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«The way to solve the conflict between human values and
technological needs is not to run away from technology.
That’s impossible. The way to resolve the conflict is to break
down the barriers of dualistic thought that prevent a real un-
derstanding of what technology is ... not an exploitation of
nature, but a fusion of nature and the human spirit into a
new kind of creation that transcends both. When this tran-
scendence occurs in such events as the first airplane flight
across the ocean or the first footstep on the moon, a kind
of public recognition of the transcendent nature of technology
occurs. But this transcendence should also occur at the indi-
vidual level, on a personal basis, in one’s own life, in a less
dramatic way..»

R.M. Pirsig in Zen and the Art of Motorcycle Maintenance
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Abstract

The objective of this thesis is to develop an innovative Structural Health Monitoring (SHM)
technique that exploits piezoelectric-induced ultrasonic waves in composite laminates to de-
tect the presence of delaminations caused by impacts, vibrations and other external distur-
bances. The ultrasonic SHM technique here proposed is intended to be the initial stage of a
broader approach to structural health monitoring aimed at damage detection in composite
plate-like structures which resorts to the exploitation of the damage-induced lag in the times
of arrival of primary (P) and secondary (S) elastic waves traveling in the plate thickness
direction as the fundamental mechanism for enhanced detection capabilities. This approach
is envisioned to expand the current performance envelope of ultrasonic SHM techniques since
the local character of the proposed technique together with its innovative nature based on
the use of P and S elastic waves is expected to combine a high level of reliability with a
fast and repeatable SHM routine. The specific tasks in line to achieve the overall objective
of the work are organized in four major steps. First, the study of the theoretical problem
associated to the development of the SHM procedure is carried out and features the gener-
ation (by surface apertures) of appropriate elastodynamic fields in thin-walled structures to
identify the lag in the times of arrival of primary and secondary waves as key element in the
delamination detection routine. Second, the implementation of two and three-dimensional
numerical models is tackled to deliver a better insight into the phenomena associated to the
generation of elastodynamic fields in composite laminates undergoing delaminations. Third,
efficient differential evolutionary-based numerical codes are implemented with the aim of op-
timizing the performance of the proposed SHM routine. Finally, the experimental validation
of the analyzed SHM procedure is carried out through extensive testing activities, employing
different types of setups.
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Chapter 1

Introduction

The impact that the aerospace industry has exerted on various aspects of the technological
evolution and the overall world economy over the last sixty years is enormous. Research and
development for aerospace applications is at the forefront on engineering achievements and
several new technologies have been transferred to other fields in recent years. However, cur-
rent economic, technical and social demands have resulted in challenges for aircraft designers
and operators. New large capacity aircraft are being developed and will be used widely in
the future. Many of these structures will make greater use of composite materials. At the
same time the current aircraft fleet is ageing continuously. All these developments are a
major challenge to inspection and maintenance.

Aerospace structures are currently inspected using traditional Nondestructive Evaluation
Techniques (NDE) such as visual inspection, radiography and eddy current [1]. However, to-
day’s NDE, usually conducted at regular scheduled intervals during the lifetime of engineered
structures and assets, is too unwieldy to achieve automatic damage identification when the
structures and assets are in service. That is because the NDE equipment used cannot provide
efficient access to appropriate sections of the structures in a real-time manner. Therefore
most current NDE approaches provide limited information about structural integrity.

Driven by recent advances and technical breakthroughs in sensor technology, manufac-
turing, electronic packaging, signal processing, informatics, diagnostics, applied mechanics
and material sciences, conventional NDE techniques are now being retrofitted, with the
aim of continuous/real-time and automated surveillance of the overall integrity of structures
through consideration of working condition updates and structural ageing. This technol-
ogy is termed online damage identification or Structural Health Monitoring (SHM). SHM
is defined as the nondestructive and continuous monitoring characteristics using an array of
sensors related to the fitness of an engineered component as it operates, so as to diagnose
the onset of anomalous structural behavior. It involves measurements and evaluations of the

1
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state properties so as related them to defined performance parameters [2]. SHM provides
comprehensive information concerning (i) operational and environmental loads, (ii) damage
caused by loads, (iii) growth of damage, and (iv) performance of the structure as damage
accumulates, in aspects such as residual strength and life. Objectives (i)-(iii) are associated
with damage diagnosis (qualitative or quantitative identification and assessment of damage),
and (iv) falls into the category of damage prognosis (estimate of a system’s residual life [3]).

An SHM subsystem typically consists of an onboard network of sensors for data acqui-
sition and some central processors to evaluate the structural health. It may utilize stored
knowledge of structural materials, operational parameters, and health criteria. The schemes
available for SHM can be broadly classified as active or passive depending on whether or
not they involve the use of actuators, respectively. Examples of passive schemes are acous-
tic emission and strain/load monitoring, which have been demonstrated with some success
[4]-[10]. However, these suffer from the drawback of requiring high sensor densities on the
structure. They are typically implemented using fiber optic sensors and, for environments
that are relatively benign, foil strain gages. Unlike passive methods, active schemes are ca-
pable of exciting the structure and, in a prescribed manner, they can examine it for damage
within seconds, where and when required. Among active schemes, guided-wave testing has
emerged as a very prominent option. It can offer an effective method to estimate the loca-
tion, severity and type of damage, and it is a well-established practice in the non-destructive
evaluation and testing (NDE/NDT) industry. There, guided-waves are excited and received
in a structure using handheld transducers for scheduled maintenance. They have also demon-
strated suitability for SHM applications, having an onboard, preferably built-in, sensor and
actuator network to assess the state of a structure during operation.

1.1 Conventional damage detection procedures

It is well understood that damage can induce changes in the local and global properties of a
structure (e.g., local effective stiffness, density, mass, thermal properties, electric/magnetic
conductivity, electro-mechanical impedance and strain energy). These changes are included
in dynamic response signals propagated through the structure. The challenge in this aspect
is to figure out, with the assistance of appropriate mechanisms and tools, what these changes
in signals mean physically about the structures. Most NDE approaches have been developed
by scrutinizing the structural dynamic response signals captured by various transducers.
Then, by referencing baseline signals (collected from a benchmark structure supposed to be
healthy), the damage can be pinpointed. That is the premise of these approaches [11].

Theoretically, changes in either global or local properties of a structure under inspection
can be associated with damage parameters [12, 13]. However, approaches capitalizing on
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changes in global dynamic properties including eigenfrequencies, mode shapes and curva-
tures, strain energy, and damping properties are less sensitive to damage before it reaches
a noticeable extent (e.g., 10% of the characteristic dimension/area of the structure), since
damage is a local event which would not significantly change structural global response fea-
tures. Electro-mechanical impedance and static parameters such as displacement or strain
are features that can be used to calibrate local changes in the presence of damage [14], but
they are relatively insensitive to damage that is distant from sensors. Acoustic emission is
an effective mean to triangulate damage and predict damage growth, but such a passive
detection technique is unable to further evaluate damage severity.

One of the most popular category that can be identified among the traditional dam-
age detection procedures is represented by the class of the model-data-based approaches
[11, 13, 15, 16]. Common features adopted to assess the state of damage of the structure
under inspection are its modal parameters as its eigenfrequencies, its mode shapes and their
curvatures. These methods are based on the fact that the presence of damage reduces the
stiffness of the structure, causes a frequency shift in its eigenfrequencies, and changes its
frequency response function and mode shapes. In addition, the analysis of the variation in
the strain energy released in the deformation process and due to the presence of a damage is
also addressed in this class of damage detection procedures; the study of changes in the flex-
ibility of the structure or in its damping properties is also carried out to detect the presence
and location of damage.

Common advantages featured by the NDE methods belonging to the model-data-based
class are their simple implementation and their low cost. They have proven to be particularly
effective for detecting large damages in large infrastructures or rotating machinery. On the
contrary, they are generally insensitive to small damages or to damage growth; moreover,
it can be very difficult to excite high frequencies needed to complete these particular NDE
approaches. Two major disadvantages characterizing these methods are the need for a large
number of measurement points and their hypersensitivity to boundary and environmental
changes which can make model-data-based NDE techniques ineffective.

The class of NDE procedures based on the analysis of damage-induced variations in the
parameters defining the static behavior of the structure under analysis it often referred to
as the static-parameter-based class [17]-[20]. The methods which can be grouped into this
class rely in general on the observation that the presence of a damage causes changes in
displacement and strain distribution in comparison with a pre-defined benchmark. These
procedures are locally sensitive to defects, simple and cost-effective; on the other hand, they
have shown to be relatively insensitive to undersized damage or to detect the evolution of
deterioration of the structure.
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Another class of NDE techniques which has gained popularity in recent years is that
based on the analysis of changes in the electromechanical impedance of the structure [21]-
[24]. These damage detection routines rely on the fact that the composition of a system
contributes a certain amount to the total amount of electromechanical impedance of the sys-
tem, with the presence of damage modifying the impedance distributions in a high-frequency
range, normally higher than 30 KHz. Based on the use of piezoelectric transducers, these
techniques feature a low cost and simple implementation and they have shown particularly
good results in detecting defects in planar structures. Due to their local nature, however,
they are generally unable to detect damages located at a distant position from the sensors,
proving to be accurate only in the identification of large damages or to detect the effects of
loosen joints in an assembled structure [25].

Acoustic emissions-based methods, instead, detect the rapid release of strain energy asso-
ciated with the generation and propagation of damages in a structure [26]-[29]. The release
of such elastic energy generates transient damage-emitted acoustic waves, which can be cap-
tured (usually adopting piezoelectric sensors) to triangulate the damage position in different
modalities including matrix crack, fibre fracture, delamination, microscopic deformation,
welding flaw and corrosion. The capability of this NDE class to detect the growth of the
damage offering a good coverage of the structure (being surface-mountable) have made these
damage detection routines very popular in the SHM community. As every other process to
evaluate the state of damage of a structural system, also acoustic emissions-based methods
are affected by some important limitations: due to their nature, in fact, they are prone to
contamination by environmental noise; the acquisition of complex output signal requires the
implementation of a complex and time-demanding post-processing. In addition, due to the
high damping ratio affecting the elastic waves emitted by the damage, these NDE methods
have proven to be suitable only in detecting damages in small structures.

1.2 Ultrasonic NDE

The earliest exploration of ultrasonic nondestructive evaluation techniques (US-NDE) for
the purpose of damage identification can be dated back to the distance measurement (a
prototype of the sonar technique) and blemish detection used for ships and submarine hulls in
the 19th century. In recent years, researchers have increasingly become interested in taking
advantage of elastic waves to develop novel damage identification techniques for various
engineered structures and assets, based on mature understanding of elastic waves [30, 31, 32]
and awareness of the potential of elastic waves for identifying damage in a cost-effective
manner.

The most popular type of elastic waves adopted in thin plate/shell structures to perform
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damage detection is represented by Lamb waves (see Appendix A), which have been at the
core of intensive efforts since the late 1980s. Lamb waves can propagate over a relatively
long distance, even in materials with high attenuation ratios, such as polymer composites,
and thus allow a broad area to be covered with only a few transducers. Lamb waves have
offered an intriguing avenue to develop novel damage identification and SHM techniques, in
recognition of the observations that (i) interaction of Lamb waves with structural damage
can significantly influence their propagation properties, accompanying wave scattering and
mode conversion. Rich information about damage is encoded in the Lamb waves scattered
by that damage; and (ii) different locations and severity of damage cause unique scattering
phenomena.

As witnessed over the past two decades, there have been pilot studies for developing dam-
age identification techniques using Lamb waves [33]-[40] highlighted in some review articles
in the literature [41]-[45]. Through intensive studies in this area, Lamb waves have identified
their superb niche for cost-effective damage identification and SHM. Actually, Lamb waves
are now the most widely used acousto-ultrasonic guided waves for damage identification
[46]. A popular taxonomy for categorizing these approaches is in terms of the domain where
the processing is conducted, i.e., time domain, frequency domain and joint time-frequency
domain analyses.

1.2.1 Time-domain methods

In most cases, a Lamb wave signal is presented in the time domain. A time-series signal
inherently records the time history of Lamb waves traveling in a structure, thereby providing
the most straightforward information about the waves, such as existence of various wave
modes, propagation velocity, attenuation and dispersion with distance, scattering from a
structural boundary or damage. The characteristics exhibited by a time-series Lamb wave
signal, that may be beneficial to damage identification, include the magnitude, the root
mean square (RMS) of the signal, the standard deviation, the kurtosis, the characteristic
time moment, the trend, the cyclical component, the time-of-flight (ToF), etc. All these
characteristics can be modulated to a greater or lesser degree in the presence of structural
damage.

The difference in ToFs (difference in ToFs is defined as the time lag between the incident
wave that the sensor first captures and the wave scattered by the damage that the same sensor
subsequently captures) is one of the most straightforward features of a Lamb wave signal
for damage identification. This index suggests the relative positions among the actuator,
the sensor and the damage. From the difference in the ToFs between the damage-scattered
and incident waves extracted from a certain number of signals, the damage position can
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accordingly be triangulated [47]-[50], leading to the determination of a locus which indicates
possible locations of the centre of the damage.

Another approach is represented by the use of the Hilbert transform: this method is aimed
at canvassing a Lamb wave signal in the time domain in terms of its energy distribution
[51]-[58]. The Hilbert transform can be fulfilled using a Fast Fourier transform (FFT),
capturing the energy envelope of a Lamb wave signal. Composite structures as well as
isotropic plates containing delamination have been analyzed in the literature [59]: using
the Hilbert transform, the energy distribution of the signal becomes explicit and global or
local features such as instantaneous frequency, magnitude and damping characteristics are
extracted. Sudden changes in the energy distribution at particular times are used as evidences
that a damage may have occurred at those time instants: the degree of the observed changes
is often used to quantify the damage severity.

Damaged is a structural state different from the original state that is supposed to be
“healthy”; that is to say, the states of “damage” and “health’ are defined relatively. Implicit
in this definition, a damage event is not meaningful without a comparison between two
different states. To facilitate such a comparison and to highlight the difference, a Lamb
wave signal captured in a structure under inspection is often evaluated against its counterpart
signal in the benchmark structure by using correlation in the time domain [60, 61, 62]. An
abnormality such as damage in the structure can thus be detected and quantified with respect
to the healthy state. In such a correlation processing, the correlation coefficients of two (or
more) discrete time-series Lamb wave signals of the same length are estimated. The more the
correlation coefficients (calculated comparing the response of undamaged systems and the
response of a systems whose state of damage is unknown) differ from unity, the smaller the
similarity between two signals, implying the presence of damages in the analyzed structure.

Time reversal is a signal processing approach based on reciprocity of the wave equation,
which is mathematically guaranteed by the fact that the wave equation contains only even
order derivatives. Reciprocity presumes that if there is a solution to a wave equation, then
the time reversal of that solution is also a solution to the wave equation [63]. In other words,
for a given process, the solution to the wave equation at time t is the same as that at time
-t , even though the waves may be reflected, refracted or scattered by inhomogeneities in
the medium in which waves travel. However, this paradox does not hold for macroscopic
processes in the real world that are irreversible and dissipative in nature. Some media are
not reciprocal (e.g., very lossy or noisy media), but many are approximately so. For example,
sound waves in water or air, ultrasonic waves in human bodies, alloys or composites, and
electromagnetic waves in free space are all approximately reciprocal examples.
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1.2.2 Frequency-domain methods

To reveal singularities induced by structural damages, which may not be clearly ascertained
in the time domain, a Lamb wave signal is often transformed in the frequency domain through
the Fourier Transform (FT) and Fast Fourier Transform [64]. A Lamb wave signal usually
contains a variety of components in a wide frequency range of which only certain bands
are of interest for damage identification, such as those bands whose central frequency is the
same as that of activation: digital filters developed using FT and FFT constitute the main
approach used for extracting the components of interest from raw Lamb signals. Digital
filter design is actually the process that seeks the most suitable filter coefficients, to cater
for certain filtering requirements. Adjusting the filter coefficients, different types of filters
can be obtained: (i) low-pass filters, transmitting wave components with frequencies below
a threshold and excluding others; (ii) high-pass filters, transmitting wave components with
frequencies above a threshold and excluding others; (iii) bandpass filters, which transmit
wave components within a particular range of frequencies and excluding others and (iv)
band-stop filters, which stop components between a lower and a higher cut-off frequencies.
However, when the wave components of interest are in the same frequency band as those not
of interest, FT- or FFT-based filtering becomes inefficient to isolate them. It should also be
noted that the use of FTs and FFTs to transfer a wave signal from the time to frequency
domain comes at the cost of disregarding temporal information of the signal such as its
amplitude and ToF.

To separate different wave components or multiple wave modes which share the same
frequency range in a Lamb wave signal, two-dimensional FT (2D-FT) [65]-[71] is one among a
number of diverse applicable methods. Two-dimensional FTs are used to link the magnitudes
of different Lamb modes in a wave signal with wavenumber and frequency. More often, a two-
dimensional FFT (2D-FFT) algorithm is used because of the improved capacity of calculation
of FFTs. This algorithm can present a Lamb wave signal in a two-dimensional contour plot
or a three-dimensional plot of magnitude versus wavenumber and frequency: various Lamb
modes propagating in the structure can be isolated, allowing clear recognition of multiple
wave modes even within the same frequency band [66]. Since 2D-FT/FFT needs Lamb wave
signals captured at different locations, a great number of sensors are usually required.

1.2.3 Joint time-frequency domain methods

It is a corollary to combine the analyes in the sole time and sole frequency domains so as to
avoid any potential loss of information carried by a Lamb wave signal, leading to the joint
time-frequency domain analysis. The joint time-frequency domain analysis is exemplified by
the Short-Time Fourier Transform (STFT) and the Wavelet Transform (WT).
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STFT applies the basic FT on a small signal segment about time moment t , by multiply-
ing a time window function (commonly a Hanning or Gaussian window) and neglecting the
rest of the signal. This operation is then continued by moving the short time window along
the entire time axis, to obtain the energy spectrum of the full signal. With its ability to si-
multaneously unveil features as to the time and frequency of a signal, STFT has found a great
number of applications in Lamb wave signal processing [73, 77]. Upon application of STFT
to Lamb wave signals, the energy distribution of various Lamb wave modes in the signals at
different time moments and frequencies can be obtained, as shown in [73]. This approach can
be thus be used in selecting an optimal excitation frequency at which the activated signal has
a high SNR. However, because of the unalterable window size, satisfactory precision cannot
be obtained along the time- and frequency-axes synchronously. Therefore STFT may not be
the optimal choice for analyzing wave signals whose instantaneous frequency varies rapidly.

As an improvement on direct time-frequency analysis, WT is a tool for processing dy-
namic signals or images. With its rationale established in the 1950s, WT has claimed a wide
application domain ranging from geophysics and biomedicine to offshore petroleum explo-
ration and movie , to mention but a few. Since introduced to the analysis of vibration signals
in the 1990s [78, 79, 80], this signal processing technique has enjoyed burgeoning popular-
ity in the NDE community [75, 78, 81]. In brief, the wavelet is a waveform with a limited
duration or window, whose average amplitude equals zero. During the transformation, a dy-
namic signal is represented using dual parameters, scale and time, with scale being inversely
proportional to frequency. WT is substantially a window technique featuring a window of
variable size. A large value of scale stands for a big window, a global view of the signal
and accordingly low resolution; a small value of scale represents a small window, a detailed
view of the signal and accordingly high resolution. Representation of a dynamic signal over
the time-scale domain rather than the direct time-frequency domain is not a degradation or
compromise; rather it enhances the resolution of illustration and recognisability of a signal.
It allows detailed interpretation of a localized signal fragment so as to canvass hidden charac-
teristics such as singularity or discontinuity in signals. Compared with other time-frequency
approaches previously introduced, WT features conservation of energy during the transform,
provision of full signal information, localization in both time and frequency domains, and
deployment of the signal with multiresolution.

1.3 A local approach for ultrasonic SHM procedures

It can be stated that nowadays damage identification techniques based on ultrasonic waves
represent the most frequently adopted approaches in the SHM domain. Such popularity
is due to some noteworthy properties the ultrasonic methods feature: among them it is
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worth citing (i) the capability of inspecting large portions of the structure in a short time
using few transducers in a sparse configuration due to the high traveling velocity of guided-
waves and to low wave attenuation (in isotropic media), (it has been demonstrated that
the ratio of the planar area of the plate that can be inspected to the area of a circular wave
transducer can be about 3000:1 [42]); (ii) the capability of classifying various types of damage
using different wave modes; (iii) high sensitivity to damage and therefore high identification
precision, due mainly to unique scattering phenomena associated to the presence of a certain
type of damage; (iv) the use of piezoelectric transducers as sensors and actuators enabling
the implementation of experimental setups at relatively low costs.

The desirable features which characterize the ultrasonic wave-based damage detection
techniques can become ineffective when multilayered composite structural systems are ana-
lyzed. Due to their mechanical properties, in fact, composite materials have emerged as a
preeminent technology in the realization of structural systems in aerospace engineering. The
inner complexity of such structures associated to their inhomogeneity, anisotropy and possi-
bly to complex geometrical shapes is reflected into a high complexity of the acquired signal
appearance when ultrasonic wave-based techniques are adopted, requiring well-calibrated
and time-demanding signal processing and interpretation techniques which are hardly as-
sociable to the idea of an on-line identification of the damage which defines the concept of
SHM.

These difficulties have caused the need for an SHM routine capable of granting the fastness
and reliability required by on-line damage detection procedures maintaining the effectiveness
and sensitivity characteristic of ultrasonic methods also when composite multilayer struc-
tures are examined. To this end, localized or local approaches can be taken into account in
tackling the SHM problem. The word local is here used to define all those damage detection
methods in which the area inspected by a single sensor or by a single actuator-sensor pair
has a characteristic dimension which is comparable to the geometric parameters defining
the actuators (sensors) size, and which are thus characterized by the implementation of a
transducers network. Due to the reduced extension of the main portion of the domain to
be investigated by a single unity of the network, the adoption of an ultrasonic wave-based
procedure in such a local scheme would feature (i) a lower complexity of the acquired signal
(which would lack the effects of multiple wave reflections induced by the boundaries of the
system) and, consequently, (ii) an easier extraction of the damage features, and (iii) a higher
reliability on SHM procedure results. This, on the other hand, would imply (iv) a lower
complexity of the damage identification algorithm to be used in such SHM procedure and
thus (v) a faster SHM routine which could be virtually implemented in an on-line detection
of the damage in a composite structural system. Moreover, the possibility to isolate simple
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SHM unities in the network would reflect in a lower dependence on the system geometry
and, thus, in (vi) an easier standardization process for a possible implementation of local
SHM methods for real-world applications.

On the other hand, the realization of a network of sensors and actuators requires a
higher density of transducers, with a consequent increase of the wiring and thus of the SHM
system invasivity. Additional drawbacks are represented by the increase of the weight of the
SHM system (a key element in aerospace structures) and, last but not least, higher costs of
implementations.

1.4 Objective of the thesis

The objective of this thesis is to develop an innovative Structural Health Monitoring (SHM)
technique that exploits piezoelectric-induced ultrasonic waves in composite laminates to de-
tect the presence of delaminations caused by impacts, vibrations and other external distur-
bances. The ultrasonic SHM technique here proposed is intended to be the initial stage of a
broader approach to structural health monitoring aimed at damage detection in composite
plate-like structures which resorts to the exploitation of the damage-induced lag in the times
of arrival of primary (P) and secondary (S) elastic waves traveling in the plate thickness
direction as the fundamental mechanism for enhanced detection capabilities. This approach
is envisioned to expand the current performance envelope of ultrasonic SHM techniques since
the local character of the proposed technique together with its innovative nature based on
the use of P and S elastic waves is expected to combine a high level of reliability with a fast
and repeatable SHM routine. The specific tasks in line to achieve the overall objective of the
work are organized in four major steps. First, the study of the theoretical problem associated
to the development of the SHM procedure is carried out and features the generation (by sur-
face apertures) of appropriate elastodynamic fields in thin-walled structures to identify the
lag in the times of arrival of primary and secondary waves as key element in the delamina-
tion detection routine. Second the implementation of two and three-dimensional numerical
models is tackled to deliver a better insight into the phenomena associated to the generation
of elastodynamic fields in composite laminates undergoing delaminations. Third, efficient
differential evolutionary-based numerical codes are implemented with the aim of optimizing
the performances of the proposed SHM routine. Finally, the experimental validation of the
analyzed US-SHM procedure is carried out through extensive testing activities, employing
different types of setups.

In the literature, it has been pointed out that advanced SHM techniques should be
rooted onto physics-based models other than black-box approaches. This motivates a major
undertaking in this work towards formulating a delamination detection procedure in which
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the complex phenomena characterizing the generation of elastic waves in plate-like domains
and their interactions with the damage are analyzed and therefore used to constitute the
basis of the proposed SHM procedure. To this end, the solution of the acoustic problem
associated to the presence of point-wise force and strain sources in the three-dimensional
domain is discussed to introduce the mathematical framework necessary to achieve a point-
source synthesis when the complete elastodynamic problem is considered. In order to obtain
the radiation characteristics defining the structure of the elastodynamic field generated by
piezoelectric-like sources in the structural system, the analysis of the propagation of elastic
ultrasonic waves in half spaces is addressed. As already mentioned, the lag in the times of
arrival to the sensor location of primary and secondary waves propagating in the composite
laminate thickness direction, generated by a piezoelectric actuator and reflected by the a
delamination present between the laminae of the structure is identified as key mechanism
in the damage detection procedure. An innovative architecture of the actuating-sensing
system is designed to exploit the described phenomena in the proposed SHM routine, and
an ad-hoc excitation signal is defined in terms of time-duration, frequency content and
amplitude to serve as means of generation of the elastic waves. The governing equations of
the composite laminate are then numerically implemented in their strong formulation using
the COMSOL Multiphysicsr software: the implementation of the constitutive laws of the
composite laminate as well as of the equations defining the electromechanical behavior of the
piezoelectric transducers allows to use and obtain back input and output signals directly in
terms of voltage, granting an accurate description of the physics characterizing the generation
of the ultrasonic waves. Two- and three-dimensional numerical simulations are then carried
out allowing to achieve a precise definition of the SHM routine which takes into account the
observed frequency modulation effects which appear as a consequence of the presence of the
delamination. An optimization process aimed at enhancing the performance of the proposed
SHM approach is then accomplished, resulting in the realization of a numerical code based
on differential evolutionary algorithms and capable of interacting with the mentioned FEM
software.

Finally, the proposed SHM procedure is validated through an extensive experimental
campaign where both isotropic and anisotropic specimens are tested. In the latter case, in
particular, delaminations are induced at different depths in eight-layer carbon fiber com-
posite laminates introducing teflon inserts in the lamination sequence. A good agreement
between the theoretical and numerical predictions and the experimental results is obtained,
highlighting the effectiveness and validity of the proposed approach.



Chapter 2

Point-Source Synthesis of Acoustic
Fields with Green Functions

2.1 Governing equations of acoustics

The Cauchy’s equation of motion and the deformation rate equations read:

∂p(r, t)
∂t

= ∇ · T (r, t) + f(r, t), (2.1)

∂S(r, t)
∂t

= 1
2

{∇v(r, t) + [∇v(r, t)]} + h(r, t), (2.2)

where p(r, t) is the linear momentum vector per unit reference volume, v(r, t) is the particle
velocity, T (r, t) is the engineering (symmetric) stress tensor and S(r, t) is the symmetric
deformation tensor. The terms f(r, t) and h(r, t) are the force density and the injected
deformation rate tensor, respectively. They represent the data of the elastodynamic problem
entering the governing equations as inhomogeneities.

Equations (2.1) and (2.2) constitute the governing equations of Elastodynamics and,
unlike Maxwell’s equations, can be easily derived from the fundamental laws of Mechanics
(balance of mass, linear momentum and angular momentum) assuming the Cauchy con-
tinuum structure and first-order theory( linearization of the strain tensor and imposition
of the balance laws in the reference configuration). To obtain the governing equations of
acoustodynamics, we decompose the stress tensor T as follows:

T = σI +
(
T − 1

3
Itrace [T ]

)
. (2.3)

Neglecting the deviatoric part of the stress tensor T , it results

T = −p(r, t)I, (2.4)

12
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where p(r, t) is the pressure. The volume dilatation S(r, t) and the injection dilatation rate
h(r, t) can be defined, respectively, as

S(r, t) = trace [S(r, t)] , (2.5)

h(r, t) = trace [h(r, t)] . (2.6)

Disregarding the deviatoric part of the stress tensor and considering the trace of (2.2), the
governing equation of acoustodynamics are obtained as [82, 83]:

∂p(r, t)
∂t

= −∇p(r, t) + f(r, t), (2.7)

∂S(r, t)
∂t

= ∇ · v(r, t) + h(r, t). (2.8)

If the propagation medium is considered linearly elastic, the constitutive equation reads

S(r, t) = s(r) : T (r, t), (2.9)

where s(r) is the complinace matrix. If the deviatoric part of the stress tensor in (2.3) is
once more neglected, Eq. (2.9) becomes

S(r, t) = s(r) : 1
3
Itrace [T (r, t)] = −s(r) : p(r, t)I (2.10)

and thus

S = trace [S(r, t)] = I : S(r, t) = −(I : s(r) : I)p(r, t) = −ϱ(r)p(r, t) (2.11)

which is the constitutive law for inhomogeneous non-dissipative acoustic media with adiabatic
compressibility equal to ϱ(r). The governing equations in (2.7) and (2.8) can be rewritten
as follows:

ρ(r)∂v(r, t)
∂t

= −∇p(r, t) + f(r, t), (2.12)

−ϱ(r)∂p(r, t)
∂t

= ∇ · v(r, t) + h(r, t). (2.13)

The combination of these equations leads to a single higher order differential equation in the
pressure field p(r, t):

∇ ·
[ 1
ρ(r)

∇p(r, t)
]

− ϱ(r)∂
2p(r, t)
∂t2

= ∇ ·
[ 1
ρ(r)

f(r, t)
]

+ ∂h(r, t)
∂t

. (2.14)

Making use of Eq. (2.12), the previous equation can be recast as

∆p(r, t) − ρ(r)ϱ(r)∂
2p(r, t)
∂t2

+ ∂v(r, t)
∂t

· ∇ρ(r) = ∇ · f(r, t) + ρ(r)∂h(r, t)
∂t

. (2.15)

In a similar manner, a higher order equation in v(r, t) can be obtained as:

∇
[ 1
ϱ(r)

∇ · v(r, t)
]

− ρ(r)∂
2v(r, t)
∂t2

= ∂f(r, t
∂t

− ∇
[ 1
ϱ(r)

h(r, t)
]
. (2.16)
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Making use of Eq. (2.13), the previous equation can be recast as

∇∇ · v(r, t) − ρ(r)ϱ(r)∂
2v(r, t)
∂t2

+ ∂p(r, t)
∂t

∇ϱ(r) = −∇h(r, t) − ϱ(r)∂f(r, t)
∂t

. (2.17)

The differential operator for p(r, t) or v(r, t) contains additional terms like ∇ρ(r) or ∇ϱ(r)
which make the differential equations more difficult to solve. They are, therefore, transferred
to the right-hand sides of Eqs. (2.15) and (2.17) as additional inhomogeneities in terms of
equivalent sources.

