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Abstract

Thermodynamics was born in the nineteenth century together with the industrial
revolution and it was mainly concerned with the macroscopic description of energy
conversion involving heat and other forms of energy, most notably mechanical work.
Later on it was developed as a theory on its own and nowadays it has achieved
the state of an independent discipline of physics which can explain most of the
collective phenomena from a very large perspective, provided a coherent notion of
equilibrium is fulfilled. In fact, its applications range from the physics of fluids
to superfluidity and superconductivity, from economics to cosmology, to biology,
chemistry, information theory, sociology, and so on [1, 2].
The great generality of thermodynamics is due to the fact that its axioms, usually

called “ laws”, are based on well established empirical results and are applicable to
most of the systems in nature, thus making thermodynamics a fundamental under-
lying theory, in the sense that it sets limits (inequalities) on permissible physical
processes and establishes relationships among apparently unrelated properties. Ac-
cording to Einstein “a theory is the more impressive the greater the simplicity of
its premises, the more different kinds of things it relates, and the more extended its
area of applicability. Therefore the deep impression that classical thermodynamics
made upon me. It is the only physical theory of universal content which I am con-
vinced will never be overthrown, within the framework of applicability of its basic
concepts” [3].
Despite its generality, some aspects of thermodynamics still seem to be obscure

and other points are not evident in the classical description, as for example the
definition of thermodynamic equilibrium for systems which have non-negligible
long-range interactions, i.e. non-extensive systems. Moreover, the mathematical
formalism in which a thermodynamic course is presented is so related to the phe-
nomenological description of the theory that some of the beautiful general aspects
remain hidden and most of the origin of the thermodynamic relations appears un-
clear. In this sense, one would be tempted to agree with Arnold’s ironical statement
“every mathematician knows it is impossible to understand an elementary course in
thermodynamics” [4].
On this regard, it must be said that the first attempts to give thermodynam-
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ics a clear mathematical formulation date back to the original works of Gibbs [5]
and Carathéodory [6]. Since then, several attempts have been made to describe
thermodynamic systems by means of geometry, in particular following two distinct
directions, i.e. the contact geometry of the phase space [7, 8, 9, 10, 11], associ-
ated with the first law, and the Riemannian geometry of the equilibrium space
[12, 13, 14, 15, 16, 17, 18], associated with fluctuations and the second law.

Understanding the geometric description of thermodynamics appears to be of
great interest for (at least) three reasons. One is that geometry provides a language
in which every fundamental theory of physics can be rephrased and geometrical tools
can be used to infer new physical ideas. This is not only an argument of beauty,
but it has concrete applications, some of which have been proven to be particularly
successful, especially in particle physics, where the use of symmetry and symmetry
breaking has mapped out the route to the development of the Standard Model
of particles. The second reason is that the discovery of the fundamental relation
between the laws of thermodynamics and those of black hole mechanics made by
Hawking [19] and Bekenstein [20] has focused the attention on the interplay between
geometrical aspects of gravitation and their thermodynamic counterparts, such as
e.g. the area of the event horizon and the entropy of a black hole. It is thus
commonly believed that a deeper understanding of the geometrical meaning of
information theory and thermodynamics could possibly shed some light on the
relationship between thermodynamics and gravity. In fact, Einstein’s equations
basically established that Gravity is Geometry, which can be summarized in the
fact that gravity affects the geometry of spacetime: Rµν = 0. On the other side, by
adding a non vanishing stress-energy tensor on the right hand side of such equations,
i.e. by taking Gµν = Tµν , one gets that Matter, as a source of gravity, is Geometry.
However, the properties of Matter can be understood in terms of Thermodynamics.
Therefore the scheme shall be closed by some equations describing how Geometry
is Thermodynamics. In this sense, the recent works of Verlinde [21], Zhao [22] and
Padmanabhan [23] have suggested the intriguing hypothesis that spacetime can be
an emergent feature, which can be derived from the laws of thermodynamics.

For all these reasons the subject of this work is to provide a general and consistent
approach to a geometric description of equilibrium thermodynamics, an approach
which has the great advantage of unifying the contact and the Riemannian descrip-
tions existing in the literature, thus giving a model which possibly encompasses
all the aspects of ordinary thermodynamics and which can eventually also set the
basis for a further extension to the thermodynamics of systems with long-range in-
teractions or even systems out of equilibrium. This rather new geometric approach,
known as Geometrothermodynamics (GTD), has been introduced by Quevedo [24]
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and has been proven to be succesful in describing many different thermodynamic
systems, from ordinary to exotic ones, such as black holes and cosmological models
[25, 26, 27, 28, 29, 30, 31, 32, 33, 34].
In this work, after a brief review of the historical development of the geometric

ideas in thermodynamics, we will focus on the symmetries underlying the math-
ematical formulation of thermodynamics. Such a topic will directly lead us to
introduce the abstract manifolds on which we will describe thermodynamics and
it will result clear that the concepts of Legendre symmetry and symmetry under
change of representation will play a major role. Therefore, we will construct a new
metric structure that shares such symmetries and argue that the resulting geometry
allows to deal both with processes that can only be correctly defined in the phase
space, such as coexistence curves, as well as with objects that are more naturally
defined in the equilibrium space, such as standard thermodynamic processes and
continuous phase transitions. Based on these facts, we will argue that the new
metric derived here is the natural geometric counterpart of standard homogenous
thermodynamics and show that this assumption turns out to be correct for a wide
variety of ordinary examples. Finally, having discussed in detail the context of
systems for which the hypothesis of extensivity does not apply, we will turn in the
last chapters to address the question of thermodynamics of black holes and explain
to what extent thermodynamic geometry can help to understand such particular
systems. The thesis is organized as follows.
In Chapter 1 we will present a brief review of standard thermodynamics, with a

special emphasis on phase transitions, in order to highlight the differences between
first order phase transitions and continuous phase transitions, which will serve as a
guideline for the construction of the corresponding geometric model. Moreover, we
will give a historical background on the development of the geometric formulation of
thermodynamics so far and introduce the notation that we shall use in the following
chapters.
In Chapter 2 we will see how first order phase transitions have a natural de-

scription within the contact structure of the thermodynamic phase space, thus
motivating the introduction of such space in the following chapters. Especially, we
will deal with the coexistence region and determine the geometrical counterparts of
Maxwell equal area construction. We will also show how to extend this construction
to generalized theories of thermodynamics, in which the potential is a homogeneous
function of any degree. As a result, we will introduce a new definition of equilib-
rium between subsystems of a thermodynamic system, i.e. a generalized zeroth law
of thermodynamics, which applies to the case of non-extensive systems in which
the thermodynamic potential is not simply homogeneous of order one, such as e.g.
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in the case of black holes [35], self-gravitating systems [36], quantum systems [37],
nanoscale materials [38], but also the simple Ising model corrected with a long-
range type of interaction [39]. This novel approach solves a long-standing problem
in thermodynamic geometry (see e.g. [18]), that is, the problem of describing the
coexistence region and it provides a natural generalization of Maxwell’s construc-
tion.

In Chapters 3 and 4, after an introduction to Geometrothermodynamics with
particular emphasis on the concepts of symmetries, we will introduce a new metric
structure, both in the phase space and in the equilibrium space of thermodynamics,
whose group of symmetries contains the symmetries of ordinary thermodynamics,
which we will call the natural metric in the context of GTD. Afterwards, we will
present the GTD analysis of some ordinary thermodynamic systems with the use of
such geometry. It turns out that the Riemannian equilibrium manifold thus defined
correctly describes the behavior of any thermodynamic systems as long as it is in
a single phase, with the scalar curvature giving a measure of the thermodynamic
stability with respect to fluctuations. In particular, we will see that the scalar
curvature of the equilibrium manifold diverges along the spinodal curve, signalizing
that the single phase description is no longer sufficient and we need to move to a
larger space, i.e. the phase space. Moreover, the scalar curvature also gives a direct
measure of the divergence of fluctuations near the critical point, corresponding to
the divergence of the correlation length, that is, we will recover in our formalism a
result first obtained by Ruppeiner in [14].

