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Introduction

In the current scientific research, mathematical biology plays a role of increasing
relevance. New and powerful mathematical tools are improving, ever more, their
descriptive and predictive capacity in several applications of the real life. By de-
scribing a biological system in a quantitative manner, and numerically simulating
its behaviour, some properties can be inferred that might not be evident solely on
experimental basis. Various reasons have brought, in last years, to a remarkable
interest in the field of mathematical biology. Among these, the introduction of
advanced experimental technique and the availability of large amount of data, the
development of new mathematical tools in the description of complex systems, the
enhancement of computer processing capabilities to perform calculations and numer-
ical simulations, the increasing interest in in silico experimentation, which represents
a potential alternative in human and animal research due to ethical considerations,
risk, unreliability for economic reasons or other complications (Deutsch, 2004).

In this thesis we deal with mathematical models for cell migration and self-
organization in embryogenesis. Understanding mechanisms regulating collective
motion of cells brings important advantages in the resolution of crucial issues related
to the growth, development and disease of many organs and tissues (see Chapter 1).

The part of biology which studies the formation and development of the embryo
from fertilization until birth is called embryology. Morphogenesis is then the part
of embryology which is concerned with the development of patterns and forms. It
is well known that although morphogenesis processes are controlled at the genetic
scale, genes themselves cannot create the pattern. In general a series of biological
mechanisms of self-organization intervene during the early development and the
formation of particular biological structures can not be anticipated solely by genetic
information (Murray, 2003). This needs to be taken into account in the choice of a
suitable mathematical formulation of such phenomena.

The basic theory of the morphogenesis was put forward in a seminal paper
by Turing (1952) considering, on the chemical scale, systems of reaction diffusion
equations. Turing showed that different diffusion coefficients can generate, under
certain circumstances, steady states which are stable in the absence of diffusion
and become unstable when it is present. This peculiarity of the reaction diffusion
systems, known as Turing instability, can produce spatial inhomogeneous patterns
depending on the chemicals and on the geometry of the domain. The chemical theory
of the morphogenesis has been extended and applied as a possible mechanism in
pattern formation in the animal species, such as in the animal coat of zebra, leopard,
or in the butterfly wings, but also during the regeneration or segmentation in some
animal embryos (see Murray, 2003 and Section 2.1). The reaction diffusion models,
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however, do not consider the spatial organization of the cells, while, in the reality,
in biological processes the formation of cell aggregates is regulated by the response
of cell populations to chemical concentrations in the environment. This behaviour
is known as chemotaxis and can be described by the so called reaction-diffusion-
chemotaxis equations. Chemical chemotaxis models have been widely employed in
embryonic pattern formation since the seminal work by Keller and Segel (1970) (see
Section 2.2), for instance, in processes of pigmentation pattern, cell colonization
(Murray and Myerscough, 1991; Painter et al, 2000; Landman et al, 2003), or in
tumor growth (Perumpanani et al, 1996; Owen and Sherratt, 1997).

Clearly, in highly structured multicellular organisms certain processes need to be
investigated in more detail on the cellular scale, above all when attraction, adhesion
and, more generally, force generation become relevant. This leads to investigate
the role that mechanical forces play in the morphogenetic process in combination
with chemical effects. In this context, mechanochemical models have been proposed
by Oster and Murray and applied to describe, for example, the morphogenesis of
internal tissues, as dermis and mesenchyme, or of the external epithelium (see Section
2.3 and Murray, 1983; Oster et al, 1983; Murray and Oster, 1984a; Murray and
Oster, 1984b; Maini, 1999). Similar models find applications also in vasculogenesis
and dermal wound healing (Murray, 2003).

Other morphogenetic processes, for instance the one described in Chapter 1,
can involve only a small number of cells and the behaviour of a single cell is
closely influenced by the presence of other units, so that the collective motion in
cell migration needs to be investigated (see Sections 2.5–2.7). In general, when a
phenomenon takes place at different spatial and/or temporal scales, it can require
also different mathematical approaches for their complete description. They can be
represented by continuous, discrete or hybrid models, as we will see in Section 2.4.

In the subsequent chapters two main topics will be investigated, which here for
convenience will be separately discussed in two parts. Firstly, we will analyze and
mathematically model the self-organizing cell migration in the morphogenesis of the
lateral line in the zebrafish (Danio rerio). In a second part, starting from this model,
we will propose, and will study both from the analytical and the numerical point of
view, a simpler mathematical model of collective motion under only alignment and
chemotaxis effects.

Part I - A mathematical model for self-organizing cells in the ze-
brafish lateral line

In the first part of this thesis (including the first three chapters) we will study the
morphogenetic process involved in the growth and the development of the lateral
line in a zebrafish embryo, and we will propose a possible mathematical model about
it.

The lateral line is a fundamental sensory system, present in fish and amphibians,
that extends from the head to the tail along each flank of the individual. It is
involved in a large variety of behaviours: to detect movement and vibrations in the
surrounding water, for prey detection and predator avoidance, in school swimming
and sexual courtship. The main sensory organs of the lateral line are represented by
the neuromasts, located on the body surface in specific patterns. In particular we
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deal with the posterior lateral line (PLL), which comprises the neuromasts arranged
on the body and on the tail (Ghysen and Chaudière, 2004; Coombs and Netten,
2005), see Figure 0.1. Each neuromast has a rosette-shaped structure with one or
two cells in the centre innervated by sensory neurons and surrounding by other
support cells.

Figure 0.1. The posterior lateral line formation in a zebrafish embryo. An initial group of
cells migrate from the head (left) to the tail (right), while neuromasts (green dots) are
deposited along the body (source Haas and Gilmour, 2006).

In the current scientific research the function of the lateral line represents a
subject of great interest in biology. Many general issues have found a deeper
explanation, such as the interactions between multiple signaling pathways and the
coordination of cell fate during development, the behaviour of collective motion of
cells, the response of an organ to injury and the healing of damaged components
(Chitnis et al, 2012).

In the present thesis we follow closely the results obtained in recent biological
experiments performed on the zebrafish lateral line system (see Haas and Gilmour,
2006; Nechiporuk and Raible, 2008; Lecaudey et al, 2008, and the further papers
Haddon et al, 1998; Itoh and Chitnis, 2001; Draper et al, 2001; Ghysen and Chaudière,
2004; Li et al, 2004; Matsuda and Chitnis, 2010; Sarrazin et al, 2010; Mizoguchi et al,
2011; Sweet et al, 2011). The great interest for this sensory system is motivated by
the still not complete understanding of the general mechanism for cells arranging
and organization (Lecaudey et al, 2008).

Not only in relation to the lateral line, the zebrafishes hold an important role in
scientific research, being useful vertebrate model organisms whose genome is fully
sequenced. Particular advantages are due to their regenerative abilities, to robustness
and transparency of the embryos (Dahm, 2006). The zebrafish model has been
widely tested in many fields of biology: developmental biology, oncology, toxicology,
reproductive studies, genetics, neurobiology, stem cell research and regenerative
medicine (Xiang et al, 2009; Major and Poss, 2007).

Lateral line formation in the zebrafish is a complex process where embryonic cells
are driven by an articulated system of receptor activation, rather than a guidance
determined by birth. Experimental observations (Haas and Gilmour, 2006; Sarrazin
et al, 2010) have shown an initial elongated group of mesenchymal cells (called
primordium), in the range 80–100 cells, located in the otic vesicle. In few hours
post-fertilization a total migration of the primordium begins from the head to
the tail of the embryo at a velocity of about 69 µmh−1 (Lecaudey et al, 2008).
Subsequently, during the migration process a cell transition, occurring in the rear
of the migrating group, makes some cells epithelial-like (mesenchymal-epithelial
transition) and rosette-shaped structures (proto-neuromasts) begin to emerge. When
these cell aggregates become fully mature, they are detached and deposited along
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the body of the embryo, giving rise to the growth and location of neuromasts (about
four or five neuromasts along a flank, see Nechiporuk and Raible, 2008), see Figure
0.2 (a).

(a)

(b)

Figure 0.2. (a) Image from a time-lapse movie about the migration in the zebrafish
posterior lateral line primordium. Leading zone is on the right of the primordium,
trailing zone is on the left. Cell migration is to the right while neuromast deposition
occurs in the trailing region (source Lecaudey et al, 2008). (b) An example of dynamical
simulation of our mathematical model proposed in Chapter 3.

In general we can split the morphogenesis of the zebrafish lateral line primordium
in two primary mechanisms: a collective migration, and a neuromast assembly. The
first process is regulated by a haptotactic chemokine, called stromal cell-derived
factor-1a (SDF-1a), expressed by the substratum and detected by the primordium
through the receptor CXCR4b (Ghysen and Chaudière, 2004; Haas and Gilmour,
2006). Moreover, the total migration is ensured by a series of cell-cell interactions via
mechanical forces, and by a cell-substratum adhesion, both mediated by molecules
as cadherins and integrins (see Section 1.3, and also Liu et al, 2003a; Kerstetter
et al, 2004; Papusheva and Heisenberg, 2010; Liu et al, 2011; Mertz et al, 2013).

The neuromast formation, in the second stage, is regulated by two main chemotac-
tic factors expressed by the primordium, the fibroblast growth factors FGF3-FGF10,
and by their receptors FGFRs. Two prevalent experimental observations are shown
in Lecaudey et al (2008): firstly, FGF3 and FGF10 are substantially equivalent,
demonstrating a robustness of the system; secondly, FGF signal and its receptor
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are mutually exclusive. In particular FGF3-FGF10 are broadly expressed in the
leading region of the primordium and focused in one or two cells in the centre of the
rosettes in the trailing region, on the other hand FGFR is expressed in the trailing
region except the FGF sources. The first observation suggests us take into account,
in our mathematical model, only a single growth factor that we will name FGF. The
second observation let us then divide the cell population in two kinds: leader cells
that produce FGF signal and follower cells that, activating the receptor FGFR, do
non produce any signal. At the beginning, the primordium contains only leader cells,
afterwards, a process of differentiation on the backside makes some cells follower-like
(corresponding to the mesenchymal-epithelial transition), except one or two cells
located in the centre. The follower cells are then driven toward the FGF sources
to form rosette-shaped aggregates (the future neuromasts), that subsequently are
detached during the migration. Hence a new rosette is generated in a cyclic process
(see Section 1.4).

Finally, the concomitant mechanisms that ensure the leader-to-follower transition
in the trailing region can be represented by three conditions: a low level of SDF-1a
(Ghysen and Chaudière, 2004), a high level of FGF (Lecaudey et al, 2008) and an
influence of lateral inhibition (Haddon et al, 1998; Itoh and Chitnis, 2001; Hart et al,
2003; Matsuda and Chitnis, 2010; Mizoguchi et al, 2011; Sweet et al, 2011). This last
condition involves a common phenomenon in embryology, that here can be read as
follows: a cell that adopts the follower fate inhibits its immediate neighboring cells
from doing likewise. This mechanism, for which still remain some unresolved issues
(Chitnis et al, 2012), will be translate in our mathematical formulation counting
the number of cells surrounding a given cell, and considering the leader-to-follower
transition favored by a low number of neighboring cells. In this way a central leader
will be more inhibited to become follower, while a cell at the edge of the primordium
will be more likely to undergo the transition (see Section 1.5).

In Chapter 3 we will propose a mathematical model for the above discussed
morphogenesis process. As we will see, our model will be consistent with the biological
observations if we consider chemical effects concomitant with other cell mechanisms,
as lateral inhibition, alignment, damping, adhesion-repulsion effects. Taking into
account the low number of cells involved, we will adopt a hybrid discrete in continuous
model, where cells are treated as discrete entities moving in a continuous space, and
chemical signals, at molecular level, are described by continuous variables (see Section
2.4). On the chemical scale we will adopt diffusion and chemotaxis equations (see
Sections 2.1–2.2), while on the cellular scale typical effects of collective dynamics will
be taken into account (see Sections 2.5–2.7). Although the cell will be discrete points
(coincident with their centres), we will recover their shape through suitable detection
radii and, for simplicity, we will suppose circular cell shapes. In our mathematical
formulation we will follow two objectives. Firstly, we would like to obtain a minimal
model which is able to describe the total cell migration, the formation and the
detachment of the neuromasts, in the spatial and temporal scale of the experimental
observations. Secondly, we will require the existence and stability of the rosette
structures characterizing the neuromasts, as stationary solutions of the system. As
we will see, this will provide restrictions on the range of some parameter of the
model, fixing their values or their suitable ratios. Other parameters, used in the
numerical simulations, will be obtained from biological literature or by a numerical
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data fitting. In our analysis we will consider the 2D case, because collective motion
takes place in an environment confined to essentially two dimensions due to the
flattened morphology of the primordium (see Chapter 1).

From a mathematical point of view, on cell scale our model is based on a second
order dynamic equation in the form

Ẍi = F(t,X, Ẋ, u,∇u)− µẊi,

where Xi ∈ Ω ⊂ R2, i = 1, . . . , Ntot, is the position vector of the i-th cell, Ntot ∈ N
is the total number of cells, X := (X1, . . . ,XNtot), and Ẋ := (Ẋ1, . . . , ẊNtot).
The function F includes several effects: from the detection of chemical signals u
(chemotaxis, lateral inhibition) to mutual interactions between cells (alignment,
adhesion, repulsion). The damping term −µẊi, with µ constant, represents the cell
adhesion to the substrate. All these effects take into account a non local sensing
radius.

On the molecular scale, chemical signals u(x, t) : Ω× [0, T ]→ R are described
by a diffusion equation

∂tu = D∆u+ S(t,X, u),

with possible source or degradation terms given in S, that can depend on time, on
cell spatial distribution of the cells, and on chemical factor u.

Finally the leader-follower cell state, involved in the mesenchymal-epithelial
differentiation, is performed by a switch variable, whose evolution in time is given
by a suitable threshold function.

Now, let Xi(t) be the position of the i-th cell, ϕi(t) the state variable assuming
the values 0-1 respectively for a follower-leader cell, f(x, t) the concentration of the
FGF3-FGF10 (equivalent) signals and s(x, t) the concentration of the chemokine
SDF-1a, our model reads:

Ẍi = α

W

∫
B(Xi,R̄)

∇s(x, t)wi(x) dx + γ(1− ϕi)
W

∫
B(Xi,R̄)

∇f(x, t)wi(x) dx

+ 1
N̄i

∑
j:Xj∈B(Xi,R1)\{Xi}

H(Ẋj − Ẋi) +
∑

j:Xj∈B(Xi,R5)\{Xi}

K(Xj −Xi)

− [µF + (µL − µF)ϕi] Ẋi,

ϕi =



0, if δ

W

∫
B(Xi,R̄)

s(x, t)wi(x) dx

−kF + (kL − kF)ϕi
W

∫
B(Xi,R̄)

f(x, t)
fmax + f(x, t)wi(x) dx + λΓ(ni) ≤ 0,

1, otherwise,

∂tf = D∆f + ξ

Ntot∑
j=1

ϕjχB(Xj ,R3) − ηf,

∂ts = −σs
Ntot∑
j=1

χB(Xj ,R3),

(0.1)
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where α, γ, µL, µF, δ, kL, kF, λ, D, ξ, η, σ are given positive constants, and R̄,
Ri, i = 1, . . . , 5, are suitable sensing radii (some of them included in the functions
K(Xj−Xi) and Γ(ni)). More details about the notations and the choice of parameters
will be given in Section 3.2. Here we remark that we will assume some groups of
parameters to have different values depending on the leader (“L”) or follower (“F”)
cell state. They are marked by the respective letter in subscript position. This will
be justified in Sections 3.2 and 3.7.

In particular, the integral terms in (0.1)1,2, related to the detection of a chemical
signal by the i-th cell in its neighbourhood, represent a weighted average, through a
truncated Gaussian weight wi(x), over a ball centred in Xi with sensing radius R̄.

First term in equation (0.1)1 translates the haptotactic attraction exerted on
the cells by the SDF-1a signal (Murray, 2003; Perthame, 2007), similarly the second
term is the chemotactic effect of the FGF factor, that acts only on a follower cell
(ϕi = 0) due to the activation of the FGFR receptor, while leader cells (ϕi = 1),
producing FGF signal, do not activate their receptors (mutual exclusion previously
described). In the third and fourth term we will include cell-cell interaction via
mechanical forces, due to filopodia. H(Ẋj − Ẋi) is an alignment term inspired by
the Cucker-Smale mechanism (Cucker and Smale, 2007a), though in our case it is
coupled with other effects. This term is taken proportional to a weighted average of
the differences in the cell velocities, N̄i being the number of neighbours of the i-th
cell. Namely, we choose

H(Ẋj − Ẋi) := [βF + (βL − βF)ϕiϕj ]
R2

1
R2

1 + ||Xj −Xi||2
(Ẋj − Ẋi),

where βF and βL are positive constants, respectively for a follower or a leader cell.
A similar term, applied in a biological context, can be found in Szabò et al (2006),
Arboleda-Estudillo et al (2010), and Sepúlveda et al (2013), since the seminal work
of Vicsek et al (1995) (see Sections 2.5–2.7). In our case this alignment effect will be
justified in Section 3.7.

The function K(Xj − Xi) will include adhesion-repulsion effects on suitable
sensing regions. In this regard we assume

K(Xj −Xi) :=


−ωrep

(
1

||Xj −Xi||
− 1
R4

)
Xj −Xi

||Xj −Xi||
, if ||Xj −Xi|| ≤ R4;

ω̄adh (||Xj −Xi|| −R4) Xj −Xi

||Xj −Xi||
, if R4 < ||Xj −Xi|| ≤ R5;

where R5 > R4 and ω̄adh := ωadh,F + (ωadh,L−ωadh,F)ϕiϕj , with ωrep, ωadh,L, ωadh,F
differentiated constants for a leader or a follower cell. In practice, we consider a
repulsion in the form 1/r, r being the distance between two cells, and a linear elastic
attraction. Similar terms can be found, for instance, in D’Orsogna et al (2006),
Cristiani et al (2011a), Joie et al (2014), Albi and Pareschi (2013).

The last term in (0.1)1 is due to the cell adhesion to the substrate, possibly with
a different damping coefficient according to Rubinstein et al (2009), Fournier et al
(2010), Bayly et al (2012).

In equation (0.1)2 the switch variable ϕi represents the follower-leader state of
the i-th cell, corresponding respectively to the values 0-1. Its definition takes into
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account the three conditions for the leader-to-follower transition that we have briefly
discussed above, i.e. the low level of SDF-1a concentration (first term), the high
level of FGF factor (second term) and the lateral inhibition effect in Γ(ni). This
last function will depend on the number ni of neighbours surrounding the i-th cell
in a fixed interaction range. The coefficients kL < kF make then a possibly delayed
inverse follower-to-leader transition (see Section 3.2).

Equations (0.1)3,4 describe the concentration of the main chemical signals involved
in the biological process, respectively the FGF growth factor and the chemokine
SDF-1a. In the first equation next to the diffusion term, we consider the sources
of FGF defined substantially by the shape of a cell. So we can take characteristic
functions of a ball centred on each leader cell, with a radius equal to the cell ray. On
the other hand, follower cells do not produce the growth factors. An (exponential)
molecular degradation term is then taken into account with constant rate η. In
equation (0.1)4 the SDF-1a concentration degrades when its molecules bind with the
receptor CXCR-4b. Similarly to the FGF equation, we will consider characteristic
functions centred on each cell of the primordium (see Section 3.2).

Initial and boundary conditions for system (0.1) are represented by the initial
position and cell velocity,

Xi(0) = Xi0, and Ẋi(0) = 0, i = 1, . . . , Ntot,

together with the initial cell state of leader,

ϕi(0) = 1, i = 1, . . . , Ntot.

For the FGF signal we will assume zero initial concentration and, since no chemoat-
tractant is supposed to leave the spatial domain Ω, a classical homogeneous Neumann
condition is imposed on the boundary:

f(x, 0) = 0; ∂f

∂n = 0, on ∂Ω.

Finally, since initially SDF-1a is only located in a given region, we will assume

s(x, 0) = s0(x),

distributed on a stripe according to the experimental observation in Ghysen and
Chaudière (2004), see also Section 3.2.

Main results

Starting from system (0.1), we will prove the existence of stationary solutions
biologically relevant and consistent with the formation of the neuromast structures.
Namely, we will define and investigate particular configurations, that we will name
N -rosettes, formed by a leader cell in the centre, surrounded by N follower cells,
whose centres are located on the vertices of a regular polygon of N sides, centred in
the leader cell (Figure 0.3).

Assuming some physically reasonable hypotheses on the distances between the
cells and on the interaction radii, from geometrical considerations some properties
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(a) (b)

Figure 0.3. (a) Example of 8-rosette with a leader centred in XL and 8 followers centred in
Xi, i = 1, . . . , 8. (b) Geometrical configuration of a N -rosette with a leader cell centred
in XL and some followers centred in Xi−1, Xi, Xi+1 (see also Section 3.4).

will be deduced for our steady solutions. Among these, for instance, we will prove the
existence of an upper bound for N and of a range of possible distances, depending
on N , that will be admissible in a N -rosette. Such values are in a good agreement
with the experimental observations shown in Lecaudey et al (2008). Moreover, the
stationary model will impose important restrictions on some parameters of the
system, which will be used in the numerical tests of the dynamical case. About the
stability of the steady configurations we will give then a numerical assessment. In
the temporal range of the real phenomenon we will observe the N -rosettes be stable.
For more details we refer to Section 3.4.

Finally, from a dynamical point of view some numerical simulations will be
performed to show the behaviour of the model and its qualitative and quantitative
accuracy to describe the evolution of the cell aggregate. In this regard we will develop
a numerical approximation scheme based on finite differences. The parameters of
the system, fixed in part by the steady model, will be estimated from the biological-
modelling literature or by a suitable numerical data fitting (see Section 3.7). Our
numerical tests will show a nice agreement with biological evidences, both on the
spatio-temporal scale and on the chemical concentration scale of the physical process
(see previous Figure 0.2 (b)). Furthermore, we will see that our model can reproduce
the self-generation of chemical gradient by the migrating cells of the primordium, a
mechanism hypothesized for the cell migration in embryos (Dambly-Chaudiére et al,
2007; Scherber et al, 2012) and recently proved in vivo on the zebrafish by Donà
et al (2013) (see Section 3.6–3.7).

Part II - A mathematical model of collective motion under alignment
and chemotaxis

In the second part of the thesis (comprising the fourth chapter) we will propose
a hybrid mathematical model of collective motion based on an alignment and
chemotactic effect in a system of interacting particles. This model, which can
be considered an extension of Cucker-Smale model (Cucker and Smale, 2007a),
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will be studied both from the analytical and the numerical point of view. The
coupling between alignment effect, performed by a Cucker and Smale-like term, and
chemotaxis is already considered, as we have seen, in the first part of the thesis in
relation to the mathematical model for the zebrafish lateral line (see Chapter 3).

Collective motion models, of which the Cucker-Smale model is an example,
describe the collective behaviour of individuals through simple interaction rule (align-
ment, attraction, repulsion) or their combinations. The main feature in collective
dynamics is that the individual action is strongly influenced by the interaction
with other units, with respect to the case in which the single was alone. Collective
motions were observed in many living and non-living systems: fluids, nano swimmers,
flocks of birds, schools of fish, swarms, herds of mammals, cell aggregates, crowds of
humans (Vicsek and Zafeiris, 2012). The research in this area is of great interest
for the applications in many fields of the real life, from biomedical field, in relation
to the collective motion of cells, to socio-economic field, to the problems of human
engineering (see Section 2.5, and also Naldi et al, 2010; Méhes and Vicsek, 2014).

The Cucker-Smale model describes the collective behaviour of N interacting
particles under an alignment effect. The original model (Cucker and Smale, 2007a)
was proposed for flocks of birds, but it can be applied in a more general context,
looking at the alignment as a consensus attainment in a group (Couzin et al, 2005).
Previous works, from which Cucker and Smale were inspired, can be found since the
paper of Vicsek et al (1995), and similar studies are discussed in Tsitsiklis (1984),
Jadbabaie et al (2003). However, the Cucker-Smale’s paper is known to have shown
an analytical result on the asymptotic behaviour in a group of autonomous agents
under an alignment effect.

The hypothesis assumed by the model is that the force acting on a single particle
is a weighted average of the differences of its velocity with those of the other particles.
Let us consider N ∈ N agents with position and velocity given by Xi,Vi ∈ Rn, for
i = 1, . . . , N , in continuous time the model reads:


V̇i = β

N

N∑
j=1

α1(
α2 + ‖Xi −Xj‖2

)σ (Vj −Vi),

Ẋi = Vi,

(0.2)

where β, α1, α2, σ are positive constants and ‖·‖ is the Euclidean norm in Rn.
In Cucker and Smale (2007a) it is shown, by an analytical point of view, that

under suitable initial data and parameters of the model the system of particles
evolves to a so called flocking state, in which all agents have the same velocity. This
result has been then improved by Ha and Liu (2009) through an explicit Lyapunov
functional approach. A key parameter of the system is the exponent σ in (0.2),
that translates the rate of decay when the alignment effect spatially propagates
in the group. In particular it is proved that, if σ ∈ [0, 1/2], then the flocking
behaviour is always ensured, regardless of initial data (unconditional flocking), while,
if σ ∈ (1/2,+∞), the flocking state is guaranteed only under suitable parameters
and initial configurations of the system (conditional flocking), but in general the
group may be scattered.
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Cucker and Smale-like models have been widely employed in collective dynamics
(see Sections 2.6–2.7) and several applications have found confirmation from the
biological field to the collective motion of different interacting groups (Szabò et al,
2006; Belmonte et al, 2008; Arboleda-Estudillo et al, 2010; Sepúlveda et al, 2013;
Albi and Pareschi, 2013).

Recently, many extensions have been proposed, providing some analytical results
about them. Among these, we find alignment models with noise (Cucker and
Mordecki, 2008), phototaxis (Ha and Levy, 2009), repulsion Cucker and Dong (2010),
individual with a preferred heading velocity (Cucker and Huepe, 2008), see also
Section 4.1.

In Chapter 4, starting from equations (0.2), we will propose a Cucker and Smale-
like model with chemotaxis effect for a system of N interacting particles. We will
consider a hybrid description: discrete for the particle scale and continuous at the
chemical level. In particular, we will assume that the force acting on a single particle
will be given by an alignment term, proportional to the differences of velocity with
the other particles, and by a chemotactic term, typically proportional to the gradient
of concentration of a chemical signal f(x, t), supposed produced by the particles
themselves (Murray, 2003; Perthame, 2007). Then, for the signal f(x, t) we will
assume a dissipative diffusion equation with source, as discussed in Section 3.2. If
the cells are supposed to be circles of radius R, whose centres are located in Xi with
velocity Vi, the model reads:

V̇i = β

N

N∑
j=1

1(
1 + ‖Xi−Xj‖2

R2

)σ (Vj −Vi) + γ∇f(Xi, t),

Ẋi = Vi,

∂tf = D∆f + ξ
N∑
j=1

χB(Xj ,R) − ηf,

(0.3)

where β, σ, γ,D, ξ, η are positive constants, and χB(Xj ,R) is the characteristic function
of the ball centred in Xj with radius R.

Initial data will be given by initial position and velocity of the cells and by the
zero concentration of the chemoattractant f .

Main results

Starting from system (0.3) we will consider, for analytical and numerical simplicity,
the two-dimensional case. By a fixed–point argumentation we will prove local
existence and uniqueness of the solution (see Section 4.3). Then, providing a
suitable principle of continuation of solutions, we will extend the local existence and
uniqueness for all t ∈ [0,+∞) (see Section 4.4).

In relation to the asymptotic behaviour of the proposed model, we will consider
particular equilibrium configurations corresponding to a state in which all particles
of the system have the same position with zero velocity. From an analytical point of
view, we will prove their asymptotic stability on a linearized version of the system
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(0.3) around these equilibrium points. In particular, through a suitable Lyapunov
functional, we will show the asymptotic convergence of the position and velocity
of the particles toward those of their centre of mass. Then the centre of mass of
the system is proved to go to zero asymptotically in time (see Section 4.5). The
behaviour of the full nonlinear system will then be tested, from a numerical point of
view, performing several meaningful dynamical simulations (Figure 0.4). For them a
numerical approximation scheme based on finite differences will be employed. Our
results will show a complete concordance with the behaviour of the linearized system
(see Section 4.6). Moreover, they suggest that an analytical convergence result on
the nonlinear system could possibly be obtained.

(a)

(b)

Figure 0.4. An example of dynamical simulation of the model (0.3) proposed in Chapter 4.

Hence, we remark that while the original Cucker-Smale model displays two possi-
ble behaviour, conditional and unconditional flocking, here, also when the dispersion
of the group could occur solely with an alignment interaction, the chemotaxis effect
ensures in any case the flocking state, moreover with the stronger condition that
all particles converge in a same position with zero velocity. Among the various
numerical simulations, inspired from our model on the lateral line in Chapter 3, we
will consider also the case of two kinds of cells, named leaders and followers: both
subjected to the alignment effect and chemotaxis, but only the first expressing the
chemical signal. In this case we will observe the convergence of the group toward the
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sources of the chemoattractant. Finally, we will consider the collective motion under
chemotaxis, neglecting the alignment effect. Our numerical tests, in this regard,
seem to show the absence of convergence, and an oscillating motion of the particles
around their centre of mass presents. This suggests that, in our model, the only
chemotactic effect is unable to reproduce biological phenomena involving stationary
aggregates.

Plan of the thesis

The present thesis is organized in four chapters.
In Chapter 1 we will introduce biological elements about the morphogenetic

process occurring in the development of the lateral line in a zebrafish. After a first
discussion on the lateral line system and on its fundamental relevance in the current
scientific research we will focus on the main mechanisms of chemical signaling and
collective cell migration, that will be taken into account later in our mathematical
formulation of the phenomenon.

In Chapter 2 we will provide a mathematical-modelling background that, starting
from the morphogenesis on the chemical scale, will gradually lead us to discuss
the existing mathematical models, proposed in the last years to describe collective
motion in living system and in particular in the biological field. Example of numerical
simulations, and their comparison with experimental evidences will be briefly shown,
taken from the recent modelling literature.

In Chapter 3 we will introduce our hybrid mathematical model describing the
self-organizing cell migration in the zebrafish lateral line primordium. We will
discuss the derivation of the model, justifying our modelling choices and comparing
them with the existing literature. Particular steady states, corresponding to the
emerging neuromasts, will then be investigated and their stability will be numerically
assessed. Moreover, after a description of the designed numerical approximation
scheme, some dynamical simulations will be proposed to show the powerful and the
limit of our approach. Finally, we will discuss the estimate of the parameters of the
model, derived in part by the biological and the modelling literature, in part by the
stationary model or by a numerical data fitting.

In Chapter 4 we will propose a Cucker and Smale-like mathematical model of
collective motion. Our hybrid model will describe a system of interacting particles
under an alignment and chemotaxis effect. From an analytical point of view, local
and global existence and uniqueness of the solution will be proved. Furthermore,
the asymptotic behaviour of the model will be investigated on a linearized form
of the system. From a numerical point of view, through an approximation scheme
based on finite differences, the full nonlinear system will be simulated and some
significant dynamical tests will be shown. Numerical results will be compared with
those analytical, and new perspectives will be proposed.

Future perspectives

In relation to the first part of the present thesis, we remark that, as every model,
the proposed mathematical model for the zebrafish lateral line has some limits in its
applicability. For instance, in this model all cells are equally supposed to be circular
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and deformations in cell shape are not taken into account, but they are described
only indirectly, introducing suitable interacting radii. Then, the mathematical
description is limited only at the processes occurring from the beginning of the
cell migration to the deposition of neuromasts. Biological phenomena arising in
the next few hours post-fertilization, or in the time after the neuromast formation,
are neglected. A possible extension of the model could investigate subsequent or
concomitant processes with respect to the lateral line development. Moreover, as
we could observed, in our modelling choice, next to the biological immediately
evident mechanisms described in the existing literature, such as chemotaxis effects,
chemical signal diffusion, cell adhesion-repulsion, damping term, it was necessary to
introduce other effects, as our lateral inhibition model, cell alignment, differentiated
parameters for the leader-follower cell state, to obtain consistent results with the
experimental observations. This could represent a starting point to perform further
biological experiments in such a context to validate our assumptions, to provide
a better calibration of our model, or to propose new insights. Recently, we have
launched a collaboration with some clinicians to apply our basic model to describe
cell aggregates in analogous systems, for instance in relation to cardiac stem cells
for which a hybrid mathematical description, with interactions similar to these
discussed in this thesis, seems to be appropriate. Particular spherical structures
(cardiospheres), characterizing such type of cells under certain conditions, suggest
also an extension of the model to the three-dimensional case.

For the second part of the thesis, in a more theoretical framework, the analytical
convergence result obtained on the linearized model of collective motion with align-
ment and chemotaxis could be extended to the nonlinear case. Furthermore, the “toy
model” may be expanded introducing other interactions, such as adhesion-repulsion,
damping or lateral inhibition effect, or considering more cell populations and different
chemical signals. It would be meaningful, for instance, to study the general model
proposed on the zebrafish lateral line and to establish analytical results about the
neuromast formation and their detachment.
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Chapter 1

Morphogenesis of the zebrafish
lateral line

1.1 Introduction

In this chapter we will describe the biological processes that regulate the growth
and the development of the lateral line in zebrafishes. After a discussion on the
lateral line system, we will focus on the primary mechanisms that concur to this
morphogenetic phenomenon. Particular emphasis will be given on the biological
aspects that will be take into account to design, in next chapters, a mathematical
model consistent with the experimental observations presented here.

