
PhD Thesis

Statistical characterization, analysis and modeling of

speed performance in digital standard cell designs

subject to process variations

Mastrandrea Antonio

Cycle XXVI (2010-2013)

Sapienza University of Rome

(DIET) Electronic Engineering Faculty

Supervisor

Prof. Dr. Olivieri Mauro

Second supervisor

Prof. Dr. Irrera Fernanda

Date of the graduation

13.12.2013 first discussion; 10.3.2014 last discussion

2

Contents

Abstract 2

1. Propagation Delay in nano-Cmos ICs 5

1.1. Need for High Speed Design . 5

1.2. Propagation Delay: Introduction and Types 8

1.3. Propagation Delay Models . 9

1.3.1. Model for Propagation Delay Evaluation 12

1.3.2. RC Chain Propagation Delay Model 13

1.3.3. Charge Propagation Delay Model 15

1.3.4. Logical Effort . 16

1.4. State of the Art Models . 18

1.5. Objectives of the Thesis . 20

1.6. Contributions of the Thesis . 20

1.7. Organization of the thesis . 21

2. Statistical Variations in nano-scale CMOS ICs 22

2.1. Process and Operating Variations . 22

2.1.1. Introduction, Sources and Solutions 22

2.2. Global and Local (i.e. mismatch) Process Variations 25

2.3. Process Corner Models . 25

i

Contents

2.4. Impact of Transistor Parameters . 29

2.4.1. Transistor Dimensions (W, L) 30

2.4.2. Threshold Voltage (VT) . 31

2.4.3. Oxide Capacitance . 32

2.4.4. Mobility . 33

3. Propagation delay model developed 35

3.1. Overview . 35

3.2. Deterministic Propagation Delay Estimation Model 37

3.2.1. Single stage . 40

3.2.2. Multi stage . 46

3.2.3. Slew time . 46

3.2.4. Load capacitance . 48

3.3. Statistical Propagation Delay Estimation Model 52

3.3.1. Global Variation Analysis Implementation 54

3.3.2. Extension to Local Variation Analysis 55

3.4. Model Implementation . 56

3.5. Summary . 59

4. Results on deterministic propagation delay prediction in nominal condi-

tions 61

4.1. Overview . 61

4.2. Deterministic single stage . 62

4.2.1. inverter . 62

4.2.2. nand2 . 63

4.2.3. nor2 . 63

4.2.4. ao12_n . 64

4.2.5. ao22_n . 65

ii

Contents

4.2.6. ao31_n . 66

4.2.7. ao32_n . 67

4.2.8. ao33_n . 68

4.2.9. ao112_n . 69

4.2.10. ao212_n . 70

4.2.11. ao222_n . 71

4.2.12. Discussion . 72

4.3. Deterministic multi stage . 73

4.3.1. inverter chain . 74

4.3.2. nand2 chain . 80

4.3.3. Full Adder . 89

4.3.4. Discussion . 90

4.4. Summary . 90

5. Results on statistical propagation delay prediction in variable process

conditions 93

5.1. Statistical single stage . 93

5.1.1. Inverter . 94

5.1.2. Nand2 . 95

5.2. Statistical multi stage . 96

5.2.1. 9 inverter . 97

5.2.2. 9 nand2 . 98

5.3. Statistical Multi Stage for Macrocell Design/Complex Circuits 99

5.4. Summary . 101

6. Conclusions 103

Bibliography 107

iii

Contents

A. VHDL code 117

A.1. Example: NAND2 DUT at logic level 117

A.2. Example: NAND2 behavioral at logic level 121

A.3. Example: NAND2 testbench at logic level 121

A.4. Modelsim . 128

A.4.1. Compile a library by command line 128

A.4.2. TCL script file . 129

A.4.3. Run TCL script file . 130

B. C code 131

B.1. Create new SPICE netlist . 131

B.2. SPICE output elaboration . 133

B.3. Table to VDHL matrix . 135

C. Script code 139

C.1. Calculate τ parameter . 139

C.2. Calculate Cin Capacitance . 143

C.3. Example: Deterministic circuit level simulation 148

C.4. Example: Statistical circuit level simulation 151

C.5. General use: deleting a type of file in all subdirectory 153

C.6. General use: modify a file whit sed command 154

D. Ngspice netlist 157

D.1. Ngspice . 157

D.1.1. Show and showmod commands 158

D.1.2. Alter and altermod commands 159

D.1.3. Setcirc command . 160

D.1.4. Print command . 162

iv

Contents

D.1.5. Write command . 162

D.1.6. .meas command . 163

D.1.7. Batch mode . 164

D.2. Example: inverter netlist . 164

D.3. Subcircuits netlist . 165

Publications and presentations 184

v

List of Figures

1.1. Propagation delay definitions . 9

1.2. An RC-transmission line model . 14

1.3. typical tool-chain . 19

2.1. Process and Environmental variations 26

2.2. Corner models . 27

3.1. Four current drivers in a cell and associated logic drivers. 38

3.2. Equivalent circuit for the propagation delay model. 40

3.3. Simulation setup for model parameter calibration 45

3.4. multistage path . 47

3.5. Behavior of output slew time vs the quantity tI_O 48

3.6. Input pin capacitance characterization setup. 49

3.7. SPICE characterization of input pin capacitance (two-input AND

cell) with respect to input slew of the driver cell and to different

input logic patterns of the target cell. 50

3.8. Behavior of τo as affected by L (transistor drawn length) variation.

Other technology variations have a similar effect. 53

3.9. Database structure for the logic-driver-based timing simulation envi-

ronment. Arrows indicate dependencies. 57

vi

List of Figures

3.10. Basic scheme of standard cell description. 58

3.11. Implementation of the input pin capacitance simulation model. 59

4.1. VHDL vs SPICE tLH NOT cell. Input slew time 10ps and 50ps. . . 63

4.2. ao12_n input A. Differente slew time (left 10ps,rigth 50ps) 67

5.1. Statistical analysis of single-stage: nand2 gate gaussian 96

5.2. Critical path through Execute Stage of FIR filter 101

5.3. Critical path through Execute Stage of MIPS processor 102

vii

List of Tables

2.1. Process variation modules affecting the transistor parameters 30

3.1. Active and passive driver pair for model calibration 44

3.2. Sample of database record. AND cell (input IN1 with IN2=’0’) . . . 51

3.3. Sample of database record. AND cell (input IN1 with IN2=’1’) . . . 52

4.1. Absolute and Relative error of Inverter: SPICE vs VHDL comparison 64

4.2. Absolute and Relative error of NAND2: SPICE vs VHDL comparison 65

4.3. Absolute and Relative error of NOR2: SPICE vs VHDL comparison . 66

4.4. Absolute and Relative error of AO12_n: SPICE vs VHDL compari-

son. Input A . 68

4.5. Absolute and Relative error of AO22_n: SPICE vs VHDL compari-

son. Input A . 69

4.6. Absolute and Relative error of AO31_n: SPICE vs VHDL compari-

son. Input A . 70

4.7. Absolute and Relative error of AO32_n: SPICE vs VHDL compari-

son. Input A . 71

4.8. Absolute and Relative error of AO33_n: SPICE vs VHDL compari-

son. Input A . 72

viii

List of Tables

4.9. Absolute and Relative error of AO112_n: SPICE vs VHDL compar-

ison. Input A . 73

4.10. Absolute and Relative error of AO212_n: SPICE vs VHDL compar-

ison. Input A . 74

4.11. Absolute and Relative error of AO222_n: SPICE vs VHDL compar-

ison. Input A . 75

4.12. Cell verification status (single-stage) 76

4.13. Absolute value of propagation delay (3 NOT chain) 76

4.14. Absolute and Relative error of 3NOT chain: SPICE vs VHDL com-

parison. 77

4.15. Absolute value of propagation delay (5 NOT chain) 77

4.16. Absolute and Relative error of 5NOT chain: SPICE vs VHDL com-

parison. 78

4.17. Absolute value of propagation delay (7 NOT chain) 78

4.18. Absolute and Relative error of 7NOT chain: SPICE vs VHDL com-

parison. 79

4.19. Absolute value of propagation delay (9 NOT chain) 80

4.20. Absolute and Relative error of 9NOT chain: SPICE vs VHDL com-

parison. 80

4.21. Absolute value of propagation delay (3 nand2 chain) 81

4.22. Absolute and Relative error of 3NAND2 chain (input A): SPICE vs

VHDL comparison. 82

4.23. Absolute and Relative error of 3NAND2 chain (input B): SPICE vs

VHDL comparison. 83

4.24. Absolute value of propagation delay (5 nand2 chain) 84

ix

List of Tables

4.25. Absolute and Relative error of 5NAND2 chain (input A): SPICE vs

VHDL comparison. 84

4.26. Absolute and Relative error of 5NAND2 chain (input B): SPICE vs

VHDL comparison. 86

4.27. Absolute value of propagation delay (7 nand2 chain) 87

4.28. Absolute and Relative error of 7NAND2 chain (input A): SPICE vs

VHDL comparison. 88

4.29. Absolute and Relative error of 7NAND2 chain (input B): SPICE vs

VHDL comparison. 89

4.30. Absolute value of propagation delay (9 nand2 chain) 90

4.31. Absolute and Relative error of 9NAND2 chain (input A): SPICE vs

VHDL comparison. 91

4.32. Absolute and Relative error of 9NAND2 chain (input B): SPICE vs

VHDL comparison. 92

4.33. Relative error of different Full Adder chain: SPICE vs VHDL com-

parison. 92

5.1. Statistical analysis of single-stage: inverter gate 94

5.2. Statistical analysis of single-stage: nand2 gate 95

5.3. statistical analysis of multi-stage: 9 inverter gate 97

5.4. statistical analysis of multi-stage: 9 nand2 gate 98

5.5. Statistical analysis of multi-stage for complex circuits: propagation

delay comparation . 99

5.6. Statistical analysis of multi-stage for complex circuits: execution time

comparation . 100

5.7. Simulation time FIR filter (SPICE vs HDL) 100

x

1

Abstract

The present dissertation was developed within a European project, which envisages

the development of standard cell in 45nm technology. A critical aspect of the design

flow in standard cell in nanometer CMOS technologies is the performance impact of

statistical variations of the technological process of manufacture. In particular, this

work focuses on the effects of variations on the propagation delay of logic cells, which

influence decisively the speed and performance of integrated circuits. In particular,

the problem that has been resolved in this thesis is the ability to evaluate the effects

of changes of technology parameters statistically, through a simulation at a logical

level, which avoids the computational burden of a circuit-level simulation. At first,

a propagation delay model for cells consisting of a single-stage CMOS developed in

conjunction with a compatible model which is implemented in hardware descriptive

language (VHDL). A particular attention has been given to the independence of the

model from technology, so as to make it applicable to different technologies; only few

technology parameters are selected for changes. Later, the propagation delay model

has been extended to multi-stage cells and, potentially, to circuits composed of an

arbitrary number of cells. Finally, we have tried to answer the following question:

is it possible to evaluate the propagation delay variations of a cell statistically (in

terms of mean value and variance) without using a circuit simulator such as Spice

2

when the cell is affected due to the random variation of technological parameters?

Considering the random variations of channel length (L) of the channel width (W),

oxide thickness (Tox) and the doping concentration (NDp, NDn), the developed model

shows some encouraging results, such as reporting an error of a few percentage points

on the mean value and the variance for the propagation delays of the circuits which

has been used for an example. The advantage, in terms of time of simulation of the

model at the logical level compared with a model at SPICE-level, is at least 2 orders

of magnitude.

3

List of Tables List of Tables

4

1. Propagation Delay in nano-Cmos

ICs

1.1. Need for High Speed Design

Since the beginning of CMOS technology, the increasing number of transistors in

each die and high performance in single IC has been the fundamental driving factors

for the semiconductor industry and process technology. The capability to add more

transistors in each die allowed chip manufacturers to put more parts of a system

into one package and decrease not only just the sizes of the electronic devices we

use today but also the cost and propagation delay. The strong competition in the

semiconductor industry has motivate the integrated circuit manufacturers to achieve

these goals sharply. These challenging objectives which are more transistors per die

with high performance have been exponentially growing by following Moore’s law.

The power dissipation of the Integrated Circuit (IC) also is another factor which

has been growing at an appalling value. In today’s era, the overweening power con-

sumption of coetaneous circuits has become a dominant design concern. However,

the issue of propagation delay time is one of the main concerns that have hindered

the future scaling of transistors. A Very Large Scale Integrated (VLSI) integrated

circuits consists of number of energy storage elements, most of them are capacitors,

5

1.1 Need for High Speed Design

and few are needed for computation capacitances which result in interference to cir-

cuit operation. The capacitors are persistently charged and discharged by resistive

elements during circuit operations which results in energy dissipation in terms of

heat. The amount of heat dissipated puts a restriction on the computational perfor-

mance of the circuit, or the number of times the transistors in the circuit can switch

for a given power budget. One could argue that the shrinking of devices has reduced

the amount of parasitic capacitance and this alleviates power dissipation problems.

However, the increase in the number of devices due to the increase in device density

has more than compensated for the decrease in the parasitic capacitance of a single

device .

Contemporary digital logic circuits have millions of transistors on a single silicon

integrated circuit chip. It is desirable to learn the circuit performance during the

design stage. One of the most important performance measures of digital logic

circuits is the propagation delays of switching signals propagating through the logic

gates of the circuit.

Propagation delay models in nano-scale CMOS digital circuits provide an initial

design solution for integrated circuits which believe to be one of the essential design

specifications. Both pecuniary and workforce resources constrain the design process

and that leading to the need for a more accurate entry point further along in the

design cycle. The standardization for any given process technology can be attained

by verifying an existing propagation delay method and its resulting propagation

delay model.

Requiring specialized design solutions, the full custom design for very large-scale

integrated circuits (VLSI) delivers many unique design issues. The basic elements

of full custom design which are unresolvable associated together are physical-design

area, circuit manufacture’s cost, circuit’s speed and the power of circuit. The area

6

1.1 Need for High Speed Design

and cost are often referenced symmetric since the cost per die is directly proportional

to the amount of dies one wafer can yield . The cost to manufacture a silicon wafer

is typically fixed and therefore the cost per die is directly linked to the area of the

die. If a die increases in size, less will fit on a single wafer, and the cost of each die

will rises respectively.

Process technology prescribes that there is a maximum die size that can be manu-

factured reliably and sets a scope to the size of the circuits that one die may contain.

This is the reason that the whole motherboards within personal computers are not

entirely on a single chip. Therefore, every technology comes nearer and implements

more transistors per die than the previous generations. The eventual objective of

developing an entire system on a single chip is yet to be made.

High speed is a process technology restricting constant. There are several ways

to define speed and the most practical definition is based on describing the digital

speed. The digital speed scope can be estimated by creating an odd number of

inverter chain in a loop. This circuit will hover at the highest possible frequency for

a given digital circuit. This speed value is not practical since most digital design

is implemented with combinational logic. Hence, the target speed for a system is

usually inferred from a conventional circuit topology and tested for highest speed.

Technology scaling has always done for the sake of increasing transistor count i.e.

density and operating frequency and to fulfill the fabrication market demand of

increasing number of transistors with each new technology node, more and more

number of functions in single IC. However, as a drawback, this scaling always pro-

moted the unwanted leakage. Downsizing of the channel length gives rise to short

channel effects, which also increases the sub-threshold leakage. Lowering the supply

voltage in digital applications is one of the reliable ways for low power considera-

tion, however lowering supply voltage increase propagation delays in digital circuits.

7

1.2 Propagation Delay: Introduction and Types

Threshold voltage (Vth) also scaled along with supply voltage to maintain switching

activity, but Vth does not scale much as limited by sub-threshold leakage. Scaling

of oxide thickness increases the gate tunneling currents, so there is limit on oxide

thickness reduction as oxide thickness needed to maintain the current drive and keep

threshold variation under control. Therefore, transistor density, functionality and

speed have increased with technology scaling on one hand, but power density and

variability have also increased on the other hand. Moreover maximum integration

density is limited by the power while the circuit switching speed is limited by the

variations.

A well-defined circuit architectural specification is required in order to develop an

accurate propagation delay model with minimal calibration effort. Examination

of existing propagation delay model calibration methodologies gives a platform for

the development of enhancements in accuracy. The architectural design specification

limits the balance between accuracy and solution acquisition time. Every full-custom

integrated circuit design presents a unique accuracy and effort requirements and the

best solutions are commonly contained of a hybrid model of theoretical equations

fitted with simulation-based fitting coefficients.

1.2. Propagation Delay: Introduction and Types

Propagation delay has been the main figure of merit defining the performance of a

digital design since the early ages of electronics, as it determines the clock period of

synchronous systems and ultimately the speed of digital devices in any application.

Here we give the basic definition of propagation delay measurement, which will be

used as a reference in the following sections.

When a signal is applied at the input of a logic gate it experiences a lapse of time

8

1.3 Propagation Delay Models

while reaching the output. The propagation delay of digital gates is then a measure

of time that defines how fast a gate responds to changes in signals applied at inputs.

Figure 1.1.: Propagation delay definitions

Propagation delay is defined as the time difference measured between the transitions

at 50% of the full voltage swing, for both input and output signals as shown in

Figure 1.1 for the case of an inverter cell. Since digital gates have different response

time for rising and falling input signal, we distinguish two values, described as tLH

and tHL in the Figure 1.1, respectively to identify the propagation delay of low to

high and high to low output transitions. The propagation delay is defined as the

average of tLH and tHL.

1.3. Propagation Delay Models

The speed of a logic block’s input and output load is the dependency of each logic

block. Circuit design complexity comes from the interdependence of the individual

logic blocks within a design. If speed of one block is raised, the block driving

it experienced an increase in load which subsequently slows down the speed of the

9

1.3 Propagation Delay Models

respective block. Increasing the blocks can be inferred in such a way that any chosen

stage’s previous stage can propagate the issue of all the way to the first input of

the entire circuit. Circuits can have thousands of initial timing issues that would

lead to gross over-corrections if not addressed properly. This is where the use of a

propagation delay models can provide significant contribution.

The ultimate device size can be precisely predicted by a suitable propagation delay

model. A propagation delay model can help the designer to avoid numerous itera-

tions of device sizing and testing required by an improperly chosen initial device-

sizing scheme. The accuracy and complexity of a propagation delay model changes

based on the individual requirements of the designer. The ordinary designs can use

less complex propagation delay models while designs with greater complexity require

huge complexity in the respective propagation delay models.

The previous contribution related to propagation delay modeling exist in large quan-

tity in the existing literature. The process for building a propagation delay model is

based on developing an understanding of common behaviors and effects for a given

technology and translating those effects into a reproducible system for rapid anal-

ysis. The existing developed models are well-known analytical propagation delay

model, and simulation results to calibrate the original model with corresponding

coefficients. The resulting model accounts for second order effects omitted from the

original analytical model. The calibrated model offers an alternative to broad circuit

analysis, by trading accuracy for rapid design accomplishment.

The fundamental propagation delay models consists on small number of factors

such as output load, circuit voltage and manufacturing technology that control a

real circuit propagation delay. Experimental and theoretical work on the topics of

input slope, fan-out, interconnect, and logical effort provide modeling strategies to

consider the modeling effects are neglected in the fundamental models. Updating a

10

1.3 Propagation Delay Models

basic propagation delay model with elaborated modeling effects and fitting the model

to a given process that give a rise in modeling accuracy with minimal increase to

the modeling complexity.

Propagation delay models for CMOS digital logic normally exclude second-order

effects due to their limited impact on modeling accuracy. The total propagation

delay accuracy for most digital circuits is often 90%-95% for input slope, device

sizing, and output-load. The effect of second order effects are described within the

limit of the long channel CMOS propagation delay model. Those effects consists

of substrate biasing, carrier saturation velocity, body-effect, and channel length

modulation.

The above said exceptions simplify the derivation in great extent and resulting in the

propagation delay model formulation. These effects can be catered in order to get

the accuracy when precision is needed and when the exact application architecture

is defined. Channel length modulation is only considered in short-channels, where

the effective channel length of a MOS device is approximately equal to the source

and drain junction depths.

Following all the definitions and terminologies discussed above, the resulting prop-

agation delay models for rising and falling transitions of a standard CMOS inverter

are [1]:

τPHL
= Cload
kn (VDD − VT,n)

[
2VT,n

VDD − VT,n
+ ln

(
4 (VDD − VT,n)

VDD
− 1

)]
(1.1)

τPLH
= Cload
kp (VDD − |VT,p|)

[
2 |VT,p|

VDD − |VT,p|
+ ln

(
4 (VDD − |VT,p|)

VDD
− 1

)]
(1.2)

11

1.3 Propagation Delay Models

Where kn = µn · Cox
(
Wn

Ln

)
& kp = µp · Cox

(
Wp

Lp

)

Cload is a Capacitive load applied to the output of the inverter;

VDD is a Drain voltage applied to PMOS Drain Terminal;

VT is a Threshold voltage for a transistor;

Cox is Gate-Oxide capacitance

µn,µp are mobility of electrons and holes through transistor channel;

kn,kp are transconductance of the NMOS and PMOS transistor.

The above equations Equation 1.1, Equation 1.2 represent propagation models which

are expressed without the involvement of body biasing effects, saturation velocity,

and channel length modulation. In order to enhance the accuracy of uncomplicated

propagation delay models, iterative analysis and back-fitting has been represents

to give a faster and reliable solution. The Logical Effort method also supports the

iterative analysis. To allow accurate initial solutions, the magnitude of improvement

fluctuates across different manufacturing technologies and reveals no simple trends.

1.3.1. Model for Propagation Delay Evaluation

CMOS inverter propagation delay requires consideration for input slope effects and

modeling of the source-drain series resistances . The resulting methodology consists

of semi-empirical fitting coefficients matched to a propagation delay model for CMOS

inverters. The number of research works discusses the propagation delay for inverters

and some particularly focus on the effects related to the source-drain resistance and

the input slope.

Propagation delay is the amount of time from an input signal passing through V dd
2 ,

until the output transition in the opposing direction through V dd
2 . The propagation

12

1.3 Propagation Delay Models

delay can be categorized into two parts. The first part is the propagation delay

resulting from an instantaneous input, or step input and the second part is the

contribution from the input slope. The second part can be found experimentally

computing the step input propagation delay in SPICE. The realistic propagation

delay of a sloped input and subtracting the step propagation delay from the sloped

input propagation delay can also be measured in the same way. The difference

between the two propagation delays is the party done by input slope.

1.3.2. RC Chain Propagation Delay Model

The current behavior in an RC chain provides the method of accounting propagation

delay models for RC chains. Three different RC models named as interconnect,

transmission-gate, and downstream load are comprise on the existing structures

for modeling current networks propagation delay. Propagation delays can also be

simulated through equivalent RC transmission line models. A step input current

generator closely matches results of a transfer function model. The ultimate circuit

optimizations using the above discussed method, results in circuit driving paths with

less signal-buffer stages and therefore less total power and silicon area used.

There are three transmission propagation delay models show circuit topologies for in-

terconnect or line impedance, pass-gate or transmission-gate impedance, and CMOS

logic buffers. The standard transmission line model and input step-response current

generator are driving a resistor-capacitor network as shown in the Figure below.

The propagation delay for a transmission line is not modeled with current source but

with an input voltage source. The demeanor of an RC ladder network was enough

close to the first order circuit model while using Elmore’s time constants. There is

13

1.3 Propagation Delay Models

Figure 1.2.: An RC-transmission line model

an assumption taken that the signal transition was complete at maximum Vdd or

ground. Hence, it has effectively infinite period. Therefore, the CMOS buffers that

drive the RC ladders do not match with voltage sources but with current sources.

This demeanor is the accelerator for choosing current input sources for the models

rather than the traditional voltage inputs found in most transmission signal analysis

schemes.

The simplest model are a resistance and a capacitance. Assuming that the capaci-

tance is discarged and the input is a rising step pulse initially. The equation for this

simple RC circuit is:

Vout (t) = VDD
(
1− e− t

RC

)
(1.3)

The time at 50% of Vout is propagation delay Low-High (τpLH
):

Vout/50%(t∗) ∼ VDD
2 = VDD

(
1− e− t∗

RC

)
(1.4)

14

1.3 Propagation Delay Models

ln(1− 1
2) = ln

(
e− t∗

RC

)

t∗ = τpLH
= ln (2) ·RC ∼ 0.69 ·RC

This is a computation for lumped RC network. For propagation delay calculation

for distributed RC network, usualy using Elmore propagation delay formula. As a

special case of RC network is RC ladder network shown in Figure 1.2. For this case

the Elmore propagation delay for a generic node N is calculated as:

τDN
=

N∑
j=1

Cj

j∑
i=1

Ri (1.5)

The findings by considering an input current source to drive RC ladder networks

leads to a simplified propagation delay model compared to state of the art circuit

propagation delay models. The above discussed method of optimizing paths has

produced lower propagation delays and finally need less signal repeaters than state

of the art methods. The consumption of simplified logic to get the same signal-timing

goal means an overall savings of power and silicon area in the ultimate product.

1.3.3. Charge Propagation Delay Model

The available charge and the resulting propagation delay can be expressed in the

charge propagation delay model in terms of some common relationship between

15

1.3 Propagation Delay Models

both kinds of propagation delays. There is a way to estimate the propagation

delay for complex CMOS gates by using the methodology of inverter propagation

delay model. The inverter propagation delay model is based on an nth-power law

MOSFET model. Transistor collapsing schemes which are developed for complex

gates are taken into account for the impacts of the body effect, short-channel and

internal coupling capacitance.

CMOS device stacks can be simplified in terms of slope propagation delay curves.

The slop delay curves represent a conventional inverter with a varying output load.

Constructing a complex stack compare to a simple inverter model can simplify the

evaluation of gate-level complex circuits. Capacitive values for the parasitic and

load capacitors are integrated together to show a single static load. The currents

are derived from propagation delay, slope and integrated capacitances. The charge

propagation delay definition may be extended by deriving a table between delay-in

and delay-out values. The resultant table will be the simplified complex circuits

into a simple propagation delay chart, which have curves for each previous complex

device that will be reduced down to a resultant inverter.

1.3.4. Logical Effort

Logical Effort is a technique for analyzing propagation delays of digital-circuit. It

uses the equivalent information to recognize the relative trade-offs between circuit-

design complexity and circuit-speed as well. The rapid circuits tend to have very

much logical complexity and power consumption . This method proposed two

methodology for realizing abilities of circuit and its scope. These methods are called

as logical and electrical effort .

The fundamental assumption of this technique can be established by qualitative

analysis of a simple circuit. There are design tradeoffs among speed, size, power,

16

1.3 Propagation Delay Models

and capacitive-load for an inverter of any given manufacturing technology. The

output propagation delay for MOS device can be further derived with the following

equation:

dτ = d · τ (1.6)

Where d represents the collection of all other effects lumped into a singular quantity

and τ is the basic propagation delay unit for an inverter driving a fan-out of one,

without considering any parasitic capacitances. The lumped-effects d is further

simplified in to two major parts:

d = f + p (1.7)

Where d is the realized propagation delay for the inverter with all the parasitic and

other effects combined. The fixed portion of the propagation delay, when no load

is attached, is parasitic propagation delay which represents as p, and the variable

portion f is called the “effort delay” or “stage effort ” that depends on the complexity

of the logic and fanout of it:

f = g · h (1.8)

h represent output load and is named “electrical effort”. It can be computed as

17

1.4 State of the Art Models

h = Cout
Cin

(1.9)

Electrical effort shows the ratio of a circuit’s output load capacitance relative to the

input capacitance.

g is a “logical effort” and is represented a complexity of logic. For an Inverter cell

is 1, for other cell is calculated as the ratio between the sum of the widths of the

mos of each input of cell divided by the sum of the widths of the mos of an inverter.

For example for a NAND2 cell, both input have a Nmos with W=2 and Pmos with

W=2 then the logical effort is 4
3 for both input.

An inverter and a NAND2 gate of equal number transistor sizes and driving equal

capacitive loads will produce different magnitudes of current due to their relative

logical complexity. This difference is accounted for in the term for logical effort.

The same circuit driving different fixed capacitive loads will result in varying current

delivery. This behavior is shown with the term for electrical effort.

1.4. State of the Art Models

Accurate timing analysis is a challenging task in modern very large scale integration

design flows, due to the presence of nonlinear effects in nano-scale CMOS stan-

dard cells, such as velocity saturation, input-output coupling, voltage feed-through ,

short circuit effect from simultaneous pull-up and pull-down conduction, and others.

Currently, the estimation of the propagation delays of logic cells in a complex semi-

custom design is accomplished by electronic design automation (EDA) tools called

18

1.4 State of the Art Models

propagation delay calculators and back annotated on the gate-level design netlist in

a deterministic scheme, i.e., assuming the worst-case technology and operating con-

ditions corner. The propagation delay models used in propagation delay calculators

have evolved from simple lookup tables, to polynomial models, nonlinear models,

and more recent current-based models.

Current nano-scale digital CMOS IC design, the growing statistical variability in pro-

cess parameters makes traditional logic-level corner-based simulation approaches not

adequate for a realistic estimation of the fabrication yield. Simultaneously SPICE

transistor-level Monte Carlo analysis is impractical for complex designs due to the

huge simulation time. Therefore, there is a need for logic level models featuring

technology variation aware timing, thus suitable for implementing accurate Monte

Carlo analysis through fast logic-level simulators [9].

Traditional logic level post-synthesis timing simulation relies on a typical tool-chain

which is basically organized as follows:

Figure 1.3.: typical tool-chain

Propagation delay calculator tools read the characterization database and compute a

fixed propagation delay for each node in the logic level netlist. The characterization

database are written in standard formats (e.g. Liberty). Propagation delay calcu-

19

1.5 Objectives of the Thesis

lators tools are based on propagation delay models which have evolved during the

last 20 years through several generations. Among the most important propagation

delay models used in the past up to today there are:

• Propagation delay Lookup Tables (indexed by input slew, load cap) - past

• Polynomial propagation delay models (such as SPDM) - past

• Non-linear propagation delay models (NLDM) - past

• Current based propagation delay models (CCS, ECSM) – used today

Current based propagation delay models guarantee the highest accuracy ever (at

the expense of a huge characterization database size) and are still in evolution.

1.5. Objectives of the Thesis

The overall objective of this research work is to develop new and novel techniques

and model which can estimate the propagation delay in single and multi-level cell

paths. The sub-objectives are as follows.

1. Develop a methodology to compute propagation delay for small and large both

kind of circuits deterministically and statistically.

2. To build up a general systematic mechanism to design Synchronous early-

completion-prediction adders (ECPAs) units targeting nano-scale CMOS technolo-

gies.

1.6. Contributions of the Thesis

The contributions of this thesis are as follows.

20

1.7 Organization of the thesis

1. A novel model has been introduced for nano-scale CMOS circuits for propagation

delay modeling for both deterministic and statistical (single and multi-stages).

2. A novel synchronous early completion prediction adder’s methodology with sig-

nificant results is developed.

1.7. Organization of the thesis

This thesis is organized is as follows.

Chapter 1 provides the motivation for conducting research on propagation delay in

nano-scale CMOS logic with basic definitions followed by the objectives and contri-

butions of this research work.

Chapter 2 provides the literature review and importance of statistical variations in

nano-scale in current era with impact of transistor parameters.

Chapter 3 elaborates the proposed models named as deterministic and statistical

with model implementation methodology and algorithm in detail.

Chapter 4 represent the results and analysis in detail on our proposed deterministic

model implementation which is being done only on few selected small and medium

level circuits.

Chapter 5 shows the results and analysis in detail on our proposed statistical model

implementation which is also being done on small, medium and as well as on large-

scale level circuits.

Chapter 6 provides the conclusion of this research work.

21

2. Statistical Variations in nano-scale

CMOS ICs

2.1. Process and Operating Variations

IC process variation (PV) was already a concern for high-performance circuits, but

in recent technology nodes, with reduced power and threshold margins, its impact

has become even more extensive. Process variations are always exist in spite of

designer preferences and degrades the yield therefore there is need to model the

timing violations or propagation delay modeling by applying novel variation tolerant

design techniques.

2.1.1. Introduction, Sources and Solutions

Traditionally, measure of quality of performance and power estimation are adopted

on the premise that the electrical characteristics and operating conditions of every

device in the design matches the model specifications. However, with continued

miniaturization of device dimensions to current nano-scale regime, it has become

highly difficult to maintain the same level of manufacturing control and uniformity.

This leads the devices to behave and interact in a complex manner differently from

22

2.1 Process and Operating Variations

model characteristics. Moreover, devices that were supposed to be identical are

differing in their electrical characteristics which sometimes can lead to functional

failures. Environmental factors i.e. operating variations such as supply voltage and

temperature experienced by devices in different parts of the chip (or on different

chips) also vary due to different levels of device densities, switching activities, and

noise integrity of the various blocks . The raising mismatch between the gold stan-

dard models and the actual device parameters occurs when voltage and temperature

stress go through by the devices with uninterrupted usage reduces their electrical

characteristics. The above discussed elements can add together to make the cur-

rent design substantially different from the state of the art design which results in

degradation of overall performance of the design. Furthermore, the variation in chip

power occurs from its absolute values which is due to the exponential dependency

among process parameters, device parameters and transistor leakage. Ultimately

the number of shippable products reduced due to the resultant degraded parametric

yields which represent the number of manufactured chips that fulfil the expected

performance, reliability and power specifications. The price for each effective chip

rises, which has a direct impact on the bottom line dollar value of the design with

the initial design price being the same. The effect of fluctuations on the paramet-

ric yield is generally degraded by guard-banding to give enough tolerance margins

during design, which is requital to designing at a non-optimal power-performance

point. Designs are assigned to function at smaller than absolute frequencies to assure

functional conformity in the existence of fluctuations. The expected guard-banding

also rises, particularly if worst-case conditions are turned over with raising fluctua-

tion. A practical amount of design margining expected by understanding the several

sources of fluctuation and their effect on circuits can assist in finding, and also give

revelations to rationalize the effects of fluctuation. To determine the magnitude of

23

2.1 Process and Operating Variations

fluctuation, classifying various effects and their dependence and giving feedback to

the manufacturing team can be achieved by knowing the on-chip characterization

of circuits. These techniques can also be used in the field to detect possible failure

conditions, analyze the chip over time and align global parameters which can help

lower these effects. Variations usually called as fluctuations can be categorized into

three main types such as process, environmental, and temporal variations. Process

variations are the result of irregular control over the fabrication process. Environ-

mental variations such as temperature and supply voltage increase throughout the

operation of the circuit due to shift in the operating conditions. Temporal variations

occur due to the shift in the device characteristics over time. The remaining chapter

will give detail about the sources of variations and the affected circuits usually used

to characterize these effects. The effect of process and environmental variations on

performance is getting broad with each reached technology node. There are several

reasons for the occurrence of process variation like non similarities brings in during

process outcomes in the variation in lithography, doping, in gate oxide and etc or

while transporting wafer, little shift in temperature may increase to process vari-

ation during manufacturing thereafter changing the performance of the transistor

[2, 3].

Degrade sources of variations- By suitable fabrication of the devices i.e. the particu-

lar device is fabricated in a way that it decreases the effect of variation, by realizing

the circuit using

• Multi-layer, multi-threshold insertion,

• Circuit style and logic decisions,

• Power delivery and thermal design

Lowering the effect of variation at circuit design level (pre-silicon)-

24

2.2 Global and Local (i.e. mismatch) Process Variations

• Leakage reduction techniques,

• Variation tolerant circuits,

• Dynamic compensation circuits

Decreasing the effect of variation at post silicon level-

• Clock tuning

• Adaptive body bias

• Adaptive supply voltages

2.2. Global and Local (i.e. mismatch) Process

Variations

Global process parameters (e.g. oxide thickness) are wafer-to-wafer, chip-to-chip

variations, or batch-to-batch variations. Local process parameters (e.g. threshold

voltages of transistors) impact each device of a chip individually i.e. variability

between two devices might looking identical to each other.

Local process parameters can become the reason of mismatch and may disturb

fundamental design principles of creating constant differences and rations of currents

and voltages between such pairs, the influence of local process parameters on the

act of the circuit can be much higher than those of the global process parameters .

2.3. Process Corner Models

It is very certain in industry to analyze the statistical variation using five types of

worst case models, everyone is defined by a two letter acronym title describing the

25

2.3 Process Corner Models

Figure 2.1.: Process and Environmental variations

relative performance characteristics of the p-channel and n-channel devices. The

letters elaborate the operation as being typical or nominal (T), fast (F) or slow (S).

For instance, “FS” denotes the position where the n-device is fast and the p-device

is slow. Usually, the design is complete in typical p, typical n (TT) condition, and

checked for all four corners (SS, FF, FS and SF). There is an assumption being

taken is that the provided a yield level, the four corners bound all worst possible

scenarios of extreme performance. In case the circuit can fulfill the test on these

corners, then certain yield is guaranteed. This methodology has been successfully

followed in circuit design practice, yet it faces two significant challenges.

The initial challenge is related to the definition and extraction of the corners. Ex-

isting process corner models are defined and extracted using the measurement data

on individual transistors [4] . For digital logic circuits, the worst-case performance

commonly measured by critical propagation delay occurs when single transistors are

26

2.3 Process Corner Models

Figure 2.2.: Corner models

also at the worst case.

The raising variability in IC design, changes the premises to look for novel design

methodologies. The digital process corners are becoming ineffective as the design

can be operational at all corners but not at some combination of intermediate values.

Plus and minus three sigma (±3σ) points generally selected to represent fast and

slow corners for such devices. These corners are provided to represent process vari-

ation that the designer must account for in their designs. This variation can cause

significant changes in the performances of digital signals, and can sometimes result

in catastrophic failure of the entire system. Digital corners account for global varia-

tion and in a digital design context referred as ‘slow’ and ‘fast’ which are irrelevant

sometimes especially in analog design. Digital corners do not include local variations

effects which are critical in present scenario. Digital corners are not design-specific

which is necessary to determine the impact of variation.

The characteristics discussed above lower the accuracy of the digital corners which

become the reason to limit the process corners to use as accurate indicators of vari-

ation limits especially for analog designs. Traditional corner model based analysis

and design approaches provide guard-bands for parameter variations and are, there-

27

2.3 Process Corner Models

fore, prone to introducing pessimism in the design. Such pessimism can lead to

increased design effort and a longer time to market, which ultimately may result in

lost revenues. In some cases, a change in the original specifications might also be re-

quired while, unbeknownst to the designer performance is actually left on the table.

Furthermore, traditional analysis is limited to verifying the functional correctness

by simulating the design at a number of process corners. However, worst-case con-

ditions in a circuit may not always occur with all parameters at their worst or best

process conditions.

However, a single corner file cannot simultaneously model best-case and worst-case

process parameters for different interconnects in a single simulation. Suppose that

the worst case for a pipeline stage will occur when the wires within the logic are at

their slowest process corner and the wires responsible for the clock delay or skew

between the two stages is at the best-case corner. So a traditional analysis requires

that two parts of the design are simulated separately, resulting in a less unified,

more cumbersome and less reliable analysis approach. The strength of statistical

analysis is that the impact of parameter variation on all portions of a design are

simultaneously captured in a single comprehensive analysis, allowing correlations

and impact on yield to be properly understood. The magnitude of process varia-

tions have grown, there has been an increasing realization that traditional design

methodologies (for both analysis and optimization) are no longer acceptable. The

extent of variations in gate length, as an example, are predicted to increase from 35%

in a 130 nm technology to almost 60% in a 70 nm technology. These fluctuations

are generally specified as the fraction 3<σ/µ (3<σ is assumed to be the worst case

shift in the parameter), where σ and µ are the standard deviation and mean of the

process parameter, respectively. Thus, a 60% variation in 70 nm technology implies

that the standard deviation of the distribution of gate length across a large number

28

2.4 Impact of Transistor Parameters

of samples is 14 nm. With variations as large as these, it becomes very significant

that the designers handle these variations in a statistical manner rather than using

guard-bands in deterministic analysis.

2.4. Impact of Transistor Parameters

All the variation sources affect the electrical properties of the transistors and inter-

connect in several ways. These affects can better understand in terms of transistor

performance. In typical digital Integrated Circuits, a transistor either charges or

discharges the capacitive load and the time for this operation determines the perfor-

mance of the transistor. This time is a function of driven capacitance, the required

voltage and the current used to drive the capacitance as shown in Equation 2.1

td = Cload · VDD
I

(2.1)

To understand, we have used Equation 2.2 shows the ideal I-V equation for the

MOSFET in saturation region, where µ is the mobility of the charge carrier through

the device, Cox is the gate oxide capacitance, W and L are the width and length of

the transistor respectively. VT is the threshold voltage of the device and VGS is the

gate to source bias voltage.