For homogeneous materials, the previous differential equations decouple:

∆p(r, t) − ϱ(r)ρ(r)∂
2p(r, t)
∂t2

= ∇ · f(r, t) + ρ(r)∂h(r, t)
∂t

, (2.18)

∇∇ · v(r, t) − ϱ(r)ρ(r)∂
2v(r, t)
∂t2

= −∇h(r, t) − ϱ
∂f(r, t)
∂t

, (2.19)

Given a vector a(r, t), the following identity holds:

∇∇ · a(r, t) − ∇ · ∇a(r, t) = ∇ × ∇ × a(r, t). (2.20)

Equation (2.19) can be rewritten as

∆v(r, t) + ∇ × ∇ × v(r, t) − ϱ(r)ρ(r)∂
2v(r, t)
∂t2

= −∇h(r, t) − ϱ
∂f(r, t)
∂t

. (2.21)

An additional modification to this equation can be made if the case of homogeneous medium
is considered for Eq. (2.12)

∇ × ∂v(r, t)
∂t

= 1
ρ(r)

∇ × f(r, t) (2.22)

so that Eq. (2.21) becomes

∆v(r, t) −ϱ(r)ρ(r)∂
2v(r, t)
∂t2

= −∇h(r, t) −ϱ(r)∂f(r, t)
∂t

− 1
ρ(r)

∇ ×
∫ t

0
f(r, τ)dτ. (2.23)

Equations (2.18) and (2.23) form the so-called d’Alembert wave equations:

∆p(r, t) − ϱ(r)ρ(r)∂
2p(r, t)
∂t2

= ∇ · f(r, t) + ρ(r)∂h(r, t)
∂t

, (2.24)

∆v(r, t) − ϱ(r)ρ(r)∂
2v(r, t)
∂t2

= −∇h(r, t) − ϱ(r)∂f(r, t)
∂t

− 1
ρ(r)

∇ ×
∫ t

0
f(r, τ)dτ. (2.25)

Applying Fourier transform to Eqs. (2.24)and (2.25), the Helmholtz equations are obtained:

∆p(r, ω) + ω2ϱ(r)ρ(r)p(r, ω) = ∇ · f(r, ω) − jωρ(r)h(r, ω), (2.26)

∆v(r, ω) + ω2ϱ(r)ρ(r)v(r, ω) = −∇h(r, ω) − 1
jωρ(r)

[ω2ϱ(r)ρ(r)f(r, ω)

−∇ × f(r, ω)], (2.27)

or, as alternative to Eq. (2.27), the Fourier transform of (2.19) can be considered:

∇∇ · v(r, ω) + ω2ϱρv(r, ω) = −∇h(r, ω) + jϱωf(r, ω) (2.28)
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2.2 Point-source synthesis in the frequency domain

2.2.1 The Green function for the three-dimensional frequency-dependent
problem

The differential equation

∆G(r, r′, ω) + κ2G(r, r′, ω) = −δ(r − r′) (2.29)

yields as solution the three-dimensional scalar Green function G(r, r′, ω) with wave number
κ = ω/c in a homogeneous infinite space. The δ-function represents the mathematical model
of a point source, and the introduced minus sign is just for convenience. The inhomogeneity
of (2.29) is a unit point source at r′ according to the δ-function property

∫∫∫
V
δ(r − r′)d3r′ =

 1, for r ∈ V

0, for r ̸∈ V
(2.30)

It is due to these distributional inhomogeneities that (2.29) must be mathematically solved
in the sense of distributions [84]. Let

G̃(k, r′, ω) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
G(r, r′, ω)e−jk·rd3r (2.31)

to be the three-dimensional spatial Fourier transform of G(r, r′, ω) with respect to r; due to
the double position vector argument of G(r, r′, ω), we denote the three-dimensional Fourier
transform with respect to r by a tilde. Hence, the transform of (2.29) yields

(jk) · (jk)G̃(k, r′, ω) + κ2G̃(k, r′, ω) = −e−jk·r′ (2.32)

kx

ky

kz

k
r

θ
k

φ
k

Figure 2.1: k-space Cartesian coordinate system (kx, ky, kz) and spherical coordinates k, θk, ϕk.
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due to ∆ = ∇ · ∇. It follows that

G̃(k, r′, ω) = 1
k2 − κ2 e

−jk·r′ (2.33)

and

G(r, r′, ω) = 1
(2π)3

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

1
k2 − κ2 e

jk·(r−r′)d3k. (2.34)

Clearly, G(r, r′, ω) is only a function of r − r′ that is denoted by G(r − r′, ω), where

G(r, ω) = 1
(2π)3

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

1
k2 − κ2 e

jk·rd3k (2.35)

is now to be calculated. To achieve this, the (kx, ky, kz)-coordinate system is adjusted to the
fixed point of observation r (Figure 2.1). With k · r = kr cos θk, we write (2.35) in k-space
spherical coordinates

G(r, ω) = 1
(2π)3

∫ 2π

0

∫ 2π

0

∫ 2π

0

k2

k2 − κ2 e
jkr cos θk sin θkdkdθkdϕk (2.36)

where the ϕk-integration immediately yields 2π. With the substitution cos θk = η, elementary
evaluation of the η-integration, and combination of the two resulting integrals, we obtain

G(r, ω) = 1
jr

1
(2π)2

∫ +∞

−∞

k

k2 − κ2 e
jkrdk. (2.37)

To cope with the singularity of the integrand on the so-called Ewald sphere k = κ, we have
the choice between complex-valued functions analysis ([85, 83]) or distributional calculus
([86]). Using complex function analysis, we would like to apply the residue theorem; this
requires an appropriate closure of the (−∞,+∞)-integration path in a complex k-plane, and
this is performed in a way such that an outbound traveling spherical wave is obtained. The
mathematically possible solution of (2.29) as an inbound traveling spherical wave must be
excluded due to this radiation “condition”. Therefore, we uniquely obtain

G(r, ω) = G(r, ω) = ejkr

4πr
(2.38)

or, after reintroducing the source point r′

G(r, r′, ω) = G(r − r′, ω) = ejk|r−r′|

4π|r − r′|
. (2.39)

Using distributional calculus, the Fourier integrals resulting from a partial fraction decom-
position of the k/(k2 − κ2) integrand are calculated in straightforward fashion. We obtain,
however, physically meaningless standing wave G(r, ω) = cos(κr/4πr). To make it a physi-
cally meaningful outbound traveling wave, (2.33) has to be complemented by an appropriate
solution of the homogeneous equation (2.29), and a fitting solution is j sin(κr/4πr) again
resulting in (2.38).
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2.2.2 The Green function for the two-dimensional frequency-dependent
problem

For the sake of simplicity, very often simulations and model calculations for ultrasonic non-
destructive evaluation are carried out in two spatial dimensions. This requires a completely
different scalar Green function again suggesting to present the respective result at first as a
time- harmonic cylindrical wave. We postulate two-dimensionality with ∂/∂y = 0 and intro-
duce polar coordinates (r, θ) in the xz-plane (counting θ from the z-axis, then (er, eθ, ey) is
a right-handed trihedron). Due to the expected rotational symmetry of the Green function
G(r, ω) = G(r, ω), the two-dimensional pendant to (2.29) reads

1
r

∂

∂r

[
r
∂G(r, ω)

∂r

](
= ∂2G(r, ω)

∂r2 + 1
r

∂G(r, ω)
∂r

)
+ κ2G(r, ω) = −δ(r) (2.40)

The homogeneous differential equation (2.40) defines as solution cylindrical functions J0(κr),
N0(κr), H(1)

0 (κr), H(2)
0 (κr), known as the Bessel, Neumann and Hankel functions of order

zero. A time-harmonic wave propagating in the positive direction has the form

G(r, ω) = U(ω)e
jkr

r
(2.41)

representing an outbound time-harmonic wave with respect to r. Here, G(rω)ejkr would be
appropriate; as the amplitude decreases with increasing r, the function

√
r should be suitable

because the phase surfaces ejkr are circles, whose circumferences increase proportional to r
accounting for the power density associated with

G(r, ω) ∼ ejkr

√
r

(2.42)

as a quadratic quantity to decay in fact equally fast as the "surface" increases yielding a
constant total power independent of r. The power radiated by the unit line source is trans-
ported to infinity as an outbound radiation. Only H

(1)
0 (κr) exhibits exactly this behavior

for large kr [87]:

H
(1)
0 (κr) ≃ e−j π

4

√
2
π

ejkr

√
kr
, for κr ≫ 1. (2.43)

The correct amplitude factor may not be arbitrary because (2.41) should become the solu-
tion of the inhomogeneous equation (2.29). Staring from (2.30), we integrate (2.40) over a
spherical volume Vk with radius R0 and surface Sk containing the origin. We can observe
that the first term in (2.40) has emerged from δ = ∇ · ∇ and applying the Gauss’ theorem
yields:∫∫

Sk

r̂ · ∇G(r, ω)|r=r0

(
= ∂G(r, ω)

∂r
|r=r0

)
dS + k2

∫∫∫
Vk

G(r, ω)dV = −1. (2.44)
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The right-hand side of this equation is r0-independent; hence, this must also hold for the
left-hand side and, therefore, we investigate it for r0 → 0. In the volume integral, we
have dV = r2 sin θdrdθdϕ so that it tends to zero for r0 → 0 if we insert (2.41). Since
dS = r2

0 sin θdθdϕ, we finally obtain [85]:

G(r − r′, ω) = j

4
H

(1)
0 (κ|r − r′|) (2.45)

if we again displace the source point from the origin to r′.
In connection with the point source synthesis of source and scattered fields, it is useful to

know that the integration of the three-dimensional Green function along the independence
axis of the two-dimensional problem leads to the two-dimensional Green function; namely,
the Hankel function H(1)0(κr) has the integral representation [87]

j

4
H

(1)
0 (κr) =

∫ +∞

−∞

ejk
√

r2+y2

4π
√
r2 + y2dy (2.46)

2.3 Point-source synthesis in the time domain

2.3.1 The Green function for the three-dimensional time-dependent prob-
lem

The two- and three-dimensional Green functions (2.45) and (2.39) are functions of the circular
frequency ω via κ = ω/c. Therefore, they may be considered to represent Fourier spectra of
time domain Green functions G(r, r′, t) and G(r − r′, t), respectively:

G(r − r′, t) = 1
4π|r − r′|

δ

(
t− |r − r′|

c

)
(2.47)

The differential equation defining (2.47) is found via Fourier inversion of (2.29):

∆G(r − r′, t) − 1
c2
∂2G(r − r′, t)

∂t2
= −δ

(
r − r′) δ(t) (2.48)

Apparently, the right-hand side of (2.48) is now a pulsed unit point source flashing “briefly”
at the source point r′ at time t = 0. Its field is a pulsed elementary spherical wave according
to (2.47), whose time dependence reproduces the source time function. The propagation of
elementary waves in three-dimensional space (filled with homogeneous nondissipative mate-
rial) is thus dispersion-free. A slight generalization of (2.48) and (2.47) introduces a nonzero
switch-on time at t = t′:

∆G(r − r′, t, t′) − 1
c2
∂2G(r − r′, t, t′)

∂t2
= −δ

(
r − r′) δ(t− t′) (2.49)

then the Fourier transform with respect to t leads to

∆G(r − r′, ω, t′) + κ2G(r − r′, ω, t′) = −δ(r − r′)ejωt′ (2.50)
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which implies

G(r − r′, ω, t′) = G(r − r′, ω)ejωt′
. (2.51)

Therefore, the Fourier inversion of (2.51) yields, together with (2.47),

G(r − r′, t, t′) = 1
4π|r − r′|

δ

(
t− t′ − |r − r′|

c

)
= G(r − r′, t− t′). (2.52)

For Green functions, the δ-pulse time dependence is mandatorily dictated: however this
is not the case if a band-limited function (e.g., a Hann-windowed n-tone burst signal) is
introduced

Tn(t) = h(t)sin(ω0t+ π

2
), with − nπ

ω0
< t <

nπ

ω0
, (2.53)

where h(t) is the Hann window, and a “band-limited Green function” Ḡ(r− r′, ω) is defined
according to

∆Ḡ(r − r′, ω) + κ2Ḡ(r − r′, ω) = −δ(r − r′)Tn(ω) (2.54)

that may immediately be given comparing (2.54) with (2.29) as

Ḡ(r − r′, ω) = Tn(ω) e
jk|r−r′|

4π|r − r′|
. (2.55)

Fourier inversion yields the function we obtain in the time domain as

Ḡ(r − r′, t) = 1
4π|r − r′|

Tn

(
t− |r − r′|

c

)
(2.56)

2.3.2 The Green function for the two-dimensional time-dependent prob-
lem

To find the two-dimensional Green function in the time domain, we have to apply an inverse
Fourier transform. According to the integral representations of the Hankel function [87], we
have

G(r − r′, t) = c

2π
1√

c2t2 − |r − r′|2
u(ct− |r − r′|) (2.57)

where u(ct− |r − r′|) as unit step-function ensures the causality of G(r − r′, t), i.e., G(r −
r′, t) ≡ 0 for t < |r − r′|/c. Two considerations can be drawn analyzing Eq. (2.57). Firstly,
although the line source radiates a δ-impulse, the time variation of the radiated field is not
δ-like. In addition to this, it can be seen that the square root singularity t = |r−r′|/c is the
same for each distance from the line source; the amplitude decay is hidden in the decreasing
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area under the square root function with increasing distance. To make the amplitude decay
visible with increasing distance, similar to (2.54) we compute

Ḡ(r − r′, ω) = Tn(ω) j
4
H

(1)
0

( |r − r′|
c

ω

)
. (2.58)

Consequently, the expression

Ḡ(r − r′, t) = Tn(t) ∗ c

2π
1√

C2t2 − |r − r|2
u(ct− |r − r′|) (2.59)

may be evaluated as a convolution integral. The decreasing area under the square root
function then yields the amplitude decay and the dispersion on the Tn(t)-pulse. We simply
have to insert the asymptotic expression (2.43) of the Hankel function into (2.58) to recognize
a 1/

√
ω-multiplication of the Tn(ω)-spectrum:

Ḡ(r − r′, ω) ≃ 1
4
ej π

4

√
2c
π

Tn(ω)√
ω

ejk|r−r′|√
|r − r′|

(2.60)

where the constraint kr ≪ 1 must hold for all frequencies contained in the Tn(ω) spectrum.
These differences in two- and three-dimensional time domain Green functions definitely

affect the respective sound field calculations, and restrain the quantitative comparison of
two-dimensional simulations with measurements that are always three-dimensional.

2.4 The far-field approximation

A convenient location for only one point source is the origin of the coordinate frame; yet,
in general, we have to deal with extended sources necessitating a superimposition of the
contribution from several (continuously distributed) point sources. In such a case, the coor-
dinate origin might be conveniently located close to the source volume or even right in it.
If, additionally, the observation point distance r is large with regard to the maximum linear
dimension of the source volume (and large with regard to the wavelength), the so-called
far-field approximation may be introduced simplifying the field calculation considerably.

Figure 2.2 supports the following argument: if r ≫ r′ (for all r′ in the interior of a source
volume) holds, then r − r′ is somehow parallel to r allowing for the approximation

|r − r′| ∼ r − r′ · r̂. (2.61)

Yet, in the Green function (2.39), the expression |r − r′| appears twice; due to the major
sensitivity of the phase with respect to approximations, we will use (2.61) in the exponential
function |r − r′|−1 ≃ r−1 for the amplitude. This results in the far-field approximation

Ĝ(r, r′, ω) = ejkr

4πr
e−kr′·r̂ (2.62)
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of the Green function. A precise calculation and estimate reveals [85] that this approximation
is practical for r ≪ r′ and kr ≪ 1.

The far-field approximate Green function (2.62) exhibits a characteristic structure. It is
an elementary spherical wave that emerges from the origin and not from the actual point
source r′, hence it must be direction-dependent phase corrected through multiplication with
the phase directivity characteristic

H(r̂, r′, ω) = e−jkr′·r̂ (2.63)

To present far-field time-version of the Green function, we must consider that (2.62) only
holds for kr ≫ 1; a Fourier inversion is not permitted because δ(t) contains all frequencies
with the same amplitude (the spectrum Fδ(t)−1 = 1 appears as a factor in (2.39)). In this
case we can exploit the band-limited Green function (2.55): for the frequencies contained in
Tn(ω), we globally require r ≫ c/ω resulting in

ˆ̄G(r, r′, t) = 1
4πr

Tn

(
t− r

c
+ r′ · r̂

c

)
(2.64)

due to the convolution of the Fourier inversion of (2.62) with Tn(t).
The far-field approximation is particularly useful to give Green functions ∇′G(r− r′, ω),

∇′∇′G(r − r′, ω) that will be described in Section 2.5 for acoustic source fields, a compara-
tively simple mathematical structure. The gradient ∇′G(r − r′, ω) has always the direction
of |r − r′|, hence it generally has three components in spherical coordinates. We may now
either neglect the term with |r−r′|−2 as compared to |r−r′|−1 to approximate ∇|r−r′| ≃ r̂

or calculate

∇′Ĝ(r, r′, ω) = −jkr̂ e
jkr

4πr
e−jkr·r̂. (2.65)

O
r´r̂

r

r-r´

(r-r´ )r̂r̂

·

·

r´

Figure 2.2: Geometry of the far-field approximation
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Due to ∇G(r − r′, ω) = −∇′G(r − r′, ω), we have

∇Ĝ(r, r′, ω) = jkr̂
ejkr

4πr
e−jkr′·r̂. (2.66)

We conclude that in the far-field ∇′- and ∇-differential operations on the Green function
may be approximated by algebraic (−jkr̂)- and (jkr̂)-multiplications, respectively:

∇′ ⇒ −jkr̂ (2.67)

∇ ⇒ jkr̂ (2.68)

so that ∇′Ĝ(r, r′, ω) has only one er-component in spherical coordinates.
The ∆-operation simultaneously yields a factor ω, giving in the time domain after Tn(ω)-

band limitation

∆′ ˆ̄G(r, r′, t) = 1
c

∂ ˆ̄G(r, r′, t)
∂t

r̂. (2.69)

Using (2.67) and (2.68), we may present the far-field approximation of the so-called
acoustic dyadic Green function:

Gv(r − r′, ω) = − 1
κ2 ∇′∇′G(r − r′, ω)

= − 1
κ2 ∇∇G(r − r′, ω) (2.70)

namely

Ĝv(r, r′, ω) = ejkr

4πr
e−jkr′·r̂r̂ · r̂. (2.71)

After band limitation with Tn(ω)

ˆ̄Gv(r, r′, t) = 1
4πr

Tn

(
t− r

c
+ r′ · r̂

c

)
r̂r̂ (2.72)

which turns out to be another Tn(t)-pulse. The single components of (2.72) exhibit differ-
ently direction-dependent weighted amplitudes.

With (2.43) and the above arguments, we obtain the far-field approximation of the two-
dimensional Green function (2.45)

Ĝ(r, r′, ω) = 1
4
ej π

4

√
2
π

ejkr

√
kr
e−jkr′·r̂, κr ≫ 1, r ≫ r′. (2.73)

As before, the transform into the time domain is only meaningful for a band-limited Green
function. In consonance with (2.58) and (2.59), we multiply with an Tn(ω)-spectrum and
utilize the correspondence [88]

1√
t
u(t) ◦ − •

√
π

1√
|ω|

ej π
4 sign(ω) (2.74)
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as well as the convolution and shifting rules

ˆ̄G(r, r′, t) = c

2
√

2π
1√
r
Tn(t) · 1√

ct− r + r′ · r̂
u(ct− r + r′ · r̂). (2.75)

In contrast to (2.59), the square root function does not experience an area change while
shifted on the t-axis leading to constant dispersion of the Tn(t)-pulse (due to the convolution)
and to the expected 1/

√
r-dependence.

2.5 Point-source synthesis of acoustic source fields in homo-
geneous materials with Green functions

2.5.1 Green function for pressure sources

With (2.29), the solution of Eq. (2.26) can be written as

p(r, ω) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

[
−∇′ · f(r′, ω) + jωρh(r′, ω)

]
G(r − r′, ω)d3r′. (2.76)

Since the application of the (∆ + κ2)-operator onto p(r, ω) with respect to r can be pulled
under the integral, yet it only applies to the variable r in Green’s function, and with (2.29) as
well as accounting for the shifting property of δ-distribution, we actually obtain (2.76). The
physical interpretation of this mathematical representation of the pressure source field turns
out to be a [−∇′ · f(r′, ω) + jωρh(r′, ω)]-weighted synthesis of r′-point sources. From each
source point r′, a [−∇′ · f(r′, ω) + jωρh(r′, ω)]-weighted time harmonic elementary spherical
wave emerges whose amplitudes and phases are superimposed for each observation point r.
The travel time t(r, r′) = |r− r′|/c of the elementary spherical waves from the source point
r′ to the observation point r only depends on the magnitude of the distance.

In general, the source volume VQ is finite - the sources are equal to zero outside VQ -
yielding a finite integration volume V in (2.76) that completely contains VQ in its interior:

p(r, ω) =
∫∫∫

V ⊃VQ

[
−∇′ · f(r′, ω) + jωρh(r′, ω)

]
G(r − r′, ω)d3r′. (2.77)

Using the relationship

∇′ ·
[
f(r′, ω)G(r − r′, ω)

]
=
[
∇′ · f(r′, ω)

]
G(r−r′, ω) +f(r′, ω) · ∇′G(r−r′, ω), (2.78)

we can express [∇′ · f ]G as f · ∇′G. The integral over ∇′ · [fG] can be transformed into
a surface integral over the surface S of V with Gauss’ theorem giving rise to n′ · [fG] =
[n′ · f ]G; according to our assumption, we have f = 0 on S (also holding for the normal
components of f), hence this integral vanishes. The remaining volume integral over V can
be equally extended over VQ:

p(r, ω) =
∫∫∫

VQ

[
jωρh(r′, ω)G(r − r′, ω) + f(r′, ω) · ∇′G(r − r′, ω)

]
d3r′ (2.79)
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In this integral representation of the pressure field, the sources h(r′, ω) and f(r′, ω) appear
explicitly. The inhomogeneities h(r′, ω) of the pressure rate equation (2.13) requires the
scalar Green function Gph(r− r′, ω) = jωρG(r− r′, ω), whereas the inhomogeneity f(r′, ω)
of the equation (2.12) requires the vector-valued Green function Gpf (r − r′, ω) = ∇′G(r −
r′, ω) = −∇G(r − r′, ω) [83]. The point source synthesis defined as such superimposes
spherical waves ∇′G(r− r′, ω) with direction-dependent amplitude and phase, the so-called
dipole waves [85]. It is worth underling the fact that the integral representation in Eq. (2.79)
holds for all observation points, either in the exterior or in the interior of VQ: for r ∈ VQ, a
convergent improper integral emerges [89].

2.5.2 Green function for velocity sources

Evidently, a solution with structure (2.76) of the vector Helmholtz equation (2.27) utilizing
the scalar Green function G(r, r′, ω) can be written down for each scalar component. Yet, to
arrive at a representation equivalent to (2.80), the dyadic Green function (already introduced
in Eq.(2.70)) is used

∇∇ ·Gv(r, r′, ω) + κ2Gv(r, r, ω) = −Iδ(r − r′). (2.80)

In the resulting source representation

v(r, ω) =
∫∫∫

V ⊃VQ

Gv(r − r′, ω) ·
[
∇′h(r′, ω) − jωϱf(r′, ω)

]
d3r′

=
∫∫∫

V ⊃VQ

[
∇′h(r′, ω) − jωϱf(r′, ω)

]
·Gv(r − r′, ω)d3r′

(2.81)

of the particle velocity, we can basically choose source points exterior and interior of the finite
source volume. To transform (2.81) into a structure comparable to (2.79), we advantageously
utilize the three-dimensional Fourier transform:

ṽ(k, ω) = jkh̃(k, ω) · G̃v(k, ω) − jωϱf(k, ω) · G̃v(k, ω)

= h̃(k, ω) jk

k2 − κ2

(2.82)

It follows:

v(r, ω) =
∫∫∫

VQ

[
−jωϱf(r′, ω) ·Gv(r − r′, ω) − h(r′, ω)∇′G(r − r′, ω)

]
d3r′ (2.83)

This integral representation of the particle velocity field again explicitly exhibits the sources
f(r′, ω) and h(r′, ω). Equivalently to what has been done for the case of pressure sources, it
can be stated that the inhomogeneity f(r′, ω) of the equation of motion (2.12) requires the
dyadic Green function Gvf (r − r′, ω) = −jωϱGv(r − r′, ω) and the inhomogeneity h(r′, ω)
of the pressure equation (2.13) requires the vector-valued Green function Gvh(r − r′, ω) =
−∇′G(r − r′, ω) = −Gpf (r − r′, ω).



Chapter 3

Elastodynamic Source Fields

3.1 Homogeneous isotropic infinite space Green tensor of elas-
todynamics

3.1.1 Governing equations of elastodynamics

In acoustics, the differential equations (2.18) and (2.19) for the field quantities p(r, t) and
v(r, t) result from the acoustic governing equations for a homogeneous infinite (non-dissipative)
space, where only the spherical part of the stress and deformation tensors was taken into
account. The governing equations of elastodynamics can be obtained from Equations (2.1)
and (2.2) making use of linearly elastic constitutive laws; due to the fact that only homo-
geneous isotropic materials allow for explicit mathematical expressions for Green functions
(tensors), we assume

c = λItr + 2µIs, (3.1)

where Itr and Is are four rank tensors such that

Itr : A = A : Itr = Itrace [A] , (3.2)

Is : A = A : Is = 1
2

(A+Aᵀ) = Asym. (3.3)

The basis to calculate elastodynamic source fields are the governing Equations (2.1) and
(2.2) in the field quantities T (r, t) and v(r, t):

Is : ∇ [∇ · T (r, t)] − ρs : ∂
2T (r, t)
∂t2

= −Is : ∇f(r, t) − ρ
∂h(r, t)
∂t

(3.4)

µ∆v(r, t) + (λ+ µ)∇∇ · v(r, t) − ρ
∂2v(r, t)
∂t2

= −∂f(r, t)
∂t

− ∇ · c : h(r, t) (3.5)

where s = c−1. Equation (3.5) is essentially different from the associated acoustic Equation
(2.19) by the additional ∆v(r, t)-term. It is expected that this term is due to shear waves

25
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and that the respective Green function for equation (3.5) will account for pressure and shear
elementary waves.

3.1.2 Second-rank Green tensor

After the Fourier transform of (3.5) with respect to t according to

(µ∆ + ρω2)v(r, ω) + (λ, µ)∇∇ · v(r, ω) = Q(r, ω) (3.6)

where

Q(r, ω) = −jωf(r, ω) + ∇ · c : h(r, ω) (3.7)

we define a time harmonic (second rank) Green tensor G(r, r′, ω) through[(
µ∆ + ρω2

)
I + (λ+ µ) ∇∇

]
·G(r, r′, ω) = −δ(r − r′)I. (3.8)

To calculate G(r, r′, ω), the dyadic differential operator (µ∆ + ρω2)I + (λ + µ) must be
inverted as a dyadic operator, and as a differential operator. We formally apply a three-
dimensional Fourier transform with respect to r (compare (2.31)):

G̃(k, r′, ω) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
G(r, r′, ω)e−jk·rd3r′ (3.9)

This way the differential equation (3.8) turns into the following algebraic equations

W̃ (k) · G̃(k, r′, ω) = 1
λ+ µ

e−jr′·kI (3.10)

where

W̃ (k) =
(
µk2 − ρω2

λ+ µ
I + kk

)
(3.11)

is the so-called wave tensor [84]. To solve (3.10) the inversion of the wave tensor W̃ (k) is
required. using algebraic methods yields

W̃
−1(k) = adjW̃ (k)

detW̃ (k)
(3.12)

where

detW̃ (k) ̸= 0 (3.13)

must be ensured. It can be demonstrated [84] that if k → ωk̂/c, i.e. for the case of
homogeneous plane waves, detW̃ (k) ̸= 0 for k ̸= ω/cp = κp and k ̸= ω/cs = κs, where

cp =
√
λ+ 2µ
ρ

(3.14)

cs =
√
λ

ρ
(3.15)
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are the primary and secondary waves phase velocities, respectively. Consequently, we obtain
for the inverse

W̃
−1(k) = λ+ µ

µk2 − ρω2

[
I − λ+ µ

(λ+ 2µ)k2 − ρω2kk

]
= λ+ µ

µ

[
1

k2 − κ2
s

I − λ+ µ

λ+ 2µ
1

(k2 − κ2
s)(k − κ2

p)
kk

]
.

(3.16)

As expected W̃−1(k), and hence G̃(k, r′, ω), is singular on the two so-called Ewald spheres
k = κp and k = κs in k-space. Using Equations (3.10), (3.12) and considering the inverse
Fourier transform on G̃(k, r′, ω), yields:

G(r − r′, ω) = 1
µ

[(
I + 1

κ2
s

∇′∇′
)
ejκs|r−r′|

4π|r − r′|
− 1
κ2

s

∇′∇′ e
jκp|r−r′|

4π|r − r′|

]

= 1
µ

[(
I + 1

κ2
s

∇∇
)
ejκs|r−r′|

4π|r − r′|
− 1
κ2

s

∇∇ ejκp|r−r′|

4π|r − r′|

]

= 1
µ

[(
I + 1

κ2
s

∇∇
)
GS(r − r′, ω) − 1

κ2
s

∇∇GP (r − r′, ω)
]

= 1
µ

{IGS(r − r′, ω) + 1
κ2

s

∇∇
[
GS(r − r′, ω) −GP (r − r′, ω)

]
}

(3.17)

where

GP,S(r − r′, ω) = ejkp,s|r−r′|

4π|r − r′|
. (3.18)

From a physical point of view, the two terms

GP (r, ω) = − 1
κ2

p

∇∇ejκsr

4πr
, (3.19)

GS(r, ω) =
(
I + 1

k2
s

∇∇
)
ejκsr

4πr
, (3.20)

composing G(r, ω) according to

G(r, ω) = 1
λ+ 2µ

GP (r, ω) + 1
µ
GS(r, ω) (3.21)

exactly satisfy our expectation: GP (r, ω) represents primary and GS(r, ω) secondary waves.
We immediately show that for r ̸= 0, we have

∇ ×GP (r, ω) = 0 (3.22)

∇ ·GS(r, ω) = 0 (3.23)

i.e., GP (r, ω) equally stands for pressure and GS(r, ω) for shear waves.
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For r ̸= 0, the evaluation of the ∇∇-differentiation in the separately appearing terms
(3.19) and (3.20) does not cause any problems:

GP (r, ω) =
[
r̂r̂ − j

κpr
(I − 3r̂r̂) + 1

κ2
pr

2 (I − 3r̂r̂)
]
eejκpr

4πr
, (3.24)

GP (r, ω) =
[
I − r̂r̂ + j

κsr
(I − 3r̂r̂) + 1

κ2
sr

2 (I − 3r̂r̂)
]
eejκsr

4πr
. (3.25)

The following considerations are pointed out:

• Even if the source point is located in the coordinate origin, the elementary elasto-
dynamic pressure and shear waves possess direction-dependent amplitudes that are
functions of r and r̂.

• The amplitudes of elementary elastodynamic pressure and shear waves each contain
terms with characteristic r-dependencies: 1/r, 1/r2, and 1/r3. Clearly, we have

Gfar
P (r, ω) = ejκpr

4πr
r̂r̂ (3.26)

Gfar
S (r, ω) = ejκsr

4πr
(I − r̂r̂) (3.27)

Accordingly, the 1/r3-terms represent the near-field and the 1/r2-terms a transition
field.

• Near-field, transition field, and far-field are different in terms of frequency dependence;
only in the far-field, the δ(t)-impulse of the source in the time domain version of (3.8)
appears as δ(t) −GP,S-elementary wavefront.

• With respect to a sphere (in the far-field),

Gfar
P (r, ω) = ejκpr

4πr
erer (3.28)

has only a radial (tensor) component and

Gfar
S (r, ω) = ejκsr

4πr
(eθeθ + eϕeϕ) (3.29)

only tangential (tensor) components, because we have I = erer + eθeθ + eϕeϕ in
spherical coordinates.
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The tensor components of GP (r, ω) and GS(r, ω) in spherical coordinates read:

GP (r, ω) : erer =
(

1 + j
2
κpr

− 2
κ2

pr
2

)
ejκpr

4πr
(3.30)

GP (r, ω) : eθeθ =
(

−j 1
κpr

+ 1
κ2

pr
2

)
ejκpr

4πr
(3.31)

GP (r, ω) : eϕeϕ =
(

−j 1
κpr

+ 1
κ2

pr
2

)
ejκpr

4πr
(3.32)

GS(r, ω) : erer =
(

−j 2
κsr

+ 2
κ2

sr
2

)
ejκsr

4πr
(3.33)

GS(r, ω) : eθeθ =
(

1 + j
1
κsr

− 1
κ2

sr
2

)
ejκsr

4πr
(3.34)

GS(r, ω) : eϕeϕ =
(

1 + j
1
κsr

− 1
κ2

sr
2

)
ejκsr

4πr
(3.35)

In spherical coordinates G(r, ω) is diagonal, and apparently the far-field approximation
(3.28) and (3.29) is found to be related to the 1-terms in the brackets of (3.30), (3.34) and
(3.35).

