies based on an integrated surveillance of the water body and the 

drinking water chain, adjusted on existing risk levels within the raw waters and on 

treatment systems implemented. A consolidated approach at international level and on 

which the system suggested in these guidelines is based, is the monitoring-actions 

sequence called ALF and hereunder described. 

ALF systems  

The ALF approach establishes a multistage-type model, organized through a series of 

measures envisaging several water controls through differentiated risk management 

measures that are functional to the contamination risk level assessed on surface water 

(detection and alert levels) and through possible mitigation actions carried out within 

the water treatment chain. ALF general criteria are also used for reservoirs with an 

intended use other than human consumption, such as recreational or irrigation waters, 

according to a different risk assessment, that is functional to the specific water use. 

Consequently, in these kinds of contexts, the decision basis, the safety limitations 

adopted and the actions taken, can also be significantly different from those presented in 

this document.  
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Taking into account the water for human consumption, it is useful to have a look to 

the approaches appeared in the last two decades and gradually move to the risk 

management model recommended at national level by the guidelines. 

– Burch system 

The system suggested by Burch in 1993, uses, as elements for the implementation 

of differentiated measures, the number of cells detected in raw waters, and it 

defines three different alert levels (12): 

- Alert level 1: low cell levels: 500 – 2,000 cells/mL; 

- Alert level 2: moderate cell levels: 2,000 – 15,000 cells/mL; 

- Alert level 3: high, persistent cell levels, more than 15,000 cells/mL. 

In levels 1 and 2, waters are considered as appropriate for human consumption 

while, in the absence of specific risk mitigation measures, level 3 states the non-

suitability for human consumption. Different actions are suggested based on alert 

stages, both from the surveillance (species-specific identification of algal 

population, cyanotoxins analysis) and solution (changes in the intake work depth, 

water treatments) point of view, together with recommendations on the decision-

making process. 

– WHO system 

Some years later, the WHO (5)
 
reconsidered the ALF approach based on the 

assessment of cyanobacteria concentration detected in the source waters defining 

the three following stages: 

- Surveillance level: related to cyanobacteria detection which demands the 

enhancement of algal monitoring; 

- Alert level 1: activated for cyanobacteria concentrations greater than 2,000 

cells/mL (chlorophyll-a greater than 1 µg/mL), in which there is the possibility 

of cyanotoxins occurrence equivalent to the guide value (1,0 µg/L for MC-LR) 

and it is needed the activation of analytical measurement regarding cyanotoxins 

levels and the implementation of appropriate treatment measures for the 

removal of algal cells and toxins, followed by a report to the health authorities; 
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- Alert level 2: equivalent to concentrations greater than 100,000 cells/mL 

(chlorophyll-a greater than 50 µg/L) for toxic cyanobacteria, in correspondence 

of which, beyond monitoring enhancement and treatment systems 

enhancement/optimization, the emergency alternative water supply 

identification is carried out, followed by an adequate communication between 

health authorities and media. 

– CIMF system 

ALF principles have been integrated within more general management plans 

defined as Cyanobacterial Incident Management Framework (CIMF) (13) that 

envisages a more coordinated system based on regular monitoring, surveillance 

level and three levels of alert, where the passage from an alert stage to the next 

one is determined by the positivity of different indicators among which, beyond 

those aimed at the identification of algal cells and cyanotoxins, the bioassay is 

also suggested. 

– Australian system 

The Burch model (12) has been redefined and integrated in the Australian national 

protocol (14) for the monitoring of cyanobacteria and cyanotoxins in the surface 

waters establishing: 

- Detection level: concentration of cyanobacteria greater than 500 cells/mL; 

- Alert level 1: concentration of cyanobacteria greater than 2,000 cells/mL; 

- Alert level 2: concentration of cyanobacteria greater than 5,000 cells/mL; 

- Alert level 3: concentration of cyanobacteria greater than 50,000 cells/mL.  

This system also uses the cyanobacteria biovolume measurement as an alternative 

to algal counts and it takes into consideration the identification of cyanotoxins in 

the last stages of alert as a criterion of risk assessment for water consumption. 
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– Newcombe system 

A more recent evolution of the system based on WHO principles (15) and 

developed according to knowledge progress even in respect to toxins species-

specific production potential, has been suggested by Newcombe (16) and it 

identifies a detection level and three different levels of alert. The definition of the 

different levels and the actions associated to each level of alert are hereunder 

briefly described: 

- Detection level: concentrations of cyanobacteria roughly included in the range 

500 – 2,000 cells/mL.  

This is useful to identify an early stage of algal bloom. Whereas in the water 

management system there is not an operative and appropriate monitoring of 

cyanobacteria, it is recommended to implement it on a weekly basis, thus 

integrating the information with frequent visual inspections of the water body 

so as to detect the presence of foams or water stains. 

- Alert level 1: concentrations of cyanobacteria Microcystis aeruginosa in the 

range 2,000 – 6,500 cells/mL, in waters collected at the catchment. 

This is defined based on conservative criteria so as to ensure a time interval of 

4-6 days, before the population development reach levels presenting 

cyanotoxins concentrations equivalent to the guide value (alert level 2). At alert 

level 1, it is recommended to notify the situation to local health authorities and, 

if possible, to activate analytical determinations of cyanotoxins. Other decisions 

must be taken on a case by case basis according to the information available on 

species toxicity, the pre-existing scenario, with a particular attention to 

cyanobacteria proliferations episodes already occurred, the immediate 

availability of possible alternative supplies, the kind and effectiveness of water 

treatment plant. 

- Alert level 2: it reports, in the absence of specific data on toxin levels, the 

possibility that the water entering the drinking water supply chain presents 

microcystins concentrations near to the guide value; the appraisal is 

conservative taking for granted that the algal population is highly toxic and 
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that the entire toxin produced is released into the water and cannot be removed 

by treatments. The concentration of M. aeruginosa which defines level 2, is in 

fact calculated assuming, at worst, a part of toxin per cell (toxin quota) equal 

to 0.2 pg, that, taking into account a concentration equal to 6,500 cells/mL, 

would result in a toxin concentration equal to 1.3 μg/L, the guide value 

considered in the Australian guidelines (14). The appraisal clearly presents a 

high degree of approximation in that the toxin quota in natural populations of 

cyanobacteria is considerably variable and difficult to be defined and, 

furthermore, it is different from one species to another. Based on this, 

assuming in the appraisal the same criteria mentioned above and the toxin 

quota values referred to each species, in Australia there has been suggested a 

more specific evaluation for alert level 2 for the most spread algal species, 

according to the following values (16):  

- Microcystis aeruginosa:  6,500  cells/mL; 

- Anabaena circinalis:  20,000  cells/mL; 

- Cylindrospermopsis raciborskii: 15,000  cells/mL; 

- Nodularia spumigena:  40,000  cells/mL. 

This level of alert entails a decision on the notification to the health authorities 

and on possible use restrictions where there are no water treatment systems and 

it is not possible to regularly determine toxins concentrations. At operative 

level, a constant monitoring of cyanotoxins and cyanobacteria composition is 

suggested, at least on a weekly basis. 

- Alert level 3: active for concentrations greater than 6,500 cells/mL; it is referred 

to Microcystis aeruginosa toxic cells and represents a potential toxin production 

in water for human consumption with concentration near or ten times greater 

than the guide value.  

A notification must be sent to the health authority, if not previously sent, and an 

accurate risk assessment must be established, taking first of all into account the 

treatment measures taken and their suitability – both for technologies used, 

existing systems effectiveness and maintenance status - also considering the 
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existence of sensitive users’ categories. If risks mitigation measures cannot be 

considered as appropriate, use restrictions provisions and emergency response 

plans implementation are needed. In any case, a constant monitoring is 

demanded (frequency recommended 3-7 days), so as to highlight population 

decline and the reduction of toxin levels within a safety threshold. Specific 

measures, especially in case of water use restrictions, must be adopted so as to 

ensure an adequate communication with media and population, from the side of 

health authorities. 

The passage from a high level of alert to a lower one is determined by 

cyanobacteria population decline and/or by the adoption of risk prevention 

and/or mitigation measures that the health authority considers as appropriate. 
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2.2. Objectives 

The deep analysis of the knowledge on cyanobacteria development and toxin-

production mechanisms, the accurate definition of the scenario of contamination by 

cyanobacteria and toxic metabolites (cyanotoxins) in the water resources and supply 

chain of water intended for human consumption in Italy, as presented in the previous 

section of this document, call for the need of adequate prevention and response 

measures towards health risk emergencies related to cyanobacteria blooms and water 

contamination by cyanotoxins.  

Accordingly, the activities of the research program reported in this thesis were devoted 

to develop and validate a methodological model for cyanobacteria risk prevention and 

control, with possible regulatory value, in line with the recent evidence at the 

international level, the data on toxic phenomena occurring in the Italian territory the 

framework of water resources and water treatment technologies currently practiced in 

water supply systems in Italy. 

