
Sapienza University of Rome

Department of Physics

Ph.D. degree in Physics, XVI Ciclo

Diffusive processes in systems with
geometrical constraints: from lattice
models to continuous channels

Candidate:
Giuseppe Forte
Matricola 1138380

Thesis Advisors:
Prof. A. Vulpiani
Dott. F. Cecconi

A thesis submitted in partial fulfillment of the requirements for the de-
gree of Doctor of Philosophy in Physics
October 2013





Coordinator:
Prof. M. Testa
External Referee:
Prof. F. Marchesoni
Examination Committee:
Prof. L. Biferale
Prof. C. Pierleoni
Prof. A. Polimeni





“Go, wondrous creature! mount where science guides,
Go, measure earth, weigh air, and state the tides;

Instruct the planets in what orbs to run,
Correct old time, and regulate the sun;

Go, soar with Plato to th’ empyreal sphere,
To the first good, first perfect, and first fair;
Or tread the mazy round his followers trod,

And quitting sense call imitating God;
As Eastern priests in giddy circles run,
And turn their heads to imitate the sun.
Go, teach Eternal Wisdom how to rule—
Then drop into thyself, and be a fool!”

————–
Pope [1734]

Alla mia Famiglia.
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I N T R O D U C T I O N

Diffusion is a passive transport process resulting in a net movement of mass
from higher to lower concentration, without requiring bulk motion. It occurs
in all the states of the matter, on several orders of time and length scales, thus
characterizing a lot of physical, chemical and biological phenomena [Berg,
1983; Kärger and Ruthven, 1992; Frey and Kroy, 2005; Roque-Malherbe, 2005;
Bressloff and Newby, 2013], especially when the viscosity of the background
environment is high and the diffusion process becomes the predominant one.

Diffusive motion can either be described by using a continuum (macro-
scopic) approach, based on the Fick’s laws [Fick, 1855; Crank, 1975], or by
taking into account a microscopic point of view in terms of the erratic mo-
tion of the suspended particles [Einstein, 1905; Smoluchowski, 1906; Langevin,
1908]. Such random motion was firstly observed by R. Brown [Brown, 1827]
in 1827 while he was studying pollen grains suspend in an aqueous solu-
tion and represents one of the most fundamental works for the contemporary
development of Statistical Physics [Hänggi and Marchesoni, 2005]. The link
between the macroscopic and microscopic description of Diffusion was stud-
ied by Einstein [1905]. He described the erratic motion observed by Brown
as the emergence of the random displacements experienced by the macro-
scopically sized particles (pollen grains) in terms of the collisions with the
molecules composing the background environment, which naturally tend to
scatter because their thermal energy. As a consequence, the continuum macro-
scopic description is strictly related to the probability density to observe a
suspended particle in a certain volume element at a given time. In the same
work, Einstein derived also an expression between a fundamental transport
quantity, the diffusion coefficient, which is a macroscopic quantity, and the mi-
crostructural features of the environment, thus suggesting the first example
of a Fluctuation–Dissipation Relation (FDR) [Kubo, 1957; Kubo et al., 1991;
Marconi et al., 2008] and, at the same time, a way to probe the atomic hy-
pothesis. The definitive experimental proof of the Einstein’s theory was done
by J. B. Perrin [Perrin, 1913], who was awarded with the Nobel Prize for his
experiments.

In the recent days, the increasing technology enabled scientists to perform
experiments on systems showing diffusion up to the meso–scale (∼ 10−6 m),
thus suggesting to investigate diffusive phenomena in confined systems. Ex-
plicit examples of diffusive processes occurring in a complex geometrical en-
vironment are provided by the diffusion in dendrites [Santamaria et al., 2006;
Bressloff and Earnshaw, 2007], extracellular transport in brain tissue [Hrabe
et al., 2004; Sen, 2004], diffusion in fractal environment [ben Avraham and
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Havlin, 2000], like the chromatin structure [Lebedev et al., 2008; Lieberman-
Aiden et al., 2009; Bancaud et al., 2009] or on comb–like structures, as for
example the biological polyelectrolytes [Papagiannopoulos et al., 2006; Waigh
and Papagiannopoulos, 2010].

In the present work, we will focus on the case of diffusion in channels with
varying cross–section as well as on the diffusion on branched structures.

With regard to the random walk process on branched structures, our work
was focused on both the asymptotic (e.g. the effective diffusion coefficient)
and the pre–asymptotic properties, for example the transient Mean Square
Displacement (MSD) or the Fluctuation Dissipation relation (FDR) [Einstein,
1905; Kubo, 1957; Kubo et al., 1991; Marconi et al., 2008]. In particular, many
of the analyzed systems show a regime of anomalous transport [Metzler and
Klafter, 2000; Klages et al., 2008] and one of our main result is related to the
Einstein FDR, indeed we found that the FDR can be extended, in some cases,
also to the anomalous regime [Forte et al., 2013a], at least within the linear
response approximation. On the other hand, we pointed out how the FDR
can be broken by choosing properly the branching of the analyzed structure,
as a consequence of the emergence of an “entropic” drift due to the high
ramifications introduced. This result suggests that FDRs are more sensitive
to the geometrical structure rather than to the details of the dynamics. We
analyzed, in contrast to those examples showing anomalous diffusion, also
a series of situations characterized by a standard scaling of the mean square
displacement (and/or of the higher order moments), however with a non
Gaussian probability density, thus showing how standard diffusion is not
always Gaussian [Forte et al., 2013b].

In our work on two dimensional continuous channels, we propose a method
to estimate the effective diffusion coefficient, which is one of the main quan-
tity of interest for a diffusive process. We will compare our results with the
already known approximations, such as the Fick–Jacobs (FJ) approximation
[Burada et al., 2009]. Moreover we studied the transient diffusion, in partic-
ular the transient MSD. We found that a strong perturbation of the channel
from the simple cylindrical structure introduces a time scales separation be-
tween the transversal and the longitudinal motion. We used a phenomenolog-
ical model to emphasize the influence of such time scales separation on the
transient MSD along the transport direction, showing how the pre–asymptotic
regime can be controlled by choosing properly the initial particle distribution
within the channel.

The present work is organized as follow.

first chapter We introduce the phenomenological Fick’s equation [Fick,
1855], which describes the diffusion process on the macroscopic scale,
that is, on the length scale greater than the atomic one (∼ 10−8 m). In
particular we will discuss some examples of diffusion in confined sys-
tems.
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second chapter We review some of the most important results on dif-
fusion in non homogeneous channels. In particular we will take into
account symmetric channels with respect to some given space direc-
tion, referred to as the longitudinal direction, whose boundaries are
periodic functions of the longitudinal coordinate. We discuss the Fick–
Jacobs (FJ) approximation [Jacobs, 1967; Burada et al., 2009], which can
be viewed as the Fokker–Planck equation [Risken, 1989] associated to a
one–dimensional Langevin equation whose external potential is a func-
tion of the boundary profile only.

third chapter We review some of the mathematical results related to the
diffusion theory [Crank, 1975]. In particular we will discuss the Central
Limit Theorem (CLT) [Feller, 1945, 1968] and its violations, thus intro-
ducing the concept of anomalous transport [Klages et al., 2008].

fourth chapter We present our analytical and numerical results about
the random walk process on branched structures. We will discuss, using
an approach based on simple scaling arguments [Forte et al., 2013a], the
random walk on the comb–lattice [Goldhirsch and Gefen, 1986; Weiss
and Havlin, 1986], emphasizing the emergence of an anomalous trans-
port regime, however pointing out that the Einstein [1905] FDR still
holds true, both in the anomalous regime and in the standard diffusive
one. We will show that it is possible to “destroy” the FDR by considering
particular ramified geometries. Such structures introduce an “entropic”
bias, that is, a non vanishing drift related only to the particular geom-
etry of the lattice considered. Further discussions, taking as examples
generalized comb structures and fractal trees, will be discussed [Forte
et al., 2013a,b].

fifth chapter We present an analytical and numerical study on diffusion
in periodic channels. Such channels are characterized by the fact that
on large time and length scales, the longitudinal diffusion process will
be standard , with a renormalized diffusion coefficient Deff. We will
construct a simple one–dimensional model to work out an expression
for Deff, showing how our approach can be applied also when the usual
FJ approximation fails. We will also discuss the importance of the pre–
asymptotic regime, showing how it is possible to control it by choosing
properly the initial particle distribution within the channel.

sixth chapter We discuss our main conclusions.
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1
M O T I VAT I O N

“If the movement discussed
here can actually be observed
(together with the laws
relating to it that one would
expect to find), then classical
thermodynamics can no
longer be looked upon as
applicable with precision to
bodies even of dimensions
distinguishable in a
microscope: an exact
determination of actual
atomic dimensions is then
possible”

Einstein [1905]

1.1 introduction : diffusion and brownian motion

Diffusion is a mass transport process arising in Nature, which results in
molecular or particle mixing without requiring bulk motion. The physical
laws that explain this phenomenon are called Fick’s laws [Fick, 1855]

J(r, t) = −D0∇C (r, t) (1.1)
∂C (r, t)

∂t
= −∇ · J(r, t) (1.2)

where J(r, t) is the net particle flux at time t and space point r, C (r, t) is the
particle concentration, and the constant of proportionality, D0, is called the
diffusion coefficient. Unlike the flux vector or the concentration, the diffu-
sion coefficient is an intrinsic property of the medium [Einstein, 1905; Berg,
1983; Hänggi and Marchesoni, 2005; Frey and Kroy, 2005], and its value is
determined by the size of the diffusing molecules and the temperature and
microstructural features of the environment (see also Sec. 2.1 ). The sensi-
tivity of the diffusion coefficient on the local microstructure enables its use,
for example, as a probe of physical properties of biological tissue [Berg and
Behrens, 2009]. Clearly there are no ways to relate the diffusion coefficient
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2 motivation

J(r, t)

Figure 1.1: Illustration of the Eq. (1.1); particles flow from regions of high concentration to
regions of low concentration.

with the microstructural features of the environment simply using the Fick
macroscopic description.

A microscopic model for the diffusion process was suggested for the first
time by Einstein [1905] and it is related on an apparently different motion,
called Brownian movement.

Robert Brown [Brown, 1827] is credited to be the first one who report the
random motions of pollen grains suspended in a water solution while study-
ing them under his microscope (see Fig. 1.2), for this reason the erratic motion
observed by Brown was called Brownian motion. Sometimes particles which
show this type of erratic motion are also called Brownian particles.

Figure 1.2: Botanist Robert Brown is known as the first scientist who has reported the appar-
ent erratic motion of pollen grains suspended in aqueous solution.

In the early part of the 20th century, Albert Einstein, who was seeking ev-
idence that would undoubtedly imply the existence of atoms, came to the
conclusion that [Einstein, 1905] “ [· · · ] bodies of microscopically visible size sus-
pended in a liquid will perform movements of such magnitude that they can be easily
observed in a microscope”.
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Substance Molecular Weight D0 × 10−7 cm2s−1

Glucose 192 660

Insulin 5734 210

cytochrome c 13370 11.4
myoglobin 16900 11.3
β–lacroglobulin 37100 7.5
serum albumin 68500 6.1
hemoglobin 64500 6.9
catalase 247500 4.1
urease 482700 3.46

fibrinogen 339700 1.98

myosin 524800 1.10

tobacco mosaic virus 40590000 0.46

Table 1.1: Molecular weight and diffusion coefficients of some biochemical substances in
aqueous solution at standard temperature and pressure conditions.

Einstein has used a probabilistic framework to describe the motion of an en-
semble of particles undergoing Brownian motion, reconciling the Fick’s laws
with Brown’s observations and thus leading to a coherent description of the
diffusion process (see Chap. 3). He introduced the displacement distribution
for this purpose, which quantifies the fraction of particles that will traverse
a certain distance within a particular time–frame, in particular Eq. (1.2) is
showed to be (up to a dimensional factor) the equation describing the time
and space evolution of the probability density P(r, t) to find a Brownian par-
ticle in a small volume element dr around r at time t. Einstein pointed out also
the relation between the diffusion coefficient D0, which is a macroscopic quan-
tity, with the intrinsic properties of the bulk material within which particles
can diffuse, thus suggesting at the same time a first example of Fluctuation–
Dissipation Relation [Kubo et al., 1991; Marconi et al., 2008] (see also Chap. 4

and Chap. 5).

A brief review of the diffusion theory and Brownian motion is reported in
Chap. 3. In the following we will refer to the phenomenological Fick’s laws,
which can be reasonably derived by requiring mass conservation, as we show
in the next section.
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1.2 mass conservation and constitutive laws

The time evolution of the concentration in Eq. (1.2) can be explained by us-
ing a balance equation. More specifically, let be M(t) the total mass contained
in a fixed space volume V , enclosed by the surface S ; moreover, C (r, t) is the
volume density associated to the mass M(t), that is

M(t) =
∫
V

dr C (r, t)

The variation of M(t) within V during an assigned observation time, as-
suming absence of sources and sinks in V , is given by

∂

∂t

∫
V

dr C (r, t) = −
∫
S

dSn̂ · J(r, t)

where dS is the surface element on V and n̂ is the outgoing local versor from
the closed surface S . The flux J of the quantity M(t) across S balances the
variation of M(t) in time; using the divergence theorem and noting that V is
an arbitrary volume, we get the continuity equation

∂C (r, t)
∂t

+∇ · J(r, t) = 0 (1.3)

which is exactly Eq. (1.2).
The generalization to the more general case characterized by the presence

of sources and sinks is straightforward; indeed the above equation retains the
same structure once on the right hand side a source term f (r, t) is added to
the problem.

To solve Eq. (1.3) it is necessary to introduce a connection between the con-
centration C (r, t) and its flux J(r, t) which is, for example, the content of the
Fick’s first law (1.1). Relations between the state quantity C (r, t) and the flow
quantity J(r, t) are usually based on the generalization of experimental obser-
vations and depend on the properties of the particular medium or material.
They are usually called constitutive laws or material relations. In Chap. 3

we will review how it is possible to derive the constitutive laws which relate
the flux J(r, t) to the concentration C (r, t) for the case of a diffusive process,
starting from the microscopic interpretation of diffusion.

The fundamental solution of the diffusion equation [Einstein, 1905; Crank,
1975; Berg, 1983; Gardiner, 2009] defined by Fick’s first and second laws can
be obtained by looking at the simple boundary value problem: ∂C (x,t)

∂t = D0
∂2C (x,t)

∂x2 , −∞ < x < ∞

C (x, 0) = C0δ(x)
(1.4)

where, for simplicity, we focus on a problem defined in one spatial dimension.
The solution of the Eq. (1.4) can be found, for example, by using the Fourier
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transform method. In particular, if we take the Fourier transform on both
sides of the first equation in (1.4) we get

∂Ĉ (k, t)
∂t

= −D0k2Ĉ (k, t)

with Ĉ (k, t) given by

Ĉ (k, t) =
∫ +∞

−∞
dx eikxC (x, t)

The solution of the transformed equation can be expressed as

Ĉ (k, t) = Ĉ (k, 0) e−D0k2t

where Ĉ (k, 0) = C0 is the Fourier transform of the initial condition C (x, 0).
By applying the inverse Fourier transform we find the final result

C (x, t) =
C0√

4πD0t
e−x2/4D0t (1.5)

The Eq. (1.5) defines naturally a probability density, indeed by observing that
the quantity P(x, t) = C /C0 is normalized to the unity at every instant of
time, we can read P(x, t) as the probability density to find a particle in a
length interval dx around x at the time t. This interpretation leads directly to
the property which “labels” (almost) every diffusive processes, that is

〈x2(t)〉 =
∫ +∞

−∞
x2P(x, t) = 2D0t (1.6)

In the following sections we will show a series of practical examples in
which diffusion plays a central role, in particular we will focus on those situ-
ations characterized by non trivial geometries, showing how these situations
naturally come into play in a lot of physical problems.

1.3 diffusion in dendrites

Dendrites are extensions of the cell body of the neuron specialized for re-
ceiving and processing the vast majority of excitatory synaptic inputs [Yuste
and Denk, 1995; Stuart and Spruston, 1999; O’Reilly and Munakata, 2000; Fall,
2002]. Dendrites exhibit enormously diverse forms, resulting in a various
types of branched structures [Ramón-Moliner, 1968; Ramón y Cajal, 1995; Fi-
ala and Harris, 1999; Scott and Luo, 2001; Jan and Jan, 2010]. The density of
dendritic ramifications lies on a continuum of values, reflecting differences in
connectivity. At one extreme there are selective branched structures in which
each dendrite connects the cell body to a single remote target, as shown on
the left of Fig. 1.3. Typically an olfactory sensory cell provides an example
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Figure 1.3: Usual types of dendritic structure: (left) selective structure; (middle) sam-
pling arborization ; (rught) space–filling dendrite. Adapted from Ramón y Cajal
[1995].

of this type of structure. At the other extreme lies the so called space–filling
structure in which the dendrites cover a region, as with the cerebellar Purkinje
cell illustrated in the right part of Fig. 1.3. Intermediate branching densities
are referred to as sampling arborizations, as demonstrated by a pyramidal
cell from cerebral cortex. An example of a sampling structure is shown in the
middle part of Fig. 1.3.

Every dendrite’s branch is covered typically by hundreds to thousands of
spines, which are synaptic protuberances along a given ramification. Den-
dritic spines serve as a storage site for synaptic strength and help transmit
electrical signals to the neuron’s cell body. Most spines have a bulbous head,
the spine head, and a thin neck that connects the head of the spine to the
shaft of the dendrite. Dendritic spines may also serve to increase the number
of possible contacts between neurons [Stuart and Spruston, 1999].

Most of the input coming into a neuron enters in the dendrites, whereas
the axon, which originates at the cell body, sends the output signal to other
neurons. To enable different neurons to communicate with each other despite
being encased in membranes, there are little openings in the membrane called
channels (see Sec. 1.4). The basic mechanisms of information processing in a
neuron are based on the movement of charged atoms (ions) in and out of
these channels, and within the neuron itself. These ions move according to
basic principles of electrodynamics and diffusion.
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Figure 1.4: Schematic representation of a dendrite with different densities of spines: (top
panel) a dendrite with zero spines; (middle and bottom panel) spiny dendrites
with an increasing density of spines. Adapted from Santamaria et al. [2006]

An idealized geometrical model of a single dendrite along with its spines,
for two different spine density, is shown in the middle and bottom panels of
Fig. 1.4. Such structures are used to study the diffusion problem within spiny
dendrites [De Schutter and Smolen, 1998; Santamaria et al., 2006]. More specif-
ically, in the picture 1.4 it is well distinguished a main transport direction, the
shaft of the dendrite, along with transversal dead–ends, each one composed
by narrow channels, i.e. the spine neck, with squared compartments, intro-
duced to model the spine head.

The dendrites of cerebellar Purkinje cells contain both sections without
spines as well as branches with high densities of spines [Fiala and Harris,
1999], thus representing a good template to study the diffusion process in the
limiting case of a smooth channel (see the up panel of Fig. 1.4) as long as the
case of channels characterized by a varying cross–section (see the middle and
bottom panel of Fig. 1.4).

Combining local photolysis of caged compounds with fluorescence imag-
ing, Santamaria et al. [2006] have observed diffusion in the spiny dendrites
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of cerebellar Purkinje cells. They found that the mean square displacement
in the case of a dendrite with high density of spines is slower than the typi-
cal linear growth in time expected from a diffusion process, as explained in
Eq. (1.6). This retardation is due to a transient trapping of molecules within
dendritic spines.

When the behaviour in time of the mean square displacement is not linear:

〈x2〉 ∼ t2ν

with ν 6= 1/2, the resulting diffusion process is called anomalous [Bouchaud
and Georges, 1990; Metzler and Klafter, 2000]. We will discuss in more de-
tails the standard and anomalous diffusion in Chap. 3 and Chap. 4, while in
Chap. 5 we will present our work on diffusion in non homogeneous channels.
In particular, we will also take into account structures like those shown in
Fig. 1.4.

Recent experimental observations strongly suggest that there are voltage–
dependent sodium [Araya et al., 2007], potassium [Ngo-Anh et al., 2005] and
calcium [Yuste and Denk, 1995] channels in the spine heads (see the next sec-
tion for a general discussion on ionic channels), so implying that the transport
along a spiny dendrite could be characterized by the presence of local mass
sources or sinks.

Dendrites provide an example of complex environment within which dif-
fusion can take place. While a single dendrite along with its spines can be
modeled as a non homogeneous channel, the typical fractal–like structure
of an ensemble of dendrites can be modeled with an appropriate branched
structure, as can be done by building a model in terms of the comb–lattice
[Goldhirsch and Gefen, 1986] or its generalizations [Forte et al., 2013a], as
well as using an appropriate fractal tree [Forte et al., 2013b]. We will discuss
these types of discrete branched structures and the properties of diffusion on
such graphs in Chap. 4.

1.4 diffusion in ionic channels

Generally speaking, ionic channels, are macromolecular pores on the mem-
brane of living cells [Hodgkin and Huxley, 1939, 1952; Hille, 1978, 1992; Doyle
et al., 1998]; they regulate the flow of charged ions across the cell membrane,
indeed ionic channels can be thought to have gates that regulate the perme-
ability of the pore to ions. These gates can be controlled by membrane poten-
tial, producing voltage gated channels.

Diffusion in ionic channels [De Schutter and Smolen, 1998] represents an-
other example in which geometrical limitations, due to the boundaries of the
channel, constraint the “normal” evolution of the particles, whose behaviour
is expected to be dominated asymptotically by a Gaussian probability density,
as described in Sec. 1.2 for the case of simple diffusion in one dimension.
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Before to discuss a crude example of diffusion in ionic channels, we recall
briefly the usual way to describe a ionic channel.

The simplest description of a ionic channel can be done by using a kinetic
model [Fall, 2002]. In particular a ionic channel is thought as composed by
two states, respectively closed (C) and open (O). Transitions between these
states are allowed with two transition rates, k+ (C → O transitions) and k−

(O → C transitions) which can be defined through the (constitutive) “law” of
mass action, namely

J+ = k+[C]
J− = k−[O]

where J± are the net flux across the channel and [C] ([O]) the concentration
of molecules in the channel state C (O); typically the concentration can be
expressed as a frequency, that is if there are N channels on the membrane
and NO ≤ N channels are in the open state, then [O] = NO/N. Ionic channels
are composed by lateral chains of charged amino–acid proteins, inducing a
difference potential ∆V across the membrane, which has an influence on the
transition rates, so in agreement with the Arrhenius [Laidler, 1987] law, the
rate transitions will be of the form

k± ∝ e−∆V±/RT

with R the fundamental gas constant an T the absolute temperature. The
influence of the difference potential on the transition rates explains why ionic
channels are also called voltage gated ionic channels. More realistic models
can be found for example in [Hille, 1992; Fall, 2002], in particular the gating
process can be described itself with a diffusive model, see for example Sansom
et al. [1989]; Oswald et al. [1991]; Goychuk and Hänggi [2003].

Once a channel is in the Open state, material can flow from one side to the
other side of a ionic channel. A simple abstraction of the diffusion process
in ionic channels is sketched in Fig. 1.5. Looking to a stationary state and
taking into account only the longitudinal direction (transport direction), i.e.
assuming that the transversal motion equilibrates much more faster than the
longitudinal one, we can write the following problem ∂2C (x)

∂x2 = 0

C (0) = c1; C (L) = c2

whose solution is given by

C (x) = c1

(
1− x

L

)
+ c2

x
L

from which we can extract the flux using the constitutive law (1.1) (Fick’s first
law) J(x) = −D0∂C (x)/∂x:

J(x) =
D0

L
(c1 − c2)
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Figure 1.5: A simple picture of Ionic channel. Adapted from Fall [2002]

The simple picture of diffusion in ionic channels described above has a
series of limitations:

• the geometrical shape of the boundaries is obviously too much idealized;
indeed in nature it is reasonable to expect a non homogeneous boundary
(i.e. with a position–dependent cross section), rather than a perfectly
cylindrical tube (constant cross section), see Chap. 2 and Chap. 5 for a
discussion on this point;

• the typical diffusive time across a space region ∆x along the longitudi-
nal direction is of the order τ ≈ ∆2

x/2D0, that is, the grater is the free
diffusion coefficient D0, the slower is the process, thus the stationarity
of the observed process, on a given length and time scale, depends on
the diffusing materials (see Tab. 1.1) as well as, for example, by the tem-
perature of the background environment, being D0 ∝ T (see Chap. 2);
;

• the assumption of equilibration along the transversal direction is essen-
tially correct when we look at the asymptotic properties. However dur-
ing the pre–asymptotic regime (strongly non stationary), the diffusion
can be modified by the transverse motion, as we will show in Chap. 5,
treating the case a of a non homogeneous channel (see also Chap. 2);

• another limitation is due to the particle–wall interaction, such as sticky
walls, randomized boundary conditions, etc...however we will not dis-
cuss such situations in this Thesis. In the following sections we will
always consider (perfect) reflecting boundaries.
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The above discussion reinforces the idea of diffusive features controlled by
the geometrical constraints; in order to better describe processes like the dif-
fusion in ionic channels or, as we explained in Sec. 1.3, the diffusion in a spiny
dendrite, different types of complex geometric environments must be taken
into account, such as channels with a non homogeneous boundary or compli-
cated branched structures. Further improvements can be done by analyzing a
“moving geometry”, that is all those situations characterized by a dynamical
boundary.

Diffusion in ionic channels and spiny dendrites is clearly not the only ex-
amples inspired by the biology and important from the point of view of the
diffusion occurring in complex geometries. In the following sections we will
describe other situations, such as the implications in studying Brownian mo-
tors [Astumian and Hänggi, 2002; Hänggi et al., 2005; Hänggi and Marchesoni,
2009] or DNA separation.

1.5 other examples : brownian ratchets and dna separation

In 1969 Huxley and Simmons [1971] proposed a theory for how the cross-
bridges in muscle generate the force that drives muscle contraction. Their
model was built around the idea of capturing Brownian fluctuations in an
elastic element to generate a unidirectional force; it was the first application
of the Brownian ratchet [Feynmann et al., 1977] idea to a protein motor.

Roughly speaking, a ratchet is a motor in which the motion is driven di-
rectly by thermal fluctuations and rectified, or biased, by chemical reactions.
Brownian ratchets also defines a large class of problems linked, at least in
some aspects, to the problem of diffusion in non homogeneous channels.

In 2003 Matthias and Müller [2003] showed how a series of one dimensional
pores of a macroporous silicon membrane, etched to obtain a periodically
asymmetric space modulation in their diameters (see left panel of Fig. 1.6),
can work as parallel and multiply stacked Brownian ratchets.

In this type of processes another relevant aspect of diffusion comes into
play, namely the dependence of drift or diffusion from the particle size. As
a consequence, this type of nano–devices can be potentially used for large–
scale particle separations. Microscopic calculations based on the Langevin
equation on ratchets devices [Astumian and Hänggi, 2002; Hänggi et al., 2005;
Hänggi and Marchesoni, 2009] show that there is a closely dependence of the
observed motion on the particle size (at constant pressure), as well as on the
pressure amplitude (at constant particle size). This effect was observed by
Matthias and Müller, so confirming the emergence of non trivial effects when
diffusion properties are controlled by the external geometry.

The same effect due to the diffusing material size is used for example
by Han and Craighead [2000] to obtain DNA separation, see right panel
of Fig. 1.6. In particular the experiment was performed by engineering a
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Figure 1.6: (left) stacked nano channels obtained by etching a series of one dimensional pores
of a macroporous silicon membrane. Adapted from Matthias and Müller [2003];
(right) engineered nano–channel in order to obtain DNA separation. Adapted
from Han and Craighead [2000]

“square–like” non homogeneous nano–channel, whose narrow and wider re-
gions cause the size–dependent trapping of DNA diffusing within the channel
at the onset of a constriction.

1.6 summary and remarks

The mutual link between all the examples treated in the previous sections is
the “geometrical frustration” of the diffusion process due to physical restric-
tions on moving particles. Such restrictions are able to produce astonishing
effects in the diffusion properties.