3.1.3 Third-rank Green tensor

Due to the definition of G(r− r′, ω) as solution of the point-source elastodynamic problem,
it can be proved that

v(r, ω) =
∫∫∫

VQ

G(r − r′, ω) ·Q(r′, ω)d3r′ (3.36)

is a solution of the differential equation (3.6) if G(r − r′, ω) satisfies (3.8).Utilizing (3.7)
gives

v(r, ω) =
∫∫∫

VQ

G(r − r′, ω) ·
[
−jωf(r′, ω) + ∇′ · c : h(r′, ω)

]
d3r′ (3.37)

Similar to the transition from (2.77) to (2.79), we want to shift the operation ∇′ · c : on
h(r′, ω) to G(r − r′, ω). For this purpose, we can use the equality [85]:

∇ · (B ·A) = (∇ ·B) ·A+Bᵀ : ∇B

= Aᵀ · (∇ ·B) +Bᵀ : ∇A (3.38)

If we identify Aᵀ with G and D with c : h we have a suitable formula at hand:

∇′ ·
[
c : h(r′, ω) ·Gᵀ(r − r′, ω)

]
= G(r − r′, ω) · ∇′ ·

[
c : h(r′, ω)

]
+
[
c : h(r′, ω)

]ᵀ : ∇′Gᵀ(r − r′, ω)
(3.39)
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Due to symmetries of c and h, we can write (c : h)ᵀ = h : c. Moreover, because of the
symmetry of G(r − r′, ω), we can write the expression

−c : ∇′Gᵀ(r − r′, ω) = Σ(r − r′, ω) (3.40)

which defines a third-rank tensor that plays the role of a (“right-sided”) third rank Green
tensor for the injected deformation rate

v(r, ω) =
∫∫∫

VQ

[
−jωf(r′, ω) ·G(r − r′, ω) + h(r′, ω) : Σ(r − r′, ω)

]
d3r′ (3.41)

Due to the separation (3.21), Σ is also composed of a primary pressure and a secondary
shear elementary wave term:

Σ(r, ω) = 1
λ+ 2µ

ΣP (r, ω) + 1
µ

ΣS(r, ω) (3.42)

where for r ̸= 0

ΣP (r, ω) = λI∇ ·GP (r, ω) + µ{∇GP (r, ω) + [∇GP (r, ω)]ᵀ}, (3.43)

ΣS(r, ω) = µ{∇GS(r, ω) + [∇GS(r, ω)]ᵀ}. (3.44)

The far-field approximations ΣP (r, ω)far and ΣS(r, ω)far can be easily obtained substituting
the expressions of GP,S(r, ω)far in the above equations.

3.1.4 Fourth-rank Green tensor: stress tensor of a point source deforma-
tion rate

The source field representation of v requires G and Σ, calculating the stress tensor from
v via “Hooke’s differentiation” c : ∇ a fourth-rank Green tensor Π comes out from Σ
that afterwards relates the given deformation rates and the resulting stresses through a
double contraction with h. From a physical point of view, Π represents the (Huygens) stress
elementary waves emanating from h.

With the stress tensor T (r, ω) = c : ∇u(r, ω) and considering that jωu(r, ω) = v(r, ω),
we immediately compute:

T (r, ω) =
∫∫∫

VQ

[
c : ∇G(r − r′, ω) · f(r′, ω) − 1

jω
× c : ∇Σ(r − r′, ω) : h(r′, ω)

]
d3r′

(3.45)

with

c : ∇G(r − r′, ω) · f(r′, ω) = Σ(r − r′, ω) · f(r′, ω) (3.46)

and

c : ∇Σ(r − r′, ω) : h(r′, ω) .= Π(r − r′, ω) : h(r′, ω) (3.47)
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so that

T (r, ω) =
∫∫∫

VQ

[
Σ(r − r′, ω) · f(r′, ω) − 1

jω
Π(r − r′, ω) : h(r′, ω)

]
d3r′. (3.48)

With the Green tensors Σ and Π, we are now able to express the stress elementary waves
emanating from point-like f̂ - and ĥ-sources:

T P Sf,h(r, ω) = f̂ · Σ(r, ω) + ĥ : Π(r, ω). (3.49)

Assuming a homogeneous isotropic material, and due to (3.42), this also leads to the sepa-
ration

Π(r, ω) = 1
λ+ 2µ

ΠP + 1
µ

ΠS(r, ω). (3.50)

The substitution of the expressions of ΣP,S(r, ω)far in Eq. (3.47) leads to the definitions of
ΠP,S(r, ω)far.

3.2 Two- and Three-Dimensional Elastodynamic Source Fields

3.2.1 Elastodynamic point source synthesis

With the integral representation (3.41) and (3.45), we formulate the point source synthesis
for elastodynamic source fields in homogeneous isotropic materials as:

v(r, ω) =
∫∫∫

VQ

[
−jωf(r′, ω) ·G(r − r′, ω) + h(r′, ω) : Σ(r − r′, ω)

]
d3r′, (3.51)

T (r, ω) =
∫∫∫

VQ

[
f(r′, ω) · Σ312(r′, ω) − 1

jω
h(r′, ω) : Π(r − r′, ω)

]
d3r′. (3.52)

The amplitude and phase distributions of force density sources f(r′, ω) and deformation rate
sources h(r′, ω) in the interior of a source volume VQ tune the elastodynamic elementary
waves emanating from each source point r′ as given mathematically by the Green tensors
G(r − r′, ω), Σ(r − r′, ω) and Π(r − r′, ω).

Let a be the maximum linear dimension of VQ; then we obtain the far-field approxima-
tions of the source fields for r ≫ a and κp,sr ≫ 1 with Equation (3.21) and the far-field
approximations (3.26) and (3.27), with Equation (3.42) and Equation (3.50) and the asso-
ciated far-field approximations; these may be separated into primary and secondary terms.
At first, we discuss the primary terms

vfar
P = −jω 1

λ+ 2µ

∫∫∫
VQ

f(r′, ω) ·Gfar
P (r, r′, ω)d3r′

= 1
λ+ 2µ

∫∫∫
VQ

h(r′, ω) : Σfar
P (r, r′, ω)d3r′ (3.53)
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T far
P (r, ω) = 1

λ+ 2µ

∫∫∫
VQ

f(r′, ω) · Σfar
P (r, r′, ω)d3r′

= −jω 1
λ+ 2µ

∫∫∫
VQ

h(r′, ω) : Πfar
P (r, r′, ω)d3r′ (3.54)

and write (3.53) in the particle displacement as

ufar
P (r, ω) = ejκpr

r

[
Hf

P (r̂, ω) +Hh
P (r̂, ω)

]
= ejκpr

r

[
Hf

P (r̂, ω) +Hh
P (r̂, ω)

]
r̂ (3.55)

with the short-hand notations

Hf
P = 1

4πcPZP

∫∫∫
VQ

f(r′, ω) · r̂e−jκpr̂·r′
d3r′, r̂ = Hf

P (r̂, ω)r̂, (3.56)

Hh
P = − 1

4πc2
PZP

∫∫∫
VQ

h(r′, ω) : (λI + 2µr̂r̂) e−jκpr̂·r′
d3r′, r̂ = Hh

P (r̂, ω)r̂. (3.57)

The functions Hf
P (r̂, ω) and Hh

P (r̂, ω) are scalar radiation characteristics of the source dis-
tributions that completely describe the particle velocity field of the primary wave [90](not
only in the far-field). With

Hf,h
P (r̂, ω) · (I − r̂r̂) = 0 (3.58)

the primary wave identifies itself as a longitudinal pressure wave. It is worth emphasizing
that the primary displacement source field is longitudinally polarized only in the far field.

For the stress tensor (3.54), we obtain the explicit representation

T far(r, ω) = jκp

[
Hf

P (r̂, ω) +Hf
P (r̂, ω)

] ejκpr

r
(λI + 2µr̂r̂) . (3.59)

The comparison of (3.55) and (3.59) with the case of plane waves [84] reveals a local plane
wave behavior of the primary far-field approximation of elastodynamic source fields.

We now turn to the S-term of the source field; the counterparts to (3.53) and (3.54) read

vfar
S (r, ω) = − jω

1
µ

∫∫∫
VQ

f(r′, ω) ·Gfar
S (r, r′, ω)d3r′

1
µ

∫∫∫
VQ

h(r′, ω) : Σfar
S (r, r′, ω)d3r′,

(3.60)

T far
S (r, ω) = 1

µ

∫∫∫
VQ

f(r′, ω) · Σfar
S (r, r′, ω)d3r′

− 1
jω

1
µ

∫∫∫
VQ

h(r′, ω) : Πfar
S (r, r′, ω)d3r′.

(3.61)
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With (3.27) and (3.60), we obtain for the particle velocity an expression similar to (3.55):

ufar
S (r, ω) = ejκsr

r

[
Hf

S(r̂, ω) +Hh
S(r̂, ω)

]
= ejκsr

r

[
Hf

Sθ(r̂, ω) +Hh
Sθ(r̂, ω)

]
eθ + ejκsr

r

[
Hf

Sϕ(r̂, ω) +Hh
Sϕ(r̂, ω)

]
eϕ

= ufar
Sθ (r, ω)eθ + ufar

Sϕ (r, ω)eϕ (3.62)

with the short-hand notations

Hf
S(r̂, ω) = 1

4πcSZS

∫∫∫
VQ

f(r′, ω)e−κsr̂·r′
d3r′ · (I − r̂r̂)

= 1
4πcSZS

∫∫∫
VQ

f(r′, ω)e−κsr̂·r′
d3r′ · (eθeθ + eϕeϕ)

= 1
4πcSZS

∫∫∫
VQ

f(r′, ω)eθe
−κsr̂·r′

d3r′eθ

+ 1
4πcSZS

∫∫∫
VQ

f(r′, ω)eϕe
−κsr̂·r′

d3r′eϕ

= Hf
Sθ(r̂, ω)eθ +Hf

Sϕ(r̂, ω)eϕ, (3.63)

Hh
S(r̂, ω) = 1

2πcS

∫∫∫
VQ

h(r′, ω) · r̂e−κsr̂·r′
d3r′ · (I − r̂r̂)

= − 1
2πcS

∫∫∫
VQ

h(r′, ω) : r̂eθe
−κsr̂·r′

d3r′eθ

− − 1
2πcS

∫∫∫
VQ

h(r′, ω) : r̂eϕe
−κsr̂·r′

d3r′eϕ

= Hh
Sθ(r̂, ω)eθ +Hh

Sϕ(r̂, ω)eϕ. (3.64)

Based on these results, we immediately realize that

Hf,h
S · r̂ = 0 (3.65)

holds: in the far-field. shear waves from arbitrary f− and/or h−sources are transversely
polarized, with regard to r̂. This confirms that they behave locally like plane waves. This is
also true for the corresponding stress tensor:

T far(r, ω) = jκsµ
ejκsr

r
{r̂
[
Hf

S(r̂, ω) +Hh
S(r̂, ω)

]
+
[
Hf

S(r̂, ω) +Hh
S(r̂, ω)

]
r̂} (3.66)

In order to improve the understanding of the mathematical and physical properties of elas-
todynamic fields characterized by the presence of point sources, the cases of a point-wise
force density source and point-wise deformation rate source acting separately are presented
in the next Sections.
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3.2.2 Particle displacement of a point source force density, point radiation
characteristic

The equation

uP Sf (r, ω) =
∫∫∫

VQ

G(r − r′, ω) · f(r′, ω)d3r′ (3.67)

with f(r, ω) = δ(r)f̂ represents the displacement field due to a point source force density
which by exploiting the properties of the δ(r)-function, can be rewritten as

uP Sf (r, ω) = G(r, ω) · f̂ (3.68)

= f̂ ·G(r, ω). (3.69)

This helps to understand the tensor character of the elementary waves: the vector force
density f̂ is rotated into the vector particle displacement, so that they do not have the same
direction. The vector (3.68) may be separated into its spherical coordinate components:

u
P Sf

r,θ,ϕ(r, ω) = uP Sf (r, ω) · er,θ,ϕ

= G(r, ω) : f̂er,θ,ϕ (3.70)

with (3.30) through (3.35), we find

u
P Sf
r (r, ω) =

[
1

λ+ 2µ

(
1 + j

2
κpr

− 2
κ2

pr
2

)
ejκpr

4πr
+ 1
µ

(
−j 2

κsr
+ 2
κ2

sr
2

)
ejκsr

4πr

]
f̂ ·er, (3.71)

u
P Sf

θ (r, ω) =
[

1
λ+ 2µ

(
−j 1

κpr
+ 1
κ2

pr
2

)
ejκpr

4πr
+ 1
µ

(
1 + j

1
κsr

− 1
κ2

sr
2

)
ejκsr

4πr

]
f̂ ·eθ, (3.72)

u
P Sf

θ (r, ω) =
[

1
λ+ 2µ

(
−j 1

κpr
+ 1
κ2

pr
2

)
ejκpr

4πr
+ 1
µ

(
1 + j

1
κsr

− 1
κ2

sr
2

)
ejκsr

4πr

]
f̂ ·eϕ. (3.73)

We now confirm what was already stated in the previous Section: each elastodynamic (in
this case a force density) point source radiates pressure and shear waves. Moreover, the
primary pressure wave is generally not longitudinal, and the secondary shear wave is not
transverse since both waves appear in each component. The terminology “longitudinal and
shear waves” is in fact strictly valid only for plane waves; pressure as shear elementary waves
have both longitudinal er-as well as transverse eθ, eϕ-particle displacement components.
Only in the far-field approximation

u
P Sf
r (r, ω) = 1

λ+ 2µ
ejκpr

4πr
f̂ · er, (3.74)

u
P Sf

θ (r, ω) = 1
µ

ejκsr

4πr
f̂ · eθ, (3.75)

u
P Sf

ϕ (r, ω) = 1
µ

ejκsr

4πr
f̂ · eϕ, (3.76)
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the familiar terminology holds: primary far-field pressure waves are longitudinally polarized,
secondary far-field shear waves are transversely polarized. In the far-field, primary waves
only appear in the r-component and shear waves only in the θ, ϕ-components of the particle
velocity. Specially choosing f̂ = f̂(r̂) = er (so-called breathing sphere), tangential compo-
nents basically do not appear in the particle displacement radiation field, and the far-field
of this special source only consist of a pressure wave. With (3.68) and (3.21) as well as
with (3.26) and (3.27), we may write the far-field approximation (3.74) through (3.76) in a
coordinate-free way:

u
P Sf ,far
P (r, ω) = uP (f̂ , r̂)e

jκpr

r
ûP (f̂ , r̂) (3.77)

with

ûP (f̂ , r̂) = r̂ (3.78)

uP (f̂ , r̂) = 1
4π(λ+ 2µ)

r̂ · f̂ (3.79)

as well as

u
P Sf ,far
S (r, ω) = uS(f̂ , r̂)e

jκsr

r
ûS(f̂ , r̂) (3.80)

with

ûS(f̂ , r̂) = (I − r̂r̂) · f̂
|(I − r̂r̂) · f̂ |

(3.81)

uS(f̂ , r̂) = 1
4πµ

|(I − r̂r̂)| (3.82)

where the amplitude (unit) vectors ûP (f̂ , r̂) and ûS(f̂ , r̂) according to

(I − r̂r̂) · ûP (f̂ , r̂) = 0 (3.83)

r̂ · ûS(f̂ , r̂) = 0 (3.84)

are longitudinally, respectively transversely, oriented with regard to the propagation direction
r̂. The comparison of this notation with the case of plane waves [84] reveals that the particle
displacement far-field of a point source behaves locally as a plane wave. One essential differ-
ence: a potential F (ω)-band limitation of the point source according to f(r, ω) = F (ω)δ(r)f̂
appears as a factor in both amplitudes uP,S(f̂ , r̂) ⇒ uP,S(f̂ , r̂, ω) = F (ω)uP,S(f̂ , r̂). For
plane waves in infinite space, instead, we could independently prescribe the time (frequency)
dependence of the pressure and shear waves; for elementary waves from point sources, the
time (frequency) dependence of the shear wave is coupled to the time dependence of the
pressure wave via the time (frequency) dependence of the source.
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3.2.3 Particle displacement of a point source deformation rate, point ra-
diation characteristic

According to (3.41), the second-rank tensor for the particle velocity is related to a force
density source and the third-rank Green tensor for the particle velocity to a deformation
rate source. Accordingly, we investigate the case f = 0 and h ̸= 0 in some more detail:

v(r, ω) =
∫∫∫

VQ

h(r′, ω) : Σ(r − r′, ω)d3r′. (3.85)

With

ĥ = h√
h : hH

(3.86)

(where hH denotes the Hermitian of h) and

h(r, ω) = δ(r)ĥ (3.87)

we postulate a point-like deformation rate unit source in the origin and find

vP Sh(r, ω) = ĥ : Σ(r, ω) (3.88)

as the counterpart to (3.68). In the far-field, similarly to (3.77) and (3.80), we have:

vP Sh,far(r, ω) = ĥ :
[ 1
λ

2µΣfar
P (r, ω) + 1

µ
Σfar

S (r, ω)
]

= vP Sh,far
P (r, ω) + vP Sh,far

S (r, ω) (3.89)

where

vP Sh,far
P (r, ω) = j

κp

λ+ 2µ
ejκpr

4πr
ĥ : (λI + 2µr̂r̂)r̂

= vP (ĥ, r̂)e
jκpr

4πr
(3.90)

with

v(ĥ, r̂) = vp(ĥ, r̂)(̂r)

= j
κp

4π(λ+ 2µ)
ĥ : (λI + 2µr̂r̂)r̂ (3.91)

as well as

vP Sh,far
S (r, ω) = 2jκs

ejκsr

4πr
ĥ : (I − r̂r̂)

= vS(ĥ, r̂)e
jκsr

4πr
(3.92)

with

vS(ĥ, r̂) = vS(ĥ, r̂)v̂S(ĥ, r̂)

= j
κs

2π
ĥ : r̂(I − r̂r̂) (3.93)
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With

uP Sh,far
P (r, ω) = − 1

4πcP (λ+ 2µ)
ejκpr

4πr
ĥ : (λI + 2µr̂r̂)

= uP (ĥ, r̂)e
jκpr

4πr
ûP (ĥ, r̂) (3.94)

uP Sh,far
S (r, ω) = − 1

2πcS

ejκsr

r
ĥ : r̂(I − r̂r̂)

= uS(ĥ, r̂)e
jκsr

r
uS(ĥ, r̂) (3.95)

where

ûP (ĥ, r̂) = r̂ (3.96)

uP (ĥ, r̂) = − ĥ : r̂(λI + 2µr̂r̂)
4πcP (λ+ 2µ)

(3.97)

ûS(ĥ, r̂) = ĥ : r̂(I − r̂r̂)
|ĥ : r̂(I − r̂r̂)|

(3.98)

uS(ĥ, r̂) = −|ĥ : r̂(I − r̂r̂)|
2πcS

(3.99)

we switch to the particle displacement. The polarization equations (3.83) and (3.84) also
hold for the ĥ-source; even the particle displacement far-field of a point-like deformation rate
source behaves locally as a plane wave. It was stated that the special choice f̂(r̂) = r̂ of the
force density cuts off the pertinent shear wave in the far-field (equations (3.74) to (3.76));
with the special choice ĥ = I/

√
3 of a deformation rate unit source, we may completely cut

off the pertinent shear wave, i.e., in the near- and far-fields because we have I : ΣS = 0 with
(3.44). Deceptions of that kind become useful the physical interpretation of side echoes.



Chapter 4

Radiatiation Fields in
Homogeneous Isotropic Half Spaces

In the previous chapter the radiation characteristics of point-wise force density and dilatation
rate sources located in full-space have been derived. In so doing, the second-rank Green ten-
sor G(r, r′, ω) has been defined, allowing for the definition of the generation and propagation
of primary and secondary elementary spherical waves in homogeneous isotropic spaces. Due
to the linearity of the analyzed elastodynamic problem, the superimposition principle has
been used to represent the solution of elastodynamic fields, characterized by the presence of
finite-sized sources, thought as distributed point-sources, in terms of the velocity vector and
of the Cauchy stress tensor:

v(r, ω) =
∫∫∫

VQ

[
−jωf(r′, ω) ·G(r − r′, ω) + h(r′, ω) : Σ(r − r′, ω)

]
d3r′ (4.1)

T (r, ω) =
∫∫∫

VQ

[
f(r′, ω) · Σ(r′, ω) − 1

jω
h(r′, ω) : Π(r − r′, ω)

]
d3r′ (4.2)

where Σ(r, r′, ω) and Π(r, r′, ω) are the third-rank and fourth-rank Green tensor, respec-
tively. These theoretical results constitute the basis from which to develop the study of the
actual radiation fields generated in solid media by some physical source located in an infinite
full space. In general, however, ultrasonic nondestructive evaluation techniques have to cope
with finite-sized parts that contain sources either in the interior or on the surface within an
aperture SA (Fig4.1). Usually, the rest of the surface SM surrounding the given system of
volume VM is a measurement surface for ultrasonic signal, assuming vacuum in the exterior.
The simplest as well as the most common scenario, in this case, is represented by a point-wise
or finite-sized source placed at the boundary of an isotropic and homogeneous half space,
generating an acoustic or an elastodynamic field.

A crucial remark has to be done at this point. On one hand, in fact, the solution of

38
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acoustic and elastodynamic fields generated by force density or dilatation rate point sources
located in full space do not present relevant differences from a theoretical point of view, the
treatment of elastodynamic field being characterized just by a higher rank of the mathemat-
ical objects which have to be handled to describe the analyzed field (i.e. the Green scalar
function vs. the Green tensors mentioned above). When the case of half-spaces is taken into
account, instead, substantial differences arise, as it will be shown in the next sections.

4.1 The acoustic case

4.1.1 Rayleigh-Sommerfeld integral representation

The acoustic problem can be solved as an inhomogeneous boundary-value problem with
the definition of half space scalar Green functions GN,D(r, r, ω) satisfying the Helmholtz
equation

∆′GD,N (r, r′, ω) + k2GD,N (r, r′, ω) = −δ(r − r′), r, r′ ∈ VM (4.3)

and the Dirichlet boundary conditions

GD(r, r′, ω) = 0, r′ ∈ SM (4.4)

or the Neumann boundary conditions,

∇′GN (r, r′, ω) · n′
M = 0, r′ ∈ SM (4.5)

respectively. The half-space scalar Green functions GN,D(r, r, ω) can be analytically derived
for a planar boundary surface imaging the unit point source located at r at the boundary
(method of images). The solution can thus be found as

PN,D(r, ω) =
∫∫∫

VQ

jωh(r′, ω)GD,N (r, r′, ω)d3r′ (4.6)

Figure 4.1: The propagation domain in presence of volume and surface sources.
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where PN,D(r, ω) is, obviously, the sum of the incident and the scattered pressure field. If
the dilatation rate source is represented by a surface source

h(r′, ω) = g(x′, y′, ω)δ(z′) (4.7)

we have

pD(r, ω) = 0, r ∈ VM (4.8)

pN (r, ω) = 2
∫∫

SM

jωg(x′, y′, ω)G(x− x′, y − y′, z, ω)dx′dy′, r ∈ VM (4.9)

in which we assumed that

r = xex + yey + zez (4.10)

r′ = x′ex + y′ey + z′ez (4.11)

and where G(x−x′, y−y′, z−z′, ω) is the already described full-space scalar Green function.
In an analogous way we can find the solution to the case of a surface (normal) force density
source as

pN (r, ω) = 0, r ∈ VM ; (4.12)

pD(r, ω) = 2
∫∫

SM

fz(x′, y′, ω)n′
M · ∇G(x− x′, y − y′, z − z′, ω)|z′=0dx

′dy′,

r ∈ VM . (4.13)

The integral solution in equations (4.8), (4.9) and (4.12), (4.13) is called integral represen-
tation of the Rayleigh-Sommerfeld type.

The complementary elastodynamic problem cannot be solved resorting to this kind of
approach: the half-space Green tensors satisfying the Dirichlet or the Neumann boundary
conditions, in fact, are not known explicitly. A line or point force density in front of a stress-
free surface (for instance) creates pressure and shear waves with different speeds whose
respective mode conversion at the surface cannot be represented making use of images of the
source as in the acoustic case.

For these reasons, an alternative approach has to be adopted to determine elastodynamic
field in isotropic and homogeneous half-spaces. This method relies on a spectral plane (or
cylindrical) wave spatial decomposition of the elastodynamic field. Being valid also for the
acoustic counterpart, it will be firstly introduced for the simpler case of the scalar Green
function in full space and then applied to the elastodynamic problem in the half space.
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4.1.2 Weyl integral representation

We write the differential equation in (4.3) for the three-dimensional scalar Green function
G(r − r′, ω) in Cartesian coordinates:

∂2

∂x2G(x− x′, y − y′, z − z′, ω) + ∂2

∂y2G(x− x′, y − y′, z − z′, ω)+

+ ∂2

∂z2G(x− x′, y − y′, z − z′, ω) + κG(x− x′, y − y′, z − z′, ω) =

= −δ(x− x′)δ(y − y′)δ(z − z′).

(4.14)

We introduce a two-dimensional Fourier transform with respect to x and y:

G̃(kx, ky, z, ω) =
∫ +∞

−∞

∫ +∞

−∞
G(x, y, z, ω)e−jkxx−jkyydxdy (4.15)

where kx, ky denote the conjugate Fourier variables referring to x and y. Equations (4.14)
thus turns into the ordinary differential equation

−k2
xG̃(kx, ky, z−z′, ω)−k2

yG̃(kx, ky, z−z′, ω)+ ∂2

∂z2 G̃(kx, ky, z−z′, ω) = −δ(z−z′). (4.16)

Imposing kz
.= κ2 − k2

x − k2
y we have

∂2

∂z2 G̃(kx, ky, z − z′, ω) + k2
zG̃(kx, ky, z − z′, ω) = −δ(z − z′) (4.17)

which defines he one-dimensional Green function G̃(kx, ky, z−z′, ω) with respect to the coor-
dinate z. Linearly independent solutions of this equation are represented by one-dimensional
plane waves with wave number kz propagating away from the source point z′:

G̃(kx, ky, z − z′, ω) = G̃o(kx, ky, ω)ekz |z−z′|. (4.18)

As for the three-dimensional case, the amplitude factor G̃o(kx, ky, ω) must be evaluated
inserting (4.18) into (4.17) which gives

G̃o(kx, ky, ω) = j

2kz
. (4.19)

The three-dimensional scalar Green function with source point x′ = y′ = z′ = 0 results as
Weyl’s integral representation in terms of the inverse Fourier transform

G(x, y, z, ω) = ejκ
√

x2+y2+z2

4π
√
x2 + y2 + z2

= 1
(2π)2

∫ +∞

−∞

∫ +∞

−∞

j

2kz
ej|z|kzejkxx+jkyydkxdky. (4.20)

For z > 0 we can write

G(x, y, z, ω) = 1
(2π)2

∫ +∞

−∞

∫ +∞

−∞

1
kz
ejk·rdkxdky (4.21)
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where it is apparent that the three-dimensional Green function can be thought as composed
of elementary plane waves; the above definition equally holds for z < 0. The definition of the
two-dimensional Green function in terms of the Hankel function of zero order allows for an
immediate spectral plane wave decomposition of the solution of the two-dimensional version
of the analyzed problem:

G(x, z, ω) = j

4
H(1)

o

(
κ
√
x2 + z2

)
= 1

2π
j

2

∫ +∞

−∞

ej|z|
√

κ2−k2
x√

κ2 − k2
x

ejkxxdkx

(4.22)

4.1.3 Sommerfeld integral representation

The formal transition to polar coordinates

x = r cosϕ (4.23)

y = r sinϕ

in the xy-plane and polar coordinates

kx = kr cosϕk (4.24)

y = kr sinϕk

in the kxky-plane turns (4.20) into

G(x, y, z, ω) = 1
(2π)2

j

2

∫ +∞

0

∫ 2π

0

ej|z|
√

κ2−k2
r√

κ2 − k2
r

ejkrr cos(ϕ−ϕk)krdϕkdkr (4.25)

The rotational symmetry with respect to ϕ and the integral representation of the Bessel
function

J0(ζ) = 1
2π

∫ 2π

0
e±jζ cos αdα (4.26)

reveal (4.25) to be the spectral decomposition of the three-dimensional Green function into
cylindrical waves:

G(x, y, z, ω) = ejκ
√

r2+z2

4π
√
r2 + z2

= j

(4π)

∫ 2π

0

ej|z|
√

κ2−k2
r√

κ2 − k2
r

krJ0(krr)dkr (4.27)

where must have the positive sign for krκ. Equation (4.27) is known as the Sommerfeld
integral decomposition of the Green function.
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Figure 4.2: Propagating spectral components of plane P- and S-waves.

4.2 The elastodynamic case

4.2.1 Strip-like normal force density distribution

We consider a homogeneous isotropic half space VM (z > 0) with a stress-free boundary
surface SM (the xy-plane) characterized by the presence of a strip-like aperture, where a
constant synchronous surface force density independent of y acts, yielding:

t(x, ω) = F (ω)qa(x)ez (4.28)

The two-dimensional inhomogeneous elastodynamic boundary-value problem can be formu-
lated in terms of the differential equation

µ∆ru(x, z, ω) + (λ+ µ)∇r∇r · u(x, z, ω) + ω2ρu(x, z, ω) = 0 (4.29)

for z > 0 under the condition

T (x, z = 0, ω) · ez = −t(x, z), ∀x ∈ SM . (4.30)

It can be demonstrated that the source in (4.28) radiates only pressure (P) and shear-
vertical(SV) waves [32, 91], i.e., plane elastic waves propagating in the xy-plane with polar-
ization direction orthogonal and tangent to the propagation direction, respectively (Fig.4.2).
P and SV waves constitute the building blocks to represent the elastodynamic source field
in a spatial spectrum of elastic plane waves:

uP SV (x, z, ω) = 1
2π

∫ +∞

−∞

[
ũP (kx, ω)ejkP ·rk̂P + ũSV (kx, ω)ejkS ·reθkS

]
dkx (4.31)

where

kP = kP k̂P

= kxex +
√
k2

P − k2
xez = kxex + kPzez (4.32)
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kS = kSk̂S

= kxex +
√
k2

S − k2
xez = kxex + kSzez (4.33)

As a result, the spectral P contribution is polarized in the direction k̃P and the spectral
SV-contribution in the direction eθkS

, with eθkS
· eθkS

= 0 and where

eθkS
= cos θkS

ex − sin θkS
ez (4.34)

The radiation field in (4.31) must fulfill the inhomogeneous boundary condition (4.30). Its
Fourier transform reads

Fx{T (x, z = 0, ω)} · ez = −F (ω)2 sin akx

kx
ez (4.35)

The spectral decomposition of the stress tensor in terms of plane waves, using (4.31), can be
written as

T (x, z, ω) = 1
2π

∫ +∞

−∞

[
jkP ũP (kx, ω)ejkP ·r(λI + 2µk̂P k̂P )

]
+

+
[
jksµũSV (kx, ω)ejkS ·r(k̂seθkS

+ eθkS
k̂s)
]
dkx

(4.36)

so that the requirement for the boundary conditions becomes

T (x, z = 0, ω) · ez = −F (ω)
2π

∫ +∞

−∞

2 sin akx

kx
ejkxxdkxez (4.37)

and hence

jkP ũP (kx, ω)
(
λI + 2µ

k2
P

kPkP

)
· ez+

+ jkSµũSV (kx, ω)
(
kS

kS
eθkS

+ eθkS

kS

kS

)
· ez =

= −F (ω)2 sin akx

kx
ez.