 

GENERAL OBJECTIVE:  

The objective of the thesis was to structure and validate - on the basis of experience 

gained in the Italian territory – an integrated national methodological model with 

regulatory valence to be adopted in the asset of water quality surveillance by Local 

Health Authorities and water management systems for the effective surveillance, 

prevention, control and emergency management of contamination by cyanobacteria 

toxins in water intended for human consumption. 

In doing this, a novel multi-stage strategy has been developed, involving routine actions 

for surveillance and alert - relying upon automated techniques for early warning and a 

new LC-MS/MS confirmatory method - and specific measures of risk management 

targeted to the different levels of estimated risk of contamination in water (alert levels) 

and the specific risk mitigation existing within the drinking water supply system. 
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SPECIFIC OBJECTIVES 
In order to carry out the general objective, the following specific objectives were 

established: 

1. Development and validation of an analytical methods based on liquid 

chromatography coupled to tandem mass spectrometry ( LC-MS/MS ) for the 

simultaneous determination of the wide range of cyanotoxins potentially 

affecting water intended for human consumption in Italy. 

2. Application of the developed method as analytical approach to the management 

of a recent emergency related to the proliferation in Vico Lake of Planktothrix 

rubescens, a cyanobacterium responsible of cyanotoxins production, by a 

monitoring analyses conducted in the period 2011-2013 in Vico Lake and the 

whole drinking water chain of the municipality of Caprarola (Viterbo Province). 

3. Definition of monitoring plans supporting risk assessment, involving the 

evaluation of the probability of occurrence of cyanobacterial blooms and 

estimation of the potential health impact of the toxic phenomena in the reservoir 

of water intended for human consumption. 

4. Definition of operational tools for managing risks along the whole water chain, 

depending by the mitigation measures existing within the drinking water system; 

5. Establishment of a strategy for the management of possible emergencies 

associated with algal blooms. 
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Experimental section 
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3.1. Chemicals and Reagents 

MC-RR, MC-YR, MC-LR, MC-LA, MC-LW, MC-LF, MC-LY, [D-Asp3]-MC-RR, [D-

Asp3]-MC-LR, ANA-a, CYN, Anabaenopeptin A, Anabaenopeptin B, CYP 1007, CYP 

1041, Microginin 527, Microginin 690, Microginin 704, Microginin 527 methyl estere, 

Microginin 690 methyl estere and nodularin, used as internal standard (IS), were 

purchased from Alexis® Biochemicals, La Jolla, CA, USA. ANA-a was obtained from 

ICN Biomedical, Aurora, OH, USA.  

Stock solutions of the nine MCs, IS, five Microginins, two Anabaenopeptins, two CYP, 

CYN and ANA-a were prepared by dissolving each compound with at least 4 mL of 

methanol. These solutions were stored at -18 °C in the dark to minimize analyte 

degradation. Working standard solutions of analytes and IS were obtained by suitable 

diluting stock solutions with mobile phases, at a final concentration of 1 µg/mL and 5 

µg/mL respectively. When unused, all working standard solutions were stored at 4 °C in 

the dark, and renewed after two working weeks.  

All solvents and chemicals were of analytical grade (Carlo Erba, Milan, Italy). 

Extraction cartridges filled with 0.5 g of Carbograph 4 were supplied by LARA, Rome, 

Italy. A 125 mm diameter Black Ribbon 589 paper filters were purchased from 

Schleicher &Schuell, Legnano, Italy. 

3.2. Instrumentation 

The sample analyses were carried out with an API 3000 (Applied Biosystems, 

Darmstadt, Germany) triple-quadrupole mass-spectrometer, equipped with a Turbo Ion 

Spray (TIS) ion source, coupled with Ultimate 3000 HPLC system (Dionex 

Corporation, Sunnyvale, CA, USA). Chromatographic separation was achieved with a 

reversed phase Alltima C18 column (2.1 x 150 mm, 5 µm) (Alltech, Sedriano, Italy) 

(Park Bellefonte, PA, USA) thermostated at 40 °C . 
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3.3. Blank samples 

The "blank sample" is a sample of the same matrix with characteristics similar to the 

sample under investigation. 

The white sample must be free of analytes and can be obtained using: 

- Tap water after removal of residues of disinfectant agents, in particular chlorine, 

which act as oxidants against cyanotoxins and the standard process, knocking down the 

content; the removal of residual chlorine can be obtained by treatment with a solution of 

sodium thiosulfate (prepared by dissolving 1 g of sodium thiosulfate in 100 mL of 

deionized water), adding 100 ml of this solution of sodium thiosulfate per liter of water 

to be treated; 

- Surface water; 

- Deionized water. 

The white sample may be used: 

- To verify the specificity of the method; 

- For quality control; 

- For preparation of samples artificially contaminated. 

Blank sample was used as a verification of the specificity the analytical method, for the 

preparation of samples artificially prepared to be used for the calibration line and the 

quality controls. 

For the preparation of the white sample was used deionized water, analyzed in advance 

to make sure of the absence of the analytes selected, and subjected to the same SPE 

procedure provided for the preparation of samples. 

 

3.4. Sampling site Description 

Vico Lake (Figure 3.1) is a volcanic lake in central Italy located in Lazio Region 

in the province of Viterbo (Figure 3.2). It has the distinction of altitude among the great 

Italian lakes, with its 507 m above sea level. Due to its unique natural features, the area 
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of Vico Lake is included among the areas of special natural value of Lazio and between 

habitats of great natural interest in Italy. It is surrounded by the mountain range of the 

Cimini mountains, in particular, is surrounded by the Monte Fogliano (965 m) and 

Mount Venus (851 m), is part of the Natural Reserve of Lake Vico. Today, the lake 

covers an area of about 12 km
2
, of which 8.2 falling in the municipality of Caprarola, 

and are part of the Nature Reserve. It has a perimeter of 18 km, an average depth of 22.2 

meters and reaches 49.5 meters in depth. 

 

Figure 3.1: Vico Lake 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2: The Vico basin and selected sampling sites of distributed waters with  

their relative distance. 
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3.5.  Sample collection 
 

Over twenty-four months of monitoring (October 2011 -October 2013), water samples 

were taken at least every fifteen days at the WTP and over the piped distribution system 

in Caprarola municipality (Lazio Region), at the following three stations  

(Figures 3.3 – 3.5): 

1) raw water from Vico Lake, at the WTP inlet; 

2) drinking water, exiting the WTP at the head of the distribution system; 

3) sampling point on the distribution system, sited in the centre of Caprarola 

municipality.  

Samples were taken in 500 mL polyethylene bottles as containers or dark glass washed 

with ultrapure water without traces of the analyte. 

Temperature and free chlorine content were measured for each sample (data not shown). 

In order to analyze the total content of toxins samples must be stored in polyethylene 

bottles or glass and submitted to at least one cycle of freezing and thawing (-18 ± 3 °C) 

to facilitate lysis. 

Otherwise to determine the content of extracellular toxins, water samples must be stored 

in polyethylene bottles or glass in the dark and at a temperature of 1-10 ° C to prevent 

degradation of the analytes due to the action of light and microbiological agents. In 

these conditions, the retention time is limited to a maximum of 24 h. After thawing, 

water samples were spiked with IS and filtered. 

 

 

Figure 3.3: Sampling point of raw water           Figure 3.4: Sampling point of treated water 
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Figure 3.5: Sampling point of drinking water 

 

3.6. Procedures 

3.6.1. Solid phase extraction (SPE) 

Apparatus Extraction 
 
The extraction of selected analytes was performed by solid phase extraction (SPE), 

using a device developed in the laboratory and shown schematically in Figure 3.6. A 

tube of propylene (inner diameter of 1 cm, 6 mL capacity), containing a frit on the 

bottom of propylene, was filled with 0.5 g of 4 Carbograph (Lara, Rome, Italy) and a 

second frit was lying on adsorbent bed to prevent the escape of particles of carbon. 

Carbograph 4 is an example of Carbon Black graphitized, surface area equal to 200 

m
2
 / g . 

For the elution front mode, it is used a cylindrical hollow piston in teflon and tip  

" Luer ", all obtained from LARA, Rome, Italy . 