Morphogenesis is the process that leads to the development of patterns and forms
during the embryonic stage of an individual. The part of biology which studies
the formation and the development of the embryo, from the fertilization to the
birth, is then called embryology, and the set of the involved processes embryogenesis.
Embryogenesis consists in a series of phenomena of growth, differentiation and
organogenesis. In general, we can distinguish three main stages. The first stage is
the cleavage, a rapid cell division occurring after fertilization, with no significant
growth, producing a cluster of cells (morula) of the same size as the original zygote.
At the end of this process the embryo is called blastula and is formed by a spherical
single layer of cells (the blastoderms) surrounding a fluid-filled cavity. The second
stage consists in the gastrulation, a process of migration and self-organization in
which three cell layers, called germ layers, originate (ectoderm, mesoderm and
endoderm). During this phase the embryo is called gastrula. The third stage is
the organogenesis, the development of the internal organs of the individual. Each
germ layer gives rise to specific tissues and organs. In general the ectoderm, the
outermost layer, gives rise to epidermis and other tissues that will later form the
nervous system (see also Section 1.2). The mesoderm, located between the ectoderm
and the endoderm, gives rise to the various internal organs, such as hart, kidney,
connective tissue and blood vessels. The endoderm, the innermost layer, leads to
the formation of the epithelium of the digestive and respiratory system and of the
organs such as liver and pancreas (Reece et al, 2013).

During the embryonic stage, morphogenetic processes can involve molecular
and cellular scale. On chemical scale many substances, called morphogens, govern
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the pattern of tissue development. Local concentration gradients act on the cells
providing a spatial information and controlling their organization and differentiation.
In general, we can distinguish three types of signals: intracellular signals, which act
when a molecule activates a receptor located on the cell surface, and give rise to
signaling cascades inside the cell; long range diffusive signals, that direct the spatial
cell organization in surrounding tissue (e.g. chemotaxis, Section 2.2); cell interaction,
for instance through cell adhesion molecules such as integrins and cadherins (see
Sections 1.3–1.4). On the cell scale morphogenesis concerns the change in the cellular
structure or how cells interact in tissues, implying tissue elongation, thinning, folding
or separation of one tissue into distinct layers (Gilbert, 2000). For example, the
cellular differentiation such as the mesenchymal-epithelial transition, induce a change
from a motile cell state, characterized by large migratory properties, to a polarized
state, in which cells tend to remain closely connected through cell-cell junctions.
Conversely the reverse process epithelial-mesenchymal transition (see Sections 1.4).

In the next sections we introduce, from a biological point of view, the morpho-
genesis process arising during the early development of the lateral line system in a
zebrafish embryo.

1.2 The zebrafish lateral line

The lateral line is a sensory system, which is present in fish and amphibians, that
is used to detect movement and vibration in the surrounding water within few
centimeters, and is involved in a large variety of behaviours, from prey detection to
predator avoidance, school swimming and sexual courtship. It extends from the head
to the tail along each flank of the fish, and it is formed by a set of sensory organs,
the neuromasts, arranged on the body surface in specific patterns. The neuromasts,
located between the ear and the eye, form the so-called anterior lateral line system
(ALL), while neuromasts on the body and tail form the posterior lateral line system
(PLL) (Ghysen and Chaudière, 2004; Coombs and Netten, 2005), see Figure 1.1.
Each neuromast consists by sensory hair cells at its centre. While the neuromast is
embedded in the epidermis, each hair cell extends a ciliary bundle into the water,
covered with a gelatinous cupula, in this way water movement is shared with the
movement of the bundle. The hair cells are then innervated by sensory neurons
and are surrounded by other support cells, which provide support during growth
and regeneration of the sensory hair cells following injury (Chitnis et al, 2012), see
Figure 1.2.

The function of the lateral line has attracted the attention of biologists for over
a hundred and fifty years, and currently remains a subject of active study by sensory
ecologists and physiologists (Dijkgraaf, 1989). The lateral line primordium has
contributed to a deeper understanding in many fundamental issues, such as: how
interactions between multiple signaling pathways direct the coordination of cell fate
and morphogenesis during development, how collective migration is controlled, and
how an organ responds to injury and replaces damaged components (Chitnis et al,
2012). In relation to the disorders of the nervous system, lateral line have been used
to understand how the genetic defects cause functional abnormalities in the human
brain, spinal cord and sensory organs.
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Figure 1.1. Scheme of an adult fish, illustrating the innervation of ALL and PLL. The
photograph below shows the organization of ALL (green) and PLL (red) in a young
larvae (source Ghysen and Chaudière, 2004). Neuromasts are not shown, but they can
be imaged located along the green and the red line, in a pattern similar to that in Figure
1.3 showing a zebrafish embryo.

Figure 1.2. A scheme of a neuromast, comprising a core of mechanosensory hair cells,
surrounded by support cells, and innervated by sensory neurons (source Ghysen and
Chaudière, 2004).

Recent studies (Haas and Gilmour, 2006; Nechiporuk and Raible, 2008; Lecaudey
et al, 2008, see also Haddon et al, 1998; Itoh and Chitnis, 2001; Draper et al, 2001;
Ghysen and Chaudière, 2004; Li et al, 2004; Matsuda and Chitnis, 2010; Sarrazin
et al, 2010; Mizoguchi et al, 2011; Sweet et al, 2011) have investigated migration
and self-organization in the zebrafish (Danio rerio) lateral line system, where a
complex system of receptor activation drives embryonic cells, rather than a guidance
determined by birth. However, the complete mechanism for cells arranging and
organization is still relatively poorly understood (Lecaudey et al, 2008).
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The zebrafish represents an important vertebrate model organism in scientific
research. It is particularly efficient for its regenerative abilities. Precursors to
all major organs are visible within 36 hours of fertilization, and hatching takes
place from 12 to 36 hours later. Moreover, its genome has been fully sequenced.
The major advantages for scientists are due to its embryonic development, that is
easily observable and testable, in fact zebrafishes embryos are robust, transparent,
and able to develop outside their mother (Dahm, 2006). In particular lateral
line is located on the surface, under the skin, and it is easy to monitor and to
selectively label. Research with zebrafishes has brought improvements in the fields of
developmental biology, oncology (Xiang et al, 2009), toxicology, reproductive studies,
genetics, neurobiology, stem cell research and regenerative medicine (Major and
Poss, 2007). Several transgenic models of cancer could be made using zebrafishes,
such as melanoma, leukemia and pancreatic cancer (Liu and Leach, 2011). The great
ability to regenerate skin, heart and (in larval stages) brain, makes the zebrafish
a model for tissue repair (Major and Poss, 2007). In cardiovascular research, the
zebrafish has been employed to model blood clotting, blood vessel development,
kidney development and disease (Drummond, 2005). Finally, in relation to the
immune system, many human infectious diseases have be modelled in zebrafish
(Meeker and Trede, 2008).

Loosely speaking, lateral line formation in the zebrafish consists in a group of
mesenchymal cells, in the range 80–100 cells (Haas and Gilmour, 2006; Sarrazin et al,
2010), that migrate driven by a haptotactic signal. In a second phase, a process of
differentiation in the rear of the migrating group induces a mesenchymal-epithelial
transition that is at the origin of the detachment of rosette-shaped structures (about
four-five along the body, Nechiporuk and Raible, 2008). This corresponds to the
growth and location of neuromasts along the two flanks of the embryo (Figure 1.3 (a)).
In general we can state two primary mechanisms that concur to this morphogenesis
process: a collective migration, and a neuromast assembly.

1.3 The collective cell migration. The role of the SDF-
1a signal

About zebrafish PLL, recent studies and experimental observations (Haas and
Gilmour, 2006; Lecaudey et al, 2008; Nechiporuk and Raible, 2008) show an initial
elongated single group of mesenchymal cells (called primordium) in the otic vesicle,
in which we can distinguish a trailing region near the head and a leading region
oriented towards the future tail of the embryo. It can be morphologically visible
just at about 18 hours post-fertilization (Mizoguchi et al, 2011; Nechiporuk and
Raible, 2008). Mesenchymal cells, as we will see below, among early embryonic cells
are characterized of large migratory properties, due to long finger-like protrusions
called filopodia or lamellapodia that adhere on the adhesive sites and pull the cell
along them (Walbot and Holder, 1987; Alberts et al, 1994). Different is the case of
epithelial cells, as will be remarked in Section 1.4.

In the following few hours, a total cell migration begins posteriorly, from head to
tail, with a constant velocity of about 69 µmh−1 (Lecaudey et al, 2008). Then the
cells in the trailing region assemble into rosette structures (proto-neuromasts), that
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(a)

(b)

Figure 1.3. (a) A zebrafish embryo during the posterior lateral line formation. Green dots
are the deposited neuromasts during the cell migration (source Haas and Gilmour, 2006).
(b) Time-lapse movie of the cell migration in the zebrafish lateral line. We distinguish
a leading region on the right on the tip of the migrating group of cell, and a trailing
region on the left toward the head of the embryo. The detachment of rosette-shaped
groups of cells in the trailing region corresponds to the neuromast deposition (source
Lecaudey et al, 2008).

are progressively deposited during the migration to form neuromasts (Nechiporuk
and Raible, 2008), see Figures 1.3 (b)–1.4 (a).

About cell migration a very important role is played by chemokines as the stromal
cell-derived factor-1a (SDF-1a) and its CXCR4b receptor (Ghysen and Chaudière,
2004; Haas and Gilmour, 2006). The former is expressed by the horizontal myoseptum,
that separates the dorsal and ventral axial muscles, and acts as a haptotactic stripe
for the migrating cells; the latter is expressed by the primordium itself (Li et al,
2004). Experimental observation show that SDF-1a is synthesized by a narrow
stripe, approximately three cells wide (Ghysen and Chaudière, 2004). We speak
about haptotaxis when cells are attracted towards concentration gradients of a
chemical substance expressed or bound on a surface (e.g. in this case the horizontal
myoseptum). In general, if such signal diffuses in a fluid or in a tissue we refer to
chemotaxis (see Section 2.2).

SDF-1 is a chemokine protein strongly haptotactic, produced in two forms:
SDF-1a and SDF-1b. SDF-1/CXCR4 interaction is involved in many long-distance
migration events, such as homing lymphocytes (in which this genes were originally
discovered), the migration of metastases and the germ cells in both fish and mice
(Doitsidou et al, 2002; Knaut et al, 2003). In particular, in tumour metastasis cancer
cells that express the receptor CXCR4 are attracted to metastasis target tissues that
release the ligand SDF-1 (Muller et al, 2001). During embryogenesis it directs the
migration of cells from foetal liver to bone marrow and the formation of large blood
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(a)

(b)

Figure 1.4. (a) Kymograph analysis of cell movement. Dotted line on the top represents
the region used for the kymograph. In the bottom panel the vertical axis represents
the time. The lines are shown predominantly parallel, meaning that cells migrate at
a constant speed and maintain a relative position (dotted lines). The deceleration of
cells at the back of the primordium, in view of the deposition of neuromasts, can be
seen in the increased distance between the two dotted lines on the left (source Haas and
Gilmour, 2006). (b) Cell movement is strongly uncoordinated in absence of CXCR4b
function, with a “zig-zag” pattern in the kymograph analysis (source Haas and Gilmour,
2006).

vessels. In adulthood, SDF-1 plays an important role in angiogenesis by recruiting
endothelial progenitor cells from the bone marrow through a CXCR4 dependent
mechanism (Zheng et al, 2007).

Chemokine signaling is necessary to drive migration. In fact, it has been proved
that, in absence of CXCR4b, cell movements are strongly uncoordinated, with a
“zig-zag” pattern, as can be seen performing kymograph analysis, where a marked
region of the primordium is observed and represented in a figure in which the vertical
axis indicates the time (see Figure 1.4 (b)). Moreover, next to the chemoattractant
chemokine, migration within the primordium is guaranteed by a cell-cell interaction,
exerted by an adhesion force via filopodia. This is confirmed by two observations in
Haas and Gilmour (2006): firstly, cells lacking CXCR4b receptor, transplanted into
wild-type primordium, preserve their migration through the contact with neighboring
cells; secondly, even a small number of wild-type cells, transplanted in a mutant
primordium (lacking the SDF-1a receptor), after moving themselves toward the
leading edge can restore the collective migration. These mechanisms were first
demonstrated in models of epithelial wound healing, where the movement of cells in
epithelial sheets toward each other, to fill a gap created by the wound, also involves
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collective migration (Chitnis et al, 2012). Additional studies have been performed
in other model systems for collective migration, such as endothelial cells in tissue
culture, border cells in the Drosophila system, and metastatic cancer cells (Haas
and Gilmour, 2006; Friedl and Gilmour, 2009). In Figure 1.5 (a) a wild-type cells,
marked in green, have been transplanted in a wild-type (“normal”) primordium,
marked in red. On the right panel cells display filopodia in the direction of migration.
In Figure 1.5 (b) cells lacking of the chemokine receptor CXCR4b, marked in green,
are placed in a wild-type primordium, marked in red. On the right panel cells have
a similar dynamic behaviour as in Figure 1.5 (a), suggesting a strong interaction
within the primordium via mechanical force with neighbouring cells, rather than a
direct response to the extrinsic SDF-1a cue. Mutant cells rather than being passive
hitchhikers, make an active contribution to lateral line migration. In Figure 1.6 a
small number (about 5 %) of wild-type cells (in red) have been transplanted into a
CXCR4b-deficient primordium (in green). The kymograph analysis below shows, in
the top half, “zig-zag” lines, whereas, in the bottom half, the lines become parallel,
implying that a small number of wild-type cells can rescue the lateral line migration
defect in CXCR4b through cell-cell mechanical contacts.

(a)

(b)

Figure 1.5. (a) Wild-type cells, marked in green (•), have been transplanted in a wild-type
primordium, marked in red (•). On the right panel cells display filopodia in the direction
of migration. (b) Cells lacking of the chemokine receptor CXCR4b, marked in green,
are placed in a wild-type primordium, marked in red. On the right panel cells display
filopodia with a similar dynamic behaviour as in (a), suggesting the existence, within
the primordium, of cell-cell interaction via mechanical forces (source Haas and Gilmour,
2006).

In this context other studies (Liu et al, 2003a; Kerstetter et al, 2004; Papusheva
and Heisenberg, 2010; Liu et al, 2011; Mertz et al, 2013) have shown that intercellular
adhesion, typically through molecules as the cadherins, and cell-substratum adhesion,
through integrins, have a crucial role in the spatial organization of tissues and in
embryonic development, including the growth of the zebrafish lateral line. Integrins
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Figure 1.6. A small number (about 5 %) of wild-type cells (in red •) transplanted into a
CXCR4b-deficient primordium (in green •) can rescue the lateral line migration. The
kymograph analysis below shows, in the top half, “zig-zag” lines, whereas, in the bottom
half, the lines become parallel, implying a normal lateral line migration. This suggests
that wild-type cell can interact, through contact forces, with neighbouring cells (source
Haas and Gilmour, 2006).

are transmembrane receptors that mediate the attachment between a cell and
its surroundings. They have two main functions: attachment of the cell to the
extracellular matrix, and signal transduction from the extracellular matrix to the
cell. So, in addition to transmitting mechanical forces, in cell migration and in
the immune system, they are involved in cell signaling and the regulation of cell
cycle, shape, and motility. Integrins work alongside other transmembrane proteins
such as cadherins. Cadherins have been shown to modify local traction forces
and monolayer contractility, and cadherin-based cell–cell adhesions are important
in mechanical activity of epithelial cells and have implications in the mechanical
regulation of epithelial tissues during development and disease. Usually, epithelial
cells express E-cadherin, which binds preferentially to other E-cadherin molecules,
while in mesenchymal cells are found other cadherin types such as N-cadherin (Mertz
et al, 2013). Integrin- and cadherin-mediated adhesion allows cells and tissues to
respond to mechanical stimuli from their environment and to change shape without
loosing integrity (Papusheva and Heisenberg, 2010, and references therein).

1.4 The neuromast assembly. The role of the FGF sig-
nal

To understand the mechanism which drives the rosette organization and neuromast
deposition (a mechanism however not yet completely described, Lecaudey et al,
2008), we have to make some considerations.

As we have anticipated, a second development phase in the zebrafish lateral
line consists in a mesenchymal-epithelial transition (MET). In Section 1.3 we have
seen that mesenchymal cells have large migratory and invasive properties, here
epithelial cells, on the contrary, tend to be stationary and they are packed together
closely connected to each other by cell-cell junctions. For this, MET induces a
passage from a motile to a polarized cell state (Alberts et al, 1994). This transition
occurs in many processes during embryogenesis and early development, but it is



1.4 The neuromast assembly. The role of the FGF signal 9

involved also in wound healing, cancer metastasis, somitogenesis, cardiogenesis
(Nakaya et al, 2004; Nakajima et al, 2000; Li et al, 2011). MET is also reversible
as epithelial-mesenchymal transition (EMT), and both MET and EMT can arise
in a same process. In wound healing, keratinocytes (the predominant cell type in
the epidermis) at the border of the wound initially undergo EMT, to allow the cells
to migrate, then undergo re-epithelialization or MET when the wound is closed. A
similar mechanism occurs in cancer progression from the initiation to the completion
of the invasion-metastasis (Chaffer and Weinberg, 2011).

Several signaling pathways induce MET process, such as growth factors, integrins,
cell adhesion molecules. About the zebrafish lateral line, epithelialization and the
consequent neuromast formation are strongly influenced by the concentration of
fibroblast growth factors (FGFs) and their receptors FGFRs (Nechiporuk and Raible,
2008; Lecaudey et al, 2008). As we will see below the mutually exclusive expression
of FGF and FGFR characterizes respectively the mesenchymal or epithelial cell
state.

FGFs are a large family of polypeptide growth factors found in a variety of
multicellular organisms, including invertebrates. Their several functions include cell
growth, chemotaxis, cell migration, differentiation, cell survival, and apoptosis. FGFs
play an important role in embryonic development in invertebrates and vertebrates.
The intracellular transmission of FGF signal takes place through the receptors FGFRs,
that bind FGF molecules and activate a complex signaling cascade schematized in
Figure 1.7 (Böttcher and Niehrs, 2005).

Figure 1.7. Scheme for the complex intracellular signaling cascades activated by receptors
FGFRs (located in the cell surface on the top) when bind FGF molecules. The nucleus
is marked in the bottom (see also Böttcher and Niehrs, 2005).

In zebrafishes embryo, FGF signaling plays a chemotactic action in morphogenetic
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movements, driving cells to assemble rosettes and gives rise to the subdivision of the
lateral line. Among the 22 members of the FGF family, only FGF3 and FGF10 are
expressed by the primordium (Böttcher and Niehrs, 2005). Moreover, it was shown
that they are substantially equivalent, in fact, inactivation of FGF3 or FGF10 alone
does not alter significantly the development of the primordium, demonstrating a
robustness of the system (Lecaudey et al, 2008). On the other hand, using a FGFR
inhibitor SU5402 strongly affects the primordium: cells became disorganized and
neuromast deposition stops. In this case also the collective migration is compromised,
probably due to an alteration also in CXCR4b receptors (Nechiporuk and Raible,
2008), see Figure 1.8 (a). This can be confirmed comparing the kymograph analysis
of the SU5402-treated primordium in Figure 1.8 (b) with that in Figure 1.4 (b),
where the receptor CXCR4b have been inhibited.

(a)

(b)

Figure 1.8. (a) Velocity of migration of the tip of the primordium (dark blue line), the second
rosette (blue line) and the back of the wild-type primordium (green line). Decreasing
velocity in blue line occurs in correspondence of the detachment of a neuromast. Red
and yellow lines are the tip and the back velocity of a mutant primordium with absence
of FGF activity. In this case cell movements become strongly uncoordinated. (b)
Kymograph of a primordium treated with SU5402. A back and forth movement of the
primordium can be seen before it stops (source Lecaudey et al, 2008).

Therefore, the rosette formation depends mainly on the total level of FGF and, as
we will see below, on its location. We observe also that FGF and FGFR expressions
are mutually exclusive, as confirmed by the location of their molecules: the former,
broadly expressed in the leading region, and focused in one or two cells at the centre
of the rosettes (the future neuromasts) in the trailing region; the latter, at the same
time, expressed in the trailing region except the FGF foci (Nechiporuk and Raible,
2008; Lecaudey et al, 2008), see Figure 1.9.

This observation, in the aim of designing a mathematical model in Chapter 3,
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Figure 1.9. FGF and FGFR are mutually exclusive. FGF is expressed in the leading
region, and focused in one or two cells at the centre of the rosettes in the trailing region
(arrows), while FGFR expressed in the trailing region except the FGF foci (arrow).
The image is taken at 36 hours after-fertilization, scale bars are 20 µm (adapted from
Lecaudey et al, 2008).

suggests to divide the cell population into two groups: the leader mesenchymal
cells (expressing FGF), and the follower epithelial cells (expressing FGFR). At
the beginning, all the cells belong to the leading group. Afterwards, under certain
conditions (see Section 1.5), some leaders in the trailing zone start to become
followers, except one or two leader cells located in the centre, that maintain their
mesenchymal state. Now, the follower cells are driven towards the chemotactic FGF
source and form a rosette-shaped structure. The confirmation that follower cells
adopt a epithelial behaviour is given by their change in the cell shape. In Figure
1.10 (a), left panel (A), we can observe the centre of a rosette with a leader cell
surrounding by other follower cells, which clearly display constricted apical surfaces.
In the higher magnification in the left panel (B) are evident the three kinds of cell-cell
junctions typical of epithelial cells: tight junctions, adherens junctions, desmosomes.
On the right panel is shown a time-lapse analysis of a transverse-view orientation
of the primordium. In the rear of the leading region we can show that rosettes are
formed through the surface constriction of neighbouring cells. The change in cell
shape in the mesenchymal-epithelial transition can be read also in Figure 1.10 (b),
where the height/width ratio is measured. In wild-type embryo, with a normal FGF
activity, cells in the rosettes have a columnar shape (on the left), while cells deprived
of FGF signaling maintain a more spherical shape (on the right). In fact loss of FGF
activity, implies that no leader-follower transition can occurs (Lecaudey et al, 2008).

In Figure 1.11 (a) is shown a scheme for the rosette formation in a wild-type
primordium, and the absence of rosettes in the case of FGF loss-of-function. In the
transverse view, in Figure 1.11 (b), the cell-cell junctions in a rosette are displayed.
Finally, as a proto-neuromast becomes fully mature, it is detached from the trailing
edge, and a new rosette is formed again in a cyclic mechanism.
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(a)

(b)

Figure 1.10. (a) Upper left panel: a rosette structure showing constricted apical surfaces
of the follower cells that surround the central leader. Lower left panel: a magnification
of the dotted region marked in the upper panel. Three epithelial cell-cell junctions are
displayed: tight junctions, adherens junctions, desmosomes. Right panel: time-lapse
analysis of a wild-type rosette formation reveals the constriction of the apical surfaces
of several cells. (b) Quantification of the cellular height/width ratio measured for 28
wild-type cells (yellow •) and 29 mutant cells treated with SU5402 (blue •). Under
normal FGF activity, cells in the rosettes present a columnar shape (on the left), while
cells deprived of FGF signaling (on the right) maintain a more spherical shape (adapted
from Lecaudey et al, 2008).

1.5 Leaders to followers transition
Let us now summarize some rules that model the transition from a leader cell into a
follower, corresponding to the activation of the FGFR receptor. We can state that
the transition occurs under the following three concomitant conditions:

1) a low level of SDF-1a (Ghysen and Chaudière, 2004);

2) a high level of FGF (Lecaudey et al, 2008);
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(a)

(b)

Figure 1.11. Scheme for the rosette formation. (a) Side view. On the left, blue cells
(•) are the mesenchymal-like leaders, that express FGF ligand; red cells (•) are the
epithelial-like follower that express FGFR. On the right, in absence of FGF activity all
cells remains equally leader. (b) Transverse view. Followers in the rosette show the three
cell-cell junctions typical of the epithelial state (adapted from Lecaudey et al, 2008).

3) influence of lateral inhibition (Haddon et al, 1998; Itoh and Chitnis, 2001; Hart
et al, 2003; Matsuda and Chitnis, 2010; Mizoguchi et al, 2011; Sweet et al, 2011).

The first condition implies that rosette formation begins in the trailing region,
where SDF-1a signal is already degraded by cells in the leading edge.

The lateral inhibition in the third condition is a common phenomenon in embry-
ology: a cell that adopts a particular feature inhibits its immediate neighbours from
doing likewise (Chitnis et al, 2012). In this way, groups of cells influence one another
to make different structures, favoring the differentiation. In the zebrafish lateral line
the lateral inhibition is supposed to be an essential mechanism to explain how FGF
signal is progressively restricted in one or two leader cells in the neuromast (Matsuda
and Chitnis, 2010). However, still remain some unresolved issues, for example how
these one or two favored leaders result selected in the centre of a rosette (Chitnis et al,
2012). As in other embryological processes, here the lateral inhibition is mediated
by the proteins Delta and Notch. The Notch protein spans the cell membrane, with
small extracellular and intracellular regions. When a ligand proteins, such as Delta,
binds the extracellular domain, the notch signal is transmitted to the cell nucleus
(notch cascade) to modify gene expression and to promote cell specialization (Lai,
2004).

In view of our mathematical model in Chapter 3, we propose to translate above
condition 3) considering leader-to-follower transition favored by a low number of
cells in the neighbourhood. In this manner condition 3), together with condition 2),
implies that followers, activating FGFR receptor, inhibit the same activation in a
central leader, that represents the cell “more surrounded” by other cells, so that it
will express a significantly higher level of FGF signal, due to the exclusion of the FGF
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production in the followers (Lecaudey et al, 2008). On the other hand, a cell at the
edge of the primordium would receive no inhibition from neighbours and would be
more likely to become follower. Although other models can be imagined in relation
with the lateral inhibition mechanism, this seems to be the most appropriate, and
probably the simplest one, in order to obtain the observed structure of neuromasts
(see Chapter 3). Finally, we remark that the leader-follower transition can be
reversible, possibly with a time delay. In fact, blocking FGF activity makes all cells
equally leader and causes the consequent melting of formed rosettes (Lecaudey et al,
2008).

Lateral inhibition mechanisms, via Notch signaling pathway, are widespread
and control other multiple cell differentiation processes during embryonic and adult
life. Among these, Notch signaling has a role in neuronal function and development
(Gaiano and Fishell, 2002; Aguirre et al, 2010), angiogenesis (Liu et al, 2003b),
ventricular development and differentiation (Grego-Bessa et al, 2007), cancers (Bolós
et al, 2007). Similar inhibitory mechanisms can be found also in sensory systems. For
instance, in visual response lateral inhibition increases the contrast and sharpness.
When in dark a small light stimulates photoreceptors on retina, those in the centre
of stimulus will transduce the “light” signal to the brain, whereas neighbouring
photoreceptors are inhibited to do this, sending a “dark” signal to the brain. This
contrast between light and dark produces sharper images. Similarly in tact, when
an area of the skin is touched, the central region is excited and the peripheral region
is inhibited. This avoids the overlapping of different receptive fields, and allows a
greater sensory precision (Kevin, 2008).

We conclude this chapter observing that our mathematical model on the zebrafish
lateral line, proposed later in this thesis, will be consistent with the biological
observations, here discussed, if we consider chemical effects concomitant with other
cell mechanisms, as alignment, damping and adhesion-repulsion effects (see Chapter
3).
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Chapter 2

Modelling background:
chemical signals, cell
movements, and collective
motion

In this chapter we give an overview about some mathematical models that provide
a modelling backgrounds for our model proposed in Chapter 3, concerning the
development and the morphogenesis of the zebrafish lateral line primordium. The
discussion presented here follows a path that, starting from the mechanisms lying
on the chemical scale, leads gradually to introduce, on the cellular scale, typical
interactions emerging in the collective dynamics of cells. Different scales for both
chemical and cellular points of view are necessary for an accurate description of the
biological process analyzed in Chapter 1, and will be take into account later in the
our mathematical formulation.

2.1 Reaction diffusion equation

As we have seen in Chapter 1, a morphogenesis process, although controlled at the
genetic scale, can be the result of a series of biological mechanisms occurring during
the early development. A pattern or a form, that mathematically can be given for
example by spatially heterogeneous steady states, in general are not anticipated
solely by genetic information. The basic theory of morphogenesis, at chemical scale,
was put forward in a seminal paper by Turing (1952), using the reaction diffusion
equation, that we now derive following the approach given in Murray (2003).

Let V be an arbitrarily fixed volume with boundary ∂V . The principle of mass
conservation states that the rate of the amount of material u(x, t), for instance the
concentration of chemical signal, in V is equal to the rate of flow J of material across
∂V into V , plus the material created in V :

∂

∂t

∫
V
u(x, t) dv = −

∫
∂V

J · n ds+
∫
V
g dv, (2.1)
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where n is the outward unit normal to V and g represents the source of material,
depending possibly on u, x and t. Now, assuming u(x, t) continuous, the divergence
theorem implies ∫

∂V
J · n ds =

∫
V
∇ · J dv. (2.2)

Substituting (2.2) in equation (2.1), we obtain∫
V

(
∂u

∂t
+∇ · J− g(u,x, t)

)
dv = 0. (2.3)

Since V is arbitrary the integrand must be zero, giving the continuity equation

∂u

∂t
+∇ · J = g(u,x, t). (2.4)

For J we can consider the classic Fick’s law, for which the flux goes from regions
of high concentration to regions of low concentration, with a magnitude that is
proportional to the concentration gradient. With this assumption we write

J = −D∇u, (2.5)

where in general D can be a function of x and u. From equation (2.5), equation
(2.4) becomes

∂u

∂t
= ∇ · (D∇u) + g(u,x, t). (2.6)

If D is a constant, the reaction diffusion equation reads

∂u

∂t
= D∆u+ g(u,x, t). (2.7)

Starting from this equation Turing (1952) considered two chemical species u(x, t)
and w(x, t), satisfying a system of coupled equation of the form (2.7). Despite the
diffusion can be considered a stabilising process, Turing showed that if the diffusion
coefficients of the two substances are different, inhomogeneous patterns can evolve by
diffusion driven instability (Turing instability). In practice, under certain conditions,
chemical substances can react and diffuse to produce spatial patterns, depending
both on the chemicals and on the geometry of the domain.

Let us consider the system
∂u

∂t
= Du∆u+ Γ(u,w),

∂w

∂t
= Dw∆w + Σ(u,w),

(2.8)

where u(x, t) and w(x, t) are two chemical materials, and Γ(u,w) and Σ(u,w) are
the reaction terms. The conditions for Turing instability can be found linearizing
system (2.8) in the presence and in the absence of diffusion. Suppose (u0, w0) is a
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homogeneous steady state. The linearized of (2.8) about z = (u− u0, w − w0), with
Du = Dw = 0, is

∂tz = Az, (2.9)

where

A =
(

Γu(u0, w0) Γw(u0, w0)
Σu(u0, w0) Σw(u0, w0)

)
(2.10)

is the Jacobian matrix of the vector field (Γ,Σ). The solution (u0, w0) is linearly
stable if the eigenvalues A have negative real parts, that is{

trA < 0,
det A > 0. (2.11)

Now, we consider the full system (2.8) linearized about z = (u− u0, w − w0) in
the form

∂tz = Az + D∆z, (2.12)

where

∆z =
(

∆u
∆w

)
, D =

(
Du 0
0 Dw

)
. (2.13)

We can solve equation (2.12) looking for solutions of the form

z(x, t) =
∑
k

cke
λtzk(x), (2.14)

where ck are determined by a Fourier expansion of the initial condition and zk solves
the eigenvalue problem {

∆z = −k2z,
boundary conditions, (2.15)

k being the eigenvalue. Inserting (2.14) in (2.12) we have

λzk(x) = Azk + D∆zk, (2.16)

and from (2.15)1 we derive (
λI−A + Dk2

)
wk = 0. (2.17)

Equation (2.17) has non-trivial solutions if

det
(
λI−A + Dk2

)
= 0, (2.18)

that is {
λ2 + λ

[
k2trD− trA

]
+ h(k2) = 0,

h(k2) = DwDuk
4 − (ΓuDw +DuΣw) k2 + det A. (2.19)
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Now, the solution (2.14) will be unstable if Reλ > 0 for some k 6= 0. That is, from
(2.19),

k2trD < trA, or h(k2) < 0, (2.20)

for some k. Since trD > 0, the condition (2.11)1 assumed for (u0, w0) excludes
(2.20)1, and the only possibility to have Reλ > 0 is h(k2) < 0. From (2.11)2, taking
into account det A > 0, a necessary but not sufficient condition for h(k2) < 0 is

(ΓuDw +DuΣw) > 0

in (2.19)2. Moreover, the function h, depending on k2, is a concave upward parabola
with h(0) = det A, so that a sufficient condition is given requiring the minimum of
the parabola to be negative. Differentiating h(k2) with respect to k2, we find

k2
min := (ΓuDw +DuΣw)

2DwDu
,

hmin := h
(
k2

min

)
= det A− (ΓuDw +DuΣw)2

4DwDu
,

and we require

det A <
(ΓuDw +DuΣw)2

4DwDu
.

Hence, transition between stability and instability occurs when

hmin = 0⇔ det A = (ΓuDw +DuΣw)2

4DwDu
.

So, if the parameters of the system (diffusion coefficients, reaction kinetics, etc.)
assume appropriate values, we can have instability for the state (u0, w0) in presence
of diffusion.

The reaction diffusion models, starting from Turing’s considerations, have been
widely adopted as a possible mechanism for generating biological pattern in morpho-
genesis (see the books edited by Chaplain et al, 1999 and by Maini and Othmer,
2000). For example they have applied to explain the pattern formation in the animal
coat, such as on the zebra, leopard, but also in the butterfly wings and during the
regeneration of some marine algae (Murray, 2003). Other applications include the
segmentation of the embryo of Drosophila (fruit fly) (Kauffman et al, 1978) and the
early insect development (Hunding, 1999; Meinhardt, 2000).

