
Mobile robots and vehicles motion
systems: a unifying framework.

Daniele Calisi

a thesis submitted for the degree of
Doctor of Research (Ph.D)
in Computer Engineering

.

October 2009

Contents

Contents i

List of Figures v

Notation ix

Aknowledgements xiii

Introduction xv
Focus and aims . xvi
Main contributions . xvii
Thesis outline . xviii

I Current approaches to robot motion 1

1 Definitions and problem formulation 3
1.1 Definitions . 3

1.1.1 The Piano Movers’ Problem . 3
1.1.2 Time and trajectories . 4
1.1.3 Velocity constraints and robot models 5
1.1.4 Dynamic constraints and the phase space X 9

1.2 Different approaches and problem decompositions 9
1.2.1 (Re)planning and (reactive) control 9
1.2.2 Global path-planning and local methods 10
1.2.3 Decoupled trajectory planning: path and velocity 11

1.3 Sampling-based techniques and probabilistic approaches 12

2 Two different approaches to local robot motion 13
2.1 Reactive algorithms . 13

2.1.1 Potential Field Methods (PF) 14
2.1.2 Vector Field Histogram (VFH, VFH+) 14
2.1.3 Dynamic Window Approach (DWA) 14
2.1.4 Nearness Diagram (ND) . 15

i

CONTENTS

2.1.5 Trajectory generation . 15
2.2 Deliberative methods . 17

2.2.1 Prerequisites . 17
2.2.2 The Expansive Configuration Tree algorithm 18
2.2.3 The Rapid-exploring Random Trees (RRT) family of algorithms 19
2.2.4 Path smoothing and trajectory deformation 26

2.3 Discussion . 29

3 World models for high-level path-planning 31
3.1 Integrating global planners and local algorithms 31
3.2 Grid (raster) maps . 32
3.3 Line maps . 33
3.4 Topological maps . 34
3.5 Minimalistic environment models . 35

II A unifying framework for robot motion systems 37

4 Tasks and goals 39
4.1 Typical goals for a motion task . 39
4.2 A general definition for robot motion goals 40

4.2.1 Reference frames . 41
4.2.2 The goal fitness function φ and the stopping criterion 42

4.3 Trajectory and task execution issues 42
4.3.1 The trajectory fitness function ψ 42
4.3.2 The trajectory constraints P τ 42

4.4 Redefinition of the robot motion problem 43
4.4.1 Motion system as a component 44

5 Integrating deliberative and reactive approaches 47
5.1 Data structures: the trajectory tree and the trajectory arc 48
5.2 The Dynamic Trajectory Tree (DTT) algorithm 49

5.2.1 Interleaved planning and execution 52
5.2.2 Feedback control . 52
5.2.3 On-line pruning . 52
5.2.4 Trajectory deformation . 53
5.2.5 DTT in dynamic environments 55

5.3 The Dynamic Behavior Tree (DBT) algorithm: integrating sensor-
based behaviors into the planner . 56
5.3.1 Behaviors as advices for the extendNode function 56
5.3.2 The variable horizon: bridging pure-reactive methods and

planners . 57
5.3.3 Feedback behaviors as trajectory arcs 58

5.4 Automatic parameter tuning by means of machine learning techniques 60

ii

5.4.1 Reinforcement Learning (RL) and Policy Gradient (PG) meth-
ods . 60

5.4.2 Applying PG methods to tune DTT and DBT parameters . . . 61

6 A compact topological representation for autonomous navigation 63
6.1 The problem of the local goal . 64

6.1.1 Selection of the local goal . 64
6.1.2 Inherent problems of the global/local decomposition 65

6.2 A simple roadmap built using virtual frontier-based exploration . . . 67
6.2.1 Building the roadmap . 68
6.2.2 Computing the local goal . 71

6.3 From the roadmap to a hybrid topological/geometric representation 72
6.3.1 Local map localization . 72
6.3.2 Considerations about the global goal 73
6.3.3 Adding labels, local goal hints and other information to the

representation . 74

7 High-level reasoning and context-based adaptation 75
7.1 Context-based robotics . 75
7.2 Contextual design of the motion system 78

7.2.1 System architecture and contextual knowledge 78
7.2.2 Experimental results . 80

7.3 Context variables determination and topological map annotations . . 82

III Evaluation and conclusions 85

8 The MoVeME evaluation framework 87
8.1 Related work in evaluating motion algorithms 87
8.2 The evaluation framework . 88

8.2.1 Task metrics . 89
8.2.2 Trajectory metrics . 90
8.2.3 Physics-based metrics . 92

8.3 Comparison with other performance metrics 93
8.4 Benchmark problems . 93

9 Experiments 97
9.1 Systems being evaluated . 98
9.2 Simulation experiments . 100

9.2.1 A typical environment: the “hospital” map 100
9.2.2 A critical environment: the “zig-zag” map 101
9.2.3 A critical task: parallel parking 104
9.2.4 A critical task: constrained motion 106

9.3 Real robot experiments . 107

iii

CONTENTS

9.3.1 A typical environment: corridor experiment 107
9.3.2 A critical environment: moving obstacles, slalom and parallel

parking . 109
9.4 Experiments with the whole set of MoVeME benchmarks 112
9.5 Summary . 114

Conclusions and future work 115
Conclusions . 115
Future work . 116

IV Appendices 119

A The OpenRDK framework 121
A.1 The OpenRDK architecture . 121
A.2 OpenRDK applications . 125

B An application: exploration and search missions 127
B.1 Introduction . 127
B.2 Outline of the method . 128
B.3 Exploiting the motion system in exploration tasks 130

Bibliography 133

iv

List of Figures

1 Some different robots in the class of interest for this thesis. xvi

1.1 The unicycle robot model and the three variables that describe its con-
figuration: (x, y) are the coordinates of the center of the robot, θ is its
orientation. 6

1.2 A differential drive robot features two wheels mounted on an axle of
length L. The robot is maneuvered by rotating the wheels at different
velocities. 7

1.3 A car-like model. The robot moves approximately in the direction that
the rear wheels are pointing. 8

2.1 Uses of clothoids curves in robotics and other fields. 16
2.2 The pseudo-code of the basic RRT algorithm 19
2.3 The extendNode function of the basic RRT algorithm 20
2.4 The RRT contains a Voronoi bias that causes rapid exploration 20

3.1 Three different representations used to model the same environment . . 32
3.2 Two ways to detect the direction to follow at each node of a topological

graph: in the first case, the bearings of the edges are saved in the graph
itself; in the second case, the target edge can be detected by counting
edges starting from the reference edge . 36

4.1 The definition of the local goal set G for the local motion algorithm. The
goal set definition includes also the direction. 40

4.2 The interfaces of the motion system from a component-based viewpoint. 44
4.3 The robot driven by the motion system towards the goal region. 44

5.1 A trajectory arc in detail, with time step intervals and robot positions,
and the connection among subsequent trajectory arcs in a trajectory tree. 48

5.2 The pseudo-code of the Dynamic Trajectory Tree algorithm 50
5.3 The two kinds of pruning that are performed in the DTT algorithm. The

green circle is the current position of the robot in the tree, the red cross
is a collision detected in one of the branches. 53

v

LIST OF FIGURES

5.4 The behavior included as advices in the extendNode procedure of the
tree building process. 57

5.5 An execution of the VFH* algorithm . 58

6.1 The Local Spanned Area (LSA), the portion of the environment currently
sensed by the robot. 64

6.2 The effect of the distance at which the local goal is given to the local
subsystem. 65

6.3 Two situations in which the local goal guides the local subsystem to-
wards the goal. 66

6.4 The polygonal representation of the local environment, given by the vir-
tual range finder. 67

6.5 The tree of local polygonal representations, that can be used as a topo-
logical representation of the environment. 69

6.6 The algorithm used to compute a roadmap of the environment, using a
virtual range finder sensor. 69

6.7 The situation in which a loop is found while virtual exploring the envi-
ronment. 70

6.8 The procedure the local goal, given the roadmap 71
6.9 The result of the virtual exploration if the polygonal local maps are

forced to be convex. 73

7.1 The contextual architecture. 76
7.2 System modules and contextual reasoning for the navigation and map-

ping experiments. The IF-THEN rules are interpreted following the
specified order: rules acting on the same parameters are evaluated in
the specified order and the first whose condition is true disables the re-
maining ones. A default value (the right part of the final “IF true” rules)
is also specified in case no other rule is active. 78

7.3 Environment used for the context-driven navigation and mapping ex-
periments. 80

7.4 Results of navigation and mapping experiments. 81

8.1 Three environments taken from the MoVeME benchmark dataset, show-
ing also a robot starting pose (the red circle) and a goal (the green cross). 94

9.1 Performance evaluation in the “hospital” environment of the four sys-
tems described in the text, the values are averaged over five experiments
in the same conditions, standard deviations are given in parenthesis. . . 101

9.2 The “hospital” environment, with the trails followed by three of the
systems described in the text. The first one is System C-DWA: the os-
cillations described in the text are marked as 1, 2 and 3; the second is
System T-DWA, while the last is System T-VFH, in which the trajectory
presents more straight lines than the others 102

vi

9.3 The “zig-zag” environment with the trails followed by two of the sys-
tems described in the text. The first is System T-DWA, in which the
long and narrow corridor after each sharp turning cannot be predicted
in time by the algorithm. System THint-DWA, shown below, can benefit
from the direction of the local target, that makes it possible for the local
algorithm to better adjust the trajectory and enter the narrow corridor
with the right orientation, without the need of sharp turns. 103

9.4 Performance evaluation in the “Zig-zag” environment of the three sys-
tems described in the text (Accur values are not given, because the goal
area is large), the values are averaged over ten experiments in the same
conditions (algorithms use probabilistic techniques), standard devia-
tions are reported in parentheses. 104

9.5 A trail of the robot performing a parallel parking maneuver, using Sys-
tem H-DBT. 105

9.6 The results of the experiments of parallel parking. 105
9.7 A trail of the robot in one of the simulation experiments using System H-

DBT, in which the robot is constrained to move only forward and turn
left. 106

9.8 Results of the constrained motion experiments described in Section 9.2.4. 106
9.9 The map of the real environment used for the experiments (on the left)

and the robots used (on the right). The robot starts the task from the
position marked with “start” and the goal is to reach the grey area, de-
tected using local landmarks. 108

9.10 Performance evaluation in the real experiment of the four systems de-
scribed in the text (Accur values are not given, because the goal area is
large), the values are averaged over ten experiments in the same condi-
tions, standard deviations are reported in parentheses. 108

9.11 A robot trail of the execution of System H-DBT, during the “slalom”
phase of the experiment described in Section 9.3.2. 109

9.12 The results of the “moving obstacles” phase of the experiment described
in Section 9.3.2. 109

9.13 The results of the “slalom” phase of the experiment described in Sec-
tion 9.3.2. 110

9.14 The results of the “parallel parking” phase of the experiment described
in Section 9.3.2. 110

9.15 The overall results of the experiment described in Section 9.3.2. 110
9.16 The parallel parking with the real robot and the System H-DBT. 112
9.17 Results of the experiments with the whole set of the MoVeME benchmarks.113

A.1 An example of four modules in the OpenRDK framework. 122
A.2 The RConsole GUI, the OpenRDK tool for remote inspection. 124

B.1 The real robot that we use for exploration and search missions and an
example of a simulated environment. 128

vii

LIST OF FIGURES

B.2 An instance of an exploration plan described using the PNP formalism. 129
B.3 A possible situation during the exploration mission, in which the system

must choose among a set of frontiers (denoted with the letter “F”) and a
set of interesting places (denoted with the letter “I”). 129

B.4 Two maps that have been built by our autonomous exploration and
search system. 130

viii

Notation

Symbols for spaces

W the workspace in which the robot operates, it can
be 2D or 3D

C
the configuration space, i.e., the space of all
possible configurations of the robot; its elements
are denoted by q

Cobst
the representation of the obstacles and other
forbidden configurations in C

Cfree the subset of C that is not colliding with obstacles

X

the phase space, i.e., the configuration space
augmented with the derivatives of the
configuration (velocities); its elements are
denoted by x

Xobst and Xfree
the representation of the forbidden states in X
and its complement in X

U , U(q), U(x)

the action space, i.e., the set of all possible control
actions that can be chosen (in a particular
configuration q or state x); its elements are
denoted by u

T
the set of all possible trajectories in a space;
depending on which space we are referring to, it
can be explicited as T C or T X

ix

NOTATION

Symbols for variables

q, q(t) a configuration of the robot (at time t)

x, x(t) a state of the robot in the phase space,
that includes its configuration and its velocity (at time t)

u, u(t) a control input (at time t)

v, v(t) the linear speed of the robot (at time t)

ω, ω(t) the angular speed of the robot (at time t)

Curves

γ, γ(s) or q̃(s) a path, i.e., a geometrical curve in configuration space C,
parametrized by the curve length s; if L is the total curve length,
γ : [0, L]→ C; alternatively, any other proportional
parametrization can be used, e.g., γ : [0, 1]→ C

τ , τ(t) a trajectory, i.e., a curve parametrized by time t, the space in which the
curve lies depends on the context (see below)

q̃(t), x̃(t) and ũ(t) a trajectory, in which the space in which it lies is explicit:
q̃(t) is in the configuration space C,
x̃(t) is in the phase space X ,
ũ(t) is a trajectory in the control action space U ,
i.e., if the trajectory duration is denoted by T , ũ : [0, T]→ U

Other notation

E the description of the environment, usually including the description of the obstacles

x

Functions

clearance(q) or clearance(x)
a function that, given the configuration q
or the state x, computes the distance to
the nearest obstacle in the environment

collide(q) or collide(x)
this is a utility function that returns false
if collide(q) returns a distance greater
than 0, and returns true otherwise

ρ(q1, q2) or ρ(x1, x2)

the function ρ is a metric for the specified
space, i.e., ρ : S × S → R, in which S can
be the configuration space C or the state
space X

σ(x, π,∆t)

a function that computes (or gives an
estimate of) the state of the robot if it
follows the behavior/policy/feedback
law π from the state x for the specified
duration ∆t

xi

Aknowledgements

It is difficult to give a summary of the many people I would like to thank for their
advices, their support, or just the time they spent with me, discussing research
topics or just sharing their ideas. I wish to express my gratitude to all those who
have helped me to reach this final goal.

In particular, I would like to thank my advisor, Prof. Daniele Nardi, who fol-
lows my work from the beginning, granting freedom and trust to my research and
giving to me many important opportunities during these years. In addition, I am
also grateful to Dr. Luca Iocchi, for his ideas, that often guided my work in un-
expected directions. Many other people, that I met in my laboratory and are now
partially spread all over the world, deserve my gratitude, unfortunately there is not
enough space here to list them all, however I cannot avoid mentioning some: An-
drea Censi, Alessandro Farinelli, Giorgio Grisetti, Matteo Leonetti, Luca Marchetti,
Stefano Pellegrini, Gabriele Randelli, Gian Diego Tipaldi, Alberto Valero Gomez,
Vittorio Amos Ziparo, and many others.

During my doctorate, I had the opportunity to spend a fruitful stay at Tadokoro
Laboratory, in Sendai, Japan. Therefore, I want to express my gratitude to Prof.
Satoshi Tadokoro and Dr. Kazunori Ohno, for their help and the possibility to use
their interesting robots.

Moreover, I am particularly grateful to Prof. Martin Riedmiller and his group of
Osnabrueck University, Germany, who dedicated time to teach me their knowledge
about their successful machine learning techniques applied to robotics.

I cannot avoid to mention a specific thanks to my parents, because, without
them, many of the achievements in my life simply would not have been possible.

And, finally (latin people said “dulcis in fundo”), a special thanks go to Francesca,
my “little witch”, for just being here by my side and sharing her life with mine, as
well as supporting me with her advices or simply with her presence.

xiii

Introduction

Robots are becoming part of human everyday life and people begin to think that
soon we will have robots performing tasks side-by-side with humans and in their
environment. Robots are mechanical devices whose physical form can vary and
include a manipulator arm, a wheeled vehicle, a legged animal-like form, a flying
platform, or a combination of these.

Robots perform many different activities in order to accomplish their tasks. The
robot motion capability is one of the most important ones for an autonomous be-
havior in a typical indoor-outdoor mission (without it other tasks can not be done),
since it drastically determines the global success of a robotic mission. As stated in
Latombe (1991), robot motion is “eminently necessary since, by definition, a robot
accomplishes tasks by moving in the real world”.

The development of a robust autonomous navigation system that can adapt to
everyday situations and different non-engineered environments populated by hu-
mans, is still an open research area in the field of mobile robotics, although it has
been one investigated since the beginning of robotics. Indeed, motion planning
and obstacle avoidance have been studied for years, but research is still needed
to achieve general and robust techniques that can cope with uncertainties and dy-
namics of operational environments, that become more and more demanding as
far as navigation capabilities are concerned. Specifically, motion planning algo-
rithms need to take into account the uncertainty in both sensor readings and world
modeling, as well as in action outcomes. Moreover, human environments are often
dynamic, i.e., can differ from the internal world model of the robot, and contain
moving obstacles. Obviously, navigation should also take into account constraints
to the motion of the robot and be accomplished in real-time.

The proliferation of different approaches for robot motion has many advan-
tages: as a complete and satisfying solution does (still) not exist, many research
lines can be explored in order to achieve a better understanding of the problem
and its possible solutions, depending on the application at hand. Nonetheless,
many methods have been used only to solve specific problems and their strengths
and generality sometimes is far from being completely understood. As a matter of
fact, a general framework for robot motion systems is still missing, where different
methods and their variations can be arranged, composed and compared systemat-
ically.

In this thesis, we focus on the main methods for mobile robot and vehicle mo-

xv

INTRODUCTION

Figure 1: Some different robots in the class of interest for this thesis.

tion systems and we build a common framework, where similar components can
be interchanged or even used together in order to increase the whole system per-
formance.

Focus and aims

Robot motion is a wide area of research and it is applied to diverse kinds of robots:
from industrial manipulators to autonomous cars, aerial robots, service robots,
etc. Moreover, the application domains of robot motion goes beyond robotics and
reaches the entertainment industry with virtual actor animation and biology with
protein folding analysis. In this thesis we address a subset of these topics, in par-
ticular:

• we consider wheeled mobile robots and vehicles: wheeled robot bases, au-
tonomous cars, rovers for planetary exploration, wheeled human transporters
(see Figure 1) are included in this class;

• we focus on “pure-motion tasks”, i.e., those tasks in which the goal is to
move the robot to a particular configuration, pose or area in the environment,
either being a complete task by itself (e.g., when an autonomous car is asked
to reach a location), or as a building block for a more complex plan (e.g., when
a service robot has to go in the kitchen in order to prepare the dinner): we do
not explicitly consider other motion-related tasks such as coverage or feature
search, although they often require to accomplish pure-motion sub-tasks;

• we aim at designing robot motion systems that are able to perform on-line
on real robots, as well as to react to unexpected events and moving obstacles
in non-engineered environments;

• we search for algorithms and methods that are able to account, implicitly or
explicitly, for kinematic and dynamic constraints to the robot motion: sys-
tems that do not cope with such constraints are doomed to rely on unaccept-
able approximations when used on real vehicles;

• we analyze algorithms and methods that can cope, implicitly or explicitly,
with inaccurate models of robots and environments and uncertainty in sens-

xvi

Main contributions

ing and actuation: it is not realistic to assume precise models and prediction
of the physical behavior of the robot, when dealing with real-world scenarios.

Nonetheless, a few topics tackled in this thesis relax some of the above restrictions.
In particular, the assumptions about the kind of robots being used (e.g., the global
environment representations introduced in Chapter 3 and 6). Moreover, we often
describe related work that does not exactly match the above assumptions, but that
can be easily extended or integrated to those settings.

This thesis aims at providing a unifying framework for robot motion systems,
that deal with the robots, the scenarios and the above-described issues. The main
features of this framework are the possibility to include the main algorithms and
methods for obstacle avoidance and motion planning that have been developed in
the past, in such a way that they can be easily interchanged or used in conjunction,
to increase the effectiveness of the motion system. Currently, the general robot
motion problem does not present a single solution: depending on the situation,
the context and the mission-specific goals, different methods should be used. The
framework should allow the motion system to adapt to the situation, and possibly
allow for a smooth transitioning among different planning/reactive methods. Fi-
nally, the framework should account for high-level and large-scale representations.

Main contributions

The main contributions of this thesis are given in the following.

• We define a general framework for robot motion systems that adopts the
well-known decoupled approach in which a low-level motion subsystem is
guided by a high-level global planner. The generality of this approach allows
to include in the framework almost all reactive local methods and obstacle
avoidance techniques, as well as the path-planners developed so far as global
subsystems.

• We give a characterization of the low-level subsystem that allows for the
seamless integration of pure-reactive behaviors and local planners, taking
advantage of both techniques. While the former are more suitable for dy-
namic environments and high speed motions, the latter are usually more ac-
curate and can cope with a larger set of situations and tasks: we think that fu-
ture motion systems should autonomously trade speed for safety or accuracy,
depending upon the context and the specific task to accomplish, adapting or
choosing among different methodologies. Part of the material on this topic
has been published as author’s original work: the tree-based planner that is
the basis of the framework has been proposed in Calisi et al (2005a) and in
Calisi et al (2005b), different reactive techniques have been presented in Cal-
isi et al (2007d) and in Takeuchi et al (2008) and a study of explicit uncertainty
management in motion planners has been published as Censi et al (2008).

xvii

INTRODUCTION

• We address the requirements for the high-level representation and the re-
lationship with the low-level subsystem, and we compare different envi-
ronment models and the effect of their use with respect to the performance
of the motion system. Moreover, we propose a topological representation of
the environment, where high-level information about the context and some
heuristics for the local subsystem can be included. A previous work about
the use of context-based architectures for motion tasks can be found in Calisi
et al (2007a), in Calisi et al (2008e) and in Calisi et al (2008d). The comparison
of the performance with respect to the world models has been presented in
Calisi and Nardi (2009), together with the evaluation framework described
below.

• We introduce a characterization of the tasks and the goals for a robotic mo-
tion system, that takes into account the possibility of “fuzzy” or symbolic
global tasks (e.g., “go in the kitchen”) and gives some degree of freedom to
the sub-goals, that can increase the performance of the low-level subsystem.

• We present an evaluation framework for robot motion systems, called MoVeME,
that features a set of objective and quantitative performance measures and a
set of benchmark problems (presenting both typical tasks and situations, as
well as critical problems) in which the measures can be taken. The MoVeME
framework has been presented and described as author’s original work in
Calisi et al (2008c) (and refined in the above-mentioned Calisi and Nardi
(2009)).

Other contributions related to the development of this thesis are presented in
the Appendices. In particular, the robot motion framework has been developed
and tested both in simulated environments and on real robotic platforms using the
OpenRDK software framework for robotics1, that has been developed primarily by
the author and currently actively used in the RoCoCo Laboratory of “Sapienza”
University of Rome and in the Intelligent Control Group of University of Madrid.
Details on the OpenRDK can be found in Calisi et al (2008b) and in Calisi et al
(2008a).

Finally, we present a more complex robot mission, in which the motion system
is embedded as a component: the exploration and search task for a rescue mission.
Exploration and search tasks have been deeply analyzed by the author and the
results are presented in Calisi et al (2007b), and in Calisi et al (2007c).

Thesis outline

For better clarity, this thesis is divided into three parts: Part I introduces the prob-
lem and describe the current algorithms and methods for robot motion. In Part II,
the main components of a novel unifying framework for robot motion system are

1http://openrdk.sf.net

xviii

http://openrdk.sf.net

Thesis outline

introduced. Part III is about experiments on real and simulated robots. Finally, the
Appendices present other work of the author that are related to the development
of the thesis, but are not strictly related with pure robot motion issues.

Part I

Chapter 1 introduces the main definitions and the motion planning problem in
its classic formalization, the Piano Movers’ Problem. Typical approaches and prob-
lem decompositions are presented, one of these address the problem separately:
(i) from a global level, i.e., considering global information about the environment,
and (ii) from a local level, where low-level issues about robot movements can be
addressed: this decomposition is followed also in the thesis. Subsequently, the for-
mal framework is extended to deal with velocity and acceleration constraints that a
motion system should address, in order to be effective in real scenarios. A descrip-
tion of sampling-based techniques and probabilistic approaches, that will be used
extensively through the thesis, concludes the chapter.

Chapter 2 presents the most common algorithms that are used to solve the robot
motion problem at the local level. It considers both reactive obstacle avoidance
techniques and deliberative methods that are able to plan a set of control actions
up to a given horizon in time or until the goal is reached. Basic methods and their
common extension are described.

Chapter 3 describes the most commonly used world models for global-level path-
planners. It describes grid maps, line maps, topological maps and more minimalis-
tic representations. Advantages and drawbacks are discussed for each model and
the problem of the relation with the local motion subsystem is tackled, giving dif-
ferent methods for each model.

Part II

Chapter 4, after presenting the tasks of a typical robot motion system, gives a novel
formulation of the goal of a motion task. It introduces two fitness functions for
evaluating and guiding the behavior of a motion system: one is concerned with the
behavior during the execution of the task and is called trajectory fitness functionψ, while
the other, called goal fitness function φ, evaluates the achievement of a given goal.
Finally, a stopping criterion is defined over the function φ and a set of trajectory
constraints are specified, that determines what a robot is not allowed to do during
the execution of the task (e.g., colliding with obstacles). With these new definitions
and the extensions introduced in the previous chapter, the problem of interest for
this work is redefined at the end of the chapter.

Chapter 5 describes a novel approach that allows for the use of obstacle avoid-

xix

INTRODUCTION

ance techniques in conjunction with motion planners, in a fully integrated perspec-
tive. The boundaries between the two classes are thus fuzzified and more than one
method can be used in the same task, in order to increase the effectiveness of the
system. Moreover, a technique for interleaving planning and execution and dy-
namic partial re-planning is presented. Uncertainty in both sensor readings and
action results is addressed. In particular, we show how to include relevant infor-
mation about uncertainty into the framework. This allows the planner to work
with uncertainty information embedded in an extended space, that yield a more
robust and reliable motion system. Finally, some machine learning techniques are
introduced, that can be used to optimize the behavior of the different components
of a motion system. In particular, reinforcement learning methods, such as policy
gradient algorithms, are used to tune the parameters and optimize the trajectory
generation process.

Chapter 6 introduces a topological representation of the environment that allows
for the inclusion of symbolic labels and hints for the local motion subsystem. The
representation does not rely on any distance-related information, although this can
be included in some situations, in order to increase the model reliability and effec-
tiveness.

Chapter 7 shows the benefits of introducing high-level reasoning to adapt the mo-
tion system to different situations. In particular, the context-based architecture is
exploited, that allows for a clear decoupling between the functional part of the mo-
tion system and a set of components that are responsible to determine the current
situation (context) and modify the behavior of the functional part of the system
accordingly.

Part III

Chapter 8 introduces the evaluation framework MoVeME, for mobile robot and
autonomous vehicle motion systems. The framework features a set of metrics to
be measured during experiments and a collection of problems of interest (bench-
marks). The metrics reflect the important aspects that a robotic motion system
should address, including the behavior during the execution, the safety and the
accuracy of reaching the goal. The benchmarks include both typical situations and
tasks, as well as critical problems, that can be unusual in practice, but play an im-
portant role in the evaluation of the given motion system.

Chapter 9 presents an evaluation of a set of motion systems in different situations,
through a set of experiments. The evaluated motion systems include well-known
algorithms, that are described in Chapter 2 and Chapter 3, as well as the novel
algorithms introduced in Chapter 5 and in Chapter 6. The experiments have been
designed following the definition of the goals given in Chapter 4, make use of the

xx

Thesis outline

MoVeME benchmarks and are evaluated using the performance metrics introduced
in Chapter 8. Both simulated and real-robot experiments are performed.

Part IV (Appendices)

Appendix A provides an overview of the OpenRDK software framework for robotics,
that has been designed and developed by the author and that is the basis for the
actual software implementation of the modules described in this thesis.

Appendix B shows an example application for robot motion systems: the explo-
ration and search task. In particular, we adopt a frontier based approach for navi-
gation goal detection and a high-level graph-based language to formalize the high-
level exploration plan.

xxi

Part I

Current approaches to robot
motion

1

1
Definitions and problem

formulation

In this chapter, we give the common definitions and concepts, that are used to ad-
dress motion planning and control problems. These definitions will be used in the
rest of the thesis and they will be extended in Chapter 4. Moreover, we describe
the different approaches that are currently exploited to build complete robot mo-
tion systems as well as the common decompositions of the problem, that are often
needed to obtain suitable solutions in appropriate time.

1.1 Definitions

In the following, we introduce some definitions that will be used in this thesis. In
particular, we are defining the problem that a robot motion system is required to
solve. Most of the definitions given in this section can be found in Latombe (1991),
in LaValle (2006), in Choset et al (2005) or in any basic robotics book.

1.1.1 The Piano Movers’ Problem

A robot R is embedded in a 2D or 3D workspace, denoted with W . The robot is
geometrically described as the set of points in R2 or R3 (in W that are occupied by
the robot. We consider robots that are either single rigid bodies (i.e., all pairs of
points of the robot maintain their mutual distance and the orientation of the whole
robot cannot change) or a collection of rigid bodies, with precise constraints on how
they can move with respect to each other.

3

1. DEFINITIONS AND PROBLEM FORMULATION

The workspace contains obstacles, i.e., rigid bodies that must be avoided by the
robot while it moves. The set of all points occupied by the obstacles is denoted by
Wobst. In addition, the free workspace is denoted byWfree =W \Wobst.

A configuration q of a robot is a parametric description of its pose (and relative
poses of its parts, in the case of a collection of rigid bodies) in the workspace. The
set of all possible configurations for a robot is the configuration space, that we
denote with C. We also define the set Cobst as the set of all configurations of the
robot that collide with the obstacles (i.e., in which at least a point inW is occupied
by both the robot and an obstacle). Furthermore, the set Cfree = C \ Cobst is the set
of all allowed configuration for the robotR.

The basic motion planning problem, also known as the “Piano Movers’ Prob-
lem”, can be defined as follows: given an initial configuration qI and a goal con-
figuration qG, the objective is to compute a continuous path, γ : [0, 1] → Cfree such
that γ(0) = qI and γ(1) = qG. The curve γ can be parametrized in the interval
[0, 1], but we will often use the curve length as the parameter: if sF is the curve
length, γ : [0, sF] → Cfree). It has been shown that, even in the case in which the
description of Cfree does not change, the problem is PSPACE-hard with respect to
the degrees of freedom of the configuration space (Reif, 1979).

Informally, we can say that a motion system is the robot component that is
responsible to move the robot from the initial configuration to the goal configura-
tion. We assume that the motion system can interact with the robot configuration
(or, more generally, with its state) using a set of control actions. The set of all con-
trol actions that the robot can take is denoted by U . For each state q ∈ C, an action
space U(q) ⊆ U is defined as all the possible control actions that a robot can take in
q. The law that correlate each control action with the corresponding change in the
robot state depends on the particular robot and world dynamics and can contain
some degree of uncertainty.

1.1.2 Time and trajectories

Both the robot and the obstacles are allowed to move in the environment: for this
reason, we introduce the concept of time in our notation. This means that all above
definitions can be time-dependent. For example, the robot configuration is actually
a function of time q(t), and also the obstacle description in both the workspace and
the configuration space can be time-dependent and becomesWobst(t) and Cobst(t).
In order to simplify the notation, we will write explicitly this time dependence only
when it is required.

Moreover, we notice that a path, as defined above, only describes the geomet-
rical properties of the motion of the robot, and does not codify anything about its
evolution with respect to the time. The time is thus another important parametriza-
tion of the curve followed by the robot in the configuration space. In this case, we
talk about the trajectory of the robot, i.e., a path is the curve parametrized by the
curve length (or any other proportional parametrization), while the trajectory is the
curve parametrized by time, and we denote it by τ(t).

4

Definitions

We denote with T the time interval over which the trajectory τ(t) is defined, i.e.,
τ : [0, T]→ C. Since we want to deal with systems that can be implemented on real
computers, we often consider that the motion system is allowed to take decisions
only at a discretized sequence of time steps Td = {t0, t1, . . . , tF }.

The correlation between control actions and the transformation induced on the
robot configuration, can thus be explicited by a differential law (uncertainty is not
taken into account here):

q̇ = f(q, u), (1.1)

in which q̇ is the derivative of the configuration with respect to time (i.e., q̇ = dq
dt).

Given the environment and the goal configuration, a motion system will produce
a continuous sequence of control actions u(t), such that the robot, following a tra-
jectory τ(t) in the allowed configuration space Cfree, reaches the specified goal.

1.1.3 Velocity constraints and robot models

Differential constraints on the motion arise often when dealing with mobile robots
and vehicles, and motion system should exploit them to increase accuracy and pre-
cision. Given the configuration space C, velocity constraints, also called kinematic
constraints, can be expressed as the set of the allowed velocities at each point in C.
This results in first-order differential equations:

g(q̇, q) ./ 0, (1.2)

in which ./ can be =, <, >, ≤ or ≥.
Velocity constraints restrict the set of possible velocities at each configuration q,

for example, they can impose maximum and minimum velocities or constrain the
direction of the robot motion (e.g., a wheeled robot can move only in the direction
of the wheels).

When a differential constraint can be integrated to a lower order constraint (e.g.,
a velocity constraint can be integrated to a configuration constraint), it is called a
holonomic constraint. Such an integrable constraint reduces the dimension of the
actual configuration space of the robot. For example, the planar motion of a point
on a circle centered at the origin can be represented using the coordinates (x, y) and
the velocity vector (ẋ, ẏ) (i.e., the direction of the motion) can be constrained on the
tangent of the circle, i.e., xẋ + yẏ = 0. This velocity constraint can be integrated to
the configuration constraint x2 + y2 = R, where R is defined by the initial position
of the point. In this case, the constraint on the velocities can be integrated to the
constraint on the configurations; in this case, an unconstrained description of the
configuration is possible using a single angle coordinate θ.

In general, it is not easy to determine if a differential constraint can be integrated
to yield an equivalent lower-order constraint. However, constraints that cannot be
fully integrated are called non-holonomic constraints. Such a kind of constraint
does not necessarily reduce the dimension of the space of configurations attainable
by the robot, but reduces the dimension of the space of possible differential motions

5

1. DEFINITIONS AND PROBLEM FORMULATION

Figure 1.1: The unicycle robot model and the three variables that describe its con-
figuration: (x, y) are the coordinates of the center of the robot, θ is its orientation.

(e.g., the space of the velocity directions) at any given configuration. For example,
the motion of a car-like robot is constrained in the direction of the wheels (it cannot
move sideways), but in empty space, through maneuvering, the car can reach every
configuration.

In the following, we describe some of the robot models that are considered in
this thesis, giving details about the constraints involved.

1.1.3.1 A simple unicycle

The unicycle is a wheel that rolls upright on a horizontal plane. Figure 1.1 shows
a projection on the plane of this kind of robot. The configuration q of the robot has
three dimensions, that describe the position (x, y) of the contact point of the robot
and the ground (i.e., the projection of the center of the wheel on the plane) and the
orientation θ. This robot can be controlled by the rolling speed v of the wheel (also
called linear velocity) and the rate of change ω of the steering angle (also called
angular velocity). Sideways translation of the wheel is prevented by the no-slip
non-holonomic constraint imposed by the wheel:

ẋ sin(θ)− ẏ cos(θ) = 0. (1.3)

The configuration transition equation is:

ẋ = v cos(θ)
ẏ = v sin(θ)
θ̇ = ω.

