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Introduction and overview

Background

It is generally accepted that, with few exceptions, solution curves of non-
linear dynamical systems cannot be found explicitly. However, one could
try to extract qualitative information from the system, such as a description
of the equilibrium configurations, stability of these configurations, existence
of periodic, quasi-periodic or chaotic motion, boundness of solutions, and
so on. However, even this far more restricted program turned out to be
highly complex to be carried out. In order to endeavor a feasible analysis
and to prove rigorous results we have to make additional restrictions on the
objectives we aim at.

The first method of simplifying the analysis is to localize it: instead of
considering the whole of phase space, one considers a small neighborhood
of some special point or trajectory. Obvious candidates are equilibrium
points and periodic trajectories, which are for instance investigated for this
local analysis concerning their stability or, when parameters are present, the
occurrence of bifurcations.

Indeed, a dynamical system depends, as a rule, on parameters. There-
fore, it is important to know how the qualitative properties of the model
vary as the parameters change slightly. Ideally, one would like to have a
description of the dynamics for all possible parameter values, but this is
sometimes too difficult. Localizing the analysis around a special point in
parameter space is a widely used method for obtaining restricted but mean-
ingful results.

Another way of making the system more “manageable” is to simplify
it, in such a way that conclusions about the simplified system are relevant
for the original system. Several means for simplifying systems have been
developed. To start, one can try to choose new coordinates with respect to
which the system assumes a “simpler” form. An example of this approach is
to transform the vector field of the dynamical system ia a suitable “normal
form” [28, 58]. In the case of Hamiltonian vector fields this approach can
be realized by means of the Birkhoff-Gustavson normalization procedure
[61]. It is a stepwise procedure that normalizes a given system degree-by-
degree so that it has extra conserved quantities or integrals, and associated
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symmetries. This symmetry can often be used to reduce the dimension of
the phase space.

Since the simplified and original system are connected (or conjugated)
by a smooth coordinate transformation, the conclusions for the simplified
(or normalized) system are valid for the original system too. However, the
Birkhoff normalization procedure generically does not converge to a smooth
coordinate transformation, not because of technical difficulties, but for in-
trinsic reasons: the original system is generically not integrable. In order
to obtain a smooth transformation, it is necessary to stop normalizing at a
certain degree, resulting in a normalized system with a near-symmetry, i.e.,
one that is symmetric up to some degree.

This is where perturbation theory comes in, dealing with systems that
differ from integrable ones by small perturbations [5, 16, 92]. A positive
result in this area is KAM theory, which states that perturbed integrable
Hamiltonian systems retain qualitatively the same dynamics as the unper-
turbed systems, namely quasi-periodic motion, on tori filling a fat Cantor
set in phase space [4, 85, 96].

After the normalization, several methods can be used to proceed with a
further reduction of the system, exploiting the acquired near-symmetries; see
among others the energy-momentum map [45, 35, 80] or the planar reduction
[22, 21] methods. In [45] the energy momentum map method is developed
for arbitrary vector fields depending on parameters (around an equilibrium
point), so for instance the generalization of the Hopf Bifurcation of [13] can
be obtained.

The planar reduction method brings a certain class of Hamiltonian dy-
namical systems into a polynomial model. This allows to classify the dy-
namics using singularity theory, another powerful tool to reduce a system
into the “simplest” one, if some suitable conditions are satisfied. A good
introduction to singularity theory can be found in [56, 59, 60, 79] (see also
[6, 7, 55]). The idea is to view a system as a particular member of a smooth
family of systems and to work modulo coordinate transformations called
equivalences, that are chosen appropriately for the problem at hand. Mem-
bership in the family is automatic if it includes all nearby systems modulo
these equivalences. A family with this property is called a versal family. To
find such versal families, one chooses the most degenerate parameter set-
ting, and applies the appropriate equivalence to bring this so-called central
singularity (also called organizing center) in simple form. Then one adds
a (hopefully) finite number of terms to obtain a family of systems. The
number of terms required for versality is called the codimension of the cen-
tral singularity. To consider a generic family instead of a particular one
may sound like replacing a small problem with a larger one. However, this
approach often simplifies things considerably, drawing away attention from
particularities while focusing on generic aspects. Moreover, this approach
may actually reduce the number of parameters: although the physical model
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may have many parameters, the few parameters of the family may already
capture all “essential” information.

Goal and main results of the research

In this work we consider two degrees of freedom Hamiltonian systems around
symmetric resonances. With this we mean Hamiltonian dynamical systems
close to an equilibrium, invariant with respect to reflection symmetries in
both configuration variables, in addition to the time reversion symmetry,
and with quadratic part with unperturbed frequencies close to a resonant
ratio. Our interest in these systems comes from problems of galactic dy-
namics, in which they appear to describe the orbital structure of elliptical
galaxies. However their relevance is clearly not limited to this field, since
they appear in several other areas of mathematical physics, engineering,
chemistry, atomic and nuclear physics and so on.

After a (truncated) series expansion, such systems can be treated as
perturbed non-linear oscillators. Our goal, in addition to a general under-
standing of the bifurcation sequence, is to provide quantitative predictions,
in the form of energy threshold values which determine the bifurcations of
the main periodic orbits.

The change in the stability of a periodic orbit is connected to frequency
ratio; commensurability of low orders between frequencies is the source of
non-trivial dynamics and the main trigger to stability-instability transition
[3, 9, 29, 32, 101], and the interaction of resonances provides chaos. In har-
monic oscillators, frequency ratios are fixed. However, the non-linear cou-
pling between the degrees of freedom induced by the perturbation causes
the frequency ratio to change. As a consequence, the system passes through
resonances of order given by the integer ratios closest to the ratio of the un-
perturbed frequencies. This in turn is responsible for the birth of new orbit
families bifurcating from the normal modes or from lower-order resonances.

Stable periodic orbits are “parents” of invariant tori on which wind a
family of quasi-periodic orbits: in this way we see how periodic orbits “or-
ganize” the regular part of the phase space and justify our interest in their
study. A typical situation is that in which a family of periodic orbits be-
come unstable when a low order resonance occur between its fundamental
frequency and that of a normal perturbation. The simplest case is given
by an axial orbit that, depending on the specific form of the potential, can
be unstable trough bifurcation of loop and inclined orbits (1 : 1 resonance),
banana and antibanana orbits (1 : 2 resonance), fish orbits (2 : 3 resonance),
etc [49, 69]. The nicknames allotted to them are due to their geometric
properties.

In the following we will focus on bifurcations related with 1 : 1 and
1 : 2 resonances and we will briefly discuss higher order resonances. A

6



lot of work has been devoted to this study. On the 1 : 1 resonance, we
recall the works of Negrini et al. [27], Kummer [72], Deprit and coworkers
[40, 41, 83], Cushman and coworkers [38]. The general treatment of the
symmetric 1 : 1 resonance seems to have been done by Cotter [33] in his
Ph.D. thesis. We extend these works to include the phenomenon of passing
through the resonance as a consequence of the nonlinear coupling. Great
relevance plays the application of resonance crossing to galactic dynamics
[11, 103]; a recent treatment has been given in [76]. There clearly are several
other areas of application, see e.g. [1] for the semi-classical approximation
of atomic nuclei.

The 1 : 2 resonance also plays a prominent role in nonlinear Hamiltonian
dynamics. In galactic dynamics it appears in several fashions: to mention
a few, in axisymmetric prolate systems it determines the bifurcation of the
inner thin tube orbits [49]; in triaxial systems with ellipsoidal non-singular
equipotentials it gives the bifurcation of banana and antibanana orbits in
the symmetry planes [9, 84]. Its interest is clearly not limited to this field
and its investigation in theoretical and applied nonlinear dynamics has been
very active [45, 37]: a prototype system is the so-called spring-pendulum [21]
and an application in satellite attitude dynamics is the tethered system [95];
in engineering it appears to exploit the aerodynamical forces generated by
the flight of tethered airfoils to produce electric energy [51, 52]; in chemistry
it is quite relevant in molecular vibrations [26, 70].

As we clarify later on, the presence of reflection symmetries has the effect
to increase the order of the resonance. Since we are interested in systems
with double reflection symmetries, we will speak more correctly of 2 : 2 and
2 : 4 resonances. This restriction makes the results of particular relevance
for galactic motions [30].

To catch the main features of the orbital structure, we approximate the
frequency ratio with a rational number plus a small “detuning” δ:

ρ =
m1

m2
+ δ, m1,m2 ∈ N.

This expedient is legitimate because, as observed above, even if the unper-
turbed system is non-resonant, the non-linear coupling between the degrees
of freedom induced by the perturbation determines a “passage through res-
onance” with a commensurability ratio, say m1/m2 with m1,m2 ∈ N, cor-
responding to the local ratio of oscillations in the two degrees of freedom.
This in turn is responsible for the birth of new orbit families bifurcating
from the normal modes or from lower-order resonances.

2:2 Resonance

Our work starts with the study of a general detuned 1 : 1 resonance invariant
under Z2×Z2 symmetry, that is invariant under reflection symmetries with
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respect to both coordinate axes. At first, we proceed in analogy with an or-
dinary Birkhoff-Gustavson normalization [61], the difference being that the
reducing coordinate transformations are performed through Lie transforms
[28] and the detuning term is treated as a term of order two and put in the
perturbation. This method will be described in detail in chapter 1. The
outcome of the normalization is a “simpler” Hamiltonian function, namely
a normal form for the system, which exhibits a (formal) S1 symmetry.

Afterwards, we perform a regular reduction [36] dividing out the ac-
quired S1 symmetry. The reduced system has only one degree of freedom;
this allows us to classify the dynamics with singularity theory [23], if some
non degeneracy conditions, which depends on the physical coefficients of
the system, are satisfied. Actually we have to respect the symmetries and
reversibility of the system, thus we are lead in the domain of equivariant
singularity theory. See chapter 2 for a short introduction to the theory. For
a more general description see e.g. [59, 60, 79]. The momentum correspond-
ing to the S1 symmetry serves as a parameter, usually called “distinguished”
[21].

To put the one degree of freedom system in a form suitable to apply
singularity theory, we turn it into a planar system using the so-called planar
reduction method [22, 20], which we describe in section 3.2.

The result is a polynomial Hamiltonian model system living on the plane.
This system is easy to analyze, yielding a qualitative description of the orig-
inal system. In particular, bifurcation curves can be found without much
effort. What is new in the current approach is that in each step towards
the final polynomial model, the simplifying transformations are computed
explicitly. This allows us to pull back the final bifurcation curves to the
original parameter-energy space, so that quantitative results for the bifur-
cations of the original system are obtained. In particular, in section 3.4, we
provide energy threshold values (depending on the original physical coeffi-
cients and on the detuning parameter) which determine the bifurcation of
periodic orbits in general position (namely loop and inclined obits) from the
normal modes of the original system.

For these calculations we summon the computer’s help, using algorithms
described and developed in chapters 1, 2 and 3.

2:4 Resonance

Hamiltonian normal forms can be used as well to get information on the
bifurcations connected with the 1 : 2 resonance. We limit the analysis to
systems with reflection symmetry with respect to both degrees of freedom:
in this case we speak more correctly of 2 : 4 resonance. However, its pe-
culiarities are worthy of note by themselves, since the approach followed to
study systems with a single symmetry like the spring-pendulum, is not able
in the case of double symmetry to unveil the generic behavior of the system
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[45]. In particular, we cannot proceed as in the case of the 2 : 2 resonance,
since after the planar reduction method we achieve a polynomial normal
form with infinite codimension [23].

In this work we go a little bit in this direction of getting a general
analysis of this by considering, in chapter 5, a generic perturbation up to the
degree necessary to include resonant terms. Even if this is still not enough
to deduce the general behavior for arbitrary perturbations, it allows us to
gather complete information on the bifurcation structure near the resonance
of the truncated system. In fact, we will see that a truncation of the normal
form to the first term incorporating the resonance is able to capture the
essential features of the bifurcations and allows us to obtain quantitative
predictions for the appearance of banana and antibanana orbits. As for the
2 : 2 resonance, these predictions depend on the physical coefficients of the
system and are expressed in terms of the energy and detuning parameter
[77].

Orbit structure in systems with elliptical equipotential

In galactic dynamics (but not only, see e.g. [1]) the study of potentials with
similar concentric ellipsoidal equipotentials is of great relevance. Several
numerical and analytical investigations are available [9, 73, 84, 87, 94].

To shed light on the methods and to limit the algebraic complications
we limit the treatment to 2 degrees of freedom non-rotating systems. Such
potentials present some degeneracies which forbid the appearance of inclined
orbits in the case of a 2 : 2 resonance. Instead loop orbits appear upon a
critical energy threshold values [78]. See chapter 4 for more details. Ex-
plicit formulas for the bifurcation thresholds are computed in terms of the
energy for a family of models with two shape parameters. They are in good
agreement with numerical results available in the literature [1, 84].

If ellipsoidal symmetry-breaking perturbations are included the degen-
eracies of the system are removed and inclined orbits bifurcate. However
the smaller the deformation, the higher the threshold value [78].

These systems are also considered around a 2 : 4 resonance, providing the
critical energy values for the bifurcation of banana and antibanana orbits;
and around a 4 : 6 resonance, finding conditions for the appearance of fish
orbits.

The plan

The first two chapters introduces the theory which is behind the results we
present in the following. In particular, chapter 1 summarizes Hamiltonian
mechanics and presents the normalization procedure. Chapter 2 describes
singularity theory and developes the main algorithm which allows us to
reduce the 2 : 2 detuned resonance in the next chapter.

9



In chapter 3, exploiting the normalization procedure and singularity the-
ory, a versal deformation of the 2 : 2 resonance is computed. Namely, if some
non degeneracy conditions are satisfied, we are able to reduce the Hamil-
tonian function into a polynomial form. Bifurcation curves are therefore
easy to compute and their expression in terms of the energy and detuning
parameter is computed.

A generic perturbation of the 2 : 4 resonance is considered in chapter
5. Now, after the normalization, we arrive at a polynomial normal form
of infinite codimension. Therefore we cannot classify the dynamics using
singularity theory, as we did for the 2 : 2 resonance. However, if we limit
ourselves to a generic perturbation up to the degree necessary to include
resonant terms in the normal form, we are able to capture the essential
features of the bifurcations and to obtain predictions on the appearance of
banana and antibanana orbits.

In chapter 4 we analyze systems with elliptical equipotentials in the case
of a 2 : 2 and 2 : 4 resonances, which are of great relevance for galac-
tic dynamics. Such potential presents some degeneracy which forbid the
appearance of inclined orbits for the 2 : 2 resonance. However if ellip-
soidal symmetry-breaking deformations are included such degeneracies are
removed. Energy threshold values for the bifurcation of the main periodic
orbits are provided.

In the last chapter we briefly deal with higher order resonances. In
particular, we consider the symmetric 2 : 3 resonance in systems with elliptic
equipotentials.

Finally, we conclude by discussing some aspects of these results and some
hints for further studies and possible applications.
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Chapter 1

Normalization

The normalization procedure is a widely used tool for approximating a
Hamiltonian system with a simpler one. This chapter starts with an intro-
duction to Hamiltonian mechanics, followed by an explanation of the nor-
malization procedure. In particular, we describe the Lie-transform method
and show how it can be used to approximate the dynamics of Hamiltonian
systems around symmetric detuned resonances.

1.1 Introduction to Hamiltonian mechanics

We give here the basics of Hamiltonian dynamics and refer to the literature
for more details. See e.g [3, 4, 5, 16, 82, 92].

Let R = R2n be an even dimensional space. The time evolution of
a dynamical system on the phase space R is represented by the functions
(p,q), with q(t) = q1, . . . , qn and p(t) = p1, . . . , pn, where the time t varies
over a real interval (finite or infinite). Heuristically, qi is a position and pi
is the associated momentum or velocity.

The evolution of the system is determined by a function H on R, called
Hamiltonian, through the canonical equation or Hamilton’s equations

q̇i =
∂H

∂pi
, ṗi = −

∂H

∂qi
i, j = 1, . . . n (1.1)

where the dot denotes time derivative. In case H does not depend explicitly
on t we speak of an autonomous system. Notice that a non autonomous
system can be treated as an autonomous one by a trivial extension of the
phase space. More precisely, we can regard the time as a new coordinate
qn+1 (with conjugate momentum pn+1 = −H) and consider the system on
a 2n + 2 dimensional phase space. Thus, from now on we will deal with
autonomous system.

More in general, one can consider the time evolution of a generic function
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A on the phase space, defined by

A→ A(t), A(t) := A(ϕtH(p,q)) (1.2)

where ϕtH(q,p) is the time-t flow induced by the Hamilton’s equations (1.1),
ϕ0H(p,q) = (p,q) . The time evolution of A must therefore obey the follow-
ing equation

Ȧ = {A,H} (1.3)

where {., .} denotes the Poisson brackets, namely

{A,H} =
n∑
i=1

(
∂H

∂pi

∂A

∂qi
− ∂H

∂qi

∂A

∂pi

)
. (1.4)

The righthand side of eq. (1.3) defines a vector field on the space of differen-
tiable functions in the phase space variables. Given a Hamiltonian function
H, this vector field is determined by the following linear operator

LH :=

n∑
i=1

(
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

)
. (1.5)

The operator LH is nothing else than the derivative along the time flow
induced by H and is also referred as Lie derivative.

A phase space function F is said to be a constant of motion or integral of
motion if it is conserved along the flow induced by the Hamiltonian function,
namely if F (ϕtH(p,q)) = F (p,q) for all t. Therefore every differentiable
phase space function which satisfies

LHF = {F,H} = 0 (1.6)

is an integral of motion.

1.1.1 Canonical transformations

Sometimes coordinates changes are useful to simplify the equations of mo-
tion. However, when operating a coordinates transformation the canoni-
cal structure of the system is generally broken, in the sense that the form
of Hamilton’s equations is not preserved. A coordinate transformation
(p,q) → (P,Q) is said to be canonical if the equations of motion in the
new variables follow from a new Hamiltonian, namely eq.s (1.1) turn in to

Q̇i =
∂K

∂Pi
, Ṗi = −

∂K

∂Qi
i, j = 1, . . . n (1.7)

where K(P,Q) = H(p(P,Q),q(P,Q)).
A transformation is canonical iff it preserves the Poisson brackets. Often

canonical transformation are constructed using generating functions.
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It is easy to see that the flow ϕtG of an arbitrary Hamiltonian functionG is
a canonical transformation and ϕ−tG is its inverse. It is therefore naturally to
try to simplify a Hamiltonian system with Hamiltonian H by conjugating it
with a canonical transformation generated by another Hamiltonian G. The
function H ◦ ϕtG satisfies the differential equation

∂H ◦ ϕtG
∂t

= {H ◦ ϕtG, G} = LG(H ◦ ϕtG). (1.8)

Thus, the Hamiltonian function in the new coordinates will be given by

H ◦ ϕtG = exp(LG)H := H + tLGH +
t2

2
LG(LGH) + . . . (1.9)

This formula is behind the normalization procedure we are going to describe
in the following section.

1.2 The normalization procedure

Hamiltonian systems with more than one degree of freedom are difficult
to analyze. The normalization is an iterative procedure for constructing a
coordinate transformation which normalize the system, so that it has extra
conserved quantities or integrals, and associated symmetries. Using these,
the system can be reduced to less degrees of freedom, making the analysis
more feasible [4].

Let us consider a N degrees of freedom dynamical system whose Hamil-
tonian H is supposed to be analytic in a neighborhood of an equilibrium
point, which without loss of generality we can assume to be in the origin.
Therefore, for |p|, |q| ≈ ε, ε > 0 and sufficiently small, H can be expanded
as a power series

H(p,q) =
+∞∑
k=0

Hk(p,q) (1.10)

where the terms Hk are homogenous polynomials of degree k+2 in the phase
space variables. Moreover we assume H0 to be the Hamiltonian function of
an integrable system. We can perform a “blowing up” of the phase space
by means of the transformation [45]

(p,q)→ ε−1(p,q) (1.11)

and scale the Hamiltonian (1.10) according to

H = ε2H, (1.12)

so to obtain

H(p,q) = H0(p,q) +
+∞∑
k=1

εkHk(p,q) (1.13)
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A dynamical system with Hamiltonian function of type (1.13) is naturally
apt to be treated as a small perturbation of an integrable system. To inves-
tigate the dynamics of the system, we can try to construct further formal
independent integrals of motion around the equilibrium point. More pre-
cisely, we can look for a near identity canonical coordinate transformation
which brings H into a a “simpler” Hamiltonian function, that is a normal
form, which admits new independent integral of motions.

The coordinate transformation resulting from the normalization proce-
dure is a formal transformation; generically it is given by a non convergent
series. This ties in with the fact that Hamiltonian systems with two or more
degrees of freedom generically are not integrable. Hence the integrals ob-
tained by the normalization are only approximated, up to flat perturbations.
For small excitations these perturbations are extremely small, so that the
integral curves of the system stay close to those of the normalized system
for a long time. For two degrees of freedom the situation is even better. By
KAM theory, there exists a fat Cantor set of tori with parallel dynamics. On
this part of phase space, a smooth conjugation with the integrable system
does exist. The KAM tori prevent chaotic solution curves from wandering
through phase space, so that even these solutions stay within a bounded dis-
tance from the integrable system’s tori for ever. This provides a justification
for using the integrable approximation to study the full system.

1.2.1 The Lie-transform method

As observed above, the usual approach in Hamiltonian perturbation theory
is to find a canonical transformation in such a way to construct a “simpler”
Hamiltonian. The idea behind the Lie-transform method [16, 28, 57, 54] is
that of seeing the canonical transformation as a “flow” along the Hamilto-
nian vector field associated to another Hamiltonian function which serves
as generating function of the transformation. It is an iterative procedure,
normalizing the system degree by degree. The end result is a Hamiltonian
K in normal form, which has a circle or torus symmetry, with associated
conserved quantities.

Let us consider a N degrees of freedom Hamiltonian function as given
in (1.13), where H0 defines an integrable system, ε is a small perturbing
parameter and, for k > 0, Hk is a polynomial of degree k + 2 in the phase
space variables. We look for a canonical transformation of the type

(P,Q) =MG(p,q), (1.14)

where MG is a linear operator defined by

MG ≡ e−εLG1e−ε
2LG2 . . . e−ε

nLGn . . . (1.15)

The functions Gn are the coefficients of the expansion of the generating
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function of the transformation (1.14) and the differential operator LG is
defined through the Poisson brackets

LGf ≡ {f,G} :=
2∑
i=1

∂G

∂pi

∂f

∂qi
− ∂G

∂qi

∂f

∂pi
. (1.16)

By introducing the operator M−1
G , the inverse of operator (1.15),

M−1
G =

+∞∑
n=0

εnMn, (1.17)

with

Mn :=
∑

m1+2m2+···+nmn=n

Lm1
G1
Lm2
G2
. . .Lmn

Gn

m1!m2! . . .mn!
, (1.18)

it can be demonstrated that the canonical transformation (1.14) provides a
new Hamiltonian given by

K(P,Q; ε) =

∞∑
i=0

εnKn(P,Q) =M−1
G H(p,q); ε). (1.19)

By expanding the righthand side of equation (1.19) in power series of ε,
we find that Gn and Kn must satisfy the following recursive set of partial
derivatives equations

K0 = H0, (1.20)

K1 = H1 +M1H0,
...

Kn = Hn +MnH0 +

n−1∑
m=1

Mn−mVm,

... .

