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Abstract

In this thesis, a two-degrees-of-freedom, non-linear model is introduced aiming to
describe internal friction phenomena which have been observed in some modified
concrete specimens undergoing slow dynamic compression loads and having various
amplitudes but never inducing large strains. The motivation for the theoretical effort
presented here arose because of the experimental evidence described in some papers
in which dissipation loops for concrete-type materials are shown to have peculiar
characteristics. Since viscoelastic models –linear or non-linear– do not seem suitable
to describe either qualitatively or quantitatively the measured dissipation loops, it
is proposed to introduce a micro-mechanism of Coulomb-type internal dissipation
associated to the relative motion of the faces of the micro-cracks present in the
material. In addition, numerical simulations, showing that the proposed model
is suitable to describe some of the available experimental evidences, is presented.
These numerical simulations motivate further developments of the considered model
and supply a tool for the design of subsequent experimental campaigns.

Furthermore, the effect of micro-particle additives such as calcium carbonate
on internal dissipation of concrete was experimentally investigated. The damping
performance of concrete can be improved by adding to the mixture different kinds
of micro-particles with suitable size which fill the pores of the matrix and change
the contact interaction between internal surfaces of voids. It was determined that
the energy dissipation of the concrete increases with the increasing content of micro
particles at least when the concrete matrix is “soft” enough to allow microscopic
motions. On the other hand, the increasing percentage of micro-particles addition
can affect the mechanical strength of the material. Thus, there is a reasonable
compromise in incorporating these micro-particles to obtain higher damping with-
out weakening the mechanical properties. Several concrete mixes were prepared by
mixing cement powder with different percentages of micro-fillers. A concrete mix
without addition of micro-particles was molded as a reference material for the sake
of comparison. All these specimens were tested under cyclic loading in order to
evaluate energy dissipation starting from the area of a dissipation loop detected in
the diagram relative to a representative cycle. The experimental determination of
the dissipated energy shows a significant increase in the damping capability of the
cement-based materials with micro-filler compared to the standard concrete. The
experimental results presented seem to indicate that the proposed model is suitable
to describe the mechanical behavior of modified and unmodified concrete, provided
that the introduced parameters are suitably tuned in order to best fit the available
experimental data.

Keywords: Modified concrete - Continua with microstructure - Frictional sliding -
Energy dissipation under cyclic load



Effet de l’addition de micro-particules sur la dissipation d’éner-
gie et la résistance mécanique du béton: essais et modélisation

Si un béton classique est constitué d’éléments de granulométrie décroissante, en
commençant par les granulats, le spectre granulométrique se poursuit avec la poudre
de ciment puis parfois avec un matériau de granulométrie encore plus fine comme
une fumée de silice (récupérée par exemple au niveau des filtres électrostatiques dans
l’industrie de l’acier). L’obtention d’un spectre granulométrique continu et étendu
vers les faibles granulométries permet d’améliorer la compacité, donc les perfor-
mances mécaniques. L’idée de base de cette thèse a été d’utiliser comme éléments
de granulométrie fine des fillers à base de calcaire. Ces fillers ont des granulométries
très fines qui leur permettent de remplir les micro-fissure généralement présentes à
l’intérieur du béton. La surface rugueuse des grains de ces fillers permet de modifier
le coefficient de frottement entre les lèvres de chaque fissure. Le résultat souhaité est
celui de produire un béton qui dissipe par frottement plus d’énergie par rapport à
un béton standard. Un béton de ce type pourrait avoir des applications importantes
dans l’ingénierie civile, surtout pour ce qui concerne l’absorption des vibrations
dans la ville et les constructions en régions séismiques. Les théories des milieux
continus généralisés permettent de tenir compte de l’effet de la microstructure des
matériaux sur leur comportement macroscopique et, en particulier, de décrire la
dissipation d’énergie dans le béton sujet à des chargements cycliques. Un modèle
continu généralisé avec une variable cinématique supplémentaire a été développé
dans le cadre de cette thèse qui permet de décrire le glissement relatif des lèvres
des fissures dans le béton à l’échelle microscopique. La relation entre ces micro-
mouvements au niveau des lèvres de fissures et la dissipation d’énergie observée
à l’échelle macroscopique a ensuite été étudiée. Les équations en forme forte qui
dérivent de cette modélisation continue sont obtenues à l’aide d’un principe vari-
ationnel de Hamilton-Rayleigh dans lequel on a intégré la nature dynamique du
problème ainsi que la possibilité de décrire des phénomènes de dissipation au niveau
microscopique. Le modèle obtenu permet de décrire les cycles d’hystérésis typiques
du béton sujet à des chargement cycliques et ses paramètres ont été calés sur des
essais menés au LGCIE de l’INSA de Lyon. Des études paramétriques concernant
les paramètres reliés à la microstructure du matériau ont permis d’identifier l’effet
que l’addition des micro-fillers a sur le comportement mécanique global du béton
lorsque il est sujet à des chargement dynamiques.

Mots-Clés: Béton modifié - Milieux continus avec microstructure - Frottement à
l’échelle microscopique - Dissipation d’énergie sous chargement cyclique
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Chapter I

Introduction

I.1 Background and Motivations

The common materials used in the various fields of industrial and civil engineering,

reaching the limit of their mechanical and technological characteristics, require new

developments in order to fit the growing demand for performance. The properties

of engineering materials can be optimized by combining different constituents in

order to improve the performance of the new material compared to the individual

components.

Many of these improved materials reveal a rather complex behavior with respect

to the conventional ones used in engineering. This is a consequence of their advanced

structure/composition.

In particular, we want to focus our attention on concrete, developing a model

suitable to describe the correlations between the microscopic and macroscopic prop-

erties of this material. This will permit obtaining the needed information that allows

improving mechanical and functional performance.

Concrete is a material which has drastically changed the construction techniques

of the twentieth century. This material, together with the metal bars of reinforce-

ment, allowed the construction of reinforced concrete structures, whose performances

are by far superior than those of all structures built previously.

Reinforced concrete structures are more convenient than purely metallic struc-

tures if one considers the quality/cost ratio. Moreover, when suitably designed,

such structures are less subject to deterioration phenomena (such as oxidation in

the metallic structures) and aging.

For these reasons, it is commonly believed that no further developments are

possible for this technology, which is considered fully mastered and substantially

optimized. This may indeed not be the case: It is possible to design new materials

1



Chapter I. Introduction

with mechanical properties similar to concrete, and even more effective, by adding to

the cement powder some particles of other inert material to obtain a new composite

system.

Here it is useful to define concrete and the principal concrete-making compo-

nents. The following definitions are adapted from ASTM C 125 (Standard Definition

of Terms Relating to Concrete and Concrete Aggregates), and ACI Committee 116

(A Glossary of Terms in the Field of Cement and Concrete Technology): Concrete

is a composite material that consists essentially of a binding medium within which

are embedded particles or fragments of aggregate. In hydraulic-cement concrete,

the binder is formed from a mixture of hydraulic cement and water (Mehta, Paulo,

Monteiro [2005]). Cements used in construction can be characterized as being ei-

ther hydraulic or non-hydraulic. Hydraulic cements (e.g., Portland cement) harden

because of hydration, a chemical reaction between the anhydrous cement powder

and water. Thus, they can harden underwater or when constantly exposed to wet

weather. The chemical reaction results in hydrates that are not very water-soluble

and so are quite durable in water. Non-hydraulic cements do not harden underwater;

for example, slaked limes harden by reaction with atmospheric carbon dioxide.

Aggregate is the granular material, such as sand, gravel, crushed stone, crushed

blast-furnace slag, or construction and demolition waste, that is used with a ce-

menting medium to produce either concrete or mortar. The term coarse aggregate

refers to aggregate particles larger than 4.75 mm (No. 4 sieve), and the term fine

aggregate refers to aggregate particles smaller than 4.75 mm but larger than 75 µm

(No. 200 sieve). Gravel is the coarse aggregate resulting from natural disintegration

by weathering of rock. The term sand is commonly used for fine aggregate resulting

from either natural weathering or crushing of stone. Crushed stone is the product

resulting from industrial crushing of rocks, boulders, or large cobblestones. Iron

blast-furnace slag, a by-product of the iron industry, is the material obtained by

crushing blast-furnace slag that solidified by slow cooling under atmospheric con-

ditions. Aggregate from construction and demolition waste refers to the product

obtained from recycling of concrete, brick, or stone rubble.

Cement is a finely pulverized, dry material that by itself is not a binder but

develops the binding property as a result of hydration (i.e., from chemical reac-

tions between cement minerals and water). A cement is called hydraulic when the

hydration products are stable in an aqueous environment.

Based on unit weight, concrete can be classified into three broad categories.

Concrete containing natural sand and gravel or crushed-rock aggregates, generally

weighing about 2400 kg/m3, is called normal-weight concrete, and it is the most

commonly used concrete for structural purposes. For applications where a higher
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I.1. Background and Motivations

strength-to-weight ratio is desired, it is possible to reduce the unit weight of concrete

by using natural or pyro-processed aggregates with lower bulk density. The term

light-weight concrete is used for concrete that weighs less than about 1800 kg/m3.

Heavy-weight concrete, used for radiation shielding, is a concrete produced from

high-density aggregates and generally weighs more than 3200 kg/m3. It is useful to

divide concrete into three general categories based on compressive strength:

• Low-strength concrete: less than 20 MPa;

• Moderate-strength concrete: 20 to 40 MPa;

• High-strength concrete: more than 40 MPa.

Moderate-strength concrete, also referred to as ordinary or normal concrete, is used

for most structural work. High-strength concrete is used for special applications. It

is not possible here to list all concrete types. There are numerous modified concretes

which are appropriately named, for example, fiber- reinforced concrete, expansive-

cement concrete, and latex-modified concrete.

The selection of an engineering material for a particular application has to take

into account its ability to withstand the applied force. Depending on how the

stress is acting on the material, the stresses are further distinguished from each

other, for example, compression, tension, flexure, shear, and torsion. The stress-

strain relationships in materials are generally expressed in terms of strength, elastic

modulus, ductility, and toughness.

Strength is a measure of the amount of stress required to fail a material. The

working stress theory for concrete design considers this material as mostly suit-

able for bearing compressive load; this is because only the compressive strength of

the material is generally specified. Since the strength of concrete is a function of

the cement hydration process, which is relatively slow, traditionally the specifica-

tions and tests for concrete strength are based on specimens cured under standard

temperature-humidity conditions for a period of 28 days. Typically, the tensile and

flexural strengths of concrete are of the order of 10 and 15 percent, respectively,

of the compressive strength. The reason for such a large difference between the

tensile and compressive strength is attributed to the heterogeneous and complex

microstructure of concrete. The modulus of elasticity is defined as the ratio between

the stress and the reversible strain. In homogeneous materials, the elastic modulus

is is unaffected by microstructural changes. This is not true of the heterogeneous

multiphase materials like concrete. The elastic modulus of concrete in compression

varies from 14× 103 MPa to 40× 103 MPa.

The significance of the elastic limit in structural design lies in the fact that it

represents the maximum allowable stress before the material undergoes permanent
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Chapter I. Introduction

deformation. Therefore, the engineer must know the elastic modulus of the material

because it influences the rigidity of a design.According to ACI Building Code 318,

with a concrete mass density between 1500 and 2500 kg/m3, the modulus of elasticity

can be determined from

Ec = ρ1.5 × 0.043 f
1
2
c

where Ec is the static modulus of elasticity (MPa), ρ is the mass density (kg/m3)

and f c is 28-day compressive strength of standard cylinders (MPa).

Poisson’s ratio is not generally needed for most concrete design computations;

however, it is needed for structural analysis of tunnels, arch dams, and other stati-

cally indeterminate structures.

With concrete the values of Poisson’s ratio generally vary between 0.15 and 0.20.

There appears to be no consistent relationship between Poisson’s ratio and concrete

characteristics such as water-cement ratio, curing age, and aggregate gradation.

However, Poisson’s ratio is generally lower in high-strength concrete, and higher for

saturated concrete and for dynamically loaded concrete.

The amount of inelastic strain that can occur before failure is a measure of the

ductility of the material. The energy required to break the material is represented

by the area under the stress-strain curve. The term toughness is used as a measure

of this energy. The contrast between toughness and strength should be noted; the

former is a measure of energy, whereas the latter is a measure of the stress required to

fracture the material. Thus, two materials may have identical strength but different

values of toughness. In general, however, when the strength of a material increases,

the ductility and the toughness decrease; also, very high-strength materials usually

fail in a brittle manner (i.e., without undergoing any significant plastic strain).

Concrete is a composite material; however, many of its characteristics do not

follow the laws of mixtures. For instance, under compressive loading both the ag-

gregate and the hydrated cement paste, if separately tested, would fail elastically,

whereas concrete itself shows inelastic behavior before fracture. Also, the strength

of concrete is usually much lower than the individual strength of the two compo-

nents. Such anomalies in the behavior of concrete can be explained on the basis

of its microstructure, especially the important role of the interfacial transition zone

between coarse aggregate and cement paste.

For concrete the relationship between stress and strain is dependent of the load-

ing time. If a concrete specimen is held for a long period under a constant stress,

for instance 50% of the ultimate strength of the material, it will exhibit plastic

strain. The phenomenon of gradual increase in strain with time under a sustained

stress is called creep. When creep in concrete is restrained, it manifests itself as
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a progressive decrease of stress with time. The stress relief associated with creep

has important implications for the behavior of plain, reinforced, and prestressed

concrete structures.

Professional judgment in the selection of construction materials should take into

consideration not only the strength, dimensional stability, and elastic properties of

the material but also its durability, which has serious implications for the life-cycle

cost of a structure. Durability is defined as the service life of a material under given

environmental conditions.

In general, there is a relationship between strength and durability when low

strength is associated with high porosity and high permeability. Permeable concretes

are, of course, less durable. The permeability of concrete depends not only on mix

proportions, compaction, and curing, but also on microcracks caused by the ambient

temperature and humidity cycles.

Concrete can be modeled as a porous medium composed of a solid matrix with

pores, that typically are characterized by two different sizes, namely about 10−3µm

and 1 to 100 µm.

Different theories to model porous material have been developed in the liter-

ature. One of the early theories is the Effective Moduli Approach. The general

philosophy in this context is to extend the use of homogeneous classical elasticity to

inhomogeneous materials by replacing the elastic constants of the classical homoge-

neous theory by suitable effective elastic constants or moduli. The idea of equivalent

homogeneity for an inhomogeneous material such as a porous elastic solid is that

the scale of the inhomogeneity is assumed to be several orders of magnitude smaller

than the characteristic dimension of the problem of interest and, therefore, there

exists an intermediate dimension over which the inhomogeneous properties can be

averaged. Depending on the length scale of the intermediate dimension, the elastic

constants for the real inhomogeneous material can be replaced by the effective elastic

moduli of the ‘equivalently homogeneous’ model material. The effective bulk and

shear moduli can be calculated by a self-consistent method due to Frohlich, Sack

[1946]. The calculation uses the notion of an equivalent homogeneous continuum.

The bulk modulus k is determined by applying a hydrostatic pressure, and the shear

modulus µ by applying a simple homogeneous shear stress. Each pore is surrounded

by a spherical shell of real material, and the reaction of the rest of the material is es-

timated by replacing it by equivalent homogeneous material. An important example

of the effective moduli calculations are the formulas due to Mackenzie [1950].

In these formulas it suffices to equate the stored elastic energy to the work done

by the externally applied pressure in order to derive the effective compressibility.

This calculation, however, follows the lines of ordinary elasticity theory, and both
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the effective compressibility and the effective shear modulus are derived without any

particular hypothesis on the size of pores. For this reason it was assumed that the

real material contained isolated spherical holes, randomly distributed throughout

the volume, and that the real material was homogeneous and isotropic. It was also

assumed that the volume of all the holes was small compared with the total volume,

and that, this volume contained a large number of holes. The effective moduli

approach is powerful because it can be used to predict effective material properties

from the properties of the single constituents.

Another approach used for the study of porous materials is the theory of Elastic

Material with voids developed by Cowin, Nunziato [1983]. This theory is focused

on characterizing the overall bulk behavior of porous solids in which the skeletal

or matrix material is elastic and the interstices are voids which contain nothing of

mechanical or energetic significance. To account properly for the compaction or

extension of the voids, they assign to the material the mathematical structure of a

distributed body. The body is assumed to occupy a bounded, regular region B of

Euclidean 3D-Space in its reference configuration. The concept of a distributed body

also asserts that for every pair (X, t) in B the apparent mass density ρ = ρ̂(X, t)

has the decomposition

ρ = γν (I.1)

where γ = γ̂(X, t) is the density of the matrix material, also called true density,

and ν = ν̂(X, t), 0 < ν ≤ 1, is the volume distribution function. Indeed, this

distribution function is the volume fraction of solid material found at the point X

at time t and hence is a measure of the volume change of the bulk material which

results from void compaction (i.e., void volume reduction) or distention. The fields

displacement and ν clearly describe the overall kinematical behavior of the material.

