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1
Introduction

Achieving a desired electromagnetic functionality implies the capability of ma-

nipulating the electromagnetic radiation in a desired manner through elaborating

structures and geometries with available materials. The performances of electromag-

netic devises are nowadays limited by the restricted range of available media elecro-

mamagnetic properties. Therefore, arti�cial materials are synthesized at molecular

level in order to achieve unconventional electromagnetic features not displayed by

standard media.

Arti�cially structured composites of well-arranged functional inclusions substan-

tially smaller, or at least smaller, than the radiation wavelength are called meta-

materials. They can display novel and unusual electromagnetic properties that can

be theoretically described through the general approach of e�ective medium theory.

Speci�cally, although the size of the inclusions is usually several orders of magnitude

greater than the atomic or molecular ones, the composite inhomogeneity scale is still

much smaller than the radiation wavelength and their electromagnetic responses can

be expressed in terms of homogenized e�ective material parameters [1].

The word metamaterial �rst appeared in literature in 2000 when Smith et al.

published their seminal paper on a structured material with simultaneously negative

permeability and permittivity at microwave frequencies. They demonstrate that a

composite medium exhibits a frequency region in the microwave range with simul-

taneously negative values of e�ective permeability µeff (ω) and permittivity εeff (ω).

What makes the resulting media special is that the e�ective material parameters
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Chapter 1. Introduction 6

can have values not observed in ordinary materials [2]. Such a medium is called

a negative refractive index medium or a left-handed medium. The �rst paper on

left handed materials dates back to 1960s when Veselago theoretically studied the

monochromatic electromagnetic plane wave propagation in a lossless medium with

simultaneously negative real permittivity and permeability at a given frequency,

and he theoretically showed that in such media the direction of the Poynting vec-

tor is antiparallel to the direction of phase velocity, i.e. the vectors E, H and the

wave vector k form a left-handed triplet [3]. The recent regained interest in this

medium occurred after the �rst experimental demonstration of a Veselago medium

by Smith et al. [2, 4]. Inspired by the Pendry's idea about the perfect lens [5],

which represents the initial attempt to �ll the gap between novel metamaterials and

exciting applications, they manufactured such a composite medium operating in the

microwave range.

The early works dealing with metamaterials were focused on achieving a negative

refractive index and therefore metamaterial has become almost synonymous with

left-handed media. Today's metamaterial research has expanded far beyond the

interest on negative refraction. Various arti�cially engineered composites have been

devised and manufactured with genuinely novel electromagnetic properties which

can not be observed in available materials. Metamaterial structural units can be

tailored in shape and size, composition and morphology, thus providing the means

for designing a structure with the desired electromagnetic features.



2
E�ective medium and homogenization

techniques

2.1 Homogeneous response

Maxwell's equations are the basic tool for describing electromagnetic and optical

phenomena. The propagation of electromagnetic radiation in any medium is fully

described by the macroscopic Maxwell's equations

∇ ·D = ρ , ∇ ·B = 0 , (2.1)

∇×E = −∂B
∂t

, ∇×H = j +
∂D

∂t
, (2.2)

where the electric charge density ρ and the electric current density j are the sources

of electromagnetic radiation, E and H are the macroscopic electric vector and the

magnetic vector, and to include the e�ect of �eld-matter interaction, it is necessary

to introduce the electric displacement D and the magnetic induction B. The mi-

croscopic local �elds and their fast variations over small length scale are averaged

over a su�ciently large volume to yield the macroscopic �eld quantities and shows a

macroscopic homogeneous response to the applied �eld. Predicting the �eld dynam-

ics due to a given distribution of current and charges implies supplementing these

equations by the suitable relations describing the e�ect of the electromagnetic �eld

on material media. These relation are known as constitutive equation and are given

by

D = ε0E + P , B = µ0 (H + M ) , (2.3)
7



Chapter 2. E�ective medium and homogenization techniques 8

where P is the electric polarization and M is the magnetic polarization. The ef-

fects, P and M , are related to their causes through the susceptibility function χ.

Considering anisotropic media with spatial and temporal non-local behaviors and

non-linear response as well, we can write

Pi(r, t) = ε0

∫
d3r′

∫ t

−∞
dt′χ

(1)e
ij (r, r′, t− t′)Ej(r′, t′)+

+ ε0

∫
d3r′

∫ t

−∞
dt′
∫ t

−∞
dt′′χ

(2)e
ijk (r, r′, t− t′, t− t′′)Ej(r′, t′)Ek(r′, t′′) + . . .

Mi(r, t) = µ0

∫
d3r′

∫ t

−∞
dt′χ

(1)m
ij (r, r′, t− t′)Hj(r

′, t′)+

+ µ0

∫
d3r′

∫ t

−∞
dt′
∫ t

−∞
dt′′χ

(2)m
ijk (r, r′, t− t′, t− t′′)Hj(r

′, t′)Hk(r
′, t′′) + . . .

For a linear spatially-local response, these equations reduce to

PL
i (r, t) = ε0

∫ t

−∞
dt′χ

(1)e
ij (t− t′)Ej(r, t′) ,

ML
i (r, t) = µ0

∫ t

−∞
dt′χ

(1)m
ij (t− t′)Hj(r, t

′) ,

which in the frequency domain becomes 1

[
PL
i (r)

]ω
= ε0χ

e
ij(ω)Eω

j (r) ,
[
ML

i (r)
]ω

= µ0χ
m
ij (ω)Hω

j (r) , (2.4)

The macroscopic linear dielectric and magnetic medium response can be described

by the the dielectric permittivity tensor ¯̄εr(ω) and magnetic permeability tensor

1 [
PLi (r)

]ω
=

∫ +∞

−∞
dtPLi (r, t)e−iωt =

∫ +∞

−∞
dte−iωt

∫ t

−∞
dt′ε0χij(t− t′)Ej(r, t′)

and, letting the matrix elements of susceptibility tensor χ(t − t′) to vanish for t′ > t, the second

integral can be extended to +∞[
PLi (r)

]ω
=

∫ +∞

−∞
dte−iωt

∫ +∞

−∞
dt′ε0χij(t− t′)Ej(r, t′) =

= ε0

∫ +∞

−∞
dt′e−iωt

′
[∫ +∞

−∞
dte−iω(t−t

′)χij(t− t′)
]
Ej(r, t

′) =

= ε0χij(ω)

∫ +∞

−∞
dt′e−iωt

′
Ej(r, t

′) = ε0χij(ω)Eωj (r) ,

[
PLi (r)

]ω
= ε0χ

e
ij(ω)Eωj (r), where Eωj (r) is the j-th components of complex amplitude of

monochromatic plane wave at angular frequency ω.
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¯̄µr(ω), so that

[
DL
i (r)

]ω
= ε0[εr(ω)]ijE

ω
j (r) , ⇒ [εr(ω)]ij = 1 + [χ(1)e(ω)]ij .[

BL
i (r)

]ω
= µ0[µr(ω)]ijH

ω
j (r) , ⇒ [µr(ω)]ij = 1 + [χ(1)m(ω)]ij . (2.5)

2.2 Homogenization techniques

Macroscopic Maxwell equations (2.2) are obtained by averaging the rapidly �uc-

tuating electromagnetic �elds at atomic or molecular scales over volumes that con-

tain a large enough number of polarizable or magnetizable atoms/molecules. Within

this framework, susceptibilities for bulk materials can be de�ned. In the case of

metamaterials, the structural units of the composites are assumed to be su�ciently

larger than the molecular scale and yet much smaller than the radiation wavelength

so that they can e�ectively be described by means of bulk dielectric permittivity

and magnetic permeability.

According to shape, size and geometry of the inhomogeneities embedded in the

host background, speci�c and di�erent homogenization theories are available for

predicting e�ective macroscopic permittivity and permeability of the medium. Three

main kinds of structured composites are: layered media [6, 7, 8, 9, 10, 11, 12],

nanowire [8, 12, 13, 14] and nanosphere composite [1, 15, 16, 17]. In particular,

we are mainly concerned here on structures exhibiting exotic properties at optical

frequencies, i.e. optical metamaterials not displaying magnetic properties, so that

the homogenization theory is here used to obtain the e�ective dielectric response.

This kind of metamaterial can provide truly unique optical properties that can be

useful for a number of advanced applications and devices. The optical properties

of these structures can be strikingly di�erent than those of natural materials. A

number of applications of such unusual materials are discussed in next chapter.
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Figure 2.1: Layered media of alternating cells (in this particular case there are 3

cells) each consisting of N = 5 layers; d1, dn and dN are the thickness of the �rst, the

n-th (in this case the third) and the N -th (the �fth) layer and, supposing to orient

each layer's optical principal axes in the same direction of the reference frame, ε
(1)
ii ,

ε
(n)
ii and ε

(N)
ii are the corresponding values of dielectric permittivity tensor diagonal

elements.

2.2.1 Layered media

An example of homogenizable medium is a periodically strati�ed medium, i.e. a

structure consisting of alternating layers of two or more media in the limit that the

thicknesses of each layer are much smaller than the wavelength of electromagnetic

wave in the e�ective medium. A strati�ed medium is a composite whose properties

are constant through each plane perpendicular to a �xed direction.

Considering a one-dimensional system of alternating cells (Fig.2.1) each con-

sisting of N layers along z axis and let dn the thicknesses of the n-th leyer, ε
(n)
ij

the corresponding dielectric permittivity tensor and V (n) the physical macroscopic

electromagnetic �eld vectors (V = E ,D ,B ,H). If the �eld vacuum wavelength

is much greater than the spatial period (λ >> d, d is the cell thickness d =
N∑
n=1

dn),

the considered periodically strati�ed medium can be homogenized, i.e. its electro-

magnetic response can be shown to coincide with that of a suitable homogeneous



Chapter 2. E�ective medium and homogenization techniques 11

medium. In order to obtain the overall e�ective response, note that any component

of the local electromagnetic �eld can be assumed, within each layer, independent on

the longitudinal z-coordinate since the layers are extremely small. Although this is a

very reasonable physical assumption, it can be rigorously proved exploiting the well

known powerful two-scale expansion method [18]. Each of the physical observable

(macroscopic) electromagnetic �eld vectors, say V , is obtained by averaging (along

the z axis) the layer local �elds over the period d, so that

V =
〈
V (n)

〉
=

N∑
n=1

fnV
(n) , (2.6)

where fn = dn/d is the volume �lling fraction of the n-th layer [9]. Within each unit

cell (of thickness d), at each plane interface between the n-th and (n + 1)-th layer,

the local �elds have to satisfy the electromagnetic boundary conditions (continuity

of the tangential component of electric and magnetic �elds and continuity of the

normal components of the displacement and magnetic induction �elds) so the local

�elds are connected by the relations

E(n)
x = E(n+1)

x , H(n)
x = H(n+1)

x ,

E(n)
y = E(n+1)

y , H(n)
y = H(n+1)

y ,

D(n)
z = D(n+1)

z , B(n)
z = B(n+1)

z .

The linear constitutive relations (2.5) link E and H to the corresponding D and

B thorugh the tensors εij and µij (the subscript r is neglected). From the principle

of energy conservation it can be proved that the dielectric permittivity tensor of

a non-absorbing crystal is Hermitian and has only six independent elements [19].

Therefore it is always possible chose a coordinate system in which the tensor is

diagonal, known as optical principal coordinate system. Let's suppose to orient each

layer's optical principal axes in the same direction of the reference frame (Fig.2.1).

Averaging2 the local �elds D
(n)
x , D

(n)
y , E

(n)
z , B

(n)
x , B

(n)
y , H

(n)
z the e�ective relative

2Considering D
(n)
x the x component of electric displacement. The corresponding component of
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dielectric permittivity and relative magnetic permeability tensors can be obtained

ε(eff) = diag
[〈
ε(n)
x

〉
,
〈
ε(n)
y

〉
,
〈
ε(n)
z

〉−1
]
, µ(eff) = diag

[〈
µ(n)
x

〉
,
〈
µ(n)
y

〉
,
〈
µ(n)
z

〉−1
]
,

〈
ε(n)
x

〉
=

N∑
n=1

fnε
(n)
x ,

〈
ε(n)
y

〉
=

N∑
n=1

fnε
(n)
y ,

〈
ε(n)
z

〉−1
=

1
N∑
n=1

fn

ε
(n)
z

, (2.7)

〈
µ(n)
x

〉
=

N∑
n=1

fnµ
(n)
x ,

〈
µ(n)
y

〉
=

N∑
n=1

fnµ
(n)
y ,

〈
µ(n)
z

〉−1
=

1
N∑
n=1

fn

µ
(n)
z

. (2.8)

E�ective layered medium theory as limit of characteristic matrix method

A coordinate system frequently used to specify the relative orientation between

the electromagnetic wave and a planar structure is erected using the plane of in-

cidence and its normal direction. Such plane contains the propagation direction

and the vector perpendicular to the plane surface separating two media. The com-

ponent of the electric �eld belonging to this plane is termed p-like (parallel) and

the component perpendicular to this plane is termed s-like (from senkrecht, Ger-

man for perpendicular). Radiation with an s-like electric �eld is referred to as

transverse-electric (TE) wave whilst radiation with a p-like electric �eld is said to

be a transverse-magnetic (TM) wave

TE :

E(x, z) = Ey(x, z)ey

H(x, z) = Hx(x, z)ex +Hz(x, z)ez

the macroscopic �eld D is the average over all n layers Dx =
〈
D

(n)
x

〉

Dx =

N∑
n=1

fnD
(n)
x = ε0

N∑
n=1

fnε
(n)
x E(n)

x = ε0

[
N∑
n=1

fnε
(n)
x

]
Ex = ε0

〈
ε(n)x

〉
Ex = ε0ε

(eff)
x Ex ,

where we use the relation Dx = ε0εxEx and the continuity of the electric �eld x component

(E
(n)
x = Ex over each n-th layer). In the same way, considering Ez and its averaged value

Ez =

N∑
n=1

fnE
(n)
z =

1

ε0

N∑
n=1

fn
D

(n)
z

ε
(n)
z

=
1

ε0

[
N∑
n=1

fn

ε
(n)
z

]
Dz =

1

ε0

Dz〈
ε
(n)
z

〉−1 =
1

ε0

Dz

ε
(eff)
z

.



Chapter 2. E�ective medium and homogenization techniques 13

Figure 2.2: Schematic illustration of plane of incidence of Transverse electric (TE,

s-polarization) and transverse magnetic (TM, p-polarization) wave.

TM :

E(x, z) = Ex(x, z)ex + Ez(x, z)ez

H(x, z) = Hy(x, z)ey

where we have assumed the plane of incidence to coincide with the xz-plane (see

Fig.2.2).

The e�ective medium parameters of alternating layers can be calculated from

the characteristic matrix method in the limit of very small layers' thickness.

For TM wave in a homogeneous anisotropic medium with dielectric permittivity

tensor ε = diag[εx, εy, εz], Maxwell's equations reduce to the following three scalar

equations (time dependence e−iωt being assumed)

∂Ex
∂z
− ∂Ez

∂x
= iωµ0Hy

∂Hy

∂z
= iωε0εxEx

∂Hy

∂x
= −iωε0εzEz

(2.9)

De�ning quantities 
Ex(x, z) = eik0x sinϑEx(z)

Hy(x, z) = eik0x sinϑHy(z)

Ez(x, z) = eik0x sinϑEz(z)
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the equations (2.9) becomes

dEx
dz

= i[ωµ0Hy + k0 sinϑEz]

dHy

dz
= iωε0εxEx

Ez = −k0 sinϑ

ωε0εz
Hy

(2.10)

Substituting the third equation of (2.10) into the �rst

dEx
dz

= i

[
ωµ0 −

k2
0 sin2 ϑ

ωε0εz

]
Hy (2.11)

and di�erentiating both members

d2Ex
dz2

= i

[
ωµ0 −

k2
0 sin2 ϑ

ωε0εz

]
dHy

dz
;

using the second equation of (2.10) we get

d2Ex
dz2

= −k2
0εx

[
1− sin2 ϑ

εz

]
Ex ,

whose solution is

Ex(z) = A cos(kzz) + iB sin(kzz) , (2.12)

where A and B are constants to determine by the initial conditions, and kz =

k0

√
εx(1− sin2 ϑ/εz). Di�erentiating (2.12) and exploiting (2.11), we can write

Hy(z) =
ωε0εx
kz

[iA sin(kzz) +B cos(kzz)] .

The constants A and B are related to the initial conditions: A = Ex(0) and B =

[kz/(ωε0εx)]Hy(0), therefore we can express the quantities Ex(z) and Hy(z) (the

�elds on the plane z) in terms of Ex(0) and Hy(0) (the �elds on the plane z = 0)
Ex(z) = Ex(0) cos(kzz) + i

kz
ωε0εx

Hy(0) sin(kzz)

Hy(z) = i
ωε0εx
kz

Ex(0) sin(kzz) +Hy(0) cos(kzz)

Ex(z)

Hy(z)

 =

 cos(kzz) i

√
µ0

ε0

kz
k0εx

sin(kzz)

i

√
ε0

µ0

k0εx
kz

sin(kzz) cos(kzz)


Ex(0)

Hy(0)

 . (2.13)
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In a strati�ed medium, the characteristic matrix M (n)(dn) of n-th layer with

thickness dn relates the Fourier component of the �eld on the plane z = z0 to the

one on the plane z = z0 + dn (all within n-th layer) Q(z0) = M(z0 + d)Q(z0 + d)

[20, 21], therefore from (2.13) it takes the form

M (n)(dn) =


cos(k

(n)
z dn) i

√
µ0

ε0

k
(n)
z

k0ε
(n)
x

sin(k(n)
z dn)

i

√
ε0

µ0

k0ε
(n)
x

k
(n)
z

sin(k(n)
z dn) cos(k

(n)
z dn)

 ,

where k
(n)
z is given by the dispersion relation k

(n)
z =

√
ε

(n)
x

[
k2

0 − k2
x/ε

(n)
z

]
(A.12). The

matrix for a single cell of layered medium, alternating one sheet of each material, is

the product of characteristic matrices for the N separate layers

Mcell(d) = M (1)(d1)M (2)(d2)M (3)(d3) . . .M (N)(dN) .

Considering, for simplicity, a bilayer system (N = 2):

Mcell(d) =

 cos(k
(1)
z d1)

i

p(1)
sin(k(1)

z d1)

ip(1) sin(k
(1)
z d1) cos(k

(1)
z d1)


 cos(k

(2)
z d2)

i

p(2)
sin(k(2)

z d2)

ip(2) sin(k
(2)
z d2) cos(k

(2)
z d2)

 , (2.14)

where p(n) =
√
ε0/µ0ε

(n)
x k0/k

(n)
z and by de�nition

Mcell(d) =

 cos(k
(cell)
z d)

i

p(cell)
sin(k(cell)

z d)

ip(cell) sin(k
(cell)
z d) cos(k

(cell)
z d)

 , (2.15)

with p(cell) =
√
ε0/µ0ε

(cell)
x k0/k

(cell)
z .

In the limit of very small layers thickness the composite behaves as an homo-

geneous medium so that (2.14) and (2.15) can be set to coincide. Comparing the

expressions of Mcell(d) eigenvalues in both cases, we get

cos(k(cell)
z d)±

√
cos2(k

(cell)
z d)− 1 = B ±

√
B2 − 1 ,
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where B is the linear coe�cient of the characteristic equation forMcell(d) in the �rst

form (as product between M (1)(d1) and M (2)(d2))

λ2 − 2Bλ+ 1 = 0 ,

B = cos(k(1)
z d1) cos(k(2)

z d2)− γTM sin(k(1)
z d1) sin(k(2)

z d2) ,

γTM =
1

2

(
ε

(1)
x k

(2)
z

ε
(2)
x k

(1)
z

+
ε

(2)
x k

(1)
z

ε
(1)
x k

(2)
z

)
,

therefore

cos(k(cell)
z d) = cos(k(1)

z d1) cos(k(2)
z d2)− γTM sin(k(1)

z d1) sin(k(2)
z d2) . (2.16)

The conventional e�ective layered medium theory can be obtained from (2.16)

through the Taylor expansion up to the second order in |k(1)
z d1| � 1, |k(2)

z d2| � 1

and |k(cell)
z d| � 1. Labeling the layer �lling fractions with d1/d = f and d2/d = 1−f ,

Taylor expansion yields

[
k(cell)
z

]2
=
[
k(1)
z

]2
f

[
f +

ε
(2)
x

ε
(1)
x

(1− f)

]
+
[
k(2)
z

]2
(1− f)

[
(1− f) +

ε
(1)
x

ε
(2)
x

f

]

and using dispersions

[
k(1)
z

]2
= ε(1)

x k2
0 −

(
ε(1)
x /ε(1)

z

)
k2
x ,

[
k(2)
z

]2
= ε(2)

x k2
0 −

(
ε(2)
x /ε(2)

z

)
k2
x ,

we achieve the e�ective medium permittivity (2.7) in bilayer case [7][
k

(cell)
z

]2

ε
(1)
x f + ε

(2)
x (1− f)

+ k2
x

[
f

ε
(1)
z

+
(1− f)

ε
(2)
z

]
= k2

0 ,

ε(eff)
x = ε(1)

x f + ε(2)
x (1− f) , ε(eff)

z =
1

f

ε
(1)
z

+
(1− f)

ε
(2)
z

. (2.17)

2.2.2 Nanosphere media

Maxwell Garnett and Bruggeman e�ective theory

A nanosphere medium or discrete random composite is a composite in which

small particles of radius r � λ are randomly embedded in a host bulk medium. The
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Figure 2.3: A single dielectric sphere of radius Ri with dielectric constant εi em-

bedded in a host matrix with dielectric constant εh placed in an uniform electric

�eld, which at large distances from the sphere, is directed along the z axis and has

magnitude E0.

most widely used e�ective medium approaches to homogenize the electromagnetic

response of such structured composite are: the Maxwell-Garnett theory (MG) [22]

and the Bruggeman e�ective medium theory (EMT) [23]. Each of these two methods

is based upon slightly di�erent assumptions regarding the composite topology and

the material properties of each constituent in the mixture, depending on the relative

concentration of the inclusions. In the �rst composite kind, the inclusions particles

embedded in the host material are quite dilute and have well-de�ned smooth shapes.

This is usually called the MG geometry. When the two constituent materials inter-

mingle with each other and the two materials play symmetric roles it is di�cult to

say which is the host and which is the inclusion. This type of topology is commonly

referred to as the Bruggeman geometry.

These models can be derived from the polarizability of a particle and from the

mean-�eld theory, also known as the Lorentz-Lorenz equation.

Polarizability of a dielectric sphere

Let's focus on the electrostatic problem of a single dielectric sphere of radius

Ri with dielectric constant εi embedded in a host matrix with dielectric constant

εh and placed in an uniform electric �eld, which at large distances from the sphere
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is directed along the z axis. The asymptotic electric �eld magnitude is E0, as

indicated in Fig.2.3. Both inside and outside the sphere there are no free charges.

As a consequence the electrostatic problem reduces to solve the Laplace equation

with azimuthal symmetry (∇2Φ(r, ϑ) = 0) with boundary conditions at r = Ri. The

general solution for such a problem can be obtained from the Laplace equation in

spherical coordinates with azimuthal symmetry3 [24]
Φin(r, ϑ) =

∞∑
l=0

[
Alr

l +Blr
−(l+1)

]
Pl(cosϑ) r < Ri

Φout(r, ϑ) =
∞∑
l=0

[
Clr

l +Dlr
−(l+1)

]
Pl(cosϑ) r > Ri

(2.18)

The coe�cients Al can be determined from the boundary conditions at the sur-

face sphere, i.e. the continuity of the tangential electric �eld component (E
(in)
ϑ =

E
(out)
ϑ ) and of the perpendicular electric displacement component (D

(in)
r = D

(out)
r ,

ε0εiE
(in)
r = ε0εhE

(out)
r ):

− 1

r

∂Φin

∂ϑ

∣∣∣∣
r=Ri

= − 1

r

∂Φout

∂ϑ

∣∣∣∣
r=Ri

− ε0εi
∂Φin

∂r

∣∣∣∣
r=Ri

= − ε0εh
∂Φout

∂r

∣∣∣∣
r=Ri

(2.19)

where Φin and Φout are the potentials inside and outside the sphere respectively4.

Inside the sphere the potential must be �nite everywhere. Consequently Bl = 0

for all l and D0 = 0 for continuity of Φ at r = Ri. From the boundary condition

3In spherical coordinates (r, ϑ, φ), the Laplace equation can be written in the form

1

r

∂2

∂r2
(rΦ) +

1

r2 sinϑ

(
sinϑ

∂Φ

∂ϑ

)
+

1

r2 sin2 ϑ

∂2Φ

∂φ2
= 0

and if the potential Φ posses azimuthal symmetry, using the separation of variable method, it

can be written as product Φ(r, ϑ) = [U(r)/r]P (ϑ) and substituting this expression in the Laplace

equation we �nd separate equations for the functions U(r) and P (ϑ)
d2U

dr2
− l(l + 1)

r2
U = 0

1

sinϑ

d

dϑ

(
sinϑ

dP

dϑ

)
+ l(l + 1)P = 0

where the solution of the �rst is U(r) = Arl+1 + Br−l, while the second, that is the Legendre

di�erential equation, has as solutions the Legendre polynomials of order l.

4E = −∇Φ, the gradient operator in spherical coordinates in ∇(r,θ,φ) =

[
∂

∂r
,

1

r

∂

∂θ
,

1

r sinϑ

∂

∂φ

]
.
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at in�nity (for r → ∞ Φout → −E0z = −E0r cosϑ) we �nd that the only non

vanishing Cl is C1 = −E0 (and if C0 = 0 as a result we have also A0 = 0 for

potential continuity). The other coe�cients are determined from the boundary

conditions (2.19) at r = Ri. Substituting the (2.18) in (2.19), we have
− 1

Ri

[
∞∑
l=1

AlR
l
i

dPl(cosϑ)

dϑ

]
= − 1

Ri

[
C1Ri sinϑ+

∞∑
l=1

DlR
−(l+1)
i

dPl(cosϑ)

dϑ

]

−ε0εi

[
∞∑
l=1

lAlR
l−1
i Pl(cosϑ)

]
= −ε0εh

[
C1 cosϑ−

∞∑
l=1

(l + 1)DlR
−(l+2)
i Pl(cosϑ)

]

for l = 1 we get
A1 = C1 +

D1

R3
i

A1 =
εh
εi

[
C1 − 2

D1

R3
i

] ⇒


A1 = − 3εh

εi + 2εh
E0

D1 =
εi − εh
εi + 2εh

E0R
3
i

and for l > 1 we get
Al =

Dl

R2l+1
i

Al = −εh
εi

l + 1

l

Dl

R2l+1
i

⇒ Al = Dl = 0

The potential is therefore
Φin(r, ϑ) = − 3εh

εi + 2εh
E0r cosϑ

Φout(r, ϑ) = −E0r cosϑ+
εi − εh
εi + 2εh

E0
R3
i

r2
cosϑ

(2.20)

Outside the sphere the electric potential is the superposition of the potential of

external �eld E0 and the potential of an electric dipole5 at the origin of the sphere

with dipole moment

p = 4πε0εh
εi − εh
εi + 2εh

E0R
3
i . (2.21)

The polarizability of an inclusion embedded in a background medium is related

to its response to an external electric �eld. Due to the external �eldE0, the inclusion

gains a dipole moment p because of the polarization charges lying on its own surface

5An electric dipole p = pez in a surrounding medium with dielectric permittivity εh is the

source of a potential Φ(r, ϑ) = n · p/(4πε0εhr2) = p cosϑ/(4πε0εhr
2).
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and the relation between the two quantities is: p = αE0. Therefore from (2.21) we

get the polarizability of a single dielectric sphere embedded in a host matrix with

dielectric permittivity εh

α = Vi3ε0εh
εi − εh
εi + 2εh

,

where Vi = 4πR3
i /3 is the volume of the spherical inclusion.

Polarizability of a dielectric ellipsoid

The most general smooth particle of regular shape is an ellipsoid. The natural

coordinates for formulating the problem of determining the dipole moment of an el-

lipsoidal particle, with permittivity εi embedded in a host medium with permittivity

εh, induced by a uniform electrostatic �eld are the ellipsoidal coordinates (ξ, η, ζ)

de�ned by

x2

a2 + ξ
+

y2

b2 + ξ
+

z2

c2 + ξ
= 1 −c2 < ξ <∞

x2

a2 + η
+

y2

b2 + η
+

z2

c2 + η
= 1 −b2 < η < −c2

x2

a2 + ζ
+

y2

b2 + ζ
+

z2

c2 + ζ
= 1 −a2 < η < −b2

where a > b > c are the ellipsoid's semi-axes [25]. The surfaces ξ = constant are

confocal ellipsoids, and the particular ellipsoid ξ = 0 coincides with the boundary

of the particle. The surfaces η = constant are hyperboloids of one sheet, and the

surfaces ζ = constant are hyperboloids of two sheets.

