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Notation 
B lane breadth 

C signal cycle time 

I stage intergreen time 

J jam density 

K critical density 

L length 

N number of lanes 

Q capacity 

S legal speed limit 

T last time instant of the simulation 

V freeflow speed 

W jam wave speed 

A additional red time 

BS backward star set 

E cumulative outflow 

EF emission factor 

F cumulative inflow 

FS forward star set 

G cumulative space slots 

Ĝ temporary cumulative space slots 

H cumulative arrives 

Ĥ temporary cumulative arrives 

N cumulative vehicles 

PE pollutant emissions 

Q queue length 

R vertical storage 

S vertical queue 

U number of vehicles 

VK traffic production (vehicle-per-km) 

Y residual green 

Z new vehicles in the queue 

A set of links 

C set of conflict areas 

E set of externalities 
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H set of legs 

I set of user classes 

J set of junctions 

L set of lanes 

M set of vehicle types 

N set of nodes 

S set of stages 

T set of lane turns 

X set of signalized junctions 

Z set of network zones 

k density function 

q flow function 

t travel time function 

v flow speed function 

w wave speed function 

a index of upstream link 

b index of downstream link 

c index of conflict area 

d turn demand flow 

e() outflow 

ê index of externality 

  modal-equivalent outflow 

f() inflow 

f   modal-equivalent inflow 

g index of green split 

h index of leg 

i index of user class 

j index of junction 

k index of density 

l index of lane 

m index of vehicle type 

m() main stage 

n turn receiving flow 

p turn probability 

q index of flow 

r() receiving flow 
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s() sending flow 

t index of lane turn 

t() travel time 

u() forward wave arrival time instant 

v index of speed 

w index of wave speed 

x index of node / space point 

y turn flow 

z index of zone 

z() backward wave arrival time instant 

Γ alternative value of density in Gentile polynomial 

Θ set of queue buckets 

Λ stage matrix 

Ξ link model 

Π node model 

Φ maximum flow 

Ψ alternative value of speed in Gentile polynomial 

Ω genetic objective function 

α multiclass flow coefficient 

β multiclass density coefficient 

γ curvature of fundamental diagram 

δ constant delay 

ζ elitism size 

η exit bottleneck share 

θ given queue bucket 

ι stage green share 

κ bucket capacity 

λ stage matrix element 

μ entry bottleneck share 

ν objective function multiplier 

ξ receiving share 

π turn priority 

ρ minimum ratio 

ς spillback condition 

σ multiclass queue share 

τ given time instant 
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υ sneaking factor 

ϋ environmental sneaking factor 

φ turn capacity 

χ share of vehicle type in the fleet  

ψ squeezing factor 

ω del Castillo exponent 

Б genetic algorithm population set 

Ж genetic algorithm crossover set 

З genetic algorithm gene set 

Ш genetic algorithm mutation set 

б index of individual 

ж index of crossed over individual 

з index of gene 

ш index of mutated individual 
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1 Introduction 
In the last decades transport demand grew up so fast that it became considerably 

unbalanced with respect to the available supply. The subsequent congestion levels yield 

incredibly high social costs, in terms of delays, fuel consumption, air and acoustic 

emissions and individual stress for travellers. Congestion is particularly sensible in 

urban areas, due to the high density of both residential and commercial activities. 

Additional costs generated by the congestion have a significant impact on the quality of 

life of its inhabitants and they hinder the social and economical development of the 

territory. Thus, the need to intervene on the transport system to decrease travel times 

and to improve the overall accessibility of town areas. 

In urban networks travel times are highly affected by the presence of at-grade junctions, 

where the trajectories of drivers cross each other. According to the definition given in 

[5], junctions are the physical spaces of the transportation network where several flow 

streams merge into each other, diverge or crisscross to move from one road to another. 

Vehicle interactions yield negative effects both in terms of traffic speed and safety: 

these can be countered or mitigated through interventions which modify driver 

behaviour by removing or reducing conflicts. Such interventions can be generally 

grouped in four categories: 

 altimetric separation (ramps, tunnels); 

 planimetric shifting (roundabouts); 

 time shifting (traffic signals); 

 priority regulation (stop and yield signs). 

The main objectives usually are safety, environmental impact and costs. On one hand, 

building ramps and tunnels is definitely the most effective solution, but it involves high 

investment costs. On the other hand, intersections with traffic lights or priority signs are 

cheap, but less effective. In urban areas the number of junctions and paths and the 

limited space rarely allow to choose the first solution, so the most common regulation 

strategy on junctions where traffic streams are significant is the introduction of a traffic 

signal. Subsequently, due to the incredibly high number of traffic signals in densely 

populated and busy areas, the determination of the best settings for each of them plays a 

very relevant role in local traffic optimization. The problem becomes even more 

significant, considering that close traffic signals have mutual influence on their level of 

service. 

Generally, authority intervention at any level requires adequate decision support 

systems. This is due to their relevance, both in terms of the mere operational costs and 

of the subsequent costs sustained by the network users, which are proportional to the 

traffic flows involved by the intervention. In the last years, support decision systems 

improved their effectiveness and the authorities started to consider them for middle and 

long-term planning. Currently, the hardest issue is improving them to satisfy not just a 

what if methodology but to answer a what to question. To do this, it is necessary to 

gather the know-how developed by research teams and to put it into usable tools. 
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Moreover, the real world phenomena should be deeply inspected in order to produce 

realistic quantitative evaluations. 

Aim of the present work is to focus on the signal control strategy, proposing a suitable 

formulation of the problem and an effective evaluation methodology. In the present 

Chapter 1 we have given an overview of the regulation strategies for junction with 

conflicting manoeuvres among vehicles. In Chapter 2 we introduce the signal 

synchronization problem, its variables and an overview of the state of the art in the 

methodologies about it. In Chapter 3 we offer an overview of the mathematical models 

which can be used to simulate the traffic phenomena on traffic networks; so as to get 

some useful key indicators for the optimization. In Chapter 4 the proposed formulation 

of the signal synchronization problem and the selected optimization technique are 

presented. In Chapter 5 we illustrate TOSCA, the software package integrating the 

proposed traffic model and optimization algorithm. In Chapter 6 the results obtained by 

the proposed methodology are shown, including both the traffic simulation and the 

evaluation of the optimization solutions. In Chapter 7 we draw our conclusions and 

some possible future developments. 
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2 The signal synchronization problem 
A traffic signal is mainly described by the variables which will be briefly presented 

here. Each manoeuvre on the junction is allowed if the corresponding green light is on, 

else the stop is imposed. The first significant variable is the duration of lights (red, 

amber, green) for each given manoeuvre. In general, only green and red times are 

relevant for optimization aims while amber is dependent on the junction configuration. 

So it is usually worth considering an effective green, which is the time period during 

which vehicles actually cross the intersection, and an effective red, during which 

vehicles wait at their stop line. For each manoeuvre the sum of all lights is the same: 

this duration is called cycle of the signal. Thus, a cycle is the period of time after which 

the same sequence of lights is repeated again. Having two different green sequences 

during the cycle is very rare, as this usually yields drawbacks both in service and safety 

performances. Given the cycle time, each light duration is often expressed through its 

split, i.e. the ratio between it and the cycle. There are two ways for handling the timings 

of manoeuvres of one signal: stages and signal groups. A stage is the time interval 

during which no variation in lights of all manoeuvres occurs. A stage enables a specific 

set of possibly low-conflicting manoeuvres amongst all possible turns occurring at the 

junction. A signal group is a set of manoeuvres whose lights always coincide. Thus, 

manoeuvres of the same signal group are always enabled and disabled simultaneously. 

Two different signal groups can be contemporaneously allowed but there will be at least 

one instant during which one will be enabled and the other one will not. Stage and 

signal group representation are alternative ways to represent the same information. 

Given a group-stage matrix Λ, whose element λij is positive if signal group i is allowed 

during stage j, the former method gives timings by row, while the other considers these 

by column. Sometimes the specific configuration of the intersection or some 

manoeuvres require the introduction of constraints to the variables. Box constraints are 

one type of these, i.e. minimum and/or maximum duration, both of cycle and green/red 

times. Another type is due to intersection clearance: there can be cross constraints 

between the end of one signal group and the start of another one (intergreen time) or of 

any other one (all-red). Finally, when considering a network of signalized junctions we 

need to introduce the offset, i.e. the time interval between a reference instant (the same 

for all traffic lights) and the starting instant of each signal cycle. 

Difference between signal coordination and synchronization has often been a discussed 

subject, because of the absence of a formal definition. Here we refer to coordination as 

the determination of the optimal offset among several junctions with the same cycle 

time. Timings of these junctions are supposed to be predetermined, stemming from a 

previous optimization and then considering each of them as an isolated junction. We 

refer to synchronization as the simultaneous optimization of cycle, timings and offset of 

all the junctions in the network. Often, in real networks not all junctions are 

synchronized together. Instead, several groups of mutually synchronized junctions can 

be found, even close to each other. These sets are called coordination groups. Thus, all 
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the junctions belonging to the same coordination group have the same cycle, or a 

submultiple of it. 

The signal synchronization problem is to determine the optimal values for signal 

parameters with respect to a given objective function, complying with the given 

constraints. Several data can be useful to this aim: flows on each manoeuvre, saturation 

flow, saturation rates, loss times up to traffic mix, road slope, presence of parking slots, 

transit stops and pedestrian crossings close to the junction, distance or travel time 

among junctions in the network. 

Further data which could be subject of optimization is the sequence of the stages: this 

makes the problem considerably harder and it is often neglected, assuming the stage 

sequence as given. An example of the optimization of the stage sequence for left turn 

movements is given in [51]. 

Signal control strategies based on flow counts can be divided as follows: 

 predefined plans; 

 plan selection; 

 actuated. 

Off-line approach by predefined plans aims at determining the best signal settings for a 

given day period, based on given demand flows, e.g. by historical surveys; suitable 

optimization algorithms are generally used to this aim. Splitting the day in several 

periods is the only solution to make the control strategy time-varying in a certain way. 

Real-time regulation requires real-time traffic data, e.g. by loops or cameras; it typically 

implements some fast and simple reaction rules based on the detected flows. For 

example, it selects in real-time the best signal settings among a given set of off-line 

solutions built in advance (plan selection). Otherwise, the rule aims to bring the system 

at some desired status using an optimal control logic instead of explicitly minimizing 

some overall objective functions. In that case there is no actual plan as signal settings 

vary with a predefined frequency. In each of the previous cases, switching from one 

(optimal) plan to another is not trivial and optimality can be lost if this is not properly 

done. This aspect is particularly relevant especially in the actuated control logic, where 

plans are continuously determined and set. The switching problem is considered e.g. in 

[16], but we will not deal with it further, as this is beyond the scope of the present work. 

Finding an optimal solution to the signal setting problem, also in the off-line scheme, is 

a task which is hard to accomplish in an analytical way, that is why heuristic methods 

have been often applied. Depending on the objective function and on the design 

variables, the algorithm to solve the signal timing problem varies substantially. Traffic 

lights improve safety, but they usually increase travel times, so that minimizing the total 

delay, or equivalently the time spent by all vehicles, may be an intuitive objective. 

2.1 State of the art 

The automated traffic light as we know it today, for vehicle traffic regulation, has been 

introduced in the ‘20s. Before that time, pedestrian and train models were already 

available. The problem of signal setting optimization has been studied from a theoretical 

point of view approximately from the half of the last century. One of the first 
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contributions in this field was the minimum cycle method conceived by Webster in 

1958 ([68]): he proposed a formula to calculate the minimum cycle length to minimize 

total delay suffered by vehicles on an isolated junction. The proposed methodology had 

several limitations but today it is still used in academic courses as a significant example 

to introduce the traffic signal setting problem. 

Another approach for isolated intersections was the maximization of the reserve 

capacity, i.e. a multiplier of demand flows, constrained by link saturation flows. This 

approach is complementary to the previous one, as it focuses on the maximization  of 

the intersection throughput, disregarding delays. In the case of isolated intersections the 

latter can be assimilated to the Webster problem, while in junction networks the two 

objectives can differ significantly. E.g. in [69] a mixed heuristic is presented, 

minimizing the cycle time of isolated intersections and then adopting the maximum of 

the resulting cycles. 

When considering junction networks the previous methods are inadequate, as new 

variables arise (signal offsets) and the interactions among different junctions turn more 

and more relevant the closer they are. In particular, further than the offsets, green times 

mutually interact too, because flows leaving an upstream junction are strictly related to 

flows reaching the downstream junction. One of the first significant contributions in this 

direction was given by Allsop in 1968 ([2]). More recently, mixed-integer formulations 

were presented by Gartner et al. in [28] and in the following [29]. Unfortunately mixed-

integer optimization problems have neither efficient nor effective solution techniques 

and they are usually hard to solve. 

However, the offset consideration led instead to the issue of the synchronization of an 

arterial road. Synchronizing signals along a predefined path is a particular case of the 

more general junction network. The specific assumptions defined for this problem yield 

a significantly different problem, for which suitable formulations with particular 

mathematical properties, convexity above all, have been proposed in the years. The 

most common is the bandwidth maximization. Bandwidth maximization is a quasi-

concave problem, thus analytical optimization algorithms can be used to find a global 

solution. Bandwidth is defined as the share of cycle time during which a vehicle is able 

to leave the first junction and drive along the whole path up to the last junction with no 

stops along his run. The greater the bandwidth is, the more the number of vehicle 

trajectories which potentially can do this. The first and most famous solution to this 

problem was presented in 1966 by Little (see [45]), who introduced the MAXBAND 

algorithm. From 1966 the method has been further extended, e.g. to consider also the 

bandwidth of the opposite direction of the arterial, as in [26] and [27]. The bandwidth 

maximization problem has been the most common approach about synchronization until 

recent times, because of its properties and the possibility of an analytical solution. Its 

objective is intuitive, nevertheless it may lead to solutions that are far away from the 

minimum delay ([3]). The first important remark about maximum bandwidth approach 

is that the vehicle arrivals at the first junction are assumed to be uniform in time; this is 

the condition to make its effectiveness actually proportional to the bandwidth. 

Moreover, it only assesses trajectories along the given path, disregarding the vehicles 
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leaving or entering the arterial in middle junctions and their delay before joining the 

coordinated path. Actually, it does not take into account travel demand or estimated 

traffic flows at all. Besides, the methodology requires the travel times from junction to 

junction, which rarely consider congested conditions and the presence of queues. Final 

drawback, it is not suitable to coordinate signals on a network. Hence, it is commonly 

used to coordinate major urban arterials, where flows on access roads can be neglected 

with respect to the main stream and possibly one priority direction can be defined (e.g. 

inbound in the morning, outbound in the afternoon). 

The strongest limitation of previous methods consists in the fact that all of them assume 

any intersection to work in uncongested conditions. This is a very remarkable limit 

when considering urban areas with current congestion levels, as they proved to be 

ineffective to the aims introduced in Chapter 1. Dealing with oversaturation is an issue 

which recently assumed greater importance: it requires both the problem modelling and 

its solution approach to be significantly revised. In this sense, an interesting comparison 

among delays in undersaturated and oversaturated conditions is performed in [19]. [8] 

gives an example of optimization in oversaturated conditions. 