In contrast with the Cowin approach the Theory of Poroelasticity deals with the

deformation of a porous elastic solid containing a viscous fluid and was proposed by

Biot in several pioneering papers (Biot [1941, 1956, 1962,a]). He considers the tensor

stress as composed of two parts: one which is caused by the hydrostatic pressure of

the fluid filling the pores, and the other caused by the average stress in the skeleton.

In this sense the stresses in the medium are said to be carried partly by the fluid

and partly by the solid constituent. In order to completely describe the macroscopic

condition of the porous medium, an additional variable giving the amount of fluid in

the pores is considered, i.e. the increment of fluid mass per unit volume of material

called the variation in fluid content mf .

Despite the difference in constitution, materials such as concrete or some rock

types exhibit similar behavior which is mainly due to phenomena of microcracking.
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The theoretical study of the degradation of brittle materials due to microcracking is

usually addressed in the context of the Damage Mechanics. This is a recent discipline

of Solid Mechanics whose promoters are Kachanov [1982] and Rabotonov [1969].

Moreover, some aspects of the behavior of Porous Brittle Materials typically are

interpreted according to the Theory of Microcracking. In the study of microcracked

materials we can identify two different schools of thought. One of these approaches

mainly concerns the evaluation of the effects of interaction between the microcracks

(see Kachanov [1994] or Nemat-Nasser, Hori [1993]). The other one leads directly

to the micromechanical modeling of damage (see Krajcinovic [1996]).

According to the latter point of view, Pensée, Kondo, Dormieux [2002] describe

porous materials which present a brittle behavior, considering pores as microfrac-

tures. Indeed, in some cases, pores can be regarded as cavities in which one size is

very small compared to the other two dimensions. For example, an elliptical crack

can be regarded as an ellipsoidal cavity, the length of one of whose principal axes

becomes very small in comparison with the length of the other two principal axes.

In particular, the authors are focused on the study of the effect of interaction inside

the microcracks. When an external load is applied, the two superimposed faces of

a crack come in contact and start sliding on each other, generating a friction force

that dissipates some of the energy applied to the material. The energy dissipated by

friction represents a loss of energy of the system that cannot be recovered; it is for

this reason that hysteretic behavior for concrete material tested under cyclic load

can be observed.

If some microparticles are added to the concrete matrix in such a way that

they can fill the space between the two faces of each crack, it can be expected

that the energy dissipation due to friction phenomena changes according to the

physical properties of the microparticles themselves. Thus, a new concrete can be

synthesized by adding microparticles, in such a way that they change the frictional

sliding behavior of the cracks under an external load. These additives, that will

be called ‘fillers’ for their ability of ‘filling’ the voids of the concrete matrix, are

of different types, and according to their intrinsic differences, they are expected to

affect the energy dissipation in a different way.
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Chapter II

Modeling of Microcracked Media

II.1 Models for internal dissipation in solids

The problem of modeling internal dissipation in solids is very old and, for this reason,

a huge literature concerning this subject is available. For clear reasons of consis-

tency we limit ourselves to draft some considerations and to cite some among the

relevant papers. It is indeed rather difficult to distinguish between the dissipated

energy which participates in damage and plastic phenomena (even by producing

new micro-cracks or enlarging the existing ones) and the dissipated energy which is

associated with friction related to reversible internal relative motions. Interesting

investigations which are meant to describe internal dissipation in the presence of the

damage progress are presented in Savage, Byerlee, Lockner [1996], Boma, Brocato

[2010], Pensée, Kondo, Dormieux [2002], Fantozzi et al. [1982], Fantozzi, Ritchie

[1981], Lomniz [1957] where various mechanisms of damage and plasticity are taken

into account, even at different length scales. (See also Rinaldi, Lai [2007b], Ri-

naldi [2013], Rinaldi, Lai [2007a], Rinaldi, Krajcinovic, Mastilovic [2007]). On the

other hand, the classical work of Kimball, Lovell [1927], Zener [1940] study the

internal mechanisms of dissipation in solids when no relevant damage phenomena

occur at the macroscopic level. In the same spirit are the papers Pensée, Kondo,

Dormieux [2002], Fantozzi et al. [1982], Fantozzi, Ritchie [1981], Shamy, Denis-

sen [2003], Spears, Feltham [1972], Wegel, Walther [1935], Hernández et al. [2002],

Darve, Labanieh [1982], Yu, Kobayashi, Hawkins [1993], Brailsford [1964], where

several models for dissipation of energy due to elastic deformation rate and rela-

tive motion of different parts of considered bodies are studied and applied in the

case of metals or even concrete. Finally, two papers which accept a point of view

very similar to ours are Adelaide et al. [2010], Bhattacharjee, Léger [1993] where

the internal dissipation mechanisms are clearly distinguished in two different types,
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one producing crack generation and growth, and the second being related to re-

versible relative motion of micro-crack faces. In Adelaide et al. [2010] micro-crack

surfaces relative motion is described by means of a tensorial quantity, distinguished

from plastic and elastic deformations. In some works (see e.g. Bhattacharjee, Léger

[1993]) the analysis is based directly on a finite-dimensional model to be used for

numerical simulations; however, internal friction is there regarded as a phenomenon

also driven by opening and closing of already existing cracks. Different work exists

on the mathematical modeling of reversible damping effects. In linear approaches,

often stress-strain relations with integral kernels are used, while for geometrically

nonlinear problems, the addition of rate-equations for some internal variables seems

to be more useful; see e.g. Neff [2005a, 2003, 2006] for incorporation of grain bound-

ary relaxation effects.

II.2 State of the art and preliminary work

In this section the effect of microcracking on the mechanical behavior of nonlinear

quasi-brittle materials is described. This approach is based on the assumption of

no interaction between microcracks and includes the effects of interaction between

the two faces of each microcrack when they come in contact under the influence

of an external load. Understanding and modeling the inelastic behavior of these

microcracked materials has received considerable attention during the last twenty

years. Continuum Damage Mechanics (CDM), based on the use of internal damage

variables, constitutes undoubtedly the most appropriate framework for the analysis

of the consequences of microcracking in engineering materials.

When an external load is applied to a microcracked material, the two superim-

posed faces of each crack start sliding on each other, generating a friction force that

dissipates some of the energy provided from the external load itself. It is for this

reason that macroscopic dissipation loops of concrete under cyclic loading can be de-

tected. It is worth noting that if the energy dissipation is mostly due to the frictional

sliding of the internal microcracks Pensée, Kondo, Dormieux [2002], a purely macro-

scopic approach is not sufficient to predict the mechanical behavior of a microcracked

material (such as concrete). Since it allows us to relate the macroscopic properties

to specific microstructural mechanisms, micromechanics may give a deeper insight

of the behavior of a microcracked material subjected to a given external load. In

other words, micromechanics allows us to explain some macroscopic features, such

as dissipation loop under cycling loading, by means of microscopic phenomena, such

as frictional sliding of microcracks Pensée, Kondo, Dormieux [2002].

We denote by Ω the Representative Elementary Volume (REV) of a medium
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made of an isotropic matrix containing many microcracks, that we call ω. It is

assumed that the characteristic size of these microcracks is small compared to the

dimension of REV; this occurs for example in materials which present a low level

of porosity 1 in their initial state. Due to the flattened shape of microcracks, each

of them is characterized by an upper face ω+ and a lower face ω−, and by a normal

vector of unit length n, oriented towards ω+ . In the REV it is possible to distinguish

different families of microcracks, characterized by the same normal vector n.

For each microcrack the unilateral contact conditions are considered. These

are divided, naturally, into the conditions in the normal direction and those in the

tangential directions. To describe them we denote by [|u|] = uω
+ − uω

−
the jump

of displacement u and its normal and tangential components on ω, given by

[|un|] = [|u|] · n, [|uτ |] = [|u|]− [|un|] n. (II.1)

Similarly, the normal and tangential components of the velocity field [|u̇|] on the

cracks are defined by

[|u̇n|] = [|u̇|] · n, [|u̇τ |] = [|u̇|]− [|u̇n|] n. (II.2)

Below we refer to the tangential components [|uτ |] and [|u̇τ |] as the slip and the

slip rate, respectively. We also denote by fn and fτ the normal and tangential

components of the stress field σ on the face of the microcracks, i.e.

fn = σn · n, fτ = σn−fn n. (II.3)

The component fτ represents the friction force on the contact surface.

The contact is modeled by the Signorini-Coulomb contact condition and can be

stated as follows: 
[|un|] ≥ 0 (a)

fn ≤ 0 (b)

[|un|] fn = 0 (c)

(II.4)

These conditions can be interpreted as follows: (i) if microcracks are open, inequality

[|un|] > 0 shows that there is no contact and the faces are not subjected to any

reaction, since fn = 0; (ii) if microcracks are closed there is a contact, [|un|] = 0,

and a compressive stress is established on the faces fn ≤ 0. Otherwise the condition

(a) establishes that the faces do not interpenetrate. The Signorini contact condition

1The porosity can be expressed as ϕ = 1− Vf

V where Vf is the effective volume of the solid part

and V is the volume of REV
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was first introduced in Signorini [1933] and then used in many papers (see e.g. Shillor,

Sofonea, Telega [2004] for further details and references).

We turn now to the conditions in the tangential directions, called also frictional

conditions or friction laws. The simplest one is the so-called frictionless condition

in which the friction force vanishes during the process, i.e.,

fτ = 0 on ω × (0, T ) (II.5)

where (0, T ) is the time interval considered.

This is an idealization of the process, since even completely lubricated surfaces

generate shear resistance to tangential motion. However, eq. (II.5) is a sufficiently

good approximation of the reality in some situations. In the case when the friction

force fτ does not vanish on the contact surface, the contact is frictional. Frictional

contact is usually modeled with the Coulomb law of dry friction or its variants.

According to this law, the magnitude of the tangential traction fτ is bounded by

a function, the so-called friction bound, which is the maximal frictional resistance

that the surface can generate; also, once slip starts, the frictional resistance opposes

the direction of the motion and its magnitude reaches the friction bound. Thus,

‖fτ‖ ≤ g if [|u̇τ |] = 0 on ω × (0, T ) , (II.6)

fτ = −g [|u̇τ |]√
[|u̇τ |] · [|u̇τ |]

if [|u̇τ |] 6= 0 on ω × (0, T )

where g represents the friction bound. Note that the Coulomb law (II.6) is char-

acterized by the existence of stick-slip zones on the contact boundary at each time

t ∈ [0, T ]. Indeed, it follows from (II.6) that if in a point x ∈ ω the inequality

‖fτ (x, t)‖ < g(x) holds, then [|u̇τ (x, t)|] = 0 and the material point x is in the so-

called stick zone; if ‖fτ (x, t)‖ = g(x), then the point x is in the so-called slip zone.

We conclude that Coulomb’s friction law (II.6) models the phenomenon according

to which slip may occur only when the magnitude of the friction force reaches a

critical value, the friction bound g.

Often, especially in engineering literature, the friction bound g is chosen as

g = g (fn) = µ̃ |fn| (II.7)

where the non-negative µ̃ is the coefficient of dynamic friction. We observe that the

friction coefficient µ̃ is not an intrinsic thermodynamic property of a material, a body

or its surface, since it depends on the contact process and the operating conditions.

The issue is considerably complicated by the following facts. Engineering surfaces
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are not smooth surfaces but contain asperities and various irregularities. Moreover,

very often they contain some or all of the following: moisture, various debris, wear

particles, oxide layers, chemicals and materials that are different from those of the

parent body. Therefore, it is not surprising that the friction coefficient is found to

depend on the surface characteristics, on the surface geometry and structure, on

the relative velocity between the contacting surfaces, on the surface temperature,

on the wear or rearrangement of the surface, and, therefore, on its history. Until

very recently, mathematical models for frictional contact used a constant friction

coefficient. In particular it is possible to distinguish two kind of friction, static and

dynamic friction. The coefficient of dynamic friction is usually less than the coeffi-

cient of static friction for the same materials. In recent publications the dependence

of µ̃ on the process parameters has been incorporated into the models; the coefficient

of friction can be chosen as µ̃ = µ̃ ([|u̇τ |]) .
According to Andrieux, Bamberger, Marigo [1986] the study of REV can be de-

composed into two subproblems: the first is a classic problem of linear homogeneous

elasticity; the second one takes into account the displacement discontinuity on the

faces of the microcracks. The idea is to distinguish in the macroscopic response

the effects due to discontinuity of the displacement on the microcracks. Thus, the

effective displacement field u is given by the sum of a term resulting from bulk defor-

mations and a term resulting from the micro-displacement discontinuity. Moreover,

given the particular form of microcracks, two fields that characterize the disconti-

nuities can be introduced:

1. a non-negative scalar variable β which describes the opening of the cracks and

represents their volume

β(n) = N
ˆ
ω+

[|un|] (x)dS (II.8)

2. a variable vector γ which is the sliding vector

γ(n) = N
ˆ
ω+

([|u|]− [|un|] n) (x)dS = N
ˆ
ω+

[|uτ |] dS (II.9)

where N is the density (number per unit volume) of microcracks of the family

considered.

As it can be seen from eq. (II.9), the magnitude of the sliding vector |γ| is a

measure of the relative displacement of the two faces of a certain family of cracks. It

is worthy of note that both the scalar opening parameter β and the sliding vector γ

depend on the normal n of the corresponding generic family of coin-shaped cracks,

all having the same normal.
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Under compressive loading some closed mesocracks may exhibit frictional slid-

ing and produce complex macroscopic behavior. Some authors (Pensée, Kondo,

Dormieux [2002]) have developed a model based on CDM that is able to predict

how microscopic frictional sliding can affect the macroscopic behavior of the ma-

terial; this model will be briefly presented in the remainder of this section. When

mesocracks are closed (β = 0), for the application of an external load, their faces

can slide in the presence of friction; in this case the macroscopic potential W is

written as the sum of two contributions,

W = W
(1)

+W
(2)

(II.10)

where W
(1)

is the term purely elastic and W
(2)

represents the contribution due to

the discontinuity of the displacement, in detail

W
(1)

=
1

2
E

(1)

: Cs : E
(1)

(II.11)

being Cs the fourth-order Elasticity tensor of the solid matrix, E
(1)

the second-order

Small Strain tensor, the symbol (:) the double contraction, and

W
(2)

=
H0

2d

{
β2 +

(
1− νs

2

)
γ · γ

}
(II.12)

where d is the density of a particular family of microcracks defined as the number

of cracks per unit volume times the mean radius of the generic microcrack (see Bu-

diansky, O’Connel [1976]), and the coefficient H0 can be expressed as

H0 =
3Y s

16
(

1− νs2
) (II.13)

in which Y s and νs are respectively Young’s modulus and Poisson’s ratio of solid

matrix. The eq. (II.12) has been obtained assuming the Small Strain tensor E
(2)

due to the presence of microcracks as:

E
(2)

= β (n⊗ n) + sym (γ ⊗ n) (II.14)

Finally, using the decomposition E = E
(1)

+ E
(2)

for the macroscopic deformation,

we can simply write

W (E, β, γ) =
1

2
(E − E(2)

) : Cs : (E − E(2)

) +
H0

2d

{
β2 +

(
1− νs

2

)
γ · γ

}
(II.15)

Moreover, it can be noted that the eq. (II.15) is applicable easily to the case in which

the microcracks are closed, namely β = 0.
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As explained before, the sliding vector γ, as defined in eq. (II.9), represents a

measure of the relative displacement between the two faces of a given family of

cracks, so that if γ̇ is the sliding rate. The volume energy dissipated when the

material is subjected to cyclic loading of time period T can be written as

Ediss
vol =

ˆ T

0

N
ˆ
ω+

µ̃ |fn| [|u̇τ |] dS dt (II.16)

where µ̃ is the dynamic friction coefficient, since [|u̇τ |] 6= 0. When one can assume

that µ̃ and |fn| are constant on all the cracks belonging to the family considered

then the expression (II.16) reduces to

Ediss
vol = µ̃

ˆ T

0

|fn| |γ̇| dt = µ̃

ˆ T

0

|fn|
√
γ̇ · γ̇dt (II.17)

Herein the Coulomb friction model is applied on closed cracks, in which, due to

the uniform contact constraints on the faces, the saturation of the friction criterion

occurs over the entire crack. Assuming that the variation of the applied external

macroscopic load occurs with a rate which is much slower than the rate of induced

microdynamics phenomena, then one can accept the so called Instantaneous Micro-

Equilibrium Hypothesis: At every instant, inside the REV, the micro-displacement

field can be estimated to be equal to the field which is the solution of the linear

elastic problem formulated for the REV, in which the external load is represented

by the macro-stress field σ, considered as applied to the boundary of the REV. In

this framework the sliding vector γ can be expressed as a function of the macrostress

tensor σ as (see Pensée, Kondo, Dormieux [2002])

γ =
2d

H0 (2− νs)
(δ − n⊗ n) · (σn) (II.18)

where δ is Kronecker tensor. Hence, differentiating eq. (II.18) with respect to time,

the sliding rate becomes

γ̇ =
2d

H0 (2− νs)
(δ − n⊗ n) · (σ̇n) (II.19)

Thus, substituting eqs. (II.19) and (II.3) in eq. (II.17), the volume energy dissipated

can be written as

Ediss
vol = µ̃

2d

H0 (2− νs)

ˆ T

0

|σn · n|
√

[(δ − n⊗ n) · (σ̇n)]2dt (II.20)

In order to measure this energy, an uniaxial state of stress is considered:

σ = σ33 (e3 ⊗ e3) (II.21)
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where {e1,e2 , e3} is the vector basis in R3. By replacing eq. (II.21) in eq. (II.20),

and representing the normal vector in terms of components, we obtain the following

Ediss
vol (n) = µ̃

2d

H0 (2− νs)

ˆ T

0

σ33 σ̇33
(
1− n2

1
− n2

2

) 3
2

√(
n2

1
+ n2

2

)
dt (II.22)

in which it is considered the unit-length constraint on n:

n2
1

+ n2
2

+ n2
3

= 1

This expression for the energy dissipation over a period T is clearly function of the

unit normal n, and hence it depends on the particular family of microcracks consid-

ered. More specifically, for a material with a directionally uniform distribution of

microcracks, the whole energy dissipated can be estimated by integrating eq. (II.22)

over the entire solid angle, obtaining

Ediss
vol = µ̃

2d

H0 (2− νs)
ˆ T

0

σ33 σ̇33

ˆ 1

−1
dn1

ˆ √1−n2
1

−
√

1−n2
1

(
1− n2

1
− n2

2

) 3
2

√(
n2

1
+ n2

2

)
dn2

 dt (II.23)

corresponding to an isotropic crack distribution.

