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Introduzione

L’esistenza delle onde gravitazionali, prevista dalla teoria della Relatività gene-
rale, fu dimostrata indirettamente per la prima volta grazie all’osservazione del
decadimento orbitale della pulsar binaria PSR 1913+16, per la cui scoperta R.A.
Hulse e J.H. Taylor furono insigniti del premio Nobel nel 1993. A partire da questa
prima evidenza osservativa, la ricerca di una rivelazione diretta delle onde gravita-
zionali è divenuta negli anni uno dei principali temi della fisica sperimentale, non
solo per la verifica della teoria in se, ma anche e soprattutto per la possibilità di
aprire una nuova finestra astronomica sul nostro universo. Infatti molti oggetti
astrofisici, come ad esempio stelle di neutroni e buchi neri, possono essere studiati
direttamente solo attraverso la loro emissione gravitazionale. Inoltre, poichè l’in-
terazione delle onde gravitazionali con la materia è molto debole, la degradazione
delle informazioni da queste trasportate risulta trascurabile e la loro rivelazione
ci permetterebbe di comprendere la struttura interna delle sorgenti massive che le
emettono, fornendo un punto di vista complementare a quello dell’astronomia e
della cosmologia tradizionali.

La rivelazione diretta deve affrontare l’estrema debolezza della radiazione gra-
vitazionale, di conseguenza è necessario disporre di rivelatori caratterizzati da
un’altissima sensibilità per essere in grado di osservare l’effetto quadripolare pro-
dotto dal passaggio di un’onda gravitazionale. I primi tentativi in questo campo
sfruttavano massicce barre risonanti e si basavano sulla tecnica sviluppata da J.
Weber. Negli ultimi decenni è stata adottata una strategia più promettente basata
sull’interferometria, che fornisce il vantaggio di avere rivelatori caratterizzati da
una larga banda di osservazione (da pochi Hz ad alcuni kHz) unitamente ad una
estrema sensibilità (la deformazione rilevabile è inferiore alla dimensione di un pro-
tone). La rete globale di rivelatori interferometrici di prima generazione, composta
da Virgo, LIGO, GEO600 e TAMA300, ha dimostrato la fattibilità di questa tec-
nica; in particolare i rivelatori su scala kilometrica Virgo e LIGO hanno raggiunto
una sensibilità sufficientemente alta da porre i primi limiti superiori all’emissione
gravitazionale di alcune stelle di neutroni note, come le pulsar del Granchio e della
Vela. Nei prossimi anni entreranno in funzione le versioni potenziate di questi
rivelatori, costituendo la cosiddetta seconda generazione di interferometri (Advan-
ced Virgo e Advanced LIGO), con cui ci si aspetta di raggiungere una sensibilità
tale da permettere le prime rivelazioni dirette di onde gravitazionali. Comunque,
anche con questi rivelatori potenziati, il rapporto segnale-rumore sarebbe troppo
basso per permettere di sviluppare una astronomia di precisione che possa essere
complementare alle osservazioni nelle bande ottica, radio e dei raggi X nello stu-
dio dei sistemi e processi astrofisici. Per questa ragione la progettazione di una

vii



viii INTRODUZIONE

nuova - terza - generazione di rivelatori interferometrici è già iniziata, e ha condot-
to alla proposta di un osservatorio europeo denominato Einstein Telescope (ET).
Con una sensibilità considerevolmente migliorata questi nuovi rivelatori apriranno
l’era dell’astronomia gravitazionale, contribuendo alla definizione di una completa
multimessenger astronomy. In particolare, per allargare la banda di rivelazione
nel range delle basse frequenze (fino a ∼ 1 Hz), dove sarebbe possibile rilevare
molti segnali gravitazionali di interesse, come ad esempio quelli emessi da stelle di
neutroni rotanti, è richiesta una ulteriore riduzione del rumore a bassa frequenza
rispetto a quella che si avrà nei rivelatori di seconda generazione.

Nella banda delle basse frequenze la principale limitazione alla sensibilità del-
l’interferometro deriva dal rumore termico, e alle frequenze più basse, dai rumori
sismico e newtoniano. La soppressione del rumore termico richiederà l’adozione di
estesi apparati criogenici, in modo tale da raffreddare le masse di test a T ∼ 10 K,
cosicché sarà anche necessario lo sviluppo di sensori di posizione di alta sensibi-
lità, compatibili con la criogenia, per il controllo delle sospensioni e dei payload
del rivelatore. L’attenuazione del rumore sismico è già stata ottenuta nella prima
generazione di rivelatori per mezzo di lunghe catene di sospensione composte da
oscillatori verticali e orizzontali (come ad esempio il superattenuatore di Virgo),
cosicché per avere una ulteriore riduzione del rumore sismico sarà necessario in-
dividuare un sito con sismicità ambientale inferiore a quella tipica degli attuali
rivelatori di superficie; inoltre, le fluttuazioni della densità di massa prodotte dal-
le perturbazioni sismiche inducono un gradiente gravitazionale variabile (definito
rumore newtoniano) che cortocircuita l’intero filtro della sospensione e agisce di-
rettamente sulle masse di test dell’interferometro. Per ridurre questi due rumori
di natura sismica, la terza generazione di rivelatori sarà costruita in infrastrut-
ture sotterranee, dove le onde superficiali di Rayleigh sono attenuate, e gli strati
rocciosi circostanti sono più omogenei e stabili, riduendo cos̀ı le fluttuazioni di
densità di massa. La fattibilità di un interferometro criogenico e sotterraneo è già
stata testata dal prototipo di rivelatore interferometrico giapponese CLIO, situa-
to nello stesso sito dove è attualmente in costruzione KAGRA (precedentemente
noto come LCGT), il primo interferometro su scala kilometrica basato su questi
approcci. Per i suddetti aspetti, questo rivelatore di seconda generazione rappre-
senterà il precursore di quelli di terza generazione come ET, perciò è già iniziata
una collaborazione scientifica tra i gruppi di ricerca impegnati nei due progetti.

Il mio lavoro sperimentale è focalizzato sulla soppressione dei suddetti rumori
a bassa frequenza, di conseguenza questa tesi è strutturata in due paralleli campi
di ricerca: la caratterizzazione sismica di un potenziale sito per la costruzione
dell’Einstein Telescope, e lo sviluppo di un accelerometro verticale criogenico che
possa essere usato come sensore inerziale di posizione, analogamente a quelli usati
a temperatura ambiente nel superattenuatore di Virgo, ma anche per la misura
delle vibrazioni introdotte dagli apparati criogenici, cosa che ho fatto con le misure
svolte nei cristati di KAGRA e presentate nella conclusione di questa tesi.

Lo schema di questa tesi è suddiviso in tre parti principali: nella prima parte
introduco i fondamenti dell’astronomia gravitazionale, dalla teoria dell’emissione
gravitazionale e delle sorgenti astrofisiche agli esperimenti per l’osservazione gra-
vitazionale diretta; nella seconda parte discuto i rumori a bassa frequenza e la loro
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attenuazione a livello teorico; nella terza parte presento il lavoro sperimentale che
ho svolto in questo contesto. Ogni parte è composta di due capitoli, strutturati
come segue:

Nel primo capitolo descrivo la derivazione delle onde gravitazionali a partire
dalle equazioni di campo di Einstein, discutendo le loro proprietà e le sorgenti
astrofisiche e cosmologiche, specialmente quelle la cui emissione è localizzata a
basse frequenze.

Nel secondo capitolo descrivo la rivelazione interferometrica diretta delle on-
de gravitazionali e le principali sorgenti di rumore che ne limitano la sensibilità,
concludendo con una panoramica sui rivelatori presenti e futuri.

Nel terzo capitolo discuto le principali caratteristiche dei rumori sismico e
newtoniano, e le strategie necessarie per la loro attenuazione, in particolare nei
rivelatori di terza generazione.

Nel quarto capitolo discuto la teoria del rumore termico, dal caso ideale dell’o-
scillatore armonico smorzato al caso reale dei sistemi dissipativi meccanici e delle
componenti ottiche di un interferometro.

Nel quinto capitolo presento il mio lavoro sperimentale svolto nell’ambito del-
la caratterizzazione sismica su lungo periodo del sito di Sos Enattos in Sardegna
(proposto per ospitare l’Einstein Telescope), dalla costruzione e installazione del-
la strumentazione di una rete sotterranea di sensori all’analisi dei dati sismici e
meteorologici raccolti nell’arco di un anno.

In conclusione, nel sesto capitolo, presento il mio lavoro sperimentale per lo
sviluppo di un accelerometro verticale criogenico, dalla progettazione ai test e alle
calibrazioni a temperature criogeniche (T = 20 K). In questo capitolo presen-
to anche i risultati ottenuti dall’installazione di questo sensore nei criostati che
ospiteranno le masse di test di KAGRA, nelle quali ho verificato il corretto fun-
zionamento del sensore anche a T = 8 K e ho misurato le vibrazioni dello schermo
termico interno dei suddetti criostati. Queste misure hanno condotto ad una pri-
ma stima basata su risultati empirici del rumore vibrazionale aggiuntivo che sarà
introdotto a livello delle masse di test dai refrigeratori criogenici.
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Introduction

The existence of gravitational radiation, predicted by the General Relativity the-
ory, was indirectly demonstrated by the observation of the orbital decay in the
binary pulsar 1913+16, for which R.A. Hulse and J.H. Taylor were awarded with
the Nobel Prize in 1993. From then on, the direct detection of gravitational waves
became a main issue in the experimental physics, not only for the verification of
the theory itself but, most important, because it can open a new ”observation win-
dow” of the universe. In fact, many astronomical objects, such as neutron stars
and black holes, can be directly studied only through their gravitational emission.
Moreover, since its interaction with matter is intrinsically weak, the degradation of
informations carried by gravitational waves is negligible, and their revelation will
allow us to understand the internal structure of massive objects which emit them,
and will also provide a complementary point of view to the traditional astronomy
and cosmology.

The direct detection must face the extreme weakness of gravitational radiation,
hence very high sensitive detectors are required in order to reveal the quadrupo-
lar effect produced by the passage of gravitational waves. The first attempts in
this field were based on massive resonant bars, relying on the pioneering technique
developed by J. Weber. In recent decades a more promising strategy based on inter-
ferometry was developed, providing the advantage of a wide-frequency detection-
band (from few Hz to some kHz) jointly to an extreme sensitivity (the detectable
strain is smaller than the size of a proton). The global network of first genera-
tion interferometric detectors, composed of Virgo, LIGO, GEO600 and TAMA300,
demonstrated the feasibility of such a technique; in particular the kilometric-scale
detectors Virgo and LIGO achieved a sensitivity high enough to determine the
first upper limits for the gravitational emission of some known neutron stars, such
as the Crab and Vela pulsars. In the next few years the upgraded version of these
detectors, namely the second generation of detectors (such as Advanced Virgo and
Advanced LIGO) will become operational and are expected to achieve the first di-
rect detections of gravitational waves. However, the signal-to-noise ratio (SNR) of
these first detections will be too low for precise astronomical studies of the gravi-
tational wave sources and for complementing optical, radio and X-ray observations
in the study of fundamental systems and processes in the Universe. For this reason
the investigation on the design of a new, namely third, generation of detectors is
already started, leading to the proposal of the European Einstein Telescope (ET).
With a considerably improved sensitivity these new machines will open the era of
routine gravitational wave astronomy, leading to the birth of a complete multimes-
senger astronomy. In particular, to enlarge the detector bandwidth in the range

xi
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of 1 Hz, where interesting gravitational signals, such as those emitted by rotating
neutron stars, can be detected, a further reduction of the so-called low-frequency
noise, with respect to the second generation detectors, is required.

In this low-frequency band the main limitation to the sensitivity of an interfer-
ometric detector arises from the thermal noise, and at lower frequencies, from the
seismic and Newtonian noises. The suppression of the thermal noise will require
the implementation of a cryogenic apparatus, in order to cool the test masses down
to ∼ 10 K, so that the development of position-control devices capable of cryogenic
operations will be also necessary for the suspension and payload control. The seis-
mic attenuation was already obtained in first generation detectors by means of long
suspension chains of vertical and horizontal oscillators (e.g. the superattenuator of
Virgo), so that a further reduction requires a smaller seismic noise at the input of
the suspension system; moreover, mass density fluctuations produced by the seis-
mic motion induce also a stochastic gravitational field (the so-called Newtonian
or gravity-gradient noise) which shunts the suspension and couples directly to the
mirrors of the interferometer. In order to suppress these two seismically-generated
noises, third generation interferometers will be constructed in underground sites,
where Rayleigh surface waves are attenuated, and the surrounding rock layers are
more homogeneous and stable, reducing the density fluctuations. The feasibility
of a cryogenic and underground interferometer was already tested by the Japanese
prototype-detector CLIO, in the same site where is currently under construction
KAGRA (formerly known as LGCT), the first full-scale interferometric detector
based on these approaches. For these aspects, this second generation detector
will be the forerunner of third generation interferometers such as ET, therefore a
collaboration between the two scientific collaborations has been established.

My experimental work is focused on the suppression of these low noise sources,
so that this thesis is structured in two parallel fields of research: the seismic
characterization of a potential site for the construction of the Einstein Telescope,
and the development, calibration and test of a cryogenic vertical accelerometer,
which can be used as a position control device, analogously to those used in the
actual room-temperature superattenuator of Virgo, but also to check the vibrations
introduced by the cryogenic apparatus, as I did with the measurements I performed
on the cryostats of KAGRA, presented at the end of this thesis.

The scheme of this thesis is subdivided in three main parts: in the first part
I introduce the foundations of the gravitational astronomy, from the theory and
the astrophysical sources to the experiments which will lead to the gravitational
observations; in the second part I discuss the theory of low frequency noise sources
and their suppression; in the third part I present the experimental work I performed
in this context. Every part is composed of two chapters, structured as follows.

In the first chapter I describe the derivation of gravitational waves from the
Einstein’s field equations, discussing their properties and the astrophysical and
cosmological sources, especially those whose emission is expected at low frequen-
cies.

In the second chapter I describe the direct interferometric detection of gravi-
tational waves and the main noise sources which limit the sensitivity, concluding
with an overview of present and future detectors.
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In the third chapter I discuss the main features of the seismic and Newtonian
noises, and the strategies necessary to suppress them, especially in third generation
detectors.

In the fourth chapter I discuss the theory of thermal noise, from the ideal case
of the damped harmonic oscillator to the real dissipative mechanical systems and
optical components of the interferometer.

In the fifth chapter I present my experimental work on the long-period char-
acterization of the Sos Enattos site in Sardinia (proposed for hosting the Einstein
Telescope), from the construction and instrumentation of an underground array of
sensors to the analysis of seismic and meteorological data collected in one year of
observations.

Finally, in the sixth chapter I present my experimental work on the develop-
ment of a cryogenic vertical accelerometer, from the designing to the cryogenic
calibration and tests at T = 20 K. In this chapter I also present the results of
the implementation of this device into the cryostats dedicated to the test masses
of KAGRA, where I verified the operations of the accelerometer at T = 8 K and I
measured the vibrations of the inner radiation shield of the cryostats. These mea-
surements led to a first experimental estimate of the additional vibrational noise
which will be injected by the cryogenic refrigerators to the detector test masses.
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Gravitational Astronomy
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Chapter 1

Gravitational Waves

In his famous publication dated 1916 Albert Einstein proposed the revolutionary
theory of General Relativity [1] postulating that the gravitational field is described
by the curvature of space and time merged together in a 4-dimensional manifold.
Such a distortion is produced by its mass and energy content and determines the
dynamics of the system, manifesting itself as gravitational attraction. This concept
is expressed by a system of partial non-linear differential equations known as the
Einstein’s field Equations [2]. These equations are satisfied by a wave solution,
which leads to the prediction of the existence of gravitational waves produced by
variations of mass-energy distribution of a system. Due to the intrinsic weakness of
the gravitational interaction, only massive astrophysical objects with rapid changes
in their mass-energy distribution could be observed.

In this chapter I will briefly discuss the derivation of gravitational waves from
the Einstein field equations, their properties and the astrophysical sources, espe-
cially the low frequency ones.

1.1 Einstein’s equations

In General Relativity the energy E and the mass m must be considered two aspects
of the same physical entity, as expressed by the well-known relation:

E = mc2 (1.1)

where c is the light speed. Eq. 1.1 implies that both mass and energy are source
of the gravitational field. Hence both must appear in relativistic gravitational
field equations, unlike in the Newtonian mechanics where the gravitational field
generated by a mass distribution was expressed by the Poisson equation as a
function of the mass density ρ:

∇2φg = 4πGρ (1.2)

Hence relativistic gravitational field equations should coincide with the eq. 1.2
for non-relativistic speed (i.e. for v � c) in the weak field limit:{

gµν ≈ ηµν

gµν,0 = 0
(1.3)

3
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where gµν and ηµν are respectively the metric and the Minkowsky tensor. The
first one is obtained from the derivative of the spacetime coordinates under the
transformation xα = xα(ξα) and it is defined as follows:

gµν =
dξα

dxµ
dξβ

dxν
ηαβ (1.4)

The Minkowsky tensor is the particular case of the metric tensor for a flat space-
time, being defined by:

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (1.5)

Let us introduce also the Christoffel symbols Γαµν related to the derivative of
the spacetime coordinates and defined by:

Γαµν =
∂xα

∂ξλ
∂2ξλ

∂xµ∂xν
(1.6)

From eq. 1.4 and 1.6 we can obtain the relation between gµν and Γαµν :

Γσλµ =
1

2
gνσ (gµν,λ + gλν,µ − gλµ,ν) (1.7)

The gravitational field equations we are looking for must also satisfy the prin-
ciple of general covariance which states:

1. a physical law is true if it continues to be true in absence of gravity, i.e. when
gµν → ηµν and Γαµν → 0 it reduces to the laws of Special Relativity (and then
it implies the Equivalence Principle);

2. the equations must be covariant (i.e. must be in a tensorial form) in or-
der to preserve the invariance of the form of physical laws under arbitrary
differentiable coordinate transformations.

Taking into account the aforesaid considerations it is possible to obtain the
general form of the Einstein field Equations [2], which solutions will give the form
of gµν in vacuum or in presence of a gravitational field source:

Gµν = Rµν −
1

2
gµνR = −8πG

c4
Tµν (1.8)

where Gµν is the Einstein tensor, Rµν and R are respectively the Ricci tensor and
scalar, being the first obtained by the contraction of the Riemann tensor:

Rµν = gλαRλµαν = Rα
µαν (1.9)

The tensor Rµν is defined in terms of Christoffel symbols [2] and represents the
curvature of the 4-dimensional manifold (i.e. the curvature of the spacetime). Since
the Riemann tensor is symmetric, this also applies to the Ricci tensor. Ricci Scalar
R is defined by:

R = gαβRαβ (1.10)
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and it is also known as the scalar curvature. Both Rµν and R contain (and are
composed starting from) the second derivative of the metric tensor gµν .

The tensor Tµν , which appears in the last term of eq. 1.8, is the stress-energy
tensor, related to the system mass-energy distribution. It contains informations
about the sources of the gravitational field, that is the system mass-energy content.
Let us consider a system composed of n non-interacting particles with energy-
momentum 4-vector pαn:

pαn =
En
c2

dξαn (t)

dt
(1.11)

and distributed in the points ξn(t), the T 00 component of the stress-energy tensor
represents the energy density defined by:

P = T 00 =
∑
n

cp0
n(t)δ3(~ξ − ~ξn(t)) (1.12)

Similarly the momentum density is represented by the T 0i components of the
tensor:

T =
1

c
T 0i =

∑
n

cpin(t)δ3(~ξ − ~ξn(t)), i = 1, 2, 3 (1.13)

and the last components T ki have to be considered as momentum-currents:

T ki =
∑
n

pkn(t)
dξin
dt
δ3(~ξ − ~ξn(t)), i = 1, 2, 3; k = 1, 2, 3 (1.14)

The general form of the stress-energy tensor can be obtained by substituting eq.
1.11 in eq. 1.12, 1.13 and 1.14:

Tαβ = c2
∑
n

pαnp
β
n

En
δ3(~ξ − ~ξn(t)) (1.15)

Since the Einstein tensor in eq. 1.8 is symmetric, this property is verified also by
the stress-energy tensor above defined, which satisfies the conservation law:

T µν;µ = 0 (1.16)

In principle Einstein field equations provide 10 indipendent equations for 10
components of gµν . However the number of independent equations can be reduced
if we consider the Bianchi identities for the Riemann tensor:

Rαβµν;λ +Rαβλµ;ν +Rαβνλ;µ = 0 (1.17)

Eq. 1.17 implies that:
Gµν

;µ = 0 (1.18)

The last equation 1.18 provides 4 relations for the tensorGµν , which is the first term
of field eq. 1.8, reducing to 6 the number of independent equations and allowing
4 degrees of freedom. The last result implies that if we consider gµν a solution
of eq. 1.8, and the coordinate transformation xµ

′
= xµ

′
(xα), then g′µν = gµ′ν′ will

be again a solution of the field equations, according to the principle of general
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covariance. Therefore gµν and g′µν represent the same physic solution (i.e. the
same geometry) observed from two different coordinate reference systems. The
four degrees of freedom obtained by eq. 1.18 disappear once a reference system is
chosen, and remarkably it is always possible to choose a reference system where 4
of the 10 components of gµν are equal to zero.

1.2 Wave solution

Einstein field equations are a system of partial non-linear differential equations,
thus it is extremely difficult to find an exact solution which can describe at the
same time both the source and the radiation emitted. Infact any solution of eq.
1.8 carries itself energy and momentum which modify continuously the second
member of the equation. A solution can be found in simple cases characterized
by the existence of symmetries, like in the Swarzschild’s solution, otherwise a
perturbative approach is needed.

1.2.1 Derivation

The weak-field limit [2] allow us to consider a gravitational radiation carrying not
enough energy and momentum to affect its own propagation. In this limit we can
describe a linearized gravity approximation: let us consider g0

µν as an hypothetical
exact solution of eq. 1.8 and hµν as a small perturbation, then the metric tensor of
perturbed spacetime will be defined in an appropriate coordinate reference system
as follow: {

gµν = g0
µν + hµν

|hµν | �
∣∣g0
µν

∣∣ (1.19)

The perturbation hµν will be related to the perturbative term T ′µν of the stress-
energy tensor:

Tµν = T 0
µν + T ′µν (1.20)

In a flat Minkowsky’s spacetime eq. 1.19 becomes:{
gµν = ηµν + hµν

|hµν | � 1
(1.21)

By substituting eq. 1.20 and eq. 1.21 in the Einstein field Equations 1.8 and dis-
regarding non-linear elements, it is possible to obtain the following equation:

2hµν −
[

∂2

∂xλ∂xµ
hλν +

∂2

∂xλ∂xν
hλµ −

∂2

∂xµ∂xν
hλλ

]
= −16πG

c4
(T ′µν −

1

2
gµνT

′λ
λ ) (1.22)

where 2 is the D’Alembert operator in the Minkowsky’s spacetime, defined by:

2 = ηαβ
∂

∂xα
∂

∂xβ
= − 1

c2

∂2

∂t2
+∇2 (1.23)
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The four degrees of freedom of Einstein’s equations found at the end of section
1.1 allow us to choose a coordinate reference system in which the harmonic gauge
condition is satisfied:

gµνΓλµν = 0 (1.24)

The gauge condition chosen in eq. 1.24 reduces the eq. 1.22 to the wave equation:{
2hµν = −16πG

c4
(T ′µν − 1

2
gµνT

′λ
λ )

∂
∂xµ

hµν = ∂
∂xν

hλλ
(1.25)

If we define the tensor:

hµν ≡ hµν −
1

2
gµνh

λ
λ (1.26)

eq. 1.25 at source becomes: {
2hµν = −16πG

c4
T ′µν

∂
∂xµ

h
µ

ν = 0
(1.27)

The solution of eq. 1.27 can be written as a retarded potential which represents
the gravitational wave calculated in the position ~x and generated by the source
described by T ′µν in the spacetime ~x′:

hµν(t, ~x) =
4G

c4

∫
T ′µν(t− |~x− ~x′|, ~x′)

|~x− ~x′|
d3x′ (1.28)

In the weak-field limit, when the wave propagates in vacuum far from the source,
i.e. when T ′µν vanishes, eq. 1.27 becomes:{

2hµν = 0
∂
∂xµ

h
µ

ν = 0
(1.29)

The eq. 1.29 shows that a perturbation of a flat spacetime propagates as a wave.
Because of this we can state that General Relativity theory predicts the existence
of gravitational waves. Moreover the double nature of the metric tensor gµν , which
describes both the spacetime shape and the gravitational potential, indicates that
metric perturbation coincides with gravitational perturbation. As said above eq.
1.29 is a wave equation hence its solution can be written in terms of a monochro-
matic plane wave, considering only the real part:

hµν = Re
{
Aµνe

ikλx
λ
}

(1.30)

where the wave amplitude is expressed by the polarization tensor Aµν and kλ is
the wave vector.

1.2.2 Main properties

Let us derive the main properties of gravitational waves. By substituting the
solution 1.30 in the first equation of 1.29 we obtain for the wave vector kλ the
following condition:

ηµνkµkν = 0 (1.31)
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Eq. 1.31 implies that 1.30 is solution of eq. 1.29 only if kλ is a null vector or a
light-like vector; it means that a gravitational wave moves at the speed of light c.
By substituting the solution 1.30 in the second equation of 1.29 we find that:

ηµλ
∂

∂xµ
hλν = 0 (1.32)

which implies:
kµA

λ
ν = 0 (1.33)

From Eq. 1.33 we find that the harmonic gauge condition implies the orthogonality
of the polarization tensor Aµν and the wave vector kλ, being the last one defined
by:

kλ =
(ω
c
,~k
)

(1.34)

and its light-like nature implies that:

−(k0)2 +
∑
i=x,y,z

k2
i = 0 (1.35)

hence, considering eq. 1.34 and 1.35, we can write the wave frequency as follows:

ω = ck0 = c

√ ∑
i=x,y,z

k2
i (1.36)

Only two components of hµν have a physical meaning, representing the degrees
of freedom. Let us consider a wave propagating in a flat spacetime along the
direction x1 = x; since hµν does not depend on y and z, eq. 1.29 can be written in
the following way: {(

− ∂2

c2∂t2
+ ∂2

∂x2

)
h
µ

ν = 0

∂
∂xµ

h
µ

ν = 0
(1.37)

and then h
µ

ν is an arbitrary function of t± x
c
. If the wave is progressive, the second

equation of 1.37 becomes:

∂

∂xµ
h
µ

ν =
1

c

∂

∂t
h
t

ν +
∂

∂x
h
x

ν =
1

c

∂

∂
(
t− x

c

) [htν − hxν] = 0 (1.38)

Integrating the time-dependent part of eq. 1.38 we obtain:
h
t

t = h
x

t

h
t

x = h
x

x

h
t

y = h
x

y

h
t

z = h
x

z

(1.39)

The harmonic gauge allows us to apply the infinitesimal transformation of coordi-
nates:

xµ
′
= xµ + ξµ (1.40)
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given the condition:
2ξµ = 0 (1.41)

The infinitesimal transformation 1.40 can be chosen in order to cancel the following
elements: {

h
t

x = h
t

y = h
t

z = 0

h
y

y + h
z

z = 0
(1.42)

From the relations 1.39 and 1.42 we obtain:

h
x

x = h
x

y = h
x

z = h
t

t = 0 (1.43)

Moreover, since hµµ = 0, from eq. 1.26 we obtain that h
µ

ν ≡ hµν , and finally we can
write hµν as follows:

hµν =


0 0 0 0
0 0 0 0
0 0 hyy hyz
0 0 hyz −hyy

 (1.44)

Hence from the gauge chosen above in 1.40 we obtained that hµν coincides with h
µ

ν

and is traceless. It means that a plane gravitational wave propagating along the x
direction is described by the matrix hµν with only two non-zero components in the
plane yz orthogonal to the propagation direction. Therefore the transformation
1.40 is known as transverse-traceless gauge, or simply TT -gauge. The two non-
zero components of hµν correspond to the two possible polarization states: the plus
polarization and the cross polarization, usually known as A+ and A×, with the
related amplitudes h+ and h×.

The two non-zero elements of the matrix 1.44, corresponding to the two polar-
ization states, can be written as follow:

hyy = −hzz = 2Re
{
h+e

iω(t−xc )
}

hyz = −hzy = 2Re
{
h×e

iω(t−xc )
} (1.45)

1.2.3 Interaction with matter

The simplest case we can study is the effect produced by the passage of a gravita-
tional wave on a single particle at rest in a fixed frame. Let us consider the general
equation of motion of a particle with respect to spacetime coordinates ξµ:

d2ξα

dτ 2
= 0 (1.46)

where τ is the proper time. If we consider the coordinate transformation xα =
xα(ξα) and the definition 1.6, the equation of motion becomes:

d2xα

dτ 2
+ Γαµν

[
dxµ

dτ

dxν

dτ

]
≡ Uα

dτ
+ ΓαµνU

µUν = 0 (1.47)

Eq. 1.47 is known as geodesic equation and describes the motion of the particle
along the geodesic of the spacetime curved by the gravitational wave passage.
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Initially the particle is at rest, i.e. Uα = (1, 0, 0, 0) at t = 0. From eq. 1.47 and
relation 1.7, considering the TT -gauge, we obtain the expression of the acceleration
induced by the gravitational wave:

Uα

dτ

∣∣∣∣
t=0

= −Γα00 = −1

2
ηαβ (hβ0,0 + h0β,0 − h00,β) = 0 (1.48)

From eq. 1.48 it comes out that a gravitational wave will not cause any acceleration
to a particle at rest.

Let us study instead what happens when we consider a system of two test
masses considering their relative motion in a fixed frame [3]. Let the particles
A and B be at rest at t = 0 and let them be located along the x -axis, with A
placed in the origin of the frame of reference and B at the distance x = lAB from
the origin. We can calculate the relative displacement ∆lAB of the two masses as
follows:

∆lAB =

∫
|ds2|1/2 =

∫
|gµνdxµdxν |1/2 =

∫ ε

0

|gxx|1/2dx

≈ |gxx(x = 0)|1/2ε ≈ [1 +
1

2
hxx(x = 0)]lAB (1.49)

Therefore from eq. 1.49 it is evident that the passage of a gravitational wave causes
an oscillation of the relative displacement ∆lAB at the same frequency of the wave.
Moreover, the effect is directly proportional to the wave amplitude hxx and to the
initial distance lAB.

In more general terms, it can be proved [2] that under the TT -gauge:

δxj = δxj0 +
1

2
ηjihikδx

k
0 (1.50)

Eq. 1.50 shows that the test masses are accelerated only in the plane orthogonal
to the propagation direction of the wave.

Let us highlight the effect produced by an incoming monochromatic grav-
itational wave plus or cross polarized on a circular-shape distribution of non-
interacting point masses: if the wave is propagating along the z -axis, we can write
the matrix form of hµν as we did in eq. 1.44:

hµν =


0 0 0 0
0 h+(t− z

c
) h×(t− z

c
) 0

0 h×(t− z
c
) −h+(t− z

c
) 0

0 0 0 0

 (1.51)

Let us use the Fermi coordinates x̂µ to describe the movement of the considered
point masses in a quasi -Newtonian way; eq. 1.50 in the time domain becomes:

x̂i(t) = xi0 +
1

2
hij(t, 0)xj0 (1.52)

Using 1.51 in eq. 1.52 we obtain:
x̂(t) = x0 + 1

2
(h+x0 + h×y0)eiωt

ŷ(t) = y0 + 1
2
(h×x0 − h+y0)eiωt

ẑ(t) = z0

(1.53)
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From eq. 1.53 we note that a circle of particles will be deformed as the gravitational
wave passes, by alternative contractions and elongations along the x̂ and ŷ axes,
for the plus polarization, and along the lines ŷ = x̂ and ŷ = −x̂ for the cross
polarization. This deformation will be modulated at the wave frequency.

It is evident that this tidal effect on test masses can be used for a direct
detection of gravitational waves, as we shall see in chapter 2.

Figure 1.1: Tidal effect produced by the passage of a gravitational wave propagat-
ing along the z -axis on a ring of particles at rest on the xy-plane. The oscillation
axis of plus polarization are π/4 rotated with respect to those of cross polarization.

1.2.4 Emission and intensity

Let us consider the reasonable hypothesis that a source of gravitational waves is
confined within a region of dimension ε smaller than the emitted wavelength, i.e.
ε� λgw ≡ 2πc

ω
, it follows that εω � c. We can write the typical speed at the source

as v ≈ εω and then we deduce that v � c. Hence we shall consider non-relativistic
speed in the emission processes of the source.

The mass distribution of the source can be expressed in terms of multipole
components. The monopole term is the total mass itself, i.e. M , which is conserved
in a closed isolated system. The dipole term is defined by:

D =
∑
k

mkxk (1.54)

In analogy with electromagnetism, the power emitted by a gravitational dipole is
given by P ∝ D̈2, i.e. is proportional to the second power of the dipole second
derivative:

D̈ =
∑
k

mkẍk =
∑
k

mkv̇k =
∑
k

ṗk (1.55)

where pk is the linear momentum of the k -th mass element. In eq. 1.55 we consid-
ered the equivalence between gravitational and inertial mass, i.e. the Equivalence
Principle [2]. Since also the total momentum must be conserved in a closed iso-
lated system, i.e.

∑
k pk = const, it follows that the last term of eq. 1.55 vanishes,

therefore a gravitational dipole will not emit radiation.
From the aforesaid considerations based on the conservation of mass and linear

and angular momentum (which are implied in the conservation of the stress-energy
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tensor expressed by eq. 1.16) it follows that the first contribution to the emission
of gravitational waves is due to the next term in the multipole expansion: the
quadrupole momentum Qµν . It can be expressed in its integral form as follows [4]:

Qµν =

∫
(3x′µx

′
ν − r2δµν)ρ(−→x ′)d3x′ (1.56)

where r is the distance between the source and the observer, and ρ(−→x ) is the
energy density of the source. Using the solution of eq. 1.28 in the non-relativistic
and far-field approximation we can write the gravitational wave amplitude hµν in
terms of the second derivative of the gravitational quadrupole momentum [4]:

hµν(t, r) ≈
8π

3

G

c4

1

r
Q̈µν (1.57)

From eq. 1.56 and 1.57 it is clear that spherically or axially-symmetric systems
cannot emit gravitational waves.

In order to estimate the order of magnitude of the perturbation intensity, we
should approximate the quadrupole momentum, and then its second derivative, as
follows:

Q ≈ εMR2 (1.58)

Q̈ ≈ ε
MR2

T 2
(1.59)

where ε is the coefficient of asymmetry of the mass distribution, M is the total
mass of the source, R is its typical dimension and T the typical timescale of the
system. The speed of the mass elements of the system can be expressed as v = R

T
,

hence substituting the expression of v in Q̈, the eq. 1.57 becomes [4]:

h ∼ 1

r

GM

c2

(v
c

)2

(1.60)

From the eq. 1.60 we note that the amplitude decreases with the distance from
the source as 1

r
. Moreover, the smallness of the factor G

c2
≈ 10−29m3/s4kg makes

negliglible the effect except for those astronomical sources with masses at least of
the order of 1030 kg. The last term of eq. 1.60 shows that also the typical speed
of mass elements in the source should be comparable with c in order to have a
significant effect.

It is possible to obtain a more detailed expression of the gravitational wave
amplitude from the lowest order term of a spherical multipole expansion for the
spatial coordinates [5]:

h̄jk =
2G

c4r
Q̈jk

(
t− r

c

)
+

4G

3c5r

[
εpqjS̈kp

(
t− r

c

)
+ εpqkS̈jp

(
t− r

c

)]
nq (1.61)

where repeated indices imply the summation, εijk is the antisymmetric tensor,
Smn is the current quadrupole momentum and nq is the propagation versor. Eq.
1.61 is widely used to estimate the gravitational wave amplitudes in astrophysical
context: if the system dynamics is dominated by bulk mass motions (e.g. in the
chirp of inspiral binary systems, see sec. 1.3.2) the gravitational radiation is well
described by the first term of the equation. The eq. 1.61 can be used also in the
case of f -mode, r -mode (in particular the second term of the equation) and secular
instabilities in order to estimate the related gravitational emission (see sec. 1.3.4).
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1.2.5 Luminosity

The local stress-energy tensor of a gravitational wavefield propagating through a
flat spacetime is given by the Isaacson expression [2]:

Tαβ =
1

32π

〈
hjk,αh

jk

,β

〉
(1.62)

where with the angle brackets we indicate the averages over regions of the same
size of a wavelength and times of the same length of a period of the gravitational
wave. The T 0i component of the stress-energy, that we have already introduced as
the momentum density in sec. 1.1, represents the energy flux of a wave in the xi

direction. In the quadrupole approximation we can obtain the gravitational wave
luminosity by integrating the eq. 1.62 over a distant sphere [4]:

L∗gw =
dEgw
dt

=
1

5

(∑
j,k

...
Qjk

...
Qjk −

1

3

...
Q

2

)
(1.63)

where we introduced Q as the trace of the matrix Qjk. The expression 1.63 is
dimensionless since we assumed geometrized units (i.e. c = G = 1). Equation 1.63
must be multiplied by the scale factor L0 = c5/G = 3.6×1052 W in order to obtain
the luminosity with its proper dimensions:

Lgw = L0L
∗
gw (1.64)

Usually the astrophysical sources (see sec. 1.3) emit a fraction of L0, but in some
cases the gravitational wave luminosity can come close to L0, greater than the
typical electromagnetic luminosities: by comparison the luminosity of the Sun is
only L� = 3.8 × 1026 W , and that of a typical galaxy would be Lgal ∼ 1037 W .
By combining eq. 1.61 and 1.63, assuming geometrized units and considering the
source at great distance, we can derive the expression for the apparent luminosity
of radiation in terms of gravitational wave amplitude [2]:

F ∼ |ḣ|
2

16π
(1.65)

The eq. 1.65 is useful to make an order-of-magnitude estimate of the gravitational
wave amplitude emitted by a source for which the energy emission rate is known.
Let us consider a source, placed at a distance r, which radiates the energy E in
a time T with a typical frequency f ; since ḣ = 2πfh and F ∼ E/(4πr2T ), we
obtain:

h ∼ 1

πfr

√
E

T
(1.66)

From eq. 1.66 we note that, as in other branches of astronomy, the detectability of
a source depends on its apparent luminosity and on the observation time. However
in eq. 1.66 we should also consider the dependence on frequency: two sources with
the same energy flux but with different emission frequencies are not equally easy
to detect, since higher frequency signals will have smaller amplitudes.
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1.3 Astrophysical sources

The gravitational radiation is expected to be present over a wide range of fre-
quencies, therefore we can classify the astrophysical sources depending on their
emission band:

• very low frequency (10−18 − 10−2Hz)

– stochastic background (gravitational fluctuations from the primordial
universe, stochastic background due to astrophysical and cosmological
sources)

– compact binary systems early inspiral (black holes binaries in particu-
lar); quasi-periodic sources.

• low frequency (10−2 − 102Hz)

– compact binary systems coalescence (white dwarves, neutron stars, intermediate-
mass black holes); quasi-periodic sources.

– spinning neutron stars; periodic sources.

• high frequency (102 − 104Hz)

– compact binary mergers; transient sources.

– neutron star’s instabilities; transient sources.

– gravitational collapses (supernovae, gamma-ray burst progenitors such
as hypernovae and collapsars); transient sources.

– stochastic background (expected by string theory and inflation model)

Many of these sources (e.g. binary black holes) can be observed directly only
through their gravitational radiation, others could have an electromagnetic or
neutrino counterpart (see sec. 1.4). Moreover, since the interaction between grav-
itational radiation and matter is extremely low, gravitational waves carry almost
intact informations about the source which emitted them. Quasi-periodic and
periodic sources also give the advantage of allowing the signal integration over
time, increasing the related amplitude SNR as the square root of the observation
time[6]:

SNRamp ∝
√
Tobs√
Sn(f0)

h(f0) (1.67)

where Sn is the related noise power and f0 is the typical emission frequency. Ob-
viously, a gravitational wave signal would not have such a simple single frequency
modulation f0 in the detector frame: a ground-based detector will have at least
the frequency modulations due to the motions of the Earth. However in principle
the SNR increase with time can still be valid using data analysis techniques such
as matched filtering [6].

In this section I will discuss the astrophysical sources of gravitational radia-
tion, showing that low-frequency sources are very promising candidates for direct
gravitational wave observations in ground-based detectors. A useful parameter to
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evaluate the number of gravitational signals coming from every kind of source is
the detection rate Ṅ [7]. It depends on the emission rate R per unit time and per
galaxy (e.g. coalescence events) and on the number of observable galaxies NG, and
is defined by:

Ṅ = RNG (1.68)

The number of observable galaxies obviously depends on the horizon distance Dhor

related to the detector sensitivity. It can be expressed with a good approximation
by the following formula:

NG =
4

3
π

(
Dhor

Mpc

)3

(2.26)−3(1.16× 10−2) (1.69)

where 1/2.26 is a correction factor which takes into account the average over all
sky locations, and 1.16 × 10−2Mpc−3 is the extrapolated density of Milky Way
equivalent galaxies in space.

1.3.1 Stochastic background

The gravitational wave stochastic background is a superposition of waves arriving
at random times and from random directions from a large number of unresolved
sources, i.e. from those sources with an angular size smaller than the angular res-
olution of the detector. Such a gravitational wave field would be measured by
a detector as a time-series noise, which should have a Gaussian-normal distribu-
tion function, given the central limit theorem and considering a large number of
overlapping sources. This background signal is composed of two contributions:

1. the primordial background, produced by quantum fluctuations that created
the CGWB (cosmic gravitational wave background) in the early universe.

2. the astrophysical background, produced by the evolution of galaxies and
stellar objects, like those that will be described in the next subsections.

The energy density of a field of gravitational waves can be derived from eq. 1.62
multiplied by the factor c2/G2, considering that the element T00 represents the
energy density ρgw:

ρgw =
c2

32πG2

〈
ḣjkḣ

jk
〉

(1.70)

Usually, the energy density related to a random field of gravitational waves is
function of frequency. In geometrized units the energy density of a plane wave is
the same as its flux, then from eq. 1.65 we can derive:

ρgw(f) =
π

4
f 2h2 (1.71)

In this case the wave field is a random variable, then h2 must be replaced by a
statistical mean square amplitude per unit frequency defined Sgw(f). Therefore
the energy density per unit frequency will be proportional to f 2Sgw(f). It is usual
to consider the energy density per unit logarithm of the frequency, which introduce
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a multiplication by f . By averaging over all directions of the wave and over all
the independent polarization components, it is possible to derive [8]:

dρgw
d ln f

= 4π2f 3Sgw(f) (1.72)

The spectrum of the gravitational stochastic background is characterized by
the dimensionless parameter Ωgw(f) [8], which can be interpreted as the fraction
of the closure energy density that is stored in random gravitational waves in a
frequency bin delimited by f and e× f . It is defined, as usual in cosmology, by:

Ωgw(f) =
1

ρcr

dρgw
d ln f

(1.73)

In eq. 1.73 f is the frequency in the observer frame and ρcr is the critical energy
density required to make flat the Universe today, which is given in terms of the
Hubble constant H0 ≡ 100× h100 km/s/Mpc as:

ρcr =
3

8π

c2H2
0

G
≈ 9.0× 10−10J/m3 (1.74)

where we used the estimate H0 ≈ 72 km/s/Mpc. Some cosmological models as-
sume a frequency-independent Ωgw, but in general we should consider a dependence
on frequency expressed by the function H(f), in such a way that it can describe
any spectrum of gravitational radiation, e.g. a flat spectrum, a black body spec-
trum or any other specific frequency-dependent energy distribution. If the source
of radiation is scale-free, which means that the emission process does not have
any characteristic length or time scale, then it will produce a power-law spectrum
in which Ωgw is a power of f . The explicit frequency-dependence of Ωgw can be
derived using a plane wave expansion of the metric perturbations in eq. 1.70 [8],
and combining it with eq. 1.73 and 1.74:

Ωgw(f) =
32π3

3H2
0

f 3H(f) (1.75)

From eq. 1.72, considering eq. 1.73 and 1.74, we can also derive:

Sgw(f) =
3H2

0

10π2
f−3Ωgw(f) (1.76)

where Sgw(f) can be interpreted as the strain spectral noise density induced on
an interferometric detector (see chapter 2) by an incident isotropic gravitational
wave background. The energy density fraction Ωgw can be used to define the so
called chirp-amplitude, a dimensionless gravitational wave strain hc = ∆L/L that
would be produced in the arms of a detector and in a bandwidth which coincides
with the observation frequency. It is defined by the following equation [9]:

hc(f) = 3× 10−20h100

√
Ωgw

100Hz

f
(1.77)
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Observational constraints on the stochastic background

From non-gravitational wave astronomy observations we can set constraints on the
energy density fraction Ωgw. The strongest constraint comes from the high degree
of isotropy in the CMBR (cosmic microwave background radiation). The Sachs
Wolfe effect [10] establishes the connection between the temperature anisotropies
of the CMBR and gravitational waves: variations in the density of the cosmological
fluid and gravitational wave perturbations result in the temperature fluctuations
of CMBR, even if the last scattering surface was perfectly uniform in temperature.
From the observations of δT/T by satellite missions like COBE and WMAP it is
possible to give a constraint on the energy density fraction of gravitational wave
of cosmological origin that were present at the time of last scattering [8]:

Ωgw(f)h2
100 < 7× 10−11

(
H0

f

)2

(1.78)

Since H0 = 3.2× 10−18h100 Hz, it follows that this limit applies only in a narrow
band of very low frequencies (i.e. 10−18 < f < 10−16Hz) where we obtain Ωgw(f =
10−18Hz)h2

100 < 7× 10−11. Other cosmological constraints could be placed by the
measurement of the B-mode CMBR polarization spectrum by the data obtained
by other satellite missions like PLANCK.

Another constraint comes from the millisecond pulsars (see sec. 1.3.4). The
extreme regularity of their pulses, observed over decades, places a tight constraint
on Ωgw(f) at frequencies equal to the inverse of the observation time [11]. In order
to obtain such a constraint we need to measure their timing residuals ∆t/t, which
in principle can highlight the passage of a gravitational wave. Let us consider a
gravitational wave passing by us from a direction transverse to our line-of-sight to
the pulsar, assuming a wavelenght λ = 8 ly and considering the emitting pulsar
as a perfect clock signal. When one of the maxima of the gravitational wave is
passing by the Earth, we should observe a small delay between the pulses (i.e. a
kind of gravitational redshifting); then four years later, when a minimum of the
gravitational wave is passing by the Earth, we should observe the pulses more
closely spaced togheter (i.e. a kind of blueshifting). Such a system could be con-
sidered as a single-arm gravitational wave detector, with an arm length L = 8 ly.
Then the size of the gravitational wave strain is limited by [8]:

hc ≤
∆L

L
=

∆t

t
(1.79)

where we put L = ct = 8 ly and ∆t ∼ µs. From eq. 1.77 and 1.79, and considering
that the timing residual which is of the order of ∆t/t ∼ µs/y < 10−14, we obtain
the constraint:

Ωgw(f ∼ 10−8Hz)h2
100 < 10−8 (1.80)

Another observational constraint is given by the standard model of the Big
Bang nucleosynthesis (BBN), which fits the observed abundances of light elements
in the universe and constrains some cosmological parameters, e.g. the expansion
rate of the universe at the time of nucleosynthesis. This rate is related to the
energy density of the universe at that time, and then also to the energy density
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in a cosmological gravitational wave background. Usually the constraint is given
in terms of number of massles neutrinos permitted at the time of nucleosynthesis,
that is Nν ≤ 3.4 [12]: ∫

ΩNS
gw (f)h2

100d(ln f) ≤ y(Nν)

(
ρrad
ρcr

)
(1.81)

where ρrad is the radiation energy density. We can derive the present day limit
considering that the radiation energy density redshifts proportionally to (1 + z)−1.
Therefore, from eq. 1.81 we obtain:∫

Ωgw(f)h2
100d(ln f) ≤ 7× 10−2(1 + zeq)

−1 ∼ 10−5 (1.82)

where we considered the redshift at the time of equivalence between radiation and
matter densities zeq ∼ 3400 [13].

Cosmological background emission

Let us examine the main cosmological processes in the early universe which deter-
mines the spectrum of Ωgw(f).

• Inflationary models. These are a class of cosmological models which as-
sume that the early universe undergoes a phase in which the energy density
of the universe was dominated by the vacuum energy Λ, resulting in a very
rapid expansion lasted from 10−36 s to 10−32 s after the initial singularity.
In cosmology the predictions of these models are in good agreement with
many observational evidences, e.g. they explain the flatness of the universe
and the CMBR features. The energy density fraction Ωgw can be obtained
as a function of the energy density of vacuum ρΛ [14, 15]:

Ωgw(f) =
16

9

ρΛ

ρP
(1 + zeq)

−1 (1.83)

where we have introduced the Planck energy density ρP = c7/h̄G2. The
dependence on h̄ is related to the fact that this kind of background can be
considered as a parametrically-amplified zero-point energy [14]. The spectral
shape of Ωgw is almost flat in the typical frequency band of ground-based
detectors.

• Cosmic strings. These are a class of one-dimensional objects which might
have formed during a phase transition as the universe cooled, in analogy
with topological defects which can form during the phase transitions of liquid
crystals. Cosmic strings can be described as topologically-stable scalar/gauge
field configurations characterized by a mass per unit length µ. They are
always generated in form of loops, but if the loop is larger than the Hubble
length we will consider it as an infinite string. The length of the loop is
defined as the total energy of the loop divided by µ. An important property
of loops is that they have a tension equal to their µ, therefore this large
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tension causes a relativistic oscillation of the cosmic string: in general a non-
circular loop will oscillate quasi-periodically. Another important property
is that a loop is stable against all types of decay, except for the emission
of gravitational waves. The expression of Ωgw for a stochastic gravitational
wave background generated by a cosmic string network can be written as
[14]:

Ωgw(f) =
16π

9

Aγ

α

(
Gµ

c2

)2

(β3/2 − 1)(1 + zeq)
−1 (1.84)

Eq. 1.84 depends on not completely known parameters: the number of long
strings per horizon volume A, the radiation rate coefficient from a typical
loop γ, the mass per unit length µ, the size of a loop at formation α and
the ratio of death-time and birth-time for cosmic string loops β. From some
estimates of these parameters it seems possible that an eventual stochastic
cosmic string background could be within the sensitivity range of advanced
detectors (see chapter 2), with a spectral shape of Ωgw fairly flat in their
frequency band.

Figure 1.2: Theoretical predictions of the cosmological stochastic background and
observational constraints [16]. The Doppler tracking constraint in the mHz-band
is obtained using the Earth and a distant interplanetary spacecraft as free-falling
particles of a single-arm detector, measuring ∆ν/ν of a microwave tracking link
between them compared to a highly stable clock. The squares indicates the sen-
sitivity limits of initial and advanced ground-base interferometric detectors (see
chapter 2).

• First-order phase transitions. These transitions occurs in an expand-
ing and cooling universe, when its temperature Tu has dropped below the
characteristic energy of the phase transition, i.e. when KTu < Etrans. In
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this condition, bubbles of the new low energy density phase form within
the old high energy density phase, and they expand rapidly, converting the
difference in energy density per volume into kinetic energy of the expand-
ing bubble boundaries. This energy density difference is parameterized in
α = ρvac/ρtherm. Bubbles can collide at relativistic speed with non-symmetric
events, generating gravitational radiation. The spectral shape produced by
this mechanism will be strongly peaked at a typical frequency fmax related to
the time at which the phase transition and bubble collisions have occurred,
and it is a function of the the temperature Tph of the phase transition. In
the standard model of electro-weak phase transition the estimate of this fre-
quency is: fmax ∼ 10−3 Hz. Considering this mechanism, the energy density
fraction will be [16]:

Ωgw(fmax)h
2
100 ∝ 10−6

(
Htrans

β

)2(
100

Ndof

)1/3

(1.85)

where Htrans is the Hubble constant at the time of phase transition, β is given
by the bubble nucleation rate Γ = Γ0 exp(−βt) and Ndof is the number of
the relativistic degree of freedom (in GUT models Ndof ∼ 102). It would
be very optimistic to assume a strongly first order transition, however from
eq. 1.85 we can estimate the gravitational wave fractional energy density
produced during the electro-week phase transition (at Tph ∼ 102 GeV ) that
is Ωgw ∼ 10−9 at mHz scale frequencies.