The delay minimization in signal synchronization is typically a non-convex problem, so 

a global optimum cannot easily be found through analytical optimization. That is why 

alternative formulations are often proposed, whenever no effective methods to estimate 

the delay are available. As soon as advances in optimization allowed it, the complex 

problem of delay minimization has been tackled, with several approaches and different 

results. Hybrid methodologies including delay calculation in bandwidth maximization 

have been proposed, such as in [50] and in the already considered [51]. Local 

optimization was instead proposed in [70]. 

The first method explicitly conceived to minimize the delay was proposed in 1969 by 

Robertson ([64]); it was called TRANSYT and from it one of the most popular 

commercial software packages for signal optimization was written. Now TRANSYT 

latest release is n. 14 ([66]), whereas several extensions or hybrid models have been 

proposed by scientific researchers from its birth. TRANSYT core methodology 

performs a hill-climbing search about all problem variables. It optimizes cycle time, 

green splits and offsets of every intersection node. According to this, it can optimize a 

junction network; delays are estimated through a statistical traffic model considering 

node interactions based on the distance among them. Hill-climbing is an optimization 

technique finding local minima, thus it is strongly affected by the starting point of the 

algorithm. Several studies were presented, aiming to overcome TRANSYT limits and to 

increase its performance. In [9] Cohen used the maximum bandwidth solutions given by 

MAXBAND as TRANSYT algorithm starting points. Later he extended the research in 

[10], using  bandwidth as a constraint for TRANSYT minimum delay problem. 

SYNCHRO ([40]) is another commercial software for signal optimization which 

deserves to be mentioned thanks to its popularity, especially in the UK market. 

SYNCHRO was developed later than TRANSYT but it essentially targets the same 

topics. SYNCHRO optimization is similar to the one in TRANSYT and it is based on 
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statistical models. PASSER ([65]) is another commercial software developed in the US, 

employed for control strategies on signalized networks. 

In latest years all the commercial software illustrated above have introduced genetic 

algorithms among their optimization tools. Genetic algorithms are stochastic 

optimization methods, particularly suitable for the optimization of complex problems, 

where finding an analytical solution seems to be unfeasible. They find sub-optimal 

solutions following “survival of the fittest” criteria and other algorithm steps inspired to 

the evolution sciences. Full details will be given in Chapter 4 sotto. Genetic algorithm 

optimization for signal setting problem was first applied in 1993 by Hadi and Wallace 

([37]) for bandwidth maximization, using the TRANSYT traffic model. Six years later 

in 1999 Park et al. showed its effectiveness on oversaturated intersections ([58]), using 

a mesoscopic simulator for traffic indicators. Genetic algorithms are still very used to 

tackle the traffic signal setting problem, especially under congested conditions ([15]), 

coupled with traffic simulation models: macroscopic ([22], [24]), mesoscopic ([11]) or 

microscopic ([59]). The approach revealed to be promisingly effective, compared with 

other commercial tools (see [46] for a comparison with TRANSYT-7F). Finally, genetic 

algorithms are particularly suitable because the problem formulation and solution does 

not depend on the specific objective, so different objectives can be specified, for 

example the number of stops, queue lengths, vehicle externalities, etc. Sometimes these 

objectives are integrated into multi-criteria approaches. 

An exhaustive review of signal control strategies must include the automated adaptive 

signal control systems currently used all over the world. Among them, SCOOT is today 

the most popular system, with hundreds of installations in the world. SCOOT ([39]) is a 

direct derivation of the TRANSYT strategy, determining the optimal green and offset 

for a network of signalized junctions, based on traffic flows detected through traffic 

sensors. UTOPIA ([20]) is a regulation system which performs in real-time a bilevel 

optimization: at a lower level it manages the single intersection greens and offsets, 

considering interactions with adjacent intersections, while at the upper level it regulates 

driver travel paths and speeds based on expected demand data and generates the 

constraints for the lower level solutions, to make them reciprocally compatible. 

Applications of UTOPIA can be found in the Italian cities of Rome, Turin and Bologna. 

OPAC was developed after UTOPIA by Gartner ([25]). It is a fully demand-responsive 

system, mostly performing each time step a new plan selection and then adopting a 

rolling-horizon strategy. OPAC’s main installations are overspread in the US. 

BALANCE ([23]) is a product of the German academy. BALANCE focuses on the 

system modularity, thus it is immediately scalable. It includes a microscopic traffic 

model for performance evaluations and it explicitly allows to include public transport 

systems and to apply specific strategic policies (e.g. transit priority). The academic 

research proposed several other non-commercial responsive management strategies, 

such as [1] and [18]. As an example, the latter is suitable for the transit priority, like 

BALANCE. 
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3 The traffic model 
Years of applications showed that the optimization quality is essentially related to the 

conformity of the traffic model to reality. In fact, as said before, signal optimizers 

require an index assessed to each solution which somehow represents its expected 

goodness. The index can be returned by a statistical model, by a traffic model or - more  

effectively – by a traffic simulator. The latter is assumed to return the realest answer; at 

the same time it allows a greater number of indicators but it requires greater 

computational efforts. Nevertheless, the computational power reached by modern 

processors makes the approach feasible and the results generally obtained make of it the 

most desirable. 

Congestion is a traffic phenomenon which is extremely dynamic: it usually raises 

temporarily and then disappears. All traffic phenomena related to the signal setting 

problem require a dynamic representation: demand flows, traffic lights, stops, queues, 

spillback are just some of the most relevant of them. Therefore, a dynamic traffic 

simulator is the natural choice to fulfil our aims. Refer to [14] for a detailed review on 

traffic dynamics. 

Finally, dynamic simulators can be divided into three main classes: microscopic, 

mesoscopic and macroscopic. Microscopic models explicitly represent each single 

vehicle in the network, with its respective attributes (e.g., speed, acceleration, 

destination, wished manoeuvre according to other vehicles, priority and traffic lights). 

The subtending models seek to represent the driver behaviour with respect to the 

available conditions which affect it. Microscopic models represent the most detailed 

behavioural models but they require very high computational efforts, due to the high 

number of data involved. Note that their complexity is proportional to the number of 

vehicles in the network, i.e. the greater the considered flows, the slower the simulation 

runs. VISSIM and AIMSUN are the most popular commercial software packages for 

microsimulation. Mesoscopic models aggregate flow data with respect to some 

aggregation unit. This is usually the platoon, i.e. a group of vehicles which are assumed 

to have a homogeneous behaviour. Platoon aggregation and dispersion models are 

included. Mesoscopic models are faster than microscopic models and they allow the 

reconstruction of disaggregate data, such as vehicle trajectories. Mesoscopic models are 

less popular than the others. An example of a mesoscopic model for signal optimization 

is illustrated in [42]. Finally, macroscopic models represent aggregate traffic variables, 

such as inflow, outflow and average speed by link. Due to the smaller decomposition, 

they are the fastest simulators, at the cost of a minor level of detail. An overview of a 

macroscopic model behaviour is given in [31] and [32]. In [49] a comparison between 

the mesoscopic and the macroscopic traffic models available in TRANSYT is 

performed. In particular, the macroscopic model available in TRANSYT implements 

the Cell Transmission Model (CTM), presented by Daganzo in [12] and [13]. 

The CTM is a first-order implementation of the kinematic wave theory (KWT), which 

was developed independently in about 1955 by Lighthill and Whitham in [44] and 

Richards in [63]. The CTM discretizes the space in cells of equal dimension and 
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homogeneous characteristics and in these cells flow propagates according to a given 

state equation. A Link Transmission Model (LTM), which does not require space 

discretization along links, is presented in [71] and [72]. In Chapter 3.1 sotto we 

introduce some KWT fundamentals and the General Link Transmission Model 

(GLTM), which is the traffic model proposed for our optimization scopes. 

3.1 The General Link Transmission Model 

The GLTM extends the idea of the CTM to any concave fundamental diagram, without 

discretizing the space into cells and considering the link as a whole. Through the GLTM 

it is possible to reproduce with an appropriate level of detail the main congestion 

phenomena that affect vehicle travel times in urban contexts, i.e. the temporal evolution 

of queues along links and their spillback at junctions. Here we introduce the main 

concepts and equations of the model, referring to [30] for further details about the 

formulation and the solution algorithm. 

3.1.1 The fundamental diagram 

GLTM is one of the models which refer to the kinematic wave theory (KWT) in its 

first-order implementation based on cumulative flows, according to Newell studies 

([52], [53] and [54]). An academic overview of the approach is given in [33]. In such 

models the traffic along a link a is represented in the space x and time  as a 

macroscopic mono-dimensional fluid of partially compressible particles. We introduce 

five main variables (we will omit index a for simplicity of notation): 

N(x,) the number of vehicles that traversed section x until time  

q(x,) = N(x,) /  the flow through section x at time  

k(x,) = -N(x,) / x the density at section x and time  

v(x,) = q(x,) / k(x,) the flow speed at section x and time , where dN(x,) = 0 

w(x,) = dq(x,) / dk(x,) the wave speed at section x and time , where dq(x,) = 0 

 

Figure 3.1: The fundamental diagram 

V 

 

 

J 

 
density 

q 

k
+
(q) K 

 

flow 

-w
+
(q) 

v
+
(q) 

v°(q) 

w°(q) 

k°(q) 

hypercritical states 

-W 

 
0 

hypocritical states 



The traffic model 

 

 

 

 Daniele Tiddi 17 

 
 

The fundamental diagram q = q(k), depicted in Figure 3.1, is the experimental relation 

between flow and density. It represents the two main phenomena of driver behaviour 

when driving along a road channel with homogeneous characteristics and no 

bottlenecks, that is: 

 the variance of the desired speed in free flow conditions among different 

vehicles assuming no overtaking, so that the frequency of delays due to a slower 

car ahead increases with the density of the flow (hypocritical spacing); 

 the need for a vehicle of keeping a safety distance from the car ahead, which 

depends on the speed of the flow (hypercritical spacing). 

The fundamental diagram holds for stationary conditions; KWT assumes its validity 

also for non-stationary traffic flows. This implies that vehicles react instantaneously to 

changing flow states with no reaction time (although their spacing takes it into account) 

by adapting their speed without instabilities. 

Referring separately to the two branches (hypocritical and hypercritical) of the 

fundamental diagram (see Figure 3.1), we can then introduce the following functions of 

the flow: 

k°(q) = q
-1

(q) the hypocritical density (trivially k°(0) = 0) (1) 

v°(q) = q / k°(q) the hypocritical vehicle speed (2) 

w°(q) = 1 / [dk°(q) /dq] the hypocritical wave speed (3) 

k
+
(q) = q

-1
(q) the hypercritical density (4) 

v
+
(q) = q / k

+
(q) the hypercritical vehicle speed (5) 

w
+
(q) = 1 / [dk

+
(q) /dq] the hypercritical wave speed (6) 

All the parameters defining the shape of one branch of the fundamental diagram are 

assumed to be constant in space and time. We denote in particular: 

V = v°(0) = w°(0) free flow speed (7) 

W = -w
+
(0) jam wave speed (8) 

J = k
+
(0) jam density (9) 

 = max{q(k): k[0, J]} physical capacity (10) 

Q = UB{q(k)} nominal capacity (11) 

K = k°() = k
+
() critical density (12) 

Classical forms are the triangular shape and the parabolic shape. The parameters (7)-

(12) are rather “physical” quantities which can be robustly estimated by direct 

measurements, although we often recur to model transposition and previous experience. 

We introduce both a physical capacity  and a nominal capacity Q because sometimes 

the input capacity of the model (Q) is neglected, if unrealistic (usually too high). 

Despite there are some degrees of correlation among these parameters, they can yet be 

considered independent of each other; indeed in practice we can find road types with all 

sorts of value combinations. However, the most popular models are rather simple and 

they are often not capable of accommodating for more than few independent 

parameters, deriving others. In the following we report some well known fundamental 
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diagrams, from the works of Greenshield ([36]), Greenberg ([35]), Underwood ([67]) 

and the first studies by Newell. Among parentheses the independent parameters are 

given: 

q(k) =  

k  V  (1 - k / J) Greenshield quadratic (V, J) (13) 

k  W  ln(J / k) Greenberg logarithmic (W, J) (14) 

k  V  exp(- k / K) Underwood exponential (V, K) (15) 

min{k  V, (J - k)  W} Newell triangular (V, W, J) (16) 

min{k  V, Q, (J - k)  W} Newell trapezoidal (V, W, J, Q) (17) 

More complex models have been recently proposed by some authors. Among these, we 

cite the negative power model proposed by del Castillo in [17]: 

q(k) = 

J  V  [(W / V  (1 - k/J))
-

 + (k/J)
-

]
-1/

  del Castillo neg. pow. (V, W, J, K) (18) 

where: 

 = 1 / [ln(V/W) / ln(J/K - 1) - 1] (19) 

For   , i.e. for K = J  (V/W - 1), we have the triangular model. 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.05 0.1 0.15 0.2 0.25
density (veh/m)

fl
o

w
 (

v
e

h
/s

e
c
)

newell triangular

newell trapezoidal

greenberg logarithmic

greenshield quadratic

underwood exponential

del castillo negative power

 

Figure 3.2: q-k relation for different theoretical fundamental diagrams. 

3.1.2 The flow propagation 

Given a generic link of length L > 0, let f(τ) = q(0,) be its inflow (x = 0 is the initial 

section) and e(τ) = q(L,) its outflow (x = L is the final section of the link) at time τ. By 
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definition, the cumulative inflow and outflow, i.e. the number of vehicles that passed 

respectively the initial point and the final point of the link until that instant, are given 

by: 

F(τ) = N(0,) = 0
τ
f(ζ)  dζ (20) 

E(τ) = N(L,) = 0
τ
e(ζ)  dζ (21) 

The instant u(x,) ≥ τ when the forward kinematic wave generated at time τ on the initial 

point of the link by the hypocritical inflow f(τ) reaches section x is given by: 

u(x,) = τ + x / w°(f(τ)) (22) 

In general, u(x,) is not invertible, since more than one kinematic wave generated on the 

initial point may reach the final point at the same time (for decreasing inflows). If f(τ) is 

the prevailing flow state at time u(x,) in the final point, the corresponding cumulative 

flow Ĥ(x,) is given by F(τ) plus the number of vehicles that have passed the forward 

kinematic wave with slope w°(f(τ)) generated at τ in the initial point: 

Ĥ(x,) = F(τ) + f(τ)  x  [1 / w°(f()) - 1 / v°(f())] (23) 

 

Figure 3.3: Space-time diagram of a forward kinematic wave and traversing vehicle trajectories. 