We remark that the dissipated energy (II.23) is expressed as function of the stress

σ33 instead of γ because is easier to measure the stress.

II.3 Continua with microstructure

The standard models usually introduced to study the deformation of cyclically com-

pressed specimens of modified (or not modified) concrete do not seem suitable to

describe all of the complex phenomena of internal dissipation which are experimen-

tally observed, especially in the range of small strains. Indeed, (see Madeo [2006],

Bowland [2012]) the dissipation loops measured under cyclic loads with relatively

small amplitude show very peculiar qualitative features (see fig. II.1):

• the two branches present different (varying) curvatures on the loading and

unloading paths;

• the turning points seem to have the form of cusps;
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Figure II.1: Example of measured dissipation loop in concrete-based material.

• the distance between the loading/unloading branches varies in a non-linear

way with the applied compression loads.

Even when, at a macro-level, the compression loads and deformations are rel-

atively small, these experimental observations suggest that some non-linear elastic

mechanisms are occurring at the micro-level, together with a Coulomb dissipation

mechanism related to micro-motions, this may explain the observed evidence. The

discussion of the rigorous modeling and mathematical issues arising from the ob-

served evidence is delicate and deserves attention. Herein we consider a simple and

efficient model that is conceivable to fit the targeted experimental evidence and we

study its most relevant features.

In the framework of the above mentioned theory proposed by Pensée, Kondo,

Dormieux [2002], we develop a novel model based on the theory of micromorphic

media (see Eringen [1999]). In particular, we choose to introduce an extra kine-

matical field ϕ, in addition to the standard macroscopic displacement, to describe

the relative displacement of superimposed faces of the microscopic cracks, which

are known to be present in concrete materials. The introduction of extended kine-

matics to study materials with microstructure was developed by many authors in

the decades 1950-1980. (See e.g. Eringen [1999, 2001], Eringen, Edelen [1972], Erin-

gen, Suhubi [1964a,b], Pietraszkiewicz, Eremeyev [2009], Green, Rivlin [1964c, 1965,

1964b,a], Mindlin [1964, 1965], Mindlin, Eshel [1968], Toupin [1962, 1964]). These

authors study deformation, damage and internal friction phenomena occurring in de-

formable bodies, which, at a suitable micro-level, may show strong inhomogeneities

in geometrical and mechanical properties. Models of continua with enriched kine-

matics are known as micromorphic models and originated with the works of Mindlin
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[1964] and Eringen [1999]. Such micromorphic models can also be seen as a way

to obtain, as suitable limit cases, other very common generalized continuum theo-

ries which are known as second gradient theories (see e.g. Germain [1972, 1973]).

These latter theories have the same kinematics as classical Cauchy continuum theo-

ries (only displacement field), but the microstructure of the continuum is accounted

for by suitable length-scales associated with the assumption that the strain energy

density depends on the second gradient of displacement. Various micromorphic and

higher-gradient theories have been re-proposed in the last years to study different

kinds of physical systems with microstructure. (See e.g. dell’Isola, Seppecher [1995],

Ferretti et al. [2013], Forest [2009], Forest, Cordero, Busso [2011], Forest, Siev-

ert [2006], Kotronis et al. [2005], Misra, Chang [1993], Misra, Ching [2013], Misra,

Singh [2013], Misra, Yang [2010], Pohd, Bruhns [1993], Yang, Misra [2010, 2012],

Yang, Ching, Misra [2011], Auffray, Bouchet, Brechet [2009, 2010]). Recently, a re-

laxed micromorphic model has been proposed in Ghiba et al. [2013], which accounts

for possible micro-heterogeneities with a considerably reduced number of constitu-

tive parameters compared to classical micromorphic models. We can summarize by

saying that micromorphic models are able to catch the complexity of the coupling

phenomena between micro- and macro-motions. We claim that these micro-macro

coupling phenomena actually dominate dissipation in solids constituted by grains

bonded with viscoelastic cement. As the internal frictional phenomena which we

have in mind obviously can also occur in beams and shells, the concept of additional

microstructural or internal variables that we discuss may be adapted to many dif-

ferent cases, such as the continuum models treated in Altenbach, Eremeyev [2009b,

2011], Altenbach, Eremeyev, Lebedev [2011], Altenbach, Eremeyev [2010a, 2009a],

Eremeyev, Pietraszkiewicz [2004], Eremeyev [2005], Eremeyev, Altenbach, Morozov

[2009], Eremeyev, Pietraszkiewicz [2011], Altenbach et al. [2010], Eremeyev, Freidin,

Sharipova [2003], Pietraszkiewicz, Eremeyev [2007], Eremeyev, Freidin, Sharipova

[2007] for shells with surface stresses or micro-polar extra kinematical descriptors.

The same applies for the models of Altenbach, Eremeyev [2008, 2009a], Altenbach,

Eremeyev, Morozov [2012] for continua showing viscoelastic behavior. In future

investigations it could be useful to conceive homogenization procedures aimed at

deducing the most suitable macroscopic models for describing the phenomena we

have in mind and which seem to be associated with the proposed model of con-

tinuum with microstructure. (See e.g. Alibert, Seppecher, dell’Isola [2003] for a

homogenization process leading to second gradient materials). This would allow

setting up a micro-macro identification procedure for the determination of macro-

scopic constitutive parameters characterizing the mechanical behavior of modified

concrete, starting from its microscopic internal structure. Herein we consider a
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continuum model with microstructure, aiming to describe some of the dissipation

phenomena occurring in deformable bodies, which, at a micro-level, are constituted

by a compact matrix presenting a uniform and isotropic distribution of penny-shaped

micro-cracks. We are aware that this last assumption is rather simplified: Not only

are micro-cracks not in general isotropically and homogeneously distributed in the

reference configuration, but even if they are so, they will lose these properties in the

current configuration. Therefore, one should expect that for a careful and detailed

modeling of the phenomena that we have in mind, one should introduce some tensor

fields (see e.g. Adelaide et al. [2010]) in order to describe the evolution of the state

of micro-cracks inside the Representative Elementary Volume (REV). We start to

consider a simple scalar field ϕ whose evolution describes, in an approximate and

averaged way, the total amount of relative displacement of crack faces present in

the considered REV. It will be assumed that the number of micro-cracks, and their

geometrical and mechanical properties, do not change in the dynamic phenomena

considered. In other words, we assume that damage is not progressing. Rather, the

dissipative phenomena which we want to describe are related to the relative motion

of the two superimposed surfaces of cracks, which slide with respect to each other

and come back to their initial position at the end of any loading cycle.

II.4 Methods for reducing the degrees of freedom

in considered models

The concrete specimens tested in the experimental work of Madeo [2006], the behav-

ior of which we want to reproduce, are three-dimensional. Therefore, the suitable

model to be introduced is a model (possibly non-linear) of a three-dimensional con-

tinuum. However, to simplify the model used, one can think of following the method

pioneered by Saint-Venant. (For some generalizations of the classical problem named

after him and discussion of the central idea of his method, see e.g. Batra, dell’Isola,

Ruta [2005], dell’Isola, Batra [1997], dell’Isola, Ruta, Batra [1998], Andreaus, Ruta

[1998] and the references therein.) This method permits the reduction of the com-

plexity of the problem of determining the deformation of a specimen, the shape of

which is cylindrical in its reference configuration. More particularly, the problem of

solving a system of PDEs is reduced to the simpler one of solving a system of ODEs.

We assume that:

• the cylinders considered are deformed only in the Saint-Venant compression

(with Poisson effect) mode;
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• the frequency of the forcing load is much smaller than the eigen-frequencies of

the cylinders;

• the distribution of micro-cracks is uniform, so that one scalar quantity is suf-

ficient to describe the internal micro-motion in the cylinder;

• the imperfections present neither cause nor influence the instabilities in any

way, global or local. In particular, they do not change the microstructure

evolution. (The literature in the field is immense; the reader is referred e.g.

to Luongo [2001], Jamal et al. [2003], and references therein.)

Once having adopted the previous hypotheses, the problem to be solved consists

then in

• looking for the evolution equation for the newly introduced kinematical de-

scriptor ϕ describing micro-displacement with Coulomb dissipation;

• determining the modifications to be introduced in standard evolution equations

for the displacement field;

• determining the coupling terms between these equations.

In order to obtain the reduced model, one could conceive of a more or less mathemat-

ically rigorous process starting from a Cauchy model at a given small length scale

for the material inside a REV, in which the boundary conditions at crack faces are

chosen to include Coulomb-type friction. We do not address such a delicate analysis

in this work, and we will instead formulate a macroscopic model which shows the

qualitative behavior which is expected on the basis of appropriate phenomenological

considerations. In fact, we present a target theory, to which such a homogenization

process should reduce. It is clear that the constitutive parameters appearing in the

phenomenological theory which we develop can be determined only by means of the

comparison of suitable numerical simulations with corresponding experimental evi-

dence. Hence, we perform parametric studies of the proposed model, in order to be

able to subsequently tune these parameters to direct the design of a measurements

campaign.

The model presented here may have wide applicability. However, it is tailored

with a view towards a precise application which is of interest in structural and civil

engineering. Actually, our attention is focused, in particular, on the description

of mechanical behavior of concrete-like materials with enhanced internal frictional

dissipation. This enhancement is obtained by changing the recipe of the concrete

mix, by adding suitable inert additives, whose grains have the size needed to fill crack
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voids or to improve friction contact of crack faces. (See e.g. Madeo [2006], Pensée,

Kondo, Dormieux [2002], Bowland [2012] and references there cited.) The numerical

simulations which are presented in this thesis needed to be calibrated carefully,

because of the strong nonlinearities they present, and because of the singular nature

of ODEs usually associated to Coulomb friction. These points are not addressed in

the present investigation. In this aspect, and also for what concerns the modeling

difficulties, the model proposed here resembles closely the one studied in dell’Isola,

Hutter [1998]). The numerical results obtained show that the proposed model is

suitable for describing some of the experimental evidence discussed in Madeo [2006].

The main peculiarities of the proposed model can be summarized as follows:

• nonlinearities appear only in terms of the parameter ϕ and its time derivative,

• Coulomb dissipation mechanisms play a role only in the evolution equation for

ϕ,

• dissipation cycles in the force-displacement behavior show a variety of qual-

itative behaviors, depending on the choice of constitutive parameters, which

is general enough to encompass the structure which has been observed, as

in Madeo [2006] and reproduced in fig. II.1.

II.5 Some considerations about future perspec-

tives and limits of the model presented

To assess their possible use in our applications, the system of ODEs that we consider

presents non-trivial mathematical difficulties which need to be studied. This math-

ematical study is preliminary to the formulation of a suitable variational principle,

developed to supply the governing equations of systems which are more general than

the one considered here. Moreover, the role of the micro-displacement parameter ϕ,

as conceived in this work, will need to be further specified. More specifically, one

may ask if it is possible to regard such a parameter as an internal variable. (This is

done in very similar models; see e.g. dell’Isola, Woźniak [1997a,b], dell’Isola, Rosa,

Woźniak [1997c, 1998] and references there cited.) Or should it be regarded as a

truly micro-structural parameter, as done e.g. in Toupin [1962, 1964], Green, Rivlin

[1964b,a], Mindlin [1964], Misra, Singh [2013], Misra, Yang [2010], Sedov [1972],

dell’Isola, Batra [1997] and references there cited. The mathematical relevance of

such a question is not negligible. Indeed, in the first case the deformation energy

is assumed to depend on ϕ only, while in the second one also a dependence on ∇ϕ
will appear. As a consequence, the evolution equations for ϕ in the first case will
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not involve partial derivatives, but which will be present in the second case. A

related problem concerns the highest order of the derivatives of the displacement

field, which we will need to introduce in connection with deformation energy, to ob-

tain the desired generalized model. It is indeed known (see e.g. Alibert, Seppecher,

dell’Isola [2003] and references there cited) that high contrast in the mechanical

properties at the micro-level, which surely is present in the physical system consid-

ered here, requires the introduction of higher order continua. (See e.g. dell’Isola,

Guarascio, Hutter [2000], dell’Isola, Seppecher [1995], Ferretti et al. [2013], Forest

[2009], Forest, Cordero, Busso [2011], Forest, Sievert [2006], Madeo, dell’Isola, Darve

[2013], Nadler, Papadopoulos, Steigmann [2006], Sciarra, dell’Isola, Coussy [2007]

and references there cited.) In this thesis, we are assuming that the population

of cracks present in the specimens considered is constant in number and does not

change its mechanical and geometrical properties because of the applied loads. In

other words, we assume that the level of damage at the microlevel is not changing

during the loading/unloading process. (For similar approaches see e.g. Adelaide et

al. [2010], Altenbach, Eremeyev [2008], Andreaus, Baragatti [2009], Bhattacharjee,

Léger [1993], Boma, Brocato [2010], Boukria, Limam [2012], Carpinteri, Lacidogna,

Pugno [2004], Contrafatto, Cuomo [2002, 2005], Ciancio, Carol, Cuomo [2006, 2007]

and references there cited.) Indeed, the experimental evidence presented in Madeo

[2006] shows that there is no degradation in the mechanical properties when the

intensity of the applied loads is below a precise threshold, provided the duration

of loading is limited in time. This means that dissipation occurs at crack surfaces

without relevant abrasion. (See e.g. D’Annibale, Luongo [2013] and references there

cited.) It also occurs without any plastic phenomenon. (See e.g. Contrafatto,

Cuomo [2002, 2005, 2006], Cuomo, Contrafatto [2000], Cuomo, Ventura [1998] and

references therein.) Further, there is no formation of new cracks. (See Hillerborg,

Modéer, Petersson [1976] and related literature.)

We will not assume in this thesis that there is an explicit dependence of the

strain energy density on the space gradient of ϕ. This means that we are assuming

that the micro-motion inside one REV does not depend on the micro-motions inside

the contiguous ones. This is equivalent to saying that we do not account for the

possibility of describing, at a macroscopic scale, the presence of high gradients of

microscopic relative displacements. This hypothesis is quite sensible since no lo-

calization phenomena are observed in the mechanical tests performed. The model

which is presented here has been tailored to be used for modified concrete. However,

one should consider that many possible applications can be imagined for it. Actually,

internal friction is a phenomenon which plays a relevant role in different contexts, for

instance in the flow in porous media. (See e.g. dell’Isola, Guarascio, Hutter [2000],
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dell’Isola, Hutter [1998], Federico, W. Herzog [2008a], dell’Isola, Madeo, Seppecher

[2009], Madeo, dell’Isola, Darve [2013], Misra, Chang [1993], Quiligotti, Maugin,

dell’Isola [2002, 2003], Sciarra, dell’Isola, Hutter [2001], Sciarra, dell’Isola, Coussy

[2007] and references there cited.) In such cases internal friction competes with

Darcy or Brinkman dissipation. Another related case is growing tissues, as described

using micro-structured continuum models, as in Federico, W. Herzog [2008b], Fed-

erico, Gasser [2010], Lekszycki, dell’Isola [2012], Madeo, Lekszycki, dell’Isola [2011],

Madeo [2006], where internal friction seems to play a non-negligible role in mechano-

sensing phenomena controlling tissue synthesis.