Furthermore, Chapters 5 and 6 are devoted to the discussion of phase transi-
tions in black holes. After a general discussion of the various definitions of phase
transitions in black holes existing in the literature, we will make clear that first
order phase transitions à la Van der Waals, taking place especially in asymptoti-
cally AdS black holes [40, 41, 42, 43, 44, 45, 46, 47], can be treated equivalently
with the Maxwell construction and the full equipment of the contact geometry of
the phase space (as for ordinary thermodynamic systems), provided a consistent
definition of equilibrium between the two coexisting phases is given, as explained in
Chapter 2. Moreover, continuous phase transitions can be fairly well described by
the means of the thermodynamic curvature of the metric introduced in Chapter 3.
In addition, we will illustrate that phase transitions as defined by Davies [35] are
better interpreted in ordinary thermodynamics as the changing from a stable phase
to an unstable one. Moreover, we will argue that they are a completely different
thermodynamic phenomenon, which is characteristic of systems with long-range
interactions [48, 49]. Therefore, we will conclude that also the thermodynamic
geometric description shall be different, thus explaining some puzzling results ap-
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pearing in the literature [16, 50, 51, 52]. In order to describe such transitions, we
will provide a different metric structure from the GTD framework which allows
to take account of this situation. These ideas will be applied to the cases of the
Reissner-Nordström and Kerr black holes in any spacetime dimensions and later to
the Myers-Perry black hole in five dimensions, considering different values of the
spins.
Finally, in Chapter 7 we will make a summary of the new results presented in

this work and discuss further possible applications and future developments.
We hope that this work will be a concrete step towards a clearer mathematical

description of thermodynamics and hopefully also towards a deeper understanding
of the relation between the geometry of thermodynamics and the thermodynamics
of systems in strong gravitational fields.
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1 Introduction

Thermodynamics is the study of collective phenomena through the use of properties
that characterize their behavior as a whole. For this reason it has acquired great
importance in the modern treatment of various disciplines, ranging from physics to
economics and also biology, chemistry and so on. One of the two most important
ingredients of the theory is equilibrium, which is the main hypothesis that ensures
that the system being analyzed can be treated through the laws of thermodynam-
ics. Therefore, it enables us to speak about thermodynamic states, that is, states
in which the great varieties of components in the system can be described by only
a few parameters, namely temperature, pressure and volume [1, 2]. The second
fundamental aspect about thermodynamics is the appearance of phase transitions.
Phases of matter are regions of the thermodynamic configuration space character-
ized by a uniform change in the thermodynamic parameters of the system. On the
contrary, phase transitions are abrupt changes in some of these parameters. It is
important to underline that such transitions can only happen in the thermodynamic
limit, i.e. they are not allowed in the mechanics of finite systems, but they are the
most natural result of regarding a system as a collective phenomenon [53, 54, 55].
Since we will be dealing in this thesis with the concepts of equilibrium and phase
transitions, it is better to give a brief resume, with a special focus on the properties
that characterize phase transitions that we shall use in the next chapters.

1.1 Basic concepts of thermodynamics

1.1.1 The four laws of thermodynamics

Classical thermodynamics deals with equilibrium states and conservation of en-
ergy. Therefore the axioms of the theory establish the existence of such states, the
possibility of measuring the change of energy from one form to another during an
equilibrium (quasi-static) process, and to understand the final fate of the evolution
of a system towards equilibrium. Such axiomatic structure is encoded in four ax-
ioms, usually referred to as the four laws of thermodynamics. We report them here
in a schematic way, leaving aside any discussion on their justifications (see e.g. [1]).
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1 Introduction

The Zeroth Law: The zeroth law of thermodynamics describes thermal equi-
librium between systems in contact and allows for a definition of temperature.

A system is said to be in thermal equilibrium if it experiences no net change in
thermal energy. Suppose A, B and C are three different systems, then

“If systems A and B are in thermal equilibrium with system C, then system A is
in thermal equilibrium with system B”.

This principle implies (together with the assumption that the potential be a ho-
mogeneous function of order one, see Chapter 2) that the three systems must have
the same temperature and hence it sets the basis for comparison of temperatures.

The First Law: The first law of thermodynamics can be stated in several dif-
ferent and equivalent ways. We choose here the following

“For a thermodynamic cycle, the net heat supplied to the system equals the net
work done by the system on the surroundings”.

This is equivalent to say that energy can neither be created nor destroyed, it can
only change form. Let us see the mathematical and physical implications of this
principle. Let ∆Q denote the net amount of heat absorbed by the system and ∆W

the net amount of work done by the system. The first law of thermodynamics states
that we can always define a state function U such that its difference from any given
initial and final states does not depend on the thermodynamic process leading from
one state to the other, but it is given by

∆U = ∆Q−∆W . (1.1)

The function U is called the internal energy of the system and it is defined only
up to an additive constant. Moreover, in ordinary thermodynamics it must be an
additive variable, which implies that were the system divided into two subsystems,
then each subsystem would have half the total internal energy of the original system.

It is important for the following discussion to present the infinitesimal version of
(1.1). In an infinitesimal transformation of the system, the infinitesimal change in
the internal energy is given by

dU = d̄Q−d̄W = d̄Q− P dV , (1.2)
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1.1 Basic concepts of thermodynamics

where dU is an exact differential, in the sense that it is independent of the path,
while d̄Q and d̄W are not, P is the external pressure and dV is the change in the
volume occupied by the system.

The Second Law: The second law of thermodynamics can also be phrased in
many equivalent ways. However, all of them are negative statements, which means
that they state the impossibility of something to happen. Such type of statement is
hard to be demonstrated in general. However, no exceptions to the second law have
been found and due to its generality it is regarded as one of the most fundamental
laws in Nature. One way of phrasing the second law is

“There is no thermodynamic transformation whose sole effect is to extract a quan-
tity of heat from a colder reservoir and to deliver it to a hotter reservoir”.

Such formulation turns out to be equivalent to say that for any closed cycle of
transformations one has ∮

d̄Q

T
≤ 0 , (1.3)

where the equality only holds for reversible cycles. In particular, this implies that
for reversible cycles the quantity dS ≡ d̄Q/T is an exact differential and therefore
we can define another state variable S, which depends only on the initial and final
state and not on the thermodynamic process in-between. This function S is called
the entropy of the system. It follows immediately that S is an extensive variable,
related to the intensive quantity T . Finally, for a reversible process, we can rewrite
the first law of thermodynamics, equation (1.2) , as

dU = d̄Q−d̄W = T dS − P dV . (1.4)

The Third Law: We have seen that the second law deals with the definition
of entropy. We note that such function is defined up to an additive constant and
apparently the definition can be different from system to system, provided they
are made of different substances. The third law of thermodynamics determines the
entropy of any thermodynamic system uniquely by stating that

“The entropy of a system at absolute zero is a constant, which may be taken to be
zero”.
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1 Introduction

It is clear that this statement is not related to any particular substance and it
does not depend on the process necessary to reach the absolute zero. In fact, the
third law guarantees that S → 0 whenever T → 0, no matter what the substance,
nor what is the process to reach the absolute zero limit.

1.1.2 Homogeneity, Additivity, Extensivity and Long-range
interactions

This section serves to make clear some concepts which will be repeated several times
in this work and that may cause some confusion. We write here the definitions only,
together with some useful references to a more detailed description. First of all we
shall introduce the concept of homogeneity.

Definition 1. (Homogeneity) We say that a function f(x1, . . . , xn) is homoge-
neous of order β in its variables if

f(λx1, . . . , λ xn) = λβf(x1, . . . , xn) , λ ∈ R0 . (1.5)

We observe that in standard thermodynamics, both the entropy and the internal
energy are homogeneous functions of order one.1 In the particular case that the
entropy and internal energy are homogeneous functions of order one, they also
happen to satisfy another fundamental property, which is additivity.

Definition 2. (Additivity) Given a system of N particles and a joint physical
observable X(x1, . . . , xN) of the individual states of the particles, we say that X
is additive with respect to splitting of the system into subsystems if for any two
probabilistically independent subsystems A and B one has

X(A+B) = X(A) +X(B) . (1.6)

If an observable satisfies Eq. (1.6), then it follows immediately that for any system
of N equal and independent particles

X(N) = N X(1) , (1.7)

which means that X is an extensive quantity, according to the following definition.
1In this work we limit our attention to homogeneous functions. However, our results can be
easily generalized to the case of quasi-homogeneous functions, that is when the potential is
homogeneous of different degree with respect to its variables (see e.g. [56] for a detailed analysis
of quasi-homogeneous thermodynamics).
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1.1 Basic concepts of thermodynamics

Definition 3. (Extensivity) Given a system of N particles and a joint physical
observable X(x1, . . . , xN) of the individual states of the particles, we say that X is
(asymptotically) extensive if

limN→∞
X(N)

N
<∞ . (1.8)

For a more detailed treatment about the concepts of additivity and extensivity,
we refer to [57, 58]. Here we limit to say that for ordinary systems, the entropy and
the internal energy satisfy all the above mentioned properties.
Finally, we define those types of systems where the situation is more messed up.

Definition 4. (Long-range interaction) We say that a system of N particles
in d dimensions has a long-range interaction if the pair interaction potential that
gives the interaction between the particles decays as 1/rν, where ν ≤ d and r is the
distance between any two particles.

As an example, the Newtonian potential decays with ν = 1. Therefore, a system
of N particles in three dimensions interacting between them with a Newtonian
potential is a system with long-range interactions. It turns out that in systems
with long-range interactions, the interaction part of the potential does not vanish
in the thermodynamic limit N → ∞, and thus for such systems the (Boltzmann-
Gibbs-Shannon) entropy and the (related) internal energy are not extensive, which
means that the thermodynamic limit for these quantities does not hold and one
needs to work with non-additive extensions of thermodynamics (see e.g. [57] and
references therein).

