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Chapter 1

Introduction

While the amount of data stored in current information systems continuously
grows, turning these data into information is still one of the most challenging
tasks for Information Technology. The task is complicated by the prolifera-
tion of data sources both in single organizations, and in open environments.
Specifically, the information systems of medium and large organizations are
typically constituted by several, independent, and distributed data sources,
and this poses great difficulties with respect to the goal of accessing data in
a unified and coherent way. Such a unified access is crucial for getting useful
information out of the system, as well as for taking decision based on them.
This explains why organizations spend a great deal of time and money for the
understanding, the governance, and the integration of data stored in different
sources [54].

The following are some of the reasons why a unified and transparent access
to the data sources of an organization is in general problematic.

• Despite the fact that the initial design of a collection of data sources
(e.g., a database) is adequate, corrective maintenance actions tend to re-
shape the data sources into a form that often diverges from the original
conceptual structure.
• It is common practice to change a data repository so as to adapt it both

to specific application-dependent needs, and to new requirements. The
result is that data sources often become data structures coupled to a
specific application (or, a class of applications), rather than application-
independent databases.
• The data stored in different sources tend to be redundant, and mutually

inconsistent, mainly because of the lack of central, coherent and unified
data management tasks.

Note that the above problems are still relevant even when the data of the
organization is stored in a single data source.
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4 Chapter 1. Introduction

In principle, there are two alternative solutions to the above problems.
One solution is the re-engineering of the information system, i.e., the design
of a new, coherent, and unified data repository serving all the applications of
the organization [57], and replacing the original data sources. This approach
is unfeasible in many situations, due to cost and organization problems. The
other solution is to create a new stratum of the information system, co-existing
with the data sources, according to the “data integration” paradigm [11]. Such
new stratum is constituted by (i) a global (also called “mediated”) schema,
representing the unified structure presented to the clients, and (ii) the mapping
relating the source data with the elements in the global schema. In turn, there
are two methods for realizing such stratum, called materialized and virtual.
In the materialized approach, the global schema is populated with concrete
data deriving from the sources in accordance with the mapping. In the virtual
approach, data are not moved, and queries posed to the system are answered
by suitably accessing the sources [71].

Currently, in those information systems that embrace the latter approach,
the global schema is expressed in terms of a logical database model, e.g. the
relational data model [11]. It is well-known that the abstractions and the con-
structs provided by this kind of data models are influenced by implementation
issues. It follows that the global schema represents a sort of unified data struc-
ture accommodating the various data at the sources, and the client, although
freed from physical aspects of the source data (where they are, and how they
can be accessed), is still exposed to issues concerning how data are packed
into specific structures. Moreover, the need of better capturing the complex
interrelationships in the domain of interest leads to consider also constraints
expressed over the global schema as keys, foreign keys, and complex forms of
assertions expressible in semantic data models, such as the Entity-Relationship
model or UML class diagrams [24]. However, these constraints over the global
schema have a deep impact on how answers are computed, and hence they
must be fully taken into account during query answering [18, 19].

To overcome these problems, a new type of data integration systems is
emerging, known as Ontology-based Information Systems (OIS). The basic idea
behind these systems is to express the global schema as an ontology, i.e., a con-
ceptual specification of the application domain. With this idea, the integrated
view that the system provides to information consumers is not merely a data
structure accommodating the various data at the sources, but a semantically
rich description of the relevant concepts and relationships in the domain of
interest, with the mapping acting as the reconciling mechanism between the
conceptual level and the data sources.

Ontologies are introduced as an “explicit specification of a conceptualiza-
tion" [53], and are able to capture domain knowledge in a generic way and to
provide a commonly agreed understanding of a domain, which may be reused
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and shared across applications and groups [35]. For this reason they are widely
used as a means for conceptually structuring domains of interest.

There are a number of formalisms to represent ontologies, but Description
Logics (DLs) have been recognized as the best means for the formal speci-
fication of ontologies, for their ability of combining modeling power and de-
cidability of reasoning [8]. For these characteristics, DLs constitute the logical
underpinning of prominent ontology languages, such as OWL 2, the W3C stan-
dard language for ontology specification1.

There are different ways of employing the ontology in an information sys-
tem. In particular, we are interested in Stand-alone Ontology-based Informa-
tion Systems (SOISs) and Ontology-based Data Integration Systems (ODISs).

In both SOISs and ODISs, all the knowledge assets administered by the
system is represented by a DL knowledge base (KB).

In the former a materializing approach is adopted. More specifically, in a
SOIS the KB is constituted by a TBox, which is a set of assertions representing
intensional knowledge, and an ABox, representing extensional knowledge. One
possible and often used technical solution for storing the assertions in the ABox
is adopt a relational database [41, 81, 93]. This solution allows for considering
the ABox as an accessible and modifiable set of extensional assertions.

The latter offers a more complex scenario. As for SOISs, a formal concep-
tualization of the domain is given by means of a TBox expressed in a suitable
DL, while the extensional level of the system is represented by two compo-
nents: the set of independent and heterogenous data sources to be accessed,
which are commonly handled by Relational Database Management Systems,
and the mapping, which is a set of mapping assertions that specify how data
at the source correspond to instance of the elements in the TBox [95]. Hence,
in realizing ODISs, the virtual approach is adopted.

By referring to the so-called functional view of knowledge representation [75],
OISs should be able to perform two kinds of operations, called ASK, which are
operations used to extract information from the knowledge base, and TELL,
which are operations aiming at changing the knowledge base according to new
knowledge acquired over the domain.

For providing ASK operations, in case of SOISs, the systems have to provide
well known reasoning services, as instance checking and query answering [30,
31, 60, 87, 88]. In case of ODISs, these services became more complex, since
one has to consider also the mappings during the process. Concerning this
point, the notion of Ontology-Based Data Access (OBDA) [95, 101] has been
recently proposed. In this setting, the query answering service amounts to
process a query expressed in terms of the TBox alphabet, and to compute its
answer on the basis of the knowledge specified by the TBox, the mapping, and

1http://www.w3.org/TR/owl2-overview/

http://www.w3.org/TR/owl2-overview/


6 Chapter 1. Introduction

the data which are stored in autonomous databases. Therefore, we use just
“query answering” for referring to ASK operations in case of SOISs, while we
use “OBDA” for indicating ASK operations in case of ODISs.

As said above, TELL operations are related to the need of changing the
KB in order to reflect a change in the domain of interest the KB is supposed
to represent. In other words, TELL operations should be able to cope with
the update of the KB. While ASK operations over OISs have been investigated
in detail by the scientific community, existing otology-based systems do not
provide explicit services for KB evolution. Nevertheless, many recent papers
demonstrate that the interest towards a well-defined approach to KB evolution
is growing significantly [33, 40, 45, 78, 109]. Generally speaking, updating a KB
means adding or deleting assertions from the KB with the aim of sanctioning
that a set of properties are respectively true or non-true in the state resulting
from the change.

In dealing with evolution in SOISs, one of the major challenges is related
to inconsistency management, that is how to react to the case where the set of
properties specified in an update is inconsistent with the current knowledge.
In addition, in defining a change operator the need of keeping the distance
between the original KB and the KB resulting from the application of the
evolution operator minimal is commonly perceived. When we are dealing with
ODISs, the update problem is augmented by the problem of how to modify
the data source in order to reflect changes.

Commonly, the TBox used in an OIS is usually a high-quality represen-
tation of the domain, designed in such a way to avoid inconsistencies in the
modeling of concepts and relationships, i.e., it is usually a consistent theory.
On the contrary, the assertions in the ABox in general derive from various au-
tonomous sources which are independent on the conceptualization represented
by the TBox, and therefore may contain data which are not coherent with
it. Also, as said earlier, an update of the KB reflects new information on in-
dividuals in the domain, and this new information may contradict what was
known about the individuals in the current state. From the above considera-
tions, we conclude that, in the described scenario, one have to deal with both
ASK operations and TELL operations in case the KB handled by the system is
inconsistent,

In conclusion, for providing a complete analysis of OISs one needs to face
with the following issues:

without inconsistency with inconsistency
SOIS

ASK: answering queries posed answering queries posed
over a consistent KB over an inconsistent KB

TELL: updating a consistent KB updating an inconsistent KB
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ODIS
ASK: OBDA over a consistent OBDA over an inconsistent

ODIS ODIS

TELL: updating a consistent updating an inconsistent
ODIS ODIS

In this thesis we address all the issues related to SOISs, and leave the case
of ODISs to future investigations. Moreover, motivated by the fact that in real
worlds domain the size of extensional information is generally very large, in this
thesis we focus on the logics of the DL-Lite family [31, 95]. These logics present
the distinguishing characteristic of enabling first-order (FOL) rewritability of
query answering of unions of conjunctive queries (UCQs). This means that to
answer a UCQ q inDL-Lite it is possible to first rewrite q into a first-order query
qr, only on the basis of the knowledge specified in the TBox, and then evaluate
qr over the ABox, which can be seen as a plain database. FOL-rewritability
of UCQs is a notable property, since many practical applications require the
expressivity of UCQs for query answering, and their FOL-rewritability allows
for delegating the management of the ABox to a relational DBMS, because
the FOL queries produced by the rewriting process are directly translatable
into SQL. In other words, in this way one can reduce a form of reasoning with
incomplete information, i.e., query answering over a KB, to classical evaluation
of an SQL query. Notably, the ABox does not need to be touched during the
rewriting phase, and no data preprocessing is needed (as for example required
in [41, 64]). This turns out to be crucial, for instance, in all those applications
in which KBs, and in particular their intensional component, are used to access
data stored in external repositories, such as in OBDA.

1.1 Contributions of the thesis

In this thesis, we study the topic of the update of DL KB at the instance
level and we address the topic of management of inconsistency in that cases
where the TBox, alone, is consistent, while the ABox may contain information
which contradicts assertions entailed by the TBox. In what follows, we briefly
summarize the main contributions we provide.

(i) We presentDL-LiteA,id,den a new logic of theDL-LiteA family [31, 95], and
we show that reasoning tasks such as KB satisfiability and conjunctive
query answering can be managed efficiently with respect to the size of the
ABox. We support this result by providing algorithms for both checking
satisfiability of KBs expressed in DL-LiteA,id,den and answering union
of conjunctive queries posed over a DL-LiteA,id,den-KB that run in AC0

with respect to the size of the ABox. Moreover, we provide an algorithm
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for detecting those assertions in the ABox which contradict assertions
belonging to the TBox.

(ii) We study the problem of updating consistent DL knowledge bases at the
instance level, i.e., we focus on the cases where the initial KB is consistent,
and we enforce the condition that the KB resulting from the update of
a KB has the same TBox as the original KB. We analyze both the cases
in which the change operation aims at inserting new knowledge, and in
which the change operation aims at deleting parts of knowledge. We
present an excursus on the update approaches reported in literatures and
we propose update semantics for both insertion and deletion. We show
that the proposed semantics exhibit several desirable properties. Then,
we analyze the problem in the context of DL-LiteA,id,den and we provide
algorithms for both insertion and deletion that compute the result of the
update in polynomial time with respect to the size of the ABox.

(iii) We discuss how to deal with inconsistencies in querying DL KBs, in par-
ticular by addressing the problem of consistent query answering [36]. We
present four inconsistency-tolerant semantics and we analyze these by
highlighting strengths and weaknesses of each semantics. Moreover, we
show that two of these semantics are not tractable in DL-LiteA,id,den,
while in the other two query answering is FOL-rewritable. Hence, we
provide sound and complete query rewriting techniques under such se-
mantics.

(iv) Finally, we study the problem of updating inconsistent KBs. We pro-
pose a semantics suitable for this purpose, and we analyze its properties.
Moreover, we provide algorithms for updating possibly inconsistent KBs
expressed in DL-LiteA,id,den with both insertion and deletion, and we
prove that they compute the result of the update in polynomial time
with respect to the size of the ABox.

1.2 Organization of the thesis

The thesis is organized as follows. In Chapter 2 we present some theoretical
background. In particular, we present Description Logics and some of the issues
related to knowledge bases expressed in such logics. Moreover, we illustrate
the query languages which we deal with in the thesis, and present some basic
notions needed for our dissertation. In Chapter 3 we conclude the preliminary
part of the thesis by presenting the DL-Lite family of Description Logics [31],
and the approaches based on such DLs to querying consistent KBs.

In Part II we formally present a new logic of the DL-Lite-family called
DL-LiteA,id,den. In Chapter 4 present syntax and semantics of such logic. In
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Chapter 5, we provide algorithms for KB satisfiability and query answering
over KB expressed in this language. We show that these algorithms run in
AC0 with respect to the size of the ABox.

In Part III, we study the problem of updating DL KBs at the instance level.
In Chapter 6, we propose a semantics from updating consistent KB and we
survey the most important update and revision approaches proposed in litera-
ture. In Chapter 7, we provide algorithms for computing the result of updating
KBs expressed in DL-LiteA,id,den coherently with our update semantics, and
we show that such algorithms run in polynomial time with respect to the size
of the ABox. Part of the work presented in these chapters is published in [73].

In Part IV, we address the problem of consistent query answering. In
Chapter 8 we provide four inconsistency-tolerant semantics, and we study the
tractability of this semantics and the properties which characterize them. In
Chapter 9 we give a complete complexity characterization of consistent query
answering in DL-LiteA,id,den under the semantics presented in Chapter 9. In
this chapter we also provide effective algorithms for query answering by rewrit-
ing under two of our inconsistency-tolerant semantics in DL-LiteA,id,den. A
preliminary version of this material appeared in [66, 68, 69].

In Part V, we study the problem of updating inconsistent DL KBs. In
Chapter 10 we propose our inconsistency-tolerant update semantics, and we
discuss some properties of such a semantics. In Chapter 11 we present algo-
rithms for computing the result of updating possibly inconsistentDL-LiteA,id,den-
KBs under our semantics. We show that these algorithms are correct and that
they run in polynomial time with respect to the size of the ABox. The work
presented in the above chapters is based on [74].





Chapter 2

Formal framework for
Description Logic Knowledge
Bases

In this chapter, we introduce a formal framework description logic knowledge
bases (KBs) underlying our investigation on evolution and inconsistency man-
agement.

We start by giving some preliminary notions of Computational Complexity
which are useful for the rest of this work. Then, we present Description Logics
and some of the issues related to knowledge bases expressed in these logics.

2.1 Preliminaries on computational complexity

We assume that the reader is familiar with basic notions about computational
complexity, as defined in standard textbooks [50, 65, 89]. In this work, we will
refer to the following complexity classes:

AC0 ( LogSpace ⊆ NLogSpace ⊆ PTime ⊆ NP ⊆ ExpTime.

We have depicted the known relationships between these complexity classes.
In particular, it is known that AC0 is strictly contained in LogSpace, while
it is open whether any of the other depicted inclusions is strict. However, it is
known that PTime ( ExpTime. Also, we will refer to the complexity class
coNP, which is the class of problems that are the complement of a problem in
NP.

In what follows, we only comment briefly on the complexity classes AC0,
LogSpace, and NLogSpace.

A decision problem belongs to LogSpace if it can be decided by a two-
tape deterministic Turing machine that receives its input on the read-only

11



12 Chapter 2. Formal framework for Description Logic Knowledge Bases

input tape and uses a number of cells of the read/write work tape that is at
most logarithmic in the length of the input. The complexity class NLogSpace
is defined analogously, except that a non-deterministic Turing machine is used
instead of a deterministic one. A typical problem that is in LogSpace (but
not in AC0) is undirected graph reachability [100]. A typical problem that is
in NLogSpace is directed graph reachability.

For the complexity class AC0, we provide here only the basic intuitions,
and refer to [108] for the formal definition, which is based on the circuit model.
Intuitively, a problem belongs to AC0 if it can be decided in constant time using
a number of processors that is polynomial in the size of the input. A typical
example of a problem that belongs to AC0 is the evaluation of First-Order
Logic (i.e., SQL) queries over relational databases, where only the database is
considered to be the input, and the query is considered to be fixed [1]. This
fact is of importance in the context of what discussed in this work, since the
low complexity in the size of the data of the query evaluation problem provides
an intuitive justification for the ability of relational database engines to deal
efficiently with very large amounts of data. Also, whenever a problem is shown
to be hard for a complexity class that strictly contains AC0 (such as LogSpace
and all classes above it), then it cannot be reduced to the evaluation of First-
Order Logic queries.

2.2 Description Logic KBs

Description Logics (DLs) [7] are a family of knowledge representation languages
that can be used to represent the knowledge of a domain of interest in a
structured and formally well-understood way.

Description Logics represent the domain of interest in terms of objects,
i.e., individuals, concepts, which are abstractions for sets of objects, and roles,
which denote binary relations between objects. In addition, some DLs distin-
guish concepts from value-domains, which denote sets of values, and role from
attribute, which denote binary relations between object and values.

In this section, we only illustrate some typical constructors commonly al-
lowed by DLs.

2.2.1 DL Expressions

We consider an alphabet comprising symbols for atomic concept, value-domains,
atomic roles, attributes, and constants. We denote with Γ the alphabet of
constants, which we assume partitioned into ΓP , containing symbols for pred-
icates, i.e., atomic concepts, atomic roles, attributes and value-domains, and
ΓC , containing symbols for individual (object and value) constants. Since the
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DLs that we consider in this work distinguish between object and value con-
stants, we partition the set ΓC into two disjoint sets ΓO, which is the set of
constants denoting objects, and ΓV , which is the set of constants denoting val-
ues. The value types that we consider in this work are those corresponding to
the data types adopted by the Resource Description Framework (RDF)1, such
as xsd:string, xsd:integer, etc. Thus value type represents sets of values
that are pairwise disjoint. In the rest of this work, we denote such predefined
valued-domains by T1, . . . , Tn.

Complex concept expressions are constructed starting from atomic con-
cepts by applying suitable operators. Analogously, for complex role and com-
plex attribute expressions. Different DLs allow for different operators in the
constructs.

We introduce now syntax and semantics of concept, role, and attribute
expressions. The syntax of DL expressions is defined by the the following
rules:

B −→ A | ∃Q | δ(U)
C −→ >C | B | ¬C | C u · · · u C | C t · · · t C |

∃Q.C | ∀Q.C | δF (U) | {o}
E −→ ρ(U)
F −→ >D | T1 | · · · | Tn
Q −→ P | P−
R −→ Q | ¬Q
V −→ U | ¬U

where A denotes an atomic concept, P an atomic role, U an atomic attribute
(or simply attribute), and >C the universal concept. An atomic concept, (resp.,
atomic role, or an atomic attribute) is a concept (resp., role or attribute)
denoted by a name.

B and Q denote respectively basic concepts and basic roles. C denotes an
arbitrary (i.e., either atomic, basic or complex) concept, R an arbitrary role,
and V an arbitrary attribute. E denotes a value-domain, i.e., the range of
an attribute, F a value-domain expression, T1, . . . , Tn are unbounded pairwise
disjoint predefined value-domains, and >D the universal value-domain. ¬C
denotes the negation of an arbitrary concept C. The concept ∃Q, also called
unqualified existential restriction, denotes the domain of a role Q, i.e., the set
of objects that Q relates to some object. Similarly, δ(U) denotes the domain
of an attribute U , i.e., the set of objects that U relates to some value. The
concept ∃Q.C, also called qualified existential restriction, denotes the qualified
domain of Q w.r.t. C, i.e., the set of objects that Q relates to some instance of
C. Similarly, δF (U) denotes the qualified domain of U w.r.t. a value-domain F ,

1http://www.w3.org/RDF/
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AI ⊆ ∆ I
O

(∃Q)I = { o | ∃o′. (o, o′) ∈ QI }
(δ(U))I = { o | ∃v. (o, v) ∈ UI }

(∃Q.C)I = { o | ∃o′. (o, o′) ∈ QI ∧ o′ ∈ CI }
(δF (U))I = { o | ∃v. (o, v) ∈ UI ∧ v ∈ F I }
(∀Q.C)I = { o | ∀o′. (o, o′) ∈ QI → o′ ∈ CI}
(ρ(U))I = { v | ∃o. (o, v) ∈ UI }

P I ⊆ ∆ I
O ×∆ I

O

(P−)I = { (o, o′) | (o′, o) ∈ P I }
{o} = {o}I ⊆ ∆ I

O , ]{o}I = 1

>I
C = ∆ I

O

(¬B)I = ∆ I
O \BI

>I
D = ∆ I

V

T I
i = val(Ti)

(¬Q)I = (∆ I
O ×∆ I

O ) \QI

UI ⊆ ∆ I
O ×∆ I

V

(¬U)I = (∆ I
O ×∆ I

V ) \ UI

(C1 u · · · u Cn)I = CI
1 ∩ · · · ∩ CI

n

(C1 t · · · t Cn)I = CI
1 ∪ · · · ∩ CI

n

Figure 2.1: Semantics of the DL constructs considered in this work

i.e., the set of objects that U relates to some value in F . {o} denotes nominals,
i.e., concepts {o} representing a singleton set consisting of the individual o.
ρ(U) denotes the range of an attribute U , i.e., the set of values to which U
relates some object. Note that the range ρ(U) of U is a value-domain, whereas
the domain δ(U) of U is a concept. P− denotes the inverse of an atomic role,
and ¬Q denotes the negation of a basic role. In the following, when Q is a
basic role, the expression Q− stands for P− when Q = P , and for P when
Q = P−. Finally, ¬U denotes the negation of an atomic attribute. All these
symbols will be used with subscripts, when needed.

The semantics of a DL KB is given in terms of First-Order Logic (FOL)
interpretations. All such interpretations agree on the semantics assigned to
each predefined value-domain Ti and to each constant in ΓV . In particular,
each predefined valued-domain Ti is interpreted as the set val(Ti) of values of
the corresponding RDF data type, and each constant ci ∈ ΓV is interpreted
as one specific value, denoted val(ci), in val(Ti). Note that, the data types
T1, . . . , Tn are pairwise disjoint, i.e., val(Ti) ∩ val(Tj) = ∅, for i 6= j.

Based on the above observations, we can now define the notion of interpre-
tation. An interpretation I = (∆I , ·I) consists of a nonempty interpretation
domain ∆I , which is the disjoint union of two non-empty sets: ∆ I

O , called the
domain of objects, and ∆ I

V , called the domain of values, and an interpretation
function, i.e., a function that assigns an element of ∆I to each constant in Γ,
a subset of ∆I to each concept and value-domain, and a subset of ∆I ×∆I to
each role and attribute, in such a way that the following holds:

• for each v ∈ ΓV , vI = val(v);

• for each o ∈ ΓO, oI ∈ ∆ I
O .

All the DLs discussed in this work follow the unique name assumption (UNA),
and, therefore, we assume that, for each a1, a2 ∈ Γ, a1 6= a2 implies aI1 6= aI2.
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The semantics of all the constructs that are relevant for this work is shown in
Figure 2.1, illustrating the rules for the interpretation function ·I .

2.2.2 DL Knowledge Bases

Given a DL language L, an L-KB K = 〈T ,A〉 over the alphabet Γ is a pair
formed by a set T of intensional assertions, i.e., axioms specifying general
properties of concepts, roles, and relations, expressed in L, called TBox, and
a set A of extensional assertions, i.e., axioms about individual objects, over
Γ expressed in L, called ABox. In this work we consider only the case where
the ABox is constituted by extensional assertions built over atomic predicates,
and therefore we omit to refer to L when we talk about ABox assertions.

Definition 1. A DL knowledge base (KB) over the alphabet Γ is a pair K =
〈T ,A〉, where:

• T , called the TBox of K, is a finite set of intensional assertions over Γ;

• A, called the ABox of K, is a finite set of extensional assertions over Γ
of the form:

A(a1) (concept membership assertion);
P (a1, a2) (role membership assertion);
U(a1, v) (attribute membership assertion);

where A, P , and U are symbols in ΓP denoting respectively an atomic
concept symbol, an atomic role symbol, and an atomic attribute symbol,
a1, a2 are constants in ΓC denoting objects, and v is a constant in ΓV
denoting a value.

Informally, a concept membership assertion specifies that an object is an
instance of an atomic concept. Analogously, the other types of membership
assertions specify instances of atomic roles and attributes.

We now specify formally the form of a TBox. We consider the following
four kinds of TBox assertions:

• Inclusion assertions between concepts, stating that all instances of one
concept are also instances of another concept. Analogous assertions spec-
ify inclusions between roles, and inclusions between attributes.

• Inclusion assertions between value domains, stating that all the values in
one value-domain are also in another value-domain.

• Functional assertions, stating that a role or an attribute is functional.

• Identification assertions, stating that a set of properties identifies in-
stances of concepts.
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An inclusion assertion has one the forms

Cl v Cr (concept inclusion);
Ql v Qr (role inclusion);
Ul v Ur (attribute inclusion);
E v F (value-domain inclusion).

Note that, in the concept inclusion assertions, Cl (resp., Cr) denotes a concept
used in the left-hand side (resp., right-hand side) of the inclusion. The distinc-
tion between Cl and Cr is motivated by the fact that the constraints that the
various DLs put on the form of concept expressions appearing in one side of the
inclusion are often different with respect to those in the other side. Analogous
observation holds for both role and relation inclusions assertions. Intuitively,
an inclusion assertion states that, in every model of T , each instance of the
left-hand side expression is also an instance of the right-hand side expression.

A functionality assertion has one of the forms

(funct Q) (role functionality);
(funct U) (attribute functionality).

Intuitively, a functionality assertion states that the binary relation represented
by a role (respectively, an attribute) is a function.

An identification assertion makes use of the notion of path. A path is an
expression built according to the following syntax,

π −→ S | D? | π ◦ π,

where S denotes a basic role (i.e., an atomic role or the inverse of an atomic
role), an atomic attribute, or the inverse of an atomic attribute, and π1 ◦ π2
denotes the composition of the paths π1 and π2. Finally,D denotes an arbitrary
concept or a value domain, and the expressionD? is called a test relation, which
represents the identity relation on instances of D. Test relations are used in
all those cases in which one wants to impose that a path involves instances of
a certain concept.

A path π denotes a complex property for the instances of concepts: given
an object o, every object that is reachable from o by means of π is called a
π-filler for o. Note that for a certain o there may be several distinct π-fillers,
or no π-fillers at all.

If π is a path, the length of π, denoted length(π), is 0 if π has the form
D?, is 1 if π has the form S, and is length(π1) + length(π2) if π has the form
π1 ◦ π2. With the notion of path in place, we are ready for the definition of
identification assertion, which is an assertion of the form

(id C π1, . . . , πn),
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where C is an arbitrary concept, n ≥ 1, and π1, . . . , πn (called the components
of the identifier) are paths such that length(πi) ≥ 1 for all i ∈ {1, . . . , n}.
Intuitively, such a constraint asserts that for any two different instances o, o′

of C, there is at least one πi such that o and o′ differ in the set of their πi-
fillers. The identification assertion is called local if length(πi) = 1 for at least
one i ∈ {1, . . . , n}. The term “local” emphasizes that at least one of the paths
has length 1 and thus refers to a local property of B.

We specify the semantics of various TBox assertions mentioned above by
defining when an interpretation I satisfies a TBox assertion α, denoted I |= α..

• An interpretation I satisfies an inclusion assertion

Cl v Cr , if Cl I ⊆ Cr I ;

Ql v Qr , if Ql I ⊆ Qr I ;
Ul v Ur, if UlI ⊆ UrI ;
E v F, if EI ⊆ F I ;

• An interpretation I satisfies a role functionality assertion (funct Q), if
for each o1, o2, o3 ∈ ∆ I

O

(o1, o2) ∈ QI and (o1, o3) ∈ QI implies o2 = o3.

• An interpretation I satisfies an attribute functionality assertion (funct U),
if for each o ∈ ∆ I

O and v1, v2 ∈ ∆ I
V

(o, v1) ∈ U I and (o, v2) ∈ U I implies v1 = v2.

• In order to define the semantics of identification assertions, we first define
the semantics of paths. The extension πI of a path π in an interpretation
I is defined as follows:

– if π = S, then πI = SI ,

– if π = D?, then πI = {(o, o) | o ∈ DI},
– if π = π1 ◦ π2, then πI = πI1 ◦ πI2 , where ◦ denotes the composition

operator on relations.

As a notation, we write πI(o) to denote the set of π-fillers for o in I,
i.e., πI(o) = {o′ | (o, o′) ∈ πI}. Then, an interpretation I satisfies an
identification assertion (id C π1, . . . , πn) if for all o, o′ ∈ CI , πI1(o) ∩
πI1(o′) 6= ∅ ∧ · · · ∧ πIn(o) ∩ πIn(o′) 6= ∅ implies o = o′.

We are now ready to complete the definition of the semantics of DL KBs.
For this purpose, the basic definitions are as follows:
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• An interpretation I is a model of a TBox assertion α if I satisfies α,
according to what is reported above.

• An interpretation I is a model of (or equivalently satisfies) a membership
assertion

A(a), if aI ∈ AI ;
P (a1, a2), if (aI1, a

I
2) ∈ P I ;

U(a, c), if (aI , cI) ∈ U I .

Let I be an interpretation. We use I |= α to denote that I is a model
for the assertion α. A model of a KB K = 〈T ,A〉 is an interpretation I that
is a model of all assertions in T and A. A KB is satisfiable if it has at least
one model, unsatisfiable otherwise. For a KB, we also use the term consistent
(resp. inconsistent) to mean satisfiable (resp. unsatisfiable). We use Mod(K)
to denote the set of all models of K. A KB K logically implies (an assertion)
α, written K |= α, if all models of K are also models of α. Let A′ be a set of
ABox assertions, we say that A′ is T -consistent if the KB 〈T ,A′〉 is consistent,
T -inconsistent otherwise.

The deductive closure of a TBox T in a language L, denoted cl(T ), is the
set of all TBox assertions α in L, such that T |= α. For a consistent KB
K = 〈T ,A〉, the closure of A with respect to T , denoted clT (A), is the set of
all ABox assertions β that are formed with individuals in A, and are logically
implied by 〈T ,A〉. We say that a TBox T is closed if T = cl(T ), analogously,
we say that an ABox A is closed with respect to a TBox T if A = clT (A).

Given an alphabet Γ, we denote with HB(Γ) the Herbrand Base of Γ, i.e.,
the set of atomic ABox assertions (ground atoms) that can be built over the
signature Γ.

Before ending this section, we illustrate some notable properties of the
closure of an ABox with respect to an L-TBox. Let 〈T ,A〉 be an L-KB, A′ be
an ABox, and β be an ABox assertion. Then:

− A ⊆ clT (A);

− if A ⊆ A′ then clT (A) ⊆ clT (A′);

− clT (A) = clT (clT (A));

− if 〈T ,A〉 |= β then β ∈ clT (A);

− 〈T ,A〉 and 〈T , clT (A)〉 are two logically equivalent L-KBs, i.e.,Mod(〈T ,A〉)
= Mod(〈T , clT (A)〉).

All the above properties are easy to prove.
Finally, we end the section by highlighting an important property of the

DLs considered in this work. We recall that a logic is called monotonic if the
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addition of new axioms to a theory based on such logic never leads to the
loss of any theorem proved in this theory. By looking at the definition of the
DL introduced in this section, and by observing that they are all subset of
the First Order Logic with equalities, we conclude that they are all monotonic.
This property will be used extensively in the subsequent chapters of this thesis.

2.3 Queries over DL KBs

We are interested in queries over DL KBs. Similarly to the case of relational
databases, the basic query class that we consider is the class of unions of
conjunctive queries (UCQ), which is a subclass of the class of FOL-queries.

2.3.1 Syntax of queries

A FOL-query q over a DL KB K (resp., TBox T ) is a, possibly open, FOL
formula ϕ(~x) whose predicate symbols are atomic concepts, roles, or attributes
of K (resp., T ). The free variables of ϕ(~x) are those appearing in ~x, which is a
tuple of (pairwise distinct) variables. In other words, the atoms of ϕ(~x) have
the form A(x), P (x, y), U(x, y), or x = y, where A is an atomic concept, P is
an atomic role, and U is an attribute in K, and x, y are either variables in ~x
or constants in Γ. The arity of q is the arity of ~x. A query of arity 0 is called
a boolean query. When we want to make the arity of a query q explicit, we
denote the query as q(~x).

A conjunctive query (CQ) q(~x) over a DL KB is a FOL query of the form

∃~y. conj(~x, ~y),

where ~y is a tuple of pairwise distinct variables not occurring among the free
variables ~x, and where conj(~x, ~y) is a conjunction of atoms. The variables ~x
are also called distinguished and the (existentially quantified) variables ~y are
called non-distinguished.

A union of conjunctive queries (UCQ) is a FOL query that is the disjunc-
tion of a set of CQs of the same arity, i.e., it is a FOL formula of the form:

∃~y1. conj1(~x, ~y1) ∨ · · · ∨ ∃~yn. conjn(~x, ~yn).

We will often refer to a UCQs as a set of CQs.

2.3.2 Semantics of queries in one interpretation

Given an interpretation I = (∆I , ·I), the FOL query q = ϕ(~x) is interpreted
in I as the set qI of tuples ~o ∈ ∆I×· · ·×∆I such that the formula ϕ evaluates
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to true in I under the assignment that assigns each object in ~o to the corre-
sponding variable in ~x [1]. We call qI the answer to q over I. Notice that the
answer to a boolean query is either the empty tuple, “()”, considered as true,
or the empty set, considered as false. We will use to denote that a boolean
query evaluates to true over an interpretation I with I |= q.

We remark that a relational database (over the atomic concepts, roles, and
attributes) corresponds to a finite interpretation. Hence the notion of answer to
a query introduced here is the standard notion of answer to a query evaluated
over a relational database.

Since in general a DL KB has many models, and we cannot single out
a unique interpretation (or database) over which to answer the query, the
notion of answer to a query introduced above is not sufficient to capture the
situation where a query is posed over a KB. Instead, the KB determines a set of
interpretations, i.e., the set of its models, which intuitively can be considered as
the set of databases that are “compatible” with the information specified in the
KB. Given a query, we are interested in those answers to this query that depend
only on the information in the KB, i.e., that are obtained by evaluating the
query over a database compatible with the KB, but independently of which
is the actually chosen database. In other words, we are interested in those
answers to the query that are obtained for all possible databases (including
infinite ones) that are models of the KB. This corresponds to the fact that the
KB conveys only incomplete information about the domain of interest, and
we want to guarantee that the answers to a query that we obtain are certain,
independently of how we complete this incomplete information. This leads us
to the following definition of certain answers to a query over a KB.

Definition 2. Let K be a DL KB and q a UCQ over K. A tuple ~c of constants
appearing in K is a certain answer to q over K, written ~c ∈ cert(q,K), if for
every model I of K, we have that ~cI ∈ qI .

In the case when q is a boolean query, then we say that q evaluates to true
over K, written K |= q, if q evaluates to true over every model of K.

Notice that, in the case where K is an inconsistent KB, the set of certain
answers to a (U)CQ q is the finite set of all possible tuples of constants whose
arity is the one of q. We denote such a set by AllTup(q,K).

2.4 Reasoning over KBs

In studying DL KBs, we are interested in several reasoning services, including
the traditional DL reasoning services. Specifically, we consider the following
problems for DL KBs:
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• KB satisfiability, i.e., given a KB L, verify whether K admits at least one
model.

• Query answering, i.e., given a KB K and a query q (either a CQ or a
UCQ) over K, compute the set cert(q,K).

The following decision problem, called recognition problem, is associated
to the query answering problem: given a KB K, a query q (either a CQ or a
UCQ), and a tuple of constants ~a of K, check whether ~a ∈ cert(q,K). When
we talk about the computational complexity of query answering, in fact we
implicitly refer to the associated recognition problem.

In analyzing the computational complexity of a reasoning problem over
a DL KB, we distinguish between data complexity and combined complex-
ity [107]: data complexity is the complexity measured with respect to the size
of the ABox only, while combined complexity is the complexity measured with
respect to the size of all inputs to the problem, i.e., the TBox, the ABox, and
the query. The data complexity measure is of interest in all those cases where
the size of the intensional level of the KB (i.e., the TBox) is negligible with
respect to the size of the data (i.e., the ABox), as in ontology-based data access
systems [27, 95].

2.5 The interpretation DB(A)
Given a set of ABox assertions A, we denote with DB(A), a specific interpre-
tation, or relational structure, associated to A. More precisely,

Definition 3. Let A be a set of ABox assertions. The interpretation DB(A) =
〈∆DB(A), ·DB(A)〉 is the interpretation defined as follows:

• ∆DB(A) is the non-empty set consisting of the union of the set of all object
constants occurring in A and the set {val(c) | c is a value constant that
occurs in A},

• aDB(A) = a, for each object constant a,

• ADB(A) = {a | A(a) ∈ A}, for each atomic concept A,

• PDB(A) = {(a1, a2) | P (a1, a2) ∈ A}, for each atomic role P , and

• UDB(A) = {(a, val(c)) | U(a, c) ∈ A}, for each atomic attribute U .

We now introduce the notion of witness for a tuple of constants with respect
to a conjunctive query. For a query q′(~x) = ∃~y. conj(~x, ~y), we denote with
conj-set(~x, ~y) the set of atoms corresponding to the conjunction conj(~x, ~y).
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Given a KB K = 〈T ,A〉, a query q′(~x) = ∃~y. conj(~x, ~y) over K, and a tuple ~t
of constants occurring in A, a set of membership assertions G is a witness for
~t w.r.t. q′ if there exists a substitution σ from the variables ~y in conj-set(~t, ~y)
to constants in G such that the set of assertions σ(conj-set(~t, ~y)) is equal to G.
In particular, we are interested in witnesses for a tuple ~t w.r.t. a CQ q′ that
are contained in A. Intuitively, each such witness corresponds to a subset of A
that is sufficient in order to conclude that the formula ∃~y. conj(~t, ~y) evaluates to
true in the interpretation DB(A), and therefore the tuple ~t = ~tDB(A) belongs
to q′DB(A). More precisely, we have that ~t ∈ q′DB(A) if and only if there exists
a witness G of ~t w.r.t. q′ such that G ⊆ A. The cardinality of a witness G,
denoted by |G|, is the number of membership assertions in G.

With this notion in place we give the following definition of image of a
query over an ABox A.

Definition 4. Let A be an ABox and let q be a conjunctive queries. We say
that a set of ABox assertion G ⊆ A is an image of q(~x) in A, if there exists a
tuple ~t ∈ qDB(A) such that G is a witness of ~t with respect to q.

Given an ABox A and a query q, images(q,A), denotes the set of images
of q in A.

If q is a boolean query, we have that a set G ⊆ A is an image of q in A,
if there exists a substitution σ from the variables in q to constants in G such
that the set of atoms in σ(q) is equal to G and the formula σ(q) evaluates to
true in the interpretation DB(A). In case images(q,A) 6= ∅, we say that the
boolean query q is satisfied by A (denoted by 〈∅,A〉 |= q).

Example 1. Let A be the ABox constituted by the following ABox assertions:

{ P (a, a), P (a, b), S(a, c), C(b) }.

Now, let q() be the following boolean query:

q() = ∃x, y, z.P (x, y) ∧ P (y, z).

The set images(q,A) containing the images of q() in A is constituted by the
following sets of ABox assertions:

G1 = { P (a, a), P (a, b) };
G2 = { P (a, a) };
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2.6 The Notion of FOL-rewritability

We now introduce the notion of FOL-rewritability for both satisfiability and
query answering, which will be used in the sequel.

Intuitively, FOL-rewritability of satisfiability (resp., query answering) cap-
tures the property that we can reduce satisfiability checking (resp., query an-
swering) to evaluating a FOL query over the ABox A considered as a relational
database, i.e., over DB(A). The definitions follow.

Definition 5. Satisfiability in a DL L is FOL-rewritable, if for every TBox
T expressed in L, one can effectively compute a boolean FOL query qs, over
the alphabet of T , such that for every non-empty ABox A, the KB 〈T ,A〉 is
satisfiable if and only if qs evaluates to false in DB(A).

Definition 6. Query answering in a DL L is FOL-rewritable if for every UCQ
q and every TBox T expressed over L, one can effectively compute a FOL
query qr over the alphabet of T such that for every non-empty ABox A and
every tuple of constants ~a occurring in A, we have that ~a ∈ cert(q, 〈T ,A〉) if
and only if ~aDB(A) ∈ qDB(A)

r .

We remark that FOL-rewritability of a reasoning problem that involves the
ABox of a KB (such as satisfiability or query answering) is tightly related to
low data complexity of the problem. Indeed, since the FOL query considered
in the above definitions depends only on the TBox (and the query), but not on
the ABox, and since the evaluation of a First-Order Logic query (i.e., an SQL
query without aggregation) over an ABox is in AC0 in data complexity [1],
FOL-rewritability of a problem has as an immediate consequence that the
problem is in AC0 in data complexity. Hence, one way of showing that for
a certain DL L a problem is not FOL-rewritable, is to show that the data
complexity of the problem for the DL L is above AC0, e.g., LogSpace-hard,
NLogSpace-hard, PTime-hard, or even coNP-hard.





Chapter 3

DL-Lite Knowledge Bases

In several areas, such as Enterprise Application Integration, Data Integra-
tion [71], and the Semantic Web [56], clients need to access a shared conceptu-
alization of the intensional level of the application domain in terms to specify
the access to services exported by the system. Ontologies are nowadays con-
sidered as the ideal formal tool to provide such a shared conceptualization. In-
deed, one of their most interesting usages is ontology-based data access, where,
on top of the usual data layer of an information system, a conceptual layer is
superimposed, allowing the client to abstract away from how the information
is actually maintained in the data layer.

While ontologies are the best candidates for realizing the conceptual layer,
relational DBMSs are natural candidates for the management of the data layer.
The combination of these two mechanisms for representing and maintaining
information new paradigm of data management [72]. Indeed, it requires, on
the one hand, dealing with the characteristics of both formalisms, and on the
other hand, addressing properly their interaction in a combined system.

In this chapter we present a family of DLs, called DL-Lite family1, that has
been proposed recently [25, 28, 29, 31, 95] with the aim of addressing issues
related to the ontology-based data management.

One distinguishing feature of the logics of the DL-Lite family is that they
are tightly related to conceptual modeling formalisms and are actually able to
capture their most important features [10].

A further distinguishing feature of such DLs is that query answering over a
KB can be performed as a two step process: in the first step, a query posed over
the KB is reformulated, taking into account the intensional component (the
TBox) only, obtaining a union of conjunctive queries; in the second step such
a union is directly evaluated over the extensional component of the KB (the
ABox). Under the assumption that the ABox is maintained by an RDBMS

1Not to be confused with the set of DLs studied in [6], which form the DL-Litebool family.

25
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in secondary storage, the evaluation can be carried out by an SQL engine,
taking advantage of well established query optimization strategies. Since the
first step does not depend on the data, and the second step is the evaluation
of a relational query over a databases, the whole query answering process is in
AC0 in the size of the data [1], i.e., it has the same complexity as the plain
evaluation of a conjunctive query over a relational database.

The results reported in this chapter are presented in [25, 28, 31, 95].

3.1 The DL-Lite Family

In this section, we introduce the principal DLs belonging to the DL-Lite family.
We start presenting DL-Litecore . All the other members of the DL-Lite fam-
ily extend DL-Litecore with some constructs. In particular, we are interested
in DL-LiteA [95] which extends DL-Litecore with attributes, and allows for
specifying functional restrictions on role and attributes and role and attribute
inclusion assertions. Finally, we present DL-LiteA,id [25], a DL of the DL-Lite
family, that is also equipped with identification constraints [32]. Other DLs
that are member of the DL-Lite family are DL-LiteF and DL-LiteR [31]. We
will show in what follows that in these DLs the trade-off between expressive
power and computational complexity of reasoning is optimized towards the
needs that arise in ontology-based data access.

Like in any other logic, DL-LiteA expressions are built over an alphabet.
Here, we refer to an alphabet Γ as described in Section 2.2.

Before presenting DL-Lite-KBs formally, we need to introduce some pre-
liminary notions. An atomic role P (resp., an atomic attribute U) is called an
identifying property in a DL TBox T , if
− T contains a functionality assertion (funct P ) or (funct P−) (resp.,

(funct U)), or
− P (resp., U) appears (in either direct or inverse direction) in some path

of an identification assertion in T .
We say that an atomic role P (resp., an atomic attribute U) appears positively
in the right-hand side of an inclusion assertion α if α has the form Q v P
or Q v P−, for some basic role Q (resp., U ′ v U , for some atomic attribute
U ′). An atomic role P (resp., an atomic attribute U) is called primitive in a
TBox T , if it does not appear positively in the right-hand side of an inclusion
assertion of T .

As shown below, every DL of the DL-Lite family allows negative concepts,
negative roles, and negative attribute to occur only on the right-hand side of
inclusion assertions. This syntactic characteristic allows us to distinguish in-
clusion assertions in a DL-Lite TBox as follows. An inclusion assertion that
does not contain the symbol ’¬’ in its right-hand side is called a positive in-



3.1. The DL-Lite Family 27

clusion (PI), while an inclusion assertion that contains the symbol ’¬’ in its
right-hand side is called a negative inclusion (NI).

3.1.1 DL-Litecore

DL-Litecore is the core language for the whole family. In DL-Litecore the alpha-
bet Γ comprises symbols only for atomic concepts, atomic roles, and constants
denoting objects. In other terms, DL-Litecore does not distinguish objects from
values, and, therefore, does not distinguish roles from attributes. In the follows
we implicity refer to an alphabet Γ.

Definition 7. A DL-Litecore -KB is a pair K = 〈T ,A〉, where:

• the TBox T is a finite set of intensional assertions over ΓP partitioned
into two sets Tinc and Tdisj , where:

– Tinc is a finite set of positive inclusion assertions of the form

A v A′, A v ∃Q,
∃Q v A′, ∃Q v ∃Q′;

– Tdisj is a finite set of negative inclusion assertions of the form

A v ¬A′, A v ¬∃Q,
∃Q v ¬A′, ∃Q v ¬∃Q′;

where A and A′ denote atomic concepts and Q and Q′ denote basic roles,
i.e., roles that are either an atomic role or the inverse of an atomic role.

• the ABox A is a finite set of extensional assertions of the form:

A(a) P (a, b)

were A and P denoting respectively an atomic concept symbol, and an
atomic role symbol, and a and b are constants.

3.1.2 DL-LiteA

We now present the DL of the DL-Lite family, called DL-LiteA. Such a DL
is novel with respect to DL-Litecore , in that it takes the distinction between
objects and values into account, and therefore distinguishes:

• concepts from value-domains: while a concept is abstraction for a set of
objects, a value-domain, also known as concrete domain [80], denotes a
set of (data) values,
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• attributes from roles: while a role denotes a binary relation between
objects, a (concept) attribute denotes a binary relation between objects
and values.

Moreover, DL-LiteA extends DL-Litecore with the ability of specifying inclusion
assertions between roles and attributes, and with the ability of specifying func-
tionality on roles and attributes. As we will see below, in DL-LiteA suitable
limitations in the combinations of the TBox assertions are imposed in order to
keep the complexity of reasoning low.

Definition 8. A DL-LiteA-KB over an alphabet Γ is a pair K = 〈T ,A〉, where:

• the TBox T is a finite set of intensional assertions over ΓP partitioned
into four sets Tinc, Ttype, Tdisj , and Tfunct where:

– Tinc is a finite set of positive inclusion assertions of the form:

B v B′ (inclusions between concepts),
Q v Q′ (inclusions between roles),
U v U ′ (inclusions between attributes);

– Ttype is a finite set of positive inclusion assertions of the form:

E v F (inclusions between value-domains);

– Tdisj is a finite set of negative inclusion assertions of the form:

B v ¬B′ (disjunctions between concepts),
Q v ¬Q′ (disjunctions between roles),
U v ¬U ′ (disjunctions between attributes);

– Tfunct is a finite set of functionality assertions of the form:

(funct Q) (role functionality),
(funct U) (attribute functionality);

where B and B′ denote basic concepts, E denotes a basic value-domain,
F a value-domain expression, Q and Q′ basic roles, U and U ′ denote
attributes;

• the ABox A is a finite set of extensional assertions over Γ of the form:

A(a) P (a, b) U(a, v)

were A, P , and U in ΓP denoting respectively an atomic concept symbol,
an atomic role symbol, and an attribute symbol, and a and b are constants
in ΓO and v is a constant in ΓV ;
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• such that each identifying property in T is primitive in T .

Intuitively, the condition imposed over the TBox assertions states that, in
DL-LiteA TBoxes, roles and attributes occurring in functionality assertions
cannot be specialized. This limitation ensures the tractability of reasoning in
this logic [95].

3.1.3 DL-LiteA,id

We now present DL-LiteA,id a specific DL of the DL-Lite family, which extend
DL-LiteA with identification assertions [31].

Definition 9. A DL-LiteA,id-KB over an alphabet Γ is a pair K = 〈T ,A〉,
where:

• the TBox T is a finite set of intensional assertions over ΓP partitioned
into five sets Tinc, Ttype, Tdisj , Tfunct, and Tid where:

– Tinc, Ttype, Tdisj , and Tfunct are as in Definition 8;

– Tid is a finite set of identification assertions of the form:

(id B π1, . . . , πn);

where B denotes a basic concept ;

• the ABox A is a finite set of extensional assertions over Γ of the form:

A(a) P (a, b) U(a, v)

were A, P , and U in ΓP denoting respectively an atomic concept symbol,
an atomic role symbol, and an attribute symbol, and a and b are constants
in ΓO and v is a constant in ΓV ;

• such that the following conditions are satisfied:

(1) Each identifying property in T is primitive in T .
(2) Each concept appearing in an identification assertion of T (either as

the identified concept, or in some test relation of some path) is a
basic concept, i.e., a concept of the form A, ∃Q, or δ(U).

(3) Each identification assertion in T is local, i.e., it has at least one path
πi such that length(πi) = 1.

Here, the condition stated at point (1) says that, in DL-LiteA,id TBoxes, roles
and attributes occurring in functionality assertions or in paths of identification
constraints cannot be specialized.
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3.2 Satisfiability and query answering over DL-Lite
KBs

In this section, we present the main results on satisfiability and query answer-
ing in the DLs belonging to the DL-Lite family. In particular, we show that
both problems are FOL-rewritable, and hence in AC0 with respect to data
complexity. Moreover, we show that KB satisfiability is in PTime with re-
spect to the size of the whole KB, and that query answering is NP-complete
in combined complexity.

The results presented in [25, 31, 95] show that the complexity of the reason-
ing services that we are considering is the same for every DLs in the DL-Lite
family. For this reason, in what follows, we use to refer to a generic DL-Lite-KB
to indicate a KB expressed in DL-Litecore , DL-LiteA, or DL-LiteA,id.

As for some other reasoning services like logical implication, it is shown
in [31] that in DL-Lite they can be reduced to KB satisfiability.

In order to show that KB satisfiability in DL-Lite is FOL-rewritable, we
need to resort to a main construction, namely the canonical interpretation.
The canonical interpretation of a DL-Lite KB is an interpretation constructed
according to the notion of chase [1]. In particular, we adapt here the notion
of restricted chase adopted by Johnson and Klug in [61].

We start by defining the notion of applicable TBox assertions, and then we
exploit applicable TBox assertions to construct the chase for a DL-Lite-KB.
For easiness of exposition, we make use of the following notation for a basic
role Q and two constants a1 and a2:

Q(a1, a2) denotes

{
P (a1, a2), if Q = P,

P (a2, a1), if Q = P−.

Definition 10. Let S be a set of ABox assertions. Then, a TBox assertion α
is applicable in S to an ABox assertion β ∈ S if

• α = A1 v A2, β = A1(a), and A2(a) /∈ S;

• α = A v ∃Q, β = A(a), and there does not exist any constant a′ such
that Q(a, a′) ∈ S;

• α = A v δ(U), β = A(a), and there does not exist any constant a′ such
that U(a, a′) ∈ S;

• α = ∃Q v A, β = Q(a, a′), and A(a) /∈ S;

• α = ∃Q1 v ∃Q2, β = Q1(a1, a2), and there does not exist any constant
a′2 such that Q2(a1, a

′
2) ∈ S;
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• α = ∃Q1 v δ(U), β = Q1(a1, a2), and there does not exist any constant
a′2 such that U(a1, a

′
2) ∈ S;

• α = δ(U) v A, β = U(a, a′), and A(a) /∈ S;

• α = δ(U) v ∃Q, β = U(a1, a2), and there does not exist any constant a′2
such that Q(a1, a

′
2) ∈ S;

• α = δ(U1) v δ(U2), β = U1(a1, a2), and there does not exist any constant
a′2 such that U2(a1, a

′
2) ∈ S;

• α = Q1 v Q2, β = Q1(a1, a2), and Q2(a1, a2) /∈ S.

• α = U1 v U2, β = U1(a1, a2), and U2(a1, a2) /∈ S.

Let K = 〈T,A〉 be a consistent DL-Lite-KB. Note that the only assertions
defined as applicable are those belonging to Tinc. Now we show how appli-
cable TBox assertions can be used to construct the chase of a DL-Lite-KB.
Intuitively, the chase of K is a (possibly infinite) set of ABox assertions, con-
structed step-by-step starting from the ABox A. The set S is initially set to
to A. At each step of the construction, an assertion α ∈ Tinc is applied to
an ABox assertion β ∈ S. Applying an assertion α to β means adding a new
suitable ABox assertions to S, thus obtaining a new set S ′ in which α is not
applicable to β anymore. For example, if α = Man v Person is applicable
in S to β = Man(a), the ABox assertion to be added to S is Person(a), i.e.,
S ′ = S ∪ {Person(a)}.

Notice that such a construction process strongly depends on the order in
which we select both the assertion in Tinc to be applied at each step and the
ABox assertion to which such a TBox assertion is applied, as well as on which
constants we introduce at each step. Therefore, a number of syntactically
distinct sets of ABox assertions might result from different executions of this
process. However, in [31] is shown that the result is unique up to renaming of
constants occurring in each such a set.

In what follows, we assume, as in [61], to have a fixed infinite set of con-
stants, whose symbols are ordered in lexicographic way, and we select TBox
assertions, ABox assertions and constant symbols in lexicographic order. More
formally, given a KB K = 〈T ,A〉, we denote with ΓA the set of all constant
symbols occurring in A. Also, we assume to have an infinite set ΓN of constant
symbols not occurring in A, such that the set ΓC = ΓA ∪ΓN is totally ordered
in lexicographic way.

Definition 11. Let K = 〈T ,A〉 be a DL-Lite-KB, let n be the number of ABox
assertions in A, and let ΓN be the set of constants defined above. Assume that
the ABox assertions inA are numbered from 1 to n following their lexicographic
order, and consider the following definition of sets Sj of ABox assertions:
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• S0 = A

• Sj+1 = Sj ∪ {βnew}, where βnew is an ABox assertion numbered with
n+ j + 1 in Sj+1 and obtained as follows:

let β be the first ABox assertion in Sj such that there exists an
assertion α ∈ Tinc applicable in Sj to β

let α be the lexicographically first assertion applicable in Sj to β
let anew be the first constant of ΓN that follows lexicographically all

constants in Sj
case α, β of

(cr1) α = A1 v A2 and β = A1(a)
then βnew = A2(a)

(cr2) α = A v ∃Q and β = A(a)
then βnew = Q(a, anew )

(cr3) α = A v δ(U) and β = A(a)
then βnew = U(a, anew )

(cr4) α = ∃Q v A and β = Q(a, a′)
then βnew = A(a)

(cr5) α = ∃Q1 v ∃Q2 and β = Q1(a, a
′)

then βnew = Q2(a, anew )
(cr6) α = ∃Q v δ(U) and β = Q(a, a′)

then βnew = U(a, anew )
(cr7) α = δ(U) v A and β = U(a, a′)

then βnew = A1(a)
(cr8) α = δ(U) v ∃Q and β = U(a, a′)

then βnew = Q(a, anew )
(cr9) α = δ(U1) v δ(U2) and β = U1(a, a

′)
then βnew = U2(a, anew )

(cr10) α = Q1 v Q2 and β = Q1(a, a
′)

then βnew = Q2(a, a
′)

(cr11) α = U1 v U2 and β = U1(a, a
′)

then βnew = U(a, a′).

Then, we call chase of K, denoted chase(K), the set of ABox assertions ob-
tained as the infinite union of all Sj , i.e.,

chase(K) =
⋃
j∈N
Sj .

Note that only the TBox assertions in Tinc play a role in constructing chase(K).
Indeed chase(K) depends only on the ABox A and the positive TBox assertion
in Tinc. In other words, we have that chase(〈T ,A〉) = chase(〈Tinc,A〉).
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With the notion of chase in place, we give the definition of canonical inter-
pretation.

Definition 12. The canonical interpretation can(K) = 〈∆can(K), ·can(K)〉 of a
KB K = 〈T ,A〉 is the interpretation defined as follows:

• ∆can(K) = ΓC ,

• acan(K) = a, for each constant a occurring in chase,

• Acan(K) = {a | A(a) ∈ chase(K)}, for each atomic concept A, and

• P can(K) = {(a1, a2) | P (a1, a2) ∈ chase(K)}, for each atomic role P .

According to the above definition, it is easy to see that can(K) is unique.
Now, we are ready to give a notable property that holds for can(K).

Lemma 1. [25, 31] Let K = 〈T ,A〉 be a DL-Lite-KB. Then, can(K) is a model
of 〈Tinc,A〉.

As a consequence of Lemma 1, every DL-Lite-KB K = 〈T ,A〉 such that
Ttype∪Tdisj∪Tfunct∪Tid = ∅ is always satisfiable, since we can always construct
can(K), which is a model for K.

Before showing how can(K) can be exploited for checking the satisfiability
of generic DL-Lite-KB, we need to deal with query answering over DL-Lite-
KB. To this end, we first present some preliminary properties of DL-Lite, and
then we present the algorithm PerfectRef for the reformulation of conjunctive
queries. Finally we will use this algorithm in order to describe a technique for
answering union of conjunctive queries in DL-Lite.

First, we recall that, in the case where K is an inconsistent KB, the answer
to a UCQ q is the finite set of tuples AllTup(q,K). Therefore, we focus for the
moment on the case where K is consistent.

We start by showing a central property of the canonical interpretation
can(K). In particular, the following lemma shows that, for every model M
of K = 〈T ,A〉, there is a homomorphism from can(K) to M that maps the
objects in the extension of concepts and roles in can(K) to objects in the
extension of concepts and roles inM.

Lemma 2. [31] Let K = 〈T ,A〉 be a consistent DL-Lite-KB, and let M =
(∆M, ·M) be a model of K. Then, there is an homomorphism from can(K) to
M.

Based on the above property, we give the following theorem that states
that the canonical interpretation can(K) of a consistent DL-Lite-KB K is able
to represent all models of K with respect to UCQs.



34 Chapter 3. DL-Lite Knowledge Bases

Theorem 1. [25, 31] Let K be a consistent DL-Lite-KB, and let q be a UCQ
over K. Then, cert(q,K) = qcan(K).

The above property shows that the canonical interpretation can(K) is a
correct representative of all the models of a consistent DL-Lite-KB with respect
to the problem of answering UCQs. In other words, for every UCQ q, the
answers to q over K correspond to the evaluation of q in can(K).

Theorem 1, together with the fact that can(K) depends only on the TBox
assertions in Tinc has an interesting consequence for consistent KB, namely
that the certain answers to a UCQ depend only on the set of TBox assertions
in Tinc and the ABox, but are not affected by the TBox assertion in Ttype ∪
Tdisj ∪ Tfunct ∪ Tid.

Corollary 1. [25, 31] Let K = 〈T ,A〉 be a consistent DL-Lite-KB, and let q
be a UCQ over K. Then, cert(q,K) = cert(q, 〈Tinc,A〉).

The following result is a direct consequence of Theorem 1 and Corollary 1.

Corollary 2. [31] Let K = 〈T ,A〉 be a consistent DL-Lite-KB, and let q be a
UCQ over K. Then cert(q,K) = qcan〈Tinc,A〉.

In case of boolean conjunctive queries, the corollary above states that a
boolean UCQ q is entailed by a DL-Lite-KB 〈T ,A〉 if and only if q evaluates
to true in can〈Tinc,A〉.

In DL-Lite the canonical interpretation may be infinite, for this reason, it
cannot be effectively computed in order to solve the query answering problem in
DL-Lite. In order to avoid the construction of can(K), in [31], authors provide
the algorithm PerfectRef(q, T ), which reformulates a UCQ q (considered as a
set of CQs) by taking into account only the TBox assertions in Tinc. In other
words, instead of computing can(K) in order to solve the query answering
problem, they compile the TBox into the query, thus simulating the evaluation
of the query over can(K) by evaluating a finite reformulation of the query over
the ABox considered as a database.

Informally, the algorithm PerfectRef(q, T ) first reformulates the atoms of
each CQ q′ ∈ q, and produces a new query for each atom reformulation. Dur-
ing the process, TBox assertion in Tinc are used as rewriting rules, applied
from right to left, which allow one to compile away in the reformulation the
intensional knowledge (represented by T ) that is relevant for answering q.

In order to compute the certain answers to a UCQ q over a consistent KB
K = 〈T ,A〉, we need to evaluate the set qref of CQs produced by PerfectRef(q, T )
over the ABox A considered as a relational database. The following lemma
prove correctness of the query answering technique described above.
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Lemma 3. [25, 31] Let T be a DL-Lite TBox, q a UCQ over T , and qref
the UCQ returned by PerfectRef(q, T ). For every ABox A such that 〈T ,A〉 is
consistent, cert(q, 〈T ,A〉) = q

DB(A)
ref .

As we say earlier, the reformulation of a UCQ q with respect to a TBox T
computed by PerfectRef depends only on the set of TBox assertion Tinc, and
then the TBox assertion in Ttype ∪ Tdisj ∪ Tfunct ∪ Tid do not play any role in
such a process. Hence we have that PerfectRef(q, T ) = PerfectRef(q, Tinc).

We now establish the complexity of the algorithm PerfectRef.

Lemma 4. [31] Let T be a DL-Lite TBox, and q a UCQ over T . The algorithm
PerfectRef(q, T ) runs in time polynomial in the size of T .

We now turn our attention to the satisfiability problem, presenting the
following result, which asserts that to establish satisfiability of a KB, we can
resort to constructing the canonical interpretation.

Lemma 5. [25, 31] Let K = 〈T ,A〉 be a DL-Lite-KB. Then, can(K) is a model
of K if and only if K is consistent.

Consider a DL-Lite-KB K = 〈T ,A〉. Lemma 5, together with the fact that
can(K) is a model for 〈Tinc,A〉, implies that K is inconsistent if and only if
there exists an assertion α belonging to Ttype ∪ Tdisj ∪ Tfunct ∪ Tid, such that
can(K) |= ¬α. Now, consider the consistent KB 〈Tinc,A〉, from the observation
above, it follows that K is inconsistent if and only if 〈Tinc,A〉 |= ¬α. From this
notable property of DL-Lite arises the idea presented in [31, 94] to reduce the
problem of checking the satisfiability of K to the task of evaluating a suitable
query Qviolated(T ) over the consistent KB 〈Tinc,A〉. Intuitively, such a query,
is a union of first-order queries that represent the negation of an assertion in
〈Tinc,A〉 |= ¬α. By applying a slight variation to the algorithm PerfectRef,
it is then possible compute the reformulation of Qviolated(T ) with the aim to
evaluate this reformulation over the ABox considered as a database. More
formally.

Theorem 2. [25, 31] Let K = 〈T ,A〉 be a DL-Lite-KB, and Qviolated(T ) be the
query which encodes the violation of the assertions in Ttype∪Tdisj∪Tfunct∪Tid.
K is inconsistent if an only if (PerfectRef(Qviolated(T ), Tinc))DB(A) = ∅.

We will go into details of this technique for consistency checking in the
next chapter.

We present the algorithm Satisfiable(K), that takes as input a DL-Lite-KB
and returns true if the KB is consistent, and false otherwise.

Correctness of the algorithm Satisfiable, together with the fact that the
perfect reformulation is independent of the ABox, and, according to Lemma 4,
can be computed in PTime in the size of the TBox, allows us to give the
following theorem.
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Input: a DL-Lite-KB K = 〈T ,A〉
Output: true or false
begin

if (PerfectRef(Qviolated(T ), Tinc))DB(A) = ∅
then return true;
else return false;

end
Algorithm 1: The algorithm Satisfiable that checks satisfiability of a
DL-Lite-KB.

Theorem 3. [25] In DL-Lite, KB satisfiability is FOL-rewritable, and hence
in AC0 in the size of the ABox (data complexity).

We observe that the algorithm Satisfiable allows to to give a coNP upper bound
of KB satisfiability in DL-Lite with respect to the size of the TBox.

With the algorithm Satisfiable in place we can present the algorithm Answer
that, given a DL-LiteA-KB K and a UCQ q, computes cert(q,K). We remind
the reader that in the case where K is an inconsistent KB, the answer to a
UCQ q is the finite set of tuples AllTup(q,K).

Input: a UCQ q and a DL-Lite-KB K = 〈T ,A〉
Output: a set of tuples
begin

if not Satisfiable(K)
then return AllTup(q,K);
else return (PerfectRef(q, T ))DB(A);

end
Algorithm 2: The algorithm Answer that computes the certain answers
to a UCQ over a DL-Lite-KB.

By exploiting the results given before in this section, and from the correct-
ness of the algorithm Answer for computing the certain answers to a UCQ over
a DL-Lite-KB, we are able to characterize the complexity of answering UCQs
in DL-Lite.

Theorem 4. [25] Answering UCQs in DL-Lite is in AC0 in the size of the
ABox (data complexity), and NP-complete in combined complexity.

Also in this case we can give a coNP upper bound of query answering in DL-Lite
with respect to the size of the TBox.

We conclude this section by reporting some interesting property of DL-Lite-
KBs given in [40].



3.2. Satisfiability and query answering over DL-Lite KBs 37

As a consequence of the fact that chase(K) identifies a canonical model
for conjunctive queries over a consistent DL-Lite-KB K we have the following
lemma.

Lemma 6. [40] For every consistent DL-Lite-KB K, and for every ABox as-
sertion α, K |= α if and only if α ∈ chase(K).

By exploiting this result it is possible to give the following theorem.

Theorem 5. [40] Let K = 〈T ,A〉 be a consistent DL-Lite-KB, and let α be an
ABox assertion. If K |= α, then there exists in A an ABox assertion α′ such
that 〈T , {α′}〉 |= α.

We recall that clT (A) denote the closure of an ABox A with respect to a
TBox T , i.e., the set of all ABox assertions α that are formed with individuals
in A, and are logically implied by 〈T ,A〉. In the rest of this work, for an
ABox assertion α1, we denote by Subsumee〈T ,A〉(α1) the set of atoms α2 ∈
clT (A) such that 〈T , {α2}〉 |= α1. Moreover, by observing the rules given in
Definition 11 for computing chase(K), it is immediate to come up with an
algorithm for computing clT (A) in quadratic time with respect to the size of
T and A.

An interesting consequence of Theorem 5 is that, given a DL-Lite-TBox
and two T -consistent set of ABox assertions A1 and A2, we have

clT (A1 ∪ A2) = clT (A1) ∪ clT (A2).
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The Description Logic
DL-LiteA,id,den
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Chapter 4

The Language of DL-LiteA,id,den

In this chapter, we present a new logic of the DL-Lite family [30], called
DL-LiteA,id,den, which extends DL-LiteA,id with denial assertions. Denial As-
sertions (DAs) are assertions that allow for imposing that the answer to a
certain boolean conjunctive query over the KB is false, analogous to negative
constraints in [20]. A DA is particularly useful for specifying general forms of
disjointness, which are not supported in traditional DLs.

4.1 Denial assertions

Essentially, a DL-LiteA,id,den-KB is a DL-LiteA,id-KB that is also equipped
with denial assertions. Therefore a DL-LiteA,id,den TBox may contains four
types of intensional assertions, namely inclusion assertions, functionality as-
sertions, identification assertions and denial assertions. Inclusion assertions,
functionality assertions, identification assertions in DL-LiteA,id,den are as in
DL-LiteA,id.

Syntax. In DL-LiteA,id,den a denial assertion is an assertion of the form

∀~y.(conj(~t)→ ⊥),

where ~y is a set of variables and ~t is a set of terms (i.e., constants or variables)
such that each variable in ~t is also in ~y, and conj(~t), as for CQs, is a conjunction
of atoms of the form A(z), P (z, z′) U(z, z′) where A is an atomic concept, P
is an atomic role and U is an attribute, and z, z′ are terms.

Intuitively, a denial assertion states that the answer to the boolean con-
junctive query ∃~y.conj(~t) is false. This kind of assertion can be used to specify
general form of disjointness assertions which cannot be expressed in other
DLs of the DL-Lite family. Moreover, by means of a denial assertion we
are able to specify irreflexivity of a role. For example the denial assertion
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∀x.(hasFather(x, x)→ ⊥) implies that the role hasFather is irreflexive, i.e.,
that a person cannot be father of himself.