(4.38)

This vector equation can be written in terms of its x- and z- components as

2
kP
kxkP zũP (kx, ω) +

(
kxeθkS

· ez + eθkS
· exkSz

)
ũSV (kx, ω) = 0 (4.39)

1
kP

(k2
S − 2k2

x)ũP (kx, ω) + 2kSzeθkS
· ezũSV (kx, ω) = j

F (ω)
µ

2 sin akx

kx
(4.40)

which constitutes an inhomogeneous system of equations for the two unknowns ũP (kx, ω)
and ũSV (kx, ω). It results

ũP (kx, ω) = jkP
F (ω)
µ

2 sin akx

µ

ks

(
kxeθkS

· ez + kSzeθkS
· ex

)
R(kx)

, (4.41)

ũSV (kx, ω) = −j F (ω)
µ

2 sin akx

µ

2kSkxkP z

R(kx)
. (4.42)
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If we consider

kx = kS sin θkS
(4.43)

kSz = kS cos θkS
(4.44)

and (4.34), we have

eθkS
· ex = kSz

kS
(4.45)

eθkS
· ez = −kx

kS
(4.46)

so that we can write

R(kx) = (k2
S − 2k2

x)2 + 4k2
x

√
k2

S − k2
x

√
k2

P − k2
x (4.47)

which is the well-known Rayleigh function [32]. Noting that

k̂P · ex = kx

kP
(4.48)

k̂P · ez = kP z

kP
(4.49)

we obtain explicit representation of the Cartesian components of the two-dimensional par-
ticle velocity field of a strip-like force density aperture with constant amplitude located on
the elsewhere stress-free surface of an elastic half space in terms of a spectral plane wave
decomposition [32, 92, 93]:

ũfz

P SVx
(x, z, ω) = j

F (ω)
2πµ

∫ +∞

−∞

2 sin akx

kx

kx

R(kx)
×

×
[
(k2

S − 2k2
x)ejkP ·r − 2

√
k2

S − k2
x

√
k2

P − k2
xe

jkS ·r
]
dkx,

(4.50)

ũfz

P SVz
(x, z, ω) = j

F (ω)
2πµ

∫ +∞

−∞

2 sin akx

kx

√
k2

P − k2
x

R(kx)
×

×
[
(k2

S − 2k2
x)ejkP ·r + 2k2

xe
jkS ·r

]
dkx.

(4.51)

For kx > kP , respectively kx > kS , the two vectors kP , respectively kS , become complex
vectors (and, hence, also eθkS

); the sign choice

ℑkP, S =
√
k2

P,S − k2
xez (4.52)

ensures the convergence of the integrals in (4.50) and (4.51), for z > 0.
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4.2.2 Strip-like tangential force density distribution

For the tangential force density source

t(x, ω) = F (ω)qa(x)ex (4.53)

the radiation field is obtained after a brief calculation:

ũfx

P SVx
(x, z, ω) = j

F (ω)
2πµ

∫ +∞

−∞

2 sin akx

kx

√
k2

S − k2
x

R(kx)
×

×
[
2k2

xe
jkP ·r + (k2

S − 2k2
x)ejkS ·r

]
dkx,

(4.54)

ũfx

P SVz
(x, z, ω) = j

F (ω)
2πµ

∫ +∞

−∞

2 sin akx

kx

kx

R(kx)
×

×
[
2
√
k2

S − k2
x

√
k2

P − k2
xe

jkP ·r − (k2
S − 2k2

x)ejkS ·r
]
dkx.

(4.55)

4.2.3 Spectral plane wave decomposition of the second-rank Green tensor
in half-space

Once we have obtained the radiation fields for a strip-like aperture with a normal (tangential)
force density source, we can proceed with the definition of the components of the second-rank
Green tensor GHS

P SV (r, ω) according to the equation

uLSt
P SV (r, ω) = GHS

P SV (r, ω) · t̂ (4.56)

where we switched from the strip-like to the line source and we assumed F (ω) = 1 in (4.28)

t(x, ω) = δ(x)t̂ (4.57)

F{t(x, ω)} = t̂ (4.58)

If the case t̂ = ex is considered, the following Cartesian components of GHS
P SV (r, ω) can be

derived from (4.56):

GHS
P SV (r, ω) : exex

.= u
LStx
P SV (r, ω) · ex

= u
LStx
P SVx

(r, ω), (4.59)

GHS
P SV (r, ω) : exez

.= u
LStx
P SV (r, ω) · ez

= u
LStx
P SVz

(r, ω). (4.60)

In a similar way, for t̂ = ez the following holds:

GHS
P SV (r, ω) : ezex

.= u
LStz
P SV (r, ω) · ex

= u
LStz
P SVx

(r, ω), (4.61)

GHS
P SV (r, ω) : ezez

.= u
LStz
P SV (r, ω) · ez

= u
LStz
P SVz

(r, ω). (4.62)
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Using the results obtained in (4.50), (4.51), (4.54), (4.55)yields

GHS
P SV (r, ω) : exex = j

2πµ

∫ +∞

−∞

√
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x
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×
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2k2
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(4.63)

GHS
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(4.64)

GHS
P SV (r, ω) : ezex = j

2πµ
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(4.65)

GHS
P SV (r, ω) : ezez = j

2πµ

∫ +∞

−∞

√
k2

P − k2
x

R(kx)
×

×
[
(k2

S − 2k2
x)ejkP ·r + 2k2

xe
jkS ·r

]
dkx.

(4.66)

4.2.4 Rayleigh-Sommerfeld integral representation of elastodynamic source
fields in half-spaces

The derivation of the half-space Green tensor GHS
P SV (r, ω) by its components shown in the

previous section constitutes the starting point to obtain an integral representation of the
Rayleigh-Sommerfeld type of the source field generated by a finite-sized aperture in half-
spaces also for the elastodynamic case. We consider, for instance, the normal force surface
source

t(x, y, t) = A(x, y, t)ΓA(x, y)ez (4.67)

where A(x, y, ω) = F (ω)qa(x): the restriction to SA is ensured be the characteristic function
ΓA(x, y) of SA. We can define a half-space second-rank Green tensor GN (x, y, z, x′, y′, z′, t)
and a half-space third-rank Green tensor ΣN (x, y, z, x′, y′, z′, t) such that[(

µ∆′ + ρω2
)
I + (λ+ µ)∇′∇′

]
·GN (x, y, z, x′, y′, z′, t) = −δ(x−x′)δ(y−y′)δ(z−z′)I (4.68)

ΣN (x, y, z, x′, y′, z′, t) = c : ∇′GN (x, y, z, x′, y′, z′, t) (4.69)

and

ez · ΣN (x, y, z, x′, y′, z′, t) = 0, for x′, y′ ∈ SM (4.70)
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where c is the stiffness tensor. Using the results in (4.63), (4.64),(4.65) and (4.66) we can
obtain GN as

GHS
P SV (x, y, ω) · ez = 1

2π

∫ +∞

−∞
GN (kx, ky, z, z

′, ω) · eze
jkxxdkx (4.71)

with ky = 0 and z′ = 0. This allows to write the equation

v(x, y, z, ω) = −jω
∫∫

SA

A(x′, y′, ω)ez ·GN (x− x′, y − y′, z′ = 0, z, ω)dx′dy′ (4.72)

which constitutes the elastodynamic version of the Rayleigh-Sommerfeld integral represen-
tation of the solution.

4.3 Radiation field of a PZT-like force density source in ho-
mogenous isotropic half spaces

The ultimate goal of the theoretical study which has been carried out in the previous pages
lays in the reconstruction of the sound field generated by a piezoelectric transducer in the
underlying structure. To this end, the derivation of the radiation fields for a strip-like force
density source in half spaces performed in the previous sections constitutes a stepping stone:
the two-dimensional strip-like aperture can be seen, in fact, as the simplest model of a circular
surface-mounted PZT transducer. The rotational symmetry of the source with regard to ϕ in
the polar representation r′ = r′ cosϕ′ex + r′ sinϕey + z′ez leads to the rotational symmetry
of the radiation characteristics: therefore, we can assume ϕ′ = 0 so that x′ = r′, limiting the
analysis of the elastodynamic field to the xz-plane as in Sections 4.2.1 and 4.2.2.

4.3.1 Far-field radiation characteristics of normal and tangential line force
density sources

We apply the method of stationary phase [84] to the formulas in (4.50), (4.50) and (4.54),
(4.55) to obtain the far-field generated by normal and tangential force-density sources in
homogeneous-isotropic half spaces. In so doing, we choose

ur = sin θux + cos θuz (4.73)

uθ = cos θux − sin θuz (4.74)

and finally obtain [92]

u
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√
r
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H
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4 cos θ
2γ2µ

√
2πkP

M tz
P (θ)

M tz
P (θ) = 2γ2(γ2 − 2 sin2 θ)

(γ2 − 2 sin2 θ)2 + 2 sin sin 2θ
√
γ2 − sin2 θ

(4.75)
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Figure 4.3: P and SV waves patterns for the particle displacement a normal or tangential (first and
second raw, respectively) line force density source on the surface on an elastic half space.

u
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√
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(4.76)
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u
LStx,far

SV (r, θ, ω) = ejkSr
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SV (θ, ω)

H
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SV (θ, ω) = ej π

4 cos θ
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√
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S (θ)
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γ(1 − 2 sin2 θ)2 + 2 sin sin 2θ
√

1 − γ2 sin2 θ
(4.78)

where γ = kS
kP

and M tz,x

P,S are the Miller-Pursey factors [92]. The far-field radiation character-
istics Htx,z

P,S in (4.75)-(4.78) are shown in Fig. 4.3 [84]. Note that while the radiation pattern
of P waves has a maximum for θ = 0 (at least for t̂ = ez), Htx,z

SV have their maximum at
approximately an angle value of θ ≃ 45o, while they assume a much lower value in the direc-
tion normal to the surface. This has a large influence on the features of the elastodynamic
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field that radiates from a piezoelectric transducers. One final remark: being Htx,z

P,S far-field
representations of the elastodynamic field features, they do not account for near-field effects,
as mode conversion phenomena, that occur at the boundary. These effects, nonetheless, play
an important role in the definition of the radiation field, as it will bee seen in the following.

4.3.2 Description of the elastodynamic field generated by a PZT trans-
ducer in a homogeneous isotropic half space

A two-dimensional numerical representation of the elastodynamic field generated by a normal
force density aperture with Tn(t) time-dependence in a homogeneous isotropic half space
characterized by a stress-free surface is shown in Fig. 4.4 [84]: the EFIT (Elastodynamic
Finite Integration Technique) was used to reproduce the radiation field in terms of particle
velocity magnitude [94]. As already stated, this source model can be considered as the
simplest model of a piezoelectric transducer acting on a structure.

Semi-circular pressure as well as shear wavefronts can be recognized in the figure. As
anticipated in the previous section, while pressure waves superimpose to form a planar
common wavefront underneath the normal force aperture, shear waves do not give rise to
such a structure, due to the zero of their radiation characteristics in the normal direction
(Fig. 4.3): only the shear pulses from the aperture edges prevail. In addition to the described
wave structures, two more phenomena can be observed in the figure: the shear and pressure
plane waves which rise where the semi-circular pressure and shear waves meet the boundary,
respectively. The pressure and shear waves cannot fulfill, in fact, the stress-free condition
at the surface, originating new plane pressure and shear waves with appropriate incidence
angles, in accordance with the phenomenon of mode conversion [82, 32, 91]. The reflection-

Figure 4.4: EIFT-wavefronts of the line source and the strip-like aperture radiator on the stress-free
surface on an elastic half space (the magnitude of the particle velocity is shown)[94].
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refraction laws for plane pressure waves at a stress-free boundary read:

sin θrP = sin θiP (4.79)

kS sin θcS = kP sin θiP (4.80)

where θi,r,cP,S denote the incident, reflected and mode-converted pressure and shear waves,
respectively. This means that for a pressure wave with an incidence angle of 90o, reflection
and incident direction coalesce; moreover, a shear plane wave with mode conversion angle
of about 40o (depending on the acoustic impedance of the analyzed material) is generated.
These waves are visible in Fig. 4.4 and are usually known as “head waves”. The reflection-
refraction laws for plane shear waves at a stress-free boundary read:

sin θrS = sin θiS (4.81)

kP sin θcP = kS sin θiS . (4.82)

At a first observation, a behavior similar to the one described for the reflection of pressure
waves holds also for shear waves: in fact this is not entirely true. The incident shear wave
give rise to a pressure wave to fulfill the stress-free condition at the boundary, in a way that
constitutes the dual boundary problem of the one previously seen for pressure waves. A
closer observation of Equation (4.82) reveals, however, that θcP needs to be complex to have
the said equation satisfied, being θiS = 90o and kS > kP . The plane primary wave that is
generated by the reflection of the semicircular shear wavefront at the boundary is thus an
inhomogeneous wave with negative imaginary part that attenuates itself as it propagates:
in fact, it almost instantaneously disappears after being generated at the boundary, as it is
shown in Fig 4.4.

The generation and propagation of pressure and shear waves does not complete the de-
scription of the elastodynamic field radiated by a PZT-like aperture: the presence of the
force-density source located on a stress-free surface allows the generation and propagation
of Rayleigh-surface waves. These waves can be thought of as the result of a superimposi-
tion of partial inhomogeneous longitudinally and transversely-polarized pressure and shear
waves, with a characteristic elliptical resultant polarization in the xz-plane. More details on
Rayleigh waves can be found in Appendix B.



Chapter 5

The Damage Detection Procedure

In the previous chapters the generation and propagation of waves in homogeneous and
isotropic half spaces has been discussed. Particular attention has been dedicated to pre-
senting the theoretical aspects which characterize the solution of the elastodynamic problem
in this type of domain, underlying differences and similarities with the case of the wave prop-
agation in full space. A plane wave spectral decomposition of the radiation field generated
by force density sources has been performed to obtain the second-rank Green tensor for half
spaces. Finally, the radiation patterns for the case of strip-like normal force density aperture
have been introduced, allowing to elaborate a detailed description of the elastodynamic field
generated by a piezoelectric transducer acting on a structure.

a) b)

c) d)

Figure 5.1: Numerical simulation of the elastodynamic field generated by a strip-like normal force
density distribution in an aluminum half space domain. Here the amplitude of the velocity vector is
shown.

52
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Figure 5.2: Lines tangent to the displacement vector in the elastodynamic field generated by a
strip-like normal force density source in an aluminum half space: the typical elliptical polarization of
the displacement field generated by Rayleigh waves is observable.

The results numerical estimation of the particle velocity of the mentioned radiation field
for the case of aluminum has been obtained using COMSOL Multiphysicsr are shown in
Fig. 5.1: pressure and shear semicircular wavefronts as well as the mode-converted waves are
clearly observable. Rayleigh waves, instead, are more difficult to notice as they are confined
to the region of the domain close to the surface and they posses a propagation velocity which
is similar to that which characterizes shear waves, implying a superimposition effect which
makes them hardly identifiable. A clearer representation of Rayleigh waves is possible if
the streamlines (i.e. lines everywhere tangent to the displacement vector) are analyzed as
in Fig. 5.2: the typical elliptical polarization of the displacement field which characterizes
these waves [95] is evident.

The analysis of the physical phenomena that are involved in the generation of the elasto-
dynamic field radiating from a PZT-like force source constitutes the basis of the ultrasonic
nondestructive evaluation of composite structures that is poposed in this work. An exhaus-
tive description of the physics of the problem at hand is always a mandatory requirement in
every engineering application: this is particularly true in the field of damage identification,
where the possibility to adopt more reliable and efficient detection mechanisms is critical in
the process of designing innovative SHM systems.
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a) b)

Figure 5.3: Schematic showing the principles governing the two main configurations of the actuat-
ing/sensing architecture: the pitch-catch (a) and the pulse-echo (b) approach.

5.1 Time-of-flight (ToF) as damage index

As anticipated in the Introduction, the most dangerous as well as the most subtle damage
scenario that can apply to composite structures is without doubt represented by a delam-
ination propagating into the system [98]. The reason of this consideration can be easily
explained: a delamination can critically affect the stiffness and the rigidity of a composite
structure and, at the same time, it can be virtually invisible to many damage detection
procedures, first of all to a visual inspection of the structure. Together with other issues,
this can be considered as one of the main problems affecting the use of composite materials
that still prevents the use of this class of materials in many engineering applications [98].

The structural health monitoring methodology here proposed aims at detecting the pres-
ence of a delamination in a plate-like composite structure exploiting the radiation field gen-
erated by a piezoelectric transducer mounted on the surface of the structure adopting a
“pulse-echo” configuration. This architecture of the damage detection procedure constitutes,
together with the “pitch-catch” option, one of the basic configurations that are usually used
in elastic-wave-based damage identification, in a manner similar to the human procedure of
locating an object in terms of acoustic waves [99] (Fig.5.3).

In a pitch-catch configuration, elastic waves activated by a source travel across an object
and are then captured by a sensor at the other end of the wave path. In the pulse-echo
configuration, instead, both source and sensor are located at the same side of the object,
and the sensor receives the echoed wave signals from the object. In the problem at hand, in
particular, both the actuator and the sensor are thought to be mounted on the same surface
of the plate.

The choice of the pulse-echo configuration as fundamental architecture of the proposed
ultrasonic nondestructive evaluation technique ensues from to different considerations. On
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one hand, in fact, this particular configuration offers the advantage of requiring only one
point of access to the structure, i.e., the actuator and the sensor are both placed on the same
side of the system with respect to the damage, implying that access has to be granted only to
one side of the structure (here, the upper surface of the plate). This aspect becomes crucial
if, as in the present case, the considered SHM routine is envisioned to imply the realization
of a transducers network.

Another main reason for the choice of adopting the pulse-echo configuration is related
to the nature of the detection mechanism here proposed: the key element of the designed
approach consists, in fact, in the estimation of the time-of-flight (ToF) of the primary and
secondary wavefronts in their back and forth propagation through the thickness of the struc-
ture (Fig. 5.4). This detection methodology implies a capability to acquire an information
that returns from the damage that only a pulse-echo configuration of the actuating/sensing
system can ensure.

b)

c)

d)

a)

Figure 5.4: Numerical simulation showing the different phases of the variation of the elastodynamic
field generated by a strip-like normal force density distribution in an aluminum layer in which the
amplitude of the velocity vector is shown. P and S waves are clearly noticeable, as well as head and
inhomogeneous waves resulting from the fulfillment of the stress free condition at the boundaries.
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Figure 5.5: Time-of-flight (ToF) is usually referred to as the time lag between the acquisition of
the incident wave and the acquisition of the wave scattered by the damage.

5.1.1 ToF in traditional waves-based SHM

The estimation of the ToF represents one of the most popular approaches in the time domain
signal processing regarding usual Lamb waves-based ultrasonic evaluation techniques [47].
In general ToFs can be defined as the time lag between the incident wave that the sensor first
captures and the wave scattered by damage that the same sensor subsequently captures. It
suggests the relative positions of actuator, sensor and damage. From the estimation of the
ToFs between the damage-scattered and incident waves extracted from a certain number of
signals, damage can accordingly be triangulated [48, 49, 50, 100]. In a one-dimensional case
(e.g., a structural beam or rod), the actuator, sensor and damage are in a straight line the
sensor captures the incident wave from the actuator first and then the wave scattered back
from the damage. The damage can thus be located with regard to the position of the sensor
in terms of the difference in the times of arrival of the damage-scattered and incident waves,
∆t,

d = cg∆t
2

(5.1)

where d is the distance between the damage and the sensor; cg is the group velocity of the
diagnostic Lamb wave [32]. Expanding the above discussion to a two-dimensional plate with
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a) b)

Figure 5.6: Different ToF-based architectures of the actuating/sensing system.

an actuator-sensor pair (a sensing path, see Fig. 5.6). Equation (5.1) is then extended to

tads − tas =
(
dad

cg1

+ dds

cg2

)
− das

cg1

= ToF (5.2)

where

dad =
√

(xd
1 − xa

1)2 + (xd
2 − xa

2)2

dds =
√

(xd
1 − xs

1)2 + (xd
2 − xs

2)2 (5.3)

das =
√

(xs
1 − xa

1)2 + (xs
2 − xa

2)2

In the above equation, tads is the time the incident wave needs to propagate from the actuator
to the damage and then to the sensor, and tas is the time the incident wave consumes
propagating directly from the actuator to the sensor. ToF is thus the difference between the
above two quantities, which can be extracted from the captured Lamb wave signal. dad is
the distance between the actuator located at (xa

1, x
a
2) and the damage centre, assumed at

(xd
1, x

d
2) and to be determined; dds is the distance between the damage centre and the sensor

located at (xs
1, x

s
2); das is the distance between the actuator and sensor (see Fig. 5.6(a)

for the coordinate system). cg1 and cg2 are the group velocities of the incident Lamb wave
activated by the actuator and the wave scattered by the damage ( cg1 and cg1 need not be
the same, provided that mode conversion occurs upon interaction of the incident wave with
the damage).

From a mathematical point of view, the solutions to Equation (5.2) give rise to a locus,
a dotted line in Fig. 5.6(a), indicating possible locations of the centre of the damage.
With ToF extracted from another actuator-sensor pair (sensing path), an equation similar
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Figure 5.7: Schematic of the damage detection mechanism.

to Eq. (5.2) can be obtained, and a nonlinear equation group, containing two equations
contributed by two actuator-sensor pairs and involving the position of the damage centre
(xd

1, x
d
2) (two unknown variables), is available. Two loci established by the two equations

lead to intersection(s), i.e., the solution(s) to the equation group, sketched in Fig. 5.6(b),
which is the location of the damage centre (xd

1, x
d
2).

5.1.2 ToF of primary and secondary wave

In the problem under examination, no in-plane propagation of waves is considered: the
study of the properties of the so-called class of guided-waves, which comprehend the popular
Rayleigh-Lamb waves, is not addressed here. As a matter of fact, analyzing the generation
and the propagation of primary and secondary wavefronts in the plate thickness direction,
we are concerned with phenomena which precede the propagation of Rayleigh-Lamb waves.

The present study is focused on the analysis of the propagation of P and S wavefronts
in the plate thickness direction. Making a comparison with Fig. 5.4, actuator and sensor
are located on the same side of the structure with respect to the damage, namely, on the
plate upper surface; the reflecting surface can be represented, in the healthy case, by the
bottom surface of the model or, in the case a damage is present, by the delamination itself.
A schematic of the problem is shown in Fig. 5.7.

A delamination can be ideally thought of as a physical discontinuity in the domain
virtually separating it into two different regions [98]. It is apparent that in the considered
model, any possibility for a disturbance to propagate from one of the two regions to the
other one is prevented. This simple and effective phenomenon constitutes the key element
of the detection mechanism at the base of the SHM routine proposed in this work.

When a delamination is located along the propagation path of primary and secondary
waves in the through-the-thickness direction, it prevents the excitation signal to access the
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portion of the structure that lays beyond the damage itself. The immediate consequence
of this effect is that P and S waves are reflected by the delamination boundaries and not
by the bottom surface of the plate-like structure, shortening the propagation path of the
waves. The time of arrival of the primary and secondary wavefronts to the upper surface
of the structure is then affected by the presence of the delamination: a strong correlation
between the presence and the location of the damage in the normal direction and the ToF
of the generated elastodynamic signal is then to be expected.

Denoting with tP and tS the time of arrival of P and S waves at the sensor location,
respectively, the ToF can be defined as ToF = tS − tP or, introducing the wavelength λwP,S ,
the wave frequency fwP,S and the traveled distance d

ToF = d

λwP,SfwP,S

= d
(λwP fwP ) − (λwSfwS )

λwP λwSfwP fwS

(5.4)

This shows that, as expected, a variation of the traveled distance d due to the presence of
damage results into a change of the ToF.

The system that constitutes the object of our analyses consists in a composite laminated
plate onto which piezoelectric transducers are mounted to generate or to sense the elas-
todynamic field described in the previous sections. The plate is an eight-layer symmetric
laminate with epoxy matrix and carbon fibers oriented according to the stacking sequence
(0/45/90/135)s. The description of the piezoelectric transducers and of the composite lam-
inate models are addressed in the next sections.

5.2 The damage model

The development of the model of a structural damage is a crucial step for the development of
a damage identification procedure. This topic has attracted intensive research efforts over a
long period, associated with the development of fracture, fatigue and damage mechanics for
life prediction and integrity analysis of engineering materials and structures [101]. Delami-
nation, appearing as debonding between adjoining plies in composite laminates, is the most
common but hazardous damage in fibre-reinforced composite structures under out-of-plane
stresses or subjected to transverse impact and vibrations.

From an experimental point of view two major approaches have been extensively adopted
in the literature to study the effect of delaminations in composite structures: the realization
of impacts to induce delaminations in a predefined region of the system [102, 103, 104, 105]
and the use of inserts of soft materials in between the composite layers [111, 112, 113, 114].

The most important advantage of using impacts to study delaminations is that no sim-
ulation of the damage but an effective introduction of the delamination in the system is
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performed. The main disadvantages associated with this technique are represented by the
difficulty to predict the extent and in general the features of the damage induced. In spite of
the fact that a great deal of effort has been directed towards the experimental characteriza-
tion of impact damage, an efficient and accurate method for the prediction of impact damage
is still lacking. The slow development of an adequate model is a consequence of the three-
dimensional nature of impact damage and the complexity of the geometry of delamination
[101].

On the other side, the use of inserts (mainly made of teflon) placed in between the
composites layers during the manufacturing process can ensure an optimal control of the
damage properties in terms of size and location [115, 116]. It is apparent, however, that
the adoption of inserts constitutes only a way to simulate the presence of the damage in
the system, with all the limitations and drawbacks of such an approach. While a consistent
local reduction of the structural stiffness can be achieved (naturally describable as damage
effect), a contemporary augmentation of the mass of the system difficult to associate to the
presence of a damage is also obtained.

In FEM models, delaminations are frequently represented moving apart the nodes at the

Nodes

Delamination

Figure 5.8: Classical representation of delaminations in numerical codes.
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Figure 5.9: Schematic layout of teflon inserts in experimental tests to simulate the presence of a
delamination.

interface between layers where the damage is located by a small distance, so as to form the
delamination itself [98, 99](see Fig. 5.8). In addition to pure numerical approaches, hybrid
modeling techniques which combine analytical tools with FEM simulation have also been
developed, so as to improve damage characterization and to achieve better insight into the
physics of the phenomena [118]-[122].

In this work the delamination has been represented as a teflon insert located between the
layers of the composite laminate (Fig. 5.9). The reasons for this choice are multifaceted. The
implementation of this technique to model the delamination in the numerical simulations has
been guided by the possibility of performing a comparison with the results achieved in the
subsequent experimental phase of the study, where the use of teflon inserts can guarantee
control and careful reproduction of the damage features, both of them representing funda-
mental requirements for the analysis of the problem. In addition, modeling the delamination
as a local yet significant reduction of the system mechanical properties (e.g., 120-150 GPa
for Young’s modulus of a typical carbon fiber composite laminate estimated in the fibers
direction with respect to 0.5 GPa for a teflon insert) and not as a pure discontinuity of
the wave propagation domain, represents a conservative approach in simulating the presence
of the damage in terms of its reflectivity properties. If a complete void region were taken
into account to model de damage, in fact, the incident wave would be entirely reflected and
no refraction would take place, enhancing the detection of the reflected wave arrival at the
plate upper surface. The teflon inserts, instead, allow the presence of refraction phenomena
(weakening the intensity of the reflected wave) which can be associated to the presence of a
not fully developed delamination, where a complete debonding between the layers has not
taken place yet, representing a conservative model of the damage. An exhaustive validation
of this theoretical consideration in carried out in the experimental campaign.
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5.3 The actuating/sensing system

5.3.1 Main features of the PZT transducers

The most commonly used transducers in SHM applications are embedded or surface-bonded
piezoelectric wafer transducers. Piezoelectric transducers are inexpensive and are available
in very fine thicknesses (0.1 mm for ceramics and 9 µm for polymer films), making them very
unobtrusive and conducive for integration into structures. They operate according to the
piezoelectric and inverse piezoelectric principles that couple the electrical and mechanical
behavior of the material. An electric charge is collected on the surface of the piezoelectric
material when it is strained. The converse effect also happens, that is, the generation of
mechanical strain in response to an applied electric field. Hence, they can be used as both
actuators and sensors. The most commonly available materials are lead zirconium titanate
ceramics (known as PZT) and polyvinylidene fluoride (PVDF), which is a polymer film.
Both of these are usually poled through the thickness (normally designated the 3-direction),
which is the direction in which the voltage is applied or sensed. Uniformly poled PZTs are
typically used in the 1-3 coupling configuration, where the sensing/actuation effect is along
the thickness or 3-direction while the actuation/sensing effect is in the plane of the PZT,
normal to the poling axis.

5.3.2 The piezoelectric constitutive law

The linear constitutive laws for a piezoelectric material are [96]

D = pE + dT (5.5)

S = dᵀE + c−1T (5.6)

where D and E are the electric displacement and the electric field vectors while p and d
are the dielectric permittivity and the electromechanical coupling tensors, respectively. S,
T and c denote the deformation and stress tensors and the elasticity matrix, respectively.
The most frequent representation for p and d, which is here adopted, reads [96, 97]

p =


p1 0 0
0 p1 0
0 0 p3

 , (5.7)

d =


0 0 0 0 d15 0
0 0 0 d15 0 0
d31 d31 d33 0 0 0

 . (5.8)
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Figure 5.10: No in-plane directivity is required for the actuator: a cylindrical shape is thus adopted
(a). A ring-shaped geometry is considered for the sensor in order to be able to acquire most of the
generated P and S waves (b).

It is usually preferred to write equations (5.5) and (5.6) in terms of the electric field vector
E and the deformation tensor S as

D = (p− dcdᵀ)E + dcS, (5.9)

T = −cdᵀE + cS. (5.10)

5.3.3 Design of the transducers shape

As previously observed, if the case of a homogeneous isotropic material is taken into account
for an in-plane analysis of the generated elastodynamic radiation field, a circular PZT ele-
ment can generate P and S waves propagating normal to the actuator circumference, while
those of non-circular shapes such as a rectangle can exhibit strong directivity of the gen-
erated waves. Here attention is drawn to the propagation of primary and secondary waves
through the plate thickness: it is therefore apparent that no preferential in-plane propa-
gation direction is required. This makes the cylindrical symmetry a desirable feature for
the design of the actuator geometry, reducing the options for the actuator shape to two: a
cylindrical and a ring-like geometry. For the damage detection mechanism here proposed,
based on the generation, propagation and reflection of primary and secondary waves, the
option represented by the cylinder can offer the important advantage of a simpler radiation
field in terms of number of generated waves and relative reflections on the domain boundary,
leading to an acquired output signal which is much clearer and easier to interpret. The
design of the sensor geometry can be informed by the same principles. If, for instance, a
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cylindrical shape is chosen for the sensor too, this would imply to neglect the greatest part
of the elastodynamic field radiating for the actuator, as shown in Fig. 5.10(a), with a low
signal-to-noise ratio as main consequence. A wiser choice is to adopt a ring-like geometry
for the sensor, which can be eventually seen as the envelope of different cylinders surround-
ing the actuator (Fig. 5.10(b)). The resultant geometry of the designed actuator-sensor
pair is shown in Fig. 5.11: the characteristic parameters of this configuration consist in
the actuator and sensor thickness ta and ts, the actuator radius ra, and the sensor width
ws and mid-radius rs. Once the detection mechanism is established (i.e., the estimation of
the boundary/damage-reflected primary and secondary waves ToF), an optimization process
of these parameters aimed at enhancing the performance of the actuating/sensing system
evaluated by an appropriate functional can be carried out.

5.4 The sensor optimization process

Optimal sensor/actuator design strategies aim to maximize the ability to detect and dis-
criminate relevant data features given limited resources [123]. In the case at hand the aim
of the optimization process is meant to improve the ability of the actuating/sensing system
to detect the presence of a delamination in the structure when different possible damage
scenarios are considered. To this end, the values of the geometric parameters defining the
actuator-sensor pair are used as entries for the optimization routine, adopted within the class
of Genetic Algorithms (GAs). In particular, a differential Evolutionary Algorithm-based ap-
proach (EAs) is implemented.