Despite of the large applicability reaction diffusion models have also an intrinsic
limit: they take into account only the chemical scale, neglecting the spatial organiza-
tion of the cells in response to particular stimulus. The reaction of an organism (cell)
to an external stimulus is generally called taxis. Based on the type of stimulus, and
on the organism’s response, the word taxis is often preceded by a prefix. Many types
of taxis have been identified, for example the aerotaxis, the response of an organism
to variation in oxygen concentration, the phototaxis, the response to variation in
light intensity and direction, the galvanotaxis, the response to electrical current, and
so on (Martin, 1983; Menzel, 1979). In the following sections we will consider the
chemotaxis, i.e. the influence of chemical substances present in the environment on
the movement of motile organisms (cells).
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2.2 Chemotaxis

In ecology it is well known that a large number of insects and animals rely on
an acute sense of smell for transmitting information between members of their
species. Pheromone release is an important mean for communication, predation and
attraction mating partners: it influences the direction of the population movements
(Murray, 2002, 2003). The movement towards a higher concentration of the chemical
substance is termed positive chemotaxis, and the chemical substance that lead to
positive chemotaxis is a chemoattractant. Movement towards lower concentrations
is the negative chemotaxis and the chemical substance is said a repellent. When
the chemical signal is expressed or bound on a surface (e.g. extracellular matrix,
polymer substrate) generally we speak about haptotaxis.

In biological processes the formation of cells aggregations (amoebae, bacteria,
etc.) is regulated by the response of the species populations to the change of the
chemical concentrations in the environment. In multicellular organisms, chemotaxis
of cell populations plays a crucial role throughout the life cycle. During embryonic
development it plays a role in organizing cell positioning, for example during gas-
trulation (Dormann and Weijer, 2006), and patterning of the nervous system. In
Chapter 1, for instance, we have observed the role of chemotaxis in the migration
and self-organization of embryonic cells in the zebrafish lateral line. In the adult
life, it directs immune cell migration to sites of inflammation (Di Russo et al, 2010)
and fibroblasts to heal a wounded region. Same mechanisms allow tumour cells to
invade the surrounding environment (Condeelis et al, 2005) or stimulate new blood
vessel growth (Larrivee and Karsan, 2000).

A seminal model on the chemotaxis has been proposed by Keller and Segel
(Keller and Segel, 1970, 1971) in relation to the morphogenesis of the Dictyostelium
discodeum (slime mold), and it is based on a system of reaction diffusion equations,
by adding a chemotactic term.

Let us now derive the chemotaxis equation following the approach in Murray
(2002). Many further approaches, like stochastic and discrete methods, have been
developed to derive this class of models, as it is reviewed by Horstmann (2004).

We consider a cell population c(x, t) and a chemoattractant u(x, t) which give
rise to a movement of cells up the gradient. In the continuity equation (2.4), for
c(x, t) we can write

∂c

∂t
+∇ · J = f(c), (2.21)

where f(c) represents the growth term for the cells and the flux J is given by the
contributions of the diffusion and of the chemotaxis:

J = Jdiffusion + Jchemotaxis. (2.22)

While Jdiffusion can be chosen according to the Fick’s low (2.5), the chemotaxis
contribution is reasonably in form

Jchemotaxis = c h(u)∇u, (2.23)
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where h(u) is a function of the attractant concentration and the flux is considered
increasing with the number of cells c(x, t). With this assumptions the basic reaction-
diffusion-chemotaxis equation is

∂c

∂t
= ∇ · (Dc∇c)−∇ · (c h(u)∇u) + f(c), (2.24)

where Dc is diffusion coefficient of the cells.
In relation to the chemical u(x, t) we can consider the reaction diffusion equation

in the form (2.6):

∂u

∂t
= ∇ · (Du∇u) + g(c, u), (2.25)

where Du is the diffusion coefficient of u and g(c, u) is a kinetics/source term,
depending on u and c.

The function g(c, u) can assume various forms, for example in the model of Keller
and Segel (1971) it is g(c, u) = k1c − k2u, where k1 and k2 are positive constants.
This suggests in k1c a spontaneous production of chemoattractant proportional to
the number of cells, while −k2u represents a molecular (exponential) degradation if
the chomotactic signal is not produced by the cells. If we neglect the cell production
rate, f(c) = 0, with h a constant function and with constant diffusion coefficients
we obtain the system 

∂c

∂t
= Dc∆c− h∇ · (c∇u) ,

∂u

∂t
= Du∆u+ k1c− k2u.

(2.26)

Starting from Keller-Segel model a lot of variations have been proposed, which
differ in the choice of the chemotactic sensitivity function and the reaction terms
in the species equation or in the chemical ones. Models based on the Keller-Segel
equations have been employed in embryonic pattern formation processes, such as the
formation of primitive streak, pigmentation patterning and cell colonisation (Murray
and Myerscough, 1991; Painter et al, 2000; Landman et al, 2003). In relation to the
tumour growth, mathematical models have extensively included chemotactic terms,
for example in the migration of invasive cancer cells (Perumpanani et al, 1996), in
the tumour-induced angiogenesis (Chaplain, 2000; Mantzaris et al, 2004), in the
macrophage invasion into tumours (Owen and Sherratt, 1997).

2.3 Mechanochemical models for morphogenesis
The prevalent aspect of the Keller and Segel-like models is the chemical control in
the movement of cells. Next to this, above all in highly structured multicellular
organisms, the migration of a single cell can be strongly influenced by the change
of many essential features during the motion, such as shape, adhesion and, more
generally, force generation (Rorth, 2007). In this case becomes relevant to consider
the role that mechanical forces play in the morphogenetic process concomitantly with
chemical effects. In fact, in the chemical models (reaction-diffusion and chemotaxis
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models) the morphogenesis process takes place sequentially to the chemical pattern
formation, and the mechanical shaping of form during embryogenesis is not taken
into account. Once the chemical prepattern has been laid down, the cells execute
their mechanical response according to the chemical instructions. On the other hand,
in the mechanochemical approach mechanical state of a cell or tissue can influence
its chemical state, so that pattern formation and morphogenesis are considered as
simultaneous processes, with a constant interaction between the movements in the
patterns and in the shape of the cells with the tissue.

The basic mechanochemical models have been proposed by Oster and Murray
in relation to the morphogenesis of internal tissues (dermis and mesenchyme) or
external tissue (epithelium) (Murray, 1983; Oster et al, 1983; Murray and Oster,
1984a,b; Maini, 1999). Similar approaches have found then application in continuum
models for vasculogenesis and wound healing (see also Murray, 2003; Fusi, 2009). In
general, in these mechanochemical models three features are taken into account: cells
migrate within a tissue substratum of fibrous extracellular matrix (ECM) and other
cells; cells can generate large traction forces on the elastic ECM and on the surface
of other cells; the dynamics of both cells and ECM is mediated by some chemical
growth factors, which regulate both cell proliferation and ECM reorganization. These
continuum models, typically, consist of four equations governing the conservation
equation of the cell population density and of the chemical signals, the mechanical
balance of forces between the cells and the ECM, the conservation equation for the
ECM.

Let c(x, t) the cell density, u(x, t) a chemical factor (in general summarizing the
behaviour of a class of chemicals that take part in the system), ρ(x, t) the ECM
density, and σ(x, t) the stress tensor for the mechanical cell-ECM interaction. For
c(x, t) we can consider the conservation equation (2.21)

∂c

∂t
+∇ · Jc = f(c, u),

where f(c, u) can represent a kinetic term (mitosis, apoptosis, etc.) and the flux Jc
is given by the contributions of

Jc = Jcdiffusion + Jcchemotaxis + Jchaptotaxis + Jcconvection. (2.27)

The first two terms in (2.27) can be given as in equations (2.21)–(2.24), according
respectively to the Fick’s low, and to the chemotaxis contribution:

Jcdiffusion = −Dc∇c, (2.28)

and

Jcchemotaxis = χ(c, u)∇u, (2.29)

where χ(c, u) is the chemotactic sensitivity factor. For the haptotactic term we
consider that the traction exerted by the cells generates gradients in the ECM
density ρ(x, t). Then cells tend to move up the adhesive gradient, so the simplest
assumption is a flux proportional to c∇ρ:

Jchaptotaxis = a c∇ρ,



22 2. Modelling background

a being a constant. In the last term of (2.27) if r is the displacement vector of
the ECM and ∂r/∂t is the velocity of deformation of the ECM, the amount of
transported cells is c times this velocity:

Jcconvection = c
∂r
∂t
.

Similarly, for u(x, t) we can write the continuity equation (2.4):
∂u

∂t
+∇ · Ju = g(c, u),

where Ju = Judiffusion + Juconvection is given as in (2.28)–(2.29), that is

Judiffusion = −Du∇u,

and

Juconvection = u
∂r
∂t
,

then g(c, u) accounts for production and consumption of chemical by cells and for
natural chemical decay.

The conservation equation for the ECM density ρ(x, t) can be written as
∂ρ

∂t
+∇ · Jρ = s(c, u, ρ),

where s(c, u, ρ) is the rate of secretion and degradation of matrix by the cells. The
flux Jρ is assumed to be due only to convection since in the ECM the linked mesh-like
structure implies that the effects of diffusion is negligible:

Jρ = ρ
∂r
∂t
.

Moreover, since the mechanical deformations are small, it is reasonable to model
the material of cells and ECM as a linear, isotropic viscoelastic continuum with
stress tensor σ(x, t). The linear momentum balance equation assumes the form

∇ · σ = ρF(r),

where F(r) represents the external forces acting on the tissue, and the inertia effects
are neglected due to the high viscosity of the tissue itself.

Finally, starting from the previous consideration, a typical formulation from
which most of the mechanochemical models of morphogenesis are derived can be
summarized by the following system:

∂c

∂t
= ∇ ·

(
Dc∇c− χ(c, u)∇u− a c∇ρ− c∂r

∂t

)
+ f(c, u),

∂u

∂t
= ∇ ·

(
Du∇u− u

∂r
∂t

)
+ g(c, u),

∂ρ

∂t
= ∇ ·

(
−ρ∂r

∂t

)
+ s(c, u, ρ),

∇ · σ = ρF(r).
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2.4 Discrete, continuous, and hybrid approaches

As we have seen in Chapter 1 a morphogenesis process can involve only a restricted
number of living entities and the migration of a single cell is strongly influenced by the
motion of the other units. For this, it may be needed to investigate the cell behaviour
in more detail. In general, the necessity to take into account phenomena occurring
at different spatial and/or temporal scales leads to consider different mathematical
tools, such as continuous, discrete or hybrid models, though the distinction among
them is not so well defined (see the reviews by Turner et al, 2004; Preziosi and Tosin,
2009 and the papers by Schaller and Meyer-Hermann, 2006; Drasdo, 2005; Stolarska
et al, 2009).

Continuous model, where all variables are considered to be defined at every point
in space and time changes continuously, are useful when the length scale over which
we wish to investigate the phenomenon is much greater than the diameter of the
individual elements (e.g. the diameter of one cell). These models frequently involve
the development of a reaction-diffusion equation (or other PDEs) and have been
found to be appropriate, for example, in the study of pattern formation in nature,
vasculogenesis and wound healing through chemical and mechanochemical models
(see Sections 2.1–2.3).

On the other hand, when we are interested in the behaviour of individual cells,
and in their interactions with other cells and the surrounding medium, we can
consider discrete models, such as Individual-Cells-Based Models (IBMs) (Anderson
et al, 2007) or cellular automata (von Neumann and Burks edit., 1966). In these
latter models cells are treated as points moving in the space on a lattice or several
lattice nodes according to certain rules designed from existing biological observations
(Turner and Sherratt, 2002; Dormann and Deutsch, 2002). Discrete models have
widely applied in many biological fields, form ecology (Berec, 2002), to pattern
formation (Wootton, 2001), from tumour growth (Ferreira et al, 1998; Kansal et al,
2000; Patel et al, 2001), to angiogenesis (Markus et al, 1999). A class of discrete
models does admit continuous cellular positions (Honda et al, 2000; Palsson and
Othmer, 2000; Drasdo, 2003; Drasdo et al, 2004; Dallon and Othmer, 2004; Galle
et al, 2005), for this they allow to include directly the information about microscopic
physical interactions.

We remark that there is not a single way to approach the same biological
phenomenon and, in some cases, the same biological problem admits different models.
Clearly, each of these models admit advantages and disadvantages. For instance,
continuous PDE models are computationally cheaper and more appropriate to
describe the behaviour of tissues from the macroscopic point of view, but, they do
not take into account sub-cellular mechanisms such as signal transduction, expression
or internalisation of receptors, and so on. Conversely, IBMs models show more
accuracy in describing the cellular level, but they might become computationally
expensive when they involve a large number of cells, and inefficient in providing a
general outlook on the system as a whole. Moreover, the lattice descriptions in the
cellular automata have the disadvantage of violating the isotropy of space (though
the lattice artefacts can be avoided by introducing stochastic interaction rules) and
it is still quite difficult to relate the parameters of cellular automata to physically
relevant quantities (Schaller and Meyer-Hermann, 2006).
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A mixture of discrete and continuous models are the so called hybrid models. In
general there are two types of this approach. The most common one, and historically
the first, treats various biological constituents using different scale of description.
Typically, cells are described by a discrete approach using spatially discrete variables
(e.g. IBMs, cellular automata, etc.), while molecules and extracellular matrix are
described with continuous variables (e.g. diffusion equations, more general partial
differential equation, etc.) (see for instance (Anderson and Chaplain, 1998; Anderson
et al, 2007; Schaller and Meyer-Hermann, 2005; Joie et al, 2014; Colin et al, 2013)).
These hybrid models are called also hybrid discrete in continuous models. Other
hybrid models are the so called interfacing hybrid models (Preziosi and Tosin, 2009),
in which the spatial domain is partitioned in few time-dependent domains, and the
constituents (usually the cells) are described by discrete variable in a portion of the
spatial domain or by continuous variables in the rest of domain (see for instance
Ramis-Conde et al, 2009, or Ramis-Conde et al, 2008 about the cancer cell invasion).

Clearly, the use of different scales of description, e.g. continuous and discrete
framework, of a same biological process requires that the models give rise to similar
solutions at length scales where their ranges of applicability overlap. This leads
to investigate the link between macroscopic and microscopic scales (Turner et al,
2004; Schaller and Meyer-Hermann, 2006), and various mathematical techniques
can be employed to get more formal and consistent results, such as homogenisation
methods or fluid-dynamic and diffusion limits (Shipley et al, 2009; Chauviere et al,
2007; Bellomo et al, 2007; Chalub et al, 2004; Drasdo, 2005).

As we have seen, in hybrid models we can applied, for a same process, different
scales chosen suitably for the description of various constituents, or a same constituent
is treated under different points of view, depending on the portion of the spatial
domain of interest. Recently, new multiscale models have been developed based
on a measure-theoretic approach (Piccoli and Tosin, 2009; Cristiani et al, 2010;
Piccoli and Tosin, 2011), where a same constituent can be described, in the whole
domain, in a unique framework in which microscopic and macroscopic points of
view coexist (see Cristiani et al, 2011b, and the recent book Cristiani et al, 2014).
These models, applied first to crowd dynamics, allow a balance between micro- and
macro-contribution through a combination of singular and absolutely continuous
measures with respect to the Lebesgue measure of the space. In this way, one can
suitably focalize the granularity of individuals (interaction with a single) and the
macroscopic description of crowd flow (interaction with the mass). A first attempt
to apply this framework in a biological context, about the cell behaviour, can be
found in Colombi et al (2014).

In Chapter 3, starting from the experimental observations described in Chapter
1, we will formulate a mathematical model for the formation of the lateral line
in a zebrafish embryo. As we have seen, this biological process involve 80-100
migrating cells, driven by chemical signals and, subsequently, self-organized in
specific pattern. In order to formulate a consistent mathematical model, we will
adopt a hybrid discrete in continuous description as mentioned above. On the
chemical scale molecules will be represented by continuous concentrations, while
cells will be considered as discrete entities, moving in a continuous space. The cell
scale, at which migration and self-organization processes belong, will include some
typical interactions emerging in the so called collective motions. In the next sections,
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we will give an overview about this general topic, that concerns not only biological
systems, but also many other living systems, and even non-living systems.

2.5 Collective motion
A collective motion is a form of collective behaviour in which individual units interact
in simple (alignment, attraction, repulsion) or complex way (combination of simple
interactions). The main feature of collective behaviour is that the individual unit’s
action is strongly dominated by the influence of other units, so that its motion
results very different from how it would be if it was alone. The pattern of behaviour
is determined by the collective effects due to the other agents of the system (Vicsek
and Zafeiris, 2012). Examples of collective motion are exhibited by many systems,
from non-living systems, such as certain fluids, nano swimmers, simple robots, to
living systems, such as flocks of birds, schools of fish, swarms of insects, herds of
mammals, cell aggregates, crowds of humans.

Many reasons of aggregations in a given system have been proposed. Coordi-
nated motion of cells results in making a biological process more efficient (e.g. in
embryogenesis, wound healing, immune response, etc.), while in the case of tumour
cell invasion it appears to speed up the progression of the decease (Méhes and Vicsek,
2014). For the animals entities it is observed that a group can more efficiently
explore surrounding environments, to enhance foraging capability and detection of
predators (Pitcher et al, 1982); being in a group offers protection against attacks by
predators (Ioannou et al, 2008) and increases the locomotion efficiency (Fish, 1995).

The study in the field of collective motion, besides showing spectacular manifes-
tations of certain systems, plays an essential role in a number of real-life situations.
The research in the collective motion of cells brings important advantages under-
standing growth, development and disease of many organs and tissues. Some species,
especially those that can be easily treated experimentally, represent a paradigm
for understanding more complex organisms, including humans, as we have seen, for
instance, in Chapter 1 in relation to the zebrafish. Also the collective behaviour of
animals groups can be useful in some problems of human engineering and in socio-
economic field (Naldi et al, 2010). Understanding crowd dynamics gives advantages
to better forecast the behaviour of pedestrian flows (Helbing et al, 1997; Faria et al,
2010; Piccoli and Tosin, 2009; Bruno et al, 2011; Cristiani et al, 2010; Moussaïd
et al, 2011), or suggests the best placement of entrances, exits and emergency gates
in a given environment (combining, for example, a differential model with one of
optimal control, Cristiani et al, 2015).

Collective motion has been extensively studied in recent year in a great variety
of systems: non-living systems, macromolecules, bacteria colonies, amoeba, insects,
fish, birds, mammals, humans. Many references can be found in the review by Vicsek
and Zafeiris (2012). As regard to the cell systems we can cite, from a biological point
of view, Haas and Gilmour (2006), Lecaudey et al (2008), Friedl and Gilmour (2009),
Donà et al (2013), and from a modelling point of view Szabò et al (2006), Belmonte
et al (2008), Arboleda-Estudillo et al (2010), Streichan et al (2011), Sepúlveda et al
(2013), Joie et al (2014), Colin et al (2013).
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2.6 Basic models in collective motion

Basic mathematical models about collective motion are substantially based on three
steering behaviours of the units: a) alignment, in order to move in the same direction
of average heading direction of neighbouring units; b) separation, in order to avoid
crowding; c) cohesion, to remain close to the average position of neighbours.

2.6.1 Alignment models

Perhaps the simplest model in collective motion is represented by the Cuker-Smale
model (Cucker and Smale, 2007a,b). In this model only an alignment effect is
considered for a system of N interacting particles. The original model was proposed
for a flock of birds, but its applicability is to general phenomena where autonomous
agents reach a consensus, e.g. animal herding, emergence of common languages in
primitive societies, etc. (Couzin et al, 2005).

The hypothesis of this model is that the force acting on every particle (bird) is a
weighted average of the differences of its velocity with those of the other particles
(birds). In particular, for N ∈ N particles, the proposed model, in continuous time
t ∈ R≥0, can be written in the form

V̇i = β

N

N∑
j=1

α1(
α2 + ‖Xi −Xj‖2

)σ (Vj −Vi),

Ẋi = Vi,

(2.30)

where Xi,Vi ∈ Rn, for i = 1, . . . , N , are the position and the velocity of the i-th
particle, β, α1, α2, σ are positive constants and ‖·‖ is the Euclidean norm in Rn. In
particular σ captures the rate of decay of the influence between agents in the flock
as they separate in space, and it is a fundamental parameter in the time-asymptotic
behaviour of system (2.30) (see below).

Cuker-Smale model is not the first to be proposed in this context. In fact,
the first flocking simulator was published by Reynolds (1987) and it was based on
differential equations describing the trajectories of the moving objects, taking into
account three interactions: alignment, attraction and repulsion. The starting point
of the Cuker-Smale model is represented by the seminal paper of Vicsek et al (1995).
Previous analytic studies can be found also in Tsitsiklis (1984), Jadbabaie et al
(2003). The Vicsek model (Vicsek et al, 1995), in discrete time, can be written as Vi(t+ 1) = V0

〈Vi(t)〉R
‖〈Vi(t)〉R‖

+ perturbation,
Xi(t+ 1) = Xi(t) + Vi(t+ 1),

(2.31)

where V0 is a fixed absolute velocity, and 〈. . . 〉R denotes averaging of the velocities
within a circle of radius R surrounding particle i. The expression 〈Vi(t)〉R

|〈Vi(t)〉R|
provides

a unit vector pointing in the average direction of motion within this circle.
The main differences with the Cucker-Smale model are the interactions, which

here have the same intensity, but they are restricted to a circle around a given
particle, and the existence of noise.



2.6 Basic models in collective motion 27

Nevertheless, Cucker-Smale’s paper is widely known to have established an
analytical exact result on the convergence to consensus of the autonomous agents:
under suitable initial data their model implies that the state of the group converges
to one in which all particles move with the same velocity, said flocking state. The
main convergence result in Cucker and Smale (2007a) has been improved by Ha
and Liu (2009), proving that for σ ∈ [0, 1/2] there is global unconditional flocking
of system (2.30) regardless of initial configurations, while for σ ∈ (1/2,+∞) there
is conditional flocking, that is only certain classes of initial data and parameters of
the system reduce to a flocking state, but in general the dispersion of the flock may
occur, see Figures 2.1–2.2.

(a) (b)

(c) (d)

Figure 2.1. A numerical simulation of the Cucker-Smale model with parameter σ =
0.5. With this condition the flocking behaviour is ensured, as shown by the velocity
fluctuations in the titles of the panels (see also Chapter 4 for more details).

Cucker and Smale-like models have been recently widely applied in many contexts,
for example in the biological field by Szabò et al (2006), Belmonte et al (2008),
Arboleda-Estudillo et al (2010), Sepúlveda et al (2013), and vary extensions have
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(a) (b)

(c) (d)

Figure 2.2. A numerical simulation of the Cucker-Smale model with parameter σ = 2. In
this case the flocking behaviour is not ensured and the dispersion of the initial group
can occur.

been proposed. For example, Cucker and Dong (2010, 2011) added a repelling force
between particles in equation (2.30)1, proving an analogous convergence theorem
ensuring, on certain conditions, flocking behaviour, in addition without collision
between particles. Ha and Levy (2009) applied system (2.30) to describe the motion
of phototactic bacteria (i.e., bacteria that move towards light), adding a force
that move excited bacteria towards the light source in equation (2.30)1, and an
additional equation for the excitation level of each particle. Also in this case, under
particular conditions, it is proved that the asymptotic velocity of the particles tends
to an identical terminal velocity. Other models have introduced noise (Cucker and
Mordecki, 2008), stochastic equations (Ha et al, 2009), leader individuals with a
preferred heading direction (Cucker and Huepe, 2008), see also Chapter 4 for further
details.

In Chapter 4, starting from the model introduced in Chapter 3 describing the
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zebrafish lateral line formation, we will propose an extension of the Cucker-Smale
model including a chemotactic effect acting on the particles of the system.

2.6.2 Attraction-repulsion models

Next alignment models, other models have shown that the motion of particles
may become ordered even if no explicit alignment rule is applied, but alignment is
introduced into the collision in an indirect way. For example Derzsi et al (2009)
simulated a model in which the particles tend to maintain a given absolute velocity
V0 and the only interaction between them is a repulsive linear force acting in a
suitable range. The system can be written as:{

V̇i = Vi

(
V0
‖Vi‖ − 1

)
+ Fi + ξi,

Ẋi = Vi,
(2.32)

where ξi is noise,

Fi :=
∑
j 6=i

Fij + Fi (wall) (2.33)

rij := Xi −Xj (2.34)

Fij :=
{
Krij

(
r0
‖rij‖ − 1

)
, if ‖rij‖ ≤ r0;

0, otherwise.
(2.35)

Strömbom (2011), instead, considered a similar model in which only the attraction
is taken into account, in suitable ranges of action. His simulations give rise to a
great variety of pattern, such as swarms (particles with low and varying alignment),
undirected mills (particles move in a circular path around a common centre) and
moving aligned groups (particles move in a highly aligned manner), see Figure 2.3.

A model that considers both attraction and repulsion effects is given in D’Orsogna
et al (2006), and it is useful to describe schools of fish. The equations are

V̇i = (α− β||Vi||2)Vi −
1
N

∑
1≤j≤N

∇XiH(||Xi −Xj ||),

Ẋi = Vi,

(2.36)

where H can be, for example,

H(r) = ra

a
− rb

b
, 0 < b < a, (2.37)

that is, we have a attraction term (of strength depending on a) and a repulsion
term (of strength depending on b). The term (α−β||Vi||2)Vi gives a self-propulsion
effect, since particles reach a given velocity ||Vi|| =

√
α/β (Figure 2.4).

Attraction-repulsion models are employed also to describe pedestrian flows in
crowd dynamics. Repulsion effects represent the behaviour of a pedestrian to steer
clear of the crow, with a preference for uncrowded areas, while attraction or cohesion



30 2. Modelling background

Figure 2.3. A simulation of the model proposed by Strömbom. Particular structures
appear introducing a blind angle: (a) a fully oriented mill; (b)–(d) rotating chains with
respectively zero, one and two self-intersections (source Strömbom, 2011).

Figure 2.4. A simulation of the D’Orsogna et al. model. (a) Catastrophic geometry: the
clump shrink as the number of particles increases. (b) Ring clumping. (c) Ring structure
(source D’Orsogna et al, 2006).
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translate the tendency to not remain isolated. This can intervene occasionally in
those groups whose individuals share specific relationship, as group of tourist in a
guided tours. Such models consider, unlike animals and other living system, that
pedestrians experience strong interactions with the environment, due to the high
complexity of the space in which they typically move, endowed of many obstacles.
In order to take this aspect into account, the velocity of a pedestrian can split in the
sum (possibly weighted) of two contribution V = Vd + Vi, where Vd is a desired
velocity, that is the velocity (trajectory) of an individual depending only by the
geometry of the space, in the absence of other pedestrians; Vi is the interaction
velocity, that is determined by the behaviour of the other individuals, through
repulsion or cohesion effects incoming in accordance with various possible modeling
choices (for further details we refer, for instance, to Piccoli and Tosin, 2009; Cristiani
et al, 2010; Bruno et al, 2011; Bellomo et al, 2012)

2.6.3 Three zone models

Combining together alignment, attraction and repulsion effects, we can obtain the
so called three zone models (Aoki, 1982). These models are based on three basic
rules: an individual tends to maintain a certain distance from their mates, to
avoid collisions; if the individual is sufficiently distant from their mates, it aligns
its direction to their neighbours; if the individual is too far from the others, it is
attracted towards their mates, this to avoid being isolated or in the periphery. From
this observations the perception zone is divided into three non-overlapping regions:
a repulsion zone, an aligment zone, and an attraction zone.

Clearly, the shape of these zones will necessarily take into account the sensory
capabilities of the individual. For example, the visual field of a bird does not extend
behind its body, fishes can accompany visual signals with those coming from their
lateral line, while cells can feel stimuli around them via filopodia (see also Chapter
1). This leads to introduce the concept of the cone of vision, see Figure 2.5 (Huth
and Wissel, 1992; Couzin et al, 2002; Hemelrijk and Hildenbrandt, 2008). In general
the cone of interaction is not only animal-dependent, but it can also vary depending
on the type of motion, environmental conditions, presence of predators, and aim of
the displacement (Cristiani et al, 2011a).

Couzin et al (2002) proposed a model based on the three interaction zones.
Varying the width of the perception zones and some parameters of the model the
simulations exhibit various basic type of collective motion: swarm, with little or
no parallel orientation; milling, with individuals that rotate around an empty core;
parallel group and highly parallel group (Figure 2.6).

A similar model that include alignment and attraction-repulsion effect on suitable
interaction zones, with noise, has been proposed by Grégoire et al (2003) and Grégoire
and Chaté (2004), as a an extension of the Vicsek’s model (2.31).

In all models seen here the interaction occurs in the so called “metric” way, that
is, each unit interacts only with those particles which are closer than a predefined
distance, that is a fixed “range of interaction”. Recent studies of starling flocks,
on the other hand, have shown that each bird modifies its position relative to the
mates directly surrounding it (typically six or seven individuals), no matter how
close or how far away those animals are. In this type of behaviour, referred as
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Figure 2.5. Perception zones centred around an individual. If some mates enter in repulsion
zone (named “zor”) the individual moves away from them into the opposite direction
to avoid collision. If no mates are in the repulsion zone, the individual aligns itself
with neighbours within the orientation zone (named “zoo”). Finally, the individual is
attracted toward its mates in the attraction zone (named “zoa”). The angle α represents
the visual cone, and 360◦ − α is the blind area (source Couzin et al, 2002).

Figure 2.6. The collective behaviour exhibited by the Couzin et al. model: (A) swarm,
with little orientation; (B) torus, in which individuals rotate around an empty core; (C)
dynamic parallel group; (D) highly parallel group (source Couzin et al, 2002).

“topological” interaction (Ballerini et al, 2008), the radius of perception is adjusted
by each individual, in such way that the neighbourhood of interaction encompasses a
predefined mass of other individuals felt comfortable to interact with it (see Cristiani
et al, 2010, 2011a and references therein).

In particular Cristiani et al (2011a), showed that, choosing a suitably restricted
angle of vision, together with a topological interaction, it is possible to reproduce
the main structure of animal group (e.g. clusters, lines and V-like structures) with a
agent-based zone model including only the superposition of attraction and repulsion
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effect, so that the alignment effect is not taken into account (Figure 2.7). In their
first order system (that models the velocity of the individuals) the linear attraction
and the repulsion term as 1/r, r being the distance between the individuals, are
similar to those described in Section 2.6.2.

(a) (b) (c)

Figure 2.7. The main structure of animal group obtained with the model proposed by
Cristiani et al. (a) A round cluster; (b) a line formation; (c) a V-like pattern. The group
is moving horizontally from left to right (source Cristiani et al, 2011a).

A development of the three zone model, as proposed by Albi and Pareschi (2013),
can describe the dynamics of a large group of agents influenced by a small number
of external agent. This can find application in nature when the presence of external
agents such as predators or leaders modify the internal dynamics of a group (flock of
birds, school of fishes, herd of sheeps), see Figure 2.8. The proposed model, endowed
of both metric and topological interaction, considers different level of descriptions,
from a microscopic description, to a kinetic model obtained through a mean-field
limit, and finally to a macroscopic system through a hydrodynamic limit.

Figure 2.8. A numerical simulation of the model proposed by Albi et al. showing a swarm
attacked by a predator (marked with a green dot •) (source Albi and Pareschi, 2013).

2.7 Collective motion of cells

In multicellular organisms cell migration plays a fundamental role in both embryonic
development (gastrulation, neural crest migration, etc.) and in the normal physiolog-
ical responses of adults (wound healing, immune response, cancer metastasis, etc.).
Precision, coordination and robustness in cell movement are likely to render more
efficient a biological processes. From this, for example, may depend the difficulty of
fighting metastasis in a invasive movement of tumour cells.
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According to Rorth (2007), in living organisms there are different strategies for
cell movement. We can distinguish three typical behaviour (Figure 2.9).

1) Groups can be associated loosely with occasional contact and much of the
apparent cohesion might come from essentially solitary cells following the same
tracks and cues. These are germ cells in many organisms, neural crest cells in the
embryos of mammals, sperm cells.

2) Groups can be more tightly associated and the cells normally never dissociate.
These groups have the feature that the moving structure has an inherent polarity,
a free “front” and an attached “back”. An example of these groups was given in
Chapter 1 in relation to the cell migration in the lateral line primordium. Other
examples can be found in the vascular system and in wound healing.

3) Cluster of cells can be strongly associated, but the cluster is free, without an
definite “front” or “back”. Example of this cells are shown in the Drosophila and in
the zebrafish.

A particular feature of the second group of cells described above can be the
presence of “leader cells” situated at the front edge of the group, that guide the
motion of all cells and also provide the necessary traction forces for them. This
has been suggested by many studies, for example on the model zebrafish (Haas
and Gilmour, 2006; Lecaudey et al, 2008; Nechiporuk and Raible, 2008; Donà et al,
2013). In Section 1.3 we have seen in the zebrafish lateral line primordium few
cells on the tip of a migrating group of cells to follow the concentration gradient
on a strip of chemokine signal (SDF1-a), and the total migration is ensured by
cell-cell adhesion via transmembrane proteins, said cadherins. In a second stage
of development some leader cells become the centre of particular rosette-shaped
structures, the neuromasts, and attract other follower cells via a mechanism based
on the chemoattractant fibroblast growth factor (FGF), and on its receptor FGFR
(see Section 1.4).

Many mathematical models have investigated collective motions of cells in
both, two-dimensional framework, such as sheet migration of cells, wound healing,
streaming behaviour of endothelial cells, and three-dimensional framework, such
as vascular network formation and gastrulation (see for instance the reviews by
Méhes and Vicsek, 2014 and Hatzikirou and Deutsch, 2007). In order to provide a
modelling background for the next chapter, we will cite some of them.

Szabò et al (2006) using an attraction-repulsion discrete flocking model similar
to which in Section 2.6.2 studied the collective migration of keratocytes, tissue cells
obtained from the scales of goldfish (Figure 2.10).

In the same framework, Sepúlveda et al (2013) have proposed a minimal model
for the collective motion of cells in an actively moving epithelium. Their zone model,
written as

dVi

dt
=

∑
j n.n. i

[
α

Ni
(Vj −Vi) + fij

]
− βVi + σξi, (2.38)

uses a Cucker-Smale term, performed on the Ni cells j that are the nearest neighbours
of cell i, joined with a force fij between neighbours cells i and j, which is repulsive
with a hard-core at short distances and attractive at longer distances. Moreover, a
damping term in the form −βVi and a noise σξi are considered. The model has then
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Figure 2.9. Different types of collective cell migration. The moving cells are in white,
with gray circles indicating nuclei. The substrate is blue and purple lines can be a
chemoattractant. Movement is from left to right. (a) and (b) show a loosely associated
groups of cells, that make contact rarely (a) or frequently (b). For example germ cells,
neural-crest cells, sperm cells. The degree of freedom of these cells is sometimes restricted
by tracks. (c) Migrating cells in a fish lateral line. We distinguish a fixed “front” and a
“back”. (d) A vascular-type branch: the cell remain associated through the central bud
grow out from the existing epithelium and the cells. (e) An epithelial sheet moving to
close a wounded region; cells have a small degree of freedom. (f) A cluster of moving
cells (source Rorth, 2007).