Semantics. We now specify the semantics of a denial assertion, by defining
when an interpretation I satisfies a DA α. Given an interpretation I = (∆I , ·I)
and a denial assertion α = ∀~y.(conj(~t) → ⊥), we say that I satisfies α if the
FOL-formula ∃~y.conj(~t) evaluates to false in I.

4.2 DL-LiteA,id,den KBs

With the notion of denial assertions given in the previous section in place, we
can give in this section the formal definition of a DL-LiteA,id,den-KB.

As for DL-LiteA,id, a DL-LiteA,id,den-TBox T must satisfy the condition
stating that each role Q (resp. attribute U) appearing in T in a functionality
assertion or in an identification assertion, cannot appear in the right-hand side
of positive role (resp. attribute) inclusion assertions, i.e., in assertions of the
form Q′ v Q (resp. U ′ v U).

The following definition describes formally a KB expressed inDL-LiteA,id,den.

Definition 13. A DL-LiteA,id,den-KB is a pair K = 〈T ,A〉, where:

• the TBox T is a finite set of intensional assertions partitioned into six
sets Tinc, Ttype, Tdisj , Tfunct, Tid, and Tden where:

– Tinc is a finite set of positive inclusion assertions of the form:

B v B′ (inclusions between concepts),
Q v Q′ (inclusions between roles),
U v U ′ (inclusions between attributes);

– Ttype is a finite set of positive inclusion assertions of the form:

E v F (inclusions between value-domains);

– Tdisj is a finite set of negative inclusion assertions of the form:

B v ¬B′ (disjunctions between concepts),
Q v ¬Q′ (disjunctions between roles),
U v ¬U ′ (disjunctions between attributes);

– Tfunct is a finite set of functionality assertions of the form:

(funct Q) (role functionality),
(funct U) (attribute functionality);
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– Tid is a finite set of identification assertions of the form:

(id B π1, . . . , πn);

– Tden is a finite set of denial assertions of the form:

∀~y.(conj(~t)→ ⊥);

where B and B′ denote basic concepts, E denotes a basic value-domain,
F a value-domain expression, Q and Q′ basic roles, U and U ′ denote
attributes, ~y is a set of variables and ~t is a set variables and constants in
ΓC , and conj(~t), is a conjunction of atoms in ΓP ;

• the ABox A is a finite set of extensional assertions over Γ of the form:

A(a) P (a, b) U(a, v)

were A, P , and U in ΓP denoting respectively an atomic concept symbol,
an atomic role symbol, and an attribute symbol, and a and b are constants
in ΓO and v is a constant in ΓV ;

• the following conditions are satisfied:

(1) Each identifying property in T is primitive in T .
(2) Each concept appearing in an identification assertion of T (either as

the identified concept, or in some test relation of some path) is a
basic concept, i.e., a concept of the form A, ∃Q, or δ(U).

(3) Each identification assertion in T is local, i.e., it has at least one path
πi such that length(πi) = 1.

As usual, an interpretation I is a model for a DL-LiteA,id,den-KB K (resp.,
TBox T , ABox A), written I |= K (resp., I |= T , I |= A), if and only if I
satisfies all assertions in K (resp., T ,A).

From the definition above, we have that a DL-LiteA,id,den TBox is a set T
partitioned into six pairwise disjoint sets T = Tinc∪Ttype∪Tdisj ∪Tfunct∪Tid∪
Tden, where:
− Tinc contains only TBox assertions of the form B1 v B2, Q1 v Q2, U1 v U2;
− Ttype contains only TBox assertions of the form E v F ;
− Tdisj contains only assertions of the form B1 v ¬B2, Q1 v ¬Q2,
U1 v ¬U2;

− Tfunct contains only functionality assertions over basic roles and attribute;
− Tid contains only identification assertions;
− Tden contains only denial assertions.
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and where roles and attributes occurring in functionality assertions in Tden or
in paths of identification constraints in Tid cannot be specialized, i.e., they
cannot appear on the right-hand side of assertions in Tinc.

Clearly, a DL-LiteA,id,den-KB where Tden = ∅ is a DL-LiteA,id-KB, and a
DL-LiteA,id,den-KB where Tden ∪ Tid = ∅ is a DL-LiteA-KB.

Example 2. In this example we present a KB modeling a very small portion of
the telephone access network of a telecommunication industry. The telephone
access network is that portion of the whole telephone network which connects
customer homes to the nearest commutation node belonging to the network.
In particular our KB focuses on how a device (Device) in the telephone access
network may be connected to another device. We can connect two devices by
connecting ports (Port) of (of) such devices. Each port is associated to exactly
one device. There exists different kinds of port in a device which can be used
for different purposes. Among the other, there are incoming ports (PortIn)
and outgoing ports (PortOut). An incoming port cannot be also an outgoing
port. A number (number) is associated to each port. There cannot exist two
ports of the same device having the same number. A port can be connected
to (connectedTo) another port. Connection between ports of devices belonging
to a telephone access network has to obey the following rules:

• every connection between ports involves exactly two ports;
• two ports of the same device cannot be connected to each other;
• there cannot exist an incoming port and an outgoing port of the same

device that are connected to ports of the same device.

Figure 4.1 attempts to depicts the domain described above.
The following DL-LiteA,id,den TBox T captures our domain, where:

• the set Tinc is constituted by the following assertions:

− PortIn v Port, − PortOut v Port,
− ∃connectedTo v Port, − ∃of v Port,
− ∃connectedTo− v Port, − ∃of− v Device,
− Port v δ(number), − Device v ∃of−,
− δ(number) v Port − Port v ∃of;

• the set Ttype is constituted by the following assertion:

− ρ(number) v xsd:integer;

• the set Tdisj is constituted by the following assertions:

− PortIn v ¬PortOut, − Port v ¬Device;
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Figure 4.1: Graphical representation of a telephone access network

• the set Tfunct is constituted by the following assertions:

− (funct connectedTo), − (funct of ),
− (funct connectedTo− ), − (funct number);

• the set Tid is constituted by the following assertion:

− (id Port number, of );

• the set Tden is constituted by the following assertions:

− ∀x, y, z.(Port(x) ∧ Port(y) ∧ of(x, z) ∧ of(y, z)
∧connectedTo(x, y)→ ⊥),

− ∀x, y, z, k, w, v.(PortOut(x) ∧ of(x, y) ∧ connectedTo(x, z) ∧ of(z, k)
∧ PortIn(w) ∧ of(w, y) ∧ connectedTo(w, v)
∧ of(v, k)→ ⊥).

In the TBox, the identification assertion model the fact that there does
not exist in a device two ports having the same number. Moreover, the denial
assertions model the following aspects:

• two ports of the same device cannot be connected to each other;
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• there cannot exist an incoming port and an outgoing port of the same
device that are connected to ports of the same device.



Chapter 5

Reasoning over DL-LiteA,id,den
Knowledge Bases

In this chapter we study reasoning in DL-LiteA,id,den. In particular, we focus
on query answering and KB satisfiability. We show that in DL-LiteA,id,den,
as for the other DLs the DL-Lite family, query answering can be managed
efficiently with respect to the size of the ABox. Moreover, we show that the
introduction of denial assertions in the TBox leads to increase the complexity
of both KB satisfiability and query answering problems with respect to the
size of the whole KB.

5.1 Satisfiability in DL-LiteA,id,den

In this section we present a technique for checking satisfiability inDL-LiteA,id,den.
Let T be a satisfiable TBox, and let V be a set of ABox assertions. We

say that V is a T -inconsistent set if the KB K = 〈T , V 〉 is inconsistent. Since,
due to the characteristics of DL-LiteA,id,den, we have that a DL-LiteA,id,den
TBox is always satisfiable, i.e., it admits always a model under standard FOL-
semantics, given an inconsistent KB 〈T ,A〉, there exists always al least one
subset V of A, not necessary different from A, that is a T -inconsistent set.

In the previous chapter, Theorem 3 establishes a notable property of the
DLs of the DL-Lite family, which is that, by virtue of the careful definition of
the expressive power of that logic, satisfiability is FOL-rewritable [31]. This
means that for every TBox T expressed in DL-Lite, it is possible to build a
boolean FOL-query QunsatT over the alphabet of T , such that for every non-
empty ABox A, the KB K = 〈T ,A〉 is consistent if and only if QunsatT evaluate
to false in DB(A), where DB(A) is as defined in Section 2.5.

To be more precise, QunsatT is a union of boolean FOL-queries represented

47
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here as a set of boolean queries corresponding to FOL-sentences of the form:

∃z1, . . . , zk.
n∧
i=1

Ai(t
1
i ) ∧

m∧
i=1

Ti(t
2
i ) ∧

∧̀
i=1

Si(t
3
i , t

4
i ) ∧

h∧
i=1

t5i 6= t6i (5.1)

where every Ai is an atomic concept, every Ti is a value-domain, every Si is a
binary predicate, which is either an atomic role or an attribute, every tji is a
term (i.e., either a constant or a variable), and z1, . . . , zk are all the variables of
the query. Notice that each sentence of the form (5.1) is a boolean conjunctive
query enriched with limited forms of inequalities.

In what follows, we describe in detail this technique for checking satisfia-
bility, and we show that the same property holds also for DL-LiteA,id,den.

Firstly, we give the following result, which is the analogue of Lemma 5,
and that allows us to establish a fundamental “separation” property for DAs,
similar to the one for negative, functionality, and identification assertions given
in [31, Lemma 14] and in [32, Theorem 6].

Lemma 7. Let K = 〈T ,A〉 be a DL-LiteA,id,den-KB. K is consistent if and
only if can(K) is a model of K.

Proof.
(⇒) Let K = 〈T ,A〉 be a consistent DL-LiteA,id,den. We have to prove that
can(K) is a model of K. Suppose, by way of contradiction, that can(K) is not
a model of K. Lemma 1 guarantees that can(K) is a model for 〈Tinc,A〉. We
also know from Lemma 5 that can(K) satisfies the assertions in Tinc ∪ Ttype ∪
Tdisj ∪Tfunct∪Tid. It follows that there is a denial assertion ∀~x.(conj(~x)→ ⊥)
in Tden such that can(K) |= ¬(∀~x.conj(~t) → ⊥), i.e., can(K) |= q(), where
q() is the conjunctive query ∃~x.conj(~t). From Corollary 2 it follows that
〈T \ Tden,A〉 |= q(). Since DL-LiteA,id,den is monotonic, then 〈T ,A〉 |= q().
This means that K |= ¬(∀~x.(conj(~t) → ⊥)). Since the denial assertion
∀~x.(conj(~t) → ⊥) belongs to T , we have that K |= ∀~x.(conj(~t) → ⊥), and
that K |= ¬(∀~x.(conj(~t) → ⊥)) at the same time. Hence, K is inconsistent,
which is a contradiction.
(⇐) If can(K) is a model of K, then K is clearly satisfiable.

Let K = 〈T ,A〉 be a DL-LiteA,id,den-KB. Intuitively, the lemma above
states that we can refer to the canonical interpretation can(K) for verifying
satisfiability of K. More specifically, since Lemma 1 states that can(K) is a
model for 〈Tinc,A〉, then the KB 〈Tinc,A〉 is always consistent. Therefore,
K may be inconsistent only if there is an assertion α in T \ Tinc such that
can(K) |= ¬α.

Lemma 8. Let K = 〈T ,A〉 be a DL-LiteA,id,den-KB. K is inconsistent if and
only if there exists an assertion α ∈ T \ Tinc such that can(K) |= ¬α.
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Proof.
(⇒) We show that if K is inconsistent, then there is an assertion α ∈ T \ Tinc
such that can(K) |= ¬α. Suppose, by way of contradiction, that for each
assertion α ∈ T \ Tinc, can(K) |= α. Since Lemma 1 guarantees that can(K)
is a model for 〈Tinc,A〉, then can(K) is a model for K. Hence, K is consistent,
which is a contradiction.
(⇐) Let α be an assertions in T \Tinc. We have to prove that if can(K) |= ¬α,
then K is inconsistent. Toward a contradiction, suppose that K is consistent.
From Lemma 7, it follows that can(K) is a model for K, and then, since
can(K)(K) |= ¬α, we have that K |= ¬α. Hence, since α ∈ T , we have that
K |= α and that K |= ¬α, which means that K is inconsistent. Hence, we have
a contradiction.

A notable consequence of Lemma 8 is that one can verify if aDL-LiteA,id,den-
KB K = 〈T ,A〉 is inconsistent by checking if can(K) |= ¬α, for each α ∈
T \ Tinc. In particular, if α ∈ Tden, then ¬α is a boolean conjunctive queries.
Hence, by exploiting Corollary 2, we can check if every denial assertion α ∈ Tden
if satisfied, by evaluating the boolean conjunctive query ¬α over the consistent
KB 〈Tinc,A〉. If 〈Tinc,A〉 |= ¬α, then K is inconsistent. As shown in [31, 32]
we can operate in a similar way for the other assertions in T \ (Tinc ∪ Tden),
i.e., we can check if K is consistent by evaluating suitable boolean queries over
the consistent KB 〈Tinc,A〉. In what follows, we show how it is possible to
compute the before mentioned set QunsatT by means of such queries.

Before presenting the method for computing the query QunsatT , we need to
introduce some definitions.

By following the same approach of [31] we next introduce the notion of
NI-closure of a DL-LiteA,id,den TBox T .

Definition 14. Let T = Tinc∪Ttype∪Tdisj∪Tfunct∪Tid∪Tden be aDL-LiteA,id,den
TBox. We call NI-closure of T , denoted by cln(T ), the TBox defined induc-
tively as follows:

1. each functionality assertion in Tfunct is in cln(T );
2. each identification assertion in Tid is in cln(T );
3. each denial assertion in Tden is in cln(T );
4. each negative assertion in Tdisj is in cln(T );
5. if B1 v B2 is in T and B2 v ¬B3 or B3 v ¬B2 is in cln(T ), then also
B1 v ¬B3 is in cln(T );

6. if Q1 v Q2 is in T and Q2 v ¬Q3 or Q3 v ¬Q2 is in cln(T ), then also
Q1 v ¬Q3 is in cln(T ).

7. if U1 v U2 is in T and U2 v ¬U3 or U3 v ¬U2 are in cln(T ), then
U1 v ¬U3 is also in cln(T );

8. if B1 v ¬B2 is in cln(T ), then B2 v ¬B1 is also in cln(T );
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9. if Q1 v ¬Q2 is in cln(T ), then Q2 v ¬Q1 is also in cln(T );
10. if Q1 v ¬Q2 is in cln(T ), then Q−1 v ¬Q

−
2 is also in cln(T );

11. if U1 v ¬U2 is in cln(T ), then U2 v ¬U1 is also in cln(T );
12. if Q1 v Q2 is in T and ∃Q2 v ¬B or B v ¬∃Q2 is in cln(T ), then also
∃Q1 v ¬B is in cln(T );

13. if Q1 v Q2 is in T and ∃Q−2 v ¬B or B v ¬∃Q−2 is in cln(T ), then also
∃Q−1 v ¬B is in cln(T );

14. if U1 v U2 is in T and δ(Q2) v ¬B or B v ¬δ(U2) is in cln(T ), then
also δ(Q1) v ¬B is in cln(T );

15. if U1 v U2 is in T and ρ(U2) v ¬T1 is in cln(T ), then ρ(U1) v ¬T1 is in
cln(T );

16. if ∃Q1 v ¬∃Q2 or ∃Q−1 v ¬∃Q
−
2 are in cln(T ), then Q1 v ¬Q2 is also in

cln(T );
17. if δ(U1) v ¬δ(U2) is in cln(T ), then U1 v ¬U2 is also in cln(T );
18. if ρ(U1) v T1 and ρ(U2) v T2 are in cln(T ), with T1 6= T2, then U1 v ¬U2

is also in cln(T );
19. if ρ(U) v Ti is in T , then ρ(U) v ¬Tj , for each value-domain Tj 6= Ti in
{T1, . . . Tn}, is in cln(T );

20. if at least one of the four assertions ∃Q v ¬∃Q, ∃Q− v ¬∃Q−, Q v ¬Q,
and Q− v ¬Q− are in cln(T ), then all four assertions are in cln(T );

21. if at least one of the two assertions δ(U) v ¬δ(U) and U v ¬U are in
cln(T ), then both assertions are in cln(T );

The above definition is a straightforward adaptation to DL-LiteA,id,den of
the notion of NI-closure given in [31]. We observe that rule 18 and rule 19
are used to make explicit the implicit disjointness rising from the fact that the
TBox semantics imposes that for each pair Ti and Tj of different value-domains,
Ti and Tj are disjoint.

Example 3. Consider the DL-LiteA,id,den-TBox T presented in Example 2.
According with Definition 14, the set cln(T ) contains the following TBox as-
sertions:

(1.) (funct connectedTo), (2.) (funct of ),
(3.) (funct connectedTo− ), (4.) (funct number),
(5.) ρ(number) v ¬xsd:string, (6.) ρ(number) v ¬xsd:dateTime,
(7.) PortIn v ¬PortOut, (8.) PortOut v ¬PortIn,
(9.) Port v ¬Device, (10.) Device v ¬Port,
(11.) PortIn v ¬Device, (12.) Device v ¬PortIn,
(13.) PortOut v ¬Device, (14.) Device v ¬PortOut,
(15.) ∃connectedTo v ¬Device, (16.) Device v ¬∃connectedTo,
(17.) ∃connectedTo− v ¬Device, (18.) Device v ¬∃connectedTo−,
(19.) ∃of v ¬∃Device, (20.) Device v ¬∃of,
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(21.) δ(number) v ¬∃Device, (22.) Device v ¬δ(number),
(23.) Port v ¬∃of−, (24.) ∃of− v ¬Port,
(25.) PortIn v ¬∃of−, (26.) ∃of− v ¬PortIn,
(27.) PortOut v ¬∃of−, (28.) ∃of− v ¬PortOut,
(29.) ∃connectedTo v ¬∃of−, (30.) ∃of− v ¬∃connectedTo,
(31.) ∃connectedTo− v ¬∃of−, (32.) ∃of− v ¬∃connectedTo−,
(33.) ∃of v ¬∃of−, (34.) ∃of− v ¬∃of,
(35.) δ(number) v ¬∃of−, (36.) ∃of− v ¬δ(number),
(37.) of v ¬of−, (38.) of− v ¬of,
(39.) of v ¬connectedTo, (40.) connectedTo v ¬of,
(41.) of− v ¬connectedTo−, (42.) connectedTo− v ¬of−,
(43.) of− v ¬connectedTo, (44.) connectedTo v ¬of−,
(45.) of v ¬connectedTo−, (46.) connectedTo− v ¬of,
(47.) (id Port number, of ),
(48.) ∀x, y, z.(Port(x) ∧ Port(y) ∧ of(x, z) ∧ of(y, z) ∧ connectedTo(x, y)→ ⊥),
(49.) ∀x, y, z, k, w, v.(PortOut(x) ∧ of(x, y) ∧ connectedTo(x, z) ∧ of(z, k)

∧ PortIn(w) ∧ of(w, y) ∧ connectedTo(w, v) ∧ of(v, k)→ ⊥).

Note that, for the sake of brevity, we assume, in this example, that the admitted
data types are only xsd:integer, xsd:string, and xsd:dateTime.

By considering Lemma 16, we observe that in a DL-LiteA,id,den-KB K =
〈T ,A〉 an inconsistency may arise only for one of the following reasons:

1. there exist an atomic concept A in the TBox alphabet ΓO, a constant d
in the alphabet of constants ΓC , a TBox assertion A v ¬A in cln(T ),
and an ABox assertion α in A such that 〈Tinc, {α}〉 |= A(d);

2. there exist an atomic role P in the TBox alphabet ΓO, a pair of constants
d1 and d2 in the alphabet of constants ΓC , a TBox assertion P v ¬P in
cln(T ), and an ABox assertion α in A such that 〈Tinc, {α}〉 |= P (d1, d2);

3. there exist an attribute U in the TBox alphabet ΓO, a pair of constants
d1 and d2 in the alphabet of constants ΓC , a TBox assertion U v ¬U in
cln(T ), and an ABox assertion α in A such that 〈Tinc, {α}〉 |= U(d1, d2);

4. there exist an atomic role P in the TBox alphabet ΓO, a constant d in
the alphabet of constants ΓC , a TBox assertion P v ¬P− in cln(T ), and
an ABox assertion α in A such that 〈Tinc, {α}〉 |= P (d, d);

5. there exist an atomic role P in the TBox alphabet ΓO, a constant d in
the alphabet of constants ΓC , a TBox assertion ∃P v ¬∃P− in cln(T ),
and an ABox assertion α in A such that 〈Tinc, {α}〉 |= P (d, d);
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6. there exist an attribute U in the TBox alphabet ΓO, a constant d in the
alphabet of constants ΓC , a constant v in the alphabet of values ΓV , a
TBox assertion ρ(U) v ¬Ti in cln(T ), and an ABox assertion α in A
such that 〈Tinc, {α}〉 |= U(d, v) and the interpretation of v belongs to the
interpretation set of Ti;

7. there exist an atomic role P in the TBox alphabet ΓO, constants d, d1, d2,
with d1 6= d2, in the alphabet of constants ΓC , a TBox assertion (funct P )
(resp. (funct P−)) in cln(T ), and the ABox assertions P (d, d1) and
P (d, d2) (resp. P (d1, d) and P (d2, d)) belong to A;

8. there exist an attribute U in the TBox alphabet ΓO, constants d, v1, v2,
with v1 6= v2, in the alphabet of constants ΓC , a TBox assertion (funct U)
in cln(T ), and the ABox assertions U(d, v1) and U(d, v2) belongs to A;

9. there exist a pair of basic concepts B1 and B2, a constant d in the
alphabet of constants ΓC , a TBox assertion B1 v ¬B2 in cln(T ), and a
pair of ABox assertions α and β in A such that 〈Tinc, {α}〉 |= B1(d) and
〈Tinc, {β}〉 |= B2(d) (for example, A v ¬∃P ∈ cln(T ) and {A(d), P (d, c)}
is a subset of A);

10. there exist a pair of basic roles Q1 and Q2, a pair of constants d1 and d2 in
the alphabet of constants ΓC , a TBox assertion Q1 v ¬Q2 in cln(T ), and
a pair of ABox assertions α and β in A such that 〈Tinc, {α}〉 |= Q1(d1, d2)
and 〈Tinc, {β}〉 |= Q2(d1, d2) (for example, P v ¬S− ∈ cln(T ) and
{P (a, b), S(b, a)} ⊆ A);

11. there exist a pair of attributes U1 and U2 in the TBox alphabet ΓO, a
pair of constants d1 and d2 in the alphabet of constants ΓC , a TBox
assertion U1 v ¬U2 in cln(T ), and a pair of ABox assertions α and β in
A such that 〈Tinc, {α}〉 |= U1(d1, d2) and 〈Tinc, {β}〉 |= U2(d1, d2);

12. there exist an identification assertion α ∈ cln(T ) and a set of ABox
assertions V ⊆ A such that 〈Tinc, V 〉 |= ¬α, i.e. 〈Tinc, V 〉 implies the
negation of α (for example, T |= (id A P ◦ S, U) and {A(o), P (o, c),
S(c, f), U(o, d), A(o′), P (o′, e), S(e, f), U(o′, d)} ⊆ A);

13. there exist a denial assertion α ∈ cln(T ) and a set of ABox assertions
V ⊆ A such that 〈Tinc, V 〉 |= ¬α, i.e. 〈Tinc, V 〉 implies the negation of α
(for example, T |= ∀x, y.(A(x), P (x, y)→ ⊥) and {A(o), P (o, o′)} ⊆ A).

Note that, each violation of a TBox axiom listed in cases 1∼6 require the
existence of a T -inconsistent set formed by only one ABox assertion. The kinds
of violation listed in cases 7∼11 require the existence of a T -inconsistent set
formed by only two ABox axioms. The violation of an identification or denial
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assertion requires the existence of a T -inconsistent set containing a number of
ABox assertions depending on the form of the assertion. Anyway, for violating
an identification assertion we need of a T -inconsistent set containing at least
two ABox assertions, while a denial assertion can be violated also by only one
ABox assertion.

The idea for computing QunsatT consists in identifying a boolean query q()
of the form (5.1) for each assertion α in cln(T ) such that there exists in the
ABox A a T -inconsistent set V that violates α in T if and only if the consistent
KB 〈Tinc,A〉 |= q(). To illustrate the technique, we first define a translation
function ϕ from assertions in cln(T ) to boolean queries of the form (5.1).

- ϕ((funct P )) : ∃x, x1, x2.P (x, x1) ∧ P (x, x2) ∧ x1 6= x2
- ϕ((funct P−)) : ∃x, x1, x2.P (x1, x) ∧ P (x2, x) ∧ x1 6= x2
- ϕ((funct U)) : ∃x, x1, x2.U(x, x1) ∧ U(x, x2) ∧ x1 6= x2
- ϕ(B1 v ¬B2) : ∃x.γ(B1, x) ∧ γ(B2, x)
- ϕ(Q1 v ¬Q2) : ∃x1, x2.η(Q1, x1, x2) ∧ η(Q2, x1, x2)
- ϕ(U1 v ¬U2) : ∃x1, x2.U1(x1, x2) ∧ U2(x1, x2)
- ϕ(ρ(U) v ¬Ti) : ∃x1, x2.U(x1, x2) ∧ Ti(x2)
- ϕ(∀~x.(conj(~t)→ ⊥)): ∃~x.conj(~t)
- ϕ((id B π1, . . . , πn)) : ∃~x.γ(B, x) ∧ γ(B, x′) ∧ x 6= x′∧∧

1≤i≤n(ρ(πi(x, xi)) ∧ ρ(πi(x
′, xi)))

In the above definition, B is a basic concept, Q is a basic role, U is an attribute,
T is a value-domain, t is a term, i.e., either a variable or a constant, and x,
x1, x2 are variable. Furthermore, let ynew be a fresh variable symbols, i.e., a
variable symbol not occurring elsewhere in the query, we pose:

γ(B, x) =


A(x) if B = A,

P (x, ynew) if B = ∃P,
P (ynew, x) if B = ∃P−,
U(x, ynew) if B = δ(U)

and

η(Q, x1, x2) =

{
P (x1, x2) if Q = P,

P (x2, x1) if Q = P−.

Moreover, ρ(π(x1, x2)) is inductively defined on the structure of path π as
follows:

if π = D1? ◦ · · · ◦Dh? ◦ S ◦D′1? ◦ · · · ◦D′k? (with h ≥ 0, k ≥ 0), then
ρ(π(x1, x2)) =γ(D1, x1) ∧ · · · ∧ γ(Dh, x1)∧ S(x1, x2)∧

γ(D′1, x2) ∧ · · · ∧ γ(D′k, x2);
if π = D1? ◦ · · · ◦Dh? ◦ U (with h ≥ 0), then
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ρ(π(x1, x2)) = γ(D1, x1) ∧ · · · ∧ γ(Dh, x1)∧ U(x1, x2);
if π = π1 ◦ π2, where length(π1) = 1 and length(π2) ≥ 1, then
ρ(π(x1, x2)) = ρ(π1(x1, ynew)) ∧ ρ(π2(ynew, x2))

where S denotes an atomic role or the inverse of an atomic role, U denotes an
attribute, and D denotes a basic concept.

Intuitively, given a TBox assertion α ∈ cln(T ), the query ϕ(α) encodes the
negation of α.

Example 4. Consider the following assertions belonging to the set cln(T ),
where cln(T ) is the set of TBox assertions of Example 3.

(1.) (funct connectedTo),
(5.) (id Port number, of ),
(6.) ρ(number) v ¬xsd:string,
(15.) ∃connectedTo v ¬Device,
(39.) of v ¬connectedTo,
(47.) ∀x, y, z.(Port(x) ∧ Port(y) ∧ of(x, z) ∧ of(y, z) ∧ connectedTo(x, y)→ ⊥),

The queries corresponding to the negation of the above TBox assertions are:

ϕ(1.) = ∃x, y, z.connectedTo(x, y) ∧ connectedTo(x, z) ∧ y 6= z;
ϕ(5.) = ∃x, y, z, k.Port(x) ∧ number(x, y) ∧ of(x, z)∧

Port(k) ∧ number(k, y) ∧ of(k, z) ∧ x 6= k;
ϕ(6.) = ∃x, y.number(x, y) ∧ xsd:string(y);
ϕ(15.) = ∃x, y, z.connectedTo(x, y) ∧Device(x);
ϕ(39.) = ∃x, y.of(x, y) ∧ connectedTo(x, y);
ϕ(47.) = ∃x, y, z.Port(x) ∧ Port(y) ∧ of(x, z) ∧ of(y, z) ∧ connectedTo(x, y).

We are now ready to present the algorithm unsatQueries(T ) for computing
QunsatT .

The goal of unsatQueries(T ) is to compute the set of queries correspond-
ing to the negation of the assertion in cln(T ) by means of the translation
function ϕ. In case where the assertion α in cln(T ) is an identification as-
sertion or a denial assertion, unsatQueries(T ) firstly computes the query ϕ(α)
and then computes the perfect reformulations of such query [31]. To this aim,
unsatQueries(T ) makes use of the algorithm PerfectRef 6=(ϕ(α), Tinc), which is
a slight variation of the algorithm PerfectRef given in [31], taking into account
only the inclusion assertions in Tinc. In this modified version, inequality is
considered as a primitive role thus inequality are never rewritten by the algo-
rithm, and the algorithm does not unify query atoms if this causes a violation
of an inequality. Note that the result of PerfectRef 6= is a union of boolean
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Input: a DL-LiteA,id,den TBox T
Output: a set of boolean queries QunsatT
begin
QunsatT ← ∅;
foreach α ∈ cln(T ) do

if α = (funct Q)) or
α = (funct U) or
α = B1 v ¬B2 or
α = Q1 v ¬Q2 or
α = U1 v ¬U2 or
α = ρ(U) v ¬Ti

then QunsatT ← QunsatT ∪ {ϕ(α)};
if α = (id B π1, . . . , πn) or
α = (∀~x.(conj(~t)))

then QunsatT ← QunsatT ∪ PerfectRef 6=(ϕ(α), Tinc);
return QunsatT

end
Algorithm 3: unsatQueries(T )

queries of the form (5.1), represented as a set of queries, as usual. We point
out that if Tid ∪ Tden = ∅, as for DL-LiteA-KBs, the reformulation step in the
algorithm is unnecessary [31]. Indeed, every negative inclusion assertion and
inclusion between value-domains entailed by the TBox T belongs to cln(T ).
Hence, in these cases the call to the PerfectRef 6= algorithm in unsatQueries is
not necessary. On the other hand, by handling adequately the implicit con-
straints, following from the semantics of T , namely that, for every Ti and Tj
of value-domains, Ti and Tj are disjoint, and by exploiting the crucial task
of perfect reformulation that is carried out by PerfectRef 6=, it is possible to
compute QunsatT without first computing cln(T ). For more details we refer the
reader to [94, 95].

The following lemma shows that the algorithm unsatQueries terminates,
when applied to a DL-LiteA,id,den TBox.

Lemma 9. Let T be a DL-LiteA,id,den TBox. Then, unsatQueries(T ) termi-
nates.

Proof. Termination of unsatQueries(T ) directly follows from the finiteness of
the set T and from the termination of the algorithm PerfectRef 6= [31].

Let K = 〈T ,A〉 be a DL-LiteA,id,den-KB. Since K is consistent if and only
if there are no T -inconsistent sets in A, the following theorem states that
the query produced by the algorithm unsatQueries(T ) can be used to check
satisfiability of K.
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Theorem 6. Let K = 〈T ,A〉 be a DL-LiteA,id,den-KB. A T -inconsistent set
V ⊆ A exists if and only if 〈∅,A〉 |= unsatQueries(T ).

Proof. A T -inconsistent set V ⊆ A exists if and only if K is inconsistent.
Lemma 8 states that K is inconsistent if and only if there exists an assertion
α ∈ T \ Tinc such that can(K) |= ¬α. Hence, to prove the theorem we have
to show that there exists an assertion α ∈ T \ Tinc such that can(K) |= ¬α if
and only if there exists a query q in unsatQueries(T ) such that 〈∅,A〉 |= q. If
α ∈ T \(Tinc∪Tden), the proof directly follows from the results given in [31, 32].
Let α ∈ Tden. In this case, the algorithm unsatQueries adds to QunsatT the
queries PerfectRef 6=(ϕ(α), Tinc). Since can(K) depends only on the ABox A
and the positive TBox assertion in Tinc, we have that can(K) = can(〈Tinc,A〉).
From Corollary 2 and Lemma 3, it follows that can(K) |= ¬α if and only if
〈∅,A〉 |= PerfectRef 6=(ϕ(α), Tinc). Hence, we can conclude that there exists a
T -inconsistent set V ⊆ A if and only if 〈∅,A〉 |= unsatQueries(T ).

In other terms, it is possible to check the satisfiability of K by evaluating
the union of queries unsatQueries(T ) over the ABoxA considered as a relational
database.

Next, we present the algorithm SatisfiableDA for checking satisfiability of a
DL-LiteA,id,den-KB K = 〈T ,A〉.

Input: a DL-LiteA,id,den-KB K = 〈T ,A〉
Output: true or false
begin
QunsatT ← unsatQueries(T );
foreach q ∈ QunsatT do

if qDB(A) 6= ∅
then return false;

return true
end

Algorithm 4: SatisfiableDA(K)

Firstly, the algorithm uses the algorithm unsatQueries(T ) for computing the
set of queries QunsatT . Then, it evaluates every query q ∈ QunsatT over 〈∅,A〉. If
every query in QunsatT evaluates to false over the interpretation DB(A), then
the algorithm return true, i.e., the KB K is consistent, since the ABox does
not contain any T -inconsistent set that violates an assertion implied by T .
Otherwise, the algorithm returns false, i.e., the KB is inconsistent.

The following lemmas establish termination and correctness of Algorithm 4.

Lemma 10. Let K be a DL-LiteA,id,den-KB. Then SatisfiableDA(K) terminates.



5.1. Satisfiability in DL-LiteA,id,den 57

Proof. Termination of SatisfiableDA(K) follows directly from the termination
of unsatQueries(T ) and of evaluation of FOL-query over databases.

Lemma 11. Let K be a DL-LiteA,id,den-KB. K is consistent if and only if
SatisfiableDA(K) returns true.

Proof. The correctness of SatisfiableDA(K) is a direct consequence of Theo-
rem 6.

The following theorem gives the computational characterization for the KB
satisfiability problem in DL-LiteA,id,den. We recall that answering UCQ, in
DL-Lite is NP-complete with respect to the size of the query (cf. Theorem 4).

Theorem 7. In DL-LiteA,id,den KB satisfiability is in NP in the size of the
whole KB, and in AC0 in the size if the ABox.

Proof. By exploiting the results given in Theorem 6 and in Theorem 11, we
have that KB satisfiability in DL-LiteA,id,den can be checked by performing the
following steps. Let K = 〈T ,A〉 be a DL-LiteA,id,den-KB. We can check if K is
consistent by:

1. computing the set of TBox assertions cln(T );
2. computing the set of queries QunsatT by adding to QunsatT ,

(a) for each assertion α in cln(T ) that is neither an identification as-
sertion nor a denial assertion, the query ϕ(α), and

(b) for each assertion α cln(T ) that is an identification assertion or
a denial assertion, the queries obtained by computing the perfect
reformulation of ϕ(α) by means of the algorithm PerfectRef 6=;

3. evaluating each query q ∈ QunsatT over the KB 〈∅,A〉.

We first prove that, in DL-LiteA,id,den, KB satisfiability is in AC0 in the
size of the ABox (data complexity). Since prefect reformulation is independent
of the ABox [31], by observing the four steps above, it is clear that the size of
the ABox comes into play only in the last step, i,e., in the evaluation of the
queries in QunsatT over 〈∅,A〉. This task can be performed in AC0 with respect
to the size of A [1, 107]. Hence, we can conclude that KB satisfiability is in
AC0 in the size of the ABox.

We now prove that KB satisfiability in DL-LiteA,id,den is in NP with respect
to the size of the TBox. Let δ be a denial assertion in Tden, clearly it belong
to cln(T ). Since no restrictions are imposed on the definition of a denial
assertion α, we have that ϕ(α) is a generic conjunctive query. Step 2 and 3
above require to evaluate ϕ(δ) over the KB 〈Tinc,A〉. Hence, KB satisfiability
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in DL-LiteA,id,den has the same complexity of answering CQs over the DL-Lite-
KB 〈Tinc,A〉 with respect to combined complexity (i.e., with respect to the size
of the whole KB and the size of the query). Finally, from Theorem 4 we have
that answering CQs over 〈Tinc,A〉 is in NP.

We conclude this section with an example illustrating the whole procedure
for checking satisfiability of a DL-LiteA,id,den-KB.

Example 5. Let K = 〈T ,A〉 be a DL-LiteA,id,den-KB, where T is the TBox
of Example 2, and A is the ABox formed by the following assertions:

PortIn(p1), PortOut(p1), connectedTo(p1, p2).

In words, A states that p1 is both an incoming port and an outgoing port,
and that p1 is connected to a port p2.

It is immediate to verify thatK is inconsistent since the assertions PortIn(p1)
and PortOut(p2) violates the assertion in T stating that a port cannot be an
incoming port and an outgoing port at the same time.

The first step of algorithm SatisfiableDA(K) is to compute the set QunsatT
by means of unsatQueries(T ). To this aim, unsatQueries(T ) first computes the
set cln(T ). The result is shown in Example 3.

For this example, let us focus only on the following two assertions in T .

(7.) PortIn v ¬PortOut;
(48.) ∀x, y, z, k, w, v.(PortOut(x) ∧ of(x, y) ∧ connectedTo(x, z) ∧ of(z, k)

∧ PortIn(w) ∧ of(w, y) ∧ connectedTo(w, v) ∧ of(v, k)→ ⊥).

For each identification assertion or denial assertion α in cln(T ), the algo-
rithm unsatQueries(T ) computes the perfect reformulation with respect to Tinc
of the query ϕ(α), which encodes the violation of α, and adds the resulting
queries to QunsatT . If the assertion is not an identification assertion or an denial
assertions, the algorithm just adds the query ϕ(α) to QunsatT . For the assertions
(7.) and (48.) the queries corresponding to their negation are:

ϕ(7.) = ∃x.PortIn(x) ∧ PortOut(x);
ϕ(48.) = ∃x, y, z, k, w, v.PortOut(x) ∧ of(x, y) ∧ connectedTo(x, z) ∧ of(z, k)

∧ PortIn(w) ∧ of(w, y) ∧ connectedTo(w, v) ∧ of(v, k).

The algorithm PerfectRef 6=, when applied to the query ϕ(48.) returns:

q1() = ∃x, y, z, k, w, v.PortOut(x) ∧ of(x, y) ∧ connectedTo(x, z)∧
of(z, k) ∧ PortIn(w) ∧ of(w, y) ∧ connectedTo(w, v) ∧ of(v, k);

q2() = ∃x, y, z, k.PortOut(x) ∧ of(x, y) ∧ connectedTo(x, k)∧
PortIn(z) ∧ of(z, y) ∧ connectedTo(z, k);

q3() = ∃x, y.PortIn(x) ∧ PortOut(x) ∧ connectedTo(x, y).
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Hence, QunsatT contains the following queries:

q1() = ∃x, y, z, k, w, v.PortOut(x) ∧ of(x, y) ∧ connectedTo(x, z)∧
of(z, k) ∧ PortIn(w) ∧ of(w, y) ∧ connectedTo(w, v) ∧ of(v, k);

q2() = ∃x, y, z, k.PortOut(x) ∧ of(x, y) ∧ connectedTo(x, k)∧
PortIn(z) ∧ of(z, y) ∧ connectedTo(z, k);

q3() = ∃x, y.PortIn(x) ∧ PortOut(x) ∧ connectedTo(x, y);
q4() = ∃x.PortIn(x) ∧ PortOut(x).

Finally, for each query q inQunsatT , algorithm SatisfiableDA(K) checks if 〈∅,A〉 |=
q. It is easy to verify that, for the queries considered in this example, we have:

〈∅,A〉 6|= q1; 〈∅,A〉 6|= q2;
〈∅,A〉 |= q3; 〈∅,A〉 |= q4.

Hence, it is possible to conclude that the KB K is inconsistent since the as-
sertions in A violate both the disjunction PortIn v ¬PortOut and the denial
assertion ∀x, y, z, k, w, v.(PortOut(x)∧of(x, y)∧connectedTo(x, z)∧of(z, k)∧
PortIn(w) ∧ of(w, y) ∧ connectedTo(w, v) ∧ of(v, k)→ ⊥) in T .

5.2 Query answering in DL-LiteA,id,den

In this section we study query answering in DL-LiteA,id,den. To this aim we
first establish a fundamental “separation” property for denial assertions in
DL-LiteA,id,den. In other words, we show that denial assertion does not affect
query answering, and thus it is possible to ignore denial assertions in query
answering process.

Theorem 8. Let 〈T ,A〉 be a consistent DL-LiteA,id,den-KB and q be a UCQ.
Then 〈T ,A〉 |= q if and only if 〈Tinc,A〉 |= q.

Proof.
(⇒) We have to prove that if 〈T ,A〉 |= q, then 〈Tinc,A〉 |= q. Suppose that
q is formed by only one conjunctive queries. Since 〈T ,A〉 |= q, then the KB
obtained from K by adding to T the denial assertion ¬q is inconsistent, i.e.,
〈T ∪ {¬q},A〉 is inconsistent. Lemma 7 states that can(〈T ∪ {¬q},A〉) is
models of 〈T ∪ {¬q},A〉 if and only if 〈T ∪ {¬q},A〉 is consistent. Thus,
can(〈T ∪ {¬q},A〉) is not a model for 〈T ∪ {¬q},A〉. From Lemma 8, it
follows that there is an assertion α ∈ T \ Tinc such that can(〈T ∪ {¬q},A〉) |=
¬α. Since the assertions in T \ Tinc have no role in constructing chase(〈T ∪
∪{¬q},A〉), we have that chase(〈T ∪ {¬q},A〉) = chase(〈Tinc,A〉), and then,
can(〈T ∪ {¬q},A〉) = can(〈Tinc,A〉). This means that there is an assertion
α ∈ T \ Tinc such that can(〈Tinc,A〉) |= ¬α. Since 〈T ,A〉 is consistent, by
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exploiting Lemma 8, we can conclude that α = ¬q. Hence, can(〈Tinc,A〉) |= q.
Finally, from Corollary 2, it follows that 〈Tinc,A〉 |= q.
(⇐) Trivially, if 〈Tinc,A〉 |= q, then 〈T ,A〉 |= q, hence the claim follows.

From Theorem 8, we can conclude that for answering union of conjunctive
queries over a DL-LiteA,id,den-KB, we can exploits algorithm Answer presented
in Section 3.2 for answering union of conjunctive queries over DL-Lite-KBs,
with the only difference that now satisfiability check is done by taking in ac-
count also denial assertions.

We are now ready to present the algorithm AnswerDA for answering union
of conjunctive queries over DL-LiteA,id,den-KBs.

Input: a DL-LiteA,id,den-KB K = 〈T ,A〉 and an UCQ q
Output: cert(q,K)
begin

if not SatisfiableDA(K)
then return AllTup(q,K);
else return Answer(q,K);

end
Algorithm 5: AnswerDA(q,K)

Algorithm AnswerDA(q,K) takes in input a DL-LiteA,id,den-KB K and a
union of conjunctive query q and, if K is consistent, it returns the certain
answer to q over K. If K is not consistent, AnswerDA(q,K) returns AllTup(q,K)
that is the finite set of all possible tuples of constants whose arity is the one
of q. With the aim of checking satisfiability of K, AnswerDA(q,K) makes use
of the algorithm SatisfiableDA(K).

Next, we deal with termination and correctness of Algorithm 5.

Lemma 12. Let K = 〈T ,A〉 be a DL-LiteA,id,den-KB, and let q be a union of
conjunctive queries. Then AnswerDA(q,K) terminates.

Proof. Termination of AnswerDA(q,K) follows directly from the termination
of SatisfiableDA(K) and Answer(q,K) [25], and from the fact that both T and
A are finite sets of assertions.

The following lemma states that we can use AnswerDA(q,K) for computing
the certain answers to a union conjunctive queries posed over a DL-LiteA,id,den-
KB.

Lemma 13. Let K = 〈T ,A〉 be a DL-LiteA,id,den-KB, and let q be a union of
conjunctive queries. Then cert(q,K) = AnswerDA(q,K).

Proof. The proof follows directly from Theorem 8 and from the correctness of
the algorithms SatisfiableDA(K) and Answer(q,K).
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A notable consequence of the lemmas above, is that, as for the other DLs of
the DL-Lite family, the problem of answering union of conjunctive queries over
consistent DL-LiteA,id,den-KBs is FOL-rewritable. We are also able to establish
the complexity of answering UCQs in DL-LiteA,id,den in combined complexity.

Theorem 9. Answering UCQs in DL-LiteA,id,den is in AC0 in the size of the
ABox (data complexity), in NP in the size of the KB, and in NP in combined
complexity.

Proof. The proof follows from the following results:

− for computing the certain answers of a union of conjunctive queries over
a consistent DL-LiteA,id,den-KB 〈T ,A〉 we can refer to the DL-Lite-KB
〈Tinc,A〉.

− Theorem 7 states that KB satisfiability in DL-LiteA,id,den is in AC0 in data
complexity.

The above observations prove that the problem is in AC0 in data complexity.
Moreover, we have:

− Theorem 7 states that KB satisfiability in DL-LiteA,id,den is in NP with
respect to the size of K.

Hence, the problem is in NP with respect to the size of the KB. Finally, we
have that answering CQs over a databases is NP-complete in the size of the
query [1]. Therefore, we can conclude that the problem is in NP also in com-
bined complexity.

We conclude this section by observing that adding denial assertions to
DL-LiteA-KBs does not increase the data complexity for both the satisfiabil-
ity problem and query answering. Unfortunately, our results show that the
presence of denial assertions leads the complexity of both problems to became
intractable with respect to the size of the KB, in particular with respect to the
size of Tden.

5.3 Properties of DL-LiteA,id,den

In this section, we present some results and algorithms for DL-LiteA,id,den-KBs,
which are useful for the rest of this work.

In what follows, we show how, by exploiting the results given in the pre-
vious sections, it is possible to single out those assertions in the ABox of an
inconsistent DL-LiteA,id,den-KB that lead to violate assertions in the TBox.

As mentioned in Section 2.5, a boolean query q is satisfied by an ABox A
(denoted by 〈∅,A〉 |= q) if there exists a substitution σ from the variables in q to
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constants in A such that the formula σ(q) is satisfied in the FOL-interpretation
DB(A) (cf. Definition 3). Moreover, when the query q is satisfied by A, we
denote by images(q,A) the set constituted by all the images of q in A.

Now, let K = 〈T ,A〉 be an inconsistent DL-LiteA,id,den-KB. Theorem 6
guarantees that 〈∅,A〉 |= unsatQueries(T ), and then there exists a query q ∈
unsatQueries(T ) such that 〈∅,A〉 |= q. It follows that the set images(q,A) is
non-empty. Intuitively, a set V ∈ images(q,A) contains those ABox assertions
belonging to A which lead to violate a TBox assertion in cln(T ). We name
the set V a K-clash. More formally:

Definition 15. Let K = 〈T ,A〉 be DL-LiteA,id,den-KB such that 〈∅,A〉 |=
QunsatT . We say that a non-empty set of ABox assertions V is a K-clash if
there exists in QunsatT a query q such that V ∈ images(q,A).

Intuitively, given an inconsistent DL-LiteA,id,den-KB K = 〈T ,A〉, the set
of K-clashes may represent the base from which one can build every T -
inconsistence set in A. Indeed, we have the following.

Lemma 14. Let K = 〈T ,A〉 be a DL-LiteA,id,den-KB such thatMod(〈T ,A〉) =
∅. A set V ⊆ A is a T -inconsistent set if and only if there exists a K-clash V ′
such that V ′ ⊆ V .

Proof.
(⇒) Let V be a T -inconsistent set. There exists a K-clash V ′ such that
V ′ ⊆ V . Since 〈T , V 〉 is inconsistent, it follows from Theorem 6 that there
exists in QunsatT a query q such that 〈∅, V 〉 |= q. This means that images(q, V )
is non-empty. Since for every set V ′ ∈ images(q, V ) we have that V ′ ⊂ V , it
follows that there exists a K-clash ⊆ V .
(⇐) Let V ′ be a K-clash, then there exists a T -inconsistent set V such that
V ′ ⊆ V . Since V ′ is a K-clash, then there exists a query q ∈ QunsatT such that
〈∅, V ′〉 |= q. It follows from Theorem 6 that V ′ is a T -inconsistent set, and
then the claim follows.

Example 6. Let K = 〈T ,A〉 be a DL-LiteA,id,den-KB where:

T = {C1 v ¬∃P1, C2 v C1}
A = {C2(a), C1(b), P1(a, c), P1(d, e)}

In this example, we have that:

• cln(T ) is as follows:

cln(T ) = { C1 v ¬∃P1; ∃P1 v ¬C1

C2 v ¬∃P1; ∃P1 v ¬C2 };
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• QunsatT contains the following queries:

q1 = ∃x, y.C1(x) ∧ P1(x, y);
q2 = ∃x, y.C2(x) ∧ P1(x, y).

It is easy to verify that the only K-clash is the set of assertions:

V1 = {C2(a), P1(a, c)}.

Moreover, it easy to verify that the only T -inconsistent sets in A are:

V1 = {C2(a), P1(a, c)};
V2 = {C2(a), P1(a, c), C1(b)};
V3 = {C2(a), P1(a, c), P1(d, e)};
V4 = {C2(a), P1(a, c), C1(b), P1(d, e)}.

Note that, for every T -inconsistent set V inA ,we have that V1 ⊆ V . Moreover,
we note that V4 = A, which means that the whole ABox A is a T -inconsistent
set.

Given an inconsistent DL-LiteA,id,den-KB K = 〈T ,A〉, computing the set
containing every T -inconsistent set in A may be computationally costly. For
this reason, we now presents the algorithm InconsistentSets that takes as input
a KB K = 〈T ,A〉 expressed in DL-LiteA,id,den, and computes a set containing
all the K-clashes. In fact, as Lemma 14 shows, for every T -inconsistent set V ′,
which is also a K-clash, there exists a T -inconsistent set V such that V ′ ⊆ V .
Therefore, in that cases in which one needs to refer to the set constituted
by the T -inconsistent sets in A, the set containing the K-clash constitutes an
excellent candidate for replacing it. The algorithm InconsistentSets will be used
intensively in the rest of this work.

Before presenting the algorithm, we need to introduce some preliminary
notions.

Let q() be a boolean query of the form (5.1), and let ~x be all the exis-
tential variable occurring in q(). We denote with q(~x) the query obtained by
transforming all existential variables in q() into distinguished variables. For
example, consider the following boolean query:

q() = ∃x, y, z.A(x) ∧R(x, y) ∧B(y) ∧A(z) ∧R(z, y) ∧B(y).

With q(x, y, z) we refer to the query:

q(x, y, z) = A(x) ∧R(x, y) ∧B(y) ∧A(z) ∧R(z, y) ∧B(y).

Moreover, let q() be a boolean query of the form (5.1) over a TBox T , and
let q(~x) denote the non-boolean version of q(). Let ~t be a tuple of constants
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with the same arity of ~x. We denote by facts(q(~x),~t) the set of ABox assertions
built over the concept, role, and attribute names occurring in q by replacing
the variables ~x in the body of q with the tuple ~t. For instance, consider the
following query:

q() = ∃x, y, z.pers(x) ∧ name(x, y) ∧ surname(x, z) ∧ z 6= ‘white’.

and the tuple of constants 〈‘obj-p’, ‘bob’, ‘white’〉. We have that:

facts(q(~x), 〈‘obj-p’, ‘bob’, ‘white’〉) =
{pers(obj-p), name(obj-p, bob), surname(obj-p, white}.

We are now ready to present the algorithm InconsistentSets(〈T ,A〉). We
first recall that, given a query q(~x), qDB(A) denote the answer to q(~x) over
the interpretation DB(A), and that every tuple ~t ∈ qDB(A) has the same
cardinality of ~x and is formed by constants occurring in A.

Input: DL-LiteA,id,den-KB 〈T ,A〉
Output: a set containing sets of ABox assertions
begin

W ← ∅;
QunsatT ← unsatQueries(T );
foreach q() ∈ QunsatT do

foreach ~t ∈ qDB(A) do
W ←W ∪ {facts(q(~x),~t)};

return W ;
end

Algorithm 6: InconsistentSets(〈T ,A〉)

Informally, InconsistentSets(〈T ,A〉) first computes the set QunsatT by means
of the algorithm unsatQueries(T ), then, for each boolean query q in QunsatT ,
it computes the answers to q(~x) over the KB 〈∅,A〉 by evaluating q over the
ABox A considered as a relational databases, i.e., over DB(A). Finally, by
using the answers to q(~x), the algorithm builds those sets of assertions in A
that constitute the images of the query q in A.

Lemma 15. Let K = 〈T ,A〉 be a possibly inconsistent DL-LiteA,id-KB. Then
InconsistentSets(K) terminates.

Proof. Termination follows directly from the termination of the algorithm
unsatQueries(T ) and of evaluation of FOL-query over databases.

The following theorem states that every set V in InconsistentSets(K) is actu-
ally a K-clash, and that no set of ABox assertions, other than those contained
in InconsistentSets(K), is a K-clash.
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Theorem 10. Let K be a possibly inconsistent DL-LiteA,id-KB. A set of ABox
assertions V is a K-clash if and only if V ∈ InconsistentSets(K).

Proof. The proof follows directly from Theorem 6.

The following example aims to clarify how InconsistentSets(K) computes
the K-clashes relative to an inconsistent DL-LiteA,id,den-KB K.

Example 7. Let K = 〈T ,A〉 be the inconsistent DL-LiteA,id,den-KB of Exam-
ple 5. The first step InconsistentSets(K) is computing the set QunsatT by means
of unsatQueries(T ). As shown in Example 5, the set QunsatT contains, among
the others, also the following queries:

q1() = ∃x, y, z, k, w, v.PortOut(x) ∧ of(x, y) ∧ connectedTo(x, z)∧
of(z, k) ∧ PortIn(w) ∧ of(w, y) ∧ connectedTo(w, v) ∧ of(v, k);

q2() = ∃x, y, z, k.PortOut(x) ∧ of(x, y) ∧ connectedTo(x, k)∧
PortIn(z) ∧ of(z, y) ∧ connectedTo(z, k);

q3() = ∃x, y.PortIn(x) ∧ PortOut(x) ∧ connectedTo(x, y);
q4() = ∃x.PortIn(x) ∧ PortOut(x);.

We recall that the query q4() is built starting from the disjointness PortIn v
¬PortOut, and that the remaining queries are built starting from the denial
assertion ∀x, y, z, k, w, v.(PortOut(x)∧of(x, y)∧connectedTo(x, z)∧of(z, k)∧
PortIn(w) ∧ of(w, y) ∧ connectedTo(w, v) ∧ of(v, k)→ ⊥).

The second step of InconsistentSets(K) is evaluating q(~x) for each query q()
in QunsatT . Since the interpretation DB(A) is

PortInDB(A) = {pDB(A)
1 },

PortOutDB(A) = {pDB(A)
1 },

connectedToDB(A) = {(pDB(A)
1 , p

DB(A)
2 )},

for the queries considered in this example we have:

q1(x, y, z, k, w, v)DB(A) = ∅
q2(x, y, z, k)DB(A) = ∅
q3(x, y)DB(A) = {〈p1, p2〉}
q4(x)DB(A) = {〈p1〉}

Finally, by using the so obtained tuples, the algorithm builds the following
K-clashes.

facts(q1(x), 〈p1〉) = {PortIn(p1),PortOut(p1)};
facts(q4(x, y), 〈p1, p2〉) = {PortIn(p1),PortOut(p1), connectedTo(p1, p2)}.
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We conclude this section by giving a notable properties of DL-LiteA,id,den.
From Lemma 7, it it follows that both Lemma 6 and Theorem 5 also hold for
DL-LiteA,id,den. Thus, we have the following lemma.

Lemma 16. Let K = 〈T ,A〉 be a consistent DL-LiteA,id,den-KB, and let α be
an ABox assertion. If K |= α, then there exists in A an ABox assertion α′

such that 〈T , {α′}〉 |= α.

Proof. The proof is similar to the proof of Theorem 5 given in in [40], and
follows from Lemma 7.
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Chapter 6

Updating consistent Description
Logic KBs

There are two types of change operators for a knowledge base, corresponding
to inserting, and deleting pieces of knowledge, respectively. In the case of
insertion into a consistent KB, the aim is to incorporate new knowledge into
the KB, and the corresponding operator should be defined in such a way to
compute a consistent KB that supports the new knowledge. In the case of
deletion from a consistent KB, the aim is to come up with a consistent KB
where the retracted knowledge is not valid. In both cases, the crucial aspect
is that evolving a consistent KB should not introduce inconsistencies.

Moreover, different change operators are appropriate depending on whether
the KB is undergoing a revision, i.e., a correction of the state of belief, or an
update, reflecting change of the world [62].

Existing DL systems do not provide explicit services for KB change. Nev-
ertheless, many recent papers demonstrate that the interest towards a well-
defined approach to knowledge base (KB) change is growing significantly [33,
40, 45, 78, 109].

Following the tradition of the work on knowledge revision and update, all
the above papers advocate some minimality criterion in the changes of the KB
that must be undertaken to realize the change operations. In other words,
the need is commonly perceived of keeping the distance between the original
KB and the KB resulting from the application of a change operator minimal.
There are two main approaches to define such a distance, called model-based
and formula-based, respectively.

The intuition behind model-based approaches is the following. There is
an actual state-of-affairs of the world of which, however, we have only an
incomplete specification. Such specification identifies a (typically infinite) set
of models, each corresponding to a state-of-affairs that we consider possible.

69
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Among them there is one model corresponding to the actual state-of-affairs,
but we don’t know which one is. Now when we perform an update we aim
at changing the actual state-of-affairs. However, since we don’t really know
which of our models correspond to the actual state-of-affairs, we apply the
change on every possible model. One basic problem with this approach is to
characterize the language needed to express the KB that exactly captures the
resulting set of models.

Conversely, in the formula-based approaches, the objects of change are sets
of formulae. That is, the result of the change is explicitly defined in terms
of a formula, by resorting to some minimality criterion with respect to the
formula expressing the original KB. Here, the basic problem is that the formula
constituting the result of an evolution operation is not unique in general.

In this chapter, we study the problem of updating a KB. In particular, we
concentrate on the case where the KB is consistent, and we focus our attention
to scenarios characterized by the following assumptions:

1. We consider the case where the evolution affects only the instance level
of the KB, i.e., the ABox. In other words, we enforce the condition
that the KB resulting from the application of the evolution operators
has the same TBox as the original KB (similarly to [40, 78]). This as-
sumptions are motivated by the fact that in information and knowledge
management systems, extensional level tends to change frequently, while
the domain representation provided by the intensional level typically re-
mains unchanged for longer periods of time. In addition, changes in
the intensional level are usually the result of an accurate manual design
process.

2. We aim at a situation where the KB resulting from the evolution can
be expressed in the same DL as the original KB. This is coherent with
our goal of providing the foundations for the problem of equipping DL
systems with evolution operators: if a DL system S is able to manage
KBs expressed in a DL L, the result of evolving such KBs should be
expressible in L.

3. The KBs resulting from the application of an evolution operator on two
logically equivalent KBs should be mutually equivalent. In other words,
we want the result to be independent from the syntactic form of the
original KB.

Assumption (1), although limiting the generality of our approach, captures
several interesting scenarios, including ontology-based data management, where
the DL ontology is used as a logic-based interface to existing data sources.
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As for item (2), we note that virtually all model-based approaches suf-
fer from the expressibility problem. This has been reported in many recent
papers, including [33, 40, 78], for various DLs. For this reason, we adopt a
formula-based approach, inspired in particular by the work developed in [44]
for updating logical theories. As in [44], we consider both insertions and dele-
tions. However, we differ from [44] for an important aspect. We already noted
that the formula constituting the result of an evolution operation is not unique
in general. While [44] essentially proposes to keep the whole set of such for-
mulas, we take a radical approach, and consider their intersection as the result
of the evolution. In other words, we follow the When In Doubt Throw It Out
(WIDTIO) [110] principle.

Finally, with regard to item (3), we sanction that the notion of distance
between KBs refers to the closure of the ABox of a KB, rather than to the
ABox itself. By basing the definition of distance on the closure of ABoxes and
by preventing changes to the TBox, we achieve the goal of making the result
of our operators independent from the form of the original KB.

The following example, which we use as running example in this part of
the thesis, gives an intuition of the problem of updating a KB.

Example 8. We consider a portion of the Formula One domain. We know
that official drivers (OD) and test drivers (TD) are both team members (TM),
and official drivers are not test drivers. Every team member is a member of
(mf) exactly one team (FT ), and every team has at most one official driver.
Finally, no race director (RD) is a member of a team. We also know that john
is the official driver of team t1, that bob is a test driver, and that tom is a team
member. The corresponding DL-LiteA,id-KB K is:

T = { OD v TM, TD v TM, OD v ¬TD, RD v ¬TM,
TM v ∃mf, TM v ¬FT, ∃mf v TM, ∃mf− v FT,
FT v ∃mf−, RD v ¬FT, (id OD mf), (funct mf) }

A = { OD(john), mf(john, t1), TD(bob), TM(tom) }

What happens if the domain changes in such a way that tom becomes the
new official driver of team t1? Which is the KB resulting from the fact that
we retract that bob is a test driver?

In this chapter, we first present some desirable properties that, in our opin-
ion, characterize a reasonable update operator in our setting. Then, through
a comparison among the various formula-based approaches proposed in liter-
ature, we illustrate our propose of update operators for both inserting and
deleting facts from a consistent KB, and we show that they posses all the
features that a reasonable update operator for KBs should have.

In all the chapters 6 and 7, we assume that the KB, that is subjected to
update, is consistent.
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6.1 Desirable properties for KB update

The following list collects a set of desirable properties that, in our opinion, an
update should capture.

1. (Success of the update): in the case where the update operation is an
insertion of a set of facts, the KB resulting from the update operation
should entail these facts. Conversely, if the update operation is a deletion
of a set of facts, then the resulting KB should not entail these facts.

2. (Uniqueness of the result): it is reasonable to assume that ontology-
based information management systems cannot handle more than one
knowledge base at a time. For this reason, we argue that the result of
the update operation should be unique. Alternative, the update operator
can return a set of KB leaving to the user the decision of which one should
be chosen as result.

3. (Consistency preservation): when the original KB is consistent, the up-
date operator should guarantee that the resulting KB is also consistent.

4. (Expressibility): the KB resulting from the update operation should be
expressed in the same DL as the original KB. As we said earlier, this
is coherent with our goal of providing the foundations for equipping DL
ontology-based information management systems with update operators.

5. (Syntax independence): the KBs resulting from the application of the
update operator on two logically equivalent KBs should be mutually
equivalent. In other words, we want the result to be independent from
the syntactic form of the original KB.

6. (Compliance with the minimal-change principle): the KB resulting from
the update operation should be as close as possible to the original KB.
In other words, we follow the idea of retaining as much knowledge as
possible from the original KB.

Clearly, the Uniqueness of the result property is related to the expressibility
property. The above properties are not new in the study of knowledge change.
In fact, these kinds of property are often needed to meet rationality postulates,
similar to those in the AGM theory [3] in belief revision (see. [46, 99] for a
dissertation of the AGM theory in Description Logic), or to the postulates
for belief update proposed by Katsuno and Mendelzon [62]. Moreover, simi-
lar properties have been proposed in literature as comparison criteria among
change operators (e.g., in [97]).



6.2. Accomplishing an update 73

6.2 Accomplishing an update

In this section we provide a formal definition of when an ABox “realizes” the
update of a KB; where an update can be of two types: “update by insertion”
and “update by deletion”. In this chapter, if K is the DL KB that we want
update with a finite set of atomic ABox assertions F , then we assume that K
is consistent. In other words, we do not consider the update of inconsistent
KBs (see Chapter 10 for a treatment of the update of inconsistent KBs).

According to the success of the update property, if K′ is the result of up-
dating the KB K with the insertion of F , we expect that K′ entails F . Also,
according to the consistency preservation property, we expect that K′ is con-
sistent. Similarly, if K′ is the KB resulting from the deletion of F from K, then
K′ should be consistent and should not entail F . This may require changing
the ABox of K in a manner that guarantees the expected result.

Following those principles, and inspired by the work in [44], we adopt the
following definition, which specifies when a set of ABox assertions “realizes”
the insertion of a set of ABox assertions into a KB 〈T ,A〉.

Definition 16. Let 〈T ,A〉 be a consistent KB. An ABox A′ accomplishes the
insertion of F into 〈T ,A〉 if A′ is T -consistent, and 〈T ,A′〉 |= F .

Example 9. Consider the KB K of Example 8, and suppose that bob be-
comes a race director, and tom becomes the new official driver of team t1.
In order to reflect this new information, we change K with the insertion of
F = {RD(bob), OD(tom),mf(tom, t1)}. Since the TBox implies that a race
director cannot be a team member, RD(bob) contradicts TD(bob). Also, since
every team has at most one official driver, {OD(tom),mf(tom, t1)} contradicts
the fact that john is the official driver of team t1. According to Definition 16,
the following ABoxes accomplish the update of K with the insertion of F .

A+
1 = { RD(bob), OD(tom), mf(tom, t1) }
A+

2 = { RD(bob), OD(tom), mf(tom, t1), TM(john) }
A+

3 = { RD(bob), OD(tom), mf(tom, t1), mf(john, t1) }
A+

4 = { RD(bob), OD(tom), mf(tom, t1), OD(john) }
A+

5 = { RD(bob), OD(tom), mf(tom, t1), OD(john) mf(john, t2) }

Similarly, we define when a set of ABox assertions accomplishes the deletion
of F from 〈T ,A〉.

Definition 17. Let 〈T ,A〉 be a consistent KB. An ABox A′ accomplishes the
deletion of F from 〈T ,A〉 if 〈T ,A′〉 6|= F .
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Example 10. Consider again the KB K presented in Example 8. Now,
suppose that we do not know anymore whether it is true that john is a
member of the formula one team t1, or, even more, whether it is true that
john is a team member at all. Moreover, we do not know anymore if it
is true that bob is a test driver. Then, we change K with the deletion of
F2 = {mf(john, t1), TM(john), TD(bob)}. According to Definition 17, it is
easy to verify that the following ABoxes accomplish the update of K with the
deletion of F2.

A−1 = { }
A−2 = { TM(tom) }
A−3 = { TD(bob), TM(tom), FT (t1) }
A−4 = { OD(john), mf(john, t1), TM(tom) }
A−5 = { OD(john), mf(john, t1), TM(tom), TM(bob) }
A−6 = { OD(john), TD(bob), TM(tom) }
A−7 = { OD(john), TD(bob), TM(tom), FT (t1) }
A−8 = { OD(john), TD(bob), TM(tom), FT (t1), OD(tom) }

Note that, according to the definitions above, if 〈T ,A′〉 is the result of the
insertion of the set F , then we have that F ⊆ clT (A′), and if 〈T ,A′〉 is the
result of the deletion of F , then F 6⊆ clT (A′).

In general, if K = 〈T ,A〉 is a consistent KB and F is a set of ABox
assertions, the existence of at least one ABox accomplishing the update is not
guaranteed. The following propositions specify when such an ABox exists in
the case insertion and deletion respectively.

Proposition 1. Let K = 〈T ,A〉 be an L-KB and let F be a set of ABox
assertions. An ABox A′ accomplishing the insertion of F into K exists if and
only if Mod(〈T , F 〉) 6= ∅.

Proof.
(⇒) Let A′ be an ABox accomplishing the insertion of F into 〈T ,A〉. Since
A′ accomplishes the insertion of F into 〈T ,A〉, by Definition 16, 〈T ,A′〉 is
T -consistent and 〈T ,A′〉 |= F . This means that Mod(〈T ,A′〉) 6= ∅, and
Mod(〈T ,A′〉) ⊆Mod(〈T , F 〉). Therefore Mod(〈T , F 〉) 6= ∅.
(⇐) Let F be a set of ABox assertions such that Mod(〈T , F 〉) 6= ∅. We have
that F is T -consistent and, obviously, 〈T , F 〉 |= F . Hence, F accomplishes the
insertion of F into 〈T ,A〉.