The Newell-Luke Minimum Principle (NLMP) states that, among all forward kinematic 

waves that reach the final point at time τ, the one yielding the minimum cumulative 

flow, denoted H(τ), dominates the others: 

H(x,) = min{Ĥ(x,σ): u(x,σ)= τ} (24) 

The instant z(x,) ≥ τ when the backward kinematic wave generated at time τ on the 

final point of the link by the hypercritical outflow e(τ) reaches the initial point is given 

by: 

z(x,) = τ - L / w
+
(e(τ)) (25) 

time 

dx 

dx/w°(q) 

dx/v°(q) 

space 

v
°
(q) 

w°(q) 

vehicle trajectories 

forward kinematic wave trajectory 
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As above, z(x,) is not invertible, since more than one kinematic wave generated on the 

final point may reach the initial point at the same time (for decreasing outflows). If e(τ) 

is the prevailing flow state at time z(x,) in the initial point, the corresponding 

cumulative flow Ĝ(x,) is given by E(τ) plus the number of vehicles that have passed 

the backward forward kinematic wave with (negative) slope w
+
(e(τ)) generated at τ in 

the final point: 

Ĝ(x,) = E(τ) + e(τ)  x  [-1 / w
+
(e()) + 1 / v

+
(e())] (26) 

 

Figure 3.4: Space-time diagram of a backward kinematic wave and traversing vehicle trajectories. 

The NLMP states that, among all backward kinematic waves that reach the initial point 

at time τ, the one yielding the minimum cumulative flow, denoted G(τ), dominates the 

others: 

G(x,) = min{Ĝ(ζ): z(ζ) = } (27) 

The network thus is modelled as a set of links, each one consisting of an homogeneous 

channel with one bottleneck at its entrance and one at its exit, that connect a set of 

nodes, each one consisting of an intersection where mergings and diversions take place. 

Cumulative flows H(L,) and G(0,) are used in the GLTM to determine respectively 

the sending and receiving flows, which are the input of the node model. 

3.1.3 The link model 

The link model takes the inflows and outflows of previous instants as an input. It 

provides as an output the receiving and sending flows of the next instant, associated, 

respectively, to the entering and exiting bottleneck, as explained in the following. 

The vertical queue at time , denoted S(), is defined as: 

 the vehicles entered at the initial point of the link that propagating forward 

would reach the final point no later than time  if no queue was present there, 

represented by H(); 

 minus the vehicles that exited the link no later than time , defined by E(); 

space 

time 

-w
+
(q) 

-dx/w
+
(q) dx/v

+
(q) 

v
+
(q) 

dx 

backward kinematic wave trajectory 

vehicle trajectories 
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S() = H() - E() (28) 

 

Figure 3.5: Link model and flow notation. 

The vertical storage at time , denoted R(), is defined as: 

 the storage capacity given by L  J, plus the free spaces left by the vehicles at the 

final point of the link that propagating backward would reach the initial point no 

later than time  if a queue was present there, both represented by G(); 

 minus the vehicles that entered the link no later than time , defined by F(); 

R() = G() - F() (29) 

The sending flow s() at time  results from the minimum between: 

 the maximum flow that can exit the link under free flow conditions, which for d 

 0 is given by dH() / d, if the vertical queue S() is null, and tends to infinity 

otherwise; 

 the exit capacity, given by the reduction () of the physical capacity , e.g. 

controlled by a traffic signal; 

s() = min{S() / d + dH() / d , ()  } (30) 

Analogously, the receiving flow r() at time  results therefore from the minimum 

between: 

 the maximum flow that can enter the link under spillback conditions, which for 

d  0 is given by dG() / d , if the vertical storage R() is null, and tends to 

infinity otherwise; 

 the entry capacity, given by the reduction () of the physical capacity ; 

r() = min{R() / d + dG() / d , ()  } (31) 

Travel times can be determined applying the FIFO rule, which is formally expressed as: 

F() = E(t()) (32) 

where t() is the exit time of a vehicle entering the link at time . 

final bottleneck 

 

running segment 

 

initial bottleneck 

 

() () 

 

f() , F()               e() , E() 
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Figure 3.6: Computation of travel time based on cumulative flows. 

3.1.4 The node model 

The node model, referring to a given instant  (dropped from the notation for the sake of 

simplicity), takes as an input the receiving flow of all its forward links and the sending 

flow of all its backward links, and provides as an output the inflow of all its forward 

links and the outflow of all its backward links, as explained in the following. 

In a merging node xN, where no routing may occur, the problem is to split the 

receiving flow rb of the link bFS(x) available at time  among the links belonging to 

its backward star, whose outflows compete to get through the intersection. In principle, 

we assume that the receiving flow is partitioned proportionally to the priority of each 

link aBS(x), defined by πab  a  a , where πab is the priority coefficient of turn ab. In 

this way, it may happen that for some link c the turn flow ycb is lower than the share of 

receiving flow assigned to it, so that only a lesser portion of the latter is actually 

exploited. Let ςcb be 1 for such links and 0 for the others. The rest of the receiving flow 

rb - cBS(x) ycb  ςcb shall then be partitioned among the links that are in spillback from 

link b (i.e. all links cBS(x): ςcb = 0). On this basis, the number of vehicles nab which 

can accomplish the turn ab is given by: 

nab = b  (πab  a  a) (33) 

b = (rb - aBS(x) yab  ςab) / (aBS(x) πab  a  a  (1- ςab)) (34) 

         1        yab < nab 

ςab =  (35) 

         0        otherwise 

F() 

' ' + t(') 

time 

  vehicles 

t(') 

E() 
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Figure 3.7: Node model and flow notation. 

Calculation of definitive receiving flows is accomplished by iterating (34)-(35) at most 

|BS(x)| times. 

In a diversion node xN, where routing takes place, the node model consists in 

propagating flows consistently with given path choices and satisfying the FIFO rule (no 

overtaking allowed), for any time instant. Path choice are represented here by the 

splitting rate pab, expressing the probability that the next link of the path is bFS(x) for 

vehicles coming from link aBS(x), so that the demand flow dab of turn ab is given by: 

dab = sa  pab (36) 

The problem is to determine at the generic time  the most severe reduction, if there is 

any, to the demand flow dab from link aBS(x) among those produced by the receiving 

flow nab of each link bFS(x) and by the turn capacity φab. In order to ensure the FIFO 

rule applied to the vehicles exiting from link a, the share of sending flow a that 

actually gets through is the same for all links bFS(x): 

a = yab / dab = ea / sa (37) 

a = min{1, φab / dab , nab / dab : bFS(x), dab > 0} (38) 

When considering a generic node xN with both mergings and diversions, the above 

relations shall hold jointly. Finally the resulting inflows and outflows are simply given 

as follows: 

a 

  b2 

 b1 

fb1 , Fb1 

diversion 

 

ea , Ea 
x 

 

x 

 

fb2 , Fb2 

fb , Fb 

 b 

ea1 , Ea1 

ea2 , Ea2 

a1 

 

a2 
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fb = aBS(x) yab (39) 

ea = bFS(x) yab (40) 

In the particular case where in node xN several separate mergings occur, i.e. flows 

cross each other without sharing neither origin nor destination link, e.g. when: 

yab > 0  yac = 0,  aBS(x), bFS(x), cFS(x)-{b} (41) 

we introduce the hypothesis that drivers do not occupy the intersection if they cannot 

cross it due to the presence of a queue on their successive link, but they wait until the 

necessary space becomes available. Indeed, the proposed node model itself is not 

capable of addressing the deterioration of performances due to a misusage of the 

intersection capacity. To this aim a suitable junction model is introduced later below. 

3.1.5 Problem formulation 

Based on (20)-(31) we can formalize the proposed link model, denoted by function L, as 

the following functional, for each link aA and time : 

(sa(), ra()) = Ξa( fa('), ea(')) : ' <  (42) 

Note that the link model Ξ is separable in space but non-separable in time. 

Based on (34)-(40) we can formalize the proposed node model as the following 

functional, for each node xN and time : 

(fb(), ea()) = Πx(sa(), rb()) : aBS(x), bFS(x) (43) 

Differently from the link model, the node model Π is separable in time but non-

separable in space. 

The link model presented in previous section provides the main input for the node 

model, that are the sending and receiving flows. On the other side, the output of the 

node model are the inflow and outflow rates, that constitute the main input for the link 

model. 

Combining the above link and node models, we can then formulate the Dynamic 

Network Loading as a system of differential equations (42)-(43), which can be easily 

solved in chronological order. 

3.2 The proposed extension models 

3.2.1 The polynomial fundamental diagram 

A new functional form for the fundamental diagram previously introduced in the GLTM 

paper is given. Let us introduce the following two parameters, additional to the 

parameters (7)-(12) given in Chapter 3.1.1 sopra: 

S legal speed limit (44) 

 convexity factor (45) 

We can express the flow-density relation as: 
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q(k) = 

Q  (1 - [1 - (k - Γ)  Ψ / Q / ]

)    Gentile polynomial model (V, W, J, Q) (46) 

where: 

        V        k  K 

Ψ =  (47) 

        -W      k > K 

        0         k  K 

Γ =  (48) 

        J          k > K 

 = J / Q / (1/V + 1/W) (49) 

K =   Q / V = J -   Q / W (50) 

The equation involves four independent parameters, while the other two (K, ) can be 

derived from (49), (50). 
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Figure 3.8: Comparison between del Castillo negative power and Gentile polynomial. 

The proposed model has some key benefits, also with respect to the negative power 

model, although their shape do not differ significantly (see Figure 3.8): 

 it is able to accommodate directly four of the usual main parameters, namely V, 

J, W and Q, while only the critical density K is derived; 

 its shape parameter  is related to the other parameters through the capacity; 

 it comprehends Newell triangular model (16) in the case: 

 = 1 i.e. Q = J / (1 / V + 1/ W) (51) 

 it coincides with Greenshield quadratic model (13) in the case: 
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 = 2 i.e. W = V, Q = J  V / 4 (52) 

 it is everywhere continuously differentiable, although the second derivative is 

different for the two branches of the diagram joining at the capacity; 

 it is invertible, i.e. we can derive analytically the following functions expressing 

the density and the wave speed in terms of the flow, for the two branches, 

separately: 

k(q) = q
-1

(q) = Γ +   Q / Ψ  [1 - (1- q / Q)
1/

] (53) 

w(q) = 1 / [dk(q)/dq] = Ψ  (1 - q / Q)
1-1/

 (54) 

Speed and speed derivative can be obtained as follows: 

v(q) = q / k(q) (55) 

dv(q)/dq = [1 - q / k(q) / w(q)] / k(q) (56) 
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Figure 3.9: Effects of parameter Q on the shape of Gentile polynomial. 

As a result of (49), if the input capacity Q is higher than that of the corresponding 

triangular model expressed in (51) then the resulting model in not anymore concave. In 

Figure 3.9 three possible values for Q are given, generating respectively a concave, 

triangular and convex shape. To satisfy the concavity condition, Q is consistently 

lowered if needed: 

Q ≤ J / (1 / V + 1/ W) (57) 

i.e. the fundamental diagram is at most triangular and its effective maximum capacity is 

at most the triangular one given in (51) (in Figure 3.9 this is 1.3). 
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From (55) we can compute the link travel time for vehicles as: 

t(q) = L / min{S, v(q)} (58) 

where L is the link length and S is the legal speed limit introduced above. Let use the 

index # to denote the flow equations which consider the delay due to the compliance 

with the legal speed limit. Then, the hypocritical branch of the fundamental diagram 

becomes the lower envelop between the original function q°(k) and the inverse of 

function k
#
(q) = q  t(q) / L. In Figure 3.10 is illustrated the case of a road whose 

characteristics would allow drivers to maintain a freeflow speed of 130 km/h but the 

speed limit is set to 90 km/h. As a result, the flow speed is 90 km/h (linear first piece 

hypocritical branch) until the flow state impose a safe speed below this limit. It is 

relevant to notice that when the constraint is active, i.e. when S < v(q), this reduces the 

effective value of q(k). 
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Figure 3.10: Effects of a speed limit on the shape of Gentile fundamental diagram. 

Usually, rather than giving the link capacity and let the parameter  to set subsequently 

the shape of the fundamental diagram, it is preferable for modelling purposes to set 

directly . According to this, we can define the following equations, where two 

independent shape parameters ° and 
+
 are introduced to enhance model versatility: 

             Q  (1 - [1 - k  V / Q / °]
°

)                  k  °  Q / V 

q°(k) =  (59) 

             Q                                                        otherwise 
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             Q  (1 - [1 + (k - J)  W / Q / 
+
]
+

)         k  J - 
+
  Q / W 

q
+
(k) =  (60) 

             Q                                                        otherwise 

The model can thus be formally described as: 

q(k) = min{q°(k), q
+
(k), Q}    Gentile polynomial model for GLTM. (61) 

From (59)-(60) we can rewrite (53)-(56) for q[0, Q] as follows: 

k°(q) = °  Q / V  [1 - (1- q / Q)
1/

°] (62) 

k
+
(q) = J - 

+
  Q / W  [1 - (1- q / Q)

1/+
] (63) 

w°(q) = V  (1 - q / Q)
1-1/

° (64) 

w
+
(q) = -W  (1 - q / Q)

1-1/+
 (65) 

v(q) = q / k(q) (66) 

dv(q)/dq = [1 - v(q) / w(q)] / k(q) (67) 

Note that the model capacity  of the link may be lower than the input capacity Q, 

depending on the shape parameters of the two branches, and is defined as: 

 = max{q(k): k[0, J]} (68) 

 

Figure 3.11: The fundamental diagram in practice. 
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Indeed, the two branches of the fundamental diagram do not necessarily joint smoothly 

into one curve and may intersect as depicted in Figure 3.11. Note that the effective 

capacity given by the intersection of the two branches is . Whether an input capacity 

QA is given, this will not affect the model. On the other side, whether an input capacity 

QB is given, the resulting diagram is trapezoidal and  = QB. 

In order to avoid any doubts about the usage of Q, we recall that the link physical 

capacity is strictly related to the number of lanes and to the road characteristics: it shall 

not take into consideration any intersection, signal or bottleneck in the final section. 

This information should instead be used to evaluate the capacity at nodes together with 

turn capacity and other characteristics of the final intersection, as described in the 

following paragraph. 

3.2.1.1 Final node delay model 

Here we introduce a methodology to take into account the delay due to the presence of a 

traffic light or any other implicit loss of time at the final node of the link. Generally, 

green share and signal settings are considered as mutually exclusive alternatives to set 

turn capacity. When the traffic light is explicitly represented, the time-dynamic 

bottleneck introduced in (30) plays this role and the travel times are correctly computed. 

On the contrary, a relevant issue is how to consider properly the undersaturation delay 

at unsignalized intersections or at intersections where the signal timing is not explicitly 

considered and a green share is instead applied. 