ID = 1
2 · µ · Cox ·

W

L
· (VGS − VDD)2 (2.2)

29

2.4 Impact of Transistor Parameters

td = Cload · VDD
1
2 · µ · Cox ·

W
L
· (VGS − VDD)2 (2.3)

Although these equation is ideal and neglect several details as far as modern nano-

scale transistors are concerned, however it is sufficient to illustrate the impact of

variation sources.

MOSFET Parameters Relative Process Variation Module

Width (W) Lithography, Etching

Length (L) Lithography, Etching

Threshold Voltage (VT) Ion Implantation, Annealing, Gate Oxidation, (Lithography, Etching)

Oxide Capacitance (Cox) Gate Oxidation

Mobility (µ) Ion Implantation, Annealing, Diffusion, Nitride Deposition

Table 2.1.: Process variation modules affecting the transistor parameters

Table 2.1 shows the MOSFET parameters which directly affected by the process

variations. It is clear that single process variation can affect multiple transistor

parameters. Separating the impact of one process variation from another variation

is difficult.

2.4.1. Transistor Dimensions (W, L)

Ever increasing number of transistors, more and more number of functions in single

IC has always been the demand for IC fabrication market; therefore, technology

scaling has always done for the sake of increasing transistor count and frequency .

It is obvious from Eq.2 that the width (W) and length (L) are the critical parameters

in determining the current in transistor. Either W must be increase or L decreases

to increase the current and thereafter performance of the device.

30

2.4 Impact of Transistor Parameters

Downsizing also reduces the load capacitance and increases the transistor density in

ICs, making length (L) one of the most critical dimensions in the transistor.

The etching and lithographic pattering define both the length (L) and width (W).

Normally in circuit designing, W is always larger than L, therefore making channel

length more prone to the impact of process variations (unless we do not have small-

est width devices). As shown in Equation 2.3, the propagation delay of transistor

is directly proportional to the channel length; therefore, any variation in channel

length will be directly reflected in the transistor delay. As per the International

Technology Roadmap for Semiconductor (ITRS) projection for channel length in

, as the transistor length has decreased below the wavelength of light patterning

them, the relative variations in the channel length has increased .

In the year 2001 and 2003, projection were 10% into the foreseeable future, how-

ever in 2005 and 2007, the 3σv/µ projections increased to 12% which will increas-

ing the performance variability and this performance variability will enhance with

each scaled technology node, without adopting the mitigation techniques. The

variations in channel length also results in threshold voltage variations due to the

Drain-Induced Barrier Lowering Phenomena (DIBL) and has severe effect on chan-

nel length below 100nm . Modern processes show measured channel length variation

of 3-5% σv/µ, consistent with the ITRS projections .

2.4.2. Threshold Voltage (VT)

Threshold voltage of the MOSFET is the gate to source bias (VGS) that responsible

for the channel formation below the gate, allows current conduction from source to

the drain of the transistor. In ideal long-channel MOSFET, the doping concentration

in the channel and oxide capacitances (oxide thickness) determines the threshold

31

2.4 Impact of Transistor Parameters

voltage as shown in the Equation 2.4

VT0 = VFB + 2 · ϕFp + γ ·
√

2 · ϕFp + VSB (2.4)

Where VFB is the flat band voltage, φF_P is the Fermi potential of the substrate.

VFB, φ and FP are dependent on the doping concentration only while γ depends

on both the doping concentration and oxide capacitance. In short-channel devices,

some effects such as DIBL result in VT being additionally depend on the channel

length (L), source/drain junction depth (Xj), and stresses. As a result, several

process steps affected the VT . Due to this susceptibility and the intrinsic random

variability of Random Dopant Fluctuations (RDF), VT is the most prone parameter

to the process variations, with 3σ variations on the order of 30% or more of mean.

However, it has studied a lot in the literature.

Since the mean value of VT reduces with technology generations, relative variations

σ/µ increases even more rapidly.

2.4.3. Oxide Capacitance

Gate oxide capacitance is the capacitance between the gate stack (polysilicon and

silicon dioxide) and the inverted channel of the MOSFET. Equation 2.5 shows that

the oxide capacitance is function of the oxide thickness (Tox) and the dielectric

constant of silicon dioxide or other gate insulator.

Cox = εox
tox

(2.5)

32

2.4 Impact of Transistor Parameters

As we know, gate oxidation (thermal growth of silicon dioxide or silicon nitride)

is a relatively well-controlled process step. However, with the technology scaling,

gate oxide thickness is also scaled down as needed to maintain the current drive and

keep threshold variation under control, Scaling of oxide thickness increases the gate

tunneling currents, so there is limit on oxide thickness reduction as oxide thickness.

The order of oxide thickness is around 1nm (few atomic layes), therefore even a

small variation one atomic, have a severe impact on oxide capacitance as well as

threshold voltage and mobility .

Scaling of oxide thickness increases the gate tunneling currents, which leads to in-

crease in leakage currents. However, gate oxide leakage has limited by the introduc-

tion high-K dielectrics. New gate oxide material not only control the gate leakage

currents, but also reduces the impact of variability on oxide capacitance due to much

larger physical oxide thickness .

2.4.4. Mobility

Mobility is generally defines as how freely charge carriers either electrons or holes

can travel through the channel of the MOSFET in response to the applied electric

field as shown in equation below

µn,p = qτc
2mn,p

(2.6)

Where q is the electronic charge,τc is the mean free time between carrier collisions,

and mn,p is the effective mass of either of an electron or a hole. However, mobility

generally considered as a function of doping concentration. Since the mean free

time between two collision is determined by doping concentration and somehow on

33

2.4 Impact of Transistor Parameters

effective mass. Therefore, any process steps, which, affects doping concentration or

stress, will affect transistor mobility. Ion implantation and annealing affect mobility

as these process steps determine doping concentration.

34

3. Propagation delay model

developed

3.1. Overview

The number of previous research work targeted the definition of a compact model

for the (deterministic) propagation delay of a CMOS stage. The first representative

example is [5], where the propagation delay of a CMOS inverter is estimated as a

function of the alpha-power saturation current law in a CMOS transistor; yet, only

a very approximate empirical model of the effect of the input slew time is developed.

A more complex, charge-based analytical model was developed in [6], still limited

to the single inverter propagation delay. An empirical extension to a more complex

gate, based on transistor stacks, was introduced in [7]. Finally, a current-based

statistical propagation delay model for single cells was illustrated in [8], showing an

analytical approach to obtain a statistical behavior computation. All of the above

studies assume a known input slew time and a known load capacitance value. When

analyzing the multicell paths, in addition to the cell propagation delay, the cell

output slew time estimation is essential as it affects the propagation delay of the

subsequent cell. An analytical model dedicated to output slew time was reported in

[9]. Even more importantly, in a multicell path the input capacitance of each cell

35

3.1 Overview

input pin must be properly estimated, as it represent the load capacitance for the

preceding cell, and its physical value depends on the actual voltages of all the input

pins of the cell. Finally, the logical effort model [10]is a widely adopted paradigm

for reasoning on optimal multistage circuit sizing, but it is originally conceived for

manual optimization and is inherently a simplified fully linear model, explicitly

neglecting transistor-stacks diffusion capacitances, Miller and feed-through effects,

output slew time, and assuming a simple load capacitance model. The proposed

approach is intrinsically more general than [9], [6],[5], [7], and differently from [10] it

addresses the highest possible accuracy in modeling nonlinear effects and parasitic

effects. It also differs from [8] as we do not develop an ad hoc statistical model

for every single cell, but for specific entities (logic drivers) that can be combined

to model virtually any CMOS cell, by means of HDL specifications. Also, the ap-

proach diverges from statistical static timing analyzers, such as PrimeTime VX ,

as it is a statistical timing simulation model, allowing the designer to see statis-

tical effects on the operation of the digital system on actual data. As such, the

proposed approach captures the data-dependent dynamic behavior of actual propa-

gation delays, which are normally not caught by a static analysis. In addition, the

proposed approach includes a dynamic input capacitance model that is not featured

in standard propagation delay format-based tools like PrimeTime VX. On the other

hand, the proposed approach requires to run trace vector simulation to obtain path

propagation delay calculation, hence activity can affect the quality of the results,

and the availability of a set of data trace covering all possible cases of interest can

be a limitation. The proposed approach is complementary with respect to recent

previous works on process variability analysis. In [11], an analytical methodology

was introduced for statically computing the probability density function of the total

propagation delay in a multicell path, while the proposed approach addresses the

36

3.2 Deterministic Propagation Delay Estimation Model

logic-level simulation of multicell paths as a composition of single-cell behaviors. In

[12], an analysis of the SPICE parameters affected by process variations was carried

out, which is interesting for the characterization phase of the proposed approach.

In [13], the focus was on the impact of intracell mismatch on single cell propagation

delay, while the proposed approach is best suited to cell-to-cell variation in multicell

designs. An approach integrating Random SPICE within Monte Carlo static timing

analysis was illustrated in [14]. The Monte Carlo SPICE simulations used for com-

parison of the results of the proposed approach are run by NGSPICE BSIM4 [15],

[16].

3.2. Deterministic Propagation Delay Estimation

Model

In our present implementation, we targeted the propagation delay of generic CMOS

logic stages subject to single- input switching for critical path analysis; the method

can be extended to multiple input switching. To exactly define the logic-driver-based

propagation delay model suitable for any generic cell circuit topology, we identify

the following basic terms:

• Definition 1: We refer as switching element to either an N-type transistor, or a

P-type transistor, or a transmission-gate. Any switching element has a single

input control terminal (gate terminal of the transistor).

• Definition 2: In a single-CMOS-stage digital cell, a current driver is any chain

of switching elements connecting the output node to the supply node, or to

the ground node, or to a primary input of the cell (the latter case occurring in

pass-transistor/transmission-gate logic). In a CMOS logic cell, several current

drivers can be identified (Figure 3.1). Depending on the voltage values on the

37

3.2 Deterministic Propagation Delay Estimation Model

Figure 3.1.: Four current drivers in a cell and associated logic drivers.

input terminals, a current driver may conduct a current to/from the output

node of the cell and therefore pull up/down the output voltage. When a

current driver starts conducting as a consequence of the input switching, we

call it active driver; when a current driver stops conducting as a consequence of

the input switching, we call it passive driver. In any CMOS logic single stage,

for each possible input switching there are an active driver and (usually) a

passive driver. It is possible to abstract the operation of the current drivers

within a cell as the operation of virtual logic units, each corresponding to a

current driver as shown in Figure 3.1. The general formal definition of such

logic drivers follows:

• Definition 3: Given a current driver composed of N switching elements, a logic

driver is a logic unit associated with it, defined by:

1. An output logic signal, corresponding to the drain terminal of the first

switching element of the driver, which is always connected to the output

node of the cell by definition;

38

3.2 Deterministic Propagation Delay Estimation Model

2. A set of N+ 1 logic input signals, one for each control terminal (gate

terminals) of the switching elements plus one corresponding to the source

terminal of the final switching element;

3. A set of N+1 propagation delay values, one per each input-output signal

pair;

4. A logic behavior expressing the relation between the set of N+ 1 input

signals and the output signal.

The logic value returned by a logic driver corresponding to a current driver made of

only one nMOS switching element, has the following basic form:

1i f gate = ’1 ’ or gate = ’H’

2then return source ;

3e l s i f gate = ’0 ’ or gate = ’L ’ or gate = ’U’

4then return ’Z ’ ;

5e l s i f gate = ’X’ or gate = ’W’

6then return ’X’ ;

7e l s i f gate = ’Z ’

8then return ’− ’ ;

Such untimed logic behavior can be recursively extended to the case of logic drivers

corresponding to N switching elements. In general, a cell behavior can always be

described as a composition of logic drivers, expressed using a HDL code. When an

input signal transition occurs in a cell, the logic driver corresponding to the active

driver which drives the output logic transition with a certain propagation delay.

39

3.2 Deterministic Propagation Delay Estimation Model

3.2.1. Single stage

The proposed approach computes the propagation delays associated with a logic

driver through the circuit model as shown in Figure 3.2. The term idrive(t) designates

Figure 3.2.: Equivalent circuit for the propagation delay model.

the total current resulting as the algebraic sum of the currents flowing through the

active driver and the passive driver. Except for the simplest cases, in a CMOS logic

single stage there are transistors which are neither on the active nor on the passive

driver. Because of several effects (e.g., Miller, feed-through), the transistor parasitic

capacitances located on the active and passive drivers have a different impact on

40

3.2 Deterministic Propagation Delay Estimation Model

the propagation delay with respect to the transistor parasitic capacitances located

outside the active and passive drivers. The three capacitors in Fig. 3 correspond

to such different parasitic capacitances. CFANOUT accounts for capacitive load con-

nected to the output, i.e., basically fan-out capacitance. CINTRINSIC accounts for

the capacitances associated with the drain terminals of the transistors inside the cell

but outside the active and passive drivers, whose voltage switches as a consequence

of the input switching (thus contributing to the cell propagation delay). We refer to

such parasitic capacitances as intrinsic capacitances. Physically, they are diffusion

capacitances and diffusion-metal contacts capacitances. Finally, CDRIV E accounts

for the capacitances associated with the drain terminals on the active or passive

drivers, whose voltage switches as a consequence of the input switching (thus con-

tributing to the propagation delay). We refer to such parasitic capacitances as drive

capacitances. Physically, they correspond to diffusion capacitances, diffusion-metal

contacts capacitances and virtual additional Miller-effect capacitances. In addition,

the discharge time of CDRIV E considers the voltage feed-through phenomenon and

its effect on the total rising/falling propagation delay of the drain voltage, so that

CDRIV E partially corresponds to a formal quantity rather than a measurable physical

capacitance. According to Figure 3.2 we have the following:

idrive(t) = (CINTRINSIC + CFANOUT + CDRIV E) · ∂Vout(t)
∂t

(3.1)

Hence by integrating and applying the mean value theorem, we obtain that the

propagation delay Tpd corresponding to an output voltage swing VS is

Tpd = VS · (CINTRINSIC + CFANOUT + CDRIV E)
IAV G

(3.2)

41

3.2 Deterministic Propagation Delay Estimation Model

where IAV G is the average value of idrive(t) in the time interval [0, Tpd]. VS is usually

VDD/2 for standard cell library propagation delay characterization.

We can expand the intrinsic capacitance value as follows:

CINTRINSIC = CImin
·
∑
j

(X ·WI(j)− a) (3.3)

whereWI(j) is a weight expressing the width of every transistor j contributing to the

intrinsic capacitance, normalized to the minimum width, a is a constant expressing

the difference between drawn width and effective width and can be derived from

technology data, CImin is the intrinsic capacitance contributed by a minimum size

transistor, and X is the scaling factor of the cell with respect to the minimum size

template for that cell.

We can expand the drive capacitance value as follows:

CDRIV E = CDmin
·
∑
j

(X ·WD(j)− a) (3.4)

where WD(j) is a weight expressing the width of every transistor j contributing

to the drive capacitance and CDmin is the intrinsic capacitance contributed by a

minimum size transistor.

Furthermore we recall that it is a common practice in standard cell characterization

to express the fan-out capacitance as a multiple of a reference standard load, i.e., as

the ratio between CFANOUT and a reference minimal gate capacitance Cgmin in the

given technology. By defining the quantities:

τD = VS · CDmin

Iavg
,

τI = VS · CImin

Iavg
,

42

3.2 Deterministic Propagation Delay Estimation Model

τO = VS · COmin

Iavg

we obtain the following expression of the propagation delay associated with a specific

active/passive driver pair and a specific input switching:

Tpd = τD ·
∑
j

(X ·WD(j)− a) + τI ·
∑
j

(X ·WI(j)− a) + τO ·
CFANOUT
Cgmin

(3.5)

The technology-dependent timing parameters τD, τI and τO can be determined by

characterizing all the possible pairs of active and passive drivers of interest for the

cell library to be characterized, for each possible switching input of the active driver.

Inside a cell, we can say that certain active and passive drivers occur for each input

pattern. A certain τD, τI and τO value, obtained from characterizing an active and

a passive driver, is applied to all the cells in which those active and passive drivers

can occur. In our present project we focused on the active/passive driver pairs

listed in Table 3.1, which allow modeling any CMOS cell having not more than

four stacked transistors, referring to worst-case single input switching conditions.

The procedure to characterize all the parameters that appear in Equation 3.5 relies

on SPICE BSIM4 simulations of ad hoc circuit structures based on the selected

active/passive driver pairs.

3.2.1.1. characterizing parameter of model

The simulation setup for characterizing τD and τO is shown in Figure 3.3 (top).

According to Equation 3.5, the propagation delay of the active/passive driver pair

is modeled as follows:

τD (CFANOUT ;X; tsleewin
)·
∑
j

(X ·WD(j)− a)+τO (CFANOUT ;X; tsleewin
)·CFANOUT

Cgmin

43

3.2 Deterministic Propagation Delay Estimation Model

Table 3.1.: Active and passive driver pair for model calibration

Active driver Passive driver No. of input switching cases to be characterized
1 NMOS none 1

1 TG None 1
2 TG None 1

1 NMOS 1 PMOS 1
1 NMOS 2 PMOS 2
1 NMOS 3 PMOS 3
1 NMOS 4 PMOS 4
2 NMOS 1 PMOS 2
2 NMOS 2 PMOS 4
2 NMOS 3 PMOS 6
3 NMOS 1 PMOS 3
3 NMOS 2 PMOS 6
3 NMOS 3 PMOS 9
4 NMOS 1 PMOS 4
1 PMOS 1 NMOS 1
2 PMOS 1 NMOS 2
3 PMOS 1 NMOS 3
4 PMOS 1 NMOS 4
1 PMOS 2 NMOS 2
2 PMOS 2 NMOS 4
3 PMOS 2 NMOS 6
1 PMOS 3 NMOS 3
2 PMOS 3 NMOS 6
3 PMOS 3 NMOS 9
1 PMOS 4 NMOS 4

(3.6)

where the sum is constant for the given driver pair and for the chosen input pin.

The parameter Cgmin can be chosen as the input capacitance of a minimal inverter

under nominal conditions. By increasing CFANOUT of a quantity δC small enough

to consider τD and τO as unaffected, we measure a propagation delay increase given

by the following:

δTpd = τO (CFANOUT ;X; tsleewin
) · δC
Cmin

(3.7)

44

3.2 Deterministic Propagation Delay Estimation Model

Figure 3.3.: Simulation setup for model parameter calibration

Therefore, we derive the value of τO and consequently the value of τD by substitution.

The simulation setup for characterizing τI is shown in Figure 3.3 (bottom). The

measured propagation delay of the active/passive driver pair with an additional N-

type (P-type) transistor connected between the output node and ground (Vdd) is

modeled by the following:

Tpd = τD (CFANOUT ;X; tsleewin
) ·
∑
j

(X ·WD(j)− a)

+τI(CF ANOUT ;X;tsleewin) ·
∑
j

(X ·WI(j)− a)

45

3.2 Deterministic Propagation Delay Estimation Model

+τO (CFANOUT ;X; tsleewin
) · CFANOUT

Cgmin

(3.8)

3.2.2. Multi stage

To be able to calculate the propagation delay of a chain of cells, the premier task is

to compute the slew time of input signal and the load capacitance for all stages. The

output slew time of one stage will become the input signal of the upcoming cell and

so on. To estimate the slew time of its input signal and its load capacitance for the

n-th stage, it is possible to extrapolate both input signal and load capacitance from

the multi-stage circuit. Considering a sub-circuit from multi-stage circuit to limit it

to a single stage and calculate its propagation delay. Follow the same methodology

for all sub-circuitry and add all propagation delays of sub-circuits to find the re-

sultant propagation delay of a required multi-stage as shown in the following figure

(Figure 3.4).

3.2.3. Slew time

We measured the slew time of voltage transitions as the time for passing from 20%

to 80% of full voltage swing. The impact of the input slew time on the propagation

delay occurs as a modification in the average current driven by the active and passive

driver, thus ultimately affecting the timing functions τD, τI and τO. Our analyses

showed that such dependence on the slew time is not univocal for different values

of the load capacitance, and it is therefore very difficult to capture it in a compact

46

3.2 Deterministic Propagation Delay Estimation Model

Figure 3.4.: multistage path

yet accurate model. To accurately consider the effect, we chose to characterize

the timing functions τD, τI and τO associated with each active/passive driver pair

for different values of input signal slew time, ranging from 1 to 100 ps, which are

compatible with practical cases in the given 45-nm technology. (In SPICE BSIM4

simulation the output slew time of a single-stage cell results below 90 ps in case of

load/input capacitance ratio = 30, which is a very conservative case with respect to

practical usage of standard cells in real designs [10]). The computation of the output

slew time is important for multistage paths, as the output slew time of a cell affects

the propagation delay of the subsequent cell in the path. The slew time is mainly

related to the slope of the voltage transition in its central partmostly dependent

on τI and τO values and scarcely to the initial shape of it–mostly affected by the

parasitics modeled by τD . Therefore, we conjectured and extensively verified that

the output signal slew time tr be a linear function of the input slew time tslew in

47

3.2 Deterministic Propagation Delay Estimation Model

and of the sole contribution of τI and τO to the propagation delay value

tslewout = α + β · tI,O + γ · tslewIN
(3.9)

where the auxiliary variable tI,O is

tI,O =
τI ·∑

j

(X ·WI(j)− a) + τO ·
CFANOUT
Cgmin



β and γ have practically the same two values for all the cells in the given technology,

while α is characteristic of each active/passive driver pair, independently from X.

The typical fitting of the above model and the actual slew time measured from

SPICE circuit simulations is shown in Figure 3.5.

Figure 3.5.: Behavior of output slew time vs the quantity tI_O .

3.2.4. Load capacitance

A particularly challenging issue in accurately modeling the propagation delay of

multistage paths composed of an arbitrary number of CMOS cells is the accurate

model of the input pin capacitance in each cell, which acts as the load capacitance

48

3.2 Deterministic Propagation Delay Estimation Model

of the preceding cell in the path. The MOSFET parasitic capacitances contributing

to the total input capacitance of a cell vary their value during voltage transitions

[1], hence logic level propagation delay models always rely on an average value

that we refer to as equivalent input capacitance, to be properly characterized. A

commonly adopted setup to characterize the equivalent input capacitance of a target

cell is shown in Figure 3.6: by comparing the propagation delay of a reference cell

Figure 3.6.: Input pin capacitance characterization setup.

(inverter) driving the target cell input pin and driving a known capacitor, it is

possible to determine the equivalent capacitance value for the input pin of the target

cell. As a result of our analysis, the equivalent capacitance CIN associated with the

input pin of a generic CMOS cell depends on the following factors:

1) voltage transition (high-low and low-high);

2) logic state of the other input pin of the target cell (e.g., node B logic value, in

Figure 3.6);

3) slew time of the input signal of the driver cell (e.g., node Y slew time, in

Figure 3.6).

A sample of the SPICE results for the equivalent input capacitance characterization

for different target cells, evidencing in particular the dependence on the second

and third factors (the first factor is widely recognized in commercial cell library

49

3.2 Deterministic Propagation Delay Estimation Model

Figure 3.7.: SPICE characterization of input pin capacitance (two-input AND cell)
with respect to input slew of the driver cell and to different input logic patterns
of the target cell.

characterization files) are shown in Figure 3.7. Similar outcomes are obtained for

all types of cells. The third factor, in particular, might seem surprising if we think

of the input capacitance as a property of the sole target cell, but in reality the

equivalent input capacitance results from the coupling of the target cell and its

driver. Interestingly, we found that the slew time of the input signal of the driver

has a nonnegligible impact on the equivalent input capacitance of the target cell,

while the type of driver cell does not have a significant impact in this respect, except

for very rare cases.

An impact of the driver slew time up to 20% on the equivalent input capacitance is

found. Importantly for the propagation delay computation algorithm, implementing

the slew time effect referring to the input of the driver cell (e.g., node Y slew time in

Figure 3.6) is more efficient than referring to the input of the target cell (e.g., node

A slew time in Figure 3.6): the latter case would imply an iterative computation

at simulation time, because the target cell input slew time affects the equivalent

50

3.2 Deterministic Propagation Delay Estimation Model

Table 3.2.: Sample of database record. AND cell (input IN1 with IN2=’0’)

cell size
factor

driver
slew (ps)

pin cap.
HL (fF)

pin cap.
LH (fF)

pin IN1 logic value pin IN2 logic
value

X1 10 0,16 0,17 pin under test LOW
X1 50 0,17 0,18 pin under test LOW
X2 10 0,35 0,36 pin under test LOW
X2 50 0,36 0,38 pin under test LOW
X3 10 0,53 0,56 pin under test LOW
X3 50 0,55 0,58 pin under test LOW
X4 10 0,72 0,75 pin under test LOW
X4 50 0,73 0,77 pin under test LOW
X5 10 0,91 0,95 pin under test LOW
X5 50 0,92 0,97 pin under test LOW
X10 10 1,83 1,92 pin under test LOW
X10 50 1,84 1,94 pin under test LOW
X20 10 3,68 3,86 pin under test LOW
X20 50 3,69 3,87 pin under test LOW

load capacitance seen by the driver cell, which in turns affects the target cell input

slew time. While the distinction of voltage transition is commonly supported by

conventional propagation delay calculators integrated in EDA tools, to the best of

our knowledge the impact of the other input pin logic values of the target cell and

the impact of the input slew time of the driver cell are not supported yet. We

implemented the characterization of the equivalent input capacitance by storing

a pair of capacitance values, corresponding to 10 and 50 ps driver slew time, for

each input pin, transition direction, and logic pattern on the other input pins. For

different slew time values we perform a linear interpolation given the reference pair

of values. By this simple approach, we halve the propagation delay error due to

imprecise input capacitance assessment. The same approach is feasible for accurately

characterizing and modeling the behavior of the equivalent capacitance associated

with complex interconnect loads; in the present version of the project they are

modeled as capacitive loads based on conventional parasitic extraction tables.

A characterization database has been developed for the whole cell library and inte-

51

3.3 Statistical Propagation Delay Estimation Model

Table 3.3.: Sample of database record. AND cell (input IN1 with IN2=’1’)

cell size
factor

driver
slew (ps)

pin cap.
HL (fF)

pin cap.
LH (fF)

pin IN1 logic value pin IN2 logic
value

X1 10 0,17 0,18 pin under test HIGH
X1 50 0,20 0,19 pin under test HIGH
X2 10 0,39 0,38 pin under test HIGH
X2 50 0,42 0,41 pin under test HIGH
X3 10 0,60 0,59 pin under test HIGH
X3 50 0,63 0,61 pin under test HIGH
X4 10 0,82 0,79 pin under test HIGH
X4 50 0,85 0,82 pin under test HIGH
X5 10 1,04 1,00 pin under test HIGH
X5 50 1,07 1,03 pin under test HIGH
X10 10 2,14 2,04 pin under test HIGH
X10 50 2,16 2,07 pin under test HIGH
X20 10 4,43 4,12 pin under test HIGH
X20 50 4,45 4,13 pin under test HIGH

grated in the VHDL model of the library. The Table 3.2 and Table 3.3 are a sample

of the database record referring to the AND2 cell for an input. The other input ...

The other importan think is why calculate capacitance for all combination

3.3. Statistical Propagation Delay Estimation Model

The significance of the logic driver paradigm, based on the behavior of the τD, τI and

τO functions and on the novel characterization of the input capacitances, is notable

when we take into account technology variability. The proposed model allows the

timing simulation of a digital design (connection of cells) as a logic-level event-driven

simulation. As such, the statistical simulation of an entire digital design can be ac-

complished by logic-level Monte Carlo simulation in which variations are introduced

in the τ function values and capacitance function values associated with the cells.

If the same variations are applied to τ functions and capacitances in all the cells

52

3.3 Statistical Propagation Delay Estimation Model

at each Monte Carlo iteration, we perform a die-to-die, global variation statistical

analysis; if an individual variation is applied to τ functions and capacitances in each

cell at each Monte-Carlo iteration, we perform intradie, local variation analysis. In

this research work, the implementation of global process variation analysis is the

target. We explain the present implementation and the concept for implementing

local mismatch analysis within the same paradigm. To explore the behavior of the

τD, τI and τO timing functions and of the input pin equivalent capacitances in pres-

ence of technology variations, we built an automated script that iteratively runs

the characterization procedure, through SPICE BSIM4 simulations, with random

variations in technology parameters at each iteration. The variations considered are

L, W, oxide thickness Tox, and channel doping Ndep. The behavior we observed

is that only a vertical shift of the τD, τI and τO functions is significantly affected

by a technology variation (Figure 3.8). The vertical shift results to be relatively

Figure 3.8.: Behavior of τo as affected by L (transistor drawn length) variation.
Other technology variations have a similar effect.

dependent on the input signal slew time, and very modestly dependent on the type

of driver pair (Table 3.1) and the size factor of the circuits. For input pin capac-

itances, we observed that the effect of a variation in technology parameters turns

into a multiplying factor common to all the cells in the library. Accordingly, the

53

3.3 Statistical Propagation Delay Estimation Model

timing function values and the pin capacitance value of a cell subject to statistical

process variations can be expressed as follows:

τD = τDnominal
+ ∆τD

τI = τInominal
+ ∆τI

τO = τOnominal
+ ∆τO

CIN = CINnominal
(1 + ∆CIN)

where the shift values τD, τI , τO and CIN are random variables to be statistically

characterized.

3.3.1. Global Variation Analysis Implementation

For the implementation of global variation analysis, we assumed a Gaussian distri-

bution of the parameters L, W, Tox, and Ndep, with 3σv variation of 15%, widely

used in statistical CMOS simulations. By running the characterization scripts for

10000 times with pseudo-random generated parameters, we collected and stored a

vector (τ variation vector) of 10000 shift values τD, τI and τO , referring to input

slew times of 10 and 50 ps, for a total of 60 000 sample shift value arrays, which

are valid for any cell in the given technology. We furthermore collected a vector

(pincap variation vector) of 10000 values of CIN , usable for any cell of the library

in the given technology. The full statistical characterization is carried out at 1 V

supply. As the variations in the timing functions with respect to process variations

are directly sampled from SPICE simulation and stored with no fitting function,

it is expectable that any nonlinear behavior of timing function variations will be

captured at any voltage, provided that a sufficient high number of Monte Carlo

54

3.3 Statistical Propagation Delay Estimation Model

samples are used. We implemented a Monte Carlo analytical propagation delay cal-

culator that repeatedly computes the propagation delay of given circuit, according

to Equation 3.5, applying the 10000-element τ variation vector and pincap variation

vector and obtaining the propagation delay statistical behavior. We furthermore

integrated the Monte Carlo iterations in a very-high-speed-integrated-circuit hard-

ware description language (VHDL) environment, allowing the statistical simulation

of any design based on our VHDL cell library models, thus enabling Monte Carlo

analysis on a fast logic level event- driven simulator.

3.3.2. Extension to Local Variation Analysis

When we have to consider local mismatch variations, the shift of the tau function

values and multiplying factor of the pin capacitance value of a given cell can be

expressed as follows:

τD = τDnominal
+ ∆τDglobal

+ ∆τDlocal

τI = τInominal
+ ∆τIglobal

+ ∆τIlocal

τO = τOnominal
+ ∆τOglobal

+ ∆τOlocal

CIN = CINnominal

(
1 + ∆CINglobal

+ ∆CINlocal

)

The terms ∆τDglobal , ∆τ Iglobal , ∆τOglobal and CINglobal are global, design-independent

process variations and can be characterized as shown above. The terms ∆τDlocal ,

∆τ Ilocal , ∆τOlocal and CINlocal are specific for each cell instance, and must be gener-

ated for a placed and routed design. We can include them in the logic-level Monte

Carlo simulation as random variables generated at run-time with spatialdependent

variance. The spatial-dependent variance of ∆τDlocal , ∆τ Ilocal , ∆τOlocal and CINlocal

55

3.4 Model Implementation

can be a priori characterized as a function of geometric distance between generic

cells, by a design-independent Monte-Carlo SPICE characterization with random

variations in the SPICE device parameters according to the established distance-

dependent mismatch models like Pelgrom’s rule [17] and its extensions. In the

present implementation of the cell library model, the distance dependent characteri-

zation of the variance of τD, τI , τO and CIN is not implemented but it does not imply

any modification to the propagation delay model and pin capacitance model (it only

affects the values passed as τ functions and CIN at each iteration). A limitation

of the proposed approach, due to the inherent structure of the proposed propaga-

tion delay model, is that local transistor mismatch inside a current driver within

a cell cannot be modeled; thus spatial variation analysis is feasible for cell-to-cell

variations or at most for intracell driver-to-driver variations.

3.4. Model Implementation

The present implementation of the logic driver paradigm is developed in VHDL for

a library based on 21 different logic elements, each modeled with eight sizes, totaling

168 standard cells modeled and verified. The database structure of the simulation

environment, with storage usage details, is shown in Figure 3.9.

The executable model of a standard cell is composed of three code sections devoted to

propagation delay computation, logic operation and input capacitance computation,

respectively, according to Figure 3.10.

The model relies on a resolved type logic_drive_logic for representing logic signals,

which is a record carrying the logic value (std_logic levels), the slew time, and

a pair of minimum/maximum capacitance values associated with the input pin of

56

3.4 Model Implementation

Figure 3.9.: Database structure for the logic-driver-based timing simulation envi-
ronment. Arrows indicate dependencies.

a cell. The type is resolved with respect to conflicts in logic levels in a similar

way to std_logic type, and it is also resolved with respect to capacitance values so

that several signals connected to the same net will sum up their capacitance values.

The propagation delay computation section relies on propagation delay parameter

functions tau_d, tau_i, tau_o (corresponding to τD, τI and τO) defined for each

of the active/passive driver pairs to be considered in the cell library. The values

returned by these functions depend on the transistor size factor, the input slew

time, and the fan-out capacitance. The values are stored in constant arrays of real

numbers during the technology characterization phase. The logic operation section

relies on signal drive functions Nmos_kdrive(), Pmos_kdrive(), implementing the

logic behavior of logic drivers and applying the propagation delays calculated in the

preceding section. Logic drivers ranging from a single input signal (k = 1) up to

four input signals (k = 4) are modeled, for both pMOS active drivers and nMOS

active drivers. The input capacitance section relies on a c_in() function associated

with each input of a cell, returning a pair of reference capacitance values. The two

57

3.4 Model Implementation

1−−
2entity nand2_dut i s
3generic (X: r e a l :=1 . 0) ; −−r e s i z e f a c t o r
4port (A, B: inout l o g i c_dr i v e_ log i c ;
5Z : inout l o g i c_dr i v e_ log i c) ;
6end nand2_dut ;
7−−
8
9−−
10architecture abs t r a c t of nand2_dut i s
11−− here : i n t e r n a l s i g n a l d e c l a ra t i on s ,
12−− t r a n s i s t o r s i z e d e f i n i t i o n s , e t c .
13begin
14−− de lay computation s e c t i on −−−−−−−−−−−−−−−−−−−−−
15−− de lay va l u e s computed f o r each
16−− p o s s i b l e l o g i c d r i v e r a c t i v a t i o n
17−− example :
18time_ld1_A_on <= . . . −− c a l l o f tau f unc t i on s
19−− l o g i c opera t ion s e c t i on −−−−−−−−−−−−−−−−−−−−−−
20−− a l l l o g i c d r i v e r s in c e l l
21−− example :
22ld1 : Nmos_2drive (Z , A, B, time_ld1_A_on , . .) ;
23−− inpu t capac i tance computation s e c t i on −−−−−−−−−
24A. pincap <= . . . −− c a l l o f c_in f unc t i on s
25B. pincap <= . . . −− c a l l o f c_in f unc t i on s
26end abs t r a c t ;
27−−

Figure 3.10.: Basic scheme of standard cell description.

values correspond to the input capacitance measured in the cell when the input

slew time of another cell driving the pin is 10 and 50 ps respectively. The values

returned by C_i n() also depend from the logic states of the other input pins of

the same cell and from the cell size factor, and are stored in constant arrays of real

numbers during the technology characterization phase. Example of the operation

of the model in a multicell path (Figure 3.11): the VHDL code section devoted to

propagation delay computation in cell C1 reads the total capacitance on signal Z

as a pair of reference values {3 and 6 fF} resulting as the sum of the capacitances

58

3.5 Summary

Figure 3.11.: Implementation of the input pin capacitance simulation model.

connected to Z. According to the actual input slew time 30 ps on the switching node

A, cell C1 computes its actual load capacitance to be used with the tau functions

as a linear interpolation (4.5 fF). An interesting feature is that—because of the

event-driven operation of HDL languages—all the quantities in the cell model (e.g.,

capacitances and timing functions) are recalculated on demand, i.e., only when some

of the involved signals changes.

3.5. Summary

We have discussed the overall methodologies of deterministic and statistical propa-

gation delay estimation techniques. The deterministic propagation delay estimation

is divided into the conceptual definitions and detail description of parameters used

for single and multi stages. The estimation methodology for slew time and load

capacitate is discussed later in detail by basic formulations and SPICE calculations.

Furthermore, the statistical propagation delay estimation methodology has been in-

troduce with both global and local variation injection. Global variations considers

broadly in many parameters in which we have considered oxide thickness and de-

59

3.5 Summary

pletion only. For local process variations we have considered the threshold voltage

variations which affects the propagation delay of nano-meter technologies in a big

extent. Lastly, the model framework has been introduced in detail which shows the

methodology and algorithm in detail for estimating the propagation delay for all

possible discussed techniques.

60

4. Results on deterministic

propagation delay prediction in

nominal conditions

4.1. Overview

This chapter will elaborate the implementation in detail in the terms of results and

its analysis. The results of deterministic and statistical propagation delay behavior

will be given in the form of tables and figures; whereas the methodology has already

been explained in the previous chapter. The deterministic propagation delay will

be categorized in two types such as deterministic single stage and deterministic

multi stage. Furthermore, the statistical propagation delay will be divided in to two

forms as well which is in the same manner such as statistical single and multistage

propagation delay. These results have been implemented on both transistor-level

and logic layers. There are number of circuits ; for example; small scale circuits

(such as inverter) to medium level circuits (such as full adders) and to large scale

circuits (such as 32-bit FIR filter) have been taken into account for propagation

delay estimation simulations. The analysis will be done following by every result

sub section.

61

4.2 Deterministic single stage

4.2. Deterministic single stage

The detailed definition and methodology of deterministic single stage has been ex-

plained in chapter 3. The methodology for this work is implemented in VHDL and

verified with SPICE simulations. The implementation is being done on various small

and medium scale circuits. These circuits are mainly Inverter, NOT, NAND and

Full Adders with different functionalities. Different capacitance loads, sizes, input

slew times will be taken as input in the following results as well. The percentage of

error and comparison between proposed techniques in terms of relative errors will be

accounted as the output results. At the end of deterministic single stage an analysis

on all results will be discussed.

4.2.1. inverter

The first cell which taken into account is inverter. The analysis has been divided

into two cases high-to-low and low-to-high transactions for number of different cases.

For both transitions, 340 combinations of cell size factor, input slew time and load

capacitance has been tested.

Figure 4.1 shows how model support non linear effect of nano-scale CMOS for dif-

ferent input slew time.

Table 4.1 shows a part of the result for different case of cell size factor, input slew

time and load capacitance. It reports both absolute and relative errors. The relative

error is very less than 1%.

62

4.2 Deterministic single stage

Figure 4.1.: VHDL vs SPICE tLH NOT cell. Input slew time 10ps and 50ps.

4.2.2. nand2

The nand2 gate is tested for both input and for all transitions of output for a total

of cases equal to 680 (combinations of cell size factor, input slew time and load

capacitance).

Table 4.2 shows a part of the results for different case of cell size factor, input slew

time and load capacitance for input A (the input A in this case is connected to gate

of Nmos with source to ground. For all cases the relative error is less than 1%.

4.2.3. nor2

The nor2 gate is tested for both input and for all transitions of output for a total

of cases equal to 680 (combinations of cell size factor, input slew time and load

capacitance).