Before the passage of the samples through the cartridge, this was washed with 12 mL of 

the same phase eluent (dichloromethane / methanol 80/20 v / v, 10mM in TFA ) and 6 

mL of methanol, and then activated with 20 mL of water acidified with HCl ( pH 2 ), 

followed by 6 mL of distilled water MilliQ (see Figure 3.7) . 
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Figure 3.6: (A) Extraction apparatus SPE; (B) Elution 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: A) Washing / activation of the cartridge; (B) Sample passage and analytes extraction  

(C) Wash the cartridge and remove of compounds not interfering in detection; (D) Analytes elution. 
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Sample preparation 
 

250 mL of the water samples, filtered, were spiked with 250 µg/L of a Nodularin 

solution (I.S.). 18 mg/L of sodium thiosulfate was added only to the treated water 

samples, after acidification, to prevent the I.S. oxidation. During filtration has been used 

a system of vacuum filtration with black ribbon filters for the analysis of the total 

content of toxins and glass fiber filters with a pore diameter ≤ 0.45 m for the analysis 

of the content of extracellular toxins. After the addition of I.S., samples were passed 

through a Carbograph 4 SPE cartridge, previously washed and conditioned with 

dichloromethane/methanol solution. The flow rate at which the aqueous samples passed 

through the cartridges was maintained at about 10 mL /min by vacuum. The SPE 

cartridge was washed with 6 ml distilled water and the following 0.5 mL of methanol. 

Analytes were eluted with 6 mL of dichlotromethane/ methanol mixture (80:40, v/v) 

acidified with 10Mm TFA solution. The eluate was evaporated under a nitrogen stream 

in a sample concentrator equipped with a dry-block heater set at temperature ≤ 50 °C. 

Samples were evaporated removing all of liquid phase. The residue was reconstituted 

with 1 mL of water/acetonitrile mixture 70:30 (v/v) and 50 µL of this extract were 

injected into the LC column. 

The other hand to analyse CYN and ANA-a toxins, 100 µL of the filtered water sample spiked 

with IS were directly injected into the LC/MS apparatus according to experimental conditions 

reported in (1) for CYN and ANA-a, except for using nodularin as IS and a calibration range of 

0.5-50 µg/L. 
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3.6.2. Liquid chromatography – mass spectrometry 

Different chromatographic gradients were employed for determining MCs, Microginins, 

CYP, Anabaenopeptins, CYN and ANA-a, using acetonitrile (component A) and water 

(component B) as mobile phases, both containing 10 mM formic acid, at 0.2 mL/min.  

For MCs, Microginins, CYP, Anabaenopeptins the mobile phase gradient profile was as 

follows (t in min): t0, A= 15%; t10, A= 65%; t11, A= 80%; t16, A= 100%; t19, A= 100%; 

t20, A= 20%; t29, A= 20%, while for CYN and ANA-a, the mobile phase gradient profile 

was as follows: t0, A= 15%; t4, A= 15%; t5, A= 70%; t10, A= 100%; t11, A= 15%, t20, A= 

15%. High-purity nitrogen was used as curtain and collision gas with flow set at 10 a.u. 

(arbitrary units) and 6 a.u. respectively. As nebulizer gases was used air set at 12 a.u., 

while the turbo gas flow was 7 a.u. and the ion source temperature was maintained at 

350 °C. Capillary voltage was 5500 V. The select values of declustering potential (DP), 

focusing potential (FP), entrance potential (EP), collision energy (CE), collision exit 

potential (CXP) potential and dwell time were optimized for each analyte (data are 

reported in Table 3.1).  

Full scan spectra were obtained in MS scan mode over range of m/z, depending on the 

analyte molecular mass, at a cycle time of 500 ms every 1 s and with an interscan of 

100ms. The electrospray ionization sourse was operated in positive mode. The multi 

reaction-monitoring (MRM) mode was used for quantitation by selecting two precursor 

ion>daughter ion transitions for each analyte, although only one was used for 

quantification (Table 3.1). 
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Table 3.1. Experimental Conditions for detecting selected cyanotoxins in water 

Compound 
MRM transitions 

(m/z)* 

          

Mass-Spectrometric conditions**   DP
1 FP

2   EP
3 CXP

4 CE
5 

MC-RR 520>135 90 400 10 8 45 

  520>127 90 400 10 8 60 

MC-LR 995>135 70 400 11 11 100 

  995>70 70 400 11 10 125 

MC-LA 910>135 90 400 10 10 80 

  910>776 55 400 10 21 25 

MC-YR 1045>135 60 400 12 11 100 

  1045>70 60 400 10 11 125 

MC-LF 986>478 60 400 10 13 30 

  986>852 60 400 10 13 30 

MC-LW 1025>446 30 400 10 13 50 

  1025>891 30 400 10 13 30 

MC-LY 1002>135 90 400 10 13 90 

  1002>868 40 400 10 13 30 

[D-Asp
3

]-MC-RR 513>135 70 400 12 11 40 

  135>70 70 400 10 9 100 

[D-Asp
3

]-MC-LR 981>135 70 400 10 11 100 

  981>70 70 400 10 11 125 

Nodularin (internal standard) 825>135 90 400 10 10 80 

CYP-1041 1041>70 70 400 10 11 130 

  1041>184 70 400 10 19 100 

CYP-1007 1007>150 80 400 10 11 100 

  1007>70 80 400 10 11 125 

MC-HtyR 1059>135 70 400 10 8 90 

  1059>107 200 400 10 13 125 

MC-WR 1068>135 200 400 10 13 100 

  1068>159 200 400 10 10 100 

MC-HilR 1009>135 90 400 14 10 100 

  1009>213 90 380 15 10 70 

Microargin527 528>180 55 310 7 10 30 

  528>128 55 320 7 10 50 

Microargin690 691>70 50 300     7     6   70 

  691>510 50 300 7 13 30 

follows 
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continues       

Compound MRM transitions 

(m/z)* 
     

Mass-Spectrometric conditions**  DP
1

 FP
2

 EP
3

 CXP
4

 CE
5

 

Anabaena B 837>201 70 400 9 13 70 

  837>70 70 400 9 13 130 

Anabaena A 844>58 100 400 9 11 130 

  844>84    90  400 9 11 130 

Microginin527methyl estere 542>70 70 350 10 13 70 

  542>128 60 350 10 7 55 

Microginin704 705>128 70 360 12 13 35 

  705>136 65 400 10 13 70 

Microginin690methyl estere 705>180 52 350 10 11 35 

  705>70 52 350 10 12 100 

Anatoxin-a 166>149 30 300 10 8 20 

  166>131 30 300 10 8 20 

  166>107 30 300 10 8 25 

 
166>91 30 300 10 8 25 

Cylindrospermopsin 416>336 100 300 10 13 20 

  416>194 70 300 10 13 50 

 
416>176 70 300 10 8 25 

* Parent ion > daughter ion transition 
**Turbo Ion Spray (TIS): 5500 V; Courtain gas flow 10 a.u.; Nebulizer gas flow 12 a.u.; Turbo-gas flow 30 a.u.; CAD 
flow 6 a.u. 
1

DP: Declustering Potential, 
2

FP: Focusing Potential,
3

EP: Entrance Potential,
4

CXP:Collision Exit Potential,
5

CE: 

Collision Energy 



 

76 

 

Quantitative analysis of cyanotoxins in water 

For LC/MS/MS analysis, the peak area of each analyte transition with the more intense 

signal to noise ratio, S/N (quantifying transition), related to the area of IS was chosen 

for the quantification of each analyte. The resulting area ratio (analyte area/IS area) was 

used to construct an external calibration curve by spiking and extracting blank of 

deionized water samples with the working solutions of analytes at 0.1, 1.0, 2.5 and 5 

µg/L and the IS at 1 µg/L, using the average of noise obtained by the analysis of blank 

samples as intercept. The Limits of Detection (LODs) were assessed for each analyte 

from the lowest calibration level, considering the transition with the worst S/N 

(qualifier/diagnostic), as reported elsewhere (1).When amounts of cyanotoxins injected 

from extracts of water samples exceeded the upper limit of the linear dynamic range of 

the detector response, extracts were suitably diluted and re-injected. 

3.6.3. Validation protocol 

The method has been validate in compliance with the Italian implementation of the 

Drinking Water Directive 98/83/EC (2), including selectivity, matrix effect, linearity, 

recovery, precision, accuracy and stability. 

The validation study was built using spiked deionized water samples. 

 

Selectivity and specificity 
 
The specificity and selectivity of the method was evaluated by analyzing water samples 

from at least three different origin to investigate the potential interferences at the LC 

peak region for analytes and IS. 

 

Matrix effect 
 
 The matrix effect was investigated to ensure precision, selectivity and specificity that 

were not compromised by the matrix screened and it was studied by evaluating the ion 

suppression enhancement effects 

Deionized water, surface water from a cyanotoxins-free lake (Bracciano, Italy) and tap 

water were chosen as matrices for the evaluation of the matrix effect. 
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Recovery 
 
Analysis of extracts of deionized water samples spiked with analytes at 0.1 μg/L and IS 

after evaporation were used as reference for the evaluation of the extraction efficiency. 

The mean overall recoveries of the analytes and IS were determined analyzing the 

extracts of deionized water samples spiked with analytes at 0.1 μg/L and IS after 

evaporation.  