Astrophysical background emission

Let us examine the main contributions to the gravitational stochastic background
produced by astrophysical sources. Many informations about this kind of sources
(e.g. their physical properties and initial mass function) could be provided by the
detection this background.

• Binary neutron stars. The coalescences of binary neutron stars (see sec.
1.3.2) may radiate energy up to 1046 J in the last seconds of their inspiral
trajectory. The frequency range of this emission extends over a wide range
of frequencies, with a maximum at about 1.4 − 1.6 kHz. Considering the
quadrupole approximation, the energy spectrum emitted by a binary system
in inspiral phase up to its last stable orbit (i.e. up to its maximum frequency
fmax) is given by [16]:

H(f) ∝ dEgw
df

=
(Gπ)2/3

3

m1m2

(m1 +m2)1/3
f−1/3 (1.86)

where H(f) is the frequency-dependent part of eq. 1.76, m1 and m2 are the
neutron star masses. Assuming m1 = m2 = 1.4 M�, the energy density
increases to a maximum given by:

Ωgw(f ≈ 600Hz) ∼ 2× 10−9ρ̇ (1.87)

where ρ̇ is the local coalescence rate in My−1Mpc−3. Even with the most
pessimistic predictions of this rate, which give ρ̇ ∼ 0.035 (i.e. a galactic
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rate of 3My−1), the background from binaries should be detectable by third-
generation gravitational wave detectors (see fig. 1.3 and chapter 2).

• Rotating neutron stars: bar-modes. These modes are a dynamical in-
stability associated with the neutron star formation (see sec. 1.3.4), and
derive their name from the bar-like deformation they induce on a disk-like
object. Numerical simulations [17] predict a maximum of the fractional en-
ergy density Ωgw ∼ 4× 10−10 around 600 Hz.

• Rotating neutron stars: r-modes. The contribution to stochastic back-
ground produced by this kind of instabilities (see sec. 1.3.4) was investigated
by some authors [18] without taking into account for dissipation mechanisms
which may reduce the gravitational instability (e.g. effects of the solid crust
or the magnetic field). The spectral dependence of fractional energy density
calculated for a single source is given by:

H(f) ∝ dEgw
df

=
2E0

f 2
sup

f (1.88)

where 0 < f < fsup, fsup is equal to 4/3 of the initial rotational frequency
and E0 is the rotational energy lost within the instability window. If we
consider neutron stars with radius R = 10 km and mass M = 1.4 M�, the
predicted spectrum is given by:

Ωgw(f) ∼ 10−12ξf 3
0 (1.89)

where ξ is the fraction of neutron stars born near the Keplerian velocity
and which enter in the instability window. The spectrum of Ωgw have a
maximum around f ∼ 900 Hz. If ξ > 0.2% third-generation gravitational
wave detectors (see chapter 2) may detect this background radiation.

• Rotating neutron stars: tri-axial emission. This emission is produced
by rotating neutron stars with a triaxial shape, which may be character-
ized by a time varying quadrupole momentum, resulting in a gravitational
wave emission at twice the rotational frequency. The related Ωgw spectral
dependence will be proportional to the total spectral energy emitted by a
neutron star with an initial rotational period P0, decelerating through mag-
netic dipole torques and gravitational wave emission. It is given by [16]:

H(f) ∝ dEgw
df

=
Kf 3

1 + (Kf 2)/(π2Izz)
(1.90)

where

K =
192π4GI3

zzε
2

5c5R6B2
(1.91)

R is the radius of the star, ε = (Ixx − Iyy)/Izz is its ellipticity, Iij is the
principal momentum of inertia, B is the projection of the magnetic dipole in
the direction orthogonal to the rotation axis and 0 < f < 2/P0. The energy
density spectrum can be estimated to be Ωgw ∼ 1.3× 10−8 at f = 1.6 kHz.
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• Neutron star collapses. A fraction of the neutron stars may undergo small
core collapses, resulting in phase transition to quark matter. This process
will release a certain amount of energy through gravitational wave emission:
if this class of neutron stars is 1% of the total and the released energy is 5%
of the rotational energy (∼ 2 × 1044 J), the fractionary energy density will
be Ωgw ∼ 10−10 in the kHz-band.

Figure 1.3: Energy density of astrophysical background sources discussed in this
section [16]: magnetars (threshold detectable by 3rd generation detectors), binary
neutron stars, dynamical bar modes in proto-neutron stars, r-modes assuming that
1% of proto-neutron stars cross the instability window, population II core collapses
to neutron stars and to back holes.

• Core collapses: supernovae to neutron stars. In a supernova explosion
(see sec. 1.3.5) the star envelope is ejected while the core collapses to form a
neutron star or a black hole, depending on the initial mass of the progenitor
star. This process may emit a large amount of gravitational waves. Some au-
thors calculated the stochastic background produced by the birth of neutron
stars at cosmological distances [19], considering the standard cosmological
model (with Ωm = 0.3, ΩΛ = 0.7 and H0 = 70 km/s/Mpc), assuming neu-
tron star progenitors with masses 8 M� < M < 25 M� and a Salpeter initial
mass function normalized between 0.1− 125 M�. The resulting background
is found to be continuous for Type I supernovae, while is like burst-noise for
Type II. The maximum of the Ωgw spectrum is Ωgw ∼ 3×10−12 at 700 Hz for
Type I and Ωgw ∼ 3× 10−13 at 100 Hz for Type II. We should remark that
this estimates remain uncertain due to the difficult to predict the waveform
and the parameters of the supernovae gravitational wave emissions.
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• Core collapses: supernovae to black holes. Assuming Population II and
a mass range of 20 M� < M < 100 M� for the black hole progenitors, the
expected background energy density maximum from these objects is Ωgw ∼
5 × 10−10 at f = 500Hz. If the mass of the progenitors is 8 M� < M <
20 M�, the expected maximum is Ωgw ∼ 10−9 at 1 kHz. A general estimate
of the gravitational wave background spectrum generated by core collapses
supernovae is given by [20]:

H(f) ∝ dEgw
df

= Ae−
f−f0
2σ2 (1.92)

where 200 Hz < f0 < 800 Hz and σ ∼ 500. The background signal gener-
ated by these sources might be detectable in third-generation detectors only
if the efficiencies ε of the emission process are high enough.

Detection of stochastic background

A random signal such as the stochastic background is indistinguishable from in-
strumental incoherent noise of a single detector, at least considering short obser-
vation times. When the random field is produced by astrophysical sources with
an anisotropic distribution (e.g. by sources in our galaxy), the detection would be
possible having long observation times, as the ground-based detector changes its
orientation due to Earth orbital motion, producing a signal modulation.

Another way of detecting the stochastic radiation consists in performing a cross-
correlation between two detectors: the random signal measured by one detector is
used as a template for the signal measured by the second detector. In principle
the local noise of the two detectors will be incoherent and so they will have a low
correlation; instead an astrophysical stochastic background will produce a stronger
correlation. We have to consider an important remark: the signals can only match
well if the gravitational wave wavelength is longer than the separation between
the detectors; otherwise a wave maximum will reach a detector before the other
producing a time delay, and this will degrade the match. Let us study this method
[8]: the simplest possible case is to have two independent coincident and co-aligned
gravitational wave detectors, characterized by two outputs:

s1(t) = h1(t) + n1(t) (1.93)

s2(t) = h2(t) + n2(t) (1.94)

where we indicate the signal si(t) as composed of the gravitational strain hi(t)
produced by the stochastic background, and the intrinsic detector noise ni(t). We
will assume that the two noises are stationary, Gaussian, statistically independent
of one another1 and much larger than the gravitational strain h(t), which will be
the same for coincident and co-aligned detectors. We can obtain the correlation
signal S by multiplying together the two outputs and integrating over time T :

S =< s1 s2 >≡
∫ T/2

−T/2
s1(t)s2(t)dt (1.95)

1obviously this assumption is unrealistic for the case of coincident and co-aligned detectors,
but it is reasonable when considering the case of widely separated detectors.
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Since we assumed that detector noise ni is great if compared to the signal, we can
write:

S = < h1 h2 > + < n1 h2 > + < h1 n2 > + < n1 n2 >

≈ < h1 h2 > + < n1 n2 > (1.96)

where we have neglected terms like < ni hj > that are smaller than < ni nj >
but statistically identical. Note that in eq. 1.101 the first term < h1 h2 > will
be proportional to the observation time T , since h1(t) = h2(t) = h(t); the second
term < n1 n2 > can be considered as the random walk of one-dimensional line,
and then on the average it grows as T 1/2. Therefore, increasing the observation
time, it is possible in principle to detect a stochastic background signal immersed
in any level of noise. From computation [14] we obtain:

< h1 h2 > ∝ |h̃(f)|2∆fT ∝ Ωgw(f)∆fT (1.97)

< n1 n2 > ∝ |ñ(f)|2(∆fT )1/2 (1.98)

where f is the central frequency of the detector sensitivity band, ∆f is the effective
bandwidth and we used the tilde character to indicate the Fourier transform:

h̃(f) =

∫ ∞

−∞
e2πifth(t)dt (1.99)

If we set the SNR equal to 1, from eq. 1.97 and 1.98 we can write the minimum
detectable level of Ωgw:

Ωmin
gw ∝ |ñ(f)|2(∆fT )−1/2 (1.100)

Let us analyze a more realistic situation, when the arms of the two detectors
are not parallel and there is a time delay between them. In this case h1 6= h2,
resulting in a partial overlap between the gravitational wave strains in the two
detectors, that we will indicate with the overlap reduction function γ(f). The
generalization of eq. 1.95 is given by:

S ≡
∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′s1(t)s2(t′)Q(t− t′) (1.101)

where Q(t− t′) is the real filter function, and depends on the relative position and
orientation of the two detectors. If we consider two detectors characterized by a
narrow bandwidth, located very close to each other and with the same orientations,
then the real filter function would be a Dirac delta function Q(t− t′) ≡ δ(t− t′),
i.e. we would obtain the situation expressed by eq. 1.95. In a general case Q(t− t′)
is also a function of the spectral characteristic of the stochastic background and
detector noise, and so it is related to γ(f).

Assuming that the filter function is real, i.e. Q̃(−f) = Q̃∗(f), by using the
Fourier transform eq. 1.101 in the frequency domain becomes:

S ≡
∫ ∞

−∞
df

∫ ∞

−∞
df ′δT (f − f ′)s̃∗1(f)s̃2(f ′)Q̃(f) (1.102)
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where the function δT (f − f ′) is a finite time approximation to the Dirac delta
function, being defined by:

δT (f − f ′) =

∫ T/2

−T/2
dt e−2πift ≡ sin(πfT )

πf
(1.103)

We note that eq. 1.103 reduces to the Dirac delta function in the limit T → ∞.
Assuming an isotropic, unpolarized and Gaussian stochastic background we can
obtain the strain signal and strain noise Fourier amplitudes [14]:

< h̃∗1(f) h̃2(f ′) > = δ(f − f ′) 3H2
0

20π2

Ωgw(|f |)γ(|f |)
|f |3

(1.104)

< ñ∗i (f) ñj(f
′) > =

1

2
δ(f − f ′)δijPi(|f |) (1.105)

where the two sites are indicated by the indices i, j and Pi(|f |) is the power spectral
noise density.

We still have to choose an optimal filter function Q(f) such that the SNR is
maximized. Since we assumed that the noise in each detector is uncorrelated with
the other, and also with the gravitational wave strain h, we can obtain its Fourier
transform expression given by [8]:

Q̃(f) = λ
γ(|f |)Ωgw(|f |)
|f |3P1(|f |)P2(|f |)

(1.106)

where λ is an overall normalization constant. The related expression of the optimal
SNR from the cross-correlation is given by:(

S

N

)2

=
9H4

OT

50π4

∫ ∞
0

df
γ2(f)Ω2

gw(f)

f 6P1(f)P2(f)
(1.107)

From 1.107 we note that SNR depends on the spectrum of gravitational wave
Ωg(f), that is a function that we do not know a priori. It means that in practice
we need to have a set of such filters to perform a cross-correlation observation.

By using the data collected by the first generation of interferometric detectors
(see chapter 2), these cross-correlation methods gave an upper limit on the gravi-
tational wave density fraction Ωgw ≤ 6.9−6 at 95% confidence [21]. We remark that
this value is lower than other limits set by Big Bang nucleosynthesis (ΩBBN

gw ≤ 10−5)
and from the CMBR measurement experiments (ΩCMBR

gw ≤ 9.5× 10−6).

1.3.2 Compact binary coalescences

Compact binaries consist of neutron stars and/or black holes binary systems.
These objects evolve by emitting gravitational radiation which extracts orbital
binding energy and angular momentum from the system. Therefore the two com-
ponents of a compact binary will inspiral toward each other end eventually they
will merge. We can describe the evolution of this kind of systems in three phases
(see fig. 1.4):
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Inspiral A binary system spends hundred of millions of years in this phase. The
emission of gravitational waves and the dynamics of the system can be solved
in a first approximation using the Newtonian mechanics and, for a more
accurate description, the Post-Newtonian approach [22]. Let us consider a
system composed of two point masses M1 and M2, with a separation a and
an orbital period P . If we assume a quasi-circular orbit we know from the
third Kepler’s law that G(M1 +M2) = v2a, having written the orbital speed
as v = 2πa/P , then we obtain:(v

c

)2

= G
M1 +M2

ac2
(1.108)

By substituting eq. 1.108 in eq. 1.60, averaging over the orbital period and
orientation of the orbital plane, we can derive the expression of the gravita-
tional wave amplitude [23]:

h ≡
√
< h2

+ > + < h2
× > =

(
32

5

)1/2
(πf)2/3

R0

G5/3

c4

M1M2

(M1 +M2)1/3
(1.109)

where R0 is the distance of the detector from the source, and f is the emitted
gravitational wave frequency, defined by:

f =
1

π

[
G(M1 +M2)

a3

]1/2

(1.110)

In eq. 1.109 we observe that the amplitude h depends on a particular com-
bination of the two masses:

M =

[
(M1M2)3

M1 +M2

]1/5

(1.111)

M is called the chirp-mass because it largely determines the rate at which
the system frequency evolves, or ”chirps”. Using the definition 1.111 in eq.
1.109 we obtain:

h ∝ M
5/3f 2/3

R0

(1.112)

which determines the energy spectrum:

dE

df
=

(πG)2/3

3
M5/3f−1/3 (1.113)

From eq. 1.110 and 1.112 we note that as the two objects approach each other,
i.e. a decreases, the emitted gravitational wave frequency and amplitude
increase, producing a final signal which is called the chirp.

Using the Post-Newtonian expansion of the Einstein’s equations we can ob-
tain a more accurate computation of the gravitational wave amplitudes in
the inspiral phase. Let us consider a binary system with a chirp-mass M,
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Figure 1.4: Compact binary coalescence: artist’s representation, waveform and
orbital decay. The inspiral phase emission can be calculated with a Newtonian
or Post-Newtonian approach, the merger phase waveform comes from numerical
relativity simulations, and the ringdown phase is calculated by the black hole
perturbation theory.

placed at a luminosity distance DL: from Post-Newtonian computations the
dominant parts of the two polarization are given by [24]:

h+(t) = 2
M5/3(πf)2/3

DL

(1 + cos2 i) cos(2Φ(t) + Φ0) (1.114)

h×(t) = −4
M5/3(πf)2/3

DL

cos i sin(2Φ(t) + Φ0) (1.115)

where i is the angle between the orbital angular momentum and the line-
of-sight, and Φ(t) ≡ Φ(t; t0,M1,M2) is the orbital phase of the equivalent
one-body system around the centre of mass of the binary system. Equations
1.114 and 1.115 contain only the dominant terms which oscillates at twice
the orbital frequency. In a more accurate approach we should consider also
higher order amplitude corrections which contain other harmonics (i.e. phase
terms containing kΦ(t), being k a positive integer number). Moreover, the
expressions 1.114 and 1.115 are valid for a system of non-spinning compo-
nents on a quasi-circular orbit, that is not a rather realistic assumption. A
detailed Post-Newtonian calculation must take into account the spin-orbit
and the spin-spin couplings between the two components of the binary sys-
tem, which produce a characteristic modulation in the emitted gravitational
signal (see fig. 1.6). The gravitational wave frequency at the end of the
inspiral phase, when the two massive objects collide, is given by:

f ∗ ≈ 4

(
M

M�

)−1

kHz (1.116)
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Note that eq. 1.116 is valid only for a system composed of compact objects.
Otherwise, if we consider a large stellar object (i.e. a separation between
the two bodies larger than the innermost stable circular orbit), we should
consider a different proportionality to the factor 1/a, resulting in a lower
transition frequency.

Merger In this phase the two stellar objects are moving at relativistic speed and
experiencing extreme gravitational fields, eventually resulting in a violent dy-
namical fusion that leads to the formation of a black hole, relasing a fraction
of their rest-mass energy in gravitational radiation. The Post-Newtonian
approximation is no longer valid when the two objects get very close to each
other. In this case an accurate description of the system dynamics requires
the full non-linear structure of the Einstein’s Equations (see. sec. 1.1), as
the problem involves strong relativistic gravity and tidal deformations an
disruption. An effective way to solve this problem is by means of numerical
simulations, which widely investigated the case of binary black holes in the
previous years [25]. However the merger phase in the case of binary neu-
tron stars is still not well understood, as it is complicated by many unknown
physical effects, such as the equation of state of neutron stars and the effect
of their magnetic fields. The timescale of the merger phase is very short:
from milliseconds in the case of stellar-mass black holes to seconds in the
case of the heaviest black holes. During this phase a significant amount of
the progenitor’s matter could have such a high angular momentum which
can contrast the falling into the black hole horizon. This leads to the forma-
tion of a temporary accretion disk around the black hole which can power
a gamma-ray burst jet (see sec. 1.3.6). Note that although this phase is
very short compared to the system evolution timescale, it can generate a
gravitational radiation luminosity close to L0 (see sec. 1.2.5), exceeding the
luminosity of the entire Universe in electromagnetic radiation in that short
duration.

Ringdown After the two progenitor neutron stars and/or black holes have merged
to form a massive compact object, it settles down to a quiescent state by
radiating the deformations inherited during the merger, in the so called
ringdown phase. To compute the emitted gravitational radiation after the
merger, the perturbation theory can be used, consisting of a superposition of
quasi-normal modes of the object formed in the merging. These modes are
characterized by a unique signature that depends only on the mass and spin
angular momentum in the case of a final black hole. If we consider instead
the formation of a neutron star in the merging, the signature will also depend
on the equation of state of its supra-nuclear matter. The duration of this
phase is comparable to the one of the merging, depending on the mass of the
final object; in practice it consists of two to three cycles.

The gravitational signal emitted by a compact binary will last some hours in the
typical low frequency band of third-generation ground-based detectors2.

2for a binary composed of two 1.4 M� neutron stars it will be: ∆t1−5Hz ∼ 10d and ∆t5−10Hz ∼
2h; for a binary composed of two 20 M� black holes it will be ∆t1−2Hz ∼ 2d and ∆t2−10Hz ∼ 1h.
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Figure 1.5: Coalescences from compact binary systems [26]: left plots show the
time-domain waveforms, right plots show the frequency spectrum. The upper plots
are related to a system composed of two equal masses, the lower plots to a system
composed of a neutron star - black hole system. In the waveform it is evident the
modulation produced by the interaction between the spins of the bodies and the
orbital angular momentum. In the second case the signal amplitude is smaller and
the duration is longer due to the larger mass ratio of the system, moreover the
signal modulation is stronger as the spin-orbit precession of the orbital plane is
greater.
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Since there are not any direct observation of these events in the electromagnetic
window, a prediction for the compact binary mergers would be entirely based on
theoretical estimates. In a first approximation the binary merger rate depends on
the formation rate of Type II supernovae (see sec. 1.3.5), which are the main pro-
genitors of both neutron stars and black holes. Hence the merger rate is roughly
proportional to the star formation rate, and we expect that it increases with red-
shift. Recently some progenitors of binary black holes have been discovered, such
as the IC10 X-1 system, composed of a black hole and a massive Wolf-Rayet star
[27]. This kind of progenitors3 lie in low metallicity environments, and we expect
higher formation rates and higher masses in such low metallicity gas clouds. This
fact suggests that in the early universe, where fewer generations of stars have pro-
duced metals, massive binaries could have formed very frequently. The compact
binary formation and merger rates are also increased by mass segregation in the
core of protoclusters, where a massive object can easily form a compact binary,
being born in a multiple system or substituting the lighter companion in a bi-
nary system through a three-body interaction. Moreover, the close approach of
other stellar objects in a mass-segregated core of a cluster could extract angular
momentum from the compact binary, reducing the coalescence time and therefore
statistically increasing the merger rate.

Source Rate (Mpc−3Myr−1)
BNS 0.1− 6

NS-BH 0.01− 0.3
BBH 2× 10−3 − 0.04

Table 1.1: Expected coalescence rates per Mpc3 and Myr in the local universe
(z ≈ 0) [26] for three kind of compact binary systems: binary neutron stars (BNS),
neutron star - black hole (NS-BH) and binary black holes (BBH). A rough estimate
of the expected detection rates are given by the multiplication of these coalescence
rates by the detector observational horizon.

Intermediate-mass binary black holes

Black holes can be divided into three categories according to their mass: stellar-
mass (SBH) with 3 M� < M <∼ 30 M�, intermediate-mass (IMBH) with
102M� < M < 104M�, and supermassive (SMBH) with 104M� < M < 109M�.
The IMBHs binaries are a promising source of gravitational radiation in future
ground-based and space-based gravitational wave detectors. In the early Uni-
verse (z ≥ 10) the negligible metallicity might have enabled the formation of this
intermediate-mass black holes from very high-mass Population III stars or via
direct collapse of low-rotation gas disks. Observations of quasars out to z ∼ 7
suggest that these early generation of IMBHs could have acted as initial seeds for
progressive SMHN growth. In the present Universe, IMBH will form in globular

3usually such compact binary systems composed of a black hole and a massive star have a
X-ray counterpart powered by the accretion disk formed around the black hole.
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clusters. Since an IMBH will be the most massive object of the cluster, it will
quickly sink to the center of it and eventually substitute, through a three-bodies
interaction, into a binary system with a compact object companion. Subsequently,
close stellar flybys in the dense core of the cluster will remove angular momentum
from the system reducing the separation between the binary components, and at
the end there will be a merging via an intermediate-mass-ratio inspiral (IMRI) on
a timescale of less than 109 yr. If the stellar binary fraction (fb) of the globular
cluster is sufficiently high (fb ≥ 10% from recent simulations [28]), two or more
IMBHs can form and sink to the center, where they will form a binary composed of
two IMBH and eventually merge. Observations and simulations [29] suggest that
fb ≥ 30%, therefore the formation of the IMBH binaries in dense and young star
clusters could be likely. Moreover, the merger of two stellar clusters (both with
an IMBH in their core) could be an alternative mechanism to form this kind of
binaries. The detection rate of IMBH coalescences in advanced gravitational wave

Figure 1.6: Expected gravitational signal amplitude from a binary composed of
two IMBH (500M�−500M�) [26]. In the figure there are also reported the design-
sensitivity curves for Advanced, third generation and space (LISA) detectors (see
chapter 2).

detectors (see chapter 2) can be estimated by:

Ṅ2gen
IMBH ∼ 40

(
g × gc
10−2

)
yr−1 (1.117)

where g is the fraction of globular clusters hosting a pair of IMBHs and gc is the
fraction of star forming clusters with 104M� < Mcl < 106M�. The detection rate
for past first generation detectors and for the future third generation detectors can
be obtained multiplying Ṅ2gen

IMBH respectively by a factor 10−2 and 102 [26].

Massive black holes mergers and captures

A very intense gravitational wave source in the low-frequency band can be expected
from the merger of massive and supermassive black holes (SMBH), such as those
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in the cores of galaxies. Galactic mergers are likely to give rise to these events,
therefore the galactic merger rate gives a rough estimate of SMBH merger rate.
Potentially detectable low-frequency gravitational waves can also be generated by
low-mass objects (such as smaller black holes, neutron stars white dwarfs or even
main sequence stars) orbiting massive black holes in the high density galactic
nuclei. This kind of sources probably exists in the nucleus of our own Galaxy,
and could be in principle be detectable well beyond the Virgo Cluster. The main
constraint for the gravitational wave emission of this objects is whether or not
the gravity gradient from the central black hole is sufficient to tidally disrupt the
companion object: in this case the disrupted object will form an accretion disk
slowly falling into the black hole, with a negligible gravitational radiation emission.
In order to avoid the tidal disruption, the Swartzchild radius of the black hole must
be large compared with the radius of the infalling object: the black hole must have
a mass 107M� < M < 108M� for main sequence stars, 104M� for white dwarfs
and 10M� for neutron star captures.

Cosmology with binary coalescences

In physical cosmology the distance-redshift relation is a crucial measure in order
to study the expansion history of the universe, and then to obtain constraints
on the cosmological parameters such as the energy densities. In particular, the
distance-redshift relation is used to constrain the equation of state and the energy
density of the dark energy, which is the main contribution to the total mass-energy
of the universe and produces the increase of the expansion rate of the universe
[30, 31]. The discovery of this acceleration was possible by using electromagnetic
standard candles such as type Ia supernovae4 (see sec. 1.3.5) observed at different
redshifts z: their apparent luminosity F can be calibrated, since we know their
intrinsic peak luminosity L, in order to obtain their luminosity distance, that is
DL = (L/4πF )1/2. The ”distance ladder” based on type Ia supernovae works up
to redshifts of a few, while it is necessary to find a completely different kind of
sources on larger distance scales. In 1986 it has been shown by Schutz [32] that
gravitational wave observations can provide standard sirens such as the chirping
signal from the coalescence of compact binary systems. For instance the inspiral
phase evolution of BBH/BNS systems, descibed above in this subsection, is well
modeled and the gravitational wave amplitudes are expressed by eq. 1.114, 1.115.
Since the the phase Φ(t) of the signal is known from Post-Newtonian computation,
using matched filters it is possible to measure M, f , t0 and Φ0. The remaining
unknown angular parameters of eq. 1.114, 1.115 can be derived by a network of
three non-co-located detectors measuring three independent combinations of the
polarizations and two time delays of the observed signal. From the knowledge of the
previous parameters and having properly considered the antenna pattern function
of the detectors (see sec. 2.1), from eq. 1.114, 1.115 it is possible to determine
the luminosity distance with the fairly high accuracy of ∆DL/DL ∼ 1− 10% [33].
Obviously gravitational waves do not provide informations about the redshift of the

4for this discovery A. Riess, S. Perlmutter and P. Schmidt got the Nobel prize in physics in
2011
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emitting source, therefore to study the expansion rate change of the universe the
measure of z from an electromagnetic counterpart (e.g. the host galaxy) is needed
(see sec. 1.4). Moreover, the redshift z is entangled in the inspiral evolution of the
binary systems: since the evolution timescales are redshifted, then the measured
masses are also redshifted5 [33]. Hence the gravitational wave amplitudes emitted
in the inspiral phase at cosmological distance and expressed by eq. 1.114, 1.115
must be rewritten with the mapping M → (1 + z)M = Mz. Furthermore,
knowing the redshift of the electromagnetic counterpart and considering only local
coalescences (i.e. within z � 1), through the calculation of the luminosity distance
DL, derived from the measurement of the related gravitational signal, it is also
possible to measure the Hubble constant, which is defined as H0 = cz/DL, with
a very high accuracy. From the measurement of the masses of coalescing systems
and from the relative redshift provided by electromagnetic counterparts it is also
possible to study the evolution of the star formation rate SFR(z) and binary
fraction fb(z). In particular, at higher redshift we expect the formation of more
massive BHs and so more massive compact binaries. It is caused both by higher
SFR and by lower metallicities, which imply lower mass-loss rates in the stellar
phase and then the formation of higher masses BHs. Therefore the detection of
gravitational wave signals produced by compact binaries may give us valuable
informations about their population evolution.

1.3.3 Binary coalescence precursors: PSR1913+16

The existence of gravitational waves is shown indirectly from the study of bi-
nary neutron stars that are binary coalescence precursors. Their electromagnetic
emission is oriented with the neutron star magnetic field axis, that is misaligned
with the rotational spin axis (see fig. 1.9). Therefore, when their emission axis is
pointed toward the Earth, the neutron star appears as a pulsating source with a
very precise interval between pulses6. When the neutron star is part of a compact
binary system its pulsating signal is characterized by a modulation equal to their
orbital period P . Binary neutron stars emit gravitational radiation loosing or-
bital energy, therefore in the adiabatic approximation we can express this concept
writing:

Lgw ≡
dEgw
dt

= −dEorb
dt

(1.118)

In eq. 1.118 the luminosity Lgw can be derived by equations 1.63 taking into
account the factor c5/G, obtaining:

Lgw =
32G4

5c5

µ2(M1 +M2)3

a5
(1.119)

where µ = (M1M2)/(M1+M2) is the reduced mass and a is the separation between
the two compact objects. If we consider a Keplerian orbit, the orbital energy will

5this effect make a system with total mass M placed at redshift z indistinguishable from a
local system with total mass (1 + z)M .

6because of this characteristic emission a radiating neutron star is often called pulsar, i.e.
pulsating star.
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be given by:

Eorb = −1

2

Gµ(M1 +M2)

a
(1.120)

Hence substituting the time derivative of eq. 1.120 and the eq. 1.119 in eq. 1.118,
considering the third Kepler’s law: P 2 = a3GM1M2/4π

2µ, we can derive the orbital
period P variation due to the emission of gravitational waves:

dP

dt
=

3

2

P

Eorb
Lgw (1.121)

Taking also into account the orbital eccentricity e, we can derive a more accurate
estimate of the time rate for the change of orbital period from the quadrupole
formula (eq. 1.61) applied to a system made of two point-masses in Keplerian
orbit [34]:〈

dP

dt

〉
= −192π

5c5

(
2πG

P

)5/3
MnsMc

(Mns +Mc)1/3

1 + 73
24
e2 + 37

96
e4

(1− e2)7/2
(1.122)

where Mns and Mc are respectively the mass of the neutron star and that of its
companion.

Figure 1.7: The orbital period decay of the binary PSR1913+16. The observational
points are in excellent agreement with the emission of gravitational waves predicted
by general relativity [35].
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In 1974 R. A. Hulse and J. H. Taylor discovered the binary pulsar PSR1913+16,
finding a pulse period p = 59 ms with a modulation P = 7.752h. The masses of
the pulsar and its companion are estimated to be respectively Mns = 1.4398 M�
and Mc = 1.3886 M�, with an orbital eccentricity e = 0.6171 [35]. From eq. 1.122
they obtained the predicted value of the orbital period decay:〈

dP

dt

〉
= −(2.402531± 0.000014)× 10−12 (1.123)

After 30 years of observations the predicted value of 1.123 is in excellent agreement
with the observational one (see fig. 1.7), and their ratio is:

R =

(
dP

dt

)
obs

(
dP

dt

)−1

GR

= 0.997± 0.002 (1.124)

That is a remarkable check of general relativity in particular since it is done in a
strong-field regime, and it is a quantitative evidence of the existence of gravita-
tional waves. For this result Hulse and Taylor got the Nobel Prize in 1993.

1.3.4 Isolated neutron stars

There are almost 2000 neutron stars known presently, observed as pulsars either in
the radio or X-ray bands. Obviously the electromagnetic detection of neutron stars
is biased toward pulsars which have their magnetic field axis aligned with our line-
of-sight, therefore we expect at least 108 spinning neutron stars considering only
our galaxy. Since they are generated from collapsed star cores that reached the
Chandrasekhar limit, their mass is M ∼ 1.44 M� (i.e. the Chandrasekhar mass);
their typical size is related to the Schwarzschild radius: RNS ∼ 10 km. Neutron
star’s electromagnetic emission can be powered by the rotational energy (rotation-
powered pulsars), by the gravitational potential energy of matter in an accretion
disk (accretion-powered pulsars, usually X-ray sources) and by the decay of strong
magnetic fields (magnetars, usually X-ray and γ-ray sources). The parameters of
many of these objects have been accurately measured, in particular their frequency
frot, which slows in time (i.e. ḟrot < 0) as their rotational period P increases.
Depending on this period pulsars can be divided into two categories:

• millisecond pulsars, when their orbital period is P ≤ 20 ms;

• long-period pulsars, when their orbital period is P > 20 ms

A spinning neutron star can be a periodic source of gravitational radiation when
it is characterized by a non-axisymmetric mass distribution, giving rise to a time-
varying quadrupole momentum. In this case its gravitational wave emission due
to a non-negligible ellipticity will occur at twice the rotational frequency of the
star, i.e. f = 2frot. The asymmetry may be generated by different effects:

• the neutron star structure may be distorted by the high spinning rate of the
pulsar which produces an equatorial bulge, and by strong magnetic field local
interactions; because of these effects the rotational axis may not coincide with
the symmetry axis;
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Figure 1.8: The pulsar at the center of the Crab nebula. It was generated by the
supernova explosion observed in 1054 A.D. (SN1054). The rotational period of this
pulsar is P ≈ 33.5 ms. This picture is a false-color composite of X-ray (in blue, by
NASA’s Chandra X-ray Observatory), visible band (in green, by NASA’s Hubble
Space Telescope) and radio band (in red, by NRAO/AUI/NSF) observations.

Figure 1.9: Artist’s representation of a radiating neutron star; the electromagnetic
beams are drawn in blue, magnetic field lines in green. The pulsar is visible in the
EM -band when the beam intersects periodically with our line of sight.
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• inhomogeneities in the star core and/or crust, produced in the neutron star
formation or by sudden crustal adjustment (starquakes);

• an accretion disk may surround the neutron star, especially in close binaries,
and it can have an angular momentum misaligned with that of the neutron
star;

• instabilities (such as glitches and r-modes) in the neutron star fluid.

The expected gravitational radiation amplitude generated by a pulsar is given by
[36]:

h0 =
4π2G

c4

Izzεf
2

r
(1.125)

where Izz is the star momentum of inertia with respect to the rotation axis, r is
the star distance and ε is the equatorial ellipticity defined by:

ε =
Ixx − Iyy
Izz

(1.126)

Therefore we can write the two polarization amplitudes in terms of h0:

h+(t) = h0

(
1 + cos2 i

2

)
cosφ(t) (1.127)

h×(t) = h0 cos i sinφ(t) (1.128)

where i is the angle of inclination of the star’s rotation axis with respect to the
line-of-sight and φ(t) is the signal phase function, which takes into account timing
effects such as the Roemer delay, the gravitational redshift produced by the Sun
and by the time dilatation due to Earth’s motion, and the Shapiro delay [37]
produced by the curvature of spacetime near the Sun. The ellipticity ε is not
know in principle but it can be estimated by crustal models as a function of the
breaking strain Ub. These models indicates that the crustal structure can sustain
the maximum ellipticity [38] ε ≤ 2 × 10−4Ub, with Ub ∼ 0.1 [39]. However a
rigorous calculation of the allowed maximum ellipticity should take into account
also the equation of state of the neutron star’s core [40, 41] and the interaction
of the inner magnetic field [42, 43] which may produce asymmetries, especially in
young neutron stars.

We define the spindown upper limit to the amplitude h0 of the gravitational
radiation emitted by a pulsar by assuming that all the lost rotational energy is
converted into gravitational wave emission:

Ėrot = Ėgw (1.129)

where we have to substitute the expressions of Ėrot and Ėgw:

Ėrot = Iωω̇ (1.130)

Ėgw =
2c3

5G
ω2r2(h0)2

sd (1.131)
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The angular velocity ω and the distance r are known from electromagnetic ob-
servations, and we can assume I ∼ 1038 kg m2. Therefore, from eq. 1.129 we
obtain the spindown upper limit of the known pulsars (h0)2

sd, which ranges be-
tween 10−28 and 10−24 (see fig. 1.10). The weakness of this signal implies an
integration over long periods, with the related data analysis complications, such
as those considered above in the signal phase function φ(t). Using the data ac-
quired in the past years by the interferometric gravitational wave detectors Virgo
and LIGO (see chapter 2) it was possible to find the upper limits to the gravita-
tional emission of the pulsars Crab [44] (shown in fig. 1.8) and Vela [36], finding
respectively (h0)Crabobs < 2.4×10−25 and (h0)V elaobs < 2×10−24, which are smaller than
their spindown upper limits (h0)Crabsd < 1.4 × 10−24 and (h0)V elasd < 3.29 × 10−24.
These results implies that the fraction of rotational energy lost converted into
gravitational radiation emission is < 2% for the Crab and < 35% for the Vela.
Moreover, from eq. 1.125 we also obtain a limit to their ellipticity, that is respec-
tively: εCrab < 1.3× 10−4 and εV ela < 1.1× 10−3. In the next subsections we will
analyze some relevant processes involved in the gravitational radiation emission
from spinning neutron stars.

Figure 1.10: Upper limits and spin-down limits for known pulsars [26]. The spin-
down limit is obtained considering that the rotational energy lost is completely
converted into gravitational wave emission. The sensitivity curves of first genera-
tion detectors (initial Virgo and LIGO), advanced and third generation detectors
(Adv and ET) are drawn, considering an integration time of 2 and 5 years respec-
tively. From this plot it is clear that most of the known pulsars might emit in the
low frequency band, especially below 20 Hz.
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Glitches

A glitch is a sudden and temporary increase of the angular velocity and spindown
rate of the order 10−8 ≤ ∆ω/ω ≤ 10−6 and 10−4 ≤ ∆ω̇/ω̇ ≤ 10−2, followed
by a relaxation phase. It is usually observed in radio pulsars, such as the Crab
and the Vela (see fig. 1.11), with typical intervals between these events which
ranges between several months and years. The process which produces glitches
in a spinning pulsar is still not well understood. It could be related to a transfer
of angular momentum from the superfluids components of the inner structure of
the neutron star to the crust and the core [45]. Another mechanism which can
explain the glitches are repeated starquakes which cause significant internal heating
and increased frictional coupling between the crust and the more rapidly rotating
neutron superfluid interior [46]; also the interaction with the magnetic moment
of the star and its possible angular variation should be taken into account. A
pulsar glitch could excite f-modes instabilities (see next subsection), leading to
a gravitational wave amplitude h ∝ 10−23, considering a source at a distance of
10 kpc.

Figure 1.11: Glitches in the Vela pulsar observed between 1970 and 1995 [47].
A typical Vela’s glitch produces a frequency change of the order of 10−6, which
roughly corresponds to an energy of the order of 1035J ; a fraction of this energy
might be radiated as gravitational waves.

Dynamical and secular instabilities

Due to dynamical instability a rotating axisymmetric fluid body becomes unsta-
ble to non-axisymmetric deformations. This kind of instability was studied in the
classical theory of Newtonian MacLaurin spheroids and it is driven by the param-
eter β which is defined as the ratio of the rotational energy Erot and the potential
energy Ug of the rotating body:

β =
Erot
Ug

(1.132)

From the Newtonian theory the critical value of eq. 1.132 for an incompressible
MacLaurin spheroid is βdyn = 0.27. For a ratio greater than this value, i.e. for
β ≥ βdyn, the spheroid becomes dynamically unstable. Relativistic simulations
[48] suggest that for a neutron star βGRdyn = 0.25 and for β � βGRdyn the spheroid
forms spiral arms and ejects mass until the remnant reaches a dynamically stable
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state, while for β ≥ βGRdyn it does not develop spiral arms nor eject mass but adjusts
to form dynamically stable ellipsoidal-like configurations.

A dynamically stable neutron star can retain a β greater than the critical value
βsec = 0.1375, in this case the system may be affected by secular non-axisymmetric
instabilities with a timescale greater than the dynamical one. The secular insta-
bility may be driven by the viscosity [49] in cold or matter-accreting neutron stars,
but this mechanism is generally suppressed by relativistic effects. A more impor-
tant mechanism is the Chandrasekhar-Friedman-Schutz instability (CFS) [50, 51]
related to the gravitational radiation reaction. When the neutron star forms as a
result of a collapse, since it is rapidly rotating (i.e. it is characterized by β ≥ βdyn),
it can evolve in a configuration similar to a Jacobian ellipsoid. This configuration
is nearly axisymmetric, therefore the amplitude of the emitted gravitational ra-
diation would be small. When a quasi-stable configuration is reached, it may be
possible that β is still greater than βsec, resulting in the development of a secular
instability. Let us consider the rotating Jacobian ellipsoid, its rate of radiation of
the angular momentum L due to emission of gravitational waves is given by:

dL

dt
= −32G

5c5
(Ixx − Iyy)2ω5 (1.133)

where Iii is the tensor of the momentum of inertia in the equatorial plane and
ω is the angular velocity. Due to gravitational radiation reaction the object will
evolve toward a MacLaurin spheroid (i.e. a non-radiating configuration) and this
process will be characterized by the emission of gravitational waves with increasing
frequency7. The maximum amplitude of the emitted gravitational waves during
the transition from the Jacobi ellipsoid to the MacLaurin spheroid (see fig. 1.12)
will be given by:

h0 ≈ 8.7× 10−19

(
M

1.4 M�

)2(
10 km

R

)(
10 kpc

r

)
(1.134)

where R is the radius of the neutron star and r is the distance of the observer,
considering a polytropic index8 n = 1 and β = 0.12. This maximum amplitude
is reached at ν ∼ 1.3 kHz. If the final MacLaurin spheroid is characterized by
β > βsec a new secular instability will take place.

Through such an instability the object will evolve to a tri-axial configurations
in two ways:

1. the Jacobi sequence, resulting in a tri-axial ellipsoid rigidly rotating around
its smallest axis.

2. the Dedekind sequence, resulting in a fixed tri-axial ellipsoid characterized
by an internal fluid circulation with constant vorticity. The angular velocity
decreases to zero, which implies that the ellipsoid does not emit gravitational
radiation.

7this emission is called the spin-up wave.
8neutron stars are well modeled by a polytropic equation of state: P = kρ(1+1/n), where P is

the pressure, ρ is the density and 0.5 < n < 1 is the polytropic index.
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Figure 1.12: Amplitude of gravitational wave emitted by a secularly unstable neu-
tron star, evolving from a Jacobi ellipsoid to a MacLaurin spheroid [52]. The three
curves from the upper one correspond respectively to final MacLaurin spheroids
with β = 0.02, 0.12, 0.24 and polytropic index n = 1.

The maximum gravitational wave amplitude from a neutron star described by a
polytropic equation of state with index n = 1 evolving from a MacLaurin spheroid
with β = 0.24 to a Dedekind ellipsoid will be given by:

h0 ≈ 4.2× 10−20

(
M

1.4 M�

)2(
10 km

R

)(
10 kpc

r

)
(1.135)

reached at a frequency ν ∼ 500 Hz.
Let us remark that the value β = βsec corresponds to the critical rotation

frequency νsec = ωsec/2π which has to be compared with the Keplerian frequency
at which the centrifugal force balances the gravitational force at the equator:

νK ≈
1

3

√
πGρ̄ ≈ 1.25× 103

(
M

1.4M�

)1/2(
R

10km

)−3/2

Hz (1.136)

where ρ̄ is the mean density of the star. For rotation frequencies greater than νK
the object will begin to loose matter forming spiral arms.

Dynamically or secularly unstable stars could develop global azimuthal non-
axisymmetric structures that can be characterized in terms of modes m with a
spatial structure proportional to eimΦ, where Φ is the azimuthal angle. In the
context of gravitational wave astrophysics f-, g-, p-, w- and r-modes have been
considered, but f- and r- modes are by far the most important for the gravitational
emission.

f-modes In most cases the m = 2 mode (f-mode) is the dominant one, the so-
called bar-mode instability. It is confined to the surface and can be excited
by pulsar glitches. The f-mode becomes unstable for β > βsec when the
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Figure 1.13: Amplitude of gravitational wave emitted by a secularly unstable
neutron star, evolving from a MacLaurin spheroid toward a Dedekind ellipsoid
[52]. The upper curve correspond to β = 0.24 and the other to β = 0.20, both are
drawn for a star described by a polytropic equation of state with n = 0.5.

frequency ratio between νsec and νk reaches a critical value which depends
on the considered equation of state (i.e. on the assumed polytropic index
n). The gravitational wave amplitude from a 2R-long spinning bar is hbar ∝
MR2ω2/r at a frequency f which is twice the rotational frequency (it can be
obtained by eq. 1.138 and 1.139, taking the value m = 2); in the quadrupole
approximation, considering the bar ellipticity ε, the amplitude is given by:

hbar ∼ 4.5× 10−20ε

(
f

500 Hz

)2(
R

12 km

)2(
10 kpc

r

)(
M

0.7 M�

)
(1.137)

Rossby modes The r-modes are axial fluid oscillations related to the Coriolis
force. Their coupling takes place through the current multipoles (Smn in eq.
1.61), instead of the mass multipoles. The r-modes can be described as large
scale oscillating currents that move along the equipotential surfaces of the
rotating star, and for this reason they are also called convective modes [53].
In contrast to the f-modes, which become unstable above a critical rotation
rate, r-modes are unstable in a rotating perfect fluid star at all rotation rates.
Gravitational radiation makes r-modes unstable if the emission timescale is
smaller with respect to the viscous time scale. This condition is well verified
if the star angular velocity is greater than a critical value ωc which depends on
the star temperature and on the presence of a solid crust [54]. Therefore the
r-mode instability may be relevant in hot, rapidly-rotating neutron stars. In
particular, it may lead to a spinning down in new-born neutron stars, losing
angular momentum through gravitational radiation.

The frequency σ of the m mode with harmonic index l = m is given by:

σm(ω) = −(m− 1)(m+ 2)

(m+ 1)
ω (1.138)
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Figure 1.14: Amplitude of gravitational wave emitted when the r-mode instability
is excited in a fluid star, for different values of the initial size of the perturbation
α. Here it is considered the source distance r = 20Mpc and the initial angular
velocity ω0 = 2πνk [55].

where ω is the angular velocity of the star. The related frequency of the gravita-
tional radiation emitted from such a mode will be:

f(ω) = −σm(ω)

2π
(1.139)

At the beginning the amplitude of the mode is small but increases until hydrody-
namic effects are no longer negligible and the system reaches a non-linear regime.
The maximum value of the emitted gravitational wave is given by:

h0 ≈ 1.2× 10−22

(
ω0

ωK

)3(
20Mpc

r

)
(1.140)

Where ω0 is the initial angular velocity of the star and ωK ≡ 2πνK . Once the
non-linear regime is reached, the mode no longer grows due to a saturation effect,
and the excess of angular momentum is radiated away through gravitational waves.
Consequently, the star spins down until its angular velocity and temperature are
sufficiently low to allow the solidification of the crust, damping the mode.

1.3.5 Supernovae

Many of the sources discussed in the previous sections, such as neutron stars
and black holes, are formed from gravitational collapses known as Supernovae.
These transient sources are characterized by a very high electromagnetic luminosity
variation (|∆M| ∼ 20 mag) which corresponds to a radiated energy of the order
of 1042 − 1044 J . We can classify the supernovae depending on their progenitor:

1. the gravitational collapse of a white dwarf pushed beyond the Chandrasekhar
limit by mass transfer in binary systems;

2. the gravitational collapse of the core of highly evolved massive stars.
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According to their light curves and absorption lines in their electromagnetic spec-
tra, the first kind of collapses gives rise to Type Ia supernovae, the second one to
Type Ib,c or Type II supernovae.

Type Ia This kind of supernovae are produced by the thermonuclear deflagra-
tion of carbon-oxygen white dwarfs in close binary systems, caused by the
mass transfer from the companion star (e.g. a giant or supergiant star out
of the Main Sequence) to the white dwarf: when its mass exceeds the Chan-
drasekhar limit, the electron degeneracy pressure no longer can sustain the
star structure, which subsequently collapses triggering the thermonuclear
synthesis of heavy elements and photodisintegration of iron nuclei. The re-
lated luminosity variation is very fast (of the order of hours or days) until
it reaches the maximum luminosity L ≈ 4 × 109 L�, then it exponentially
decays. Supernovae Ia produce consistent peak luminosities and related de-
cais because of the uniform mass of progenitor white dwarfs that explode
with the same accretion mechanism. For this reason they are used as a stan-
dard candle in cosmology. From the spectral absorption lines it is possible
to measure a mass ejection velocity of the order of 104 km/s.

Type Ib,c This kind of supernovae are produced by the gravitational core collapse
of massive stars which have lost their outer envelope of hydrogen, by means
of strong stellar winds or due to the interaction with a companion star in a
binary system. For this reason they are also called stripped-core supernovae.
Massive stars which undergo to rapid mass loss, such as Wolf-Rayet stars,
are a typical progenitor of such phenomena. Type Ic supernovae may be
related to long gamma-ray bursts (see sec.1.3.6).

Type II This kind of supernovae are produced by the gravitational core collapse
of massive stars (8 M� ≥ M ≤ 100 M� at ZAMS9). During its evolution,
the stellar structure is sustained by the balance of the gravitational force
and the combination of thermal and electron degeneracy pressures. Once
evolved, these stars are characterized by an onion-like structure produced by
the progressive thermonuclear synthesis of heavier atomic nuclei. The last
possible exoenergetic reaction is the silicon fusion in nickel, which decays in
iron, eventually accumulated in the core. The iron-grup nuclei can sustain
the overlying stellar structure only by means of electron degeneracy. Once
the mass of the iron-core exceeds its effective Chandrasekhar limit, it begins
to compress and to heat up, and eventually the star gravitationally collapses.
Type II are also called core-collapse supernovae. From the their light curve
shape it is possible to distinguish two subtypes: IIP if there is a plateau, IIL
if it is characterized by a linear decrease.

Let us focus on type II supernovae, which are believed to occur at a rate of between
0.01 and 0.1 per year in a Milky Way equivalent galaxy10. We can distinguish
three main phases: the initial collapse of the core to nuclear densities (ρ ≥ ρn =
2.7×1014g/cm3), the core bounce when the nuclear equation of state becomes stiff

9zero age main sequence, at the beginning of their main sequence phase
10at this rate we might expect an event rate of about 1 per 2 years within 5 Mpc
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enough to rebound the inner core, and eventually the hydrodynamic shock wave
which propagates outward from the outer edge of the inner core, colliding with
the infalling matter of the outer core and ultimately leads to the disruption of the
star. The energy released in this last phase is given by:

ESN ∼ 3× 1046

(
M

M�

)2(
10 km

R

)
J (1.141)

About the 99% of ESN is radiated away by neutrinos in a timescale of ∼ 100 s, the
1% is converted into kinetic energy of the ejected outer layers, and only the 0.01%
is emitted as electromagnetic radiation. It is still not clear why type II supernovae
explode as observed from their light curves and radiated energies, in particular
theoretical models and simulations can not explain how the inflow reverses to
produce the observed explosion. The main problem arises from the shock wave
that should quickly lose energy in the propagation, because of the dissociation of
heavy nuclei and the stream of neutrinos which carry away energy from the post-
shock region. In such a situation there should be a direct collapse to a black hole
without the supernova deflagration. Moreover, we also know from observations
that a neutron star can survive the gravitational collapse. Therefore a shock revival
mechanism is needed in order to explain the type II supernovae. It should take
place as soon as ∼ 1 s after the core bounce in order to produce a compact remnant
as a pulsar. Some post-bounce mechanisms have been proposed [56], such as
the neutrino mechanism (based on neutrino heating), the magneto-hydrodynamic
mechanism (MHD, based on the the magnetic-field amplification) and the acoustic
mechanism (based on the strong sound waves emitted by the proto-neutron star
instabilities). However the only observational data which may explain the details
of this kind of phenomena verifying the proposed models will come from neutrinos
and gravitational waves, produced deep inside the supernovae.