As we have seen from the above problem for the spherical particle (2.20), the

electrostatic potential inside the particle Φin is proportional to the external potential

Φ0 and the potential outside Φout can be written as the superposition of Φ0 and Φp

the potential due to the electric dipole moment of the particle (Φout = Φ0 + Φp).
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The potential of external �eld Φ0 = −E0z in ellipsoidal coordinates is6

Φ0(ξ, η, ζ) = −E0

√
(c2 + ξ)(c2 + η)(c2 + ζ)

(a2 − c2)(b2 − c2)
.

Laplace's equation in ellipsoidal coordinates is

∇2Φ = (η − ζ)f(ξ)
∂

∂ξ

(
f(ξ)

∂Φ

∂ξ

)
+ (ζ − ξ)f(η)

∂

∂η

(
f(η)

∂Φ

∂η

)
+

+ (ξ − η)f(ζ)
∂

∂ζ

(
f(ζ)

∂Φ

∂ζ

)
= 0 ,

where f(s) =
√

(s+ a2)(s+ b2)(s+ c2). To achieve the solution of the problem,

we can exploit the result obtained in the case of scattering by a sphere, so that we

postulate that the potentials Φin and Φp are of the form

Φin(ξ, η, ζ) = CinFin(ξ)
√

(c2 + η)(c2 + ζ) ,

Φp(ξ, η, ζ) = CpFp(ξ)
√

(c2 + η)(c2 + ζ) .

Substituting this form for Φ in the Laplace's equation in ellipsoidal coordinates, it

follows that Fin,p(ξ) satis�es the ordinary di�erential equation

F
′′

in,p(ξ) +
f ′(ξ)

f(ξ)
F

′

in,p(ξ)−
(
a2 + b2

4
+
ξ

2

)
Fin,p(ξ) = 0

and one of the two linearly independent solutions is Fin(ξ) =
√
ξ + c2 (since Φin is

proportional to Φ0). The second solution Fp(ξ) can be obtained exploiting the varia-

tion of parameters method of linear ordinary di�erential equation and the boundary

condition lim
ξ→∞

F2(ξ) = 0

F2(ξ) = F1(ξ)

∫ ∞
ξ

ds

F 2
1 (s)f(s)

.

6The relation between cartesian coordinates (x, y, z) and ellipsoidal coordinates (ξ, η, ζ) are

x2 =
(a2 + ξ)(a2 + η)(a2 + ζ)

(b2 − a2)(c2 − a2)
,

y2 =
(b2 + ξ)(b2 + η)(b2 + ζ)

(a2 − b2)(c2 − b2)
,

z2 =
(c2 + ξ)(c2 + η)(c2 + ζ)

(a2 − c2)(b2 − c2)
.
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Imposing the condition of continuity for Φ and the continuity of the electric dis-

placement normal component at ξ = 0, we set the two constant Cin and Cout

Φin(0, η, ζ) = Φ0(0, η, ζ) + Φp(0, η, ζ)

⇒ Cin = − E0√
(a2 − c2)(b2 − c2)

+ Cp

∫ ∞
0

ds

(s+ c2)f(s)
;

εi
∂Φin

∂ξ
= εh

∂Φ0

∂ξ
+ εh

∂Φ0

∂ξ

⇒ εiCin = − εhE0√
(a2 − c2)(b2 − c2)

+ εhCp

[∫ ∞
0

ds

(s+ c2)f(s)
− 2

abc

]
;

Cin =
−E0√

(a2 − c2)(b2 − c2)

1

1 +
abc

2

∫ ∞
0

ds

(s+ c2)f(s)

εi − εh
εh

,

Cp =
−E0√

(a2 − c2)(b2 − c2)

abc

2

∫ ∞
ξ

ds

(s+ c2)f(s)

εh − εi
εh

1 +
abc

2

∫ ∞
0

ds

(s+ c2)f(s)

εi − εh
εh

.

At distance r from the origin which is much greater than the largest semi-axes a∫ ∞
ξ

ds

(c2 + s)f(s)
=

∫ ∞
ξ

ds

s5/2
=

2

3
ξ−3/2 ,

therefore the potential Φp becomes

Φp =
−E0 cosϑ

r2

abc

3

εh − εi
εh

1 +
abc

2

∫ ∞
0

ds

(s+ c2)f(s)

εi − εh
εh

and it shows the electric dipole potential form for a dipole momentum

p = Viε0εh
εi − εh

εh + Lz(εi − εh)
E0 ,

where Vi = 4πabc/3 is the volume of ellipsoidal particle, Lz is the depolarization

factor of ellipsoid along z direction, while along j direction (j = x, y, z; ax = a,

ay = b, az = c) it is

Lj =
abc

2

∫ ∞
0

ds

(a2
j + s)f(s)

.

The polarizability of a single dielectric ellipsoid particle in an isotropic host is a

tensor which in the coordinate system of the ellipsoid axes shows a diagonal form

αjj = ε0Vi(εi − εh)[εh + Lj(εi − εh)]−1εh . (2.22)
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Anisotropic host

The electrostatic problem of �nding the polarizability of a single spherical par-

ticle embedded in an isotropic host matrix is invariant under rotations around the

center of sphere. Such a central symmetry can be broken by a di�erent form of

the inclusions or by the anisotropic nature of the host. We have seen above that

the electrostatic response of an ellipsoid in an isotropic medium (which we have

achieved by a suitable change from cartesian to ellispoidal coordinates) has tenso-

rial kind because it depends on the reciprocal orientation between ellipsoidal axes

and electric direction. In the same way, one can face the electrostatic problem of

a single spherical particle within an anisotropic host matrix. The optical indicatrix

of a anisotropic medium, in the optical principal axes, is an ellipsoidal surface and

the length of each axis is equal to the principal electric permittivity along consid-

ered direction (�Appendix A). The result (2.22) can be exploited by suitably scaling

cartesian coordinates as x → x
√
εhx/εhj y → y

√
εhy/εhj and z → z

√
εhz/εhj, so

that the spherical particle looks ellipsoidal in the new coordinates. In this way, we

get the polarizability tensor of a spherical particle embedded in an anisotropic host

matrix whose optical principal axes coincide with the axes of the arti�cial ellipsoidal

particle

αjj = ε0Vi(εi − εhj)[εhj + Lj(εi − εhj)]−1εhj , (2.23)

where the depolarization factor Lj is

Lj =
1

2

∫ ∞
0

εhjds

(1 + εhjs)
√

(1 + εhxs)(1 + εhys)(1 + εhzs)
, (2.24)

which, in the isotropic limit, it reduces to Lj = 1/3.

Multi-component Maxwell Garnett mixing rules

Let consider a homogeneous mixture of N di�erent kinds of spherical particles in

an anisotropic host matrix and in a reference frame coinciding with the host optical

principal axes (so that the electric permittivity tensor is diagonal). In the Lorentz

model, the �eld experienced by a particle is not the macroscopically averaged �eld
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E but it is EL the electric local �eld which can be written as

EL = E + ES , (2.25)

where E is the macroscopic �eld of Maxwell's equations and ES is the �eld due to

the polarization charges lying on the surface of Lorentz sphere. It can be proved that

ES for a spherical particle in an isotropic host is ES = P /(3ε0εh) and the factor

1/3 represents the depolarization factor of particle of such shape. Generalizing this

result to the anisotropic case, the local Lorentz �eld is

(EL)j = Ej +
1

ε0

[εhj]
−1LjPj , (2.26)

where the depolarization factor Lj is represented by relation (2.24) and Pj is the

electric polarization of homogeneous mixture. The macroscopic polarization Pj is

de�ned as the volume electric dipole moment Pj =
N∑
l=1

n(l)p
(l)
j , where n(l) is the

volume density particles of l-th kind and p
(l)
j is j-th dipole moment component and

it is related to the polarizability α
(l)
jj by p

(l)
j = α

(l)
jj (EL)j. Using the de�nition of local

Lorentz �eld (2.26) and the commutation rules between the polarizability tensor α(l)

and the electric permittivity tensor εh

Pj =
N∑
l=1

n(l)p
(l)
j =

N∑
l=1

n(l)α
(l)
jj (EL)j =

N∑
l=1

n(l)α
(l)
jjEj +

1

ε0

[εhj]
−1

N∑
l=1

n(l)α
(l)
jj LjPj ,

Pj =

[
1− 1

ε0

[εhj]
−1

N∑
l=1

n(l)α
(l)
jj Lj

]−1 N∑
l=1

n(l)α
(l)
jjEj .

Due to particles shape, the e�ective permittivity of the mixture is anisotropic and

the macroscopic electric displacement j-th component

Dj = ε0ε
(eff)
jj Ej = ε0εhjEj + Pj =

= ε0

εhj +
1

ε0

[
1− 1

ε0

[εhj]
−1

N∑
l=1

n(l)α
(l)
jj Lj

]−1 N∑
l=1

n(l)α
(l)
jj

Ej (2.27)

and by the polarizability de�nition (2.23), the e�ective Maxwell-Garnett electric

permittivity of a homogeneous mixture of N kinds of spherical particles with per-
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mittivity ε
(l)
i in an anisotropic host matrix is

ε
(eff)
jj =


1 +

1

1−
N∑
l=1

f (l)(ε
(l)
i − εhj)

εhj + Lj(ε
(l)
i − εhj)

Lj

N∑
l=1

f (l)(ε
(l)
i − εhj)

εhj + Lj(ε
(l)
i − εhj)


εhj ,

where f (l) = n(l)V (l) is the �lling fraction of l-th kind spherical particles. In partic-

ular, if there is only one kind of spherical particles in the host, the e�ective electric

permittivity becomes

ε
(eff)
jj =

[
1 +

f(εi − εhj)
εhj + (1− f)Lj(εi − εhj)

]
εhj . (2.28)

Multi-component Bruggeman mixing rules

Let us consider spherical particles of di�erent materials (ε
(l)
i ) that are dispersed

with a volume �lling factors f (l) = n(l)V
(l)
i in an isotropic host matrix with a dielec-

tric constant of εh. Using (2.27) the e�ective electric permittivity is

εeff = εh +

N∑
l=1

n(l)α(l)

ε0

1−
N∑
l=1

n(l)α(l)

3ε0εh

⇒ εeff − εh
εeff + 2εh

=
N∑
l=1

f (l) ε
(l)
i − εh

ε
(l)
i + 2εh

.

If the inclusions are present in a symmetric manner the distinction between inclu-

sions and hosts vanish and therefore εh = εeff and we have

N∑
l=1

f (l) ε
(l)
i − εeff

ε
(l)
i + 2εeff

= 0 ,

whose solution provides the e�ective electric permittivity in Bruggeman geometry.

2.2.3 Nanowire media

A nanowire media is a material composed of aligned arrays of metallic nanowires

in a dielectric matrix. Fig.2.4 schematically illustrates the structure of metallic
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Figure 2.4: A nanowire media, a material composed of aligned arrays of metallic

nanowires in a dielectric matrix; r is the wire radius and d the distance between two

neighboring wires.

nanowires embedded in a dielectric host7. When the geometric parameters, i.e.,

the wire radius (r) and the distance between two neighboring wires (d), are much

smaller than the free space wavelength (λ0) of the incident electromagnetic wave, the

underlying system can be considered as an e�ective uniaxial medium [14] and the

dynamic Maxwell-Garnett theory [17, 28] can be utilized to determine the e�ective

dielectric permittivity along the direction perpendicular to wires (ε⊥), while the

e�ective dielectric permittivity along parallel direction to wires is settled by a simple

arithmetic average (ε||), therefore they are given by the following equations [13]:

ε⊥ = εh +
fεh(εmw − εh)

εh + (1− f)Leff (εmw − εh)
, (2.29)

ε|| = fεmw + (1− f)εh , (2.30)

where f is the �lling ratio of metal, εmw and εh are dielectric permittivity of metal

and dielectric respectively and Leff is the e�ective depolarization factor along the

direction perpendicular to nanowires. The so-called dynamical Maxwell-Garnett

model is a simple modi�cation of Maxwell-Garnett theory which takes into account

both particles size and shape e�ects. As we have seen above, the polarizability

7This structure can be fabricated by electrochemically growing metallic nanowires in a porous

alumina template, which is prepared by the anodization method in a self-organized way [26]; such

a method has proved to be a low-cost and high-yield technique for fabricating di�erent kinds of

nanostructures including nanowires, nanodots and nanotubes [27].
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of a single dielectric ellipsoid particle in a host matrix (2.22) is a function of the

dielectric permittivity of the particle (εi) and host medium (εh) and also the size

and shape of the particle by the depolarization factor (Leff ). In the small particle

(or Rayleigh scattering) limit, the complex polarizability of the particle is given by

(2.22), when the size of inclusions increase relative to λ0, the higher order electric

multipole terms become important [28]. In 1983, Meier and Wokaun [29] derived an

alternate expression for the depolarization factor. Speci�c for spheres, their model

de�nes an e�ective depolarization factor Leff , which is related to sphere radius a

via

Leff =
1

3
− 1

3

(
2π

λ0

a

)2

− 2

9

(
2π

λ0

a

)2

i , (2.31)

where the �rst term on the right-handed site of (2.31) is the Lorentz depolarizing

factor (L = 1/3) for spheres. The second term involves dynamic depolarization

and accounts for the fact that a particle that is not small relative to the incident

wavelength λ0 will experience di�erent phases of the incident �eld. The third term

accounts for damping of the dipole by radiative losses and results in broadening

and strongly decreased magnitude of the resonance enhancement for large particle

volumes.

2.3 Experimental validations of e�ective model

All the homogenization techniques with their own e�ective medium theories allow

to predict approximately the optical behavior of actual composites. There are two

general constraints: 1) each constituent is present in the whole in grains large enough

that it may be described by its bulk optical properties and 2), at the same time,

the typical grain dimensions and spacings must be much smaller than an optical

wavelength, so that the composite may be described by e�ective optical parameters,

which are related to the constituent parameters.

Gehr and Boyd [30] have provided a brief review of the optical properties of com-

posite materials, discussing the experimental results through the suitable e�ective

medium theory de�ned by the composite geometries. An example of a composite is
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stained glass, i.e., glass doped with small metal particles. The dimensions of the par-

ticles are typically on the order of hundreds of angstroms, which is much smaller than

optical wavelengths. It is obvious that such composites have signi�cantly di�erent

properties than their constituents. The glass is nonabsorbing throughout the visible

spectrum, the metal is highly absorbing and re�ective throughout the same range,

but the composite displays a resonance absorption peak within the visible, which

gives the glass its characteristic coloring. In an e�ort to explain this phenomenon,

Maxwell-Garnett [22] developed one of the earliest e�ective medium theories and

the e�ective dielectric constant accurately predicted the location of the resonance

in the visible part of the spectrum. Under the assumption that the inclusion radius

was much smaller than the typical spacing between inclusions, which in turn was

much smaller than an optical wavelength, an e�ective dielectric constant could be

determined for the composite. Observing that a metal sphere in the presence of

an oscillating electric �eld emits radiation as if it were an electric dipole, Maxwell-

Garnett replaced the spheres in the model by the equivalent point dipoles, i.e., he

ignored their �nite size. Maxwell-Garnett theory is strictly valid only in the limit

where particle dimensions and separation distances are in�nitely small relative to

the wavelength, but it has the advantage that it can be easily generalized to par-

ticles of various shapes. The expression (2.28) for an isotropic host and spherical

inclusions

ε(eff) =
εi(1 + 2f) + 2εh(1− f)

εi(1− f) + εh(2 + f)
εh ,

displays an important feature: for metal inclusion particles, which have a negative

real part of the dielectric constant, the real part of the denominator may go to zero,

implying the existence of a resonance. Maxwell-Garnett compared this resonance

with the observed colors of several metal-doped glasses. For the samples which met

his model criteria, the agreement between the theory and experimental observations

was very good.

Another important concept in the derivation of e�ective medium theories is that

of local �elds; the electric �eld driving the polarization of an inclusion particle is

not the same as the macroscopic electric �eld appearing in Maxwell's equations.
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Figure 2.5: Transmission electron micrographs of transverse sections of Au

nanoparticle/alumina membrane composites. The membranes had a pore diame-

ter of 52 nm. De�ning as Aspect ratio the ratio between particle length and its

diameter: (A) Aspect ratio = 1.3; (B) Aspect ratio = 2.7 and (C) Aspect ratio =

7.8.

Instead it is a local �eld whose value depends on the polarization of the surrounding

medium as well as the applied �eld. This distribution of the �eld among the con-

stituents explains why the optical constants of the e�ective medium are not simply

the weighted averages of those of the constituents. Local-�eld e�ects play a role to

be considered in each of the composite geometries.

G. L. Hornyak et al. [31] have been exploring the optical properties of nanoscopic

gold particles prepared by electrochemically depositing Au within the pores of alu-

mina membranes. In particular, they are interested in investigating the e�ect of Au

nanoparticle diameter (determined by the pore diameter of the alumina membrane)

and length (determined by the quantity of Au deposited within the pores, Fig.2.5)

on the position of the plasmon resonance adsorption of the nanoparticle. They have

used Maxwell-Garnett e�ective medium theory as a guide for modeling the opti-

cal properties of these Au nanoparticle/alumina membrane composites. However,

Maxwell-Garnett theory is rigorously applicable only in the limit of metal nanopar-

ticles with in�nitesimally small diameters in comparison with the wavelength of

the incident electromagnetic wave. As a result, the position of the plasmon reso-
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nance absorption predicted theoretically using Maxwell-Garnett theory was always

blue-shifted relative to the position of the experimental absorption band. Therefore

they have used the modi�ed form of Maxwell-Garnett theory, called the dynamic

Maxwell-Garnett theory (which takes into account both particles size and shape ef-

fects by the e�ective depolarization factor (2.31)), to model the optical properties of

such Au nanoparticles (Fig.2.6). As the diameter of the Au nanoparticle decreased,

the position of the experimental plasmon resonance band (as de�ned by the wave-

length of maximum absorption intensity, λmax) approached the λmax predicted by

Maxwell-Garnett theory. They have prepared Au nanoparticles with diameters of

52nm, 32nm, 22nm and 16nm. They have found, that as the Au nanoparticle di-

ameter decreases, the experimental λmax approaches the Maxell-Garnett-predicted

value (Fig.2.7). Furthermore, the λmax values for the smallest diameter particles

(16nm) are essentially identical with the values predicted by Maxwell-Garnett the-

ory. Hence, the Maxwell-Garnett-predicted plasmon resonance absorption limit can

be used as comparison parameter to evaluate the dimensions in preparing metal

nanoparticles.

Other examples of good agreement between theoretical and experimental results

are given by E. Wäckelgard [32] and Y. Rao works [33].

In the �rst paper, the experimental dielectric function of porous alumina in the

infrared region is compared with the Maxwell-Garnett model. The e�ective dielec-

tric function has been calculated using Maxwell-Garnett e�ective-medium theory

for a two-component anisotropic medium consisting of air-�lled cylindrical pores

perpendicular to the surface in an alumina matrix with optical constants of non-

porous evaporated alumina. As shown by Fig.2.8, the theoretical and experimental

results are in good agreement. In this paper the Maxwell-Garnett e�ective theory

shows that the redshift of the longitudinal optical phonon (LO mode) absorption for

p-polarized light can be explained by the presence of pores in the alumina sample.

In the second one, nanostructure polymer-ceramic composite with high dielectric

constant has been developed for embedded capacitor application. This polymer-

ceramic system consists of ceramic particle randomly placed within the polymeric
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Figure 2.6: Experimental (A) and dynamic Maxwell-Garnett simulated (B) absorp-

tion spectra for membranes containing 52 nm (1), 32 nm (2), 22 nm (3) and 16 nm (4)

diameter Au nanoparticles. For every diameter curves for particles with di�erent as-

pect ratio are shown. The uppermost curve is fr the highest aspect ratio nanoparticle

and the lowermost curve is for the lowest aspect ratio nanoparticle. [31]
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Figure 2.7: Plot of λmax for experimental and simulated absorption spectra vs

natural logarithm of the aspect ratio of the Au nanoparticle. The aspect ratio is

de�ned as a/b, where a is the length and b is the diameter of the nanoparticle. These

data are for 52 nm (1), 32 nm (2), 22 nm (3) and 16 nm (4) diameter nanoparticles.

The experimental data are in bold (with data points). The dynamic Maxwell-Garnett

simulated results are the dotted curve, while the Maxwell-Garnett simulated results

are the dashed curve [31].
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Figure 2.8: The e�ective dielectric function (the real part on the left and the imag-

inary part on the right), obtained using Maxwell-Garnett e�ective-medium theory,

is compared with the experimental dielectric function. The pores in alumina sample

are regarded as cylinders perpendicular to the surface. The �gure shows the compo-

nents of the theoretical dielectric function parallel and perpendicular to the surface.

The experimental and calculated dielectric functions demonstrate that there is good

agreement, especially with ε
(eff)
⊥ [32].
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Figure 2.9: Maxwell-Garnett e�ective medium model prediction (solid curve), mod-

i�ed Lichtenecker prediction (dash curve) and experimental results (dots) of the ef-

fective dielectric constant of polymer-ceramic composite [33].

epoxy resin. This work tried to use Marwell-Garnett e�ective medium theory to set

up a numerical model that can precisely predict the dielectric constant of polymer-

ceramic nanocomposite. The Fig.2.9 shows the comparison between the experimen-

tal results of e�ective dielectric constant and two numerical model prediction: the

e�ective medium theory and the modi�ed Lichtenecker model8 and it is evident that

the agreement between theoretical model and experimental results is much better

for the Maxwell-Garnett model than modi�ed Lichtenecker model.

8One of the most commonly used equation to study the dielectric behavior of composite systems

or randomly dispersed mixtures is the Lichtenecker logarithmic law and it is written for a two-

component system as log ε(eff) = f1 log ε1 + f2 log ε2 (fi is the volume occupied by material i

and εi is the dielectric constant of corresponding material). The modi�ed-form of Lichtenecker

equation is log ε(eff) = log ε1 + f2(1− k) log(ε2/ε1), where k is a �tting constant.



3
Metamaterial families and applications

3.1 Negative index materials

The dielectric permittivity ε and magnetic permeability µ are the fundamental

characteristic quantities which fully determine the propagation of electromagnetic

waves in matter. The optical properties of a transparent material are often more

conveniently described by a di�erent parameter, the refractive index n, given by

n =
√
εµ. All known transparent materials have a positive index since ε and µ are

both positive. The allowed range of material response does not preclude us from

considering a medium for which both ε and µ are negative. Many metals, silver and

gold for example, have negative ε at wavelengths in the visible spectrum. In Fig.3.1

the material dielectric response at one of its resonances is depicted. Generally, a

spring-mass oscillator is used to picture the medium as a set of harmonically bound

charges. When the frequency is lower than the resonance frequency ω0, the function

<[ε(ω)] (or <[µ(ω)]) is increasing and positive so that the response (P for electric

resonances and M for magnetic ones) is parallel to the charge displacement. On the

other side of the resonance peak, the function can take a negative value, so that the

response is anti-parallel to the driving force.

More than 35 years ago Victor Veselago pondered the properties of a peculiar

medium [3] with both ε and µ simultaneously real and negative. Since the product

εµ is positive, the square root accordingly gives a real refractive index. Yet, there is

an ambiguity when choosing the correct sign of n since mathematically there are two

35
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Figure 3.1: The electromagnetic responses around a resonance. The three spring-

mass oscillators are used as a mechanic analogue [1].

possible solutions: n = ±√εµ. The correct sign has to be assigned in such a way

for satisfying the causality condition. For any realistic passive medium, both ε and

µ have a positive imaginary part (even though they may be quite small compared

with corresponding real parts). Considering a medium with ε = −ε′ + iε′′ and

µ = −µ′ + iµ′′, where ε′, ε′′, µ′ and µ′′ are positive, we have

n = ±
√

(−ε′ + iε′′)(−µ′ + iµ′′) = ±
√
ε′µ′ − ε′′µ′′ − i(ε′′µ′ + ε′µ′′) ,

n = ±
√
|n|[cos(ϑ/2) + i sin(ϑ/2)] ,

|n| = (ε′µ′)2 + (ε′′µ′′)2 + (ε′′µ′)2 + (ε′µ′′)2 ,

cosϑ =
ε′µ′ − ε′′µ′′

|n|
sinϑ = −ε

′′µ′ + ε′µ′′

|n|
,

so that sinϑ < 0, whilst cosϑ can be either positive or negative

if ε′µ′ − ε′′µ′′ > 0 ⇒ cosϑ > 0 ⇒ −π
2
< ϑ < 0 ⇒ −π

4
<
ϑ

2
< 0

if ε′µ′ − ε′′µ′′ < 0 ⇒ cosϑ < 0 ⇒ −π < ϑ < −π
2

⇒ −π
2
<
ϑ

2
< −π

4

and in both cases

cos(ϑ/2) > 0 ∧ sin(ϑ/2) < 0 ⇒ n = ±
√
|n|[cos(ϑ/2)− i| sin(ϑ/2)|] .
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The imaginary part of n has to be positive for any passive material. Therefore in

both cases, the minus sign has to be chosen when the real parts of both ε and µ are

negative and the term used to identify such an unconventional material is negative

index material.

As stated above, the �rst systematic study of the general properties of a hypo-

thetical medium with a negative refractive index is due to Veselago. He analyzed the

propagation features of electromagnetic waves interacting with such a medium and

pointed out that when both ε and µ are simultaneously negative, the negative square

root must be chosen in the refractive index equation. Since the phase velocity of the

radiation is proportional to the real part of the refractive index, waves propagating

in negative index materials have the �ow of energy antiparallel to the phase velocity.

For a plane wave ei(nkz−ωt) propagating in the z direction with free-space wave-vector

k and angular frequency ω in a negative index material, the phase-fronts travel in

the opposite direction to their corresponding counterparts in standard materials. A

discussion of the relations among the vectors E, H and k clari�es such observation.

For a plane wave, Maxwell's curl equations (2.2) give the following relations for the

three vectors: k ×E = ωµ0µH

k ×H = −ωε0εE

Thus for a common material with positive ε and µ, the vectors E, H and k form

a right-handed triplet and k is parallel to the Poynting vector S = E ×H . In a

negative index material where both ε and µ are negative, from the above equations

it is clear that the vectors E, H and k form a left-handed triplet. Note that now

the wave-vector k is anti-parallel to the Poynting vector. This is the reason why

negative index material are sometimes called left-handed materials, term introduced

by Veselago. Left-handed materials are probably the most prominent class among

all the other metamaterial ones. In fact, during the early years of metamaterial

research, the idea of a negative index of refraction was emphasized so much to the

point of regarding the term metamaterial as synonymous of negative index material

or left-handed material.
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Figure 3.2: The refraction of a light beam when passed through the boundary of

air and a Positive index material (left) or a negative index material (right) [1].

One of most remarkable phenomenon occurring in negative refractive index ma-

terials is negative refraction. Snell's law relates the refraction angle to the incident

one of light traveling across the interface between two media of di�erent refractive

indices: n1 sinϑi = n2 sinϑt. If we extend this law to account for negative refraction,

when a light beam passes through the boundary between a positive index material

and a negative index material, the refraction angle ϑt is negative. Therefore, the

refracted beam bends along the same side of the interface normal as the incident

beam (Fig.3.2).

In 2001, the �rst the experimental veri�cation of negative refraction was per-

formed through a Snell's law experiment on a metamaterial designed to have a neg-

ative index of refraction at microwave frequencies [4]. The famous two-dimensional

negative index material made by a group at the University of California San Diego

is shown in Fig.3.3a . The material consists of a two-dimensional array of repeated

unit cells of copper wires and split ring resonators on interlocking strips of stan-

dard circuit board material. To determine the refractive index, they measured the

de�ection of a beam of microwave radiation as it passed through the prism-shaped

sample. In this refraction experiment (in Fig.3.3b is shown the diagram of experi-

mental setup), the prism-shaped samples were placed between two circular aluminum
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Figure 3.3: a) Photograph of the left-handed metamaterial sample. The sample

consists of square copper split ring resonators and copper wire strips deposited on

opposite sides lithographically on standard circuit board. The height of the structure

is 1 cm. b) Diagram of experimental setup. The sample and the microwave absorber

were placed between top and bottom parallel, circular aluminum plates spaced 1.2 cm

apart. The radius of the circular plates was 15 cm. The black arrows represent the

microwave beam as would be refracted by a positive index sample. The detector

was rotated around the circumference of the circle in 1.5◦ steps, and the transmitted

power spectrum was measured as a function of angle, from the interface normal.