(1.4)

6

Definitions

Figure 1.2: A differential drive robot features two wheels mounted on an axle of
length L. The robot is maneuvered by rotating the wheels at different velocities.

The unicycle can be seen as the simplest robot model that involves wheels and the
non-holonomic constraints that prevent sideways motion. The following models
are very similar to the unicycle.

1.1.3.2 Differential drive robots

Most indoor robots can be modeled as differential drive. The configuration of the
robot can be described using the same variables as the unicycle: q = (x, y, θ) (see
Figure 1.2). There are two main wheels, that can rotate at different speeds: these
are actually the two variables of the action commands, ul and ur. If ur = ul, the
robot moves straight (forwards or backwards, depending on the sign of the speed),
while if ur = −ul, the robot turns in place. The configuration transition equation is:

ẋ = r
2(ul + ur) cos(θ)

ẏ = r
2(ul + ur) sin(θ)

θ̇ = r
L(ur − ul).

(1.5)

By setting r
2(ul + ur) = v and r

L(ur − ul) = ω, this model can be converted into the
unicycle model.

1.1.3.3 Car-like vehicles

We model a car as a rectangular object moving on a plane. As usual, the robot
configuration has three dimensions q = (x, y, θ), where x and y are the coordinates
of the center of the car and θ is its orientation. The model is shown in Figure 1.3.

7

1. DEFINITIONS AND PROBLEM FORMULATION

Figure 1.3: A car-like model. The robot moves approximately in the direction that
the rear wheels are pointing.

Due to the usual non-holonomic constraint induced by the wheels, the robot moves
approximately in the direction that the rear wheels are pointing. This means that
the state transition equations for ẋ and ẏ are the same as in the unicycle model;
this also implies that one of the control variables is the linear speed v. The second
control that is possible in this kind of model is the steering angle φ. The state
transition equation for θ̇ is obtained through some geometric calculus and is shown
in the following, together with the other differential equations:

ẋ = v cos(θ)
ẏ = v sin(θ)
θ̇ = v

L tan(φ).
(1.6)

Depending on other constraints on control actions, we can define variations of this
model:

• Tricycle: the linear speed v is constrained to some interval [−v1, v2] in which
v1 > 0 and v2 > 0, while the control input φ is constrained to [−π/2, π/2]. The
vehicle can turn in place if φ = ±π/2.

• Simple Car (J. P. Laumond and Lamiraux, 1998): v ∈ [−v1, v2] as in the pre-
vious model, but φ is constrained to some interval [−φmax, φmax] in which
|φ| ≤ φmax < π/2. The vehicle has a minimum turning radius of ρmin =
L/ tan(φmax).

• Reeds-Shepp Car (Reeds and Shepp, 1990): the linear speed v is restricted to
the discrete set {−1, 0, 1}.

8

Different approaches and problem decompositions

• Dubins Car (Dubins, 1957): this model is obtained from the Reeds-Shepp
model by removing the reverse speed v = −1 from the set of possible speeds.

Reeds-Shepp and Dubins Cars have been often used to demonstrate some theo-
retical result about shortest paths between two configurations in the absence of
obstacles. Moreover, controllability theory states that these models can reach every
configuration in C, in absence of obstacles.

1.1.4 Dynamic constraints and the phase space X

Dynamic constraints, i.e., those that allow to account of momentum and other as-
pects of dynamics, require higher order differential constraints. A simple example
of a dynamic constraint is to bound the allowed acceleration (and deceleration) of
a mobile vehicle (e.g., due to momentum, a mechanical system cannot instanta-
neously change its velocity). This is a fundamental issue to consider in order to
design systems that are able to build physically feasible plans.

An interesting device that is introduced in order to manage these higher order
constraints is the phase space. A phase space is obtained by augmenting the con-
figuration space by explicitly introducing the derivatives of the configuration as
new dimensions. There is obviously a trade-off between increasing the dimensions
of the state space and getting lower order derivatives, but it is widely accepted that
the use of the phase space is convenient with respect to the management of higher
order derivatives. Given a configuration space C, whose elements are denoted with
q, we will denote the phase space as X and its elements as x = (q, q̇).

1.2 Different approaches and problem decompositions

Due to the complexity of the problem and the strict time constraints, the problem
of robot motion has been decoupled, in order to obtain smaller problems that are
easier to solve (divide et impera). There are many decomposition schemes that have
been applied at the general problem level, as well as at the sub-problems.

1.2.1 (Re)planning and (reactive) control

Planning a continuous path from the initial configuration to the goal configuration
is enough to solve the problem in scenarios such as computer-generated animations
and virtual prototyping. However, planning is often considered an off-line act,
and when the application involves the interaction with the physical world and the
motion in human environments, inaccurate localization, incomplete knowledge of
the world and the robot model, and unexpected (moving) obstacles made it clear
that there is a gap between planning a motion and executing it (Minguez et al,
2008), i.e., these issues may invalidate the plan before the robot is able to reach
the goal. These problems have been historically tackled from two different points

9

1. DEFINITIONS AND PROBLEM FORMULATION

of view, that led to two parallel research lines: (partial) re-planning methods and
obstacle avoidance techniques.

The former begin with computing a complete and exact plan to steer the robot
from its initial configuration to a final goal. These methods rely upon a global and
accurate knowledge of the environment, usually not taking into account the uncer-
tainty in the modeling (apart from some simplified case, e.g., Censi et al, 2008). If
the plan becomes invalid, due to some unexpected event or uncertainty, is must
be re-built. Fast re-planning techniques (see, e.g., Bruce and Veloso, 2002; Khatib
and Brock, 1999) and methods for interleaving planning and execution (see, e.g.,
Calisi et al, 2005a) have been developed, that allow for reusing part of the previous
plan or to slightly change the whole plan in order to keep it feasible, avoiding the
time-expensive action of rebuilding the plan from scratch.

The obstacle avoidance techniques, also known as local, sensor-based or re-
active techniques, give up the planning step completely and exploit heuristics to
move the robot using often only a partial and local knowledge of the environment.
Moreover, they are able to deal with the physical, kinematic and dynamic con-
straints of the robot, allowing to navigate to a local goal in cluttered and dynamic
environments.

In this thesis, we would like to smooth the boundary between motion planners
and reactive methods. From our point of view, the only difference is the amount
of look-ahead that the algorithm exploits: a reactive method plans only the next
action, while a complete planner builds a sequence of actions that reach the global
goal. However, other degrees of planning are possible: if building a complete plan
to the global goal requires an excessive amount of time, a partial plan can be built
using some heuristics to advance to the goal.

1.2.2 Global path-planning and local methods

Some robot motion methods exploit the whole global knowledge of the environ-
ment and they are able to compute solutions using complete algorithms. Unfortu-
nately, due to the complexity of the problem and the strict time constraints, they
cannot be used on-line in a real motion system. They can solve in a reasonable time
only simplified versions of the real problems, usually relaxing some constraints or
reducing the dimensionality of the state space.

For this reason, many approaches compute their motion choices by exploiting
only the local portion of the environment model that surrounds the robot (and that
is, for this reason, the most critical). Such motion methods are often referred as
“local methods” and use some sort of heuristics in order to drive the robot to the
goal. The major drawback is that they are incomplete, i.e., they may fail to solve
the problem, even if a solution exists. Nevertheless, they are particularly fast in a
wide range of typical situations and allows for the construction of motion systems
that are both quite efficient and reasonably reliable.

In order to improve the efficacy of local methods, some kind of global infor-
mation can be introduced (Latombe, 1991). Local minima and oscillations are the

10

Different approaches and problem decompositions

typical problems that can be easily overcome by the use of such a global informa-
tion.

A common way to exploit both the global and the local information is to work
in two stages. In the first, the motion system relaxes some constraints and/or re-
duce the degrees-of-freedom of the configuration space; a path is thus found in
this simplified problem and used as a “guide” for the second stage, in which the
constraints and the remaining degrees-of-freedom are re-introduced and a local
method is used to follow the path.

Often the output of the global stage is a geometrical or topological path, de-
scribing roughly the route that the robot should follow in the second stage. This
“global path” can be given at a very high level of description, such as a sequence of
way-points or even a sequence of topological areas to be traversed before reaching
the final goal. However, a tight coupling between the two stages is needed in order
to avoid situations in which the plan computed in the first stage cannot be followed
by the local method at the second stage.

In this thesis we use the global/local paradigm, in particular we concentrate
separately on global-level issues, such as environment topology, and local-level
issues related to steering the robot, account for kinematic and dynamic constraints,
etc. Moreover, we address the connection between the two stages, the possible
problems that can arise and how it is possible to solve or avoid them.

1.2.3 Decoupled trajectory planning: path and velocity

Given the dynamic model of the robot, the motion planning problem can be de-
scribed as finding a control function u(t) yielding a trajectory τ(t) that avoids ob-
stacles, takes the system to the desired goal state, and perhaps optimizes some
objective function while doing so (Choset et al, 2005). The decoupled approach in-
volves first searching for a path τ(s) in the configuration space and then finding a
time-optimal time scaling for the path subject to the actuator limits.

There are important distinctions between the path/velocity decoupling and the
global/local approach that we described in the previous subsection. First, path/ve-
locity decoupling can be used completely at the local level, ignoring any global
information on the environment: indeed, some of the local algorithms that we de-
scribe in Chapter 2 make use of this technique. Second, the curve computed at
the first stage of the path/velocity approach is assumed to be a feasible path for
the robot, considering its kinematic constraints: only the timing law remains to be
determined. On the contrary, the global path computed at the first stage of the
global/local approach can contain cusps or other features that are difficult to be
followed by a real robot. Moreover, the global planner can completely avoid the
computation of a path in the configuration space, providing only a sequence of
way-points or topological places to be traversed.

This path/velocity decoupling approach has been used in many different robot
motion methods, for example in local obstacle avoidance techniques (Simmons,
1996), or in planning methods to tune the velocity in order to avoid collisions with

11

1. DEFINITIONS AND PROBLEM FORMULATION

moving obstacles, or to coordinate multiple robots (Kant and Zucker, 1986). More-
over, the decomposition can be pushed further, by adding a first stage in which a
path is computed without considering neither kinematic nor dynamic constraints;
this path is then transformed to satisfy the kinematic constraints and finally, at the
third stage, the timing function is computed, that satisfies both kinematic and dy-
namic constraints. The path/velocity decoupling is a broad topic in robot motion
(further details can be found in LaValle (2006, Chapter 14) or Choset et al (2005,
Chapter 11)) and is used by some of the algorithms and optimization techniques
described in the following of this thesis.

1.3 Sampling-based techniques and probabilistic
approaches

One of the biggest challenges for robot motion systems is that they must perform
on-line. Although pure-planning approaches often work off-line, building a plan
that then should be followed, the unpredictability of the environment, the pres-
ence of dynamic obstacles or the uncertainty in actuation require often re-planning
phases during the execution of the plan. The challenge is thus not only in the
complexity of the general problem, but also in the strict time constraints a motion
system must satisfy at each iteration.

While complete motion planning algorithms do exist, they are rarely used in
practice since they are computationally infeasible in all but the simplest cases. For
this reason, attention has focused on probabilistic methods, which sacrifice com-
pleteness in favor of computationally feasibility and applicability.

Sampling-based approaches are the current methods of choice for complex robot
motion problems. The broad class of probabilistic approaches make use of a ran-
dom generator in order to explore the state space. In robot motion planning, proba-
bilistic approaches are used in order to explore the infinite-dimensional continuous
space of the trajectories. Probabilistic approaches in robot motion planning has two
main advantages:

• they allow to avoid the explicit computation of the configuration (or phase)
space: they only need a simple collision detection primitive that reports if a
point in the space is in collision or not;

• they are able to explore difficult state spaces (e.g., continuous spaces, with
high dimensionality, etc.) in a reasonable time.

The main drawback is that, in general, although randomized planners have demon-
strated good performance empirically, the are not complete: probabilistic algo-
rithms provide only a weaker form of completeness: the probabilistic completeness.
This means that if a solution exists, the algorithm will eventually find it.

In this thesis we exploit randomized approaches to solve many problems re-
lated to robot motion, from trajectory planning to optimization.

12

2
Two different approaches to local

robot motion

Following the global/local decomposition described in Chapter 1, in this chapter,
we survey a selection of algorithms and methods used at the local level. There are
two conceptually different points of view, from which the local motion problem
has been been historically tackled: heuristic reactive control and local deliberative
planning. In this chapter, we follow this classification, describing the most common
reactive methods in Section 2.1, while the following Section 2.2 addresses the most
common algorithms for (local) motion planning and their variants.

2.1 Reactive algorithms

Local or reactive approaches use only a small fraction of the world model to gen-
erate robot control commands. This comes at the obvious disadvantage that they
cannot produce optimal solutions. Local approaches are easily trapped in local
minima such as U-shaped obstacle configurations. These disadvantages can be
overcome using a global planner in a two-level approach, as described above. The
key advantage of local techniques over global ones lies in the fact that they have
only to deal with a subset of the global environment, thus leading to the possi-
bility to have quicker (that can work on-line and in presence of changes in the
environment, e.g., moving obstacles) and/or more complex algorithms (in order to
take into account kinematic and dynamic constraints, exact robot shape in order to
tackle narrow passages, or shape-changing robots, such as those formed by mul-
tiple links). These methods are also known as “reactive methods”, because they

13

2. TWO DIFFERENT APPROACHES TO LOCAL ROBOT MOTION

usually use only the current sensor reading or a very short history and decide only
the current motion commands (i.e., they do not actually “plan”).

In this subsection, we analyze the most widely used algorithms for local and re-
active navigation, underlining strong points, weaknesses and cases in which these
algorithms cannot be used.

2.1.1 Potential Field Methods (PF)

Potential field methods (PF) determine the steering direction by hypothetically
assuming that obstacles assert negative forces on the robot, and that the target lo-
cation asserts a positive force. These methods are extremely fast, and they typically
consider only the small subset of obstacles close to the robot, see Borenstein and
Koren (1989) and Khatib (1991) for some example. Borenstein and Koren (Koren
and Borenstein, 1991) identified that such methods have inherent limitations (e.g.,
often fail to find trajectories between closely spaced obstacles and they also can
produce oscillatory behavior in narrow corridors).

2.1.2 Vector Field Histogram (VFH, VFH+)

The Vector Field Histogram (Borenstein, 1991, VFH) uses a two-dimensional Carte-
sian histogram grid as a world model. This world model is updated continuously
with range data sampled by on-board range sensors. The VFH method subse-
quently employs a two-stage data-reduction process in order to compute the de-
sired control commands for the vehicle. In the first stage the histogram grid is re-
duced to a one-dimensional polar histogram that is constructed around the robot’s
momentary location. Each sector in the polar histogram contains a value represent-
ing the polar obstacle density in that direction. In the second stage, the algorithm
selects the most suitable sector from among all polar histogram sectors with a low
polar obstacle density and the steering of the robot is aligned with that direction.
Two further improvements of this method has been proposed. The VFH+ (Ulrich
and Borenstein, 1998) presents smoother trajectories, more reliability and a reduced
parameter set, explicitly compensating for robot width.

2.1.3 Dynamic Window Approach (DWA)

There is a set of methods that deals directly with motion commands, this makes
it possible to take into account kinetic and dynamic constraints straightforwardly.
Some examples are SAFA (Feiten et al, 1994) and Curvature-Velocity Method (CVM)
(Simmons, 1996), but it has been the Dynamic Window Approach (DWA) that won
more popularity in the scientific community.

The Dynamic Window Approach (DWA, Fox et al, 1997) deals directly with the
motion dynamics of the robot and is therefore particularly well-suited for robots
operating at high speeds. The search of control commands (translational and rota-
tional velocities) is carried out directly in the space of velocities. These commands

14

Reactive algorithms

are searched in a dynamic window, i.e., only among those velocities that are reach-
able within a short time interval (due, for example, to acceleration constraints).
The choice of the velocity commands for each algorithm step is chosen using an
objective function.

The Dynamic Window Approach has been used successfully in many scenar-
ios. Recently, some algorithms extended the dynamic window concept in order
to address other issues such as vehicle stability and roll-over avoidance (see, e.g.,
Spenko et al, 2004).

2.1.4 Nearness Diagram (ND)

The Nearness Diagram (ND, Minguez and Montano, 2004) is a reactive scheme
that performs a high-level information extraction and interpretation of the envi-
ronment. Subsequently, this information is used to generate motion commands.

In the first step, ND uses a range finder sensor as the main source of informa-
tion about the environment surrounding the robot. In particular, by using range
information, it constructs two diagrams about the nearness of the obstacles. These
diagrams are analyzed in order to extract “regions’, i.e., portions of the diagram
between two discontinuities in the obstacle nearness measurement. Subsequently,
given a (local) goal, one of these regions is selected.

In the second step, by using a set of conditions, the algorithm selects one of
five situations, taking into account the robot safety (i.e., the distance to the nearest
obstacle) and other issues such as the width of the selected region. Each of the five
situations has a related control law that computes the control commands to be sent
to the robot base.

The Nearness Diagram has been successfully used to drive robots and autonomous
wheelchairs in cluttered environments, its main advantage is that its navigation
strategy is well-defined and implemented in a geometrical way, i.e., it does not
rely on critical parameters to be tuned. The basic version of the ND only has two
parameters, that are used only in two of the five situations described above.

Some variants of the ND have been proposed so far: the ND+ (Minguez et al,
2004) algorithm adds a sixth situation to the five mentioned above, in order to
address a specific case that is not properly handled by the original algorithm; the
Smooth Nearness Diagram (SND, Durham and Bullo, 2008) is proposed as an evo-
lution of the ND+ and make use of only one situation and related control law, that
can address all situations considered in the ND+ algorithm, and considers all the
obstacles surrounding the robot, rather than only the closest two.

2.1.5 Trajectory generation

Another method, that has been used in the last years mainly for autonomous ve-
hicles guidance, is strictly related to the Dynamic Window Approach. Rather than
discretizing the allowed velocity space, these methods generate a set of pre-defined

15

2. TWO DIFFERENT APPROACHES TO LOCAL ROBOT MOTION

(a) Clothoids curves are often used in high-
ways design

(b) NIST’s HMMWV uses a set of pre-
generated clothoid curves for local trajectory
planning

Figure 2.1: Uses of clothoids curves in robotics and other fields.

(often pre-computed) trajectories and choose one of them through the use of a util-
ity function (as in the basic DWA).

Some of these methods generate trajectories with a well-known geometrical
shape: the clothoid curve. Clothoids are planar geometrical curves that have been
used in the last years by the motion planning community, because they provide a
good model of the curve that a wheeled robot can follow. A curve γ(s), parametrized
using the arc length, is called a clothoid if and only if its curvature κ(s) (defined as
the inverse of the current curvature radius) is changing linearly with the parameter
s:

κ(l) = k0 + k1 · s. (2.1)

Clothoids are used, for example, in highway design (see Figure 2.1(a)), because the
linearly changing curvature translates in a linear change of the centrifugal force
(and a linear change in the driving wheel rotation translates exactly in a linear
change in the curvature of the trajectory followed by a car). For the same reasons,
clothoids have been used also in many autonomous driving algorithms. For in-
stance, the NIST’s HMMWV vehicle navigation system (Coombs et al, 2000), makes
use of pre-generated clothoids for locally computing a set of feasible trajectories,
given the current vehicle state (see Figure 2.1(b)). A similar approach is also used
in Schröeter et al (2007), where a set of clothoids curves are randomly generated.

The main drawback in using clothoid curves is that they cannot be described by
a closed form equation in state coordinates: this means that an incremental numer-
ical integration is needed to compute the curve, e.g., for collision detection pur-
poses. Approximations of clothoids, with a bounded error, have been studied in
the past and can be used to perform the integration (see, e.g. Meek, 2004; Walton
and Meek, 2005, , that address an approximation equivalent to Euler method).

16

Deliberative methods

Other methods make use of even more complex (pre-computed) curves, in or-
der to address complex issues such as rough terrains, vehicle dynamics, models of
wheel-terrain interaction, etc. (see, e.g., Ferguson et al, 2008; Howard and Kelly,
2007).

2.2 Deliberative methods

Deliberative methods are allowed to build complete plans to better consider the
consequences of their current actions. Since we are dealing with continuous spaces
and strict time requirements should be enforced, we consider randomized plan-
ners. Moreover, the kinematic and dynamic constraints on the robot motion causes
a strict directionality in the actions and the plans that can be generated: for this
reason we describe single-query tree-structure-based algorithms.

2.2.1 Prerequisites

In this section, we assume the following definitions of the search space and that the
following procedures and functions are available (see LaValle and Kuffner, 2000):

• Configuration space: given a parametrization of the configuration of the
robot, the configuration space C is the topological space of all possible config-
urations of the robot;

• Metric: the metric in the configuration space is a real-valued function ρ :
C × C → [0,∞), which specifies the distance between pairs of points in C;

• Collision detector or clearance function: we assume that a clearance func-
tion clearance(q) is available, that computes the distance between a given
robot configuration q and the nearest obstacle in the environment; moreover,
for simplicity, we also define another function collide(q) that returns 0 if
clearance(q) ≥ 0, and 1 otherwise;

• Control input set: the set U is the set of all possible control inputs that can
affect the robot state; we use the notation U(t) when the set depends on time
(i.e., U(t) is the set of all possible control input that is available at time t);

• Incremental simulator: given the current state q(t) and the control input u(t)
applied over a time interval ∆t, the incremental simulator σ(q(t), u(t),∆t)
computes q(t+ ∆t); the function σ makes use of the robot motion equations,
given in the form:

q̇ = f(q, u). (2.2)

Given an initial configuration qI and a set of goal configurations G, the methods
in this section search for a continuous path (or trajectory) in Cfree from qI to some
goal configuration qG ∈ G.

17

2. TWO DIFFERENT APPROACHES TO LOCAL ROBOT MOTION

The following algorithms address this problem, by incrementally building a
tree of configurations from qI towards the goal set G (or from G to qI , or both).
When the goal set (or the initial configuration) has been reached, a trajectory exists
from qI to G and can be executed.

2.2.2 The Expansive Configuration Tree algorithm

In Hsu et al (1999), the Expansive Configuration Tree (EST) is introduced. The
basic form of this algorithm works by building two trees of configurations, one
rooted at qI and the other at qG. Random configurations are sampled in Cfree in
the neighbourhood of the nodes of the trees and connected to them using simple
local planners. At each iteration, a possible connection between the two trees is
searched: if this succeed, the path is found.

Formally, the algorithm iteratively executes two basic steps: expansion and con-
nection, until a path is found or a stopping criterion is reached. In the expansion
step, the two trees are grown by randomly selecting one node q of the tree with
probability 1/w(q), where w(q) is the weight of the node. Some random configu-
rations are sampled in the neighbourhood of q and connected with q using a local
planner (often, a straight-line local planner is used).

The weight w(q) is used to avoid oversampling of any region of the state space,
especially around qI . In particular, w(q) contains the number of configurations
already in the tree, within a predefined distance: at each iteration, a configuration q
in the tree is selected with a probability that is inversely proportional to w(q). The
connection step tries to link the two trees built from qI and qG with a local path. If
this path is found, a plan is available and the planner can stop its iterations.

2.2.2.1 Randomized Kinodynamic Planning with EST

An extension of the basic EST algorithm allows to build a plan considering kinody-
namic constraints (Hsu, 2000; Hsu et al, 2002). This planner builds a tree rooted at
qI , in the collision-free subset of the configuration space. Specifically, this extension
of the EST algorithm considers an augmented space C × T , in which T is the time.

Unlike the basic EST algorithm, after selecting a node q in the tree (given some
weighting function w(q)), a control input u is sampled from the set of all possible
control inputs U . Exploiting the forward simulation function σ, we can integrate
this control input over a small interval ∆t and retrieve the new state qnew; if this
state is not colliding with the obstacles in the environment, it can be inserted in the
tree. Kinodynamic constraints in the local trajectory between q to qnew are automat-
ically satisfied by construction.

This procedure ends when one of the new configurations falls in a so-called
“end-game” region, i.e., an area in Cfree from which it is known how to reach the
goal. It is also possible to build a second tree rooted at qG and integrating the
equation of motion backwards in time, thus achieving the same bidirectional search
of the basic EST algorithm.

18

Deliberative methods

function basicRRT(qI , qG, E)→ tree {
// E is a description of the environment
// qI is the initial configuration
// qG is the goal configuration
tree.init(qI)
while (not targetReached(tree, qG)) {

qrand = generateRandomState()
qnear = selectNearNode(tree, qrand)
qnew = extendNode(qnear, qrand, E)
if (qnew) {

tree.insert(qnew, parent: qnear)
}

}
}

Figure 2.2: The pseudo-code of the basic RRT algorithm

2.2.3 The Rapid-exploring Random Trees (RRT) family of algorithms

The goal of a single-query path planning method is to compute a trajectory from
an initial configuration qI to a goal configuration qG, without performing any pre-
processing. In LaValle (1998) and Kuffner and LaValle (2000), the Rapid-exploring
Random Tree (RRT) algorithm is introduced. The algorithm uses a sampling based
technique to quickly search in high-dimensional spaces that have both algebraic
constraints (obstacles) and differential constraints (non-holonomy and dynamics).
The main idea behind this algorithm is to bias the exploration towards unexplored
portions of the search space.

The basic RRT algorithm is shown in Figure 2.2. Similarly to the EST algorithm,
the RRT grows a tree data structure starting from the configuration qI , usually the
current robot position.

The difference between EST and RRT is in the procedure to extend the tree. In
RRT, at each iteration, a random configuration qrand in C is sampled. The function
selectNearNode selects the node qnear already in the tree that is nearest to qrand,
given a metric ρ in the configuration space. The function extendNode makes a
motion from qnear to qrand with some fixed distance ε and tests for collisions with
obstacles in E . This procedure is also depicted in Figure 2.3.

Figure 2.4 shows that the probability to select a node in the tree is proportional
to the area of its Voronoi region. This biases the RRT to rapidly explore the search
space. Many variants of the basic RRT algorithm have been developed. In the fol-
lowing we will describe some of them and the possible choices for the main func-
tions involved in the algorithm (i.e., generateRandomState, selectNearNode,
extendNode).

19

2. TWO DIFFERENT APPROACHES TO LOCAL ROBOT MOTION

Figure 2.3: The extendNode function of the basic RRT algorithm

Figure 2.4: The RRT contains a Voronoi bias that causes rapid exploration

20

Deliberative methods

2.2.3.1 generateRandomState: biases and heuristics for the random
configuration

In principle, the basic RRT algorithm can be used as a path planner by itself, be-
cause its vertexes will eventually cover Cfree, and thus reaching the goal. However,
without any bias, this convergence might be very slow.

In LaValle and Kuffner (2000), two improved planners are obtained from the
basic RRT, by replacing the basic generateRandomState function, that generates
completely random configurations in C or Cfree, with a biased generator.

The first improvement leads to a variation of the basic RRT algorithm, called
RRT-GoalBias, which uses a function that tosses a biased coin to determine what
should be returned. With a given probability p it returns the goal configuration
qG, and with probability 1 − p it returns a random configuration. Even with a
very small p (e.g., 0.05), this improved RRT planner usually converges to the goal
much faster than the basic RRT. A further improvement of the above heuristic, that
yields another variation of the basic RRT, called RRT-GoalZoom, can be obtained
by modifying the generateRandomState function with a function that chooses
a random sample either from a region around the goal or from the whole C. The
size of the region around the goal is controlled by the closest RRT vertex to the goal
at any iteration. The effect is that the focus of samples gradually increases around
the goal as the RRT draws nearer.

2.2.3.2 Bidirectional search

Taking inspiration from the classical bidirectional search techniques, the basic RRT
algorithm has been modified in (Kuffner and LaValle, 2000) by growing two RRTs,
one from qI and the other from qG: a solution is found if the two trees meet. A naive
bidirectional search algorithm with RRTs can be obtained by generating random
configurations and extending both trees to that. Another bidirectional search based
on RRT is called RRT-Connect: at each iteration, one of the trees is extended with
a new node and an attempt is made to connect the nearest node of the other tree
to this new node. The RRT-Connect algorithm also uses a modified version of the
extendNode function, called connectNode, that repeatedly extends the nearest
neighbour until the goal or an obstacle is reached. This results in a very greedy
algorithm.

2.2.3.3 Partial RRT planners

In this chapter, we are assuming to deal with local algorithms, i.e., they rely upon
a local environment model surrounding the robot. This assumption is motivated
by the fact that the global information of the environment that is not in the area
currently spanned by the sensors can be inaccurate and obsolete. Moreover, the
uncertainty in actuation yields uncertainty on the planned states that increases with
the depth of the nodes in the tree: the evaluation of future states can become too

21

2. TWO DIFFERENT APPROACHES TO LOCAL ROBOT MOTION

vague to prevent a satisfying planning. Finally, it can be impossible to generate a
complete plan within the constraint on the time allowed for each single iteration.

For these reasons, some works explores the possibility of growing RRTs that do
not reach the goal state, i.e., in which the trajectories are only partial plans. For
example, in Urmson (2002), the randomized growth of the RRT is allowed only for
nodes within a fixed time horizon (i.e., nodes that are beyond this horizon cannot
be extended). After the time slot that is allowed for each iteration, the algorithm
chooses in the tree the trajectory that minimizes some utility function that considers
a combination of local issues and global information provided by a global planner.
This fixed time horizon issue, is further addressed in Chapter 5, when the reactive
methods and local planners are merged in the same comprehensive algorithm.

In Petti and Fraichard (2005), an RRT-based partial planner, called Partial Mo-
tion Planner (PMP), is presented, that explicitly exploits a state-time space, in or-
der to be more effective in dynamic environments. In particular, due to the fact
that only partial plans can be found in the time slot allowed for each iteration, this
work aims at handling the safety issues raised by partial planning, i.e., it considers
the behavior of the robot at the end of the partial trajectory (“what if a car ends its
trajectory in front of a wall at high speed?”).

2.2.3.4 The selectNearNode function: metric and nearest neighbour search

One of the main issues of the RRT-based algorithms is that their performance is
very sensitive to the choice of the metric that is used to find in the RRT the nearest
node to qrand. The simplest choice is to use a weighted Euclidean metric, but it can
perform poorly in the presence of kinodynamic constraints on the robot motion.
The perfect metric is the optimal cost (for any criterion, such as time, energy, etc.)
to get from one state to another. Unfortunately, computing this ideal metric is as
difficult as the original planning problem.

In Petti and Fraichard (2005), a metric based on the continuous curvature (CC)
is exploited. The continuous curvature metric has been presented in Scheuer and
Fraichard (1996), and exploits the non-holonomic constraints on the motion, and
thus is more accurate (experiments in the above-cited paper shows that the explo-
ration is more efficient, with respect to the use of a Euclidean metric).

An extension of the RRT algorithm, called Execution Extended RRT (see Sec-
tion 2.2.3.6 below) considers the metric ρ described so far as a cost-to-go (from any q
in the tree to the qrand) and introduces also a cost-to-come, i.e., the distance between
the root and the node in the tree. The actual function used to choose the qnear node
is a linear combination between the cost-to-go and the cost-to-come. Biasing the
linear combination towards the cost-to-come results in shorter paths from the root
to the leaves, but also decreases the amount of exploration. On the other side, bias-
ing the linear combination to the cost-to-go make it more similar to the basic RRT
algorithm. The authors state that the parameter that tunes the linear combination
is domain-dependent and thus an adaptive mechanism is needed.

In Frazzoli et al (2002), the metric is an optimal cost function in the obstacle

22

Deliberative methods

free case, i.e., the time needed by an optimal controller to move the robot to qrand,
in absence of obstacles. The value of this metric is determined incrementally, by
updating lower and upper bounds during the exploration. A similar approach is
presented in Urmson and Simmons (2003), where the heuristically-guided RRT
(hRRT) is presented. Through a rejection sampling technique, the node qnear in the
tree is chosen with a probability that is dependent on both the size of its Voronoi
region (a bias towards exploration) and the quality (i.e., the inverse of the cost-to-
come) of the path to that node (a bias towards exploiting known good parts of the
search space).

Furthermore, as the RRT grows, an efficient nearest neighbour search algorithm
is required. The naive approach of comparing the distance from qrand to every
node in the RRT can be inefficient. In recent years, many efficient data structures
and algorithms have been developed, that make it possible to compute the nearest
neighbour in near-logarithmic time (Arya et al, 1998; Indyk and Motwani, 1998).

2.2.3.5 The clearance and collide functions

Since RRTs are based on incremental motions, the performance of the collision
detection function (and the distance computation) can be dramatically improved.
Many methods have been proposed (e.g., Lin and Canny, 1991; Quinlan, 1994; Mir-
tich, 1998; Guibas et al, 2000), some of which can compute the distance between
closest pairs of points in the world in “almost constant time”. Moreover, almost
any collision detection method is able to compute, as a side effect, the distance to
the closest obstacle, needed by the clearance function.

2.2.3.6 Dynamic environments: (partial) re-planning

In Bruce and Veloso (2002), an RRT-based path planner, called Execution Extended
RRT (ERRT) is developed, which interleave planning and execution. The two ex-
tensions introduced by this algorithm are

• a way-point cache, that improves re-planning efficiency by keeping old tree
nodes between iterations;

• an adaptive cost penalty search, which improves the quality of the generated
path.

The ERRT algorithm encodes the tree nodes in an efficient spatial data structure,
the KD-tree, in order to speed up the nearest neighbour look-up. Moreover, the
bi-directional search of the RRT-connect algorithm is not used here, because it de-
crease the generality of the goal state specification.

The main idea behind the ERRT algorithm is that if a plan was found in a previ-
ous iteration, it is likely to yield insights into how a plan might be found at a later
time when planning again: the history from previous plans can be a guide. This
is exploited by keeping a constant size cache of nodes, filled by plan states when a

23

2. TWO DIFFERENT APPROACHES TO LOCAL ROBOT MOTION

new plan is found. The target state for the RRT expand step is then chosen stochas-
tically among a random state, the final goal or a random element in the way-point
cache.

Another approach is to reuse whole trees from previous iterations, instead of a
node cache. This category includes the Extended RKP (ERKP) (Calisi et al, 2005a)
and the Dynamic RRT (DRRT) (Ferguson et al, 2006), that are essentially the same
algorithm discovered by two independent research groups. These algorithms check
for the validity of the current tree and removes those branches that begin with a
collision. The main difference between the two algorithms is that in the interleaved
plan-and-execution version of the algorithms, the ERKP builds the tree from the
robot towards the goal, while the DRRT builds the tree in the opposite direction.
This, if an obstacle make some branches invalid, forces the DRRT to always re-grow
the tree until it reaches the current robot pose, in order to have the current action
to take, while in the ERKP the collisions prunes branches towards the goal, thus
making partial plans to the goal, but not requiring a full re-growing before having
the current action to take. The ERKP algorithm also removes those branches that
belongs to plans that have been discarded by current choices at junctions. On the
other hand, if the plans are long (i.e., the goal is far from the robot), the DRRT
technique allows for keeping a large part of the tree (since obstacles are found near
the robot, i.e., in the space currently spanned by the sensors).