The first equality simply states that the zero-order new Hamiltonian, coin-
cides with the zero-order old (unperturbed) one. The second equation has
to be solved to find the first order term K1. At this point we are faced
with a difficulty: we have one differential equation involving two unknown
functions, K1 and G1. To proceed we have to make some decision about
the structure the new Hamiltonian must have, that is we have to choose a
normal form for it. We therefore select the new Hamiltonian in such a way
that it admits a new integral of motion, that is we take a certain function,
say I, and impose that

{K, I} = 0. (1.21)
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The usual choice (but not necessarily the only possible) is that of taking

I = K −H0 (1.22)

and proceed in the normalization procedure imposing at each step the con-
dition

{K,H0} = 0. (1.23)

Thus the unperturbed termH0 plays the role of determining the specific form
of the transformation. With this choice, the first equation of the chain, that
we can also write in the form

K1 = H1 + LG1H0 = H1 − LH0G1, (1.24)

is solved with a trick that we illustrate in the following. With the assumption
that the kernel and the range of LH0 are in direct sum (which is always true
for the applications we have in mind), we can split the term H1 appearing
in (1.24) according to the rule

H1 = HK
1 +HR

1 (1.25)

where HK
1 is the part which stays in the kernel of LH0 and HR

1 is the part
which stays in the range of LH0 . Since our new Hamiltonian, according to
(1.23), is in normal form if and only if it stays in the kernel of LH0 , we can
then solve eq.(1.24) by applying the simple prescription:

K1 = HK
1 , G1 = L−1

H0
HR

1 . (1.26)

We have then constructed the normal formK0+K1 at order 1 and computed
the first term of the generating function G1: we can therefore use it in the
subsequent equations of the system and go one step further repeating the
procedure to compute G2 and the normal form at order 2 and so forth. At
the n-th step in the normalization procedure, we impose that Kn and Gn to
be solutions of the system{

LGnH0 +Rn = Kn

LH0Kn = 0.
(1.27)

We rewrite the first equation as

LH0Gn +Kn = Rn (1.28)

where the term Rn is known from the preceding n− 1 steps.
Equation (1.28) is the so called homological equation. With the assump-

tion that the kernel and the range of LH0 are in direct sum, “in principle”
the n-th homological equation can always be solved if Kn satisfies (1.23). It
suffices to take

Kn = RKn and Gn = L−1
H0
RR
n . (1.29)
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However, the series which defines the new Hamiltonian K is divergent and
“in practice” we have to truncate the procedure at some finite order L. We
say that K and H are in normal form to the L-th order if K0, . . .KL are in
the kernel of LH0 .

The transformation (1.14) yields to new coordinates which are a con-
tinuous and differentiable “deformation” of the original ones. For practical
purposes, it could be convenient to express the new integral of motion I, cfr
(1.22), in terms of the original coordinates. A (formal) series expansion of
I can be given by

I =
∞∑
n=0

εnIn, (1.30)

where

In = Hn −Kn +

n−1∑
m=1

Mn−m(Hm − Im), n ≥ 1, (1.31)

are obtained from equations (1.20), where we exploited the nice properties
of the Lie transform with respect to inversion [16].

It is important to remind how the normal form K and the integral of
motion I gives an approximation of the dynamics of the original system.
Truncating the normalization procedure at order L means that in the new
Hamiltonian a rest of order O(εL+1) has been neglected. If we are in two
degrees of freedom, the two functions K and I produce an integrable system
whose dynamics, in the new coordinates, is an approximation of O(εL) of
the dynamics of the original system. On the other hand, the power series
(1.31) is an approximated integral of motion for the original system in the
sense that

{I,H} = O(εL+1). (1.32)

Thus, I does not commute with the original Hamiltonian for higher order
terms. The error committed in both cases is the same, since terms of the
same order have been neglected.

As already observed, the series involved in the normalization are in gen-
eral not convergent, but they are asymptotic in the sense of the following
definition

Definition 1.1. The power series
∑+∞

n=0 an(x−x0)n is said to be asymptotic
to the function y(x) as x→ x0 and we write

y(x) ∼
+∞∑
n=0

an(x− x0)n (x→ x0)

if

y(x)−
N∑
n=0

an(x− x0)n ≪ (x− x0)N (x→ x0)

for every N ∈ N.
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Thus, a power series is asymptotic to a function if the remainder after N
terms is much smaller than the last retained term as x → x0. By this
definition a series need not to be convergent to be asymptotic. Indeed, the
definition of asymptotic series is interesting only when the series is divergent
[64]. Let us contrast convergent and asymptotic series. If

f(x) =

+∞∑
n=0

an(x− x0)n

is a convergent series for |x−x0| < R, then the remainder εN (x)→ 0 for any
fixed x such that |x−x0| < R. On the other hand, if the series is asymptotic
to f(x),

f(x) ∼
+∞∑
n=0

an(x− x0)n (x→ x0),

then the remainder εN (x) goes to zero faster than (x− x0)N as x→ x0, N
fixed. Typically the terms in the series get smaller for awhile, but eventually
they start to increase. Since aN+1(x−x0)N+1 is an estimate of the error, we
can find the optimal order of truncation N = Nopt determining the smallest
term [12]. The optimal order depends on the interval |x − x0|: the larger
the interval, the smaller Nopt and the accuracy in the approximation. Once
reached the optimal order, it can be disappointing to discard terms coming
from a costly high-order computation.

1.3 Normal forms around detuned resonances

Let us consider a natural two degrees of freedom system whose Hamiltonian
is given by

H(p,q) = 1

2

2∑
i=1

p2i + V(q; ε) (1.33)

where the potential V admits an absolute minimum point in the origin and
a series expansion of type

V(q; ε) =
+∞∑
n=0

εnVn(q) (1.34)

around this minimum. Moreover we assume each term Vn to be a homoge-
neous polynomial of degree n+ 2:

Vn(q) =
n+2∑
j=0

a(j,n+2−j)q
j
1q
n+2−j
2 , (1.35)
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In particular, modulo a diagonalization, the zero order term V0 can be always
taken in the form

V0(q1, q1) =
1

2
(ω2

1q
2
1 + ω2

2q
2
2). (1.36)

The system is therefore naturally apt to be treated in a perturbative way
as a non-linear oscillator system. The normalization procedure provides a
non-resonant normal form when the two harmonic frequencies ω1 and ω2 are
generically non-commensurable. It is customary to refer to the normal forms
constructed in this case as Birkhoff normal forms [15]. A resonant normal
form is instead assembled by assuming from the start an integer value for
the ratio of the harmonic frequencies and including in the new Hamiltonian
terms depending on the corresponding resonant combination of the angles.
This possibility might be thought to be exceptional: it is instead almost the
rule because, even if the unperturbed system is non-resonant with a certain
real value

ρ = ω1/ω2 (1.37)

of the frequency ratio, the non-linear coupling between the degrees of free-
dom induced by the perturbation determines a “passage through resonance”
with a commensurability ratio, say m1/m2 with m1,m2 ∈ N, corresponding
to the local ratio of oscillations in the two degrees of freedom. This in turn
is responsible of the birth of new orbit families bifurcating from the normal
modes or from lower-order resonances. Moreover, the presence of terms with
small denominators in the expansion forbids in general its convergence. It
is therefore more effective to work from the start with a resonant normal
form [92], which is still nonconvergent, but has the advantage of avoiding
the small divisors associated with a particular resonance. Therefore we ap-
proximate the frequencies ratio with a rational number plus a small detuning
so that

ρ = m1/m2 + δ, (1.38)

and speak of a detuned m1 : m2 resonance, implying with this a trick to
deceive the formally correct but ineffective approach based on non-resonant
generic frequency ratios. The detuning term is treated as a higher order
term and put in the perturbation [101, 103]. For the application we have in
mind, it will be convenient to assume δ to be of second order in ε, therefore
δ = δ̃ε2 (see the following subsection for more details).

In order to proceed with a resonant normalization procedure, we perform
the scaling transformation

q1 →
√
ω1q1, q2 →

√
ω2q2, p1 →

p1√
ω1
, p2 →

p2√
ω2

(1.39)

and we redefine the Hamiltonian according to

H̃(p,q) :=
m2H(p,q)

ω2
, (1.40)
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so that the unperturbed term reads

H̃0(p,q) =
1

2
(m1(p

2
1 + q21) +m2(p

2
2 + q22)). (1.41)

Let us introduce complex coordinates{
zℓ = pℓ + iqℓ
wℓ = pℓ − iqℓ

ℓ = 1, 2, (1.42)

which turn the Hamiltonian function into

H(z,w) =
+∞∑
n=0

εnHn(z,w) (1.43)

with

H0(z,w) =
1

2
(m1w1z1 +m2w2z2). (1.44)

Notice that the Poisson brackets change according to {zk, wℓ} = 2iδk,ℓ. The
reason to introduce complex coordinates lies in the fact that the operator
LH0 , cfr. (1.16), assumes the simple form

LH0 = −2i
2∑
ℓ=1

mℓ

(
wℓ

∂

∂wℓ
− zℓ

∂

∂zℓ

)
. (1.45)

Since the kernel and the range of LH0 are in direct sum over the space Pm
of polynomials of degrees m+2 in the complex coordinates (1.42), the n-th
homological equation (1.28) can always be solved if we look for a normal form
satisfying the condition (1.23). Moreover, thanks to its simple expression,
the kernel of operator (1.45) over the polynomial space Pm can be easily
found. Let us denote a generic monomial in Pm by

τ = zλ11 zλ22 wk11 w
k2
2 (1.46)

where λ1, λ2, k1, k2 are nonnegative integers, λ1 + λ2 + k1 + k2 = m + 2.
The operator LH0 acts on τ as

LH0(τ) = 2i(m1λ1 +m2λ2 −m1k1 −m2k2)τ. (1.47)

Hence, the condition for a monomial in Pm to be in the kernel of LH0 is

m1(λ1 − k1) +m2(λ2 − k2) = 0. (1.48)

Therefore, if a monomial τ belongs to the term Rn of equation (1.28) and
satisfies (1.48) it does not contribute to the generating function and stays in
the normal form, otherwise its contribution to the normalized Hamiltonian
is zero and the term

− iτ

2(m1λ1 +m2λ2 −m1k1 −m2k2)
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is added to the generating function Gn. This provides an effective strategy
to implement algorithm to solve the homological equation (1.28) at each
step in the normalization procedure. For the application we have in mind,
the normal forms are computed by Mathematica R⃝.

However, as observed above, the series are divergent, thus we must trun-
cate the procedure at some finite order.

The monomials which give a non trivial solution of eq. (1.48), i.e. λi ̸=
ki, are said resonant monomials or proper terms of the resonance. Generally,
given a resonance ratio m1/m2, the procedure must be pushed at least to
order m1 +m2 − 2, when the first resonant term appears [30].

Introducing action-angle like variables{
zℓ = i

√
2Jℓe

−iϕℓ

wℓ = −i
√
2Jℓe

iϕℓ , l = 1, 2
(1.49)

the typical structure of the resonant normal form truncated at order m1 +
m2 − 2 is

K = m1J1 +m2J2 + ε(A1J1J
1
2
2 +A2J

1
2
1 J2) + . . .

+ . . . . . . + εm1+m2−2CJ
m2/2
1 J

m1/2
2 cos(m2ϕ1 −m1ϕ2). (1.50)

The resonant term is responsible of the appearance of the angular combina-
tion m2ϕ1 −m1ϕ2.

1.3.1 Symmetric detuned resonances

It could happen that the system under study exhibits some particular sym-
metries. For example, the potential we are interested in the following are of
the type V = V (q21, q

2
2) and are therefore symmetric under reflections with

respect to both coordinate axes.
The presence of symmetries could affect the structure of the normal form

and the minimal order of the resonant terms. As a consequence, the minimal
order required to arrest the normalization procedure increases.

In case the system is symmetric under reflection with respect to both
coordinate axes, the odd degree terms in the Hamiltonian expansion (1.33)
are all zero. In order to construct a resonant normal form, it is therefore
convenient to assume the detuning term in (1.38) to be of second order in
the perturbation, namely δ = δ̃ε2. This translates into ε ≈

√
δ. Further, if

we want the normal form to respect the symmetries, the action of the linear
operator LH0 has to be restricted on the space of symmetric polynomials.
Thus, the resonant monomials which are not invariant under the reflection
symmetries are no more allowed in the normal form. As a consequence, the
odd degree terms in the normal form are all zero and the minimal normal-
ization order increases to 2(m1+m2−1) [30]. To keep into account this fact
we speak of a symmetric m1 : m2 resonance or of a 2m1 : 2m2 resonance.
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After the scalings (1.39) and (1.40), the Hamiltonian function (1.33)
turns into

H(z,w; δ̃) =
+∞∑
i=0

ε2iH2i(z,w; δ̃) (1.51)

where complex coordinates (1.42) have been introduced. Since the frequen-
cies have been approximated according to (1.38) with a second order detun-
ing parameter, the non vanishing terms read

H0(z,w) =
1

2
(m1w1z1 +m2w2z2) (1.52)

H2i(z,w; δ̃) =
i∑

j=0

bj δ̃
jh2(i−j)(z,w), i > 0 (1.53)

where h2(i−j) ∈ P2(i−j), i = 0, . . . , j, the bj are constants which depend on
the coefficients a(k,ℓ) of the original potential and could be zero.

We can therefore proceed with an ordinary Birkhoff-Gustavson normal-
ization [61], with two variants:

1. the coordinate transformations are performed through Lie transforma-
tions according to the method described in section 1.2.1;

2. the detuning term is treated as a term of order two and put in the
perturbation.

To apply the Lie-transform method with the series expansion given in (1.51),
we look for a generating function of the transformation (1.14) in the form

G(z,w; δ̃) =

+∞∑
n=0

Gn(z,w; δ̃) (1.54)

where G0 equals to the identity transformation. Since we are looking for a
symmetric normal form K,

K(z,w; δ̃) =
+∞∑
i=0

K2i(z,w; δ̃), (1.55)

the odd degree terms in the generating function must be all zero, namely
G2i+1 = 0 in (1.54), and we look for even degree terms in the form

G2i(z,w; δ̃) =

i∑
j=0

δ̃jg2(i−j)(z,w), g2(i−j) ∈ P2(i−j), j = 0, . . . , i, i > 0

(1.56)
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Imposing the normalization condition (1.23), to find G2ℓ and K2ℓ we have
to solve the homological equation (1.28), which in our case reads

i∑
j=0

δ̃jLH0g2(i−j) +

i∑
j=0

δ̃jk2(i−j) =

i∑
j=0

δ̃jr2(i−j), (1.57)

with g2(i−j), k2(i−j) and r2(i−j) ∈ P2(i−j), j = 0, . . . i.
Since LH0 : Pm → Pm, solving equation (1.57) is equivalent to solving i+ 1
equations of the type

LH0g2(i−j) + k2(i−j) = r2(i−j), j = 0, . . . , i. (1.58)

The monomial terms in g2(i−j) and k2(i−j) can be easily found exploiting the
simple expression of LH0 over the polynomial spaces P2(i−j), as explained
above.

Introducing action-angle like variables (1.49), the normal form of the
system, truncated when the first resonant term appears, has the following
form

K = m1J1 +m2J2 +

+ ε2(δ̃J1 +B1J
2
1 +B2J1J2 +B3J

2
2 ) + . . .

+ . . . . . . + ε2(m1+m2−1)CJm2
1 Jm1

2 cos(2m2ϕ1 − 2m1ϕ2). (1.59)

As a consequence of the symmetries, only even degree terms in the pertur-
bation parameter are present and the angular combination is now given by
2(m2ϕ1−m1ϕ2). In the following, we will focus on systems around 2 : 2 and
2 : 4 resonances.
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Chapter 2

Equivariant singularity
theory

This chapter collects the results on singularity theory that we need in the
following. In particular, in chapter 3 we show how the results presented in
section 2.4 can be applied to the planar system obtained after the normal-
ization and reduction of a 2 : 2 detuned resonance.

For our purposes, singularity theory is a tool, not a goal in itself. This
chapter therefore aims only to give the basics of the theory and refers to the
literature for more details [18, 59, 60, 79, 88, 97].

2.1 Germs of functions

The theory we are presenting is local, i.e. the results are valid only in a suf-
ficiently small neighborhood of some fixed point. The terminology of germs
provides a convenient way of formulating results in a local theory which
avoids infinite repetitions of the phrase “in a sufficiently small neighbor-
hood of the origin”.

Let us denote by Un the space of all functions f : Rn → R which are
defined and C∞ in some neighborhood of the origin. We say that two
functions in Un are equal as germs if there is some neighborhood of the origin
on which they coincide. We shall identify two functions which are equal as
germs and call the elements of Un germs of functions. In a more technical
language a germ is an equivalence class with respect to this identification:
namely, we give the following definition

Definition 2.1. Let f, g : Rn → R. We denote by ∼ the germ equivalence
f ∼ g if there exists B ⊂ Rn, 0 ∈ B, such that f(x) = g(x) for all x ∈ B.
The equivalence classes with respect to ∼ are called germs of functions. We
denote by Un the ring of germs of functions on Rn.

Let us denote by Γ a compact group with linear action on Rn. Groups
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elements γ ∈ Γ are identified with their corresponding linear action. For
example in the following we shall consider Γ = Z2 × Z2 with action on R2

given by (x, y)→ (ε1x, ε2y), εi = ±1.

Definition 2.2. We say that a germ f has Γ symmetry or is Γ- invariant if
f(γx) = f(x) ∀γ ∈ Γ. We denote by UΓ

n the set of equivalence classes of Γ-
invariant functions with respect to the germ equivalence, UΓ

n := { f : Rn → R
: f(γx) = f(x) ∀γ ∈ Γ }/ ∼. The elements of UΓ

n are called Γ- invariant
germs of functions.

Notice that in the trivial case Γ = {id}, that is Γ contains only the
identity element, UΓ

n = Un.

2.2 Deformations

Almost every concept used in the singularity theory of functions and maps,
has a direct counterpart in the finite dimensional context of Lie groups acting
on smooth finite dimensional manifolds.

Let M be a manifold, G a Lie group, and let us start supposing both
M and G to be smooth, finite dimensional manifolds. We denote by ξ :
G×M →M a smooth action of G on M . Instead of ξ(φ, f) we sometimes
simply write φf . For a given point f ∈ M , the action ξ gives rise to an
orbit, in this notation given by Gf and let Tf (Gf) be the tangent space to
this orbit at the point f . The codimension of Tf (Gf) in Tf (M) is also called
the codimension of f. If this codimension is 0 the inverse function theorem
assures that for every g in some neighborhood of f , there exist φ ∈ G such
that g = ξ(φ, f). If this is the case, f is called a stable element and f and
g are said to be equivalent according to the following definition

Definition 2.3. We say that f and g are equivalent, f ≃ g, iff there exists
φ ∈ G such that φf = g.

Stable elements, with codimension 0, form the simplest case. Now let us
proceed, and suppose that the codimension of f is nonzero, say equal to d.
Small changes to f along orbits of G will not change f ’s equivalence class;
however changes transversal to its G-orbit will. A catalog of representatives
of all equivalence classes that occur in a neighborhood of f is given by a
transversal section of the orbit Gf at f . Such a transversal section, which is
a submanifold in M of dimension d, can be parameterized as a d- parameter
family of elements in M. Families depending on parameters are also called
deformations:

Definition 2.4. A d−deformation or unfolding of f in M is a map F (u) :
Rd →M such that F (0) = f .
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Now, the deformation F is a transversal section if its deformation direc-
tions complement the tangent space, or symbolically (here and alsewhere in
the following Dx0 denotes the total differential at x0):

Tf (Gf)⊕D0F (Rd) = Tf (M). (2.1)

Deformations for which (2.1) holds are called transversal deformations. Now
let H(v) : Rq → M be some deformation of f . It is said to be induced from
F if there exists h : Rq → Rd with h(0) = 0 and a deformation I : Rq → G
of the identity element in G such that

H(v) = I(v)F (h(v)).

If it happens that every deformation G of f can be induced from F in this
way, then F is called a versal deformation. Again by the inverse function
theorem it can be shown that a deformation is versal iff it is transversal, see
e.g. [79].

We now turn to the case in which M is the set of Γ− invariant germs of
functions on Rn, i.e. M = UΓ

n . To proceed we need the following definition

Definition 2.5. A map ϕ on Rn is called Γ- equivariant if ϕ(γx) = γϕ(x)
for all γ ∈ Γ.

The group of transformations G that acts on M is the group of origin pre-
serving Γ- equivariant C∞ maps on Rn and acts on UΓ

n by composition to
the right. Now, neither the manifold M of smooth functions nor the group
is finite dimensional. However, the results we stated above continue to hold
in this case. The proofs are much more difficult, however, since the inverse
function theorem cannot be used, see e.g. [19, 79], for proofs and more
details.

The notion of equivalence and deformations are the same given above,
more precisely for Γ- equivariant germs of functions they read

Definition 2.6.

i) The ring of germs of Γ-invariant functions on Rn × Rd, where Γ acts
trivially on Rd, is denoted by UΓ

n+d.

ii) We say that f and g are equivalent or isomorphic as Γ- invariant germs,
f ≃ g, iff there exists a Γ equivariant and origin preserving diffeomor-
phisms φ such that f ◦ φ = g.

iii) F ∈ UΓ
n+d is called a deformation or unfolding of f ∈ UΓ

n if F (x, 0) =
f(x).

iv) A deformation H ∈ UΓ
n+q is said to be induced from F ∈ UΓ

n+d if there

exists a germ of a reparametrization h : Rd → Rq and a parameter
dependent Γ-equivariant map ϕ(x, v) such that

H(x, v) = F (ϕ(x, v), h(v)).
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v) A deformation F of f is said to be versal if any deformation H of F
can be induced from F .

vi) A deformaton F of f is called universal if it is versal and dependents
on the minimal number of parameters.

As in the finite dimensional case, the following proposition holds [60]:

Proposition 2.1. A deformation F ∈ EΓn+d of f ∈ EΓn is versal iff

Tf (Gf)⊕D0F (Rd) = UΓ
n . (2.2)

From now on, we abbreviate the tangent space Tf (Gf ) with Tf .

Application 2.1.

In the following, the previous proposition will be very useful. In particular, it
allows us to find a versal deformation of the germ f = ε1x

4 + µx2y2 + ε2y
4,

µ2 ̸= 4ε1ε2, εi ∈ ±1, i = 1, 2. We will need this result through all next
chapter in the analysis of the 2 : 2 resonance.

To compute a versal deformation of f , we note that the tangent space
Tf is generated as a UZ2×Z2

2 - module 1 by [79]

g1 = x
∂f

∂x
= 2x(2ε1x

3 + µxy2) and g2 = y
∂f

∂y
= 2y(2ε2y

3 + µx2y).

Thus,
Tf ⊕ spanR{1, x2, y2, x2y2} = U

Z2×Z2
2 (2.3)

which implies that

F (x, u0, u1, u2) = ε1x
4 + µx2y2 + ε2y

4 + u3x
2y2 + u2y

2 + u1x
2 + u0

is a versal deformation of f . Moreover, F depends on the minimal number
of parameters, therefore it is a universal deformation.

Notice that for the exceptional values µ2 = 4ε1ε2 the tangent space has
infinite codimension [79].

1A module over a ring is a generalization of the notion of vector space, wherein the
corresponding scalars are allowed to lie in an arbitrary ring. Precisely,a left R- module M
over the ring R consists of an abelian group (M,+) and an operation R ×M → M such
that for all r, s in R and x, y in M , we have:
1. r(x+ y) = rx+ ry;
2. (r + s)x = rx+ sx;
3. (rs)x = r(sx);
4. IRx = x if R has multiplicative identity IR.
A right R-module M is defined similarly, only the ring acts on the right. If R is com-
mutative, then left R-modules are the same as right R-modules and are simply called
R-modules.
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2.3 Determinacy and germ isomorphy

Definition 2.7. We denote with V Γ
n the UΓ

n -module of Γ equivariant vector
fields on Rn.

The tangent space to the group G at the identity is isomorphic to the
module of vector fields V Γ

n . Therefore the tangent space Tf to the orbit of
f is given by

Tf := {Xf : X ∈ V Γ
n }. (2.4)

The results presented in the following are mostly taken from [79]. Let
us denote with mΓ

k the set of germs in UΓ
n whose Taylor polynomial at 0

vanishes up to and including order k − 1. In particular, mΓ := mΓ
1 = { f ∈

UΓ
n : f(0) = 0 }. In case Γ = {id} we drop the Γ from the notation. We call

jet map the projection jk(f): UΓ
n → UΓ

n /m
Γ
k+1. In words, jk(f) is nothing

than the Taylor polynomial of f up to and including order k.
The sets mΓ

k are ideals in UΓ
n . In case Γ = {id} we have that mk is

generated by xk11 · · ·xknn , with k1 + · · · + kn = k, that is by homogenous
polynomials of degree k and Vn is generated, as an Un- module, by xi

∂
∂xj

.