Proposition 2. Let K = 〈T ,A〉 be a consistent L-KB and let F be a set of
ABox assertions. An ABox A′ accomplishing the deletion of F from K exists
if and only if 〈T , ∅〉 6|= F .
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Proof.
(⇒) Let A′ be an ABox accomplishing the deletion of F from 〈T ,A〉. By Defi-
nition 17, we have thatMod(〈T ,A′〉) 6⊆Mod(〈T , F 〉), i.e., there exists a model
m ∈Mod(〈T ,A〉) such that m 6∈Mod(〈T , F 〉). Since L is monotonic, we have
Mod(〈T ,A〉) ⊆ Mod(〈T , ∅〉). Hence, there exists a model m ∈ Mod(〈T , ∅〉)
such that m 6∈Mod(〈T , F 〉), i.e., 〈T , ∅〉 6|= F .

(⇐) Clearly, if 〈T , ∅〉 6|= F , then the empty ABox ∅ accomplishes the deletion
of F from 〈T ,A〉.

Note that the conditions that guarantee the existence of ABoxes accom-
plishing the update depend only on the TBox of the original KB.

We conclude this section with an example showing a case where no ABoxes
accomplishing the deletion of a set of facts from a KB exists.

Example 11. Consider the TBox T constituted by the following assertions:

{red} v WarmColor, {brown} v WarmColor,
{green} v CoolColor, {blue} v CoolColor,
CoolColor v Color, WarmColor v Color;

and consider the set of ABox assertions F = {Color(red),Color(blue)}. It is
easy to see that every interpretation I has to satisfy the conditions below in
order to be a model of T .

(red)I ∈ WarmColorI (red)I ∈ ColorI

(brown)I ∈ WarmColorI (brown)I ∈ ColorI

(green)I ∈ CoolColorI (green)I ∈ ColorI

(blue)I ∈ CoolColorI (blue)I ∈ ColorI

Therefore, for every ABox A, there does not exist an ABox A′ which accom-
plishes the deletion of F from the KB 〈T ,A〉.

6.3 Accomplishing an update minimally

After adding new facts into an existing KB, one may find that the revised
KB becomes inconsistent. A strategy to overcome such a situation can be to
remove a part of the original ABox with the aim of preventing inconsistency.
Similarly, if the goal is to update a KB with the deletion of a set of facts, we
could be forced to retract facts from the original KB.

Intuitively, Definitions 16 and 17 allow only for obtaining new KBs that
obey the success of the update property. Another principle which is undoubt-
edly considered as one of the most important in knowledge base evolution,
is the minimal change property. Such principle states that the KB resulting
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from the update should be as “close” as possible to the original one, and that,
during the process, the “loss of information” should be minimized. The terms
“closeness” and “loss of information” have no single interpretation in the litera-
ture. For example, in model-based approach, closeness and loss of information
are measured in model-theoretic terms, by the definition of distance metric
between the models satisfying the modified knowledge base and the original
one.

In the formula-based approach, the goal becomes the preservation of the
facts contained in the original ABox or, alternatively, the ones entailed by the
original KB. As the reader will see, we follow the latter approach.

In order to give a characterization of the notion of “closeness”, we refer to
the relation of fewer changes between two sets of ABox assertions with respect
to another one given by Fagin, Ullman and Vardi in [44].

Let A, A1, and A2 be three finite sets of ABox assertions. We say that A1

has fewer deletions than A2 with respect to A if A\A1 ⊂ A\A2. Also, we say
that A1 and A2 have the same deletions with respect to A if A\A1 = A\A2.
Finally, we say that A1 has fewer insertions than A2 with respect to A if
A1 \ A ⊂ A2 \ A.

Definition 18. Let A, A1, and A2 be three finite sets of ABox assertions. We
say that A1 has fewer changes than A2 with respect to A if

(i) A1 has fewer deletions than A2 with respect to A, or

(ii) A1 and A2 have the same deletions with respect to A, and A1 has fewer
insertions than A2 with respect to A.

Note that, the notion of fewer changes gives preference to such ABoxes
which have fewer deletions over the ABoxes which have fewer insertions. Such
behavior is justified by the idea of retaining as much knowledge as possible
from the original KB.

The notion of fewer changes specify a relation between two ABoxes with
respect to a third ABox. In what follows, we give a notable property of such
relation. Firstly, we recall that given an alphabet Γ, we denote with HB(Γ)
the Herbrand Base of Γ, i.e., the set of atomic ABox assertions that can be
built over the alphabet Γ. Moreover, we denote with ℘(HB(Γ)) the powerset
of HB(Γ).

Lemma 17. Let Γ be an alphabet, and let P ⊆ ℘(HB(Γ)). The relation “has
fewer changes” is a strict partial order on P.

Proof. Let A, A1, and A2 be three ABoxes in P. To prove the claim we have
to show that:
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(i) the statement A1 has fewer changes than A1 with respect to A does not
hold (anti-reflexivity);

(ii) if A1 has fewer changes than A2 with respect to A, and A2 has fewer
changes than A3 with respect to A, then A1 has fewer changes than A3

with respect to A. (transitivity).

The first item directly follows from Definition 18. Hence, it remains to prove
that if A1 has fewer changes than A2 with respect to A, and A2 has fewer
changes than A3 with respect to A, then A1 has fewer changes than A3 with
respect to A. According to Definition 18, the following cases are conceivable:

1. A1 has fewer deletions than A2 w.r.t. A, and A2 has fewer deletions than
A3 w.r.t. A. This means that A \ A1 ⊂ A \ A2 and A \ A2 ⊂ A \ A3.
It follows that A \ A1 ⊂ A \ A3. Hence A1 has fewer changes than A3

w.r.t. A.

2. A1 has fewer deletions than A2 w.r.t. A, and A2 and A3 have the same
deletions w.r.t A. This means that A1 has fewer deletions than A3 w.r.t.
A. Hence, A1 has fewer changes than A3 w.r.t. A.

3. A1 and A2 have the same deletions w.r.t. A and A1 has fewer insertions
than A2 w.r.t. A. Moreover, A2 has fewer deletions than A3 w.r.t. A.
It follows that A1 has fewer deletions than A3 w.r.t. A. Hence, A1 has
fewer changes than A3 w.r.t. A.

4. A1, A2, and A3 have the same deletions w.r.t. A, and: (1) A1 has fewer
insertions than A2 w.r.t. A; (2) A2 has fewer insertions than A3 w.r.t.
A. This means that A1 \ A ⊂ A2 \ A, and A2 \ A ⊂ A3 \ A. It follows
that A1 \ A ⊂ A3 \ A. Hence, A1 has fewer changes than A3 w.r.t. A.

In conclusion, we have shown that the relation “has fewer changes” is a strict
partial order on P.

Following the notion of fewer changes we define when an ABox accom-
plishes the insertion of a set of facts into a KB minimally.

Definition 19. Let 〈T ,A〉 be a consistent KB. An ABox A′ accomplishes the
insertion of F into 〈T ,A〉 minimally if:

1. A′ accomplishes the insertion of F into 〈T ,A〉, and

2. there is no A′′ that accomplishes the insertion of F into 〈T ,A〉 such that
clT (A) has fewer changes than clT (A′) with respect to clT (A).
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Note that, differently from the definition given in [44], we refer to the
closure of the ABox of a KB, rather than to the ABox itself. This choice is
motivated by the argument that, in our opinion, the knowledge, that the KB
provides about the world, is constituted by the all the facts that we can derive
from the whole KB, i.e. from both the TBox and the ABox, and not only from
the facts in the ABox.

Example 12. We refer to Example 9. According to Definition 19, we have
that only the ABoxes A+

3 and A+
4 accomplish the insertion of F into 〈T ,A〉

minimally. Indeed, it is easy to see that both clT (A+
3 ) and clT (A+

4 ) have fewer
deletions than clT (A+

1 ) and clT (A+
2 ) with respect to clT (A), and that clT (A+

4 )
has fewer insertions than clT (A+

5 ) with respect to clT (A).

Similarly, we define the notion of an ABox which accomplishes the deletion
of a set of facts from a KB minimally.

Definition 20. Let 〈T ,A〉 be a consistent KB. An ABox A′ accomplishes the
deletion of F from 〈T ,A〉 minimally if:

1. A′ accomplishes the deletion of F from 〈T ,A〉, and

2. there is no A′′ that accomplishes the deletion of F from 〈T ,A〉, such that
clT (A′′) has fewer changes than clT (A′) with respect to clT (A).

Example 13. Consider the ABoxes accomplishing the deletion of F from
〈T ,A〉 of Example 10. The reader can verify that only the ABoxes A−5 and
A−7 accomplish the deletion of F from 〈T ,A〉 minimally. Indeed, we have that
clT (A−5 ) has fewer deletions than clT (A−1 ), clT (A−2 ), and clT (A−4 ) with respect
to clT (A). Whereas, clT (A−7 ) has fewer deletions than clT (A−1 ), clT (A−2 ),
clT (A−3 ), and clT (A−4 ), and that it has fewer insertions than clT (A−8 ).

Definition 19 and Definition 20 are non-constructive in the sense that they
do not give any indications of how to build those ABoxes that accomplish an
update minimally. The following theorems, which are an adaptation to our
setting of two results reported in [44], give constructive equivalent conditions.

Theorem 11. Let 〈T ,A〉 be a consistent DL KB, and let A′ and F be two sets
of ABox assertions. A′ accomplishes the insertion of F into 〈T ,A〉 minimally
if and only if clT (A′) = clT (A′′ ∪ F ), for some maximal subset A′′ of clT (A)
such that A′′ ∪ F is T -consistent.

Proof.
(⇒) Let A′ be an ABox accomplishing the insertion of F into 〈T ,A〉minimally.
We prove that there exists a set A′′, such that clT (A′) = clT (A′′ ∪ F ) and A′′
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is a maximal subset of clT (A) such that A′′ ∪ F is T -consistent. Since A′
accomplishes the insertion of F into 〈T ,A〉, from Proposition 1 we know that
〈T , F 〉 is consistent.

We start proving that A′′ is a subset of clT (A) such that A′′ ∪ F is T -
consistent. Obviously, A′′ ∪ F is T -consistent since Mod(〈T ,A′〉) 6= ∅. Now,
suppose that A′′ 6⊆ clT (A), which means that there exists an assertion α ∈ A′′
such that α 6∈ clT (A).

Consider the set of ABox assertions B = (A′′ \ {α}) ∪ F . Clearly, we
have that 〈T ,B〉 is consistent, and that 〈T ,B〉 |= F . The following cases are
conceivable:

• clT (B) has the same deletions of clT (A′) with respect to clT (A), and
clT (B) has fewer insertions than clT (A′) with respect to clT (A). This
means, that A′ does not accomplish the insertion of F into 〈T ,A〉 mini-
mally, which is a contradiction.

• clT (A′) has fewer deletions of clT (B) with respect to clT (A). This means
that there is a subset A′′′ of A′′ such that α ∈ A′′′ and 〈A′′′ ∪ F 〉 |= β,
where β ∈ clT (A), but α 6∈ clT (B). Hence, we can build the T -consistent
set B′ = B ∪ {β} which accomplish the insertion of F into 〈T ,A〉, and
such that clT (B′) has fewer changes than clT (A′) with respect to clT (A).
This implies, that A′ does not accomplish the insertion of F into 〈T ,A〉
minimally, which is a contradiction.

Now, we prove that A′′ is a maximal subset of clT (A). Assume, by con-
tradiction, that A′′ is not a maximal subset of clT (A) such that A′′ ∪ F
is T -consistent. This means that there is an assertion α ∈ clT (A) such
that α 6∈ A′′, and A′′ ∪ {α} ∪ F is T -consistent. Moreover, this means
that clT (A) \ (A′′ ∪ {α}) ⊂ clT (A) \ A′′. Now, consider the ABox A′′′ =
A′′∪clT (F )∪{α}. Since A′′∪{α}∪F is T -consistent, and since clT (F ) ⊆ A′′′,
then we have that A′′′ is T -consistent and that 〈T ,A′′′〉 |= F . According to
Definition 16, this means that A′′′ accomplishes the insertion of F into 〈T ,A〉.
Moreover, we have that clT (A) \ clT (A′′′) ⊆ clT (A) \ clT (A′). Hence, clT (A′′′)
has fewer deletions than clT (A′) with respect to clT (A). Thus, we have a
contradiction.

(⇐) Let A′ be an ABox such that clT (A′) = clT (A′′ ∪ F ), where A′′ is a
maximal subset of clT (A) such that A′′ ∪ F is T -consistent. We prove that
A′ accomplishes the insertion of F into 〈T ,A〉 minimally. Since A′′ ∪ F is
T -consistent, then by Proposition 1 we know that the set U of the ABoxes
accomplishing the insertion of F into 〈T ,A〉 is not empty.

Obviously, A′ accomplishes the insertion of F into 〈T ,A〉, then we have to
prove that A′ accomplishes the insertion of F into 〈T ,A〉 minimally. Toward a
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contradiction, consider a T -consistent ABox A′′′ such that F ⊆ clT (A′′′). This
means that A′′′ accomplishes the insertion of F into 〈T ,A〉. Now, suppose that
clT (A′′′) has fewer changes than clT (A′′ ∪ F ) with respect to clT (A). There
are two possible cases:

1. clT (A′′′) has fewer deletions than clT (A′′ ∪ F ) with respect to clT (A).
Hence, there is an assertion α ∈ clT (A) such that α ∈ clT (A′′′), α 6∈
clT (A′′ ∪ F ), and clT (A∪ F ) ∪ {α} is T -consistent. Thus, contradicting
the hypothesis that A′ is a maximal subset of clT (A) such that A′ ∪ F
is T -consistent.

2. clT (A′′′) and clT (A′′∪F ) have the same deletions with respect to clT (A),
and clT (A′′′) has fewer insertions than clT (A′′∪F ) with respect to clT (A).
This means that there is an assertion α in clT (A′′ ∪ F ) which is not in
clT (A′′′). But this is impossible , since A′′ ⊆ A and since clT (A′′′) and
clT (A′′ ∪ F ) have the same deletions with respect to clT (A). Then, we
have a contradiction.

We now focus on the deletion, and we provide the analogous of Theorem 11
for deletion operations.

Theorem 12. Let 〈T ,A〉 be a consistent L-KB and let A′ and F be two sets
of ABox assertions. A′ accomplishes the deletion of F from 〈T ,A〉 minimally
if and only if clT (A′) is a maximal subset of clT (A) such that F 6⊆ clT (A′).

Proof.
(⇒) Let A′ be an ABox accomplishing the deletion of F from 〈T ,A〉minimally.
We prove that clT (A′) is a maximal subset of clT (A) such that F 6⊆ clT (A′).
Proposition 2 ensures that 〈T , ∅〉 6|= F . From Definition 17, we have that
F 6⊆ clT (A′). Toward a contradiction, assume that clT (A′) is not a maximal
subset of clT (A) such that F 6⊆ clT (A′). This means that there is an ABox
A′′ such that clT (A′) ⊂ clT (A′′) ⊆ clT (A′), and F 6⊆ clT (A′′). Obviously, A′′
accomplishes the deletion of F from 〈T ,A〉, and, since clT (A′) ⊂ clT (A′′) ⊆
clT (A′), we have that clT (A) \ clT (A′′) ⊂ clT (A) \ clT (A′), then clT (A′′) has
fewer changes than clT (A′) with respect to clT (A). Therefore, A′ does not
accomplish the deletion of F from 〈T ,A〉 minimally, which is a contradiction.

(⇐) Let clT (A′) be a maximal subset of clT (A) such that F 6⊆ clT (A′). We
prove that A′ accomplishes the deletion of F from 〈T ,A〉 minimally. Since
F 6⊆ clT (A′) then Proposition 2 ensures that at least one ABox accomplishing
the deletion of F from 〈T ,A〉 exists.

Toward a contradiction, assume that A′ does not accomplish the deletion
of F from 〈T ,A〉 minimally. Thus, there is an ABox A′′ such that, A′′ ac-
complishes the deletion of F from 〈T ,A〉, and clT (A′′) has fewer changes than
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clT (A′) with respect to clT (A). Since A′′ accomplishes the deletion of F , we
have that F 6⊆ clT (A′′). Now, since clT (A′) is a subset of clT (A), we have
that clT (A′) has no insertions with respect to 〈T ,A〉, thus, clT (A)′′ has no
insertions too. This means that clT (A)′′ has fewer changes than clT (A)′ with
respect to clT (A) since clT (A)′′ has fewer deletions. But this implies that there
is an assertion α ∈ clT (A) such that: (i) α ∈ clT (A)′′; (ii) α 6∈ clT (A)′; (iii)
F 6⊆ clT (A′ ∪ {α}). It follows that clT (A′) is not a maximal subset of clT (A)
such that F 6⊆ clT (A′), which is a contradiction.

We end this subsection with a property that will be used in the following.

Lemma 18. Let 〈T ,A〉 be a KB and let F be a set of ABox assertions. Let
A′ be a maximal subset of clT (A) such that A′ ∪ F is T -consistent. Then
A′ = clT (A′).

Proof. Since A′ is maximal subset of clT (A) such that A′ ∪ F is T -consistent
then:

1. A′ ⊆ clT (A);

2. 〈T ,A ∪ F 〉 is consistent;

3. there is no set A′′ such that A ⊂ A′′ ⊆ clT (A) and 〈T ,A′′ ∪ F 〉 is
consistent.

We have to prove that if A′ is a maximal subset of clT (A) such that A′ ∪ F
is T -consistent, then A′ is closed with respect to T . Obviously, if A′ ∪ F is
T -consistent, then also clT (A′) ∪ F is T -consistent. The proof proceeds by
contradiction as follows. Suppose that A′ 6= clT (A′). The following two cases
are conceivable:

• There exists an assertion α such that α ∈ A′ and α 6∈ clT (A′). But, since
A′ ⊆ clT (A′) then α ∈ clT (A′), which contradicts α 6∈ clT (A′).

• There exists an assertion α such that α 6∈ A′ and α ∈ clT (A′). That is,
A′ ⊂ clT (A′). If α ∈ clT (A′), then there exists a subset σ of A′ such that
〈T , σ〉 |= α. Since A′ ⊆ clT (A) then, σ ⊆ clT (A) and α ∈ clT (A). Hence,
A′ ⊂ clT (A′) ⊆ clT (A), which contradict the fact that A′ is a maximal
subset of clT (A) such that A′ ∪ F is T -consistent. Hence, A′ = clT (A′).

Therefore we have shown that A′ = clT (A′).
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6.4 Update operators based on theWIDTIO principle

Consider the KB K formed by a TBox T constituted by the axioms C1 uC2 v
C3 and C3 v ¬C4, and by the ABoxA containing the assertion C3(o). It is easy
to verify that there is only one ABox accomplishing the insertion of the new
fact C4(o) into K, that is Au = {C4(o)}. The example singles out a case where
there is a unique ABox accomplishing the insertion minimally, and therefore,
it is obvious to take such an ABox as result of the change. Now, consider
for example, the KB K′ formed by the TBox T described above, and by the
ABox A′ = {C1(o), C2(o)}. It is easy to verify that there are two ABoxes that
accomplish the insertion of {C4(o)} into K′ minimally: Au1 = {C1(o), C4(o)}
and Au2 = {C2(o), C4(o)}. What should be done if several ABoxes accomplish
the insertion of new facts into a KB minimally?

Different approaches are conceivable. The most straightforward approach
to cope with the multiple results problem, is the one inspired by the Set-Of-
Theories (SOT) approach proposed by Ginsberg [52] and, independently, by
Fagin, Ullman, and Vardi in [44]. In such an approach the idea is considering as
result of the update the set of KBs built by using the ABoxes which accomplish
the update minimally. We refer to this approach as SOT approach.

Definition 21. [SOT approach] Let K = 〈T ,A〉 be a consistent L-KB, F
a set of ABox assertions, and U = {A1, . . . ,An} be the set of all ABoxes
accomplishing the insertion of F into K minimally. Then the result of updating
K with the insertion of F is the set of KBs K ⊕SOT F defined as follows.

K ⊕SOT F = {〈T ,Ai〉 | Ai ∈ U}

Example 14. Let K = 〈T ,A〉 and F be respectively the KB and the set of
ABox assertions presented in Example 9. Then

K ⊕SOT F = {
〈T , {RD(bob), OD(tom),mf(tom, t1),mf(john, t1)}〉,
〈T , {RD(bob), OD(tom),mf(tom, t1),mf(john, t1), TM(tom)}〉,
〈T , {RD(bob), OD(tom),mf(tom, t1),mf(john, t1), FT (t1)}〉,
〈T , {RD(bob), OD(tom),mf(tom, t1),mf(john, t1), TM(john)}〉,
〈T , {RD(bob), OD(tom),mf(tom, t1),mf(john, t1), TM(tom), FT (t1)}〉,
〈T , {RD(bob), OD(tom),mf(tom, t1),mf(john, t1), TM(tom), TM(john)}〉,
〈T , {RD(bob), OD(tom),mf(tom, t1),mf(john, t1), FT (t1), TM(john)}〉,
〈T , {RD(bob), OD(tom),mf(tom, t1),mf(john, t1), TM(tom), FT (t1), TM(john)}〉,
〈T , {RD(bob), OD(tom),mf(tom, t1), OD(john)}〉,
〈T , {RD(bob), OD(tom),mf(tom, t1), OD(john), TM(tom)}〉,
〈T , {RD(bob), OD(tom),mf(tom, t1), OD(john), FT (t1)}〉,
〈T , {RD(bob), OD(tom),mf(tom, t1), OD(john), TM(john)}〉,
〈T , {RD(bob), OD(tom),mf(tom, t1), OD(john), TM(tom), FT (t1)}〉,
〈T , {RD(bob), OD(tom),mf(tom, t1), OD(john), TM(tom), TM(john)}〉,
〈T , {RD(bob), OD(tom),mf(tom, t1), OD(john), FT (t1), TM(john)}〉,
〈T , {RD(bob), OD(tom),mf(tom, t1), OD(john), TM(tom), FT (t1), TM(john)}〉}
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Therefore, K⊕SOT F is no more a unique KB, but it is actually a family of
KBs, more precisely the family of KBs 〈K,Ai〉, with Ai belonging to the set
of ABoxes accomplishing the insertion of F into K minimally. Similarly, it is
possible to define the operator K 	G F for deletion.

Under the SOT approach, the logical consequences of the update are defined
as the logical consequences of all the KBs in the set K⊕SOT F . More formally,
let φ be a first-order sentence. K⊕SOT F |= φ if and only for all K′ ∈ K⊕SOT F ,
K′ |= φ. In other words all the ABoxes accomplishing the update are considered
equally plausible, and inference is defined skeptically [76].

It is obvious that the SOT approach does not satisfy the property of unique-
ness of the result. This means that a further step that involves a choice strat-
egy is needed. One possibility is to let the user choose which ABox should
be considered the result of the update, as proposed in [105]. Calvanese et
al., in [33, 34], propose a pragmatic alternative that consists in choosing non-
deterministically the ABox of the KB resulting from the update among the
ABoxes accomplishing the update minimally. Obviously, such an approach
brings the result of their update operator to be not uniquely defined.

In order to obtain a single KB from the application of the update operator,
in [44] authors propose the Cross-Product approach. Roughly speaking, by
adopting the Cross-Product approach the ABox resulting from the update is
formed by the disjunction of all the ABoxes Ai accomplishing the insertion
of F into K minimally, viewing each Ai as the conjunction of its membership
assertions. As in the SOT approach, adopting the Cross-Product approach we
have no loss of information. The price to pay is that the resulting KB can
be exponentially larger than the original one [17]. Moreover, such approach
requires that the DL used to express the KB allows for the disjunction operator.
Consequently, in contrast with the expressibility property, it is not ensured
that the KB resulting from the update can be expressed in the same DL as the
original KB.

A radical approach to cope with the multiple results problem, and that al-
lows for dealing with capturing expressibility property, is the one suggested by
the WIDTIO (When In Doubt Throw It Out [110]) principle [51, 52]. The idea
at the base of the WIDTIO principle consists in combining the KBs resulting
from the SOT approach into a single one, by considering their intersection.
Following the WIDTIO principle, in our update operators we define as result
of the update the KB formed by the TBox of the original KB, and by the
ABox computed as the intersection of the deductive closure of all ABoxes ac-
complishing the update. The following definitions provide a formal description
of our update operators for both insertion and deletion.
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Definition 22. Let U = {A1, . . . ,An} be the set of all ABoxes accomplishing
the insertion of F into 〈T ,A〉 minimally, and let A′ be an ABox. 〈T ,A′〉 is
the result of updating 〈T ,A〉 with the insertion of F if

1. U is empty, and 〈T , clT (A′)〉 = 〈T , clT (A)〉, or

2. U is nonempty, and 〈T , clT (A′)〉 = 〈T ,
⋂

1≤i≤n clT (Ai)〉.

Notice that, by definition of our operators, in the case where no ABoxes
accomplishing the insertion exist, the result of the update is logically equivalent
to K.

Example 15. Refer to the KB K = 〈T ,A〉 and to the set of ABox asser-
tions F = {RD(bob), OD(tom),mf(tom, t1)} of Example 9. By exploiting the
results of Example 14 we have that:

〈T , {RD(bob), OD(tom),mf(tom, t1),mf(john, t1), TM(tom), FT (t1),
TM(john)}

⋂
{RD(bob), OD(tom),mf(tom, t1), OD(john),

TM(tom), FT (t1), TM(john)}〉 =
〈T , {RD(bob), OD(tom),mf(tom, t1), TM(tom), FT (t1), TM(john)}〉

Definition 23. Let U = {A1, . . . ,An} be the set of all ABoxes accomplishing
the deletion of F from 〈T ,A〉 minimally, and let A′ be an ABox. 〈T ,A′〉 is
the result of updating 〈T ,A〉 with the deletion of F if

1. U is empty, and 〈T , clT (A′)〉 = 〈T , clT (A)〉, or

2. U is nonempty, and 〈T , clT (A′)〉 = 〈T ,
⋂

1≤i≤n clT (Ai)〉.

Note that, also in case of update with deletion, when no ABoxes accom-
plishing the update exist, the result is logically equivalent to K.

Example 16. Let K = 〈T ,A〉 and F be respectively the KB and the set
of ABox assertions of Example 10. According to Definition 23, the result of
updating K with the deletion of F is:

〈T , {OD(john), TM(john), TM(tom),mf(john, t1), TM(bob), FT (t1)}
⋂

{OD(john), TM(john), TM(tom), TD(bob), TM(bob), FT (t1)}〉 =
〈T , {OD(john), TM(john), TM(tom), TM(bob), FT (t1)}〉
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6.5 Properties of our update operators

In this section, we first discuss how our update operators relates to the prop-
erties of update presented in Section 6.1, and then provide a discussion on how
our update approach relates to the classical update postulates [62].

In what follows we assume that 〈T ,A〉 is a consistent DL KB, and that F
is a finite set of ABox assertions.

First, we show that, under the assumption that at least one ABox accom-
plishing the update of 〈T ,A〉 with F exists, our update operators capture the
success of the update property. This is stated in the next two propositions.

Proposition 3. Let K = 〈T ,A〉 be a consistent L-KB, and let F be a T -
consistent set of ABox assertions. Let 〈T ,A′〉 be a KB resulting from updating
K with the insertion of F according to the semantics in Definition 22. Then
〈T ,A′〉 |= F .

Proof. We proceed by contradiction. Suppose that F is T -consistent, and
〈T ,A′〉 6|= F , i.e. there exists an assertion α ∈ F such that 〈T ,A′〉 6|= α.
Since 〈T , F 〉 is consistent, then by Proposition 1 we have that the set U =
{A1, ...,An} of ABoxes accomplishing the insertion of F into 〈T ,A〉 minimally
is not empty. Consequently, by Definition 22 we have that 〈T , clT (A′)〉 =
〈T ,

⋂
Ai∈U clT (Ai)〉. Since 〈T ,A′〉 6|= F , we have that F 6∈ clT (A′), and then

F 6∈
⋂
Ai∈U clT (Ai). This means that there exists an ABox Aj ∈ U such that

F 6∈ clT (Aj). Since a set of ABox assertions belongs to U if and only if such
a set accomplishes the insertion of F into 〈T ,A〉, it follows that 〈T ,Aj〉 |= F ,
i.e., F ∈ clT (Aj), which is a contradiction.

Proposition 4. Let K = 〈T ,A〉 be a consistent L-KB, and let F be a T -
consistent set of ABox assertions. Let 〈T ,A′〉 be a KB resulting from updating
K with the deletion of F according to the semantics in Definition 23. Then
〈T ,A′〉 6|= F .

Proof. We proceed by contradiction. Since 〈T , ∅〉 6|= F , by Proposition 2
we have that the set U = {A1, ...,An} of ABoxes accomplishing the deletion
of F from 〈T ,A〉 minimally is not empty. Consequently, by Definition 23 we
have that 〈T , clT (A′)〉 = 〈T ,

⋂
Ai∈U clT (Ai)〉. Suppose that 〈T ,A′〉 |= F . This

means that for all Ai ∈ U we have that F ∈ clT (Ai), hence, 〈T ,Ai〉 |= F . Since
a set of ABox assertions belongs to U if and only if such a set accomplishes the
deletion of F from 〈T ,A〉, it follows that no ABox Aj such that 〈T ,Aj〉 |= F
belongs to U , which is a contradiction.

As we said earlier, we argue that the result of the update operation should
be unique. This is also one of the reasons why we adopt the WIDTIO principle.
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Closely related to this point is the uniqueness of the result property. In this
regard we have the following proposition showing that, under the assumption
that A is T -consistent, both our update operators are actually functional.

Proposition 5. If 〈T ,A〉 is a consistent L-KB, then, up to logical equivalence,
there is exactly one result of updating 〈T ,A〉 with the insertion of F , and
exactly one result of updating 〈T ,A〉 with the deletion of F .

Proof. We start proving that if 〈T ,A〉 is a consistent KB, then up to logical
equivalence, there is exactly one result of updating 〈T ,A〉 with the insertion
of F . The following two cases are conceivable.

1. if 〈T , F 〉 is not consistent, then, according to Definition 22 the result of
the update is 〈T ,A〉 itself. Hence, the claim is proved.

2. if 〈T , F 〉 is consistent, then, according to Definition 22, a KB 〈T ,A′〉
is the result of updating 〈T ,A〉 with the insertion of F if clT (A′) =⋂
Ai∈U Ai, where U is the set containing all the ABoxes accomplishing the

insertion of F into 〈T ,A〉 minimally. Toward a contradiction, suppose
that both 〈T ,A1〉 and 〈T ,A2〉 are results of updating 〈T ,A〉 with the
insertion of F , and that 〈T ,A1〉 and 〈T ,A2〉 are not logically equivalent.
This means that clT (A1) 6= clT (A2), which is a contradiction.

We now prove the claim in case of deletion. Again, two cases are conceivable.

1. if 〈T , ∅〉 |= F , then, according to Definition 23 the result of updating
〈T ,A〉 with the deletion of F is 〈T ,A〉 itself. Hence, the claim is proved.

2. if 〈T , ∅〉 6|= F . then, according to Definition 23, a KB 〈T ,A′〉 is the result
of updating 〈T ,A〉 with the deletion of F , if clT (A′) =

⋂
Ai∈U Ai, where

U is the set containing all the ABoxes accomplishing the deletion of F
from 〈T ,A〉 minimally. Again, if both the two KBs 〈T ,A1〉 and 〈T ,A2〉
are results of the update, then clT (A1) = clT (A2) =

⋂
Ai∈U Ai. This

means that 〈T ,A1〉 and 〈T ,A2〉 are logically equivalent.

Let K = 〈T ,A〉 be a KB and let F be a set of ABox assertions. In the
rest of this work, the result of updating K = 〈T ,A〉 with the insertion of
F according to our semantics will be denoted by K ⊕T∩ F , and the result of
updating K = 〈T ,A〉 with the deletion of F will be denoted by K 	T∩ F .

Next, we show that our update operators obey the consistency preservation
property.

Proposition 6. Let 〈T ,A〉 be a consistent L-KB, and let F be a set of ABox
assertions. We have that 〈T ,A〉 ⊕T∩ F is consistent.
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Proof. Let 〈T ,A′〉 be the result of updating 〈T ,A〉 with the insertion of F .
If 〈T , F 〉 is not consistent, then by Definition 22 we have that 〈T , clT (A′)〉
is equal to 〈T , clT (A)〉, which is consistent. On the other hand, if 〈T , F 〉
is consistent then 〈T , clT (A)〉 = 〈T ,

⋂
Ai∈U clT (Ai)〉, where U is the set of

ABoxes accomplishing the insertion of F into 〈T ,A〉 minimally. Definition 16
guarantees that every Ai ∈ {A1, ...,An} is T -consistent. Hence, if follows that
A′ is T -consistent too, which proves the claim.

Proposition 7. Let 〈T ,A〉 be a consistent DL KB, and let F be a set of ABox
assertions. We have that 〈T ,A〉 	T∩ F is consistent.

Proof. Let 〈T ,A′〉 be the result of updating 〈T ,A〉 with the deletion of F .
In the case where 〈T , ∅〉 |= F , by Definition 23, we have that 〈T , clT (A′)〉 is
equal to 〈T , clT (A)〉, which is consistent. We now focus on the case where
〈T , ∅〉 6|= F . Toward a contradiction, suppose that 〈T ,A′〉 is not consistent,
i.e., Mod(〈T ,A′〉) = ∅. Proposition 2 guarantees that the set U of ABoxes
accomplishing the deletion of F from 〈T ,A〉 is non-empty. Let A′′ be an ABox
in U . Since by Definition 23 we have that 〈T , clT (A)〉 =

⋂
A1

i∈U
clT (A1

i ), then
Mod(〈T ,A′′〉) ⊆Mod(〈T ,A′〉) which is a contradiction.

Proposition 5 guarantees that our update operators respect the uniqueness
of the result property. A notable consequence of Proposition 5 is that, regard-
less of the DL L used to express the original KB, the KB resulting from the
application of our update operators can be expressed in L. This means that
our update operators also obey the expressibility property, as the following
propositions states.

Proposition 8. Let 〈T ,A〉 be a consistent KB in L, and let F be a set of
ABox assertions. Then both K ⊕T∩ F and K 	T∩ F are KBs in L.

Proof. The proof follows from Proposition 5 and from Definition 22 and
Definition 23. Indeed, if U is a set of ABoxes, and T is a TBox in L, then
〈T ,

⋂
Ai∈U Ai〉 is a KB in L.

In the belief revision community the formula-based approach is often under-
stood as an approach that does not satisfy the syntax independence property,
namely, the update of logically equivalent KBs should give the same result. In
our setting, where we keep fixed the TBox, the syntax independence property
is rephrased as follows. Let K1 = 〈T ,A1〉 and K2 = 〈T ,A2〉 be two (not nec-
essarily different) L-KBs. Let K′1 = 〈T ,A′1〉 be the result of updating K1 with
F , and let K′2 = 〈T ,A′2〉 be the result of updating K2 with F . If K1 is logically
equivalent to K2, then K′1 is logically equivalent to K′2.

Next propositions show that our update approach captures the syntax in-
dependence property.
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Proposition 9. Let 〈T ,A1〉 and 〈T ,A2〉 be two consistent, logically equivalent
L-KBs. Let F be a set of ABox assertions. Then, we have that 〈T ,A1〉 ⊕T∩ F
and 〈T ,A2〉 ⊕T∩ F are logically equivalent.

Proof. Let 〈T ,A1〉 and 〈T ,A2〉 be two logically equivalent L-KBs, and let F
be a set of atomic ABox assertions. We prove that 〈T ,A1〉 ⊕T∩ F is logically
equivalent to 〈T ,A2〉 ⊕T∩ F .

Let 〈T ,A′1〉 be the result of updating 〈T ,A1〉 with the insertion of F , and
let 〈T ,A′2〉 be the result of updating 〈T ,A2〉 with the insertion of F . The proof
proceeds by contradiction. Suppose that 〈T ,A′1〉 and 〈T ,A′2〉 are not logically
equivalent. This means that clT (A′1) 6= clT (A′2), and then

⋂
A1

i∈U1
clT (A1

i ) 6=⋂
A2

i∈U2
clT (A2

i ), where U1 and U2 are respectively the set of ABoxes accom-
plishing the insertion of F into 〈T ,A1〉 minimally, and the set of ABoxes
accomplishing the insertion of F into 〈T ,A2〉 minimally. It follows that there
exists an ABox A1

j ∈ U1 such that A1
j 6∈ U2. We know from Theorem 11,

that A1
j accomplishes the insertion of F into 〈T ,A1〉 minimally if and only if

clT (A1
j ) = clT (A′′ ∪ F ), where A′′ is a maximal subset of clT (A1) such that

A′′ ∪ F is T -consistent. But since clT (A1) = clT (A2), then A′′ is also a maxi-
mal subset of clT (A2). Hence, A1

j accomplishes the insertion of F into 〈T ,A2〉
minimally, and then A1

j ∈ U2, which is a contradiction.

Proposition 10. Let 〈T ,A1〉 and 〈T ,A2〉 be two consistent, logically equiva-
lent L-KBs. Let F be a set of ABox assertions. Then, we have that 〈T ,A1〉	T∩
F and 〈T ,A2〉 	T∩ F are logically equivalent.

Proof. Let 〈T ,A1〉 and 〈T ,A2〉 be two logically equivalent L-KBs, and let F
be a set of atomic ABox assertions. We prove that 〈T ,A1〉 	T∩ F is logically
equivalent to 〈T ,A2〉 	T∩ F .

Let 〈T ,A′1〉 be the result of updating 〈T ,A1〉 with the deletion of F , and
let 〈T ,A′2〉 be the result of updating 〈T ,A2〉 with the deletion of F . The proof
proceeds by contradiction. Suppose that 〈T ,A′1〉 and 〈T ,A′2〉 are not logically
equivalent. This means that clT (A′1) 6= clT (A′2), and then

⋂
A1

i∈U1
clT (A1

i ) 6=⋂
A2

i∈U2
clT (A2

i ), where U1 and U2 are respectively the set of ABoxes accom-
plishing the deletion of F from 〈T ,A1〉 minimally, and the set of ABoxes
accomplishing the deletion of F from 〈T ,A2〉 minimally. It follows that there
exists an ABox A1

j ∈ U1 such that A1
j 6∈ U2. We know from Theorem 12,

that A1
j accomplishes the deletion of F from 〈T ,A1〉 minimally if and only if

clT (A1
j ), is a maximal subset of clT (A1) such that F 6∈ clT (A1

j ). But since
clT (A1) = clT (A2), then clT (A1

j ) is also a maximal subset of clT (A2). Hence,
A1
j accomplishes the deletion of F from 〈T ,A2〉 minimally, which contradicts
A1
j 6∈ U2.
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Finally, we discuss how our update approach relates to the compliance with
the minimal-change principle property. Definition 19 and Definition 20 provide
the notion of ABox accomplishing the update minimally. In order to cope with
the multiple results problem, and to guarantee properties as the expressibility
property, which are essential for our purposes, we chose to adopt the WIDTIO
principle. Following the WIDTIO principle our operators combine all the
ABoxes accomplishing the update minimally into a single ABox, by considering
their intersection. Clearly, in the general case, the adoption of the WIDTIO
principle leads to increase the distance between the result of the update and
the original KB. It is reasonable to argue that other approaches, as the one
coming from the adoption of the Set-Of-Theories approach, better capture the
compliance with the minimal-change principle property, than our approach.

Indeed, the cost to pay in the WIDTIO approach for the expressibility
property is expressed in term of loss of information: in this approach, only
the ground facts that are true in all the ABoxes accomplishing the update are
retained.

The following theorem determines the relation between our update opera-
tors and the ones given by the SOT approach.

Theorem 13. Let K = 〈T , F 〉 be a consistent DL KB and let F be a set of
ABox assertions. Then

1. if Mod(〈T , F 〉) 6= ∅, then Mod(K ⊕SOT F ) ⊆Mod(K ⊕T∩ F );

2. if 〈T , ∅〉 6|= F , then Mod(K 	SOT F ) ⊆Mod(K 	T∩ F ).

Proof. We remind that the change impact only on the ABox and there-
fore the TBox is invariant. We start proving that if Mod(〈T , F 〉) 6= ∅ then
Mod(K⊕SOT F ) ⊆Mod(K⊕T∩ F ). Let K = 〈T , F 〉 be a DL KB and let F be a
set of ABox assertions. By Proposition 1 we have that ifMod(〈T , F 〉) 6= ∅ then
the set U = {A1, . . . ,An} of the ABoxes accomplishing the insertion of F into
K is not empty. By Definition 22, we have that K⊕T∩ F = 〈T ,

⋂
Ai∈U clT (Ai)〉.

Let A∩ be an ABox such that clT (A∩) = clT (
⋂
Ai∈U clT (Ai)). Obviously,

we have that Mod(〈T ,A∩〉) = Mod(K ⊕T∩ F ). Let α be an ABox assertion.
α ∈ A∩ if and only if α ∈ Ai for 1 ≤ i ≤ n. Hence, A∩ ⊆ Ai. It follows that
Mod(〈T ,Ai〉) ⊆Mod(〈T ,A∩〉) for all Ai ∈ U .

An interpretation I ∈Mod(K⊕SOT F ) if and only if it is a model for every
KB 〈T ,Ai〉 ∈ K⊕SOT F , which means that Mod(K⊕SOT F ) ⊆Mod(〈T ,Ai〉)
for all Ai ∈ U . Hence, Mod(K ⊕SOT F ) ⊆Mod(〈T ,A∩〉).

The proof that if 〈T , ∅〉 6|= F , then Mod(K	G F ) ⊆Mod(K	T∩ F ) follows
directly from the observations above and from Proposition 2.

In other words, Theorem 13 states that our operator is a sound approxi-
mation of the SOT approach, in the sense that every fact logically implied by
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the result of updating a KB following our approach, is also logically implied
by the result of updating the same KB following the SOT approach. Clearly,
in the general case, the converse does not hold, as the next example shows.

Example 17. Consider the KB K = 〈T ,A〉, where:

T = { C1 v ∃S (id C1 R) }
A = { C1(o), C2(o

′) }

It is easy to verify that updating K with the insertion of F = {R(o, p), R(o′, p)}
we obtain:

K ⊕SOT F = { 〈T , {R(o, p), R(o′, p), C1(o)}〉, 〈T , {R(o, p), R(o′, p), C1(o
′)}〉 }

K ⊕T∩ F = { 〈T , {R(o, p), R(o′, p)}〉 }

Now, consider the FOL sentence ∃x, y.S(x, y). Clearly, we have:

• K ⊕SOT F |= ∃x, y.S(x, y);

• K ⊕T∩ F 6|= ∃x, y.S(x, y).

In [62], Katsuno and Mendelzon present some postulates, which they argue
must be satisfied by any reasonable operator which permits the update of logic
theories.

In what follows, similarly to the works in [46, 99] on the AGM postulates [3]
for revision operators, we first present the postulates as given in [62] for propo-
sition logic theory, and then we formulate them for DL KB in our setting where:
(i) the change affects only the ABox, (ii) it is enforced the condition that the
KB resulting from the update has the same TBox as the original KB, and (iii)
only ABoxes formed by atomic membership assertions are considered.

In what follows we use T ◦p to denote the result of updating the KB T with
the insertion of the sentence p. The postulates for insertion operator proposed
by Katsuno and Mendelzon are:

U1: T ◦ p implies p;
U2: if T implies p then T ◦ p is equivalent to T ;
U3: if both T and p are consistent, then T ◦ p is also consistent;
U4: if T1 ≡ T2 and p1 ≡ p2, then T1 ◦ p1 ≡ T2 ◦ p2;
U5: (T ◦ p1) ∧ p2 implies T ◦ (p1 ∧ p2);
U6: if T ◦ p1 implies p2 and T ◦ p2 implies p1, then T ◦ p1 ≡ T ◦ p2;
U7: if T is complete, then (T ◦ p1) ∧ (T ◦ p2) implies T ◦ (p1 ∨ p2);
U8: (T1 ∨ T2) ◦ p ≡ (T1 ◦ p) ∨ (T2 ◦ p).
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In words, U1 assures that the theory resulting from the update implies p.
Intuitively, the first postulate coincides with the success of the update prop-
erty. Postulate U2 states that if the sentence p is derivable from T , then the
resulting theory is logically equivalent to T . Such postulate agrees with the
compliance with the minimal-change principle property, since it specifies that
no changes have to be made on the original theory if they are not necessary.
Postulate U3 is a condition preventing an update from introducing inconsis-
tency. Postulate U4 says that update operators should be independent from
the syntactical forms of knowledge bases. Clearly, U4 coincides with our syn-
tax independence property. Postulates from U5 to U8 point that the change
has to be minimal. To be more precise, U5 says that the result of updating T
with the insertion of p1∧p2, is always implied by the conjunction of p2 and the
update of T with the insertion of p1. U6 states that if the update of T with p1
entails p2, and the update of T with p2 entails p1, then the two updates have
the same effect. U7 is applicable only to complete KBs. We remind that a KB
T is called complete if for every sentence ϕ, T |= ϕ or T |= ¬ϕ. By introducing
Postulates U7, Katsuno and Mendelzon argue that, in cases where there is no
uncertainty over what are the possible worlds, then if a possible world results
from both updating T with p1 and with p2, then it also should result from
updating T with the insertion of p1∨p2. Finally, U8 states that every possible
world described by T has to be changed separately.

Firstly, note that both U7 and U8 are not applicable to our setting, since
U7 involves update with a disjunction of atoms, and since U8 refers to dis-
junction of KBs, which are generally not allowed in DL languages. Postulates
U1∼U6 are rephrased as follows.

U1∗: 〈T ,A〉 ⊕T∩ F |= F ;
U2∗: if 〈T ,A〉 |= F , then 〈T ,A〉 ⊕T∩ F ≡ 〈T ,A〉;
U3∗: if both 〈T ,A〉 and 〈T , F 〉 are consistent, then 〈T ,A〉 ⊕T∩ F is also

consistent;
U4∗: if 〈T ,A1〉 ≡ 〈T ,A2〉, then 〈T ,A1〉 ⊕T∩ F ≡ 〈T ,A2〉 ⊕T∩ F ;
U5∗: let 〈T ,A′〉 ≡ 〈T ,A〉 ⊕T∩ F1, then 〈T ,A′ ∪ F2〉 |= 〈T ,A〉 ⊕T∩ (F1 ∪ F2);
U6∗: if 〈T ,A〉 ⊕T∩ F1 |= F2 and 〈T ,A〉 ⊕T∩ F2 |= F1, then

〈T ,A〉 ⊕T∩ F1 ≡ 〈T ,A〉 ⊕T∩ F2;

We have the following proposition.

Proposition 11. Let 〈T ,A〉 be a consistent L-KB, and let F be a set of ABox
assertions. Then 〈T ,A〉 ⊕T∩ F satisfies postulates U1∗, U2∗, U3∗, U4∗, and
U6∗,

Proof.

U1∗ The proof follows directly from Proposition 3.
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U2∗ We prove that if 〈T ,A〉 |= F , then the result of updating 〈T ,A〉 with
the insertion of F is logically equivalent to 〈T ,A〉. Let 〈T ,A′〉 be a
consistent L-KB such that clT (A′) = clT (A). Since 〈T ,A〉 |= F , we
have that F ∈ clT (A). Hence, F ∈ 〈T ,A′〉, that is 〈T ,A′〉 |= F . In
addition, we have that clT (A′) = clT (A), which means that clT (A′) has
no changes with respect to clT (A). From the considerations above it
follows that A′ ∈ U , where U is the set of ABoxes accomplishing the
insertion of F into 〈T ,A〉 minimally. Toward a contradiction, suppose
that 〈T ,A〉⊕T∩ F 6≡ 〈T ,A〉. Only the following two cases are conceivable:

1. there exists an ABox assertion α such that 〈T ,A〉 ⊕T∩ F |= α and
〈T ,A〉 6|= F . Since clT (A′) = clT (A) then 〈A′〉 6|= α, and since
A′ ∈ U , then also 〈T ,

⋂
Ai∈U clT (Ai)〉 does not implies α. Hence,

we have a contradiction.

2. there exists an ABox assertion α such that 〈T ,A〉 ⊕T∩ F 6|= α and
〈T ,A〉 |= F . This means that there exists in U an ABox A′′ such
that α 6∈ clT (A′′). But, since A′ ∈ U , then every other ABox
appearing in U must have no changes with respect to A. Therefore,
clT (A′′) = clT (A) and then α ∈ clT (A′′), which is a contradiction.

U3∗ The proof follows directly from Proposition 6

U4∗ The proof follows directly from Proposition 9

U6∗ We have to prove that if 〈T ,A〉⊕T∩ F1 |= F2 and 〈T ,A〉⊕T∩ F2 |= F1, then
〈T ,A〉 ⊕T∩ F1 is logically equivalent to 〈T ,A〉 ⊕T∩ F2. Let 〈T ,A1〉 and
〈T ,A2〉 respectively be the result of updating 〈T ,A〉 with the insertion
of F1, and the result of updating 〈T ,A〉 with the insertion of F2. Let
U1 and U2 be respectively the set of ABoxes accomplishing the insertion
of F1 into 〈T ,A〉 minimally, and the set of ABoxes accomplishing the
insertion of F2 into 〈T ,A〉 minimally. We prove the claim showing that
U1 = U2. First of all, note that: (1) since 〈T ,A〉 ⊕T∩ F1 |= F2 then
each ABox in U1 accomplishes the insertion of F2 into 〈T ,A〉; (ii) since
〈T ,A〉 ⊕T∩ F2 |= F1 then each ABox in U2 accomplishes the insertion of
F1 into 〈T ,A〉. We start proving that U1 ⊆ U2. Toward a contradiction,
assume that A1 is an ABox in U1, but A1 6∈ U2. Since we assume that
A1 6∈ U2, for each A2 ∈ U2 we have that clT (A2) has fewer changes
than clT (A1) with respect to clT (A). Hence, A1 does not accomplish
the insertion of F1 minimally, which contradict that A1 ∈ U1. Therefore,
A1 ∈ U2. Similarly, we can prove that U2 ⊆ U1.

Unfortunately, ⊕T∩ does not satisfy U5∗, as the following example shows.
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Example 18. Let F1 = {C1(o
′)} and F2 = {C2(o)} be two set of ABox

assertions, and let 〈T ,A〉 be a DL-LiteA,id-KB, where:

T = { C1 v ¬C2, (id C1 R) }
A = { C1(o), R(o, p), R(o′, p) }

The insertion of C1(o
′) violates the identification assertion (id C1 R), then the

ABoxes accomplishing the insertion of F1 into K minimally are:

A+
1 = { C1(o

′), C1(o), R(o, p) }
A+

2 = { C1(o
′), C1(o), R(o′, p) }

A+
3 = { C1(o

′), R(o, p), R(o′, p) }

Hence, the KB K′ resulting from the update is:

T = { C1 v ¬C2, (id C1 R) }
A′ = { C1(o

′) }

Adding F2 to the ABox A′, we do not contradict any assertion in K′ and we
obtain the following consistent KB K′′.

T = { C1 v ¬C2, (id C1 R) }
A′′ = { C1(o

′), C2(o) }

We show that K′′ 6|= K⊕T∩ (F1 ∪ F2). Indeed, only the following ABox accom-
plishing the insertion of F1 ∪ F2 into K minimally exists.

A+ = { C1(o
′), C2(o), R(o, p), R(o′, p) }

Then, the KB resulting from the insertion of F1 ∪ F2 into K is:

T = { C1 v ¬C2, (id C1 R) }
A′′′ = { C1(o

′), C2(o), R(o, p), R(o′, p) }

which is not implied by K′′.

An interesting consequence of Example 18 is that, in general, updating
a KB K with the insertion of a set F is different from updating K with the
insertion of all atoms in F in a specific order. It can be shown that the same
behavior characterizes the deletion operator.

For what concerns erasure of a sentence from a KB, Katsuno and Mendelzon
propose in [62] the following six postulates for propositional logic. T •p denotes
the theory resulting from the update of T with the deletion of the sentence p.
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E1: T implies T • p;
E2: if T implies ¬p, then T • p ≡ T ;
E3: if T is satisfiable and p is not a tautology then T • p does not imply p;
E4: if T1 ≡ T2 and p1 ≡ p2, then T1 • p1 ≡ T2 • p2;
E5: if (T • p) ∧ p implies T ;
E8: (T1 ∨ T2) • p ≡ (T1 • p) ∨ (T2 • p).

Postulate E1 guarantees that during the deletion process no information
which is not implied by the original KB is added to the resulting theory. E2
assures that the deletion of a sentence p does not influence a KB T if T entails
then negation of p. E3 assures that the result of the update with the deletion
of a sentence p does not implies p. Postulate E4 is the analog of U4. It says
that delete operator has to be independent from the syntactical forms of the
original knowledge base. E5 is called recovery postulate and it says that by
adding to T • p the sentence p we obtain a new KB which implies the original
KB T . Finally, in the same way of U8, E8 states that every possible world
described by T has to be changed separately.

Now we present a reformulation of the above postulates so that they can be
applied to our setting. Clearly, as for insertion postulates, we are compelled
to renounce to U8, since it refers to disjunction of KBs. The reformulated
postulates can be found in the following list, where the numbering of each
postulate corresponds to the original postulate presented in [62].

E1∗: 〈T ,A〉 |= 〈T ,A〉 	T∩ F ;
E2∗: if 〈T ,A〉 implies ¬F , then 〈T ,A〉 	T∩ F ≡ 〈T ,A〉;
E3∗: if 〈T ,A〉 is consistent and 〈T , ∅〉 6|= F then 〈T ,A〉 	T∩ F 6|= F ;
E4∗: if clT (A1) = clT (A2), then 〈T ,A1〉 	T∩ F ≡ 〈T ,A2〉 	T∩ F ;
E5∗: let 〈T ,A′〉 ≡ 〈T ,A〉 	T∩ F , then 〈T ,A′ ∪ F 〉 |= 〈T ,A〉.

Note that E3 is clearly linked to the success of the update property. In
order to rephrase it in our setting, where the change affects only the ABox,
we have substituted the condition stating that F is not a tautology, with the
condition stating that F is not implied by the sole TBox.

The following proposition states that our approach for updating a KB with
the deletion of a set of ABox assertions satisfies only four of the postulates
above.

Proposition 12. Let 〈T ,A〉 be a consistent L-KB, and let F be a set of ABox
assertions. Then 〈T ,A〉 	T∩ F satisfies postulates E1∗, E2∗, E3∗, and E4∗.

Proof.

E1∗ If 〈T , ∅〉 |= F , then by Definition 23 the result of updating 〈T ,A〉 with
the deletion of F is 〈T ,A〉 itself. Hence, the claim is proved. If 〈T , ∅〉 6|=
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F , then, by Proposition 2, the set U of all ABoxes accomplishing the
deletion of F from 〈T ,A〉 minimally is not empty. In this case the proof
is a direct consequence of Theorem 12 stating that if Ai is an ABox in
U then clT (Ai) is a subset of clT (A). Hence,

⋂
Ai∈U clT (Ai) ⊆ clT (A).

Thus, 〈T ,A〉 |= 〈T ,A〉 	T∩ F .

E2∗ We show that, if 〈T ,A〉 |= ¬F , then the result of updating 〈T ,A〉 with
the deletion of F is logically equivalent to 〈T ,A〉. Let U be the set of all
ABoxes accomplishing the deletion of F from 〈T ,A〉minimally. Trivially,
since 〈T ,A〉 |= ¬F , then A ∈ U . Toward a contradiction, suppose that
there exists another ABox A′ ∈ U , such that clT (A′) 6= clT (A). But,
since A ∈ U , then the closure with respect to T of every other ABox
in U must have no changes with respect to clT (A), and this contradicts
that A′ ∈ U . Thus, clT (A′) = clT (A).

E3∗ The proof follows directly from Proposition 4.

E4∗ The proof follows directly from Proposition 10.

We have shown that our deletion operator obeys Postulate E2∗, which
guarantees that if the original KBK implies the negation of F , then the deletion
operator has no effects on K. The next lemma shows that the same holds if
the original KB does not imply F .

Lemma 19. Let 〈T ,A〉 be a KB and let F be a set of ABox assertions such
that 〈T ,A〉 6|= F . Then 〈T ,A〉 	T∩ F ≡ 〈T ,A〉.

Proof. The proof proceeds as for E2∗. Since 〈T ,A〉 |= ¬F , then A ∈ U , where
U is the set of ABoxes accomplishing the deletion of F from 〈T ,A〉 minimally.
Suppose that there exists ABox A′ ∈ U , such that clT (A′) 6= clT (A). Since
A ∈ U , then the closure with respect to T of every other ABox in U must
have no changes with respect to clT (A), and this contradicts A′ ∈ U . Thus,
clT (A′) = clT (A).

Under our update semantics, the operation of updating a KB with the dele-
tion of a set of ABox assertions, may cause an irreversible loss of information.
This gives an explanation to why our deletion operator does not satisfy E5∗.
The next example illustrates the matter.

Example 19. Let 〈T ,A〉 be a KB, where:

T = { C1 v C2 }
A = { C1(o) }



96 Chapter 6. Updating consistent Description Logic KBs

Suppose to update 〈T ,A〉 with the deletion of F = {C2(o)}. For this purpose,
since 〈T , {C1(o)}〉 |= C2(o), we need to remove C1(o) from A. Then the KB
〈T ,A′〉 resulting from the change is:

T = { C1 v C2 }
A = ∅

Clearly, 〈T ,A′ ∪ F 〉 6|= 〈T ,A〉 since neither 〈T ,A′〉 nor F “remember” C1(o).

6.6 Comparison with related work

We mentioned in the introduction several model-based approaches to update
DL KBs, and noticed that they all suffer from the expressibility problem. This
problem is also shared by [109], that uses features instead of models, and
proposes the notion of approximation to cope with the expressibility problem,
similarly to [40].

In what follows, we briefly recall those model-based approaches that are
proposed as suitable for update of knowledge bases [62], and we attempt to
rephrase then into the context of updating DL KB at the instance level. More
extensive discussions about model-based approaches can be found in [33, 42,
90].

Within the framework of model-based update approaches, the objects of
change are models. Consider a DL KB K = 〈T ,A〉, and a set of ABox as-
sertions F . We denote with K ◦ F the update of K with the insertion on F .
The basic idea of model-based approaches is that, for each model IK of K, the
update operator must select those models of F which are closest to IK. The
models of K ◦ F are the union of these selected models.

Intuitively the result of updating a KB K with a finite set of extensional
assertions F , should be that KB which logically implies all assertions in F ,
and whose set of models minimally differs from the set of models of K.

In order to specify the notion of distance between models, we need to in-
troduce the notion of difference between interpretations [40]. Let I1 and I2
be two interpretation over the same signature S, and let S indicate an atomic
concept, an atomic role, or an atomic concept attribute in S. We define the
difference between I1 and I2, written I14I2, as the interpretation (∆, ·I14I2)
such that SI14I2 = (SI1 ∪ SI2) \ (SI1 ∩ SI2), for every S ∈ S.

In [15], Borgida defines his update operator using a distance metric based on
the notion of containment between interpretations. We say that I1 is contained
in I2, written I1 ⊆ I2, if SI1 ⊆ SI2 for all S ∈ S. Moreover, we say that I1 is
properly contained I2, written I1 ⊂ I2, if I1 ⊆ I2 and I2 6⊆ I1.
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Let T be a TBox in a DL L, I a model of T , and F a finite set of ABox
assertions. The update of I with the insertion of F with respect to T under
containment, written UT⊆ (I, F ), is the set of models defined as follows:

UT⊆ (I, F ) = {I ′ | I ′ ∈Mod(〈T , F 〉) and there exists no I ′′ ∈Mod(〈T , F 〉)
s.t. I4I ′′ ⊂ I4I ′}

The KB 〈T ,A〉◦B F resulting from the update of 〈T ,A〉 with the insertion
of F according to Borgida is:

if Mod(〈T ,A ∪ F 〉) 6= ∅
then 〈T ,A〉 ◦B F = 〈T ,A ∪ F 〉;
else Mod(〈T ,A〉 ◦B F ) =

⋃
I∈Mod(〈T ,A〉) U

T
⊆ (I, F ).

Winslett [110], proposed the so called possible worlds approach (PMA),
defined within the context of reasoning about actions. In the PMA approach
is adopted the same distance metric of Borgida. But their approach differs in
case new facts are consistent with the original KB. More formally, according
to the PMA approach, the KB 〈T ,A〉 ◦PMA F resulting from updating 〈T ,A〉
with the insertion of F is:

Mod(〈T ,A〉 ◦PMA F ) =
⋃
I∈Mod(〈T ,A〉) U

T
⊆ (I, F ).

Both Borgida and Winslett adopt a distance metric based on the contain-
ment between interpretations. Differently, the approach presented by Forbus
in [47], takes into account cardinality.

Let T be a TBox in a DL L, I a model of T , and F a finite set of ABox
assertions. The update of I with the insertion of F with respect to T under
cardinality, written UT] (I, F ), is the set of models defined as follows:

UT] (I, F ) = {I ′ | I ′ ∈Mod(〈T , F 〉) and there exists no I ′′ ∈Mod(〈T , F 〉)
s.t. |I4I ′′| < |I4I ′|}

The KB 〈T ,A〉 ◦B F resulting from the update of 〈T ,A〉 with the insertion of
F according to the Forbus approach is:

Mod(〈T ,A〉 ◦F F ) =
⋃
I∈Mod(〈T ,A〉) U

T
] (I, F ).

Observe that, by means of cardinality, Forbus can compare (and discard) mod-
els which are incomparable in both Borgida and Winslett approaches.

By following the model-based approaches presented above, the result of
the update in defined in term of models. The principal issue in adapting such
approaches to DL KBs is how construct the KB having as set of models the
one resulting from the update. Several works [33, 40, 63, 78] point out that
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various DLs are not closed with respect to the update operation under model-
based approaches. In other words, it happens that, given a KB K in a DL
L, a finite set of ABox assertions F , and the set of models M resulting from
updating K with the insertion of F , it is not ensure that a KB K′ in L exists
such that Mod(K′) = M. Hence model-based approaches do not capture the
expressibility property.

In the following example we show that the DL DL-LiteA,id is not closed
with respect to the PMA update semantics.

Example 20. Consider the following DL-LiteA,id-KB K = 〈T ,A〉. Note that
T is a portion of the TBox of the KB presented in Example 8.

T = { RD v ¬TM, TM v ¬FT, TM v ∃mf, RD v ¬FT
FT v ∃mf−, ∃mf v TM, ∃mf− v FT }

A = { RD(sam), RD(bob), TM(tim), FT (t1) mf(tim, t1) }

In words, the ABox A states that both sam and bob are racer directors, tim is
a team member, and that t1 is a formula one team. Moreover, tim is member
of t1. Assume that tim lives t1 to become a racer director, which means update
K with the insertion of {RD(tim)}. Note that, in each model of K both sam
and bob must be racer directors. The following interpretation I is a model of
K.

I : RDI = {sam, bob}, TMI = {tim}, FT I = {t1} mfI = {(tim, t1)}

Consider the following models of T .

I ′1 : RDI
′
1 = {tim, sam}, TMI′1 = {bob}, FT I′1 = {t1}, mfI

′
1 = {(bob, t1)}

I ′2 : RDI
′
1 = {tim, bob}, TMI′1 = {sam}, FT I′1 = {t1}, mfI

′
1 = {(sam, t1)}

Both I ′1 and I ′2 are model of 〈T , {RD(tim)}〉 that differs minimally from I,
which means that both I ′1 and I ′2 are in UT⊆ (I, {RD(tim)}). Note that I ′1 does
not satisfy RD(bob) and I ′2 does not satisfy RD(sam). Since each interpreta-
tion I ′ in UT⊆ (I, {RD(tim)}) must differ minimally from I, then the following
three cases are possible:

• I ′ supports RD(bob) but not RD(sam);

• I ′ supports RD(sam) but not RD(bob);

• I ′ supports both RD(bob) and RD(sam).

It follows that each KB representing the update of K with the insertion of
{RD(tim)} should imply RD(sam)∨RD(bob) and neither the single assertion
RD(sam) nor RD(bob). But this is impossible for a DL-LiteA,id-KB.
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Related to our proposal are several formula-based approaches proposed in
the literature. We already pointed out that our definition of fewer changes
inspired by the analysis of update semantics for logical databases presented by
Fagin, Ullman, and Vardi in [44]. Their update approach, which gives origin
to the Set-Of-Theories approach, can be formalized as follows. Let 〈T ,A〉 be
an L-KB, and let F be a set of ABox assertions. We denote with σT (A, F )
the set of all maximal subsets A′ of A such that A′ ∪ F is T -consistent. The
result of updating 〈T ,A〉 with the insertion of F according to [44], denoted by
〈T ,A〉 ◦FUV F , is:

〈T ,A〉 ◦FUV F = {〈T ,Ai ∪ F 〉 | Ai ∈ σT (A, F )}.

Independently by [44], Ginsberg [52] proposes the same change semantics. Note
that, differently from our approach, they refer to the ABox of the original KB,
instead of its deductive closure. In what follows we briefly discuss such a
choice. When a KB is changed by an update operation, some facts could be
retracted. In such a case, they claim that also the consequences of the retracted
facts should be removed if they are not supported otherwise, i.e., they perform
reason maintenance [86]. For instance, consider the KB K = 〈T ,A〉 presented
in Example 8. Since the TBox T specifies that test drivers (TD) are team
members (TM), and since the ABox asserts that bob is a test driver. We have
that both the facts TD(bob) and TM(bob) are entailed by K. Suppose that we
do not know anymore if it is true that bob is a test driver. Then, we update K
with the deletion of F = {TD(bob)}, which means that we are forced to retract
the fact TD(bob). Since no other fact in A entails with T the fact TM(bob),
then, by enforcing the reason maintenance, the KB resulting from the update
should not entail TM(bob). On the contrary, by adopting our approach, where
we aim to preserve as much as possible the facts entailed by the original KB,
we attempt to keep the fact TM(bob) if it does not act against the update. We
are not convinced that reason maintenance has to be considered as one of the
fundamental properties that an update operator for KBs should possess. As a
matter of fact, we belief that reason maintenance can result from an adequate
choice of the facts adopted to update the original KB. Coming back to the
example above. We act a deletion driven by the fact that “we do not know
anymore if it is true that bob is a test driver ”, which is different to assert that
“we do not know anymore if it is true that bob is a team member ”. By promoting
the last assertion, we need to update K with the deletion of {TM(bob)}. Hence,
we are forced to retract both TM(bob) and TD(bob). In [86], Nebel provide
a complete discussion on the reason maintenance and its relation with belief
revision. Moreover, it studies the employment of formula-based approaches on
deductively closed theories, and shows that formula-based change operators
acting on deductively closed theories satisfy AGM postulates [3].
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Perhaps, in reference to the fact that we refer to the closure of the ABox
of a KB, rather than to the ABox itself, the closest approach to the one pro-
posed in this work is that reported in [33], where formula-based evolution
(actually, insertion) of DL-Lite-KBs is studied. The main difference with our
work is that we cope with the multiple results problem adopting the WID-
TIO principles, and therefore we take, as ABox of the KB resulting from the
evolution, the intersection of all ABoxes accomplishing the change minimally.
Conversely, in the bold semantics discussed in [33], the ABox of the result
is chosen non-deterministically among the ABoxes accomplishing the change
minimally. Another difference is that while [33] addresses the issue of evolu-
tion of both the TBox and the ABox, we only deal with the case of fixed TBox
(in the terminology of [33], this corresponds to keep the TBox protected). It
is interesting to observe that the specific DL considered in [33] is DL-LiteFR,
and for this logic, exactly one KB accomplishes the insertion of a set of ABox
assertions minimally exists. It follows that for instance-level insertion, their
bold semantics coincides with ours. On the other hand, remaining within the
DL-Lite family, the presence of identification assertions in DL-LiteA,id and,
even more, the presence of denial assertions in DL-LiteA,id,den, changes the
picture considerably, since with such assertions in the TBox, many ABoxes
may exist accomplishing the insertion (or deletion) minimally. In this case, the
two approaches are very different. Finally, [33] proposes a variant of the bold
semantics, called careful semantics, for instance-level insertion in DL-LiteFR.
Intuitively, such semantics aims to realize a weak form reason maintenance by
disregarding knowledge that is entailed neither by the original KB, nor by the
set of newly asserted facts, as shown in the following example.

Example 21. Consider the KB K = 〈T ,A〉 of Example 8, and suppose that
john becomes the official driver of the team t2, which means changing K with
the insertion of {OD(john),mf(john, t2)}. Notice that, since the TBox im-
plies that every team member is a member of exactly one team, mf(john, t2)
contradicts mf(john, t1). Therefore, in our approach, the result of the inser-
tion is the KB 〈T ,A′〉, where:

A′ = { OD(john), mf(john, t2), TD(bob), TM(tom), FT (t1) }

Conversely, one can verify that the result under the careful semantics is the
KB 〈T ,A′′〉, where:

A′′ = { OD(john), mf(john, t2), TD(bob), TM(tom) }

which loses the information that t1 is a formula one team.