The detector was a waveguide to coaxial adapter attached to a standard X-band

waveguide, whose opening was 2.3 cm in the plane of the circular plates. ϑ as shown

is positive in this �gure [4].
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plates. The top plate had a pivot in the center, about which an attached X-band

(from 8 to 12GHz or from 2.5 to 3.7 cm) microwave waveguide could be rotated to

measure transmitted power at arbitrary refraction angles. The incident face of the

prism was illuminated with a beam of microwaves whose electric �eld was polarized

such that it was uniform and perpendicular to the metal plates and parallel to the

wires shown in Fig.3.3a (transverse magnetic polarization). Any refraction from

the �rst surface would be caused by components of the incident beam containing

angles of incidence away from the normal. The outcoming waves were guided by two

�at sheets of aluminum whose spacing matched that of the circular plates (1.2 cm)

and they were laterally con�ned by sheets of absorber placed 9.3 cm apart. After

propagating through the sample, the microwave beam encounters the second surface

of the prism, the refraction interface (which was at an angle of 18.43◦ with respect

to the normal of the incident surface), and it is refracted into a direction determined

by Snell's law. To measure the exit angle, the waveguide/power meter assembly has

rotated in 1.5◦ steps and the transmitted power spectrum over the entire X-band

range at each step has recorded. Experiments were performed with a prism-shaped

left-handed metamaterial sample, as well as with a similarly shaped Te�on sample

as a control. As can be seen in Fig.3.4, at 10.5GHz, the microwaves were refracted

to positive angles as expected for the Te�on sample and to the opposite side (i.e.,

negative ϑ side) of the normal for the left-handed sample. The Te�on data show

refraction as would be predicted for nTeflon = 1.4± 0.1, whereas for the left-handed

metamaterial, the measured exit angle of ϑair =-61◦ implies that nLHM = −2.7±0.1.

Although the metamaterial consists of discrete scattering elements, it may be ap-

proximated as an e�ective medium for wavelengths that are larger than the unit

cell size (the left-handed metamaterial used in these experiments had a unit cell di-

mension of 5mm, a factor of 6 smaller than the X-band center wavelength of 3 cm)

and the negative refractive index experimentally veri�ed is the combining e�ect of

the electrical response of the wires with negative e�ective permittivity εeff (ω) and

the magnetic one of the split ring resonators with negative e�ective permeability

µeff (ω).
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Figure 3.4: Transmitted power at 10.5GHz as a function of refraction angle for

both a Te�on sample (dashed curve) and a left-handed metamaterial sample (solid

curve). The two curves were normalized such that the magnitude of both peaks is

unity. For the Te�on sample, the refracted power peak was measured to be 27◦,

corresponding to a positive index of refraction of 1.4 ± 0.1. For the left-handed

metamaterial sample, the peak was at -61◦, from which we deduce the index of

refraction to be −2.7± 0.1 [4].
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Figure 3.5: a) Unit cell of the 901 high wire density structure used in the numerical

simulations. The direction of propagation of the electromagnetic �eld is along the

x axis, the electric �eld is oriented along the z axis, and the magnetic �eld is along

the y axis. b) Surface plot of measured transmissivity for the Te�on and 901 high

wire density negative index material wedge. Note that the electric �eld refracted

by the Te�on wedge peaks at a positive refractive angle of 48.2◦ (corresponding to

an index of refraction of 1.4) and is independent of frequency. The electric �eld

refracted by the negative index material wedge peaks at negative angles that are a

function of the frequency. The two peaks are not normalized by the same factor.

The non-normalized value of the peak electric �eld of the negative index material

sample is about 20% of the Te�on peak [34].

Two years later, in 2003, Parazzoli et al. [34] used a similar structure to manu-

facture a three-dimensional cube (Fig.3.5a) operating in free space, and measure-

ments con�rming the negative index of refraction of the structure were performed

at a distance much larger than the wavelength (Fig.3.5b).

Although the �rst obtained negative index material has electric permittivity

and magnetic permeability simultaneously negative in the microwave range, scaling

negative refraction up to the optical range is very important for both the theoretical

signi�cance and for the application value that such materials could provide. While

the direct scale down of the experimentally veri�ed systems is possible only to the
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THz region, most of practical applications of these unique materials are in the optical

and infrared part of the spectrum. The electromagnetic response of metals in the

optical range is vastly di�erent than at lower frequencies, where ε is extremely large

and metals behave as nearly perfect conductors. This distinction prohibits the design

of optical negative index materials using the same structures as their microwave

counterparts. The challenges in optical negative index material research lay not only

in design and fabrication, but also in experimental characterization. The fabrication

limits concerns the sample thickness dimensions, which must be subwavelength and

this limitation has prohibited experimentalists from directly observing the negative

bending of a beam of light from a wedge-like structure, as was done in microwave

negative index material experiments.

To achieve a negative index material, it is essential to tune the resonance prop-

erty of the arti�cial material in such a way that the frequencies for the negative

electric response and those for the negative magnetic response occur in an over-

lapping spectral range. As we have seen above, a possible approach to achieve a

negative refractive index in a passive medium is to design a material where the per-

mittivity ε = ε′ + iε′′ and the permeability µ = µ′ + iµ′′ satisfy the requirement:

ε′µ′′ + ε′′µ′ < 0. However, due to the natural inertness of magnetic permeability at

optical frequencies, it is a practical challenge to obtain an e�ective permeability very

di�erent from 1, especially at very high frequencies such as the frequency of visible

light. The above relation strictly implies that n′ < 0 cannot occur in a magneti-

cally inactive medium with µ = 1 + 0i. Fortunately a negative index of refraction

can be achieved in a magnetically lossy medium with a negative ε′ < 0 along with

µ′′ > 0. In this case the inequality may still be ful�lled, and therefore a negative

real part of the refractive index n′ can be obtained. The �rst optical metamaterial

with a negative index of refraction was experimentally demonstrated in 2005 by a

research group at Purdue University [35]. Both experiments and simulations on their

metal-dielectric composite (a double-periodic array of pairs of parallel gold nanorods

Fig.3.6a), demonstrate that a negative refractive index n′ = −0.3 is achieved at

the optical wavelengths close to 1.5 µm Fig.3.6d .
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Figure 3.6: (a) Schematic for the array of nanorod pairs; normally incident light

with the electric �eld polarized along the rods and the magnetic �eld perpendicular

to the pair. (b) Field-emission scanning electron microscope images of a portion

of the sample and a closer view of a single pair of nanorods. (c) Elementary cell

of metal-dielectric composite, the fabrication procedure resulted in a trapezoidal

shape of the rods, the dimensions of the bottom rods are 780nm x 220 nm while

the top rods are smaller 670 nm x 120 nm and each rods is sandwich structure,

Ti(5 nm)/Au(50 nm)/Ti(5 nm)/SiO2(50 nm)/Ti(5 nm)/Au(50 nm). (d) Real part of

the refractive index retrieved from simulations (triangles) and experiments (circles).

The inset is a magni�ed view of the region of negative refraction; the dashed curve

shows the quadratic least-squares �t for the experimental data [35].
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3.1.1 Applications of negative refractive index: perfect lens

Materials with negative refractive index have attracted signi�cant attention after

Pendry predicted that neagtive refractive index material can act as a superlens

allowing imaging resolution that is limited not by the wavelength but rather by

material quality [5]. Negative refraction by a slab of material bends a ray of light

back toward the axis and for this reason a planar slab of negative refractive index

material with su�cient thickness can act as a lens, because it has a focusing e�ect

at the point where the refracted rays meet the axis. As depicted in Fig.3.7c,

light rays coming from an object are negatively refracted at the incident surface

of the negative index slab, and the negative refraction of rays is repeated again

at the second boundary. Consequently, the negative refractive index slab creates

an image within the slab and a second non-inverted image in the free space after

the output interface. Compared to a conventional convex lens (Fig.3.7a,b), the

negative refractive index lens works in a di�erent way, it does not have any axis

or curvature, nor does it focus parallel rays or magnify small objects. All of these

features were pointed out by Veselago [3]. The exotic properties of such a slab

lens were �rst analyzed by Pendry, who recognized that a slab with refractive index

n = −1 exhibits an entirely new type of focusing phenomenon: if it is placed in

vacuum it allows the imaging of objects with sub-wavelength precision [36].

A conventional lens with the best possible resolution requires a wide aperture.

Each ray emanating from an object, as shown in Fig.3.7a , has wave vector com-

ponents along the axis of the lens, kz = k0 cosϑ, and perpendicular to the axis,

kx = k0 sinϑ, where k0 is the wavenumber and ϑ is the angle of the ray with re-

spect to the axis. The axial projection kz is responsible for transporting the light

from object to image; kx represents a Fourier component of the image. Due to

the Abbe di�raction limit, conventional lens based on positive-index material with

curved surface are not able to resolve objects smaller than approximatively half of

illuminating wavelength. The best kx that can be achieved is kx = k0, and hence

the resolution limit is ∆ ≈ π/k0 = λ/2 where λ1 is the wavelength. Therefore,

1More precise analysis shows that the di�raction limit or Abbe's limit for a conventional lens is
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Figure 3.7: The limitation of conventional lens and the idea of the negative re-

fractive index slab lens. a) a conventional lens only collects the propagating waves

and for good resolution it needs a wide aperture to refract rays at large angles ϑ,

but even so, they are limited in resolution by the wavelength used; b) the loss of the

evanescent waves in conventional imaging system, the missing Fourier components

of the image are contained in the near �eld, which decays exponentially (blue curve)

and makes negligible contribution to the image; c) the focusing ability of a negative

refractive index slab; d) the growth of evanescent waves in the negative refractive

index slab and the restoration of both the propagating and evanescent waves. Such a

negative lens thus removes the wavelength limitation. However, the resonant nature

of the ampli�cation places severe demands on materials, in particular they must be

very low loss [36].
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conventional imaging systems cannot provide sub-wavelenght resolution and this

restriction is a huge problem in many areas of optics. In contrast to the image,

the object has no limit to its electromagnetic details, but unfortunately not all of

that information makes it across the lens to the image. The problem lies with the

wave vector's z-component, which we can write as kz =
√
k2

0 − k2
x. Evidently, for

large values of kx, corresponding to �ne details in the object, kz is imaginary and

the waves decay exponentially as e−n
√
k2x−k20z, as shown in Fig.3.7b. Such waves,

usually called evanescent wave are con�ned to the vicinity of the object and do not

have any contribution to the image obtained by standard lenses. For that reason,

they are commonly referred to as the �near �eld� and the propagating rays as the �far

�eld�. In order to beat the di�raction limit and obtain images with subwavelength

features, it needs to be able to collect the evanescent waves before they fade away. If

we could amplify the near �elds, we could in principle recoup their contribution and

a planar slab of negative material achieves this feature. Fig.3.7c shows rays con-

tributing to the image formed by a negative slab. Just as for a conventional lens, the

rays only contribute to details greater than about half a wavelength in diameter. In

contrast, the behavior of the near �eld is remarkably di�erent, Fig.3.7d . The neg-

ative medium thus ampli�es the wave and compensates for the decay that occurred

in an equal thickness of vacuum. It is important to note that the ampli�cation of

evanescent waves in negative index material does not violate energy conservation,

because evanescent waves carry no energy. In an ideal, lossless negative index re-

fraction slab, the Poynting vector of evanescent waves is zero, so no energy transport

is involved during the growth of evanescent modes in such slabs. Nevertheless, the

conditions for the perfect lens are rather severe, and the far-�eld perfect lens may

only have theoretical signi�cance. Rigorous analysis shows that any realistic losses

that are inevitable in today's resonance-based designs of negative refractive index

materials can eliminate the desired e�ect of �awless imaging. Podolskiy et al. show

that the resolution of a left handed material based lens is strongly suppressed even

λ/(2n sinα) where n is the refractive index of the medium in which the imaging system is immersed,

and α represents the semi-aperture angle of the lens.
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for small absorption, which is inevitable in all modern resonance-based negative re-

fractive index material designs [37]. It was recently shown that in lossless media any

deviation of ε from -1 strongly suppresses the super-resolution (super-resolution is

de�ned as resolution beyond the conventional di�raction limit for far-�eld imaging

[38]). However, also the lossless medium itself represents the ideal case, which can

never be realized. The presence of any nonzero absorption (described by positive

imaginary parts of dielectric permittivity ε′′ and magnetic permeability µ′′) leads to

strong suppression of transmitted waves with large kx. All the negative refractive

index materials based on resonance properties of plasmonic metamaterials are highly

dissipative, anisotropic, and lossy. That is the major reason why so far there has

been no far-�eld demonstration of super-resolution using a planar negative refractive

index slab.

3.2 Hyperbolic or inde�nite medium

The double-resonance scheme discussed above represent the standard approach

for realizing negative refractive index metamaterials, but the simultaneous tuning

of electrical and magnetic resonances causes large resonance losses and technical

di�culties in design and fabrication. An alternative way to obtain negative refrac-

tion is a nonmagnetic and nonresonant approach based on exploiting the properties

of strongly anisotropic dielectric materials. Instead of engineering subwavelength

units with desired ε and µ values, the starting point for anisotropy based negative

refraction is the exploration of the possible relationships between the wavevector k

and the Poynting vector S in nonmagnetic, homogenous media.

We consider a planar interface, parallel to the xy plane of coordinate system,

with the boundarie at z = 0, which separate the air on the left from a material

on the right. The medium is nonmagnetic (µ = 1) and has an anisotropic uniaxial

dielectric response described by the dielectric tensor ε, with εx = εy = ε|| (parallel

to the separation interface) and εz = ε⊥ (perpendicular to the separation interface),

so the optical axis is along the z direction. Similarly to uniaxial crystals, the sys-
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tem may support the propagation of two di�erent kinds of electromagnetic waves

(�Appendix A). The waves of the �rst kind have their electric �eld vector in the xy

plane. The propagation of such waves depends only on ε||, and is not a�ected by

medium anisotropy. These waves are also known as ordinary waves. The waves of

the second kind (known as extraordinary waves) have their electric �eld in the xz

plane. Correspondingly their electromagnetic properties are a�ected by both ε|| and

ε⊥. The ordinary and extraordinary waves are fundamentally distinct as they have

di�erent dispersion relations2 and refraction properties. It is possible to character-

ized the extraordinary wave in a uniaxial crystal by the dispersion relation (A.8)

k2
x

ε⊥
+
k2
y

ε⊥
+
k2
z

ε||
= k2

0 (3.1)

and the isofrequency surface can be used to understand one key consequence of

material anisotropy: the deviation of the Poynting vector S from the direction of

the wave vector k [39]. The direction of the Poynting vector is identical to the

direction of the group velocity vector vg = ∇kω(k), this implies that S is normal to

the isofrequency surfaces given by (3.1). Assuming that the light propagates within

the xz plane, the wavevector k is represented by a vector from the origin of the plane

kxkz to a given point on the isofrequency curve, and the angle of the Poynting vector

S is normal to the tangent of the curve at the point. In an anisotropic medium the

wave vector curve become ellipsoidal and the angle between k and S is non-zero

Fig.3.8b (the isotropic case is the limit anisotropic case with εx = εz, the wave

vector curve is circular and the vectors k and S are collinear Fig.3.8a). Finally,

for a material with dielectric permittivity εx and εz opposite in sign the dispersion

relation becomes hyperbolic (Fig.3.8c,d). The materials whose the permittivity

tensor elements considered along the principal axis are not the same sign are known

as hyperbolic or inde�nite medium [40]. In particular for a material with negative

transverse dielectric permittivity εx < 0 and positive in-plane permittivity εz > 0

the curvature of the hyperbola is such that the signs of kz and Sz are opposite,

2For the ordinary waves the dispersion relation is k2x + k2y + k2z = k20ε||, for the extraordinary

waves the dispersion relation is (k2x + k2y)/ε⊥ + k2z/ε|| = k20 (�Appendix A).
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Figure 3.8: Tangential wave vector component conservation for a transverse mag-

netic wave propagation in a) an isotropic crystal with εx = εz; b) in an anisotropic

crystal with εx > εz; c) in a hyperbolic crystal width εx > 0 and εz < 0 [12]; d) in a

hyperbolic crystal width εx < 0 and εz > 0 [39].

as shown in Fig.3.8d . This opposite directionality between kz and Sz leads to a

negative e�ective index of refraction.

Most of all inde�nite media are arti�cially engineered metamaterials, which re-

quire �ne fabrication technology to produce structures with strong anisotropy. The

condition of extreme anisotropy, where the principal permittivities have di�erent

signs, can be attained by resorting to suitable metal-dielectric nano-composites with

a geometrical structure exhibiting at least one privileged direction. Exploiting the

e�ective medium approach, it is possible to design the composite to show inde�nite

permittivity in a spectral range whose wavelengths are much greater than the nano-

constituents size. Two relevant examples of such structured media are nanowire

composites [13, 14, 41] (typically silver nanowires embedded in an allumina mem-

brane) and layered media [7, 10, 42, 43] (obtained by alternating metal and dielectric
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layers) whose privileged directions are, evidently, the nanowire and the stacking di-

rection, respectively. Recently, it has been proposed that inde�nite permittivity can

even be observed in anisotropic natural materials as, for example, graphite [44] and

strong anisotropic uniaxial crystals of α-Al2O3 [45] which are shown to be inde�nite

in the ultraviolet (due to the hybrid electronic transitions) and the infrared region

(due to the strong anisotropy of polar lattice vibrations), respectively.

In their work [44], Sun et al. report the experimental veri�cation of an all an-

gle negative refraction in the deep-ultraviolet frequency region in monocrystalline

graphite. Graphite is a semimetal with a uniaxial-layered crystalline structure,

which allows for extremely strong anisotropy between the directions perpendicular

and parallel to the atomic plane. The dielectric tensor are characterized by two

independent dielectric functions, including the ordinary dielectric function εo(ω),

which describes light polarized along the carbon-layer planes, and the extraordi-

nary dielectric function εe(ω), which describes light polarized perpendicular to the

carbon-layer planes. The εo and εe spectra in the range of 240-400nm obtained by

a spectroscopic ellipsometer (J. A. Woollam) are shown in Fig.3.9b. In the ultra-

violet region below 282nm, the real parts of εo is negative, whereas the real part

of εe is positive, providing the inde�nite permittivity of graphite. As illustrated in

Fig.3.10a , if the crystal is oriented with its optic axis parallel to the sample surface

and perpendicular to the plane of incidence, the TM incident light, with magnetic

�eld polarized in the atomic plane of the graphite, can be treated as ordinary light.

In this case, the permittivity of the material is isotropic for the electric-�eld and ac-

cording to Maxwell's equations, the dispersion relationship for TM waves is given by

k2
x/εe + k2

y/εe = k2
0. If the crystal is oriented as shown in Fig.3.10d , the optic axis

is parallel to both the sample surface and the plane of incidence, the incident light

is extraordinary light and is modulated by the anisotropic dielectric constants of the

crystal. The dispersion relation can then write as k2
x/εe + k2

y/εo = k2
0. As shown

in Fig.3.10b,e through experimental ellissometry results and in Fig.3.10c,f by a

schematic illustration of isofrequency curves, in the �rst case incident wave experi-

ences a normal refraction, while in the second one an uniaxial anisotropic material
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Figure 3.9: a) The atomic structure of graphite, where the c-axis (optical axis)

is perpendicular to the carbon-layer planes. b) The spectral dependence of the real

εo1 and εe1 and imaginary εo2 and εe2 parts of the dielectric constants for di�erent

orientations in monocrystalline graphite sample [44].

with εe > 0 and εo < 0 exhibit negative refractive behavior for a transverse magnetic

wave propagating along the x-axis for all incident angles. The inde�nite permittivity

is attributed to extremely strong anisotropy in the crystal structure and the hybrid

electronic transitions.

Wang et al. propose a kind of inde�nite media at infrared frequency without

arti�cial structures [45]. As an example, the dielectric dispersions of α-Al2O3 single

crystal with di�erent polarizations of electric �eld are measured, the regions of

inde�nite permittivity are demonstrated. Natural existing inde�nite properties of

the media are based on strong anisotropy in polar lattice vibrations in di�erent

directions, parallel or perpendicular to the crystal axis. According to the classical

theory of lattice dynamics, the relative permittivity of polar crystals will exhibit

one or more dielectric resonances near the transverse optical frequencies due to the

excitation of transverse optical phonons. For a more complicated crystal structure,

the dielectric dispersion is modeled by the sum of independent damped harmonic

oscillators as follows

ε(ω) = ε∞ +
∑
i

∆εiω
2
T i

ω2
T i − ω2 + iγiωT iω

,

where ε∞ is the highfrequency permittivity and ωT i, ∆εi and γi are the oscillator

parameters, i.e. frequency, oscillator strength and damping coe�cient of the ith
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Figure 3.10: The orientation of single crystalline graphite and the scheme of re-

fraction as it occurs in graphite. The direction perpendicular to the carbon atomic

plane is the optic axis z-axis. a) The single crystal of graphite is oriented such that

the optic axis is parallel to the sample surface and is also perpendicular to the plane

of incidence. A TM mode wave, with magnetic �eld polarized in the atomic plane

of the graphite, is incident on the sample with an incident angle of ϑi and then

refracted at an angle of ϑr. b) The dispersion isofrequency curves mapped using

ellipsometry at this orientation. c) Schematic illustration of the normal refraction

of ordinary light at the interface between the free space (circular black curve) and

the uniaxial media (circular blue curve). The refracted wave vector kr and Poynting

vector Sr is determined by Maxwell's equations. d) The single crystal of graphite

is oriented such that the optic axis is in the plane of the sample surface and in the

plane of incidence. e) The dispersion isofrequency curves mapped using ellipsometry

at this orientation. f) The negative refraction of extraordinary light at the interface

between the free space (circular black curve) and the uniaxial media (hyperbolic blue

curve) [44].
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transverse vibration mode. When the crystal structure presents an uniaxial sym-

metry such as tetragonal or hexagonal system, the permittivity of the crystal will

be a form of tensor with two independent parts, one is corresponding to the elec-

tric �eld E parallel to the optical axis c and the other is perpendicular to the c

axis. Because of the parameters of the lattice are di�erent in the two directions,

the lattice vibration frequencies for the same vibration mode are di�erent. In this

case there will be several regions in which the crystal exhibits dielectric tensor with

contrary sign parts, resulting in an inde�nite permittivity with a strong anisotropy.

They take α-Al2O3 single crystal as an example, retrieve the permittivity of the

crystal and show an all-angle negative refraction at infrared frequency. Using the

oscillator model and the relationship between the permittivity and the re�ectiv-

ity R for normal incidence R = |[
√
ε(ω) − 1]/[

√
ε(ω) + 1]|2 when considering the

crystals are nonmagnetic (µ = 1), they can get the �tted re�ectivity and the re-

trieved relative permittivity. The measured and �tted polarized re�ectivity spectra

are shown in Fig.3.11 (left) and the oscillator parameters are listed in each �g-

ure accordingly. Using the �tted oscillator parameters, the two component ε|| and

ε⊥ of the permittivity can be deduced and the results are presented in Fig.3.11

(right). The spectral intervals, where the crystal exhibits contrary signs between ε||

and ε⊥, are indicated by the shaded regions. In the frequency regions 400-440 cm−1

and 480-515 cm−1, ε|| < 0 < ε⊥, while in the frequency regions 565-580 cm−1 and

885-910 cm−1, ε⊥ < 0 < ε||.

3.2.1 Applications of hyperbolic media

Within the rapidly growing �eld of metamaterials, hyperbolic or inde�nite or

extremely anisotropic metamaterials characterized by principal permittivities hav-

ing di�erent signs, are attracting a considerable research interest mainly for the

novel potentialities they provide for achieving e�cient optical steering and manipu-

lation. The hyperbolic dispersion relation characterizing extraordinary plane waves

through inde�nite or hyperbolic media is the main physical ingredient leading to

unusual optical e�ects. In 2001, for the �rst time, Lindell et al. [46] have shown
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Figure 3.11: Left: Re�ectivity of α-Al2O3 single crystal for a) E ⊥ c axis and b)

E||c axis. The points are the experimental values and the lines are calculated from

the oscillator model. Right: Dielectric dispersion curves of α-Al2O3 single crystal a)

real part; b) imaginary part retrieved from the �tted re�ectivity [45].
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Figure 3.12: a) A conventional imaging system transforms propagating waves,

but does not operate on the decaying evanescent waves; these waves can only be

detected in the near �eld. b) Superlens ampli�es the evanescent waves but does not

change their decaying character. c) An ideal device would convert evanescent waves

to propagating waves for ease of detection and processing; these waves should not

mix with the propagating waves emanating from the object.

that the property of negative refraction is not con�ned to materials with negative

de�nite ε and µ tensors, but can be expected to occur in certain classes of uniaxially

anisotropic media which is due to the fact that the hyperbola curvature is opposite

to that of the circumference of standard media. The ability of such media of con-

verting vacuum evanescent waves into homogeneous propagating waves [47] (as a

consequence of the lack of evanescent waves along the hyperbola major axis) allows

developing the idea of hyperlens [11, 48, 49, 50].

Resolution of conventional optics is generally constrained by the di�raction limit,

which prevents imaging of subwavelength features. Such �ne details are encoded in

rapid spatial variations of electromagnetic �elds at the object's surface. However,

these �elds decay exponentially with distance and are thus only detectable in the

near �eld (Fig.3.12a). Outside the near �eld, the loss of high spatial frequency

information carried by the decaying evanescent waves precludes reconstructing the

image of an object with resolution better than approximately λ/2. It is highly desir-

able for many applications (e.g. biological microscopy) to use a system which would

produce a direct optical far �eld image that includes subwavelength features. It is

for this reason that the recently proposed superlens [5], a device capable of subwave-

length resolution that relies on materials with negative index of refraction, received

much attention. The originally proposed superlens would not only focus the propa-
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gating waves, but would also amplify the evanescent waves in such a way that both

the propagating and evanescent �elds would contribute to an image in the far �eld,

resulting in resolution far below the di�raction limit (Fig.3.12b). However, sub-

sequent studies demonstrated that due to the resonant nature of the enhancement

of evanescent waves the subwavelength resolving power of most superlens imple-

mentations is severely curtailed by material losses [37]. Furthermore, although a

superlens ampli�es evanescent modes and thus in principle enables their detection,

the evanescent waves cannot be processed or brought to focus by conventional op-

tics. An ideal imaging device would avoid this problem: it would not only capture

evanescent �elds to retrieve subwavelength information, but would also allow for

their processing with standard optical components. This could be accomplished by

transferring the information carried by evanescent �elds into a portion of the prop-

agating spectrum (Fig.3.12c). Following the conversion, these propagating waves

would be detected and processed in the far �eld by methods similar to those of

conventional imaging. Lee et al. [48] describe an experimental realization of a new

sub-di�raction-limit imaging method called hyperlens imaging. They experimentally

demonstrate 150nm [51] and 130nm [48] resolution (which is beyond the di�raction

limit) using a magnifying optical hyperlens consisting of a curved periodic stack of

Ag (35nm) and Al2O3 (35nm) deposited on a half-cylindrical cavity fabricated on a

quartz substrate (Fig.3.13a). The dispersion of electromagnetic wave in cylindrical

coordinates is represented by
k2
r

εϑ
+
k2
ϑ

εr
= k2

0 ,

where kr and kϑ are wavevectors, εr and εϑ are permittivities in radial and tan-

gential direction respectively. Fig.3.13b shows isofrequency contours in k-space

in which isotropic medium has circular dispersion (red). The accessible range of

kϑ, which determines the imaging resolution, is limited to the radius of the circle,

r =
√
ε = n, where n is the refractive index3. However, it was shown that a mate-

rial with anisotropic electrical responses in two orthogonal tensor components can

3Higher index materials are used in immersion microscopy for this reason, but there's limited

availability in nature, commonly used immersion oil gives n only around 1.5.
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Figure 3.13: Magnifying optical hyperlens. a) Schematic of hyperlens and nu-

merical simulation of imaging of sub-di�raction-limited objects [51]. b) Red circle:

dispersion isofrequency curve of light in isotropic medium in cylindrical coordinate.

Blue curve: hyperbolic dispersion in an anisotropic medium when εr < 0 and εϑ > 0.

(b) One suggested cylindrical hyperlens structure. Multi-concentric layers of alter-

nating metal and dielectric layers make anisotropic metamaterial [48].

indeed support the propagation of electromagnetic waves with large wave vectors.

In particular, if εr < 0 and εϑ > 0, hyperbolic isofrequency contour is achieved

(blue) and waves with larger kϑ that are commonly evanescent become propagating.

Such a medium can be realized using the metamaterial concept. Fig.3.13c shows

one exampled structure which consists of thin alternating layers of a metal and a

dielectric. When a small object is placed at the center of such a cylindrical hyper-

lens, the object scatters the light and generates a wide band of kϑ. The �ne feature

information of an object is then brought to far �eld magni�ed which can be imaged

directly by conventional optics.