Table 4.3 shows a part of the results for different case of cell size factor, input slew

time and load capacitance for input A (the input A in this case is connected to gate

63

4.2 Deterministic single stage

Table 4.1.: Absolute and Relative error of Inverter: SPICE vs VHDL comparison

not x1 tr10ps x1 tr50ps x10 tr10ps x10 tr50ps

Cload (fF) error % abs err (ps) error % abs err (ps) error % abs err (ps) error % abs err (ps)

0 0.02 0.00 0.00 0.00 -0.05 0.00 -0.03 0.00

0.15 -0.02 0.00 0.00 0.00 0.01 0.00 -0.02 0.00

0.33 0.02 0.00 -0.05 0.00 0.01 0.00 -0.01 0.00

0.66 0.01 0.00 -0.01 0.00 0.01 0.00 0.00 0.00

1 0.02 0.00 0.00 0.00 -0.02 0.00 -0.01 0.00

1.25 0.01 0.00 0.02 0.00 0.02 0.00 0.02 0.00

1.5 0.03 -0.01 0.02 0.00 0.03 -0.01 -0.01 0.00

1.75 0.05 -0.01 -0.45 0.01 0.46 -0.10 -0.25 0.01

2 0.03 -0.01 0.01 0.00 -0.01 0.00 -0.01 0.00

3 -0.01 0.00 -0.03 0.00 -0.02 0.01 -0.02 0.00

4 -0.02 0.01 0.00 0.00 0.02 -0.01 0.02 0.00

5 -0.03 0.01 0.00 0.00 -0.04 0.02 -0.01 0.00

6 -0.03 0.02 -0.01 0.00 0.01 -0.01 0.01 0.00

7 -0.03 0.02 0.00 0.00 0.01 -0.01 0.02 0.00

8 -0.04 0.03 -0.02 0.00 0.01 -0.01 0.02 0.00

9 -0.04 0.03 0.03 0.00 0.02 -0.02 -0.01 0.00

10 -0.03 0.03 0.04 0.00 -0.03 0.03 0.01 0.00

of Nmos with source to ground. For all cases the relative error is less than 1%.

4.2.4. ao12_n

The ao12_n gate is another cell of standar library. It have 3 inputs. The analyses

have been performed for all input and for all transitions of output for a total of cases

equal to 1360 (combinations of cell size factor, input slew time and load capacitance

and logic value of input).

Figure 4.2 shows two cases of input slew time for a different load capacitance.

Table 4.4 shows a part of the results for different case of cell size factor, input slew

time and load capacitance for input A (the input A in this case is connected to gate

64

4.2 Deterministic single stage

Table 4.2.: Absolute and Relative error of NAND2: SPICE vs VHDL comparison

nand2a x1 tr10ps x1 tr50ps x10 tr10ps x10 tr50ps

Cload (fF) error % abs err (ps) error % abs err (ps) error % abs err (ps) error % abs err (ps)

0 0.98 -0.04 0.95 -0.04 0.65 -0.05 0.78 -0.06

0.15 0.54 -0.03 0.93 -0.04 0.41 -0.04 0.71 -0.05

0.33 0.38 -0.03 0.84 -0.03 0.29 -0.03 0.57 -0.04

0.66 0.29 -0.03 0.73 -0.03 0.24 -0.04 0.55 -0.04

1 0.23 -0.03 0.71 -0.03 0.17 -0.03 0.52 -0.04

1.25 0.23 -0.03 0.62 -0.03 0.17 -0.03 0.48 -0.04

1.5 0.17 -0.03 0.71 -0.04 0.16 -0.04 0.42 -0.04

1.75 0.21 -0.04 0.42 -0.02 0.17 -0.04 0.27 -0.02

2 0.20 -0.04 0.46 -0.03 0.10 -0.03 0.35 -0.03

3 0.13 -0.04 0.40 -0.02 0.12 -0.04 0.33 -0.03

4 0.11 -0.04 0.37 -0.03 0.11 -0.05 0.30 -0.03

5 0.09 -0.04 0.31 -0.02 0.10 -0.05 0.23 -0.03

6 0.08 -0.05 0.34 -0.03 0.06 -0.04 0.22 -0.03

7 0.08 -0.05 0.32 -0.03 0.06 -0.04 0.25 -0.04

8 0.07 -0.05 0.25 -0.03 0.05 -0.04 0.21 -0.03

9 0.06 -0.05 0.28 -0.03 0.11 -0.10 0.22 -0.04

10 0.06 -0.06 0.24 -0.03 0.11 -0.10 0.19 -0.03

of Nmos with source to ground in two Nmos stack. For all cases the relative error

is less to 1%.

4.2.5. ao22_n

The ao22_n gate is one of the renouned cell of standar library. It have 4 inputs.

The simulations have been done and tested for all the inputs and for all transitions

of output for a total of cases equal to 1360 (combinations of cell size factor, input

slew time and load capacitance and logic value of input). The relative error is less

to 1% for most of the cases, but for only few cases, in particular such as small load

capacitance, the relative error is observed less than 3%.

Table 4.5 shows a part of the results for different case of cell size factor, input slew

65

4.2 Deterministic single stage

Table 4.3.: Absolute and Relative error of NOR2: SPICE vs VHDL comparison

nor2 x1 tr10ps x1 tr50ps x10 tr10ps x10 tr50ps

Cload (fF) error % abs err (ps) error % abs err (ps) error % abs err (ps) error % abs err (ps)

0 -0.06 0.00 0.67 -0.01 0.02 0.00 1.20 -0.02

0.15 0.02 0.00 0.57 -0.01 -0.01 0.00 0.98 -0.02

0.33 0.02 0.00 0.47 -0.01 0.00 0.00 0.78 -0.02

0.66 0.01 0.00 0.32 -0.01 0.01 0.00 0.49 -0.02

1 -0.01 0.00 0.31 -0.01 -0.01 0.00 0.41 -0.01

1.25 0.02 0.00 0.25 -0.01 0.01 0.00 0.32 -0.01

1.5 0.02 0.00 0.18 -0.01 0.00 0.00 0.26 -0.01

1.75 0.01 0.00 -0.45 0.02 0.31 -0.06 -0.01 0.00

2 0.01 0.00 0.17 -0.01 -0.01 0.00 0.22 -0.01

3 0.00 0.00 0.14 -0.01 0.00 0.00 0.15 -0.01

4 0.00 0.00 0.12 -0.01 -0.01 0.00 0.12 -0.01

5 0.00 0.00 0.08 0.00 -0.01 0.01 0.10 -0.01

6 0.00 0.00 0.07 0.00 0.01 0.00 0.06 -0.01

7 0.00 0.00 0.07 0.00 0.00 0.00 0.12 -0.01

8 0.00 0.00 0.04 0.00 0.01 -0.01 0.07 -0.01

9 0.00 0.00 0.05 0.00 0.01 -0.01 0.04 0.00

10 0.00 0.00 0.03 0.00 -0.02 0.01 0.04 -0.01

time and load capacitance for input A (the input A in this case is connected to gate

of Nmos with source to ground and the Pmos with a source to VDD).

4.2.6. ao31_n

The ao31_n gate is taken from standard cell library. It have 4 inputs as well. The

pull-down have two stack in parallel, one with three Nmos and other with one. The

results have been achived by testing the analysis for all input and for all transitions

of output for a total of cases equal to 2040 (combinations of cell size factor, input

slew time, load capacitance and logic value of other input). For number of cases

the relative error is less than 1%, but for some case, in particular for a small load

capacitance, the relative error is less to 2%.

Table 4.6 shows a part of the results for different case of cell size factor, input slew

66

4.2 Deterministic single stage

Figure 4.2.: ao12_n input A. Differente slew time (left 10ps,rigth 50ps)

time and load capacitance for input A (the input A in this case is connected to gate

of Nmos with source to ground and the Pmos with a source to VDD).

4.2.7. ao32_n

The ao32_n gate is another cell of standar library. It have also 5 inputs. The pull-

down part have two stack in parallel, one with three Nmos transistors and other

with two nmos transistors. The results are done by testing the analysis for all input

and for all transitions of output for a total of cases equal to 4080 (combinations of

cell size factor, input slew time, load capacitance and logic value of other input).

For number of cases the relative error is less to 2%, but for some cases, in particular

for a small load capacitance, the relative error is less than 3%.

Table 4.7 shows a part of the results for different case of cell size factor, input slew

time and load capacitance for input A (the input A in this case is connected to gate

of Nmos with source to ground and the Pmos with a source to VDD).

67

4.2 Deterministic single stage

Table 4.4.: Absolute and Relative error of AO12_n: SPICE vs VHDL comparison.
Input A

ao12_n x1 tr10ps x1 tr50ps x10 tr10ps x10 tr50ps

Cload (fF) error % abs err (ps) error % abs err (ps) error % abs err (ps) error % abs err (ps)

0 -0.6 -0.02 -14.5 -1.06 1.0 0.03 -14.7 -0.96

0.15 -1.0 -0.05 -7.7 -0.72 0.7 0.02 -13.7 -0.92

0.33 -1.4 -0.09 -4.8 -0.56 0.3 0.01 -12.6 -0.87

0.66 -1.9 -0.18 -2.9 -0.43 0.0 0.00 -10.9 -0.80

1 -2.1 -0.24 -2.2 -0.39 -0.3 -0.01 -9.6 -0.75

1.25 -1.8 -0.25 -1.8 -0.35 -0.3 -0.01 -8.8 -0.71

1.5 -1.7 -0.26 -1.6 -0.35 -0.5 -0.02 -8.1 -0.68

1.75 -1.6 -0.27 -1.0 -0.25 -0.7 -0.03 -7.7 -0.67

2 -1.4 -0.27 -1.1 -0.29 -0.6 -0.03 -7.0 -0.62

3 -1.0 -0.26 -0.9 -0.29 -0.8 -0.05 -5.4 -0.54

4 -0.9 -0.30 -0.7 -0.29 -1.1 -0.07 -4.5 -0.49

5 -0.6 -0.27 -0.6 -0.31 -1.3 -0.09 -3.8 -0.46

6 -0.5 -0.24 -0.5 -0.27 -1.5 -0.11 -3.3 -0.42

7 -0.4 -0.21 -0.6 -0.35 -1.6 -0.14 -2.9 -0.39

8 -0.6 -0.37 -0.3 -0.23 -1.8 -0.16 -2.6 -0.38

9 -0.5 -0.36 -0.4 -0.28 -1.9 -0.18 -2.4 -0.36

10 -0.5 -0.36 -0.4 -0.31 -1.7 -0.18 -2.1 -0.34

4.2.8. ao33_n

The ao33_n gate has also been taken from standard cell library. It have 6 inputs.

The pull-down have two stacks in parallel, both with three Nmos transistors. The

simulations are performed for all input and for all transitions of output for a total of

cases equal to 4080 (combinations of cell size factor, input slew time, load capacitance

and logic value of other input). For a lot of case the relative error is less to 3%, but

for some cases, in particular for a small load capacitance, the relative error is less

to 5%.

Table 4.8 shows a part of the results for different cases of cell size factor, input slew

time and load capacitance for input A (the input A in this case is connected to gate

of Nmos with source to ground and the Pmos with a source to VDD).

68

4.2 Deterministic single stage

Table 4.5.: Absolute and Relative error of AO22_n: SPICE vs VHDL comparison.
Input A

ao22_n x1 tr10ps x1 tr50ps x10 tr10ps x10 tr50ps

Cload (fF) error % abs err (ps) error % abs err (ps) error % abs err (ps) error % abs err (ps)

0 3.1 0.11 -8.0 -0.36 3.5 0.12 -7.6 -0.33

0.15 0.3 0.02 -5.3 -0.32 3.7 0.13 -7.3 -0.33

0.33 -0.1 0.00 -3.7 -0.29 2.4 0.09 -7.1 -0.33

0.66 -1.1 -0.09 -2.4 -0.25 1.9 0.08 -6.6 -0.33

1 -1.4 -0.14 -1.9 -0.24 0.8 0.03 -6.1 -0.33

1.25 -1.4 -0.16 -1.6 -0.23 0.7 0.03 -5.9 -0.33

1.5 -1.3 -0.17 -1.4 -0.23 0.5 0.02 -5.5 -0.32

1.75 -1.3 -0.19 -1.4 -0.25 -0.1 -0.01 -5.5 -0.33

2 -1.2 -0.19 -1.2 -0.23 -0.1 0.00 -5.0 -0.31

3 -0.9 -0.20 -0.9 -0.23 0.2 0.01 -4.2 -0.30

4 -0.8 -0.21 -0.7 -0.23 -0.6 -0.04 -3.6 -0.28

5 -0.6 -0.19 -0.6 -0.21 -0.9 -0.06 -3.2 -0.27

6 -0.4 -0.17 -0.5 -0.20 -1.1 -0.08 -2.8 -0.27

7 -0.5 -0.22 -0.4 -0.18 -1.3 -0.10 -2.6 -0.26

8 -0.4 -0.21 -0.4 -0.22 -1.3 -0.11 -2.3 -0.25

9 -0.4 -0.20 -0.3 -0.16 -1.4 -0.12 -2.2 -0.26

10 -0.3 -0.19 -0.3 -0.19 -1.4 -0.13 -2.0 -0.25

4.2.9. ao112_n

The ao112_n gate is another cell of standar library. It have 4 input. The pull-down

network have three stack in parallel, one with two series Nmos and two with one.

I tested for all input and for all transactions of output for a total of cases equal to

4080 (combinations of cell size factor, input slew time, load capacitance and logic

value of other input). For a lot of case the relative error is less to 1%.

Table 4.9 shows a part of the results for different cases of cell size factor, input slew

time and load capacitance for input A (the input A in this case is connected to gate

of Nmos transistor with source to ground and the Pmos transistor with a source to

VDD).

69

4.2 Deterministic single stage

Table 4.6.: Absolute and Relative error of AO31_n: SPICE vs VHDL comparison.
Input A

ao31_n x1 tr10ps x1 tr50ps x10 tr10ps x10 tr50ps

Cload (fF) error % abs err (ps) error % abs err (ps) error % abs err (ps) error % abs err (ps)

0 2.1 0.10 1.4 0.07 2.9 0.14 2.2 0.10

0.15 0.1 0.00 0.5 0.03 2.5 0.12 2.2 0.10

0.33 -1.2 -0.08 -0.2 -0.02 2.1 0.10 2.0 0.10

0.66 -2.0 -0.17 -0.9 -0.09 1.4 0.07 1.6 0.09

1 -2.2 -0.24 -1.2 -0.14 1.2 0.06 1.4 0.07

1.25 -2.0 -0.25 -1.3 -0.17 1.1 0.06 1.2 0.07

1.5 -2.1 -0.28 -1.3 -0.20 0.8 0.04 1.1 0.06

1.75 -2.0 -0.30 -1.3 -0.21 0.3 0.01 0.9 0.06

2 -1.9 -0.31 -1.3 -0.23 0.0 0.00 0.8 0.05

3 -1.5 -0.33 -1.2 -0.27 -0.6 -0.04 0.3 0.02

4 -1.3 -0.35 -1.1 -0.32 -1.1 -0.08 0.0 0.00

5 -1.1 -0.37 -0.9 -0.30 -1.4 -0.11 -0.3 -0.03

6 -1.0 -0.37 -0.9 -0.34 -1.6 -0.14 -0.5 -0.04

7 -0.9 -0.40 -0.7 -0.33 -1.7 -0.16 -0.6 -0.06

8 -0.8 -0.38 -0.7 -0.34 -1.9 -0.18 -0.7 -0.08

9 -0.7 -0.38 -0.6 -0.35 -1.9 -0.20 -0.8 -0.09

10 -0.7 -0.40 -0.6 -0.36 -2.0 -0.21 -1.0 -0.11

4.2.10. ao212_n

The ao212_n gate is taken from standard cell library. It have 5 inputs. The pull-

down have three stacks in parallel, two with two series Nmos transistors and another

with only one Nmos transistor. I tested for all inputs and for all transitions of output

for a total of cases equal to 4080 (combinations of cell size factor, input slew time,

load capacitance and logic value of other input). For number of cases the relative

error is less to 1%, but for some cases, in particular for a small load capacitance,

the relative error is less than 2%.

Table 4.10 shows a part of the results for different case of cell size factor, input slew

time and load capacitance for input A (the input A in this case is connected to gate

of Nmos transistor with source to ground and the Pmos transistor with a source to

VDD).

70

4.2 Deterministic single stage

Table 4.7.: Absolute and Relative error of AO32_n: SPICE vs VHDL comparison.
Input A

ao32_n x1 tr10ps x1 tr50ps x10 tr10ps x10 tr50ps

Cload (fF) error % abs err (ps) error % abs err (ps) error % abs err (ps) error % abs err (ps)

0 1.9 0.11 -0.1 0.00 3.1 0.18 1.0 0.06

0.15 0.5 0.03 -0.3 -0.02 2.8 0.16 1.1 0.06

0.33 -0.9 -0.07 -0.3 -0.03 2.5 0.14 1.0 0.06

0.66 -1.9 -0.18 -0.5 -0.06 2.1 0.13 0.8 0.05

1 -2.2 -0.26 -0.6 -0.07 2.0 0.12 0.6 0.04

1.25 -2.1 -0.28 -0.6 -0.08 1.9 0.12 0.5 0.03

1.5 -2.2 -0.32 -0.6 -0.09 1.5 0.10 0.5 0.03

1.75 -2.2 -0.35 -0.5 -0.09 0.9 0.06 0.5 0.03

2 -2.0 -0.36 -0.6 -0.11 0.6 0.04 0.4 0.03

3 -1.7 -0.39 -0.6 -0.15 -0.2 -0.01 0.2 0.01

4 -1.5 -0.42 -0.7 -0.19 -0.7 -0.05 0.0 0.00

5 -1.3 -0.45 -0.6 -0.21 -1.1 -0.10 -0.1 -0.01

6 -1.1 -0.44 -0.6 -0.26 -1.3 -0.12 -0.1 -0.01

7 -1.1 -0.48 -0.6 -0.27 -1.5 -0.15 -0.2 -0.02

8 -0.9 -0.46 -0.6 -0.28 -1.7 -0.17 -0.2 -0.02

9 -0.8 -0.45 -0.5 -0.30 -1.8 -0.20 -0.2 -0.03

10 -0.7 -0.45 -0.5 -0.31 -1.8 -0.21 -0.3 -0.04

4.2.11. ao222_n

The ao222_n gate is another cell of the standar library. It have 6 inputs. The pull-

down have three stacks in parallel, all with two series Nmos. I tested for all inputs

and for all transitions of output for a total of cases equal to 8160 (combinations of

cell size factor, input slew time, load capacitance and logic value of other input).

For several number of cases the relative error is less to 1%, but for few cases, in

particular for a small load capacitance, the relative error is less than 2%.

Table 4.11 shows a part of the results for different case of cell size factor, input slew

time and load capacitance for input A (the input A in this case is connected to gate

of Nmos with source to ground and the Pmos with a source to VDD).

71

4.2 Deterministic single stage

Table 4.8.: Absolute and Relative error of AO33_n: SPICE vs VHDL comparison.
Input A

ao33_n x1 tr10ps x1 tr50ps x10 tr10ps x10 tr50ps

Cload (fF) error % abs err (ps) error % abs err (ps) error % abs err (ps) error % abs err (ps)

0 1.2 0.09 -5.6 -0.43 3.0 0.22 -4.2 -0.33

0.15 -0.5 -0.04 -4.5 -0.40 2.6 0.19 -4.0 -0.32

0.33 -2.0 -0.18 -3.4 -0.34 2.2 0.16 -3.9 -0.31

0.66 -2.9 -0.33 -2.4 -0.30 1.8 0.13 -3.8 -0.32

1 -3.3 -0.44 -1.9 -0.27 1.7 0.13 -3.7 -0.32

1.25 -3.4 -0.50 -1.7 -0.27 1.7 0.13 -3.6 -0.32

1.5 -3.5 -0.57 -1.5 -0.26 1.1 0.08 -3.5 -0.31

1.75 -3.6 -0.63 -1.4 -0.25 0.2 0.02 -3.4 -0.30

2 -3.5 -0.67 -1.4 -0.28 -0.1 0.00 -3.2 -0.29

3 -3.3 -0.81 -1.5 -0.38 -0.9 -0.08 -2.9 -0.29

4 -3.0 -0.90 -1.5 -0.47 -1.4 -0.13 -2.6 -0.27

5 -2.7 -0.96 -1.5 -0.54 -1.8 -0.18 -2.4 -0.26

6 -2.4 -0.98 -1.5 -0.63 -2.0 -0.22 -2.1 -0.24

7 -2.2 -1.03 -1.4 -0.66 -2.2 -0.25 -1.9 -0.23

8 -1.9 -1.01 -1.3 -0.69 -2.4 -0.29 -1.7 -0.22

9 -1.7 -1.00 -1.2 -0.72 -2.6 -0.33 -1.6 -0.21

10 -1.6 -1.00 -1.1 -0.73 -2.7 -0.35 -1.5 -0.21

4.2.12. Discussion

The results obtained by calculating the deterministic single stage or called as nomi-

nal propagation delay of single CMOS stages by means of Equation 3.5 show a very

good agreement with SPICE BSIM4 simulations. A detailed sample of the obtained

results, showing that the nonlinearity of the timing functions τD, τI and τO mod-

els the non-linear behavior of the propagation delay for small loads are shown in

Figure 4.1.

Table 4.12 lists all cell single-stage standard cells tested, elements each implemented

with different drive strength factors X (cell size factor), with varying input slew time

and load capacitance Cload.

72

4.3 Deterministic multi stage

Table 4.9.: Absolute and Relative error of AO112_n: SPICE vs VHDL compari-
son. Input A

ao112_n x1 tr10ps x1 tr50ps x10 tr10ps x10 tr50ps

Cload (fF) error % abs err (ps) error % abs err (ps) error % abs err (ps) error % abs err (ps)

0 -0.1 -0.01 -0.2 -0.02 0.5 0.03 0.3 0.04

0.15 -0.1 0.00 -0.1 -0.01 0.4 0.03 0.3 0.03

0.33 0.0 0.00 0.0 -0.01 0.6 0.04 0.3 0.04

0.66 0.1 0.01 -0.1 -0.01 0.4 0.03 0.3 0.03

1 0.1 0.01 -0.1 -0.02 0.4 0.03 0.3 0.04

1.25 0.1 0.02 -0.1 -0.02 0.5 0.04 0.2 0.03

1.5 0.0 0.00 0.0 0.00 0.5 0.04 0.3 0.04

1.75 0.0 0.00 0.0 -0.01 0.4 0.03 0.2 0.02

2 0.1 0.03 0.0 0.01 0.4 0.03 0.2 0.02

3 0.2 0.06 0.0 0.00 0.4 0.03 0.2 0.03

4 0.1 0.04 0.1 0.02 0.3 0.03 0.2 0.03

5 0.2 0.08 0.1 0.03 0.3 0.03 0.2 0.03

6 0.0 -0.01 0.1 0.09 0.4 0.04 0.1 0.02

7 0.0 0.01 0.0 0.03 0.3 0.04 0.2 0.03

8 0.0 0.02 0.0 -0.02 0.4 0.05 0.1 0.02

9 0.1 0.04 0.2 0.12 0.3 0.04 0.1 0.03

10 0.1 0.05 0.1 0.11 0.4 0.05 0.1 0.03

4.3. Deterministic multi stage

The basic definition and methodology of deterministic multi stage has been discussed

in previous chapter. The methodology for deterministic multi stage is implemented

in VHDL and verified with SPICE simulations. The implementation is being done on

several small and medium scale circuits. There are seventeen different capacitance

loads, four types of size value, six input slew times has been considered in the

following results. The percentage of error and absolute relative errors are taken into

account. The analysis will be discussed at the end of the section about deterministic

multi stage results.

73

4.3 Deterministic multi stage

Table 4.10.: Absolute and Relative error of AO212_n: SPICE vs VHDL compar-
ison. Input A

ao212_n x1 tr10ps x1 tr50ps x10 tr10ps x10 tr50ps

Cload (fF) error % abs err (ps) error % abs err (ps) error % abs err (ps) error % abs err (ps)

0 1.2 0.08 -1.2 -0.11 0.7 0.05 -1.7 -0.15

0.15 0.3 0.03 -1.0 -0.11 0.6 0.04 -1.6 -0.15

0.33 -0.2 -0.02 -0.9 -0.11 0.6 0.04 -1.6 -0.16

0.66 -0.7 -0.08 -0.7 -0.11 0.4 0.03 -1.6 -0.16

1 -0.9 -0.12 -0.7 -0.12 0.2 0.02 -1.6 -0.16

1.25 -0.9 -0.13 -0.6 -0.11 0.1 0.01 -1.5 -0.16

1.5 -0.9 -0.14 -0.7 -0.13 0.0 0.00 -1.5 -0.15

1.75 -1.0 -0.17 -0.6 -0.13 -0.2 -0.02 -1.6 -0.17

2 -0.8 -0.16 -0.6 -0.14 -0.3 -0.02 -1.5 -0.16

3 -0.6 -0.16 -0.5 -0.13 -0.5 -0.04 -1.4 -0.16

4 -0.6 -0.20 -0.5 -0.16 -0.8 -0.07 -1.3 -0.16

5 -0.4 -0.16 -0.4 -0.14 -1.0 -0.10 -1.3 -0.17

6 -0.5 -0.20 -0.3 -0.15 -1.0 -0.11 -1.3 -0.17

7 -0.4 -0.18 -0.2 -0.13 -1.1 -0.12 -1.2 -0.17

8 -0.4 -0.23 -0.3 -0.16 -1.2 -0.13 -1.2 -0.17

9 -0.3 -0.16 -0.2 -0.14 -1.2 -0.15 -1.2 -0.18

10 -0.4 -0.25 -0.2 -0.17 -1.2 -0.15 -1.1 -0.18

4.3.1. inverter chain

The first test performed for chain cell is a chain of inverters. Different chain is

implemented to check if the error is constant or increasing with stage of chain. As

can be seen from the following results, the error rate remains almost constant for

most of the tests.

The chain of three, five, seven and nine inverters are designed in VHDL as structural

module of standard library developed and in SPICE with subcircuits that you can

find in section D.3.

The error is not increasing between the inverter chains. I suppose that there are no

of problems for any inverter chain in any condition. The results’ analysis show that

there will be not an issue for any inverter chain with any possible condition in terms

of applying this methodolgy.

74

4.3 Deterministic multi stage

Table 4.11.: Absolute and Relative error of AO222_n: SPICE vs VHDL compar-
ison. Input A

ao222_n x1 tr10ps x1 tr50ps x10 tr10ps x10 tr50ps

Cload (fF) error % abs err (ps) error % abs err (ps) error % abs err (ps) error % abs err (ps)

0 -1.1 -0.12 1.4 0.20 0.0 0.00 2.1 0.30

0.15 -1.9 -0.23 0.9 0.13 -0.3 -0.03 2.2 0.31

0.33 -2.4 -0.33 0.6 0.09 -0.4 -0.04 2.0 0.28

0.66 -2.9 -0.45 0.1 0.03 -0.6 -0.07 1.9 0.27

1 -2.9 -0.51 -0.1 -0.02 -0.8 -0.09 1.7 0.25

1.25 -3.0 -0.59 -0.3 -0.06 -1.0 -0.11 1.6 0.23

1.5 -2.9 -0.61 -0.4 -0.10 -1.1 -0.13 1.5 0.22

1.75 -2.9 -0.64 -0.3 -0.09 -1.4 -0.16 1.4 0.21

2 -2.8 -0.68 -0.4 -0.12 -1.4 -0.16 1.4 0.21

3 -2.6 -0.78 -0.7 -0.25 -1.7 -0.22 1.1 0.17

4 -2.3 -0.85 -0.9 -0.33 -2.0 -0.26 0.9 0.15

5 -2.1 -0.90 -1.0 -0.44 -2.1 -0.29 0.7 0.13

6 -1.9 -0.93 -0.9 -0.48 -2.3 -0.33 0.6 0.11

7 -1.8 -0.98 -0.9 -0.54 -2.4 -0.36 0.6 0.10

8 -1.7 -1.03 -0.9 -0.59 -2.4 -0.38 0.4 0.08

9 -1.4 -0.96 -0.9 -0.60 -2.5 -0.42 0.3 0.05

10 -1.4 -1.03 -0.8 -0.63 -2.6 -0.43 0.2 0.04

Following are the results for chains of inverters mentioned above.

4.3.1.1. 3 inverter

The 3 inverter chain is tested for all transitions of output for a total of cases equal

to 480 (combinations of cell size factor, input slew time, load capacitance and logic

value of other input). For several number of cases, the relative error is less than 1%,

but for some cases, in particular for a small load capacitance, the relative error is

less to 2% and for high size factor the relative error is less 3%.

To understand the magnitude of the propagation delays for that cell, Table 4.13

shows the value of propagation delay for High-Low and Low-High transition.

Table 4.14 shows a part of the results for different case of cell size factor, input slew

time and load capacitance

75

4.3 Deterministic multi stage

Table 4.12.: Cell verification status (single-stage)

Cell # of input-output # of different # of different # of different input

transition cases tested sizes tested loads tested slew times tested

Not 2 (complete) 8 17 6

Nand2 4 (complete) 8 17 6

Nand3 6 (complete) 8 17 6

Nand4 8 (complete) 8 17 6

nor2 4 (complete) 8 17 6

nor3 6 (complete) 8 17 6

nor4 8 (complete) 8 17 6

ao12n 8 (complete) 8 17 6

ao112n 12 (complete) 8 17 6

ao212n 24 (complete) 8 17 6

ao222n 24 (to be completed) 8 17 6

ao22n 16 (complete) 8 17 6

ao31n 12 (complete) 8 17 6

ao32n 24 (complete) 8 17 6

ao33n 36 (complete) 8 17 6

Table 4.13.: Absolute value of propagation delay (3 NOT chain)

3 not X=1, tslew=10ps

Cload(fF) tLH(ps) tHL(ps)

0.15 8.68 8.57

1.00 15.34 10.23

10.00 82.47 13.14

4.3.1.2. 5 inverter

The 5 inverter chain is tested for all transitions of output for a total number of cases

equal to 480 (combinations of cell size factor, input slew time, load capacitance and

logic value of other input). For several number of cases, the relative error is less to

1%, but for some cases, in particular for a small load capacitance, the relative error

is less than 2% and for high size factor the relative error is less 3%.

To understand the magnitude of the propagation delays for that cell, Table 4.15

76

4.3 Deterministic multi stage

Table 4.14.: Absolute and Relative error of 3NOT chain: SPICE vs VHDL com-
parison.

3not x1 tr10ps x1 tr50ps x10 tr10ps x10 tr50ps

Cload (fF) error % abs err (ps) error % abs err (ps) error % abs err (ps) error % abs err (ps)

0 -0.4 -0.03 2.2 0.21 -3.2 -0.22 0.8 0.17

0.15 0.0 0.00 1.9 0.20 -3.2 -0.23 0.8 0.16

0.33 1.1 0.11 2.3 0.29 -3.2 -0.24 0.7 0.15

0.66 1.3 0.17 2.3 0.35 -3.2 -0.25 0.7 0.13

1 1.2 0.18 2.0 0.37 -3.2 -0.26 0.7 0.12

1.25 1.1 0.19 1.8 0.37 -3.1 -0.26 0.7 0.12

1.5 1.0 0.19 1.7 0.38 -2.7 -0.23 0.7 0.13

1.75 0.9 0.19 1.6 0.38 -2.4 -0.21 0.8 0.15

2 0.8 0.19 1.5 0.38 -2.1 -0.19 0.8 0.17

3 0.6 0.20 1.1 0.39 -1.4 -0.13 1.0 0.21

4 0.5 0.20 0.9 0.39 -0.9 -0.10 1.0 0.23

5 0.4 0.20 0.8 0.39 -0.6 -0.07 1.1 0.26

6 0.4 0.20 0.7 0.40 -0.5 -0.05 1.2 0.27

7 0.3 0.21 0.6 0.40 -0.3 -0.04 1.2 0.29

8 0.3 0.21 0.5 0.40 -0.2 -0.02 1.2 0.30

9 0.3 0.21 0.5 0.41 0.0 -0.01 1.2 0.32

10 0.3 0.22 0.5 0.41 0.1 0.01 1.3 0.33

shows the value of propagation delay for High-Low and Low-High transition.

Table 4.15.: Absolute value of propagation delay (5 NOT chain)

5 not X=1, tslew=10ps

Cload(fF) tLH(ps) tHL(ps)

0.15 13.87 13.98

1.00 21.40 20.64

10.00 99.26 87.77

Table 4.16 shows a part of the results for different case of cell size factor, input slew

time and load capacitance.

77

4.3 Deterministic multi stage

Table 4.16.: Absolute and Relative error of 5NOT chain: SPICE vs VHDL com-
parison.

5not x1 tr10ps x1 tr50ps x10 tr10ps x10 tr50ps

Cload (fF) error % abs err (ps) error % abs err (ps) error % abs err (ps) error % abs err (ps)

0 -0.1 -0.02 1.2 0.18 -3.3 -0.41 -0.2 -0.06

0.15 0.1 0.02 1.1 0.18 -3.3 -0.42 -0.3 -0.07

0.33 0.8 0.13 1.6 0.29 -3.3 -0.42 -0.3 -0.08

0.66 1.0 0.19 1.7 0.35 -3.3 -0.43 -0.3 -0.10

1 1.0 0.21 1.6 0.37 -3.3 -0.44 -0.3 -0.11

1.25 0.9 0.21 1.5 0.37 -3.2 -0.44 -0.3 -0.12

1.5 0.9 0.21 1.4 0.38 -3.0 -0.41 -0.2 -0.10

1.75 0.8 0.21 1.3 0.38 -2.8 -0.39 -0.2 -0.08

2 0.7 0.22 1.2 0.38 -2.6 -0.37 -0.1 -0.06

3 0.6 0.22 1.0 0.38 -2.1 -0.31 0.0 -0.01

4 0.5 0.22 0.8 0.39 -1.7 -0.27 0.1 0.03

5 0.4 0.22 0.7 0.39 -1.5 -0.25 0.2 0.05

6 0.4 0.23 0.6 0.39 -1.3 -0.23 0.3 0.07

7 0.3 0.23 0.5 0.39 -1.2 -0.22 0.3 0.09

8 0.3 0.23 0.5 0.40 -1.1 -0.20 0.4 0.10

9 0.3 0.24 0.5 0.40 -0.9 -0.18 0.4 0.12

10 0.3 0.24 0.4 0.40 -0.8 -0.17 0.5 0.13

4.3.1.3. 7 inverter

The 7 inverter chain is tested for all tranisitions of output for a total number of cases

equal to 480 (combinations of cell size factor, input slew time, load capacitance and

logic value of other input). For several number of cases, the relative error is less

than 1% and for high size factor the relative error is less than 3%.

To understand the magnitude of the propagation delays for that cell, Table 4.17

shows the value of propagation delay for High-Low and Low-High transition.

Table 4.17.: Absolute value of propagation delay (7 NOT chain)

7 not X=1, tslew=10ps

Cload(fF) tLH(ps) tHL(ps)

0.15 19.16 19.27

1.00 26.70 25.93

10.00 104.56 93.07

78

4.3 Deterministic multi stage

Table 4.18 shows a part of the results for different case of cell size factor, input slew

time and load capacitance.

Table 4.18.: Absolute and Relative error of 7NOT chain: SPICE vs VHDL com-
parison.

7not x1 tr10ps x1 tr50ps x10 tr10ps x10 tr50ps

Cload (fF) error % abs err (ps) error % abs err (ps) error % abs err (ps) error % abs err (ps)

0 0.0 0.01 1.0 0.20 -3.3 -0.58 -0.6 -0.23

0.15 0.2 0.04 1.0 0.21 -3.3 -0.59 -0.6 -0.24

0.33 0.7 0.16 1.3 0.31 -3.3 -0.59 -0.6 -0.25

0.66 0.9 0.21 1.4 0.38 -3.3 -0.60 -0.6 -0.27

1 0.9 0.23 1.4 0.39 -3.3 -0.61 -0.6 -0.29

1.25 0.8 0.23 1.3 0.40 -3.2 -0.61 -0.6 -0.29

1.5 0.8 0.24 1.2 0.40 -3.1 -0.58 -0.6 -0.27

1.75 0.7 0.24 1.2 0.40 -2.9 -0.56 -0.5 -0.25

2 0.7 0.24 1.1 0.40 -2.8 -0.54 -0.5 -0.23

3 0.6 0.24 0.9 0.41 -2.4 -0.48 -0.3 -0.18

4 0.5 0.25 0.8 0.41 -2.1 -0.44 -0.2 -0.14

5 0.4 0.25 0.7 0.41 -1.9 -0.42 -0.2 -0.12

6 0.4 0.25 0.6 0.41 -1.8 -0.40 -0.1 -0.10

7 0.3 0.25 0.5 0.42 -1.7 -0.39 -0.1 -0.08

8 0.3 0.26 0.5 0.42 -1.5 -0.37 0.0 -0.07

9 0.3 0.26 0.5 0.42 -1.4 -0.35 0.0 -0.05

10 0.3 0.27 0.4 0.43 -1.3 -0.34 0.1 -0.04

4.3.1.4. 9 inverter

The 9 inverter chain is tested for all transitions of output for a total of cases equal

to 480 (combinations of cell size factor, input slew time, load capacitance and logic

value of other input). For various number of cases, the relative error is less than

1%, but for few cases, specifically for high size factor the relative error is less 3%.

To understand the magnitude of the propagation delays for that cell, Table 4.19

shows the value of propagation delay for High-Low and Low-High transition.

79

4.3 Deterministic multi stage

Table 4.19.: Absolute value of propagation delay (9 NOT chain)

9 not X=1, tslew=10ps

Cload(fF) tLH(ps) tHL(ps)

0.15 24.46 24.57

1.00 31.99 31.23

10.00 109.86 98.36

Table 4.20 shows a part of the results for different case of cell size factor, input slew

time and load capacitance.

Table 4.20.: Absolute and Relative error of 9NOT chain: SPICE vs VHDL com-
parison.

9not x1 tr10ps x1 tr50ps x10 tr10ps x10 tr50ps

Cload (fF) error % abs err (ps) error % abs err (ps) error % abs err (ps) error % abs err (ps)

0 -0.1 -0.03 -0.9 -0.23 3.2 0.75 0.8 0.40

0.15 -0.3 0.06 -0.9 0.23 3.2 -0.76 0.8 -0.41

0.33 -0.7 0.18 -1.2 0.34 3.2 -0.76 0.8 -0.43

0.66 -0.8 0.24 -1.3 0.40 3.2 -0.77 0.8 -0.44

1 -0.8 0.25 -1.2 0.42 3.2 -0.78 0.8 -0.46

1.25 -0.8 0.26 -1.2 0.42 3.1 -0.78 0.8 -0.46

1.5 -0.7 0.26 -1.1 0.42 3.0 -0.75 0.8 -0.44

1.75 -0.7 0.26 -1.1 0.43 2.9 -0.73 0.7 -0.42

2 -0.7 0.26 -1.0 0.43 2.8 -0.71 0.7 -0.40

3 -0.6 0.27 -0.9 0.43 2.5 -0.65 0.6 -0.35

4 -0.5 0.27 -0.8 0.43 2.3 -0.61 0.5 -0.31

5 -0.4 0.27 -0.7 0.44 2.1 -0.59 0.4 -0.29

6 -0.4 0.27 -0.6 0.44 2.0 -0.57 0.4 -0.27

7 -0.4 0.28 -0.5 0.44 1.9 -0.56 0.3 -0.25

8 -0.3 0.28 -0.5 0.44 1.8 -0.54 0.3 -0.24

9 -0.3 0.28 -0.5 0.45 1.7 -0.52 0.2 -0.22

10 -0.3 0.29 -0.4 0.45 1.6 -0.51 0.2 -0.21

4.3.2. nand2 chain

The other chain cell tested is nand2 chain. Also for this cell chain, the error rate

remains almost constant for most of the tests.

80

4.3 Deterministic multi stage

The chain of three, five, seven and nine nand2 are designed in VHDL as structural

module of standard library developed and in SPICE with subcircuits that you can

find in section D.3.

In this case, there will be no problems for any type of nand2 chain with any condition

and one can apply the same methodology.

Following are the results for chains of nand2 mentioned above.

4.3.2.1. 3 nand2 input A

The 3nand2 input A (Nmos transistor with source connected with ground) chain is

tested for all transitions of output for a total of cases equal to 480 (combinations

of cell size factor, input slew time, load capacitance and logic value of other input).

For several number of cases, the relative error is less than 1%, but for some case, in

particular for a small load capacitance and for high size factor the relative error is

less 3%.

To understand the magnitude of the propagation delays for that cell, Table 4.21

shows the value of propagation delay for High-Low and Low-High transition (A

input on the left of table).

Table 4.21.: Absolute value of propagation delay (3 nand2 chain)

3 nand2 X=1, tslew=10ps

input A B

Cload(fF) tLH(ps) tHL(ps) tLH(ps) tHL(ps)

0.15 12.36 10.13 11.10 10.24

1.00 20.11 15.60 18.85 15.70

10.00 98.06 69.02 96.81 69.06

Table 4.22 shows a part of the results for different case of cell size factor, input slew

time and load capacitance.