Chapter 7

Updating consistent
DL-LiteA,id,den KBs

In this chapter we study the problem of updating consistent KBs expressed in
DL-LiteA,id,den according to the semantics proposed in previous chapter. As
shown in Chapter 4, this logic is very attractive, because in DL-LiteA,id,den, as
for the other logics of the DL-Lite family [31], the trade-off between expres-
sive power and computational complexity of reasoning is optimized towards
the needs that arise in ontology-based data access. In fact, if on one hand this
logic is able to capture the most important features of the conceptual model-
ing formalism, allowing also for specifying particularly useful general forms of
disjointness, on the other hand, in this logic query answering can be managed
efficiently with respect to the size of the ABox.

Finally, we provide two algorithms for computing respectively the KB re-
sulting from the update by insertion and from the update by deletion of a con-
sistent DL-LiteA,id,den-KB. We prove that these algorithms are correct, and we
show that they run in polynomial time with respect to the size of the original
ABox.

7.1 Update by insertion in DL-LiteA,id,den

In this section we study insertion under the assumption that the DL lan-
guage L is DL-LiteA,id,den. Thus, in what follows, we implicitly refer to a
DL-LiteA,id,den-KB K = 〈T ,A〉, and we address the problem of updating K
with the insertion of a finite set F of ABox assertions. We also assume that
〈T ,A〉 is consistent.

By assuming that 〈T , F 〉 is consistent, Theorem 11 tells us that, in princi-
ple, we can compute the KB resulting from the insertion of F into 〈T ,A〉 by
building all maximal subsets A′′ of clT (A) such that A′′ ∪ F is T -consistent,

101
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and then computing their intersection. The main problem to be faced with
this method is that, depending on the DL used, there can be an exponential
number of maximal subsets A′′ of clT (A) such that A′′ ∪ F is T -consistent.
Note that this cannot happen in those DLs of the DL-Lite family which do not
admit the use of identification assertions and denial assertions, such as the DL
studied in [33]. In particular, in DL-LiteA,id,den, building all maximal subsets
A′′ of clT (A) such that A′′ ∪ F is T -consistent, and then computing their in-
tersection is computationally costly. Fortunately, we show in what follows that
〈T ,A〉 ⊕T∩ F can be computed without computing all maximal subsets A′′ of
clT (A) such that A′′ ∪ F is T -consistent.

We recall that, if T is a consistent TBox, then a set V of ABox assertions
is called a T -inconsistent set if V is T -inconsistent. Moreover, cln(T ) denotes
the NI-closure of T , which is the set of TBox assertion built from the assertions
in T as shown in Definition 14.

Let K = 〈T ,A〉 be a consistent DL-LiteA,id,den-KB, and let F be a set of
ABox assertions. As shown in the previous chapter, it may happen that the KB
〈T ,A∪F 〉 in inconsistent. We observe that in this case, an inconsistency may
arise in 〈T ,A∪F 〉 only for one of the following reasons (the enumeration of the
items in the list below follows the enumeration of the list given in Section 5.1):

7. there exist an atomic role P in the TBox alphabet ΓO, constants d, d1, d2
in the alphabet of constants ΓC , a TBox assertion (funct P ) (resp.
(funct P−)) in cln(T ), and the ABox assertions P (d, d1) and P (d, d2)
(resp. P (d1, d) and P (d2, d)) belong to A ∪ F ;

8. there exist an attribute U in the TBox alphabet ΓO, constants d, v1, v2
in the alphabet of constants ΓC , a TBox assertion (funct U) in cln(T ),
and the ABox assertions U(d, v1) and U(d, v2) belongs to A ∪ F ;

9. there exist a pair of basic concepts B1 and B2, a constant d in the
alphabet of constants ΓC , a TBox assertion B1 v ¬B2 in cln(T ), and a
pair of ABox assertions α and β in A∪ F such that 〈Tinc, {α}〉 |= B1(d)
and 〈Tinc, {β}〉 |= B2(d);

10. there exist a pair of basic roles Q1 and Q2, a pair of constants d1 and
d2 in the alphabet of constants ΓC , a TBox assertion Q1 v ¬Q2 in
cln(T ), and a pair of ABox assertions α and β in A ∪ F such that
〈Tinc, {α}〉 |= Q1(d1, d2) and 〈Tinc, {β}〉 |= Q2(d1, d2);

11. there exist a pair of attributes U1 and U2 in the TBox alphabet ΓO, a
pair of constants d1 and d2 in the alphabet of constants ΓC , a TBox
assertion U1 v ¬U2 in cln(T ), and a pair of ABox assertions α and β in
A ∪ F such that 〈Tinc, {α}〉 |= U1(d1, d2) and 〈Tinc, {β}〉 |= U2(d1, d2);
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12. there exist an identification assertion α ∈ cln(T ) and a set of ABox
assertions V ⊆ A∪F such that 〈Tinc, V 〉 |= ¬α, i.e. 〈Tinc, V 〉 implies the
negation of α;

13. there exist a denial assertion α ∈ cln(T ) and a set of ABox assertions
V ⊆ A ∪ F such that 〈Tinc, V 〉 |= ¬α, i.e. 〈Tinc, V 〉 implies the negation
of α;

Note that, each violation requires the existence of a T -inconsistent set formed
by at least two ABox assertions. Obviously, at least one ABox assertions,
among the ones that play a role in the violation of an assertion in cln(T ),
belongs to F . A consequence of the observations above, is that the assertion
in Ttype cannot be violated by an insertion.

In order to compute the KB resulting from the insertion of F into 〈T ,A〉,
we need to compute the intersection of the closure with respect to T of all
ABoxes accomplishing the insertion minimally. To this purpose, we exploit
the following property of DL-LiteA,id,den which follows directly from Lemma 16.
Let T be a DL-LiteA,id,den TBox and let A1 and A2 be two ABoxes such that
A1 ∪ A2 is T -consistent. Then,

clT (A1 ∪ A2) = clT (A1) ∪ clT (A2).

We know from Theorem 11 that the ABox A′ accomplishes the insertion
of F into 〈T ,A〉 minimally if and only if clT (A′) = clT (A′′ ∪ F ), where A′′ is
a maximal subset of clT (A) such that A′′ ∪ F is T -consistent.

Let U = {A′1, . . . ,A′n} be the set of all ABoxes accomplishing the insertion
of F into K minimally, and let M = {A′′1, . . . ,A′′n} be the set of all maximal
subsets of clT (A) such that, for all A′′ ∈M, A′′ ∪F is T -consistent. We have
that: ⋂

A′i∈U

clT (A′i) =
⋂
A′′j ∈M

clT (A′′j ∪ F ) = clT (F ) ∪
⋂
A′′j ∈M

clT (A′′j )

By exploiting Lemma 18 we have:⋂
A′i∈U

clT (A′i) = clT (F ) ∪
⋂
A′′j ∈M

clT (A′′j ) = clT (F ) ∪
⋂
A′′j ∈M

A′′j

Then, in order to compute
⋂
A′i∈U

clT (A′i) it is sufficient to compute all max-
imal subsets A′′j of clT (A) such that A′′j ∪F is T -consistent, and then compute
their intersection. In other words, we have to individuate such assertions in
clT (A) that are not in

⋂
A′′j ∈M

A′′j , and remove them from clT (A) ∪ clT (F ).
Since for every ABox A′′ inM we have that A′′ ∪ F is T -consistent, then all
the assertions in clT (F ) ∩ clT (A) are in

⋂
A′′j ∈M

A′′j .
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As for the ABox assertions in clT (A)\clT (F ), it is easy to see that one such
assertion α is not in

⋂
A′′j ∈M

A′′j if and only if there exists a maximal subset Σ

of clT (A) such that Σ ∪ F is T -consistent, and Σ does not contain α.
Taking into account the above observation, the next theorem is the key to

our solution.

Theorem 14. Let α be in clT (A) \ clT (F ). There exists a maximal subset Σ
of clT (A) such that Σ ∪ F is T -consistent, and Σ does not contain α if and
only if there is a T -inconsistent set V in clT (A)∪ clT (F ) such that α ∈ V and
F ∪ (V \ {α}) is T -consistent.

Proof.
(⇒) Let α be an assertion in clT (A) \ clT (F ), and let Σ be a maximal subset
of clT (A) such that: (i) Σ ∪ F is T -consistent; (ii) α 6∈ Σ. We prove that
exists a T -inconsistent set V in clT (A) ∪ clT (F ) such that: (i) α ∈ V ; (ii)
F ∪(V \{α}) is T -consistent. Toward a contradiction, suppose that there is no
T -inconsistent set V in clT (A)∪clT (F ) such that: (i) α ∈ V ; (ii) F ∪(V \{α})
is T -consistent. Firstly we inspect the case where no T -inconsistent set V in
clT (A) ∪ clT (F ) containing α exists. This means that for each T -consistent
subset A′ of clT (A) ∪ clT (F ) we have that 〈T ,A′ ∪ {α}〉 is consistent. Hence,
every maximal subset Σ′ of clT (A), such that Σ′ ∪ F is T -consistent, contains
α. This contradicts the fact that α 6∈ Σ.

We turn to the case where for each T -inconsistent set V in clT (A)∪clT (F )
such that α ∈ V , we have that F ∪ (V \ {α}) is not T -consistent. It directly
follows that for each subset Σ′ of clT (A) such that Σ′ ∪ F is T -consistent,
Σ′ ∪ F ∪ {α} is T -consistent. Hence, Σ ∪ F ∪ {α} is T -consistent, but this
contradicts the fact that Σ is maximal subset of clT (A) such that Σ ∪ F is
T -consistent.
(⇐) Suppose that there is a T -inconsistent set in V in clT (A)∪clT (F ) such that
α ∈ V and 〈T , F∪(V \{α})〉 is consistent. Since 〈T , F∪(V \{α})〉 is consistent,
the set of maximal subsets Σ of clT (A) such that 〈T ,Σ ∪ F ∪ (V \ {α})〉 is
consistent is non-empty. Consider any Σ in such a set, i.e., assume that Σ is
a maximal subset of clT (A) such that 〈T ,Σ ∪ F ∪ (V \ {α})〉 is consistent. It
can be shown that (1) Σ does not contain α, and (2) Σ is a maximal subset of
clT (A) such that 〈T ,Σ ∪ F 〉 is consistent.

(1) Since Σ is a maximal subset of clT (A) such that 〈T ,Σ∪F ∪ (V \{α})〉 is
consistent, it follows that Σ does not contain α, otherwise Σ ∪ F ∪ (V \
{α}) would contain V , and therefore 〈T ,Σ ∪ F ∪ (V \ {α})〉 would be
inconsistent.

(2) We have to prove that, for every β ∈ clT (A) \ Σ, 〈T , F ∪ Σ ∪ {β}〉
is inconsistent. First of all, notice that, since Σ is a maximal subset
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of clT (A) such that 〈T ,Σ ∪ F ∪ (V \ {α})〉 is consistent, we have that
(V \ {α}) ∩ clT (A) ⊆ Σ. This implies that, adding α to Σ yields the T -
inconsistent set V , and this means that 〈T ,Σ∪F ∪ {α}〉 is inconsistent.
Let β ∈ clT (A) \ Σ be different from α. Consider Σ ∪ {β}. Since (V \
{α}) ∩ clT (A) ⊆ Σ, the fact that 〈T ,Σ ∪ F ∪ {β}〉 is consistent implies
that 〈T ,Σ ∪ F ∪ (V \ {α}) ∪ {β}〉 is consistent, i.e., that Σ is not a
maximal subset of clT (A) such that 〈T ,Σ∪F ∪ (V \ {α})〉 is consistent,
which is a contradiction. Therefore, we conclude that 〈T ,Σ ∪ F ∪ {β}〉
is inconsistent.

In conclusion, we have proved that, if there is a T -inconsistent set V in clT (A)∪
clT (F ) such that α ∈ V , and 〈T , F ∪ (V \ {α})〉 is consistent, then there exists
a maximal subset Σ of clT (A) such that 〈T ,Σ ∪ F 〉 is consistent and Σ does
not contain α.

Example 22. Consider the KB K = 〈T ,A〉 of Example 8. Suppose that
john becomes a test driver, and that tom becomes the new official driver of
the team t1, which means update K with the insertion of the set of ABox
assertions F = {TD(john), OD(tom),mf(tom, t1)}. Since the TBox implies
that a test driver cannot be an official driver, TD(john) contradicts OD(john).
Also, since every team has at most one official driver, {OD(tom),mf(tom, t1)
contradicts the fact that john is the official driver of the team t1. This means
that the set clT (A)∪ clT (A) is not consistent with T . Indeed, clT (A)∪ clT (A)
contains the following T -inconsistent sets:

V1 = { TD(john), OD(john) };
V2 = { OD(tom), mf(tom, t1), OD(john), mf(john, t1) }.

Where V1 violates the negative inclusion assertion OD v ¬TD in T , and V2
violates the identification assertion (id OD mf). There are two assertions in
clT (A) \ clT (F ) that appear in at least one T -inconsistent set: OD(john) and
mf(john, t1). Observe, that (V1 ∪ F ) \ {OD(john)} is T -consistent. On the
other hand, (V2∪F )\{mf(john, t1)} is not T -consistent, since it contains both
TD(john) and OD(john). Exploiting Theorem 14 the KB resulting from the
insertion of F into K is:

〈T , {TD(john),mf(john, t1), OD(tom),mf(tom, t1), TD(bob)}〉

Theorem 14 suggests immediately the algorithm ComputeInsertion for com-
puting K ⊕T∩ F .

Algorithm ComputeInsertion takes in input a consistent DL-LiteA,id,den-KB
K = 〈T ,A〉 and a finite set of ABox assertions F , and returns a consistent
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Input: a consistent DL-LiteA,id,den-KB K = 〈T ,A〉, a finite set of ABox
assertions F such that 〈T , F 〉 is consistent

Output: a DL-LiteA,id,den-KB
begin

if Mod(〈T , F 〉) = ∅
then return 〈T ,A〉;
W ← InconsistentSets(〈T , clT (A) ∪ clT (F )〉);
D ← ∅;
foreach α ∈ clT (A) \ clT (F ) do

if ∃w ∈W s.t. α ∈ w and 〈T , F ∪ w \ {α}〉 is consistent
then D ← D ∪ {α};

return 〈T , F ∪ clT (A) \D〉;
end

Algorithm 7: ComputeInsertion(〈T ,A〉, F )

KB in DL-LiteA,id,den. According to Definition 22, if 〈T , F 〉 is not consistent,
then the algorithm returns the original KB K. If 〈T , F 〉 is consistent, then
ComputeInsertion essentially computes the set D of ABox assertions in clT (A)\
clT (F ) which do not belong to at least one ABox accomplishing the insertion
of F into K minimally. It proceeds as follows. In order to exploit Theorem 14
the algorithm needs to compute all T -inconsistent sets in clT (A) ∪ clT (F ).

To this end, ComputeInsertion uses the algorithm InconsistentSets presented
in Section 5.3. Here, InconsistentSets(〈T , clT (A) ∪ clT (F )〉) computes the set
W of all those T -inconsistent sets in clT (A)∪clT (F ) that are also 〈T , clT (A)∪
clT (F )〉-clash. We note that by Lemma 14, we have every T -inconsistent set
V ′ in clT (A)∪ clT (F ) there exists in W a set w such that w ⊆ V ′. Afterwards
it adds to the set D each assertion α ∈ clT (A) \ clT (F ) that is contained in at
least one w ∈W and such that F ∪w \ {α} is T -consistent. We recall that, by
Theorem 14, every assertion in D cannot appear in

⋂
A′i∈U

clT (A′i), where U is
the set containing all the ABoxes accomplishing the insertion of F into 〈T ,A〉
minimally. Taking into account such observation, the algorithm returns the
KB 〈T , F ∪ clT (A) \D〉.

In what follows, we discuss formal and computational properties of the
algorithm ComputeInsertion.

We start by dealing with termination of Algorithm 7.

Lemma 20. Let 〈T ,A〉 be a consistent KB in DL-LiteA,id,den, and let F be a
finite set of ABox assertions. Then ComputeInsertion(〈T ,A〉, F ) terminates.

Proof. The termination follows directly from the termination of InconsistentSets
and from the finiteness of sets T , A and F .
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The following lemma states that the result of ComputeInsertion(〈T ,A〉, F )
is a consistent DL-LiteA,id,den-KB.

Lemma 21. Let 〈T ,A〉 be a consistent KB in DL-LiteA,id,den, and let F be a
finite set of ABox assertions, and 〈T ,A′〉 = ComputeInsertion(〈T ,A〉, F ). We
have that 〈T ,A′〉 is a consistent DL-LiteA,id,den-KB.

Proof. Let 〈T ,A′〉 = ComputeInsertion(〈T ,A〉, F ). Firstly, we show that
〈T ,A′〉 is a consistent KB. Trivially, if 〈T , F 〉 is not consistent, ComputeInsertion
returns 〈T ,A〉 which is consistent. We now consider the case where 〈T , F 〉 is
consistent. By construction of Algorithm 7, 〈T ,A′〉 is obtained from 〈T ,A〉
by:

• inserting into clT (A) a finite set F of atomic ABox assertions such that
〈T , F 〉 is consistent;

• removing from clT (A) the set of assertions D = {α1, . . . , αn} ⊆ clT (A) \
clT (F ) such that, for 1 ≤ i ≤ n, αi belongs to at least one subset V of
clT (A)∪ clT (F ) which is a T -inconsistent set and such that F ∪ (V \{α}
is T -consistent. Hence, there exists no A′′ ⊆ clT (F ) ∪ (clT (A) \D) that
is T -inconsistent.

Therefore, we have that A′ = F ∪ (clT (A) \D), which is consistent. As shown
above, ComputeInsertion computes 〈T ,A′〉 by adding and deleting atomic ABox
assertions from the ABox A. Since T is a DL-LiteA,id,den TBox by hypothesis,
then it is clear that 〈T ,A′〉 is a DL-LiteA,id,den-KB.

The theorem below states that the algorithm ComputeInsertion(〈T ,A〉, F )
can be used for computing 〈T ,A〉 ⊕T∩ F .

Theorem 15. Let 〈T ,A〉 be a consistent KB in DL-LiteA,id,den, and let F be
a finite set of ABox assertions. Then 〈T ,A〉 ⊕T∩ F is logically equivalent to
ComputeInsertion(〈T ,A〉, F ).

Proof. By analyzing Algorithm 7. According to Definition 22, if 〈T , F 〉 is not
consistent, then ComputeInsertion returns the original KB K. We turn to the
case where 〈T , F 〉 is consistent. LetM be the set of all maximal subsets A′′j of
clT (A) such that A′′j ∪F is T -consistent. As shown above, by using Theorem 11
and by exploiting Lemma 16, we know that for a DL-LiteA,id,den-KB 〈T ,A〉

〈T ,A〉 ⊕T∩ F ≡ 〈T ,
⋂
A′i∈U

clT (A′i)〉 = 〈T , clT (F ) ∪
⋂
A′′j ∈M

A′′j 〉

By exploiting Theorem 14, ComputeInsertion computes
⋂
A′′j ∈M

A′′j by deleting
from clT (A) every assertion α such that there exists a T -inconsistent set V in
clT (A) ∪ clT (F ) containing α and such that F ∪ (V \ {α}) is T -consistent.
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Finally, we turn to the complexity of computing the result of updating a
consistent DL-LiteA,id,den-KB with the insertion of a finite set of ABox asser-
tions. By analyzing Algorithm 7 we get:

Theorem 16. Let 〈T ,A〉 be a consistent KB in DL-LiteA,id,den, and F be
a finite set of ABox assertions. Then ComputeInsertion(〈T ,A〉, F ) computes
〈T ,A〉⊕T∩ F in polynomial time with respect to |A|, and |F |, and in exponential
time with respect to |T |.

Proof. The proof of this theorem is an immediate consequence of the following
observations:

• clT (A) can be computed in quadratic time with respect to |T | and |A|;
moreover clT (F ) can be computed in quadratic time with respect to |T |
and |F |;

• checking satisfiability of 〈T , F 〉 can be done in DL-LiteA,id,den in AC0

with respect to |F | and in exponential time with respect to |T | (cf. The-
orem 7);

• there is one call to InconsistentSets, which computes the set W of all T -
inconsistent sets in polynomial time with respect to |A|, and |F |, and in
exponential time with respect to |T |; moreover the size of W is polyno-
mial with respect to |T \ Tid ∪ Tden|, |A| and |F |, and exponential with
respect to |Tid ∪ Tden|; finally, the size of each set w ∈ W is polynomial
in the size of T .

• for each α ∈ clT (A)\clT (F ) and for each w ∈W the check of satisfiability
of 〈T , F ∪ (w \ {α})〉 can be done in polynomial time with respect to
|F ∪ (w \ {α})| and in exponential time with respect to |T |;

• the size of D is polynomial with respect to the size of A;

• for each α ∈ D the cost of eliminating α from clT (A) is clearly polynomial
in the size of clT (A).

7.2 Update by deletion in DL-LiteA,id,den

In this section, we refer to a DL-LiteA,id,den-KB K = 〈T ,A〉, and address the
problem of updating K with the deletion of a finite set F of ABox assertions.
As in the previous section, we assume that K is consistent.
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By exploiting Lemma 16 and by analyzing the form of DL-LiteA,id,den
TBoxes, we have that an ABox assertion α can be entailed by a consistent
DL-LiteA,id,den-KB 〈T ,A〉 if and only if one of the following cases holds:

(i) α ∈ A;
(ii) exists in A an ABox assertion β such that 〈T , {β}〉 |= α.

In other worlds, DL-LiteA,id,den does not allow that the TBox alone entails an
ABox assertion, i.e., for each TBox T in DL-LiteA,id,den and for each ABox
assertion α, we have that 〈T , ∅〉 6|= α. From the observation above, and by
Proposition 2, it directly follows the next lemma.

Lemma 22. Let 〈T ,A〉 be a KB in DL-LiteA,id,den, and let F be a finite set
of ABox assertions. Then there always exists an ABox A′ accomplishing the
deletion of F from 〈T ,A〉.

Proof. The proof directly follows from Lemma 16 and from Proposition 2.

Let 〈T ,A〉 be a DL-LiteA,id,den-KB, and let U be the set of ABoxes accom-
plishing the deletion of F from 〈T ,A〉 minimally. Lemma 22 guarantees that
U is non-empty. Then, from Definition 23, we have that

〈T ,A〉 	T∩ F = 〈T ,
⋂
Ai∈U

clT (Ai)〉.

It directly follows that, if α is an assertion in clT (A), then 〈T ,A〉 	T∩ F 6|= α
if at least one ABox Ai exists in U , such that α 6∈ clT (A′). Consequently, we
can compute 〈T ,A〉 	T∩ F by building all ABoxes Ai in U and then, for each
Ai ∈ U , removing from clT (A) all the assertions in clT (A) \ clT (Ai).

Let us start by considering the case where the set F is constituted by
just one assertion f . By exploiting Theorem 12, it is easy to conclude that
there is exactly one ABox accomplishing the deletion of {f} from a given
DL-LiteA,id,den-KB.

Lemma 23. Let 〈T ,A〉 be a DL-LiteA,id,den-KB and let f be an ABox asser-
tion. Up to logical equivalence, there is exactly one ABox A′ that accomplishes
the deletion of {f} from 〈T ,A〉 minimally.

Proof. We prove that, up to logical equivalence, there is exactly one ABox A′
that accomplishes the deletion of {f} from 〈T ,A〉 minimally. If 〈T ,A〉 6|= F ,
then the proof directly follows from Lemma 19 which assures that in such a
case the KB resulting from updating 〈T ,A〉 with the deletion of F is logically
equivalent to 〈T ,A〉.

Let 〈T ,A〉 |= f . Toward a contradiction, suppose that both A1 and
A2 accomplish the deletion of {f} from 〈T ,A〉 minimally, and suppose that
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Input: a consistent DL-LiteA,id,den-KB K = 〈T ,A〉, an ABox assertion
f .

Output: a set of ABox assertions
begin
A′ ← clT (A);
foreach α ∈ A′ do

if 〈T , {α}〉 |= f
then A′ ← A′ \ {α};

return A′;
end

Algorithm 8: Delete(〈T ,A〉, f)

clT (A1) 6= clT (A2). Clearly, f 6∈ clT (A1) and f 6∈ clT (A2). Since clT (A1) 6=
clT (A2), there exists an assertion α ∈ clT (A1) such that α 6∈ clT (A2). From
Theorem 12 it follows that α ∈ clT (A). Moreover, since we suppose that
f 6∈ clT (A1) then 〈T , {α}〉 6|= f . We recall that an assertion γ is implied by
a DL-LiteA,id,den-KB 〈T ,A〉 if and only if γ ∈ A or there exists an assertion
β ∈ A such that 〈T , {β}〉 |= γ. Hence, 〈T ,A2 ∪ {α}〉 6|= f . This means that
A2 ∪ {α} accomplishes the deletion of {f} from 〈T ,A〉 and clT (A2 ∪ {α}) has
fewer changes than clT (A2) with respect to clT (A). Since A2 accomplishes the
deletion of {f} from 〈T ,A〉 minimally, we have a contradiction.

Let A′ be an ABox accomplishing the deletion of {f} from 〈T ,A〉 mini-
mally. With the aim to prove that A′ can be computed in polynomial time
with respect to |T | and |A|, we provide Algorithm 8.

Lemma 24. Let 〈T ,A〉 be a DL-LiteA,id,den-KB, f be an ABox assertion.
Then Delete(〈T ,A〉, f) terminates returning a set of ABox assertions in poly-
nomial time with respect to |T | and |A|.

Proof. The terminations of Delete(〈T ,A〉, f) follows directly from the finite-
ness of the set clT (A).

Now, we prove that A′ = Delete(〈T ,A〉, f) can be computed in polynomial
time with respect to |T | and |A| by means of the following observations. Algo-
rithm 8 proceeds as follows. Firstly, it computes the set A′ = clT (A) which can
be done in polynomial time with respect to |T | and |A|. Moreover, the size of
A′ is polynomial in |A| and |T |. Next, for each assertion α in A′, Algorithm 8
removes α from A′ if and only if 〈T , {α}〉 |= f . The check 〈T , {α}〉 |= f can be
done in polynomial time with respect to |T |. Finally, the cost of eliminating
α from A′ is polynomial in the size of clT (A).

Lemma 25. Let 〈T ,A〉 be a DL-LiteA,id,den-KB, f be an ABox assertion, and
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A′ = Delete(〈T ,A〉, f). Then A′ accomplishes the deletion of {f} from 〈T ,A〉
minimally.

Proof. Essentially, Algorithm 8 proceeds as follows.

step 1: it computes the set A′ = clT (A);
step 2: for each assertion α ∈ A′, if 〈T , {α}〉 |= f , it removes α from A′.

We have to prove that A′ accomplishes the deletion of {f} from 〈T ,A〉min-
imally. Lemma 23 tells us that every other ABox accomplishing the deletion
of {f} from 〈T ,A〉 minimally is logically equivalent to A′. We start proving
that A′ accomplishes the deletion of {f} from 〈T ,A〉, then we prove that it
does this minimally.

It easy to see that if 〈T ,A〉 6|= f , then there are no assertions α ∈ A′ such
that 〈T , {α}〉 |= f and then, according to Lemma 19, Algorithm 8 returns
clT (A). In what follows, we assume that 〈T ,A〉 |= F . Assume by way of
contradiction that A′ does not accomplish the deletion of {f} from 〈T ,A〉,
this means that 〈T ,A′〉 |= {f}. Hence, there is an assertion α ∈ clT (A) (not
necessary different from f) such that 〈T , {α}〉 |= α. But this is prevented
by step 2. It follows that α 6∈ A′ and then that 〈T ,A′〉 6|= f , which is a
contradiction.

Suppose that A′ does not accomplish the deletion of {f} from 〈T ,A〉 min-
imally. This means that exists an ABox A′′ which accomplishes the deletion
of {f} from 〈T ,A〉 and such that clT (A′′) has fewer changes than clT (A′)
with respect to clT (A). Since Algorithm 8 only deletes atoms from clT (A),
the observation above implies that clT (A′′) has fewer deletions than clT (A′)
with respect to clT (A). That is, there exists an assertion β ∈ clT (A) such
that β ∈ clT (A′′) and β 6∈ clT (A′). But this means that, during the process,
β has been removed from clT (A). The check in step 2 allows us saying that
〈T , {β}〉 |= f , so 〈T ,A′′〉 |= f , which is a contradiction.

Let us now consider the case of arbitrary F , i.e., the case where F =
{f1, . . . , fm}, for m ≥ 0.

Let U∗ = {A1 . . .Am} be a set of ABoxes Ai, such that, for every 1 ≤ i ≤
m, Ai accomplishes the deletion of {fi} ⊆ F from 〈T ,A〉 minimally. Let U be
the set of ABoxes accomplishing the deletion of F from 〈T ,A〉 minimally.

Lemma 19 states that if 〈T ,A〉 6|= F , then the KB resulting from updating
〈T ,A〉 with the deletion of F is logically equivalent to 〈T ,A〉. This means that
if there exists in F an assertion fi such that 〈T ,A〉 6|= fi, then the deletion
does not affect the original KB. In what follows we focus on the case where
〈T ,A〉 |= F .

Assume that 〈T ,A〉 |= F . One might wonder whether the set U coincides
(modulo logical equivalence) with U∗. The next lemma tells us that one di-
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rection is indeed valid: for each A′ ∈ U there exists an A′′ ∈ U∗ such that
Mod(〈T ,A′〉) = Mod(〈T ,A′′〉).

Lemma 26. Let 〈T ,A〉 be a DL-LiteA,id,den-KB, and let F be a set of ABox
assertions such that 〈T ,A〉 |= F . If A′ accomplishes the deletion of F from
〈T ,A〉 minimally, then there exists an assertion f ′ ∈ F such that A′ accom-
plishes the deletion of {f ′} from 〈T ,A〉 minimally.

Proof. Suppose that A′ accomplishes the deletion of F from 〈T ,A〉 minimally.
Obviously, there exists at least one assertion fj in F such that A′ accomplishes
the deletion of {fj} from 〈T ,A〉 otherwise, for each fi ∈ F , 〈T ,A′〉 |= fi, which
means 〈T ,A′〉 |= F . But this contradicts that A′ accomplishes the deletion
of F from 〈T ,A〉. Let J ⊆ F be the set of all assertions fj such that A′
accomplishes the deletion of {fj} from 〈T ,A〉. We prove that there exists at
least one f ′ ∈ J such that A′ accomplishes the deletion of {f ′} from 〈T ,A〉
minimally. Assume by way of contradiction that for all fj ∈ J we have that
A′ does not accomplish the deletion of {fj} from 〈T ,A〉 minimally. It follows
that for every fj there exists an ABox Aj such that clT (A′) ⊂ clT (Aj) ⊆
clT (A), and 〈T ,Aj〉 6|= fj . This means that Aj accomplishes the deletion of F
from 〈T ,A〉, and that clT (Aj) has fewer deletions than clT (A′) with respect
to clT (A). Hence, A′ does not accomplish the deletion of F from 〈T ,A〉
minimally, which is a contradiction.

However, the next example shows that the other direction does not hold:
there may exist A′ ∈ U∗ such that 〈T ,A′〉 is not logically equivalent to any
〈T ,A′′〉 such that A′′ ∈ U .

Example 23. Let T = {B v C, C v D, E v D}, A = {B(a), E(a)}, and
F = {C(a), D(a)}. It is easy to see that the deletion of D(a) from 〈T ,A〉 is
accomplished minimally by ∅, while the deletion of C(a) from 〈T ,A〉 is accom-
plished minimally by {E(a)}. Hence, in this case, we have U∗ = {∅, {E(a)}}.
Also, one can verify that {E(a)} is the only (up to logical equivalence) ABox
accomplishing the deletion of F minimally, i.e., U = {{E(a)}}. Thus, there is
an ABox in U∗, namely A′ = ∅ such that 〈T ,A′〉 is not logically equivalent to
any 〈T ,A′′〉 such that A′′ ∈ U .

The next theorem characterizes when a given Ai ∈ U∗ accomplishes the
deletion of F from 〈T ,A〉 minimally.

Theorem 17. Let 〈T ,A〉 be a DL-LiteA,id,den-KB, and let F be a set of ABox
assertions such that 〈T ,A〉 |= F . Let fj be an assertion in F , and let Aj
be the ABox accomplishing the deletion of {fj} from 〈T ,A〉 minimally. Aj
accomplishes the deletion of F from 〈T ,A〉 minimally if and only if there is in
F no assertion fh 6= fj such that 〈T , {fh}〉 |= fj and 〈T , {fj}〉 6|= fh.
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Proof. Let fj ∈ F . Lemma 23 assures that there is exactly one ABox Aj that
accomplishes the deletion of {fj} from 〈T ,A〉 minimally.
(⇒) Assume that Aj accomplishes the deletion of F from 〈T ,A〉 minimally.
Then we prove that there is no assertion fh ∈ F such that fh 6= fj , 〈T , {fh}〉 |=
fj , and 〈T , {fj}〉 6|= fh. Toward a contradiction, assume that F contains an
assertion fh 6= fj such that 〈T , {fh}〉 |= fj and such that 〈T , {fj}〉 6|= fh. Let
Ah be the ABox accomplishing the deletion of {fh} from 〈T ,A〉 minimally.
Clearly, Ah accomplishes the deletion of F from 〈T ,A〉.

Firstly we show that fj ∈ clT (Ah). Suppose, by way of contradiction, that
fj 6∈ clT (Ah). Since 〈T , {fj}〉 6|= fh then the ABox clT (Ah∪{fj}) accomplishes
the deletion of {fh} from 〈T ,A〉 and has fewer changes than clT (Ah) with re-
spect to clT (A). This contradicts that Ah accomplishes the deletion of {fh}
from 〈T ,A〉minimally. Hence, fj ∈ Ah. In the same manner, we can show that
every assertion α ∈ clT (A) \ clT (Aj) such that 〈T , {α}〉 6|= fh is in clT (Ah).
Now, we show that clT (Aj) does not contain fh. Toward a contradiction, as-
sume that fh ∈ clT (Aj). Trivially, since 〈T , {fh}〉 |= fj then fj ∈ clT (Aj).
Which contradicts that Aj accomplishes the deletion of {fj} from 〈T ,A〉 mini-
mally. Similarly, we can show that every assertion in clT (A)\clT (Ah) is not in
clT (Aj). It directly follows that clT (Aj) ⊂ clT (Ah)clT (A). Hence, Aj does not
accomplish the deletion of F from 〈T ,A〉 minimally, which is a contradiction.

(⇐) Let fj be an assertion in F such that there exists no assertion fh 6= fj
in F such that 〈T , {fh}〉 |= fj , and 〈T , {fj}〉 6|= fh. Let Aj be the ABox
accomplishing the deletion of {fj} from 〈T ,A〉 minimally. We prove that Aj
accomplishes the deletion of F from 〈T ,A〉 minimally. Since fj 6∈ clT (Aj) then
F 6⊆ clT (Aj), which means that Aj accomplishes the deletion of F from 〈T ,A〉.
Assume by contradiction that Aj does not accomplish the deletion of F from
〈T ,A〉 minimally. This means that there is an ABox Ai which accomplishes
the deletion of F from 〈T ,A〉, and such that clT (Aj) ⊂ clT (Ai) ⊂ clT (A). It
follows that there exists an assertion fi ∈ clT (Ai) such that fi 6∈ clT (Aj). Since
Aj accomplishes the deletion of {fj} from 〈T ,A〉 minimally, then 〈T , {fi}〉 |=
fj . This means that fj ∈ clT (Ai). Since Ai accomplishes the deletion of F
from 〈T ,A〉, and fj ∈ clT (Ai), then there exists in F an assertion fh 6= fj
such that fh 6∈ clT (Ai). But since fh 6∈ clT (Ai) then fh 6∈ clT (Aj). Clearly,
since fj ∈ clT (Ai) then 〈T , {fj}〉 6|= fh. Moreover, since Aj accomplishes
the deletion of {fj} from 〈T ,A〉 minimally, then 〈T , {fh}〉 |= fj . This means
that there exists in F and assertion fh 6= fj such that 〈T , {fh}〉 |= fj and
〈T , {fj}〉 6|= fh, which is a contradiction.

Lemma 19 and Theorem 17 suggest immediately the algorithm ComputeDeletion
to compute K 	T∩ F . Algorithm ComputeDeletion takes in input a consistent
KB K = 〈T ,A〉 in DL-LiteA,id,den and a finite set of ABox assertions F , and
returns a consistent KB in DL-LiteA,id,den.
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Input: a consistent DL-LiteA,id,den-KB K = 〈T ,A〉, a finite set of ABox
assertions F .

Output: a DL-LiteA,id,den-KB
begin

if 〈T ,A〉 6|= F
then return 〈T ,A〉;
F ′ ← F ;
foreach fi ∈ F ′ and fj ∈ F such that fi 6= fj do

if 〈T , {fj}〉 |= fi and 〈T , {fi}〉 6|= fj
then F ′ ← F ′ \ {fi};

A′ ← A;
foreach f ∈ F ′ do
A′ ← Delete(〈T ,A′〉, f);

return 〈T ,A′〉;
end

Algorithm 9: ComputeDeletion(〈T ,A〉, F )

It proceeds as follows. According to Lemma 19, if 〈T ,A〉 does not entail
F then ComputeDeletion(〈T ,A〉, F ) returns 〈T ,A〉. If 〈T ,A〉 |= F then, by
exploiting Theorem 17, it marks those assertions fi in F for which there exists
in F an assertion fi 6= fj such that 〈T , {fj}〉 |= fi and 〈T , {fi}〉 6|= fj . Next, it
builds the set A′ = clT (A). Finally, by means of Algorithm Delete, Algorithm 9
iteratively modifies A′ minimally in such a way that, for each assertion f in F
that are not marked, then 〈T ,A′〉 6|= f .

Lemma 27. Let 〈T ,A〉 be a consistent KB in DL-LiteA,id,den, and let F be a
finite set of ABox assertions, and 〈T ,A′〉 = ComputeDeletion(〈T ,A〉, F ). We
have that 〈T ,A′〉 is a consistent KB in DL-LiteA,id,den.

Proof. Let 〈T ,A′〉 = ComputeDeletion(〈T ,A〉, F ). The proof follows directly
from the facts that ComputeDeletion does not modify the TBox of the original
KB, and that clT (A′) ⊆ clT (A).

Next, we deal with termination and correctness of ComputeDeletion.

Lemma 28. Let 〈T ,A〉 be a consistent KB in DL-LiteA,id,den, and let F be a
finite set of ABox assertions. Then ComputeDeletion(〈T ,A〉, F ) terminates.

Proof. The termination of ComputeDeletion(〈T ,A〉, F ) follows directly from
the termination of the algorithm Delete.

The next theorem sanctions the correctness of Algorithm 9.
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Theorem 18. Let 〈T ,A〉 be a consistent KB in DL-LiteA,id,den, and F be
a finite set of ABox assertions. Then 〈T ,A〉 	T∩ F is logically equivalent to
ComputeDeletion(〈T ,A〉, F ).

Proof. Let F = {f1, . . . , fm} be a set of ABox assertions.
Firstly, if 〈T ,A〉 6|= F , then, according to Lemma 19, Algorithm 9 returns

〈T ,A〉. Secondly, it computes the set F ′ = {f1, . . . , fn}, with n ≤ m by
removing from F every assertion α such that there exists in F an assertion
β 6= α, 〈T , {β}〉 |= α, and 〈T , {α}〉 |= β.

Let U∗ = {A1 . . .An} be the set of ABoxes Ai, such that, for every i ∈
{1, . . . , n}, Ai accomplishes the deletion of {fi} from 〈T ,A〉 minimally. Let U
be the set of ABoxes accomplishing the deletion of F from 〈T ,A〉 minimally.
Theorem 17 and Lemma 26 assure that (modulo logical equivalence) U = U∗.

Finally, by means of Algorithm Delete, Algorithm 9 computes the ABox
A′ =

⋂
Aj∈U clT (Aj) by removing from clT (A) every assertion which is not in

at least one ABox in U∗. Then it returns 〈T ,A′〉.

Finally, we turn to the complexity of updating a DL-LiteA,id,den-KB with
the deletion of a set of ABox assertions F . By analyzing Algorithm 9, and by
exploiting Lemma 23 we can provide the following theorem.

Theorem 19. Let 〈T ,A〉 be a consistent KB in DL-LiteA,id,den, and let F be
a finite set of ABox assertions. Then ComputeDeletion(〈T ,A〉, F ) computes
〈T ,A〉 	T∩ F in polynomial time with respect to |T |, |A| and |F |.

Proof. The proof is an immediate consequence of the following observations.

• Given a DL-LiteA,id,den TBox T and two ABoxes A and F , deciding if
〈T ,A〉 |= F can be done in polynomial time with respect to |T |, |A| and
|F |.

• The algorithm checks if, for all fi ∈ F , there exists an fj ∈ F , with
i 6= j, such that 〈T , {fj}〉 |= fi and 〈T , {fi}〉 |= fj . This can be done in
polynomial time in |T | and |F |.

• In the worst case there is one call Delete(〈T ,A′〉, f) for each atom f in
F .

• From Lemma 24 we know that Delete(〈T ,A′〉, f) runs in polynomial time
with respect to |T | and |A|.
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Inconsistency-tolerant Query
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Chapter 8

Query answering over
inconsistent Description Logic
KBs

It is well-known that inconsistency causes severe problems in logic-based Knowl-
edge Representation. In particular, since an inconsistent logical theory has no
model, it logically implies every formula (ex falso quodlibet), and, therefore,
traditionally query answering over an inconsistent knowledge base becomes
meaningless.

There are many approaches for devising inconsistency-tolerant inference
systems [12], originated in different areas, including Logic, Artificial Intelli-
gence, and Databases.

Let K be an inconsistent knowledge base that contains both α and ¬α.
How to answer the query “is α true?”. The most direct approach is to answer
the query only after we have cleaned the knowledge base from all inconsisten-
cies [84, 96], i.e. we have restored consistency. Another strategy would be
to leave unchanged the KB, but trying to obtain only consistent information
during query answering. This approach was born in the Database community
and is commonly known as consistent query answering [36]. Another approach
is to consider inconsistencies as an natural phenomenon in realistic data which
are to be handled by a logic which tolerates it [82, 83, 92, 106]. Such logics
are called paraconsistent. Roughly speaking, a paraconsistent logic is a logic
rejecting ex falso quodlibet principle, i.e., the principle stating that from a
contradiction it is possible to derive everything.

In this chapter, we address the problem of dealing with inconsistencies in
Description Logic knowledge bases. Our work is especially inspired by the
approaches to consistent query answering in databases [4].

The main tool used to obtain consistent information from an inconsistent
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database is the notion of database repair : a repair of a database contradicting
a set of integrity constraints is a database obtained by applying a “minimal”
set of changes which restore consistency. In general, there are many possible
repairs for a database DB, and, therefore, the approach sanctions that what
is consistently true in DB is simply what is true in all possible repairs of DB.
Thus, inconsistency-tolerant query answering amounts to compute the tuples
that are answers to the query in all possible repairs. By adopting different
notions of “minimality”, it is possible to give rise to different inconsistency-
tolerant semantics.

Similarly to the work in [70], adopting the notion of repair, we study DL
semantical frameworks which are inconsistency-tolerant, and we devise tech-
niques for answering unions of conjunctive queries posed to DL KBs under
such inconsistency-tolerant semantics.

Depending on the expressive power of the underlying language, the TBox
alone might be inconsistent, or the TBox might be consistent, but the axioms
in the ABox might contradict the axioms in the TBox.

In several scenarios as Ontology-based Data Access [26, 95], the TBox is
usually a high quality representation of the domain, designed in such a way
to avoid inconsistencies in the modeling of concepts and relationships. On the
contrary, the ABox derives from data sources which are independent on the
conceptualization represented by the TBox, and therefore may contain data
which are not coherent with it.

The ability of dealing with such a form of inconsistency is of critical im-
portance, in particular to obtain meaningful answers to queries posed over
inconsistent KBs. Therefore, our study is carried out under the assump-
tion that the TBox is consistent, and inconsistency may arise between the
ABox and the TBox (inconsistencies in the TBox are considered, e.g., in
[55, 59, 83, 91, 98, 109]). This is particularly suited in those settings in which
the intensional knowledge, i.e., the TBox, is the faithful representation of the
domain, whereas data may be not compliant to such representation, and there-
fore violate some TBox assertions, for several reasons, e.g., because they come
from different autonomous sources, as in data integration.

In Section 8.1, by adopting different criteria of minimal changes, we define
different notions of repair. On the basis of such notions we propose in Sec-
tion 8.2 different consistency-tolerant semantics, named AR-semantics, CAR-
semantics, IAR-semantics, and ICAR-semantics. In Section 8.3 we provide a
discussion on the properties of such semantics. Finally, in Section 8.4 we study
query answering under such semantics.
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8.1 The notion of repair

The inconsistency-tolerant semantics we propose in this work are based on
the notion of repair. Intuitively, given a possibly inconsistent DL KB K =
〈T ,A〉, a repair Ar for K is an ABox such that the KB 〈T ,Ar〉 is consistent
under the first-order semantics, and Ar “minimally” differs from A. Notice
that in general not a single, but several repairs may exist, depending on the
particular minimality criterion adopted. We consider here different notions of
“minimality”, which give rise to different inconsistency-tolerant semantics. In
all cases, such semantics coincide with the classical first-order semantics when
inconsistency does not come into play, i.e., when the KB is consistent under
standard first-order semantics.

In order to give a characterization of the notion of “minimality”, we refer to
the relation of fewer changes between two sets of ABox assertions with respect
to another one, given by Fagin, Ullman and Vardi in [44]. We have already
introduced such notion in Section 6.3. Next we just briefly recall it. Let A,
A1, and A2 be three finite sets of ABox assertions. We say that A1 has fewer
deletions than A2 with respect to A if A \ A1 ⊂ A \ A2. Also, we say that
A1 and A2 have the same deletions with respect to A if A \ A1 = A \ A2.
Moreover, we say that A1 has fewer insertions than A2 with respect to A if
A1 \ A ⊂ A2 \ A. Finally, we say that A1 has fewer changes than A2 with
respect to A if (i) A1 has fewer deletions than A2 with respect to A, or (ii) A1

and A2 have the same deletions with respect to A, and A1 has fewer insertions
than A2 with respect to A.

With the notion of fewer changes in place, we can illustrate the first notion
of repair that we consider. A repair Ar of a KB K = 〈T ,A〉 is an ABox that
is T -consistent and such that there does not exist another ABox A′r that is T -
consistent and that has fewer changes than Ar with respect to A. Intuitively,
a repair Ar is obtained by changing minimally the initial ABox A in order to
make it T -consistent. The formal definition is given below.

Definition 24. Let K = 〈T ,A〉 be an DL KB in L. An ABox repair (A-repair)
of K is a set A′ of ABox assertions such that:

1. A′ is T -consistent, i.e., Mod(〈T ,A′〉) 6= ∅, and

2. there is no set A′′ of ABox assertions that is T -consistent, and has fewer
changes than A′ with respect to A.

It is easy to see that, in general, more than one A-repair of a KB K exist.
In what follows we denote by AR-Set(K) the set of A-repairs of K.

We now present an example illustrating the notion of A-repair.
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Example 24. Consider the following KB K = 〈T ,A〉, which is loosely inspired
by the OWL ontology people1. The TBox and the ABox contain respectively
the following assertions:

T = { Man v Adult uMale u Person, Kid v Person u Young,
Adult uMale u Person v Man, Person u Young v Kid,
Woman v Adult u Female u Person, Adult v ¬Young,
Adult u Female u Person vWoman, Male v ¬Female,
∃hasFather− v Man, (funct hasFather) }

A = { hasFather(tom, taylor), Kid(tom), Man(tom),
hasFather(tom, sam), Woman(taylor) Woman(sam) }

This ABox states that tom is both a kid and a man, that both taylor and sam
are women, and that they are both fathers of tom. Notice that this implies
that both taylor and sam are men. It is easy to see that K is unsatisfiable,
since the two assertions Kid(tom) and Man(tom) violate the disjointness be-
tween kid and man. Moreover, the two assertions hasFather(tom, taylor) and
hasFather(tom, sam) violate the functionality of the role hasFather, and both
taylor and sam violate the disjointness between woman and man.

The set AR-Set(K) is constituted by the following T -consistent sets of
ABox assertions:

A-rep1 = { hasFather(tom, taylor),Kid(tom),Woman(sam) }
A-rep2 = { hasFather(tom, taylor),Man(tom),Woman(sam) }
A-rep3 = { hasFather(tom, sam),Kid(tom),Woman(taylor) }
A-rep4 = { hasFather(tom, sam),Man(tom),Woman(taylor) }

The following theorem provides a characterization of the notion of repair.

Theorem 20. Let K = 〈T ,A〉 be a DL KB, and let A′ be a set of ABox
assertions. A′ ∈ AR-Set(K) if and only if A′ is a maximal T -consistent subset
of A.

Proof.
(⇒) Suppose that A′ ∈ AR-Set(K), we prove that A′ is a maximal T -consistent
subset of A. Firstly, we show that A′ is a subset of A. We proceed by con-
tradiction. Suppose that there is an assertion α ∈ A′ such that α 6∈ A. Since
A′ is T -consistent, then A′ \ {α} is T -consistent too. Hence, A′ \ {α} is a
T -consistent set of ABox assertions that has the same deletions of A′ with

1http://www.cs.man.ac.uk/~horrocks/ISWC2003/Tutorial/people+pets.owl.rdf

http://www.cs.man.ac.uk/~horrocks/ISWC2003/Tutorial/people+pets.owl.rdf
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respect to A, and that has fewer insertions than A′ with respect to A, which
contradicts that A′ ∈ AR-Set(K). Now we show that A′ is a subset of A
that is maximal. Toward a contradiction, suppose that A′ is not a maximal
T -consistent subset of A. This means that there exists an assertion α ∈ A
such that A′ ∪ {α} is T -consistent. Hence, A′ ∪ {α} is a T -consistent set of
ABox assertions that has fewer deletions than A′ with respect to A, which
contradicts that A′ ∈ AR-Set(K).

(⇐) Suppose that A′ is a maximal T -consistent subset of A. We prove that
A′ ∈ AR-Set(K). First we observe that A′ is T -consistent and then it is a can-
didate for being an A-repair. Suppose, by contradiction, that A′ 6∈ AR-Set(K).
The following two cases are possible.

1. There exists in AR-Set(K) a set of ABox assertions A′′ such that A′′ has
fewer deletions than A′ with respect to A. This means that there exists
an assertion β ∈ A such that β ∈ A′′ and β 6∈ A′ and that A′ ∪ {β}
is T -consistent. Hence, A′ is not a maximal T -consistent subset of A,
which is a contradiction.

2. There exists in AR-Set(K) a set of ABox assertions A′′ such that A′′ has
the same deletions of A′ with respect to A, and A′′ has fewer insertions
than A′ with respect to A. Hence, there exists an assertion γ ∈ A′ such
that neither γ ∈ A′′ nor γ ∈ A. Hence, A′ 6⊆ A, which is a contradiction.

Note that the above theorem guarantees that any A-repair of a KB K is
finite, and therefore is actually an ABox, and that the set of A-repairs of K
is finite. This property of the set AR-Set(K), together with the fact that
Lemma 17 shows that the relation “has fewer changes” is a strict partial order
on a set of ABoxes, allows us to provide the following result.

Proposition 13. Let K = 〈T ,A〉 be a possibly inconsistent KB. AR-Set(K) 6=
∅ if and only if 〈T , ∅〉 is consistent.

Proof.
(⇒) Suppose that AR-Set(K) 6= ∅. We show that 〈T , ∅〉 is consistent. Toward
a contradiction, suppose that Mod(〈T , ∅〉) = ∅. Since AR-Set(K) 6= ∅, there
exists an A-repair A′ of K. From Definition 24 we have thatMod(〈T ,A′〉) 6= ∅,
but Mod(〈T ,A′〉) ⊆Mod(〈T , ∅〉) = ∅, which is a contradiction.

(⇐) We have to prove that ifMod(〈T , ∅〉) 6= ∅, then AR-Set(K) 6= ∅. Let U be
the set containing all the T -consistent subsets of A. Since Mod(〈T , ∅〉) 6= ∅,
then U is non-empty, moreover, from Theorem 20, we have that AR-Set(K) ⊆
U . By using Lemma 17 it follows that the relation “has fewer changes” is a
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strict partial order on U , and therefore we can conclude that the set U is a finite
partially ordered set. Hence, there is in U at least one ABox A′ for which there
does not exist any ABox A′′ ∈ U such that A′′ has fewer changes than A′ with
respect to A. According to Definition 24, this means that A′ ∈ AR-Set(K),
and therefore AR-Set(K) is non-empty.

In the rest of this work we always assume that if 〈T ,A〉 is a KB, then
Mod(〈T , ∅〉) 6= ∅.

Although Definition 24 can be considered to some extent the natural choice
for the setting we are considering, since each A-repairs stays as close as possible
to the original ABox, it has the characteristic to be dependent from the form
of the original ABox. Suppose that K′ = 〈T ,A′〉 differs from the inconsistent
KB K = 〈T ,A〉, simply because A′ includes assertions that logically follow,
using T , from a consistent subset of A (implying that K′ is also inconsistent).
One could argue that the repairs of K′ and the repairs of K should coincide.
Conversely, the next example shows that the two sets of A-repairs are generally
different.

Example 25. Consider the KB K′ = 〈T ,A′〉, where T is the same TBox of
the KB K = 〈T ,A〉 of Example 24, and the ABox A′ is as follows:

A′ = { hasFather(tom, taylor), Kid(tom), Man(tom),
hasFather(tom, sam), Woman(taylor) Woman(sam)
Male(tom) }

Notice that A′ can be obtained by adding Male(tom) to A. Since Male(tom)
is entailed by the KB 〈T , {Man(tom)}〉, i.e., a KB constituted by the TBox T
of K and a subset of A that is consistent with T , one intuitively would expect
that K and K′ have the same repairs under the A-semantics. This is however
not the case, since we have that AR-Set(K′) is formed by:

A-rep′1 = { hasFather(tom, taylor),Kid(tom),Woman(sam),Male(tom) }
A-rep′2 = { hasFather(tom, taylor),Man(tom),Woman(sam),Male(tom) }
A-rep′3 = { hasFather(tom, sam),Kid(tom),Woman(taylor),Male(tom) }
A-rep′4 = { hasFather(tom, sam),Man(tom),Woman(taylor),Male(tom) }

Let us finally consider the ground sentence Male(tom). It is easy to see that
Male(tom) is entailed by every KB 〈T ,A-rep′i〉, where A-rep′i ∈ AR-Set(K′),
but it is not entailed by every KB 〈T ,A-repi〉, where A-repi ∈ AR-Set(K).

Depending on the particular scenario, and the specific application at hand,
the above behavior might be considered incorrect. This motivates the presen-
tation of a new definition of repair that does not present such a characteristic.
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According to this new definition, that we call Closed ABox repair (CA-repair),
a repair takes into account not only the assertions explicitly included in the
original ABox, but also those that are implied, through the TBox, by at least
one subset of the ABox that is consistent with the TBox.

To formalize the above idea, we need to introduce some preliminary defi-
nitions. Given a KB K = 〈T ,A〉 let ΓK denote the alphabet of K, i.e., the set
of concepts, role, attributes, and individual names occurring in K. We recall
that, given an alphabet Γ, we denote with HB(Γ) the Herbrand Base of Γ,
i.e., the set of atomic ABox assertions that can be built over the alphabet Γ.
Then, given a KB K = 〈T ,A〉, we define the consistent logical consequences of
A with respect to T as the following set.

clcT (A) = {α | α ∈ HB(ΓK), and there exists A′ ⊆ A such that
A′ is T -consistent, and 〈T ,A′〉 |= α}

Finally, we say that two KBs 〈T ,A〉 and 〈T ,A′〉 are consistently equivalent
(C-equivalent) if clcT (A) = clcT (A′).

It is easy to see that if 〈T ,A〉 is a consistent KB, then clcT (A) = clT (A).
We argue that the consistent logical consequences clcT (A) of an ABox A cap-
tures a reasonable notion of closure of A, both in the case where A is T -
consistent and in the case where A is T -inconsistent.

Based on C-equivalence, we propose the following notion of CA-repair.

Definition 25. Let K = 〈T ,A〉 be a DL KB in L. A Closed ABox repair
(CA-repair) A′ of K is a set of ABox assertions such that:

1. A′ is T -consistent, i.e., Mod(〈T ,A′〉) 6= ∅, and

2. there is no set A′′ of ABox assertions that is T -consistent, and such that
clT (A′′) has fewer changes than clT (A′) with respect to clcT (A).

Intuitively, a CA-repair is a T -consistent ABox whose closure with respect
to T “minimally” differs from clcT (A). The set of all CA-repairs of a KB K is
denoted by CAR-Set(K).

The following example illustrates the notion of CA-repair.

Example 26. Consider the KB K = 〈T ,A〉 presented in Example 24, it is easy
to verify that the set clcT (A) containing the consistent logical consequences of
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A with respect to T is:

clcT (A) = {
Man(tom), Man(taylor), Man(sam),
Person(tom), Person(taylor), Person(sam),
Male(tom), Male(taylor), Male(sam),
Adult(tom), Adult(taylor), Adult(sam),
hasFather(tom, taylor), Kid(tom), Young(tom),
hasFather(tom, sam), Woman(taylor), Woman(sam),
Female(taylor), Female(sam), }

The set CAR-Set(K) is constituted, up to logical equivalence with respect to
the TBox T , by the following T -consistent ABoxes:

CA-rep1 = { hasFather(tom, sam),Man(tom),Man(taylor) }
CA-rep2 = { hasFather(tom, sam),Man(tom),Woman(taylor) }
CA-rep3 = { hasFather(tom, taylor),Man(tom),Man(sam) }
CA-rep4 = { hasFather(tom, taylor),Man(tom),Woman(sam) }
CA-rep5 = { hasFather(tom, sam),Kid(tom),Man(taylor),Male(tom) }
CA-rep6 = { hasFather(tom, sam),Kid(tom),Woman(taylor),Male(tom) }
CA-rep7 = { hasFather(tom, taylor),Kid(tom),Man(sam),Male(tom) }
CA-rep8 = { hasFather(tom, taylor),Kid(tom),Woman(sam),Male(tom) }

Let K′ be the KB presented in Example 25. Clearly, K and K′ are C-equivalent.
Indeed, it is easy to verify that CAR-Set(K) = CAR-Set(K′).

Let K = 〈T ,A〉 be a KB. In what follows, we show that both the analogous
of Theorem 20 for CA-repair and the analogous of Proposition 13 for CA-repair
hold.

Theorem 21. Let K = 〈T ,A〉 be a DL KB in L, and A′ be a set of ABox
assertions. A′ ∈ CAR-Set(K) if and only if clT (A′) is a maximal T -consistent
subset of clcT (A).

Proof.
(⇒) Suppose that A′ ∈ CAR-Set(K). We prove that clT (A′) is a maximal
T -consistent subset of clcT (A).

First we prove that clT (A′) is a subset of clcT (A). Suppose, by contra-
diction, that clT (A′) is not a subset of clcT (A). This implies that clT (A′) \
clcT (A) 6= ∅. Let A′′ = clT (A′) ∩ clcT (A). We observe that, since A′ is T -
consistent, then every subset ofA′ is T -consistent, and thenA′′ is T -consistent.
We also observe that clT (A′′) = A′′. Hence, A′′ is a T -consistent set of ABox
assertions such that clT (A′′) has the same deletions than clT (A′) with respect
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to clcT (A), and such that clT (A′′) has fewer insertions than clT (A′) with re-
spect to clcT (A), which contradicts that A′ ∈ CAR-Set(K).

Now, we show that clT (A′) is a subset of clcT (A) that is maximal. Toward
a contradiction, suppose that clT (A′) is not a maximal T -consistent subset
of clcT (A). This means that there exists an assertion α ∈ clcT (A) such that
the set A′′ = clT (A′) ∪ {α} is T -consistent. Note that clT (A′′) ⊆ clcT (A).
Hence, A′′ is a T -consistent set of ABox assertions such that clT (A′′) has
fewer deletions than clT (A′) with respect to clcT (A), which contradicts that
A′ ∈ CAR-Set(K).

(⇐) Suppose that A′ is a set of ABox assertions such that clT (A) is a maximal
T -consistent subset of clcT (A). We prove that A′ ∈ CAR-Set(K). First, we
note that since A′ is T -consistent, then clT (A) is consistent too. Also we note
that A′ is a candidate for being an CA-repair of K. Suppose, by contradiction,
that A′ 6∈ CAR-Set(K). The following two cases are therefore possible.

1. There exists a set of ABox assertions A′′ in CAR-Set(K) such that
clT (A′′) has fewer deletions than clT (A′) with respect to clcT (A). This
means that there exists an assertion β ∈ clcT (A) such that β ∈ clT (A′′)
and β 6∈ clT (A′) and that clT (A′)∪{β} is T -consistent. Hence, clT (A) is
not a maximal T -consistent subset of clcT (A), which is a contradiction.

2. There exists in CAR-Set(K) a set of ABox assertions A′′ such that
clT (A′′) has the same deletions of clT (A′) with respect to clcT (A), and
clT (A′′) has fewer insertions than cl|T (A′) with respect to clcT (A). Hence,
there exists an assertion γ ∈ clT (A′) such that neither γ ∈ clT (A′′) nor
γ ∈ clcT (A). Hence, clT (A′) 6⊆ clcT (A), which is a contradiction.

From Theorem 21 it follows that a CA-repair is a T -consistent subset of
A whose closure with respect to T is a maximal subset of clcT (A). Moreover,
we have that any CA-repair of a KB K is finite, and therefore is actually an
ABox, and that the set CAR-Set(K) is finite.

Proposition 14. Let K = 〈T ,A〉 be a possibly inconsistent KB. CAR-Set(K) 6=
∅ if and only if 〈T , ∅〉 is consistent.

Proof. The proof is a straightforward adaptation of the one proposed for Propo-
sition 13.

8.2 Inconsistency-tolerant semantics

In this section we present our inconsistency-tolerant semantics based on the
notions of repair given in the previous section.
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We assume that for a KB K = 〈T ,A〉, T is consistent, whereas A may be
T -inconsistent, i.e., the set of models of K may be empty. The challenge is
to provide semantic characterizations for K, which are inconsistency-tolerant,
i.e., they allow K to be interpreted with a non-empty set of models even in the
case where it is inconsistent under the classical first-order semantics.

The first inconsistency-tolerant semantics we present, named ABox Repair
semantics (AR-semantics), is based on the notion of A-repair.

Definition 26. Let K = 〈T ,A〉 be a possibly inconsistent KB. According to
the ABox Repair (AR) semantics, the set of models of K, denoted ModAR(K),
is defined as follows:

ModAR(K) = {I | I ∈ Mod(〈T ,Ai〉), for some Ai ∈ AR-Set(K)}

In other words, an interpretation I is an ABox Repair Model, or simply an
AR-model, of K if there exists A′ ∈ AR-Set(K) such that I |= 〈T ,A′〉.

The following notion of consistent entailment is the natural generalization
of classical entailment to the AR-semantics.

Definition 27. Let K be a possibly inconsistent KB, and let φ be a first-order
sentence. We say that φ is AR-consistently entailed, or simply AR-entailed, by
K, written K |=AR φ, if I |= φ for every I ∈ ModAR(K).

Example 27. Consider the DL KB K = 〈T ,A〉 presented in Example 24 and
the following FOL-sentences:

φ1 : ∃x, y.Person(x) ∧ hasFather(x, y);
φ2 : ∃x.Male(x) ∧ Person(x) ∧ hasFather(x, y);
φ3 : ∃x.Woman(x).

φ1 asks for the existence of a person who has a father, φ2 asks for the existence
of a parson who is a male and has a father, and φ3 asks for the existence of a
woman.

In accordance with Definition 27, given a FOL-sentence φ, we have that
K |=AR φ, if I |= φ for every I ∈ ModAR(K). This means that K models φ
under AR-semantics if for every A-repair A-rep ∈ AR-Set(K), the consistent
KB 〈T ,A-rep〉 models φ.

Referring to the set AR-Set(K) presented in Example 24, we have:

〈T ,A-rep1〉 |= φ1; 〈T ,A-rep1〉 6|= φ2; 〈T ,A-rep1〉 |= φ3;
〈T ,A-rep2〉 |= φ1; 〈T ,A-rep2〉 |= φ2; 〈T ,A-rep2〉 |= φ3;
〈T ,A-rep3〉 |= φ1; 〈T ,A-rep3〉 6|= φ2; 〈T ,A-rep3〉 |= φ3;
〈T ,A-rep4〉 |= φ1; 〈T ,A-rep4〉 |= φ2; 〈T ,A-rep4〉 |= φ3.

Hence, K |=AR φ1 and K |=AR φ3, but K 6|=AR φ2.
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It is possible to show that the AR-semantics given above in fact coincides
with the inconsistency-tolerant semantics for DL KBs presented in [70], and
with the loosely-sound semantics studied in [22] in the context of inconsistent
databases.

Analogously, we give the definition of Closed ABox Repair semantics that
is based on the notion of CA-repair.

Definition 28. Let K = 〈T ,A〉 be a possibly inconsistent KB. According to
the Closed ABox Repair (CAR) semantics, the set of models of K, denoted
ModCAR(K), is defined as follows:

ModCAR(K) = {I | I ∈ Mod(〈T ,Ai〉), for some Ai ∈ CAR-Set(K)}

That is, an interpretation I is a Closed ABox Repair model, or simply a
CAR-model, of K if there exists A′ ∈ CAR-Set(K) such that I |= 〈T ,A′〉.

Next, we give the notion of CAR-entailment.

Definition 29. Let K be a possibly inconsistent KB, and let φ be a first-order
sentence. We say that φ is CAR-consistently entailed, or simply CAR-entailed,
by K, written K |=CAR φ, if I |= φ for every I ∈ ModCAR(K).

Example 28. In this example we give an intuition of consistent entailment
under CAR-semantics. Consider again the KB K of Example 24. We recall
that, as shown in Example 26, the set CAR-Set(K) is constituted, up to logical
equivalence with respect to T , by the following T -consistent ABoxes:

CA-rep1 = { hasFather(tom, sam),Man(tom),Man(taylor) }
CA-rep2 = { hasFather(tom, sam),Man(tom),Woman(taylor) }
CA-rep3 = { hasFather(tom, taylor),Man(tom),Man(sam) }
CA-rep4 = { hasFather(tom, taylor),Man(tom),Woman(sam) }
CA-rep5 = { hasFather(tom, sam),Kid(tom),Man(taylor),Male(tom) }
CA-rep6 = { hasFather(tom, sam),Kid(tom),Woman(taylor),Male(tom) }
CA-rep7 = { hasFather(tom, taylor),Kid(tom),Man(sam),Male(tom) }
CA-rep8 = { hasFather(tom, taylor),Kid(tom),Woman(sam),Male(tom) }

Let φ1, φ2, and φ3 be the FOL-sentences presented in Example 27. We have:

〈T ,A-rep1〉 |= φ1; 〈T ,A-rep1〉 |= φ2; 〈T ,A-rep1〉 6|= φ3;
〈T ,A-rep2〉 |= φ1; 〈T ,A-rep2〉 |= φ2; 〈T ,A-rep2〉 |= φ3;
〈T ,A-rep3〉 |= φ1; 〈T ,A-rep3〉 |= φ2; 〈T ,A-rep3〉 6|= φ3;
〈T ,A-rep4〉 |= φ1; 〈T ,A-rep4〉 |= φ2; 〈T ,A-rep4〉 |= φ3;
〈T ,A-rep5〉 |= φ1; 〈T ,A-rep5〉 |= φ2; 〈T ,A-rep5〉 6|= φ3;
〈T ,A-rep6〉 |= φ1; 〈T ,A-rep6〉 |= φ2; 〈T ,A-rep6〉 |= φ3;
〈T ,A-rep7〉 |= φ1; 〈T ,A-rep7〉 |= φ2; 〈T ,A-rep7〉 6|= φ3;
〈T ,A-rep8〉 |= φ1; 〈T ,A-rep8〉 |= φ2; 〈T ,A-rep8〉 |= φ3.
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It follows that K |=AR φ1 and K |=AR φ2, but K 6|=AR φ3.

Interestingly, the above examples show that there are sentences entailed by
a KB under the CAR-semantics that are not entailed under the AR-semantics,
and there are sentences entailed by a KB under the AR-semantics that are not
entailed under the CAR-semantics.