For the experiment, Silver Ag (εm = 2.4012 + 0.2488i) and Aluminum Oxide

Al2O3 (εd = 3.217) were used and the e�ective permittivity (2.17) of the designed
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metamaterial was calculated using

εϑ = fεm + (1− f)εd , εr =
εmεd

(1− f)εm + fεd
,

where f is the �lling ratio of the metal. At 365nm working wavelength with f = 0.5,

hyperbolic dispersion is obtained. The fabrication process of the hyperlens is shown

in Fig.3.14a . A thin Cr layer (150nm) was deposited on a quartz wafer (150µm

thick). Then, a 50nm wide etch slit was made and the half-cylindrical groove was

de�ned through isotropic wet etching of quartz. A diameter of approximately 1.6 µm

was achieved. Since multiple Ag and Al2O3 thin �lms were to be deposited. Than Cr

layer was removed. Starting from the Ag layer, Al2O3 and Ag �lms were deposited

alternatively, the thickness of each layer was set to 35nm and a 50nm of Cr �lm was

deposited on top of the 16th layer (Al2O3). Fig.3.14b shows the schematic of our

hyperlens imaging setup. The object was illuminated by a mercury lamp with a band

pass �lter centered at wavelength of 365nm and bandwidth of 10nm. Fig.3.14c is

a top-view scanning electron microscope (SEM) picture of a line pair object with

center-to-center distance of 130nm and line width of 50nm. They were placed o� the

center to show that an object can be placed anywhere in the groove to be imaged with

good resolution and negligible position-dependant distortions. The smallest distance

(∆) that can be resolved by the transmission mode imaging setup is estimated to be

about 260nm from a simple equation: ∆ = λ/NA where, λ = 365 nm, and numerical

aperture NA = 1.4. Nevertheless, the 130nm distance object is clearly resolved

through the hyperlens as shown in Fig.3.14d . The center-to-center distance of the

enlarged image is about 300nm which represents the magni�cation of the hyperlens.

Extreme anisotropy also fundamentally a�ects the excitation of waves, imping-

ing from vacuum, into an inde�nite medium to the point that, by suitably changing

the mutual geometric orientation between the hyperbola and the metamaterial in-

terface, novel interesting e�ects as cancellation of re�ection and transmission can be

predicted [52]. Consequently, optical devices exploiting inde�nite media have been

proposed as, for instance, polarization beam splitters [53] and angular �lters [54]

which are based on the fact that transverse magnetic and transverse electric waves
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Figure 3.14: (a) Hyperlens sample fabrication process �ow. Through the etch hole

on a Cr �lm (1), isotropic wet etching makes cylindrical groove in quartz (2). After

Cr �lm is removed (3), multilayer hyperlens structure is fabricated using alternate

deposition of Ag and Al2O3 (4). A Cr �lm caps the hyperlens structure for object

fabrication (5). (b) Imaging setup. Completed hyperlens/object sample is placed

under objective with incident light at 365 nm, conventional far �eld microscope with

100X oil immersion objective and UV sensitive CCD detector was used for direct far

�eld imaging [48].

Figure 3.15: a) A SEM picture of the cross section of a hyperlens structure. 16

Ag/Al2O3 layers are clearly shown, bright and dark layers are Ag and Al2O3 respec-

tively. The top thick and bright layer is Chromium. b) Zoom-in picture of white

square in (a). c) Hyeperlens imaging results. SEM image of 130 nm line pair object

on Cr �lm. Dark region is the hyperlens and the bright region is the �at surface.

d) Image captured by optical microscope through hyperlensing shows 130 nm gap is

clearly resolved [48].
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are characterized by di�erent dispersive features (hyperbolic and standard behavior,

respectively).

3.3 Epsilon-near-zero metamaterial

The advent of metamaterials and the �exibility in choosing the value of the

permittivity or permeability opened many new possibilities in di�erent �elds of

physics and engineering. Besides the much celebrated realization of a double neg-

ative medium [2] and related prospective applications [5], materials with e�ective

ε and e�ective µ or e�ective refraction index near zero have also become the sub-

ject of investigation. Such materials may be found naturally at infrared and optical

frequencies, when noble metals, some semiconductors, or plasmonic and polar di-

electrics such as SiC are near their plasma frequency. Also, ε-near-zero materials

may be properly synthesized as metamaterials with a very small real part of the

dielectric permittivity at the desired frequency, by embedding suitable inclusions

in a host medium [55]. Their unique properties enable exotic light behavior and

they can enhance linear or nonlinear properties of the metamaterial at ε-near-zero

frequency.

For the linear optical properties of this metamaterial class, Alekseyev et al [54]

have predicted that a highly anisotropic uniaxial ε-near-zero metamaterial, in which

real part of electric permittivity along the optical axis is equal to zero, behaves in a

dramatic di�erent way when p- or s-polarized light interacts with this material. The

analysis of transmission of p- and s-polarized light through a slab of such material

demonstrate that this di�erence may lead to a unique class of highly selective angular

�lter and polarizer. The theoretical prediction have been con�rmed experimentally

in an array of silver nanowires grown in an anodic alumina membrane (Fig.3.16),

which exhibits vastly di�erent transmission characteristics for the two polarizations.

Using Maxwell-Garnett approximation (2.29) and (2.30) it is possible to evaluate

dielectric tensor for an array of cylindrical silver nanorods in alumina matrix, in

particular with 8.25% volume �lling fraction of silver inclusion and using pubished
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Figure 3.16: (a) Schematic of an array of nanowires in a dielectric host [14]. (b)

Scanning electron microscope picture of an array of silver nanowires grown in an

anodic alumina membrane-side view of the etched membrane's wall showing loose

and bent nanowires; bar 10 µm. (c) Bose's transmitting antenna covered by the

polarizing wire grid [56].

dielectric permittivity of silver [57] and alumina [58], the out-of-plane dielectric ten-

sor component ε⊥ (dielectric component in the direction perpendicular to the wire)

approaches zero at λ = 873 nm, where ε⊥ = −0.0057 + 0.03i. At this wavelength,

the p-polarized intensity transfer function (A.13) exhibits a sharp transmission peak

centered around kx = 0 (angular width of ∼ 1.2◦), while s-polarized (A.11) trans-

mittance is nearly independent of the incidence angle and kx (Fig.3.17a). The

mesurements (Fig.3.17b) of sample transmittance in p− and s−polarizations are

in a qualitative agreement with theoretical prediction. This suggests that this meta-

material in wavelength range where dielectric permittivity is singular can be used

as an angular �lter and polarizer.

On the other hand, the investigation of metamaterial nonlinear properties is par-

ticularly important in that it can lead to overcoming one of the fundamental limits

of nonlinear optics: the fact that most of the optical materials have a relatively

weak nonlinear response. The full exploitation of the nonlinear response is possible

only if the nonlinear polarization is not a small perturbation to the linear part of

the electric displacement �eld, and generally this is achieved through nonlinearity

enhancement or by means of resonant processes or photorefractive processes where

the large nonlinearities come at the cost of a large time response. However, as shown

in [9], the interplay between the linear part of the electric displacement �eld and the
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Figure 3.17: It is shown: (a) Transmittance functions for p-polarization (solid) and

s-polarization (dashed) in the singular uniaxial regime (ε⊥ ≈ 0). (b) Experimentally

measured angular transmittance pro�les in p-polarization (trace 1) and s-polarization

(trace 2) [54].

nonlinear polarization can be made e�cient even by following the opposite route,

i.e., by reducing the linear polarization. They therefore devise a nonlinear medium

with a very small linear dielectric constant since it is a natural setting for the ob-

servation of the electromagnetic regime where the nonlinear response does not play

the role of a mere perturbation. In that paper, a periodic layered composite whose

slabs are �lled either with linear media with arbitrary permittivity and permeability

or by standard isotropic focusing or defocusing Kerr media is considered. Exploit-

ing a suitable extension of the well-known technique generally used for describing

the homogenization of linear layered composites, it is shown that the homogenized

medium is characterized by e�ective constitutive relations formally coinciding with

those of a standard Kerr medium whose parameters can assume values not available

in standard materials. Exploiting such a parameter availability, they focus on the

situation where the linear relative dielectric permittivity is very small, thus allowing

the observation of the extreme nonlinear regime where the nonlinear polarization

is comparable with or even greater than the linear part of the overall dielectric

response.



4
Hyperbolic optical switch

In this chapter we considered a liquid crystal/silver nanoparticles mixture and

we show that, by suitably choosing the volume �lling fraction of the particles, the

anisotropic e�ective medium theory predicts the existence of a spectral range where

the permittivity tensor is inde�nite. It is theoretically discussed the �rst example of

inde�nite optical metamaterial which is obtained by dispersing metal nanoparticles

within an anisotropic matrix which is tunable since, due to the presence of the

liquid crystal, an external electric �eld is able to a�ect its optical response. These

achievements allow to consider an active optical device obtained by sandwiching a

300nm thick slab of the tunable inde�nite medium between two 70nm thick silica

layers and operating in the presence of an externally applied electric �eld. Exploiting

the e�ective medium theory, it is shown that, for optical wavelengths at which the

e�ective medium is inde�nite, the slab is completely opaque if the electric �eld is

orthogonal to its interfaces whereas it gradually becomes transparent if it is tilted.

Such a behavior is physically due to the fact that the orientation of the hyperbola

characterizing the dispersion relation of extraordinary waves through the inde�nite

medium follows the direction of the applied electric �eld and therefore, when the

hyperbola asymptote is close to be normal to the device interfaces, a switch between

evanescent and propagating waves within the medium is achieved thus yielding the

switching e�ect. In order to prove that the considered medium does actually exhibit

inde�nite permittivity and that the device performs the predicted optical switch

functionality, full-wave (FDTD) simulations have been performed and the device

64
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Figure 4.1: Setup geometry. The liquid crystal (LC) �lls the slab of thickness L, it

is sandwiched between two silica layers of thickness d and it hosts silver nanoparticles

(Ag) of radius r. The externally applied electric �eld ES , inclined at an angle φ with

the z-axis, aligns the liquid crystal molecules in the direction of the unit vector n

(parallel to the electric �eld). The vacuum electromagnetic plane wave is made to

impinge orthogonally onto the device interface.

transmissivity has been evaluated as a function of the wavelength and the applied

electric �eld direction. A spectral region where the device performs the switch

exists and it is very close to that predicted by the e�ective medium theory and,

most importantly, that, at a speci�c wavelength, the actual device transmissivity

can be switched between 0.02 and 0.4 through the externally applied electric �eld. It

should be stressed that such a variation of the transmissivity could not be achieved

through conventional liquid crystal electro-optical switches of the same thickness

L = 300 nm since such length is too small, at optical frequencies, to produce the

required modal phase di�erence.
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4.1 Liquid crystal silver nanoparticles mixture as

a tunable inde�nite medium

Consider a slab of thickness L with its interfaces orthogonal to the z-axis, �lled

with a nematic liquid crystal and sandwiched between to silica layers (see Fig.4.1).

If the surface region of the liquid crystal is weakly anchored to the silica walls (condi-

tion that can be achieved through suitable surface [59] and/or bulk [60] preparation

methods) and if the initial homeotropic director of the liquid crystal molecules are

along the z axis, an externally applied electric �eld ES, lying in the xz plane and

forming an angle φ with the z-axis, is able to align the liquid crystal homeotropic

director along the unit vector n = sinφex + cosφez. As a consequence the liquid

crystal optically behaves as a uniaxially anisotropic crystal (with optical axis along

the direction n) and its permittivity tensor is ε(LC) = Rdiag
[
ε

(LC)
o , ε

(LC)
o , ε

(LC)
e

]
R−1

where ε
(LC)
o and ε

(LC)
e are the ordinary and extraordinary permittivities, respectively

and R is the y-axis rotation matrix

ε(LC) =


ε

(LC)
o cos2 φ+ ε

(LC)
e sin2 φ 0 (ε

(LC)
e − ε(LC)

o ) sinφ cosφ

0 ε
(LC)
o 0

(ε
(LC)
e − ε(LC)

o ) sinφ cosφ 0 ε
(LC)
o sin2 φ+ ε

(LC)
e cos2 φ


The slab hosts silver nanoparticles of radius r = 10 nm which are dispersed within

the liquid crystal with the volume �lling fraction f . If both the the radiation wave-

length λ and the slab thickness L are much greater than the nanoparticles radius

(λ � r and L � r), the overall optical response of the slab can be described by

means of the e�ective medium approach discussed in section �2.2.2. According to

this approach, since silver nanoparticles are optically isotropic with scalar permit-

tivity ε(Ag), the overall e�ective permittivity tensor is

ε(eff) = Rdiag
[
ε(eff)
o , ε(eff)

o , ε(eff)
e

]
R−1

so that the homogeneous e�ective medium is a uniaxial crystal with optical axis

along the direction n and its ordinary (j = o) and extraordinary (j = e) e�ective
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permittivities are (2.28)

ε
(eff)
j =

1 +
f
[
ε(Ag) − ε(LC)

j

]
ε

(LC)
j + (1− f)Nj

[
ε(Ag) − ε(LC)

j

]
 ε

(LC)
j . (4.1)

where the depolarization factors Nj are (2.24)

Nj =
1

2

∫ ∞
0

ε
(LC)
j ds[

1 + ε
(LC)
j s

]√[
1 + ε

(LC)
o s

]2 [
1 + ε

(LC)
e s

] . (4.2)

The permittivities of equation (4.1) are the anisotropic generalization of the standard

Maxwell Garnett mixing rule (to which equation (4.1) reduces in the isotropic limit

where Nj = 1/3), the depolarization factors (4.2) accounting for the e�ect of the

anisotropy. Note that, in analogy to the isotropic situation, the nanoparticles radius

does not appear in equation (4.1) so that the mixture design have to be performed

by tuning the volume �lling fraction f .

In order to discuss a feasible example of mixture, it is chosen SG-1 as nematic

liquid crystal [61] due to its high birefringence and its ordinary and extraordinary

permittivities are reported in Fig.4.2a as functions of the vacuum wavelength λ in

the spectral range between 410 and 430nm. For the silver permittivity the Drude

model has been used

ε(Ag) = ε∞ −
ω2
p

ω2 + iΓω
,

with ε∞ = 4.56, ωp = 1.38× 1016 s−1 and Γ = 0.1× 1015 s−1 [58] and the real and

imaginary parts of ε(Ag) are plotted in Fig.4.2b for λ between 410 and 430nm.

Note that the used scattering rate Γ is an order of magnitude higher than that of

bulk silver in order to accounting for the surface scattering (size e�ect) occurring

within the considered nanometric sized particles. After setting f = 0.05 for the

nanoparticles volume �lling fraction, the principal permittivities of the e�ective

medium has been evaluated by (4.1) and their real and imaginary parts are plotted

in Fig.4.3. Note that for wavelengths between λ1 = 418 nm and λ2 = 427.5 nm,

<
(
ε

(eff)
e

)
> 0 and <

(
ε

(eff)
o

)
< 0 so that the e�ective medium has inde�nite

permittivity. Combining this result with the fact that the direction of the optic
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Figure 4.2: Dielectric permittivities as a function of the vacuum wavelength λ.

(a) Ordinary and extraordinary permittivities of the liquid crystal. (b) Real and

imaginary parts of the silver permittivity.

axis can be varied through the externally applied electric �eld, we conclude that

the proposed liquid crystal/silver nanoparticles mixture behaves, within the limits

of validity of the e�ective medium theory, as a tunable hyperbolic medium.

The above described design of the anisotropic e�ective medium has been per-

formed for the speci�c value f = 0.05 of the nanoparticles volume �lling fraction.

In order to complete the analysis and to elucidate the dependence of the whole phe-

nomenology on the parameter f we have evaluated the wavelengths λ1(f) and λ2(f)

characterizing the spectral region λ1(f) < λ < λ2(f) where the medium is inde�nite

for 0.02 < f < 0.1 and plotted them in Fig.4.4a . Note that, for f values close to

5% a tolerance ∆f = 0.005 for the volume �lling fraction produces the uncertain-

ties ∆λ1 = 1.4 nm and ∆λ2 = 1.7 nm, thus proving that the mixture design is not

critical.

4.2 Optical switch

The intriguing optical properties of hyperbolic media combined with the tunabil-

ity, allow the above described liquid crystal/nanoparticles mixture to be used for

conceiving optical devices. As an example, consider the setup of Fig.4.1 where the

liquid crystal slab with dispersed nanoparticles has thickness L = 300 nm and it is
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Figure 4.3: Real and imaginary parts of the ordinary and extraordinary permit-

tivities of the homogeneous e�ective medium. The shaded region (λ1 < λ < λ2,

where λ1 = 418 nm and λ2 = 427.5 nm) corresponds to the spectral range where the

e�ective permittivity tensor is inde�nite.
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the spectral region λ1(f) < λ < λ2(f) where the medium is inde�nite, on the

nanoparticle volume �lling fraction f for 0.02 < f < 0.1. (b) The uncertainty on the

wavelength variation for a volume �lling fraction tolerance of ∆f = 0.005.
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Figure 4.5: (a) Plot of the transmissivity of the device reported in Fig.4.1 (evalu-

ated using the e�ective medium model for the liquid crystal/nanoparticels mixture)

as a function of the vacuum wavelength of the incident radiation and the angle φ.

(b) Level plot of the transmissivity of panel (a) restricted to region II where the

e�ective medium has inde�nite permittivity.

sandwiched between two d = 70 nm thick silica layers (of permittivity ε(S) = 2.088).

If a monochromatic plane wave is made to impinge orthogonally, from vacuum, onto

the device interface (as sketched in Fig.4.1), it is evident that we are considering

an active device since its optical transmissivity can be altered by varying the direc-

tion of the externally applied electric �eld ES. Using the e�ective medium approach

discussed in �4.1 to evaluate the dielectric permittivity tensor elements of liquid crys-

tal/nanoparticles mixture, the device transmissivity to an impinging orthogonally

electromagnetic plane wave (�Appendix A, (A.13) or (A.11), for normal incidence

they are the same equation) is easily evaluated and it is reported in Fig.4.5a , as a

function of both the vacuum wavelength λ and the angle φ de�ning the direction of

the applied electric �eld. For clarity purposes, in Fig.4.5a we have reported two

transparent gray planes corresponding to the two wavelengths 418 and 427.5 nm

between which the e�ective medium predicts that the mixture is hyperbolic. The

most striking feature of Fig.4.5a is the existence of three relevant spectral regions,
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I) λ < 418 nm, II) 418 nm < λ < 427.5 nm and III) λ > 427.5 nm, where the trans-

missivity is characterized by qualitatively di�erent behaviors. Speci�cally within

regions I and III, the slab is almost transparent and completely opaque, respectively

whereas, within region II the transmissivity strongly depends on φ to the point that

T ' 0 for φ ' 0 and, for increasing φ, it gradually increases eventually reaching its

maximum (dependent on λ) for φ = π/2 (see Fig.4.5b where the level plot of the

transmissivity of region II is plotted). Therefore, within region II, the considered

structure can be regarded as a very thin optical switch which, being driven by the

external electric �eld, is able to completely stop or allow the transmission of the light

�ow. Physically, such an overall behavior is readily grasped by noting that within re-

gion I and III (see Fig.4.3c) the e�ective medium behaves as a uniaxial crystal and

an anisotropic conductor, respectively and therefore, within the same two regions,

the plane wave impinging from vacuum excites homogeneous and evanescent waves,

respectively. On the other hand, within region II the e�ective medium is inde�nite

so that, depending on the value of φ, the normally impinging plane wave incoming

from vacuum is able to excite either homogeneous or evanescent waves. In order

to clarify this crucial point, we start from the dispersion relation of extraordinary

plane waves
k′2x

ε
(eff)
e

+
k′2z

ε
(eff)
o

= k2
0 , (4.3)

where k′x and k
′
z are the components of the wave vector along the principal axis of

the uniaxial crystal and k0 = 2π/λ. Since the plane wave from vacuum normally

impinges onto the device interface (see Fig.4.1), conservation of momentum requires

that the wave vector of waves excited within the anisotropic slab is K = Kez, i.e.

it is along the z-axis. Therefore the wavevector components along the principal axis

are k′x = −K sinφ and k′z = K cosφ which, inserted into (4.3) yield

K(φ) = k0

√
ε

(eff)
o ε

(eff)
e

ε
(eff)
o sin2 φ+ ε

(eff)
e cos2 φ

, (4.4)

from which the impact of the angle φ on the excited waves is particularly evident.

Even though we are not neglecting absorption (see the imaginary parts of the per-

mittivity in Fig.4.3), it is convenient here to regard the principal permittivities as
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real quantities with ε
(eff)
o < 0 and ε

(eff)
e > 0. Therefore, from (4.4), we readily

obtain that K(0) is imaginary (evanescent waves) whereas K(π/2) is real (homo-

geneous waves), the switch between the two kinds of waves occurring at the angle

φ = arctan

√
−ε(eff)

e /ε
(eff)
o . This explains the dependence of T on φ within region

II of Fig.4.5 where, as discussed above, a realistic situation is reported in which

absorption is not neglected (the only e�ects of absorption being the smoothing of

the dependence of T on φ and the lowering of values of T ).

The just described mechanism is pictorially sketched in Fig.4.6 where we have

reported the transmissivity T (φ) for λ = 420 nm extracted from Fig.4.5a . In the

insets A) and B) of Fig.4.6 we have plotted the hyperbolas of (4.3) in the two

relevant situations (A) φ = 20◦ and (B) φ = 80◦ (regarding the permittivities as real

quantities). The direction of the applied electric �eld is able to physically rotate

the medium hyperbola and, as a consequence, in the two situations φ = 20◦ and

φ = 80◦ the hyperbola does not intersect and intersects the z-axis, respectively, thus

correspondingly allowing the normally impinging vacuum wave to excite evanescent

and homogeneous waves. The switch between the two kinds of waves occurs when

the hyperbola asymptote is nearly normal to the slab interface and this occurs for

φ close to arctan

√
−ε(eff)

e /ε
(eff)
o .

4.3 Full wave simulations

In order to check the homogenization of the liquid crystal/nanoparticles mixture

and the device switching functionality, we have performed 3D full-wave simulations

by means of a �nite-element solver, using the numerical values of the parameters

(constituent permittivities, nanoparticles radius and volume �lling fraction, layers

thicknesses, etc.) considered so far. In Fig.4.7a we have plotted the resulting trans-

missivity T as a function of the vacuum wavelength λ and the angle φ. It is worth

noting that, even though the surface of Fig.4.7a does not strictly coincide with

that of Fig.4.5a, it is however evident that the actual structure is almost transpar-

ent and practically opaque for wavelengths λ smaller than 430nm and greater than
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Figure 4.6: Transmissivity T (f) for λ = 420 nm extracted from Fig.4.5a . In

the insets, the extraordinary waves hyperbolas of 4.3 are plotted in the two rele-

vant situations (A) φ = 20◦ and (B) φ = 80◦ (regarding the permittivities as real

quantities).

445nm, respectively. In addition, in the spectral range between 430 and 445nm the

transmissivity strongly depends on the angle φ and, at a given λ, T (φ) is a monoton-

ically increasing function of φ (see Fig.4.7b). As a consequence, even though the

spectral ranges are slightly di�erent from those predicted by the e�ective medium

approach, the sample behavior changes, for increasing radiation wavelengths, from

that of a dielectric uniaxial crystal to that of an anisotropic conductor with an in-

termediate spectral region where the medium is hyperbolic. In Fig.4.7b we have

plotted the transmissivity of the structure as a function of φ for three relevant wave-

lengths and the switching functionality is particularly evident. Moreover, since the

transmissivity spans the range between 0.02 and 0.4 for λ = 425 nm, we conclude

that the performance of the actual switching device is better than that predicted by

the e�ective medium theory (whose transmissivity range is between 0 and 0.15).

The discrepancies between the predictions of the homogenized e�ective medium

theory and those of the full-wave simulations are a consequence of the fact that,

for the chosen slab thickness L = 300 nm, the edge e�ect due to the nanoparticles
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close to the slab interface can not be strictly neglected. The derivation of the

Maxwell-Garnett mixing rule (whose anisotropic extension has been used in this

paper) is based on the evaluation of the polarizability of an isolated nanoparticle

experiencing an external �eld which is uniform within its volume. For particle

belonging to the mixture bulk, these requirements are ful�lled if the nanoparticle size

is much smaller than the wavelength and if the nanoparticles volume �lling fraction

is very small. However, for nanoparticles close to the sample interface the above

polarizability evaluation is wrong since it does not take into account the additional

�eld existing within the nanoparticle volume which is due to surface polarization

charges (i.e. to the discontinuity of the electromagnetic material properties at the

interface) [62]. Since the corrections to the permittivity scale as (r/z)3 (z being

the distance from the interface) the nanoparticles responsible for the edge e�ect are

those whose distance from the interface is smaller than 40 or 50nm (four or �ve times

the radius r = 10 nm), so that we conclude that roughly a fourth of the considered

slab volume can not be described through the Maxwell-Garnett approach.

4.4 Conclusions

We have proposed a novel way for synthesizing inde�nite media by dispersing

metal nanoparticle within a highly birefringent liquid crystal. In addition to its

simplicity and feasibility, the proposed mixture is also tunable since an externally

applied electric �eld is able to change the overall e�ective permittivity tensor. Tun-

ability of an inde�nite medium is a very important property since, as we have shown,

the ability of altering the orientation of the extraordinary wave hyperbola allows one

to literally choose whether the electromagnetic �eld within the medium (as due to

a give external excitation) has to be composed of propagating homogeneous or an

evanescent waves. We have exploited such a property characterizing tunable inde�-

nite media to design a nanometric thick optical switch and investigated its function-

ality both through the e�ective medium approach and through full wave simulations.

The e�ective medium approach has the su�cient simplicity to highlight the basic
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Figure 4.7: (a) Plot of the transmissivity of the device reported in Fig.4.1 (evalu-

ated using the e�ective medium model for the liquid crystal/nanoparticels mixture)

as a function of the vacuum wavelength of the incident radiation and the angle φ.

(b) Level plot of the transmissivity of panel (a) restricted to region II where the

e�ective medium has inde�nite permittivity.

physical mechanisms supporting the device functionality. On the other hand, full

wave simulations yield results which are slightly di�erent from those predicted by

the e�ective medium approach and the discrepancy are related to the very small

device thickness we decided to consider. However, from the point of view of the

device functionality, the results of the full wave simulations are even better than

those of the e�ective medium approach.



5
Subwavelength etalons

In this chapter, it is discussed the problem of restoring resonances in deep sub-

wavelength structures by resorting to inde�nite or hyperbolic metamaterials. If the

thickness of a plane-parallel plate of solid transparent material is much smaller than

the wavelength of operating external radiation, no standing wave is supported by

such etalon since resonances can occur if the thickness is equal to a multiple of half

wavelength of the incident plane wave. We suggest a genuinely novel and striking

mechanism for achieving the target of forcing a subwavelength system to resonate.

A subwavelength system can support standing waves and can hence resonate if

the medium exhibits a plane wave dispersion relation which is unbounded in the

wavevectors space. We prove that the hyperbolic dispersion of plane waves exhib-

ited by inde�nite media allows the vacuum radiation to couple with medium plane

waves with longitudinal wavenumbers large enough to yield standing waves within

the subwavelength slab thickness. Our �ndings can form the basis of a novel way

for shrinking optical devices down to the deep subwavelength scale and we discuss

some unusual and innovative applications of this system in the next chapter.

5.1 Fabry-Perot etalon

The Fabry-Perot etalon, or interferometer, can be considered as the best example

of an optical resonator. It consists of a plane-parallel plate of thickness L and

refractive index n that is immersed in a medium of index n′. Generally, an etalon

76
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Figure 5.1: a) Multiple-re�ection model for analyzing the Fabry-Perot etalon. b)

Path di�erence between successive re�ections inside the Fabry-Perot etalon, their

path di�erence ∆l is given by ∆l = AB + BC = L/ cosϑt + L cos(2ϑt)/ cosϑt =

2L cosϑt [63].

can be obtained by spacing two partially re�ecting mirrors at a distance L apart so

that n = n′ = 1. Another common form of etalon is produced by grinding two plane-

parallel (or curved) faces on a transparent solid and then evaporating a metallic or

dielectric layer (or layers) on the surfaces. The term etalon is often reserved for

a plane-parallel plate of solid transparent material with re�ecting surfaces on both

sides, while interferometers (or cavities) are reserved for structures that consist of

two parallel mirrors with an empty space in between.