Gravitational waves from a supernova

If the collapse is non-spherical, perhaps induced by strong rotation or magnetic
field, then gravitational waves could carry away some of the binding energy and
angular momentum, depending on the geometry of the collapse. In a typical
supernova, recent simulations suggest that gravitational radiation might extract
between about 10−11 and 10−7 of the total available mass-energy, and the gravita-
tional waves could come off in a burst whose frequency might lie in the range of
f ∼ 200− 1000 Hz. The gravitational wave amplitude from a supernova is given
by [26]:

h ≈ 1.5× 10−21

(
E

10−7M�

)1/2(
1 ms

t

)1/2(
1 kHz

f

)(
10 kpc

r

)
(1.142)

where E indicates the energy in equivalent solar masses. For a supernova in our
galaxy the typical values of eq. 1.142 are r = 10 kpc, E = 10−8M�, f = 1 kHz
and t = 2 ms. During the supernova explosion gravitational waves are produced
in three phases [57]:
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1. Bounce. When the inner core reaches nuclear densities the gravitational
collapse is stopped and the infalling matter reaches its peak acceleration. If
the collapse itself or the neutrino emission are asymmetric, due to structural
asymmetries or to rotation, the strongest gravitational radiation emission
takes place. Three kinds of gravitational signals are produced in this phase
(see fig. 1.15), associated with different types of collapse:

• Type I models undergo core bounce driven by the stiffening of the
nuclear equation of state when the inner core reaches nuclear densities,
and ring down quickly into a post-bounce equilibrium. The waveform
of this type of collapse is characterized by a large spike at the bounce
event and by a subsequent damped ring down.

• Type II models are driven by the rotation, therefore their core bounce
is dominated by centrifugal forces at densities ρ < ρn. Their dynamics
is characterized by slow harmonic-oscillator-like damped bounces and
re-expansion-collapse cycles. Therefore their waveform shows different
signal peaks for every bounce.

• Type III models are characterized by a fast collapse, caused by a very
soft subnuclear equation of state or a very efficent electron capture in the
core, and consequently by an extremely low mass collapsing inner core.
The waveform related to this type of collapses shows a negative spike
associated with the bounce, and low-amplitude gravitational waves.

Figure 1.15: Burst gravitational wave signal emitted by the three types of core
bounce in a supernova [57]. The amplitude is given in h+D, where D is the
distance from the source.
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The characteristic gravitational signal produced in the bounce, in particular
for the type I model, depends on the angular velocity of the core, as reported
in table 1.2

ωco(rad/s) hmax × 10−21 EGW × 10−8(M�c
2) fpeak(Hz)

≤ 1− 1.5 ≤ 0.5 ≤ 0.1 700− 800
1− 2 to 6− 13 0.5 to 10 0.1 to 5 400− 800
≥ 6− 13 3.5 to 7.5 0.07 to 0.5 70 to 200

Table 1.2: Gravitational signals expected in the type I core bounce phase from a
supernova, as a function of the angular velocity ωco of the pre-collapse iron core
[57]; hmax is the maximum gravitational wave strain amplitude at 10 kpc, EGW
is the energy radiated away by gravitational waves, fpeak is the peak frequency of
the gravitational wave energy spectrum dE/df .

2. Post-bounce and convection. In this phase the convection in the layers
above the collapsing core may also produce strong asymmetries, as the con-
vective cells merge into low-mode convection. These mechanisms are intrinsi-
cally multi-dimensional and produce rapid variations of the mass quadrupole
momentum, resulting in gravitational radiation emission. According to the
Schwarzschild-Ledoux criterion, convective overturn develops when there is
a negative radial entropy or lepton composition gradients. These may be
driven by three kinds of convection [57]:

• Prompt convection. It may start immediately after the bounce. As
the stalling bounce shock front passes through the outer core, it leaves
behind a negative entropy gradient. Moreover, following neutrino shock
breakout and the related burst of electron neutrinos, a negative lepton
gradient arises at the outer edge of the proto-neutron star. The two neg-
ative gradients generate a convectively unstable region as determined
by the aforesaid Schwarzschild-Ledoux criterion. Losses and energy
deposition from neutrinos behind the stalling shock front smooth out
the large negative entropy gradient in the immediate post-shock region.
However, prompt convection can still develop rapidly and last for some
milliseconds if significant seed perturbations are present in the post-
bounce flow.

• Proto-neutron star convection. The new-born proto-neutron star
is convectively unstable in the radial interval 10 km ≥ R ≤ 30 km,
because of the negative radial lepton gradient. Convection starts few
tens of milliseconds after the bounce and may last for some seconds
as the proto-neutron star slowly contracts and deleptonizes after the
supernova explosion. Instabilities, such as g-modes, can distort the
convection and themselves lead to gravitational wave emission stronger
than that produced by the convection. If the supernova is failed or too
weak, a black hole will form: in this case convection and the related
gravitational wave emission will stop abruptly.
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• Neutrino convection. It takes place in the post-shock heating region.
The heating produced by neutrinos below the stalling shock front is
maximum in the neutrino heating region between the proto-neutron
surface and the shock front, and decreases outward. This produces a
negative radial entropy gradient and makes the neutrino heating region
convectively unstable. Accordingly, convection develop in this region
(which extends from ∼ 50 to ∼ 200 km) within few tens of milliseconds
after the bounce.

Process Typical |h| Typical f Duration ∆t EGW
(at 10 kpc) Hz ms ×10−10(M�c

2)
Prompt 10−23 − 10−21 50− 1000 0− ∼ 30 ≤ 0.01− 10

convection
Proto-NS 2− 5× 10−23 300− 1500 500− ∼ 103 ≤ 1.3(∆t

1 s
)

convection
Neutrino driven 10−23 − 10−22 100− 800 100− ≥ 1000 ≥ 0.01( ∆t

100 ms
)

convection

Table 1.3: Estimates calculated from simulations [57] for the typical gravitational
wave strain amplitude, the typical emission frequency f , the duration of the emis-
sion ∆t, and the emitted energy EGW in the convection processes in the post-
bounce phase of a supernova.

3. Proto-neutron star During its cooling the new-born proto-neutron star
may undergo convection, producing asymmetries and therefore emitting grav-
itational radiation. Other gravitational emission mechanisms in this phase
are the neutron star pulsation and bar-mode instabilities (see instabilities in
sec. 1.3.4)

1.3.6 Gamma-ray bursts

The gamma-ray bursts (GRBs) are powerful emissions of γ-rays associated with ex-
tremely energetic explosions: in the electromagnetic spectrum they are the bright-
est events known in the universe. The typical observed energy ranges from keV to
MeV , and they can last from 10 ms to few minutes. The main features of GRBs
are:

• the isotropic distribution;

• the extragalactic origin;

• the absence of bright peristent counterparts;

• the non-thermal spectrum.

Their isotropy and extragalactic origin imply a cosmological nature of this kind of
sources, therefore the associated energy released in these phenomena are 1044 −
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1046 J or even more. Moreover the observed millisecond periodic pulsation of
some GRBs implies high photon density in a relatively small volume, therefore the
astrophysical object producing such phenomena must be compact. The GRB rate
measured from satellite detectors, like BATSE and SWIFT, is Ṅ ∼ 1/day, from
which we can infer a rate ṄMWeg ∼ 10−6 − 10−9/year for a Milky Way equivalent
galaxy, with only a small percentage of them beamed towards Earth.

Figure 1.16: left panel : bimodal distribution of GRBs’ duration, where t90 is
the time during which the cumulative counts increase from 5% to 95% above the
background; right panel : isotropy of GRBs from the BATSE (on NASA’s Compton
Gamma Ray Observatory) survey, with the related energies indicated by different
colors.

Despite decades of observations physical mechanisms and counterparts of GRB
are still debated. The fireball model has been developed in the last years to explain
the observed general features of these phenomena. In this model the GRB origin
is the jet-like ultrarelativistic flow, pointed to our line-of-sight, which is partially
converted to radiation in a optically thin region. The remaining kinetic energy
is dissipated via external shocks, resulting in the so-called afterglow at longer
wavelengths (from X-rays to the microwave and radio band). Relativistic shocks or
magnetic reconnection might dissipate the internal energy of the jet, subsequently
radiated as synchrotron and blackbody radiation. The observed prompt emission,
associated to this phase, implies that γ-rays are emitted after the jet has become
transparent to its own radiation. But it this case most of its thermal energy should
be radiated as photospheric emission, which instead is not observed. Therefore
the energy must be stored in non-thermal components, such as kinetic energy or
magnetic fields, and then released after the jet has become transparent. The initial
prompt emission, produced within the ultrarelativistic jet, and the afterglow, due
to the interaction with the circumburst medium, are clearly evident in the light
curves of GRBs, as shown in fig. 1.17. Moreover, the same features observed
in GRBs’ light curves at various redshift indicates that the physical mechanisms
which produce the bursts should be similar [58]. The duration of the observed
GRBs is well described by a bimodal distribution, as shown in fig. 1.16, hence we
can distinguish between two main classes of burst: short and long GRB.
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Figure 1.17: Time evolution of the luminosity of a sample of GRBs as function
of the redshift z. It is generally evident the transition from the prompt emission
phase and the afterglow. GRB090423 (in red, observed by NASA’s space telescope
Swift) occurred at z ≈ 8.1 (corresponding to ∼ 13×109 ly) and its light curve does
not have any distinguishing features relative to those of the lower-redshift bursts,
suggesting that the physical mechanism that causes the GRB and its interaction
with the circumburst medium are similar at every redshifts [58].

Figure 1.18: The merging of two neutron stars as progenitor of a short gamma-
ray burst from a relativistic simulation [59]. Colors from red to yellow indicates
increasing densities, the green lines sample the magnetic field in the torus on the
equatorial plane, white lines indicate magnetic field outside the torus and near the
new-born BH spin axis. The size of the torus extends from ∼ 90 km to ∼ 170 km,
while the BH horizon has a diameter of ≈ 9 km.
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Short GRB This class of GRBs are generally observed at low redshifts in galaxies
(especially early-type elliptical and lenticular) without active star forming
regions. Recent studies and simulations [59] suggest that short GRB may
be powered by the merger of binary neutron stars (see fig. 1.18) or neutron
star - black hole systems. A small fraction of these events (< 15%) are
caused by soft-gamma-ray repeaters (SGRs), that may be related to nuclear
explosions in an accreting neutron star11 which excite f-mode (see instabilities
in sec. 1.3.4). A small subset of SGRs can be expained by giant flares on
magnetars, a class of neutron stars with extraordinarily large magnetic fields
(1014 − 1015 G). These flares may be produced by the sudden and violent
reconfigurations of complex magnetic field topologies. Three known SGRs
are located in our Galaxy, and another one in the Large Magellanic Cloud.

Long GRB They are generally associated with galaxies characterized by late-
type star forming regions. Therefore most of long-GRBs are powered by
collapsars or hypernovae12 generated by the collapse of massive stars (see
fig. 1.19). In order to power the emission of a long GRB, the hypernova
progenitor must have an high angular speed which leads to the formation of
an accretion torus during the collapse. Moreover, the progenitor star should
have a low metallicity, in order to strip off its hydrogen envelope, so making
possible the emersion of the jets from the surface. A small percentage of
long bursts can be generated by massive black hole captures. The longest
GRB (GRB110328A) was observed in 2011 and lasted for over two months.
It was originated in the center of a small galaxy at redshift z ≈ 0.35, and was
interpreted as a white dwarf infalling and tidally disrupted in a supermassive
black hole in the galaxy core.

Gravitational wave emission from gamma-ray bursts

The expected gravitational signal depends on the considered type of GRB. A short-
GRB may be originated by the coalescence of a compact binary system composed
of two neutron stars or by a black hole and a neutron star, therefore the related
gravitational wave signal will be a chirp with amplitudes given by equations 1.114
and 1.115 during the inspiral phase, followed by a burts-type signal associated
with the merger and eventually by the ringdown of the new-born black hole (see
sec. 1.3.2).

SGR flares may be a source of quasi-periodic oscillations, with quadrupolar
components in the ∼ 10−40 Hz frequency range. It is also possible that non-radial
oscillations, such as fluid (f), pressure (p) and purely spacetime (w) modes, would
become excited by tectonic activity associated with a giant flare. These modes
will then be damped by gravitational wave emission, resulting in the characteristic
ring-down signal. In particular the f-mode will have a frequency which ranges
between 1 and 3 kHz. Theoretical models of SGR indicates that the total energy
associated with their gravitational wave emission should be < 1039 J .

11this mechanism also produce X-ray flares.
12i.e. a rare type of supernova explosion characterized by higher radiated energies compared

to standard SNae
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Figure 1.19: GBR from a stellar gravitational collapse. In order to explode as
hypernova and power a long GRB, the progenitor star before the collapse must
have 25 M� ≥M ≤ 90 M�, with an iron core mass 5 M� ≥Mcore ≤ 15 M�

The gravitational wave emission from a long-GRB depends on the collapse and
deflagration of massive stars, that is difficult to modelize. The bar or fragmentation
instabilities of the disk formed during the collapse can emit inspiral-like chirps, as
well as core instabilities. The material flows into the new-born black hole can also
lead to its ring-down emission. An estimate of the expected gravitational wave
amplitude is given by [26]:

h ∼ 10−23

(
E

5× 10−2 M�

)1/2(
1 ms

t

)1/2(
1 kHz

f

)(
4.2 Gpc

r

)
(1.143)

where the energy E is given in equivalent solar masses, t is the duration time of
the signal in ms, and the distance r is given in Gpc units. The eq. 1.143 can be
written in terms of redshift z by substituting the last term with (0.7/z).

1.4 Development of multimessenger astronomy

Many transient astronomical phenomena that we analyzed in section 1.3, such
as supernovae, gamma-ray bursts and glitching pulsars, may produce bursts of
gravitational waves which last from milliseconds (e.g. SNae) to several minutes
or longer (e.g. NS instabilities). Detecting such waves, especially in coincidence
with optical, X-ray, γ-ray or neutrinos could help to resolve decade-old problems
in astronomy.

The first generation of large gravitational wave interferometric detectors (see
chapter 2) have been successfully operating in the last years and are currently
upgraded into second generation detectors in order to reach higher sensitivities, i.e.
to observe a greater volume of the universe. Even if we are still looking forward to
the first direct detection of gravitational radiation, a third generation of detectors



1.4. DEVELOPMENT OF MULTIMESSENGER ASTRONOMY 53

is already planned and will pave the way to the gravitational astronomy, which
will be a powerful integration in the so-called multimessenger astronomy.

The simultaneous observation operated by a network of gravitational wave de-
tectors will make possible to identify and localize event candidates on the sky, then
the electromagnetic and/or neutrino follow-up will be able to confirm the astro-
physical event and to produce complementary information about it in the other
astronomic windows. In particular the synergy between neutrino and gravitational
wave observatories is a very promising field, since both neutrinos and gravitational
radiation interaction with matter is negligible, hence they can provide informations
of the astrophysical sources and their emission processes otherwise inaccessible to
the other windows of observation.

Since the gravitational wave data from interferometric detectors is not station-
ary, a search for gravitational signals conducted at times of observed electromag-
netic events (the so-called external trigger strategy) increases confidence that the
candidate signal is astrophysically produced, and not a spurious noise event. By
constraining the gravitational wave search to a relatively short period (typically
from tens to houndreds of seconds) in coincidence with observed electromagnetic
events, such as GRBs, the background rejection is improved, and the detector
sensitivity increased. In the past years, first generation detectors such as Virgo
and LIGO (see chapter 2) developed another strategy for finding gravitational wave
events in association with electromagnetic transients: during a period of joint data
collection, directional information was sent to electromagnetic observatories (such
as the Jodrell Bank radio Observatory and the interplanetary network of gamma
ray satellites for SGRs and GRBs) soon after the identification of candidate events
in their data. Moreover, a first attempt of coincident gravitational/neutrino de-
tection was conduced with ANTARES [60].

We should remark that not only the detection but also the non-detection of
gravitational waves can provide informations about the source characteristics (such
as ellipticity upper limits of pulsar, see sec. 1.3.4) and position. For instance in
2007 a short GRB [61] was observed in a sky position coincident with the spiral
arms of the Andromeda galaxy (M31), but in the coincident 180 s long time
window around the GRB event time no plausible gravitational wave candidates
were found in LIGO data. Considering that the most likely progenitor was a
binary neutron star merging, this non-detection implies at > 99% confidence that
the binary progenitor of that GRB was not located in M3113, but simply on the
same line-of-sight.

Even if we are only at the very beginning of gravitational astronomy, waiting
for the first direct gravitational wave detection, the multimessenger astronomy era
has already begun.

13another possibility is that the analyzed GRB was due to a SGR giant flare in M31.
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Chapter 2

Interferometric detectors

We sow in sec. 1.2.3 that the passage of a gravitational wave produces a tidal ef-
fect on a system of test point-masses placed on a plane perpendicular to the wave
propagation direction. In eq. 1.49 we found that this effect is proportional to the
distance between the masses, and to the gravitational wave amplitude h, which in
turn depends on the tiny factor G/c4. Therefore it is evident that large-scale inter-
ferometry is the best experimental technique which can lead to a direct detection
of the gravitational radiation. First generation detectors, such as Virgo [62] and
LIGO [63], have demonstrated the feasibility of the interferometric gravitational
wave detection, advanced detectors are under development and are expected to
make the first direct detections, while third generation detectors are planned to
be built and start operating within the next decade. In this chapter I will briefly
discuss the direct interferometric detection of gravitational waves and I will make
an overview of present and future interferometric detectors.

2.1 Principle of detection

An interferometric detector is based on the interference of two coherent beams
of light along an optical path: the changes in their phase difference will directly
measure the relative displacement of the reflective elements of the interferometer,
which are the mirrors. This section deals with the Michelson configuration, which
is the simplest interferometric optical layout, and it is widely used as the basic
scheme of gravitational wave detectors.

2.1.1 Michelson interferometer

The simplest Michelson configuration consists of two mirrors M1 and M2 charac-
terized by reflectivities r1, r2 and suspended at the end of two orthogonal vacuum
tubes, which are called arms and intersect in coincidence with the beam-splitter
mirror BS. The distance between BS and Mi will be the optical path Li of the
arm. When the input laser beam passes through the beam-splitter it is divided in
two orthogonal beams, which reflect on the mirrors and recombine on the surface
of the beam-splitter. Afterwards, the recombined beam reaches the photodetector
at the output port of the interferometer. If the optical path of the two arms is

55
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different, i.e. L1 6≡ L2, the two recombining beams will be out of phase, and their
differential phase will be given by:

∆Φ = (Φ1 − Φ2) = 2k∆L (2.1)

where k = 2π/λ is the wave vector of the laser beam of wavelength λ, and ∆L =
(L1 − L2) is the length difference of the two arms. From eq. 2.1 it is clear how a
passing gravitational wave producing a variation of ∆L will be seen as a change
in the differential phase ∆Φ. This scheme is illustrated in fig. 2.1

Figure 2.1: Layout of a simple Michelson interferometer, where the arms L1 and L2

are oriented as x̂ and ŷ. The blue arrows indicate the tidal deformation produced
by an incoming gravitational wave plus-polarized which propagates perpendicu-
larly to the xy-plane of the interferometer.

2.1.2 Test masses

In order to be able to detect a gravitational wave, the mirrors of the interferometer
must be in a free-falling condition, making them effective gravitational test masses.
It is possible to fulfill this condition by suspending the mirrors from pendula, as
demonstrated below.

If the two mirrors are placed on the plane xy and are spaced by the distance
xi0, from eq. 1.52 we can derive the apparent acceleration produced by the passage
of a gravitational wave with amplitude hij(t) and propagating in the z direction:

ẍi(t) =
1

2
ḧij(t)x

j
0 (2.2)

to which corresponds an apparent force along the x direction:

Fgw = mẍ =
1

2
mLḧ (2.3)

where m is the mass of the mirror and having considered the length of the inter-
ferometer arm, i.e. x = L. If the mirror is suspended from a pendulum of length
l, its equation of motion is:

mδl̈ + βδl̇ + kδl = 0 (2.4)
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where β is the damping constant and k = mg/l. When the mirror is perturbed
by the gravitational wave, it is affected by the force defined in eq. 2.3, and conse-
quently the equation of motion 2.4 becomes:

mδl̈ + βδl̇ + kδl =
1

2
mLḧ (2.5)

The time-dependence of h and δl can be written explicitly as h(t) = h0 exp[iωt]
and δl(t) = δl0 exp[iωt], where ω is the angular frequency of the monochromatic
gravitational wave. Therefore the solution of eq. 2.5 is given by:

δl0(ω) = −1

2

ω2h0L

(ω2
0 − ω2) + iβω

m

(2.6)

where we introduced the resonant angular frequency of the pendulum: ω0 =
(k/m)1/2. It is evident that when ω � ω0 eq. 2.6 becomes:

δl0(ω) ≈ 1

2
h0L (2.7)

2.1.3 Directional response

In sec. 2.1.2 we have shown that the suspended mirrors of an interferometer re-
spond as free-falling test masses to the passage of a gravitational wave. However
the geometry of the Michelson interferometer determines a directional response.
Assuming that the interferometer lies in the xy plane, and its arms are long L and
are aligned with the x and y directions, the response to a gravitational wave with
an arbitrary polarization and arriving from an arbitrary direction is given by [64]:

∆L(t) =
1

2
h+(t)L(1 + cos2 θ) cos(2φ) (2.8)

∆L(t) = −h×(t)L cos(θ) sin(2φ) (2.9)

where (θ, φ) indicates the propagation unit vector of the wave, being θ is the
azimuthal angle and φ is the angle with the x axis in the xy plane. This directional
response leads to the characteristic antenna pattern functions F+ and F× that are
shown in fig. 2.2 [65].

2.1.4 DC & AC detection

The direct detection is based on the static tuning of the input laser, therefore the
differential phase depends only on the length difference of the two arms. Let us
consider the power incident on the beam-splitter Pin, we can derive the power Pout
detected at the output port [66]:

Pout = Pin(rBStBS)2(r2
1 + r2

2)(1 + C cos ∆Φ) (2.10)

where rbs and tbs respectively the reflectivity and the transmissivity of the beam-
splitter, and C is the contrast given by:

C =
2r1r2

r2
1 + r2

2

(2.11)
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Figure 2.2: Antenna patterns for + and × polarizations in the long-wavelength
approximation for a Michelson interferometer [65].

In the ideal case, the end mirrors of the interferometer are characterized by ri ∼ 1,
with a contrast C very close to unity, and the beam-splitter mirror by r2

bs = t2bs =
1/2. Therefore eq. 2.10 becomes:

Pout =
Pin
2

(1 + C cos ∆Φ) (2.12)

Let us analyze what happens to the signal when a plus-polarized gravitational
wave propagates in the direction perpendicular to the plane of the interferometer1.
The effect produced by the wave on a light ray traveling between two free-falling
test masses is a change in the optical path, according to what we have seen in
sec. 1.2.3. Hence, for a path oriented as the the x axis, at first order in strain
amplitude h, from eq. 1.53 we can write:

dx = cdt

[
1 +

1

2
h(t)

]
(2.13)

while on the path oriented as the the y axis we have:

dy = cdt

[
1− 1

2
h(t)

]
(2.14)

The gravitational wave amplitude h(t) in eq. 2.13 and 2.14 can be written in terms
of the time-indipendent amplitude h+ and the time-varying component as follows:

h(t) = h+e
iω(t−x/c) (2.15)

where ω = 2πf is the angular frequency of the monochromatic gravitational wave.
The propagation of this wave can be described in terms of retarded time. Let us
consider a light pulse emitted from a test mass at a given time, reflected by the
other test mass at a distance x = L, and detected at the first mass at a certain

1the effect produced by a perpendicular propagating cross-polarized gravitational wave is
similar to that of the plus polarization, but rotated by π/4 (see sec. 1.2.3).
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time t0. It can be calculated [64, 67] that the emission time of the light pulse
depends on h+ and ω, and is given by:

tr = t0 −
2L

c
± h+

L

c

sin
(
ωL
c

)(
ωL
c

) cos

[
ω

(
t− L

c

)]
(2.16)

where the ± sign indicates respectively the x and y directions, we replaced the
complex exponential with its corresponding trigonometric function and we assumed
the two arms of the same length L. In the case of two light pulses emitted from
a test mass, placed in the origin of the interferometer plane xy, toward the other
test masses at the end of the two arms, reflected back by them and detected in
the origin, the time lag between the two detected pulses is given by the difference
in the optical path due to the effect of the gravitational wave:

∆tgw = h+
2L

c

sin
(
ωL
c

)(
ωL
c

) cos

[
ω

(
t− L

c

)]
(2.17)

Let us consider a laser with wavelength λ propagating in the two arms of the
Michelson interferometer and detected back at the output port. If we multiply
eq. 2.17 by 2πc/λ we obtain the corresponding differential phase shift due to the
gravitational wave passage:

∆Φgw(t) =
2πc

λ
h+

2L

c

sin
(
ωL
c

)(
ωL
c

) cos

[
ω

(
t− L

c

)]
(2.18)

where we note that the term sin(ωL/c)/(ωL/c) is close to unity for gravitational
wave frequencies below some kHz. The effect produced by the additional dephas-
ing is a variation of the power detected, which can be expressed considering the
first term approximation of the gravitational perturbation as follows:

∆Pout(t) =
Pin
2
C sin

(
ωL

c

)
∆Φgw(t) (2.19)

and finally, considering eq. 2.12 and 2.19, we obtain the total power detected at
the outport port:

Pout(t) =
Pin
2

[1 + C cos(∆Φ) + C sin(∆Φ)∆Φgw(t)] (2.20)

In the ideal case the detection of power fluctuation is not limited by any noise
sources, therefore in order to achieve an optimal tuning of the interferometer we
should maximize the sine function in eq. 2.20, which implies to obtain half of
the maximum power in the output signal. In this condition the interferometer is
locked on the grey fringe2. However the measure of Pout is limited by the shot
noise, therefore in the DC detection the interferometer is tuned very close to the
dark fringe (see sec. 2.2.2).

2it is indeed a condition halfway between the dark fringe and the bright fringe, which corre-
spond respectively to the minimum and maximum power tuning.
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The AC detection was widely used in first generation interferometric gravita-
tional wave detectors, such as Virgo, and it is based on the phase-modulation of the
input signal. Therefore the electric field of the injected laser beam, which originally
is Ein(t) = E0 exp[iΩLt], becomes Em

in(t) = E0 exp[iΩLt+m sin(2πΩmt)], where ΩL

and Ωm are respectively the laser angular frequency and the electro-optical mod-
ulator driver frequency, while m is the modulation depth. The phase-modulation
produces radio-frequency sidebands around the main carrier frequency, which can
be observed even when the carrier frequency is tuned at destructive interference3.
Afterwards, the signal arriving at the photodetector is demodulated and low-pass
filtered, giving the output power Pm

out. The passage of a gravitational wave pro-
duces an additional dephasing of the two beams, equivalent to the deviation from
the dark fringe condition, giving a linear response to the gravitational perturbation
[68].

If the time taken by the light to travel along the optical path becomes com-
parable or greater than the gravitational wave period, the interferometer response
function decreases since the effect produced by the wave is averaged over more
than one period. Therefore, in an interferometer the length L of the arms defines
a cutoff frequency in the detection bandwidth. To get an idea of such a frequency,
in an interferometer with arm length L its order of magnitude is given by the
following simple expression:

fc ∼
c

L
(2.21)

Therefore, in order to make the detector sensitive at lower frequencies we should
increase the length of the arms. In order to estimate the order of magnitude of the
effect produced by a gravitational wave on a Michelson interferometer, we can use
the eq. 2.18. If we consider a wave with h ∼ 10−21 and ω ∼ 100 rad/s, the laser
wavelength λ = 1 µm and the arm length L = 1 km, we obtain an angular response
∼ 10−12 rad, which roughly corresponds to a arm length variation δL ∼ 10−18 m.
This effect can be increased by choosing an optical layout such that the effective
length is Leff > L.

2.1.5 Fabry-Perot cavities

In this section it has been shown that the effect produced by a gravitational wave
on the test masses of an interferometer is proportional to the length of the arms and
to the power of the input laser. However the maximum length for ground detectors
is limited to a few km, while the input laser power is limited both by the shot noise
(see sec. 2.2.2) and by the technical difficulties to build stable high-power lasers.

In order to increase the optical path and the power stored in the arms of
length L, two input mirrors are added to the basic configuration of the arms of
the interferometer, transforming them in resonant cavities, which are known as
Fabry-Perot cavities (see fig. 2.3). The resonance condition is met when there
is a constructive interference between the light transmitted through the input
mirror and the light reflected back from the end mirror to the input mirror. In

3this is possible introducing the so-called Schupp asymmetry ∆L between the length of the
two arms of the interferometer
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this condition the power stored in the cavity, as well as the power transmitted, is
maximum and it is proportional to F/π, which means that the photons are stored
in the cavity for a time:

ts =
F

π

L

c
(2.22)

that implies the introduction of a cutoff frequency proportional to the inverse of
the storage time ts. In eq. 2.22 we introduced the parameter F , that is called
finesse and characterizes a Fabry-Perot cavity; it can be calculated as:

F =
π(rire)

1/2

1− rire
(2.23)

where ri and re are the reflectivities of the mirrors of the cavity. For a fixed length
of the cavity there can be different resonances varying the laser frequency, which
are expressed by:

fres =

(
n+

1

2

)
∆fFSR (2.24)

where ∆fFSR = c/2L is the free spectral range, i.e. the spacing between two succes-
sive resonances. While in a single-mirror arm of length L the phase-shift ∆Φ due
to a variation of the length ∆L is given by eq. 2.1, adopting the resonant cavity it
is increased of a factor 2F/π and it is given by:

∆ΦFP = 2
F

π

(
2π

λ
∆L

)
=

4F

λ

1√
1 +

(
2FLω
πc

)2
(2.25)

where ω = 2πf is the angular frequency of the gravitational wave which caused
the variation ∆L. From eq. 2.25 we can obtain the expression of fc ≡ ω/2π:

fc =
c

4FL
(2.26)

which is the cutoff frequency of the Fabry-Perot cavity. Therefore, the resonant
cavity acts as a low-pass filter. From eq. 2.25 it is also evident that using a Fabry-
Perot cavity is equivalent to have an arm of length Leff = (2F/π)L, and we can
define the Fabry-Perot gain: G = 2F/π. The power at the output port of a Fabry-
Perot interferometer can be obtained by replacing ∆Φ with ∆ΦFP in eq. 2.20.

2.1.6 Power recycling

When the interferometer is tuned at the dark fringe, almost all the injected power
is reflected back to the laser, since the losses in the arms are negligible. Therefore,
in order to reflect back the light into the interferometer, increasing the power
circulating, a mirror is placed between the laser and the beam-splitter, creating
the so-called power recycling cavity. The recycling gain Gpr due to such a cavity
can be computed considering the Fabry-Perot-Michelson (FPM) interferometer
(shown in fig. 2.3) as an equivalent mirror characterized by the reflectivity rFPM

4.

4the reflectivity rFPM is close to unity at the dark fringe tuning.
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Figure 2.3: Layout of a Michelson interferometer with Fabry-Perot cavities.

In this way we can assume that the power recycling mirror and the FPM equivalent
mirror define a Fabry-Perot cavity, therefore the recycling gain with respect to the
input power is given by [67]:

Gpr =

(
tpr

1− rpr · rFPM

)2

(2.27)

where rpr and tpr are respectively the reflectivity and the transmissivity of the
power recycling mirror. This gain factor is proportional to the inverse of the losses
in the interferometer, hence it can be increased minimizing the mirror losses, such
as light diffusion and absorption.

2.2 Noise sources

The sensitivity curve of an interferometric detector is delimited by the signal fluc-
tuations produced by noise sources. They can be classified in different ways: with
regard to their origin we can distinguish between environmental (e.g. seismic and
Newtonian noises), instrumental (e.g. scattered light) and fundamental (e.g. quan-
tum noises) noises; it is also possible to distinguish between stationary and non-
stationary noises with regard to their stability in a given time range, or in low-
frequency and high-frequency noises with regard to the frequency band in which
they are dominant. In the low-frequency band the seismic, Newtonian and thermal
noises are dominant, while at higher frequencies quantum noises becomes impor-
tant. This is evident in the sensitivity curve of the initial Virgo detector, reported
in fig. 2.4. In this section the main sources of noise will be briefly presented, in
particular the low-frequency noise sources will be dealt with separately in chapters
3 and 4. Noise amplitudes are usually expressed by their spectral densities, such
as the equivalent spectral density, and therefore calculated in terms of the strain
h̃; for its definition see app. A.
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2.2.1 Low frequency sources

The sensitivity of ground-based interferometric gravitational wave detectors in the
low-frequency band (1 − 100 Hz) is limited by three main contributions to the
total noise, which are:

• Seismic noise, mainly below 10 Hz; see chapter 3;

• Newtonian noise, also called gravity gradient noise, mainly below 50 Hz,
see chapter 3;

• Thermal noise, its thermal pendulum component is dominant in the range
between 10 Hz and 50 Hz, while between 50 Hz and 100 Hz also its violin
and mirror thermal components become important; see chapter 4.

Figure 2.4: The sensitivity curve of the initial Virgo detector [69], defined by the
main contributions to the total noise. For the details of these noise components
see sec. 2.2.

2.2.2 Quantum noises

There are two fundamental sources of quantum-mechanical noise to be considered:

Shoot noise The power detection in a real interferometer will be limited by the
quantum nature of the light: indeed the photons hit the detector with a
Poisson distribution, resulting in a shot noise [68]. The amplitude spectral
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density of this quantum noise is given by:

S̃SN =

(
4πh̄cPout

λ

)1/2

(2.28)

where λ is the laser wavelength and Pout is the power hitting the photode-
tector at the output port of the interferometer. In eq. 2.28 we note that the
spectral density does not not depend on the frequency f , therefore the shot
noise is a white noise. In order to reduce this quantum noise, the Michelson
interferometer must be tuned maximizing the signal to noise ratio (SNR),
considering the amplitude spectral densities of the shot noise (eq. 2.28) and
that of the power variation ∆Pout produced by a gravitational wave (from
eq. 2.19):

SNRP (f) =
S̃∆P

S̃SN
=

1

2

(
λPin
2πh̄c

)1/2
C sin ∆Φ

(1 + cos ∆Φ)1/2

2πL

λ
h̃(f) (2.29)

where the dephasing ∆Φ for the interferometer in stationary condition is
defined by eq. 2.1, λ is the wavelength of the laser, C is the contrast, L
the length of the interferometer arm, Pin is the power injected in the inter-
ferometer and h̃(f) is the spectral density of the gravitational signal. The
maximum of eq. 2.29 is in correspondence with:

cos ∆Φ =
(1− C2)1/2 − 1

C
(2.30)

Considering that the contrast C ∼ 1, it follows that the optimal tuning of
the Michelson interferometer is close to the dark fringe condition, as said
above in sec. 2.1.4. If we put SNRP = 1 we obtain the equivalent spectral
density (see app. A) of the shot noise:

h̃SN =
1

L

(
λh̄c

4πPin

)1/2

(2.31)

A more accurate calculation for the FPM interferometer, considering Fabry-
Perot and power recycling cavities, is given by [66, 69]:

h̃FPMSN (f) =
1

8FL

{
4πh̄λc

ηGprPin

[
1 +

(
f

fc

)2
]}1/2

(2.32)

where η is the photodetector efficiency, F is the finesse of the Fabry-Perot
cavities given by eq. 2.24, fc is the cutoff frequency of the cavities given by eq.
2.26, and Gpr is the recycling gain factor given by eq. 2.27. It is evident from
eq. 2.32 that this noise is limited by higher F , L and by higher circulating
power GprPin. Moreover, from eq. 2.32 we note that the shot noise becomes
important at higher frequencies.

Radiation pressure This noise is produced by the momentum transfer from the
incident electromagnetic radiation to the mirrors of the interferometer. The
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radiation pressure is proportional to the intensity of the incident radiation,
the increase of power obtained in a FPM interferometer causes also an higher
radiation pressure. Taking into account the effect of the Fabry-Perot cavities,
the equivalent spectral density of the radiation pressure noise can be obtained
by [66, 69]:

h̃FPMRP (f) =
4F

mL

 h̄GprPin
π5λc

· 1

f 4
· 1

1 +
(
f
fc

)2


1/2

(2.33)

where m is the mirror mass. From eq. 2.33 it is evident that the radiation
pressure noise is limited by decreasing F and GprPin, that is the opposite of
what is required to reduce the shot noise.

In order to reduce the overall quantum noise, a balance between shot noise and
radiation pressure must be found. The optimal condition is obtained by equaling
the spectral densities of shot noise and radiation pressure from eq. 2.32 and 2.33:

h̃SQL(f) =
1

πL

(
2h̄

mη1/2

)1/2
1

f
(2.34)

The optimal condition found in eq. 2.34 is known as the Standard Quantum Limit.
It is an fundamental limit to the sensitivity of an interferometer, and can be beaten
only in a limited frequency range by means of squeezed light [70] and by adding a
signal recycling mirror to the optical layout of the interferometer (as in advanced
detectors, see 2.4.1).

2.2.3 Other sources of noise

In addition to those already mentioned in the previous subsections, there are other
sources of noise which affect an interferometer, limiting its sensitivity.

Scattered light Due to small imperfections on the mirror surface and to residual
gas molecules, some photons of the laser beam can scatter, bounce on the
vibrating walls of the vacuum tube and eventually recombine with the laser
beam, resulting in a phase noise. The equivalent spectral density in h is
given by [71]:

h̃scl(f) = K
λx̃(f)

LRt

(
r

ln(1/r)

)
(2.35)

where K is a proportional constant, λ is the wavelength of the laser, x̃(f)
is the displacement spectral density5, Rt is the tube radius, L is the length
of the arm and r is the reflectivity. Considering the estimate r ∼ 0.99 from
eq. 2.35 the spectral density of this noise at 10 Hz is calculated to be [71]:
h̃scl(10 Hz) ≈ 1.3×10−23Hz−1/2. Since it depends on the displacement spec-
tral density x̃(f), which is linked to the seismic and micro-seismic activity
(see chapter 3), the scattered phase noise affects mostly the low frequencies.

5x̃(f) is given by the RMS value along the several km of the tube.
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A more precise computation of this kind of noise must take into account also
the similar effect produced by the backscattering of the light, whose contri-
bution, however, is calculated to be lower by at least two orders of magnitude
[71]. The time-domain expression of h̃(t) and the methods to measure it are
discussed in [72, 73]. In order to reduce the scattered light in an interfer-
ometer, some baffles made of absorbing material are placed in the vacuum
tubes, around the mirrors and optical benches.

Residual gas The residual gas inside the vacuum tubes of the interferometer can
reduce its sensibility in different ways:

• residual molecules in the interferometer contributes to the thermal noise
produced by the viscous damping of mechanical oscillators (e.g. the
mirror suspensions), see chapter 4;

• the refractive index n depends on the residual gas pressure Pr as ex-
pressed by:

n = 1 + εH2

Pr
Patm

(2.36)

where εH2 = 1.2 × 10−4 is related to the molecular hydrogen, which is
the main component of the residual gas. Therefore fluctuations of the
residual gas pressure produces fluctuations in the refractive index:

∆n = εH2

∆Pr
Patm

= εH2

∆Nr

Natm

(2.37)

where Ni are the molecule densities. The fluctuations ∆n causes a laser
beam phase noise, that is given in equivalent spectral density by [69]:

h̃∆P =
εH2

Natm

(
π1/2WbNr

νH2Vb

)1/2

(2.38)

where Wb is the beam waist at the far mirror distance, Vb = πW 2
b L is the

volume of the beam and νH2 is the velocity of H2 molecules. Typically,
the order of magnitude of this noise is h̃∆P ∝ 10−26;

• vibrations of the external walls can be transmitted to the mirrors through
the molecules of the residual gas, as shown in [74]. This mechanism
causes the so-called low pressure acoustic noise, whose equivalent spec-
tral density is given by:

h̃ac(f) =
kbTR

2
m

π−1/2LPrmf
x̃(f) (2.39)

where kb is the Boltzman constant, T is the temperature, Rm and m
are respectively the radius and the mass of the mirror and x̃(f) is the
seismic noise spectral density (see chapter 3). Typically, in a ground-
based interferometric detector h̃ac(f) ∝ 10−24/f 3.

In order to lower the noises produced by the residual gas under the typical
levels of quantum noises, the hydrogen partial pressure must be at least
PH2 ≤ 10−9 mbar.
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Creep The metallic components of the mirror suspensions are subject to mechani-
cal stress and, subsequently, they undergo a anelastic relaxation in which the
energy stored in the deformations of the crystal structure is released. This
effect is a sort of mechanical shot-noise and is called creep [75]. The creep
affects metallic wires as well as blade springs, and its effect is driven by two
parameters: the creep event size qs and the creep rate λs. Its contribution in
the case of metallic wires can be estimated by experimental measurements
which give the terms λsq

1/2
s , with typical values qs ∼ 10−15 and λs ∼ 20. The

wire creep equivalent spectral density in h is given by [69]:

h̃creep(f) =
θ0λsq

1/2
s

2L

1

2πf
mω2

v |Hv(2πf)| (2.40)

where θ0 is the horizontal-to-vertical coupling angle, Hv and ωv are respec-
tively the force-to-displacement transfer function for the vertical mode os-
cillation and the related angular frequency, m is the mirror mass and L
the length of the interferometer arm. In order to minimize the creep noise,
suitable metal alloys which minimize λs and qs must be chosen.

Hysteresis of polycrystalline metals In the low-frequency band the dissipa-
tions caused by the viscosity become negligible, but conversely static hys-
teresis becomes important in the metallic components of the mechanical oscil-
lators, giving rise to a noise proportional to 1/f . These effects are produced
by internal microscopic dynamics of polycrystalline metals used in blades
and flexible joints of oscillators: the hysteresis can be considered an effect of
spatial disorder in crystalline materials caused by impurities, gaps and linear
defects called dislocations. When the dissipation in a metal goes from being
dominated by the motion of a single dislocation, characterized by a viscous-
like effect, to the collective motion of many dislocations, it manifest itself as
an avalanche described by a statistic of self-organized criticality which can
propagate throughout the metal component [76]. The reorganization of the
dislocation network removes part of the elasticity from the system, resulting
in a variation of the Young modulus from the nominal value. This effect is
not important at high frequencies, because for f � 1 the avalanches do not
have the time to propagate and grow. In the first generations of interfer-
ometric gravitational wave detectors this effect is negligible in their typical
sensitivity band, but this low-frequency instability might become significant
in the third generation of detectors which are expected to operate at lower
frequencies (see sec. 2.5). A possible solution to avoid this noise source is to
use amorphous metals (also known as glassy metals) which are dislocation-
free, or ceramic materials, whose dislocations are blocked by polar bonds;
however it must be taken into account that the motion of dislocations in the
material reduces its fragility, consequently the use of materials in which such
motion is hindered will inevitably lead to an increase of the fragility of the
mechanical components.

Control noises Control loops used to maintain the interferometer in its operating
point may reintroduce or amplify the system noises. Below 50 Hz longitu-
dinal and angular controls of the mirror can be sources of noise, caused by
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non-optimal filters or noisy error signals; at frequencies > 50 Hz magnet-
coil actuators can give rise to noise caused by DAC and/or eddy currents;
at kHz frequencies the control loop of the laser stabilization can be affected
by fluctuations in the laser frequency.

Electromagnetic noises These noises are generated by the coupling between
the electromagnetic fields of electrical components and the detector output
through some electromagnetic pickup, and by the coupling of the magnets
used in the position control of the mirror suspension. In particular the
magnetic noise caused by the actuator magnets is coupled with the seismic
amplitude spectral density, i.e. h̃mag ∝ x̃, through diamagnetic coupling and
eddy currents.

Transverse electromagnetic modes The wavefront of the laser beam used in
interferometers is composed of the sum of different transverse modes with
respect to the direction of propagation of the light. The fundamental mode is
called TEM00 and is characterized by a Gaussian intensity profile, while the
other modes are describable by means of Hermite polynomial functions (see
fig. 2.5). The diffraction effects caused by the optics in the interferometer
produce a phase shift that is different for each mode of the electromagnetic
field, resulting in the instability of the cavities. Furthermore, the convolution
of these modes with the vibration modes of the mirror is different from that
produced by the fundamental mode. In order to avoid these effects and
to select only the fundamental mode TEM00, optical filters are added to the
basic configuration of an interferometric gravitational wave detector, between
the laser source and the interferometer, and between the output port of the
interferometer and the acquisition optical bench. They are constituted of
triangular cavities called respectively input mode cleaner and output mode
cleaner (see sec. 2.3.1).

Figure 2.5: Transverse electromagnetic modes of a laser beam; the first three modes
TEM00, TEM01 and TEM02 are represented; the TEM10 and TEM20 patterns can
be obtained from the rotation of the represented modes by π/2; TEMij can be
obtained by the mix of these modes.
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2.3 First generation detectors

In the past years a first generation of large ground-based interferometric gravita-
tional wave detectors has been active, composed of the detectors:

• Virgo, a FPM interferometer with 3 km long arms, located at the European
Gravitational Observatory in Cascina, Italy. It is described with some detail
in sec. 2.3.1;

• LIGO, consisting of three FPM interferometers sited in two observatories
in USA (a 4 km long FPM interferometer at the Livingstone observatory
in Louisiana and 4 km + 2 km long FPM interferometers at the Hanford
observatory in Washington);

• GEO600, a FPM interferometer with 600 m long arms, located at Sarstedt,
Germany;

• TAMA300, a FPMI interferometer with 300 m long arms, located at the
Mitaka campus of NAOJ, Japan.

Coincidence observations performed by the detector network allowed cross - corre-
lation analysis of the detected signals and improved the antenna pattern resulting
from the global array of detectors, as shown later in fig. 2.19 for the advanced
detector network. After a first phase of operations, the two main detectors Virgo
and LIGO were upgraded to the improved-performance configurations: Virgo+
(see sec. 2.3.1) and Enhanced LIGO. The sensitivity curves for these initial detec-
tors, and those for next generations detectors, are shown in fig. 2.6.

Figure 2.6: The sensitivity curves of initial and enhanced (Virgo/Virgo+, LIGO,
GEO HF), second generation (advanced Virgo and LIGO, KAGRA) and third
generation (Einstein Telescope) detectors. For comparison it is plotted also the
narrow sensitivity band of a resonant bar detector (AURIGA).
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2.3.1 Virgo

Virgo represents the classic example of first generation gravitational wave inter-
ferometric detector. It is a power-recycling FPM interferometer with 3 km long
arms (see fig. 2.7) and its mirrors are suspended to seismic attenuators, making
them gravitational test masses as shown in sec.2.1.2. The interferometer pipes are
kept in ultra-high vacuum regime, with partial pressures: PH2 = 10−9 mbar for the
molecular hydrogen, Phc = 10−14 mbar for the hydrocarbons and Pi = 10−10 mbar
for other gases. The construction of Virgo was founded by INFN and CNRS and
ended in 2003. In its initial configuration it was commissioned and operated till
2010, performing two long science runs (see table 2.1) and many weekend science
runs. In 2010 it was upgraded to the enhanced configuration called Virgo+, per-
forming two other long science runs till the end of 2011. The interferometer is
currently being upgraded to the advanced configuration (see sec. 2.4.1).

Science Run Start Time End Time
VSR1 2007/05/18th 21:00 UTC 2007/10/01st 05:00 UTC
VSR2 2009/07/07th 21:00 UTC 2010/01/08th 22:00 UTC
VSR3 2010/08/10th 21:00 UTC 2010/10/20th 05:00 UTC
VSR4 2011/07/03rd 21:00 UTC 2011/09/03rd 05:00 UTC

Table 2.1: Virgo and Virgo+ long science runs.

Figure 2.7: Aerial view of the Virgo detector and EGO (European Gravitational
Observatory) facilities.
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Optical layout

The optical layout of the Virgo detector is represented in fig. 2.8. The two arms are
3 km long Fabry-Perot cavities characterized by a finesse F = 50, which correspond
to an effective length Leff ≈ 95 km. These two cavities are oriented in the north
and west directions and delimited by their input and end mirrors, usually indicated
as WI-WE and NI-NE. The power recycling mirror (PR) is placed 6 m before the
beam-splitter (BS), forming a cavity characterized by a recycling gain Gpr ≈ 50.
The input mirrors are placed approximately 6 m after the beam-splitter, with a
Schnupp asymmetry ∆L = LW − LN ≈ 0.88 m (see sec. 2.1.4). The laser beams
transmitted and reflected by the mirrors are measured by single and quadrant
photodiodes, respectively for the longitudinal and angular control.

Figure 2.8: Optical layout of initial Virgo. The west and north input/end mirrors
are indicated by WI/WE and NI/NE, the beam-splitter by BS, the power recycling
by PR, the input and output mode cleaner by IMC and OMC, the suspended
injection bench by SIB, the reference frequency cavity by RFC, the electro-optic
modulators by EOM. The laser beams are indicated by B as follows: B7 and B8
are transmitted through the north and west end mirrors; B2 is reflected by the
PR; B5 is reflected by the secondary surface of the BS and used as an indicator of
the power recycling; finally B1 is the dark fringe signal reflected by the BS.

Injection system

The laser beam injected in the interferometer is generated by two laser sources:
the high-power Nd:TVO4 (slave laser) stabilized by the high-stability solid-state
Nd:YAG (master laser). The resulting laser beam is characterized by a wavelength
λ = 1064 nm, and by a power of 20 W . The stabilized beam is modulated in
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phase by two electro-optic modulators (EOM in fig. 2.8) at three radio-frequencies
(6, 8, 22 MHz) in order to obtain an AC detection configuration (see sec. 2.1.4)
[68]. Subsequently, the modulated beam pointing is controlled by the piezo-electric
actuated mirrors of the beam monitoring system, and sent to the suspended in-
jection optical bench (SIB in fig. 2.8) in a vacuum chamber. The SIB hosts the
output mirrors of the input mode cleaner (IMC in fig. 2.8), a 144 m long triangular
cavity characterized by a finesse FIMC = 103. Since the IMC is a resonant cavity,
it is a first order low-pass filter for the laser power and frequency fluctuations,
with a cut-off frequency which can be calculated from eq. 2.26 as fIMC ∼ 500 Hz.
Moreover, the IMC suppresses the transverse modes different from the fundamen-
tal Gaussian TEM00 mode (see transverse electromagnetic modes in sec. 2.2.3).
From the SIB the main beam is injected toward the power recycling mirror, while
a small part of the beam is sent to the reference frequency cavity (RFC in fig. 2.8),
a 30 cm long cavity used for the laser stabilization system.

Detection system

The laser beams from the interferometer output, which typically have a power
between few µW and 100 mW , are measured by single or quadrant photodetectors.
In particular the dark fringe signal (B1 in fig. 2.8) is focused by a telescope to the
output mode cleaner (OMC in fig. 2.8), which is a 2.5 cm long resonant cavity
with finesse F = 50, kept in resonance condition by controlling its temperature.
In analogy with the IMC, also the OMC suppresses the transverse electromagnetic
modes higher than the fundamental one which might be caused by misalignment
in the interferometer. From the OMC the output beam is sent to the external
detection bench, which is kept in acoustic insulation and hosts the photodetectors
and the CCD control cameras. The output signal is converted by dedicated ADC
boards, processed through digital filters, such as the anti-aliasing filter, and finally
converted in a format suitable for the data acquisition system.