From the one hand, the engineered ratchets and the square–like channel
described in the last section (see Fig. 1.6), or the geometrical model of spiny
dendrite discussed in Sec. 1.3 (see Fig. 1.4), suggest to study diffusive pro-
cesses within non homogeneous channels.
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On the other hand, the geometrical complexity of the Nature emerges also
in a series of thin and highly ramified structures, which can be frequently
described using fractal (or random fractal) geometries [Stanley and Meakin,
1988]. An example of fractal environment is provided by the chromatin
structure, which can be investigated by neutron scattering [Lebedev et al.,
2008], rheology techniques [Bancaud et al., 2009] and more recently the Hi–C
method [Lieberman-Aiden et al., 2009]. Independently by the used technique
the chromatin revealed a fractal structure characterized by a fractal dimen-
sion which was found in the range 2.2–3. A theoretical model of diffusion in
chromatin which takes into account such fractal structure was worked out by
Bénichou et al. [2011].

Driven by these complementary aspects of the geometrical complexity, we
will present in this thesis a work on the geometric constraints acting on diffu-
sive processes, analyzing both branched structures and continuous channels
with a non homogeneous cross–section.





2
D I F F U S I O N I N C O N F I N E D G E O M E T R I E S

“ We therefore conclude that
the principles of geometry are
only conventions; but these
conventions are not
arbitrary...”

Poincaré [1952]

In the previous chapter we analyzed some physical situations well described
by diffusion, in particular we emphasized the role of the geometric constraints
on such processes.

In this chapter we will take into account the diffusion process within pe-
riodic channels, describing in a more detailed way the mathematical back-
ground.

We consider the Fick–Jacobs description [Jacobs, 1967; Burada et al., 2009]
and its generalizations, based on a one–dimensional effective description strictly
related to a Langevin equation with a non vanishing external potential. Such
potential can be expressed as a function of the boundary profile [Reguera
et al., 2006; Kalinay and Percus, 2006a; Burada et al., 2009, 2010], establishing
the real astonishing idea of an effective transport influenced by an external po-
tential which is only a function of the possible available position–states along
the longitudinal direction.

The idea of the entropic particle transport is complementary to another phe-
nomenological approach, the boundary homogenization [Berezhkovskii et al.,
2004; Makhnovskii et al., 2006; Berezhkovskii et al., 2006, 2009], being it still
characterized by an effective one–dimensional description, however replacing
the non homogeneous boundary with an uniform one, keeping a radiation–
type condition at the boundary with an appropriately chosen trapping rate.

2.1 the langevin equation

Consider the dynamical problem defined by two ensemble of particles, one
composed by particles of mass M (water solution) and the other one com-
posed by particles of mass m, with M � m (colloidal particles). In principle

15
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the equations of motion of the whole system have to be written taking into
account all the canonical variables [Gantmakher, 1970; Goldstein et al., 1950],
however, due to the large numbers of degrees of freedom (N ∼ 1023) in the
problem, a dynamical approach looking at the solution of, generally coupled,
evolution equations is clearly not a feasible way.

Part of the explanation resides in the idea, due to Einstein [1905], that the
random thermal motion of the components on the microscopic level (i.e. wa-
ter constituents) are manifested macroscopically as a pressure. In other words,
the averaged tendency of components to scatter because of their thermal mo-
tions (microscopic description) is also manifested as a pressure, being it the
pressure of an ideal gas or the partial pressure of a gas in a mixture or the
osmotic pressure of a solute in solution (macroscopic description). This idea
is at the heart of the explanation of the random motion observed by Brown
[Brown, 1827] with his microscope, once the pollen grains in the Brown’s ex-
periment are identified with the suspended particles of mass m.

Introducing the random noise experienced by the colloidal particles of mass
m due to the surrounding environment, the Newton’s second law applied to
the suspended particles takes the form [Langevin, 1908; Chandrasekhar, 1943]

m
dv
dt

= −6πµav + ξ(t) (2.1)

with a the radius of the grain (assumed spherically symmetric) and v = dx/dt
its instantaneous velocity; µ is the fluid viscosity, for example the viscosity of
the water in the case of Brown’s experiment. The first term on the right hand
of Eq. (2.1) is called Stokes’ force while the second one is the random force
exerted on the pollen grain by the fluctuating environment. If we do not take
care of the random term in Eq. (2.1), then it is possible to integrate the above
equation, giving

v(t) = v(0) exp (−t/τc)

where τc = m/6πµa is a characteristic relaxation time, that is, when t � τc,
v(t) is practically zero and the grain should appear at rest in the laboratory
reference frame; for the case of a grain of a ∼ 1 µm suspended in water at
room temperature we have τc ∼ 10−7s, which is smaller than the typical re-
action time (∼ 10−1s) of a good experimentalist, so clearly not appreciable
by human eyes, also with the aim of a microscope, implying that we should
see the suspended grains immediately at rest, contrary to the Brown’s ob-
servations. The Stokes’ law alone is not sufficient to describes the Brownian
motion; the stochastic term ξ(t), which summarizes the pressure exerted by
the environment on m, is a reasonable source that can be able to support
the motion. However it is necessary to assume that the typical time scale
on which m is scattered by the molecules contained into the environment, is
smaller than τc. This is a quiet assumption in the Einstein’s work on Brown-
ian motion, however is not less important; indeed the separation of the two
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time scales enables us to treat the random force as a time uncorrelated noise,
independent by the grain position and isotropic, that is, the average 〈xξ〉 on
the number of collisions is reasonably zero1. Typically the scattering time is
of the order ∼ 10−11s, which is smaller than τc = 10−7s, so it is possible to
perform the time scales separation, so multiplying Eq. (2.1) by x and taking
the average we get

1
2

d2

dt2 〈x
2〉 − 〈v2〉 = − 1

2τc

d
dt
〈x2〉+ 1

m
〈xξ〉

At this point Einstein introduced another fundamental assumption: the col-
loidal particles are in thermal equilibrium with the surrounding environment.
This assumption enables us to identify the translational motion of the grain
with a measure of its thermal energy via the relation 〈v2〉 = kBT/m, with kB
the Boltzmann constant and T the thermodynamic temperature. With the aim
of the thermal equilibrium hypothesis we can solve Eq. (2.1) and the result is
given by

〈x2(t)〉 = 2kBT
m

τ2
c

[
t
τc
− (1− e−t/τc)

]
whose asymptotic behaviour (t� τc) is

〈x2(t)〉 = 2D0t (2.2)

with D0 the diffusion coefficient. If we recall that τc = m/6πµa we can express
the diffusion coefficient as

D0 =
kBT

6πµa
=

RT
6NAπµa

(2.3)

with R the fundamental gas constant and NA the Avogadro’s number. Eq. (2.3)
is the celebrated Einstein relation for the diffusion coefficient, it relates a
macroscopic property like D0, which is a measurable quantity, to a micro-
scopic property like the Boltzmann constant kB or Avogadro’s number NA,
implying a strong indication of the discrete nature of the matter. The defini-
tive proof of the atomic hypothesis was worked out by Jean Baptiste Perrin
[Perrin, 1913], who measured the Avogadro’s number NA based on the Ein-
stein theory of Brownian motion.

The relation 〈x2〉 ∼ t implies that the variance of the process becomes in-
finite as t → ∞. This means that the sample paths of Brownian particles
are very variable on the molecular time scales. Thus, it is really difficult
to perform a measure of the instantaneous velocity of a Brownian particle.

1 The condition 〈xξ〉 = 0 and the Eq. (2.1) , actually, were used by Langevin in his work on
Brownian motion and not explicitly by Einstein. In particular the Langevin picture of Brown-
ian motion led to the theory of stochastic calculus, subsequently improved by Wiener [Wiener,
1958], Itô [Itô and McKean, 1974] and Stratonovich [Gardiner, 2009] (see also Chap. 3).
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Nowadays, with the advent of optical tweezers [Block, 1992], it is possible to
measure such instantaneous velocity, thus testing the hypothesis of the time
scales separation, however it is really astonishing that, only after more than
one hundred years, such hypothesis is finally experimentally verified [Li et al.,
2010; Huang et al., 2011; Franosch et al., 2011].

It is interesting to observe that Eq. (2.2) is identical to the Eq. (1.6). This
result suggests that the macroscopic diffusion process described in the previ-
ous chapter can be described by the microscopic stochastic Langevin equation
taken into account in this section (see Chap. 3 for a mathematical review on
this point).

2.2 statement of the problem

Consider a two–dimensional channel with a non homogeneous boundary,
as in Fig. 2.1. Suppose that the channel is filled, for example, by a water solu-
tion together with an ensemble of colloidal particles diffusing into the channel
environment. If we assume that the interaction between the macroscopic sus-

x

y

ω(x) = R+A
2 + A

2 sin
(2πx

L
)

n̂(x)

n̂(x)

A

R/2

L

Figure 2.1: A simple periodic non homogeneous channel

pended particles is negligible as first approximation, then the time evolution
of a colloidal particle of mass m can be explained with the single–particle
Langevin equation

m
d2r
dt2 = −γ

dr
dt
−∇V(r) +

√
2γkBTξt (2.4)

where r = r(x)x̂ + r(y)ŷ + r(z)ẑ is the position vector of the particle, γ > 0 the
viscous friction coefficient, kB the Boltzmann constant (kB = 1,380 6488 (24)×
10−23 J K−1) and V(r) a static conservative external potential 2. The last term

2 The Eq. (2.4) is only a formal way to represent the brownian motion; indeed it can be shown
(see Chap. 3 for a short review) that a stochastic quantity like r(t) is nowhere derivable in the
usual sense [Chorin and Hald, 2009].
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in Eq. (2.4) models the thermal fluctuations of the colloidal particles due to
the coupling with the environment and it is chosen as a Gaussian white noise,
that is

〈ξt〉 = 0, 〈ξ(i)t ξ
(j)
t′ 〉 = δijδ(t− t′), i, j = x, y (2.5)

When the viscous term is very large and therefore |mr̈| � |γṙ|, the result-
ing equation is called overdamped Langevin equation, namely the emerging
dynamics is described by the stochastic model

dr
dt

= −∇V(r)
γ

+
√

2D0ξt (2.6)

where we introduced the free diffusion coefficient D0 = kBT/γ (see Sec. 2.1).
Throughout the present work, we will consider always the overdamped situa-
tion described by Eq. (2.6).

Starting from the microscopic description modelled in Eq. (2.6) it is possible
to derive the partial differential equation which rules the time and space evo-
lution of the probability density P(r, t) to find a particle in a small volume
element dr around r at time t [Risken, 1989; Chorin and Hald, 2009; Gardiner,
2009] (see also Chap. 3) . The equation for the probability density is called
Fokker–Planck equation [Risken, 1989]:

∂P(r, t)
∂t

+∇ · J(r, t) = 0 (2.7)

with J(r, t) the probability current given by

J(r, t) = −
[
∇V(r)

γ
+ D0∇

]
P(r, t) (2.8)

The problem of diffusion in a channel characterized by a non homogeneous
cross–section in the overdamped regime is then fully classified by Eq. (2.7) and
(2.8) together with the appropriate boundary conditions. In order to avoid a
net flux out of the channel, that is, if we assume that there are not sources or
sinks of matter into the channel, the boundary conditions read

J(r, t) · n̂(r) = 0 r ∈ Channel wall (2.9)

with n̂(r) the outgoing local versor from the channel walls (see Fig. 2.1). This
condition is generally referred to as no–flux boundaries.

The normal versor reads

n̂(x) =
1√

1 +
(

dω
dx

)2

(
−dω

dx
x̂ + ŷ

)
(2.10)

where ω(x) is a smooth function which represents the boundary profile, see
Fig. 2.1. If we take the external potential everywhere zero, V(r) = 0, the
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explicit analytical form of the problem which fully describes the overdamped
motion is given by 

∂tP(r, t) = D0∇2P(r, t)
∂P(r,t)

∂y

∣∣∣
y=ω(x)

= dω
dx

∂P(r,t)
∂x

∣∣∣
y=ω(x)

∂P(r,t)
∂y

∣∣∣
y=0

= 0

(2.11)

Further generalizations to the three–dimensional case, as long as to a sym-
metric channel around the longitudinal axis, are straightforward, see for ex-
ample Sec. 2.4 for a brief discussion on this point.

In the case of a periodic channel shape characterized by the spatial period
L, it is useful to renormalize the physical position and time as [Burada et al.,
2009]

r→ r
L

, t→ kBT
L2γ

t

in order to obtain the dimensionless Langevin equation

dr
dt

= −∇V(r) +
√

2ξt

where the dimensionless potential is defined as V(r) = V(r)/kBT.

2.3 mapping the problem along the longitudinal direction

The problem formulated in Eq. (2.11), in general, has no analytical solution.
One of the possible approximation for the long time behaviour is to consider
an effective equation which describes the motion along the longitudinal direc-
tion, so an effective one–dimensional problem. Such an approximation can
be done by observing that along the longitudinal direction the quantity of
interest is the marginal density G (x, t) which in two spatial dimensions reads

G (x, t) =
∫ ω(x)

0
dy P(x, y, t) (2.12)

To find an equation for the marginal density G (x, t) we work , just for
simplicity, with dimensionless units, considering V(r) = 0 everywhere and
following the one–dimensional reduction of the problem explained by Kalinay
and Percus [2005a, 2006b].

Integrating P(r, t) on y from 0 to ω(x) we get

∫ ω(x)

0
dy

∂

∂t
P(x, y, t)−

∫ ω(x)

0
dy

∂2

∂x2 P(x, y, t)−
∫ ω(x)

0
dy

∂2

∂y2 P(x, y, t) = 0
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The first term yields simply ∂tG (x, t), the third term is the integral of an exact
differential, so we have∫ ω(x)

0
dy

∂2

∂y2 P(x, y, t) =
∂P(x, y, t)

∂y

∣∣∣∣
y=ω(x)

− ∂P(x, y, t)
∂y

∣∣∣∣
y=0

If we use the boundary conditions in Eq. (2.11) the third term becomes∫ ω(x)

0
dy

∂2

∂y2 P(x, y, t) =
dω

dx
∂P(r, t)

∂x

∣∣∣∣
y=ω(x)

Finally the second term has to be calculated by remembering the differen-
tiation rule about an integral whose extremes depend on the differentiation
variable. In particular, let us consider the function G (x, t) defined in Eq. (2.12).
If we take the derivative with respect to x and use the boundary conditions
in (2.11), we find

∂G

∂x
=
∫ ω

0
dy

∂P

∂x
+

dω

dx
P

∣∣∣∣
y=ω(x)

and so the second derivative takes the form

∂2G

∂x2 =
∫ ω

0
dy

∂2P

∂x2 + 2
dω

dx
P

∣∣∣∣
y=ω(x)

+
d2ω

dx2 P

∣∣∣∣
y=ω(x)

From the last relation we have∫ ω

0
dy

∂2P

∂x2 =
∂2G

∂x2 − 2
dω

dx
P

∣∣∣∣
y=ω(x)

− d2ω

dx2 P

∣∣∣∣
y=ω(x)

Putting all together the equation for the marginal density can be written as

∂G (x, t)
∂t

=
∂2G (x, t)

∂x2 − ∂

∂x

[
dω(x)

dx
P(x, ω(x), t)

]
(2.13)

The one dimensional mapping on the longitudinal direction of the original
two–dimensional Fokker–Planck equation is given by Eq. (2.13). In order to
solve it, we have to take the appropriate boundary conditions at the channel
ends, which we will take always at x = ±∞ 3. However the boundary con-
ditions are the last of our problems, indeed the mapped equation does not
appear in a closed form and to find the marginal density we have to know the
original probability density P , at least the values that it takes on the channel
walls.

The problem to find an expression for P(x, y, t) in terms of the marginal
density G (x, t) was perturbatively solved by Kalinay and Percus [Kalinay and
Percus, 2006a] (see also Sec. 2.8), however the solution is, in its general form,

3 This assumption embodies the notion of a finite channel which is much more greater than
the longitudinal distance covered by the colloidal particles during the observation time.
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too complicated for practical calculations, so other types of approximations
and assumptions need to be taken in account; for example, the Fick–Jacobs
[Jacobs, 1967] approximation and its generalizations [Burada et al., 2009, 2008]
(see also Sec. 2.4, 2.6, 2.7 and 2.8) or the phenomenological approach due
to Berezhkovskii et al. [2004]; Makhnovskii et al. [2006]; Berezhkovskii et al.
[2006, 2009], called boundary homogenization (see also Sec. 2.10).

2.4 the fick–jacob approximation

The simplest approach to close the hierarchy in Eq. (2.13) comes by assum-
ing a local structure of the full probability density in the form [Jacobs, 1967;
Zwanzig, 1992]

P(x, y, t) ≈ φ(y|x)G (x, t)

with φ(y|x) the probability density to get a particle in a small volume element
dy around y, given a local position x on the longitudinal axis. The last equa-
tion simply assumes that at every instant of time, on a fixed transversal section
ω(x), the transversal and longitudinal motions are completely disentangled.
In particular it is reasonable to assume that, after a finite relaxation time τy,
the transversal motion becomes stationary and, on every transversal section
of the channel, equilibrates to the uniform distribution φ(y|x) = 1/ω(x), thus
giving

P(x, y, t) ≈ G (x, t)
ω(x)

(2.14)

The assumption of local equilibrium along the transversal sections of the
channel works well only if ∣∣∣∣dω(x)

dx

∣∣∣∣� 1

as was firstly pointed out by R. Zwanzig [Zwanzig, 1992]. A way to under-
stand this restriction is obtained by viewing at the normal versor n̂(x) to the
channel walls in Eq. (2.10). One can argue that, for the limiting case of a flat
cylindrical channel, the second term on the right hand of Eq. (2.13) will be
zero after the equilibration of the probability density along the transversal di-
rection. Moreover in this case this equilibration does not depend on the partic-
ular position on the “x” axis, due to the fact that the simple cylindrical channel
is homogeneous, that is the processes along the transversal and longitudinal
directions are completely independent. On the other hand, when n̂(x) =
o(x)x̂ + ŷ, that is, when the local versor normal to the channel is almost along
the transversal direction, a condition verified only if |dω(x)/dx| � 1, it is rea-
sonable to assume that the equilibration along the transversal direction will
be still like the simple flat channel, justifying the assumption in Eq. (2.14).

The equilibration assumption along the transversal direction is also linked
to the typical relaxation time τy, as showed by Burada et al. [2009, 2007, 2008].
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Indeed the typical time scale τy of diffusion on the transversal direction over
a distance ∆y will be given by

τy ≈
∆2

y

2D0

and at the same manner along the longitudinal direction

τx ≈
∆2

x
2D0

The condition of local equilibrium along the transversal sections of the chan-
nel will result in the condition τy/τx � 1, that is

∆2
y

∆2
x
≈
(

dω

dx

)2

� 1

which clearly is the same result pointed out above, however this heuristic ar-
gument has the great value to elucidates in a really clear manner the relation
between the validity of the assumption in Eq. (2.14) with the relaxation time
along the transverse direction; moreover, can be immediately generalized to
the case of a non vanishing external potential, leading to more stringent va-
lidity criteria for the FJ approximation [Burada et al., 2007], see also Sec. 2.9.

Assuming the local equilibrium condition, Eq. (2.13) becomes

∂G (x, t)
∂t

=
∂

∂x

{
ω(x)

∂

∂x

[
G (x, t)
ω(x)

]}
(2.15)

which is the so called Fick–Jacobs (FJ) equation.
It is interesting to observe that the FJ equation can be expressed in the

equivalent form

∂G (x, t)
∂t

= − ∂

∂x

[
dV(x)

dx
G (x, t)

]
+

∂2G (x, t)
∂x2 (2.16)

which has the same mathematical structure of Eq. (2.7) characterized by the
“external” potential given by V(x) = − ln ω(x). This result is really interest-
ing, indeed the particle motion is completely free, however the one dimen-
sional reduction of the problem leads to a biased diffusion and the external
field is pure entropic, namely it depends only by the geometry of the system.
For this reason, frequently, transport in a non homogeneous channel is also
called entropic particle transport [Reguera et al., 2006].

The generalization to a two–dimensional channel, symmetric respect to the
longitudinal axis (i.e. the “x” axis in Fig. 2.1), can be made observing that in
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Figure 2.2: An example of entropic potential (red line), together the boundary profile
(black line)

this case we have two boundaries, say ±ω(x)
(
ω(x) > 0, ∀x ∈ R

)
and so the

problem in Eq. (2.11) must be replaced with the problem
∂tP(r, t) = D0∇2P(r, t)
∂P(r,t)

∂y

∣∣∣
y=+ω(x)

= + dω
dx

∂P(r,t)
∂x

∣∣∣
y=+ω(x)

∂P(r,t)
∂y

∣∣∣
y=−ω(x)

= − dω
dx

∂P(r,t)
∂x

∣∣∣
y=−ω(x)

The relative marginal density now takes the form

G (x, t) =
∫ +ω(x)

−ω(x)
dy P(x, y, t)

and the resulting 1D model will be the same as in Eq. (2.15), where now the
transversal section ω(x) is replaced by the function σ(x) = 2ω(x) for the two–
dimensional case, being ±ω(x) respectively the upper and lower boundary of
the symmetric channel 4.

The three–dimensional case can be treated at the same manner; the final
result, for a symmetric channel respect to the longitudinal direction, is another
time in the form of Eq. (2.15), where now ω(x) must be replaced with the
transversal section of the 3D channel, i.e. σ(x) = πω2(x). From now on we
will always treat the case of a 2D channel.

4 Actually, in order to get this result, it must be assumed that, given the symmetry of the chan-
nel with respect the longitudinal axis, then P(x, ω(x), t) = P(x,−ω(x), t). This assumption
is reasonable as long as there are no external field acting along the transversal direction,
whereas the assumption remains correct if the external field has its only component along
the longitudinal direction.
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2.5 a multiscale analysis of the fj diffusion equation

The FJ equation is the first approximation to the problem of entropic parti-
cles transport within periodic channels. Before to proceed with other types of
improved approximations we present here a multiscale analysis of Eq. (2.16).

Consider the general case of a periodic entropic potential V(x) = V(x +
1), being 1 the period in dimensionless units. Our intuitive idea is related
to the fact that the periodic potential like that depicted in Fig. 2.2 acts as a
confining one, trapping the motion of the particles for a certain time, before
the transport continues to go on along the longitudinal direction. Following
this idea, we can suppose that there is a fast motion on the length scale x
and a slow motion on the length scale Z = εx, with ε > 1. In addition, we
introduce two time scales, the first one is τ = εt, intuitively associated with
the emergence of a longitudinal drift with a constant velocity, the second one
is Σ = ε2t, associated to a diffusive motion on the length scale Z; the idea is
that on the scale Z, Eq. (2.16) can be recast by an effective diffusion equation
of the form

∂ψ(Z, Σ)
∂Σ

= Deff
∂2ψ(Z, Σ)

∂Z2

with Deff an effective diffusion coefficient expected to be lower than 1, which
is the value of the free diffusion coefficient D0 within the dimensionless units
used in the present section. We solve the problem in a single period, assuming
periodic boundary conditions; the periodic boundary conditions embody the
notion that solving the problem in a given period must be the same as solving
the problem in another period; in addition we ignore boundary effects, that
is, we assume −∞ < x < +∞.

The multiscale analysis proposed in this section is a standard technique in
solving partial differential equation, see for example [Johnson, 2005]. Here we
apply this technique to derive Deff, focusing on the reasoning which reinforces
the notion of two types of motion mixed in the same system. The marginal
density G (x, t) can be seen as a function G (x, Z, t, τ, Σ) that we can put in the
form

G (x, Z, t, τ, Σ) =
∞

∑
n=0

εnG (n)(x, Z, t, τ, Σ) (2.17)

Moreover the differentiation rules have to be changed as

∂

∂t
→ ∂

∂t
+ ε

∂

∂τ
+ ε2 ∂

∂Σ
∂

∂x
→ ∂

∂x
+ ε

∂

∂Z
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Substituting Eq. (2.17) in Eq. (2.16) and equating all the terms of the same
order in ε we obtain the follow hierarchy

∂G (n)

∂t
+

∂G (n−1)

∂τ
+

∂G (n−2)

∂Σ
=

∂

∂x

[
dV
dx

G (n)
]

+
∂

∂Z

[
dV
dx

G (n−1) + 2G (n−1)
]

+

[
∂2G (n)

∂x2 +
∂2G (n−2)

∂Z2

] (2.18)

where we defined G (n) = 0 for n < 0. To the order zero we get the equation

∂G (0)

∂t
=

∂

∂x

[
dV
dx

G (0)
]
+

∂2G (0)

∂x2 (2.19)

which contains only the function G (0), this means that the hierarchy in Eq. (2.18)
is closed and, in principle, it is possible to solve the multiscale problem to ev-
ery order in ε

ORDER ε0

To the order zero in ε we have to solve the equation Eq. (2.19). In particular
due to the fact that we are looking for a solution on large length and time
scales, we can focus only on the stationary solution, that is on the equation

∂

∂x

[
dV
dx

G (0) +
∂G (0)

∂x

]
= 0

which gives immediately

dV
dx

G (0) +
∂G (0)

∂x
= −J (2.20)

with J a constant. Now, let us define the function

P(x) =
e−V(x)∫ 1

0 dz e−V(z)

which is the normalized solution obtained by solving the homogeneous equa-
tion (i.e., J = 0); moreover, observe that Eq. (2.20) can be written in terms of
P(x) as

−J = − 1
P

∂P
∂x

G (0) +
∂G (0)

∂x
Dividing both sides of the last equation by P (which we assume always differ-
ent from zero) we get

− J
P(x)

=
∂

∂x

(
G

P

)
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that is, integrating from x = 0 to x = 1, namely, integrating on a period in
dimensionless units, we find

−J
∫ 1

0

dx
P(x)

=
G (0)

P

∣∣∣∣∣
1

0

By using the periodic boundary conditions imposed to the problem, we find
the solubility condition J = 0. This condition implies that G (0) will be propor-
tional to P(x), where the proportionality constant will be a function indepen-
dent from the fast variables x and t, thus

G (0) = P(x)ψ(Z, τ, Σ)

The function ψ(Z, τ, Σ) can be determined by looking at higher orders in the
perturbation series.

ORDER ε1

To the order one, the equation for G (1) is given by

∂G (1)

∂t
+

∂G (0)

∂τ
=

∂

∂x

[
dV
dx

G (1)
]
+

∂2G (1)

∂x2

+
dV
dx

∂G (0)

∂Z
+ 2

∂2G (0)

∂x∂Z
As usual, we neglect the derivative with respect to the fast variable t, so inte-
grating both sides of the equation on a period and using the periodic bound-
ary conditions we find

∂ψ

∂τ
= veff

∂ψ

∂Z
which corresponds to a simple transport equation on the length scale Z and
time scale τ, with an effective drift velocity given by

veff =

∫ 1
0 dx dV

dx e−V(x)∫ 1
0 dz e−V(z)

∝ e−V(x)
∣∣∣1
0
= 0

being V(x) = V(x + 1); for example we have ∂ψ/∂τ = 0, from which follows
that ψ = ψ(Z, Σ) is only a function of the slow variables. Finding an effective
equation for this function is the goal of the perturbation analysis to the second
order.