Finally, forest-based RRT planners go a step beyond and maintain multiple trees
instead of just a single tree: they removes from the tree only the edges that are in
collision, thus splitting the initial tree in multiple trees, in addition, they plant sev-
eral tree roots in the configuration space and grow an RRT from each of them, thus
generalizing the bi-directional search RRT-Connect algorithm. Tree merging and
pruning are often included in the algorithms in order to keep the forest manage-
ment tractable.

Among the forest-based RRT planners, the Reconfigurable Random Forest (RRF)
(Li and Shie, 2002) algorithm, and the Multipartite RRT (MP-RRT) (Zucker et al,
2007), extend the basic RRT algorithm and can account for environmental changes
while keeping the size of the tree small. They can be used either for single-query
or for multiple-query problems. Keeping previously computed trees saves a lot
of computation in successive queries. These trees, after a disconnection due to a
(moving) obstacle in the environment, are grown towards each other in order to
reconnect them. Certain portions of the forest can be invalidated due to moving
obstacles: if a collision is found in any of the nodes of the forest, the sub-trees
rooted at its children are trimmed off and becomes new trees in the forest.

Finally, the Lazy Reconfigurable Forest (LRF) (Gayle et al, 2007) extends the
RRT algorithm by using a forest of RRTs. The tree that contains the current robot
state is called inhabited tree. The method maintains a set of task paths, assuming
that the robot has multiple task to be executed, when the robot chooses a task, the
planner directs the robot towards the corresponding task path, and while the robot
is moving or a change in the environment is detected, the LRF reconfigures the task
paths, the inhabited tree and the whole forest if necessary. The inhabited tree’s root

24

Deliberative methods

is shifted as the robot moves, in order to keep it associated with the robot current
state. The algorithm is said to be “lazy” because it grows the trees only when task
paths are needed and because it checks for collisions only along the current paths,
instead of the whole forest.

The LRF algorithm combines ideas from both the DRRT/ERKP and RRF/MP-
RRT algorithms, in particular, it improves the efficiency of the RRF/MP-RRT al-
gorithms by the use of lazy evaluation. The LRF only checks links along the task
paths, similarly to how ERKP focus on links in the path to the goal, unlike the
RRF/MP-RRT that checks for invalidated nodes among all trees in the forest. How-
ever, removing links in the LRF spawns new trees, as RRF/MP-RRT does, while the
DRRT and ERKP destroy entire sub-trees.

In Li and Shie (2002), a pruneRRT procedure works as follows: each tree in
the forest is visited in post-order (each node is examined after its sub-trees are tra-
versed), and a node is removed if it is considered redundant. A node q is considered
redundant if one of the following conditions is true:

• the distance between one of its child nodes (qc) and its parent node (qp) is less
than some fixed limit and a collision free local path exists between qp and qc:
in this condition, we perform a vertical merge, i.e., we connect qp directly to qc;
moreover if q remains without children, we remove it from the tree;

• the distance between a pair of its child nodes (qc1 and qc2) is less than some
fixed amount and all qc1 child nodes can be linked to qc2 with collision free
local paths: in this condition, we perform an horizontal merge, deleting qc2 and
linking all qc2 children to qc1.

2.2.3.7 Randomized Kinodynamic Planning with RRTs

The inclusion of kinodynamic and non-holonomic constraints can be accomplished
by modifying the extendNode function (LaValle and Kuffner, 2001). A state tran-
sition equation ẋ = f(x, u) is defined to express the non-holonomic constraints. By
integrating f over a finite fixed time interval ∆t, the next state qnew can be com-
puted from a given initial state q and a control input u using numerical integration.

The extendNode function can be implemented as follows. Given the set of all
possible control inputs U , a finite subset Ū ⊆ U is chosen (either randomly or using
some heuristic criteria). Applying these control inputs over a fixed (or randomly
generated) interval, the control input u that yields a new state as close as possible
to qrand is chosen. The extendNode function implicitly uses also the collide
function, in order to determine if the generated qnew is in Cfree.

2.2.3.8 Decrease the number of generated trajectories

Some authors try to prune large sets of generated trajectories, since many of them
are very similar to each other and their number can be reduced without a loss of the
overall problem of path-finding. In Branicky et al (2008), the concept of path and

25

2. TWO DIFFERENT APPROACHES TO LOCAL ROBOT MOTION

trajectory diversity is used: the best pruning for a given pre-computed trajectory set
is the one that maximizes the probability of the survival of paths, averaged over
all possible obstacle environments. This result can be generalized to any set of
trajectory, not only for those that can be found on a RRT.

2.2.4 Path smoothing and trajectory deformation

The output of a path planner is a continuous path along which the robot will not
collide with obstacles. However, any model of the real world will be incomplete
and inaccurate, thus collisions may still occur if the robot moves blindly along such
a path. Control theory and obstacle avoidance techniques enable the robot to use
sensing to close a feedback loop and interact with the environment in real-time.
Another technique is to deform the initial path in such a way that it remains free of
collisions. Moreover, if the planner uses randomized techniques, it is customary to
perform path smoothing to partially optimize the solution paths. Many algorithms
exist that are able to deform the initial path/trajectory in order to optimize it fol-
lowing some criteria such as increasing the distance from obstacles, reducing the
path length, smoothing the path, etc.

For holonomic planning, simple and efficient techniques can be employed, while
in the presence of differential constraints, the problem becomes slightly more com-
plicated. The variational techniques from classical optimal control theory can be
used: they work by iteratively making small perturbations to the trajectory by
slightly varying the inputs and verifying that they remain free from collisions. For
many problems, this approach produces a trajectory that is optimal over the homo-
topy class that contains the original trajectory.

All the methods described in this section deforms the trajectory in the set of
homotopic trajectories to which the initial trajectory belongs. This means that the
trajectory cannot change class of homotopy during the deformation. It is thus im-
portant that the initial trajectory lies in the homotopy class of the optimal trajectory.

A simple basic approach can be found in Zucker et al (2007): at the end of the
tree building process, the smoothing algorithm iterates back from the goal state to
try to find a “shortcut” that connects directly to the initial state. This smoothing
method tends to produce paths that pass closer to obstacles (it optimize the path
length). However, this method does not enforce directly kinodynamic and non-
holonomic constraints.

In the following of this section, we present some algorithms that can be used
to optimize the trajectory that is found on a RRT, and/or to continuously deform it
in order to keep it collision-free in the presence of moving obstacles, or in order to
account for inaccuracy in robot motion execution.

2.2.4.1 Exploiting Lie group symmetries

In Cheng et al (2003), a gap-reduction technique is presented to deform the ini-
tial trajectory in order to bring the final state nearer to the goal state. The main

26

Deliberative methods

motivation for this algorithm is that quantization is performed in most planning
algorithms, which leads to approximate the goal satisfaction for some specified
precision ε > 0. The algorithm described in this subsection allows for increasing
the accuracy after the planning step has finished. In most cases, the running time
of the planning algorithm increases dramatically as ε is decreased. A planning al-
gorithm can generate a solution quickly for large ε tolerance and then improve the
accuracy in a second stage. This method can be used, for example, to reduce the
gap between the two RRTs of the basic bidirectional RRT-Connect algorithm.

The trajectory ξ(t) ∈ X × T is discretized into H steps: in this way, the control
input function is discretized in a vector u[0:H] = {u0, u1, . . . , uH} of control inputs.
The final state of the trajectory is denoted by xF as usual. The proposed method
perturbs the control inputs u[0:H] in such a way that the final xF is nearer to the goal
region. In particular, it perturbs a subset of the components of the control vector
u[0:H], actually solving a nonlinear program in which the objective function is the
distance between the final xF and the goal region (or some fitting function related
to the goal).

The main feature of the method is that by exploiting the group symmetries in
the system dynamics, it can avoid most of the (numerical) integrations needed af-
ter each perturbation: if the perturbed state transition differs from the original state
transition by an action of the symmetry group, this allows the remaining part of the
trajectory to be rigidly translated without the need of any re-computation (integra-
tion).

2.2.4.2 The Elastic Strips Framework

The Elastic Strips Framework (Khatib and Brock, 1999), developed from the previ-
ous Elastic Bands Framework (Khatib and Quinlan, 1993), is another approach to
real-time path deformation. In the Elastic Band Framework, a previously planned
path is modeled as elastic material. Obstacles exerts a repulsive force on the trajec-
tory, this can be seen as a moving obstacle pushing and deforming a rubber band.
When the obstacle is removed, the trajectory will return to its initial configuration,
just as a rubber band would. The elastic band is a one dimensional curve in the
configuration space C.

Since the configuration spaces for many degrees of freedom lead to a high com-
putational complexity and since tasks are specified in the workspace, the Elas-
tic Strips Framework operates entirely in workspace, even for many degrees-of-
freedom robots, such as mobile manipulators. In this case, the trajectory and the
task are both described in the workspace; the trajectory can be seen as elastic ma-
terial filling the volume swept by the robot along the trajectory. This strip of elastic
material deforms when obstacle approach and regains its shape as they retract.

Along the trajectory, a discretization of configurations q0, q1, . . . , qH is used.
Collision-checking along the trajectory is achieved using a protective hull around
each configuration in the workspace. The union of such protective hulls forms an
elastic tunnel along the trajectory.

27

2. TWO DIFFERENT APPROACHES TO LOCAL ROBOT MOTION

The path is improved using a pair of virtual forces. A contraction force (called
internal force) simulates the tension of a stretched elastic band and removes any
slack in the path. A second force (called external force) repels the band from the
obstacles. The two forces deform the elastic until equilibrium is reached.

The framework also enforces the on-line trajectory execution and uses cubic
splines to connect the configurations that result from the discretization of the tra-
jectory (Brock and Khatib, 2002).

2.2.4.3 Non-holonomic trajectory deformation

In Lamiraux and Bonnafous (2002); F. Lamiraux and Lefebvre (2004), an approach
to path/trajectory deformation is developed that, unlike the Elastic Bands/Strips
Framework, explicitly accounts for non-holonomic constraints. The method as-
sumes that an initial collision-free path is available from some path-planner, and
deforms this initial path in order to keep it in the Cfree, also in the presence of un-
expected and/or moving obstacles. The path deformation process is modeled as a
dynamic control system.

A trajectory τ(t) is uniquely defined by an initial configuration q(0) and a con-
trol input function u(t) defined over an interval [0, tF]. To deform the initial trajec-
tory, we thus need to perturb the input function of the trajectory. A (vector-valued)
perturbation function v(t) is defined over the same interval [0, tF] and a set of per-
turbed trajectories τ(t, β) is defined. The set τ(t, β) is obtained by perturbing the
control inputs of the initial trajectory τ(t, 0) with the function v(t) scaled by the
parameter β. That is, for each t ∈ [0, tF], the control input becomes u(t) + βv(t).

Using some utility function that is related to obstacle distance and other fea-
tures, a potential field V (τ) is defined over the set of trajectories. In this way, the
trajectory can be optimized following the gradient of this potential field with re-
spect to the parameter β.

In Lamiraux et al (2004), this non-holonomic trajectory deformation method is
used in conjunction with a variant of the RRT-Connect algorithm to improve effi-
ciency. In particular, a tolerance in the distance between the two trees is required,
during the connection step of the algorithm. On the one side, if this tolerance
is small, the RRT algorithm would create huge (inefficient) trees before the stop-
ping criterion is met. On the other side, if the tolerance is big, either the trajectory
ends far from the goal or there is an important discontinuity in the solution trajec-
tory. Using the above trajectory deformation, a large tolerance is allowed, and the
planned trajectories can be deformed afterwards in order to reduce discontinuities
and/or make their final configuration nearer to the goal.

2.2.4.4 Trajectory deformation using the “Teddy” Trajectory Deformer

Another approach to trajectory deformation is given in Fraichard and Delsart (2008).
In this paper, the “Teddy” Trajectory Deformer is introduced. The trajectory is
discretized into a sequence of nodes. Each node is state-time pair. Teddy operates

28

Discussion

periodically with a fixed time period. At each iteration, it deforms the part of the
trajectory that remains to be executed.

The deformation step, i.e., the displacement of the nodes, work as in Elastic
Strips Framework: an external force push the nodes away from obstacles and an
internal force is aimed at maintaining the feasibility and the connectivity of the
trajectory, i.e., to ensure that the trajectory satisfies the dynamics of the robot. The
main difference with the Elastic Strips Framework is that Teddy works in the state-
time space X × T (T is the time dimension), rather than in the workspaceW : the
trajectory is represented by a finite sequence of nodes ni = (xi, ti), in which ∀i, xi ∈
X , ti ∈ T .

External forces are repulsive forces exerted by the obstacles of the environment,
their purpose is to deform the trajectory in order to keep it collision-free. Internal
forces on the other hand are aimed at maintaining the feasibility and the connec-
tivity of the trajectory. Finally, for the sake of collision-checking and connectivity
evaluation, it is desirable to maintain a regular sampling level along the trajectory,
for this reason, depending on the situation, nodes are added or removed accord-
ingly.

The external forces are determined using the distance from the obstacles inW×
T . They are translated in forces in C × T using the Jacobian (i.e., the derivatives of
the configurations ∈ C with respect to the positions ∈ W). For the internal forces,
the trajectory connectivity is related to the concepts of forward reachability for a
state x, denoted with R(x), that is defined as the set of states that is reachable
from the state x using some control law u(t) for a given interval ∆t, and backward
reachability R−1(x), that is defined as the set of states from which it is possible
to reach a given state x. For each three consecutive nodes n−, n and n+, they are
connected if and only if n ∈ R(n−) ∩ R−1(n+). The internal forces act in order to
keep the nodes inside the setR(n−) ∩R−1(n+).

2.3 Discussion

The reactive methods and the deliberative methods, that have been presented in
this Chapter, are seldom used in conjunction. Actually, they form two different
research lines: from the one hand, obstacle avoidance techniques focus on reactiv-
ity and dynamic environments, trading off the accuracy and the optimality of the
maneuvers with a fast response to environment changes and a low computation
overhead; on the other hand, (partial) planning methods address more complex
scenarios and robot models, and are often used in those cases in which the heuris-
tics of the reactive methods fail in providing the proper motion that reaches the
goal.

In Chapter 5, a unifying framework is presented, that allows to include both
reactive methods and (partial) planners in the same algorithm, by smoothing the
boundaries between the two classes and seamlessly choose among them, depend-
ing on the situations.

29

3
World models for high-level

path-planning

The use of pure-local methods can lead to problems, such as oscillatory behaviors
and trap situations, due to the limited model of the world that is exploited. The
usual solution is to incorporate a global knowledge into the system. In this chapter,
we detail this integration and we show the characteristics of the most known world
representations that are used at the global level.

3.1 Integrating global planners and local algorithms

As reported in Minguez et al (2001), local methods developed in the past, even-
tually evolved to deal with their lack of global reasoning. The main problem to
overcome is the presence of local minima in the pure-reactive methods, that, in
some situations, prevent the system to reach the global goal. The common so-
lution to this problem, as we already mentioned in Section 1.2.2, is to introduce
a global path-planner that is able to “guide” the local system. For example, the
DWA and the ND approaches described in Section 2.1.3 and Section 2.1.4 evolved
into GDWA (Brock and Khatib, 1999) and GND (Minguez et al, 2001), by adding a
global planner that computes the global path on a 2D grid-based representation of
the environment.

Moreover, the integration of these two modules often lead to the definition of
more complex architectures, that include also modeling modules. For example,
Minguez (2005) and Montesano et al (2006) describe a three-component architec-
ture, comprising a modeling component, a global planner and a local obstacle

31

3. WORLD MODELS FOR HIGH-LEVEL PATH-PLANNING

avoidance controller. Well-defined interfaces allow for easy component substitu-
tion: in particular, the usual interface between the global planner and the local
obstacle avoidance method is a subgoal location (as in the system architecture de-
fined in this thesis or in Stachniss and Burgard, 2002), or a local direction (as in
Minguez et al, 2001).

In following of this chapter, we show the most common environment repre-
sentations that a global-level path-planner can use in order to drive the local-level
motion subsystem in a local-minima free execution. For each of the described rep-
resentations, one or more methods to compute the relevant information for the
local-level algorithm (i.e., the local goal or the local direction) is given. Moreover,
some details regarding the space occupied by the representations and, therefore,
their scalability, are included in the descriptions.

(a) grid map (b) line map (c) topological map

Figure 3.1: Three different representations used to model the same environment

3.2 Grid (raster) maps

The scientific community began to use grid-based representations (see Figure 3.1a)
from the very beginning (Nilsson, 1969). In recent years, grid-based representa-
tions became more and more fine-grained and began to include uncertainty (e.g.,
occupancy grids). These models are currently the most used ones, because they
are easy to build and to update, and they present a straightforward support for
probabilistic measures. Using a grid map, the global goal is defined using a global
reference frame and the robot is assumed to know its position with respect to this
reference frame.

Three main shortcomings affect grid-based representations. The first is that the
resolution must be fine enough in order to reflect the connectivity of the environ-
ment, i.e., it cannot allow a narrow passage in the real world to be lost in the map
(i.e., grid cells should have a size compatible with the robot size): since in this
chapter we are dealing with global maps, that can represent very large areas, the
resulting size of the representation can be huge. The second drawback is directly
connected with the first one, and regards efficiency, with respect to the computa-

32

Line maps

tion needed by motion planning algorithms, such as for collision detection or for
path-planning. In order to alleviate these drawbacks, hierarchical and/or maps
comprising cells of different sizes can be used. Finally, pure grid-based representa-
tions are also the most deeply affected by errors deriving by global localization and
are the most difficult to be “corrected” when topological errors are detected (many
current Simultaneous Localization and Mapping algorithms use hybrid represen-
tations consisting of small raster maps connected by topological relations, see, e.g.,
Bosse et al (2003); Grisetti et al (2007, 2008)).

Given a grid map, finding a global path is usually achieved with algorithms
such as A* or D*. The local goal can be computed as the farthest position on the
computed global path that is inside the environment currently spanned by the sen-
sors, while the direction can also be computed using the direction of the path.

3.3 Line maps

The representation of the environment by line models (see Figure 3.1b) is an instance
of the more general geometric modeling, and is a popular alternative to the grid-
based approximation. Also in this direction, the research has begun very early (Gi-
ralt et al, 1979; Thompson, 1977). Line models require less memory than grids and
they scale better with the size of the environment. They are also more accurate,
since they not suffer from discretization problems, although the transformation
process that converts sensor readings to lines is an approximation and, depending
on the method used, can lead to different line maps (see, e.g., Sack and Burgard,
2004; Amigoni and Gasparini, 2008, for a survey on line model approximation of
an environment). Given a global line model, a graph called roadmap is computed,
in a way that it represents the connectivity of the environment. Cell decomposition
and visibility graphs are possible choices (Latombe, 1991), as well as the compu-
tation of the Voronoi graph (as in, e.g., Choset and Nagatani, 2001; Bhattacharya
and Gavrilova, 2008). The local target can be computed on the roadmap using the
same method described for the grid maps. Finally, also in this case, the global goal
is given using a global reference frame, in which the robot is assumed to be lo-
calized. In this case, obstacles are modeled as line segments and the methods to
extract information for the obstacle avoidance algorithm are based on geometric
cell decomposition, on visibility graphs (Latombe, 1991), or on the computation of
a Voronoi graph (e.g., Bhattacharya and Gavrilova, 2008). In both cases, the result is
a graph called roadmap, that contains metric information about vertexes and edges,
and is localized on the map itself. A path is then computed using well-known
graph-search algorithms (e.g., Dijkstra or A*) and the local goal is computed, as
for the grid maps, as the oriented pose on the path that is at the limit of the area
spanned by the robot sensors.

33

3. WORLD MODELS FOR HIGH-LEVEL PATH-PLANNING

3.4 Topological maps

Geometric models still include metric information. A step further towards mini-
malistic world models is represented by topological maps (see Figure 3.1c), where
only the relations between places are represented. Topology is an area of mathe-
matics that studies the characteristics of a space, regardless of metric information.
The motivating insight behind topology is that some geometric problems do not
depend on the exact shape of the objects involved, but on the way they are com-
bined together. Topological navigation is a behavior that is used by a variety of
different animal species, including humans (Lynch, 1960). Topological representa-
tions in robotics discretize the continuous world into a finite set of places connected
by paths. This facilitates large-scale spatial reasoning, mainly because of the com-
pactness of the representation. Moreover, this abstraction helps the communication
among robots and with humans. The crucial issue in topological mapping is the
ability to recognize places, in particular to recognize those places that have been
already visited (“close the loops”).

An example of the autonomous construction of a topological representation is
given in Kuipers and Byun (1991), that relies on the possibility to identify distinc-
tive places, that are connected using arcs that correspond to local control strategies
that describe how a robot can follow the link connecting two distinctive places.
In Filliat (2008), topology is implicitly inferred only from images taken by the robot
camera while navigating in the environment. The representation built has no met-
ric information at all and topological localization is performed thanks to an active
perception strategy. This topology is used to perform tasks such as visual hom-
ing. In Beeson et al (2005), a topological representation of the environment is build
upon a local Voronoi graph, in which the places are the junctions of the graph and
the paths are represented by its edges.

In the absence of an underlying metric model, some sensor measurements need
to be collected in the places and matched against the current place, in order to rec-
ognize an already-visited place and thus “close a loop”. Moreover, the topological
model of the environment can help detecting sensor-wise identically places that
are actually distinct. This topological reasoning can be performed either actively
(e.g., the “rehearsal procedure” in Kuipers, 1985) or reasoning about the already
visited places (e.g., Werner et al, 2008). A robust algorithm to detect places on the
Voronoi graph, as well as already visited places, are the most critical parts of these
works: despite of their inherent advantages over grid-based and geometric maps,
the construction of a topological description of the environment is more difficult.
The topological representation is built on top of a local metric model: this makes the
place recognition more stable and reliable and, since it relies only to local metrical
information to build the Voronoi graph, it is much less sensitive to global localiza-
tion errors, that can be found in pure grid-based metric maps. Following this idea
of using local metric maps, some works exploit the use of topological maps in or-
der to improve the consistency of the global metric map being built (for example
to improve the loop closing robustness) or make it computationally tractable (e.g.,

34

Minimalistic environment models

Bosse et al (2003); Grisetti et al (2007, 2008)).
Topological maps are usually represented as graphs, in which vertexes are land-

marks or places and edges indicates that it is possible to travel directly between
them. Exact metric measurements about the position of places and about the rela-
tions between places are not stored in the representation. When a goal is given, it
is required to localize both the current robot position and the goal in the topolog-
ical representation, in order to find a topological path, and the ability to compute
the current local target pose or direction, given the instructions from the topologi-
cal path. We will assume that the robot is always aware of its own position in the
topological representation and that the goal is given using a topological description
(e.g., “go to the docking station that is in the kitchen”, in which “kitchen” is a topo-
logical place and the docking station has known local coordinates with respect to
a landmark in the kitchen). Moreover, a pure topological approach can be used to
compute the current local target direction, as shown, e.g., in Rawlinson and Jarvis
(2008): since in pure-topological navigation, decisions have to be taken at junctions,
these are treated as landmarks and a simple method can be used to detect the target
direction at each junction, for example using angles or counting the edges starting
from the one from which the robot is approaching the junction.

Given a topological representation of the environment, both the current posi-
tion of the robot and the position of the global goal have to be localized with respect
to this representation. Moreover, a method is needed that translates pure topologi-
cal instructions (e.g., the edge to follow at each junction) into the target for the local
algorithm. Although the metric information is lost in a topological representation,
it can be recomputed using the local sensor readings. For example, in Rawlinson
and Jarvis (2008), the places of the topology are the junctions that are found in a lo-
cal metric Voronoi graph. At each junction, the edge of the topological graph from
which the robot comes to the junction is called reference edge; there are two ways to
detect the direction to follow: the exact orientation can be saved on the graph itself,
and thus can be detected using the reference edge, otherwise, it can be identified by
counting the edges starting from the reference edge. These techniques are depicted
in Figure 3.2.

3.5 Minimalistic environment models

In this group we include those methods that make use of a very limited model of
the environment, such as the “bug algorithms” (Kamon and Rivlin, 1997; Lumel-
sky and Stepanov, 1987) and the Gap Navigation Tree (GNT, Tovar et al, 2004,
2007). Making use of capability-limited sensors (respectively touch or short-range
distance sensors, and gap sensors), these methods are able to build a very simple
world model (or not build it at all) from which it is still possible to detect the target
direction with respect to the current sensor readings and perform tasks such as en-
vironment exploration, surveillance, etc. Classical approaches to motion planning
often lack of reliability when applied in practice, due to problems such as map-

35

3. WORLD MODELS FOR HIGH-LEVEL PATH-PLANNING

Figure 3.2: Two ways to detect the direction to follow at each node of a topological
graph: in the first case, the bearings of the edges are saved in the graph itself; in the
second case, the target edge can be detected by counting edges starting from the
reference edge

ping uncertainty, localization errors and unpredictable control errors. The primary
cause to this is that classical motion planning algorithms, as we said above, rely on
a complete and perfect knowledge of the environment, that is impossible to obtain
in the real world. For this reason, some works investigate the use of minimalistic
environment representations and develop algorithms that minimize the information
requirements. The famous “bug algorithms” (see, e.g., Kamon and Rivlin, 1997;
Lumelsky and Stepanov, 1987) are a typical example of this research line, in which
there are also some recent developments (Tovar et al, 2004, 2007), concerning tasks
such as unknown environment exploration, surveillance, etc. Compact representa-
tions are attractive for two reasons. From one hand, they are more efficient to be
built and used, and allow for the modeling of very large environments; moreover,
the complexity of the representation is a function of the complexity of the envi-
ronment, rather than of hand-tuned parameters such as the resolution in metric
grid-based modeling. On the other side, these representations are less sensitive to
measurement errors and uncertainty and this affects both the environment model
and the robot localization. For example, a precise metric localization is often not
needed when performing pure-motion tasks (unless the task is to reach a precise
goal pose).

36

Part II

A unifying framework for robot
motion systems

37

4
Tasks and goals

In this chapter, we analyze a set of possible motion tasks that can be requested to
a motion system, and extend the goal definition and the problem definition given
in Chapter 1. We show the benefits of using this extended definition, both for the
local goal and for the global goal. Moreover, we describe some important issues
regarding the task execution (with respect to its final accomplishment) that should
be considered in computing the trajectory. These issues will be considered when
we define the evaluation framework in Chapter 8.

4.1 Typical goals for a motion task

The classical motion planning problem definition represents the goal of the motion
system as a configuration qG. However, reaching an exact configuration in a global
reference system is not the only task that can be requested to a robot motion system.
In fact, it is seldom the actual task that we want the robot to accomplish. This
definition is thus often expanded by considering the goal as a set of configurations
G: the objective of a motion system becomes to move the robot from an initial
configuration qI to a configuration qF such that qF ∈ G.

In the following, we give some real examples of robot motion goals and of the
corrensponding set G.

• Move the robot to a specific configuration as accurately as possible. This is the
most known goal for a robot motion algorithm; it is the typical task for a fixed
robot manipulator, but is seldom what is really needed to be accomplished.
In this case, G contains a single configuration: G = {qG}.

39

4. TASKS AND GOALS

Figure 4.1: The definition of the local goal set G for the local motion algorithm. The
goal set definition includes also the direction.

• Reach a place. This is actually the most common goal that arises from a hu-
man user when trying to command a mobile robot. The robot is typically
required to go “in the kitchen”, “outside a building”, “through a corridor”
and so on: it is not crucial which precise pose or link configuration must
be reached. Moreover, complex plans that require a precise pose at the end
(e.g., autonomously reach the battery charger), can be decomposed in such a
way that only the last action requires a precise final pose (e.g., if the battery
charger is in the kitchen, the task can be decomposed in first going to the
kitchen and then reaching the battery charger). The description of the target
pose set usually includes predicates concerning only the cartesian position of
the robot and can contain infinite configurations.

• Move close to an object. There are many applications that require to achieve
this goal; for example, when the robot has to take some picture of interesting
objects (e.g., in rescue missions), or in some position where a manipulator,
that is mounted on the robot, can reach an object. The robot goal is not to go
to the object, but to go at a specific distance (e.g., to take a picture or in such
a way that the manipulator can accomplish the task). The description of the
target pose set, in this case, can be very complex and usually includes also
orientation and/or the configurations of the robot links.

4.2 A general definition for robot motion goals

In this section we aim at defining a general formalism for a robot motion goal, that
generalizes the concepts of the previous section. Although the generalization is

40

A general definition for robot motion goals

trivial, it increases the effectiveness of the motion system and, moreover, is more
suitable to deal with high-level goal descriptions. Consequently, all algorithms and
methods described in this thesis are compatible with this definition.

Finally, the goals described in this section are generic goals for any component
of a motion system. Following the global/local decomposition of Section 1.2.2, this
definition applies both to local goals and waypoints for local methods, and to the
global task goal. For example, in Figure 4.1, the definition of a local goal set is
depicted. Giving a more vague definition of the local goal gives the local algorithm
more freedom, that can be exploited, for example, to optimize other trajectory-
related criterion, such as safety or speed.

4.2.1 Reference frames

The goal set can be defined using different reference frames, as explained below.

• In the classical definition of the motion planning problem, the robot and the
goal configurations are assumed to be given in a global reference frame. For
an off-line planner, this reference frame should be available during the plan-
ning phase, while for an on-line (re)planner, it should be always available
to the motion system, in order to compute the plan to the goal, to make the
required corrections, and to handle the uncertainty of sensor readings and
control action execution. Although such a reference frame can be provided
by a reliable GPS or an accurate SLAM algorithm, it is often impossible to
obtain sensors and algorithms that are immune to accumulated errors, espe-
cially when navigating in very large environments (if GPS is not available,
due to environmental reasons, e.g., in indoor scenarios).

• Another way to specify a goal is with respect to landmarks, that are assumed
to be reliably identifiable. For example, grasping an object is by definition a
motion specified with respect to the position of the object. The idea is related
to the so-called landmark navigation, i.e., navigating always with respect to
visible and identifiable environment features, and define the final goal using
them. Landmarks are the key feature for well-known SLAM algorithms (e.g.,
Montemerlo et al, 2002) and can be used to correct the robot motion in the
presence of localization and modeling errors (see, e.g., Lazanas and Latombe,
1995; Taı̈x et al, 2008).

The above reasons justify a bias towards the definition of a goal with respect to
reliably identifiable landmarks in the environment. “Reliably” has here a meaning
of preference, in order to include the classical global-frame definition of the goal as
a special case, in which the landmark(s) with respect to which the goal is defined,
is the origin of the reference frame itself. However, definitions given with respect
to local (i.e., in the area spanned by robot sensors) landmarks are more reliable
and, moreover, are the most common robotic task definitions (e.g., “go near the
window”, “go to grasp that object”, “follow that person”, etc.).

41

4. TASKS AND GOALS

4.2.2 The goal fitness function φ and the stopping criterion

We can extend the goal set G definition in the following way. A goal fitness func-
tion φ : X → R is defined, that describe how “good” is an achieved state with
respect to the overall task. Given a threshold φ̄, the goal set G is defined as the set
of all the states where the goal fitness function is greater than φ̄:

G = {x ∈ X |φ(x) > φ̄} (4.1)

Given the function φ(x), this definition make it straightforward to tune the accu-
racy of the motion system, by modifying only the threshold φ̄, possibly during the
motion execution.

The threshold φ̄ actually defines the stopping criterion of the motion system,
i.e., as we formalize below, a motion system is said to accomplish a task if its state
x reaches some state such that φ(x) > φ̄.

4.3 Trajectory and task execution issues

There are two elements in describing and evaluating a motion task: how the robot
reaches the goal for the specified task and how it behaves during the execution.
For example, in evaluating the performance of a motion system, as we describe
in Chapter 8, we consider the final result of the system execution, as well as the
behavior during the execution. In this section we describe the issues regarding the
task execution.

4.3.1 The trajectory fitness function ψ

As in the case of the goals, we can define a fitness function over the set of the
possible trajectories. The trajectory fitness function ψ is defined as ψ : T → R. The
definition of this function should account for issues such as safety, duration, etc.
Choosing among the trajectories that are solution for the problem (i.e., that end in
some state ∈ G), a motion system can optimize the ψ value of the task execution.
In particular, given two different ways to accomplish the task (i.e., two different
trajectories during the execution and the achievement of the task goal), a behavior
is considered better than another if its fitness function is higher. Depending on
the application requirements, the robot model and the environment, a trajectory
fitness function can be related to reducing oscillations, decreasing the effects of the
centrifugal force, increasing the safety by keeping the robot distant from obstacles,
etc.

4.3.2 The trajectory constraints P τ

The final concept that we define in this chapter is the trajectory constraints, that is
the counterpart of the stopping criterion for the goals. However, we define the tra-
jectory constraints in a more general form. The trajectory constraints P τ is a set of

42

Redefinition of the robot motion problem

predicates that state if a given trajectory is feasible or not: P τ : τ → {true, false}.
The trajectory constraint predicates generalizes the concept of collision-free mo-
tions: some execution can be discarded for reasons that are different from collisions
(e.g., kinematic/dynamic feasibility).

Therefore, a successful task execution is an execution that reaches a particular
goal (i.e., a situation that meet the requirements defined by the goal definition) in
such a way that the task execution never fail to satisfy the constraint predicates on
the trajectory. The motion system can try to optimize the planned trajectory (with
respect to the trajectory fitness function for the trajectory), while keeping it in the
set of feasible trajectories.

4.4 Redefinition of the robot motion problem

We can redefine the robot motion problem, given in Section 1.1.1, using the con-
cepts introduced so far in this chapter. In particular, the problem is defined in
terms of the control actions of the motion system and to the generalized concepts
of goal fitness, stopping criterion, trajectory fitness and constraints.

• A state space (phase space) X is defined that can represent all states (config-
urations and velocities) of the robot.

• For each state x ∈ Xfree, an action set U(x) is defined as all the possible
control actions that can be taken in x, the union of all possible actions is called
U =

⋃
X U(x).

• A robot model is specified using a differential state transition equation in the
form ẋ = f(x, u).

• A trajectory fitness function is defined as a function ψ : T X → R, it describes
the goodness of a trajectory, regardless the final goal achievement.

• A set of trajectory constraint predicates P τ is defined on the trajectory space and
determines the set of feasible trajectories.

• A goal fitness function is defined as a function φ : X → R, it describes how
good is a state with respect to the task goal.

• A stopping criterion is defined over the function φ(x) and defines the goal re-
gion G ⊆ X .

A motion system must compute an action trajectory ũ : T → U such that the corren-
sponding state trajectory x̃ satisfies the trajectory constraint predicates and there
exists some tF such that x̃(tF) ∈ G. Optionally, the motion system can choose a
better trajectory to optimize the trajectory fitness function ψ. However, a motion
system is not required to compute a complete action trajectory before the task exe-
cution: this robot motion problem definition refers to the action trajectory and state
trajectory that are the results of the motion system on-line behavior.