Figure 2.10. Numerical simulation of the Szabò et al. model for three different values
of keratocytes number. According to the experimental observations, as cell density
increases cell motility undergoes collective ordering (source Szabò et al, 2006).
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been tested experimentally on the motion of Madin-Darby Canine Kidney cells, that
are commonly used as a general model for epithelial cells, finding a nice agreement
(Figure 2.11).

Figure 2.11. A numerical simulation of the Sepulveda et al. model compared with
experimental observations. The plot describes a border progression: the motion of cells
in a confluent epithelium is triggered by the unmasking of free surface. On the left there
is an image from an experiment and on the right a numerical simulation. In the right
panel the positions of the particles are shown as black dots on the left (•), while red
dots on the right (•) mark the free surface (source Sepúlveda et al, 2013).

A hybrid model, agent-based at cellular scale and continuous at molecular level,
has been proposed by Joie et al (2014) to describe the migration and the orientation
of endothelial cells (cells covering the interior surface of blood vessels, lymphatic
vessels and heart) seeded on bioactive micropatterned polymers (e.g. adhesion
peptides or growth factor peptides that make the cells adhere). The behaviour of
cells on bioactive substrates is a key component in tissue engineering, for instance in
the creation of tissue in vitro for subsequent implantation. The model, starting from
biological experiments, considers ellipsoidal cells (rounded cells become a particular
case) in a bidimensional framework, since cells do not overlap. If Xi is the position
of the centre of the i-th cell the acting force is the contribution of

Ẍi = Fc + Fr + Ff + Fa, (2.39)

where Fc represents the attraction toward a chemoattractant ϕ,

Fc(t,x) = ∇ϕ(t,x), (2.40)

produced by the cells themselves and satisfying a suitable Poisson equation (since
diffusion occurs on smaller timescale). Fr is a repulsive force in the form 1/r2 (r
being the distance between two cells), considering also the orientation Li of the
ellipses, from which different distances between the cell boundaries may depend:

Fr(Li,Xi) = αrfr(Li)
N∑
j=1

Xi −Xj

‖Xj −Xi‖3
. (2.41)

Ff is a friction force proportional to the velocity, that takes into account the bioactive
substrate:

Ff(Xi) = −αfff(Xi)Ẋi. (2.42)
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Finally Fa(Xi,Li) translates the attractive force of the adhesive areas that acts
when a part of the cell is located on the nutrient path, while vanishes if a cell is
completely on the polymer region, or outside this region. A numerical simulation of
this model is shown in Figure 2.12.

(a) (b)

Figure 2.12. Position and orientation of endothelial cells on 100 µm bioactive strips using
the model proposed by Joie et al. (a) An image from an experiment; (b) a numerical
simulation (adapted from Joie et al, 2014).

In a previous paper Colin et al (2013) derived also a continuous version of the
preview model, in good agreement with the experimental data. Nevertheless the cell
orientation, taken into account by the hybrid model, is an experimental datum and
plays a crucial role in such biological structures (Joie et al, 2014).

In a three-dimensional framework Arboleda-Estudillo et al (2010) investigated
the zebrafish gastrulation, the formation of the main germ layers of the embryo,
from which tissues and organs eventually originate. In their model four different
forces are considered: an attraction-repulsion force, a chemotactic force that provide
a polarized migration, an alignment force like in (2.31), a noise force modelling
random migration (Figure 2.13).

Figure 2.13. (A) Image of the zebrafish embryo at the beginning of gastrulation (6.5
hours post-fertilization (hpf)); (B) the embryo at midgastrulation (8.5 hpf). Animal
pole is to the top and dorsal to the right. (C) Trajectories of mesendodermal cells
during midgastrulation taken in the region marked with a rectangle in (A)-(B). Spheres
indicate the endpoint of each track. (D) A magnification of the box shown in (C) (source
Arboleda-Estudillo et al, 2010).

In Chapter 3 we will design a mathematical model describing the cell migration
and the self-organization in the zebrafish lateral line primordium. It will be a hybrid
model: continuous on the chemical scale and discrete at cellular level. For the
chemicals, classic chemotaxis equations will be considered while, for the moving cells,
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we will include suitable interaction terms, which will take into account the collective
dynamics of the migrating group. Finally, the model will include an equation for the
mesenchymal-epithelial transition process in the cell state, that produce a change in
the cell behaviour (see Chapter 1).



39

Chapter 3

A hybrid mathematical model
for self-organizing cells in the
early development of the
zebrafish lateral line

3.1 Introduction

In Chapter 1 we have described the morphogenetic processes that arise in the
zebrafish posterior lateral line, during growth and development stage.

Two main phases have been investigated: the total migration of mesenchymal
cells driven by the haptotactic chemokine SDF-1a through its receptor CXCR4b,
and the process of differentiation in the rear of the migrating group, inducing a
mesenchymal epithelial transition. In this second phase the growth factor FGF,
mutually exclusive with its receptor FGFR allowed us, also in order to formulate a
suitable mathematical model, to distinguish cell population in two types: leader cells,
that produce FGF signal but do not activate the receptor FGFR and follower cells,
that expressing FGFR do not produce any growth factor. Then we have identified
concomitant mechanisms based on the total level of FGF, SDF-1a and on a lateral
inhibition effect, that lead to a formation of rosette-shaped structure in the trailing
region of the migrating primordium. This configurations, characterizing the so called
proto-neuromasts, present one or two leader cells in their centre, surrounded by
some other followers. When this aggregates become fully mature, they are deposited
during the migration. This corresponds to the growth and location of neuromasts
along the two flanks of the embryo.

Our aim, in this chapter, is to obtain a minimal mathematical model which is
able to:

a) describe the collective cell migration, the formation and the detachment of the
neuromasts, in the spatial and temporal scale of the experimental observations;

b) ensure the existence and stability of the rosette structures characterizing the
emerging neuromasts, as stationary solutions of the system.



40 3. A hybrid mathematical model for the zebrafish lateral line

Request a) will lead us to introduce in our model various effects, some of them exper-
imentally evident (as chemotaxis, cell adhesion-repulsion, damping effects, chemical
signals diffusion), others (as cell alignment, lateral inhibition mechanism, change
of parameters in the mesenchymal-epithelial transition), biologically reasonable,
introduced in order to reproduce observed results in literature. Request b), among
other, allows us to obtain some important restrictions on the range of the parameter
values of the model, which will be used in the numerical simulations of the dynamical
case, other parameters being obtained from biological literature or by a numerical
data fitting. This aspect will be recovered in Sections 3.7–3.8. Finally, performing
suitable numerical tests, we will find for our model a nice agreement with biological
evidences both in the stationary and in the dynamical setting.

This chapter is organized as follows: In Section 3.2 the mathematical model is
introduced and its main features are discussed. In Section 3.3 a nondimensional form
of the model is derived, fixing suitable characteristic quantities. Section 3.4 deals
with the study of the stationary configuration of the rosettes, and their stability.
In Sections 3.5 we describe the numerical approximation scheme for the equations
involved in the model, and in Section 3.6 some 2D numerical tests are presented,
with the aim of illustrating the power and the limits of our approach. Section 3.7
concerns with the estimate of the parameters used in the dynamical simulations and
a list of the main dimensional and nondimensional coefficients is provided. Finally,
Section 3.8 is devoted to the conclusions.

3.2 The basic mathematical model

Starting from the biological observations in Chapter 1, here we design a discrete
in continuous hybrid mathematical model which takes into account the difference
between the cellular and the chemical scale (see Section 2.4). At the cellular level
the model is discrete and includes the equation of motion and the equation of the
leader-follower state for each single cell, while at the molecular level the model is
continuous and it is based on the equations for the various chemical signals. This
is a reasonable choice if we think that the total number of cells involved in the
morphogenesis process is in the range 80–100 (see Chapter 1). For analytical and
computational simplicity in our analysis we will consider only the 2D case, although
we do not expect great changes passing to 3D, since experimental observations
suggest that these phenomena involve only a thin cell layer.

For cell motion we use a second order dynamic equation, which takes into
account the forces acting on the cells. These forces are given by chemical signals,
such as chemotaxis, and mechanical interaction between cells, as alignment, adhesion,
repulsion (see Mertz et al (2013) for experimental results in this direction). About
alignment effects, we base our description on the seminal paper by Cucker and
Smale (2007a), while for the attraction-repulsion effects we refer to the mechanism
introduced by D’Orsogna et al (2006) (see Section 2.6). All these effects take into
account a non local sensing radius. Moreover a damping term, proportional to the
velocities and due to cell adhesion to the substrate, is considered (Rubinstein et al,
2009; Fournier et al, 2010; Bayly et al, 2012).

For the chemical growth factors, because of the equivalence between FGF3 and
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FGF10, we consider a single concentration and a single receptor, that we will name
respectively FGF and FGFR (see Chapter 1). The SDF-1a effect is described by a
haptotactic term produced by the gradient of the concentration of this chemokine, see
Eisenbach and Lengeler (2004) for some biological backgrounds, while mathematical
references can be found in Murray (2003) and Perthame (2007). In the same way,
the action of FGFR on a follower cell is described by a chemotactic effect due to
the gradient of the FGF produced by a leader cell. The concentration of chemical
signals FGF and SDF-1a are then described using diffusion equations with possible
source or degradation terms (see Sections 2.1–2.2).

Finally, the follower-leader differentiation is represented mathematically by a
switch state variable, which change its value according to the level of some related
functions, which take into account the concentrations of SDF-1a and of FGF, and
also the number of cells in a given neighbourhood of the given cell, according to the
conditions exhibited in Section 1.5.

A simplify attempt in the modelling of collective migration guided by chemical
signals, tested on the lateral line formation in the zebrafish primordium, can be found
in Streichan et al (2011). Although this model is proposed in full 2D framework,
solutions are obtained only in 1D, and a limited number of effects occurs in the model.
In particular, only one type of cells is considered, i.e.: there is no differentiation in
the cell state, and neuromast structure is neglected.

Starting from the above considerations, we work in the following framework:

acceleration of
i-th cell = haptotactic effect of SDF-1a

+ chemotactic effect of FGF source on the followers
+ cells alignment + cell adhesion and repulsion
+ damping effect

i-th cell kind =


follower, if low level of SDF-1a + high level of FGF

+absence of lateral inhibition
leader, otherwise

rate of change of
FGF signal = diffusion + production + molecular degradation

rate of change of
SDF-1a signal = degradation

Let Xi(t) be the position of a single i-th cell, s(x, t) the SDF-1a concentration,
f(x, t) the total FGF concentration (including both FGF3 and FGF10), ϕi(t) a
variable that distinguishes a i-th cell to be, at time t, a leader (ϕi(t) = 1) or a
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follower (ϕi(t) = 0). We introduce the following equations:

Ẍi = αF1 (∇s) + γ(1− ϕi)F1 (∇f) + F2(Ẋ) + F3(X)

− [µF + (µL − µF)ϕi] Ẋi,

ϕi =
{

0, if δF1(s)− [kF + (kL − kF)ϕi]F1(h(f)) + λΓ(ni) ≤ 0,
1, otherwise,

∂tf = D∆f + ξF4(X)− ηf,

∂ts = −σsF5(X),

(3.1)

where α, γ, µL, µF, δ, kL, kF, λ, D, ξ, η, σ are given positive constants, and Fn(·),
n = 1, . . . , 5, are suitable functions.

The term F1, which is related to the detection of a chemical signal by i-th cell in
its neighbourhood, is taken to be a weighted average over a ball of radius R̄ and
centred in Xi:

F1(g(x, t)) := 1
W

∫
B(Xi,R̄)

g(x, t)wi(x) dx, (3.2)

where

B(Xi, R̄) :=
{
x : ||x−Xi|| ≤ R̄

}
, (3.3)

||·|| being the Euclidean norm,

wi(x) :=

 2 exp
(
−||x−Xi||2

log 2
R̄2

)
− 1, if ||x−Xi|| ≤ R̄;

0, otherwise;
(3.4)

is a truncated Gaussian weight function, and

W :=
∫

B(Xi,R̄)
wi(x) dx, (3.5)

independently of i. A similar definition holds for the vector quantity F1. Reasonably
we will choose R̄ larger than the cell radius R (see Section 3.7), so (3.2) describes a
chemical signal that is sensed more in the centre of the cell and less at the edge of
the cell extensions. The second term in (3.1)1 refers to the attraction of a follower
cell toward a source of FGF ligand. The switch variable ϕi makes this term zero for
a leader cell that, expressing FGF, does not activate FGFR receptors (see Chapter
1).

The effect included in the third term of (3.1)1 represents a possible cell alignment.
For it we assume a Cucker and Smale-like flocking term:

F2(Ẋ) := 1
N̄i

∑
j:Xj∈B(Xi,R1)\{Xi}

H(Ẋj − Ẋi). (3.6)
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Here R1 is a suitable radius of influence,

N̄i := card {j : Xj ∈ B(Xi, R1)} , (3.7)

and the function H depends on the relative velocities Ẋj − Ẋi, i.e.:

H(Ẋj − Ẋi) := [βF + (βL − βF)ϕiϕj ]
R2

1
R2

1 + ||Xj −Xi||2
(Ẋj − Ẋi), (3.8)

βF, βL being constants. In particular we can have different coefficients of alignment
for a leader or follower cell: the product ϕiϕj makes the coefficient equal to βF if
at least one of the two cell is follower (ϕiϕj = 0) and equal to βL in the case of
two leaders (ϕiϕj = 1). We remark that the flocking term given by (3.8) (Cucker
and Smale, 2007a; Ha and Liu, 2009), in our model is coupled with other effects,
as chemotaxis and attraction-repulsion effects (see below), and it is also computed
on a truncated domain. Similar mechanisms, as given in (3.8), have been applied
in biological contexts by Szabò et al (2006), Arboleda-Estudillo et al (2010), and
Sepúlveda et al (2013), since the seminal paper of Vicsek et al (1995) (see Sections
2.5–2.7). In the following we will assume R1 = R̄ (see Section 3.7), but in principle
they can be different. In Section 3.7 we will give a justification for the introduction
of an alignment term.

The function F3 includes adhesion-repulsion effects. In particular repulsion
occurs at a distance between the centres of two cells less than R4 and takes into
account the effects of a possible cell deformation. Conversely, adhesion occurs at
a distance greater than R4 and less than R5 > R4, and it is due to a mechanical
interaction between cells via filopodia. We assume

F3(X) :=
∑

j:Xj∈B(Xi,R5)\{Xi}
K(Xj −Xi), (3.9)

where the function K depends on the relative positions Xj −Xi, i.e.:

K(Xj −Xi) :=


−ωrep

(
1

||Xj −Xi||
− 1
R4

)
Xj −Xi

||Xj −Xi||
, if ||Xj −Xi|| ≤ R4;

ω̄adh (||Xj −Xi|| −R4) Xj −Xi

||Xj −Xi||
, if R4 < ||Xj −Xi|| ≤ R5;

(3.10)

with
ω̄adh := ωadh,F + (ωadh,L − ωadh,F)ϕiϕj ,

ωrep, ωadh,L, ωadh,F being constants. In practice we will choose R4 = 2R (see Section
3.7), so that repulsion occurs when two cells start to be effectively overlapped. We
note that function (3.10)1 gives a repulsion which goes as 1/r, r being the distance
between the centres of two cells, as we can find in Cristiani et al (2011a,b); Colombi
et al (2014). The function (3.10)2 represents Hooke’s law of elasticity, with different
elastic coefficients for a leader cell and for a follower. In particular we have ωadh,F if
at least one of the two cells is a follower (ϕiϕj = 0) and ωadh,L > ωadh,F if two cells
are both leaders (ϕiϕj = 1). The introduction of two different elastic coefficients is
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reasonable taking into account the different cell adhesion molecules (E-cadherins
and N-cadherins) expressed in the mesenchymal or epithelial state (see Section
1.4 and Armstrong et al, 2009). Similar terms can be found in Albi and Pareschi
(2013), Joie et al (2014) and references therein. We remark that adhesion (3.10)2
and alignment (3.8) produce different effects, though they both refer to a cell-cell
interaction: the former a radial effect, the latter a tangential effect. In some models
of collective motion alignment, adhesion and repulsion act on non-overlapping regions
(see Section 2.6.3). Here, taking into account a possible effect of the cell extensions,
we suppose that the alignment occurs inside a interacting area, overlapped in part
to the repulsion region.

The last term in the first equation is due to the cell adhesion to the substrate
(see, for instance, Rubinstein et al, 2009; Fournier et al, 2010; Bayly et al, 2012),
possibly with a different damping coefficient for a leader (µL, given by ϕi = 1) or a
follower cell (µF, given by ϕi = 0).

The second equation in (3.1) defines the switch variable ϕi for the i-th cell. The
leader-to-follower transition is performed requiring that the threshold function at
the right hand side of (3.1)2 is less than zero, according to the three conditions
described in Chapter 1. For the FGF detection in F1(h(f)) we choose the following
form for the function h(f):

h(f) := f

fmax + f
, (3.11)

where fmax is constant. The function (3.11) includes a possible saturation effect
when FGF molecules tend to occupy all receptors of a cell. The coefficients kL
and kF, related respectively to a leader and a follower cell, provides a delay in the
inverse follower-to-leader transition setting suitably kL < kF, this in accordance to
observations in Section 1.5. About the lateral inhibition mechanism, as proposed in
Section 1.5, we introduce a function Γ(ni) that counts the number ni of cells in a
suitable neighbourhood of the i-th cell, with radius of influence R2, namely

Γ(ni) := eni

eni + Γ0
− 1

1 + Γ0
, (3.12)

where

ni := card
{
j : Xj ∈ B̊(Xi, R2)\ {Xi}

}
, (3.13)

Γ0 is a constant, and B̊(Xi, R2) is the interior of B(Xi, R2). The function (3.12) is
justified if we think of a neuromast as made by a single central leader and some
followers around. In this context (3.12) takes very different values when it is evaluated
on a central cell or on a cell on the boundary of the primordium. Moreover, it
provides a fast saturation effect when n increases, so that a central leader perceives
about the same inhibition effect from a certain value of n. This is useful to describe
the possibility to obtain neuromasts with a variable number of cells, according to
experimental observations (generally 8-12 cells) (Lecaudey et al, 2008). A suitable
value for the constant Γ0 is given in Section 3.7, then we will choose the radius
R2 = 2R in order to consider lateral inhibition as a pressure effect that occurs when
two cells start to be overlapped.
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In the diffusion equation (3.1)3, only leader cells are responsible of the production
of FGF, so that

F4(X) :=
Ntot∑
j=1

ϕjχB(Xj ,R3), (3.14)

where Ntot is the total number of cells, and

χB(Xj ,R3) :=
{

1, if x ∈ B(Xj , R3);
0, otherwise. (3.15)

Similarly, in equation (3.1)4 we take

F5(X) :=
Ntot∑
j=1

χB(Xj ,R3),

in which the variable ϕi does not appear now, because both leaders and followers are
involved in the haptotactic process. Typically, we will choose R3 = R considering
that the source of FGF and the degradation of SDF-1a signal is substantially defined
by the dimension of a single cell (see Section 3.7).

The above observations are then summarized in the following model:

Ẍi = α

W

∫
B(Xi,R̄)

∇s(x, t)wi(x) dx + γ(1− ϕi)
W

∫
B(Xi,R̄)

∇f(x, t)wi(x) dx

+ 1
N̄i

∑
j:Xj∈B(Xi,R1)\{Xi}

H(Ẋj − Ẋi) +
∑

j:Xj∈B(Xi,R5)\{Xi}

K(Xj −Xi)

− [µF + (µL − µF)ϕi] Ẋi,

ϕi =



0, if δ

W

∫
B(Xi,R̄)

s(x, t)wi(x) dx

−kF + (kL − kF)ϕi
W

∫
B(Xi,R̄)

f(x, t)
fmax + f(x, t)wi(x) dx + λΓ(ni) ≤ 0,

1, otherwise,

∂tf = D∆f + ξ

Ntot∑
j=1

ϕjχB(Xj ,R3) − ηf,

∂ts = −σs
Ntot∑
j=1

χB(Xj ,R3),

(3.16)

where the functions H(Ẋj − Ẋi) and K(Xj − Xi) are given by (3.8) and (3.10).
Initial and boundary conditions have to be specified. For the i-th cell we set

Xi(0) = Xi0; and Ẋi(0) = 0, i = 1, . . . , Ntot, (3.17)
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together with the fact that all the cells are initially in the leader state:

ϕi(0) = 1, i = 1, . . . , Ntot. (3.18)

Now, let Ω = [a, b] × [c, d] be our domain, for FGF signal we require zero initial
concentration and homogeneous Neumann boundary condition:

f(x, 0) = 0; ∂f

∂n = 0, on ∂Ω. (3.19)

No-flow boundary condition (3.19)2 is justified if we think of an experiment in which
our domain is isolated from the surrounding environment. Then, since initially
SDF-1a is only located in a given region

s(x, 0) = s0(x), (3.20)

where s0(x) has compact support in Ω. In particular we consider a rectangular
stripe of width 2l, [ā, b̄]× [m− l,m+ l], with [ā, b̄] ⊂ [a, b], m = (c+ d)/2, and

s0(x, y) := Φ(x)Ψ(y), (3.21)

where, for instance, we choose

Φ(x) := smax
2

[
tanh

(
x− c1
c2

)
+ 1

]
χ[ā,b̄], (3.22)

smax is the initial maximum SDF-1a concentration, c1, c2 are constants. The function
(3.22) yields a non uniform haptotactic gradient, that is stronger at the beginning
and then tends to saturate when cells acquire enough velocity. Values for c1, c2 will
be given in Section 3.6. Then we set

Ψ(y) := uε(y) ∗ χ[m−l,m+l](y) =
∫ d

c
uε(y − τ)χ[m−l,m+l](y) dτ, (3.23)

the convolution of χ[m−l,m+l](y) with a positive and symmetric mollifier

uε(y) :=


1
J

1
ε
e
−

1
1− (y/ε)2

, if −ε < y < ε;

0, otherwise;

(3.24)

where

J :=
∫ ε

−ε

1
ε
e
−

1
1− (y/ε)2

dy, (3.25)

is the normalization factor. The mollifier (3.24) is introduced to have sufficient
smoothness for s0(x). A suitable value for the positive constant ε will be given in
Section 3.6.

Although we have introduced an initial gradient for SDF-1a, we have tested in
our simulations that the cells of the primordium can self-generate their own gradient,
so the collective migration can be ensured, with a reduced velocity, even fixing a
constant initial data, along the x-axis, for the SDF1-1a signal. Biological studies
in this regard have been performed recently by Donà et al (2013). Anyway we find
that an initial gradient for the SDF-1a signal is necessary to reach a cell velocity
consistent with the experimental data (see also Sections 3.6–3.7).
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3.3 The nondimensional model
Though we tend to use dimensional times and distances in the plots for easier
comparison with experiments, the qualitative behaviour of the model (3.16) is more
clearly described using a nondimensional form based on the following dimensionless
quantities:

t∗ := t

T
, x∗ := x

R
, X∗ := X

R
, f∗ := f

fmax
, s∗ := s

smax
,

W ∗ := W

R2 , R∗i := Ri
R

i = 1, . . . , 5, R̄∗ := R̄

R
,

α∗ := αsmaxT
2

R2 , β∗L := βLT, β∗F := βFT, γ∗ := γfmaxT
2

R2 , ω∗rep := ωrepT
2

R2 ,

ω∗adh,L := ωadh,LT
2, ω∗adh,F := ωadh,FT

2, µ∗L := µLT, µ∗F := µFT, δ∗ := δsmax

λ
,

k∗L := kL

λ
, k∗F := kF

λ
, D∗ :=DT

R2 , ξ∗ := ξT

fmax
, η∗ := ηT,

σ∗ := σT, c∗1 := c1
R
, c∗2 := c2

R
, ε∗ := ε

R
,

where T a characteristic time (see Section 3.7). With these definitions, and main-
taining for simplicity the asterisks only for the nondimensional constants, we have

Ẍi = α∗

W

∫
B(Xi,R̄∗)

∇s(x, t)wi(x) dx + γ∗(1− ϕi)
W

∫
B(Xi,R̄∗)

∇f(x, t)wi(x) dx

+ 1
N̄i

∑
j:Xj∈B(Xi,R

∗
1)\{Xi}

H(Ẋj − Ẋi) +
∑

j:Xj∈B(Xi,R
∗
5)\{Xi}

K(Xj −Xi)

− [µ∗F + (µ∗L − µ∗F)ϕi] Ẋi,

ϕi =



0 if δ∗

W

∫
B(Xi,R̄∗)

s(x, t)wi(x) dx

−k
∗
F + (k∗L − k∗F)ϕi

W

∫
B(Xi,R̄∗)

f(x, t)
1 + f(x, t)wi(x) dx + Γ(ni) ≤ 0,

1 otherwise,

∂tf = D∗∆f + ξ∗
Ntot∑
j=1

ϕjχB(Xj ,R
∗
3) − η∗f,

∂ts = −σ∗s
Ntot∑
j=1

χB(Xj ,R
∗
3),

(3.26)

where wi(x) and W are given by (3.4)–(3.5) replacing R̄ with R̄∗, then

Γ(ni) := eni

eni + Γ0
− 1

1 + Γ0
, (3.27)

ni := card
{
j : Xj ∈ B̊(Xi, R

∗
2)\ {Xi}

}
, (3.28)

N̄i := card {j : Xj ∈ B(Xi, R
∗
1)} , (3.29)
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H(Ẋj − Ẋi) := [β∗F + (β∗L − β∗F)ϕiϕj ]
R∗21

R∗21 + ||Xj −Xi||2
(Ẋj − Ẋi), (3.30)

and

K(Xj −Xi) :=


−ω∗

rep

(
1

||Xj −Xi||
− 1
R∗

4

)
Xj −Xi

||Xj −Xi||
, if ||Xj −Xi|| ≤ R∗

4;

ω̄∗
adh (||Xj −Xi|| −R∗

4) Xj −Xi

||Xj −Xi||
, if R∗

4 < ||Xj −Xi|| ≤ R∗
5;

(3.31)

with
ω̄∗adh := ω∗adh,F + (ω∗adh,L − ω∗adh,F)ϕiϕj .

Initial and boundary conditions are still given by (3.17)–(3.23). In particular in
(3.22), (3.24), and (3.25) we have to replace smax, c1, c2 and ε, with s∗max = 1, c∗1, c∗2
and ε∗.

3.4 Steady states and stability
Now we will investigate particular steady states for our model. They are biologically
relevant, because they correspond to the neuromast basic structure (see Chapter 1).
This will be useful also to provide us a range of variability for some parameters or to
specify some of their ratios. First we consider the stationary form of system (3.26)

γ∗(1− ϕi)
W

∫
B(Xi,R̄∗)

∇f(x)wi(x) dx +
∑

j:Xj∈B(Xi,R∗5)\{Xi}
K(Xj −Xi) = 0,

ϕi =


0, if −k

∗
F + (k∗L − k∗F)ϕi

W

∫
B(Xi,R̄∗)

f(x)
1 + f(x)wi(x) dx + Γ(ni) ≤ 0,

1, otherwise,

D∗∆f = η∗f − ξ∗
Ntot∑
j=1

ϕjχB(Xj ,R∗3),

s = 0,
(3.32)

with
∂f

∂n = 0, on ∂Ω.

Then we give the following

Definition 1 We will call N -rosette (N ≥ 2) a configuration formed by a leader
cell surrounded by N follower cells with their centres located on the vertices of a
regular polygon of N sides (or a segment if N = 2) centred in the leader cell (Figure
3.1 (a)).
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(a) (b)

Figure 3.1. (a) Example of 8-rosette with a leader centred in XL and 8 followers centred in
Xi, i = 1, . . . , 8. (b) Geometrical configuration of a N -rosette with a leader cell centred
in XL and some followers centred in Xi−1, Xi, Xi+1.

With reference to Figure 3.1 (b), we call XL the centre of the leader cell, Xi the
centre of a follower, d1 the distance between the followers and the leader, d2 the
distance between two followers in alternating position (e.g. Xi−1 and Xi+1), d3 the
distance between two adjoining followers (e.g. Xi and Xi+1), and α1, α2, α3 the
angles in the figure.

By symmetry considerations we set:

α1 = 2π
N
, α2 = π − α1

2 , α3 = π

2 − α2 = π

N
, (3.33)

d2 = 2d1 sin 2π
N
, (3.34)

d3 = 2d1 sin π

N
. (3.35)

Now we assume the following physically reasonable hypotheses for a N -rosette:

1) the range of lateral inhibition is equal to the range of repulsion between cells:

R2 = R4; (3.36)

2) the followers are located in the range of the lateral inhibition of the leader:

d1 ≤ R2; (3.37)

3) there is no repulsion between adjoining followers if N = 2, 3:

d3 ≥ R4; (3.38)

there is no repulsion between followers in alternating position if N ≥ 4:

d2 ≥ R4. (3.39)
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We point out that Hypothesis 1) is justified if we think of repulsion and lateral
inhibition both due to the pressure between cell membranes. Hypothesis 2) is a
direct consequence of the definition of a N -rosette. Finally, Hypothesis 3) ensures
that repulsion, seen as a pressure effect, can be exerted only by adjacent cells, and
not bypassing a single cell or considering cells completely overlapped. In particular
in Hypothesis 3), for N = 2, 3, followers in alternating position coincide respectively
with the same cell and with adjoining followers, this justifies (3.38).

Taking system (3.32) and Hypotheses (3.36)–(3.39) into account, we can state
the following results.

Proposition 1 There exist N -rosettes if and only if N ≤ 12. Moreover the distance
d1, depending on N , can vary in the following ranges:

1
2 sin π

N

≤ d1
R4
≤ 1, if N = 2, 3, (3.40)

1
2 sin 2π

N

≤ d1
R4
≤ 1, if 4 ≤ N ≤ 12. (3.41)

Proof. Condition (3.40) is a consequence of (3.37), (3.36), (3.38), and (3.35). While
(3.41) is a consequence of (3.37), (3.36), (3.39), and (3.34). In particular (3.41) is
not empty if and only if N ≤ 12.

The maximum number of cells, which is provided by the previous proposition, is
consistent with the experimental observations as shown in Lecaudey et al (2008).

Proposition 2 In a N-rosette there are repulsion and lateral inhibition effects
between adjoining followers if and only if N ≥ 4. In particular if N ≥ 6 these effects
do not depend on d1, and if N = 4, 5 this holds if and only if

1
2 sin 2π

N

≤ d1
R4

<
1

2 sin π
N

, N = 4, 5. (3.42)

Proof. Hypothesis 1) ensures that this proof holds both for repulsion and lateral
inhibition effects. If N = 2, 3 the statement is true thanks to Hypothesis 3).
If N ≥ 6 from (3.35), (3.36), and (3.37) we have

d3 ≤ d1 ≤ R2 = R4,

independently from d1.
If N = 4, 5, using (3.35) we have repulsion if and only if

d3 = 2d1 sin π

N
< R4. (3.43)

From (3.43) and (3.41) equation (3.42) follows.

Now, in order to fix the range of variability for some parameters we solve the
nondimensional system (3.32) for a N -rosette with a leader in XL, setting a frame
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centred XL with axes passing through the centre of a follower (Figure 3.1 (b)). For
simplicity we introduce the following symbols:

∇f(Xi) := 1
W

∫
B(R̄∗,Xi)

∇f(x)wi(x) dx,

f(Xi) := 1
W

∫
B(R̄∗,Xi)

f(x)
1 + f(x)wi(x) dx,

to denote the weighted average of the functions ∇f and f
1+f .

Firstly, equation (3.32)2 for each follower and for the leader becomes respectively:

ϕi = 0⇔ −k∗Ff(Xi) + Γ(n) ≤ 0, i = 1, . . . , N, (3.44)

ϕ0 = 1⇔ −k∗Lf(XL) + Γ(N) > 0, (3.45)

where the function Γ is given by (3.27). Here the number n, which is related to the
lateral inhibition, is given by (3.28) and, by symmetry considerations, it does not
depend on i. Moreover, according to Hypothesis 2) and Proposition 2, it takes only
the values 1 or 3: if N ≥ 6, or N = 4, 5 and holds condition (3.42), we have to take
n = 3, otherwise n = 1. The case n = 3 means that on the i-th cell we have the
lateral inhibition of the leader cell and of the two adjoining followers, while in the
case n = 1 we have only the lateral inhibition of the leader cell. The other cases for
n are not possible due to conditions (3.36)–(3.39) assumed on the distances.

Now, the function f(x), which is needed in (3.44) and (3.45), is the solution in
the domain Ω of equation (3.32)3, with Neumann boundary condition, that in this
case takes the form

D∗∆f = η∗f − ξ∗χB(XL,R∗3), (3.46)
∂f

∂n = 0, on ∂Ω, (3.47)

XL being the centre of the leader cell, the only one that produces FGF signal. If Ω
is a circular domain centred in the leader cell, radial symmetry of the solution of
(3.46) and (3.47) implies the quantities f(Xi) to be the same for all i, so that (3.44)
and (3.45) become

k∗F ≥ k̄∗F := Γ(n)/f(Xi), (3.48)

k∗L < k̄∗L := Γ(N)/f(XL). (3.49)

Now we try to obtain a numerical estimate for the bound functions k̄∗F and k̄∗L,
as N changes. We set a domain Ω = [0, 200] × [0, 200] (µm2) with a single leader
cell located in XL = (100, 100) (µm). We choose the square domain size sufficiently
large, so that its influence on the solution can be neglected in the time period of
interest. Then equations (3.46) and (3.47) are numerically solved in such a domain,
as described in Section 3.5 to follow, using a spatial discretization corresponding to
∆x = ∆y = 0.2 µm. Parameters D∗, η∗, ξ∗, R∗2, R∗3, R∗4, R̄∗ used here are listed in
Table 3.3, Section 3.7.