Now we can solve the equation for G (1), obviously the derivative with re-
spect to τ is not present, thanks to the above reasoning, while the derivative
with respect to the fast variable t, will be neglected due to the fact that we are
searching for a solution on the time scale Σ� t; we have

− ∂

∂x

[
dV
dx

G (1)
]
− ∂2G (1)

∂x2 =

[
dV
dx

P(x) + 2
∂P(x)

∂x

]
∂ψ

∂Z
(2.21)
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The last equation can be solved, for example, by taking a solution in the form

G (1) = Ω(x)
∂ψ(Z, Σ)

∂Z

Substituting in Eq. (2.21) and remembering the result obtained to the order
zero, i.e.

dV
dx

P +
∂P
∂x

= −J = 0

we get
∂

∂x

[
dV
dx

Ω(x, t) +
∂Ω(x, t)

∂x
+ P

]
= 0

which identifies another time a constant, say J̃, given by the expression be-
tween the square brackets in the last equation. Remembering that

dV
dx

= − 1
P(x)

∂P
∂x

we can also write J̃ as

− 1
P(x)

∂P
∂x

Ω(x, t) +
∂Ω(x, t)

∂x
+ P = J̃

from which, dividing both sides by P(x) follows

∂

∂x

(
Ω
P

)
=

J̃
P
− 1 (2.22)

By taking another time the integral of the last equation on a period and ap-
plying the periodic boundary conditions it is simple to show that

J̃ =
1∫ 1

0 dx 1
P(x)

(2.23)

At this point the first order solution in ε follows immediately from Eq. (2.22),
indeed by direct integration we find the (stationary) solution

Ω(x) = P(x)


∫ x

0 dx̃ 1
P(x̃)∫ 1

0 dz 1
P(z)

− x +
Ω(0)
P(0)


thus giving

G (1)(x, Z, Σ) = Ω(x)
∂ψ(Z, Σ)

∂Z
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ORDER ε2

Finally we see the equation to the order ε2, it is given by

∂G (2)

∂t
+

∂G (0)

∂Σ
=

∂

∂x

[
dV
dx

G (2) + 2
∂G (1)

∂Z

]

+
∂

∂x

[
dV
dx

G (1)
]

∂2G (2)

∂x2 +
∂2G (0)

∂Z2

As usual, we neglect the fast variable t and integrate both sides on x from 0
to 1, thus using the periodic boundary conditions we find finally the equation
for the slow variables Z, Σ

∂ψ

∂Σ
=

[
1 +

∫ 1

0
dx Ω(x)

dV
dx

]
∂2ψ

∂Z2

Remembering the equation for J̃ explained to the first order in ε, say

Ω(x)
dV
dx

=
1∫ 1

0 dx 1
P(x)

− ∂Ω
∂x
− P

and using the usual periodic boundary conditions, we get the final effective
equation for the slow variables

∂ψ(Z, Σ)
∂Σ

= Deff
∂2ψ(Z, Σ)

∂Z2 (2.24)

Deff =
1∫ 1

0 dx eV(x)
∫ 1

0 dz e−V(z)
(2.25)

The above reasoning shows that under the validity of the FJ approxima-
tion we expect asymptotically in time and on large scales, an effective motion
which along the longitudinal direction appears as a standard diffusive one,
with an effective diffusion coefficient given by Eq. (2.25), see Chap. 5 for nu-
merical verifications of this result compared to our results.

Restoring all the physical units, the above analysis shows that if we take
V(x) = −kBT ln σ(x) and we introduce the notation

〈 f (x)〉 = 1
L

∫ L

0
dx f (x)

with f (x) = f (x + L), then the effective diffusion coefficient can be put in
the usual form explained through the Lifson–Jackson formula [Lifson and
Jackson, 1962], that is

Deff =
D0

〈σ(x)〉
〈

1
σ(x)

〉 (2.26)
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2.6 the zwanzig treatment of the fj equation

Zwanzig [Zwanzig, 1992] was the first who proposed an improvement of
the FJ equation. In particular by leaving the local equilibrium assumption,
Zwanzig showed that FJ equation has to be modified with the equation

∂G (x, t)
∂t

=
∂

∂x

{
D(x)σ(x)

∂

∂x

[
G (x, t)
σ(x)

]}
(2.27)

with D(x) a microscopic position–dependent diffusion coefficient. We refer
to the literature [Zwanzig, 1992] for an exhaustive treatment of the Zwanzig
reasoning, which is a perturbative expansion performed assuming “small”
perturbations from the local equilibrium condition. Here we want just to
show how Eq. (2.27), characterized by a generalized microscopic diffusion
coefficient, can be used to go beyond the local equilibrium condition, strictly
related with the FJ equation.

The starting point is to write the full probability density as

P(x, y, t) =
G (x, t)
σ(x)

+ δP(x, y, t) (2.28)

with δP(x, y, t) a perturbation such that the condition (“small” perturbations)

σ(x)δP(x, y, t)
G (x, t)

� 1 (2.29)

holds for every space point (x, y) and for every instant of time t. Using
Eq. (2.13) with P(x, y, t) given by (2.28), we obtain Eq. (2.27) with D(x) given
by

D(x) = 1 +
∂δP

∂(G /σ)

with ∂δP/∂(G /σ)� 1, due to the condition above.
The above reasoning explains well how, by leaving the local equilibrium

assumption, a position–dependent microscopic diffusion coefficient naturally
comes into play, thus generalizing the FJ approach [Jacobs, 1967]. However
the calculation of D(x) is all another history and, up to now, it does not exist
a general accepted analytical expression for D(x), also if a series of proposals
was done by various authors [Zwanzig, 1992; Reguera and Rubí, 2001; Kalinay
and Percus, 2006a], as we will explain better in the next sections.

The Zwanzig’s [Zwanzig, 1992] calculation about the microscopic diffusion
coefficient D(x) is based on the analysis of the evolution equation for the
fluctuation δP(x, y, t), in particular he showed that when the condition (2.29)
is fulfilled, then we can write D(x) as

DZw(x) =
D0

1 + θ
(

dω
dx

)2 (2.30)
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with θ = 1/3, 1/2, respectively in two and three spatial dimensions. Observe
that we used the subscript “Zw” in order to distinguish the Zwanzig result
from others calculation and proposals for the microscopic diffusion coeffi-
cient.

The Eq. (2.26) for the effective diffusion coefficient can be generalized to
those cases characterized by a non local microscopic diffusion coefficient D(x).
The result is given by the modified LJ formula [Lifson and Jackson, 1962]

Deff =
1

〈σ(x)〉
〈

1
D(x)σ(x)

〉
The same result was also derived by Martens et al. [2011] using perturbabive
techniques and by Reimann et al. [2001] analyzing the nth moment of the first
passage time from a point a to b > a for a stochastic trajectory obeying the
overdamped Langevin equation with an external periodic potential.

To conclude this section, we observe that small fluctuations of the probabil-
ity density “around” the local equilibrium condition, are not enough to justify
the Zwanzig treatment. Indeed in order to have a nearly one–dimensional mo-
tion, the linear size of a single cell must be greater than the linear dimension
of the transversal pores, that is L� R/2, see Fig. 2.1.

2.7 the heuristic argument of reguera and rubí

The Zwanzig’s perturbative reasoning on the generalization of the FJ equa-
tion, reinforces the idea that Eq. (2.27) is essentially the correct one to de-
scribe the longitudinal diffusive motion within non homogeneous channel,
once more deeper approximations for D(x) to higher orders in the fluctua-
tions from local equilibrium assumption can be worked out. By giving an
heuristic argument Reguera and Rubí firstly suggested a possible generaliza-
tion of Zwanzig’s result [Reguera and Rubí, 2001].

Practically it is well known that the microscopic diffusion coefficient D0 for
the free case determines the particle displacement (∆r)2 = ∆x2 + ∆y2 in the
plane, that is

D0 ≈
(∆r)2

t
=

∆x2
[

1 +
(

∆y
∆x

)2
]

t

This relation implies that if we map the two–dimensional motion along the
longitudinal direction, the effects of the entropic potential have to be taken in
account as a consequence of the re–scaling of the microscopic diffusion coef-
ficient from D0 to D ≈ D0/[1 + (∆x/∆y)2] so, in particular, the microscopic
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diffusion coefficient D(z)/D0 should be a function h(z) of the z variable only,
defined by the relation

D
D0

= h(z), z =
1

1 +
(

dω
dx

)2

Reguera and Rubí proposed for the function h(z) the power law relation
[Reguera and Rubí, 2001] h(z) = zα By expanding the suggested result in
terms of (dω/dx)2 and comparing it with the Zwanzig’s result follows that
a reasonable choice for the exponent α is given by α = 1/3 for the 2D case5.
The final expression of the Reguera and Rubí (RR) local diffusion coefficient
is then given by

DRR(x) =
D0[

1 +
(

dω
dx

)2
]1/3 (2.31)

2.8 the perturbative approach of kalinay and percus

In the previous sections we showed that the concept of entropic potential
naturally comes into play when we consider a diffusion problem within non
homogeneous periodic channels. We also analyzed the FJ equation perturba-
tively, using a multiscale analysis and showing how this analysis highlights
the fact that FJ equation can be seen asymptotically as a simple effective dif-
fusion equation with an appropriate diffusion coefficient Deff. The problem is
how we can go beyond the FJ approximation, considering also those channel
shapes such that |dω(x)/dx| > 1, that is, by leaving the local equilibrium
condition hypothesis.

The perturbative way to find the solution is due to Kalinay and Percus [Kali-
nay and Percus, 2005a,b, 2006a,b, 2008]. In particular they split the diffusion
coefficient D0 in two pieces, a transversal one Dy = D0/ε (ε� 1) and a longi-
tudinal one Dx = D0. This “trick” is equivalent to the scaling of y and ω(x)
by
√

ε and leads to the diffusion equation in the form

∂P(x, y, t)
∂t

=

(
∂2

∂x2 +
1
ε

∂2

∂y2

)
P(x, y, t) (2.32)

where the time is also rescaled according to the relation D0t→ t.
We refer for simplicity to Fig. 2.1 in order to simplify the boundary condi-

tions (BCs); indeed, in this case, the transversal section σ(x) is equivalent to
ω(x) and the BCs read:

∂yP(x, y, t)
∣∣∣
y=ω(x)

= εω′(x)∂xP(x, y, t)
∣∣∣
y=ω(x)

∂yP(x, y, t)
∣∣∣
y=0

= 0

5 For the 3D case the result is α = 1/2
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The mapped equation along the longitudinal direction takes the same form
as in Eq. (2.13), that is

∂G (x, t)
∂t

=
∂2G (x, t)

∂x2 − ∂

∂x

[
ω′(x)P(x, ω(x), t)

]
(2.33)

If ε → 0 the transverse relaxation is so fast that P(x, y, t) is flat in the
transverse direction, namely P(x, ω(x), t) ≈ G (x, t)/ω(x) and the Eq. (2.33)
leads to the FJ equation (see Sec. 2.3 and Sec. 2.4).

When ε > 0 the transverse relaxation is slower and P(x, y, t) becomes
curved in the transverse direction and the local equilibrium assumption has
to be replaced with the more general hypothesis

P(x, y, t) = Q̂(x, y, ∂x)
G (x, t)
ω(x)

where Q̂(x, y, ∂x) is the so called operator of backward mapping. Due to
the fact that we are looking for a model in the stationary regime along the
transverse direction, Kalinay and Percus assume

• Q̂(x, y, ∂x) does not depend on time, hence

∂Q̂(x, y, ∂x)

∂t
= Q̂(x, y, ∂x)

∂

∂t

• Q̂(x, y, ∂x) satisfies the unitary relation

1
ω(x)

∫ ω(x)

0
dy Q̂(x, y, ∂x)

G (x, t)
ω(x)

=
G (x, t)
ω(x)

• Q̂(x, y, ∂x) can be expanded in ε as

Q̂(x, y, ∂x) = 1 +
∞

∑
k=1

εkQ̂k(x, y, ∂x) (2.34)

Substituting Eq. (2.34) into Eq. (2.32) we get
∞

∑
k=0

εk+1
(

∂

∂t
− ∂2

∂x2 −
1
ε

∂2

∂y2

)
Q̂k(x, y, ∂x)

G (x, t)
ω(x)

= 0

with Neumann BCs at y = 0 and y = ω(x), namely

∂G (x, t)
∂t

=
∂

∂x

[
∂ω(x)

∂x
−ω′(x)

∞

∑
k=0

εkQ̂k(x, y, ∂x)

]
G (x, t)
ω(x)

=

=
∂ω(x)

∂x

(
1−

∞

∑
k=1

εkẐk(x, ∂x)

)
∂

∂x
G (x, t)
ω(x)

In the last equation it was defined another differential operator Ẑ(x, ∂x), re-
lated to the operator Q̂ by the recurrence relations
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i)
∂2Q̂k+1

∂y2 = − ∂2

∂x2 Q̂k −
k

∑
s=0

Q̂k−s
1

ω(x)
∂

∂x
ω(x)Ẑk

∂

∂x

ii)

Ẑk
∂

∂x
=

ω′(x)
ω(x)

Q̂k, k > 0

The recurrence relations can be used to find Q̂k. The starting point is the
case with k = 0 which gives Q̂0 = 1 and Ẑ0 = −1; observe that in this case
we recover the simple FJ description. To perform higher order corrections we
have to use the recurrence relations, using the BCs and the unitary assumption
on Q̂ to fix the integration constants at the double integration of ∂2

yQ̂k+1. The
final result of this calculation gives

∂G (x, t)
∂t

=
∂

∂x

{
ω(x)D̂(x)

∂

∂x
G (x, t)
ω(x)

}
(2.35)

The microscopic diffusion coefficient D̂(x) appearing in Eq. (2.35) can be now
expressed as [Kalinay and Percus, 2006a]

D̂(x) = 1− ε

3
ω′2

+
ε2

45

[
9ω′4 + ωω′2ω′′ −ω2ω′ω(3)

]
− ε3

945

[
135ω′6 + 45ωω′4ω′′ + · · ·

]
+ · · ·

(2.36)

As a first approximation it is possible to consider only the “linear” terms in
Eq. (2.36) (highlighted in green), that is all those terms expressed as a linear
function of the profile or its first derivative. In particular we have

D̂(x) ≈ DKP(x) =
∞

∑
k=0

(−ε)k

2k + 1
ω′2k (2.37)

Remembering that the expansion was executed by scaling the transversal di-
rection with the factor

√
ε and coming back to the original units we get the

final result

DKP(x) = D0
arctan

[
ω′(x)

]
ω′(x)

(2.38)

obtained by summing up the the series in Eq. (2.37)
Repeating the reasoning for a 3D channel which is symmetric about its

longitudinal axis leads to the microscopic diffusion coefficient given by the
formula

D(3D)
KP (x) = D0

1√
1 + [σ′(x)]2
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where σ(x), as usual, is the local transversal section. It is interesting to observe
that the last expression is exactly the same expression obtained heuristically
by Reguera and Rubí [Reguera and Rubí, 2001] for the three–dimensional
case. However when we consider a two dimensional channel, the Eq. (2.38) is
different from the Eq. (2.31).

Further observations about the Kalinay and Percus (KP) perturbative treat-
ment need to be carried out at this point:

• the series expansion of D(x) contains a lot of terms emerging as linear
and non linear combinations of the boundary derivatives and despite the
fact that the “linear” approximation used to calculate DKP(x) converges,
it is not obvious that the entire series presents the same convergence
property.

• The procedure is based on the assumption that ω(x) is a smooth func-
tion, infinitely differentiable, thus implying that for a sharp channel, like,
for example, those treated in Chap. 5, the singularities in the boundary
profile invalidate the KP approach.

• Some periodic channels, also if they are not differentiable, can be how-
ever expanded in Fourier series, which is differentiable term by term and
in this limit it is possible to think that the Kalinay and Percus approach
can be recovered, however if ω(x) is a multivalued function of the space
point (see for example Chap. 5) the Kalinay and Percus treatment fails.

2.9 asymptotic non linear mobility

In this section, we consider the overdamped stochastic Lagevin dynamics
within a periodic channel in the case of a non vanishing external field given by
V(r) = −F · r with F = f x̂ The stochastic equation describing such dynamics
is given by (See Sec. 2.2).

dr
dt

=
f
γ

x̂ +
√

2D0ξt (2.39)

with D0 = kBT/γ the free diffusion coefficient and considering no–flux bound-
aries.

The one–dimensional reduction of the Fokker–Planck equation related to
the Eq. (2.39) can be immediately worked out, extending the previous reason-
ing on the unbiased case to the biased dynamics considered in this section
[Burada et al., 2009]. The resulting equation is given by

G (x, t)
∂t

=
∂

∂x

{
D(x)

[
∂G (x, t)

∂x
+

U′(x)
kBT

G (x, t)
]}

(2.40)

The free energy U(x) = E(x)− TS(x) is made up of a contribution due to the
external applied field, E(x) = − f x, and an entropic term S(x) = kB ln σ(x),
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with σ(x) the transversal section of the channel. The local diffusion coefficient
D(x) can be considered as DZw(x) (Eq. (2.30)), DRR(x) (Eq. (2.31)) and DKP(x)
(Eq. (2.38)) and in principle there is not a way to know what is the best choice
which ensures a good matching with the simulated data.

One of the key quantities to describe the behaviour of a diffusive process
within a quasi one–dimensional structure is the average particle current 〈ẋ〉
[Marchesoni, 2010], useful to define the mobility as the ratio between the
averaged current and the applied external field f , namely

µ =
〈ẋ〉

f
(2.41)

To find an asymptotic analytical expression for the mobility in terms of the
external geometrical parameters, applied field and temperature, we follow
Burada et al. [2007]. The Eq. (2.40) results from the continuity equation

∂G (x, t)
∂t

= −∂J(x, t)
∂x

where the probability current can be expressed in the form

J(x, t) = −D(x) e−βU(x) ∂

∂x
eβU(x)G (x, t), β =

1
kBT

All the proposed microscopic diffusion coefficients are periodic smooth func-
tions. Indeed they can be expressed in terms of σ(x) and/or its first deriva-
tives; in particular σ(x) is a function of the periodic boundary profile ω(x) =
ω(x + L). Another immediate property is related to the free energy U(x);
more specifically we have U(x + L) = U(x)− β f L, that is, U(x) is a tilted pe-
riodic potential [Constantini and Marchesoni, 1999; Hänggi and Marchesoni,
2009; Hänggi et al., 2005], so it is convenient to introduce the (reduced) quan-
tities (k ∈ Z)

G(x, t) = ∑
k

G (kL + x, t)

J (x, t) = ∑
k

J(kL + x, t)

The above quantities are periodic by definition. Moreover, provided that
G (x, t) is normalized to the unity on R, then G(x, t) is normalized on [0, L]
(and more generally on [x0, x0 + L]). Asymptotically in time, the current is
expected to reaches a steady state value, so J (x, t) = Jst, with Jst a constant.
Similarly G(x, t) approaches a steady state density Gst(x) and we have

Jst = −D(x) e−βU(x) ∂

∂x
eβU(x)Gst(x)

Multiplying both sides of the last equation by eβU(x)/D(x) and integrating
over a channel period we get

Jst

∫ x0+L

x0

dx′
eβU(x′)

D(x′)
=
∫ x0+L

x0

dx′
∂

∂x′
eβU(x′)Gst(x′)
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Using the conditions Gst(x) = Gst(x + L) and U(x + L) = U(x)− β f L the last
equation can be written as

Jst

∫ x0+L

x0

dx′
eβU(x′)

D(x′)
= Gst(x)(1− e−β f L) eβU(x)

which, after rearranging the terms and integrating from 0 to L gives

Jst =
(1− e−β f L)∫ L

0 dx e−βU(x)
∫ x0+L

x0
dx′ eβU(x′)

D(x′)

(2.42)

Now, recall that the general relation between the asymptotic averaged ve-
locity 〈ẋ〉 and the steady current is given by

〈ẋ〉 =
∫ L

0
dx Jst = JstL

thus from Eq. (2.42) we get the final result

µ( f , L, β) =
L(1− e−β f L)

f
∫ L

0 dx e−βU(x)
∫ x0+L

x0
dx′ eβU(x′)

D(x′)

(2.43)

which is also the same result derived by [Reguera et al., 2006] using the mean
first–passage time approach.

The picture 2.3 shows the comparison between the analytical expression in
Eq. (2.43) and the simulation results, as performed by Burada et al. [2009],
taking as D(x) the microscopic diffusion coefficient (in two space dimen-
sion) proposed by Reguera and Rubí, DRR(x) (Eq. (2.31)) and considering
2πω(x) = A[sin(2πx/L) + R] with L = 1, R = 1.02 and A = 1. The authors
highlight how the mobility derived by the application of the generalized FJ ap-
proach considering the effect of a constant external field acting on the system,
is in agreement with the simulated data up to a critical field fc, so establishing
a generalized validity criteria for the application of the generalized FJ equa-
tion. In order to estimate fc it is possible to use a phenomenological criterion
based on the comparison of the characteristic time scales of the problem [Bu-
rada et al., 2007]. In particular we can compare the typical length scale related
to the transversal motion,

τy =
2

D0

A2

(1 + R)2

with the typical length scale related to the longitudinal motion

τx =
2

D0L2



38 diffusion in confined geometries

Figure 2.3: Plot of the non linear mobility γµ (with γ the friction coefficient) as a function
of the rescaled field f → f L/kBT for a 2D channel at different temperatures:
kBT = 0.01(×), 0.1(+), 0.2(�), 0.4(4). After rescaling all the data collapse
onto one curve which is in a wonderful agreement at low field with the analytical
solution in Eq. (2.43) (red continuum line). The inset shows the same plot in
log–linear scale in order to highlight how the approximation does not work after
a critical field fc. Adapted from Burada et al. [2009]

and the length scale τf useful to the external field f in order to move a particle
across one period of the channel, namely

τf =
γL
f

The FJ approximation is accurate when the transversal motion equilibrates
faster than the longitudinal one, a condition which can be satisfied only if
τy � min{τx, τf }. In particular, for large drives it suffices to require τx � τf ,
which leads to the following expression for the critical field fc [Burada et al.,
2007],

fc =
1

2(1 + R)2

(
L
a

)2

where the value of fc is given in dimensionless form, that is using the substi-
tution fc → fcL/kBT, see Sec. 2.2.

2.10 the boundary homogenization approach

The boundary homogenization approach belongs to a class of methods
called effective–medium theories [Zwanzig, 1990; Choy, 1999; Torquato, 2002].
It is based on the replacement of the real medium by a fictitious uniform
medium with prescribed effective parameters.
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The idea of the boundary homogenization was historically introduced in a
biological context by Berg and Purcell [1977] (see also [Berg, 1983]), in order to
study the problem of diffusing particles trapped by patchy surfaces, such as
the ligand binding to cell surface receptors. Such a problem can be generally
formulated as follow [Zwanzig, 1990; Zwanzig and Szabo, 1991]. Consider a
sphere of radius R randomly covered with N non overlapping disks of radius
a � R. Let be C (r, t) the ligands concentration at spatial position r and time
t; it satisfies the diffusion equation

∂C (r, t)
∂t

= D0∇2C (r, t)

where D0 is the diffusion coefficient.
Initially the ligand concentration is uniform outside the sphere,

C (r, t) = C0, |r| > R

The BCs are taken such that off the disks the sphere is perfectly reflecting,
while the disks, namely the receptors placed on it are partially absorbing,
thus giving

D0n̂(r) ·∇C (r, t) = κC (r, t) , on the receptors
D0n̂(r) ·∇C (r, t) = 0 , off the receptors

being n̂(r) the local versor outgoing from the sphere surface and κ the trap-
ping rate of a given receptor. The main problem is to find the total steady–
state flux into the receptors, which is given by the surface integral

lim
t→∞

∮
Sphere

dS D0n̂(r) ·∇C (r, t)

The effective medium approximation comes into play observing that, rather
than searching for the total flux, a possible approximate solution can be found
by considering the whole surface of the sphere as a partial absorbing surface,
characterized by an effective trapping rate.

The first approximation for κ was found by Berg and Purcell [1977]. They
found for the stationary case the expression

κBP =
Nκdisk

4πR2 =
4D0

πa
ν, ν =

Na2

πR2

with κdisk = 4D0a the stationary rate for a perfectly absorbing disk of radius
a located on the otherwise reflecting sphere of radius R� a6. The parameter
ν can be interpreted as the trap–covered fraction of the spherical surface and

6 Actually the expression κdisk = 4D0a is the stationary rate for a perfectly absorbing disk
placed on a perfectly reflecting plane, however in the limit a � R, the same result can be
used also in the case of a spherical surface, being the sphere locally flat on the length scale a.
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4D0/πa is the ratio of κdisk to the disc area. The BP result shows a good
agreement with the simulated data [Berezhkovskii et al., 2004] only in the
limiting case ν � 1. Zwanzig [Zwanzig, 1990; Zwanzig and Szabo, 1991]
extended the BP result to arbitrary surface coverages:

κZw =
4D0

πa
ν

1− ν
=

κBP

1− ν

Generally speaking, from dimensional arguments, it follows that the trap-
ping rate entering the homogenized boundary condition can be written as

κ =
4D0

πa
F(ν) (2.44)

where F(ν) is a dimensionless function.
The function F(ν) tends to zero as ν → 0 and to infinity as ν → 1, since

the surface becomes perfectly reflecting and absorbing in these limiting cases.
In particular the Berg–Purcell and Zwanzig expressions for κ lead to F(ν)
of the form FBP(ν) = ν and FZw(ν) = ν/(1− ν) respectively. While FBP(ν)
describes only the limiting case ν � 1, FZw(ν) captures both of the asymp-
totes: it reduces to FBP(ν) when ν → 0 and diverges when ν → 1. However
the range of applicability of FZw(ν) is unknown. Berezhkovskii and cowork-
ers showed numerically that F(ν) grows much faster than it is predicted by
FZw(ν)[Berezhkovskii et al., 2004] and, in particular, they found that over a
wide range of ν, F(ν) is well approximated by the formula

F(ν) = FZw(ν)(1 + 3.8ν1.25) (2.45)

To find the result in Eq. (2.45) Berezhkovskii et al. [2004] performed Brow-
nian dynamics in planar and spherical geometries, taking a � R (which is
the condition for the validity of the boundary homogenization). The function
F(ν) is related to the average lifetime 〈t〉 thanks to the formula

〈t〉 = πaR
12D0F(ν)

This relation was used to determine F(ν) from 〈t〉 found in simulations, fitting
the simulation results with the formula F(ν) = FZw(ν)(1 + AνB) with A and
B two fit parameters.

The same homogenization procedure was applied by Berezhkovskii et al.
[2006] to the case of a reflecting surface covered by disks with a � R, ar-
ranged on a regular lattice. In particular they considered triangular, square
and hexagonal lattices of perfectly absorbing disks showing that in this case

F(ν) =
ν(1 + A

√
ν− Bν2)

(1− ν)2
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with A and B depending on the type of the considered microstructural lat-
tice[Berezhkovskii et al., 2006]. In particular they found that the values for κ

for all the trap arrangements are quite close to each other (the difference is
within 20%), indicating that the homogenized boundary condition is not too
sensitive to the microstructure of the surface. In particular they showed that a
reasonable choice for the fit parameters is given by considering A = 1.37 and
B = 0.37.

In the next section we review a possible application of the boundary ho-
mogenization procedure to the problem of diffusion within non homogeneous
channels.

2.10.1 Diffusion in a tube of alternating diameter

In this section we propose an application of the boundary homogeniza-
tion to the problem of diffusion within a non homogeneous two–dimensional
channel, see Fig. 2.4, following the work of Makhnovskiia et al. [2010].

On large time and length scales, the transversal motion saturates, while
when 〈∆x2

t 〉 � L2, the longitudinal diffusion process is expected to be stan-
dard with

〈∆x2
t 〉 ≈ 2Defft, t� Deff/L2

One of the most interesting problem regarding the diffusion in a periodic
channel is related to the effective diffusion coefficient, Deff which is expected
to be lower than the microscopic diffusion coefficient D0, i.e. the diffusion
coefficient arising when there are not geometrical constraints acting on the
particles motion. The approach of Makhnovskiia et al. [2010] is based on the

2R2a

lw ln

L

Figure 2.4: A simple periodic non homogeneous channel.
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estimation of Deff by means of the formula [Weiss, 1994]

Deff =
L2

2〈t〉 (2.46)

being 〈t〉 the mean first–passage time of the particle from an initial cross–
section to one of the two neighbouring cross–section separated from the initial
on by distance L, with L the spatial period of the structure. The idea is
based on the replacement of the original two–dimensional problem with non
uniform boundary condition, with a simpler one–dimensional problem with
uniform radiation–type boundary condition with a properly chosen trapping
rate. In particular Makhnovskiia and coworkers introduce the follow problem,
defined in one period of the channel, for the one–dimensional propagator
G (x, t) (see Fig. 2.4):

G (x, t) =


G1(x, t), 0 < x < lw/2

G2(x, t), lw/2 < x < ln + lw/2

G3(x, t), ln + lw/2 < x < L

In each of the three intervals, the component of the propagators satisfy

∂Gi(x, t)
∂t

= D0
∂2Gi(x, t)

∂x2

Moreover they have chosen the initial particle density as

G1(x, 0) = 0, G2(x, 0) = 0, G3(x, 0) = δ(x− L)

as well as the absorbing and reflecting boundary conditions at x = 0 and
x = L:

G1(0, t) =
∂G3(x, t)

∂x

∣∣∣∣
x=L

= 0

The solution at x = lw/2 and x = ln + lw/2 must be opportunely matched.
To this end it is possible to introduce two trapping rates, κw and κn. The
former, κw, describes transitions of the particle from wide sections to the
narrow one of the channel, whereas, κn describes the particles transition in
the opposite direction. The matching conditions have the form [Makhnovskiia
et al., 2010]

D0
∂G1

∂x

∣∣∣∣
x=lw/2

= D0
∂G2

∂x

∣∣∣∣
x=lw/2

=
(

κnG2 − κwG1

)∣∣∣
x=lw/2

D0
∂G2

∂x

∣∣∣∣
x=ln+lw/2

= D0
∂G3

∂x

∣∣∣∣
x=ln+lw/2

=

=
(

κ3G3 − κnG2

)∣∣∣
x=ln+lw/2
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The two trapping rates κw and κn are not independent. They are related by
the relationship

κwR2 = κna2 (2.47)

which follows from the requirement of no net fluxes at equilibrium (i.e. by
requiring detailed balance).