43

4. TASKS AND GOALS

Figure 4.2: The interfaces of the motion system from a component-based viewpoint.
The motion system retrieves inputs from a generic modeling component (possibly a
set of sub-components): the modeling component is required to provide the current
robot state x(t) and optionally can provide also a world model, the direct sensor
readings, etc. At each iteration, the motion system generates a control action u(t).
The goal description and the trajectory predicates are assumed to be given.

Figure 4.3: The robot driven by the motion system towards the goal region. Given
the inputs provided by the modeling component, the motion system generates the
current control command u(t), in such a way that the trajectory followed so far
(τ([0 : t])) satisfies the trajectory predicates and that the robot eventually reaches
the goal region (G), i.e., the region of states in which the goal fitness function φ(x)
is greater than a given threshold (stopping criterion).

4.4.1 Motion system as a component

From the overall system point of view, the motion (sub-)system can be seen as a
component that interacts with other capabilities of the robot, such as modeling and
high-level reasoning. In particular, the interfaces between the motion (sub-)system
and other components are depicted in Figure 4.2. Given a goal definition, con-
sisting of a goal fitness function φ(x) and a stopping criterion, and given the set
of trajectory predicates (that include those regarding obstacles), the motion com-
ponent retrieve inputs from a generic modeling component and generates control
(action) commands.

The modeling component is an abstraction that may consist of a set of modules

44

Redefinition of the robot motion problem

(e.g., they can include the direct sensor reading for obstacle avoidance methods,
a map of obstacles for a path-planner, etc.), and is required to provide the current
state x(t) of the robot. At each iteration, given the current state x(t), the motion
system should provide a control command u(t), such that u(t) ∈ U(x(t)), x̃([0 :
t]) (the state trajectory followed so far) satisfies the trajectory predicates, and in
such a way that eventually the robot reaches a state x(tF) ∈ G (see Figure 4.3).
Optionally, the motion system can choose a better trajectory with respect to the
trajectory fitness function ψ(τ). However, since ψ(τ) refers to the final trajectory,
the system can choose a better action u∗(t) only by estimating its effects on the
whole final trajectory.

In the following of this thesis, we will make use of this extended problem for-
malization and the related component-based point of view.

45

5
Integrating deliberative and

reactive approaches

This chapter introduces two strictly related novel algorithms, developed by the
author: the Dynamic Trajectory Tree (DTT) and the Dynamic Behavior Tree (DBT).
The basis of the two algorithms is the randomized tree planning paradigm (i.e.,
RRT and EST) described in Chapter 2. Moreover, DTT and DBT form a sort of
framework where different variations of the above-mentioned algorithm can be
exploited in order to increase the effectiveness and the efficiency of the motion
system.

These algorithms are suitable for on-line use, as they account for feedback con-
trol and interleaved execution and planning, to provide robustness to external dis-
turbances, uncertainty and modeling errors, as well as incrementally constructing
and correcting the trajectory as new information is available from the environment.

Finally, the Dynamic Behavior Tree algorithm introduces the integration with
feedback reactive behaviors, such as obstacle avoidance techniques, in the tree con-
struction process, thus reducing the need of randomized search in the case in which
well-known reactive methods are able to construct a good solution.

In Section 5.1, the main data structures that are exploited by both algorithms are
presented. The DTT algorithm is then detailed in Section 5.2 and Section 5.2.4. The
DBT algorithm is described in Section 5.3. Finally, a description of machine learning
techniques that are used to tune the parameters of the algorithms is presented in
Section 5.4.

47

5. INTEGRATING DELIBERATIVE AND REACTIVE APPROACHES

(a) a single trajectory arc (b) the connection among different tra-
jectory arcs

Figure 5.1: A trajectory arc in detail, with time step intervals and robot positions,
and the connection among subsequent trajectory arcs in a trajectory tree.

5.1 Data structures: the trajectory tree and the trajectory arc

The basic data structure used by the DTT and the DBT algorithms is a tree of tra-
jectories, that is built using (variants of) the RRT algorithm. This trajectory tree is
defined as a set of linked nodes (vertexes) that has an acyclic structure where each
node has a set of zero or more children and at most one parent node. Each node in
the trajectory tree is associated with a structure called trajectory arc, that contains
relevant information with a specified meaning, as detailed in the following.

A trajectory arc represents a movement of the robot in the state space, follow-
ing a given time-dependent control action u(t), i.e., a trajectory ũ in the control
space. Each trajectory arc is defined in a time interval [tstart, tend] and starting from
a state xstart = x(tstart) in the phase space that encodes the robot position q and its
velocities q̇. A trajectory arc is thus defined as a tuple:

< tstart, tend, xstart, ũ > (5.1)

An incremental simulator σ is assumed to be available that is able to compute
the resulting state xend of the robot if it executes the trajectory arc.

In the following, we assume that the robot can be controlled by velocities and
we consider control actions that have a fixed acceleration along each trajectory arc.
Moreover, we assume that the low-level component of our system is able to run its
iterations at fixed time intervals. The interval between two subsequent iterations
is a fixed (tunable) constant δs. The component is able to send commands to the
robot at the corresponding rate and the commands are assumed to be kept constant
between two subsequent iterations.

An example of a trajectory arc is shown in Figure 5.1(a), where the starting state
of the robot is denoted by xstart, while the ending state is denoted by xend. The tra-

48

The Dynamic Trajectory Tree (DTT) algorithm

jectory x̃(t) represented in a trajectory arc resides in the phase space, i.e., it encodes
also the evolution of velocities. The total duration of the trajectory arc is chosen
as a multiple of δs; in this case, its execution lasts 7 · δs. During the execution of a
trajectory arc, the motion system sends control commands (velocities) to the robot
actuators. Since the acceleration along a trajectory arc is constant, the velocities are
incremented or decremented at each schedule interval by a fixed step acceleration.
Informally, the meaning of a trajectory arc is: starting from state xstart and execut-
ing the control u(t) (that is allowed to change only at fixed intervals δs) for a time
t = 7 · δs, the robot state will be (approximately) xend. Velocities are uniform inside
each interval ti, i ∈ {0, . . . , 7}. In Figure 5.1(a) is also possible to see the robot states
at the end of each schedule interval: this means that starting from the state x−1,
that is the ending state of a previous trajectory arc, the system applies a constant
velocity during the first interval t0, resulting in the state x0 and so on until the final
x7 = qend state is achieved.

Trajectory arcs are linked together in the trajectory tree, in such a way that the
ending state xiend of a trajectory i is equal to the starting state xjstart of the sub-
sequent (children) trajectories j. Figure 5.1(b) shows a trajectory tree where the
starting and ending states of the trajectory arcs are highlighted.

5.2 The Dynamic Trajectory Tree (DTT) algorithm

In this section we describe the Dynamic Trajectory Tree (DTT) algorithm, that is
an improvement with respect to our previous Extended Randomized Kinodynamic
Planning (ERKP) described in Section 2.2.3.6 and in Calisi et al (2005a). The DTT
algorithm is the basis for further improvements introduced in the following of this
chapter (i.e., the DBT algorithm), its main improvements with respect to our pre-
vious work are: (i) the precise formalization of the meaning of the trajectory arcs,
as described in Section 5.1, as well as the introduction of constant accelerating tra-
jectories; (ii) the trajectory deformation process, that allows for a better precision at
the global goal, as well as an increase of performance with respect to efficiency; (iii)
the introduction of many different variants of the basic RRT algorithm, that have
been listed and detailed in Section 2.2.3, in such a way that it is possible to use
different components or techniques of different variants of RRT at the same time.

The outline of the Dynamic Trajectory Tree algorithm is given in Figure 5.2. The
different variants of the method, that is possible to obtain by this algorithm, are
hidden behind the functions, as we detail in the following.

pruneCollidingArcs This function performs a collision check along the cur-
rent trajectory being followed by the system. If some collisions are detected, the
corresponding trajectory arcs should be pruned. There are two possible choices on
how to prune the tree:

• we can remove the whole sub-tree starting from the colliding arc, as in the

49

5. INTEGRATING DELIBERATIVE AND REACTIVE APPROACHES

currentTrajectory = { }
tree = { }
function dynamicTrajectoryTree {

do {
pruneCollidingArcs(currentTrajectory)
xrand = generateRandomState()
do {

anear = selectNearArc(xrand)
Acand = generateCandidateArcs()
Anew = selectNewArcs(Acand, anear)
tree.insert(Anew, parent: anear)

} while (params.connectNode and
(not stateReached(tree, xrand) or A_{new} = \emptyset)

currentTrajectory = selectBestTrajectory()
deformTrajectory(currentTrajectory)
executeTrajectory(currentTrajectory)

} while (not taskAccomplished())
}

Figure 5.2: The pseudo-code of the Dynamic Trajectory Tree algorithm

Extended Randomized Kinodynamic Trees and Execution Extended RRT al-
gorithms (see Section 2.2.3.6);

• we can remove only the colliding arc and split the tree, in such a way that we
obtain a forest, as in Reconfigurable Random Forest, in the Multipartite RRT
or in the Lazy Reconfigurable Forest (see Section 2.2.3.6).

generateRandomState There are three sets from which we can choose the ran-
dom state xrand:

• the whole state space;

• the goal set G, as in the RRT-GoalBias described in Section 2.2.3.1;

• a subset of the state space, e.g., around the G set, as in the RRT-GoalZoom
described in the above-mentioned section;

• a state in other trees in the forest, in the cases in which the pruneCollidingArcs
generates a forest;

• a state in the previously pruned part of the trajectory, as in the ERRT algo-
rithm.

The exact behavior of this function is ruled by a set of parameters that define the
probability to choose the random state in one of the sets specified above.

50

The Dynamic Trajectory Tree (DTT) algorithm

selectNearArc This function, given the random state xrand, chooses a trajec-
tory arc from the tree. The following criteria can be used:

• a random trajectory arc in the tree is chosen (this does not make use of xrand):
this is the only choice of the Expansive Space Tree, described in Section 2.2.2;

• given a metric ρ in the state space, the trajectory arc that is nearest to xrand is
chosen: this is the only choice of the basic RRT algorithm;

• as above, but joining the metric with a cost-to-go on the trajectory to reach the
node in the tree being evaluated, as explained in Section 2.2.3.4, describing
the Heuristic RRT algorithm.

The metric ρ has a large set of choices, in addition to the straightforward use of a
weighted Euclidean metric. An example is the Continuous Curvature metric de-
scribed in Section 2.2.3.4. An optional parameter can be used to limit the planning
horizon: it is important to notice that, by setting this horizon to 0, only the root of
the tree can be selected as anear, thus yielding a pure-reactive motion system.

generateCandidateArcs A set of candidate arcs are generated by this func-
tion. In particular, in DTT, trajectory arcs are determined by constant accelerating
control velocities. The actual candidate arcs generated at each iteration by this pro-
cedure can be either a fixed set (e.g., by discretizing the allowed accelerations, as
in the Dynamic Window Approach) or generated randomly (e.g., random clothoid
arcs as in Schröeter et al (2007).

selectNewArcs This function selects, among the candidate arcs generated by
the previous function generateCandidateArcs, those to be added to the tree.
The selection is performed by using some heuristic that can include the metric ρ,
so that the arcs that move the robot closer to the xrand state are chosen. The exact
amount of new arcs that can be selected to be inserted into the tree, depends on
a parameter: the arcs are sorted using the above-mentioned heuristic and then a
specific number of them are selected for addition. If the value of this parameter is
1, only the first arc is added to the tree, as in the original RRT algorithm, otherwise,
a set of arcs are added to the tree, as in Kalisiak and van de Panne (2006).

selectBestTrajectory Given the trajectory fitness function ψ(τ) that com-
putes the cost-to-come, and a heuristic that evaluates the final state of the trajectory
with respect to the goal set G, for example using the metric ρ, the best trajectory is
chosen to be followed by the system. The open choice for this function is which
metric ρ to use to evaluate the final state of the trajectory.

deformTrajectory Any of the methods described in Section 2.2.4 or in Sec-
tion 5.2.4 can be used to refine the trajectory being followed and increase the accu-
racy at the target while decreasing the cost of the trajectory. The same pair formed

51

5. INTEGRATING DELIBERATIVE AND REACTIVE APPROACHES

by the trajectory fitness function ψ(τ) and the heuristic cost-to-go, used for the pre-
vious selectBestTrajectory should be used also for this function.

executeTrajectory The current trajectory (actually, the first trajectory arc in
the chosen trajectory) is executed by the system. As we detail below, the trajec-
tory following is integrated by a feedback controller, in order to deal with external
disturbances, uncertainties and modeling errors.

stateReached This function checks if the tree has reached the goal, it is used
to implement the RRT-Connect behavior, i.e., if params.connectNode is true, the
tree is extended to xrand until it is reached or it is not possible to do any further
extension towards it.

5.2.1 Interleaved planning and execution

In their basic form, RRT-based algorithms do not take into account the issues that
can arise during the execution phase. Planning is thus an off-line phase the plan
execution is a blind process that does not consider possible changes in the environ-
ment or uncertainty in the effects of the control commands. Moreover, relevant in-
formation for building the trajectory tree can be discovered while the robot moves
in the environment, i.e., executes a (partial) plan.

In our method, we interleave tree building and execution of one trajectory in
the tree. Once the trajectory execution is started, the algorithm keeps on growing
the tree, thus allowing for incrementally building the tree when new information
about the environment is discovered.

5.2.2 Feedback control

Actuation uncertainty reduces the reliability of the function σ, that is used to pre-
dict the state of the system along the trajectory execution. This means that the
open-loop control encoded in the trajectory arc could move the robot in a state that
is different from the predicted state. In order to overcome this problem, we correct
the control action of the trajectory arcs, using a feedback controller. The specific
controller used by our DTT algorithm makes use of the dynamic feedback lineariza-
tion (Luca et al, 2001).

5.2.3 On-line pruning

The plan being executed can become invalid if a collision is found along its path.
Inaccurate steering and dynamic environments can invalidate the pre-computed
collision-free path on the tree. Since the plans whose trajectories collide with some
obstacles cannot be executed, the trajectory arc that results in a collision is pruned
from the tree, together with all its children.

52

The Dynamic Trajectory Tree (DTT) algorithm

(a) Pruning colliding branches (b) Pruning discarded branches

Figure 5.3: The two kinds of pruning that are performed in the DTT algorithm. The
green circle is the current position of the robot in the tree, the red cross is a collision
detected in one of the branches.

Since the robot is executing a plan on the tree, we can also prune all those
branches that have not been taken in the execution (i.e., after each choice, we can
delete the discarded branches). Figure 5.3 shows the two types of pruning.

5.2.4 Trajectory deformation

Despite of the rapid exploration of the state space in RRT-based approaches, its
randomized nature and the lack of relevant distance functions require the use of
some tolerance distance for the stopping criterion. A small tolerance is needed in
those tasks where an accurate positioning of the robot is requested, but a small
tolerance distance yields the creation of huge trees before reaching the goal. A
solution to this problem is to work in two phases: in the first, a large tolerance
distance is used, that reduces the size of the tree needed to reach the proximity of
the goal; in the second, the solution trajectory computed on the tree is iteratively
deformed in order to increase the accuracy at the goal.

As we described in Section 5.1, in the DTT, a trajectory is an ordered list of
trajectory arcs, each of which encodes a control action ũ(t) over a specified time
interval and the state in the phase space (i.e., robot pose and velocities) that is the
predicted result of this control action. Many trajectory deformation methods (for
example those seen in Section 2.2.4) work in the workspace or in the configura-
tion space, and correct unfeasible motions (e.g., that do not enforce kinematic or
dynamic constraints) in a second step. On the contrary, we apply perturbations di-
rectly on the control actions u: in particular, since we are assuming only a constant-
acceleration motion on a single trajectory arc, we apply the perturbations on the
accelerations. The benefit of this method is that even large perturbations produce
feasible trajectories by construction, but at the cost of re-integrating the controls
along all the trajectory at each deformation step.

Furthermore, the exact trajectory deformation method can be chosen among
those that allow to apply perturbations directly over the control inputs, for ex-
ample those in Cheng et al (2003) or in F. Lamiraux and Lefebvre (2004), that we
already detailed in Section 2.2.4. In the following of this section we propose two
alternative methods for trajectory deformation and we discuss the differences with
those presented earlier.

53

5. INTEGRATING DELIBERATIVE AND REACTIVE APPROACHES

The first algorithm for trajectory optimization exploits the hill-climbing method
for non-linear optimization. In particular, at each iteration, we generate a set of al-
ternative trajectories by randomly perturbing the control inputs along the trajectory
arcs of the chosen trajectory. For each of these candidate trajectories, we compute
its utility value (or cost), given by a combination of the trajectory fitness function
ψ(τ) and the goal fitness function φ(x), as defined in Chapter 4. In particular, if
τ(x) is the candidate trajectory, and

xG = argmin
x(t)∈τ∩G

t, (5.2)

i.e., the first state x in the trajectory (given an time-based order in the set of the
states in the trajectory τ) that belongs to the goal set G, the utility v is defined as:

v = αφφ(xG) + αψψ(τ(x)). (5.3)

The candidate trajectory with the highest utility value is thus selected as the new
trajectory.

The hill-climbing method has the following features:

• it relies solely on randomization, i.e., no model knowledge and no informa-
tion about the utility function (e.g., the gradient) is taken into account: in
some cases this requires the computation of a large number of trajectories;

• the new trajectory is guaranteed to have a higher value of utility: the algo-
rithm always improves the trajectory fitness;

• there is one parameter to be tuned: the amount of random perturbation ap-
plied to each input (i.e., the size of the interval for a uniform noise, the vari-
ance for a Gaussian noise, etc.).

The second method used for trajectory optimization is based on the gradient
ascent, i.e., the deformation of the parametrized curve (the parameters are the con-
trol perturbations along the trajectory) follows the direction of the gradient of the
utility in the parameter space. Different methods can be employed to compute
the gradient of the utility function with respect to the control perturbations. For
example, a well known method is that of the finite differences, that is one of the
oldest approaches, originated from the stochastic simulation community and quite
straightforward to implement. Given the (discretized) controls along the trajectory
ũ = {u0, u1, . . . , uT }, a set of K control variations ∆ũi, i ∈ {0, . . . ,K} is generated.
For each variation ∆ũi = {δ0, δ1, . . . , δT }, the trajectory is integrated and the utility
is computed. The gradient of the utility function can be thus obtained by regres-
sion.

In gradient ascent methods, at each iteration h, the parameters (in our case, the
control inputs) are updated according to the gradient update rule:

ũ(h) = ũ(h−1) + η(h)∇̂(h)v, (5.4)

54

The Dynamic Trajectory Tree (DTT) algorithm

where η(h) ∈ R+ is a learning rate (that can change at each iteration h) and ∇̂(h)v is
the gradient that has been estimated by regression at iteration h. The choice of the
learning rate η is critical, since it can prevent the algorithm from converging or take
an excessive time to finish; for this reason, we introduce a learning heuristic that has
been proved to be very effective in gradient descend methods, although it has been
used mostly in neural network training: Rprop (Riedmiller and Braun, 1993). To
overcome the inherent disadvantages of pure gradient descent algorithms, Rprop
updates are influenced only by the behavior of the sign of the gradient, rather than
by its absolute value.

In detail, the Rprop method updates each control ut in the trajectory by the fol-
lowing rule:

u
(h)
t = u

(h−1)
t + ∆(h)

t , (5.5)

where the individual update value ∆(h)
t is determined, at each iteration, by the

rules explained below. We denote with ∇̂tv the t-th component of the gradient, i.e.,
the partial derivative of the utility function with respect to the t-th control input.
The absolute value of the update is given by:

‖∆(h)
t ‖=

η+· ‖∆(h−1)

t ‖ if ∇̂(h)
t v · ∇̂(h−1)

t v > 0
η−· ‖∆(h−1)

t ‖ if ∇̂(h)
t v · ∇̂(h−1)

t v < 0
‖∆(h−1)

t ‖ otherwise,

(5.6)

where 0 < η− < 1 < η+, (5.7)

where η+ and η− are parameters, that are very easy to tune. In fact, it has been
shown by empirical experiments (Riedmiller, 1994) that they can be set to 1.2 and
0.5 respectively, for all applications. The sign of the update is then determined as
follows:

sign(∆(h)
t) =

{
positive if ∇̂(h)

t v > 0
negative if ∇̂(h)

t v < 0.
(5.8)

In the (very rare) case in which the component t-th of the current gradient is equal
to 0, the corresponding control is not updated.

In Figure ??, a comparison of the performance of the two methods is given.
The main advantage of the two methods presented in this section is that they

can be used also when it is not possible to derive the gradient of the utility function
with respect to the robot state. If the derivative ∂v

∂x can be computed in analytical
closed form, other methods perform better, since they can exploit an exact gradient,
rather than an estimation (see, e.g., the aforementioned methods in Cheng et al
(2003) or in F. Lamiraux and Lefebvre (2004)). However, it is still possible to use
Rprop to update the control actions along the trajectories.

5.2.5 DTT in dynamic environments

The DTT algorithm executes a trajectory deformation (in the deformTrajectory
function), a trajectory check (in the pruneCollidingArcs function, that per-

55

5. INTEGRATING DELIBERATIVE AND REACTIVE APPROACHES

forms a collision detection check along the current trajectory) and a tree growing
procedure at each iteration. In a dynamic environment, when an obstacle is moving
towards the current trajectory, two situations may happen:

• the trajectory deformation process is fast enough to correct the trajectory in
such a way that it does not result in a collision;

• the moving obstacles crosses the planned trajectory and the pruneCollidingArcs
function removes at least the colliding edge; this situation can happen also if
the trajectory becomes topologically invalid (e.g., when a door is closed).

The tree growing process can produce a better trajectory (first situation) or eventu-
ally produces a new trajectory to be followed (second situation).

5.3 The Dynamic Behavior Tree (DBT) algorithm:
integrating sensor-based behaviors into the planner

In this section, we show that it is possible to integrate a sensor-based behavior into
the DTT planner, using different methods. This extended version of the algorithm
is called Dynamic Behavior Tree (DBT). These methods indeed provide a bridge
between the pure-reactive behaviors and the deliberative planners. The major re-
quirement of a reactive behavior to be integrated in a planner, using the methods
described in this section, is that the state of the system (i.e., pose and velocities)
can be estimated up to a specified time horizon (possibly with some degree of un-
certainty). Since the output of the behavior are control actions (e.g., velocities or
accelerations) and a model of the robot dynamics (or an proper approximation) is
usually available (in the form ẋ = f(x, u)), this requirement is not demanding.

In the following, we denote with π(x;G, E) or πG,E(x) a generic (feedback) be-
havior that, given the goal set G, the environment description E and a robot state x,
computes a control command u that steers the robot to reach a pose in the goal set.
Often (but this is not a requirement), the behavior π takes advantage of the envi-
ronment description to avoid obstacles. As usual, the function σ(x, π,∆t) computes
(or estimates) the state of the robot, if it follows the behavior policy π, from a given
state x and for a specified time ∆t.

All reactive methods and obstacle avoidance techniques revised in Chapter 2
can be encompassed in this definition of behavior. In the following we introduce
the features of the DBT algorithm, that is based on the previously described DTT
algorithm and is realized by extending the extendNode function.

5.3.1 Behaviors as advices for the extendNode function

The first integration we propose is to include the output of the behavior π as one of
the possible commands in the extendNode function (see the basic RRT algorithm
shown in Figure 2.2). Since obstacle avoidance techniques are designed to solve a

56

The Dynamic Behavior Tree (DBT) algorithm: integrating sensor-based behaviors
into the planner

(a) a situation in which a behavior, π4 is cho-
sen

(b) a situation in which the behaviors per-
form poorly

Figure 5.4: The behavior included as advices in the extendNode procedure of the
tree building process.

large amount of common situations, it is likely that the candidate x̄ produced by
the integration x̄ = σ(x, πG,E ,∆t) is chosen as xnew and added to the tree.

Typically, obstacle avoidance techniques are suitable for a particular set of sit-
uations or introduce additional constraints on the system: for example, there can
be some local minima in their behavior, or they can be designed for forward-only
maneuvers.

Figure 5.4 shows the extendNode procedure in two particular situations, where
a set of behaviors πi has been added for the procedure itself. In the first case, the
control action resulting from a behavior π4 is chosen and its resulting trajectory arc
(in which x4 = σ(x, πG,E ,∆t)) is added to the tree. In the second situation, the be-
haviors π2 and π4 perform poorly, and a random control u1 (that, during execution,
will be corrected by the feedback controller) is chosen instead.

5.3.2 The variable horizon: bridging pure-reactive methods and
planners

In this subsection we discuss a possible point of view that allows to consider both
pure-reactive behaviors and motion planners in the same comprehensive class. The
major apparent difference between pure-reactive behaviors and deliberative meth-
ods is that the former neither explicitly account for the effects of their actions in the
future, nor plan actions other than the current one. We can thus consider that their
planning horizon is 1 actions in the future.

The problem that arises from this limited time horizon is that pure-reactive
methods only consider the immediate effects of their selected trajectories, with-
out verifying their later consequences. This insight led to the development of the

57

5. INTEGRATING DELIBERATIVE AND REACTIVE APPROACHES

Figure 5.5: An execution of the VFH* algorithm

VFH* algorithm (Ulrich and Borenstein, 2000), as an improvement of VFH+ (that
has been already described in Section 2.1.2).

Rather than introducing a global path-planner, VFH* adds some limited look-
ahead to the VFH+. In particular, as shown in Figure 5.5, starting from the robot
position, a set of candidate directions is computed following the canonical VFH+
algorithm. For each of these directions, the projected robot pose, at a fixed step
distance ds, is computed and the VFH+ algorithm is applied to it. The process is re-
peated ng times, building a tree of trajectories of depth ng. In fact, an A* algorithm
is used to choose which node of the tree to expand, in order to reduce the compu-
tation. The VFH+ algorithm can thus be seen as a particular case of the VFH* in
which the look-ahead ds is set to 1. The direction to be followed is then chosen by
using a cost function similar to that of VFH+, integrated along the branches leading
back to the start node.

In next section, we show how this insight can be exploited to include any pure-
reactive behavior, such as the Dynamic Window Approach and the Nearness Dia-
gram.

5.3.3 Feedback behaviors as trajectory arcs

In Section 5.2.2, we stated that it is possible to increase the reliability of the exe-
cution, by adding a feedback controller, that corrects the errors (or some hidden
variables) of the system model. The feedback controller is a function of the current
expected state x̂ = σ(x, ũ, t). We can couple the control trajectory and the feedback
controller in a function ζ ũ(t) that outputs a corrected control action u∗. The trajec-
tory arc is thus a tuple < tstart, tend, xstart, ζ

ũ > (compare this with the previous
definition, given in Section 5.1). We can further extend this definition, by allowing
any (possibly closed-loop) behavior to be introduced in the trajectory arc, in place

58

The Dynamic Behavior Tree (DBT) algorithm: integrating sensor-based behaviors
into the planner

of ζ. A trajectory arc is thus a tuple:

< tstart, tend, xstart, trajectory-behavior >, (5.9)

where:

trajectory-behavior =

ζ ũ i.e., a feedback corrected trajectory

in the control space
πG,E i.e., a (closed-loop) behavior

that steers the robot to G, possibly
avoiding obstacles in E

(5.10)

The tree building process can be thus straightforwardly extended to include
this new definition of trajectory arcs. The extendNode procedure can generate
both (feedback) trajectories ũ and behaviors πG,E (that means to choose among a
set of pre-defined behaviors πi, with G = {xrand}).

This method can be also seen as a generalization of Frazzoli et al (2002), where
a single optimal policy, that is defined for free-space motions, is used. The tree
is thus grown using branches that encode the parameters of the policy, i.e., the
goal state. Moreover, branches are extended until they reach the generated xrand
(as in the connectNode function of the RRT-Connect algorithm, i.e., by setting
params.connectNode in the algorithm of Figure 5.2) or they result in a collision.
Finally, goal states are always stable equilibrium states, although the algorithm
allow to create secondary goal states along the trajectories towards primary goal
states.

The main differences with the method described in this section is that we con-
sider a set of behaviors, instead of a single policy, that we generate random states
that are not forced to be equilibrium states and, finally, that the behaviors them-
selves are not forced to be effective only in free spaces, but can be complex obstacle
avoidance techniques.

A fixed horizon is set in order to reduce the computation and allow for on-line
applicability, as in Urmson (2002): trajectory arcs beyond a specified time horizon
cannot be extended by the algorithm.

The main drawback of introducing this kind of complex behavior into the tree
based planner is the computational overhead required by obstacle avoidance tech-
niques with respect to open-loop control commands or optimal policies defined
over free spaces. However, the benefits of the overall system, demonstrated in
Chapter 9, alleviate this shortcoming: this is basically due to the fact that obstacle
avoidance behaviors are able to steer the robot to the local goal, while avoiding ob-
stacles, by themselves. Moreover, at any time it is possible to reduce the planning
horizon and seamlessly transform the motion system into a pure-reactive behavior.

A further remark should be made about the difference between the time horizon
(look-ahead) used by the reactive method and the planning horizon of the branches
of the tree (the duration of the trajectory arcs). The first regards the estimation of
the effects of a given action that is used by the reactive technique to choose only

59

5. INTEGRATING DELIBERATIVE AND REACTIVE APPROACHES

the current action (e.g., many methods compute the effects of keeping the control
command for a fixed time interval): no plan is actually neither built, nor executed.
The second concerns an actual plan that is built (possibly incrementally), it is kept
through iterations and it is executed (with feedback control, trajectory deformation,
collision checks along the trajectory, etc.).

5.4 Automatic parameter tuning by means of machine
learning techniques

The algorithm introduced in this chapter includes almost all the possible variations
of both motion planners and reactive techniques that have been presented in this
chapter. However, it introduces a large set of parameters to be tuned, some of
which are related to the choice of which behavior/control law to be used. More-
over, the parameter set of the system strongly depends on the specific situation, or
context, in which the robot acts, and on the particular task it is performing.

In general, when designing autonomous multi-purpose robots, it is necessary
to tackle some inherent bottlenecks (see Thrun, 1996), the most critical ones are, in
our view, the knowledge needed to design a successful robot controller, that can be
hard or impossible to obtain (e.g., robot dynamics, some characteristic of the robot
sensors, or the configuration of the environment where the robot will perform its
tasks); or the fact that as robotic hardware becomes more and more complex, and
robots are to become more reactive in more complex and less predictable environ-
ments, the task of hand-coding a robot controller will become more and more a
cost-dominating factor in the design of robots.

Machine learning aims to overcome these limitations, by enabling the robot to
collect its knowledge on-the-fly, through real world or simulated experimentation.
A specific area of machine learning applied to robotics, that is suitable to automatic
parameter tuning is that of the Reinforcement Learning (RL).

5.4.1 Reinforcement Learning (RL) and Policy Gradient (PG) methods

The Reinforcement Learning framework is used to solve problems that can be de-
scribed as follows: an agent (a robot in our case) is supposed to find an optimal
behavioral strategy while perceiving only limited feedback from the environment.
The agent receives information on the current state of the environment, can take
actions, which may change the state of the environment, and receives reward or
punishment signals, which reflect how appropriate the agent’s behavior has been
in the past. The goal of RL is to find a behavioral policy that maximizes the long-
term reward (see Heinrich-Meisner et al, 2007, for an introduction to Reinforcement
Learning in robotics).

RL is a very wide and active area in Machine Learning, and many different
methods have been proposed in order to learn the optimal policy as defined in the
previous paragraph. One of the most successful methods, especially suitable for

60

Automatic parameter tuning by means of machine learning techniques

robotic applications, is the Policy Gradient (PG) method. In PG, the form of the
policy πλ(x) (where x is the current perceived state of the robot and/or the envi-
ronment) is assumed to be given and a set of parameters λ ∈ RK , that influences
its behavior, must be tuned in order to increase its performance, i.e., the expected
reward J .

The PG method, assuming the reward J as a function of the policy parameters
λ, updates λ, at each learning iteration, by following the gradient update rule:

λ(h+1) = λ(h) + η(h) · ∇λJ, (5.11)

where λ(h) is the value of the parameters at learning iteration h, η is a learning rate,
and∇λJ is the gradient of the function J(λ) with respect to λ.

Policy Gradient methods are suitable for robot learning, and in particular for
motion system tuning, for many reasons. For example, the straightforward spec-
ification of the policy representation can allow to incorporate previous domain
knowledge, that can speed up the learning process. The main problem in Policy
Gradient methods is to obtain a good estimator of the policy gradient. In the next
subsection we revise one of these methods, that has been used in our system to
optimize the parameters of the two algorithms that we presented in this Chapter.

5.4.2 Applying PG methods to tune DTT and DBT parameters

When the goal is to optimize both a set of different behaviors, and a composition of
the same behaviors, the parameter space can be very large and learning/optimiza-
tion techniques can converge too slowly. In these cases, the layered learning (Stone
and Veloso, 2000) approach can be exploited. In the layered learning approach, the
behaviors are first optimized by their own, singularly. Afterwards, their composi-
tion (i.e., the parameters that control their composition) is optimized as well. In our
case, the different behaviors to be tuned are the obstacle avoidance techniques (i.e.,
Nearness Diagram, Dynamic Window Approach, etc.) that have been introduced
in the DBT algorithm. Afterwards, the parameters that control the DBT algorithm
itself (i.e., the parameters that determine the growing of the tree, such as the num-
ber of trajectory arcs to be added at each iteration, etc.) are learned as well.

In our system, in order to learn each behavior parameter, as well as the parame-
ters that control the DBT growing procedure, we use the method presented in Kohl
and Stone (2004) to estimate the gradient of the reward function with respect to
the parameters, and the Rprop method (Riedmiller and Braun, 1993) to update the
parameters at each learning iteration. All the systems that are tested and compared
in Chapter 9 are optimized by means of this method.

The algorithms for local motion presented in this chapter have been tested and
compared using a framework for motion system evaluation, that is introduced in

61

5. INTEGRATING DELIBERATIVE AND REACTIVE APPROACHES

Chapter 8. The results, presented in Chapter 9 show that this adaptive system,
making use of both reactive behaviors and randomized trajectory trees, is able to
solve efficiently different problems. In particular, it selects fast reactive obstacle
avoidance techniques when they are suitable for the scenario, and smoothly switch
to randomized trajectory tree algorithms when the situation requires a longer look-
ahead or complex maneuvers not considered in the pure-reactive techniques.

62

6
A compact topological

representation for autonomous
navigation

In this chapter we develop a global method to be included in the motion sys-
tem, that drives the local-level subsystem, described in Chapter 5, through a local-
minima-free course, in order to avoid the limitations of a pure-local-based ap-
proach, as described in Section 1.2.2 and in the beginning of Chapter 3.

After dealing with the relevant information to be exchanged between the two
subsystems, we detail our algorithm in two phases: first, we define a procedure to
construct a roadmap of the environment; afterwards, we transform the roadmap
into a hybrid topological/geometrical representation, that improves the reliability
of the navigation. Finally, we explain how to use this representation to define the
goals for the motion system and how it can be augmented with critical information
for the local subsystem, in order to increase its reliability and efficiency.

The algorithm presented in Sections 6.2 and 6.3 uses concepts from computa-
tional geometry, that have been deeply investigated in the past (see, e.g., Zwynsvorde
et al, 2000, 2001)). Our algorithm does not introduce novelties in the building pro-
cess, but the generated representation forms the basis for the subsequent addition
of high-level information, context knowledge and the definition of the goals (Sec-
tion 6.3.2, Section 6.3.3 and the following Chapter 7).