Figure 3.2 shows a numerical estimate for the lower bound k̄∗F in (3.48). For each
fixed value of N , N = 2, . . . , 12, the curve indicates the value of k̄∗F as a functions
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Table 3.1. Numerical values of the upper bound k̄∗
L in (3.49) for N = 2, . . . , 12. In practice

fixing N we have the upper bound of k∗
L for the existence of a steady N -rosette.

N k̄∗L (nondim.) N k̄∗L (nondim.)

2 0.6707 8 1.8187
3 1.1580 9 1.8230
4 1.5146 10 1.8245
5 1.6987 11 1.8251
6 1.7769 12 1.8253
7 1.8073

of d1, which is the distance between leader and follower. In practice, taking into
account a N -rosette configuration as in Figure 3.1 (b), the numerical value of f(x)
is used to compute f(Xi) as the distance d1 from Xi to XL, suitably discretized,
changes. Depending on the number of cells that make lateral inhibition on Xi, also
the numerator Γ(n), can vary, for a fixed N , with respect to d1 as established by
Proposition 2. Since the scale of the curves is essentially different as N changes, we
present our results in two different pictures in Figure 3.2. Notice that the range
of the distance d1 to be considered depends on N according to (3.40) and (3.41)
in Proposition 1: the starting point on the curve is marked by a “•”, while the
ending point is represented by d1 = R4 for all N . We have already observed that
Γ(n) can only obtain the values Γ(1) or Γ(3) according to Proposition 2. So, clearly,
the curves for N = 2, 3 are overlapped (Figure 3.2 (a)), the same for N = 6, . . . , 12
(Figure 3.2 (b)). For N = 4, 5 the curves start in Figure 3.2 (b), when Γ(n) = Γ(3),
until d1 ≈ 14 µm for N = 4, and d1 ≈ 17 µm for N = 5 (markers “×”), then Γ(n)
becomes Γ(1) and, for larger values of d1, the curves continue in Figure 3.2 (a). For
N = 12 the right hand side of (3.48) assumes a single value in d1 = R4 in Figure 3.2
(b).

On the other hand, using again the numerical solution of f(x), the right hand
side of (3.49) can be tabulated as N changes. Its values are given in Table 3.1.
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(a)

(b)

Figure 3.2. Numerical plot of the lower bound k̄∗
F in (3.48) as a function of d1. The

curve gives the lower bound for k∗
F for a fixed N and d1. Since the scale of the curves

is essentially different, we present in (a) the case N = 2, 3, in which the curves are
overlapped, and similarly in (b) the case N = 6, . . . , 12. The starting point on the
curves is marked by “•”, while the ending point is represented by d1 = R4 for all N . For
N = 4, 5 the curves start in (b) until d1 ≈ 14 µm and d1 ≈ 17 µm respectively (markers
“×”), then for larger values of d1 they continue in (a). For N = 12 the curve is reduced
to a single value in d1 = R4 in (b).
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Now, equation (3.32)1 becomes∑
j:Xj∈B(XL,R∗5)\{XL}

K(Xj −XL) = 0, (3.50)

γ∗∇f(Xi) +
∑

j:Xj∈B(Xi,R∗4)\{Xi}
K(Xj −Xi) = 0, i = 1, . . . , N, (3.51)

respectively for the leader and for each follower. Here K contains only repulsion
term:

K(Xj −Xi) := −ω∗rep

(
1

||Xj −Xi||
− 1
R∗4

)
Xj −Xi

||Xj −Xi||
.

For symmetry (3.50) is identically satisfied. Then in (3.51) f(x, t) is given by (3.46)
and (3.47), so in a circular domain Ω we can write the same relation for all i. For
example, in relation to Figure 3.1 (b), we have

γ∗∂yf(Xi)− ω∗reph1(d∗1)− ω∗reph2(N, d∗1) = 0, (3.52)

in which ω∗reph1(d∗1) represents the repulsion of the leader:

h1(d∗1) := 1
d∗1
− 1
R∗4

,

d∗1 = d1/R is the nondimensional value of d1, and ω∗reph2(N, d∗1) is the possible
repulsion of two adjoining followers according to (3.35) and Propositions 1–2, namely:

h2(N, d∗1) :=



0, if N = 2, 3;

2
(

1
2d∗1 sin π

N

− 1
R∗4

)
sin π

N
, if N = 4, 5 ∧ d∗1

R∗4
< 1

2 sin π
N

;

0, if N = 4, 5 ∧ 1
2 sin π

N
≤ d∗1

R∗4
≤ 1;

2
(

1
2d∗1 sin π

N

− 1
R∗4

)
sin π

N
, if 6 ≤ N ≤ 12.

(3.53)

We remark that equation (3.52) is useful for two reasons. First, if we know an
experimental value for the distance d∗1 we can obtain, fixing N , the ratio ω∗rep/γ∗ as
a function of d∗1:

ω∗rep
γ∗

= ΘN (d∗1) := ∂yf(Xi)
h1(d∗1) + h2(N, d∗1) . (3.54)

On the other hand, if ΘN is invertible, we can express d∗1 as a function of ω∗rep and
γ∗ that is the equilibrium distance for a N -rosette fixed the physical parameters.

Figure 3.3 represents a dimensional numerical plot of ΘN for N = 2, . . . , 12. It
shows that ΘN is monotone with respect to d1 for all N , so that relation (3.54)
is invertible. To obtain this plot the value of f(x) has been obtained numerically
from (3.46) and (3.47) as previously described, fixing the same domain and the same
parameters. Then the right hand side of (3.54), for a fixed N , is computed on a
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discretized distance d∗1, as done to obtain Figure 3.2. The domain of the curves,
again as in Figure 3.2, is given by (3.40) and (3.41); now it represents the admissible
distances d1 for a N -rosette, as N changes. Symbol “•” marks the origin of the
curves. For N = 2, 3 the curves are overlapped (first line in the top) because for
them h2 = 0 (see (3.54) and (3.53)). For N = 4, 5 the curves coincide with the curve
N = 2, 3 when h2 becomes zero. This happens about for d1 > 14 µm for N = 4, and
about for d1 > 17 µm for N = 5, as we can see in (3.53)2,3. The curves corresponding
to N = 2, . . . , 6 have a vertical asymptote in d1 = R4 where the functions h1 and
h2 in (3.54) become zero. Conversely, for N = 7, . . . , 12, ΘN is defined in d1 = R4.
In particular for N = 12, due to (3.41), the curve is reduced to a single value in
d1 = R4 given by Θ12(R4) (marker “•” on the right).

Figure 3.3. Dimensional numerical plot of ΘN for N = 2, . . . , 12, that demonstrates that
this function is monotone with respect to d1 and then invertible. The first two curves,
for N = 2, 3, coincide (first line in the top). Then, from the top to the bottom, we have
the curves related to N = 5, . . . , 11. For N = 4, 5 the curves go to coincide with the first
curve on the top about from d1 > 14 µm, and d1 > 17 µm respectively. For N = 12 the
curve is reduced to a single value in d1 = R4. In practice fixing N and d1 we have the
value of ΘN that provides in (3.54) the ratio of the parameters ω∗

rep and γ∗.

Typical values for N and d1 (or d∗1) to be used in (3.48), (3.49), and (3.54) will
be given in Section 3.7.

Now, in order to test numerically a steady N -rosette, we perform a dynamical
simulation of the model (3.26), as described in Section 3.5, with initial data given by
a solution of the stationary system (3.32). With this type of simulations we verify
that our numerical approximation scheme, discussed later in Section 3.5, is adequate
to keep in time the stationary solutions of our interest.
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In particular, we consider the spatial domain Ω = [0, 200]× [0, 200] (µm2) and
the time interval [0, 50] (h), that is a typical time range used in the experimental
observations (Nechiporuk and Raible, 2008). Spatial and temporal discretizations
are respectively ∆x = ∆y = 0.2µm and ∆t = 0.01 h. Initial data are set as follows:

Xi(0) = Xi0, (3.55)

Xi0 being a 8-rosette centred in XL(0) = (100, 100) (µm), with follower-leader
distance fixed at d1 = 3

2R (see Section 3.7 and Figure 3.4 (a)),

Ẋi(0) = 0, (3.56)

f(x, 0) = f0(x), (3.57)

with f0(x) solution of equation (3.32)3 with homogeneous Neumann boundary
condition in the same domain,

s(x, 0) = 0, (3.58)

according to (3.32)4. The parameters used here are listed in Section 3.7 (see Tables
3.2–3.3).

We see that our numerical results demonstrate that, with good approximation,
the initial configuration stays constant in time. Figure 3.4 shows evolution in space
of the dimensional solution at four different time steps: t = 0, 16, 32, 50 h. Green
colour marks the leader cell (ϕi = 1), and red colour marks a follower cell (ϕi = 0).
Contour plot in the background is related to the FGF signal concentration, while the
variable s(x, t) is not shown. Figure 3.5 shows the evolution in time of the maximum
relative error on the position,

Emax,rel(t) := max1≤i≤Ntot ‖Xi(t)−Xi0‖
R

, (3.59)

and the maximum velocity

Vmax(t) := max
1≤i≤Ntot

∥∥∥Ẋi(t)
∥∥∥ . (3.60)

Emax,rel suggests a deviation from the initial position in the order of 10−3 times cell
radius, while Vmax is in the order of 10−4 µmh−1, which is very small with respect
to the cell velocity during migration that is around 69 µm/h (Lecaudey et al, 2008).
Plots in Figure 3.4 are obtained computing, in our numerical simulation, quantities
(3.59) and (3.60) at each time step.

Now the stability of a N -rosette will be numerically investigated. Starting from
the previous numerical test we perform a dynamical simulation perturbing the initial
equilibrium configuration of the 8-rosette. Namely, each centre of a follower cell is
translated of a ray vector whose magnitude and direction are random number in the
interval [0, 5] (µm) and [0, 2π]. Spatial domain and parameters are the same as in
the previous simulation, while the time range is set to [0, 60] (h).

Figure 3.6 shows the evolution in space of the dimensional solution at four time
steps: t = 0, 20, 40, 60 h. Colour convention is the same as Figure 3.4. Figure 3.7
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(a) (b)

(c) (d)

Figure 3.4. Numerical simulation of a steady solution given by a 8-rosette. (a)-(d) are
related respectively to the dimensional plot at four different time steps: t = 0, 16, 32, 50 h.
System (3.26) is solved as described in Section 3.5 in Ω = [0, 200]× [0, 200] (µm2) (plot
refers only to a part of the domain) and in [0, 50] (h). Spatial and temporal discretization
is set to ∆x = ∆y = 0.2 µm and ∆t = 0.01 h. Initial data are given by (3.55)–(3.58).
The parameters used here are listed in Section 3.7. Green colour (•) marks the leader
cell, red colour (•) a follower cell, contour plot in the background is the FGF signal
concentration. Variable s(x, t) is not shown.

shows the evolution in time of the maximum relative error on the position Emax,rel(t)
and the maximum velocity Vmax(t). Emax,rel indicates a deviation from the initial
position in the order of 10−1 times cell radius, and also Vmax is small, being in the
order of 10−2 µmh−1. Our data demonstrate as the equilibrium configuration of our
8-rosette is stable. Furthermore, numerical simulations show that similar results can
hold also if N 6= 8, for instance for N = 5 or 10 (data not shown). We note that in
a physically reasonable time range we do not observe the asymptotic stability of the
rosette structures, which is actually not expected, but just the simple stability.
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(a)

(b)

Figure 3.5. Numerical assessment of a steady 8-rosette. (a) Plot in time of the maximum
relative error Emax,rel(t). (b) Plot of the maximum velocity Vmax(t).
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(a) (b)

(c) (d)

Figure 3.6. Numerical assessment of stability of a 8-rosette. (a)-(d) are related respectively
to the dimensional plot at t = 0, 20, 40, 60 h. System (3.26) is solved as described in
Section 3.5 in Ω = [0, 200] × [0, 200] (µm2) (plot refers only to a part of the domain)
and in [0, 50] (h). Spatial and temporal discretization is the same as in Figure (3.4).
Initial data are given by a perturbation of positions (3.55), and by (3.56)–(3.58). The
parameters used here are listed in Section 3.7. Green colour (•) marks the leader cell, red
colour (•) a follower cell, contour plot in the background is the FGF signal concentration.
Variable s(x, t) is not shown.
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(a)

(b)

Figure 3.7. Numerical assessment of stability of a 8-rosette. (a) Plot in time of the
maximum relative error Emax,rel(t). (b) Plot of the maximum velocity Vmax(t).



3.5 Numerical approximation 61

3.5 Numerical approximation
In this section we discuss the numerical approximation scheme of system (3.26),
that for convenience we rewrite below, reducing the equation for Ẍ to a first order
system:

Ẏi = α∗

W

∫
B(Xi,R̄∗)

∇s(x, t)wi(x) dx + γ∗(1− ϕi)
W

∫
B(Xi,R̄∗)

∇f(x, t)wi(x) dx

+ 1
N̄i

∑
j:Xj∈B(Xi,R

∗
1)\{Xi}

H(Yj −Yi) +
∑

j:Xj∈B(Xi,R
∗
5)\{Xi}

K(Xj −Xi)

− [µ∗F + (µ∗L − µ∗F)ϕi] Yi,

Ẋi = Yi,

ϕi =



0, if δ∗

W

∫
B(Xi,R̄∗)

s(x, t)wi(x) dx

−k
∗
F + (k∗L − k∗F)ϕi

W

∫
B(Xi,R̄∗)

f(x, t)
1 + f(x, t)wi(x) dx + Γ(ni) ≤ 0,

1, otherwise,

∂tf = D∗∆f + ξ∗
Ntot∑
j=1

ϕjχB(Xj ,R
∗
3) − η∗f,

∂ts = −σ∗s
Ntot∑
j=1

χB(Xj ,R
∗
3),

(3.61)

where

wi(x) :=

 2 exp
(
−||x−Xi||2

log 2
R̄∗2

)
− 1, if ||x−Xi|| ≤ R̄∗;

0, otherwise;
(3.62)

W :=
∫

B(Xi,R̄∗)
wi(x) dx, (3.63)

Γ(ni) := eni

eni + Γ0
− 1

1 + Γ0
, (3.64)

ni := card
{
j : Xj ∈ B̊(Xi, R

∗
2)\ {Xi}

}
, (3.65)

N̄i := card {j : Xj ∈ B(Xi, R
∗
1)} , (3.66)

H (Yj −Yi) := [β∗F + (β∗L − β∗F)ϕiϕj ]
R∗21

R∗21 + ||Xj −Xi||2
(Yj −Yi), (3.67)
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and

K(Xj −Xi) :=


−ω∗

rep

(
1

||Xj −Xi||
− 1
R∗

4

)
Xj −Xi

||Xj −Xi||
, if ||Xj −Xi|| ≤ R∗

4;

ω̄∗
adh (||Xj −Xi|| −R∗

4) Xj −Xi

||Xj −Xi||
, if R∗

4 < ||Xj −Xi|| ≤ R∗
5;

(3.68)

with
ω̄∗adh := ω∗adh,F + (ω∗adh,L − ω∗adh,F)ϕiϕj .

Initial and boundary conditions are

Xi(0) = Xi0; and Ẋi(0) = 0, i = 1, . . . , Ntot, (3.69)

ϕi(0) = 1, i = 1, . . . , Ntot, (3.70)

f(x, 0) = 0; ∂f

∂n = 0, on ∂Ω, (3.71)

where Ω is the spatial domain, and finally

s(x, 0) = s0(x), (3.72)

as in (3.21)–(3.25).
The methods used in the numerical simulations employ a 2D finite difference

scheme. We consider the spatial domain Ω = [a, b]× [c, d] and the spatial steps ∆x,
∆y, such that [a, b] is divided in M = b−a

∆x intervals, and [c, d] in N = d−c
∆y intervals,

with M , N integers. Then we introduce a Cartesian grid consisting of grid points
(xm, yn), where xm = m∆x and yn = n∆y. The same can be done for the time
interval [0, T ], in this case if ∆t is the time step, tk will be the n-th temporal step,
i.e. tk = k∆t. With the notation ukm,n we denote the approximation of a function
u(x, y, t) at the grid point (xm, yn, tk).

We remind the basic tool in the finite difference schemes, i.e. the following
possible approximations:

∂u

∂x
(xm, yn, tk) ≈



D+
x u

k :=
ukm+1,n − ukm,n

∆x ,

D−x u
k :=

ukm,n − ukm−1,n
∆x ,

D0
xu

k :=
ukm+1,n − ukm−1,n

2∆x .

(3.73)

Similarly can be done for the derivatives with respect to the other variables. Com-
bining, for example, (3.73)1,2 in the form D+

xD
−
x u

k or D−xD+
x u

k (and analogously
for the variable y) we obtain the standard centred approximation for the second
derivatives:

∂2u

∂x2 (xm, yn, tk) ≈ D2
xu

k :=
ukm−1,n − 2ukm,n + ukm+1,n

∆x2 ,

∂2u

∂y2 (xm, yn, tk) ≈ D2
yu

k :=
ukm,n−1 − 2ukm,n + ukm,n+1

∆y2 .

(3.74)
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While (3.73)1,2 are a first order accurate approximation, (3.73)3 and (3.74) are
second order accurate.

We start to describe the approximation of the parabolic equation (3.61)4. The
right hand side is composed of the diffusion term, the source term, and the stiff
degradation term −η∗f . In order to eliminate this last quantity we perform the
classical exponential transformation

f(x, t) = e−η
∗tu(x, t), (3.75)

which leads to the diffusion equation with source for u(x, t):

∂tu = D∗∆u+ eη
∗tξ∗

Ntot∑
j=1

ϕjχB(Xj ,R∗3), (3.76)

with initial and boundary conditions

u(x, 0) = 0; ∂u

∂n = 0, on ∂Ω. (3.77)

Now, for this equation we apply a central difference scheme in space, i.e. the 5-point
stencil for the Laplacian, and the parabolic Crank-Nicolson scheme in time (Morton
and Mayers, 2005; LeVeque, 2007). The source term in taken in explicit, in the form

ξ∗
Ntot∑
j=1

ϕkjχB(Xk
j ,R
∗
3),

where the discretized characteristic function is

χB(Xk
j ,R
∗
3) =

{
1, if (xm, yn) ∈ B(Xk

j , R
∗
3);

0, otherwise. (3.78)

The numerical scheme can be written as

uk+1
m,n − ukm,n

∆t = D∗

2
(
D2
xu

k+1 +D2
yu

k+1
)

+ D∗

2
(
D2
xu

k +D2
yu

k
)

+ 1
2e

η∗(k+1)∆tξ∗
Ntot∑
j=1

ϕkjχB(Xk
j ,R
∗
3)

+ 1
2e

η∗k∆tξ∗
Ntot∑
j=1

ϕkjχB(Xk
j ,R
∗
3),

where the second finite differences D2
xu and D2

yu are given by (3.74). For Neumann
boundary condition (3.77) we use a second order accurate onesided approximation,
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namely:

∂uk

∂x
(x0, yn) ≈ 1

2∆x
(
−3uk0,n + 4uk1,n − uk2,n

)
= 0, n = 1, . . . , N − 1,

∂uk

∂x
(xM , yn) ≈ 1

2∆x
(
3ukM,n − 4ukM−1,n + ukM−2,n

)
= 0, n = 1, . . . , N − 1,

∂uk

∂y
(xm, y0) ≈ 1

2∆y
(
−3ukm,0 + 4ukm,1 − ukm,2

)
= 0, m = 1, . . . ,M − 1,

∂uk

∂x
(xm, yN ) ≈ 1

2∆y
(
3ukm,N − 4ukm,N−1 + ukm,N−2

)
= 0, m = 1, . . . ,M − 1.

(3.79)

In practice, in the numerical simulations we will choose the domain size sufficiently
large that over the time period of interest have a negligible impact on the solution.

In relation to the stationary form of (3.61)4

D∗∆f = η∗f − ξ∗χB(XL,R∗3), (3.80)
∂f

∂n = 0, on ∂Ω, (3.81)

used in Section 3.4 (eqs. (3.46)–(3.47)) to discuss the steady states of the model, we
adopt the central scheme:

D∗
(
D2
xf +D2

yf
)

= η∗fm,n − ξ∗χB(XL,R∗3), (3.82)

in which D2
xu and D2

yu are defined by (3.74) and χB(XL,R∗3) is given by (3.78), where
here XL is the fixed centre of the leader cell, the only one that produces FGF signal.
Then boundary condition (3.81) is treated using (3.79) for fm,n.

For equation (3.61)5 we put the right hand side explicitly in time, and we write
the numerical scheme

sk+1
m,n − skm,n

∆t = −σ∗skm,n
Ntot∑
j=1

χB(Xk
j ,R
∗
3), (3.83)

where the characteristic function is computed as in (3.78).
Now we consider equation (3.61)1. For it we apply a one step IMEX method,

putting totally implicit in time the term containing H (Yj −Yi) and the term
− [µ∗F + (µ∗L − µ∗F)ϕi] Yi at the right hand side, while totally explicit the other terms
(Hundsdorfer and Verwer, 2003). The two-dimensional weighted integrals in (3.61)1
can be computed by a 2D quadrature formula, which due to the truncated Gaussian
weight function wi(x) given in (3.62), is reduced to a sum of the discretized integrand
function on the grid points belonging to the ball B(Xi, R̄

∗). For a integrand function
g(x, t) holds

1
W

∫
B(Xi,R̄∗)

g(x, t)wi(x) dx ≈ 1
W

∑
m,n s.t. (xm,yn)∈B(Xk

i ,R̄
∗)

gkm,n(wi)(k)
m,n, (3.84)



3.5 Numerical approximation 65

where (wi)(k) is the weight function centred in Xk at time step tk, and W is defined
by

W :=
∑

m,n s.t. (xm,yn)∈B(Xk
i ,R̄
∗)

(wi)(k)
m,n. (3.85)

The gradients in equation (3.61)1 are approximated with the second order difference:

∇g(xm, yn, tk) ≈ ∇m,ngk, (3.86)

where, from (3.73)1,

∇m,ngk :=
(
gkm+1,n − gkm,n−1

2∆x ,
gkm,n+1 − gkm,n−1

2∆y

)
. (3.87)

Equation (3.61)2 is then solved with the forward Euler method. The scheme for
equations (3.61)1,2 can be summarized as

Yk+1
i −Yk

i

∆t = α∗

W
∑

m,n s.t. (xm,yn)∈B(Xk
i ,R̄
∗)

(
∇m,nsk

)
(wi)(k)

m,n

+γ∗(1− ϕki )
W

∑
m,n s.t. (xm,yn)∈B(Xk

i ,R̄
∗)

(
∇m,nfk

)
(wi)(k)

m,n

+ 1
N̄i

∑
j:Xk

j∈B(Xk
i ,R
∗
1)\{Xk

i }
H(Yk+1

j −Yk+1
i )

+
∑

j:Xk
j∈B(Xk

i ,R
∗
5)\{Xk

i }
K(Xk

j −Xk
i )− [µ∗F + (µ∗L − µ∗F)ϕi] Yk+1

i ,

Xk+1
i −Xk

i

∆t = Yk
i ,

(3.88)

in which

N̄i := card
{
j : Xk

j ∈ B(Xk
i , R

∗
1)
}
, (3.89)

H
(
Yk
j −Yk

i

)
:=
[
β∗F + (β∗L − β∗F)ϕki ϕkj

] R∗21
R∗21 + ||Xk

j −Xk
i ||2

(Yk
j −Yk

i ), (3.90)

and

K(Xk
j −Xk

i ) :=


−ω∗

rep

(
1

||Xk
j −Xk

i ||
− 1
R∗

4

)
Xk
j −Xk

i

||Xk
j −Xk

i ||
, if ||Xk

j −Xk
i || ≤ R∗

4;

ω̄∗
adh
(
||Xk

j −Xk
i || −R∗

4
) Xk

j −Xk
i

||Xk
j −Xk

i ||
, if R∗

4 < ||Xk
j −Xk

i || ≤ R∗
5;

(3.91)
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with

ω̄∗adh := ω∗adh,F + (ω∗adh,L − ω∗adh,F)ϕki ϕkj .

Finally, the variable ϕi(t) is computed putting in explicit the right hand side of
(3.61)3 and using the above discretizations:

ϕk+1
i =



0, if δ∗

W
∑

m,n s.t. (xm,yn)∈B(Xk
i ,R̄
∗)

skm,n(wi)(k)
m,n

−k
∗
F + (k∗L − k∗F)ϕki

W
∑

m,n s.t. (xm,yn)∈B(Xk
i ,R̄
∗)

fkm,n
1 + fkm,n

(wi)(k)
m,n

+Γ(n(k)
i ) ≤ 0,

1, otherwise,
(3.92)

where n(k)
i is given by (3.65) at k-th time step, that is

n
(k)
i := card

{
j : Xk

j ∈ B̊(Xk
i , R

∗
2)\

{
Xk
i

}}
. (3.93)

About the spatial and temporal step, in the numerical simulations we chose
∆x = ∆y and, since for short time the value of variable u(x, t) in (3.76) is near to
zero and the forcing term is discontinuous, we need to stabilize the numerical scheme
for few time steps using the standard parabolic CFL condition ∆t ∼ ∆x2

D∗ (Morton
and Mayers, 2005). In practice, after the first time steps, we were able to change
the CFL condition and to adopt the more favorable restriction ∆t ∼ ∆x.

Let us summarize, in the following system, the foregoing considerations concerning
the time discretization, putting in blue (•) the time explicit terms, in red (•) those
taken in implicit, and in green (•) the terms for which we have used the Cranck-
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Nicolson scheme in time:

Ẏi = α∗

W

∫
B(Xi,R̄∗)

∇s(x, t)wi(x) dx + γ∗(1− ϕi)
W

∫
B(Xi,R̄∗)

∇f(x, t)wi(x) dx

+ 1
N̄i

∑
j:Xj∈B(Xi,R

∗
1)\{Xi}

H(Yj −Yi)+
∑

j:Xj∈B(Xi,R
∗
5)\{Xi}

K(Xj −Xi)

− [µ∗F + (µ∗L − µ∗F)ϕi] Yi,

Ẋi = Yi,

ϕi =



0, if δ∗

W

∫
B(Xi,R̄∗)

s(x, t)wi(x) dx

−k
∗
F + (k∗L − k∗F)ϕi

W

∫
B(Xi,R̄∗)

f(x, t)
1 + f(x, t)wi(x) dx + Γ(ni) ≤ 0,

1, otherwise,

f = e−η
∗tu, where ∂tu = D∗∆u+ eη

∗tξ∗
Ntot∑
j=1

ϕjχB(Xj ,R
∗
3),

∂ts = −σ∗s
Ntot∑
j=1

χB(Xj ,R
∗
3),

(3.94)

3.6 Numerical tests

Simulation 1

Now we simulate the zebrafish lateral line growth in a two-dimensional space, during
a dimensional time range of 20 h. Using the numerical method proposed in Section
3.5 we solve system (3.26) in a domain Ω = [0, 5000]× [0, 1240] (µm2), with a spatial
and temporal discretization given respectively by ∆x = ∆y = 5µm and ∆t = 0.001 h.
Parameters values used here are listed in Section 3.7 (Tables 3.2–3.3). Initial and
boundary conditions are given by (3.17)–(3.23). In particular, as initial datum X(0),
we set 90 cells equally distributed in the stripe [600, 1180]× [600, 640] (µm2) at a
distance between their centres of 17 µm, and then randomized around their position
with radius in the range [0, 3] (µm) and angles in [0, 2π] (Figure 3.8 (a)). As initial
condition s(x, 0) in equation (3.22) we fix c1 = 838 µm (the inflection point of
the hyperbolic tangent is about at the middle of the primordium), c2 = 200 µm,
and [ā, b̄] = [600, 5000] (µm). Then in (3.23) and (3.25) we choose l = 20 µm and
ε = 10 µm. The initial datum for SDF-1a is consistent with observations in Ghysen
and Chaudière (2004), which describe a narrow stripe, approximately three cells
wide.

Figures 3.8, 3.9, 3.10 show the numerical simulations of the lateral line evolution
as described above at different time steps. As usual, green colour marks leader cells
(ϕi = 1), and red colour the followers (ϕi = 0). Contour plot in the background is
related to the FGF signal concentration, while 1D-plots in the upper panels refer to
a longitudinal section in the graph of s(x, t), through the middle of the initial strip
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of chemoattractant.

In our simulation we can observe, in the first few hours after migration starts, the
leader-to-follower transition of some cells in the trailing region of the primordium,
up to about t = 6.5 h when a first rosette starts detaching (Figure 3.8 (b)). This is
consistent with the experimental results presented in the supplementary material in
Nechiporuk and Raible (2008) and Lecaudey et al (2008), that show a time of about
3–6 h for the first rosette separation. Figure 3.9 (a) shows the formation of a second
rosette in the new trailing region, meanwhile in the first rosette the lateral inhibition
process is completed leaving two leader cells. Then in the next time steps, until
about t = 19 h, we observe the detachment of the other two rosettes (Figures 3.9 (b)
3.10). We note that the somewhat rectangular shape of the rosettes is due to the
initial position and to the large cell friction, and it should assume a more circular
look on a larger time interval, because of the radial symmetry of the FGF sources.
More circular shapes have been obtained in Simulation 2 below (Figures 3.12–3.14).

In Figure 3.11 we have plotted migration velocity of the tip of the primordium
versus time for 6 hours. Taking into account the velocity of 69 µm/h given in
Lecaudey et al (2008), we observe a good agreement with our results. Moreover
we observe a decrease in velocity in correspondence to the formation of the first
rosette. This is substantially comparable with the velocity plot shown by Figure 1.8
in Chapter 1.

Another interesting behaviour of the migrating group of cells, that come out
from our simulations, can be inferred considering the evolution in time of the SDF-1a
stripe shown in the upper panels of Figures 3.8–3.10. Although we have considered a
nonuniform initial distribution of chemoattractant like in (3.22), it appears somewhat
constant, except an initial gradient along the primordium. During the motion, due to
the contact degradation of the SDF-1a, the gradient of the chemoattractant becomes
about zero along the trailing region of the primordium, while a new gradient is
generated by the tip cells from the almost constant chemokine stripe. This feature,
known as self-generation of chemokine gradient, has been hypothesized for the
cell migration in embryos from the requirement of long-range gradients (Dambly-
Chaudiére et al, 2007; Scherber et al, 2012). The first in vivo proof for this hypothesis
has been recently shown in Donà et al (2013), exactly in relation to the zebrafish
posterior lateral line. In the parameters discussion in Section 3.7 we will show that
the total cell migration can be ensured even with an initial constant chemokine
distribution along the x-axis.

Finally, from the numerical simulations, we observe a flocking behaviour in cell
migration, according to the results shown in Cucker and Smale (2007a) and Ha
and Liu (2009) for term (3.6), although in our model other effects are involved,
as chemotaxis and adhesion-repulsion terms. We recall that in Ha and Liu (2009)
flocking behaviour occurs unconditionally when the power of the denominator in
(3.8) is less or equal to 1/2, and conditionally if this power is greater than 1/2.
Taking into account our power in equation (3.8) and our initial data in (3.17) we
would be in the case of conditional flocking if we used the original Cucker-Smale
model, and although we consider a truncated sensing domain and we have many
additional effects, we observe consistent results.
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Simulation 2

In this test we simulate 120 cells of the zebrafish lateral line in the domain Ω =
[0, 5000]× [0, 1240] (µm2). At t = 0 the cells are randomly assigned along the stripe
[600, 1680]× [600, 640] (µm2) with a distance between their centre randomly chosen
in the range [17,20] µm (Figure 3.12 (a)). Numerical methods, spatial and temporal
discretization are as in Simulation 1. Parameters values are chosen according to
Tables 3.2–3.3, as described in Section 3.7. Initial and boundary conditions for Ẋ(t),
ϕ(t), f(x, t) and s(x, t) and are give by (3.17)2–(3.23). The parameters in equations
(3.22), (3.23) and (3.25), relative to s(x, 0), are chosen as in Simulation 1.

Figures 3.12–3.14 show the numerical simulations on a total time of observation
of 9.5 h. As usual, leader cells are in green, follower cells in red. Contour plot in the
bottom panel is related to the FGF signal concentration, while 1D-plots in the upper
panel refer to a longitudinal section in the graph of s(x, t), through the middle of
the strip of chemoattractant.

The proposed plots display, in the first hours after the migration starts, the
degradation of the chemotactic signal due to the migrating primordium. At the
same time the leader-to-follower transition occurring in the trailing region. At about
t = 2 h a rosette begins to take shape in the tail of the primordium (Figure 3.12
(b)), and it is deposited at about t = 5.5 h (Figure 3.13 (a)). At t = 7.5 h a second
proto-neuromast is visible in the trailing region (Figure 3.13 (b)), and finally at
t = 9.5 h two rosette have been deposited during the migration of the primordium
(Figure 3.14). As in Simulation 1, from the upper panels related to SDF-1a stripe,
we observe the self-generation of chemokine gradient by the primordium during the
collective migration.
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(a)

(b)

Figure 3.8. Simulation 1. Numerical simulation of the lateral line growth at five different
time steps: t = 0, 6.47 h, next three time steps t = 10.15, 15.64, 19 h are plotted in
Figures 3.9–3.10. System (3.26) is solved in the domain Ω = [0, 5000]× [0, 1240] (µm2)
(plot shows only a part of the domain), with a spatial and temporal discretization given
respectively by ∆x = ∆y = 5µm and ∆t = 0.001 h. Parameters values used here are
listed in Section 3.7. Initial and boundary conditions are given by (3.17), (3.18), (3.19),
and (3.21). In particular, about the initial condition s(x, 0), in equation (3.22) we have
fixed c1 = 838 µm, c2 = 200 µm, and [ā, b̄] = [600, 5000] (µm). Then in (3.23) and (3.25)
we have chosen l = 20 µm and ε = 10 µm. Green colour (•) is for leader cells, red colour
(•) for the followers. The variable s(x, t) is shown in a 1D-plot, only along a longitudinal
section through the middle of the initial strip of chemoattractant. Contour plot in the
background indicates the FGF concentration.
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(a)

(b)

Figure 3.9. Continuation of Figure 3.8. Numerical simulation of the lateral line growth at
time steps: t = 10.15, 15.64 h.
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Figure 3.10. Continuation of Figure 3.9. Numerical simulation of the lateral line growth
at time step: t = 19 h.