 
  
Calibration curves 
 
Calibration curves for quantification water samples were produced by extracting blank 

samples spiked with analytes at four different concentration (0.1 g / L, 0.5 µg / L, 1 µg 

/ L, 2.5 g / L) and a constant concentration of IS equal to 1 µg / L. 
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4.1. Analytical issues: determination of cyanotoxins in 

in water sample 

 

4.1.1. Method development 

Simultaneous determinations of total cyanotoxins content were performed with 

LC/MS/MS method. Several new cyanotoxins classes are recently available as 

certified standards, so a previous method (1) was upgraded, optimizing it in terms of 

instrumental response, field of application and extraction efficiency for these analytes. 

In particular, the number of target cyanotoxins was enlarged, including 

Anabaenopeptin A, Anabaenopeptine B, CYP 1007, CYP 1041, Microginin 527, 

Microginin 690, Microginin 704, Microginin 527 methyl ester, Microginin 690 methyl 

ester, MC-HtyR, MC-HilR and MC-WR. Moreover the correct quantification of [D-

Asp3]-MC-RR and [D-Asp3]-MC-LR variants is important when a bloom of P. 

rubescens occurs, these MCs being the most abundant ones produced by this 

cyanobacterium (2, 3). Performance, reliability and feasibility of the method were 

improved in order to optimize resources of the Health Authority’s laboratories for 

cyanotoxins sampling and analysis in raw, treated and drinking waters. 

 

Optimization of LC-MS/MS condition 

  The analytes were separated by reverse phase chromatography, and analyzed in   MS 

/ MS with ESI source . The chromatograms were acquired in " Multi reaction 

monitoring " (MRM) : the advantage of this mode of acquisition is the highest 

sensitivity because it is possible to significantly decrease the background noise, thus 

allowing to obtain increased S / N. MRM is selected in the first quadrupole ion, called 

the "parent ion", which is fragmented in the second and collects in the third 

quadrupole ion one said "daughter ion". For each analyte infusions in positive mode 

with a standard solution at a concentration of 5 ng / L has been carried out by varying 

the experimental parameters in order to obtain two precursor ion>daughter ion 

transitions with the best S / N ratio. 
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Figures 4.1-4.3 show the full-scan precursor ion spectrum of three of selected 

cyanotoxins and tandem mass spectra of precursor ion fragmentation at difference 

collision energy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1: A) Full-scan MS spectrum of Cyanopeptolin 1007; B) Full-scan MS/MS 
product ion spectrum of Cyanopeptolin 1007 at collision energy= 70 eV; B) Full-scan 
MS/MS product ion spectrum of Cyanopeptolin 1007 at collision energy= 150 eV;  
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Fig. 4.2: A) Full-scan MS spectrum of Microginin 527 methyl ester; B) Full-scan MS/MS 
product ion spectrum of Microginin 527 methyl ester at collision energy= 70 eV; B) 
Full-scan MS/MS product ion spectrum of Microginin 527 methyl ester at collision 
energy= 128 eV;  
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Fig. 4.3: A) Full-scan MS spectrum of MC-LR; B) Full-scan MS/MS product 
ion spectrum of MC-LR; B) Full-scan MS/MS product ion spectrum of MC-
LR at collision energy= 135 eV;  
 

 

The fragment that characterizes the class of MCs and even the common Nod, is that 

one having a ratio m / z = 135 which comes from the rupture of the side chain of the 

residue Adda which is always present in this class of compounds. In Figure 4.4 the 

diagram of the generic fragmentation of an ion double charged of a MC is shown as an 

example. 
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Figure 4.4: Fragmentation of a generic microcystin with characteristic 
formation of the ion with m / z value = 135. 

 

MCs and Nod have the possibility of forming single or double charge ions 

depending on the basicity of the amino acid component variable which characterizes 

the structure. (4) The double charge ion formation is mainly for those MCs that hold in 

the chemical structure two arginine residues, but also depends significantly on the 

geometry of the ESI source. 

Unlike what is reported in the literature, significant variations of the fragmentation of 

the molecular ion of the analytes have been observed. 

The identified pseudomolecular ions were single or double charged and 

characterized by fragmentation due to rupture generally of fragment ion m/z=135, also 

found in the literature (5). 

Also for the MC- RR (m / z = 127 ), dem - MC- RR (m / z = 127 ), MC -LR (m / z 

= 127 ), dem - MC -LR (m / z = 70 ), we obtained a more extensive fragmentation 

characterized by very small fragments whose formation presumably derived from 

events of fragmentation of the second level of the fragment having m / z 135. 

 In some monitoring studies, reported in the literature, on water lake during 

cyanobacterial blooms, the presence of demethylate variants of MC- RR and MC- LR 

was found (6). 

In previous study, the quantitation of demethylate forms and their isomers 

respective isomers has been obtained giving same instrumental response of the 

corresponding methylated forms (7), using the transition corresponding to the double 

charged molecular ion molecular >135 that characterizes this class of compounds, as 

they were not available as commercial standards. For this research study were 
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purchased the analitycal standards, today commercially available, of the two 

demethylate MCs were purchased.On the other hand, the results obtained from full 

scan MS analyses of other cyanotoxins (Microginins, CYP, Anabaenopeptolins) 

shown the production of single charged fragment ions of each analytes. 

As it concern chromatography conditions, the mobile phases used were water and 

acetonitrile acidified with formic acid, since the use of this acid as well as to influence 

the protonation of the silanol groups, promotes positive ionization in the electrospray 

process. 

The binary gradient for the chromatographic separation used in the previous protocol 

(1) was modified considering the increase in the number of analytes investigated 

having different chemical structure and polarity with respect to the MCs. 

Representative chromatograms of a standard solution are depicted in Figures 4.5. 

 

 

follows 
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Figure 4.5: MRM LC/MS/MS chromatogram resulting from analysis of blank water sample 
spiked with selected cyanotoxinsat 0.1µg/L level and 1 µg/L of nodularin. It is reported in 
Blue colour the quantitation transition and in red the qualification transition for each 
analytes 
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Optimization of the SPE procedure 

Regarding the extraction procedure, in some methods reported in literature (8) 

analytes elution was performed in the back- flushing mode achieving high extraction 

efficiency for all the toxins monitored, in particular for the more hydrophobic as in the 

case of MC -LW . In addition, using this method of extraction, evaporation times are 

reduced, making the application of the method very fast. 

In this study, in contrast, the elution of the analytes through the cartridge was 

performed in a frontal mode to be able to make the application of the method more 

practical and thus making the method easily transferable to the control agencies have 

been performed tests volume of re – elution have been performed being able to 

determine the volume needed to elute all analytes considered including those 

characterized by a higher hydrophobicity ; compared to 4 mL of eluent phase used for 

fashion back- flushing the volume of re -elution was increased to 7 mL . 

 

4.1.2. Method Validation 

The entire method has been validated in terms of sensitivity, selectivity, repeatability, 

reproducibility, robustness and detection limit, in compliance with the Italian DL 

31/2001 (9) transposing the Drinking Water Directive, 98/83/EC (10) considering also 

criteria of UNI ENV ISO 13530: 2001, so that it can be proposed as a method for the 

determination of MCs in water intended for human consumption. 

It should be noted that the performance characteristics required of an analytical 

method in the field of water intended for human consumption established by Italian 

DL 31/2001 are: 

1) accuracy 

2) precision 

3) LOD 

The method was validated in terms of linearity, sensitivity, accuracy and precision, by 

means of tests of repeatability and within-laboratory reproducibility conducted at the 

laboratories of the ISS. 
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Matrix effect  

Deionised water, surface water from a cyanotoxins-free lake (Bracciano, Italy) and tap 

water were chosen as real matrices for the evaluation of the matrix effect. Results, 

reported in Table 4.1 indicated that a weak matrix effect was present for several 

compounds in all types of water considered. Anyway, the matrix effect is not 

significantly dependent on the specific matrix selected, as resulted from one-way 

ANOVA test at the P= 0.05 significance level. 

 Thus, in order to propose an friendly-to-use method for routine analysis, deionised 

water was chosen as a representative matrix. 

 

 
Table 4.1. Evaluation of the Matrix Effect in deionized, tap and lake waters spiked with 
selected microcystins at 0.1 µg/L and the IS at 1 µg/L after the evaporation step. 

1
 the recoveries (R) are expressed as per cent ratio average (n=3) of the absolute area related to water samples 

spiked at 0.1 µg/L after evaporation respect to a standard solution at the same concentration. 