Let a plane wave be incident on the lossless isotropic etalon at an angle ϑi to

the normal, as shown in Fig.5.1a . We can treat the problem of transmission (and

re�ection) of the plane wave through the etalon by considering the in�nite number

of partial waves produced by multiple re�ections at the two end surfaces. The phase

delay between two partial waves, which is attributable to one additional round trip,

is given, according to Fig.5.1b, by

δ =
2π

λ
2nL cosϑt ,

where λ is the vacuum wavelength of the incident wave and ϑt is the transmitted

angle (or internal angle of incidence). If the complex amplitude of the incident wave

is taken as Ai then the partial re�ection amplitudes, Ar1, Ar2, and so forth, are
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given by

Ar1 = rAi , Ar2 = tt′r′Aie
−iδ , Ar3 = tt′r′3Aie

−2iδ , . . .

where r is the amplitude re�ection coe�cient of the interface (ratio of re�ected to

incident amplitude), t is the amplitude transmission coe�cient for waves incident

from n′ toward n, and r′ and t′ are the corresponding quantities for waves traveling

from n toward n′. The complex amplitude of the (total) re�ected wave is Ar =

Ar1 + Ar2 + Ar3 + . . ., or

Ar =
[
r + tt′r′e−iδ

(
1 + r′2e−iδ + r′4e−2iδ + . . .

)]
Ai . (5.1)

For the transmitted wave, the amplitudes of the partial waves are

At1 = tt′Aie
iδ/2 , At2 = tt′r′2e−iδAie

iδ/2 , At3 = tt′r′4e−2iδAie
iδ/2 , . . .

where the phase factor e−iδ/2 corresponds to a single traversal of the plate and is

common to all terms. Adding up the Atj terms, we obtain

At = tt′
[
1 + r′2e−iδ + r′4e−2iδ + . . .

]
Aie

−iδ/2 , (5.2)

for the complex amplitude of the total transmitted wave. We notice that the terms

within the parentheses in (5.1) and in (5.2) form an in�nite geometric series; adding

them, we get

Ar =
r − rr′2e−iδ + tt′r′e−iδ

1− r′2e−iδ
Ai , At =

tt′e−iδ/2

1− r′2e−iδ
Ai .

Using the fact that r′ = −r for the dielectric interface, the conservation-of-energy

r2 + tt′ = R + T = 1 we arrive to

Ar =

(
1− e−iδ

)√
R

1−Re−iδ
Ai , At =

Te−iδ/2

1−Re−iδ
Ai , (5.3)

with R and T are, respectively, the fraction of the intensity re�ected and transmitted

at each interface and will be referred to in the following discussion as the etalon's

re�ectance and transmittance.
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If the incident intensity is taken as AiA
∗
i , we obtain from (5.3) the following

expression for the fraction of the incident intensity that is re�ected by the etalon

Re =
Ir
Ii

=
ArA

∗
r

AiA∗i
=

2R (1− cos δ)

1− 2R cos δ +R2
=

4R sin2 (δ/2)

(1−R)2 + 4R sin2 (δ/2)

and for the transmitted fraction

Te =
It
Ii

=
AtA

∗
t

AiA∗i
=

T 2

(1−R)2 + 4R sin2 (δ/2)
=

(1−R)2

(1−R)2 + 4R sin2 (δ/2)
,

which, by de�ning as F = 4R/(1−R)2, becomes

Te =
1

1 + F sin2 (δ/2)
. (5.4)

According to (5.4) the transmission is unity whenever δ = 2mπ with m any integer.

δ =
2π

λ
2nL cosϑt = 2mπ ⇒ λm = 2L

√
n2 − n′2 sin2 ϑi

m
,

for a �xed L and ϑi the above equation de�nes the unitary transmission (resonance)

wavelength of the etalon. From an other point of view, for a �xed n, n′ and incidence

angle ϑi the etalon's standing waves occurs if the etalon's thickness L is equal to a

multiple of half wavelength of the incident plane wave

L =
m√

n2 − n′2 sin2 ϑi

λ

2
. (5.5)

The expression for etalon's transmittance (5.4), know as Airy expression, holds if

the considered materials (n and n′) are isotropic and no loss mechanisms are present;

otherwise the correct expression is (A.11) for TE impinging plane wave and (A.13)

for a TM one.

5.2 Optical resonances restoring

We analyze the existence of the etalon's standing waves for a TE and a TM �eld

geometry on a plane-parallel plate of transparent lossless uniaxial material (ε =

diag [εx, εx, εz], absorption can be neglected and the permittivities are real) when

the resonator's thickness is standard (L is generally much larger than the wavelength
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Figure 5.2: TE plane wave on a lossless uniaxial material with n2
y = εy = 1.6 in

a standard case λ/L = 0.25: a) Ordinary dispersion relation (blue curve) k2
x/εy +

k2
z/εy = k2

0 with the wave vectors kz/k0 = mλ/(2L) (vertical red lines) and relative

intersections (circles) corresponding to the available slab standing waves. b) Contour

of etalon's transmittance, black dashed curves are the unitary level curves which

intersect the horizontal line λ/L = 0.25 whenever the resonance condition is satis�ed

and the red circles identify the corresponding incident angle for the external TE wave.

of the interacting radiation, standard case λ � L) and when it is subwavelength

(subwavelength case λ � L). For each condition we consider, where possible, the

hyperbolic (permittivities with opposite sign) and near-zero (permittivities with

amplitude smaller than one) cases.

Fig.5.2a shows the ordinary dispersion relation (blue curve) for an impinging

TE plane wave with wave vector in xz plane (k2
x/εy + k2

z/εy = k2
0) on a lossless

uniaxial material with real positive and larger than one permittivity (εy = 1.6) in a

standard case (λ/L � 1). In the etalon's transmittance (5.4) for a TE plane wave

we have

F =
1

4

(
NTE −

1

NTE

)2

,
δ

2
= kzL ,

NTE =
k0 cosϑi
kz

, kz = k0

√
εy − sin2 ϑi

and it is unit whenever the normalized wave vector kz/k0 = mλ/(2L) (depicted

in Fig.5.2a through red vertical lines for a �xed ratio of λ/L = 0.25). The mu-

tual intersections between vertical lines and ordinary wave dispersion correspond to

available slab standing wave (circles). If the resonance condition kz/k0 = mλ/(2L)
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Figure 5.3: TE plane wave on a lossless uniaxial material with n2
y = εy = 1.6

in a subwavelength case λ/L = 3: a) Ordinary dispersion relation (blue curve)

k2
x/εy + k2

z/εy = k2
0 with the wave vectors kz/k0 = mλ/(2L) (vertical red lines);

since there are not intersections (circles), vacuum radiation does not couple with

slab standing waves. b) Contour of etalon's transmittance, the unitary level curves

(black dashed curves) do not intersect the horizontal line λ/L = 3 and the resonance

condition is not satis�ed for any incident angle.

holds, the impinging wave couples to one of the slab standing waves and this occurs

for the incident angles

ϑ
(m)
i = arcsin

√
εy −

(
m
λ

2L

)2

.

They correspond to the intersections of the unitary transmittance contour (black

dashed curves) with the considered value of ratio λ/L (horizontal line) and they are

emphasized in Fig.5.2b by red circles. Analyzing the same situation in a subwave-

length case (Fig.5.3 λ/L = 3), it is evident that the 4 di�erent resonance incident

angles (corresponding to m = [7, 10]), picked out in standard case, don't exist and

any standing wave is supported by this kind of etalon, because the �rst resonant

wave vector kz is out of the allowed range (
√
εy − 1 < kz/k0 <

√
εy).

Fig.5.4a shows the extraordinary dispersion relation (blue curve) for an imping-

ing TM plane wave with wave vector in xz plane (k2
x/εz + k2

z/εx = k2
0) on a lossless

uniaxial material with real positive and larger than one permittivity (εx = 1.6 and

εz = 1.3) in a standard case. In the etalon's transmittance (5.4) for a TM plane
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Figure 5.4: TM plane wave on a lossless uniaxial material with n2
x = εx = 1.6 and

n2
z = εz = 1.3 in a standard case λ/L = 0.25: a) Extraordinary dispersion relation

(blue curve) k2
x/εz+k2

z/εx = k2
0 with the wave vectors kz/k0 = mλ/(2L) (vertical red

lines) and relative intersections (circles) corresponding to the available slab standing

waves. b) Contour of etalon's transmittance, black dashed curves are the unitary

level curves which intersect the horizontal line λ/L = 0.25 whenever the resonance

condition is satis�ed and the red circles identify the corresponding incident angle for

the external TM wave.

wave we have

F =
1

4

(
NTM −

1

NTM

)2

,
δ

2
= kzL ,

NTM =
εxk0 cosϑi

kz
, kz = k0

√
εx

(
1− sin2 ϑi

εz

)
and we have coupling between an external plane wave and slab standing waves if the

integer m is such that
√
εx(εz − 1)/εz < kz/k0 <

√
εx. For the considered permit-

tivities and λ/L, there exist 6 incident angles which satisfy the resonance condition

(m = [5, 10]). The extraordinary waves experience the e�ects of the anisotropic

behavior of the material and of its possible hyperbolic nature. Fig.5.5 and Fig.5.6

report the considered scenario if one permittivity of the etalon's dielectric tensor is

negative. If εx < 0 and εz > 0 the dispersion curve is an hyperbola with vertices

on kx axis and for permittivities with module larger than one any resonance is sup-

ported by etalon (Fig.5.5). Instead, if εx > 0 and εz < 0 the dispersion curve is

an hyperbola with vertices on kz axis and a range of kz allowing resonance exists

(
√
εx < kz/k0 <

√
εx(1 + |εz|)/|εz|, Fig.5.6).
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Figure 5.5: TM plane wave within a lossless uniaxial material with εx = −1.6 and

n2
z = εz = 1.3 in a standard case λ/L = 0.25: a) Extraordinary hyperbolic dispersion

relation (blue curve) k2
x/εz − k2

z/|εx| = k2
0 with the wave vectors kz/k0 = mλ/(2L)

(vertical red lines); since there are not intersections (circles), vacuum radiation does

not couple with slab standing waves. b) Contour of etalon's transmittance, the

unitary level curves (black dashed curves) do not intersect the horizontal line λ/L =

0.25 and the resonance condition is not satis�ed for any incident angle.
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Figure 5.6: TM plane wave within a lossless uniaxial material with n2
x = εx = 1.6

and εz = −1.3 in a standard case λ/L = 0.25: a) Extraordinary hyperbolic dispersion

relation (blue curve) −k2
x/|εz|+ k2

z/εx = k2
0 with the wave vectors kz/k0 = mλ/(2L)

(vertical red lines) and relative intersections (circles) corresponding to the available

slab standing waves. b) Contour of etalon's transmittance, black dashed curves are

the unitary level curves which intersect the horizontal line λ/L = 0.25 whenever the

resonance condition is satis�ed and the red circles identify the corresponding incident

angle for the external TM wave.
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Figure 5.7: TM plane wave on a lossless uniaxial material with n2
x = εx = 1.6 and

n2
z = εz = 1.3 in a subwavelenght case λ/L = 3: a) Extraordinary hyperbolic disper-

sion relation (blue curve) k2
x/εz+k2

z/εx = k2
0 with the wave vectors kz/k0 = mλ/(2L)

(vertical red lines); since there are not intersections (circles), vacuum radiation does

not couple with slab standing waves. b) Contour of etalon's transmittance, the uni-

tary level curves (black dashed curves) do not intersect the horizontal line λ/L = 3

and the resonance condition is not satis�ed for any incident angle.

As for TE waves, if etalon's L dimension is lower than the vacuum radiation

wavelength, also for TM waves resonances are forbidden, since the etalon's standing

waves occurs if the etalon's thickness L is equal to a multiple of half wavelength

of incident plane wave (5.5). In particular, if the permittivities εx and εz are both

positive (Fig.5.7)

m
λ

2

1
√
εx

< L < m
λ

2

√
εz

εx(εz − 1)
,

if εz < 0 (Fig.5.9)

m
λ

2

√
|εz|

εx(|εz|+ 1)
< L < m

λ

2

1
√
εx
,

while if εx < 0 the hyperbolic dispersion curve is always out of the range allowed

by conservation of kx (Fig.5.8) and this bounds for L are hardly compatible with

the subwavelength condition. Nevertheless, observing the shape of TM hyperbolic

dispersion curves (Fig.5.8 and Fig.5.9) it is possible to exploit their unboundedness

to restore etalon resonances.

In order for the hyperbolic extraordinary dispersion curves to belong to the

wavevector region where the transverse momentum conservation is possible, the
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Figure 5.8: TM plane wave on a lossless uniaxial material with εx = −1.6 and n2
z =

εz = 1.3 in a subwavelenght case λ/L = 3: a) Extraordinary hyperbolic dispersion

relation (blue curve) k2
x/εz − k2

z/|εx| = k2
0 with the wave vectors kz/k0 = mλ/(2L)

(vertical red lines); since there are not intersections (circles), vacuum radiation does

not couple with slab standing waves. b) Contour of etalon's transmittance, the

unitary level curves (black dashed curves) do not intersect the horizontal line λ/L = 3

and the resonance condition is not satis�ed for any incident angle.
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Figure 5.9: TM plane wave on a lossless uniaxial material with n2
x = εx = 1.6 and

εz = −1.3 in a subwavelenght case λ/L = 3: a) Extraordinary hyperbolic dispersion

relation (blue curve) −k2
x/|εz|+ k2

z/εx = k2
0 with the wave vectors kz/k0 = mλ/(2L)

(vertical red lines); there is only one intersection (circles) corresponding to m = 1.

b) Contour of etalon's transmittance, the unitary level curves (black dashed curves)

intersect the horizontal line λ/L = 3 only one time and the resonance condition is

satis�ed for one incident angle.
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etalon material permittivities are required to have amplitudes smaller than one.

Accordingly, either one can move the vertex of the hyperbola k2
x/εz − k2

z/|εx| = k2
0

closer to the origin and increase its aperture (Fig.5.8a) or it is possible to reduce the

angular aperture of the hyperbola −k2
x/|εz|+ k2

z/εx = k2
0 (Fig.5.9a). In Fig.5.10a

and Fig.5.10b it is shown an example of restoring resonances in subwavelength

structures by resorting hyperbolic metamaterials with |εx| = 0.9 and |εz| = 0.01.

The unbounded hyperbolic dispersion of extraordinary plane waves exhibited by

such inde�nite media allows the vacuum radiation to couple with medium plane

waves with longitudinal wavenumbers large enough to yield standing waves within

the subwavelength etalon.

5.3 Conclusions

Resonance restoring in subwavelength etalons occurs for hyperbolic media with

|εx| < 1 and |εz| < 1 since, as reported in Fig.5.10, the unbounded hyperbolas

have an angular aperture so large or so small to intersect a number of horizontal

lines within the white stripe kx/k0 < 1, thus yielding a number of standing waves

which can be actually excited through the plane wave impinging from vacuum.

In summary, a subwavelength thick slab exhibits etalon resonances with associated

narrow angular transmittance peaks only if the principal permittivities have di�erent

signs and have amplitude smaller than one.
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Figure 5.10: TM plane wave on a lossless uniaxial hyperbolic material in a

subwavelenght case λ/L = 3 with permittivities of amplitude smaller than one

(|εx| = 0.9 and |εz| = 0.01). Extraordinary hyperbolic dispersion relation (blue

curve) k2
x/εz−k2

z/|εx| = k2
0 (a) and −k2

x/|εz|+k2
z/εx = k2

0 (b) with the wave vectors

kz/k0 = mλ/(2L) (vertical red lines) and relative intersections (circles) correspond-

ing to the available slab standing waves. c) and d) contour of etalon's transmittance,

the unitary level curves (black dashed curves) intersect the horizontal line λ/L = 3

whenever the resonance condition is satis�ed and the red circles identify the cor-

responding incident angle for the external TM wave. e) and f) are transmittance

pro�les as function of incident angle when λ/L = 3.



6
E�cient second harmonic generation

Optical properties of many materials depend on the direction of propagation,

on the polarization state and on the intensity of electromagnetic radiation. Optical

anisotropic nonlinear materials can exhibit several optical phenomena, including

double refraction, polarization e�ects and electro-optical e�ects. In particular in

this chapter we are concerned on a nonlinear optical process, in which photons

interacting with a nonlinear material are combined to form new photons with half

the wavelength of the initial ones: the second harmonic generation process.

We theoretically predict e�cient optical second harmonic generation from a

nanometer thick slab consisting of a quadratic nonlinear anisotropic medium whose

linear principal permittivities have, at the fundamental wavelength, real parts of

di�erent signs (inde�nite permittivity) and magnitude smaller than one. We show

that, by illuminating the slab with a p-polarized fundamental wave (with intensity

of a few MW/cm2), highly e�cient scattering of the second harmonic �eld occurs in

conditions at which the slab is linearly fully transparent for the fundamental wave,

i.e. when the impinging wave couples to one of the slab standing waves (respon-

sible for the etalon resonances, as we have discussed in above chapter). The high

e�ciency of the second harmonic generation process stems from the enhancement

of the longitudinal �eld, perpendicular to the slab surface, produced by the very

small value of the slab dielectric permittivities. We investigate the role played by

medium losses showing that, even in the strong absorption regime, the described

process yields a second-harmonic �eld which is much stronger than that produced

88
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by a standard (not inde�nite) nonlinear slab.

6.1 Introduction

Enhancing optical second harmonic generation [64, 65] is at present one of the

most relevant task of nonlinear optics due to the major role played by frequency-

doubling in coherent green and blue light sources design [66], chemistry [67], biosens-

ing [68], etc. In situations where standard phase-matching (�Appendix A) techniques

cannot be used, e�cient second harmonic generation is generally achieved by re-

sorting to speci�c con�gurations providing a strong �eld enhancement such as, for

example, resonant micro-cavities [69, 70, 71] or photonic crystals [72, 73, 74, 75].

Conceiving subwavelength coherent light sources is a fundamental issue of modern

nanophotonics [76, 77] so that achieving second harmonic generation from nanostruc-

tures is an important target. At the nanometer length scale, the small interaction

distances generally entail an highly ine�cient second harmonic generation so that

peculiar mechanisms for locally enhancing the electromagnetic �eld of the funda-

mental wave have to be harnessed. As an example, the plasmonic �eld enhancement

occurring in vicinity of the subwavelength apertures in a metallic �lm is responsible

for an e�cient second harmonic generation [78, 79, 80, 81] when the holes are �lled

by a quadratic nonlinear material. Another strong plasmonic �eld enhancement oc-

curs within spherical nanocavities with dielectric core and plasmonic nanoshell [82]

so that, if the core is �lled with a noncentrosymmetric nonlinear medium, a lager

enhancement of the second harmonic generation is observed [83].

In this chapter we theoretically show that a micrometer-thick slab consisting of

a quadratic nonlinear medium whose linear permittivities are very small and have

di�erent signs is able to provide highly e�cient second harmonic generation. The

properties and applications of ε-near-zero materials have recently been discussed

both in the linear [54, 55, 84, 85, 86] and in the nonlinear [9, 87, 88, 89, 90] regimes,

and inde�nite materials [13, 40, 41, 47, 91] have attracted a good deal of attention as

well. Here we point out that the small values of the dielectric permittivity produce a
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strong enhancement of the longitudinal �eld perpendicular to the slab surface. The

�eld enhancement is simply a consequence of the fact that when the slab is fully

transparent for the fundamental wave there is obviously no re�ected wave so that

the vacuum �eld coincides with that of the incident fundamental wave. Therefore,

at the vacuum-slab interface, the normal component of the fundamental �eld within

the slab coincides with the normal component of the incident �eld divided by the

very small dielectric permittivity, as a consequence of one of the �eld-matching

conditions. Such a strong longitudinal �eld in turn produces a strong enhancement

of the second-harmonic polarization source and leads to the possibility of observing a

very e�cient second harmonic generation process, for impinging optical intensities of

a few MW/cm2, even in a slab whose thickness is comparable with the fundamental

wavelength.

Since the whole mechanism supporting the second harmonic generation process

considered in the present chapter is based on the fact that the permittivities have

magnitudes smaller than 1, it is evident that medium losses play a major role on

the discussed phenomenology. Consequently, we have investigated both the lin-

ear slab behavior and the second harmonic generation process in three di�erent

regimes: the ideal lossless regime (real permittivities), the weak-absorption regime

(imaginary parts of the permittivities much smaller than the real parts), and the

strong-absorption regime (imaginary parts of the permittivities comparable with the

real parts). We have shown that, even though absorption has a strong detrimental

e�ect on the second harmonic generation process, in the weak- and strong-absorption

regimes, second harmonic generation e�ciencies are still considerable and de�nitely

much larger that those pertaining to second harmonic generation from a standard

(not inde�nite) quadratic nonlinear slab. This is a remarkable result since we addi-

tionally prove that, by considering suitably designed mixtures of liquid crystals and

metal nanoparticles, the weak-absorbtion regime can be achieved by adding active

components (dye molecules) to the mixture whereas, most importantly, the feasibil-

ity of the strong-absorption regime does not demand the use of gain constituents.
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6.2 Linear slab resonances and �eld enhance-

ment

The geometry of the considered second harmonic generation setup is sketched in

Fig.6.1, the fundamental and second harmonic quantities being labeled hereafter

with the superscripts (1) and (2). The fundamental and second harmonic wave-

lengths are λ(1) and λ(2) = λ(1)/2. The slab of thickness L is a uniaxially anisotropic

medium with relative dielectric tensor ε = diag
[
ε

(1)
o , ε

(1)
o , ε

(1)
e

]
(i.e., with the optical

axis along the z direction) whose ordinary and extraordinary permittivities, ε
(1)
o and

ε
(1)
e , respectively, have real parts of di�erent signs (inde�nite or hyperbolic medium)

and magnitude smaller than 1. In addition we chose the slab to exhibit a quadratic

nonlinear optical response characterized by the d matrix (see Ref. [92])

d =


0 0 0 0 0 0

0 δ ∆ 0 0 0

0 0 0 ∆ 0 0

 (6.1)

since the symmetry properties of such nonlinearity are compatible with the elec-

tromagnetic structure of the fundamental wave and second-harmonic wave we are

interested in and, remarkably, since they are directly shown by the nanocomposite

discussed later1. The slab is illuminated by a plane fundamental wave with incidence

angle ϑ and with its electric �eld polarized in the plane of incidence (p-polarization)

so that the re�ected (r) and transmitted (t) plane fundamental waves are p-polarized

as well. The slab also scatters re�ected and transmitted second harmonic plane

waves whose electric �elds are polarized perpendicular to the plane of incidence (s-

polarization), as a consequence of the chosen anisotropic quadratic nonlinearity (see

Fig.6.1 for the de�nitions of the �eld amplitudes and wave vectors).

1Note that, for the sake of simplicity, we regard the matrix d of (6.1) to be independent of the

frequency since in this paper, apart from the ideal lossless case, we mainly deal with the undepleted

pump regime, where only the nonlinear matrix d at the second harmonic frequency plays a role.

However, it should be noted that our method and numerical analysis can easily be extended to

encompass nonlinear dispersion.
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Figure 6.1: Slab and �elds geometry for the second harmonic generation process.

6.2.1 Linear slab behavior in the lossless regime

As a prelude to the analysis of the second harmonic process, it is worth discussing

the linear slab behavior observable when the optical intensity of the incident fun-

damental wave is very small. For the purpose of theoretically discussing the basic

phenomenology and its underlying mechanism, we consider here an ideal situation

where absorption is negligible and we choose ε
(1)
o = 0.29 and ε

(1)
e = −0.03, and

λ(1) = 500 nm. Subsequently, the role played by absorption will be discussed as the

imaginary parts of the permittivities are gradually increased, thus approaching more

realistic situations. Since the ordinary waves of the slab with wave vectors in the xz

plane are polarized along the y axis, in the considered interaction con�guration only

extraordinary plane waves are excited, with wave vectors k(1) = k
(1)
x ex+k

(1)
z ez satis-

fying the dispersion relation [k
(1)
x ]2/ε

(1)
e + [k

(1)
z ]2/ε

(1)
o = [k(1)]2, where k(1) = 2π/λ(1).

By enforcing transverse-momentum conservation across the slab interfaces, i.e.,

k
(1)
x = k(1) sinϑ, we readily obtain k

(1)
z = k(1)

√
ε

(1)
o

[
1− sin2 ϑ/ε

(1)
e

]
(A.12).

The slab transmittance T = |E(1)
t |2/|E

(1)
i |2 (where E

(1)
t and E

(1)
i are the complex

electric amplitude of transmitted and incident waves, respectively; see Fig.6.1) is

easily evaluated by adopting the same procedure used to deal with the standard

Fabry-Perot etalon (Chapter 4), where the extraordinary-plane-wave dispersion is
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used instead of its isotropic counterpart, and the result is (A.13)

T =
1∣∣∣cos(k

(1)
z L)− iF sin(k

(1)
z L)

∣∣∣2 (6.2)

where

F =
1

2

(
k(1)ε

(1)
o cosϑ

k
(1)
z

+
k

(1)
z

k(1)ε
(1)
o cosϑ

)
In Fig.6.2a we plot the transmittance T of (6.2) as a function of both the

incidence angle ϑ and the slab thickness L in the range 0 < L < 500 nm = λ(1). From

the plots we note that the slab is mostly opaque to the considered radiation (T � 1)

except around very speci�c incidence angles (dependent on the slab thickness) at

which it is completely transparent. From (6.2) it is evident that the slab is fully

transparent (T = 1) if k
(1)
z L = mπ and the ensuing curves of complete transparency

are reported as dashed lines along the top plane of Fig.6.2a . From a physical point

of view, full slab transparency occurs when the impinging wave couples to one of

the slab standing waves (responsible for the etalon resonances) and, as discussed

in Chapter 4, such standing waves exist even within a subwavelength-thick slab

since the medium is hyperbolic (inde�nite) with permittivities of moduli smaller

than 1. Note that if k
(1)
z L is slightly di�erent from mπ, the denominator in (6.2) is

dominated by the term containing F (since |F | ≈ |ε(1)
o |−1 � 1) so that the overall

transmissivity turns out to be proportional to |ε(1)
o |, thus explaining the sharpness

of the ridges of T (see Fig.6.2a) located at the curves of complete transparency.

In Fig.6.2b we plot the longitudinal �eld enhancement factor

Γ =
|ez ·E(1)(0+)|
|ez ·E(1)

i |
,

de�ned as the ratio between the modulus of the �eld perpendicular to the slab within

the medium just across the interface z = 0 (see Fig.6.1) and the modulus of the

longitudinal �eld of the sole incident fundamental wave. Note that, corresponding

to the curves of complete slab transparency, the �eld enhancement factor reaches

its maximum value Γ = 33.33 = 1/|ε(1)
e |. This is easily understood from one of the

�eld-matching conditions at the interface z = 0 (continuity of the normal component
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Figure 6.2: Linear slab transmissivity T (a) and longitudinal �eld enhancement

factor Γ (b) for ideal situation of lossless propagation ε
(1)
o = 0.29 and ε

(1)
e = −0.03.

The dashed lines along the top planes in (a) and (b) represent the full transparency

curves of the linear slab, k
(1)
z L = mπ, for various m.

of the electric displacement �eld, i.e., ez · (E(1)
i + E(1)

r ) = ε
(1)
e

[
ez ·E(1)(0+)

]
) since

when T = 1 no re�ected wave is generated (i.e., E(1)
r = 0), so that

ez ·E(1)(0+) =
1

ε
(1)
e

ez ·E(1)
i .

We conclude that the considered slab provides a powerful mechanism for attaining

a strong enhancement (amounting to 1/|ε(1)
e | � 1) of the longitudinal �eld.

6.2.2 Linear slab behavior in the weak-absorption regime

The occurrence of the slab resonances described above (with ensuing full slab

transparency and longitudinal �eld enhancement) is inherently a coherent phe-

nomenon so that it is worth discussing here the e�ect of the unavoidable medium

losses which generally play a very important (and usually detrimental) role when the

permittivity amplitudes are smaller than 1. In order to discuss more realistic situa-

tions than the ideal one reported in Fig.6.2a and Fig.6.2b (where the imaginary

parts of the permittivities exactly vanish), we here consider a slab �lled by a medium

with permittivities ε
(1)
o = 0.29+0.001i and ε

(1)
e = −0.03+0.001i (at λ(1) = 500 nm),

for which the slab transmittance T and the �eld enhancement factor Γ are reported

in Fig.6.3a and Fig.6.3b, respectively. Comparing Fig.6.2a and Fig.6.2b with
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Figure 6.3: Linear slab transmissivity T (a) and longitudinal �eld enhancement

factor Γ (b) for weak-absorption regime ε
(1)
o = 0.29+0.001i and ε

(1)
e = −0.03+0.001i.