81

4.3 Deterministic multi stage

Table 4.22.: Absolute and Relative error of 3NAND2 chain (input A): SPICE vs
VHDL comparison.

IN A x1 tr10ps x1 tr50ps x10 tr10ps x10 tr50ps

Cload (fF) error % abs err (ps) error % abs err (ps) error % abs err (ps) error % abs err (ps)

0 -0.3 -0.03 -0.2 0.02 3.1 0.31 1.2 0.16

0.15 -1.0 -0.12 -0.4 -0.02 3.0 0.31 1.2 0.16

0.33 -1.7 -0.22 -0.8 -0.09 3.0 0.31 1.2 0.17

0.66 -2.2 -0.33 -1.4 -0.20 3.0 0.32 1.3 0.18

1 -2.2 -0.37 -1.5 -0.25 2.5 0.27 1.0 0.14

1.25 -2.1 -0.39 -1.5 -0.27 2.3 0.26 1.0 0.14

1.5 -1.9 -0.40 -1.4 -0.28 2.2 0.24 0.9 0.13

1.75 -1.8 -0.41 -1.3 -0.29 2.0 0.23 0.8 0.12

2 -1.7 -0.41 -1.3 -0.30 1.9 0.21 0.8 0.11

3 -1.3 -0.42 -1.0 -0.31 1.5 0.17 0.6 0.09

4 -1.1 -0.42 -0.9 -0.32 1.1 0.13 0.3 0.05

5 -0.9 -0.43 -0.8 -0.32 0.7 0.09 0.1 0.01

6 -0.8 -0.43 -0.7 -0.32 0.5 0.06 -0.2 -0.02

7 -0.7 -0.43 -0.6 -0.33 0.2 0.03 -0.4 -0.05

8 -0.7 -0.43 -0.5 -0.33 0.0 -0.01 -0.5 -0.08

9 -0.6 -0.44 -0.5 -0.34 -0.2 -0.04 -0.7 -0.12

10 -0.6 -0.45 -0.5 -0.34 -0.4 -0.07 -0.9 -0.15

4.3.2.2. 3 nand2 input B

The 3nand2 input B (Nmos transistor with drain connected with output) chain is

tested for all transitions of output for a total of cases equal to 480 (combinations

of cell size factor, input slew time, load capacitance and logic value of other input).

For several number of cases, the relative error is less than 1%, but for some case, in

particular for a small load capacitance and for high size factor the relative error is

less than 5%.

To understand the magnitude of the propagation delays for that cell, Table 4.21

shows the value of propagation delay for High-Low and Low-High transition (B

input on the right of table).

Table 4.23 shows a part of the results for different case of cell size factor, input slew

time and load capacitance.

82

4.3 Deterministic multi stage

Table 4.23.: Absolute and Relative error of 3NAND2 chain (input B): SPICE vs
VHDL comparison.

In B x1 tr10ps x1 tr50ps x10 tr10ps x10 tr50ps

Cload (fF) error % abs err (ps) error % abs err (ps) error % abs err (ps) error % abs err (ps)

0 1.4 0.13 1.1 0.15 5.1 0.50 2.3 0.29

0.15 0.5 0.05 0.8 0.13 5.0 0.51 2.3 0.30

0.33 -0.4 -0.05 0.3 0.06 5.0 0.51 2.3 0.30

0.66 -1.2 -0.16 -0.4 -0.05 4.9 0.51 2.4 0.32

1 -1.3 -0.21 -0.7 -0.10 4.3 0.47 2.1 0.28

1.25 -1.3 -0.23 -0.7 -0.12 4.2 0.45 2.0 0.28

1.5 -1.2 -0.24 -0.7 -0.14 4.0 0.44 2.0 0.28

1.75 -1.1 -0.24 -0.7 -0.14 3.8 0.43 1.9 0.27

2 -1.1 -0.25 -0.7 -0.15 3.6 0.41 1.8 0.26

3 -0.9 -0.26 -0.6 -0.16 3.1 0.37 1.6 0.24

4 -0.7 -0.26 -0.5 -0.17 2.6 0.33 1.3 0.20

5 -0.6 -0.26 -0.4 -0.17 2.1 0.29 1.0 0.16

6 -0.5 -0.26 -0.4 -0.17 1.8 0.25 0.7 0.13

7 -0.5 -0.26 -0.4 -0.18 1.5 0.22 0.5 0.10

8 -0.4 -0.27 -0.3 -0.18 1.2 0.19 0.3 0.07

9 -0.4 -0.27 -0.3 -0.18 0.9 0.16 0.1 0.03

10 -0.3 -0.25 -0.2 -0.17 0.7 0.12 -0.1 0.00

4.3.2.3. 5 nand2 input A

The 5nand2 input A (Nmos transistor with source connected with ground) chain is

tested for all transitions of output for a total of cases equal to 480 (combinations

of cell size factor, input slew time, load capacitance and logic value of other input).

For several number of cases, the relative error is less than 1%, but for some cases,

in particular for a small load capacitance and for high size factor the relative error

is less than 3%.

To understand the magnitude of the propagation delays for that cell, Table 4.24

shows the value of propagation delay for High-Low and Low-High transition (A

input on the right of table).

83

4.3 Deterministic multi stage

Table 4.24.: Absolute value of propagation delay (5 nand2 chain)

5 nand2 X=1, tslew=10ps

input A B

Cload(fF) tLH(ps) tHL(ps) tLH(ps) tHL(ps)

0.15 19.39 17.16 18.13 17.27

1.00 27.15 22.63 25.89 22.74

10.00 105.10 76.05 103.84 76.10

Table 4.25 shows a part of the results for different cases of cell size factor, input slew

time and load capacitance.

Table 4.25.: Absolute and Relative error of 5NAND2 chain (input A): SPICE vs
VHDL comparison.

IN A x1 tr10ps x1 tr50ps x10 tr10ps x10 tr50ps

Cload (fF) error % abs err (ps) error % abs err (ps) error % abs err (ps) error % abs err (ps)

0 -0.7 -0.12 -0.2 -0.02 3.5 0.61 2.6 0.52

0.15 -1.2 -0.21 -0.6 -0.10 3.5 0.62 2.6 0.52

0.33 -1.6 -0.32 -1.0 -0.21 3.5 0.62 2.5 0.52

0.66 -2.0 -0.43 -1.4 -0.32 3.4 0.62 2.5 0.53

1 -2.0 -0.48 -1.5 -0.37 3.1 0.57 2.3 0.48

1.25 -1.9 -0.50 -1.4 -0.39 3.0 0.56 2.2 0.47

1.5 -1.8 -0.51 -1.4 -0.40 2.9 0.55 2.1 0.45

1.75 -1.7 -0.51 -1.3 -0.40 2.8 0.53 2.0 0.43

2 -1.6 -0.52 -1.3 -0.41 2.7 0.52 2.0 0.42

3 -1.4 -0.52 -1.1 -0.41 2.4 0.48 1.7 0.38

4 -1.2 -0.53 -0.9 -0.42 2.1 0.43 1.5 0.34

5 -1.0 -0.53 -0.8 -0.42 1.9 0.39 1.3 0.30

6 -0.9 -0.53 -0.7 -0.42 1.6 0.35 1.1 0.26

7 -0.8 -0.53 -0.7 -0.42 1.5 0.32 0.9 0.23

8 -0.7 -0.54 -0.6 -0.43 1.3 0.29 0.8 0.20

9 -0.7 -0.54 -0.6 -0.43 1.1 0.26 0.6 0.17

10 -0.6 -0.55 -0.5 -0.44 0.9 0.22 0.5 0.13

84

4.3 Deterministic multi stage

4.3.2.4. 5 nand2 input B

The 5nand2 input B (Nmos with drain connected with output) chain is tested for

all transitions of output for a total of cases equal to 480 (combinations of cell size

factor, input slew time, load capacitance and logic value of other input). For various

number of cases, the relative error is less than 1%, but for some cases, in particular

for a small load capacitance and for high size factor the relative error is less than

5%.

In order to observe the magnitude of the propagation delays for that cell, Table 4.24

shows the value of propagation delay for High-Low and Low-High transition (B input

on the right of table).

Table 4.26 shows a part of the results with several different cases of cell size factor,

input slew time and load capacitance.

4.3.2.5. 7 nand2 input A

The 7nand2 input A (Nmos transistor with source connected with ground) chain is

tested for all transitions of output for a total of cases equal to 480 (combinations

of cell size factor, input slew time, load capacitance and logic value of other input).

For several number of cases, the relative error is less than 1%, but for some case, in

particular for a small load capacitance and for high size factor the relative error is

less 4%.

To understand the magnitude of the propagation delays for that cell, Table 4.27

shows the value of propagation delay for High-Low and Low-High transition (A

input on the right of table).

85

4.3 Deterministic multi stage

Table 4.26.: Absolute and Relative error of 5NAND2 chain (input B): SPICE vs
VHDL comparison.

IN B x1 tr10ps x1 tr50ps x10 tr10ps x10 tr50ps

Cload (fF) error % abs err (ps) error % abs err (ps) error % abs err (ps) error % abs err (ps)

0 0.3 0.05 0.7 0.14 4.7 0.82 3.4 0.67

0.15 -0.2 -0.04 0.2 0.05 4.7 0.82 3.3 0.68

0.33 -0.8 -0.14 -0.3 -0.05 4.7 0.82 3.3 0.68

0.66 -1.2 -0.26 -0.7 -0.16 4.6 0.83 3.3 0.68

1 -1.3 -0.31 -0.9 -0.21 4.3 0.78 3.0 0.63

1.25 -1.3 -0.32 -0.9 -0.23 4.2 0.76 2.9 0.62

1.5 -1.2 -0.33 -0.9 -0.24 4.1 0.75 2.9 0.61

1.75 -1.2 -0.34 -0.8 -0.25 3.9 0.73 2.7 0.59

2 -1.1 -0.34 -0.8 -0.25 3.8 0.72 2.7 0.58

3 -0.9 -0.35 -0.7 -0.26 3.5 0.68 2.4 0.54

4 -0.8 -0.35 -0.6 -0.26 3.1 0.64 2.1 0.49

5 -0.7 -0.36 -0.5 -0.26 2.8 0.59 1.9 0.45

6 -0.6 -0.36 -0.5 -0.26 2.6 0.56 1.7 0.42

7 -0.6 -0.36 -0.4 -0.27 2.4 0.53 1.5 0.38

8 -0.5 -0.36 -0.4 -0.27 2.2 0.50 1.4 0.35

9 -0.5 -0.36 -0.4 -0.27 1.9 0.46 1.2 0.32

10 -0.4 -0.35 -0.3 -0.25 1.7 0.43 1.0 0.29

Table 4.28 shows a part of the results for different cases of cell size factor, input slew

time and load capacitance.

4.3.2.6. 7 nand2 input B

The 7nand2 input B (Nmos with drain connected with output) chain is tested for

all transitions of output for a total of cases equal to 480 (combinations of cell size

factor, input slew time, load capacitance and logic value of other input). For several

number of cases, the relative error is less than 1%, but for some case, in particular

for a small load capacitance and for high size factor the relative error is less than

5%.

To understand the magnitude of the propagation delays for that cell, Table 4.27

86

4.3 Deterministic multi stage

Table 4.27.: Absolute value of propagation delay (7 nand2 chain)

7 nand2 X=1, tslew=10ps

input A B

Cload(fF) tLH(ps) tHL(ps) tLH(ps) tHL(ps)

0.15 26.43 24.20 25.16 24.30

1.00 34.18 29.67 32.92 29.77

10.00 112.14 83.09 110.87 83.13

shows the value of propagation delay for High-Low and Low-High transition (B

input on the right of table).

Table 4.29 shows a part of the results for different cases of cell size factor, input slew

time and load capacitance.

4.3.2.7. 9 nand2 input A

The 9nand2 input A (Nmos with source connected with ground) chain is tested for

all transitions of output for a total of cases equal to 480 (combinations of cell size

factor, input slew time, load capacitance and logic value of other input). For several

number of cases, the relative error is less than 1%, but for some case, in particular

for a small load capacitance and for high size factor the relative error is less 4%.

To understand the magnitude of the propagation delays for that cell, Table 4.30

shows the value of propagation delay for High-Low and Low-High transition (A

input on the right of table).

Table 4.31 shows a part of the results for different case of cell size factor, input slew

time and load capacitance.

87

4.3 Deterministic multi stage

Table 4.28.: Absolute and Relative error of 7NAND2 chain (input A): SPICE vs
VHDL comparison.

IN A x1 tr10ps x1 tr50ps x10 tr10ps x10 tr50ps

Cload (fF) error % abs err (ps) error % abs err (ps) error % abs err (ps) error % abs err (ps)

0 -0.9 -0.22 -0.5 -0.11 3.7 0.92 3.0 0.82

0.15 -1.2 -0.31 -0.8 -0.20 3.7 0.92 3.0 0.83

0.33 -1.6 -0.41 -1.1 -0.30 3.6 0.92 3.0 0.83

0.66 -1.8 -0.53 -1.4 -0.42 3.6 0.93 3.0 0.84

1 -1.8 -0.58 -1.4 -0.46 3.4 0.88 2.8 0.78

1.25 -1.8 -0.59 -1.4 -0.48 3.3 0.86 2.7 0.77

1.5 -1.7 -0.60 -1.4 -0.49 3.3 0.85 2.7 0.76

1.75 -1.7 -0.61 -1.3 -0.50 3.2 0.83 2.6 0.74

2 -1.6 -0.61 -1.3 -0.50 3.1 0.82 2.5 0.73

3 -1.4 -0.62 -1.1 -0.51 2.9 0.78 2.3 0.69

4 -1.2 -0.62 -1.0 -0.51 2.6 0.74 2.1 0.64

5 -1.0 -0.63 -0.9 -0.51 2.4 0.69 1.9 0.60

6 -0.9 -0.63 -0.8 -0.52 2.3 0.66 1.8 0.57

7 -0.9 -0.63 -0.7 -0.52 2.1 0.63 1.6 0.53

8 -0.8 -0.63 -0.7 -0.52 2.0 0.60 1.5 0.50

9 -0.7 -0.64 -0.6 -0.53 1.8 0.56 1.4 0.47

10 -0.7 -0.65 -0.6 -0.54 1.7 0.53 1.3 0.44

4.3.2.8. 9 nand2 input B

The 9nand2 input B (Nmos with drain connected with output) chain is tested for

all transitions of output for a total number of cases equal to 480 (combinations of

cell size factor, input slew time, load capacitance and logic value of other input).

For several number of cases, the relative error is less than 1%, but for some case, in

particular for a small load capacitance and for high size factor the relative error is

less 4%.

To understand the magnitude of the propagation delays for that cell, Table 4.30

shows the value of propagation delay for High-Low and Low-High transition (B

input on the right of table).

Table 4.32 shows a part of the results for dissimilar cases of cell size factor, input

slew time and load capacitance.

88

4.3 Deterministic multi stage

Table 4.29.: Absolute and Relative error of 7NAND2 chain (input B): SPICE vs
VHDL comparison.

IN B x1 tr10ps x1 tr50ps x10 tr10ps x10 tr50ps

Cload (fF) error % abs err (ps) error % abs err (ps) error % abs err (ps) error % abs err (ps)

0 -0.2 -0.05 0.1 0.05 4.5 1.12 3.6 0.98

0.15 -0.6 -0.14 -0.2 -0.04 4.5 1.13 3.6 0.98

0.33 -0.9 -0.24 -0.5 -0.15 4.5 1.13 3.5 0.98

0.66 -1.3 -0.35 -0.9 -0.26 4.5 1.13 3.5 0.99

1 -1.3 -0.40 -1.0 -0.31 4.2 1.08 3.3 0.94

1.25 -1.3 -0.42 -1.0 -0.33 4.1 1.07 3.3 0.93

1.5 -1.3 -0.43 -0.9 -0.34 4.1 1.06 3.2 0.91

1.75 -1.2 -0.44 -0.9 -0.34 4.0 1.04 3.1 0.90

2 -1.2 -0.44 -0.9 -0.35 3.9 1.03 3.0 0.88

3 -1.0 -0.45 -0.8 -0.35 3.6 0.99 2.8 0.84

4 -0.9 -0.45 -0.7 -0.36 3.4 0.94 2.6 0.80

5 -0.8 -0.45 -0.6 -0.36 3.2 0.90 2.4 0.76

6 -0.7 -0.45 -0.6 -0.36 3.0 0.86 2.3 0.72

7 -0.6 -0.46 -0.5 -0.36 2.8 0.83 2.1 0.69

8 -0.6 -0.46 -0.5 -0.36 2.6 0.80 2.0 0.66

9 -0.5 -0.46 -0.4 -0.36 2.5 0.77 1.8 0.63

10 -0.5 -0.45 -0.4 -0.35 2.3 0.73 1.7 0.59

4.3.3. Full Adder

The Full Adder 1 bit gate is another cell of standar library. For this cell I test several

cases of FA chain because it seems that the error would grow with the number of

cascaded stages, but one can see below that error is constant with the increasing

number of stages.

Table 4.33 summarizes the results for all Full Adder chain tested.

89

4.4 Summary

Table 4.30.: Absolute value of propagation delay (9 nand2 chain)

9 nand2 X=1, tslew=10ps

input A B

Cload(fF) tLH(ps) tHL(ps) tLH(ps) tHL(ps)

0.15 33.46 31.23 32.19 31.33

1.00 41.22 36.70 39.95 36.80

10.00 119.17 90.12 117.90 90.16

4.3.4. Discussion

In the proposed approach, a multicell path propagation delay is always obtained by

the (event-driven) timing simulation of the connection of cells constituting the path.

The propagation delay model reproduces the timing behavior of each logic cell in

the path and does not rely on any global analytical calculation of path propagation

delay. Tables list the results obtained for a reference set of 24 multistage cells and

circuits, including two-stage standard logic elements, standard cell chains, and ripple

carry adders (with inverted carry output).

4.4. Summary

We have discussed the results of deterministic propagation delay estimation tech-

niques. The results obtained by calculating the nominal propagation delay of single

CMOS stages are very good in comparison with SPICE BSIM4 simulations. A

multicell path propagation delay is always obtained by the (event-driven) timing

simulation of the connection of cells constituting the path. The propagation delay

model reproduces the timing behavior of each logic cell in the path and does not

rely on any global analytical calculation of path propagation delay.

90

4.4 Summary

Table 4.31.: Absolute and Relative error of 9NAND2 chain (input A): SPICE vs
VHDL comparison.

IN A x1 tr10ps x1 tr50ps x10 tr10ps x10 tr50ps

Cload (fF) error % abs err (ps) error % abs err (ps) error % abs err (ps) error % abs err (ps)

0 -1.0 -0.32 -0.7 -0.21 3.8 1.22 3.2 1.13

0.15 -1.3 -0.41 -0.9 -0.30 3.8 1.23 3.2 1.13

0.33 -1.5 -0.51 -1.1 -0.40 3.7 1.23 3.2 1.13

0.66 -1.7 -0.62 -1.4 -0.51 3.7 1.23 3.2 1.14

1 -1.8 -0.67 -1.4 -0.56 3.6 1.18 3.0 1.09

1.25 -1.7 -0.69 -1.4 -0.58 3.5 1.17 3.0 1.08

1.5 -1.7 -0.70 -1.4 -0.59 3.4 1.16 2.9 1.06

1.75 -1.6 -0.71 -1.3 -0.59 3.4 1.14 2.9 1.05

2 -1.6 -0.71 -1.3 -0.60 3.3 1.13 2.8 1.03

3 -1.4 -0.72 -1.1 -0.61 3.1 1.09 2.7 0.99

4 -1.2 -0.72 -1.0 -0.61 2.9 1.04 2.5 0.95

5 -1.1 -0.72 -0.9 -0.61 2.8 1.00 2.4 0.91

6 -1.0 -0.72 -0.8 -0.61 2.6 0.96 2.2 0.87

7 -0.9 -0.73 -0.8 -0.61 2.5 0.93 2.1 0.84

8 -0.8 -0.73 -0.7 -0.62 2.4 0.90 2.0 0.81

9 -0.8 -0.74 -0.7 -0.62 2.2 0.87 1.9 0.78

10 -0.7 -0.74 -0.6 -0.63 2.1 0.83 1.8 0.74

91

4.4 Summary

Table 4.32.: Absolute and Relative error of 9NAND2 chain (input B): SPICE vs
VHDL comparison.

IN B x1 tr10ps x1 tr50ps x10 tr10ps x10 tr50ps

Cload (fF) error % abs err (ps) error % abs err (ps) error % abs err (ps) error % abs err (ps)

0 -0.5 -0.14 -0.2 -0.05 4.4 1.43 3.7 1.29

0.15 -0.7 -0.23 -0.4 -0.14 4.4 1.43 3.7 1.29

0.33 -1.0 -0.34 -0.7 -0.24 4.4 1.43 3.7 1.29

0.66 -1.3 -0.45 -1.0 -0.36 4.4 1.44 3.7 1.30

1 -1.3 -0.50 -1.0 -0.40 4.2 1.39 3.5 1.24

1.25 -1.3 -0.52 -1.0 -0.42 4.1 1.38 3.4 1.23

1.5 -1.3 -0.53 -1.0 -0.43 4.1 1.36 3.4 1.22

1.75 -1.2 -0.53 -1.0 -0.44 4.0 1.34 3.3 1.20

2 -1.2 -0.54 -1.0 -0.44 3.9 1.33 3.3 1.19

3 -1.1 -0.54 -0.9 -0.45 3.7 1.29 3.1 1.15

4 -0.9 -0.55 -0.8 -0.45 3.5 1.25 2.9 1.10

5 -0.8 -0.55 -0.7 -0.45 3.4 1.20 2.8 1.06

6 -0.8 -0.55 -0.6 -0.46 3.2 1.17 2.6 1.03

7 -0.7 -0.55 -0.6 -0.46 3.1 1.14 2.5 0.99

8 -0.6 -0.55 -0.5 -0.46 2.9 1.11 2.4 0.96

9 -0.6 -0.55 -0.5 -0.46 2.8 1.07 2.3 0.93

10 -0.5 -0.54 -0.5 -0.45 2.6 1.04 2.1 0.90

Table 4.33.: Relative error of different Full Adder chain: SPICE vs VHDL com-
parison.

10 ps 50 ps

cell 0.33 fF 1 fF 5 fF 0.33 fF 1 fF 5 fF

x1 x10 x1 x10 x1 x10 x1 x10 x1 x10 x1 x10

fa 0.0 0.7 -0.8 -0.6 -0.4 -2.0 -1.0 -2.7 -0.9 -2.7 -0.4 -0.9

2_fa 0.7 2.4 -0.5 2.2 -3.4 0.5 4.3 -2.5 3.9 -2.5 0.1 -2.9

4_fa 2.7 -2.6 2.2 -2.6 -0.1 -3.1 4.4 -5.0 3.9 -5.0 1.2 -5.4

8_fa 4.3 -4.4 4.0 -4.4 2.4 -4.6 5.1 -5.5 4.8 -5.5 3.1 -5.6

16_fa 5.4 -4.8 5.2 -4.8 4.2 -4.9 5.4 -5.7 5.3 -5.7 4.3 -5.8

32_fa 5.6 -5.4 5.5 -5.4 5.0 -5.4 5.6 -5.8 5.5 -5.8 5.0 -5.8

64_fa 5.6 -5.7 5.6 -5.7 5.3 -5.7 5.7 -5.8 5.6 -5.8 5.4 -5.8

92

5. Results on statistical propagation

delay prediction in variable

process conditions

5.1. Statistical single stage

The definitions and methodology of statistical single stage can be seen in chapter 3

for details. The methodology for this part of research is implemented in VHDL and

verified with complex SPICE Monte Carlo simulations. The implementation is done

on various scales of circuits. The circuits are inverter-chains, NOT, NAND and Full

Adders with different functionalities. Three types of capacitance loads, two sizes

X, two slew times will be taken as input in the following results. The deviation

and mean error in percentage and comparison between proposed techniques as the

output results. The summary of results for statistical single stage will be discussed

in detail in terms of analysis.

93

5.1 Statistical single stage

5.1.1. Inverter

The first test was realized on a Inverter gate. Unlike the deterministic simulations

only few cases were carried out here because the simulation time at circuit level was

significantly greater. In fact, 10000 simulations were carried out for each case in

statistical simulations.

The following table (Table 5.1) summarizes same of the results, with the change of

driver strenght, slew time and load capacitance.

The first two rows in the table represent the percentage mean and deviation error

between the developed model at logical-level versus circuit-level simulations.

Table 5.1.: Statistical analysis of single-stage: inverter gate

Inverter
X 1 10

tr (ps) 10 50 10 50

cload (fF) 0.33 1 5 0.33 1 5 0.33 1 5 0.33 1 5

mean err % 0.3 0.0 0.0 0.3 0.0 -0.4 -0.1 0.0 0.1 1.4 1.9 0.2

deviation err % -2.6 0.0 1.1 8.9 0.0 -0.4 1.9 -5.6 3.5 33.2 -34.1 8.8

mean vhdl (ps) 4.97 10.72 45.30 7.06 14.67 49.22 1.76 2.53 6.03 2.29 3.56 8.82

mean spice (ps) 4.96 10.72 45.31 7.04 14.67 49.42 1.76 2.54 6.02 2.26 3.50 8.80

deviation vhdl (ps) 0.61 1.43 6.37 1.17 1.93 6.56 0.27 0.33 0.76 0.83 0.55 1.32

deviation spice (ps) 0.63 1.43 6.30 1.06 1.93 6.59 0.26 0.35 0.74 0.55 0.74 1.21

In the rest of the following rows of the Table 5.1, the results of mean VHDL, mean

SPICE, deviation VHDL and deviation SPICE values whit respect to driver strenght,

slew time and load capacitance are represented.

The comparison of these models represent very close values of mean and standard

deviation. The worst case between these model is with mean 1.4% and standard

deviation 33.3% but the absolute error value is only 0.28 ps.

94

5.1 Statistical single stage

5.1.2. Nand2

Another case was nand2 gate. Unlike the deterministic simulations only few cases

were carried out here because the simulation time at circuit level was significantly

greater. In fact, 10000 simulations were carried out for each case in statistical

simulations.

The following table (Table 5.2) summarizes same of the results, with the change of

driver strenght, slew time and load capacitance.

The first two rows in the table represent the percentage mean and deviation error

between the developed model at logical-level versus circuit-level simulations.

Table 5.2.: Statistical analysis of single-stage: nand2 gate

nand2

X 1 10

tr (ps) 10 50 10 50

cload (fF) 0.33 1 5 0.33 1 5 0.33 1 5 0.33 1 5

mean err % 0.4 0.3 0.1 0.5 0.2 -0.3 0.9 1.0 0.4 1.2 0.9 0.4

deviation err % 2.8 0.1 1.4 7.1 0.0 -2.0 -3.0 -0.6 2.7 13.3 11.6 4.3

mean vhdl (ps) 6.80 12.58 47.17 11.29 17.81 51.41 4.05 4.66 7.77 7.58 8.37 12.40

mean spice (ps) 6.78 12.54 47.12 11.23 17.78 51.57 4.02 4.61 7.74 7.49 8.30 12.35

deviation vhdl (ps) 0.87 1.68 6.64 1.22 1.98 6.65 0.52 0.59 1.01 0.88 0.94 1.34

deviation spice (ps) 0.85 1.68 6.55 1.13 1.98 6.78 0.54 0.59 0.98 0.76 0.83 1.29

In the rest of the following rows of the Table 5.2, the results of mean VHDL, mean

SPICE, deviation VHDL and deviation SPICE values whit respect to driver strenght,

slew time and load capacitance are represented.

The following Figure 5.1 represents the comparison between statistical VHDL model

with statistical SPICE simulations of extracted density functions. The comparison

of these models represent very close values of mean and standard deviation. The

95

5.2 Statistical multi stage

worst case between these model is with mean 1.2% and standard deviation 13.33%

but the absolute error value is only 0.08 ps.

Figure 5.1.: Statistical analysis of single-stage: nand2 gate gaussian

5.2. Statistical multi stage

The definitions and methodology of statistical single stage can be seen in chapter

3 for details. The methodology for this part of research is implemented in VHDL

and verified with complex SPICE Monte Carlo simulations. The implementation

is done on various scales of circuits. The circuits are inverter-chains, NOT, NAND

and Full Adders with different functionalities. Three types of capacitance loads, two

sizes X, two slew times will be taken as input in the following results. The deviation

and mean error in percentage and comparison between proposed techniques as the

96

5.2 Statistical multi stage

output results. The summary of results for statistical single stage will be discussed

in detail in terms of analysis.

5.2.1. 9 inverter

The first test was realized on a 9 Inverter gate chain. Unlike the deterministic

simulations only few cases were carried out here because the simulation time at

circuit level was significantly greater. In fact, 10000 simulations were carried out for

each case in statistical simulations.

The following table (Table 5.3) summarizes same of the results, with the change of

driver strenght, slew time and load capacitance.

The first two rows in the table represent the percentage mean and deviation error

between the developed model at logical-level versus circuit-level simulations.

Table 5.3.: statistical analysis of multi-stage: 9 inverter gate

9 inverter

X 1 10

tr (ps) 10 50 10 50

cload (fF) 0.33 1 5 0.33 1 5 0.33 1 5 0.33 1 5

mean err % -0.6 -0.6 -0.3 -1.3 -1.2 -0.6 3.2 3.3 2.4 1.7 1.8 1.1

deviation err % -14.7 -11.3 -2.7 -4.8 -3.3 0.9 -9.3 -9.3 -8.4 -0.3 -0.4 -0.3

mean vhdl (ps) 25.97 31.80 66.46 27.66 33.49 68.15 24.13 24.82 27.99 25.93 26.62 29.80

mean spice (ps) 26.11 31.99 66.67 28.02 33.90 68.57 23.35 24.00 27.33 25.49 26.14 29.47

deviation vhdl (ps) 3.37 4.14 8.96 4.00 4.77 9.59 3.19 3.27 3.67 3.80 3.88 4.29

deviation spice (ps) 3.87 4.60 9.20 4.19 4.92 9.50 3.49 3.57 3.98 3.81 3.89 4.30

In the rest of the following rows of the Table 5.3, the results of mean VHDL, mean

SPICE, deviation VHDL and deviation SPICE values whit respect to driver strenght,

slew time and load capacitance are represented.

The comparison of these models represent very close values of mean and standard

deviation. The worst case between these model is with standard deviation -14.7%

97

5.2 Statistical multi stage

but the absolute error value is only 0.5 ps.

5.2.2. 9 nand2

Another test was realized on a 9 nand2 gate chain. Unlike the deterministic simu-

lations only few cases were carried out here because the simulation time at circuit

level was significantly greater. In fact, 10000 simulations were carried out for each

case in statistical simulations.

The following table (Table 5.4) summarizes same of the results, with the change of

driver strenght, slew time and load capacitance.

The first two rows in the table represent the percentage mean and deviation error

between the developed model at logical-level versus circuit-level simulations.

Table 5.4.: statistical analysis of multi-stage: 9 nand2 gate

9nand2

X 1 10

tr (ps) 10 50 10 50

cload (fF) 0.33 1 5 0.33 1 5 0.33 1 5 0.33 1 5

mean err % -1.4 -1.5 -0.8 -0.5 -0.7 -0.4 3.8 3.5 2.6 3.4 3.1 2.4

deviation err % -6.5 -5.6 -0.5 -2.5 -2.1 1.3 -0.1 0.0 -0.4 2.0 2.0 1.6

mean vhdl (ps) 34.68 40.59 75.33 39.44 45.35 80.08 33.78 34.34 37.60 38.18 38.74 42.00

mean spice (ps) 35.18 41.21 75.97 39.65 45.68 80.44 32.49 33.14 36.61 36.89 37.53 41.00

deviation vhdl (ps) 4.72 5.48 10.30 5.14 5.90 10.72 4.65 4.74 5.16 5.00 5.09 5.52

deviation spice (ps) 5.03 5.79 10.35 5.27 6.03 10.58 4.66 4.74 5.18 4.90 4.99 5.43

In the rest of the following rows of the Table 5.4, the results of mean VHDL, mean

SPICE, deviation VHDL and deviation SPICE values whit respect to driver strenght,

slew time and load capacitance are represented.

The comparison of these models represent very close values of mean and standard

98

5.3 Statistical Multi Stage for Macrocell Design/Complex Circuits

deviation. The worst case between these model is with standard deviation -6.5%

but the absolute error value is only 0.33 ps.

5.3. Statistical Multi Stage for Macrocell

Design/Complex Circuits

Another test are performed for speed and accuracy of the proposed approach on

full macro-cell designs, namely 16-bit and 32-bit ALU, an order-2 32-bit FIR fully

pipelined FIR filter (Figure 5.2), and a 2-stage-pipelined MIPS processor design

without hardware multiplier (Figure 5.3). In order for the analysis to have wider

cell coverage, the adders in the ALUs were synthesized with XOR, AND and OR

cells, while the adders and multipliers in the FIR filter use Full-Adder cells. In

SPICE analysis, the netlist was limited to the circuit critical path. The results on

accuracy are shown in Table 5.5 and the result on speed performance are shown in

Table 5.6.

Table 5.5.: Statistical analysis of multi-stage for complex circuits: propagation
delay comparation

Circuit

Cell Transistor Crit. Path. Delay Crit. Path. Delay

count count mean value variance mean value variance

(SPICE) (SPICE) (proposed model) (proposed model)

16 bit ALU 336 2112 283.6 ps 38.1 ps 294.8 ps 41.9 ps

32 bit ALU 672 4224 534.2 ps 72.3 ps 559.5 ps 80.2 ps

32 bit FIR filter 6176 104768 1633.9 ps 222.4 ps 1584.4 ps 221.0 ps

2-stage MIPS core 1635 26876 537.9 ps 82.6 ps 561.0 ps 81.3 ps

The set of design cases allows giving a rough assessment of the run time behavior

with respect to circuit size, although event-driven simulation makes run time and

quality of results strongly dependent on circuit activity.

In order to better understand the execution time behavior with circuit size we made

99

5.3 Statistical Multi Stage for Macrocell Design/Complex Circuits

Table 5.6.: Statistical analysis of multi-stage for complex circuits: execution time
comparation

Circuit

Execution Time for Execution Time for

103 MC 103 MC iterations

iterations (SPICE) (proposed model)

16 bit ALU 61.1 hrs 2.9 hrs

32 bit ALU 149.4 hrs 3.1 hrs

32 bit FIR filter 2900 hrs 10.8 hrs

2-stage MIPS core 325.3 hrs 4.5 hrs

a dedicated test on a non-pipelined 16-bit FIR filter with increasing filter order,

thus maintaining basically the same circuit structure and activity with increasing

complexity. The test was made on the execution of only one simulation iteration,

in order to be able to concentrate on very large circuit size. In SPICE analysis, the

netlist was limited to the circuit critical path.

Table 5.7.: Simulation time FIR filter (SPICE vs HDL)

taps fir
stage critical

total mos
total simulation time (s)

path library cell hspice hdl

2 128 22780 1554 241.7 1.9

4 256 38488 2612 995.5 2.9

8 512 69904 4728 4147.3 5.5

16 1024 132736 8960 16971.9 13.0

32 2048 258400 17424 67887.5 (estimated) 28.7

64 4096 509728 34352 271550.2 (estimated) 130.1

96 6144 761056 51280 543100.3 (estimated) 393.2

128 8192 1012384 68208 1086200.6 (estimated) 646.1

The results are shown in Table 5.7. According to our results, the computation run

time of the proposed model for such high-activity circuits is approximately linear

with the cell count, with an increase in the linear slope occurring at about 20000

cells. In fact, the actual speedup with respect to SPICE in large circuits is affected by

the time for loading the design simulation database, the cache memory usage and

100

5.4 Summary

memory management issues related to circuit size, which result in large speedup

variability (up to more than 1000X in isolated cases) and may be the subject for

further code optimization.

Figure 5.2.: Critical path through Execute Stage of FIR filter

5.4. Summary

We have discussed the results of statistical propagation delay estimation techniques.

The comparison of the accuracy of statistical propagation delay analysis has been

performed by logic-driver-based VHDL Monte Carlo simulation with respect to

SPICE BSIM4 Monte Carlo simulation. Results for single-stage cells (where there is

no impact of input pin capacitance variability) and for multistage cells and circuits

(where input pin capacitance variability has significant impact) are very encourag-

ing.

The proposed propagation delay computation routines completed the analysis with

more than 100× speedup over SPICE, running on the same machine, even if a

speed-optimized implementation is definitely not addressed yet.

101

5.4 Summary

Figure 5.3.: Critical path through Execute Stage of MIPS processor

102

6. Conclusions

Since the beginning of the technologies to the nano-scale regime, it was clear that the

technology scaling would affect the technological parameters in terms of propagation

delay. This become the reason and motivations for the circuit designers to introduce

the novel methods of simulation in the estimation field of propagation delay. Synop-

sys, a world leader in software and IP for semiconductor design and manufacturing,

also introduces Statistical Static Timing Analysis (SSTA) into existing production

design flows. This fact helps us to understand how the issue of statistical variations

of the technological parameters is topical in todays era. Through the introduction

of a propagation delay model, which supports the variations of technological param-

eters, this work attempted to introduce a methodology to logic level that could be

used in the simulation of digital circuits.

Extensive literature review has been done on the state of the art techniques regard-

ing the models of propagation delay at the logic level, this research work has focused

in introducing the variations in technological parameters in the propagation delay

model. The first contribution of this work is to develop a propagation delay model

at the digital logic level. The necessity of having a simulator that could test the

performance of any digital circuit and would go beyond the test of worst case or

average case has been developed. The model has been applied on on a number of

small-scale circuits that are in a classical standard cell library following by more

103

Conclusions

complex circuits. The results represent the average error is about 1% in comparison

of the developed model at logic level with a SPICE circuit simulator. With reference

to the state of the art approaches, in order to obtain a real value of the contribution

to the critical path propagation delay, it iterates the calculation of the propagation

delay because the output signal to a cell influences the load carrying capacity which

influences the contribution of the propagation delay cell which should repeat the

calculation until the convergence of the results. In this work we have solved this

problem with our proposed approach which show that the load capacity doesn’t

depend on the output signal of the cell but on the input. By following the pro-

posed technique there is no need to repeat the calculations which saves considerable

computation time.

The deterministic and statistical propagation models has been introduced by ob-

serving variations in the technological parameters. The analysis of the variations of

technological parameters has helped us to understand the propagation delay behav-

ior on test circuits such as small-scale and as well as big circuits (e.g. FIR filters

and microprocesors). This allowed us to find a way to integrate the model variations

with the technology parameters. The achieved results show relative error which is

less than 10% in comparison with transistor level SPICE simulation. This also pro-

vides less simulation computation time of more than two orders of magnitude with

our proposed model with comparison to SPICE simulation.

Furthermore, a general systematic methodology introduce to design Synchronous

early-completion-prediction adders (ECPAs) ECPA units, directing nano-scale CMOS

technologies. The novel methodology is fully compatible with standard VLSI macro-

cell design tools and standard adder structures which includes automatic definition

of critical test patterns for post layout verification. An example design circuit has

been developed and results have been reported in terms of speed and power which

104

Conclusions

are better than previous works reported in literature. The proposed method use

the well-known high-speed carry-select and hybrid carry-select/carry-lookahead as

reference addition schemes, and the prediction logic does not affect the adder logic

design in any way. The design method is implemented through a standard VLSI

custom macrocell design tool chain. The methodology includes an automatic way

to generate critical test patterns for the ECPA postlayout validation. The resulting

ECPA circuit complexity is competitive with conventional high-speed adders, as the

hardware overhead is only 10% of the adder logic. A design case in 32 nm CMOS

technology, simulated at post layout SPICE BSIM4 level which results in sustaining

a 6 GHz clock frequency with correct cycle time predictions. Results on statistical

speed performance advantage, power consumption reduction, and NBTI mitigation

have been obtained with respect to a fixed latency implementation of the same adder

architecture.

105

Conclusions

106

Bibliography

[1] Sung-Mo Kang and Yusuf Leblebici. Cmos Digital Integrated Circuits, 3/E.

Tata McGraw-Hill Education, 2003.

[2] Shekhar Borkar, Tanay Karnik, Siva Narendra, Jim Tschanz, Ali Keshavarzi,

and Vivek De. Parameter variations and impact on circuits and microarchitec-

ture. In Proceedings of the 40th annual Design Automation Conference, pages

338–342. ACM, 2003.