1.1.3 Stability Conditions

In this section we give a brief account of the consequences of the second law in
equilibrium thermodynamics. Our aim here is to highlight the distinction between
global and local stability conditions and its importance in our geometric description
below. We follow the arguments contained in [1], so that we will skip the proofs of
our statements.
Having established by the second law that the system evolves towards a state

of maximum entropy, we discuss now what are the mathematical implications of
such assumption. Indeed the maximum principle has two types of implications on
the stability of the thermodynamic equilibrium. The first type are global stability
conditions, which basically state that the entropy and all its Legendre transforms
have to be concave functions of their natural variables (U, V ), that is, they have
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1 Introduction

to lie above their tangent plane at every point. We remark that this can be also
rephrased by stating that the internal energy and all its Legendre transforms must
be convex functions of the variables (S, V ), that is, they have to lie below their
tangent plane at every point. On the contrary, local stability conditions can also
be deduced from the maximum principle. Being the state of equilibrium the one
for which the entropy has a local maximum, supposing that the entropy is twice-
differentiable, one can derive local conditions, i.e. the Hessian of the entropy has
to be (semi )-negative definite. Equivalently, this can be rewritten in terms of the
energy by saying that the Hessian of the internal energy (more frequently the Gibbs
free energy is used) has to be (semi)-positive definite.

It turns out that the local stability conditions are equivalent to some statements
about the so-called second order response functions. Indeed, in thermodynamics
one defines the quantities

CV ≡ T

(
∂S

∂T

)
V

CP ≡ T

(
∂S

∂T

)
P

(1.9)

κT ≡ −
1

V

(
∂V

∂P

)
T

αP ≡
1

V

(
∂V

∂T

)
P

. (1.10)

The first two quantities are known as the heat capacity at constant volume and
the heat capacity at constant pressure respectively, while the other two are the
isothermal compressibility and the coefficient of expansion [1]. The name second
order response functions descends from the fact that they are related to the second
order derivatives of the potentials and therefore the local conditions on the Hessian
of the potential imply conditions on these functions. In particular, all of them must
be greater than (or equal to) zero for the system to satisfy the local stability.

In principle, some further relationships among them must also be satisfied, but
they will not be important for the discussion here so we refer to [1] for more details.
Moreover, additional second order response functions can be introduced, depending
on the thermodynamic potential being used, but for ordinary systems it turns out
that only three of them are sufficient to completely describe the local stability of
the system. However, for systems with long-range interactions, one can get different
local results depending on the ensemble, therefore it is useful to define all of the
local quantities, as we will do in Chapter 5.

We remark that the global stability conditions are much stronger than the local
ones. Therefore, fulfillment of the global conditions imply the fulfillment of the
local ones, while the converse is not true, so that in principle a system can be in a
so-called metastable state, one in which the global stability conditions do not hold
whereas the local ones do. This fact will turn out to be particularly important for
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instance in our discussion about first order phase transitions. In fact, as we shall
see, the region where the local stability conditions for e.g. a Van der Waals fluid
fail is strictly contained inside the region where the global stability conditions are
broken (see Figure 1.4 below). Therefore, from the point of view of ordinary thermo-
dynamics (for which the potential is additive), it is thermodynamically favored for
the system to phase separate and follow the concave hull of the entropy (resp. the
convex hull of the energy) long before the region of local instability is reached. This
implies that ordinary thermodynamic systems (viz. systems for which the potential
is additive with respect to splitting into subsystems) never reach the metastable
region following an equilibrium process, nor of course the region of local instability.
However, if we are to relax the hypothesis of additivity (as we shall do in Chapter
2 by considering potentials that are homogeneous of any order), then the breaking
of the global stability conditions not necessarily implies that phase separation is
thermodynamically favored. In sum, a system whose potential is not homogeneous
of order one can reach the region of local instability by a process at equilibrium.
One of the most interesting consequences of this fact is that such type of systems
(basically all systems with long-range interactions) can undergo equilibrium regions
with negative (microcanonical) heat capacities and ensemble inequivalence [48, 49].

1.1.4 The ideal gas

Models in thermodynamics are a powerful tool in order to investigate general fea-
tures. Among them, a major role is played by the ideal gas system. An ideal gas is
a gas whose particles have no interaction between themselves. This is of course an
idealization, but it can be thought as the situation occurring when the density of
particles is very low. In this sense every gas is an ideal gas in some limit. We are
interested here to provide the fundamental equation for the ideal gas that will be
used in the following chapters and to mention the fact that an ideal gas show no
phase transitions.

The fundamental equation for a monatomic ideal gas that will be used in this
thesis can be either written in the entropy representation as

s(u, v) =
3

2
lnu+ ln v , (1.11)

where s, u and v are the molar quantities, i.e. the extensive quantities divided by
the number of moles, and we have set the universal gas constant to R = 1 [1].
Equivalently, one can give all the thermodynamic information about an ideal gas
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in the energy representation as

u(s, v) =

(
1

v
es
) 2

3

. (1.12)

As already commented, an ideal gas has no inter-particle interaction, therefore this
system will be the basic model to test and build our geometric counterpart of the
concept of thermodynamic interaction (see Chapter 4 for the geometric description
of an ideal gas).

1.1.5 The Van der Waals model

The second model system which is ubiquitous in thermodynamics is the Van der
Waals gas. This model describes, at least qualitatively, the properties of real gases,
that is, it reproduces the correct shapes for the isotherms and the instabilities
corresponding to both first order phase transitions, i.e. separation of the system
into different phases, and continuous phase transitions, i.e. critical points where
fluctuations diverge and the thermodynamic description breaks down. Therefore it
will play a central role in our general discussion of both the contact description of
first order phase transitions (which will be the content of the next section and of
Chapter 2) and the Riemannian description of continuous phase transitions (which
will be discussed in detail in Chapters 3 and 4). Here we give the fundamental
equation of the Van der Waals gas, as usual first in the entropy representation as

s(u, v) =
3

2
ln
(
u+

a

v

)
+ ln (v − b) . (1.13)

and then in the energy representation as

u(s, v) =
a(v − b) 2

3 − v e 2
3
s

v(v − b) 2
3

, (1.14)

where molar quantities are always being used and the gas constant is set to one.
It is worth remarking that (1.14) is a generalization of the ideal gas equation, in
which two new parameters appear, a which is representative of the inter-particle
interaction and b that takes into account the fact that particles are hard spheres,
i.e. they cannot occupy the same volume of space.

8



1.1 Basic concepts of thermodynamics

1.1.6 Phase transitions

Since all the geometric description in this work will be basically dealing with phase
transitions, let us pause a little to recall the properties and the characterization of
phase transitions in ordinary thermodynamics.

Phase transitions are among the most interesting phenomena in nature, with
applications that range from particle physics to cosmology, from social science to
geology, from information theory to economics and more [53, 54, 55]. For this reason
they have been investigated in a number of ways. In ordinary thermodynamics,
they can be classified into two major classes. First order phase transitions, which
happen along a line of coexistence between two (or more) competing phases and
present discontinuities in some first derivatives of the thermodynamic potential,
and continuous phase transitions (or second order phase transitions, according to
the old Ehrenfest classification [59]), which on the contrary happen only at a point,
usually referred to as the critical point. Physically, the process taking place during
the two types of transitions is completely different. In the first case, two phases
(represented by equal minima of the Gibbs potential) are competing, which means
that the system has split into two coexisting phases. In this type of transition, the
equilibrium thermodynamic description requires a special adjustment, namely the
Maxwell equal area law, after which equilibrium and stability are recovered [1].