Fig.6.3a and Fig.6.3b, we note that the overall electromagnetic phenomenology is

unaltered since both T and Γ exhibit sharp peaks, the most striking di�erence being

the global decrease of the peak heights and their dependence on both ϑ and L. This

happens since the imaginary parts of the permittivities are considerably smaller then

the real parts (weak-absorption regime), so that the coherent mechanism supporting

etalon resonances discussed above is not fully ruled out by absorption. Speci�cally,

the included weak absorption prevents slab re�ection from exactly vanishing since

it forbids fully coherent compensation between forward and backward waves trav-

eling within the slab (they exhibit evanescent tails). As a consequence, the slab is

never fully transparent (T 6= 1) and the enhancement factor is never strictly equal

to 1/|ε(1)
e |. This is an interesting situation since the main features of the coherent

phenomenology are not lost and, as will be proved, a nanocomposite exhibiting the

required dielectric tensor can be designed by resorting to gain media for achieving

partial loss compensation.

6.2.3 Linear slab behavior in the strong-absorption regime

In order to further investigate the role played by absorption, we now consider

a slab �lled by a medium with permittivities ε
(1)
o = 0.29 + 0.015i and ε

(1)
e =

−0.03 + 0.015i (at λ(1) = 500 nm) for which the slab transmittance T and the
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Figure 6.4: Linear slab transmissivity T (a) and longitudinal �eld enhancement

factor Γ (b) for strong-absorption regime ε
(1)
o = 0.29 + 0.015i and ε

(1)
e = −0.03 +

0.015i.

�eld enhancement factor Γ are reported in Fig.6.4a and Fig.6.4b, respectively. It

is evident that the etalon resonances are almost totally ruled out by absorption, and

the �eld enhancement factor also does not show pronounced peaks. This is a conse-

quence of the fact that, in this situation, the imaginary parts of the permittivities

are comparable with the real parts (strong-absorption regime) so that evanescently

fading counterpropagating waves within the slab are not able to set up the coherent

mechanism producing etalon resonances described above. However, from Fig.6.4b

it is evident that a reduced enhancement of the longitudinal �eld survives in the

strong-absorption regime, and this is important since, as we will show, a nanocom-

posite medium exhibiting the required dielectric tensor can be designed even without

the use of gain media.

6.3 Second harmonic generation process

In order to discuss the second harmonic generation process we consider the

Maxwell's curl equations in a dielectric non-magnetic homogeneous anisotropic non-
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linear medium 
∇×E = −µ0

∂H

∂t

∇×H =
∂D

∂t
+
∂PNL

∂t

(6.3)

where the electric displacement D is related to linear electric polarization by con-

stitutive relation through electric susceptibility linear tensor χ(1) or dielectric per-

mittivity tensor ε

D = ε0E + P L = ε0(1 + χ(1))E = ε0εE

and PNL is the nonlinear electric polarization. We write the electric and magnetic

�elds as superposition of higher harmonics
E(r, t) =

1

2

∞∑
n=−∞

E(n)(r)e−inωt

H(r, t) =
1

2

∞∑
n=−∞

H(n)(r)e−inωt

where E(−n) = E(n)∗ and H(−n) = H(n)∗. Using this de�nitions, for the quantities

related to the linear polarization we have

D(r, t) = ε0E(r, t) + P L(r, t) =
1

2
ε0

∞∑
n=−∞

[
ε

(n)
ij E

(n)
j (r)ei

]
e−inωt ,

where ε
(n)
ij is the ij-th element of the dielectric permittivity tensor at frequency nω,

and considering a quadratic nonlinearity we get

PNL(r, t) = ε0χ
(2)
ijkEj(r, t)Ek(r, t)ei =

= ε0χ
(2)
ijk

∞∑
n=−∞

∞∑
m=−∞

Ej(r)(n)Ek(r)(m)e−i(m+n)ωtei =

=
1

2

∞∑
n=−∞

[
1

2
ε0χ

(2)
ijk

∞∑
m=−∞

Ej(r)(n−m)Ek(r)(m)

]
e−inωtei .

Therefore, Maxwell's equations (6.3) for each harmonic are
∇×E(n)(r) = inωµ0H

(n)(r)

∇×H(n)(r) = −inωε0

[
ε

(n)
ij Ej(r)(n) +

1

2
χ

(2)
ijk

∞∑
m=−∞

Ej(r)(n−m)Ek(r)(m)

]
ei
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Substituting χ
(2)
ijk/2 with the elements of quadratic nonlinear d matrix (dijk), consid-

ering the optical principal axes as the reference frame (ε
(1)
ij = ε

(1)
i δij and ε

(2)
ij = ε

(2)
i δij)

and limiting our argument to the fundamental frequency and to the second harmonic,

the equations are
∇×E(1)(r) = inωµ0H

(1)(r)

∇×H(1)(r) = −iωε0

{
ε

(1)
i Ei(r)(1) + . . .

. . .+ dijk
[
Ej(r)(1)∗Ek(r)(2) + Ej(r)(2)Ek(r)(1)∗]} ei

for the �rst one∇×E(2)(r) = inωµ0H
(2)(r)

∇×H(2)(r) = −i2ωε0

{
ε

(2)
i Ei(r)(2) + dijk

[
Ej(r)(1)Ek(r)(1)

]}
ei

for the second.

We note that the incident p-polarized fundamental wave (see Fig.6.1) couples,

within the slab, with the transverse magnetic (TM) fundamental �eldE(1) = eik
(1)x sinϑ

[
E

(1)
x (z)ex + E

(1)
z (z)ez

]
H(1) = eik

(1)x sinϑ
[
H

(1)
y (z)ey

] (6.4)

which in turn, as a consequence of the quadratic nonlinear response characterized by

the d matrix of (6.1), produces the transverse electric (TE) second-harmonic �eldE(2) = ei2k
(1)x sinϑ

[
E

(2)
y (z)ey

]
H(2) = ei2k

(1)x sinϑ
[
H

(2)
x (z)ex +H

(2)
z (z)ez

] (6.5)

where we have assumed e−iωt and e−i2ωt as time factors for the fundamental wave

and the second harmonic wave �elds, respectively (ω = ck(1)). This happens since

the electric displacement �elds within the slab, in the presence of the �elds of (6.4)

(neglecting the generation of higher harmonics), are

D(1) = eik
(1)x sinϑε0

[
ε(1)
o E(1)

x ex +
(
ε(1)
e E(1)

z + 2∆E(1)∗
z E(2)

y

)
ez
]
,

D(2) = ei2k
(1)x sinϑε0

[
ε(2)
o E(2)

y + ∆E(1)2
z

]
ey ,
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which are compatible with the structure of TE second harmonic �eld (6.5). The

second-harmonic TE �eld within the slab matches the s-polarized re�ected and

transmitted plane second harmonic waves (see Fig.6.1) which are consequently

scattered by the slab as a consequence of its illumination by the plane fundamental

wave.

The coupled sets of Maxwell's equations for the fundamental wave and the second

harmonic one yield

dE
(1)
x

dz
= i
[
k(1) sinϑE(1)

z + ωµ0H
(1)
y

]
dH

(1)
y

dz
= iωε0ε

(1)
o E(1)

x

k(1) sinϑH(1)
y + ωε0

[
ε(1)
e E(1)

z + 2∆E(1)∗
z E(2)

y

]
= 0

dE
(2)
y

dz
= −2iωµ0H

(2)
x

dH
(2)
x

dz
= 2ik(1) sinϑH(2)

z − 2iωε0

[
ε(2)
o E(2)

y + ∆E(1)2
z

]
k(1) sinϑE(2)

y − ωµ0H
(2)
z = 0

(6.6)

which is a system of ordinary di�erential equations for the z dependent amplitudes

of the �elds of (6.4) and (6.5).

De�ning dimensionless quantities
E(1)
x (x, z) =

1

2∆
eiξ sinϑA(1)

x (ζ)

H(1)
y (x, z) =

1

2∆

√
ε0

µ0

eiξ sinϑA(1)
y (ζ)

E(1)
z (x, z) =

1

2∆
eiξ sinϑA(1)

z (ζ)



H(2)
x (x, z) =

1

2∆

√
ε0

µ0

e2iξ sinϑA(2)
x (ζ)

E(2)
y (x, z) =

1

2∆
e2iξ sinϑA(2)

y (ζ)

H(2)
z (x, z) =

1

2∆

√
ε0

µ0

e2iξ sinϑA(2)
z (ζ)

where ξ = (ω/c)x = k(1)x, ζ = (ω/c)z = k(1)z and Λ = (ω/c)L = k(1)L, the
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dimensionless equations (6.6)

dA
(1)
x

dζ
= i
[
A(1)
y + sinϑA(1)

z

]
dA

(1)
y

dζ
= iε(1)

o A(1)
x

sinϑA(1)
y + ε(1)

e A(1)
z + A(1)∗

z A(2)
y = 0

dA
(2)
y

dζ
= −2iA(2)

x

dA
(2)
x

dζ
= −2i

[
ε(2)
o A(2)

y − sinϑA(2)
z +

1

2
A(1)2
z

]
sinϑA(2)

y − A(2)
z = 0

(6.7)

In order to describe the scattering of second harmonic �elds discussed above, this

system has to be supplied with the standard electromagnetic matching conditions

at ζ = 0 and ζ = Λ (continuity of the electric and magnetic tangential �eld compo-

nents) with the additional requirement that the amplitude of the second harmonic

wave impinging from vacuum (for ζ < 0) vanishes. Outside the slab ζ < 0 and

ζ > Λ, the �elds can be written as

ζ < 0




A

(1)
x

A
(1)
y

A
(1)
z

 = eiζ cosϑ


cosϑ

1

− sinϑ

Q
(1)
I + e−iζ cosϑ


cosϑ

−1

sinϑ

Q
(1)
R


A

(2)
x

A
(2)
y

A
(2)
z

 = e−2iζ cosϑ


cosϑ

1

sinϑ

Q
(2)
R

where Q
(1)
I and Q

(1)
R are the incident and re�ected dimensionless amplitude of funda-

mental wave and Q
(2)
R is the backward-scattered adimentional amplitude of second
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harmonic wave (Q
(2)
I = 0, the sole incident �eld is the fundamental harmonic),

ζ > Λ




A

(1)
x

A
(1)
y

A
(1)
z

 = eiζ cosϑ


cosϑ

1

− sinϑ

Q
(1)
T


A

(2)
x

A
(2)
y

A
(2)
z

 = e2iζ cosϑ


− cosϑ

1

sinϑ

Q
(2)
T

where Q
(1)
T is the transmitted dimensionless amplitude of fundamental wave and

Q
(2)
T is the forward-scattered dimensionless amplitude of second harmonic wave.

The �eld-matching conditions at the slab's edges are

A
(1)
x (0) = cosϑ

[
Q

(1)
I +Q

(1)
R

]
A

(1)
y (0) = Q

(1)
I −Q

(1)
R

A
(1)
x (Λ) = cosϑeiΛ cosϑQ

(1)
T

A
(1)
y (Λ) = eiΛ cosϑQ

(1)
T



A
(2)
x (0) = cosϑQ

(2)
R

A
(2)
y (0) = Q

(2)
R

A
(2)
x (Λ) = − cosϑe2iΛ cosϑQ

(2)
T

A
(2)
y (Λ) = e2iΛ cosϑQ

(2)
T

Manipulating the boundary conditions we getA
(1)
x (0) + cosϑA

(1)
y (0)− 2 cosϑQ

(1)
I = 0

A
(1)
x (Λ)− cosϑA

(1)
y (Λ) = 0

A
(2)
x (0)− cosϑA

(2)
y (0) = 0

A
(2)
x (Λ) + cosϑA

(2)
y (Λ) = 0

which solely depend on Q
(1)
I which is the known amplitude of the incident funda-

mental �eld.

Therefore, for the fundamental harmonic we have

dA
(1)
x

dζ
= i
[
A(1)
y + sinϑA(1)

z

]
dA

(1)
y

dζ
= iε(1)

o A(1)
x

sinϑA(1)
y + ε(1)

e A(1)
z + A(1)∗

z A(2)
y = 0

A
(1)
x (0) + cosϑA

(1)
y (0)− 2 cosϑQ

(1)
I = 0

A
(1)
x (Λ)− cosϑA

(1)
y (Λ) = 0

(6.8)
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and for the second harmonic wave we get

dA
(2)
x

dζ
= −2i

[
ε(2)
o A(2)

y − sinϑA(2)
z +

1

2
A(1)2
z

]
dA

(2)
y

dζ
= −2iA(2)

x

sinϑA(2)
y − A(2)

z = 0

A
(2)
x (0)− cosϑA

(2)
y (0) = 0

A
(2)
x (Λ) + cosϑA

(2)
y (Λ) = 0

(6.9)

Considering a slab with nonlinear coe�cient ∆ = 140 pm/V and illuminated

by an incident fundamental wave, at λ(1) = 500 nm, of optical intensity I
(1)
i =

1/2
√
ε0/µ0|E(1)

i |2 = 4MW/cm2, we have numerically solved the electromagnetic

boundary-value problem ((6.8) and (6.9)) by means of a suitable relaxation method

and, consequently, we have evaluated the slab e�ciencies η
(2)
R = |E(2)

r |2/|E
(1)
i |2 and

η
(2)
T = |E(2)

t |2/|E
(1)
i |2 of converting the incident fundamental wave into re�ected

(for z < 0) and transmitted (for z > L) second harmonic waves, for a number of

slabs with di�erent linear properties and for various incidence angles ϑ and slab

thicknesses L.

6.3.1 Relaxation iterative method

Relaxation is an iterative method used in numerical computing for solving both

linear and nonlinear vector equations. Let us consider the equation Θ(X) = 0 where

X is vector with N entries and Θ(X) is a vector function. To solve the system we

use a trial solution X = X0 + dX where X0 is a known guess solution and dX is

regarded as a small correction so that

Θ(X) = Θ(X0 + dX) ' Θ(X0) + JdX = 0 , (6.10)

where J is the Jacobian matrix of �rst-order partial derivates Jij = ∂Θi/∂Xj. From

(6.10) we get

dX = −J−1Θ(X0) ,
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so that, if |dX| is smaller than the prescribed tolerance then X0 is the acceptable

solution of (6.10), otherwise we set X0 + dX for the guess solution and we use

(6.10) again to evaluate its correction. The procedure is iterated so that if X
(k)
0 is

the guess solution at n-th iteration then the guess solution at the next (k + 1)-th

iteration is X
(n+1)
0 = X

(k)
0 + dX(k), and it iteration stops when |dX| is smaller than

the prescribed tolerance.

Numerical discretization procedure

We have subdivided the ζ range (0 < ζ < Λ, dζ = Λ/n) into n parts so that the

N = 12n unknown entries of the vector X (it is here necessary to also consider the

complex conjugate of the entries as independent quantities) are
A

(1)
x = X1...n

A
(1)
y = Xn+1...2n

A
(1)
z = X2n+1...3n


A

(2)
x = X3n+1...4n

A
(2)
y = X4n+1...5n

A
(2)
z = X5n+1...6n

A
(1)∗
x = X6n+1...7n

A
(1)∗
y = X7n+1...8n

A
(1)∗
z = X8n+1...9n


A

(2)∗
x = X9n+1...10n

A
(2)∗
y = X10n+1...11n

A
(2)∗
z = X11n+1...12n

.

The discretized version of the electromagnetic boundary-value problem (6.8) and
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(6.9) reads

A(1)
x (ζ + dζ)− A(1)

x (ζ) = idζ
[
A(1)
y (ζ) + sinϑA(1)

z (ζ)
]

A
(1)
x (0) + cosϑA

(1)
y (0)− 2 cosϑQ

(1)
I = 0

A(1)
y (ζ + dζ)− A(1)

y (ζ) = idζε(1)
o A(1)

x (ζ)

A
(1)
x (Λ)− cosϑA

(1)
y (Λ) = 0

sinϑA(1)
y (ζ) + ε(1)

e A(1)
z (ζ) + A(1)∗

z (ζ)A(2)
y (ζ) = 0

A(2)
x (ζ + dζ)− A(2)

x (ζ) = −2idζ

[
ε(2)
o A(2)

y (ζ)− sinϑA(2)
z (ζ) +

1

2
A(1)2
z (ζ)

]
A

(2)
x (0)− cosϑA

(2)
y (0) = 0

A(2)
y (ζ + dζ)− A(2)

y (ζ) = −2idζA(2)
x (ζ)

A
(2)
x (Λ) + cosϑA

(2)
y (Λ) = 0

sinϑA(2)
y (ζ)− A(2)

z (ζ) = 0
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Therefore the N coupled equations for the N unknowns are

k = 1 . . . n− 1 Θk = Xk + idζ [Xk+n + sinϑXk+2n]−Xk+1 = 0

k = n Θn = X1 + cosϑX1+n − 2 cosϑQ
(1)
I = 0

k = n+ 1 . . . 2n− 1 Θk = Xk + idζε(1)
o Xk−n −Xk+1 = 0

k = 2n Θ2n = Xn − cosϑX2n = 0

k = 2n+ 1 . . . 3n Θk = sinϑXk−n + ε(1)
e Xk +Xk+2nXk+6n = 0

k = 3n+ 1 . . . 4n− 1 Θk = Xk − 2idζ

[
ε(2)
o Xk+n − sinϑXk+2n +

1

2
X2
k−n

]
−Xk+1

k = 4n Θ4n = X1+3n − cosϑX1+4n = 0

k = 4n+ 1 . . . 5n− 1 Θk = Xk − 2idζXk−n −Xk+1

k = 5n Θ5n = X4n + cosϑX5n = 0

k = 5n+ 1 . . . 6n Θk = sinϑXk−n −Xk = 0

k = 6n+ 1 . . . 7n− 1 Θk = Xk − idζ [Xk+n + sinϑXk+2n]−Xk+1 = 0

k = 7n Θ7n = X1+6n + cosϑX1+7n − 2 cosϑQ
(1)
I = 0

k = 7n+ 1 . . . 8n− 1 Θk = Xk − idζε(1)
o Xk−n −Xk+1 = 0

k = 8n Θ8n = X7n − cosϑX8n = 0

k = 8n+ 1 . . . 9n Θk = sinϑXk−n + ε(1)
e Xk +Xk+2nXk−6n = 0

k = 9n+ 1 . . . 10n− 1 Θk = Xk + 2idζ

[
ε(2)
o Xk+n − sinϑXk+2n +

1

2
X2
k−n

]
−Xk+1

k = 10n Θ10n = X1+9n − cosϑX1+10n = 0

k = 10n+ 1 . . . 11n− 1 Θk = Xk + 2idζXk−n −Xk+1

k = 11n Θ11n = X10n + cosϑX11N = 0

k = 11n+ 1 . . . 12n Θk = sinϑXk−n −Xk = 0
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while the elements of Jacobian matrix Jkl = ∂Θk/∂Xl are

k = 1 . . . n− 1 Jkl = δkl + idζ
[
δ(k+n)l + sinϑδ(k+2n)l

]
− δk(l+1) = 0

k = n Jnl = δ1l + cosϑδ(1+n)l − 2 cosϑQ
(1)
I = 0

k = n+ 1 . . . 2n− 1 Jkl = δkl + idζε(1)
o δ(k−n)l − δ(k+1)l = 0

k = 2n J(2n)l = δnl − cosϑδ(2n)l = 0

k = 2n+ 1 . . . 3n Jkl = sinϑδ(k−n)l + ε(1)
e δkl +X(k+6n)lδ(k+2n)l+

+X(k+2n)lδ(k+6n)l = 0

k = 3n+ 1 . . . 4n− 1 Jkl = δkl − 2idζ
[
ε(2)
o δ(k+n)l − sinϑδ(k+2n)l+

+Xk−nδ(k−n)l

]
− δ(k+1)l

k = 4n J(4n)l = δ(1+3n)l − cosϑδ(1+4n)l = 0

k = 4n+ 1 . . . 5n− 1 Jkl = δkl − 2idζδ(k−n)l − δ(k+1)l

k = 5n J(5n)l = δ(4n)l + cosϑδ(5n)l = 0

k = 5n+ 1 . . . 6n Jkl = sinϑδ(k−n)l − δkl = 0

k = 6n+ 1 . . . 7n− 1 Jkl = δkl − idζ
[
δ(k+n)l + sinϑδ(k+2n)l

]
− δ(k+1)l = 0

k = 7n J(7n)l = δ(1+6n)l + cosϑδ(1+7n)l − 2 cosϑQ
(1)
I = 0

k = 7n+ 1 . . . 8n− 1 Jkl = δkl − idζε(1)
o δ(k−n)l − δ(k+1)l = 0

k = 8n J(8n)l = δ(7n)l − cosϑδ(8n)l = 0

k = 8n+ 1 . . . 9n Jkl = sinϑδ(k−n)l + ε(1)
e δkl +Xk−6nδk+2n+

+Xk+2nδk−6n = 0

k = 9n+ 1 . . . 10n− 1 Jkl = δkl + 2idζ
[
ε(2)
o δ(k+n)l − sinϑδ(k+2n)l+

+Xk−nδ(k−n)l

]
− δ(k+1)l

k = 10n J(10n)l = δ(1+9n)l − cosϑδ(1+10n)l = 0

k = 10n+ 1 . . . 11n− 1 Jkl = δkl + 2idζδ(k−n)l − δ(k+1)l

k = 11n J(11n)l = δ(10n)l + cosϑδ(11N)l = 0

k = 11n+ 1 . . . 12n Jkl = sinϑδ(k−n)l − δkl = 0

where δij is the Kronecker delta.
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Figure 6.5: Second harmonic generation slab e�ciencies η
(2)
R (a) and η

(2)
T (b) of con-

verting the incident fundamental wave into backward- and forward-scattered second

harmonic waves, respectively, evaluated for the optical intensity I
(1)
i = 4MW/cm2

of the incident fundamental wave in the ideal situation of lossless propagation with

ε
(1)
o = 0.29, ε

(1)
e = −0.03 and ε

(2)
o = 2.26. The dashed curves and the dash-dotted

lines along the top planes of (a) and (b) represent the curves k
(1)
z L = mπ and the

phase-matching angle ϑpm, respectively.

6.3.2 Second harmonic generation in lossless regime

In Fig.6.5a and Fig.6.5b we plot η
(2)
R and η

(2)
T , respectively, evaluated in an

ideal situation of a lossless slab characterized by the permittivities ε
(1)
o = 0.29, ε

(1)
e =

−0.03 and ε
(2)
o = 2.26 (note that the considered permittivities for the fundamental

wave coincide with those of Fig.6.2a and Fig.6.2b). It is particularly evident that,

for the chosen optical intensity of the incident fundamental wave, second harmonic

generation uniquely occurs at the speci�c incident angles ϑ and slab thicknesses

L satisfying the relation k
(1)
z (ϑ)L = mπ, i.e., in conditions of full transparency of

the linear slab for the fundamental wave (see the dashed lines along the top planes

of Fig.6.5a and Fig.6.5b). Physically, the fact that the second harmonic wave

�eld scattered by the slab is generally very weak (for the considered intensity I
(1)
i )

is easily grasped by noting that second harmonic generation is here due to the

source term proportional to E
(1)2
z in the �fth of (6.6), which is generally very small

and de�nitely unable to produce a strong second harmonic signal within the small
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thickness of the considered slab. However, such an unattractive scenario is greatly

altered if the conditions of full transparency of the slab for the fundamental wave

are met, since the enhancement mechanism of the longitudinal �eld E
(1)
z described

above produces a strong enhancement of the polarization source term containing

E
(1)2
z , in turn entailing a very pronounced frequency-doubling e�ciency (see the

sharp ridges of Fig.6.5a and Fig.6.5b corresponding to the dashed curves on

the top planes). Note that, from Fig.6.5a and Fig.6.5b, the intensities of the

backward and forward second harmonic waves scattered by the slab are roughly at

most 10% and 30% of the incident fundamental wave intensity, respectively, and

it is worth stressing that these are giant frequency-doubling e�ciencies for such a

thin slab. Fig.6.5b also clearly shows that the forward-scattering e�ciency of the

second harmonic wave is not uniformly large along the curves k(1)(ϑ)L = mπ but

exhibits its more pronounced peaks around the speci�c incident angle 25.4◦, and

this happens since this angle provides phase matching between the fundamental

and second harmonic waves. In fact, the wave vector of the second harmonic wave

within the slab is k
(2)
z = 2k(1)

√
ε

(2)
o − sin2 ϑ (in the undepleted pump regime) so

that the condition 2k
(1)
z = k

(2)
z yields the phase-matching angle (B.1)

ϑpm = arcsin

√√√√ε
(1)
e
ε

(1)
o − ε(2)

o

ε
(1)
o − ε1

e

= 25.4◦ ,

an angle which is reported as the straight dash-dotted line on the top planes of

Fig.6.5a and Fig.6.5b (note the pronounced peaks of η
(2)
T of Fig.6.5b correspond-

ing to the intersection between the dashed curves and the dash-dotted line).

Note that a similar high-e�ciency second harmonic generation process has been

recently investigated in Ref. [93], where the authors consider a subwavelength-thick

slab �lled by a quadratically nonlinear medium with isotropic permittivity very

close to zero. In Ref. [93] the enhancement mechanism of the longitudinal �eld

component is the same as the one considered in the present paper, but there very

high slab transparency for the fundamental wave is achieved by resorting to a very

thin slab, whereas in the present paper slab transparency is a consequence of the

kind of etalon resonance provided by medium hyperbolicity (inde�nite permittivity
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tensor). As a consequence, the power of the second harmonic generation process

discussed in Ref. [93] cannot be fully exploited because of the required very small

slab thickness, a drawback which we avoid in the present paper since slab resonances

occur at di�erent and greater slab thicknesses.

6.3.3 Second harmonic generation in the weak-absorption

regime

Since the second harmonic gerneration process described above is mainly trig-

gered by a �eld enhancement mechanism of linear origin and, as discussed in the

previous section, material absorption fundamentally a�ects the linear slab behavior,

it is worth discussing here the e�ect of losses on the second harmonic �eld scattering.

As in the linear case, we here investigate the weak-absorption regime by means of a

slab characterized by the permittivities ε
(1)
o = 0.29+0.001i, ε

(1)
e = −0.03+0.001i and

ε
(2)
o = 2.26 and the same d matrix as above. The corresponding second harmonic

generation e�ciencies η
(2)
R and η

(2)
T are plotted in Fig.6.6a and Fig.6.6b, from

which we note that the overall portraits of backward and forward second harmonic

waves scattering globally resemble those pertaining the ideal situation of Fig.6.5a

and Fig.6.5b, with a slight change of the phase-matching angle and with the very

important di�erence that both e�ciencies are roughly reduced by a factor of 10.

Such phenomenology is consistent with the corresponding linear slab behavior since

the peaks of η
(2)
R and η

(2)
T of Fig.6.6a and Fig.6.6b are located along the ridges

of Fig.6.3a and Fig.6.3b and, remarkably, since the decrease of second harmonic

e�ciencies occurs in correspondence with the decrease of the �eld enhancement fac-

tor Γ(1), as is evident from a comparison of Fig.6.2b and Fig.6.3b. Again these

are important results since a medium exhibiting such linear and nonlinear optical

properties can actually be synthesized by resorting to gain media, thus assuring the

feasibility of the discussed phenomenology.



Chapter 6. E�cient second harmonic generation 110

Figure 6.6: Second harmonic generation slab e�ciencies η
(2)
R (a) and η

(2)
T (b) of

converting the incident fundamental wave into backward- and forward-scattered

second harmonic waves, respectively, evaluated for the optical intensity I
(1)
i =

4MW/cm2 of the incident fundamental wave in the weak-absorption regime with

ε
(1)
o = 0.29 + 0.001i, ε

(1)
e = −0.03 + 0.001i and ε

(2)
o = 2.26.

6.3.4 Second harmonic generation in the strong-absorption

regime

In analogy to the linear situation, we now consider a situation of strong absorp-

tion by resorting to a slab characterized by the permittivities ε
(1)
o = 0.29 + 0.015i,

ε
(1)
e = −0.03 + 0.015i and ε

(2)
o = 2.26 and the same d matrix as above. The

corresponding second harmonic generation e�ciencies η
(2)
R and η

(2)
T are plotted in

Fig.6.7a and Fig.6.7b, from which it is evident that the second harmonic gen-

eration mechanism described above is almost destroyed by material losses since

frequency-doubling e�ciencies do not exhibit the multipeaked structures. The resid-

ual of the phenomenology described above is a single wide peak located at an angle

close to the phase-matching angle of Fig.6.5b and Fig.6.6b, a peak providing

second harmonic generation e�ciencies three and two orders of magnitude smaller

than those pertaining to the ideal and the weak-absorption situations, respectively.