It has to be finally remarked that the modification of concrete by means of

suitable inert additives, proposed in Madeo [2006] is founded on some precise theo-

retical considerations which need to be further developed. (See e.g. Pensée, Kondo,

Dormieux [2002].) Actually, the idea is the following: The concrete recipe is modi-

fied in order to increase its dissipation capability without favoring the onset of plastic

deformation or crack formation and growth. In order to develop this idea, an impor-

tant theoretical effort is required. One has to adapt the methods used in the theory

of structural modification. (See e.g. Carcaterra, Akay [2007, 2011, 2006], Culla,

Sestieri, Carcaterra [2003] and references there cited.) Other useful methods are

those of the design of smart materials and structures. (See e.g. Andreaus, dell’Isola,

Porfiri [2004], dell’Isola, Vidoli [1998a,b], Maurini, dell’Isola, Del Vescovo [2004],

Maurini, Pouget, dell’Isola [2004, 2006], Porfiri, dell’Isola, Santini [2005], Vidoli,

dell’Isola [2001, 2000] and references there cited.) In the first type of theories the

concept which is exploited is the following: One adds to the system some coupled

subsystems in which the energy preferably flows and in which it remains trapped

until it is somehow dissipated. We remark that this effect can be obtained by using

only linear phenomena (see Carcaterra, Akay [2007]) and that its analysis is based

on the concept of internal or micro-structural evolutionary variables whose evolution

equations are suitably designed. This is also the concept on which the second of

the aforementioned research streams is based: The coupled systems are designed in

order to internally resonate with the principal system and the damping elements are

tailored to optimize energy dissipation.

In conclusion, the change of the concrete recipe which is envisaged here should

forecast the formation of suitable slave microstructures, as follows:

• Their motion is activated by macro-deformation

• Their presence does not modify the mechanical strength of the modified con-

crete

• Their damping capabilities reduce (or do not alter) the damage progress in
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the presence of cyclic load.

One of the main conclusions to which the present work leads is that the model-

ing tool which seems more suitable in this context is a microstructure field the-

ory coupled with standard methods of optimization and control. More precisely,

once having introduced a new scalar kinematical parameter ϕ, which is intended

to measure the overall relative displacement of micro-cracks faces inside a Repre-

sentative Elementary Volume (REV) of the specimens considered, we postulate, on

the basis of reasonable simplifying assumptions, some coupled Ordinary Differential

Equations governing both macroscopic strains and micro-deformations of internal

micro-cracks. We aim to describe (i) linear and non-linear deformation phenomena

occurring because of the aforementioned relative displacement, (ii) coupling phe-

nomena between macro-motion and micro-motion, and (iii) Coulomb dissipation

phenomena occurring at crack faces. The model presented assumes no crack growth

or crack production, but simply the existence of a reversible (although dissipative)

internal micro-motion due to the presence, in the reference configuration, of micro-

cracks.

II.6 Modelling

The model for concrete-based materials which we want to introduce is a very par-

ticular case of a continuum with microstructure (see e.g. Eringen [2001], Mindlin

[1964]). Our final aim is to investigate the mechanism of internal dissipation due

to Coulomb friction. Many authors examine the different mechanisms of internal

dissipation in brittle materials such as concrete; see e.g. for more details Lomniz

[1957], Bhattacharjee, Léger [1993]. In particular, we want to focus our attention

on dissipation in materials (such as concrete) which present voids typically charac-

terized by a shape as a coin (coin-shaped cracks), and materials (such as modified

concrete e.g. Madeo [2006], Bowland [2012]) containing microscopic components such

as micro-filler, used to improve damping performances without compromising me-

chanical strength. A new additional and independent micro-structural kinematical

variable ϕ is introduced to take into account the interaction between the opposite

faces of voids (micro-cracks) when they come in contact and slide one with respect

to the other because of the externally applied load. We assume that the defor-

mation energy of the medium considered is characterized by a volumetric strain

energy density Ψ which depends on the basic kinematic descriptors, i.e. the clas-

sical displacement field u and the new scalar field ϕ, which represents the relative
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displacement of two superimposed faces of micro-cracks. In particular, we set

Ψ (E,ϕ) =
1

2

[
2µ tr(E E) + λ (trE)2

]
+

1

2
k1ϕ

2 +
1

3
k2ϕ

3 +
1

4
k3ϕ

4 + αϕ

√
I
(d)
2 (II.24)

where λ and µ are the Lamé parameters for linearly elastic isotropic materials. Also,

E =
(
∇u +∇uT

)
/2 is the linearized Green-Lagrange deformation tensor, and the

scalar I(d)
2

is the second invariant of the deviatoric strain tensor dev E = E− 1
3
tr E I

defined as

I(d)
2

=
1

2
tr (dev E dev E) .

The ansatz (II.24) on the strain energy density will be justified a posteriori on the

basis of available experimental evidence. On the other hand, the kinetic energy

density of the system considered is defined by

K =
1

2
ρ u̇2 +

1

2
ρϕ ϕ̇

2 (II.25)

where ρ is the mass density of the bulk material and the ρϕ is an effective macroscopic

mass density linked to the micro-structural variable ϕ. It can be checked that, since

the micro-strain field ϕ is assumed to have the dimensions of a length, the units of

the parameter ρϕ are the same as the units of the macroscopic bulk mass density

ρ. Since the dissipation is not negligible, the governing equations of the medium

considered do not have a variational structure, but they possess a quasi-variational

structure. In this context we introduce a Rayleigh potential R, which is aimed to

describe Coulomb-type friction dissipation, in the form

R = ζ trE

(
Log( Cosh( η ϕ̇ ) )

η

)
, (II.26)

where ζ and η are constitutive constants. We can notice that, in particular, the

constant η can be seen as the inverse of a characteristic velocity associated with

microscopic motions, while the constant ζ directly accounts for dissipation due to

microscopic frictional sliding. Few words need to be spent here; actually, in the

literature, the Coulomb friction force is usually modeled by the introduction of the

function signum, whose argument is the velocity of the kinematical quantity on

which friction forces are acting.

This function, when appearing in differential equations, is a source of strong

singularities and numerical or chaotic instabilities, whose regularization and study

can be performed using the methods described in the literature. (See e.g. Luongo, Di

Egidio [2006], Luongo, Romeo [2009], Michel, Limam, Jullien [2000], Luongo, Zulli,

Piccardo [2009] and references therein.) Also, based on physical considerations, we

propose to regularize the function signum with a hyperbolic tangent, modulated
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Figure II.2: Friction law with varying the parameter η.

with an amplitude ζ (giving the maximum of friction force which may be exerted)

and with a suitably chosen slope given by η, triggering the range of velocity, where

friction force is an increasing function of the velocity (see fig. II.2). This is equivalent

to state that we assume a Navier-Stokes type of dissipation for low micro-velocities.

This physical assumption, although reasonable, needs to be justified with more

detailed analyses and can also be related to bifurcation and instability phenomena

which may occur in modified concrete (see e.g. Jamal et al. [2003] and references

therein).

In conclusion, the virtual work due to internal dissipation can be written as

δW
(Diss)

(E, ϕ, ϕ̇) =

ˆ T

0

ˆ
V

(
∂R
∂ϕ̇

δϕ

)
dV =

ˆ T

0

ˆ
V

ζ tr E tanh( η ϕ̇ ) δϕ dV,

where V is the volume which the specimen occupies in its reference configuration

and [0, T ] is the time interval during which we observe the motion of the specimen.

We can write the governing equations in weak form of the concrete-based material

as

− δW (Elast)

+ δW
(Iner)

= −δW (Diss)

+ δW
(Ext)

(II.27)

in which

δW
(Elast)

=

ˆ T

0

ˆ
V

δΨ dV, δW
(Iner)

=

ˆ T

0

ˆ
V

δK dV,

δW
(Ext)

=

ˆ T

0

ˆ
∂V

Fext · δu dS,

with the expressions for the strain energy and kinetic energy densities given by

eqs. (II.24) and (II.25), respectively, and where Fext are the surface externally ap-

plied forces.
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II.6.1 Simplified equations of motion based on Saint-Venant

theory for the case of simple compression

We use from here on the fact that the experiments which are targeted in this work

are simple compressions of cylindrical concrete specimens, so that we assume that

Saint-Venant theory for simple compression can be applied. In this way, we are able

to deduce the simplified equations in strong form directly from expression (II.27).

To do so, we start recalling that, in the case of axial compression along the x3 axis

of a Saint-Venant cylinder, one has

E =

 −ν ε 0 0

0 −ν ε 0

0 0 ε

 , u =

 −ν ε x1−ν ε x2
ε x3

 ,

where we set ε = E33 = u3,3, with ν the Poisson coefficient, and x1, x2 and x3
are the Lagrangian coordinates (in a given reference frame with origin on the axis

of the cylinder) of the material points constituting the considered specimen. We

also explicitly remark that another assumption of the Saint-Venant model is that

the field ε does not depend on x1, x2, x3, but only, possibly, on time. We make

the same assumption for the micro-displacement field ϕ. With these simplifying

assumptions, it can be checked that, in the particular case considered, integrating

by parts in time, considering isochronous motions and arbitrary variations δε and

δϕ, the principle of virtual powers (II.27) implies
Mε̈+Kε+ α̃ϕ = f0 + f1 sin(ωt)

mϕϕ̈+ k̃1ϕ+ k̃2ϕ
2 + k̃3ϕ

3 + α̃ε− ζ̃ tanh(η ϕ̇) ε = 0

(II.28)

where

M =

ˆ
V

ρ
(
ν2
(
x21 + x22

)
+ x23

)
dV, mϕ =

ˆ
V

ρϕ dV,

K =

ˆ
V

(
λ+ 2µ+ 4 (λ+ µ) ν2 − 4λ ν

)
dV, α̃ =

ˆ
V

(√
3/3 (1 + ν)α

)
dV,

k̃1 =

ˆ
V

k1 dV, k̃2 =

ˆ
V

k2 dV, k̃3 =

ˆ
V

k3 dV, ζ̃ =

ˆ
V

ζ (1− 2 ν) dV.

Moreover, the external applied forces have been chosen to be those of a simple

dynamic compression, i.e. Fext = (0, 0,−F )T , with F = F0 + F1 sin(ωt). With this
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assumption, it can be checked that the loads appearing in eqs. (II.28) are defined as

f0 = k F0 and f1 = k F1 with k =
´
∂V
L dS and L the length of the cylinder. Some

comments are needed at this point:

• One can easily estimate the equivalent mass M by assuming that the volume

mass density of concrete specimens is homogeneous (and known) while the

displacement field depends linearly on the reference configuration variables

and on elongation.

• We assume that elastic non-linearities are involved only in the evolution equa-

tion for the variable ϕ.

• The function k̃1ϕ+ k̃2ϕ
2 + k̃3ϕ

3 is assumed to be monotonously increasing.

• The deformation energy clearly needs to be positive definite and, consequently,

suitable restrictions on the stiffness parameters must be considered.

• The amplitude of the Coulomb frictional force, for obvious physical reasons,

has to be smaller than the lowest amplitude of the applied external load.

(See the papers Luongo, Di Egidio [2006], Di Egidio, Luongo, Paolone [2007],

Michel, Limam, Jullien [2000], Jamal et al. [2003] and references therein for a

discussion of the possible bifurcation phenomena which may occur.)

• Many other possible dissipation regimes can be conceived in order to regularize

the discontinuous dependence assumed in a Coulomb-type model for friction.

Each of them would represent a different physical phenomenon, which would

have different effects on the turning points of dissipation loops (i.e. when |ϕ̇| is
suitably small). In this work we assume that viscous Navier-Stokes dissipation

effects are dominant when the microstructure velocity |ϕ̇| is suitably small,

while they vanish and need to be replaced by Coulomb friction beyond a given

micro-velocity level.

The eqs. (II.28) are very similar to those presented in Bastien, Schatzman, Lamarque

[2000], Lamarque, Bernardin, Bastien [2005]. The former paper describes rheologi-

cal models based on simple constitutive elements –springs, dash-pot, Saint-Venant

elements– and provides mathematical study, existence and uniqueness results, and

an adapted numerical scheme. The latter paper consider a locally Lipschitz contin-

uous term in the deterministic or stochastic frame.
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Figure II.3: Cyclic external load.

II.7 Numerical simulations: specimen in pure com-

pression

For numerical simulations, we limit our attention to cylindrical specimens with di-

ameter φ = 11.28 cm and height h = 22 cm. All simulations are performed via the

automatic code COMSOL Multiphysicsr. As for boundary conditions, the speci-

men is constrained at the bottom with a zero displacement in the direction x3. A

cyclic external load per unit area is applied on the top in the direction x3 and with

a frequency of 1 Hz, which is very low compared with the natural frequencies of the

testing sample, to avoid troublesome inertial effects. For the same reason, an initial

smooth ramp is employed as shown in fig. II.3.

In order to illustrate the performance of the model proposed for the cement-based

materials studied in this thesis, we consider several numerical simulations performed

by varying the parameters introduced in eq. (II.28). All other parameters which are

not varying take the values prescribed in tab. II.1. We show in tab. II.2 the ranges of

values for the introduced parameters used to perform numerical parametric studies.

The numerical values shown in tab. II.1 have been determined by means of the

following calibration process:

• in the static loading case the measured stress-strain relationship has to be

verified;

• the value of the parameter ϕ has to be compatible with the order of magnitude

of known dimensions of typical cracks in concrete;
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Table II.1: Reference values of the parameters used in the numerical simulations.

Parameter Value Unit

M 7.8× 10−2 kg m2

mϕ 7.8× 10−5 kg

K 25× 109 N m

α̃ 1.9× 1011 N

k̃1 1.86× 1012 N/m

k̃2 9.4× 1013 N/m2

k̃3 9.2× 1019 N/m3

ζ̃ 1.5× 1011 N

η 2× 102 s/m

• equivalent mass coefficients are determined by taking into account the volume

mass density of concrete and an estimate of the percentage of total mass of

concrete specimens which is moved because of crack faces movement;

• amplitude of Coulomb friction force has to be smaller than the force deforming

micro-cracks;

• coupling between micro and macro motion must respect positive definiteness

of the deformation energy;

Some parametric studies are performed in the remainder of this thesis on the crucial

parameters of the model presented. Unless otherwise specified, the typical ranges of

values assigned to the material parameters in the numerical simulations are those

listed in tab. II.2.

II.7.1 Effect of the basic parameters of the model presented

on the area of dissipation loops

In this subsection we show the effect of any single parameter of the proposed model

on the area and shape of the dissipation loops. We start by considering the effect of

the Coulomb friction coefficient ζ̃ on the amplitude of dissipation loops, the area of
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Table II.2: Ranges of values of the material parameters to be used in the numerical

simulations on concrete.

Parameter Range of values Unit

k̃1 1.7× 1012 − 1.93× 1012 N/m

k̃2 0− 8× 1015 N/m2

k̃3 6.5× 1019 − 9.5× 1020 N/m3

α̃ 1.7× 1011 − 2× 1011 N

ζ̃ 1010 − 4× 1011 N

which is seen to increase monotonically with ζ̃. However, because of the strong non

linearity of system considered, the variation of the other relevant parameters also

greatly influences the dissipating capability.

Figure II.4 shows the variation of energy dissipation loops in a stress-strain di-

agram when varying the friction coefficient ζ̃. It can be directly remarked that the

area of the loops is increased when increasing the value of the coefficient ζ̃. This

is completely sensible, since the mechanism which we want to associate with the

parameter ζ̃ is the dissipation at the scale of micro-cracks, which is due to the rel-

ative motion of the two superimposed faces of each crack as a consequence of the

application of the external dynamic load. This numerical evidence is a step to-

wards the conception of suitable experimental campaigns on concrete modified with

micro-fillers enhancing its dissipative properties. Indeed, it is sensible to assume that

different micro-fillers with different mechanical and physical characteristics may fill

the micro-voids which are present inside the concrete matrix and change the micro-

scopic friction coefficient ζ̃ with respect to that of unmodified concrete.

Figure II.5 shows the variation of dissipation loops when varying the coefficient

α̃, i.e. the coupling parameter between the micro-structural variable ϕ and the

macroscopic strain. It is worth noticing that the effect of increasing micro-macro

coupling implies that the dissipation loop is shifted towards the right. Increasing

the value of the coupling parameter means that the contribution to macroscopic

deformation due to microscopic motion becomes more and more important and

greater macroscopic strains can be attained with the same force level. Moreover,

we notice that the fact of increasing the coupling parameter α̃ changes the shape of

the dissipation loop giving rise to characteristic curvatures of the loading-unloading

branches which are observed in available experimental curves (see fig. II.1). We
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Figure II.4: Influence of the friction coefficient ζ̃ on the energy dissipation loops for

cement-based materials. ζ̃ = [1× 1010, 1.4× 1011, 2.7 1011, 4× 1011].

Figure II.5: Influence of the material parameter α̃ on the energy dissipation loops

for cement-based materials. α̃ = [1.7× 1011, 1.8× 1011, 1.9× 1011, 2× 1011].
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Figure II.6: Influence of the material parameter k̃3 on dissipation loops for cement-

based materials. k̃3 = [6.5× 1019, 3.6× 1020, 6.55× 1020, 9.5× 1020].

finally remark that with smaller coupling, the obtained loops can be seen to show a

slightly smaller area and thus a reduced dissipation.