To this end, consider the link travel time t(q) already given in (68) and add to the legal 

travel time plus the unsaturated intersection delay. The latter can be constant or can be a 

function of the flow, as for signals: 

t(q) = L / min{S, v(q)} +  + 0.5  C  (1 - g)
2
 / (1 - min{q / (ψ Q) , g}) (69) 

where: 

L  link length 

S legal speed limit 

 intersection delay (constant) 

g effective green share 

C cycle time 

q flow on the link 

Q input capacity 

ψ squeezing factor 

ψ represents a squeezing phenomenon, i.e. a greater usage of road space in hypercritical 

conditions (e.g. flanking in more queues than the number of lanes), resulting in an 

increase of both the capacity and the jam density. 

The effects of this new k
#
(q) = q  t(q) / L is depicted in Figure 3.12 sotto, for the 

following parameters: 
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param. value unit 

Q 0.8 veh/h 

V 130 km/h 

J 0.2 veh/m 

W 28.8 km/h 

 1.6  

S 130 km/h 

L 500 m 

 5 s 

g 0.5  

C 60 s 

ψ 1 (veh/lane) 

Table 3.1: Parameters of the fundamental diagrams in figure below. 
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Figure 3.12: Effects of delay in Gentile fundamental diagram shape. 

It is relevant to notice that in this case the delay applies both to the hypocritical and 

hypercritical branch of the fundamental diagram. 

Here below we report the modified equations (62)-(67), when delay is considered: 

v
#
(q) = L / t(q) (70) 

k
#
(q)  q / v

#
(q) = q  t(q) / L (71) 

dt(q)/dq = D1 + D2 (72) 

where: 

         - L / v°(q)
2
  dv°(q)/dq                                v°(q) < S 

D1 =  (73) 

         0                                                                  else 
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         0.5  C  (1 - g)
2
 / (1 - q / (ψQ))

2
 / (ψQ)      q / (ψQ) < g 

D2 =  (74) 

         0                                                                   else 

w
#
(q) = 1 / [dk

#
(q)/dq] = L / [t(q) + dt(q)/dq  q] (75) 

dv
#
(q)/dq = -L / t(q)

2
  dt(q)/dq (76) 

having: 

dv°(q)/dq = 

= d[q / k°(q)]/dq =  

= k°(q)
-1

 - q  k°(q)
-2

  dk°(q)/dq = (77) 

= k°(q)
-1

 - q  k°(q)
-2

  w°(q)
-1

 = 

= k°(q)
-1

 - v°(q)  k°(q)
-1

  w°(q)
-1

 = 

= [1 - v°(q) / w°(q)] / k°(q)  

The underlying model consists in a sequence of the original link without additional 

delay and using the original fundamental diagram, plus a vertical queue at the end of the 

link behaving like a traffic light with minimum cycle. The latter means that we assume 

all vehicles in the vertical queue leaving the link in the next cycle and thus all of them 

suffer an average delay of half the red time, i.e. C  (1 - g). To simulate this we modify 

the entire fundamental diagram, thus obtaining the desired effect on travel time through 

an equivalent wave propagation. 

It is clear that the presence of a vertical queue implies an additional density on the link, 

further than the one given by the regular oversaturation queue on the link. To avoid 

density on the link to be greater than the allowed one J (which would not allow to 

calculate a significant kinematic wave speed) we need to add a constraint. To calculate 

it explicitly through w
+
(q) we would need to solve its limit for q→0. Different 

approach, suppose the density to be at its limit value k = J , the link density is given by 

two components: one negative component due to the classical fundamental diagram 

shape (dk(q)/dq = -q / W ) and one positive component introduced by the vertical queue 

(dk(q)/dq = q  (0.5  C  (1 - g) + ) / L ). By imposing the former to be at least equal to 

the latter, we have: 

L ≥ W  (0.5  C  (1 - g) + ) (78) 

This grants even at maximum capacity the vertical queue to return a smaller density 

than the maximum allowed, as: 

L ≥ W  (0.5  C  (1 - g) + ) ≥ Q  (0.5  C  (1 - g) + ) / J (79) 

being always W ≥ Q / J as tangential to the fundamental diagram. 
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3.2.2 Modelling of intersections and lanes 

An intersection model more complex than the node model available in the original 

implementation of GLTM is presented. This allows to take explicitly into account 

approach lanes. These need to be correctly modelled for two practical reasons. First, 

from each lane only some turns are allowed and thus different lanes usually have 

different forward stars. Second, lanes have a separate storage capacity and vehicles 

queuing along one of them (e.g. due to a red light on the available manoeuvres) do not 

affect vehicles on other lanes, unless the lane spills back. The advantage of this method 

is a more accurate representation of turns, of travel times with respect to the final turn, 

of signal groups (if available) and thus stop and green times and of the impact of 

spillback due to queues on the pocket lanes. 

Let J be the set of junctions, i.e. all nodes which need a more detailed modelling for 

simulation purposes. Let each junction j have a non-empty set Hj of legs which meet at 

the node and refer each to a specific link (eventually also to its return link). Let each leg 

h have a set L
+

h of entry lanes and a set L
-
h of exit lanes. Relevant attributes of each 

lane lL
+

h are its length Ll and its breadth Bl; for each exit lane lL
-
h length is not 

relevant as lane l does not represent a pocket lane. From each lane lL
+

h a set Tl of lane 

turns is allowed, each one toward a lane l'L
-
h. The final configuration of the 

intersection is shown in Figure 3.13. 

 

Figure 3.13: A modelled junction. Continuous line are allowed lane turns of southern leg; dashed 

lines are other possible manoeuvres the modeller can enable. 

After introducing notation, here we describe how the junction model is implemented in 

the GLTM. GLTM network consists in monodirectional links. Thus, each leg is 

represented by one link if it has no entry or no exit lanes (i.e. |L
+

h| · |L
-
h| = 0) by two 

separate links otherwise, one entering the junction, the other leaving it. Trivially, the 

link cannot have no lanes (|L
+

h| + |L
-
h| = 0), as the link would not be a leg of the 

junction. As there is no particular advantage in considering distinct spillback on the tail 

lanes of a link, multiple exit lanes of the same leg can be neglected and modelled as a 
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whole with the leg link without particular limitations. Therefore, this specific case will 

be not considered and we will assume each leg to have at most one exit lane. In Figure 

3.14 the same junction of Figure 3.13 is shown, while multiple exit lanes of northbound 

and southbound links are considered as a unique (wider) exit lane. 

 

Figure 3.14: A modelled junction where exit lanes of each leg have been aggregated. 

On the other side, entry lanes need to be distinguished as previously said. Thus distinct 

lanes are modelled as distinct links diverging from the leg link; furthermore, the lane 

length determines the point along the leg where the lane starts. An explanatory scheme 

is given in Figure 3.15. 

Modelling approach lanes as distinct arcs raises the issue of establishing what is the 

maximum capacity of lane links. This can be set to several alternative values, according 

to the modeller choices. We report the following: 

 equally sharing the link total capacity among all of them; 

 sharing the link total capacity among all of them proportionally to the lane 

breadth; 

 equal to the capacity of one leg lane. 

To understand the last choice it is relevant to notice that the number of approach lanes is 

always greater or equal to the number of lanes of leg, as an effect of the pocket lanes. 

This often occurs in urban networks, where pocket lanes are used to increase the storage 

capacity immediately upstream a traffic light. It is important to remark that according to 

this the outflow of a road can be temporarily greater than its nominal capacity, until the 

queues stored on the lanes are totally cleared. 
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Figure 3.15: Junction schematic representation. Full lines are leg links, dashed lines are lane links. 

3.2.3 The conflict area model 

As it was already recalled in [5], vehicle manoeuvres may conflict in the following 

cases: 

 merging (enter the same link); 

 diversion (exit from the same link); 

 crisscross with different origin link and destination link. 

In practice, we reduce these conflicts to two types: the first two, where vehicles share 

the capacity of the upstream or of the downstream link, and the last one, where they 

share the space of their intersection point. The more vehicles mutually interact the more 

these effects become relevant and cannot be neglected for a realistic traffic 

representation. This means that such effects become significant wherever traffic density 

increases, i.e. in congested conditions and more generally in urban areas. 

In most macroscopic traffic models, intersections are space elements with no dimension, 

i.e. no time or cost is spent by the users to cross it. At most, sometimes a turn delay is 

considered. Due to the common assumption of cost separation among links, usually 

models neglect the reciprocal influence among crisscrossing flows, even if they cross 

the same intersection at the same time. Some models consider a total capacity for 

intersection nodes, with the unrealistic assumption that the total volume crossing the 

node contributes to its impedance and the impedance is the same for all flows. In real 

traffic, vehicles interact only on specific conflict points between two conflicting 

movements and are delayed proportionally to the opposite flow volume. The junction 

model introduced above is considerably detailed but still does not handle the addressed 

problem. Lane turns are dummy connectors enabling vehicles to flow physically from 

the upstream link to the downstream link, but they have no physical meaning and do not 

affect flows on other turns. The model is now further extended to take this into account. 

Let a new object conflict area be introduced in the model. A conflict area cC(j) is a 

link length 

lane A 

lane B 

lane C 

lane D 

LA 

LD 

LB = LC 

leg 
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point in junction j where two lane turns t1 and t2 intersect. In the example given in 

Figure 3.13, we can distinguish 11 different conflict areas, as shown in Figure 3.16. 

Note that conflict areas E, F and G are physically very close but they are distinct objects 

between couples of turns. 

 

Figure 3.16: Conflict areas among conflicting manoeuvres of an intersection. 

Each user performing a lane turn t will cross a sequence Ct of conflict areas before 

accomplishing its manoeuvre. Each lane turn t can be represented by a dummy 

connector only if Ct is empty. Otherwise, it is split in several links linking the given 

sequence Ct and the upstream and downstream lane links. A minimum length is given 

for all of them as we do not want to introduce sensible modifications on travel distance 

and time. Each conflict area cCt is represented by one link with two upstream and two 

downstream links of the two conflicting manoeuvres. Figure 3.17 sotto shows a 

schematic representation for one lane turn crossing two conflict areas. Some of the sets 

previously introduced for the junction model are illustrated below for the given 

example: 

j             junction index 

Hj = {j.1, j.2, j.3, j.4} 

Lj.1 = {j.1.1, j.1.2, j.1.3}             j.1.1 is the exit lane 

Lj.4 = {j.4.1, j.4.2, j.4.3, j.4.4}    j.4.1 is the exit lane 

Tj.4.1 = { }            exit lanes have no turns on the junction 

K J 

I 

H 

F D 

B A 

C 

E 
G 
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Tj.4.2 = {j.4.2.4-1}            left: link 4 ► link 1 

Tj.4.3 = {j.4.3.4-3}            straight: link 4 ► link 3 

Tj.4.4 = {j.4.4.4-3, j.4.4.4-2}       straight: link 4 ► link 3, right: link 4 ► link 2 

Cj.1.2.1-2 = {D} 

Cj.2.2.2-1 = {A} 

Cj.4.3.4-3 = {D, A} 

In Appendix at section 9.1 is described how the network is built and links are generated. 

 

Figure 3.17: Dummy links introduced to model conflicting manoeuvres. Red links are related to the 

conflict areas. 

For the introduced manoeuvre and conflict area links the link model described in section 

3.1.3 holds regularly. However, while on mergings between two conflicting turns in a 

conflict area link the node model in 3.1.4 satisfies the requirements, it does not address 

the problem of flow diversion from the conflict area link in the two manoeuvre arcs. 

The problem is to assess the splitting rates pab between the manoeuvres in the forward 

star of the conflict area. This becomes simpler considering that the two flows actually 

do not merge: all the flow from the upstream manoeuvre link a is directed to the 

downstream link of manoeuvre t1 and the same for t2. Thus, introducing a violation of to 

the FIFO rule, the splitting rate pab is calculated as the proportion among the two flows 

from t1 and t2 on the conflict area link itself. Of course, the smaller the time interval , 

the smaller the error introduced in the FIFO rule. Moreover, (33) allows to take into 

account the priority πtc for each lane turn t in the merging of conflict area c. In this way 

yield rules or balanced behaviours can be significantly simulated. The propagation 

function on conflict areas is described in Appendix at section 9.2. 

A 

D 
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3.2.4 The lane changing model 

In the junction model introduced in 3.2.2 lanes are modelled as separate links diverging 

from the main trunk. This produces the representation of separate storage of vehicles 

addressed to different manoeuvres and thus different lanes. According to the node 

model in 3.1.4 sopra, in particular to condition (38), the effect of a lane link in spillback 

would result in a total lock of the upstream leg link until the lane spillback conditions 

falls. In reality, lane changing allows flow improvement according to two distinct 

phenomena: 

 pre-emptive lane selection and anticipation of manoeuvre before the head of the 

leg link; 

 jam density compression, as by factor ψ in (74), and subsequent sneaking. 

The result is an average increase of the flow of a given manoeuvre ab at a node xN, 

having aBS(x) and bFS(x), regardless the spillback conditions of any link b'FS(x)-

{b}. In the original formulation from (38) we have: 

yab = dab  a (80) 

We extend the given equation by adding a new term which takes into account the above 

phenomena: 

yab = dab  a + υa  (min{dab, nab} - dab  a) (81) 

where υa is called sneaking factor of link a. Actually, the sneaking factor allows a share 

of the flow constrained by the spillback of other manoeuvres to accomplish the wished 

manoeuvre ab. Note that in case b is the link in spillback, the model keeps consistent 

because: 

nab = 0  a = 0, yab = 0 (82) 

whatever the value of υa. Generally, we can expect υa to be proportional to three distinct 

factors: 

 driver aggressiveness, which we could define environmental sneaking factor ϋ; 

 the number of lanes Na of the upstream link a, as the greater it is, the more the 

queue will be able to spill back on the upstream link without affecting 

significantly other manoeuvres; 

 the squeezing factor ψ already introduced in (69). 

Thus, we introduce the following relation: 

)1(1

1
1







a

a
N

 (83) 

Advantages of (83) are: 

ϋ = 0  υa = 0 (84) 

ϋ → ∞  υa = 1 (85) 

Na  ψ = 1  υa = 0 (86) 
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Na  ψ → ∞  υa = 1 (87) 

which is exactly what expected. Finally, we remark that when the upstream link has just 

one lane and no more than one vehicle per lane is allowed even in jam conditions we 

can expect that no actual increase is obtained as no overtaking is possible. In Table 3.2 

sotto the value of υa as a function of Na  ψ and ϋ are given. 

Naψ \ ϋ 0.1 0.2 0.3 0.5 1 5 10 

1 0 0 0 0 0 0 0 

2 0.09 0.17 0.23 0.33 0.5 0.83 0.91 

3 0.17 0.29 0.38 0.5 0.67 0.91 0.95 

4 0.23 0.38 0.47 0.6 0.75 0.94 0.97 

Table 3.2: Link sneaking factor υa value over different values of the number of lanes Na and of the 

environmental behaviour ϋ. 