On the contrary, near a continuous phase transition, there is an incredible increase
in the fluctuations of the system, so that the thermodynamic (equilibrium, mean
value) description eventually breaks down. Mathematically, this is represented by
the fact that the thermodynamic potential becomes non analytic and the second
order response functions diverge (hence the name “second order phase transitions”).
It is important for the discussion in Chapter 5 to remark also another fact about
continuous phase transitions, that is, a continuous phase transition implies the
divergence of (all) second order response functions, in a specific way encoded in
the so-called critical exponents [55]. On the other side, the divergence of one of the
response functions along a line or a point does not necessarily implies a continuous
phase transition (it may correspond to a change in the stability in some of the
ensembles and it is of particular interest in systems showing ensemble inequivalence
[48, 49]). In any case, the failure of the equilibrium hypothesis at the critical point
hints at the fact that some additional ingredient must be taken into account in this
region. It turns out naturally that including fluctuations from the mean values of
the thermodynamic quantities, the situation is completely resolved [2, 15].
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First order phase transitions

First order phase transitions are a fully thermodynamic phenomenon, in the sense
that they can be described using the basic theory of thermodynamics [1]. In fact,
nothing special happens except for the equilibrium between different phases. The
only requirement to do thermodynamics on a first order phase transition is to take
special care over the region of coexistence. This is because the coexistence region
is not predicted by the fundamental equation, nor by the equations of state in their
analytical form, but it results from the presence of two (or more) equal minima
of the Gibbs potential, which means that the system separates into two (or more)
phases that coexist at equilibrium (see Figure 1.1 below). Therefore one has a

G

V

TcT =

Tc<T

Tc>T

Figure 1.1: In the coexistence region T < Tc the Gibbs potential has two equal
minima, corresponding to two different phases that are equally probable.
In this region the Legendre transformation is ill-defined as the convexity
of G is lost, corresponding to an unstable region of the potential.

thermodynamic process taking a phase to another along which the system is split
into a mixture of the two phases. Thus the analytic treatment fails over this region
and even the phase diagrams show some discrepancies (this is a basic example of
ensemble inequivalence, see e.g. [48, 49]). The resolution of this problem in ordinary
thermodynamics is the introduction of a “correction” to the unstable isotherms, the
so-called Maxwell equal area law, by means of which the laws of thermodynamics
are recovered and the coexistence can be described. There is only a little price to be
paid for doing such construction, that is, the thermodynamic potential becomes non
analytic at some points and the Legendre transformation is not defined along the

10
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line of coexistence. The situation is depicted in Figs. 1.1, 1.2 and 1.3. Figure 1.1
shows that in the region of coexistence, the Gibbs potential has two equal minima,
representing the two different phases that coexist over this region. In Figure 1.2
the unstable isotherms are shown, together with the Maxwell law. Details about
these features can be found in any book of thermodynamics, see e.g. [1].

Tc<T

>TcT

TcT =

V

P

I

II

q

qP

cP

Figure 1.2: This figure shows typical isotherms in a P−V diagram. The coexistence
(horizontal) line constructed according to the Maxwell equal area law is
indicated as well as the critical point (Pc, Tc) where a continuous phase
transition takes places.

Let us now focus on another feature, i.e. the P−T diagram of a typical first order
phase transition (see Fig. 1.3). In this diagram it is particularly clear that when
we are at a given temperature and a given pressure along the coexistence region,
this corresponds to a single point in the P − T diagram (c.f. Maxwell line in Fig.
1.2 and point q in Fig. 1.3).
On the other side, we see from Figure 1.2 that the system is evolving and that

in P − V coordinates the “point” q is not just a point, but it corresponds to all
the segment of coexistence at the given temperature Tq. This is indicating that
in the P − T description we are missing some information and that the general
aspects of the process can only be accounted for if we look at both diagrams. In
Chapter 2 we will interpret this fact as a signal that a phase coexistence cannot
be fully described on a two dimensional manifold, i.e. cannot be described on
the manifold of equilibrium states usually introduced in the intrinsic treatments of
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P

TTc

I

II

q

Tc( )Pc,

( ), PqTq=

Figure 1.3: We observe that the coexistence line constructed according to Maxwell
law in the P − V diagram corresponds to a single point q in the P − T
diagram.

thermodynamic geometry. This is a first point hinting at the direction that we must
introduce some larger structure in order to include first order phase transitions and
in general all types of transitions which show ensemble inequivalence [48, 49].

On the other hand, Figure 1.4 shows another crucial aspect happening along the
coexistence curve, i.e. the failing of the Legendre transformation. This means that
along the region of coexistence one cannot switch for example from the description
in the U potential to the description in the G potential. We remark that this is
the only region of the thermodynamic space in which that happens. In fact, in all
other regions the two descriptions are fully equivalent. We also interpret this result
as indicating that in the region of coexistence the P − V diagram is not equivalent
to the P −T diagram, that is, the two ensembles are inequivalent. Therefore if one
wants to recover the full information, then one should consider both. Again this is
indicating that in the context of thermodynamic geometry we cannot limit to the
(2-dimensional) equilibrium manifold, but we need a larger space.

Let us summarize at this point the properties that such a larger space should
have. First, it must take account of the Maxwell equal area construction, so that
we can be sure of being working on real equilibrium states and not on metastable
ones. Second, such space should contain the information given by all the possible
thermodynamic variables, since we have just learnt that only two of them are not
sufficient on the coexistence region. Finally, the geometric objects defined on such
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1

2
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34

5
6

G

Pi

Figure 1.4: Failure of the Legendre transformation in the coexistence region as one
applies the transformation from U depending on the extensive variables
X i to the potential G depending on the intensive variables Pi.

space should be symmetric with respect to Legendre transformations and changes
in the representation, excluding at most the region of coexistence, where we know
that the Legendre transformation fails. It would be also natural that the larger
space include the equilibrium (2-dimensional) space and that the two descriptions
coincide out of the coexistence region. The analysis of the construction of such
space will be the content of Section 1.2.2 and the importance for the description of
first order phase transitions will be highlighted in Chapter 2.

Continuous phase transitions

Continuous phase transitions are transitions between two different phases that hap-
pen without discontinuity in any of the basic thermodynamic state functions, that
is the reason for the name “continuous”. However, it can be shown that second order
derivatives of the potential are discontinuous at such points, therefore according to
the old Ehrenfest classification [59] they are sometimes also called “second order
phase transitions”. In this work we will call them continuous, because this term is
the most modern and it encompasses better the phenomenon (see [53, 54] for a full
introduction to the theme). Moreover, this term will help us to better understand
the difference between continuous phase transitions in standard thermodynamics,
happening at critical points, and those transitions that are often referred to as sec-
ond order phase transitions in the literature of black holes thermodynamics, which
will be the content of Chapter 5, which will be named Davies phase transitions
here.
Continuous phase transitions happen at single points in the phase diagram, called
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critical points, and they are usually associated with a change in the symmetry of
the system. For example, the critical point at the end of the liquid-vapor line of
coexistence of a Van der Waals fluid is point (Tc, Pc) in Figure 1.3. The microscopic
aspect characterizing a continuous phase transition is completely different from the
one occurring at a first order phase transition. In fact, the fluctuations on the
value of the thermodynamic parameters become very large in the critical region
and they diverge at the critical point, due to the divergence of correlations [54, 55].
This fact has some remarkable consequences on the thermodynamic description.
The first direct consequence is that fluctuations out of the average values play a
major role in this region, so that the system cannot be analyzed by considering
only the mean values of the thermodynamic functions. This is so important that it
is the understanding of this fact that lead to the solution of the problem with the
wrong quantitative predictions of the mean field theories, such as the Van der Waals
description or the Curie description or, more generally, the Landau treatment of
critical behavior [2, 53, 54, 55]. Such a revolution gave birth to the modern treat-
ment of critical behavior, including Renormalization Group techniques, scaling laws
and universality (see e.g. [53, 54, 55] and references therein). In fact, the second
and perhaps most striking consequence of large correlations in the critical region, is
the fact that the parameters of the system exhibit some scaling laws, i.e. the ther-
modynamic response functions diverge according to some precise power laws, whose
exponents (the critical exponents) can be calculated explicitly. Furthermore, many
different thermodynamic systems are found to have the same critical exponents,
that is because the appearence of long-range correlations make the microscopic dif-
ferences between the systems irrelevant and therefore they all look the same from
the thermodynamic perspective. Indeed, it turns out that differences in the values
of exponents are only due to spatial dimensions of the system, type of the order
parameter and symmetries. Systems having the same critical exponents are said to
belong to the same universality class.

Therefore in the case of continuous phase transitions the thermodynamic analysis
is telling us that we must include fluctuations over the equilibrium values in the
geometric picture in order to correctly reproduce the behavior of the system. As
we shall see in Section 1.2, fluctuations have a natural geometric representation
resulting from both statistical mechanics and thermodynamic fluctuation theory
[10, 15]. Furthermore in Chapter 3, based on the symmetry assumptions of GTD,
we shall derive a new Riemannian structure for thermodynamics that includes fluc-
tuations in a natural way and therefore permits the description of continuous phase
transitions.
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1.2 Thermodynamics and Geometry: historical
background

In this section we give a brief historical overview about the different approaches
to the geometrization of thermodynamics and at the same time we introduce the
main geometric concepts that we are going to use throughout the rest of the work.
Moreover, from the discussion here, it will result that Geometrothermodynamics
comes as a synthesis of the different approaches, with a special emphasis on the
role played by the thermodynamic phase space and the introduction of the concept
of symmetry, which had never been addressed before.