One of the usual technique to find the mean first–passage time 〈t〉 is related
to the survival probability, defined by

S(t) =
∫ L

0
dx G (x, t)

from which follows the particle lifetime probability density

φ(t) = −dS(t)
dt

and finally the mean lifetime of the particle [Weiss, 1994; Gardiner, 2009]

〈t〉 =
∫ ∞

0
dτ τφ(τ)

The result of this technical calculation is given by

2D0〈t〉 = l2
n + l2

w + 2D0

(
ln
κn

+
lw
κw

)
+ lnlw

(
κw

κn
+

κn

κw

) (2.48)

To express the last formula in terms of the geometrical parameters of the
channel, in agreement with the boundary homogenization discussed in the
previous section, Makhnovskiia et al. [2010] assume that the trapping rates
can be expressed as functions of the ratio ν = a/R. In particular the “narrow”
transition rate, κn, can be taken as in Eq. (2.44):

κn =
4D0

πa
f (ν)

and, thanks to the detailed balance condition expressed in Eq. (2.47)

κw =
4D0a
πR2 f (ν)

Introducing the last expression of the rates κn and κw in the equation Eq. (2.46)
and using the result in Eq. (2.48) it is possible to find the general formula of
the tortuosity, i.e. the ratio between D0 and Deff:

D0

Deff
= 1 +

lnlw
(ln + lw)2

(
R
a
− a

R

)2

+
π(a2ln + R2lw)

2 f (ν)a(ln + lw)2

thus measuring the effective diffusion coefficient it is possible to model f (ν)
exactly as in the previous section and so to infer the effective diffusion coeffi-
cient in all the similar cases.





3
T H E R E A L M O F R A N D O M WA L K A N D D I F F U S I O N

“The diffusion or spontaneous
intermixture of two gases in
contact, is effected by an
interchange in position of
indefinitely minute volumes
of the gases, which volumes
are not necessarily of equal
magnitude, being, in the case
of each gas, inversely
proportional to the square root
of the density of that gas”

Graham [1833]

In this chapter we present a review of the main concepts related to the ran-
dom walk theory and the connections between random walk and diffusion.

The crucial role of the Central Limit Theorem [Feller, 1968; Fisher, 2010] is
pointed out, emphasizing the motivations which explain why the Gaussian
probability density must be considered as the standard one which describes a
diffusive process. However, despite the reasonability of the hypothesis of the
CLT (Central Limit Theorem), it is possible to observe and describe anoma-
lous diffusive processes [Metzler and Klafter, 2000; Klages et al., 2008], that
is, processes characterized by 〈x2〉 ∼ t2ν (2ν 6= 1), related obviously to the
violations of the CLT assumptions.

3.1 the random walk model for diffusion

A simple microscopic model which describes the diffusion process can be
obtained by assuming that the colloidal particles undergo random displace-
ments as a result of the scattering with the microscopic particles composing
the underlying fluctuating environment. More specifically, to every finite time
step δt is associated a random displacement ∆s, sampled from a given proba-
bility density P(∆s) 1. Under these assumptions, a particle which starts from

1 There are not physical reasons to take a constant jump frequency. A more realistic model
can be constructed by considering δt as a random variable, drawn from a given probability
density. We briefly discuss this point in Sec. 3.6.1

45



46 the realm of random walk and diffusion

r(t0) ≡ r0 at some reference instant of observation t0, after N steps, that is at
time t = Nδt, will be at the space point r(t) given by

r(t)− r(t0) =
N

∑
i=1

∆si (3.1)

Given Eq. (3.1), the general problem is to find the probability density P(r, t |
r0, t0) ≡P(r, t), namely the probability to find a particle in a volume element
dr around r at time t, starting from r0 at time t0; clearly if the random displace-
ments are discrete random variables, then we have to talk about probability
distribution rather than probability density, however here we do not stress
this type of distinction, we assume that it will be clear by the context.

The Eq. (3.1) introduces a microscopic point of view on the Brownian mo-
tion; the final position of a particle is obtained by summing up a series of
independent and identically distributed random variables, for this reason the
particle motion is called random walk [Smoluchowski, 1906; Chandrasekhar,
1943; Weiss, 1994].

3.2 the role of the central limit theorem

The random walk model introduced in the last section provides a micro-
scopic point of view on diffusion. Generally speaking, the problem is re-
duced to find the probability density of a sum of random variables. More
specifically, consider the case of independent and identically distributed ran-
dom variables X1, X2, · · · , XN, each one sampled from a probability density
P(X). In addition, we assume that the ensemble average µ = 〈X〉 and the
standard deviation σ =

√
〈X2〉 − 〈X〉2 are both finite; under these hypothesis

the CLT asserts that the random variable

ZN =
1

σ
√

N

N

∑
s=1

(
Xs − µ

)
,

in the limit N → ∞, will be distributed as [Bouchaud and Georges, 1990;
Prokhorov and Statulevičius, 1991; Adams, 2009; Fisher, 2010; Boffetta and
Vulpiani, 2012]

P(ZN) =
1√
2π

exp

(
−

Z2
N

2

)
(3.2)

An exhaustively treatment of the CLT is far from the scope of this work;
here we present just a simple derivation of the above result, considering
independent and identically distributed random variables. The CLT how-
ever can be generalized to case of “weakly” dependent random variables
[Bouchaud and Georges, 1990; Boffetta and Vulpiani, 2012] and/or to those
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variables which are not identically distributed, i.e. Xi ∼ P(Xi) with, as be-
fore |µi|, σi < +∞ [Prokhorov and Statulevičius, 1991; Fisher, 2010; Boffetta
and Vulpiani, 2012];

To prove Eq. (3.2) we consider without loss of generality that µ = 0, that
is, instead of X1, · · · , XN we take simply X̃1, · · · , X̃N with X̃ = X − µ; for the
case of discrete random variables, just to fix the ideas, suppose X̃k = k/m
with k = −m, · · · , m (m ∈ Z), each one with probability pk; thus the sum
Z̃ = ∑N

l X̃l can take values j/m (−Nm ≤ j ≤ Nm), each one with probability
Pj.

We introduce the characteristic functions

φX̃(x̃) =
m

∑
k=−m

pk eikx̃ (3.3)

φZ̃(z̃) =
Nm

∑
s=−Nm

Ps eisz̃

moreover observe that, due to the independence of the variables X̃ we have

φZ̃(z̃) =
[
φX̃(x̃)

]N
; in particular, using the identity

1
2π

∫ π

−π
dx̃ e−ikx̃ eik′ x̃ = δkk′ , (k, k′ ∈ Z)

we can write Pj as

Pj =
1

2π

∫ π

−π
dx̃ e−ijx̃φZ̃(z̃) =

1
2π

∫ π

−π
dx̃ e−ijx̃

[
m

∑
k=−m

pk eikx̃

]N

=
1

2π

∫ π

−π
dx̃ e−ijx̃

[
m

∑
k=−m

pk

(
1 + ikx̃− k2x2

2
− ik3x̃3

6
+ · · ·

)]N

Using the fact that µ = ∑k pkm−1k = 0 and m2σ2 = ∑k pkk2 we obtain

Pj =
1

2π

∫ π

−π
dx̃ e−ijx̃

[
1− m2σ2x̃2

2
− iBx̃3 + · · ·

]N

with B a constant depending on the the sum ∑k pkk3. Observe that in the
last expression we used the hypothesis on the first two moments. We will
see immediately that the higher order moments (i.e. all the details of the
distribution P(X̃)) do not affect the final result. To this end we introduce the
quantity

ln

{[
1− m2σ2x̃2

2
− iBx̃3 + · · ·

]N}
≈ −m2Nσ2x̃2

2
− iBNx̃3 + · · ·
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thus [
1− m2σ2x̃2

2
− iBx̃3 + · · ·

]N

≈ e−
Nm2σ2 x̃2

2
(
1− iBx̃3 + · · ·

)
Taking the transformation x̃ = y/

√
N we get the final result

Pj =
1

2π
√

N

∫ π
√

N

−π
√

N
dy e−i j√

N
y e−

m2σ2y2
2

(
1− iBy3
√

N
+ · · ·

)
For an approximation with a “very large” N we ignore all the series terms
with a power of N in the denominator, and at the same time, set the limits of
integration equal to ±∞. In this way we obtain the asymptotic formula

Pj ≈
1

mσ
√

2πN
exp

(
− j2

2m2σ2N

)
(3.4)

which is nothing that Eq. (3.2) for the variable Z̃ = ∑l X̃l.
The continuum case can be heuristically obtained by summing up Eq. (3.4)

on j ∈ [mx1
√

N, mx2
√

N] with x1 and x2 two real numbers and taking dx ≈
1/
√

N:

P(x1
√

N ≤ Z̃ ≤ x2
√

N) ≈∑
j

1
mσ
√

2πN
exp

(
− j2

2m2σ2N

)

≈
∫ mx2

mx1

dx
1

mσ
√

2π
exp

(
− x2

2m2σ2

)
=

1
σ
√

2π

∫ x2

x1

dx e−x2/2σ2

The importance of the CLT requires further observations:

• the standard Gaussian behaviour for the renormalized random variable
ZN is an asymptotic formula; it is valid only in the limit N → ∞. Prac-
tically N is a fixed “great” number, however CLT does not say anything
about how much must be large N in order to consider the system in the
asymptotic regime. This means that before the cross–over between the
asymptotic regime and the pre–asymptotic one, there are no reasons to
expect a standard Gaussian behaviour;

• CLT does not specify what is the shape of the tails of the probability
density. Indeed it was derived by assuming only that |µ|, σ < +∞,
however this assumption neglects the higher order moments, which give
contribution to the tails of the probability density. For this reason the
Gaussian behaviour is expected only within the scale region, associated
to the typical values of ZN.

• Outside the scale region, CLT does not grant anything and the standard
scenario can fail.
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• A formal way to characterize the “attraction basin” of the Gaussian prob-
ability density as a result of the sum of a large number of independent
random variables is given by the Khintchine, Feller, Lévy theorem which
we state here without proof [Feller, 1945; Bouchaud and Georges, 1990].

Consider N independent and identically distributed random variables
X1, · · · , XN, each one sampled from a probability density P(X). If the
random variable

SN =
N

∑
s=1

Xs,

opportunely renormalized, is distributed according to a standard Gaus-
sian distribution, we will say that P(X) belongs to the attraction basin
of the normal law.

The Khintchine, Feller, Lévy theorem states that P(X) belongs to the
attraction basin of the normal law if and only if

lim
X→∞

X2

∫
|x|>X dx P(x)∫
|x|>X dx x2P(x)

= 0

The above theorem is more powerful than the CLT. For example on large
scale (X → ∞) the density P(X) ∼ X−3 belongs to the attraction basin
of the normal law also if the variance is infinite.

• It is interesting to observe that the modern technologies enable scien-
tists to perform experiments also at mesoscale (∼ 10−6 m), character-
ized by a small number of particles (also 10 molecules per microme-
ter), depending on the details of the systems considered. Such “mid-
dle way” has attracted in the last years an increasing interest by the
scientific community. Various experiments can be performed, ranging
from the emergent organized behaviour (crystallinity, ferromagnetism,
superconductivity, etc.) [Laughlin et al., 2000], diffusion–driven island
growth on nano–structures [Sachs et al., 2001], up to the measurement of
the instantaneous velocity of Brownian particles [Li et al., 2010; Huang
et al., 2011; Franosch et al., 2011]. From a theoretical point of view, such
problems constitute the test–bed for modeling and computational ap-
proaches where the thermodynamic limit or the CLT, in principle, cannot
be invoked as applicable. However it is really astonishing the fact that
also at mesoscale, effective “macroscopic” theories can be used, once the
constrained geometry of the environment is taken into account. When
the number of particles becomes really small (1 molecules per microme-
ter), quantum effects, like the size quantization [Inn, 2004], can emerge,
however we will not discuss here similar situations.
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3.3 connection with the langevin equation

The random walk model embodies the notion of stochastic evolution. In-
deed the time evolution of a single particle trajectory can be thought as a re-
currence scheme of the form [Gardiner, 1985; Hald, 1987; Kloeden and Platen,
1995]

xt+δt = xt + ∆Wt

∆Wt ≡ Wt+δt −Wt being an opportune stochastic process [Chorin and Hald,
2009; Gardiner, 2009] which plays the role of the random displacement. Now
if we think to a random walker as a colloidal particle within a fluctuating en-
vironment, during the time step δt, the walker experiences a great number of
collisions with the surrounding environment because the time scales separa-
tion between the colloidal particle motion and the heavy particles composing
the thermal bath, as we pointed out in Sec. 2.1; thus, the stochastic noise ∆Wt
can be considered as the sum of a large number of random variables during
the time interval δt. Assuming that the CLT hypothesis hold true, the process
Wt can be reasonably characterized by the following proprieties [Chorin and
Hald, 2009]:

• W0 = 0, which means that we know exactly the initial condition;

• Wt is a continuous function of the time t, i.e. the displacement links two
space points in a continuous way;

• for each s < t, Wt −Ws is a Gaussian variable with zero mean and
variance t− s; this property follows from the CLT thesis;

• Wt has independent increments, namely if t1 < t2 < · · · < tn, then

Wt2 −Wt1 , Wt3 −Wt2 , · · · , Wtn −Wtn−1

are independent random variables; this property follows from the CLT
hypothesis.

The process Wt is called Wiener process [Wiener, 1958]; from its definition
follows immediately that

i) 〈WtWt′〉 = min{t, t′};

ii) the random variable ξt defined by

ξt =
Wt+δt −Wt

δt

is distributed according to a Gaussian with zero mean and standard de-
viation δt−1, which tends to infinity as δt goes to zero. So we can guess
that Wt is nowhere differentiable in the usual sense with probability one.
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iii) the derivative ξt of the Wiener process is called white noise and it is
defined in the distributional sense by the relation∫ t2

t1

ds ξs = Wt2 −Wt1 〈ξtξt′〉 = δ(t− t′)

Keeping in mind the remarks about the derivative of the Wiener process,
the random walk process in the limit δt→ 0 can be represented by the formal
equation

dx
dt

= ξt

which is the overdamped Langevin equation in the case of a vanishing exter-
nal field.

To conclude the review on the realm of random walk and diffusion we
discuss in the next section how it is possible to find the Fokker–Planck equa-
tion related to a stochastic dynamics described by a Langevin–like evolution
equation, finally we will pass to describe the anomalous transport.

3.4 from the langevin equation to the fokker–planck equa-
tion

Consider the overdamped Langevin equation in the form

du
dt

= −γu +
dW
dt

(3.5)

where W(t) is the Wiener process introduced in the last section and γ is a
fixed constant.

The correct way to understand the Langevin equation is by looking at the
finite increments of the Eq. (3.5); for example integrating from nδt to (n+ 1)δt,
where δt is the time step and n ∈N, we find2

un+1 − un = −γδtun + Wn+1 −Wn (3.6)

Starting from the Langevin equation, which describes the time evolution of a
single trajectory, it makes sense to define the follow problem. Consider the
Wiener process Wt and define the function K (x, t) as the probability density
that at a fixed time t, Wt is within a small element dx around x, namely

K (x, t)dx = P(x ≤Wt ≤ x + dx)

2 There are two common choice in approximating stochastic integrals [Chorin and Hald, 2009].
In particular in this work we refer always to the Itô prescription [Itô and McKean, 1974] ,
for more details we refer the reader to the literature [Gardiner, 1985, 2009; Chorin and Hald,
2009].
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Our main interest is to find the evolution equation for the probability density
K (x, t), which we assume continuous and once differentiable; such an evo-
lution equation is called Fokker–Planck [Risken, 1989] equation associated to
the Eq. (3.6). Generally speaking, to any given stochastic differential equation,
is associated a Fokker–Planck equation which can be find, in principle, using
the following technique3.

Using the fact that the Wiener process is characterized by independent in-
crements, we can write the equation (Chapman–Kolmogorov equation, see
[Chorin and Hald, 2009])

K (x, t + δt) =
∫ +∞

−∞
dy K (x + y, t)ψ(x, t + δt | x + y, t) (3.7)

The last equation states that the probability to reach the point x at time t + δt
is the sum of the probabilities to be at the point x + y at time t multiplied by
the probabilities to effectuate a transition from x + y at time t to x, during the
time interval δt.

From the Eq. (3.6) we know that, if Wt is the Wiener process, then the
variable un+1 − un + γunδt will be characterized by a Gaussian probability
density; indeed by definition Wn+1 −Wn is sampled from a Gaussian density.
Moreover Wn+1 −Wn is related exactly to the transitional kernel, namely to
the probability density to find un+1 in a small volume element dx around
x at time (n + 1)δt, given that at time nδt the particle was in a small volume
element around x + y, thus the transitional kernel for the present case is given
by

ψ(x, t + δt | x + y, t) =

1√
2πδt

exp

{
−
[
x− (x + y) + γ(x + y)δt

]2
2δt

}

=
1√

2πδt
exp

{
−
[
(1− γyδt)− γxδt

]2
2δt

} (3.8)

Inserting Eq. (3.8) in the Chapman–Kolmogorov equation (3.7) we get

K (x, t + δt) =
∫ +∞

−∞
dy K (x + y, t)

exp

{
−
[
(1−γyδt)−γxδt

]2

2δt

}
√

2πδt
(3.9)

At this point we expand K (x + y, t) in y; up to the fourth order we have

K (x + y, t) =K (x, t) + yKx(x, t) +
y2

2
Kxx(x, t)

+
y3

6
Kxxx(x, t) + O(y4)

(3.10)

3 A more general technique is the so called Kramers–Moyal expansion, for a discussion see for
example Risken [1989]
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The next step is to substitute Eq. (3.10) into Eq. (3.9) and evaluate the integral
on the right hand side. The technical details of the calculation can be found
in Chorin and Hald [2009]. Here we give the final result

K (x, t + δt)−K (x, t)
δt

= K (x, t)γ +Kx(x, t)γx +
1
2
Kxx(x, t) + O(δt)

which, after letting δt→ 0, becomes

∂K (x, t)
∂t

=
∂

∂x

[
γxK (x, t)

]
+

1
2

∂2K (x, t)
∂x2 (3.11)

The Eq. (3.11) is the Fokker–Planck equation associated to the stochastic
dynamics described by the Eq. (3.5).

In the same way it is possible to show that the Fokker–Planck equation
associated to the most general Langevin equation

dx
dt

= a(x) +
√

2D(x)
dWt

dt

with a(x) and D(x) differentiable functions of their argument, is given by

∂K (x, t)
∂t

= − ∂

∂x

[
a(x)K (x, t)

]
+

1
2

∂2

∂x2

[
D(x)K (x, t)

]
which is the diffusion equation discussed in the previous chapters character-
ized by a (local) diffusion coefficient D(x) and an external force field given by
a(x).

The result derived in this section i s strictly based on a regularization pro-
cedure, called the Itô regularization. Such assumption has a microscopic in-
terpretation, that is, the transition probability of a given particle is evaluated
exclusively on the space point where is the particle before its transition. Obvi-
ously, other types of regularization procedure are allowed. Choosing between
these different procedures depends on the details of the microscopic dynam-
ics of the system under consideration, especially those properties related to
the time correlations at short times.

One of the most common choice, different from the Itô prescription de-
scribed in this section, is the so called Stratonovich regularization, that is, the
stochastic integrals are evaluated at the middle point between the time step
nδt and (n + 1)δt. The Stratonovich regularization leads to the “Langevin”
equation [Gardiner, 2009]

dx
dt

= a(x) +
√

D(x)
∂
√

D(x)
∂x

+
√

2D(x)
dWt

dt

which is different from the standard Langevin equation discussed up to now.
More specifically, the second term in the last equation is the so called drift
induced by the noise.
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3.5 first passage problems

The First Passage Time Density (FPTD) f (t) is the probability that a particle
has first reached a point xc at time t. The usual way to obtain the FPTD is
based on the survival probability, defined by

S(t) =
∫ xc

0
dx P(x, t | x0, 0)

which is the probability that a particle is still at a position x < xc at time t,
related to f (t) by the relation

f (t) = −∂S(t)
∂t

Using, for example, the method of images borrowed from Electrodynamics
[Jackson, 1971], the explicit FPTD for a one–dimensional diffusion process
takes the form

f (t) =
|xc − x0|√

4πD0t3
exp

(
− (xc − x0)

2

4D0t

)
−−−→
t→+∞

∼ t−3/2

This equation states that the probability for a Brownian particle achieving a
first passage at some long time becomes increasingly small, but always finite.
The FPTD belongs to the class of the so called heavy–tailed distribution, in
particular it is characterized by a diverging first moment, implying that it is
not possible to calculate the average FPT. However it is possible to calculate
the typical time t∗, which follows from the condition ∂ f (t)/∂t = 0:

t∗ ∼ (xc − x0)
2

The simple treatment given above can be generalized to higher space dimen-
sions. Let be Ω ⊆ Rd the available state space of a d–dimensional unbiased
diffusive process described by the model

∂

∂t
P(x, t) +

d

∑
i=1

∂Ji(x, t)
∂xi

= 0

J(x, t) + D0

d

∑
i=1

∂P(x, t)
∂xi

x̂i = 0

If we assume the independence of the motion along the different coordi-
nates, the joint probability density P(x, t) will be given by,

P(x, t) =
d

∏
k=1

PXk(xk, t)
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and consequently the fundamental solution of a d–dimensional diffusion pro-
cess can be written as

P(x, t|x0, 0) =
1

(4πD0t)d/2 exp
[
− (x− x0)

2

2D0t

]
being x0 ∈ Vd, with Vd ⊆ Ω.

The mean FPT 〈T〉within the region Vd can be evaluated as [Gardiner, 2009]

〈T〉 =
∫ +∞

0
dt
∫
Vd

ddxP(x, t|x0, 0) =
∫ +∞

0
dt S(t)

We assume, for simplicity, that Vd is a spherical region with radius ε and
P(x, 0) = δ(x− x0). When t� ε2/2D0, the above integration over the volume
Vd is well approximated by 1, indeed in this case almost all the particles
started in x0 are still in the region Vd and so the time integration gives a
contribution of the order tε = ε2/2D0. On the other hand, when t � tε, the
contribution to the mean FPT will be given by those walkers that, after an
excursion out of the sphere Vd, come back near the starting point x0. In this
case the exponential in the probability density P(x, t | x0, 0) is approximately
1, thus

P(x, t|x0, 0) ≈ 1
(4πD0t)d/2

and the integral over the space region Vd gives εdΓd, with Γd the volume of
the d–dimensional hyper–sphere of radius 1. Thus we have

〈T〉 ≈ tε +
Γdεd

(4πD0)d/2

∫ +∞

tε

dt t−d/2

The latter integral diverges for d ≤ 2 (as we just saw above for the case d = 1),
that is, the mean time spent by a particle near its starting point is infinitely
high: in one and two dimension the Brownian motion is recurrent. When
d > 2 the integral converges and the mean time spent by a walker around x0
goes to zero when ε→ 0, implying that in dimension higher than 2, Brownian
motion is not recurrent [Redner, 2001] (see also Chap. 4 for a deeper discus-
sion and examples on this point). The dimension d = 2 presents a logarithmic
divergence and separates recurrent walks by not recurrent ones.

A classical and interesting result is related to the FPT probability to the
origin for a one–dimensional random walk on a line of length L � 0, con-
sidering as initial condition all the particles starting from the origin. If we
consider the case of unitary length and time steps, the first return probability
decays as t−3/2 for t� L2 and as e−t/L2

thereafter [Redner, 2001], thus giving

〈T〉 ∼
∫ ∞

0
dt t× t−3/2 e−t/L2 ∼

∫ L2

0
dt × t−1/2 ∼ L
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Another relevant example, useful to treat the case of the intracellular trans-
port, concerns the mean FPT related to the escape problem of a free diffusing
molecule from a two or three dimensional bounded domain trough small
absorbing windows on the otherwise reflecting boundary, see for example
Holcman and Schuss [2004]; Shuss et al. [2007]; Holcman and Schuss [2011];
Bressloff and Newby [2013].

3.6 beyond clt : anomalous transport

We already saw that the remarkable property of a diffusion process is given
by the linear growth with the time of the second order moment, that is

〈x2〉 ∼ t

It is natural to wonder if there can be physical situations where the CLT
hypothesis do not hold true, thus implying an anomalous transport, i.e. a
transport mechanism which is different by the expected one, with

〈x2〉 ∼ t2ν

Anomalous transport is a well established phenomenon, both from theoretical
[Gefen et al., 1983; Bouchaud and Georges, 1990; Shlesinger et al., 1993; Klafter
et al., 1996; Metzler and Klafter, 2000; ben Avraham and Havlin, 2000; Havlin
and ben Avraham, 2002] and experimental [Solomon et al., 1993; Schütz et al.,
1997; Wong et al., 2004; Barthelemy et al., 2008; Santamaria et al., 2006] point
of view, the exponent ν is called anomalous exponent; in particular when
ν < 1/2 we speak of subdiffusion, whereas the case with ν > 1/2 is referred
to as superdiffusion. Actually, nowadays “The evidence for natural phenomena
exhibiting anomalous diffusion with 2ν 6= 1 has grown so compelling as to prompt
punchlines such as “anomalous is normal” ” [Marchesoni and Taloni, 2006]

In order to get an anomalous behaviour, the CLT assumptions (see Se. 3.2)
must be violated. The implications of such violations are discussed in the
next sections.

3.6.1 The continuous time random walk model

The continuous time random walk model (CTRW) is a natural extension of
the simple random walk introduced in the last sections [Montroll and Weiss,
1965; Kenkre et al., 1973; Klafter and Silbey, 1980; Barkai et al., 2000]. In
particular it is based on the idea that the length of a given jump as well as
the elapsed time between two successive jumps are both random variables,
sampled from a probability density φ(δx, δt).

As a simple example, consider a one–dimensional discrete states random
walk. Moreover, suppose that δt is a random variable sampled from a certain
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distribution ψ(δt); at the same way δx is drawn independently from a distri-
bution λ(δx), whose first two moments are both finite. In addition, suppose
that, up to the time t, a walker has performed N steps.