Again, this phenomenology is compatible with the linear slab behavior reported in

Fig.6.4a and Fig.6.4b where, as discussed in the preceding section, slab resonances

are almost ruled out by material losses. However, the second harmonic generation
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Figure 6.7: Second harmonic generation slab e�ciencies η
(2)
R (a) and η

(2)
T (b) of con-

verting the incident fundamental wave into backward- and forward-scattered second

harmonic waves, respectively, evaluated for the optical intensity I
(1)
i = 4MW/cm2

of the incident fundamental wave in the strong-absorption regime with ε
(1)
o =

0.29 + 0.015i, ε
(1)
e = −0.03 + 0.015i and ε

(2)
o = 2.26.

e�ciencies of Fig.6.7a and Fig.6.7b are nonetheless remarkable for a slab of mi-

crometer thickness. This is due to the fact that Γ(1) of Fig.6.4b still shows a shallow

structure (at angles smaller than 30◦) where it exceeds 10, which is a reminiscence of

the corresponding strong ridge of Fig.6.2b and Fig.6.3b. Such a �eld enhancement

factor, combined with phase matching, yields the peak values η
(2)
R = 3× 10−5 and

η
(2)
T = 4× 10−4 of Fig.6.7a and Fig.6.7b. Again, such results are interesting since

a medium exhibiting such linear and nonlinear optical properties can be designed

even without the use of gain media.

6.4 Comparison of second harmonic generation

in inde�nite ENZ media and in noninde�nite and

non-ENZ media

The strong frequency-doubling e�ciency is, in our scheme, fully due to the above-

discussed linear enhancement mechanism, which in turn takes place in the presence

of principal permittivities of di�erent signs (inde�nite media) and of magnitudes
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Figure 6.8: Logarithm of the second harmonic generation e�ciencies η
(2)
R (a) and

η
(2)
T (b) as functions of the incidence angle ϑ for di�erent slabs of thickness L =

700 nm in the ideal lossless regime. Black, red and blue lines correspond to inde�nite

ε-near-zero, inde�nite non-ε-near-zero, and standard uniaxial media, respectively.

smaller than one (ε-near-zero or ENZ media). In order to additionally stress the key

and irreplaceable role played by this unusual linear optical response (experienced by

the fundamental wave) in the whole second harmonic generation process, we have

evaluated the second harmonic scattering e�ciencies η
(2)
R and η

(2)
T of other slabs (of

thickness L = 700 nm) exhibiting the same nonlinear optical coe�cient ∆ as above

but characterized by two distinct dielectric behaviors at the fundamental frequency:

(1) inde�nite permittivity with principal permittivities of magnitude greater than 1

and (2) standard uniaxial anisotropic permittivity.

In Fig.6.8, Fig.6.9 and Fig.6.10 we plot the logarithm of such e�ciencies as a

function of the incidence angle ϑ and compare the results with those extracted from

Fig.6.5, Fig.6.6 and Fig.6.7 (at L = 700 nm) using black lines for the inde�nite

ε-near zero medium (with <[ε
(1)
o ] = 0.29, <[ε

(1)
e ] = −0.03 and ε

(2)
o = 2.26), red lines

for the inde�nite non-ε-near-zero medium (with <[ε
(1)
o ] = 1.80, <[ε

(1)
e ] = −1.20 and

ε
(2)
o = 2.26), and blue lines for the standard uniaxial crystal (with <[ε

(1)
o ] = 1.67,

<[ε
(1)
e ] = 1.21 and ε

(2)
o = 1.60). The values of the permittivities of the noninde�nite

and non-ε-near-zero media have here been chosen, for comparison purposes, with the

requirement that their real parts provide the same phase-matching angle ϑpm = 25.4◦

as in the situation considered above.
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Figure 6.9: Logarithm of the second harmonic generation e�ciencies η
(2)
R (a)

and η
(2)
T (b) as functions of the incidence angle ϑ for di�erent slabs of thickness

L = 700 nm in the weak-absorption regime. Black, red and blue lines correspond

to inde�nite ε-near-zero, inde�nite non-ε-near-zero, and standard uniaxial media,

respectively.
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Figure 6.10: Logarithm of the second harmonic generation e�ciencies η
(2)
R (a)

and η
(2)
T (b) as functions of the incidence angle ϑ for di�erent slabs of thickness

L = 700 nm in the strong-absorption regime. Black, red and blue lines correspond

to inde�nite ε-near-zero, inde�nite non-ε-near-zero, and standard uniaxial media,

respectively.
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Each of these three situations is again investigated within the same three regimes

hitherto considered, i.e., the ideal lossless regime (Fig.6.8), the weak-absorption

regime (Fig.6.9), and the strong-absorption regime (Fig.6.10). The result emerg-

ing from Fig.6.8, Fig.6.9 and Fig.6.10 is striking in that, in each possible sit-

uation, the second harmonic generation e�ciency pro�les characterizing the indef-

inite ε-near-zero medium are uniformly much greater (by several orders of mag-

nitude) than those characterizing the slabs with di�erent permittivity tensors at

the fundamental wavelength. It is not excessive to state that such thin slabs (of

thickness slightly greater than the fundamental wavelength) actually do not host

second-harmonic generation unless their permittivity tensor is, at the fundamental

frequency, inde�nite with principal permittivities of magnitude smaller than 1, i.e.,

the conditions investigated in this paper. Apart from this general result, the very

important point here is that, even in the most unfavorable situation of the strong-

absorption regime where the underlying �eld enhancement mechanism is severely

hampered by losses, the considered second harmonic generation process is remark-

able and still far more e�cient than other processes.

6.5 Inde�nite ENZ slab feasibility

A quadratically nonlinear anisotropic medium with very small principal permit-

tivities of di�erent signs is hardly found in nature and therefore, in order to prove

the feasibility of the phenomenology discussed above, we here discuss and numeri-

cally design actual nanocomposites exhibiting such an uncommon optical response.

We adopt the general strategy of achieving e�ective electromagnetic properties by

dispersing nanoparticles within a hosting dielectric matrix. Since our target is an

extremely anisotropic medium with quadratic nonlinear optical response, the di-

electric matrix has to be optically anisotropic and quadratically nonlinear and, not

less importantly, it has to allow nanoparticle dispersion. Particularly suitable for

this role are some bent-core liquid crystals which, in addition to their recon�gurable

uniaxial anisotropy and their intrinsic capability of hosting dispersed nanoparti-
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Figure 6.11: Schematic representations used for bent molecules in bent-core liquid

crystal [94].

cle, are characterized by a marked quadratic nonlinear optical response [94] re-

sulting from the shape of their molecules. In fact, the compact packing of the

kinked molecules produces a strong polar interaction so that the sample can be

ordered in a noncentrosymmetric polar fashion to show a marked quadratic non-

linear optical response [94] (Fig.6.11). Therefore, for the nanocomposite we are

designing, we here assume the hosting matrix to be a bent-core liquid crystal char-

acterized, in the reference frame hitherto used (see Fig.6.1), by the permittivity

tensor ε = diag
[
ε

(LC)
o , ε

(LC)
o , ε

(LC)
e

]
= (2.25, 2.25, 2.89) (which are typical principal

permittivities for liquid crystals) and by the d matrix of (6.1) (a situation easily

achievable through an externally applied bias electric �eld). By dispersion of suit-

able nanoparticles within the liquid crystal, the overall macroscopic medium is led to

exhibit e�ective electromagnetic properties di�erent from those of its constituents

since the nanoparticle radius (of the order of a few nanometers) is much smaller

than both the fundamental and the second-harmonic wavelengths. Since one of the

e�ective principal permittivities must have a negative real part, it is evident that

metal nanoparticles have to be employed whose composition and volume density

have to be suitably chosen to achieve the desired permittivity inde�niteness.

We have numerically designed the linear permittivity tensor by means of an

anisotropic extension of the standard Maxwell-Garnett mixing rule [16]. Accord-

ing to this approach, if ε(M) = diag
[
ε

(M)
o , ε

(M)
o , ε

(M)
e

]
is the permittivity tensor of

the hosting dielectric matrix and ε(m) is the dielectric permittivity of the metal

nanoparticles (which are optically isotropic), the mixture's e�ective permittivity is
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ε(eff) = diag
[
ε

(eff)
o , ε

(eff)
o , ε

(eff)
e

]
so that the homogeneous e�ective medium is a

uniaxial crystal with principal axis coinciding with those of the hosting matrix, and

its ordinary (j = o) and extraordinary (j = e) e�ective permittivities are (2.28)

ε
(eff)
j =

1 +
f
[
ε(m) − ε(M)

j

]
ε

(M)
j + (1− f)Nj

[
ε(m) − ε(M)

j

]
 ε

(M)
j . (6.11)

where the depolarization factors Nj are (2.24)

Nj =
1

2

∫ ∞
0

ε
(M)
j ds[

1 + ε
(M)
j s

]√[
1 + ε

(M)
o s

]2 [
1 + ε

(M)
e s

] (6.12)

The permittivities of (6.11) are the anisotropic generalization of the standard

Maxwell-Garnett mixing rule (to which (6.12) reduces in the isotropic limit where

Nj = 1/3), the depolarization factors accounting for the e�ect of the anisotropy.

Note that, in analogy to the isotropic situation, the nanoparticle radius does not

appear in (6.11) so that the mixture design has to be performed by tuning the

volume �lling fraction f .

We have assumed the quadratically nonlinear optical response of the mixture to

coincide with that of the liquid crystal, thus neglecting the e�ect of the nanoparticles.

This is justi�ed by the fact that, since the nanoparticles are spheres, dielectrically

homogeneous, isotropic, and randomly dispersed within the liquid crystal, the d

matrix associated with the quadratic nonlinearity of the mixture, for symmetry

reasons, has to show the same structure as that in (6.1). Therefore nanoparticles

can change only the values of ∆ and δ of (6.1), a variation we have neglected because

of the small nanoparticle densities we use.

6.5.1 Nanocomposite design: weak-absorption regime

In order to achieve the weak-absorption regime it is imperative to resort to gain

media that partially compensate the medium losses due to the metal nanoparticles.

This can be done by dispersing, within the liquid crystal bulk, optically pumped

dye molecules whose presence is not incompatible with the target of achieving per-

mittivities of very small amplitudes [95]. Speci�cally, we consider here rhodamine
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6G molecules whose dispersion within the liquid crystal produces a change of the

dielectric permittivity ∆ε(R6G) yielding, for the permittivity tensor of the hosting

matrix,

ε(M) = ε(LC) + ∆ε(R6G)1 , (6.13)

where 1 is the identity matrix.

The classical electron oscillator model envisions that the electron charge cloud in

a real atom may be displaced from its equilibrium position with and instantaneous

displacement r(t). Because of the positive charge on the nucleus, this displacement

causes the electronic charge cloud to experience a linear restoring force −Kr(t). The

electronic cloud is thus similar to a point electron with mass m and charge e that

is attached to a spring with spring constant K. The classical equation of motion

for an electron suspended on such a spring and subjected to an externally applied

electric �eld E(r, t) is then

d2r

dt2
+ γ

dr

dt
+ ω2

ar(t) = − e

m
E(r, t) , (6.14)

where γ is the damping rate or damping coe�cient for the oscillator and ωa is the

classical oscillator's resonance frequency, given by ω2
a = K/m.

We assume to model the gain material made of �uorescent dye molecules as a four

level atomic system with occupation density Ni(r, t) of the i-th state (i = g, 1, 2, 3)

and N0 the total dye concentration (N0 = Ng + N1 + N2 + N3). By de�nition

the polarization density P e(r, t) at the emission frequency band, is the total dipole

moment per unit volume, therefore, it can be expressed as P e(r, t) = ∆N(r, t)er(t),

where ∆N(r, t) = N2(r, t) − N1(r, t) is the population inversion between levels 2

and 1. According to [96, 97] the polarization density obeys to classical equation of

motion (6.14)

∂2

∂t2
P e(r, t) + ∆ωe

∂

∂t
P e(r, t) + ω2

eP e(r, t) = −σe∆N(r, t)E(r, t) , (6.15)

where ∆ωe is the bandwidth of the dye transition at the emitting angular frequency

ωe and σe the coupling strength of P e(r, t) to the electric �eld E(r, t). Assuming

time harmonic electric �eld E(r, t) = < [E(r)e−iωt], harmonic polarization density
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P e(r, t) = < [P e(r)e−iωt] = ε0χeE(r, t) and constant population inversion ∆N (i.e.,

steady state), (6.15) becomes

χe =
1

ε0

σe∆N

ω2 − ω2
e + iω∆ωe

.

The total displacement can be written as

D(r) = ε0E(r) + P r(r) + P e(r) ,

where P r(r) is the polarization contribution due to dielectric medium hosting the

dye and P e(r) is the polarization contribution due to the dispersed gain material in

host matrix. Therefore the dielectric permittivity change due to the active molecules

is

∆ε(R6G) =
σe∆N

ε0(ω2 − ω2
e + i∆ωe)

,

where σe = 6.55× 10−8 C2/kg, λe = 2πc/ωe = 570 nm is the center emission wave-

length, ∆λe = 30 nm (∆ωe = 2πc∆λe/λ
2
e) is the wavelength line width. ∆N , the

inversion population between levels 2 and 1, is given by

∆N =
(τ21 − τ10)Γpump

1 + (τ32 + τ21 + τ10)Γpump
N0 ,

where τij is the lifetime for the transition from state i to the lower state j (τ21 =

3.99 ns, τ32 = τ10 = 100 fs), N0 is the dye molecule density and Γpump is the

pumping rate from level 0 to level 3 de�ned as Γpump = σaIpumpλa/(hc) where

σa = 3.2× 10−16 cm−2 is the absorption cross section, Ipump is the pump intensity,

h is the Planck constant, and λa = 531 nm is the pump wavelength.

We consider chromium nanoparticles with a diameter of 7 nm [98] whose dielectric

permittivity ε(m) is given by the Drude model,

ε(m) = 1−
ω2
p

ω2 + iγω
, (6.16)

where ωp = 6.68× 1015 s−1 and γ = 7.13× 1013 s−1 [99]. We choose here f = 0.146

for the volume �lling fraction of the chromium nanoparticles, N0 = 6× 1018 cm−3 for

the rhodamine molecule concentration, and Ipump = 380W/cm2 for the optical pump

intensity. Using such numerical data and inserting (6.13) and (6.16) into (6.11) we
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obtain, for λ(1) = 574 nm, [ε
(1)
o ](eff) = 0.2894+0.0011i, [ε

(1)
e ](eff) = −0.0319+0.0012i

and [ε
(2)
o ](eff) = 2.2638 + 0.0035i which are values compatible with those used above

for discussing both the slab linear transmission and the second harmonic process in

the weak-absorption regime.

6.5.2 Nanocomposite design: strong-absorption regime

The strong-absorption regime is achieved more simply than the weak one since

gain media are not required when synthesizing the nanocomposite. Therefore the

dielectric matrix in this case coincides with the liquid crystal, so that

ε(M) = εLC . (6.17)

We consider palladium nanoparticles [100] whose dielectric permittivity εm is given

by the Drude model of (6.16) with parameters ωp = 6.68× 1015 s−1 and γ =

7.13× 1013 s−1 [99]. Choosing f = 0.146 for the volume �lling fraction of the

palladium nanoparticles and inserting (6.17) and (6.16) into (6.11) we obtain, for

λ(1) = 454 nm, [ε
(1)
o ](eff) = 0.2927 + 0.0154i, [ε

(1)
e ](eff) = −0.0287 + 0.0148i and

[ε
(2)
o ](eff) = 2.2612 + 0.0005i which, again, are values compatible with those used

above for discussing both the slab linear transmission and the second harmonic

generation process in the strong-absorption regime.

6.6 Conclusions

In conclusion, we have shown that a micrometer-thick slab �lled by an inde�nite

medium with permittivity moduli smaller than 1 and exhibiting quadratic optical

nonlinearity is able to host a very e�cient second harmonic generation process. The

frequency-doubling e�ciency is much greater (by several orders of magnitude) than

that characterizing second harmonic generation from a slab �lled by a standard

quadratic medium, and it is caused by a powerful �eld enhancement mechanism

resulting from the very small value of the longitudinal permittivity of the slab.

Even though the overall process is supported by a coherent linear mechanism, we
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have shown that absorption does not fully suppress the proposed second harmonic

generation e�ciency. It is worth stressing that the proposed �eld enhancement

mechanism can easily be observed also in setups di�erent from the considered slab.

Our �ndings o�er a di�erent way to achieve e�cient second harmonic generation

from micro- and nanostructures and therefore we believe they could pave the way

for conceiving a method for generation of nanometer-sized coherent light sources.



7
Terahertz active spatial �ltering

We theoretically consider infrared-driven hyperbolic metamaterials able to spa-

tially �lter terahertz radiation. The metamaterial is a slab made of alternating

semiconductor and dielectric layers whose homogenized uniaxial response, at THz

frequencies, shows principal permittivities of di�erent signs. The gap provided by

metamaterial hyperbolic dispersion allows the slab to stop spatial frequencies within

a bandwidth tunable by changing the infrared radiation intensity. We numerically

prove the device functionality by resorting to full wave simulation coupled to the

dynamics of charge carries photoexcited by infrared radiation in semiconductor lay-

ers.

7.1 Terahertz hyperbolic metamaterial

Manipulating terahertz radiation is generally di�cult since most standard ma-

terials simply do not respond to such frequencies. However, the advent of metama-

terials has partially reduced this di�culty because their electromagnetic properties

can be arti�cially manipulated [101] through a suitable design of the underlying

constituent unit cells. At the same time, a number of setups have been proposed for

steering the THz radiation [102]. Recon�gurable electrically [103] or optically [104]

driven metamaterials have been exploited for conceiving active THz devices [105].

Most of the proposed active THz devices are tunable frequency domain �lters

since it is relatively simple to control the metamaterial dispersion properties through

121
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Figure 7.1: Layered metamaterial setup together with THz (TH) and infrared (IR)

plane waves geometry.

external stimuli. In this letter, we propose a theoretical way to achieve active and

spatial �ltering of the THz radiation using a suitable hyperbolic metamaterial whose

THz response can be tuned by an auxiliary infrared �eld. The hyperbolic dispersion

relation characterizing extraordinary plane waves in inde�nite media is the main

physical ingredient leading to unusual optical e�ects [11, 106] and supporting a

number of proposed devices [54, 91, 107].

Fig.7.1 shows the tunable hyperbolic metamaterial we consider here, together

with the �eld's geometry. The metamaterial slab of thickness L is obtained by

stacking along the x axis alternating layers of an intrinsic semiconductor (sc) and

a negative dielectric (nd) of thicknesses dsc and dnd, respectively. It is illuminated

by an infrared monochromatic (IR) plane wave linearly polarized along the y axis

and normally impinging onto the slab interface at z = 0. The THz �eld (TH) is

a transverse magnetic (TM or p-polarized) monochromatic plane impinging with

incidence angle ϑ onto the interface.
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7.2 Semiconductor dielectric behavior

The infrared �eld within the semiconductor layers photoexcites electrons to the

conduction band, which dynamically recombine so that resulting electron density N

is described by the rate equation [108]

∂N

∂t
=
ε0

2~
=[εsc(ωIR)]|E(IR)|2 − N

τR
−BN2 , (7.1)

where ~ is the Planck constant divided by 2π, ε0 is the absolute vacuum permittiv-

ity, εsc(ωIR) is the semiconductor permittivity at the infrared frequency ωIR, E
(IR)

is the infrared �eld within the semiconductor layers, τR is the carrier's nonradiative

recombination time and B is the coe�cient of radiative recombination. The semi-

conductor dielectric behavior at the infrared frequency is described by the linearized

permittivity model [108]

εsc(ωIR) =

(
nIR +

δn0

N0

N

)2

+ i
nIRc

ωIR
A(N0 −N) (7.2)

where nIR is the infrared semiconductor refractive index background, N0 is the trans-

parency value of the carrier density, δn0 the refractive index change at transparency,

c is the speed of light in vacuum and A is the di�erential absorption coe�cient. At

steady state (∂N/∂t = 0), compatible with the considered monochromatic IR �eld,

equation (7.1) and (7.2) yield

N =
1

2τRB

[
−(1 +W ) +

√
(1 +W )2 + 4τRBN0W

]
, (7.3)

where W = |E(IR)/Esat|2 and |Esat| = [τRε0nIRcA/(2~ωIR)]−1/2, so that electron

density shows a saturable behavior (i.e., N ' N= if |E(IR)| � |Esat|), as a conse-

quence of the saturable absorption model of (7.2).

Maxwell equations for the �eld E(IR) together with (7.2) and (7.3) describe the

infrared nonlinear behavior within semiconductor layers. The resulting (and selfcon-

sistently evaluated) electron density N has a strong impact on the semiconductor

response at the THz frequency ωTH , since the permittivity is

εsc(ωTH) = ε(0)
sc (ωTH) +

i

ε0

(e2τ/m∗)N

ωTH(1− iωTHτ)
(7.4)
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where ε
(0)
sc (ωTH) is the semiconductor permittivity in the absence of the infrared

radiation, −e and m∗ are electron charge and reduced mass, and τ is the relaxation

time. In equation (7.4), note that the term, proportional to N , is the standard

Drude permittivity contribution due to conduction band electrons and is the physical

ingredient that allows the infrared �eld to tune the overall slab THz response.

7.3 Structured metamaterial dielectric behavior

If the layers thicknesses dsc and dnd are much smaller than the THz wavelength

(on the order of tens of microns), the overall metamaterial slab of Fig.7.1 shows a

homogeneous THz uniaxial response with permittivities (the optical axis lying along

the staking x-axis) [109]

εx(ωTH) =
1

fsc
εsc(ωTH)

+
fnd

εnd(ωTH)

(7.5)

εz(ωTH) = εy(ωTH) = fscεsc(ωTH) + fndεnd(ωTH) , (7.6)

where

fsc =
dsc

dsc + dnd
fnd =

dnd
dsc + dnd

are the layers �lling fractions whereas εnd(ωTH) is the the dielectric permittivity of

the negative dielectric layers for which <[εnd(ωTH)] < 0.

Because the permittivities εx(ωTH) and εz(ωTH) involve averages of di�erent

kinds, it is well known that it is possible to tailor the structure so εx(ωTH) and

εz(ωTH) have di�erent signs, the resulting hyperbolic medium begin tunable, in

the present analysis, through the auxiliary infrared �eld. The considered wave-

lengths are λIR = 2πc/ωIR = 0.879 µm and λTH = 2πc/ωTH = 23.08 µm and

we have chosen gallium arsenide (GaAs) as semiconductor (for which τR = 10 ns,

B = 1.3× 10−10 cm3s−1, nIR = 3.6, δn0 = −0.07, N0 = 9.91× 1017 cm3, A =

1.71× 10−15 cm2, ε
(0)
sc (ωTH) = 12.9, τ = 3.29× 10−13 s and m∗ = 0.067m0, m0 being

the electron mass [108]) with �lling fraction fsc = 0.1 and a negative dielectric with
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Figure 7.2: Terahertz homogenized slab permittivities εx(ωTH) and εz(ωTH) as

functions of the normalized local optical intensity of the infrared �eld.

permittivity εnd(ωTH) = −0.61 + 0.003i. This value coincides with that of calcium

�uoride CaF2 with an imaginary part reduced by a tenth for discussion purposes.

Fig.7.2 plots εx(ωTH) and εz(ωTH) as functions of the infrared optical intensity

I(IR) = ε0c|E(IR)|2/2 (normalized with the saturation intensity Isat = ε0c|Esat|2/2 =

3.7 kW/cm2), with the simpli�ed assumption that such intensity can be regarded

as uniform within the bulk of the slab and equal to incident infrared plane wave

intensity (see below). It is evident from Fig.7.2 that the structure has been tailored

to show inde�nite permittivity tensor in the absence of infrared illumination (i.e.,

<(εx) < 0 and <(εz) < 0 for I(IR) = 0). Remarkably, the infrared intensity I(IR)

has a strong impact on <(εz) < 0. In Fig.7.3, we have plotted the re�ectivity

R = |E(TH)
r |2/|E(TH)

i |2 and the transmissivity T = |E(TH)
t |2/|E(TH)

i |2 (see Fig.7.1

for the de�nition of the �eld amplitudes) as functions of the THz incidence angle ϑ

for a homogenized slab of thickness L = 9.23 µm with permittivities coinciding with

those of Fig.7.2 at the intensities I(IR) = 0, I(IR) = Isat and I
(IR) = 10Isat (see Ref.

[110] for the expression of T ). It is worth noting that all the three transmissivity

curves have a bell-shaped pro�le with maximum located at an angle dependent on

the infrared intensity (analogously the re�ectivity have a complementary behavior)

so that the slab can be regarded as an active spatial �lter allowing (forbidding)

transmission (re�ection) of those THz plane waves with incidence angle close to a

central angle in turn tunable through the infrared optical intensity.



Chapter 7. Terahertz active spatial �ltering 126

Figure 7.3: (a) Re�ectivity R, (b) transmissivity T at the wavelength λTH =

23.08 µm as functions of the THz incidence angle ϑ for a homogenized slab of thick-

ness L = 9.23 µm and permittivities of Fig.7.1 at three di�erent local infrared

intensities I(IR) and, (c) THz hyperbolic dispersion curves for the three cases of

panels (a) and (b). The hyperbola vertex is at kx = kV = (2π/λTH)/
√
|εz|.

7.4 Physical mechanism and simulations

The physical mechanism supporting such an active spatial �ltering functionality

can easily be grasped by noting that the chosen TM incident THz plane waves cou-

ples to the slab extraordinary waves whose dispersion relation is k2
x/εz − k2

z/εx =

(2π/λTH)2, where the signs of the permittivities (Fig.7.2) have been explicitly re-

ported for clarity purposes (neglecting the permittivities' imaginary parts). Such

dispersion relation is, in the kxkz plane, a hyperbola with vertices along the kx-axis

located at kx = ±kV = (2π/λTH)
√
|εz| (see Fig.7.3c where the hyperbola corre-

sponding to the considered three infrared intensities are plotted). A momentum

match at the interface z = 0 implies that the extraordinary plane waves have trans-

verse wave vector kx = (2π/λTH) sinϑ so that in the two situations | sinϑ| <
√
|εz|

or | sinϑ| >
√
|εz| (i.e. |kx| < kV or |kx| > kV , respectively) the externally im-

pinging THz plane wave excites, within the slab, evanescent or propagating waves,

respectively. As a consequence, the transmission is low for sinϑ <
√
|εz| (where
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evanescent waves provides a residual �tunneling� radiation), it reaches a maximum

at greater angles (due to the slab propagating waves) and it eventually vanishes at

ϑ =90◦ for geometrical reasons.

The discussion of the THz spatial �ltering functionality has hitherto been based,

for clarity purposes, on three simpli�ed assumptions:

• low-loss regime (small imaginary part of the negative dielectric permittivity),

• THz electromagnetic homogenization of the layered medium, and

• uniformity of the infrared optical intensity within the slab bulk.

While the �rst two assumptions can easily be supported, the third one is more serious

since the layers' periodicity is generally comparable with the infrared wavelength

and, in addition, the re�ection of infrared radiation by the slab together with its

nonlinear behavior within semiconductor layers have to be considered. To account

for of all these physical ingredients and to show that the structure actually behaves as

an active THz spatial �lter, we have resorted to full wave simulations where linear

and nonlinear Maxwell equations for the THz and the infrared �eld are coupled

to the electron dynamics described by (7.3) and (7.2). We have chosen the layers

thicknesses dsc = 24nm and dnd = 220nm and the permittivities εnd(ωTH) = −0.61−

0.03i, εnd(ωIR) = 2.04 which are the CaF2 permittivities at the considered THz and

infrared frequencies, respectively, whereas all the remaining involved parameters are

those used above.

Fig.7.4 shows the results of the simulations, where we plotted the THz trans-

missivity and re�ectivity of the structure for three di�erent values of the optical

intensity I
(IR)
i = ε0c|E(IR)

i |2/2 of the incident infrared plane wave (Fig.7.1). Note

that the overall spatial �ltering functionality is evidently exhibited by the consid-

ered realistic structure, even though the values of the transmissivity are smaller as

compared to those of Fig.7.3. This is a consequence of the fact that full-wave simu-

lations have been performed using the actual value of the CaF2 permittivity, whereas

in the e�ective medium predictions Fig.7.3, a reduced value of its imaginary part

has been used.
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Figure 7.4: THz transmissivity R and re�ectivity T of the metamaterial of Fig.7.1,

evaluated trough full waves simulations, for three di�erent values of the optical in-

tensity I
(IR)
i of the incident infrared plane wave.

In conclusion, we have proposed a metamaterial structure which, driven by an

auxiliary infrared �eld, is able to spatially �lter THz radiation. We believe that the

proposed combination of hyperbolic metamaterial and semiconductor concepts o�er

a di�erent way to create novel and e�cient THz active devices.