Suspension system

In the low-frequency band the seismic noise is the main limitation to the sensitivity
of the interferometer (see fig. 2.4 and chapter 3), appearing as a displacement noise
in the six (translational and rotational) degrees of freedom of the test masses,
which are coupled among them since the terrestrial curvature produces a α ∼ 3×
10−4 rad angle between the perpendicular lines of the mirrors. In order to suppress
such a noise, the mirrors and the main optical elements of the interferometer are
suspended from a seismic low-pass filter called superattenuator, providing a
seismic noise reduction of a factor 1012 at f = 10 Hz. It is composed of a three-
legs inverted pendulum and a subsequent chain of vertical filters (see fig. 2.9), and
can be modeled as a chain of seven pendula for every mirror6. The superattenuator
of Virgo is characterized by a resonant frequency fr ∼ 0.5 Hz, therefore it keeps
the suspended test masses in a free-falling condition at frequencies higher than fr
(see sec. 2.1.2). Moreover it allows the actuation control of the mirror alignment

6the IMC mirror, injection and detection benches are suspended by a smaller filter composed
by an inverted pendulum and two vertical filters
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by means of coil-magnet pairs. The inverted pendulum forms the pre-insulator
element of the superattenuator, acting as a second order low-pass filter. The
attenuation factor A of the vertical motion in y0 produced by this pendulum on
the suspended mass m in y is given by:

A =
y

y0

= f 2
0

[
(f 2

0 − f 2)2 +
f 2

0 f
2

Q2

]−1/2

(2.41)

where Q is the quality factor (see sec. 4.2.1) of the inverted pendulum and f0 is
its resonant frequency, given as function of pendulum length l by [77]:

f0 =
1

2π

(
k

m
− g

l

)1/2

(2.42)

The resonant frequency f0 shown in eq. 2.42 depends on k, which is the elastic
constant of the three flexible joint of the inverted pendulum legs. Using the typical
numbers of the Virgo superattenuator, the resonant frequency obtained is f0 ≈
30 mHz, which roughly corresponds to the resonance of a standard pendulum with
l = 280 m. The following seismic insulator is a chain of six cylindrical mechanical

Figure 2.9: left : scheme of the superattenuator of the initial Virgo, composed by
the inverted pendulum and the ∼ 8 m high vertical filter chain, from filter 0 to
filter 7 (so called for historical reasons); right : superattenuator of the NE mirror,
picture taken during upgrade operations in 2013.

filters (see fig. 2.10) connected to the top-stage of the inverted pendulum by steel
wires. In such a N -stage pendulum the horizontal displacement of the suspension
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point, at a frequency higher than its normal modes, is transmitted to the last
stage with an attenuation proportional to f−2N (see eq. 3.13). Each vertical filter
has a mass mvf ∼ 100 kg and is suspended from its barycenter. In the chain,
two consecutive filters are connected together by means of maraging steel-made
triangular blades characterized by a resonant frequency f0 ∼ 1.5 Hz; the number
of blades (up to a maximum of 12) depends on the suspended load of each filter.
These blades at rest have a transverse shape with a constant curvature, while
when they are loaded it becomes horizontal. The equivalent pendulum resonant
frequency of these vertical filters is lowered by means of magnetic anti-springs,
composed of repellent magnet pairs, with parallel faces at distance d and free to
move in the vertical y direction. The vertical component of the repulsive force is
consequently given by:

Fm⊥ = Fm sinα ≈ Fm
∆y

d
(2.43)

where α is the angle between the perpendicular central axis of the two magnets.
When they are aligned α = 0 and the perpendicular repulsive force is zero. In-
stead, when they slide of ∆y forming a certain angle α, Fm⊥ in the small-angle
approximation (i.e. for ∆y � d) is given by the last term of eq. 2.43. Therefore,
this configuration is equivalent to a spring with a negative elastic constant, which
lower the resonant frequency of the oscillator. The vertical filters are characterized
by an high moment of inertia in order to reduce the torsional motion around the
vertical axis. Furthermore, the suspension wires are fixed at the minimum possi-
ble distance in order to lower their torsional frequency, which is ft ∼ 1 Hz. The
overall seismic suppression obtained by the superattenuator of Virgo is shown in
fig. 2.11. The whole suspension is hosted in a tower, whose upper environment is

Figure 2.10: Vertical filter of the superattenuator of Virgo [77]; A) transversal
section of the filter; B) prospective view of the filter; C) magnetic anti-spring
detail; D) triangular blades of the filter at rest and under load.
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kept in vacuum regime at P ≈ 10−6 mbar, since the outgassing of the mechanical
parts represent a limit for the vacuum system. The lower part of the tower hosts
the payload, i.e. the last stage of suspension, the mirror and its reaction mass,
which are kept in ultra-high vacuum regime. The two vacuum environments of the
tower are separated and the last stage of suspension is connected to last vertical
filter of the superattenuator, called filter 7, by a maraging steel wire through a
low-conductance hole.

Figure 2.11: Vertical transfer function of the Virgo superattenuator extrapolated
by measurements using the stage-by-stage technique (red curve) compared to the
analytical model (blue curve). The experimental TF must be multiplied by the
input seismic noise at the ground level in order to obtain the residual mirror
displacement along the beam, considering a vertical-to-horizontal coupling of 10−2

[78].

Payload

The payload of initial Virgo (see fig. 2.12) is composed of the last stage of the
suspension, the mirror and its reaction mass, in a branched configuration. It has
been designed [79] in such a way to have mechanical resonant frequencies as high as
possible, in order to avoid spurious thermal noise contributions to the output signal
of the interferometer. Moreover, it allows the actuation of the mirror, controlling
its longitudinal displacement (along the direction of the laser beam z) and torsional
(θx, θy and θz) modes of oscillation with magnet-coil pairs.

The first element of the payload, suspended with a maraging steel wire by the
filter 7, is the marionette. This element is made of amagnetic metal alloy and has
an anvil-like shape with a mass mmario ≈ 108 kg. Its torsional and translational
modes respect to the ”legs” of filter 7 (the lower long cylindrical elements in fig.
2.9) are controlled by magnet-coil pairs, respectively placed on the marionette
orthogonal arms and on the filter 7. Moreover, inside the marionette a stepper
motor is connected to a mobile mass that can be used to adjust its alignment.
Four concentric C85-steel wires are clamped and suspended from the marionette,
surrounding the semi-cylindrical lower surfaces of the mirror7 and of its reaction
mass, resulting in four equivalent wires for each suspended element.

7these wires were later substituted by the monolithic suspension of the mirror in Virgo+.
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Figure 2.12: Schematic view of the payload of initial Virgo [79]. The standard
frame of reference used to describe the motion of the suspended and optical ele-
ments in the interferometer are indicated in the figure.

The reaction mass (also called reference mass) is an hollow cylinder made
of 6063 aluminum alloy for a mass of mrm ≈ 60 kg. It is used to apply a direct
actuation on the mirror: four coils are fixed on this mass in coincidence with four
magnets fixed on the mirror. Moreover, it acts as a safety structure for the mirror
itself. On the edge of the reaction mass four ceramic markers are placed in order
to allow the control system to do a first coarse alignment of the mirror.

The mirrors are cylinders made of suprasil (i.e. fused silica, SiO2), with a
diameter d ≈ 35 cm and mass mmir ≈ 20 kg, except for the beam-splitter mirror
which is smaller (d ≈ 23 cm and mbs ≈ 5 kg, shown in fig. 2.13). On the suprasil
bulk of the mirrors several coating layers are deposited, with alternate low and
high refractive indices. The surface of the input mirrors are flat, while that of
the end mirrors has a concave shape with radii of curvature rNE ≈ 3580 m and
rNE ≈ 3601 m, in order to keep the stability of the 3 km long Fabry-Perot cavities.

Control system

The controls and operations needed to keep the interferometer in operating con-
ditions is known as the locking of the interferometer. In Virgo this system must
control the relative displacement of the mirrors with a precision of 10−12 m. The
locking of the interferometer is achieved extracting the error signals of the mirror
position (and therefore of distances), and setting feedback filters which act on the
electromagetic actuators of the various stages. In particular, the control system is
subdivided in two levels: the local control and the global control.
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Figure 2.13: The beam-splitter payload of initial Virgo, suspended in its tower.
Picture taken just before the unmounting on 2012 during the upgrade operations
to Advanced Virgo.

Local control The local control depends on the error signals produced by relative
and inertial sensors, such as optical levers, accelerometers and displacement
sensors. The active control of each suspension is divided into three parts:

• inverted pendulum, controlled at the level of the filter 0 by the inertial
damping system, dedicated to very low and low frequency actuation. In
the upper part of the filter 0 three accelerometers and three LVDT (i.e.
linear variable displacement transformer) are fixed and used to deter-
mine the absolute position of the stage of the suspension (see fig. 2.14).
The output signals of these sensors are digitalized via analog-to-digital
converters (ADC) processed and combined via digital-signal processor
(DSP). LVDT sensors are used for frequencies < 50− 100 mHz, while
accelerometers are considered for higher frequencies, up to 4 Hz. Fi-
nally, their processed signals are used to obtain the necessary corrections
to the translational and rotational modes of the suspension, translated
into corresponding electric signals by digital-to-analog (DAC) boards
and sent to the electromagnetic actuators, i.e. to the coils of the three
magnet-coil pairs of the inverted pendulum;

• vertical filter, their length is controlled by single LVDT sensors, and
from the sum of all the displacement signals of the various stages is
realized the vertical position control of the suspended payload;

• payload, at this level the angular and longitudinal motions are controlled
by the magnet-coils actuators fixed to marionette-filter 7 and mirror-
recoil mass. The longitudinal and angular positions of the payload
elements are obtained by the error signals of position sensing devices
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Figure 2.14: Schematic view of the top of the superattenuator, with the relative
displacement sensors (LVDT, only one of them shown) and the accelerometers.
The top outer ring is solidal to the ground, while the central structure is the top
stage of the inverted pendulum, with its legs indicated.

(PSDs), which are optical levers (low-power red diode lasers and quad-
rant photodiodes) that measure the mirror position and that of the
marionette, taking advantage of a small mirror anchored to it. In the
case of oscillation motions too large for the dynamic range of the PSDs,
the position of the mirror is reconstructed using a CCD camera pointed
at four diffusive markers fixed to the mirror. As for the inertial damp-
ing system, the digitalized error signals are processed by a dedicated
DSP in order to generate the necessary correction signals to be sent
to the electromagnetic actuators of the payload. The intermediate fre-
quency corrections are sent to the actuators of the marionette, while the
high frequency corrections are obtained acting on the electromagnetic
actuators of the mirror-recoil mass.

The local control can provide a mirror position accuracy at the order of
∼ 1µrad, which is not enough to keep the interferometer in the working
condition with the necessary resonance conditions. Moreover, except for the
accelerometers, the position sensing is related to the ground reference, and
therefore it is affected by the seismic activity and by temperature drifts.

Global control The global control provide the fine locking of the detector keep-
ing it in the resonance conditions by using the error signals coming from
the photodiodes of the interferometer, generating the necessary correction
signals and sending them to the local control at the level of the payload
via optical links, in order to control the length of the cavities. The error
signals from single photodiodes are used for the longitudinal control of the
mirrors, while those from quadrant photodiodes are used for their angular
control. In particular, since the laser is modulated, the resonance conditions
of fundamental TEM00, higher modes and sidebands are kept by this control.
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Virgo+

In 2010 the initial Virgo detector was enhanced to the so-called Virgo+ configu-
ration. The main modifications were:

• Monolithic payload. In the initial Virgo configuration the mirrors were
suspended by means of two loops of C85 steel wires. In order to reduce
the thermal noise contribution due to this kind of suspension, the steel wire
loops were substituted by fused silica (SiO2) fibers8, made up and assembled
in Virgo laboratories and attached to the mirrors by means of silica ears
silicate-bonded on the lateral flat sides of the mirrors (see fig. 2.15). In this
way the mirror, the suspension wires and their clamps can be considered as a
monolithic bloc of fused silica. This configuration provide many advantages,
such as smaller loss angle than steel and lower thermoelastic dissipations
[80, 81], for a breaking stress limit PBSL ∼ 109 Pa comparable to that
of steel wires; however fused silica fibers are also characterized by some
disadvantages, such as the fragility in case of cracks and defects, and aging
due to environmental pollution.

Figure 2.15: left : The monolithic payload of Virgo+ suspended in the West Input
tower; right : detail of the fused silica fibers with thier anchors silicate-bonded to
the silica ear on the lateral surface of the mirror.

• New mirrors. New suprasil end and input mirrors were installed. A dif-
ference in the radius of curvature (RoC) was noticed in the end mirrors,
therefore it was necessary to add a new system to the configuration: the Cen-
tral Heating RoC Correction (CHRoCC) [82]. It corrects the RoC sending
a beam heating pattern to the mirrors from dedicated black-body-emitters,
obtaining a thermal expansion of the fused silica substrate which adjust the
curvature of the end mirror. This system was installed before the VSR4.

8fused silica fibers were originally developed by GEO, and later adopted by eLIGO and
Virgo+.
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• Laser injection upgrade. The laser power at the input port was enhanced
to 25 W by means of a new laser amplifier;

• Thermal compensation. A part of the optical power stored in the Fabry-
Perot cavities is absorbed by the high reflective coating of the mirrors, gen-
erating a temperature gradient inside the substrate. This absorption leads
to thermo-optic and thermo-elastic effects on the test masses, such as the
thermal lensing and the deformation of the profile of the reflective surface
(see sec. 4.4.2). In particular the thermal lensing affected the power recycling
cavity, degrading the performances of the interferometer. To contrast this
kind of effects a thermal compensation system was installed, consisting in
an additional and independent CO2 laser which provide a heating pattern of
the input mirrors, in order to reduce such deformations.

• Input mode cleaner upgrade. The input mode cleaner end-mirror was
replaced by an heavier one.

Sensitivity curves and horizon distance

The sensitivity curves, such as those shown above in fig. 2.6 and 2.4, are calculated
by considering the different sources of noise in the interferometer depending on the
frequency, i.e. indicate the minimum detectable intensity of a gravitational wave,
usually in units of equivalent spectral density h̃ (see app. A). They are computed
using dedicated codes such as GWINC, developed within the LIGO collaboration
and therefore modified for Virgo [83]. In fig. 2.16 and 2.17 there are reported the
experimental best strain sensitivity curves until 2010 for Virgo and LIGO.

Figure 2.16: The best strain sensitivity curves from the Virgo commissioning,
weekend and long science runs, compared to the initial and enhanced design sen-
sitivities.
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Figure 2.17: The best strain sensitivity curves from the LIGO science runs S1 to
S6 [84].

A quantity indicative of the sensitivity of the detector is the horizon distance.
It is the maximum range out to which the interferometer can detect a coalescence
of two neutron stars with mass M = 1.4 M� that are optimally oriented and
located9 at a signal-to-noise ratio SNR = 8. When it is considered the average
over all the sky locations and source orientations, it is defined average horizon and
it is proportional to the equation [85]:

Dh ∝
(

5M5/3Θ2

96π4/3ρ2
0

∫ fhigh

flow

f−7/3

Sh(f)
df

)1/2

(2.44)

where Sh is the power spectral density of h, ρ0 = 8 is the minimum signal-to-
noise ratio required for the detection, Θ = 1.77 si a parameter accounting for the
averaging over the binary positions and orientations, and M is the chirp mass as
defined in eq. 1.111. The average horizon distance for Virgo is calculated on-line
during the observations and is expressed in Mpc by the equation [86]:

DV
h = 10−20

(∫ 2300 Hz

40 Hz

f−7/3

Sh(f)
df

)1/2

Mpc (2.45)

The increase of the horizon distance, and then of the observable universe, depends
on the sensitivity of the detector. Referring to fig. 2.16, the horizon distances for
the weekend runs WSR1 and WSR10 were respectively DWSR1

h ≈ 8 × 106 ly and
DWSR10
h ≈ 107 ly, to be compared with the distance of the Andromeda galaxy

DM31 ≈ 2.5 × 106 ly, and was improved to DV SR1
h = 1.5 × 107 ly during the long

science run VSR1, to be compared to the distance of the Virgo cluster of galaxies
DV C ≈ 5.4× 107 ly (see fig. 2.18).

9the optimal orientation and localization is when the orbital plane is perpendicular to the
line-of-sight and parallel to the detector plane, maximizing the antenna pattern.
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Figure 2.18: Galaxies and clusters of galaxies in the local universe; from top-left
to down-right the horizon is equal to 105, 106, 107 and 108 ly (1 ly ≈ 0.307 pc).
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2.4 Advanced detectors

The second generation of interferometric detector is currently under construction.
The two main first generation detectors Virgo and LIGO are being upgraded to
their Advanced design, which it is expected to be completed in 2014. They will
form the core of the advanced global network of detectors that will be enhanced
by the addition of the Japanese underground and cryogenic detector KAGRA (by
2017, see sec. 2.4.2), improving the resultant antenna pattern for coincidence ob-
servations (see fig. 2.19). A further improvement to the second generation network
of detector will be given by the addition of the upgraded GEO-HF (which can be
competitive in the high frequency range) and of a new detector built from the pos-
sible moving of the H2 LIGO interferometer to another location which can improve
the overall antenna pattern (e.g. the proposed IndIGO project).

Figure 2.19: up: Antenna power pattern for the network of advanced generation
interferometers Advanced Virgo and the two Advanced LIGO, considering both the
polarization, i.e.

∑
k(F+,k + F×,k); down: the same antenna pattern calculated for

the network composed of Advanced Virgo, Advanced LIGO and KAGRA. Points
indicates the possible detections depending on the sky location [87].
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The second generation of interferometers will be characterized by a sensitivity
ten times better than that of first generation, corresponding to an observable
volume of the universe 103 times larger, expanding the horizon distance from Dh ∼
12 Mpc up to Dh ∼ 140 Mpc for a BNS coalescence, and to DBBH

h ∼ 1 Gpc for the
coalescences of a 30 M� - BBH (see fig. 2.18 and 2.20). Consequently the expected
detection rates will increase: ṄNS−NS = 0.02 yr−1 → ṄNS−NS = 40 yr−1, from
initial to advanced Virgo-LIGO network [7]. The most important technological
improvements leading to the advanced detectors increased sensitivity are:

• the monolithic suspension of mirrors with silica fibers, already tested in the
enhanced first generation detectors. It reduces the thermal noise;

• the increase of the input laser power in order to reduce the shot noise in
the high frequency range. Since the adoption of high power laser would also
increase the radiation pressure noise (as shown in sec. 2.2.2) and the thermal
lensing (see sec. 4.4.2), it will be necessary to adopt:

– heavier mirrors, since the radiation pressure is proportional to m−1;

– a thermal compensation system, which corrects the profile of the mirror;

• new high-reflectivity coatings, characterized by reduced dissipation and ab-
sorption;

• a signal recycling mirror which allows the tuning of the detector bandwidth,
in order to increase the sensitivity in a given frequency range, optimizing the
sensitivity for a given kind of expected astrophysical source;

• the improvement of the seismic attenuator is necessary in Advanced LIGO; in
Virgo the SuperAttenuator already meets the requirements for the advanced
design.

Figure 2.20: Sensitivity curves of Virgo and LIGO for their initial, enhanced and
second generation phases.
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2.4.1 Advanced Virgo

The upgraded design of the Virgo interferometer, leading to the increase of its sen-
sitivity (see fig. 2.23), is widely described in the recently issued Technical Design
Report [78]. The optical scheme is currently being modified by adding a tun-
able signal recycling cavity (see fig. 2.22) and increasing to 443 the finesse of the
Fabry-Perot cavities. Moreover, the detection strategy will change from the AC
(heterodyne) to the DC scheme (see sec. 2.1.4), in order to reduce some technical
noises. Other infrastructure improvements will reduce the environmental noise and
enhance the vacuum system performances.

Figure 2.21: Sensitivity curve expected from Advanced Virgo (black line) compared
to the best sensitivity reached by Virgo+ during the science run VSR4 [88].

Laser and injection system upgrades

The laser power will be increased in order to have 125 W at the input port of the
interferometer, i.e. after the IMC, whose optics will be improved. Therefore, taking
into account the losses of the injection system, the laser source must provide at
least 175 W . In order to obtain such a power, two 100 W fiber rod amplifier10 will
be used, as shown in fig. 2.22. The injection system is completed by electro-optic
modulators and Faraday insulators compatible with the high power laser.

Suspension upgrade

The superattenuators of initial Virgo already provide a seismic insulation compli-
ant with that required for the Advanced design. Nonetheless there will be some
upgrades to improve the insulation during bad weather conditions, such as:

10the prototype of this system is currently being tested.
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• new monolithic inverted pendulum legs, characterized by higher resonant
frequency which will allow to expand the bandwidth of the inertial damping
system (see control system in sec. 2.3.1);

• piezoelectric actuators will be added to the inverted pendulum stage, in order
to perform the tilt-control.

Moreover, the benches which host all the photodiodes to be used in science mode
will be seismically isolated by dedicated suspensions.

Figure 2.22: Advanced Virgo optical scheme. The detector will be a dual-recycled
interferometer thanks to the signal recycling mirror (SRM); in the scheme are
indicated also the compensation plates (CP), the pickoff plate (POP) and the new
laser injection, with its proper electro-optic modulators (EOM) and the Faraday
insulator developed for the new high power laser system [78].

Payload upgrade

The payloads underwent a substantial re-design. The last stage of the suspension
will no longer be branched, by removing the mirror recoil mass, substituted by a
new designed caged payload: in the new payloads the filter 7 will support not only
the coils for the actuation of the marionette, but also those acting on the mirror,
through the so called Actuator Cage, which will serve also as a safety structure
for the mirror during the operations (see fig. 2.23). The mirrors will be suspended
by means of fused silica fibers, in a monolithic suspension scheme similar to that
successfully used in Virgo+.

Mirrors In order to reduce the radiation pressure noise, mirrors will be heavier
(m = 42 kg): keeping the same diameter of initial Virgo (35 cm), but with
doubled thickness (20 cm). Moreover, in order to limit the scattering losses,
the flatness of the reflective surface will be increased (< 0.5 nm) through
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a better polishing and by using corrective coating techniques. The coating
will be based on optimized multilayer and Tantala-doped Titanium for the
high-refractive index layers.

Baffles Since about 100 W of the 125 W injected power in the interferometer will
be lost mainly by scattering around the mirrors and towards the pipes, caus-
ing a phase noise, new diaphragm baffles will be installed, either suspended
around the mirrors (see fig. 2.23) or ground connected inside the vacuum
pipes.

Figure 2.23: Design of the beam splitter payload of Advanced Virgo [78]. The
Actuation Cage is connected to the the filter 7 (its two legs are clearly visible) and
acts on the new marionette (at the end of the legs) and on the mirror (bottom
part of the cage). The payload is completed by the baffles. Test masses payloads
will be characterized by a similar design; in the input payloads a compensation
plate will be added to the structure.

Thermal compensation system

The thermal compensation system (TCS) is dedicated to the reduction of the
thermal effects produced on the mirrors, which would degrade the detector sen-
sitivity. These effects can be geometrical distortions (due to thermal expansion
coefficient) or purely optical distortions (due to the temperature-dependence of
the refraction index). Advanced Virgo will use a higher power laser that combined
with the higher finesse of the Fabry-Perot cavities results in a circulating power of
∼ 800 kW : such a high power will produce an absorption in the reflective coatings
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of the order of ∼ 0.5 W , which causes a change in the radius of curvature of the
test masses via thermoelastic deformation. This effect can be controlled by means
of a shielded ring heater placed around each mirror. The laser absorption in the
input masses causes the heating of their center, locally changing the refraction
index and then perturbing the optical path as would do a spurious lens in the in-
terferometer. In Virgo+ this effect was corrected by a CO2 laser beam in annulus
shape on the mirror obtained by an axicon. In the Advanced design this scheme
will be followed with a slight modification: indeed the corrective laser cannot act
directly on the mirror, because its amplitude noise would spoil the detector sensi-
tivity, therefore the new TCS will be designed to heat an additional plate, called
compensation plate, with a double-axicon pattern CO2 laser. The compensation
plate is a transmissive optic with the same diameter of the mirror and a thickness
of 35 mm, placed in front of the mirror in the related payload. The above men-
tioned strategies in the TCS will cope only with deformations with a cylindrical
symmetry, though non-axisymmetric deformations can be also relevant, causing
aberrations in the marginally stable recycling cavities [78]. To cope with such de-
formations a corrective scanning laser [89] will be added to the system. The TCS
sensing will be performed by phase cameras and Hartmann sensors [90].

Detection upgrade

In Advanced Virgo will be adopted the DC detection scheme in order to reduce
some technical noises, such as the radio-frequency noise, which limits the detector
sensitivity in the AC scheme. The seismic and acoustic noises will be reduced
placing all the photodiodes used in science mode on suspended benches and keeping
them in vacuum condition. Moreover, a new output mode cleaner will be installed
in order to meet the requirements on the sidebands filtering.

Figure 2.24: The dominant low frequency noises expected in surface-based and
room-temperature second generation detectors such as Advanced Virgo [88]; sus-
pension thermal noise and seismic/Newtonian noises during quiet/noisy days are
plotted.



2.4. ADVANCED DETECTORS 89

2.4.2 KAGRA

KAGRA [91] (the former LCGT) is a second generation interferometric gravita-
tional wave detector under construction in the Kamioka mine (Gifu prefecture,
Japan). It is the evolution of CLIO [92], the co-located 100 m-long first proto-
type of a cryogenic interferometer. In many aspects KAGRA will be a precursor of
third generation detectors: indeed the entire detector is located in an underground
infrastructure, and its test masses will be cooled down to 20 K. These features
will ensure the reduction of the seismic/Newtonian and thermal noises, which rep-
resents a limit to the low-frequency sensitivity for the other Advanced detectors,
as shown in fig. 2.24. The optical design is based on a power recycling (with gain
Gpr = 10) Michelson interferometer with 3 km-long Fabry-Perot cavities (with
finesse F = 1550), in resonant-sideband extraction configuration [93] with a laser
power11 at the input port of 50−80 W ; the schematic view of KAGRA is reported
in fig. 2.25. The development of the detector is planned in two phases:

1. iKAGRA. The initial configuration of the detector, operated at room tem-
perature, is expected to be ready to start the observations in 2015, using
10 kg silica test masses provided by LIGO;

2. bKAGRA. The cryogenic configuration is expected to be completed in
2017 − 2018. The test masses will be 23 kg sapphire test masses, cooled
down to 20 K in dedicated cryostat vacuum chambers with two radiation
shields at 8 K and 80 K. In this final configuration the horizon distance
for BNS inspirals will be 240− 280 Mpc, with an expected detection rate of
Ṅ ∼ 6− 10 yr−1.

Figure 2.25: Schematic view (not to scale) of the KAGRA detector in its final
configuration [91].

11the input power must be chosen taking into account the absorption in sapphire test masses.
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Underground suspensions

The core optics and the test masses will be suspended from two kinds of suspension:
type-A and type-B, shown in fig. 2.26. Type-A suspension will be installed in two
caverns placed one above the other: the legs of the inverted pendulums will be
installed on the floor of the top cavern, four geometric anti-spring (GAS) filters
will be placed in the shaft which connects the two caverns, and a triple pendulum
suspension will be placed in the lower cavern for the cryogenic test mass suspension.
The type-B suspension is designed to suspend the beam-splitter and the recycling
mirrrors; it will be similar but shorter compared to type-A, and it will be hosted
in a single cavern. Although the type-A suspension will be characterized by more
filters than type-B, the residual seismic noise will be similar for both, since type-A
attenuation will be limited by the cryo-cooler and heat-link vibrational noise.

Figure 2.26: The two types of suspension used in KAGRA [91]. In type-A the
upper cavern hosts the inverted pendulum and the top of the three-stage vertical
filter chain, while the lower cavern hosts the triple pendulum suspension of the
cryogenic test mass; the type-B vertical filter chain is shorter.

Cryogenic payloads

The payload of KAGRA is composed of three stages (see fig. 2.27): the upper stage
is the so called suspension platform, the median stage is the intermediate mass,
and the last stage, which is in turn composed of the mirror and its recoil mass.
The mirror substrate must be characterized by an high thermal conductivity: in
KAGRA the sapphire (Al2O3) has been chosen for mirrors and suspension fibers,
and has been already cooled in CLIO, demonstrating the reduction of the mirror
thermal noise. However sapphire is described by a three-axial crystal, giving rise
to birefringence12, so it must be re-shaped in order to be used as a mirror. The

12a material is affected by birefringence when the refractive index depends on the polarization
and propagation direction of light; this optical property is responsible for the phenomenon of
double refraction.



2.4. ADVANCED DETECTORS 91

payload will be located inside a cryostat vacuum chamber (see fig. 2.27) with outer
(80 K) and inner (8 K) radiation shields connected respectively to the first and
second stages of four pulse-tube cryo-coolers (PTC) by means of flexible heat links.
The suspension platform of the payload will be connected to the inner radiation
and to the lower intermediate mass shield through pure aluminum heat links.
Finally, the heat absorbed in the mirror will be transferred to the intermediate
mass through the suspension fibers, and then through the heat links of the upper
stages.

Figure 2.27: Schematic view of the cryogenic payload of KAGRA inside the cryo-
stat vacuum chamber [91].

Figure 2.28: Sensitivity curve expected from KAGRA (continuous line) compared
to those of Advanced Virgo and LIGO (dotted lines).
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2.5 Third generation detectors

First generation detectors demonstrated the effectiveness of the working principle
of the interferometric gravitational wave detection by approaching their design
sensitivity, while second generation detectors will reach a sensitivity that is ex-
pected to guarantee the first direct detections of gravitational waves within the
first year of observations, as shown in the detection rates reported in sec. 2.4.
However the expected signal-to-noise ratio for these first detections will be too low
to allow precise astronomical studies of gravitational wave sources and for comple-
menting optical and x-ray observations. In order to start the ”era of gravitational
wave astronomy”, third generation detectors with new infrastructures will be nec-
essary, improving the sensitivity over a wide band of frequency, especially in the
low-frequency range.

2.5.1 The Einstein Telescope

The Einstein Telescope (ET) will be the European third generation gravitational
wave observatory, and its design study [26], founded by the European Commission,
was recently issued. Its construction is planned to start before the 2020. The
project aims to reach a sensitivity at least ten times better than that of advanced
detectors (see fig. 2.6), expanding the horizon distance of a factor 106 compared
to that of first generation detectors such as Virgo. Moreover, the detector is
designed for the optimization of the observations, and in order to host several
detectors which will evolve for decades. Indeed, ET will consist of three nested
detectors, each in turn composed of two interferometers in xylophone configuration.
In this configuration one interferometer will be dedicated to the detection of low-
frequency components (ET-LF) of the gravitational wave signal (1 − 30 Hz) by
adopting cryogenic payloads, while the other (ET-HF) will be dedicated to the
high-frequency components, using a high laser power and frequency-dependent
squeezed light technologies. Each interferometer will be dual-recycled FPM, with
a length of 10 km. ET will be located underground at a depth of 100− 200 m, in
order to suppress the seismic and Newtonian noises. An artistic representation of
the observatory is show in fig. 2.29. ET specifications are reported in app. C.

Figure 2.29: Artist’s view (not to scale) of the Einstein Telescope underground
infrastructure [26].
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Detector layout

In the first phase of its development, ET will consist of one detector in xylophone
configuration (the ”red” detector in fig. 2.30), in turn composed of two interfer-
ometers with 10 km-long arms: a cryogenic low-frequency dual-recycled FPM and
an high laser power (∼ 1 kW ) high-frequency dual-recycled FPM. Eventually, in
its final stage of construction, the observatory will consist of three nested detector
(the overall configuration of fig. 2.30). In contrast to the traditional L-shaped ge-

Figure 2.30: The xylophone configuration (not to scale) of the Einstein Telescope.
In the first phase it will consist of one detector composed of two interferometers
(indicated in red); in the final stage of construction it will consist of all the three
detectors represented in the scheme. Each side of the triangle is 10 km long [26].

Figure 2.31: The antenna pattern of a L-shaped interferometer compared to that
of the xylophone configuration adopted for ET [26].



94 CHAPTER 2. INTERFEROMETRIC DETECTORS

ometry widely used in the first and advanced generations detectors, the xylophone
configuration is equally sensitive to both the polarizations of gravitational waves.
Indeed, the resulting antenna pattern is more isotropic than that of L-shaped
interferometers (see fig. 2.31). The schemes of the Low-Frequency (LF) and High-
Frequency (HF) interferometers which form a single detector are reported in fig.
2.32. The HF interferometer will operate at room temperature in the frequency
range between 30 Hz and 10 kHz, using fused silica mirrors with a diameter and
mass respectively equal to d ≈ 60 cm and m ≈ 200 kg, with a laser power stored in
the cavities of about 3 MW . The LF interferometer will operate in the frequency
range between 1 Hz and 30 Hz adopting cryogenic payloads cooled down to 10 K:
in this case the test masses will be silicon (Si) mirrors with a diameter d ≈ 40 cm
and a mass of the same order of that used in the HF interferometer; the cryogenic
optics will be made of sapphire and silicon. In both interferometers the higher
mass of the mirrors will lower the radiation pressure noise, allowing higher power
and larger sized beam spots on the mirror surfaces. The Standard Quantum Limit
(SQL, see sec. 2.2.2) determines the lower limit of the quantum noise that cannot
be reached for all the frequencies simultaneously in a classic interferometer: in
order to beat the SQL in ET, non-classical light (the so-called squeezed light) with
correlations between the phase and the amplitude quadratures will be used. In
the shot noise dominated frequency range the squeezed light will lower the phase
fluctuations at the cost of the amplitude fluctuations in comparison to classical
laser light in the interferometer cavities. In the low-frequency radiation pressure
dominated range the fluctuations in the amplitude quadrature are lowered by re-
flecting squeezed light in a filter cavity. Thermal noise and thermal lensing will
be suppressed by the use of non-Gaussian laser beam profiles in addition to the
corrective systems already implemented in Advanced detectors.

Figure 2.32: The optical scheme of Low-Frequency and High-Frequency interfer-
ometers composing each detector of ET [26].
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Underground infrastructure

The underground infrastructure (see fig. 2.29) is motivated by the suppression of
natural and anthropogenically-generated seismicity and by the Newtonian (also
known as gravity gradient) noise, which is generated by gravity field fluctuations
and couples directly to the test masses, short-circuiting the vibration isolators
(see chapter 3). Therefore an extensive study of seismic environmental and an-
thropogenic noises in various locations will lead to the site selection for ET in the
next years. The local geography and geology of the chosen site will determine what
kind of access to the observatory (vertical shafts or horizontal/inclined tunnels)
and excavation method will be adopted. Several meters large vertical shafts will
be present in every corner station and in the middle of the arms, delimited by
a surface building. The corner stations, containing the components of the three
detectors, will be hosted in cylindrical caverns with a diameter of about 65 m,
divided in two levels: the top level cavern host the main suspension and vacuum
systems, while the basement level is devoted to the clean rooms and to allow the
underneath access to the suspended components of the interferometers. A total
of 17 suspension towers will be present in every corner station and will host the
suspension of multiple payloads (of different interferometers). Satellite and smaller
caverns will be needed to host the input test masses suspension towers. Finally,
the cryogenic equipments of the LF interferometers will be installed in the main
and satellite caverns. The arms of the detectors will be hosted in tunnels with
a diameter d = 5.5 m and 10 km long (except for those connecting the satellite
caverns which will be 300 m long). In the final stage of construction, every main
interferometer arm tunnel will host six vacuum pipes (four for the HF and LF
interferometers and two for filter cavities) and all the service connections of the
underground and cryogenic infrastructures.

Suspension system

The suspensions system will be based on the superattenuator (SA) design already
used in Virgo over 10 years activity: a N-stage pendulum supported by an inverted
pendulum (IP) composed of an elastic three-leg structure. The SA designed for
Virgo with six vertical filters is already compliant with the HF interferometer
requirements, while the LF interferometer will require a better attenuation in the
low-frequency range (below 3 Hz). In order to meet the requirements of the LF
interferometer, the SA of ET will be 17 m high, assuming N = 6 vertical magnetic
anti-spring filters equally spaced and tuned with a vertical cut-off frequency around
300 mHz. The cryogenic last stage of suspension of the LF interferometer will be
suspended in the lower part of the SA vacuum tower.

Cryogenic payload

In ET a Virgo-like last stage of suspension of mirrors will be used, consisting in the
marionette, the recoil mass and the mirror. The payload will operate at cryogenic
temperature, being cooled down with two possible techniques:

• with pulse-tube (PT) cryocoolers, whose vibrations must be suppressed by
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means of passive and active actuation, such as studied in the Vibration-Free
cryostat [94];

• with cryogenic fluids in the form of liquid helium and liquid nitrogen which
can be used to cool down the cryostats of the payloads: the refrigerator
systems can be installed on the surface building, while the cryogenic fluids
are sent to the underground cryostat by long transfer lines, as already did in
other large-scale experiments such as LHC at CERN.

A cold box will be connected to marionette via heat-links13, keeping the mirror at
cryogenic temperature. It can be either the cold head of a PT cryo-refrigerator
or a simple liquid helium container in the case of a cryoplant based on cryogenic
fluids. In order to damp the vibrations associated to the cooling system, the cold
box will be installed on the top of a cryo-compatible attenuator chain (see fig.
2.33) hosted in an ancillary cryostat, close to the payload suspension tower. The
whole payload will be hosted in the lower part of the vacuum tower hosting the
17 m-long SA: this tower basement will be a cryostat with two radiation shields.
Moreover, in order to reduce the thermal radiation from the beam duct into the
cold mirror, cryotraps will be installed along the vacuum tubes and appropriate
low-emissivity coatings will be deposed on their inner walls.

Since fused silica has a very small thermal conductivity at low temperatures, the
mirrors and the main optics of the LF interferometer will be made of crystalline
materials (silicon and sapphire) as said above, since these crystals have a large
thermal conductivity in the low temperature range. As in advanced detectors, the
mirrors will be monolithically suspended with fibers of the same material.

Figure 2.33: Scheme of the cryogenic payload and cryo-links in ET [26].

The local control of the payload components will be similar to that of first and
second generation of gravitational wave interferometric detectors. The actuation
can be realized by mean of coil-magnet actuators (as in initial and advanced Virgo)

13the heat-links can be realized adopting a suitable design in order to suppress the residual
vibrations generated by the cold box, as already did in KAGRA [95].
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or alternatively with electrostatic actuators based on polarized capacitances (as in
GEO600). However, sensing devices suitable for cryogenic operations of the local
control loop have to be developed. In chapter 6 of this thesis I will present an
inertial sensor developed for this task.

2.6 Space-borne interferometers

In order to explore the very low-frequency range below 1 Hz, where a large number
of potential gravitational wave sources are expected to emit, such as extremely
massive coalescences, galactic binaries and stochastic/cosmological sources, it will
be necessary to build an interferometer of million km baseline. Clearly, such a
large interferometer is unimaginable on Earth; moreover, the Newtonian noise will
be a fundamental limit below 1 Hz for ground and underground detectors. For
these reasons the space-borne interferometer feasibility was studied in the last
decades, resulting in the proposal of LISA (Laser Interferometer Space Antenna)
joint ESA-NASA space mission [96]. It will consist of a constellation of three
spacecrafts, hosting the test masses and placed in a heliocentric orbit at d ≈ 1 A.U.
in xylophone configuration: each side of the resulting triangle will be 5× 106 km
long, inclined by π/3 with respect to the ecliptic and following the Earth by about
π/9 (see fig. 2.34). LISA is expected to reach a strain sensitivity of the order of

Figure 2.34: Schematic representation of LISA constellation yearly heliocentric
orbit (not to scale), following the Earth by about π/9; the interferometer arms are
5× 106 km long.

10−20 Hz−1/2 in a frequency window which ranges from 3×10−5 Hz to 0.1 Hz. The
detection scheme will be different from ground-based interferometers: due to the
large distance between test masses, the phase difference will be measured not by
recombining the laser transmitted and reflected between the two spacecrafts, but
by combining the incident light with a local oscillator phase-locked to a common
clock [96]. The launch of the main space mission is foreseen after 2020, while the
feasibility test mission, called LISA Pathfinder, is planned to be launched in 2014
by ESA. Other LISA-like space missions have been proposed so far in order to
explore the very low-frequency primordial gravitational waves, such as DECIGO
and BBO [97].
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Chapter 3

Seismic and Newtonian Noises

At low frequencies the seismic and Newtonian noises are fundamental limits to the
sensitivity of a ground-based gravitational wave interferometric detector (see fig.
2.24). They are generated by geological, meteorological and anthropic processes.
As shown in chapter 2 dealing with the first and next generations of detectors,
these sources of noise can be limited by means of two complementary approaches:

1. underground infrastructures, such as for KAGRA (sec. 2.4.2) and ET (sec.
2.5.1).

2. suitable seismic attenuators composed of long pendula chains (such as the
SA of Virgo, see sec. 2.3.1) and/or active actuators (such as in the mirror
suspension of LIGO);

In this chapter I will discuss the main features of the seismic and Newtonian
noises, and the strategies necessary to suppress them, especially in third generation
interferometric detectors.

3.1 Seismic noise

Unlike transient seismic signals, which are coherent1, since they are radiated by
localized sources and have a finite duration, the background seismic noise, gener-
ated either by natural sources or human activities, can be described as a quasi-
stationary stochastic process. Seismic daily variations due to anthropic and natural
sources occur usually below 10 Hz:

• at very low frequency (f < 1 Hz) the main contribution comes from oceanic
and sea-generated microseisms (see sec. 3.1.3) related to large-scale meteoro-
logical conditions, and therefore it is generated by non-local sources, usually
characterized by a rather high coherence2 (> 70%) [98];

• around 1 Hz local meteorological conditions (such as local wind and rain)
dominates;

1coherent signals have small phase shifts and identical time dependence and polarization, and
therefore they can interfere constructively.

2here we define the degree of coherence as the ratio between the auto-correlation and the
cross-correlation of the signal.
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• at higher frequencies (f > 1 Hz) the noise produced by anthropic activities
(cultural noise, see sec. 3.1.2) becomes dominant and is characterized by low
coherence (> 30%).

The correlation radius rc is defined as the longest distance between two seismic
sensors for which the recorded noise in a certain spectral range remains correlated.
It depends on the composition of the medium in which the seismic noise propagates:
usually the correlation radius increases with depth, from the surface (where the
unconsolidated sedimentary materials results in smaller rc) to the underground
hard rocks (where rc is larger). The correlation radius is also frequency dependent:
for the very low-frequency seismic noise (< 1 Hz), such as oceanic microseisms,
it may be several km, while for higher frequencies it drops to few meters or even
less. The amplitude spectral density of the displacement produced by the seismic
noise can be expressed to a first approximation by the empirical law:

x̃s(f) ≈ 10−7

f 2

m√
Hz

(3.1)

However, the seismic measurements in frequency domain are usually presented in
terms of acceleration power spectral densities (PSD, see app. A), thus in units of
frequency-dependent squared acceleration: (m/s2)2/Hz. In fig. 3.1 it is reported
the background seismic noise PSD in the 10−5− 50 Hz frequency range, measured
by Peterson [99] from a worldwide network composed of 75 stations (in surface and
underground) during several years. The resulting plots combined give rise to the
so-called new high noise model (NHNM) and new low noise model (NLNM) repre-
sented by the the upper and lower bound envelopes of the cumulative compilation
of ground acceleration PSD measured during noisy and quiet periods.

Figure 3.1: The high and low noise models (NLNM and NHNM, upper and lower
red lines) obtained by Peterson [99] from the seismic spectra (black lines) measured
in a worldwide network of surface and underground stations.
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3.1.1 Seismic waves

The seismic activity [100] can be subdivided according to the two main types of
seismic waves (see fig. 3.2):

Body waves propagate through the interior strata of the Earth. They are char-
acterized by smaller amplitudes and shorter wavelengths (i.e. higher frequen-
cies) than surface waves, traveling at higher speeds.

• Primary waves, also known as pressure waves, or simply P-waves,
are described by a longitudinal particle motion along the direction of
propagation of the wave: they push and pull the medium (rock or fluid)
they move through, similarly to sound waves in air. Therefore, P-waves
are compressional waves. They are the fastest type of seismic waves:
the propagation velocity is given by:

vP =

√
B + 4

3
µ

ρ
(3.2)

where B and µ are respectively the bulk and shear moduli, and ρ is
the density of the medium through which the wave propagates. In the
superficial layers of the Earth’s crust, the typical speed of P-waves is
vsupP ∼ 500 − 2000 m/s, while in the deeper layers, where the rocks
are more consolidated and homogeneous, the velocity is higher: vdeepP ∼
5000− 8000 m/s.

• Secondary waves, also known as shear waves, or simply S-waves,are
described by a transversal particle motion with respect to the propaga-
tion direction of the wave. Since fluids do not support shear stresses,
S-waves can travel only through a solid medium, at a speed slower than
that of P-waves:

vS =

√
µ

ρ
= vP

√
1− 2ν

2− 2ν
≈ vP

2
(3.3)

where ν = 1
2

3B−2µ
3B+µ

is the Poisson’s ratio. The typical speed of S-waves

in the upper layers of the Earth’s crust is vsupS ∼ 250− 700 m/s, while
in the deeper layers is vdeepS ∼ 1500− 4000 m/s.

The wavelengths of the P- and S- waves are defined as λP,S = vP,S/f ; ne-
glecting the coupling effects, the amplitudes of these waves are attenuated
by a factor exp(−πr/QλP,S), where r is the distance between the source and
the sensor, and Q is the quality factor (QP ∼ 2QS). Therefore, we can define
the attenuation length:

LP,S =
QP,SλP,S

π
(3.4)

Using the typical values of seismic P- and S- waves in eq. 3.4, it follows that
seismic waves produced on the surface by local meteorologic or anthropic
sources are usually attenuated within few kilometers, while vibration modes
produced in deep and homogeneous rocks are attenuated over longer dis-
tances.
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Surface waves are produced by the interaction of P-waves and/or S-waves, prop-
agating and being confined in the upper layers of the crust. Surface waves
are characterized by lower frequencies and larger amplitudes than those of
body waves.

• Love waves are horizontally-polarized S-waves (SH-waves), with an
associated particle motion described by a transversal oscillation with
respect to the propagation direction of the wave. Since they are not
composed of any P-wave component, Love waves do not imply compres-
sions in the medium through which they propagate. Their amplitude
decreases exponentially with depth, but only as r−1/2 with the distance
traveled r. Love waves propagates at a speed of about 90% vS.

• Rayleigh waves propagates as ripples similarly to the waves on the
surface of water, with an associate particle motion described by a ret-
rograde rolling. Rayleigh waves are produced by the superposition of
vertically-polarized S-waves (SV-waves) and P-waves, so that they pro-
duce compressions in the medium they move through. Rayleigh waves
couple with the horizontal discontinuity of the crustal layers, even with
that between the surface and the atmosphere. It is possible to distin-
guish between the fundamental Rayleigh mode (RF-) and those pro-
duced by the resonances in the geological strata (RS- or RP- depending
on the main components, SV- or P-, forming the resonant waves). A
particular type of large-amplitude (i.e. low-frequency) Rayleigh waves
are the so-called Stonely-waves [101], which propagates along the solid-
fluid boundaries, such as in vertical shafts or boreholes, being an impor-
tant source of coherent noise. Stonely-waves amplitude decreases expo-
nentially with the distance from the shaft. In general, Rayleigh waves
travel at a lower speed than that of P- and S-waves: their horizontal
propagation velocity vR expressed in units of vS is a purely function of
the Poisson’s ratio ν. If we define the dimensionless variable χ = vR/vS
with the condition 0 < χ < 1, the Rayleigh wave velocity comes from
the real root of the equation [102]:

χ6 − 8χ4 + 8

(
2− ν
1− ν

)
χ2 − 8

1− ν
= 0 (3.5)

The eq. 3.5 describes the harmonic Rayleigh waves propagating far from
the source. Indeed, the excitation of the medium they move through
results in a combination of all the different body and surface waves.
The amplitude of Rayleigh waves decays exponentially and is negligible
at a depth of a few Rayleigh wavelengths (λR = 0.92 vS/f).

As waves propagate through the medium, their amplitudes decreases due to two
factors: the geometrical and the material damping. The first is a result of en-
ergy spreading over an increasing area; the frequency-dependent material damp-
ing involves the energy lost due to friction through the medium. Seismic wave
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attenuation for homogeneous media can be described by the equation [103]:

A2 = A1

(
r1

r2

)n
e−πηf(r2−r1)/vi (3.6)

where A1 and A2 indicate the wave amplitudes at the distances r1 and r2 from
the source, n and η represents respectively the geometric damping coefficient and
the loss factor related to the material damping, f is the frequency and vi is the
propagation velocity of the wave. The geometric damping can be calculated ana-
lytically by assessing the type of wave involved and the source type. It is n = 1/2
for radial surface waves, while radial body waves decay with n = 1.

Figure 3.2: Main types of seismic waves, propagating as indicated by the arrows;
left : body waves, subdivided in primary (P-) and secondary (S-) waves; right :
surface waves, subdivided in Love and Rayleigh waves.

3.1.2 Short-period seismic noise

The short-period noise ranges from about 1 Hz to ∼ 50 Hz and can be gener-
ated by meteorological phenomena, such as the wind friction over rough terrain,
trees/vegetation and man-made objects swinging or vibrating. However, the dom-
inant part of the short-period seismic noise comes from anthropic activities and
machines (e.g. rotating machinery, road/rail traffic, etc.). The contributions from
these sources, which can be stationary as well as moving, produce a superposition
to a quite complex random field. Since the short-period noise has a surface-wave
character [98], the horizontal propagation velocity of this seismic noise is frequency
dependent, resulting close to the shear-wave velocity in the superficial crustal lay-
ers (vs ∼ 2.5 − 3.5 km/s in hard rocks and ∼ 300 − 650 m/s in unconsolidated
sedimentary layers). Moreover, the surface-wave nature of the short-period seismic
noise explains the exponential decay of the noise amplitude with depth (see sec.
3.1.5), which is not the case of body waves. Since the penetration depth of surface
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waves is proportional to their wavelength, the seismic noise at higher frequencies
attenuates more rapidly with depth. The wind-generated seismic noise becomes
noticeable for wind speeds higher than 3−4 km/s, destroying the coherence below
15 Hz [104]. The amplitude increase of such a noise is apparently non-linear and
may reach underground depth down to several hundred meters for wind speeds
vs > 8 km/s. However, the wind-generated seismic noise is usually much higher
on surface, being exponentially reduced with depth.

Cultural noise

The cultural noise, also called anthropogenic noise, can be distinguished from the
natural microseismic noise for its diurnal variability (day/night pattern), related to
human activities. Moreover, it depends on many local factors: e.g. the ”road” noise
depends on the road structure and materials, traffic density and vehicle type/speed.
As reported in [105], at the LIGO Hanford Observatory, in the 1−50 Hz frequency
span, the peaks are around 4 − 12 Hz and it is produced by vehicular traffic. A
correlation between the seismic noise at Virgo interferometer and the ”road” noise
in a 4 km-far major high-way overpass was found by [106] with a peak around
3 Hz. The diurnal pattern of the cultural noise was recognized even in seismic
data from seismometers placed in boreholes at several depths down to ∼ 1950 m
[107]. The only way to reduce such an environmental noise is to build the detector
in a site far away from major urban sites in a low population density area.

3.1.3 Microseisms

Below 1 Hz microseismic peaks related to the activity of oceans and seas are
a prominent feature that can be observed in fig. 3.1 around 7 × 10−2 Hz and
∼ 0.2 Hz. These two value ranges correspond to two possible schemes of generation
of the oceanic microseism (see fig. 3.3) [98]:

1. Primary (and smaller) oceanic microseisms with a period of 14±2 s, are gen-
erated only in shallow waters next to coastal regions. The wave energy is con-
verted directly into seismic energy either through vertical pressure variations
or by the impact of the waves (with a typical frequency of ∼ 0.06− 0.1 Hz)
on the shores. The correlation between this microseismic peak and the swell
at the beaches was known starting from the data sets studied by [108];

2. Secondary (and dominant) oceanic microseismic peak with a period around
6 s, generated by the superposition of ocean swell waves3 of equal period
traveling in opposite direction, and therefore generating standing waves of
half the period [110]. Non-linear second-order pressure perturbations are
produced by these standing waves and propagate with negligible attenua-
tion to the ocean bottom where they are converted into seismic waves. This
phenomenon can take place off-shore and in the far deep ocean: in the first

3wind waves are generated at high frequencies and evolve into swell as soon as the waves
separate from the wind that generated them [109]. Swell is stabilized by nonlinear processes and
eventually acquires its typical oscillation period around 14− 16 s.
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case, the forward-propagating waves, generated by a low-pressure area, su-
perpose with those with the same frequency inward-propagating after being
reflected by the coast line; in the latter case, waves from two sides superpose
after being generated by two separate perturbations. The seismic waves,
produced in the ocean bottom crust by the standing wave-induced pressure
perturbations, are composed mainly by Rayleigh waves.