In the long time limit (N → ∞), applying CLT, we have that the sum of N
independent displacements behaves as

〈X2〉 ≈ N〈δx2〉

with
〈δx2〉 =

∫
dξξ2λ(ξ)

Now the elapsed time is itself given by a sum of independent random vari-
ables

t =
N

∑
i=0

δti

and we must distinguish two different cases:

• 〈δt〉 = +∞, for example ψ(δt) ∼ δt1+µ. In this case CLT does not apply
to the time–like random variable. To estimate the elapsed time t, we ask
for the largest term tm(N) in the above sum. It will be occurred at least
once up to time t, namely∫ ∞

tm(N)
dτψ(τ) ≈ 1

N

from which we get
t ≈ tm ∼ N1/µ

that is

〈X2〉 ≈ N〈δx2〉 ∼

tµ 0 < µ < 1

t/ ln t µ = 1

• 〈δt〉 < +∞. In this case CLT applies and we have t = ∑s δts ≈ Nνt and
so the mean square displacement behaves as

〈X2〉 ≈ N〈δ2
x〉 = 2Defft

with

Deff =
〈δx2〉
2〈δt〉

Comparing the last equation with the case of free diffusion in one spatial
dimension follows that the asymptotic diffusion is still standard, how-
ever with a renormalized diffusion coefficient Deff. Indeed for the free
diffusion case we have

Deff =
〈δx2〉
2δt

Practically taking 〈δt〉 finite, one has only to recast the CTRW with a
simple random walk whose jump frequency is given by 〈δt〉.
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Another situation can arise when 〈δx〉 = +∞, see for example Klages et al.
[2008] for more detailed calculations.

An application of the CTRW described above is provided by the random
walk on the comb structure (see Chap. 4). More specifically, the comb lattice
(see Fig. 3.1) is composed by a main transport direction, the backbone, on
which is arranged an infinite one–dimensional chain and, to every site of this
chain, is attached a transversal tooth of length L.

Figure 3.1: Simple comb–lattice.

This model was proposed by Goldhirsch and Gefen [1986] as an elementary
structure able to describe some properties of transport in disordered networks
and can be well adapted to all physical cases where particles diffuse freely
along a main direction but can be temporarily trapped by lateral dead–ends.

Despite the simple structure of the comb–lattice, its main features can be
applied in nature; an example is provided by the case of diffusion on biolog-
ical and synthetic polyelectrolytes [Papagiannopoulos et al., 2006; Waigh and
Papagiannopoulos, 2010], see Fig. 3.2.

On a comb lattice the longitudinal diffusion is a process determined by the
return statistics of the walkers to the backbone. Practically we are observing
a CTRW where waiting times δt are the return times to the backbone sites
[Weiss and Havlin, 1986; Bouchaud and Georges, 1990; Weiss, 1994; Redner,
2001], see also Sec. 3.5. Thus, on the comb–lattice, the waiting–time distri-
bution ψ(δt) coincides with the distribution of first–return time to the back-
bone sites, which for infinite sidebranches is long tailed and asymptotically
decays as ψ(δt) ∼ δt−3/2 [Redner, 2001]. We can thus identify the longitu-
dinal motion along the comb–lattice as a CTRW, whose time increments are
drawn from a probability density ψ(δt) ∼ δt−(1+µ) with µ = 1/2. In this
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Figure 3.2: Morphology of some polymers along with their relates polyelectrolyte structure;
a) Gelling mucins;b) proteoglycans, e.g., bovine aggrecan, c) epithelial mucins,
d) synthetic flexible comb polyelectrolytes, e.g., polystyrene sulfonate, e) synthetic
self–assembled peptide block copolymers; f) synthetic hydrophobic linear polyelec-
trolytes, e.g., partially charged linear polystyrene sulfonate. Adapted from Waigh
and Papagiannopoulos [2010]

case, as explained above, we expect a mean square displacement of the form
〈x2〉 ∼ t−1/24.

Another example of subdiffusion is strictly related to the effects due to
the non vanishing particle size. For example, diffusion of particles in a nar-
row channel where mutual passage is forbidden, and thus the sequence of
particles remains the same over time, is known as single–file diffusion (SFD)
[Hahn et al., 1996; Hahn and Kärger, 1996; Mon and Percus, 2003]. As shown
by Marchesoni and Taloni [2006], the case of a file of N indistinguishable
Brownian particles of unitary mass, moving on a circle of length L in the ther-
modynamic limit (i.e. N, L → ∞ with N/L a constant), despite the finiteness
of the time and space increments, is characterized a subdiffusive behaviour,
as a consequence of a persistent anticorrelation of the jump sequences.

4 When L < +∞ this result is valid only for t ∼ L2 [Forte et al., 2013a], due to the fact that ψ(t)
decays as t−3/2 for t� L2 and as e−t/L2

thereafter, as we quoted in Sec. 3.5
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3.6.2 Fractional Diffusion

In this section we briefly review the continuum limit of a CTRW process. We
just derived the Fokker–Planck equation related to the simple random walk
and to the Langevin equation. It is natural to wonder how we can describe
the time and space evolution of the probability density P(x, t) in the case of
a CTRW.

To this end, let us consider the CTRW model whose space and time incre-
ments distribution is given by

φ(δx, δt) = ψ(δt)λ(δx)

where the stochastic independence of the increments is a reasonable physical
assumption.

The probability P(x, t) to reach a small volume element dx around x at
time t can be written as the contribution of two terms [Metzler and Klafter,
2000]; more specifically, let us introduce the probability

P(δt ≥ t) = 1−
∫ t

0
dτ ψ(τ) ≡ Ψ(t)

which is the probability for a walker to remain somewhere up to the time t.
Now we have:

P(x, t) =
∫ t

0
dτ Q(x, τ)Ψ(t− τ) (3.12)

The distribution Q(x, t) is called turning points distribution [Zumofen and
Klafter, 1993]. Practically it represents the probability distribution associated
to those points just reached by a walker, which subsequently starts to move
elsewhere from those points. In particular we can expand Q(x, t) essentially
by requiring “mass” conservation [Metzler and Klafter, 2000; Klages et al.,
2008], that is

Q(x, t) =
∫ +∞

−∞
dz λ(z)

∫ t

0
dτ Q(x− z, t− τ)ψ(τ) + δ(x)δ(t) (3.13)

where the second term in the sum represents the initial condition.
Taking the Laplace transform with respect to the time and the Fourier trans-

form with respect to the position of the Eq. (3.13) and Eq. (3.12) we get

ˆ̃Q(k, s) = ˆ̃Q(k, s)ψ̃(s)λ̂(k) + 1 (3.14)

ˆ̃P(k, s) =
1− ψ̃(s)

s
ˆ̃Q(k, s)

The last equations can be solved explicitly with respect to the probability
density ˆ̃P(k, s), whose representation in the Fourier–Laplace space is given
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by the so called Weiss–Montroll equation [Montroll and Weiss, 1965; Zumofen
and Klafter, 1993; Klafter et al., 1987]

ˆ̃P(k, s) =
1− ψ̃(s)

s
[
1− ψ̃(s)λ̂(k)

] (3.15)

The Eq. (3.15) represents the full solution of the CTRW problem under the
hypothesis that the space and time increments are stochastically independent
and the related model is also known as the waiting model.

Another popular model is the velocity model. Here the space and time
increments are not independent, so, generally speaking we have φ(δx, δt) =
p(δt|δx)λ(δx); the velocity model is defined by taking

p(δt|δx) = δ

(
δt− |δx|

v

)
with v a fixed constant whose physical dimension is the same as a velocity. We
refer the reader to the literature for more detailed calculation on the velocity
model [Klages et al., 2008]

In order to specify the random walk problem completely, we need to specify
the probability densities ψ̃(s) and λ̂(k). Consider the case characterized by
[Metzler and Klafter, 2000]

λ̂(k) ∼ e−a|k|α (3.16)

ψ̃(s) ∼ e−bsβ

On large scales (k→ 0) and asymptotically in time (s→ 0), we can expand
the space and time increments distributions as

λ̂(k) ≈ 1− a|k|α

ψ̃(s) ≈ 1− bsβ

Substituting the last expansions in the Eq. (3.15) we find the asymptotic an-
alytical expression for the probability density in the Fourier–Laplace space,
namely

ˆ̃P(k, s) =
bsβ−1

bsβ + a|k|α
(3.17)

which can we written as

sβ ˆ̃P(k, s)− sβ−1 = − a
b
|k|α ˆ̃P(k, s) (3.18)

For example, let us take β = 1 and α = 2, moreover recall that one of the
Laplace transform properties is given by

dψ(t)
dt
→ sψ̃− ψ(0)
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At the same way, when the Fourier transform is applied, we have

d2λ(x)
dx2 → −k2λ̂(k)

Thus Eq. (3.18) becomes

∂P(x, t)
∂t

=
a
b

∂2P(x, t)
∂x2

It is possible to express the ratio a/b in terms of the first moment of the
time increments probability density and the second moment of the space in-
crements probability density; indeed, generally speaking, we can write the
Taylor expansion

λ̂(k) ≈ 1− 〈δx2〉k2 + · · ·

ψ̃(s) ≈ 1− 〈δt〉s + · · ·

from which we have a/b ≡ D0 = 〈δx2〉/2〈δt〉 and so

∂P(x, t)
∂t

= D0
∂2P(x, t)

∂x2

and we have obtained another time the standard Fokker–Planck equation
which describes diffusive processes on the macroscopic scale.

For general values of the exponents α and β, the associate macroscopic
equation is called fractional Fokker–Planck equation [Klages et al., 2008].

A very quick digression on fractional derivatives at this point can be useful
in order to better clarify the fractional Fokker–Planck equation

Fractional derivatives

Given any smooth function f (x) and α ∈N, it is well defined the n-th order
derivative of f (x). Leibnitz, during its studies on differential calculus, just
expressed his curiosity about a possible extension of the standard derivative
to the case of non integer α.

An exhaustive mathematical treatment of fractional derivative could re-
quire an entire book (maybe a collection, see for example Podlubny [1999];
Pramukkul et al. [2013], Chap. one of Klages et al. [2008] or the extended
appendix of Baluscu [2006]); moreover several definitions of fractional deriva-
tive exist, thus here we just give the definition and some properties of the
fractional derivatives we need.

We just discussed the case of standard diffusion when α = 2 and β = 1 of
the Eq. (3.18). For other values of α and β the question is to find a definition
of “derivative” whose Laplace transform is equivalent to the left hand side of
Eq. (3.18).
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To this end we introduce the so called Caputo fractional derivative defined
by

D
β
x f (x) =

1
Γ(n− β)

∫ x

0
dx̄

1
(x− x̄)β+1−n

dn

dx̄n f (x̄) (3.19)

with n an integer such that n − 1 ≤ β < n and Γ(x) is the Euler gamma
function.

Taking 0 ≤ β < 1 and Laplace transforming Eq. (3.19) we find the expres-
sion

D
β
x f (x)→ sβ f̃ (s)− sβ−1 f (0) (3.20)

which “sounds good” as a generalization of the the standard rule

d f (x)
dx

→ s f̃ (s)− f (0)

It is possible to consider also situation for which β > 1 however Eq. (3.20)
doesn’t take a so simple form.

Looking at the right side of the Eq. (3.18), at the same way we done for
the left side, we have to introduce some type of operation whose Fourier
transform produces −a/b|k|α. For this purpose we introduce the Riemann–
Liouville left–fractional derivative

aDα
x f (x) =

1
Γ(n− α)

dn

dxn

∫ x

a
dx̄

f (x̄)
(x− x̄)α+1−n (3.21)

as well as the Riemann-Liouville right–fractional derivative

xDα
b f (x) =

1
Γ(n− α)

dn

dxn

∫ b

x
dx̄

f (x̄)
(x̄− x)α+1−n (3.22)

with a and b two fixed constant and n− 1 ≤ α < n. The fractional derivatives
in Eq. (3.21) and (3.22) can be combined to give the so called Riesz fractional
derivative:

Dα
|x| f (x) = − 1

2 cos (πα/2)

(
−∞Dα

x + xDα
+∞

)
f (x) (3.23)

The Riesz fractional derivative has the interesting property that its represen-
tation in Fourier space is

Dα
|x| f (x)→ −|k|α f̂ (k) (3.24)

which is a natural generalization of the simple rule

dn f (x)
dxn → (−ik)n f̂ (k)
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The Fractional Fokker–Planck equation

Using the results in the previous section we can immediately write the
macroscopic “diffusion” equation related to the Eq. (3.18); such an equation
is known as the fractional Fokker–Planck equation and takes the form

D
β
t P(x, t) =

a
b
Dα
|x|P(x, t) (3.25)

with 0 ≤ β ≤ 1 and 0 ≤ α ≤ 2.
As we explained in the last sections the case β = 1 and α = 2 corresponds

to the standard diffusion scenario. In particular when β = 2 only we get

∂P(x, t)
∂t

=
a
b
Dα
|x|P(x, t)

namely a fractional diffusion only in the spatial dimension. On the other
hand, when α = 2 we get a fractional diffusion only with respect to the time;
for example, taking β = 1/2 the time fractional diffusion equation becomes

D1/2
t P(x, t) = D0

∂2P(x, t)
∂x2

To calculate the mean square displacement recall that

〈x2(s)〉 = − ∂2 ˆ̃P(k, s)
∂k2

∣∣∣∣∣
k=0

thus using Eq. (3.17) we find

〈x2(s)〉 = 〈δx2〉
bs3/2

with a = 〈δx2〉/2 for the case of α = 2. This expression is valid for small
s, and with the help of the Tauberian theorems, which relate the power–law
scaling of a Laplace transform at small s to the scaling in original space for
large t [Feller, 1971; Hughes, 1995; Yakimiv, 2005] it follows that

〈x2(t)〉 ∼ t1/2

recovering the result just established for the comb–case.

3.7 summary

In this chapter we discussed briefly the general features related with the
standard and anomalous transport.

The anomalous case was discussed by taking as an example the CTRW per-
formed by a walker diffusing on the backbone of a comb lattice and showing
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how the anomalous behaviour experienced by such a system can be derived
both from the fractional Fokker–Planck equation and from simple scaling ar-
guments. In the next Chapter we will show our approach to the problem
of diffusion on comb lattice and more generalized branched structures, dis-
cussing also the fluctuation–dissipation relations in the anomalous transport
regime .

An interesting analysis of the diffusion process on the comb–lattice in the
continuum space and time limit is reported in [Arkhincheev, 2002, 2010] start-
ing from an usual (i.e. not fractional) Fokker–Planck equation. The feature
of the diffusion in the considered model is that the displacement in the x–
direction is possible only at y = 0. This means that the longitudinal diffusion
coefficient Dx differs from zero only at y = 0:

Dx = D1δ(y)

with δ(y) the Dirac delta function [Dirac, 1958]. On the other hand the dif-
fusion along the teeth is characterized by a transversal diffusion coefficient
Dy = D2. Thus, the random walk on the comb structure is described by the
diffusion tensor: [

D1δ(y) 0
0 D2

]
Accordingly, we have the following diffusion equation:[

∂

∂t
− D1δ(y)

∂2

∂x2 − D2
∂2

∂y2

]
P(x, y, t) = 0

The longitudinal MSD for this model grows as t1/2, which is the expected
anomalous behaviour explained for the comb lattice in this chapter, showing
once again how geometrical limitations (here expressed by the Dirac delta
function) are able to strongly influence the dynamical properties of a diffusive
process.





4
A N A LY T I C A L A N D N U M E R I C A L R E S U LT S O N
B R A N C H E D S T R U C T U R E S

“Never–ending wonders pop
out from simple rules, if these
are repeated ad infinitum.”

Mandelbrot [2010]

introduction

In this chapter we focus on the random walk performed on a certain class
of ramified structures. We will take as examples (see Sec. 4.1 and Sec. 4.1.2)
the comb–lattice [Goldhirsch and Gefen, 1986] and some generalizations of
it [Forte et al., 2013a]. In particular, using simple scaling arguments, we
will show how it is possible to predict the correct anomalous behaviour of
the Mean Square Displacement (MSD) during the pre–asymptotic regime and
how such regime is related with the geometrical parameters of the surround-
ing environment.

As usual in all the non equilibrium transport problems, a special attention
will be devoted to the Fluctuation–Dissipation Relations (FDRs) [Kubo et al.,
1991; Marconi et al., 2008]. The first example of a FDR was pointed out by
A. Einstein; in his seminal paper on Brownian motion, Einstein [1905] showed
that the average position of a random walker under the action of an external
field F = f x̂ must satisfy at long time the relation

〈δxt〉 f

〈(xt − x0)2〉0
=

f
2kBT

(4.1)

where 〈δxt〉 f = 〈(xt − x0)〉 f − 〈(xt − x0)〉0, being 〈· · · 〉φ the average over the
particle ensemble calculated with (φ = f ) or without (φ = 0) considering the
influence of the external field; kB is the Boltzmann constant and T the absolute
temperature.

It is natural to wonder if Eq. (4.1) still holds true in the case of anomalous
transport, thus generalizing the Einstein result. One of the main contribu-
tion of our work is thus related to the FDR. Indeed, using our approach, we
are able to discuss the “fate” of the FDR, at least within the linear response
approximation. In particular we found that, despite an anomalous transport
regime, which can be controlled up to become the predominant one, there
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are situations such that the FDR still holds true, suggesting that FDR does
not depend on the details of the dynamics. On the other hand it is possible
to construct particular comb–like structures (see Sec. 4.5) whose peculiar ge-
ometry along the transversal direction acts as a sort of an external drift, thus
breaking the FDR at short times.

Another important part of our work is devoted to the study of those “ap-
parently” standard diffusive processes. More specifically, we show how the
standard scaling 〈|xq|〉 ∼ tq/2 is not always associated to a Gaussian probabil-
ity density. To highlight such behaviour we will take into account a simple
model of Continuous Time Random Walk (CTRW, see Sec. 4.3) and some ex-
amples of walks performed on a certain class of fractal trees (see Sec. 4.4.1 and
Sec. 4.4.2), called Nice Trees of dimension k (NTk) [Burioni and Cassi, 1994,
1995; Forte et al., 2013b] and a possible generalization of such trees [Forte
et al., 2013b].

4.1 the comb model

Figure 4.1: Simple comb–lattice.

The comb–lattice was introduced in Sec. 3.6.1, in order to provide an exam-
ple of the CTRW process.

A walker occupying a site of the lattice can jump to one of the nearest
neighbor sites according to the transition rules

W (x → x′) =
(

1
4
± ∆p

)
δy,0δx,x′±1 (4.2)

W (y→ y′) = δy,y′±1

[
δy,0

4
+

1
2
(
1− δy,0

)]
(4.3)
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where ∆p ∈ [0, 1/4) represents an unbalance in the jump probabilities along
the longitudinal direction introduced in order to take into account the possible
effect of an external field, applied along the longitudinal direction. Observe
that the external drift is never applied along the transversal direction, whose
jump probabilities will be always 1/4 if we move from y = 0 to y′ = ±1 and
1/2 otherwise.

We review firstly the simple case with ∆p = 0, taking an unitary displace-
ment between two consecutive teeth; denoting by rt = (xt, yt) the position
vector of a given particle, the total displacement up to time t along the back-
bone will be given by

xt − x0 =
t

∑
j=1

ξ jδyj,0

where the random variable ξ j takes values in {1, 0,−1}, respectively with
probability {1/4, 1/2, 1/4}, in agreement with the above transition rules de-
fined in Eq. (4.2) and (4.3) specialized for the case ∆p = 0.

The mean square displacement can be computed as

〈(xt − x0)
2〉 =

t

∑
j=1
〈(ξ jδyj,0)

2〉+ 2
t

∑
j=1

t

∑
i>j
〈ξ jξiδyj,0δyi,0〉

In the last equation all the terms given by 〈(ξ jδyj,0)
2〉 are zero if yj 6= 0 (i.e., if

a walker is out of the backbone), otherwise 〈(ξ jδyj,0)
2〉 = 〈ξ2

j 〉 = 1/2; on the
other hand 〈ξ jξiδyj,0δyi,0〉 = 0 if j 6= i and so we can write

〈(xt − x0)
2〉 = 1

2
tµt (4.4)

with µt the mean percentage of time which a given walker spends in the
backbone B during the time interval [0, t]. To evaluate µt we begin from the
case t > t∗(L), t∗(L) being the homogenization time, meant as the time taken
by a walker to span a whole tooth, visiting at least once all the sites [Weiss,
1994; Bouchaud and Georges, 1990; Redner, 2001]. Since along the y–direction
the one–dimensional random walk is fast enough to explore exhaustively the
size L

(
〈y2

t 〉 ≈ 2D0t
)

and, more important, it is recurrent, t∗(L) can be taken
as the time such that 〈y2

t 〉 ∼ L2, thus t∗(L) ∼ L2. After t∗(L) ∼ L2 , the
probability for a walker to be on the tooth can be considered almost uniform,
namely

µt =
1

1 + L
≈ L−1

implying that for t & L2 the mean square displacement behaves as

〈(xt − x0)
2〉 ≈ 1

2(1 + L)
t (4.5)
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and after a time of the order of L2 the diffusion along the transport direc-
tion will be normal, with an effective diffusion coefficient given by Deff(L) =
1/[4(1 + L)].

To find the time behaviour of the MSD for t . t∗(L) we observe that the dif-
fusion on the comb lattice with infinite teeth length is known to be anomalous
[Weiss and Havlin, 1986; Bouchaud and Georges, 1990; Weiss, 1994; Redner,
2001], a result which can be understood by viewing the longitudinal motion
along the backbone of the comb lattice as a Continuous Time Random Walk,
as we explained in Chap. 3. In particular the time behaviour of the mean
square displacement is given by

〈(xt − x0)
2〉 ∼ t1/2

which can be derived, under certain geometrical conditions, also for the case
of diffusion in non homogeneous channels, using an effective one–dimensional
Fokker–Planck equation [Dagdug et al., 2007] (see also Chap. 5).

For finite L, the diffusion will remain anomalous, as long as the RW does
not feel the finite size of the sidebranches. Therefore for times t . t∗(L), we
expect an anomalous behaviour of the type

〈(xt − x0)
2〉 ∼ t2ν

The exponent ν can be computed by matching the last equation with the be-
haviour in Eq. (4.5) at the cross–over time t ∼ t∗(L), that is t2ν

∗ (L) ≈ t∗(L)L−1

yielding

ν =
1
4

It is interesting to note that, as the homogenization time t∗(L) diverges with
the size L, upon choosing the appropriate L, the anomalous regime can be
made arbitrarily long till it becomes the dominant feature of the process.

The generalization to the case of a non vanishing external field f applied
along the longitudinal direction can be made by introducing an unbalance
∆p 6= 0 in the jump probabilities along the backbone. In this case, the dis-
placement takes the form

xt − x0 =
t

∑
j=1

ξ
( f )
j δyj,0

where ξ( f ) ∈ {−1, 0, 1} with probabilities {1/4− ∆p, 0, 1/4 + ∆p}; f is linked
to ∆p through the relation 〈ξ( f )

j δyj,0〉 = f δyj,0; indeed we have 〈ξ( f )
j δyj,0〉 =

2∆pδyj,0 and so f = 2∆p. By the same argument used for the case f = 0, we
obtain

〈δx〉 f ≡ 〈(xt − x0)〉 f − 〈(xt − x0)〉0 = f tµt (4.6)

The notation 〈· · · 〉 f is introduced to emphasize the fact that the average is
taken over the perturbed ensemble of the diffusing particles, whereas 〈· · · 〉0
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Figure 4.2: (a) Log–log plot of 〈x2〉L as a function of the rescaled time t/L2. Observe the
cross–over time from the subdiffusive regime to the standard one near t/L2 ≈ 1,
supporting the assumptions at the heart of the matching argument explained
in the text; (b) log–log parametric plot of 〈δxt〉 f versus 〈(xt − x0)2〉 (coloured
symbols). The dashed line represents the theoretical prediction in Eq. (4.7); the
inset shows the time behaviour of 〈(xt − x0)2〉 (black continuum lines) together
with the time behaviour of 〈δxt〉 f (black dashed lines) for different values of the
teeth size.

simply gives the average with respect to the simple case with f = 0. Compar-
ing the last equation with Eq. (4.4) we find that

〈(xt − x0)
2〉

〈δxt〉 f
=

1
2 f

(4.7)

Despite the fact that Eq. (4.7) is formally identical to the Eq. (4.1) found by
Einstein, it works both in the anomalous regime (t . t∗(L)) and in the stan-
dard diffusive one (t & t∗(L)), so emphasizing its generality also in the case
of anomalous transport, as was also previously found by [Barkai and Fleu-
rov, 1998; Villamaina et al., 2008; Chechkin and Klages, 2009; Villamaina et al.,
2011; Chechkin et al., 2012a,b; Gradenigo et al., 2012].

To verify the above results we performed numerical simulations taking
Np = 7× 104 walkers for t = 2× 107 unitary time steps. In particular we
considered different values of L to probe the homogenization effects charac-
terized by the cross–over time t∗(L) ∼ L2 between the two diffusive regimes,
see Fig. 4.2

4.1.1 The role of the fractal and spectral dimension

In the following sections, we will frequently use the concept of spectral
and fractal dimension. In particular, diffusion in fractal–like environment is
strongly influenced by these two quantities. Thus we recall here what is the
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meaning of the fractal and spectral dimension, in order to clarify the role of
the space dimension on a diffusive process.

The intuitive idea of (topological) dimension is related to the number d of
independent directions accessible to a point sampling a given object. This in-
teger number, however, might be insufficient to fully quantify the dimension-
ality of a generic set of points, characterized by a “bizarre” arrangement of
segmentation, voids or discontinuities. An example of such peculiar arrange-
ment is provided by the typical trajectory of a two–dimensional Brownian
motion, see Fig. 4.3. It is then useful to introduce an alternative definition of

Figure 4.3: Typical path (topological dimension d = 1) of a Brownian particle in a two di-
mensional space. The inset shows a zoom of the small box in the main figure,
emphasizing the self–similarity of the process.

dimension based on the “measure” of the considered object. Such measure is
called the fractal dimension d f and it is defined by the relation[Mandelbrot,
1983; Cencini et al., 2010]

d f = − lim
`→0

ln N(`)

ln `

with N(`) the number of points within a sphere of radius `. As an exam-
ple, consider a diffusion process for which we have, as we discussed in the
previous sections,

〈x2(t)〉 ∼ t2/dw

being dw the so called walk dimension1. Thus, within a sphere of radius `, we
have, at time t

`dw ∼ N(`)

and the so called walk dimension dw, for a standard diffusive process, can be
interpreted as the fractal dimension of the typical set of points visited by the
walk. In particular it takes the value dw = 2 and this value is independent

1 Obviously for a standard diffusive process we have dw = 2
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by the topological dimension of the environment within which the process is
going on.

An interesting question concerns the walk dimension dw when we consider
a random walk performed on a fractal network characterized by the fractal
dimension d f . In general a fractal network can be viewed as a graph. An
undirected graph is a collection of vertices pairwise connected, or not, by
links. To each graph of N vertices, we can associate an N × N matrix A
(adjacency matrix), such that , Aij = 1 if there is a link between vertices i
and j, otherwise Aij = 0 [Thulasiraman and Swamy, 1992; Caldarelli and
Vespignani, 2007].

An unbiased random walk on a graph can be defined in a natural way
[Woess, 2000; Burioni and Cassi, 2005; Philippe and Volchenkov, 2011]: a
walker at time t on a site i can jump at time t + 1 on the node j only if
Aij = 1, with a transition probability Wi→j = 1/si. Here si = ∑j Aij is called
the coordination number of the node i and represents the number of links
which leave i. The assumption on the transition rates embodies the notion
that there are not in a given graph privileged links, that is, the probability to
jump on a site located on a given branch depends only by the coordination
number, however not by the branch itself. Obviously such hypothesis can be
relaxed, but we will not consider here such cases.

The probability Pt(m) to be on a given site m at time t satisfies the equation

dPt(m)

dt
=∑

n
Wn→mPt(n)−∑

n
Wm→nPt(m)

=∑
n

Wnm

[
Pt(n)−Pt(m)

]
where, in the last equation, we assumed for simplicity that the transition
matrix is symmetric (which is always true in the unbiased case). The last
equation resembles the equation for the vibrational modes (“fractons”) of an
elastic fractal network consisting of particles connected by harmonic springs
and can be solved in analogy with the “vibrational problem” [Alexander and
Orbach, 1982; Nakayama et al., 1994; ben Avraham and Havlin, 2000].