A
Propagation in anisotropic media

Monochromatic plane-wave propagation in anisotropic media

In an anisotropic crystal, the phase velocity of light depends on its state of

polarization and on its direction of propagation. Given a direction of propagation

in the medium, there exist only two eigenwaves with de�ned eigen-phase-velocities

and polarization directions. Let us consider a monochromatic plane wave of angular

frequency ω0

E(r, t) = E0e
−i(ω0t−k·r) , H(r, t) = H0e

−i(ω0t−k·r) . (A.1)

propagating in a linear non-magnetic dielectric homogeneous anisotropic medium.

Substituting (A.1) into the macroscopic Maxwell's curl equations in the absence of

sources we obtain

∇×E = −∂B
∂t

, ⇒ k ×E0 = ω0µ0H0 ,

∇×H =
∂D

∂t
, ⇒ k ×H0 = −ω0ε0 ¯̄εrE0 ,

k × k ×E0 = ω0µ0k ×H0 = −ω2
0ε0µ0 ¯̄εrE0 ,

and further we get the vector Helmholtz equation

k × k ×E0 + ω2
0ε0µ0 ¯̄εrE0 = 0 . (A.2)

This equation can also be written as

(k ·E0)k − k2E0 + ω2
0ε0µ0D0 = 0 , ⇒ ω2

0ε0µ0D0 = k2E0 − (k ·E0)k , (A.3)
129
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where we used the identity1 k × k ×E0 = k(k ·E0) − k2E0. In (A.3) the electric

displacement D0 is expressed by the di�erence between a vector parallel to E0

and the component of E0 parallel to k. In other words, D0 belongs to the plane

perpendicular to k and only two mutual orthogonal polarization for D0 within the

crystal exist.

In the optical principal coordinate system (A.2) can be written as
ω2

0ε0µ0εx − k2
y − k2

z kxky kxkz

kxky ω2
0ε0µ0εy − k2

x − k2
z kykz

kxkz kykz ω2
0ε0µ0εz − k2

x − k2
y



E0x

E0y

E0z

 = 0

For nontrivial solution to exist, the coe�cient's determinant must vanish

(εxk
2
x+εyk

2
y+εzk

2
z)(k

2
x+k2

y+k2
z)−k2

0[εxεy(k
2
x+k2

y)+εyεz(k
2
y+k2

z)+εxεz(k
2
x+k2

z)]+

+ k4
0εxεyεz = 0 , (A.4)

where k0 = ω/c = ω
√
ε0µ0. This equation represents a three-dimensional sur-

face in k space and it is known as the Fresnel's wave surface or normal surface

(Fig.A.1). It consists of two shells which have four points (two for positive values,

corresponding to propagating waves, and two for negative values, corresponding to

counter-propagating waves) in common, the two line that go through the origin and

these points are the crystal's optical axes. Given a direction of propagation, there

are two k values which are the intersections of direction of propagation and the

normal surface. These two values correspond to two di�erent phase velocities of the

waves propagating along the chosen direction.

Equation (A.4) is often written in terms of the direction cosines of wave vector.

1

k × k ×E = εijkkj(εklmklEm) = εijkεklmkjklEm = εkijεklmkjklEm =

= (δilδjm − δimδjl)kjklEm = kjkiEj − kjkjEi = k(k ·E)− k2E
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Figure A.1: Positive shells of Fresnel's wave surface or normal surface for a biaxial

anisotropic crystal; they have two points in common which locate the crystal's optical

axes.

By using the relation si = ki/k, we get

(εxs
2
x + εys

2
y + εzs

2
z)k

4 − k2
0[εxεy(s

2
x + s2

y) + εyεz(s
2
y + s2

z) + εxεz(s
2
x + s2

z)]k
2+

+ k4
0εxεyεz = 0 . (A.5)

This is a quadratic equation in k2, because of the electric displacement D have only

two degree of freedom; for a given direction of propagation the electric displacement

D belongs to the perpendicular plane to k, then there exist only two independent

eigenvectors of the equation (A.2).

For example, considering a monochromatic plane wave propagating along the

direction s = [0, sinϑ, cosϑ] (ϑ angle between s direction and s axis), then the

(A.5) becomes

(εy sin2 ϑ+ εz cos2 ϑ)k4 − k2
0[εyεz + εxεy sin2 ϑ+ εxεz cos2 ϑ]k2 + k4

0εxεyεz = 0 .

The eigenvalues of this secular equation are

k2
1 =

εyεz
εy sin2 ϑ+ εz cos2 ϑ

k2
0 , k2

2 = εxk
2
0 , (A.6)
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Figure A.2: Intersections of the Fresnel's wave surface with kxky plane (a), kxkz

plane (b) and kykz plane (c).

(Fig.A.2a) and the corresponding eigenvectors belong to plane perpendicular to

s (parallel to the x axis and the direction [0,− sinϑ, cosϑ] of yz plane Fig.A.4a).

Another particular case is that of a monochromatic plane wave propagating in z

direction s = [0, 0, 1], than the (A.5) becomes

k4 − k2
0[εy + εx]k

2 + k4
0εxεy = 0 ,

the eigenvalues of this secular equation are (Fig.A.2b)

k2
1 = εxk

2
0 , k2

2 = εyk
2
0 (A.7)

and the corresponding eigenvector are long the x and y axes (Fig.A.4b).

If the �eld impinging on the facet of an anisotropic crystal is linearly polarized

along one of the optical principal axes, its propagation into the crystal is unaltered.

On the other hand, if the impinging �eld has a linear polarization state along an

arbitrary direction, its polarization within the crystal generally changes because of

di�erence between two component velocities.

The normal surface is uniquely determined by the principal dielectric permittiv-

ities εx, εy and εz. As we have seen above, when these three values are all di�erent,

there are two optical axes and in this case the anisotropic crystal is said to be biax-

ial. In other optical anisotropic material it happens that two of principal dielectric

permittivities are equal, as εx = εy 6= εz, in which case the characteristic polynomial
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Figure A.3: Positive shells of Fresnel's wave surface for a uniaxial anisotropic

crystal; they have one points in common which locate the only crystal's optical axis.

(A.4) can be factored as[
k2

εx
− k2

0

] [
k2
x + k2

y

εz
+
k2
z

εx
− k2

0

]
= 0 (A.8)

so that its shell are a sphere and an ellipsoid. These two sheets of normal surface

touch at two points on z axis, which is the only optical axis, and the crystal is said

to be uniaxial (Fig.A.3).

In a biaxial crystal, the principal axes are labeled in such a way that the three

dielectric permittivities are in the following order: εx < εy < εz. With this conven-

tion the optical axes lie in the kxkz plane (Fig.A.1 and Fig.A.2c). In a uniaxial

crystal, the directions that correspond to the two equal values of permittivity are

called ordinary direction (εx = εy = εo), the other is called extraordinary (εz = εe).

If εo < εe, the crystal is said to be positive, whereas if εo > εe, it is said to be

negative.
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Optical indicatrix

The electric energy density of a plane electromagnetic wave in a dielectric anisotropic

crystal is Ue = 0.5[E ·D] and by using the �rst of relations (2.5), we have

Ue =
1

2
ε0E · (¯̄εrE) .

In the optical principal coordinate system, the electric energy density can be written

as

Ue =
1

2
ε0(εxE

2
x + εyE

2
y + εzE

2
z ) =

1

2ε0

(
D2
x

εx
+
D2
y

εy
+
D2
z

εz

)
.

If we replace D/
√

2Ue by r = [x, y, z] and εi/ε0 by ni (the refractive index of the i

direction), we get the equation of an ellipsoid in canonical position (center at origin)

with major axes parallel to the reference directions whose respective lengths are 2nx,

2ny and 2nz
x2

n2
x

+
y2

n2
y

+
z2

n2
z

= 1 .

The ellipsoid is known ad the index ellipsoid or as the optical indicatrix. These ellip-

soid is used mainly to �nd the two indexes of refraction and the two corresponding

direction of D associated with the two independent plane waves that can propagate

along an arbitrary direction k/k in an anisotropic crystal. This is done through

the following instruction: �nd the intersection ellipse between a plane through the

origin that is normal to the direction of propagation k/k and the index ellipsoid.

The two semi-axes of the intersection ellipse are parallel to the allowed polarizations

of the electric displacement D and whose lengths are equal to n1 and n2.

If un-polarized light enters in an uniaxial crystal with εx = εy = εo and εz = εe,

the component with polarization perpendicular to the optical axis is the ordinary

wave, it is refracted according to the standard law of refraction and its permittivity

is equal to εo (A.7). The component with polarization parallel to the optical axis is

refracted as a nonstandard angle because of the dielectric permittivity seen by this

wave depends by the wave's propagation direction within the crystal εe(ϑ) (A.6)

εe(ϑ) =
εoεe

εo sin2 ϑ+ εe cos2 ϑ
⇒ 1

εe(ϑ)
=

cos2 ϑ

εo
+

sin2 ϑ

εe
, (A.9)

for this reason this component is said extraordinary wave.
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Figure A.4: Index ellipsoid or optical indicatrix. The two cases illustrated are

for two di�erent direction of propagation: k/k = [cos(π/4), sin(π/4), 0] (a) and

k/k = [0, 0, 1] (b). The two semi-axes of the intersection ellipse (red) in the plane

through the origin that is normal to the direction of propagation represent the allowed

polarizations of dielectric displacement D (blue arrows) and their lengths are equal

to the two indexes of refraction seen by the corresponding waves.
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Figure A.5: Schematic illustration of plane of incidence of Transverse electric (TE,

s-polarization) and transverse magnetic (TM, p-polarization) wave with incident,

re�ected and transmitted �elds by a slab of thickness L.

TE and TM through anisotropic slab

We consider a slab of anisotropic material with principal axes coinciding with

those of the reference frame. If the plane of incidence is xz plane and z is the

propagation direction of a monochromatic plane wave of angular frequency ω0, we

evaluate the transmission coe�cient through the slab (z = 0 input slab end-face,

z = L output slab end-face) for a transverse electric (TE) and transverse magnetic

(TM) polarization (Fig.A.5). The transfer function (transmittance) can be derived

by explicitly solving Maxwell's equations

∂Ez
∂y
− ∂Ey

∂z
= iω0µ0Hx

∂Ex
∂z
− ∂Ez

∂x
= iω0µ0Hy

∂Ey
∂x
− ∂Ex

∂y
= iω0µ0Hz



∂Hz

∂y
− ∂Hy

∂z
= −iωε0εxEx

∂Hx

∂z
− ∂Hz

∂x
= −iω0ε0εyEy

∂Hy

∂x
− ∂Hz

∂y
= −iω0ε0εzEz

(A.10)

subject to standard boundary conditions at the end-faces.

TE dispersion relation and transmission coe�cient In the considered coor-

dinate system a TE polarized plane wave is described by an electromagnetic �eld

as

TE :

E(x, z) = Ey(x, z)ey

H(x, z) = Hx(x, z)ex +Hz(x, z)ez
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and the (A.10) became

∂Ey
∂z

= −iω0µ0Hx ,
∂Ey
∂x

= iω0µ0Hz ,
∂Hx

∂z
− ∂Hz

∂x
= −iω0ε0εyEy ,

∂2Ey
∂z2

= −iω0µ0
∂Hx

∂z
,

∂2Ey
∂x2

= iω0µ0
∂Hz

∂x
,

∂2Ey
∂z2

+
∂2Ey
∂x2

= −k2
0εyEy .

Setting for the �elds 
Hx(x, z) = (ω0ε0/k0)eik0x sinϑiAx(z)

Ey(x, z) = eik0x sinϑiAy(z)

Hz(x, z) = (ω0ε0/k0)eik0x sinϑiAz(z)

and substituting this expressions in the above equations, we get

d2Ay
dz2

= −ik0
dAx
dz

, sinϑiAy = Az ,
d2Ay
dz2

− k2
0 sin2 ϑiAy = −k2

0εyAy ,

d2Ay
dz2

+ k2
0

(
εy − sin2 ϑi

)
Ay = 0 .

From the last equation we get the dispersion relation for a TE wave in an anisotropic

medium

κ2 + k2
0

(
εy − sin2 ϑi

)
= 0 ⇒ κ = ±ikz = ±i

√
k2

0

(
εy − sin2 ϑi

)
and the �elds' amplitudes become

Ax(z) = −kz
k0

[
Q+e

ikzz −Q−e−ikzz
]

Ay(z) = Q+e
ikzz +Q−e

−ikzz

Az(z) = sinϑi
[
Q+e

ikzz +Q−e
−ikzz

]
The �elds outside and within the slab are (Fig.A.5)

z < 0


E(x, z) = EIeye

ik0(x sinϑi+z cosϑi) + EReye
ik0(x sinϑi−z cosϑi)

H(x, z) =
k0

ω0µ0

EI(− cosϑiex + sinϑiez)e
ik0(x sinϑi+z cosϑi)+

+
k0

ω0µ0

ER(cosϑiex + sinϑiez)e
ik0(x sinϑi−z cosϑi)

0 < z < L


E(x, z) =

(
Q+e

ikzz +Q−e
−ikzz

)
eye

ik0x sinϑi

H(x, z) = − kz
ω0µ0

(
Q+e

ikzz −Q−e−ikzz
)
exe

ik0x sinϑi+

+
k0 sinϑi
ω0µ0

(
Q+e

ikzz +Q−e
−ikzz

)
eze

ik0x sinϑi
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z > 0


E(x, z) = ETeye

ik0(x sinϑi+z cosϑi)

H(x, z) =
k0

ω0µ0

ET (− cosϑiex + sinϑiez)e
ik0(x sinϑi+z cosϑi)

and subjecting the �elds to the standard boundary conditions at the end-faces (con-

tinuity of the tangential components)

E(x, 0−) · ey = E(x, 0+) · ey

H(x, 0−) · ex = H(x, 0+) · ex

E(x, L−) · ey = E(x, L+) · ey

H(x, L−) · ex = H(x, L+) · ex

we get 

EI + ER = Q+ +Q−

k0 cosϑi(EI − ER) = kz(Q+ −Q−)

Q+e
ikzL +Q−e

−ikzL = ET e
ikzL cosϑi

kz
(
Q+e

ikzL −Q−e−ikzL
)

= k0 cosϑiET e
ik0L cosϑi

and the relations between the complex amplitudes of incident �eld EI , re�ected �eld

ER and transmitted �eld ET are

ER
EI

=

i
1

2

(
NTE −

1

NTE

)
sin(kzL)

cos(kzL)− i1
2

(
NTE +

1

NTE

)
sin(kzL)

ET
EI

=
1

cos(kzL)− i1
2

(
NTE +

1

NTE

)
sin(kzL)

e−ik0L cosϑi

where NTE = k0 cosϑi/kz. Therefore the re�ectance R and transmittance T func-

tions are 

R =

∣∣∣∣12
(
NTE −

1

NTE

)
sin(kzL)

∣∣∣∣2∣∣∣∣∣∣cos(kzL)− i1
2

(
NTE +

1

NTE

)
sin(kzL)

∣∣∣∣∣∣
2

T = 1∣∣∣∣∣∣cos(kzL)− i1
2

(
NTE +

1

NTE

)
sin(kzL)

∣∣∣∣∣∣
2

(A.11)
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TM dispersion relation and transmission coe�cient In the considered coor-

dinate system a TM polarized plane wave is described by an electromagnetic �eld

as

TM :

E(x, z) = Ex(x, z)ex + Ez(x, z)ez

H(x, z) = Hy(x, z)ey

and the (A.10) become

∂Hy

∂z
= iω0ε0εxEx ,

∂Hy

∂x
= −iω0ε0εzEz ,

∂Ex
∂z
− ∂Ez

∂x
= iω0µ0Hy ,

∂2Hy

∂z2
= iω0ε0εx

∂Ex
∂z

,
∂2Hy

∂x2
= −iω0ε0εz

∂Ez
∂x

,
1

εx

∂2Hy

∂z2
+

1

εz

∂2Hy

∂x2
= −k2

0Hy ,

Setting for the �elds 
Ex(x, z) = eik0x sinϑiAx(z)

Hy(x, z) = (ω0ε0/k0)eik0x sinϑiAy(z)

Ez(x, z) = eik0x sinϑiAz(z)

and substituting this expressions in the above equations, we get

d2Ay
dz2

= ik0εx
dAx
dz

, εzAz + sinϑiAy = 0 ,
1

εx

d2Ay
dz2

− 1

εz
k2

0 sin2 ϑiAy = −k2
0Ay ,

d2Ay
dz2

+ εxk
2
0

(
1− sin2 ϑi

εz

)
Ay = 0 .

From the last equation we get the dispersion relation for a TM wave in an anisotropic

medium

κ2 + εxk
2
0

(
1− sin2 ϑi

εz

)
= 0 ⇒ κ = ±ikz = ±i

√
εxk2

0

(
1− sin2 ϑi

εz

)
(A.12)

and the �elds' amplitudes become
Ax(z) =

kz
εxk0

[
Q+e

ikzz −Q−e−ikzz
]

Ay(z) = Q+e
ikzz +Q−e

−ikzz

Az(z) = −sinϑi
εz

[
Q+e

ikzz +Q−e
−ikzz

]
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The �elds outside and within the slab are (Fig.A.5)

z < 0



E(x, z) = EI(cosϑiex − sinϑiez)e
ik0(x sinϑi+z cosϑi)+

+ER(− cosϑiex − sinϑiez)e
ik0(x sinϑi−z cosϑi)

H(x, z) =
k0

ω0µ0

EIeye
ik0(x sinϑi+z cosϑi)+

+
k0

ω0µ0

EReye
ik0(x sinϑi−z cosϑi)

0 < z < L



E(x, z) =
kz
εxk0

(
Q+e

ikzz −Q−e−ikzz
)
exe

ik0x sinϑi+

−sinϑi
εz

(
Q+e

ikzz +Q−e
−ikzz

)
eze

ik0x sinϑi

H(x, z) =
ω0ε0

k0

(
Q+e

ikzz +Q−e
−ikzz

)
eye

ik0x sinϑi

z > 0


E(x, z) = ET (cosϑiex − sinϑiez)e

ik0(x sinϑi+z cosϑi)

H(x, z) =
k0

ω0µ0

ETeye
ik0(x sinϑi+z cosϑi)

and subjecting the �elds to the standard boundary conditions at the ens-faces (con-

tinuity of the tangential components)

E(x, 0−) · ex = E(x, 0+) · ex

H(x, 0−) · ey = H(x, 0+) · ey

E(x, L−) · ex = E(x, L+) · ex

H(x, L−) · ey = H(x, L+) · ey

we get 

(EI − ER) cosϑi =
kz
εxk0

(Q+ −Q−)

EI + ER = Q+ +Q−

kz
εxk0

(
Q+e

ikzL −Q−e−ikzL
)

= ET cosϑie
ik0L cosϑi

Q+e
ikzL +Q−e

−ikzL = ET e
ik0L cosϑi
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and the relations between the complex amplitudes of incident �eld EI , re�ected �eld

ER and transmitted �eld ET are

ER
EI

=

−i1
2

(
NTM −

1

NTM

)
sin(kzL)

cos(kzL)− i1
2

(
NTM +

1

NTM

)
sin(kzL)

ET
EI

=
1

cos(kzL)− i1
2

(
NTM +

1

NTM

)
sin(kzL)

e−ik0L cosϑi

where NTM = εxk0 cosϑi/kz. Therefore the re�ectance R and transmittance T

functions are 

R =

∣∣∣∣12
(
NTM −

1

NTM

)
sin(kzL)

∣∣∣∣2∣∣∣∣∣∣cos(kzL)− i1
2

(
NTM +

1

NTM

)
sin(kzL)

∣∣∣∣∣∣
2

T = 1∣∣∣∣∣∣cos(kzL)− i1
2

(
NTM +

1

NTM

)
sin(kzL)

∣∣∣∣∣∣
2

(A.13)

The (A.13) reduce (A.11) for a normal incidence. Actually, when the incident angle

ϑi = 0 for the TE waves kz = k0
√
εy and NTE = 1/

√
εy, for the TM waves (after

a clockwise rotation about π/2 of reference frame around z axis, since the x and y

direction play the same role to face the problem of slab transmittance) kz = k0
√
εy

and NTM =
√
εy, therefore NTE + 1/NTE = NTM + 1/NTM .



B
Phase-matched second harmonic generation

Nonlinear metamaterials have potentially interesting applications in highly e�-

cient nonlinear processes, owing to their ability to combine enhanced nonlinearities

with exotic and con�gurable linear properties. Considering the electric nonlinear

optical phenomena, they are nonlinear in the sense that they occur when the re-

sponse of a material system P to an applied optical �eld E depends in a nonlinear

manner on the strength of the optical �eld. For non spatial dishomogeneous and

non temporal dispersive materials, the electric polarization's i-th component can be

expressed in a Taylor series expansion

Pi = ε0

[
χijEj + χ

(2)
ijkEjEk + χ

(3)
ijklEjEkEl + ...

]
,

where χij is the linear susceptibility ([1 + χij] = ε
(1)
ij ), while χ

(2)
ijk = 2dijk and χ

(3)
ijkl

are the second-order and third-order nonlinear optical susceptibility, respectively.

The second-order nonlinearity PNL
i = 2dijkEjEk is responsible for second-harmonic

generation (SHG or frequency doubling) [111].

Consider Maxwell's equations (2.1) and (2.2) and the constitutive relations (2.3)

in an homogeneous dielectric non-magnetic medium in absence of sources. Exploit-

ing the identity ∇ × [∇ × E] = ∇[∇ · E] − ∇2E and the media homogeneity we

have

∇2E − ε
(1)
r

c2

∂2E

∂t2
= µ0

∂2P (NL)

∂t2
.

We limit our considerations to two plane waves propagating along z direction at

142
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frequency ω1 and ω2

Ei(z, t) = E
(ω1)
i (z, t) + E

(ω2)
i (z, t) ,

E
(ω1)
i (z, t) =

1

2

[
E

(1)
i (z)e−i(ω1t−k1z) + E

(1)∗
i (z)ei(ω1t−k1z)

]
,

E
(ω2)
i (z, t) =

1

2

[
E

(2)
i (z)e−i(ω2t−k2z) + E

(2)∗
i (z)ei(ω2t−k2z)

]
,

where i labels cartesian coordinates (i = x, y).

∇2E
(ω1)
i (z, t) =

1

2

[
∂2

∂z2
E

(1)
i (z)− 2ik1

∂

∂z
E

(1)
i (z)− k2

1E
(1)
i (z)

]
e−i(ω1t−k1z) + c.c.

Assuming that the variation of complex �eld amplitude with z is small enough so

that

∂2

∂z2
E

(1)
i � k1

∂

∂z
E

(1)
i ,

∇2E
(ω1)
i (z, t) = −1

2

[
2ik1

∂

∂z
E

(1)
i (z) + k2

1E
(1)
i (z)

]
e−i(ω1t−k1z) + c.c.

For the time derivatives we have

∂2

∂t2
E

(ω1)
i (z, t) = −ω2

1E
(ω1)
i (z, t) ,

so that

∇2E
(ω1)
i (z, t)− 1

c2

∂2

∂t2
[
ε(1)
r

]
ij
E

(ω1)
j (z, t) =

= −1

2

[
2ik1

∂

∂z
E

(1)
i (z) + k2

1E
(1)
i (z)− ω2

1

c2

[
ε(1)
r

]
ij
E

(1)
j (z)

]
e−i(ω1t−k1z) + c.c. =

= µ0
∂2P (NL)

∂t2
.

Limiting the Taylor series expansion of electric polarization up to the second-order

in electric �eld, we have for the nonlinear polarization

P
(NL)
i (z, t) = 2ε0dijkEj(z, t)Ek(z, t) =

=
1

2
ε0dijk

[
E

(1)∗
j E

(1)
k + E

(2)∗
j E

(2)
k + E

(1)
j E

(1)
k e−2i(ω1t−k1z) + E

(2)
j E

(2)
k e−2i(ω2t−k2z)+

+ (E
(2)
j E

(1)
k + E

(1)
j E

(2)
k )e−i[(ω1+ω2)t−(k1+k2)z]+

+(E
(1)∗
j E

(2)
k + E

(2)
j E

(1)∗
k )ei[(ω1−ω2)t−(k1−k2)z] + c.c.

]
.
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If ω2 = 2ω1 and considering only the fundamental and the double frequency

P
(NL)
i (z, t) =

1

2
ε0dijk

[
E

(1)
j E

(1)
k

]
e−2i(ω1t−k1z)+

+
1

2
ε0dijk

[
E

(1)∗
j E

(2)
k + E

(2)
j E

(1)∗
k

]
e−i[ω1t+(k1−k2)z] + c.c.

the equations which must be satis�ed separately by each frequency component are

2ik1
∂

∂z
E

(1)
i (z) + k2

1E
(1)
i (z)− ω2

1

c2

[
ε(1)
r

]
ij
E

(1)
j (z) =

= ω2
1ε0µ0dijk

[
E

(1)∗
j E

(2)
k + E

(2)
j E

(1)∗
k

]
e−i(2k1−k2)z

2ik2
∂

∂z
E

(2)
i (z) + k2

2E
(2)
i (z)− ω2

2

c2

[
ε(1)
r

]
ij
E

(2)
j (z) =

= 4ω2
1ε0µ0dijk

[
E

(1)
j E

(1)
k

]
e−i(k2−2k1)z

In the optical principal coordinate system the linear dielectric tensor is diagonal, so

that 

∂E
(1)
i (z)

∂z
= − i

2

ω1

c

√
ε

(1)
r (ω1)

dijk

[
E

(1)∗
j E

(2)
k + E

(2)
j E

(1)∗
k

]
e−i(2k1−k2)z

∂E
(2)
i (z)

∂z
= −i ω1

c

√
ε

(1)
r (2ω1)

dijk

[
E

(1)
j E

(1)
k

]
e−i(k2−2k1)z

where we exploit the relation k = ω
√
εr/c. The solution of the E

(2)
i 's equation for a

nonlinear crystal of length L with no second-harmonic input (E
(2)
i (0) = 0) is

E
(2)
i (z) =

ω1

c

√
ε

(1)
r (2ω1)

dijk

[
E

(1)
j E

(1)
k

] e−i(k2−2k1)z − 1

(k2 − 2k1)

and at the end of the crystal

E
(2)
i (L) =

ω1

c

√
ε

(1)
r (2ω1)

dijk

[
E

(1)
j E

(1)
k

] e−i(k2−2k1)L − 1

(k2 − 2k1)
.

An expression for the second-harmonic output power P
(ω2)
i

P
(ω2)
i

area
=

1

2

√
ε0ε

(1)
r (2ω1)

µ0

E
(2)
i (L)E

(2)∗
i (L) ,

P
(ω2)
i

area
=

2π2

ε
(1)
r (ω1)

√
ε0

µ0ε
(1)
r (2ω1)

∣∣∣dijkE(1)
j E

(1)
k

∣∣∣2( L
λ0

)2
sin2[(k2 − 2k1)L]

[(k2 − 2k1)L/2]2
,
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with λ0 is the free-space wavelength.

If ∆k 6= 0 it means that the second-harmonic wave generated at some plane z

is not in phase with the second-harmonic wave generated at another plane z + ∆z

and this result is described by the interference factor [sin(∆kL/2)/(∆kL/2)]2. The

requirement for e�cient second-harmonic generation is that

∆k = k2 − 2k1 = k(2ω1) − 2k(ω1) = 0 , (B.1)

that is the phase matching condition. Under standard circumstances this condition

can not to be satis�ed because the index of refraction is a function of frequency and

n(2ω1) 6= n(ω1). The technique that is used to satisfy the phase matching require-

ment, that is the dielectric permittivity at the fundamental and second-harmonic

frequencies must be equal, exploits the natural birefringence of anisotropic crystal.

In normally dispersive anisotropic material, the dielectric permittivities seen by or-

dinary and extraordinary waves propagating along given directions increases with

frequency and the phase matching condition is impossible to satisfy if the fundamen-

tal and second-harmonic wave are of the same type (both ordinary or extraordinary).

But using two waves of di�erent type and, for example, an uniaxial crystal, exists

an ϑpm angle that (Fig.B.1) ε
(2ω1)
e (ϑpm) = ε

(ω1)
o (A.9)

sin2 ϑpm =
ε

(2ω1)
e

(
ε

(2ω1)
o − ε(ω1)

o

)
ε

(ω1)
o

(
ε

(2ω1)
o − ε(2ω1)

e

) .
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Figure B.1: Intersections of the Fresnel's wave surface with kxkz plane of an uni-

axial crystal for the ordinary and extraordinary waves at fundamental (black curves)

and second-harmonic (blue curves) frequency. In the �gure it is evident the propa-

gation direction within the anisotropic media corresponding to the phase matching

condition.
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