P-wave
z

x

y

S-wave

PZT actuator

PZT sensor

plate

Figure 5.11: 3D schematic of the designed geometry for the piezoelectric actuator and sensor.
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5.4.1 Differential evolutionary algorithms

Differential evolutionary algorithms are part of the widely used genetic optimization method:
a biology-inspired approach, which uses the concept of natural selection to iteratively opti-
mize an objective function over successive generations of candidates [124, 125]. The differ-
ences with respect to the conventional GAs are mostly in the way the mechanisms of mutation
and crossover are performed using real floating point numbers instead of long strings of zeros
and ones [1].

The great advantage of this optimization method is that there is no need to evaluate
derivatives, since the optimization is performed evaluating the solution for many iteratively
found populations of candidates and choosing among them the ones which give the best
solution in terms of the objective function (OF) [128, 129].

A representation of EAs key algorithmic steps is shown in Fig. 5.12. An initial pool of N
vectors to be tested, each one containingM parameters (usually referred to as genes), is taken
into account as starting point: it represents the so-called first generation (or population).
Moreover the ranges of the different genes constituting the vectors are given as input to the
algorithm. The following steps are thus performed:

• Initialization

At the first iteration, vector i is selected among the N possible candidates as target
vector. Three more vectors among the remaining N−1 M-vectors of the first generation
are randomly selected. These vectors are usually addressed to as vector A, vector B,
and vector C.

• Mutation

This process allows to expand the search space: vector A and vector B are subtracted,
their result is multiplied by a crossover probability K and subsequently added to vector
C: this leads to the definition of a new mutated vector (called vector D).

Figure 5.12: The different phases of the optimization process based on the use of differential
evolutionary algorithms (EAs).
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• Crossover

This step of the EA algorithm is aimed at defining a trial vector, through which suc-
cessful solutions from the previous generation are incorporated. A random number n
between zero and one is randomly chosen: if n is smaller than a previously defined
crossover ratio CR (also comprised between 0 and 1) the first gene of the trial vector
is defined selecting it from vector D; otherwise, if a is bigger or equal to the crossover
ratio, the first gene of the trial vector is selected from the target vector. The same is
done for the second gene, extracting another number.

• Selection

This phase reproduces natural selection: the problem (here, the damage detection)
is solved for both the target vector and the trial vector. Subsequently the OF is
estimated for both cases: the vector which can guarantee the best performance in
terms of objective function is selected to replace the initial i-vector and to form the
next generation.

When these steps are repeated for all the N vectors constituting the first generation, a new
generation is created. This process is carried out until the desired number of generations
is reached or until a stop criterion is satisfied. A more detailed schematic description of
the algorithm can be found in Fig. 5.13. All of the random variables are selected using a
uniform probability density, which ensures that the space in which the selection is done, is
equally spanned. An important aspect is that after the mutation, the genes vector D can
possibly exceed the limit values of the search space: a controller which eventually brings
back in the right range the parameters have thus to be implemented. One more controller
is also positioned after the crossover is carried out: if the trial vector’s genes are both equal
to those defining the target vector, the mutation and the crossover are repeated until two

Figure 5.13: Schematic flow chart showing the numerical implementation of the optimization process
based on differential evolutionary algorithms.



5. The Damage Detection Procedure 67

0 2x10

-7

4x10

-7

6x10

-7

8x10

-7

10

-6

 

-75

0

75

-75

0

75

-75

0

75

Time (s)

V
o

lt
a

g
e

 (
m

V
)

a)

b)

c)

Figure 5.14: Different time histories showing the effects of the sensing system optimization process
on the acquired output of the system shown in Fig. 5.4: while the peak of the second wave group
noticeable in the plots increases (defined as the object of the trial optimization), the rest of the signal
remains almost unaltered in terms of amplitude (from (a) to (c)).

different vectors can pass to the selection step. Usual values found in the literature for the
crossover probability K and the crossover ratio CR are 0.7 and 0.5, respectively [126]: these
values are adopted hereafter.

5.4.2 The objective function (OF)

The described optimization algorithm is based on definition of a suitable objective function.
The ToF-based damage detection discussed in section 5.1 relies on the identification of the
peaks that primary and secondary waves approaching the upper surface of the plate appearing
int the output signal delivered by a PZT sensor: it thus becomes crucial to be able to clearly
distinguish these peaks in the sensor response. To this end, the objective function should be
designed in such a way to rank output signals in terms of the P and S waves observability.

Denoting by V P
i , V S

i and V RMS
i the peak values in the voltage output of the PZT sensor

and its root mean square (RMS), respectively, the objective function for the differential
evolutionary optimization algorithm above described can be defined as

OF =
I+1∑
i=1

aP
i (V P

i − V RMS
i ) + aS

i (V S
i − V RMS

i )
V RMS

i

(5.11)

where I + 1 represents the number of different damage scenarios evaluated considering the
same actuator/sensor configuration in terms of the characteristic geometric parameters plus
the undamaged case. The parameters aP

i and aS
i are the weights of the sum which take into
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account the wavefront attenuation with the traveled distance affecting P and S waves: the
farther is the damage location with respect to the actuator sensor pair, the higher is the
value of the related weight aP,S

i . With some trivial passages Eq. (5.11) can be rearranged as

OF =
I+1∑
i=1

[
aP

i

(
V P

i

V RMS
i

− 1
)

+ aS
i

(
V S

i

V RMS
i

− 1
)]

. (5.12)

A relative value of the voltage peaks in the sensor response is taken into account in the
expression of the OF in Eq. (5.12): the RMS value of the output signal V RMS

i is introduced
as reference for the value of the voltage peaks V P

i and V S
i . This means that a mere increase

of the peak values in the sensor response due to a particular configuration of the PZTs does
not automatically imply an improvement of the calculated OF value. When a comparable
increase of the RMS of the output signal is also registered (due, for instance, to a higher
value of the voltage used to generate the waves), so that no improvement of the effective
observability of the peaks V P

i and V S
i is achieved, the obtained values of the OF do not

experience significant changes (Fig. 5.14).

5.5 Design of the excitation signal

It is widely accepted that in the class of the active sensing methods, which represents an
important part of SHM procedures [98, 130], the choice of an appropriate excitation signal
is a fundamental step towards the damage identification in the structural systems [131]. As
a simple example, consider a beam or column with a crack that is nominally closed due
to a pre-load. If the provided excitation is not sufficient to open and close the crack, the
detectability of the crack in the measured output will be severely limited [132]. A survey
of the SHM literature, however, reveals that a great deal of attention has been paid to the
data interrogation portion of the SHM process, while no equal attention has been paid to the
excitation design [127]. This disparity is quite reasonable in many applications where only
ambient excitation is available, such as most civil engineering applications. However, there
are many applications where the excitation can be prescribed (e.g., most wave propagation
approaches to SHM), for which a proper selection is essential.

As a general approach to the design of optimal excitation signals for SHM purposes, four
different steps can be identified in the process of input signal definition: i) the selection
of the signal shape, ii) the choice of its frequency content, iii) the definition of the signal
time-length and of iv) its amplitude.
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5.5.1 Shape

A first step in the definition of the shape of the input signal is the choice between sinusoidal
and non-sinusoidal signals: tone-burst, sweep and chirp signals can be identified as belonging
to the first group, to name but a few [127, 133]. Among the second group, impulses and white
noise constitute a frequently adopted option in SHM [127, 134]. In the case at hand, where,
as discussed in Section 5.1, the generation of primary and secondary waves is the core of the
proposed damage detection methodology, the choice of sinusoidal signals is preferred as it
allows to select an appropriate operating frequency (see Fig. 4.4in Section 4.3.2): this feature
is of paramount importance to guarantee the effectiveness of the present damage detection
procedure. As a result, a sine with a limited number of cycles (namely, a tone-burst) is
therefore chosen as input signal.

In order to reduce the spectral leakage phenomenon, a time-windowing of the input signal
is also addressed. In signal processing, a window function is a mathematical function that is
zero-valued outside of some chosen interval [136]. For instance, a function that is constant
inside the interval and zero elsewhere is called a rectangular window. When another function
or waveform/data-sequence is multiplied by a window function, the product is also zero-
valued outside the interval: all that is left is the part where they overlap. A more general
definition of window functions does not require them to be identically zero outside an interval,
as long as the product of the window multiplied by its argument is square integrable, so that
the function sufficiently rapidly des out [136].

As already anticipated, the scope of time-windowing is to reduce the appearance of
frequency components different from the desired ones. The Fourier transform of a general
signal f(t), with f(t) = 0 for t < 0 (i.e. causality is invoked), reads:

f̃(ω) =
∫ +∞

0
f(t)e−jωtdt. (5.13)

It is then assumed that f(t) is a signal of infinite time length; this is of course not the case
for real signals, which always have a finite time duration. The effect of this discrepancy on
a waveform like sin(Ωt) is that its Fourier transform develops non-zero values (commonly
called spectral leakage) at frequencies other than Ω. The leakage tends to be worst (highest)
near Ω and least at frequencies farthest from Ω (Fig. 5.15). The effect of applying a
time-window on a signal which is finite in time, e.g. which has a time length T , is to
make it quasi-periodic in the said interval, decreasing the number of harmonics needed for
its spectral representation and moderating the effects due to its finite time length. If the
considered waveform comprises two sinusoids of different frequencies, leakage can interfere
with the ability to distinguish them spectrally. If their frequencies are dissimilar and one
component is weaker, then leakage from the larger component can obscure the presence of the
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weaker ones. But if the frequencies are similar, leakage can render them unresolvable even
when the sinusoids are of equal strength. The rectangular window has excellent resolution
characteristics for sinusoids of comparable strength, but it is a poor choice for sinusoids of
disparate amplitudes. This characteristic is sometimes described as low-dynamic-range. At
the other extreme of dynamic range are the windows with the poorest resolution: the ability
to find weak sinusoids amidst the noise is diminished by a high-dynamic-range window.
High-dynamic-range windows are probably most often justified in wide-band applications,
where the spectrum being analyzed is expected to contain many different components of
various amplitudes.

In between the extremes there are moderate windows, such as the Hann (or Hanning)
windowing, which is here adopted. It is defined as

h(n) = 0.5
[
1 − cos

( 2πn
N − 1

)]
, forn = 0, .., N − 1. (5.14)

A representation of the Hann window is shown in Fig. 5.16.

5.5.2 Frequency content

The selection of the frequency of the input represents a fundamental step towards the defi-
nition of an appropriate excitation signal for SHM purposes. This is particularly true in this
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Figure 5.15: The effects of the Hann time-windowing on a 4.5 cycles tone-burst with a characteristic
frequency of 1Hz: the frequency content of the signal is gathered about the main frequency when the
windowing technique is used (solid line).
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Figure 5.16: The Hann-window in the time (a) and frequency (b) domains.

case, where a nonconventional damage-detection strategy is designed so as to make neces-
sary the consideration of a frequency region for the design of the input signal which does
not coincides with that usually considered in traditional Us-SHM approaches. While, in
fact, the usual frequency content of an excitation signal aimed at activating Rayleigh-Lamb
propagation modes in waveguides belongs to the kiloHertz range (from tens to hundreds of
KHz), in this work the band of megaHertz is considered. The minimum requirement for an
input signal frequency thought to be sensitive to a damage whose characteristic dimension
(in the wave propagation direction) is of the order of the thickness of one of the composite
single layer hlayer is:

fmin = c
(3)
P

2hlayer
(5.15)

where c(3)
P is primary wave propagation velocity in the normal direction and estimated as

c
(3)
P =

√
λ(3) + 2µ(3)

ρ
(5.16)

with λ(3) and µ(3) representing the Lame’ constants in the through-the-thickness direction
of a transversely isotropic medium as a composite multilayer plate. If common values for
λ(3) and µ(3) are taken into account, a fmin of about 3 MHz is finally obtained.

Moreover, one additional important aspect of the input signal frequency design has to
be addressed. The use of PZT transducers as actuators, in fact, paves the way to exploit
resonance effects if the appropriate resonant frequency of the actuator is adopted for the
excitation signal, resulting in a significant enhancement of the actuator performances in
terms of the generated strain field (given that the input signal amplitude is kept constant).
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The optimal resonance condition can be identified if the variation of the electromechanical
impedance Z(ω) of the PZT transducer with the frequency is obtained (Fig. 5.17): from
an experimental point of view this can be achieved using an impedance analyzer. The
resonance condition with the eigenmode that results as being dominantly excited by the
imposition of the input signal voltage can be identified as a minimum in the absolute value
of the impedance, and, as said, it constitutes the optimal excitation condition in terms of
the actuating capabilities of the PZT transducer. Assumed that this frequency satisfies the
fmin condition (i.e. fresonance > fmin), it represents the optimal choice for the input signal
frequency design.

5.5.3 Time length

The definition of the length in time (and thus in space) of a excitation signal can result from
different considerations. If, on one hand, a “long” signal implies major effects related to
interference and multiple reflection phenomena (interaction of the input signal with waves
reflected by the structure boundaries, refracted by inhomogeneities or scattered by the dam-
age itself) resulting, among the other issues, in a higher complexity of the acquired output
signal, on the other hand, a “short” excitation signal can miss to deliver the desired infor-
mation (mainly in terms of frequency content, with the rise of non-trivial side lobes in its
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Figure 5.17: Impedance modulus measured on a PZT disk with a 1.5 mm radius and 0.5 mm thick
using an impedance analyzer.
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Figure 5.18: Power spectral density of the input signal with a varying number of cycles: the power
content of the signal gathers about its main frequency as the number of the cycles increases.

frequency spectrum).
A possible approach in designing the excitation signal time length consists in adopting

the minimum signal duration that allows the desired features of the input to be achieved.
This can be done if an analysis of the variation of the input signal power content in a
pre-definite bandwidth about its main frequency with respect to the number of cycles which
constitute it is performed. Figure 5.18 gives a qualitative indication about how the frequency
content of the input signal shrinks about its main frequency as long as the number of cycles
is increased. A more quantitative information is provided by Fig. 5.19, where the power
content of the excitation signal in a -3dB bandwidth about a main frequency of 8 MHz with
respect to the number of cycles is shown: when a number of 4.5 cycles is selected, more than
95% of the entire signal power content is concentrated in the mentioned -3dB bandwidth.
As no significant increases in this percent power content is observed when a higher number
of cycles is considered, a 4.5 cycles tone-burst is finally selected as excitation signal for the
proposed SHM procedure.

5.5.4 Amplitude

The amplitude of a signal is one of the key feature that defines the excitation in a SHM strat-
egy. Given the linearity of the problem, two major limitations are present in the definition
of the maximum value of the input signal amplitude: the PZT failure and the PZT-structure
bonding breakdown.
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Figure 5.19: Percent of the power content of the input signal contained in a -3dB bandwidth about
its main frequency: a 95% value is reached when 4.5 cycles are adopted to form the input signal.

For the materials used in standard piezoelectric actuators, d33 is of the order of 250 to
550 pm/V , d31 is of the order of -180 to -210 pm/V [137]. The highest values are attainable
with shear actuators in d15 mode. Consequently, the maximum allowable field strength in
piezoelectric actuators ranges between 1 and 2 kV/mm in the polarization direction. In the
reverse direction (semi-bipolar operation), at most 300 V/mm is allowable; as expected the
maximum voltage depends on the ceramic and insulation materials. Exceeding the maximum
voltage may cause dielectric breakdown and irreversible damage to the piezoelectric actuator:
if a 0.1 mm thick PZT transducer is considered (a common value for PZTs used in damage
detection applications), the estimated maximum value of the voltage that can be exerted is
about 200 Volts. As a matter of fact, these voltages are not reached in common SHM studies:
the reason is that another limitations occurs before the breakdown of the PZT actuator, i.e.,
the failure of the bonding between the piezoelectric transducer and the support.

If a cylindrical PZT actuator with a thickness of t = 0.1mm and a radius of r = 2mm is
considered, its capacitance can be written as [138]:

C = 4r2e33
t

= 2.12 · 10−9F (5.17)

where a common value for the relative dielectric permittivity of er
33 = 1500, resulting in an

overall permittivity of e33 = 1.33 · 10−8F/m, has been considered. The following formula
holds [138]

εmax = VmaxC

4r2Epztd31
(5.18)
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where Epzt is the Young’s modulus of the PZT actuator. A general value for the characteristic
shear lap of adhesives commonly used to bond the piezoelectric transducers to the structure
can be assumed to be τmax = 20MPa. Equation (5.19) can thus be used to estimate the
maximum value of the voltage that can be applied to the actuator:

Vmax = 4r2d31τmax

C
∼ 31V (5.19)

where a d31 of 180 ·1o−12 C/N is considered (absolute value). From this result, it is apparent
that the major limitation in the definition of the maximum amplitude in terms of voltage of
the excitation signal is represented by the breakdown of the PZT-structure bonding.

5.6 The propagation domain: constitutive law for the lami-
nate

As already mentioned in previous pages, the propagation medium for P and S waves in the
present ultrasonic wave-based damage detection procedure is represented by a composite
laminated plate. The constitutive equation for such domain in a 3D theory can be easily
derived if a global basis (e1, e2, e3) and a local basis (b1, b2, b3), sharing the same orientation
of the composite fibers, are taken into account: denoting with ϕ(k) the angle formed by the
fibers orientation and the e1 unit vector, we can write

ei = R(k)ei (5.20)

where R(k) represents the matrix associated to a rotation of ϕ(k) about the e3-defined axis
(see Fig. 5.20). We have

R(k) =


cosϕ(k) − sinϕ(k) 0
sinϕ(k) cosϕ(k) 0

0 0 1

 . (5.21)

Making use of the dyadic product and adopting the Einstein notation, we can write the
Cauchy stress tensor T in the k-th lamina of the plate as

T = T̃ijbibj = T̃ij(R(k)ei)(R(k)ej) = Tijeiej for i, j = 1, 2, 3 (5.22)

where the ·̃ indicates the stress tensor components expressed in the local basis. We thus have
that

Tij = T̃mnR
ij(k)
mn for m,n = 1, 2, 3 (5.23)

where Rij(k)
mn denotes the ij-element of the dyad R(k)

m R(k)
n , being R(k)

m and R(k)
n the m-th

and n-th column of the matrix R(k), respectively. If Voigt’s notation is used to denote the
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Figure 5.20: Schematic of the composite single lamina showing the orientation of the fiber ϕ(k).

components of the Cauchy stress tensor in the global (σ) and local (σ̃) basis, Eq. (5.23) can
be rewritten as

σ = Ξ(k)
σ σ̃ (5.24)

with

Ξ(k)
σ =



cos2 ϕ(k) sin2 ϕ(k) 0 0 0 2 cosϕ(k) sinϕ(k)

sin2 ϕ(k) cos2 ϕ(k) 0 0 0 −2 cosϕ(k) sinϕ(k)

0 0 1 0 0 0
0 0 0 cosϕ(k) − sinϕ(k) 0
0 0 0 sinϕ(k) cosϕ(k) 0

− cosϕ(k) sinϕ(k) cosϕ(k) sinϕ(k) 0 0 0 cos2 ϕ(k) − sin2 ϕ(k)


.

(5.25)

In the same way, the relationship between global (ε) and local (ε̃) components of the in-
finitesimal strain tensor S can be found:

ε = Ξ(k)
σ ε̃ (5.26)

If shear strains γij = 2ϵij for i ̸= j are introduced, we can write

γ = Γ−1Ξ(k)
σ ε̃ = Ξ(k)

γ ε̃ (5.27)

where ε = Γγ. The constitutive law for the k-th lamina of the composite reads

T = c(k)S (5.28)
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where c(k) denotes the fourth-order stiffness matrix. Using Voigt’s notation we have

σ̃ = C̃
(k)
ε̃ (5.29)

where C(k) is a 6 × 6 stiffness matrix. Making use of Eqs. (5.24) and (5.27) we obtain the
constitutive law of the composite plate for the k-th lamina in the fixed basis as

σ = Ξ−1
σ C̃

(k)Ξγγ = C(k)γ (5.30)

with

C(k) = Ξ−1
σ C̃

(k)Ξγ . (5.31)

5.7 The governing equations of the problem

The governing equations of the problem can be finally presented so as to set up the nu-
merical computations. It is an usual practice to put these equation in nondimensional form
due to the simultaneous presence of different space-time scales which regulate the different
phenomena exhibited in the problem. A nondimensionalization of the variables and parame-
ters makes possible an easier understanding of the relative importance of the different terms
which appear in the equations. In addition, another important reason makes the nondimen-
sionalization of the governing equations a fundamental step in the analysis of the phenomena
being investigated, namely, their implementation in a numerical code. Given that the fre-
quency range involved in the problem is of the order of 106 ÷ 107 Hz, the order of magnitude
of the time step of a numerical simulation can be of 10−8 ÷ 10−9 seconds. Such small time
steps can easily result in nontrivial truncation errors and, consequently, in time convergence
problems.

The characteristic length lc and time tc used to carry out the nondimensionalization of
the equations are represented by the delamination width b and the input frequency ωc (see

b

PZT Sensor

PZT Actuator

Delamination

Figure 5.21: Schematic representation of the delaminated composite laminate.
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Fig. 5.21), so that

lc = b, (5.32)

tc = 1
ωc
.

The following nondimensional quantities are introduced: x∗ = x
lc

, y∗ = y
lc

, z∗ = z
lc

, t∗ = t
tc

.
The constitutive equations for a non-piezoelectric medium (i.e. the composite plate and the
teflon insert representing the delamination) read (see Eqs. (5.5), (5.6) and (5.28)):

D = pE (5.33)

T = cS

where no electromechanical coupling is present. To proceed with the nondimensionalization
of the equations of motion for the non-piezoelectric part of system, the following quantities
are defined:

Ec = V0
lc

pc = 1
3

Trace(p)

Kc = 1
3

Trace(c) (5.34)

Dc = pcEc

where V0 is a reference value for the voltage field set for convenience equal to 1. For the
non-piezoelectric constituents of the domain the mechanical and electrical equilibrium read

∇ · T + 2ζnωnρIut = ρutt (5.35)

together with

∇ ·D = 0. (5.36)

We can write

Kc

lc
∇∗ · T ∗ + 2ζnωnωclcIu

∗
t = ρlcω

2
cu

∗
tt (5.37)

Dc

lc
∇̄ · D̄ = 0 (5.38)

where the (·∗) sign represents non-dimensional quantities. Setting K∗
c = Kc

l2cρω2
c

and ω∗
n = ωn

ωc

yields

K∗
c ∇∗ · T ∗ + 2ζnω

∗
nIu

∗
t = u∗

tt. (5.39)
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This equation can be specialized for the laminate and for the teflon insert introducing the
quantities

K lam∗
c = K lam

c

l2cρ
lamω2

c

Ktef∗
c = Ktef

c

l2cρ
tefω2

c

ωlam∗
n = ωlam

n

ωc
(5.40)

ωtef∗
n = ωtef

n

ωc

so that

K lam∗
c ∇∗ · T lam∗ + 2ζ lam

n ωlam∗
n Iu∗

t = u∗
tt (5.41)

∇∗ ·Dlam∗ = 0

and

Ktef∗
c ∇∗ · T tef∗ + 2ζtef

n ωtef∗
n Iu∗

t = u∗
tt (5.42)

∇∗ ·Dtef∗ = 0.

The constitutive law for the piezoelectric actuator and sensor read (Eqs. (5.11) and
(5.12)):

D = (p− dcdᵀ)E + dcS, (5.43)

T = −cdᵀE + cS. (5.44)

Introducing the matrices h and g as

h = p− dcdᵀ (5.45)

g = dc (5.46)

the above equations become

D = hE + gS (5.47)

T = −gᵀE + cS (5.48)

together with their nondimensional form

DcD
∗ = hEcE

∗ + gS (5.49)

KcT
∗ = −gᵀEcE

∗ + cS. (5.50)

Defining h∗ = Ech
Dc

and g∗ = g
Dc

yields

D∗ = h∗E∗ + g∗S (5.51)

T ∗ = −Dc

Kc
gᵀ

∗
E + Dc

Kc
cS. (5.52)
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The equilibrium equations can thus be written as

∇ · T pzt = ρpztutt (5.53)

∇ ·Dpzt = 0.

In a way similar to the procedure followed for the non-piezoelectric part of the domain, we
introduce the quantity Kpzt∗

c = Kpzt
c

lcρpztω2
c

to obtain

Kpzt∗
c ∇∗ · T pzt∗ = u∗

tt (5.54)

∇∗ ·Dpzt∗ = 0.



Chapter 6

Numerical Analysis and
Formulation of the ultrasonic SHM
Procedure.

A theoretical approach towards understanding the physics involved in the phenomena related
to the identification of some form of damage in a structural system is a necessary step towards
the subsequent design of an effective SHM strategy. Due to its inner complexity, this becomes
particularly true when the use of ultrasonic waves constitutes the key element of a damage
detection procedure. To this end a detailed analysis of the generation and propagation of
elastodynamic waves in solids is carried out in Chapters 1,2 and 3.

In the present work, in the context of the proposed SHM procedure, we aim at a design
phase. Therefore, numerical simulations play a crucial role in the ultimate definition of the
damage detection approach. The use of numerical codes indeed allows to implement and
consequently to analyze physical models characterized by a higher degree of complexity with
respect to the purely theoretical models, where a certain level of abstraction in tackling the
problem is required, resulting in a loss of the predictive capabilities of finer details. Enabling
a detailed analysis of the phenomena of interest, numerical simulations can thus be used
to optimize the performance of the SHM methodology under study in terms of both its
effectiveness and invasivity for the hosting structure.

In this chapter, two- and three-dimensional numerical analyses of the elastodynamic field
generated by a piezoelectric disk and sensed by a ring-shaped PZT in presence of a delamina-
tion (represented by a teflon insert) are carried out. The obtained results are then discussed
and commented, paving the way to a detailed SHM routine. A differential evolutionary
algorithm-based optimization process is also implemented to improve the performances of
the proposed damage detection procedure.

81
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DelaminationPZT Actuator

PZT Sensor

Figure 6.1: The 2D numerical model: the teflon-made delamination and the piezoelectric transduc-
ers are shown in greater details in the zoomed-in region.

6.1 The 2D model

Numerical simulations are implemented using the software COMSOL Multiphysicsr: the
choice of this particular numerical code to perform the numerical tests is due, among other
considerations, to the possibility offered to directly implement in the software the governing
equations of the problem in its strong form (see Section 5.7). This allows to obtain a full
description of the physics of the problem, as both the dynamics of the composite laminate and
the electromechanical coupling characterizing the piezoelectric transducers are implemented
in detail, resulting in an accurate and realistic representation of the problem at hand. As
stated above, numerical simulations are firstly implemented in a two-dimensional domain,
as this results in a lower complexity of the model geometry and, consequently, in minor
requirements in terms of computational costs and simulation times.

6.1.1 Model description

A representation of the two-dimensional numerical model is shown in Fig. 6.1: it consists of
a cross-section of the composite laminate considered where the piezoelectric transducers are
located. The PZT actuator, in particular, is represented by a rectangular domain positioned

w

b

a

e2

e1

l

r

w/2

d

h/2

h

 

 t

BA

Figure 6.2: Schematic of the 2D numerical model.
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Ceramic Type PIC 255 PIC 151
Span (2 × r) 3·10−3 m 3·10−3 m
Thickness 1.5·10−4 m 1.5·10−4 m
Density 7800 kg/m3 7800 kg/m3

d33 400·10−12 C/N 500·10−12 C/N
d31 -180·10−12 C/N -210·10−12 C/N
d15 550·10−12 C/N 400·10−12 C/N
ε33/ε0 1750 2400

Table 6.1: Geometrical and electromechanical properties of the PZT actuator and sensor shown in
second and third column, respectively.

on the top surface of the composite plate, as clearly visible in the picture. At its sides, the
cross-section of the ring-shaped PZT sensor (represented by two rectangular sub-domains)
can be noticed. With respect to the quantities r, l, d and t reported in Fig. 6.2, the
values of 1.5 mm, 2 mm, 3 mm and 0.15 mm are assumed, respectively. All geometric and
electromechanical parameters characterizing the piezoelectric transducers are reported in
Table 6.1.

Underneath the piezoelectric transducer, the laminated plate cross-section is modeled.
it consists of an 8-layer Graphil 34-600/NTC301 composite laminate realized with carbon
fibers and epoxy matrix and with a symmetric stacking sequence of [0◦/45◦/90◦/135◦]s. As
for its geometric parameters, a thickness h = 25.4 mm is considered, while the span w =
0.11 m is taken into account (i.e, ten times the delamination diameter b = 0.01 m (plus
its own length). It is assumed that the delamination span is about three times the PZT

Composite plate Graphil 34-600/NTC301
Span 1.408·10−1 m
Thickness 2.54 ·10−3 m
Lamination sequence [0◦/45◦/90◦/135◦]s
Young’s modulus E1 137.137 GPa
Young’s modulus E3 9.308 GPa
Poisson’s ratio ν13 0.304
Poisson’s ratio ν31 0.017
Density 1568 kg/m3

Table 6.2: Geometrical and mechanical properties of the Graphil 34-600/NTC301 composite lami-
nate.
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actuator diameter ( b
2r = 3.33). A value of a = 0.625 mm is assumed for the delamination

thickness (i.e., half of the thickness of a single lamina of the plate). The complete mechanical
properties of the composite plate are reported in Table 6.2.

The equations that define the problem are those described in Sections 5.3.2, 5.6 and
5.7: appropriate boundary conditions have to be defined to achieve a closed mathematical
representation of the problem. A stress-free condition is imposed on all boundaries, with the
exception of the common boundaries where the continuity of the displacement is numerically
enforced. A null value of the voltage is prescribed at all the four boundaries of the plate
(including those parts which are in common with the PZTs), while zero electrical displace-
ment is imposed at the vertical sides of all PZTs and at the sensor upper boundary. The
values assumed by the excitation signal are prescribed at the top surface of the actuator.
Both horizontal and vertical displacements denoted by u1 and u3, are constrained at A in
Fig. 6.2, while only the vertical displacement u3 is prevented in B.

As final remark it is important to emphasize that, in consonance with Section 5.7, the gov-
erning equations of the problem are implemented in the numerical model in non-dimensional
form as this prevents issues concerning the numerical stability of the model itself, positively
affecting its convergence in the time and space domain. As natural consequence of this
considerations, the space dimensions of the model are made non-dimensional with respect
to the delamination diameter b, while the period T of the excitation signal is considered as
nondimensional parameter for the simulation time. The value Vo = 1 Volt is considered to
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Figure 6.3: Experimentally estimated impedance of the PZT actuator.
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estimate the nondimensional voltage V ∗.

6.1.2 Optimal excitation signal - Modal analysis

Before proceeding with the study of the space and time convergence of the numerical model,
a few more words need to be spent about the design of the excitation signal adopted in the
present SHM procedure: in particular, some more physical insight is to be achieved about
the definition of its frequency content.

In Section 5.5 a minimum frequency characterizing the input signal was defined as

fmin = c
(3)
P

2hlayer
(6.1)

Substituting the values of Table 6.2 in (6.1) yields fmin = 3.34 MHz. In addition, it was
stated that with a PZT actuator, a resonance effect may be used to improve its performance.
To do so, the frequency content of the excitation signal has to be set equal to the eigen-
frequency of that eigenmode which results to be more excited during the actuating process
(i.e., by the imposition of a certain voltage on the upper free surface of the actuator). From
the point of view of the electrical characterization of the piezoelectric transducer, this reso-
nance condition results in a minimum in the absolute value of the actuator impedance. This
information can be obtained experimentally using an impedance analyzer: the variation of
the absolute value of the impedance ∥ Za ∥ with the frequency of the excitation signal is
shown in Fig. 6.3, where a PZT disk characterized by the geometric and electromechanical
parameters reported in Table 6.1 and attached on the top of the composite laminate is con-
sidered. A global minimum in the absolute value of the impedance is located at the frequency
fres = 8.00 MHz. To gain a better understanding of this phenomenon, a modal analysis of
the piezoelectric actuator is numerically carried out. The actuator is modeled with its lower
surface attached to an elastic foundation of given stiffness acting both in the in-plane and
in out-of-plane directions, which prevents any rigid displacement of the PZT. A fictitious
value of the stiffness is assumed (namely, a staring value of Ksoil = 104 N is considered,
successively increased to Ksoil = 107 N to analyze the dependence of the obtained results
on the foundation stiffness, see Fig. 6.4) so that the convergence of the numerical model is
granted.