Here we use a simple scaling approach [ben Avraham and Havlin, 2000] in
order to calculate the approximate time behaviour of the probability density
in the long time limit, in particular we will focus on the return probability
to the origin Pt(0). By definition of fractal dimension , the number of points
of the fractal network, contained in a sphere of radius `, is given by `d f . In
particular, in the long time limit, we can assume that the probability to be on
one of these points is approximately uniform, thus Pt(0) ∼ `−d f . Moreover,
using the relation 〈x2〉 ∼ t2/dw , we have ` ∼ t1/dw and so, asymptotically in
time, Pt(0) ∼ t−d f /dw . This means that the return probability decreases in
time as

Pt(0) ∼ t−
ds
2 (4.8)
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where we introduced a new type of (generally fractional) dimension: the so
called spectral dimension ds, given by

ds = 2
d f

dw

Using the last relation, the time behaviour of the MSD, 〈x2〉 ∼ t2/dw , related
to a diffusive process defined on a fractal network with fractal dimension d f
and spectral dimension ds, can be finally written as

〈x2〉 ∼ tds/d f (4.9)

The relation dw = ds/2d f implies that diffusive processes on a fractal struc-
ture are anomalous whenever d f 6= ds. However, consider now the general
average 〈|x|q〉 (q ∈ N). If the walk dimension is a function of q, that is
dw = dw(q), depending on q, we could observe a standard diffusive behaviour
(〈x2〉 ∼ t) also for those processes which are not characterized by a Gaussian
probability density, a situation which we could call standard, but not normal
(i.e. not Gaussian) diffusion. We will focus on such pathological systems in
Sec. 4.3 and Sec. 4.4.2, discussing our personal results on the “hidden” anoma-
lies underlying the apparently standard case 〈x2〉 ∼ t.

4.1.2 Generalized Comb structures

The goal of this section is to present a derivation based on a simple physi-
cal reasoning, i.e. without sophisticated mathematical formalism, of both the
anomalous exponent ν and the Einstein FDR for RWs on a class of comb– like
structures [Forte et al., 2013a], consisting of a main backbone, decorated by
an array of sidebranches, as in Fig. 4.4, thus generalizing the simple comb in-
troduced in the last section. Comb–like structures are frequently observed in
condensed matter and biological frameworks: they describe the topology of
polymers [Casassa and Berry, 1966; Douglas et al., 1990], in particular of am-
phiphilic molecules, and can be also engineered at the nano- and microscale.
Moreover, they are studied as simple models for channels in porous media
and a general account of these systems can be found in [ben Avraham and
Havlin, 2000]. The diffusion along the backbone, longitudinal diffusion, can
be strongly influenced by the shape and the size of such branches and anoma-
lous regimes arise by simply tuning their geometrical importance over the
backbone. In other words, the dangling lateral structures, dead-ends, intro-
duce a delay mechanism in the hopping to the neighboring backbone sites that
easily leads to non–Gaussian behaviour, as has been observed for instance in
flows across porous media [Tarafdar et al., 2001].

The analysis for the simple comb considered in Sec. 4.1, can be easily ex-
tended to the cases where each tooth is replaced by a more complicated struc-
ture, for example a two dimensional plaquette, a cube or a graph with fractal
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Figure 4.4: Cartoon of a one–dimensional lattice (backbone) decorated by identical arbitrary–
shaped sidebranches or dead–ends, depicted as lateral irregular objects. Such
sidebranches act as temporary traps for the random walk along the backbone.

Figure 4.5: Sketch of the Comb structures used in the text and obtained as an infinite period-
ical arrangement of the same geometrical element:(a) comb of plaquettes (dubbed

“kebab”) and (b) two–nested comb lattices (“antenna”)

dimension d f and spectral dimension ds (see Sec. 4.1.1), as reported in Fig. 4.5.
According to the Eq. (4.9), One has, for the lateral diffusion

〈y2(t)〉 ∼ tds/d f
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and then, the homogenization time can be estimated as t∗(L) ∼ L2d f /ds if ds <
2. Here, and in the following, yt indicates the transversal process with respect
to the backbone (ds = d f = 2, 3 if the lateral structure is a plaquette or a cube,
respectively). The previous argument used in Sec. 4.1 for the homogenization
time stems straightforwardly noting that a walker on an infinite graph, in an
interval t, visits a number of different sites [Weiss and Havlin, 1986; Alexander
and Orbach, 1982]

N(t) ∼

tds/2, if ds ≤ 2

t, if ds > 2
(4.10)

and accordingly, in a finite lattice of linear size L, for t ≈ t∗ , we have N(t∗) ∼
Ld f , implying that t∗(L) ∼ L2d f /ds when the spectral dimension ds ≤ 2. If the
lattice has ds > 2, the random walk is shown to be not recurrent [Itzykson and
Drouffe, 1989; Bouchaud and Georges, 1990; Redner, 2001]; its exploration of
the sidebranches over a diffusive time scale t∗(L) ∼ L2 is not exhaustive, a full
exploration takes a much longer time which can be obtained by the condition
N(t∗(L)) = Ld f leading to t∗(L) ∼ Ld f , directly from the second of Eqs. (4.10).
By matching the behaviour at the cross–over time t∗(L), we obtain in the case
ds < 2

〈(xt − x0)
2〉 ∼ t2ν, 2ν = 1− ds

2
(4.11)

These results coincide with the exact relations obtained by a direct calculation
of the spectral dimension on branched structures, based on the asymptotic
behaviour of the return probability on the graph, or on renormalization tech-
niques [Cassi and Regina, 1995; Burioni and Cassi, 2005; Haynes and Roberts,
2009].

The case ds = 2 deserves a specific treatment. Indeed ds = 2 is the critical
dimension separating recurrent (ds < 2) and not recurrent (ds > 2) random
walks (see Sec. 3.5). Thus ds = 2 is the marginal dimension which reflects
into the logarithmic scaling of the lateral mean square displacement 〈y2

t 〉 ∼
t/ ln t [Itzykson and Drouffe, 1989; Bouchaud and Georges, 1990; Metzler and
Klafter, 2000] (see also Chap. 3), therefore the homogenization time is now
t∗(L) ∼ L2 ln L. To illustrate this point we consider the case of the “kebab–
lattice” (Fig.4.5 (a)) where each plaquette is a regular two dimensional square
lattice, for which ds = d f = 2.

Applying once again the matching argument we have

〈(xt − x0)
2〉 ∼ ln t (4.12)

indicating a logarithmic pre–asymptotic diffusion along the backbone, see
Fig. 4.6 (a).
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Figure 4.6: (a) Log–linear plot of the mean square displacement for the case of the kebab–
lattice (see Fig. 4.5 (A)), as a function of the time, together with (b) the parametric
log–log plot of 〈δxt〉 f vs 〈(xt − x0)2〉0 (coloured symbols) and the theoretical
prediction in Eq. (4.13) (dashed line); (c) mean square displacement (log–log scale)
and (d) fluctuation–dissipation relation for the case of the antenna–lattice (see
Fig. 4.5 (B))
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Following the same steps as those described for the comb lattice, the gen-
eralized fluctuation–dissipation relation also holds for all the branched struc-
tures described in this section2. In particular we have:

〈(xt − x0)
2〉

〈δxt〉 f
=

1
3 f

(4.13)

Numerical simulations show that the time behaviour of the MSD (Fig. 4.6
(a)) on the kebab–lattice exhibits the initial ln t behaviour, at different sizes L,
in agreement with Eq.(4.12). Panel (b) of Fig. 4.6 reports the verification of
the fluctuation–dissipation relation, independently of the lattice size, with the
prefactor 1/3, as the probability to jump back and forth along the backbone
is 1/6.

To show the effect of ds of the homogenization time on the diffusion process,
we consider a structure composed by two–nested comb lattices that we dub
“antenna”, sketched in Fig. 4.5 (b), i.e. a comb lattice where the teeth are comb
lattices themselves on the y, z plane. This structure is then characterized by
two length–scales, the vertical, Ly , and transversal, Lz , teeth length; only for
sake of simplicity we assume all these scales of the same order of magnitude,
namely Ly ∼ Lz ∼ L. Also in this case, a cross–over time, (related to the
length of the teeth along z, L) t∗(L) ∼ L2 exists such that for t & t∗(L), the
diffusion is standard, whereas for t . t∗(L), an anomalous diffusive regime
takes place. Since ds = 3/2 for a simple comb lattice [Weiss and Havlin, 1986],
from Eq. (4.11) we obtain

〈(xt − x0)
2〉 ∼ t1/4 (4.14)

For finite L, the mean square displacement in Fig. 4.6, (c) exhibits an initial
regime t1/4 followed by a t1/2 behaviour with a final cross–over to the stan-
dard one. Such a particular scaling is due to the “double structure” of the
sidebranches

The case of ds > 2 must be carefully considered. For simplicity we present
here our analysis for the particular condition ds = d f = 3, so we consider
a comb–like structure where the lateral teeth are compenetrating but non–
communicating cubes. For computational simplicity the cubes are arranged
with centers at a unitary distance from one another along the backbone. Ac-
tually, the minimal distance among the centers of non–compenetrating cubes
with edge L, is L/2 + L/2 = L which is of course larger than 1 as soon as
L > 1, but in our model the cubes, despite their large overlap, are still con-
sidered as distinct sidebranches connected only through the backbone. The
homogenization time will be t∗(L) ∼ Ld and D(L) ∼ L−d . Therefore, for

2 It is possible to construct structures whose peculiar geometry acts as a sort of an external
field along the transversal direction, thus implying that the generalized FDR does not hold,
such an example will be discussed in Sec. 4.5
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Figure 4.7: (a) Mean square displacement and (b) fluctuation–dissipation relation for the case
of a comb–lattice composed by non compenetrating cubes; dashed line represents
the relation in Eq. (4.13)

t � t∗(L), we expect the standard diffusive growth 〈(xt − x0)
2〉0 ∼ t/Ld ,

while below t∗(L), 〈(xt − x0)
2〉0 ∼ t2ν and the matching condition at t∗(L)

predicts the existence of a plateau 〈(xt − x0)
2〉0 ∼ const, as derived by exact

relations based on return probabilities [Goldhirsch and Gefen, 1986]. The sim-
ulation data are in agreement with the above results, see Fig. 4.7, and also the
proportionality between fluctuation and response is again perfectly verified.

4.2 strong anomalous diffusion

In the last sections we introduced a simple analysis of comb–like based
structures , using essentially the physical concept of matching two different
behaviors and requiring continuity at the cross–over between the two regimes.
We derived a series of anomalous behaviour of the MSD with the elapsed time;
in general we can write 〈x2〉 ∼ tν1 lnν2 t [Bouchaud and Georges, 1990] with
ν1 and ν2 anomalous exponents tuned by choosing in an appropriate way the
geometrical morphology of the diffusive environment.

Generally speaking, deviations from standard diffusive behaviour are well
known and frequently observed in experiments, computer simulations, nat-
ural and economic phenomena [Klafter et al., 1996; Solomon et al., 1993;
Shlesinger et al., 1993; Santamaria et al., 2006; Klages et al., 2008] and typi-
cally are classified according to the anomalous scaling

〈x2(t)〉 ∼ t2ν (4.15)
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If a process, for example in one spatial dimension, is characterized by
anomalous diffusion, the simplest occurring scenario is that for large enough
t its probability density satisfies the ordinary scaling

P(x, t) = t−ν/2 f
( x

tν/2

)
(4.16)

with f (x/tν/2) an homogeneous function of x/tν/2 only. The scaling law (4.16)
implies a precise properties of the moments

〈|x(t)|q〉 ∼ tqν/2, q ∈N

The general assumption on the scaling property of the probability density
in Eq. (4.16) is numerically verified for a large class of models, as for example
the comb lattice (see Sec. 4.1); however it is not verified for all the models ex-
hibiting anomalous diffusion, as for example the case of those models which
show strong anomalous diffusion [Andersen et al., 2000; Castiglione et al.,
1999; Gradenigo et al., 2012], see also Sec. 4.3; such systems are characterized
by the scaling law

〈|x(t)|q〉 ∼ tqν(q), q ∈N (4.17)

where qν(q) is a function of q which can be both linear or non–linear. Clearly
the spectrum of exponents ν(q) in Eq. (4.17) implies that the scaling law in
Eq. (4.16) fails, so there is no possibility to have a unique collapse of the prob-
ability density at different times onto a single curve. The above observations
reinforce the idea that the anomalous character of a diffusive process is not
only related to the exponent ν in Eq. (4.15).

The following sections are dedicated to the analysis of some examples show-
ing strong anomalous diffusion; in addition we will also take into account
systems characterized by the standard scaling qν(q) = q/2, however with a
non Gaussian probability density, showing how the standard scaling of the
moments is not always connected with a normal (i.e. Gaussian) diffusion. In
particular we start from the analysis of a CTRW model in one spatial dimen-
sion and we will proceed by taking into account the random walk performed
on a class of fractal trees.

4.3 ctrw and strong anomalous diffusion

Consider the following model of CTRW: a particle (for simplicity in one spa-
tial dimension) can undergoes a series of collisions at random times t1, t2, · · · , tn, · · ·
and between two successive collisions the velocity vn remains constant. The
particle position x(t) at time t between tn and tn+1 will be given by

x(t) = x(tn) + vn(t− tn) (4.18)
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being vn = ±1 with equal probability and the time intervals τn = tn+1 − tn
independent random variables distributed according to the power law

P(τ) ∼

τ−g , 1 ≤ τ ≤ T

0 , otherwise
(4.19)

In Eq. (4.19) g > 1, the lower cutoff tc = 1 is a regularization to avoid the
singularity from infinitesimally short steps. Moreover, as in real physical
systems step size are always bounded, we also introduced an upper cutoff
T. The presence of the cutoff T implies that the hypothesis of the CLT for the
process in (4.18) are fulfilled, thus as t & T, it converges to a Gaussian process.
However if T is chosen sufficiently large, this convergence is slow enough that
a long and robust pre–asymptotic regime of strong anomalous diffusion can
be observed as explained by the following reasoning.

Consider nt as the stochastic process counting the number of collisions that
a particle underwent within the time t such that

x(t) =
nt

∑
i=1

viτi

When the time is so large that enough collisions occurred (nt � 1) we have
in a good approximation t ≈ ∑nt

i=1 τi giving t ≈ N〈τ〉, N being the mean
number of time steps necessary to reach the time t, say N = 〈nt〉. In this
limiting regime we can express moments of order q as

〈xq(t)〉 =
〈(

N

∑
i=1

viτi

)q〉
= ∑
{k}

q!
k1!k2! · · · kN !

N

∏
j=1
〈(vjτj)

kj〉

with {k} indicating the set of non negative integers such that k1 + k2 + · · ·+
kN = q. The odd–order moments 〈xq(t)〉 vanishes for the symmetry v → −v
of the velocity distribution. Even order moments are non zero and can be
evaluated exploiting the following properties: 〈viτj〉 = 0, 〈vivj〉 = δij, 〈τiτj〉 =
〈τ2〉δij, moreover it is useful to observe also that the q–order moments of the
waiting time τ for large T can be obtained from Eq. (4.19) as

〈τq〉 ∼

T1−g+q , if q > g− 1

a(q, g) , if q < g− 1
(4.20)
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with a(q, g) a constant independent from T. Substituting N with t/〈τ〉 in the
(4.20) we obtain

〈x2(t)〉 = t
〈τ2〉
〈τ〉 ∼ t

〈x4(t)〉 = t
〈τ4〉
〈τ〉 + 3

(
t
〈τ2〉
〈τ〉

)2

∼ t2

〈x6(t)〉 = t
〈τ6〉
〈τ〉 + 15

(
t
〈τ〉

)
〈τ2〉〈τ4〉+ 15

(
t
〈τ2〉
〈τ〉

)3

∼ t3

...

Looking at the moments above we can see that, depending on the ratio t/T,
two different regimes come into play. When t/T � 1 (asymptotic regime) the
most important term in the above sums comes from the contribution of the
form

〈xq(t)〉 ∼
(

t
〈τ2〉
〈τ〉

)q/2

∼ tq/2

and so the moments scaling is completely standard for every even q > 0. On
the other hand when t/T � 1, the q–order moments 〈xq〉 are dominated by
N〈τ〉, the largest term in T, giving

〈xq(t)〉 ∼ t
〈τq〉
〈τ〉

Using the same matching argument applied for the case of the comb–lattice
at the cross–over time t = T and remembering Eq. (4.20), we finally obtain for
the case t/T � 1

〈xq(T)〉 ∼ Tqν(q) ∼ T
〈τq〉
〈τ〉

from which it is possible to calculate the values of the exponent qν(q)

qν(q) =
q
2

, q = 2, 4, 6, · · · g ∈ [1, 2);

qν(q) = q + 2− g, q = 2, 4, 6, · · · g ∈ [2, 3);
qν(q) = q/2, q = 2, g ∈ [3, 4);
qν(q) = q + 2− g, q = 4, 6, · · · g ∈ [3, 4); (4.21)

...

The case characterized by g ≥ 3 shows the strong anomalous character intro-
duced in the last section. More specifically in this case qν(q) is a piece–wise
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linear function of q with the property that 2ν(2) = 1 (see Fig. 4.8). We can gen-
eralize the above result to the odd–order moments by considering the average
〈|x(t)|q〉 ∼ tqν(q) with (g ∈ [3, 4))

qν(q) =

q/2, q = 1, 2

q + 2− g, q = 3, 4, 5, · · ·

The last relation suggests a possible form of the probability density, indeed
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the lowest order moments behave in time as in the case of normal diffusion,
thus we expect that the probability density P(x, t) has a Gaussian–like bulk
which scales as P(x, t) = t−1/2 f (x/t1/2), in particular there exist a value
c ∼ t such that the probability density takes the form

t1/2P(x, t) =

 f (x/t1/2), x ≤ c ∼ t

0, otherwise
(4.22)

The suggested form of the probability density is consistent with the q–moments
scaling law only if around c, f (x/t1/2) assumes the form f (z) ∼ z−α, that is
the tails decay as a power–law behaviour with an exponent α related to g. Let
z∗ = x∗/t1/2 denotes the value of the cross–over between the Gaussian–like
bulk and the power–law tails, then we have (for simplicity we consider only
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the case x > 0, being the process symmetrical with respect to the reflection
about the origin)

〈xq(t)〉 =
∫ c

0
dx xqP(x, t) =

tq/2
∫ z∗

0
dz f (z) + const tq/2

∫ ct−1/2

z∗
dz zq−α

(4.23)

The first term of Eq. (4.23) is related with the Gaussian–like bulk and it be-
haves as tq/2; the second one, remembering that c ∼ t behaves as tq+ 1

2−
α
2 .

Therefore for small q the dominant contribution comes from the first term,
say 〈xq(t)〉 ∼ tq/2, while for large q the leading contribution comes from the
second term. The exponent q + 1

2 −
α
2 is in agreement with the calculated

exponent qν(q) only if α = 2g − 3, which is the expected behaviour of the
probability density tails outside the Gaussian–like bulk. The collapse of the
rescaled probability density is shown in Fig. 4.9 together with the standard
Gaussian (picture to be adjusted).

The result shown in this section must not be taken as a violation of CLT,
indeed within the Gaussian–like bulk the probability density shows the usual
scaling and, as we reviewed in Chap. 3 CLT does not grant anything on the
nature of the tails. Analogously there is no reason for the high order mo-
ments, which receive the main contribution from the tails, to converge to the
Gaussian moments. As we stated in the introduction this example exhibits a
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peculiar, in some sense still “anomalous”, feature, which is highlighted not
by the time behaviour of the mean square displacement, rather by the non
Gaussian probability density and the higher order moments, suggesting that
the remarkable property of standard diffusion, namely 〈x2〉 ∼ t is not enough
to give information about the possible transport anomalies.

4.4 walking on fractal trees

The diffusion properties of random walk on graphs and/or within a fractal
environment, depend on both the fractal dimension d f and the spectral di-
mension ds [Alexander and Orbach, 1982; ben Avraham and Havlin, 2000], as
we discussed in Sec. 4.1.1 and Sec. 4.1.2. Indeed, the relation between spectral
and fractal dimension determines the mean square displacement, as reported
in Eq. (4.9).

Similarly to the case of CTRW, we can wonder about the behaviour of high–
order moments and the possible scaling/collapse of the probability density
when we consider a random walk on fractals. In particular, we will focus in
the next sections on a class of fractal trees, called Nice Trees of dimension k
(NTk) and some further generalization of them which we will call here Super
Nice Trees (SNT).

4.4.1 Nice Trees of Dimension k

NTk are recursive fractal trees such that d f = ds apparently implying, ac-
cording to Eq. (4.9) standard diffusion, with a subsequent Gaussian scaling
of the moments and the probability density. They are recursively defined as
follows. An origin O is connected with a site A by a link of length 1: from A
the tree splits in k branches of length 21 each. The end point of such branches,
in turn, split again into k branches of length 22 and so on (see Fig. 4.10). Such
trees are characterized by the remarkable property that fractal and spectral
dimension are the same, as shown in Burioni and Cassi [1994, 1995]; more
specifically

d f = ds(k) = 1 +
ln k
ln 2

(4.24)

therefore, despite the nontrivial structure, Eq. (4.9) implies a standard be-
haviour 〈x2(t)〉 ∼ t for any value of k, where the distance between two given
sites of the tree, say x and y, is defined as the minimum number of links con-
necting x and y (the path of minimal length connecting x and y is also called
in the literature geodesic path [Woess, 2000; Burioni and Cassi, 2005; Philippe
and Volchenkov, 2011]). As usual, with x(t) we mean the distance from the
origin O of the graph, to which is associated xO = 0, whereas (x(t)− x′) will
be the distance at the time t from a fixed node x′.
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Figure 4.10: Sketch of the Nice Tree of dimen-
sion k = 3 together its equiva-
lent model in term of a one dimen-
sional non homogenbeous chain.

As we learned in the case of CTRW (Sec. 4.3), the linear growth of the MSD
with the elapsed time (i.e. 2ν(2) = 1) does not grant trivial properties in the
probability density scaling, as well as in the behaviour of the higher–order
moments.

Each site of the NTk can be identified with a couple of indices (x, α), indi-
cating respectively the distance from O and the corresponding branch. Our
goal is to study the distribution function Pt(x, α), that is the probability to
find at time t a walker at distance x from O and on the branch α. A useful
quantity in the following reasoning will be the distance from the origin of the
branching points, in particular if we associate to the origin the value xO = 0,
the branching points will be at the distances

x = 2n − 1, n ∈N (4.25)

which clearly is a relation independents from α, due to the geometrical charac-
teristics of NTk trees. For example, with reference to Fig. 4.10, all the branch-
ing points along the red dashed lines are at the same distance from O, thus
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using Eq. (4.25) we have three branching points at distance xB = 22 − 1 = 3
from O, nine branching points at distance xC = 23 − 1 = 7 from O and so on.

If a walker is not on a branching point, say if its distance x from the ori-
gin is such that x(t) 6= 2n − 1, then it will decrease or increase x(t) by one
with probability 1/2, performing a standard random walk; on the other hand,
when x(t) = 2n − 1, a walker will increase its distance from the origin by
one with probability k/(k + 1), choosing independently another branch and
thus proceeding on the tree; otherwise it decreases its distance from the ori-
gin by one with probability 1/(k + 1), coming back on the starting branch.
Due to the fact that the probability to jump on new branch does not depend
on the branch itself, the random variables x(t) and α(t) are independent, so
we can write Pt(x, α) = Pt(x)Zt(α) and focus on the marginal probability
distribution

Pt(x) = ∑
α

Pt(x, α)

Practically the marginal probability is related to the random walk on a
simple one dimensional chain with a perfect reflecting boundary condition
at xO = 0 and a series of inhomogeneities points, which are at distances
x = 2n − 1 from the origin of the line and such that the transition between
two neighbours sites can be taken as (see the chain model in Fig. 4.10)

W (0→ 1) = 1

W (1→ 0) = 1
2

W (x → x + 1) = k
k+1 , if x = 2n − 1

W (x → x− 1) = 1
k+1 , if x = 2n − 1

W (x → x± 1) = 1
2 , otherwise

(4.26)

The reduction of the problem to a one–dimensional random walk is not sur-
prising and is essentially the same technique applied, for example, to the case
of the Cayley Tree in Redner [2001]. Using Eq. (4.26) the probability density
as well as the moments–behaviour with the elapsed time can be computed by
iterating numerically the master equation

Pt+1(x) = ∑
m

Pt(m)W (m→ x) (4.27)

Fig. 4.11 shows the result obtained directly by using the master equation for
the case k = 2 and considering the initial condition

P0(x) =
1
2
(δx,0 + δx,1)

In particular it is shown the moments behaviour 〈xq〉 ∼ tq/2 (q ≤ 8), which is
in agreement, at least up to order eighth, with the Gaussian scaling, namely
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Figure 4.11: Log–log plot of 〈(xt − x0)q〉 vs time (q = 1, 2, 4, 8, coloured symbols) together
with the theoretical prediction in Eq. (4.29);the inset shows the return probability
in t steps to the origin, Pt(O) (see Eq. (4.8)), both for k = 2 (black line) and
k = 6 (blue line), respectively associated to a spectral dimension ds(2) = 2 and
ds(6) ≈ 3.6.

〈xq〉 ∼ tq/2; the inset shows the probability to reach the origin of the graph in
t steps, Pt(O), as a function of the time and for two different values of the
Tree dimension, namely k = 2, 6, giving respectively (see Eq. (4.24)) ds = 2
and ds ≈ 3.6; Pt(O) approaches zero asymptotically in time as a power law,
respectively with the exponent ds(2)/2 and ds(6)/2, as predicted in Burioni
and Cassi [1994, 1995].

Dashed black lines in the main panel of Fig. 4.11 are plotted by calculating
the time behaviour of the moments with a “coarse–grained” approximation
of the probability distribution; more specifically, the approximation to the
probability distribution can be written as

Ft(x) =
2

Γ(ds/2)(2t)ds/2 xds−1 e−x2/2t (4.28)

which well interpolates the exact numerical result.
The expression (4.28) is a generalization of the radial Gaussian distribution

to the case of, generally fractional, spectral dimension ds(k) and it can be ex-
plained by the following argument. Let P̃t ∼ exp (−x2/2t) be the probability
density at time t of an unbiased diffusion process defined on a semi–infinite
one dimensional line with a perfect reflecting boundary condition in zero. Be-
tween two branch points of the NTk trees we know that the walk is a standard
random walk, namely x(t) increase or decrease by one with probability 1/2;
thus at large scales (x � 1) it is possible to approximate the probability dis-
tribution as the product Ft(x) ∝ NxP̃t(x), Nx being the number of sites at the



4.4 walking on fractal trees 89

same distance from the tree origin, which can be seen also as the number of
independent branches at a given distance x on which a walker can performs
the standard random walk; introducing the quantity n(x) defined as the num-
ber of branching points between O and x along a minimal–length path on
the tree, we can write Nx = kn(x); an estimation of n(x) can be obtained by
observing that the branching points are only those points located at distances
given by Eq. (4.25), whose inversion leads to n(x) = bln x + 1/ ln 2c, which
gives n(x) ≈ ln (x + 1)/ ln 2 at distance x. Now, using the explicit expression
for the spectral dimension reported in Eq. (4.24) follows the result Nx ≈ xdx−1,
namely

Ft(x) ∝ xds−1 e−x2/2t

which, after normalization, yields the expression (4.28).
The approximate time behaviour of the moments can be computed by using

Eq. (4.28) in the usual way

〈xq(t)〉 ≈
∫ ∞

0
dx Ft(x)xq = Cqtq/2 (4.29)

Cq = 2q/2 Γ
(

q+ds
2

)
Γ( ds

2 )

whose agreement with numerical moments is really striking (see Fig. 4.11)
considering that there are no free parameters. Comparison between the sim-
ulated probability density and the approximated one is shown in Fig. 4.12

for the case k = 2. Observe that, after rescaling the probability density as
x → x/

√
〈x2〉 and Pt(x)→ 〈x2〉Pt(x), namely by using the usual scaling of

a Gaussian process, the probability density at different times fully collapses
on a single curve; the dashed black line shows the approximation in Eq. (4.28)
rescaled at the same way, while the inset shows the probability density for
k = 6 (black circles) together with the approximated density (red dashed line),
emphasizing that the approximated solution which we have found works well
for every k .