Figure 3.3: Illustration of the two main schemes of generation of ocean and sea
microseism: a) the primary microseism is generated by the pressure variations
on the ocean bottom crust and on the shores; b) the secondary and dominant
microseisms is generated by the interference of the waves propagating from the
low-pressure area L with those with the same frequency being reflected by the
coast line: standing waves with half the period of ocean waves develop in the
interference area X and propagate through the ocean bottom crust, where they
are converted into seismic waves.

Similar microseismic noise peaks may be generated in shallower seas and even
lakes, usually characterized by shorter periods (2 − 4 s). Moreover, the coastal
geometry produces local interference patterns, which can be characteristic of a
certain geographical place, e.g. in a bay of channel where typical resonances can
be noticed. Therefore, in the acceleration PSD it is possible to observe multiple
microseismic peaks in the very-low frequency range. Oceanic and sea microseismic
surface-waves are characterized by a low attenuation, hence they can be observed
hundreds of km in inland sites. Since they are produced in relatively localized ar-
eas, the microseismic signals have a coherent portion around the peaks. Therefore,
in principle, an array of seismic sensors can be able to localize the source locations
of microseismic peaks. In several studies [111, 112, 113] it has been shown that the
ocean-bottom (and even in deep seas) microseismic spectrum has a similar shape of
that measured in continental sites, but with a greater amplitude, which increases
at higher frequencies. Moreover, the correlation of these spectra with known storm
systems was noticed. Finally, at lower frequencies (10−2 − 10−3 Hz) it is obseved
the microseismic contribution due to the so-called infragravity waves, produced by
subharmonics through non-linear processes from wind waves and swell.
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3.1.4 Long-period seismic noise

In the long-period period band (t > 10 s) which corresponds to very low-frequencies
(f < 0.1 Hz) the atmospheric pressure field variability generates a background
seismic noise due to the elastic response of the ground to these fluctuations. This
effect, produced by barometric pressure fluctuations [114, 115], occurs both in
vertical and horizontal directions, but it is mainly noticeable in the horizontal
displacements related to the ground tilt, which couples with gravity. Indeed, hor-
izontal seismometers are usually based on horizontal pendula, therefore thy are
also extremely sensitive tilt-meters: a small tilt of θ radians would produce an
apparent translational acceleration in m/s2 given by [99]:

ẍ ≈ g0θ (3.7)

where g0 is the local acceleration of gravity. A method which can be used in order
to extract the real translational ground acceleration from the output of an horizon-
tal floating-mass based seismometer is to subtract the tilt-generated translational
acceleration by means of a parallel tilt-meter. The long-period noise generated
by pressure fluctuations is unavoidable, however it decreases with depth: in un-
derground environments surface deformations are attenuated while the barometric
pressure and temperature are more stable than in surface locations.

Earth tide

At very low-frequency the surface of Earth experiences large external forces due
to the gravitational interaction with the Moon and Sun with a typical semi-
diurnal/diurnal modulation: the effect consists in the rise and fall of the surface
with an amplitude up to ∼ 0.5 m with respect to the center of the Earth. This phe-
nomenon is particularly evident in fig. 3.1 at a frequency of ftide = 2.3× 10−5 Hz.
However, at such a low frequency, well below the minimum detectable frequency
even in third generation detectors (ftide � 1 Hz), the test masses of a ground
based interferometer move coherently, thus the Earth tide does not involve a sub-
stantial limitation to the detector sensitivity. Moreover, since it is related to the
orbital motions of the Earth and Moon, the produced effect can be predicted.
An additional contribution to the Earth body tide comes from the ocean tidal
loading4, which causes the rising and falling of the adjacent ground, especially in
coastal areas. This ”side effect” can be of the same order of magnitude of that
related to the body tide of the Earth. Another purely-structural side effect, to
be considered in the construction of underground observatories, is the erosion of
tunnels and caverns produced by the tide-generated physical stresses, resulting in
the fragmentation of loose rocks5.

4ocean tides are produced by resonance interactions between water movements, tidal forces
and Earth rotation, and therefore are characterized by amplitudes and periods quite different
from those of ”purely” Earth body tides.

5other causes of loose rocks are the temperature fluctuations and oxidation processes.
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3.1.5 Seismic noise suppression

As said at the beginning of this chapter, the seismic can be reduced in two ways:
building the detector into underground infrastructure, and suspending the interfer-
ometer test masses and optics from pendulums chains, which act as seismic filters.
The first choice is related to the behavior of the seismic waves in deep crustal
layers, where propagation velocities are higher and the surface waves are damped;
the second choice is based on the mechanic filters that were already used in first
generation interferometric detectors.

Depth dependence

The seismic noise, generated by the superposition of several seismic waves pro-
duced either by natural or anthropic sources, is attenuated exponentially in un-
derground environment. In particular, the attenuation is important for surface
waves (Love and Rayleigh waves), which are significantly attenuated in more ho-
mogeneous and consolidated underground crustal layers. The amplitude spectral
density x̃seism(f, z) associated to the seismic noise at depth z = d, with respect to
that at the ground level z = 0, is given by:

x̃seism(f, z = d) ≈ x̃seism(f, z = 0)e−4d/λ (3.8)

where λ is the wavelength of the considered seismic wave. This attenuation is the
first advantage for a detector built into an underground site.

Mechanical filter

The seismic noise at the detector site (see fig. 3.4) affects the test masses of the
interferometer, but can be mechanically filtered by a chain of pendulums. In fact,
neglecting external forces and dissipative effects, the equation of motion for a mass
m, suspended from a l-long pendulum at the point x0, is given by:

mẍ+ k(x− x0) = 0 (3.9)

where k = mg/l is the restoring force of the pendulum. When a seismic wave of
frequency f perturbs the suspension point x0 = x0(f), the horizontal oscillation
transfered to the suspended mass in x can be obtained considering the horizontal
transfer function T H(f):

T H(f) ≡ x(f)

x0(f)
=

f 2
0

f 2
0 − f 2

(3.10)

where f0 is the resonant frequency of the pendulum. When f � f0, eq. 3.10
becomes:

T H(f) ≈ −f
2
0

f 2
(3.11)

Therefore the pendulum suspension acts like a mechanical low-pass filter. When we
consider a chain of N harmonic oscillators, each with its proper resonant frequency
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fi, the overall transfer function is given by the product of the transfer functions
associated to each oscillator:

T H(f) ≡ x(f)

x0(f)
=

N∏
i=1

T Hi (f) =
N∏
i=1

f 2
i

f 2
i − f 2

(3.12)

Also in this case, for frequencies higher than resonances, i.e. for f � fi, the chain
of N harmonic oscillators is a mechanical low-pass filter:

T H(f) ≡ x(f)

x0(f)
≈ (−1)N

1

f 2N

N∏
i=1

f 2
i (3.13)

Therefore, the seismic attenuation provided by a chain of N harmonic oscilla-
tors is proportional to the factor f−2N . Hence, an higher number N of stages
would improve the overall seismic isolation, while lower resonant frequencies of
the suspension stages would extend to the low-frequencies the attenuation. The
suppression of vertical oscillations can be obtained by a similar calculation, consid-
ering a chain of springs, e.g. the blade springs in the Superattenuator of Virgo (see
the related subsection in sec. 2.3.1), where also the inverted pendulum attenuation
A (see eq. 2.41) contributes to the overall seismic suppression.

In addition to the passive filter provided by the mechanical suspension, the
residual seismic noise can be actively suppressed by means of electromagnetic and
electrostatic actuators, driven by suitable position sensors in a control feedback
loop.

Figure 3.4: The seismic acceleration PSD measured at the sites of ground-based
gravitational wave detectors (LIGO, Virgo, GEO600) compared to that of CLIO
(which was the prototype of KAGRA) in the underground site of Kamioka. The
Peterson low and high noise models are reported in the plot [26].
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3.2 Newtonian noise

Local density fluctuations of rock, water and atmosphere, and those produced
by the anthropic activities, cause variations of the local gravitational acceleration
vector ~g0: this source of noise known as gravity gradient or Newtonian noise (NN).
The effect produced on the interferometer test masses is indistinguishable from that
produced by a gravitational wave [116]. Moreover, fluctuating gravitational fields
directly couple to the test masses themselves, short-circuiting all the attenuator
stages of a seismic mechanical filter. Because of this feature, NN will be the
main sensitivity limit for future interferometric gravitational wave detectors in the
low-frequency range. Although density fluctuations of superficial bodies of water
and those related to the atmosphere (due to temperature and barometric pressure
fluctuations which generate internal dynamical processes) are a primary source
of NN, the main mechanism responsible for the generation of fluctuating gravity
gradients is the seismic activity. In particular, as shown above in sec. 3.1.1, seismic
body P-waves and surface Rayleigh waves produce alternating compressions and
dilatations, resulting in local density fluctuations of the crustal rocks.

3.2.1 Analytical model

In a first approximation, the effect produced by the seismic-induced NN to the test
mass of an interferometric detector can be described through the transfer function
defined by [117]:

TNN(ω) =
x̃NN(ω)

Ã(ω)
(3.14)

where Ã(ω) is the ASD (see app. A) of the ground oscillation induced by the
seismic noise, and x̃NN(ω) ≡ h̃NN(ω)L is the ASD of the oscillation transmitted
through the NN to the test mass, considering a L-long arm of the interferometer.
The oscillation at the ground level Ã(ω) is the RMS value of the oscillations along
the three spatial dimensions:

Ã(ω) =

√
[X̃(ω)]2 + [Ỹ (ω)]2 + [Z̃(ω)]2

3
(3.15)

In order to calculate the form of TNN(ω), we consider a coherently fluctuating mas-
sive region M(t), adjacent to the interferometer: the time-dependent fluctuations
∆M(t) = M(t)−〈M(t)〉 due to the seismic activity gravitationally induces a vary-
ing acceleration ~aNN(t) on the test mass (see fig. 3.5). The resulting gravitational
force experienced by the test mass m is given by:

~FNN(t) ≡ m~aNN(t) = m
G∆M(t)

r3
r̂ (3.16)

Let us consider the projection along the x-direction of ~aNN(t) from eq. 3.16, in the
frequency domain it becomes:

aNN x(ω) =
G∆M(ω)

r2
cos θ (3.17)
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Since the interferometer test mass is suspended from a pendulum, we can describe
it as an oscillator with resonant frequency ω0 = 2πf0 and damping time τ . Hence,
considering that the acceleration in the oscillator can be written as a = ω2x, we
can rewrite eq. 3.17, expressing the magnitude:[

(ω2 − ω2
0)2 +

ω2

τ 2

]
|x(ω)|2 = G2|∆M(ω)|2 cos2 θ

r4
(3.18)

Figure 3.5: A simple scheme of Newtonian noise generation in an interferometric
detector: the coherently fluctuating mass region M(t) induces a varying grav-
itational acceleration ~g0 + ~aNN(t) on the test masses m of a simple Michelson
interferometer with L-long arms.

So far we took into account only a single coherently fluctuating region of mass
M(t); in order to extend the calculation to several coherently fluctuating masses,
we need to consider a coherence radius rc of the same order of half the wavelength
of superficial seismic Rayleigh waves λR = vR/f . Moreover, another assumption is
needed: mass fluctuations in different coherent regions must be uncorrelated and
independent, so that we can add in quadrature the gravitational forces generated
by the fluctuating masses. The last assumption is verified in a typical ground-based
several kilometers-long interferometer, for which λR � L. Therefore, considering
the planar approximation, the total contribution comes from the summation of
cos2 /r4 over the coherent regions, which can be written as the integral over θ and
r [116, 117]: ∑ cos2 θ

r4
≈ 1

λR

∫ ∞
rmin

∫ 2π

0

cos2 θ

r4
dθdr (3.19)

Generally, the integral summation above would be divergent since the local grav-
itational fluctuations, associated to small radii r � 1, are dominant. In order to
ensure the convergence of eq. 3.19, we start the integration from the cutoff radius
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rmin = λR/4. Hence, from eq. 3.19 we obtain:

∑ cos2 θ

r4
≈ 64π

3λ4
R

=
4ω4

3π3v4
P

(3.20)

where, expressing the last term, we considered λR = 2πvR/ω. By substituting the
eq. 3.20 in eq. 3.18, we find:[

(ω2 − ω2
0)2 +

ω2

τ 2

]
|x(ω)|2 =

4G2ω4

3π3v4
R

|∆M(ω)|2 (3.21)

The mass fluctuation |∆M(ω)| can be expressed as a function of the oscillation of
a point on the surface around its equilibrium position ∆X(ω), produced by the
passing seismic Rayleigh wave:

|∆M(ω)|2 =
πρ2λ4

R

16
|∆X(ω)|2 =

π5v4
Rρ

2

ω4
|∆X(ω)|2 (3.22)

where ρ is the local density of the soil of the coherent fluctuating mass region. By
substituting the eq. 3.22 into eq. 3.21, considering the displacement |x(ω)| as the
differential displacement between the test masses |∆x(ω)|, and taking into account
the contributes from each test mass added in quadrature, we obtain the relation
between |∆x(ω)| and the ground oscillation |∆X(ω)|:[

(ω2 − ω2
0)2 +

ω2

τ 2

]
|∆x(ω)|2 =

16π2G2ρ2

3
|∆X(ω)|2 (3.23)

Since |∆x(ω)| ≡ x̃NN(ω) and |∆X(ω)| ≡ Ã(ω), following the definition of eq.
3.14, the NN transfer function is expressed by the square root of the ratio between
|∆x(ω)| and |∆X(ω)| from eq. 3.23:

TNN(ω) =
4πGρ√

3(ω2 − ω2
0)2 + ω2

τ2

(3.24)

Considering that the angular frequency of a seismic wave is defined as ω ≡ 2πf ,
for frequencies f > f0 and damping time τ ∼ 108 s, eq. 3.24 becomes:

TNN(f) ≈ Gρ

πf 2
β(f) (3.25)

where β(f) is a dimensionless parameter called reduced transfer function [116].
In our calculation we found β(f) = 1/

√
3: this constant value arises from the

cutoff radius rc = λR/4 we have introduced, having described the soil around the
test masses as a grid of masses λR-sized, fluctuating randomly and independently
of each other due to an isotropic distribution of passing seismic Rayleigh waves.
Hence, the expression of the NN transfer function in eq. 3.25 allows us to make
a rough estimate of the relation between the seismic amplitude spectral density
x̃seism(f) = Ã(f) and the NN amplitude spectral density x̃NN(f) at the ground
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level: assuming the average soil/superficial rock density value ρ ≈ 2× 103 kg/m3,
by combining the equations 3.25 and 3.14 we obtain:

x̃NN(f) ≈ 2.46× 10−8

(f 2/Hz2)
x̃seism(f) (3.26)

Since the NN noise depends on the seismic activity, as shown in eq. 3.26, and the
main contribution to fluctuating gravity gradients comes from the seismic compres-
sional waves, which have a larger amplitude on surface (e.g. Rayleigh waves), we
deduce that NN noise is attenuated in underground sites, where also the cultural
seismic noise produced by human activities and that generated by atmospheric/wa-
ter fluctuations are reduced by the distance from their sources. A depth-dependent
analytical model is described in the next subsection.

3.2.2 Depth-dependent model

The equivalent spectral density related to the seismically-generated Newtonian
noise, acting on an interferometric detector, can be calculated from an analytical
model which takes into account the depth-dependence of the NN. Let us describe
the distribution of masses around the test mass with the mass density function
ρ(~x, t), then the acceleration induced on the test mass placed in ~y is given by:

~aNN(~y, t) = G

∫
V

ρ(~x, t)
~x− ~y
|~x− ~y|3

dVx (3.27)

where we are considering the integration within the volume V . Assuming the
medium around the test mass as an elastic solid, its density variations, due the
the seismic-generated oscillation, induce a fluctuation in the eq. 3.27, respecting
the mass conservation:

ρ̇+∇ · ~Jm = 0 (3.28)

where we introduced the mass density current defined by:

~Jm = ρ0(~x)~̇ξ(~x, t) (3.29)

being ρ0 and ~ξ respectively the density of the medium in static condition and
the displacement from the static condition at a given point. By combining the
equations 3.28 and 3.29 in eq. 3.27, we obtain in the frequency domain:

~aNN(~y, ω) = G

∫
V

∇ · [ρ0(~x)~ξ(~x, ω)]
~x− ~y
|~x− ~y|3

dVx (3.30)

In eq. 3.30 we can find two different effects by expanding the derivative expres-
sion: the term proportional to ρ0(~x)∇·~ξ(~x, ω) describes the fluctuations of the local

density related to the compression of the medium, while the term ~ξ(~x, ω) · ∇ρ0(~x)
describes the movement of density inhomogeneities, like those at the surface bound-
ary. In order to calculate the connection between the NN and the seismic mea-
surements around the test mass in an interferometric detector, a depth-dependent
generalization of the model described in sec. 3.2.1 can be developed starting from
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Eq. 3.30: the details of this calculation can be found in ref. [118]. In this model,
the seismic motion is decomposed in normal modes of oscillation, which can be
considered as oscillators coupled to unknown stochastic forces. The measurements
of quantities related to seismic fluctuations (e.g. the power spectra of horizontal
and vertical displacement, or the correlation matrix elements of the displacement
between different points) can give the information about the excitation of these
oscillators, obtaining the estimate of the strain equivalent spectral density h̃NN(f)
produced by the NN acting on the test masses of a third generation detector. The
model is based on some assumptions:

1. the mirrors of the interferometer are placed in underground cavities, whose
effect can be neglected at low frequencies (i.e. for large seismic wavelength),
surrounded by an homogeneous medium with density ρ0, characterized by
the longitudinal and transversal speeds of sound vL and vT ;

2. the surface fluctuations, associated to surface Rayleigh waves, are domi-
nant with respect to bulk fluctuations. Both contributions are exponentially
damped by depth (see eq. 3.8) over a typical scale of λR;

3. damping effects are negligible, so that each mode is excited only at is resonant
frequency.

The equivalent spectral density of the seismically-generated NN, in an interferom-
eter with L-long arms at depth z, is therefore calculated by [118]:

h̃NN(ω) =
4πGρ0√

2Lω2
D(K, z)[G(KL)]1/2 × x̃vvseism(ω) (3.31)

where K = K(ω) is the wave number and x̃vvseism(ω) is the vertical spectral density
of the surface motion. The real function G(KL) in eq. 3.31 is called geometrical
suppression factor and describes the coherence between gravitational accelerations
of different test masses: it goes to zero for ω → 0, because for λR � L each mirror
experience the same acceleration, i.e. the resonant cavities of the interferometer do
not fluctuate6; in the low-frequency range of interest, we can consider G(KL) ∼
1. Finally, the depth-dependence of eq. 3.31 is given by the attenuation factor
D(K, z), defined by:

D(K, z) =

(
2(β2

T + 1)eβLKz − (1 + 2βL + β2
T )eKz

βL(β2
T − 1)

)
(3.32)

where βT and βL are the dimensionless functions:

βT =

√
1− χ2

χ2
(3.33)

βL =

√
1− χ2(v2

T/v
2
L)

χ2
(3.34)

6this effect is analogous to that related to the cut-off frequency on gravitational waves caused
by the arm length of the interferometric detector, see eq. 2.21.



116 CHAPTER 3. SEISMIC AND NEWTONIAN NOISES

being χ the real root of eq. 3.5, with the condition 0� χ� 1. Setting z = 0 and
substituting eq. 3.32 in eq. 3.31, given G(KL) ∼ 1 and taking into account that
h̃ = x̃/L, we can compare the resulting expression with that given by eq. 3.25,
finding a good agreement. The attenuation factor D(K, z) is plotted in fig. 3.6 as
a function of depth z for several frequencies7. The calculated curves give the NN
contribution equal to zero at given depth and frequency, but it is a consequence
of the simplified analytical model adopted, in particular with the assumption (3),
i.e. taking into account in the NN only the oscillation modes at their resonant
frequency ω = KvTχ. In a more realistic estimate of the NN also the soil quality
factor Q and the coherence effects must be taken into account.

Figure 3.6: The Newtonian noise attenuation factor D(K, z) of eq. 3.32, as a
function of the depth z, plotted for several low frequencies with different colors:
red for 1 Hz, green for 2 Hz, blue for 5 Hz, orange for 10 Hz, purple for 20Hz,
and brown for 50 Hz [26, 118]. The longitudinal and transversal speeds of sound
are assumed to be vT = 220 m/s and vL = 440 m/s (continuous curves) or
vL = 880 m/s (dashed curves). The zero values are artifacts of the simplified
model, appearing when the two exponentially damped factors of eq. 3.32 cancel
each other; the decay constant depends on the dominant between these two factors.

3.2.3 Noise subtraction

Seismically induced NN is characterized by an amplitude spectral density several
orders of magnitude lower than that of the seismic noise, as shown in eq. 3.26. Al-
though it is always possible to filter the seismic component, even by many orders
of magnitude, either mechanically or actively, this is not true for the Newtonian
component, since the gravity gradients couple directly to the test masses them-
selves, making such a noise the main limitation to the sensitivity at the lowest
frequencies. Therefore, it is necessary to develop suitable techniques which allow

7since K = K(ω), also the attenuation factor depends on the frequency.
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to subtract the NN signal from the overall output signal of the interferometer,
being known the ”progenitor” seismic displacement time-series from an extensive
network of sensors.

Subtraction scheme

The strategy of NN subtraction, reported here and developed by [118], is based
on the exploitation of the correlation between NN and the seismic displacement at
several points, monitored continuously by an array of seismometers. Let us assume
that the measured displacements are statistically stationary, then the time series
acquired by the i-th sensor will be composed of the displacement signal si and the
proper instrumental noise σi, i.e. Xi = si + σi. The overall output signal Y from
the interferometer can be expressed as the sum of a component H uncorrelated
to the seismic motion, and that which takes into account the seismically induced
NN, indicated by N : therefore we can write the output as Y = H + N . The
subtracted time series Ys will be constructed in order to meet an optimization
criterion, under the assumptions that the seismic time series Xi are uncorrelated
with the gravitational wave signal in Y and the noise is Gaussian [26]. Hence,
appropriate linear and time-invariant filters will be applied to each Xi signal and,
subsequently, the filtered signal will be subtracted from the interferometer output
Y . Let us write the linear combination of the time series from the interferometer
and the sensor array outputs:

Ys(ω) = Y (ω) +

∫
dω′
∑
i

αi(ω, ω
′)Xi(ω

′) (3.35)

where the Ys is the subtracted signal which minimizes the power spectrum at each
frequency, being αi(ω) the minimization variables, i.e. the linear filters that must
be applied to the output signals of the seismic sensors before adding them to the
interferometer output Y . The power spectrum of Ys is related to the following
correlation [118]:

〈Ys(ω)∗Ys(ω
′)〉 = 〈Y (ω)∗Y (ω′)〉

+

∫
dω′′

∑
i

αi(ω, ω
′′)∗ 〈Xi(ω

′′)∗Y (ω′)〉

+

∫
dω′′dω′′′

∑
i,j

αi(ω, ω
′′)∗αj(ω

′, ω′′′) 〈Xi(ω
′′)∗Xj(ω

′′′)〉

+ αi(ω
′, ω′′) 〈Y (ω)∗Xi(ω

′′)〉 (3.36)

Where with the indices i,j we indicate the i-th and j-th element of the sensor
array. By minimizing the previous eq. 3.36 with respect to αk(ω

′, ω′′)∗ we find a
set of linear integral equations for the optimal filters:

〈Xk(ω
′′)∗Y (ω′)〉+

∑
j

∫
dω′′ 〈Xk(ω

′′)∗Xj(ω
′′′)〉αj(ω′, ω′′′) = 0 (3.37)
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The expression of the αj variables can be obtained by the inverse of the kernel
Kkj(ω, ω

′) ≡ 〈Xk(ω)∗Xj(ω
′)〉, and is formally given by:

αi(ω
′, ω) = −

∑
k

∫
dω′′K−1

ik (ω, ω′′) 〈Xk(ω
′′)∗Y (ω′)〉 (3.38)

If the noise is stationary, we can find the following expression:

〈Xi(ω)∗Y (ω′)〉 = 2πδ(ω − ω′)CSN i(ω) (3.39)

where CSN(ω) is the vector whose i-th component is the cross correlation between
the i-th output and the NN. We can now define the relation between the outputs
of the seismic sensors of the array in a similar way:

〈Xi(ω)∗Xj(ω
′)〉 = 2πδ(ω − ω′)[CSS ij(ω) + CΣΣ ij(ω)] (3.40)

where the i-th and j-th entry of the array CSS represents the cross correlation
between the seismic noise measured by the i-th and j-th seismic sensors, while the
same entry of the array CΣΣ is the correlation between their intrinsic noises. The
last term we need to define is the first element of the second member in eq. 3.36.
It can be written as the decomposition of the interferometer power spectrum in a
NN contribution CNN(ω), plus those which is uncorrelated with it, indicated by
CHH :

〈Y (ω)∗Y (ω′)〉 = 2πδ(ω − ω′)[CNN(ω) + CHH(ω)] (3.41)

By combining the previous relations in eq. 3.36 and 3.38 we obtain the expression
for the optimal filters [118]:

αi(ω, ω
′) = −δ(ω − ω′)[CSS(ω) + CΣΣ(ω)]−1

ij [CSN(ω)]j (3.42)

The αi(ω, ω
′) defined by eq. 3.42 are time-invariant in the stationary case we con-

sidered. Finally, we can define the amplitude efficiency ε(ω) of the NN subtraction
as the ratio between the power spectra of the subtracted signal SYs(ω) and that of
the unprocessed output signal SY (ω):

1−ε(ω) =

(
SYs(ω)

SY (ω)

)1/2

=

(
1− C+

SN(ω)[CSS(ω) + CΣΣ(ω)]−1CSN(ω)

CNN(ω)

)1/2

(3.43)

The square of eq. 3.43 gives the ratio between the power spectra of the NN con-
tained in the subtracted and original interferometer output signal. From the last
expression we can deduce the three conditions needed to achieve a good NN sub-
traction efficiency:

1. CSN(ω) must be as large as possible, i.e. all the seismic sensor must be
coupled to the NN as much as possible;

2. the intrinsic noise of the i-th sensor, described by its power spectra [CSS]ii,
must be small;

3. the correlation between the displacements measured by different sensors,
described by CSS, must also be small.

While the correlation CSS between seismic sensors can be measured easily, the same
is not true for the CNN , so that there is no hope to test the described subtraction
procedure without building a NN sensitive detector. However, it is possible to
estimate the eq. 3.43 by means of a theoretical model, as follows [118].
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Parameters estimate

Let us consider a single test mass, surrounded by an infinite medium, and suppose
that each sensor can monitor the mass density fluctuation at its position. The
i-th sensor will be affected by the intrinsic noise σi(ω), but without correlations
between σ̃i and σ̃j when i 6= j. The mass density fluctuations can be thought as a
Gaussian stochastic field, described by an exponential cross correlation function:

〈ρ̃(ω, ~x)∗ρ̃(ω′, ~x′)〉 = 2πΓ2(ω)δ(ω − ω′) exp

(
−|~x− ~x

′|
ξ(ω)

)
(3.44)

where ξ(ω) is the frequency-dependent correlation length, Γ is a parameter related
to the quality factor Q of the considered medium, and ρ(ω, ~x) is the frequency-
dependent mass density at a given point. The quantities necessary to make an
estimate of eq. 3.43 are consequently:

CSS ij(ω) + CΣΣ ij(ω) = Γ2(ω) exp(−|~ui − ~uj|) + σ2(ω)δij (3.45)

CSN i(ω) = 4πξGΓ2(ω) cos θiΦ(ui) (3.46)

CNN(ω) =
16

3
π2ξ2G2Γ2(ω) (3.47)

where ~ui = ξ−1~ri is the position of the i-th sensor given in units of the correlation
length ξ, θi is the angle between the acceleration ~aNN and ri, and the function
Φ(u) is given by:

Φ(u) =
1

u2

[
2− e−u(2 + 2u+ u2)

]
(3.48)

Therefore, from this model we obtain the explicit expression of eq. 3.43:

1− ε =

√
1− 3

(
e−|~ui−~uj | +

σ2

Γ2
δij

)
Φ(ui)Φ(uj) cos θi cos θj (3.49)

The previous eq. 3.49 can be used to find the optimal positions and orientations of
the seismic sensors in the array devoted to the NN subtraction scheme [26]. In the
simplest case of two sensors, the optimal positions are along the direction of ~aNN ,
placed at a distance d ≈ 1.28 ξ from the test mass; the cos θ factor is maximized
along the axis, while the function Φ(u) has a maximum at u ∼ 1.45, therefore in
this optimal case we find 1− ε ∼ 0.9. Starting from this configuration it is possible
to add other sensors, finding the optimal relative positions, as shown in ref. [118].
We should remark some particular features deduced by the model described above:

1. the separation between the seismic sensors must be optimized in agreement
with the correlation length ξ of the contributions to the NN that must be
subtracted, which depends on the frequency band where the subtraction
scheme is applied;

2. the NN subtraction procedure improves with the number of the sensors; obvi-
ously, in a practical implementation of this procedure, positioning possibili-
ties of the sensors in the detector site will be limited, so that the optimization
of the sensor positions will be not a trivial problem.
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The environmental NN subtraction technique is an important issue for third gen-
eration interferometric gravitational wave detectors, which is still under investi-
gation. While a simple model like that described above can be adequate in some
scenarios, we will need more complex models and FEM analyses in order to de-
velop an efficient subtraction scheme, especially in those geological scenarios where
the loss of coherence described by the scale ξ is less relevant. Moreover, since the
coherence length is generally a function of the frequency, i.e. ξ ≡ ξ(f), it follows
that the NN subtraction scheme will be optimal only in a given frequency range.

Active NN subtraction schemes have been already proposed for LIGO and
Virgo [119, 120], based on seismometers which monitor the seismic noise sources
in order to find the NN transfer function and the optimal linear filters. However
the impulsive and periodic sources related to the anthropic activities and to the
infrastructures of the detector will be a main concern for third generation inter-
ferometers: even in an underground site the placement of electricity generators,
pumps and cryocoolers will be carefully investigated in order to minimize the an-
thropogenically generated seismic gravity gradients.



Chapter 4

Thermal Noise

The thermal noise is a fundamental limit to the interferometric detector sensitiv-
ity in a band that ranges from the low frequencies to some hundreds Hz. As the
definition suggests, it is strictly related to the temperature, and affects the me-
chanical parts of the test mass suspension and the the mirror itself. Indeed, the
variables (e.g. the displacement) which describes a physical system, assumed as
free-evolving in thermodynamical equilibrium, undergo spontaneous fluctuations
at a given temperature T . This fact was firstly noticed in 1827 by Brown [121]
during his observations of particles in suspension, and was consequently known
as Brownian motion. Einstein, in one of his famous ”annus mirabilis” papers of
1905 [122, 123], described physically the process as driven by thermally-generated
molecular random collisions, which can be dealt with statistical mechanics. About
twenty years later, Nyquist and Johnson found that in electric conductors also the
voltage fluctuations are proportional to

√
kBT [124], where kB is the Boltzmann

constant, resulting in the so called Johnson noise. The generalization of this rela-
tion to any dissipative system led to the formulation of the Fluctuation-Dissipation
theorem [125], which allows to calculate the displacement fluctuations due to the
thermal noise in a physical system.

In the first section of this chapter I will outline the Fluctuation-Dissipation
theorem, subsequently I will introduce the ideal case of a damped harmonic oscil-
lator, and the real case of dissipative mechanical systems, such as the test mass
suspensions and the mirrors of an interferometric gravitational wave detector. Fi-
nally, I will conclude with the the cryogenic suppression of the thermal noise in
the mechanical and optical components.

4.1 Fluctuation - Dissipation theorem

The displacement fluctuations of a particle in thermodynamic equilibrium with
its environment, at a given temperature T , are caused by the thermally-induced
Brownian motion. These fluctuations are related to dissipative mechanisms which
cause an irreversible loss of energy among the various degrees of freedom of the
system. Let us consider a stochastic force F (t) which perturbs the dissipative
system from its equilibrium state: the observed fluctuations are the response of
the system to the perturbation. The existence of spontaneous fluctuating forces

121
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coupled to irreversible processes and the amplitude of the so-induced fluctuations
can be predicted by means of the Fluctuation-Dissipation theorem [125, 126, 127]:
if the dissipative system is linear, i.e. the power dissipation is quadratic in the
magnitude of the perturbation, the theorem establishes a relation between appro-
priate generalized forces and a generalized impedance Z(ω), that is defined as the
proportionality constant between the power and the square of the perturbation.
Denoting with 〈ξ2〉 the mean square fluctuation in a given frequency interval, which
is determined by the range of integration, the theorem states that:

〈ξ2〉 =
2kBT

π

∫
dωY (ω)ω−2 (4.1)

where Y (ω) = 1/Z(ω) is the generalized admittance. The result expressed by
eq. 4.1, can be written in terms of the mean square fluctuation of an equivalent
generalized force, function of the real part of the generalized impedance Z(ω):

〈δF 2〉 =
2kBT

π

∫
dωRe[Z(ω)] (4.2)

We can derive the expressions of the fluctuation power spectra of a variable X due
to the thermal noise as follows: let us start considering an unidimensional linear
dissipative system, assumed to be in thermodynamical equilibrium. If X(t) is the
response of the system to the external perturbation force F (t), the generalized
impedance of the system is defined as:

Z(ω) =
F{F (t)}(ω)

F{Ẋ(t)}(ω)
≡ F{F (t)}(ω)

iωF{X(t)}(ω)
(4.3)

where with F{f(t)} we indicate the Fourier transform of f(t). From eq. 4.3 we
can derive the expression of the transfer function T (ω) of the system in terms of
the generalized impedance:

T (ω) =
F{X(t)}(ω)

F{F (t)}(ω)
≡ 1

iωZ(ω)
(4.4)

Using the fluctuation-dissipation theorem expressed in eq. 4.1, we can write the
PSD of the thermal noise for the physical quantity X(ω) in terms of the transfer
function T (ω), that in turn is a function of the impedance Z(ω) (i.e. the inverse
of the admittance, Y −1(ω)), obtaining:

SX(ω) = −4kBT

ω
Im[T (ω)] (4.5)

where Im[T (ω)] is the imaginary part of the transfer function expressed by eq. 4.4.
From the previous equations we can also derive the PSD of the stochastic force
F (t), that is given by:

SF (ω) = 4kBTRe[Z(ω)] (4.6)

The dissipation of the system is taken into account by the transfer function T (ω),
related to the generalized impedance by eq. 4.4. Moreover, the power spectra of
thermal fluctuations (eq. 4.5) and perturbation force (eq. 4.6) directly depends
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on the temperature T of the environment in thermodynamic equilibrium with the
system.

We can extend this results to a n-dimensional system [128], characterized by
n response variables Xi and perturbed by n generalized forces Fi. In this case
the generalized impedance of the system is expressed by the n× n matrix Zij(ω),
therefore also the transfer function must be in the form of a matrix with the same
dimensions: Tij(ω). The energy is dissipated among all the degrees of freedom, so
that we can write the generalization of eq. 4.3 as follows:

F{Fi(t)}(ω) = ZijF{Ẋj(t)}(ω) (4.7)

and therefore, from eq. 4.4, we find:

F{Xi(t)}(ω) = TijF{Fj(t)}(ω) (4.8)

From the fluctuation-dissipation theorem we obtain the cross-spectral density
(CSD) of the fluctuations (see app. A):

SXiXj(ω) = −4kBT

ω
Im[Tij(ω)] (4.9)

Therefore, the PSD of Xi in the unidimensional case (eq. 4.5) is the special case
of eq. 4.9 with i = j.

4.2 Damped harmonic oscillator

In the previous section we found that the PSD of the thermal noise can be expressed
as a function of the imaginary part of the transfer function (see eq. 4.5 and 4.9).
Therefore, in order to make an estimate of the thermal noise limiting the detector
sensitivity, we have to calculate the form of the transfer function associated to the
physical systems which we are considering (e.g. the mechanical suspension and the
mirror). The simplest model to consider is the unidimensional harmonic oscillator
with mass m and resonant frequency ω0 which undergoes an external generalized
force F (t). In the ideal case there are not losses and the equation of motion is
given by:

mẍ(t) +mω2
0x(t) = F (t) (4.10)

where mω2
0 = k is the elastic spring constant. With a Fourier transformation of

eq. 4.10 we can write the equation of motion in the frequency domain:

m(ω2
0 − ω2)F{x(t)}(ω) = F{F (t)}(ω) (4.11)

By combining eq. 4.11 with eq. 4.4 we obtain the transfer function of the ideal
harmonic oscillator, that is:

Tideal(ω) =
1

m(ω2
0 − ω2)

(4.12)

The fluctuation-dissipation states that the PSD of thermal fluctuations is a func-
tion of the imaginary part of the transfer function (see eq. 4.5), but Tideal(ω)
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expressed in eq. 4.12 is a real function, so that we obtain a null thermal noise PSD
in the above-described harmonic oscillator: this is not surprising, because in the
ideal case there are not dissipations. This is evident also from the divergence of
eq. 4.12 when ω → ω0. Conversely, a real physical harmonic oscillator is damped
by dissipative processes [129], which can be subdivided in viscous and intrinsic
dissipations (see sec. 4.2.2 and 4.2.3 respectively). By introducing the damping
coefficient β, we can rewrite the equation of motion 4.10 for the damped harmonic
oscillator as follows:

mẍ(t) + βẋ(t) +mω2
0x(t) = F (t) (4.13)

and in frequency domain it becomes:

m(ω2
0 − ω2 + i

ωβ

m
)F{x(t)}(ω) = F{F (t)}(ω) (4.14)

so that the transfer function T (ω), given by the ratio between F{x(t)}(ω) and
F{F (t)}(ω), is composed in general by an imaginary part, resulting in a non-null
thermal noise PSD and finite values of the resonance peaks.

4.2.1 Loss angle and Quality factor

In order to describe the dissipations in a damped harmonic oscillator, it is useful
to introduce two parameters [130]:

Loss angle indicated with φ(f), it is related to the ratio between the mechanical
energy lost per oscillation cycle ∆Emec(f) and the total mechanical energy
stored in the oscillator Emec(f):

∆Emec(f)

Emec(f)
= 2πφ(f), for φ(f)� 1 (4.15)

If the damping coefficient β varies slowly with the angular frequency, we can
write it as a function of the loss angle:

β ≡ φ(ω)mω2
0

ω
(4.16)

By substituting eq. 4.16 into eq. 4.14, we rewrite the equation of motion as:

m[ω2
0(1 + iφ(ω))− ω2]F{x(t)}(ω) = F{F (t)}(ω) (4.17)

In eq. 4.17 we note that the loss angle represents the imaginary part of the
elastic spring constant k:

k ≡ mω2
0 → mω2

0(1 + iφ(ω)) (4.18)

The elasticity of a material is expressed by the Young’s modulus E(ω), which
is defined as the ratio between the tensile stress σ(ω), a force per unit area,
and the tensile strain ε(ω) ≡ ∆ξ(ω)/ξ0 along a given axis:

E(ω) =
σ(ω)

ε(ω)
(4.19)
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In eq. 4.18 we found that the damping is described by an imaginary compo-
nent of the elastic constant, therefore we have also to consider the complex
form of the Young’s modulus, writing it as a function of the loss angle φ:

E(ω) = Re[E(ω)] + Im[E(ω)] = |E|eiφ(ω) (4.20)

In the harmonic oscillator the frequency-dependent tensile strain is given by:

ε(ω) = ε0e
iωt (4.21)

so that, combining eq. 4.21 and 4.20 with eq. 4.19, we obtain the expression
of the tensile stress during the oscillations:

σ(ω) = σ0e
iωt = |E|ε0ei(ωt+φ) (4.22)

Therefore, the loss angle φ represents the phase lag between the excitation
(i.e. the tensile stress) and the system response (i.e. the tensile strain) of the
damped harmonic oscillator.

Taking into account several dissipation processes, we note that the overall
energy loss is given by the addition of the energy losses in each dissipative
process. Therefore, from the definition 4.15, we find that the overall loss
angle φtot(ω) must be defined as the sum of the loss angles φi(ω) related to
each dissipation acting in the system:

φtot(ω) =
∑
i

φi(ω) (4.23)

Quality factor or Q-factor, is a dimensionless parameter related to the ratio
between the total mechanical energy stored in the oscillator and the energy
dissipated per cycle: higher Q values means lower energy dissipations. The
quality factor is strictly related to the loss angle, and it is defined by:

Q(ω) =
ω

ω0φ(ω)
(4.24)

At the resonant frequency ω = ω0, the relation 4.24 becomes:

Q(ω0) =
1

φ(ω0)
(4.25)

From eq. 4.17 we note that the transfer function of the damped harmonic oscillator
(eq. 4.4) depends on the loss angle φ(ω), therefore also the thermal noise PSD (eq.
4.5) will be a function of φ(ω). However, the measurement of the the loss angle
over a wide frequency span is not trivial, so that its estimate is usually obtained
by eq. 4.25, at the resonant frequency of the system, by measuring the Q-factor
from the following relations:

• when the characteristic time τ0 of the oscillation amplitude decay is large,
i.e. for τ0 � 1, the Q-factor at the resonance is given by:

Q(ω0) = πτ0

(ω0

2π

)
(4.26)
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• otherwise, when the decay time is short, i.e. for τ0 � 1, the Q-factor can be
esimated by:

Q(ω0) =
ω0

∆ω0

(4.27)

where ∆ω0 is the full width at half maximum (FWHM) at the resonance
peak.

4.2.2 Viscous dissipations

The viscous dissipation causes a damping proportional to the velocity ẋ and de-
scribed by the damping coefficient β. The equation of motion of the viscously
damped harmonic oscillator is that of eq. 4.13 (in the time domain) and eq. 4.14
(in the frequency domain). By combining the last one with eq. 4.4 we immediately
find the transfer function of the system:

Tvis(ω) =
1

m(ω2
0 − ω2) + iωβ

m

(4.28)

therefore, the imaginary part of eq. 4.28 is:

Im[Tvis(ω)] =
−ωβ

m
[
(ω2

0 − ω2)2 + ω2β2

m

] (4.29)

By substituting eq. 4.29 in eq. 4.5 we find the expression of the thermal noise PSD:

Svis(ω) =
4kBTω0

m
[
(ω2 − ω2

0)2 +
ω2
0ω

2

Q2
vis(ω0)

] 1

Qvis(ω0)
(4.30)

where we used the quality factor at the resonant frequency, defined in terms of β
and ω0:

Qvis(ω0) =
mω0

β
(4.31)

Now we can derive the approximate expressions of eq. 4.30 below and above the
resonant frequency ω0, shown in fig. 4.1:

Svis(ω) ≈


4kBT
mω3

0

1
Qvis(ω0)

= const if ω � ω0

4kBTω0

m
1

Qvis(ω0)
1
ω4 if ω � ω0

(4.32)

Air damping

The canonical example of viscous dissipation is the air damping due to the mo-
mentum transfer between the oscillator and the residual gas molecules in vacuum
regime. The thermal velocity of the molecules is vth ∝

√
kBT/mgas, therefore their

mean free path is usually larger than the typical dimensions of the mechanical os-
cillator. In this case the damping coefficient is given by [66]:

β =
PgasmgasAvth

4kBT
(4.33)
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where Pgas is the residual pressure, mgas the mass of the gas molecules and A is
the cross section of the mechanical oscillator. Therefore, we can write the loss
angle associated to the air damping from eq. 4.16, substituting β with eq. 4.33,
obtaining:

φgas =
PgasmgasAvth

4kBTmω2
0

ω (4.34)

In the simple case of a vibrating wire, eq. 4.34 can be expressed as function of the
wire mass density ρw and radius r [131]:

φwgas =
Pgasmgasvth
4kBTρwrω2

0

ω ≡ ρgasvth
4ρwrω2

0

ω (4.35)

Figure 4.1: Thermal noise power spectral densities of an harmonic oscillator with
viscous damping (solid line) or intrinsic damping (dotted line); the frequency de-
pendence of the curves is given by equations 4.32 and 4.39; the PSD shown in
figure have been calculated for an oscillator with mass 10−3 kg, resonant frequency
f0 = 1 Hz and Q = 100 [129].

4.2.3 Intrinsic dissipations

Intrinsic dissipations, due to the microscopic and mechanical structures of the
oscillator, are described by an imaginary part in the elastic constant (see eq. 4.18)
which depends on the loss angle φ(ω). As said above, this parameter represents the
phase lag in the response of the elastic system (see eq. 4.22). From the equation
of motion 4.17 we can derive the transfer function depending on φ:

Tint(ω) =
1

m [(ω2
0 − ω2) + iω2

0φ(ω)]
(4.36)
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and then from its imaginary part:

Im[Tint(ω)] =
−ω2

0φ(ω)

m [(ω2
0 − ω2)2 + ω4

0φ
2(ω)]

(4.37)

substituted into eq. 4.5, we obtain the expression of the thermal noise PSD:

Sint(ω) =
4kBTω

2
0

mω[(ω2 − ω2
0)2 + ω4

0φ
2(ω)]

φ(ω) (4.38)

Usually, the loss angle of metal materials is almost constant in a wide frequency
range below 104 Hz, so that we can take φ(ω) ≈ φ(ω0) and derive the approximate
expressions of eq. 4.38 below and above the resonant frequency ω0, that are shown
in fig. 4.1:

Sint(ω) ≈


4kBTφ(ω0)

mω2
0

1
ω

if ω � ω0

4kBTω
2
0φ(ω0)

m
1
ω5 if ω � ω0

(4.39)

The loss angle φ(ω), which is needed to make an estimate of the thermal noise
PSD of eq. 4.38, are calculated for the several dissipation mechanisms in the next
subsections.

Structural and superficial losses

The structural and superficial losses are related to the configuration and relative
displacement of the molecules that compose the mechanical system, therefore they
depend on inhomogeneities and defects in the microscopic spatial and superficial
structures. Vibrations and reconfigurations in the microscopic structure, such
as those induced by the elastic deformations or by the dislocation motions in
polycrystalline metals (see the relative paragraph in sec. 2.2.3 and ref. [76]), give
rise to energy dissipations proportional to the volume (structural loss, ∆Estr ∝ V )
or to the surface (superficial loss, ∆Esur ∝ S) of the mechanical oscillator. From
eq. 4.23 we can write the total loss angle at a given frequency f as:

φtot =
1

2π

∆Estr + ∆Esur
Etot

(4.40)

where Etot is the total energy stored in the mechanical oscillator. The ratio between
the superficial and structural energy loss is proportional to the ratio between the
surface and the volume:

∆Esur
∆Estr

= ηxd
S

V
(4.41)

where η is dimensionless coefficient which depends on the geometry and the relative
elastic strain between the surface and the bulk, while xd is the dissipation depth
which takes into account the dissipation in the superficial layer with respect to
that of the structure, and depends on the geometric depth ξ and on the loss angles
φstr and φsur:

xd =
1

φstr

∫ h

0

dξφsur(ξ) (4.42)
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where h is the thickness of the superficial layer. If the superficial dissipation does
not depend on the geometrical depth1, the eq. 4.42 reduces to xd = hφsur/φstr.
Since the total energy stored in the elastic oscillator is mainly composed of struc-
tural energy, i.e. Etot ≈ Estr, by defining the structural loss angle as φstr ≡
∆Estr/2πEstr and combining eq. 4.40 with 4.41, we find:

φtot ≈
1

2π

(
∆Estr
Estr

+ ηxd
S

V

∆Estr
Estr

)
≈ φstr

(
1 + ηxd

S

V

)
(4.43)

Thermoelastic losses

In the materials with a non-negligible thermal dilatation coefficient α, the temper-
ature variation ∂T is coupled to the volumetric dilatation ∂V :

∂V

V
= α∂T (4.44)

therefore, for α > 0, a local volumetric dilatation causes a local cooling of the
body, conversely a local contraction increases the local temperature (see fig. 4.2).
During the elastic oscillations, the system is periodically stretched and compressed,
so that they give rise to heat flows between the parts which undergo heating and
cooling, in order to restore the thermal equilibrium. The irreversible heat flows
which is driven by the temperature gradient dissipates vibrational energy. The
time-scale τ necessary to reach the equilibrium is given by [132, 133]:

τ =
cV r

2

4.32πD
(4.45)

where cV is the volumetric heat capacity, r is the typical distance scale of the
heat flux and D is the thermal diffusion coefficient, which in turn depends on the
thermal conductivity:

D = κ/cV (4.46)

The thermoelastic loss angle depends on the above defined parameters and on the
Young’s modulus E , and is given by [132, 133]:

φthermoel(ω) =
Eα2T

cV

ωτ

1 + ω2τ 2
(4.47)

Eq. 4.47 depends on ω and has a maximum at the frequency ωτ = 2π/τ , which is
defined thermoelastic peak. If the system oscillates at frequencies below ωτ , i.e.
with a period t� τ , the process is almost isothermal; otherwise, if the oscillation
frequency is ω � ωτ , the system does not have enough time to relax and to reach
the equilibrium, so that the process is almost adiabatic. Therefore, the maximum
thermoelastic dissipation occurs at frequencies around the peak ωτ . To reduce the
sensibility limitation related to this dissipation, the mechanical structure of the
detector must be designed in order to put the thermoelastic peak as far as possible
from the detection band.

This thermoelastic dissipation is particularly important in systems with a small
section, such as vibrating wires, whose total loss angle can be approximated with
the sum of structural and thermoelastic loss angles.

1this condition is true if loss angle and Young’s modulus does not vary with the geometrical
depth
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Figure 4.2: Temperature variation due to local dilatations and compressions in a
bar from a FEM simulation. Dilatations cause local coolings (in blue), compres-
sions result in local heating (in red). The so-generate temperature gradient drive
irreversible thermal flows, resulting in the thermoelastic energy loss.

Recoil losses

An ideal mechanic oscillator is fixed to a frame with a mass M → ∞ and an
infinitely rigid structure, so that its inertia can be considered as infinite. In the
real case, the frame mass has a finite value m1 and must be considered as another
coupled oscillator, so that the frame recoil motion dissipate vibrational energy
[129]. Such a system is described by the coupled oscillator shown in fig. 4.3, where
m1 and m2 are respectively the frame and the oscillator mass, connected each to
the other, and with the ground by two springs, with proper damping coefficients.

Figure 4.3: The simple model of two coupled oscillator describes the recoil energy
losses.