This implies that the tangent space Tf is just m · J(f) where J(f) is the
Jacobian ideal of f :

J(f) := ⟨ ∂f
∂x1

, . . . ,
∂f

∂xn
⟩.

Definition 2.8. A germ of function f ∈ UΓ
n is said to be k−determined if

∀g ∈ UΓ
n such that jkf = jkg we have g ≃ f .

Therefore, if a germ has finite determinacy then, modulo a coordinate
transformation, it can be written as a polynomial. Notice that the existence
of a transversal deformation implies that f is finitely determined.

The following proposition gives conditions under which (non-symmetric)
germs are isomorphic [79]:

Proposition 2.2. Let f, g ∈ Un, and suppose that g− f ∈ mk, i.e j
k−1(g−

f) = 0. Then

i) If mk ⊂ Tf then g ≃ f provided that jk(g − f) is sufficiently small.

ii) If mk ⊂ m · Tf then g ≃ f .

Here jk(g− f) sufficiently small means that the coefficient of the k-th order
Taylor polynomial of g − f is sufficiently small. The analogous result for
germs with symmetry is [22]:

Proposition 2.3. Let f, g ∈ UΓ
n , and suppose that g−f ∈ mΓ

k . LetM denote

the finite dimensional vector space M =
mΓ

k

mΓ·mΓ
k

e Mk := M ∩ (mΓ
k/m

Γ
k+1)

the set of homogeneous polynomials in M of degree k.
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i) If mΓ
k ⊂ Tf then g ≃ f provided that jk(g − f) is sufficiently small.

ii) If mΓ
k ⊂ mΓ · Tf then g ≃ f .

iii) Suppose that mΓ
k ⊂ Tf . Suppose further that the projection of f into M

is an element of Mk. Then g ≃ f provided that jk(g−f) is sufficiently
small.

Application 2.2.

As a consequence of the previous proposition we state the following propo-
sition, which will be useful in the analysis of the 2 : 2 resonance, as well as
application 2.1:

Proposition 2.4. The germ g = ε1x
4+µx2y2+ε2y

4+ h.o.t. , with εi = ±1,
is Z2×Z2 isomorphic to f = ε1x

4+µx2y2+ ε2y
4, provided that µ2 ̸= 4ε1ε2.

Proof. For µ2 ̸= 4ε1ε2 the tangent space Tf is generated as UZ2×Z2
2 - module

by g1 = 2x(2ε1x
3 + µxy2) and g2 = 2y(2ε2y

3 + µxy2), thus Tf = mZ2×Z2
4 .

Now, we apply proposition (2.3) (iii) with k = 4 to f . Since f is homogenous,
f ∈ M4, so we conclude that g = f h.o.t. ≃ f for arbitrary higher order
terms.

Here µ is a module and different values of µ gives non isomorphic germs.
For µ = 0, Tf is generated by {ε1x4, ε2y4} and has the same codimension as
in the generic case.

�

Notice that for µ2 = 4ε1ε2 the tangent space Tf has infinite codimension
and the previous proposition does not apply.

2.4 Computing Z2×Z2-equivariant deformation mor-
phisms

Let G be a (truncated) polynomial in two variables invariant under the
action of the group Γ = Z2 ×Z2, (x, y)→ (ϵx, ϵy), ϵ = ±1. We assume that
its coefficients gi depend on d parameters c1, . . . , cd, that is gi = gi(c1, . . . , cd)
and that there exists singular values of the parameters, which for simplicity
we assume to be 0, such that we have

Gs := G|ci=0 = s1x
4 + s2x

2y2 + s3y
4.

For example, we may have

G = Gc := c1x
2 + c2y

2 + (s1 + c3)x
4 + (s2 + c4)x

2y2 + (s3 + c5)y
4

+ c6x
6 + c7x

2y4 + c8x
4y2 + c9y

6 +O(|x, y|8) (2.5)
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Suppose that s1, s3 ̸= 0, then by a simple scaling transformation we achieve
that Gs turns into

f = ε1x
4 + µx2y2 + ε2y

4 εi = ±1, i = 1, 2. (2.6)

Therefore, G is a deformation of f .
As we have seen in section 2.2, if µ2 ̸= 4ε1ε2, the germ ε1x

4+ax2y2+ε2y
4

has finite codimension with universal deformation

F = ε1x
4 + µx2y2 + ε2y

4 + u1x
2 + u2y

2 + u3x
2y2 + u0. (2.7)

Moreover the theory assures that there exists a Z2 × Z2-equivariant mor-
phisms ϕ which induces the deformation G from F . Such a transformation
can be very useful in applications, since it allows to reduce the number of
parameters to the minimal.

In [21] an algorithm is presented to compute ϕ in presence of a Z2 sym-
metry, (x, y) → (x,±y). In the following, we adapt the algorithm to our
symmetric context.

Let us denote with T (2) the space of all differentiable germs of two
variables invariant under the action of the group Z2 × Z2 and vanishing at
the origin. From equation (2.3), we get that for every g ∈ T (2) there exist
Γ invariant germs Qi(x, y) and real numbers Ri such that

g(x, y) =
∑
i

Qi(x, y)Ti(x, y) +R1x
2 +R2y

2 +R3x
2y2 (2.8)

where Ti is a system of generators of the tangent space Tf . Equation (2.8)
is the so called infinitesimal stability equation.
We have seen in section (2.2) that in the particular case f = ε1x

4+µx2y2+
ε2y

4, a system of generators is given by

T1(x, y) = x
∂f(x, y)

∂x
= x(4ε1x

3 + 2µxy2)

T2(x, y) = y
∂f(x, y)

∂y
= y(2µx2y + 4ε2y

3).

Now, suppose that we are able to solve equation (2.8), then we can construct
the transformation ϕ using the following iterative algorithm. We look for a
transformation

ϕ : R2 × Rq → R2 × R3

(x, y, ci)→ (θ(x, ci), ρ(ci)) (2.9)

where θ is a diffeomorphisms which acts as a (parameter depending) coordi-
nate transformation, θ : R2×Rq → R2, ρ : Rq → R2 acts as a reparametriza-
tion.
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For simplicity of notation we define c = (c1, . . . , cq), u = (u1, u2, u3) and
z = (x, y). Suppose that we have an algorithm that solves the infinitesimal
stability equation modulo terms of order O(zd), d ≥ 2. The basic idea is to
expand θ and ρ as a formal power series in the parameters ci [71]:

θ(z, c) =
∑
i≥0

θj(z, c), ρ(c) =
∑
j≥0

ρj(c)

where θj and ρj are homogenous of degree j in the parameters c. Let us
denote

θℓ(z, c) :=

ℓ∑
i=0

θi(z, c) ρℓ(c) :=

ℓ∑
i=0

ρi(c)

and set θ0(z) := z, ρ0(c) := 0. Suppose that we are able to compute θ up
to order ℓ in c, that is we are able to find θℓ and ρℓ which solve

G(z, c) = F (θℓ(z, c), ρℓ(c)) +O(cℓ+1) +O(zd). (2.10)

Then

F (θℓ+1, ρℓ+1) = F (θℓ + θℓ+1, ρ
ℓ + ρℓ+1)

= F (θℓ, ρℓ) +DzF (θ
ℓ, ρℓ)θℓ+1

+ DuF (θ
ℓ, ρℓ)ρℓ+1 +O(|θℓ+1|2) +O(|ρℓ+1|2)

= F (θℓ, ρℓ) +Dzg(θ
ℓ, ρℓ)θℓ+1

+ DcF (θ
ℓ, ρℓ)|c=0 · ρℓ+1 +O(cℓ+2) (2.11)

where we obtain the last inequality using the estimates θℓ(z, c) = z +O(c),
θℓ+1(z, c) = O(cℓ+1) and F (z, c) = f(z) +O(c). Thus, we have

G(x, y, c)− F (θℓ(x, y, c), ρ(c)) = θℓ+1,1(x, y, c)
∂f

∂x
+ θℓ+1,2(x, y, c)

∂f

∂y

+ ρℓ+1,1x
2 + ρℓ+1,2y

2 + ρℓ+1,3x
2y2

+ O(cℓ+2) +O(|x, y|d). (2.12)

This equation has a structure similar to the following one

g(x, y, c) = xQℓ+1,1(x, y, c)
∂f(x, y)

∂x
+ yQℓ+1,2(x, y, c)

∂f(x, y)

∂y
+

+ Rℓ+1,1(c)x
2 +Rℓ+1,2(c)y

2 +Rℓ+1,3(c)x
2y2. (2.13)

We can solve (2.13) by equating the coefficients of the monomials cα =
cα1
1 · · · cαs

s left and right, α1 + · · · + αs = l + 1. In such a way we have to
solve several equations of the form (2.8). Thus, if we are able to solve the
infinitesimal stability equation, we can findQ1(x, y, c) andQ2(x, y, c) solving
(2.13). If we take θℓ+1,1 = xQℓ+1,1, θℓ+1,2 = yQℓ+1,1 and ρℓ+1,i = Rℓ+1,i we
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find θ ad ρ up to order ℓ+1 in c. In particular we have an explicit expression
for the parameter ui in term of the ci, that is

ui =

ℓ+1∑
j=1

Rj,i +O(cℓ+2) i = 1, 2, 3.

An algorithm to solve the infinitesimal stability equation, the so called
division algorithm [22] is presented in section 2.5. Using the division algo-
rithm to solve equation (2.12) gives the transformation inducing Gc from F .
Namely, the following proposition holds

Proposition 2.5. Let G be a symmetric polynomial under the Z2 × Z2

action, vanishing at the origin and depending on parameters ci with central
singularity at c1 = c2 = · · · = 0 given by f = ε1x

4 + µx2y2ε2 + ε2y
4,

εi = ±1 for i = 1, 2 and µ2 ̸= 4ε21ε
2
2. There exists a diffeomorphisms θ and

a reparametrization ρ such that

G(x, y, c) = F (θ(x, y, ci), ρ(ci)) (2.14)

with θ(x, y, 0) = (x, y),ρ(0) = (0, 0, 0) and

F (x, y, u) = f(x, y) + u1x
2 + u2y

2 + u3x
2y2.

To compute Φ modulo O(|x, y|L)+ O(|ci|M ) it suffices to know Gc modulo
O(|x, y|L+3)+ O(|ci|M ); and to compute ρ modulo O(|ci|M ) we have to know
Gc modulo O(|ci|M )+ O(|x, y|6).

For G = Gc as given in (2.5), modulo O(|ci|2)+ O(|x, y|5), the coordinate
transformation θ reads

x → x+
c3ε1x

4
+
c6ε1x

3

4
+
c7xy

2

4
ε1 −

c6xy
2µ

8

+
(2ε1c7 + 2ε2c9 − c6 − 4c8)xy

2

8(4ε1ε2 − µ2)
(2.15)

y → y +
c5ε2y

4
+
ε2c9y

3

4

+
(2c8ε1 − 4c7 − 4c9ε1 + 2c6)x

2y

8(4ε1ε2 − µ2)
(2.16)
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and, modulo O(|ci|3) the reparametrization ρ is given by

u1 = c1 −
c1c3
2
ε1 (2.17)

u2 = c2 −
c2c5
2
ε2 (2.18)

u3 =
1

2
(c4 − c3ε1 − c5ε2)−

1

4ε1ε2 − µ2
[2c4c5ε1 + 2c2c7ε1 + 2c3c4ε2 + 2c1c8ε2

−
(
2c3c5 + 2c1c7 + c2c8 + 3c25ε1ε2 + 4c2c9ε1ε2 + c23ε1ε2 + 4c1c6ε1ε2

) µ
2

− (c3c4ε1 − c2c6ε1 + c4c5ε2 − c1c9ε2)
µ

2

+
(
3c23 + 2c1c6 + 3c25 − 2c2c9 + 2ε1ε2c3c5

) µ3
8

]
. (2.19)

Proof. For µ2 ̸= 4ε1ε2, since F is a versal deformation of the germ
ε1x

4 + µx2y2 + ε2y
4 the existence of θ and ρ follows trivially.

By applying the iterative procedure described above to compute θ and
ρ, at each step we have to solve an equation of type (2.13). This can be
done by exploiting the division algorithm described in section (2.5). The
fact that Gc is required up to order L+ 3 in order to compute θ only up to
degree L is due to the first derivatives of the singularity to be of degree 3.
Similarly, in order to fix ρ, it suffices to know Gc up to degree four in (x, y)
since the maximum degree of the deformation directions (namely x2, y2 and
x2y2) associated to ρ1, . . . , ρ3 is four.

Finally, a little computer algebra gives the transformations (2.15), (2.16)
and (2.17), (2.18), (2.19).

2.5 Solving the infinitesimal stability equation

We have seen in the previous section how to construct a transformation
inducing (2.5) from the universal deformation (2.7). Our method is based
on the hypothesis that we are able to solve the infinitesimal stability equation
(2.8) up to a certain order in the variables (x, y). In this section we present
an algorithm to solve this equation. We take the basic ideas from [21, 22].

Let us define ΣΓ the finite-dimensional vector space of Γ-invariant power
series on R2 truncated at order d. We can identify ΣΓ with the ring RΓ of
symmetric polynomial in two variables of maximum degree d. Let us denote
by zγ a monomial in RΓ of total degree γ, that is zγ = xγ1yγ2 , where
1 ≤ γ1+ γ2 = γ ≤ d. We can choose an ordering ≺ for monomials in R such
that zα ≺ zβ if either the total degree of zα is smaller than the total degree
of zβ, or the degree are equal but zα precedes zβ in lexicographic ordering.
For example xy ≺ y2 since xy ≺ yy.

Definition 2.9. Let f be a polynomial in R.
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i) MM(f) is the minimal monomial occurring in f with respect to the
monomial ordering described above;

ii) MC(f) is the coefficient associated to MM(f);

iii) MT (f) is the term associated toMM(f), that isMT (f) =MC(f)MM(f);

iv) A monomial zα is said to divide a monomial zβ if β−α is a vector with
non negative entries, then zβ/zα = zβ−α.

If I = f1, . . . , fj is a set of polynomials in RΓ, we denote by < I >
the ideal generated by I in RΓ. The basic idea of the algorithm is to solve
the infinitesimal stability equation (2.8) through several divisions of the
polynomial f in the ring RΓ by the ideal T generated by {MM(Ti)}, where
{Ti} is a set of generators of the tangent space to the germ orbit we have
described in the previous section. However in general the remainder of such
a division is not unique. We need a set of generators for the ideal T which
makes the output of such a division unique. This can be done if we choose
as a system of generators for T a Groebner basis for T with respect to the
monomial ordering we have described above [10, 34]. In fact, we recall that
a Groebner basis is, by definition, a set of generators for a given ideal I such
that multivariate division of any polynomial in the polynomial ring RΓ gives
a unique remainder.
Now, we are ready to present the algorithm.

Division algorithm

Input: integer d, power series f truncated at degree d, {g1, . . . , gk} Groebner
basis for the ideal T
Output: power series r, q1, . . . , qk truncated at degree d such that

f =

k∑
i=1

qigi + r modulo terms of degree d and highter.

Algorithm:

h← g
Reduce h modulo terms of degree d and higher
r ← 0
qi ← 0
While h ̸= 0 do

If MM(gi)|MM(h) for some i, then
qi ← qi +MT (h)/MT (gi)
← h− (MT (h)/MT (gi))gi
Reduce h modulo terms of degree d or higher
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Else
r ← r +MT (h)
h← h−MT (h)

End if
End while.

Now we have to keep in mind that we are working in the ring of symmetric
polynomials, thus we have to make sure that the output of the division
algorithm respects the Γ invariance. In the case we are studying this is
easy to check. In fact, if Γ = Z2 × Z2 a polynomial in RΓ must be of even
degree both in x and y. On the other hand, if we consider the germ function
g = ε1x

4 + µx2y2 + ε2y
4, we know that the corresponding invariant tangent

space T is generated by {2x(2ε1x3 + 2µx2y2), 2y(2µx2y2 + 2ε2y
3)} and a

Groebner basis for the ideal T is GB =
{
4ε1x

4, 2µx2y2, y6
}
(see e.g. [21]).

Thus, at every step the division algorithm is nothing else but a division
between monomials of even degree in both variables. This implies that the
outputs of the algorithm are necessarily polynomials of even degree both in
x and y an so they respect the Γ invariance. In other cases it could be not
so easy and the algorithm must be modified.
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Chapter 3

Bifurcation curves in the 2:2
resonance

Among low-order resonances (see e.g. [38]) the 1:1 resonance plays a promi-
nent role. In the following we consider a Hamiltonian system describing a
detuned 1 : 1 resonance invariant under Z2 × Z2 symmetry (in this case we
speak of a 2 : 2 resonance, to keep in mind the presence of symmetry). The
purpose of this chapter is to find quantitative predictions for the bifurcations
of periodic orbits in general position (namely loop and inclined obits) from
the normal modes. They are given in section 3.4 where we provide energy
threshold values (depending on physical coefficients and on the detuning pa-
rameter) which determine the bifurcations of the system.
We start with the construction of a 2 : 2 detuned normal form, exploiting the
algorithm described in section 1.3. Afterwards, the approach is based on the
use of a regular reduction [36] dividing out the S1 symmetry of the normal
form. The reduced system lives in one degree of freedom, this allows us to
classify the dynamics with singularity theory [23, 21], exploiting the results
described in the previous chapter. Actually we have to respect the sym-
metries and reversibility of the system, thus we are led into the framework
of equivariant singularity theory. What is new in the current approach is
that the simplifying transformations, which induce the system from its ver-
sal deformation, are computed explicitly. If we truncate the normalization
procedure to the minimal order required, (i.e. N = 1), the planar system
turns out to be already reduced to the versal unfolding (2.7). Truncating at
order N > 1, this is not true anymore and we need the algorithms described
in section 2.4.
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3.1 Normal form for a 2:2 detuned resonance

Let us consider a natural two degree of freedom system whose Hamiltonian
is given by

H(p,x) = 1

2
(p21 + p22) + V(x21, x22) (3.1)

where we assume the potential to be a smooth function with an isolated
relative minimum in the origin and symmetric under reflection with respect
to both coordinate axes. Thus, the Hamiltonian (3.1) exhibits two Z2 sym-
metries in space, denoted by S1 and S2:

S1 : (x1, x2, p1, p2)→ (−x1, x2,−p1, p2) (3.2)

S2 : (x1, x2, p1, p2)→ (x1,−x2, p1,−p2) (3.3)

and a time reversible symmetry, denoted by T

T : (x1, x2, p1, p2)→ (x1, x2,−p1,−p2). (3.4)

Let us note that the Hamiltonian function (3.1) is invariant also under other
transformations, such as reflections acting on the x and not on the p and
viceversa. Our choice to consider reflection symmetries (3.2) and (3.3) lies
in the Lagrangian description of the system, i.e. in the relation between the
x and the p variables in a non- Hamiltonian description.

By expanding the potential around the origin and retaining only terms
up to degree 2(N + 1) we get

V(x21, x22) ≡
N∑
n=0

V2n(x
2
1, x

2
2) (3.5)

where V2n is a homogeneous polynomial of degree 2n+2 in (x1, x2), namely

V2n =

n+1∑
j=0

a2j,2(n+1−j)x
2j
1 x

2(n+1−j)
2 . (3.6)

Notice that the odd degree terms are all zero in force of the reflection sym-
metries. The truncation order is determined by the problem under study.
Since we aim to apply the results presented in the previous chapter, we
truncate at order N = 2 (i.e. including terms up to the sixth degree), so
that we consider a generic perturbation of the basic resonant normal form.
Higher order terms can be treated in the same way. The zero order term in
the expansion is given by

V0 =
1

2
(a2,0x

2
1 + a0,2x

2
2). (3.7)
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Therefore, the system is naturally apt be treated in a perturbative way as a
non-linear oscillator system. The two unperturbed frequencies are given by
ω1 :=

√
a2,0 and ω2 :=

√
a0,2. We perform the scaling [45]

(x1, x2, p1, p2)→ ε−1(x1, x2, p1, p2), ε > 0 (3.8)

and also rescale the Hamiltonian (3.1) according to

H = ε2H̃. (3.9)

Thus, we obtain

H̃(p,x) = 1

2
(p21 + p22) +

1

2
(ω2

1x
2
1 + ω2

2x
2
2) +

N∑
j=1

ε2jV2j(x
2
1, x

2
2). (3.10)

In general, neither the original system (3.1) nor its truncated expansion
(3.10) are integrable. However, in several cases the dynamics around the
equilibrium are regular, namely their features are indistinguishable from
those of an integrable system in a large fraction of phase space [65]. There-
fore we proceed to construct a normal form for the system, namely a new
Hamiltonian series which, in the case of 2 degrees of freedom, is an integrable
approximation of the original one. As we have observed in section 1.3, the
two harmonic frequencies ω1 and ω2 are generically non-commensurable.
However even if the unperturbed system is non-resonant with a certain real
value

ρ = ω1/ω2 (3.11)

of the frequency ratio, the non-linear coupling between the degrees of free-
dom induced by the perturbation determines a “passage through resonance”
with a commensurability ratio, say m1/m2 with m1,m2 ∈ N, corresponding
to the local ratio of oscillations in the two degrees of freedom. This in turn
is responsible of the birth of new orbit families bifurcating from the normal
modes or from lower-order resonances [9, 29, 32, 101]. In the following we
are interested in the bifurcations of orbit families in general positions in
systems around a 1 : 1 symmetric resonance. Therefore we assume that the
frequency ratio (3.11) is not far from 1 and then approximate it by introduc-
ing a small detuning δ, which we assume of order two in the perturbation,
so that

ω1 = (1 + δ̃ε2)ω2, with δ = δ̃ε2. (3.12)

Hence we proceed as if the unperturbed harmonic part would be in exact
1:1 resonance by including the remaining part in the perturbation.