63

6. A COMPACT TOPOLOGICAL REPRESENTATION FOR AUTONOMOUS NAVIGATION

Figure 6.1: The Local Spanned Area (LSA), the portion of the environment currently
sensed by the robot.

6.1 The problem of the local goal

As we stated in Section 1.2.2, the key information that is exchanged between the
global level planner and the local subsystem is a local goal. In our work, the defi-
nition of the local goal is extended using the functions and the criteria introduced
in Chapter 4. However, there are some inherent problems in the global/local prob-
lem decoupling. In this section we address some issues regarding the selection of
the local goal and we discuss the feasibility of this approach, as well as possible
solutions to its limitations.

6.1.1 Selection of the local goal

Local algorithms mainly expect two forms of local goals: either a goal direction or a
goal pose. The former is often used by pure-reactive methods. In this chapter we as-
sume that the global subsystem is able to output a goal pose, since it contains more
information than the direction (e.g., the orientation at the goal) and, moreover, be-
cause a goal pose is more general, i.e., given a local goal pose, it is always possible
to compute the corresponding local direction for the local subsystem. Finally, we
consider goal states, augmenting the pose with velocities. Finally, as described in
Chapter 4, we allow the goal definition to include fuzzy values, by exploiting the
goal fitness function φ(x), or unspecified values (e.g, the orientation is not impor-
tant, the speed is unspecified, etc.).

The local subsystem has access to a local subset of the environment represen-
tation. This is mainly motivated by the fact that there is a high uncertainty in the
world that is not currently sensed by the robot: trajectories should be generated
where information is available (Urmson, 2002).

In Figure 6.1, we show an example of the Local Sensed Area (LSA), i.e., the

64

The problem of the local goal

(a) The local goal
is too close to the
robot

(b) If the local goal
is given at a greater
distance, the local
subsystem has more
freedom

Figure 6.2: The effect of the distance at which the local goal is given to the local
subsystem.

part of the environment that is currently sensed by the robot, where, as an exam-
ple, we consider a set of sensors that are able to detect the environment up to a
maximum distance d and within 180 degrees of field of view. We can slightly ex-
tend the definition of the LSA, including also the portion of the environment that
has been sensed within some (short) interval of time in the past (shown in yellow
in the figure). For the reasons explained above, it is preferable that the local goal
is within the LSA, in order to avoid to consider trajectories where we do not have
information or where the knowledge of the environment can be inaccurate or the
environment can be changed since the time it was sensed.

However, if the local goal is chosen too close to the robot, this allows a very
limited look-ahead of the local subsystem, and, in addition, it limits the freedom to
generate better local trajectories. See Figure 6.2 for an example. The logical conse-
quence is that the best placement for the local goal is as far as possible, but within
the LSA. This definition coincides with the frontiers of the LSA. In the following
of this chapter, therefore, we describe how to choose the local goal on one of the
current frontiers.

6.1.2 Inherent problems of the global/local decomposition

In the following, for explanation purposes, we assume that a global optimal deter-
ministic path planner (GODPP) is available. Given a global goal specification, the
GODPP is able to compute the trajectory τ opt that is optimal in a global sense, given
any state x in the state space X . Furthermore, the GODPP is able to compute, at
any instant, the best current control action to be sent to the robot, i.e., it can com-
pute a navigation function (see, e.g., Latombe, 1991; Rimon and Koditschek, 1992).
Since the trajectory is optimal, its cost is minimum: cost(τ opt) ≤ cost(τ), ∀τ 6= τ opt,
i.e., any modification to the control actions from the navigation function induced

65

6. A COMPACT TOPOLOGICAL REPRESENTATION FOR AUTONOMOUS NAVIGATION

Figure 6.3: Two situations in which the local goal guides the local subsystem to-
wards the goal. The global state is shown as an outlined green robot. The robot
starts its trajectory in the position marked with “initial state” and receives the local
goal, depicted as a blue outlined robot. In the first picture, the local goal is appro-
priate to successfully accomplish the task. In the second picture, on the contrary,
the local goal is a wrong choice, because the robot, once entered the corridor, can-
not turn in order to match the requested orientation. The right local goal is the one
shown in the third picture.

by the GODPP, results in a higher (or equal) cost trajectory.
When a global/local decomposition is exploited, there are two issues that can

cause a deviation from the optimal trajectory: the local goal and the local subsys-
tem.

Regarding the latter, given a local goal xg that lies on the optimal trajectory, xg ∈
τ opt, we can assume that the local subsystem, with an appropriate look-ahead and
a good feedback control, will follow the optimal trajectory, because it is provided
with all the information it needs to compute the optimal trajectory up to xg (i.e., the
surrounding environment and the local goal).

The local goal is thus the most critical issue in the global/local decomposition:
the global subsystem should be able to provide a local goal that lies on the global
optimal trajectory τ opt. Unfortunately, this is as difficult as the original problem:
we cannot rely on a GODPP.

Figure 6.3 shows that a wrong local goal can affect not only the optimality of
the trajectory, but also the final success of the task. The scenario requires the robot
to reach a goal pose at the end of a narrow corridor, where no rotation is allowed.
This means that, once the robot has entered the corridor, it can only go forward or
backward, without any possibility to turn. Figure 6.3(a) shows a situation in which
the method given in Section 6.1.1 yields the appropriate local goal to the local sub-
system. On the contrary, if the global goal is the one shown in Figure 6.3(b), the

66

A simple roadmap built using virtual frontier-based exploration

Figure 6.4: The polygonal representation of the local environment, given by the
virtual range finder. Red segments are obstacle segments, while green dashed seg-
ments are frontiers. The red circle is the virtual robot position.

goal-on-frontier method gives the wrong local target. The robot has entered the
corridor with the wrong orientation, thus, when the global goal enters its LSA, it is
not able to turn and reach the global goal with the right orientation: this, depend-
ing on the length of the corridor and the size of the LSA, results in an oscillating
behavior or a complete failure. The correct local goal should be that depicted in
Figure 6.3(c).

In a global/local decomposition, in order to address this problem, one needs
to allow the global subsystem to produce the “right” local goal, without the need
of computing the complete trajectory towards the global goal (that, as we stated
above, is as hard as the complete problem). A possible solution to this issue is
given in Section 6.3.3 and is based on the possibility to attach critical information
regarding the local goals directly to the global representation.

6.2 A simple roadmap built using virtual frontier-based
exploration

In this section, we propose a novel algorithm to build a roadmap of the environ-
ment. A roadmap is a graph, built on a predefined map, that captures the topo-
logical connectivity of the environment, in such a way that a global subsystem can
exploit this roadmap in order to compute the local goal to give to the local sub-
system. The algorithms is simple to implement and allows to be straightforwardly
extended to address 3D environments.

In Sections 3.3 and 3.4, we showed that a roadmap can be built upon a grid

67

6. A COMPACT TOPOLOGICAL REPRESENTATION FOR AUTONOMOUS NAVIGATION

or a line map, in order to allow the global subsystem to output local goals. There
are many methods to construct a roadmap that encodes the topological structure
of an environment. In this section we introduce a new method that is based on the
concept of virtual frontier-based exploration. In the following, we consider a 2D
world, whose representation is available as a grid or a line map. The presented
technique is similar to the exploration algorithm presented in Freda and Oriolo
(2005), although in our work the technique is used as a virtual tool to build the
roadmap. Additionally, we are assuming that a representation of the environment
is already available: the construction of an environment representation that is topo-
logically and/or metrically accurate is not among the topics of this thesis and we
take it for granted; similarly, the choice of the sequence of positions that the robot
should reach in order to build such a representation is not taken into account in this
thesis, although some example methods for (actual) frontier-based exploration are
presented in Appendix B, as an application of the motion systems.

6.2.1 Building the roadmap

A range finder sensor constructs a polygonal representation of the environment
surrounding the robot. We can thus define a virtual range finder that is able to
give this local representation, given the global map and a pose for the virtual range
finder. Figure 6.4 shows an example of a polygonal representation of the local en-
vironment, given by the virtual sensor (in practice, a ray-tracing method can be
used to simulate the virtual range finder). A line fitting method can be used to
transform the virtual sensor readings (i.e., points) into a set of segments. These seg-
ments can be subdivided into two classes: obstacle segments (depicted in red in the
figure) and frontier segments (depicted as dashed green segments). The latter are
the boundaries between the sensed and the unsensed area. The virtual exploration
given in this section is strictly related to the (actual) frontier-based exploration in-
troduced in Yamauchi (1997).

The algorithm described in this section is shown in Figure 6.6: it virtually “ex-
plores” the environment representation E using a depth-first-like search. Figure 6.5
shows a possible execution instance, in which the algorithm is exploited to build
the roadmap of an indoor environment.

The main data structure used, called roadmap in the figure, is a graph where
nodes can be places or frontiers, and links are allowed only between a place and
a frontier. The functions insertPlace and insertLink are used to interact
with this data structure. Moreover, a stack, called openFrontiers, is used for
the depth-first search.

The algorithm works as follows. Starting from a given position in the environ-
ment, qinit, marked with 1 in Figure 6.5, a first “snapshot” is taken by means of
the virtualSensor function. The resulting spanned area is attached to qinit and
inserted into the roadmap. Additionally, links are inserted between qinit and the
frontiers in the current virtual sensed area. Finally, the new frontiers are pushed
into the stack to be explored in next iterations.

68

A simple roadmap built using virtual frontier-based exploration

Figure 6.5: The tree of local polygonal representations, that can be used as a topo-
logical representation of the environment. The red circles are the virtual positions
from which the virtual range finder is used.

function virtualSensorRoadmap(E , qinit) \rightarrow roadmap {
// E is a grid or line map
// qinit is an initial pose in the environment
roadmap.insertPlace(qinit, vsa)
localMap = virtualSensor(qinit)
foreach (f in localMap.frontiers) {

roadmap.insertLink(qinit, f)
}
openFrontiers.push(vsa.frontiers)

while (not openFrontiers.empty()) {
currentFrontier = openFrontiers.pop()
q = placeFromFrontier(currentFrontier)
localMap = virtualSensor(q)
roadmap.insertPlace(q, vsa)
roadmap.insertLink(currentFrontier, q)
foreach (f in localMap.frontiers) {

roadmap.insertLink(q, f)
}
openFrontiers.push(vsa.frontiers)

}
}

Figure 6.6: The algorithm used to compute a roadmap of the environment, using a
virtual range finder sensor.

69

6. A COMPACT TOPOLOGICAL REPRESENTATION FOR AUTONOMOUS NAVIGATION

Figure 6.7: The situation in which a loop is found while virtual exploring the envi-
ronment. The virtual robot is in the position denoted with the red circle, from there,
it can see through the frontier denoted with “1” and thus a loop has been detected;
the proper frontier denoted with “2”, is treated normally.

At each subsequent iteration, one of the frontiers is popped from the stack to
be processed: a place is created near the frontier (see, e.g., the place marked with
2 in Figure 6.5) and from this new place another “snapshot” of the environment is
taken, pushing the resulting new frontiers into the stack. The whole procedure can
be iterated until no frontier remains to be “explored”.

It is possible that there is an edge between a place and a frontier, but the frontier
cannot be actually reached from the place (e.g., a narrow corridor in which the
robot does not fit, with a frontier at the end). In order to overcome these situations,
a method such as that presented in Minguez and Montano (2004) should be used
to ensure the reachability of a frontier from a place.

In the case of a loop-free environment, we obtain a tree-shaped roadmap, that
can be seen as the connectivity graph of the environment, as shown in Figure 6.5:
this representation can be used to determine the topological route from any starting
configuration to any goal configuration (or set).

In the general case in which loops are present in the environment, we can trans-
form the tree-based structure in a graph-based structure, using the following pro-
cedure. When a new local polygonal representation is added to the tree/graph,
we check not only that the new area does not overlap with the previous (parent)
node, but also that it does not “go through” any other frontier. If this happens,
the two local representations are connected with an edge (thus violating the loop-
free definition of a tree and making it a graph) and the corresponding frontier is
removed from the stack of the open frontiers. A more complex situation is shown
in Figure 6.7: in this case, an open frontier, f1 in the figure, can be seen only par-
tially from the current LSA. If this happens, the open frontier f1 is removed from
the stack, but other frontiers are added where the LSA cannot see through it (in
the figure, a new frontier is added, marked as f1′ in the figure). Other frontiers,
determined using the usual criteria, are pushed into the stack (f2, f3 and f4 in the
figure).

Finally, it is possible to extend the method described above to a 3D environ-

70

A simple roadmap built using virtual frontier-based exploration

Figure 6.8: The procedure to compute the local goal, given the frontiers in the cur-
rent LSA (dashed blue lines) and the roadmap (places are red circles and links are
gray segments). The current robot pose xI is connected with the closer node nI
in the roadmap. The same happens with the goal pose xG, that is connected to its
respective closer node nG in the roadmap. Subsequently, the path is searched in the
graph (green bold segments). The chosen frontier, following the criterion explained
in the text, is shown as a double blue dashed segment in the figure.

ment. The main differences that must be taken into account regard the fact that
detected obstacles have to be translated to polygons and that frontiers, in a 3D
environment, are polygons as well. Techniques borrowed by Constructive Solid
Geometry (CSG) can be used to perform an incremental virtual exploration of the
3D environment.

6.2.2 Computing the local goal

In order to compute the local goal for the local subsystem, we proceed as follows,
as shown in Figure 6.8. We denote with xI and xG, as usual, the initial state of the
robot and the goal state, respectively. We create a temporary connection between
the goal state and the nearest node in the graph nG, and between the initial state
and its respective nearest node nI . Subsequently, we can compute the path from
nI to nG, on the graph. The result is a set of edges that encodes the path from the
current robot position to the goal.

The local goal is computed as the frontier in the LSA that intersect the path
segment that is nearest to the global goal (or that intersect the part of the segment
that is nearest to the global state, if the same path segment intersects more than one
frontier, as is shown in Figure 6.8).

71

6. A COMPACT TOPOLOGICAL REPRESENTATION FOR AUTONOMOUS NAVIGATION

6.3 From the roadmap to a hybrid topological/geometric
representation

The problem with roadmaps is that they rely on an accurate global map of the envi-
ronment and an accurate and a reliable global localization on that map. Although
many SLAM algorithms can build metrically and topologically consistent maps of
very large environments, and many localization algorithms are able to track the
pose of the robot in these large representations, in this section we give an alterna-
tive method that is more reliable, also in the case in which the representation is
only topologically correct and the metric accuracy is reliable only in local portions
of the map. This is motivated by the fact that the error in metric accuracy increases
with the distance only: in the local portion of the map that surrounds the robot, it
can be considered low enough to allow for a good localization.

Using a graph of local maps is a well-known technique in localization and
SLAM communities. Modern SLAM algorithms exploit this concept using both
line-based or grid-based local maps (see, e.g., Grisetti et al, 2006; Burgard et al,
2009). Moreover, topological maps are often augmented with geometric informa-
tion, that is useful for the generation and execution of navigation plans (see, e.g.,
Fabrizi and Saffiotti, 2002).

6.3.1 Local map localization

In the roadmap constructed using the algorithm presented in the previous section,
we attached a local map to all places in the graph, in order to check for loop-closing
events. We can use this local map to localize the robot locally, for example, using a
scan-matching approach such as Iterative Closest Point (ICP) (Zhang, 1994).

While the robot is moving in one local map, it can use its features (i.e., corners,
walls, etc.) to localize itself inside that local map. However, when passing from
one local map to the next, in the course to the global goal, it has to switch between
the features/landmarks of the first local map to those in the second local map.
We call gate the two joint frontiers that connect two local maps. It is possible to
avoid a discontinuity in the localization process, using the method described in
Taı̈x et al (2008), that allows to weight the landmark importance (reliability), when
solving the localization problem. Landmarks in the second local map are associated
with lower weights with respect to those in the first (current) local map and those
weights are increased as the robot approaches the gate. In this way, if the two local
maps are not aligned with respect to each other, due to an inaccurate mapping
process, the robot remains localized in the first local map, and seamlessly considers
also the second map, while it approaches the gate.

A final remark about the frontier/gate construction during the virtual frontier-
based exploration should be made. Although using directly the frontiers that are
returned by the virtual sensor, reduces the number of iterations needed to explore
the whole workspace, this can produce local maps with a poor number of land-
marks that can be used for localization. Indeed, it is possible to consider a modified

72

From the roadmap to a hybrid topological/geometric representation

Figure 6.9: The result of the virtual exploration if the polygonal local maps are
forced to be convex.

version of the virtual sensor that produces only convex local maps. The resulting
representation of the same map seen in Figure 6.5 is given in Figure 6.9. This choice
of “places” is also more meaningful for human beings and places can be easily la-
belled, as shown in Section 6.3.3.

Finally, we can consider the representation given in this section as “topological”
in the sense that only local metric information is considered at each place, and a set
of gates link each place to its neighbours. In this way, after the topological path is
computed on the graph of places/links, the motion system has to move to a local
feature (the gate, or the current frontier beyond a gate), without the need of any
global metric information.

6.3.2 Considerations about the global goal

This graph of local maps can be also used to specify the global goal, i.e., the global
task goal should be specified using the pair composed by the local map and the
precise goal definition given in the reference frame of the local map. During the
motion, two situations can happen, as described below.

• The global goal is inside the LSA: in this case, the global goal becomes also the
local goal, and their definitions coincide, i.e., the global subsystem does not
have to generate an extended local goal definition anymore.

• The global goal is outside the LSA: in this case, the global subsystem must gen-
erate a local goal (extended) description for the local subsystem. In particular,
as we discussed above, this local goal should be generated in the proximity
of one of the LSA frontiers.

73

6. A COMPACT TOPOLOGICAL REPRESENTATION FOR AUTONOMOUS NAVIGATION

6.3.3 Adding labels, local goal hints and other information to the
representation

Given the possibility to detect topological places inside the LSA, the global subsys-
tem can thus deal with goal descriptions that are given using semantic labels, that
are meaningful for a human being, e.g., the global goal can be described as “go in
the center of the kitchen” (where “kitchen” is a label attached to one of the local
maps).

Moreover, the global subsystem is able to exploit additional information and
give it to the local subsystem. In particular, the knowledge about the direction of
the environment after a frontier can be given as a hint through the local goal de-
scription (e.g., giving a high goal fitness to that specific direction). In this way, al-
though the local subsystem is not directly aware of the area outside the LSA, it can
indirectly exploit a knowledge that is beyond its look-ahead time interval. More-
over, it is possible to include other information to avoid the situations described
in Section 6.1.2, either by hand or by some supervised learning technique. This
additional information forces the global subsystem to give the proper local goal,
possibly activating the extra constraints on the local goal only in special cases (e.g.,
in the narrow corridor scenario described in Section 6.1.2, the “right” local goal at
the entrance of the corridor depends on the orientation of the final goal at the end
of the corridor).

This hybrid environment representation, given by local geometric maps con-
nected by topological links, is used in the rest of this thesis and in particular in
Chapter 9, where a set of experiments are performed in order to evaluate the sys-
tem in a number of different scenarios. Chapter 9 presents also a set of experi-
ments that compares the use of the hybrid representation described in this chapter
to other solutions. It is important to underline that the algorithms given in this
chapter could be replaced by any other approach which satisfies the requirement
that, given a global goal description, is able to provide a local goal description to
the local subsystem.

74

7
High-level reasoning and
context-based adaptation

In this chapter, we introduce the context-based architecture, that, in this thesis,
forms the basis for the adaptation of the motion system with respect to specific
situations (contexts). The chapter is organized as follows. Section 7.1 introduces
context-based robotics and how its concepts are currently exploited to solve many
robotics problems. Section 7.2 describes our context-based architecture design, that
collect the contextual reasoning in a specific component in a robotic architecture,
decoupling it from the rest of the functional components. Some experiments that
show the benefits of the use of a context-based architecture are also presented in
this section. Finally, Section 7.3 shows that contextual information can be attached
to the global environment representation, together with other high-level informa-
tion, as we shown in Chapter 6.

7.1 Context-based robotics

In Calisi et al (2007a), the “contextual architecture” for the design of robotic ap-
plications is introduced. The notion of context has been deeply investigated both
from a cognitive standpoint and from an AI perspective (see, e.g., McCarthy and
Buvač, 1997). In the former case, the study is more focused on the principles that
underlie human uses of contextual knowledge, while in the latter case, the main
point is how to provide a formal account that enables the construction of actual
deductive systems supporting context representation and contextual reasoning.

The interest for context in robotics development is twofold. On the one side,

75

7. HIGH-LEVEL REASONING AND CONTEXT-BASED ADAPTATION

Figure 7.1: The contextual architecture: modules in S are the common functional
modules in a robotic application (e.g., mapping, motion system, image processing,
etc.), modules in R are responsible of reasoning about the context and tune S mod-
ules accordingly, Td/c and Tc/d converts numerical data from S modules in a format
that is usable by the modules in R, and vice-versa.

the design and implementation of experimental systems that are focused on cog-
nition; on the other side, the need to improve the performance and the scope of
applicability of robotic systems by providing them with high-level knowledge and
capabilities. Turner (1998) specifically addresses contextual knowledge in robotic
applications. He characterizes context as: “any identifiable configuration of en-
vironmental, mission-related, and agent-related features”. Such a definition, that
we take as the basis of our approach, highlights a relationship with a more recent
stream of work on the use of semantic knowledge in robotics (ICRA07, 2007); in
particular, contextual knowledge about the environment is strictly related to se-
mantic knowledge.

The use of context in robotics has been proposed in the literature to improve
the effectiveness of many different components of a robotic architecture, related to
tasks such as exploration, navigation, behaviors, mapping, localization and per-
ception. For example, there are systems that can improve the map construction
process, by knowing that the robot is currently moving in the corridor of an office
building. However, contextual knowledge is typically not fully exploited, since it
is built in each of the system modules. It seems therefore very appropriate, from
an engineering perspective, to build and maintain a single representation of the
contextual knowledge that can be used to improve many different processes.

Figure 7.1 shows a typical arrangement of a contextual-based architecture. Small
squares denote modules or components of the system. The modules enclosed in S
are functional modules that are not context-aware, their tasks are those related to
the application (e.g., localization, mapping, navigation, etc.). Some of the S mod-
ules can produce information that can be used to infer the current context. Td/c

76

Contextual design of the motion system

modules translate data in a form that is usable by the contextual reasoning mod-
ules R, that detect the current context and output a set of behavior modification
signals for the S modules, that are translated into parameters or operational modes
by the Tc/d modules, thus allowing the system to control the robot behavior.

The use of a contextual architecture allows to decouple the contextual reason-
ing and the functional modules. The contextual knowledge can be subdivided into
three categories: mission, environmental and introspective. Mission related knowl-
edge is often specified off-line and has been addressed by several approaches pre-
sented in the literature. Consequently, we focus on environmental and introspec-
tive knowledge. The first is closely related to semantic knowledge, since typically
it aims at providing a high-level representation of the environment, as opposed to
a task oriented interpretation of sensor data. For example, knowing that a robot is
in front of a closed door, may be more informative for deciding the behavior of a
system, than simply knowing that the laser scan returns a straight line in front of
a robot. However, rather than providing new forms of exploitation of contextual
knowledge about the environment, we aim at providing a systematic approach
to deal with it. In fact, we show that the same kind of contextual knowledge, if
suitably represented, can support several tasks that a mobile robot needs to accom-
plish. In particular, we suggest that, by taking a context-based approach to robotic
system design, it is possible to rely on very specialized, efficient methods, leaving
it up to the contextual reasoning the choice of the best suited to the current context.

Introspective knowledge refers to the ability of the system to analyze its own in-
ternal state. Contextual knowledge on robot’s subsystems includes the specific ap-
proach currently used in a given subsystem (e.g., which motion planning algorithm
is currently running or what is the maximum speed allowed) as well as knowledge
on subsystems’ behavior. Notice that this last feature is the basis for the creation
of a self-diagnosis process. Finally, contextual knowledge on the controller’s in-
ternal state includes knowledge on controlling actions taken by the controller in
the current control cycle. This allows the controller to reason on its own state. As
an example, the controller can check whether it has not enough knowledge about
the environment and request an action in order to acquire knowledge about the
environment.

In this chapter we mainly focus on the uses of contextual knowledge for mo-
tion systems. However, since the contextual architecture deals with the system as a
whole, other components (e.g., mapping, localization) are discussed together with
the motion system. A detailed description of the design of a contextual-based ar-
chitecture and a discussion on its features can be found in Calisi et al (2007a), in
Calisi et al (2008e) and in Calisi et al (2008d).

77

7. HIGH-LEVEL REASONING AND CONTEXT-BASED ADAPTATION

Module Parameter Values

Navigation
MAX SPEED

MOTION PLANNER
{ low, medium, high }
{ RKT, DWA }

Mapping
MAPPING MODE
SCAN MATCH

{ static, dynamic, off }
{ on, off }

Contextual Variable Meaning
cluttered the robot is in a cluttered area
rough the robot is in a rough terrain
big ramp the robot is approaching or on a big ramp
ramp the robot is approaching or on a small ramp
dynamic the robot is in an area with dynamic obstacles
rotating the robot is rotating
DWA stalled the robot is stalled with DWA motion planner
RKT stalled the robot is stalled with RKT motion planner

Contextual Rules
IF cluttered OR ramp OR rough THEN MAX SPEED = low
IF big ramp THEN MAX SPEED = medium
IF dynamic THEN MAX SPEED = medium, MAPPING MODE = dynamic
IF cluttered THEN MOTION PLANNER = RKT, SCAN MATCH = off
IF big ramp AND rotating THEN SCAN MATCH = on
IF ramp THEN MAPPING MODE = off
IF ramp OR big ramp THEN SCAN MATCH = off
IF DWA stalled THEN MOTION PLANNER = RKT
IF RKT stalled THEN MOTION PLANNER = DWA
IF true THEN SCAN MATCH = on
IF true THEN MAPPING MODE = static
IF true THEN MOTION PLANNER = DWA
IF true THEN MAX SPEED = high

Figure 7.2: System modules and contextual reasoning for the navigation and map-
ping experiments. The IF-THEN rules are interpreted following the specified or-
der: rules acting on the same parameters are evaluated in the specified order and
the first whose condition is true disables the remaining ones. A default value (the
right part of the final “IF true” rules) is also specified in case no other rule is active.

7.2 Contextual design of the motion system

7.2.1 System architecture and contextual knowledge

In the following we show an example system in which we adapt the motion system
behavior to the context. Two components of the system are considered in these
experiments: the motion system, a localization module based on scan-matching
and a mapping module based on an occupancy grid.

78

Contextual design of the motion system

Two forms of contextual knowledge are considered: (i) environmental knowl-
edge: terrain slope, clutterness, small passages, dynamic moving obstacles; (ii) in-
trospective knowledge: the internal status of software modules (e.g., navigator and
obstacle avoidance modules).

The contextual knowledge used for the motion system is related to both the
characteristics of the environment and introspection about the status of the run-
ning modules. In particular, we limit the speed of the robot in presence of ramps,
cluttered areas and moving obstacles. The appropriate mapping modality is cho-
sen according to the dynamics of the environment, and scan matching is disabled
when the robot faces or is on top of 3D obstacles, since this introduce a large error
in the 2D map being built. Furthermore, in presence of anomalous situations, rec-
ognizable in the status of the system modules, e.g., when the robot is stalled, the
switch of the motion planning mode allows to overcome the problem.

In order to asses the advantages of contextual knowledge and reasoning in the
motion system, we have defined an experimental setup. The task is to navigate
through a map where different situations are encountered: the objective of the
context-driven system is to adapt the motion system (and the mapping module
as well) in order to increase the effectiveness and the performance of the overall
system.

Figure 7.2 shows the contextual knowledge and the contextual rules used dur-
ing the experiments. In contextual knowledge we consider the presence of ramps
(with different behaviors depending on their length) and the presence of dynamic
obstacles (in fact, people moving in the environment during the experiments), as
well as introspection about stalls occurred, when using each of the motion planning
modes. The contextual knowledge is here represented as a simple set of IF-THEN
rules (in a contextual-based architecture, any other formalism can be used), that are
interpreted following the specified order: rules acting on the same parameters are
evaluated in the specified order and the first whose condition is true disables the
remaining ones. A default value is also specified in case no other rule is active.

The MAX SPEED parameter is used to limit the maximum speed of the robot
and it can assume three predefined values, labeled with { low, medium, high }.
While the MOTION PLANNER parameter is used to switch between two modalities
in the motion planner: RKT and DWA. These are actually two different values for
the planning horizon of the motion system, as described in Chapter 5, i.e., in RKT
(Randomized Kinodynamic Tree) mode, the planning horizon is unlimited, and the
motion system builds a tree and follows a plan on the tree, while in DWA mode,
the planning horizon is set to 1, thus transforming the motion system in a simple
reactive behavior that is assimilable to the Dynamic Window Approach described
in Section 2.1.3. The tree-based mode is able to perform complex maneuvers and
plan longer trajectories, but it is computationally intensive and sensitive to local-
ization errors, oscillations and delays: for these reasons it is not suitable to be used
at high speeds. Instead, the reactive mode is able to drive the robot at high speeds,
but it is not able to perform complex maneuvers in cluttered areas.

The ideal behavior of the robot during the experiments is to appropriately con-

79

7. HIGH-LEVEL REASONING AND CONTEXT-BASED ADAPTATION

trol the maximum speed and the accuracy of the motion planner, according to the
situation at hand. Therefore, in difficult areas the speed is set to a minimum value
for careful maneuvers. When the robot is in a known area the speed takes a high
value for fast exploration. A medium value for the maximum speed is used for
default. Furthermore, DWA (i.e., fast but inaccurate) motion planner is used in free
areas, while RKT (i.e., slow but accurate) is preferred in cluttered areas.

In this set of experiments, also the mapping module is affected by contextual
reasoning. The mapping module uses an on-line scan matching technique to pro-
duce a map of the environment, that is suitable for navigation. The mapping mod-
ule includes two parameters: MAPPING MODE, that can be disabled or can enable
either a static or a dynamic mode, when producing the map, SCAN MATCH, that can
enable or not the scan matcher during the task execution. In contextual knowledge,
we distinguish here the knowledge about big and small ramps, to have different be-
haviors in the two cases. Moreover, we consider the presence of dynamic obstacles
(in fact, people moving in the environment during the experiments), as well as in-
trospection about stalls occurred, when using each of the motion planner modules.

Figure 7.3: Environment used for the context-driven navigation and mapping ex-
periments.

7.2.2 Experimental results

The objective of these tests is to show how the presented architecture can effectively
be used to configure modules that can exhibit with better performance according to
the characteristics of the environment. Experiments have been performed both on
a real robot and on the USARSim simulator in the same kind of environment (i.e.,
we modelled in USARSim the same portion of the environment in which the real

80

Contextual design of the motion system

robot operates)1. Figure 7.3 shows the map of the environment built by the real
robot after a successful run and some snapshots of the environment. The figure
is annotated with start and check points, positions of the ramps, and areas with
moving obstacles and clutter. The environment is 20 m x 10 m.

In order to evaluate the performance of the context-based architecture, we use
the time needed to reach a set of predefined checkpoints in the environment as
evaluation metric. Observe that, although the quality of the produced map is not
directly measured, it influences the time measure. In fact, when the quality of the
map is poor, the robot may face fake obstacles or gets lost, and these situations
increase task completion time, or determine a task failure.

Experiment Check1 Check2 Check3
CR

1 136 s 299 s 362 s
CR

2 67 s 214 s 367 s
CR

3 103 s 229 s 394 s
Avg (stddev) 102 s (34 s) 247 s (45 s) 374 s (17 s)
RR

1 FAIL (stalled) FAIL (stalled) FAIL (lost)
SR

1 210 s 265 s 804 s
CS

1 51 s 70 s 239 s
CS

2 59 s 64 s 193 s
CS

3 63 s 72 s 202 s
CS

4 57 s 83 s 250 s
CS

5 59 s 65 s 189 s
CS

6 55 s 71 s 225 s
Avg (stddev) 57 s (4 s) 70 s (7 s) 216 s (25 s)
RS

1 FAIL (stalled) FAIL (time) FAIL (lost)
RS

2 FAIL (stalled) FAIL (time) 383 s (almost lost)
RS

3 52 s FAIL (stalled) FAIL (lost)

Figure 7.4: Results of navigation and mapping experiments.

The results of the experiments are reported in Figure 7.4, where the use of con-
textual knowledge is denoted with C, while two configurations without contex-
tual knowledge are indicated with R and S; experiments labeled with superscript
R refer to the real robot, while S is used to denote simulated experiments. For
the runs with no contextual knowledge two configurations were tested: R is a
risky and fast configuration with SCAN MATCH = on, MAPPING MODE = static,
MOTION PLANNER = DWA, MAX SPEED = high, while S is a safe and slow config-
uration with SCAN MATCH = off, MAPPING MODE = dynamic, MOTION PLANNER =
RKT, MAX SPEED = medium.

The table shows the results of 5 runs with the real robot (3 with context and 2
without) and 9 runs in the simulator (6 with context and 3 without). For each run,

1Videos and further details on these experiments are available on-line at www.dis.uniroma1.
it/˜iocchi/RobotExperiments/CBA.

81

www.dis.uniroma1.it/~iocchi/RobotExperiments/CBA
www.dis.uniroma1.it/~iocchi/RobotExperiments/CBA

7. HIGH-LEVEL REASONING AND CONTEXT-BASED ADAPTATION

three checkpoints have been considered and time to reach each of them has been
reported.

The experimental results show that, most of the times, contextual knowledge
is critical to actually accomplish the mission. In other words, in such a difficult
environment the navigation task cannot be accomplished with a single configura-
tion. As expected, the risky non-contextual configurationR presents many failures,
while the safe non-contextual configuration S is much slower. The major reason of
failure is the noise introduced by the mapping module when the robot faces 3D
structures. In many cases, without contextual knowledge about the presence of
ramps, the robot sensors see fake walls, the mapper includes them in the map and
the navigation module either is unable to find a path to the target or determines
a longer trajectory. A similar situation happens in presence of moving obstacles,
since the occupancy grid mapper is too slow to update the map and free the occu-
pied cells. These failures are labeled in the results with ’FAIL (stalled)’ and ’FAIL
(time)’. Moreover, there are areas (e.g., the big ramp) in which the scan matcher
fails, due to reflective materials and noise introduced by the slope. On the other
hand, rotating on the ramp relying only to the odometry can give large orientation
errors. For this reason, without the use of contextual knowledge the mission results
in a failure, due to the robot getting completely lost, being thus unable to reach the
target point (these situations are indicated with ’FAIL (lost)’). Finally, notice that
there is a single run in simulation (RS3), where the non-contextual setting was bet-
ter than the contextual one. This was due to a “fortunate” and very dangerous run,
in which the robot was able to overcome all the obstacles at a great speed without
major collisions.

7.3 Context variables determination and topological map
annotations

In a context-based architecture, the designer is left free to choose any appropriate
method to determine the values of the contextual variables, as well as the rules to
infer each context. In In this thesis, we assume that system components capable
of measuring relevant information are available. In fact, a gyroscope and/or an
accelerometer can be used to determine the slope of a ramp. Other modules can
determine the presence of dynamic obstacles and measure the clutterness of the
local area, based on (possible subsequent) sensor readings.