In fig. II.6 dissipation loops are depicted which show the effect of the material

parameter k̃3. It is possible to remark that, contrarily to what happens with the

coupling parameter α̃, high values of k̃3 increase the whole stiffness of the system

and consequently decrease the energy dissipated in each cycle. More precisely, k̃3
can be interpreted as a microscopic stiffness which makes more difficult the relative

motion of crack faces when it takes higher values. For example, k̃3 may be expected

to be higher when considering a concrete matrix prepared with higher mechanical

strength concrete. It can be observed (but we do not show explicit pictures here)

that if one sets k̃3 to be zero, then the characteristic sickle shape of the dissipation

loop associated with the Coulomb friction phenomena is completely lost and the

dissipation loop resembles more an ellipsoid, which is known to be associated with

viscous dissipation phenomena. Hence, we can conclude that the constitutive pa-

rameter k̃3, intrinsically associated with the microscopic elastic behavior governing

the relative motion of crack faces, is necessary if one wants to correctly describe the

characteristic sickle shape of the experimental dissipation loops.

In fig. II.7 the behavior of dissipation loops is depicted when increasing the value

of the material parameter, k̃2. It can be observed that the micro-stiffness parameter

k̃2 also can be related to microscopic elastic mechanisms, which makes the whole

specimen more rigid when this parameter takes higher values. Nevertheless, the
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Figure II.7: Influence of the material parameter k̃2 on energy dissipation loops for

cement-based materials. k̃2 = [1× 1010, 2.67× 1015, 5.33× 1015, 8× 1015].

influence of this parameter on dissipation loop shape and amplitude is less pro-

nounced when compared with that due to k̃3. This is sensible since the microscopic

non-linearities associated with the parameter k̃3 are of higher order than those as-

sociated with k̃2. Numerical simulations show that values of k̃2 which span in the

range [0, 1015] do not substantially affect the dissipation behavior of the system. On

the other hand, for the values of k̃2 shown in tab. II.2, a rigidifying effect of the

material for higher values of k̃2 can be observed.

Figure II.8 shows how the material parameter k̃1 affects the stress-strain cycles.

It is possible to notice that an increase of the parameter k̃1 does not directly affect

the amount of energy dissipation, but changes the stiffness of the material considered

in a similar way as k̃2.

II.7.2 Some typical plots showing the periodic variation in

time of relevant quantities

It is well-known (see e.g. Volpato [1956]) that well-behaving ODEs when forcing

terms are periodic show solutions which are periodic as well. The dissipation effects

which we have introduced in the previous eqs. (II.28) have been regularized in order

to be sure that the aforementioned well-behavior assumptions are verified. There-

fore, when the simulation is performed for a time interval which is long enough, the

calculated solution will become –within numerical error– periodic. By a judicious
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Figure II.8: Influence of the material parameter k̃1 on energy dissipation loops for

cement-based materials. k̃1 = [1.7 1012, 1.8 1012, 1.93 1012].

choice of initial conditions the convergence towards stationary solutions has been

reduced.

We plot the following time dependent quantities

• friction term in the equation for ϕ;

• the crack faces relative displacement ϕ and its time derivative;

• the specimen elongation ε and its time derivative.

Figure II.9 shows the typical periodic evolution for Coulomb friction. The differ-

ent stiffness properties due to the introduced non-linear term produces an asymmet-

ric evolution of this friction term. As a consequence the relative dissipation loops

will show a distance between the loading/unloading branches whose varying shape

strongly depends on the non-linear behavior considered.

Figure II.10 shows the typical periodic evolution of the crack faces relative dis-

placement. We notice a different behavior in the neighborhood of the maximum and

minimum level of the cyclic external compressive load due to elastic non-linearities

of the model considered. It is even worth noticing that near to the aforementioned

levels, two different time delays with respect to the applied cyclic load can be de-

tected. This circumstance is related to the assumed dissipation mechanism and to

the introduced elastic non-linearities.
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Figure II.9: Periodic evolution for Coulomb friction.

Figure II.10: Periodic evolution of the crack faces relative displacement.
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Figure II.11: Periodic evolution of the specimen elongation.

Figure II.11 shows the typical periodic evolution of the specimen elongation.

Similar considerations as those raised for the variable ϕ can be made for the elon-

gation, even if in this case the differences in the neighborhood of the maximum and

minimum amplitude of the cyclic load are less emphasized.

Figure II.12 shows the typical periodic evolution of the relative velocity of crack

faces. The time dependence of this velocity shows clearly the effect of the Coulomb

dissipation effect introduced.

Figure II.13 shows the typical periodic evolution of the specimen elongation rate.

It is possible, also in these time evolution plots, to clearly detect the different effect of

Coulomb dissipation in the loading/unloading cycles due to the elastic non-linearity

introduced.

II.8 Discussion

The modeling process presented in the present work proves that it is possible, by

means of a simple non-linear system of ordinary differential equations, to carefully

describe both quantitatively and qualitatively the available experimental evidence

on compression of cylindrical modified concrete specimen. In particular, it is proven

that, even if the applied compression force is related to elongation by a (nearly) linear

relationship, some non-linearities in the dissipation loop may be ascribed to non-

linear elastic phenomena involving the newly introduced microstructural parameter

which describes internal micro-motions. More precisely, we want to interpret the

physical meaning of this micro-structural parameter in terms of the overall relative

37 of 107



Chapter II. Modeling of Microcracked Media

Figure II.12: Periodic evolution of crack faces relative velocity.

Figure II.13: Periodic evolution of the specimen elongation rate.

38 of 107



II.8. Discussion

displacement of the faces of the cracks which characterize the microstructure of

concrete-type specimens. The time rate of the same micro-structural parameter is

the source of the only friction effect considered in this work, namely, the Coulomb

friction force.

By means of a series of numerical simulations, we have proven that a physically

reasonable set of ranges for introduced constitutive parameters can be found which

describes the whole variety of dissipation loops measured in Madeo [2006]. The

results presented justify the need for more complex models in order to describe: (i)

bending and compression periodic deformation of considered cylindrical specimens,

(ii) coupling between bending and shear with micro-deformation, (iii) more complex

micro-motions in which relative displacement of crack faces may depend on the

orientation and localization of cracks, and (iv) the longer range effects of micro-

cracks-induced micro-deformation in the neighborhood of considered REV, i.e. those

effects which can be modeled by allowing for the dependence of deformation energy

on higher gradients of introduced kinematical fields.
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Chapter III

Mechanical Testing

On the basis of the micro-macro theory previously presented, a set of concrete

specimens with micro-additives has been prepared, resulting in the achievement of

new concrete-like materials. In order to see how the presence of these additives

can affect the friction coefficient between the two faces of each crack and the crack

density inside the concrete matrix, a measurement campaign has been carried out.

Specifically, all specimens were tested following two different procedures. As a first

step, each specimen was tested under cyclic loading to determine the volume energy

dissipated. Subsequently, a compression test was conducted for measurement of

material strength. The experimental data have been used to perform a parameter

identification and they seem to indicate that the proposed model is suitable to

forecast the dissipation energy level.

III.1 Test Specimens and Materials

The specimen is a simple cylinder having a ratio of length to diameter, L/d, equal to

2. The choice of a specimen length represents a compromise. Buckling may occur if

L/d ratio is relatively large. If this happens, the test result is not representative of

the measure of the fundamental compressive behavior of the material. Buckling is

affected by the unavoidable small imperfections in the geometry of the test specimen

and its alignment with respect to the testing machine. In fact, the ends of the

specimen can be almost parallel, but never perfectly so. Conversely, if L/d is small,

the test result is affected by the details of the conditions at the end. In particular,

as the specimen is compressed, the diameter increases due to the Poisson effect,

but friction retards this motion at the ends, resulting in deformation into a barrel

shape. This effect can be minimized by proper lubrication of the ends. Thus, the

choice of a too small L/d ratio may result in a situation where the behavior of the
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specimen is dominated by the end effects. Considering both the desirability of small

L/d to avoid buckling and large L/d to avoid end effects, a reasonable compromise

is L/d = 2 for brittle materials, in which end effects are small. The test specimen

used have a circular cross section of diameter d = 11.28 cm and a length L = 22 cm;

its ends are provided with caps to ensure that the test cylinder has smooth, parallel,

uniform bearing surfaces perpendicular to the applied axial load during compressive

test.

Concrete is a composite material that can be seen as a porous matrix in which

pores of two different sizes can be located. In particular, families of pores of almost

10−3 microns and of 1-100 microns can be detected. The second ones can be ef-

ficaciously modeled as families of mesocracks inside an undamaged matrix. These

mesocracks have a great influence on the macroscopic mechanical properties of the

concrete since they are expected to determine a decay in the average strength of the

material. In fact, it is easy to understand that an undamaged matrix would have

a better resistance to an external load than a porous matrix. On the basis of this

consideration, together with the micro-macro theory previously presented, a set of

concrete specimens with micro-additives has been prepared. Some additives with

a size comparable to that of the mesocracks have been added to the cement paste

resulting in the creation of new concrete-like materials. These additives are called

‘fillers’ for their ability of ‘filling’ the mesocracks of the matrix. In order to see how

the presence of these additives can affect the friction coefficient between the two

faces of each crack, together with the crack density inside the concrete matrix, a

series of experimental tests has been prepared. A testing procedure on these new

materials has been set up and possible correlations between friction and mechanical

properties of concrete are searched. It is clear that the friction coefficient depends

on the physical properties of the additives, such as the shape and size of the grains

and the roughness of the grain surfaces. For example, some of the grains can present

a smooth film on their surface and thus a lower friction coefficient.

In particular, the type of additive chosen is GS 4; it has an appropriate size to

properly interact with mesocracks and physical properties that improve the dynamic

behavior of concrete. The main characteristics of this additive are shown in tab. III.1:

All fillers are obtained from carbonate rocks (such as inert limestone) so that

the principal constituent (almost 99%) is Calcium Carbonate (CaCO3). It has been

shown, up to now, that the different fillers are expected to change, in some way,

the friction coefficient on the basis of their physical properties. Another parameter

that can affect the friction coefficient is the quantity of filler added to the cement

powder. In fact, it can be understood that if the quantity of filler is irrelevant, the

friction coefficient remains almost unvaried. On the other hand, if the quantity of
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Table III.1: Physical and chemical characteristics of GS 4.

Characteristics Value Unit

Specific Weight 2.71 kg/dm3

Apparent Density 600 g/l

Particles Shape Rhombohedrical -

White Index 80.50 -

Yellow Index 3.80 -

Coating Power 260 µ

D.O.P. Absorption 25.50±1 %

Oil Absorption 15.50±1 %

H2O Absorption 18.50±1 %

filler added is higher, a certain amount of free additive remains in the cement paste,

affecting the ordinary chemical reactions and resulting in a variation of the overall

mechanical properties of concrete. It is for this reason that an ‘optimal’ quantity of

additive must be found. In our case, this amount of filler was fixed on basis of the

research performed in the Virginia Tech Polytechnic Institute (see Madeo [2006]),

in which it was shown that, by using the filler GS4, it was enough to replace 3% of

powder weight concrete, to optimize the required properties of the concrete.

III.1.1 Specimen preparation

The preparation of samples is one of the most important and sensitive points of our

research and it must be conducted carefully.

At the beginning of the test campaign we analyzed the sand granulometry in

order to compute the size distribution of sand grains available at the Laboratory

LGCIE of INSA de Lyon. In detail, we performed two granulometric analyzes on

two samples of dry sand, 1000 g weight each, using standard sieve whose meshes

were defined by the standard (see EN 206 -1, 2005). This test allowed us to estimate

the rate of each fraction of the sand and to draw the particle size curve. Then these

results are compared with the size distribution of sand grains used in the previous

research before mentioned that we considered as our reference curve (see fig. III.1).
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Figure III.1: Granulometric curve of the sand available at the Laboratory LGCIE

(IIa, IIb) and the reference curve (I)

The fig. III.1 shows the granulometric curve of the sand used in Virginia Tech

tests (I) and two curves related to the sand available at Laboratory LGCIE for two

different sievings ( IIa and IIb). We can note that the fraction of the finest particles

(the remainders with grain size lesser than 80 µm) in the case (I) is significantly

higher than the other cases (IIa, IIb), about two times. On the other hand, for the

size of retained grains in the range of 160-640 µm the curves IIa and IIb are higher

than the curve I. As regards the coarsest part of sand, grains greater than 1.25 mm,

the percent retained is again higher in the first case rather than in the other two

cases. Thus we can observe the different nature of the two sands. Moreover we

note that the curves IIa and IIb relative to the two sievings performed are slightly

different due to the non-perfect mixture of sand. These analyses on the grain size

of sand available in the laboratory LGCIE showed that the differences between the

sands were important enough, so we conducted tests on concrete made with both

sands. It was expected that the composition of the sand must be the same as the

previous work in order to ensure that the optimal replacement of filler of 3% in

weight was still valid. Therefore, it was worthwhile to reproduce the same sand

as in the preceding Virginia Tech tests. Knowing the curve of the desired particle

size for the sand, we performed several sieving stages to separate and to stock the

different fractions of sand. We repeated this action until the volume of each part was

sufficient to recreate the sand required (see fig. III.2). After completing the sieving
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Table III.2: Sieve analysis results on sand I.

Sieve size Percent retained Cumulative retained % Percent passing

2.50 mm 15 15 85

1.25 mm 35 50 50

640 µm 20 70 30

320 µm 15 85 15

160 µm 10 95 5

80 µm 2.5 97.5 2.5

Table III.3: Sieve analysis results on sand IIa.

Sieve size Percent retained Cumulative retained % Percent passing

2.50 mm 3.7 3.7 96.3

1.25 mm 10.6 14.3 85.7

640 µm 11.4 25.7 74.3

320 µm 52.6 78.3 21.7

160 µm 17.1 95.4 4.6

80 µm 3.3 98.7 1.3

process of the sand, we examined the particle size curve of the new sand to be sure

that it corresponds to the desired curve. In order to make that, we carried out two

sieving stages with the same procedure, considering two cases: dry and wet sample.

It was noted that the shapes of the granulometric curves, as well as the rate of each

fraction, were very close to each other. It was, therefore, concluded that the sand

has been recreated with the specifications required by our research. The results of

these analyzes are summarized in tabs. III.2, III.3 and III.4.

As regards the gravel available to the laboratory LGCIE, a granulometric analysis

was performed to obtain data on particle size. Two sievings with the same procedure

used in the case of sand (2 samples of dry gravel, whose weight was 1000 g each)

were carried out. The size of the particles of gravel could assume less importance
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Table III.4: Sieve analysis results on sand IIb.

Sieve size Percent retained Cumulative retained % Percent passing

2.50 mm 4.4 4.4 95.6

1.25 mm 14.4 18.8 81.2

640 µm 15.8 34.6 65.4

320 µm 49.3 83.9 16.1

160 µm 13.2 97.1 2.9

80 µm 2.1 99.2 0.8

Figure III.2: A sand vibrating sieve machine and some sieve frames.
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Figure III.3: Granulometric curve of the gravel available at the Laboratory LGCIE

(Ia, Ib)

than that of sand; the particles of gravel have dimensions much greater than those

of sand and as well as to those of the filling material. It could be therefore accepted

that the gravel does not affect the efficacy of filler. Sieving test performed on

the gravel at laboratory LGCIE were intended to verify the homogeneity of the

particle size distribution in order to produce samples with the same physical and

mechanical characteristics. The results of the particle size of the gravel are shown

in fig. III.3, for two sieving stages (Ia and Ib). The two granulometric curves are

almost similar, therefore the grain size of the gravel was uniformly distributed, see

tabs. III.5 and III.6. To properly assess the amount of water to be used in the

concrete mix, the quantity by weight of water contained in the pores of the granular

materials used in the mixture was taken into account.

To estimate the amount of water present in the sand and gravel, we followed the

procedure described below. We measured a volume of components using a accurate

balance. This material was been placed on a plate well heated and we waited a

couple of minutes to evaporate the excess water. After that, we again measured the

weight of these samples in order to estimate the water content. The results of this

analysis are presented in the following two tables. At the end of this procedure, the

final volume of gravel and sand present in the mixture was increased in order to

compensate for the weight of the water filling the voids, and therefore the amount
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Table III.5: Sieve analysis results on gravel Ia.

Sieve size Percent retained Cumulative retained % Percent passing

16.0 mm 0.0 0.0 100

12.8 mm 0.8 0.8 99.2

10.0 mm 17.6 18.4 81.6

8.0 mm 26.8 45.2 54.8

6.5 mm 29.2 74.4 25.6

5.0 mm 18.5 92.9 7.1

Table III.6: Sieve analysis results on gravel Ib.