Figure 3.11. Numerical dimensional plot of the velocity of tip of the primordium during
migration versus time.
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(a)

(b)

Figure 3.12. Simulation 2. Numerical simulation of the lateral line growth at five different time
steps: t = 0, 2 h, next three time steps t = 5.5, 7.5, 9.5 h are plotted in Figures 3.13–3.14. System
(3.26) is solved in the domain Ω = [0, 5000] × [0, 1240] (µm2) (plot shows only a part of the domain),
with a spatial and temporal discretization given respectively by ∆x = ∆y = 5µm and ∆t = 0.001 h.
Parameters values used here are listed in Section 3.7. Initial and boundary conditions are given by
(3.17)–(3.19), and (3.21). The initial condition s(x, 0), in equation (3.22) we have fixed c1 = 838 µm,
c2 = 200 µm, and [ā, b̄] = [600, 5000] (µm). Then in (3.23) and (3.25) we have chosen l = 20 µm and
ε = 10 µm. Green colour (•) is for leader cells, red colour (•) for the followers. The variable s(x, t)
is shown in the upper panel in a 1D-plot, only along a longitudinal section through the middle of the
strip of SDF-1a. Contour plot in the bottom panel indicates the FGF concentration.
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(a)

(b)

Figure 3.13. Continuation of Figure 3.12. Numerical simulation of the lateral line growth
at time steps: t = 5.5, 7.5 h.
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Figure 3.14. Continuation of Figure 3.9. Numerical simulation of the lateral line growth
at time step: t = 9.5 h.
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3.7 Parameter estimates

About the choice of the parameters of the model, we point out that while some
values can be found or estimated from the biological or modelling literature, the
others have been obtained by numerical data fitting or using some relations provided
by the stationary model.

Tables 3.2–3.3 summarize respectively the values of the dimensional and nondi-
mensional parameters. In the case of a range of variability for a parameter, the
selected value, used in the simulations, is put in brackets. Finally, the last column
in Table 3.2 specifies the references for the provided data.

Now we will make some comments in this regard. Firstly, cell radius R is fixed
to 10 µm starting from the experimental data in Lecaudey et al (2008). Radii R̄,
R1, are chosen to be equal to 20 µm, taking into account a possible effect of cell
extensions (see Stolarska et al, 2009 and references therein). Radius R2 is chosen to
be equal to 20 µm considering the lateral inhibition activated when two cells start
to be in touch. Radius R3, concerning with the range of production or degradation
of a chemical signaling, is set to be equal to R, because we think to a source or a
drain defined by the dimension of a single cell. For R4 and R5 we fix respectively the
values 20 µm and 25 µm. First value provides a repulsion force when two cells start
to be overlapped (see equation (3.10)1), second values implies an adhesion force in
the spatial radial range 20–25 µm.

The values of Γ0, α, βL, βF, γ, ωadh,F, µF, δ/λ, and σ, are obtained by a
numerical data fitting on the respective dimensionless values, in order to obtain in
the simulations a cell migration velocity and a neuromast formation consistent with
the experimental results. This values are marked as “data fitting” in Table 3.2. In
particular, Γ0 controls the slope of the function (3.12), and its value has been chosen
to mark a sharp difference in (3.12) between a cell in the centre of the primordium
and one on the boundary. However, we have found that changes in the value of Γ0
do not influence significantly the behaviour of the system.

Then, by numerical tests we have seen that α, the coefficient related to the SDF-
1a haptotactic effect, influences almost linearly the velocity of the cell migration in
the first few hours before the transition leader-to-follower occurs (see Figure 3.15
(a), shown with dimensional values, as for the other figures of this section). This
is expected from equation (3.16)1 if we consider a regime of uniform velocity. The
value for α is then fixed to have a cell velocity of ≈ 69 µm/h according to Lecaudey
et al (2008).

The values of βL and βF influence cell alignment. Without the alignment effect
we have tested that the repulsion alone is not sufficient to ensure a distance between
the cells consistent with the experimental observations. Values too small of βL
(about < 5 × 1017 h−1) imply a large transverse compression of the primordium
(with distances between the centres of the cells less than 40% of the cell diameter),
causing even a crossing over of the cells (see Figure 3.15 (b)). In Figure 3.16 there
is a schematic configuration of the migrating primordium, displaying the effects
resulting from “too small” values of βL.

The range of variability of βF, ωadh,F, µF, and γ, suggested in Table 3.2, have
been taken in order to have the neuromast detachment. Outside these ranges we can
not reproduce a complete neuromast formation. Precisely we find that, βF, which
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is related to the alignment effect for follower cells is to be fixed, remaining in the
range of βL, at least two orders of magnitude smaller than βL (see Figure 3.17 (a),
and Table 3.2).

Similarly, ωadh,F, which represents the coefficient of the elastic adhesion for the
followers, is to be chosen, in the range of ωadh,L, about two orders of magnitude
smaller than ωadh,L (see Figure 3.17 (b)). The parameter µF, that is the damping
coefficient for a follower cell can be fixed about one order of magnitude larger than
µL (see Figure 3.18 (a)).

For γ, the coefficient related to the FGF chemotactic effect, we find the range
indicated in Table 3.2 (numerical data are given in Figure 3.18 (b)).

The parameter δ/λ influences the switch variable ϕi(t), and its increasing values
produce, at the same time t, a number of leader-to-follower transition gradually
decreasing. The range proposed in Table 3.2 ensures, after about 10;h after the
migration begins, a remaining number of leaders from 25% to about 55% over the
total cell number in the primordium (see Figure 3.19 (a)). These percentages are
reasonable in view of the results presented in Lecaudey et al (2008), although it
would be interesting to quantify, experimentally, the number of leader and follower
cells.

Finally, the parameter σ, related to the degradation of the SDF1-1a signal, affects
the gradient of the chemoattractant and then the cell velocity during migration.
Its value in Table 3.2 has been fixed to have, in the first few hours before leader-
to-follower transition, a velocity consistent with the data in Lecaudey et al (2008)
(numerical data in Figure 3.20 (a)). As we have seen, an interesting aspect, that
has come out from our tests, is that the cells of the primordium can self-generate
their own gradient. Evidence for this has recently be obtained by Donà et al (2013).
Even fixing a constant initial datum along the x-axis for the SDF1-1a, with non zero
values for σ we are able to reproduce the collective motion, though with a reduced
velocity for the same values of σ. Comparing the case with initial gradient of SDF-1a
and the case of zero initial gradient along the x-axis, we find, for the value of σ
used in Table 3.2, a decreased velocity of about 20% (Figures 3.20 (a)–(b)). Anyway
an initial gradient for the SDF-1a signal seems to be necessary, since for too large
values of σ we observe a detachment of the head of the primordium. In Figure 3.21
we report a dynamical simulation where we have considered a constant SDF1-1a
initial concentration and the value of σ fixed in Table 3.2.

About the information on the parameters arising from the stationary model, we
refer to formulas (3.48), (3.49), (3.54), Table 3.1, and Figures 3.2, 3.3. The first
two relations give us a limitation for k∗F := kF/λ and k∗L := kL/λ, the ratios of the
coefficient of sensitivity to FGF signal and the coefficient of lateral inhibition for a
leader and for a follower cell, while the third one provides a value of ωrep, related
to the repulsion coefficient, when we have fixed γ by a numerical data fitting, as
mentioned before. Namely, the right hand side of these equations depend on N and
d∗1 once the other parameters are chosen. So, to obtain the values in Tables 3.2–3.3
we have fixed for an example N = 8 and d∗1 = 3/2R∗. They represent reasonable
values under the experimental observations in Nechiporuk and Raible (2008) and
Lecaudey et al (2008).

Then a value for ξ, the parameter of FGF production, is obtained from the
respective nondimensional value ξ∗ in order to have the maximum nondimensional
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value of FGF f∗max = 1 in our domain (see numerical data in Figure 3.19 (b)). Finally,
other constants are estimable from data available in literature: smax, the maximum
concentration of SDF-1a, from Kirkpatrick et al (2010); fmax, the maximum concen-
tration of FGF from Walshe and Mason (2003); ωadh,L, the elastic adhesion for a
leader cell, from Bell et al (1984); µL, the damping coefficient for a leader cell, from
Rubinstein et al (2009); D, the diffusion coefficient of FGF, from Yeh et al (2003),
Filion and Popel (2005) and a phenomenological formula in He and Niemeyer (2003);
η, the degradation constant of FGF, from Beenken and Mohammadi (2009), Lee
and Blaber (2010), using the FGF half-life estimates.
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Figure 3.15. Dimensional plot related to the influence of the coefficients α and βL on the cell
migration, fixing the other parameters as in Table 3.2. The time interval of observation
is about 0.5 h after the migration starts. (a) Influence of the coefficient α on the tip
velocity of the primordium. Explored range for α: 7.78× 1026–2.07× 1026µm4 h−2 pg−1.
(b) Influence of coefficient βL on the minimum width of the primordium (minimum
distance between the centres of the cells on the flanks of the primordium). x-axis is in
logarithmic scale. Explored range for βL is 1× 1013–1× 1025 h−1. Values on y-axis close
to zero, in correspondence of small values of βL, imply a large transverse compression of
the primordium. Negative values mean even a crossing over of the cells.
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(a)

(b)

(c)

(d)

Figure 3.16. Schematic configuration of the migrating primordium displaying a large
transverse compression for “small” values of the coefficient βL. In the domain Ω =
[0, 5000]× [0, 1240] (µm2) 90 cells have been located, at t = 0, uniformly on the stripe
[600, 1180] × [600, 640] (µm2). The time of observation is t = 0.5 h. Chemical signals
are not plotted and only a part of the domain is shown. In plots (a)-(d) we have used
the parameters fixed in Tables 3.2–3.3, while for βL we choose respectively the values
βL = 1018, 1017, 1016, 1013 h−1. In each panel is indicated, in the title, the minimum
distance between the centres of the cells on the two flanks of the primordium. For
βL = 1018 in (d) we have a negative value, meaning that cells have crossed over each
other.
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Figure 3.17. Influence of the coefficients βF and ωF on the detachment time of a neuromast,
fixing the other parameters as in Table 3.2. The time interval of observation is about 10
hours after the migration starts. The red lines on the x-axis mean that for those values
of the coefficients we have no complete detachment of neuromasts. (a) Influence of the
coefficient βF. Explored range for βF: 5 × 1017–1 × 1019 h−1. Notice that the lower
bound of this range coincides with the acceptable lower bound for βL given in Table 3.2.
(b) Influence of the coefficient ωF. Explored range for ωF: 1× 1014–1.5× 1015 h−2.
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Figure 3.18. Influence of the coefficients µF and γ on the detachment time of a neuromast,
fixing the other parameters as in Table 3.2. The time interval of observation is about
10 hours after the migration begins. The red lines on the x-axis mean that for those
values of the coefficients we have no complete detachment of neuromasts. (a) Influence
of the coefficient µF. Explored range for µF: 1× 1015–5.82× 1015 h−1. Notice that the
upper bound of this range coincides with the upper bound for µL given in Table 3.2.
(b) Influence of the coefficient γ. x-axis is in logarithmic scale. Explored range for γ:
1.08× 1011–1.08× 1025 µm4 h−2 pg−1.
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Figure 3.19. (a) Influence of the coefficient δ/λ on the number of leader-follower transition,
fixing the other parameters as in Table 3.2. The time interval considered is 10 hours
after the migration begins. Explored range for δ/λ: 4× 108–1.36× 109 pg−1 µm2. (b)
Influence of the coefficient ξ on the maximum concentration fmax of FGF. Explored
range for ξ: 1.2312–5.1192 pgµm−2 h−1.
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Figure 3.20. Influence of the coefficient σ on the tip velocity of the primordium, fixing
the other parameters as in Table 3.2. The tip velocity is computed after 1 hour of
migration, and before the leader-follower transition occurs. The explored range for σ
is 0–1.3 h−1. (a) The case of initial gradient of SDF-1a given by (3.21)–(3.23). The
pick in correspondence of σ ≈ 1.2 h−1 indicates that higher values of the parameter
causes the detachment of the head of the migrating group of cells and its motion to
a greater velocity. (b) The case of zero initial gradient of SDF-1a (constant initial
concentration of SDF-1a). With non zero values for σ we are able to reproduce the
collective motion, though with a reduced velocity with respect to the case of initial
gradient of haptoattractant. The pick in σ ≈ 0.75 h−1 means, as above, the detachment
of the head of the primordium.
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(a)

(b)

Figure 3.21. A dynamical simulation of the migrating primordium with a constant initial
datum for the SDF-1a signal along the x-axis. The initial position of the cells is taken
randomly on the stripe [600, 1480]× [600, 640] (µm2) with a distance between their centre
chosen randomly in the range [17,20] µm. Parameters values are fixed as in Table 3.2. In
particular, the SDF-1a at t = 0 is fixed constant to its biological maximum value given
in the table. In the upper panel the chemokine concentration is plotted in a transverse
section along the middle of the primordium. Tip velocity is displayed in the title of
the lower panel, while the FGF signal is not shown. Despite the initial zero gradient of
the haptotactic signal along the x-axis, the migrating cells can self-generate their own
gradient and ensure the collective motion. In (b) at t = 1 h we can observe a velocity of
about 56.7 µm h−1.
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Table 3.2. Estimates of physical parameter values.

Parameter Definition Value or range (used value) Source

R cell radius 10 µm Lecaudey et al
(2008)

R̄ detection radius of
chemicals 20 µm biological assump-

tion

R1
detection radius of cel-
lular alignment 20 µm biological assump-

tion

R2
detection radius of lat-
eral inhibition 20 µm biological assump-

tion

R3
radius of produc-
tion/degradation of
chemicals

10 µm biological assump-
tion

R4
radius of action of re-
pulsion between cells 20 µm biological assump-

tion

R5
radius of action of ad-
hesion between cells 25 µm biological assump-

tion

T characteristic time 1/3600 h Rubinstein et al
(2009)

smax
maximum concentra-
tion of SDF-1a

3.6× 10−8–6.5× 10−8

(2.5× 10−8) pgµm−2
Kirkpatrick et al
(2010)

fmax
maximum concentra-
tion of FGF

1× 10−1–(1.2× 10−1)
pgµm−2

Walshe and Mason
(2003)

Γ0
constant in function
(3.12) 10 nondim. data fitting

α
coefficient of SDF-1a
haptotactic effect per
unit mass

1.31× 1027

µm4 h−2 pg−1
data fitting on
Lecaudey et al
(2008)

βL
coefficient of cell flock-
ing per unit mass for a
leader cell

> 5× 1017 (5× 1020) h−1 data fitting

βF
coefficient of cell flock-
ing per unit mass for a
follower cell

5× 1017 h−1–1.68× 10−2βL
(5× 1018 h−1) data fitting

γ
coefficient of FGF
chemotactic effect per
unit mass

1.08× 1013–(1.08× 1020)
µm4 h−2 pg−1 data fitting

ωrep
coefficient of repulsion
per unit mass 2.03× 1017 µm2 h−2 from steady model,

formula (3.54)

ωadh,L
elastic constant per
unit mass for a leader
cell

1.296× 1014–1.296× 1019

(5.5× 1016) h−2 Bell et al (1984)

ωadh,F
elastic constant per
unit mass for a follower
cell

0.55× 10−2ωadh,L–
2× 10−2ωadh,L
(5.5× 1014 h−2)

data fitting

µL
damping coefficient for
a leader cell per unit
mass

(5.82 × 1014)–5.82 × 1015

h−1
Rubinstein et al
(2009)

µF
damping coefficient for
a follower cell per unit
mass

8.42µL–(5.82× 1015 h−1) data fitting
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δ/λ

ratio of coefficient of
sensitivity to SDF-1a
and coefficient of lat-
eral inhibition

8.8× 108–1.36× 109

(1.12× 109) pg−1 µm2 data fitting

kL/λ

ratio of coefficient of
sensitivity to FGF sig-
nal for a leader cell and
coefficient of lateral in-
hibition

< 1.8187 (1.7) nondim. from steady model,
formula (3.49)

kF/λ

ratio of coefficient of
sensitivity to FGF sig-
nal for a follower cell
and coefficient of lat-
eral inhibition

≥ 1.1619 (17) nondim. from steady model,
formula (3.48)

D diffusion coefficient
69985–84184
(78950) µm2 h−1

He and Niemeyer
(2003); Filion and
Popel (2005); Yeh
et al (2003)

ξ coefficient of produc-
tion of FGF 2.9592 pgµm−2 h−1 data fitting on

Walshe and Mason
(2003)

η degradation constant
of FGF 0.09–0.69(0.2) h−1

Beenken and Mo-
hammadi (2009);
Lee and Blaber
(2010)

σ degradation constant
of SDF-1a 0.55–0.7 (0.6) h−1 data fitting on

Lecaudey et al
(2008)
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Table 3.3. Estimates of dimensionless parameter values.

Parameter Definition Value or range (used value)
R̄∗ R̄/R 2
R∗1 R1/R 2
R∗2 R2/R 2
R∗3 R3/R 1
R∗4 R4/R 2
R∗5 R5/R 2,5
Γ0 Γ0 10
α∗ αsmaxT

2/R2 2.53× 1010

β∗L βLT > 1.39× 1014 (1.39× 1017)

β∗F βFT
1.39× 1014–1.68× 10−2β∗L
(1.39× 1015)

γ∗ γfmaxT
2/R2 103–(1010)

ω∗rep ωrepT
2/R2 1.57× 108

ω∗adh,L ωadh,LT
2 107–1012 (4.24× 109)

ω∗adh,F ωadh,FT
2 0.55×10−2ω∗adh,L –2×10−2ω∗adh,L

(4.24× 107)
µ∗L µLT (1.62× 1011)–1.62× 1012

µ∗F µFT 8.42µ∗L–(1.62× 1012)
δ∗ δsmax/λ 22–34 (28)
k∗L kL/λ < 1.8187 (1.7)
k∗F kF/λ ≥ 1.1619 (17)
D∗ DT/R2 0.1944–0.2338 (0.2193)
ξ∗ ξT/fmax 0.0069

η∗ ηT
2.5× 10−5–1.92× 10−4

(5.56× 10−5)
σ∗ σT

1.531× 10−4–1.948× 10−4

(1.67× 10−4)
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3.8 Conclusions
We have proposed in this chapter a discrete in continuous mathematical model
describing the formation of the lateral line in the zebrafish primordium. Under
suitable hypotheses, we have shown that our model admits particular biologically
relevant steady solutions. They corresponds to the formation of neuromasts along
the two flanks of the embryo. Then their stability has been assessed numerically.
Finally, the dynamical model has been tested by 2D numerical simulations and the
results have been compared with some experimental observations. In particular
we have observed that the moving cells can also self-generate their own chemokine
gradient during the migration, a mechanism recently proved in vivo on the zebrafish
by Donà et al (2013).

Clearly we remark that the model proposed here presents some limits. Firstly,
cells are supposed to be all equally circular, so that deformation effects are neglected.
On the other hand they can be partially recovered introducing influence radii.
Secondly, only a limited number of biological interactions have been modeled, and
this in a time range starting with the beginning of the migration of the primordium.
For example, biological phenomena occurring in the next few hours post-fertilization,
or in the time after the rosette deposition have not been taken into account. However
we have followed the framework of the studies Nechiporuk and Raible (2008) and
Lecaudey et al (2008), and a good concordance with the experimental data can be
inferred.

Finally, we remark that with respect to these studies, some mechanism are
biologically evident, as chemotaxis effects, cell adhesion-repulsion, damping effects,
chemical signals diffusion, others, as our lateral inhibition term, cell alignment,
differentiated parameters in the leader-follower transition, have been introduced to
obtain a nice agreement with biological evidences. It would be interesting to have
experimental evidence in this regard.
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Chapter 4

A hybrid mathematical model
of collective motion under
alignment and chemotaxis

4.1 Introduction
In Section 2.6 we have introduced the Cucker-Smale model (Cucker and Smale,
2007a,b) as a model of alignment for a system of interacting particles that, for
convenience we write again below.

Let Xi,Vi ∈ Rn, for i ∈ {1, . . . , N} ⊂ N, respectively the position and the
velocity of the i-th particle, and let t ∈ R≥0, the model can be written as

V̇i = β

N

N∑
j=1

α1(
α2 + ‖Xi −Xj‖2

)σ (Vj −Vi),

Ẋi = Vi,

(4.1)

where β, α1, α2, σ are positive constants, and ‖·‖ is the Euclidean norm in Rn.
Cucker and Smale showed that, under suitable parameters and initial data, their

model implies that the state of the flock converges to one in which all particles
move with the same velocity. This depends mainly on the exponent σ in (4.1)1,
that translates the rate of decay of the influence between agents in the flock as a
function of their distance in space. The main convergence result proved in Cucker
and Smale (2007a) has been improved by Ha and Liu (2009), using an explicit
Lyapunov functional approach. First, as in this last reference, we can give the
definition of time-asymptotic flocking as follows:
Definition 2 Given system (4.1), let XCM = 1

N

∑N
i=1 Xi and VCM = 1

N

∑N
i=1 Vi

position and velocity of the centre of mass. System (4.1) has a time-asymptotic
flocking if and only if (Xi,Vi), i = 1, . . . , N , satisfy the two conditions:
1) the velocity fluctuations go to zero time-asymptotically (velocity alignment):

lim
t→+∞

N∑
i=1
‖Vi(t)−VCM(t)‖2 = 0; (4.2)
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2) the position fluctuations are uniformly bounded in time t (forming a group):

sup
0≤t≤+∞

N∑
i=1
‖Xi(t)−XCM(t)‖2 < +∞. (4.3)

Notice that the square root of the quantities under the limit operation in (4.2)–(4.3)
is proportional to the standard deviations of Xi(t) and Vi(t) around the centre
of mass system. Cucker and Smale (2007a) and Ha and Liu (2009) proved that
for σ ∈ [0, 1/2] occurs a global unconditional flocking of system (4.1), as stated in
Definition 2, regardless of initial configurations, while for σ ∈ (1/2,+∞) there is
conditional flocking, that is only some parameters and initial data lead to a flocking
state, but in general the dispersion of the flock may occur.

As we have seen in Section 2.6, Cucker-Smale model gave rise to many extensions
and it is an ingredient of the three zone models. Cucker and Smale-like models
have been recently widely applied in many contexts, from the biological field to the
collective dynamics of different interacting groups of individuals (Szabò et al, 2006;
Belmonte et al, 2008; Arboleda-Estudillo et al, 2010; Sepúlveda et al, 2013; Albi and
Pareschi, 2013).

There are also some extensions of the Cucker-Smale model for which exact
analytical results have been proved. Among these we cite Cucker and Dong (2010,
2011), that added a repulsion force between particles in equation (4.1)1. Their model
can be written as

V̇i = β

N

N∑
j=1

α1(
α2 + ‖Xi −Xj‖2

)σ (Vj −Vi)

+Λ(||Vi −Vj ||)
N∑
j=1

g(||Xi −Xj ||)(Xi −Xj),

Ẋi = Vi,

(4.4)

where

Λ(||Vi −Vj ||) :=

 1
N

∑
i≥j
||Vi −Vj ||2

1/2

,

and a possible functional form for g can be

g(||Xi −Xj ||) := 1
(||Xi −Xj ||2 − d0)θ , (4.5)

where θ > 1 and d0 > 0 a constant.
For system (4.4) it is possible to prove results similar to those valid for the Cucker-

Smale model. Let the initial position satisfying the condition ‖Xi(0)−Xj(0)‖2 > d0,
for all i 6= j. If σ ≤ 1/2 we have unconditional flocking (convergence to a common
velocity), in addition avoiding collisions, that is exist two constant B0 and d > d0
such that, for all t ≥ 0, Λ(‖Xi(t)−Xj(t)‖) ≤ B0 and ‖Xi(t)−Xj(t)‖ > d, for all
i 6= j. The case σ > 1/2 implies a conditional flocking without collision, occurring
only under certain parameters and initial data.
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Another extension of the Cucker-Smale model has been proposed by Ha and Levy
(2009) to describe the motion of phototactic bacteria, bacteria that move towards
light. They assume that there exists some form of communication between bacteria,
that is an excitation level associated with each cell. When the excitation level pass
over a critical threshold the bacteria initiate a motion towards the light source. This
speed term is added in equation (4.1)1 as an external force, and system (4.1) is then
coupled with an equation for the excitation level. As for the velocities, the excitation
level depends on the excitation of the surrounding bacteria, and for each bacterium
it is assumed a weighted average of the differences of its excitation with those of the
other bacteria. For i = 1, . . . , N , the following system is proposed:

V̇i = λ1
N

N∑
j=1

g1 (Xj ,Xi) (Vj −Vi) + I0(u∞ês −Vi) (1− ϕ(ςi; ςcr)) ,

Ẋi = Vi,

ς̇i = λ2
N

N∑
j=1

g2(ςj − ςi) + I0ϕ(ςi; ςcp),

(4.6)

where λ1, λ2 are constants, g1(·) and g2(·) are suitable symmetric weight functions,
I0 is the constant intensity of the light source, u∞ is the terminal speed of particles,
ês is the unit vector of the light source, ςcr and ςcp are critical excitation values,
and ϕ is a suitable 0-1 threshold function. For system (4.6) Ha and Levy (2009)
proved that when all particles are fully excited after a finite time (excitation over
the critical threshold, that implies ϕ(ςi; ςcr) = 0), their asymptotic velocity tends to
an identical terminal velocity.

Among other models, Cucker and Mordecki (2008) introduced an alignment
effect with noise and Ha et al (2009) studied flocking behaviour with a stochastic
Cucker-Smale model. Finally Cucker and Huepe (2008) introduced in the model
a group of individuals with a preferred heading direction. The convergence to a
collective group swarming state with constant velocity is analytically proved for a
range of parameters and initial conditions. This demonstrates in part, with simple
equations, the results shown by the model by Couzin et al (2005) in relation to the
mechanisms of leadership and decision-making in biological systems.

In this chapter, starting from our model proposed in Chapter 3, in which we
have coupled the Cucker-Smale model with many other effects, we study, both from
an analytical and a numerical point of view, the coupling between an alignment
and chemotaxis mechanism for a system of interacting particles. From the analytic
point of view we prove existence and uniqueness of solution of our model. Then, on
a linearized form of the system, a time-asymptotic convergence result is obtained.
In particular, through a suitable Lyapunov functional, we show that position and
velocity of all the particles, for t → +∞, go to those of their centre of mass.
Moreover, the velocity of the centre of mass tends time-asymptotically to zero. From
a numerical point of view we test this result on the full nonlinear system, finding a
complete concordance with the behaviour shown by the linearized system.

Hence, we observe that while in the Cucker-Smale model two conditions may
occur, conditional and unconditional flocking, in our model the flocking behaviour,
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as given in Definition 2, is always ensured, also when the only alignment effect
produce the dispersion of the group. Moreover, we have the stronger conditions that
all the particles converge in a single position, i.e. their centre of mass, and that the
velocity of the centre of mass go to zero.

Among the numerical simulations, we propose, inspired from Chapter 3, the case
of two cell populations: leader cells corresponding to the sources of the chemotactic
signal, and follower cells that do not produce any chemical signal, both subject
to the alignment and chemotaxis force. In this case, we observe the convergence
of cells towards the foci of chemoattractant. Then, we try to simulate the system
under the only chemotactic effect, neglecting the alignment term. Our numerical
results display here the absence of convergence in the particle group, with oscillating
fluctuations around their centre of mass.

It has also to be noticed that the analytical results about existence and uniqueness,
and about the asymptotic behaviour of the solution are obtained on the whole space,
whereas numerical simulations are performed on a bounded domain, with periodic
boundary conditions.

Clearly, it is of interest to extend our analytical convergence result on the
nonlinear system, at least for “small” initial data. The numerical simulations suggest
that such result could possibly be obtained.

The chapter continues with five sections. In Section 4.2 we design our hybrid
mathematical model of collective motion. Section 4.3 deals with the analytical study
of the local existence and uniqueness of the solution. Then in Section 4.4 this result
is extended and the global existence and uniqueness is proved. Section 4.5 is devoted
to investigate the asymptotic behaviour of the model on a linearized form of the
system around the equilibrium configurations. In Section 4.6 we show and discuss
some meaningful dynamical simulations of the nonlinear model. Finally, Section 4.7
includes the conclusions.

4.2 The basic mathematical model

Starting from model (4.1), we suppose that the force acting on each particle is
given by an alignment term, proportional to the differences of velocity with the
other particles and weighed on the distances, and by a chemotactic attraction
towards higher concentration of a chemical signal f(x, t), supposed produced by
the particles themselves. Typically this last force is proportional to the gradient
of the concentration ∇f (Murray, 2003; Eisenbach and Lengeler, 2004; Perthame,
2007). In our hybrid description, while particles are considered discrete entities the
signal f is supposed continuous and its rate of change in time is equal to a diffusion
term, a source term, and a molecular degradation, as discussed in Section 3.2. If
each particles is endowed of a radius R, describing its circular shape, the source of
signal can be given by a characteristic function on a ball of radius R centred on each
particle.
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In our hypotheses we can write the following system:

V̇i = β

N

N∑
j=1

1(
1 + ‖Xi−Xj‖2

R2

)σ (Vj −Vi) + γ∇f(Xi),

Ẋi = Vi,

∂tf = D∆f + ξ
N∑
j=1

χB(Xj ,R) − ηf,

(4.7)

where β, σ, γ,D, ξ, η,R are positive constants, and

χB(Xj ,R) :=
{

1, if x ∈ B(Xj , R);
0, otherwise;

with

B(Xj , R) := {x : ||x−Xj || ≤ R} .

Initial data are given by initial position and velocity for each particle:

X(0) = X0,

V(0) = V0,

with X = (X1, . . . ,XN ), V = (V1, . . . ,VN ), and by the initial concentration of
signal, that we assume

f(x, 0) := f0 = 0. (4.8)

We note that equation (4.7)3 can be analytically solved making the classical expo-
nential transformation:

f = e−ηtu,

with u(x, t) solution of

∂tu = D∆u+ ξeηt
N∑
j=1

χB(Xj ,R).

Now, if

Γ(x, t) := 1
(4πDt)n/2

e−
||x||2
4Dt

is the fundamental solution of the heat equation on Rn, using the Duhamel’s principle
we have

f(x, t) = (Γ(x, t) ∗ f0)e−ηt + e−ηt
∫ t

0
Γ(x, t− τ) ∗

ξeητ N∑
j=1

χB(Xj(τ),R)

 dτ

= ξ
N∑
j=1

∫ t

0
e−η(t−τ)

∫
Rn

Γ(x− x̄, t− τ)χB(Xj(τ),R) dx̄dτ (4.9)
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where ∗ is the convolution operation in the variable x, and f0 = 0 by the initial
condition (4.8) f0 = 0.

In the following, for analytical and numerical simplicity, we will discuss the case
of N particles in R2. First, if x = (x1, x2) and x̄ = (x̄1, x̄2), from (4.9) we can write

f(x1, x2, t) = ξ
N∑
j=1

∫ t

0

∫∫
B(Xj(τ),R)

e−η(t−τ)e
− (x1−x̄1)2+(x2−x̄2)2

4(t−τ)D

4π(t− τ)D dx̄1 dx̄2 dτ. (4.10)

With a simple change of variables it is easy to see that the integrand in (4.10) is L1

with respect to τ in (0, t). In fact, if we define

x̃1 = x1 − x̄1√
4(t− τ)D

, (4.11)

x̃2 = x2 − x̄2√
4(t− τ)D

, (4.12)

and

Φ(x̃1, x̃2) :=
(
−x̃1

√
4(t− τ)D + x1,−x̃2

√
4(t− τ)D + x2

)
,

we have the Jacobian

det [∂Φ/∂x̃] =
∣∣∣∣∣ −

√
4(t− τ)D 0

0 −
√

4(t− τ)D

∣∣∣∣∣ = 4(t− τ)D.

In the new variables (4.10) becomes

f(x1, x2, t) = ξ
N∑
j=1

∫ t

0

∫∫
B̃

e−η(t−τ)e
−

x̃2
1+x̃2

2
4(t−τ)D 4(t−τ)D

4π(t− τ)D 4(t− τ)Ddx̃1 dx̃2 dτ

= ξ

π

N∑
j=1

∫ t

0
e−η(t−τ)

∫∫
B̃
e−(x̃2

1+x̃2
2) dx̃1 dx̃2 dτ, (4.13)

where B̃ is obtained from B under transformations (4.11)–(4.12). In (4.13) the
integrand is L1 in (0, t), with respect to τ .