Compound MQ water
 

Tap water Lake water 

 R,%
 1

±RSD,% R,%
 1

±RSD,% R,%
 1

±RSD,% 

[D-Asp
3
]-MC-RR 101±1 106±6 114±6 

MC-RR 109±19
 

104±14 88±4 

MC-YR 90±12 88±9 87±17 

[D-Asp
3
]-MC-LR 85±5 87±6 84±10 

MC-LR 91±2 99±12 110±15 

MC-LA 98±8 94±8 98±12 

MC-LF 100±11 98±8 94±11 

MC-LW 102±10
 

101±4 82±14 

MC-LY 98±5 95±5 92±12 

MC-HtyR 100±13 98±7 95±7 

MC-HilR 91±2 99±10 98±12 

MC-WR 87±6 85±2 88±4 

CYP 1007 78±2 75±6 74±5 

CYP 1007 71±7 74±7 71±5 

Anabaenopeptin A 96±11 97±2 96±7 

Anabaenopeptin B 98±8 94±2 94±2 

Microginin 527 85±2 88±6 84±2 

Microginin 690 80±5 87±2 81±7 

Microginin 704 70±2 75±8 74±2 

Microginin 527 Methyl ester 81±5 79±7 82±2 

Microginin 690 Methyl ester 79±2 77±7 75±8 
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Precision and accuracy 

Analysis of N=9 water samples spiked at 0.1 μg/L, assayed in triplicate over three 

days by different operators, for the assessment of accuracy, as sum of trueness 

(recoveries) and intra-laboratory reproducibility, was performed. 

Results of these studies are reported in Table 4.2 .Internal standard accuracy has been 

used as quality control for all measurements during the monitoring, showing that this 

protocol is robust and not significantly dependent by different matrices processed 

(79%±21% on N=20 samples). The extraction efficiency of not previously tested MC 

congeners proved to be satisfactory, with relative recoveries not lower than 85%, and 

an intra-lab reproducibility not higher than 16%.  

Table 4.2: Accuracy obtained for determining selected cyanotoxins in water by tandem MS. 
Accuracy, expressed as sum of trueness and within-laboratory reproducibility, was obtained 
analyzing on three different days and by different operators N=9 water samples spiked with 0.1 
µg/L of each microcystin and IS at 1 µg/L 

Compound Trueness
1
,% RSD,% 

[D-Asp
3
]-MC-RR 95% 11% 

MC-RR 107% 10% 

MC-YR 121% 15% 

[D-Asp
3
]-MC-LR 118% 11% 

MC-LR 109% 11% 

MC-LA 108% 16% 

MC-LF 119% 13% 

MC-LW 117% 15% 

MC-LY 109% 11% 

MC-HtyR 109% 11% 

MC-HilR 109% 11% 

MC-HilR 109% 14% 

MC-WR 109% 15% 

CYP 1007 85% 11% 

CYP 1007 87% 11% 

Anabaenopeptin A 94% 11% 

Anabaenopeptin B 98% 11% 

Microginin 527 88% 15% 

Microginin 690 90% 12% 

Microginin 527 Methyl ester 85% 11% 

Microginin 690 Methyl ester 90% 13% 
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Selectivity, Linearity and Limit of detection (LOD) 

Analysis of N=3 blank samples for evaluating method selectivity, was carried out. 

The interference by water constituents with analytes and IS was assessed by inspection 

of chromatograms that were derived from processed blank water sample. No 

significant interferences were found in blank water samples at the retention times of 

the analytes and IS. 

A calibration curve, spiking N=8 (n=2 replicates for each level) water samples at 0.1, 

0.5, 1.0 and 2.5 μg/L concentration levels, covering the range of the WHO guideline 

value (1 μg/L as MC-LR equivalents) for the study of sensitivity and linearity of the 

method, was obtained (Figure 4.6). 

A good linearity was achieved, with correlation coefficients in the range 0.9925 ≤ R
2
 ≤ 

0.9998. 

 Finally, adding the antioxidant to the treated waters seems to be effective in the 

analytes and IS protection, enlarging the feasibility of the proposed method to the 

analysis of drinking water. 

The LODs of the method were extrapolated from the LC- MS/MS chromatograms 

MRM mode register, obtained from the analysis of a sample of deionized water (250 

mL) contaminated with 0.1 g / L of the 21 cyanotoxins and 1.0 g / L of the internal 

standard. 

After extracting the ion current profiles relative to the transitions for each analyte, 

the resulting tracks were subjected to two successive " smoothing " processes of, 

using the Analyst software (Applied Biosystem) so as required by Italian Legislative 

Decree 31/2001 (9).
 

The LODs have been determined on the basis of the S / N ratio by calculating the 

ratio between the height of the peak and the average of the background noise. 

The LODs were estimated as the concentration of analytes in a position to give a S / 

N equal to 3 and are calculated on the worst of the two transitions precursor ion > 

daughter ion . It was dected a limit of detection in the range of 0.002 to 0.200 g / L 

for all selected analytes. 
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Figure 4.6: Calibration curves were constructed for each analyte plotting the area of 
the transition with the more intense S/N related to the area of IS, using the average 
of noise obtained by the analysis of blank samples as intercept. Spiking levels were 
0.1, 0.5, 1 and 2.5 µg/L and the IS at 1 µg/L 
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Table 4.3: Multi-Reaction Monitoring (MRM) transitions, Limit of Detection (LODs) 
 

1
 transitions with the worst S/N are reported in bold;

2
double charged ion

 

Compound MRM transition, m/z LOD, µg/L 

Anatoxin-a 166>149 

166>131
1 

 

0.200 

Cylindrospermopsin 416>336 

416>194 

 

0.100 

[D-Asp
3
]-MC-RR 513

2
>135 

513
2
>127 

 

0.004 

MC-RR 520
2
>135 

520
2
>127 

 

0.004  

MC-YR 1045>135 

1045>70 

 

0.013 

[D-Asp
3
]-MC-LR 981>135 

981>70 

 

0.004 

MC-LR 995>135 

995>213 

 

0.006 

MC-LA 910>135 

910>776 

 

0.002 

MC-LF 986>852 

986>478 

 

0.002 

MC-LW 1025>891 

1025>446 

 

0.002 

MC-LY 1002>135 

1002>868 

 

0.002 

MC-HtyR 1059>135 

1059>107 

 

0.009 

MC-HilR 1009>135 

1009>213 

 

0.012 

MC-WR 1068>135 

1068>159 

 

0.006 

CYP 1007 

 

1007>150 

1007>70 

 

0.020 

CYP 1007 

 

1041>184 

1041>70 

 

0.032 

Anabaenopeptin A 

 

844>84 

844>58 

 

0.020 

Anabaenopeptin B 837>201 

837>70 

 

0.008 

Microginin 527 

 

528>180 

528>128 

 

0.004 

Microginin 690 

 

691>70 

691>510 

 

0.010 

Microginin 527 Methyl ester 542>128 

542>70 

 

0.004 

Microginin 690 Methyl ester 705>70 

705>180 

 

0.010 

Microginin 704 

 

705>120 

705>136 

 

0.008 
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4.1.3. Monitoring of cyanotoxins in the drinking water chain. 

During this research project an intense two-years monitoring plan has been set and 

implemented in which sanitary inspections and sampling at the WTP were carried out 

in collaboration with the the Italian National Health Institute (ISS) and Local Health 

Authority (ASL) following the detection of the cyanobacteria bloom that in the winter 

of 2011-2012 identified occurred in the Vico basin as P. rubescens (Figure 4.7). 

In this thesis was studied the concentration of toxins in the water following the change 

of algal bloom in a period of about twenty-four months, the toxins have been 

identified and quantified by mass spectrometry according to the protocol described in 

the Experimental section consisting of extraction and SPE LC-MS/MS injection 

apparatus. 

The employment of methods involving the use of a detection system LC / MS tandem, 

is correlated mainly to the ability to identify and quantify the different variants of 

cyanotoxins. In this way, it is possible to accurately assess the toxic potential of the 

sample, provided that reliable data are available for toxicological evaluation. 

 

Figure 4.7: Vico Lake, red algae bloom 

 

The most abundant types of cyanotoxins detected in this study were the MC-RR and 

its demethylated form ([D-ASP3]-MC-RR) and ([D-ASP3]--MC-LR, with the 

maximum concentration values of respectively 1.52, 0.100 and 0.159 g / L. During 

this monitoring was never detected the presence of MC-LA, LF, LY, HtyR, WR, HilR, 
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ANA-a, CYP 1041, CYP 1007, Anabaenopeptins,  Microginins and the CYN 

sporadically has been found. 

Previously, in other Italian lakes affected by bloom of Planktothrix rubescens, has 

been reported the presence of two isomers of [DAsp3]-MC-RR, present as separated 

chromatographic peaks (8). In this monitoring the presence of a single peak on the 

[DAsp3]-MC-RR was detected and it was possible to attribute with certainty to one of 

the two possible structures, the [DAsp3]-MC-RR, since the standards of the variants 

demethylated have recently been characterized. In this work it was possible to have the 

standard commercial and carryout identification with a high degree of certainty and 

accurate quantification. 

Particular limnological conditions and nutrients of the lake, as well as genetic, can 

alter the profiles of productions traditionally reported. Higher levels of algal bloom 

recorded and expressed as number of cells / L confirm the trend of the species to 

proliferate at low temperatures. 