As a final remark we can conclude this section noting that, despite the ge-
ometrical complexity of NTk trees, the large scale statistical properties of the
random walk on this graphs remains Gaussian–like. It is possible to qual-
itatively understand such behaviour by considering that, if a walker starts
from the origin and performs always a step forward on the tree, that is, if its
distance from the origin always increases by one, after t steps we will have

x(t) = t ≈ 2n − 1

with n the number of branching points encountered by the walker during its
motion. Inverting the last relation we see that

n(t) ∼ ln t
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Figure 4.12: Log–log plot of the rescaled probability density obtained by iterating Eq. (4.27)
at different times (coloured symbols) and taking k = 2; the black dashed line
represents the “coarse–grained” approximation in Eq. (4.28). Inset shows the
same result for t = 107 (black circles) and k = 6 together the approximation in
Eq. (4.28) (red dashed line)

from which follows that the number of branching points visited by a walker
during its motion can not grow more faster than ln (t). Thus, the percentage
of time spent by a walker on the branching points will be at most of the order

ln t/t

which goes to zero as t→ ∞. This means that asymptotically in time a walker
will perform a random walk far from the branching points, that is, it will
performs a standard random walk.

4.4.2 Super Nice Trees

The structure of the NTk graphs can be easily modified to generate an exam-
ple of random walk which exhibits standard scaling of all the moments with-
out having a Gaussian probability distribution. For this purpose we change
the NTk structure by defining a new type of tree, which we dub SNT (Super
Nice Tree). SNT (see the up panel of Fig. 4.13) can be recursively defined as
an NTk, but at every branching point x = 2n− 1 (n = 1, 2, 3, · · · ) the tree splits
in kn branches.

As the previous case, we can refer again to a random walk on the simple
one–dimensional line, characterized by well known inhomogeneities in which
the jump probabilities change according to the equivalent model showed in
the bottom region of Fig. 4.13. In particular we can directly simulate the
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Figure 4.13: Super Nice Tree and its equivalent model in terms of a one dimensional chain

probability distribution and the time behaviour of the q–order moments (q ∈
N) by iterating Eq. (4.27) with the transition matrix given by (n ∈N)

W (0→ 1) = 1

W (1→ 0) = 1
2

W (x → x + 1) = kn

kn+1 , if x = 2n − 1

W (x → x− 1) = 1
kn+1 , if x = 2n − 1

W (x → x± 1) = 1
2 , otherwise

Numerical simulations show how, also in this case, the moments behaviour
is in agreement with the normal scaling (i.e. 〈xq〉 ∼ tq/2), however the proba-
bility distribution is not a Gaussian, see Fig. 4.14

The failure of the scaling x → x/
√
〈x2〉 and Pt(x) →

√
〈x2〉Pt(x) and

the corresponding ordinary property qν(q) = q/2 of the moments, suggest
that there should exists a cross–over between two different scaling behaviors
separated by a particular value z̃, such that

Pt(x) =

ht(x), x√
t
≤ z̃

1√
t

f
(

x√
t

)
, x√

t
≥ z̃
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Figure 4.14: (a) Time behaviour of the q–order moments (q = 1, 2, 4, 8) obtained by simu-
lating a random walk on the structure SNT derived from the NT2 tree (dashed
black lines are proportional to tq/2); (b) log–log plot of the rescaled numerical
probability densities at different times (coloured symbols); observe how, on small
scales, the standard scaling fails, thus highlighting the non Gaussian nature of
the process, also if the moments scale in agreement with a Gaussian distribution.

The above assumption implies that the moments read

〈xq(t)〉 =
∫ √tz̃

0
dx xqht(x) +

∫ ∞
√

tz̃
dx

xq

t1/2 f
( x

t1/2

)
=

=
∫ √tz̃

0
dx xqht(x) + Aqtq/2

(4.30)

with Aq =
∫ ∞

z̃ dz zq f (z) a constant depending on q only. The numerical
time behaviour of the q–order moments is consistent with the expression in
Eq. (4.30) only if the first integral grows slowly than tq/2.

4.5 entropic breaking of the generalized fdr

The NTk trees and the comb–lattice studied in the last sections, enable us
to build a more realistic model of diffusion in an highly ramified structures.
In particular we can replace the teeth in the simple comb–lattice by an NTk
in the y, z plane (as we performed for the case of the kebab–lattice and the
antenna–lattice, see Sec. 4.1.2).

The resulting structure is, as usual, characterized by a main transport direc-
tion together with lateral dead–ends, where the particles can be temporarily
trapped before to come back on the backbone.

For simplicity, we analyze the case of the NT2 tree, used to construct the
comb teeth, taking an unitary distance between two neighbors teeth. We
will call “NT2–comb” the resulting lattice. In particular, we recall that the
spectral dimension for the NT2 tree (see Eq. (4.24)) is given by ds = 2, which
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is the same spectral dimension of the kebab–lattice considered in Sec. 4.1.2
(see Fig. 4.5 (a)).

Unlike the comb–like structures studied in Sec. 4.1.2, the NT2–comb can be
used as a toy model useful to point out the qualitative properties related to
all those situations in which there is a highly ramified lateral dispersion.

In order to simulate the random walk on the NT2–comb, we consider the
transition matrix in Eq. (4.2) to take into account the jumps along the back-
bone. The Eq. (4.26) gives the jumping frequencies along the transversal
direction, once we interchange x with y and generalize to the case of nega-
tive values of y. Practically, every sidebranch, can be considered as a one–
dimensional chain, characterized by an infinite number of inhomogeneities
situated at y∗ = ±(2n − 1) (n ∈ N) from the backbone (i.e. y = 0), as dis-
cussed in Sec. 4.4.1. In addition, we used N = 106 particles and an unitary
time step.

The mean square displacement does not introduce formal variations respect
to the case with ds = 2 treated in Sec. 4.1.2, see Fig. 4.15 (inset) compared to
Fig. 4.6 (a).
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Figure 4.15: Mean square displacement on log–log scale (inset) and fluctuation dissipation
relation (main panel) for the generalized comb–lattice whose teeth are given
by NT2 graphs (ds(2) = 2). Similarly to the case related to the kebab–lattice
analyzed in Sec. 4.1.2, the mean square displacement has a pre–asymptotic time
behaviour proportional to ln (t) (see inset); however in this case the FDR (see
main panel) is broken, because the branching of the lateral structures acts as an
external drift along the transversal direction.

A different scenario comes into play if we look at the FDR relation when
an external bias along the backbone is applied. Contrary to the cases ana-
lyzed in Sec. 4.1.2, the geometrical structure of the lateral dead–ends of the
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NT2–comb, introduces a sort of an external drift along the transversal direc-
tion, which is due to the inhomogeneities in the jumping probabilities when
a walker reaches a branching point y∗. More specifically the unbalance in the
transversal direction can be written as

∆p+y =

(
k

k + 1
− 1

2

)
δy,y∗

∆p−y =

(
1
2
− 1

k + 1

)
δy,y∗

thus giving a pure “entropic field” acting on the increasing direction of the
lateral structures given by

fy = ∆p+y + ∆p−y =
k− 1
k + 1

δy,y∗

This entropic field is responsible for the breakdown of the FDR, see the main
panel of Fig. 4.15. This is an explicit example in which the geometry has
an hard influence on the process. In particular, our result in this section
shows how the FDR is more sensitive to the geometrical structure (compare
the kebab–lattice with the NT2–comb) rather than the details of the dynamics,
compare Fig. 4.15 (inset) with Fig. 4.6 (a). Moreover, we recover another time
the manifestation of an entropic–like potential, which is a recurrent topic in
this work.

4.6 summary and remarks

In this chapter we analyzed some discrete random walks on branched struc-
tures and an example of CTRW.

Our work was focused on both the asymptotic and the pre–asymptotic prop-
erties of such walks. In particular, many of the analyzed systems, show a
regime of anomalous transport. Moreover, we also showed that generalized
FDRs hold true during the anomalous regime. On the contrary, the “NT2–
comb” considered in Sec. 4.5, clearly shows an entropic breakdown of the
generalized FDR at short times, suggesting that FDRs are more sensitive to
the geometrical environment rather than to the details of the dynamics.

We analyzed, in contrast to those examples showing anomalous diffusion,
a series of situations characterized by a standard scaling of the MSD, however
with a non Gaussian probability density. In particular, we investigated an ex-
ample of CTRW in Sec. 4.3 and the discrete random walk on a highly branched
structure (SNT trees) in Sec. 4.4.2. These examples are simple realization of
“hidden” anomalies. Indeed, despite the fact that 〈x2〉 ∼ t, the probability
density is not Gaussian, suggesting that the exponent ν, frequently used to
characterized the anomalous transport via the relation 〈x2〉 ∼ t2ν (2ν 6= 1), is
not enough to well identify the process. A final remark on this point can be
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useful in order to better clarify the role of the anomaly in the diffusive, appar-
ently normal, regime of the random walk when the probability density is not
Gaussian. We will discuss here the case of the random walk on the SNT trees
studied in Sec. 4.4.2.

The large scale properties of the probability density (see Fig. 4.14 (b)) shows
the typical scaling expected under the CLT hypothesis (see Chap. 3). This im-
plies that the CLT is not actually violated and, for this reason, we can observe
a standard scaling of the q–order moments with the time. However, on small
scales, CLT does not hold true. This anomaly reflects on all those problems
related to a possible “target–hitting” mechanism on small scales, leading to
an Anomalous Target Searching (ATS), also under a standard dynamical regime.





5
A N A LY T I C A L A N D N U M E R I C A L R E S U LT S O N
C O N T I N U O U S C H A N N E L S

“Don’t Panic !”

Adams [1979]

The entropic diffusive transport within non homogeneous channels [Con-
stantini and Marchesoni, 1999; Reguera and Rubí, 2001; Reguera et al., 2006;
Burada et al., 2007, 2008, 2009, 2010; Borromeo and Marchesoni, 2010] is one
of the most fascinating example of dynamics influenced by the non trivial
geometry of the surrounding environment. As we reviewed in more details
in Chap. 1, many implications are related to the constrained diffusion, for
example, the separation of DNA fragments moving in narrow channels [Han
and Craighead, 2000; Heng et al., 2004] or the emergence of a pre–asymptotic
subdiffusive transport [Santamaria et al., 2006] in a spiny dendrite. This retar-
dation is due to a transient trapping of molecules within dendritic spines.

In this chapter we focus on the investigation of the properties of diffu-
sive motion within two–dimensional periodic channels. We will consider the
asymptotic as well as the pre–asymptotic regime using both analytical and
numerical techniques.

The most common theoretical approach is embodied in the Fick–Jacobs [Ja-
cobs, 1967] approximation and its generalizations [Burada et al., 2009]. The
validity of the FJ (Fick–Jacobs) description in the unbiased [Burada et al., 2009,
2007; Marchesoni and Savel’ev, 2009] and biased [Marchesoni, 2010; Borromeo
and Marchesoni, 2010] case was extensively studied (see also Chap. 2). In
particular, one of the main question related to the unbiased diffusion in the
asymptotic regime is the estimation of the effective diffusion coefficient Deff
along the longitudinal direction, as a function of the external geometrical pa-
rameters [Burada et al., 2009]. It controls the rapidity of the mass spreading,
thus affecting, for example, the ability of the particles to hit some target re-
gions on large time and length scales and consequently suggesting a possible
engineering of nano–devices in order to get some desirable dynamical prop-
erty. We derive a simple analytical estimation of Deff without using the FJ ap-
proximation, comparing our result with the already known approximations
and with numerical data produced by performing Brownian dynamics. More-

97
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over we will also discuss the limits of our approach by taking into account
different types of channel geometries.

The asymptotic mobility represents another interesting dynamical prop-
erty [Borromeo and Marchesoni, 2005, 2010; Marchesoni, 2010; Ghosh et al.,
2012b,a] which naturally comes into play when we consider the case of bi-
ased diffusion (see also Chap. 2). We will take into account this point by an-
alyzing the effects of the time scales separation between the transversal and
longitudinal motion, focusing on both the asymptotic and the pre–asymptotic
mobility within the linear response approximation. Few results about the pre–
asymptotic properties are already known, most of them are related with the
escape problem from a narrow channel into a wide space region [Holcman
and Schuss, 2004; Shuss et al., 2007; Dagdug et al., 2007; Holcman and Schuss,
2011]. The emergence of a position dependent microscopic diffusion coeffi-
cient was also worked out by analyzing the time scales separation between
the transversal and longitudinal motion within the channel [Berezhkovskii
and Szabo, 2011]. On the contrary, our work on the pre–asymptotic prop-
erties will be focused on the transient behaviour of the longitudinal mean
square displacement and the “fate” of the FDR (Fluctuation–Dissipation Rela-
tion) before and after the cross–over to the standard diffusion. In particular,
we show how it is possible to tune the cross–over time of the dynamics along
the transport direction by choosing properly the initial distribution of the par-
ticles within the channel.

We refer for our discussion to a particular class of channels, characterized
by a well defined transport direction together with transversal dead–ends
where the particles can be temporarily trapped before to proceed along the
longitudinal direction and consequently contribute to the transport process.

5.1 recalling the diffusion equations in confined systems

In this section we recall some of the main results reviewed in Chap. 2.
We consider the dynamics of sufficiently diluted passive tracers moving into
two–dimensional periodic channels, see Fig. 5.1. The single particle trajec-
tory evolves in time according to the Langevin equation [Langevin, 1908;
Zwanzig, 2001], whose form in the overdamped regime (high viscosity) can
be expressed as

dr
dt

= −∇V(r)
η

+
√

2kBTηξt (5.1)

with η the viscous friction coefficient, kB the Boltzmann constant , T the ther-
modynamic temperature and V(r) an external field. The stochastic term ξt is
chosen as a Gaussian white noise:

〈ξ(i)t 〉 = 0, 〈ξ(i)t ξ
(j)
t′ 〉 = δijδ(t− t′) i, j = x, y.
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Figure 5.1: Sketch of the periodic channels considered in this Chapter; (a) Smooth channel
(Sm); (b) Sharp channel (Sh)

The Fokker–Planck equation [Risken, 1989] for the probability density P(r, t)
(see Chap. 3) related to the stochastic dynamics in Eq. (5.1) can be written as∂tP(r, t) +∇ · J(r, t) = 0

J(r, t) = −
[
∇V(r)

γ + D0∇
]
P(r, t)

(5.2)

where D0 = kBT/η denotes the microscopic diffusion coefficient useful to
characterize the particle motion in the free case. Moreover we assume no–flux
boundaries:

J(r, t) · n̂(r) = 0, r ∈ Channel walls (5.3)

with n̂(r) the local versor outgoing from the channel walls. The problem on
the mesoscopic scale is then fully classified by the equations (5.2) and (5.3),
however the analytical solution is complicated by the non homogeneous shape
of the boundary profile.

In order to simplify the description of the transport properties it is usual
to describe the problem in terms of the marginal density [Kalinay and Percus,
2005a, 2006b; Berezhkovskii et al., 2010; Burada et al., 2009] G (x, t), defined
by

G (x, t) =
∫ +ω(x)

−ω(x)
dy P(x, y, t)
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where we considered the special case of a symmetric channel respect to the
longitudinal axis, described by the boundary profile ω(x) > 0.

The standard approach encloses the information about the non homoge-
neous boundaries in the generalized FJ equation [Jacobs, 1967; Zwanzig, 1992;
Kalinay and Percus, 2006a] given by

∂G (x, t)
∂t

=
∂

∂x

{
σ(x)D(x)

∂

∂x

[
G (x, t)
σ(x)

]}
(5.4)

with σ(x) the cross–section of the channel taken into account. In the case of
a symmetric two–dimensional channel we have σ(x) = 2ω(x). The function
D(x) is a microscopic local diffusion coefficient which parametrically depends
also from D0.

The mathematical form of the local diffusion coefficient D(x) is unknown.
Zawanzig [Zwanzig, 1992] was the first who perturbatively calculated D(x)
under the assumption of small fluctuations from the local equilibrium condi-
tion, that is by assuming

P(r, t) =
G (x, t)
σ(x)

+ δP(r, t),
δP(r, t)σ(x)

G (x, t)
� 1

He derived for D(x) the expression

DZw(x) = D0

[
1 +

1
12

(
dσ

dx

)2
]−1

(5.5)

which is valid for a two–dimensional channel.
Before Zwanzig, Fick derived the Eq. (5.4) in the limiting case δP(r, t) = 0.

In particular he showed that

DFJ(x) = D0 (5.6)

The same result was also explained by Jacobs in his book on diffusive pro-
cesses [Jacobs, 1967].

Reguera and Rubí (RR) improved the estimation of D(x) proposed by Zwanzig
using an heuristic argument [Reguera and Rubí, 2001]. In particular they ob-
tained for the case of a two–dimensional channel the expression

DRR(x) = D0

[
1 +

1
4

(
dσ

dx

)2
]−1/3

(5.7)

Finally, Kalinay and Percus (KP) performed an elegant perturbative treat-
ment to expand D(x) as a linear and non linear combination of terms con-
taining σ(x) and its derivatives [Kalinay and Percus, 2005a,b, 2006a,b, 2008].
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Neglecting the second and the higher order derivatives of σ(x), KP found for
D(x) the expression

DKP(x) = D0

arctan
(

1
2

dσ(x)
dx

)
1
2

dσ(x)
dx

(5.8)

which applies in the case of a two–dimensional channel (see Chap. 3)
On large time and length scales, Eq. (5.4) gives a standard diffusive be-

haviour 〈(xt − x0)
2〉 ≈ 2Defft. The effective diffusion coefficient, Deff, is given

by the Lifson–Jackson (LJ) formula [Lifson and Jackson, 1962]

Deff =
1

〈σ(x)〉
〈

1
D(x)σ(x)

〉 (5.9)

where the averages in the denominator have to be understood as

〈 f (x)〉 = 1
L

∫ x0+L

x0

dx f (x),

being f (x) = f (x + L) whatever periodic function of x
It is interesting to observe that the one–dimensional reduction of the prob-

lem can be obtained by writing the Fokker–Planck equation related to the one
dimensional Langevin equation given by

dx
dt

= −dV(x)
dx

+
√

2D(x)ξt

with the “external” potential

V(x) = −kBT ln σ(x)

For this reason V(x) is also called entropic potential: a potential related only
to the possible available states in the configuration space.

5.2 asymptotic diffusion

Our main goal of this section is a simple analytical expression, useful to esti-
mate the effective diffusion coefficient Deff related to the longitudinal motion;
Deff is expected to be lower than its respective value in free space, denoted
with D0 and clearly the slowdown of diffusion is due to the presence of pe-
riodically spaced traps, which we dub “humps” (H), related to those regions
of the channel such that |y| > R/2 (Fig. 5.1). Within the H region the parti-
cles spend a certain quantity of time before to come back in the “shaft” (S)
region, i.e. |y| ≤ R/2, and consequently contribute to the transport along the
longitudinal direction.
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For our discussions we will refer to two types of structures (see Fig. 5.1).
Formally, the boundary of the channel in Fig. 5.1 (a) will be expressed by the
smooth function

ωSm(x) =
R
2
+A sinγ

(
2πx

L

)
(5.10)

We will refer hereafter to this channel as the Smooth channel (Sm). The chan-
nel boundary in Fig. 5.1 (b) is characterized by the sharp profile

ωSh(x) =


R
2 , 0 ≤ x ≤ L

4 −
∆κ
2

2A+R
2 , L

4 −
∆κ
2 ≤ x ≤ L

4 + ∆κ
2

R
2 , L

4 + ∆κ
2 ≤ x ≤ L

2

; (5.11)

and we will refer hereafter to this channel as the Sharp channel (Sh). The
period of both channels is equal to L/2. More complicated boundaries will
be taken into account in Sec. 5.6.

In order to estimate analytically Deff we construct a simple one dimensional
Markov chain. We observe that in the long time limit the motion along the
transverse direction becomes stationary. Thus the probability PH(t) to be
somewhere in the H region and the probability PS(t) = 1− PH(t) to be some-
where in the S region, are characterized both by a constant value. In particular,
by assuming ergodicity we have

lim
t→∞

PS(t) = Peq
S =

µ(S)
µ(H) + µ(S)

, (5.12)

where µ(S) and µ(H) are the surface (measure) of the S region and the H
region respectively within a single period of the channel. Practically PS(t) is
the probability that at the instant t, NS(t) particles are within the S region,
thus PS(t) = NS(t)/N, being N the total number of diffusing particle within
the channel1.

Asymptotically, we can treat the motion along the transport direction as a
simple random walk on a one–dimensional lattice such that, at every fixed
time step δt, a walker on a given site can jump on the right with probability
Peq

S /2, on the left with probability Peq
S /2 or it can remain on the same site

with probability Peq
H . By construction, the random walk with non zero Peq

H
leads to a reduction of the diffusion coefficient, due to the fact that, at every
time step a walker can be trapped on a given site. We expect for this model an
asymptotic standard diffusion with an effective diffusion coefficient Deff < D0,
being D0 the free diffusion coefficient in the limit Peq

H = 0. The mean square
displacement for this system behaves as

〈x2〉 = 2Defft

1 Obviously PH(t) = (N − NS(t))/N
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where the asymptotic effective diffusion coefficient can be expressed in the
simple form:

Deff = D0Peq
S (5.13)

If we take into account the Sharp channel in Eq. (5.11), using Eq. (5.12) we
have

µ(S) =
RL
2

, µ(H) = 2A∆κ.

Thus, using Eq. (5.13), the effective diffusion coefficient for the Sharp channel
takes the form

Deff

D0
=

RL
4A∆κ + RL

(5.14)

In the same way, calculating the explicit form of µ(S) and µ(H) for the
Smooth channel in Eq. (5.10) we obtain the result

Deff

D0
=

πR

2β
(

1
2 , γ+1

2

)
A+ πR

(5.15)

with β(·, ·) the Euler beta function.
In order to verify our analytical result in Eq. (5.13) and the particular cases

in Eq. (5.14) and E. (5.15) we performed numerical simulations by integrating
the overdamped Langevin equation in (5.1) with V(r) = 0, assuming no–flux
boundaries. For our simulations we taken N = 7 × 104 particles, D0 = 1
and a time step of 0.005. In order to avoid a particle flux outgoing from the
channel we used both a rejection method and a numerical routine useful to
calculate the reflection at the boundaries. We found that the results was the
same. For this reason in the following, we present the simulations performed
using the rejection method, which we preferred because it is more fast. In
addition we chosen as geometrical parameters for both channels (see Fig. 5.1)
R = 4, L = 10 and A = 2−1, 22, 24, · · · 214; in addition, only for the Smooth
channel we fixed γ = 10 (Eq. (5.10)), while the value of ∆κ = 1.23 ≈ R/4
for the Sharp channel (Eq. (5.11)) was fixed to have the numerical value given
by the Eq. (5.15) equivalent to the value obtained using Eq. (5.14), in order to
compare the results for both channels.

The numerical results are shown in Fig. 5.2. The black circles refer to
the Smooth channel, whereas the black squares embodies to the Sharp chan-
nel case. The solid black line represents the theoretical estimation given in
Eq. (5.14) and Eq. (5.15).

In the case of the Smooth channel it is possible to calculate the value of the
effective diffusion coefficient using also the LJ formula given in Eq. (5.9); the
dashed coloured lines in Fig. 5.2 show the results of such calculation, where
the integrals in Eq. (5.9) was performed numerically.

The LJ formula does not apply for the Sharp Channel, being ωSh(x) not
derivable everywhere. In principle the singularities of the Sharp channel can
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Figure 5.2: Log–log Plot of the Eq. (5.14) and Eq. (5.15) (continuum black line) vs A/R
together with the simulated data: circles show the case related to the Smooth
channel whereas squares represent the case related to the Sharp channel. The
simulations are compared to the results obtained for the Smooth channel using
Eq. (5.9) with DRR(x) (red), DKP(x) (green), DZw(x) (blue) and DFJ(x) (or-
ange) (see Sec. 5.1).

be treated by expanding ωSh(x) in Fourier series, which is differentiable term
by term. However this approach is technically hard and in every case such
regularization procedure does not work if ωSh(x) is a multivalued function of
x, as we will discuss in Sec. 5.6. Moreover, almost all the calculation of the mi-
croscopic diffusion coefficient D(x), are related with perturbative treatments,
implying that the greater is the perturbation of a given channel from the flat
cylindrical geometry, the greater will be the error introduced by a perturba-
tive approach. Obviously it is possible to work out higher order terms in the
perturbative series, for example the series calculated by KP (see Eq. (2.36)),
however such calculations, typically, are not simple to perform. Another ap-
proach which can be more useful than the FJ approximation in the case of the
Sharp channel is based on the boundary homogenization [Berezhkovskii et al.,
2006, 2009, 2010; Makhnovskiia et al., 2010], see also Chap. 2. Berezhkovskii
and co–workers performed a calculation of the effective diffusion coefficient
for the Sharp Channel, however as the authors explain, their result is valid
only when 2∆κ ≥ 2A + R, which is not the case taken in account here.

Our approach, which is a different elaboration of the result previously sug-
gested by Dagdug et al. [2007], well reproduces the simulated data, however
also this simple picture can not work in every cases, as we will try to critical
explain in Sec. 5.6.
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5.3 transient msd and fdr : recovering the comb lattice

In this section we show the relation between the comb–lattice studied in the
previous chapter and the asymptotic result discussed in the last section. Ac-
tually, the qualitative equivalence between the geometry of the comb–lattice
(see Fig. 4.1) and the channels considered in this section, can be used to gener-
alize the results found in Sec. 4.1, to the present case of diffusion in periodic
channels.

In order to write the equation for the transient MSD and the effective diffu-
sion coefficient we briefly recall our results about the calculations performed
on the comb–lattice in Sec. 4.1.

The longitudinal MSD for the comb lattice with finite length sidebranches
and unitary space and time increments, satisfies the relation (see Eq. (4.4))

〈(xN − x0)
2〉

2N
= FB(N)

being FB(N) the mean percentage of time (frequency) which a given walker
spends in the backbone during the time “interval” [0, N] (FB(N) was called µt
in Eq. (4.4)).

We assume that the last relation holds true also for the diffusion within the
periodic channels taken into account in the last section (see Fig. 5.1), provided
that it must be compared with the numerical results (see the following sec-
tions). When we consider the above equation for the continuous case within a
time interval [0, t], contrary to the discrete case, such relation must be verified
instantaneously, independently by the length of the interval [0, t]. In particu-
lar, for small intervals, we have 〈(xt − x0)

2〉/t ≈ d〈(xt − x0)
2〉/dt and we get

the generalized form

1
2D0

d〈(xt − x0)
2〉

dt
= PS(t) (5.16)

with PS(t) the instantaneous probability to be somewhere in the Shaft region.
The Eq. (5.16) was firstly used, without presenting a derivation, by Dagdug
et al. [2007] in order to study the escape problem from a narrow channel into a
wide one. Our “derivation” is obviously informal. Moreover, Eq. (5.16) cannot
be extended to arbitrary periodic channels, as we will discuss in Sec. 5.6.

Similarly to the case relative to the MSD, we can generalize the relation in
Eq. (4.6), obtained for the random walk performed on the comb–lattice with a
non vanishing external drift f along the backbone. The equation for the mean
drift 〈δxN〉 f is

〈δxN〉 f

f N
= FB(N)
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with FB(N) the same as in the case with f = 0. The generalized transient
form of the above equation for the continuous case, at least within the linear
response approximation, is give by

1
f υ0

d〈δxt〉 f

dt
= PS(t) (5.17)

where we introduced the free mobility

υ0 =
D0

kBT

An immediate consequence of the relations in Eq. (5.16) and Eq. (5.17) is the
validity at any time of the FDR in the linear response approximation. We
recall that when there are not geometrical constraints on the particle motion,
the Einstein FDR reads

〈δxt〉 f

〈(xt − x0)2〉0
=

f
2kBT

where 〈δxt〉 f = 〈(xt − x0)〉 f − 〈(xt − x0)〉0, being 〈· · · 〉φ the average over the
particle ensemble calculated with (φ = f ) or without (φ = 0) considering the
influence of the external field F = f x̂; kB is the Boltzmann constant and T the
absolute thermodynamic temperature. In the present case of diffusion within
periodic channels, due to the transient behaviour in Eq. (5.16) and Eq. (5.17),
we have

〈δxt〉 f

〈(xt − x0)2〉0
=

f D0
kBT

∫ t
0 dz PS(z)

2D0
∫ t

0 dz PS(z)
=

f
2kBT

(5.18)

implying that the FDR forgets completely the geometry of the channels, being
it contained in PS(t). Individually, both the transient MSD and FDR depend
on the geometry and (as we explain in the next section) by the initial particle
distribution, however, their ratio is characterized by a perfect magnification,
as we just discussed for the comb–lattice.