Sieve size Percent retained Cumulative retained % Percent passing

16.0 mm 0.0 0.0 100

12.8 mm 0.3 0.3 99.7

10.0 mm 15.8 16.1 83.9

8.0 mm 28.6 44.7 55.3

6.5 mm 30.5 75.2 24.8

5.0 mm 18.7 93.9 6.1
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Table III.7: Mix I: Standard concrete with sand granulometric curve (I), wc=0.487.

Composition Weight ratio, kg Ratio %

Sand 12.5 35.1

Gravel 16.57 46.2

Cement 4.52 12.6

Water 2.39 6.14

Total 35.98 100

of water added during the preparation of concrete was reduced. All this is necessary

due to the importance of water content that significantly affects the mechanical

strength of the concrete.

Seven concrete mixtures are used. All mixtures use Portland cement to produce

a 28-day compressive strength of 32 MPa or 52 MPa, a crushed limestones coarse

aggregate as shown in fig. III.3, and sand fine aggregate with granulometric curve

(I) and (II) of fig. III.2. Mixtures are characterized by a water-to-cement ratio wc
in the range 0.49-0.691.

A concrete mix without addition of micro-particles was prepared as a reference

material for the sake of comparison; moreover mixtures with 3 % and 3.5 % of

filler are prepared. In details, we can summarize all the compositions used to make

the testing samples, see tables from III.7 to III.11. In tabs. III.7, III.8 and III.9

concrete mixtures are characterized by a compressive strength of 52 MPa, i.e. a

grade of concrete M52.

The mixture relative to tabs. III.10 and III.11 are molded with a cement to

obtain a grade of concrete of M32 and M52. In this case, the two strength levels

are obtained by using cement powders having different chemical properties, which,

when used in the recipe, and in the same quantity, they produce concretes with

different nominal strengths.

The procedure for the specimen preparation was carried out with caution, taking

into account the determination of all components. Sand and gravel were inserted in

a cement mixer. A part of the quantity of water required was then gradually poured

into the mixture thus obtained. After the mixture became sufficiently uniform, the

1The wc ratio (mass ratio of water to cement) is the key factor that determines the strength of

concrete. A lower wc ratio will yield a concrete which is stronger and more durable, while a higher

wc ratio yields a concrete with a larger slump, so it may be placed more easily.
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Table III.8: Mix II: Modified Concrete with sand granulometric curve (I) and a use

of filler of 3%, wc=0.503.

Composition Weight ratio, kg Ratio %

Sand 12.5 35.1

Gravel 16.57 46.2

Cement 4.38 12.2

Water 2.39 6.14

Filler 0.13 0.377

Total 35.98 100

Table III.9: Mix III: Modified Concrete with sand granulometric curve (I) and a use

of filler of 3.5%, wc=0.507.

Composition Weight ratio, kg Ratio %

Sand 12.5 35.1

Gravel 16.57 46.2

Cement 4.36 12.1

Water 2.39 6.14

Filler 0.16 0.439

Total 35.98 100
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Table III.10: Mix IV with M32, Mix V with M52: Standard concrete with sand

granulometric curve (II), wc=0.67.

Composition Weight ratio, kg Ratio %

Sand 21.25 35.1

Gravel 27.05 46.2

Cement 7.15 12.6

Water 4.8 6.14

Total 35.98 100

Table III.11: Mix VI with M32, Mix VII with M52: Modified Concrete with sand

granulometric curve (II) and a use of filler of 3 %, wc=0.69.

Composition Weight ratio, kg Ratio %

Sand 21.25 35.1

Gravel 27.05 46.2

Cement 6.94 11.51

Water 4.8 6.14

Filler 0.2145 0.356

Total 60.25 100
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remaining amount of water and the filler, with different percentages depending on

the recipe used, were introduced. The filler was added gradually to the mixture,

to avoid that the particles being attached to each other. The pouring is continued

until achieving of a compound as homogeneous as possible. Regarding the casting

of concrete, firstly, it was filled to one half of the mold. To facilitate the compaction

of the mixture and to expel the air, the mold was placed on a vibrating plate.

Finally, we repeated the same procedure until the complete filling of the mold. The

specimens thus obtained were subjected to the process of curing in an environment

at controlled temperature and humidity for a period of 28 days.

III.2 Experimental Results

III.2.1 Cyclic tests

Experimental investigations on the dynamic behavior —dissipated energy— of mod-

ified plain concrete are performed under cyclic uniaxial compressive load. The test

machine was controlled to impose a sinusoidal stress with a fixed frequency of f = 1

Hz for all the tests. This low frequency is chosen for avoiding inertial effects. More

particularly, the considered load is

σ (t) =

(
σmin + σmax

2

)
+

(
σmin − σmax

2

)
cos (2πf t)

where the values σmin, σmax are related to the minimum and maximum forces applied.

In detail, we conduct some tests with a force ranging from 19.62 to 176.58 kN and

others with a bigger force between 19.62 and 392.4 kN. The peak load was chosen

to avoid reaching an unsafe level of stress too close to the compressive strength of

concrete material. On the other hand, the minimum level of compressive stress is

small enough to ensure interactions of opposite porous surfaces inside the concrete

matrix, hence, to enhance the friction of internal contact, on which the dissipated

energy depends. Assuming that the stress range applied to the specimen is enough

far from the failure stress, it can be predicted that an evolution of damage under

these conditions due to fatigue phenomenon happens around a million of cycles. For

this reason a limited number of cycles is considered in all test performed, specifically,

a number of 100 cycles was chosen for each test. Since the cycling was limited to

100 cycles, it can be assumed that the cycling process did not significantly affect the

mechanical properties of the specimens. The strain due to the applied load usually

changes as the test progresses. This phenomenon is rapid at first, but the change

from one cycle to the next decreases with increasing numbers of cycles. After a
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small amount of cycles the behavior becomes approximately stable in that further

changes are negligible. The cycles chosen for data analysis are placed after the

middle of the experiment —usually the fiftieth cycle— because it is representative

of a stable behavior of the material. Opel, Hulsbos [1966] reported that, repeated or

cyclic loading has an adverse effect on concrete strength at stress levels greater than

50% of the compressive strength. For instance, in 5000 cycles of repeated loading,

concrete failed at 70% of the ultimate monotonic loading strength. Progressive

microcracking in the interfacial transition zone and the matrix are responsible for

this phenomenon.

To be sure that the measured dissipation was not due to friction connected with

the testing machine, a cyclic test on an aluminum specimen was run. A circular

hollow section specimen of external diameter D = 11.28 cm, inner diameter d =

9.5 cm, and a length L = 22 cm, of precipitation hardened aluminum alloy (see

fig. III.4), was tested under the same load range used for the concrete specimens.

The aluminum tube has been designed so that the axial strain in concrete specimens

is the same as in the aluminum sample, with the load being equal. In formulae:

εz =
P

A
Al
E
Al

=
P

AcEc
=⇒ E

Al

Ec
=

Ac
A
Al

where E
Al

and Ec are respectively the elastic modulus of aluminum and concrete,

and A
Al

, Ac are the areas respectively of the aluminum and concrete specimens.

Assuming the external diameter D to be equal to the concrete specimen diameter,

we have

d

D
=

√
1− Ec

E
Al

The peak stress induced by this load is approximately equal to 35 MPa which is

so far below the yield stress of the aluminum (for failure stresses of various aluminum

alloys, see Dowling [2012]), so that essentially linear-elastic behavior of the specimen

is expected in the absence of internal hysteresis of the machine. A linear elastic

behavior was actually measured during the experiments (see fig. III.4), so it can be

assumed that the energy dissipation measured from the concrete cyclic test is totally

due to friction phenomena inside the specimen. As can be seen from fig. III.4, no

significant hysteretic behavior can be detected; therefore, friction internal to the

machine or between specimen and grips can be neglected. Since this dissipation is

small compared to those measured from concrete specimens, it will be assumed that

it is equal to zero. In other words, the energy dissipation measured from concrete

specimens will be totally attributed to real material behavior, rather than to some

effects due to the test apparatus.
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Figure III.4: Measured dissipation loop in aluminum sample.

In earlier tests, we detected the presence of an undesired degree of bending of the

concrete specimens due to small misalignment or lack of complete lateral stability of

the actuator, where the latter is due to motion within the restraints of its oil seals.

The small lateral instability makes the position of the actuator not precisely defined,

so that alignment is not definitive in the application of the compressive load. We

examined various methods to reduce the bending, including raising the specimen

support by about a meter, improving the alignment, using larger specimens, and

finding an off-center location where the bending is minimized.

Finally, to address this issue, we decided to follow the procedure sketched below

to find an off-center location on the basis of the Saint-Venant problem. Noting

the cylindrical shape of specimens and the axial application of the loads, we can

apply the Saint-Venant problem solution to evaluate quantitatively the degree of

bending. We adopted a coordinate system with z-axis along the longitudinal axis

of the cylinder and the origin on the lower base.

In the case of compressive and bending stress, we are in a state of uniaxial stress,

and the solution of the Saint Venant problem is{
σx = σy = σxy = σyz = 0

σz = ax+ by + c

The related small strain tensor components are{
εx = εy = − ν

E
σz, εz = σz

E
= 1

E
(ax+ by + c)

εxy = εzx = εzy = 0
(III.1)

where E and ν are the Young modulus and the Poisson ratio, respectively. By

integrating the eqs. (III.1) we obtain the components of the displacement field:
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Figure III.5: Set up for cyclic test.


ux = − a

2E
z2 − ν

E

[
a
2

(x2 − y2) + bxy + cx
]

uy = − b
2E
z2 − ν

E

[
axy + b

2
(y2 − x2) + cy

]
uz = 1

E
(ax+ by + c)z

Each specimen was equipped with three strain gauges glued in the middle on the

lateral surface at an angular distance of 120 degrees from each other (see fig. III.5).

Considering that the x -axis points toward the first strain gauge, the gauges coordi-

nates are:

gi =
d

2
(cosϕi, sinϕi)

with i = 1, 2, 3, and the angles are ϕ1 = 0, ϕ2 = 2
3
π and ϕ3 = 4

3
π.

The measures of deformation, ε
(i)
z can be used to write an algebraic system of

three equations in three unknowns a, b, c

ε(i)z =
1

E
(a
d

2
cosϕi + b

d

2
sinϕi + c)

By solving this system, we can calculate the distribution of stress field σz in the

specimens and we can distinguish one term of pure bending σzb and the other one

of pure compression σzc:
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σz = σzb + σzc, σzb = (ax+ by) , σzc = c (III.2)

It is clear that from the eq. (III.2), if the coefficients a and b are zero, the pure

bending term disappears, therefore these two coefficients can be used to quantify

the effect of the bending. In order to avoid this problem, we performed an appro-

priate centering of the specimen relative to the axis of the test machine, moving the

sample by small amounts in different directions and iterating this procedure until

the coefficients a and b, evaluated each time, can be negligible.

In future acquisitions the next step should be to introduce a die set fixture.

This consists of a base plate with three or four vertical posts rigidly and precisely

mounted. Then these posts pass through bearings in an upper plate, so that vertical

motion is allowed, while preventing lateral motion. Such devices are needed in

industry for metal stamping operations where positioning must be precise.

III.2.2 Ramp failure tests

As briefly explained before, each specimen tested under uniaxial cyclic load was

finally tested with a ramp test in order to measure its final resistance. The cylinders

are tested on the two planar faces. The compression machine exerts a constant

progressing force on the specimens till they fail, the rate of loading is 0.6 ± 0.2

MPa/s (N/mm²/s). The reading at failure is the maximum compressive strength

of the concrete. Table III.12 lists the ultimate strength for some representative

concrete mixtures. The expected values and the related errors are evaluated from a

set of six specimens for each mixture.

As shown in tab. III.12, a lower water to cement ratio wc corresponds to a higher

level of strength.

III.3 Data Analysis

III.3.1 Dissipation Energy Identification

After performing the cyclic tests, stress-strain graphics can be drawn on the basis

of the measurements of the force applied to the specimen and deformation acquired

by the strain gauges. As known, the area between the upper and the lower curve of

a cycle represents the measured energy dissipation of the sample. This energy for

each specimen has been measured by means of a precise procedure which will be

discussed in the following and the obtained average value (calculated on 6 specimens)
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Figure III.6: A ramp test to measure compressive strength.
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Table III.12: Nominal and measured strength for the concrete mixtures examined.

Mix Type wc Grade of Concrete Ultimate Strength

I Standard 0.487 M52 51.0± 5.1 MPa

II GS4 3% 0.503 M52 51.3± 5.2 MPa

III GS4 3.5% 0.507 M52 59.0± 5.8 MPa

IV Standard 0.67 M32 24.8± 2.5 MPa

V Standard 0.67 M52 40.0± 4.0 MPa

VI GS4 3% 0.69 M32 20.3± 2.0 MPa

VII GS4 3% 0.69 M52 30.9± 3.1 MPa

is shown in tab. III.13. The procedure used to measure the energy dissipation can

be summarized as follows

1. The mean of the three strain gauge measures ε̂(j) (ti) with j = 1, ..., 3 is

performed in order to make negligible a little bending effect remaining (see

sec. III.2.1); the stress curve σ̂ (ti) is evaluated by dividing the acquired force

by the nominal area of the sample.

2. Considering the signals referred to in the preceding item of n cycles, the ex-

pected value and the variance are estimated splitting the signal in n portions

and regarding as each cycle as a determination of the corresponding variable.

The initial point of the signal is chosen starting from the middle of the ex-

periment –usually the 50th cycle– because from this instant we can assume a

stable behavior for the material.

3. The two branches of the loading and unloading curve have been fitted with

second order polynomials.

4. The energy dissipation is determined computing the areas under each branches

–loading and unloading curve– by mean of a simple definite integration and

subtracting the two relative areas.

In order to perform the above mentioned procedure, the applied forces and the

strain related to the strain gauges are collected as vectors depending on the time.

We denote the measured applied external force per unit area by σ̂ (ti) at each time ti
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of the measure and the deformation acquired by the three strain gauges with ε̂(j) (ti)

(j = 1, ..., 3).

Let the set of points (ti, yi) be the result from a certain number, n, of deter-

minations of the variable Y as function of the variable time, t, in correspondence

of predetermined values of the time ti. It is assumed that the errors in the values

of ti are negligible compared to those for the values yi of the variable Y , so we can

assume that each ti is reproduced in repeated measures, while, for each ti, the yi
fluctuate according to the law of the normal distribution. Under these conditions,

for each ti, it is easy to estimate the parameters of the probability distribution that

characterizes a certain data-set (yi1, . . . yin): expected value, µi, and variance, s2i .

For the expected value an effective estimator is the arithmetic mean

Y i =
1

n

n∑
j=1

yij (III.3)

which also has a normal distribution with expected value and variance s2i /n. An

appropriate estimator for the variance of the sample, however, is given by

S2
i =

1

n− 1

n∑
j=1

(
yij − Y i

)2
(III.4)

In order to consider the confidence interval for the expected value µi it is appropriate

to introduce a random variable tµi (yi1, yi2, . . . yin)

tµi =
Ȳi − µi
Si/√n

(III.5)

function of the n sample values (yi1, yi2, . . . yin), to which it is possible to associate

the Student’s t-distribution, f(tµi) with n − 1 degrees of freedom. The knowledge

of the statistics of this aleatory variable allows the detection of the probability with

which the “true” value of the parameter µi is within a certain range. It is possible

to determine, in fact, two parameters t1−α/2 and tα/2 such that the integral

ˆ t1−α/2

tα/2

f(tµi)dtµi = P
(
t1−α/2 < tµi < tα/2

)
(III.6)

which represents the probability that the variable tµi is within the interval
(
t1−α/2, tα/2

)
is equal to a certain value 1 − α, where α is called this level of significance, and is

between zero and one. Since the Student’s t-distribution is symmetric with respect

to zero from (III.6) occurs with probability 1− α

− tα/2 <
Ȳi − µi
Si/√n

< tα/2 (III.7)
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Figure III.7: Expected value of the strain ε and the stress σ for a representative

cycle with an indication of 99.5 % confidence bounds.

The condition for tµi results for the parameter µi in the relationship

Ȳi − tα/2
Si√
n
< µi < Ȳi + tα/2

Si√
n

(III.8)

which allows determining, with probability 1−α, also called coefficient of confidence,

the endpoints of the interval in which falls, within the “true” value of the parameter

µi, which by definition is equal to its expected value and is related to the estimation

of its average by the relation

E [Y ] = Ȳi ± tα/2
Si√
n

(III.9)

Therefore the resulting upper confidence limit E[Y] of the mean can be calculated

with 99.5% confidence interval and n = 24 degrees of freedom using the following

equation

E [Y ] = Ȳi ± 2.797
Si√
n

(III.10)

The 99.5% interval indicates that there is a chance of 99.5% that a new observation

will fall within the bounds.

Figures III.7 and III.8 show, for a representative cycle, the results relative to

the items 1 and 2 of the procedure above mentioned, i.e. expected values of the

strain ε and the stress σ and an indication of 99.5 % confidence bounds. It is worth

noting that the measurement system has a precision2, related to reproducibility and

repeatability, which is very high. Moreover we can see the error estimate for the

stress has a very low level because the cyclic load is driven by a feedback loop that

2the degree to which repeated measurements under unchanged conditions show the same results.