Results of the modal analysis are shown in Fig. 6.5: the lowest nine mode shapes are
shown. The lowest four are associated to the effects of the elastic foundation and their
corresponding eigenfrequencies belong to the KiloHertz range. The fifth to the ninth mode
shapes describe the actual dynamics of the actuator. Particular attention is drawn on the
sixth mode shape characterized by a frequency of 7.96 MHz, which turns out to be very
close to the one indicating a minimum in the impedance in Fig. 6.3, minimum located at a
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Figure 6.4: Variations of the sixth eigenfrequency fV I with the elastic soil stiffness value K: no
significant dependence of fV I on K is noticeable.

frequency of 8.00 MHz. An additional proof indicating that the sixth eigenmode represents
the minimum in the impedance value can be obtained observing Fig. 6.6. Here, the vertical
displacement field u3 generated by the quasi-static imposition of a voltage at the upper
surface of the actuator is shown: the deformed shape is similar to that exhibited by the sixth
eigenmode. The analysis is completed by considering a 4.5 cycles toneburst with a frequency
of f = 8.00 MHz as excitation signal for the SHM procedure at hand. The other feature of
the input signal to be defined is the amplitude. To this end, Eq. (5.19) is used to define the
maximum value of the Voltage which can be withstanded by the PZT-laminate interface.
With the values reported in Table 6.1, we obtained

Vmax = 4r2d31τmax

C
= 19.2V (6.2)

where τmax = 10 MPa. A conservative value of 15 Volts is chosen as maximum amplitude of
the excitation signal.

6.1.3 Space and time convergence

The subsequent step in the implementation of a numerical model consists in carrying out
a convergence analysis. Here, space and time convergence of the proposed model are in-
vestigated. To do so, the value of the speed of sound in the horizontal and in the vertical
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direction are estimated using the Newton-Laplace equation:

c1 =
√
E1
ρ

(6.3)

c3 =
√
E1
ρ

where E1 and E3 represent the Young’s moduli of the single lamina of the plate respectively
along the fibers direction and in the orthogonal direction; ρ is the laminate density. The
sound speeds c1 and c3 can be made nondimensional according to

c∗
1 = c1

b/T
(6.4)

c∗
3 = c3

b/T

VI = 7.96 MHz

IV(a,b) = 2.23 MHz

VIII(a,b) = 8.87 MHz

I(a,b) = 16.01 KHz II = 19.04 KHz III = 19.15 KHz

V(a,b) = 6.60 MHz

VII(a,b) = 8.04 MHz IX(a,b) = 9.63 MHz

Figure 6.5: The vertical displacement field u3 of the lowest nine eigenmodes of the piezoelectric ac-
tuator: eigenmodes from one to four describe the elastic foundation dynamics (whose eigenfrequencies
are confined to the KHz range) while the higher eigenmodes are characteristic of the PZT actuator
dynamics.
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Figure 6.6: The vertical displacement field u3 generated by the quasi-static imposition of a voltage
on the upper surface of the PZT actuator.

where b is the delamination diameter and T is the period of the excitation signal. Two
characteristic wavelength can thus be introduced as λ1 = c1

f and λ3 = c3
f , with f = 1

T . In
nondimensional form the wavelengths become:

λ∗
1 = λ1

b
= c1
b/T

= c∗
1 (6.5)

λ∗
3 = λ3

b
= c3
b/T

= c∗
3

Given that E1 > E3 (see Table 6.1), it follows that λ3 < λ1 which leads us to assume

∆x∗
max = λ∗

3
2

= c∗
3
2

(6.6)

as the maximum value for the nondimensional space-step ∆x∗. As for the time convergence
of the numerical model, the Courant-Friedrichs-Lewy (CFL) condition reads

CFL = ∆x
c3

(6.7)

and in the nondimensional form for the maximum value of the space-step

CFL∗
max = ∆x∗

max

c̄3
(6.8)

The maximum value for the non-dimensional time-step ∆t∗ is thus assumed to be

∆t∗max = CFL∗
max

2
. (6.9)
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Figure 6.7: Space convergence of the numerical model: in the first row, the percent variation of the
norm-2 difference of two consecutive solutions obtained decreasing by a factor of two the space-step
is shown for the horizontal and vertical displacement fields u∗

1 and u∗
3 (acquired at points A and B in

Fig. 6.9) and for the non-dimensional voltage V ∗ (acquired at point C). The point-wise convergence
in the space domain of the numerical model (expressed as the percent variation of the maximum
point-wise difference of two consecutive solutions) for the same quantities is reported in the second
row.

As for the overall duration of the simulations, this is assumed to be equal to the time needed
for a wave propagating with speed c3 to travel back and forth through the plate thickness
for three times:

T ∗
overall = 3 h

c∗
3b
. (6.10)

The convergence analysis, both in the time and space domains, is performed estimating the
point-wise and global convergence of a given quantity by decreasing by a factor of two the
time the space steps. It is important to emphasize that a linear variation of the space mesh
size in the horizontal direction with a characteristic ratio of 1/10 is implemented, starting
from the ∆x∗ value adopted at the plate center and increasing towards the model boundaries.
For this analysis, the values of e1 = e2 = 0 are considered, i.e, the delamination is located
in the plate midplane, exactly underneath the pair of piezoelectric transducers. Results can
be observed in Fig. 6.7: in the first row, the point-wise convergence of the nondimensional
horizontal and vertical displacement fields u∗

1 and u∗
3 (acquired at points A and B in Fig.

6.9) and of the nondimensional voltage V ∗ (acquired at point C) with respect to the space
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Figure 6.8: Time convergence of the numerical model: in the first row, the percent variation of the
norm-2 difference of two consecutive solutions obtained decreasing by a factor of two the time-step is
shown for the horizontal and vertical displacement fields u∗

1 and u∗
3 (acquired at points A and B in Fig.

6.9) and for the non-dimensional voltage V ∗ (acquired at point C). The point-wise convergence in the
time domain of the numerical model (expressed as the percent variation of the maximum point-wise
difference of two consecutive solutions) for the same quantities is reported in the second row.

step dimension is shown, while the global convergence in the space domain of the numerical
model in terms of the same quantities is reported in the second row. It can be observed
that no appreciable variation of the solutions is obtained when the nondimensional space
step ∆x∗ is decreased from 1/8 to 1/16 of the nondimensional wavelength λ∗

3, meaning that
convergence is achieved. Similar results for the time convergence are shown in Fig. 6.8:
here no appreciable variation of the non-dimensional horizontal and vertical displacement
fields u∗

1 and u∗
3 and of the non-dimensional voltage V ∗ (acquired at points A, B and C,

d/2

h/2

w/2

A B

C

Figure 6.9: The 2D numerical model tested for the convergence analysis: the acquisition points A,
B and C for the displacement fields u∗

1 and u∗
3 and the voltage V ∗ are marked in red.
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respectively) is obtained when the non-dimensional time-step ∆t∗ is decreased from 1/32 to
1/64 of the non-dimensional CFL∗ condition, thus implying that convergence is reached in
the time domain. It can be finally concluded that for the following space and time steps

∆x∗ = λ∗
3

8
(6.11)

∆t∗ = CFL∗

32

numerical convergence is achieved for the implemented model.

6.1.4 Preliminary numerical tests

Numerical simulations are carried out for the seven different damage scenarios summarized
in Table 6.3: each one of them is characterized by a different depth of the delamination (from
case I, with the delamination located between the first and the second layer of the laminate,
to case VII, where the damage is located between the seventh and the eighth layers), while
all other geometric parameters defining the plate and the actuating/sensing system are left
unchanged.

Results are shown in Fig. 6.10. The time histories of the voltage acquired by the PZT
sensor for the damage cases I to VII are shown in Figures (a) to (g), respectively: the
undamaged system response is shown in (g). All the time histories are characterized by
the presence of a wave appearing at about 3 s∗, whether a damage is present or not. This
implies that the mentioned wave is not particularly affected by the delamination presence
and location under the laminate surface, making it possible to consider it a surface wave,
namely, the Rayleigh wave generated by the PZT-like force density source in a half-space
domain analyzed in Chapter 4. A proof confirming this conjecture is given by the comparison
of the theoretical value of the Rayleigh wave speed with the value estimated from the time
histories obtained with the numerical simulations. From a theoretical point of view, we have

Damage Case Damage Position
Case I between layers 1 and 2
Case II between layers 2 and 3
Case III between layers 3 and 4
Case IV between layers 4 and 5
Case V between layers 5 and 6
Case VI between layers 6 and 7
Case VII between layers 7 and 8

Table 6.3: The damage locations in the composite plate.
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Figure 6.10: The time histories of the voltage acquired by the sensor for different damage scenarios:
the delamination is located in position 1 through 7 (parts (a) through (g)). The non-damaged case
is also shown in part (h).
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[32]:

cR1 = 0.862 + 1.14ν13
1 + ν13

cS1 = 5367.12 m/s (6.12)

where the 1 subscript means that the value of the Young’s modulus estimated in the fibers
direction is used in the computation of the Rayleigh (cR) and S waves (cS) speeds (it is
worth recollecting here that the first layer of the laminate has 0o-oriented fibers, so that in
the 2D model at hand, the value of the stiffness modulus in the first layer in the horizontal
direction is exactly E1). The estimation of cR1 from the numerical results can be easily
obtained dividing the traveling distance s = l-r+d/2 (i.e., the difference between the sensor
middle radius) and the actuator radius, and the time corresponding to the appearance of
the mentioned peaks in Fig 6.10. Results are shown in Fig 6.11: the numerically estimated
speed of the analyzed waves appears to be very close to that theoretically obtained in Eq.
(6.12), with an average value of cR = 5266.07 m/s and a percent difference of 1.8%. This
proves that the considered wave is a Rayleigh wave.

The most interesting feature shown in Fig. 6.10 consists, however, in the appearance
of different peaks in the time histories of the voltage delivered by the sensor: in particular,
a progressive time shift in their rise in the output signal is observable as the considered
delamination is located in a deeper position through the plate thickness. It is important to
notice, however, that no such peaks can be observed in the time histories associated with the
damage cases I and II (Fig. 6.10 (a) and (b)), while some structure similar to the analyzed
ones can be observed in Fig. 6.10 (c) (damage case III).

The analysis of the propagation speeds of the first and second peak appearing in Fig.
6.10 (d)-(g) similar to that carried out for Rayleigh waves, together with the theoretical con-
siderations made in Chapter 4, leads to the identification of those waves as the P and S waves
which return to the upper surface of the plate once they are reflected by the delamination /
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Figure 6.11: The theoretically (dot line) and numerically (columns) estimated values for the
Rayleigh cR1 (a), Primary cP3 (b) and Secondary cS3 (c) wave speeds for different damage scenarios.
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Figure 6.12: The time history of the voltage acquired by the PZT sensor is shown for the damage case
VI: precise time intervals separate the different peaks, namely those driven by the same propagation
speeds of P- and S-waves. Mode conversion can also be observed.

the lower surface of the laminate (see Fig. 5.4). We have that

cP3 =
√

2λ3 + µ3
ρ

= 2843.01 m/s (6.13)

cS3 =
√
µ3
ρ

= 1508.69 m/s

while the numerically estimated (average) values for the same quantities are cP3 = 2657.15
m/s and cS3 = 1453.18 m/s respectively, with a difference of -6.54% and -3.65% with respect
to the values in Eq. (6.13) (Fig. 6.11(b) and (c)). It is important to stress that the Lamè
constants in the through-the-thickness direction λ3 and µ3 are considered in the theoretical
calculations, since P and S waves propagate essentially in the normal direction.

An additional evidence that leads to conclude that the considered waves are P and S
waves is given by the study of the time intervals between the main peaks appearing in Fig.
6.10 and the subsequent peaks which appear afterwards. In Fig. 6.12 the time history of
the voltage acquired by the PZT sensor is shown for the damage case VI. Here it is made
clear that precise time intervals separate the different peaks, namely those driven by the
same propagation speeds for P and S waves. Finally, mode conversion phenomena can also
be observed in Fig. 6.12. The progressive increase in time for the P wave and the S wave to
arrive at the upper surface of the plate and thus to be acquired by the sensor as the considered
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delamination is located deeper in the laminate leads to define the time lag between the times
of arrival of the two waves as an index of state of damage of the structure, at least for the
cases ranging from IV to VII. The other damage scenarios will be discussed subsequently.
An index similar to that already introduced in Section 5.1 can be here adopted:

ToFn = 100 · TPn − TSn

TPh
− TSh

(6.14)

where TP and TS represent the time of arrival of P and S waves, respectively: the n and the
h subscripts denote the damage case number and the healthy configuration of the system.

Results are shown in Fig 6.13: a regular increment in the values of the ToF can be noticed.
In order to ascertain the role of the delamination position in determining the observed
variations in the times of arrival of P and S waves, some theoretical considerations can be
made. If the varying propagation path traveled by the waves is assumed to be represented as
the diagonal of a rectangle having one side of constant length (the actuator-sensor distance
x∗

1) and the other side which is linearly incremented (the plate top surface-delamination
distance x∗

3n
), a theoretical variation of the type

TP,Sn =

√
(x∗

1)2 + (x∗
3n

)2

cP,S3

(6.15)
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Figure 6.13: The ToFn estimated for the different damage scenarios: column 8 represents the
undamaged case. Bars from 1 to 3 indicate the simulated response of the system for cases I, II, and
III. The dotted line shows the variations of the ToFn associated with the theoretically estimated
values of the times arrival TP,S of P and S waves reported in the figure.
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for the times of arrival of primary and secondary waves is obtained. Such variation is shown
in Fig. 6.13 as a dotted black line: the good agreement observed with the obtained numerical
results is an evidence that it is the delamination location (x∗

3n
in (6.14)) that regulates the

time of arrival of P- and S-waves at the plate upper surface and acquired by the sensor.
In Fig. 6.13 the simulated results for the damage cases I, II, and III when a phenomenol-

ogy similar to the other cases was obtained are also shown. As already stated, differently
from the other case studies, no primary or secondary waves appear in the associated time
histories of the voltage: the study of this particular behavior is addressed in the next Section.

6.1.5 The transverse resonance effect - Definition of the SHM routine

An analysis of the time histories of the acquired voltage for the different damage cases in
Fig. 6.10 shows that two main phenomenologies can be detected in the system response:
for cases IV to VII, voltage peaks corresponding to the arrival of primary and secondary
waves (as well as of reflected and mode-converted waves) are clearly visible, together with
the appearance of wave structure corresponding to a generated Rayleigh wave which seems
not to be affected by the presence of the delamination. For cases I and II, instead, no peaks
corresponding to P and S waves are detectable: Rayleigh waves are still present but they
appear to be superimposed to a more complex wave structure. In damage case III small
peaks are visible but they do not seem to correspond to the appearance of P-waves or S-
waves both in terms of propagation speed and delamination location, thus representing a
transition between the two main observed behaviors.

The study in the frequency domain of the different time histories provides us with some
means of interpretation of the obtained results. The power spectral density (PSD) of the
acquired output signals and of the excitation signal is shown in Fig. 6.14: here, a qualitative
analysis of the data reveals that the PSD associated to damage scenarios characterized by
surface delaminations feature a remodulation of the frequency content of the signal, with
the appearance of peaks at frequencies different from the main one (namely, 8 MHz). In
particular, it is apparent that the deeper the delamination is located in the laminate, the
closer the acquired voltage becomes in terms of frequency content to the input signal, with
most of the power gathered about the excitation frequency.

A more quantitative analysis of this phenomenon can be achieved if the power content
of the different output signals in the -3dB bandwidth about the main frequency of 8 MHz is
calculated and then compared to the same quantity estimated for the input signal, as shown
in Fig. 6.15. Here an additional evidence of the observed dual behavior of the system can
be seen: while about 40% of the input signal power content remains confined in the -3dB
bandwidth about 8 MHz for the output signals associated to damage cases IV to VII (on
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Figure 6.14: The power spectral density (PSD) of the acquired voltage for the different damage
cases considered (black lines) and of the excitation signal (red line).

average), less that 10% of the described quantity stays in the mentioned bandwidth for cases
I and II, implying that a strong remodulation of the power content in the frequency domain
has taken place. Again, a transition behavior is observed for case III.

An interpretation of the described phenomena can be achieved if the effects of wave
interference in the plate thickness are considered. As already seen in Chapter 4, the semi-
circular P- and S-waves emanating from the piezoelectric actuator can be thought of as the
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Figure 6.15: The percent power content of the output voltage in the -3 dB bandwidth about 8 MHz
with respect to the same quantity estimated for the excitation signal.
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Figure 6.16: The transverse resonance effect in the plate: the plane waves in which the semicircular
primary and secondary waves (in solid and dotted line, respectively) can be decomposed are reflected
at the boundaries and are superimposed to the arriving waves, giving rise to a constructive and
destructive interference which can modulate the power content of the original signal in the frequency
domain.

envelope generated by a series of elastic plane waves propagating in different directions from
the upper limit of the domain. When these waves meet the lower boundary, they are reflected
(generating a wave of the other type, P or S, to fulfil the stress free condition) and start
propagating in the opposite direction. In so doing, they get superimposed to the portion of
the signal which is still propagating downward, giving rise to an interference effect [82, 91].
It can be demonstrated, through the use of simple trigonometric formulas [32], that only
those waves that can replicate themselves being reflected at the boundary are able to survive
and thus get propagated further in the in-plane direction of the plate, while a destructive
interference tends to erase the rest of the waves. This phenomenon, which is driven by
the incident angle of the plane waves in which the P and S waves can be decomposed,
leads to the selection of certain plain waves over the others, which eventually contribute to
generate standing waves in the thickness direction, and propagating in the in-plane directions.
These standing waves constitute the propagation modes of the Rayleigh-Lamb waves: the
described phenomenon is know as transverse resonance [82, 84, 32, 91, 93] (see Fig. 6.16).
A consequence of the transverse resonance is that the power content of the initial wave is
redistributed among the different modes that are activated by the excitation signal [135], as
it is shown by Fig. 6.17 [139].

The considerations made above allow to consistently interpret the obtained results. When
the delamination is located close to the plate upper surface, the thickness of the portion of
the domain through which the waves can propagate becomes small enough with respect to
the actuator-sensor distance (cases I and II), so that the number of reflections at the bound-
aries for P and S waves that can take palace before the sensor is reached is high enough to
cause an effective modulation of the power content of the signals. On the contrary, when
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the delamination is located in a position across the plate thickness so that the traveling
distance for P- and S-waves in the laminate thickness becomes large enough with respect
to the actuator-sensor distance (cases IV to VII) so that the effects associated to the trans-
verse resonance are negligible, the power content of the signal does not suffer any evident
modulation in the frequency domain with respect to the PSD of the excitation signal.

The obtained results furnish additional fundamental elements in the description of the
onset and propagation of the PZT-generated elastodynamic field, paving the way to a refine-
ment of the SHM strategy described in Chapter 5. Two different phases are well now defined
in the proposed routine: (i) a first phase in which the PSD of the signal is extracted and
its -3dBp power content is estimated, enabling the practitioner to state whether a surface
delamination is present (cases I, II and III); (ii) a second phase in which the ToFs of P- and
S- waves appearing in the signal are estimated to ascertain the presence and location of the
delamination.

6.1.6 Optimization of the sensing system

An optimization procedure based on the use of differential evolutionary algorithms (EAs)
was described in Section 5.4. The aim of this process is the enhancement of the damage
detection capabilities of the designed SHM routine. Here the key element for identifying the
presence of a delamination in the laminate thickness consists in the acquisition of the voltage
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Figure 6.17: The power spectral density (PSD) of the A0 and S0 modes after propagating a certain
distance (original excitation frequency = 300 KHz) [139].
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peaks associated with the arrival of the damage/lower plate boundary-reflected primary and
secondary waves. In this sense, an improvement in the detectability of the mentioned peaks
in the voltage time histories acquired by the piezoelectric sensor would imply an higher
sensitivity of the sensing system with respect to the presence of damage.

Denoting by V P
i , V S

i and V RMS
i the peak values in the voltage output of the PZT sensor

and its root mean square (RMS) value, respectively, the objective function for the differential
evolutionary optimization algorithm above described was already defined as

OF =
I+1∑
i=1

[
aP

i

(
V P

i

V RMS
i

− 1
)

+ aS
i

(
V S

i

V RMS
i

− 1
)]

(6.16)

where I + 1 represents the number of different damage scenarios evaluated considering the
same actuator/sensor configuration in terms of the defining geometric parameters plus the
undamaged case: for the case at hand we have I + 1 = 8. The parameters aP

i and aS
i were

defined as the weights in the sum which take into account the wavefront attenuation with the
traveled distance affecting P and S-waves: the farther is the damage location with respect to
the actuator sensor pair, the higher is the value of the related weight aP,S

i . The expressions
for the displacements fields associated with P- and S-waves in Equations (4.75) and (4.76)
were characterized by a

√
r−1 dependence on the propagation distance: for this reason, the
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Figure 6.18: The variations of the OF (averaged over five different genes contained in each popu-
lation) with respect to its value at the 10th iteration.
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weights aP
i and aS

i are defined as

aP
i = aS

i =
√
i · hlayer (6.17)

where hlayer represents the thickness of the single lamina of the plate.
The geometric parameters chosen to be optimized are the sensor span d and its middle

radius rs = l+d/2: ten different populations of five elements each are generated implementing
the optimization algorithm described in Section 5.4 using MATLABr (Table 6.4). Upper
and lower bounds are set for d and rs values, to prevent the sensor from overlapping with
the actuator and from being excessively large: we have that rs − d/2 − r − rtol = rmin

and rs + d/2 = rmax (see Fig. 6.2, where rtol represents the minimum acceptable distance
between the sensor and the actuator. We let rtol = 0.5 mm, rmin = 2 mm, and rmax = 10
mm . Results are shown in Fig. 6.18: here the variations of the OF (averaged over the five
different genes contained in each population) with respect to its value at the 10th iteration
indicate that an optimal configuration of the sensor is reached at the 8th iteration and it
is then maintained in the following generated populations. Moreover, a 20% increase with
respect to the initial OF value is noticeable. The increase in the voltage values of the P-
and S-waves peaks in the acquired response of the system is shown in Fig. 6.19, where no
significant increase of the other portions of the system can be observed, implying an enhanced
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Figure 6.19: The time histories of the acquired voltage for the basic (red line) and for the optimized
(black line) model: the resposnse of the system for the damage cases IV (a) and VI (b) and for the
undamaged structure (c) are shown.
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Population 0
d rs

0.1000 0.3000
0.2000 0.4000
0.3000 0.5000
0.4000 0.6000
0.5000 0.7000

Population 10
d rs

0.2136 0.2881
0.2136 0.2881
0.2136 0.2881
0.2136 0.2881
0.2136 0.2881

Table 6.4: The trial population (left) and the obtained population after ten iterations (right): all
the elements of the 10th population are the same, indicating that the convergence of the algorithm
convergence is achieved.

detectability of the delamination.
Finally, it is important to stress that the phenomena observed for the basic configuration

of the sensor are maintained also in optimized case: the modulation of the power content of
the output signals in the frequency domain allow to identify the presence of a surface delam-
ination in the plate, as shown in Fig. 6.20. The presence and position of the delamination is
detected when deeper damages are considered through the estimation of the ToFn, as shown
in Fig. 6.21.

6.1.7 Delamination extent and off-axis distance

In the damage detection procedure described in the previous sections several damage sce-
narios are investigated, considering a delamination located at different depths across the
composite laminate thickness. All the damage cases are characterized by a value of the ratio
between the delamination and the actuator diameters of about 3. Moreover, all the studied
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Figure 6.20: The PSD fraction of the output
signals in the -3dB bandwidth.
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Figure 6.21: The estimated ToFn for the
different damage cases of the plate.
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Figure 6.22: The time histories of the acquired voltage for the damage cases II (a) and VI (b) and
the delamination dimensions A, C and F in Table 6.5 are shown: P-waves and S-waves are circled
in blue and red, respectively (rising waves = solid line, disappearing waves = dotted line). Multiple
reflections are circled in black.

delaminations are centred with the actuator, being positioned exactly underneath the pair
of piezoelectric transducers attached on the plate surface.

In this Section, the effects of a variation of the damage extent and of an off-axis distance
of the delamination position on the voltage acquired by the sensor are investigated. Firstly
the delamination diameter is varied assuming the values reported in Table 6.5, ranging from
one quarter to four times the sensor diameter. The effects of such variations are shown in Fig.
6.22 for the damage cases II (a) and VI (b), respectively. When the delamination diameter
is progressively increased in II, a gradual disappearance of weak voltage peaks associated, in
terms of their time location, to the arrival of P- and S-waves at the plate upper surface can
be observed: in particular it is apparent that P-waves are the first to vanish as a result of the
increase of the delamination dimensions, while S-waves are still present in the voltage time
histories. This can be due to the different nature of the displacement fields associated to the

Test Case 2r/b
A 0.25
B 0.5
C 1
D 2
E 3
F 4

Test Case 2r/e
G 0.5
H 1
I 2
L 3

Table 6.5: The different analyzed test cases for studying the effects of the delamination extent (left)
and the off-axis distance (right) on the SHM procedure.
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Figure 6.23: The time histories of the acquired voltage for the damage cases II (a) and VI (b) and
the off-axis distance G, I and L in Table 6.5 are shown: P-waves and S-waves are circled in blue and
red, respectively (rising waves = solid line, disappearing waves = dotted line). Multiple reflections
are circled in black.

propagation of primary and secondary waves: P-waves space,in fact, feature the generation
of a wavefront located at the center of the aperture, while S-waves appear to propagate
from the sensor edges (see Chapter 4). When the delamination diameter becomes twice
as large as the sensor diameter, the behavior previously analyzed is obtained. A similar
phenomenology is observable when the damage case VI is analyzed (Fig. 6.22 (b)): here,
as the delamination diameter is increased, a progressive transition of the acquired voltage
in terms of appearance and locations in time of peaks associated to the arrival of P- and
S-waves, from the undamaged case to the damage case VI is noticed.

The obtained results for all cases reported in Table 6.5 lead to conclude that a delamina-
tion extent equal to twice the actuator diameter constitutes the smallest damage (regardless
of its position in the plate thickness direction) that can be detected by the proposed SHM
procedure. When smaller delaminations are considered (as in (a1)), the system response
cannot be distinguished from the one obtained in the undamaged case for arbitrary positions
of the damage (from I to VII), making the delamination not detectable.

In the analysis of the effects of the presence of an eccentricity between the delamination
and the actuator centers, the four cases (G to L) shown in Table 6.5 are taken into account.
Results can be observed in Fig. 6.23, for the damage cases II (a) and VI (b), respectively.
When the off-axis distance is progressively increased in II, a gradual appearance of weak
voltage peaks associated, in terms of their time location, to the arrival of P- and S-waves at
the plate upper surface can be noticed. Differently from what is observed when the effects
of the damage extent is considered, here P-waves are the first to appear in the voltage time
histories (Fig. 6.23(a2)) as a result of the shifting of the delamination location, while S-waves
arrive only afterwards (Fig. 6.23(a3)). As before, this behavior is be due to the different
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nature of the displacement fields associated to the propagation of primary and secondary
waves. When the off-axis distance becomes large enough so that the delamination is no
more included in the portion of the domain which lays underneath the actuator-sensor pair,
the response of the system is no longer properly distinguishable from that obtained in the
undamaged case. A similar behavior is observable when the damage case VI is analyzed (Fig.
6.23 (b)): here a progressive transition of the acquired voltage in terms of appearance and
locations in time of peaks associated to the arrival of P- and S-waves, from the undamaged
case to the damage case VI, as the delamination diameter is increased, is noticed.

The obtained results for all cases reported in Table 6.5 lead to the conclusion that when
an off-axis distance is three times the actuator diameter between the delamination center
and the actuator center, the system response cannot be distinguished from that obtained in
the undamaged case for arbitrary positions of the damage (from I to VII): in this case the
delamination can no longer be detected.

6.2 The 3D model

The implementation of a 2D physics-based numerical model allowed to gain a better under-
standing of the phenomena related to the generation and propagation of elastodynamic fields
in an eight-layer laminated composite plate, and to analyze in depth the interaction of pri-
mary and secondary waves with a delamination located in the laminate at different depths.
In particular, the study of the changes in the system response due to variations of the delam-
ination position and the rise of effects associated to the interference of P- and S-waves in the
plate thickness led to the formulation of a two-phase SHM strategy, in which the presence of
surface or deep delaminations is ascertained through the analysis of the frequency content
and the ToFs of the acquired output signals.

It must be highlighted, however, that the mere implementation of a 2D numerical model
is not only possible, but also sufficient to complete the analysis of a given problem (from the
numerical point of view) only if three-dimensional effects can be considered negligible. The
steep increase of computational costs in terms of time and numerical resources associated
to the implementation of complex 3D models makes this possibility very appealing, leading
to the realization of reduced-order models. In the present problem, the anisotropy of the
model associated to the presence of differently oriented carbon fibers in the laminae, repre-
sents a principal source of effects connected to the three-dimensional nature of the problem.
One main consequence of such anisotropy of the propagation medium is a fiber orientation
dependence of the wave propagation velocity, with particular reference to Rayleigh waves,
which are less subject to the averaging effect of the lamination sequence since they travel in
the plate surface. By traveling mainly in the plate thickness direction, no strong orientation
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a) b)

Figure 6.24: The geometry of the 3D model of the laminate with the piezoelectric actuator-sensor
pair is visible on the right (a) and the teflon insert simulating the presence of a delamination in blue
(b).

dependence of the propagation velocity of P- and S-waves is expected.
It is apparent, however, that the 2D model doesn’t take account for such effects as they

are neglected by the invoked cylindrical symmetry constituting the theoretical basis of the
model itself. For this reason, the implementation of a 3D numerical model becomes necessary
step of a more thorough study of the considered phenomena.

6.2.1 Model description

The geometry of the 3D model of the composite laminate is shown in Fig. 6.24 (a): it can
be thought of as the assembly obtained by a revolution of the 2D model discussed in the
previous sections about an axis normal to the plate midplane and passing through its center.
A cross section of the 3D model containing the axis of revolution is thus characterized by the
same geometric parameters defined for the 2D model reported in Tables 6.1 and 6.2, both
for the laminate and the piezoelectric transducers. The PZT sensor, in particular, is defined
by the optimal values obtained in Section 6.1.6 for its span and middle radius d and rs,
respectively. Also the electromechanical properties of the model coincide with those selected
for the two-dimensional numerical analyses. Boundary conditions similar to those adopted
for the 2D model are implemented, with the exception of the constrains on the displacements
at the model edges, which are assumed to be clamped. Finally, the delamination presence
is simulated inserting a teflon-made domain between the laminate layers, as shown in Fig.
6.24 (b).

The mesh for the 3D model is obtained as the revolution of that adopted in the two-
dimensional case (for which a convergence analysis in the time and space domains is per-
formed, see Section 6.1.3) about the direction defined by the unit vector normal to the plate
midplane and passing through its center. Due to its demanding features in terms of required
computational resources, a limited convergence analysis in the time and space domains is
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Figure 6.25: The global (left) and point-wise (right) convergence of the voltage output of the 3D
numerical model: the analysis is arrested before convergence is confirmed.

performed for the 3D model. The value of the space step obtained as result of the conver-
gence analysis for the 2D model, in fact, represents the frontier of the feasibility for the 3D
numerical anlyses, since a further refinement of the model would imply too large computa-
tional times. Due to these facts, the convergence study for the three-dimensional model is
arrested before numerical convergence is achieved, as shown in Fig 6.25. The accordance of
the obtained numerical predictions with the results of the 2D simulations, however, is indeed
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Figure 6.26: The voltage time histories of the 3D numerical model for damage locations I (a), III
(b) and VI (c).



6. Numerical Analysis and Formulation of the ultrasonic SHM Procedure. 108

a good indication of the validity of the performed analyses.