[3] R Sokel. Transistor scaling with constant subthreshold leakage. Electron Device

Letters, IEEE, 4(4):85–87, 1983.

[4] Narain Arora. Mosfet Modeling for Vlsi Simulation: Theory And Practice (In-

ternational Series on Advances in Solid State Electronics). World Scientific

Publishing Co., Inc., 2006.

[5] Takayasu Sakurai and A Richard Newton. Alpha-power law mosfet model and

its applications to cmos inverter delay and other formulas. Solid-State Circuits,

IEEE Journal of, 25(2):584–594, 1990.

[6] José Luis Rosselló and Jaume Segura. An analytical charge-based compact

delay model for submicrometer cmos inverters. Circuits and Systems I: Regular

Papers, IEEE Transactions on, 51(7):1301–1311, 2004.

107

Bibliography

[7] Takayasu Sakurai and A Richard Newton. Delay analysis of series-connected

mosfet circuits. Solid-State Circuits, IEEE Journal of, 26(2):122–131, 1991.

[8] Hanif Fatemi, Shahin Nazarian, and Massoud Pedram. Statistical logic cell

delay analysis using a current-based model. In Proceedings of the 43rd annual

Design Automation Conference, pages 253–256. ACM, 2006.

[9] Massimo Alioto, Massimo Poli, and Gaetano Palumbo. Efficient and accurate

models of output transition time in cmos logic. In Electronics, Circuits and

Systems, 2007. ICECS 2007. 14th IEEE International Conference on, pages

1264–1267. IEEE, 2007.

[10] Ivan Edward Sutherland, Robert Fletcher Sproull, and David F Harris. Logical

effort: designing fast CMOS circuits. Morgan Kaufmann, 1999.

[11] Rahul Rithe, Sharon Chou, Jie Gu, Alice Wang, Satyendra Datla, Gordon

Gammie, Dennis Buss, and Anantha Chandrakasan. The effect of random

dopant fluctuations on logic timing at low voltage. Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, 20(5):911–924, 2012.

[12] Binjie Cheng, Daryoosh Dideban, Negin Moezi, Campbell Millar, Gareth Roy,

Xingsheng Wang, Scott Roy, and Asen Asenov. Statistical-variability compact-

modeling strategies for bsim4 and psp. Design & Test of Computers, IEEE,

27(2):26–35, 2010.

[13] Savithri Sundareswaran, Jacob A Abraham, Rajendran Panda, and Alexandre

Ardelea. Characterization of standard cells for intra-cell mismatch variations.

Semiconductor Manufacturing, IEEE Transactions on, 22(1):40–49, 2009.

[14] Michael Merrett, Plamen Asenov, Yangang Wang, Mark Zwolinski, Dave Reid,

Campbell Millar, Scott Roy, Zhenyu Liu, Steve Furber, and Asen Asenov. Mod-

elling circuit performance variations due to statistical variability: Monte carlo

108

Bibliography

static timing analysis. In Design, Automation & Test in Europe Conference &

Exhibition (DATE), 2011, pages 1–4. IEEE, 2011.

[15] Francesco Lannutti, Paolo Nenzi, and Mauro Olivieri. Klu sparse direct linear

solver implementation into ngspice. In Mixed Design of Integrated Circuits and

Systems (MIXDES), 2012 Proceedings of the 19th International Conference,

pages 69–73. IEEE, 2012.

[16] Fabrizio Ramundo, Paolo Nenzi, and Mauro Olivieri. First integration of mosfet

band-to-band-tunneling current in bsim4. Microelectronics Journal, 2011.

[17] Marcel JM Pelgrom, Aad CJ Duinmaijer, and Anton PG Welbers. Match-

ing properties of mos transistors. Solid-State Circuits, IEEE Journal of,

24(5):1433–1439, 1989.

[18] John F Croix and DF Wong. Blade and razor: cell and interconnect delay

analysis using current-based models. In Design Automation Conference, 2003.

Proceedings, pages 386–389. IEEE, 2003.

[19] Antonio Mastrandrea, Francesco Menichelli, and Mauro Olivieri. A delay model

allowing nano-cmos standard cells statistical simulation at the logic level. In Ph.

D. Research in Microelectronics and Electronics (PRIME), 2011 7th Conference

on, pages 217–220. IEEE, 2011.

[20] Harry JM Veendrick. Short-circuit dissipation of static cmos circuitry and its

impact on the design of buffer circuits. Solid-State Circuits, IEEE Journal of,

19(4):468–473, 1984.

[21] OJ Bedrij. Carry-select adder. Electronic Computers, IRE Transactions on,

(3):340–346, 1962.

[22] Bruce E Briley. Some new results on average worst case carry. Computers,

IEEE Transactions on, 100(5):459–463, 1973.

109

Bibliography

[23] Yiran Chen, Hai Li, Cheng-Kok Koh, Guangyu Sun, Jing Li, Yuan Xie, and

Kaushik Roy. Variable-latency adder (vl-adder) designs for low power and nbti

tolerance. Very Large Scale Integration (VLSI) Systems, IEEE Transactions

on, 18(11):1621–1624, 2010.

[24] Yiran Chen, Hai Li, Jing Li, and Cheng-Kok Koh. Variable-latency adder (vl-

adder): new arithmetic circuit design practice to overcome nbti. In Proceedings

of the 2007 international symposium on Low power electronics and design, pages

195–200. ACM, 2007.

[25] Alessandro De Gloria and Mauro Olivieri. Completion-detecting carry select

addition. IEE Proceedings-Computers and Digital Techniques, 147(2):93–100,

2000.

[26] Alessandro De Gloria and Mauro Olivieri. Statistical carry lookahead adders.

Computers, IEEE Transactions on, 45(3):340–347, 1996.

[27] LEE Jeehan and Kunihiro Asada. A synchronous completion prediction adder

(scpa). IEICE Transactions on Fundamentals of Electronics, Communications

and Computer Sciences, 80(3):606–609, 1997.

[28] DJ Kinniment. An evaluation of asynchronous addition. Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on, 4(1):137–140, 1996.

[29] David Koes, Tiberiu Chelcea, Charles Onyeama, and Seth C Goldstein. Adding

faster with application specific early termination. Technical report, DTIC Doc-

ument, 2005.

[30] Y Kondo, N Ikumi, K Ueno, J Mori, and M Hirano. An early-completion-

detecting alu for a 1 ghz 64 b datapath. In Solid-State Circuits Conference,

1997. Digest of Technical Papers. 43rd ISSCC., 1997 IEEE International, pages

418–419. IEEE, 1997.

110

Bibliography

[31] Steven M Nowick, Kenneth Y Yun, Peter A Beerel, and Ayoob E Dooply. Spec-

ulative completion for the design of high-performance asynchronous dynamic

adders. In Advanced Research in Asynchronous Circuits and Systems, 1997.

Proceedings., Third International Symposium on, pages 210–223. IEEE, 1997.

[32] Mauro Olivieri. Design of synchronous and asynchronous variable-latency

pipelined multipliers. Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, 9(2):365–376, 2001.

[33] Jan M Rabaey, Anantha P Chandrakasan, and Borivoje Nikolic. Digital inte-

grated circuits, volume 2. Prentice hall Englewood Cliffs, 2002.

[34] George W Reitwiesner. The determination of carry propagation length for

binary addition. Electronic Computers, IRE Transactions on, (1):35–38, 1960.

[35] Rakesh Vattikonda, Wenping Wang, and Yu Cao. Modeling and minimization

of pmos nbti effect for robust nanometer design. In Proceedings of the 43rd

annual Design Automation Conference, pages 1047–1052. ACM, 2006.

[36] Neil HE Weste and Kamran Eshraghian. Principles of CMOS VLSI design: a

systems perspective, volume 1. Addison-Wesley, 1994.

[37] R Jacob Baker. CMOS: circuit design, layout, and simulation, volume 18.

Wiley-IEEE Press, 2011.

[38] L Bisdounis, O Koufopavlou, and S Nikolaidis. Modelling output waveform and

propagation delay of a cmos inverter in the submicron range. IEE Proceedings-

Circuits, Devices and Systems, 145(6):402–408, 1998.

[39] L Bisdounis, S Nikolaidis, and O Koufopavlou. Analytical transient response

and propagation delay evaluation of the cmos inverter for short-channel devices.

Solid-State Circuits, IEEE Journal of, 33(2):302–306, 1998.

[40] Labros Bisdounis, S Nikolaidis, O Koufopavlou, and CE Goutis. Switching

111

Bibliography

response modeling of the cmos inverter for sub-micron devices. In Proceedings

of the conference on Design, automation and test in Europe, pages 729–737.

IEEE Computer Society, 1998.

[41] Jeremy M Buan. Calibration method of an analytical propagation delay model.

2007.

[42] D Burdia, G Grigore, and C Ionascu. Delay and short-circuit power expressions

characterizing a cmos inverter driving resistive interconnect. In Signals, Circuits

and Systems, 2003. SCS 2003. International Symposium on, volume 2, pages

597–600. IEEE, 2003.

[43] Kai Chen, Chenming Hu, Peng Fang, and Ashawant Gupta. Experimental

confirmation of an accurate cmos gate delay model for gate oxide and voltage

scaling. Electron Device Letters, IEEE, 18(6):275–277, 1997.

[44] HC Chow and W-S Feng. Model for propagation delay evaluation of cmos

inverter including input slope effects for timing verification. Electronics Letters,

28(12):1159–1160, 1992.

[45] J Costa Andre, JP Teixeira, IC Teixeira, J Buxo, and M Bafleur. Propaga-

tion delay modelling of mos digital networks. In Electrotechnical Conference,

1989. Proceedings.’Integrating Research, Industry and Education in Energy and

Communication Engineering’, MELECON’89., Mediterranean, pages 311–314.

IEEE, 1989.

[46] Daniel Etiemble, V Adeline, Nguyen H Duyet, and JC Ballegeer. Micro-

computer oriented algorithms for delay evaluation of mos gates. In Design

Automation, 1984. 21st Conference on, pages 358–364. IEEE, 1984.

[47] Vassilios Gerousis, Nghiem Pan, and Dave Weaver. New delay model for 0.5µ

112

Bibliography

cmos asic. In ASIC Conference and Exhibit, 1993. Proceedings., Sixth Annual

IEEE International, pages 511–514. IEEE.

[48] Nils Hedenstierna and Kjell O Jeppson. Cmos circuit speed and buffer opti-

mization. IEEE Trans. Computer-Aided Design, 6(2):270–281, 1987.

[49] Akio Hirata, Hidetoshi Onodera, and K Tamura. Estimation of propagation de-

lay considering short-circuit current for static cmos gates. Circuits and Systems

I: Fundamental Theory and Applications, IEEE Transactions on, 45(11):1194–

1198, 1998.

[50] Kjell O Jeppson. Modeling the influence of the transistor gain ratio and the

input-to-output coupling capacitance on the cmos inverter delay. Solid-State

Circuits, IEEE Journal of, 29(6):646–654, 1994.

[51] B Labouygues, J Schindler, P Maurine, N Azemard, D Auvergne, et al. Contin-

uous representation of the performance of a cmos library. In Solid-State Circuits

Conference, 2003. ESSCIRC’03. Proceedings of the 29th European, pages 595–

598. IEEE, 2003.

[52] Philippe Maurine, Nadine Azemard, and Daniel Auvergne. General represen-

tation of cmos structure transition time for timing library representation. Elec-

tronics Letters, 38(4):175–177, 2002.

[53] Philippe Maurine, Mustapha Rezzoug, and Daniel Auvergne. Output transition

time modeling of cmos structures. In Circuits and Systems, 2001. ISCAS 2001.

The 2001 IEEE International Symposium on, volume 5, pages 363–366. IEEE,

2001.

[54] Spiridon Nikolaidis and Alexander Chatzigeorgiou. Modeling the transistor

chain operation in cmos gates for short channel devices. Circuits and Systems

113

Bibliography

I: Fundamental Theory and Applications, IEEE Transactions on, 46(10):1191–

1202, 1999.

[55] S Nikolaidis, A Chatzigeorgiou, and ED Kyriakis-Bitzaros. Delay and power

estimation for a cmos inverter driving rc interconnect loads. In Circuits and

Systems, 1998. ISCAS’98. Proceedings of the 1998 IEEE International Sympo-

sium on, volume 6, pages 368–371. IEEE, 1998.

[56] Gaetano Palumbo and Massimo Poli. Propagation delay model of a current

driven rc chain for an optimized design. Circuits and Systems I: Fundamental

Theory and Applications, IEEE Transactions on, 50(4):572–575, 2003.

[57] Venkatapathi N Rayapati and Bozena Kaminska. Interconnect propagation

delay modeling and validation for the 16-mb cmos sram chip. Components,

Packaging, and Manufacturing Technology, Part B: Advanced Packaging, IEEE

Transactions on, 19(3):605–614, 1996.

[58] JL Rossello and J Segura. Simple and accurate propagation delay model for

submicron cmos gates based on charge analysis. Electronics Letters, 38(15):772–

774, 2002.

[59] José L Rosselló, Carol de Benito, and Jaume Segura. A compact gate-level

energy and delay model of dynamic cmos gates. Circuits and Systems II: Express

Briefs, IEEE Transactions on, 52(10):685–689, 2005.

[60] José Luis Rosselló and Jaume Segura. Power-delay modeling of dynamic cmos

gates for circuit optimization. In Computer Aided Design, 2001. ICCAD 2001.

IEEE/ACM International Conference on, pages 494–499. IEEE, 2001.

[61] Maitham Shams and Mohamed I Elmasry. Delay optimization of cmos logic

circuits using closed-form expressions. In Computer Design, 1999.(ICCD’99)

International Conference on, pages 563–568. IEEE, 1999.

114

Bibliography

[62] Kevin T Tang and Eby G Friedman. Transient analysis of a cmos inverter driv-

ing resistive interconnect. In Circuits and Systems, 2000. Proceedings. ISCAS

2000 Geneva. The 2000 IEEE International Symposium on, volume 4, pages

269–272. IEEE, 2000.

[63] Srinivasa R Vemuru and AR Thorbjornsen. Delay-modeling of nand gates. In

Circuits and Systems, 1990., Proceedings of the 33rd Midwest Symposium on,

pages 922–925. IEEE, 1990.

[64] Neil HE Weste and Kamran Eshraghian. Principles of cmos vlsi design: a

systems perspective. NASA STI/Recon Technical Report A, 85:47028, 1985.

[65] Chung-Yu Wu, Jen-Sheng Hwang, Chih Chang, and Ching-Chu Chang. An

efficient timing model for cmos combinational logic gates. Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions on, 4(4):636–

650, 1985.

[66] Y-H Yang and C-Y Wu. Analysis and modelling of initial delay time and its

impact on propagation delay of cmos logic gates. In Circuits, Devices and

Systems, IEE Proceedings G, volume 136, pages 245–254. IET, 1989.

[67] JA del Alamo. Integrated Microelectronic Devices: Physics and Modeling. Pren-

tice Hall, 2007.

[68] Swarup Bhunia and Saibal Mukhopadhyay. Low-power variation-tolerant design

in nanometer silicon. Springer, 2011.

[69] M Cho, K Maitra, and S Mukhopadhyay. Analysis of the impact of interfacial

oxide thickness variation on metal-gate high-k circuits. In Custom Integrated

Circuits Conference, 2008. CICC 2008. IEEE, pages 285–288. IEEE, 2008.

[70] S Datta, G Dewey, M Doczy, BS Doyle, S Hareland, B Jin, J Kavalieros,

R Kotlyar, M Metz, and N Zelick. High mobility si/sige strained channel mos

115

Bibliography

transistors with hfo˜ 2/tin gate stack. In INTERNATIONAL ELECTRON

DEVICES MEETING, pages 653–656. IEEE; 1998, 2003.

[71] Kelin J Kuhn. Reducing variation in advanced logic technologies: Approaches

to process and design for manufacturability of nanoscale cmos. In Electron

Devices Meeting, 2007. IEDM 2007. IEEE International, pages 471–474. IEEE,

2007.

[72] Kaizad Mistry, C Allen, C Auth, B Beattie, D Bergstrom, M Bost, M Brazier,

M Buehler, A Cappellani, R Chau, et al. A 45nm logic technology with high-

k+ metal gate transistors, strained silicon, 9 cu interconnect layers, 193nm dry

patterning, and 100% pb-free packaging. In Electron Devices Meeting, 2007.

IEDM 2007. IEEE International, pages 247–250. IEEE, 2007.

[73] Saraju Mohanty. Low-power high-level synthesis for nanoscale CMOS circuits.

Springer, 2008.

[74] Sani Nassif, Kerry Bernstein, David J Frank, Anne Gattiker, Wilfried Haensch,

Brian L Ji, E Nowak, D Pearson, and NJ Rohrer. High performance cmos

variability in the 65nm regime and beyond. In Electron Devices Meeting, 2007.

IEDM 2007. IEEE International, pages 569–571. IEEE, 2007.

[75] Wei Zhao, Frank Liu, Kanak Agarwal, Dhruva Acharyya, Sani R Nassif, Kevin J

Nowka, and Yu Cao. Rigorous extraction of process variations for 65-nm cmos

design. Semiconductor Manufacturing, IEEE Transactions on, 22(1):196–203,

2009.

116

A. VHDL code

The delay model propagation developed has been tested at logic level to many

circuits. This are writed with a standard cells library. A example of this library

are written below for a NAND2 cell. You must find a cell under test, a behavioral

description for test a logic function and finally, you find a testbench for check a cell.

In the last section you find an example to use Modelsim by command line and a

script in TCL language to automatize a simulation.

A.1. Example: NAND2 DUT at logic level

1 -- ************** MODERN abstract model ************
2 -- cell: NAND2
3 -- ***
4
5 library ieee;
6 use ieee. std_logic_1164 .all;
7
8 library modern2010 ;
9 use modern2010 . common_type .all;

10 use modern2010 . logical_drive_primitives .all;
11 use modern2010 . logical_drive_delay_basic .all;
12
13 -- ---
14 -- generic parameter list
15 -- tech = technology record , set of technology dependent parameters .
16 -- c_load = total fan -out load cap inout fF;
17 -- X = cell drive strength (resize factor with respect to minimal \
18 size X1)
19 -- ---
20 entity nand2_dut is
21 generic (X:real :=1.0;
22 --Z_load : load_net_record ;
23 tech: technology_record);
24 port (

117

A.1 Example: NAND2 DUT at logic level

25 nodeA , nodeB: inout logical_drive_logic \
26 := (’Z’, 66 fs , (0.0 ,0.0));
27 nodeZ: inout logical_drive_logic \
28 := (’Z’, 66 fs , (0.0 ,0.0)));
29 end nand2_dut ;
30 -- ---
31
32 -- ---
33 architecture abstract of nand2_dut is
34 -- driver size factor (naming : w_drivenumber)
35 constant w_ld1_nodeA : real := 2.0;
36 constant w_ld1_nodeB : real := 2.0;
37 constant w_ld2_nodeA : real := 2.0;
38 constant w_ld3_nodeB : real := 2.0;
39
40 -- timing virtual signals
41 signal t_ld1_nodeA_on : timing_record :=(0.0 ps , 0.0 ps);
42 signal t_ld1_nodeB_on : timing_record :=(0.0 ps , 0.0 ps);
43 signal t_ld2_nodeA_on : timing_record :=(0.0 ps , 0.0 ps);
44 signal t_ld3_nodeB_on : timing_record :=(0.0 ps , 0.0 ps);
45 signal t_ld1_off : time := 1 ps;
46 signal t_ld2_off : time := 1 ps;
47 signal t_ld3_off : time := 1 ps;
48
49 -- vdd , gnd
50 signal node1 : logical_drive_logic := (’Z’, 66 fs , (0.0 ,0.0)) ;
51 signal node0 : logical_drive_logic := (’Z’, 66 fs , (0.0 ,0.0)) ;
52
53 -- input and output auxiliary nodes
54 signal xnodeZ : logical_drive_logic := (’Z’, 66 fs , (0.0 ,0.0)) ;
55 signal xnodeA : logical_drive_logic := (’Z’, 66 fs , (0.0 ,0.0)) ;
56 signal xnodeB : logical_drive_logic := (’Z’, 66 fs , (0.0 ,0.0)) ;
57
58 -- regular internal nodes
59 signal node4 : logical_drive_logic := (’Z’, 66 fs , (0.0 ,0.0)) ;
60
61 begin
62 -- signal setup ----------------------------------
63 node1 <= (’1’, 0 ps , (0.0 ,0.0));
64 node0 <= (’0’, 0 ps , (0.0 ,0.0));
65 xnodeA <= nodeA; -- this is not useless
66 xnodeB <= nodeB; -- this is not useless
67
68 -- delay computation section ---------------------
69 t_ld1_off <= T_n_zeta (1, tech);
70 t_ld2_off <= T_p_zeta (1, tech);
71 t_ld3_off <= T_p_zeta (1, tech);
72 t_ld1_nodeA_on <= nmos_delay (
73 W_on => w_ld1_nodeA , -- active device width
74 W_dg => w_ld1_nodeA + w_ld2_nodeA , --total miller width
75 n_dg => 1.0, -- N device count related to W_dg
76 p_dg => 1.0, -- P device count related to W_dg

118

A.1 Example: NAND2 DUT at logic level

77 W_d => w_ld3_nodeB , --total switching device width
78 n_d => 0.0, -- N device count related to W_d
79 p_d => 1.0, -- P device count related to W_d
80 --W_g => Z_load_n , -- FO capacitance
81 W_g => nodeZ.pincap , -- FO capacitance
82 stack_size_on => 2, --size of stacked structure
83 stack_size_off => 1,
84 pos_on => 2, -- position in stacked structure
85 pos_off => 1,
86 t_r => nodeA.slew , -- active device input slew time
87 X => X, -- cell resize factor vs minimum size
88 tech => tech); -- technology record
89 t_ld1_nodeB_on <= nmos_delay (
90 W_on => w_ld1_nodeB ,
91 W_dg => w_ld3_nodeB + w_ld1_nodeB + w_ld1_nodeB ,
92 n_dg => 2.0,
93 p_dg => 1.0,
94 W_d => w_ld2_nodeA ,
95 n_d => 0.0,
96 p_d => 1.0,
97 --W_g => Z_load_n ,
98 W_g => nodeZ.pincap ,
99 stack_size_on => 2,

100 stack_size_off => 1,
101 pos_on => 1,
102 pos_off => 1,
103 t_r => nodeB.slew ,
104 X => X,
105 tech => tech);
106 t_ld2_nodeA_on <= pmos_delay (
107 W_on => w_ld2_nodeA ,
108 W_dg => w_ld2_nodeA + w_ld1_nodeA ,
109 n_dg => 1.0,
110 p_dg => 1.0,
111 W_d => w_ld3_nodeB ,
112 n_d => 0.0,
113 p_d => 1.0,
114 --W_g => Z_load_p ,
115 W_g => nodeZ.pincap ,
116 stack_size_on => 1,
117 stack_size_off => 2,
118 pos_on => 1,
119 pos_off => 2,
120 t_r => nodeA.slew ,
121 X => X,
122 tech => tech);
123 t_ld3_nodeB_on <= pmos_delay (
124 W_on => w_ld3_nodeB ,
125 W_dg => w_ld3_nodeB + w_ld1_nodeB + w_ld1_nodeB ,
126 n_dg => 2.0,
127 p_dg => 1.0,
128 W_d => w_ld2_nodeA ,

119

A.1 Example: NAND2 DUT at logic level

129 n_d => 0.0,
130 p_d => 1.0,
131 --W_g => Z_load_p ,
132 W_g => nodeZ.pincap ,
133 stack_size_on => 1,
134 stack_size_off => 2,
135 pos_on => 1,
136 pos_off => 1,
137 t_r => nodeB.slew ,
138 X => X,
139 tech => tech);
140 -- pincap value
141 nodeA. pincap <=
142 c_in_2 (
143 X => X,
144 t_r => nodeA.slew ,
145 stack_size_on => 2,
146 stack_size_off => 1,
147 pos_on => 1,
148 pos_off => 1,
149 type_name => NAND2_cell ,
150 IN1 => nodeA ,
151 IN2 => nodeB
152);
153 nodeB. pincap <=
154 c_in_2 (
155 X => X,
156 t_r => nodeB.slew ,
157 stack_size_on => 2,
158 stack_size_off => 1,
159 pos_on => 2,
160 pos_off => 1,
161 type_name => NAND2_cell ,
162 IN1 => nodeB ,
163 IN2 => nodeA
164);
165
166 -- logical drivers section -------------------
167 --Mn1 Mn2
168 ld1: nmos_2drive (xnodez , xnodeA , xnodeB , node0 , t_ld1_nodeA_on , \
169 t_ld1_nodeB_on , t_ld1_off);
170 --Mp1
171 ld2: pmos_drive (xnodeZ , xnodeA , node1 , t_ld2_nodeA_on , t_ld2_off);
172 --Mp2
173 ld3: pmos_drive (xnodeZ , xnodeB , node1 , t_ld3_nodeB_on , t_ld3_off);
174 nodeZ <= xnodeZ ;
175 end abstract ;
176 -- ---

120

A.2 Example: NAND2 behavioral at logic level

A.2. Example: NAND2 behavioral at logic level

1 -- ************** MODERN abstract model ************
2 -- cell: NAND2 logic reference
3 -- ***
4
5 library ieee;
6 use ieee. std_logic_1164 .all;
7
8 -- ---
9 -- generic parameter list

10 -- tpd_min = intrinsic delay of minimal inverter
11 -- tpd_FO4 = total fan -out -4 delay of minimal inverter ;
12 -- W_FO_value = actual cell fan -out expressed as
13 -- external load cap / minimal inverter input cap
14 -- X_factor = cell drive strength (resize factor
15 -- with respect to minimal size X1)
16
17 entity nand2 is
18 generic (
19 tpd_min : time := 10 ps; -- not used in logic model
20 tpd_FO4 : time := 50 ps; -- not used in logic model
21 W_FO_value : integer := 0; -- not used in logic model
22 X_factor : integer := 1); -- not used in logic model
23 port (
24 nodeA , nodeB: inout std_logic := ’Z’;
25 nodeZ: inout std_logic := ’Z ’);
26 end nand2;
27 -- ---
28
29 -- ---
30 architecture abstract of nand2 is
31
32 -- definition of timing constants
33 constant tau_i: time := (tpd_min /3.0);
34 constant tau_o: time := (tpd_FO4 - tpd_min)/(3*4);
35
36 begin
37 nodeZ <= nodeA nand nodeB after tau_i;
38 end abstract ;
39 -- ---

A.3. Example: NAND2 testbench at logic level

1 -- ************** MODERN testbench ************

121

A.3 Example: NAND2 testbench at logic level

2 -- cell tested : NAND2
3 -- ***
4
5 library ieee;
6 use ieee. std_logic_1164 .all;
7
8 use IEEE. std_logic_textio .ALL;
9

10 library modern2010 ;
11 use modern2010 . logical_drive_primitives .all;
12 use modern2010 . logical_drive_delay_basic .all;
13
14 library std;
15 use std. textio .all;
16
17 -- ---
18 entity nand2_testbench is
19 generic (
20 X: real;
21 pr: std_logic ;
22 random_sim : boolean ;
23 Z_load : load_net_record ;
24 tr: time;
25 period : time := 2 ns);
26 port (
27 nodeA ,nodeB:inout logical_drive_logic :=(’Z’, 66 fs , (0.0 ,0.0));
28 nodeZ ,nodeY:inout logical_drive_logic :=(’Z’, 66 fs , (0.0 ,0.0))
29);
30 end nand2_testbench ;
31 -- ---
32
33 -- ---
34 architecture testbench_arch of nand2_testbench is
35
36 signal i: integer := 0; -- time count
37 signal reference_clock : std_logic := ’0’; -- time count
38
39 -- SEGNALI CALCOLO RITARDI
40 signal tempo_1 , tpA_hl , tpA_lh , tpB_hl , tpB_lh : time :=0 ns;
41 signal nodeA_int , nodeB_int : std_logic ;
42 -- END SEGNALI CALCOLO RITARDI
43
44 --funzione scrivi intestazione
45 impure function scrivi_intestazione return time is
46 file to_file_int : text open APPEND_MODE is " ritardi .txt";
47 file to_file_int_m : text open WRITE_MODE is \
48 " ritardi_montecarlo_X "&real ’image(X)&"_tr"&\
49 time ’image(tr)&"_cl"&real ’image(Z_load . Z_load_PDN)&".txt";
50 variable buf_in : line;
51 variable nul: time;
52 begin
53

122

A.3 Example: NAND2 testbench at logic level

54 if random_sim then
55 WRITE(buf_in ,string ’(" RitardoA_LH "));
56 WRITE(buf_in ,HT);
57 WRITE(buf_in ,string ’(" RitardoB_LH "));
58 WRITE(buf_in ,HT);
59 WRITE(buf_in ,string ’(" RitardoA_HL "));
60 WRITE(buf_in ,HT);
61 WRITE(buf_in ,string ’(" RitardoB_HL "));
62 WRITELINE (to_file_int_m , buf_in);
63 file_close (to_file_int_m);
64 else
65 WRITE(buf_in ,string ’("X"));
66 WRITE(buf_in , integer (X));
67 WRITE(buf_in ,string ’(".0"));
68 WRITE(buf_in ,HT);
69 WRITE(buf_in ,string ’("tr="));
70 WRITE(buf_in , integer (tr/1 fs)/1000);
71 WRITE(buf_in ,string ’(" ps"));
72 WRITE(buf_in ,LF);
73 WRITE(buf_in ,string ’(" Z_load_PUP "));
74 WRITE(buf_in ,HT);
75 WRITE(buf_in ,string ’(" RitardoA_LH "));
76 WRITE(buf_in ,HT);
77 WRITE(buf_in ,string ’(" RitardoB_LH "));
78 WRITE(buf_in ,HT);
79 WRITE(buf_in ,string ’(" Z_load_PDN "));
80 WRITE(buf_in ,HT);
81 WRITE(buf_in ,string ’(" RitardoA_HL "));
82 WRITE(buf_in ,HT);
83 WRITE(buf_in ,string ’(" RitardoB_HL "));
84 WRITELINE (to_file_int , buf_in);
85 file_close (to_file_int);
86 end if;
87
88 return nul;
89 end function scrivi_intestazione ;
90 --end funzione scrivi intestazione
91
92 --funzione scrivi ritardo
93 impure function \
94 scrivi_ritardo (tpA_lh , tpA_hl , tpB_lh , tpB_hl : in time)
95 return time is
96 file to_file :text open APPEND_MODE is " ritardi .txt";
97 file to_file_m : text open WRITE_MODE is \
98 " ritardi_montecarlo_X "&real ’image(X)&\
99 "_tr"&time ’image(tr)&"_cl"&\

100 real ’image(Z_load . Z_load_PDN)&".txt";
101 variable buf_in :line;
102 variable tempo_ritardo :time;
103 begin
104
105 if random_sim then

123

A.3 Example: NAND2 testbench at logic level

106 WRITE(buf_in ,real(tpA_lh /1.0 fs)/1000.0);
107 WRITE(buf_in ,HT);
108 WRITE(buf_in ,real(tpB_lh /1.0 fs)/1000.0);
109 WRITE(buf_in ,HT);
110 WRITE(buf_in ,real(tpA_hl /1.0 fs)/1000.0);
111 WRITE(buf_in ,HT);
112 WRITE(buf_in ,real(tpB_hl /1.0 fs)/1000.0);
113 WRITELINE (to_file_m , buf_in);
114 file_close (to_file_m);
115 else
116 WRITE(buf_in , Z_load . Z_load_PUP);
117 WRITE(buf_in ,HT);
118 WRITE(buf_in ,real(tpA_lh /1.0 fs)/1000.0);
119 WRITE(buf_in ,HT);
120 WRITE(buf_in ,real(tpB_lh /1.0 fs)/1000.0);
121 WRITE(buf_in ,HT);
122 WRITE(buf_in , Z_load . Z_load_PDN);
123 WRITE(buf_in ,HT);
124 WRITE(buf_in ,real(tpA_hl /1.0 fs)/1000.0);
125 WRITE(buf_in ,HT);
126 WRITE(buf_in ,real(tpB_hl /1.0 fs)/1000.0);
127 WRITELINE (to_file , buf_in);
128 file_close (to_file);
129 end if;
130
131 return tempo_ritardo ;
132 end function scrivi_ritardo ;
133 --end funzione scrivi ritardo
134
135 begin
136
137 -- reference clock generator
138 reference_clock <= not reference_clock after period ;
139
140 -- input_generator
141 process (reference_clock)
142 type test_vector_type is array (0 to 12) \
143 of std_logic_vector (1 downto 0);
144 variable test_vector : test_vector_type :=
145 (
146 "00",
147 "01",
148 "00",
149 "10",
150 "00",
151 "01",
152 "11",
153 "01",
154 "00",
155 "10",
156 "11",
157 "10",

124

A.3 Example: NAND2 testbench at logic level

158 "00"
159);
160 begin
161 if i < test_vector ’ length then
162 nodeA.level <= (test_vector (i)(0)) ;
163 nodeA.slew <= tr;
164 nodeB.level <= (test_vector (i)(1));
165 nodeB.slew <= tr;
166 --CALCOLO DEL RITARDO
167 nodeA_int <= (test_vector (i)(0));
168 nodeB_int <= (test_vector (i)(1));
169 --CALCOLO DEL RITARDO
170 i <= i+1;
171 end if;
172 end process ;
173
174 --check process
175 check: process (reference_clock)
176 begin
177
178 ASSERT nodeZ.level = nodeY.level
179 REPORT " Uscite diverse "
180 SEVERITY WARNING ;
181
182 end process check;
183 -- end check process
184
185 --CALCOLO DEL RITARDO
186 calcolo_ritardi : process (nodeY.level)
187 begin
188 if (nodeA_int ’ last_event < nodeB_int ’ last_event) then
189 case nodeY.level is
190 when ’0’ => tpA_hl <= nodeA_int ’ last_event ;
191
192 when ’1’ => tpA_lh <= nodeA_int ’ last_event ;
193 when others => null;
194 end case;
195 else
196 case nodeY.level is
197 when ’0’ => tpB_hl <= nodeB_int ’ last_event ;
198
199 when ’1’ => tpB_lh <= nodeB_int ’ last_event ;
200 when others => null;
201 end case;
202 end if;
203 end process calcolo_ritardi ;
204 --END CALCOLO DEL RITARDO
205 process
206 variable ret: time;
207 begin
208 wait for 90 ns;
209 ret := scrivi_ritardo (tpA_lh , tpA_hl , tpB_lh , tpB_hl);

125

A.3 Example: NAND2 testbench at logic level

210 end process ;
211
212 process
213 variable ret: time;
214 begin
215 if (pr=’0’) then ret := scrivi_intestazione ; end if;
216 wait for 101 ns;
217 end process ;
218
219 end testbench_arch ;
220
221 -- --
222 -- --
223 -- -------------------- TESTBENCH PLATFORM --------------------
224 -- --
225 -- --
226 library ieee;
227 use ieee. std_logic_1164 .all;
228
229 library modern2010 ;
230 use modern2010 . logical_drive_primitives .all;
231 use modern2010 . logical_drive_delay_basic .all;
232 -- ---
233 entity nand2_testbench_platform is
234 generic (
235 pr: std_logic := ’0’;
236 tr: time := 1 ps;
237 X: real := 1.0;
238 Z_load_PUP : real := 10.0;
239 Z_load_PDN : real := 10.0;
240 period : time := 2 ns;
241 i: integer := 0;
242 random_sim : boolean := false);
243 end nand2_testbench_platform ;
244 -- ---
245
246 -- ---
247 architecture testbench_platform of nand2_testbench_platform is
248
249 component nand2 is
250 port (
251 nodeA , nodeB: inout std_logic := ’Z’;
252 nodeZ: inout std_logic := ’Z’);
253 end component nand2;
254
255 component nand2_dut is
256 generic (
257 X: real := 1.0;
258 --Z_load : load_net_record ;
259 tech: technology_record);
260 port (
261 nodeA ,nodeB:inout logical_drive_logic :=(’Z’, 66 fs , (0.0 ,0.0));

126

A.3 Example: NAND2 testbench at logic level

262 nodeZ: inout logical_drive_logic :=(’Z’, 66 fs , (0.0 ,0.0)));
263 end component nand2_dut ;
264
265 component nand2_testbench is
266 generic (
267 X: real;
268 pr: std_logic ;
269 random_sim : boolean ;
270 Z_load : load_net_record ;
271 tr: time;
272 period : time := 2 ns);
273 port (
274 nodeA ,nodeB:inout logical_drive_logic :=(’Z’, 66 fs , (0.0 ,0.0));
275 nodeZ ,nodeY:inout logical_drive_logic :=(’Z’, 66 fs , (0.0 ,0.0))
276);
277 end component nand2_testbench ;
278
279 signal nodeA , nodeB , nodeZ , nodeY: \
280 logical_drive_logic := (’Z’, 66 fs , (0.0 ,0.0));
281 signal nodeZ_stdlogic : std_logic := ’Z’;
282
283 begin
284
285 nodeZ <= (nodeZ_stdlogic , 1 ps , (0.0 ,0.0));
286 nodeY. pincap <= (Z_load_PDN , Z_load_PDN) when (nodeY.level =’1’) else
287 (Z_load_PUP , Z_load_PUP);
288
289 cell: nand2
290 port map (nodeA.level , nodeB.level , nodeZ_stdlogic);
291
292 cell_dut : nand2_dut
293 generic map (X => X,
294 -- Z_load =>
295 -- (Z_load_PUP => Z_load_PUP ,
296 -- Z_load_PDN => Z_load_PDN),
297 tech =>
298 (a_n_var =>0.0,
299 a_p_var => 0.0,
300 t_min_n => 0.000127 ns ,
301 t_min_p => 0.0002555 ns ,
302 random_sim => random_sim ,
303 i=>i))
304 port map (nodeA , nodeB , nodeY);
305
306 tb: nand2_testbench
307 generic map (period =>period , tr=>tr ,
308 Z_load =>(Z_load_PUP => Z_load_PUP , Z_load_PDN => Z_load_PDN),
309 pr => pr , random_sim => random_sim , X => X)
310 port map (nodeA , nodeB , nodeZ , nodeY);
311
312 end testbench_platform ;
313

127

A.4 Modelsim

314 -- ---
315 -- ---------------------MONTECARLO ----------------------------
316 -- ---
317 library ieee;
318 use ieee. std_logic_1164 .all;
319
320 library modern2010 ;
321 use modern2010 . logical_drive_primitives .all;
322 use modern2010 . logical_drive_delay_basic .all;
323
324 -- ---
325 entity montecarlo is
326 end montecarlo ;
327 -- ---
328
329 -- ---
330 architecture super_testbench of montecarlo is
331
332 component nand2_testbench_platform is
333 generic (
334 i: integer);
335 end component nand2_testbench_platform ;
336
337 begin
338
339 nand2_montecarlo : for i in 0 to 9999 generate
340 begin
341 montecarlo_instance : nand2_testbench_platform
342 generic map (i=>i);
343 end generate ;
344
345 end architecture super_testbench ;

A.4. Modelsim

Modelsim is a simulation tool for VHDL code (and not only).

Praticaly you can use it at command line and you can write script in TCL language.

A.4.1. Compile a library by command line

If you have a library named modern2010 whit a series of VHDL file, the next step

by command line COMPILE the library:

128

A.4 Modelsim

1 cd UNRM_modern2010_packages
2 vlib modern2010
3 vcom -work modern2010 common_type.vhd
4 vcom -work modern2010 logical_drive_primitives.vhd
5 vcom -work modern2010 matrix.vhd
6 vcom -work modern2010 cin_matrix.vhd
7 vcom -work modern2010 logical_drive_delay_basic.vhd

A.4.2. TCL script file

You can create a script file in TCL language for Modelsim and you can run it without

use graphic interface of Modelsim. A example of script file is write below.

1 #file script: example_modelsim_script.do
2 set path_ [pwd]
3 set PATHcella {/ UNRM_modern2010_ref_cells_v5 /}
4 set PATHlib {/ UNRM_modern2010_packages / modern2010 /}
5 set cella nand2
6
7 cd " $path_$PATHcella$cella "
8
9 # create work folder

10 vlib work
11 #map library
12 vmap modern2010 $path_$PATHlib
13
14 # compile
15 vcom -quiet -work work " $path_$PATHcella$cella /*.vhd"
16
17 # simulation
18 vsim -c -quiet -t fs -novopt -Grandom_sim= "false" -Gtr="10 ps" \
19 -GX="$1" -GZ_load_PUP= "1" -GZ_load_PDN= "1" \
20 " work.$ {cella} _testbench_platform "
21 run 100 ns
22 quit -sim
23
24 quit -f

In this example you can map a library, compile and simulate your project. In

simulation istruction (vsim) you can see how change “generic” value of your entity.