The equation of motion of the coupled oscillator with damping is:
m1ẍ1(t) = −k1x1(t)− β1ẋ1(t)− k2[x1(t)− x2(t)]− β2[ẋ1(t)− ẋ2(t)]

m2ẍ2(t) = −k2[x2(t)− x1(t)]− β2[ẋ2(t)− ẋ1(t)]
(4.48)
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that becomes in the frequency domain:

F{x1(t)}(ω)
[
m1

(
ω2 − ω2

1 −
iβ1
m1
ω
)
−m2

(
ω2

2 −
iβ2
m2
ω
)]

+

+F{x2(t)}(ω)
[
m2

(
ω2

2 + iβ2
m2
ω
)]

= 0

F{x1(t)}(ω)
[
m2

(
ω2

2 + iβ2
m2
ω
)]

+

+F{x2(t)}(ω)
[
m2

(
ω2 − ω2

2 −
iβ2
m2
ω
)]

= 0

(4.49)

where ω1 and ω2 are the resonant frequencies of the two uncoupled oscillators. The
damping effect can be described as the imaginary part of the elastic constant k1,2,
obtained by the substitution of eq. 4.16 into eq. 4.49:

k1 = m1ω
2
1(1 + iφ1)

k2 = m2ω
2
2(1 + iφ2)

(4.50)

The solutions of eq. 4.49 are two coupled oscillation modes which depends on the
resonant frequencies of the uncoupled oscillators:

ω+,− =

√
[ω2

2(1 + µ) + ω2
1]±

√
[ω2

2(1 + µ) + ω2
1]2 − 4ω2

1ω
2
2

2
(4.51)

where µ = m1/m2. If the resonant frequencies of the two coupled oscillators is the
same, i.e. for ω1 = ω2 = ω0, eq. 4.51 becomes:

ω+,− = ω0

√
2 + µ±

√
µ2 + 4µ

2
(4.52)

If an impulsive external force F acts on m1 at t = 0, the displacement of the two
oscillators will be in the form of:

x1 = A[sin(ω+t) + sin(ω−t)] = A sin(ω0t) cos(ωbt)

x2 = A[sin(ω+t) + sin(ω−t)] = A
µ

cos(ω0t) sin(ωbt)
(4.53)

where A is the amplitude of the oscillation and ωb is the beat frequency, defined
as:

ωb =
ω+ − ω−

2
(4.54)

If ω1 = ω2, from eq. 4.53 we note that the two oscillators are characterized by a
motion in antiphase, and the energy is transferred between the two bodies at the
beat frequency ωb. We are interested in the case of a recoiling frame mass greater
than the coupled oscillator, i.e. for m1 � m2 and φ1 � φ2. In such a configuration,
introducing the external force F (ω) in the second equation of 4.49, it is possible to
obtain the recoil-dissipation transfer function for the lighter body m2 [129], which
leads to the total loss angle associated to the recoil dissipation:

φ2,rec = φ2 + φ1µ
ω1ω

3
2

(ω2
1 − ω2

2)2
(4.55)
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From eq. 4.55 we note that the effect is small only if µ� 1, that is not our case;
moreover, the recoil damping is most important when the resonant frequency of
the frame is close to that of the lighter oscillator. Thermal noise peaks of this
coupled oscillator system are represented in fig. 4.4.

Figure 4.4: Thermal noise power spectral densities for the coupled oscillator de-
scribed by eq. 4.48, in the special case of m1 = m2 = 1 g [129].

4.3 Thermal noise in a mechanical suspension

In an interferometric detector, the thermal noise acts on the position of each test
mass and is caused by the thermal fluctuations of the mechanical suspension. Each
stage of the suspension introduces a component of the overall thermal noise, as
shown in the following subsections.

4.3.1 Pendulum oscillations

The last stage of the suspension is described by a pendulum, whose horizontal
elastic-like restoring force is given by the gravitational field, which is clearly not
dissipative. This choice allows to reduce the thermal noise acting on the test
mass, which reduces to that of the suspension wires (or fibers). Therefore, in such
a system, the equation of motion is:

mẍ(t) = [kgrav − kel(1 + iφp)]x(t) (4.56)

where the gravitational constant is given by kgrav = mg/l, being m and l the mass
and the length of the pendulum, while the elastic spring constant kel is composed
of an imaginary part, which depends on the loss angle φp. In the small-angle
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approximation x(t) ≈ θ(t), therefore we can rewrite the equation of motion in the
frequency domain when an external force F (ω) acts on the system:

θ(ω)[kgrav + kel(1 + iφp)− ω2] =
F

l
(4.57)

Since the gravitational ”spring” is free of loss, the mechanical loss is the fraction
2πφ(ω) per cycle of the mechanical energy that is stored in the suspension wire
[129]. Therefore, the relation between the pendulum loss angle and that of the
wire is given by:

φp = φw
Eel

Egrav + Eel
≈ φw

Eel
Egrav

= Dpφw (4.58)

where Eel and Egrav are respectively the energy stored in the flexing wire and
in the gravitational field, φw is the loss angle associated to the internal loss of
the wire, while Dp is definited as the pendulum dilution factor. Since usually
Egrav � Eel → Dp � 1, we note that the pendulum can have a loss angle much
smaller than that relative to the material of which it is made. The factor Dp can
be also written in terms of elastic constant, so that:

Dp =
Eel
Egrav

=
kel
kgrav

(4.59)

If we consider a pendulum suspended by n wires, the overall elastic spring constant
is defined by:

kel =
n
√
>EI

2l2
(4.60)

where > is the tension in each wire, E is the Young’s modulus and I the moment
of inertia of the wire cross section. By combining eq. 4.59 with eq. 4.60 and taking
into account the gravitational constant kgrav, we obtain:

Dp =
n
√
>EI

2mgl
(4.61)

that we can substitute in eq. 4.58 finding:

φp(ω) = φw(ω)
n
√
>EI

2mgl
(4.62)

By substituting the loss angle of 4.62 in eq. 4.38 we obtain the PSD of the pendulum
thermal noise:

Sp(ω) =
4kBTω

2
p

mω[(ω2 − ω2
p)

2 + ω4
pφ

2
p(ω)]

φp(ω) (4.63)

where ωp is given by:

ω2
p =

(
kel
m

+
g

l

)
(4.64)

However, in a more realistic estimate of the pendulum thermal noise we must
include in φw the superficial loss angle φsur, and the recoil dissipations, so that
φp → Dp(φstr + φsur + φthermael) + φrec. The resulting strain equivalent spectral
density of pendulum thermal noise in the L-long arm of the interferometer can be
obtained by eq. A.7 and A.8, finding:

h̃p(ω) =
2

L

√
Sp(ω) (4.65)
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Residual gas limit

As shown in eq. 4.25, the Q-factor of the pendulum at the resonance is given by
φ−1
p . However, the viscous damping produced by the residual molecules of gas2

(see sec. 4.2.2) can limit the quality factor reachable by the system, that is [69]:

Qlimit = 4
m

πr2

ωp
P

√
πkbT

8µH2

(4.66)

where m and r are the mass and radius of the oscillating test mass, ωP is given by
eq. 4.64, P is the residual pressure and µH2 is the molecular mass of hydrogen.

Tilt and rotational modes

There are two other pendulum oscillations that must be taken into account: the
tilt mode around the horizontal axis perpendicular to the optic axis, and the
rotational mode around the vertical axis. The expression of the thermal noise in
the appropriate coordinates is similar to that of eq. 4.63 but, since θ � 1, the
coupling with the laser beam direction is very small.

4.3.2 Vertical oscillations

Due to the radius of curvature R⊕ of the Earth, gravitational acceleration vectors
form an angle 2θ0 ≈ 2 arcsin(L/2R⊕) in coincidence of the test masses suspended
at the ends of the L-long arm of the interferometric detector. For this reason, the
vertical fluctuation of the suspension chain is coupled to the displacement along
the horizontal direction, which is that of the laser beam.

Figure 4.5: The vertical displacement of the test mass suspension is coupled by an
angle θ0 with the horizontal displacement measured by the interferometer due to
the curvature radius R⊕ of Earth (not to scale).

2usually the residual gas is mainly composed of molecular hydrogen H2.
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By considering the suspension as a vertical oscillator with the loss angle φv =
φstr + φsur + φthermoel, the thermal noise along this direction is given by eq. 4.38:

Syv (ω) =
4kBTω

2
v

mω[(ω2 − ω2
v)

2 + ω4
vφ

2
v(ω)]

φv(ω) (4.67)

where ωv is the vertical resonant frequency, given by:

ω2
v =

kv
m

=
ES
ml

(4.68)

being m the mass of the test mass, kv the vertical elastic spring constant, E the
Young’s modulus, S and l respectively the section and the length of the suspension
wire. The amount of vertical thermal noise coupled in the horizontal direction is
given by:

Sxv (ω) = θ0S
y
v (ω) (4.69)

From eq. A.7 and A.8 we can write the strain equivalent spectral density of the
coupled vertical thermal noise in the L-long arm of the interferometer as follows:

h̃v(ω) =
2θ0

L

√
Syv (ω) (4.70)

4.3.3 Violin-modes

In a real mechanic suspension, the wires are not ideal massless springs but extended
bodies, which vibrate in the transversal direction: since the two ends of the wires
are fixed, these vibrations can be described as standing waves in a string between
two fixed points, so that they are defined violin-modes (see fig. 4.6).

Figure 4.6: Standing waves in a string are a good representation of the vibrational
violin-modes. The fundamental mode n = 1 and the first five overtones are shown.

For frequencies ω � ωp, the thermal noise produced by these vibration modes
is dominant with respect to that of pendulum mode and, although violion-modes
are weakly coupled to the horizontal direction in the interferometer, their resonant
frequencies are usually inside the detection bandwidth, at some hundreds Hz. The
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expansion theorem [129] allows the decomposition of the overall vibration motion
in normal modes, since their off-resonance contribution is negligible: by consider-
ing the wire as an unidimensional system along x, with length l and linear mass
density ρl(x), there are ϕn(x) transversal vibration modes, given the normalization
condition: ∫ l

0

ρl(x)ϕm(x)ϕn(x)dx = δmn (4.71)

so that the displacement y(x, t) is given by the superposition:

y(x, t) =
∞∑
n=1

ϕn(x)ξn(t) (4.72)

where ξn(t) are the generalized coordinates of the n-th mode. Let us define the
generalized force Gn(t) associated to that mode in terms of the force density f(x, t):

Gn(t) =

∫ l

0

f(x, t)ϕn(x)dx (4.73)

Now we can write the equation of motion in terms of generalized coordinates and
forces:

ξ̈(t) + ω2
nξn(t) = Gn(t) (4.74)

A force F (t), applied at the end of the wire in x = l, can be written by means of
eq. 4.73 as follows:

Gn(t) = F (t)ϕn(l) (4.75)

Therefore, from eq. 4.74, taken in the frequency domain and including the damping
term, we find:

ξn(ω) =
F (ω)ϕn(l)

ω2
n − ω2 + iφn(ω)ω2

n

(4.76)

The resonant frequency ωn of the n-th mode, when the wire undergoes a tension
>, is given by [134]:

ωn =
πn

l

√
>
ρl

[
1 +

2

kel
+

1

2

n2π2

k2
e l

2

]
(4.77)

where ke ≡ ke(ωn) is the elastic flexural stiffness, which depends on the Young’s
modulus E and on the moment of inertia of the wire cross section I:

ke(ωn) =

√
>+

√
>2 + 4EIρlω2

n

2EI
(4.78)

while the loss angle of the n-th mode, appearing in eq. 4.76, is defined by:

φn(ω) = φw(ω)
2

kel

(
1 +

n2π2

2kel

)
(4.79)

where φw(ω) is the loss angle associated to the dissipation processes in the wire, i.e.
φw(ω) = φstr(ω) + φsur(ω) + φthermoel(ω). As for the loss angle of the fundamental
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mode of pendulum (see eq. 4.58), the violin-mode loss is a small fraction of that of
the wire material itself. By substituting eq. 4.76 into eq. 4.72, at x = l we obtain:

y(l, ω) =
∞∑
n=1

F (ω)ϕ2
n(l)

ω2
n − ω2 + iφn(ω)ω2

n

(4.80)

therefore, the transfer function is:

T (ω) =
∞∑
n=1

ϕ2
n(l)

ω2
n − ω2 + iφn(ω)ω2

n

(4.81)

and substituting the previous eq. 4.81 into eq. 4.5 we find the PSD of thermal
noise associated to the internal oscillations of the extended system:

Scon(ω) = 4kBT
∞∑
n=1

ϕ2
n(l)ω2

n

ω[(ω2
n − ω2)2 + φ2

n(ω)ω4
n]
φn(ω) (4.82)

If we consider the pendulum wire as a continuous system with uniform mass density
ρl and a point mass m attached at x = l, the normalization condition of eq. 4.71
becomes:

ρl

∫ l

0

ϕ2
n(x)dx+mϕ2

n(l) = 1 (4.83)

while the eigenfunction ϕ2
n(x) in x = l is:

ϕ2
n(l) =

2ρll

π2m2

1

n2
(4.84)

By substituting the previous relation 4.84 in eq. 4.82, we find the thermal noise of
violin-modes:

Sviol(ω) =
8kBTρll

π2m2

∞∑
n=1

1

n2

ω2
n

ω[(ω2
n − ω2)2 + φ2

n(ω)ω4
n]
φn(ω) (4.85)

where ωn and φn are given by eq. 4.77 and 4.79. In an ideal wire the stiffness is
negligible, so that, taking the tension > = mg, we can rewrite ωn as follows:

ωn =
πn

l

√
mg

ρl
(4.86)

that substituted in eq. 4.85 gives:

Sidealviol (ω) =
8kBTρ

2
l l

3

π4m3g

1

ω

∞∑
n=1

φn(ω)

n4
(4.87)

Since test masses in the interferometer are suspended by means of N wires or
fibers, the overall thermal noise due to violin-modes is given by eq. 4.85 multiplied
by N :

Stotviol(ω) = N × Sviol(ω) (4.88)

where usually N = 4. From eq. A.7 and A.8 we find the strain equivalent spectral
density of violin-modes thermal noise in the L-long arm of the interferometer:

h̃viol(ω)
2

L

√
Stotviol(ω) (4.89)
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4.4 Thermal noise in a mirror

Internal vibrational modes of the bulk of the test mass (see sec. 4.4.1) define the
mirror thermal noise which limits the detector sensitivity. Other temperature-
dependent noise sources in the mirror are the shape deformation due to the so-
called thermal lensing (see sec. 4.4.2), and the thermodynamical fluctuations in
the bulk and in the coating [135].

4.4.1 Bulk-modes

The normal modes of a cylindrical body, assumed to have an aspect ratio ∼ 1, are
characterized by a rather complicated shape. Such a system can be treated with
an unidimensional approach by weighting each mode by a factor that describes the
mean motion of the central part of the frontal surface of the body along the optic
axis [129]. If we assume that the optical axis is aligned with the center of mass of
the cylinder, we can use the expansion theorem as we did in sec. 4.3.3, in order to
separate n modes of vibration. The eigenfunctions ϕn(x) of the modal expansion
can be defined by the mirror mass m as follows:

ϕ2
n ≈

2

me
n

(4.90)

where me
n is the effective mass of the n-th normal mode of vibration. The thermal

noise PSD can be found similarly to the calculation of sec. 4.3.3; since the reso-
nant frequency of the n-th bulk mode ωn is usually larger than frequencies of the
detection band, we can write the PSD with in the following approximation [129]:

Sbulk ≈
8kBT

ω

∞∑
n=1

φn(ω)

me
nω

2
n

(4.91)

The strain equivalent spectral density can be obtained as usual from eq. A.7 and
A.8, taking into account the n-th mode that has the maximum amplitude.

Figure 4.7: Schematic representation of the most important bulk modes of the
test mass, seen on the frontal surface. From left: fundamental ”drum mode”,
”butterfly + mode” and ”butterfly × mode”.
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4.4.2 Thermal distortions

Part of the laser beam power circulating in the Fabry-Perot cavity of the inter-
ferometer is absorbed either by the coating or by the substrate of the mirror, in
correspondence with, and according to the shape of the laser spot. The thermal
heating on the test mass, produced by this absorption, distorts the mirror profile
and, in turn, the wavefront of the reflected laser beam, producing a geometric
distortion (or thermoelastic deformation) of the reflective surface. Moreover, the
thermal gradient generated through the coating and substrate results in a gradient
of the refractive index n dependent on the temperature: the so-produced change
in the optical path is defined thermal lensing effect. Both the distortions can be
described with the schematic model [136] represented in fig. 4.8.

Figure 4.8: Geometric distortion of the mirror curvature due to the heating caused
by the laser, resulting in the thermal lensing effect.

Geometric distortion

Let us consider a mirror with curvature radius R, suspended and kept in vacuum
condition. If an orthogonally incident laser beam, with a spot radius r, heats the
surface of the test mass, the ratio between the heat dissipated by radiation and
that removed through conduction R is:

R ≈ 4σT 3ε
r

κ
(4.92)

where σ is the radiation constant of the body, ε the emissivity coefficient, r the
beam radius and κ the thermal conductivity of the substrate material. In the
substrate material the dominant mechanism is the conduction, so that the ratio
R is usually ∼ 10−1. The power absorbed in the hemisphere corresponding to the
laser beam spot, where the temperature gradient is maximum, is given by:

Pa = κA∇T ≈ 2πr2κ
δT

r
(4.93)

where A = 2πr2 is the area through which the heat flows and δT is the temperature
drop across the hemisphere. The heating due to the power absorption causes a
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variation of the sagitta s, which is geometrically defined as:

s ≈ r2

2R
(4.94)

and a change of δs through thermal expansion:

δs ≈ 1

2
αrδT (4.95)

where α is the thermal expansion coefficient. By combining eq. 4.95 and 4.93 we
find:

δs ≈ 1

4π

α

κ
Pa (4.96)

From eq. 4.96 it is clear that a crucial parameter of the substrate material is
the ratio α/κ, that is reported in table 4.1 at room temperature for the typical
materials used in the interferometers: fused silica, sapphire and silicon. Note that
both α and κ depends on the temperature T , as it is clear in fig. 4.9 in the case of
a silicon sample.

Material α/κ (×10−8m/W )
at room temperature

Fused silica ∼ 33
Sapphire ∼ 28
Silicon ∼ 1.67

Table 4.1: The ratio between thermal expansion and thermal conductivity coeffi-
cients at room temperature for the materials used for the mirrors of interferometric
detectors [136].

Figure 4.9: Thermal conductivity κ(T ) and thermal expansion coefficient α(T ) of
a crystalline sample of silicon, depending on the temperature T .
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Thermal lensing

The refractive index n is usually temperature-dependent, so that the temperature
gradient in the heated volume of substrate and coating acts as a spurious lens, de-
forming the wavefront and changing the optical path (see fig. 4.11). This change,
calculated similarly to that in eq. 4.96, corresponds to the equivalent sagitta vari-
ation:

δs ≈ 1

2
βrδT ≈ 1

4π

β

κ
Pa (4.97)

where β = ∂n/∂T is the temperature-dependence of the refractive index n. Eq.
4.97 corresponds to eq. 4.96 with β → α, so that we can directly compare the two
effects. Since the values of β are usually greater than α (see the reported values of
β/κ in tab. 4.2), the thermal lensing effect in coating and in substrate is dominant
with respect to the geometric distortion. We note that also this effect depends on
the temperature, since κ = κ(T ): in fig. 4.10 the temperature-dependent thermal
conductivity of fused silica, sapphire and silicon are compared.

Material β/κ (×10−7m/W )
at room temperature

Fused silica ∼ 300
Sapphire ∼ 6
Silicon ∼ 3.5

Table 4.2: The ratio between the temperature-dependence of refractive index β =
∂n/∂T and thermal conductivity coefficient at room temperature for the materials
used for the mirrors of interferometric detectors [136, 137].

Figure 4.10: Temperature-dependent thermal conductivity κ(T ) of fused silica,
sapphire and silicon [26].
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In eq. 4.96 and 4.97 we note that the optical path variation produced by the
laser heating on the mirror is proportional to the power absorbed Pa. Therefore,
geometric deformation and thermal lensing, if not corrected, introduce a theoretical
limit to the maximum circulating power in the cavity:

Pmax =
4πκ(T )

β

δs

1.3Asubd+ 0.5AcoatNeff

(4.98)

where Asub and Acoat are respectively the absorption per unit length of the sub-
strate and that per unit reflection of the coating, d is the thickness of the mirror
and Neff = 2F/π the number of effective reflections, obtained from the finesse F
of the Fabry-Perot cavity. Moreover, from eq. 4.96 and 4.97 we note that laser
power fluctuations induce a component of noise in the optical direction [69]. Al-
though the distortion effects can be corrected by means of compensative heating
(e.g. the thermal compensation system in Virgo, see sec. 2.3.1), a complemen-
tary method to reduce such distortions is the cooling of the test masses, made of
suitable materials, since the thermal conductivity depends on T .

Figure 4.11: The optical path length change due to thermal lensing (left panel) and
geometric distortion (right) produced by the laser power absorption in substrate
and coating of test masses. These values have been computed for Advanced Virgo
(see sec. 2.4.1 and ref. [78]).

4.5 Thermal noise suppression

All the dissipation processes analyzed in this chapter directly depends on the
temperature T , so that the amplitude spectral density of the overall noise produced
by thermal dissipations is:

x̃totther ∝
√
T (4.99)

Moreover, also thermal distortions, such as the thermoelastic deformation and the
thermal lensing, which depends on the thermal conductivity κ(T ), are temperature-
dependent. Therefore, an effective reduction of thermal noise can be achieved by
means of a cryogenic payload in future interferometer detectors, as already done
with the prototype interferometer CLIO [92], tested on the Virgo-like cryogenic
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payload prototype [138], and planned in KAGRA (see sec. 2.4.2 and ref. [91]) and
in ET (sec. 2.5.1 and ref. [26]). The best candidate materials for cryogenic pay-
loads are sapphire and silicon, whose low α and high κ at low temperatures reduce
the thermal effects and speed-up the cooling process.

The cryogenic system must be able to extract tens of mW of heat from the
mirror during the working steady state, taking also into account the additional
heating produced by the high power laser circulating in the cavities of the inter-
ferometer. As shown in sec. 2.5, two main strategies have been considered so far:
closed-loop pulse-tube cryocoolers and cryogenic fluids, such as liquid helium. In
fig. 6.1 it is shown a simple scheme of the cryogenic payload during interferometer
operations, when a fraction of the laser power is absorbed by the mirror (Q̇las),
subsequently flows through the monolithic suspension fibers and is extracted by
the refrigerating system in the upper stages of the payload; in the represented
configuration, the mirror reaction mass acts also as a thermal shield, since there
are not extra thermal inputs on it.

Figure 4.12: The conceptual scheme of a cryogenic last stage of suspension for test
masses [26].

At the thermal equilibrium the power extracted by the cryocooler is equal to
that absorbed by the mirror, i.e. Q̇abs = Q̇cooler, so that the heat flows through the
suspension fibers (or wires), and is removed by the heat links (made in Al/Cu) con-
nected to the refrigerator. In this condition, given the environmental temperature
Tenv, the mirror reaches the equilibrium temperature Tmir, that is given by:

Q̃abs =
4a

l
〈κi〉(Tenv − Tmir) =

1

Zth
∆T (4.100)

where a and l are the section and the length of suspension fibers (or wires), Zth
is the thermal impedance and κi is the average value of the thermal conductivity,
defined as follows:

〈κi〉 =
1

∆T

∫ Tmir

Tenv

κi(T )dT (4.101)
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However the cryocooling of test masses is not a trivial implementation, since the
introduction of cryostats surrounding the vacuum chambers requires an adequate
design; moreover the additional vibrations that such a system produces must be
taken into account. This argument will be treated experimentally in chapter 6.
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Part III

Experimental Activity
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Chapter 5

Characterization of an
underground site for ET

For a third generation underground interferometer capable of precise astronomical
studies of gravitational wave sources, such as the Einstein Telescope (ET), the
critical frequency region is in the range of 0.1− 10 Hz, where the seismic noise is
variable mainly due to microseismic and anthropogenic activities. Therefore, it is
important to select a site location which is, at the same time, characterized by a
low microseismic noise and far from human activities. As shown in chapter 3, below
1 Hz the seismic noise is strictly correlated to the oceanic (or sea) dynamics and to
weather conditions, while for f > 1 Hz the noise floor is nearly flat in remote sites
(as clear in the NLNM curve of fig. 3.1), corresponding to a displacement spectrum
with f−2 frequency-dependence after a double integration. Among the theoretical
and experimental activities to be performed for the construction of ET, the seismic
characterization of potential sites plays a key role. In previous years, a first short-
period characterization was made across Europe, identifying four potential sites,
as reported in the ET conceptual design study [26]. Long-period measurements
and microseismic studies are the next step toward the final site selection.

In this chapter I introduce the motivations of the search for an underground site
in Sardinia and the local geological features. After that, I present my experimental
work on the characterization of the Sos Enattos former mine, from the construction
of a seismic underground array to the long-period data analysis. In particular, I
wanted to study the seismic noise stability over a long period of almost one year,
and the correlation of the microseismic activity with the sea activity and local
weather conditions. The results of this work are very promising and suggest further
detailed studies of the site, which can be an ideal location for the construction of
ET.

149
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5.1 Motivation for an underground site in Sar-

dinia

Sardinia is a seismically quiet island, the second largest in the Mediterrenean sea.
Unlike the Italian mainland, where is placed the gravitational wave interferometer
Virgo, Sardinia lies entirely in the Eurasian tectonic plate, far from active fault
lines, so that it is characterized by a noticeable geological stability (see fig. 5.1).
Moreover, the population density of the island is low compared to other regions
of Europe (see fig. 5.3), resulting in a reduced day/night cultural noise PSD ratio,
while the mean wind speed is not too high with respect to other European locations
(see fig. 5.4). For the reasons outlined above, Sardinia appears an ideal location
in Europe for an interferometer of third generation.

Figure 5.1: Tectonic plates and main fault lines in the southern Europe. The red
arrows indicate the tectonic movements, while the red circle shows the position of
the Sos Enattos site in the island of Sardinia, placed into the Eurasian plate.

Figure 5.2: Position of Sos Enattos underground site (yellow pointer) in the north-
west Sardinia.
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Initially, the search for a suitable underground site was focused in the basaltic
zone in the west area of the island, but the requirement to locate the experimental
site in a zone not too far from a modern motorway, plus the possibility to rely on
previous geological studies, moved the search toward the oriental zone of Sardinia,
that is the most ancient part of the island (see sec. 5.2 and fig. 5.6), and then
the most geologically stable. In that area a promising underground site was found
in Sos Enattos (see fig. 5.2), a former mine which appears to be compliant with
the low seismic background requirements of a third generation gravitational wave
interferometer. The detailed map of the site is reported in fig. 5.5, where a circle of
radius r = 10 km indicates the possible excavation area for the Einstein Telescope.

Figure 5.3: Density of population in Europe from the REGIO database of Eurostat
[26]; low densities result in reduced cultural noise in the 1−10 Hz frequency band.



152CHAPTER 5. CHARACTERIZATION OF ANUNDERGROUND SITE FOR ET

Figure 5.4: European wind resources based on data collected for the European
Wind Atlas [26, 139].
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Figure 5.5: Detailed map of the Sos Enattos area; main villages near the former
mine are indicated. The site is accessible through the SS 131 d.c.n. highway. A
red circle, centered on the mine entrance and with a radius of r = 10 km, indicates
the possible excavation area for the Einstein Telescope. Courtesy of IGEA S.p.A.
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5.2 The geology of Sardinia and of the Sos Enat-

tos mine

Sardinia is a region seismically quiet located in the European tectonic plate, far
from the edge of many fault lines. The island is constituted by an ancient conti-
nental landmass (the Sardinia-Corsica block), isolated and partially dismembered
from its Alpine orogeny, which explains its low seismic activity. It is largely formed
by rocks of the Paleozoic era or, to be more precise, dating back to the Cambric
and Silurian eras1. During the Carboniferous period the corrugation of the earth
provoked the rising of great magmata land masses hence the intrusion of granite.
The solidification of the magma formed the foundations of the island and, further-
more, it was the transformation of the fragmented rock of a complex of scissions
of clay, quartz, porphyry and others that cloaked the underlying granite. During
the geological phase of Alpine orogeny, quakes devastated the land, causing the
fragmentation of the Paleozoic and Mesozoic crusts in various areas. A series of
fractures formed tectonic fissures that divided the island longitudinally into two
unequal parts; one oriental, mountainous and continuous, the other occidental di-
vided into smaller parts by minor fissures. From the quaternary deposits, the canal
that separated the oriental and occidental parts of the island was filled, forming
fields. During the quaternary period Sardinia became similar in its aspect to what
we see today with only minor changes occurring in more recent times. The island
is classically divided into two geological domains, the Sardinia Alpina and the
Sardinia Hercynian (i.e. Sardinia of the Paleozoic era):

• Sardinia Alpina occupies the western half of the island with the exception
of the north-west (NW) and south-west (SW) extremities, characterized by
the massive outcrops of Paleozoic and Nura-Sulcis Iglesiente. Tertiary vol-
canic and sedimentary rocks have accumulated in two main structures: the
Oligomiocene Rift in the regions of Sassari and Marmilla and the Graben
Plio-Quaternary in the Campidano region.

• The Hercynian Sardinia, as well as in two massive outcrops just mentioned,
extends in the eastern half of the island. It consists of Paleozoic metamorphic
rocks with Hercynian deformation and a large intrusive complex of coal with
a variable composition.

The central-eastern sector of the region is characterized by a rugged morphology
in particular in the zone dominated by carbonate rocks. The Albo mountain
stretched for about fifteen miles to the north-east (NE), and has peaks over 1000 m.
It is bordered on the south-east (SE) from the valley of Siniscola and to the west
by a plateau of the Manno river. In the northerly direction, blocks degrade and
show a stark contrast between the morphological rounded shapes developed in the
metamorphism and those of granite, which are most rugged. In the east-south-east
of the valley of Siniscola, the aspect of the landscape is hilly with sharp contrast
between the forms of granitoids and metamorphic ones.

1the Sardinian basement, formed in the Paleozoic era, is one of the oldest geological formations
of the central and southern Europe.
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Figure 5.6: Geological map of Sardinia. The Hercynian basement, formed during
the Paleozoic era, is the oldest part of the island.

Figure 5.7: Geodynamical scheme of the land around Sos Enattos former mine.
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The Sos Enattos mine is located in this area, ∼ 40 km far from the city of
Nuoro, in the municipality of the Lula village; it easily accessible via the motor
way connecting the Bitti village to the 131bis highway of Sardinia (see fig. 5.5).
The area of Sos Enattos is hosted by Paleozoic metamorphic terrains, which are
part of the broader inclined roof within the Hercynian granites of Sardinia. At the
south edge of the area, this roof is covered by deposits of a carbonate platform due
to a series of tectonic events at lower pressures during the Tertiary age. The tec-
tonic transposition caused a significant homogenization of the original lithological
types and a full distribution of each fossil, so that it is difficult to reconstruct the
original stratigraphic sequence. However, the age of the crystalline-schist layer is
definitely pre-Hercynian. This layer shows an uniform behavior with respect to
mechanical stress, while the carbonaceous phyllite, are more plastic of the other
formations. In other words, we observe a bending of the carbonaceous layers and
the absence of fractures. The existing few fractures have been studied with great
attention because sometime they are filled with minerals that can be exploited by
the mining industry. Their location and characteristics are also interesting in our
study because their spatial distribution influences the seismic wave propagation
and reflection. The location of the fractures in the Lula territory is reported in
figure 5.7.

Around Monte Albo territory there are few old mines2 and one of them is Sos
Enattos. This mine of schist rocks composed of sphalerite ([Zn,Fe]S) and galena
(PbS), was exploited to extract lead and zinc. The mine history starts in 1864
and the end of its exploitation is dated 1996. The mine age (more than 100 years)
is a guarantee for the stability over long terms also in presence of long caverns
in a deep underground environment. The site is managed by the I.G.E.A. s.p.a.
company, which guarantee the safety access to the mine.

Finally, we note that the Sos Enattos area is characterized by a very low an-
thropic activity: in general the population density in the Albo mountain area is
low and in the Lula’s territory goes up to 10 habitants/km2, a factor ∼ 7 lower
than the mean value for Sardinia3.

2Sardinia has also an old mining history started probably around the 6th millennium BC
with the mining of obsidian exported to Southern France and Northern Italy. After the Italian
unification in 1861 lead and silver, by then the most extracted minerals on the island, were added
to a third one, zinc. The quality of the mineral was very high: while in the rest of the world the
average silver revenue for 100kg of lead was swaying around 200− 300 gr, in the Sardinia mine
an average of 1 kg for 100 kg was achieved. Today, this silver era is far. The mining activity is
going through an harsh crisis, which seems to be irreversible for all the mines in Sardinia. Many
other mines are closed and the Geomineral Park of Sardinia, founded in 1989, and supported
by UNESCO, today preserves the ancient mines and the ex mining villages that are become
examples of industrial archeology.

3The mean population density of the 28 nations of European Union is 116 habitants/km2.
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5.3 The experimental set-up

There are two main access of the Sos Enattos mine (see fig. 5.8), both of them are
located well above the sea level (a.s.l.). The first access is a vertical pit equipped
with a lift, the second one is a long tunnel (called rampa Tupeddu) used for trans-
porting by car, in the past the workers with their mine tools, at present tourists
and scientists with their instrumentation.

Figure 5.8: The two main access of the Sos Enattos mine: on the left the tunnel
rampa Tupeddu, on the right the vertical shaft.

The tunnel entrance is at +338 m a.s.l.; near this point the weather station Vantage
Pro II4 was installed (see fig. 5.9). It includes a rain collector, an anemometer
for measuring the velocity and the direction of the wind, and the sensors of the
atmospheric pressure and temperature. Temperature and humidity sensors are
enclosed in a radiation shield to protect against solar and other sources of radiated
and reflected heat, improving accuracy. The meteorological data is acquired by a
monitoring station set-up inside a container at ground level.

Figure 5.9: Left : the weather station installed next to the tunnel entrance; right :
the meteorological data-acquisition system set-up into the ground-level station.
This station is connected to the underground seismic stations by means of optical
fiber links.

In the mine there are two seismic stations distributed along the access tunnel
of the mine. Both of them are connected by 1.3 km-long optical fiber link to the
tunnel entrance, where the meteorological station is located.

4it is a commercial weather station made by the US company Davis.
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Figure 5.10: On the top: the vertical cross-section of the mine, showing the location
of the deeper seismic station (red arrow/yellow spot); below: the locations of the
ground (red circle) and underground (yellow and blue circles) seismic stations on
the mine map.
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The first underground seismic station (station -1, fig. 5.11) is located at +254
m a.s.l. and 800 m far from the entrance of the mine tunnel. A polyurethane wall
protects the station from the acoustic disturbances and limits the small thermal
drift observed in the mine5. This location is equipped with horizontal seismometers
built at the university of Salerno [140]. This kind of sensor is a horizontal folded
pendulum, carved from a monolithic block of the Aluminium Alloy 7075-T6, that
can be configured as accelerometer (in a configuration with an applied feed-back
force) or, when no feed-back is applied, as a seismometer with a large band at
low-frequency (10−7 − 10 Hz). In the Sos Enattos mine the sensors are operated

Figure 5.11: The underground station -1. The horizontal seismometers built at
the university of Salerno [140] are placed on a plinth cemented to the bedrock,
and enclosed into insulation boxes (one opened in the left, the other closed in the
right).

as seismometers in open feed-back loop and are equipped with laser optical lever
readout achieving a sensitivity of (2 × 10−11 m/

√
Hz) in the frequency range

0.01−10 Hz, a value few order of magnitude lower than the quiets seismic location
[141]. They are set in an enclosed box to limit the thermal drift and acoustic
coupling.

The deeper seismic station is located at +227 m a.s.l. and 1100 m far from
the tunnel entrance (see fig. 5.10). I selected one of the caves along the tunnel
access and there I built a wall doublet, made of polyurethane and mineral-wool
layers, in order to insulate the cave entrance to the tunnel access (see fig. 5.12). In
the inner part of the cave I anchored to the mine bedrock a granite plinth using a
concrete mix with sand and fine grit. In this way the contact between the ground
and the plinth was increased and it provides a near-level surface for installing the
seismometer.

5The thermal excursion in one year of observation is ±1 ◦C.
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Figure 5.12: Insulation and instrumentation of station -2 in Sos Enattos, from top-
left to bottom-right: a) the granite plinth, leveled and cemented on the bedrock;
b) the cave before the insulation; c) the first insulation wall, made of polyurethane
and mineral-wool layers; d) the second insulation wall, also made of polyurethane;
e) the outer room between the two insulation walls, before the installation of
the DAQ and power instrumentation; f) installation of seismometer Trillium 240
(indicated by the circle), placed on the plinth, inside the inner room: the sensor
is enclosed in a thermal shield plus an external insulation box.
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Here the sensor is a tri-axial seismometer Trillium 240 by Nanometrics Inc. (see
app. B). The instrument is shielded from air currents and temperature fluctuations
by covering it with a thermal shield. In addition, the system is enclosed in a second
box made of wood with the inner walls padded with 5 cm polystyrene slabs.

The sensor cable exits the seismometer enclosure at the base of the instrument:
it runs loosely from the inner to the outer chamber of the cave preventing the
vibrations from being transmitted along the cable. In the outer chamber of the
cave I placed the data acquisition system Taurus, made by Nanometrics Inc., that
collects and store the data in the local memory. The Taurus is connected to the
local network via an Ethernet-optical fiber link switch, so that it is possible to
monitor the data acquisition process and retrieve the collected data on the com-
puter located in the surface station. In order to avoid power surges and to ensure
a stabilized6 power supply to the instrumentation, I installed a buffer battery,
connected in parallel to a DC generator through inductive filters.

The Trillium 240 has a symmetric triaxial arrangement of the sensing elements.
The use of three identical axis elements ensures the same frequency response for
vertical and horizontal outputs, it guarantees true orthogonality of the three out-
puts and a minor dependence of its response to rapid changes in temperature. The
orthogonal outputs are elaborated to extract the information related to the cardi-
nal directions. On the mounting surface of the sensor a North-South line is traced
and the seismometer is aligned with the marked direction. Thus, the x-output
of the seismometer is proportional to the East-West displacement of the ground,
while y is related to the North-South direction and z to the vertical movement.
The input-ouput transfer function of each channel has a frequency response flat
from few mHz to 5 Hz and it rolls off at 40 dB/decade below the lower corner
frequency. The acceleration power spectral density (PSD) of the Trillium 240 in-
trinsic noise is shown in figure 5.14, where it is compared to the Peterson’s new
low-noise and high-noise models (NLNM and NHNM) [99]. The noise floor shown
is the typical level of instrument self-noise given a proper installation. The compar-
ison ensures that the Trillium 240 is a sensor suitable for monitoring microseismic
noise below the NLMN limit in a wide interval of the frequency bandwidth of the
instrument.

Each seismic station is equipped with an environmental monitoring system.
The pressure, humidity and temperature sensors provide digital and fully cal-
ibrated output, which allows for easy integration in a data acquisition system
without the need for additional calibration. They are characterized by an excel-
lent long term stability and makes them ideal for our long term sensing application.

5.4 Environmental measurements

During the operation of the first generation of gravitational wave detectors it was
noted that the meteorological status of the site influences the detector perfor-
mance. In particular, in presence of bad weather the root mean square (R.M.S.)

6power surges may introduce a non-negligible component of electric noise in the sensor output.
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Figure 5.13: The data acquisition system Taurus (on the left), in a temporary
setup next to the seismometer Trillium 240 (placed into the external insulation
box, on the right side), during the sensor installation.

Figure 5.14: Typical curve of the intrinsic noise spectrum of the Trillium 240 seis-
mometer (blue dotted line) compared to the Peterson’s [99] NLNM and NHNM
models (red and black dotted lines). On the vertical axis is reported the accelera-
tion noise spectrum measured in m2/s4/Hz.
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value of seismic motion in the frequency band below the mirror suspension cut-off
increases. As a consequence, the dynamics of the feed-back control loop of the mir-
ror suspension is limited and the interferometer unlocks more often, reducing the
detector duty cycle. This behavior is observed mainly during windy days and it is
partially due to the random stress applied by the wind to the buildings hosting the
interferometer mirrors. In an underground laboratory this effect should be reduced
but, since the requirement of new interferometer is to achieve a displacement sen-
sitivity an order of magnitude higher than that of the advanced detectors, we still
need to verify how the seismic noise can be affected by the weather change. For
this reason, we monitored continuously the weather variables at the mine entrance.

Figure 5.15: Cumulative distribution of the wind velocity based on data taken
during one year of measurements.

Figure 5.16: Polar representation of the wind direction based on data taken during
one year of measurements. The hypothetical isotropic distribution is represented
by the gray circle.
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The weather in Sos Enattos is rather stable: as an example in figure 5.15 we
show the cumulative distribution of the wind velocity monitored in one year of
observation (2012-2013). The plot shows that for the 50% of the time the wind is
in practice absent (the wind velocity is below 0.5 m/s) and for the 99% the site
is hit just by a light or a moderate wind, increasing up to a velocity of 4 m/s (a
moderate breeze).

In fig. 5.16 I report the polar representation of the wind direction based on the
same data of the previous plot. Here it is evident the effect due to the local
orography, in particular to the Albo mountain, the 20 km long barrier extended
in the NE-SW direction (135◦ - 315◦ respect to the N direction)7.

As I will show in the next section, the meteorological status of the sea is an other
important element to be considered in connection with the seismic activity of the
mine site. The most common measuring devices of the sea status are based on the
record of both vertical and horizontal accelerations of a floating buoy and pressure
in the water columns. Then, satellite observation are routinely used today, based
mainly on techniques as altimetry and synthetic aperture radar imagery. Moreover,
since the late 1950s numerical wave models have been developed, it is also possible
to infer the spectral decomposition of the sea state and the propagation direction of
each wave component. The surface of the sea is discretized in a grid made of points,
which are separated by 100 km for a global scale prevision, but these may be only
a few meters apart near the coasts. Nettuno [142] is the wind-wave forecasting
system with the highest resolution currently operating in the Mediterranean sea
(7 km for the wind and 4 − 5 km for the waves). It is based on the regional
(WAM) and nearshore (SWAN) wave models [143, 144]. It allows to describe with
great accuracy the evolution and breakdown of the fields along the coasts in a
broad frequency spectrum. The model has been calibrated and validated using
data taken in-situ and using the EnviSat Radar Altimeter observations both in
the Mediterranean sea [145] and Atlantic ocean [146].

At each of these points the program manages the evolution of the energy of all the
spectral components. Nettuno uses 36 directions and 30 wave frequencies between
0.05− 0.793 Hz. This means that at each point of the sea we are dealing with 36
times 30 variables that have to be evolved.

On the base of a formal agreement between the university of Rome ”Sapienza”
and the Weather National Center of the Italian Air Force (CNMCA), we have
access to the several output values, updated each three hours by the Nettuno
model. The list of the available variables is reported in the table 5.1.

These data are collected in four different point of the Tyrrhenian sea: two of them
are near the oriental cost of the Sardinia, while the others are ∼ 10 km far from
it (see figure 5.17 and table 5.2). The related data format is described at the end
of app. B.

7Near the entrance the access tunnel is oriented NNW, i.e. 332◦ respect to the north direction
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Significant height of combined wind waves and swell [m]
Mean wave direction [deg]

Mean value of the wave frequency [Hz]
Wind speed [ms−1] (10 m space resolution)

Wind direction [deg] (10 m space resolution)
Wave frequency of the highest peak in one-dimensional spectrum [Hz]

Coefficient of drag with waves
Mean sea level u component of wind [ms−1]
Mean sea level v component of wind [ms−1]

Table 5.1: List of the variables derived by the Nettuno model provided by CNMA.

Figure 5.17: Map of the Sardinia cost near the mine site. On the map I marked
the location of Sos Enattos and the four points to infer the meteorological status
of the sea.

Point Coordinates Depth [m] Distance [m]
(latitude and longitude) (from Sos Enattos)

A 40◦32′60.00′′N 9◦48′00.00′′E < 10 31308
B 40◦27′00.00′′N 9◦48′00.00′′E < 10 29112
C 40◦32′60.00′′N 9◦56′60.00′′E 155 43416
D 40◦27′00.00′′N 9◦56′60.00′′E 134 41840

Table 5.2: The four points chosen to monitor the sea status: position, sea depth
and distance from Sos Enattos (Rampa Tupeddu tunnel entrance).
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5.5 Seismic measurements

In order to demonstrate immediately the potential gain in sensitivity for a grav-
itational waveinterferometer built in Sos Enattos, I show in fig. 5.18 the overlap
of two curves: the first one is the displacement noise spectrum measured near the
north building of the Virgo interferometer during a day of good meteorological con-
dition [147]. The second curve is one of the typical displacement noise spectrum
measured by the Trillium 2408 located in the deepest station of the Sos Enattos
mine. Note that at the frequency of 1 Hz the noise reduction is a factor ∼ 200; at
higher frequencies the Sos Enattos seismic noise continue to decrease roughly as
the square of the frequency inverse, and the noise reduction increases. This first
result complies with the ET-LF requirement of 5 × 10−9 m/f 2 and is two orders
of magnitude better than that of ET-HF (see app. C). In fig. 5.19 is shown the
comparison between the seismic spectra measured in the two underground stations
during a very stormy day, when the contribution due to superficial Rayleigh waves
is higher, in order to evaluate the differences at the two depths. Despite the high
microseismic noise, also in this case the seismic level at 1 Hz corresponds to a
displacement < 10−8 m/

√
Hz; the two spectra are very similar since the difference

in depth is less than 30 m, therefore in this case the depth-attenuation is not so
evident.

Figure 5.18: Typical displacement noise spectra measured in the Sos Enattos mine
compared to that measured near the North building of the Virgo interferometer in
a day with optimal meteorologic condition.

Although the gain in the noise reduction around f = 1 Hz is satisfactory,
it is not sufficient to qualify the Sos Enattos site for a new gravitational wave

8data elaboration for the Trillium 240 seismometer is discussed in app. B
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Figure 5.19: The power spectral density of the acceleration (averaged over few
hours) measured in the Sos Enattos mine during a very stormy day at the station
-1 (with the seismometer developed by the University of Salerno [140]) compared to
that measured at the station -2 with the Trillium 240 seismometer. The difference
in depth between the two stations is < 30 m, therefore the attenuation is not
so evident. During this measurement the two sensors had not a common timing.
Courtesy of F. Acernese.

underground detector installation. As stated before, we need to assess the level of
non-stationarity of the spectrum. In particular we have to monitor the part of the
spectrum below 1 Hz. This band is the major contribution to the R.M.S. motion
of the test mass, which must be kept in position by the feed-back control of the
interferometer: a high R.M.S. value is a limiting factor of the feedback dynamics.

In fig. 5.20 I show the power spectral density of the acceleration measured in the
deepest station of the Sos Enattos mine in the suitable frequency range of the
Trillium 2409: the shape of the spectrum is similar to that obtained by Peterson
in the NLNM model [99] and the three directional components are similar, except
for few peaks. We can subdivide the spectrum in two regions:

• between 0.03 and 0.17 Hz there are clustered peaks of the power spectrum.
In this frequency range, the noise classified as microseismic is due to non-local
causes, and generally it depends on large-scale meteorological conditions10.

9i.e. in the frequency range where the intrinsic noise of the Trillium 240 is lower than the
Peterson’s NLNM (see fig. 5.14).

10At lower frequencies, out of the Trillium 240 bandwidth, the Earth ground experiences the
large external forces due to the gravitational attractions of the Moon and Sun (see sec. 3.1.4).
The tidal motion has amplitudes of about 0.5 m with respect to the center of the Earth, but
it occurs in a frequency range of 10−5 Hz and determines a quasi-coherent movement of the
interferometer test masses. The quadrupolar gravitational wave signal will be detected at much
higher frequencies and the residual tidal effect due to the tide anisotropy is easy compensated
by a feed-forward system [148].
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• Above 0.17 Hz a broad band resulting from the envelop of several broad
peaks is present. During the long period of the monitoring process I observed
that this part of the spectrum shows a non-stationary behavior correlated to
the change of the meteorological and sea conditions.

Figure 5.20: The power spectral density of the acceleration measured in the Sos
Enattos mine during a day of good weather: Z (purple line) is the vertical com-
ponent, NS (red line) is the component along the North-South direction and EW
(blue line) is the component along the East-West direction.

During stormy days the microseismic broad band grows up almost two order
of magnitudes as it is shown in the fig. 5.21. However, in the frequency range
above 1 Hz, i.e. in the detection bandwidth of third generation gravitational wave
detectors, the change of PSD value is just a factor two (see fig. 5.22). In fact, in
this frequency range and above we expect that the micro-tremor noise is related
mainly to the anthropogenic activity (cultural noise).

5.5.1 Peaks identification

The primary oceanic microseismic peak, produced by pressure variations and wave
impacts on the continental shores, is expected to be generated at f ocp ≈ 7×10−2 Hz,
while the oceanic secondary peak, related to the stationary wave generated by the
interference of reflected oceanic waves, appears at f ocs = 2 × f ocp , i.e. at about
0.14 Hz (see sec. 3.1.3). In a continental site, at a significant distance from
inland seas, the oceanic secondary peak is clearly distinguishable in a typical low
frequency spectrum [149]. The situation is more complicated at Sos Enattos mine,
which is located on an island, roughly 30 km from the eastern shoreline: in this case
the oceanic secondary peak is enveloped into a more complex spectral structure
composed of the envelope of primary and secondary microseismic peaks generated
by the Tyrrhenian sea, and to a lesser extent, by other sectors of Mediterranean
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Figure 5.21: The power spectral density of the acceleration measured in the Sos
Enattos mine during a stormy day: Z (purple line) is the vertical component, NS
(red line) is the component along the North-South direction and EW (blue line)
is the component along the East-West direction.

Figure 5.22: Power spectrum of the acceleration noise, measured in the deepest
station of Sos Enattos, within the detection bandwidth (3 − 10 Hz) of a third
generation gravitational wave interferometer. The spectra taken in good and bad
weather conditions are compared.
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sea11 (see sec. 5.5.3). In order to identify the sea-generated peaks, I compared the
frequencies obtained by the Nettuno model (see tab. 5.2), provided by CNMA,
with those observed in the microseismic envelope. However, since this part of
the spectrum varies significantly day by day, or to be more precise, with a time
scale of the order of few hours, the identification must be performed on a case by
case basis. I show in fig. 5.23, 5.24 and 5.25 three examples of the microseismic
envelope generated by the sea. Usually the stationary wave-produced secondary
peak of the sea is dominant, but sometimes the primary sea peak, produced by
pressure variations of the water columns and by the impact of the wind-generated
waves and swell on the island shore, results to be of the same order of magnitude
of the secondary peak. Moreover, at higher frequencies a tertiary peak is observed
in some cases, maybe produced by the stationary wave in another sector of the
sea or by a local resonant mechanism. As a general reference, I list in tab. 5.3 the
main microseismic peaks resulting from the analysis of the spectra acquired in Sos
Enattos from July 2012 to June 2013. The correlation between the microseismic
power amplitude and the wind-generated waves is analyzed in sec. 5.5.3.

Figure 5.23: The microseismic envelope in the power spectrum of the acceleration
noise measured in the deepest station of Sos Enattos, in good weather condition.
The positions of the main oceanic and sea-generated peaks are indicated. In this
case the primary and secondary peaks from produced by the sea have a similar
amplitude and hide the secondary peak from the ocean.

5.5.2 Local weather effects

Apparently the noise increase in the frequency range 0.1− 1 Hz seems to be cor-
related to the local wind velocity and to the lowering of the atmospheric pressure.
The effect is more evident if we focus our analysis on the data taken at the end of
autumn, a period of time characterized by unstable weather condition. In fig. 5.26

11the northern and western shorelines are at ∼ 80 km from Sos Enattos, while the southern
coast is ∼ 140 km far.
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Figure 5.24: The microseismic envelope in the power spectrum of the acceleration
noise measured in the deepest station of Sos Enattos, in bad weather condition.
The positions of the main oceanic and sea-generated peaks are indicated. In this
case all the primary and secondary peaks from the oceans and the Mediterranean
sea are clearly distinguishable.

Figure 5.25: The microseismic envelope in the power spectrum of the acceleration
noise measured in the deepest station of Sos Enattos, in bad weather condition.
The positions of the main oceanic and sea-generated peaks are indicated. In this
case the sea-generated primary peak frequency is very close to that of the oceanic
secondary peak, while the sea-generated secondary peak is dominant. At higher
frequency a tertiary peak appears, related to another sector of the sea or to a local
resonance.
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Peak Source Mechanism Frequency [Hz]

Primary Oceans Pressure variations, 6− 9× 10−2

wave impact on shores
Secondary Oceans standing wave 0.12− 0.20
Primary Tyrrhenian sea Pressure variations, 0.08-0.23

wave impact on shores
Secondary Tyrrhenian sea standing wave 0.16− 0.46

Tertiary Mediterranean (?) standing wave or 0.27− 0.63
local resonance

Table 5.3: Main microseismic peaks observed in Sos Enattos. A tertiary peak ap-
pears sometimes, maybe produced by standing waves in another sector of Mediter-
ranean sea. The microseismic amplitude is discussed in sec. 5.5.3.