After a scaling transformation

x1 →
√
ω1x1, x2 →

√
ω2x2, p1 →

p1√
ω1
, p2 →

p2√
ω2
, (3.13)
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and a scaling of time

t −→ ω2t, so that H̃ = ω2H, (3.14)

the Hamiltonian (3.1) takes the form

H(p,x) =
N∑
j=0

ε2jH2j(p,x) (3.15)

where

H0 =
1

2
(p21 + p22) +

1

2
(x21 + x22) (3.16)

H2 =
1

2
δ̃(x21 + p21) + 2

(
1

3
(ax41 + bx42) + cx21x

2
2

)
(3.17)

H4 = −4

3
ax41δ̃ − 2cx21x

2
2δ̃ + d1x

6
1 + d2x

4
1x

2
2 + d3x

2
1x

4
2 + d4x

6
2 (3.18)

with

a =
3a4,0
2ω3

2

, b =
3a0,4
2ω3

2

, c =
a2,2
2ω3

2

(3.19)

d1 =
a6,0
ω4
2

, d2 =
a4,2
ω4
2

, d3 =
a2,4
ω4
2

, d4 =
a0,6
ω4
2

. (3.20)

Now, we can proceed according to the normalization procedure described is
section 1.3. Since we are dealing with a 2 : 2 resonance the normalization
must be pushed at least to the second order in ε. Here we give the normal
form obtained truncating to the fourth order (N = 2):

KAA(J1, J2, ϕ1, ϕ2) = J1 + J2 +
[
δ̃J1 + aJ2

1 + bJ2
2 + 2cJ1J2

+ c cos[2(ϕ1 − ϕ2)]] ε2 +
[(

5d1
2
− 17a2

9

)
J3
1

−
(
17b2

9
− 5d4

2

)
J3
2 −

(
4ac+

9c2

4
− 3d2

2

)
J2
1J2

−
(
4bc+

9c2

4
− 3d3

2

)
J1J

2
2 − 2J1(aJ1 + cJ2)δ̃

− 1

2
J1J2

(
5acJ1 + 6c2(J1 + J2)− 3(d2J1 + d3J2)

+ +c(5bJ2 + 3δ̃)
)
cos(2ϕ1 − 2ϕ2)

]
ε4 (3.21)

where the action-angle(–like) variables have been introduced according to
(1.49). We remark that in the computation of (3.21) and results thereof,
the use of algebraic manipulators like Mathematica R⃝is practically indis-
pensable. This Hamiltonian is in normal form with respect to the quadratic
unperturbed part H0 that in these coordinates reads

HAA
0 = J1 + J2. (3.22)
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3.2 The planar system

After the normalization, the system has acquired an additional (formal) S1
symmetry. The corresponding conserved quantity is given byHAA

0 = J1+J2.
This enable us to formally reduce (3.21) to a planar system.
We perform the following canonical transformation

J1 = J
J2 = E − J
ψ = ϕ1 − ϕ2
χ = ϕ2

(3.23)

Since χ is cyclic and its conjugate action E is the additional integral of
motion, we introduce the effective Hamiltonian

K = KAA(J, ψ; E , δ̃, ε)

= E +
[
A(J ; E , δ̃) + B(J ; E , δ̃) cos 2ψ

]
ε2

+
[
C(J ; E , δ̃) +D(J ; E , δ̃) cos 2ψ

]
ε4 (3.24)

where

A(J ; E , δ̃) = (2A−B)E2 + (−4A+ 2B + 8C) EJ
+ δ̃J + 4(A− 2C)J2 (3.25)

B(J ; E , δ̃) = 4CJ(E − J) (3.26)

C(R; E , δ̃) =
1

9

(
68AB − 68A2 − 17B2 +

45

2
d4

)
E3 − 8Cδ̃EJ

+

(
+
68AB

3
− 68A2

3
− 17B2

3
+ 32AC − 48BC + 36C2

+
3d2
2
− 3d3 +

15d4
2

)
EJ2 + 2(4C − 2A−B)δ̃J2

+

(
32BC +

5d1
2
− 136AB

9
− 3d2

2
+

3d3
2
− 5d4

2

)
J3 (3.27)

D(R; E , δ̃) = −4Cδ̃EJ +

(
40

3
AC − 20BC + 32C2 + d2 − 2d3

)
EJ2

+ 4Cδ̃J2 +

(
40

3
BC − d2 + d3

)
J3 (3.28)

with

A =
a+ b

4
, B =

a− b
2

, C =
c

4
. (3.29)

Thus, we get a one degree of freedom system; in the following we refer to it
as 1 DOF system. We now perform a further reduction into a planar system,
viewing E as a distinguished parameter [21, 23].
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Remark 3.1 (The distinguished parameter). Calling E a parameter is jus-
tified if we consider the system at low energy, so K̃ and therefore E is small.
The adjective distinguished refers to the fact that E stems from the phase
space of K and is a parameter only for the 1 DOF system, not for the orig-
inal one.

The planar reduction is obtained via the coordinate transformation{
x =
√
2J cosψ

y =
√
2J sinψ

(3.30)

Inverting the scalings (3.8) and (3.9), the Hamiltonian function K is con-
verted into the planar Hamiltonian

K̃ = K(x, y; E , δ)

=

3∑
i=0

3−i∑
j=0

c2i,2jx
2iy2j (3.31)

where c2i,2j = c2i,2j(E , δ).

Remark 3.2 (Singular circle). The coordinate transformation (1.49) is sin-
gular at the coordinate axes J1 = 0 and J2 = 0. After the transformation
(3.23), these axes become J = 0 and J = E respectively. The first singularity
can be removed by returning to cartesian coordinates in the plane. The sec-
ond singularity is called singular circle. In cartesian coordinate this circle
is given by

x2 + y2 = 2E . (3.32)

At this circle J2 = 0 so that the coordinate ϕ2 is ill defined and therefore so
is ψ. In particular, this implies that K is constant on this circle.

3.2.1 Reduction to the central singularity

Since the system is planar now, we may use general (Z2 × Z2- equivariant)
planar transformations for further reductions.

At this point the system depends on a distinguished parameter E , a de-
tuning parameter δ and several ordinary coefficients. Recall that parameters
are supposed to be small. We now look at the “degenerate” Hamiltonian
that results when δ = 0 (resonance) and E = 0 (the diameter of the singular
circle vanishes). This is called the central singularity, also known as the
organizing center.

At the singular values of the parameters we have that K̃ reduces to

Ks(x, y) := K|δ=0,E=0(x, y) = s4,0x
4 + s2,2x

2y2 + s0,4y
4 + h.o.t, (3.33)

where si,j = ci,j(0, 0). In particular

s0,4 = A− 3C, s2,2 = 2(A− 2C), s0,4 = A− C. (3.34)
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The constant term c0,0 can be neglected and, by a simple scaling transfor-
mation, Ks can be turned into

K ′
s(x, y) = ε1x

4 + µx2y2 + ε2y
4 + h.o.t, ε1, ε2 ∈ {−1, 1} (3.35)

where

µ =
2(A− 2C)√

|(A− 3C)(A− C)|
. (3.36)

Remark 3.3 (Non degeneracy conditions). This is possible provided that
the coefficients of x4 and y4 in Ks are not zero. This translates into the non
degeneracy conditions

A− 3C ̸= 0 and A− C ̸= 0. (3.37)

The signs of ε1 and ε2 are determined by the sign of A − 3C and A − C
respectively.

In this section, we look for a near identity coordinate transformation Φ
which brings the system at the central singularity into the polynomial form

f(x, y) = ε1x
4 + µx2y2 + ε2y

4. (3.38)

This morphisms has to respect the Z2 × Z2 symmetry (x, y) → (±x,±y).
As a consequence of proposition 2.4, such a transformation exists provided
that

µ2 ̸= 4ε1ε2. (3.39)

For our system this condition is equivalent to require that C ̸= 0. Making
this assumption, we are able to compute Φ using the iterative procedure
described in [21], adapted to our symmetric context.

We set Φ
(1)
1 (x, y) = x, Φ

(2)
1 (x, y) = y and assume that for some k

K ′s ◦ Φk = ε1x
4 + µx2y2 + ε2y

4 +O(|x, y|2(k+2)).

Then we set

Φ
(1)
k+1 = Φ

(1)
k +

∑
i

α
(1)
i P

(1)
i (3.40)

Φ
(2)
k+1 = Φ

(1)
k +

∑
i

α
(2)
i P

(2)
i (3.41)

where {P (1)
i }, {P

(2)
i } span the space of two variables monomials of degree

k + 1, invariant under the Z2 actions (x, y)→ (x,±y) and (x, y)→ (±x, y)
respectively. The coefficients α

(j)
i are to be found in order to cancel the terms

of order O(|x, y|2(k+2)) in K ′s. This translates into a set of linear equations

for the real numbers α
(j)
i . By the existence of the reducing transformation,

this set of equations can always be solved if (3.39) is satisfied.
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Remark 3.4. Let us note that the transformation Φ defined above (and the
following θ of proposition 3.2) is in general non canonical. The resulting
system is not conjugate but equivalent to the original one. In particular,
the reducing transformations we perform here and in the following do not
alter the bifurcation sequence of the system. This will allow us to obtain,
from function (3.44) (which is simpler than (3.31) and depends on the min-
imal number of parameters), the critical energy values which determine the
bifurcations of the original system.

If we compute Φ up to order 2 in k we get the following proposition

Proposition 3.1. Let us consider the planar Hamiltonian K̃. If C ̸= A,
C ̸= A/3 and C ̸= 0, there exists a coordinate transformation Φ : R2 → R2

such that Kb := K̃ ◦ Φ is of the form

Kb(x, y, E) = (a1E + a2E2 + b1E + b2)x
2 + (a3E + a4E2 + b3E + b4)y

2

+ (ε1 + a5E + b5)x
4 + (µ+ a6E + b6)x

2y2

+ (ε2 + a7E + b7)y
4 +O(|x, y|6) (3.42)

where the ai are coefficients, E and the bi are parameters linearly depending
on δ and vanishing at δ = 0. They are listed in appendix A. Neglecting
terms of O(|x, y|5) the following is a suitable transformation Φ:

x→ x+
ε1(2ε2s2,4−µs0,6)µ+2µs6,0−4ε1s4,2

4ε1ε2(4ε1ε2−µ2) xy2 − s6,0ε1
4 x3

y → y +
ε2(+2ε1s4,2−µs6,0)µ+2µs0,6−4ε2s2,4

4ε1ε2(4ε1ε2−µ2) x2y − s0,6ε2
4 y3 (3.43)

Proof. The existence of Φ is a consequence of proposition 2.4. The conditions
on C are consequence of the non degeneracy conditions (cfr. remark 3.3 and
of condition (3.39)). The explicit expression of the transformation up to and
including terms of O(|x, y|3) has been obtained by exploiting the algorithm
described above up to k = 2.

�

3.3 Bifurcation curves

From section 2.2 we know that, if condition (3.39) is satisfied,

F (x, y, u1, u2, u3) = ε1x
4 + (µ+ u3)x

2y2 + ε2y
4 + u1x

2 + u2y
2 (3.44)

is a universal deformation of f = ε1x
4 + µx2y2 + ε2y

4. Therefore, there
exists a coordinate transformation which induces Kb from F . Such a trans-
formation can be found by exploiting the algorithm described in section 2.4.
Namely, the following proposition holds:
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Proposition 3.2. Let Kb be as in (3.42) with central singularity at E =
b1 = b2 = · · · = 0 given by f = ε1x

4 + µx2y2ε2 + ε2y
4, εi = ±1 for i = 1, 2

and µ2 ̸= 4ε21ε
2
2. There exists a diffeomorphisms θ and a reparametrization

ρ such that
Kb(x, y, E) = F (θ(x, y, E , bi), ρ(E , bi)) (3.45)

with θ(x, y, 0) = (x, y), ρ(0, . . . , 0) = (0, 0, 0) and

F (x, y, u) = f(x, y) + u1x
2 + u2y

2 + u3x
2y2.

Modulo O(|E , bi|3)+ O(|x, y|3), the coordinate transformation θ reads

x → x+ ε1
b5x

4
+ ε1

a5Ex
4
− 3b25x

32
− 3a5b5Ex

16
− 3a25E2x

32
(3.46)

y → y + ε2
b7y

4
+ ε2

a7Ey
4
− 3b27y

32
− 3a7b7Ey

16
− 3a27E2y

32
(3.47)

and, modulo O(|E , bi|3) the reparametrization ρ is given by

u1 = b2 +

(
a1 + b1 − ε1

a5b2
2
− ε2

a1b5
2

)
E − ε1

b2b5
2

+
(
a2 − ε1

a1a5
2

)
E2

(3.48)

u2 = b4 +

(
a3 + b3 − ε2

a7b4
2
− ε2

a3b7
2

)
E − ε2

b4b7
2

+
(
a4 − ε2

a3a7
2

)
E2

(3.49)

u3 = b6 − ε1
b5b6
2
− ε2

b6b7
2

+
1

2

(
3b25
4
− ε1b5 +

3b27
4
− ε2b7 + ε1ε2

b5b7
2

)
µ

+

[
a6 − ε1

a6b5
2
− ε1

a5b6
2
− ε2

a7b6
2
− ε2

a6b7
2

+

(
3a5b5
8
− ε1

a5
2

+
3a7b7
8
− ε2

a7
2

+ ε1ε2
a7b5
4

+ ε1ε2
a5b7
4

)
µ

]
E

−
[
ε1
a5a6
2

+ ε2
a6a7
2
−
(
3a25
8
− 3a27

8
− ε1ε2

a5a7
4

)
µ

]
E2. (3.50)

Proof. The existence of the transformation follows from proposition 2.5.
From proposition 2.5 we also know that the computation can be done up to
and including terms of the first order in (x, y) and the second order in the
parameters (E , bi) for θ and up to and including O(|E , bi|2) for ρ.
To find the explicit expression of the transformations we exploit the algo-
rithm we described in section 2.4, setting c1 = E and ci+1 = bi. At each step
of the procedure we have to solve the infinitesimal stability equation. This
has been done implementing the division algorithm presented in section 2.5.

�

We now examine the possible combinations of the signs of ε1 and ε2.
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3.3.1 ε1ε2 = 1

The fixed points of the function (3.44) are given by

(0, 0),

(
±
√
−ε1u1

2
, 0

)
,

(
0,±

√
−ε2u2

2

)
, (3.51)±

√
−u2 − ε2(−αu1+2ε1u2)

α2−4ε1ε2√
α

,±
√
−αu1 + 2ε1u2√
α2 − 4ε1ε2

 (3.52)

where α = µ+ u3. In case ε1ε2 = 1 the corresponding bifurcation curves in
the parameters space are given by u1 = 0, u2 = 0, 2u2+αu1 = 0 and αu2+
2u1 = 0. Using the expression of the parameters ui found in (3.48), (3.49)
and (3.50) we are able to express these bifurcation curves in terms of the
original parameters of the reduced system, i.e the detuning parameter δ and
the distinguished parameter E . Namely, we have the following proposition

Proposition 3.3. In the planar system Kb of proposition 3.1 bifurcations
occur along the following curves in the (δ, E) plane:

E = E1u :=
δ

2(2A−B − 6C)
(3.53)

+

(
136A2 + 34B2 + 280BC + 456C2 − 8A(17B + 70C) + 15d3 − 45d4

)
δ2

48(2A−B − 6C)3

E = E1l :=
δ

2(2A−B − 2C)
(3.54)

+

(
136A2 + 34B2 + 104BC + 72C2 − 8A(17B + 26C) + 3d3 − 45d4

)
δ2

48(2A−B − 2C)3

E = E2u := − δ

2(2A+B − 6C)
(3.55)

−
(
56A2 + 14B2 + 8A(7B − 74C)− 296BC + 1272C2 + 45d1 − 15d2

)
δ2

48(2A+B − 6C)3

E = E2l := −
δ

2(2A+B − 2C)
(3.56)

−
(
56A2 + 14B2 + 8A(7B − 22C)− 88BC + 120C2 + 45d1− 3d2

)
δ2

48(2A+B − 2C)3

where terms O(δ3) are neglected.

Remark 3.5. The fixed points of the planar system Kb correspond to fixed
points for the 1 DOF Hamiltonian K only if they occur into the singular
circle, cfr remark 3.2.

Moreover, the distinguished parameter E is non negative, therefore the
previous curves determine bifurcations for the 1 DOF system defined by K
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only for those values of the coefficients and of the detuning parameter which
makes (at least) the first order terms non negatives.

In the following we clarify how the bifurcation curves given in proposition
3.3 have to be interpreted in terms of the 1 DOF system.

ε1 = ε2 = −1

To fix the ideas, let us consider the case C > 0 and ε1 = ε2 = −1, which
corresponds to A − 3C < A − C < 0, and let us assume that the detuning
parameter is non positive.

Remark 3.6. Notice that there is no loss of generality in assuming δ ≤ 0
(i.e. ω1 ≤ ω2). If in the original phase space we exchange the axes, namely
we perform the transformation

AE : x1 → x2, x2 → x1, p1 → p2, p2 → p1 (3.57)

the Hamiltonian (3.1) takes the form

H̃ =
1

2
(ω2x

2
1 + ω1x

2
2 + p21 + p22) + a04x

4
1 + a22x

2
1x

2
2 + a40x

4
2.

The detuning parameter becomes δ = ω2
ω1
− 1, which is opposite in sign with

respect to δ. Thus, applying transformation (3.57), the case δ > 0 can be
treated straightly from δ < 0.

In this case the deformation F turns into

F̃ (x, y) = −x4 + µx2y2 − y4 + u1x
2 + u2y

2 + u3x
2y2. (3.58)

The critical points of the planar system are therefore given by (0, 0),

(±
√
u1
2
, 0), (0,±

√
u2
2
) and

±
√
u1 +

α(−αu1−2u2)
−4+α2

√
2

,±
√
−αu1 − 2u2√
−4 + α2

 .

The fixed points (
±
√
u1
2
, 0

)
and

(
0,±

√
u2
2

)
(3.59)

bifurcate from the origin when u1 = 0 and u2 = 0. These critical values
of the unfolding parameters respectively determine the bifurcation curves
(3.53) and (3.54). For C > 0 and δ ≤ 0, these critical values correspond to
physical acceptable values if respectively B > 2(A−3C) and B > 2(A−C).

Furthermore, for E ≈ 0, both u1 and u2 are negative and E1u < E1l.
Thus, the bifurcations of fixed points (3.59) occur according to the diagram
given in figure 3.1, from frame 1 to 3. The gray zone corresponds to non
acceptable values of the parameters.
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u2

u1

1 2

3

4

56

Figure 3.1: Bifurcation diagram in case A− 3C < A− C < 0 and δ < 0.

Finally, we have to discuss the critical points±
√
u1 +

α(−αu1−2u2)
−4+α2

√
2

,±
√
−αu1 − 2u2√
−4 + α2

 . (3.60)

which determine the bifurcation lines (dashed and dotted lines in figure 3.1
respectively)

αu2 = −2u1 and 2u2 = −αu1. (3.61)

The expressions of these critical curves in the (δ, E) plane are respectively
given in (3.55) and (3.56).

Remark 3.7. The reduced system comes from a normalization procedure
truncated to the fourth order in ε, in which both E and δ are assumed to be
of second order. Therefore, in the computation of (3.55) and (3.56) from
(3.61) we retain in α only terms O(|E , δ|), since α has to multiply x2y2 which
is a fourth order term.

The critical curves (3.55) and (3.56) correspond to acceptable values for
B > 2(C − A) and B > 2(3C − A). However, a little computer algebra
shows that the critical points (3.60) fall on the singular circle (3.32) (frame
4 in picture 3.1; the marked circle represents the singular circle), therefore in
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correspondence of these points the coordinate transformation (3.30) is not
invertible. On the other hand, the fixed points (3.59) could fall on the limit
circle, too. At first order in the deformation parameters, this happens for

u1√
3C −A

= 4E and
u2√
C −A

= 4E . (3.62)

Solving equations (3.62) gives the first order term in the detuning parame-
ter of expressions (3.55) and (3.56). This suggests that the critical curves
(3.55) and (3.56) do not determine the bifurcation of new fixed points for
the reduced system defined by (3.24), but rather the disappearance of fixed
points (3.59). To verify this statement, we operate a different planar reduc-
tion, according to {

x =
√

2(E − J) cosψ
y =

√
2(E − J) sinψ

(3.63)

In these coordinates the singularity at J2 = 0 is removed and we have a
singular circle for J1 = 0.

Proceeding as in the previous section we achieve the universal deforma-
tion

F ′ = −x4 + (µ+ u′3)x
2y2 − y4 + u′1x

2 + u′2y
2, εi = ±1 i = 1, 2. (3.64)

where the expressions of the deformation parameters are still determined
by proposition 3.2, but the values of coefficients ai and parameters bi have
changed according to (3.63). They are listed in appendix A.

The bifurcation diagram of (3.64) in the (u′1, u
′
2) plane is still given by

figure 3.1. However, since both u′1 and u′2 turn out to be positive for δ ≤ 0
and E ≈ 0, in the (u′1, u

′
2) plane the bifurcation diagram should be read

clockwise from 3 to 1. Solving u′1 = 0 and u′2 = 0 we find the critical curves
(3.55) and (3.56), which therefore must determine the disappearance of fixed
points (3.59) for the reduced Hamiltonian (3.24), as we claimed.

Remark 3.8. The bifurcation analysis of the reduced system has been de-
duced assuming C > 0. For C < 0 the bifurcation diagram of the germ
(3.44) remains the same given in figure 3.1. However, since the distin-
guished parameter must be non negative and now we have E1l < E1u, the
physical unacceptable zone would be given by panel 2 and the diagram should
be read clockwise starting from frame 1. In particular the reduced system
encounters the first bifurcation at E = E1l (instead of E = E1u).

Finally, we obtain the following proposition

Proposition 3.4. Let us consider the 1 DOF system defined by K, cfr.
(3.24), with C ̸= 0, A − 3C < 0, A − C < 0 and non positive detuning
parameter δ. For sufficiently small values of δ the following statements hold.

For C > 0
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i) if B > 2(A − 3C): pitchfork bifurcation (a pair of stable fixed point
appears) at

E = E1u;

ii)if B > 2(A − C): pitchfork bifurcation (a pair of unstable fixed point
appears) at

E = E1l;

iii) if B > 2(C − A):anti-pitchfork bifurcation (the pair of unstable fixed
point disappears) at

E = E2l;

iv) if B > 2(3C − A): anti-pitchfork bifurcation (the pair of stable fixed
point disappears) at

E = E2u;

v) if B ≤ 2(A− 3C) the system does not exhibits bifurcation and has only
two stable fixed points.

For C < 0 and B < 2(A − C) the system does not exhibit any bifurcation
and has only two stable fixed points. Otherwise, the bifurcations listed above
occur, if the corresponding conditions on B are satisfied, but in a different
sequence given by ii)− i)− iv)− iii).

ε1 = ε2 = 1

The case ε1 = ε2 = 1 follows similarly through the bifurcation analysis of

−F̃ (x, y) = x4 + (µ̃+ ũ3)x
2y2 + y4 + ũ1x

2 + ũ2y
2

where µ̃ = −µ, ũi = −ui, for i = 1, 2, 3. We attain the following proposition:

Proposition 3.5. Let us consider the 1 DOF system defined by K, with non
positive and sufficiently small detuning parameter, C ̸= 0, A− 3C > 0 and
A− C > 0.

For C < 0:

if B ≤ 2(A− C) only two stable fixed points are present;

if B > 2(A−C) the full bifurcation sequence is given by iii)− iv)− i)− ii)
until the corresponding conditions on B are satisfied.

For C > 0:

if B ≤ 2(A− 3C) only two stable fixed points are present;

if B > 2(A−3C) the full bifurcation sequence is given by iv)−iii)−ii)−i),
until the corresponding conditions on B are satisfied.
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3.3.2 ε1ε2 = −1

ε1 = −ε2 = −1

This case corresponds to A−3C < 0 and A−C > 0 and the versal unfolding
F turns into

G̃ = −x4 + (µ+ u3)x
2y2 + y4 + u1x

2 + u2y
2 (3.65)

To fix the ideas, let us assume that A− 2C < 0 so that µ < 0. The critical
points of (3.44) are therefore given by

(0, 0),

(
±
√
u1
2
, 0

)
,

(
0,±

√
−u2
2

)
(3.66)

and ±
√
u1 +

α(−αu1−2u2)
4+α2

√
2

,±
√
−αu1 − 2u2√

4 + α2

 . (3.67)

As we can see in picture (3.2), the bifurcation diagram of the system is quite
different from the previous one.

Again, we are interested in finding bifurcation curves in the (δ, E) plane
for the one degree of freedom system defined by (3.24). Thus, we limit
ourselves to consider what happens inside the singular circle (3.32), which
is marked with a darker line in figure (3.2).

For δ ≤ 0 and small values of the distinguished parameter, we have both
u1 and u2 negative. The physical unacceptable zone is now given by frame
7. Thus, the bifurcation sequence has to be read counter clockwise from
frame 1.

Therefore the planar system exhibits the first bifurcation at u1 = 0. The
corresponding bifurcation for the 1 DOF system defined by (3.24) occurs for
E = E1u, which is acceptable only if B > 2(A− 3C).

In frame 3 we see the appearance of two stable fixed points inside and four
unstable points on the singular circle. By using coordinate transformation
(3.63), we can easily check that, if B > 2(C−A), the corresponding threshold
value for the distinguished parameter is given by (3.56) and determines the
bifurcation of two stable fixed point for K.

For

u2 = −
1

2
(α+

√
α2 + 4)u1 (3.68)

(marked line in figure 3.2) a global bifurcation occurs. The corresponding
threshold value for the distinguished parameter is given by

E = Egb := −
δ

2B
+O(δ2) (3.69)
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which is an acceptable value if B > 0. Notice that since α multiplies a fourth
order term we can consider (3.68) only up to the first order in |δ, E|, cfr
remark 3.7. Therefore, we are able to compute the critical curve (3.69) only
to the first order in the detuning parameter. Then, if B > 2(A−C), we can
pass through u2 = 0 for E = E1l and if B > 2(3C −A) a further bifurcation
occurs when passing through u1 = 0; the corresponding threshold value for
the distinguished parameter is given by (3.55).