129

A.4 Modelsim

A.4.3. Run TCL script file

You can run a script by command line with the command below.

1 vsim -quiet -c -do example_modelsim_script.do

130

B. C code

In this appendix there are the programs mainly used in the automation of simulations

and processing of the results. They range from programs to generate a new netlist

from a basic netlist to programs which elaborate SPICE output file, up to the

elaboration of all the results to create the matrices used in the VHDL code.

B.1. Create new SPICE netlist

This program generate a new file. New file is a copy of input file with different

technology parameters that you can change by command line.

1 # include <string >
2 # include <iostream >
3 # include <fstream >
4 # include <stdlib .h>
5
6 using namespace std;
7
8 // use:
9 //. genNETvar "name" L W ndepvarn ndepvarp toxpvar tr XX cload

10
11 int main(int argc ,char *argv []) {
12
13 string MP2 ,MN2 ,s4ff ,s8ff ,
14 nomeBASE ,L,W,ndep_n ,ndep_p ,toxp ,tr ,XX ,cload ,
15 riga;

131

B.1 Create new SPICE netlist

16
17 nomeBASE =argv [1];
18 L=argv [2];
19 W=argv [3];
20 ndep_n =argv [4];
21 ndep_p =argv [5];
22 toxp=argv [6];
23 tr=argv [7];
24 XX=argv [8];
25 cload=argv [9];
26
27
28 if (L=="0") L="45n";
29 if (W=="0") W="45n";
30 if (ndep_n =="0") ndep_n ="6.5e+018";
31 if (ndep_p =="0") ndep_p ="2.8e+018";
32 if (toxp =="0") toxp="6.5e -010";
33
34
35 string nomeIN = nomeBASE +".net";
36 ifstream in(& nomeIN [0]);
37
38 string nomeOUT = nomeBASE +"_.net";
39 ofstream out (& nomeOUT [0]);
40 while (getline (in , riga)){
41 if (riga. substr (0 ,11)==".PARAM Lmin")
42 out << ".PARAM Lmin=" << L << "n\n";
43 else if (riga. substr (0 ,11)==".PARAM Wmin")
44 out << ".PARAM Wmin=" << W << "n\n";
45 else if (riga. substr (0 ,15)==".PARAM ndepVARn ")
46 out << ".PARAM ndepVARn =" << ndep_n << "\n";
47 else if (riga. substr (0 ,15)==".PARAM ndepVARp ")
48 out << ".PARAM ndepVARp =" << ndep_p << "\n";
49 else if (riga. substr (0 ,14)==".PARAM toxpVAR ")
50 out << ".PARAM toxpVAR =" << toxp << "\n";
51 else if (riga. substr (0 ,10)==".PARAM tr=")
52 out << ".PARAM tr=" << tr << "p\n";
53 else if (riga. substr (0 ,10)==".PARAM XX=")
54 out << ".PARAM XX=" << XX << "\n";
55 else if (riga. substr (0 ,11)==".PARAM XXX=")
56 out << ".PARAM XXX=" << XX << "\n";
57 else if (riga. substr (0 ,10)=="Cout nodeZ")
58 out << "Cout nodeZ 0 " << cload << "f\n";
59 else if (riga. substr (0 ,13)=="Cout2 nodeCo4 ")
60 // Cout2 nodeCo4 0 5f
61 out << "Cout2 nodeCo4 0 " << cload << "f\n";
62 else if (riga. substr (0 ,12)=="Cout2 nodeCo ")
63 // Cout2 nodeCo4 0 5f
64 out << "Cout2 nodeCo 0 " << cload << "f\n";
65 else if (riga. substr (0 ,28)==". INCLUDE ../../ subckt / subckt ")
66 out << ". INCLUDE ../../../ subckt / subckt \n";
67 else{

132

B.2 SPICE output elaboration

68 out << riga << "\n";
69 }
70
71 }
72 out.close ();
73 in.close ();
74
75 return 0;
76 }

B.2. SPICE output elaboration

This program finds in file output of Spice the strings “delaylh” and “delayhl”. If

these strings are present, the program finds the times value above and writes in a

file a table with this values.

1 # include <string >
2 # include <iostream >
3 # include <fstream >
4 # include <stdlib .h>
5 # include <limits >
6
7 using namespace std;
8
9 int main(int argc ,char * argv []) {

10
11 ifstream inNOM1 (argv [2]);
12 string nomeFile (argv [1]);
13
14 ofstream outritardi (argv [1], ios :: app);
15
16
17 string s;
18 string delay_lh_4ff , delay_hl_4ff ;
19 long double f_delay_lh_4ff , f_delay_hl_4ff ;
20
21 int i=1,j=0;
22 int ini =0, fin =0;
23
24 int cont4f =0;
25
26 char d_lh4ff [20] , d_hl4ff [20];
27

133

B.2 SPICE output elaboration

28 while (getline (inNOM1 , s) && (!(cont4f ==2))){
29 if (s. substr (0 ,8)==" delay_lh ") {
30 i=0;
31 while (s[i]!= ’.’){
32 i++;
33 }
34 delay_lh_4ff =s. substr (i -1 ,16);
35 cont4f ++;
36 }
37 if (s. substr (0 ,8)==" delay_hl ") {
38 i=0;
39 while (s[i]!= ’.’){
40 i++;
41 }
42 delay_hl_4ff =s. substr (i -1 ,16);
43 cont4f ++;
44 }
45 }
46
47 inNOM1 .close ();
48
49 for(i=0;i< delay_lh_4ff . length ();i++)
50 {
51 d_lh4ff [i]= delay_lh_4ff [i];
52 }
53 f_delay_lh_4ff =atof(d_lh4ff);
54
55 for(i=0;i< delay_hl_4ff . length ();i++)
56 {
57 d_hl4ff [i]= delay_hl_4ff [i];
58 }
59 f_delay_hl_4ff =atof(d_hl4ff);
60
61 float XX ,tr ,cload;
62 tr=atof(argv [7]);
63 XX=atof(argv [8]);
64 cload=atof(argv [9]);
65
66 float L_var=atof(argv [10]) ,
67 W_var=atof(argv [11]) ,
68 Ndepn_var =atof(argv [12]) ,
69 Ndepp_var =atof(argv [13]) ,
70 tox_var =atof(argv [14]);
71
72 outritardi . precision (10);
73 outritardi << argv [6] << "\t" << f_delay_lh_4ff << "\t" \
74 << f_delay_hl_4ff << "\t" << XX << "\t" << tr << \
75 "\t" << cload << "\t" << L_var << "\t" << W_var << \
76 "\t" << Ndepn_var << "\t" << Ndepp_var << "\t" << \
77 tox_var << "\n";
78
79 outritardi .close ();

134

B.3 Table to VDHL matrix

80 }

B.3. Table to VDHL matrix

This program is an example to create VHDL matrix by a file with tables of value.

1 /*
2 authors : Antonio Mastrandrea
3 date: 2010 -11 -26
4 rev1 2012 -02 -13: change dimension matrix
5
6 Create matrix :
7 read a file with tau in column :
8 X= 1 tr= 1
9 Cload tau0_n X1_1ps taui_n X1_1ps taurap_n X1_1ps

10 0.00 0.000378556 0.000146375 0.000320935
11 0.15 0.000342995 0.000124285 0.000359595
12 0.33 0.000334367 0.000119916 0.000380228
13 0.66 0.00033184 0.000118354 0.000392316
14
15
16 create 3 file with matrix for tau_i tau_0 and tau_m:
17
18 tau_i :=(
19 (0.000378556 ,0.000342995 ,0.000334367 ,0.00033184 ,...) ,
20 (...),
21 ...
22);
23
24 tau_0 :=(
25 (0.000146375 ,0.000124285 ,0.000119916 ,0.000118354 ,...) ,
26 (...),
27 ...
28);
29
30 tau_m :=(
31 (0.000320935 ,0.000359595 ,0.000380228 ,0.000392316 ,...) ,
32 (...),
33 ...
34);
35 */
36 # include <string >
37 # include <iostream >
38 # include <fstream >
39 # include <stdlib .h>

135

B.3 Table to VDHL matrix

40 # include <limits >
41 # include <sstream >
42
43 # define NUM_CAP 37
44 # define NUM_CAP_P NUM_CAP +1
45
46 using namespace std;
47
48 // function ************************
49 void find_value (string s, float* f);
50 void write_v_file (float *f);
51 void init_files_out ();
52 void init_row ();
53 void end_row ();
54 void finalize_files ();
55 /*
56 type of cell ---------------------+
57 file open -------------------+ |
58 name program -----------+ | |
59 | | |
60 | | |
61 V V V
62 $ prog tau_n 1_1
63 */
64 ifstream infile ;
65 ofstream outtauo ,outtaui , outtaum ;
66 string typecell ,tauo ,taui ,taum;
67 string s;
68
69 int main(int argc ,char * argv []) {
70
71
72 float f1 [3];
73 // open 1 file
74 cout << "open file: "<< argv [1]<<"\n";
75 infile .open(argv [1]);
76
77 typecell =argv [2];
78 tauo=" tau_o_ "+ typecell +".mat";
79 taui=" tau_i_ "+ typecell +".mat";
80 taum=" tau_m_ "+ typecell +".mat";
81 outtauo .open(tauo.c_str (), ios :: app);
82 outtaui .open(taui.c_str (), ios :: app);
83 outtaum .open(taum.c_str (), ios :: app);
84
85 init_files_out ();
86
87 init_row ();
88 int conta_column =0;
89 while (getline (infile , s)){
90 if ((s. substr (0 ,2)=="X=")||(s. substr (0 ,2)=="x="))
91 cout << "x= ’" << s <<" ’\n";

136

B.3 Table to VDHL matrix

92 else if ((s=="")) cout << "line empty \"\"\n";
93 else if ((s. substr (0 ,3)=="Clo")||(s. substr (0 ,3)=="clo"))
94 cout << "line intestation \"\"\n";
95 else
96 {
97 ++ conta_column ;
98 if (conta_column == NUM_CAP_P)
99 {

100 end_row ();
101 conta_column =1;
102 init_row ();
103 }
104 find_value (s,f1);
105 // write_v_file (f1);
106
107 outtauo << f1 [0] << " ns" ;
108 outtaui << f1 [1] << " ns";
109 outtaum << f1 [2] << " ns";
110 if(conta_column != NUM_CAP)
111 {
112 outtauo <<"\t,\t";
113 outtaui <<"\t,\t";
114 outtaum <<"\t,\t";
115 }
116
117 // cout << s << "\n";
118 }
119 }
120
121 finalize_files ();
122 return 0;
123 }
124
125 void find_value (string s, float* f)
126 {
127 // string s1;
128 float a,b,c,d;
129 std :: istringstream iss(s);
130 iss >> a ;
131 iss >> *f;
132 iss >> *(f+1);
133 iss >> *(f+2);
134 cout << a << "\t\t";
135 cout << *f << "\t\t";
136 cout << *(f+1) << "\t\t";
137 cout << *(f+2) << "\n";
138 // cout << b << "\n";
139 }
140
141 void write_v_file (float *f)
142 {
143

137

B.3 Table to VDHL matrix

144 }
145
146 void init_files_out ()
147 {
148 outtauo << " constant "
149 << tauo. substr (0, tauo. length () -4) << ": matrix_tau := (";
150 outtaui << " constant "
151 << taui. substr (0, taui. length () -4) << ": matrix_tau := (";
152 outtaum << " constant "
153 << taum. substr (0, taum. length () -4) << ": matrix_tau := (";
154 }
155
156 void init_row ()
157 {
158 outtauo << "\n\t(\t";
159 outtaui << "\n\t(\t";
160 outtaum << "\n\t(\t";
161 }
162
163 void end_row ()
164 {
165 outtauo << "\t),";
166 outtaui << "\t),";
167 outtaum << "\t),";
168 }
169
170 void finalize_files ()
171 {
172 outtauo << "\t)\n);\n";
173 outtaui << "\t)\n);\n";
174 outtaum << "\t)\n);\n";
175
176 outtauo .close ();
177 outtaui .close ();
178 outtaum .close ();
179 infile .close ();
180 }

138

C. Script code

The delay model propagation developed needs a series of simulations at circuit level

in order to extract a set of parameters as you can see in Figure 3.9. Afterwards

there are a series of the scripts for the automatic generation of these parameters.

C.1. Calculate τ parameter

1 #!/ bin/bash
2 export DATE_INIZIO =$(date)
3 # ##
4 # ####### valori da cambiare in base alla cella ########
5 # ################# ##################################
6 fileBASE ="NOT" ingresso ="unico"
7 rimuovi =NO # rimuove i file di testo creati nella precedente
8 simulazione (i file di testo sono stati aperti
9 in modalità append)

10 crea=SI #crea la struttura delle cartelle
11 cfile=SI #copia i file base nella cartella al variare di
12 X e tr
13 simula =SI # simula i 4 file di base per ogni coppia di
14 Cload e produce un file delle tau per ogni
15 cartella
16 # ###
17 tauN=" tau_n_C$ { fileBASE }${ ingresso }. txt"
18 tauP=" tau_p_Cl$ { fileBASE }${ ingresso }. txt"
19 ritardi =" Ritardi_$ { fileBASE }${ ingresso }. txt"
20 # ###
21 # ###### verifica dell ’ esistenza dei file di base ########
22 # ###
23 if [-e ${ fileBASE } conMN2 .net] &&
24 [-e ${ fileBASE } conMP2 .net] &&
25 [-e ${ fileBASE } senza_4fF .net] &&
26 [-e ${ fileBASE } senza_8fF .net]
27 then
28 echo "i file .net di base sono presenti "
29 else
30 echo " mancano i file di base"

139

C.1 Calculate τ parameter

31 exit
32 fi
33 # ##
34 # ##
35 if [$rimuovi == "SI"] then
36 echo " rimuovo i file di testo della simulazione
37 precedente "
38 for tr in 1 10 20 30 40 50
39 do
40 for XX in 1 5 10 20
41 do
42 cartella ="X${XX}_${tr}ps"
43 cd $cartella
44 rm *. txt
45 rm *fF.net
46 cd ..
47 done
48 done
49 fi
50 if [$crea == "SI"]
51 then
52 echo "creo le cartelle "
53 for tr in 1 10 20 30 40 50
54 do
55 for XX in 1 5 10 20
56 do
57 cartella ="X${XX}_${tr}ps"
58 mkdir $cartella
59 echo creata $cartella
60 done
61 done
62 fi
63 if [$cfile == "SI"]
64 then
65 echo "copio i file di base"
66 for tr in 1 10 20 30 40 50
67 do
68 for XX in 1 5 10 20
69 do
70 cartella ="X${XX}_${tr}ps"
71 for i in ${ fileBASE }*. net
72 do
73 ./ gNetVarTR_X $i $tr $XX
74 done
75 mv *ps.net $cartella
76 done
77 done
78 fi
79 if [$simula == "SI"]
80 then
81 # inizia le simulazioni
82 echo " inizio simulazioni "

140

C.1 Calculate τ parameter

83 CL [0]=0.00;
84 CL [1]=0.15;
85 CL [2]=0.33;
86 CL [3]=0.66;
87 CL [4]=1.00;
88 CL [5]=1.25;
89 CL [6]=1.5;
90 CL [7]=1.75;
91 CL [8]=2;
92 CL [9]=3;
93 CL [10]=4;
94 CL [11]=5;
95 CL [12]=6;
96 CL [13]=7;
97 CL [14]=8;
98 CL [15]=9;
99 CL [16]=10;

100 CL [17]=11;
101 # simulazioni
102 for tr in 10 20 30 40 50
103 do
104 for XX in 1 5 10 20
105 do
106 cartella ="X${XX}_${tr}ps"
107 cd $cartella
108 j=1
109 #nel file dove raccolgo tutti i tau scrivo
110 l’ intestazione per ogni serie di misura
111 echo "X= ${XX} tr= ${tr}" >> ../ tau_n_ .txt
112 echo "Cload tau0_n X${XX}_${tr}ps
113 taui_n X${XX}_${tr}ps taurap_n
114 X${XX}_${tr}ps" >> ../ tau_n_ .txt
115 echo "X= ${XX} tr= ${tr}" >>
116 " tau_n_Cl_X$ {XX}_tr${tr}ps.txt"
117 echo "Cload tau0_n X${XX}_${tr}ps
118 taui_n X${XX}_${tr}ps
119 taurap_n X${XX}_${tr}ps">>
120 " tau_n_Cl_X$ {XX}_tr${tr}ps.txt"
121 echo "X= ${XX} tr= ${tr}" >> ../ tau_p_ .txt
122 echo "Cload tau0_p X${XX}_${tr}ps taui_p
123 X${XX}_${tr}ps taurap_p X${XX}_${tr}ps"
124 >> ../ tau_p_ .txt
125 echo "X= ${XX} tr= ${tr}" >>
126 " tau_p_Cl_X$ {XX}_tr${tr}ps.txt"
127 echo "Cload tau0_p X${XX}_${tr}ps
128 taui_p X${XX}_${tr}ps taurap_p
129 X${XX}_${tr}ps" >>
130 " tau_p_Cl_X$ {XX}_tr${tr}ps.txt"
131 echo "X= ${XX} tr= ${tr}" >>
132 ../ ritardi_ .txt
133 echo "Cload 4ff_lh X${XX}_${tr}ps 8ff_lh
134 X${XX}_${tr}ps conMN2_lh

141

C.1 Calculate τ parameter

135 X${XX}_${tr}ps 4ff_hl X${XX}_${tr}ps
136 8ff_hl X${XX}_${tr}ps
137 conMP2_hl X${XX}_${tr}ps"
138 >> ../ ritardi_ .txt
139 echo "X= ${XX} tr= ${tr}" >>
140 " ritardi_Cl_X$ {XX}_tr${tr}ps.txt"
141 echo "Cload 4ff_lh X${XX}_${tr}ps
142 8ff_lh X${XX}_${tr}ps conMN2_lh
143 X${XX}_${tr}ps 4ff_hl X${XX}_${tr}ps
144 8ff_hl X${XX}_${tr}ps conMP2_hl
145 X${XX}_${tr}ps" >>
146 " ritardi_Cl_X$ {XX}_tr${tr}ps.txt"
147 for cload in 0..16
148 do
149 j=1
150 .././ gNetVarC "${ fileBASE } conMN2X$ {XX}_tr
151 ${tr}ps.net" "${CL[$cload]}"
152 .././ gNetVarC "${ fileBASE } conMP2X$ {XX}_tr
153 ${tr}ps.net" "${CL[$cload]}"
154 .././ gNetVarC "${ fileBASE } senza_4fFX$ {XX}
155 _tr${tr}ps.net" "${CL[$cload]}"
156 a=$[$cload +1]
157 .././ gNetVarC "${ fileBASE } senza_8fFX$ {XX}
158 _tr${tr}ps.net" "${CL[$a]}"
159 for i in *fF.net
160 do
161 ngspice -b $i > "${j}. txt"
162 j=$[$j +1]
163 done
164 .././ calcolaTAU " tauCl_X$ {XX}_tr${tr}ps.txt"
165 "1. txt" "2. txt" "3. txt" "4. txt"
166 "${CL[$cload]}_${CL[$cload +1]}" "${XX}"
167 "${CL[$a]}" "${CL[$cload]}"
168 rm *fF.net #temp
169 rm "1. txt" "2. txt" "3. txt" "4. txt"
170 done
171 echo "" >> ../ tau_n_ .txt
172 echo "" >> ../ tau_p_ .txt
173 echo "" >> ../ ritardi_ .txt
174 cd ..
175 #echo creata $cartella
176 done
177 echo "" >> tau_n_ .txt
178 echo "" >> tau_p_ .txt
179 echo "" >> ritardi_ .txt
180 done
181 fi
182 echo " inizio ${ fileBASE } ${ ingresso } : $DATE_INIZIO "
183 > time_$ { fileBASE }. txt echo "fine ${ fileBASE }
184 ${ ingresso } : $(date)" >> time_$ { fileBASE }. txt
185 echo " inizio ${ fileBASE } ${ ingresso }: $DATE_INIZIO "
186 echo "fine ${ fileBASE } ${ ingresso }: $(date)"

142

C.2 Calculate Cin Capacitance

187 exit

C.2. Calculate Cin Capacitance

1 #!/ bin/bash
2
3 cella="not"
4 ingresso ="a"
5
6 netHL=" not_not_HL .net"
7 netHL_cl =" not_cload_HL .net"
8
9 netLH=" not_not_LH .net"

10 netLH_cl =" not_cload_LH .net"
11
12 g++ gNetVarC .cpp -o gNetVarC
13 g++ gNetVarTR_X .cpp -o gNetVarTR_X
14 g++ calcolaRitardiHL .cpp -o calcolaRitardiHL
15 g++ calcolaRitardiLH .cpp -o calcolaRitardiLH
16 g++ somma.cpp -o somma
17 g++ confronta .cpp -o confronta
18
19 path_=$(pwd)
20 creaNET_C =${path_ }/./ gNetVarC
21 creaNET_TR_X =${path_ }/./ gNetVarTR_X
22 trovaRITARDI_HL =${path_ }/./ calcolaRitardiHL
23 trovaRITARDI_LH =${path_ }/./ calcolaRitardiLH
24 SOMMA=${path_ }/./ somma
25 CONFRONTA =${path_ }/./ confronta
26
27 TEST_=${path_ }/./ test
28
29 # ##
30 # Cin HL
31 # ##
32 simulazioni =0
33 for XX in 1 2 3 4 5 10 20
34 do
35 for tr in 10 50
36 do
37 ${ creaNET_TR_X } "${cella }/${ ingresso }/${netHL}" $tr $XX
38 cd "${cella }/${ ingresso }"
39 netlist_ =$(ls *ps.net)
40 ngspice -b ${ netlist_ } > "1. txt"
41
42 delayHL =$(${ trovaRITARDI_HL } "1. txt")
43 rm ${ netlist_ } "1. txt"
44

143

C.2 Calculate Cin Capacitance

45 #echo "il ritardo è ${ delayHL }"
46 cd ${path_}
47
48 Cl=0
49 HLfind =1
50 while [$HLfind != 0]
51 do
52 simulazioni =$(${SOMMA} ${ simulazioni } 1)
53 Cl=$(${SOMMA} $Cl 1)
54 ${ creaNET_C } ${ netHL_cl } ${Cl} $XX $tr
55
56 netlist_ =$(ls *fF.net)
57 ngspice -b ${ netlist_ } > "1. txt"
58
59 delayHL_1 =$(${ trovaRITARDI_HL } "1. txt")
60 rm ${ netlist_ } "1. txt"
61
62 HLfind =$(${ CONFRONTA } ${ delayHL_1 } ${ delayHL })
63 done
64
65 HLfind =1
66 Cl=$(${SOMMA} $Cl -1)
67 while [$HLfind != 0]
68 do
69 simulazioni =$(${SOMMA} ${ simulazioni } 1)
70 Cl=$(${SOMMA} $Cl 0.1)
71 ${ creaNET_C } ${ netHL_cl } ${Cl} $XX $tr
72
73 netlist_ =$(ls *fF.net)
74 ngspice -b ${ netlist_ } > "1. txt"
75
76 delayHL_1 =$(${ trovaRITARDI_HL } "1. txt")
77 rm ${ netlist_ } "1. txt"
78
79 HLfind =$(${ CONFRONTA } ${ delayHL_1 } ${ delayHL })
80 done
81
82 HLfind =1
83 Cl=$(${SOMMA} $Cl -0.1)
84 while [$HLfind != 0]
85 do
86 simulazioni =$(${SOMMA} ${ simulazioni } 1)
87 Cl=$(${SOMMA} $Cl 0.01)
88 ${ creaNET_C } ${ netHL_cl } ${Cl} $XX $tr
89
90 netlist_ =$(ls *fF.net)
91 ngspice -b ${ netlist_ } > "1. txt"
92
93 delayHL_1 =$(${ trovaRITARDI_HL } "1. txt")
94 rm ${ netlist_ } "1. txt"
95
96 HLfind =$(${ CONFRONTA } ${ delayHL_1 } ${ delayHL })

144

C.2 Calculate Cin Capacitance

97 done
98
99 HLfind =1

100 Cl=$(${SOMMA} $Cl -0.01)
101 while [$HLfind != 0]
102 do
103 simulazioni =$(${SOMMA} ${ simulazioni } 1)
104 Cl=$(${SOMMA} $Cl 0.001)
105 ${ creaNET_C } ${ netHL_cl } ${Cl} $XX $tr
106
107 netlist_ =$(ls *fF.net)
108 ngspic1 2 3 4 5 10 20e -b ${ netlist_ } > "1. txt"
109
110 delayHL_1 =$(${ trovaRITARDI_HL } "1. txt")
111 rm ${ netlist_ } "1. txt"
112
113 HLfind =$(${ CONFRONTA } ${ delayHL_1 } ${ delayHL })
114 done
115
116 Cl=$(${SOMMA} $Cl -0.001)
117
118 HLfind =1
119 while [$HLfind != 0]
120 do
121 simulazioni =$(${SOMMA} ${ simulazioni } 1)
122 Cl=$(${SOMMA} $Cl 0.0001)
123 ${ creaNET_C } ${ netHL_cl } ${Cl} $XX $tr
124
125 netlist_ =$(ls *fF.net)
126 ngspice -b ${ netlist_ } > "1. txt"
127
128 delayHL_1 =$(${ trovaRITARDI_HL } "1. txt")
129 rm ${ netlist_ } "1. txt"
130
131 HLfind =$(${ CONFRONTA } ${ delayHL_1 } ${ delayHL })
132 done
133
134 Cl=$(${SOMMA} $Cl -0.0001)
135
136 simulazioni =$(${SOMMA} ${ simulazioni } 1)
137 ${ creaNET_C } ${ netHL_cl } ${Cl} $XX $tr
138
139 netlist_ =$(ls *fF.net)
140 ngspice -b ${ netlist_ } > "1. txt"
141
142 delayHL_1 =$(${ trovaRITARDI_HL } "1. txt")
143 rm ${ netlist_ } "1. txt"
144
145 echo "X=$XX tr=$tr ps"
146 echo " delayHLbase = ${ delayHL }"
147 echo " delayHLtrovato = ${ delayHL_1 }"
148 echo " CloadHL = ${Cl}"

145

C.2 Calculate Cin Capacitance

149 echo "X=$XX tr=$tr ps delayHLbase = ${ delayHL } \
150 delayHLtrovato = ${ delayHL_1 } CloadHL = ${Cl}"\
151 >> test${cella}_${ ingresso }. txt
152 echo "X= $XX tr= $tr ps \
153 delayHLbase = ${ delayHL } delayHLtrovato = \
154 ${ delayHL_1 } CloadHL = ${Cl} " >> \
155 test${cella}_${ ingresso }GRAF.txt
156 done
157 done
158
159 echo " simulazioni totali per trovare 14 CHL: ${ simulazioni }"
160 echo " simulazioni totali per trovare 14 CHL: ${ simulazioni }" \
161 >> test${cella}_${ ingresso }. txt
162 echo " " >> test${cella}_${ ingresso }. txt
163
164 # ##
165 # Cin LH
166 # ##
167 simulazioni =0
168 for XX in 1 2 3 4 5 10 20
169 do
170 for tr in 10 50
171 do
172 ${ creaNET_TR_X } "${cella }/${ ingresso }/${netLH}" $tr $XX
173 cd "${cella }/${ ingresso }"
174 netlist_ =$(ls *ps.net)
175 ngspice -b ${ netlist_ } > "1. txt"
176
177 delayLH =$(${ trovaRITARDI_LH } "1. txt")
178 rm ${ netlist_ } "1. txt"
179
180 #echo "il ritardo è ${ delayLH }"
181 cd ${path_}
182
183 Cl=0
184 LHfind =1
185 while [$LHfind != 0]
186 do
187 simulazioni =$(${SOMMA} ${ simulazioni } 1)
188 Cl=$(${SOMMA} $Cl 1)
189 ${ creaNET_C } ${ netLH_cl } ${Cl} $XX $tr
190
191 netlist_ =$(ls *fF.net)
192 ngspice -b ${ netlist_ } > "1. txt"
193
194 delayLH_1 =$(${ trovaRITARDI_LH } "1. txt")
195 rm ${ netlist_ } "1. txt"
196
197 LHfind =$(${ CONFRONTA } ${ delayLH_1 } ${ delayLH })
198 done
199
200 LHfind =1

146

C.2 Calculate Cin Capacitance

201 Cl=$(${SOMMA} $Cl -1)
202 while [$LHfind != 0]
203 do
204 simulazioni =$(${SOMMA} ${ simulazioni } 1)
205 Cl=$(${SOMMA} $Cl 0.1)
206 ${ creaNET_C } ${ netLH_cl } ${Cl} $XX $tr
207
208 netlist_ =$(ls *fF.net)
209 ngspice -b ${ netlist_ } > "1. txt"
210
211 delayLH_1 =$(${ trovaRITARDI_LH } "1. txt")
212 rm ${ netlist_ } "1. txt"
213
214 LHfind =$(${ CONFRONTA } ${ delayLH_1 } ${ delayLH })
215 done
216
217 LHfind =1
218 Cl=$(${SOMMA} $Cl -0.1)
219 while [$LHfind != 0]
220 do
221 simulazioni =$(${SOMMA} ${ simulazioni } 1)
222 Cl=$(${SOMMA} $Cl 0.01)
223 ${ creaNET_C } ${ netLH_cl } ${Cl} $XX $tr
224
225 netlist_ =$(ls *fF.net)
226 ngspice -b ${ netlist_ } > "1. txt"
227
228 delayLH_1 =$(${ trovaRITARDI_LH } "1. txt")
229 rm ${ netlist_ } "1. txt"
230
231 LHfind =$(${ CONFRONTA } ${ delayLH_1 } ${ delayLH })
232 done
233
234 LHfind =1
235 Cl=$(${SOMMA} $Cl -0.01)
236 while [$LHfind != 0]
237 do
238 simulazioni =$(${SOMMA} ${ simulazioni } 1)
239 Cl=$(${SOMMA} $Cl 0.001)
240 ${ creaNET_C } ${ netLH_cl } ${Cl} $XX $tr
241
242 netlist_ =$(ls *fF.net)
243 ngspice -b ${ netlist_ } > "1. txt"
244
245 delayLH_1 =$(${ trovaRITARDI_LH } "1. txt")
246 rm ${ netlist_ } "1. txt"
247
248 LHfind =$(${ CONFRONTA } ${ delayLH_1 } ${ delayLH })
249 done
250
251 Cl=$(${SOMMA} $Cl -0.001)
252

147

C.3 Example: Deterministic circuit level simulation

253 LHfind =1
254 while [$LHfind != 0]
255 do
256 simulazioni =$(${SOMMA} ${ simulazioni } 1)
257 Cl=$(${SOMMA} $Cl 0.0001)
258 ${ creaNET_C } ${ netLH_cl } ${Cl} $XX $tr
259
260 netlist_ =$(ls *fF.net)
261 ngspice -b ${ netlist_ } > "1. txt"
262
263 delayLH_1 =$(${ trovaRITARDI_LH } "1. txt")
264 rm ${ netlist_ } "1. txt"
265
266 LHfind =$(${ CONFRONTA } ${ delayLH_1 } ${ delayLH })
267 done
268 Cl=$(${SOMMA} $Cl -0.0001)
269
270 simulazioni =$(${SOMMA} ${ simulazioni } 1)
271 ${ creaNET_C } ${ netLH_cl } ${Cl} $XX $tr
272
273 netlist_ =$(ls *fF.net)
274 ngspice -b ${ netlist_ } > "1. txt"
275
276 delayLH_1 =$(${ trovaRITARDI_LH } "1. txt")
277 rm ${ netlist_ } "1. txt"
278
279 echo "X=$XX tr=$tr ps"
280 echo " delayLHbase = ${ delayLH }"
281 echo " delayLHtrovato = ${ delayLH_1 }"
282 echo " CloadLH = ${Cl}"
283 echo "X=$XX tr=$tr ps delayLHbase = ${ delayLH } \
284 delayLHtrovato = ${ delayLH_1 } CloadLH = \
285 ${Cl}" >> test${cella}_${ ingresso }. txt
286 echo "X= $XX tr= $tr ps \
287 delayHLbase = ${ delayLH } delayHLtrovato = \
288 ${ delayLH_1 } CloadHL = ${Cl} \
289 " >> test${cella}_${ ingresso }GRAF.txt
290 done
291 done
292 echo " simulazioni totali per trovare 14 CLH: ${ simulazioni }"
293 echo " simulazioni totali per trovare 14 CLH: ${ simulazioni }" \
294 >> test${cella}_${ ingresso }. txt
295 exit

C.3. Example: Deterministic circuit level simulation

1 #!/ bin/bash
2

148

C.3 Example: Deterministic circuit level simulation

3 g++ calcolaRitardi .cpp -o calcolaRitardi
4 g++ gNetVarC .cpp -o gNetVarC
5 g++ gNetVarTR_X .cpp -o gNetVarTR_X
6 sleep 1
7
8 export DATE_INIZIO =$(date)
9 # ###

10 fileBASE ="64 _fa1"
11 ingresso ="mezzo"
12
13 rimuovi =NO # remove last result
14 crea=SI # create folder structure
15 cfile=SI #copy netlist in folder structure
16 simula =SI # simulate
17 # ###
18 if [$rimuovi == "SI"]
19 then
20 echo " remove last result in progress ..."
21 for tr in 10 20 30 40 50
22 do
23 for XX in 1 5 10 20
24 do
25 cartella ="X${XX}_${tr}ps"
26 cd $cartella
27 rm *. txt
28 rm *fF.net
29 cd ..
30 #echo create $cartella
31 done
32 done
33 fi
34
35 if [$crea == "SI"]
36 then
37 echo "creo le cartelle "
38 for tr in 10 50 #20 30 40 50
39 do
40 for XX in 1 10 #1 5 10 20
41 do
42 cartella ="X${XX}_${tr}ps"
43
44 cartella ="X${XX}_${tr}ps"
45 mkdir $cartella
46 echo creata $cartella
47 done
48 done
49 fi
50
51 if [$cfile == "SI"]
52 then
53 echo "file copy ..."
54

149

C.3 Example: Deterministic circuit level simulation

55 for tr in 10 20 30 40 50
56 do
57 for XX in 1 5 10 20
58 do
59 cartella ="X${XX}_${tr}ps"
60 for i in ${ fileBASE }*. net
61 do
62 ./ gNetVarTR_X $i $tr $XX
63 done
64 mv *ps.net $cartella
65 done
66 done
67 fi
68
69 if [$simula == "SI"]
70 then
71 #init simulations
72
73 CL [0]=0.00;
74 CL [1]=0.15;
75 CL [2]=0.33;
76 CL [3]=0.66;
77 CL [4]=1.00;
78 CL [5]=1.25;
79 CL [6]=1.5;
80 CL [7]=1.75;
81 CL [8]=2;
82 CL [9]=3;
83 CL [10]=4;
84 CL [11]=5;
85 CL [12]=6;
86 CL [13]=7;
87 CL [14]=8; simulation at circuit level simulation
88 CL [15]=9;
89 CL [16]=10;
90 CL [17]=11;
91
92 for tr in 10 20 30 40 50
93 do
94 for XX in 1 5 10 20
95 do
96 cartella ="X${XX}_${tr}ps"
97 cd $cartella
98 j=1
99 echo "X= ${XX} tr= ${tr}" >> ../ ritardi_ .txt

100 echo "Cload lh_cin X${XX}_${tr}ps\
101 hl_cin X${XX}_${tr}ps" >> ../ ritardi_ .txt
102
103 echo "X= ${XX} tr= ${tr}" >> \
104 " ritardi_Cl_X$ {XX}_tr${tr}ps.txt"
105 echo "Cload lh_cin X${XX}_${tr}ps hl_cin \
106 X${XX}_${tr}ps" >> " ritardi_Cl_X$ {XX}_tr${tr}ps.txt"

150

C.4 Example: Statistical circuit level simulation

107
108 for cload in 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
109 do
110 j=1
111 .././ gNetVarC "${ fileBASE }X${XX}_tr${tr}ps.net" \
112 "${CL[$cload]}"
113
114 for i in *fF.net
115 do
116 ngspice -b $i > "${j}. txt"
117 j=$[$j +1]
118 done
119 .././ calcolaRitardi " tauCl_X$ {XX}_tr${tr}ps.txt" \
120 "1. txt" "2. txt" "3. txt" "4. txt" "${CL[$cload]}_\
121 ${CL[$cload +1]}" "${XX}" "${CL[$a]}" "${CL[$cload]}"
122 rm "1. txt" "2. txt" "3. txt" "4. txt"
123 done
124
125 echo "" >> ../ ritardi_ .txt
126 cd ..
127 done
128 echo "" >> ritardi_ .txt
129 done
130 fi
131
132 mv ritardi_ .txt ritardi_$ { fileBASE }. txt
133 echo " inizio ${ fileBASE } ${ ingresso } : $DATE_INIZIO " > \
134 time_$ { fileBASE }. txt
135 echo "fine ${ fileBASE } ${ ingresso } : $(date)" >> \
136 time_$ { fileBASE }. txt
137 echo " inizio ${ fileBASE } ${ ingresso }: $DATE_INIZIO "
138 echo "fine ${ fileBASE } ${ ingresso }: $(date)"
139 exit

C.4. Example: Statistical circuit level simulation

1 #!/ bin/bash
2
3 pathATTUALE =" variazioniCASUALI "
4 cprogramm =" cprogramm "
5 cella=" a1b0c_cout_x1_tr10_cl1 "
6
7 fileBASE =$1
8
9 PARAMSPATH =../../ TechParams

10
11 iterazioni =10000
12 j=45

151

C.4 Example: Statistical circuit level simulation

13
14 declare -i COUNT =0
15 declare -i CCOUNT =0
16
17 if [-e $pathATTUALE]
18 then
19 echo "work folder find"
20 else
21 mkdir $pathATTUALE
22 fi
23
24 # ***
25 # technology parameter
26 # ***
27 COUNT =0
28 for i in ‘cat $PARAMSPATH / Toxp_$j .par ‘; do
29 Toxp[$COUNT]=$i
30 COUNT=COUNT +1
31 done;
32 COUNT =0
33 for i in ‘cat $PARAMSPATH /L_$j.par ‘; do
34 L[$COUNT]=$i
35 COUNT=COUNT +1
36 done;
37 COUNT =0
38 for i in ‘cat $PARAMSPATH /W_$j.par ‘; do
39 W[$COUNT]=$i
40 COUNT=COUNT +1
41 done;
42 COUNT =0
43 for i in ‘cat $PARAMSPATH /Nn_$j.par ‘; do
44 Nn[$COUNT]=$i
45 COUNT=COUNT +1
46 done;
47 COUNT =0
48 for i in ‘cat $PARAMSPATH /Np_$j.par ‘; do
49 Np[$COUNT]=$i
50 COUNT=COUNT +1
51 done;
52 # **
53 # End technology parameter
54 # **
55
56 # **
57 # begin simulations
58 # **
59
60 XX=1
61 tr =10
62 cload =1
63
64 echo "begin simulations "

152

C.5 General use: deleting a type of file in all subdirectory

65 echo
66 echo " iterazione delay_lh_$ {perc}X${XX}_${tr}ps \
67 delay_hl_$ {perc}${cload}_X${XX}_${tr}ps X tr\
68 cload L W Ndepn Ndepp tox" >> \
69 ${ pathATTUALE }/ delay_random .txt
70
71 COUNT =0
72
73 # **
74 # delay random value
75 # **
76
77 while [" $COUNT " -lt " $iterazioni "]
78 do
79 ../../ ${ cprogramm }/./ genNETvar ${ fileBASE } ${L[$COUNT]} \
80 ${W[$COUNT]} ${Nn[$COUNT]} ${Np[$COUNT]} ${Toxp[$COUNT]}\
81 ${tr} ${XX} ${cload}
82
83 mv *_.net ${ pathATTUALE }
84 cd ${ pathATTUALE }
85 i=0
86 for netS in *_.net
87 do
88 ngspice -b $netS > "${COUNT}_${i}. txt"
89 i=$[$i +1]
90 done
91 ../../../ ${ cprogramm }/./ calcolaDELAYrandom delay_random .txt\
92 "${COUNT}_0.txt" "${COUNT}_1.txt" "${COUNT}_2.txt" \
93 "${COUNT}_3.txt" "${COUNT}" ${tr} ${XX} ${cload} \
94 ${L[$COUNT]} ${W[$COUNT]} ${Nn[$COUNT]} ${Np[$COUNT]} \
95 ${Toxp[$COUNT]}
96
97 rm ${COUNT }*. txt
98
99 COUNT=COUNT +1