 

Cyanotoxins in raw waters 
 
Figure 4.8 shows data of the cells density and of cyanotoxins concentration obtained 

from LC/MS analysis, expressed as sum of selected compounds. Two species of 

cyanobacteria were identified, namely P. rubescens, that was always the predominant 

strain and Aphanizomenon ovalisporum. The maximum cells density has been 

registered in the two winter seasonal particularly in February 2012 and February 2013 

when temperatures were certainly higher. 

When higher than LODs values, cyanotoxins total levels measured with the 

LC/MS/MS system in the raw water ranged from 0.004 μg/L (June 2012) to 1.66 μg/L 

(January 2013). However, the concentration of cyanotoxins was not constant nor 

predictable on the basis of the cells density, that is generally, not necessarily, 

associated to high algal toxins levels. This fact was maybe due to changes in the genes 

expression involved in the toxin production (11,12), so that a toxin quota was not 

simply inferable. Interestingly, in the second phase of emergency, the drift of 

cyanotoxins production, as evidenced by LC/MS analysis, seems to be shifted of ca 



 

95 

 

10-15 days respect to the temporal tendency of the P. rubescens and Aphanizomenon 

ovalisporum cells density. This observation was consistent with an another study (11)
 

conducted in a Italian basin affected by P. rubescens blooms, that has suggested as 

cause of this temporal shift the release of the intracellular contribute of toxin in water 

after cells apoptosis. Environmental parameters, such as temperature, light and content 

of nutrients may had affect the behaviour observed in the toxinogenesis (12).  
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Figure 4.8: Temporal trend of cell densities [cells/L] of cyanobacteria identified in the Vico basin 

and cyanotoxins level, as determined with LC/MS analysis and expressed as total concentration 

[µg/L] of the sum of selected compounds, both recorded in raw waters of the Caprarola Water 

Treatment Plant 
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Drinking water monitoring and drinking water treatments evaluation 
 
In this project were analyzed influent (raw water) and effluent water from the water 

treatment plan and in water distribution network in the town. 

To a first general reading of the effectiveness of processes for drinking water carried 

out, it appears that the water distributed in Caprarola municipality (figure 4.9) showed 

the presence of toxins in concentrations marginal and not significant, reaching 

maximum values of 0.004 g / L. 

This situation poses no risk to human health, as the guideline value for cyanotoxins in 

samples of water intended for human consumption proposed by the WHO is 1 g / L. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Monitoring of raw, treated and distributed water 
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4.2. Surveillance, alert and risk management national 
system for cyanotoxins monitoring in water for human 
consumption 

 
According to the results presented, applied to the case study "Emergency 

Planktothrix Rubescens in Vico Lake” and the general objective of the thesis, this 

chapter is aimed at providing the operative tools to support the risk management related 

to cyanobacteria presence, especially potentially toxic species, in water bodies used for 

drinking water production. 

The criteria described in the present section, could be addressed to local health 

authorities, responsible for risk assessment and compliance determination on water for 

human consumption according to Legislative Decree 31/2001 and for water systems 

operators producing water for human consumption. 

 The model suggested is based on monitoring results of algal count carried out 

according to regulations by the environmental or health authority, even according to the 

indications concerning potential system susceptibility and vulnerability to cyanobacteria 

populations establishment and development; the monitoring must be intensified in 

reservoirs historically affected by blooms and it is crucial to take into consideration the 

seasonal blooming timing.  

The criteria here proposed, based on Alert Level Framework (ALF) principles 

consolidated at international level, constitute a decision tree in which monitoring and 

management actions over the water system are implemented in a progressive manner, so 

as to give an answer to the algal development steps in waters entering the treatment chain 

and taking into account risk prevention and mitigation measures related to the water 

supply system.  

Alert levels are defined through parameters related to the risk of cyanotoxins presence 

in the waters. For each level of algal concentration detected in the water body, around the 

catchment point, there can be established a risk level for the possible presence of 

cyanotoxins in the water at the user point; on this basis, a series of modular measures 

should be implemented, including the enhancement of cyanobacteria and cyanotoxins 

monitoring frequency, the implementation and/or optimisation of water treatments, the 
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notification to the health authority and, as a last measure, the adoption of restrictions of 

uses of water and the activation of emergency plans. 

Particularly, the approach is based on the model represented in Figure 4.10, and on 

the summary scheme of risk levels reported in Table A1 (attached to the chapter).  

The first one is applied to the drinking water treatment chain and describes the 

weight of the system protection level, in terms of prevention and mitigation of 

cyanotoxins presence risk in water delivery/user point. The second one is aimed at risk 

management in the entire intake water system until the distribution to water supply 

points. 

 

Figure 4.10: Appraisal of water management system protection level 
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The criteria used for the definition of alert levels, risk level assessment, specific 

actions and protection and mitigation measures to be implemented, are described as 

follows: 

– Detection level 0 

This level is aimed at highlighting, during a systematic monitoring, the possible 

occurrence of a bloom at a preliminary stage. The algal count levels, referred to 

toxic species, are approximately included in the range 500 – 2,500 cells/mL. At 

this stage, there is no immediate health risk evidence, even where organoleptic 

changes of the water are visible. It is recommended to intensify algal species 

monitoring within the water entering the plant, integrating the data with frequent 

reservoir inspections so as to detect possible presence of foams or colour changes 

at different depths. To give an example, algal population development can reach 

concentrations associated to the alert level in a week or less (assuming a time 

period of almost 4 days for population doubling), based on environmental 

conditions.  

As for the other system stages, it is assumed that the sample is collected near the 

catchment so as to directly refer to the risk for human consumption; other samples 

can anyway be collected from the reservoir and can be useful to study the possible 

distribution of cyanobacteria in the water column or in other water body areas or, 

in case of collection of foams with considerably high algal concentrations, to 

highlight the population toxicological profile in terms of composition and toxin 

levels produced, through confirmatory methods. For this purpose early-warning 

systems are very useful. 

– Detection level 1 

This level indicates a stable cyanobacteria population and development within the 

water body able to reveal, in a highly precautionary scenario, a toxin production 

potential in water for human consumption with concentrations near to the guide 

value. The algal concentration values appraisal associated to the alert level, also 

defined as “risk surrogate” (1), is obtained through conservative criteria, considering 

the entire algal population as toxin producer, assessing a high value of toxin produced 
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for each single cell and assuming that all the toxins produced are free in the water, 

represent the most toxic species and are not removed during treatments.  

For the assessment, there have been used the criteria established by the World 

Health Organization (WHO) (2) and reconsidered by other authors (1,3,4) 

assuming a conservative appraisal of toxin value associated to each cell and 

establishing, from this last, the number of cells needed to obtain a concentration of 

toxins in the waters near to the bibliography value. As far as the toxin quota is 

concerned, an average value of 0,2 pg/cell (1, 3)
 
is considered for the different toxic 

algal species. Therefore, in case of P. rubescens occurrence, based on the maximum 

precautionary principle, on the information spread in literature (1, 3, 5) which 

consider the category associated to a higher cyanotoxins production – indications 

confirmed by the various national monitoring data assessed during this research 

project – it is assumed the presence of a toxin quota equal to the double of the one 

established for the other toxic cyanobacteria species, taking as bibliography a cells 

threshold value consequently reduced.  

The actions to be implemented in correspondence of alert level 1 include: 

- notification to the local health authority, if the monitoring has been carried out 

by the operator (internal monitoring), by environmental agencies or by research 

groups; 

- activation of a constant monitoring on a fortnightly or better weekly basis, 

depending on plant protection status and on resources availability, through algal 

count; 

- risk assessment that can be associated to toxins potential presence in the waters 

going out from the drinking water treatment plant and for distribution, based on 

plant level protection system; in this case, if available, the historical data 

concerning the efficiency of plant during bloom, are crucial. 

Protection assessment can be based, in general, on criteria reported in Figure 1. In 

this model, at alert level 1, a class I-II protection degree is considered to be 

inadequate, that can occur in small management systems. The assessment must 

anyway take into account the appropriate sizing of the plant and operation and 
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maintenance general conditions (it can be useful to inspect the plants, monitor the 

internal and external – ordinary and extraordinary - maintenance status, time 

intervals of plants backwashing, internal data related to the operative monitoring, 

compared, for example, to the operating pressures of filtration plants, etc.); at last, 

take into account the waters treatment obligation before their distribution for 

human consumption, in compliance with Legislative Decree 152/2006, concerning 

pre-treatments based on water body classification. 

Whereas the plant protection level is in any case considered as inappropriate, the 

first action should be addressed to implement cyanotoxin determination on a 

fortnightly or weekly basis; cyanotoxin determinations must refer to the overall 

content (intra- and extra- cellular) and they are generally performed on incoming 

and outgoing waters and, where applicable, during distribution – in this case 

taking at least into consideration a proximal and distal point of the network where 

the water is not mixed; optimise, as far as possible, mitigation measures within the 

drinking water treatment chain thus ensuring an appropriate chlorination; this 

should be performed by increasing the contact time and, in the absence of other 

protection measures, by maintaining the residual chlorine levels in distribution at 

least at concentrations of 0.1 – 0.2 mg/L or even greater, if the health authority 

judges it to be necessary, at alert stage 1-2, taking also into consideration the 

monitoring results related to disinfection by-products. 