The case µ > 0 follows similarly through the bifurcation analysis of

−G̃(y, x) = −x4 + (µ̃+ ũ3)x
2y2 + y4 + ũ1x

2 + ũ2y
2

where µ̃ = −µ < 0, ũ1 = −u2, ũ2 = −u1 and ũ3 = −u3. Finally we have
the following proposition:

Proposition 3.6. Let us consider the 1 DOF system define by K, cfr. (3.24)
with non positive and sufficiently small detuning parameter, C ̸= 0, A−3C <
0 and A− C > 0:
for A − 2C < 0 < A − C bifurcations might occur along the curves (3.53)-
(3.56) according to the statements of proposition 3.4. However in this case
they are reached in the sequence i)− iii)− ii)− iv), until the corresponding
conditions on B are satisfied. Furthermore, a global bifurcation might occur
between iii) and ii):
gb) if B > 0 at

E = Egb
with E2l < Egb < E1l.
For 0 < A − 2C < A − C bifurcations occur along the curves (3.53)-
(3.56) according to the statements of proposition 3.4, until the correspond-
ing conditions on B are satisfied. Again, if B > 0 the system exhibits
a global bifurcation at E = Egb. The full bifurcation sequence is given by
iii)− i)− gb)− iv)− ii).

It remains to analyze the case µ = 0, corresponding to the central sin-
gularity y4 − x4, which still has finite codimension (see section 2.2). In this
case (3.44) turns into

F(x, y) = −x4 + y4 + u1x
2 + u2y

2 + u3x
2y2. (3.70)

The critical points remain the same given in (3.66) and (3.67), but we now
have α = u3. The bifurcation curves are therefore given by

u1 = 0, u2 = 0 (3.71)

and

u3u2 = 2u1 (3.72)

2u2 = −u1u3. (3.73)
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Figure 3.2: Bifurcation diagram for A− 2C < 0 < A− C and δ < 0.

Solving (3.71), we find the critical values E = E1u and E = E1l, which
respectively turns out to satisfy also (3.72) and (3.73). Thus, we get

E1u = E2l and E2u = E1l. (3.74)

For the 1 DOF system defined by (3.24), this implies that the critical points

corresponding to (±
√

u1
2 , 0), (0,±

√
−u2
2 ) appear and disappear simultane-

ously. Furthermore, a global bifurcation occurs for

u2 = −
1

2
(u3 +

√
u23 + 4)u1 (3.75)

which give the critical curve (3.69). Finally, the following proposition holds:

Proposition 3.7. In the 1 DOF system define by K, cfr. (3.24), for A =
2C > 0 and non positive sufficiently small values of the detuning parameter,
we have

i) if B > −2C two pitchfork bifurcations occur concurrently (two pairs of
stable fixed points appear) at

E = E1u = E2l;

gb) if B > 0 a global bifurcation occurs at

E = Egb;
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ii) if B > 2C two anti-pitchfork bifurcations occur concurrently (the two
pairs of stable fixed points disappear) at

E = E1l = E2u.

ε1 = −ε2 = 1

The case ε1 = −ε2 = 1 follows similarly through the bifurcation analysis of

−G̃(x, y) = x4 + (µ̃+ ũ3)x
2y2 − y4 + ũ1x

2 + ũ2y
2

with µ̃ = −µ, ũi = −ui, for i = 1, 2, 3. Therefore, the following proposition
holds:

Proposition 3.8. Let us consider the 1 DOF system define by K, cfr. (3.24)
with C ̸= 0, A − 3C > 0 and A − C < 0. For non positive and sufficiently
small detuning parameter, bifurcations might occur along the curves (3.53)-
(3.56) and (3.69) according to the statements of proposition 3.4, 3.6 and
3.7.
For A − 2C < 0 < A − 3C The full bifurcation sequence is given by ii) −
iv)− gb)− i)− iii);
for 0 < A− 2C < A− 3C it is given by iv)− ii)− gb)− iii)− i);
for A = 2C bifurcations occur according to the statements of proposition 3.7,
but they are reached in the sequence ii) − gb) − i), until the corresponding
conditions on B are satisfied.

3.4 Implications for the original system

It is known [41, 83] that if a normalization is carried far enough to obtain
only isolated equilibria, we know the essential characteristics of the system;
including higher orders may shift the positions of the equilibria – and may
be essential for quantitative uses – but will not alter their number or sta-
bility. Therefore the isolated fixed points of the 1 DOF system defined by
(3.24) correspond to periodic orbits for the original system. Of course, the
results obtained are limited to low energies, in the neighborhood of a central
equilibrium. Above a certain threshold, one should not expect that the for-
mal series developed by Lie transformations would stay close for a very long
time to the solutions of the original problem. Since we pushed the normal-
ization up to including fourth order terms, the critical curves of proposition
3.4 give quantitative predictions on the bifurcation and stability of these
periodic orbits in the (δ, E)-plane up to the second order in the detuning
parameter (since, we recall, this is assumed to be a second degree term).

After the coordinate transformation (3.30), the origin in the plane is
a fixed point for all values of the parameters and represents the periodic
orbit J1 = 0, namely the normal mode along the x2-axis. Similarly, if the
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planar reduction is performed via (3.63), we find that for all values of the
parameters, the origin is a fixed point again, but it corresponds in this case
to the periodic orbit J2 = 0, that is the normal mode along the x1-axis.
Furthermore, inverting the coordinate transformation (3.30), the critical
points (3.59) turn into

ψ = 0, π ψ =
π

2
,
3

2
π (3.76)

and represent periodic orbits in general position, namely inclined and loop
orbits. In the previous section we found threshold values for the distin-
guished parameter, depending on δ and on the coefficients of the system,
which determine the bifurcation of these periodic orbits in general position
from the normal modes of the system. The computation of such critical
curves is possible if C ̸= A/3, C ̸= A and C ̸= 0. In term of the original
coefficients of the system the previous conditions turn into

a0,4 − a2,2 + a4,0 ̸= 0, 3a0,4 − a2,2 + 3a4,0 ̸= 0 and a2,2 ̸= 0 (3.77)

respectively. Furthermore, from propositions 3.4, 3.5, 3.6 and 3.8, we know
that each time a periodic orbit appears (or disappears) from a normal mode,
the normal mode itself changes its stability. However, it would be better to
have an expression of the bifurcation curves in the (δ, E)-plane, where E
is the “true” energy of the system and δ is as defined in (1.38). On the
x1−axis orbit (J2 = 0, J1 = E), we have

K = E +
(
aE2 + E δ̃

)
ε2 +

(
−17

9
a2E3 + 5d1E3

2
− 2aE2δ̃

)
ε4 +O(ε6) (3.78)

According to the rescaling (3.9) and (3.8) and (3.14), we have

E = ω2ε
2K. (3.79)

Thus, equation (3.78) can be used to express the physical energy E in terms
of E , namely

E = ω2Eε2 +
(
aE2ω2 + E δ̃ω2

)
ε4 +O(ε6). (3.80)

Thus up to the second order in δ, for E satisfying equations (3.55), (3.56)
and δ as defined in (3.12) we obtain the following threshold values

E = E2u :=
2δω4

2

3(a2,2 − 2a4,0)
(3.81)

+
ω4
2

(
89a22,2 − 256a2,2a4,0 + 156a24,0 + 120d1ω

6
2 − 40d2ω

6
2

)
54(a2,2 − 2a4,0)3

δ2 +O(δ3)

E = E2l :=
2δω4

2

a2,2 − 6a4,0
(3.82)

+
ω4
2

(
9a22,2 − 80a2,2a4,0 + 156a24,0 + 120d1ω

6
2 − 8d2ω

6
2

)
2(a2,2 − 6a4,0)3

δ2 +O(δ3)
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for the appearance (disappearance) of inclined and loop from the x−axis
orbits respectively. They correspond to physically acceptable values, at
least for small values of the detuning parameter, (which we assume to be
non positive, cfr. remark 3.6) if

a2,2 − 2a4,0 < 0, and a2,2 − 6a4,0 < 0. (3.83)

A similar argument gives the threshold values for the bifurcation from the
x2−axis orbit of inclined and loop orbits respectively. They are given by

E = E1u :=
2δω4

2

3(2a0,4 − a2,2)
(3.84)

+
ω4
2

(
276a20,4 − 176a0,4a2,2 + 19a22,2 + 40d3ω

6
2 − 120d4ω

6
2

)
54(2a0,4 − a2,2)3

δ2

E = E1l :=
2δω4

2

6a0,4 − a2,2
(3.85)

+
ω4
2

(
276a20,4 − 64a0,4a2,2 + 3a22,2 + 8d3ω

6
2 − 120d4ω

6
2

)
2(6a0,4 − a2,2)3

δ2

They correspond to physically acceptable values, at least for small values of
the detuning parameter, if

a2,2 − 2a0,4 > 0, and a2,2 − 6a0,4 > 0. (3.86)

Finally, the global bifurcation might occur at

E = Egb :=
2δω4

2

3(a0,4 − a4,0)
(3.87)

if
a0,4 < a4,0. (3.88)

As we have seen in the previous section the bifurcation sequence of the
system depends on the three coefficients A,B,C, with

A =
3(a4,0 + a0,4)

8ω3
2

, B =
3(a4,0 − a0,4)

4ω3
2

, C =
a2,2
8ω3

2

. (3.89)

This translates into conditions on the original coefficients a4,0, a2,2 and a0,4.
Namely, proposition 3.4 reads now

Proposition 3.9. Let us consider the dynamical system defined by H, cfr.
(3.1),with a2,2 ̸= 0, a0,4−a2,2+a4,0 < 0 and 3a0,4−a2,2+3a4,0 < 0 and non
positive detuning parameter. If the detuning parameter is sufficiently small,
the following statements hold:

for a2,2 > 0
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i) if 2a0,4 < a2,2: a pair of stable inclined orbits appears from the x2-normal
mode (which becomes unstable) at

E = E1u;

ii)if 6a0,4 < a2,2: a pair of unstable inclined orbits appears from the x2-
normal mode (which comes back to stability) at

E = E1l;

iii) if 6a4,0 > a2,2 the pair of unstable inclined orbits disappears on the
x1-normal mode (which becomes unstable) at

E = E2l;

iv) if 2a4,0 > a2,2: the pair of stable inclined orbits disappears on the x1-
normal mode (which comes back to stability) at

E = E2u;

v) if 2a0,4 ≥ a2,2 the system does not exhibits bifurcations.

For a2,2 < 0 and a2,2−6a0,4 ≤ 0 the system does not exhibits any bifurcation.
Otherwise, the bifurcations listed above occur, if the corresponding conditions
on the coefficients are satisfied, but in a different sequence given by ii)− i)−
iv)− iii).

In case a0,4−a2,2+a4,0 > 0 and 3a0,4−a2,2+3a4,0 > 0, a0,4−a2,2+a4,0 < 0
and 3a0,4− a2,2+3a4,0 > 0, a0,4−a2,2+a4,0 > 0 and 3a0,4−a2,2+3a4,0 < 0
the bifurcation sequences can be easily deduced from propositions 3.5, 3.6,
3.7 and 3.8 respectively.

The following figures give a comparison between our analytical predic-
tions (on the left) and numerical approximations (on the right). We choose
δ = −0.025 with coefficients a4,0 = −a0,4 = 2/3, a2,2 = 1 in fig.s 3.3, 3.4,
and a4,0 = 1/2, a0,4 = 0, a2,2 = 1 in fig. 3.5. The pictures show (x1, p1)
surfaces of section computed with the condition x2 = 0, p2 > 0.

The first set of coefficients satisfies conditions i)− v) of proposition 3.9
for a2,2 > 0, which implies that the system can exhibit four bifurcations.
In figure 3.3(a) we represent the dynamics on the energy level E = 0.006
which is below E1u = 0.007: we see a section of the invariant tori around
the x2- axis orbit. In fig 3.3(b) we increased the energy level to E = 0.008,
which is above E1u: we see that the axial orbit is now unstable and there
are two stable fixed points corresponding to the two periodic inclined orbits.
Panel 3.3(c) corresponds to E = 0.012 which is above E1l = 0.01: the axial
orbits has come back to stability and two further fixed point are present
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which correspond to unstable loop orbits. Increasing the energy values the
fixed points disappear and at the end of the bifurcation sequence the x2-
axis regains its stability. Notice that both the analytical and numerical
approximations of the dynamics are in very good agreement.

The second choice of coefficients satisfies the condition of proposition
3.6. Analytical and numerical surfaces of section are showed in fig.s 3.5
and 3.6. According to our analytical prediction a global bifurcation occurs
in this case at E = Egb = 0.03. The threshold value found numerically
is 0.03365 (see fig. 3.6). The two predictions therefore agree to the third
decimal number.
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Figure 3.3: Analytical (on the left) and numerical (on the right) surfaces of section
at energy levels (a) E = 0.006 ,(b) E = 0.008, (c) E = 0.012 for δ = −0.025 when
the original coefficients of the system are a4,0 = −a0,4 = 2/3, a2,2 = 1.
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Figure 3.4: Analytical (on the left) and numerical (on the right) surfaces of section
at energy levels (a) E = 0.02 ,(b) E = 0.06, for δ = −0.025 when the original
coefficients of the system are a4,0 = −a0,4 = 2/3, a2,2 = 1.
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Figure 3.5: Analytical (on the left) and numerical (on the right) surfaces of section
at energy levels (a) E = 0.02 ,(b) E = 0.03, (c) E = 0.04 for δ = −0.025 when the
original coefficients of the system are a4,0 = 1/2, a0,4 = 0, a2,2 = 1.
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Figure 3.6: Global bifurcation: analytical (on the left) and numerical (on the
right) surfaces of section for δ = −0.025 when the original coefficients of the system
are a4,0 = 1/2, a0,4 = 0, a2,2 = 1.
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Chapter 4

Orbit structure of systems
with elliptical equipotentials

Here we present a general analysis of the orbit structure of 2D potentials with
self-similar elliptical equipotentials by applying the method of Lie transform
normalization. We study the most relevant resonances and related bifurca-
tions. In the 2 : 2 resonance the first non degeneracy condition in (3.37) is
not satisfied. As a consequence, inclined orbits are never present and may
appear only when the equipotentials are heavily deformed. Loops bifurcate
upon a critical energy value and leads to the destabilization of either one
or the other normal modes, depending on the ellipticity of equipotentials.
The 2 : 4 resonance determines the appearance of banana and anti-banana
orbits: the first family is stable and always appears at a lower energy than
the second one, which is unstable. The bifurcation sequence also produces
a variation in the stability character of the major axis orbit and is modified
only by very large deformations of the equipotentials.

4.1 The model

We are interested in a fairly general class of potentials with self-similar
elliptical equipotentials of the form

Vα(x1, x2; q) =

 1
α

(
1 + x21 +

x22
q2

)α/2
, 0 < α < 2

1
2 log

(
1 + x21 +

x22
q2

)
, α = 0.

(4.1)

The corresponding Hamiltonian

H(p,x) = 1

2
(p21 + p22) + Vα(x1, x2; q) (4.2)

exhibits two Z2 symmetries in space, given by (3.2) and (3.3). The ellipticity
of the equipotentials is determined by the parameter q: for short, we will
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speak of an “oblate” figure when q < 1 and a “prolate” figure when q > 1.
The “profile” parameter α determines the behavior at large radius. By
expanding the potential (4.1) around the origin and retaining only terms up
to degree N + 2 we get

V(N)(x21, x
2
2; q, α) ≡

N∑
k=0

bk(α)s
2(k+1)(x1, x2; q) (4.3)

where we have introduced the “elliptical radius”

s(q) =

√
x21 +

x22
q2
. (4.4)

In all cases in which we rescale the “core radius” to one we can put b0 = 1/2
and, for the class (4.1), the first two coefficients of the higher-order terms
are

b1 = −
2− α
8

, b2 =
(2− α)(4− α)

48
. (4.5)

Another interesting case is that of the “flattened isochrone” [50]:

b1 = −
1

4
, b2 =

5

32
. (4.6)

In force of reflection symmetries, each term in the series is given by an even
power of the basic elliptical radius. Therefore the Hamiltonian (4.2) can be
treated in a perturbative way as a non-linear oscillator system. The two
unperturbed frequencies are given by

ω1 :=
√
2b0 = 1, ω2 :=

√
2b0/q = 1/q. (4.7)

To find the normal form we proceed as in the previous chapter. We start
by introducing a small parameter ε > 0 and, by performing a blowing-up
of the phase-space by means of the transformation (3.8), we rescale the
Hamiltonian (4.2) according to H̃

.
= ε−2H. After a further scaling (3.13),

the original Hamiltonian system (4.2) is put into the form

H̃(p,x) =

N∑
n=0

ε2nH̃2n(p,x). (4.8)

We then have

H̃0 =
1

2

(
ω1(p

2
1 + x21) + ω2(p

2
2 + x22)

)
(4.9)

and H̃2j , j > 0, are essentially the higher order terms of the potential.
Again, since we are interested in the behavior of the system around m1/m2
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resonances with m1,m2 ∈ N, we introduce a detuning parameter δ such that
the frequency ratio is written as

ω1/ω2 = q =
m1

m2
+ δ. (4.10)

The detuning parameter is treated as a term of order two in ε, δ = δ̃ε2, and
put in the perturbation. After a further scaling

H ≡ m2

ω2
H̃ (4.11)

and noting that, in view of (4.10), we have

1

q
=
m2

m1
− m2

2

m2
1

δ̃ε2 +
m3

2

m3
1

δ̃2ε4 + . . . , (4.12)

by collecting the terms up to order 2N in ε, we finally put the Hamiltonian
into the form

H(p,x) =
N∑
k=0

ε2kH2k(p,x) (4.13)

where the unperturbed term is given by

H0 =
1

2
m1(p

2
1 + x21) +

1

2
m2(p

2
2 + x22). (4.14)

The system is now ready for the normalization procedure described in section
1.3. In the following, we are interested in the behavior of the system around
2 : 2 and 2 : 4 resonances.

4.2 2:2 Resonance

Let us start considering the system around a 1 : 1 symmetric resonance.
Therefore, we approximate the frequency ratio by

q = 1 + δ̃ε2. (4.15)

The minimal truncation order required isN = 1. The terms in the expansion
(4.13) are given by

H0 =
1

2
(p21 + x21 + p22 + x22) (4.16)

H2 =
δ̃

2
(x21 + p21) + b1

(
x21 + x22

)2
. (4.17)

The normalization procedure described in (1.3) transforms the Hamiltonian
(4.13) into the normal form

K11 = J1 + J2 + ε2δ̃J1 + (4.18)

ε2b1

(
3

2
(J2

1 + J2
2 ) + J1J2(2 + cos(2ϕ1 − 2ϕ2)

)
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where action-angle like variables have been introduced according to (1.49).
We introduce the invariants of the oscillator symmetry [40]:

I0 =
1
4(z1z̄1 + z2z̄2)

I1 =
1
2ℜ(z1z̄2)

I2 =
1
2ℑ(z1z̄2)

I3 =
1
4(z1z̄1 − z2z̄2)

(4.19)

The set {I0, I1, I2, I3} form a Hilbert basis of the ring of invariants and can
be used as a coordinates system for the reduced phase space. The Poisson
bracket is given by {Ii, Ij} = εijkIk, where εijk denotes the sign of the
permutation

(
123
ijk

)
and vanishes if one of the i, j, k is zero or two of them

are equal.
Notice that I0 = H0/2, which is a constant of motion. If we denote this

constant value with E/2, the reduced Hamilton function takes the form

K(I1, I2, I3) = E +

(
δ̃

2
E + b1E2 + δ̃I3 + b1(I

2
1 − I22 ) + b1I

2
3

)
ε2. (4.20)

There is one relation between the new coordinates, namely

I21 + I22 + I23 =
E2

4
. (4.21)

Hence the sphere

S =

{
(I1, I2, I3) ∈ R3 : I21 + I22 + I23 =

E2

4

}
(4.22)

is invariant under the flow defined by (4.20). This provides the reduction to
a one degree of freedom system.

The two reflection symmetries of (4.2) now turn into the symmetries
I1 → −I1 and I2 → −I2. Their composition

(I1, I2, I3)→ (−I1,−I2, I3)

gives a discrete symmetry of (4.20). We perform a further reduction to
explicitly divide out this symmetry. This is given by the transformation [63]

x = I21 − I22
y = 2I1I2
z = I3

(4.23)

which turns the sphere (4.22) into the “Lemon” space

L =

{
(x, y, z) ∈ R3 : x2 + y2 =

(
E
2
+ z

)2(E
2
− z
)2
}

(4.24)
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with Poisson bracket
{f, g} = (∇f ×∇g,∇L)

where (., .) denotes the inner product and L = x2 + y2 −
(E
2 + z

)2 (E
2 − z

)2
.

The Hamiltonian function becomes

K(x, y, z) = E +

(
δ̃

2
E + b1E2 + δ̃z + b1x+ b1z

2

)
ε2. (4.25)

We note that both reversing symmetries of (4.20) gives the invariance of
(4.25) with respect to the reflection y → −y.

By varying E (i.e. by varying the measure of the reduced phase space
(4.24)), the system could display several equilibrium configurations.

Each integral curve for the reduced system defined by (4.25), is given by
the intersection between L and the surface

{(z, x) ∈ R2 : K = h̃} (4.26)

and tangency points give equilibrium solutions. Since y does not enter in
(4.25), the level sets {K = h̃} are parabolic cylinders. If a tangency point
occurs between L and the surface (4.26), we have an (isolated) equilibrium
for the reduced system. Moreover, two (degenerate) equilibria are repre-
sented by the singular points Q1 ≡ (0, 0,−E/2) and Q2 ≡ (0, 0, E/2). A
tangent plane to L can coincide with a tangent plane to the parabolic cylin-
der {K = h̃} only at points where y vanishes. Hence all equilibria on L
occur at {y = 0}: in order to study the existence and nature of the equilib-
ria configuration of the system, it is then enough to restrict the analysis to
the phase space section {y = 0} .

The contour C ≡ L ∩ {y = 0} in the (z, x)-plane is given by C− ∪ C+,
where

C− ≡
{
(z, x) ∈ R2 : x = −

(
E2

4
− z2

)}
(4.27)

C+ ≡
{
(z, x) ∈ R2 : x =

(
E2

4
− z2

)}
(4.28)

and the set P ≡ {K = h} ∩ {y = 0} corresponds to the parabola

x = h− δ

b1
z − z2 (4.29)

where h = 1
b1

(
h̃ε2 −

(
1 + b1E + δ

2

)
E
)
.

On the phase space section C, the two degenerate equilibria Q1 and Q2

are respectively represented by the pointsQ1 ≡ (−E/2, 0) andQ2 ≡ (E/2, 0).
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It is always possible to fix h such that (4.29) intersects C in one of these
points, say Q1, so that

h = hQ1 :=
E2

4
− δ

2b1
E . (4.30)

In the coordinates (4.19), Q1 is represented by
I0 = E

2
I1 = 0
I2 = 0

I3 = −E
2

The corresponding periodic orbit in action-angle variables is given by J1 = 0,
that is the normal mode along the x2-axis for the two degrees of freedom
system. Similarly, we recognize that the equilibrium point Q2 determines
the periodic orbit along the x1-axis.

Z

X

(a)

Z

X

(b)

Z

X

(c)

Z

X

(d)

Figure 4.1: Possible tangency points on the reduced phase space section C∩{y = 0}
for different values of the parameters: a) δ = −0.2, E = 0.3, α = β = 0; b) δ = −0.2,
E = 0.6, α = β = 0; c) δ = 0, E = 0.6, α = β = 0; d) δ = −0.2, E = 0.6, α = 0,
β = 0.2.
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4.2.1 Bifurcation of loop orbits

Depending on the values of the constant of motion E , the normal modes
might change their stability. A stability/instability transition of a normal
mode is generally associated with the bifurcation of new periodic orbits.
If this is the case, one or more tangency points arise between the reduced
phase space section C± and the parabola (4.29).