1.2.1 Gibbs sufraces

The study of geometric properties of thermodynamics has started with the works
of Gibbs [5], who considered thermodynamic systems as surfaces embedded on the
euclidean space, defined by their fundamental equation. Thus for example the ideal
gas at constant number of molecules can be regarded as the two-dimensional surface
in R3 given by the fundamental equation s(u, v) = 3/2 lnu− ln v. Due to the second
law of thermodynamics, it turns out that such surfaces must be concave (or convex,
depending on the thermodynamic potential used to define them) throughout all the
domain of definition. In particular, no notion of distance has ever been included in
such space by Gibbs. However, some later work by Gilmore and Salomon pointed
in this direction [60]. In particular, they described Gibbs surfaces by means of the
first and second fundamental forms. It turned out that such description does not
allow one to include fluctuations from equilibrium and hence it fails to account for
phase transitions [61].
Riemannian geometry was first introduced in statistical physics and thermody-

namics by Rao [62], in 1945, by means of a metric whose components in local
coordinates coincide with Fisher’s information matrix. Remarkably, such structure
can be used to calculate the informational difference between measurements. The
original work of Rao has been followed up and extended by a number of authors
(see e.g. [63] for a review).
Later, in the 1970s, Weinhold [12, 13] introduced a scalar product on the tangent

space at every point of an abstract space constituted by all the admissible thermo-
dynamic states of the system, the so-called equilibrium manifold. Such product was
defined by the Hessian matrix of the internal energy of the system. The great advan-
tage in the introduction of this new structure is that many of the thermodynamic
relations can be elegantly recovered from the properties of the scalar product, which
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points at a more rich geometric structure in thermodynamics. However, Weinhold
himself never introduced the concept of distance in the equilibrium manifold. It
was Ruppeiner [14] who then introduced a metric structure inspired by the scalar
product on the tangent space of Weinhold, but derived from a completely differ-
ent perspective. In fact, Ruppeiner’s intrinsic metric on the abstract equilibrium
manifold is defined as (minus) the Hessian of the entropy and it is derived directly
from thermodynamic fluctuation theory [14]. As a consequence of its definition,
the distance between equilibrium states has a natural interpretation as the prob-
ability of fluctuations between the two states. Moreover, Ruppeiner developed a
fully covariant fluctuation theory which is consistent with the introduction of the
thermodynamic metric based on the Hessian of the entropy and showed that the
scalar curvature of this Riemannian structure gives a macroscopic measure of the
correlation volume of the system, which opens the possibility to understand mi-
croscopic properties of matter by means of macroscopic functions, that is, what
Ruppeiner called a “build down approach” (see [15] for a detailed review). All these
approaches are based on the intrinsic properties of the equilibrium manifolds: on
the one side the equilibrium surfaces introduced by Gibbs and defined by the fun-
damental equation, and on the other side the abstract equilibrium manifold used
in the approaches of Weinhold and Ruppeiner. It was also shown that after intro-
ducing the notion of distance on the abstract manifold, the two types of description
are inequivalent. Therefore, one should choose one description or the other, based
on the aspects one is more interested to describe [61].

Besides, a completely different approach to the geometrization of thermodynamics
was pursued first by Hermann [7] and later by Mrugala and his collaborators [8,
9, 10]. In this approach, the phase space of thermodynamics is introduced as
a manifold in which all the thermodynamic quantities are independent variables.
The geometric structure of such manifold is given by the first law, contrary to
the intrinsic descriptions of Gibbs, Weinhold and Ruppeiner, where the second
law rules the geometric properties of the manifold. It turns out that the first law
defines a contact structure on the phase space of thermodynamics, and that the
abstract equilibrium manifold where the intrinsic description of thermodynamics
is performed emerge as a particular class of integral submanifolds of the contact
distribution.

Below we review all these concepts briefly and give a detailed list of references,
in order to introduce the notation which will be used in the following chapters. In
particular, we distinguish between the contact structure of the phase space and the
Riemannian structure of the equilibrium space, the two most important concepts
in the theory of Geometrothermodynamics.
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1.2.2 The contact formulation of classical thermodynamics

In this section we introduce contact geometry and its applications to thermody-
namics. The introduction of contact geometry in thermodynamics as the natural
landscape to work with the Pfaffian equation representing the first law is due to
Hermann [7] and was later developed by Mrugala [8, 9, 10]. We present here the
general features, with a special interest on the symmetries of the contact structure,
which will be the guideline to the introduction of a compatible metric structure
discussed in Chapter 3.

Contact manifolds and the thermodynamic phase space T

Definition 5. A (2n+ 1)-dimensional manifold T is said to be a contact manifold
if it is endowed with a maximally non-integrable family of hyperplanes

ξ = ker(Θ) (1.15)

defined through some 1-form Θ satisfying the non-integrability condition

Θ ∧ (dΘ)n 6= 0 , (1.16)

where ∧ denotes the exterior product and (dΘ)n = dΘ ∧ · · · ∧ dΘ (n times).

The above condition means that Θ is non-degenerate. The 1-form Θ is called the
contact form. Note that the contact form Θ is not unique. Indeed, any other 1-form
defining the same family of hyperplanes, equation (1.15), is necessarily conformally
equivalent to Θ. Thus, a contact structure is an equivalence class [Θ] of 1-forms
satisfying (1.16) and related by a conformal transformation, i.e. for any two 1-forms
Θ1 and Θ2 in [Θ]

Θ1 ∼ Θ2 iff Θ2 = Ω Θ1 (1.17)

for some real and non-vanishing function Ω. As we will shortly show, each member
of the class corresponds to a different thermodynamic representation. To this end,
let us consider the class of maps which leave invariant the contact structure. Let
f : T −→ T be a diffeomorphism of the thermodynamic phase space. If f preserves
the contact structure, i.e

f ∗(Θ) = Ω(ZA)Θ = Θ′ where Ω 6= 0 , (1.18)

we call f a contactomorphism [64]. Note that Θ′ ∈ [Θ].
According to the Darboux theorem [65], there always exist local contact coordi-
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nates ZA = (Φ, Ea, Ia), a = 1, . . . , n in which Θ has the canonical form

Θ = dΦ− IadEa , (1.19)

where the summation convention over repeated indices has been assumed. The
non-degeneracy condition (1.16) can be geometrically interpreted in several ways,
the simplest one resulting from (1.19), from which we see that Θ ∧ (dΘ)n is the
volume form on T .

There is a particular set of contactomorphisms which is of thermodynamic rele-
vance. That is, those defined by interchanging the thermodynamic potential with
one of the extensive variables. In fact, a particular case of such set is the change of
representation from the internal energy to the entropy representation or viceversa.
If we express Θ in Darboux coordinates as in equation (1.19), the transformation
exchanging Φ with the ith extensive variable is

f ∗(i)(Θ) = Θ(i) = − 1

I(i)

Θ = dE(i) − 1

I(i)

dΦ +
∑
j 6=i

Ij
I(i)

dEj , (1.20)

and using Darboux’s theorem, we can write Θ(i) in its canonical form

Θ(i) = dΦ′ − Ia′dEa′ , (1.21)

from which we can read the transformation as

Φ′ = E(i), E(i)′ = Φ, Ej′ = Ej, I(i)′ =
1

I(i)

and Ij′ = − Ij
I(i)

. (1.22)

It follows immediately that the contact form in the E(i) representation can be
rewritten as

Θ(i) = dE(i) − 1

I(i)

dΦ +
∑
j 6=i

Ij
I(i)

dEj , (1.23)

which means that a conformal relation between the two thetas holds, i.e.

Θ(i) = − 1

I(i)

Θ . (1.24)

Definition 6. In thermodynamics the couple (T , [Θ]) represents the thermody-
namic phase space and choosing a different thermodynamic representation corre-
sponds to choose a different 1-form in the class [Θ].
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Let us see how. In the energy representation we have the contact coordinates

(Φ, E1, E2, E3, . . . , I1, I2, I3, . . . )↔ (U, S, V,N1, . . . , T,−P, µ1, . . . ) , (1.25)

and the corresponding representative of the contact structure is

ΘU = dU − TdS + PdV − µkdNk, k = 1, . . . , n− 2 . (1.26)

On the other side, in the entropy representation we have

(Φ, E1, E2, E3, . . . , I1, I2, I3, . . . )↔ (S, U, V,N1, . . . ,
1

T
,
P

T
,
µ1

T
, . . . ) (1.27)

and
ΘS = dS − 1

T
dU − P

T
dV − µk

T
dNk, k = 1, . . . , n− 2 , (1.28)

where all the symbols have their standard thermodynamic meaning [1]. It is impor-
tant to notice that in each case all the 2n+ 1 variables are treated as independent
on the phase space T (we will see in the next subsection that this is not the case
in the equilibrium manifold E). We also notice that ΘU and ΘS are two different
geometric objects defined on T and that they are related according to

ΘS = − 1

T
ΘU . (1.29)

From (1.29), we see immediately that the 1-forms ΘU and ΘS, corresponding to
taking the energy or entropy representations, define the same contact structure (c.f.
(1.15)) and they are related exactly according to (1.24) (with E(i) = S and I(i) = T ).
Another fundamental definition is that of a Legendre transformation.