The asymptotic limit for the MSD and the mean drift are given by

〈(xt − x0)
2〉 ≈ Peq

S D0t = Defft

〈δxt〉 f ≈ Peq
S f υ0t = f υefft

where Deff = D0Peq
S and υeff = Deff/kBT can be calculated using Eq. (5.12).

The asymptotic formula for the mean drift can be also obtained in another
way, using a “small” f expansion of the non linear mobility. In Chap. 2 we
reviewed the results about the non linear mobility υ( f ) in the asymptotic
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regime [Burada et al., 2007; Borromeo and Marchesoni, 2010; Ghosh et al.,
2012a,b]. In order to make the exposition clear we summarize here the result

υ( f ) =
L(1− e−β f L)

f
∫ L

0 dx e−βU(x)
∫ x0+L

x0
dx′ eβU(x′)

D(x′)

−−→
f→0

D(FJ)
eff

kBT

with D(FJ)
eff given by the LJ [Lifson and Jackson, 1962] formula in Eq. (5.9) and

U(x) = − f x − kBT ln σ(x). Asymptotically in time, we thus find the same
expression for the mean drift behaviour. Moreover, with reference to Fig. 5.2,
we see that the FJ estimation of the effective diffusion coefficient using DRR(x)
(see Eq. (5.7)), is in agreement with our estimation of Deff = D0Peq

S . From this,
we can conclude that the two approaches give approximately the same results,
whereas other estimations of D(LJ)

eff using DZw(x) (Eq. (5.5)), DFJ(x) (Eq. (5.6))
or DKP(x) (Eq. (5.8)) can be discarded, at lest for the present study, being
them not in agreement with the simulating data.

We finish the section by stressing that the key quantity for the pre–asymptotic
transport is the probability PS(t). We will show in the next section how it is
possible to find such quantity, starting from a simple kinetic model, whereas
in Sec. 5.5 we present a numerical verification of the Eq. (5.18). Finally in
Sec. 5.6 we will discuss the limits and benefits of the present approach.

5.4 pre–asymptotic properties .

The study of the pre–asymptotic regime is important in order to have infor-
mations about the trapping process of the H region. Indeed the transient trap-
ping of molecules within the H region can induce a pre–asymptotic regime
characterized by a time behaviour of the mean square displacement slower
than the standard diffusive one. As a consequence we expect that there exists
a cross–over time τx between the asymptotic and pre–asymptotic motion. We
found that τx can be tuned by taking a different initial particle distribution
within the channel, so τx(r0) is a function of the initial particle position, be-
ing r0 a short notation to write the initial position of all the particles. More
specifically we considered three types of initial conditions: an initial distri-
bution with the particles uniformly distributed in one period of the S region,
r0 ∈ S, another one with the particles uniformly distributed in one period
of the H region, r0 ∈ H, and finally an initial condition with the particles
uniformly distributed within one period of the whole surface of the channel,
r0 ∈ (S ∪ H).
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When the local equilibrium assumption is fulfilled (i.e. |dω(x)/dx| � 1,
see Sec. 2.4), we have τx � τy, being τy the typical relaxation time related
to the transversal motion. However, when strong fluctuations from the local
equilibrium condition occur, we can have also the opposite case: τy � τx. In
this situation, the pre–asymptotic transversal motion has a strong influence
on the pre–asymptotic properties of the longitudinal one.

The Fig. 5.3 shows the longitudinal MSD on the log–log scale for the dif-
ferent initial distributions defined above. In particular, the case with A = 26

is shown specialized for the Brownian dynamics performed within the Sharp
channel shown in Fig. 5.1 (b) (the inset shows the same result for A = 23),
emphasizing the strong dependence of the dynamics by the initial condition
during the pre–asymptotic motion. The details of the simulations are reported
in Sec. 5.2, while in Sec. 5.6 we will discuss why we considered the Sharp
channel, rather than the Smooth one. squares symbols in Fig. 5.3 represent

the MSD when r0 ∈ H, triangles are associated to r0 ∈
(

S ∪ H
)

and circles
are relative to the case r0 ∈ S; the meaning of the coloured dashed lines will
be clear immediately.
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Figure 5.3: Log–log plot of 〈(∆xt)2〉 as a function of the time for A = 26 and three different
initial conditions: (squares) r0 ∈ H; (triangles) r0 ∈ (H ∪ S); (circles) r0 ∈ S.
The inset shows the same result for A = 23 while the coloured dashed lines
represent the model explained in Eq. (5.21)

It is possible to qualitatively understand the analytical form of 〈(∆xt)2〉 as a
function of the elapsed time, given the initial condition. The result is strongly
influenced by the transverse motion and, in order to highlight this point we
will use the relation found in the last section

〈(∆xt)
2〉 = 2D0

∫ t

0
dz PS(z) (5.19)
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Before to show the results for the transient mean square displacement, we
emphasize that Eq. (5.19) has meaning only if the S and H regions can be un-
ambiguously identified, as we will discuss in more details in Sec. 5.6. When
this distinction of the channel in two main areas applies, we can perform
a coarse–graining description of the process in terms of a two state kinetic
model. More specifically, we introduce the “S state”, characterized by the
probability PS(t) and the “H state”, to which is associated the probability
PH(t) = 1 − PS(t). In addition, kS(t) and kH(t) are the transition rates be-
tween these two states. The kinetic equation which rules the evolution of the
probability PS(t) is thus given by

dPS(t)
dt

= −kS(t)PS(t) +
(

1− PS(t)
)

kH(t) (5.20)
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Figure 5.4: Log–log plot of the transversal mean square displacement 〈(yt − y0)2〉 (contin-
uum blue and red lines) as a function of the time. It is well evident that in
this case τx � τy (see the dashed blue and red lines), thus for τx . t � τy,
〈(∆yt)2〉 ∼ t, supporting the derivation of the Eq. (5.21).

The motion along the longitudinal direction can not modify the transitions
between the S and H states. Thus, such transitions, will be related only to the
velocity in the variations of the transversal process. So Before the equilibration
of the transversal motion, we can reasonably assume

kR(t) ∼
d
dt

√
〈(yt − y0)2〉, R = S, H

At this point we take into account separately two main situations, say A →
∞ and A → 0.



110 analytical and numerical results on continuous channels

• A → ∞
When A → ∞ in Eq. (5.10) or Eq. (5.11), strong fluctuations from the
local equilibrium assumption can take place, leading to the time scales
separation τx � τy, see Fig. 5.4. In this limiting case, as it is shown in
Fig. 5.4, for τx . t � τy we have 〈(∆yt)2〉 ∼ t, which implies kR(t) ∼
t−1/2. So integrating Eq. (5.20) we get the solution

PS(t) = PS(0) exp

[
−
(

t
τ0

)1/2
]
+

Deff

D0

{
1− exp

[
−
(

t
τ0

)1/2
]}

(5.21)

where τ0 is a phenomenological parameter and, in agreement with Eq. (5.13),
we substituted Peq

S with Deff/D0 in the second term. The phenomenolog-
ical function (5.21) can be used to calculate the time behaviour 〈(∆xt)2〉
applying Eq. (5.19). The result is shown in Fig. 5.3(main panel). The
blue dashed line is the result of the integration of Eq. (5.21) taking
PS(0) = 1, that is, r0 ∈ S. When the particles start in the H region we
have PS(0) = 0 and the integration of Eq. (5.21) leads to the dashed green
line showed in Fig. 5.3. Finally, when PS(0) = Peq

S , that is r0 ∈ (S ∪ H),
the first and the third term of the Eq. (5.21) cancel out and we should
have directly a standard diffusive behaviour, characterized by the diffu-
sion coefficient Deff, as shown by the red dashed line. The agreement
is satisfactory considering that the Eq. (5.21) follows from a simple ar-
gument, based on reasonable assumptions, however not rigorous. The
free parameter τ0 has to be adjusted with a fit procedure, for example,
comparing Eq. (5.21) directly with the numerical behaviour of PS(t), in
particular, for A = 26 it is found that τ0 ≈ 35.

• A → 0
The opposite regime is given by the case with A comparable with all the
other geometrical parameters. In this case we found that it is possible to
generalize Eq. (5.21) with the more general function (see Fig. 5.3 (inset))

P(ν)
S (t) = PS(0) exp

[
−
(

t
τ0

)ν]
+

Deff

D0

{
1− exp

[
−
(

t
τ0

)ν]}
where ν is another fit parameter. For example, when A = 23 we found
that τ0 ≈ 18 and ν ≈ 0.7.

5.5 pre–asymptotic response to an external field

We now focus on the transport problem in a two–dimensional periodic
channel considering a non vanishing external longitudinal field F = f x̂ in
the linear response regime, that is, when f L/kBT � 2 (recall that the period
of the Sharp channel and the Smooth channel is L/2).
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We just analyzed the FDR in Chap. 4, taking into account some branched
structures. It is natural to wonder if the the FDR holds true both in the
asymptotic and the pre–asymptotic regime for the present case of diffusion
within periodic channels. According to our reasoning in Sec. 5.3 and the
Eq. (5.18) we expect that, at least within the linear response approximation,
the FDR does not depend on the geometry of the considered channels.

Here we present the comparison between the results obtained performing
Brownian dynamics within the Sharp Channel and the analytical result in
Eq. (5.18), which, in dimensionless units (see Chap. 2) reads2

〈δxt〉 f

〈(xt − x0)2〉0
=

f
2

, with f → f =
f L

kBT
, x → x =

x
L

(5.22)
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Figure 5.5: Log–log plot of 〈δxt〉 f vs 〈(xt− x0)2〉0 (black symbols); the coloured dashed lines
represent the theoretical relation in Eq. (5.22). Numerical results (black symbols)
are the same for every A and are independent from the initial particle distribution
within the channel. Here is the case of the Sharp channel (see Eq. (5.11)), however
the result is exactly the same if we take as boundary ωSm(x) (see Eq. (5.10)).

We performed numerical simulations taking as external field the values f =
0.05, 0.1, 0.5, 1.0, 1.5. The result is plotted in Fig. 5.5. Coloured dashed lines
represent Eq. (5.22) and symbols are the numerical results, for every value
of A (see Fig. 5.1) and every initial particle distribution within the channel,
showing a perfect magnification between the MSD and the mean drift, as
predicted by Eq. (5.18). Thus, despite the fact that individually 〈δxt〉 f and
〈(xt− x0)

2〉0 depend on both the geometry and the initial particle distribution,

2 The Same result is obtained for the Smooth Channel.
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their ratio, at least for small f , forgets completely the confined environment
and the way to “relax” and “fluctuate” appears exactly as in the free case, also
if the local equilibrium condition is strongly broken.

5.6 discussion.

In this section we present a discussion on our previous results. We start
by analyzing the limits of the approach used to derive the effective diffusion
coefficient in Sec. 5.2. To this end it is interesting to compare the previous
results with other kind of geometries, as shown in Fig. 5.6.

ω
(1)
Sm(x) = R+A

2 + A
2 sin

(2πx
L
)

a

A

R

L

R

δh

h

L

δ`

δκ

Ω = hδκ + δhδ` = ∆kA

b

Figure 5.6: (a) simple example of a sinusoidal
smooth channel; here distinguish-
ing between the S and H region
is not obvious and Eq. (5.13) fails;
(b), (c) examples of sharp channels
whose boundary profiles ω(x) are
multivalued functions of the longi-
tudinal position; here the general-
ized FJ approximation fails.

L

R

δh

h

δ`

δκ

Ω = 2(hδκ + δhδ`) = ∆kA

c
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The derivation of the effective diffusion coefficient proposed in Sec. 5.2, be-
yond the saturation assumption on the probability PS(t) and the ergodic hy-
pothesis, is linked to another assumption, which is not less important, namely
the subdivision of the channel in two main areas. We dubbed such regions of
the channel the “Shaft” region (S), characterized by |y| ≤ R/2, and the Hump
region (H), characterized by |y| > R/2 (see Fig. 5.1). Actually, this distinc-
tion is exact only for the Sharp channel, whose boundary profile is given by
ωSh(x) in Eq. (5.11). For the case of the Smooth Channel, characterized by the
boundary profile ωSm(x) we see that, when γ� 1 (see Eq. (5.10)), there is all
a region of the channel well approximated by the constant R/2, so we can still
speak about the S and the H regions. On the contrary, when we take γ = 1,
that is, if we consider the boundary profile

ω
(1)
Sm(x) =

R +A
2

+A sin
(

2πx
L

)
the subdivision in two main region S and H is not so obvious and the agree-
ment with Eq. (5.13) will be less better, see Fig. 5.7 (b). The term A/2 in the
last equation was added to avoid an overlap of the boundary profile with the
longitudinal axis, as shown in Fig. 5.6 (a).

The possibility to distinguish between two main regions of the channel is
at the heart of our approach which fails when this particular picture does not
apply. Obviously, the same limitations are valid also for the transient MSD
and FDR formulas given, respectively, in Eq. (5.16) ans Eq. (5.17). Another
problem with our approach concerns the estimation of Peq

S “via ergodic hy-
pothesis”. Indeed in those cases characterized by a vanishing measure of the
Shaft region, say µ(S) = 0 we would have, simply by applying Eq. (5.12),
Deff = 0, which is clearly a wrong result. An example is provided by the
Sharp Channel in Fig. 5.1 (b) if we take ∆κ = L/2, studied by Borromeo and
Marchesoni [2010].

Despite the limitations of our approach, we want now emphasize the ben-
efits. If we can unambiguously subdivide the channel in the regions S and
H, the Eq. (5.13), being it based only on the evaluation of the measure of the
H region and the S region, should be stable, asymptotically in time, also if
we deform the H region; for example, if we consider structures like those in
Fig. 5.6 (b) and (c).

It is possible to check the stability of Eq. (5.13) by performing numerical
simulations of the Eq. (5.1) with V(r) = 0 in such “spiny–like” structures. Let
be Ω the surface area of the Hump region of the channels shown in Fig. 5.6 (b)
and (c). The set up of the geometrical parameters is made up only by fixing,
as in Sec. 5.2, the area of the Hump region:

Ω = µ(H)

with µ(H) the measure of the H region of both the Sharp channel and the
Smooth Channel. In addition we used R = 4 and L = 10.
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Figure 5.7: (a) Log–log plot of the Eq. (5.13) (black dashed line) vs Ω/∆κ, specialized for
the structures depicted in Fig. 5.6 (b) and (c) together with the simulated data
(coloured symbols); (b) log–log plot of the Eq. (5.13) (black continuum line) spe-
cialized for the structure in Fig. 5.6 (a) together with the simulated data (black cir-
cles) and the results obtained using the generalized FJ approach (coloured dashed
lines).

We performed simulations for δκ ≈ R/4 and δκ = R/2 (see Fig. 5.6 (b) and
(c)). The results are shown in Fig. 5.7 (a) and once again we can observe a
good agreement with Eq. (5.13) for the case of the spiny–like structures. On
the other hand, as explained above, the agreement becomes less better when
the net subdivision of the channel in two main regions fails.

Our results on the pre–asymptotic regime come from a numerical and
semi–analytical approach, using as a “guide–line”, our results on branched
structures discussed in Chap. 4. In particular we found that the longitudi-
nal cross–over time τx between the asymptotic and pre–asymptotic motion
can be opportunely tuned by choosing properly the initial particle distribu-
tion within the channel. With reference to Fig. 5.3, observe that taking all

the particles distributed uniformly within the region
(

S ∪ H
)

, the resulting
diffusion appears, after a very small transient, immediately standard, namely
the MSD increases linearly with the time, as it is highlighted by the trian-
gles in Fig. 5.3 together with the theoretical prediction 〈(xt − x0)

2〉 ≈ 2Defft
(dashed red line). It is astonishing the fact that also for A = 26, for a strong
perturbation of the flat cylindrical geometry, the diffusive behaviour is soon
established if the particles are initially uniformly distributed within all the
entire surface of one period of the channel. In particular from Fig. 5.3 we see

that τx(r0 ∈ S) & τx(r0 ∈ H) ≡ τ
(+)
x , however τ

(+)
x � τx

(
r0 ∈ (S ∪ H)

)
.

This particular behaviour has enormous consequences on the pre–asymptotic
efficiency of the process. Indeed before τ

(+)
x the averaged space covered along

the longitudinal direction is such that

〈(xt − x0)
2〉r0∈H < 〈(xt − x0)

2〉r0∈S∪H < 〈(xt − x0)
2〉r0∈S
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implying a faster or slower hitting of far regions of the channel with respect
to the initial condition in the pre–asymptotic regime. As a consequence, all
those processes related to a “target–hitting” mechanism on the time scale t�
τ
(+)
x , are drastically influenced by the pre–asymptotic motion. In particular,

the condition r0 ∈ H ensures a localization around the initial condition for
t . τ

(+)
x , whereas when r0 ∈ S there is a faster mass spreading within the

channel. The “middle way” is characterized by r0 ∈ (S ∪ H), resulting almost
immediately in a standard diffusive behaviour, so transporting the particles,
also when t � τ

(+)
x , across various periods of the channel, both within the S

region and the H region.





6
C O N C L U S I O N S

“Do! Or do not! There is no
try.”

Yoda, Star Wars–Episode V

In this work we have discussed some effects on diffusive processes which
can be induced by the presence of geometrical constraints. We have consid-
ered, as examples of complex geometrical environment, both channels with
non homogeneous boundaries and fractal structures. Such environments with
an high degree of geometrical complexity are frequently encountered in Na-
ture, for instance in the living cells [Stanley and Meakin, 1988; Bressloff and
Newby, 2013]. Moreover, the diffusion in complex frameworks is relevant to
recent experiments and applications of nanotechnology [Lebedev et al., 2008;
Bancaud et al., 2009; Lieberman-Aiden et al., 2009]. From a theoretical point of
view such problems constitute the test–bed for modeling and computational
approaches where the thermodynamic limit or the central limit theorem can-
not be invoked, in principle, as applicable.

For the case of diffusion on branched structures (see Chap. 4), we shown
that the Fluctuation Dissipation Relation (FDR), at least within the linear re-
sponse approximation, are more sensitive to the geometry, rather than to the
details of the dynamics. The striking case is provided by the comb where
the teeth are square–lattice plaquettes (see Sec. 4.1.2) and the NT2–comb (see
Sec. 4.5), characterized both by ds = 2 and 〈(∆xt)2〉 ∼ ln (t). However, the
generalized FDR is broken at short times in the NT2–comb case, in particular
during the pre–asymptotic regime.

We have also studied some examples of non Gaussian “standard” diffusion.
In particular, we showed that also when the CLT holds true on large scale
(see the SNT case, Sec. 4.4.2), the non Gaussian scaling at short length scales
introduces interesting anomalies, especially if we look at the time behaviour
of the hitting probability.

Our results on diffusion within two–dimensional periodic channels, sug-
gest that a control on the geometry of a given channel offers the possibility
to tune the diffusion properties along the transport direction in the long time
limit. In order to enhance or decrease the diffusion of particles flowing into
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a nanoscale channel, it is crucial to know the dependence of the effective
diffusion constant Deff on the geometrical properties of the channel. As we
reviewed in Chap. 2, there are several attempts and approximation in the lit-
erature able to capture the different aspects of such dependence. To reinforce
the already existing approximations for Deff, we proposed another approach
to estimate analytically Deff, essentially by identifying the asymptotic trap-
ping probability within the lateral dead–ends, as a measure of the trapping
region.

We have also analyzed the transient regime before standard diffusion takes
place. This pre–asymptotic regime is more complicated and its properties are
not universal. It depends crucially both on the channel geometry and the
initial particle distribution within the channel. In particular, we found that
the cross–over time τx on which the longitudinal diffusion becomes standard
can be increased by two- or three-order of magnitude by simply changing the
system preparation.

A possible further development of this work would amount to considering
channels with irregular boundaries. More specifically, three main situations
could be taken into account:

• the boundary profile can be written as the sum of two components
ω(x) = ωp(x) + ωn(x) where ωp(x) = ωp(x + L) is the periodic part
and ωn(x) represents a random perturbation with a finite correlation
length. This case embodies the situation of quenched disordered bound-
ary Obviously, the effective diffusion coefficient Deff becomes a random
variable as it depends on specific the realization of the disorder. Also in
this case, by using the same mapping procedure explained in Chap. 2, it
is possible to derive the effective one–dimensional Fokker–Planck equa-
tion. Assuming again the local equilibrium condition, |dω/dx| � 1, the
equation is another time in the form of the Fick-Jacobs equation (Eq. (5.4)
with D(x) = D0). In this simple limit, using a multiscale analysis similar
to the one described in Chap. 2, it is possible to show that the effective
diffusion coefficient takes on the expression

Deff = Deff e−〈V
2
n〉

being Vn(x) the entropic field related to the random perturbation ωn in
dimensionless units. The average 〈V2

n〉 is given by

〈V2
n〉 =

1
L

∫ L

0
dx V2

n(x)

and represents the averaged of the entropic field over a unitary cell of
the channel, whereas Deff is the effective diffusion coefficient without
the disorder (Sec. 2.5)



bibliography 119

An interesting development of the theory can be done by investigating
the asymptotic diffusion when the local equilibrium condition does not
hold true. Two possibilities can be taken into account:

• The external boundaries is a smooth regular function of the time, ω(x, t) =
ω(x + L, t), with all the time and space derivatives well defined for ev-
ery order. In this case, invoking again the condition |dω/dx| � 1 and
repeating the mapping procedure explained in Chap. 2 we obtain the
equation

∂G (x, t)
∂t

=
∂

∂x

{
σ(x)D0

∂

∂x

[
G (x, t)
σ(x)

]}
+

dω(x, t)
dt

G (x, t)

• The boundary is of the form

ω(x, t) = ω(x, t) + ωn(x, t)

with ωn(x, t) an explicit additive dynamical disorder.

In principle, the explicit or induced time dependence (dω(x, t)/dt)) can lead
to resonances, once the geometrical parameters are opportunely chosen or
can drive some bias along the longitudinal direction, thus “activating” the
process.

All the situations described above are the natural perspectives of our work,
in the hope of contributing to shed some light on the complicated and fasci-
nating puzzle named Transport on the Mesoscale.
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middle way”. PNAS, 97:32, 2000.



bibliography 129

D. V. Lebedev, M. V. Filatov, A.I. Kuklin, A. Kh. Islamov, J. Stellbrink, R. A.
Pantina, Yu. Yu Denisov, B. P. Toperverg, and V. V. Isaev-Ivanov. “Structural
hierarchy of chromatin in chicken erythrocyte nuclei based on small–angle neutron
scattering: Fractal nature of the large–scale chromatin organization”. Crystal-
logr. Rep., 53:110, 2008.

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen. “Measurement of the Instanta-
neous Velocity of a Brownian Particle”. Science, 328:1673, 2010.

E. Lieberman-Aiden, N. L. van Berkum, L. Williams, M. Imakaev, T. Ragoczy,
A. Telling, I. Amit, B. R. Lajoie, P. J. Sabo, M. O. Dorschner, R. Sandstrom,
B. Bernstein, M. A. Bender, M. Groudine, A. Gnirke, J. Stamatoyannopoulos,
L. A. Mirny, E. S. Lander, and J. Dekker. “Comprehensive mapping of long-
range interactions reveals folding principles of the human genome.”. Science, 326:
289, 2009.

S. Lifson and J. L. Jackson. “On the Self–Diffusion of Ions in a Polyelectrolyte
Solution”. J. Chem. Phys., 36:2410, 1962.

Y. A. Makhnovskii, A. M. Berezhkovskii, and V. Y. Zitserman. “Homogenization
of boundary conditions on surfaces randomly covered by patches of different sizes
and shapes”. J. Chem. Phys., 124:036103, 2006.

Yu. A. Makhnovskiia, A. M. Berezhkovskii, and V.Yu. Zitsermanc. “Diffusion
in a tube with alternating diameter”. Chem. Phys., 367:110, 2010.

B. Mandelbrot. “The Fractal Geometry of Nature”. W. H.Freeman and Company,
1983.

B. Mandelbrot. “Fractals and the art of roughness.”. TED Confer-
ences (2010), 2010. URL http://www.ted.com/talks/lang/en/benoit_
mandelbrot_fractals_the_art_of_roughness.html.

F. Marchesoni. “Mobility in periodic channels formed by cilindrical cavities”. J.
Chem. Phys., 132:166101, 2010.

F. Marchesoni and S. Savel’ev. “Rectification currents in two–dimensional artificial
channels”. Phys. Rev. E, 80:011120, 2009.

F. Marchesoni and A. Taloni. “Subdiffusion and Long–Time Anticorrelations in a
Stochastic Single File”. Phys. Rev. Lett., 97:106101, 2006.

U. M. B. Marconi, A. Puglisi, L. Rondoni, and A. Vulpiani. “Fluctuation–
dissipation: Response theory in statistical physics”. Physics reports, 461:111–195,
2008.

http://www.ted.com/talks/lang/en/benoit_mandelbrot_fractals_the_art_of_roughness.html
http://www.ted.com/talks/lang/en/benoit_mandelbrot_fractals_the_art_of_roughness.html


130 bibliography

S. Martens, G. Schmid, L. Schimansky-Geier, and P. Hänggi. “Entropic par-
ticle transport: Higher–order corrections to the Fick–Jacobs diffusion equation”.
Phys. Rev. E, 83:051135, 2011.

S. Matthias and F. Müller. “Asymmetric pores in a silicon membrane acting as
massively parallel brownian ratchets”. Nature, 424:53, 2003.

R. Metzler and J. Klafter. “The random walk’s guide to anomalous diffusion: a
fractional dynamics approach”. Physics Reports, 339:1–77, 2000.

K. K. Mon and J. K.. Percus. “Molecular dynamics simulation of anomalous self–
diffusion for single–file fluids”. J. Chem. Phys., 119:3343, 2003.

E. W. Montroll and G. H. Weiss. “Random Walks on Lattices. II”. J. Math. Phys.,
6:167, 1965.

T. Nakayama, K. Yakubo, and R. L. Orbach. “Dynamical properties of
fractal networks: Scaling, numerical simulations, and physical realizations”.
Rev. Mod. Phys., 66:381, 1994.

T. J. Ngo-Anh, B. L. Bloodgood, M. Lin, B. L. Sabatini, J. Maylie, and J. P.
Adelman. “SK channels and NMDA receptors form a Ca2+–mediated feedback
loop in dendritic spines”. Nat. Neurosci., 8:642, 2005.

R. C. O’Reilly and Y. Munakata. “Computational Explorations in Cognitive Neu-
roscience”. Massachusetts Institute of Technology, 2000.

R. E. Oswald, G. L. Millhauser, and A. A. Carter. “Diffusion model in ion channel
gating”. Biophys. J., 59:1136, 1991.

A. Papagiannopoulos, T. A. Waigh, T. Hardingham, and M. Heinrich. “Solu-
tion Structure and Dynamics of Cartilage Aggrecan”. Biomacromolecules, 7:2162,
2006.

J. P. Perrin. “Les Atomes.”. Alcan, Paris, 1913.

B. Philippe and D. Volchenkov. “Random Walks and Diffusions on Graphs and
Databases”. Springer, 2011.

I. Podlubny. “Fractional differential equations.”. Academic press, 1999.

H. Poincaré. “Science and Hypothesis.”. Dover Publications (Ne York), English
version, 1952.

A. Pope. “An Essay on Man. Moral Essays and Satires.”. Reprinted version,
CASSELL and COMPANY, Limited: London, Paris and Melbourne (1891),
1734. URL http://www.gutenberg.org/ebooks/2428.

http://www.gutenberg.org/ebooks/2428


bibliography 131

A. Pramukkul, and P. Svenkeson, P. Grigolini, M. Bologna, and B. West. “Com-
plexity and the Fractional Calculus.”. Advances in Mathematical Physics, 2013:1,
2013.
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