As we shall see later, entailment of a union of conjunctive queries from a
KB K is polynomially intractable with respect to ABox complexity both un-
der the AR-semantics and the CAR-semantics, even for DLs with very limited
expressive power, e.g., for DL-Litecore [31] that is the less expressive DL of
the DL-Lite family. Since this can be an obstacle in the practical use of such
semantics, we introduce here two new semantics named Intersection ABox Re-
pair (IAR) semantics and Intersection Closed ABox Repair (ICAR) semantics,
which are respectively approximations of the AR-semantics and of the CAR-
semantics. We will show that under such semantics entailment of unions of
conjunctive queries is tractable.

There is another reason that leads us to introduce the IAR-semantics and
the ICAR-semantics. There may be scenarios where modifying the ABox for
cleaning the KB from possible inconsistencies is needed [84]. Given a possibly
inconsistent KB K = 〈T ,A〉 in a DL L and an inconsistency-tolerant semantics
α, cleaning amounts to identify a T -consistent ABox A′ such that the KB
〈T ,A′〉 is expressible in L and the set of models of 〈T ,A′〉 coincides with the
set of model of 〈T ,A〉 under the α-semantics.

Unfortunately, both the AR-semantics and the CAR-semantics are not ap-
plicable for this purpose. It is clear the similarity between the AR-semantics
and the update semantics proposed by Fagin, Ullman, and Vardi (cf. Sec-
tion 6.6), and between the CAR-semantics and the SOT approach for updat-
ing consistent KBs (cf. Section 6.4). Indeed, given a possibly inconsistent KB
〈T ,A〉, in general, there may exist more than one A-repair and more than one
CA-repair. For this reason, as for the aforesaid update semantics, also AR-
semantics and CAR-semantics suffer from a form of inexpressibility problem. In
other words, it is not ensured that there may exist a T -consistent ABox A′ such
that Mod(〈T ,A′〉) = ModAR(〈T ,A〉) or Mod(〈T ,A′〉) = ModCAR(〈T ,A〉).

Also in this case different solutions are conceivable. For example, one
possibility is to let the user choose which repair should be consider the cleaned
ABox; another one is to choose non-deterministically the cleaned ABox among
the repairs of the original KB.

IAR-semantics and ICAR-semantics represent our solution to the inexpress-
ibility problem of the AR-semantics and the CAR-semantics. Indeed, both
IAR-semantics and ICAR-semantics are inconsistency-tolerant semantics that
allow for expressing ABox repairs in terms of a single ABox.

In both cases, the approximation consists in taking as unique repair the
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intersection of all the A-repairs and of all the CA-repairs, respectively. This
actually corresponds to follow the WIDTIO (When In Doubt Throw It Out)
principle, proposed in the area of belief revision and update [42, 110].

Definition 30. Let K = 〈T ,A〉 be a possibly inconsistent KB. According to
the Intersection ABox Repair (IAR) semantics, the set of models of K, denoted
ModIAR(K), is defined as follows:

ModIAR(K) = {I | I ∈ Mod(〈T ,
⋂

Ai∈AR-Set(K)

Ai〉)}

Next, we give the notions of IAR-entailment.

Definition 31. Let K be a possibly inconsistent KB, and let φ be a first-order
sentence. We say that φ is IAR-consistently entailed, or simply IAR-entailed,
by K, written K |=IAR φ, if I |= φ for every I ∈ ModIAR(K).

Example 29. Let K = 〈T ,A〉 be the KB presented in Example 24. We recall
that the set AR-Set(K) is constituted by the following T -consistent ABoxes:

A-rep1 = { hasFather(tom, taylor),Kid(tom),Woman(sam) }
A-rep2 = { hasFather(tom, taylor),Man(tom),Woman(sam) }
A-rep3 = { hasFather(tom, sam),Kid(tom),Woman(taylor) }
A-rep4 = { hasFather(tom, sam),Man(tom),Woman(taylor) }

The set of models of K under IAR-semantics coincides with the set of
models of the KB constituted by the TBox T and by the ABox AAR

∩ obtained
by computing the intersection of all the A-repairs of K. Therefore, we have:

AAR
∩ =

{ hasFather(tom, taylor),Kid(tom),Woman(sam) } ∩
{ hasFather(tom, taylor),Man(tom),Woman(sam) } ∩
{ hasFather(tom, sam),Kid(tom),Woman(taylor) } ∩
{ hasFather(tom, sam),Man(tom),Woman(taylor) } = ∅

and then:

ModIAR(K) = Mod(〈T ,AAR
∩ 〉) = Mod(〈T , ∅〉)

Now, consider the KB K′ = 〈T ,A′〉 presented in Example 25 where the
TBox T is the same of K and the ABox A′ is obtained from the ABox A of
K by adding to A the assertion Male(tom). The set AR-Set(K′) contains the
following A-repairs:



132 Chapter 8. Query answering over inconsistent Description Logic KBs

A-rep′1 = { hasFather(tom, taylor),Kid(tom),Woman(sam),Male(tom) }
A-rep′2 = { hasFather(tom, taylor),Man(tom),Woman(sam),Male(tom) }
A-rep′3 = { hasFather(tom, sam),Kid(tom),Woman(taylor),Male(tom) }
A-rep′4 = { hasFather(tom, sam),Man(tom),Woman(taylor),Male(tom) }

In this case, we have:

A′AR
∩ =

{ hasFather(tom, sam),Man(tom),Man(taylor) } ∩
{ hasFather(tom, sam),Man(tom),Woman(taylor) } ∩
{ hasFather(tom, taylor),Man(tom),Man(sam) } ∩
{ hasFather(tom, taylor),Man(tom),Woman(sam) } ∩
{ hasFather(tom, sam),Kid(tom),Man(taylor),Male(tom) } ∩
{ hasFather(tom, sam),Kid(tom),Woman(taylor),Male(tom) } ∩
{ hasFather(tom, taylor),Kid(tom),Man(sam),Male(tom) } ∩
{ hasFather(tom, taylor),Kid(tom),Woman(sam),Male(tom) }

= { Male(tom) }

and therefore:

ModIAR(K) = Mod(〈T ,A′AR
∩ 〉) = Mod(〈T , { Male(tom) }〉)

We note that, differently to the case of the KB K, in this case the ABox
A′AR
∩ is not empty, but contains the assertion Male(tom). This is due to the

fact that such an assertion does not take part in the violation of any assertion
in the TBox T .

Analogously, we give below the definition of Intersection Closed ABox Re-
pair (ICAR) semantics, and we give the notions of ICAR-entailment.

Definition 32. Let K = 〈T ,A〉 be a possibly inconsistent KB. According to
the Intersection Closed ABox Repair (ICAR) semantics, the set of models of
K, denoted ModICAR(K), is defined as follows:

ModICAR(K) = {I | I ∈ Mod(〈T ,
⋂

Ai∈CAR-Set(K)

clT (Ai)〉)}

Note that, in the definition above, we refer to the intersection of the de-
ductive closure with respect to T of all CAR-repairs of K.

Definition 33. Let K be a possibly inconsistent KB, and let φ be a first-
order sentence. We say that φ is ICAR-consistently entailed, or simply ICAR-
entailed, by K, written K |=ICAR φ, if I |= φ for every I ∈ ModICAR(K).
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Example 30. Consider again the KB K = 〈T ,A〉 of Example 24. As it shown
in Example 26, the set CAR-Set(K) is constituted, up to logical equivalence
with respect to the TBox T , by the following T -consistent ABoxes:

CA-rep1 = { hasFather(tom, sam),Man(tom),Man(taylor) }
CA-rep2 = { hasFather(tom, sam),Man(tom),Woman(taylor) }
CA-rep3 = { hasFather(tom, taylor),Man(tom),Man(sam) }
CA-rep4 = { hasFather(tom, taylor),Man(tom),Woman(sam) }
CA-rep5 = { hasFather(tom, sam),Kid(tom),Man(taylor),Male(tom) }
CA-rep6 = { hasFather(tom, sam),Kid(tom),Woman(taylor),Male(tom) }
CA-rep7 = { hasFather(tom, taylor),Kid(tom),Man(sam),Male(tom) }
CA-rep8 = { hasFather(tom, taylor),Kid(tom),Woman(sam),Male(tom) }

According to Definition 32, the set of models of the KB K under the ICAR-
semantics coincides with the set of models of the KB constituted by the TBox
T and by the ABox ACAR

∩ obtained by computing the intersection of the de-
ductive closure with respect to T of all the CA-repairs of K.

ACAR
∩ =

{ hasFather(tom, sam),Man(tom),Man(taylor),Man(sam),
Person(tom),Male(tom),Adult(tom),
Person(sam),Male(sam),Adult(sam),
Person(taylor),Male(taylor),Adult(taylor) } ∩

{ hasFather(tom, sam),Man(tom),Woman(taylor),Man(sam),
Person(tom),Male(tom),Adult(tom),
Person(sam),Male(sam),Adult(sam),
Person(taylor),Female(taylor),Adult(taylor) } ∩

{ hasFather(tom, taylor),Man(tom),Man(sam),Man(taylor),
Person(tom),Male(tom),Adult(tom),
Person(sam),Male(sam),Adult(sam),
Person(taylor),Male(taylor),Adult(taylor) } ∩

{ hasFather(tom, taylor),Man(tom),Woman(sam),Man(taylor),
Person(tom),Male(tom),Adult(tom),
Person(sam),Female(sam),Adult(sam),
Person(taylor),Male(taylor),Adult(taylor) } ∩

{ hasFather(tom, sam),Kid(tom),Man(taylor),Man(sam),
Person(tom),Male(tom),Young(tom),
Person(sam),Male(sam),Adult(sam),
Person(taylor),Male(taylor),Adult(taylor) } ∩

{ hasFather(tom, sam),Kid(tom),Woman(taylor),Man(sam),
Person(tom),Male(tom),Young(tom),
Person(sam),Male(sam),Adult(sam),
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Person(taylor),Female(taylor),Adult(taylor) } ∩
{ hasFather(tom, taylor),Kid(tom),Man(sam),Man(taylor),
Person(tom),Male(tom),Young(tom),
Person(sam),Male(sam),Adult(sam),
Person(taylor),Male(taylor),Adult(taylor) } ∩

{ hasFather(tom, taylor),Kid(tom),Woman(sam),Man(taylor),
Person(tom),Male(tom),Young(tom),
Person(sam),Female(sam),Adult(sam),
Person(taylor),Male(taylor),Adult(taylor) }

= { Person(tom),Person(taylor),Person(sam),Male(tom),Adult(sam),
Adult(taylor) }

The set of models of K under the ICAR-semantics is:

ModICAR(K) =

Mod(〈T ,ACAR
∩ 〉) =

Mod(〈T , {Person(tom),Person(taylor),Person(sam),Male(tom),

Adult(sam),Adult(taylor)}〉)

Intuitively, each assertion in ACAR
∩ is an assertion belonging to clcT (A) that

does not take part in the violation of any assertion in the TBox T .

8.3 Properties of our inconsistency-tolerant seman-
tics

In this section we discuss some properties of the inconsistency-tolerant seman-
tics presented in the previous section.

In what follows we assume that K = 〈T ,A〉 is a possibly inconsistent DL
KB.

First, we show that if Mod(T ) 6= ∅, then the set of models of K according
with AR-, CAR- IAR-, and ICAR-semantics is non-empty.

Proposition 15. Let T be a consistent TBox in L, and let A be an ABox.
For each α ∈ {AR,CAR, IAR, ICAR}, we have that Modα(〈T ,A〉) 6= ∅.

Proof. Let T be a TBox such that Mod(T , ∅) 6= ∅. At first, we prove that
for every ABox A ModAR(〈T ,A〉) 6= ∅. Toward a contradiction, suppose that
there exists an ABox A such that ModAR(〈T ,A〉) = ∅. This means that the set
AR-Set(〈T ,A〉) = ∅. Hence, from Proposition 13 it follows that Mod(T , ∅) =
∅, which is a contradiction. Similarly, we can prove that ModCAR(〈T ,A〉) 6= ∅.
For the IAR-semantics and the ICAR-semantics the proof directly follows
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from the fact that ModAR(〈T ,A〉) 6= ∅ and ModCAR(〈T ,A〉) 6= ∅, and from
the fact that L is monotonic, then Mod(〈T ,

⋂
Ai∈AR-Set(K)Ai〉) 6= ∅, and

Mod(〈T ,
⋂
Ai∈CAR-Set(K)Ai〉) 6= ∅

The next proposition states that if 〈T ,A〉 is a consistent KB, then AR-,
CAR- IAR-, and ICAR-semantics coincide with the classical first-order seman-
tics.

Proposition 16. If 〈T ,A〉 is a consistent KB, then

ModAR(〈T ,A〉) = ModCAR(〈T ,A〉) = ModIAR(〈T ,A〉) =

ModICAR(〈T ,A〉) = Mod(〈T ,A〉).

Proof. At first, we prove that if Mod(〈T ,A〉) 6= ∅ then the following hold:

1. AR-Set(〈T ,A〉) = {A};

2. for each A′ ∈ CAR-Set(〈T ,A〉), clT (A′) = clT (A).

With regard to the first statement. Since Mod(〈T ,A〉) 6= ∅ then, clearly,
A ∈ AR-Set(〈T ,A〉) and, since A ∈ AR-Set(〈T ,A〉), every other ABox in
the set AR-Set(〈T ,A〉) must have no changes with respect to A. Then we
deduce that A is the only set in AR-Set(〈T ,A〉). Similarly, as for the second
statement, since A ∈ CAR-Set(〈T ,A〉), then for each other T -consistent set
A′ ∈ CAR-Set(〈T ,A〉), clT (A′) must have no changes with respect to clT (A).

At this point, the claim follows directly from the definitions of AR-, CAR-
IAR-, and ICAR-models.

Now, we show that the IAR-semantics is a sound approximation of the
AR-semantics, i.e., for any KB K ModAR(K) ⊆ ModIAR(K), implying that the
logical consequences of K under the IAR-semantics are contained in the logical
consequences of K under the AR-semantics, as it is stated by the following
theorem.

Theorem 22. Let K = 〈T ,A〉 be a KB in L, and φ a first-order sentence. If
T is consistent, then, K |=IAR φ implies K |=AR φ.

Proof. Let K = 〈T ,A〉 be a KB in L, and let AR-Set(K) be the set of A-repairs
of K. First, we observe that, by assuming that Mod(〈T, ∅〉) 6= ∅, then, from
Proposition 13, it follows that AR-Set(K) 6= ∅. From Definition 30 we have
that ModIAR(K) = Mod(〈T ,

⋂
Ai∈AR-Set(K)Ai〉). Let A′ =

⋂
Ai∈AR-Set(K)Ai.

Clearly, for each Ai ∈ AR-Set(K) we have that A′ ⊆ Ai. Since L is monotonic,
then for each Ai ∈ AR-Set(K), Mod(〈T ,Ai〉) ⊆ Mod(〈T ,A′〉). We conclude
that ModAR(〈T ,A〉) ⊆Mod(〈T ,A′〉), which establishes the claim.
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Conversely, as Example 27 and Example 29 show, there are sentences en-
tailed by a KB K under the AR-semantics that are not entailed by K under
the IAR-semantics.

It is not difficult to prove that also in case of CAR- and ICAR-semantics, we
have that the ICAR-semantics is a sound approximation of the CAR-semantics
in the sense of consistent entailment of FOL-sentences.

Theorem 23. Let K = 〈T ,A〉 be a KB in L, and φ a first-order sentence. If
T is consistent, then, K |=ICAR φ implies K |=CAR φ.

Proof. Let K = 〈T ,A〉 be a KB in L, and let CAR-Set(K) be the set
of CA-repairs of K. From Proposition 13 and from the assumption that
Mod(〈T, ∅〉) 6= ∅ we have that CAR-Set(K) is non-empty. From Definition 32
we have that ModICAR(K) = Mod(〈T ,

⋂
Ai∈CAR-Set(K) clT (Ai)〉). Consider the

set of ABox assertions A′ =
⋂
Ai∈AR-Set(K) clT (Ai). For each Ai ∈ AR-Set(K)

we have that A′ ⊆ clT (Ai). Since for each T -consistent ABox A′′′ we have
thatMod(〈T ,A′′′〉) = Mod(〈T , clT (A′′′)〉), since L is monotonic, then for each
Ai ∈ CAR-Set(K), Mod(〈T ,Ai〉) ⊆ Mod(〈T ,A′〉). Hence ModCAR(〈T ,A〉) ⊆
Mod(〈T ,A′〉), which establishes the claim.

One can easily see that the converse is not true in general.
Let K = 〈T ,A〉 and K′ = 〈T ,A′〉 be two C-equivalent KBs, as shown in

Example 25, it may happen that ModAR(K) 6= ModAR(K′). Clearly, it may
also happens that ModIAR(K) 6= ModIAR(K′). As we said earlier, there may
exist settings in which such a behavior might be considered incorrect. The
next proposition shows that both CAR-semantics and ICAR-semantics do not
present such a characteristic.

Proposition 17. Let K1 = 〈T ,A1〉 and K2 = 〈T ,A2〉 be two possibly in-
consistent KBs, such that K1 and K2 are C-equivalent. Then for every α ∈
{CAR, ICAR} we have that Modα(K1) = Modα(K2).

Proof. Suppose that K1 = 〈T ,A1〉 and K2 = 〈T ,A2〉 are C-equivalent. We
prove that ModCAR(K1) = ModCAR(K2) by shoving that every CA-repair of
K1 is also a CA-repair of K2. Toward a contradiction, suppose that there
exists a CA-repairs A′ in CAR-Set(K1) such that A′ 6∈ CAR-Set(K2). Since
clcT (A1) = clcT (A2), then there is no set A′′ of ABox assertions that is T -
consistent, and such that clT (A′′) has fewer changes than clT (A′) with respect
to clcT (A2), which means that A′ is a CA-repair of K2. Hence we have a
contradiction.

The proof of ModICAR(K1) = ModICAR(K2) follows directly from the fact
that CAR-Set(K1) = CAR-Set(K2).

In other words, Proposition 17 states that both CAR-semantics and ICAR-
semantics are closed with respect to the C-equivalence.
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Next, we consider the instance checking problem under CAR-semantics,
and show that instance checking under CAR-semantics coincides with instance
checking under the ICAR-semantics.

Lemma 29. Let K = 〈T ,A〉 be a possibly inconsistent KB in L, and let α be an
ABox assertion. If T is consistent, then K |=CAR α if and only if K |=ICAR α.

Proof.
(⇒) Let α be an ABox assertion such that K |=CAR α. We prove that K |=ICAR
α. The proof proceeds by contradiction as follows. Suppose that K 6|=ICAR α.
This means that there is a CA-repair A′ of K such that α 6∈ clT (A′) and
then 〈T ,A′〉 6|= α. From Definition 29 it follows that K 6|=CAR α, which is a
contradiction.
(⇐) Let α be an ABox assertion such that K |=ICAR α. We prove that K |=CAR
α. The proof follows directly from Theorem 23 that states that the ICAR-
semantics is a sound approximation of the CAR-semantics.

We remark that the analogous of Lemma 29 does not hold for AR-semantics
and IAR-semantics, because IAR-semantics is not defined on the intersection
of the deductive closure of the IA-repairs.

Next, we focus on of the IAR-semantics and the ICAR-semantics and we
provide some their notable properties. First we need to introduce the notion of
minimal inconsistent set. We recall that, if T is a set of TBox assertions, then
a set V of ABox assertions is called a T -inconsistent set if V is T -inconsistent.

Definition 34. Let T be a set of TBox assertions and let V be a set of ABox
assertions. We say that V is a minimal T -inconsistent set if V is T -inconsistent
and there is no proper subset V ′ of V that is a T -inconsistent set, i.e. for each
assertions α ∈ V ′, the KB 〈T , V ′ \ {α}〉 is consistent.

With the notion of minimal T -inconsistent set in place, we give the follow-
ing theorem.

Theorem 24. Let K = 〈T ,A〉 be an inconsistent DL KB, and let α be an
ABox assertion in A. If T is consistent, then an A-repair A′ of K such that
α 6∈ A′ exists if and only if there exists a minimal T -inconsistent set V in A
such that α ∈ V .

Proof.
(⇒) Suppose that A′ is an A-repair of K = 〈T ,A〉 that does not contain α.
We prove that there exists a subset V of A containing α that is a minimal
T -inconsistent set. By exploiting Theorem 20 we have that A′ is a maximal
T -consistent subset of A. It follows that A′ ∪ {α} is T -inconsistent, and then
A′ ∪ {α} is a T -inconsistent set. There are two possible cases:
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1. A′ ∪ {α} is a minimal T -inconsistent set;

2. there exists a proper subset V ′ of A′ ∪ {α} which is a minimal T -
inconsistent set, and, since A′ \ {α} does not contain any T -inconsistent
set, it follows that V ′ contains α.

In both cases, there is a minimal T -inconsistent set V contained in A such
that α ∈ V .
(⇐) Suppose that V is a subset of A containing α that is a minimal T -
inconsistent set. We prove that there exists an A-repair A′ of K = 〈T ,A〉
that does not contains α. Toward a contradiction, suppose that every A-repair
of K contains α, i.e., every maximal T -consistent subset of A contains α. Since
V is a minimal T -inconsistent set, we have that V \ {α} is T -consistent. We
have two possible cases: (i) V \ {α} is a maximal T -consistent subset of A,
hence we contradict the fact that every maximal T -consistent subset of A con-
tains α, or, there exists a maximal T -consistent subset A′′ of A such that
V \ {α} ⊂ A′′, but this is impossible since every maximal T -consistent subset
of A contains α.

The following theorem is the analogous of Theorem 24 for the ICAR-
semantics.

Theorem 25. Let K = 〈T ,A〉 be an inconsistent DL KB, and let α be an
ABox assertion in clcT (A). If T is consistent, then a CA-repair A′ of K such
that α 6∈ clT (A′) exists if and only if there exists a minimal T -inconsistent set
V in clcT (A) such that α ∈ V .

Proof. The proof is a straightforward adaptation of one proposed for Theo-
rem 24.

Let now AR-Set(K) = {A1, . . .An} be the set of A-repairs of a KB K =
〈T ,A〉, and let φ be a first-order sentence. From Definition 26, we derive that
K |=IAR φ if and only if there exists a subset A′ of A such that A′ ⊆ Ai for
every 1 ≤ i ≤ n and 〈T ,A′〉 |= φ. From the observation above, we derive
the following corollary of Theorem 24, which characterizes the notion of IAR-
entailment.

Corollary 3. Let K = 〈T ,A〉 be an inconsistent DL KB, and let φ be a first-
order sentence. If T is consistent, then K |=IAR φ if and only if there exists
A′ ⊆ A such that:

(i) A′ is T -consistent;

(ii) 〈T ,A′〉 |= φ;

(iii) there is no minimal T -inconsistent set V in A such that A′ ∩ V 6= ∅.



8.3. Properties of our inconsistency-tolerant semantics 139

Proof.
(⇒) Suppose that K |=IAR φ. We prove that there exists a T -consistent set
of ABox assertions A′ ⊆ A such that: A′ is T -consistent, 〈T ,A′〉 |= φ, and
A′ ∩ V = ∅ for every minimal T -inconsistent set V ⊆ A. The proof proceeds
by contradiction. From Definition 31 we have that K = 〈T ,A〉 IAR-entails φ
if and only if 〈T ,

⋂
Ai∈AR-Set(K)Ai〉 |= φ. Let U be the set of all T -consistent

subset of A. Clearly, AR-Set(K) ⊆ U . Suppose that for every A′′ ∈ U we have
that 〈T ,A′′〉 6|= φ. Hence, for each A-repair Ar ∈ AR-Set(K), 〈T ,Ar〉 6|= φ,
then K 6|=AR φ. Since T is consistent, then from Theorem 22 we have that
K 6|=AR φ implies K 6|=IAR φ, which is a contradiction.

Now, suppose that there exists a T -consistent subset A′ of A such that
〈T ,A′〉 |= φ and such that for every assertion γ ∈ A′, A′ \ {γ} 6|= φ. Moreover,
suppose that there exists a minimal T -inconsistent set in A such that A′∩V 6=
∅. Let β be an assertion in A′ ∩ V . From Theorem 24 it follows that there
exists an A-repair Ar of K such that β 6∈ Ar, and then β 6∈

⋂
Ai∈AR-Set(K)Ai.

Hence, 〈T ,
⋂
Ai∈AR-Set(K)Ai〉 6|= φ, which contradicts that K |=IAR φ.

(⇐) Suppose that A′ is a T -consistent subset of A such that 〈T ,A′〉 |= φ, and
such that for every minimal T -inconsistent set V ⊆ A we have that A′∩V = ∅.
We prove that K |=IAR φ. Toward a contradiction, suppose that K 6|=IAR φ.
This means that 〈T ,

⋂
Ai∈AR-Set(K)Ai〉 6|= φ, hence A′ 6⊆

⋂
Ai∈AR-Set(K)Ai. It

follows that there exists an assertion β ∈ A′ such that β 6∈
⋂
Ai∈AR-Set(K)Ai.

Therefore, there exists an A-repair Ai in AR-Set(K) such that β 6∈ Ai. From
Theorem 24 it follows that there exists a minimal T -inconsistent set V ⊆ A
such that β ∈ V , but this contradict that for every minimal T -inconsistent set
V ⊆ A, A′ ∩ V = ∅.

Similarly, we give the following corollary of Theorem 25, which character-
izes the notion of ICAR-entailment.

Corollary 4. Let K = 〈T ,A〉 be an inconsistent KB, and let φ be a first-
order sentence. If T is consistent, then K |=ICAR φ if and only if there exists
A′ ⊆ clcT (A) such that:

(i) A′ is T -consistent;

(ii) 〈T ,A′〉 |= φ;

(iii) there is no minimal T -inconsistent set V in clcT (A) such that A′∩V 6= ∅.

Proof. The proof is a straightforward adaptation of one proposed for Corol-
lary 3.

By exploiting Corollary 3 and Corollary 4 it easy to see that the following
lemma holds.
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Lemma 30. Let 〈T ,A〉 be an inconsistent KB, and let φ be a first-order sen-
tence. If T is consistent, then 〈T ,A〉 |=ICAR φ if and only if 〈T , clcT (A)〉 |=IAR
φ.

Proof.
(⇒) We have to prove that if 〈T ,A〉 |=ICAR φ, then 〈T , clcT (A)〉 |=IAR φ.
From Corollary 3 it follows that there is A′ ⊆ clcT (A) such that: (i) A′ is
T -consistent; (ii) 〈T ,A′〉 |= φ; (iii) there is no minimal T -inconsistent set V
in clcT (A) such that A′ ∩ V 6= ∅. From Corollary 4 it directly follows that
〈T , clcT (A)〉 |=IAR φ.
(⇐) We have to prove that if 〈T , clcT (A)〉 |=IAR φ, then 〈T ,A〉 |=ICAR φ.
From Corollary 4 it follows that there is A′ ⊆ clcT (A) such that: (i) A′ is
T -consistent; (ii) 〈T ,A′〉 |= φ; (iii) there is no minimal T -inconsistent set V
in clcT (A) such that A′ ∩ V 6= ∅. Hence, from Corollary 3, 〈T ,A〉 |=ICAR φ.

We conclude this section by showing that it is possible to adopt both IAR-
semantics and ICAR-semantics in order to repair a KB affected by inconsis-
tencies regardless of the DL used to express it.

Proposition 18. Let K = 〈T ,A〉 be a possibly inconsistent KB expressed in
L. If T is consistent, then the following statements hold.

1. there exists a consistent KB 〈T ,A′〉 expressed in L such that
Mod(〈T ,A′〉) = ModIAR(〈T ,A〉);

2. there exists a consistent KB 〈T ,A′〉 expressed in L such that
Mod(〈T ,A′〉) = ModICAR(〈T ,A〉).

Proof. The proof directly follows from Proposition 15, from Definition 30 and
Definition 32, and from the following observations.

• If 〈T ,A〉 is a KB in L, then 〈T , clcT (A)〉 is a KB in L.

• If U is a set of ABoxes, and T is a TBox in L, then 〈T ,
⋂
Ai∈U Ai〉 is a

KB in L.

8.4 On the decidability of consistent query answering

In this section we study the problem of answering boolean union of conjunctive
queries under the inconsistency-tolerant semantics given in Section 8.2. More
precisely, in what follows, without referring to a particular DL L, we identify
the conditions under which the problem of answering a query posed over a
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possibly inconsistent KB under such semantics is decidable. In the rest of this
section we consider only consistent TBoxes.

We start by focusing on the AR-semantics.
Let K = 〈T ,A〉 be a possibly inconsistent KB expressed in a DL L. The-

orem 20 states that an ABox A′ is an AR-repair of K if A′ is a maximal
T -consistent subset of A. This means that, in order to guarantee that A′ is
an AR-repair of K, the following conditions must be satisfied:

1. A′ ⊆ A, i.e., A′ is a subset of A;

2. Mod(〈T ,A′〉) 6= ∅, i.e., A′ is T -consistent;

3. for every other subset A′′ of A such that A′ ⊂ A′′ ⊆ A we have that
Mod(〈T ,A′′〉) = ∅.

Condition 1 requires that the ABox A′ must be a subset of the original
ABox A. It follows that every AR-repair of K is a finite set of ABox assertions,
and that the set AR-Set(K) of all the AR-repairs of K is finite.

Condition 2 requires that the ABox A′ must be T -consistent. It follows
that, in order to compute the set AR-Set(K), the problem of checking the
satisfiability of a KB has to be decidable. This poses a first restriction on the
applicability of the AR-semantics.

Finally, Condition 3 requires to check that every possible superset of A′,
built using the assertions in A, is T -inconsistent. Intuitively, since A is a finite
set of ABox assertions, also in this case the decidability of the problem of
checking the satisfiability of a KB is needed.

The considerations above suggest a direct strategy for computing the set
of all AR-repairs of a possibly inconsistent KB K = 〈T ,A〉, illustrated by the
algorithm ComputeARSet(K) (Algorithm 10).

To be precise, ComputeARSet(K) is an algorithm only under the assumption
that for the DL used to express K we have an algorithm for checking if K is
consistent. Algorithm 10 essentially computes the set R containing all possible
subset of A that are T -consistent. Then, it removes from R those T -consistent
subset of A that are not maximal.

In what follows, we deal with termination, soundness and completeness of
ComputeARSet(K).

Lemma 31. Let K = 〈T ,A〉 be a possibly inconsistent KB in a DL L. If
an algorithm for checking K for satisfiability exists, then ComputeARSet(K)
terminates.

Proof. The termination of ComputeARSet(K) directly follows from the termi-
nation of the algorithm used for checking consistency, and from the finiteness
of A.

Next, we show that Algorithm 10 is sound and complete.
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Input: a possibly inconsistent KB K = 〈T ,A〉
Output: a set of T -consistent ABoxes
begin
R ← ∅;
foreach A′ ⊆ A do

if Mod(〈T ,A′〉) 6= ∅ then
R ← R∪ {A′};

foreach A′ and A′′ in R do
if A′ ⊂ A′′ then
R ← R \ {A′};

return R;
end

Algorithm 10: ComputeARSet(K)

Lemma 32. Let K = 〈T ,A〉 be a possibly inconsistent KB in a DL L. If an
algorithm for checking K for satisfiability exists, then

ComputeARSet(K) ⊆ AR-Set(K).

Proof. We observe that an ABox A′ does not belong to AR-Set(K) if at least
one of the following statements holds:

1. A′ 6⊆ A;

2. Mod(T ,A′) = ∅;

3. there exists an ABox A′′ such that:

(a) A′′ ⊆ A;
(b) Mod(T ,A′′) 6= ∅;
(c) A′ ⊂ A′′.

It easy to see that for every ABox in ComputeARSet(K) no one of such state-
ments holds. Indeed, the set R in ComputeARSet is initially built by adding to
it only subsets of the original ABox A which are T -consistent, this guarantees
that statements 1 and 2 are not satisfied. Then, every ABox belonging to R
for which there exists a superset in R is removed from R. This guarantees
that statement 3 does not hold. Hence, we have that ComputeARSet(K) ⊆
AR-Set(K).

Lemma 33. Let K = 〈T ,A〉 be a possibly inconsistent KB in a DL L. If an
algorithm for checking K for satisfiability exists, then

AR-Set(K) ⊆ ComputeARSet(K).
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Proof. Let A′ be an ABox belonging to AR-Set(K). We prove that A′
belongs to ComputeARSet(K). Toward a contradiction, suppose that A′ 6∈
ComputeARSet(K). Hence, by observing Algorithm 10, only the following cases
are conceivable:

1. A′ 6⊆ A, but this contradicts the condition imposing to an A-repair to be
a subset of the original ABox A′.

2. Mod(T ,A′) = ∅, but this contradicts the condition imposing to an A-
repair to be T -consistent.

3. there exists an ABox A′′ in ComputeARSet(K) such that A′ ⊂ A′′, but,
since A′′ is a T -consistent subset of A, this contradicts the condition
imposing to an A-repair to be a maximal T -consistent subset of A.

This means that, if A′ is an A-repair, then A′ ∈ ComputeARSet(K).

From lemmas above, we get the following theorem that sanctions the cor-
rectness of ComputeARSet(K).

Theorem 26. Let K = 〈T ,A〉 be a possibly inconsistent KB in a DL L. If an
algorithm for checking K for satisfiability exists, then

AR-Set(K) = ComputeARSet(K).

Proof. The proof directly follows from Lemma 32 and Lemma 33.

From Theorem 26 it follows that, under the assumption that for the DL
used to express K we have an algorithm for checking KB satisfiability, there
exists an algorithm for computing the set of all AR-repairs of K.

Now we turn our attention to the problem of answering boolean union of
conjunctive queries posed over a possibly inconsistent KB under AR-semantics.

We recall that, given a consistent KB K, an interpretation I of K satisfies
a boolean conjunctive query q, if and only if the interpretation function can
be extended to the variables in q in such a way that satisfies every term in
q. A query q evaluates to true over K, written K |= q, if and only if every
interpretation that is a models for K satisfies q. A boolean UCQ Q =

∨n
i=1 qi

evaluates to true over K, written K |= Q, if there exists i ∈ {1, . . . n} such
that qi evaluates to true over K. By exploiting Definition 27, we extend the
above notion of boolean UCQ entailment to the AR-semantics. A query q
evaluates to true over K under AR-semantics, written K |=AR q, if and only if
every interpretation that is an AR-models for K satisfies q. That is, K |=AR q
if and only if for every Ai ∈ AR-Set(K), 〈T Ai〉 |= q. In this case we say
that K AR-entails q. A boolean UCQ Q =

∨n
i=1 qi evaluates to true over a

possibly inconsistent KB K under AR-semantics, written K |=AR Q, if there
exists i ∈ {1, . . . n} such that qi is AR-entailed by K.
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Under the assumption that for the DL used to express K we have an al-
gorithm both for checking KB satisfiability, which allows us to compute the
set AR-Set(K), and for answering queries posed to the KB, given a boolean
UCQ Q, and a possibly inconsistent KB K, the most direct way to compute
K |=AR Q would be the one sketched in algorithm NaiveComputeAnswersAR,
that is also the method implicitly used in Example 27.

Input: a possibly inconsistent KB K = 〈T ,A〉 and an UCQ Q
Output: true or false
begin
R ← ComputeARSet(K);
foreach A′ ∈ R do

if 〈T ,A′〉 6|= Q then
return false;

return true;
end

Algorithm 11: NaiveComputeAnswersAR(Q,K)

Under the assumption that, for the DL used to express K we have an
algorithm both for checking KB satisfiability, and for answering boolean UCQ
posed to the KB, NaiveComputeAnswersAR shows that the problem of answering
union of conjunctive queries under the AR-semantics is decidable.

The following lemma shows that NaiveComputeAnswersAR(Q,K) terminates.

Lemma 34. Let K = 〈T ,A〉 be a possibly inconsistent KB in a DL L, and let
Q be a boolean union of conjunctive queries. If both an algorithm for checking
K for satisfiability and an algorithm for answering boolean UCQ posed to K
exist, then NaiveComputeAnswersAR(Q,K) terminates.

Proof. the claim directly follows from the termination of Algorithm 10 and
by the assumption that there exists an algorithm for answering boolean UCQ
posed to K.

Given the previous lemma, by construction of Algorithm 11, we can imme-
diately claim the correctness of NaiveComputeAnswersAR(Q,K).

Theorem 27. Let K = 〈T ,A〉 be a possibly inconsistent KB in a DL L, and
let Q be a boolean UCQ. If both an algorithm for checking K for satisfiability
and an algorithm for answering boolean UCQ posed to K exist, then K |=AR Q
if and only if NaiveComputeAnswersAR(Q,K) returns true.

Proof. The algorithm first computes the set containing the A-repairs of K
by using the algorithm ComputeARSet(K), and then, in accordance with Def-
inition 27, it checks that, for every A-repair Arep ∈ ComputeARSet(K), Q is
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entailed by the consistent KB 〈T ,Arep〉. In case at least one of these KBs does
not entail Q, NaiveComputeAnswersAR(Q,K) returns false, otherwise it returns
true. Thanks to observations above and to Theorem 26, we can conclude that
K |=AR Q if and only if NaiveComputeAnswersAR(Q,K) returns true.

Now, we turn to focus on the CAR-semantics.
The main feature that makes the CAR-semantics different from the AR-

semantics consists in referring in the minimality condition which characterizes
the notion of CAR-repair to the consistent closure of the original ABox instead
of the original ABox alone.

Let K = 〈T ,A〉 be a possibly inconsistent KB expressed in a DL L. By
exploiting Theorem 21 we have the following characterization of a CAR-repair
A′ of K.

1. clT (A′) ⊆ clcT (A), i.e., A′ is a subset of clcT (A);

2. Mod(〈T ,A′〉) 6= ∅, i.e., A′ is T -consistent;

3. for every other subset A′′ of clcT (A) such that clT (A′) ⊂ clcT (A′′) ⊆
clcT (A) we have that Mod(〈T ,A′′〉) = ∅.

We note that, since the signature S of K is finite, then also clcT (A) is
finite. Therefore, from Conditions 1 above, we have that every CAR-repair of
K is a finite set of ABox assertions, and that the set CAR-Set(K) containing
all CAR-repairs of K is finite.

Also in this case we needed that an algorithm for checking K for satis-
fiability exist for the DL used to express K,. With such an assumption in
place, we are also able to sanction the existence of an algorithm for computing
clT (A) [8], and we can show that the computation of clcT (A) it is possible.
We recall that clcT (A) contains an assertion α if and only if α is built over
the signature S of K, i.e., the set of concepts, role, attributes, and individual
names occurring in K, and such that there exists a T -consistent subset S of A
such that 〈T , S〉 |= α. We can prove that the following algorithm can be used
to compute clcT (A).

Lemma 35. Let K = 〈T ,A〉 be a possibly inconsistent KB in a DL L. If an
algorithm for checking K for satisfiability exists, then ComputeCLC(K) termi-
nates.

Proof. The termination follows directly from the finiteness of the ABox A.

Lemma 35 sanctions the termination of Algorithm 12. Next, we show that
if 〈T ,A〉 is the input of Algorithm 12, then Algorithm 12 returns the consistent
closure of A.
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Input: a possibly inconsistent KB K = 〈T ,A〉
Output: a set of ABox assertions
begin
C ← ∅;
foreach A′ ⊆ A do

if Mod(〈T ,A′〉) 6= ∅ then
C ← C ∪ clT (A);

return C;
end

Algorithm 12: ComputeCLC(K)

Lemma 36. Let K = 〈T ,A〉 be a possibly inconsistent KB in a DL L. If an
algorithm for checking K for satisfiability exists, then

ComputeCLC(K) = clcT (A).

Proof. We start by proving that ComputeCLC(K) ⊆ clcT (A). We observe that
the algorithm ComputeCLC(K) obtains the set C by adding to it the closure
with respect to T of every T -consistent subset of A. Toward a contradiction,
suppose that ComputeCLC(K) 6⊆ clcT (A). It follows that there exists an as-
sertion α ∈ ComputeCLC(K) such that α 6∈ clcT (K), and then there does not
exist any T -consistent subset A′ of A such that 〈T ,A′〉 |= α. This means that,
for every T -consistent subset A′ of A, we have that α 6∈ clT (A′), and then we
have that α ∈ ComputeCLC(K), which is a contradiction.

We now prove that clcT (A) ⊆ ComputeCLC(K). Suppose, by contradiction,
that clcT (A) 6⊆ ComputeCLC(K). It follows that there exists an assertion
β ∈ clcT (A) that does not belong to ComputeCLC(K). Since β ∈ clcT (A), then
there exists a subset A′ of A that is T -consistent and such that 〈T ,A′〉 |=
β. Now, since β 6∈ ComputeCLC(K), we have that β 6∈ clT (A′), which is a
contradiction.

By assuming that for the DL used to express K an algorithm for checking
K for satisfiability exists, we can get the following algorithm for computing the
set CAR-Set(K).

The first step of the algorithm is to compute Aclc as the consistent closure
of the original ABox A. Afterward, it computes the set of all CAR-repairs of
〈T ,A〉 by means of the algorithm ComputeARSet.

Next, we prove the termination and the correctness of ComputeCARSet(K).

Lemma 37. Let K = 〈T ,A〉 be a possibly inconsistent KB in a DL L. If
an algorithm for checking K for satisfiability exists, then ComputeCARSet(K)
terminates.
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Input: a possibly inconsistent KB K = 〈T ,A〉
Output: a set of T -consistent ABoxes
begin
Aclc ← ComputeCLC(〈T ,A〉);
return ComputeARSet(〈T ,Aclc〉);

end
Algorithm 13: ComputeCARSet(K)

Proof. The termination follows directly from the termination of Algorithm 12
and Algorithm 10.

Let K = 〈T ,A〉 be a possibly inconsistent KB. To be precise, if Ai is an
ABox in CAR-Set(K), then may be that Ai 6∈ ComputeCARSet(K). What we
show below, is that if an ABox Ai appears in CAR-Set(K) then clT (A) ∈
ComputeCARSet(K), i.e., that, up to logical equivalence, CAR-Set(K) and
ComputeCARSet(K) coincide.

Theorem 28. Let K = 〈T ,A〉 be a possibly inconsistent KB in a DL L. If an
algorithm for checking K for satisfiability exists, then, up to logical equivalence,
we have that

CAR-Set(K) = ComputeCARSet(K).

Proof. In order to prove the claim, we first show that if 〈T ,A〉 is a possibly
inconsistent KB such that A = clcT (A), then, up to logical equivalence, we
have that AR-Set(〈T ,A〉) = CAR-Set(〈T ,A〉).

Let AAR be an ABox belonging to AR-Set(〈T ,A〉), we have to prove that
AAR ∈ CAR-Set(〈T ,A〉). Since AAR is an A-repair, then, from Theorem 20,
we have that AAR is a maximal T -consistent subset of A. Since A = clcT (A),
then AAR is a maximal T -consistent subset of clcT (A), and then, from Theo-
rem 21, AAR ∈ CAR-Set(〈T ,A〉). Similarly, we can also prove that if ACAR is
an ABox in CAR-Set(〈T ,A〉), then clT (ACAR) ∈ AR-Set(〈T ,A〉).

Finally, the claim follows directly from Theorem 26

Let K = 〈T ,A〉 be a possibly inconsistent L-KB, and let Q be a boolean
UCQ. From Definition 29, we have that a boolean CQ q evaluates to true over
K under CAR-semantics, written K |=CAR q, if and only if every interpretation
that is a CAR-models for K satisfies q. If K |=CAR q, we say that K CAR-
entails q. Note that K |=CAR q if and only if for every Ai ∈ CAR-Set(K),
〈T Ai〉 |= q. A boolean UCQ Q =

∨n
i=1 qi evaluates to true over a possibly

inconsistent KB K under CAR-semantics, written K |=CAR Q, if there exists
i ∈ {1, . . . n} such that qi is CAR-entailed by K.

Under the same assumptions discussed for NaiveComputeAnswersAR, i.e.,
when for the DL L used to express K, we have an algorithm both for checking
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KB satisfiability, and for answering queries posed to the KB, now that we
have an algorithm for computing CAR-Set(K), it easy to came up with the
algorithm NaiveComputeAnswersCAR for deciding if K |=CAR Q.

Input: a possibly inconsistent KB K = 〈T ,A〉 and an UCQ Q
Output: true or false
begin
R ← (K);
foreach A′ ∈ ComputeCARSetR do

if 〈T ,A′〉 6|= Q then
return false;

return true;
end

Algorithm 14: NaiveComputeAnswersCAR(Q,K)

The reader can verify that NaiveComputeAnswersCAR is a light modification
of NaiveComputeAnswersAR.

We have the following lemma.

Lemma 38. Let K = 〈T ,A〉 be a possibly inconsistent KB in a DL L, and let
Q be a boolean union of conjunctive queries. If both an algorithm for checking
K for satisfiability and an algorithm for answering boolean UCQ posed to K
exist, then NaiveComputeAnswersCAR(Q,K) terminates.

Proof. Termination follows directly from Lemma 37 and from the hypothesis
of existence of an algorithm for answering boolean UCQ posed to K.

The following theorem shows that NaiveComputeAnswersCAR(Q,K) com-
putes K |=CAR Q.

Theorem 29. Let K = 〈T ,A〉 be a possibly inconsistent KB in a DL L, and
let Q be a boolean UCQ. If both an algorithm for checking K for satisfiability
and an algorithm for answering boolean UCQ posed to K exist, then K |=CAR Q
if and only if NaiveComputeAnswersCAR(Q,K) returns true.

Proof. The first step of the algorithm is the computation of the set R con-
taining the CA-repairs of K. To do this, it makes use of ComputeCARSet(K).
Finally, in accordance with Definition 27, it checks that, for every CA-repair
Arep ∈ ComputeCARSet(K), Q is entailed by the consistent KB 〈T ,Arep〉. In
case at least one of these KBs does not entailQ, NaiveComputeAnswersAR(Q,K)
returns false, otherwise it returns true. Since Theorem 28 ensures that every
CA-repairs of K belong to R, then we can conclude that K |=CAR Q if and
only if NaiveComputeAnswersCAR(Q,K) returns true.
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We now discuss consistent query answering under both IAR-semantics and
ICAR-semantics.

As we said in Section 8.2, IAR-semantics and ICAR-semantics are sound
approximations respectively of the AR-semantics and of the CAR-semantics.

Let K = 〈T ,A〉 be a possibly inconsistent KB. From Definition 31 it follows
that a boolean CQ q evaluates to true over K under IAR-semantics, written
K |=IAR q, if and only if every interpretation that is an IAR-models for K
satisfies q. In Definition 30 the set ModIAR(K) of IAR-models of K is defined
as the set of models of the consistent KB K∩ = 〈T ,

⋂
Ai∈AR-Set(K)Ai〉. Hence,

K |=IAR q if and only if K∩ |= q. It follows that a boolean UCQ Q =
∨n
i=1 qi

evaluates to true over a possibly inconsistent KB K under IAR-semantics,
written K |=IAR Q, if there exists i ∈ {1, . . . n} such that K∩ |= qi.

On the basis of the observations above we can provide the following algo-
rithm for checking if K |=IAR Q.

Input: a possibly inconsistent KB K = 〈T ,A〉 and an UCQ Q
Output: true or false
begin
R ← ComputeARSet(K);
A∩ =

⋂
Ai∈RAi;

return 〈T ,A∩〉 |= Q;
end

Algorithm 15: NaiveComputeAnswersIAR(Q,K)

Clearly, Algorithm 15 is an algorithm only under the assumption that,
for the DL used to express K we have an algorithm both for checking KB
satisfiability, and for answering boolean UCQ posed to the KB.

We have the following results.

Lemma 39. Let K = 〈T ,A〉 be a possibly inconsistent KB in a DL L, and let
Q be a boolean union of conjunctive queries. If both an algorithm for checking
K for satisfiability and an algorithm for answering boolean UCQ posed to K
exist, then NaiveComputeAnswersIAR(Q,K) terminates.

Proof. Termination follows directly from Lemma 31 and from the hypothesis
of existence of an algorithm for answering boolean UCQ posed to K.

Theorem 30. Let K = 〈T ,A〉 be a possibly inconsistent KB in a DL L, and
let Q be a boolean UCQ. If both an algorithm for checking K for satisfiability
and an algorithm for answering boolean UCQ posed to K exist, then K |=IAR Q
if and only if NaiveComputeAnswersIAR(Q,K) returns true.
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Proof. The proof is trivial. Indeed, it is easy to see that Algorithm 15 faithfully
applies Definition 30. Hence, the claim directly follows from Theorem 26.

We now turn our attention on the ICAR-semantics.
In Definition 30 the set ModICAR(K) of ICAR-models of K is defined as the

set of models of the consistent KB K∗∩ = 〈T ,
⋂
Ai∈CAR-Set(K) clT (Ai)〉. Note

that K∗∩ is the KB built on the TBox T and on the intersection of the deductive
closure with respect to T of all the CAR-repairs of K. From Definition 33 we
have that a boolean CQ q evaluates to true over K under ICAR-semantics,
written K |=ICAR q, if and only if every interpretation in ModICAR(K) satisfies
q. Hence, K |=ICAR q if and only if K∗∩ |= q. It follows that a boolean UCQ
Q =

∨n
i=1 qi evaluates to true over a possibly inconsistent KB K under ICAR-

semantics, written K |=ICAR Q, if there exists i ∈ {1, . . . n} such that K∗∩ |= qi.
As for the other inconsistency-tolerant semantics presented here, under the

assumption that for the DL used to express K we have an algorithm both
for checking KB satisfiability, and for answering boolean UCQ posed to the
KB, we can provide the algorithm NaiveComputeAnswersICAR for deciding if
K |=IAR Q.

Input: a possibly inconsistent KB K = 〈T ,A〉 and an UCQ Q
Output: true or false
begin
R ← ComputeCARSet(K);
A∗∩ =

⋂
Ai∈R clT (Ai);

return 〈T ,A∗∩〉 |= Q;
end

Algorithm 16: NaiveComputeAnswersICAR(Q,K)

We conclude this section by dealing with termination and correctness of
Algorithm 16.

Lemma 40. Let K = 〈T ,A〉 be a possibly inconsistent KB in a DL L, and let
Q be a boolean union of conjunctive queries. If both an algorithm for checking
K for satisfiability and an algorithm for answering boolean UCQ posed to K
exist, then NaiveComputeAnswersICAR(Q,K) terminates.

Proof. Termination follows directly from Lemma 37 and from the hypothesis
of existence of an algorithm for answering boolean UCQ posed to K.

Theorem 31. Let K = 〈T ,A〉 be a possibly inconsistent KB in a DL L, and let
Q be a boolean UCQ. If both an algorithm for checking K for satisfiability and
an algorithm for answering boolean UCQ posed to K exist, then K |=ICAR Q if
and only if NaiveComputeAnswersICAR(Q,K) returns true.
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Proof. As for Theorem 30, the proof is trivial. Indeed, the claim directly
follows from Theorem 28.

8.5 Related work

Inconsistency-tolerance has been studied in various forms in several areas, in-
cluding Logic, Artificial Intelligence, and Databases.

In Logic, several semantics have been proposed to the aim of providing more
meaningful notions of logical entailment for classically inconsistent theories.
Some notable examples come from the field of paraconsistent logics [82, 83, 92,
106], i.e., logics that allow for inference from classically inconsistent theories
in a non-trivial way. Each of the proposals has advantages and disadvantages,
and the choice of the paraconsistent logic for an application depends on the
requirements of the application. In what follows, we concentrate on revising
the various approaches that are most related to our work, in particular, those
dealing with inconsistency handling in ontologies, belief revision, databases,
and specific instance-level inconsistency-tolerant semantics for DLs.

Inconsistency handling in ontologies. Several works of the Semantic Web
community focus on the issue of locating inconsistencies in knowledge base.
In [59], the authors present a framework for reasoning with inconsistent KBs.
At the basis of such framework it is the notion of selection function, which
allows for choosing some consistent sub-theory from an inconsistent KB. Stan-
dard reasoning is then applied to the selected sub-theory. An instantiation of
the framework, based on a syntactic relevance-based selection function is also
shortly described. In [55], a more extended framework that generalizes four
approaches to inconsistency handling is presented. In particular, consistency
KB evolution, repairing inconsistency, reasoning with inconsistent KB, and KB
versioning are considered.

Many works in this field focus on the issue of locating inconsistencies in on-
tologies. In [91], the authors present a framework for detecting and diagnosing
errors in OWL ontologies. In [104], the authors discuss a number of alternative
methods to explain incoherence of TBoxes, unsatisfiability of concepts and con-
cept subsumption, in order to provide support to knowledge engineers who are
building terminologies using Description Logic reasoners. In [9], a visual tool
is presented that allows the user to check consistency of formal KBs. In [58],
the authors present algorithms and optimizations for checking OWL ontology
consistency during their construction process. In [26], a tool is presented that
allows to verify whether a DL-Lite KB is consistent. The check is reduced to
evaluate first-order queries over the ABox. However, all these works provide no
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support (or limited) to inconsistency management. Furthermore, with the ex-
ception of [2], they are mainly focused on inconsistencies at the terminological
level.

Belief revision. The form of inconsistency-tolerance considered in this work
is deeply connected to the study of update in database and belief revision/update.

Consider a consistent knowledge base K and a new information N . Sup-
pose that our intention is to change K with the insertion of N . If K ∪ N
is inconsistent, then update and revision semantics assume that the original
knowledge base K has to be modified so that the result of the change is con-
sistent. Hence, if K′ = 〈T ,A〉 is a possibly inconsistent knowledge base, with
respect to the knowledge base revision/update framework, we can consider the
ABox A as the initial knowledge, whereas the TBox T represents the incoming
knowledge. Following the change semantics the result of the insertion should
be a new consistent knowledge base. Based on such a correspondence, the
studies in belief revision appear very relevant for reasoning over inconsistent
KBs. In this respect, we notice also that the AR-semantics is strictly related to
the work presented in [44] where the authors propose a framework for updat-
ing theories and logical databases. The CAR-semantics, instead, is comparable
with the SOT-update approach presented in Chapter 6. Moreover IAR and the
ICAR-semantics both conform to the WIDTIO principle of belief revision [42].
It is right to point out that, since the update semantics proposed in this work
allow only for insertion of ABox assertions, they cannot be used for consistency
handling purpose.

Differently, in [96], authors propose an algorithm for handling inconsistency
based on a revision operator. Their approach allows to resolve conflicts chang-
ing the original knowledge base by weakening both ABox and TBox assertions.
Similarly, in [85] inconsistency is resolved by transforming every concept inclu-
sion assertions in the TBox into a cardinality restriction. Then, if a cardinality
restriction is involved in a conflict, one weakens it by relaxing the restrictions
of the number of elements it may have.

To the best of our knowledge, the approach studied in this work, based on
the instance-level repair only, is novel for Description Logics, and it is actually
inspired by the work on inconsistency management in Database.

Inconsistency tolerance in databases. In [38] the authors argue that in
database context inconsistency may happen because data rise from different
and independent data sources, as in data integration [71], or because data are
handled by complex and long-running activities. We are convinced that the
same causes can lead to inconsistency in ontology-based information systems.

Traditionally, in database, consistency is preserved by aborting update op-
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eration. Clearly, such an approach is not applicable in data integration context
or in scenarios where we aim to merge different data source as in [77]. In [77],
authors deal with the problem of integrating information from conflicting data
sources modeling integration by the operation of merging databases under con-
straints represented by first-order theories. Their approach aims to obtain a
maximal amount of information from each database by means of a majority
criterion used in case of conflict in which a distance criterion based on the car-
dinality of the symmetric difference between models is adopted. In this work
they consider a large set of constraints, namely the constraints that can be ex-
pressed as first-order formulae. Unfortunately, neither computational results
about their merging procedure are provided, nor an algorithm to compute con-
sistent query answers is presented. Furthermore, the problem of dealing with
incomplete databases is not taken into account.

In [43], authors maintain that inconsistencies have to be handled when
they are detected. The same approach is also advocated in [38] where authors
study the process for restoring database integrity with the aim of changing the
original database as little as possible. This scenario is called minimal-change
integrity maintenance. As for this work, they base their restoration process on
the notion of repair [4]. A repair for a possibly inconsistent database is de-
fined as a database instance that satisfies integrity constraints and minimally
differs from the original database. Authors show how the notion of minimality
can be interpreted in different ways, depending from the kinds of constraints
are considered. Indeed for a large class of constraints, e.g. denial constraints
which are a generalization of key dependencies and functional dependencies,
violations lead to obtain a database instance where information is complete but
not correct. In this case the only way to restore the integrity of a database is
retract part of it. Clearly, is such a scenario in the notion of minimal changes
it is sufficient consider only deletions. On the other hands, if the informa-
tion is both incorrect and incomplete, as in that case where also inclusion
dependencies are considered, both insertion and deletions should be consid-
ered. Alternatively, some data integration approaches give the completeness
assumption up [67, 71]. In [37] authors consider inconsistency in presence of
both denial constraints and inclusion dependencies, and present a semantics in
which only tuple elimination is allowed.

In the works above, it is proposed to deal with inconsistency by modifying
original database in order to restore integrity. A different approach to deal
with inconsistency, which is the one adopted in this thesis, is consistent query
answering [36]. In such an approach, it is embraced the idea of living with
inconsistencies. In other words, following this approach, one does not attempt
to modify the database in order to resolve possible inconsistency, but one tries
to obtain only consistent information during query answering.

In the database area, the notion of consistent query answers was originally
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given in [16]. However, the approach in [16] is completely proof-theoretic, and
no computational technique for obtaining consistent answers from inconsistent
database is provided.

In [4], authors define an algorithm for consistent query answers in incon-
sistent databases based on the notion of residues, originally defined in the
context of semantic query optimization. The method is proved to be sound
and complete only for the class of universally quantified binary constraints,
i.e., constraints that involve two database relations. In [5] the same authors
propose a new method that can handle arbitrary universally quantified con-
straints by specifying the database repairs into logic rules with exceptions. The
problem of consistent query answering is studied in several works within the
database context [22, 23, 39, 48]. In particular, the loosely-sound semantics
studied in [22] in the context of inconsistent databases coincides in fact with
the AR-semantics for DL KBs presented in this work.

For a survey of consistent query answers in inconsistent databases, the
reader is referred to [36].

Instance-level inconsistency-tolerant semantics for DLs. Certainly,
the closest approach to the one proposed in this thesis is the one reported
in [70], where an inconsistency tolerant semantics for DLs is provided, and a
study on the computational complexity of consistent query answering over KBs
specified in DL-Lite is presented. The semantics proposed in [70] is based on
a notion of repair that differs from the notion of A-repair given in Section 8.1
for the adopted distance criteria.

Indeed, while we say that an ABox A′ is a repair of a possibly inconsistent
KBK = 〈T ,A〉 ifA′ is T -consistent and no ABoxA′′ exists that is T -consistent
and has fewer changes that A′ with respect to A, in [70] A′ is a repair of K
if and only if A′ is T -consistent, A′ ⊆ A, and no ABox A′′ exists that is T -
consistent and such that A′ ⊂ A′′ ⊆ A. In other words, while for defining
a repair we adopt a distance criteria based on the notion of fewer changes
given by Fagin, Ullman and Vardi [44] that aims to give preference to such
T -consistent ABoxes which have fewer deletions over the ABoxes which have
fewer insertions with respect to the original ABox, in [70] a repair is forced to
be a subset of the initial ABox.

Actually, we showed in Section 8.1 (Theorem 20) that due to the monotonic-
ity of the languages considered in this work, the notion of repair given in [70]
coincides with our notion of A-repair, and then, their consistency-tolerant se-
mantics coincides with our AR-semantics.

Recently, in [13] the author carries out an investigation for DL-Lite-KB,
with the aim of better understanding the cases in which consistent query an-
swering under AR-semantics is feasible, and in particular, can be done using
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query rewriting. Specifically, the author formulates some general conditions
which can be used to prove that a consistent query rewriting does or does not
exist for a given DL-Litecore TBox and instance query. Afterwards, in [14],
the same author conducts a complexity analysis of the AR-semantics with the
aim to characterize the complexity of consistent query answering based on the
properties of the KB and the conjunctive query at hand. By focusing on very
simple language, which is a fragment of DL-Litecore , the author succeeds to
identify the number of quantified variables in the query as an important fac-
tor in determining the complexity of consistent query answering. To be more
precise, in [14] it is shown that consistent query answering is:

• always first-order expressible for conjunctive queries with at most one
quantified variable;

• the problem has polynomial data complexity when there are two quan-
tified variables;

• the problem may become coNP-hard starting from three quantified vari-
ables.

In the same paper, the author proposes a novel inconsistency-tolerant se-
mantics which is a sound approximation of the AR-semantics. This semantics,
named intersection of closed repairs (ICR), corresponds to closing AR-repairs
with respect to the TBox before intersecting them. More formally:

Definition 35. Let K = 〈T ,A〉 be a possibly inconsistent KB. A boolean
query q is said to be entailed from K under ICR-semantics (intersection of
closed repairs), written K |=ICR q, if

〈T ,
⋂

Ai∈AR-Set(K)

clT (Ai)〉

It easy to see that the ICR-semantics approximates the AR-semantics bet-
ter than the IAR-semantics as the following example shows.

Example 31. Let K = 〈T ,A〉 be a DL-LiteA-KB, where:

T = { C1 v ∃R,∃R− v C2, (funct R) }
A = { R(o, o′), R(o, o′′) }

The KB K is clearly inconsistent since the assertions in the TBox violate
the functionality of the role R. The set AR-Set(K) is formed by the following
ABoxes:

Arep1 = { R(o, o′) }
Arep2 = { R(o, o′′) }
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Consider the following queries:

q1() : ∃x.C1(x)
q2() : ∃x.C2(x).

It is easy to verify that:

K |=AR q1(); K 6|=IAR q1(); K |=ICR q1().

K |=AR q2(); K 6|=IAR q2(); K 6|=ICR q2().

In [14], it is shown that first-order expressibility of consistent query answer-
ing under ICR-semantics is guaranteed only for DL-Litecore ontologies without
inverse roles. For DL-Litecore the problem of deciding if a possibly inconsistent
DL-Litecore -KB entails a boolean conjunctive query under ICR-semantics is
instead coNP-hard [14].

We conclude this section by reporting some results presented in [102]. In
this work, the author studies instance checking and conjunctive query entail-
ment under AR and CAR-semantics for a wide spectrum of DLs, ranging from
tractable ones (EL) to very expressive ones (SHIQ), showing that reasoning
under the above semantics is inherently intractable, even for very simple DLs.
Moreover, the author studies the sound approximations of the above semantics,
namely IAR and ICAR-semantics, showing that reasoning under such approx-
imated semantics is intractable even for tractable DLs. A summary of the
complexity results obtained in [102] is reported in Table 8.1.

Finally, [79] presents an approach that is also very close to the present
work. In fact, it proposes an application of the IAR semantics to the frame-
work of Datalog+/- [21]. In particular, a fragment of Datalog+/- is consid-
ered that comprises linear tuple-generating dependencies (TGDs), negative
constraints (NCs) and a restricted form of equality-generating dependencies
(EGDs). Then, a technique for query answering under such dependencies is
presented, which is technically very similar to the one that we present in Chap-
ter 9. In fact, the dependencies considered in [79] have a tight connection with
the TBox assertions of DL-LiteA,id,den, in particular: linear TGDs correspond
to a generalized form of positive inclusion assertions, NCs correspond to de-
nial assertions, and EGDs are related to identification assertions. However,
there are two main differences: first, the framework of [79] does not consider
value-domains, hence many of the issues dealt with by our technique are not
present in the above Datalog+/- framework; moreover, although identification
constraints correspond to EGDs, they are not captured by the restricted form
of EGDs (called non-conflicting EGDs) considered in [79].
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2 Πp
2 ExpTime 2-ExpTime

ICAR BH2(Σ
p
2) ∆p

3[O(log n)] ExpTime 2-ExpTime

Table 8.1: Complexity of UCQ entailment over DL KBs under inconsistency-
tolerant semantics.





Chapter 9

Query answering over
inconsistent DL-LiteA,id,den KBs

Motivated by the fact that the size of real world KBs is scaling up and that
the ability of dealing with KBs with very large ABoxes has become a crucial
requirement for many modern applications, various DLs have been recently
proposed that allow for tractable reasoning, still guaranteeing good expressive
power. Among such DLs, the logics of the DL-Lite family [31, 95], and in par-
ticular DL-LiteA,id,den, which is the most expressive logic in the family, present
the distinguishing characteristic of enabling first-order (FOL) rewritability of
query answering of unions of conjunctive queries (UCQs). This means that to
answer a UCQ q in DL-Lite it is possible to first rewrite q into a first-order
query qr, only on the basis of the knowledge specified in the TBox, and then
evaluate qr over the ABox, which can be seen as a plain database. Notably,
the ABox does not need to be touched during the rewriting phase, and no data
preprocessing is needed (as for example required in [41, 64]). This turns out
to be crucial, for instance, in all those applications in which KBs, and in par-
ticular their intensional component, are used to access data stored in external
repositories, such as in ontology-based data integration [26, 95].

In these applications, however, even though the TBox of the ontology is
usually a consistent theory, its axioms may often be contradicted by assertions
of the ABox, in general collected from various autonomous sources. This ac-
tually implies that the resulting KB is inconsistent, and that reasoning over
it is trivialized. The ability of dealing with such a form of inconsistency is
of critical importance, in particular to obtain meaningful answers to queries
posed over inconsistent KB.

For this reasons, in this chapter we study the problem of answering boolean
UCQs posed to inconsistent KBs expressed in DL-LiteA,id,den under the incon-
sistency-tolerant semantics presented in Section 8.2.

159
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We first focus on AR-semantics and we show that for the DLs of the DL-Lite
family, inconsistency-tolerant query answering under such a semantics is coNP-
complete even for ground atomic queries, thus showing that inconsistency-
tolerant instance checking is already intractable.

Then we study CAR-semantics showing that while inconsistency-tolerant
instance checking is tractable under this semantics, query answering is coNP-
complete for unions of conjunctive queries.

Finally, we consider the IAR-semantics and the ICAR-semantics and we
provide algorithms for the FOL-rewritability of UCQs under such semantics.

9.1 Consistent query answering in DL-LiteA,id,den
under AR-semantics

In this section we deal with the problem of answering boolean union of conjunc-
tive queries posed to inconsistent DL-LiteA,id,den-KBs under the AR-semantics.

Firstly, we observe that a TBox expressed in DL-LiteA,id,den cannot be
inconsistent, i.e., given a TBox T in DL-LiteA,id,den, it is always true that
Mod(〈T , ∅〉) 6= ∅. This directly follows from Lemma 1 stating that the KB
〈Tinc,A〉 is always consistent, together with the fact that from Theorem 6
follows that the violation of an assertion in Ttype ∪ Tdisj ∪ Tfunct ∪ Tid ∪ Tden
arise only if at least one of the queries in QunsatT evaluates true over the non-
empty ABox A.

Moreover, all the properties presented in Section 8.3 hold. In particular,
Proposition 15 and Propositions 16, which guarantee that the set of models
of a possibly inconsistent KB according with our inconsistency-tolerant se-
mantics is non-empty, and that in case of consistent KBs, the reasoning over
inconsistency-tolerant semantics coincides with reasoning over classical FOL-
semantics.

In addition, we note that since both consistency checking and query an-
swering are decidable in DL-LiteA,id,den (cf. Section 5.1 and Section 5.2), in
principle, we could use the algorithms presented in Section 8.4 for query an-
swering under our inconsistency-tolerant semantics.

As we said in Section 8.5 theAR-semantics coincides with the inconsistency-
tolerant semantics for DL KBs presented in [70].

From the result presented by the authors in [70, Theorem 1 and Theorem 2],
we known that UCQ entailment is intractable under AR-semantics already for
DL-LiteR and DL-LiteF [31]. Hence, we are able to give the following theorem
(for the proof of the theorem refer to [70]).

Theorem 32. [70] Let K = 〈T ,A〉 be a KB in DL-LiteA,id,den and Q be a
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boolean union of conjunctive queries. Deciding whether K |=AR Q is coNP-
complete with respect to data complexity.

Here, we strengthen this result, and show that instance checking under AR-
semantics is already coNP-hard in data complexity even if the KB is expressed
in DL-Litecore . We recall that DL-Litecore is the least expressive logic in the
DL-Lite family (for more details see Section 3.1).

Theorem 33. Let K be a DL-Litecore-KB and let α be an ABox assertion.
Deciding whether K |=AR α is coNP-complete with respect to data complexity.

Proof. Membership in coNP follows from coNP-completeness of UCQ entail-
ment under AR-semantics [70, Theorem 1].

We prove the coNP-hardness by reducing unsatisfiability of a 3-CNF to
query entailment of a CQ in DL-Litecore .

Let φ be a 3-CNF of the form c1 ∧ . . . ∧ cn with ci = l1i ∨ l2i ∨ l3i , where
every lji is a literal from a set of propositional variables {x1, . . . , xm}. Given
a literal `, let s(`) denote the sign of `, i.e., s(`) = t if ` is a positive literal,
and s(`) = f otherwise; moreover, let v(`) denote the propositional variable
occurring in the literal `.