Definition 7. A Legendre transformation (LT) is a change of coordinates in the
phase space T such as

(Φ, Ea, Ia)→ (Φ̃, Ẽa, Ĩa) ,

Φ = Φ̃− ẼkĨk , Ei = −Ĩi, Ej = Ẽj, Ii = Ẽi, Ij = Ĩj ,
(1.30)

where i, k, l ∈ I and j ∈ J and I ∪ J is any disjoint decomposition of the set of
indices {1, . . . , n}.

When I = {1, . . . , n} it is called a total Legendre transformation (TLT), while
when I ⊂ {1, . . . , n} it is called a partial Legendre transformation (PLT). Note
that Legendre transformations belong to the special class of contactomorphisms
which leave the representative unchanged, i.e. f ∗(Θ) = Θ, i.e. they are strict
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contactomorphisms.
In classical homogeneous thermodynamics, the physical properties of the system

do not depend on the thermodynamic potential which one uses for the description
[1]. We will show now how this property manifests as a symmetry of the contact
structure. For instance, considering a system with two degrees of freedom, we can
change the thermodynamic potential from the internal energy U with its natural
variables E1 = S,E2 = V, I1 = T, I2 = −P , to the Gibbs free energy G with
its natural variables Ẽ1 = T, Ẽ2 = P, Ĩ1 = S, Ĩ2 = V , using the total Legendre
transformation

(U, S, V, T,−P )→ (G, T, P, S, V ) ,

Φ̃ = G = U − TS + PV , Ẽ1 = T, Ẽ2 = P, Ĩ1 = S, Ĩ2 = V ,
(1.31)

and the two corresponding contact forms satisfy

ΘU = dU − TdS + PdV = dG+ SdT − V dP = ΘG . (1.32)

Legendre submanifolds and the equilibrium space E

Due to condition (1.16), the contact distribution is maximally non-integrable. There-
fore the major role is played by its maximal dimensional integral submanifolds,
i.e. the so-called Legendre submanifolds, which we will denote by E . We list here
some important properties of the Legendre submanifolds of the contact distribu-
tion, which lead us to identify them with the manifolds of equilibrium states of
thermodynamic systems.

(i) First of all the name Legendre submanifolds is justified by the fact that they
are invariant under Legendre transformations (1.30), i.e. a Legendre trans-
formation maps a Legendre submanifold into itself (whenever the LT is well
defined, see Chapter 2).

(ii) Furthermore, because the contact distribution is maximally non-integrable,
the dimension of any Legendre submanifold of the (2n+ 1)-dimensional ther-
modynamic phase space, coincides with the number n of thermodynamic de-
grees of freedom.

(iii) Finally, we provide a well-known theorem whose proof can be found e.g. in
[65]. Given a generating function f(Ii, E

j) of n variables Ii, i ∈ I, and Ej,
j ∈ J , with I ∪ J any partition of the set of indices {1, . . . , n}, the n + 1

equations

Ei = − ∂f
∂Ii

, Ij =
∂f

∂Ej
, Φ = f − Ii

∂f

∂Ii
(1.33)
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define a Legendre submanifold E of (T , [Θ]). Conversely, every Legendre sub-
manifold of (T , [Θ]) in a neighborhood of any point is defined by (1.33) for at
least one of the 2n possible choices of the subset I.

Keeping in mind the above facts about Legendre submanifolds, and assuming
without loss of generality that the independent variables on E are the {Ea}, for
a = 1, . . . , n, we give the following geometrical definition.

Definition 8. The equilibrium space corresponding to a thermodynamic system
whose phase space is given by (T , [Θ]) is the Legendre submanifold E satisfying the
condition

ϕ∗(Θ) =

(
∂

∂Ea
Φ(Eb)− Ia

)
dEa = 0 , (1.34)

equivalent to the first law of thermodynamics and the equations of state

dΦ(Ea) = IadE
a, and Ia =

∂

∂Ea
Φ(Eb) . (1.35)

Therefore Φ = f(Ea) corresponds to the thermodynamic potential and ϕ : E → T
reads

ϕ(Ea) =

(
Φ(Ea), Ea, Ia =

∂

∂Ea
Φ(Eb)

)
. (1.36)

1.2.3 Riemannian structures

Besides the global contact structure (T , [Θ]) of the phase manifold of thermody-
namics defined in the previous section, one can introduce a Riemannian structure
(E , g) in the equilibrium manifold E in several ways. The thermodynamic metrics
that we are going to introduce here are defined as the Hessian of some potential.
As such, they account for fluctuations in the ensemble related to the potential used
and give a “measure” of the strength of the thermodynamic fluctuations by means
of the curvature of such manifold. Therefore, one can get a local information about
phase transitions and critical points.

Weinhold and Ruppeiner metrics on the equilibrium space E

In a set of papers [12], F. Weinhold introduced in the seventies a scalar product
on the tangent space of the equilibrium manifold E starting from considerations
about equilibrium. Using a more geometric language, one can promote this scalar
product to a Riemannian metric g defined in E . In order for a system to be at
equilibrium, the internal energy U with respect to the extensive variables has to be
at a minimum (c.f. Sec. 1.1.3). This means that the first derivatives of U must
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vanish and the Hessian, i.e. the matrix of second derivatives, has to be a positive
definite matrix. That is why Weinhold metric gW is defined as the Hessian of the
free energy U [12, 13]. For example, for a system with two degrees of freedom in
the energy representation, i.e. with coordinates (S, V ) on E , Weinhold metric is
naturally defined as

gW =
∂2U

∂S2
dS ⊗ dS + 2

∂2U

∂S∂V
dS ⊗ dV +

∂2U

∂V 2
dV ⊗ dV. (1.37)

The physical meaning of Weinhold metric is thus clear from its definition, the
metric being positive definite as long as the system is in an equilibrium configura-
tion and degenerate or negative definite out of equilibrium. Thus a change from
equilibrium to non-equilibrium is signaled by the vanishing of the determinant of
Weinhold metric.
Some years later G. Ruppeiner [14], starting from statistical physics and more

precisely from the Gaussian approximation to the probability density of fluctuations
around a point of maximum entropy, proved that the Hessian of the entropy S (with
a minus sign) gives the equilibrium space E a different Riemannian structure from
that of Weinhold. Remarkably, Ruppeiner geometry was found to be conformally
related to the one proposed by Weinhold, the relation being [60]

gR =
1

T
gW . (1.38)

Moreover, Ruppeiner metric is intrinsically related to the underlying statistical
properties. In fact the scalar curvature of the Riemannian manifold representing the
system using Ruppeiner metric happens to diverge at the critical point with exactly
the same critical exponent as the correlation volume for any ordinary systems (see
e.g. [15] for a review).
Ruppeiner metric is thus defined as (minus) the Hessian of the entropy. As

such, for a thermodynamic system with two degrees of freedom in the entropy
representation, it is written in its natural variables (U, V ) as

gR = −
(
∂2S

∂U2
dU ⊗ dU + 2

∂2S

∂U∂V
dU ⊗ dV +

∂2S

∂V 2
dV ⊗ dV

)
. (1.39)

Weinhold and Ruppeiner thermodynamic geometries have been largely used in
the literature to study ordinary systems and in particular Ruppeiner metric has
been also used to study the thermodynamics of many black holes configurations
(see [16] and references therein). This is because one can argue that, being Rup-
peiner metric defined only from thermodynamic quantities and containing at the
same time informations about the statistical model, then it can provide some hints
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1.2 Thermodynamics and Geometry: historical background

towards the resolution of the long standing problem of understanding the micro-
scopic properties of black holes (see e.g. [16]). Unfortunately, as we shall see in
Chapter 5, some misleading and puzzling situations appear when treating black
holes with the afore-mentioned methods without considering the peculiar features
of black holes as thermodynamic systems (see the discussion in Chapter 5).