In Calisi et al (2009), the approach is improved by introducing the possibility
to represent spatial and temporal variables, as well as allowing a rule to contain
variables and function symbols. Moreover, ramps are detected by exploiting an
elevation mapper module, which builds a representation of the ground surface to-
pography, using two differently tilted lasers.

In Section 6.3.3 we showed that it is possible to attach important information to
the global representation of the environment, in particular, semantic labels or hints
for the global planner to be used to compute the local goal. Contextual variables

82

Context variables determination and topological map annotations

can exploit the same technique to attach spatial-related contextual information to
the same global representation of the environment. This is somehow similar to
the behavioral maps (see, e.g. Dornhege and Kleiner, 2007), with the important
difference that, in our case, complex reasoning can be exploited in order to choose
an appropriate behavior, or, when using the Dynamic Behavior Tree algorithm, to
tune the parameters according to the context.

83

Part III

Evaluation and conclusions

85

8
The MoVeME evaluation

framework

The scientific community is conducting an intense effort to define open and stan-
dardized benchmarks and performance metrics in order to objectively evaluate the
many components of a robotic system and allow to compare different strategies and
solutions. Although this issue is considered of critical importance to increase the
knowledge about existing algorithms and methods, and to analyze their benefits
and drawbacks, this effort is only at the beginning, and many research communi-
ties lack of common testbeds where they can compare their achievements.

In this chapter we propose a novel framework for robot motion system evalua-
tion, called MoVeME, featuring a set of quantitative performance metrics as well as
a set of benchmark environments and tasks, that include both typical and critical
situations, that have been collected from previous work. The framework has been
presented in Calisi et al (2008c) and Calisi and Nardi (2009), and further extended
in this thesis.

8.1 Related work in evaluating motion algorithms

In the last years, some efforts have been devoted in building common testbeds for
motion planning algorithms. For example, the Algorithm and Application Group
at Texas A&M University has built a collection of benchmark problems1 to be used
to compare various motion planning algorithms. The MOVIE project2, ended in

1http://parasol.tamu.edu/groups/amatogroup/benchmarks/mp/
2http://www.give.nl/movie/index.php

87

http://parasol.tamu.edu/groups/amatogroup/benchmarks/mp/
http://www.give.nl/movie/index.php

8. THE MOVEME EVALUATION FRAMEWORK

2005, had the objective of developing motion planning techniques, that could com-
pute in real time visually-convincing motions for multiple autonomous entities,
that navigate through complex virtual worlds. The outcome of this project is a
repository of motion planning benchmarks, maintained by Utrecht University. An-
other benchmark database is maintained by University of Parma3, with the sup-
port of the EURON community4. The repository is intended to serve as the basis
for further discussion on the requirements and the design of benchmarks in motion
planning: the project is still in progress and offers only a small set of robot models.
Unfortunately, all these collections of benchmarks aim at comparing motion plan-
ning algorithms, without taking into account real-world issues such as uncertainty.
In fact, their focus in on geometrical motion planners, robots with many degrees-
of-freedom, industrial assembly and dis-assembly tasks, protein folding, computer
animations, and so on.

Some steps towards the definition of common measures of the performance of
a robot motion system have been done, e.g., in Muñoz et al (2007), where a set
of metrics are presented that allow for an evaluation of the quality of control ar-
chitectures of mobile robots and quantitative comparisons between different tech-
niques for robot motion. This set of metrics goes beyond the typical shortest-time or
shortest-distance metrics, usually used as the sole performance measure for motion
planning techniques: they include, e.g., measures regarding trajectory smoothness,
that are closely connected with real robot dynamic constraints. Moreover, Raño
and Minguez (2006) describe a framework that allows to generate synthetic en-
vironments, in order to evaluate obstacle avoidance algorithms in many different
situations. Metrics for both the environment and the trajectory followed by the
robot are provided.

8.2 The evaluation framework

In this section we describe an evaluation framework for robot motion systems. This
framework is then applied to some different motion system, that make use of differ-
ent world models, in order to quantitatively measure their performance and show
which information is crucial for motion systems and which has a negligible effect.

In Calisi et al (2008c) and Calisi and Nardi (2009), the MoVeME (Mobile robots
and Vehicles Motion algorithms Evaluation) framework (formerly MoVeMA) has
been introduced. This framework features a collection of performance metrics and
a set of simulated benchmark experiments for robot motion algorithms evaluation.
Benchmarks can be roughly divided into typical situations and critical situations.
Both of them are important to understand and evaluate the behavior of a motion
system. Moreover, depending on the kind of evaluation of interest, some bench-
marks are more suitable to be used. In this case, we will use large environments
that present local challenges for obstacle avoidance techniques.

3http://mpb.ce.unipr.it/index.html
4http://www.euron.org

88

http://mpb.ce.unipr.it/index.html
http://www.euron.org

The evaluation framework

There are many aspects of the execution of a motion system that should be
taken into account and measured: the accuracy at the goal (meaning with respect
to the kind of goal of interest, as described in Chapter 4), how the algorithm be-
haves along the trajectory, what kind of risks it faces, etc. Some of the performance
metrics are in contrast with others: the “best” method has to be chosen depending
on the whole task (e.g., accuracy at goal versus time to reach it, trajectory length
versus risk of collisions, etc.).

In the following of this section, we give the MoVeME performance metrics, de-
scribing them in detail and discussing their goals and the possible similarities with
the other similar evaluation frameworks listed in Section 8.1.

8.2.1 Task metrics

In this section we will introduce some metrics that are related to the task definition
and the goals of a motion system. In particular, they reflect the needs underlined
in Chapter 4.

Success ratio (Success). Some motion systems may fail in accomplish their task:
this can be for an intrinsic unreliability of the motion system itself, or because
it is not designed for the particular task being executed. In order to compute
this metric, an experiment is repeated a given number of times, reptotal, and
Success is defined as:

Success =
repsuccess
reptotal

, (8.1)

where repsuccess is the number of times the system is able to accomplish the
task.

Accuracy at target (Accur). This is the distance between the final pose xF and the
nearest pose ∈ G:

Accur = argmin
xG∈G

||xF − xG|| (8.2)

This is one of the most important metrics for goals specified by a precise posi-
tion, as described in Chapter 4, while it becomes much less significant for the
others. This metric is not used in other evaluation frameworks, where the ac-
curacy is considered only as a threshold to decide whether the task is finished
or not. Since at high speeds it is more difficult to obtain an accurate maneu-
vering of the robot to a precise pose, we add explicitly this metric in order
to consider the trade-off with respect to Time, described in the following, that
rewards higher speeds.

Time to reach the goal (Time and Time%). The time to reach the goal is the most
used measure when evaluating the performance of an autonomous system
in general. The execution time tF is considered. However, there is a trade-
off between Time and Accur, hence it is up to the algorithm to decide when
to stop (i.e., the tF), depending on the task at hand: that is, spending more

89

8. THE MOVEME EVALUATION FRAMEWORK

time while slowly and accurately positioning the robot in the target pose (i.e.,
optimize the Accur value), or reaching only a neighbourhood of the goal at
high speeds (i.e., optimize the Time value). The Time metric is somehow re-
lated to the Control Period (LeM) in Muñoz et al (2007). In order to com-
pare the motion systems using a more general metric, that is not strictly re-
lated with the environment, we compute the shortest path and we denote
with Lenmin its length. Given a maximum robot linear speed vmax, we can
thus roughly calculate the minimum time required to follow the given path:
Timemin = Lenmin

vmax
. Finally, the Time% can be computed as the ratio between

the time needed to accomplish the task and the minimum theoretical time:

Time% =
Time

T imemin
. (8.3)

Notice that this metric has always a value greater than 1.0.

8.2.2 Trajectory metrics

The set of metrics presented in this and in the following subsection, reflecting the
requirements highlighted in Section 4.3, measure the behavior of the motion system
during the trajectory following. In particular, in this subsection, we present metrics
that are not directly related to physics, i.e., to inertial forces acting on the robot.

Path Length (Len and Len%). This measure is needed for tasks in which the power
consumed is a critical issue, it should be combined with the velocity, the ac-
celeration and/or the friction, depending on the kind of robot used. The Len
metric is thus defined as:

Len =
∫ tF

0
||τ ′(t)||dt (8.4)

In which τ ′(t) is the derivative of the trajectory with respect to t. For the same
reasons given in the previous sub-section, we would like to compute a metric
that is not strictly related to the particular map in which the experiment is
performed. Given the minimum path length, Lenmin, we define:

Len% =
Len

Lenmin
. (8.5)

Also in this case, the Len% metric is always greater than 1.0. The Len and
Len% metrics are considered also in other works: Len is the same of the Length
of Trajectory Covered (PL) of Muñoz et al (2007), and Len% is also related to
the Optimality of Raño and Minguez (2006).

Risk with respect to obstacles (AvgRisk and MaxRisk). This is a metric that ex-
presses the hazards along the trajectory, with respect to the obstacles. Given

90

The evaluation framework

a function β(t) that measures the distance to the nearest obstacle for each t,
Risk is defined as:

Risk =
∫ tF

0

1
β(t)

dt. (8.6)

We also define:
AvgRisk =

Risk

T ime
, (8.7)

and
MaxRisk = max

τ

1
β(t)

. (8.8)

Safety-related metrics are, together with the time to reach the target, the most
used metrics for robot motion tasks. Many metrics, indeed, have been pro-
posed to objectively judge the risk to hit an obstacle along the trajectory. For
example, in Muñoz et al (2007), three metrics are given: SM1 measures the
average of the distances to the obstacles taken by all the sensors of the robot,
SM2 measures the average of the β(t), Min measures the minimum value of
β(t). Cluttered areas make SM1 higher than SM2, but we want to measure
the risk taken by the robot through its movement, that is related to the near-
est obstacle. The Safety metric of Raño and Minguez (2006) measures how
close the given trajectory matches the path computed on the Voronoi graph
(i.e., the locus of points that have the maximum distance from the obstacles,
and thus are the safest points): this metric is strictly related to our Risk metric,
since the safest trajectory has the maximum Risk value.

Curvature Change (CC and AvgCC). This measure is particularly important for
car-like robot models, where the curvature is determined by the direction of
the wheels, that is one of the variables that can be directly controlled, for ex-
ample by the driving wheel (Kostov and Degtiariova-Kostova, 1995; Tomomi
et al, 2003). This measure is also useful to detect oscillations in the trajectory.
We will use the geometrical concept of curvature of a curve, i.e., the recip-
rocal of the instantaneous curvature radius. When dealing with trajectories,
that are parametrized with respect to time, given the linear speed v(t) = ds

dt

and the angular speed ω(t) = dθ
dt , the curvature equation becomes (see, e.g.,

Coolidge, 1952; Mjolsness and Swartz, 1987, for a detailed discussion about
curvature and approximations):

κ(t) =
∣∣∣∣ω(t)
v(t)

∣∣∣∣ . (8.9)

The Curvature Change metric is defined as:

CC =
∫ tF

0
|κ′(t)|dt. (8.10)

In Muñoz et al (2007), the Smoothness of Curvature measures the same con-
cepts: although the value is integrated along the geometric curve, rather than

91

8. THE MOVEME EVALUATION FRAMEWORK

with respect to time. Finally, as usual, we compute an average value, for
comparison purposes:

AvgCC =
CC

Time
. (8.11)

8.2.3 Physics-based metrics

With the following set of metrics, we measure how the trajectory followed by the
robot affects the stability of the motion and the mechanics of the robot itself. These
metrics can be considered physics-based metrics, because they are related to vehi-
cle dynamics, and are used to choose the best trajectory or control command to be
executed in those systems and applications where the dynamics of the vehicle have
to be taken into account (Rosenblatt, 1997; Shmaglit et al, 2006; Ozguner et al, 2007,
e.g.,). They are defined as the inertial forces acting on the robot along the trajec-
tory followed; however, the mass of the robot is not considered, since we are not
concerned with a particular robot (i.e., we consider the robot as an ideal unit-mass
object).

Lateral Stress (LS and AvgLS). It is a well known issue in evaluating vehicle tra-
jectories with respect to safety, as well as in handling vehicles at high speeds,
that trajectories should be as straight as possible; one of the reasons is that
this reduces the centrifugal force acting on the vehicle, that affects the vehicle
stability. With the Lateral Stress, we measure directly this force acting on the
robot, integrating it along the trajectory:

LS =
∫ tF

0

v(t)2

r(t)
dt, (8.12)

in which v(t) is the instantaneous linear speed of the robot and r(t) is the
instantaneous curvature radius. The centrifugal force acting on the robot af-
fects the turning stability of the trajectory, since it can lead to lateral wheel
skidding. Moreover, we can compute the average of the LS metric:

AvgLS =
LS

Time
(8.13)

In other works, the Bending Energy (BE) and the Total Bending Energy (TBE)
try to consider the same concept, but only with respect to the geometrical
path: this fails to account the fact that, at high speeds, the effect of the cen-
trifugal force is higher. On the other hand, the LS metric measures directly
this force. This metric is not directly related to the Curvature Change: for ex-
ample, an oscillatory trajectory has a high value of CC, but can result to a low
LS value, e.g., if the linear speed is low; however, a sharp turn gives a high
value of LS (because of short curvature radius and high speed), but a null CC
measure.

92

Comparison with other performance metrics

Tangential Stress (TS and AvgTS). It measures the magnitude of the inertial force
acting on the robot as it is moving on a straight line, integrated along the
trajectory:

TS =
∫ tF

0
|a(t)|dt, (8.14)

where a(t) is the instantaneous linear acceleration. This metric is sensitive
to sudden braking and sharp accelerations, that are not desirable for both
the integrity of the mobile robots and the possibility of wheel skidding while
turning. The usual average is computed with respect to the total duration of
the trajectory:

AvgTS =
TS

Time
(8.15)

This metric is not considered in any of the previous work (they consider the
geometric path rather than the trajectory).

8.3 Comparison with other performance metrics

Table 8.1 shows a comparison between the MoVeME metrics and those in Muñoz
et al (2007) and in Raño and Minguez (2006), as well as their classification with
respect to Guo et al (2003). Some of the metrics used in these two previous work
do not find a related one in the MoVeME framework. In particular, the Success
metric of Raño and Minguez (2006) is not used because we assume the motion sys-
tems to be able to accomplish the task in all experiments (the Raño and Minguez
(2006) is a framework for obstacle avoidance techniques that, being local methods,
can be get stuck in local minima; on the other hand, MoVeME metrics are thought
for complete motion systems, that are assumed to always finish the task success-
fully). The Mean distance to the goal (Mgd) of Muñoz et al (2007) is not used here,
because we want to evaluate the system as a whole, and following a reference tra-
jectory is only a building block of such a system. Moreover, an important differ-
ence between these metrics and similar ones considered in related work is that the
MoVeME framework computes metrics on trajectories, velocities and forces, while
the other methods concentrate only on the geometrical paths.

8.4 Benchmark problems

In order to evaluate a system, beside the metrics described above, a set of experi-
mental scenarios must be choosen. There are two different ways that an evaluation
framework can adopt for this issue: from the one hand, the framework can pro-
vide a tool to automatically generate random environments, in order to include in
the experiments many different situations; on the other hand, a set of pre-defined
scenarios and situations can be provided. The first approach has been chosen in
Raño and Minguez (2006), where spherical worlds are built by generating random

93

8. THE MOVEME EVALUATION FRAMEWORK

MoVeME Metric Muñoz et al (2007)
Raño and
Minguez
(2006)

Guo et al
(2003)

Accuracy at target
(Accur)

N.A. N.A.
Geometry-
based

Time to reach the goal
(Time)

Control Periods
(LeM)*

N.A. Time-based

Path length (Len)
Length of trajectory
(PL)

Optimality
Geometry-
based

Risk w.r.t. obstacles
(Risk)

Security Metric 1
(SM1)*, Security
Metric 2 (SM2),
Minimum Distance
(Min)*

Safety Safety

Lateral Stress (LS)
(Total) Bending
Energy ((T)BE)*

N.A.
Physics-
based

Tangential Stress (TS) N.A. N.A.
Physics-
based

Curvature Change (CC)
Smoothness of
Curvature (Smoo)

N.A.
Geometry-
based

Table 8.1: The set of MoVeME metrics compared with Muñoz et al (2007) and with
Raño and Minguez (2006) metrics, and classified with respect to Guo et al (2003).
The metrics marked with an asterisk are only loosely related to those provided by
the MoVeME framework, while the other are equivalent (although some differences
can still be found, see the text for details).

Figure 8.1: Three environments taken from the MoVeME benchmark dataset, show-
ing also a robot starting pose (the red circle) and a goal (the green cross).

94

Benchmark problems

spherical obstacles: the main benefit of this method is that there is the possibility of
discover some critical cases, that otherwise would have not been considered in the
experiments. However, because of the randomness, many experiments are needed
in order to collect measures that are statistically relevant.

In the MoVeME framework, we choose the second method, selecting well-known
relevant situations to provide a set of pre-defined benchmark problems5: this ap-
proach reduces the number of experiments that are needed to collect performance
measures. However, benchmark problems have to be selected carefully in order
to include as many relevant cases as possible. These benchmark problems have
been presented in Calisi et al (2008c) and can be roughly divided into typical and
critical situations, and include examples given in past research papers (e.g., Boren-
stein, 1991; Fox et al, 1997; Minguez and Montano, 2004; Simmons, 1996; Ulrich
and Borenstein, 1998), especially those that involve an analysis of one particular
algorithm or a comparison between different methods (e.g., Koren and Borenstein,
1991; Fernández et al, 2004; Stachniss and Burgard, 2002). Figure 8.1 shows some
of these environments. The MoVeME performance metrics reflect, with objective
and quantitative measures, the statement that have been obtained in these works
by qualitative evaluations and visual inspection of the trajectories.

The current set of benchmark problems included in the MoVeME framework
makes use of the Player/Stage software (Collet et al, 2005), a suite of free software
tools for robotic applications, that contains also the simulator (Stage) that is used
for some of the experiments in next section.

Moreover, we extend this initial collection with other critical situations found
through our past research and with other typical scenes (office-like maps, more un-
structured environments, etc.). For each of these maps a set of pairs starting pose/-
goal is given. Depending on the kind of evaluation of interest, some benchmarks
are more suitable to be used than others.

5the benchmark problems and a utility to measure the performance can be downloaded from
http://www.dis.uniroma1.it/˜calisi/moveme

95

http://www.dis.uniroma1.it/~calisi/moveme

9
Experiments

In this section, through a set of experiments, we present the evaluation of some
motion systems, by relying on the metrics described in Chapter 8. In particular,
we show that, often, the use of a quantitative measurement leads to a better under-
standing of the systems being used that cannot be achieved by a qualitative inspec-
tion. Part of these experiments have been presented in Calisi and Nardi (2009).

The experiments, that make use of the MoVeME set of benchmarks described in
Chapter 8, have been designed following the goal definitions given in Chapter 4,
while the motion systems to evaluate make use of different environment models as
described in Chapter 3 and Chapter 6. Moreover, we use some of the local meth-
ods described in Chapter 2, as well as the DTT and DBT algorithms described in
Chapter 5. A detailed description of the motion systems used in the experiments is
given in Section 9.1.

Experiments are performed using different environments, depending on the
particular goal of the specific experiment itself. Specifically, is Section 9.2, we use
a subset of the MoVeME (simulation) benchmarks in order to derive both general
assessments about the motion systems (e.g., that the global representation has a
very small impact on the overall performance of a motion system), and to compare
the performance of different methods (e.g., DWA versus ND, etc.). Depending on
the specific experiment, we use a typical environment, or a critical environment.

Afterwards, in Section 9.3, we perform some experiments using a real robot, re-
producing some of the situations addressed in the simulation experiment, in order
to confirm the results of Section 9.2.

Finally, in Section 9.4, we perform a general comparison between a subset of the
systems described in this chapter, by using the whole set of MoVeME (simulation)

97

9. EXPERIMENTS

benchmarks. The main motivation of this last set of experiments is to obtain a
general evaluation and comparison of the performances of the systems.

9.1 Systems being evaluated

In this section, we describe the different motion systems that will be evaluated in
the following of this chapter. Each system is composed by a global representation
of the environment, a procedure to compute the local goal and a local algorithm
that steers the robot to the global goal. In each scenario we test and/or compare
a subset of these motion systems, in order to underline the differences (or the lack
of differences) of their performance, either by comparing different methods in the
global subsystem or in the local subsystem, or in the systems as a whole.

• System C-DWA. The first system exploits a metric map of the environment,
composed of a grid of cells, at the global level (see Section 3.2). An A* al-
gorithm is executed on the grid in order to compute the path to the global
goal, the A* heuristic used is the classical distance-to-goal. The obstacles on
the grid map are expanded in order to obtain the connectivity of the environ-
ment (i.e., closing passages that are too narrow for the robot to go through).
The Dynamic Window Approach (see Section 2.1.3) is used at the local level,
in particular, the random clothoids variant is used in these experiments (see
Section 2.1.5). The local target that is given to the DWA is computed along
the path in a position that is inside the LSA and at a maximum fixed distance
from the robot.

• System G-DWA. The environment is globally represented using a geomet-
ric model (in particular, a line map, see Section 3.3). The connectivity of the
environment is determined using the Voronoi graph computed on this geo-
metric description. The Voronoi graph is a roadmap, furthermore, when a
goal is given, both the goal and the current robot pose are connected with the
roadmap graph and the path is searched in this graph (e.g., using the Dijkstra
algorithm or A*). The local target computation and the local subsystem being
used are the same as in System C-DWA.

• System T-DWA. A topological description is adopted by this system (see Sec-
tion 3.4), which does not contain any metrical information. In particular,
places are recognizable junctions on a local Voronoi graph and the edges that
connect places mean that it is possible to navigate directly from one to the
other. Places can be labeled and the goal have to be specified using these la-
bels. The local target is computed using the method explained in Section 3.4,
where the topological model gives the direction that has to be followed at
each junction. The local subsystem employs the DWA algorithm as in the
two previous systems.

98

Systems being evaluated

• System T-VFH. This system is exactly the same of the one above, but it uses
a Vector Field Histogram algorithm (see Section 2.1.2) at the local level. The
major difference between the two local algorithms is that VFH outputs a direc-
tion, without considering the robot model constraints, such as non-holonomy
and dynamics. This means that the direction must be converted into mo-
tion commands, but the final trajectory is not guaranteed to be collision free.
In order to avoid collisions, we limit the robot movements to two types of
maneuvers: turn on place and go (almost) straight, in this way the direction
produced by VFH is reliably followed.

• System THint-DWA. At the global level, a topological representation is used;
the usual method to compute the target direction along the trajectory is mod-
ified by including a direction that follows the Voronoi graph. This acts as a
“hint” for local algorithms that are able to deal also with the direction of the
local target pose. The local algorithm used is the DWA.

• System THint-DTT. The topological representation is used by an algorithm
to compute the local target pose that includes also a direction, as in the system
above. This system uses the Dynamic Trajectory Trees, described in Chap-
ter 5, that is based on the Randomized Kinodynamic Tree algorithm and is
thus able to plan a local trajectory consisting of more than one step in the
future.

• System H-DWA and System H-DTT. These are very similar to the previous
System T-DWA and System H-DTT, with the only difference that the global
subsystem make use of the hybrid topological/geometric representation that
we described in Chapter 6, and the local goal is computed using the technique
shown in the same chapter, i.e., using the frontiers of the LSA.

• System H-ND. This system uses the hybrid global representation of the envi-
ronment and the local subsystem consists of a slightly modified version of the
Nearness Diagram, that has been described in Section 2.1.4. Although the ba-
sic ND algorithm produces a direction, as explained above for the VFH, there
was no need to limit the robot maneuvers as we do in that case, because, with
ND, collisions are unlikely to happen.

• System H-DBT. Finally, this system uses the same hybrid representation of
the previous systems, but the local subsystem consists in the Dynamic Be-
havior Tree algorithm, that has been described in Chapter 5: in particular, it
presents a set of behaviors that are randomly chosen and evaluated (in our
implementation, the local subsystem can choose among the Dynamic Win-
dow Approach and the Nearness Diagram), and it has the possibility to in-
crease the look-ahead, depending on the time allowed for each iteration.

The first systems, with the varying global level representation are compared, in
particular in Section 9.2.1, to evaluate the effect of the global representation on the

99

9. EXPERIMENTS

overall performances. Systems in which additional information is provided to the
local subsystem (e.g., a direction “hint”), are tested to assess the value of this in-
formation with respect to the performance. Finally, other experiments compare the
performance of different local subsystems (e.g., pure Dynamic Window Approach,
pure Vector Field Histogram versus Dynamic Behavior Tree).

9.2 Simulation experiments

In this section, we perform a set of experiments using some of the environments
taken from the MoVeME benchmarks set.

9.2.1 A typical environment: the “hospital” map

The first environment is well suited for the evaluation of motion system in a typi-
cal situation. The “hospital” map (that has been taken from the example maps of
the Player/Stage suite and added to the MoVeME benchmarks set) can be seen in
Figure 9.2 and represents a large indoor environment (40m wide) with many rooms
and corridors. We tested four motion systems in this environment: System C-DWA,
System G-DWA, System T-DWA and System T-VFH. In this environment we want
to measure how the use of the different environment models can affect the perfor-
mance of the motion system. For this reason, three of the systems use different
environment models at the global level, and the same local algorithm. The fourth
system, System T-VFH, making use of a different local method, is added in order
to show how the local method affects the performances of the whole system.

The goal in this scenario, as shown by the trails in Figure 9.2, is to go from
the pose marked as “start” to the pose marked as “goal”. For the systems that
use a topological representation, the task is described as going to the “place” of
the topological map that represents the room that contains the “goal” pose, and,
as soon as this pose becomes visible by the sensors, giving it as local target to the
local algorithm. This simulates the fact that the final goal has a position that can be
recognized using local information (e.g., landmark-based). In Figure 9.1 we show
the performance of the systems with respect to the MoVeME metrics (the values are
averaged over 5 experiments for each system).

The most important result is that, despite the use of very different representa-
tions, the performance of the four systems do not present significant differences.
This is due to the fact that the output of the global algorithm, i.e., the local tar-
get, can be computed using a very limited previously acquired knowledge: it can
be computed on the fly using only the current local environment spanned by the
sensors.

Moreover, additional knowledge can be gathered from these results. Although
the commonly used performance metrics, i.e., Time and Len, show that System C-
DWA performance are very similar to those of the other systems, the Curvature
Change metric is much higher. This can be explained as follows: the A* algorithm,
computed on the grid map, outputs a path that is very close to the walls, and this

100

Simulation experiments

Metric/System System C-DWA System G-DWA System T-DWA System T-VFH
Accur (m) 0.09 (0.00) 0.10 (0.01) 0.12 (0.01) 0.10 (0.00)
Time (s) 194.27 (2.84) 196.22 (2.75) 196.35 (2.00) 235.77 (2.92)
Len (m) 34.56 (0.18) 34.55 (0.12) 34.55 (0.11) 34.42 (0.13)
Risk (m−1) 335.3 (7.99) 334.23 (8.02) 283.47 (0.96) 301.18 (5.29)
CC (rad/m) 1601.7 (210.2) 145.12 (36.12) 168.24 (39.32) 746.78 (108.67)
TS (N · s) 0.84 (0.36) 0.35 (0.20) 0.38 (0.01) 0.27 (0.12)
LS (N · s) 127.35 (6.06) 130.43 (7.17) 132.98 (2.38) 94.72 (2.14)

Figure 9.1: Performance evaluation in the “hospital” environment of the four sys-
tems described in the text, the values are averaged over five experiments in the
same conditions, standard deviations are given in parenthesis.

makes its trajectory more sensitive to corners and small obstacles along the walls.
The final behavior, as explained by the large CC value, is an oscillating trajectory.
If the mobile robot were a car-like vehicle, the steering wheel should have been
moved much more than in other cases. Indeed, the fact that the robot moves near
the corners, hides the local environment to the local algorithm, that often faces
unexpected obstacles, requiring sudden changes of direction (i.e., of curvature of
the trajectory), and, as explained by the higher Tangential Stress (TS) value, also to
sudden braking. This means also that, even though the global path computed by A*
on the global grid map is shorter with respect to the others, this benefit is canceled
by the oscillations on the trajectory performed by the local algorithm: their final
length (Len) is almost the same, as well as the time needed to conclude the task
(Time).

Other differences among the performance values are more straightforwardly
explained. For example, the path followed by the Vector Field Histogram is made
up almost of straight segments, that makes it longer than the others, but with a
lower Lateral Stress (on-place turns does not count for the computation of LS met-
ric).

Summarizing, this experiment shows that the use of different environment mod-
els leads to similar performance of the motion system. This is important to under-
stand, since some environment models require more resources to be built, main-
tained and used. Moreover, it shows that the most critical building block of a mo-
tion system, with respect to its performance, is the local method.

9.2.2 A critical environment: the “zig-zag” map

The second environment can be seen as a critical environment (as we said before,
the “hospital” environment is a typical benchmark). This specific map is created by
introducing a sequence of difficult situations, in order to test the behavior of dif-
ferent motion systems. The environment, called “Zig-zag”, is shown in Figure 9.3.
In this case, the goal is to move the robot from the pose marked with “start” to the
grey region marked with “goal”, i.e., the cardinality of G is greater than 1.

101

9. EXPERIMENTS

Figure 9.2: The “hospital” environment, with the trails followed by three of the
systems described in the text. The first one is System C-DWA: the oscillations de-
scribed in the text are marked as 1, 2 and 3; the second is System T-DWA, while the
last is System T-VFH, in which the trajectory presents more straight lines than the
others102

Simulation experiments

The goal of these experiments is to measure the effect of a “hint” of the global
planner to the local algorithm. This additional information concerns a part of the
environment that is not contained in the local model used by the local algorithm. To
this end, the first system is taken from the previous experiments (System T-DWA),
while a second one is obtained by adding additional information from the global
planner (System THint-DWA). A third system is also considered, which contains
the DTT local planner, instead of a pure reactive method (System THint-DTT). The
purpose of measuring the performance of this latter system is to have a comparison
term with a longer planning horizon and understand if it can get more benefits
from the same global “hint”.

Figure 9.3: The “zig-zag” environment with the trails followed by two of the sys-
tems described in the text. The first is System T-DWA, in which the long and nar-
row corridor after each sharp turning cannot be predicted in time by the algorithm.
System THint-DWA, shown below, can benefit from the direction of the local target,
that makes it possible for the local algorithm to better adjust the trajectory and enter
the narrow corridor with the right orientation, without the need of sharp turns.

103

9. EXPERIMENTS

Metric/System System T-DWA System THint-DWA System THint-DTT
Time (s) 608.48 (10.40) 533.9 (9.33) 552.19 (10.31)
Len (m) 135.07 (0.17) 142.75 (0.02) 141.22 (0.03)
Risk (m−1) 1419 (62.2) 992.69 (44.63) 989.12 (40.32)
CC (rad/s) 916.86 (37.6) 190.15 (14.69) 211.23 (12.18)
TS (N · s) 0.52 (0.04) 0.28 (0.01) 0.17 (0.01)
LS (N · s) 530.92 (15.24) 493.00 (12.68) 482.18 (10.78)

Figure 9.4: Performance evaluation in the “Zig-zag” environment of the three sys-
tems described in the text (Accur values are not given, because the goal area is
large), the values are averaged over ten experiments in the same conditions (algo-
rithms use probabilistic techniques), standard deviations are reported in parenthe-
ses.

The behavior of System T-DWA at the sharp turnings can be seen both in the
trails depicted in Figure 9.3 and in the values in Figure 9.4: since there is a limited
planning horizon and no heuristics on the right orientation of the corridor is given,
the system is forced to change the curvature of the trajectory in a very short time
and space. The values of the Tangential Stress and the Curvature Change both reflect
this behavior. Moreover, due to the speed acquired before the turning, the tra-
jectory becomes unstable and oscillates (as can be seen from the Curvature Change
metric). Finally, also the Lateral Stress is higher, meaning that the algorithm is not
able to reduce the speed in time before performing the turning.

Fewer differences can be seen between System THint-DWA and System THint-
DTT, meaning that the longer planning horizon does not achieve much higher per-
formances, in the presence of the global orientation hint. The larger time of Sys-
tem THint-DTT is basically due to the reduced speed allowed by the planner in
order to be able to plan and execute actions without stopping. The low Curvature
Change value reflects the fact that being able to plan with a longer horizon, the
maneuvers at the sharp turn can be more accurate.

9.2.3 A critical task: parallel parking

This experiment regards a parallel-parking maneuver. In order to properly per-
form the experiment, we restrict the allowed turning radius, in order to simulate
a car-like vehicle. Three systems are tested in the experiment: System H-DWA,
System H-DTT and System H-DBT. The goal of the experiment is to show how the
local subsystem of System H-DBT selects the proper behavior autonomously. In
particular, three behaviors are considered in the random choice for the Dynamic
Behavior Tree expansion: the Dynamic Window Approach, the Nearness Diagram
(that, in our implementation, is forced to perform only forward maneuvers) and
generic feedback controlled constant-acceleration curves (clothoids). The orienta-
tion of the goal has a high coefficient in the goal fitness evaluation function φ: in
this way, we force the motion system to prefer maneuvers that move the robot to a
position that is parallel to the wall.

104

Simulation experiments

Figure 9.5: A trail of the robot performing a parallel parking maneuver, using Sys-
tem H-DBT.

Metric/System System H-DBT System H-DWA System H-DTT
Success% 72.43 0.0 73.20
Accur% 89.48 - 90.12
Time% 810.98 - 949.18

Figure 9.6: The results of the experiments of parallel parking.

Moreover, in order to increase the success rate, we attached to the global envi-
ronment representation a hint regarding the maximum speed allowed in the prox-
imity of the parking lot: in particular, maximum speed is reduced when the robot
gets closer to the final goal pose, in order to give more time to the planner to pro-
duce a proper maneuver.

The experiments are repeated 10 times for each system and their results are
shown in Figure 9.6. Moreover, a trail of the robot, using System H-DBT, is shown
in Figure 9.5. The results show that the DWA algorithm is not able to perform
the appropriate maneuver to move the robot to the desired position (actually, it
is not designed for this kind of tasks, at least using its canonical utility function
and the additional minimum curvature radius constraint), while both the Dynamic
Trajectory Tree and System H-DBT are able to move the robot to the parking lot. The
main difference between these last two systems is that the latter can take advantage
of faster behaviors (e.g., DWA) while it is approaching to the parking area, thus
reducing the overall time to complete the task (i.e., Time%).

Summarizing, the use of a system that is able to autonomously select the ap-
propriate behavior (i.e., a fast and short look-ahead pure-reactive method versus
a slower long look-ahead local planner) results in an increase of performance with
respect to the use of single methods.

105

9. EXPERIMENTS

Figure 9.7: A trail of the robot in one of the simulation experiments using System H-
DBT, in which the robot is constrained to move only forward and turn left.

Metric/System System H-DWA System H-DTT System H-DBT
Success% 0.00 75.43 76.21
Len% - 415.43 405.95
Time% - 814.12 803.23

Figure 9.8: Results of the constrained motion experiments described in Sec-
tion 9.2.4.