Now, if ∇f = (∂x1f, ∂x2f) is the chemotactic gradient, and Xi = (Xi1, Xi2),
Vi = (Vi1, Vi2) are respectively the position and the velocity of the i-th cell, we
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obtain

∂x1f(x1, x2, t) = ξ
N∑
j=1

∫ t

0

∫∫
B(Xj(τ),R)

e−η(t−τ)e
− (x1−x̄1)2+(x2−x̄2)2

4(t−τ)D

4π(t− τ)D

×
(
−2(x1 − x̄1)

4(t− τ)D

)
dx̄1 dx̄2 dτ

= −ξ
N∑
j=1

∫ t

0

e−η(t−τ)

4π(t− τ)D

∫ Xj2(τ)+R

Xj2(τ)−R
e
− (x2−x̄2)2

4(t−τ)D

×
∫ Xj1(τ)+

√
R2−(x̄2−Xj2(τ))2

Xj1(τ)−
√
R2−(x̄2−Xj2(τ))2

e
− (x1−x̄1)2

4D(t−τ)
2(x1 − x̄1)
4(t− τ)D dx̄1 dx̄2 dτ

= −ξ
N∑
j=1

∫ t

0

e−η(t−τ)

4π(t− τ)D

∫ Xj2(τ)+R

Xj2(τ)−R
e
− (x2−x̄2)2

4(t−τ)D

×

e−
(
x1−Xj1(τ)−

√
R2−[x̄2−Xj2(τ)]2

)2

4(t−τ)D − e−

(
x1−Xj1(τ)+

√
R2−[x̄2−Xj2(τ)]2

)2

4(t−τ)D

 dx̄2 dτ

= −ξ
N∑
j=1

∫ t

0

e−η(t−τ)

4π(t− τ)D

∫ +R

−R
e
−

(x2−Xj2(τ)−x̃2)2

4(t−τ)D

e−
(
x1−Xj1(τ)−

√
R2−x̃2

2

)2
4(t−τ)D

−e−
(
x1−Xj1(τ)+

√
R2−x̃2

2

)2
4(t−τ)D

 dx̃2 dτ, (4.14)

where in the last step we have used the change of variables

x̃2 = x̄2 −Xj2(τ).

Similarly we can proceed for ∂x2f(x1, x2, t).

Finally substituting (4.14) into (4.7)1 we can summarize, for i = 1, . . . , N , the
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following system:



V̇i1 = β

N

N∑
j=1

1(
1 + ||Xi−Xj ||2

R2

)σ (Vj1 − Vi1)

−γξ
∫ t

0

e−η(t−τ)

4π(t− τ)D

N∑
j=1

∫ +R

−R
e
−

(Xi2(t)−Xj2(τ)−x̃2)2

4(t−τ)D

e−
(
Xi1(t)−Xj1(τ)−

√
R2−x̃2

2

)2
4(t−τ)D

−e−
(
Xi1(t)−Xj1(τ)+

√
R2−x̃2

2

)2
4(t−τ)D

 dx̃2 dτ,

V̇i2 = β

N

N∑
j=1

1(
1 + ||Xi−Xj ||2

R2

)σ (Vj2 − Vi2)

−γξ
∫ t

0

e−η(t−τ)

4π(t− τ)D

N∑
j=1

∫ +R

−R
e
−

(Xi1(t)−Xj1(τ)−x̃1)2

4(t−τ)D

e−
(
Xi2(t)−Xj2(τ)−

√
R2−x̃2

1

)2
4(t−τ)D

−e−
(
Xi2(t)−Xj2(τ)+

√
R2−x̃2

1

)2
4(t−τ)D

 dx̃1 dτ

Ẋi1 = Vi1,

Ẋi2 = Vi2.

(4.15)

4.3 Local existence and uniqueness of the solution

In this section, using a fixed point argumentation, we prove for (4.15) local existence
and uniqueness of the solution. In the next section, then, this result will be extended
proving global existence and uniqueness. In the following discussion classic results
will be adapted for our equations.

First, let y = (V1, . . . ,VN ,X1, . . . ,XN ) the solution vector, and let

q := (q1,q2),
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with

q1,i1 := β

N

N∑
j=1

1(
1 + ‖Xj−Xi‖2

R2

)σ (Vj1 − Vi1), (4.16)

q1,i2 := β

N

N∑
j=1

1(
1 + ‖Xj−Xi‖2

R2

)σ (Vj2 − Vi2), (4.17)

q2,i1 := Vi1, (4.18)
q2,i2 := Vi2. (4.19)

and then

p := (p1,p2),

with

p1,i1 :=
N∑
j=1

∫ +R

−R
e
−

(Xi2(t)−Xj2(τ)−x̃2)2

4(t−τ)D

e−
(
Xi1(t)−Xj1(τ)−

√
R2−x̃2

2

)2
4(t−τ)D

−e−
(
Xi1(t)−Xj1(τ)+

√
R2−x̃2

2

)2
4(t−τ)D

 dx̃2, (4.20)

p1,i2 :=
N∑
j=1

∫ +R

−R
e
−

(Xi1(t)−Xj1(τ)−x̃1)2

4(t−τ)D

e−
(
Xi2(t)−Xj2(τ)−

√
R2−x̃2

1

)2
4(t−τ)D

−e−
(
Xi2(t)−Xj2(τ)+

√
R2−x̃2

1

)2
4(t−τ)D

 dx̃1, (4.21)

p2,i1 = p2,i2 = 0.

Finally, if

C(t− τ) := γξe−η(t−τ)

4π(t− τ)D,

system (4.15) can be written as

ẏ = q(y) +
∫ t

0
C(t− τ)p(t− τ,y(t),y(τ)) dτ.

Integrating from 0 to t we have

y = y0 +
∫ t

0
q(y(τ)) dτ +

∫ t

0

∫ s

0
C(s− τ)p(s− τ,y(s),y(τ)) dτ ds,

with y0 = y(0). Then, interchanging the order of integration in the second integral
we have

y = y0 +
∫ t

0

[
q(y(τ)) +

∫ t

τ
C(s− τ)p(s− τ,y(s),y(τ)) ds

]
dτ, (4.22)
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or

y = y0 +
∫ t

0
[q(y(τ)) + h(t, τ,y(τ))] dτ, (4.23)

with

h(t, τ,y(τ)) :=
∫ t

τ
C(s− τ)p(s− τ,y(s),y(τ)) ds,

Now, let a, b > 0, we consider the set

S = {(t, τ, s,y) : 0 ≤ τ ≤ s ≤ t ≤ a, ‖y(t)− y0‖ ≤ b} .

Since q(y) is continuous on S, we can define

M1 = max
S
‖q(y)‖ . (4.24)

Then, to prove that h(t, τ,y(τ)) is continuous in S, firstly we prove that C(s−τ)p(s−
τ,y(s),y(τ)) in L1(τ, t) with respect to variable s. It is sufficient to demonstrate the
integrability around s = τ . Starting from (4.20), we consider p1,i1(s− τ,y(s),y(τ)),
and the change of variables

Xi2 −Xj2 − x̃2√
4(s− τ)D

= z. (4.25)

Since the quantity in brackets is bounded by 1, we have

|p1,i1(s− τ,y(s),y(τ))| ≤
N∑
j=1

∫ +R

−R
e
−

(Xi2(s)−Xj2(τ)−x̃2)2

4(s−τ)D dx̃2

=
√

4(s− τ)D
N∑
j=1

∫ Xi2−Xj2+R√
4(s−τ)D

Xi2−Xj2−R√
4(s−τ)D

e−z
2
dz

≤
√

4(s− τ)D
N∑
j=1

∫ +∞

−∞
e−z

2
dz

= M̄
√

4(s− τ)D,

with

M̄ := N

∫ +∞

−∞
e−z

2
dz. (4.26)

The same holds for p1,i2 in (4.21), so we can write

‖p(s− τ,y(s),y(τ))‖ ≤ M̄
√

2N
√

4(s− τ)D, (4.27)

and

|C(s− τ)| ‖p(s− τ,y(s),y(τ))‖ ≤ γξM̄
√

2Ne−η(s−τ)

2π
√

(s− τ)D
. (4.28)
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Now C(s− τ)p(s− τ,y(s),y(τ)) is continuous in y and, from (4.28), it is L1(τ, t)
with respect to variable s, so h(t, τ,y(τ)) is continuous in S, and we can define

M2 = max
S
‖h(t, τ,y(τ))‖ . (4.29)

To prove local existence and uniqueness we want to obtain a Lipschitz condition in
S for the functions q and p with respect to the variable y. First, because of q is C1

on S, the Jacobian matrix [∂q/∂y] is bounded on S uniformly in τ , so q satisfies
the Lipschitz condition

‖q(y1)− q(y2)‖ ≤ L1 ‖y1 − y2‖ , (4.30)

with L1 positive constant and (t, τ, s,y1), (t, τ, s,y2) ∈ S.
Then, from (4.20) we define

p̄1,i1,j1(s− τ,y(s),y(τ), x̃2) := e
−

(
Xi1(s)−Xj1(τ)−

√
R2−x̃2

2

)2
4(s−τ)D − e−

(
Xi1(s)−Xj1(τ)+

√
R2−x̃2

2

)2
4(s−τ)D .

(4.31)

For the Jacobian matrix of (4.31), hold the following equalities

∂p̄1,i1,j1
∂Vk1

= ∂p̄1,i1,j1
∂Vk2

= 0

∂p̄1,i1,j1
∂Xk1

=



−

e−
(
Xi1(s)−Xj1(τ)−

√
R2−x̃2

2

)2
4(s−τ)D Xi1(s)−Xj1(τ)−

√
R2−x̃2

2
2(s−τ)D

−e−
(
Xi1(s)−Xj1(τ)+

√
R2−x̃2

2

)2
4(s−τ)D Xi1(s)−Xj1(τ)+

√
R2−x̃2

2
2(s−τ)D

 , k = i;

δjk

e−
(
Xi1(s)−Xj1(τ)−

√
R2−x̃2

2

)2
4(s−τ)D Xi1(s)−Xj1(τ)−

√
R2−x̃2

2
2(s−τ)D

−e−
(
Xi1(s)−Xj1(τ)+

√
R2−x̃2

2

)2
4(s−τ)D Xi1(s)−Xj1(τ)+

√
R2−x̃2

2
2(s−τ)D

 , k 6= i;

∂p̄1,i1,j1
∂Xk2

= 0.

Since these quantities are bounded in S uniformly in x̃2, τ , s, we can write

|p̄1,i1,j1(s− τ,y1(s),y1(τ), x̃2)− p̄1,i1,j1(s− τ,y2(s),y2(τ), x̃2)| ≤

l2 (‖y1(s)− y2(s)‖+ ‖y1(τ)− y2(τ)‖) , (4.32)
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where l2 is a positive constant, and (τ, s,y1), (τ, s,y2) ∈ S. From this we deduce

|p1,i1(s− τ,y1(s),y1(τ))− p1,i1(s− τ,y2(s),y2(τ))| ≤
N∑
j=1

∫ +R

−R

∣∣∣∣∣∣e−
(X(1)
i2 (s)−X(1)

j2 (τ)−x̃2)2

4D(s−τ) − e−
(X(2)
i2 (s)−X(2)

j2 (τ)−x̃2)2

4D(s−τ)

∣∣∣∣∣∣
× |p̄1,i1,j1(s− τ,y1(s),y1(τ), x̃2)− p̄1,i1,j1(s− τ,y2(s),y2(τ), x̃2)| dx̃2

=(4.32),(4.25)

√
4D(s− τ)l2 (‖y1(s)− y2(s)‖+ ‖y1(τ)− y2(τ)‖)

×
N∑
j=1

∫
X

(1)
i2 (s)−X(1)

j2 (τ)+R
√

4(s−τ)D

X
(1)
i2 (s)−X(1)

j2 (τ)−R
√

4(s−τ)D

e−z
2
dz +

∫ X
(2)
i2 (s)−X(2)

j2 (τ)+R
√

4(s−τ)D

X
(2)
i2 (s)−X(2)

j2 (τ)−R
√

4(s−τ)D

e−z
2
dz


≤
√

4D(s− τ)l2 (‖y1(s)− y2(s)‖+ ‖y1(τ)− y2(τ)‖) 2
N∑
j=1

∫ +∞

−∞
e−z

2
dz

=(4.26)

√
4D(s− τ)2M̄l2 (‖y1(s)− y2(s)‖+ ‖y1(τ)− y2(τ)‖) ,

where we have used the change of variables (4.25). Moreover, X(1), X(2) are the
variables belonging respectively to the vectors y1, y2, and (t, τ, s,y1), (t, τ, s,y2) ∈ S.

The same can be done for p1,i2, so p satisfy the following condition in y on S:

‖p(s− τ,y1(s),y1(τ))− p(s− τ,y2(s),y2(τ))‖ ≤
√

4D(s− τ)L2 (‖y1(s)− y2(s)‖
+ ‖y1(τ)− y2(τ)‖) , (4.33)

with L2 a suitable positive constant that incorporates previous constants, and
(τ, s,y1), (τ, s,y2) ∈ S.

Now, we fix

T = min
{
a,

b

M1 +M2
,

1
L1 + 2L2M

}
, (4.34)

with M1, M2 given by (4.24)–(4.29), and

M :=
∫ +∞

0
|C(z)|

√
4Dz dz. (4.35)

To prove local existence and uniqueness for the solution of (4.23) we first recall some
classic results (see, for instance, Burton, 2005):

Definition 3 Let (B, ρ) be a metric space and A : B → B. The operator A is a
contraction operator if there is an α ∈ (0, 1) such that x, y ∈ B imply

ρ [A(x),A(y)] ≤ αρ(x, y).

Theorem 1 (Banach–Caccioppoli Fixed–Point Theorem) Let (B, ρ) be a com-
plete metric space and A : B → B a contraction operator. Then there is a unique
φ ∈ B with A(φ) = φ. Furthermore, if ψ ∈ B and if {ψn} is defined inductively by
ψ1 = A(ψ) and ψn+1 = A(ψn), then ψn → φ, the unique fixed point. That is, the
equation A(φ) = φ has one and only one solution.
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Then we prove the following
Theorem 2 Equation (4.23) has a unique solution on [0, T ], where T is defined in
(4.34).
Proof. We consider the functional space

B =
{
y ∈ C0 ([0, T ]) : ||y− y0||C0 ≤ b

}
,

where

||y− z||C0 := sup
0≤t≤T

‖y(t)− z(t)‖ ,

and we define the functional A : B → B as

A(y)(t) := y0 +
∫ t

0
[q(y(τ)) + h(t, τ,y(τ))] dτ,

To see that A : B → B notice that y continuous implies A(y) continuous, because q
and h are continuous, and that

‖A(y)− y0‖C0 = sup
0≤t≤T

‖A(y)(t)− y0‖

≤ sup
0≤t≤T

∫ t

0
(‖q(y(τ))‖+ ‖h(t, τ,y(τ))‖) dτ

≤ (M1 +M2)T
≤ b,

where we have used (4.24), (4.29) and, in the last inequality, (4.34). To see that A
is a contraction mapping, notice that if y1 and y2 ∈ B then

‖A(y1)−A(y2)‖C0 = sup
0≤t≤T

‖A(y1)(t)−A(y2)(t)‖

≤ sup
0≤t≤T

∫ t

0
(‖q(y1(τ))− q(y2(τ))‖

+
∫ t

τ
|C(s− τ)| ‖p(s− τ,y1(s),y1(τ))− p(s− τ,y2(s),y2(τ))‖) ds dτ

≤(4.30),(4.33) sup
0≤t≤T

∫ t

0
[L1 ‖y1(τ)− y2(τ)‖+ L2

∫ t

τ
|C(s− τ)|

√
4D(s− τ)

(‖y1(s)− y2(s)‖+ ‖y1(τ)− y2(τ)‖)] ds dτ
≤ L1T ‖y1 − y2‖C0 + 2L2 ‖y1 − y2‖C0

× sup
0≤t≤T

∫ t

0

∫ t

τ
|C(s− τ)|

√
4D(s− τ) ds dτ

=
(
L1T + 2L2 sup

0≤t≤T

∫ t

0

∫ t−τ

0
|C(z)|

√
4Dz dz dτ

)
‖y1 − y2‖C0

≤
(
L1T + 2L2

∫ T

0

∫ +∞

0
|C(z)|

√
4Dz dz dτ

)
‖y1 − y2‖C0

= (L1 + 2L2M)T ‖y1 − y2‖C0 .

From (4.34) the constant (L1 + 2L2M)T ∈ (0, 1). Definition 3 and Theorem 1
complete the proof.
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4.4 Global existence and uniqueness of the solution

To obtain global existence and uniqueness for (4.22) we will use a principle of
continuation of solutions. We will prove that bounded solutions can be continued to
t = +∞. Firstly, we recall the following

Lemma 1 (Gronwall’s inequality) Let u and v be continuous non-negative scalar
functions on [t0, T ) and let K ≥ 0. If

u(t) ≤ K +
∫ t

t0
v(s)u(s) ds

for t0 ≤ t < T , then

u(t) ≤ Ke
∫ t
t0
v(s) ds

, t0 ≤ t < T.

Moreover, if u is differentiable in t0 < t < T and satisfies

u′(t) ≤ w(t)u(t), t0 < t < T,

with w continuous function on [t0, T ), also negative, then

u(t) ≤ u(t0)e
∫ t
t0
w(s) ds

, t0 ≤ t < T.

The following general result, adapted for equation (4.22), provides a condition for
the continuation of solutions.

Proposition 3 Let y(t) be a solution of (4.22) on a interval [0, T ), if there is a
constant P with ‖y− y0‖ ≤ P on [0, T ), then there is a T̄ > T such that y(t) can
be continued to [0, T̄ ].

Proof. We show that limt→T− y(t) exists, so we can applied Theorem 2 starting at
t = T , and this complete the proof.

Let tn be a monotonic increasing sequence with limit T , and let

Ū = {(t, τ, s,y) : 0 ≤ τ ≤ s ≤ t ≤ T, ‖y− y0‖ ≤ P} .
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We prove that {y(tn)} is a Cauchy sequence. If tm > tn, from (4.22) we have

‖y(tm)− y(tn)‖ =
∥∥∥∥∫ tm

0

[
q(y(τ)) +

∫ tm

τ
C(s− τ)p(s− τ,y(s),y(τ)) ds

]
dτ

−
∫ tn

0

[
q(y(τ)) +

∫ tn

τ
C(s− τ)p(s− τ,y(s),y(τ)) ds

]
dτ

∥∥∥∥
≤
∫ tn

0

∥∥∥∥∫ tm

τ
C(s− τ)p(s− τ,y(s),y(τ)) ds

−
∫ tn

τ
C(s− τ)p(s− τ,y(s),y(τ)) ds

∥∥∥∥ dτ
+
∥∥∥∥∫ tm

tn

[
q(y(τ)) +

∫ tm

τ
C(s− τ)p(s− τ,y(s),y(τ)) ds

]
dτ

∥∥∥∥
≤
∫ tn

0

∥∥∥∥∫ tm

tn
C(s− τ)p(s− τ,y(s),y(τ)) ds

∥∥∥∥ dτ
+
∥∥∥∥∫ tm

tn

∫ tm

τ
C(s− τ)p(s− τ,y(s),y(τ)) ds dτ

∥∥∥∥
+
∥∥∥∥∫ tm

tn
q(y(τ)) dτ

∥∥∥∥
≤
∫ tn

0

∫ tm

tn
‖C(s− τ)p(s− τ,y(s),y(τ))‖ ds dτ

+
∫ tm

tn

∫ tm

τ
‖C(s− τ)p(s− τ,y(s),y(τ))‖ ds dτ

+
∫ tm

tn
‖q(y(τ))‖ dτ.

In the last inequality the third integral go to zero as n,m → +∞, because q is
bounded on Ū and tm, tn → T . Also the first two integral go to zero as n,m→ +∞,
because of (4.28). The proof is completed.

Now, from Proposition 3, we obtain the following

Theorem 3 Equation (4.23) has a unique solution in all [0,+∞)

Proof. First, equations (4.16)–(4.19) implies

|q1,i1| ≤ 2β||y||,
|q1,i2| ≤ 2β||y||,
|q2,i1| ≤ ||y||,
|q2,i2| ≤ ||y||,

so that

||q|| ≤
√

2N(4β2 + 1)||y||.

Then (4.27) establishes

‖p(s− τ,y(s),y(τ))‖ ≤ M̄
√

2N
√

4D(s− τ),
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so from (4.22) we have

||y|| ≤ ||y0||+
√

2N(4β2 + 1)
∫ t

0
||y(τ)|| dτ

+ M̄
√

2N
∫ t

0

∫ t

τ
|C(s− τ)|

√
4D(s− τ) ds dτ

= ||y0||+
√

2N(4β2 + 1)
∫ t

0
||y(τ)|| dτ + M̄

√
2N

∫ t

0

∫ t−τ

0
|C(z)|

√
4Dz dz dτ

≤ ||y0||+
√

2N(4β2 + 1)
∫ t

0
||y(τ)|| dτ + M̄

√
2N

∫ t

0

∫ +∞

0
|C(z)|

√
4Dz dz dτ

= ||y0||+
√

2N(4β2 + 1)
∫ t

0
||y(τ)|| dτ +MM̄

√
2Nt,

where we have set z = s− τ , and M is given by (4.35).

Now, for each 0 ≤ t < T ,

||y|| ≤
(
||y0||+MM̄

√
2NT

)
+
√

2N(4β2 + 1)
∫ t

0
||y(τ)|| dτ,

so that

||y|| ≤
(
||y0||+MM̄

√
2NT

)
et
√

2N(4β2+1),

by Gronwall’s inequality (Lemma 1). Since solution remains bounded, for Proposition
3, it is continuable to all [0,+∞).
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4.5 Asymptotic properties on the linearized system

In this section we prove some asymptotic properties on the linearized form of system
(4.15) that, for convenience we recall here:



V̇i1 = β

N

N∑
j=1

1(
1 + ||Xi−Xj ||2

R2

)σ (Vj1 − Vi1)

−
∫ t

0
C(t− τ)

N∑
j=1

∫ +R

−R
e
−

(Xi2(t)−Xj2(τ)−x̃2)2

4(t−τ)D

e−
(
Xi1(t)−Xj1(τ)−

√
R2−x̃2

2

)2
4(t−τ)D

−e−
(
Xi1(t)−Xj1(τ)+

√
R2−x̃2

2

)2
4(t−τ)D

 dx̃2 dτ,

V̇i2 = β

N

N∑
j=1

1(
1 + ||Xi−Xj ||2

R2

)σ (Vj2 − Vi2)

−
∫ t

0
C(t− τ)

N∑
j=1

∫ +R

−R
e
−

(Xi1(t)−Xj1(τ)−x̃1)2

4(t−τ)D

e−
(
Xi2(t)−Xj2(τ)−

√
R2−x̃2

1

)2
4(t−τ)D

−e−
(
Xi2(t)−Xj2(τ)+

√
R2−x̃2

1

)2
4(t−τ)D

 dx̃1 dτ,

Ẋi1 = Vi1,

Ẋi2 = Vi2,

(4.36)

with

C(t− τ) := γξe−η(t−τ)

4π(t− τ)D. (4.37)

We are interested in the equilibrium points that satisfy the condition:

{
Xi(t) = Xeq(t), ∀i, ∀t;
Vi(t) = 0, ∀i; ⇔ Xi(t) = Xeq = constant, ∀i. (4.38)

Equation (4.38) means that all particles are in a same position for all times. Now,
to make a first-order approximation of (4.15), we consider the following Taylor
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expansions around points (4.38):
1(

1 + ‖Xj−Xi‖2
R2

)σ (Vj1 − Vi1) = Vj1 − V1i + ρ1(Xj −Xi, Vj1 − Vi1), (4.39)

e
−

(Xi2(t)−Xj2(τ)−x̃2)2

4(t−τ)D = e
−

x̃2
2

4(t−τ)D + e
−

x̃2
2

4(t−τ)D
x̃2

2(t− τ)D (Xi2(t)−Xj2(τ))

+ ρ2(t− τ,Xi2(t)−Xj2(τ), x̃2), (4.40)

e
−

(
Xi1(t)−Xj1(τ)±

√
R2−x̃2

2

)2
4(t−τ)D = e

−
R2−x̃2

2
4(t−τ)D ∓ e−

R2−x̃2
2

4(t−τ)D

√
R2 − x̃2

2

2(t− τ)D (Xi1(t)−Xj1(τ))

+ ρ3(t− τ,Xi1(t)−Xj1(τ), x̃2), (4.41)

where the functions ρ1, ρ2 and ρ3 contain the nonlinear terms. Similarly we can
treat equation (4.36)2.

From (4.39)–(4.41), we linearize equation (4.36)1 in the form

˙Vi1 = β

N

N∑
j=1

(Vj1(t)− Vi1(t))−
∫ t

0

C(t− τ)
2(t− τ)D

∫ +R

−R
e
−

x̃2
2

4(t−τ)D e
−

R2−x̃2
2

4(t−τ)D
√
R2 − x̃2

×
N∑
j=1

(Xi1(t)−Xj1(τ) +Xi1(t)−Xj1(τ)) dx̃2 dτ

= β

N

N∑
j=1

(Vj1(t)− Vi1(t))−
∫ t

0

C(t− τ)e−
R2

4(t−τ)D

(t− τ)D

∫ +R

−R

√
R2 − x̃2

2 dx̃2

×
N∑
j=1

(Xi1(t)−Xj1(τ)) dτ

= β

N

N∑
j=1

(Vj1(t)− Vi1(t))−
∫ t

0
C̄(t− τ)

N∑
j=1

(Xi1(t)−Xj1(τ)) dτ,

with

C̄(t− τ) := πR2C(t− τ)e−
R2

4(t−τ)D

2(t− τ)D . (4.42)

Similarly it can be done for V̇i2. Finally, we obtain

˙Vi1 = β

N

N∑
j=1

(Vj1(t)− Vi1(t))−
∫ t

0
C̄(t− τ)

N∑
j=1

(Xi1(t)−Xj1(τ)) dτ,

˙Vi2 = β

N

N∑
j=1

(Vj2(t)− Vi2(t))−
∫ t

0
C̄(t− τ)

N∑
j=1

(Xi2(t)−Xj2(τ)) dτ,

Ẋi1 = Vi1,

Ẋi2 = Vi2.

(4.43)
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First, we are interested to establish a time-asymptotic convergence property of all
particles towards a same position and a same velocity. For this it is convenient to
introduce the centre of mass system, in which equations (4.43) become a nonau-
tonomous system of ordinary differential equation, decoupled with respect to the
i-th particle and with respect to the two components of each position and velocity
vector. Then the equation of the centre of mass can be studied apart.

We define position and velocity of the centre of mass of a system of N particles
with same mass, as

XCM := 1
N

N∑
i=1

Xi, (4.44)

VCM := 1
N

N∑
i=1

Vi, (4.45)

and we consider the new variables

X̄i := Xi −XCM, (4.46)
V̄i := Vi −VCM. (4.47)

In variables (4.46)–(4.47) the equilibrium condition (4.38) becomes

(X̄i, V̄i) = (0,0) , ∀i = 1, . . . , N, (4.48)

moreover the following identities hold:
N∑
i=1

X̄i = 0, (4.49)

N∑
i=1

V̄i = 0. (4.50)

If VCM = (VCM1, VCM2) and XCM = (XCM1, XCM2), from (4.43) we have

V̇CM1 = 1
N

N∑
i=1

V̇i1 = 1
N

β

N

N∑
i=1

N∑
j=1

(Vj1(t)− Vi1(t))

− 1
N

∫ t

0
C̄(t− τ)

N∑
i=1

N∑
j=1

(Xi1(t)−Xj1(τ)) dτ

= 1
N

β

N

N∑
i=1

(NVCM1(t)−NVi1(t))

− 1
N

∫ t

0
C̄(t− τ)

N∑
i=1

(NXi1(t)−NXCM1(τ)) dτ

= 1
N

β

N
(N2VCM1(t)−N2VCM1(t))

− 1
N

∫ t

0
C̄(t− τ)

(
N2XCM1(t)−N2XCM1(τ)

)
dτ

= −
∫ t

0
C̄(t− τ) (NXCM1(t)−NXCM1(τ)) dτ, (4.51)
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where we have used definitions (4.44)–(4.45). The same holds for V̇CM2:

V̇CM2 = −
∫ t

0
C̄(t− τ) (NXCM2(t)−NXCM2(τ)) dτ. (4.52)

In the variables (X̄i, V̄i), taking into account (4.51)–(4.52), equations (4.43)1,3
become

˙̄Vi1 = −V̇CM1 + β

N

N∑
j=1

(V̄j1(t)− V̄i1(t))

−
∫ t

0
C̄(t− τ)

N∑
j=1

(
X̄i1(t)− X̄j1(τ) +XCM1(t)−XCM1(τ)

)
dτ

= β

N

 N∑
j=1

V̄j1(t)−
N∑
j=1

V̄i1(t)



−
∫ t

0
C̄(t− τ)(NX̄i1(t)−

N∑
j=1

X̄j1(τ) +NXCM1(t)−NXCM1(τ)

−NXCM1(t) +NXCM1(τ)) dτ

= −βV̄i1(t)−N
(∫ t

0
C̄(t− τ) dτ

)
X̄i1(t),

where we have used (4.49)–(4.50), and

˙̄Xi1 = −ẊCM1 + V̄i1 + VCM1 = V̄i1.

Similarly for ˙̄Vi2 and ˙̄Xi2.
Finally, we can write the following system:

˙̄Vi1 = −βV̄i1(t)− g(t)X̄i1(t),
˙̄Vi2 = −βV̄i2(t)− g(t)X̄i2(t),
˙̄Xi1 = V̄i1,
˙̄Xi2 = V̄i2,

(4.53)

where

g(t) := N

∫ t

0
C̄(t− τ) dτ.

Before establishing stability properties of equilibrium (4.48) for system (4.53), we
recall some definitions.
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Consider a system of ordinary differential equations

ẏ = F(t,y(t)), F(t,0) = 0, (4.54)

in which F : [0,+∞)× U → Rn is continuous and U is an open set in Rn with 0 in
U .

Definition 4 The solution y(t) = 0 of (4.54) is

a) stable if, for each ε > 0 and t0 ≥ 0, there is a δ(ε, t0) > 0 such that

‖y0‖ < δ, and t ≥ t0 ⇒ ‖y(t, t0,y0)‖ < ε;

b) uniformly stable if it is stable and δ is independent of t0 ≥ 0;

c) asymptotically stable if it is stable and if, for each t0 ≥ 0, there is an λ(t0) > 0
such that

‖y0‖ < λ⇒ ‖y(t, t0,y0)‖ → 0, as t→ +∞,

(if, in addition, λ can be made arbitrarily large, then y = 0 is globally asymptoti-
cally stable);

d) uniformly asymptotically stable if it is stable and if there is a λ > 0 independent
of t0 such that, for all ‖y0‖ < λ, ‖y(t, t0,y0)‖ → 0 as t→ +∞ uniformly in t0,
that is for each ζ > 0, there is a T (ζ) > 0 such that

‖y0‖ < λ, t0 ≥ 0, and t ≥ t0 + T ⇒ ‖y(t, t0,y0)‖ < ζ, (4.55)

(if, in addition, λ can be made arbitrarily large, then y = 0 is globally uniformly
asymptotically stable).

Below we will prove the uniform asymptotic stability of equilibrium (4.48) providing
a suitable Lyapunov function for system (4.53). For simplicity system (4.53) can be
written, for each particle and for each component, as a planar system in the variable
y = (V,X): {

V̇ = −βV − g(t)X,
Ẋ = V,

(4.56)

with

g(t) := N

∫ t

0
C̄(t− τ) dτ.

In relation to (4.56) we prove the following two theorems.

Theorem 4 Fixed a t̄ > 0, the system (4.56) admits a Lyapunov function U(t,y)
with the properties:

a)

U(t,y) ≤ k1 ‖y‖2 , ∀ t ≥ t̄; (4.57)
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b)

U(t,y) ≥ k2 ‖y‖2 , ∀ t ≥ t̄; (4.58)

c)

U̇(t,y) = ∂U

∂t
+ ∂U

∂V
V̇ + ∂U

∂X
Ẋ ≤ −k3 ‖y‖2 , ∀ t ≥ t̄; (4.59)

where k1, k2, k3 are positive constants.

Proof. Let t̄ > 0, we define the Lyapunov function

U(t, V,X) := (V 2 + kXV + g(t)X2)ψ(t),

where

ψ(t) := e
− g(t)

g ,

g := inf
t≥t̄

g(t) = N

∫ t̄

0
C̄(t− τ) dτ,

g := sup
t≥t̄

g(t) = N

∫ +∞

0
C̄(t− τ) dτ,

ψ := inf
t≥t̄

ψ = e
− ḡ
g ,

ψ := sup
t≥t̄

ψ = e−1,

ψ := sup
t≥t̄
|ψ̇| = sup

t≥t̄

e
− g(t)

g ġ

g
,

k := min

 ψ

ψ
,
g ψ

ψ
,

2βg ψ2

2g ψψ + (ψ + βψ)2

 . (4.60)

In the following equations we consider the inequalities:

−X
2 + V 2

2 ≤ XV ≤ X2 + V 2

2 .

Then, because of g(t) is an increasing function, ψ(t) is nonincreasing, so

ψ̇ ≤ 0, (4.61)

and finally

ψ̇g + ψġ = −e−
g(t)
g
ġ

g
g + e

− g(t)
g ġ

= ġe
− g(t)

g

(
1− g(t)

g

)
≤ 0, ∀ t ≥ t̄. (4.62)
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To prove a) we consider the inequalities

U(t, V,X) ≤
(
V 2 + k

X2 + V 2

2 + gX2
)
ψ

=
[(

1 + k

2

)
V 2 +

(
g + k

2

)
X2
]
ψ

≤ k1 ‖y‖2 ,

where

k1 := max
{(

1 + k

2

)
ψ,

(
g + k

2

)
ψ

}
.

To prove b) we consider

U(t, V,X) ≥ ψV 2 + g ψX2 − kψX
2 + V 2

2

= V 2
(
ψ − kψ

2

)
+X2

(
g ψ − kψ

2

)

≥(4.60) V
2ψ

2 +X2 g ψ

2
≥ k2 ‖y‖2 ,

where

k2 := min
{
ψ

2 ,
g ψ

2

}

To prove c) we consider the following inequalities:

U̇(t, V,X) = ψ̇(V 2 + kXV + gX2) + ψ
[
2V (−βV − gX) + kV 2

+kX(−βV − gX) + ġX2 + 2gXV
]

=
(
ψ̇ − 2βψ + kψ

)
V 2 +

(
kψ̇ − βkψ

)
XV +

(
ψ̇g + ψġ − kgψ

)
X2

≤(4.61),(4.62) (−2βψ + kψ)V 2 +
(
kψ̇ − βkψ

)
XV − kgψX2

≤ (−2βψ + kψ)V 2 +
(
k|ψ̇|+ βkψ

)
|X||V | − kgψX2

≤
(
−2βψ + kψ

)
V 2 +

(
kψ + βkψ

)
|X||V | − kg ψX2

=
(
−2βψ + kψ

)
V 2 −

kg ψ

2

|X| − |V |
(
ψ + βψ

)
g ψ

2

−
kg ψ

2 X2

+
k
(
ψ + βψ

)2

2g ψ V 2
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≤

−2βψ + kψ +
k
(
ψ + βψ

)2

2g ψ

V 2 −
kg ψ

2 X2

≤(4.60) −
(
βψV 2 +

kg ψ

2 X2
)

≤ −k3 ‖y‖2 ,

where

k3 := min
{
βψ,

kg ψ

2

}
.