I show the history plot of the wind vector velocity measured at the mine entrance
versus time and the corresponding acceleration noise in the mine integrated in the
frequency range 0.1 − 3 Hz. An analogue plot is shown in the fig. 5.27 for the
atmospheric pressure.

In order to clarify if the wind is the direct cause of the seismic noise increase in
the deep mine, I selected three days of observation. The corresponding history plots
of this time period are shown in the figures 5.28 and 5.29. In the first plot the wind
velocity increase is delayed with respect of the seismic noise. However, in the same
plot we note the presence of a wind velocity peak at the time tw = 12 h, which could
be interpreted as a precursor of the systematic worsening of the meteorological
condition. The precursor peak appears nearly 6 hours before the seismic noise
increase. In the second plot 5.29, the pressure drop anticipates the seismic noise
increase of nearly 10 hours and it seems to be correlated with the 12− 13 h peak
of the wind velocity spectrum, the precursor of the weather worsening.

The delays of several hours rule out a direct relation between the wind stress
on the rocks of the hill hosting the mine and the seismic noise. In the following
subsection, analyzing the spectral content of both the seismic noise and the off-
shore waves, I show that the observed effect is related to the status of the sea on
the oriental coast of Sardinia.

5.5.3 Sea influence on the microseism

The height of combined wind-generated waves and swell is one of the parameters
derived by the Nettuno model provided by CNMA (see tab. 5.1), and can be used
as a quantitative measure of the sea status. In fig. 5.30 I show the history plot
of the sea wave height, measured in the four points listed in tab. 5.2, versus the
corresponding acceleration noise in the deepest station of the mine integrated in
the frequency range 0.1− 3 Hz, for a period of about one month.
In the history plot I used synchronized data, i.e. a zero time delay. This fact is
justified by the distance between the coast and Sos Enattos mine (see table 5.2)
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Figure 5.26: Average and maximum wind speed (in knots) measured at the mine
entrance versus time and the corresponding spectral acceleration noise in the mine
integrated in the frequency range 0.1 − 3 Hz. The direction of wind gusts is
indicated.

Figure 5.27: Atmospheric pressure measured at the mine entrance versus time
and the corresponding spectral acceleration noise in the mine integrated in the
frequency range 0.1− 3 Hz.



174CHAPTER 5. CHARACTERIZATION OF ANUNDERGROUND SITE FOR ET

Figure 5.28: Wind speed measured at the mine entrance versus time and the
corresponding spectral acceleration noise in the mine integrated in the frequency
range 0.1− 3 Hz. Data acquired from 2012/12/13th.

Figure 5.29: Atmospheric pressure measured at the mine entrance versus time
and the corresponding spectral acceleration noise in the mine integrated in the
frequency range 0.1− 3 Hz. Data acquired from 2012/12/13th.
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Figure 5.30: The height of combined wind-generated waves and swell (measured
at the four points listed in tab. 5.2) versus time and the corresponding spectral
acceleration noise in the mine integrated in the frequency range 0.1− 3 Hz. Data
acquired from 2013/03/02th.

and by the geology of this region of Sardinia. In fact, the propagation time of the
seismic perturbation from the sea to the mine is expected to be of the order of tens
of seconds, a time delay too short to be appreciated in the considered data, seen
the sampling rate of the Nettuno output variables and the averaging over 12 h of
the seismic spectra.

The correlation between the sea waves and the microseism is evident for the peaks
at t = 6, 15, 21, 31 d, and for the plateau between t = 8 d and t = 13 d, while
the microseismic increase seems to be delayed at t = 9 d and t = 26 d: in this
case the noise peak may be driven by the oceanic secondary peak, related to a
large-scale worsening of the ocean status. Moreover, the microseism result to be
better correlated with the wave height at the points C and D, i.e. at the off-shore
points.

In fig. 5.31 I compared the microseismic noise power with the height of combined
wind-generated waves and swell in the four sea points considered in this study, in
the same time interval of fig. 5.28 and 5.29, where the microseismic activity was
compared to local weather parameters. In this case, the correlation is evident, and
the microseismic increase (or decrease) appears in coincidence with the increase
(or decrease) of the sea wave motion.

In sec. 5.5.1 I showed that two oceanic microseismic peaks and the sea-generated
primary peak (with the related tails) overlap in the low frequency range ∼ 0.08−
0.20 Hz, so that in general it is not easy to distinguish between the two contribu-
tions to the microseismic noise. However, a rough separation can be performed by
integrating the acceleration spectral noise between 0.06 Hz and 0.18 Hz, when we
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Figure 5.31: The height of combined wind-generated waves and swell (measured
at the four points listed in tab. 5.2) versus time and the corresponding spectral
acceleration noise in the mine integrated in the frequency range 0.1− 3 Hz. Data
acquired from 2012/12/13th.

consider the oceanic effect, and between 0.18 Hz and 2 Hz for the sea contribu-
tion. In fig. 5.32 I show the above-defined acceleration spectral noises compared to
the sea wave height in the two off-shore points (C and D in tab. 5.2) for a period
of about seven days. In this case the seismic spectra are calculated every 3 h, at
the same sampling frequency of the Nettuno model’s output, therefore the coin-
cidence must be considered within ∆t ∼ 3 h since the spectra are averaged over
that period. However, the relation between the sea waves and the sea-generated
microseismic amplitude it is clear; the peak at t ∼ 110 h shows the influence of
the ocean activity to the overall acceleration spectral noise, in addition to the
contribute directly due to the waves of the local sea.

Frequency correlation

In fig. 5.33 I show the correlation plot of the frequency value of the maximum
peak in the shallow-water wave spectrum, provided by the Nettuno model, and
the frequency of the primary peak in the seismic spectrum measured at the same
time in the mine. In this analysis I considered the same data sample of fig. 5.32,
taking the values corresponding to wave heights 0.3 m > h > 1.7 m for which the
primary sea generated peak was distinguishable12: in fact the peaks generated by

12as shown in sec. 5.5.1, usually the dominant peak is the secondary sea-generated. Since the
primary peak is not always clearly distinguishable, also because of the superposition with the the
oceanic peaks, the sea-generated primary microseismic frequency can be alternatively deduced
taking into account half the frequency of the dominant secondary peak.
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Figure 5.32: The height of combined wind-generated waves and swell (measured
at the off-shore points C and D, see tab. 5.2) versus time and the corresponding
spectral acceleration noises in the mine integrated in the frequency ranges 0.06−
0.18 Hz, 0.18− 2 Hz and 0.06− 2 Hz. Data acquired from 2013/01/13th.

Figure 5.33: Correlation plot of the frequency of the maximum peak on the sea
wave spectrum, calculated by the Nettuno model in sea points C and D (see tab.
5.2), versus the frequency of the primary sea-generated peak on the seismic spectra
measured in the Sos Enattos mine. The linear fit and correlation R are indicated.
Data acquired from 2013/01/13th to 2013/01/21st.
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wind waves with h < 0.3 m in the considered sea points can be hidden by peaks
produced by higher waves in other sectors of the Mediterranean sea, while for
h > 1.7 m the frequency of the secondary peak decreases approaching the oceanic
spectral structures, and it can be difficult to distinguish the single peak in the
spectral envelope. With the correlation coefficients R ≈ 0.71 (sea point C) and
R ≈ 0.68 (sea point D) the t-test reject the null-hypothesis, with the two-tailed
probabilities p = 8× 10−5 and p = 3× 10−4 associated to the correlation absence.

The correlation between the trends of the microseismic activity (i.e. the band-
integrated microseismic noise) and the Tyrrhenian sea wave height, together with
the frequency-based identification of the sea peaks (see sec. 5.5.1) and the fre-
quency correlation between the primary sea-generated microseismic peak and its
meteorological value provided by the Nettuno model, indicate the close link of
cause and effect between the local microseismic variations and the sea status: me-
teorological forces, such as wind and air pressure, produce wind-generated waves,
which transform into swell, transferring their energy to the continental crust as
seismic waves through the primary and secondary mechanisms (see sec. 3.1.3).

5.5.4 Comparison with a deep underground site

In fig. 5.34 I show a comparison between a typical displacement spectrum taken
in the deepest station of Sos Enattos, at a depth13 of ∼ 111 m, and the average
displacement spectrum that I measured in the deep underground site of Homestake,
South Dakota - USA, at a depth of ∼ 1250 m, in July 2009 [149].
In the frequency region between 0.03 Hz and the oceanic secondary peak (0.12−
0.20 Hz), Sos Enattos is at most one order of magnitude above the noise level of
Homestake; between 0.2 Hz and ∼ 1 Hz the sea-generated microseisms cause a
greater deviation (however less than two orders of magnitude), but from f = 2 Hz
Sos Enattos shows a comparable and even smaller seismicity than Homestake.

5.5.5 Anthropic contribution

The seismic noise produced by anthropic activities can be observed in the ratio
between the the acceleration noise PSD measured in the day and that measured in
night hours. I selected 30 days and nights from the seismic data measured in May
2013 and I calculated the ratio between the spectra taken during the daytime and
nighttime. In fig. 5.35 I show the ratio between the averaged 12 h daytime spectra
with the related 12 h nighttime spectra in the 0.2 − 5 Hz band: the increase of
the floor level due to the anthropic noise mostly affects the analyzed band above
1 Hz, however the average level of the ratio is below 15.

5.5.6 Long-period stationarity

The microseismic stability of the site can be analyzed through a three-dimensional
plot of the acceleration power spectrum versus time, as I show in the 12 h-long
spectrogram of fig. 5.36.

13here I considered the depth from the entrance level, however the rock thickness above the
station is slightly greater, since the tunnel was excavated into a mountain.
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Figure 5.34: Comparison between displacement spectra taken at Sos Enattos (∼
−111 m) and in the deep underground site of Homestake (∼ −1250 m) in July
2009 [149].

Figure 5.35: The ratio between 12 h-averaged day and night seismic noise PSDs at
Sos Enattos, obtained from the data measured on May 2013; the floor level increase
due to the anthropic noise mostly affects the analyzed band above ∼ 1 Hz.
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Figure 5.36: Ensemble of the power spectral densities of the acceleration noise
measured in Sos Enattos in a day of winter over a period of 12 h.

The long-period seismic monitoring of Sos Enattos mine is summarized in the
spectrogram of fig. 5.37. Here I present spectra taken during the long observa-
tion period, lasting from July 2012 to July 2013, in function of the time. The
spectrogram is subdivided in six intervals of continuous data.
In this plot it is rather evident that the two frequency intervals 0.02 − 0.05 Hz
and 0.1 − 1.0 Hz are the most affected by a non stationary behavior. However,
the variations of the noise level also during the stormy days are not so high to
violate the feed-back requirement of the mirror control system of a third generation
interferometer. I also note that, above 1 Hz, i.e. within the detection band of the
interferometric detector, the noise level does not vary significantly, even with bad
(local and large-scale) weather conditions.

The environmental underground conditions were stable during the whole year of
data acquisition: the temperature in the sensor (inner) room was T = 19.0±0.5◦C,
in the instrumentation (outer) room was T = 24 ± 1.5◦C, while the humidity in
both was stable at ∼ 94%. The daily temperature variations are within ∆T <
0.1◦C.

The geological stability of the region, the low micro-tremor noise registered in
the mine, due to the absence of industrial activities in the vicinity, and in general
the whole profile of the PSD acceleration spectrum, that is even lower than the
NLNM curve of Peterson [99] in a large frequency range, lead to the conclusion
that the Sos Enattos former mine is a strong candidate for the construction of a
third generation of gravitational wave interferometer.
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Figure 5.37: Ensemble of the power spectral densities of the acceleration noise
measured in Sos Enattos during the whole observation period, between July 2012
and July 2013.
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Chapter 6

Development of a cryogenic
accelerometer

In third generation gravitational wave detectors the vacuum chamber hosting the
test masses will be replaced by large cryostats and dedicated sensing devices, suit-
able for low temperature operations, will be adopted in order to set up an adequate
closed-loop local control. In particular, the main concern is the noise generated
by the cryocoolers and transmitted to the cryogenic mirror, either through the
mechanical structure (e.g. via the heat-links) or through scattered light. On the
other hand, the test mass must keep an inertial state during operations, but rel-
ative displacement sensors, such as optical levers, may be not sufficient for the
control at low frequencies, since they are non-inertial devices. Therefore, cryo-
compatible inertial sensors, such as accelerometers, will be a complementary and
suitable choice.

In this chapter I report my experimental work on the development, test and
calibration of a vertical accelerometer, capable of operating at cryogenic tempera-
tures [150]. This prototype is derived from the classical scheme of the sensor used
in previous years as sensing device for the inertial damping of vertical modes in
the Virgo interferometer suspensions (see sec. 2.3.1). In this scheme, the vertical
acceleration signal is provided by feedback voltage used to lock the position of an
internal floating mass. Thermal contractions of mechanical parts are an important
issue during the cooling of such a kind of device, and the calibration check at low
temperature, in absence of commercial sensor working in parallel, plays a crucial
role.

In the first section of this chapter I summarize the context in which my experimen-
tal activity takes place, i.e. the local control of cryogenic payloads. Subsequently,
I introduce the vertical accelerometer, dealing with its development, test and cal-
ibration at 20 K. In the last section, I report about the installation of the device
into the cryostats #2 and #3 of KAGRA detector (see sec. 2.4.2), where the
accelerometer was tested down to 8 K and provided a measurement of the vibra-
tion modes of their inner radiation shields, deducing their impact on the detector
sensitivity curve.

183
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6.1 Cryogenic payload local control

The cryogenic payload local control system must be designed in order to slow-
down and align the suspended mirrors of the interferometer, driving their dynamics
within the linear range of automatic position control. Since the third generation of
interferometric detectors will operate at lower frequencies than past and advanced
detectors (i.e. from∼ 2 Hz), an adequate sensing at the level of the cryostats and of
the suspension must be developed. In particular, pulse-tube (PT) cryocoolers will
introduce a significant amount of vibrational noise, through heat-links or ground-
recoil due to the presence of compressors, since their operative frequency and the
related harmonics lye in the detection band.

Figure 6.1: Conceptual scheme of local control for the cryogenic payload in third
generation interferometric detectors.

6.1.1 Low-frequency vibration suppression

Low-frequency noise will be produced by the gas pulse flowing in the cold head
of PT-cryocoolers, with a fundamental harmonic at ∼ 1 Hz, which would be
directly injected in a suspension. This noise can be suppressed by adopting two
complementary solutions:

• a suitable design of the refrigerator system, in order to achieve a passive
suppression by means of ad-hoc suspension filter chains for the PT-cryocooler
cold head and heat-links;

• an active suppression of the PT-cryocooler injected noise, which will require
both cryogenic position readout devices and actuators.
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6.1.2 Vibration-free cryostat

The active suppression strategy is already used in the vibration-free cryostat (VFC,
[94]), developed some years ago in order to reduce the vibrations produced by the
PT-cryocooler cold head on the heat-links of a cryogenic detector. The refrigerator
chosen for this system is a two-stage Sumitomo SR052A, characterized by a throttle
valve which is separated, by means of a pipe link, from the main body of the
cold head, whose fundamental harmonic is at fPT0 ∼ 1 Hz. The scheme of the
VFC is reported in fig. 6.2. The basic concept of the system is to cancel the
PT-cryocooler vibrations by directly acting on it by means of three piezo-electric
stacks set at room temperature outside the cryostat vacuum. The actuators are
loaded by the upper platform, placed on dampers, on which the PT-cryocooler
cold head is clamped. This stage is connected to the cryostat by means of a
soft bellow, designed in order to mechanically decouple the cold head from the
cryostat. The control feedback loop is actually based on optical bundle fiber which
monitor the cold head vibration: the error signal is acquired by a dedicated ADC
board and then elaborated by a LabVIEW[151]-based code which drives the piezo-
electric actuation through DAC and amplification boards. Inside the cryostat a
Cu thermal shield (insulation chamber) is hung to the upper flange by means of
three steel (C85 alloy, ø = 0.4 mm) wires, and is thermally connected to the 40 K
first stage of the cryocooler by Cu soft heat-links shaped as jellyfish. Inside the
thermal shield, an Al vacuum chamber (inner chamber) is hung in cascade to the
Cu shield flange, and thermally connected to the 4 K cryocooler’s second stage by
other jellyfish-like flexible Cu heat-links.

Figure 6.2: Simplified scheme of the vibration-free cryostat. Active noise suppres-
sion is provided by three piezo-electric actuators operating in a close feedback loop
driven by the displacement sensing actually based on optical bundle fibers [94].

In the actual configuration of the VFC, only the vertical degree of freedom is
controlled, with an effective attenuation of the order of 3 × 10−3. A further im-
provement is expected by controlling the horizontal degree of freedom, reducing
the recoil effects on the overall structure, including the position sensing of the
cold head, by means of an inertial cryo-compatible accelerometer. The last point
was the initial motivation for the development of the device presented in the next
section, since reliable high-sensitivity cryogenic accelerometers suitable for control
purposes in the low frequency range (0.3− 3 Hz) are not commercially available.
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6.2 The cryogenic vertical accelerometer

The development of low-frequency sensors for positioning control and damping,
suitable for cryogenic gravitational wave detectors is a leading task. They play,
indeed, a crucial role both at the level of the interface between the seismic isolation
system and the mirror suspension and inside the cryostat monitoring the mechan-
ical noise injected by the cryocoolers. In fact, the suspension design and control
strategy cannot be directly ported from ground-based room-temperature detectors
to underground cryogenic detectors, mainly due to the two following reasons:

1. there is a separation between the suspension and cryostat so that the sus-
pension design is to that extent constrained;

2. the performance demand to the seismic isolation system is certainly lower
in an underground detector (see sec. 3.1.5) and, in order to adequately ex-
ploit such an advantage, the requirements to the environmental quietness are
severe.

High-sensitivity cryogenic vertical accelerometers suitable for control purposes
in the low frequency range (0.3 − 3 Hz) are not easily available on the market.
Therefore, driven by the aim of equipping the vibration-free cryostat (see sec. 6.1.2
and [94]) with an inertial sensor suitable for rejecting the technical noise injected
by the cryocooler, I worked on the development of a high-sensitivity vertical ac-
celerometer that works at cryogenic temperatures [150]. It can be integrated within
a control system as well as in other fields requiring cryogenic operation compliant
with high accuracy mechanical control. The device is an inertial sensor based upon
a floating mass, whose displacement is measured by a positioning sensor (LVDT)
that provides error signal suitable for in-loop operation, whose correction signal is
proportional to the acceleration.

6.2.1 Development

The vertical cryogenic accelerometer prototype is derived from the design of the
vertical and horizontal accelerometers used in previous years within the feedback
control of the superattenuator inverted pendulum for the Virgo interferometer (see
fig. 6.3 and sec. 2.3.1). This kind of sensor was originally designed by INFN - Pisa
Group [152] and proved to be high vacuum (HV) compatible, to be effectively
used to measure typical seismic noise at ground level and was adopted as standard
device used for the Virgo suspensions [153] Active Mode Damping (AMD), along
the vertical degree of freedom, in the bandwidth 50 mHz−5 Hz, with a sensitivity
of ∼ 7 × 10−10m/s2/

√
Hz. For an identical purpose a similar device had been

implemented for horizontal degrees of freedom too. This kind of accelerometer
can be considered an inertial sensor because it is based on an oscillating mass
suspended by means of a low frequency spring system, operating in a closed-loop
feedback.
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Figure 6.3: The room-temperature and high vacuum compatible vertical (blue
arrow) and horizontal (red arrow) accelerometers fixed to the top stage of the
inverted pendulum in the superattenuator of Virgo (NE tower, picture taken during
the Advanced Virgo upgrade operations, 2013).

6.2.2 Principle of Operation

As shown in [152], the accelerometer can be thought as a spring loaded by the
mass m, with resonant frequency at ω0/2π and mechanical quality factor Q (see
sec. 4.2.1). If x(t) and x0(t) are the coordinates of the mass and that of the spring
ground and Ffb(t) is the feedback force applied to the mass, the equation of motion
in the frequency domain is:

Ffb(ω)

m
= −ω2x(ω) + i

ωω0

Q
[x(ω)− x0(ω)] + ω2

0[x(ω)− x0(ω)] (6.1)

The proportionality factor between the feedback force and the displacement of the
mass with respect to the external support is defined as the feedback filter transfer
function Tfb(ω), given as force per unit displacement:

Tfb(ω) =
Ffb(ω)

x(ω)− x0(ω)
(6.2)

Let Ts be the spring transfer function, given as displacement per unit force:

Ts(ω) =
1

m

1

ω2
0 − ω2 + iωω0

Q

(6.3)

therefore, the open loop gain is defined as follows:

Gl(ω) = |Ts(ω)Tfb(ω)| (6.4)



188CHAPTER 6. DEVELOPMENT OF A CRYOGENIC ACCELEROMETER

Figure 6.4: Closed-loop ratio in eq. 6.5 in practical cases. The typical response
of the accelerometer is proportional to the acceleration until a given frequency
cut-off. In specific conditions the gain might set below the nominal operation
value and inter-calibration with another sensor is needed to flatten the response
to acceleration sensing.

Considering the previous equations, the feedback force can be written in terms of
transfer functions as follows:

Ffb(ω) = [−mω2x0(ω)]
Gl(ω)

1 +Gl(ω)
(6.5)

If the open loop gain is large (i.e. Gl(ω)� 1) eq. 6.5 becomes:

Ffb(ω) ≈ −mω2x0(ω) (6.6)

Therefore, eq. 6.6 and 6.5 state that ground acceleration can be measured by
the measurement of the feedback force Ffb(ω), given an appropriate calibration.
However eq. 6.6 is valid only when the open loop gain is high: if this condition
cannot be assumed (e.g. if the expected vibrations are too large, an high gain may
saturate the signal), an appropriate point-by-point calibration over the considered
frequency range is required, as shown in sec. 6.3. I followed this procedure, since
I opted for low gain operation during the tests of KAGRA cryostat (see sec. 6.4)
for sake of safeness, given the industrial environment, affected by large sudden
disturbances, and the major request of avoiding a-priori any possible impact on
cryogenic validation tests through Joule heating from the sensor coil.

6.2.3 Mechanical scheme

The accelerometer case is made of Al alloy (anticorodal class 6000). The cylindrical
floating mass, made of W75Cu25 alloy and having a total load of m = 0.45 kg, is
suspended to the vertical wall of the case by two CuBe3 blades 100 µm thick. The
blades ensure the unidimensional movement of the floating mass, whose gravity
is balanced by a C85 steel spring set at about 35◦, according to the LaCoste
configuration adopted for low-frequency compact vertical seismometers [154]. The
spring orientation and, as a consequence, its elongation at rest can be adjusted
by softening the spring stiffness along the vertical direction. Through the same
mechanism the spring resonant frequency can be easily tuned around 3 Hz. Since
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a large thermal drift of the floating mass suspension vertical position is expected,
the resonance was set at an higher value: fr = 3.55 ± 0.15 Hz. The vertical
displacement of the suspended mass is measured by an inductive device (see sec.
6.2.5) and its position is re-adjusted to the equilibrium point (i.e. the position signal
is driven to zero) by a feedback loop using a voltage-force transducer consisting of
a coil fixed to the mass and a magnet rigidly connected to the external structure
(i.e. to the accelerometer case). The sensor output signal consists in the voltage
across the feedback coil, which is proportional to the the feedback force Ffb(ω), and
therefore is a measure of the ground acceleration, as shown above in eq. 6.5 and 6.6.
In fig. 6.5 the basic mechanical scheme and an internal view of the accelerometer
are shown.

Figure 6.5: 3D technical drawing (left panel) and internal view (right panel) of the
cryogenic vertical accelerometer. On the upper part of the right side picture it is
visible the stepper motor screw acting on the spring blade. The external box has
dimensions 104× 98× 183.5 mm.

6.2.4 Set point adjustment

Thermal contractions of the accelerometer parts results in a temperature-dependent
drift of the floating mass rest position by several mm with respect to the mechan-
ical range of the displacement sensor (LVDT, Linear Variable Differential Trans-
former) that is 1 mm only. If not properly compensated, this effect makes such
a sensor unusable at low temperatures since both the mechanical range of the os-
cillation and the dynamic of the error signal saturate during the cooling-down. In
order to check the behavior of the contraction during the thermal cycle I track it
keeping the operation set point over the cooling-down. The automatization of this
process can be, in principle, easily implemented. The accelerometer is equipped
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with a stepper motor that acts on a clamp of the upper blade nested into a fork
that tilts it by means of an axial screwing. I slightly modified this tilting scheme
by making it more compact and reliable due the extensive use of that regulation
required by the cryogenic use. In order to follow the axis of screwing, the stepper
motor is fixed on a plate which can be tilted with respect to the side plate of the
accelerometer. The selected stepper motor (model UHV C14.1 produced by AML
for Ultra High Vacuum environment, see fig. 6.6) was designed by the manufac-
turer to be used in cryogenic environment down to T = 77 K, but in our tests
and measurements have proved to be reliable even down to T = 8 K, the typical
temperature of the test mass in third generation gravitational wave detectors.

Figure 6.6: External view of the cryogenic accelerometer. On the left plate it is
visible the UHV C12.1 stepper motor; the frontal case hosts the LVDT board, the
diode thermometer and the two I/O Fischer -connectors.

6.2.5 Position sensing

The displacement sensor used in the cryogenic accelerometer is an air-core LVDT
inductive position sensor [155] (see fig. 6.7), which consists of three coaxial coils:
two antiparallel external coils are rigidly connected to the oscillating mass, while
the primary central coil is fixed to the external structure (see fig. 6.8). The pri-
mary circuit connected to the central coil is driven at 53 kHz and induces on the
secondary circuit connected between the two external coils a voltage difference
proportional to the relative displacement. This kind of sensor ensures a low signal
degradation in the transmission through relatively long cables, allowing to place
the electronics outside the cryostat in the environment at room temperature. The
voltage of the sinusoidal signal on the LVDT primary coil influences the gain of
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the system; during the cryogenic tests I set it at 2 V since, given the priority
of the cryogenic performance and its validation, I intended to reduce as much as
possible the Joule heating in pass-through cables and through the primary coil
during the cooling phase. The voltage on the primary coil (and therefore the sys-
tem gain and bandwidth) can be increased to 10 V : in this case the response to
acceleration would have been just proportional to the acceleration without any
inter-calibration. Moreover, it must be remarked that choosing higher primary
voltage would reduce the intrinsic noise of the sensor (see sec. 6.3.4).

6.2.6 Electronics

An electric board is fixed to the cryogenic accelerometer case into a shielding box
(see fig. 6.6), made of the same Al alloy (anticorodal class 6000) and hosting the
basic circuital connections of LVDT and feedback coils, whose electric parameters
are shown in tab. 6.1. The capacitive component of the LVDT secondary circuit
is a 1.6 nF capacitor, while its resistor divider consists of a 0 − 100 Ω trimmer
connected to the on-board circuit. I placed that trimmer outside of the cryostat,
so that the electric balance of the LVDT read-out is possible at any time. In fact,
once adjusted at room temperature, the balancing of the real part of the impedance
does not drift significantly, but as soon as the cooling-down process starts and the
mechanical set-point is recovered through the stepper motor, one needs to trimmer
the resistive unbalancing to zero in order to keep a balanced read-out. Thus, it is
always possible to reach the fine tuning of the sensor compensating the residual
offset signal on the LVDT secondary circuit during the cooling. Then, as the final
temperature is reached and stable, the read-out tuning is kept. The 50 µm Cu
wires of the LVDT coils are connected to the small shield at the side of the sensor
case, where I also installed a Lake Shore diode thermometer in order to monitor
the accelerometer temperature during the cooling.

Coil Resistance (Ω) Resistance (Ω) Inductance (mH)
@ T=294 K @ T=20 K

Primary (LVDT) 1.7± 0.1 < 0.1 (1.7± 0.1)× 10−1

Secondary (LVDT) 194± 1 2.8± 0.1 14.9± 0.1
Feedback 559± 1 8.0± 0.1 177± 1

Table 6.1: Electric parameters of the sensor coils. Note that the resistance of the
copper wire of the coils depends on the temperature T as R(T ) = R0[1 + α(T −
T0)], where α ≈ 3.9 × 10−3, but below 20 K it becomes almost constant due to
microscopic impurities or defects in the material. The inductance variation from
the room temperature value is negligible.

The system is completed by two external boards supplied through a NIM stan-
dard crate and connected to the sensor by few meters-long cables (see fig. 6.8 and
6.9). The first module hosts the preamplifier and the closure of the LVDT circuit
on the above mentioned resistive trimmer, while the second one hosts the ampli-
fier, the demodulator and the PID electronics with a bandwidth BH∼ 100 Hz.
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The design of these boards is based on that of the electronics provided by INFN-
Pisa for the Virgo suspensions active mode damping. Moreover, the second NIM
module allows the regulation of the gain and calibration factors by means of two
trimmers installed on the circuit board. The circuital schemes of the NIM boards
and the transfer function of the PID feedback are reported in app. D.

Figure 6.7: Basic scheme of the primary and secondary circuits of the LVDT
displacement sensor; Li indicates primary (P ) and secondary (S1, S2) inductances,
C the capacitor and R the resistive trimmer.

Figure 6.8: Schematic configuration of the vertical accelerometer operation.

6.2.7 Vacuum compatibility

The accelerometer is designed in order to be integrated in gravitational wave detec-
tors, both at room and at low temperature (such as for the interferometer KAGRA,
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Figure 6.9: Operative configuration of the vertical accelerometer during a test: 1-
accelerometer; 2- output signal seen on the oscilloscope; 3- stepper motor driver;
4- pre-amplification and resistive trimmer NIM board; 5- amplifier, demodulator,
PID-feedback (ADF) NIM board.

see sec. 2.4.2 and 6.4), for this reason it was necessary to ensure its UHV com-
patibility and its cleanness by performing a dedicated outgassing test. A known
conductance of C = (1.21 ± 0.01) × 10−2 m3/s was placed between the vacuum
chamber and the pumping tube in order to limit the fluctuations of the effective
pumping speed due to the pump itself. The vacuum chamber was evacuated using
a group composed of a scroll pump plus a turbo-molecular pump, connected on
the upper port of the chamber. Then, an ion pump was connected to the vacuum
chamber through the conductance C (see fig. 6.10). During the outgassing test the
first group of pumps was switched off. A vacuum sensor and a mass-spectrometer
were connected to a third port of the chamber. After two weeks of measurements
the system reached the pressure Pmin = (3.50 ± 0.05) × 10−5 Pa, that was still
reducing slowly (see fig. 6.11). Therefore the upper limit of the total outgassing
rate Qtot is given by:

Qtot = Qacc +Qchamber = Pmin · C (6.7)

where Qacc and Qchamber are respectively the outgassing rate of the accelerom-
eter and of the vacuum chamber. From eq. 6.7 we obtained Qtot = (4.20 ±
0.07)× 10−7 Pa ·m3/s. We measured the contribution of the chamber as equal to
Qchamber = (1.20±0.07)×10−7 Pa ·m3/s, hence we obtained the upper limit to the
outgassing due to the accelerometer Qacc = (3± 0.07)× 10−7 Pa ·m3/s. From the
mass-spectrometer (fig. 6.12) we noticed the absence of significant traces of hydro-
carbons, while peaks of H2 (PH2 ≈ 3.3 × 10−6 Pa), H2O (PH2O ≈ 4.8 × 10−6 Pa)
and N2 (PN2 < 10−6 Pa) were present. The peak due to the water is caused by two
factors: first the accelerometer could not be preliminarily heated enough to eject
water trapped inside its components; second there was a significant contribution
coming from the vacuum chamber itself.
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Figure 6.10: Experimental setup for the vacuum compatibility test. From left:
the known conductance C clamped to the bottom of the vacuum chamber; the
accelerometer fixed inside the chamber; the pumping group, composed of a scroll
plus turbomolecular and ionic pumps, being the last one connected to the chamber
through the conductance. A vacuum sensor plus mass spectrometer were connected
to an upper port.

Figure 6.11: Pressure measured during the vacuum compatibility test of the ac-
celerometer. Note that here pressures are in units of mbar (1 bar = 105 Pa).
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Figure 6.12: Partial pressures measured by the mass-spectrometer during the vac-
uum compatibility test.

6.2.8 Preliminary test

The accelerometer prototype was subject to a first test performed docking the
cryogenic accelerometer together with another calibrated accelerometer over a vi-
brating platform at room temperature and pressure. Driving the platform with
various sinusoidal signals the spectra of the two output signals were compared: the
shape of the two spectra are in very good agreement (see Fig. 6.13), so that the
coherence between the two signals within the considered frequency span is nearly
one.

Figure 6.13: Output signal spectra from cryogenic vertical accelerometer (blue line)
and another calibrated accelerometer (PCB393B12, red line), docked together on
a vibrating platform. The peak at f = 6Hz was intentionally generated driving
the vibrating platform with a sinusoidal signal at such a frequency. Note that the
PCB calibration is 1019.4mV/m/s2
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6.3 Calibration of the accelerometer

The calibration of the sensor was checked at room temperature and at several
intermediate temperatures during the cooling process. An horizontal accelerometer
based on the same principle of the vertical one can be calibrated by measuring
the output voltage for different tilt angles, but for this vertical prototype such a
procedure could not be applied; moreover, I was interested to study the effective
calibration curve of the sensor, i.e. the frequency-dependence of the conversion
coefficient between voltage and acceleration: below the resonant frequency (i.e. in
the range of the PT fundamental frequency) it is expected to be sufficiently flat,
while at higher frequency this may be not true, since the eq. 6.6 is valid until the
open loop gain is sufficiently high. Indeed I chose a low gain in order to avoid
signal saturation due to environmental/technical noises and Joule heating during
the cryogenic tests. According to the original project of using the accelerometer
in the VFC cryostat [94], the low open loop gain, implying inter-calibration meant
to flatten response, would still allow the suppression of the main disturbance due
to pulse-tube cryocooler, which produce a fundamental resonance at 1 Hz.

However, also in this configuration, a point-by-point calibration curve allows
to use the sensor in a wider frequency span and the wanted linear response to
acceleration. At room temperature and in vacuum condition I obtained the cali-
bration coefficients by comparing the sensor output with that of another calibrated
accelerometer. At low temperatures it was not possible, since a calibrator sensor
capable of cryogenic operations was not available, therefore a point-by-point cali-
bration was obtained (as explained in sec. 6.3.3), using the piezoelectric actuation
system of the VFC (see sec. 6.1.2), given the unitary coherence between the actu-
ators and the inner chamber at the driving frequency (see the following sec. 6.3.1).
During the first cooling test the sensor showed a temperature-dependent output for
a given acceleration. This unattractive feature was then avoided redesigning the
electric read-out circuit on-board (i.e. the electric part which is cooled down with
the sensor) in order to keep at room temperature all the possible circuital compo-
nents, leaving on-board just the capacitor of the resonant LVDT circuit and the
coil connections. In this way the output proved to be temperature-independent.

6.3.1 VFC actuation system

Since the calibration of the accelerometer at low temperature has been performed
using the VFC cryostat, it was necessary to check the coherence between the piezo-
electric actuators acting on the upper platform (fig. 6.14) and the inner chamber,
where the cryogenic accelerometer was installed. In order to ensure the feasibility
of this low-temperature calibration, the expected coherence should be unitary at
the actuation driving frequency.

Before the coherence check, I studied the mechanical response of the VFC
actuation system: three PCB-393B12 accelerometers, previously cross-calibrated,
were placed at the corners of the platform (indicated by A,B,C in fig. 6.14), in
coincidence with the position of the piezoelectric actuators. The actuators were
driven by a dedicated labVIEW-based code, which allows to inject noise or periodic
signals, and adjust the gain α of each actuator. By generating a sinusoidal signal
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Figure 6.14: Sketch of the triangular upper platform of VFC, seen from the top.

with given amplitudes, and measuring the accelerations at A, B and C on the
platform, I found the optimal gain which should be used in order to produce the
same acceleration across the entire platform: αA = 1.03, αB = 0.84, and αC = 0.90.
In this configuration the coherence among the accelerometers was measured in
sinusoidal regime at given frequencies where the pulse tube was not expected to
inject disturbance, finding values close to unity at the peaks; an example is given
in fig. 6.15.

In order to check the coherence between the upper platform, the inner chamber,
and the outer chamber, which is grounded, I fixed two PCB accelerometer exter-
nally on the platform and on the top of the outer chamber, while the cryogenic
accelerometer prototype was clamped inside the inner chamber. Subsequently, the
piezoelectric actuators were driven with a sinusoidal signal. As expected from
previous studies, the coherence between the platform and the inner chamber is
unitary at the driving frequency (see fig. 6.16), therefore it is possible to calibrate
the cryogenic accelerometer by means of piezoelectric actuators, since the upper
platform and the inner chamber are coherently accelerated. The coherence be-
tween the platform and the outer chamber on the ground is quite low (∼ 0.6),
and from the ratio between the displacements of those elements (see fig. 6.17) it
is possible to evaluate a transfer function of the order of ∼ 0.1, which represents
the recoil through the piezoelectric-ground-outer chamber channel1. In the last
check, I placed the PCB accelerometers on the triangle sides, and I measured the
vibrations of each side when the pulse tube refrigerator was activated without the
feedback piezoelectric actuation; in fig. 6.18 the fundamental peak at 1 Hz and
higher order harmonics are clearly visible, moreover the BC side results to be less
noisy than the other two sides.

1piezoelectric actuators are placed on the top of columns, which have the same mechanical
ground of the outer chamber.
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Figure 6.15: Coherence between the corners of the VFC upper platform when
the piezoelectric actuators are driven with a sinusoidal signal at f = 1.7 Hz and
amplitude A = 1.2 Hz.

Figure 6.16: Left: coherence between VFC upper platform and the inner chamber;
right: coherence between VFC upper platform and the outer chamber. Piezoelec-
tric actuators were sinusoidally driven at f = 1.7 Hz with amplitude A = 1.2 Hz.
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Figure 6.17: Displacement amplitude spectral density of the VFC platform (blue
line) and outer chamber (red line), with the piezoelectric actuators driven with a
sinusoidal signal (f = 1.7 Hz and A = 1.2 Hz); the ratio between the peaks at
the driving frequency is about T ∼ 0.1.

Figure 6.18: Acceleration amplitude spectral density measured on the three sides
of the VFC platform, when the pulse tube cryocooler is active. The fundamental
harmonic is at f0 = 1 Hz.
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6.3.2 Calibration at room temperature

The accelerometer output was calibrated at room temperature by comparing it
with that of the commercial accelerometers above mentioned, using the experi-
mental configuration described in sec. 6.2.8. The calibration coefficients, for the
0 − 25 Hz frequency span, are shown in fig. 6.19. Around 1 Hz it is sufficiently
flat to foresee a future implementation in the VFC control closed-loop.

Figure 6.19: Intercalibration of the cryogenic vertical accelerometer at room tem-
perature in 0 − 25 Hz frequency span. At f = 4.8 Hz it is visible the resonance
peak of the natural frequency of the oscillator, due to the low open-loop gain
chosen. The main contribution to error bars comes from the uncertainty of the
accelerometer used as calibrator.

6.3.3 Calibration at cryogenic temperature

In order to study the sensor output during cryogenic operations, the accelerometer
was docked to the inner wall of the experimental chamber of the VFC (see sec.
6.1.2). Since it was not available a calibrator or another vertical accelerometer
capable of operating at low temperatures, I developed a point-by-point calibration
procedure. Driving the piezoelectric actuators of the VFC at several frequencies
with certain voltage amplitudes, given the constancy of the transfer function be-
tween the upper flange and the inner chamber of the cryostat during the cooling,
the accelerometer underwent the same accelerations in three different configura-
tions:

1. the accelerometer was docked together with the calibrated one to the inner
chamber of the cryostat, in vacuum and at room temperature;

2. the accelerometer was docked to the inner chamber in vacuum condition,
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and the calibrated one was fixed outside to the upper flange of the cryostat.
Subsequently, the accelerometer was cooled down to 20 K (see fig. 6.21);

3. same configuration of the precedent point, but with the accelerometer slowly
re-heated to room temperature.

The last point is necessary to cross-check that, moving from point (1) to point (2),
the mechanical transfer function of the VFC is unchanged. Adopting this three-
steps procedure we verified that the first-designed prototype was characterized by
a temperature-dependent output, as mentioned above, but, once I re-designed the
on-board electric wiring of the accelerometer, the temperature-dependent change
of the calibration factor was negligible (see fig. 6.20).

Figure 6.20: Intercalibration of the cryogenic vertical accelerometer at T = 294 K
and T = 20 K into the VFC cryostat. The calibration points are consistent to
those obtained comparing the output of the accelerometer with another commercial
sensor in fig. 6.19. The main contribution to error bars comes from the uncertainty
of the accelerometer used as calibrator.

6.3.4 Sensitivity

As reported in [152] for the accelerometers used in the SA of Virgo, a main limi-
tation to the sensitivity of this kind of sensor comes from the Johnson noise of the
LVDT secondary circuit and from the amplifier noise, which sums up in quadra-
ture. I measured these sources of noise in the amplifier/PID network board as
Ne ∼ 10−6 V/

√
Hz while the carrier generator (53 kHz) was disconnected from

the primary coil of the LVDT sensor (see Fig. 6.22).
This electronic noise is injected through the feed-back actuator resulting in accel-
eration noise of the suspended mass: it can be calculated from the deconvolution
of the electronic spectral noise through the mechanical transfer function, shown
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Figure 6.21: Temperature of the accelerometer compared to those measured in th
VFC during the cooling test.

Figure 6.22: Voltage noise from the amplifier/PID network electronics and the
secondary coils of the LVDT circuit.
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Figure 6.23: Mechanical transfer function modulus of the floating mass of the
accelerometer, obtained injecting white noise through the control actuator. The
mechanical resonant frequency is fr = 3.55± 0.15 Hz; the quality factor at room
temperature and atmospheric pressure is Q ∼ 100.

in fig. 6.23, having considered the proper amplification and calibration factors.
The acceleration noise turns out to be 2× 10−8m/s2/

√
Hz below the resonant fre-

quency. Therefore the minimum spectral acceleration that can be measured with
the accelerometer is the one which produces an output signal equal to the con-
sidered noise. Thus from the measurement of the noise we traced the sensitivity
curve shown in fig. 6.25.

The achieved sensitivity is adequate for the position sensing and control of the
PT-refrigerator cold head motion (∼ 10−4 m/

√
Hz @1 Hz for the top platform

and ∼ 2× 10−6m/
√
Hz @1 Hz at the inner VFC chamber), and even to measure

the seismic background noise.

Note that in the previous estimate I neglected other possible sources of noise, such
as thermal dissipations, Barkhausen noise [156] and hysteresis effects. The overall
noise on the sensor output arises from the contribution of all these noise sources
plus the electronic contribution shown in fig. 6.25, but a theoretical estimate is not
trivial. However, the overall intrinsic noise of the accelerometer can be empirically
estimated by measuring the sensor output once suspended by a suitable N -stage
seismic isolation system acting as a low-pass mechanical filter with attenuation
factor proportional to f−2N . For this purpose I used a suspension composed of N =
2 stages connected to each other by maraging steel-made triangular blades and coil
springs (see fig. 6.26). I measured the calibrated acceleration spectral amplitudes
when the accelerometer was placed on the ground and on the second stage of the
suspension. Hence I compared the spectra with those measured by a commercial
piezoelectric accelerometer (a PCB-393C ). The result of these measurements are
shown in fig. 6.27.

From the spectra taken on the ground I note that the cryogenic vertical accelerom-
eter is suitable for measuring the seismic background noise up to ∼ 40 Hz, being
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Figure 6.24: Sensitivity curve of the cryogenic vertical accelerometer obtained from
the deconvolution of electronic and Johnson noises and considering the mechanical
transfer function of the suspended mass, at room temperature and atmospheric
pressure. Note that at low temperature the Johnson noise contribution from the
cooled LVDT circuit decreases as it depends on R and T .

Figure 6.25: Sensitivity curve (in displacement units) of the cryogenic vertical
accelerometer obtained from the deconvolution of electronic and Johnson noises
and considering the mechanical transfer function of the suspended mass, at room
temperature and atmospheric pressure.
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Figure 6.26: The 2-stage mechanical suspension used for measuring the overall in-
trinsic noise of the cryogenic vertical accelerometer. In this picture the accelerom-
eter was fixed to the second stage during its set-up for the measurements.

Figure 6.27: Acceleration amplitude spectral densities measured with the cryogenic
vertical accelerometer and with a commercial piezoelectric accelerometer (PCB-
393C) on the ground and on the second stage of a mechanical low-pass filter. The
electronic noise is also reported.
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the spectrum coincident with that measured by the commercial accelerometer;
moreover for f < 1 Hz it turns out to be characterized by a better sensitivity
respect to that of PCB 393C, by a factor at least ∼ 30. When the accelerometers
are placed on the second stage of the mechanical suspension it is clear the high
sensitivity at low frequency compared to that of the commercial accelerometer:
the two resonant peaks corresponds to the natural frequencies of the mechanical
seismic insulator at f1 ∼ 0.9 Hz and f2 ∼ 2 Hz, while at higher frequencies the
low-pass filter shape is evident. The sensitivity of the cryogenic accelerometer is
better than that of the PCB 393C by a factor ∼ 800 for f < 1 Hz and ∼ 50
at f = 5 Hz. Finally, comparing the spectrum taken on the suspension second
stage with the noise curve shown in fig. 6.25, I note that at higher frequencies the
main limit to the sensitivity of the sensor comes from the electronic noise. I also
remark that these measurements were performed using a primary LVDT signal of
2 V , but choosing a higher voltage on the primary coil it is possible to increase
the sensitivity and the signal-to-noise ratio of the sensor.

Figure 6.28: Acceleration amplitude spectral density measured on the VFC upper
platform (left, with a PCB accelerometer) and inside the VFC inner chamber
(right, with the calibrated cryogenic vertical accelerometer), during PT-cryocooler
operations in open loop. The resonance at f = 5 Hz observed inside is produced
by a mechanical couplings, such that between dampers and chamber suspension
wires.

6.3.5 Measurement of PT-induced vibrations into the VFC

Through a fitting function of the calibration points, it is possible to convert directly
the voltage output of the sensor into accelerations. With the cryogenic vertical
accelerometer clamped inside the inner chamber of the VFC, and the PCB ac-
celerometer placed on the upper platform, I measured the noise produced by the
PT refrigerator in open loop operation (i.e. without the feedback actuation) inside
the cryostat at T = 20 K. The amplitude spectral densities of acceleration and
displacement are reported in fig. 6.28 and 6.29.
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Figure 6.29: Displacement amplitude spectral density measured on the VFC upper
platform (left, with a PCB accelerometer) and inside the VFC inner chamber
(right, with the calibrated cryogenic vertical accelerometer), during PT-cryocooler
operations in open loop.

6.4 Installation and measurements into KAGRA

cryostats

In 2013 the cryogenic vertical accelerometer was installed on the inner radiation
shield of the cryostats (see fig. 6.30 and fig. 6.31) dedicated to the payloads of
KAGRA (see sec. 2.4.2), in order to measure the vertical vibration modes of such
structures at low temperatures in the 0−100 Hz frequency span, investigating the
main structural modes, the effect produced by the PT-cryocoolers, whose funda-
mental frequency is 1.7 Hz, and their impact on the detector sensitivity. Moreover,
this activity gave me the opportunity to check the accelerometer operations down
to T = 8 K within a full scale configuration of a gravitational wave detector cryo-
stat. Measurements were performed at the Toshiba’s Keihin factory, in Yokohama
(Japan), were the cryostats were assembled, during their vacuum and cooling tests.
This work has been partially supported by EU ELiTES project (IRSES no.295153).

6.4.1 Cryostat vibration modes

Structural vibrations, in particular those produced by the cryocoolers, are an im-
portant issue for the development of a cryogenic gravitational wave detector such
as KAGRA. They can generate noise directly through a mechanical channel, e.g.
via heat-links to the payload, and indirectly through light scattering on vibrating
shield and baffles, and re-coupling with the main laser. Numerical FEM analyses
were performed by S. Koike at KEK (fig. 6.32), resulting in the main vibration
modes of the whole cryostat and inner radiation shield, which are reported in tables
6.2 and 6.3.
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Figure 6.30: Cryostats for the payloads of KAGRA under assembling and testing,
at the Toshiba Keihin Product Operations in Yokohama (Japan).

Figure 6.31: Sketch of the main cryostat elements: inside the outer vacuum cham-
ber there are two radiation shields, the outer shield at T = 80 K and the inner
shield at T = 8 K. Four PT-cryocoolers for each cryostat (two connected to the
shields and two to the payload through flexible heat-links) provide the refrigeration
power.
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Figure 6.32: First vibration modes of the whole cryostat (upper panels) and inner
radiation shield (lower panel) below 100 Hz, calculated with FEM analysis (see
tables 6.2 and 6.3). Courtesy of S. Koike [157].

Vacuum chamber

Mode Frequency (Hz)

F1 11.07
F2 22.22
F3 34.72
F4 38.03
F5 43.02
F6 44.81
F7 55.97
F8 56.14

Table 6.2: Vibration modes of the outer vacuum chamber below 60 Hz, calculated
by means of FEM analysis. Courtesy of S. Koike [157].

Radiation shield

Mode Frequency (Hz)

F1 20.71
F2 23.95
F3 24.71
F4 24.88
F5 30.84
F6 38.16
F7 42.18
F8 45.09

Table 6.3: Vibration modes of the radiation shield below 60 Hz, calculated by
means of FEM analysis. Courtesy of S. Koike [157].
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6.4.2 Measurements in cryostat #2

In March 2013 I installed the cryogenic vertical accelerometer inside the cryostat
#2. The sensor was clamped to a dedicated platform, fixed to the inner radia-
tion shield and in thermal contact with it (see fig. 6.33). The accelerometer was

Figure 6.33: Installation of the cryogenic vertical accelerometer into the cryostat
#2 of KAGRA. From left, clockwise: installation phase in clean-room environment;
the accelerometer fixed to the support platform on the radiation shield and cabled
to feedthrough cables; external instrumentation setup.

cabled, from its two Fischer-connectors through a Burndy feedthrough cable, to
the instrumentation placed outside the cryostat: the entire line from the sensor
to the instrumentation was about 20 m-long. The output signal was monitored
on the oscilloscope and acquired in parallel with a spectrum analyzer. In order
to compare internal and external vibrations, a commercial RION accelerometer
was placed outside the cryostat, and its output was acquired in coincidence with
the cryogenic accelerometer. Before the installation, the accelerometer calibration
was checked in the 0 − 100 Hz frequency span by acquiring and comparing the
signals from the two sensors placed side by side. Since the measurements were per-
formed into the Toshiba Keihin factory during working hours, a certain amount of
anthropic and industrial machinery-generated noise was unavoidable.
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Displacement spectra

In fig. 6.34 I show the displacement amplitude spectral density (ASD) measured
over a 0− 100 Hz frequency span, before the activation of the PT-cryocoolers, by
the cryogenic vertical accelerometer clamped inside the radiation shield, compared
to that measured by the RION accelerometer placed outside on the ground, at
about 1 m from the cryostat. The peak observed at f = 23 Hz with the same
amplitude by the two sensors can be identified as the operative frequency of the
pumping group. The peak at f = 15.25 Hz is not reported in the FEM analysis
(see sec. 6.4.1), but is noticeable, especially on the radiation shield. The increase
of the floor level at higher frequencies may be caused by the cryostat structure:
a similar effect was noticed in the cryostats of CLIO [92]. In fig. 6.35 and 6.36 I

Figure 6.34: Displacement amplitude spectral densities measured on the radiation
shield (with the cryogenic accelerometer, red line) and outside on the ground (with
the RION accelerometer, blue line) between 1 and 100 Hz. Measurements were
performed before the activation of PT-cryocoolers and with vacuum pumps active.
Details in the text.

report the low-frequency displacement ASD, respectively in 0−6 Hz and 0−10 Hz
frequency span, when the PT-cryocoolers were activated. The RION accelerometer
was placed on the cryostat base flange. The fundamental harmonic of the PT-
refrigerator adopted for KAGRA is expected to be at fPT0 = 1.7 Hz, but it is
not visible on the radiation shield, while it is almost negligible on the external
structure of the cryostat: the suppression of this frequency is obtained by means
of the particular mechanical support-structure of PT-cryocooler and soft thermal
links [91]. The two peaks at about 0.25 Hz and 0.55 Hz are produced by the
microseismic activity2. At 6.3 Hz and 7.6 Hz two peaks are visible both inside
and outside; at f = 10 Hz a peak is clearly visible at the level of the radiation

2the Toshiba factory is built along a quay, so that at low frequencies the seismic level is very
sensitive to sea conditions



212CHAPTER 6. DEVELOPMENT OF A CRYOGENIC ACCELEROMETER

shield; at f = 11 Hz the spectrum measured on the base flange shows the peak
produced by the F1 mode of vibration of the whole cryostat (see tab. 6.2). In fig.
6.37 I report the same displacement spectra over a frequency span of 0 − 50 Hz:
here the previously-mentioned peaks are clearly visible, in particular it is possible
to distinguish the inner peak at f = 10 Hz from the peak produced by the cryostat
F1 mode at f = 11 Hz, also observed at the level of the radiation shield with a
smaller amplitude. The peak at f = 15.25 Hz is evident, while in the interval
between about 20 and 25 Hz it is visible a spectral structure composed of the
peaks due to vacuum pumps, and those generated by cryostat vibration mode F2
and by shield vibration modes F1, F2, F3 and F4 (see tables 6.2 and 6.3). Smaller
peaks due to other vibration modes are visible at higher frequencies, while the
peak at f = 46 Hz may be related to the mode F6 of the cryostat.