Suppose that a tangency point occurs between P and the upper arc of the
contour C. Let us denote such a point by QU . Since its x-coordinate must
be positive, if we invert the coordinate transformation (4.23), it corresponds
to two points on the section I2 = 0 of the sphere (4.22). Thus, we find two
periodic orbits for the two degree of freedom system, whose angle coordinates
must satisfy

ϕ1 − ϕ2 = 0, π (4.31)

which correspond to inclined orbits.
Similarly, it can be shown that if a tangency point, say QL, occurs on

the lower arc of the contour C, it determines two loop orbits for the two
degrees of freedom system given by

2(ϕ1 − ϕ2) = ±π. (4.32)

In the previous chapter we found critical energy values which give existence
conditions for the periodic orbits described above if non degeneracy condi-
tions are satisfied (see remark 3.3 and condition (3.39)). Notice that the
(formal) constant of motion E plays the role of the distinguished parameter.
Unfortunately, we now have A = 3C = 3

4b1, therefore such conditions are
not all satisfied. Moreover, since B = 0, the threshold values (3.53) and
(3.55) are divergent. As a consequence, we expect that inclined orbits do
not appear, whereas loop orbits could bifurcate at the same critical values
given in (3.54) and (3.56). Indeed, we find both critical values (3.54) and
(3.56), at first order, if we perform our analysis on the reduced phase space
section L ∩ {y = 0}. The second order terms can be computed, as well, if
the normalization is pushed up to the fourth order (i.e. N=2).

We recall that only non-negative value of E are allowed. For E = 0 the
dynamics are trivial since the reduced phase space coincides with the origin.
Let us take δ < 0, so that q < 1. The case δ > 0, i.e. q > 1, can be studied
similarly (see remark 3.6). For δ = 0, the system is in the “exact” 1 : 1
resonance. If this is the case, we have q = 1 and the system turns out to be
separable in polar coordinates.
Increasing the value of the distinguished parameter the area delimited by the
contour phase space C increases. Thus, at a certain critical value for E , the
contour C will intersect the parabola (4.29). By varying h, P shifts upward
or downward. Consequently, the intersection between the two curves may
yield a tangency point on C. If this is the case, the corresponding value of E
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gives a condition for the existence of an isolated equilibrium point (see Fig
4.1(b)). On the other hand, the parabola P achieves its maximum at

z = zm := − δ

2b1
, (4.33)

is downward concave and has, at its vertex, the same curvature of C+ at
z = 0. Therefore, by a simple geometrical argument, we see that a tangency
point on the upper arc of reduced phase space section cannot appear. As a
consequence, inclined orbits do not exist. However a tangency point on the
lower arc C− can occur. It can be found by imposing the system{

x = h− δ
b1
z − z2

x = −
(
E2

4 − z
2
) (4.34)

to have a unique solution not coinciding with
(
±E

2 , 0
)
. System (4.34) admits

a unique solution if the equation

2z2 +
δ

b1
z − E

2

4
− h = 0 (4.35)

has null discriminant. This is the case for

h = hl := −
1

4

(
δ2

2b21
+ E2

)
(4.36)

Notice that h is not the “true energy” of the system, therefore it is allowed
to assume negative values. The corresponding solution is given by

z = zl :=
δ

4b1

and determines a tangency point on C− if it satisfies the constraints

−E
2
< zl <

E
2
. (4.37)

For δ < 0, inequalities (4.37) are verified for

E > δ

2b1
(4.38)

which coincides with the first order term of threshold value (3.54). It deter-
mines the bifurcation of a fixed point, say QL, from the equilibrium point
Q1, which corresponds to two loop orbits for the original system. We note
that values of h slightly higher than hl correspond to closed orbits around
QL on the phase space surface. (see Fig. 4.1(b)): thus, QL is a stable
equilibrium point. Therefore, loop orbits turn out to be stable. As a conse-
quence of the bifurcation of loop orbits, we expect the fixed Q1 to undergo a
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transition to instability at the critical value (4.38). To verify this statement,
we fix h = hQ1 so that the parabola (4.29) intersects the contour phase space
C at the point Q1. For E sufficiently small, since zm is negative, no further
intersections arise between P and C. As a consequence, the equilibrium is
stable. In fact, for h > hQ1 the parabola shifts upward and crosses twice the
contour phase space. This produces closed orbits on the phase space surface
around the point Q1. Hence, the point corresponds to a stable equilibrium
(see figure 4.1(a)). Increasing the value of E , the phase space volume in-
creases. As a consequence, new intersections might arise between P and the
contour phase space. If a second intersection occurs on the contour phase
space, the equilibrium point Q1 turns out to be unstable. Its stable and
unstable manifolds are given in R3 by the intersection curves between the
phase space surface and parabolic cylinder {K = hQ1} (see figure 4.1(b)).
All possible intersection points between P and C are given by the solutions
of system (4.34) if we replace h with hQ1 . Solving for the z-coordinate, we
find

z = −δ − b1E
2b1

(on C−). (4.39)

This gives acceptable values for the x-coordinates of the intersection point if
it belongs to the interval (−E/2, E/2). This translates into condition (4.38),
which therefore determines the transition to instability of the x1- axis orbit.

By a similar argument, the equilibrium point Q2 turns out to be stable.
In fact, if the parabola P passes through Q2, for geometrical reasons it
cannot intersect the contour phase space in any further point. This implies
that the x1-axis orbit stays always stable.

On the other hand, by applying transformation (3.57), we easily find that
in case δ > 0, the bifurcation of loop orbits occurs from the x1- normal mode,
which as a consequence, suffers a transition to instability. The corresponding
threshold value for E is now given by

E = − δ

2b1
. (4.40)

To be concrete, we express these results in the case of the α-models (4.1).
In view of the rescaling and of the expansion of the energy as a truncated
series in the parameter E , we have that E = ω2E = E/q. Thus, a first order
estimate of the ‘true’ energy of the orbital motion is given by E . Therefore,
the critical value

E = El :=
4

2− α
|q − 1|+O(|q − 1|2) (4.41)

determines the bifurcation of loop orbits from the x2- axis orbit in the prolate
case (q < 1) and from the x1-axis orbit in the oblate case (q > 1). As a
consequence, in both cases, the normal mode itself suffers a transition to
instability.
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4.2.2 Ellipse-breaking deformations: bifurcation of inclined
orbits

Let us now consider a deformation of the potentials (4.1) by introducing a
small parameter β such that

V2 = b1s
4 + 2βx21x

2
2, (4.42)

with ‘boxy’ or ‘disky’ shapes of the level curves when respectively β < 0 and
β > 0. The presence of the parameter β affects the bifurcation of inclined
orbits. The normal form of the system is the same as K11 in (4.2) except
that the coefficient in front of the resonant term is replaced by

b1 + β. (4.43)

Now, the non degeneracy conditions in remark 3.3 and in (3.39) are satisfied,
since we have

A =
3b1
4
, B = 0, C =

1

4
(b1 + β).

To fix the ideas, let as take δ < 0. We see from proposition (3.4) that, for
β > 0, unstable inclined orbits bifurcate from the x2- normal mode of the
system at

E = E1u = − δ

3β
+O(δ2). (4.44)

Instead, for β < 0, from proposition 3.8 we get that stable inclined orbits
appear from the x1- axis orbit at

E2u =
δ

3β
+O(δ2). (4.45)

Therefore, the distinction on the sign of β is relevant if one is interested in
which normal mode suffers a change of stability when a new orbit arises.
One could ask if for β < 0 a global bifurcation occurs. This is not the case
since B = 0 (cfr. proposition 3.6).

Stable loop orbits still bifurcate from the x2- normal mode and we can
apply propositions 3.4 and 3.8 to find the corresponding threshold value
E = E1l, where now

E1l =
δ

2b1 − β
+O(δ2). (4.46)

The critical values (4.44)-(4.46) comes out as well if we perform our analysis
on the reduced phase space L. In fact, in case β ̸= 0, on the reduced phase
space section L ∩ {y = 0} the Hamiltonian corresponds to the parabola

x = h− δ

b1 + β
z − b1 − 2β

b1 + β
z2 (4.47)
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which is still downward concave for small values of β (namely b1
2 < β < −b1,

for b1 < 0), but now does not have the same curvature of the upper arc C+
at the vertex. As a consequence, a tangency point between the parabola
and C+ can arise (see figure 4.1(d)). This is the case for

h = hu :=

(
δ2

12β(b1 + β)
+
E2

4

)
(4.48)

with corresponding solution given by

z = zu :=
δ

6β
.

Imposing the condition

−E
2
< zu <

E
2

we find the threshold values (4.44), if β > 0, and (4.45) if β < 0. The critical
values (4.46) comes out as well from the investigation of the tangency points
between parabola (4.47) and the lower contour phase space C−.

As observed above, the case δ > 0 can be studied similarly.

Finally, let us express these results in the case of the α-models (4.1). The
critical energy values at which stable loop orbits appear is now given by

E = Elβ :=
4|q − 1|

2− α+ 4β
+O(|q − 1|2). (4.49)

As in case β = 0 their bifurcation occur from the x1 axis orbit in the oblate
case and from the x2- axis orbit in the prolate case, with a subsequent
transition to instability of the normal mode.

Unstable inclined orbits bifurcate at

E = Eiβ :=
|q − 1|
|β|

+O(|q − 1|2). (4.50)

In the prolate case they appear from the x2-normal mode (which as a con-
sequence comes back to stability) if β > 0 and from the x1-normal mode
(which suffers a transition to instability) if β < 0. In the oblate case the
roles of the normal modes in the bifurcation of inclined orbits are reversed.

Thus, if we break the ellipticity of the potential, inclined orbits appear:
however the smaller the deformation, the higher the threshold value (4.44)
and (4.45). Loops continue to bifurcate at a lower energy: to invert the
bifurcation sequence, unreasonable high values of β are required. The phe-
nomenon is anyway interesting because it can easily be checked that the two
families are always of different stability nature: the stable one is the first to
appear, therefore there is a critical value of β at which there is an exchange
of stability between loops and inclined. The special value β = α−2

4 produc-
ing the divergence in (4.50) is associated to exact separability in rotated
Cartesian coordinates which forbids the existence of the loops.
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4.3 2:4 Resonance: bifurcation of banana and anti-
banana orbits

Another important class of bifurcations is that of banana orbits [84] which
usually bifurcate when the frequency of an axial orbit falls to one half of
that of a normal perturbation. The anti-phase family are the figure-eight
periodic orbits, or anti-banana: we will show that in the potentials (4.1)
stable bananas bifurcates at lower energies than unstable anti-bananas for
relevant values of the parameters.

In the case of a m1 = 1, m2 = 2 resonance with reflection symmetries
about both axes, we know from section 1.3, that the normalization procedure
must be pushed at least to order N = 2. The terms in the series expansion
(4.13) are now given by

H0 =
1

2
(p21 + x21) + p22 + x22, (4.51)

H2 = δ̃(x21 + p21) +B1(x
2
1 + 2x22)

2, (4.52)

H4 = 2δ̃B1(x
4
1 − 4x42) +B2

(
x21 + 2x22

)3
. (4.53)

After normalization, we get the normal form

K12 =
2∑

k=0

ε2kK2k, (4.54)

where

K0 = J1 + 2J2, (4.55)

K2 = 2δ̃J1 +B1

(
3

2
J2
1 + 4J1J2 + 6J2

2

)
, (4.56)

K4 = 3δ̃B1

(
J2
1 − 4J2

2

)
− (17B2

1 − 10B2)

(
1

4
J3
1 + 2J3

2

)
− 2

3
(46B2

1 − 27B2)J1J
2
2 −

(
56

3
B2

1 − 9B2

)
J2
1J2

− 3

2
(2B2

1 −B2)J
2
1J2 cos(4ϕ1 − 2ϕ2). (4.57)

Due to the normalization procedure, we obtain an integrable system with
dynamics generated by the Hamiltonian (4.54) with a second independent
integral of motion

K0 = J1 + 2J2. (4.58)

To exploit the new integral of motion (5.18), we perform the quasi canonical
transformation to “adapted resonance coordinates” [92]

J1 = E + 2R
J2 = 2E −R
ψ = 4ϕ1 − 2ϕ2
χ = 2ϕ1 + 4ϕ2

(4.59)
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It can be easily seen that χ is cyclic and its conjugate action is proportional
to the additional integral of motion, namely

K0 = J1 + 2J2 = 5E . (4.60)

Thus we introduce the “effective Hamiltonian”

K12(R, ψ; E)
.
= K12(J(E ,R), ϕ(ψ, χ)). (4.61)

Considering the dynamics at a fixed values of E , we have that K defines a
one degree of freedom system with the following equations of motion

Ṙ = −3

2
ε4(2B2

1 −B2)(2E −R)(E + 2R)2 sinψ, (4.62)

ψ̇ = 2ε2
(
B1(3E − 4R)− 2δ̃

)
+

− 1

6
ε4
[
5A(R; E , δ̃)− B(R; E) cosψ

]
, (4.63)

where

A = 36B2E(−3E + 4R)
+ B2

1(155E2 − 276ER+ 48R2) + 72B1E δ̃,
B = 9(2B2

1 −B2)(7E2 + 8ER − 12R2).

The fixed points of this system give the periodic orbits of the original
system. The pair of solutions with R = 2E , R = −E/2 respectively corre-
spond to the normal modes along the x1-axis and x2-axis. Let us look for
periodic orbits in general position. We start with setting ψ = 0 and looking
for R-solutions of ψ̇ = 0. Since we are dealing with a perturbation problem
in ε, we look for a solution in the form [66]

R = R0 +R1ε
2 +O(ε4). (4.64)

We substitute (4.64) in (4.63) with ψ = 0 and collect terms up to fourth
order in ε. Equating to zero the coefficient of second order, we find that R0

has to satisfy

B1(3E − 4R0)− 2δ̃ = 0 (4.65)

which gives

R0 = Rb0 ≡
3

4
E − δ̃

2B1
. (4.66)

Once computed R0 we find the coefficient of the second order term in the
expansion of the fixed point

Rb ≡ Rb0 +Rb1ε2, ψ = 0, (4.67)
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which determines the banana orbits:

J1b = E + 2Rb, (4.68)

J2b = 2E −Rb. (4.69)

Similarly, for ψ = 4θ1 − 2θ2 = π, we find a solution of the form

Ra ≡ Ra0 +Ra1ε2, ψ = π, (4.70)

and J1a = E +2Ra, J2a = 2E −Ra, corresponding to the antibanana orbits.
In view of (4.59), the constraints 0 ≤ J1 ≤ 5E , 0 ≤ J2 ≤ 5E/2 applied

to these solutions give the condition of existence for these periodic orbits.
Non trivial existence conditions can be found by solving J1,2b ≥ 0 for the
bananas and J1,2a ≥ 0 for the anti-bananas. The implicit function theorem
assures that there exist unique solutions Ec = Ec(δ) in each cases determining
the bifurcation thresholds. For the bananas, up to the second perturbation
order we get

E1b =
2

5B1
δ̃ +

97B2
1 − 36B2

15B3
1

δ̃2ε2, (4.71)

E2b = − 2

5B1
δ̃ +

59B2
1 − 27B2

15B3
1

δ̃2ε2, (4.72)

which respectively determine the bifurcation from the x2-axial normal mode
in the first case, and from the x1-axial normal mode in the second case (we
discuss below which of these possibilities actually shows up). Similarly, the
threshold values that gives the existence condition of anti-banana orbits are
given by

E1a =
2

5B1
δ̃ +

97B2
1 − 36B2

15B3
1

δ̃2ε2. (4.73)

E2a = − 2

5B1
δ̃ +

19B2
1 − 9B2

3B3
1

δ̃2ε2, (4.74)

By comparing (4.71) with (4.73) we see a first interesting result: if the
bifurcation occur from the x2-axis, banana and anti-banana appear together.
It is therefore important to discriminate between the two possibilities. Since
the dominant term in the series is the first and E must be positive, we see
that case 1 (bifurcation from the x1-axis) or 2 (bifurcation from the x2-axis)
occur if δ̃ and B1 have different sign or not. To write the expressions of
the bifurcation curves in the physical (q, E)-plane, we note that according
to the rescaling (4.11) with m2 = 2, on the x1-axis orbit we have

E = 5Eε2 + 75

2
B1E2ε4 +O(ε6), (4.75)
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so that, modulo third order terms in δ, we get

E2b = − 2

B1
δ +

77B2
1 − 27B2

3B3
1

δ2, (4.76)

E2a = − 2

B1
δ +

113B2
1 − 45B2

3B3
1

δ2, (4.77)

for the bifurcations from the x1-axis. Similarly, we obtain

E1b = E1a =
2

B1
δ +

103B2
1 − 36B2

3B3
1

δ2, (4.78)

for the bifurcations from the x2-axis. To be concrete, for our family (4.1)
we have that, with α > 0, the coefficient B1 is negative. The ellipticity is
usually q > 1/2 so that δ > 0, therefore relevant thresholds are

E2b =
16

2− α

(
q − 1

2

)
+

8(41α− 10)

3(2− α)2

(
q − 1

2

)2

, (4.79)

E2a =
16

2− α

(
q − 1

2

)
+

8(53α+ 14)

3(2− α)2

(
q − 1

2

)2

. (4.80)

Since the difference

E2a − E2b = 32
2 + α

(2− α)2

(
q − 1

2

)2

(4.81)

is positive, we verify that, for models in the class (4.1) and with parameter
ranges useful for elliptical galaxies, the bifurcation sequence is always from
the major axis, with bananas appearing at lower energies than anti-bananas.
By checking the nature of the two critical points (4.67,4.70), it is shown in
next chapter (see also [77]) that in systems (4.1) the first family is always
stable and the second unstable: (4.79,4.80) generalize the corresponding ex-
pressions for the logarithmic (α = 0) potential reported in [11]. As long as
the banana does not bifurcate the major axis is stable. It looses its stability
at the first bifurcation and regains it at the second. It is natural to ask
how much these results are affected by ellipse-breaking deformations: we
can say that, in analogy with what we have seen for the 2 : 2 resonance, the
hierarchy of bifurcations changes only for unreasonable high values of the
deformation parameter.
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Chapter 5

Bifurcations in the 2:4
detuned Resonance

In the following, we consider the most general (truncated) bi-dimensional
potential with double reflection symmetries around a 1 : 2 resonance (since
we are in the presence of symmetries we will speak more correctly of a 2 : 4
resonance). Its peculiarities are worth of note by themselves, since the ap-
proach followed to study systems with a single symmetry [21] still works for
a 2 : 2 resonance, but is not able to describe the generic behavior of the sys-
tem in presence of a 2 : 4 resonance [23]. In particular, the planar reduction
method we applied in section 3.2 produces for a 2 : 4 resonance a polynomial
normal form with infinite codimension (namely the central singularity is still
given by (3.38), but with ε1 = ε2 and µ2 = 4, cfr. proposition 2.4). Here,
we consider a generic perturbation up to the degree necessary to include
resonant terms. Even if this is not enough to deduce the general behavior
for arbitrary perturbations, we will see that a truncation of the normal form
at the first term incorporating the resonance is able to capture the essential
features of the bifurcation.

5.1 The model and its normal form

Suppose the system under investigation is given by a natural Hamiltonian

H(x1, x2, p1, p2) =
1

2
(p21 + p22) + V(x1, x2) (5.1)

where V is a smooth potential with an absolute minimum in the origin
and symmetric under reflections with respect to each coordinate axes. We
assume the potential to be expanded as a truncated power series

V(x1, x2) ≡
N∑
n=0

V2n(x1, x2) (5.2)
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where V2n is a homogeneous polynomial of degree 2n + 2. In force of the
reflection symmetries, the zero order term can be written as

V0 =
1

2
(ω2

1x
2
1 + ω2

2x
2
2) (5.3)

and the odd order terms are all zero. The two coefficients of the quadratic
term are written so to represent the unperturbed harmonic frequencies. We
therefore perform the scaling (3.8) and also rescale the Hamiltonian (5.1)
according to (3.9). Thus we obtain

H̃(x1, x2, p1, p2) =
1

2
(p21 + p22) +

1

2
(ω2

1x
2
1 + ω2

2x
2
2) +

N∑
j=1

ε2jV2j(x1, x2). (5.4)

In this way the terms of the expansions are ordered in powers of the small
perturbation parameter.

In general, neither the original system (5.1) nor its expansion (5.4) are
integrable. Let us proceed to construct a normal form for the system, namely
a new Hamiltonian series which, in the case of 2 degrees of freedom, is an
integrable approximation of the original one. Its structure is suitable to cap-
ture the most relevant orbital features of the system. As explained is section
1.3, we can assemble a resonant normal form by assuming from the start
a rational value for the ratio of the harmonic frequencies: this assumption
produces the presence in the new Hamiltonian of resonant terms, namely
terms depending on a linear combination of angles with integer coefficients.
The trick is then to assume that our system is such that the ratio

ρ = ω1/ω2, (5.5)

is not far from a rational value and then to approximate it by introducing
a small detuning δ so that

ρ =
m1

m2
+ δ. (5.6)

Afterwards we proceed as if the unperturbed harmonic part was in exact
m1:m2 resonance by treating the remaining part as a higher order pertur-
bation.

In the following, let us proceed with the case of the m1 = 1, m2 = 2
resonance, so that (5.6) translates into

δ =
ω1

ω2
− 1

2
. (5.7)

Since we are in presence of reflection symmetries about both axes, we know
that the normalization procedure must be pushed at least to the fourth
degree in ε, i.e. N = 2. To give the system a structure suitable to apply the
normalization procedure, we perform the transformation (3.13) and scale
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the detuning parameter according to δ = δ̃ε2. Afterwards, redefining the
Hamiltonian according to the scaling

H :=
2

ω2
H̃ =

(
1 + 2δ̃ε2

)
ω1H̃ (5.8)

and collecting terms in ε, we put the rescaled Hamiltonian into the form

H(p,x; δ̃, ε) =

N∑
j=0

ε2jH2j(p,x; δ̃) (5.9)

where the unperturbed term is given by

H0(p,x) =
1

2
(x21 + p21) + (x22 + p22) (5.10)

and the detuning term δ̃(x21 + p21) is considered as a term of order 2. The
system is now ready for a standard resonant normalization. The higher
order terms up to N = 2 are polynomials of the type

H2 = δ̃(x21 + p21) + ax41 + bx42 + cx21x
2
2 (5.11)

H4 = a1x
6
1 + b1x

4
1x

2
2 + c1x

2
1x

4
2 + d1x

6
2 + (2ax41 + 4cx21x

2
2 + 6bx42)δ̃.

(5.12)

The choice of coefficients appearing in (5.11) and (5.12) is suggested by the
values the coefficients take in the most common physical cases: we remark
that, in applying the results obtained in the following to specific model
problems, we have to take into account that the Hamiltonian (5.10–5.12) is
in the form “prepared” for normalization. Therefore the canonical variables
are rescaled according to (3.13) and the frequency ratio is expanded in series
of the detuning as in (5.7). These transformations affect the numerical values
of the coefficients of the various terms. In case of the α-models, cfr (4.1),
the coefficients read as

a =
(α− 2)

8
,

b = c =
(α− 2)

2

a1 =
1

48
(2− α)(4− α),

b1 = 6a1,

c1 = 12a1,

d1 = 8a1. (5.13)

Here we want to study the most general potential truncated to degree six in
the coordinates and complying with the enforced double reflection symmetry.
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Introducing action-angle like variable (1.49), the outcome of the normal-
ization procedure can be written as

K(J1, J2, ϕ1, ϕ2) =
2∑
j=0

ε2jK2j(J1, J2, ϕ1, ϕ2), (5.14)

which, coherently with the truncation order N = 2, implies that a reminder
of order six in ε is neglected. The non-vanishing terms turn out to be the
following:

K0 = J1 + 2J2 (5.15)

K2 = 2δ̃J1 +
3

2
aJ2

1 + cJ1J2 +
3

2
bJ2

2 (5.16)

K4 = 3aδ̃J2
1 +

1

2

(
5a1 −

17a2

2

)
J3
1 +

1

2

(
5d1 −

17b2

4

)
J3
2

+
1

12
(−c(18b+ 5c) + 18c1) J1J

2
2 −

(
3ac+

5c2

12
− 3b1

2

)
J2
1J2

+
1

4
J2
1J2 ((a− c)c+ b1) cos(4ϕ1 − 2ϕ2) (5.17)

5.2 Bifurcation analysis of the 2 : 4 resonance

The essential information we need concerns the existence and stability of
the periodic orbits associated to the resonance [11, 76]. We can compute
the thresholds for the bifurcations sequences in terms of the parameters re-
lying on the regular nature of the dynamics given by the normal form. In
two degrees of freedom, if a Hamiltonian possesses a second independent
integral of motion, the system is Liouville integrable. Due to the normal-
ization procedure, we have obtained the Hamiltonian (5.14) with the second
independent integral of motion

K0 = J1 + 2J2. (5.18)

We can use this integral to reduce the dimension of the problem by per-
forming the canonical transformation to “adapted resonance coordinates”
(4.59).