60 of 107



III.3. Data Analysis

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

time, s

st
ra

in
 e

rr
or

, µ
st

ra
in

0 1 2 3 4 5 6 7 8 9 10
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

time, s
st

re
ss

 e
rr

or
, M

Pa

Figure III.8: Error estimates of the strain ε and the stress σ.

0 100 200 300 400 500 600 700 800 900 1000 1100
0

5

10

15

20

25

30

35

40

strain, µ strain

str
es

s, 
M

Pa

Figure III.9: Dissipation loop with confidence bounds.
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enhances the precision of the test apparatus. Thus, in what follows we neglect the

errors on the stress.

Figure III.9 exhibits the dissipation energy loop with 99.5 % confidence bounds

for a typical concrete specimen.

The energy dissipation, that is the area between the loading and unloading curves

of a cycle, is extracted from the actual measured data by performing polynomial

curve fits. Polynomial models for loading and unloading curves are given by

σ =
n+1∑
k=1

akε
n+1−k (III.11)

where n is the degree of the polynomial. The main advantages of polynomial fits

include reasonable flexibility for data that is not too complicated, and they are

linear, which means the fitting process is simple. The main disadvantage is that

high-degree fits can become unstable. Additionally, polynomials of any degree can

provide a good fit within the data range, but can diverge wildly outside that range.

Therefore, caution is needed when extrapolating with polynomials.

To obtain the polynomial coefficient estimates, a least-squares method is em-

ployed to minimize the summed square of residuals. The residual for the ith data

point ri is defined as the difference between the observed response value σ̂ (ti) and

the fitted response value σ given by eq. (III.11), and is identified as the error asso-

ciated with the data

ri = σ̂ (〈ε̂i〉)− σ (〈ε̂i〉)

in which the angle brackets stand for the average of the three strain gauge signals.

The summed square of residuals is given by

S =
N∑
i=1

[σ̂ (〈ε̂i〉)− σ (〈ε̂i〉)]2

where N is the number of data points included in the fit and S is the sum of squares

error estimate. The curve fit process has to determine the values of the unknown

polynomial coefficients such that the error S is minimized. After performing the

curve fits, to evaluate the goodness of fit the R2 indicator has been utilized. Indeed,

R2 can take on any value less than or equal to one, with a value closer to one

indicating a better fit. In particular, the R2 is adjusted based on the residual

degrees of freedom, V , defined as the number of data values N minus the number of

fitted coefficients n+ 1. Therefore, the degrees of freedom adjusted R2 is defined as
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Figure III.10: The dissipation loops for the first three mixtures considered. From

right to left: mix I (standard concrete), mix II (modified concrete with 3% of micro-

filler) and mix III (modified concrete with 3.5% of micro-filler).

R2 = 1− SSE · (N − 1)

SST · V
in which SSE is the sum of squares due to error and represents the total deviation

from the fit to the response values whilst SST is also called the sum of squares

about the mean and represents the total deviation from the mean to the response

values. In particular, for the fits performed the resulting R2 values are very close to

one.

The damping performance of concrete can be improved by adding to the mixture

different kinds of micro-particles which change the porosity of the matrix and thus

the contact interaction between internal surfaces of voids.

Figure III.10 shows dissipation loops for each of mix I, II and III with M52 grade

of concrete and a content of filler increasing: 0%, 3%, 3.5%. It is noted that a greater

quantity of micro-particles, in this case, produces a higher level of stiffness. Thus,

if the quantity of these particles is too high, then the effect is to reduce the porosity

of the concrete and decrease the capability of a relative displacement between the

opposite pore faces, which in turn implies smaller dissipation. Figures III.11 to

III.14 exhibit the results of cyclic tests carried out on the specimens, prepared as

described above, with mixes IV,V, VI and VII, respectively. In particular, for the
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Figure III.11: Mix IV: dissipation

loop for a M32 grade of standard con-

crete.
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Figure III.12: Mix VI: dissipation

loop for a M32 grade of modified con-

crete.

sake of comparison, the dissipation loops for a representative cycle are shown in a

stress-strain diagram for a standard concrete as a reference material (see fig. III.11)

and for a modified concrete with the addition of 3% of micro-filler (fig. III.12),both

for a concrete of strength 32 MPa. Figures III.13 and III.14 provide a similar

comparison for concrete with the strength of 52 MPa. It was determined that

the energy dissipation of the concrete increases with increasing content of micro-

particles. On the other hand, an increasing percentage of micro-particle additions

can degrade the mechanical strength of material (see thesis Madeo [2006]). Thus,

there is a reasonable compromise in incorporating these micro-particles to obtain

higher damping without weakening the mechanical properties.

It is worth noting that the mixtures with strength of 32 MPa exhibit a more

significant dissipative effect than the mixtures with strength of 52 MPa. In fact,

the latter types of samples are more rigid, and, the micro-relative displacements of

pore’s faces inside the concrete matrix are smaller. Comparing the two pictures of

fig. III.11 and III.12 for a M32 grade of concrete, it is possible to note an increase of

a cycle deformation magnitude from about 650 µstrain to 800 µstrain passing from

the mix IV, i.e. a standard concrete, to the mix VI, that is a modified concrete with

a 3% of filler. Analogously, the figs. III.13 and III.14 for a M52 grade of concrete,

it is possible to note an increase of a cycle deformation magnitude from about 530

µstrain to 630 µstrain passing from the mix V, i.e. a standard concrete, to the mix

VII, that is a modified concrete with a 3% of filler.
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Figure III.13: Mix V: dissipation loop

for a M52 grade of standard concrete.
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Figure III.14: Mix VII: dissipation

loop for a M52 grade of modified con-

crete.

Table III.13: Dissipated energy for the concrete mixtures examined.

Mix Type Grade of Concrete dissipated energy per cycle

I Standard M52 0.824± 0.061 J

II GS4 3% M52 0.729± 0.056 J

III GS4 3.5% M52 0.364± 0.028 J

IV Standard M32 0.891± 0.067 J

V Standard M52 0.167± 0.014 J

VI GS4 3% M32 1.31± 0.098 J

VII GS4 3% M52 0.368± 0.027 J
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Table III.14: Mix I: Dissipated Energies per cycle for a standard concrete.

Frequency (Hz) 0.8 0.5 0.3 0.1

Dissipated Energy (J/c) 0.88 1.22 1.58 1.98

In tab. III.13, the dissipation energy measured for the seven concrete mixtures

are listed. The expected values and the related errors are evaluated from a set

of six specimens for each mixture with a cyclic load at a frequency of 1 Hz. The

mixtures II and III display a decrease of dissipated energy of 11.5% and 55.8%,

respectively, relative to mixture I, i.e. the standard concrete with the same grade.

On the other hand, the concrete with M32 grade manifests an increase of dissipated

energy, comparing mix IV and mix VI, of 47%. Furthermore the concrete with M52

grade, comparing mixV and mix VII, presents an increment of 120%.

III.3.2 Test analysis with varying frequency cycle

Since frictional forces arise as a results of a relative velocity of porous surfaces in a

concrete matrix, we performed experimental tests in order to account for this issue.

Specifically, we considered cyclic tests with varying frequency of load ranging from

0.1 Hz to 0.8 Hz, i.e. relative micro-velocity, and with a load included between

19.62 and 392.4 kN, i.e. about 72% of the ultimate compressive strength. Following

the procedure described in sec. III.3.1, the dissipated energy for different kinds of

specimen is estimated.

Figures III.15, III.16, III.17 and III.18 show the measured strains by the 3 strain

gauges and the related dissipative loops for frequencies 0.8, 0.5, 0.3 and 0.1 Hz

for Mix I, i.e. a standard concrete. In these figures the strains are related to the

last cycles because they are representative of stable behavior. Furthermore, the

tab. III.14 summarizes the dissipated energy for the different frequencies tested.

It is possible to note an increase in the dissipated energy for reducing the cycle

frequency. Assuming the test with a load cycle frequency of 0.8 Hz as a reference,

tab. III.14 reveals a relative increase of 38.6%, 79.5% and 125% for the frequencies

0.5, 0.3 and 0.1 Hz, respectively.

Figures III.19, III.20, III.21 and III.22 show the measured strains by the 3 strain

gauges and the related dissipative loops for the frequencies 0.8, 0.5, 0.3 and 0.1 Hz

for the Mix II, i.e. a modified concrete with 3% of filler. Furthermore, tab. III.15

summarizes the dissipated energy for the different frequencies tested. In the same

way, a tab. III.15 shows a relative increase of 75%, 133% and 206% for the frequencies
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Figure III.15: The measured strains by the 3 strain gauges and the related dissipative

loop for the mix I and frequency 0.8 Hz.
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Figure III.16: The measured strains by the 3 strain gauges and the related dissipative

loop for the mix I and frequency 0.5 Hz.
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Figure III.17: The measured strains by the 3 strain gauges and the related dissipative

loop for the mix I and frequency 0.3 Hz.
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Figure III.18: The measured strains by the 3 strain gauges and the related dissipative

loop for the mix I and frequency 0.1 Hz.
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Table III.15: Mix II: Dissipated Energy per cycle for a modified concrete with 3%

of filler.

Frequency (Hz) 0.8 0.5 0.3 0.1

Dissipated Energy (J/c) 0.52 0.91 1.21 1.59
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Figure III.19: The measured strains by the 3 strain gauges and the related dissipative

loop for the mix II and frequency 0.8 Hz.

0.5, 0.3 and 0.1 Hz, respectively.

Figures III.23, III.24, III.25 and III.26 show the measured strains by the 3 strain

gauges and the related dissipative loops for frequencies 0.8, 0.5, 0.3 and 0.1 Hz for the

Mix III, i.e. a modified concrete with 3.5% of filler. Furthermore, tab. III.16 sum-

marizes the dissipated energy for the different frequencies tested. Finally, tab. III.16

exhibits a relative increase of 92%, 162% and 240% for the frequencies 0.5, 0.3 and

0.1 Hz respectively.

This analysis, thus, shows in all cases that the dissipated energy increases with

decreasing frequency and the more rigid the mixture, the greater the effect on the

dissipated energy of the variation of the frequency. This means that the friction

in tested concrete presents a sort of ‘Stribeck effect’, i.e. a friction phenomenon

Table III.16: Mix III: Dissipated Energy per cycle for a modified concrete with 3.5%

of filler.

Frequency (Hz) 0.8 0.5 0.3 0.1

Dissipated Energy (J/c) 0.37 0.71 0.97 1.26
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Figure III.20: The measured strains by the 3 strain gauges and the related dissipative

loop for the mix II and frequency 0.5 Hz.
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Figure III.21: The measured strains by the 3 strain gauges and the related dissipative

loop for the mix II and frequency 0.3 Hz.
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Figure III.22: The measured strains by the 3 strain gauges and the related dissipative

loop for the mix II and frequency 0.1 Hz.
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Figure III.23: The measured strains by the 3 strain gauges and the related dissipative

loop for the mix III and frequency 0.8 Hz.
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Figure III.24: The measured strains by the 3 strain gauges and the related dissipative

loop for the mix III and frequency 0.5 Hz.
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Figure III.25: The measured strains by the 3 strain gauges and the related dissipative

loop for the mix III and frequency 0.3 Hz.
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Figure III.26: The measured strains by the 3 strain gauges and the related dissipative

loop for the mix III and frequency 0.1 Hz.

that gives rise at low velocity to decreasing friction with increasing velocity. The

proposed model is characterized by both Coulomb and viscous effects, therefore, at

low velocity range, the dissipation increases with velocity, and at high velocity range,

friction is rate-independent. To overcome this problem, it is possible to address this

issue taking into account models that include the effect of Stribeck. An example of

such a formulation is the LuGre model proposed by De Wit [1995] or the Leuven

model proposed by Swevers et al. [2000].

III.4 Parameter identification

In this section, we turn our attention to the problem of finding the best material

parameters for the model that describes the functional relationship existing between

the strain variable ε, and the stress variable σ, in order to interpolate the set of N

points (σi, εi) resulting from a certain number, n, of measures of these quantities.

In this regard, for the regression, we consider the model described above in sec. II.6.

For the sake of simplicity, we assume that the errors on the values of stress σi are

much smaller than the errors which affect the values of the strain εi, so that it is

possible to think that each σi attains close results in repeating measurements under

unchanged conditions, while for each σi, the ε fluctuates according to the normal

distribution. For each arbitrary value of σi the measure of strain ε is represented

by the random variable εi normally distributed with expected value f(σi; a1, . . . aν)

and variance s2i . In particular, the material parameters that we want to estimate

are the macro-stiffness K, the micro-stiffnesses k1, k2, k3, the coupling coefficient α

and dissipation coefficients ζ, η.
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Denote the model of the eq. II.6 with the relationship εi = f(σi ; a1, a2, ..aν),

where aj, with j ranging from one to ν = 7, are the parameters to be found. If we

assume the independence of the measures in addition to the assumptions already

made, the probability density that εi = f(σi , a1, a2, ..aν) is the expected value of

the strain for any one observation and is given by

P (σi) =
1

si
√

2π
exp

(
− [εi − f(σi; a1, a2, ..aν)]

2

2s2i

)

The total probability of obtaining a set of N measurements, (σi, εi), is equal to the

product of the probabilities for each data point:

Ptot =
N∏
i=1

1

si
√

2π
exp

(
− [εi − f(σi; a1, a2, ..aν)]

2

2s2i

)
≈

≈ exp

(
−

N∑
i=1

[εi − f(σi; a1, a2, ..aν)]
2

2s2i

)
(III.12)

The best estimates for the parameters aj are those for which eq. (III.12) attains

its maximum value. Maximizing the probability is equivalent to minimizing the

sum in the exponential term of Ptot, i.e. to calculating the minimum of the sum of

squared residuals respect to the expected value f(σi ; a1, a2, ..aν) weighted by the

reciprocal of the variance. This approach clearly leads to an extension of the least

squares method with variances as weights. However, for the assumptions made, the

exponent of the last term of the relation (III.12) appears to be a random variable of

χ2 with N−ν degrees of freedom. Therefore, it follows that its statistical properties

and the goodness of fit can be judged by the chi-square test (see Appendix B).

According to sec. II.6 the function f(σi ; a1, a2, ..aν) is computed by means of a

Simulink model that solves the ODE system (II.28) to obtain the strain ε in a

representative cycle load. In figs. III.27-III.29 the schematic diagrams of this system

are shown. In particular, the block diagram of the governing equation for the macro-

scale is exhibited in fig. III.28 while the block scheme of the equation related to the

micro-scale is depicted in fig. III.29. We observe in the block diagram III.28 the

possibility to take into account a viscous damping by means of a manual switch

that toggles between two modes, with and without damping.

To avoid further undesirable uncertainties, the input forcing term used in the

simulations is the acquired measure of the load in the experimental tests.

In tab. III.17, material parameters estimated by curve fitting are listed for the

mix I (the label ‘St M52’ standing for a M52 grade of standard concrete), the mix
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Figure III.27: Block diagram to simulate concrete with micro-structure.

Figure III.28: Block diagram of the macro-system.
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Figure III.29: Block diagram of the micro-system.

Table III.17: Material parameters of mix I, II and III.

Parameters Fit I (St M52) Fit II (GS43 M52) Fit III (GS43.5 M52) Unit

K 1.06× 108 1.28× 108 1.20× 108 Nm

k̃1 4.24× 109 2.12× 109 2.12× 109 N/m

k̃2 1.76× 105 2.64× 105 2.64× 105 N/m2

k̃3 2.37× 1017 1.71× 1016 5.98× 1016 N/m3

α̃ 3.96× 108 3.30× 108 2.59× 108 N

ζ̃ 1.63× 108 5.34× 107 1.17× 108 N

η 9.85× 103 7.88× 103 7.88× 103 s/m

II (the label ‘GS43 M52’ standing for a M52 grade of modified concrete with 3%

replacement of micro-filler), and the mix III (the label ‘GS43.5 M52’ standing for a

M52 grade of modified concrete with 3.5% replacement of micro-filler).

In fig. III.30 the measured data and the regression curve for a representative cycle

related to the mix I are depicted. The reduced chi-square is 1.54; thus the parameter

values obtained can be accepted as representative of the concrete considered.

In figure III.31 the measured data and the regression curve for a cycle related to

the mix II with 3% replacement of micro-filler are depicted. The reduced chi-square

is 1.33; thus, the parameter values obtained can be accepted as representative of the

concrete considered.

In figure III.32 the measured data and the regression curve for a cycle related

to the mix III with 3.5% replacement of micro-filler are depicted. The reduced chi-
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Figure III.30: Measured data and regenerated curve for mix I (St M52).
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Figure III.31: Measured data and regenerated curve for mix II (GS43 M52).
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Figure III.32: Measured data and regenerated curve for mix III (GS43.5 M52).

square is 4.31, thus, its estimated sample value is greater than 1.5. We may conclude

that either (i) the model represented by the εi = f(σi , a1, a2, ..aν) is a valid one

but that a statistically improbable excursion of χ2 has occurred, or (ii) that our

model is so poorly chosen that an unacceptably large value of χ2 has resulted.