Figure 6.35: Displacement amplitude spectral densities measured on the radiation
shield (with the cryogenic accelerometer, red line) and outside on the cryostat
base flange (with the RION accelerometer, blue line); 0 − 6 Hz frequency span.
Measurements were performed with PT-cryocoolers and vacuum pumps active.
Details in the text.

The vibration at fPT0 = 1.7 Hz and its first overtone at fPT1 = 3.4 Hz,
produced by the PT-cryocoolers, were visible only if the RION accelerometer was
placed close to the refrigerator and on its support structure, as evident in fig. 6.38,
where the related spectra are compared to that measured inside on the radiation
shield.

The coherence and the frequency response between the cryogenic accelerome-
ter, clamped on the radiation shield, and the RION accelerometer, placed on the
cryostat base flange, are reported in fig. 6.39 and fig:20130314-FR: below 10 Hz
it is close to unity, at higher frequencies it decreases, except for peaks related to
vibration modes of both the cryostat and the shield, e.g. the peak at f = 15.25 Hz.
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Figure 6.36: Displacement amplitude spectral densities measured on the radiation
shield (with the cryogenic accelerometer, red line) and outside on the cryostat
base flange (with the RION accelerometer, blue line); 0 − 10 Hz frequency span.
Measurements were performed with PT-cryocoolers and vacuum pumps active.
Details in the text.

Figure 6.37: Displacement amplitude spectral densities measured on the radiation
shield (with the cryogenic accelerometer, red line) and outside on the cryostat
base flange (with the RION accelerometer, blue line); 1 − 50 Hz frequency span.
Measurements were performed with PT-cryocoolers and vacuum pumps active.
Details in the text.
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Figure 6.38: Displacement amplitude spectral densities measured on the radiation
shield (with the cryogenic accelerometer, red line), on the base flange and on
the upper plate of the PT (with the RION accelerometer, blue and black lines),
and on the ground close to the PT and at about 1.5 m from it (with the RION
accelerometer, green and pink lines); 0 − 10 Hz frequency span. Measurements
were performed with PT-cryocoolers and vacuum pumps active. See details in the
text.

Figure 6.39: Coherence between the output of the cryogenic accelerometer,
clamped on the inner radiation shield, and the RION accelerometer, placed on the
base flange of the cryostat. Measurements were performed with PT-cryocoolers
and vacuum pumps active. Details in the text.
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Figure 6.40: Frequency response between the output of the cryogenic accelerome-
ter, clamped on the inner radiation shield, and the RION accelerometer, placed on
the base flange of the cryostat. Measurements were performed with PT-cryocoolers
and vacuum pumps active. Details in the text.

In fig. 6.41 and 6.42 I show the displacement ASD measured at T = 111.7 Hz.
At f = 11 Hz it is visible the cryostat mode F1, while the peak at 15.25 Hz
dominates the displacement spectrum of the radiation shield. Between 20 Hz
and 25 Hz are localized some modes for both the cryostat and the shield (see
tables 6.2 and 6.3) in addition to the noise generated by the vacuum pumps. The
cryostat mode F3 can be seen on the RION trace at f ≈ 35 Hz, while the peak at
f ≈ 34 Hz can be related to mode F5 of the shield. At f = 41 Hz and f ≈ 47 Hz
are noticeable the shield modes F7 and F8, while from the RION spectrum the
peak at f = 56.25 Hz can be related to the cryostat mode F7 or F8. In fig. 6.43
I report a comparison between the displacement ASD measured on the radiation
shield on three days during the cooling phase.
At T = 72.6 K I measured the displacement ASD in different cases:

1. with both the PT-cryocoolers and the pumps active

2. with only the pumps active and PT-cryocoolers switched off

3. with both the PT-cryocoolers and the pumps switched off

4. with only the PT-cryocoolers active, and pumps switched off

The spectra related to these different cases are shown in fig. 6.44 and 6.45: the
noise level between 4 Hz and 15 Hz appears to be slightly higher in the first case,
while the peak at 15.25 Hz increases in the last case when the PT-cryocooler was
re-switched on. However the average noise level appears similar in all cases, except
for few localized peaks.
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Figure 6.41: Displacement amplitude spectral densities measured on the radiation
shield (with the cryogenic accelerometer, red line) and outside on the cryostat
base flange (with the RION accelerometer, blue line); 0 − 25 Hz frequency span.
Measurements were performed with PT-cryocoolers and vacuum pumps active.
Details in the text.

Figure 6.42: Displacement amplitude spectral densities measured on the radiation
shield (with the cryogenic accelerometer, red line) and outside on the cryostat
base flange (with the RION accelerometer, blue line); 0− 100 Hz frequency span.
Measurements were performed with PT-cryocoolers and vacuum pumps active.
Details in the text.
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Figure 6.43: Displacement amplitude spectral densities measured on the radiation
shield with the cryogenic accelerometer on three days during the cooling phase;
0 − 25 Hz frequency span. Measurements were performed with PT-cryocoolers
and vacuum pumps active. See details in the text.

Figure 6.44: Displacement amplitude spectral densities measured on the radiation
shield with the cryogenic accelerometer in different cases at T = 72.6 K; 0−13 Hz
frequency span. Details in the text.
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Figure 6.45: Displacement amplitude spectral densities measured on the radiation
shield with the cryogenic accelerometer in different cases at T = 72.6 K; 10 −
100 Hz frequency span. Details in the text.

I measured the displacement ASD in the four cases above mentioned when the
radiation shield reached T = 8 K: the spectra are shown in fig. 6.46 and 6.47. As
already noticed in the previous comparison, the re-activation of the PT-cryocooler
in the last case produces a dominant peak at f = 15.25 Hz, while the average noise
level is slightly lower when both the pumps and the PT-cryocooler are switched off.
In fig. 6.48 I show a comparison between the displacement ASD measured on the
radiation shield at several temperatures during the cooling: the variability of the
noise level is related to the environmental noise produced by sea waves on the near
shore-line (at low frequencies) and by the working activities in the factory during
the different days. It is important to note that, while I measured the vertical
vibrations on cryostat #2, another cooling test (aimed to measure the horizontal
vibrations) was in progress on the cryostat #3, placed a few meters away from the
other one. Therefore, the measurement was repeated switching on and off also the
pumps and the cryocoolers of the third cryostat: the different cases are reported
in fig. 6.49 and 6.50: in the wide frequency range (1− 100 Hz) the average noise
is higher when the vacuum pumps of both cryostats are active.

6.4.3 Measurements in cryostat #3

In July 2013, the cryogenic vertical accelerometer was moved inside the cryostat
#3 (see fig. 6.51), clamped to the inner radiation shield, together with another
interferometric horizontal accelerometer developed by D. Chen [158], in order to
measure the vibration modes both on the vertical and horizontal degree of freedom,
during another cooling. The instrumental configuration was similar to that used
for the cryostat #2. Since only the third cryostat was under testing, the technical
noise was expected to be smaller during these measurements.
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Figure 6.46: Displacement amplitude spectral densities measured on the radiation
shield with the cryogenic accelerometer in different cases at T ≈ 8 K; 0 − 13 Hz
frequency span. The re-activation of the refrigerator excites the mode at f ≈ 7 Hz
Details in the text.

Figure 6.47: Displacement amplitude spectral densities measured on the radiation
shield with the cryogenic accelerometer in different cases at T ≈ 8 K; 1− 100 Hz
frequency span. The peak at f ≈ 15 Hz is clearly visible when the refrigerator is
re-activated. Details in the text.
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Figure 6.48: Displacement amplitude spectral densities measured on the radiation
shield with the cryogenic accelerometer at several temperatures during the cooling;
0 − 13 Hz frequency span. Measurements were performed with PT-cryocoolers
and vacuum pumps active in different days (i.e. with different seismic background
noises). Details in the text.

Figure 6.49: Displacement amplitude spectral densities measured on the radiation
shield with the cryogenic accelerometer in several cases, switching on and off the
pumps and the PT-cryocoolers of cryostat #2 and #3; 0− 25 Hz frequency span.
Details in the text.
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Figure 6.50: Displacement amplitude spectral densities measured on the radiation
shield with the cryogenic accelerometer in several cases, switching on and off the
pumps and the PT-cryocoolers of cryostat #2 and #3; 1−100 Hz frequency span.
Details in the text.

Figure 6.51: The cryogenic vertical accelerometer installed into the cryostat #3
of KAGRA. Inside the cryostat there were also an horizontal interferometric ac-
celerometer [158] (on the same plate clamped to the radiation shield) and a dummy
payload suspended above the instruments, for other parallel measurements.
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Displacement spectra

In fig. 6.52 I show the displacement ASD at the start of cryostat #3 cooling test,
measured whit the PT-cryocoolers switched on and off. The noise level increases of
almost one order of magnitude between 4 Hz and 10 Hz and above 65 Hz when
the refrigerators are activated. This effect may be partially due to a transient
technical noise, in fact in other spectra taken during the cooling the broadband
increase was not so high. Two peaks are visible at f = 6.25 Hz and f = 10 Hz,
especially when the PT-cryocoolers are switched off, while the cryostat mode F1
can be observed with a smaller amplitude at f ≈ 11 Hz. Similarly to cryostat #2,
there is a peak at 15.25 Hz, whose amplitude is larger when the PT-cryocooler is
active. The peak at f = 18.6 Hz may be related to the shield mode F1; between
20 Hz and 25 Hz there are peaks due to vacuum pumps and to some shield modes
(see tab. 6.3). Two other peaks at f = 33 Hz and f = 46 Hz may be related to
shield modes F5 and F8.

Figure 6.52: Displacement amplitude spectral densities measured on the radiation
shield with the cryogenic accelerometer at the cooling start in two cases: with
PT-cryocoolers active and with them switched off; 0 − 100 Hz frequency span.
The broadband noise increase may be due to a transient technical noise. Details
in the text.

A slightly smaller noise increase with the PT-cryocoolers active is also visible in
the spectra taken at T = 144 K, shown in fig. 6.53 and 6.54. Peaks are evident at
f = 7.6 Hz, f = 10 Hz, f = 15.25 Hz and between 20 Hz and 25 Hz, while it is
noticeable the noise increment around 13.5 Hz and 46 Hz when the refrigerator
is activated; the last peak can be related to shield mode F8.

The four PT-cryocoolers which provide the refrigeration power to the cryostat
are connected to different elements:

• PT-1 and PT-3 are connected to the radiation shield;
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Figure 6.53: Displacement amplitude spectral densities measured on the radiation
shield with the cryogenic accelerometer in two cases: with PT-cryocoolers active
and with them switched off; 0− 25 Hz frequency span. Details in the text.

Figure 6.54: Displacement amplitude spectral densities measured on the radiation
shield with the cryogenic accelerometer in two cases: with PT-cryocoolers active
and with them switched off; 0− 100 Hz frequency span. Details in the text.
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• PT-2 and PT-4 are connected to the cryogenic payload, i.e. to the suspended
elements into the cryostat.

In order to check the contribution of every single PT-cryocooler to the overall vi-
bration of the inner radiation shield, where the cryogenic vertical accelerometer is
clamped, different spectra were taken at T = 10 K with the refrigerators alterna-
tively activated or switched off. The characteristic peaks above mentioned seems
to remain stable in the different cases, but the overall noise, especially in the band
3 − 15 Hz, increases up to a factor ∼ 4 when all the PT-cryocoolers are active.
Noticeably, the main contribution to this increase comes from PT-2 and PT-4,
those not connected to the radiation shield: therefore, a mechanical transmission
channel, from the heat-links connected to the payload and the inner shield, must
be identified.

Figure 6.55: Displacement amplitude spectral densities measured on the radiation
shield with the cryogenic accelerometer at T = 10 K in four cases: a) with all
PT-cryocoolers active; b) with only PT-1,3 active; c) with only PT-2,4 active; d)
with all the refrigerator switched off. 0 − 100 Hz frequency span. Details in the
text.

However, the broadband noise increase between 3 and 15 Hz can be related to a
transient noise during this measure: in order to check this hypothesis, keeping the
inner radiation shield at T = 10 K, measurements were repeated switching on and
off all the PT-cryocoolers. The spectra from the cryogenic vertical accelerometer,
clamped to the inner radiation shield, and the RION accelerometer, placed on the
cryostat base flange, are shown in fig. 6.56 and 6.57. The dominant peak below
1 Hz is due to the microseism produced by the sea, while for f > 2 Hz there
is a slight increase of the noise level when the PT-cryocooler are active, observed
also with the RION placed outside, but it is not so drastic as in fig. 6.55. In
particular, refrigerating operations seems to excite vibration modes at f ≈ 5.5 Hz
and f = 11.5 Hz (i.e. the shield mode F1). In these spectra, the peak at 15.25 Hz
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is not observed outside by the RION accelerometer. During the following heating
of the cryostat, another comparison was made at T = 48 K, shown in fig. 6.58: the
radiation shield shows dominant peaks at f = 10 Hz, f = 15.25 Hz (also seen by
the RION accelerometer outside, with a smaller amplitude), f = 19 Hz (excited by
PT-cryocooler activation), between 20 Hz and 25 Hz (vacuum pumps and shield
modes F1 − 4), f = 32.8 Hz, f = 38 Hz (shield mode F6), f = 41.8 Hz (shield
mode F7, excited by PT-cryocooler activation), f = 47.6 Hz (maybe related to
shield mode F8, excited by PT-cryocooler activation). From f ≈ 40 Hz the noise
level on the radiation shield is higher than outside the cryostat: a similar effect
was reported in the cryostat of CLIO [92].

Figure 6.56: Displacement amplitude spectral densities measured on the radiation
shield at T = 10 K, with the cryogenic accelerometer, and outside the cryostat,
with the RION accelerometer, in two cases: with PT-cryocoolers active and with
them switched off; 0− 25 Hz frequency span. Details in the text.

6.4.4 Impact on the sensitivity curve

The vibrations of the radiation shield, caused by the PT-cryocoolers, can affect
the cryogenic payload of KAGRA through the heat-links which provide the re-
frigeration power the the last stage of the suspension. In order to estimate the
impact of the measured vibrations on the design sensitivity curve of the detector,
the ratio between the spectra taken with the PT refrigerators switched on and off
is considered (fig. 6.59), from the data represented in fig. 6.58. Taking a threshold
value from this ratio, and applying the multiplicative parameters listed in tab. 6.4,
the sensitivity curve with the addition of the vibrational noise transmitted through
the heat-links is calculated by means of a code developed by T. Sekiguchi within
the KAGRA collaboration.

I show the design sensitivity curve of KAGRA overlapped to the noise trans-
mitted through the heat-links in fig. 6.60. The vibrational noise affects the sensi-
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Figure 6.57: Displacement amplitude spectral densities measured on the radiation
shield at T = 10 K, with the cryogenic accelerometer, and outside the cryostat,
with the RION accelerometer, in two cases: with PT-cryocoolers active and with
them switched off; 0− 100 Hz frequency span. From f ≈ 40 Hz the noise level on
the radiation shield is higher than outside the cryostat. Details in the text.

Figure 6.58: Displacement amplitude spectral densities measured on the radia-
tion shield at T ≈ 48 K (during the heating), with the cryogenic accelerometer,
and outside the cryostat, with the RION accelerometer, in two cases: with PT-
cryocoolers active and with them switched off; 0− 100 Hz frequency span. From
f ≈ 40 Hz the noise level on the radiation shield is higher than outside the cryo-
stat. Details in the text.
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KAGRA multiplicative transmission parameters

Value Cause

1/300 slope of the tunnel
1/3000 length of the arm√

2 number of heat-links√
4 number of mirrors

Table 6.4: Multiplicative parameters used in the code developed by T. Sekiguchi
in order to calculate the sensitivity curve of KAGRA considering the radiation
shield vibrational noise transmitted through the heat-links to mirrors.

Figure 6.59: The ratio between the displacement amplitude spectral densities,
measured by the cryogenic vertical accelerometer at T = 10 K, switching on
and off the PT-cryocoolers. Two threshold values are taken into account for the
calculation of the impact on the design sensitivity curve of KAGRA.
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tivity curve especially around 15 Hz, suggesting that the development a vertical-
vibration filter dedicated to heat-links may be needed.

Figure 6.60: The design sensitivity curve of KAGRA overlapped to the noise
caused by the vibrations of the radiation shield, transmitted through the heat-
links. The vibrational data was obtained by the measurements made with the
cryogenic vertical accelerometer; the plot was calculated using the dedicated code
developed by T. Sekiguchi. Courtesy of D. Chen.



Conclusions

The development of routine gravitational astronomy will require a third gener-
ation of interferometric detectors. The investigation in this field has led to the
proposal of the Einstein Telescope (ET), a European detector characterized by a
considerably improved sensitivity respect to initial and advanced interferometers,
whose construction is expected to begin before the 2020. Since many interesting
astronomical sources emit gravitational radiation in the range of few Hz (e.g. ro-
tating neutron stars), the bandwidth of third generation detectors will be extended
to the low frequencies, down to ∼ 1 − 2 Hz. In this range the sensitivity of the
interferometer is limited by two main sources of noise: the seismic noise, which per-
turbs the detector test masses through ground vibrations and seismically-induced
fluctuating gravity gradient (known as Newtonian noise, NN), and the thermal
noise, which perturbs the mechanical and optical parts of the detector. There-
fore, the suppression of these noises is a fundamental task for the development of
gravitational astronomy.

The seismic noise can be limited by choosing a suitable site characterized by a low
seismic background and low population density. The purely vibrational seismic
noise will be attenuated by means of vertical and horizontal suspension filters,
similar to those used in the previous generations of detector (e.g. the superatten-
uator of Virgo). However, the seismically-induced NN couples directly to the test
masses, short-circuiting all the attenuator stages: to overcome this limit third gen-
eration detectors will be hosted in underground structures, where Rayleigh waves
are attenuated and the surrounding rock layers are more homogeneous and stable,
resulting in reduced density fluctuations. Moreover, NN subtraction techniques
are under development and will require adequate seismic surveys in order to set-
up the necessary seismic arrays. The other low-frequency limit due to the thermal
noise will be overcome by cooling down the test masses of the interferometer, in-
troducing large cryostats and dedicated cryocoolers. The noise injected by such a
cryogenic apparatus must be monitored, so that low-frequency cryogenic sensors
for positioning control and damping will be required.

The work presented in this thesis is focused on the improvement of low-frequency
detector sensitivity through the suppression of the above-mentioned seismic and
thermal noises. In such a context, I worked on the seismic characterization of a
potential site for ET and on the development of a vertical accelerometer suitable
for cryogenic operations.

In the first experimental activity, I built an underground measuring station, part
of a still-growing array of seismometers and environmental sensors, in the former
mine of Sos Enattos (Sardinia - Italy). In this station I installed a high-sensitivity
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three-axial seismometer (a Trillium 240 ) for long-period measurements. It took
data from July 2012 to June 2013, covering about one year of observation. I
analyzed the seismic stability of the site and seasonal effects produced by local
and global weather conditions. In particular, I studied the correlation between
the Tyrrhenian sea meteorological state and the microseismic activity measured in
the underground station. As expected, the main contribution to the low-frequency
seismic noise arises from sea-generated microseisms, but starting from ∼ 1 Hz (i.e.
in the detection bandwidth of ET) the seismic background approaches the Peter-
son’s low noise model with a good stability during the whole year of observation,
validating the site as a low seismic noise environment suitable for the construc-
tion of a third generation interferometric detector. In the next future the seismic
array will be extended by integrating other underground stations equipped with
high-sensitivity seismometers developed by the University of Salerno; the optical
fiber network already installed in the site will ensure a common timing for all
the seismometers, allowing further detailed seismic studies, e.g. coherence anal-
yses between the stations, that will contribute to the development of ad-hoc NN
subtraction techniques.

In the second part of my experimental activity I developed a vertical accelerometer
suitable for cryogenic operation. It is derived from a kind of room-temperature
sensors used in the suspension control of Virgo, based on the displacement sensing
between a suspended mass and a suspending structure, with the aid of a feedback
control loop that keeps the constant distance between the mass and the structure,
so that the acceleration applied to the sensing mass is directly measured from the
force actuation signal to the mass. Thermal contractions and electric unbalancing
are the main concern when cooling down such kind of a device, since they pro-
duce a shift of the working point and signal saturation. In order to compensate
such effects, I installed a stepper motor which allows the adjustment of the sus-
pended mass position, and an external resistive trimmer which is used to reach
the fine tuning of the displacement LVDT sensor. The calibration check at low
temperature, in absence of commercial sensors working in parallel, plays a crucial
role, therefore I calibrated the accelerometer in a dedicated cryostat (the vibration
free cryostat, VFC), equipped with piezoelectric actuators. Finally, I installed the
cryogenic vertical accelerometer into the inner radiation shield of cryostat #2 and
#3 of the gravitational wave detector KAGRA, presently under construction in
Japan, in order to measure the vertical vibrations produced by the cryogenic ap-
paratus: these measurements confirmed the versatility of the sensor and its proper
operation at T = 8 K; moreover this experimental test provided an estimate of
the impact of the cryostat vibrational modes on the detector sensitivity. A fore-
seeable development of the cryogenic accelerometer presented in this work is the
implementation of the sensor into the control system of the VFC for the inertial
position sensing of the pulse-tube refrigerator cold head. Figuring out a variety
of future applications in other research areas that require cryogenics in precision
measurements, the compactness of the sensor is one of the main issues to be dealt:
in a future version, the accelerometer volume can be further and significantly re-
duced in height by changing the floating-mass shape and, if necessary, the read-out
sensor, keeping the motorized regulation of the set-point, which has proven to be
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reliable. An horizontal accelerometer can be easily obtained from the vertical
scheme presented in this work with minor changes.
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Conclusioni

Nei prossimi anni i rivelatori interferometrici di terza generazione apriranno final-
mente l’era dell’astronomia gravitazionale di precisione. Le ricerche condotte in
questo ambito hanno già portato alla proposta di un rivelatore europeo, denome-
niato Einstein Telescope (ET) e caratterizzato da una più alta sensibilità rispetto
ai primi rivelatori interferometrici nella loro versione iniziale e avanzata. Il pro-
getto di ET è stato presentato nel design study del 2011, prevedendo l’inizio della
costruzione del rivelatore entro il 2020. Poichè molte sorgenti astronomiche di
onde gravitazionali emettono a bassa frequenza (come ad esempio molte stelle di
neutroni rotanti), il limite inferiore della banda di rivelazione degli interferometri
di terza generazione sarà esteso fino a 1− 2 Hz. In questa banda la sensibilità dei
rivelatori interferometrici è limitata da due principali sorgenti di rumore: dal ru-
more sismico, che perturba le masse di test del rivelatore, direttamente per mezzo
delle vibrazioni sismiche del terreno e indirettamente attraverso il gradiente gra-
vitazionale variabile indotto dalle fluttuazioni di densità di massa prodotte dalle
stesse onde sismiche (rumore newtoniano), e dal rumore termico, che perturba le
parti meccaniche e ottiche del sistema. Di conseguenza la soppressione di queste
sorgenti di rumore a bassa frequenza è uno degli aspetti principali che devono
essere trattati per rendere possibile lo sviluppo dell’astronomia gravitazionale.

Il rumore sismico può essere limitato scegliendo per la costruzione del rivelatore un
sito caratterizzato da una ridotta sismicità e da una bassa densità di popolazione
nelle aree circostanti. Il rumore sismico puramente vibrazionale sarà attenuato per
mezzo di sospensioni meccaniche (che agiscono da filtri bassa-passo verticali e oriz-
zontali) dello stesso tipo di quelli usati nelle prime generazioni di rivelatori, come
ad esempio il superattenuatore di Virgo. Nonostante questa attenuazione diretta
delle vibrazioni sismiche, il rumore newtoniano da queste generato agisce diretta-
mente sulle masse di test, cortociruitando tutta la catena di filtri: per fronteggiare
questa limitazione, i rivelatori di terza generazione saranno costruiti all’interno di
infrastrutture sotterranee, dove le onde di Rayleigh sono sufficientemente attenuate
dall’ambiente costituito di strati rocciosi più omogenei e stabili, e di conseguenza
da fluttuazioni di densità di massa più limitate che in superficie. Inoltre sono in
fase di studio delle tecniche di sottrazione del rumore newtoniano che richiederan-
no approfonditi studi sismici dei siti proposti per ottimizzare la disposizione dei
sensori necessari. L’altro limite alla sensibilità a bassa frequenza è causato dal ru-
more termico, la cui riduzione richiederà il raffreddamento criogenico delle masse
di test dell’interferometro, collocando parte dell’esperimento all’interno di gran-
di criostati e integrando nei sistemi i necessari criorefrigeratori. L’adozione della
criogenia negli interferometri di terza generazione introdurrà un ulteriore sorgente
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di rumore vibrazionale che dovrà essere controllato, di conseguenza sarà necessario
sviluppare nuovi sensori di posizione di precisione, sensibili alle basse frequenze e
compatibili con le temperature criogeniche a cui dovranno operare.

Il lavoro che presento in questa tesi è focalizzato al miglioramento della sensi-
bilità dei futuri rivelatori interferometrici attraverso la soppressione dei suddetti
rumori sismico e termico. In questo contesto ho lavorato alla caratterizzazione
sismica di uno dei siti potenziali per la costruzione di ET e allo sviluppo di un
accelerometro verticale compatibile con l’utilizzo in criogenia.

Nella prima attività sperimentale mi sono occupato della costruzione di una sta-
zione sotterranea di misura, parte di una rete di sismometri e sensori ambientali
tutt’ora in espansione, nella ex miniera di Sos Enattos in Sardegna. In questa
stazione ho installato un sismometro triassiale caratterizzato da un’alta sensibilità
alle basse frequenze (un Trillium 240), per ottenere una serie di misure su lungo
periodo. La stazione di misura ha acquisito dati dal luglio 2012 a giugno 2013,
coprendo un periodo di quasi un anno di osservazione. Ho analizzato la stabilità
sismica del sito e gli effetti stagionali prodotti dalle condizioni meteorologiche lo-
cali e globali. In particolare ho studiato la correlazione tra lo stato meteorologico
del mar Tirreno e l’attività microsismica misurata nella stazione sotterranea. Co-
me previsto il principale contributo al rumore sismico a bassa frequenza deriva dai
microsismi generati dall’onda marina, ma a partire da circa 1 Hz (cioè nella banda
di rivelazione di ET) il rumore sismico misurato si avvicina al modello di minima
sismicità di Peterson (NLNM) mostrando una buona stabilità nell’arco dell’intero
anno di osservazione, e verificando che la miniera di Sos Enattos è caratterizzata da
una bassa sismicità ambientale compatibile con la costruzione di un interferometro
di terza generazione quale ET. Nel prossimo futuro la rete sismica del sito sarà
integrata con altre stazioni sotterranee equipaggiate con sismometri ad alta pre-
cisione sviluppati dall’Università di Salerno; la rete di connessione in fibra ottica
già installata nel sito provvederà a fornire a tutti i sensori un comune riferimento
temporale, permettendo ulteriori studi dettagliati, come ad esempio l’analisi di
coerenza tra le varie stazioni, contribuendo allo sviluppo delle necessarie tecniche
di sottrazione del rumore newtoniano.

Nella seconda parte della ricerca sperimentale presentata in questa tesi, ho lavora-
to allo sviluppo di un accelerometro verticale per applicazioni criogeniche. Questo
sensore è derivato dal tipo di accelerometri utilizzati nel controllo della sospen-
sione delle masse di test in Virgo, basati sulla misura dello spostamento di una
massa sospesa rispetto alla struttura di sospensione, con l’applicazione di un con-
trollo in feedback che mantiene la massa centrata, cosicché l’accelerazione inerziale
sperimentata dalla massa è proporzionale dalla forza prodotta dall’attuatore elet-
tromagnetico che chiude il controllo. Le contrazioni termiche e lo sbilanciamento
elettrico sono i principali problemi da affrontare quando un sensore di questo tipo
viene raffreddato a temperature criogeniche, poichè causano uno spostamento del
punto di lavoro e conseguentemente la saturazione del segnale di uscita. Per com-
pensare questi effetti termici ho installato un motore passo-passo che permette
di riportare la massa sospesa nel punto di lavoro, e un trimmer resistivo ester-
no che può essere utilizzato per annullare lo sbilanciamento elettrico sul circuito
secondario del sensore di posizione LVDT. La verifica della calibrazione a tempe-
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rature criogeniche, in assenza di sensori commerciali di pari sensibilità capaci di
operare nelle stesse condizioni, gioca un ruolo fondamentale, perciò ho calibrato
l’accelerometro in un criostato dedicato (il vibration free cryostat VFC), equipag-
giato con attuatori piezoelettrici. Successivamente ai test criogenici e di calibra-
zione, ho installato il sensore all’interno dello schermo termico dei criostati #2 e
#3 del rivelatore di onde gravitazionali KAGRA, attualmente in costruzione in
Giappone, in modo tale da misurare le vibrazioni verticali prodotte dall’apparato
criogenico: queste misure hanno confermato la versatilità dell’accelerometro e il
suo corretto funzionamento a T=8 K; inoltre questo test sperimentale ha fornito
una stima dell’impatto che avrà l’adozione della criogenia sulla sensibilità comples-
siva del rivelatore. Un futuro sviluppo dell’accelerometro criogenico presentato in
questo lavoro sarà l’implementazione del sensore nel sistema di soppressione attiva
delle vibrazioni del VFC, per il controllo inerziale di posizione della testa fredda
del refrigeratore a tubo pulsato. Prevedendo altre applicazioni in altri campi di
ricerca che richiedono misure di precisione in condizioni di criogenia, la compat-
tezza del sensore sarà una delle principali questioni da affrontare: in una versione
futura, il volume dell’accelerometro potrà essere ridotto in altezza cambiando il
profilo della massa sospesa e, se necessario, il sensore di posizione, mantenendo
la regolazione motorizzata del punto di lavoro, che si è dimostrata affidabile in
tutti i cicli di raffreddamento a cui il sensore è stato sottoposto. Un accelerometro
orizzontale basato sullo stesso schema di quello verticale presentato in questa tesi
può essere ottenuto mediante piccole modifiche di questo progetto.



M



Part IV

Appendices

237





Appendix A

Spectral densities in
interferometers

Let us consider the signal X(t) related to the physical quantity x(t). The root
mean square value (RMS), is given by:

XRMS =

√
lim
T→∞

1

2T

∫ +T

−T
X2(t)dt (A.1)

In order to separate the contributions to the signal X(t) coming from different
frequencies we can define the power spectral density (PSD) of the signal. By
means of the Wiener-Khinchin theorem [159, 160], the PSD can be expressed as
the Fourier transform of the auto-correlation of the signal X(t):

S(ω) = F{RXX(τ)}(ω) =

∫ +∞

−∞
e−iωτRXX(τ)dτ (A.2)

where ω = 2πf and the auto-correlation RXX(τ) is given by:

RXX(τ) = lim
T→∞

∫ +T

−T
X(t)X(t+ τ)dt (A.3)

For most physical signals the PSD can be also defined as:

S(ω) = lim
T→∞

1

2T

∣∣∣∣∫ +T

−T
X(t)e−iωtdt

∣∣∣∣2 (A.4)

If the physical units of the signal are [X], then the PSD will be given in [X]2/Hz
units.

Considering instead two signals X(t) and Y (t), each of which with its PSD
Si(ω), we can define a cross-spectral density (CSD) as the Fourier transform of
the cross-correlation between the two signals:

SXY (ω) = F{RXY (τ)}(ω) =

∫ +∞

−∞
e−iωτRXY (τ)dτ (A.5)
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where the cross-correlation function RXY (τ) between X(t) and Y (t) is given by:

RXY (τ) = lim
T→∞

∫ +T

−T
X(t)Y (t+ τ)dt (A.6)

Therefore, the PSD is a special case of the CSD with X(t) = Y (t).
The amplitude spectral density (ASD) of the signal X(t) is defined as the

root square of the PSD:
X̃(ω) =

√
S(ω) (A.7)

and it is given in [X]/
√
Hz units.

In interferometric detectors it is convenient to use the strain equivalent spec-
tral density in h, related to the gravitational wave strain noise ASD X̃(ω) = x̃(ω).
It is defined as the amplitude h̃ that an incoming gravitational wave must have
in order to produce the same output as detector internal noise, that is to have
a SNR=1. For an interferometer with arms of length L, the contribution of the
strain noise x̃(ω) to the effective gravitational wave noise is defined by:

h̃x(ω) =
x̃(ω)

L
(A.8)

The equivalent spectral density h̃x(ω) is given in the typical units of the strain
sensitivity, Hz−1/2.



Appendix B

Trillium-240 data elaboration

The Trillium 240 seismometer, made by Nanometrics Inc., is a sensor suitable
for microseismic measurements between 10 mHz and 5− 10 Hz, as shown in fig.
5.14, where the sensor intrinsic noise is compared to the Peterson’s NLNM [99].
This kind of seismometer is sensitive to both the magnetic fields and temperature
variations. For this reason, the environmental conditions must be monitored, and
the sensor must be properly insulated with a thermal shield. Moreover, the cali-
bration of the sensor output must be performed when he seismometer has reached
the thermal equilibrium with the environment, i.e. at least 12 − 24 h after the
installation in the site. Before the data acquisition, it is also necessary to perform
the sensor’s mass centering, by means of a dedicated command sent to the device.

Figure B.1: The Trillium 240 seismometer with its thermal shield.

The seismometer sensing elements are oriented along the three orthogonal axes u, v
and w, that are rotated respect to the x, y and z directions (see fig. B.2); therefore,
in order to obtain the seismic measure along cardinal and vertical direction, the
output signal must be transformed through a rotation matrix, which is reported
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in the following eq. B.1.xy
z

 =
1√
6
·

 2 −1 −1

0
√

3 −
√

3√
2
√

2
√

2

 ·
uv
w

 (B.1)

Figure B.2: The orientation of sensing elements in the Trillium 240 seismometer.

The data produced by the three channels of the sensor is acquired by the
Taurus DAQ system (made by Nanometrics Inc.), based on a Linux kernel, and
stored in the local memory, into the Linux Ext3 compressed file format .store.
In order to extract a time-series from the stored data it is necessary to elaborate
the .store files through the server Apollo, made by Nanometrics, which provide an
output file in MiniSEED, seisan or ASCII format (see fig. B.3 and B.4). Selecting

Figure B.3: The graphical user interface of the Apollo server which handles the
Taurus-generated .store files. Here the data availability is displayed.
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Figure B.4: The graphical user interface of the Apollo server which handles the
Taurus-generated .store files. Here the data retrieval is displayed.

the ASCII format, the .txt output file contains the counts output data listed at
the selected sampling frequency for each channel, interspersed with headers. I
chose the sampling frequency of ν = 40 Hz and the sensitivity G = 1.196 ×
109 counts/m/s. The ASCII output file produced by Apollo appears as follows:

Listing B.1: example of ASCII Apollo output file.

StnLocChn : STN01 BHZ
NetWork ID : NE
S i t e Name : STN01
Comment : . . .
Sensor Type : . . .
Data Format : . . .
Lat i tude : 40 .445555
Longitude : 9 .456944

Elevat ion : 227
Depth : . . .
Azimuth : . . .

Dip : . . .
S e n s i t i v i t y : . . .

Sens Freq : . . .
Sens Units : . . .
Cal ib Units : . . .

Sample Rate : 40
Max Clock D r i f t : . . .
Channel Flags : . . .
Update Flag : . . .

S ta r t Val id Time : . . .
End Val id Time : . . .

Response F i l e : . . .
S ta r t Time : 2013−05−30 17 : 5 9 : 5 1 . 6 5 0 0



244 APPENDIX B. TRILLIUM-240 DATA ELABORATION

End Time : 2013−05−31 06 : 0 0 : 0 1 . 9 2 5 0
Number o f Samples : 412
DC O f f s e t : . . .

Max Amplitude : . . .
Min Amplitude : . . .

Format : YFILE
578 , 574 , 560 , 552 , 540 ,
525 , 513 , 493 , 485 , 470 ,

. . .

In order to remove the useless interspersed headers from the standard Apollo
output file, I used the following C-based code:

Listing B.2: The C-based code which removes the headers from the Apollo output
files BHZ.txt.

1 //#inc lude <TROOT. h>
2 //#inc lude <TStyle . h>
3 //#inc lude <TString . h>
4 //#inc lude <TMath . h>
5 //#inc lude <TLine . h>
6 //#inc lude <TFile . h>
7 //#inc lude <TList . h>
8 //#inc lude <TClassEdit . h>
9 //#inc lude <TObject . h>

10 //#inc lude <TSystem . h>
11 //#inc lude <TSystemDirectory . h>
12 //#inc lude <TClass . h>
13 //#inc lude <TObjString . h>4
14

15 #inc lude <s t d l i b . h>
16 #inc lude <s t d i o . h>
17 #inc lude <iostream>
18 #inc lude <iomanip>
19 #inc lude <f stream>
20 #inc lude <sstream>
21 #inc lude < i t e r a t o r>
22 #inc lude <s t r i ng>
23 #inc lude <math . h>
24

25 us ing namespace std ;
26

27 i n t main ( ) {
28 i n t counts ;
29 i f s t r e a m f i l e 1 (”BHZ. txt ” ) ;
30 ofstream f i l e o u t (” BHZoutput . txt ” ) ;
31 cout<<”open f i l e ”<<endl ;
32 char l i n e 1 [ 1 0 0 ] ;
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33 char ∗ l i n e2 , ∗ l i n e 3 ;
34 i n t j =0;
35 whi le ( f i l e 1 ){
36 f i l e 1 . g e t l i n e ( l i n e1 , 1 0 0 ) ;
37 l i n e 2=l i n e 1 ;
38

39 // cout<<” l i n e 1= ”<< l i n e1<<endl ;
40 // cout<<” l i n e 2= ”<< l i n e2<<endl ;
41 counts=a t o i ( l i n e 2 ) ;
42 // cout<<”counts = ”<<counts<<endl ;
43 i f ( counts >0 | | counts <0){
44 // cout<<” i f counts > 0 : l i n e 1”<< l i n e1<<endl ;
45 i n t s i z e =s t r l e n ( l i n e 1 ) ;
46 // cout<<”s i z e = ”<<s i z e<<endl ;
47 i n t l en =( s i z e ) /11 ;
48 // cout<<”l en =”<<len<<endl ;
49 // from here numbers s t r i n g separed by space and comma
50

51 char ∗ p a r l i n e [ 5 ] ;
52 p a r l i n e [0 ]= s t r t o k ( l i n e1 , ” , ” ) ;
53 // cout<<p a r l i n e [0]<< endl ;
54 i f ( ( a t o i ( p a r l i n e [0 ] ) ) < 20000 && ( a t o i ( p a r l i n e [0 ] ) ) > −20000)
55 f i l e o u t <<p a r l i n e [0]<< endl ;
56 i f ( len >1){
57 f o r ( i n t i =1; i<l en ; i ++){
58 p a r l i n e [ i ]= s t r t o k (NULL, ” , ” ) ;
59 // cout<<p a r l i n e [ i ]<<endl ;
60 i f ( ( a t o i ( p a r l i n e [ i ]))< 20000 && ( a t o i ( p a r l i n e [ i ]))> −20000)
61 f i l e o u t <<p a r l i n e [ i ]<<endl ;
62 }
63 }
64 }
65 }
66 f i l e o u t . c l o s e ( ) ;
67 f i l e 1 . c l o s e ( ) ;
68 r e turn 0 ;
69 }

At this point the output file contains only the time-series values, listed with the
selected sampling frequency. This output can be easily handled with a FFT (Fast
Fourier Transform) analysis to obtain the related spectra. As an example I report
here the MatLab code that can be used to obtain the PSD in m2/s4/Hz and the
spectrogram from the ASCII output file:

Listing B.3: Example of MatLab-based code which derive the PSD and the spec-
trogram along the Z axis from the time-series ASCII output file.

1 %s p e c t r a l a n a l y s i s
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2 c l o s e a l l ;
3 c l e a r a l l ;
4 N = 65536; %num events s i n g l e spectrum mul t ip l e o f 2ˆn
5 Sys =1.196∗10ˆ9; %system s e n s i t i v i t y in m/ s
6 sampl = 40 ; %sampling ra t e
7 data = load ( ’ BHZoutput . txt ’ , ’− a s c i i ’ ) ;
8 %%%%%%%%%%%%%%%
9 BH ms = ( data ) . / ( Sys ) ; %%d iv ide count by system s e n s i t i v i t y in m/ s

10 f=sampl ∗ ( 1 :N)/N;
11 f t= transpose ( f ) ;
12 f p l o t=sampl ∗ ( 0 : (N/2))/N;
13 w = hann (N) ;
14 wnorm = sum(w.ˆ2 )/N;
15 numspetr=f l o o r ( l ength (BH ms)/N) ;
16 f o r j =1:numspetr ;
17 BH mean=0;
18 f o r i =1:N; % mul t ip l e o f 2ˆn ,
19 BH( i , j )=BH ms ( ( ( j−1)∗N+1∗ i ) , 1 ) ;
20 BH mean = BH mean + BH ms ( ( ( j−1)∗N+1∗ i ) , 1 ) /N;
21 f t t ( i , j )= f t ( i , 1 ) ;
22 end
23 BH( : , j ) = (BH( : , j )−BH mean ) . ∗w;
24 end
25 %−−−−FFT−−−−−−−
26 TF=f f t (BH,N) ; % FFT from 1 to N events
27 TF acc=2∗pi ∗TF.∗ f t t ;
28 %−−−−− PSD −−−−−−
29 PS acc=2∗TF acc .∗ conj ( TF acc )/ (N∗sampl∗wnorm ) ; % PSD
30 PS acc mean=mean( PS acc ,2) ;% mean value PS m
31 %%%%%%%%%%% r e s
32 f o r j =1:numspetr ;
33 f o r i =1:N;
34 r e s ( i , j )=(( PS acc ( i , j )−PS acc mean ( i ) )/ PS acc mean ( i ) ) ˆ 2 ;
35 end
36 end
37 sigma=sum( r e s )/N; %std dev i a t i on
38 mediana= median ( sigma ) ;
39 s=std ( sigma ) ;
40 %%%−−−−FFT NEW−−−−−−−
41 k=1;
42 f o r j =1:numspetr ;
43 i f sigma ( j ) < ( mediana+1.0∗ s )
44 PS acc new ( : , k)=PS acc ( : , j ) ;
45 k=k+1;
46 end
47 end
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48 numspetr new=k−1;
49 PS acc mean new=mean( PS acc new ,2) ;% mean PSD PS m
50 %%%%%%%%%%% r e s 2
51 f o r j =1:numspetr new ;
52 f o r i =1:N;
53 res new ( i , j )=(( PS acc new ( i , j )−PS acc mean new ( i ) )/ PS acc mean new ( i ) ) ˆ 2 ;
54 end
55 end
56 sigma new=sum( res new )/N;
57 mediana new= median ( sigma new ) ;
58 s new=std ( sigma new ) ;
59 %%−−−−FFT NEW 2−−−−
60 k=1;
61 f o r j =1:numspetr new ;
62 i f sigma new ( j ) < ( mediana new +1.0∗ s new )
63 PS acc new new ( : , k)=PS acc new ( : , j ) ;
64 k=k+1;
65 end
66 end
67 PS acc mean new new=mean( PS acc new new , 2 ) ;
68 % %−−−−−−−−−−−−−− SPECTROGRAM −−−−−−−−−−−−
69 t p l o t = 0 : 0 . 5 : numspetr ;
70 logPS acc =log10 ( PS acc ) ;
71 f i g u r e ;
72 f i g 4=s u r f ( t p l o t ( 1 : numspetr ) , f p l o t ’ , logPS acc ( 1 : (N/ 2 + 1 ) , : ) ) ;
73 shading i n t e r p ; a x i s t i g h t ; c o l o rba r ;% mate r i a l sh iny ;
74 t i t l e ( ’ Spectrogram − Z axis ’ ) ;
75 view ( 2 ) ;
76 % %−−−−−−−−−−PLOT PSD−−−−−−−
77 f i g u r e ;
78 f i g 8=l o g l o g ( f p l o t , ( PS acc mean new new ( 1 : (N/2+1)) ) ) ;
79 l o g l o g ( f p l o t , ( PS acc mean new new ( 1 : (N/2+1)) ) ) ;
80 xlim ( [ 0 . 0 3 2 0 ] ) ;
81 g r id on ;
82 t i t l e ( ’PSD − Z axis ’ ) ;
83 x l a b e l ( ’ Frequency (Hz ) ’ ) ;
84 y l a b e l ( ’PSD (mˆ2/ s ˆ4/Hz ) ’ ) ;
85 view ( 2 ) ;

The sampling frequency of the seismometer was set at 40 Hz, as reported in
line 6; the parameter N in line 4 is a multiple of 2n and defines the points per
spectrum, after subtracting, from each of the data streams, the mean value of
the time series; the data is filtered with Hann window function (see line 13),
in order to get an accurate evaluation of the peak frequencies. Subsequently,
the spectra are averaged: in order to study the quasi-stationary local seismic
noise, spectra with spurious transient noises (e.g. due to the passage of a vehicle,
related to maintenance activities in the tunnel or to small earthquakes) must be
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rejected. This selection is performed by calculating the residual of each PSD from
the average one (see line 34) [161]:

Resj =
N∑
i=1

1

N

(
PSDi − PSDmean

i

PSDmean
i

)2

(B.2)

where the index i represents the single data point of the j-th spectrum, therefore
the sum over the total number of data points N gives the estimation of the devia-
tion of every spectrum from the mean one (PSDmean) in the considered frequency
range. The empirical rejection criterion is based on a threshold standard deviation
σ, defined from the residues (see line 37): if it is larger than the median value plus
n = 1 standard deviations (see the code between lines 42-47 and 61-66), data is
rejected. This procedure is applied twice, resulting in an average neglected data
of ∼ 5%.
The analysis presented in chapter 5 was performed with codes analogous to that
reported above, in particular I obtained the spectrogram 5.37 with a cyclic code,
which initially derived the daily PSD and subsequently made an ensemble of them.

Finally, the meteorological data, used in the comparison with the microseis-
mic data provided by the Trillium 240, was obtained with a routine code, which
downloads every day the Nettuno-generated [142] output files (one every 12 h, in
ASCII format) from the FTP server of the Weather National Center of Italian Air
Force (CNMCA). The data is provided in the following format:

Listing B.4: example of meteorological data output generated by the Nettuno
model and provided by CNMCA, for the two off-shore points of tab. 5.2.

1 SANTA LUCIA off 40 .560 9 .9400 0 .0000 1 .0000 4 .0000 . . .
2 0 .0000 0 .33 275 .47 4 .0400 246 .31 5 .4000 0 .0000 . . .
3 3 .0000 0 .33 233 .79 3 .7000 238 .95 4 .7500 0 .0000 . . .
4 6 .0000 0 .26 201 .31 3 .7700 166 .03 4 .2200 0 .0000 . . .
5 9 .0000 0 .39 180 .16 2 .6700 188 .27 2 .4200 0 .0000 . . .
6 12 .000 0 .63 163 .67 3 .1100 148 .05 3 .5600 0 .0000 . . .
7 SOS ALINOS off 40 .440 9 .9300 0 .0000 1 .0000 4 .0000 . . .
8 0 .0000 0 .37 249 .81 3 .6400 256 .25 5 .4100 0 .0000 . . .
9 3 .0000 0 .34 226 .61 3 .4500 250 .20 4 .4800 0 .0000 . . .

10 6 .0000 0 .27 196 .66 3 .6600 188 .12 4 .0900 0 .0000 . . .
11 9 .0000 0 .40 180 .34 2 .7100 194 .80 2 .6900 0 .0000 . . .
12 12 .000 0 .61 164 .27 3 .0400 152 .78 3 .4700 0 .0000 . . .

where the lines 1 and 7 are the headers (location, coordinates, day, month, year
and time), the first column represents the time in hours, starting from 12 AM
or PM, while the other columns are described by table 5.1; note that the model
provides the periods of the wave (mean value and highest peak in one-dimensional
spectrum), the related frequencies are obtained taking their inverse value.



Appendix C

Einstein Telescope specifications

The specifications for the high-frequency (HF) and low-frequency (LF) interfer-
ometers of the Einstein Telescope [26] are reported in the following table C.1:

Parameter ET-HF ET-LF

Arm length 10 km 10 km
Input power (after IMC) 500 W 3 W

Arm power 3 MW 18 kW
Operating temperature 290 K 10 K

Mirror material Fused silica (SiO2) Silicon (mono-Si)
Mirror diameter/thickness 62 cm/30 cm 62 cm/30 cm

Mirror masses 200 kg 211 kg
Laser wavelength 1064 nm 1550 nm

SR-phase Tuned (0.0) Detuned (0.6)
SR transmittance 10% 20%

Quantum noise suppression 10 dB 10 dB
Beam shape LG33 TEM00

Beam radius 7.25 cm 12 cm
Clipping loss 1.6 ppm 1.6 ppm
Suspension VIRGO-like Superattenuator 5× 10 m

Seismic (for f > 1 Hz) 1 · 10−7 m/f 2 5 · 10−9m/f 2

Gravity gradient subtraction none ∼ 50

Table C.1: Specifications of ET-HF and ET-LF.
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Appendix D

NIM modules of the cryogenic
accelerometer

The two NIM modules dedicated to the vertical accelerometer presented in chapter
6 are:

1. Pre-amplification and resistive trimmer board; the preamplifier circuital
scheme is reported in sec. D.2. The trimmer derivation is connected to
the output signal in the amplifier scheme, and to the two branches of the
secondary LVDT circuit (see fig. 6.7)

2. Amplifier/Demodulator/Feedback (ADF) board, of the same kind of
those used for the inertial damping control of the inverted pendulum of the
superattenuator in Virgo (see sec. 2.3.1); the circuital scheme and the PID
feedback transfer function of this board are reported in sec. D.2.

D.1 Pre-amplifier

Figure D.1: Circuital scheme of the pre-amplifier used for the cryogenic vertical
accelerometer (designed by F. Paoletti, INFN-Pisa/EGO).
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D.2 ADF board

Figure D.2: Circuital scheme of the amplifier/demodulator/PID Feedback board
used for the cryogenic vertical accelerometer (designed by F. Paoletti, INFN-
Pisa/EGO).



Figure D.3: Transfer function (modulus and phase) of the PID feedback on the
ADF board, from [152].

M
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