100 cd ..
101 done
102
103 exit

C.5. General use: deleting a type of file in all
subdirectory

1 #!/ bin/bash
2 path_=$(pwd)
3
4 for i in $(ls)

153

C.6 General use: modify a file whit sed command

5 do
6 if [-d $i] && [$i != "model"]
7 then
8 cd ${path_ }/${i}
9

10 for folder in $(ls)
11 do
12 if [-d $folder]
13 then
14 cd ${path_ }/${i}/${ folder }
15
16 rm *. mat
17
18 cd ${path_ }/${i}
19 fi
20 done
21 cd ${path_}
22 fi
23 done
24 exit

C.6. General use: modify a file whit sed command

1 #!/ bin/bash
2
3 new_tr ="1 5 10 20 30 40 50"
4 new_X="1 2 3 4 5 10 20"
5
6 new_CL =(0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 \
7 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0 1.25 1.5 1.75 2.0 2.25 2.50 \
8 2.75 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0)
9 new_CL_ ="0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 \

10 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0 1.25 1.5 1.75 2.0 2.25 2.50 \
11 2.75 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0"
12
13 new_CL1 =(0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 \
14 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.25 1.5 1.75 2.0 2.25 2.50 \
15 2.75 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0)
16 new_CL1_ ="0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 \
17 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.25 1.5 1.75 2.0 2.25 2.50 \
18 2.75 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0"
19 len=${# new_CL [*]}
20
21 len=${# new_CL1 [*]}
22 let len --
23
24 if [2 = 2]
25 then

154

C.6 General use: modify a file whit sed command

26 path_="$(pwd)"
27
28 for i in $(ls)
29 do
30 if [-d $i]
31 then
32 cd ${path_ }/${i}
33
34 for folder in $(ls)
35 do
36 if [-d $folder]
37 then
38 cd ${path_ }/${i}/${ folder }
39
40
41 sed s/’for tr in ’/"for tr in $new_tr #"/ \
42 creaCARTtr1_10_50ps_X1_10_20_Cvar > run_tau_1 .sh
43 sed s/’for XX in ’/"for XX in $new_X #"/ run_tau_1 .sh \
44 > run_tau_2 .sh
45
46 sed s/’CL \[0\] ’/"CL=(${ new_CL_ }) # CL [0]"/ run_tau_2 .sh \
47 > run_tau_3 .sh
48 sed s/’CL \[1\] ’/"CL1 =(${ new_CL1_ }) # CL [1]"/ run_tau_3 .sh\
49 > run_tau_4 .sh
50 sed s/’CL \[2\] ’/"# CL [2]"/ run_tau_4 .sh > run_tau_5 .sh
51 sed s/’CL \[3\] ’/"# CL [3]"/ run_tau_5 .sh > run_tau_6 .sh
52 sed s/’CL \[4\] ’/"# CL [4]"/ run_tau_6 .sh > run_tau_7 .sh
53 sed s/’CL \[5\] ’/"# CL [5]"/ run_tau_7 .sh > run_tau_8 .sh
54 sed s/’CL \[6\] ’/"# CL [6]"/ run_tau_8 .sh > run_tau_9 .sh
55 sed s/’CL \[7\] ’/"# CL [7]"/ run_tau_9 .sh > run_tau_10 .sh
56 sed s/’CL \[8\] ’/"# CL [8]"/ run_tau_10 .sh > run_tau_11 .sh
57 sed s/’CL \[9\] ’/"# CL [9]"/ run_tau_11 .sh > run_tau_12 .sh
58 sed s/’CL \[10\] ’/"# CL [10]"/ run_tau_12 .sh > run_tau_13 .sh
59 sed s/’CL \[11\] ’/"# CL [11]"/ run_tau_13 .sh > run_tau_14 .sh
60 sed s/’CL \[12\] ’/"# CL [12]"/ run_tau_14 .sh > run_tau_15 .sh
61 sed s/’CL \[13\] ’/"# CL [13]"/ run_tau_15 .sh > run_tau_16 .sh
62 sed s/’CL \[14\] ’/"# CL [14]"/ run_tau_16 .sh > run_tau_17 .sh
63 sed s/’CL \[15\] ’/"# CL [15]"/ run_tau_17 .sh > run_tau_18 .sh
64 sed s/’CL \[16\] ’/"# CL [16]"/ run_tau_18 .sh > run_tau_19 .sh
65 sed s/’CL \[17\] ’/"# CL [17]"/ run_tau_19 .sh > run_tau_20 .sh
66
67 sed s/" ..\/..\/..\/.\/ gNetVarC "/" ..\/.\/ gNetVarC "/ \
68 run_tau_20 .sh > run_tau_21 .sh
69
70 sed s/’for cload in ’/"for cload in {0..${len }} # for \
71 cload in"/ run_tau_21 .sh > run_tau_22 .sh
72
73 sed s/’a=$\[$cload +1\] ’/"#a=$\[\ $cload +1\]"/ \
74 run_tau_22 .sh > run_tau_23 .sh
75 sed s/’\${CL \[\ $a \]} ’/"\${CL1 \[\ $cload \]}"/ \
76 run_tau_23 .sh > run_tau_24 .sh
77

155

C.6 General use: modify a file whit sed command

78 sed s/’\/ bin \/bash ’/"\/ bin \/ bash\n\ng++ \
79 calcolaTAU *. cpp -o calcolaTAU \ng++ gNetVarC .cpp \
80 -o gNetVarC \ng++ gNetVarTR_X .cpp -o gNetVarTR_X "/ \
81 run_tau_24 .sh > run_tau .sh
82
83 rm run_tau_ *.sh
84
85 #rm run_tau2 .sh
86 chmod +x run_tau .sh
87
88 cd ${path_ }/${i}
89 fi
90 done
91 cd ${path_}
92 fi
93 done
94
95 else
96 echo "..."
97 exit
98 fi
99

100 exit

156

D. Ngspice netlist

D.1. Ngspice

NGspice is an open source software used for general purpose circuit simulation for

linear and non-linear circuit analysis. NGspice supports analog, digital and mixed-

mode simulations and provides various modes of analysis like DC Analysis (Op-

erating Point, Transfer Function, DC Sweep), AC Small-Signal Analysis, Transient

Analysis, Pole-Zero Analysis, Small-Signal Distortion Analysis, Sensitivity Analysis,

Noise Analysis etc.

The general structure of an NGspice netlist consists of a first line as a title line,

which is generally the name of netlist, and must end up with .END command. In

between of these two lines, the netlist of the circuit is composed of several set of

lines, which define the circuit topology and element values, analysis description,

output description, model parameters, and a set of control lines. All lines are put

together and taken as input file by NGspice. NGspice is format free i.e. the order

of lines is arbitrary and case insensitive.

NGspice can be used either in interactive or in batch mode. Interactive mode allows

the user to load the netlist and proceed by providing the required commands through

terminal, while batch mode collects all tasks in a single script and execute them

altogether, without further interaction with user. In the following we show the main

aspects of both simulation modes.

In interactive mode, to load a circuit , either write in the terminal “ngspice” followed

157

D.1 Ngspice

by the name of netlist, or simply invoke “ngspice” and use source command to load

the netlist as shown below. In both the cases, after fetching the netlist, the NGspice

prompt writes the first line of netlist, which generally consists of the name of the

netlist, e.g. “basic_inverter” and then wait for other commands.

1 $ngspice name.net
2 ngspice 1 ->

or

1 $ngspice
2 ngspice 1 -> source name.net
3 ngspice 2 ->

Now, you can run the simulation directly. To run the simulation write run command

in the shell. If netlist doesn’t have errors, NGspice writes a set of information like

temperature, initial values of nodes, number of time steps it takes to calculate the

result of measure command and after completing the execution, the simulator will

return with NGspice prompt. If any error had been encountered, the corresponding

message would be displayed on the terminal. Before or after the run command you

can write other commands to verify the netlist, alter parameters, save data or load

new netlists. In the following, a selection of the most important commands will be

presented.

D.1.1. Show and showmod commands

The show command is used to print the actual value of parameters, especially to

check them after changes have been issued. We remind that, due to NGspice parser

code policy, if you don’t provide space chars in particular parts of command line, it

will fail to work. For the show command, a space char is needed before and after

158

D.1 Ngspice

the “:” character. The show command can be used to retrieve information on one

or several devices.

The output of the above command is a list of all parameters of device(s). To view

one or more parameters of one or several devices, the show command can be used

in an extended way.

We can use showmod command if we are interested in listing the values of model

parameters (e.g. threshold voltage, oxide thickness, etc.). This command has similar

syntax of show command.

An example of the show and showmod command are the following:

1 ngspice 2 ->show mp1 : w
2 BSIM4v6: Berkeley Short Channel IGFET Model-4
3 device mp1
4 model pmos
5 w 9e-08
6
7 ngspice 3 ->show mn1,mp1 : w,l
8 BSIM4v6: Berkeley Short Channel IGFET Model-4
9 device mp1 mn1

10 model pmos nmos
11 w 9e-08 4 .5e-08
12 l 4 .5e-08 4 .5e-08
13
14 ngspice 4 -> showmod mp1,mn1 : vth0,toxe
15 BSIM4v6 models (Berkeley Short Channel IGFET Model-4)
16 model pmos nmos
17 vth0 -0.23122 0.3423
18 toxe 9 .2e-10 9e-10

D.1.2. Alter and altermod commands

The alter command is used to change any parameter of a device, e.g.the width

(W) or length (L) of MOS transistors, without changing the whole netlist file. For

example, alter command is used on a PMOS device (mp1) whose width parameter

(W) is set to 100nm:

159

D.1 Ngspice

1 ngspice 5 ->alter @mp1[w] 100n
2 ngspice 6 ->show mp1 : w
3 BSIM4v6: Berkeley Short Channel IGFET Model-4
4 device mp1
5 model pmos
6 w 1e-07

In a similar way, altermod command operates on models and is used to change model

parameters. The example shown below changes the threshold voltage parameter

(vth0) on a BSIM4 model:

1 ngspice 7 -> showmod mn1 : vth0
2 BSIM4v6 models (Berkeley Short Channel IGFET Model-4)
3 model nmos
4 vth0 0.3423
5 ngspice 8 -> altermod @mn1[vth0] 0.4
6 ngspice 9 -> showmod mn1 : vth0
7 BSIM4v4 models (Berkeley Short Channel IGFET Model-4)
8 model nmos
9 vth0 0.4

D.1.3. Setcirc command

We already mentioned that the source command is used to load a netlist. Multiple

netlists can be loaded repeating the source command. When a netlist is loaded,

it becomes the current circuit. The setcirc command is used to select the current

netlist.

A practical example is shown below. At first, we source a netlist, named ba-

sic_inverter.net, then we source a second one (copy_basic_inverter.net).Using the

command setcirc without parameters, a list of loaded netlists will be printed, fol-

lowed by a request to set as active the desired circuit number.

Similarly to setcirc, the setplot command can be used to select a specific plot as the

current plot.

160

D.1 Ngspice

1 ngspice 1 -> source basic_inverter.net
2 Circuit: Basic_Inverter
3 ngspice 2 -> source Copy_basic_inverter.net
4 Circuit: Copy_Basic_Inverter
5 ngspice 3 -> setcirc
6 Type the number of the desired circuit:
7 Current 1 Copy_Basic_Inverter
8 2 Basic_Inverter
9 ? 2

10 ngspice 4 ->run
11 ...
12 ngspice 5 -> setcirc
13 Type the number of the desired circuit:
14 1 Copy_Basic_Inverter
15 Current 2 Basic_Inverter
16 ? 1
17 ngspice 6 ->run

1 ngspice 7 -> setplot
2 Type the name of the desired plot:
3 new New plot
4 Current tran2 Copy_Basic_Inverter (Transient Analysis)
5 tran1 Basic_Inverter (Transient Analysis)
6 const Constant values (constants)
7 ? tran1
8 ngspice 8 -> setplot
9 Type the name of the desired plot:

10 new New plot
11 tran2 Copy_Basic_Inverter (Transient Analysis)
12 Current tran1 Basic_Inverter (Transient Analysis)
13 const Constant values (constants)
14 ? tran2
15 ngspice 9 -> setcirc
16 Type the number of the desired circuit:
17 Current 1 Copy_Basic_Inverter
18 2 Basic_Inverter
19 ? 2
20 ngspice 10 ->alter @mn1[w] 90n
21 ngspice 11 ->run
22 ...
23 ngspice 12 -> setplot
24 Type the name of the desired plot:
25 new New plot
26 Current tran3 Basic_Inverter (Transient Analysis)
27 tran2 Copy_Basic_Inverter (Transient Analysis)
28 tran1 Basic_Inverter (Transient Analysis)
29 const Constant values (constants)

161

D.1 Ngspice

D.1.4. Print command

The print command is used to print the vectors values on screen. The type of

analysis can be TRAN, DC, AC, NOISE, etc. while the number of output variables

in a single print command line can be up to eight. There is no limit on the number of

.print lines for each type of analysis. Algebraic expressions are also allowed in .print

command lines and expression may contain numerical values, constants, predefined

functions, simulator output, parameters defined by a .param statement etc.

D.1.5. Write command

The write command is used to write data or expressions to a file. The default format

is a compact binary file, but it can be changed to ASCII with the “set filetype =

ascii” command. An example for basic_inverter.net netlist is shown below, where

the write command is used to produce a file containing voltage values for nodes

marked “nodea” and “nodez”.

1 Title: basic_inverter
2 Date: Wed Jun 27 10 :50:00 2012
3 Plotname: Transient Analysis
4 Flags: real
5 No. Variables: 3
6 No. Points: 10020
7 Variables:
8 0 time time
9 1 nodea voltage

10 2 nodez voltage
11 Values:
12 0 0 .000000000000000e +00
13 0 .000000000000000e +00
14 9 .998529155265871e-01
15
16 1 1 .000000000000000e-15
17 0 .000000000000000e +00
18 9 .998529155265875e-01
19 ...
20 10019 1 .000000000000000e-09

162

D.1 Ngspice

21 0 .000000000000000e +00
22 9 .909450186479611e-01

D.1.6. .meas command

Another important statement in NGspice netlists is .meas or .measure. In general

it can be used to analyze the output data of a TRAN, AC or DC simulation. The

command is executed immediately after the simulation has finished.

The .meas command prints the results of a user-defined data analysis to the standard

output. The user defined analysis may include the measurement of propagation

delays, rise time, fall time, peak-to-peak voltage, minimum or maximum voltage,

the integral or derivative over a specified period, depending on the type of analysis.

It is a measure of time lapse between events. Care is needed to understand the right

evolution of signals, otherwise the measurement will be wrong without showing

errors.

If we consider the .meas analysis in a netlist, we can see that trigger-target (trig-

targ) options has been used to measure the time lapse between two points that, by

definition are the low-to-high and high-to-low propagation delays. We report the

lines for better clarity:

1 .meas tran delay_LH trig v(nodea) val=0.5 fall=1 \
2 targ v(nodeZ) val=0.5 rise=1
3 .meas tran delay_HL trig v(nodea) val=0.5 rise=1 \
4 targ v(nodeZ) val=0.5 fall=1

Going inside each statement, we can see that the first line measures the time between

V(nodea) reaching 50% of Vdd (i.e. 0.5V, since Vdd is 1V) in the first falling edge

and V(nodeZ) reaching 50% of Vdd for the first rising edge (that is, by definition,

163

D.2 Example: inverter netlist

tLH delay).Similarly, the second line measures the time between V(nodea) reaching

50% of Vdd in the first rising edge and V(nodeZ) reaching 50% of Vdd for the first

falling edge (i.e. tHL delay).

D.1.7. Batch mode

To work in batch mode, NGspice uses –b command line option. The sintax to launch

NGspice in batch mode is:

1 ngspice -b <netlist name >

The above command allows NGspice to write outputs in the terminal (e.g. .meas

values, .print, etc).

To write the same outputs in a file.

1 ngspice -b <netlist name > -o <outputfilename >

A netlist can contain a command script section (delimited by.control and.endc

statemets) that allows users to automate complex simulations. Within this sec-

tion, simulations can be run multiple times while altering parameters, and output

vectors can be analyzed and plotted for each iteration. Expressions, functions, con-

stants, commands, variables, vectors and control structures may be also assembled

into such scripts. The section can contain loops and conditional code.

D.2. Example: inverter netlist

164

D.3 Subcircuits netlist

1 I nv e r t e r n e t l i s t
2 . opt ion f i l e t y p e=a s c i i
3 .PARAM Lmin=45n
4 .PARAM Wmin=45n
5 .PARAM XX=1
6 .PARAM tr=10p
7
8 .INCLUDE . . / . . / model /45nm_MGK.pm
9
10 .TRAN 0.1p 400p
11 .PRINT tran V(nodeIN) V(nodeZ)
12
13 . meas tran delay_LH \
14 t r i g v (nodeIN) va l =0.5 f a l l =1 \
15 targ v (nodeZ) va l =0.5 r i s e=1
16 . meas tran delay_HL \
17 t r i g v (nodeIN) va l =0.5 r i s e=1 \
18 targ v (nodeZ) va l =0.5 f a l l =1
19
20 Mn1 nodeZ nodeIN 0 0 nmos W={XX∗Wmin} L={Lmin}
21 Mp1 nodeZ nodeIN node1 node1 pmos W={XX∗1∗Wmin} L={Lmin}
22
23 Cout nodeZ 0 3 f
24
25 Vin nodeIN 0 PWL(0 0 10p 0 {10p+t r } 1 200p 1 {200p+t r } 0)
26 Vdd node1 0 1
27
28 . end

D.3. Subcircuits netlist

1 ∗∗∗
2 ∗ Designed by Antonio Mastrandrea
3 ∗∗∗
4
5
6 ∗ s u b c i r c u i t
7
8 ∗ examples
9 ∗xnand1 0 node1 nodeZ nodeA nodeB NAND2_SUB <−−d r i v e s t r e n g t h =1

10 ∗xnand2 0 node1 nodeZ nodeA nodeB NAND2_SUB XX=2 <−−d r i v e s t r e n g t h =2
11 ∗ xxor1 0 node1 nodeZ nodeB nodeA XOR2_SUB
12
13

165

D.3 Subcircuits netlist

14 ∗∗∗
15 ∗ not
16 ∗∗∗
17 ∗ Wmin, Lmin and MOS model must be d e c l a r a t e be f o r e
18 ∗
19 ∗ dr iv e s t r ength −−−−−−−−−+
20 ∗inA −−−−−−−−−−−−−−−−−+ |
21 ∗ u s c i t a −−−−−−−−−−−−+ | |
22 ∗vdd −−−−−−−−−−−−−+ | | |
23 ∗massa −−−−−−−−−+ | | | |
24 ∗ | | | | |
25 ∗ v v v v v
26 . subckt NOT_SUB 1 2 3 4 XX=1
27 Mn1 3 4 1 1 nmos W={1∗XX∗Wmin} L={Lmin}
28 Mp1 3 4 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
29 . ends
30 ∗∗∗
31
32 ∗∗∗
33 ∗ nand2
34 ∗∗∗
35 ∗ Wmin, Lmin and MOS model must be d e c l a r a t e be f o r e
36 ∗
37 ∗ dr iv e s t r ength −−−−−−−−−−−−+
38 ∗inB −−−−mos usc i t a−−−−−−−+ |
39 ∗inA −−−−mos massa−−−−−−+ | |
40 ∗ u s c i t a −−−−−−−−−−−−−−+ | | |
41 ∗vdd −−−−−−−−−−−−−−−+ | | | |
42 ∗massa −−−−−−−−−−−+ | | | | |
43 ∗ | | | | | |
44 ∗ v v v v v v
45 . subckt NAND2_SUB 1 2 3 4 5 XX=1
46 Mn1 6 4 1 1 nmos W={2∗XX∗Wmin} L={Lmin}
47 Mn2 3 5 6 1 nmos W={2∗XX∗Wmin} L={Lmin}
48 Mp1 3 4 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
49 Mp2 3 5 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
50 . ends
51 ∗∗∗
52
53 ∗∗∗
54 ∗ nand3
55 ∗∗∗
56 ∗ dr iv e s t r ength−−−−−−−−−−−−−−−+
57 ∗inC−−−−−−−−−−−−−−−−−−−−−−−−+ |
58 ∗inB −−−−−−−−−−−−−−−−−−−−−+ | |
59 ∗inA −−−−−−−−−−−−−−−−−−−+ | | |
60 ∗ output −−−−−−−−−−−−−−+ | | | |
61 ∗vdd −−−−−−−−−−−−−−−+ | | | | |
62 ∗ground−−−−−−−−−−−+ | | | | | |
63 ∗ | | | | | | |
64 ∗ v v v v v v v
65 . subckt NAND3_SUB 1 2 3 4 5 6 XX=1

166

D.3 Subcircuits netlist

66 Mn1 7 4 1 1 nmos W={3∗XX∗Wmin} L={Lmin}
67 Mn2 8 5 7 1 nmos W={3∗XX∗Wmin} L={Lmin}
68 Mn3 3 6 8 1 nmos W={3∗XX∗Wmin} L={Lmin}
69
70 Mp1 3 4 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
71 Mp2 3 5 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
72 Mp3 3 6 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
73 . ends
74 ∗∗∗
75
76 ∗∗∗
77 ∗ nand4
78 ∗∗∗
79 ∗ dr iv e st rengh−−−−−−−−−−−−−−−−−−+
80 ∗inD−−−−−−−−−−−−−−−−−−−−−−−−−−+ |
81 ∗inC−−−−−−−−−−−−−−−−−−−−−−−−+ | |
82 ∗inB −−−−−−−−−−−−−−−−−−−−−+ | | |
83 ∗inA −−−−−−−−−−−−−−−−−−−+ | | | |
84 ∗ output −−−−−−−−−−−−−−+ | | | | |
85 ∗vdd −−−−−−−−−−−−−−−+ | | | | | |
86 ∗ground−−−−−−−−−−−+ | | | | | | |
87 ∗ | | | | | | | |
88 ∗ v v v v v v v v
89 . subckt NAND4_SUB 1 2 3 4 5 6 7 XX=1
90 Mn1 8 4 1 1 nmos W={4∗XX∗Wmin} L={Lmin}
91 Mn2 9 5 8 1 nmos W={4∗XX∗Wmin} L={Lmin}
92 Mn3 10 6 9 1 nmos W={4∗XX∗Wmin} L={Lmin}
93 Mn4 3 7 10 1 nmos W={4∗XX∗Wmin} L={Lmin}
94
95 Mp1 3 4 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
96 Mp2 3 5 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
97 Mp3 3 6 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
98 Mp4 3 7 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
99

100 . ends
101 ∗∗∗
102
103 ∗∗∗
104 ∗ nor2
105 ∗∗∗
106 ∗ Wmin, Lmin and MOS model must be d e c l a r a t e be f o r e
107
108 ∗ dr iv e s t r ength −−−−−−−−−−−+
109 ∗inB −−−mos usc i t a−−−−−−−+ |
110 ∗inA −−−mos vdd−−−−−−−−+ | |
111 ∗ u s c i t a −−−−−−−−−−−−−+ | | |
112 ∗vdd −−−−−−−−−−−−−−+ | | | |
113 ∗massa −−−−−−−−−−+ | | | | |
114 ∗ | | | | | |
115 ∗ v v v v v v
116 . subckt NOR2_SUB 1 2 3 4 5 XX=1
117 Mn1 3 4 1 1 nmos W={1∗XX∗Wmin} L={Lmin}

167

D.3 Subcircuits netlist

118 Mn2 3 5 1 1 nmos W={1∗XX∗Wmin} L={Lmin}
119 Mp1 6 4 2 2 pmos W={4∗XX∗Wmin} L={Lmin}
120 Mp2 3 5 6 2 pmos W={4∗XX∗Wmin} L={Lmin}
121 . ends
122 ∗∗∗
123
124 ∗∗∗
125 ∗ nor3
126 ∗∗∗
127 ∗ Wmin, Lmin and MOS model must be d e c l a r a t e be f o r e
128 ∗
129 ∗ dr iv e s t r enght−−−−−−−−−−−−−−+
130 ∗inC−−− −−−−−−−−−−−−−−−−−−−+ |
131 ∗inB −−−−−−−−−−−−−−−−−−−−+ | |
132 ∗inA −−−−−−−−−−−−−−−−−−+ | | |
133 ∗ output −−−−−−−−−−−−−+ | | | |
134 ∗vdd −−−−−−−−−−−−−−+ | | | | |
135 ∗ground−−−−−−−−−−+ | | | | | |
136 ∗ | | | | | | |
137 ∗ v v v v v v v
138 . subckt NOR3_SUB 1 2 3 4 5 6 XX=1
139
140 Mn1 3 4 1 1 nmos W={1∗XX∗Wmin} L={Lmin}
141 Mn2 3 5 1 1 nmos W={1∗XX∗Wmin} L={Lmin}
142 Mn3 3 6 1 1 nmos W={1∗XX∗Wmin} L={Lmin}
143 Mp1 7 4 2 2 pmos W={6∗XX∗Wmin} L={Lmin}
144 Mp2 8 5 7 2 pmos W={6∗XX∗Wmin} L={Lmin}
145 Mp3 3 6 8 2 pmos W={6∗XX∗Wmin} L={Lmin}
146
147 . ends
148 ∗∗∗
149
150 ∗∗∗
151 ∗ nor4
152 ∗∗∗
153 ∗ Wmin, Lmin and MOS model must be d e c l a r a t e be f o r e
154 ∗
155 ∗ dr iv e s t r enght−−−−−−−−−−−−−−−−−−+
156 ∗ in4−−−−−−−−−−−−−−−−−−−−−−−−−+ |
157 ∗ in3−−− −−−−−−−−−−−−−−−−−−−+ | |
158 ∗ in2 −−−−−−−−−−−−−−−−−−−−+ | | |
159 ∗ in1 −−−−−−−−−−−−−−−−−−+ | | | |
160 ∗ output −−−−−−−−−−−−−+ | | | | |
161 ∗vdd −−−−−−−−−−−−−−+ | | | | | |
162 ∗ground−−−−−−−−−−+ | | | | | | |
163 ∗ | | | | | | | |
164 ∗ v v v v v v v v
165 . subckt NOR4_SUB 1 2 3 4 5 6 7 XX=1
166 Mn1 3 4 1 1 nmos W={1∗XX∗Wmin} L={Lmin}
167 Mn2 3 5 1 1 nmos W={1∗XX∗Wmin} L={Lmin}
168 Mn3 3 6 1 1 nmos W={1∗XX∗Wmin} L={Lmin}
169 Mn4 3 7 1 1 nmos W={1∗XX∗Wmin} L={Lmin}

168

D.3 Subcircuits netlist

170 Mp1 10 4 2 2 pmos W={8∗XX∗Wmin} L={Lmin}
171 Mp2 9 5 10 2 pmos W={8∗XX∗Wmin} L={Lmin}
172 Mp3 8 6 9 2 pmos W={8∗XX∗Wmin} L={Lmin}
173 Mp4 3 7 8 2 pmos W={8∗XX∗Wmin} L={Lmin}
174
175 . ends
176 ∗∗∗
177
178 ∗∗∗
179 ∗ xor2
180 ∗∗∗
181 ∗ Wmin, Lmin and MOS model must be d e c l a r a t e be f o r e
182 ∗
183 ∗ dr iv e s t r ength −−−−−−−−−−−−−+
184 ∗inB −−−−−−−−−−−−−−−−−−−−+ |
185 ∗inA −−−−−−−−−−−−−−−−−−+ | |
186 ∗ u s c i t a −−−−−−−−−−−−−+ | | |
187 ∗vdd −−−−−−−−−−−−−−+ | | | |
188 ∗massa −−−−−−−−−−+ | | | | |
189 ∗ | | | | | |
190 ∗ v v v v v v
191 . subckt XOR2_SUB 1 2 3 4 5 XX=1
192 ∗NOT
193 Mp5 node5n 5 2 2 pmos L={Lmin} W={2∗XX∗Wmin}
194 Mn5 node5n 5 1 1 nmos L={Lmin} W={XX∗Wmin}
195 Mp6 node4n 4 2 2 pmos L={Lmin} W={2∗XX∗Wmin}
196 Mn6 node4n 4 1 1 nmos L={Lmin} W={XX∗Wmin}
197
198 ∗PULL UP
199 Mp1 3 4 in t4 2 pmos L={Lmin} W={4∗XX∗Wmin}
200 Mp2 3 node4n in t1 2 pmos L={Lmin} W={4∗XX∗Wmin}
201 Mp3 in t4 node5n 2 2 pmos L={Lmin} W={4∗XX∗Wmin}
202 Mp4 in t1 5 2 2 pmos L={Lmin} W={4∗XX∗Wmin}
203
204 ∗PULL DOWN
205 Mn4 6 4 1 1 nmos L={Lmin} W={2∗XX∗Wmin}
206 Mn3 3 5 6 1 nmos L={Lmin} W={2∗XX∗Wmin}
207 Mn2 in t3 node4n 1 1 nmos L={Lmin} W={2∗XX∗Wmin}
208 Mn1 3 node5n in t3 1 nmos L={Lmin} W={2∗XX∗Wmin}
209 . ends
210 ∗∗∗
211
212 ∗∗∗
213 ∗ and2
214 ∗∗∗
215 ∗ Wmin, Lmin and MOS model must be d e c l a r a t e be f o r e
216 ∗
217 ∗ dr iv e s t r ength−−−−−−−−−−−−−−+
218 ∗inB −−−−mos usc i t a−−−−−−−+ |
219 ∗inA −−−−mos massa−−−−−−+ | |
220 ∗ u s c i t a −−−−−−−−−−−−−−+ | | |
221 ∗vdd −−−−−−−−−−−−−−−+ | | | |

169

D.3 Subcircuits netlist

222 ∗massa −−−−−−−−−−−+ | | | | |
223 ∗ | | | | | |
224 ∗ v v v v v v
225 . subckt AND2_SUB 1 2 3 4 5 XX=1
226 Mn1 6 4 1 1 nmos W={2∗XX∗Wmin} L={Lmin}
227 Mn2 7 5 6 1 nmos W={2∗XX∗Wmin} L={Lmin}
228 Mp1 7 4 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
229 Mp2 7 5 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
230
231 Mp3 3 7 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
232 Mn3 3 7 1 1 nmos W={1∗XX∗Wmin} L={Lmin}
233
234 . ends
235 ∗∗∗
236
237 ∗∗∗
238 ∗ and3
239 ∗∗∗
240 ∗ Wmin, Lmin and MOS model must be d e c l a r a t e be f o r e
241 ∗
242 ∗ dr iv e s t r ength−−−−−−−−−−−−−−−−+
243 ∗inC−−−−−−−−−−−−−−−−−−−−−−−−+ |
244 ∗inB −−−−mos output−−−−−−−+ | |
245 ∗inA −−−−mos ground−−−−−+ | | |
246 ∗ output −−−−−−−−−−−−−−+ | | | |
247 ∗vdd −−−−−−−−−−−−−−−+ | | | | |
248 ∗groung−−−−−−−−−−−+ | | | | | |
249 ∗ | | | | | | |
250 ∗ v v v v v v v
251 . subckt AND3_SUB 1 2 3 4 5 6 XX=1
252
253 Mn1 7 4 1 1 nmos W={3∗XX∗Wmin} L={Lmin}
254 Mn2 8 5 7 1 nmos W={3∗XX∗Wmin} L={Lmin}
255 Mn3 9 6 8 1 nmos W={3∗XX∗Wmin} L={Lmin}
256 Mp1 9 4 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
257 Mp2 9 5 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
258 Mp3 9 6 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
259
260 Mp4 3 9 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
261 Mn4 3 9 1 1 nmos W={1∗XX∗Wmin} L={Lmin}
262
263 . ends
264 ∗∗∗
265
266 ∗∗∗
267 ∗ and4
268 ∗∗∗
269 ∗ Wmin, Lmin and MOS model must be d e c l a r a t e be f o r e
270 ∗
271 ∗ dr iv e s t r ength−−−−−−−−−−−−−−−−−−+
272 ∗inD−−−−−−−−−−−−−−−−−−−−−−−−−−+ |
273 ∗inC−−−−−−−−−−−−−−−−−−−−−−−−+ | |

170

D.3 Subcircuits netlist

274 ∗inB −−−−mos output−−−−−−−+ | | |
275 ∗inA −−−−mos ground−−−−−+ | | | |
276 ∗ output −−−−−−−−−−−−−−+ | | | | |
277 ∗vdd −−−−−−−−−−−−−−−+ | | | | | |
278 ∗groung−−−−−−−−−−−+ | | | | | | |
279 ∗ | | | | | | | |
280 ∗ v v v v v v v v
281 . subckt AND4_SUB 1 2 3 4 5 6 7 XX=1
282
283 Mn1 10 4 1 1 nmos W={4∗XX∗Wmin} L={Lmin}
284 Mn2 9 5 10 1 nmos W={4∗XX∗Wmin} L={Lmin}
285 Mn3 8 6 9 1 nmos W={4∗XX∗Wmin} L={Lmin}
286 Mn4 11 7 8 1 nmos W={4∗XX∗Wmin} L={Lmin}
287
288 Mp1 11 4 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
289 Mp2 11 5 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
290 Mp3 11 6 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
291 Mp4 11 7 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
292
293 Mp5 3 11 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
294 Mn5 3 11 1 1 nmos W={1∗XX∗Wmin} L={Lmin}
295
296 . ends
297 ∗∗∗
298
299 ∗∗∗
300 ∗ mux21
301 ∗∗∗
302 ∗ dr iv e s t r ength−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
303 ∗inC−(nodeS0)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+ |
304 ∗inB−(nodeD1)−−−−−−−−−−−−−−−−−−−−−−−−−−−+ | |
305 ∗inA−(nodeD0)−−−−−−−−−−−−−−−−−−−−−+ | | |
306 ∗ output−−−−−−−−−−−−−−−−−−−−−+ | | | |
307 ∗vdd −−−−−−−−−−−−−−−−−+ | | | | |
308 ∗ground−−−−−−−−−−−+ | | | | | |
309 ∗ | | | | | | |
310 ∗ v v v v v v v
311 . subckt mux21_SUB 0 node1 nodez nodea nodeb nodec XX=1
312
313 ∗PASS TRANSISTOR
314 Mn4 nodea nodecn nodeu 0 nmos W={2∗XX∗Wmin} L={Lmin}
315 Mn5 nodeb nodec nodeu 0 nmos W={2∗XX∗Wmin} L={Lmin}
316 Mp4 nodea nodec nodeu node1 pmos W={2∗XX∗Wmin} L={Lmin}
317 Mp5 nodeb nodecn nodeu node1 pmos W={2∗XX∗Wmin} L={Lmin}
318
319 ∗FINAL INVERTER
320 Mn3 nodez nodeun 0 0 nmos W={XX∗Wmin} L={Lmin}
321 Mp3 nodez nodeun node1 node1 pmos W={2∗XX∗Wmin} L={Lmin}
322 Mn2 nodeun nodeu 0 0 nmos W={XX∗Wmin} L={Lmin}
323 Mp2 nodeun nodeu node1 node1 pmos W={2∗XX∗Wmin} L={Lmin}
324
325 ∗NOT

171

D.3 Subcircuits netlist

326 Mp1 nodecn nodec node1 node1 pmos W={2∗XX∗Wmin} L={Lmin}
327 Mn1 nodecn nodec 0 0 nmos W={XX∗Wmin} L={Lmin}
328 . ends
329
330 ∗∗∗
331
332 ∗∗∗
333 ∗ mux31
334 ∗∗∗
335 ∗ dr iv e s t r ength−−+
336 ∗ in5−(nodeS1)−−+ |
337 ∗ in4−(nodeS0)−−+ | |
338 ∗ in3−(nodeD2)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+ | | |
339 ∗ in2−(nodeD1)−−−−−−−−−−−−−−−−−−−−−−−−−−−+ | | | |
340 ∗ in1−(nodeD0)−−−−−−−−−−−−−−−−−−−−−+ | | | | |
341 ∗ output−−−−−−−−−−−−−−−−−−−−−+ | | | | | |
342 ∗vdd −−−−−−−−−−−−−−−−−+ | | | | | | |
343 ∗ground−−−−−−−−−−−+ | | | | | | | |
344 ∗ | | | | | | | | |
345 ∗ v v v v v v v v v
346 . subckt mux31_SUB 0 node1 nodeZ nodeA nodeB nodeC nodeD nodeE XX=1
347
348 Mp8 nodeU1 nodee nodeU2 node1 pmos W={3∗XX∗Wmin} L={Lmin}
349 Mp3 nodea noded nodeU1 node1 pmos W={3∗XX∗Wmin} L={Lmin}
350 Mp2 nodeeN nodee node1 node1 pmos W={2∗XX∗Wmin} L={Lmin}
351 Mp1 nodedN noded node1 node1 pmos W={2∗XX∗Wmin} L={Lmin}
352 Mp4 nodeb nodedN nodeU1 node1 pmos W={3∗XX∗Wmin} L={Lmin}
353 Mn3 nodea nodedN nodeU1 0 nmos W={3∗XX∗Wmin} L={Lmin}
354 Mn8 nodeU1 nodeeN nodeU2 0 nmos W={3∗XX∗Wmin} L={Lmin}
355 Mn4 nodeb noded nodeU1 0 nmos W={3∗XX∗Wmin} L={Lmin}
356
357 Mn7 nodez 1 0 0 nmos W={XX∗Wmin} L={Lmin}
358 Mp7 nodez 1 node1 node1 pmos W={2∗XX∗Wmin} L={Lmin}
359 Mn6 1 nodeU2 0 0 nmos W={XX∗Wmin} L={Lmin}
360
361 Mp6 1 nodeU2 node1 node1 pmos W={2∗XX∗Wmin} L={Lmin}
362 Mp5 nodec nodeeN nodeU2 node1 pmos W={2∗XX∗Wmin} L={Lmin}
363 Mn2 nodeeN nodee 0 0 nmos W={XX∗Wmin} L={Lmin}
364
365 Mn1 nodedN noded 0 0 nmos W={XX∗Wmin} L={Lmin}
366 Mn5 nodec nodee nodeU2 0 nmos W={2∗XX∗Wmin} L={Lmin}
367
368 . ends
369 ∗∗∗
370
371 ∗∗∗
372 ∗ mux41
373 ∗∗∗
374 ∗ dr iv e s t r ength−−+
375 ∗ in6−(nodeS1)−−+ |
376 ∗ in5−(nodeS0)−−+ | |
377 ∗ in4−(nodeD3)−−+ | | |