We define the following DL-Litecore TBox T :

T = {∃R v Unsat , ∃R− v ¬∃L−t , ∃R− v ¬∃L−f , ∃Lt v ¬∃Lf}

and the following ABox A:

A = {R(a, ci) | 1 ≤ i ≤ n} ∪ {Ls(lji )(v(lji ), ci) | 1 ≤ i ≤ n, 1 ≤ j ≤ 3}

We now prove that 〈T ,A〉 |=AR Unsat(a) if and only if φ is unsatisfiable.
First, if φ is satisfiable, then there exists an interpretation I for {x1, . . . , xm}

such that I is a model for φ. Now consider the ABox

A′ = {Lt(xj , ci) | Lt(xj , ci) ∈ A and I(xj) = true} ∪
{Lf (xj , ci) | Lf (xj , ci) ∈ A and I(xj) = false}

It is immediate to see that 〈T ,A′〉 is satisfiable. Moreover, since I is a model
for φ, for every conjunct ci of φ, there exists a propositional variable xj such
that either the literal xj occurs positively in ci and I(xj) = true, or xj occurs
negatively in ci and I(xj) = false. This implies that, for every i such that
1 ≤ i ≤ n, A′ ∪ {R(a, ci)} is T -inconsistent. Then, due to the presence of
∃Lt v ¬∃Lf in T , it immediately follows that, for every assertion α of the
form Lt(xj , ci) or Lt(xj , ci) such that α ∈ A \ A′, A′ ∪ {α} is T -inconsistent.
Therefore, A′ is a maximal T -consistent subset of A. And since 〈T ,A′〉 6|=
Unsat(a), it follows that 〈T ,A〉 6|=AR Unsat(a).
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Then, suppose 〈T ,A〉 6|=AR Unsat(a). Hence, there exists A′ ⊆ A such
that A′ is a T -maximal consistent subset of A and 〈T ,A′〉 6|= Unsat(a). Now
let I be the interpretation of {x1, . . . , xn} defined as follows: I(xj) = true
if there exists Lt(xj , ci) ∈ A′ for some i, and I(xj) = false if there exists
Lf (xj , ci) ∈ A′ for some i. Now, since 〈T ,A′〉 6|= Unsat(a), it follows that no
assertion of the form R(xj , ci) is in A′, and since A′ is T -maximal, it follows
that, for every i such that 1 ≤ i ≤ n, there exists an assertion of the form
Lt(xj , ci) or Lf (xj , ci) in A′ for some j. In turn, this immediately implies that
the conjunct ci of φ is satisfied in I, therefore I is a model of φ, which proves
the thesis.

Note that Theorem 33 corrects a wrong result presented in [70, Theorem
6], which asserts tractability of AR-entailment of ABox assertions from KBs
specified in DL-LiteF , which is a superset of DL-Litecore [31]. It turns out
that, while the algorithm presented in [70] (on which the above cited Theorem
6 was based) is actually unable to deal with general TBoxes, such a technique
can be adapted to prove that AR-entailment of ABox assertions is tractable
for DL-LiteA-KBs without inclusion assertions with negation in the right-hand
side, i.e. in DL-LiteA-KBs where Tdisj = ∅.

9.2 Consistent query answering in DL-LiteA,id,den
under CAR-semantics

In this section, we focus on the CA-semantics, and show that, as for AR-
semantics, CQ entailment under this semantics is coNP-hard even if the TBox
language is restricted to DL-Litecore . To this aim, we give the following theo-
rem.

Theorem 34. Let K be a DL-Litecore-KB and let q be a CQ. Deciding whether
K |=CAR q is coNP-hard with respect to data complexity.

Proof. We prove the claim by reducing unsatisfiability of a 3-CNF to query
entailment of a CQ in DL-Litecore (actually, in the DL allowing only atomic
concept disjunctions in the TBox).

Let φ be a 3-CNF of the form c1 ∧ . . . ∧ cn with ci = l1i ∨ l2i ∨ l3i , where
every lji is a literal from a set of propositional variables {x1, . . . , xm}. Given a
literal `, let s(`) denote the sign of `, i.e., s(`) = t if ` is a positive literal, and
s(`) = f otherwise. Moreover, let s denote the complement of s, i.e., s(`) = t
if ` is a negative literal, and s(`) = f otherwise. Finally, let v(`) denote the
propositional variable occurring in the literal `.

We define the following DL-Litecore TBox T :

T = {True v ¬False}
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and the following ABox A:

A = {Lj
s(lji )

(v(lji ), ci) | 1 ≤ i ≤ n and 1 ≤ j ≤ 3} ∪

{Lj
s(lji )

(s(lji ), ci) | 1 ≤ i ≤ n and 1 ≤ j ≤ 3} ∪
{True(xi),False(xi) | 1 ≤ i ≤ m} ∪
{True(t),False(f)}

Now let q be the following conjunctive query:

q ← L1
f (x1, z),True(x1), L

1
t (y1, z),False(y1),

L2
f (x2, z),True(x2), L

2
t (y2, z),False(y2),

L3
f (x3, z),True(x3), L

3
t (y3, z),False(y3)

We prove that 〈T ,A〉 |=CA q if and only if φ is unsatisfiable.
First, if φ is satisfiable, then there exists an interpretation I for {x1, . . . , xm}

such that I is a model for φ.
Now consider the ABox

A′ = {Ljt (xk, ci) | L
j
t (xk, ci) ∈ A} ∪

{Ljf (xk, ci) | Ljf (xk, ci) ∈ A} ∪
{True(xk) | 1 ≤ k ≤ m and I(xk) = true} ∪
{False(xk) | 1 ≤ k ≤ m and I(xk) = false} ∪
{True(t),False(f)}

It is immediate to see that 〈T ,A′〉 is satisfiable and that A′ is a maximal T -
consistent subset of A. Moreover, since I is a model for φ, for every conjunct
ci of φ, there exists a propositional variable xk such that:

(i) either the literal xk occurs positively in ci and I(xk) = true, and in this
case there exists j such that both True(xk) and Ljt (xk, ci) belong to A′,
and therefore 〈T ,A′〉 6|= q; or

(ii) xk occurs negatively in ci and I(xk) = false, and in this case there exists
j such that both False(xk) and Ljf (xk, ci) belong to A′, and therefore
〈T ,A′〉 6|= q. Consequently, 〈T ,A′〉 6|= q, which immediately implies that
〈T ,A〉 6|=CA q.

Then, suppose 〈T ,A〉 6|=CA q. Hence, there exists A′ ⊆ A such that A′ is a
T -maximal consistent subset of A and 〈T ,A′〉 6|= q. Due to the form of T ,
A′ contains the set of assertions {Ljt (xk, ci) | L

j
t (xk, ci) ∈ A} ∪ {L

j
f (xk, ci) |

Ljf (xk, ci) ∈ A}; moreover, for every k such that 1 ≤ k ≤ m, A′ contains
exactly one of the assertions True(xk), False(xk).

Now let I be the interpretation of {x1, . . . , xn} defined as follows: for every
k such that 1 ≤ k ≤ m, I(xk) = true if True(xk) ∈ A′, and I(xk) = false if
False(xk) ∈ A′. Now, since 〈T ,A′〉 6|= q, it follows that, for every conjunct
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ci of φ (observe that c1, . . . , cn are the possible bindings of the query variable
z), there exists j ∈ {1, 2, 3} such that for every k such that 1 ≤ k ≤ m, if
Ljt (xk, ci) ∈ A′ then False(xk) 6∈ A′ (and therefore True(xk) ∈ A′), and if
Ljf (xk, ci) ∈ A′ then True(xk) 6∈ A′ (and therefore False(xk) ∈ A′). This
immediately implies that the conjunct ci of φ is satisfied by I. Therefore, I is
a model for φ, thus the thesis follows.

Notice that, differently from the AR-semantics, the above intractability
result for the CAR-semantics does not hold already for the instance checking
problem. Indeed, we will show later in this chapter that instance checking is
actually tractable under the CAR-semantics.

9.3 Consistent query answering in DL-LiteA,id,den
under IAR-semantics

In this section, we focus on DL-LiteA,id,den-KBs, and provide our technique
for computing FOL-rewritings of boolean UCQs (BUCQs) under the IAR-
semantics.

We remind the reader that BUCQs in DL-LiteA,id,den are FOL-rewritable
(cf. Section 5.2), i.e., for every boolean union of conjunctive queries q and
every DL-LiteA,id,den TBox T , there exists a FOL query qr, over the alphabet
of T , such that for every non-empty ABox A it holds that 〈T ,A〉 |= q if and
only if 〈∅,A〉 |= qr. The query qr is called a perfect FOL reformulation of q
w.r.t. T . The algorithm for computing such a reformulation, called PerfectRef,
is provided in [31]. In a nutshell, PerfectRef takes as input a BUCQ q and a
DL-LiteA,id,den TBox T and compiles in q the knowledge of T useful for answer-
ing q, returning another UCQs over T which is a perfect FOL reformulation
of q w.r.t. T .

The notion of FOL-rewritability under IAR-semantics is essentially the
same used under FOL-semantics. More precisely, we say that BUCQs in
DL-LiteA,id,den are FOL-rewritable under the IAR-semantics if, for each BUCQs
q and each DL-LiteA,id,den TBox T , there exists a FOL-query qr such that, for
any ABox A, 〈T ,A〉 |=IAR q if and only if 〈∅,A〉 |= qr. We call such qr the
IAR-perfect reformulation of q w.r.t. T .

First, we recall that, given a DL TBox T and a set of V of ABox assertions,
we say that V is a minimal T -inconsistent set if the KB 〈T , V 〉 is inconsistent,
and if for each proper subset V ′ of V , the KB 〈T , V ′〉 is consistent (cf. Defini-
tion 34). Let K = 〈T ,A〉 be a possibly inconsistent DL KB. We denote with
minIncSets(K) the set of minimal T -inconsistent sets contained in A. Notice
that K is consistent if and only if minIncSets(K) = ∅.

Since a TBox expressed in DL-LiteA,id,den cannot be inconsistent, Theo-
rem 24 and Corollary 3 hold for every KB expressed in DL-LiteA,id,den. It
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follows that, given an inconsistent KB K = 〈T ,A〉 expressed in DL-LiteA,id,den
and an ABox assertion α belonging to A, there exists an A-repair of K that
does not contains α if and only if there exists a V ∈ minIncSets(K) containing
α. Moreover, given a boolean conjunctive query q, K |=IAR q if and only if
there is a subset A′ of A such that:

(i) A′ is T -consistent;

(ii) 〈T ,A′〉 |= q;

(iii) A′ ∩ V = ∅ for every V ∈ minIncSets(K).

To come up with our reformulation method, we exploit Corollary 3. Roughly
speaking, in the reformulation of a BUCQ q over a DL-LiteA,id,den TBox T , we
encode into a FOL-formula all violations that can involve assertions belonging
to images of q in any ABox A. Indeed, this can be done by reasoning only
on the TBox, and considering each query atom separately. Intuitively, we deal
with inconsistency by rewriting each atom α of q into a FOL-formula αr in
such a way that 〈∅,A〉 |= αr only if 〈∅,A〉 |= α and any images of αr belongs
to minimal T -inconsistent set.

This inconsistency-driven rewriting is then suitably cast into the final re-
formulation, which takes into account also positive knowledge of the TBox,
i.e., the inclusion assertions in Tinc. We will show later in this section, that
this can be done by means of the slight variation of the algorithm PerfectRef
introduced in Section 5.1.

In Section 5.1 we showed that in a DL-LiteA,id,den-KB K = 〈T ,A〉 incon-
sistency may arise only if there exists in A a set of ABox assertions V such
that the consistent KB 〈Tinc, V 〉 entails the negation of at least one assertions
in Ttype ∪ Tdisj ∪ Tfunct ∪ Tid ∪ Tden. Moreover, we showed that such a check
can be reduced to checking if at least one of the queries in QunsatT is entailed
by the KB 〈∅,A〉, where QunsatT is a set of suitable boolean queries built from
the assertions in Ttype ∪ Tdisj ∪ Tfunct ∪ Tid ∪ Tden and by reasoning on the
assertions in Tinc. Every query q in QunsatT corresponds to FOL-sentences of
the form (5.1), that is

∃z1, . . . , zk.
n∧
i=1

Ai(t
1
i ) ∧

m∧
i=1

Ti(t
2
i ) ∧

∧̀
i=1

Pi(t
3
i , t

4
i ) ∧

j∧
i=1

Ui(t
4
i , t

5
i ) ∧

h∧
i=1

t6i 6= t7i

In order to compute the setQunsatT , we provided the algorithm unsatQueries(T ).
Then, in Section 5.3, we showed that, by evaluating the “non-boolean” version
q(~x) of q(), for each boolean query q() ∈ QunsatT , over the ABox A considered
as a relational database, we can obtain a set of tuples that we can use to
build some T -inconsistent sets in A that we call K-clashes. Moreover, we
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showed that from such T -inconsistent sets it is possible to build every other
T -inconsistent set in A (cf. Lemma 14).

The next example aims to clarify the relation between 〈T ,A〉-clashes and
minimal T -inconsistent sets in A.

Example 32. Let K = 〈T ,A〉 be the inconsistent DL-LiteA,id,den-KB of Ex-
ample 5. In Example 7, it is shown that the following K-clashes appear in A
.

K-clash1 = {PortIn(p1),PortOut(p1)};
K-clash2 = {PortIn(p1),PortOut(p1), connectedTo(p1, p2)}.

Observe that, for each ABox assertions α ∈ K-clash1, we have that:

Mod(〈T ,K-clash1 \ {α}〉) 6= ∅

therefore, K-clash1 is a minimal T -inconsistent set. Conversely, it is immediate
to see that K-clash2 is not a minimal T -inconsistent set. Indeed,

Mod(〈T ,K-clash1 \ {connectedTo(p1, p2)}〉) = ∅

.

In order to exploit Corollary 3 towards the definition of a FOL-rewriting
procedure, we need however to identify those assertions in A that participate
to a minimal T -inconsistent set. Example 32 shows that we cannot use the
set QunsatT to this end.

The theorem below follows from the definition of minimal T -inconsistent
set and from Theorem 6.

Theorem 35. Let K = 〈T ,A〉 be an inconsistent DL-LiteA,id,den-KB, and let
V be a K-clash. V is a minimal T -inconsistent set in A if and only if for every
proper subset V ′ of V , and every query q ∈ QunsatT , we have that 〈∅, V ′〉 6|= q.

Proof.
(⇒) Let V be a minimal T -inconsistent set in A. We prove that for every V ′ ⊂
V and for every q ∈ QunsatT , 〈∅, V ′〉 6|= q. Suppose, by way of contradiction,
that there exists a query q ∈ QunsatT and a proper subset V ′ of V , such that
〈∅, V ′〉 |= q. From Theorem 6 it follows that V ′ is a T -inconsistent set, but
this contradicts that V is a minimal T -inconsistent set.
(⇐) Let V be a K-clash such that for every V ′ ⊂ V and for every q ∈ QunsatT ,
〈∅, V ′〉 6|= q. We show that V is a minimal T -inconsistent set in A. Toward
a contradiction, suppose that V is not a minimal T -inconsistent set. This
means that there is a proper subset V ′′ of V that is a T -inconsistent set. From
Theorem 6 it follows that there exists inQunsatT a query q such that 〈∅, V ′′〉 |= q.
Hence, we have a contradiction.
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On the base of above results, we present the algorithm minUnsatQueries(T )
which, starting from the set QunsatT computed by unsatQueries(T ), computes a
new set QminT of boolean queries, which enjoys the following properties:

(i) For each boolean query q ∈ QminT , 〈∅,A〉 |= q if and only if there exists in
QunsatT a query q′ such that 〈∅,A〉 |= q′. This guarantees that Theorem 6
also holds with minUnsatQueries(T ) in place of unsatQueries(T ).

(ii) For each boolean query q ∈ QminT , if 〈∅,A〉 |= q, then for every set of
ABox assertions V ∈ images(q,A), 〈∅, V ′〉 6|= q′, where V ′ ⊂ V and
q′ ∈ Qmin. This guarantees that if a query q ∈ QminT is such that
〈∅,A〉 |= q, then every image of q in A is a minimal T -inconsistent set.

Before presenting the algorithm minUnsatQueries, we need to introduce
some preliminary notions. Given a boolean query q, we say that a term t oc-
curs in an object position of q if q contains an atom of the form A(t), P (t, t′),
P (t′, t), U(t, t′), whereas we say that t occurs in a value position of q if q con-
tains an atom of the form T (t), U(t′, t), where A, P , U , and T have the usual
meaning. Given two terms t1 and t2 occurring in a query q, we say that t1 and
t2 are compatible in q if either both t1 and t2 appear only in object positions
of q or both t1 and t2 appear only in value positions of q.

Now, let q be a boolean query, and σ be a substitution function from the
variables in q to constants of ΣC . Moreover, let t1 and t2 be two different and
compatible terms in q. Two possible cases are conceivable:

(i) σ substitutes t1 and t2 respectively with the two different constants c1
and c2 of ΣC , or

(ii) σ substitutes both t1 and t2 with the same constant c of ΣC .

It follows that, for every ABox A, no answer is lost by evaluating over the
interpretation DB(A) the union of queries (q ∧ t1 = t2)∨ (q ∧ t1 6= t2), instead
of q. The same holds if we first force to be equal, and then to be difference,
more than two compatible terms in q. We call inequalities saturation of a
query q the set containing the queries obtained from q by applying such a
transformation in every possible way.

Example 33. Consider the following boolean conjunctive query

q = ∃x, y, z.C(x) ∧ P (x, y) ∧ P (y, z) ∧ C(z).

The inequalities saturation of q is the set Qstr containing the following queries.

q1 = ∃x, y, z.C(x) ∧ P (x, y) ∧ P (y, z) ∧ C(z) ∧ x 6= y ∧ x 6= z ∧ y 6= z;
q2 = ∃x, y.C(x) ∧ P (x, y) ∧ P (y, x) ∧ C(x) ∧ x 6= y;
q3 = ∃x, z.C(x) ∧ P (x, x) ∧ P (x, z) ∧ C(z) ∧ x 6= z;
q4 = ∃x, y.C(x) ∧ P (x, y) ∧ P (y, y) ∧ C(y) ∧ x 6= y;
q5 = ∃x.C(x) ∧ P (x, x).
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Let A be the following set of ABox assertions:

{ C(a), C(b) P (a, a), B(a) }.

We note, that 〈∅,A〉 |= q and 〈∅,A〉 |= q5.

We present the algorithm Saturate(Q) (Algorithm 17) that takes in input
a set of queries Q and returns the set of queries Q′′ obtained by computing,
for every query q ∈ Q, the inequality saturation of q. Starting from each query
q ∈ Q, Saturate(Q) first computes the set Q′ by unifying compatible terms in
q in all possible ways; then, for any query q′ in Q′ and for each pair of terms
t1 and t2 occurring in q′ that are syntactically different, it adds the inequality
atom t1 6= t2 to q′ and add such a new query to Q′′. In the algorithm q[t1/t2]
denotes the query obtained by replacing in q every occurrence of the term t1
with the term t2.

Input: a set of queries Q
Output: a set of queries Q′′
begin
Q′ ← ∅;
while Q 6= Q′ do
Q′ ← Q;
foreach q ∈ Q do

foreach pair of different terms t1 and t2 in q do
if t1 6= t2 does not occur in q and
t1 and t2 are compatible in q

then Q ← Q∪ {q[t1/t2]};
Q′′ ← ∅;
foreach q ∈ Q′ do

foreach pair of different terms t1 and t2 in q do
q ← q ∧ (t1 6= t2);

Q′′ ← Q′′ ∪ {q};
return Q′′;

end

Algorithm 17: Saturate(Q)

The following lemma shows that the algorithm Saturate terminates, when
applied to a finite set of queries.

Lemma 41. Let Q be a finite set of queries of form (5.1). Then, Saturate(Q)
terminates and runs in exponential time with respect to the size of Q.
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Proof. The termination of Saturate, for each finite set of queries Q given as
input, immediately follows from the following facts:

1. The set Q contains a finite number of queries q. Let |Q′| = n.

2. For each query q ∈ Q, the number of atoms and terms in q is finite, and
the algorithm does not generate new terms. Suppose that every query in
Q has a number of different terms that is less than or equal to m.

3. At the beginning of the first iteration of the while loop the set Q′
contains |Q| = n queries. At the end of the first iteration it contains a
number of queries that is less than or equal to

|Q′|1 =

(
m(m− 1)

2

)
n+ n.

At the end of the second iteration such a number rises to

|Q′|2 =

(
(m− 1)(m− 2)

2

)(
m(m− 1)

2

)
n+

(
m(m− 1)

2

)
n+ n

and it keep arising in this manner for the further iterations. Therefore,
the number of iteration of the while loop is less than or equal to m. At
the end of the while loop the set Q′ contains a number of queries that
is not greater than

(
m2m

2m

)
n.

4. Finally, for each query q ∈ Q′, the algorithm adds the inequality atom
t1 6= t2 to q, where t1 and t2 are two syntactically different terms occur-
ring in q and adds the so generated query to the set Q′′. The number of
queries in Q′′ is equal to |Q′|. Since both |Q′| and the number of terms
in each query in Q′ are finite, the number of iterations of this step is
finite.

From the observation above, we can conclude that Saturate(Q) terminates
and computes the set Q′′ with a number of executions that is exponential
with respect to the maximum number of different terms occurring in a query
belonging to Q.

The next theorem shows that the process applied by Saturate(Q) to the
union of queries Q does not affect the result of the evaluation of Q.

Theorem 36. Let A be an ABox and let Q be a set of boolean queries. Then,
〈∅,A〉 |= Q if and only if 〈∅,A〉 |= Saturate(Q).

Proof.
(⇒) Suppose that there is a query q = ψ(~x) ∈ Q such that 〈∅,A〉 |= q. We
show that there exists a query q′ in Saturate(Q) such that 〈∅,A〉 |= q′.
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Since 〈∅,A〉 |= q, there is a substitution σ from the variables in q to con-
stants in A such that the formula σ(q) evaluates to true in the interpretation
DB(A).

Let x and y be two compatible variables in q and let c1 and c2 be two
different constants in A. Suppose that x and y are the only variables in q and
that c1 and c2 are the only constants in A. The following cases are conceivable:

1. the function σ substitutes the variable x (resp. y) with the constant c1
and the variable y (resp. x) with the constant c2;

2. the function σ substitutes both the variables x and y with either c1 or
c2.

Intuitively, we have that in the first case σ imposes to x and y to be different,
instead in the second case it imposes to x and y to be equal. Since DB(A) |= q
then the formula obtained by either applying σ in the first case or applying σ
in the second case evaluates to true over DB(A). But this means that one of
the following queries is entailed by 〈∅,A〉:

q1 = ψ(x, y) ∧ x 6= y;
q2 = ψ(x, y) ∧ x = y.

Indeed, we have that for the query q1 a substitution function can only substi-
tutes the variable x (resp. y) with the constant c1 and the variable y (resp.
x) with the constant y, while for the query q2 a substitution function can only
substitutes both the variables x and y with either c1 or c2.

As it is possible to see by observing Algorithm 17, if we apply Saturate to
the query q = ψ(x, y), it first computes the set Q′ by:
• adding to Q′ the query q = ψ(x, y), and by
• adding to Q′ the query qu = ψ(x) obtained by unifying the variables x

and y in q;
then for each query q′ in Q′ and for each pair of terms t1 and t2 occurring in
q′ that are syntactically different, it adds the inequality atom t1 6= t2 to q′.
Hence it computes the following queries

q 6= = ψ(x, y) ∧ x 6= y;
qu = ψ(x);

which are logically equivalent to the queries q1 and q2 above. Since this tech-
nique can be generalized to deal with arbitrary boolean queries and arbitrary
ABoxes, we have proved the claim.
(⇐) Let q′ be a query in Saturate(Q) such that 〈∅,A〉 |= q′. We show now that
there is a query q in Q such that 〈∅,A〉 |= q. Suppose, by way of contradiction,
that for every query q ∈ Q we have that 〈∅,A〉 6|= q. This means that there does
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not exist a substitution σ from the variables in q to constants inA such that the
formula σ(q) evaluates to true in DB(A). Hence, for each query qu obtained
from q by unifying different terms q we have that 〈∅,A〉 6|= qu, and the same
holds if we impose to different terms in such queries to be different. But this
contradicts that there exists in Saturate(Q) a query q′ such that 〈∅,A〉 |= q′.

A notable consequence of Theorem 36 is that, by applying the algorithm
Saturate to the set QunsatT computed by the algorithm unsatQueries(T ), all the
properties of QunsatT still hold. In particular, we have the following.

Lemma 42. Let K = 〈T ,A〉 be a DL-LiteA,id,den-KB. A T -inconsistent set
V ⊆ A exists if and only if 〈∅,A〉 |= Saturate(unsatQueries(T )).

Proof. The proof directly follows from Theorem 6 and Theorem 36.

In what follows, we clarify the role that the algorithm Saturate plays in
computing the set of queries QminT , and why it is necessary for our purposes.
For reasons of simplicity, we ignore, for the moment, inconsistencies caused by
erroneous assignments of values to attributes. Therefore, we start considering
only KBs without inclusions between value-domains, and then with Ttype = ∅.
Firstly, we need to introduce the notion of proper syntactical subset of a query.
Let q and q′ be two boolean queries. We say that q is a proper syntactical
subset of q′, written q ≺Rn q′ if there exists a renaming function Rn(q, q′) of
the variables in q to the variables in q′, such that every atom S(~t) occurring
in Rn(q, q′) occurs also in q′ and an analogous renaming from q′ to q does not
exist. The next example briefly illustrates this syntactical form of containment
between two queries.

Example 34. Consider the following set of queries which is the set correspond-
ing to the inequalities saturation of the query q = ∃x, y, z.C(x) ∧ P (x, y) ∧
P (y, z) ∧ C(z) in Examples 33.

q1 = ∃x, y, z.C(x) ∧ P (x, y) ∧ P (y, z) ∧ C(z) ∧ x 6= y ∧ x 6= z ∧ y 6= z;
q2 = ∃x, y.C(x) ∧ P (x, y) ∧ P (y, x) ∧ C(x) ∧ x 6= y;
q3 = ∃x, z.C(x) ∧ P (x, x) ∧ P (x, z) ∧ C(z) ∧ x 6= z;
q4 = ∃x, y.C(x) ∧ P (x, y) ∧ P (y, y) ∧ C(y) ∧ x 6= y;
q5 = ∃x.C(x) ∧ P (x, x).

Given the query q and q′, we have that q ≺Rn q′ if, by applying a suitable
renaming function Rn(q, q′) of the variable in q to the variable in q′, we have
that every atom S(~t) occurring in Rn(q, q′) occurs also in q′ and there does
not exist a renaming function Rn′(q′, q) such that every atom S′(~t) occurring
in Rn′(q, q′) occurs also in q. By applying this definition to the set of queries
above, we have:
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− q5 ≺Rn q3;
− q5 ≺Rn q4.

Which means that the query q5 is a proper syntactical subset of both the query
q3 and the query q4.

We aim to compute the set of queries QminT that can be used to check
satisfiability of a DL-LiteA,id,den-KB K = 〈T ,A〉, and that is characterized by
the fact that for each query q ∈ QminT , and for each image V of q, V is a
minimal T -inconsistent set. Consider the following example.

Example 35. Let T be the DL-LiteA,id,den TBox presented in Example 2. We
focus on the following denial assertion belonging to T .

∀x, y, z.(Port(x) ∧ Port(y) ∧ of(x, z) ∧ of(y, z) ∧ connectedTo(x, y)→ ⊥).

Suppose to have the following ABox:

A = { Port(p1), Device(d1), of(p1, d1), connectedTo(p1, p1),
Port(p2), of(p2, d1), Port(p3), of(p3, d1), connectedTo(p2, p3) }

It is not difficult to verify that the DL-LiteA,id,den-KB K = 〈T ,A〉 is not
consistent. Indeed, the set of queries QunsatT contains, among the others, the
following boolean queries:

q1 = ∃x, y, z.Port(x) ∧ Port(y) ∧ of(x, z) ∧ of(y, z) ∧ connectedTo(x, y);
q2 = ∃x, y, z.of(x, z) ∧ of(y, z) ∧ connectedTo(x, y);
q3 = ∃x.connectedTo(x, x).

By considering the interpretation DB(A), and the non-boolean version of the
queries above, we obtain the following K-clashes:

V1 = { Port(p2), of(p2, d1), Port(p3), of(p3, d1), connectedTo(p2, p3) };
V2 = { Port(p1), of(p1, d1), Port(p1), of(p1, d1), connectedTo(p1, p1) };
V3 = { of(p2, d1), of(p3, d1), connectedTo(p2, p3) };
V4 = { of(p1, d1), of(p1, d1), connectedTo(p1, p1) };
V5 = { connectedTo(p1, p1) }.

It is easy to see that only the sets V3 and V5 are minimal T -inconsistent sets.
Indeed, we have the following AR-repairs of K.

Arep1 = { Port(p1), Port(p2), Port(p3), Device(d1), of(p1, d1),
of(p3, d1), connectedTo(p2, p3) };

Arep2 = { Port(p1), Port(p2), Port(p3), Device(d1), of(p1, d1),
of(p2, d1), connectedTo(p2, p3) };

Arep3 = { Port(p1),Port(p2), Port(p3), Device(d1), of(p1, d1),
of(p2, d1), of(p3, d1), }.

Now, let us consider the following queries:
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qa = Port(p1) ∧ of(p1, d1);
qb = ∃x.of(p2, x) ∧ of(p3, x).

According to Definition 30 we have that K |=IAR qa and K 6|=IAR qb.

How can we modify the set QunsatT of Example 35 in order to compute the
set QminT ?

Since the TBox T contains the assertion ∃of v Port, one can immediately
observe that, by removing the query q1 from QunsatT , we obtain a new set of
queries Q2−unsat

T that (i) can be used in place of QunsatT for checking satisfia-
bility of K (cf. [31, 103]); and (ii) enjoys the appreciable property that both
V1 and V2 do not coincide with the image in A of any query in q ∈ Q2−unsat

T .
We observe that we cannot remove any other query from Q2−unsat

T without
nullifying its capacity of replacing QunsatT for checking satisfiability of a KB
〈T ,A′〉, for every ABox A′.

So, how can we do better?

The following example illustrates our solution based on the notions of in-
equalities saturation and proper syntactical subset of a query q

Example 36. Let K = 〈T ,A〉 be the DL-LiteA,id,den-KB of Example 35. As
shown, the following queries belong to QunsatT .

q1 = ∃x, y, z.Port(x) ∧ Port(y) ∧ of(x, z) ∧ of(y, z) ∧ connectedTo(x, y);
q2 = ∃x, y, z.of(x, z) ∧ of(y, z) ∧ connectedTo(x, y);
q3 = ∃x.connectedTo(x, x).

We compute the set Qstr containing all the queries obtained by computing the
inequality saturation of each query q ∈ QunsatT . As we show earlier, we can do
this by means of the algorithm Saturate. By focusing only on the three queries
above, we obtain that Qstr contains the following boolean queries.

q11 = ∃x, y, z.Port(x) ∧ Port(y) ∧ of(x, z) ∧ of(y, z) ∧ connectedTo(x, y)
∧x 6= y ∧ x 6= z ∧ y 6= z;

q21 = ∃x, y.Port(x) ∧ Port(y) ∧ of(x, y) ∧ of(y, y) ∧ connectedTo(x, y)∧
x 6= y;

q31 = ∃x, y.Port(x) ∧ Port(y) ∧ of(x, x) ∧ of(y, x) ∧ connectedTo(x, y)∧
x 6= y;

q41 = ∃x, z.Port(x) ∧ of(x, z) ∧ connectedTo(x, x) ∧ x 6= z;

q51 = ∃x.Port(x) ∧ of(x, x) ∧ connectedTo(x, x);

q12 = ∃x, y, z.of(x, z) ∧ of(y, z) ∧ connectedTo(x, y) ∧ x 6= y ∧ x 6= z∧
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y 6= z;

q22 = ∃x, y.of(x, y) ∧ of(y, y) ∧ connectedTo(x, y) ∧ x 6= y;

q32 = ∃x, y.of(x, x) ∧ of(y, x) ∧ connectedTo(x, y) ∧ x 6= y;

q42 = ∃x, z.of(x, z) ∧ connectedTo(x, x) ∧ x 6= z;

q52 = ∃x.of(x, x) ∧ connectedTo(x, x)

q13 = ∃x.connectedTo(x, x).

Now, we apply the notion proper syntactical subset to the queries in Qstr. It
is easy to verify that the following hold:

q12 ≺Rn q11; q22 ≺Rn q21; q32 ≺Rn q31;
q42 ≺Rn q41; q52 ≺Rn q51; q13 ≺Rn q41;
q13 ≺Rn q51; q13 ≺Rn q42; q13 ≺Rn q52;

Let Q≺Rn
str be the set computed by removing from Qstr every query q such

that there exists in Qstr a query q′ such that q′ ≺Rn q. Hence, we have:

q12 = ∃x, y, z.of(x, z) ∧ of(y, z) ∧ connectedTo(x, y) ∧ x 6= y ∧ x 6= z∧
y 6= z;

q22 = ∃x, y.of(x, y) ∧ of(y, y) ∧ connectedTo(x, y) ∧ x 6= y;

q32 = ∃x, y.of(x, x) ∧ of(y, x) ∧ connectedTo(x, y) ∧ x 6= y;

q13 = ∃x.connectedTo(x, x).

The only queries in Q≺Rn
str that evaluate to true over DB(A) are q12 and q13.

Moreover, theirs images in A are:

V 1
2 = { of(p2, d1), of(p3, d1), connectedTo(p2, p3) };
V 1
3 = { connectedTo(p1, p1) };

that coincide respectively with the two minimal T -inconsistent sets V3 and V5
of Example 35.

Given a DL-LiteA,id,den TBox T , the procedure used in the example above
can be summarized as follows:

1) compute the set QunsatT by means of the algorithm unsatQueries(T );
2) compute the set Qstr by means of the algorithm Saturate(QunsatT );
3) compute the set Q≺Rn

str as follows:
3.1) Q≺Rn

str ← Qstr;
3.2) for each pair of query q and q′ in Qstr, if q ≺Rn q′,

then remove q′ from Q≺Rn
str .
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We provide the following lemma which shows that, if T is a TBox expressed
in DL-LiteA,id,den, then, for every ABox A, we can use the set Q≺Rn

str , computed
as shown above, for checking the satisfiability of the KB 〈T ,A〉.

Lemma 43. Let T be a DL-LiteA,id,den TBox, and let A be an ABox. Then,
Mod(〈T ,A〉) = ∅ if and only if 〈∅,A〉 |= Q≺Rn

str .

Proof.
(⇒) We show that, if T is a DL-LiteA,id,den TBox and A is an ABox such
that 〈∅,A〉 |= QunsatT , then 〈∅,A〉 |= Q≺Rn

str . We proceed by contradiction.
Suppose that 〈∅,A〉 6|= Q≺Rn

str . This means that for every query q≺ in Q≺Rn
str ,

〈∅,A〉 6|= q≺. Since 〈∅,A〉 |= QunsatT , then Lemma 42 states that 〈∅,A〉 |= Qstr,
where Qstr = Saturate(QunsatT ). Hence there is a query q ∈ Qstr such that
〈∅,A〉 |= q. Since 〈∅,A〉 6|= Q≺Rn

str , then q 6∈ Q≺Rn
str . This means that there

exists in Q≺Rn
str a query q′ such that q′ ≺Rn q. Hence, there exists a renaming

function Rn(q′, q) of the variables in q′ to the variables in q, such that every
atom S(~t) occurring in Rn(q′, q) occurs also in q and an analogous renaming
from q to q′ does not exist. Since, 〈∅,A〉 |= q then there exists a substitution σ
from the variables in q to constants in A such that the formula σ(q) evaluates
to true in the interpretation DB(A). But this means that also σ(Rn(q′, q))
evaluates to true in DB(A), then we have a contradiction.
(⇐) We show that if 〈∅,A〉 |= Q≺Rn

str , then 〈∅,A〉 |= QunsatT . If 〈∅,A〉 |= Q≺Rn
str ,

then there is a query q ∈ Q≺Rn
str such that 〈∅,A〉 |= q. Since Q≺Rn

str ⊆ Qstr, then
q ∈ Qstr, and then 〈∅,A〉 |= Qstr. Finally, from Lemma 42, it follows that
〈∅,A〉 |= QunsatT .

The next lemma guarantees that, given a DL-LiteA,id-KB K = 〈T ,A〉 with
Ttype = ∅ and a query q in Q≺Rn

str such that 〈∅,A〉 |= q, every image V of q in
A is a minimal T -inconsistent set.

Lemma 44. Let K = 〈T ,A〉 be a DL-LiteA,id,den-KB with Ttype = ∅, and let
q be a query in Q≺Rn

str . Then, for every V ′ ⊂ V , where V ∈ images(q,A), and
for every q′ ∈ Q≺Rn

str , 〈∅, V ′〉 6|= q′.

Proof. Since Ttype = ∅, then every query in q belonging to QunsatT is of the form
∃z1, . . . , zk.

∧n
i=1Ai(t

1
i ) ∧

∧m
i=1 Pi(t

2
i , t

3
i ) ∧

∧`
i=1 Ui(t

4
i , t

5
i ) ∧

∧h
i=1 t

6
i 6= t7i , where

every Ai, Pi, and Ui are respectively an atomic concept name, an atomic role
name, and an attribute name appearing in T , every tei is a term (i.e., either
a constant or a variable), and z1, . . . , zk are all the variables appearing in q.
In what follows, given a query q, we denote with atoms(q), the set of atoms
occurring in q.

If K is consistent, then Lemma 43 guarantees that for every query q ∈
Q≺Rn
str , 〈∅,A〉 6|= q. Hence there is no minimal T -inconsistent set in A. Let K

be inconsistent. The proof proceeds by contradiction as follows. Let q be a
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query in Q≺Rn
str such that 〈∅,A〉 |= q, and let V ∈ images(q,A). Hence, there is

a substitution σ from the variables in q to constants in A such that the formula
σ(q) evaluates to true in the interpretation DB(V ). Obviously, every constant
occurring in q occurs also in V . Since Q≺Rn

str ⊆ Qstr, then we have constrained
t1 6= t2 for each pair of terms t1 and t2 in q. Hence, for each pair of different
variables x and y in q, σ substitutes the variable x with a constant c1 in V and
the variable y with the constant c2 in V with c1 6= c2; Let σ−1 be the inverse
function of the function σ, i.e. we have that σ−1 is the function that, for each
variable x in q and for each constant c in V , substitutes x to c iff σ substitutes
x with c.

Now, suppose that there is a query q′ ∈ Q≺Rn
str such that 〈∅, V ′〉 |= q′,

where V ′ is a proper subset of V . Clearly, since σ−1 perform a renaming of
the constant in V without unifying any constant, we have that 〈∅, σ−1(V ′)〉 |=
q′. But this means that there is a substitution σ′ from the variables in q′

to the terms in q such that each atom in σ(q′) is in atom(q). Moreover,
since q′ ∈ Q≺Rn

str , from the observations above, we have that for each pair of
variables x′ and y′ in q′, σ′ substitutes the variable x′ with the term t1 in q
and the variable y′ with the term t2 in q with t1 6= t2; and since V ′ ⊂ V , then
σ′(q′) ⊂ atoms(q). Hence, σ′ constitutes a renaming function of the variables
in q′ to the variables in q, such that every atom occurring in σ(q′) occurs also
in q′ and an analogous renaming from q′ to q does not exist. This means that
q′ ≺Rn q, which contradicts that q ∈ Q≺Rn

str .

Up to here, we have shown how computing the set QminT in that cases in
which the TBox T does not contains value-domain inclusion assertions, i.e.,
where Ttype = ∅. Now, we turn to the case where Ttype may be non-empty.

In Section 5.1, it is shown that a DL-LiteA,id,den-KB can be affected by
inconsistencies caused by erroneous assignments of values to attributes, i.e.,
inconsistencies arising when a value of type Ti is assigned to an attribute of
value-type Tj . This kind of inconsistency is properly detected by the algorithm
SatisfiableDA(K) by means of queries inQunsatT of the form ∃x, y.U(x, y)∧Tj(y),
where U is an attribute name, and Tj is a value-domain. More precisely, if a
TBox T entails that the range of an attribute U is of type Ti , i.e., T |=
ρ(U) v Ti, in the set cln(T ) are added the queries ∃x, y.U(x, y) ∧ Tj(y), for
each value-domain Tj in T1, . . . , Tn different to Ti. We recall that for every
value v occurring in an ABox, we assume that there is a predefined value-
domain Ti, such that val(v) ∈ val(Ti).

The following example points out the issue related to this kind of inconsis-
tency in computing QminT .

Example 37. Let T be the TBox presented in Example 2. Specifically, here,
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we are interested in the following TBox assertions:

Ttype = { ρ(number) v xsd:integer }
Tid = { (id Port number, of ) }

In words, the assertion in Ttype states that the range of the attribute number is
restricted to be an integer, while the identification assertion imposes that there
cannot exist two different ports of the same device having the same number.
The queries in QunsatT originated from the assertions above are given below.
For sake of brevity, we assume that each constant v in ΓV is interpreted as
a specific value val(v) belonging to val(xsd:integer) ∪ val(xsd:string) ∪
val(xsd:dateTime). In other words, the value type that we are considering
here are only those corresponding respectively to the data types xsd:integer,
xsd:string, and xsd:dateTime.

q1 = ∃x, y, d, n.Port(x) ∧ of(x, d) ∧ number(x, n)∧
Port(y) ∧ of(y, d) ∧ number(y, n) ∧ x 6= y;

q2 = ∃x, y, d, n.of(x, d) ∧ number(x, n)∧
of(y, d) ∧ number(y, n) ∧ x 6= y;

q3 = ∃x, y.number(x, y) ∧ xsd:string(y);

q4 = ∃x, y.number(x, y) ∧ xsd:dateTime(y).

Consider the following ABox:

A = { Port(p1), of(p1, d1),number(p1, ‘9XK11’),
Port(p2), of(p2, d1),number(p2, ‘9XK11’) }

where ‘9XK11’ is a string. Clearly, the DL-LiteA,id,den-KB K = 〈T ,A〉 is incon-
sistent. Indeed, the following K-clashes are pinpointed by InconsistentSets(K).

V1 = { Port(p1), of(p1, d1),number(p1, ‘9XK11’),
Port(p2), of(p2, d1),number(p2, ‘9XK11’) }

V2 = { of(p1, d1),number(p1, ‘9XK11’),
of(p2, d1),number(p2, ‘9XK11’) }

V3 = { number(p1, ‘9XK11’) }
V4 = { number(p2, ‘9XK11’) }

It is easy to see that only V3 and V4 are minimal T -inconsistent sets. Indeed,
both the assertions number(p1, ‘9XK11’) and number(p2, ‘9XK11’) violate the
assertion ρ(number) v ¬xsd:string ∈ cln(T ) originated by the assertion
ρ(number) v xsd:integer in T and by expliciting the disjointness between
the various predefined value-domains.

Now, we try to apply the technique adopted in Example 36, i.e. we first
compute the set Saturate(QunsatT ), and then we remove from the resulting set
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every query q for which there exists in the set another query q′ such that
q′ ≺Rn q. We denote the resulting set with Q≺Rn

str . It is given below.

q12 = ∃x, y, d, n.of(x, d) ∧ number(x, n) ∧ of(y, d) ∧ number(y, n)∧
x 6= y ∧ x 6= d ∧ x 6= n ∧ y 6= d ∧ y 6= n ∧ d 6= n;

q22 = ∃x, y, n.of(x, y) ∧ number(x, n) ∧ of(y, y) ∧ number(y, n)∧
x 6= y ∧ x 6= n ∧ y 6= n;

q32 = ∃x, y, n.of(x, x) ∧ number(x, n) ∧ of(y, x) ∧ number(y, n)∧
x 6= y ∧ x 6= n ∧ y 6= n;

q13 = ∃x, y.number(x, y) ∧ xsd:string(y);

q14 = ∃x, y.number(x, y) ∧ xsd:dateTime(y).

Observe that both q12 and q13 evaluate to true over the interpretationDB(A),
but only for each V ∈ images(q13,A) we have that V is a minimal T -inconsistent
set.

The example above shows that, if we are considering DL-LiteA,id,den TBoxes
with Ttype 6= ∅, the procedure adopted in Example 36 may miss computing a
set with the same feature of QminT . Indeed, by referring to Example 37, the q12
query must evaluate to true over DB(A) only in that cases where the variable
n in the query is substituted with a values v belonging to val(xsd:integer).
A direct method to achieve this target is forcing in the query the variable n to
be an integer. That is, modifying q12 in the following manner:

q12 = ∃x, y, d, n.of(x, d) ∧ number(x, n) ∧ of(y, d) ∧ number(y, n)∧
x 6= y ∧ x 6= d ∧ x 6= n ∧ y 6= d ∧ y 6= n ∧ d 6= n∧
xsd:integer(n);

Clearly, the above describe method, adopted for avoiding the error pointed
out by Example 37, has to be extended to the general case. That is, given a
DL-LiteA,id,den TBox, for each query q in Saturate(QunsatT ), and for each atom
U(t1, t2) in q, where U is an attribute name, if T |= ρ(U) v Ti and there exist
no atoms Tj(t2) in q, then we have to substitute the atom U(x, y) in q with
the conjunction of atoms U(t1, t2) ∧ Ti(y).

By exploiting the results given above, it easy to come up with a method
for computing the set QminT from a DL-LiteA,id,den TBox T . Thus, we are now
ready to present the algorithm minUnsatQueries(T ) for computing QminT .
The algorithm proceeds as follows.

Step 1 The algorithm initializes QunsatT to the set unsatQueries(T ).

Step 2 The algorithm computes the set Qstr through the algorithm Saturate.
Starting from each query q ∈ Qstr, such an algorithm first unifies pairs
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Input: a DL-LiteA,id,den TBox T
Output: a set of queries
begin
QunsatT ← unsatQueries(T ); /* step 1 */
Qstr ← Saturate(QunsatT ); /* step 2 */
Q′str ← Qstr;
foreach q ∈ Q′str do /* step 3 */

foreach atom U(t, t′) in q do
if there exists no atom T (t′) in q then

foreach value-domain Ti in {T1, . . . Tn} do
if T |= ρ(U) v Ti then
Q′str ← Q′str \ {q};
Q′str ← Q′str ∪ {q ∧ Ti(t′)};

foreach q ∈ Q′str do /* step 4 */
foreach term t occurring in q do

if both Ti(t) and Tj(t) occur in q, with i 6= j then
Q′str ← Q′str \ {q};

foreach q and q′ in Q′str do /* step 5 */
if q ≺Rn q′ then
Q′str ← Q′str \ {q′};

return Q′str; /* step 6 */
end

Algorithm 18: minUnsatQueries(T )

of compatible terms in q in all possible ways; then, for any query q′

computed in this way, for each pair of terms t1 and t2 occurring in q′

that are syntactically different, it adds the inequality atom t1 6= t2 to q′.

Step 3 Let {T1 . . . Tn} be the set of value-domains. The algorithm computes
the set Q′str by producing from each query q ∈ Qstr the following query:
for each atom U(x, y), where U is an attribute name, if no atoms T (y)
appears in q, where T is a value-domain, then for each Ti ∈ {T1 . . . Tn}, if
T |= ρ(U) v Ti, then the algorithm builds a new queries by substituting
the atom U(x, y) with the conjunction of atoms U(x, y) ∧ Ti(y).

Step 4 The algorithm removes from Q′str every query q in which a term t
occurs in two atoms of the form Ti(t) and Tj(t) with i 6= j. This is
an optimizing step, indeed, since Ti and Tj are disjoint then for each
constant c in ΣV , T1(c) ∧ T2(c) is a contradiction.

Step 5 The algorithm removes from the set Q′str each query q′ such that
there is in Q′str a different query q whose atoms form, up to renaming
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of the variables in q, a proper subset of the atoms appearing in q′. This
simplified form of query containment guarantees that for every ABox A
and every query q in Q′str, there does not exist a query q′ in Q′str, such
that for every image V ∈ images(q,A), 〈∅, V ′〉 |= q′ where V ′ ⊂ V .

Step 6 The algorithm terminates by returning the set Q′str.

Example 38. Let us focus on the same portion of the TBox T of Example 2
considered in Example 37. The set minUnsatQueries(T ) contains, among the
others, the following queries:

q12 = ∃x, y, d, n.of(x, d) ∧ number(x, n) ∧ of(y, d) ∧ number(y, n)∧
xsd:integer(n) ∧ x 6= y ∧ x 6= d ∧ x 6= n ∧ y 6= d ∧ y 6= n ∧ d 6= n;

q22 = ∃x, y, n.of(x, y) ∧ number(x, n) ∧ of(y, y) ∧ number(y, n)∧
xsd:integer(n) ∧ x 6= y ∧ x 6= n ∧ y 6= n;

q32 = ∃x, y, n.of(x, x) ∧ number(x, n) ∧ of(y, x) ∧ number(y, n)∧
xsd:integer(n) ∧ x 6= y ∧ x 6= n ∧ y 6= n;

q13 = ∃x, y.number(x, y) ∧ xsd:string(y);

q14 = ∃x, y.number(x, y) ∧ xsd:dateTime(y).

We now prove termination and complexity of the algorithmminUnsatQueries.

Lemma 45. Let T be a DL-LiteA,id,den TBox. Then, minUnsatQueries(T )
terminates and runs in exponential time with respect to the size of T .

Proof. The proof follows immediately from considering each steps of the
algorithm.

1. In order to compute the set QunsatT the algorithm makes use of the algo-
rithm unsatQueries(T ). Lemma 9 guarantees that unsatQueries(T ) ter-
minates, and from Lemma 4 it follows that it runs in polynomial time in
the size of T .

2. The algorithm computesQstr by means of the algorithm Saturate(QunsatT ).
Lemma 41 shows that Saturate(QunsatT ) terminates and that runs in ex-
ponential time with respect to the size of QunsatT .

3. The algorithm compute the set Q′str as follows: (i) for each query q
in Qstr, if an atom U(x, y) occurs in q and no atom T (y) occurs in q,
then for each Ti ∈ {T1, . . . Tn} it checks if T |= ρ(U) v Ti (this step
can be done in polynomial time with respect to the size of T ); (ii) if
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T |= ρ(U) v Ti, then the algorithm substitutes in q the atom U(x, y)
with the conjunction of atoms U(x, y)∧Ti(y). Hence, the procedure can
be done in polynomial time with respect to Qstr and {T1, . . . Tn}. No
queries are added or removed. Hence, |Q′str| = |Qstr|.

4. For each query q in Q′str and for each term t in q, the algorithm checks
if t occurs in two atoms of the form Ti(t) and Tj(t). In this case, it
removes q from Q′str. This step can be clearly done in polynomial time
with respect to |Q′str|. No query are added to Q′str during the process,
hence the resulting set has cardinality less than or equal to Q′str.

5. Finally, the algorithm removes from the set obtained by the previous
step each query q such that there is another query q′ such that q′ ≺Rn q.
Since Q′str is finite, then also this step terminates in polynomial time
with respect to |Q′str|.

The following lemmas show that, given a DL-LiteA,id,den TBox, we can use
the algorithm minUnsatQueries(T ) for computing the set QminT . The proofs
are omitted since they can be straightforwardly adapted respectively from the
proof of Lemma 43 and from the proof of Lemma 44, by observing that for
each constant c in ΣV , the sentence T1(c)∨, . . . ,∨Tn(c) evaluates to true over
every ABox, and that T1(c)∧, . . . ,∧Tn(c) is a contradiction.

The next lemma states that the algorithm minUnsatQueries(T ) can be used
for checking if a DL-LiteA,id,den-KB K = 〈T ,A〉 is consistent.

Lemma 46. Let K = 〈T ,A〉 be a possibly inconsistent DL-LiteA,id,den-KB.
Then, 〈∅,A〉 |= minUnsatQueries(T ) if and only if 〈∅,A〉 |= unsatQueries(T ).

Note that, from the lemma above, it directly follows that Theorem 6 also
holds with minUnsatQueries(T ) in place of unsatQueries(T ).

The following crucial lemma guarantees that one can use the queries pro-
duced byminUnsatQueries(T ) in order to compute every minimal T -inconsistent
set in A.

Lemma 47. Let K = 〈T ,A〉 be a possibly inconsistent DL-LiteA,id,den-KB,
and let q be a query in minUnsatQueries(T ). If 〈∅,A〉 |= q, then every image
of q in A is a minimal T -inconsistent set.

With the algorithm minUnsatQueries(T ) in place we can provide our rewrit-
ing technique for query answering under IAR-semantics.

Let α, β be two atoms. We say that β is compatible with α if there exists a
mapping µ of the variables occurring in β to the terms occurring in α such that
µ(β) = α (and in this case we denote the above mapping µ with the symbol



182 Chapter 9. Query answering over inconsistent DL-LiteA,id,den KBs

µα/β). Given an atom α and a query q, we denote by CompSet(α, q) the set
of atoms of q which are compatible with α. Then, let T be a DL-LiteA,id,den
TBox and let α be an atom, we define MinIncSetT (α) as follows.

MinIncSetT (α) =
∨

q∈minUnsatQueries(T )∧CompSet(α,q)6=∅

 ∨
β∈CompSet(α,q)

µα/β(q)


The following key property holds.

Theorem 37. Let 〈T ,A〉 be a possibly inconsistent DL-LiteA,id,den-KB, and
let α be an ABox assertion. There exists a minimal T -inconsistent set V in A
such that α ∈ V if and only if 〈∅,A〉 |= MinIncSetT (α).

Proof.
(⇒) Let α(~v) be an ABox assertion. We prove that if there is a minimal T -
inconsistent set V in A that contains α(~v), then 〈∅,A〉 |= MinIncSetT (α(~v)).
Suppose, by way of contradiction, that 〈∅,A〉 6|= MinIncSetT (α(~v)). Since V
is a minimal T -inconsistent set in A, then Lemma 47 guarantees that there is
a query q in minUnsatQueries(T ) such that V ∈ images(q,A). This means that
there is a substitution σ from the variables in q to the constants in V such
that the formula σ(q) evaluates to true over DB(V ). Since α(~v) ∈ V , then
there is in q an atom α(~t) such that σ(α(~t)) = α(~v). But this means that the
query µα(~v)/α(~t)(q) evaluates to true in DB(V ). Since α(~t) is clearly compat-
ible with α(~v) then, by considering the union of queries MinIncSetT (α(~v))
as set of queries, we have that µα(~v)/α(~t)(q) ∈ MinIncSetT (α(~v)). Thus,
〈∅, V 〉 |= MinIncSetT (α(~v)), and then 〈∅,A〉 |= MinIncSetT (α(~v)), which is a
contradiction.
(⇐) We show that if 〈∅,A〉 |= MinIncSetT (α) then there is a minimal T -
inconsistent set V in A such that α ∈ V . Suppose, toward a contradiction,
that there is no minimal T -inconsistent set V in A such that α ∈ V . Let us
consider MinIncSetT (α) as a set of queries. Hence, there is in MinIncSetT (α)
a query q such that 〈∅,A〉 |= q. Moreover, for every V ′ in images(q,A), we have
that α ∈ V ’. Clearly, for each V ′ ∈ images(q,A), we have that 〈∅, V ′〉 |= q.
Since q ∈ MinIncSetT (α), then there is in minUnsatQueries(T ) a query q′ and
an atom β in q′ such that q = µα/β(q′). Since q′ is more general than q, then
images(q,A) ⊆ images(q′,A). Hence, for each V ′ ∈ images(q,A), we have that
V ′ ∈ images(q′,A). Finally, by exploiting Lemma 47, we conclude that every
V ′ ∈ images(q,A) is a minimal T -inconsistent set. Thus, there is a minimal
T -inconsistent set V such that α ∈ V , which is a contradiction.
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Let T be a DL-LiteA,id,den TBox, and let q be a BCQ with inequalities of
the form

∃z1, . . . , zk.
n∧
i=1

Ai(t
1
i ) ∧

m∧
i=1

Pi(t
2
i , t

3
i ) ∧

∧̀
i=1

Ui(t
4
i , t

5
i ) ∧

h∧
i=1

t6i 6= t7i (9.1)

where every Ai is an atomic concept, every Pi is an atomic role, every Ui
is an attribute, every tei is a term (i.e., either a constant or a variable), and
z1, . . . , zk are all the variables appearing in q. We denote by IncRewr IAR(q, T )
the following FOL-sentence:

∃z1, . . . , zk.
∧n
i=1Ai(t

1
i ) ∧ ¬MinIncSetT (Ai(t
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i )) ∧∧m
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Let Q be a set of queries of the form (9.1), we define

IncRewrUCQIAR(Q, T ) =
∨
qi∈Q

IncRewr IAR(qi, T ).

We are then able to give our final results on reformulation of UCQs under the
IAR-semantics. In the theorem below, PerfectRef coincides with the algorithm
of [95]. We recall that this algorithm takes as input the set of positive in-
clusions Tinc and the query Q, and computes the perfect reformulation under
FOL-semantics of Q with respect to Tinc. PerfectRef(Q, Tinc) returns a set of
CQs specified over T . Through this reformulation we first preprocess each
query according to “positive” knowledge of the TBox, and then manage it for
dealing with possible inconsistencies. Then, the algorithm Saturate previously
described is applied to the queries thus obtained producing a set of boolean
CQ with inequalities of the form (9.1). Theorem 36 guarantees that the ap-
plication of the algorithm Saturate does not affect the result of the evaluation
of a query. This step is necessary for technical reasons. Roughly speaking, for
each query atom α, this step is indispensable for exactly identifying the queries
in minUnsatQueries(T ), whose images correspond to inconsistent sets to which
an image of α might belong. According to the definition of IncRewrUCQIAR,
this query is finally reformulated.

Theorem 38. Let T be a DL-LiteA,id,den TBox and let Q be a boolean UCQ.
For every ABox A, we have that 〈T ,A〉 |=IAR Q if and only if

〈∅,A〉 |= IncRewrUCQIAR(Saturate(PerfectRef(Q, Tinc)), T ).
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Proof.
(⇒) Let Q be a boolean union of conjunctive queries represented as a set of
queries. We show that if 〈T ,A〉 |=IAR Q then

〈∅,A〉 |= IncRewrUCQIAR(Saturate(PerfectRef(Q, Tinc)), T ).

Since 〈T ,A〉 |=IAR Q then, from Corollary 3, if follows that there are a query
q ∈ Q and a set of ABox assertions A′ ⊆ A, such that: (i) A′ is T -consistent;
(ii) 〈T ,A′〉 |= q; (iii) A′ ∩ V = ∅ for every V ∈ minIncSets(K). Since
there is a T -consistent set of ABox assertions A′ ⊆ A, such that 〈T ,A′〉 |= q,
then from Lemma 13 we have that 〈∅,A′〉 |= PerfectRef(q, Tinc), and there-
fore, 〈∅,A〉 |= PerfectRef(q, Tinc). Theorem 36 guarantees that, if 〈∅,A〉 |=
PerfectRef(q, Tinc), then 〈∅,A〉 |= Saturate(PerfectRef(q, Tinc)). This means
that there is in Saturate(PerfectRef(q, Tinc)) a query q′ such that 〈∅,A′〉 |=
q′. Let q′ = ∃~z.

∧n
i=1 Si(~ti) ∧

∧h
i=1 t

′
i 6= t′′i . Since A′ ∩ V = ∅ for every

V ∈ minIncSets(K), then Theorem 37 guarantees that for every assertions
α ∈ A′, 〈∅,A′〉 6|= MinIncSetT (α). Hence, for every α ∈ A′ the sentence
¬(MinIncSetT (α)) evaluates to true in DB(A′). Hence the query

q′iar = ∃~z.
n∧
i=1

Si(~ti) ∧ ¬MinIncSetT (Si(~ti)) ∧
h∧
i=1

t′i 6= t′′i

evaluates to true in DB(A′). Since q′iar = IncRewr IAR(q′, T ), then q′iar ∈
IncRewr IAR(Saturate(PerfectRef(q, Tinc)), T ). Moreover, since q ∈ Q, then
q′iar ∈ IncRewrUCQIAR(Saturate(PerfectRef(Q, Tinc)), T ). This means that

〈∅,A′〉 |= IncRewrUCQIAR(Saturate(PerfectRef(Q, Tinc)), T ).

From the fact that A′ ⊆ A, we can conclude that

〈∅,A〉 |= IncRewrUCQIAR(Saturate(PerfectRef(Q, Tinc)), T ).

Hence, the thesis is true.

(⇐) Let QIAR
rew = IncRewrUCQIAR(Saturate(PerfectRef(Q, Tinc)), T ). Suppose

that 〈∅,A〉 |= QIAR
rew . We show that 〈T ,A〉 |=IAR Q. Let q be a query in QIAR

rew

such that 〈∅,A〉 |= q. Suppose that q is as follows

∃~z.
n∧
i=1

Si(~ti) ∧ ¬MinIncSetT (Si(~ti)) ∧
h∧
i=1

t′i 6= t′′i

Since 〈∅,A〉 |= q, then, for each Si(~ti) with 1 ≤ i ≤ n, MinIncSetT (Si(~ti)) is
false in DB(A). Let q′ be the query in Saturate(PerfectRef(Q, Tinc)) such that
q = IncRewr IAR(q′, T ). Since 〈∅,A〉 |= q, then we have that 〈∅,A〉 |= q′ and,
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from Theorem 37, that for every assertion α ∈ A′, with A′ ∈ images(q′,A),
we have that α 6∈ V , for each V ∈ minIncSets(K). Thus, for each V ∈
minIncSets(K), A′ ∩ V = ∅, and therefore A′ is a T -consistent subset of
A. From Lemma 13 and Theorem 36 we have that there is in Q a query
q′′ such that q′ ∈ Saturate(PerfectRef(q′′, Tinc)), and such that 〈T ,A′〉 |= q′′.
Hence, (i) A′ is T -consistent; (ii) 〈T ,A′〉 |= q′′; (iii) A′ ∩ V = ∅ for every
V ∈ minIncSets(K). Since q′′ ∈ Q, then from Corollary 3, it follows that
〈T ,A〉 |=IAR Q. Hence, we have the claim.

The following complexity result is a consequence of Theorem 38, since es-
tablishing whether 〈∅,A〉 |= IncRewrUCQIAR(Saturate(PerfectRef(Q, Tinc)), T )
simply amounts to evaluating a FOL-query over the ABox A, which is in AC 0

in data complexity, that is, the complexity computed with respect to the size
of the ABox only.

Corollary 5. Let K be a DL-LiteA,id,den-KB and let Q be a UCQ. Deciding
whether K |=IAR Q is in AC 0 in data complexity.

Proof. The proof follows from Theorem 38 and from the complexity of evalu-
ation of FOL-queries over relational databases in data complexity [1].

Corollary 5 and Lemma 45, together with the complexity results given in
Section 5.1 and in Section 5.2 allow us to give the following theorem.

Theorem 39. Let K be a DL-LiteA,id,den-KB and let Q be a UCQ. Deciding
whether K |=IAR Q can be done in AC 0 with respect to |A|, and in exponential
time with respect to |T | and |Q|.

Proof. The proof follows from the following observations:

1. Corollary 5 guarantees that K |=IAR Q can be decided in AC 0 with
respect to |A|.

2. From Lemma 4 we have that the perfect reformulation of a query q ∈ Q
can be computed in polynomial time in the size of T and in expo-
nential time with respect to |q|. Lemma 41 shows that we can com-
pute Saturate(PerfectRef(Q, Tinc)) in exponential time with respect to
|PerfectRef(Q, Tinc)|.

3. Lemma 45 states that the set QminT can be computed in exponential time
with respect to T . Hence, given a query q, IncRewr IAR(q, T ) can be com-
puted in polynomial time with respect |q| and in exponential time with
respect to |T |. Thus, since q is a query in Saturate(PerfectRef(Q, Tinc)),
we obtain the claim.
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With the aim to clarify our technique for computing FOL-rewritings of
BUCQs under the IAR-semantics, we conclude this section by presenting an
example illustrating the whole procedure.

Example 39. In this example we consider a simple DL-LiteA,id,den-KB K =
〈T ,A〉 describing a portion of the domain of Airports and Flights.

The TBox T is constituted by the following assertions.

• the set Tinc contains the following assertions:

− Flight v ∃arrival, − Flight v ∃departure,
− ∃arrival v Flight, − ∃departure v Flight,
− ∃arrival− v Airport, − ∃departure− v Airport,
− Airport v δ(name), − ∃locatedIn v Airport,
− Airport v ∃locatedIn, − ∃locatedIn− v City,
− City v δ(name);

• the set Ttype contains the following assertion:

− ρ(name) v xsd:string;

• the set Tdisj contains the following assertions:

− Flight v ¬Airport,
− Airport v ¬City,
− Flight v ¬City;

• the set Tfunct contains the following functionality assertions:

− (funct locatedIn), − (funct name),
− (funct departure), − (funct arrival);

• the set Tid contains the following identification assertion:

− (id City name),
− (id Airport name, locatedIn);

• the set Tden contains the following assertions:

− ∀x, y.(arrival(x, y) ∧ departure(x, y) → ⊥)
− ∀x, y, w, c.(arrival(x, y) ∧ locatedIn(y, c) ∧ departure(x,w)∧

locatedIn(w, c) → ⊥)
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Figure 9.1: Airports and Flights scenario

In words, T specifies that every Airport is located in (role locatedIn) exactly
one City, and that every Airport has exactly one name that is a string. By means
of the identification assertion (id Airport name, locatedIn) we impose that two
Airports with the same name cannot be located in the same City. The role
locatedIn has Airport as domain and City as range. Every City has exactly one
name. The identification assertion (id City name) imposes that there cannot
be two City instances with the same name. Moreover, every Flight takes off
from exactly one Airport (role departure) and lands in exactly one Airport (role
arrival). Both roles departure and arrival have Flight as domain and Airport as
range. Finally, a Flight is neither an Airport nor a City, and a City is not an
Airport.

In order to better express the domain of interest, we include in the TBox
the denial assertions in Tden. The first denial assertion imposes that a Flight
cannot depart from the same Airport in which it arrives, and the second one
imposes that a Flight cannot link two airports located in the same City. The
TBox T can be depicted by means of the diagram presented in Figure 9.1.

For this example we consider the ABox A as formed by the following ABox
assertions.

Airport(LHR), locatedIn(LHR, london), Flight(f1),
arrival(f1, LHR), departure(f1, LHR).

It is easy to see that the KB K is inconsistent because both the denial assertions
in T are violated by the following set of ABox assertions.

AR = {departure(f1, LHR), arrival(f1, LHR), locatedIn(LHR, london)}
A′

R = {departure(f1, LHR), arrival(f1, LHR))}

Note that the set AR is not a minimal T -inconsistent set, indeed the set A′R
violates the first denial assertion in the TBox and is a proper subset of AR. The
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set AR-Set(K) containing the A-repairs of K is constituted by the following
sets of ABox assertions.

Arep1 = {Airport(LHR),Flight(f1), arrival(f1, LHR), locatedIn(LHR, london)}
Arep2 = {Airport(LHR),Flight(f1), departure(f1, LHR), locatedIn(LHR, london)}

Suppose we are interested in asking if an airport located in london exists.
We can do this by evaluating the following boolean query q.

q = ∃x.locatedIn(x, london)

One can immediately verify that K |=IAR q. Indeed we have that

〈T ,
⋂

Ai∈AR-Set(K)

A1〉 = 〈T , {Airport(LHR),Flight(f1), locatedIn(LHR, london)}〉 |= q

In what follows, we show how our technique computes the IAR-perfect
rewriting of q. For reasons related to the size of the result produced by the
procedure, we suppose here that the only assertions in the TBox that can be
violated by facts in the ABox are the two denial assertions in T . For the same
reasons, we do not illustrate the steps of the algorithmminUnsatQueries(T ) that
concern violations caused by erroneous assignments of values to attributes. In
other words, we consider the TBox T constituted as follows:

• the set Tinc contains the following positive assertions:

− Flight v ∃arrival, − Flight v ∃departure,
− ∃arrival v Flight, − ∃departure v Flight,
− ∃arrival− v Airport, − ∃departure− v Airport,
− ∃locatedIn v Airport, − ∃locatedIn− v City,
− Airport v ∃locatedIn;

• the set Tden contains the following denial assertions:

− ∀x, y.(arrival(x, y) ∧ departure(x, y) → ⊥)
− ∀x, y, w, c.(arrival(x, y) ∧ locatedIn(y, c) ∧ departure(x,w)∧

locatedIn(w, c) → ⊥);

• moreover, we consider Ttype ∪ Tdisj ∪ Tfunct ∪ Tid = ∅.