3.2.5 The multicommodity model 

Due to its fast implementation, the GLTM is a suitable tool for real-time applications, 

such as ITS. Multimodality is often an essential specification in ITS tools. In general, 

representing mixed traffic is one of the main issues of dynamic simulators and this 

aspect has a relevant impact also on the reliability of the optimization results. Yet before 

the year 2000 this topic had been tackled in the KWT macroscopic models: in 1998 

Lebacque et al. in [43] dealt with the topic of introducing buses and in 1999 

Hoogendoorn and Bovy ([38]) showed a multiclass and multilane macroscopic model. 

Today, multiclass macroscopic models inspired to the LTM are one of the topics of 

Logghe’s research (see e.g. [48]). Here we introduce how multiple modes can be 

represented by extending the previous GLTM model, where only one fundamental 

diagram is assumed, like in the original LWR theory. We will refer to the case of two 

classes, which can always be easily generalized to any number of classes. 

Multiclass models in KWT usually assume that the fundamental diagrams of all the 

classes share a set of common characteristics, in order to satisfy some theoretical 

criteria. For example, in [47] the several fundamental diagrams are supposed to be 

similar, except if scaled by a proportionality factor α given by the vehicle class lengths: 

α = J1 / J2 = Q1 / Q2 = K1 / K2 (88) 

This enables to carry out an easier and consistent computation, according to the scaling 

factor, but it implies a wide simplification. The example given in [47] is illustrated in 

Figure 3.18 sotto: 
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Figure 3.18: Similarly shaped fundamental diagrams (Logghe and Immers, 2003). 

Note that in this case we also have V1 = V2, which is often not desirable. In other 

works, a weaker condition is the similarity of the sole hypercritical branches, by a 

scaling factor α: 

α = J1 / J2 (89) 

This means that all vehicle classes have the same jam wave speed value Wi and 

curvature 
+
 of the hypercritical branch. This prevents overtaking in hypercritical 

conditions (e.g. in queue). As the freeflow speed Vi is not required to be the same for all 

classes, different maximum flows Qi are subsequently obtained. Other times, 

fundamental diagrams are required to be triangular, in order to keep the consistency of 

the shockwave speed even if propagating through a traffic mixtures which changes 

along the link. 

In fact, the differences among vehicle classes which are expected to occur in traffic are 

the following: 

 faster vehicles overtake slower vehicles in hypocritical conditions (e.g., cars and 

heavy ground vehicles); 

 awkward vehicles may reach critical density faster than other vehicles, even 

faster than with respect to the length ratio, regardless their length (e.g. HGVs); 

 vehicles can have a different perception of flow state and slower their 

hypocritical speed unproportionally to others, i.e. one can have a linear 

Q1 

Q2 

q 

k J2 J1 K2 K1 

V 
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hypocritical branch and another a parabolic curvature (e.g., motorbikes and old-

aged car drivers); 

 vehicles with a great agility can overtake other vehicles even in hypercritical 

conditions (e.g., motorbikes and cars); 

 the jam condition does not hold for all vehicles contemporaneously (e.g., 

scooters and cars in urban jams). 

According to all the conditions enumerated above, we want to generalize the models 

proposed above, extending the case to any shape of the fundamental diagram, regardless 

of proportions and curvatures both in the hypocritical and in the hypercritical branches. 

Let us introduce I as the set of vehicle classes, which contains for the sake of simplicity 

two classes; we will address these classes with numbers 1 and 2. Note that all vehicles 

of a given class are mutually indistinguishable within any of the behavioural models; 

this means that they need to behave identically both along links (i.e. having the same 

vehicle type and driver behaviour) and at nodes (i.e. route choices). This would yield 

the modeller to define classes respectively by vehicle type (modes) and destination 

(users). In large scale applications the latter is often neglected as the number of classes 

would increase significantly. 

According to equations (59) and (60), fundamental diagrams are respectively given by 

q1°(k) and q1
+
(k) for class 1, q2°(k) and q2

+
(k) for class 2, as depicted in Figure 3.19: 
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Figure 3.19: Fundamental diagrams with generic shape for two different vehicle classes. 
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param. class 1 class 2 unit 

Q 1800 600 veh
1

/h 

V 60 30 km/h 

J 200 100 veh
2

/km 

W 20 12 km/h 

° 1 2  


+
 1 2  

ψ 1 1 veh/lane 

Table 3.3: Parameters of the fundamental diagrams in Figure 3.19. 

Class 1 has a trapezoidal fundamental diagram with linear branches (1° = 1
+
 = 1) and a 

maximum capacity of 1800 veh/h; class 2 has two parabolic branches (2° = 2
+
 = 2) and 

the resulting maximum flow is about 550 veh/h, despite the input capacity of 600 veh/h, 

as the two branches intersect before reaching it. Let introduce the following parameters: 

αi = QPCU / Qi ratio with respect to equivalent flow (90) 

βi = JPCU / Ji ratio with respect to equivalent density (91) 

where PCU (Passenger Car Unit) is the car-equivalent unit. It is immediate to notice 

that βi is the equivalent of the parameter α usually used in the most of the works cited 

above. As the fundamental relation q = k ∙ v holds for any class, αi = βi represents the 

vehicle type i to have the same manageability than a PCU, additionally to the different 

length (both longer or shorter). On the contrary, αi > βi indicates that the vehicle 

occupies a different space, whatever its length. Whether αi = βi and 1° = 1
+
 = 2° = 2

+
 

the model is equivalent to the one in [47] and in other works. 

Below we introduce the modifications which occur both in the link and in the node 

model introduced in Chapter 3.1. Its theoretical aspects have been developed in recent 

studies and they are still under evaluation, so results in Chapter 6 sotto do not include 

the multiclass extension. 

3.2.5.1 The propagation of multicommodity flows 

Cumulative inflows F(τ) and outflows E(τ) become now: 

Fi(τ) = Ni(0,) = 0
τ
fi(ζ)  dζ     iI (92) 

Ei(τ) = Ni(L,) = 0
τ
ei(ζ)  dζ     iI (93) 

As stated in [47], the traffic conservation law of the LWR model holds both for total 

traffic and for each distinct class: 

x

xqxk








 ),(),( 




 (94) 

Ii
x

xqxk ii 







 ),(),( 




 (95) 

                                                 
1 Maximum capacity Q is expressed in vehicles of the given class. 
2 Jam density J is expressed in vehicles of the given class. 
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In particular, (95) introduces the generation of distinct class shockwaves at flow 

discontinuities, which propagate as by (3) and (6) according to the class fundamental 

diagram slope. The speed of each kinematic wave considered in (22), is a function of 

the flow at the point of discontinuity (in GLTM the inflow from the tail node). The 

input inflow cannot be fi(τ), as this would neglect the traffic of other classes. On the 

contrary, it is: 

ui(x,) = τ + x / wi°(f  i(τ))     iI (96) 

where: 

f  i(τ) = hI fh(τ)  αh / αi     iI (97) 

i.e. a class-equivalent inflow f  i(τ) is used as an input for the fundamental diagram 

function wi°(q). Similarly: 

zi(x,) = τ - x / wi
+
( i(τ))     iI (98) 

where: 

 i(τ) = hI eh(τ)  αh / αi     iI (99) 

i.e. a class-equivalent outflow  i(τ) is used as an input for the fundamental diagram 

function wi
+
(q). Note that while most of multiclass models operate on one “equivalent” 

fundamental diagram for the whole traffic mix, wi°(q) and wi
+
(q) are respectively the 

wave speed on the hypocritical and hypercritical branches of the class fundamental 

diagrams and this allows to take into account the specific characteristics of each class 

fundamental diagram (curvature, density, speed, etc.).  

Differently from the equivalent inflow and outflow, class kinematic waves propagate 

class cumulative flows, i.e.: 

Ĥi(x,) = Fi(τ) + fi(τ)  x  [1 / wi°(f  i()) - 1 / vi°(f  i())]     iI (100) 

Ĝi(x,) = Ei(τ) + ei(τ)  x  [-1 / wi
+
( i()) + 1 / vi

+
( i())]     iI (101) 

and the NLMP applies separately for each class. 

3.2.5.2 The multicommodity link model 

The link model generates the input for the node model, i.e. the sending flows and the 

receiving flows. In this case, we have to start from class waves: 

Si() = Hi() - Ei()     iI (102) 

Ri() = Gi() - Fi()     iI (103) 

Note that while Si() represents the quantity of vehicles of class i that reached the end of 

the link and that are ready to go out, Ri() represents the quantity of space along the link 

which was freed by the vehicles of class i which exited the link before time  and 

propagated backward until the start of the link. So, before applying (30) and (31) and 
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comparing respectively with ()   and ()  , we need to sum all class quantities 

up to the common unit measure of PCU (we assume  to be given in vehPCU/h): 

S
EQ

(τ) = iI Si(τ)  αi (104) 

R
EQ

(τ) = iI Ri(τ)  βi (105) 

Note that in (104) we use αi because it is the equivalent factor for flows, while for (105) 

we use βi because it is the equivalent factor for road occupancy by vehicles. Thus, given 

the equivalent vertical queue and physical storage respectively S
EQ

(τ) and R
EQ

(τ), we 

have: 

s
EQ

() = min{S
EQ

() / d + dH
EQ

() / d , ()  } (106) 

r
EQ

() = min{R
EQ

() / d + dG
EQ

() / d , ()  } (107) 

The FIFO rule is then applied to the exit flows in the following way: 

si() = Si(τ)  (s
EQ

() / S
EQ

())     iI (108) 

On the contrary, receiving capacity does not need to be distinct per class, as the road 

space let free by a vehicle of class 1 can be occupied without limitations by a vehicle of 

class 2, in accordance with the occupancy factor βi, and vice versa. 

Note that together (104), (106) and (108) do not allow a realistic FIFO rule, as in the 

vertical queue vehicles mix together and they are released proportionally to the class 

mix. In Chapter 3.2.5.3 sotto we introduce the node model extension and in the 

following Chapter 3.2.5.4 we introduce a model extension to represent more 

realistically multiclass queuing. 

3.2.5.3 The multicommodity node model 

We here remind that the node model is separable in time, so we will drop for the sake of 

readability index . The introduction of different classes in the GLTM node model 

involves at first the turn probabilities to be distinct by class as well. This means that, 

given a diversion node xN, a link aBS(x) and a link bFS(x), the splitting rate pab i 

expresses the probability that the next link of the path is b for vehicles of class i coming 

from link a. So, the turn demand flow dab i of class i of turn ab is given by: 

dab i = sa i  pab i     iI (109) 

On the other side, given a merging node x, the receiving capacity is not needed to be 

split among classes, as stated in previous chapter, and can be calculated by (34)-(35) as 

usual, while (38) needs: 

dab = iI dab i  αi (110) 

Given the minimum flow share a, which is independent by class index i, yab i can be 

computed as: 

yab i = dab i  a / dab     iI (111) 
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which is the input to calculate the class cumulative flows Fa i. 

3.2.5.4 The multicommodity queue model 

Determining class sending flows through (108) actually violates the FIFO rule in case of 

inhomogeneous arrival times for distinct classes. To comprehend this, we can model the 

vertical queue into several buckets of the same dimension. Given: 

Z
EQ

 vehicles to be added to the queue (veh
PCU

) 

Θ set of buckets 

κ dimension of each bucket (veh
PCU

) 

S
EQ

(,θ) vehicles in θ-th bucket of the equivalent vertical queue at 

time  (veh
PCU

) 

σi(,θ) share of vehicles of class i in θ-th bucket at time  

we have: 

                  κ                   θ  Z
EQ

 \ κ 

S
EQ

(,θ) =  Z
EQ

 mod κ    Z
EQ

 \ κ < θ  Z
EQ

 \ κ + 1        θ[θ0 + 1, nΘ] (112) 

                  0                   θ > Z
EQ

 \ κ + 1 

Z
EQ

 = iI dHi()/d  αi (113) 

θ0 = S
EQ

(-1) \ κ (114) 

σi(,θ) = dHi()/d  αi / Z
EQ

     iI, θ[θ0 + 1, nΘ] (115) 

The node model in this case must be iterated for each θΘ. Note that the number of 

buckets is limited by the relation: 

nΘ = L  J / κ (116) 

A smaller number of buckets can be given, whether queue is supposed to be contained 

within a given maximum length. 

During each iteration of the generic bucket θ it is: 

sa i(θ) = σi(,θ)  S
EQ

(,θ) / αi     iI (117) 

while (109)-(111) hold, per bucket. The node model stops when r
EQ

() is null or s
EQ

() 

is empty. 

The proposed model correctly addresses the FIFO problem, yielding to a totally correct 

representation of the rule, for κ → 0. 

3.2.6 The externality model 

Subsequent to the current congestion levels on traffic networks, externality assessment, 

monitoring and reduction are some of the issues recently raised in the European general 

traffic management ([41]). From the point of view of assessment, which involves traffic 

models, this can be done in several ways. Some of these avoid traffic models and 
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extends spot measures of flows and emissions to the whole area of study. An example 

of this is given in [21]. Other studies introduced externality models in microsimulators, 

as these return a lot of useful information about every single vehicle: speed, 

acceleration, deceleration, type, etc. A microsimulation with externality calculation is 

presented in [60]. A macrosimulation assignment model considering externalities within 

its objective function for convergence is presented in [74]. Then, in [73], this model was 

used to extend the study to the effects of control strategies on vehicle emissions, which 

goes somehow in the direction of another issue which can be tackled with the 

methodology proposed in this work. 

While in [73] it is possible to evaluate the effects of a given signal strategy on vehicle 

emissions, according to the resulting equilibrium, we want to include the minimization 

of emissions within the possible objectives of a signal control optimization strategy. As 

a result of this, we extended the present traffic model including an externality model. 

3.2.6.1 The COPERT IV methodology 

The COPERT IV methodology is widely considered the European standard to evaluate 

vehicle emissions. The model expresses the emission factor of several pollutants 

produced by a vehicle per travelled kilometre as a function of the vehicle speed and of 

some parameters indentifying the vehicle type, such as: age, engine, fuel, cold start, 

climatic conditions, road slope [55]. 

An example of the Italian fleet composition for the car mode in 2005 is provided below: 
mode fuel engine cap. norm. vehicle type code number of vehicles 

Car 

Gasoline 

up to 1400 

EURO-0+1 GC<1.4E1 8,744,642 

EURO-2 GC<1.4E2 5,045,470 
EURO-3 GC<1.4E3 3,681,425 

EURO-4 GC<1.4E4 1,093,192 

1401 – 2000 

EURO-0+1 GC1.4-2.0E1 3,044,050 

EURO-2 GC1.4-2.0E2 1,628,535 

EURO-3 GC1.4-2.0E3 892,083 
EURO-4 GC1.4-2.0E4 241,748 

over 2000 

EURO-0+1 GC>2.0E1 152,118 

EURO-2 GC>2.0E2 104,259 
EURO-3 GC>2.0E3 124,687 

EURO-4 GC>2.0E4 47,771 

Diesel 

up to 2000 

EURO-0+1 DC<2.0E1 1,006,434 

EURO-2 DC<2.0E2 1,968,463 

EURO-3 DC<2.0E3 3,988,143 

EURO-4 DC<2.0E4 1,023,699 

over 2000 

EURO-0+1 DC>2.0E1 461,451 

EURO-2 DC>2.0E2 466,282 

EURO-3 DC>2.0E3 811,078 
EURO-4 DC>2.0E4 82,864 

Table 3.4 – Italian car fleet composition (2005, Ministero dei Trasporti Italiano). 