Since χ is cyclic and its conjugate momentum is proportional to the
additional integral of motion, namely

E = (J1 + 2J2)/5, (5.19)

we introduce the reduced Hamiltonian

K(R, ψ; E) = 5E + ε2K1(R) + ε4K2(R, ψ). (5.20)
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By using Mathematica R⃝ we obtain the following expressions for K1 and K2:

K1(R; E) =
3

2
b(−2E +R)2 + 3

2
a(E + 2R)2 + (E + 2R)(2cE − cR+ 2δ̃)

(5.21)

K2(R, ψ; E) =

(
3b1 −

17

4
a2 − 17b2 − 6ac− 6bc− 5c2

2
+

5a1
2

+ 6c1 + 20d1

)
E3

+ 3aδ̃E2 +A(R; E) + B(R; E) cosψ (5.22)

with

A(R; E) =

(
12ac− 34a2 +

17b2

8
− 3bc+

5c2

6
+ 20a1 − 6b1 + 3c1 −

5d1
2

)
R3

+
[(
306b2 − 306a2 − 252ac− 72bc− 55c2 + 180a1 + 126b1 + 72c1

− 360d1) E + 144aδ̃
] ER
12

+
[(
−204a2 − 51b2 − 48ac+ 42bc+ 5c2

+ 120a1 + 24b1 − 42c1 + 60d1) E + 48aδ̃
] R2

4
(5.23)

B(R; E) =
1

4
(2E −R)(E + 2R)2 ((a− c)c+ b1) . (5.24)

Considering the dynamics at a fixed values of E , we have that K defines a
one degree of freedom system with the following equations of motion

ψ̇ = (6aE − 6bE + 3cE + 12aR+ 3bR− 4cR+ 4δ̃)ε2

+

(
∂A
∂R

(R; E) + ∂B
∂R

(R; E)
)
ε4 (5.25)

Ṙ =
1

4
µ
[
(2E −R)(E + 2R)2 sinψ

]
ε4 (5.26)

where

µ := (a− c)c+ b1. (5.27)

The fixed points of this system give the periodic orbits of the original system
so that the condition µ ̸= 0 must be satisfied.

The pair of fixed points with R = 2E , R = −E/2 correspond to the
normal modes, that is to the periodic orbit along the x1-axis (J2 = 0) and
to the periodic orbit along the x2-axis (J1 = 0) respectively. Additional
periodic orbits may appear when the system passes through the resonance.
These periodic orbits in general position exist only above a given threshold
value for E when the axial orbits change their stability. This phenomenon
can be seen as a bifurcation of the new family from the normal mode when it
enters in 1 : 2 resonance with a normal perturbation. The phase between the
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two oscillations determines the nature of the families: they are respectively
given by the conditions ψ = 0 (banana orbits) and ψ = ±π (antibanana
orbits). These phase conditions are solutions of Ṙ = 0 (when R ̸= 2E and
R ̸= −E/2) and determine the corresponding solutions of ψ̇ = 0.

Let us start by looking for banana orbits. Proceeding as in section 4.3,
we set ψ = 0 in the equation ψ̇ = 0 and look for a solution in the form

R = R0 +R1ε
2 +O(ε4) (5.28)

so that the right hand side of (5.25) vanish up to fourth order in ε. For
ψ = 0, we find that R0 has to satisfy

3(2a− 2b+ c)E + (3b− 4c+ 12a)R0 + 4δ̃ = 0 (5.29)

This equation admits solution only if

ν := 12a+ 3b− 4c ̸= 0 (5.30)

and, if this condition is satisfied, we find

R0 = RB0 :=
−3(2a− 2b+ c)E − 4δ̃

12a+ 3b− 4c
. (5.31)

Once R0 is computed, we look for R1 such that the fourth order term of the
right hand side of (4.63) vanish. Since (5.30) is satisfied, we find a solution

R1 = RB1(E ; δ). (5.32)

The corresponding fixed point is given by

R = RB := RB0 +RB1ε
2, ψ = 0 (5.33)

and determines the banana orbits:

J1 = J1B = E + 2RB (5.34)

J2 = J2B = 2E −RB. (5.35)

Similarly, if (5.30) is satisfied, for 4ϕ1 − 2ϕ2 = ±π, we find

J1 = J1A = E + 2RA (5.36)

J2 = J2A = 2E −RA, (5.37)

which correspond to the antibanana orbits. In view of (4.59), the constraints

0 ≤ J1 ≤ 5E , 0 ≤ J2 ≤
5E
2
, (5.38)

applied to these solutions give the condition of existence for these periodic
orbits in general position. Whether these conditions are satisfied or not, it
depends on the parameters of the system.
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For the banana orbits we find that at the perturbation order zero

J1B =
5(3b− 2c)E − 8δ̃

12a+ 3b− 4c
,

J2B =
5(6a− c)E + 4δ̃

12a+ 3b− 4c
. (5.39)

Thus, we get different existence conditions according to the sign of the con-
stant ν defined in (5.30). If we define M := 5(3b− 2c) and N := 5(6a− c),
so that 5ν = M + 2N , taking ε as small as the constraints (5.38) remain
satisfied at least up to the first perturbation order, banana orbits bifurcate
in the following cases:

if ν < 0 and δ̃N < 0 :
if δ̃M < 0 E > E2B
if δ̃M > 0 E2B < E < E1B

(5.40)

if ν > 0 and δ̃M > 0 :
if δ̃N > 0 E > E1B
if δ̃N < 0 E1B < E < E2B

(5.41)

where, modulo terms O(ε4) the critical values

E1B := − 8

5(2c− 3b)
δ̃ +

4
(
153b2 − 72bc− 20c2 + 72c1 − 180d1

)
15(3b− 2c)3

δ̃2ε2

(5.42)

E2B
.
= − 4

5(6a− c)
δ̃ +

4
(
522a2 − 69ac− 8c2 − 180a1 + 21b1

)
15(6a− c)3

δ̃2ε2

(5.43)

correspond to the solutions of J1B = 0 and J2B = 0 and respectively de-
termine the bifurcation of banana orbits from the x2-normal mode and the
x1-normal mode. Replacing the coefficients according to (5.13), we obtain
the threshold values (4.71) and (4.72) found in section 4.3 for the α−models.

A similar argument provides the existence condition of antibanana orbits.
Since to the first perturbative order J1A = J1B and J2A = J2B, the birth
of antibananas is given by the same conditions on the coefficients given
above. However the higher order terms in JkA, JkB, k = 1, 2 are in general
different: the discrimination between the thresholds for the bifurcation of
the two families is possible only by going at least to second order [11]. This
result was expected on the basis of the structure of the new Hamiltonian
(5.14).

Nevertheless, up to the fourth order in ε we find that the threshold
value corresponding to the bifurcation of antibanana orbits from the x2-
axis, E1A, coincides with the critical value E2B of (5.43). Hence, as we found
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for elliptical equipotential, cfr. section 4.3, if banana and antibanana orbits
bifurcate from the x2-normal mode, they do it simultaneously.

On the other hand the bifurcation from the x1-axis orbit occurs for

E = E2A, if δ̃N < 0 (5.44)

where

E2A := − 4

5(6a− c)
δ̃ +

4
(
522a2 − 75ac− 2c2 − 180a1 + 15b1

)
15(6a− c)3

δ̃2ε2 +O(ε4)

(5.45)
which, at second order, is different from (5.43). Thus, we obtain the follow-
ing existence conditions for antibanana orbits:

if ν < 0 and δ̃N < 0 :
if δ̃M < 0 E > E2A
if δ̃M > 0 E2A < E < E1B = E1A

(5.46)

if ν > 0 and δ̃M > 0 :
if δ̃N > 0 E > E1B
if δ̃N < 0 E1B < E < E2A

(5.47)

with

{
E2A ≥ E2B, if δ̃µ > 0

E2A < E2B, if δ̃µ < 0
(5.48)

We can write explicitly the relative magnitude of the two thresholds for
bifurcation from the normal modes since we find

E2A − E2B = −8

5

µ

(6a− c)3
δ̃2ε2 +O(ε4), (5.49)

E1A − E1B = O(ε4). (5.50)

The first of these expressions points out that the hierarchy of bifurcations
from the x1-normal mode is determined by the sign of the constant µ de-
fined in (5.27). The second confirms that, at the order of our perturbation
treatment, the bifurcations from the x2-normal mode occur simultaneously.
Which of the two scenarios is actually happening depend on the value of the
parameters according to the conditions listed above. In case of the α-models
(4.1) we find µ = (4 − α2)/16 > 0, thus the bifurcation of banana orbits
foregoes the appearance of antibanana orbits, as we found in section 4.3.

For practical purposes, e.g. to compare these findings with the outcomes
of numerical simulations, it would be more useful to have the expression of
the bifurcation curves in terms of “physical” parameters. The most natural
way to represent the thresholds is by plotting curves in the (δ, E)-plane,
where E is the physical energy of the system defined by (5.1)
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H(x1, x2, p1, p2) = E (5.51)

and δ as defined in (5.6). According to the rescaling (5.8), on the x1-axis
orbit (J2 = 0, J1 = 5E), we have

ε2K = 5Eε2 +
(
75a

2
E2 + 10E δ̃

)
ε4 +O(ε6) = (1 + 2δ̃ε2)ω1E. (5.52)

The series from equation (5.52) can be used to express the physical energy
E in terms of E [11, 90], namely

E =
5E
ω1
ε2 − 75

8ω1
aE2ε4 +O(ε6). (5.53)

Thus, up to the second order in ε, for E satisfying equations (5.43) and
(4.74) and δ as in (5.7), we obtain the following threshold values

E2B = − 4

(6a− c)ω1
δ +

4
(
630a2 − 87ac− 8c2 − 180a1 + 21b1

)
3(6a− c)3ω1

δ2,

(5.54)

E2A = − 4

(6a− c)ω1
δ +

4
(
630a2 − 93ac− 2c2 − 180a1 + 15b1

)
3(6a− c)3ω1

δ2,

(5.55)

for the bifurcation of respectively banana and antibanana orbits from the x1-
axis orbits. A similar argument gives the threshold value for the bifurcations
from the x2-axis orbit. Since E1A = E1B, we have E1A = E1B with

E1B = − 8

(2c− 3b)ω1
δ +

4
(
99b2 + 36bc− 68c2 + 72c1 − 180d1

)
3(3b− 2c)3ω1

δ2.

(5.56)

These critical values generalize those found in (4.76), (4.77) and (4.78) for
elliptical equipotentials.

5.3 Stability analysis of the 2 : 4 resonance

Let us now consider the question of the stability of periodic orbits: this anal-
ysis complements that of the previous section allowing us to test the relation
between change of nature of normal modes and bifurcation of a new family.
For banana and antibanana orbits an ordinary investigation of the equations
of variations of the system is enough to perform the linear stability analysis.
However, in the case of axial orbits, action angle variables have singularities

85



on them and this also affects the adapted resonance coordinates. The rem-
edy to this problem is quite straightforward: to use a mixed combination
of action angle variables on the orbit itself and Cartesian variables for the
other degree of freedom.

Let us start with the stability analysis of the periodic orbits in gen-
eral position. We have to investigate the fate of a normal perturbation of
the periodic orbit under test. The system of differential equations for the
perturbations (δψ, δR) is given by

d

dt

(
δψ
δR

)
=

(
KRψ KRR
−Kψψ −KRψ

)(
δψ
δR

)
. (5.57)

Here we again use the reduced Hamiltonian (5.20) and, with a small abuse
of notation, we assume without denoting it explicitly that the entries in
the Hessian matrix are evaluated on the specific orbit we are interested in.
Then, the sign of the determinant

∆(R, ψ; E , δ̃) = KRRKψψ −K2
Rψ (5.58)

computed on the periodic orbit determines the fate of the perturbation: if
∆(R, ψ; E , δ̃) is negative it gives the frequency of bounded oscillating so-
lutions thus determining stability; a change of sign, as a consequence of
varying E , produces a stability transition.

On the banana and antibanana orbits we have respectively

∆(RB, 0) = ∆B := −µ(30aE − 5cE + 4δ̃)(15bE − 10cE − 8δ̃)2

4(12a+ 3b− 4c)2
ε6 +O(ε8)

(5.59)

∆(RA, π) = ∆A := µ
(30aE − 5cE + 4δ̃)(15bE − 10cE − 8δ̃)2

768(12a+ 3b− 4c)2
ε6 +O(ε8)

(5.60)

and thus we see that the parameter µ plays an important role also for sta-
bility. Comparing with (5.42) and (5.43), for µ > 0 banana orbits are stable
in the case they bifurcate from the x1-axis orbit (E > E2B) and unstable in
case their bifurcation occurs from the x2-axis orbit (E > E1B). Otherwise, we
have instability (stability) when the bifurcation occurs from the x1-normal
mode (x2-normal mode). Since ∆A = −∆B up to the third perturbation
order, antibanana orbits turn out to be unstable when banana orbits are
stable and viceversa. Actually, the fourth order terms in (5.59) and (5.60)
are different, but their difference is again a multiple of µ.

We have also seen in (5.49) that the bifurcation order from the x1-axis
depends on µ. Thus, we can now state that, if µ is positive, we have at first
the appearance of (stable) banana orbits followed by (unstable) antibanana
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orbits (recall that the threshold values E2B and E2A are acceptable only for
δ̃N < 0). On the contrary, for negative values of µ the bifurcation order
and stability nature are inverted.

Let us now study the stability of the normal modes. Considering the x1-
axis orbit, we use action-angle variables on the orbit and Cartesian variables
on the normal bundle to it, namely

X =
√
2J cos θ

PX =
√
2J sin θ

Y = Y
PY = V

(5.61)

so that the periodic orbit is given by

Y = V = 0, J = 5E . (5.62)

In these coordinates, the system of differential equation for the perturbations
of the normal mode is given by

d

dt

(
δY
δV

)
=

(
K̃V Y K̃V V
−K̃Y Y −K̃Y V

)(
δY
δV

)
(5.63)

where K̃ = K(Y, V, θ, J). The matrix of the second derivatives of K̃ on the
periodic orbit depends on θ(t) = ωt, where

ω =
∂K̃
∂J

= 1 +
(
15aE + 2δ̃

)
ε2

+

[
30aE δ̃ + 1

2

(
375

2
a1 −

1275

4
a2
)
E2
]
ε4 +O(ε6). (5.64)

To remove the dependence on time we introduce complex coordinates{
z = Y + iV
w = Y − iV (5.65)

and perform the “rotation” {
z = Ze−2iωt,
w = We2iωt.

(5.66)

In this way, the equations of variation (5.63) on the periodic orbit (5.62)
give

d

dt

(
δZ
δW

)
= i

(
Λ11 Λ12

Λ21 Λ22

)(
δZ
δW

)
(5.67)

where, up to the second perturbation order,
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Λ11 = −Λ22 = −(30aE − 5cE + 4δ̃)ε2

− 144aE δ̃ + 5

12

(
1530a2 − 180ac− 25c2 − 900a1 + 90b1

)
E2ε4

(5.68)

Λ12 = −Λ21 = −
25

4
µE2ε4. (5.69)

By solving detΛ = 0 we find, as expected, that the critical values of E which
determine a change in the stability of the x1-axis orbit are precisely given
by the bifurcation values

E = E2B and E = E2A (5.70)

as defined by (5.43) and (5.45). Regardless of the the nature of the occurring
bifurcations (this is given by the sign of µ), the first one produces a transition
from stability to instability of the x1-normal mode and the second one a
return to stability.

Let us now consider the stability of the x2-axis orbit. Since the periodic
orbits in general position bifurcate simultaneously from this normal mode,
we expect that the x2-axis orbit remains stable after the bifurcation. To
verify this assertion, we proceed as above by introducing the coordinates

Y =
√
2J cos θ

PY =
√
2J sin θ

X = X
PX = U

(5.71)

so that the periodic orbit is given by

X = U = 0, J =
5

2
E . (5.72)

The system of differential equation for the perturbation of the normal mode
is given by

d

dt

(
δX
δU

)
=

(
K̃UX K̃UU
−K̃XX −K̃XU

)(
δX
δU

)
(5.73)

where now K̃ = K(X,U, θ, J). Since we are dealing with a perturbation of a
1 : 2 symmetric resonance, the terms proportional to cos(4ϕ1 − 2ϕ2) in K4

are of second degree in J1 and, as a consequence, the matrix of the second
derivative of K̃ computed on the x2-normal mode does not depend on θ.
Thus, we do not need to perform the transformation (5.65). The equations
of variation (5.73) give

88



d

dt

(
δX
δU

)
=

(
Ω11 Ω12

Ω21 Ω22

)(
δX
δU

)
(5.74)

where

Ω11 = Ω22 = 0 (5.75)

Ω12 = −Ω21 = 1 +

(
5c

2
E + 2δ̃

)
ε2 − 1

8

(
75bc+

125

6
c2 − 75c1

)
E2ε4.

(5.76)

Thus,

detΩ = Ω2
12 = 1 +

(
5cE + 4δ̃

)
ε2 +

[
240cδ̃E

+
1

24

(
−450bc+ 25c2 + 96δ2 + 450c1

)
E2
]
ε4 +O(ε6)

(5.77)

has a positive zero order term, which implies that for ε small enough the
x2-axis orbit is always stable.

5.3.1 Application: stability analysis of the 2:4 resonance in
systems with elliptical equipotentials

We now illustrate how to apply the above theory to the stability analysis of
the α-models whose potential is given by (4.1). The coefficients in expansion
(5.2) are listed in (5.13). The existence and stability analysis of the periodic
orbits of the system follows exactly the same way of the preceding section.

Since we have ν = 3(α−2)/2 < 0, the non degeneracy condition (5.30) is
satisfied and the system is able to exhibit the bifurcation of periodic orbits
in general position. In order to establish their existence, we look at the sign
of N = (α − 2)/4 < 0 and/or M = (α − 2)/2 < 0. In case of a positive
detuning parameter, these systems fall in the cases (5.40) and (5.46). Hence,
as we already know from section 4.3, banana and antibanana both bifurcate
from the x1-axis orbit respectively for E = E2B = E2b and E = E2A = E2a,
where the thresholds in terms of the physical parameters are given in (4.76)
and (4.77). Since in this case we have

µ =
4− α2

16
> 0, (5.78)

in agreement with the general expression (5.49) the difference between the
two thresholds is
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E2A − E2B = 32
2 + α

(2− α)2

(
q − 1

2

)2

. (5.79)

This relation and equations (5.59) and (5.60) establish the bifurcation of
stable banana orbits followed by unstable antibanana orbits. These results
generalize those already obtained in the work on the logarithmic potential
[11, 90] and provide good approximations to the numerical investigations
available in literature [1, 84, 94].
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Chapter 6

Higher-order resonances

As it is well known in galactic dynamics [84], stable periodic orbits corre-
sponding to higher-order resonances and quasi-periodic orbits parented by
them give a small but not-negligible contribution to regular dynamics in
systems with cores. In realistic cases with mixed (regular+chaotic) dynam-
ics it is conjectured that these “boxlets” may become important in shaping
the bulk of the density distribution [104, 105]. The main difference of these
families from those seen above consists in the fact that their bifurcation is
not connected with the loss (or regain in the case of a second bifurcation)
of stability of the normal mode. The birth of periodic orbits in this case
is rather due to the breaking of a resonant torus around the normal mode
and is correctly described by applying the Poincaré-Birkhoff theorem [4]:
however, the technique we applied in the previous chapters for the 1 : 2
symmetric resonance continues to work and the conditions for the existence
and stability of an m1/m2-resonant periodic orbit with m1 + m2 > 3 can
still be found by constructing the appropriate normal form and locating
fixed points of the reduced system.

6.1 Higher order symmetric resonances

In general, for a symmetric m1 : m2 detuned resonance, the normalization
must be pushed at least to order Nr = 2(m1 +m2 − 1) and produces the
normal form (1.59). Proceeding as in the previous chapters, we can introduce
new variables adapted to the resonance [92] by means of the quasi-canonical
transformation,

E = λ
m2

1+m
2
2
(m1J1 +m2J2),

R = λ
m2

1+m
2
2
(m2J1 −m1J2),

ψ = µ(m2ϕ1 −m1ϕ2),
χ = µ(m1ϕ1 +m2ϕ2).

(6.1)
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The transformation is canonical when λ = 1/µ, but other choices can be
convenient to simplify formulas: usually it is convenient to choose µ = 2
and λ = 1. Under transformation to these new variables, the Hamiltonian
can be expressed in the reduced form

K(R, ψ; E) = νK(J1(R, E), J2(R, E), 2(m2θ1 −m1θ2)), (6.2)

with ν a scaling factor chosen to get the simplest expression from the quasi-
canonical transformation. We obtain a family of 1-dof systems in the phase-
plane (R, ψ), with equations of motion

Ṙ = −∂K
∂ψ (6.3)

ψ̇ = ∂K
∂R , (6.4)

parametrized by E that is conserved since it is proportional to the value of
the integral of motion

H0 = m1J1 +m2J2. (6.5)

The dynamics of the 1-dof Hamiltonian K(R, ψ) are integrable, but this
does not necessarily imply that the solution of the equations of motion can
be written explicitly. However, a quite general description of the phase-space
structure of the system is possible if we know the nature of the fixed points,
since these turn out to be the main periodic orbits of the unreduced system.
There are two types of periodic orbits that can be easily identified:

1. The normal modes, for which one of the Jℓ vanishes;

2. The periodic orbits in general position, namely those solutions charac-
terized by fixed relations between the two angles, ψ0 ≡ 2(nθ1 −mθ2).
These are solutions of Ṙ = 0 (when R ̸= ±E) and determine the
corresponding solutions of

ψ̇ =
∂K
∂R

∣∣∣∣
ψ0

= 0. (6.6)

For all cases we consider in this work they fall in two classes: ψ0 = 0
(to which we refer also as the in phase oscillations) and ψ0 = ±π (the
anti-phase oscillations).

However, a technical issue worth to be clarified is the following: by
reducing the resonant normal form (1.59) truncated at order say Nr, by
means of the transformation (6.1), we obtain a polynomial of degree Nr/2+
1 in R. The corresponding equation of motion for ψ produces a pair of
algebraic equations of degree Nr/2+1 which have to be solved to locate the
fixed points (one for each solutions ψ0, cfr. point 2 above). This problem is
very difficult to solve if, for Nr > 2, we aim at general solutions depending
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on the parameters of the system. However we are not interested in every
solution but only in those connected with the passage through the chosen
resonance. We can therefore resort to the perturbation method we have
described in detail in the previous section on the 1 : 2 symmetric resonance.
In that case, with Nr = 4 we had to solve two equations of second degree
(cfr. the rhs side of (4.63)): this clearly does not represent a problem since
we can write explicitly the two pair of solutions. However, in each pair, only
one solution is geometrically acceptable because it satisfies the condition at
resonance; the other must be discarded by direct check. The perturbative
method based on the construction of the series (4.64) [66] automatically
selects the acceptable solution. The method is therefore extremely useful
for higher-order resonances: a solution of the form

R =

Nr/2−1∑
k=0

Rkε2k +O(εNr) (6.7)

easily allows us to select the meaningful solution without any loss in accu-
racy.