We start illustrating how the algorithm minUnsatQueries(T ) proceeds.

Since Ttype∪Tdisj∪Tfunct∪Tid = ∅, the set cln(T ) coincides with Tden. The
first step of minUnsatQueries(T ) consists in computing the set unsatQueries(T )
as follows: it first computes for each assertion τ ∈ cln(T ) the boolean query
corresponding to the negation of τ by means of the translation function ϕ
presented in Section 5.1, and then computes the perfect reformulation under
FOL-semantics of such query by means of the algorithm PerfectRef 6=.

The set unsatQueries(T ) contains the following queries.
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q′ = ∃x, y.arrival(x, y) ∧ departure(x, y)
q′′ = ∃x, y, w, c.arrival(x, y) ∧ locatedIn(y, c) ∧ departure(x,w) ∧ locatedIn(w, c)

The second step consists in computing the set Saturate(unsatQueries(T )).
The resulting set is constituted by the following queries.

q1 = ∃x, y.arrival(x, y) ∧ departure(x, y) ∧ x 6= y
q2 = ∃x.arrival(x, x) ∧ departure(x, x)
q3 = ∃x, y, w, c.arrival(x, y) ∧ locatedIn(y, c) ∧ departure(x,w) ∧ locatedIn(w, c)∧

x 6= y ∧ x 6= w ∧ x 6= c ∧ y 6= w ∧ y 6= c ∧ w 6= c
q4 = ∃x, y, w.arrival(x, y) ∧ locatedIn(y, c) ∧ departure(x, c) ∧ locatedIn(c, c)∧

x 6= y ∧ x 6= c ∧ y 6= c
q5 = ∃x,w, c.arrival(x, c) ∧ locatedIn(c, c) ∧ departure(x,w) ∧ locatedIn(w, c)∧

x 6= w ∧ x 6= c ∧ w 6= c
q6 = ∃y, w, c.arrival(c, y) ∧ locatedIn(y, c) ∧ departure(c, w) ∧ locatedIn(w, c)∧

y 6= w ∧ y 6= c ∧ w 6= c
q7 = ∃x,w, c.arrival(x,w) ∧ locatedIn(w, c) ∧ departure(x,w) ∧ locatedIn(w, c)∧

x 6= w ∧ x 6= c ∧ w 6= c
q8 = ∃y, w, c.arrival(w, y) ∧ locatedIn(y, c) ∧ departure(w,w) ∧ locatedIn(w, c)∧

y 6= w ∧ y 6= c ∧ w 6= c
q9 = ∃y, w, c.arrival(y, y) ∧ locatedIn(y, c) ∧ departure(y, w) ∧ locatedIn(w, c)∧

y 6= w ∧ y 6= c ∧ w 6= c
q10 = ∃x, y.arrival(x, y) ∧ locatedIn(y, y) ∧ departure(x, y) ∧ locatedIn(y, y)∧

x 6= y
q11 = ∃x, y.arrival(x, y) ∧ locatedIn(y, x) ∧ departure(x, x) ∧ locatedIn(x, x)∧

x 6= y
q12 = ∃x,w.arrival(x,w) ∧ locatedIn(w,w) ∧ departure(x,w) ∧ locatedIn(w,w)∧

x 6= w
q13 = ∃x,w.arrival(x, x) ∧ locatedIn(x, x) ∧ departure(x,w) ∧ locatedIn(w, x)∧

x 6= w
q14 = ∃x, c.arrival(x, c) ∧ locatedIn(c, c) ∧ departure(x, c) ∧ locatedIn(c, c)∧

x 6= c
q15 = ∃x, c.arrival(x, x) ∧ locatedIn(x, c) ∧ departure(x, x) ∧ locatedIn(x, c)∧

x 6= c
q16 = ∃y, w.arrival(w, y) ∧ locatedIn(y, w) ∧ departure(w,w) ∧ locatedIn(w,w)∧

y 6= w
q17 = ∃y, w.arrival(y, y) ∧ locatedIn(y, y) ∧ departure(y, w) ∧ locatedIn(w, y)∧

y 6= w
q18 = ∃y, c.arrival(c, y) ∧ locatedIn(y, c) ∧ departure(c, c) ∧ locatedIn(c, c)∧

y 6= c
q19 = ∃y, c.arrival(y, y) ∧ locatedIn(y, c) ∧ departure(y, y) ∧ locatedIn(y, c)∧

y 6= c
q20 = ∃w, c.arrival(c, c) ∧ locatedIn(c, c) ∧ departure(c, w) ∧ locatedIn(c, c)∧

w 6= c
q21 = ∃w, c.arrival(w,w) ∧ locatedIn(w, c) ∧ departure(w,w) ∧ locatedIn(w, c)∧

w 6= c
q22 = ∃x.arrival(x, x) ∧ departure(x, x) ∧ locatedIn(x, x)
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As we said above, we are not considering those parts of the rewriting process
concerning violations caused by erroneous assignments of values to attributes.
For this reason, by skipping steps 3 and 4, we go directly to analyze step 5
of minUnsatQueries(T ). This step requires to remove, from the above set of
queries, each query q′ such that there exists a different query q in the set
whose atoms form, up to renaming of the variables in q, a proper subset of the
atoms appearing in q′. For instance, the set of atoms in the query

q1 = ∃x, y.arrival(x, y) ∧ departure(x, y) ∧ x 6= y

forms, up to renaming of variables, a subset of the set of atoms occurring in
the query

q7 = ∃x,w, c.arrival(x,w) ∧ locatedIn(w, c) ∧ departure(x,w) ∧ locatedIn(w, c)∧
x 6= w ∧ x 6= c ∧ w 6= c

The set of queries resulting from step 5 contains the following queries, which
constitutes the set returned by minUnsatQueries(T ):

q1 = ∃x, y.arrival(x, y) ∧ departure(x, y) ∧ x 6= y
q2 = ∃x.arrival(x, x) ∧ departure(x, x)
q3 = ∃x, y, w, c.arrival(x, y) ∧ locatedIn(y, c) ∧ departure(x,w) ∧ locatedIn(w, c)∧

x 6= y ∧ x 6= w ∧ x 6= c ∧ y 6= w ∧ y 6= c ∧ w 6= c
q4 = ∃x, y, c.arrival(x, y) ∧ locatedIn(y, c) ∧ departure(x, c) ∧ locatedIn(c, c)∧

x 6= y ∧ x 6= c ∧ y 6= c
q5 = ∃x,w, c.arrival(x, c) ∧ locatedIn(c, c) ∧ departure(x,w) ∧ locatedIn(w, c)∧

x 6= w ∧ x 6= c ∧ w 6= c
q6 = ∃y, w, c.arrival(c, y) ∧ locatedIn(y, c) ∧ departure(c, w) ∧ locatedIn(w, c)∧

y 6= w ∧ y 6= c ∧ w 6= c
q8 = ∃y, w, c.arrival(w, y) ∧ locatedIn(y, c) ∧ departure(w,w) ∧ locatedIn(w, c)∧

y 6= w ∧ y 6= c ∧ w 6= c
q9 = ∃y, w, c.arrival(y, y) ∧ locatedIn(y, c) ∧ departure(y, w) ∧ locatedIn(w, c)∧

y 6= w ∧ y 6= c ∧ w 6= c
q11 = ∃x, y.arrival(x, y) ∧ locatedIn(y, x) ∧ departure(x, x) ∧ locatedIn(x, x)∧

x 6= y
q13 = ∃x,w.arrival(x, x) ∧ locatedIn(x, x) ∧ departure(x,w) ∧ locatedIn(w, x)∧

x 6= w
q16 = ∃y, w.arrival(w, y) ∧ locatedIn(y, w) ∧ departure(w,w) ∧ locatedIn(w,w)∧

y 6= w
q17 = ∃y, w.arrival(y, y) ∧ locatedIn(y, y) ∧ departure(y, w) ∧ locatedIn(w, y)∧

y 6= w
q18 = ∃y, c.arrival(c, y) ∧ locatedIn(y, c) ∧ departure(c, c) ∧ locatedIn(c, c)∧

y 6= c
q20 = ∃w, c.arrival(c, c) ∧ locatedIn(c, c) ∧ departure(c, w) ∧ locatedIn(c, c)∧

w 6= c
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With the result of the algorithm minUnsatQueries(T ) in place, we can com-
pute the set of FOL-sentences

IncRewr IAR(Saturate(PerfectRef(q, Tinc)), T )

that corresponds to the AR-perfect rewriting of the query q. It is easy to see
that the set Saturate(PerfectRef(q, Tinc)) is constituted by the following queries.

qu1 = ∃x.locatedIn(x, london)
qu2 = locatedIn(london, london)

Finally, for each query qu in Saturate(PerfectRef(q, Tinc)), we compute the FOL-
sentence IncRewr IAR(qu, T ). Below we give an hint of the result.

IncRewr IAR(∃x.locatedIn(x, london), T ) =
∃x.locatedIn(x, london)∧
¬(∃x′, w.arrival(x′, x) ∧ locatedIn(x, london) ∧ departure(x′, w) ∧ locatedIn(w, london)∧
x′ 6= x ∧ x′ 6= w ∧ x′ 6= london ∧ x 6= w ∧ x 6= london ∧ w 6= london

∨ ∃x′, y.arrival(x′, y) ∧ locatedIn(y, london) ∧ departure(x′, x) ∧ locatedIn(x, london)∧
x′ 6= y ∧ x′ 6= x ∧ x′ 6= c ∧ y 6= x ∧ y 6= london ∧ x 6= c

∨ ∃x′.arrival(x′, x) ∧ locatedIn(x, london) ∧ departure(x′, london)∧
locatedIn(london, london) ∧ x′ 6= y ∧ x′ 6= london ∧ x 6= london

...

...
∨ arrival(london, x) ∧ locatedIn(x, london) ∧ departure(london, london)∧

locatedIn(london, london) ∧ x 6= london )

IncRewr IAR(∃x.locatedIn(london, london), T ) =
locatedIn(london, london)∧
¬(∃x′, w.arrival(x′, london) ∧ locatedIn(london, london) ∧ departure(x′, w)∧

locatedIn(w, london) ∧ x′ 6= london ∧ x′ 6= w ∧ x′ 6= london ∧ x 6= w∧
london 6= london ∧ w 6= london

∨ ∃x′, y.arrival(x′, y) ∧ locatedIn(y, london) ∧ departure(x′, london)∧
locatedIn(london, london) ∧ x′ 6= y ∧ x′ 6= london ∧ x′ 6= c ∧ y 6= london∧
y 6= london ∧ x 6= c

∨ ∃x′.arrival(x′, london) ∧ locatedIn(london, london) ∧ departure(x′, london)∧
locatedIn(london, london) ∧ x′ 6= y ∧ x′ 6= london ∧ london 6= london

...

...
∨ arrival(london, london) ∧ locatedIn(london, london) ∧ departure(london, london)∧

locatedIn(london, london) ∧ london 6= london )

It can be shown that 〈∅,A〉 |= IncRewr IAR(q, T ). In particular we have
that 〈∅,A〉 |= IncRewr IAR(∃x.locatedIn(x, london), T ).
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9.4 Consistent query answering in DL-LiteA,id,den
under ICAR-semantics

In this section we analyze the problem of answering BUCQs posed over a KB
expressed in DL-LiteA,id,den under ICAR-semantics. In details, we present a
technique for computing FOL-rewritings of boolean UCQs under the ICAR-
semantics. Thus, we show that the problem of deciding if a BUCQ is ICAR-
entailed by a DL-LiteA,id,den-KB is in AC0 with respect to data complexity.

Similarly to IAR-semantics, we say that BUCQs in DL-LiteA,id,den are
FOL-rewritable under the ICAR-semantics if, for each BUCQs q and each
DL-LiteA,id,den TBox T , there exists a FOL-query qr such that, for any ABox
A. 〈T ,A〉 |=ICAR q if and only if 〈∅,A〉 |= qr. We call such qr the ICAR-perfect
reformulation of q with respect to T .

The same reason that guarantees that Corollary 3 holds for DL-LiteA,id,den-
KBs, i.e., that a DL-LiteA,id,den TBox is always consistent, also guarantees that
Corollary 4 holds for DL-LiteA,id,den-KBs. Thus, given a DL-LiteA,id,den-KB
K = 〈T ,A〉 and a boolean conjunctive query q, we have that K |=ICAR q if and
only if there exists A′ ⊆ clcT (A) such that:

(i) A′ is T -consistent;

(ii) 〈T ,A′〉 |= q;

(iii) there is no minimal T -inconsistent set in clcT (A) such that A′ ∩ V 6= ∅.

Hence, a query q is ICAR-entailed from a DL-LiteA,id,den-KB K = 〈T ,A〉
if there is an image of q in clcT (A) that does not overlap with any minimal
T -inconsistent set in clcT (A). Therefore, in the same spirit of our technique for
rewriting query under IAR-semantics, we can base our reformulation method
for ICAR-semantics on the idea of rewriting each atom α of q into a FOL-
formula αr in such a way that 〈∅,A〉 |= αr only if 〈∅, clcT (A)〉 |= α and there
is no image of αr in A that overlap with a minimal T -inconsistent set.

The first step for reaching our purpose is, given aDL-LiteA,id,den-KB 〈T ,A〉,
studying the conditions under which an atom α belong to clcT (A). We recall
that an atom α ∈ clcT (A) if there is in A a T -consistent set A′ such that
〈T ,A′〉 |= α. From Lemma 16, we have that in DL-LiteA,id,den an assertion
is entailed by a consistent KB 〈T ,A〉 if there exists in A an assertion β such
that 〈T , {β}〉 |= α. Thus, given a DL-LiteA,id,den-KB 〈T ,A〉, an assertions α,
belongs to clcT (A) if:

(i) α ∈ A and {α} is not T -inconsistent, or

(ii) α 6∈ A, but there is an assertion β ∈ A such that {β} is not T -inconsistent
and 〈T , {β}〉 |= α
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Example 40. Consider the DL-LiteA,id,den TBox T constituted as follows:

Tinc = { Man v Person, Woman v Person,
∃hasFather− v Man };

Tdisj = { Man v ¬Woman };
Tfunct = { (funct hasFather) };
Tden = { ∀x.(hasFather(x, x)→ ⊥) }.

In words, T states that both men and women are persons, that a man cannot
be a woman, and that a person that is father of somebody is a man. Moreover,
the functionality assertion specifies that one can have at most one father, while
the denial assertion guarantees that one cannot be father of oneself.
Let A be the ABox containing the following assertions:

A = { hasFather(sam, bill), Man(sam), Woman(sam),
hasFather(tom, tom) }.

It is easy to verify that the KB 〈T ,A〉 is inconsistent. Indeed, the two assertions
Man(sam) and Woman(sam) in A violate the disjointness Man v ¬Woman be-
longing to T . Moreover, the assertion hasFather(tom, tom) violates the denial
assertion in T .
The set clcT (A) contains the following ABox assertions:

clcT (A) = { hasFather(sam, bill), Man(sam), Woman(sam),
Person(sam), Man(bill), Person(bill) }.

Note that the assertions hasFather(tom, tom) does not belong to clcT (A).
Moreover, in accordance with Definition 25, the set CAR-Set(〈T ,A〉) is con-
stituted by the following T -consistent sets of ABox assertions:

CA-rep1 = { Man(sam),Person(sam), hasParent(sam, bill),
Man(bill),Person(bill) };

CA-rep2 = {Woman(sam),Person(sam), hasParent(sam, bill),
Man(bill),Person(bill) }.

Since for every DL-LiteA,id,den TBox, we have that Mod(〈T , ∅〉) 6= ∅,
clearly, we have that every singleton {α} that is T -inconsistent is a mini-
mal T -inconsistent set. Thus, from Lemma 47, it follows that there exists in
minUnsatQueries(T ) a boolean query qus such that 〈∅, {α}〉 |= qus. Since every
query q′ ∈ minUnsatQueries(T ) is "saturated with respect to inequalities", i.e.,
Saturate(q′) = q′, then qus has the form of one of the following boolean queries:
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1. ∃x.A(x), where A is an atomic concepts and x is a variable;
2. A(c), where A is an atomic concepts and c is a constant;
3. ∃x, y.P (x, y)∧x 6= y, where P is an atomic role and x and y are variables;
4. ∃x.P (x, x), where P is an atomic role and x is a variable;
5. ∃x.P (x, c) ∧ x 6= c (resp. P (c, x) ∧ x 6= c), where P is an atomic role, x

is a variable, and c is a constant;
6. P (c1, c2)∧c1 6= c2, where P is an atomic role and c1 and c2 are constants;
7. P (c, c), where P is an atomic role and c is a constant;
8. ∃x, y.U(x, y)∧ x 6= y, where U is an attribute and x and y are variables;
9. ∃x.U(x, c) ∧ x 6= c (resp. U(c, x) ∧ x 6= c), where U is an attribute, x is

a variable, and c is a constant;
10. U(c1, c2) ∧ c1 6= c2, where U is an attribute and c1 and c2 are constants.
11. ∃x, y.U(x, y)∧Ti(y)∧x 6= y, where U is an attribute, Ti is a value-domain,

and x and y are variables;
12. ∃x.U(x, c) ∧ Ti(c) ∧ x 6= c (resp. U(c, x) ∧ Ti(x) ∧ x 6= c), where U is an

attribute, Ti is a value-domain, x is a variable, and c is a constant;
13. U(c1, c2)∧Ti(c2)∧c1 6= c2, where U is an attribute, Ti is a value-domain,

and c1 and c2 are constants.

In other words, qus is a boolean conjunctive query, possibly with inequalities,
in minUnsatQueries(T ) in which there occurs at most one atom of the form
A(t), P (t1, t2), or U(t1, t2). Let T be a DL-LiteA,id,den TBox. We denote with
QsingletonT the subset of minUnsatQueries(T ) constituted by all the queries in
minUnsatQueries(T ) that have the same form of the queries above.

Example 41. Let T be the TBox presented in Example 40. The set cln(T )
contains the following TBox assertions.

(1.) (funct hasFather), (2.) ∀x.(hasFather(x, x)→ ⊥),

(3.) Man v ¬Woman, (4.) ∃hasFather− v ¬Woman,
(5.) Woman v ¬Man, (6.) Woman v ¬∃hasFather−.

By observing the assertions in cln(T ), it is easy to verify that the set QminT ,
computed by minUnsatQueries(T ), is constituted by the following queries:

q1 = ∃x, y, z.hasFather(x, y) ∧ hasFather(x, z) ∧ y 6= z ∧ x 6= y ∧ x 6= z;

q2 = ∃x.hasFather(x, x);

q3 = ∃x.Man(x) ∧Woman(x);

q4 = ∃x, y.hasFather(x, y) ∧Woman(y) ∧ x 6= y;

Therefore, the set QsingletonT contains only the query q2, i.e.,

QsingletonT = { ∃x.hasFather(x, x) }
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We have the following lemma.

Lemma 48. Let T be a DL-LiteA,id,den TBox, and let A be an ABox. There
is a T -inconsistent singleton S ⊆ A if and only if 〈∅,A〉 |= QsingletonT .

Proof.
(⇒) Let {α} ⊆ A such that the KB 〈T , {α}〉 is inconsistent. We show
that there is in QsingletonT a query q such that 〈∅,A〉 |= q. Let QminT =
minUnsatQueries(T ). Since {α} is T -inconsistent then Lemma 46 guarantees
that there is in QminT a query q such that 〈∅, {α}〉 |= q. Moreover, since {α} is
a minimal T -inconsistent set, then, from Lemma 47 is follows that there is no
query q′ 6= q in QminT such that 〈∅, {α}〉 |= q′. Since Saturate(q) = q, then for
every pair of different terms t1 and t2 in q we have in q the inequalities t1 6= t2.
Now, since {α} ∈ images(q,A), then there can be only one atom in q of from
A(t), P (t, t′), or U(t, t′), where A, P , and U have the usual meaning. Hence,
q ∈ QsingletonT , from which the claim follows.

(⇐) Now, we show that if there exists a query q ∈ QsingletonT such that 〈∅,A〉 |=
q, then there is in A an assertion α such that {α} is T -inconsistent. Since
QsingletonT ⊆ QminT , then from Lemma 46 and Lemma 47 it follows that there
is in A a minimal T -inconsistent set. Since in q there occurs at most one
atom of the form A(t), P (t1, t2), or U(t1, t2), the every image of q in A is a
singleton. Thus, since for every V ∈ images(q,A) we have that A is a minimal
T inconsistent set, we can conclude that there is an assertion α ∈ A such that
{α} is T -inconsistent.

Now, let T be a DL-LiteA,id,den TBox and let α be an atom of the form
A(t), P (t, t′), or U(t, t′), where A is an atomic concept name, P is an atomic
role name, U is an attribute name, and t and t′ are terms, i.e., constants or
variables. We define IncSngT (α) as follows.

IncSngT (α) =
∨

q∈Qsingleton
T ∧CompSet(α,q)6=∅

 ∨
β∈CompSet(α,q)

µα/β(q)



The following lemma holds.

Lemma 49. Let 〈T ,A〉 be a possibly inconsistent DL-LiteA,id,den-KB, and let
α be an ABox assertion. There exists in A a T -inconsistent singleton {α} if
and only if 〈∅,A〉 |= IncSngT (α).

Proof. The proof is easily obtainable from the proof of Theorem 37 by replac-
ing MinIncSetT (α) with IncSngT (α) and Lemma 47 with Lemma 48.
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The lemma above states that, given a TBox T and an ABox A, we can
use IncSngT (α) in order to check if there is in A an assertion α such that the
singleton {α} is T -inconsistent.

In what follows, we say that a boolean query qs is a singleton-query if qs
has the form ∃~x.S(~t), where S is an concept name, a role name, or an attribute
name, ~x is a tuple of variables, and ~t is tuple of terms such that each variable
in ~t occurs also in ~x. A singleton-query with inequalities is a query of the form
∃~x.S(~t) ∧ t1 6= t2, where S, ~x, and ~t are as above, and t1 and t2 are terms
occurring in ~t.

As we say earlier, in order to exploit Corollary 4, we need to identify
those assertions which are in clcT (A). To this aim we provide a technique
for rewriting a singleton-query ∃~x.S(~t) into a new query qsrew such that qsrew
evaluates to true over DB(A) if and only if ∃~x.S(~t) evaluates to true over
DB(clcT (A)).

Let qs = ∃~x.S(~t)∧t1 6= t2 be a singleton-query with inequalities. We denote
by ConsAtom(qs, T ) the following FOL-sentence:

∃~x.S(~t) ∧ ¬IncSngT (S(~t)) ∧ t1 6= t2.

Let Q be a set of singleton-queries with inequalities, we define

ConsAtomSet(Q, T ) =
∨
qi∈Q

ConsAtom(qs, T ).

We are now able to provide our technique for deciding if an ABox assertion
belongs to clcT (A) by evaluating a singleton-query over the KB 〈∅,A〉.

In the lemma below we use the algorithm PerfectRef [31] for rewriting the
atom S(~t) in the query qs, considering all variables occurring in S(~t) as bound
terms. To highlight the fact that this algorithm is used here in this particular
manner, we denote it by PerfectRefB. The use of the algorithm Saturate, as
well as for Theorem 38, is necessary for technical reason. In fact, since the
queries in QsingletonT are saturated with respect to inequalities, it is necessary
that also qs is saturated with respect to inequalities so as to ensure the success
of the search of the set of atoms that are compatible with the atoms in qs. In
this regard, we recall that Theorem 36 guarantees that the application of the
algorithm Saturate does not affect the answer of a query.

Lemma 50. Let K = 〈T ,A〉 be a possibly inconsistent DL-LiteA,id,den-KB,
and let qs be a singleton-query. Then 〈∅, clcT (A)〉 |= qs if and only if 〈∅,A〉 |=
ConsAtomSet(Saturate(PerfectRefB(qs, T )), T ).

Proof.
(⇒) Let qs = ∃~x.Sn(~t). We have to prove that if 〈∅, clcT (A)〉 |= qs then
〈∅,A〉 |= ConsAtomSet(Saturate(PerfectRefB(qs, T )), T ). Since 〈∅, clcT (A)〉 |=
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qs, then there exists an ABox assertion Sn(~c) in clcT (A) such that Sn(~c) ∈
images(qs, clcT (A)). This means that there is an ABox assertion S0(~c) in A
and a chain of positive inclusion assertions {S0 v S1, S1 v S2, . . . , Sn−1 v Sn}
in Tinc such that Mod(〈T , {Si(~c)}〉) 6= ∅, for each i ∈ {0, . . . , n}. As shown
in [31, Lemma 39], if {S0 v S1, S1 v S2, . . . Sn−1 v Sn} ⊆ Tinc, then
PerfectRefB(qs, T ) returns the a set of queries Qrews such that ∃~x.S0(~t) ∈ Qrews .
Since S0(~c) ∈ A, then 〈∅,A〉 |= ∃~x.S0(~t). Clearly, 〈∅,A〉 |= PerfectRefB(qs, T ).
By applying the algorithm Saturate to the query ∃~x.S0(~t), we obtain a set of
singleton-queries with inequalities Q0 = {q10, . . . qm0 }. From Theorem 36, since
〈∅,A〉 |= ∃~x.S0(~t), then there is a query qi0 in Q0 such that 〈∅,A〉 |= qi0. Thus,
S0(~c) ∈ images(qi0,A). Since qi0 ∈ Saturate(PerfectRefB(qs, T )), then there
is a query ConsAtom(qi0, T ) in ConsAtomSet(Saturate(PerfectRefB(qs, T )), T ).
From Lemma 49, it follows that since Mod(〈T , {S0(~c)}〉) 6= ∅, then S0(~c) ∈
images(ConsAtom(qi0, T ),A), i.e., 〈∅,A〉 |= ConsAtom(qi0, T ). Finally, since
ConsAtom(qi0, T ) ∈ ConsAtomSet(Saturate(PerfectRefB(qs, T )), T ), we can con-
clude that 〈∅,A〉 |= ConsAtomSet(Saturate(PerfectRefB(qs, T )), T ).

(⇐) We show that, if 〈∅,A〉 |= ConsAtomSet(Saturate(PerfectRefB(qs, T )), T ),
then 〈∅, clcT (A)〉 |= qs. Let qs = ∃~x.Sn(~t). From Lemma 49, since 〈∅,A〉 |=
ConsAtomSet(Saturate(PerfectRefB(qs, T )), T ), then there are a query qi0, be-
longing to Saturate(PerfectRefB(qs, T )), and an ABox assertion S0(~t) ∈ A,
such that S0(~t) ∈ images(qi0,A), and Mod(〈T , {S0(~t)}〉) 6= ∅. From Theo-
rem 36, there is a query q0 in PerfectRefB(qs, T ) such that qi0 ∈ Saturate(q0),
and S0(~t) ∈ images(q0,A). Since q0 ∈ PerfectRefB(qs, T ), then, from the re-
sults given in [31, Lemma 39], there is in Tinc a chain of positive inclusion
assertions {S0 v S1, S1 v S2, . . . , Sn−1 v Sn}. Thus, T |= S0 v Sn. Since
Mod(〈T , {S0(~t)}〉) 6= ∅, and T |= S0 v Sn, then S0(~t) ∈ clcT (A). It directly
follows, that 〈∅, clcT (A)〉 |= ∃~x.Sn(~t). Hence, the claim is true.

Example 42. Consider the DL-LiteA,id,den TBox T presented Example 40,
and consider the following boolean conjunctive query asking for the existence
of a person:

q = ∃x.Person(x).

The set PerfectRefB(q, T ), which coincides with the perfect reformulation of q
with respect to T by considering the x variable as a bound terms, contains the
following set of queries:

qr1 = ∃x.Person(x)

qr2 = ∃x.Man(x)

qr3 = ∃x.Woman(x)

qr4 = ∃x, y.hasFather(x, y)
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By applying the algorithm Saturate we get:

q1r1 = ∃x.Person(x)

q1r2 = ∃x.Man(x)

q1r3 = ∃x.Woman(x)

q1r4 = ∃x, y.hasFather(x, y) ∧ x 6= y

q2r4 = ∃x.hasFather(x, x)

As shown in Example 41 we have that

QsingletonT = { ∃x.hasFather(x, x) }

Hence, we have that ConsAtomSet(Saturate(PerfectRefB(q, T )), T ) contains
the following FOL-queries:

q1con1 = ∃x.Person(x)

q1con2 = ∃x.Man(x)

q1con3 = ∃x.Woman(x)

q1con4 = ∃x, y.hasFather(x, y) ∧ x 6= y

q2con4 = ∃x.hasFather(x, x) ∧ ¬hasFather(x, x)

Now, let A1 and A2 be the following ABoxes.

A1 = { hasFather(sam, bill) }
A2 = { hasFather(tom, tom) }.

Respectively, we have:

clcT (A1) = { hasFather(sam, bill),Man(bill),Person(bill) }
clcT (A2) = ∅.

It is easy to verify that:

〈∅, clcT (A1)〉 |= q; 〈∅, clcT (A2)〉 6|= q;

and that

〈∅,A1〉 |= ConsAtomSet(Saturate(PerfectRefB(qs, T )), T );
〈∅,A2〉 6|= ConsAtomSet(Saturate(PerfectRefB(qs, T )), T ).
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Let T be a DL-LiteA,id,den TBox and let q be a BCQ with inequalities of
the form

∃z1, . . . , zk.
n∧
i=1

Ai(t
1
i ) ∧

m∧
i=1

Pi(t
2
i , t

3
i ) ∧

∧̀
i=1

Ui(t
4
i , t

5
i ) ∧

h∧
i=1

t6i 6= t7i

where every Ai is an atomic concept, every Pi is an atomic role, every Ui is an
attribute, every tei is a term (i.e., either a constant or a variable), and z1, . . . , zk
are all the variables appearing in q. We denote by IncRewr ICAR(q, T ) the
following FOL-sentence:

∃z1, . . . , zk.
∧n
i=1 ConsAtomSet(Saturate(PerfectRefB(Ai(t
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i=1 t6i 6= t7i .

Moreover, let Q be a set of BCQs with inequalities, we define

IncRewrUCQICAR(Q, T ) =
∨
qi∈Q

IncRewr ICAR(qi, T ).

The following theorem constitutes the main result of this section, and is our
final results on reformulation of boolean UCQs under the ICAR-semantics.

Theorem 40. Let T be a DL-LiteA,id,den TBox and let Q be a UCQ. For every
ABox A, we have that 〈T ,A〉 |=ICAR Q if and only if

〈∅,A〉 |= IncRewrUCQICAR(Saturate(PerfectRef(Q, Tinc)), T ).

Proof.
(⇒) Let T be a DL-LiteA,id,den TBox, Q be a UCQ, and A be an ABox. We
have to prove that if Q is ICAR-entailed by the KB 〈T ,A〉, then 〈∅,A〉 |=
IncRewrUCQICAR(Saturate(PerfectRef(Q, Tinc)), T ). Since 〈T ,A〉 |=ICAR Q,
then there is a query q ∈ Q such that 〈T ,A〉 |=ICAR q. From Corollary 4,
there is a set of ABox assertions A′ = {S1(~c1), . . . , Sn(~cn)} such that (i) A′ ⊆
clcT (A), (ii)A′ is T -consistent, (iii) 〈T ,A′〉 |= q, and (iv) for every minimal T -
inconsistent set V ⊆ clcT (A), A′∩V = ∅. From Lemma 30, since 〈T ,A〉 |=ICAR
q, then 〈T , clcT (A)〉 |=IAR q. From Theorem 38 it follows that 〈∅, clcT (A)〉 |=
IncRewrUCQIAR(Saturate(PerfectRef(q, Tinc)), T ). Therefore, there is a query
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qstrrew = ∃~z.S1(~t1) ∧ . . . ∧ Sn(~tn) ∧
∧h
i=1 t

′
i 6= t′′i in Saturate(PerfectRef(q, Tinc))

such that the FOL-query

qclc = ∃~z.
n∧
i=1

Si(~ti) ∧ ¬MinIncSetT (Si(~ti)) ∧
h∧
i=1

t′i 6= t′′i

evaluates to true over DB(clcT (A)). More specifically, qclc evaluates to true
over DB(A′). Since A′ ⊆ clcT (A), there is a subset A′0 = {S0

1(~c1), . . . , S
0
n(~cn)}

of A, such that for every assertion S0
i (~ci) ∈ A′0, Mod(〈T , {S0

i (~ci)}〉) 6= ∅, and
Tinc |= S0

i v Si, with 1 ≤ i ≤ n. From Lemma 50 it follows that 〈∅,A〉 |=
ConsAtomSet(Si(~ti), T ), with 1 ≤ i ≤ n. Hence,

〈∅,A〉 |= ∃~z.
n∧
i=1

ConsAtomSet(Si(~ti), T ) ∧ ¬MinIncSetT (Si(~ti)) ∧
h∧
i=1

t′i 6= t′′i .

Since the query above is in IncRewrUCQICAR(Saturate(PerfectRef(Q, Tinc)), T ),
then 〈∅,A〉 |= IncRewrUCQICAR(Saturate(PerfectRef(Q, Tinc)), T ).

(⇐) Let QICARrew = IncRewrUCQICAR(Saturate(PerfectRef(Q, Tinc)), T ). We
have to prove that, if 〈∅,A〉 |= QICARrew , then 〈T ,A〉 |=ICAR Q. Since 〈∅,A〉 |=
QICARrew , then there are a query qA in QICARrew of the form

∃z1, . . . , zk.
n∧
i=1

(SAi (~ti) ∧ ¬IncSngT (SAi (~ti))) ∧
h∧
i=1

t′i 6= t′′i ,

and a set of ABox assertions A′ = {SA1 (~c1), . . . , S
A
n (~cn)}, such that A′ ∈

images(qA,A). Since each pair (SAi (~ti) ∧ ¬IncSngT (SAi (~ti))) occurring in qA,
with 1 ≤ i ≤ n, belongs to ConsAtomSet(Sclci (ti), T ), from Lemma 50, it
follows that Mod(〈T , {SAi (~ci)}〉) 6= ∅, with 1 ≤ i ≤ n, and that there is
a set Aclc = {Sclc1 (~c1), . . . , S

clc
n (~cn)} such that Aclc ⊆ clcT (A), and Aclc ∈

images(qclc, clcT (A)), where

qclc = ∃z1, . . . , zk.
n∧
i=1

Sclci (ti) ∧ ¬MinIncSetT (Sclci (ti)) ∧
h∧
i=1

t′i 6= t′′i .

Hence, there exists a query q ∈ Q such that

qclc ∈ IncRewrUCQIAR(Saturate(PerfectRef(q, Tinc)), T ).

Since 〈∅, clcT (A)〉 |= q, then, from Theorem 38, 〈T , clcT (A)〉 |=IAR q. From
Lemma 30, it follows that 〈T ,A〉 |=ICAR q. Finally, since q ∈ Q, we can
conclude that 〈T ,A〉 |=ICAR Q.
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Example 43. Let 〈T ,A〉 be the DL-LiteA,id,den-KB of Example 40, and let q
be the following boolean conjunctive query:

q = ∃x, y.Person(x) ∧ hasFather(x, y).

In words, the query q asks for the existence of a person with a father.
Since the set CAR-Set(〈T ,A〉) is constituted by the following T -consistent

ABoxes:

CA-rep1 = { Man(sam),Person(sam), hasParent(sam, bill),
Man(bill),Person(bill) };

CA-rep2 = {Woman(sam),Person(sam), hasParent(sam, bill),
Man(bill),Person(bill) },

we have that 〈T ,A〉 |=ICAR q.

As shown in Example 41, QminT is constituted by the following queries:

q1 = ∃x, y, z.hasFather(x, y) ∧ hasFather(x, z) ∧ y 6= z ∧ x 6= y ∧ x 6= z;

q2 = ∃x.hasFather(x, x);

q3 = ∃x.Man(x) ∧Woman(x);

q4 = ∃x, y.hasFather(x, y) ∧Woman(y) ∧ x 6= y;

and QsingletonT = { ∃x.hasFather(x, x) }.

The CAR-perfect reformulation of the query q with respect to T is partially
constituted as follows:

qr1 = ∃x, y, k.Person(x) ∧ hasFather(x, y) ∧ ¬hasFather(x, k)
∧¬Woman(y) ∧ x 6= y ∧ y 6= k;

qr2 = ∃x, y, k.Man(x) ∧ hasFather(x, y) ∧ ¬hasFather(x, k)
∧¬Woman(y) ∧ x 6= y ∧ y 6= k;

qr3 = ∃x, y, k.Woman(x) ∧ hasFather(x, y) ∧ ¬hasFather(x, k)
∧¬Woman(y) ∧ x 6= y ∧ y 6= k;

qr4 = ∃x, y, z, k.hasFather(z, x) ∧ hasFather(x, y) ∧ ¬hasFather(x, k)
∧¬Woman(y) ∧ x 6= y ∧ y 6= k ∧ x 6= z;

qr5 = ∃x, y, k.hasFather(x, x) ∧ ¬hasFather(x, x) ∧ hasFather(x, y)
∧¬hasFather(x, k) ∧ ¬Woman(y) ∧ x 6= y ∧ y 6= k;

qr6 = ∃x.Person(x) ∧ hasFather(x, x) ∧ ¬hasFather(x, x) ∧ ¬Woman(x);

qr7 = ∃x.Man(x) ∧ hasFather(x, x) ∧ ¬hasFather(x, x) ∧ ¬Woman(x);

qr8 = ∃x.Woman(x) ∧ hasFather(x, x) ∧ ¬hasFather(x, x) ∧ ¬Woman(x);
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qr9 = ∃x, z.hasFather(z, x) ∧ hasFather(x, x) ∧ ¬hasFather(x, x)
∧¬Woman(x) ∧ x 6= z;

qr10 = ∃x.hasFather(x, x) ∧ ¬hasFather(x, x) ∧ ¬Woman(x);

qr11 = ∃x, y.Man(x) ∧ hasFather(x, y) ∧ x 6= y;

qr12 = ∃x, y, k.Man(x) ∧ hasFather(x, y) ∧ ¬hasFather(x, k)
∧¬Woman(y) ∧ ¬Woman(x) ∧ x 6= y ∧ y 6= k;

qr13 = ∃x, y, k, z.hasFather(z, x) ∧ hasFather(x, y) ∧ ¬hasFather(x, k)
∧¬Woman(y) ∧ ¬Woman(x) ∧ x 6= y ∧ y 6= k ∧ x 6= z;

qr14 = ∃x, y, k.hasFather(x, x) ∧ ¬hasFather(x, x) ∧ hasFather(x, y)
∧¬hasFather(x, k) ∧ ¬Woman(y) ∧ ¬Woman(x) ∧ x 6= y ∧ y 6= k;

qr15 = ∃x.Man(x) ∧ hasFather(x, x) ∧ ¬hasFather(x, x) ∧ ¬Woman(x);

qr16 = ∃x, z.hasFather(z, x) ∧ hasFather(x, x) ∧ ¬hasFather(x, x)
∧¬Woman(x) ∧ x 6= z;

qr17 = ∃x, y.Woman(x) ∧ hasFather(x, y) ∧ ¬Man(x) ∧ hasFather(x, k)
∧¬Woman(y) ∧ x 6= y ∧ y 6= k;

qr18 = ∃x.Woman(x) ∧ hasFather(x, x) ∧ ¬Man(x) ∧ ¬hasFather(x, x)
∧¬Woman(x);

...

...
qrnn = ∃x, y, k, z.hasFather(y, x) ∧ hasFather(x, y) ∧ ¬hasFather(y, z) ∧ y 6= z

∧¬hasFather(x, k) ∧ ¬Woman(x) ∧ ¬Woman(y) ∧ x 6= y ∧ x 6= k;

As one can verify, both the queries qr2 and qr3 evaluates to true over DB(A).
It follows that 〈∅,A〉 |= IncRewrUCQICAR(Saturate(PerfectRef(Q, Tinc)), T )
as expected.

Theorem 40 allows us to give a complete complexity characterization of the
problem of answering a boolean UCQ over a possibly inconsistentDL-LiteA,id,den-
KB under ICAR-semantics.

The following result is a direct consequence of Theorem 40.

Corollary 6. Let K be a DL-LiteA,id,den-KB and let Q be a UCQ. Deciding
whether K |=ICAR Q is in AC 0 in data complexity.

Proof. The proof directly follows from Theorem 40 and from the complexity of
evaluation of FOL-queries over relational databases in the size of the data [1].

Moreover, from the results given in the previous section and from Corol-
lary 6, it follows the next theorem.
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Theorem 41. Let K be a DL-LiteA,id,den-KB and let Q be a UCQ. Deciding
whether K |=ICAR Q can be done in AC 0 with respect to |A|, and in exponential
time with respect to |T | and |Q|.

Proof. The proof can be easily adapted from the proof of Theorem 39 by
observing that QsingletonT can be computed in polynomial time with respect
to QminT , and that, from Lemma 4 and from the results given in the proof of
Lemma 41, it follows that ConsAtom(Saturate(PerfectRefB(qs, T )), T ) can be
computed in exponential time with respect to both |T | and |qs| for each query
qs.

Since instance checking can be reduced to a particular form of query an-
swering, the above results shows that instance checking under ICAR-semantics
is in AC0. This result, together with Lemma 29, allows us to give the following
notable property of the CAR-semantics.

Theorem 42. Let K be a DL-LiteA,id,den-KB and let α be an ABox assertion.
Deciding whether K |=CAR α is AC0 with respect to data complexity.

Proof. The proof follows directly from Corollary 6, and from Lemma 29, which
states that instance checking under CAR-semantics coincides with instance
checking under ICAR-semantics.
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Chapter 10

Updating inconsistent
Description Logic KBs

Inconsistency is ubiquitous in many KBs used in real world applications. In
particular, in the context of Ontology-based Data Access [26, 95], KBs affected
by ABox inconsistency are very common. This kind of inconsistency may arise
since facts in the ABox contradict assertions belonging to a consistent TBox.

As we said in the introduction of the thesis, we aim to equip an Ontology-
based Information Systems with suitable mechanisms for inconsistency toler-
ance for addressing the following issues:

(i) How to answer queries that are posed to an inconsistent KB (inconsistency-
tolerant query answering);

(ii) How to compute the KB resulting from updating a possibly inconsis-
tent KB with both the insertion and deletion of assertions (inconsistent-
tolerant update).

Motivated by the first mentioned requirement, we have proposed in Chap-
ter 8 various inconsistency-tolerant semantics, inspired by the studies on in-
consistency handling in belief revision [49] and by the work on consistent query
answering in databases [36].

In this chapter, we focus on the second mentioned requirement, i.e., how
to compute the KB resulting from updating a possibly inconsistent KB.

Inconsistency-tolerant update in the context of DL KBs is a new problem.
Indeed, at the best of our knowledge, the approaches for updating DL KBs,
proposed in literature, assume that the evolving KB is consistent, and the
update itself preserves consistency. As explained in Chapter 6, updating a
consistent KB means to modify it in order to adhere to a change in the domain
of interest by preserving the consistency of the changed KB. The modification
may concern either the insertion or the deletion of assertions.

207
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In Section 6.4, we propose a semantics for updating consistent DL KBs in
which the formula-based approach [42] is adopted. Essentially, in this update
semantics, the result of the update is defined in term of formulae, by changing
the original KB as little as possible. As we already noted in Section 6.3,
the formula constituting the result of an evolution operation is not unique
in general, and this may lead to expressibility problems. For addressing this
problem, we propose, in Section 6.4, to follow the When In Doubt Throw It
Out (WIDTIO) [110] principle.

On the base of the update semantics proposed in Section 6.4, and on the
inconsistency-tolerant semantics presented in Section 8.2, specifically on the
CAR-semantics, we present, in this chapter a semantics for updating incon-
sistent DL KBs with both the insertion and the deletion of a set of ABox
assertions. Our update mechanism is based on the idea that realizing an in-
sertion into (resp., deletion from) a KB K of a set F of ABox assertions means
computing the (possibly inconsistent) KB K′ that minimally differ from K and
such that all the repairs of K′ entail (resp., do not entail) F . Based on the
WIDTIO principle, the result of the update is the intersection of all the KBs
realizing the update.
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10.1 Inconsistency-tolerant update semantics

In this section we present our semantics for updating possibly inconsistent DL
KBs with both the insertion and the deletion of a finite set of ABox assertions.
In what follows, K = 〈T ,A〉 is a possibly inconsistent L-KB, with T satisfiable.
Moreover, F denotes a finite set of T -consistent ABox assertions. In the rest of
this work, we use the term “update” as a generalization of “update by insertion”
and “update by deletion”.

We follow the idea presented in Section 6.4 for updating consistent KBs,
that we now briefly recall.

Firstly, we need to recall the notion of “few changes” introduced in [44].
Let A, A′, and A′′ be three finite set of ABox assertions. We say that A′ has
fewer deletions than A′′ with respect to A if A \ A′ ⊂ A \ A′′. Also, we say
that A′ and A′′ have the same deletions with respect to A if A \A′ = A \A′′,
and that A′ has fewer insertions than A′′ with respect to A if A′ \A ⊂ A′′ \A.
Finally, we say A1 has fewer changes (cf. Definition 18) than A2 with respect
to A if

(i) A1 has fewer deletions than A2 with respect to A, or
(ii) A1 and A2 have the same deletions with respect to A, and A1 has

fewer insertions than A2 with respect to A.

Now, suppose that K = 〈T ,A〉 is consistent, and we want to update K with
either the insertion or the deletion of F . Essentially, in the case of insertion,
the result of the update is the KB formed by T and the intersection of all the
ABoxes accomplishing the insertion of F into K minimally. Similarly, the result
of updatingK with the deletion of F is the KB formed by T and the intersection
of all the ABoxes accomplishing the deletion of F from K minimally. An
ABox A′ accomplishes the insertion (resp., deletion) of F minimally if A′ is T -
consistent, 〈T ,A′〉 logically entails F (resp., does not logically entail F ), and no
T -consistent ABox A′′ exists that logically entails F (resp., does not logically
entail F ) with T , and such that clT (A′′) has fewer changes than clT (A′) with
respect to clT (A).

Note that the above described update semantics makes use of the notion of
logical entailment. In case where K is not consistent, the reasoning becomes
meaningless, since any conclusion can be inferred from an inconsistent K. So,
how can we apply this idea in the case where K is inconsistent?

Generally speaking, in our solution, we make use of the notion of closed
ABox repair (CA-repair) of an inconsistent KB given in Section 8.1.

We recall that, given a possibly inconsistent K = 〈T ,A〉, clcT (A) denotes
the consistent logical consequences of A with respect to T , that corresponds
to the set {α | α ∈ HB(K) and there exists S ⊆ A such that Mod(〈T , S〉) 6=
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∅ and 〈T , S〉 |= α}, where HB(K) denotes the Herbrand Base of K. More-
over, we say that two KBs 〈T ,A〉 and 〈T ,A′〉 are consistently equivalent (C-
equivalent) if clcT (A) = clcT (A′).

A CA-repair for a possibly inconsistent K = 〈T ,A〉 is a T -consistent ABox
A′ such that there does not exist a T -consistent ABox A′′ such that clT (A′′)
has fewer changes than clT (A)′ with respect to clcT (A). We denote with
CAR-Set(K) the set containing the closed ABox repairs for K.

We now present a simple example illustrating the notion of CA-repair.

Example 44. The following TBox T is a portion of a knowledge base describ-
ing the domain of rowing competitions.

OA v ATH, CX v ATH, CX v ¬OA,
ATH v ∃mf, CH v ∃mf, CH v ¬ATH,
∃mf− v RTM, CR v ∃fb, ∃fb v CR,
∃fb− v ATH, ∃mf v ATH t CH, (funct fb−),
(funct mf), (id CX fb−).

The axioms state that oars (OA) and coxs (CX) are both athletes (ATH),
and oars are not coxs. Every athlete is member of (mf) exactly one rowing
team (RTM). A crew (CR) is formed by (fb) athletes, among which there is
exactly one cox. Moreover, a coach (CH) is a member of exactly one rowing
team, and is not an athlete. Finally, those who are members of a rowing team
are either athletes or coaches.

Let us consider the ABox A containing the following assertions:

CX(c1), mf(c1, t1), fb(w, c1),
CX(c2), mf(c2, t1), fb(w, c2),
CH(h), mf(h, t2), OA(h).

In words, A specifies that both c1 and c2 are coaxes that are members of the
rowing team t1, and that the crew w is formed by c1 and c2. Moreover, A
specifies that h is a member of the rowing team t2, and that h is both a coach
and an oar.

It is easy to see that the KB K = 〈T ,A〉 is inconsistent, since the crew w
has two coxs, namely c1 and c2, and h is both a coach and an athlete.

Up to logical equivalence, the set CAR-Set(K) is constituted by the follow-
ing T -consistent ABoxes:

CA-rep1 = { CX(c1),mf(c1, t1), CX(c2),mf(c2, t1), fb(w, c1),
mf(h, t2), CH(h) };

CA-rep2 = { CX(c1),mf(c1, t1), CX(c2),mf(c2, t1), fb(w, c1),
mf(h, t2), OA(h) };

CA-rep3 = { CX(c1),mf(c1, t1), CX(c2),mf(c2, t1), fb(w, c2),
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mf(h, t2), CH(h) };
CA-rep4 = { CX(c1),mf(c1, t1), CX(c2),mf(c2, t1), fb(w, c2),

mf(h, t2), OA(h) };
CA-rep5 = { ATH(c1),mf(c1, t1), CX(c2),mf(c2, t1), fb(w, c1),

fb(w, c2),mf(h, t2), CH(h) };
CA-rep6 = { ATH(c1),mf(c1, t1), CX(c2),mf(c2, t1), fb(w, c1),

fb(w, c2),mf(h, t2), OA(h) };
CA-rep7 = { CX(c1),mf(c1, t1), ATH(c2),mf(c2, t1), fb(w, c1),

fb(w, c2),mf(h, t2), CH(h) };
CA-rep8 = { CX(c1),mf(c1, t1), ATH(c2),mf(c2, t1), fb(w, c1),

fb(w, c2),mf(h, t2), OA(h) }.

Our solution for updating inconsistent KBs is based on a simple modifi-
cation of the notions of “accomplishing the insertion” and “accomplishing the
deletion” given in Section 6.2 in case of consistent KBs.

We sanction that an ABoxA′ accomplishes the insertion of F into a possibly
inconsistent KB K = 〈T ,A〉 if, for all CA-repairs A′′ of 〈T ,A′〉, we have that
〈T ,A′′〉 logically entails F . Similarly, we say that an ABox A′ accomplishes
the deletion of F from a possibly inconsistent KB K = 〈T ,A〉 if, for all CA-
repairs A′′ of 〈T ,A′〉, we have that 〈T ,A′′〉 does not logically entail F . More
formally.

Definition 36. An ABox A′ accomplishes the insertion of F into K = 〈T ,A〉
if for all A′′ ∈ CAR-Set(〈T ,A′〉), we have that 〈T ,A′′〉 |= F .

Intuitively, the above definition states that an ABox A′ accomplishes the
insertion of F into a possibly inconsistent DL KB K if the KB 〈T ,A′〉 implies
under CAR-semantics all the assertions in F .

In the following definition we formally describe when an ABox accomplishes
the deletion of a set of ABox assertions from a possibly inconsistent KB.

Definition 37. An ABox A′ accomplishes the deletion of F from K = 〈T ,A〉
if for all A′′ ∈ CAR-Set(〈T ,A′〉), we have that 〈T ,A′′〉 6|= F .

Observe that, in the case of deletion we do not sanction that an ABox A′
accomplishes the deletion of F from K if the KB 〈T ,A′〉 does not entail at
least one of the assertions in F . Put in other terms, it is not sufficient that
〈T ,A′〉 6|=CAR F . Indeed, we impose that every CAR-repair of the ABox A′
does not entail at least one of the assertions in F . Clearly, the latter implies
the former, i.e., if A′ accomplishes the deletion of F from K = 〈T ,A〉, then
〈T ,A′〉 6|=CAR F .
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The following proposition establishes the condition under which an ABox
accomplishing the insertion of a finite set of ABox assertions F into a possibly
inconsistent L-KB K = 〈T ,A〉 always exists. We remind the reader that in our
study we consider only monotonic languages and that we are assuming that
the TBox T is consistent.

Proposition 19. Let K = 〈T ,A〉 be a possibly inconsistent KB in L, and let
F be a set of ABox assertions. An ABox A′ accomplishing the insertion of F
into K exists if and only if Mod(〈T , F 〉) 6= ∅.

Proof.
(⇒) Let A′ be an ABox accomplishing the insertion of F into K = 〈T ,A〉. This
means that, for each CAR-repair A′′ of 〈T ,A′〉, we have that 〈T ,A′′〉 |= F .
Since A′′ is T -consistent, then also F is T -consistent.
(⇐) Let F be a T -consistent set of ABox assertions. This means that the
KB 〈T , F 〉 is consistent and therefore F is a CAR-repair for 〈T , F 〉. Clearly,
〈T , F 〉 |= F . Hence, we can conclude that F accomplishes the insertion of F
into 〈T ,A〉.

The analogous for deletion is the following.

Proposition 20. Let K = 〈T ,A〉 be a possibly inconsistent KB in L, and let
F be a set of ABox assertions. An ABox A′ accomplishing the deletion of F
from K exists if and only if 〈T , ∅〉 6|= F .

Proof.
(⇒) Let A′ be an ABox accomplishing the deletion of F from 〈T ,A〉, we prove
that 〈T , ∅〉 6|= F . Suppose, by way of contradiction, that 〈T , ∅〉 |= F . Since A′
accomplishes the deletion of F from 〈T ,A〉, we have that each CAR-repair A′′
of 〈T ,A′〉 does not model F . Hence, also 〈T , ∅〉 does not model F .
(⇐) Suppose that 〈T , ∅〉 6|= F . From the fact that ∅ is T -consistent, we
conclude that ∅ accomplishes the deletion of F from 〈T ,A〉.

Moreover, we have the following lemmas.

Lemma 51. Let K = 〈T ,A〉 be a possibly inconsistent KB in L, and let F be
a T -inconsistent set of ABox assertions. Then, A accomplishes the deletion of
F from K.

Proof. Since every set Arep ∈ CAR-Set〈T ,A〉 is T -consistent, then F 6⊆
clT (Arep). Hence, for every CAR-repair Arep of K we have that 〈T ,Arep〉 6|= F .
That means that A accomplishes the deletion of F from 〈T ,A〉.

The following lemma shows that in case F is T -consistent, then it does not
belong to the consistent logical consequences with respect to T of any ABox
accomplishing the deletion of F from a KB.
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Lemma 52. An ABox A′ accomplishes the deletion of a T -consistent set F
of ABox assertions from a possibly inconsistent KB K = 〈T ,A〉 if and only if
F 6⊆ clcT (A′).

Proof. (⇒) We show that, if A′ accomplishes the deletion of F from 〈T ,A〉,
then F 6⊆ clcT (A′). Since A′ accomplishes the deletion of F from 〈T ,A〉, then
Proposition 20 guarantees that F 6⊆ clT (〈T , ∅〉). Suppose, by way of contra-
diction, that F ⊆ clcT (A′). Since F is T -consistent, Theorem 21 guarantees
that one can build a CAR-repair of 〈T ,A′〉 that contains F . Hence, there
exists at least one CAR-repair Arep of 〈T ,A′〉 such that 〈T ,Arep〉 |= F , but
this contradicts that A′ accomplishes the deletion of F from 〈T ,A〉.
(⇐) Now, we show that if F 6⊆ clcT (A′), then A′ accomplishes the deletion
of F from 〈T ,A〉. Since F 6⊆ clcT (A′), then there does not exist any T -
consistent subset A′′ of A′ such that 〈T ,A′′〉 |= F . Hence, for every Arep ∈
CAR-Set〈T ,A〉, we have that 〈T ,Arep〉 6|= F . Then, we can conclude that A′
accomplishes the deletion of F from 〈T ,A〉.

Now, we specify when a set of ABox assertions accomplishes the update of
a possibly inconsistent KB K = 〈T ,A〉 with F minimally.

Definition 38. Let A′ be an ABox. A′ accomplishes the insertion of F into
〈T ,A〉 minimally if A′ accomplishes the insertion of F into 〈T ,A〉, and there
is no ABox A′′ that accomplishes the insertion of F into 〈T ,A〉, and such that
clcT (A′′) has fewer changes than clcT (A′) with respect to clcT (A).

Note that in the above definition we refer to the notion of consistent logical
consequences of A with respect to T .

Example 45. Consider the KB K = 〈T ,A〉 presented in Example 44. Suppose
that we want to update K with the insertion of the set of ABox assertions
F+ = {CX(c1), fb(w, c1),mf(h, t1)}. In words, F+ states that c1 is the cox
of the crew w, and that h is a member of the rowing team t1.

Consider the following ABoxes.

A+
1 = { CX(c1),mf(c1, t1), fb(w, c1),mf(c2, t1),mf(h, t1), OA(h), CH(h),

RTM(t2), fb(w, c2) };
A+

2 = { CX(c1),mf(c1, t1), fb(w, c1),mf(c2, t1),mf(h, t1), OA(h), CH(h),
RTM(t2), CX(c2) }.

It is easy to see that both A+
1 and A+

2 are T -inconsistent, indeed the
assertions OA(h) and CH(h) contradict the assertion in the TBox stating
that a coach cannot be an athlete. We have:

• The set CAR-Set〈T ,A+
1 〉 is constituted by the following CAR-repairs.



214 Chapter 10. Updating inconsistent Description Logic KBs

CA-rep1 = { CX(c1),mf(c1, t1), fb(w, c1),mf(c2, t1),mf(h, t1),
OA(h), CH(h), RTM(t2), fb(w, c2) } \ { OA(h) };

CA-rep2 = { CX(c1),mf(c1, t1), fb(w, c1),mf(c2, t1),mf(h, t1),
OA(h), CH(h), RTM(t2), fb(w, c2) } \ { CH(h) }.

• The set CAR-Set〈T ,A+
2 〉 is constituted by the following CAR-repairs.

CA-rep1 = { CX(c1),mf(c1, t1), fb(w, c1),mf(c2, t1),mf(h, t1),
OA(h), CH(h), RTM(t2), CX(c2) } \ { OA(h) };

CA-rep2 = { CX(c1),mf(c1, t1), fb(w, c1),mf(c2, t1),mf(h, t1),
OA(h), CH(h), RTM(t2), CX(c2) } \ { CH(h) }.

Since each ABox above entails together with T the set of facts belonging
to F , we can conclude that both A+

1 and A+
2 accomplish the insertion of F+

into K. Moreover, it can be shown that they do it minimally.

The following theorem provides a constructive characterization of the no-
tion of an ABox accomplishing the insertion of a set of facts into a possibly
inconsistent KB minimally.

Theorem 43. Let 〈T ,A〉 be a possibly inconsistent L-KB and let A′ and F be
two sets of ABox assertions. A′ accomplishes the insertion of F into 〈T ,A〉
minimally if and only if clcT (A′) = clcT (A′′∪F ), for some maximal subset A′′
of clcT (A) such that 〈T ,A′′ ∪ F 〉 |=CAR F .

Proof.
(⇒) We show that if A′ accomplishes the insertion of F into 〈T ,A〉 minimally,
then clcT (A′) = clcT (A′′ ∪ F ), where A′′ is a maximal subset of clcT (A) such
that 〈T ,A′′ ∪ F 〉 |=CAR F . Since A′ accomplishes the insertion of F into
〈T ,A〉, from Proposition 19 we have that F is T -consistent.

The proof proceeds by contradiction as follows. Suppose that there does not
exist a set A′′ that is a maximal subset of clcT (A) such that 〈T ,A′′∪F 〉 |=CAR
F and such that clcT (A′) = clcT (A′′ ∪ F ). Let clcT (A′) = clcT (Atmp ∪ F ).
Firstly, we show thatAtmp is a subset of clcT (A) such that 〈Atmp∪F 〉 |=CAR F .
SinceA′ accomplishes the insertion of F into 〈T ,A〉minimally, then 〈T ,Atmp∪
F 〉 |=CAR F . Moreover, from Theorem 25, we have that in clcT (Atmp∪F ) there
does not exist a minimal T -inconsistent set V such that V ∩ clT (F ) 6= ∅.

Suppose, by way of contradiction, thatAtmp\clcT (A) = α. This means that
there is an assertion α, in Atmp that does not belong to clcT (A). Consider the
set of ABox assertion B = Atmp \ {α}. Since the monotonicity of the language
used to express T ensures that by removing an assertion from a T -inconsistent
ABox we cannot introduce a new inconsistency, we have that in clcT (B ∪ F )
there does not exist a minimal T -inconsistent set V such that V ∩ clT (F ) 6= ∅.
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Hence, 〈T ,B ∪ F 〉 |=CAR F . Since α 6∈ clcT (A), then the following cases are
conceivable:

• clcT (A) \ clcT (B ∪ F ) = clcT (A) \ clcT (A′), and clcT (B) \ clcT (A) ⊆
clcT (A′)\ clcT (A). Hence, clcT (B) has fewer changes than clcT (A′) with
respect to clcT (A). Which contradicts the fact that A′ accomplishes the
insertion of F into 〈T ,A〉 minimally.

• clcT (A)\clcT (A′) ⊆ clcT (A)\clcT (B∪F ). This can happens, for instance,
if there is in clcT ({α} ∪ F ) an assertion β, such that β ∈ clcT (A) and
β 6∈ clcT (Atmp \{α}∪F ). But, since clcT (A′) accomplishes the insertion
of F into 〈T ,A〉, then the set {β} ∪ F is T -consistent. Hence, we can
build the set B′ = B ∪ {β}, which accomplishes the insertion of F into
〈T ,A〉 and has fewer changes than clcT (A′) with respect to clcT (A).
Which contradicts the fact that A′ accomplishes the insertion of F into
〈T ,A〉 minimally.

Hence, we conclude that Atmp is a subset of clcT (A).
Assume that Atmp is not a maximal subset of clcT (A) such that 〈T ,Atmp∪

F 〉 |=CAR F . This means that there is an assertion α in clcT (A) such that
〈T ,Atmp∪F∪{α}〉 |=CAR F , and that clcT (A)\(Atmp∪{α}) ⊂ clcT (A)\Atmp.
Let A′′′ = Atmp ∪ clT (F ) ∪ {α}. Clearly, A′′′ accomplishes the insertion of F
into 〈T ,A〉. The following cases are conceivable:

(i) clcT (A) \ clcT (A′′′) = clcT (A) \ clcT (A′), which means that clcT (A′′′) =
clcT (A′) and then clcT (A′) = clcT (A′′ ∪ {α} ∪ F ).

(ii) clcT (A) \ clcT (A′′′) ⊂ clcT (A) \ clcT (A′). Hence, clcT (A′′′) has fewer
deletions than clcT (A′) with respect to clcT (A). Which contradicts that
A′ accomplishes the insertion minimally.

Case (i) states that if Atmp is not a maximal subset of clcT (A) such that
〈T ,Atmp ∪ F 〉 |=CAR F , then there is an A′′ which is a maximal subset of
clcT (A) such that 〈T ,A′′ ∪ F 〉 |=CAR F , and such that clcT (Atmp ∪ F ) =
clcT (A′′ ∪ F ). Which means that clcT (A′) = clcT (A′′ ∪ F ), where A′′ is a
maximal subset of clcT (A) such that 〈T ,A′′ ∪ F 〉 |=CAR F .

(⇐) Let A′ be an ABox such that clcT (A′) = clcT (A′′ ∪ F ), where A′′ is a
maximal subset of clcT (A) such that 〈T ,A′′ ∪ F 〉 |=CAR F . We show that A′
accomplishes the insertion of F into 〈T ,A〉minimally. Since 〈T ,A′′∪F 〉 |=CAR
F , then for each Arep ∈ CAR-Set(〈T ,A′′ ∪ F 〉), we have that 〈T ,Arep〉 |= F .
That is 〈T ,A′′∪F 〉 accomplishes the insertion of F into 〈T ,A〉. Proposition 19
guarantees that Mod(〈T , F 〉) 6= ∅. We now show that 〈T ,A′′ ∪ F 〉 does it
minimally. The proof proceeds by contradiction. Suppose that there is an
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ABox Atmp accomplishing the insertion of F into 〈T ,A〉 such that clcT (Atmp)
has fewer changes than clcT (A′′ ∪ F ) with respect to clcT (A). One of the
following cases occurs:

• clcT (Atmp) has fewer deletions than clcT (A′′∪F ) with respect to clcT (A).
This means that there is an assertion α ∈ clcT (Atmp) such that α ∈
clcT (A) and α 6∈ clcT (A′′ ∪ F ). Hence, 〈T ,A′′ ∪ {α} ∪ F 〉 |=CAR F ,
which contradicts that A′′ is a maximal subset of clcT (A) such that
〈T ,A′′ ∪ F 〉 |=CAR F .

• clcT (Atmp) has the same deletions of clcT (A′′ ∪ F ) and clcT (Atmp) has
fewer insertions than clcT (A′′∪F ) with respect to clcT (A). Which means
that there is an assertion α ∈ clcT (A′′ ∪F ) that does not belong neither
to clcT (Atmp) nor to clcT (A). Since A′′ ⊆ clcT (A), α ∈ clT (F ) or α
is a consequence of the assertions in clcT (A′′) together with T and the
assertions in clT (F ). Since, clcT (Atmp) and clcT (A′′ ∪ F ) have the same
deletions with respect to clcT (A), and since clT (F ) ⊆ clcT (Atmp), we
can conclude that α ∈ clcT (Atmp). Hence, we have a contradiction.

The analogous of Definition 38 for deletion is as follows.

Definition 39. Let A′ be an ABox. A′ accomplishes the deletion of F from
〈T ,A〉 minimally if A′ accomplishes the deletion of F from 〈T ,A〉, and there
is no ABox A′′ that accomplishes the deletion of F from 〈T ,A〉, and such that
clcT (A′′) has fewer changes than clcT (A′) with respect to clcT (A).

Example 46. Let K = 〈T ,A〉 be the KB presented in Example 44. Suppose
that we want to update K′ with the deletion of F− = {mf(c1, t1), OA(h)}. It
is easy to verify that both the following T -inconsistent ABoxes accomplish the
deletion of F− from K′ minimally.

A−1 = { CX(c1), fb(w, c1), CX(c2),mf(c2, t1), fb(w, c2), CH(h),
mf(h, t2), OA(h) };

A−2 = { CX(c1), fb(w, c1), CX(c2),mf(c2, t1), fb(w, c2), CH(h),mf(h, t2),
ATH(h),mf(c1, t1) }.

Indeed, we have that

〈T ,Arep〉 6|= mf(c1, t1), for each A′′ ∈ CAR-Set〈A−1 〉,
〈T ,Arep〉 6|= OA(h), for each A′′ ∈ CAR-Set〈A−2 〉,

and, for each ABox A′′′ such that clcT (A′) 6= clcT (A−1 ) (resp. clcT (A′) 6=
clcT (A−2 )) which accomplishes the deletion of F from K, we have that clcT (A−1 )
(resp. clcT (A−2 )) has fewer changes than clcT (A′) with respect to clcT (A).
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The following lemma states that, if F is T -inconsistent, then the ABox A
accomplishes the deletion of F from 〈T ,A〉 minimally.

Lemma 53. Let 〈T ,A〉 be a possibly inconsistent KB and let F be a T -
inconsistent set of ABox assertions. Then, A accomplishes the deletion of
F from 〈T ,A〉 minimally.

Proof. The proof directly follows from Lemma 51 which guarantees that A
accomplishes the deletion of F from 〈T ,A〉.

Similarly to Theorem 43, the following theorem provides a constructive
characterization of the notion of an ABox accomplishing the deletion of F
from an inconsistent KB in that cases where F is T -consistent.

Theorem 44. Let 〈T ,A〉 be a possibly inconsistent L-KB and let F be a T -
consistent set of ABox assertions. An ABox A′ accomplishes the deletion of F
from 〈T ,A〉 minimally if and only if clcT (A′) is a maximal subset of clcT (A)
such that F 6⊆ clcT (A′).