Given: 

I set of classes 

Mi set of vehicle types of class i 

m share of vehicles of type m in the fleet Mi 

E set of pollutants 
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A set of links 

EFê
m
(v) emission factor of externality ê by a vehicle of type m at 

speed v (g/km) 

VKi a production rate (veh ∙ km) of class i on link a 

The total emissions PEê a of the pollutant ê on link a is given by: 

PEê a = ∑iI ( ∑mMi EFê
m
(v) ∙ m ) ∙ VKi a     êE, aA (118) 

The emission factor of a vehicle of class i is thus calculated as the weighted average of 

emission factors of all vehicle types of class i at an average speed v, by the given share 

of that type within the vehicle fleet Mi, retrieved from statistical data of the local area. 

The function EFê
m
(v) of each emission factor depends on several coefficients, calibrated 

during the original development of the COPERT project. Below, an example of formula 

and parameters for vehicle type “Gasoline car Euro3 cc1.4-2.0” is provided: 
EF Formula (g/km) a b c d e 

CO (a+c*V+e*V^2)/(1+b*V+d*V^2) 7.17E+01 3.54E+01 1.14E+01 -2.48E-01 0.00E+00 

FC (a+c*V+e*V^2)/(1+b*V+d*V^2) 2.17E+02 9.60E-02 2.53E-01 -4.21E-04 9.65E-03 

HC (a+c*V+e*V^2)/(1+b*V+d*V^2) 5.57E-02 3.65E-02 -1.10E-03 -1.88E-04 1.25E-05 

NOx (a+c*V+e*V^2)/(1+b*V+d*V^2) 9.29E-02 -1.22E-02 -1.49E-03 3.97E-05 6.53E-06 

PM (a+c*V+e*V^2)/(1+b*V+d*V^2) 1.19E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Table 3.5 – Emission factor for vehicle type “Gasoline car Euro3 cc1.4-2.0”. 

The figure below depicts the trend of the emission factors as a function of the average 

speed of the following five pollutants for the vehicle type “Gasoline Car 1.4-2.0cc”: 

 fuel consumption (FC); 

 carbon monoxide (CO); 

 volatile hydrocarbon (e.g.: benzene) (HC); 

 nitrogen oxides (NOx); 

 carbon dioxide (CO2). 

 

Figure 3.20: Emission profile for vehicle type “Gasoline car Euro3 cc1.4-2.0”. 

It is relevant to remark that the generic curve is quasiconvex and it typically has one 

global minimum. Furthermore, the speed corresponding to the minimum emission is not 
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the same for each function. Thus, when performing an optimization with respect to a 

combination of pollutant emissions, some multi-criteria approach is required. In the 

section dedicated to numerical results, we will show how synchronization parameters 

can influence the traffic emissions calculated by the dynamic model. 

3.2.6.2 The implementation of the COPERT IV in dynamic simulation 

Emissions produced by the traffic flows are calculated ex post of the simulation. With 

reference to the link model described in 3.1.3 sopra, the vehicles along the link can be 

split in two sets, those travelling in hypocritical state (freeflow) and those in a 

hypercritical states (queue). We use the same notation given in 3.1.3 and for the generic 

link a we drop the index a for the sake of simplicity. 

Given: 

L link length of link a 

S() vertical queue of link a at time  

R() storage capacity of link a at time  

Q() queue length of link a at time  

U() number of vehicles on link a at time  

From a theoretical point of view, the queue length Q() = L - x is the position at time  

of the shockwave which separates the two flow states, with respect to the final point. 

I.e., in section x of link a the hypocritical and hypercritical cumulative flows are equal. 

This can be calculated by imposing the equality between (23) and (26): 

H(x,) = G(x,) (119) 

To avoid the computational effort we apply the following linear approximation: the 

queue length Q() is fairly given by the following: 

Q() = L / (R() / S() + 1) (120) 

Figure 3.21 sotto illustrates the geometrical meaning of the approach: 

 

Figure 3.21: Geometrical approximated computation of the queue length. 

So, it is possible to compute the average densities k°() and k
+
(), respectively of 

vehicles in the freeflow state and in the queue state. From these, the two flow speeds 

v°() and v
+
() are given on the fundamental diagram. On one side, entering vehicles 

f() ∙ d are assumed to travel along the hypocritical region with a speed v°() 

R() 

S() 

hypocritical state hypercritical state 

Q() L - Q() 
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corresponding to the average density of the hypocritical region k°(). On the other side, 

leaving vehicles e() ∙ d are assumed to have travelled along the hypercritical region 

with a speed v
+
() corresponding to the average density of the hypercritical region k

+
(). 

The method keeps consistency in the strong assumption that the queue length is not 

significantly varying within the travel time of vehicles along the link. 

We now provide the computation method for these densities. The number of vehicles on 

link a at time , U(), is given by: 

U() = F() - E() (121) 

Not all U() vehicles are travelling along the link, since S() have already reached the 

end of the link and are waiting in the vertical queue. So, U() - S() vehicles are 

currently travelling along the link, which is divided into two different flow state regions. 

Thus, only a share of these U() - S() vehicles, equal to the share of the link which is 

not in queue i.e. (L - Q()) / L, is in hypocritical conditions: 

U°() = (U() - S()) ∙ (1 - Q() / L) (122) 

The number of vehicles in a hypercritical state U
+
() can thus be obtained as: 

U
+
() = U() - U°() = S() + (U() - S()) ∙ Q() / L (123) 

i.e. the number of vehicles in the vertical queue, plus part of the vehicles which are still 

travelling along the link but are in its hypercritical state region. 

We can then derive the two densities and speeds as: 

k°() = U°() / (L - Q()) (124) 

k
+
() = U

+
() / Q() (125) 

v°() = v°(k°()) (126) 

v
+
() = v

+
(k

+
()) (127) 

Based on this, we can thus distinguish two distinct emission factors for a link: one is 

produced by the hypocritical flow and the other by the hypercritical flow. The total 

pollution results from integrating the proposed emission model in time. According to 

(118), the total emission of pollutant ê produced along the link is given by: 

PEê =  ∑iI ( ∑mMi EFê
m
(v°()) ∙ m ) ∙ (L - Q()) ∙ f() ∙ d + 

       +  ∑iI ( ∑mMi EFê
m
(va

+
()) ∙ m ) ∙ Q() ∙ e() ∙ d     êE, aA (128) 

where (L - Q()) ∙ f() ∙ d and Q() ∙ e() ∙ d are the vehicles per kilometre produced 

on link a during the infinitesimal time interval [,+d] by hypocritical and hypercritical 

flows, respectively. 
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4 A suitable formulation for the synchronization 
problem 

We aim to determine optimal cycle, offset and green times, given a supply network and 

a time-varying demand with respect to a given objective. Signal settings are assumed to 

be invariant within the represented time interval: variation can be obtained by splitting 

the time horizon in several intervals and carrying out the optimization for each of them. 

The stage sequence of each intersection is given and is not subject of optimization. 

Differently from [6] and [7], route choice is here assumed to be inelastic and thus 

invariant with respect to the proposed solutions; paths are implicitly represented through 

given splitting rates, which can be supposedly time-varying within the simulation. 

We introduce the following notation: 

Ω(C, g, o) objective function  

X set of synchronized junctions 

Sj set of stages of junction j 

C cycle time 

gj
s
 green duration of stage s of junction j 

oj
s
 offset of stage s of junction j 

Cmin minimum cycle 

Cmax maximum cycle 

gmin j
s
 minimum green duration of stage s of junction j 

gmax j
s
 maximum green duration of stage s of junction j 

Ij 
s,q

 intergreen time between stage s and stage q of junction j 

Here we refer as green to the effective green, which has been already introduced in 

Chapter 2 sopra. As generally intergreen time is defined between signal groups, we also 

define Ij 
s,q

 as: 

Ij 
s,q

 = max{Ij 
p,r

: λps = 1, λrq = 1} (129) 

The signal setting optimization problem is the following: 

minC, g, o Ω(C, g, o) (130) 

C[Cmin, Cmax] (131) 

gj
s
[gmin j

s
, gmax j

s
]     jX, sSj (132) 

oj
s
[0, C)     sSj , jX (133) 

oj
s
 - (oj

q
 + gj

q
)  Ij

 q,s
     jX, sSj, qSj-{s} (134) 

sSj gj
s
 + (oj

s
 - max{oj

q
 + Ij

 q,s
: qSj-{s}}) = C     jX (135) 

(131)-(133) specify box constraints defining minimum and maximum values for all of 

the variables. (134) imposes stage q to satisfy the intergreen constraint with respect to 
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any of the other stages of the junction. (135) imposes the sum of all the green times gj
s
 

and the lost time due to intergreen to be smaller or equal to the cycle time. For the sake 

of simplicity, starting from now on we will refer to the resulting additional red time 

before stage s as Aj
s
, which can be calculated as given in (135). 

Aj
s
 = oj

s
 - max{oj

q
 + Ij

 q,s
: qSj-{s}}     jX, sSj (136) 

In the most common cases deduced from reality, the only active constraint in (136) is 

the one with the immediate previous stage. 

Now we introduce some relaxations to reduce the problem complexity, i.e. essentially to 

reduce the number of variables. Let us suppose we are dealing with a synchronized path 

and that the junctions are subsequently ordered along this. For each signal j we define 

main stage m(j) the one allowing the manoeuvre along the defined path; any other stage 

is called secondary stage. Whether more than one stage allow the manoeuvre, we can 

set without loss of generality one of these as the main stage and the other(s) as 

secondary stages. 

Given the main stage green time, we define residual green Yj of junction j as the 

difference between the cycle time and the sum of the main stage green gj 
m(j)

, the 

minimum green of each secondary stage gmin j
s
 and the lost time Aj

s
. In practice, the 

residual green is the unused green time to be assigned, given the main stage green 

duration. Thus, the green times of secondary stages can be obtained as the minimum 

green of each stage plus the proper share of the residual green according to a given 

proportion ιj
s
. Then, as we assumed the stage sequence to be fixed, secondary offsets 

come subsequently from stage green times and additional reds. 

Thus, we have: 

Yj = C - [(gj 
m(j)

 + Aj 
m(j)

) - ∑sSj-{m(j)} gmin j
s
 + Aj

s
)]      jX (137) 

gj
s
 = min{gmin j

s
 + ιj

s
 · Yj, gmax j

s
}     jX, sSj-{m(j)} (138) 

oj
s
 = (oj

s-1
 + gj

s-1
 + Aj

s-1
) mod C     jX, sSj-{m(j)} (139) 

Whether the constraint (138) becomes active with respect to the maximum green, the 

remaining green can be stored in a green “pool” and steps (137)-(138) can be repeated. 

The following constraints grant the non-emptiness of the solution set: 

Cmin ≥ ∑sSj (gmin j
s
 + Aj

s
) (140) 

Cmax ≤ ∑sSj (gmax j
s
 + Aj

s
) (141) 

These can be satisfied with a pre-emptive check-and-correct of (131). 

(137)-(141) allow to reduce considerably the number of variables only to the common 

cycle time and the green and the offset of main stages of every synchronized junction. 

So, problem complexity drops from 2·nX·ς + 1, where ς is the average number of stages 

per junction, to just 2·nX + 1. So for sake of readability from now on we will refer to gj 
m(j)

, oj 
m(j)

, gmin j 
m(j)

, gmax j 
m(j)

 simply as gj, oj, gmin j, gmax j. Thus, each solution is given by 

a tuple (C, g1, o1, … , gn, on). 
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The proposed formulation is tailored on a sequence of junctions, so it is particularly 

suitable for arterial synchronization. Nevertheless, also junctions not belonging to the 

path can be added to the problem. For example, simultaneous optimization of several 

corridors is possible, considering the main stages of each corridor. Whether some 

corridors intersect, we will need the common junctions to occur only once, thus 

assigning their main stages to one corridor and letting the heuristic above to define the 

timings of remaining corridor(s) on the shared junctions. Generally, a whole junction 

network can  be optimized, even if it is not possible to define any synchronization path, 

just defining a sequence of all junctions: the given order in this case will not have a 

significant meaning. Without any loss of generality we will refer to one single corridor. 

4.1 Non-linear optimization through genetic algorithm 

As we have seen in 2.1 sopra, several methodologies can be used to estimate the value 

of the objective function for a given set of input parameters (the signal settings C, g, o). 

In our case, the estimation is performed by the simulator and then returned to the 

optimization routine. We aim to find optimal signal settings for a given set of junctions 

of a network for a given transport demand, optimizing a predefined objective function, 

for example the total delay. Due to the complex interactions of traffic flows in the 

network, usually the synchronization problem is a non-convex problem. Thus, finding a 

global optimum is not granted by the available optimization techniques. Moreover, the 

estimation of the objective function - whatever is chosen - is performed by the dynamic 

simulation model introduced in Chapter 3.1 sopra: in fact, no derivative information is 

available. Following the research stream introduced in 2.1 sopra, we mean to perform 

the optimization through a genetic algorithm. These are considered effective methods to 

determine sub-optimal solutions in black-box problems like the one considered here. 

This means that there is no warranty of reaching a global nor local optimum, but good-

enough solutions are generally obtained in this way. The methodology proposed here 

extends the one already given in [34]. 

Genetic algorithms belong to the set of optimizers often applied in problems without 

derivative information or with non-convex objective function; in the latter derivatives 

would only have the effect to drive the optimization toward local optima. Their 

methodology determines sub-optimal solutions through a heuristic exploration of the 

space of solutions. It imposes to evaluate the many solution points selected during the 

algorithm, i.e. to assess a performance index, in this case the total travel time. 

Therefore, it is desirable that the fitness function requires considerably low 

computational times. Considering the trade-off between traffic model accuracy and its 

efficiency, the proposed traffic model is the best solution found. 

Genetic algorithms take their name from Genetics, due to the parallelism among the 

general underlying idea and the biologic phenomena studied by the latter. In fact, they 

borrow many terms from this discipline. First, a set Б of feasible solutions is given, 

called initial population, composed by nБ solutions. Each solution is called individual 

and it is described by the values of optimization variables, called the genes of the given 

individual, which compose its chromosome complement З. Here every individual is a 
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set of signal setting data for the whole set of junctions, i.e. its genes are the cycle time 

and the green and offset of all signalized junctions and nЗ = 2 · nX + 1. Each iteration is 

called generation, at the end of which only a subset of individuals are selected to breed 

the next generation. Individuals are generally selected for the next breed proportionally 

to a degree of suitability, given by a fitness function. The fitness function is the 

objective function of the optimization problem. Thus, similar to the Darwinian principle 

of the survival of the fittest, each generation a set containing individuals (generally) 

better than the previous is obtained. In other words, only solutions more capable to 

minimize traffic delays are allowed to “survive”. Further details about genetic 

algorithms can be found in [4]. 