9.2.4 A critical task: constrained motion

The map shown in Figure 9.7 has been taken from Steven LaValle’s RRT webpage1

and added to the MoVeME benchmarks set. The peculiarity of this experiment
is that the robot maneuvers are constrained to be forward-only and right-only (the
minimum turning radius is also constrained to a constant> 0, in order to simulate a
car-like vehicle). In this example, a large look-ahead is needed to properly evaluate
the maneuvers, and most of the time the pure-reactive behaviors fail in constructing
a good solution. Three systems have been tested in this environment: System H-
DWA, System H-DTT and System H-DBT. As in the parallel parking experiments,
we can see that the Dynamic Window Approach is not suitable for this kind of
setup. The problem is that when the target is on the left of the robot, the right-
only constraint filters out all the left turns: furthermore, the best trajectory, chosen
through the DWA utility function, is the straight forward motion, that continues as
long as the local goal is at a direction θgoal ∈ (0, π/2). As soon as θgoal reaches π/2,
i.e., it is exactly at the left of the robot, the best behavior computed by the DWA
utility function is to stay still and the motion systems stops.

1http://msl.cs.uiuc.edu/rrt/

106

http://msl.cs.uiuc.edu/rrt/

Real robot experiments

The results given in Figure 9.8 shows very high values for Time% and Len%:
this is due to the fact that the minimum path length, used to compute the percent-
ages, is calculated geometrically and do not consider the right-only maneuvers.
Additionally, in this case, the difference between the DTT-based system and the
DBT-system are not so relevant as they have been measured in Section 9.2.3. The
reason is that this scenario (specifically, the constraints on the allowed motion) is
particularly hard and require a large look-ahead to be solved. The two algorithms,
DTT and DBT, becomes thus very similar, because the benefits of using reactive
behaviors become negligible (actually, behavior-based trajectory arcs are seldom
selected for tree extension).

9.3 Real robot experiments

In this section we present a set of experiments using real robots. As noticed in
Chapter 8, the results of simulation benchmarks have to be confirmed by real-world
examples. Indeed, it is likely that some real-world issues, that are not suitably
simulated, yield to unexpected differences.

We use a Videre Design’s2 Erratic mobile platform, equipped with a laser range
finder. In particular, two different devices are used: a SICK’s3 LMS laser range
finder, that can measure distances up to 80 meters, and a Hokuyo’s4 URG 04-LX,
that can measure up to 4 meters. Systems using the former (SICK, 80 meters) are
named with a -long suffix, otherwise, the range finder used is the latter (Hokuyo, 4
meters).

The environment model used in this experiment has been acquired by the robot
before the actual experiment.

9.3.1 A typical environment: corridor experiment

In this experiment we would like to confirm the results obtained through simula-
tion experiments reported in Section 9.2.1 and Section 9.2.2. Specifically, the results
should confirm that the global representation has a negligible effect on the overall
performance (provided that it is able to determine an appropriate local goal), and
that, on the contrary, if important hints are attached to the local goal, the perfor-
mance increases.

Four motion systems have been evaluated: System C-DWA, System H-DWA,
System HHint-DWA and System HHint-DWA-long (the difference between the last
two systems is only in the sensors being used).

The experiments in the real environment shown in Figure 9.9 yield the results
given in Figure 9.10, that comply with the findings of the experiments in simula-
tion environments. System C-DWA and System H-DWA have a very similar per-

2http://www.videredesign.com
3http://www.sick.de
4http://www.hokuyo-aut.jp

107

http://www.videredesign.com
http://www.sick.de
http://www.hokuyo-aut.jp

9. EXPERIMENTS

Figure 9.9: The map of the real environment used for the experiments (on the left)
and the robots used (on the right). The robot starts the task from the position
marked with “start” and the goal is to reach the grey area, detected using local
landmarks.

Metric/System Sys. C-DWA Sys. H-DWA Sys. HHint-DWA Sys. HHint-DWA-long
Time (s) 94.512 (2.45) 95.395 (3.01) 91.77 (2.32) 84.21 (2.03)
Len (m) 21.68 (0.27) 21.82 (0.17) 22.62 (0.22) 23.25 (0.03)
Risk (m−1) 182.77 (6.13) 181.12 (5.18) 132.32 (4.12) 120.66 (4.19)
CC (rad/m) 1916.79 (42.1) 1842.86 (43.2) 108.52 (12.18) 67.64 (5.13)
TS (N · s) 0.31 (0.02) 0.39 (0.03) 0.18 (0.01) 0.06 (0.00)
LS (N · s) 62.43 (2.54) 62.60 (2.52) 69.02 (2.37) 79.20 (2.28)

Figure 9.10: Performance evaluation in the real experiment of the four systems de-
scribed in the text (Accur values are not given, because the goal area is large), the
values are averaged over ten experiments in the same conditions, standard devia-
tions are reported in parentheses.

formance, despite the use of different environment models, as we found in Sec-
tion 9.2.1. System C-DWA and System H-DWA present a high value of CC, that is
mainly due to the fact that the trajectory goes too close to the obstacles. In particu-
lar, this is especially apparent when tackling the sharp turns, where, since the map
is built during the motion execution, new obstacles appear and require the robot to
correct the control commands, leading to oscillations. This results also in a longer
time to complete the task.

Since System HHint-DWA and System HHint-DWA-long have higher perfor-
mances with respect to the other two systems, we can confirm that the direction
hint, provided by the global planner, is an important piece of information for in-
creasing the performance of the motion system. However, due to the limited range
of the sensor (and, consequently, of the area in which the local target pose can be
given), System HHint-DWA-long outperforms System HHint-DWA.

108

Real robot experiments

(a) The real robot performing the second
phase of the experiment

(b) The trail of the robot course among the obstacles

Figure 9.11: A robot trail of the execution of System H-DBT, during the “slalom”
phase of the experiment described in Section 9.3.2.

Metric/System System H-ND System H-DTT System H-DBT
Time (s) 32.43 89.57 45.18
Len (m) 3.48 3.03 3.66
AvgRisk (m−1) 2.45 3.48 3.03
AvgCC ((rad/m)/s) 578.40 84.23 619.89
AvgTS (N) 0.01 0.65 0.02
AvgLS (N) 0.89 0.12 0.85

Figure 9.12: The results of the “moving obstacles” phase of the experiment de-
scribed in Section 9.3.2.

9.3.2 A critical environment: moving obstacles, slalom and parallel
parking

We decomposed the experiment into three phases, using the two way-points. The
central phase of the experiment, in which the robot is required to navigate between
the first way-point to the second way-point, is shown in Figure 9.11: way-points are
denoted with gray squares. The goal of the first two phases is to reach the related
way-point, i.e., the gray square, with any orientation. As soon as the robot reaches
the way-point, the next goal is provided. Three motion systems have been tested
in this environment: System H-ND, System H-DTT and System H-DBT.

Each of the three phases has its own peculiarities: the first phase, that we call
“moving obstacles”, requires the robot to go through a portion of the corridor
where moving obstacles (people walking) are present. The contextual knowledge
about the presence of moving obstacles is attached to the map, and a suitable set
of contextual adaptations of the systems are performed. The presence of moving
obstacles could have been also detected on-line, but, in order to simplify the exper-
iment, we preferred to consider this information as a priori knowledge about the
environment. The results of this first phase are reported in Figure 9.12. The high

109

9. EXPERIMENTS

Metric/System System H-ND System H-DTT System H-DBT
Time (s) 65.3 75.30 68.23
Len (m) 12.90 12.33 12.87
AvgRisk (m−1) 2.62 3.21 3.18
AvgCC ((rad/m)/s) 662.73 642.89 660.12
AvgTS (N) 0.01 0.01 0.01
AvgLS (N) 0.93 0.98 0.95

Figure 9.13: The results of the “slalom” phase of the experiment described in Sec-
tion 9.3.2.

Metric/System System H-ND System H-DTT System H-DBT
Accuracy% 43.18 83.29 82.18
Time (s) 59.91 36.28 38.27
Len (m) 3.29 1.50 1.56
AvgRisk (m−1) 1.55 4.15 5.18
MaxRisk (m−1) 10.50 11.05 10.49
AvgCC ((rad/m)/s) 7.20 19.68 18.58
AvgTS (N) 0.003 0.01 0.01
AvgLS (N) 0.32 0.14 0.15

Figure 9.14: The results of the “parallel parking” phase of the experiment described
in Section 9.3.2.

Metric/System System H-ND System H-DTT System H-DBT
Accuracy% 43.18 83.29 82.18
Time (s) 157.64 201.15 151.68
Len (m) 19.67 16.86 18.09
AvgRisk (m−1) 2.18 3.5 3.64
AvgCC ((rad/m)/s) 396.25 281.72 486.27
AvgTS (N) 0.01 0.29 0.01
AvgLS (N) 0.69 0.45 0.72

Figure 9.15: The overall results of the experiment described in Section 9.3.2.

110

Real robot experiments

value of AvgTS, presented by System H-DTT reflects the fact that the system needs
frequent sudden stops in order to avoid to collide with the moving obstacles. This
is mainly due to the low reactivity of the method: the plans are often invalidated by
the obstacles crossing the planned trajectories. Moreover, its low values of AvgCC
and AvgLS mean that the overall behavior of the system is to go roughly straight
and stop suddenly, if an obstacle crosses its way. System T-ND, on the contrary, be-
ing based on a pure-reactive behavior, presents higher performances with respect
to the other two systems.

In the second phase, that we call “slalom”, the robot moves through a set of ob-
stacles that form very narrow passages between each other. No contextual knowl-
edge is used in this area, and the motion systems are required to adapt to the situ-
ation (e.g., by reducing the speed) automatically. The results of this second phase
are reported in Figure 9.13. All systems are able to accomplish the task and very
little differences can be seen from the metrics. Actually, the behavior of the three
systems among the obstacles is almost the same. Little differences can be found in
how the Nearness Diagram keeps the robot away from the obstacles, with respect
to the DTT. A straightforward effect of this fact is that the trajectory followed by
the ND is longer. However, it is executed in less time, i.e., at a higher speed: this
is probably due to the randomized component in the other two algorithms, that
results in a sub-optimal trajectory.

The third phase requires the robot to accomplish a parallel parking maneu-
ver, i.e., this experiment is the real-robot counterpart of the one described in Sec-
tion 9.2.3. The task is the same: the robot is required to park parallel to the wall
and its motion is constrained by a minimum turning radius (in this case, this is
implemented as a contextual rule, attached to this area). The detail of the trajectory
followed by System H-DBT during one of the experiments is shown in Figure 9.16.
The results of the last phase of the experiments are shown in Figure 9.14: the most
apparent difference between System H-ND and the other two is that, since the for-
mer is not suitable for this kind of maneuvers, performed a very long circular tra-
jectory in order to reach the final goal. The effects of this behavior is reflected in
many metrics. The most apparent ones are the length of the trajectory (Len) and
the related time to reach the goal (Time): the long maneuver results obviously also
in a much longer time to reach the goal. Since the maneuver moves the robot to
the center of the corridor, before going back to the parking lot, this long trajectory
also reduces the average risk (AvgRisk); however, the maximum risk (MaxRisk) is
similar to the other two systems, and is reached in the goal pose for all the systems.
Finally, the maneuver of System H-DTT and System H-DBT requires also a larger
change of curvature (if the robot were a car, the driving wheel should be turned
a lot at the cusp of the trajectory, as it is shown in Figure 9.16), with respect to
the long and time consuming trajectory of System H-ND (that basically performs a
long circular trajectory, i.e., the curvature is not changed at all). Finally, the main
problem with the ND trajectory is that it causes the robot to reach the goal with the
wrong orientation, and that the system is not able to correct it: this is apparent to
the low Accuracy value.

111

9. EXPERIMENTS

Figure 9.16: The parallel parking with the real robot and the System H-DBT. The
trail followed by the robot during the experiment, that ends in the red pose, is
shown in gray. The goal pose is shown in green.

Finally, the overall results of the whole experiment are shown in Figure 9.15.
These final results show that, even if the other systems perform better in some
specific case (i.e., in one of the phases of the experiment), the adaptive System H-
DBT has better overall performances. In particular, it is able to accurately position
the robot at the final parallel parking pose, with a Time and Len that are comparable
with the best performance achieved in this experiment.

9.4 Experiments with the whole set of MoVeME
benchmarks

In Section 9.2, we presented specific tests to show some peculiarities of a selec-
tion of motion systems. We used some specialized environments, taken from the
MoVeME set of benchmarks, to test individual features, often in the execution of
critical tasks. The results of these experiments have been subsequently confirmed
using real environments, in Section 9.3.

In this section, we make use of the whole set of benchmark problems that is
provided by the MoVeME framework, in order to obtain more general assessments
about some motion systems. Indeed, since the MoVeME set of benchmarks is com-
posed by critical tasks (such as those used in Section 9.2), as well as typical situa-
tions, testing a motion system on the whole set of benchmarks allows to obtain a
general evaluation of the specific motion system. The set of MoVeME benchmarks is
currently composed by 17 environments and 24 different experiments (i.e., initial
pose and goal description). For each setup, 10 repetitions have been performed:
in Figure 9.17 we show the values of the MoVeME performance metrics, averaged
over the whole set of benchmarks. Obviously this large set of experiments has
been performed in simulation, under the assumption, verified in Section 9.3, that
the results are accurate with respect to the real case.

All systems tested in this section use the hybrid topological/geometric repre-

112

Experiments with the whole set of MoVeME benchmarks

Metric/System System H-DWA System H-ND System H-RRT System H-DBT
Success% 84.21 90.90 98.32 98.25
Time% 326.52 (124.65) 295.46 (22.34) 556.39 (233.59) 305.23 (45.34)
Len% 103.25 (5.40) 112.43 (4.10) 120.67 (17.65) 118.42 (3.59)
AvgRisk (m−1)) 73.27 (25.12) 24.23 (4.70) 45.09 (4.62) 31.20 (13.49)
AvgLS (N) 3.14 (1.37) 2.15 (1.44) 3.10 (2.39) 2.40 (1.62)
AvgTS (N) 0.03 (0.01) 0.02 (0.00) 0.03 (0.01) 0.02 (0.01)
AvgCC (rad /m/s) 162.42 (63.97) 120.30 (43.96) 169.03 (58.99) 124.18 (50.31)

Figure 9.17: Results of the experiments with the whole set of the MoVeME bench-
marks.

sentation in the global subsystem. Additional information in this representation are
used only in the parallel parking experiment, where the advised maximum speed
is reduced in proximity of the parking lot (this also gives more time to the planner
to compute an effective plan to the goal pose). Specifically, the following systems
are tested: System H-DWA, System H-ND, System H-DTT, System H-DBT.

System H-DWA is the less reliable, with respect to the success rate: this is
mainly due to the fact that it uses a randomized approach. System H-ND succeeds
in all the scenarios it is designed for, i.e., excluding the parallel parking maneuver
and the constrained forward-only left-only scenario. System H-DTT succeeds in
almost all scenarios, but the main drawback is the long time needed for planning
(the maximum speed has been reduced, in order to decrease the TS metric). Fi-
nally, System H-DBT can adapt to the situation and obtain the high performance of
the fast methods (i.e., H-DWA and H-ND), while increasing the success ratio (i.e.,
in particular in the two critical scenarios mentioned above): most notably, while
running through wide straight corridors, System H-DBT navigates using trajectory
arcs that are either DWA behaviors or ND behaviors, without a precise preference
(actually, in this situation they behave similarly); however, in narrow spaces, the
ND is chosen more frequently.

Beside the differences described above, the four methods are well-performing
and other differences are not relevant in the evaluation. The only additional consid-
eration can be done regarding the lower Len% and the higher AvgRisk presented by
the System H-DWA: the limited look-ahead and the utility function do not perform
well in keeping a desired lateral distance from the obstacles, instead, they tend to
shorten the followed path (at the cost of correcting maneuvers, due to obstacles be-
hind the corners). As a final note, the values given in Figure 9.17 are averaged only
over the successful experiments.

Summarizing, the results show that the versatile System H-DBT presents the
highest success ratio, while keeping its performance close to the best.

113

9. EXPERIMENTS

9.5 Summary

In this chapter, we used the MoVeME evaluation framework described in Chap-
ter 8, in order to compare different motion systems in different situations and while
achieving different kind of goals. The definition of objective and quantitative per-
formance metrics allows to obtain assessment and analyses that are very difficult
or not possible by a simple qualitative inspection of the robot behavior. Moreover,
the definition of a set of benchmarks, i.e., well-defined environments and specified
tasks, that encompass both common situations and critical tasks, allows to compare
motion systems from a general point of view and allows to analyze the behavior of
different systems in some critical situations.

All systems are specific instances of the general System H-DBT, that includes
the local subsystem described in Chapter 5 and the global subsystem described
in Chapter 6. One of the benefits of the use of such a generic system is that it
is possible to derive many single methods by appropriately setting some internal
parameters of the system. Moreover, System H-DBT allows to analyze the behavior
of single components of well-known algorithms in the literature, without the need to
test them as a whole.

Besides the particular aspects studied in the different experiments, the overall
result shown in this chapter is that a flexible system, that can autonomously choose
among different algorithms and adapt to the specific situation (context) in which it
operates, has the highest average performances. The proposed evaluation frame-
work and the general motion system provide, in our view, a significant contribution
in the definition of a system that can adapt to specific situations, by automatically
tune its internal parameters and cope with the environment challenges.

114

Conclusions and future work

Conclusions

In this thesis, we address the robot motion problem, both from a global perspective,
by investigating world representations, path-planning and contextual reasoning,
and from a local perspective, where trajectory planning and adaptation, as well as
behavioral approaches, such as obstacle avoidance techniques, are exploited.

The robot motion problem has been studied from the very beginning of mobile
robotics, but is still an open research area: for this reason, there has been a large pro-
liferation of different approaches, focused on particular instances of the problem.
The main goal of this thesis was to find a common ground in such a way that all
algorithms and methods, regarding mobile robots and vehicles motion problems,
could be embedded into a methodical framework. The greatest challenge was to
find a common point of view that allows to merge (local) planning techniques with
obstacle avoidance techniques or other kind of reactive behaviors.

Therefore, one of the main contribution of this thesis is the formalization of a
novel algorithm, the Dynamic Behavior Tree, that allows to include both directly
specified maneuvers and reactive behaviors. In this algorithm, different behav-
iors are automatically selected and mixed as the tree grows. In addition, the DBT
comprises many of the RRT variations that can be used to increase the system per-
formances. The benefit of such a general approach is twofold: on the one hand,
it allows to test and experiment the single characteristics of different methods, in
such a way that it is possible to understand their effects and peculiarities as sepa-
rate components; on the other hand, this can be considered as the basis for a ver-
satile system that is able to autonomously adapt its internals with respect to the
situation and the requested task.

Moreover, the need of an objective evaluation of the motion systems for robots
and autonomous vehicles, only recently gained significant attention by the research
community. Without widely accepted performance metrics, it becomes difficult to
choose the “right” motion system with respect to an application, or even to com-
pare different solutions. For this reason, the second important contribution in this
thesis is the definition of an evaluation framework that features both a set of per-
formance metrics, that address the most common issues that should be faced by
motion systems, as well as a set of benchmarks that should be used as test-beds, in
order to analyze the motion systems both in typical situations and while perform-

115

CONCLUSIONS AND FUTURE WORK

ing difficult tasks. In this way, one can obtain a general assessment about benefits
and drawbacks of different approaches, and understand their behavior in specific
situations.

Finally, along the way, as intermediate steps to the thesis goals, other contribu-
tions have been presented, as follows:

• A local method cannot work appropriately in large and complex environ-
ments, without the presence of a global planner that is able to guide the
local methods using global knowledge about the environment. Regarding
this topic, we address the problems that can arise from this decomposition in
global/local subsystems, and present a solution that makes use of “hints”
attached to the global representation of the environments. Moreover, we
present a method to compute a hybrid topological/geometric representation,
based on a virtual frontier-based exploration, that is also easily extensible to
3D.

• An extended goal definition is also given, that allows for the specification of
fuzzy, symbolic and roughly defined global goals. Moreover, when used for
defining the local goal, it gives a larger freedom to the local subsystem, that
can optimize the local trajectory without being constrained to unnecessarily
fixed way-points.

Future work

The aim of this thesis is to make a step forward in the problem of robot motion.
However, such a problem, although it has been addressed for years, is still far from
being solved. The definition of the framework for robot motion systems presented
in this thesis shows that there are still many open points in this topic.

Concerning the global level, learning techniques can be exploited for automatic
context discovery, hints for the local algorithms and possibly also semantic labels
that should simplify the interaction with human beings (see, e.g., Rottmann et al,
2005; Dornhege and Kleiner, 2007). For example, the local goal hints can be dis-
covered by using procedures similar to the value iteration that are commonly used
by the Reinforcement Learning community. Moreover, the representation should
allow for 3D modeling, in order to generalize the application of the framework to
a larger set of problems (e.g., to flying robots).

The local motion subsystem still needs the use of heuristics in order to speed up
the computation, and become suitable for on-line use. Filtering techniques, based
on heuristic argumentation, have been presented, that are able to reduce the num-
ber of generated trajectories. However, these are often ad-hoc techniques, mainly
applied to precise trajectories and are difficult to generalize to reactive behaviors.
Context detection and adaptation can be exploited in conjunction with learning
techniques: for example, some past work try to learn the most efficient naviga-
tion policies together with context classification (Coelho Jr et al, 1998). Moreover,

116

Future work

the use of the layered learning approach presented in this thesis, to tune the large
amount of parameters of the DBT algorithm can lead to sub-optimal solutions.
Other smarter techniques should be tested (e.g., Cherubini et al, 2009).

Finally, uncertainty in execution of a motion (e.g., a reactive behavior) should
be used explicitly to model the possible set of trajectories that can be followed by
the system. Moreover, the uncertainty management could be used to reduce com-
putation, allowing the framework to use only a rough estimate of the results of a
reactive behavior execution, rather than forcing the computation of its exact evolu-
tion in time. Very little work has been done in this direction.

117

Part IV

Appendices

119

A
The OpenRDK framework

In this Appendix, we describe the OpenRDK software framework for robotic appli-
cations, that has been developed primarily by the author of this thesis and is cur-
rently actively used in the RoCoCo Laboratory of “Sapienza” University of Rome
and in the Intelligent Control Group of University of Madrid. The OpenRDK has
been used to implement, develop and test all software modules that are described
in this thesis. For details on the OpenRDK framework, refer to Calisi et al (2008b),
Calisi et al (2008a) or the OpenRDK website1.

A.1 The OpenRDK architecture

OpenRDK is written in C++ and it runs on Unix-like operating systems (Linux,
OS X). The main entity is a software process called agent. Deployment usually
consists of multiple agents across different machines. A module is a thread inside
the agent process; modules are instantiated dynamically at run-time. An agent con-
figuration is the list of the modules to instantiate, together with the value of their
parameters and their interconnection layout. The agent configuration initially spec-
ified in a configuration file. Modules communicate using a blackboard model: each
agent has a repository, where modules publish some of their internal variables (pa-
rameters, inputs and outputs), called properties (see Figure A.1). A module defines
its properties during initialization and it can access every other modules’ proper-
ties, in the same process or in remote hosts, through a global URL-like addressing
scheme. Access to remote properties is transparent from the module perspective

1http://openrdk.sf.net

121

http://openrdk.sf.net

A. THE OPENRDK FRAMEWORK

Figure A.1: An example of four modules in the OpenRDK framework. The mod-
ules communicate using a centralized structure called repository. The property
sharing mechanism allows to access to remote properties in a transparent way.

and it reduces to (regulated) shared memory in the case of local properties. Special
queue properties exist to provide producer/consumer behavior (local and remote).

Concurrency model OpenRDK uses a multi-process multi-threaded model. In
fact, using callback functions requires a discipline of programming that OpenRDK
typical users does not have. The multi-threading solution is a good compromise
between efficiency and simplicity of use, although it requires an infrastructure
for concurrent data access and synchronization. In the proposed concurrency ap-
proach, it is necessary to consider two aspects: real-time requirements and dead-
locks with memory locking mechanisms. For the first issue, currently OpenRDK
uses POSIX Threads; therefore, hard real-time behavior is not supported. Indeed,
the framework is designed for high level functionalities; when real-time is a re-
quirement, such as for fast feedback controllers, the typical approach supported
by OpenRDK is to develop the real-time component as a separate entity and make
OpenRDK communicate higher level information to it. Accessing shared memory
with locking mechanisms can introduce undesired deadlocks. OpenRDK provides
for a global locking mechanism that can be used to avoid deadlocks when access-
ing simple data types. Indeed, in this case the single module is not responsible
for locking/unlocking and deadlocks are prevented. However, when data to be
exchanged are large (e.g., maps or images) module locking may be necessary and
in these cases the implemented solution does not implement a verification mech-
anism that guarantees deadlock-free behaviors. Nonetheless, these situations are
typically limited in a robotic application and deadlock on complex data sharing
can be manually verified. At run-time, each module (thread) is typically waiting
for some event(s) to happen: new data to consume in a queue, the change of a
property value, a timeout, etc.

Repository, properties and URLs The repository is the place where modules pub-
lish the data they want to share with others. Properties can be inputs, outputs, state,
or parameters for the module (there is no hard distinction enforced). Each prop-

122

The OpenRDK architecture

erty has a URL of the type rdk://agent/module/property; the agent name is
different from the host name as there can be more agents on the same host. By re-
ferring to such an URL, modules can transparently access data on any other agent;
the repository will take care of establishing connections and negotiating with the
remote host.

Property links The mechanism of “property links” is analogous to Unix symbolic
links and introduces a level of indirection that allows the modules to be as decou-
pled as possible. Without links, two modules need to agree on some well-known
location (URL) to access the information to be shared, and this creates an unnec-
essary coupling between them. With links, a module’s input property is linked to
another module’s output property, so that the two modules do not need to be aware
of each other. Links are specified in a configuration file; since the data flow is not
hard-coded, modules can be easily re-used for different applications. Links can
point to remote properties as well, and this allows to distribute the computation in
a way which is completely transparent to the module developer.

Configuration and object persistence An agent configuration is an XML file con-
taining the list of modules to be loaded, a description of their interconnections
(property links) and the values of their properties, serialized as explained in the
previous section. Two kinds of properties are flagged by the developer as to be
saved in the configuration file: those representing the proper parameters of the
module, and those representing the state. Therefore, this mechanism has the dou-
ble function of configuring the modules and offering a way to freeze and restart
later the execution of the system.

Queues as object dispatchers OpenRDK implements two models for sharing
data between modules: publisher/reader and producer/consumer. Regular prop-
erties realize the former, and special “queue” properties implement the latter. Queues
are very smart FIFO containers: they support multiple readers; thread-safeness is
ensured without object duplication; they own the objects that are pushed into them
and take care of garbage collection, by destroying the objects when no reader is
interested in them anymore; they allow subscribing modules to listen to particular
objects entering in the queue, and to be awoken on that event; they are “passive”
objects: no additional thread is required to handle them.

Inter-agent information sharing Accessing remote properties is transparent from
the module’s point of view: typically, modules read/write their own properties,
which are then linked to a remote URL via the configuration file. There are some
parameters for tuning the transmission behavior: The subscriber can request a
property update every time it changes on the remote repository (ON CHANGE)
and optionally set a minimum interval between two subsequent updates. As an
alternative, it may request the update to be sent at fixed intervals (PERIODIC in

123

A. THE OPENRDK FRAMEWORK

Figure A.2: The RConsole GUI, the OpenRDK tool for remote inspection.

OpenRDK terms). The subscriber can request to use one of two transport proto-
cols: UDP or TCP. OpenRDK also partially implements a data reconstruction layer:
some objects can be optionally split in multiple packets and reconstructed in the
destination repository. Some objects can be transmitted using LOSSLESS (default)
or LOSSY compression. For example, if an image has to be sent to an image process-
ing module, a lossless format has to be chosen. On the other hand, if the property
is requested just for visualization purposes, a lossy compression is more suited.

Remote inspection RConsole is a graphical tool for remote inspection and man-
agement of modules. We use it both for the main control interface of the robot and
for debugging while we develop the software. RConsole was very easy to imple-
ment thanks to the property sharing mechanism: it is just an agent that happens to
have some module that displays a GUI. Through the reflection used in the repos-
itory, graphical widgets visualize the internal module state and allow the user to
change their parameters while running. Advanced viewers allow to interact with
images and maps, moving robot poses, seeing visual debugging information pro-
vided by modules, etc. (see Figure A.2).

Integration with simulators OpenRDK provides modules that allow to connect
to both USARSim and, through Player, to Stage and Gazebo. The modules expose
the same interface of the real ones, thus resulting in a transparent behavior for the
modules that connect to them.

Modules for logging and replaying OpenRDK provides a configurable module
that, reading from a sensor queue, is able to write a log file containing the sensor

124

OpenRDK applications

data. This file can be processed off-line using third-party tools or used in conjunc-
tion with another module that provides the “playback” feature.

A.2 OpenRDK applications

The OpenRDK framework has been successfully used in a wide range of robotic
applications. Our group has a long record in RoboCup competitions. OpenRDK
has been extensively used in all competitions in which we have been involved:
RoboCupRescue Real Robots, RoboCupRescue Virtual Robots, RoboCup@Home,
and also RoboCup soccer Standard Platform League (with two-legged humanoid
robots). In particular, the latter league makes use of Aldebaran’s Nao humanoid
robots. OpenRDK currently runs on the Nao’s internal computation unit and our
team has developed modules for a humanoid robotic soccer application.

A wheeled robot for exploration and search task Our group is involved in res-
cue robotics, whose goal is to develop robots to assist human rescuers during emer-
gency operations. The main capabilities needed by such a robot are: to build a map
on an unknown environment, to move autonomously in a cluttered scenario, and to
report to the human rescuers the interesting features found during the exploration
(for example, possible human victims, that are entombed or trapped, or possible
treats).

The system has been developed as an OpenRDK agent. The real robot was
equipped with two personal computers and two agents run on each of them: in
this way, we were able to split the computation on two machines. In particular,
the first is responsible for the robot mapping and navigation subsystems, as well as
the mission manager module; the second machine contains the modules for vision
processing. In this application, one example of property sharing is that the vision
module published a queue of “possible human sightings” that was read remotely
by the mission manager module on the other PC. By simply substituting the real
sensor and robot modules by modules that connected to a simulator, we have been
able to test exactly the same software system in both real and simulated scenar-
ios. The simulated rescue scenario allowed us to conduct experiments with a large
number of robots in large environments.

Assistive robots The RoboCare Project2 aims at building a system for assistance
of the elderly and the impaired person. Such non-invasive technology should be
easily integrated in the environment, be able to interact with the person and to
monitor his behavior, and act as a distributed and heterogeneous system. For ex-
ample, some of the main components are a multi-camera system that can follow the
human in the environment and track his position, a wheeled robot that can move
in the environment and interact with the human through a human-robot interface,

2http://robocare.istc.cnr.it

125

http://robocare.istc.cnr.it

A. THE OPENRDK FRAMEWORK

and a PDA that the assisted person can use to interact with the system compo-
nents. In this project, two OpenRDK agents are involved and interconnected to a
pre-existent system. One of them is responsible of managing the mobile robot. It
includes modules for localization in a known environment as well as path-planning
and dynamic obstacle avoidance. Another OpenRDK agent is running connected
with the camera tracking system and is responsible for sending the image data to
the PDA and to send the tracked human position to the robot agent.

RoboCup standard (humanoid) league OpenRDK is not designed for a particu-
lar kind of robot (e.g., for a wheeled robot, such as the one used in the above exam-
ple), because it provides only the infrastructure for module concurrency manage-
ment, information sharing and generic tools. This leads to a great versatility, that
has been demonstrated by using it on a humanoid robot, namely for the RoboCup3

Humanoid Standard league. Although no module could be re-used from the “ex-
ploration and search” or the “assistive robots” application, the OpenRDK keeps its
features also in this new environment.

3http://www.robocup.org

126

http://www.robocup.org

B
An application: exploration and

search missions

This appendix shows an example application for robot motion systems: the ex-
ploration and search task. In particular, we adopt a frontier based approach for
navigation goal detection and a high-level graph-based language to formalize the
high-level exploration plan. The complete system has been presented in Calisi et al
(2007c) and in Calisi et al (2007b).

B.1 Introduction

In recent years increasing attention has been devoted to rescue robotics, both from
the research community and from rescue operators. Robots can consistently help
human operators in dangerous tasks during rescue operations in several ways. In-
deed, one of the main services that mobile robots can provide to rescue operators
is to work as remote sensing devices reporting information from dangerous places
that human operators cannot easily and/or safely reach.

A consistent part of rescue robotic research is focused on providing robots with
high mobility capabilities and complex sensing devices. Such kind of robots are
usually designed to be tele-operated during the rescue mission and the knowledge
about the mission scenario is gathered by the human operator through the dis-
played output of the sensors (e.g., camera images). Performance evaluation for
these kinds of rescue robots is consequently focused on the ability to drive the
robot through terrains of measurable complexity (e.g., random step-fields (Jacoff
and Messina, 2006)), while taking into account operation constrains, such as lack

127

B. AN APPLICATION: EXPLORATION AND SEARCH MISSIONS

(a) the real robot (b) an example of a simulated environment for ex-
ploration and search missions

Figure B.1: The real robot that we use for exploration and search missions and an
example of a simulated environment.

of visibility of the robot in action, or control by single operator. Communication
in this case must be guaranteed at all times, otherwise the robots become out of
control.

Another branch of rescue robotics focuses instead on providing mobile bases
with a certain degree of autonomy. Autonomous and semi-autonomous robots can
process acquired data and build a high-level representation of the surrounding en-
vironment. In this mode, robots can act in the environment (e.g., navigate) through
a limited interaction with the human operator. This also allow a human operator
to easily control multiple robots by providing high level commands (e.g., “explore
this area”, “reach this point”, etc.). Moreover, in case of temporary network break-
down, the mobile robotic platforms can continue the execution of the ongoing task
and return to a predefined base position.

In this section, we focus in exploration and search missions, in which a robot
is required to explore an unknown environment (in our case, we consider flat en-
vironments, due to the mechanical limitations of our mobile base) and search for
interesting features during this exploration. In particular, interesting features can
be of the class of possible human signs (victims) or other threats (fire, sources of
contamination, etc.). The real mobile base that we use for such missions is shown in
Figure B.1(a), and an instance of a simulated environment is shown in Figure B.1(b).
A detailed description of our exploration and search system can be found in Calisi
et al (2007b), and in Calisi et al (2007c).

B.2 Outline of the method

The exploration strategy needs to be very flexible, since the nature of rescue mis-
sions can be very different depending on the scenario at hand. Our solution is a
hierarchical structure. At a higher level, a complex plan is used to determine the

128

Outline of the method

Figure B.2: An instance of an exploration plan described using the PNP formalism.

Figure B.3: A possible situation during the exploration mission, in which the sys-
tem must choose among a set of frontiers (denoted with the letter “F”) and a set of
interesting places (denoted with the letter “I”).

main behavior of the robot. This plan is built using the Petri Net formalism (PNP,
see Ziparo and Iocchi (2006) for details), that makes it possible to define qualitative
strategic rules to be applied in the mission: for example, if during the navigation
the robot detects a new victim, it stops the exploration and goes towards the victim
to determine his/her status. Figure B.2 shows an instance of this kind of plans.