In tab. III.18, material parameters estimated by curve fitting are listed for the

mix IV (the label ‘St M32’ standing for a M32 grade of standard concrete) and the

mix VI (the label ‘GS43 M32’ standing for a M32 grade of modified concrete with

3% replacement of micro-filler).

In fig. III.33 the measured data and the regression curve for a cycle related to the

mix IV (St M32) are depicted. The reduced chi-square is 2.41; thus, its estimated

sample value is greater than 1.5. In fig. III.34 the measured data and the regression

curve for a cycle related to the mix VI (GS43 M32) are depicted. The reduced chi-

square is 1.36; thus, the parameter values obtained can be accepted as representative

of the concrete considered.

In tab. III.19, material parameters estimated by curve fitting are listed for the

mix V (the label ‘St M52’ standing for a M52 grade of standard concrete) and the

mix VII (the label ‘GS43 M52’ standing for a M52 grade of modified concrete with

3% replacement of micro-filler).

In fig. III.35 the measured data and the regression curve for a cycle related to

the mix V (St M52) are depicted. The reduced chi-square is 1.99; thus, its estimated
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Table III.18: Material parameters of mix IV and VI.

Parameters Fit IV (St M32) Fit VI (GS43 M32) Unit

K 8.93× 107 8.40× 107 Nm

k̃1 4.09× 109 4.09× 109 N/m

k̃2 2.07× 1011 2.07× 1011 N/m2

k̃3 2.68× 1017 1.98× 1017 N/m3

α̃ 4.40× 108 4.38× 108 N

ζ̃ 7.26× 108 5.50× 108 N

η 2.00× 102 2.00× 102 s/m
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Figure III.33: Measured data and regenerated curve for mix IV (St M32).
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Figure III.34: Measured data and regenerated curve for mix VI (GS43 M32).

Table III.19: Material parameters of mix V and VII.

Parameters Fit V (St M52) Fit VII (GS43 M52) Unit

K 1.04× 108 9.10× 107 Nm

k̃1 4.62× 109 4.62× 109 N/m

k̃2 2.07× 1011 2.64× 1011 N/m2

k̃3 2.20× 1017 3.08× 1017 N/m3

α̃ 4.40× 108 4.40× 108 N

ζ̃ 1.76× 108 4.62× 108 N

η 2.00× 102 2.00× 102 s/m
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Figure III.35: Measured data and regenerated curve for mix V (St M52).

sample value is greater than 1.5. In fig. III.36 the measured data and the regression

curve for a cycle related to the mix VII (GS43 M52) are depicted; the reduced

chi-square is 0.38.

III.5 Discussions

Parameter estimation plays a critical role in accurately describing system behavior

through mathematical models such as the proposed one. Thus, a figure of merit is

required to understand how good is the identification made. Herein, the parameter

identification performed by the method presented in sec. III.4, based on the principle

of Maximum Likelihood, has been validated by the chi-square test to assess the

goodness of fit.

This analysis shows that, in the cases examined, there are concrete mixtures for

which the proposed model is acceptable directly, and there are cases in which the

value of the reduced chi-square is higher than the minimum threshold chosen for the

test. The mixtures of concrete with a high reduced chi-square are:

• Mix III with 3.5% replacement of micro-filler and a compressive strength of

52 MPa;

• Mix IV with standard concrete and a compressive strength of 32 MPa;
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Figure III.36: Measured data and regenerated curve for mix VII (GS43 M52).

• Mix V with standard concrete and a compressive strength of 52 MPa.

Comparing the squared deviations between the strain measurement ε
(m)
i , in µstrain,

and the simulation ε
(c)
i , in µstrain, with the variances obtained from the strain

measures S2
i (see eq. (III.4)), it is possible to understand why the chi-square test fails,

and then to evaluate what are the critical issues for the proposed model to improve

it. In the case of mix III, the variance measured, which has a uniform distribution

on the whole cycle, indicates a good precision in the measurement system and,

thus the high value of reduced chi-square requires an improvement of the model (see

fig. III.37). Similar considerations can be done for the mix IV (see fig. III.38). In the

other case, the distribution of the variance on the cycle is evidence of a low accuracy

of the measures and, thus such measurements need a more in-depth analysis (see

fig. III.39).

However, it is evident from figs. III.30–III.36 that for all mixtures the dissipation

energy level, i.e. the loop areas, forecast by the model presented agrees reasonably

well with experimental data. In the above mentioned cases, the analysis performed

indicates some critical issues and, thus, future efforts will be dedicated to enhance

these problems.

The performed identifications allow us to characterize the effect of each material

parameter introduced by the proposed model. From tab. III.17 concerning mix

I, II and III, it is possible to note that the coupling coefficient α̃ decreases with
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Figure III.37: Mix III: squared deviations between the measurement and the model(
ε
(m)
i − ε(c)i

)2
, measured variances S2

i expressed in micro-strain.
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i expressed in micro-strain.
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Figure III.39: Mix V: squared deviations between the measurement and the model(
ε
(m)
i − ε(c)i

)2
, measured variances S2

i expressed in micro-strain.

increasing content of filler, i.e. the effect of the micro-slip is decreased by adding

more filler for mixtures that have a low water-to-cement ratio wc (wc ' 0.5). On

the contrary, when the water-to-cement ratio is higher (wc ' 0.7), as for mix IV, V,

VI and VII, the coupling coefficient α̃ seems not to be affected by the micro-particle

content (see tabs. III.18 and III.19). In the cases of mix I, II and III, the friction

coefficient ζ̃ appears to be related to the non-linearity of the micro-structure; in

fact, considering the micro-stiffness ratios k̃3/k̃1, which is a measure of nonlinearity,

it is possible to note that the greater the ratio, the higher is the friction coefficient

ζ̃. In fact, for mix I, II and III the ratio k̃3/k̃1 is equal to 5.59× 107, 8.06× 106 and

2.82× 107, respectively and the coefficient ζ̃ equals 1.63× 108 N, 5.34× 107 N and

1.17 × 108 N. The same relationship can be found in mix IV, V, VI and VII also

taking into account the ratio k̃2/k̃1, less relevant in the previous cases because the

very low values of k̃2. For mix IV, V, VI and VII, the ratio k̃3/k̃1 is respectively

equal to 6.56 × 107, 4.76 × 107, 4.84 × 107 and 6.67 × 107, in the same way the

ratio k̃2/k̃1 is 50.5, 44.8, 50.5 and 57.1 and the coefficient ζ̃ equals 7.26 × 108 N,

1.76× 108 N, 5.50× 108 N, and 4.62× 108 N. Furthermore, including the proposed

model Coulomb and viscous effects such that the viscous dissipation is dominant

in the low micro-slip velocity range while Coulomb friction is significant beyond a

given micro-velocity level, the dissipation slope η plays a crucial role to define the
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extension of the ranges corresponding to these different behaviors. For mix I, II and

III, when the water-to-cement ratio is low (wc ' 0.5), the dissipation slope η is an

order of magnitude greater than that of the other mixtures which are characterize

by a greater wc; hence, the first three mixtures show a more considerable Coulomb

effect.
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Conclusions

The modeling process presented in this work proves that it is possible, by means of

a simple non-linear system of ordinary differential equations, to carefully describe

both quantitatively and qualitatively the available experimental evidence on com-

pression of cylindrical modified concrete specimen. In particular, it is proven that,

even if the applied compression force is related to elongation by a (nearly) linear

relationship, some non-linearities in the dissipation loop may be ascribed to non-

linear elastic phenomena involving the newly introduced microstructural parameter

which describes internal micro-motions. More precisely, the physical meaning of

this micro-structural parameter can be interpreted in terms of the overall relative

displacement of crack faces which characterize the microstructure of concrete-type

specimens. The time rate of the same micro-structural parameter is the source of

the only friction effect considered in this work: the one related to Coulomb fric-

tion force. By means of a series of numerical simulations, we have proved that a

physically reasonable set of ranges for introduced constitutive parameters can be

found which describes the whole variety of dissipation loops measured in Madeo

[2006] and in several laboratory tests. The presented results justify the need for

more complex models in order to describe (i) bending and compression periodic

deformation of considered cylindrical specimens, (ii) coupling between bending and

shear with micro-deformation, (iii) more complex micro-motions in which relative

displacement of crack faces may depend on the orientation and localization of cracks,

(iv) the longer range effects of micro-cracks-induced micro-deformation in the neigh-

borhood of considered REV, i.e. those effects which can be modeled by allowing for

the dependence of deformation energy on higher gradients of introduced kinematical

fields, (v) a load frequency dependence of the dissipation energy. Furthermore, the

effect of micro-particles additives such as calcium carbonate on internal dissipation

of concrete was experimentally investigated for seven kinds of concrete mixture. All
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specimens were tested under cyclic loading in order to evaluate energy dissipation

from the area of dissipated loop detected in stress-strain diagram relative to a rep-

resentative cycle. The experimental determination of the energy dissipated shows

a significant increase in the damping capability of the cement-based materials with

micro-filler compared to the standard concrete, in some cases in which the water-

to-cement ratio is enough high. In all tests, the friction coefficient ζ̃ appears related

to the non-linearity of the micro-structure; indeed, it is possible to note that when

non-linearities are more significant, the friction coefficient is higher.
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Appendix A

Student’s t-distribution

Student’s t-distribution, or simply the t-distribution, is a family of continuous prob-

ability distributions that arise when estimating the mean of a normally distributed

population in situations where the sample size is small and population standard de-

viation is unknown. The t-distribution is symmetric and bell-shaped, like the normal

distribution, but has heavier tails, meaning that it is more prone to producing values

that fall far from its mean. This makes it useful for understanding the statistical

behavior of certain types of ratios of random quantities, in which variation in the

denominator is amplified and may produce outlying values when the denominator

of the ratio falls close to zero.

Student’s t-distribution has the probability density function given by

f (t; ν) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) (1 +
t2

ν

)− ν+1
2

(A.1)

where ν is the number of degrees of freedom and Γ is the gamma function. The

probability density function is symmetric, and its overall shape resembles the bell

shape of a normally distributed variable with mean 0 and variance 1, except that

it is a bit lower and wider. As the number of degrees of freedom grows, the t-

distribution approaches the normal distribution with mean 0 and variance 1. If

ν = 1 this distribution come close to the Cauchy distribution, f (t) = 1/ [π (1 + t2)],

whose mean and variance are undefined.

Student’s t-distribution with ν degrees of freedom can be defined as the distri-

bution of the random variable T

T = Z

√
ν

V
(A.2)

where Z is a random variable normally distributed with expected value 0 and vari-

ance 1, and the random variable V has a chi-squared distribution with ν degrees of

freedom, being Z and V independent.
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Suppose X1, . . . , Xn are independent realizations of the normally-distributed,

random variable X, which has an expected value µ and variance s2. Standard

estimators of µ and s2 are: X̄n the sample arithmetic mean and S2
n the standard

variance from the sample. It can be shown that the random variable

Z =
X̄ − µ√
s2/n

(A.3)

is normally distributed with mean 0 and variance 1, while the random variable

V =
(n− 1)S2

n

s2
(A.4)

has a chi-squared distribution with ν = n− 1 degrees of freedom. The two random

variable are independent according to Cochran’s theorem. Without knowing the

variance s2 it is not possible compare the estimators X̄ and S2
n with Z and V which

have probability distribution known. Nevertheless the random variable

T =
X̄ − µ√
S2
n/n

=
X̄ − µ√
s2

n
(n−1)S2

n

(n−1)s2

=
Z√

V/ (n− 1)
(A.5)

has a Student’s t-distribution as defined above. Thus for inference purposes T is a

useful ‘pivotal quantity ’; it depends on ν, but not µ or s; the lack of dependence on

µ and s is what makes the t-distribution important in both theory and practice.
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Appendix B

Chi-Square: Testing for Goodness

of Fit

In a previous section we discussed briefly a procedure for fitting a hypothesized

function to a set of experimental data points. Such a procedure involves minimizing

a quantity we called Φ in order to determine best estimates for certain function pa-

rameters, such as, in our case, material parameters characterizing the model (II.28).

Φ is proportional to a statistical measure called χ2, or chi-square1, a quantity com-

monly used to test whether any given data are well described by some hypothesized

function. Such a determination is called a chi-square test for goodness of fit. In the

following, we discuss concisely about χ2 and its statistical distribution, and show

how it can be used as a test for goodness of fit.

If ν independent variables xi are normally distributed with expected value µi
and variance s2i , then the quantity known as chi-square is defined by

χ2 ≡
ν∑
i=1

(xi − µi)2

s2i
(B.1)

Note that ideally, given the random fluctuations of the values of xi about their mean

values µi, each term in the sum will be of order unity. Hence, if we have chosen

the µi and the si correctly, we may expect that a calculated value of χ2 will be

approximately equal to ν. If it is, then we may conclude that the data are well

described by the values we have chosen for the µi, that is, by the hypothesized

function. If a calculated value of χ2 turns out to be much larger than ν, and we

have correctly estimated the values for the si, we may possibly conclude that our

data are not well-described by our hypothesized set of the µi. This is the general

1The notation of χ2 is traditional and possibly misleading. It is a single statistical variable, and

not the square of some quantity χ. It is therefore not chi squared, but chi-square.
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idea of the χ2 test. In what follows we spell out the details of the procedure.

The quantity χ2 defined in eq. (B.1) has the probability distribution given by

f
(
χ2
)

=
1

2ν/2Γ (ν/2)
e−χ

2/2
(
χ2
)(ν/2)−1

(B.2)

This is known as the χ2-distribution with ν degrees of freedom, being ν a positive

integer. Sometimes we write it as f(χ2
ν) when we wish to specify the value of ν.

The mean value of χ2
ν is equal to ν, and its variance is equal to 2ν. The distribution

is highly skewed for small values of ν, and becomes more symmetric as ν increases,

approaching a Gaussian distribution for large ν, just as predicted by the Central

Limit Theorem.

Considering a set of N experimentally measured quantities yi, depending on as

many values of xi it is possible, in a curve fitting, to test whether the assumed

relationship f between x and y characterized by r parameters ar is well-described

by the hypothesized predicted values µi = f (xi; ar) by means of the chi-square

test. In other words, the chi-square statistic is used as a ‘figure of merit’ when

fitting a function, f , to data, {xi, yi} to evaluate the ‘goodness of fit’. In details, a

sum like that shown in eq. (B.1), with N terms, constitutes a sample value for χ2.

Computing the sum, estimates for the si, that are independently obtained for each

yi, are used. Now imagine that we could repeat our experiment many times. Each

time, we would obtain a data sample, and thus, a sample value for χ2 . If our data

were well-described by our hypothesis, we would expect our sample values of χ2 to

be distributed according to eq. (B.2). The expected distribution of our samples of

χ2 will not have N degrees of freedom because the interpolating function using for

the fit as estimates of µ depends on r parameters. Therefore, the number of degrees

of freedom becomes ν = N − r, and the resulting χ2 sample will be one having ν

(rather than N) degrees of freedom.

This explains the origin of the rule of thumb for chi-square fitting that states that

a ‘good fit’ is achieved when the reduced chi-square, χ2/ν, equals one. Since errors

can sometimes be non-Gaussian or not robust, a model is typically only rejected for

very low values of P –probability that this value of chi-square, or a larger one, could

arise by chance– such as 0.001. This means that for a number of degrees of freedom

of about 100, the reduced chi-square must be less than 1.5.
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di Padova 25 (1956) 371–385.

C. Zener, Internal friction in solids, Proc. Phys. Soc. 52 (1940) 152–166.

R. L. Wegel, H. Walther, Internal dissipation in solids for small cyclic strains, Physics

6 (1935) 141–157.

K. Weinberg and P. Neff, A geometrically exact thin membrane model-investigation

of large deformations and wrinkling. Int. J. Num. Meth. Engrg., 74(6) (2007)

871-893.

107 of 107


	Introduction
	Background and Motivations

	Modeling of Microcracked Media
	Models for internal dissipation in solids
	State of the art and preliminary work
	Continua with microstructure
	Methods for reducing the degrees of freedom in considered models
	Future perspectives and limits of the model presented
	Modelling
	Simplified equations of motion based on Saint-Venant theory for the case of simple compression

	Numerical simulations: specimen in pure compression
	Effect of the basic parameters of the model presented on the area of dissipation loops
	Some typical plots showing the periodic variation in time of relevant quantities

	Discussion

	Mechanical Testing
	Test Specimens and Materials
	Specimen preparation

	Experimental Results
	Cyclic tests
	Ramp failure tests

	Data Analysis
	Dissipation Energy Identification
	Test analysis with varying frequency cycle 

	Parameter identification
	Discussions

	Conclusions
	Student's t-distribution 
	Chi-Square: Testing for Goodness of Fit