4.1.1 The initial population 

The composition of the initial population set strongly affects the convergence speed of 

genetic algorithms. As the stop criteria is usually triggered when the algorithm does not 

manage to find significant improvements from the point of view of the population 

fitness, the worse the solutions are the longer the algorithm should be able to keep on 

working. 

The initial population is often created by selecting nБ random feasible solutions. As we 

have said above, this is not desirable. On the contrary, we breed it with maximum 

bandwidth solutions. As shown in [3], maximum bandwidth solutions are not optimal 

solutions for the minimum delay problem; despite this, they allow to start from quite 

good solutions. In fact, we can reasonably expect that any of the feasible objectives of 

the synchronization problem is improved by an improvement of the vehicle progression 

(total delay, throughput, externalities, …). The maximum bandwidth solutions are 

created through the MAXBAND algorithm based on equivalent systems from [56], 

further developed in [57]. As for all maximum bandwidth algorithm, this returns the 

optimal offsets for a given cycle time and the green splits of consecutive junctions along 

a path. 

To gather nБ solutions, different sets of input variables are evaluated. First, the cycle 

feasibility interval [Cmin , Cmax] is split into equivalent intervals equal to: 

ΔC = (Cmax - Cmin) / (nБ /3) (142) 

Then, for the i-th cycle time value: 

Ci = Cmin + i · ΔC (143) 

the following three green split solutions are considered, for every junction: 

a. pre-defined green splits (e.g., actual signal settings); 

b. maximum green to the main stage (consistently to constraints); 

c. green splits from Webster equisaturation rule (see Chapter 2.1 sopra). 

Thus nБ maximum bandwidth individuals are generated, then their travel time is 

evaluated by the traffic model, finally they are added to the initial population set. 
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4.1.2 The generation of new solutions 

Starting from the initial population, genetic algorithms explore the feasible set 

generating new solutions through heuristic procedures and evaluating them. New 

individuals are obtained through mutation and crossover operations. Technicalities 

about these operations depend on the coding of variables: earlier algorithms relied on 

binary coding while later continuous values were assumed. We will not go into this, as 

this is not in the aims of this contribution. The proposed algorithm assumes that 

variables are real numbers, with explicit coding. 

A mutation step consists in selecting one individual and modifying one or more of its 

genes. In the given algorithm, genes C, gj and oj, are expressed as integer numbers: each 

generic variable зj is randomly increased or decreased of a quantity between 0 and зrng, 

where зrng is the maximum allowed variation. The mutated value is then adjusted to 

satisfy the boundary constraints. 

In genetic algorithms mutation is usually performed by mutating each existing solution 

with a very low probability pmut (usually pmut[0.001, 0.05]). So the previous solution is 

lost. Differently, we produce a new set Ш of nШ new individuals by randomly selecting 

for each шШ an individual бБ and mutating each of its genes with probability pmut. 

Thus during mutation nШ mutated copies of original individuals are spawned. This 

allows not to loose previous solutions and contemporaneously to control the mutation 

rate through the nШ parameter. 

Let u(x,y) be the function returning a random number between x and y with uniform 

distribution, we have: 

             min{max{Cmin, б(C) + u(-1,1) · Crng}, Cmax}    u(0,1) < pmut 

ш(C) =                                                                                            jX (144) 

             б(C)                                                                   otherwise 

             min{max{gmin j, б(gj) + u(-1,1) · grng}, gmax j}    u(0,1) < pmut 

ш(gj) =                                                                                            jX (145) 

             б(gj)                                                                    otherwise 

             (б(oj) + u(-1,1) · orng) mod Cmut                         u(0,1) < pmut 

ш(oj) =                                                                                            jX (146) 

             б(oj)                                                                   otherwise 

A crossover step consists in selecting two target individual, denoted as parents, to 

generate one (two in some implementations) son individual(s). As for mutation, we 

spawn a new set Ж of nЖ individuals generated through crossover operations. For each 

generic gene зj, the son-individual жЖ randomly inherits the gene either from parent-

individual бaБ or from the other parent бbБ: 
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             бa(зj)    u(0,1) < pcrx 

ж(зj) =  (147) 

             бb(зj)    otherwise 

where usually pcrx = 0.5 to make the choice balanced among the two parents. Checks are 

performed to produce feasible solutions. In our implementation, each crossover step two 

“mirror” sons σc and σd, are generated, i.e.: 

жc(зj) = бa(зj), жd(зj) = бb(зj)    u(0,1) < pcrx (148) 

жc(зj) = бb(зj), жd(зj) = бa(зj)    otherwise (149) 

Individuals are selected as parents with a probability proportional to their fitness 

function: this is because better solutions are reasonably expected to breed individuals 

more fitting than the worst ones. In practice, inheriting a gene зj means assuming 

something about the signal behaviour of j-th junction (except for the 0-th gene, the cycle 

time). Thus, taking one junction traffic signal setting from a much better solution is 

supposed to return a better behaviour of that junction at least. Nevertheless, allowing a 

non-null probability to select worse individuals falls within the criteria of exploration of 

the solution set. 

Similarly to the mutation process, generating the new set Ж allows to keep parent 

individuals and to introduce the parameter nЖ as crossover evolution rate. 

When the mutation and crossover phases are done, a subset Б
i+1

 of individuals is 

selected to produce next generation set, while elements of its complement-set to the 

previous generation set Б
i
 are lost. In practice: 

Б
i+1

 = Σ(Б
i
  Ш

i
  Ж

i
) (150) 

where Σ is the survival function. The individual survival usually is performed randomly, 

assessing survival probability proportionally to individual fitness value. Elitism gives 

surviving probability equal to 1 to the best ζ solutions: this grants the best found 

solutions to be never lost. 
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5 A tool for signal synchronization: TOSCA 
The methodologies introduced so far above led to their integration into a unique 

software package called TOSCA (Timing Optimization under Spillback Congestion 

along Arterials). TOSCA incorporates both the GLTM and the genetic algorithm. The 

input data (options, transport system, optimization) can be stored in a MySQL or 

PostgreSQL database, compatible with the structure described in Attachment A. Usually 

a modeller needs not only the input data but a more versatile tool, such as a network 

editor. Considering this, TOSCA also integrates into VISUM ([61]), a transportation 

planning software for network and demand modelling. The VISUM package has been 

chosen due to the high level of detail of its junction modelling. The figures in Chapter 

3.2.2 sopra were taken from its junction editor. 

 

Figure 5.1: An example of the GUI of VISUM, with a signalized network. 

VISUM allows external programming through Visual Basic scripts (vbscripts). Two 

vbscripts are part of the engine of TOSCA. The first one needs to be run just once per 

model to extend the VISUM model to comprehend deeper aspects, for example the 

conflict areas and their respective priority or to specify the main stage of each signal 

controller. The other is the arbiter of the protocols among VISUM and TOSCA. 
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Communication take place through text files: VISUM can export the complete network 

and demand databases into text files and TOSCA has a module which imports them, 

according to VISUM standards. To accomplish the file data exchange a suitable GUI 

has been developed (Figure 5.2). From the procedure GUI (Figure 5.2a) the user can 

decide the procedure to execute. 

 

a.    b.    c. 

Figure 5.2: The GUI of TOSCA: procedure (a), simulation (b) and optimization (c) consoles. 

On one hand, as TOSCA incorporates the GLTM, the dynamic network loading can be 

run alone, to have an insight of the dynamic behaviour of the system in the non-

intervention scenario. The user can decide the time interval to simulate, the 

discretization of the simulation, the aggregation of its results and several parameters 

which influence the simulation, e.g. the environmental sneaking factor. 

 

a.      b. 

Figure 5.3: The alternative result interface, displaying the dynamic chart of flow (a) and queue (b). 

There are two ways to display the results of TOSCA simulation. First option, TOSCA 

generates a text file which can be (automatically, through the vbscript) reimported, to 

make the simulation dynamic results available in the VISUM interface. This allows the 
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VISUM modeller to operate with this data into the environment the most familiar to 

him. Second option, a rougher but more detailed interface can be launched by TOSCA 

at the end of the procedures (Figure 5.3). The greater level of detail consists in 

displaying graphs with the most of the link model variables: capacity, exit bottleneck, 

inflow, outflow, number of vehicles, queue, storage, travel time. By comparing these 

the analyst can truly go deep into the phenomena of traffic dynamic evolution. 

On the other hand, the optimization can be performed on all the signal controllers which 

belong to the given coordination group. Control parameters of the genetic algorithm can 

be set, such as the population dimension, mutation and crossover rate, probabilities and 

ranges, stop criteria and other theoretical parameters used during experimental tests. As 

the simulator plays the role of a black-box for the genetic algorithm, it is also possible to 

choose the optimization objective function among a set of data the simulator can return. 

Currently, the available options are: 

a. minimization of total travel time1: Ω(C, g, o) = aA νa · ta(C, g, o); 

b. maximization of total network throughput: Ω(C, g, o) = zZ νz · Ez(T); 

c. minimization of total externality mix: Ω(C, g, o) = aA, êE νê · PEê a(C, g, o). 

Assuming a coefficient νa for link travel time allows to assess priority to some links of 

the network. For example, progression along an arterial can be maximized giving a 

positive weight to its links and 0 to all other links of the network. In the case of the zone 

coefficient νz, it can improve the throughput in some prior areas of the network. In the 

case of the externality coefficient νê, it allows to set a priority in the considered 

externalities. 

While the genetic algorithm is running, a dynamic chart is displayed to the user. In this, 

the original solution (red), the best maximum bandwidth solution (green) and the overall 

best solution (violet) objective function values are plotted (Figure 5.4). 

  

Figure 5.4: The control chart during the genetic algorithm run. 

                                                 
1 The total travel time in the network of a vehicle can be expressed as the sum of the free-flow travel 

time on the non-signalized network, which is constant, plus an additional delay due to the interactions 

between vehicles and traffic signals. Thus, total delay minimization and total travel time minimization are 

equivalent problems. 
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Beside these, the travel time of each of the evaluated solutions is added (pink): when the 

algorithm reaches a probable global optimum the value of these start converging and no 

significant improvements are found. In this case, the user can stop the algorithm 

manually, without waiting for the satisfaction of any of the stop criteria. 

When the optimization stops, three solutions are then exported into the database, in 

terms of tables with signal IDs and timings. These are: 

 the original solution; 

 the best maximum bandwidth solution found; 

 the best overall solution found by the genetic algorithm. 

If the user works from VISUM, a text file containing the optimal signal settings 

according to the VISUM format is exported by TOSCA. Thus, the modeller can import 

into VISUM the optimal settings and overwrite the previous existing ones. In Figure 

5.5a an overview of how the signal settings are displayed in VISUM is illustrated. 

Another advantage of reimporting signal data in VISUM is that there a time-space 

diagram feature is already available (see Figure 5.5b). 

 

a.      b. 

Figure 5.5: The signal editor in VISUM: Stage timings (a, lower screen), stages (a, upper screen) 

and space-time diagram in VISUM (b). 

The input-output architecture of TOSCA, for both cases of VISUM and database, is 

illustrated in Figure 5.7. 

Finally, a sensitivity analysis routine has been added to TOSCA. Starting from the non-

intervention hypothesis each of the variables, one by one, is increased/decreased of the 

input step (in seconds). This allows to plot the profile of the objective function along 

each of the dimensions of the problem, i.e. the cycle time and the green and the offset of 

each of the synchronized intersections. The routine can be used starting either from the 

original solution or from the genetic optimal solution. This allows several scopes: 

a. to test the problem complexity, for scientific purposes; 
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b. to check the relevance of the several analyzed junctions in the overall system; 

c. to check if the final solution is a local minimum or how far it is; 

d. to perform a final hill-climbing adjustment procedure on the final sub-optimal 

solution. 

 

 

a.    b.    c. 

Figure 5.6: Three plot diagrams of the sensitivity analysis routine in TOSCA: cycle (a), green time 

(b) and offset (c). 

 

Figure 5.7: The architecture of TOSCA. 
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6 Results 
Results are given in two sections. In the first section, results in the fitting among the 

traffic model and experimental data are illustrated. To retrieve the experimental data we 

chose to use a microsimulator. This choice has been done for several reasons. First, 

because the microsimulators allow to gather a large set of data, with any time 

discretization, without great efforts neither in time nor expense. Second, because we 

were interested in testing the goodness of the optimal signal setting solutions in a 

different context from the GLTM itself, which was already used by the optimization 

algorithm. Implementing on the field a signal setting solution to gather data about its 

goodness was unfeasible. So, the microsimulator has been used as the real-world of 

reference both for calibration of the traffic model and for comparison of the optimal 

signal settings. The microsimulator which was used is VISSIM ([62]), which already 

integrates with the output of VISUM (in terms of supply and demand data) and allows 

an easy switch of the work from one to the other. 

The test network was Lynnwood, a city 20 km far from Seattle, US. The network was 

composed by 78 links, 16 zones and 17 signalized junctions, disposed in a grid where 5 

distinct bidirectional corridors could be identified, one of them traversing all the others. 

The network is illustrated in Figure 5.1 sopra. 

Most of the charts shown in current chapter were made through XRES, an Excel 

Workbook suitably developed to import and elaborate data from VISSIM, VISUM and 

TOSCA. 

6.1 The calibration of the traffic model 

The issue of calibrating the fundamental diagram parameters has been carried out by 

plotting the theoretical shapes of the fundamental diagram, according to the set of 

parameters, subject of the calibration and matching these with the microscopic data. It is 

possible to do the same with real field data. The resulting charts are illustrated in Figure 

6.1 for a triangular-shaped fundamental diagram. 

 

Figure 6.1: Matching field data with theoretical shapes of the fundamental diagram. 
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Four shapes are shown: 

1. flow-density diagram (the most common), it is particularly suitable to set the 

jam wave speed W; 

2. speed-spacing diagram, it is particularly suitable to set the critical density K; 

3. speed-flow diagram, it is particularly suitable to set the jam density J; 

4. speed-density diagram, it is particularly suitable to set the freeflow speed V. 

The other parameters were derived from these. In Figure 6.2 it is illustrated how the 

parameters affect these shapes: 

 

a.    b.    c. 

Figure 6.2: The effects of different parameters on the fundamental diagram: V, W (a), J (b), K (c). 

The conflict area model introduced in Section 3.2.3 sopra has been successfully tested 

on non-elementary networks (~100 links, ~20 zones, 3 hours simulation, 1 second time-

interval). Now we are going to illustrate the results in the case of a left-turn manoeuvre 

intersecting an opposing straight crossing flow. The left turn flow is 2000 veh/h, close 

to the link and turn capacity of 2100 veh/h, while the straight crossing flow has a 

demand level which increases constantly, by 200 veh/h every 5 minutes. The illustrated 

charts are the detailed charts of the rough interface mentioned in Chapter 5 sopra. 