6.2 4:6 Resonance: bifurcation of fish obits

We have applied the method to the case of fish orbits corresponding to the
(anti-phase) 2:3 resonance. We limit to systems with elliptical equipoten-
tials, namely we assume the potential to be of the type

V(N)(x21, x
2
2; q) ≡

N∑
k=0

bks
2(k+1)(x1, x2; q) (6.8)

where

s(x1, x2; q) =

√
x21 +

x22
q2

(6.9)

and q is a positive parameter which determines the ellipticity of the equipo-
tentials. In this case, we must truncate at least to order N = 4 (Nr = 2N =
8): the Hamiltonian (1.33) must be expanded up to include terms of degree
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10 (b4 in the original potential), the coefficients bi being the following:

b0 =
1

2

b1 =
α− 2

8

b2 =
(−4 + α)(−2 + α)

48

b3 =
(−6 + α)(−4 + α)(−2 + α)

384

b4 =
(−8 + α)(−6 + α)(−4 + α)(−2 + α)

3840
. (6.10)

Introducing the detuning parameter, δ = q− 2
3 , and after the scalings (3.8),

(3.9), (3.14), the non vanishing terms in the Hamiltonian series, up toNr = 8
(i.e. N=4 in series (6.8)) are given by (δ̃ = δ/ε2)

H0 = p21 + x21 +
3

2
(p22 + x22) (6.11)

H2 =
1

2
b1σ

(
2x21 + 3x22

)2
+

3

2
δ̃(x21 + q21) (6.12)

H4 =
1

4
b2
(
2x21 + 3x22

)3
+

3

4
b1
(
4x41 − 9x42

)
δ̃ (6.13)

H6 =
1

8
b3
(
2x21 + 3x22

)4
+

3

4
b2
(
4x61 − 27x21x

4
2 − 27x62

)
δ̃ +

81

8
δ̃2b1x

4
2

(6.14)

H8 =
1

16

(
b4
(
2x21 + 3x22

)5 − 3δ̃
(
b3
(
−9x22 + 2x21

) (
2x21 + 3x22

)3
+ 81δ̃x42

(
b1δ̃ − 2b2x

2
1 − 3b1x

2
2

)))
(6.15)

The explicit expressions of the normal form in the general class (6.8) and
for the family (4.1) are a bit heavy to write here and are reported at the
end of this chapter. Anyway the procedure is a straightforward extension of
that illustrated in chapter 4.

The threshold for the existence of fish orbits turns out to be

Ef = − 3

2b1
δ +

9

80b31
(149b21 − 60b2)δ

2

− 27(7671b41 − 7840b21b2 + 3600b22 − 1500b1b3)δ
3

1600b51

+
81

448000b71
(4852431b61 − 8889450b41b2

+9116400b21b
2
2 − 3780000b32 − 3626000b31b3

+3150000b1b2b3 − 490000b21b4)δ
4. (6.16)
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This result is undoubtedly unpleasant to write (and read!) but it witnesses
what is the rule with high-order expansions. However, trusting the nor-
malization program and paying attention to write down the results without
errors, the series gives us numbers we can use in specific cases. In terms of
the parameters of the family (4.1), we get

Ef =
12

2− α
δ − 9(22 + 69α)

10(2− α)2
δ2

+
9(4372 + 2508α+ 4853α2)δ3

200(2− α)3

+
27(1368856 + 3109116α+ 542642α2 + 1468293α3)δ4

56000(2− α)4
.

(6.17)

This result completes and generalizes the treatment of the logarithmic case
presented in [11]. We may ask if it is worth the effort: in the logarithmic case
(α = 0), [84] numerically found Ef (q = 0.7) = 0.21 and Ef (q = 0.9) = 2.28
that we can consider experimental exact threshold values. Our analytic
result predicts Ef (q = 0.7) = 0.206 and Ef (q = 0.9) = 2.10. The agreement
is excellent near the resonance (δ = 0.7 − 2/3 ≃ 0.03) and only moderate
further away from it (δ = 0.9 − 2/3 ≃ 0.23). However, we remark that
the energy level E = 2.28 is extremely high if seen with the eye of the
perturbation theorist: an error of 8% may then appear not so bad. Moreover
it is possible to improve the quality of the prediction by going to still higher
orders.

If one is only interested in a rough prediction around a general m1 :
m2 resonance [89], from these results we can deduce the general first order
expression

Em1:m2 =
m2

m1b1
δ, (6.18)

that, for the family (4.1), gives

Em1:m2 =
8m2

m1(2− α)

(
q − m1

m2

)
. (6.19)

The example of the 3:4 resonance (the pretzel) is a good test: for the
logarithmic potential [84] numerically found E3:4(q = 0.7) = 0.25 and
E3:4(q = 0.9) = 1.22. Eq. (6.19) with α = 0 predicts E3:4(q = 0.7) = 0.27
and E3:4(q = 0.9) = 0.80. The agreement is quite good near the resonance;
moreover, since for q < 3/4 the value provided by (6.19) is negative, accord-
ingly with the treatment of the previous cases, we may predict that in the
case q = 0.7 the “bifurcation” is from the x2-axis, as actually found by [84].
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Terms in the normal form for a 4:6 resonance in systems with
elliptical equipotentials

K0 = 2J1 + 3J2 (6.20)

K2 = +3J̃1 + 3b1J
2
1 + 6b1J1J2 +

27

4
b1J

2
2 (6.21)

K4 =
9

2
δ̃b1J

2
1 −

17

2
b21J

3
1 + 5b2J

3
1 −

147

5
b21J

2
1J2 +

27

2
b2J

2
1J2

− 81

8
δ̃b1J

2
2 −

162

5
b21J1J

2
2 +

81

4
b2J1J

2
2 −

459

16
b21J

3
2 +

135

8
b2J

3
2

K6 = −51

4
δ̃b21J

3
1 +

15

2
δ̃b2J

3
1 +

375

8
b31J

4
1 −

165

4
b1b2J

4
1 +

35

4
b3J

4
1

− 324

25
δ̃b21J

2
1J2 +

11313

50
b31J

3
1J2 −

1809

10
b1b2J

3
1J2 + 30b3J

3
1J2

+
243

16
δ̃2b1J

2
2 +

1701

25
δ̃b21J1J

2
2 −

243

8
δ̃b2J1J

2
2 +

11097

25
b31J

2
1J

2
2

− 324b1b2J
2
1J

2
2 +

243

4
b3J

2
1J

2
2 +

1377

16
δ̃b21J

3
2 −

405

8
δ̃b2J

3
2 +

63207

200
b31J1J

3
2

− 12069

40
b1b2J1J

3
2 +

135

2
b3J1J

3
2 +

30375

128
b31J

4
2 −

13365

64
b1b2J

4
2 +

2835

64
b3J

4
2

K8 =
1125

16
δ̃b31J

4
1 −

495

8
δ̃b1b2J

4
1 +

105

8
δ̃b3J

4
1 −

10689

32
b41J

5
1 +

3129

8
b21b2J

5
1

− 393

8
b22J

5
1 −

189

2
b1b3J

5
1 +

63

4
b4J

5
1 −

5103

125
δ̃2b21J

2
1J2 +

9396

125
δ̃b31J

3
1J2

− 1944

25
δ̃b1b2J

3
1J2 −

577779

280
b41J

4
1J2 +

6353127b21b2J
4
1J2

2800

− 146961

560
b22J

4
1J2 −

987

2
b1b3J

4
1J2 +

525

8
b4J

4
1J2 −

5103

125
δ2b21J1J

2
2

+
729

16
δ̃2b2J1J

2
2 −

90639

250
δ̃b31J

2
1J

2
2 + 486δ̃b1b2J

2
1J

2
2 −

729

8
δb3J

2
1J

2
2

− 23517

20
b1b3J

3
1J

2
2 +

675

4
b4J

3
1J

2
2 +

3645

32
δ̃2b1J

3
2 −

12393

64
δ̃2b21J

3
2

− 1420497δ̃b31J1J
3
2

1000
+

216027

200
δ̃b1b2J1J

3
2 −

405

2
δ̃b3J1J

3
2 +

2025

8
b4J

2
1J

3
2

− 61234299b41J
2
1J

3
2

8000
+

12216177b21b2J
2
1J

3
2

1600
− 1076247b22J

2
1J

3
2

1280
− 66339

40
b1b3J

2
1J

3
2

− 273375

256
δ̃b31J

4
2 +

120285

128
δ̃b1b2J

4
2 −

25515

128
δ̃b3J

4
2 −

24047199b41J1J
4
2

6400
(6.22)
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+
31235949b21b2J1J

4
2

6400
− 3355587b22J1J

4
2

5120
− 20331

16
b1b3J1J

4
2 +

14175

64
b4J1J

4
2

− 2597427b41J
5
2

1024
+

760347

256
b21b2J

5
2 −

95499

256
b22J

5
2 −

45927

64
b1b3J

5
2 +

15309

128
b4J

5
2

− 9757989b41J
3
1J

2
2

1750
+

16627599b21b2J
3
1J

2
2

2800
− 94041

140
b22J

3
1J

2
2

+

(
7065

128
b21b2 −

2025

64
b41 −

135

16
b22J

3
1J

2
2 −

135

8
b1b3J

3
1J

2
2

)
J3
1J

2
2 cos (6ϕ1 − 4ϕ2)

(6.23)
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Discussion and conclusions

In the following we discuss some implications of the results described in this
work and present open problems and possible directions to cope with them.

Asymptotic expansions

Series like those described in this work are asymptotic: this means that
a truncation of the series, say at order N , apparently converges in a given
domain only for N < Nopt, where the optimal truncation order Nopt is linked
to the extent of the domain. We remark that this semi-convergence is in
general not associated to a true function: rather, it is only associated to
a local geometric object we use as an invariant surface in the regular part
of phase space. The optimal truncation order depends on the problem at
hand and to assess it a priori is quite difficult [48]. An estimate of Nopt

for two members of the family (4.1), α = 0, 1, is provided in [90]. For the
bifurcation of the banana orbits in the logarithmic potential, it is shown that
Nopt > 7 if q ≤ 0.7, Nopt = 6 if q = 0.8 and Nopt = 3 for q = 0.9. In this
case (the worst being the furthest from exact resonance) the relative error
of the prediction is 11%. However, the quality of the prediction (and the
corresponding optimal order) can be further improved if different techniques
of summation are employed. The paper [94] suggested to use the continued
fraction method [12] to re-sum asymptotic series: applying this idea to the
bifurcation threshold series in the worst case just mentioned (banana with
α = 0, q = 0.9), gives Nopt = 5 lowering the relative error to less than 4%
[90]. What is indeed remarkable in this result is that the bifurcation energy is
E = 3.6. For the logarithmic potential this corresponds to a radius of order
40 times larger than the convergence radius of the original series (4.3) so that
we have an outstanding evidence of the power of asymptotic expansions.

Surfaces of section

By inverting the transformation leading to the normal form we can compute
formal integrals of motion [30, 31] which have to be interpreted as asymp-
totic series as prescribed above. The most immediate use of these expan-
sions is to construct approximations of Poincaré surfaces of sections: for the
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logarithmic potential, [11] shows that, at sufficiently high energy, surfaces
constructed around low-order resonances display a quite close resemblance
with those numerically obtained in the scale-free limit by [84]. Moreover, by
using asymptotic series as true phase-space conserved functions in a suitable
domain, bifurcation curves can be computed by investigating the nature of
the critical points of these functions. The results, obtained by using the
formal integrals, are identical to those obtained with the normal form when
expressed as series in the detuning: either approaches being effective, one
can choose the one which minimizes the computational effort.

Order and chaos

The domain of “semi-convergence” of asymptotic series approximating in-
variant surfaces of generic systems can be taken as a measure of their regular
dynamics. We have seen that, as a matter of principle, regular phase-space
zones associated to resonances of any order can be adequately included and
described. The approach to high-order resonances is dual: either their role
is considered to be marginal [91] or they are considered as an inescapable
signature of chaos [14]. However, in several interesting cases (see e.g. the
scale-free models with α > 0 treated by [98]) we have that different reso-
nances coexist without overlapping for a large range of parameters. Reso-
nance manifolds generate a structure that can be understood via reduction
[99]. Regular dynamics are “complicated” but definitely not chaotic, so
efficient tools to investigate their features are extremely useful.

3D models

The most relevant generalization is towards 3 dimensional systems. This
issue has received much attention in the literature since it is linked to many
problems in mechanics, optics and astronomy [46, 62, 68, 86]. The pioneer-
ing work by [102] still remains a major contribution since mathematicians,
although have devoted much effort to this issue, analyzed in general only
simple abstract models [92]. In [102] the orbit structure of a generic quartic
potential around the 1:1:1 resonance is studied by means of the averaging
method. It turns out that there may be up to 14 distinct families of simple
periodic orbits, some of which are not in any of the symmetry planes of the
potential.

The main problem with 3 degrees of freedom is that the normal form
itself is in general not integrable. Sometimes a renormalization is possible
[53]; namely, one can choose the generators of the coordinate changes so
that

K = K0 +K1 +K2 + . . . (6.24)

is a Birkhoff renormalized form, with {Kj ,Kℓ} = 0, and therefore all the
homogeneous terms represent constant of motion of K. Sadly, this works
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only in some particular cases and, in general, the normalization procedure
of resonant Hamiltonians provides only one formal integral [61] in addition
to energy.

However, the study of the stability of the three normal modes and the
bifurcations of periodic orbits in general position can be done even in the
absence of a third integral. For a general quartic potential

V =
1

2
(ω2

1x
2
1 + ω2

2x
2
2 + ω2

3x
2
3) +

1

4

3∑
i,j=1

aijx
2
ix

2
j , (6.25)

near a 1:1:1 resonance, it is convenient to approximate the frequency ratios
introducing two detuning parameters, namely

ω1

ω2
= 1 + δ1,

ω3

ω2
= 1 + δ2, (6.26)

and to treat both of them as terms of order two in the perturbation. Scaling
the coordinates according to

xi → ε−1ωixi, i = 1, 2, 3 (6.27)

where ε is a small positive parameter, and dividing V by ω2ε
2, the Hamil-

tonian function is given by

H =
1

2
(p21 + p22 + p23) +

1

2
(x21 + x22 + x23)

+

δ̃1(x21 + p21) + δ̃2(x
2
2 + p22) +

1

4

3∑
i,j=1

bijx
2
ix

2
j

 ε2 (6.28)

where bij =
aij
ω1ωj

and δ̃i = δi/ε
2. The system is therefore in a form suitable

to apply a normalization procedure. If the reducing transformation are per-
formed with Lie-transforms and the normalization is pushed to the minimal
order required (i.e. up to second degree terms in ε, since we are in presence
of symmetry with respect to all coordinate axes), we arrive at the following
normal form

K1:1:1 =

3∑
i=1

J1 +

[
δ̃1J1 + δ̃3J3 +

3

8

3∑
i=1

aiiJ
2
i

+
1

4

∑
i̸=l

aijJiJl(2 + cos(2ϕi − 2ϕl))

 ε2 (6.29)

where action angle variables xi =
√
2Ji cosϕi, pi =

√
2Ji sinϕi, have been

introduced.
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In galactic dynamics is relevant the analysis of 3D nearly spherical po-
tential, which generalize the 2D α-models discussed previously, cfr. (4.1).
They are characterized by

a11 = a22 = a33 = a12 = a13 = a23. (6.30)

An investigation of the main periodic orbits gives, in analogy with the 2D
systems with elliptical equipotentials, that the only simple periodic orbits
are the three normal modes and, above a certain energy, elliptic closed orbits
in the three principal planes.

A further step towards a general study of relevant cases like the 1 : 2 : 2
and 1 : 2 : 3 symmetric resonances seems to be within the reach of the
normalization method.

Non-autonomous systems

All the systems we studied in this work are autonomous, that is the Hamil-
tonian function H does not depend explicitly on time. In case we have
an explicit dependence on the time variable t we speak of non autonomous
systems. An example is when the equations of motion are of the type

ẍ = f(t)x+ g(t). (6.31)

A non autonomous system can be treated as an autonomous one by a trivial
extension of the phase space. It suffices to consider the time as a new
coordinate variable, the conjugate momentum being given by −H.

Of particular interest are systems whose dynamics is governed by Hill’s
equations:

ẍ+ (a+ bp(t))x = 0, (6.32)

where p is a periodic function of time and a, b are real parameters. Much
effort has been devoted in the literature to their analysis, see e.g. [8, 24,
25, 74, 75, 100]. By properly extending the phase space, a resonant Hamil-
tonian normal form can be introduced and used to compute the instability
threshold.

Systems with indefinite quadratic part

In this work we limited the analysis to symmetric Hamiltonian functions
with positive definite quadratic part. However one could consider more
general systems with indefinite quadratic part, so that

H0 = mJ1 − nJ2, m, n ∈ N. (6.33)

In this case we speak of m : −n resonances. These system differ from the
previous ones in several features, even if their analysis can be performed
almost in the same way. Some aspects of the 1 : −1 resonance are discussed
in [45, 81, 93]. For the 1 : −2 see [37, 47].
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Conclusions

We have presented a general analysis of the orbit structure of 2D potentials
near 2 : 2 and 2 : 4 resonances. The main results are the following:

The 2 : 2 general resonance is associated with the appearance of loops and
inclined orbits upon a certain energy threshold. If some non degeneracy
conditions (which depends on the physical coefficients of the potential) are
satisfied, the Hamiltonian function can be reduced into a simpler polynomial
form which allows to classify the dynamics using singularity theory. In this
case we are able to compute explicitly the reducing transformations which
bring the normal form into a versal deformation of the central singularity.
However systems with elliptical equipotentials present some degeneracies
which forbid the appearance of inclined orbits. Loop orbits are still present
and their bifurcation leads to the destabilization of the x2-axis orbit in the
oblate case and of the x1-axis orbit in the prolate case. Inclined orbits may
appear only when the equipotentials are heavily deformed.

The 2 : 4 resonance determines the appearance of banana and anti-banana
orbits upon certain energy threshold values.
In case of systems with elliptical equipotentials the first family is stable
and always appears at a lower energy than the second, which is unstable.
The bifurcation sequence produces the change in the stability character of
the major axis orbit and is modified only by very large deformations of the
equipotentials.

Higher order resonances are briefly treated in the last chapter. In particular,
we deal with the 4 : 6 resonance in systems with elliptical equipotentials,
which is associated with the bifurcation of fish orbits.

The critical energy values which determines the bifurcation of periodic or-
bits in general position are provided in all the cases studied, and expressed
in terms of the detuning and the other physical parameters and coefficients.
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Appendix A

List of coefficients and
parameters

In the deformation (3.42) of proposition 3.1, if the planar reduction is per-
formed according to (3.30), the coefficients ai are the following

a1 =
12(B − 2A+ 6C)√

|3C −A|

a2 =
136A2 − 136AB + 34B2 − 272AC + 136BC − 408C2 + 15d3 − 45d4

12
√
|3C −A|

a3 =
12(B − 2A+ 2C)√

|C −A|

a4 =
136A2 − 136AB + 34B2 − 112AC + 56BC − 24C2 + 3d3 − 45d4

12
√
|C −A|

a5 =
1

288(A− 3C)2
(1632A3 − 544A2(2B + 15C) + 2A(68B2 + 3264BC

+ 9(272C2 − 5(d1 + d2 − 3d3 + 5d4)))

+ 3(−136B2C − 3B(1088C2 − 5(d1 − d2 + d3 − d4))
+ 18C(272C2 + 5(d1 + d2 − 3d3 + 5d4))))

a6 =
1(

144|C −A|3/2|3C −A|3/2
) [−1632A4 + 64A3(17B + 138C)

− 2A2
(
68B2 + 3328BC + 9

(
640C2 − 5d1 − 3d2 + 9d3 − 25d4

))
+ A(512B2C − 72C(48C2 + 5d1 + 2d2 − 8d3 + 25d4)

+ B(12608C2 − 45d1 + 27d2 − 27d3 + 45d4))

− 6C(52B2C +B(1216C2 − 15d1 + 6d2 − 6d3 + 15d4)

− 3C(432C2 + 5d1 + 7d2 − 25d3 + 85d4))]
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a7 =
1

288(A− C)2
(
1632A3 + 32A2(34B − 93C)

+ 2A
(
68B2 − 1216BC + 528C2 − 225d1 + 27d2 − 9d3 − 45d4

)
+ 3

(
−24B2C +B

(
448C2 + 3(5d1 − d2 + d3 − 5d4)

)
+ 6C

(
16C2 + 25d1 − 3d2 + d3 + 5d4

)))
.

The parameters bi have the following expressions

b1 = − 6Cδ√
|3C −A|

b2 =
δ

2
√
|3C −A|

b3 = − 2Cδ√
|C −A|

b4 =
δ

2
√
|C −A|

b5 =

(
576A2 + 16AB − 3456AC − 48BC + 5184C2 + 45d1 − 45d2 + 45d3 − 45d4

)
δ

576(A− 3C)2

b6 =
(
−576A3 − 16A2B + 3456A2C + 32ABC − 6336AC2

+ 48BC2 + 3456C3 − 45Ad1 + 90Cd1 + 27Ad2 − 36Cd2 − 27Ad3 + 36Cd3

+ 45Ad4 − 90Cd4)
δ

288|C −A|3/2|3C −A|3/2

b7 =

(
576A2 + 16A(B − 72C) + 48BC + 9

(
64C2 + 5d1 − d2 + d3 − 5d4

))
δ

576(A− C)2
.

If the planar reduction is performed according to (3.63) the previous coeffi-
cients and parameters turn into

a1 = −B + 2A− 6C√
|3C −A|

a2 =
136A2 + 136AB + 34B2 − 272AC − 136BC − 408C2 + 15d2 − 45d1

12
√
|3C −A|
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a3 = −B + 2A− 2C√
|C −A|

a4 =
136A2 + 136AB + 34B2 − 112AC + 56BC − 24C2 + 3d2 − 45d1

12
√
|C −A|

a5 =
1

288(A− 3C)2
(1632A3 + 544A2(2B − 15C) + 2A(68B2 − 3264BC

+ 9(272C2 − 5(d1 − 3d2 + d3 − d4)))
+ 3(−136B2C + 3B(1088C2 + 5(d1 − d2 + d3 − d4))
+ 18C(272C2 + 5(d1 − 3d2 + d3 + d4))))

a6 =
1(

144|C −A|3/2|3C −A|3/2
) [−1632A4 − 64A3(17B − 138C)

− 2A2
(
68B2 − 3328BC + 9

(
640C2 − 25d1 + 9d2 − 3d3 − 5d4

))
+ A(512B2C − 72C(48C2 + 25d1 − 8d2 + 2d3 + 5d4)

+ B(−12608C2 − 45d1 + 27d2 − 27d3 + 45d4))

+ 6C(−52B2C +B(1216C2 + 15d1 − 6d2 + 6d3 + 5d4)

+ 3C(432C2 + 85d1 − 25d2 + 7d3 + 5d4))]

b1 =
2(2A+B − 3C)δ√

−A+ 3C

b2 = − δ

2
√
|3C −A|

b3 =
2(2A+B − C)δ√

−A+ C

b4 = − δ

2
√
|C −A|

b5 =

(
576A2 + 16AB − 3456AC − 48BC + 5184C2 + 45d1 − 45d2 + 45d3 − 45d4

)
δ

576(A− 3C)2

b6 =
(
−576A3 − 16A2B + 3456A2C + 32ABC − 6336AC2

+ 48BC2 + 3456C3 − 45Ad1 + 90Cd1 + 27Ad2 − 36Cd2 − 27Ad3 + 36Cd3

+ 45Ad4 − 90Cd4)
δ

288|C −A|3/2|3C −A|3/2

b7 =

(
576A2 + 16A(B − 72C) + 48BC + 9

(
64C2 + 5d1 − d2 + d3 − 5d4

))
δ

576(A− C)2
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[24] Broer, H.W. & Simó, C. Hill’s equation with quasi-periodic forcing:
resonance tongues, instability pockets and global phenomena, Boletim
da Sociedade Brasileira de Matemtica, 29, 253 (1998).
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