At application purposes, based on accrued national experiences, it is crucial to 

consider that in a reservoir characterized by a fixed establishment of 

cyanobacteria, algal concentrations established for the level of alert are 

extensively exceeded during more or less prolonged time intervals within the year 

and, usually, they do not entail any use restrictions of water resource because 

adequately managed in the drinking water treatment chain. In fact, if the water 

system “coexists” with the more or less periodical occurrence of cyanobacteria, 

the above said measure, expressed in a general and conservative form, should be 

adapted to the context and optimised, also in terms of resources, based on the 

experience gained. In these cases, it is crucial that the water supply operator keeps 

the internal system documents highlighting the effectiveness of measures taken 
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according to the historical data obtained in bloom conditions, including internal 

operative tests data such as for example the jar test for removing algal cells. 

The monitoring frequency must be maintained until 2 consecutive results state a 

reduced risk level, after that the frequency can be gradually decreased. 

– High alert level 2 

Based on the values determined for the alert level, a high alert level 2 is established 

to represent the development of cyanobacteria population in the water body able to 

reveal a potential toxin production in water for human consumption, with 

concentrations almost ten times greater than the guide value. In this case, for risk 

management it is crucial to envisage adequate treatment measures within the water 

system so as to mitigate the risks; in the absence of these measures use restrictions 

and emergency response plans are needed. So as to integrate the measures described 

above for lower risk levels, at this stage it is recommended to: 

- inform the local health authority about the phenomenon development; 

- implement a constant monitoring on a fortnightly basis through algal count; 

- determine, on a weekly or (better) fortnightly basis, the presence of cyanotoxins 

in waters entering and going out from the purifier and in distribution (at least a 

proximal and distal point of the network where the water is not mixed); 

- optimize mitigation measures in the drinking water treatment chain, thus 

ensuring an adequate chlorination; 

- be prepared for a possible emergency response plans implementation. 

As far as application purposes are concerned, based on accrued national 

experiences, it is crucial to consider that in a reservoir characterized by a fixed 

establishment of cyanobacteria, algal concentrations established for the high level 

of alert can be overcome in mainly short periods during the year and, if correctly 

managed, can avoid use restrictions of water resource. Even in these 

circumstances, if the water system is repeatedly affected by cyanobacteria, the 

above said measures must be adapted to the context and optimized, even in terms 

of resources, based on the experience gained. 
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The described plan, necessarily offers a scheme of three representative risk levels. 

Intermediate situations (ex.: for algal concentrations between 5,000 and 50,000 

cells/L) will be managed through appropriate decisions proportioned to risk level, 

to be assessed on a case by case basis according to the general scheme. 

The monitoring frequency must be maintained until two consecutive results state a 

reduced risk level, after that the frequency can be gradually decreased. 

4.2.1. Measures and use restrictions 

The current state of knowledge on risk assessment related to the presence of 

cyanobacteria massive growth in water for human consumption, points out that the 

health risk is only associated to the production of water for human consumption, 

contaminated with cyanotoxins levels exceeding the guide values. It is also useful to 

remember that the bibliography values definition concerns a chronic exposure, that is a 

prolonged consumption, officially, “during the entire life cycle”, of water contaminated 

with cyanotoxins levels exceeding the bibliography values. 

Based on this, use restrictions of drinking water is recommended after having 

observed a concentration of toxins exceeding the maximum acceptable values in water 

for distribution. 

The maximum temporary acceptable value for the MC-LR in water for human 

consumption is equal to 1.0 μg/L referred to the total toxin content (intra- and extra- 

cellular). According to an extensively conservative approach for human health 

protection, with an overestimation in the toxicity assessment, in the worst appraisal 

approach, the 1.0 g/L value must be referred to the sum of different MCs congener 

concentrations in the sample, considered as equivalent of the MC-LR. For this purpose, 

there have to be found MC congeners elements through confirmation methods using the 

best analytical potential available and, as minimum criterion, the congeneric MC 

congeners for which analytical standards are now commercially available, [D-Asp3]-

MC-RR, MC-RR, MC-YR, [D-Asp3]-MC-LR, MC-LR, MC-LA, MC-LY, MC-LF, 

MC-LW. Cyanotoxins research must be extended to other compounds categories, such 

as for example CYL, anabaenopeptolins and ANA-a, in the presence of blooming (for 
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an alert greater than 1) of species producing these toxins; the maximum acceptable 

value of cyanotoxins other than microcystins could be fixed in compliance with the 

provisions of the Italian Legislative Decree 31/2001, art. 11(1)(b). 

In case of a contamination exceeding the maximum acceptable value, the use 

restrictions concern, in general, just the drinking water use and the preparation of foods 

where the water is the main ingredient, with particular respect to risk categories. In case 

of use restrictions related to the exceeding of bibliography limits it is necessary to 

activate emergency response plans, to implement alternative water supply and to 

arrange an epidemiological observatory and communication methods.  

However, as far as the adoption of use restrictions is concerned, art. 10(1) of the 

Italian Legislative Decree 31/2001 has to be considered for the need to take into account 

the exceeding level and potential risks for human health as well as the risks that could 

derive from an interruption in the supply or from a use restriction of the delivered water; 

the possible use restrictions must first of all envisage the recourse to alternative supplies 

and the urgent implementation of adequate treatments to restore the compliance of the 

distributed waters. 

4.2.2. Specific measures recommended based on ALF system 

The criteria and strategies have been previously presented in chapter 1.5 according to 

which it is possible to assess the cyanotoxins risk degree in the production and 

distribution chain of water for human consumption and establish possible solutions 

aimed at avoiding exposure of the consumer. 

It is nevertheless useful, in this section, to recall the key elements and the actions 

recommended for the different strategic aspects driving the ALF implementation. For 

this purpose, Figure 4.11 indicates the main aspects of ALF system structuring and 

implementation concerning, in particular, risk assessment for the specific water system, 

surveillance and monitoring methods implemented, emergency response and 

communication measures. 
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Figure 4.11 Key aspects of ALF system 
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4.3. Emergency response plans 

The state of emergency is represented through the evidence of a health risk for the 

consumer due to the presence in the water of cyanotoxins levels exceeding the 

maximum acceptable values. It has to be highlighted that, in many cases, the occurrence 

of a state of emergency is very rapid, even few days, and the time frame in which the 

emergency occurs usually involves a few weeks. 

It is therefore clear that a safety management of the emergency, the health, the 

economic and social impact of these phenomena over consumers, is related to 

interventions promptness and actions suitability. Those aspects therefore need: 

– a previous preparation of the emergency plan; 

– a coordinated and planned engagement of all the parties involved during the 

emergency stage as far as suitable procedures are concerned; 

– preparation of human resources, through an adequate training. 

It has to be noticed that emergency plans have already been established by every 

operator of water systems for human consumption, and different scenarios having effect 

on the water utility, such as for example, extreme climatic events or potential hostile 

actions against the system, have already been considered. Plans define, in general, each 

duty and responsibility and envisage the creation of a “crisis unit” within companies and 

identify emergency equipments, such as power units, movable tanks and tankers, water 

provisions and baggers, means of transport, operative room equipment, etc., also through 

coordination among Companies of the same Province/Region, possibly coordinated by 

Prefectures. 

The emergency response plans described in the present section can usefully include 

crisis management measures already established by water supply systems 

 

4.3.1. Technical roundtable 

The preventive organisation of a technical roundtable may grant, during an 

emergency stage, the presence of a multidisciplinary and coordinated expert team able 

to manage the different crisis stages at its best. 
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Ideally, the technical roundtable team must ensure: 

– the involvement of local key functions, at health and environmental level, water 

supply operators, basin authority and other interested parties; 

– the presence of experts of different disciplines such as Biology, Chemistry, 

Toxicology, Medicine, Hydraulic engineering, Agricultural science; 

– a support, if needed, by the side of national bodies, such as for example members 

of the cyanobacteria national group, so as to quickly provide crucial information, 

scientific and technical tools; 

– the availability of complete data in real time on which the decision-making 

process must be based; 

– information, communication and transparency of decisions. 

Table 4.4 shows, as example, the task force created to deal with a drinking water 

emergency due to cyanobacteria which involved, in 2009, the Occhito Lake (1,2) used 

for several purposes among which the catchment of water for human consumption in a 

large area of the Puglia Region in Italy. 