6.2.2 Results and discussion

Results of the three-dimensional numerical simulations are shown in Fig. 6.26: here, in
particular, the time histories of the voltage (acquired in the direction defined by the carbon
fibers of the first layer, as in the 2D problem) for damage scenarios I (a), III (b) and VI
(c) are reported. One major observation is that a behavior similar that obtained in the
two-dimensional analyses can be identified: as in the previous numerical simulations, a two-
regime phenomenology of the system response is present. Damage cases I and II deliver a
time history of the output voltage characterized by the presence of a waves group in which
a peak associated to the propagation of Rayleigh waves can be identified, together with a
more complex wave structure which can be related to the effects of the interference of P-
and S-waves. Moreover, a simultaneous absence of the peaks associated to the arrival to the
plate upper surface of reflected primary and secondary waves is noticed. When damage cases
ranging from IV to VII are taken into account, the appearance of primary and secondary
waves in the voltage output signal is noticeable: again, a transition between the two regimes
is observed in damage scenario III (b).

These qualitative considerations are confirmed by Fig. 6.27, where the percent of PSD
in the -3dB bandwidth about the 8 MHz frequency in comparison with the same quantity
estimated for the input signal is shown. As for the 2D problem, a strong modulation of
the power content of the output signal is observed when surface delaminations are analyzed
(damage scenarios I and II); if the delamination is located deeper in the plate, instead, a
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Figure 6.27: The ratio between the power content of the output and input signals in the -3dB
bandwidth about 8MHz (%).
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Figure 6.28: The ToFn estimated for the different damage scenarios: column 8 represents the
undamaged case. Bars from 1 to 3 indicate the simulated response of the system for cases I, II, and
III.

distribution of the power among the different frequencies closer to the one estimated for
the excitation signal is present. If the designed SHM routine is implemented to its second
phase, estimating the time lag between the arrival of P- and S-waves at the sensor location,
a behavior similar to that observed for the 2D cases is obtained, as shown in Fig. 6.28. Here,
in fact, a strong dependence of the ToF on the delamination position is again found, enabling
the identification of the damage location in the plate thickness when deep delaminations are
analyzed. As already stated, no such analysis can be performed for surface damages, whose
presence but not their exact location in the structure thickness can be detected.

Differently from the two-dimensional case, however, the peaks in the voltage signal ac-
quired by the piezoelectric sensor associated to P- and S-waves appear to be longer in time
and less definite, as the 4.5 cycles structure of the input signal is hardly recognizable in
them. This particular feature is associated to slightly different time of arrival of primary
and secondary waves at the sensor location due to the anisotropy of the propagation medium.

A more quantitative analysis of the dependence of the wave propagation velocity is carried
out through a comparison of theoretical and numerical analysis: in particular, for Rayleigh
waves, extending Eq. (6.12) on the fiber orientation (see Section 6.1.4) yields:

cRα = 0.862 + 1.14ν13
1 + ν13

cSα (6.18)

where cRα and cSα are the propagation velocities of Rayleigh and S-waves estimated in the
direction making and angle α with the carbon fibers orientation of the first layer. We can
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thus write that

cSα =
√
µα

ρ
=
√

Eα

2(1 + ν13)ρ
(6.19)

The value of Eα obtained is the laminate theory described in Section 5.6 is given by

Eα = (E1E3)
(E3 cos4(α) + E1 sin4(α) + ((4 + 2ν13)E3) sin2(α) cos2(α))

(6.20)
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Figure 6.29: The theoretical (solid line) and numerical (circles) estimations for the Rayleigh wave
speed at different orientation with respect to the direction defined by the carbon fibers constituting
the first layer of the laminate. The time histories of the voltage acquired at 0, 45 and 90 degrees are
also shown.
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where the values of E1 and E3 are obtained for α = 0 and α = 90o, respectively. The
variations of cRα with the considered propagation direction are shown in Fig. 6.29 with a
solid black line: here numerical estimations of the Rayleigh velocity (obtained associating
the peaks appearing in the voltage with the propagation distance, as done in the 2D case) at
angular intervals of 15o are denoted by white circles. The obtained good agreement between
theoretical and numerical results, besides giving evidence of the validity of the proposed
model, shows that, as expected, strong dependence of Rayleigh surface wave propagation
characterizes the 3D model. The main consequences of such dependence is shown in the
voltage time histories collected at α = 0, 450 and 90o, respectively, and reported in Fig.
6.29. A careful observation of these signals reveals that while almost no change due to the
different considered orientation affecting the location in time of P- and S-waves (and of the
associated reflection/mode conversion phenomena) is noticeable, an apparent large variation
of the Rayleigh wave location in the mentioned time histories takes place. Such change is
dramatic when a 90o orientation is considered, as the Rayleigh wave arriving at the sensor
location is superimposed to primary and secondary waves, making it impossible to identify
them in the signal, and thus preventing the estimation of the associated ToF.

A result of paramount importance in the design of the SHM routine is thus achieved
through the analysis of the three-dimensional effects associated to the anisotropy of the
propagation medium: the proposed damage detection strategy is strongly influenced by the
effects induced by the carbon fiber orientation on the propagation of the surface component of
the generated elastodynamic field. In this sense, the choice of an appropriate direction with
respect to the stacking sequence of the analyzed composite laminate for the acquisition of the
voltage output is important to guarantee the effectiveness of the proposed SHM approach.



Chapter 7

Experimental validation of the
SHM routine

The numerical investigations carried out in the previous chapter allowed to gain a better
understanding of the phenomena associated to the generation and propagation of elasto-
dynamic fields radiating from a piezoelectric actuator. In particular, a transition between
a guided-wave like response of the system and a behavior characterizing the propagation
of primary and secondary waves in elastic half spaces is observed, with the delamination
position regulating such transition between the two different phenomenologies through the
enhancement or the attenuation of the effects associated to ultrasonic interference.

The study of such dual phenomenology in the system behavior allowed the definition
of a two-stage SHM routine, in which a first analysis of the power content of the signals
acquired by the PZT sensor is performed to ascertain the presence of surface delaminations,
while a subsequent estimation of the time lag between the arrival of P-waves and S-waves at
the sensor location allows to detect possible delaminations located in deeper regions of the
structure.

The analysis of the effects associated to delamination extent and to the presence of an
eccentricity between the actuator-sensor pair and the damage location revealed important
limitations of the proposed SHM approach. It was found that delaminations smaller than
twice the actuator diameter are not detectable by the described procedure, while no possi-
bility of identification the damage is granted if the delamination is not located in the portion
of the domain which lays beneath the transducers pair. Besides results, three-dimensional
effects caused by the inner anisotropy of the propagation medium were analyzed, unfold-
ing an important dependence of the obtained results on the orientation of the carbon fiber
constituting the surface portion of the laminate, and thus on the point of acquisition of the
voltage from the piezoelectric sensor.

112
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Figure 7.1: The experimental setup for the tests preformed to validate the proposed SHM routine.

The main goal of this chapter is to describe the validation of the numerical results from an
experimental point of view. To this end, an extensive experimental campaign was performed:
several different specimen were tested and a large amount of data is collected following a
precise test protocol, so as to achieve a good statistical consistency for the obtained results.
Due to the complexity of the experimental tests, no perfect quantitative match with the
numerical predictions is searched here; instead, confirmation of on the physic phenomena
theoretically and numerically analyzed is demonstrated

7.1 Preliminary experimental tests

The conducted experimental campaign consists of two different phases: first, validation of the
setup (including the characterization of the piezoelectric transducers) and the SHM routine
in the isotropic case (i.e, aluminum plates) is performed; then, composite laminates with
teflon inserts simulating the presence of the delaminations are investigated. The choice to
analyze the behavior of the PZT transducers (in particular of the piezoelectric actuator)
is important in view of the design of the optimal frequency of the excitation signal to be
used for the damage detection procedure (see Sections 5.5.2 and 6.1.2). The study of the
generation and propagation of elastodynamic fields in aluminum plates is carried out, instead,
to test the feasibility and the effectiveness of the proposed SHM routine in a less complex
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case represented by an isotropic domain of propagation for the ultrasonic waves, where
delaminations are introduced using a special resin, as shown in the following sections.

7.1.1 Description of the experimental setup

To perform the experimental tests, different pieces of equipment are used: a Rigol DG-
1000 arbitrary waveform generator with a frequency bandwidth of 100 Hz - 200 MHz and a
sampling rate of 1 MSa/s is adopted to generate the 8 MHz 4.5 cycles tone-burst described
in Section 6.1.2 (Fig. 7.1). Once generated, the excitation signal is not fed as input to a
RF power amplifier, as the small entity of the voltage amplitude to be given to the PZTs
(15 Volts) and the small size of the transducers (the actuator diameter is 3 mm) together
with the associated electric impedance do not make necessary the use of a power amplifier.
Once generated by the sensor, the output signals are acquired using a Rigol DS-1000E digital
oscilloscope, characterized by a frequency bandwidth of 100 MHz and a sampling rate of 1
GSa/s, high enough to be able to detect the fast dynamics which take place in the analyzed
signals.

7.1.2 Characterization of the piezoelectric actuator
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Figure 7.2: The measured values of the fre-
quency for which a minimum in the impedance
absolute value is obtained for the piezoelectric
actuator: three different sets of measures are
shown (solid, dashed and dotted line, respec-
tively).

Specimen E[fres] (MHz) σ[fres] (KHz)
1 8.004 62.016
2 8.008 52.023
3 8.001 47.399

Final E[fres] (MHz) σ[fres] (KHz)
× 8.005 62.016

Table 7.1: Average values and standard devi-
ations of the resonance frequency for the three
sets of measures: the final adopted value of fres

(obtained averaging the values associated to the
three sets of measures) and its deviations σ (the
largest among the three previous values) are re-
ported on the bottom row.

The characterization of the piezoelectric actuator is driven by the need to identify the
resonance condition for which the electromechanical impedance assumes the lowest possible
value, so that the actuating capabilities of the transducer are enhanced if a input voltage at



7. Experimental validation of the SHM routine 115

that particular frequency is fed to the actuator. The identification of such optimal excitation
condition can be carried out by making use of an impedance analyzer: here, an Agilent 4294A
with an operational bandwidth of 40 Hz - 110 MHz is adopted.

The tests are performed giving to the actuator a logarithmic sweep signal ranging from
100 Hz to 100 MHz in 10 seconds, with a voltage amplitude of 15 Volts and a (nominal) value
of the output impedance of 25 Ohm. Ten measures for each of the three PZT actuators used
for the tests are acquired: the values of the frequency for which a minimum in the absolute
value of the measured impedance ∥Z∥ is obtained are shown in Fig. 7.2 and summarized in
Table 7.1. Here a final average value of fres = 8.005 MHz with a standard deviation of σ =
62.016 KHz is obtained: the frequency fres is thus selected for the excitation signal.

7.1.3 The isotropic case: aluminum plates

After the behavior of the piezoelectric actuator is investigated in terms of its electromechan-
ical properties, the SHM approach described in the previous chapters is tested on aluminum
plates. Analyzing the effectiveness of the proposed SHM routine on aluminum specimens
is part of a step by step validation process: the use of an isotropic propagation medium
allows to focus on the potential drawbacks associated to the practical implementation of
the hardware constituting the SHM system, overcoming the complex effects of anisotropy
characterizing composite laminates. In addition, the use of aluminum plates allows to adopt
a controllable and effective method of simulating the presence of the delamination in the
system. A schematic of the setup used for the tests is shown in Fig. 7.4: each of the two
analyzed specimens is composed of two aluminum laminae (see Table 7.2) bonded together
using a bi-component epoxy adhesive whose properties are reported in Table 7.3. The pres-
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Figure 7.3: The measured impedance absolute value ∥Z∥ of the piezoelectric sensor.
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Aluminum alloy 6061
Width (w) 1.40 ·10−1 m
Span (s) 1.85 ·10−1 m
Thickness (h) (2.00 ± 0.02) ·10−3 m
Young’s modulus E 72.10 GPa
Poisson’s ratio ν 0.301
Density 2700 kg/m3

Table 7.2: The geometrical and mechanical parameters of the aluminum specimens.

ence of a delamination is simulated removing the adhesive from a 1" × 1" (2.54 cm × 2.54
cm) portion of the bonding surface of the plates before inserting them in a mechanical press
where they are subject to a pressure of 0.1 bar for 15 hours (the resin drying time). In this
way, the fully-developed debonding effect associated to delaminations is reproduced. Two of
the actuator-sensor pairs described in the previous chapter are attached on the upper and
lower surfaces of the obtained specimen at the center of the no-bonding region, as shown in
Fig. 7.4. Two more PZT pairs are then mounted on the upper and lower surfaces of the
aluminum specimen in correspondence of the center of one of the two halves in which the
plate surfaces can be ideally divided (see Fig. 7.4), for a total of 8 PZT transducers used for
the two specimens realized for the tests. The choice of mounting the actuator-sensor pair on
both surfaces of the specimens (implementing a pulse-echo configuration, see Section 5.1) is
due to the fact that this way the number of available measures is doubled for a given number
of specimens.

To attach the piezoelectric sensor on the plates surface a silver-based bi-component epoxy
resin is used (see Table 7.3).A conductive adhesive is chosen because the piezoelectric trans-
ducers used for the tests have the electrodes placed on both upper and lower surfaces, im-
plying that a non-conductive bonding over the plate surface would result in the loss of the

Conductive resin CW2400
Volume resistivity 0.1 Ohm/m
Operative range -91oC to 100oC
Shear lap σ 22.10 MPa
Shore hardness > 70
Density 2850 kg/m3

Epoxy adhesive ITW Plastic Steel
Drying time 15 h
Operative range -72oC to 156oC
Young’s modulus E 2.46 GPa
Poisson’s ratio ν 0.400
Density 2170 kg/m3

Table 7.3: The physical properties of the conductive resin and the epoxy adhesives used in the
realization of the aluminum specimens.
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Figure 7.4: A schematic of aluminum specimens: the epoxy resin used to bond the two plates is
represented in red. The 1"×1" no-bonding zone is represented by the faded square in (a) and as a
white strip-like region in (b).

electric access to one of the electrodes of the transducers. Moreover, being the actuator and
the sensor both mounted on a conductive substrate represented by the aluminum plates, the
electrodes in contact with the laminae are used as ground, as shown in Fig. 7.5.

Actuator upper electrode 

Sensor upper electrode 

Common ground 

Conductive silver-based adhesive

Figure 7.5: A schematic of the electrical configuration of the PZT actuator-sensor pair.
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Figure 7.6: The time histories of the voltage acquired for the aluminum specimen: the healthy (a)
and the damaged case (b) are shown, respectively.

7.1.4 Results

Results are shown in Fig 7.6: the time histories of the acquired voltage for the healthy (a)
and the damaged structure (b) are reported, respectively. The analysis of the propagation
speed associated to the different peaks appearing in Fig 7.6 and reported in Table 7.4 as well
as the estimation of the time intervals between the different waves groups allow to identify
the several wave structures that compose the output signals.

Due to the inhomogeneity of the specimen, the estimation of the propagation velocity for
P- and S-waves is carried out as follows: first the theoretical values for P and S waves are
calculated as [32]

cPa =
√

2λa + µa

ρa
= 6408.4 m/s (7.1)

cSa =
√
µa

ρa
= 3204.2 m/s

cPr =
√

2λr + µr

ρa
= 1918.5 m/s (7.2)

cSr =
√
µr

ρr
= 636.1 m/s

where the a and r subscripts identify the aluminum plates and the epoxy resin, respectively.



7. Experimental validation of the SHM routine 119

The time of arrival of primary and secondary and Rayleigh waves are estimated as

TP = 4ha

cPa

+ 2hr

cPr

(7.3)

TS = 4ha

cSa

+ 2hr

cSr

where, as already seen, d indicates the actuator-sensor distance. The final values of the
propagation speed for primary and secondary waves can be obtained as

cP = Tp

4ha + 2hr
= 2697.2 m/s (7.4)

cS = Tp

4ha + 2hr
= 5911.1 m/s

while the Rayleigh wave speed turns out to be [32]

cRa = 0.862 + 1.14ν13
1 + ν13

cSa = 598.9 m/s (7.5)

Results are summarized in Table 7.4: here, the different wave speeds are estimated consid-
ering the values of the aluminum plates and resin layer thicknesses measured with a caliber
and reported in the same Table. The thickness of the resin layer, in particular, is obtained
measuring the thickness of the single aluminum laminae composing one specimen first, and
subtracting that value to the thickness of the overall specimen measured after it is removed
from the press. A good agreement between experimental results and theoretical predictions
is noticeable.

The estimation of the wave propagation speeds allow to identify a Rayleigh wave in the
system response, given by the voltage time histories in Fig 7.6, as obtained in the numerical
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Figure 7.7: The estimated ToF for the aluminum specimens: the analysis is conducted using the
PZT transducers mounted on the upper (a,c) and lower (b,d) surfaces.
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Test Number cR cP cS

Theory 2697(m/s) 5911(m/s) 2796(m/s)
1 2657 (m/s) 5843 (m/s) 2812 (m/s)
2 2659 (m/s) 5846 (m/s) 2816 (m/s)
3 2663 (m/s) 5842 (m/s) 2821 (m/s)
4 2632 (m/s) 5853 (m/s) 2825 (m/s)
5 2663 (m/s) 5851 (m/s) 2819 (m/s)
6 2671 (m/s) 5839 (m/s) 2823 (m/s)
6 2661 (m/s) 5837 (m/s) 2823 (m/s)
8 2659 (m/s) 5843 (m/s) 2823 (m/s)

Aluminum plate
Nominal value Tolerance
2.000 mm 0.200 mm
ha1 2.003 mm
ha2 2.009 mm
ha3 2.011 mm
ha4 1.995 mm
Resin layer
hr1 0.151 mm
hr2 0.137 mm

Table 7.4: The physical properties of the conductive resin and the epoxy adhesives used in the
realization of the aluminum specimens.

tests. Moreover, also in this case and due to the surface nature of this wave type, the Rayleigh
waves appear not to be affected by the presence of the delamination, both in amplitude and
in terms of their appearance in time. Differently to what was observed in the numerical
tests, however, here the appearance of P-waves in the healthy case precedes the arrival
of Rayleigh waves, in accordance to the different geometrical and propagation properties
of the analyzed specimens. Moreover, both the P-waves and the S-waves associated to the
undamaged case are still observable in the voltage time history of the case where the presence
of the delamination is simulated: these peaks however are sensitively smaller if compared
to the counterpart appearing as a consequence of the presence of the no-bonding zone in
the specimens. Once again, the time positioning of primary and secondary waves appears
to be an excellent indicator of the presence and position of a delamination in the structure,
as shown in Fig. 7.7. Moreover, the presence of multiple reflections and mode conversion
phenomena can be noticed also in this case, as shown in Fig 7.6 (a).

7.2 Tests on composite laminates

The geometrical and mechanical properties of the two T600s/G91 carbon fiber composite
laminates used as specimens in the subsequent phase of the experimental campaign are shown
in Table 7.5: as done for the numerical analyses, a [0o/45o/90o/135o]s configuration is here
considered. A schematic of the specimens is shown in Fig. 7.8: each one of the plate is ideally
divided into four quadrants at the center of which a 1"×1" teflon ply is inserted at different
depths in the structure, in between the composite layers to simulate the presence of a delam-
ination and to replicate the damage cases I to VII already analyzed in the previous chapter
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Figure 7.8: A schematic of composite specimens: the teflon inserts used to simulate the presence
of a delamination are represented in red. The 1"×1" delaminated zones are represented by the faded
squares in (a) and as red strip-like regions in (b).

(plus one undamaged case). As done for the aluminum specimens, two actuator-sensor pairs
are mounted in a pulse-echo configuration at the center of each delamination, one on the
upper and one on the lower surface of the plates, for a total of 32 PZT transducers mounted
on the two specimens. In this way, two sets of 8 PZT pairs constituting two actuating-sensing
systems disposed in a pulse-echo architecture can be defined depending on which surface of
the specimens they are mounted on: here and henceforth, the are referred to as the Top
and the Bottom configurations, respectively. Finally, as done for the aluminum specimen,

Composite plate T600s/G91
Span (w) 3.048·10−1 m
Thickness (h) 2.54 ·10−3 m
Lamination sequence [0◦/45◦/90◦/135◦]s
Young’s modulus E1 134.44 GPa
Young’s modulus E3 8.201 GPa
Poisson’s ratio ν13 0.301
Poisson’s ratio ν31 0.015
Density 1501 kg/m3

Table 7.5: Geometrical and mechanical properties of T600s/G91 composite laminates.
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Figure 7.9: ToF images of the two composite specimen: darker regions indicate the presence of
teflon inserts.

the PZT transducers are attached to the composite plates using the silver-based conductive
epoxy resin, connecting two electrodes to create a common ground made accessible thanks
to the use of the conductive resin, while the other two electrodes of the PZT pair constitute
the autonomous poles of the actuating-sensing system. The acquisition points on the PZT
ring-like sensors are located along the direction collinear with the orientation of the carbon
fibers in the first/last layer of the plate, so as to meet the same test conditions adopted in
the 2D numerical simulation and to avoid the onset of three-dimensional effects that can
make more difficult the detection of the damage, as shown in the previous chapter.

7.2.1 Validation of the composite specimens - ToF and MA analyses

Before proceeding with the tests, the composite laminates are subject to an ultrasonic scan
to ascertain the validity of the method adopted to simulate the presence of a delamination
in the structure, namely, inserting a teflon ply in between the composite laminae. To this
end, an AET-6 large-axis immersion scanner is used to perform a traditional ToF analyses
together with a maximum amplitude (MA) analysis of the specimen. ToF images are maps
of the time required for sound to travel to and back from the strongest reflector in the gate of
the scanner. Longer times indicate greater distance from the surface. MA images, instead,
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Figure 7.10: MA images of the two composite specimen: while a varying degrees of de-bonding is
clearly visible in the centers, the signal intensity is stronger at the edges of the inserts.

give a qualitative indication of the degree of delamination. Higher amplitude indicates a
greater degree of discontinuity.

ToF images (Fig. 7.9) show that Teflon inserts of nominally correct size and spatial
location are clearly visible in all plates: relative depth of inserts as determined from ToF
images indicates equidistant depth spacing between successive inserts in the plates. To
compare depths in the two different plates, the difference between the backwall ToF and the
insert ToF are used to normalize results. Under this paradigm, a shorter ToF indicates that
the feature is deeper in the structure, i.e., closer to the backwall/bottom of the stack. In
plate 1, the normalized ToF measurements are 0.3 µs, 0.5 µs, 0.7 µs and 0.9 µs for inserts 1,
2, 3, and 4, respectively. The values of 1.1 µs, 1.3 µs, 1.5 µs and 1.7 µs are found for inserts
5 to 7 in plate numbers plus the undamaged case. Results are reported in Table 7.6.

MA images (Fig. 7.10) show that the degree of de-bonding introduced in the laminates
via the Teflon plies is not homogenous over the insertion areas. A stronger signal intensity at
the edges of the inserts is noticeable: the insert centers, however, show higher signal intensity
than the background. This indicates that, even if a major degree of debonding at the edges
of the inserts is present, a varying degrees of de-bonding is clearly visible in the centers. An
additional linear delamination defect measuring 1.49 cm in length is noted on the lower left
of plate 1. A similar but smaller indication is observable in the lower right quadrant of plate
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Damage case ToF Damage case ToF
Plate ♯ 1 Plate ♯ 2
I 0.3 µs V 1.1 µs
II 0.5 µs VI 1.3 µs
III 0.7 µs VII 1.5 µs
IV 0.9 µs No Insert 1.7 µs

Table 7.6: The ToF estimated with an ultrasonic scan of the different damage cases in the two
composite specimens.

2, above and to the left of the Teflon insert.
A further consideration is that the ultrasonic scan of the composite specimens confirmed

the fact that the use of teflon inserts constitutes an effective method for introducing debond-
ing regions within a laminated structure, both in terms damage intensity (MA images) and
location in the plate through-the-thickness direction (ToF images).

7.2.2 The testing protocol

The experimental tests carried out on the composite specimens follow a suitable testing
protocol aiming at ensuring the necessary statistical consistency to the obtained results. A
set of ten different voltage acquisitions are performed for each actuator-sensor pair when

a) b)

Figure 7.11: The ten nondimensional values of ∥V ∥mean
i (a) and ∥V ∥max

i (b) estimated for a set of
acquisitions of the voltage output for the test on the composite specimens: the normal PDF associated
to a normal distribution of the said quantities are shown in solid line.
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the proposed SHM routine is implemented, for a total of 160 measures. In particular, the
maximum and the mean absolute value ∥V ∥ are estimated for each acquisition, allowing to
associate a standard deviation of such quantities to each acquisition set as

σ∥V ∥max =

√∑N
i=1(∥V ∥max

i − ∥V̄ ∥max)
N

(7.6)

σ∥V ∥mean =

√∑N
i=1(∥V ∥mean

i − ∥V̄ ∥mean)
N

(7.7)

where N=10, and ∥V̄ ∥max,mean represent the average values of the estimated maximum and
mean values ∥V ∥max,mean

i associated to each one of the 10 acquisitions constituting a set of
measures. Each set is repeated until the conditions

σ∥V ∥max,mean

∥V̄ ∥max,mean
< 10% (7.8)

are met, ensuring the statistical consistency of the acquired data: once a set of ten mea-
sures is obtained for a damage case, the average signal of the acquisitions is estimated and

Figure 7.12: The instrumented composite specimens with the SHM system.
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considered as the reference output voltage for the specific damage case. The ten nondimen-
sional values of ∥V ∥max

i and ∥V ∥mean
i estimated for a particular set are shown in Fig. 7.11.

Here the normalized PDFs associated to a normal distribution characterized by ¯∥V ∥max,mean

as mean values and standard deviations satisfying Eqs. (7.6) and (7.7) are reported in solid
black line. As shown, all the estimated data is gathered in the areas defined by the PDFs.

7.2.3 Results and discussion

The time histories of the voltage acquired for the two composite specimens (Fig. 7.12) are
shown in Figs. 7.13 and 7.14: the output signals obtained using the Top and the Bottom
configurations are reported, respectively. As done for the aluminum specimens or in the
numerical tests, the propagation velocity of the various wave structures appearing in the
voltage time histories is estimated to enable their identification. From a theoretical point of
view, the velocities are [32]

cP3 =
√

2λ3 + µ3
ρ

= 2715.8 m/s (7.9)

cS3 =
√
µ3
ρ

= 1449.1 m/s (7.10)

cR1 = 0.862 + 1.14ν13
1 + ν13

cS1 = 5433.7 m/s (7.11)

where the 3 and 1 subscripts indicate the direction normal to the plate surface and the
direction collinear to the orientation of the carbon fibers of the laminate first layer, respec-
tively. To estimate the velocities, the data reported in Table 7.5 are adopted. The values of
the propagation speeds obtained analyzing the experimental data are shown in Fig. 7.15: as
for the numerical tests, good accordance with the theory is obtained. Differently from the
previous cases, however, an underestimation of all propagation speeds is here shown.

Besides the estimation of the propagation velocities, the analysis of time intervals between
the different peaks appearing in the voltage time histories confirms the nature of the waves
structures as Rayleigh, primary or secondary waves. In this case, a lower number of multiple
reflection and mode conversion phenomena characterizes the system response if compared to
the numerical counterparts described in Chapter 6, revealing that a higher dissipation takes
place in the propagation domain.

The analysis of the voltage acquired in Figs. 7.13 and 7.14 shows again that two different
phenomenologies characterize the response in terms of wave propagation. The experimen-
tal data show that it is possible to distinguish a guided-wave-like behavior defined by the
presence of a complex wave structure which emerges in the voltage time histories associated
to the damage cases I and II. As noticed in in the numerical simulation, no peaks denot-
ing the arrival of P- and S-waves is observable in the acquired voltage. Damage cases IV
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Figure 7.13: The voltage acquired by the sensing system in the Top configuration for different
damage scenarios: the delamination is located in position from 1 to 7 (figures from (a) to (g)). The
non-damaged case is also shown (h).
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Figure 7.14: The voltage acquired by the sensing system in the Bottom configuration for different
damage scenarios: the delamination is located in position from 1 to 7 (figures from (a) to (g)). The
non-damaged case is also shown (h).
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Figure 7.15: The theoretically (dot line) and experimentally (columns) estimated values for the
Rayleigh cR1 (a), Primary cP3 (b) and Secondary cS3 (c) wave speed for different damage scenarios.
The data gathered using the Top configuration of the PZT transducers was used.

to VII (plus the undamaged case), instead, feature the appearance of voltage peaks which
represent the reflection of primary and secondary waves at the upper/lower surface of the
plate, as previously ascertained: a transition between the two behaviors is again found for
damage case III. The estimation of the signal power content gathered in the -3dB bandwidth
about the excitation frequency (8 MHz) with respect to the same quantity estimated for
the input signal reveals that also in this case two different regimes are present (Fig. 7.17:
when a surface delamination is present (namely, cases I, II and III), only the 10% percent of
such power is distributed in the mentioned frequency bandwidth, implying the presence of a
strong modulation of the power content of the excitation signal in the frequency domain due
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Figure 7.16: The time history of the voltage acquired by the PZT sensor for the damage case VI
in the Top configuration.
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a) b)

Figure 7.17: The ratio between the power content of the output and input signals in the -3dB
bandwidth about 8MHz (%) estimated using the Top (a) and Bottom (b) configurations of the PZT
transducers.

to interference effects, as discussed in Section 6.1.5. When the damage is located deeper in
the specimen or if it is not present at all (cases IV to VIII), the percent of the signal power
exhibited in the -3dB bandwidth about the 8MHz frequency rises up to the average value of
35%, as minor effects are due to the ultrasonic interference phenomena and P- and S-waves
appear clearly in the voltage time histories.

To ascertain the presence of a deep delamination, a further step needs to be done: as
shown in Fig. 7.18, the estimation of the ToF index is performed. Once more the analysis
of such index, giving a quantitative measure of the time lag existing between the arrival of
primary and secondary waves at the sensor location, provides a robust information about
the presence and position of the delamination in the thickness direction.

a) b)

Figure 7.18: The ToFn index estimated for different damage scenarios using the Top (a) and Bottom
(b) configurations of the PZT transducers. The dotted line represents the theoretical variations of
the ToFn (see Section 6.1.4).



Chapter 8

Conclusions

The objective of this thesis was to develop an innovative SHM technique that exploits PZT-
induced waves in composite laminates to detect the presence of delaminations. The SHM
technique here proposed is intended to set the initial stage of a broader approach to structural
health monitoring aimed at damage detection in composite plate-like structures based on the
exploitation of the damage-induced lag in the times of arrival of primary and secondary elastic
waves traveling in the plate thickness direction as the key mechanism for enhanced detection
capabilities.

The initial part of the work was based on the analysis of the theoretical problem address-
ing the generation and propagation of elastodynamic fields in plate-like structures, with
piezoelectric transducers used as excitation sources. With the aim of defining the mathe-
matical background needed to analyze the problem at hand, the point-source synthesis of
the pressure and velocity fields were first discussed in the acoustic case, allowing to revisit
the concepts of Green functions and far-field approximation in the solution of Helmholtz
equations. The next step was represented by the analysis of point-wise force density source-
generated elastodynamic fields in full space: here, the increase of the problem rank with
respect to the acoustic case has led to the definition of Green tensors of second, third and
fourth order, allowing to describe the solution of the elastodynamic problem in terms of radi-
ation characteristics, composed of primary (P) and secondary (S) waves emanating from the
source. Exploiting the linearity of the problem, the previously obtained mathematical tools
where then used to obtain a synthesis of the elastodynamic field generated by a finite-surface
force density source in the underlying half-space: in particular, the case of a synchronous
strip-like aperture characterized by a normal force density distribution and representing the
simplest model of a piezoelectric actuator was addressed. In such procedure, an integral
representation of the solution of the Rayleigh-Sommerfeld type was used adopting a spectral
plane wave decomposition of the second-rank Green tensor in half-space. As a result, the

131
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radiation characteristics defining the elastodynamic field generated by the PZT-like source
were finally obtained: here the propagation of P- and S-waves was described, and the pres-
ence of mode-conversion phenomena occurring at the domain boundary together with the
onset of Rayleigh waves was analyzed.