The exploration strategy can be divided into two main parts (as in the typical
“next best view” algorithm (Pito, 1996; González-Baños and Latombe, 2002)): i)
decide where to go next, considering that the environment has to be explored as
fast as possible and that there are places in which there are more chances to find
interesting features; ii) move the robot to the target position, that requires the ability
to deal with cluttered and rough terrains.

The first decision involves various issues, depending on the kind of environ-
ment to be explored. In a rescue mission, a robot has indeed different concurrent
goals. In particular, one goal is to explore and build a consistent map of the envi-

129

B. AN APPLICATION: EXPLORATION AND SEARCH MISSIONS

Figure B.4: Two maps that have been built by our autonomous exploration and
search system. The rounded smiling faces denote the places where human signs
have been found. The path followed by the robot during the mission is also visible.

ronment, another one is to investigate further those areas, already been mapped,
where there is the possibility to find victims. In our system, for what concerns
the first goal, the choice of which position to explore is based on unexplored fron-
tiers Yamauchi (1997). This method focuses on unexplored areas of the map by
taking into account the unexplored frontiers (the bounds between unknown and
free space), i.e. the positions that can be seen as “gates” to those areas. Moreover,
in order to compute unexplored frontiers, we need only the current map. Another
input for the choice of the next target to explore are the “interesting” areas, where
it is possible to find victims, i.e., where it is needed a further investigation (e.g., the
use of slower algorithms to process data). Figure B.3 shows a situation in which the
union of a set of frontiers (denoted with the letter “F”) and a set of interesting places
(denoted with the letter “I”) are the input of the decision process. The problem can
be seen as a multi-objective search problem, as typical of many robotic tasks IROS06
(2006). Thus, we can use standard techniques based on information gain and make
them easy to configure in order to take into account different importance weights
for the different features to be measured in the environment.

B.3 Exploiting the motion system in exploration tasks

The motion system is responsible to move the robot to the desired place (e.g., the
feature of the environment to be analyzed or a frontier to expand the known map).
It is considered as a black box by the exploration strategy, that interact with the
motion system only by specifying new places to be reached and retrieving as feed-
back possible failures (due to unexpected situations or obstacle that are invisible to
the sensors mounted on the robot). Finally, the exploration plan can interrupt the
motion system in order to change the global goal or simply allow the vision-based

130

Exploiting the motion system in exploration tasks

feature detection components of the system to work on still images.
Two examples of the final map, that can be built using the whole search and

exploration system described in this Appendix, are given in Figure B.4.

131

Bibliography

Amigoni F, Gasparini S (2008) Analysis of methods for reducing line segments in
maps: Towards a general approach. In: Proc. of IEEE/RSJ Int. Conf. on Robots
and Intelligent Systems (IROS), pp 2896–2901 33

Arya S, Mount DM, Netanyahu NS, Silverman R, Wu AY (1998) An optimal algo-
rithm for approximate nearest neighbor searching fixed dimensions. Journal of
the ACM (JACM) 45(6):891–923 23

Beeson P, Jong NK, Kuipers B (2005) Towards autonomous topological place de-
tection using the extended Voronoi graph. In: Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA), Barcelona, Spain, pp 4373–4379 34

Bhattacharya P, Gavrilova M (2008) Roadmap-based path planning. IEEE Robotics
and Automation Magazine pp 58–66 33

Borenstein J (1991) The vector field histogram - fast obstacle avoidance for mobile
robots. Robotics and Automation, IEEE Transactions on Volume: 7 Issue: 3:278
–288 14, 95

Borenstein J, Koren Y (1989) Real-time obstacle avoidance for fast mobile robots.
IEEE Transactions on Systems, Man, and Cybernetics 19(5):1179–1187 14

Bosse M, Newman P, Leonard J, Soika M, Feiten W, Teller S (2003) An atlas frame-
work for scalable mapping. In: Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA) 33, 35

Branicky M, Knepper R, Kuffner J (2008) Path and trajectory diversity: Theory
and algorithms. In: IEEE International Conference on Robotics and Automation
(ICRA) 25

Brock O, Khatib O (1999) High-speed navigation using the global dynamic window
approach. In: IEEE Int. Conf. on Robotics and Automation (ICRA), pp 341–346
31

Brock O, Khatib O (2002) Elastic strips: A framework for motion generation in hu-
man environments. The International Journal of Robotics Research 21(12):1031–
1052 28

133

BIBLIOGRAPHY

Bruce J, Veloso M (2002) Real-time randomized path planning for robot navigation.
In: Proceedings of IROS-2002, Switzerland, October 2002 10, 23

Burgard W, Stachniss C, Grisetti G, Steder B, Kuemmerle R, Dornhege C, Ruhnke
M, Kleiner A, Tardos JD (2009) A comparison of slam algorithms based on a
graph of relations. In: Proceedings of IEEE/RSJ Conference on Robots and Sys-
tems (IROS) 72

Calisi D, Nardi D (2009) Performance evaluation of pure-motion tasks for mobile
robots with respect to world models. Autonomous Robots xviii, 87, 88, 97

Calisi D, Farinelli A, Iocchi L, Nardi D (2005a) Autonomous navigation and explo-
ration in a rescue environment. In: Proceedings of IEEE International Workshop
on Safety, Security and Rescue Robotics (SSRR), Kobe, Japan, pp 54–59 xvii, 10,
24, 49

Calisi D, Farinelli A, Iocchi L, Nardi D (2005b) Autonomous navigation and explo-
ration in a rescue environment. In: Proceedings of the 2nd European Conference
on Mobile Robotics (ECMR), Edizioni Simple s.r.l., Macerata, Italy, pp 110–115
xvii

Calisi D, Farinelli A, Grisetti G, Iocchi L, Nardi D, Pellegrini S, Tipaldi D, Ziparo VA
(2007a) Uses of contextual knowledge in mobile robots. In: AI*IA 2007: Artificial
Intelligence and Human-Oriented Computing, Springer-Verlag, Lecture Notes in
Computer Science, vol 4733, pp 543–554 xviii, 75, 77

Calisi D, Farinelli A, Iocchi L, Nardi D (2007b) Multi-objective exploration and
search for autonomous rescue robots. Journal of Field Robotics, Special Issue on
Quantitative Performance Evaluation of Robotic and Intelligent Systems 24:763–
777 xviii, 127, 128

Calisi D, Farinelli A, Iocchi L, Nardi D (2007c) Multi-objective robotic search and
exploration in rescue missions. In: Proc. of Fourth Intl. Workshop on Synthetic
Simulation and Robotics to Mitigate Earthquake Disasters (SRMED), pp 27–32,
electronic proceedings only xviii, 127, 128

Calisi D, Iocchi L, Leone GR (2007d) Person following through appearance models
and stereo vision using a mobile robot. In: Proc. of International Workshop on
Robot Vision, pp 46–56 xvii

Calisi D, Censi A, Iocchi L, Nardi D (2008a) OpenRDK: a framework for rapid and
concurrent software prototyping. In: Proc. of Int. Workshop on System and Con-
current Engineering for Space Applications (SECESA) xviii, 121

Calisi D, Censi A, Iocchi L, Nardi D (2008b) OpenRDK: a modular framework for
robotic software development. In: Proc. of Int. Conf. on Intelligent Robots and
Systems (IROS), pp 1872–1877 xviii, 121

134

Calisi D, Iocchi L, Nardi D (2008c) A unified benchmark framework for au-
tonomous Mobile robots and Vehicles Motion Algorithms (MoVeMA bench-
marks). RSS Workshop on Experimental Methodology and Benchmarking,
Zurich, Switzerland xviii, 87, 88, 95

Calisi D, Iocchi L, Nardi D, Scalzo CM, Ziparo VA (2008d) Context-based design
of robotic systems. Robotics and Autonomous Systems (RAS) - Special Issue on
Semantic Knowledge in Robotics 56(11):992–1003 xviii, 77

Calisi D, Iocchi L, Nardi D, Scalzo CM, Ziparo VA (2008e) Contextual navigation
and mapping for rescue robots. In: Proc. of IEEE Int. Workshop on Safety, Secu-
rity & Rescue Robotics (SSRR), Sendai, Japan, pp 19–24 xviii, 77

Calisi D, Iocchi L, Nardi D, Randelli G, Ziparo V (2009) Improving search and res-
cue using contextual information. Advanced Robotics 23(9):1199–1216 82

Censi A, Calisi D, De Luca A, Oriolo G (2008) A Bayesian framework for opti-
mal motion planning with uncertainty. In: Proc. of the IEEE Int. Conference on
Robotics and Automation (ICRA), pp 1798–1805 xvii, 10

Cheng P, Frazzoli E, LaValle S (2003) Exploiting group symmetries to improve
precision in kinodynamic and nonholonomic. IEEE/RSJ Int Conf on Intelligent
Robots & Systems 26, 53, 55

Cherubini A, Giannone F, Iocchi L, Lombardo M, Oriolo G (2009) Policy gradient
learning for a humanoid soccer robot. Robotics and Autonomous System - Spe-
cial Issue on “Humanoid Soccer Robots” 57(8):808–818 117

Choset H, Nagatani K (2001) Topological simultaneous localization and mapping
(SLAM): Toward exact localization without explicit localization. IEEE Transac-
tions on Robotics and Automation 17:125–137 33

Choset H, Lynch KM, Hutchinson S, Kantor G, Burgard W, Kavraki LE, Thrun S
(2005) Principles of Robot Motion. The MIT Press 3, 11, 12

Coelho Jr JA, Araujo E, Huber M, Grupen R (1998) Contextual control policy selec-
tion. In CONALD’98 - Workshop on Robot Exploration and Learning, Pittsburgh,
PA, June 1998. 116

Collet T, MacDonald B, Gerkey B (2005) Player 2.0: Toward a practical robot pro-
gramming framework. In: Proc. of the Australasian Conf. on Robotics and Au-
tomation (ACRA 2005) 95

Coolidge J (1952) The unsatisfactory story of curvature. The American Mathemati-
cal Monthly 59(6):375–379 91

Coombs D, Murphy K, Lacaze A, Legowik S (2000) Driving autonomously offroad
up to 35 km/h. In: Proc. of Intelligent Vehicles Conference 16

135

BIBLIOGRAPHY

Dornhege C, Kleiner A (2007) Behavior maps for online planning of obstacle nego-
tiation and climbing on rough terrain. Tech. Rep. 233, University of Freiburg 83,
116

Dubins L (1957) On curves of minimal length with a constraint on average curva-
ture, and with prescribed initial and terminal positions and tangents. American
Journal of Mathematics 79:497–516 9

Durham JW, Bullo F (2008) Smooth nearness-diagram navigation. In: Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) 15

F Lamiraux DB, Lefebvre O (2004) Reactive path deformation for nonholonomic
mobile robots. IEEE Transactions on Robotics 20(6):967–977 28, 53, 55

Fabrizi E, Saffiotti A (2002) Augmenting topology-based maps with geomet-
ric information. Robotics and Autonomous Systems 40(2):91–97, online at
http://www.aass.oru.se/˜asaffio/ 72

Feiten W, Bauer R, Lawitzky G (1994) Robust obstacle avoidance in unknown and
cramped environments. In: Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pp 2412–2417 14

Ferguson D, Kalra N, Stentz A (2006) Replanning with RRTs. In: Proceedings of
IEEE International Conference on Robotics and Automation (ICRA), Ieee, pp
1243–1248 24

Ferguson D, Howard T, Lykhachev M (2008) Motion planning in urban environ-
ments: Part I. In: Proc. of Int. Conf. on Intelligent Robots and Systems (IROS), pp
1063–1069 17

Fernández J, Sanz R, Benayas J, Diéguez A (2004) Improving collision avoidance
for mobile robots in partially known environments: the beam curvature method.
Robotics and Autonomous Systems 46(4):205–219 95

Filliat D (2008) Interactive learning of visual topological navigation. In: IEEE/RSJ
International Conference con Intelligent Robots and Systems (IROS), Nice,
France, pp 248–254 34

Fox D, Burgard W, Thrun S (1997) The dynamic window approach to collision
avoidance. IEEE Robotics & Automation Magazine 4(1):23–33 14, 95

Fraichard T, Delsart V (2008) Navigating dynamic environments with trajectory
deformation. Journal of Computing and Information Technology pp 1–11 28

Frazzoli E, Dahleh MA, Feron E (2002) Real-time motion planning for agile au-
tonomous vehicles. AIAA Journal of Guidance, Control, and Dynamics 25:116–
29 22, 59

136

Freda L, Oriolo G (2005) Frontier-based probabilistic strategies for sensor-based
exploration. In: Proceedings of IEEE International Conference on Robotics and
Automation (ICRA) 68

Gayle R, Klingler KR, Xavier PG (2007) Lazy reconfiguration forest (LRF) - an ap-
proach for motion planning with multiple tasks in dynamic environments. In:
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), IEEE, pp 1316–1323 24

Giralt G, Sobek R, Chatila R (1979) A multi-level planning and navigation system
for a mobile robot: a first approach to hilare. In: Proc. of the Int. Joint Conf. on
Artificial Intelligence (IJCAI), pp 335–337 33

González-Baños HH, Latombe JC (2002) Navigation strategies for exploring indoor
environments. I J Robotic Res 21(10-11):829–848 129

Grisetti G, Tipaldi GD, Stachniss C, Burgard W, Nardi D (2006) Speeding up rao
blackwellized slam. Orlando, FL, USA, pp 442–447 72

Grisetti G, Tipaldi G, Stachniss C, Burgard W, Nardi D (2007) Fast and accurate
SLAM with Rao-Blackwellized particle filters. Robotics and Autonomous Sys-
tems, Special issue on Simultaneous Localization and Map Building 55(1):30–38
33, 35

Grisetti G, Rizzini DL, Stachniss C, Olson E, Burgard W (2008) Online constraint
network optimization for efficient maximum likelihood mapping. In: Proc. of
Int. Conference on Robotics and Automation (ICRA), pp 1880–1885 33, 35

Guibas LJ, Hsu1 D, Zhang L (2000) A hierarchical method for real-time distance
computation among moving convex bodies. Computational Geometry 15(1-
3):51–68 23

Guo Y, Qu Z, Wang J (2003) A new performance-based motion planner for non-
holonomic mobile robots. In: Messina E, Meystel A (eds) Proc. of Int. Workshop
on Performance Metrics for Intelligent Systems Workshop (PerMIS) 93, 94

Heinrich-Meisner V, Lauer M, Igel C, Riedmiller M (2007) Reinforcement learning
in a nutshell. In: European Symposium on Artificial Neural Networks (ESANN),
pp 277–288 60

Howard TM, Kelly A (2007) Optimal rough terrain trajectory generation for
wheeled mobile robots. The International Journal of Robotics Research 26(2):141–
166 17

Hsu D (2000) Randomized single-query motion planning in expansive spaces. PhD
thesis, Stanford University 18

137

BIBLIOGRAPHY

Hsu D, Latombe JC, Motwani R (1999) Path planning in expansive configuration
spaces. International Journal of Computational Geometry & Applications 9(4-
5):495–512 18

Hsu D, Kindel R, Latombe JC, Rock S (2002) Randomized kinodynamic motion
planning with moving obstacles. The International Journal of Robotics Research
(IJRR) 21(3):233–255 18

ICRA07 (2007) ICRA 2007 Workshop on Semantic Information in Robotics (ICRA-
SIR 2007), Rome, Italy 76

Indyk P, Motwani R (1998) Approximate nearest neighbors: Towards removing
the curse of dimensionality. In: Proceedings of the Annual ACM Symposium on
Theory of Computing, pp 604–613 23

IROS06 (2006) Proceedings of IEEE/RSJ IROS 2006 Workshop on Multi-objective
Robotics (IROS-MOR 2006), Beijing, China 130

J P Laumond SS, Lamiraux F (1998) Guidelines in nonholonomic motion planning
for mobile robots. In: Robot Motion Planning and Control, Springer Berlin /
Heidelberg, pp 1–53 8

Jacoff A, Messina E (2006) DHS/NIST response robot evaluation exercises. In: IEEE
International Workshop on Safety Security and Rescue Robots, Gaithersburg,
MD, USA 127

Kalisiak M, van de Panne M (2006) Rrt-blossom: Rrt with local flood-fill behavior.
In: Proceedings of IEEE International Conference on Robotics and Automation
(ICRA) 51

Kamon I, Rivlin E (1997) Sensory-based motion planning with global proofs. IEEE
Transactions on Robotics and Automation 13(6):814–822 35, 36

Kant K, Zucker S (1986) Toward efficient trajectory planning: the path-velocity de-
composition. International Journal of Robotics Research 5(3):72–89 12

Khatib O (1991) Real-time obstacle avoidance for manipulators and mobile robots.
In: Iyengar SS, Elfes A (eds) Autonomous Mobile Robots: Perception, Mapping,
and Navigation (Vol. 1), IEEE Computer Society Press, Los Alamitos, CA, pp
428–436 14

Khatib O, Brock O (1999) Elastic strips: A framework for integrated planning and
execution. In: Proceedings of the International Symposium on Experimental
Robotics, pp 245–254 10, 27

Khatib O, Quinlan S (1993) Elastic bands: Connecting path planning and robot
control. In: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), vol 2, pp 802–807 27

138

Kohl N, Stone P (2004) Policy gradient reinforcement learning for fast quadrupedal
locomotion. In: Proceedings of International Conference on Robotics and Au-
tomation (ICRA) 61

Koren Y, Borenstein J (1991) Potential field methods and their inherent limitations
for mobile robot navigation. In: Proceedings of the IEEE Conference on Robotics
and Automation (ICRA), pp 1398–1404 14, 95

Kostov V, Degtiariova-Kostova E (1995) The planar motion with bounded deriva-
tive of the curvature and its suboptimal paths. Acta Mathematica Universitatis
Comeianae 64:185–226 91

Kuffner J, LaValle S (2000) RRT-Connect: An efficient approach to single-query path
planning. In: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA) 19, 21

Kuipers B (1985) The map-learning critter. Tech. rep., University of Texas at Austin
34

Kuipers B, Byun YT (1991) A robot exploration and mapping strategy based on a se-
mantic hierarchy of spatial representations. Journal of Robotics and Autonomous
Systems 8:47–63 34

Lamiraux F, Bonnafous D (2002) Reactive trajectory deformation for nonholonomic
systems: Application to mobile robots. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pp 8–13 28

Lamiraux F, Ferre E, Vallée E (2004) Kinodynamic motion planning: Connecting
exploration trees using trajectory optimization methods. In: Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), pp 3987–
3992 28

Latombe JC (1991) Robot Motion Planning. Kluwer Academic Publishers xv, 3, 10,
33, 65

LaValle SM (1998) Rapidly-exploring random trees: A new tool for path planning.
Tech. rep., Computer Science Dept., Iowa State University 19

LaValle SM (2006) Planning Algorithms. Cambridge University Press, also avail-
able at http://msl.cs.uiuc.edu/planning/ 3, 12

LaValle SM, Kuffner JJ (2000) Rapidly-exploring random trees: Progress and
prospects. In: Algorithmic and computational robotics: new directions, A K Pe-
ters, pp 293–208 17, 21

LaValle SM, Kuffner JJ (2001) Randomized kinodynamic planning. The Interna-
tional Journal of Robotics Research 20:378–400 25

139

BIBLIOGRAPHY

Lazanas A, Latombe JC (1995) Motion planning with uncertainty: a landmark ap-
proach. Artificial Intelligence 76(1-2):287–317, planning and Scheduling 41

Li TY, Shie YC (2002) An incremental learning approach to motion planning with
roadmap management. In: Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), IEEE, pp 3411–3416 24, 25

Lin MC, Canny JF (1991) A fast algorithm for incremental distance calculation. In:
IEEE International Conference on Robotics and Automation (ICRA), pp 1008–
1014 23

Luca AD, Oriolo G, Vendittelli M (2001) Wmr control via dynamic feedback lin-
earization. IEEE Transactions on Control Systems Technology vol. 10(no. 6):pp.
835–852 52

Lumelsky V, Stepanov A (1987) Path planning strategies for a point mobile automa-
ton moving amidst unknown obstacles of arbitrary shape. Algorithmica 2:403–
430 35, 36

Lynch K (1960) The Image of the City. MIT Press, Cambridge, MA, USA 34

McCarthy J, Buvač (1997) Formalizing context (expanded notes). In: Buvač S,
Iwańska Ł (eds) Working Papers of the AAAI Fall Symposium on Context in
Knowledge Representation and Natural Language, American Association for Ar-
tificial Intelligence, Menlo Park, California, pp 99–135 75

Meek D (2004) An arc spline approximation to a clothoid. Journal of Computational
and Applied Mathematics 170(1):59–77 16

Minguez J (2005) Integration of planning and reactive obstacle avoidance in au-
tonomous sensor-based navigation. In: Proc. of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS) 31

Minguez J, Montano L (2004) Nearness diagram (ND) navigation: Collision avoid-
ance in troublesome scenarios. IEEE Transactions on Robotics and Automations
20(1):45–59 15, 70, 95

Minguez J, Montano L, Simeon T, Alami R (2001) Global nearness diagram (GND)
navigation. In: Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), vol 1, pp 33–39 31, 32

Minguez J, Osuna J, Montano L (2004) A “divide and conquer” strategy based
on situations to achieve reactive collision avoidance in troublesome scenarios.
In: Proceedings of IEEE International Conference on Robotics and Automation
(ICRA), vol 4, pp 3855–3862 15

Minguez J, Lamiraux F, Laumond JP (2008) Motion planning and obstacle avoid-
ance. In: Siciliano B, Khatib O (eds) Springer Handbook of Robotics, Springer
Berlin Heidelberg 9

140

Mirtich B (1998) V-Clip: fast and robust polyhedral collision detection. ACM Trans
Graph 17(3):177–208 23

Mjolsness RC, Swartz B (1987) Some plane curvature approximations. Mathematics
of Computation 49(179):215–230 91

Montemerlo M, Thrun S, Koller D, Wegbreit B (2002) FastSLAM: A factored solu-
tion to the simultaneous localization and mapping problem. In: Proc. of the Conf.
American Association for Artificial Intelligence (AAAI), Edmonton, Canada 41

Montesano L, Minguez J, Montano L (2006) Lessons learned in integration
for sensor-based robot navigation systems. International Journal of Advanced
Robotic Systems 3(1):85–91 31

Muñoz N, Valencia J, Londoño N (2007) Evaluation of navigation of an autonomous
mobile robot. In: Proc. of Int. Workshop on Performance Metrics for Intelligent
Systems Workshop (PerMIS), pp 15–21 88, 90, 91, 93, 94

Nilsson NJ (1969) A mobile automaton: an application of artificial intelligence tech-
niques. In: Proc. of Int. Joint Conf. on Artificial Intelligence (IJCAI), pp 509–520
32

Ozguner U, Stiller C, Redmill K (2007) Systems for safety and autonomous behav-
ior in cars: The DARPA Grand Challenge experience. Proceedings of the IEEE
95(2):397–412 92

Petti S, Fraichard T (2005) Safe navigation of a car-like robot within a dynamic
environment. In: European Conference on Mobile Robots (ECMR) 22

Pito R (1996) A sensor based solution to the next best view problem. In: Proceedings
of International Conference on Pattern Recognition, (ICPR), pp 941–945 129

Quinlan S (1994) Efficient distance computation between non-convex objects. In:
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), vol 4, pp 3324–3329 23

Raño I, Minguez J (2006) Steps towards the automatic evaluation of robot obstacle
avoidance algorithms. In: Proc. of Workshop of Benchmarking in Robotics, in the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS) 88, 90, 91, 93, 94

Rawlinson D, Jarvis R (2008) Topologically-directed navigation. Robotica
26(02):189–203 35

Reeds J, Shepp R (1990) Optimal paths for a car that goes both forward backward.
Pacific Journal of Mathematics 8

Reif JH (1979) Complexity of the mover’s problem and generalization. In: Proceed-
ings of the 20th IEEE Symposium on Foundations of Computer Sciences (FOCS),
pp 421–427 4

141

BIBLIOGRAPHY

Riedmiller M (1994) Rprop - description and implementation details. Tech. rep.,
University of Karlsruhe 55

Riedmiller M, Braun H (1993) A direct adaptive method for faster backpropaga-
tion learning: The RPROP algorithm. In: Proceedings of the IEEE International
Conference on Neural Networks, pp 586–591 55, 61

Rimon E, Koditschek DE (1992) Exact robot navigation using artificial potential
functions. IEEE Transactions on Robotics and Automation 8(5):501–518 65

Rosenblatt J (1997) DAMN: A distributed architecture for mobile navigation. Jour-
nal of Experimental and Theoretical Artificial Intelligence 9(1):339–360 92

Rottmann A, Mozos OM, Stachniss C, Burgard W (2005) Semantic place classifica-
tion of indoor environments with mobile robots using boosting. In: Proc. of the
National Conference on Artificial Intelligence (AAAI) 116

Sack D, Burgard W (2004) A comparison of methods for line extraction from range
data. In: Proc. of the 5th IFAC Symposium on Intelligent Autonomous Vehicles
(IAV) 33

Scheuer A, Fraichard T (1996) Planning continuous-curvature paths for car-like
robots. In: Proceedings of the International Conference on Robots and Systems
(IROS), vol 3, pp 1304–1311 22

Schröeter C, Höchemer M, Gross HM (2007) A particle filter for the dynamic win-
dow approach to mobile robot control. In: Proc. of the 52nd Int. Scientific Collo-
quium (IWK), vol 1, pp 425–430 16, 51

Shmaglit A, Rinat K, Brand Z, Fischler A, Velger M (2006) Autonomous vehicle con-
trol and obstacle avoidance concepts oriented to meet the challenging require-
ments of realistic missions. In: International Conference on Control, Automation,
Robotics and Vision (ICARCV), pp 1–6 92

Simmons R (1996) The curvature-velocity method for local obstacle avoidance. In:
Proceedings of IEEE International Conference on Robots and Automation, vol 4,
pp 3375–3382 11, 14, 95

Spenko M, Iagnemma K, Dubowsky S (2004) High speed hazard avoidance for mo-
bile robots in rough terrain. In: Proceedings of SPIE Conference of Unmanned
Ground Vehicles Technology, pp 439–450 15

Stachniss C, Burgard W (2002) An integrated approach to goal-directed obstacle
avoidance under dynamic constraints for dynamic environments. In: Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS) 32, 95

Stone P, Veloso M (2000) Layered learning. In: Mántaras RLD, Plaza E (eds) Ma-
chine Learning: ECML 2000 (Proceedings of the Eleventh European Conference
on Machine Learning, Springer Verlag, Barcelona, Spain, pp 369–381 61

142

Taı̈x M, Malti AC, Lamiraux F (2008) Planning robust landmarks for sensor based
motion. In: Bruyninckx H, Preucil L, Kulich M (eds) European Robotics Sym-
posium (EUROS), Springer Berlin / Heidelberg, Springer Tracts in Advanced
Robotics, vol 44, pp 195–204 41, 72

Takeuchi E, Calisi D, Ohno K, Tadokoro S, Igarashi H, Kinjo T, Takamori T, Matsuno
F (2008) Development of RTCs for mobile robots with autonomy and operability
- report 2: Obstacle detection modules. In: Proc. of 26th Annual Conf. of the
Robotics Society of Japan (RSJ), pp 1F3–08, in Japanese xvii

Thompson A (1977) The navigation system of the JPL robot. In: Proc. of the Int.
Joint Conf. on Artificial Intelligence (IJCAI), pp 749–757 33

Thrun S (1996) An approach to learning mobile robot navigation. Robotics and Au-
tonomous Systems 15:301–319 60

Tomomi K, Jun O, Rie K, Takahisa M, Tamio A, Tsuyoshi U, Tsuyoshi N (2003)
Path planning for a mobile robot considering maximum curvature, maximum
curvature derivative, and curvature continuity. Transactions of the Japan Society
of Mechanical Engineers 69(688):3269–3276 91

Tovar B, Guilamo L, LaValle SM (2004) Gap navigation trees: Minimal representa-
tion for visibility-based tasks. In: Workshop on the Algorithmic Foundations of
Robotics, pp 11–26 35, 36

Tovar B, Murrieta-cid R, Lavalle SM (2007) Distance-optimal navigation in an un-
known environment without sensing distances. IEEE Transactions on Robotics
23(3):506–518 35, 36

Turner RM (1998) Context-mediated behavior for intelligent agents. International
Journal of Human-Computer Studies 48(3):307–330 76

Ulrich I, Borenstein J (1998) VFH+: Reliable obstacle avoidance for fast mobile
robots. In: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pp 1572–1577 14, 95

Ulrich I, Borenstein J (2000) VFH*: Local obstacle avoidance with look-ahead ver-
ification. In: Proceedings of the 2000 IEEE International Conference on Robotics
and Automation (ICRA), pp 2505–2511 58

Urmson C (2002) Locally randomized kino-dynamic motion planning for robots in
extreme terrains. PhD Thesis Proposal, The Robotics Institute, Carnegie Mellon
University 22, 59, 64

Urmson C, Simmons R (2003) Approaches for heuristically biasing rrt growth. In:
Proceedings IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pp 1178–1183 23

143

BIBLIOGRAPHY

Walton D, Meek D (2005) A controlled clothoid spline. Computers and Graphics
29:353–363 16

Werner F, Gretton C, Maire F, Sitte J (2008) Induction of topological environment
maps from sequences of visited places. In: IEEE/RSJ International Conference
con Intelligent Robots and Systems (IROS), pp 2890–2895 34

Yamauchi B (1997) A frontier based approach for autonomous exploration. In: IEEE
International Symposium on Computational Intelligence in Robotics and Au-
tomation 68, 130

Zhang Z (1994) Iterative point matching for registration of free-form curves and
surfaces. International Journal of Computer Vision 13(2):119–152 72

Ziparo VA, Iocchi L (2006) Petri net plans. In: Proceedings of Fourth International
Workshop on Modelling of Objects, Components, and Agents (MOCA), Turku,
Finland, pp 267–290, bericht 272, FBI-HH-B-272/06 129

Zucker M, Kuffner J, Branicky M (2007) Multipartite RRTs for rapid replanning
in dynamic environments. In: Proceedings of IEEE International Conference on
Robotics and Automation (ICRA), IEEE, pp 1603–1609 24, 26

Zwynsvorde DV, Siméon T, Alami R (2000) Incremental topological modeling using
local voronoi-like graphs. In: Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS) 63

Zwynsvorde DV, Siméon T, Alami R (2001) Building topological models for nav-
igation in large scale environments. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA) 63

144

	Contents
	List of Figures
	Notation
	Aknowledgements
	Introduction
	Focus and aims
	Main contributions
	Thesis outline

	I Current approaches to robot motion
	1 Definitions and problem formulation
	1.1 Definitions
	1.1.1 The Piano Movers' Problem
	1.1.2 Time and trajectories
	1.1.3 Velocity constraints and robot models
	1.1.4 Dynamic constraints and the phase space X

	1.2 Different approaches and problem decompositions
	1.2.1 (Re)planning and (reactive) control
	1.2.2 Global path-planning and local methods
	1.2.3 Decoupled trajectory planning: path and velocity

	1.3 Sampling-based techniques and probabilistic approaches

	2 Two different approaches to local robot motion
	2.1 Reactive algorithms
	2.1.1 Potential Field Methods (PF)
	2.1.2 Vector Field Histogram (VFH, VFH+)
	2.1.3 Dynamic Window Approach (DWA)
	2.1.4 Nearness Diagram (ND)
	2.1.5 Trajectory generation

	2.2 Deliberative methods
	2.2.1 Prerequisites
	2.2.2 The Expansive Configuration Tree algorithm
	2.2.3 The Rapid-exploring Random Trees (RRT) family of algorithms
	2.2.4 Path smoothing and trajectory deformation

	2.3 Discussion

	3 World models for high-level path-planning
	3.1 Integrating global planners and local algorithms
	3.2 Grid (raster) maps
	3.3 Line maps
	3.4 Topological maps
	3.5 Minimalistic environment models

	II A unifying framework for robot motion systems
	4 Tasks and goals
	4.1 Typical goals for a motion task
	4.2 A general definition for robot motion goals
	4.2.1 Reference frames
	4.2.2 The goal fitness function and the stopping criterion

	4.3 Trajectory and task execution issues
	4.3.1 The trajectory fitness function
	4.3.2 The trajectory constraints P

	4.4 Redefinition of the robot motion problem
	4.4.1 Motion system as a component

	5 Integrating deliberative and reactive approaches
	5.1 Data structures: the trajectory tree and the trajectory arc
	5.2 The Dynamic Trajectory Tree (DTT) algorithm
	5.2.1 Interleaved planning and execution
	5.2.2 Feedback control
	5.2.3 On-line pruning
	5.2.4 Trajectory deformation
	5.2.5 DTT in dynamic environments

	5.3 The Dynamic Behavior Tree (DBT) algorithm: integrating sensor-based behaviors into the planner
	5.3.1 Behaviors as advices for the extendNode function
	5.3.2 The variable horizon: bridging pure-reactive methods and planners
	5.3.3 Feedback behaviors as trajectory arcs

	5.4 Automatic parameter tuning by means of machine learning techniques
	5.4.1 Reinforcement Learning (RL) and Policy Gradient (PG) methods
	5.4.2 Applying PG methods to tune DTT and DBT parameters

	6 A compact topological representation for autonomous navigation
	6.1 The problem of the local goal
	6.1.1 Selection of the local goal
	6.1.2 Inherent problems of the global/local decomposition

	6.2 A simple roadmap built using virtual frontier-based exploration
	6.2.1 Building the roadmap
	6.2.2 Computing the local goal

	6.3 From the roadmap to a hybrid topological/geometric representation
	6.3.1 Local map localization
	6.3.2 Considerations about the global goal
	6.3.3 Adding labels, local goal hints and other information to the representation

	7 High-level reasoning and context-based adaptation
	7.1 Context-based robotics
	7.2 Contextual design of the motion system
	7.2.1 System architecture and contextual knowledge
	7.2.2 Experimental results

	7.3 Context variables determination and topological map annotations

	III Evaluation and conclusions
	8 The MoVeME evaluation framework
	8.1 Related work in evaluating motion algorithms
	8.2 The evaluation framework
	8.2.1 Task metrics
	8.2.2 Trajectory metrics
	8.2.3 Physics-based metrics

	8.3 Comparison with other performance metrics
	8.4 Benchmark problems

	9 Experiments
	9.1 Systems being evaluated
	9.2 Simulation experiments
	9.2.1 A typical environment: the ``hospital'' map
	9.2.2 A critical environment: the ``zig-zag'' map
	9.2.3 A critical task: parallel parking
	9.2.4 A critical task: constrained motion

	9.3 Real robot experiments
	9.3.1 A typical environment: corridor experiment
	9.3.2 A critical environment: moving obstacles, slalom and parallel parking

	9.4 Experiments with the whole set of MoVeME benchmarks
	9.5 Summary

	Conclusions and future work
	Conclusions
	Future work

	IV Appendices
	A The OpenRDK framework
	A.1 The OpenRDK architecture
	A.2 OpenRDK applications

	B An application: exploration and search missions
	B.1 Introduction
	B.2 Outline of the method
	B.3 Exploiting the motion system in exploration tasks

	Bibliography