This completes the proof.

Starting from Proposition 4 we can state

Theorem 5 The equilibrium point (V,X) = (0, 0) of (4.56) is globally uniformly
asymptotically stable with exponential rate of convergence.

Proof. Inequalities (4.59) and (4.57) imply that U satisfies the differential inequality

U̇ ≤ −k3
k1
U, ∀ t ≥ t̄.

By the Gronwall’s inequality (Lemma 1),

U(t,y(t)) ≤ U
(
t̄,y

(
t̄
))
e−(k3/k1)(t−t̄).

Then, using (4.58) and again (4.57), we have

‖y(t)‖ ≤
(
U(t,y(t))

k2

)1/2

≤
(
U
(
t̄,y

(
t̄
))
e−(k3/k1)(t−t̄)

k2

)1/2

≤
(
k1
∥∥y (t̄)∥∥2

e−(k3/k1)(t−t̄)

k2

)1/2

=
(
k1
k2

)1/2 ∥∥y (t̄)∥∥ e−(k3/(2k1))(t−t̄). (4.63)

From (4.63) condition (4.55) is satisfied with exponential convergence. The proof is
completed.

Returning to system (4.53), Theorem 5 can be applied for each particle and for
each component of the position and velocity vectors. Reminding transformation
(4.46)–(4.47), we can say that all agents converge, time-asymptotically, to the position
and velocity of their centre of mass.
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Now let us investigate equation (4.51) for the motion of the centre of mass. For
convenience, we write it again for the first component, the second is similar:

 V̇CM1 = −N
∫ t

0
C̄(t− τ) (XCM,1(t)−XCM1(τ)) dτ,

ẊCM1 = VCM1,
(4.64)

with C̄(t− τ) defined in (4.42) that, from (4.37), gives

C̄(t− τ) := πR2C(t− τ)e−
R2

4(t−τ)D

2(t− τ)D = γξR2e
− R2

4(t−τ)D−η(t−τ)

8(t− τ)2D2 . (4.65)

Then from system (4.64) we get the scalar equation

V̇CM1 = −N
∫ t

0
C̄(t− τ)

∫ t

τ
VCM1(s) ds dτ. (4.66)

In order to establish the asymptotic behaviour of (4.66), we prove the following

Theorem 6 Equation (4.66), with initial datum VCM1(t0), has a unique solution in
[t0,+∞).

Proof. The existence of the solution is ensured by the existence of the solution
proved for system (4.36).

Since the linearity of the equation it is sufficient to prove that the unique solution
with zero initial datum is the constant zero solution. In fact, if we consider the case
of nonzero initial datum and we suppose that there exist two solutions, y(t) and
z(t), in correspondence of the same initial condition y(t0) = z(t0), their difference
w(t) := y(t) − z(t) is also a solution with zero initial datum. If w(t) must be
necessarily the zero solution, then y(t) and z(t) have to coincide, ensuring the
uniqueness.

First, we observe that C̄(t− τ) in (4.65) is bounded, we say

0 < NC̄(t− τ) ≤ ν,

with ν positive constant. Then, from (4.66) we write the inequalities

d |VCM1|
dt

≤
∣∣∣∣dVCM1

dt

∣∣∣∣
≤ ν

∫ t

0

∫ t

τ
|VCM1(s)| ds dτ

= ν

∫ t

0
s |VCM1(s)| ds,

where we have changed the order of integration in the integral. Integrating both
sides from t0 to t, changing again the order of integration, and fixed a T > t0, we
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state

|VCM1(t)| ≤ |VCM1(t0)|+ ν

∫ t

t0

∫ τ

0
s |VCM1(s)| ds dτ

≤ |VCM1(t0)|+ ν

∫ t

0

∫ τ

0
s |VCM1(s)| ds dτ

= |VCM1(t0)|+ ν

∫ t

0
s(t− s) |VCM1(s)| ds

≤ |VCM1(t0)|+ νT

∫ t

0
s |VCM1(s)| ds, ∀t0 ≤ t < T.

By Gronwall’s Lemma 1

|VCM1(t)| ≤ |VCM1(t0)| e
νTt2

2 , ∀t0 ≤ t < T,

so that, due to the arbitrariness of T , if VCM1(t0) = 0, VCM1(t) will be the constant
zero solution. This complete the proof.

From Theorem 6 descends

Theorem 7 Each solution of equation (4.66) go to zero as t→ +∞.

Proof. If the initial datum is VCM1(0) = 0 the unique solution is the constant zero
solution. We consider now VCM1(0) > 0. In this case the solution is greater or equal
to zero in all [0,+∞). In fact, if there is a t̄ > 0 such that VCM1(t̄) = 0, Theorem
6, applied at t0 = t̄, would give VCM1(t) ≡ 0 for all t > t̄. Then the right hand
side of (4.66) implies V̇CM1 < 0, so VCM1(t) is a decreasing function on [0,+∞),
and there exit its limit 0 ≤ l < +∞, as t→ +∞. Hence, since from (4.66) V̇CM1(t)
is monotone and its limit exists, we have also limt→+∞ V̇CM1(t) = 0. Now, if we
suppose l > 0, VCM1(t) > l for all t ≥ 0, and from (4.66) holds

V̇CM1 < −Nl
∫ t

0
C̄(t− τ)(t− τ) dτ (4.67)

= −Nl
∫ t

0
zC̄(z) dz, ∀t ∈ [0,+∞), (4.68)

where we have performed the change of variables z = t − τ . Taking the limit for
t→ +∞ on both side of (4.67) we would have the contradiction

0 = lim
t→+∞

V̇CM1(t) ≤ −µ < 0,

where
µ := Nl

∫ +∞

0
zC̄(z) dz.

So the only chance is l = 0.
The case VCM1(0) < 0 can be treated in a similar way. The proof is now

completed.

Theorem 7 is valid also for the second velocity component VCM2, whose equation
is analogous to (4.66).
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Finally, returning to system (4.43), Theorems 7 and 5 ensure a condition of
time-asymptotic flocking such as stated in Definition 2. Moreover, we have also the
stronger condition that all particles converge asymptotically to their centre of mass
and the velocity of the centre of mass decays to zero.

It is interesting to extend such result from the linear model to the fully nonlinear
system, at least for “small” initial data. Numerical simulations, performed in the
next section on the nonlinear system, suggest that such results could possibly be
obtained.

4.6 Numerical simulations
In order to verify the analytical results presented in Section 4.5 for the nonlinear
model, we perform several numerical simulation. Numerical results are shown in
nondimensional form using the following dimensionless quantities:

t∗ := tη, X∗ := X
R
, f∗ := f

fmax
, β∗ := β

η
,

γ∗ := γfmax
R2η2 , D∗ := D

R2η
, ξ∗ := ξ

fmaxη
,

where fmax is the maximum concentration of signal f . With these definitions, system
(4.7) can be written as

V̇i = β

N

N∑
j=1

1(
1 + ‖Xi −Xj‖2

)σ (Vj −Vi) + γ∇f(Xi),

Ẋi = Vi,

∂tf = D∆f + ξ
N∑
j=1

χB(Xj ,1) − f,

(4.69)

where we have dropped, for simplicity, the asterisks for the nondimensional quantities.
Notice that, due to the choice of R as characteristic length, the dimensionless particle
ray turns out to be a unit value.

Numerical approximation

The numerical approximation scheme used here employs a 2D finite difference method,
similar to which designed in Section 3.6. On the spatial domain Ω := [a, b]× [c, d]
we will assume periodic boundary conditions. If ∆x and ∆y are the spatial steps
and ∆t the time step, we define the grid points (xm, yn, tk), where xm = m∆x,
xn = n∆y and tk = k∆t. The notation ukm,n will denote the approximation of a
function u(x, y, t) at the grid point (xm, yn, tk).

For the parabolic equation (4.69)3, in order to eliminate the stiff term −f we
perform the exponential transformation

f(x, t) = e−tu(x, t),
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where u(x, t) satisfies the equation

∂tu = D∆u+ etξ
N∑
j=1

χB(Xj ,1), (4.70)

with initial condition

u(x, 0) = 0,

and periodic boundary conditions.
Now, for (4.70) we apply a central difference scheme in space and the parabolic

Crank-Nicolson scheme in time (Morton and Mayers, 2005; LeVeque, 2007). Namely
we write

uk+1
m,n − ukm,n

∆t = D

2
(
D2
xu

k+1 +D2
yu

k+1
)

+ D

2
(
D2
xu

k +D2
yu

k
)

+ 1
2e

(k+1)∆tξ
N∑
j=1

χB(Xk
j ,1)

+ 1
2e

k∆tξ
N∑
j=1

χB(Xk
j ,1),

where

D2
xu

k :=
ukm−1,n − 2ukm,n + ukm+1,n

∆x2 ,

D2
yu

k :=
ukm,n−1 − 2ukm,n + ukm,n+1

∆y2 ,

(4.71)

and

χB(Xk
j ,1) =

{
1, if (xm, yn) ∈ B(Xk

j , 1);
0, otherwise.

For equations (4.69)1 we adopt a one step IMEX method, putting in implicit the
term depending on the velocities and in explicit the gradient term (Hundsdorfer and
Verwer, 2003). The scheme reads:

Vk+1
i −Vk

i

∆t = β

N

N∑
j=1

1(
1 +

∥∥Xk
i −Xk

j

∥∥2
)σ (Vk+1

j −Vk+1
i ) + γIXk

i

(
∇m,nfk

)
,

Xk+1
i −Xk

i

∆t = Vk
i ,

(4.72)

where

∇m,nfk :=
(
fkm+1,n − fkm−1,n

2∆x ,
fkm,n+1 − fkm,n−1

2∆y

)
,
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and IXk
i
(∇m,nfk) represents an interpolation of the values ∇m,nfk on the grid points

nearest to Xk
i .

About the spatial and temporal steps employed in the simulations we chose
∆x = ∆y and, in the first time steps, the parabolic CFL condition ∆t ∼ ∆x2

D (Morton
and Mayers, 2005), which has shown more stability in the numerical tests, taken
into account in (4.70) the discontinuous source term and the value of u(x, t) initially
near to zero. In practice, after few time steps, we have release the parabolic CFL in
favor of ∆t ∼ ∆x.

Numerical tests

In all the following numerical tests we set N particles in a spatial domain Ω =
[0, 50] × [0, 50] with periodic boundary conditions, and we chose a suitable time
interval of observation [0, T ]. For the initial data we fix

f(x, 0) = 0,

and, for i = 1, . . . , N ,

Xi(0) = Xi0,

Vi(0) = Vi0.

In particular Xi0 is chosen as a random vector, such that all the particles at
t = 0 are contained in a suitable initial region, fixed in the domain. Then Vi0 =
(Vi0 cos θi, Vi0 sin θi) are chosen with Vi0 random numbers in [0, V0,max], and θi random
numbers in [0, 2π]. Let us now describe some meaningful tests.

Test 1

In this test we set the parameters σ = 0.5, β = 5, γ = 2× 102, D = 2× 102, ξ = 0.5,
V0,max = 3, and we consider N = 10 particles located in X0 as in Figure 4.1 (a).
The time interval of observation is [0, 500]. Spatial and temporal discretizations are
given respectively by ∆x = ∆y = 0.25 and ∆t = 10−4.

Figure 4.1 shows four time steps of the numerical simulation. Here and in the
next tests for each time step we plot, on the left the chemoattractant concentration
f(x, t), while on the right the positions and the velocities of the particles in the
spatial domain. Red square at t = 0 is the region in which the initial positions are
taken. Red marker indicates the centre of mass of the system, and the blue arrows
are the velocity vectors. We observe an initial stage in which the particles tend
to move somewhat aligned about until t = 5 (Figure 4.1 (b)), then they begin to
converge to their centre of mass about at t = 30 (Figure 4.1 (c)), finally all particles
stop in a same position (Figure 4.1 (d)).

In Figure 4.2 (a) is shown the spatial fluctuation around the centre of mass
system

FlX(t) :=
N∑
i=1
‖Xi(t)−XCM(t)‖2 ,
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as a function of the time. In Figure 4.2 (b) is shown the velocity fluctuation around
the centre of mass

FlV (t) :=
N∑
i=1
‖Vi(t)−VCM(t)‖2 .

About for t > 61 FlX(t) and FlV (t) are less than 10−10. Notice that the square
root of FlX(t) and FlV (t) is proportional to the standard deviations of Xi(t) and
Vi(t) with respect to the position and velocity of the centre of mass. Figure 4.2 (c)
displays the norm of the velocity of the centre of mass ‖VCM(t)‖ versus time. About
for t > 52 this velocity is less than 7.8× 10−2. The oscillating pattern, shown here
and in the next tests, can be attributed to the numerical error, as it is confirmed
using finer meshes for the discretization. Figure 4.2 (d) is obtained, for the same
simulation, using a spatial and temporal steps respectively of ∆x = ∆y = 0.0125
and ∆t = 10−5. About for t > 88 ‖VCM(t)‖ is less than 2 × 10−2. With smaller
values of ∆x, ∆y, and ∆t, lower values of ‖VCM(t)‖ are achieved (data not shown).

In the next two tests, starting from Test 1, we change only the two parameters related
to the alignment and to the chemotaxis, in order to investigate the competition
between these two effects.

Test 2

In this test we set β = γ = 10, while the other parameters are set as in Test 1. The
time of observation is [0, 3500].

Particles and chemotactic signal are not shown. In Figure 4.3 (a)–(b) we plot
the spatial and the velocity fluctuations around the centre of mass system FlX(t)
and FlV (t). About for t > 1689 FlX(t) and FlV (t) are less than 10−10. Figure 4.3
(c) displays the quantity ‖VCM(t)‖ as a function of time. About for t > 2134 this
value is less than 1.82× 10−2.

Test 3

In this test we set β = 15, γ = 10 and the other parameters are set as in Test 1.
The time of observation is [0, 3500].

The figures related to the particles and to the chemotactic signal are not shown,
while in Figure 4.4 (a)–(b) we plot the spatial and the velocity fluctuations around
the centre of mass system FlX(t) and FlV (t). About for t > 3109 we have values
less than 10−10. Figure 4.4 (c) displays the quantity ‖VCM(t)‖ versus time. About
for t > 2579 this velocity is less than 1.87× 10−2.

In Table 4.1 we summarize the results of the first three tests. We can observe
that increasing values of the ratio β

γ imply a decreasing rate of convergence of the
particles.

Test 4

In this simulation we fix the parameters as in Test 1, and we double the number
of the interacting agents considering N = 20 cells as in Figure 4.5 (a). The time
interval of observation is [0, 500].
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Table 4.1. Spatial and velocity fluctuations in the centre of mass system, and velocity of
the centre of mass for different values of the parameters β and γ used in Tests 1–3.

Test β γ Time after which
max {FlX , F lV } < 10−10

Time after which
‖VCM(t)‖ < 7.8× 10−2

1 5 2× 102 61 52
2 10 10 1689 1021
3 15 10 3109 1554

In Figure 4.5 we can observe four different time steps of the numerical simulation
showing the aggregation of the initial group and the convergence to zero of its
velocity.

In Figures 4.6 (a)–(b) we plot, the quantities FlX(t) and FlV (t). Here, about
for t > 34 we have values less than 10−10. In Figure 4.6 (c) we show the quantity
‖VCM(t)‖ versus time, with values smaller than 8.39 × 10−2 about for t > 28.
Comparing the results of this test with those of Test 1 we can state that, with the
same parameters, an increasing number of cells enhances the rate of convergence
due to the greater amount of the expressed chemoattractant.

Test 5

In this test we consider a case in which, for the pure Cucker-Smale model (4.1),
i.e. γ = 0 in our model, the flocking behaviour does not occur. We fix the other
parameters σ = 0.8, β = 5, D = 2×102, ξ = 0.5, V0,max = 3, and X0 as in Figure 4.7
(a). The time interval of observation is [0, 15]. Spatial and temporal discretizations
are as in Test 1. Clearly in this case equations (4.6)1,2 and (4.6)3 are decoupled.
Since σ > 1/2, and taking into account the initial data, according to the results in
Ha and Liu (2009), the flocking of the system is not guaranteed.

Figure 4.7 shows our numerical simulation at three time steps. We can observe,
in fact, a dispersion of the initial group of particles.

In the next test we will show that, adding the chemotactic effect, we can recover
the time-asymptotic convergence of the migrating group.

Test 6

In this test we set the same parameters and initial data of Test 5, moreover we
introduce a non zero value for the chemotactic effect: γ = 102. The interval of
observation, spatial and temporal discretizations are fixed as in Test 1.

Figure 4.8 shows the numerical simulations at four different time steps. We can
note that the initial group of particles does not disperse, but converge in position
and velocity.

In Figures 4.9 (a)–(b) we plot, as in Test 1, respectively FlX(t) and FlV (t).
About for t > 107 these quantities are less than 10−10. Figure 4.9 (c) shows the
quantity ‖VCM(t)‖ versus time. About for t > 65 we have values smaller than
2.1× 10−2.
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Test 7

Inspired by the mathematical model proposed in Chapter 3 for the zebrafish lateral
line development, we consider a simulation in which two kinds of cells are involved:
the leaders that produce the chemotactic signal and the followers that do not
produce any signal, both subjected to the alignment effect and to the attraction of
the chemical gradient.

For the numerical simulation set σ = 0.5, β = 5, γ = 1.5 × 102, D = 2 × 102,
ξ = 3, V0,max = 0.3, and X0 as in Figure 4.10 (a). We consider a time interval of
observation [0, 500]. Spatial and temporal discretizations are as in Test 1.

Figure 4.10 shows four time steps of our simulation. A single leader cell is marked
in green colour, while the other follower cells are in red colour. Here the centre of
mass is marked in blue. We observe, about at t = 15, that cells begin to be attracted
toward the chemoattractant source (Figure 4.10 (b)). In the next time steps the
cells tend to converge in the centre of mass and then they stop (Figure 4.10 (c)–(d)).

In Figures 4.11 (a)–(b) are shown the spatial and velocity fluctuations, FlX(t)
and FlV (t), around the centre of mass system. About for t > 131 these quantities
are less than 10−10. Figure 4.11 (c) displays the quantity ‖VCM(t)‖. About for
t > 328 we have values smaller than 5.3× 10−2.

Test 8

In this test we consider a case in which the particles have zero initial velocity. If we
considered the pure Cucker-Smale model (4.1), we would have the particles constant
in the initial position with zero velocity. Here we show that the chemotactic effect
ensure the convergence of the group of particles. As in Test 7 we consider a single
leader that produce the chemoattractant, and other followers that do not produce
any signal, but they follow the gradient produced by the leader signal.

For the numerical simulation we set σ = 0.6, β = 2, γ = 102, D = 2× 102, ξ = 3,
V0,max = 0, and X0 as in Figure 4.12 (a). The time interval of observation is the
same as Test 5. Spatial and temporal discretizations are fixed as in Test 1.

Figure 4.12 shows four time steps of our simulation. Green colour marks the
leader cell, while red colour is for the followers. The centre of mass is marked in
blue. In early time steps we observe the velocity vectors that point the source of
chemoattractant (Figure 4.12 (b)). In the next time steps all particles go to converge
in position and velocity.

In Figures 4.13 (a)–(b) we plot respectively FlX(t) and FlV (t) versus time.
About for t > 67 we obtain values less than 10−10. In Figure 4.13 (c) is shown the
quantity ‖VCM(t)‖ as a function of time. About for t > 109 we have values smaller
than 4.3× 10−2.

Test 9

In this test we simulate the system only under the chemotactic effect, neglecting the
alignment term, that is we set β = 0. The other parameters are γ = 102, D = 2×102,
ξ = 1.5, and the initial data V0,max = 0.8, X0 as in Figure 4.14 (a). The time interval
of observation is [0, 4000]. Spatial and temporal discretizations are fixed as in Test 1.
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In Figure 4.14 we plot four time steps. Although the initial group aggregates
we do not observe, in our time of observation, a convergence of the particles, rather
they show an oscillating behaviour around their centre of mass.

In Figures 4.15 (a)–(b) we plot respectively FlX(t) and FlV (t). In this case, the
spatial and velocity fluctuations around the centre of mass remain bounded but do
not converge to zero. In particular, in the time interval of observation, we have
about FlX(t) > 0.88 and, if we consider a trend line, its slope seems to decreases
monotonically approaching to zero. For example, in relation to Figure 4.15 (a), the
slope of the linear fit on the values of FlX(t), computed on the time intervals [0, 800]
and [3200, 4000], changes from −1.46× 10−1 to −1.84× 10−4. Moreover, we remark
that in previous simulations, containing the alignment effect, on time intervals much
smaller than this test we have obtained values of FlX(t) less than 10−10.

In Figure 4.15 (c) is shown ‖VCM(t)‖ as a function of time. About for t > 254
we have values smaller than 3.79× 10−2. Performing the same numerical test with
the finer discretization ∆x = ∆y = 1.25 and ∆t = 10−5, we find that, about for
t > 120, ‖VCM(t)‖ is smaller than 1.41× 10−2, see Figure 4.15 (d). From this we
can deduce that the velocity of the centre of mass go to zero.

Our numerical results suggest that our model, in absence of alignment and with
the only chemotactic effect, is unable to reproduce stationary patterns.
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(a)

(b)

(c)

(d)

Figure 4.1. Test 1. Numerical simulation in a spatial domain Ω = [0, 50] × [0, 50]
with periodic boundary conditions, and in the time interval [0, 500]. The parameters
values are σ = 0.5, β = 5, γ = 2 × 102, D = 2 × 102, ξ = 0.5, V0,max = 3, and X0
randomly taken in the red square shown in (a). Spatial and temporal discretizations are
respectively ∆x = ∆y = 0.25 and ∆t = 10−4. The four plots are respectively at time
steps t = 0, 5, 30, 500. On the left there is the chemoattractant concentration f(x, t),
while on the right the positions and the velocities of the particles. Red marker indicates
the centre of mass of the system, and the blue arrows are the velocity vectors.
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Figure 4.2. Test 1. (a) Spatial fluctuation around the centre of mass system FlX(t) :=∑N
i=1 ‖Xi(t)−XCM(t)‖2 as a function of the time. (b) Velocity fluctuation around the

centre of mass system FlV (t) :=
∑N
i=1 ‖Vi(t)−VCM(t)‖2 as a function of the time

(x-axis shows only a part of the time domain). About for t > 61 FlX(t) and FlV (t) are
less than 10−10. (c) Norm of the velocity of the centre of mass ‖VCM(t)‖ versus time
(only a part of the time interval is shown on the x-axis). About for t > 52 this velocity
is less than 7.8× 10−2. The plot is related to a numerical simulation with spatial and
temporal steps respectively of ∆x = ∆y = 0.25 and ∆t = 10−4. (d) With a finer mesh,
∆x = ∆y = 0.125 and ∆t = 10−5, smaller values of ‖VCM(t)‖ can be obtained: for
t > 88 the maximum value in the plot is less than 2 × 10−2. This confirm that the
oscillating pattern shown in (c) can be attributed to a numerical error.
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Figure 4.3. Test 2. (a)-(b) Spatial and velocity fluctuations around the centre of mass
system FlX(t) and FlV (t). About for t > 1689 FlX(t) and FlV (t) are less than 10−10

(on the x-axis only a part of the time domain is shown). (c) Norm of the velocity of
the centre of mass ‖VCM(t)‖ versus time. About for t > 2134 this velocity is less than
1.82× 10−2.
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Figure 4.4. Test 3. (a)-(b) Spatial and velocity fluctuations around the centre of mass
system: FlX(t) and FlV (t). About for t > 3109 FlX(t) and FlV (t) are less than 10−10

(on the x-axis only a part of the time domain is shown). (c) Norm of the velocity of
the centre of mass ‖VCM(t)‖ versus time. About for t > 2579 this velocity is less than
1.87× 10−2.
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(a)

(b)

(c)

(d)

Figure 4.5. Test 4. Numerical simulation in a spatial domain Ω = [0, 50] × [0, 50]
with periodic boundary conditions, and in the time interval [0, 500]. The parameters
values are σ = 0.5, β = 5, γ = 2 × 102, D = 2 × 102, ξ = 0.5, V0,max = 3, and X0
randomly taken in the red square shown in (a). Spatial and temporal discretizations are
respectively ∆x = ∆y = 0.25 and ∆t = 10−4. The four plots are respectively at time
steps t = 0, 10, 30, 500. The chemoattractant concentration f(x, t) is on the left, while
on the right there is the positions and the velocities of the particles. Red marker marks
the centre of mass of the system, and the blue arrows are the velocity vectors.
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Figure 4.6. Test 4. (a)–(b) Spatial and velocity fluctuations around the centre of mass
system FlX(t) and FlV (t) (x-axis shows only a part of the time domain). About for
t > 34 we have values less than 10−10. (c) Norm of the velocity of the centre of mass
‖VCM(t)‖ versus time (only a part of the time interval is shown on the x-axis). About
for t > 28 this velocity is less than 8.39× 10−2.
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(a)

(b)

(c)

Figure 4.7. Test 5. Numerical simulation in a spatial domain Ω = [0, 50]× [0, 50] with
periodic boundary conditions, and in the time interval [0, 15]. The parameters values
are σ = 0.8, β = 5, γ = 0, D = 2 × 102, ξ = 0.5, V0,max = 3, and X0 randomly taken
in the red square shown in (a). Spatial and temporal discretizations are respectively
∆x = ∆y = 0.25 and ∆t = 10−4. The red marker indicates the centre of mass of
the system, and the blue arrows are the velocity vectors. On the left there is the
chemoattractant concentration, while on the right the positions and the velocities of
the particles. In this case the motion equations and the chemoattractant equation are
decoupled and for the particles we simulate the pure Cucker-Smale model (4.1). Taken
into account the parameters values and the initial data the flocking behaviour is not
ensured by results in Ha and Liu (2009). In fact, from the three plots, taken respectively
at time steps t = 0, 5, 15, we can observe a dispersion of the initial group.
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(a)

(b)

(c)

(d)

Figure 4.8. Test 6. Numerical simulation in a spatial domain Ω = [0, 50] × [0, 50]
with periodic boundary conditions, and in the time interval [0, 500]. The parameters
values and the initial data are as in Figure 4.7: σ = 0.8, β = 5, D = 102, ξ = 0.5,
V0,max = 3, and X0 as in Figure 4.7 (a). Then here a nonzero value for γ is chosen:
γ = 2× 102. Spatial and temporal discretizations are ∆x = ∆y = 0.25 and ∆t = 10−4.
The four plots are respectively at time steps t = 0, 10, 30, 500. On the left there is the
chemoattractant concentration f(x, t), while on the right the positions and the velocities
of the particles. The red marker is the centre of mass of the system, and the blue
arrows are the velocity vectors. Comparing this figure with Figure 4.7, we observe that,
introducing the chemotactic effect, the time-asymptotic convergence of the particles is
recovered.
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Figure 4.9. Test 6. (a)-(b) Spatial fluctuation FlX(t) and velocity fluctuation FlV (t)
around the centre of mass system as a function of the time (x-axis shows only a part
of the time interval). About for t > 107 FlX(t) and FlV (t) are less than 10−10 (on
the x-axis only a part of the time domain is shown). (c) Velocity of the centre of mass
‖VCM(t)‖ versus time. About for t > 65 we have values smaller than 2.1× 10−2.
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(a)

(b)

(c)

(d)

Figure 4.10. Test 7. Numerical simulation in a spatial domain Ω = [0, 50]× [0, 50] with
periodic boundary conditions, and in the time interval [0, 500]. The parameters values are
σ = 0.5, β = 5, γ = 1.5× 102, D = 2× 102, ξ = 3, V0,max = 0.3, and X0 randomly taken
in the red square shown in (a). Spatial and temporal discretizations are respectively
∆x = ∆y = 0.25 and ∆t = 10−4. The green cell marks a leader cell (•), that produce
the chemical signal, while the other red cells are the followers (•), that do not produce
any signal and follow the chemoattractant gradient. The blue marker is the centre of
mass of the system, and the blue arrows are the velocity vectors. The four plots are
respectively at time steps t = 0, 15, 40, 500. On the left there is the chemoattractant
concentration, while on the right the positions and the velocities of the particles.
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Figure 4.11. Test 7. (a)-(b) Spatial and velocity fluctuations, FlX(t) and FlV (t), around
the centre of mass system (only a part of the time domain is shown on the x-axis).
About for t > 131 FlX(t) and FlV (t) are less than 10−10. (c) Velocity of the centre of
mass ‖VCM(t)‖ as a function of the time. About for t > 328 we have values smaller
than 5.3× 10−2.
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Figure 4.12. Test 8. Numerical simulation in a spatial domain Ω = [0, 50]× [0, 50] with
periodic boundary conditions, and in the time interval [0, 500]. Spatial and temporal
discretizations are respectively ∆x = ∆y = 0.25 and ∆t = 10−4. In this case we fix a
zero initial velocity, V0,max = 0, and the parameters σ = 0.6, β = 2, γ = 102, D = 2×102,
ξ = 3, and X0 randomly taken in the red square shown in (a). As in Figure 4.10 we
consider a single leader cell (•) and other red follower cells (•). Because of the zero
initial velocity, if we considered the pure Cucker-Smale (4.1), we would have all particles
constant in time in the initial position. Conversely, in the four plots at time steps
t = 0, 5, 30, 500 we observe the time-asymptotic convergence of the migrating group.
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Figure 4.13. Test 8. (a)-(b) Spatial and velocity fluctuations around the centre of mass
system as a function of the time: FlX(t) and FlV (t). About for t > 67 FlX(t) and
FlV (t) are less than 10−10. (c) Velocity of the centre of mass ‖VCM(t)‖ versus time.
About for t > 109 this quantity is smaller than 4.3× 10−2.
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Figure 4.14. Test 9. Numerical simulation in a spatial domain Ω = [0, 50]× [0, 50] with
periodic boundary conditions, and in the time interval [0, 4000] (plots on the right shown
only a part of the spatial domain). Spatial and temporal discretizations are respectively
∆x = ∆y = 0.25 and ∆t = 10−4. In this test only the chemotactic force is considered,
neglecting the alignment effect (β = 0). For the other values we fix γ = 102, D = 2×102,
ξ = 1.5, V0,max = 0.8, and X0 randomly taken in the red square shown in (a). The
plots taken at time steps t = 0, 10, 2000, 4000 display the aggregation of the initial group
of particles. In this case the convergence is not observed, but an oscillating behaviour
around their centre of mass is shown.
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Figure 4.15. Test 9. (a)-(b) Spatial and velocity fluctuations, FlX(t) and FlV (t), around
the centre of mass system versus time (only a part of the time domain is shown on the
x-axis). In this case FlX(t) and FlV (t) remain bounded but do not converge to zero. In
particular we have about FlX(t) > 0.88 and, if we consider a trend line, its slope seems
to decrease monotonically. In particular in the time intervals [0, 800] and [3200, 4000],
the slope of the fit line changes from −1.46 × 10−1 to −1.84 × 10−4. (c) Velocity of
the centre of mass ‖VCM(t)‖ versus time, using a spatial and a temporal discretization
given by ∆x = ∆y = 2.5 and ∆t = 10−4 (x-axis shows a part of the time interval).
About for about t > 254 this quantity is smaller than 3.79 × 10−2. (d) With a finer
mesh, ∆x = ∆y = 0.125 and ∆t = 10−5, we obtain smaller values: about for t > 120 we
have values less than 1.41× 10−2.
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4.7 Conclusions
In this chapter we have proposed an extension of the Cucker-Smale model introducing
a mathematical model for collective motion driven by an alignment and a chemotaxis
effect. We have adopted a hybrid description, discrete for the particles and for the
motion equations, and continuous for the molecular lever containing the equation
for the chemical signal.

We have studied our model by both an analytical and a numerical point of view.
By the analytical point of view, using a fixed–point theorem, we have proved local
existence and uniqueness of the solution of the nonlinear system. Then, through a
principle of continuation of solutions, we have extended such result proving global
existence and uniqueness for all times. Moreover, we have investigated the asymptotic
behaviour of particular equilibrium configurations, corresponding to a state in which
all particles are located in a same position with zero velocity. On a linearized system
around such configurations we have proved, using a Lyapunov functional approach,
the asymptotic convergence of the particles in their centre of mass with same velocity.
Then the velocity of the centre of mass is proved to go time-asymptotically to zero.
By a numerical point of view this property has been tested on the nonlinear system,
finding a complete concordance with the analytical results, and some numerical
simulations have been proposed. Among these, we have discussed the competition
between alignment and chemotactic effects varying the parameters of the system. We
have found a decrease in the rate of convergence of the particles when the strength of
the alignment term increases with respect to the chemotaxis. On the other hand, an
increase in the rate of convergence can be found with the same parameters and with
a greater number of interacting particles. Then we have considered the presence of
two cell populations, as in the model of the lateral line proposed in Chapter 3, finding
the convergence of cells towards the sources of chemical signal. Finally, the case of a
pure chemotactic effect, without alignment, has been simulated. Numerical results
have shown the absence of convergence in the migrating group, suggesting that
our model, with the only chemotaxis mechanism, is not able to describe biological
processes leading to stationary aggregates.

Future perspectives can concern the extension of the stability result, proved on the
linearized system, to the full nonlinear model. Furthermore, other interactions could
be taken into account in the collective motion, such as adhesion-repulsion, damping
or lateral inhibition terms, similar to those introduced in Chapter 3. This would
be interesting in view of studying, in an analytical framework, the morphogenetic
process arising in the zebrafish lateral line, and establish results in relation to the
rosette formation and the neuromast deposition.
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