In the non-conflict case (a) the flows do not interact, and the 2000 veh/h flow level is 

unaltered for all the one-hour period of simulation. By adding a conflict area among the 

two turns and assessing the same priority to them (b), the left-turn flow keeps its 

original level until the total flow is greater than the conflict area capacity (which, we 

remind, is the greater of the two link capacities). As soon as this occurs, the demand 

flow drops and the capacity is equally shared among the two flows. In fact, the straight 

turn flow grows until reaching the same share than the left turning flow. 

In a real intersection, the straight movements usually have priority while the vehicles 

turning left are delayed until the flow rate of the straight movement allows them to cross 

it. So, we apply a null priority (πab = 0) to the left turn in the conflict area. In this case 

(c), the left turn flow drops down coupled with the increase of the straight flow, which 

is exactly what expected. The total flow is always equal to the conflict area capacity. 

In Figure 6.3 sotto the charts of the three distinct cases above are given. 
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a.    b.    c. 

 

d.    e.    f. 

Figure 6.3: The saturation flows of a straight movement (upper charts) and a left turn movement 

(lower charts) in case of no conflict (a, d), conflict without priority (b, e), yielding left turn (c, f). 

In Figure 6.4 the behaviour of the intersection among a straight movement and a left 

turn is illustrated. On the x-axis we have the priority flow, while on the y-axis we have 

the yielding flow. The red line shows that our model linearly approximates the 

phenomenon. The blue dots of the microsimulator show that in reality, a yielding flow 

is even more delayed by the priority rule than linearly. More, the yielding flow slows 

down (and thus decreases its saturation flow) even if the opposing flow is null, to safely 

approach the intersection. This is shown by the value of the intersection of the blue line 

with the vertical axis, which is smaller than the link capacity (2100 veh/h). 

 

Figure 6.4: The saturation flow of a left turn movement crossing a straight movement with respect 

to the saturation rate of the latter. 

Furthermore, when the two links have different capacity, an undesired behaviour is 

registered, which is illustrated in Figure 6.5a. The solution to correct both the latter and 

the zero saturation flow is to apply a turn capacity reduction to the delayed manoeuvre, 
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as an effect of the presence of a conflict. If none of them has priority, both will be 

reduced. The effects of this are shown in Figure 6.5b. 

 

a.    b. 

Figure 6.5: The saturation flow drop of a delayed manoeuvre (a) and the result of the application of 

a capacity reduction coefficient (b). 

The overall effects of the calibrations above can be appreciated by giving a look at the 

link dynamics. In the following pages we see the comparison of the sensible variables 

(flow, speed and density) between the macroscopic and the microscopic model on a link 

in an analysis period of one hour, with an aggregation of 10 minutes (a), 1 minute (b), 5 

seconds (c). 
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a. 

 

b. 

 

c. 

Figure 6.6: The dynamic evolution of the flow variable on a link after calibration. In blue the 

macrosimulator, in red the microsimulator. Aggregation by: 10 min. (a), 1 min. (b), 5 sec. (c). 
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a. 

 

b. 

 

c. 

Figure 6.7: The dynamic evolution of the speed variable on a link after calibration. In blue the 

macrosimulator, in red the microsimulator. Aggregation by: 10 min. (a), 1 min. (b), 5 sec. (c). 
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a. 

 

b. 

 

c. 

Figure 6.8: The dynamic evolution of the density variable on a link after calibration. In blue the 

macrosimulator, in red the microsimulator. Aggregation by: 10 min. (a), 1 min. (b), 5 sec. (c). 
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Results are even more evident if comparing the total amount of the variables over all 

links, with the maximum aggregation of 10 minutes (Figure 6.9). This returns an insight 

of the levels over the whole area and their deterioration in presence of congestion. 

 

Figure 6.9: Comparisons among the total values of flow, speed and density over the whole area. 

Figure 6.10 shows that on the links where congestion occurs, the instant when this is 

triggered, marked by the vertical red line, is correctly caught by the macrosimulation. 

 

Figure 6.10: The instant when congestion raises up on the given link, depicted by the red line, is 

comparably the same both in the microsimulation and in the macrosimulation. 
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6.2 The signal setting optimization 

With such fitting results between the microsimulator and the macrosimulator used for 

the optimization algorithm, we expect the same trend among the optimal solutions and 

the test network. In this case, the XRES Workbook has been used to import data of 

several microsimulations, each one implementing an alternative signal setting solution. 

The optimization has been evaluated through several indicators: 

a. total travel time of all vehicles in the network; 

b. throughput of the network; 

c. travel time along predefined sections in the network (in real world this can be 

checked through plate-recognition cameras); 

d. queue length; 

e. number of stops. 

Differently from what happened before calibrating the network, after calibration all the 

solutions proposed as optimal and then tested in the microsimulator showed a coherent 

improvement, both in the case of a single corridor and of the whole network. In the 

former case, the optimization finds good solutions within 10-20 minutes of run. This is 

coherent with our expectations: in the case of the corridor the maximum bandwidth 

solutions are already good solutions, thus a fastest convergence is expected. In this case, 

the most suitable indicator is the section travel time. In Figure 6.11 the chart shows the 

travel time along a given section, as a function of the entry time. Note that at the end of 

the chart values drop as the latest vehicles which entered the section did not exit before 

the end of the simulation, so values are missing. 

 
Figure 6.11: The travel time over a section of a corridor, as a function of the entry time. Lines 

depict the original solution (blue), and the optimal solutions considering the travel times of side 

approaches to the corridor (red) and neglecting them (green). 

The value of the original solution is given in blue. It shows that current settings generate 

congestion, as the section travel time is constantly increasing. The red line refers to the 

optimization considering the total travel time over all the links of the subarea of the 

arterial corridor, comprehending the side approaches. The optimal solution found by the 
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algorithm significantly improved the section travel time of up to about the 45%. The 

vehicle progression along the corridor can be further improved by neglecting the travel 

time on side approaches, i.e. setting the travel time multiplier νa = 0 for each of the links 

not belonging to the arterial. In this way, the objective function mostly coincides with 

the considered indicator. In this case (green line), the solutions improves the travel 

times along the corridor of up to the 60% but vehicles on the side approaches are 

probably penalized. This proved the effectiveness of the objective function coefficient 

in the proposed case of progression maximization along one arterial. 

In the case of the synchronization of the whole network, the optimization can require 

more than 1 hour before stopping. In fact, the maximum bandwidth maximization in this 

case were less significant, thus worse solutions, thus the worse initial population set 

implies a slower convergence of the algorithm. Nevertheless, the final optimal solution 

reduced 10.69% the travel time of the total area and improved its throughput of 14.75%. 

Section travel time is not a suitable indicator in this case: global indicators are required 

to evaluate the optimization over a widespread area. Total travel time and throughput 

are significant indicators in this case. 

 

Figure 6.12: The total results from queue counters all over the network. Average queue length (blue 

and light blue) and number of stops (yellow and brown) are displayed. 

The microsimulator allows to gather information about queue lengths and number of 

stops in the wished links in the network. We remark that considering individually these 

can lead to wrong assumptions, because a queue reduced in some spots could have just 

been displaced in some other place in the network. In this case, at most a total value 

over the whole network can be used. This is displayed in Figure 6.12: the sum of the 

average queue on all the queue counters over the entire network was reduced thanks to 

the proposed optimal solution for the network case. 
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7 Conclusions 
The proposed methodology showed consistent results both in terms of traffic modelling 

and optimization results. The new models proposed to extend the GLTM significantly 

improved its representation of dynamic traffic phenomena, producing macroscopic 

results that are comparable to those of a microsimulation, without its computational 

efforts. 

The proposed fundamental diagram equation allows a great versatility and addresses a 

large number of parameters, larger than the most common fundamental diagram 

equations. Nevertheless, the number of calibration parameters is much smaller than that 

of any microsimulator. As a consequence, the calibration process is easy and reliable. 

Moreover, it was proved that a calibrated model fits field data. The detailed junction 

model represents consistently the queuing along several approach lanes of a signalized 

junction and the separate spillback of the queues. The conflict area model introduced 

promising aspects in the representation of the complex interactions that occur among 

conflicting manoeuvres in a junction. In practice, the model could be suitably used to 

perform the following evaluations: 

 the effective turn saturation flows; 

 the obstructions to crossing movements which occur when in presence of queue 

spillback up to the upstream junctions; 

 the effects of introducing a traffic light on a junction where the resolution of 

conflicts was previously left with the drivers’ rationality; 

 the stage sequence when in presence of permitted manoeuvres. 

The presented lane changing model does not address the explicit lane representation, so 

trajectories of vehicles across several lanes are not available. However, it allows to fit 

the flow levels registered in real traffic when in presence of pre-emptive lane choice 

behaviour by the users according to the desired manoeuvre at the end of the link. The 

multicommodity model actually opens the GLTM to the world of ITS applications and 

extends all previous models to the case when more user classes are available in the 

system. Its definite generality permits to represent a large range of vehicle types and 

driver behaviours without introducing any of the strong constraints required by the most 

common multicommodity models in KWT. It directly allows to represent the urban 

traffic mix, including the case of smaller vehicles sneaking in the jam (e.g. scooters in 

car queues). A mixed queue model with scalable complexity has been proposed to allow 

either a realistic multiclass queuing or an efficient modelling of it. Finally, the 

externality model introduces the calculation of both emissions and safety indices in a 

dynamic macroscopic model, according to the COPERT IV European methodology. 

The optimization algorithm has found to be suitable for several scopes and contexts, 

according to the models introduced above. The fitness of the traffic model grants a high 

truthfulness of the simulation and thus of the optimal solution. The conflict model 

represents the blocking back of junctions and allows to perform an optimization capable 

to avoid it. Moreover, it allows the optimization of the stage sequence if the problem 

formulation is further extended in order to take it into account. Finally, the externality 
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model allows to optimize the signal settings with respect to an objective of minimum 

emissions or maximizing safety indices. 

Furthermore, the versatility obtained by integrating the whole of models into a 

commercial software such as VISUM allows to exploit the latest developments reached 

in the industrial world, the detail of the VISUM network model and gives significant 

visibility to the academic results obtained until now. A special effort was done in 

making of TOSCA a usable tool for both beginners without detailed notions of traffic 

theory and skilled modellers. 

7.1 Future developments 

The results obtained so far have already outlined what will be the future developments 

for the illustrated methodologies. On one hand, the traffic model can be further 

improved. The conflict area model can be fine-tuned through the capacity coefficients: 

scientific results should validate such hypothesis. A significant improvement in the link 

model has already started, investigating about the acceleration of traffic flows. 

Introducing constraints for the several classes, in terms of maximum and minimum 

allowed acceleration, would lead to a model that overcomes the limits of a first-order 

implementation of the KWT, reproducing more realistic vehicle trajectories, lost times 

and other second-order phenomena. Furthermore, the study of fundamental diagram 

shapes which consider the theoretical phenomena of the capacity drop and of the 

hysteresis would allow significant improvements both in the ITS applications through 

the GLTM and the optimization strategies taking these phenomena into account. 

Finally, it was noted that sometimes the experimental traffic data show convex 

fundamental diagrams. Convexity is a condition obtainable by the proposed polynomial 

model of fundamental diagram. It is interesting to investigate about its theoretical 

implications in the KWT. 

On the other hand, the optimization engine could be further validated. An extension 

which promises significant improvements is the introduction of the distance-based 

elimination of individuals inside the population set. The introduction of a distance 

metric would allow to avoid keeping similar solutions with comparable values of 

fitness. This would significantly enhance the exploration of the feasible set and it 

possibly avoids the premature convergence to local minima of the problem. From a 

theoretical point of view it would be interesting to couple the simulator with alternative 

stochastic optimization methods, e.g. the tabu search and the swarm methods. A final 

comparison among the optimization results obtained by TOSCA and the optimal 

settings returned by the commercial software currently available would be a fascinating 

challenge for the academic community. 
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9 Appendix 
Function names are self-explanatory and related procedures will not be described. 

9.1 Function BuildNetwork 
function BuildNetwork 

 for each jU 
  jN = AddNode()            'the centre node of the intersection 

for each cCA(j) 
 ac = AddArc()             'the arc related to the conflict area 
 capacity(ac ) = 0             'initialization 
next c 

  for each hHj 
   if |L-

h| > 0 then h- = AddArc() 
   if |L+

h| > 0 then Eh,1 = AddNode(), h+
1 = AddArc() 

    

   +
h = SortByLaneLengthIncreasing(L+

h)   'e.g. use a heap 
   cumulativeWidth = 0 

   for each l+
h 

    cumulativeWidth = cumulativeWidth + max{minimumWidth,Wl} 
   next l 
   p = 1        'progressive number of intermediate nodes along 
            'the leg 
   previousLength = minimumLength 

   for each l+
h 

    'even if lanes are ordered by length we use “less than” to include lanes shorter 
    'than the minimum length 

    if Ll  previousLength + minimumLength then  'add minimum length to avoid 
'too short intermediate arcs 

     al = AddArc() 
     capacity(al ) = capacity(h+

1 ) * max{minimumWidth,Wl} / cumulativeWidth 
    else 
     p = p + 1 
     Eh,p = AddNode() 
     al = AddArc() 
     capacity(al ) = capacity(h+

1 ) * max{minimumWidth,Wl} / cumulativeWidth 
     h+

p = AddArc()           'further arc of the link 
     capacity(h+

p ) = capacity(al )       'whose capacity is equal to the  
                    'sum of its downstream lanes 
     previousLength = Ll 
    end if 

    for each tTl 

     for each cCAt 
      AddArc(at,c )           'arc from previous point to ac 
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      if capacity(ac ) < capacity(al ) then capacity(ac ) = capacity(al ) 
     next c 
     AddArc(bt )            'arc from previous point to the  
                    'destination link 
    next t 
   next l 
  next h 
 next j 
end function 

9.2 Function PropagationOnConflictAreas 
function PropagationOnConflictAreas 

 for each jU 

  for each cCA(j) 
   'update the inflow 
   for x = 1 to 2          'the BS of a conflict area only has 2 links 
    a = BS(tail (c ) ) (x)        'the x-th arc of the BS of the tail of c 
    flowc,x = flowc,x + flow(a)       'cumulates the flow from each link 
   next x 
   'calculate the sending flow 
   for x = 1 to 2          'the FS of a conflict area only has 2 links 
    b = FS(head (c ) ) (x)       'the x-th arc of the FS of the head of c 
    scb = prioc,x * flowc,x / (prioc,1 * flowc,1 + prioc,2 * flowc,2)  'splits the flow between  
                      'links proportionally to  
                      'priority 
   next x 
 
   […ordinary GLTM node model…]     'calculate outflow (flow(b)) 
 
   'update flows on the conflict area 
   for x = 1 to 2 
    b = FS(head (c ) ) (x) 
    flowc,x = flowc,x - flow(b)      'subtract exit flow for x-th manoeuvre 
   next x 
  next c 
 next j 
end function 

 