A metric by Mrugala on the phase space T

Mrugala [10] was the first to introduce a metric structure on the phase space T ,
which reproduces the thermodynamic metrics of Weinhold and Ruppeiner when
projected onto the equilibrium space E [10, 11]. For a system with n degrees of
freedom, the metric by Mrugala in the general contact coordinates of the phase
space T reads

GM ≡ Θ⊗Θ + dIa ⊗ dEb , (1.40)

where a, b = 1, . . . , n and Θ is the contact form (1.19). It is easy to see that

ϕ∗(GM)|Φ=U = gW and ϕ∗(GM)|Φ=S = −gR , (1.41)

where ϕ : E → T is the natural embedding of E onto T defined in (1.36) and gW

and gR are defined in (1.37) and (1.39) respectively. We notice that Eq. (1.41)
in particular means that GM is not symmetric under a change of representation
on T (c.f. equation (1.22)) and that using different representations one gets two
different geometric objects. Moreover, it is easy to see (c.f. [24]) that GM is neither
symmetric with respect to Legendre transformations (1.30). Therefore, the Hessian
metrics of Weinhold and Ruppeiner naturally arise from the different choice of the
thermodynamic potential.
We comment that an analysis of the statistical origin of the metric (1.40) was

addressed in [10] and the mathematical aspects of the corresponding contact Rie-
mannian structure have been extensively studied in [11].
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2 Legendre symmetry and first order
phase transitions

In Section 1.1.6 we have discussed the occurrence of phase transitions in ordinary
thermodynamics, pointing out that the presence of a first order phase transition
demands an ensemble inequivalence and the introduction of a larger space, in which
all the thermodynamic variables are present, thus recovering the full information
about the system. That is to say, that while on the single phase of a system we
can rule out some irrelevant thermodynamic degrees of freedom and work on the
equilibrium space E by means of the pullback defined in Eq. (1.36), on the other
side in the coexistence region between two or more different phases such pullback
is not well defined and we need to work on the full thermodynamic phase space T .
In this chapter we formulate this observation more precisely.
Indeed we will get a characterization of first order phase transitions as equilibrium

processes on the thermodynamic phase space for which the Legendre symmetry is
broken. Furthermore, we consider generalized theories of thermodynamics, where
the potential is a homogeneous function of any order β and we propose a (contact)
Hamiltonian function that fully describes thermodynamic equilibrium. We show
that such Hamiltonian is a conserved quantity related to the Legendre symmetry.
That is, it is identically zero as long as the total Legendre transformation of the
system is well defined, whereas it changes when the Legendre symmetry breaks,
i.e. when the system separates into two phases. We will show that, whenever the
thermodynamic potential is homogeneous of order one, such energy is zero also
over the region of coexistence. Finally, in the end of the Chapter we use these
results to infer that the description in equilibrium of first order phase transitions
is possible only when the potential is a homogeneous function of order one, unless
a generalized version of the zeroth law of thermodynamics is considered in order
to allow for equilibrium at different values of the “intensive” quantities. We use
all these results to derive a new zeroth law of thermodynamics that consistently
applies to the case of generalized potentials of any order. In particular, we mention
that this result can be useful in the context of black holes thermodynamics, as we
shall investigate further in Chapter 5.
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2 Legendre symmetry and first order phase transitions

2.1 First order phase transitions

In the modern treatment of phase transitions it is common to associate the emerging
of such phenomena with the breaking of some symmetry of the system. However,
some of the most familiar phase transitions have not been settled yet within this
framework, e.g. the liquid-vapor phase transition of water (see for instance the
discussion in Section 4.1.3 in [55]). Moreover, in the recent years special interest
has been devoted to the thermodynamics of systems with long-range interactions
(including e.g. black holes [35], self-gravitating systems [36], cold atoms in an
optical lattice [37], nanoscale materials [38] and so on), which cannot be treated in
the context of standard thermodynamics and therefore require a generalization of
the homogeneity condition of the thermodynamic potential.

In this section, we consider systems whose thermodynamic potential is a homo-
geneous function of any order and argue that all such systems have a common
theoretical symmetry that breaks whenever a coexistence of two phases is present,
i.e. the Legendre symmetry. In fact, according to the contact description of the
phase space of thermodynamics introduced in Section 1.2.2, the equilibrium con-
dition is given by integral submanifolds of the contact distribution. In particular,
for a system with n degrees of freedom, the maximal integral submanifolds (the
Legendre submanifolds) are of dimension n. This is representative of the fact that
on such submanifolds the thermodynamic potential Φ and the intensive variables Ia
can all be expressed as functions of the extensive variables Ea, where a runs from
1 to n, without any loss of information. At the same time, using the equations of
state, one can perform a total Legendre transformation to change the thermody-
namic potential and switch the independent variables to be the intensive ones. It
is thus clear that the Legendre transformation on the phase space induces a dif-
feomorphism between the extensive and the intensive variables on each Legendre
submanifold. We will show in the next section that this is always the case as long
as the potential satisfies the convexity conditions, that is, the system is in a sin-
gle phase [1]. However, many of the thermodynamic potentials undergo regions of
instability. Therefore, the Legendre transformation is not defined in such regions.
In standard thermodynamics, one can recover stability by means of the Maxwell
equal area law, but the Legendre symmetry cannot be restored [1]. We show here
how the breaking of the Legendre symmetry allows for intersections of Legendre
submanifolds and hence for processes that quit one thermodynamic phase and go
to the other. Such processes are the coexistence processes. In this way one is able
to characterize the single phase region of any thermodynamic system as a Legendre
submanifold (i.e. a maximal integral submanifold), and the region of coexistence as
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2.2 Legendre symmetry and phase transitions

the region where the breaking of the Legendre symmetry leads to the coexistence
of the corresponding Legendre submanifolds.

Furthermore, we will define a function on the phase space that vanishes when-
ever the system is in equilibrium. A natural candidate for such a function stems
from Euler’s identity for homogeneous systems, therefore let us call such function
the Euler’s contact Hamiltonian (ECH). The ECH provides the natural analogue in
contact geometry of the Hamiltonian description of Mechanics. In fact, as conserva-
tive Hamiltonian dynamics is restricted to submanifolds of constant Hamiltonian, in
the same way all thermodynamic processes are constrained to submanifolds where
the ECH is zero. Moreover, calculating the differential of the ECH on each Leg-
endre submanifold one can directly derive the generalized Gibbs-Duhem equation.
We will discuss how this equation imposes constraints on the admissible thermo-
dynamic processes and conclude that for “non-extensive” thermodynamic systems,
equilibrium among the system’s sub-parts requires a reformulation of the zeroth
law. Finally, we will provide a new generalized zeroth law of thermodynamics for
systems whose thermodynamic potential is a homogeneous function of order dif-
ferent from one, such definition being compatible with the Gibbs-Duhem equation.
Moreover, we will discuss how our new definition of equilibrium is connected to a
generalized version of the Tolman-Ehrenfest effect valid for systems with long-range
interactions and we will provide arguments for a possible direct application in the
thermodynamics of black holes.

2.2 Legendre symmetry and phase transitions

The description of an ordinary thermodynamic system can be performed using dif-
ferent potentials, which can be obtained one from the other by means of a Legendre
transformation (c.f. Definition 7). Therefore, the question arises naturally if there
is something special about Legendre transformations. To address this question, let
us consider the contact description of the phase space of thermodynamics given in
Section 1.2.2.

One clearly sees from the embedding (1.36) that in standard extensive thermody-
namics Φ(Ea) is the thermodynamic potential, Ea are the extensive variables and
Ia are the intensive ones. We remark here that the words extensive and intensive
variables only apply in standard thermodynamics, whereas in the following we will
work with generalized thermodynamics, where the potential and the variables Ea

need not be extensive and the Ia do not necessarily need to be intensive, as we
shall see. Nevertheless, in what follows we will continue to use this notation. In
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2 Legendre symmetry and first order phase transitions

particular, we will always assume that Φ is a coordinate on the phase space T ,
while Φ(Ea) is the corresponding potential on a Legendre submanifold E defined
by ϕ, Ea will be the natural variables of Φ(Ea) and Ia(Eb) the conjugate variables,
obtained by means of the equations of state (c.f. Eq. (1.35)). Moreover, we will
always take Φ(Ea) to be a homogeneous function of order β, although all the results
can be straightforwardly generalized to the case of Φ(Ea) quasi-homogeneous (see
[56] for a detailed discussion on quasi-homogeneous functions).

Let us now turn to describe briefly the process of coexistence (for a more detailed
description see e.g. [1]). To do so, we refer to the P − V and P − T diagrams of
the liquid-vapor coexistence for a Van der Waals fluid presented in Figs. 1.2 and
1.3. Above the critical temperature Tc, the isotherms on the P − V diagram are
decreasing functions of V and hence are stable. On the contrary, below the critical
temperature, the isotherms have a region of instability, which is “cut-out” by means
of the Maxwell construction, which consists in finding the equilibrium value for the
pressure at which the two phases coexist at equilibrium. It turns out that such
equilibrium value is given by requiring that the two areas indicated by I and II

in the P − V diagram be equal. It is crucial for our discussion to note that the
way in which Maxwell construction operates to restore equilibrium is by requiring
that the intensive quantities be equal between the two phases [1], which is the
standard definition of equilibrium between two sub-parts of a system in ordinary
thermodynamics.

Besides, it is also crucial to note that when a coexistence of two or more phases
is present, the description in the variables Ea is not equivalent to that using the
variables Ia. In fact, by looking at the two diagrams in Figs. 1.2 and 1.3, one
immediately sees that in the P − V coordinates the coexistence is given by a line,
whereas in the P − T coordinates it corresponds to the single point, indicated by
q. This fact can be given a precise geometric interpretation that the change of
coordinates in that region is not well defined. From a perspective similar to that of
the Renormalization Group technique (see e.g. [54, 55] and references therein), this
fact signals that in such region new parameters might be involved to account for the
(now relevant) extra degrees of freedom, such parameters being in our case the full
set of 2n + 1 thermodynamic variables in the phase space. Furthermore, the need
for extra degrees of freedom hints at the breaking of some underlying symmetry.
Indeed, we can prove the following result.