 

Table 4.4.Task force created to deal with the drinking water emergency due to cyanobacteria which  
involved, in 2009, the reservoir of Occhito 
 

Body Functions, role, contribution 

Regional Authority  Coordination 

Province  Information on sensitive consumers, risk perception, economic activities and 
other specific issues 

Mayors of municipalities 
involved 

Information on sensitive consumers, risk perception, economic activities and 
other specific issues 
Beneficiaries of local measures 

Civil Defence Definition of possible water supply measures in state of emergency 

Local health authority Responsible, at institutional level, for the decisions on risk assessment and 
suitability of water for human consumption 

ISS Technical and scientific information support, opinion on solutions suggested 
Determination of toxins levels in waters 

Regional Authority 
Environment Protection  

Data on the qualitative-quantitative composition of algal species in the basin, 
incoming and outgoing raw waters from the purifier and in distribution 

Development Consortium 
Basin Authority 

Data on the hydrodynamic regime of the basin and water use 
Implementation of established basin management measures (ex.: basin levels, 
sediments analysis) 

Water supply operator Data on internal controls 
Prevention and mitigation measures for the risk in drinking water supply chain 
implementing body 

Epidemiological monitoring 
centre and first aid service 

Arrangement of observations over possible syndromic frameworks due to 
consumptions of contaminated water 

Regional communication 
office 

Informing the population  
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4.3.2. Decision-making information 

The availability of consolidated information during the emergency stage, is useful to 

grant the correct response time for definite needs and decisions. For this purpose, the 

following information is basically needed: 

– list of key roles (organisations, bodies, people) and main contacts (for example 

active carbons suppliers); 

– main procedures for events management; 

– main logistic and technical information, such as the localization of possible 

alternative water supplies and related rate. 

4.3.3. Decision-making process 

According to the experiences gained, it is deemed to be useful to recall, as an 

example, the decision-making process occurring during the emergency stage and that 

has to be supported through adequate technical-scientific knowledge:  

 

– situation analysis and hazards objective assessment; 

– identification and involvement of key functions in monitoring actions, control 

over decisions concerning supply methods; 

– identification of actions priorities such as the integration of water treatment 

systems with other practices and technologies; 

– definition/selection of possible options and impact analysis in terms of cost-

benefit; 

– establishment of additional water supply measures; 

– alert measures at Civil Defence for water supply during the emergency stage;  

– risk mitigation adequate treatments (for ex.: integration with GAC of pre-existing 

sand filters); 

– communication to consumers and users; 

– planning of mid-long term actions such as the analysis of factors favouring the 

algal bloom; 
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Assessment of risks related to use other than human consumption such as agriculture, 

fishery,recreational uses and food production. 
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5.1. Conclusions 

To protect human health from the adverse effects of any contamination of water 

intended for human consumption, the EU legislation established individual parametric 

values for a number of substances which are important throughout the Community 

relying upon the guideline values provided by World Health Organisation’s ‘Guidelines 

for drinking water quality. However Member States must set values for other additional 

parameters not expressively mentioned in the dir 98/83/CE where that is necessary to 

protect human health within their territories. 

 

In the past few decades, in almost all the Italian regions, problems correlating to 

developments of cyanobacteria, critical in terms of frequency and scale, have been 

observed in natural and artificial reservoirs used for the supply of water for human 

consumption. The production by cyanobacteria of multiple secondary metabolites which 

are toxic to mammals, noted as cyanotoxins, may represent a considerable health risk, 

given that the main toxins may travel from the reservoir all along the drinking water 

chain up to the point of consumption. The potential impact on health linked to the 

presence of cyanotoxins in water and the lack of harmonisation in managing the 

proliferation of cyanobacteria in water resources used for producing drinking water has 

led to countless water emergencies in Italy, with secondary control measures being 

adopted in line with criteria which are not consistent at national level as well as causing 

panic and controversy for local authorities and the population groups concerned.  

The many requests for support from the central health authorities due to cyanobacteria 

risks in water management systems, and the need to draw up guidelines and reference 

values for cyanotoxins in water intended for human consumption, as expressed directly 

by various health authorities and legal bodies regarding possible cyanotoxic 

contamination of water, indicate that a national reference approach is necessary in order 

to guide the decision-making, technical management and operational levels of 

prevention and control of the massive risk posed by cyanobacteria in water intended for 

human consumption.  
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In this framework, the present PhD thesis was focused on the development of new 

criteria and methods for the risk assessment and the risk management of cyanobacteria 

development and cyanotoxin production in water intended for human consumption, 

relying upon a prevention integrated strategy covering the entire water chain; from the 

protection and surveillance of the water resource to be destined to human consumption 

to the water treatment and distribution, in order to assure the quality of water at the 

consumer’s tap. 

As the first phase of project, a highly specific and sensitive analytical method based on 

solid phase extraction, separation and detection in LC tandem mass spectrometry has 

been developed and validated for the direct simultaneous determination of 21 different 

cyanotoxins potentially affecting water supply chains in Italy. The method has been 

proven to be robust, precise and accurate with recovery percentages above 85% and 

with relative standard deviations ≤ 16%, fit for the intended purposes at the 

concentrations of interest. The LOD obtained applying the procedure SPE-LC-MS/MS 

were within the range 0.002 to 0.025 g / L, at least 50-fold lower than the guideline 

value proposed by the WHO for drinking water (i.e. 1.0 g / L for microcystin-LR).  

The analytical method was then applied for a monitoring plan during a drinking water 

emergency occurred in Vico Lake. The systematic study of the contamination 

phenomenon in the drinking water chain has shown in raw water the presence of 

 [D-Asp3]-MC-RR, MC- RR and [D-Asp3]-MC -LR respectively, at concentrations of 

up to 1.52, 0.100 and 0.159 g / L. Other toxins (LW, LY, LF, HilR, WR, HtyR CYP 

1007, CYP 1042, Anabaenopeptins, Ana-a and Microginins) have never been detected 

during the twenty-four sampling months . CYN has been sporadically found. 

The data obtained on the treated water showed that the treatments conventionally 

carried out on the raw water generally prove effective in reducing almost all of the 

contents of the analytes in the influent water to WTP.  

It was also sporadically detected the presence of toxins in the water distribution, 

although at levels below the guideline value set by the WHO for MC -LR . 

Based on the extensive applicative experience acquired in the course of the thesis, the 

developed analytical method has proved itself to be an effective instrument for the risk 
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assessment from exposure to cyanotoxins, in the management of public health 

emergencies and water crises related to the proliferation of toxic cyanobacteria in 

surface water destined for human consumption. Thus, the analytical protocol developed 

during the doctoral research activities is proposed as a reference method for the 

determination of cyanotoxins in water intended for human consumption in accordance 

with Legislative Decree no. 31/2001. 

 

According with the pursued objective of the research consisting in assuring the water-

supply undertakings meet the cyanotoxin quality standards in drinking water by 

appropriate water-protection measures at the water environment, and/or by appropriate 

water-treatment measures to be applied before supply, another important research 

activity was focused on the development of a new model of intervention criteria 

targeted on the level of estimated risk in the drinking water reservoir and on the 

treatment of water before the human consumption. 

Practical, technical-scientific tools for risk analysis throughout the chain of production 

and distribution of water were defined and the critical elements in the management of 

emergency scenarios, with respect to risk communication, were finely tuned. 

This essentially consists of the structuring and implementation of an integrated system 

based on the principles of Alert Level Framework (ALF) and the Water Safety Plan 

(WSP) as a comprehensive prevention strategy dealing with the risk management over 

the entire drinking water supply chain, from the control of the reservoir to the delivery 

points. Analytical protocols for health Authorities, involving methods and frequency of 

monitoring targeted to the risk level, and water quality standards were established to 

assure the prevention and management of emergencies caused by the proliferation of 

cyanobacteria and the production of cyanotoxin from the water environment to the 

water tap. 

 

The results achieved by the doctoral studies were shared within an interdisciplinary 

national working group, with experts from the Health Ministry, regional health and 

environmental authorities universities and research institutes, thus producing the 
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“Italian Guidelines for the risk assessment and risk management of cyanobacteria in 

water intended for human consumption”. 

The guidelines recommend to adopt a maximum permissible value for cyanotoxins (i.e., 

1.0 mg/liter for microcystin-LR referred to the total intra- and extra- cellular toxin 

content and to the sum total of concentrations of the various congeneric elements of 

microcystin present in the sample, considered to be equivalent to microcystin-LR) 

within the framework of a preventive approach based on analysis and integrated risk 

control.  The guidelines edited by the Italian National Institute for Health are intended 

to be useful tools for health and environmental central and local Authorities, managers 

and operators of water supply systems, as well as for consumers or for interest groups 

wishing to investigate the issues related to the presence of cyanobacteria in water 

resources.  

 

All the above activities allowed to propose an interministerial decree for the 

introduction, in Annex I part B of Legislative decree no 31, of 2 February 2001, of the 

parameter “Microcystin-LR” and related parameter value, with the aim of improving the 

level of health protection through the monitoring and control of emerging risk factors, 

such as cyanotoxins, in water for human consumption.  
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