172

D.3 Subcircuits netlist

378 ∗ in3−(nodeD2)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+ | | | |
379 ∗ in2−(nodeD1)−−−−−−−−−−−−−−−−−−−−−−−−−−−+ | | | | |
380 ∗ in1−(nodeD0)−−−−−−−−−−−−−−−−−−−−−+ | | | | | |
381 ∗ output−−−−−−−−−−−−−−−−−−−−−+ | | | | | | |
382 ∗vdd −−−−−−−−−−−−−−−−−+ | | | | | | | |
383 ∗ground−−−−−−−−−−−+ | | | | | | | | |
384 ∗ | | | | | | | | | |
385 ∗ v v v v v v v v v v
386 . subckt mux41_SUB 0 node1 nodeZ nodeA nodeB nodeC nodeD nodeE nodeF XX=1
387
388 Mn1 nodeeN nodee 0 0 nmos W={XX∗Wmin} L={Lmin}
389 Mp1 nodeeN nodee node1 node1 pmos W={2∗XX∗Wmin} L={Lmin}
390 Mn2 nodefN nodef 0 0 nmos W={XX∗Wmin} L={Lmin}
391 Mp2 nodefN nodef node1 node1 pmos W={2∗XX∗Wmin} L={Lmin}
392 Mp3 nodea nodee nodeU1 node1 pmos W={3∗XX∗Wmin} L={Lmin}
393 Mn3 nodea nodeeN nodeU1 0 nmos W={3∗XX∗Wmin} L={Lmin}
394 Mn4 nodeb nodee nodeU1 0 nmos W={3∗XX∗Wmin} L={Lmin}
395 Mp4 nodeb nodeeN nodeU1 node1 pmos W={3∗XX∗Wmin} L={Lmin}
396 Mp5 nodec nodee nodeU2 node1 pmos W={3∗XX∗Wmin} L={Lmin}
397 Mn5 nodec nodeeN nodeU2 0 nmos W={3∗XX∗Wmin} L={Lmin}
398 Mp6 noded nodeeN nodeU2 node1 pmos W={3∗XX∗Wmin} L={Lmin}
399 Mn6 noded nodee nodeU2 0 nmos W={3∗XX∗Wmin} L={Lmin}
400 Mp7 nodeU1 nodef nodez node1 pmos W={3∗XX∗Wmin} L={Lmin}
401 Mn7 nodeU1 nodefN nodeU3 0 nmos W={3∗XX∗Wmin} L={Lmin}
402 Mp8 nodeU2 nodefN nodez node1 pmos W={3∗XX∗Wmin} L={Lmin}
403 Mn8 nodeU2 nodef nodeU3 0 nmos W={3∗XX∗Wmin} L={Lmin}
404
405 Mp9 1 nodeU3 node1 node1 pmos W={2∗XX∗Wmin} L={Lmin}
406 Mn9 1 nodeU3 0 0 nmos W={XX∗Wmin} L={Lmin}
407
408 Mn10 nodez 1 0 0 nmos W={XX∗Wmin} L={Lmin}
409 Mp10 nodez 1 node1 node1 pmos W={2∗XX∗Wmin} L={Lmin}
410 . ends
411 ∗∗∗
412
413 ∗∗∗
414 ∗ DLatch
415 ∗∗∗
416 ∗ dr iv e s t r ength−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
417 ∗inB −−−(l i k e i /p)−nodeD−−−−−−−−−−−−−−−−−+ |
418 ∗inA −−−(l i k e c l k)−nodeG−−−−−−−−−−−+ | |
419 ∗ output−−−−−−−−−−−−−−−−−−−−−−+ | | |
420 ∗vdd −−−−−−−−−−−−−−−−−−+ | | | |
421 ∗ground−−−−−−−−−−−−+ | | | | |
422 ∗ | | | | | |
423 ∗ v v v v v v
424 . subckt DLatch_SUB 0 node1 nodeZ nodea nodeb XX=1
425
426 Mp41 nodeb nodeaN node21 node1 pmos W={2∗XX∗Wmin} L={Lmin}
427 Mn4 nodeb nodea node21 0 nmos W={2∗XX∗Wmin} L={Lmin}
428 Mn3 nodez 1 0 0 nmos W={XX∗Wmin} L={Lmin}
429 Mp3 nodez 1 node1 node1 pmos W={2∗XX∗Wmin} L={Lmin}

173

D.3 Subcircuits netlist

430
431 ∗
432 Mn1 node21 1 0 0 nmos W={XX∗Wmin} L={2∗Lmin}
433 Mp1 node21 1 node1 node1 pmos W={XX∗Wmin} L={2∗Lmin}
434 Mn2 1 node21 0 0 nmos W={1∗XX∗Wmin} L={Lmin}
435 Mp2 1 node21 node1 node1 pmos W={2∗XX∗Wmin} L={Lmin}
436
437 ∗notG
438 Mp5 nodeaN nodea node1 node1 pmos W={2∗XX∗Wmin} L={Lmin}
439 Mn5 nodeaN nodea 0 0 nmos W={XX∗Wmin} L={Lmin}
440 . ends
441 ∗∗∗
442
443 ∗∗∗
444 ∗ AO12
445 ∗∗∗
446 ∗ Wmin, Lmin and MOS model must be d e c l a r a t e be f o r e
447 ∗
448 ∗ dr iv e s t r ength−−−−−−−−−−−−−−−+
449 ∗inC −−−−mos out−gnd−−−−−−−−+ |
450 ∗inB −−−−mos Vdd−gnd−−−−−−+ | |
451 ∗inA −−−−mos Vdd−out−−−−+ | | |
452 ∗ u s c i t a −−−−−−−−−−−−−−+ | | | |
453 ∗vdd −−−−−−−−−−−−−−−+ | | | | |
454 ∗massa −−−−−−−−−−−+ | | | | | |
455 ∗ | | | | | | |
456 ∗ v v v v v v v
457 . subckt AO12_SUB 1 2 3 4 5 6 XX=1
458 Mn1 9 4 8 1 nmos W={2∗XX∗Wmin} L={Lmin}
459 Mn2 8 5 1 1 nmos W={2∗XX∗Wmin} L={Lmin}
460 Mn3 9 6 1 1 nmos W={1∗XX∗Wmin} L={Lmin}
461
462 Mp1 7 4 2 2 pmos W={4∗XX∗Wmin} L={Lmin}
463 Mp2 7 5 2 2 pmos W={4∗XX∗Wmin} L={Lmin}
464 Mp3 9 6 7 2 pmos W={4∗XX∗Wmin} L={Lmin}
465
466 Mn4 3 9 1 1 nmos W={XX∗Wmin} L={Lmin}
467 Mp4 3 9 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
468 . ends
469 ∗∗∗
470
471 ∗∗∗
472 ∗ AO22
473 ∗∗∗
474 ∗ Wmin, Lmin and MOS model must be d e c l a r a t e be f o r e
475 ∗
476 ∗ dr iv e s t r ength−−−−−−−−−−−−−−−−−+
477 ∗inD −−−−mos Vdd−gnd−−−−−−−−−−+ |
478 ∗inC −−−−mos Vdd−out−−−−−−−−+ | |
479 ∗inB −−−−mos out−gnd−−−−−−+ | | |
480 ∗inA −−−−mos out−out−−−−+ | | | |
481 ∗ u s c i t a −−−−−−−−−−−−−−+ | | | | |

174

D.3 Subcircuits netlist

482 ∗vdd −−−−−−−−−−−−−−−+ | | | | | |
483 ∗massa −−−−−−−−−−−+ | | | | | | |
484 ∗ | | | | | | | |
485 ∗ v v v v v v v v
486 . subckt AO22_SUB 1 2 3 4 5 6 7 XX=1
487 ∗ D G S B Name W L
488 ∗PULL DOWN
489 Mn1 11 4 9 1 nmos W={2∗XX∗Wmin} L={Lmin}
490 Mn2 9 5 1 1 nmos W={2∗XX∗Wmin} L={Lmin}
491
492 Mn3 11 6 10 1 nmos W={2∗XX∗Wmin} L={Lmin}
493 Mn4 10 7 1 1 nmos W={2∗XX∗Wmin} L={Lmin}
494
495 ∗PULL UP
496 Mp1 11 4 8 2 pmos w={4∗XX∗Wmin} L={Lmin}
497 Mp2 11 5 8 2 pmos W={4∗XX∗Wmin} L={Lmin}
498
499 Mp3 8 6 2 2 pmos W={4∗XX∗Wmin} L={Lmin}
500 Mp4 8 7 2 2 pmos W={4∗XX∗Wmin} L={Lmin}
501
502 ∗USCITA
503 Mn5 3 11 1 1 nmos W={Wmin} L={Lmin}
504 Mp5 3 11 2 2 pmos W={2∗Wmin} L={Lmin}
505
506 . ends
507 ∗∗∗
508
509 ∗∗∗
510 ∗ AO31
511 ∗∗∗
512 ∗ Wmin, Lmin and MOS model must be d e c l a r a t e be f o r e
513 ∗
514 ∗ dr iv e s t r ength−−−−−−−−−−−−−−−−−−−−−+
515 ∗inD −−−−mos out−out−−−−−−−−−−−−−−+ |
516 ∗inC −−−−mos Vdd−gnd−−−−−−−−−−−−+ | |
517 ∗inB −−−−mos Vdd−mid , mid−−−−−−+ | | |
518 ∗inA −−−−mos Vdd−out−−−−−−−−+ | | | |
519 ∗ u s c i t a −−−−−−−−−−−−−−−−−−+ | | | | |
520 ∗vdd −−−−−−−−−−−−−−−−−−−+ | | | | | |
521 ∗massa −−−−−−−−−−−−−−−+ | | | | | | |
522 ∗ | | | | | | | |
523 ∗ v v v v v v v v
524 . subckt AO31_SUB 1 2 3 4 5 6 7 XX=1
525 ∗ D G S B Name W L
526
527 Mn1 9 4 10 1 nmos W={3∗XX∗Wmin} L={Lmin}
528 Mn2 10 5 11 1 nmos W={3∗XX∗Wmin} L={Lmin}
529 Mn3 11 6 1 1 nmos W={3∗XX∗Wmin} L={Lmin}
530 Mn4 9 7 1 1 nmos W={1∗XX∗Wmin} L={Lmin}
531
532 Mp1 8 4 2 2 pmos W={4∗XX∗Wmin} L={Lmin}
533 Mp2 8 5 2 2 pmos W={4∗XX∗Wmin} L={Lmin}

175

D.3 Subcircuits netlist

534 Mp3 8 6 2 2 pmos W={4∗XX∗Wmin} L={Lmin}
535 Mp4 9 7 8 2 pmos W={4∗XX∗Wmin} L={Lmin}
536
537 Mn5 3 9 1 1 nmos W={1∗XX∗Wmin} L={Lmin}
538 Mp5 3 9 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
539 . ends
540 ∗∗∗
541
542 ∗∗∗
543 ∗ AO32
544 ∗∗∗
545 ∗ Wmin, Lmin and MOS model must be d e c l a r a t e be f o r e
546 ∗
547 ∗ dr iv e s t r ength−−−−−−−−−−−−−−−−−−−−−−−−+
548 ∗ inE −−−−mos out−gnd−−−−−−−−−−−−−−−−+ |
549 ∗inD −−−−mos out−out−−−−−−−−−−−−−−+ | |
550 ∗inC −−−−mos Vdd−gnd−−−−−−−−−−−−+ | | |
551 ∗inB −−−−mos Vdd−mid , mid−−−−−−+ | | | |
552 ∗inA −−−−mos Vdd−out−−−−−−−−+ | | | | |
553 ∗ u s c i t a −−−−−−−−−−−−−−−−−−+ | | | | | |
554 ∗vdd −−−−−−−−−−−−−−−−−−−+ | | | | | | |
555 ∗massa −−−−−−−−−−−−−−−+ | | | | | | | |
556 ∗ | | | | | | | | |
557 ∗ v v v v v v v v V
558 . subckt AO32_SUB 1 2 3 4 5 6 7 8 XX=1
559 ∗ D G S B Name W L
560
561 Mn6 3 10 1 1 nmos W={XX∗Wmin} L={Lmin}
562 Mp6 3 10 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
563
564 Mn1 10 4 11 1 nmos W={3∗XX∗Wmin} L={Lmin}
565 Mn2 11 5 12 1 nmos W={3∗XX∗Wmin} L={Lmin}
566 Mn3 12 6 1 1 nmos W={3∗XX∗Wmin} L={Lmin}
567 Mn4 10 7 13 1 nmos W={2∗XX∗Wmin} L={Lmin}
568 Mn5 13 8 1 1 nmos W={2∗XX∗Wmin} L={Lmin}
569
570 Mp1 10 7 9 2 pmos W={4∗XX∗Wmin} L={Lmin}
571 Mp2 10 8 9 2 pmos W={4∗XX∗Wmin} L={Lmin}
572 Mp3 9 4 2 2 pmos W={4∗XX∗Wmin} L={Lmin}
573 Mp4 9 5 2 2 pmos W={4∗XX∗Wmin} L={Lmin}
574 Mp5 9 6 2 2 pmos W={4∗XX∗Wmin} L={Lmin}
575
576 . ends
577 ∗∗∗
578
579 ∗∗∗
580 ∗ AO33
581 ∗∗∗
582 ∗ Wmin, Lmin and MOS model must be d e c l a r a t e be f o r e
583 ∗
584 ∗ dr iv e s t r ength−−−−−−−−−−−−−−−−−−−−−−−−−−+
585 ∗ inF −−−−mos out−gnd−−−−−−−−−−−−−−−−−−+ |

176

D.3 Subcircuits netlist

586 ∗ inE −−−−mos out−mid , mid−−−−−−−−−−−−+ | |
587 ∗inD −−−−mos out−out−−−−−−−−−−−−−−+ | | |
588 ∗inC −−−−mos Vdd−gnd−−−−−−−−−−−−+ | | | |
589 ∗inB −−−−mos Vdd−mid , mid−−−−−−+ | | | | |
590 ∗inA −−−−mos Vdd−out−−−−−−−−+ | | | | | |
591 ∗ u s c i t a −−−−−−−−−−−−−−−−−−+ | | | | | | |
592 ∗vdd −−−−−−−−−−−−−−−−−−−+ | | | | | | | |
593 ∗massa −−−−−−−−−−−−−−−+ | | | | | | | | |
594 ∗ | | | | | | | | | |
595 ∗ v v v v v v v v v v
596 . subckt AO33_SUB 1 2 3 4 5 6 7 8 9 XX=1
597 ∗ D G S B Name W L
598 Mn1 11 4 12 1 nmos W={3∗XX∗Wmin} L={Lmin}
599 Mn2 12 5 13 1 nmos W={3∗XX∗Wmin} L={Lmin}
600 Mn3 13 6 1 1 nmos W={3∗XX∗Wmin} L={Lmin}
601 Mn4 11 7 14 1 nmos W={3∗XX∗Wmin} L={Lmin}
602 Mn5 14 8 15 1 nmos W={3∗XX∗Wmin} L={Lmin}
603 Mn6 15 9 1 1 nmos W={3∗XX∗Wmin} L={Lmin}
604
605 Mp1 10 4 2 2 pmos W={4∗XX∗Wmin} L={Lmin}
606 Mp2 10 5 2 2 pmos W={4∗XX∗Wmin} L={Lmin}
607 Mp3 10 6 2 2 pmos W={4∗XX∗Wmin} L={Lmin}
608 Mp4 11 7 10 2 pmos W={4∗XX∗Wmin} L={Lmin}
609 Mp5 11 8 10 2 pmos W={4∗XX∗Wmin} L={Lmin}
610 Mp6 11 9 10 2 pmos W={4∗XX∗Wmin} L={Lmin}
611
612 Mn7 3 11 1 1 nmos W={XX∗Wmin} L={Lmin}
613 Mp7 3 11 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
614 . ends
615 ∗∗∗
616
617 ∗∗∗
618 ∗ AO112
619 ∗∗∗
620 ∗ Wmin, Lmin and MOS model must be d e c l a r a t e be f o r e
621 ∗
622 ∗ dr iv e s t r ength−−−−−−−−−−−−−−−−−−−−−+
623 ∗inD −−−−mos out−out−−−−−−−−−−−−−−+ |
624 ∗inC −−−−mos mid , mid−gnd−−−−−−−−+ | |
625 ∗inB −−−−mos Vdd−gnd−−−−−−−−−−+ | | |
626 ∗inA −−−−mos Vdd−out−−−−−−−−+ | | | |
627 ∗ u s c i t a −−−−−−−−−−−−−−−−−−+ | | | | |
628 ∗vdd −−−−−−−−−−−−−−−−−−−+ | | | | | |
629 ∗massa −−−−−−−−−−−−−−−+ | | | | | | |
630 ∗ | | | | | | | |
631 ∗ v v v v v v v v
632 . subckt AO112_SUB 1 2 3 4 5 6 7 XX=1
633 ∗ D G S B Name W L
634
635 Mn1 10 4 11 1 nmos W={2∗XX∗Wmin} L={Lmin}
636 Mn2 11 5 1 1 nmos W={2∗XX∗Wmin} L={Lmin}
637 Mn3 10 6 1 1 nmos W={1∗XX∗Wmin} L={Lmin}

177

D.3 Subcircuits netlist

638 Mn4 10 7 1 1 nmos W={1∗XX∗Wmin} L={Lmin}
639
640 Mp1 8 4 2 2 pmos W={6∗XX∗Wmin} L={Lmin}
641 Mp2 8 5 2 2 pmos W={6∗XX∗Wmin} L={Lmin}
642 Mp3 9 6 8 2 pmos W={6∗XX∗Wmin} L={Lmin}
643 Mp4 10 7 9 2 pmos W={6∗XX∗Wmin} L={Lmin}
644
645 Mn5 3 10 1 1 nmos W={XX∗Wmin} L={Lmin}
646 Mp5 3 10 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
647 . ends
648 ∗∗∗
649
650 ∗∗∗
651 ∗ AO212
652 ∗∗∗
653 ∗ Wmin, Lmin and MOS model must be d e c l a r a t e be f o r e
654 ∗
655 ∗ dr iv e s t r ength−−−−−−−−−−−−−−−−−−−−−−−+
656 ∗ inE −−−−mos out−gnd−−−−−−−−−−−−−−−−+ |
657 ∗inD −−−−mos Vdd−gnd−−−−−−−−−−−−−−+ | |
658 ∗inC −−−−mos Vdd−out−−−−−−−−−−−−+ | | |
659 ∗inB −−−−mos mid , mid−gnd−−−−−−+ | | | |
660 ∗inA −−−−mos Vdd−out−−−−−−−−+ | | | | |
661 ∗ u s c i t a −−−−−−−−−−−−−−−−−−+ | | | | | |
662 ∗vdd −−−−−−−−−−−−−−−−−−−+ | | | | | | |
663 ∗massa −−−−−−−−−−−−−−−+ | | | | | | | |
664 ∗ | | | | | | | | |
665 ∗ v v v v v v v v v
666 . subckt AO212_SUB 1 2 3 4 5 6 7 8 XX=1
667 ∗ D G S B Name W L
668 Mn1 12 4 13 1 nmos W={2∗XX∗Wmin} L={Lmin}
669 Mn2 13 5 1 1 nmos W={2∗XX∗Wmin} L={Lmin}
670 Mn3 12 6 14 1 nmos W={2∗XX∗Wmin} L={Lmin}
671 Mn4 14 7 1 1 nmos W={2∗XX∗Wmin} L={Lmin}
672 Mn5 12 8 1 1 nmos W={XX∗Wmin} L={Lmin}
673
674 Mp1 11 4 9 2 pmos W={6∗XX∗Wmin} L={Lmin}
675 Mp2 11 5 9 2 pmos W={6∗XX∗Wmin} L={Lmin}
676 Mp3 9 6 2 2 pmos W={6∗XX∗Wmin} L={Lmin}
677 Mp4 9 7 2 2 pmos W={6∗XX∗Wmin} L={Lmin}
678 Mp5 12 8 11 2 pmos W={6∗XX∗Wmin} L={Lmin}
679
680 Mn7 3 12 1 1 nmos W={XX∗Wmin} L={Lmin}
681 Mp7 3 12 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
682
683 . ends
684 ∗∗
685
686 ∗∗
687 ∗ AO222
688 ∗∗
689 ∗ Wmin, Lmin and MOS model must be d e c l a r a t e be f o r e

178

D.3 Subcircuits netlist

690 ∗
691 ∗ dr iv e s t r ength−−−−−−−−−−−−−−−−−−−−−−−−−+
692 ∗ inF −−−−mos Vdd−gnd−−−−−−−−−−−−−−−−−−+ |
693 ∗ inE −−−−mos Vdd−out−−−−−−−−−−−−−−−−+ | |
694 ∗inD −−−−mos mid , mid−gnd−−−−−−−−−−+ | | |
695 ∗inC −−−−mos mid , mid−out−−−−−−−−+ | | | |
696 ∗inB −−−−mos out−gnd−−−−−−−−−−+ | | | | |
697 ∗inA −−−−mos out−out−−−−−−−−+ | | | | | |
698 ∗ u s c i t a −−−−−−−−−−−−−−−−−−+ | | | | | | |
699 ∗vdd −−−−−−−−−−−−−−−−−−−+ | | | | | | | |
700 ∗massa −−−−−−−−−−−−−−−+ | | | | | | | | |
701 ∗ | | | | | | | | | |
702 ∗ v v v v v v v v v v
703 . subckt AO222_SUB 1 2 3 4 5 6 7 8 9 XX=1
704 ∗ D G S B Name W L
705
706 Mn1 12 4 13 1 nmos W={2∗XX∗Wmin} L={Lmin}
707 Mn2 13 5 1 1 nmos W={2∗XX∗Wmin} L={Lmin}
708 Mn3 12 6 14 1 nmos W={2∗XX∗Wmin} L={Lmin}
709 Mn4 14 7 1 1 nmos W={2∗XX∗Wmin} L={Lmin}
710 Mn5 12 8 15 1 nmos W={2∗XX∗Wmin} L={Lmin}
711 Mn6 15 9 1 1 nmos W={2∗XX∗Wmin} L={Lmin}
712
713 Mp1 12 4 11 2 pmos W={6∗XX∗Wmin} L={Lmin}
714 Mp2 12 5 11 2 pmos W={6∗XX∗Wmin} L={Lmin}
715 Mp3 11 6 10 2 pmos W={6∗XX∗Wmin} L={Lmin}
716 Mp4 11 7 10 2 pmos W={6∗XX∗Wmin} L={Lmin}
717 Mp5 10 8 2 2 pmos W={6∗XX∗Wmin} L={Lmin}
718 Mp6 10 9 2 2 pmos W={6∗XX∗Wmin} L={Lmin}
719
720 Mn7 3 12 1 1 nmos W={XX∗Wmin} L={Lmin}
721 Mp7 3 12 2 2 pmos W={2∗XX∗Wmin} L={Lmin}
722
723 . ends
724 ∗∗∗
725
726 ∗∗∗
727 ∗ DFPQ
728 ∗∗∗
729 ∗ dr iv e s t r ength−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
730 ∗inB −−−(l i k e i /p)−nodeD−−−−−−−−−−−−−−−−−−+ |
731 ∗inA −−−(l i k e c l k)−nodeA−−−−−−−−−−−+ | |
732 ∗ output−−−−−−−−−−−−−−−−−−−−−−+ | | |
733 ∗vdd −−−−−−−−−−−−−−−−−−+ | | | |
734 ∗ground−−−−−−−−−−−−+ | | | | |
735 ∗ | | | | | |
736 ∗ v v v v v v
737 . subckt DFPQ_SUB 0 node1 nodeZ nodeCP noded XX=1
738
739 Mp41 noded nodeCP node21 node1 pmos W={2∗XX∗Wmin} L={Lmin}
740 Mn4 noded nodeCPn node21 0 nmos W={2∗XX∗Wmin} L={Lmin}
741

179

D.3 Subcircuits netlist

742 Mn5 noded5 nodeCP node51 0 nmos W={2∗XX∗Wmin} L={Lmin}
743 Mp51 noded5 nodeCPn node51 node1 pmos W={2∗XX∗Wmin} L={Lmin}
744
745 Mn11 nodeCPn nodeCP 0 0 nmos W={1∗XX∗Wmin} L={Lmin}
746 Mp11 nodeCPn nodeCP node1 node1 pmos W={2∗XX∗Wmin} L={Lmin}
747
748 Mp1 node21 noded5 node1 node1 pmos W={1∗XX∗Wmin} L={2∗Lmin}
749 Mn1 node21 noded5 0 0 nmos W={1∗XX∗Wmin} L={2∗Lmin}
750
751 Mp2 noded5 node21 node1 node1 pmos W={2∗Wmin} L={Lmin}
752 Mn2 noded5 node21 0 0 nmos W={1∗Wmin} L={Lmin}
753
754 Mp6 nodez node51 node1 node1 pmos W={2∗XX∗Wmin} L={Lmin}
755 Mn6 nodez node51 0 0 nmos W={1∗XX∗Wmin} L={Lmin}
756
757 Mp7 node51 nodez node1 node1 pmos W={1∗XX∗Wmin} L={Lmin}
758 Mn7 node51 nodez 0 0 nmos W={1∗XX∗Wmin} L={Lmin}
759 . ends
760 ∗∗
761
762 ∗∗
763 ∗ DFPRQN
764 ∗∗
765 ∗ dr iv e s t r ength−−−+
766 ∗ in3−−−−(l i k e r e s e s t)−nodeRN−−−−−−−−−−−−−−−−−−−−−−−+ |
767 ∗ in2 −−−(l i k e i /p)−nodeD−−−−−−−−−−−−−−−−−−−−−+ | |
768 ∗ in1 −−−(l i k e c l k)−nodeCP−−−−−−−−−−−−−+ | | |
769 ∗ output−−−−−−−−−−−−−−−−−−−−−−−−−+ | | | |
770 ∗vdd −−−−−−−−−−−−−−−−−−−−−+ | | | | |
771 ∗ground−−−−−−−−−−−−−−+ | | | | | |
772 ∗ | | | | | | |
773 ∗ v v v v v v v
774 . subckt DFPRQN_SUB 0 node1 nodez nodeCP noded nodeRN XX=1
775
776 ∗REACTION +
777 Mn8 nodez node22 0 0 nmos W={2∗XX∗Wmin} L={Lmin}
778 Mp8 nodez node22 node1 node1 pmos W={4∗XX∗Wmin} L={Lmin}
779 Mn7 node22 nodez 0 0 nmos W={1∗XX∗Wmin} L={Lmin}
780 Mp7 node22 nodez node1 node1 pmos W={1∗XX∗Wmin} L={Lmin}
781 Mn2 1 node21 0 0 nmos W={2∗XX∗Wmin} L={Lmin}
782 Mp2 1 node21 node1 node1 pmos W={4∗XX∗Wmin} L={Lmin}
783 Mn1 node21 1 0 0 nmos W={1∗XX∗Wmin} L={2∗Lmin}
784 Mp1 node21 1 node1 node1 pmos W={1∗XX∗Wmin} L={2∗Lmin}
785
786 ∗TRANSMISSION GATE
787 Mp41 noded nodeCP node21 node1 pmos W={2∗XX∗Wmin} L={Lmin}
788 Mn4 noded nodeCPN node21 0 nmos W={2∗XX∗Wmin} L={Lmin}
789 Mn5 2 nodeCP node22 0 nmos W={2∗XX∗Wmin} L={Lmin}
790 Mp51 2 nodeCPN node22 node1 pmos W={2∗XX∗Wmin} L={Lmin}
791 ∗RESET
792 Mn21 3 nodeRN 0 0 nmos W={4∗XX∗Wmin} L={Lmin}
793 Mn20 2 1 3 0 nmos W={4∗XX∗Wmin} L={Lmin}

180

D.3 Subcircuits netlist

794 Mp12 node22 nodeRN node1 node1 pmos W={2∗XX∗Wmin} L={Lmin}
795 Mp11 2 nodeRN node1 node1 pmos W={4∗XX∗Wmin} L={Lmin}
796 Mp10 2 1 node1 node1 pmos W={4∗XX∗Wmin} L={Lmin}
797 ∗
798 Mn3 nodeCPN nodeCP 0 0 nmos W={1∗XX∗Wmin} L={Lmin}
799 Mp3 nodeCPN nodeCP node1 node1 pmos W={2∗XX∗Wmin} L={Lmin}
800
801 . ends
802 ∗∗∗
803
804 ∗∗∗
805 ∗ DFPHQ
806 ∗∗∗
807 ∗ dr iv e s t r ength−−−+
808 ∗ in3−−−−(l i k e i /p)−nodeD−−−−−−−−−−−−−−−−−−−−−−−−−−−+ |
809 ∗ in2 −−−(l i k e c l k)−nodeCP−−−−−−−−−−−−−−−−−−−−+ | |
810 ∗ in1 −−−(l i k e enab l e)−nodeE−−−−−−−−−−−+ | | |
811 ∗ output−−−−−−−−−−−−−−−−−−−−−−−−−+ | | | |
812 ∗vdd −−−−−−−−−−−−−−−−−−−−−+ | | | | |
813 ∗ground−−−−−−−−−−−−−−+ | | | | | |
814 ∗ | | | | | | |
815 ∗ v v v v v v v
816 . subckt DFPHQ_SUB 0 node1 nodeZ nodeE nodeCP nodeD XX=1
817
818 Mn6 nodeD nodeEN 1 0 nmos W={3∗XX∗Wmin} L={Lmin}
819 Mp9 nodeEN nodeE node1 node1 pmos W={2∗XX∗Wmin} L={Lmin}
820 Mn5 noded2 nodeCP node22 0 nmos W={2∗XX∗Wmin} L={Lmin}
821 Mp41 1 nodeCP node21 node1 pmos W={3∗XX∗Wmin} L={Lmin}
822 Mp8 nodeZ node22 node1 node1 pmos W={2∗XX∗Wmin} L={Lmin}
823 Mn4 1 nodeCPN node21 0 nmos W={3∗XX∗Wmin} L={Lmin}
824 Mp7 node22 nodeZ node1 node1 pmos W={1∗XX∗Wmin} L={Lmin}
825 Mn3 nodeCPN nodeCP 0 0 nmos W={1∗XX∗Wmin} L={Lmin}
826 Mp51 noded2 nodeCPN node22 node1 pmos W={2∗XX∗Wmin} L={Lmin}
827 Mn2 noded2 node21 0 0 nmos W={2∗XX∗Wmin} L={Lmin}
828 Mn1 node21 noded2 0 0 nmos W={1∗XX∗Wmin} L={2∗Lmin}
829 Mp61 nodeD nodeE 1 node1 pmos W={3∗XX∗Wmin} L={Lmin}
830 Mp3 nodeCPN nodeCP node1 node1 pmos W={2∗XX∗Wmin} L={Lmin}
831 Mn9 nodeEN nodeE 0 0 nmos W={1∗XX∗Wmin} L={Lmin}
832 Mp2 noded2 node21 node1 node1 pmos W={2∗XX∗Wmin} L={Lmin}
833 Mn8 nodeZ node22 0 0 nmos W={1∗XX∗Wmin} L={Lmin}
834 Mp1 node21 noded2 node1 node1 pmos W={1∗XX∗Wmin} L={2∗Lmin}
835 Mn7 node22 nodeZ 0 0 nmos W={1∗XX∗Wmin} L={Lmin}
836
837 . ends
838 ∗∗∗
839
840 ∗∗∗
841 ∗ Fu l l Adder
842 ∗∗∗
843 ∗ dr iv e s t r ength−−−+
844 ∗ in3−−−−−−−−−−−−−−−−−−−−−−−−−−−nodeA−−−−−−−−−−−−−−−−−−−−−−+ |
845 ∗ in2 −−−−−−−−−−−−−−−−−−−−nodeB−−−−−−−−−−−−−−−−−−−−−−−+ | |

181

D.3 Subcircuits netlist

846 ∗ in1 −−−−−−−−−−−−−nodeC−−−−−−−−−−−−−−−−−−−−−−−−+ | | |
847 ∗output2−(Carry)−−−−−−−−−−−−−−−−−−−−−−−−+ | | | |
848 ∗output1−(sum)−−−−−−−−−−−−−−−−−−+ | | | | |
849 ∗vdd −−−−−−−−−−−−−−−−−−−−−+ | | | | | |
850 ∗ground−−−−−−−−−−−−−−+ | | | | | | |
851 ∗ | | | | | | | |
852 ∗ v v v v v v v v
853 . subckt FA_SUB 0 node1 nodeSon nodeCon nodeC nodeB nodeA XX=1
854
855 Mn1 nodecon nodeb node4 0 nmos W={2∗XX∗Wmin} L={Lmin}
856 Mp1 1 nodea node1 node1 pmos W={4∗XX∗Wmin} L={Lmin}
857
858 Mn2 node4 nodea 0 0 nmos W={2∗XX∗Wmin} L={Lmin}
859 Mp2 1 nodeb node1 node1 pmos W={4∗XX∗Wmin} L={Lmin}
860
861 Mn3 5 nodea 0 0 nmos W={2∗XX∗Wmin} L={Lmin}
862
863 Mp3 4 nodea node1 node1 pmos W={4∗XX∗Wmin} L={Lmin}
864 Mp4 nodecon nodeb 4 node1 pmos W={4∗XX∗Wmin} L={Lmin}
865
866 Mn4 5 nodeb 0 0 nmos W={2∗XX∗Wmin} L={Lmin}
867
868 Mp5 nodecon nodec 1 node1 pmos W={4∗XX∗Wmin} L={Lmin}
869 Mn5 nodecon nodec 5 0 nmos W={2∗XX∗Wmin} L={Lmin}
870
871 Mp6 2 nodea node1 node1 pmos W={4∗XX∗Wmin} L={Lmin}
872 Mn6 3 nodea 0 0 nmos W={2∗XX∗Wmin} L={Lmin}
873 Mp7 2 nodeb node1 node1 pmos W={4∗XX∗Wmin} L={Lmin}
874 Mn7 3 nodeb 0 0 nmos W={2∗XX∗Wmin} L={Lmin}
875
876 Mp8 2 nodec node1 node1 pmos W={4∗XX∗Wmin} L={Lmin}
877 Mn8 3 nodec 0 0 nmos W={2∗XX∗Wmin} L={Lmin}
878
879 Mp9 nodeson nodecon 2 node1 pmos W={4∗XX∗Wmin} L={Lmin}
880 Mn9 nodeson nodecon 3 0 nmos W={2∗XX∗Wmin} L={Lmin}
881
882 Mp10 9 nodea node1 node1 pmos W={6∗XX∗Wmin} L={Lmin}
883 Mn10 7 nodea 0 0 nmos W={3∗XX∗Wmin} L={Lmin}
884
885 Mp11 8 nodeb 9 node1 pmos W={6∗XX∗Wmin} L={Lmin}
886 Mn11 6 nodeb 7 0 nmos W={3∗XX∗Wmin} L={Lmin}
887
888 Mp12 nodeSon nodec 8 node1 pmos W={6∗XX∗Wmin} L={Lmin}
889 Mn12 nodeSon nodec 6 0 nmos W={3∗XX∗Wmin} L={Lmin}
890
891 ∗Mp13 nodeCo nodecon node1 node1 pmos W={4∗XX∗Wmin} L={Lmin}
892 ∗Mn13 nodeCo nodecon 0 0 nmos W={2∗XX∗Wmin} L={Lmin}
893
894 ∗Mp14 nodeSo nodeSon node1 node1 pmos W={4∗XX∗Wmin} L={Lmin}
895
896 ∗Mn14 nodeSo nodeSon 0 0 nmos W={2∗XX∗Wmin} L={Lmin}
897 . ends

182

183

Publications and Presentations

[1] Antonio Mastrandrea, Francesco Menichelli, Mauro Olivieri, “A delay model

allowing nano-CMOS standard cells statistical simulation at the logic level”,

PRIME-2011, 7th Conference on PhD Research in Microelectronics & Elec-

tronics, 3-7 July, Madonna di Campiglio, Trento, Italy (BRONZE LEAF CER-

TIFICATE from the Scientific Committee).

[2] Olivieri, M., Menichelli, F., Mastrandrea A., Ramundo, F., Nenzi, P., “Contri-

butions in evaluating the statistical impact of technology variations on delay

and power dissipation of logic cells”, ECMI 2010, 16-th European Conference

on Mathematics for Industry, Wuppertal, Germany, July 26-30, 2010.

[3] Paolo Nenzi, Vittorio Delitala, Marco Garzuoli, Robert Larice, Antonio Mas-

trandrea, Mauro Olivieri, Stefano Perticaroli, Fabrizio Ramundo, Lionel Sainte-

Cluque, Ljiljana Trajkovic, Holger Vogt, Dietmar Warning,”Ngspice: an Open

Platform for Modeling and Simulation from Device to Board Level” 8 Dec.

2010, California MOS-AK.

[4] Mauro Olivieri and Antonio Mastrandrea, "A new logic level delay modeling

paradigm for nano-CMOS standard cells variation-aware simulation", Work-

shop on Variability modelling and mitigation techniques in current and future

technologies, DATE 2012, Dresden, Germany - March 16, 2012.

184

Publications and presentations

[5] Mauro Olivieri and Antonio Mastrandrea, "Logic drivers: a logic level de-

lay modeling paradigm for nano-CMOS standard cells statistical simulation",

IEEE transactions on Very Large Scale Integration Systems.

[6] Mauro Olivieri and Antonio Mastrandrea, “A General Design Methodology for

Synchronous Early-Completion-Prediction Adders in Nano-CMOS DSP Ar-

chitectures”, Hindawi’s Independent Journals.

[7] Mauro Olivieri, Francesco Menichelli, Antonio Mastrandrea, Zia Abbas, “Chap-

ter 7 - SPICE Simulations of Digital IC Blocks”, Springer Book [publishing].

[8] Mauro Olivieri and Antonio Mastrandrea, “A new logic-level delay modeling

paradigm for nano-CMOS standard cells variation-aware simulation”, 44a Ri-

unione annuale del Gruppo Italiano di Elettronica, Marina di Carrara, 20 - 22

Giugno 2012.

[9] Zia Abbas, Antonio Mastrandrea, Mauro Olivieri, “A voltage-based leakage

current calculation scheme and its application to nano-scale MOSFET and

FinFET standard-cell designs”, IEEE Transactions on Very Large Scale Inte-

gration Systems.

[10] Usman Khalid, Antonio Mastrandrea, Mauro Olivieri, “Novel Approaches to

Quantify Failure Probability due to Process Variations in Nano-scale CMOS

logic ”, Belgrade, Serbia 12-15 May 2014 [accepted for proceeding].

185

	Contents
	Abstract
	1 Propagation Delay in nano-Cmos ICs
	1.1 Need for High Speed Design
	1.2 Propagation Delay: Introduction and Types
	1.3 Propagation Delay Models
	1.3.1 Model for Propagation Delay Evaluation
	1.3.2 RC Chain Propagation Delay Model
	1.3.3 Charge Propagation Delay Model
	1.3.4 Logical Effort

	1.4 State of the Art Models
	1.5 Objectives of the Thesis
	1.6 Contributions of the Thesis
	1.7 Organization of the thesis

	2 Statistical Variations in nano-scale CMOS ICs
	2.1 Process and Operating Variations
	2.1.1 Introduction, Sources and Solutions

	2.2 Global and Local (i.e. mismatch) Process Variations
	2.3 Process Corner Models
	2.4 Impact of Transistor Parameters
	2.4.1 Transistor Dimensions (W, L)
	2.4.2 Threshold Voltage (VT)
	2.4.3 Oxide Capacitance
	2.4.4 Mobility

	3 Propagation delay model developed
	3.1 Overview
	3.2 Deterministic Propagation Delay Estimation Model
	3.2.1 Single stage
	3.2.2 Multi stage
	3.2.3 Slew time
	3.2.4 Load capacitance

	3.3 Statistical Propagation Delay Estimation Model
	3.3.1 Global Variation Analysis Implementation
	3.3.2 Extension to Local Variation Analysis

	3.4 Model Implementation
	3.5 Summary

	4 Results on deterministic propagation delay prediction in nominal conditions
	4.1 Overview
	4.2 Deterministic single stage
	4.2.1 inverter
	4.2.2 nand2
	4.2.3 nor2
	4.2.4 ao12_n
	4.2.5 ao22_n
	4.2.6 ao31_n
	4.2.7 ao32_n
	4.2.8 ao33_n
	4.2.9 ao112_n
	4.2.10 ao212_n
	4.2.11 ao222_n
	4.2.12 Discussion

	4.3 Deterministic multi stage
	4.3.1 inverter chain
	4.3.2 nand2 chain
	4.3.3 Full Adder
	4.3.4 Discussion

	4.4 Summary

	5 Results on statistical propagation delay prediction in variable process conditions
	5.1 Statistical single stage
	5.1.1 Inverter
	5.1.2 Nand2

	5.2 Statistical multi stage
	5.2.1 9 inverter
	5.2.2 9 nand2

	5.3 Statistical Multi Stage for Macrocell Design/Complex Circuits
	5.4 Summary

	6 Conclusions
	Bibliography
	A VHDL code
	A.1 Example: NAND2 DUT at logic level
	A.2 Example: NAND2 behavioral at logic level
	A.3 Example: NAND2 testbench at logic level
	A.4 Modelsim
	A.4.1 Compile a library by command line
	A.4.2 TCL script file
	A.4.3 Run TCL script file

	B C code
	B.1 Create new SPICE netlist
	B.2 SPICE output elaboration
	B.3 Table to VDHL matrix

	C Script code
	C.1 Calculate parameter
	C.2 Calculate Cin Capacitance
	C.3 Example: Deterministic circuit level simulation
	C.4 Example: Statistical circuit level simulation
	C.5 General use: deleting a type of file in all subdirectory
	C.6 General use: modify a file whit sed command

	D Ngspice netlist
	D.1 Ngspice
	D.1.1 Show and showmod commands
	D.1.2 Alter and altermod commands
	D.1.3 Setcirc command
	D.1.4 Print command
	D.1.5 Write command
	D.1.6 .meas command
	D.1.7 Batch mode

	D.2 Example: inverter netlist
	D.3 Subcircuits netlist

	Publications and presentations