Proof.
(⇒) We show that if A′ accomplishes the deletion of F from 〈T ,A〉 mini-
mally, then clcT (A′) is a maximal subset of clcT (A) such that F 6⊆ clcT (A′).
Since A′ accomplishes the deletion of F from 〈T ,A〉 then F 6⊆ clT (〈T , ∅〉).
Moreover, Lemma 52 guarantees that F 6⊆ clcT (A′). We proceed by contra-
diction. First, suppose that clcT (A′) 6⊆ clcT (A). Then, there is at least one
assertion α ∈ clcT (A′) that does not belong to clcT (A). Since A′ accomplishes
the deletion of F from 〈T ,A〉, then, for each Arep ∈ CAR-Set(〈T ,A〉), we
have that 〈T ,Arep〉 6|= F . Due to the monotonicity of L, we have that also
〈T ,Arep\{α}〉 6|= F . Hence, clcT (A′)\{α} accomplishes the deletion of F from
〈T ,A〉 and has fewer insertions than clcT (A′), but this contradicts that A′ ac-
complishes the deletion of F from 〈T ,A〉 minimally. Now, suppose that there
exists an assertion β ∈ clcT (A) such that the set clcT (A′) ∪ {β} accomplishes
the deletion of F from 〈T ,A〉, and suppose that β 6∈ clcT (A′). This means that
clcT (A′) is not a maximal subset of clcT (A) such that F 6⊆ clcT (A′). It follows
that the set clcT (A′) ∪ {β} accomplishes the deletion of F from 〈T ,A〉 and
clcT (clcT (A′)∪{β}) has fewer deletions than clcT (A′) with respect to clcT (A).
This, clearly, contradicts that A′ accomplishes the deletion of F from 〈T ,A〉
minimally.

(⇐) Now, we show that if clcT (A′) is a maximal subset of clcT (A) such that
F 6⊆ clcT (A′), then A′ accomplishes the deletion of F from 〈T ,A〉 minimally.
Since F 6⊆ clcT (A′), then 〈T , ∅〉 6|= F and, from Lemma 52, we have that A′
accomplishes the deletion of F from 〈T ,A〉.

Suppose, by way of contradiction, that A′ does not accomplish the deletion
of F from 〈T ,A〉 minimally. This means that there is an ABox A′′ that
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accomplishes the deletion of F from 〈T ,A〉, and such that clcT (A′′) has fewer
changes than clcT (A′) with respect to clcT (A′). The following two cases are
conceivable:

(i) clcT (A′′) has fewer insertions than clcT (A′) with respect to clcT (A′).
This implies that there is an assertion α in clcT (A′) that does not belong
to clcT (A), which contradicts that clcT (A′) is a subset of clcT (A).

(i) clcT (A′′) has fewer deletions than clcT (A′) with respect to clcT (A′).
This implies that there exists an assertion α ∈ clcT (A′′) that belongs to
clcT (A) and that does not belong to clcT (A′). Since clcT (A′) ⊆ clcT (A),
then clcT (A′) ⊂ clcT (A′′). Hence, F 6⊆ clcT (A′ ∪ {α}). Therefore,
clcT (A′) is not a maximal subset of clcT (A) such that F 6⊆ clcT (A′),
which is a contradiction.

As shown by Example 45 and Example 46, in general there may exist more
than one ABox that accomplishes the update. As discussed in Section 6.4 there
are different approaches to cope with the multiple results problem. Motivated
by the same reasons that led us to adopt the When In Doubt Throw It Out
principle [51, 52] (WIDTIO) for updating consistent KB (cf. Section 6.4), we
base, also in this case, our semantics for update on the intersection of all the
ABoxes accomplishing the update minimally.

Therefore, according with the WIDTIO principle, we give below the formal
definition of the result of updating a possibly inconsistent KB with the insertion
of a set of ABox assertions.

Definition 40. Let K = 〈T ,A〉 be a possibly inconsistent KB, and let F be a
finite set of ABox assertions. Moreover, let U = {A1, . . . ,An} be the set of all
ABoxes accomplishing the insertion of F into K minimally, and let A′ be an
ABox. The KB 〈T ,A′〉 is the result of updating K with the insertion of F if

1. U is empty, and 〈T ,A′〉 = 〈T ,A〉, or

2. U is nonempty, and 〈T , clcT (A′)〉 = 〈T ,
⋂

1≤i≤n clcT (Ai)〉.

Note that in that cases where an ABox accomplishing insertion of F into
K does not exist, we establish that the result of updating K with the insertion
of F is K itself.

Similarly, we define below when a KB is the result of updating a possibly
inconsistent KB with the deletion of a set of facts.

Definition 41. Let K = 〈T ,A〉 be a possibly inconsistent KB, and let F be a
finite set of ABox assertions. Moreover, let U = {A1, . . . ,An} be the set of all
ABoxes accomplishing the deletion of F from K minimally, and let A′ be an
ABox. The KB 〈T ,A′〉 is the result of updating K with the deletion of F if
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1. U is empty, and 〈T ,A′〉 = 〈T ,A〉, or

2. U is nonempty, and 〈T , clcT (A′)〉 = 〈T ,
⋂

1≤i≤n clcT (Ai)〉.

We observe that also in this case, when there is no ABox accomplishing
the update, the update operation does not alter the original KB.

10.2 Properties of our inconsistency-tolerant update
operators

In this section, we discuss how the inconsistency-tolerant update operator pre-
sented in the previous section, relates to the update properties presented in
Section 6.1. In what follows, we use the term “update” as a generalization
of “update by insertion” and “update by deletion”. Moreover, we assume that
K = 〈T ,A〉 is a possibly inconsistent DL KB, that T is a consistent TBox,
and that F is a finite set of ABox assertions.

Since, we are assuming that K may be inconsistent, we cannot refer to the
classic notion of entailment. For this reason we adopt the notion of CAR-
entailment given in Section 8.2. Preposition 16 guarantees that if K is a
consistent KB, then the notion of CAR-entailment coincide with the notion
FOL-entailment. Moreover, if K is consistent, then clT (A) = clcT (A).

We start by showing that, if at least one ABox accomplishing the update of
a KB K with a set of ABox assertions F exists, then the inconsistency-tolerant
update operators capture the success of the update property. In other words,
we show that in case of insertion the result of the update implies, under CAR-
semantics, the set F , conversely, in case of deletion, the result of the update
does not entail F under CAR-semantics.

Proposition 21. Let K = 〈T ,A〉 be possibly inconsistent L-KB, and let F be
a set of ABox assertions. Let 〈T ,A′〉 be a KB resulting from updating K with
the insertion (resp. deletion) of F . Then

− if F is T -consistent, then 〈T ,A′〉 |=CAR F ;

− if 〈T , ∅〉 6|= F , then 〈T ,A′〉 6|=CAR F .

Proof. We start showing that if 〈T ,A′〉 is the result of updating K = 〈T ,A〉
with the insertion of a T -consistent set F , then 〈T ,A′〉 |=CAR F . Since F is T -
consistent, from Proposition 19 it directly follows that the set U = {A1, . . .An}
containing the ABoxes accomplishing the insertion of F into K minimally is
non-empty. Suppose, by way of contradiction, that 〈T ,A′〉 6|=CAR F . The
following cases are conceivable:
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• F 6⊆ clcT (A′). This means that there is at least one ABox A′′ ∈ U
such that F 6∈ clcT (A′′). It follows that, for each CAR-repairs Arep of
〈T ,A′′〉, we have that 〈T ,Arep〉 6|= F . Hence 〈T ,A′′〉 cannot accomplish
the insertion of F into K, which is a contradiction.

• there exists a CAR-repair Arep of F such that 〈T ,Arep〉 6|=CAR F . From
Theorem 25, it follows that there exists in clcT (A) a minimal T -inconsiste-
nt set V such that V ∩ F 6= ∅. Since V ⊆ clcT (A′), then V ⊆ clcT (A′′)
for each ABox A′′ ∈ U . Hence, by exploiting again Theorem 25, we
have that there exists at least one CAR-repair A′′rep of 〈T ,A′′〉 such that
〈T ,Arep〉 6|= F . Hence, 〈T ,A′′〉 cannot accomplish the insertion of F
into K, which is a contradiction.

We now show that if 〈T , ∅〉 6|= F , and 〈T ,A′〉 is the result of updating
K = 〈T ,A〉 with the insertion of F , then 〈T ,A′〉 6|=CAR F . Since 〈T , ∅〉 6|= F ,
from Proposition 20, it directly follows that the set U = {A1, . . .An} containing
the ABoxes accomplishing the deletion of F from K minimally is non-empty.
Toward a contradiction. Suppose that 〈T ,A′〉 |=CAR F . This means that for
each repair Arep of 〈T ,A′〉, 〈T ,Arep〉 |= F . Hence, F is T -consistent. Clearly,
we have also that, for every assertion α in F , the set {α} is T -consistent.
Moreover, from the fact that 〈T ,A′〉 |=CAR F , we can conclude that F ⊆
clcT (A′), and then that F ⊆ clcT (A′′), for each A′′ ∈ U . Since F is T -
consistent, there does not exist any minimal T -inconsistent set V ⊆ F . Hence,
from Theorem 20, it follows that, for each A′′ ∈ U , there exists at least one
repair A′′rep in CAR-Set〈T ,A′′〉, such that 〈T ,A′′rep〉 |= F . Hence, A′′ cannot
accomplish the deletion of F from K, which is a contradiction.

We now focus our attention on a property regarding the uniqueness of
the result. By providing the following proposition, we state that if both the
KBs K′ and K′′ result from updating a possibly inconsistent KB with the
same set of ABox assertions, then K′ and K′′ are C-equivalent. Therefore,
from Proposition 17, it follows that, with respect to the CAR-semantics, our
inconsistency-tolerant update operators are functional.

Proposition 22. Let K = 〈T ,A〉 be a possibly inconsistent KB. Up to C-
equivalence, there is exactly one result of updating 〈T ,A〉 with the insertion of
F , and exactly one result of updating 〈T ,A〉 with the deletion of F .

Proof. Firstly, we show that, given two KBs 〈T ,A1〉 and 〈T ,A2〉 such that
both result from updating K with the insertion of F , we have that clcT (A1) =
clcT (A2). Note that if F is T -inconsistent, then from Proposition 19, we have
that the set U = {A1, . . . ,An} containing the ABoxes that accomplish the
insertions of F into K minimally is empty. Then, by following Definition 40,
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the KB resulting from the update is K itself. Hence, if F is T -inconsistent,
then the claim is trivially proved.

Now, suppose that F is T -consistent. From Definition 40 we have that:

• 〈T , clcT (A1)〉 = 〈T ,
⋂

1≤i≤n clcT (Ai)〉, with Ai ∈ U ;

• 〈T , clcT (A2)〉 = 〈T ,
⋂

1≤i≤n clcT (Ai)〉, with Ai ∈ U ;

Hence, clcT (A1) = clcT (A2).
We now prove the claim in case of deletion. Let us start considering the

case in which the set U containing the ABoxes accomplishing the deletion of
F from K minimally is empty. According with Definition 41, we have that the
result of updating K with the deletion of F is K itself. Therefore the claim is
trivially proved.

Suppose that the set U = {A1, . . . ,A2} containing the ABoxes accom-
plishing the deletion of F into K minimally is non-empty. According with
Definition 41 we have:

• 〈T , clcT (A1)〉 = 〈T ,
⋂

1≤i≤n clcT (Ai)〉, with Ai ∈ U ;

• 〈T , clcT (A2)〉 = 〈T ,
⋂

1≤i≤n clcT (Ai)〉, with Ai ∈ U ;

Hence, clcT (A1) = clcT (A2).

Let K = 〈T ,A〉 be a possibly inconsistent KB and let F be a set of ABox
assertions. In what follows, we denote the result of updating K with the
insertion of F according to our inconsistency-tolerant semantics with K⊕TCAR
F , and the result of updatingK = 〈T ,A〉 with the deletion of F withK	TCARF .

The following proposition states that, in the case where the original KB
is consistent, our inconsistency-tolerant update semantics coincide with the
semantics for updating consistent KBs presented in Section 6.4.

Proposition 23. Let 〈T ,A〉 be a consistent KB, and let F be a set of ABox
assertions. Up to logical equivalence, we have that:

• K ⊕TCAR F = K ⊕T∩ F ;

• K 	TCAR F = K 	T∩ F .

Proof.
We first show that if K is consistent, then K ⊕TCAR F = K ⊕T∩ F . If F is

T -inconsistent, from Definition 40 we have that K ⊕TCAR F = K. Moreover,
from Definition 22 we have that K ⊕T∩ F is logical equivalent to K. Hence,
K ⊕TCAR F is logical equivalent to K ⊕T∩ F .

Let F be T -consistent. We prove the claim by showing that if an ABox A′
accomplishes the insertion of F minimally according to Definition 38, then it
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accomplishes the insertion of F minimally also according to Definition 19, and
vice-versa.

To this aim we first prove that, if both A and F are T -consistent then every
ABox accomplishing the insertion of F into 〈T ,A〉 minimally according to
Definition 38 is T -consistent. Let A′ be an ABox accomplishing the insertions
of F into K = 〈T ,A〉 minimally according to Definition 38. We have that
for each A′′ ∈ CAR-Set(〈T ,A′〉), 〈T ,A′′〉 |= F , which means that clT (F ) ⊆
clcT (A′). The set clcT (A′) can be partitioned into two sets of ABox assertions,
namely, clcT (A′) = AA ∪ AF where:
− AA ∩ AF = ∅;
− AF = {α | ∃A′′′ ⊆ clcT (A′) s.t. α ∈ clcT (A′′′ ∪ F ) and α 6∈ clcT (A′′′)}.

Intuitively, AF contains those assertions in clcT (A′) that are consequences of
assertions in F , i.e., clT (F ) ⊆ AF , or that can only be derived by assertions
in AA in conjunction with at least one assertion in F .

Since 〈T ,A′〉 |=CAR F . It follows, from Theorem 25, that for each assertion
α ∈ AF , there is no minimal T -inconsistent set V such that α ∈ V . Indeed,
suppose, by way of contradiction, that there exists a minimal T -inconsistent
set V such that α ∈ V . Since α ∈ V , then there exists a possibly empty subset
A′A of clcT (AA) and a non-empty set F ′ ⊆ F such that α ∈ clcT (A′A ∪ F ′),
and such that for each assertion β ∈ (A′A ∪ F ′), α 6∈ clcT ((A′A ∪ F ′) \ {β}).
Which means that (V \ {α}) ∪ (A′A ∪ F ′) is a minimal T -inconsistent set.
Hence, there exists a minimal T -inconsistent set that overlaps with F , which
contradicts Theorem 25. From the fact that there does not exist any minimal
T -inconsistent set V such that V ∩ AF 6= ∅, we can conclude that AF is
T -consistent, and that, if clcT (A′) is T -inconsistent, then every hypothetical
minimal T -inconsistent set in clcT (A′) is a subset of AA.

Theorem 43 states that if A′ accomplishes the insertion of F minimally,
then there exists a maximal subsetA′′ of clT (A) such that 〈T ,A′′∪F 〉 |=CAR F ,
and such that clcT (A′) = clcT (A′′ ∪ F ). Hence, since clT (A) is T -consistent,
and since T is expressed in a monotonic language, then also A′′ is T -consistent.
Therefore, we can conclude that A′ is T -consistent. By exploiting Propo-
sition 16 and Theorem 43, we get that A′ is a T -consistent set such that
clT (A′) = clT (A′′ ∪ F ), where A′′ is a maximal subset of clT (A) such that
A′′∪F is T -consistent. Hence, from Theorem 11 we have that A′ accomplishes
the insertion of F into 〈T ,A〉 minimally in accordance with Definition 22.

So, we have shown that if 〈T ,A〉 is T -consistent, then every ABox ac-
complishing the insertions of F into 〈T ,A〉 according to Definition 38, also
accomplishes the insertion of F minimally according to Definition 19.

On the other hand, let A′ be an ABox accomplishing the insertion of the
T -consistent set F into the T -consistent KB 〈T ,A〉 according to Definition 19.
From Theorem 11 we have that clT (A′) = clT (A′′∪F ), where A′′ is a maximal
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subset of clT (A) such that A′′ ∪ F is T -consistent. Again, since by removing
assertions from a T -consistent set of ABox assertions one cannot obtain a T -
inconsistent set of ABox assertions, then by applying Proposition 16, we have
that A′′ is a maximal subset of clT (A) such that 〈T ,A′′ ∪F 〉 |=CAR F . Hence,
A′ accomplishes the insertion of F into 〈T ,A〉 also according to Definition 38.
Finally, since the set of ABox assertions accomplishing the insertion of F into
〈T ,A〉 according to Definition 38 coincides with the set of ABox assertions
accomplishing the insertion of F into 〈T ,A〉 according to Definition 19, we
can conclude that, up to logical equivalence, K ⊕TCAR F = K ⊕T∩ F .

We now show that if K is a consistent KB, then K 	TCAR F = K 	T∩ F .
Firstly, if 〈T , ∅〉 |= F , then, from Proposition 2 and Proposition 20, the set U
of ABoxes accomplishing the deletion of F from the consistent KB K = 〈T ,A〉
is empty for both the update semantics. Hence, according to Definition 23, and
to Definition 41, we have that K	TCARF is logically equivalent to K	T∩ F . Let
〈T , ∅〉 6|= F , and let F be T -inconsistent. It directly follows from Theorem 12
and from Lemma 53 that every ABox accomplishing the deletion of F according
with both Definition 20 and Definition 39 is logically equivalent to A. Hence,
if F is T -inconsistent, then, also in case, K 	TCAR F is logically equivalent to
K 	T∩ F .

Let F be a T -consistent set of ABox assertions, and let 〈T , ∅〉 6|= F . Let A′
be an ABox accomplishing the deletion of F from 〈T ,A〉 minimally according
to Definition 39. From Theorem 44 clcT (A′) is a maximal subset of clcT (A)
such that F 6⊆ clcT (A′). Since A is T -consistent, then A′ is T -consistent. This
means that clT (A′) is a maximal subset of clT (A) such that F 6⊆ clT (A′). It
follows from Theorem 12 that A′ accomplishes the deletion of F from 〈T ,A〉
minimally according to Definition 20. Similarly. we can show that if A′ ac-
complishes the deletion of F from 〈T ,A〉 minimally according to Definition 20,
then it accomplishes the deletion of F from 〈T ,A〉 minimally according to Def-
inition 39. It directly follows that K 	TCAR F = K 	T∩ F .

We observe that the above proposition, together with Proposition 6 and
Proposition 7, implies that both ⊕TCAR and 	TCAR obey the consistency preser-
vation property.

The following Proposition guarantees that the result of updating a possibly
inconsistent L-KB can be expressed in L. This means that both the proposed
inconsistency-tolerant update operators obey the expressibility property. As
discussed in Section 6.1, this property is essential for equipping DL KB man-
agement systems with evolution operators.

Proposition 24. Let 〈T ,A〉 be a possibly KB in L, and let F be a set of ABox
assertions. Then both K ⊕TCAR F and K 	TCAR F are KBs in L.

Proof. The proof is an obvious adaptation of the one proposed for Proposi-
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tion 8. Indeed, it follows form Proposition 5, which guarantees that the result
of the update is unique, and from the following observations:

• if 〈T ,A〉 is expressed in L, then 〈T , clcT (A)〉 is a KB in L;

• if U is a set of ABoxes, and T is a TBox in L, then 〈T ,
⋂
Ai∈U Ai〉 is a

KB in L;

• if A and A′ are two ABoxes, and 〈T ,A〉 is a KB in L, then 〈T ,A ∪A′〉
is a KB in L.

We conclude this section with a discussion on the syntax independence
property. In Section 6.5, we showed that by updating two consistent and
logically equivalent KBs with the same set of facts, we obtain two KBs which
are logically equivalent. If we are dealing with inconsistent KBs, the classical
notion of logically equivalence becomes unusable for our purposes.

A possible adjustment of the syntax independence property to inconsisten-
cy-tolerant update could refer to the following notion of equivalence. Let K1

andK2 be two possibly inconsistent KBs. We say thatK1 andK2 are equivalent
with respect to CAR-entailment, written |=CAR-equivalent, if for every sentence
σ, we have that K1 |=CAR σ and K2 |=CAR σ.

In this case, we say that an inconsistency-tolerant update operator obeys
the syntax independence property if for every possibly inconsistent KBs K1

and K2 that are |=CAR-equivalent, and for every set of ABox assertions F , the
result of updating K1 with F is |=CAR-equivalent to the result of updating K2

with F .
The following example shows that our inconsistency-tolerant update oper-

ators do not obey the above notion of the syntax independence property.

Example 47. Let T be the TBox containing the following assertions.

Son v Man, Husband v Man,
Man v ¬Woman.

Consider the two KBs K1 = 〈T ,A1〉 and K2 = 〈T ,A2〉 where

A1 = { Son(andrea),Woman(andrea) };
A2 = ∅.

It is easy to see that K1 and K2 are |=CAR-equivalent. In particular, if we
consider the sentence Son(andrea), we have:

K1 6|=CAR Son(andrea), K2 6|=CAR Son(andrea).
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Now, suppose we update both K1 and K2 with the insertion of the set of ABox
assertions F = {Husband(andrea)}. By applying the inconsistency-tolerant
update semantics given in Section 10.1, we have that:

K1 ⊕TCAR F = 〈T , { Son(andrea),Husband(andrea) }〉;
K2 ⊕TCAR F = 〈T , { Husband(andrea) }〉.

Considering again the sentence Son(andrea), we have:

K1 ⊕TCAR F |=CAR Son(andrea);
K2 ⊕TCAR F 6|=CAR Son(andrea).

Therefore, K1 ⊕TCAR F and K2 ⊕TCAR F are not |=CAR-equivalent.

A different manner to compare two inconsistent KBs refers to the notion
of C-equivalence given in Section 8.1. By adopting this notion of equivalence,
we say that an inconsistency-tolerant update operator obeys the syntax inde-
pendence property if for every possibly inconsistent KBs K1 and K2 that are
C-equivalent, and for every set of ABox assertions F , the result of updating
K1 with F is C-equivalent to the result of updating K2 with F .

The next proposition states that our inconsistency-tolerant update opera-
tors obey this notion of syntax independence property.

Proposition 25. Let K1 = 〈T ,A1〉 and K2 = 〈T ,A2〉 be two possibly in-
consistent KBs, and let F be a set of ABox assertions. If K1 and K2 are
C-equivalent. Then,

• K1 ⊕TCAR F and K2 ⊕TCAR F are C-equivalent;

• K1 	TCAR F and K2 	TCAR F are C-equivalent.

Proof. Let 〈T ,A1〉 and 〈T ,A2〉 be two C-equivalent KBs, and let F be a set
of atomic ABox assertions. We start showing that K1⊕TCAR F and K2⊕TCAR F
are C-equivalent. If F is T -inconsistent, the proof follows directly from Propo-
sition 19 and from Definition 40. Moreover, if K1 and K2 are two consistent
KBs, the proof directly follows from Proposition 23 and from Proposition 9.
Let 〈T ,A1〉 and 〈T ,A2〉 be two inconsistent C-equivalent KBs, and let F be
T -consistent. Let U1 = {A1

1, . . . ,A1
n} be the set of ABox accomplishing the

insertion of F into K1 minimally, and let U2 = {A2
1, . . . ,A2

n} be the set of
ABox accomplishing the insertion of F into K2 minimally. From Theorem 43
we have that:

• clcT (A1
j ) = clcT (A′1j ∪ F ), where A′1j is a maximal subset of clcT (A1)

such that 〈T ,A′1j ∪ F 〉 |=CAR F , for each A1
j ∈ U1;
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• clcT (A2
j ) = clcT (A′2j ∪ F ), where A′2j is a maximal subset of clcT (A2)

such that 〈T ,A′2j ∪ F 〉 |=CAR F , for each A2
j ∈ U2.

Since clcT (A1) = clcT (A2), it follows that:

• clcT (A1
j ) = clcT (A′1j ∪ F ), where A′1j is a maximal subset of clcT (A2)

such that 〈T ,A′1j ∪ F 〉 |=CAR F , for each A1
j ∈ U1;

• clcT (A2
j ) = clcT (A′2j ∪ F ), where A′2j is a maximal subset of clcT (A1)

such that 〈T ,A′2j ∪ F 〉 |=CAR F , for each A2
j ∈ U2.

This means that U1 = U2 and therefore K1 ⊕TCAR F and K2 ⊕TCAR F are C-
equivalent.

Similarly, one can easily prove that K1 	TCAR F and K2 	TCAR F are C-
equivalent.



Chapter 11

Updating inconsistent
DL-LiteA,id,den KBs

In this chapter we turn our attention to DL-LiteA,id,den-KBs and we study
the problem of updating possibly inconsistent KBs expressed in this logic. To
this aim we first provide some results which give a constructive characteriza-
tion of the problem of updating a possibly inconsistent DL-LiteA,id,den-KB by
adopting the inconsistency-tolerant update semantics presented in the previous
chapter. Then, on the base of such results, we design two algorithms, one for
updating by insertion, and the other one for updating by deletion a possibly
inconsistent KBs expressed in the DL DL-LiteA,id,den. We recall that, as the
other logics belonging to the DL-Lite family, DL-LiteA,id,den has been specif-
ically designed to keep all reasoning tasks polynomially tractable in the size
of the ABox. By characterizing the computational complexity of the insertion
and the deletion algorithms for DL-LiteA,id,den, we show that this property still
holds for inconsistency-tolerant update.

11.1 Inconsistency-tolerant insertion in DL-LiteA,id,den

In this section we address the problem of updating a possibly inconsistent
DL-LiteA,id-KB K with the insertion of a set of ABox assertions F , according
to the semantics given in Section 10.1. Thus, our goal is computing the KB
K ⊕TCAR F . To this aim we present the algorithm ComputeInsertionCAR, that
takes in input a DL-LiteA,id,den-KB K and a finite set of facts F , and computes
the result of updating K with the insertions of F .

In accordance with Definition 40, we have that, a DL-LiteA,id-KB 〈T ,A′〉
is the result of updating the DL-LiteA,id,den-KB 〈T ,A〉 with the insertion of a
T -consistent set of ABox assertions F , if 〈T , clcT (A′)〉 = 〈T ,

⋂
Ai∈U clcT (Ai)〉,

where U = {A1, . . . ,An} is the set of all ABoxes accomplishing the insertion

227
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of F into K minimally. Thus, by exploiting Proposition 22, one can compute
〈T ,A〉 ⊕TCAR F , by first computing the ABox A∩ =

⋂
Ai∈U clcT (Ai). In what

follows we show how one can obtainA∩ without computing every ABoxAi ∈ U .
We recall that DL-LiteA,id,den enjoys the following property. Given a TBox

in DL-LiteA,id,den and two T -consistent ABoxes A1 and A2, we have that
clT (A1 ∪ A2) = clT (A1) ∪ clT (A2). Clearly, such a property holds also if we
consider the set of consistent logical consequences of an ABox in place of the
deductive closure. Therefore, given a DL-LiteA,id,den TBox and two ABoxes
A1 and A2, we have that clcT (A1 ∪ A2) = clcT (A1) ∪ clcT (A2).

We also recall that Theorem 25 guarantees that, given a possibly inconsis-
tent KB K = 〈T ,A〉 and an ABox assertion α ∈ clcT (A), a CA-repair A′ of K
such that α 6∈ clT (A′) exists if and only if there exists a minimal T -inconsistent
set V in clcT (A) such that α ∈ V .

On the base of the above results, it easy to come up with the following
proposition, that, by exploiting Theorem 43, provides a characterization of the
notion of accomplishing the insertion of F minimally into K in the context of
DL-LiteA,id,den.

Proposition 26. Let K = 〈T ,A〉 be a possibly inconsistent DL-LiteA,id,den-
KB, and A′ be an ABox. A′ accomplishes the insertion of F into K minimally
if and only if clcT (A′) is a maximal subset of clcT (A) ∪ clT (F ) that contains
clT (F ), and does not contain any minimal T -inconsistent set V such that V ∩
clT (F ) 6= ∅.

Proof.
(⇒) Let A′ accomplish the insertion of F into K minimally. Since A′ ac-
complishes the insertion of F into K, then, from Proposition 19, F is T -
consistent, and, from Theorem 43, clcT (A′) = clcT (A′′ ∪ F ), where A′′ is a
maximal subset of clcT (A) such that 〈T ,A′′ ∪ F 〉 |=CAR F , which means that
clcT (A′) = clcT (A′′) ∪ clT (F ) where A′′ is a maximal subset of clcT (A) such
that 〈T ,A′′ ∪ F 〉 |=CAR F . Clearly, clT (F ) ∈ clcT (A′), and then clcT (A′) is a
maximal subset of clcT (A) ∪ clT (F ) such that 〈T ,A′′ ∪ F 〉 |=CAR F . Finally,
from Theorem 25, we have thatA′ does not contain any minimal T -inconsistent
set V such that V ∩ clT (F ).

(⇐) Let A′ be a set of ABox assertions such that clcT (A′) is a maximal subset
of clcT (A) ∪ clT (F ) that contains clT (F ), and does not contain any minimal
T -inconsistent set V such that V ∩ clT (F ) 6= ∅. We show that A′ accomplishes
the insertion of F into K minimally. We first show that A′ accomplishes the
insertion of F intoK. Indeed, suppose that there existsA′′ ∈ CAR-Set(〈T ,A′〉)
such that 〈T ,A′′〉 6|= F . This means that there is an assertion α in F such
that α 6∈ clT (A′′). From Theorem 25, it follows that there is a minimal T -
inconsistent set V in clcT (A′) such that α ∈ V , which is contradiction.
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We now show that A′ accomplishes the insertion of F into K minimally.
Indeed, suppose that there exists A′′ that accomplishes the insertion of F and
such that clcT (A′′) has fewer changes than clcT (A′) with respect to clcT (A).
From Theorem 43, both clcT (A′) and clcT (A′′) are subset of clcT (A)∪ clT (F ).
This means that clcT (A′′) has fewer deletions than clcT (A′) with respect to
clcT (A). That is, there is an assertion α in clcT (A′′) such that α 6∈ clcT (A′).
Since both A′ and A′′ accomplish the insertion of F into A, from the observa-
tions above, it follows that α is not in clT (F ), and then α ∈ clcT (A) \ clT (F ).
Theorem 25 guarantees that there is no minimal T -inconsistent set in clcT (A′′)
such that V ∩ clT (F ) 6= ∅. Hence, for each minimal T -inconsistent set V in
clcT (A′′) such that α ∈ V , we have that V ∩ clT (F ) = ∅. Since clcT (A) \
clcT (A′′) = clcT (A) \ clcT (A′) ∪ clT (α), we have that clcT (A′) ∪ clT (α) does
not contains any minimal T -inconsistent set such that V ∩ clT (F ) 6= ∅. It
follows that clcT (A′) is not a maximal subset of clcT (A) ∪ clT (F ) that con-
tains clT (F ) and that contains no minimal T -inconsistent set V such that
V ∩ clT (F ) 6= ∅, which is contradiction.

The algorithm we present is based on the characterization in the context
of DL-LiteA,id,den of when an atom in clcT (A) does not belong to some ABox
accomplishing the insertion of a set of atoms minimally. Indeed, according with
the WIDTIO principle, an atom α will not be in the result of the update exactly
when it does not appear in at least one ABox accomplishing the insertion of
F into K minimally. By exploiting Proposition 26, we are able to provide the
following result.

Proposition 27. Let α be an atom in clcT (A) \ clT (F ). There is A′ accom-
plishing the insertion of F into K = 〈T ,A〉 minimally with α 6∈ clcT (A′) if
and only if there is a T -inconsistent set V in clcT (A) ∪ clT (F ) such that:

(i) α ∈ V ;

(ii) F ∪ (V \ {α}) is T -consistent;

(iii) V ∩ clT (F ) 6= ∅.

Proof.
(⇒) Let α be an atom in clcT (A) \ clT (F ), and A′ be an ABox accomplishing
the insertion of F into 〈T ,A〉 minimally such that α 6∈ clcT (A′). We show that
there exists a T -inconsistent set V that contains α, and that F ∪ (V \ {α}) is
T -consistent, and V ∩ clT (F ) 6= ∅.

Since A′ accomplish the insertion of F into K, then, (1) from Proposi-
tion 19, F is T -consistent; (2) 〈T ,A′〉 |=CAR F ; (3) from Proposition 26, A′
is a maximal subset of clcT (A) ∪ clT (F ) that contains clT (F ), and does not
contain any T -inconsistent set V such that V ∩clT (F ) 6= ∅. The proof proceeds
by contradiction as follows.
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Suppose that for every T -inconsistent set V ′ in clcT (A) ∪ clT (F ), we have
that α 6∈ V ′. Proposition 26 guarantees that A′ ⊆ clcT (A) ∪ clT (F ), this
means that also in A′ ∪ α there is no T -inconsistent set containing α. Hence,
A′ is not a maximal subset of clcT (A)∪ clT (F ) that contains clT (F ), and does
not contain any minimal T -inconsistent set V such that V ∩ clT (F ) 6= ∅, that
is a contradiction. Suppose now that there are some T -inconsistent sets in
clcT (A)∪ clT (F ) containing α, and suppose that for every such T -inconsistent
set V ′ in clcT (A) ∪ clT (F ) we have V ′ \ {α} is T -inconsistent. This means
that V ′ is not a minimal T -inconsistent set. It leads to contradicts the fact
that A′ is a maximal subset of clcT (A) ∪ clT (F ) that contains clT (F ), and
does not contain any minimal T -inconsistent set V such that V ∩ clT (F ) 6= ∅.
Thus, let V ′ be a T -inconsistent set in clcT (A)∪ clT (F ) such that α ∈ V ′, and
V ′ \ {α} is T -consistent. This means that V ′ is a minimal T -inconsistent set.
Suppose that F ∪ (V ′ \ {α}) is T -inconsistent. Since V ′ \ {α} is T -consistent,
and F is T -consistent, then there is a T -consistent subset V ′′ of V ′ \ {α} and
a T -consistent subset F ′ of F , such that F ′′ ∪ V ′′ is a minimal T -inconsistent
set. It follows from Proposition 26, that in every ABox A′′ that accomplishes
the insertion of F into K minimally, we have that V ′′ 6⊆ A′′. But this means
that also V ′ 6⊆ A′′, hence, there is no minimal T -inconsistent set V ′ in A′′
that contains α. Similarly to the previous case, this leads to contradicts the
fact that A′ is a maximal subset of clcT (A)∪ clT (F ) that contains clT (F ), and
does not contain any minimal T -inconsistent set V such that V ∩ clT (F ) 6= ∅.
Finally, suppose that there are some T -inconsistent sets that contain α. Let Λ
be the set containing such T -inconsistent sets. Suppose that for each V ′ ∈ Λ
we have that F ∪ (V ′ \ {α}) is T -consistent. This means that V ′ is a minimal
T -inconsistent set, and that for every subset V ′′ of V ′ \ {α}, V ′′ ∪ F is not a
minimal T -inconsistent set. Moreover, suppose that for every V ∈ Λ, we have
that V ′∩clT (F ) 6= ∅. It follows that, given the ABox A′, the KB 〈T ,A′∪{α}〉,
does not contains any minimal T -inconsistent set V such that V ∩ clT (F ) 6= ∅.
But, again, this contradicts that A′ is a maximal subset of clcT (A) ∪ clT (F )
that contains clT (F ), and does not contain any minimal T -inconsistent set
that overlaps with clT (F ).

(⇐) Let V be a T -inconsistent set in clcT (A)∪clT (F ) that overlaps with clT (F )
and that contains α. We show that if F ∪ (V \{α}) is T -consistent, then there
is an ABox A′ accomplishing the insertion of F into 〈T ,A〉 minimally such
that α 6∈ clcT (A′). Suppose, by way of contradiction, that for every ABox A′
accomplishing the insertion of F into 〈T ,A〉 we have that α ∈ clcT (A′). Since
F ∪ (V \ {α}) is T -consistent, then also clT (F ) ∪ (V \ {α}) is T -consistent.
Hence, one can build a set A′′ by adding to clT (F )∪ (V \{α}) every assertions
in clcT (A) if this addition does not lead to obtain a minimal T -inconsistent
set V ′′ such that V ′′ ∩ clT (F ) 6= ∅. That is, one can build a maximal subset
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of clcT (A) ∪ clT (F ) that contains clT (F ), and does not contain any minimal
T -inconsistent set that overlaps with clT (F ), and that does not contains α.
Thus, from Proposition 26, it follows that there is ABox A′ accomplishing the
insertion of F into 〈T ,A〉 such that α ∈ clcT (A′), which is a contradiction.

Example 48. Consider the DL-LiteA,id,den TBox T presented in Example 2,
and consider the following ABox.

A = { PortIn(p1), PortOut(p1), of(p1, d1), connectedTo(p1, p2) }

In words, A states that the port p1 is both an incoming port and an outgoing
port, that it is a port of the device d1, and that it is connected to the port p2.

Immediately one can see that the DL-LiteA,id,den-KB 〈T ,A〉 is inconsis-
tent, since the two assertions PortIn(p1) and PortOut(p1) in A violate the
disjointness PortIn v ¬PortOut belonging to T .

Suppose to change the KB 〈T ,A〉 with the insertion of the following set of
ABox assertions.

F = { of(p2, d1), connectedTo(p1, p3) }

The ABox clcT (A) ∪ clT (F ) is constituted by the following ABox assertions:

PortIn(p1), Port(p1), Port(p2), of(p1, d1), connectedTo(p1, p2),
PortOut(p1), Port(p3), Device(d1), of(p2, d1), connectedTo(p1, p3)

In clcT (A)∪clT (F ) the algorithm InconsistentSets(〈T , clcT (A)∪clT (F )〉) iden-
tifies the following T -inconsistent sets:

V1 = { PortIn(p1), PortOut(p1) };
V2 = { connectedTo(p1, p2), connectedTo(p1, p3) };
V3 = { Port(p1), of(p1, d1), Port(p2), of(p2, d1), connectedTo(p1, p2) };
V4 = { PortIn(p1), of(p1, d1), Port(p2), of(p2, d1), connectedTo(p1, p2) };
V5 = { PortOut(p1), of(p1, d1), Port(p2), of(p2, d1), connectedTo(p1, p2) };
V6 = { of(p1, d1), of(p2, d1), connectedTo(p1, p2) };

where V1 violates the disjointness PortIn v ¬PortOut, V2 violates the func-
tionality assertion (funct connectedTo), and V3, V4, V5, and V6 violates the
DA ∀x, y, z.(Port(x) ∧ Port(y) ∧ of(x, z) ∧ of(y, z) ∧ connectedTo(x, y) → ⊥).
Note that only the sets V1, V2, and V6 are minimal T -inconsistent sets, and
that both V2 and V6 overlap with clT (F ).
One can verify that the only assertion α in clcT (A)∪clT (F ) for which there ex-
ists a T -inconsistent set V in clcT (A)∪clT (F ) such that (i) α ∈ V , (ii) F ∪(V \
{α}) is T -consistent, and (iii) V ∩clT (F ) 6= ∅, is in fact {connectedTo(p1, p2)}.
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Hence, by exploiting Proposition 27 there is, up to C-equivalence, only one
ABox that accomplishes the insertion of F into 〈T ,A〉 minimally, that is:

Ains = clcT (A) ∪ clT (F ) \ {connectedTo(p1, p2)}.

Thus, according to Definition 40, we have:

〈T ,A〉 ⊕TCAR F = 〈T , clcT (A) ∪ clT (F ) \ {connectedTo(p1, p2)}〉.

The example above shows how one can exploit Proposition 27 with the aim
of updating a possibly inconsistent KB expressed in DL-LiteA,id,den with the
insertion of a T -consistent set of facts. Thus, on the base of such a result
we present the algorithm ComputeInsertionCAR(K, F ) which takes in input a
possibly inconsistent DL-LiteA,id,den-KB K and a finite set of ABox assertion
F , and computes the DL-LiteA,id,den-KB K ⊕TCAR F .

Input: a DL-LiteA,id,den-KB K = 〈T ,A〉, a finite set of ABox assertions
F

Output: a DL-LiteA,id,den-KB
begin

if F is T -inconsistent
then return K;
W ← InconsistentSets(〈T , clcT (A) ∪ clT (F )〉);
D ← ∅;
foreach α ∈ clcT (A) \ clT (F ) do

if ∃w ∈W s.t.
(i) α ∈ w and
(ii) F ∪ (w \ {α}) is T -consistent, and
(iii) clT (F ) ∩ w 6= ∅

then D ← D ∪ {α};
return 〈T , F ∪ clcT (A) \D〉;

end
Algorithm 19: ComputeInsertionCAR(K, F )

The algorithm essentially computes the setD of ABox assertions in clcT (A)\
clT (F ) which do not belong to at least one ABox accomplishing the insertion of
F into K minimally. It proceeds as follows. For exploiting Proposition 27 the
algorithm needs to compute the T -inconsistent sets in clcT (A) ∪ clT (F ). To
this end, ComputeInsertionCAR uses the algorithm InconsistentSets that com-
putes the set W of all T -inconsistent sets in clcT (A) ∪ clT (F ). Afterwards it
adds to the set D each assertion α ∈ clcT (A) \ clT (F ) that is contained in at
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least one w ∈ W that overlaps with clT (F ) and such that F ∪ w \ {α} is T -
consistent. Indeed, from Proposition 27, every assertion in D cannot appear in⋂
A′i∈U

clT (A′i), where U is the set containing all the ABoxes accomplishing the
insertion of F into 〈T ,A〉 minimally. Taking into account such observation,
finally, the algorithm returns the KB 〈T , F ∪ clcT (A) \D〉.

The following lemma establishes the termination the algorithm.

Lemma 54. Let K be a possibly inconsistent DL-LiteA,id,den-KB, and let F be
a finite set of ABox assertions. Then ComputeInsertionCAR(K, F ) terminates.

Proof. Termination of ComputeInsertionCAR(K, F ) directly follows from the
finiteness of the sets T , A, and F , from Lemma 15, which establishes the
termination oft InconsistentSets(〈T ,A∪F 〉), and from the fact that there is an
algorithm for checking KB satisfiability in DL-LiteA,id,den (cf. Section 5.1).

The following lemma states that we can use ComputeInsertionCAR(K, F )
for computing K⊕TCAR F , where K is a possibly inconsistent KB expressed in
DL-LiteA,id,den and F is a finite set of ABox assertions.

Lemma 55. Let K = 〈T ,A〉 be a possibly inconsistent DL-LiteA,id,den-KB,
and let F be a finite set of ABox assertions. Then

K ⊕TCAR F = ComputeInsertionCAR(K, F ).

Proof. The first step of the algorithm is checking if F is T -consistent. If F
is not T -consistent, then the algorithm returns the original KB K according
to Definition 40. Let F be T -consistent. Suppose that the DL-LiteA,id,den-KB
〈T ,Au〉 results from updating 〈T ,A〉 with the insertion of F . From Defini-
tion 40 and Proposition 22, we have that, clcT (Au) =

⋂
Ai∈U clcT (Ai), where

U = {Ai, . . . ,An is the set containing all the ABox accomplishing the insertion
of F into 〈T ,A〉. Let 〈T ,A′〉 = ComputeInsertionCAR(K, F ). We have to prove
that clcT (Au) = clcT (A′).

By analyzing the algorithm ComputeInsertionCAR, we have that A′ = F ∪
clcT (A)\D. One can see that the setD contains those assertions α in clcT (A)∪
clT (F ) such that: (i) there exists a T -inconsistent set w in clcT (A) ∪ clT (F ),
(ii) F ∪ (V \ {α}) is T -consistent, and (iii) clT (F ) ∩ w 6= ∅. Hence, from
Proposition 27, it follows that for each assertion α in D, there is an ABox
Ai ∈ U such that α 6∈ U .

We first show that clcT (Au) ⊆ clcT (A′). Toward a contradiction, suppose
that clcT (Au) 6⊆ clcT (A′). This means that there is an assertions α such that
α ∈ clcT (Au), but α 6∈ clcT (A′). Since clcT (Au) =

⋂
Ai∈U clcT (Ai), then

α ∈ Ai for each Ai ∈ U . The following cases are conceivable:

1. α ∈ clT (F ). Since from Lemma 16 it follows that clcT (A′) = clT (F ) ∪
(clcT (A) \D), then α ∈ clcT (A′).
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2. α 6∈ clT (F ). Proposition 26 guarantees that for every ABox Ai ∈ U ,
we have that clcT (Ai) ⊆ clcT (A) ∪ clT (F ). Since α 6∈ clT (F ), then α ∈
clcT (A). This means that α ∈ D, but from Proposition 27, it follows that
there is an ABox A′′ ∈ U such that α 6∈ A′′, Hence, α 6∈

⋂
Ai∈U clcT (Ai).

Thus α 6∈ clcT (Au).

Since both the cases above lead to a contradiction, we can conclude that
clcT (Au) ⊆ clcT (A′).

Now, we prove that clcT (A′) ⊆ clcT (Au). Suppose, by way of contradiction,
that clcT (A′) 6⊆ clcT (Au). This means that there is an assertion α ∈ clcT (A′)
which does not belongs to clcT (Au). The following cases are conceivable:

1. α ∈ clT (F ). This means that clT (F ) ⊆ clcT (Au), and then for each
CA-repair Arep of 〈T ,Au〉, we have that 〈T ,Arep〉 6|= F . It follows that
〈T ,Au〉 6|=CAR F , which contradicts Proposition 21.

2. α 6∈ clT (F ). This means that α ∈ clcT (A) \ D. From Proposition 27,
it follows that for every ABox Ai ∈ U , α ∈ clcT (Ai). Hence, α ∈⋂
Ai∈U clcT (Ai), and therefore α ∈ clcT (Au). Which is a contradiction.

So, clcT (A′) ⊆ clcT (Au), which concludes the proof.

Finally, based on the algorithm presented above, we analyze the compu-
tational complexity of updating a possibly inconsistent DL-LiteA,id,den-KB ac-
cording to the semantics given in Definition 40.

Theorem 45. ComputeInsertionCAR(〈T ,A〉, F ) computes K ⊕TCAR F in poly-
nomial time with respect to |A| and |F |, and in exponential time with respect
to |T |.

Proof. The proof follows directly from Lemma 54, Lemma 55, and from the
observations below:

• The first step of the algorithm is checking if 〈T , F 〉 is consistent. The-
orem 7 guarantees that this step can be done in exponential time with
respect to the size of T and in polynomial time with respect to the size
of F .

• The second step of the algorithm is computing the set W by means of
InconsistentSets. clcT (A) and clcT (F ) can be computed in polynomial
time with respect to |T | and in polynomial time with respect to |A|,
and with respect to |F | respectively. Since QunsatT can be computed in
exponential time with respect to |T |, then InconsistentSets(〈T , clcT (A)∪
clT (F )〉) runs in exponential time with respect to the size of T and in
polynomial time with respect to the size of A ∪ F ,
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• The size of W is polynomial with respect to |T \ Tid ∪Tden|, |A| and |F |,
and exponential with respect to |Tid ∪ Tden|; moreover, the size of each
set w ∈W is polynomial in the size of T .

• For each α ∈ clcT (A) \ clT (F ) and for each w ∈ W deciding if F ∪
(w \{α}) is T -consistent can be done in polynomial time with respect to
|F ∪ (w \ {α})| and in exponential time with respect to |T |;

• the size of D is polynomial with respect to the size of A;

• for each α ∈ D the cost of eliminating α from clcT (A) is polynomial in
the size of clcT (A).

11.2 Inconsistency-tolerant deletion in DL-LiteA,id,den

In this section we study the problem of updating a possibly inconsistent KB
expressed in DL-LiteA,id,den with the deletion of a set of ABox assertions ac-
cording to the semantics given in Section 10.1. Thus, in what follows, we
implicitly refer to a DL-LiteA,id-KB K = 〈T ,A〉.

Let F be a finite set of ABox assertions, Proposition 20 guarantees that if
〈T , ∅〉 6|= F , then there exists an ABox that accomplishes the deletion of F from
K. As a consequence of Lemma 16, we have that, for every DL-LiteA,id,den-
KB K, and for every set F , an ABox accomplishing the deletion of F from K
always exists. Hence, we have the following lemma.

Lemma 56. Let K = 〈T ,A〉 be a possibly inconsistent DL-LiteA,id,den-KB, and
let F be a finite set of ABox assertions. An ABox accomplishing the deletion
of F from K always exists.

Proof. Let U be the set of ABoxes accomplishing the deletion of F from K =
〈T ,A〉. By way of contradiction, suppose that U = ∅. From Proposition 20
it follows that the KB K′ = 〈T , ∅〉 6|= F , but from Lemma 16, we have that
for every assertion α ∈ F , there exists in the ABox of K′ an assertion α′ such
〈T , {α′}〉 |= α. Hence the ABox of K′ is not empty, which is a contradiction.

The lemma above actually guarantees that the set U containing the ABoxes
that accomplish the deletion of F from K is non-empty.

By Definition 37 we have that an ABox A′ accomplishes the deletion of F
from K = 〈T ,A〉 if every CA-repair of 〈T ,A′〉 does not imply F . As stated
by Lemma 53, in the case where F is T -inconsistent, the original ABox A
accomplishes the deletion of F from K minimally. Moreover, Lemma 52 guar-
antees that if F 6⊆ clcT (A), then A accomplishes the deletion of F from K.
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From the observations above directly follows that if F is T -inconsistent, or
F 6⊆ clcT (A), then the deletion operator does not modify the original KB.
Thus, in what follows we focus on the case where F is T -consistent.

We start discussing the case where the set F is constituted by a single
ABox assertion f . Let 〈T ,A〉 be a possibly inconsistent DL-LiteA,id,den-KB,
and let A′ be an ABox. From Theorem 44, if A′ accomplishes the deletion of
{f} from 〈T ,A〉 minimally, then clcT (A′) is a maximal subset of clcT (A) such
that F 6⊆ clcT (A′). Therefore, by exploiting Lemma 16, we can compute A′
by removing from clcT (A) every assertion α such that 〈T , α〉 |= f . Note that
from the definition of consistent logical consequences given in Section 8.1, we
have that {α} is T -consistent for every ABox assertion α ∈ clcT (A).

Now, we turn our attention to the case of arbitrary set F , i.e., the case
where F = {f1, . . . , fm}, for m ≥ 0. Let U = {A1 . . .Am} be a set of ABoxes
Ai, such that, for every 1 ≤ i ≤ m, Ai accomplishes the deletion of {fi} ⊆ F
from 〈T ,A〉 minimally. The following lemmas are the key to our solution.

Lemma 57. Let Ai and Aj be two ABoxes in U such that Ai and Aj accom-
plishes respectively the deletion of {fi} ⊆ F from 〈T ,A〉 minimally, and the
deletion of {fi} ⊆ F from 〈T ,A〉 minimally. clcT (Ai) has fewer changes than
clcT (Aj) with respect to clcT (A) if and only if 〈T , {fi}〉 |= fj and 〈T , {fj}〉 6|=
fi.

Proof.
(⇒) We start proving that if clcT (Ai) has fewer changes than clcT (Aj) with
respect to clcT (A), then 〈T , {fi}〉 |= fj and 〈T , {fj}〉 6|= fi.

Suppose, by way of contradiction, that 〈T , {fi}〉 6|= fj . Since Ai accom-
plishes the deletion of {fi} from K, then fi 6∈ Ai. Analogously, fi 6∈ Aj . The-
orem 44 guarantees that both clcT (Ai) and clcT (Aj) are subset of clcT (A).
Hence, clcT (Ai) has fewer changes than clcT (Aj) with respect to clcT (A) since
clcT (Ai) has fewer deletions than clcT (Aj) with respect to clcT (A). This means
that clcT (A) \ clcT (Ai) ⊂ clcT (A) \ clcT (Aj). It follows that both fi and fj
does not belongs to Aj . Consider the ABox Aj ∪ {fi}. Since Aj accomplishes
the deletion of {fj} from K minimally, then Aj ∪ {fi} cannot accomplish the
deletion of {fj} from K. Hence, there is a CAR-repair Arep of 〈T ,Aj ∪ {fi}〉
such that 〈T ,Arep〉 |= fj . But this means that fj ∈ clcT (Aj) ∪ clT (fi). Since
fj 6∈ clcT (Aj), then, from Lemma 16, it follows that 〈T , {fi}〉 |= fj . Hence,
we have a contradiction. Now, suppose, by contradiction, that 〈T , {fj}〉 |= fi.
There are two possible cases. (i) {fj} ⊆ clcT (Ai). From Lemma 52, it fol-
lows that Ai does not accomplish the deletion of {fj} from K, and then there
is a CAR-repair Arep of Ai such that 〈T ,Arep〉 |= fj , but this means that
〈T ,Arep〉 |= fi. It follows that Ai does not accomplish the deletion of {fi} from
K, which is a contradiction. (ii) {fj} 6⊆ clcT (Ai). It follows from Lemma 52,
that Ai accomplishes the deletion of {fj} from K, but since clcT (Ai) has fewer
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changes than clcT (Aj) with respect to clcT (A), Aj does not accomplish the
deletion of F from K minimally, which is a contradiction. Hence. one can
conclude that 〈T , {fi}〉 |= fj and 〈T , {fj}〉 6|= fi.

(⇐) We have to prove that if 〈T , {fi}〉 |= fj and 〈T , {fj}〉 6|= fi, then clcT (Ai)
has fewer changes than clcT (Aj) with respect to clcT (A). Toward a contradic-
tion, suppose that clcT (Ai) has not fewer changes than clcT (Aj) with respect
to clcT (A). The following two cases are conceivable:

• clcT (A) \ clcT (Ai) 6⊆ clcT (A) \ clcT (Aj). This means that there is an
assertions α ∈ clcT (A), such that α ∈ clcT (Aj) and α 6∈ clcT (Ai). Since
Ai accomplishes the deletion of {fi} from K minimally, it follows from
Theorem 44 that 〈T , {α}〉 |= fi, but since 〈T , {fi}〉 |= fj then 〈T , {α}〉 |=
fj . Hence, fj ∈ clcT (Aj), which is a contradiction.

• clcT (A)\ clcT (Ai) = clcT (A)\ clcT (Aj). Since from Lemma 52 it follows
that fj 6∈ clcT (Aj), then fj 6∈ clcT (Ai). But since 〈T , {fj}〉 6|= fi, from
Lemma 16 it follows that the ABox fi 6∈ clcT (Ai ∪ {fj}). Hence, from
Lemma 52, Ai∪{fj} accomplishes the deletion of {fi} from K, moreover,
clcT (Ai) ∪ clcT ({fj}) has fewer deletions than clcT (Ai) with respect to
clcT (A). Hence, Ai does not accomplish the deletion of {fi} from K
minimally, which is a contradiction.

From the observation above, we can conclude that clcT (Ai) has fewer changes
than clcT (Aj) with respect to clcT (A).

As a consequence of Lemma 57 we have that if an ABox Ai accomplishes
the deletion of {fi} ⊆ F from 〈T ,A〉 minimally, and there does not exist any
other assertion fj 6= fi in F such that 〈T , {fj}〉 |= fi and 〈T , {fi}〉 6|= fj , then
Ai accomplishes the deletion of F from 〈T ,A〉 minimally.

The following lemma guarantees that no ABox, other than those contained
in U , accomplishes the deletion of F from 〈T ,A〉 minimally.

Lemma 58. Let 〈T ,A〉 be a DL-LiteA,id-KB, and let F be a T -consistent set
of ABox assertions such that F ⊆ clcT (A). If an ABox A′ accomplishes the
deletion of F from 〈T ,A〉 minimally, then there exists an assertion f ′ ∈ F
such that A′ accomplishes the deletion of {f ′} from 〈T ,A〉 minimally.

Proof. Since A′ accomplishes the deletion of F from 〈T ,A〉, and since F
is T -consistent, then, from Lemma 52, it follows that F 6⊆ clcT (A′). This
means that there is at least one assertion f ′ ∈ F such that {f ′} 6⊆ clcT (A′),
so, again from Lemma 52, it follows that A′ accomplishes the deletion of {f ′}
from 〈T ,A〉. It remains to prove that A′ does it minimally. Suppose, by way
of contradiction, that A′ does not accomplish the deletion of {f ′} from 〈T ,A〉
minimally. From Theorem 44 it follows that clcT (A′) ⊆ clcT (A). Then, there
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exists an assertion α ∈ clcT (A) different to f ′ that does not belong to clcT (A′),
and such that A′ ∪ {α} accomplishes the deletion of {f ′} from 〈T ,A〉. Hence,
A′ ∪ {α} accomplishes the deletion of F from 〈T ,A〉 and clcT (A′ ∪ α) has
fewer deletions than clcT (A′) with respect to clcT (A). Therefore, it is not
true that A′ accomplishes the deletion of F from 〈T ,A〉 minimally, which is a
contradiction.

Lemma 57, and Lemma 58 suggest a direct strategy for computing the
result of updating a possibly inconsistent DL-LiteA,id-KB with the deletion
of a set of ABox assertions. Such a strategy is illustrated in the algorithm
ComputeDeletionCAR.

Input: a DL-LiteA,id,den-KB K = 〈T ,A〉, a finite set of ABox assertions
F

Output: a DL-LiteA,id-KB
begin

if Mod(〈T , F 〉) = ∅ or F 6⊆ clcT (A)
then return 〈T ,A〉;
F ′ ← F ;
foreach fi ∈ F ′ and fj ∈ F such that fi 6= fj do

if 〈T , {fj}〉 |= fi and 〈T , {fi}〉 6|= fj
then F ′ ← F ′ \ {fi};

F− ← ∅;
foreach f ∈ F ′ do

foreach α ∈ clcT (A) do
if 〈T , {α}〉 |= f
then F− ← F− ∪ {α};

return 〈T , clcT (A) \ F−〉;
end

Algorithm 20: ComputeDeletionCAR(K, F )

The algorithm takes in input a possibly inconsistent DL-LiteA,id,den-KB
K = 〈T ,A〉 and a finite set of ABox assertions F , and returns theDL-LiteA,id,den-
KB K 	TCAR F . Essentially, it proceed as follows. Firstly, it checks if F is
T -inconsistent, or if F 6⊆ clcT (A). If one of such checks succeed, then the
algorithm returns the original KB K. On the other hand, if F is T -consistent
and F ⊆ clcT (A), then the algorithm computes the set F ′ in the following
manner: for each assertion α in F , if there does not exist in F \ {α} an as-
sertion β such that 〈T , {β}〉 |= α and 〈T , {α}〉 6|= β, then it adds to F ′ the
assertion α. Then, the algorithm computes the set F− by adding to F ′ every
assertion α ∈ clcT (A) such that 〈T , {α}〉 |= β, where β is an assertion in F ′.
Finally, the algorithm returns the KB 〈T , clcT (A) \ F−〉.
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The following lemma guarantees that the algorithm ComputeDeletionCAR
terminates, when applied to a DL-LiteA,id,den-KB an a finite set of ABox as-
sertions.

Lemma 59. Let K = 〈T ,A〉 be a possibly inconsistent DL-LiteA,id,den-KB,
and let F be a finite set of ABox assertions. Then, ComputeDeletionCAR(K, F )
terminates, and runs in polynomial time with respect to the size of A and F ,
and in exponential time with respect to the size of T .

Proof. Since F is finite, then the proof follows from the following facts:

(1) Theorem 7 guarantees that deciding if F is T -consistent can be done in
exponential time with respect to |T | and in polynomial time with respect
to |F |.

(2) clcT (A) can be computed in polynomial time with respect to |T | and |A|.

(3) Deciding if F ⊆ clcT (A) can be done in polynomial time with respect to
|F | and |clcT (A)|.

(4) By assuming that F is T -consistent, for each pair of assertions fi and fj ,
deciding if 〈T , {fj}〉 |= fi and 〈T , {fi}〉 6|= fj , can be done in polynomial
time with respect to |T | and |F |.

(5) By assuming that F is T -consistent, for each assertion f in F , and for each
assertion α ∈ clcT (A), deciding if 〈T , {α}〉 |= f can be done in polynomial
time with respect to |T | and |F |. Hence, the set F+ can be computed in
polynomial time with respect to |clcT (A)|, |F |, and |T |.

(6) |F+| ≤ |clcT (A) ∪ clT (F )|.

(7) clcT (A)\F− can be computed in polynomial time with respect to |clcT (A)|
and |F+|.

The points above imply that each step of the algorithm terminates and that,
in the worst case, it can be carried out in exponential time with respect to the
size of T , and in polynomial time with respect to the size of A and F .

The following lemma states that, given a possibly inconsistentDL-LiteA,id,den-
KB K and a finite set of ABox assertions F , ComputeDeletionCAR can be used
for computing K 	TCAR F .

Lemma 60. Let K = 〈T ,A〉 be a possibly inconsistent DL-LiteA,id,den-KB,
and let F be a finite set of ABox assertions. Then

K 	TCAR F = ComputeDeletionCAR(K, F ).
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Proof. Let U = {Ai, . . . ,An be the set containing all the ABox accomplish-
ing the deletion of F from 〈T ,A〉. From Lemma 56, it directly follows that
U 6= ∅. Suppose that the DL-LiteA,id,den-KB 〈T ,Au〉 is the result of updat-
ing 〈T ,A〉 with the deletion of F . From Definition 41, and Proposition 22 it
follows that, clcT (Au) =

⋂
Ai∈U clcT (Ai). Hence, if 〈T ,A′〉 is the KB com-

puted by ComputeDeletionCAR(K, F ), then we have to prove that clcT (Au) =
clcT (A′). We start by proving that if Mod(〈T , F 〉) = ∅ or F 6⊆ clcT (A) then
clcT (Au) = clcT (A). If clcT (Au) = clcT (A′), then Lemma 53 guarantees that
A accomplishes the deletion of F minimally. Since Theorem 44 states that
for every ABox A′ ∈ U is a subset of clcT (A), then, for every ABox A′ ∈ U ,
clcT (A′) = clcT (A). It follows that clcT (A) = clcT (Au) =

⋂
Ai∈U clcT (Ai). If

F 6⊆ clcT (A), then Lemma 52 guarantees that A accomplishes the deletion of
F from 〈T ,A〉. Clearly, it does this minimally. From this, as shown above, it
follows that clcT (A) = clcT (Au). Let Mod(〈T , F 〉) 6= ∅ and F ⊆ clcT (A). We
first prove that clcT (Au) ⊆ clcT (A′). Suppose, by way of contradiction, that
clcT (Au) 6⊆ clcT (A′). This means that there is in clcT (Au) an assertions α
that does not belong to clcT (A′). Hence, α ∈ clcT (Ai) for each ABox Ai ∈ U .
Theorem 44 states that for every ABox Ai ∈ U we have that clcT (Ai) is a max-
imal subset of clcT (A), therefore α ∈ clcT (A). Since α 6∈ clcT (A′), then, by
observing the algorithm, there is in F an assertion f such that: (i) there does
not exist in F \{f} an assertion f ′ such that 〈T , {f ′}〉 |= f and 〈T , {f}〉 6|= f ′;
(ii) 〈T , {α}〉 |= f . From Lemma 57 and Lemma 58, it follows that there is an
ABox A′′ that accomplishes the deletion of {f} from 〈T ,A〉 minimally, that
accomplishes also the deletion of F from 〈T ,A〉 minimally. Hence, A′′ ∈ U ,
and then f 6∈ clcT (Au). Since 〈T , {α}〉 |= f , then α 6∈ clcT (Au), which is a
contradiction.

We now show that clcT (A′) ⊆ clcT (Au). Suppose, by way of contradiction,
that clcT (A′) 6⊆ clcT (Au). Therefore, there is an assertion α ∈ clcT (A′) such
that α 6∈ clcT (Au). Since, the algorithm does not add any assertion to clcT (A),
it follows that α ∈ clcT (A). Since α 6∈ clcT (Au), then there is an ABox A′′ ∈ U
such that α 6∈ clcT (A′′). From Lemma 58 it follows that there is in F and
assertion f such that 〈T , {α}〉 |= f and A′′ accomplishes the deletion of {f}
from 〈T ,A〉 minimally. Lemma 57, together with Lemma 58, guarantees that
there is not an assertion f ′ in F such that 〈T , {f ′}〉 |= f and 〈T , {f}〉 6|= f ′.
Hence, the algorithm adds f to the set F ′. Consequently, since 〈T , {α}〉 |=
f , the algorithm adds α to the set F−. Hence α 6∈ clcT (A′), which is a
contradiction.

Lemma 60 and Lemma 59 allow us to establish the complexity of computing
the KB resulting from the update of a possibly inconsistent KB expressed in
DL-LiteA,id,den with the deletion of a finite set of ABox assertions.

Theorem 46. Let K = 〈T ,A〉 be a possibly inconsistent DL-LiteA,id,den-KB,
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and let F be a finite set of ABox assertions. ComputeDeletionCAR(〈T ,A〉, F )
computes K 	TCAR F in polynomial time with respect to the size of A and F ,
and in exponential time with respect to the size of T .

Proof. The proof directly follows from Lemma 60 and Lemma 59.





Conclusions

In this dissertation, we have studied several issues related to the problem of
equipping Ontology-based Information System with ASK and TELL operations,
in both the cases where the KB underlying the systems is consistent and in-
consistent. In particular, we have focussed on Stand-alone Ontology-based
Information Systems (SOISs).

We have proposed a new DL, member of the DL-Lite family, particularly
tailored for representing complex domains of interest. We have studied the
problem of detecting whether a knowledge base expressed in this language is
inconsistent, and we have addressed the problem of answering queries posed
over KBs expressed in this language.

We have proposed a new semantics for updating consistent KBs at the in-
stance level with both the insertion and deletion of a set of facts, and we have
studied the problem of applying this update semantics to DL KBs. Further-
more, we have proposed and analyzed four inconsistency-tolerant semantics,
showing that two of these semantics are particularly suitable for performing
consistent query answering over KB expressed in tractable languages. Finally,
we have proposed a semantics for updating inconsistent KBs, and we have pro-
vided algorithms for updating possibly inconsistent DL-Lite-KBs according to
such semantics.

To be more precise, we have presented the DL DL-LiteA,id,den of the DL-Lite
family, which extends the DL DL-LiteA,id with denial assertions, a new kind of
assertions particularly useful to specify general forms of disjointness. We have
shown that both KB satisfiability and query answering are FOL-rewritable in
this language. Thus, we have shown that both these problems can be managed
efficiently with respect to the size of the ABox, and that they can be reduced
to the evaluation of a first-order query over a database.

Afterwards, we have proposed formula-based update semantics for updat-
ing a consistent DL KB through both the insertion and the deletion of ABox
assertions. We have first shown that these update semantics possess several
notable properties, and then we have provided a discussion on how our up-
date approach relates to the classical update postulates. Moreover, we have
provided polynomial algorithms for updating KBs expressed in DL-LiteA,id,den.
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Then, we focused on the problem of dealing with inconsistencies in DL
KBs. In particular, we have adopted the strategy of leaving the KBs un-
changed, and trying to obtain consistent information during the query answer-
ing. Thus, by embracing this idea, we present four inconsistency-tolerant se-
mantics: the ABox Repair semantics (AR-semantics), the Closed ABox Repair
(CAR-semantics), the Intersection ABox Repair semantics (IAR-semantics),
and the Intersection Closed ABox Repair semantics (ICAR-semantics).In this
regard, we have provided the general conditions under which consistent query
answering, by adopting one of these semantics, is decidable. Moreover, we pro-
vide FOL-rewriting procedures for answering boolean conjunctive queries posed
over possibly inconsistent DL-LiteA,id,den-KBs under both IAR and ICAR-
semantics.

Finally, we have studied the problem of updating possibly inconsistent
KBs. So, we have proposed inconsistency-tolerant update semantics for both
insertion and deletion. After having discussed the main properties of such
semantics, we have studied their application in the context of KBs expressed
in DL-LiteA,id,den, and we have provided algorithms for updating a possibly
inconsistent DL-LiteA,id,den-KB with both the insertion and the deletion of a
set of ABox assertions. We have proven that both the algorithms compute the
result of the update in polynomial time with respect the size of the ABox.

There are several interesting directions for continuing our research.
For what concerns the update, in both the cases of consistent and incon-

sistent KBs, it would be interesting to study the problem in the context of
Ontology-based Data Integration Systems (ODISs), i.e., study the problem of
updating systems where a domain description given by means of a DL TBox
(ontology) is used to mediate the access to data sources. As we have shown,
in dealing with update in case of classic KB, the major challenges are related
to inconsistency management and to the expressibility problem. When the
update problem is faced while dealing with ODISs, the major challenge is how
modify the data source in order to reflect the changes. Moreover, we plan to
study the problem of updating both KB and ODISs where the intensional level
is expressed in more expressive languages. In particular, we are very interested
in the tractable fragments of OWL. Concerning the problem of updating pos-
sibly inconsistent KBs, it would be interesting to study new semantics based
on inconsistency-tolerant semantics that differ from CAR-semantics.

For what concerns inconsistency-tolerant query answering, we aim at find-
ing a more efficient technique for rewriting conjunctive queries under both IAR
and ICAR-semantics. Moreover, it is our intention to study the integration of
such types of query rewriting with the query rewriting technique adopted in
Ontology Based Data Access. In fact, we experienced several issues regard-
ing the process of rewriting the queries posed over the KB into queries over
the data sources, and we are interested in studying how these two different
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rewriting steps work together.
Finally, we plan to integrate the results of our investigation on update and

consistent query answering, in Mastro [26], which is a Java tool for ontology-
based data access developed by our research group. Mastro manages OBDA
systems in which the ontology is specified in DL-LiteA,id,den and is connected
to external JDBC enabled data management systems through semantic map-
pings that associate SQL queries over the external data to the elements of the
ontology.
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