The detailed analysis of the physics involved in the generation of elastic waves through the
use of piezoelectric transducers has enabled the definition of an innovative SHM procedure
elaborated in the subsequent phase of the work. The time lag between the times of arrival
of PZT-generated P and S waves to the sensor location was adopted as means to detect
the presence of delaminations in composite laminated plate-like structures. Primary and
secondary waves traveling downward in the plate thickness direction from its upper surface
(where the PZT actuator is located) are reflected either by the plate lower surface, or, when
damage exists, by the delamination located in between the composite laminae. Affecting
the traveling path of P and S waves, the presence of the delamination was considered to
vary the time of arrival of the mentioned waves to the upper surface, where an additional
piezoelectric transducer acting as sensor is placed, implementing a pulse-echo configuration of
the proposed SHM routine. In particular, due to the different propagation speeds of primary
and secondary waves, the percent variations in the time lag existing between their arrivals at
the sensor location was identified as the key quantity of the damage detection mechanism.
To practically implement the described SHM approach, an innovative configuration of the
actuating-sensing system was designed, with a piezoelectric disk surrounded by a PZT ring
acting as actuator and sensor, respectively. Moreover, 8 MHz 4.5 cycles tone-burst signals
with a 15 Volts amplitude were adopted as excitation signal in the delamination detection
procedure. The frequency content of the signal, in particular, was chosen as ideal compromise
capable of satisfying the constraints imposed on the input signal wavelength by the reduced
value of the characteristic size of the damage to be identified (namely, the delamination
thickness) and the resonance condition of the actuator, which guarantees a magnification of
the actuating skills delivered by the piezoelectric disk.

The subsequent implementation of two- and three-dimensional numerical models using
the COMSOL Multiphysicsr software allowed to reach a better understanding of the phe-
nomena associated to the interaction of primary and secondary waves with the delamination
inserted in the system and simulated as a teflon ply located between the layers of the struc-
ture. To obtain such detailed information, the linear governing equations of an eight-layer
carbon fiber composite plate were implemented in strong form, together with the constitutive
laws of the composite laminates and the constitutive equations of the piezoelectricity char-
acterizing the behavior of the actuator-sensor pair. The possibility of directly prescribing
and receiving the input and output signals of the system, enabled a careful description of the
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electromechanical coupling which characterizes the behavior of the piezoelectric transducers.
Results of the numerical analyses have shown a precise correlation between the delam-

ination presence and position, and the (percent) values of the estimated ToF of P and S
waves, i.e., the above discussed time lag. In particular, it was ascertained that when a de-
lamination is present close to the surface area of the plate (namely, above the third layer
starting the count of the laminae from the surface of the plate where the PZT transducers
are mounted on), no peaks associable to the arrival of P and S waves are clearly visible
in the time histories of the acquired output voltage. Complex wave structures, where only
the Rayleigh waves can be identified, were obtained when the mentioned damage cases are
investigated. A subsequent analysis of the PSD of the acquired output signals revealed that
a substantial modulation of the power content of the analyzed output signals takes place
when a surface delamination is considered: only about 10% of the power of the input signal
contained in a -3dB bandwidth about the 8 MHz frequency is still present in the same band-
width when the output signals associated to surface delaminations were considered. A value
of 40% was found for the other damage cases (plus the undamaged case). Such modulation
in the frequency domain of the power content of the output signal is due to the ultrasonic
interference effects which are manifested as a consequence of the superimposition of primary
and secondary waves being reflected at the plate surfaces: these phenomena were found to
be particularly significant when the distance between the actuator and the delamination
surface is small if compared to the distance existing between the actuator and the sensor
edges. In fact, the ratio between such quantities was found to regulate a transition between
a guided wave-like behavior of acquired ultrasonic waves and a propagation of primary and
secondary waves in a half space-like domain. In this sense, a two-phase SHM procedure was
formulated: (i) first, the percent power content of the output signal in the -3dB bandwidth
about the 8 MHz frequency is estimated, so as to ascertain the presence of a surface damage;
(ii) then, the ToF of P and S waves is calculated, to detect both the presence and location of
deep delaminations in the through-the-thickness direction of the plate. Additional numerical
tests have shown that a delamination featuring a diameter which is twice the diameter of
the PZT actuator constitutes the minimum extent of an observable damage, while no delam-
ination can be detected when it is not located underneath the actuator-sensor pair. Finally,
the analysis of the numerical results obtained with the 3D simulations have shown that the
effects associated to the anisotropy of the analyzed propagation domain can limit the effec-
tiveness of the proposed SHM routine if the acquisition location is not chosen appropriately.
The different wave speeds of the several components appearing in the acquired voltage time
histories, in fact, can cause a superposition of such components making the interpretation of
the signal very hard to accomplish. In the analyzed case, in particular, an acquisition point
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over the piezoelectric ring-like sensor which is in line with the orientation of the carbon fibers
of the plate first lamina was chosen.

The experimental campaign subsequent to the numerical tests was characterized by the
investigation of both isotropic and composite specimens. In the first case, two aluminum
specimens were considered: an epoxy resin was used to bond together the surfaces of two pair
of plates, apart from a 1"×1" region where no resin was applied, thus creating a no-bonding
zone which simulates the presence of delaminations. The two specimen were then put in
a mechanical press to ensure an accurate adhesion of the plates. Results indicated that a
phenomenology similar to that observed in the numerical results is present, both in terms of
the estimated ToF (here only one damaged case was investigated, with the damage located
in the specimen midplane) with a reduction of about 50% of its value if compared to the
undamaged case, and in terms of the estimated values of Rayleigh, primary and secondary
wave speeds, respectively. In the second phase of the experimental tests, two carbon fiber
composite plates with a (0o/45o/90o/135o)s stacking sequence were analyzed: 1"×1" teflon
plies were inserted, during the manufacturing process, between the plate laminae, at the
center of each one of the four quadrants defined on the plates, for a total number of seven
damage scenarios plus an undamaged case. To enhance the statistical properties of the
tests, each damage case was analyzed twice: a PZT actuator-sensor pair was mounted on
the top and bottom surfaces of the plates, at the center of each quadrants, for a total of
16 PZT couples in the two specimens. Ten acquisitions for every actuator-sensor pair were
carried out, and repeated until the desired consistency was obtained: the average of the
collected signals was thus considered as representative of the analyzed damage scenario.
An ultrasonic analysis of the realized specimens has finally been carried out using a AET-6
large-axis immersion scanner, to perform a traditional ToF and a maximum amplitude (MA)
imaging of the plates, so as to validate the technique adopted to simulate the presence of
delaminations in the system.

The obtained results have shown that a fine agreement with the numerical simulations is
obtained. As a matter of fact, the experimental tests prove the existence of a dual regime in
the system response associated to the delamination location. When a surface delamination
is present (placed between layers 1-2, 2-3 and 3-4 of the plates), less than 15% of the power
of the input signal contained in the -3dB bandwidth about the 8 MHz frequency was found
to be present in the same bandwidth for the output signals, while an average value of 35%
was found for the other cases. An increasing monotonic pattern was observed to be followed
by the estimated ToF values when delaminations located deeper in the plate thickness were
considered, the limit case being represented by the undamaged case.

Different aspects of the SHM approach presented in this work need to be addressed
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in future research before its implementation in real-world applications can be considered
as a feasible option. The implementation of the proposed damage detection procedure in
consonance with the realization of a large network of transducers proposes technical as well
as methodological challenges that must be analyzed in detail. Moreover, the behavior of the
discussed SHM procedure in operational conditions needs to be verified. From a theoretical
point of view, a detailed quantitative analysis of the effects of the ultrasonic interference
phenomena (i.e., those regulating the transition from the observed guided-wave-like response
of the structural system to a regime in which the propagation of P and S waves characteristic
of half spaces takes place), needs to be carried out. The proposed local approach making use
of the distinct features of primary and secondary waves constitutes an original contribution
to the SHM literature and a new perspective in the field of ultrasonic damage detection
procedures.



Appendix A

Elastic Waves in Wave-Guides

A.1 The Rayleigh-Lamb equations

For time-harmonic wave motion in an elastic layer the equation relating frequency or phase
velocity to the wavenumber can be derived on the basis of the principle of constructive inter-
ference [?], or employing expressions for the field variables representing a standing wave in
the direction normal to the plate surface and a propagating wave in the in-plane directions,
as done in most treatments. The expressions are then substituted into the boundary condi-
tions to derive the frequency equation. This more straightforward approach will be followed
here.

We consider the equations of motion

µ∇2u+ (λ+ µ)∇∇ · u = ρü (A.1)

where u denotes the displacement vector, ρ is the density of the propagation media (assumed
homogeneous and isotropic) and λ and µ are the Lamè constants. We can make use of the
Helmholtz decomposition [32] to write the displacement field as

u = ∇φ+ ∇ ∧ψ (A.2)

where the scalar and the vectorial potentials ∇ and ψ are introduced, respectively. Equation
(A.1) can be rewritten as

µ∇2 [∇φ+ ∇ ∧ψ] + (λ+ µ)∇∇ · [∇φ+ ∇ ∧ψ] = ρ
∂2

∂t2
[∇φ+ ∇ ∧ψ] (A.3)

which, after some rearrangements, reads

∇
[
(λ+ 2µ)∇2φ− ρφ̈

]
+ ∇ ∧

[
µ∇2ψ − ρψ̈

]
= 0 (A.4)
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Figure A.1: A thin homogeneous and isotropic plate of 2h in thickness.

It is apparent that the above equation is satisfied only if

∇2φ = 1
c2

P

φ̈ (A.5)

∇2ψ = 1
c2

S

ψ̈ (A.6)

where cP and cS represent the primary and secondary wave speed, reading

cP =
√
λ+ 2µ
ρ

(A.7)

cS =
√
µ

ρ
(A.8)

The solution of equations (A.5) and (A.7) is composed of three different wave types: a pres-
sure wave (PV), for which the polarization and propagation directions coincide, and two
shear waves for which the polarization direction is orthogonal to the propagation direction
[32, 91]. In particular, a displacement direction normal to the vertical plane Π containing
the propagation direction denotes horizontal shear waves (SH), while a polarization direction
orthogonal to the propagation direction but laying in the vertical plane Π is characteristic
of shear vertical waves (SV) (see Fig. A.1). Due to the physical laws regulating the wave
reflections and the mode conversion phenomena which occur at the boundaries of the propa-
gation domain, it can be demonstrated that SH waves are decoupled from SV and P waves:
their behavior can thus be analyzed separately from P and SV.

Due to these considerations, a plane strain assumption can be made to simplify the study
of the propagation of P and SV waves. We thus impose that

u2 ≡ 0 (A.9)
∂

∂x2
≡ 0 (A.10)
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and so, consequently, we have

u1 = ∂φ

∂x1
+ ∂ψ

∂x3
(A.11)

u3 = ∂φ

∂x3
− ∂ψ

∂x1
(A.12)

The relevant components of the stress tensor follow from Hooke’s law as

τ31 = µ

(
∂u3
∂x1

+ ∂u1
∂x3

)
= µ

(
2 ∂2φ

∂x1∂x3
− ∂2φ

∂x1
+ ∂2ψ

∂x3

)
(A.13)

τ33 = λ

(
∂u1
∂x1

+ ∂u3
∂x3

)
+ 2µ∂u3

∂x3
= λ

(
∂2φ

∂x1
+ ∂2φ

∂x3

)
+ 2µ

(
∂2φ

∂x3
− ∂2ψ

∂x1∂x3

)
(A.14)

To investigate wave motion in the elastic layer, we consider solutions of of the form

φ = Φ(x3)exp [i(kx1 − ωt)] (A.15)

ψ = Ψ(x3)exp [i(kx1 − ωt)] (A.16)

representing standing waves in the x3-direction propagating in the x1-direction. Substituting
Eqs. (A.15) and (A.16) in Eqs. (A.5) and (A.7) we have

Φ(x3) = A1 sin(px3) +A2 cos(px3) (A.17)

Ψ(x3) = B1 sin(qx3) +B2 cos(qx3) (A.18)

where p2 = ω2

c2
P

− k2, q2 = ω2

c2
S

− k2 and k = 2π
λwave

. In the expressions for the displace-
ment and the stress components, which are obtained from Eqs. (A.11)-(A.14), the term
exp [i(kx1 − ωt)] appears as a multiplier. Since the exponential appears in all of the expres-
sions it does not play a further role in the determination of the frequency equation and it is
therefore omitted in the sequel. Thus we can write

u1 = ikΦ + DΨ
Dx3

(A.19)

u3 = DΦ
Dx3

− ikΨ (A.20)

and

τ31 = µ

(
2ik DΦ

Dx3
+ k2Ψ + d2Ψ

dx32

)
(A.21)

τ33 = λ

(
−k2Φ + d2Φ

dx32

)
+ 2µ

(
d2Φ
dx32 − ik

DΨ
Dx3

)
(A.22)

The inspection of Eqs. (A.19)-(A.22) shows that the displacement components can be writ-
ten in terms of elementary functions. For the displacement in the x1-direction the motion
is symmetric (antisymmetric) with regard to x3 = 0, if u1 contains cosines (sines). The
displacement in the x3-direction is symmetric (antisymmetric) if u3 contains sines (cosines).
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Figure A.2: Dispersion curves of symmetric (a) and antisymmetric (b) modes in an aluminium
plate (cS =3170 m/s) [135].

The modes of wave propagation in the elastic layer may thus be split up into two systems of
symmetric and antisymmetric modes, respectively:

Symmetric modes:

Φ = A2 cos(px3)

Ψ = B1 sin(qx3)

u1 = ikA2 cos(px3) + qB1 cos(qx3) (A.23)

u3 = −pA2 sin(px3) − ikB1 sin(qx3)

τ31 = µ[−2ikpA2 sin(px3) + (k2 − q2)B1 sin(qx3)]

τ33 = −λ(k2 + p2)A2 cos(px3) − 2µ[p2A2 cos(px3) + ikqB1 cos(qx3)]

Antisymmetric modes:

Φ = A1 sin(px3)

Ψ = B2 cos(qx3)

u1 = ikA1 sin(px3) − qB2 sin(qx3) (A.24)

u3 = pA1 cos(px3) − ikB2 cos(qx3)

τ31 = µ[2ikpA1 cos(px3) + (k2 − q2)B2 cos(qx3)]

τ33 = −λ(k2 + p2)A1 sin(px3) − 2µ[p2A1 sin(px3) − ikqB2 sin(qx3)]

The frequency relation, i.e. the expression relating ω to the wave number k is now
obtained from the boundary conditions. If the boundaries are free, we have at x3 = ±h:

τ31 = τ33 = 0 (A.25)

For the symmetric modes the boundary conditions yield a system of two homogeneous equa-
tions for the constants A2 and B1. Similarly, for the antisymmetric modes two homogeneous
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equations for the constants A1 and B2 are obtained. Since the systems are homogeneous,
the determinant of the coefficients must vanish, which yields the frequency equation. Thus,
for the symmetric modes we find

(k2 − q2) sin(qh)
2ikp sin(ph)

= − 2µikq cos(qh)
(λk2 + λp2 + 2µp2) cos(ph)

(A.26)

This equation can be rewritten as

tan(qh)
tan(ph)

= − 4k2pq

(q2 − k2)2 (A.27)

For the antisymmetric modes the boundary conditions yields

−(k2 − q2) cos(qh)
2ikp cos(ph)

= 2µikq sin(qh)
(λk2 + λp2 + 2µp2) sin(ph)

(A.28)

or

tan(qh)
tan(ph)

= −(q2 − k2)2

4k2pq
(A.29)

These equations (also called dispersion equations) show the dependency of the wave speed on
the thickness-frequency product, evidencing the dispersive nature of Rayleigh-Lamb waves.

A.2 The Rayleigh surface waves

The possibility of a wave traveling along the free surface of an elastic half-space such that
the disturbance is largely confined to the neighborhood of the boundary was considered by
Rayleigh [95]

The criterion for surface waves or Rayleigh waves is that the displacement decays expo-
nentially with distance from the free surface. Here we investigate the existence of Rayleigh

u

x
1

x
3

Half-space boundary

Figure A.3: Polarization of Rayleigh waves [32].
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waves for the two-dimensional case of plane waves propagating in the x1-direction (see figure
5.11). We consider displacement components of the form,

u1 = Ae−kx3exp[ik(x1 − ct)]

u2 = 0 (A.30)

u3 = Be−kx3exp[ik(x1 − ct)]

The real part of b is supposed to be positive, so that the displacements decrease with in-
creasing x3 and tend to zero as x3 increases beyond bounds. Substitution of Eq. (A.30) into
the displacement equations of motion yields two homogeneous equations for the constants
A and B. A nontrivial solution of this system of equations exists if the determinant of the
coefficients vanishes, which leads to the equation

[c2
P b

2 − (c2
P − c2)k2][c2

Sb
2 − (c2

S − c2)k2] = 0 (A.31)

whose roots are

b1 = k

(
1 − c2

c2
P

) 1
2

(A.32)

b2 = k

(
1 − c2

c2
S

) 1
2

(A.33)

It is noted that b1 and b2 are real and positive if c < cS < cP and if positive roots are taken.
The ratios (B/A) corresponding to b1 and b2 can now be computed as(

B

A

)
1

= −b1
ik

(A.34)(
B

A

)
2

= ik

b2
(A.35)

Returning to Eq. (A.30), a general solution of the displacement equations of motion may
thus be written in the form

u1 =
[
A1e

−b1x3 +A2e
−b2x3

]
exp[ik(x1 − ct)] (A.36)

u3 =
[
−b1
ik
A1e

−b1x3 + ik

b2
A2e

−b2x3

]
exp[ik(x1 − ct)] (A.37)

The constants A1 and A2 and the phase velocity c have to be chosen such that the stresses
τ33 and τ31 vanish at x3 = 0. By substituting Eqs. (A.36) and (A.37) into the expressions
for τ33 and τ31 at x3 = 0, we obtain after some manipulation

2b1A1 +
(

2 − c2

c2
S

)
k2A2
b2

= 0 (A.38)(
2 − c2

c2
S

)
A1 + 2b2

A2
b2

= 0 (A.39)



A. Elastic Waves in Wave-Guides 142

(a)

(b)

0 0.4 0.8 1.2 1.6
-0.2

0.2

0

0.4

0.6

0.8

1.0

x
3
/λ

R
e

la
ti

v
e

 d
is

p
la

ce
m

e
n

ts

1.2

Figure A.4: Displacement amplitudes
u3/u3x3=0 (a) and u1/u3x3=0 (b) for ν = 0.25
(dashed line) and ν = 0.34 (solid line).
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Figure A.5: Stresses amplitudes τ13/τ11x3=0

(a), τ33/τ11x3=0 (b) and τ11/τ11x3=0 (c) for ν
= 0.25 (dashed line) and ν = 0.34 (solid line).

For a nontrivial solution the determinant of the coefficients of A1, A2 must vanish, which
yields the following well-known equation for the phase velocity of Rayleigh waves:(

2 − c2

c2
T

)2

− 4
(

1 − c2

c2
L

)1/2(
1 − c2

c2
T

)1/2

= 0 (A.40)

It is noted that the wavenumber does not enter in the above equation, and surface waves at
a free surface of an elastic half-space are thus nondispersive.

Denoting the phase velocity of Rayleigh waves by cR, Eq. (A.40) can be considered as
an equation for cR/cS , with Poisson’s ratio (0 ≤ ν ≤ 0.5) as independent parameter. A good
approximation of cR can be written as

cR = 0.862 + 1.14ν
1 + ν

cS (A.41)

For two values of Poisson’s ratio, figure Fig. A.4 shows the variations of the displacements
with depth. The displacements are referred to the normal displacement u3 at the surface,
and they are plotted versus the ratio of x3 and the wavelength. The variations of the stresses
with depth are shown in Fig. A.5, where the stresses are referred to τ11 at x3 = 0.

The figures show the localization of the wave motion in a thin layer near the surface, of a
thickness which is about twice the wavelength of the surface waves. Since the displacement
components u1 and u3 are 90o out of phase, the trajectories of the particles are ellipses. For
the coordinate axes of Fig. A.3 the motion is clockwise at the free surface. At a depth of
x3 ∼ 0.2λ the direction of rotation reverses, since u1 changes sign. The semimajor axes of
the ellipses are normal to the free surface; the semiminor axes are parallel to the free surface.
At the free surface the normal displacement is about 1.5 times the tangential displacement.



Appendix B

The Differential Evolutionary
Algorithm-Based Optimization
Code

B.1 Numerical interface with the COMSOLrsoftware

1 function [V_out] = Run_Comsol(dt,t_end,dx,mesh_level,name_rs,name_ls,x_c,d_c,h_c,fem)

2

3

4 fem = rmfield(fem, 'mesh'); %removes the specified field from the structure array s.

5

6 % Ricerca Sensore e Variazione Lunghezza

7

8 for n=1:length(fem.draw.s.name)

9 str=cell2mat(fem.draw.s.name(n));

10

11 if strcmp(str,name_rs)==1

12 sens_r=n;

13 end

14

15 if strcmp(str,name_ls)==1

16 sens_l=n;

17 end

18

19 end

20

21 y_c=h_c/2;

22 fem.draw.s.objs{1,sens_r}=rect2(d_c,h_c,'base','center','pos',{x_c,y_c},'rot','0');

143
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23 fem.draw.s.objs{1,sens_l}=rect2(d_c,h_c,'base','center','pos',{−x_c,y_c},'rot','0');
24

25 fem.geom=geomcsg(fem);

26

27 if length(fem.draw.s.name) >= 40

28 % Initialize mesh

29 fem.mesh=meshinit(fem, ...

30 'hauto',mesh_level);

31

32 % Refine mesh

33 fem.mesh=meshrefine(fem, ...

34 'mcase',0, ...

35 'rmethod','regular');

36

37 % % Refine mesh

38 % fem.mesh=meshrefine(fem, ...

39 % 'mcase',0, ...

40 % 'rmethod','regular', ...

41 % 'subdomain',[9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,

42 % 25,26,27,28,29,30,31,40]);

43

44 else

45

46 % Initialize mesh

47 fem.mesh=meshinit(fem, ...

48 'hauto',mesh_level);

49

50 % Refine mesh

51 fem.mesh=meshrefine(fem, ...

52 'mcase',0, ...

53 'rmethod','regular', ...

54 'subdomain',[9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,

55 26,27]);

56

57 % % Refine mesh

58 % fem.mesh=meshrefine(fem, ...

59 % 'mcase',0, ...

60 % 'rmethod','regular', ...

61 % 'subdomain',[9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,

62 % 25,26,27]);

63

64 end

65

66 % if length(fem.draw.s.name) >= 40

67 % % Initialize mesh
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68 % fem.mesh=meshinit(fem, ...

69 % 'hmax',dx, ...

70 % 'point',[], ...

71 % 'edge',[], ...

72 % 'subdomain',[9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,

73 % 26,27,28,29,30,31,40]);

74 %

75 % % Initialize mesh

76 % fem.mesh=meshinit(fem, ...

77 % 'hauto',mesh_level, ...

78 % 'point',[], ...

79 % 'edge',[], ...

80 % 'subdomain',[1,2,3,4,5,6,7,8,32,33,34,35,36,37,38,39], ...

81 % 'meshstart',fem.mesh);

82 % else

83 %

84 % % Initialize mesh

85 % fem.mesh=meshinit(fem, ...

86 % 'hmax',dx, ...

87 % 'point',[], ...

88 % 'edge',[], ...

89 % 'subdomain',[9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,

90 % 26,27]);

91 %

92 % % Initialize mesh

93 % fem.mesh=meshinit(fem, ...

94 % 'hauto',mesh_level, ...

95 % 'point',[], ...

96 % 'edge',[], ...

97 % 'subdomain',[1,2,3,4,5,6,7,8,28,29,30,31,32,33,34,35], ...

98 % 'meshstart',fem.mesh);

99 % end

100

101 % ODE Settings

102 clear ode

103 clear units;

104 units.basesystem = 'SI';

105 ode.units = units;

106 fem.ode=ode;

107

108 % Multiphysics

109 fem=multiphysics(fem);

110

111 % Extend mesh

112 fem.xmesh=meshextend(fem);
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113

114 % Solve problem

115 fem.sol=femtime(fem, ...

116 'solfile','on', ...

117 'solcomp',{'V','u1','u3'}, ...

118 'outcomp',{'V','u1','u3'}, ...

119 'blocksize','auto', ...

120 'plotinterp',{'u1','u3','V','V'}, ...

121 'plotinterppar',{{'recover','off','phase',0,'geomnum',1,

122 'probecoord',[0.25 −0.096]}, ...

123 {'recover','off','phase',0,'geomnum',1,

124 'probecoord',[0 −0.092999]}, ...

125 {'recover','off','phase',0,'geomnum',1,

126 'probecoord',[0 0.01492]}, ...

127 {'recover','off','phase',0,'geomnum',1,

128 'probecoord',[0.35 0.01492]}}, ...

129 'tlist',[colon(0,dt,t_end)], ...

130 'tout','tlist', ...

131 'tsteps','strict', ...

132 'atol',{'0.001'});

133

134 V_out=postinterp(fem,'V',[x_c; h_c],'solnum','all');

135

136 end

B.2 The optimizer

1 function [Output,names,num_cases]=Optimizer(N,M,K,H,threshold,pop_0,models,dt,t_end,

2 dx,mesh_level,x_max,x_min,d_max,d_min,

3 x_lim_l,x_lim_r)

4

5 names=fieldnames(models);

6 num_cases=max(size(names));

7

8 Out_pop=zeros(M,2,N);

9

10 h = waitbar(0,'Please wait...');

11

12 for n=1:N

13

14

15 if n==1;

16 pop=pop_0;
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17 end

18

19 for i=1:M

20

21

22 waitbar(0.1*(i/M)+(n−1)/N)
23

24 fprintf('Generation: %1.0f, Individual %1.0f\n',n,i)

25

26 V_target=pop(i,:);

27

28 select=0;

29 tries=0;

30

31 while not(select)

32

33 num=randperm(M);

34 k=0;

35 if num(k+1)~=3;

36 V1=pop(num(k+1),:);

37 else

38 k=1;

39 V1=pop(num(k+1),:);

40 end

41 if num(k+2)~=3;

42 V2=pop(num(k+2),:);

43 else

44 k=1;

45 V2=pop(num(k+2),:);

46 end

47 if num(k+3)~=3;

48 V3=pop(num(k+3),:);

49 else

50 k=1;

51 V3=pop(num(k+3),:);

52 end

53

54 V23=V2−V3;
55 V4=V1+K*V23;

56

57 if V4(1) > d_max

58 V4(1)= d_max;

59 elseif V4(1) < d_min

60 V4(1) = d_min;

61 end
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62

63 if V4(2) > x_max

64 V4(2)= x_max;

65 elseif V4(2) < x_min

66 V4(2) = x_min;

67 end

68

69 if V4(2)+V4(1)/2 > x_lim_r

70 V4(2)= x_lim_r−V4(1)/2;
71 elseif V4(2)−V4(1)/2 < x_lim_l

72 V4(2)= x_lim_l+V4(1)/2;

73 end

74

75 toss1=rand(1);

76 toss2=rand(1);

77

78 if toss1 > H

79 V_trial(1) = V_target(1);

80 else

81 V_trial(1) = V4(1);

82 end

83

84 if toss2 > H

85 V_trial(2) = V_target(2);

86 else

87 V_trial(2) = V4(2);

88 end

89

90 if V_trial(1) == V_target(1) && V_trial(1) == V_target(1)

91 select=0;

92 tries=tries+1;

93 if tries==5;

94 select=1;

95 end

96 else

97 select=1;

98 end

99

100 if V_trial(2)+V_trial(1)/2 > x_lim_r

101 V_trial(2)= x_lim_r−V_trial(1)/2;
102 elseif V_trial(2)−V_trial(1)/2 < x_lim_l

103 V_trial(2)= x_lim_l+V_trial(1)/2;

104 end

105

106 end
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107

108 done = 0;

109

110 if i ~= 1 && n ~= 1

111 r = max(size(Out));

112 l=0;

113 for k=1:r

114 if V_target(1) == Out(k,1) && V_target(2) == Out(k,2) && l==0

115 I_target = Out_I(:,k);

116 Ir_target = Out_Ir(:,k);

117 V_out_target = Out_V(:,:,k);

118 done=1;

119 l=1;

120 fprintf('V_target Aleardy Computed − Width:

121 end

122 end

123 end

124

125 switch done

126

127 case 0

128

129 fprintf('Width: %6.4f, Diameter %6.4f\n',V_target(1),V_target(2))

130

131 for k=1:num_cases

132

133 fprintf('V_target, caso %1.0f\n',k)

134 fem=getfield(models,names{k,1});

135 [V_out] = Run_Comsol(dt,t_end,dx,mesh_level,'R7','R6',V_target(2),

136 V_target(1),1.492e−2,fem);
137 V_out_target(:,k) = V_out;

138 V_max_target(k) = max(V_out);

139

140 end

141

142 for k=1:num_cases−1
143 I_target(k)=abs(V_max_target(k)−V_max_target(length(V_max_target)))
144 ./V_max_target(length(V_max_target));

145 Ir_target(k)=I_target(k);

146 if I_target(k)>1

147 I_target(k)=1;

148 end

149 end

150 end

151
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152 done = 0;

153

154 if i ~= 1 && n ~= 1

155 r = max(size(Out));

156 l=0;

157 for k=1:r

158 if V_trial(1) == Out(k,1) && V_trial(2) == Out(k,2) && l==0;

159 I_trial = Out_I(:,k);

160 Ir_trial = Out_Ir(:,k);

161 V_out_trial = Out_V(:,:,k);

162 done=1;

163 l=1;

164 fprintf('V_trial Aleardy Computed − Width:

165 end

166 end

167 end

168

169 switch done

170

171 case 0

172

173 fprintf('Width: %6.4f, Diameter %6.4f\n',V_trial(1),V_trial(2))

174

175 for k=1:num_cases

176

177 fprintf('V_trial, caso %1.0f\n',k)

178 fem=getfield(models,names{k,1});

179 [V_out] = Run_Comsol(dt,t_end,dx,mesh_level,'R7','R6',V_trial(2),

180 V_trial(1),1.492e−2,fem);
181 V_out_trial(:,k) = V_out;

182 V_max_trial(k) = max(V_out);

183

184 end

185

186 for k=1:num_cases−1
187

188 I_trial(k)=abs(V_max_trial(k)−V_max_trial(length(V_max_trial)))
189 ./V_max_trial(length(V_max_trial));

190 Ir_trial(k)=I_trial(k);

191 if I_trial(k)>1

192 I_trial(k)=1;

193 end

194 end

195 end

196
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197

198

199 j=2*i−1+2*(n−1)*M;
200

201 Out(j,:) = V_target;

202 Out(j+1,:) = V_trial;

203 Out_I(:,j) = I_target;

204 Out_I(:,j+1) = I_trial;

205 Out_Ir(:,j) = Ir_target;

206 Out_Ir(:,j+1) = Ir_trial;

207 Out_V(:,:,j) = V_out_target;

208 Out_V(:,:,j+1) = V_out_trial;

209

210 n_obs_target = 0;

211 n_obs_trial = 0;

212

213 for k = 1:num_cases−1
214 if I_target(k) >= treshold

215 n_obs_target = n_obs_target+1;

216 end

217

218 if I_trial(k) >= treshold

219 n_obs_trial = n_obs_trial+1;

220 end

221 end

222

223 m_target=mean(Ir_target);

224 m_trial=mean(Ir_trial);

225

226 if n_obs_target > n_obs_trial && m_target > m_trial

227 pop(i,:) = V_target;

228 elseif n_obs_target == n_obs_trial && m_target >= m_trial

229 pop(i,:) = V_target;

230 elseif n_obs_target < n_obs_trial && m_target < m_trial

231 pop(i,:) = V_trial;

232 elseif n_obs_target == n_obs_trial && m_target <= m_trial

233 pop(i,:) = V_trial;

234 end

235

236 end

237

238 Out_pop(:,:,n)=pop;

239 nome=['Generation_', num2str(n)];

240 save(nome,'pop');

241 end
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242

243 close(h)

244

245 Output = struct('Vectors', Out, 'Indeces_I', Out_Ir, 'Voltages', Out_V,

246 'Populations',Out_pop);

247

248 end
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