Proposition 1. The descriptions using the “extensive” or the “intensive” coordi-
nates are equivalent as long as the Legendre transform is well defined, i.e. when the
convexity conditions are satisfied.
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Proof. In fact, the transformation from the thermodynamic potential Φ(Ea) to
its total Legendre transform Φ̃(Ia) induces a diffeomorphism ψ on every Legendre
submanifold E between the coordinates Ea and Ia given by the equations of state

Ia(E
b) =

∂

∂Ea
Φ(Eb) . (2.1)

It is easy to calculate the push-forward of such transformation, which is

ψ∗ : TE −→ TE

ψ∗ (Xa∂Ea) ≡
(

∂2Φ

∂Ea∂Eb

)
Xb∂Ia ,

(2.2)

where X = Xa∂Ea is any vector field on TE .
Therefore, the Legendre mapping between the two sets of coordinates is a dif-

feomorphism on E as long as the Hessian of the potential Φ(Ea) is non-degenerate.
This ends the proof our statement.

We notice that the same happens in Classical Mechanics with a Legendre trans-
form mapping the Lagrange formulation into the Hamiltonian one, as long as the
Lagrangian is non-degenerate. 1 Proposition 1 implies that at a given point p on E
the total Legendre transformation from Φ(Ea) to Φ̃(Ia) is well defined if and only
if the system satisfies the (strict) convexity conditions at that point p. An example
of a system that globally satisfies the convexity conditions is the ideal gas. Hence
the ideal gas has only one phase, which is represented in contact geometry by a
single, smooth, Legendre submanifold. However, the majority of systems undergo
instabilities and phase separation. Thus, let us analyze the consequences of the
breaking of the Legendre symmetry over the coexistence region. First of all let us
define in T the function

Φ̃ ≡ Φ− Ea Ia , (2.3)

where Einstein summation convention is being adopted. Note that Φ̃ 6= Φ. In fact, Φ̃

is the function on T that, when projected onto a Legendre submanifold E , gives the
thermodynamic potential Φ̃(Ia) corresponding to a total Legendre transformation
of Φ(Ea).
Consider now a generic thermodynamic process γ on the phase space which lies in

1Note also that in the case of ordinary thermodynamics (homogeneous systems of order one), the
full Legendre transformation from the n extensive variables to the n intensive ones is always
degenerate, due to the fact that the intensive variables are not independent (because of the
Gibbs-Duhem relation). Therefore, one divides all the variables by means of a fixed one (e.g.
the number of moles or the volume) reducing the number of variables by one and obtaining
“densitisized” quantities, for which the total Legendre transform is well defined.
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the single phase region, that is, in the region of a Legendre submanifold E where the
Legendre transformation is well defined. Along such process the thermodynamic
potential Φ(Ea) changes according to the first law

dΦ(γ̇) = Ia(γ)dEa(γ̇) . (2.4)

At the same time, the potential given by the total Legendre transform Φ̃(Ia) also
changes according to the first law

dΦ̃(γ̇) = −Ea(γ)dIa(γ̇) . (2.5)

On the contrary, along the coexistence process γc the values of the intensive variables
are fixed by the Maxwell requirement of equilibrium between the two phases, while
the extensive variables change, so that Φ(Ea) changes normally, in agreement with
the first law (2.4), while dΦ̃(γ̇c) = 0.
The breaking of the correspondence between the changes in the two potentials is

a motivation to define on the phase space the following function

Definition 9. The Euler’s contact Hamiltonian (ECH) is the function on the ther-
modynamic phase space T defined as

E ≡ (1− β)Φ− Φ̃ , (2.6)

where Φ̃ is the function defined in (2.3).

Let us consider now a Legendre submanifold E given by the map (1.36). We can
state the following result.

Proposition 2. The Euler’s contact Hamiltonian vanishes on each Legendre sub-
manifold, i.e.

E|E = −βΦ(Ea) + IaE
a ≡ 0 . (2.7)

Proof. The proof directly follows from the definition (2.3) and the generalized Euler
equation for homogeneous functions [24].

From Proposition 2 it follows that

Corollary 1. All the leaves of the contact distribution are characterized as zeroth
levels of the ECH.

Proof. It can be shown that each leaf of the contact distribution is contained in
a Legendre submanifold (see [68]). Therefore the corollary directly follows from
Proposition 2.
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It is worth remarking that, contrary to what happens in symplectic mechanics,
every contact hamiltonian function f on the thermodynamic phase space generates
a flow that is tangent only to its level surfaces f = 0 [8, 9]. Therefore, the above
result implies that the flow generated by the ECH is at every point tangent to the
equilibrium submanifolds, i.e. it is a thermodynamic process. This suggests that
any thermodynamic process can be characterized by the flow of the ECH plus some
boundary conditions consistent with the laws of thermodynamics, a matter which
will be the content of our future work [69].
Moreover, one can also use the pullback of ϕ to calculate the differential of E on

each Legendre submanifold. It turns out that

Lemma 1. The vanishing of dE is equivalent to the generalized Gibbs-Duhem re-
lation, i.e.

ϕ∗(dE)|single phase = (1− β)ϕ∗(dΦ)− ϕ∗(dΦ̃) =

= (1− β)IadE
a + EadIa = 0 .

(2.8)

Proof. The proof is straightforward and it follows from the definition of ϕ (equation
(1.36)) and that of Φ̃ (equation (2.3)).

If instead one considers a process γc over the region of coexistence (which by the
Gibbs phase rule [1] necessarily happens on a submanifold which is not maximal,
i.e. it is not a Legendre submanifold), one has that Φ̃ is constant, that is dΦ̃(γ̇c) = 0,
as we have already discussed. Therefore, it results the following

Lemma 2. Along a process of coexistence γc on T we have that

dE(γ̇c) = (1− β) dΦ(γ̇c) = (1− β) Ica dEa(γ̇c) , (2.9)

where the notation Ica means that the values of the “intensive” quantities are fixed
along the coexistence process γc.

It is immediate to see that in the case β = 1 the relation (2.9) is identically zero,
and therefore during the process of coexistence the two phases are in equilibrium
(having the same values for the intensive quantities) and at the same time the Gibbs-
Duhem equation is satisfied. Nevertheless, when β 6= 1, dE along the coexistence is
not zero, which means that the generalized Gibbs-Duhem relation is not consistent
with the usual definition of equilibrium. However, since the Gibbs-Duhem relation
(2.8) is obtained from the homogeneity of the potential by assuming that the first
law and the equations of state are satisfied, one concludes that it is the definition of
equilibrium between the two phases as having all the “intensive” quantities fixed to
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be equal which is too stringent in the case of potentials which are not homogeneous
of order one. We can now state the following

Theorem 1. The coexistence of two phases at equilibrium cannot happen when the
thermodynamic potential is a homogeneous function of order different from one,
unless one introduces a different notion of equilibrium for such systems, by relaxing
the hypothesis that all the “intensive” quantities have to be the same in the two
phases.

Proof. From Lemma 1 it follows that the generalized Gibbs-Duhem equation must
be satisfied for the system to be at equilibrium. However, phase separation and the
usual zeroth law of thermodynamics imply that the coexistence process can happen
only if the values of the “intensive” quantities are constant (Maxwell construction).
Lemma 2 shows that the two conditions cannot happen at the same time, unless
β = 1.

Note that for thermodynamic systems subjected to a gravitational field, it is
known that there can be thermal equilibrium (no heat exchange) even if the value
of the temperature is not the same at all points. This is known as the Tolman-
Ehrenfest effect [70]. Such result depends on the fact that heat, as any form of
energy, has a weight. However, it can also be seen as due to a general property
of the gravitational field, i.e. the fact that it is a long-range interaction. The
consequence is that the usual Boltzmann-Gibbs-Shannon entropy is non-extensive
and the thermodynamics has to be different from that of an extensive system.
Generally speaking, all systems with long-range interactions have non-extensive
properties and a generalized version of the Tolman-Ehrenfest effect for different
types of such systems has been discussed in [39]. We remark that our investigation
of equilibrium in homogeneous systems with order different from one independently
hints at the need for a careful re-definition of equilibrium in the case of systems
whose potential is not homogeneous of order one. In particular, in the next section
we show how to adjust the zeroth law of thermodynamics for homogeneous systems
of any degree in order to make it consistent with equation (2.8) when the system
is split into parts, as e.g. over the region of coexistence.

2.3 Generalized zeroth law for homogeneous systems

In ordinary thermodynamics, the potential Φ(Ea) is required to be a homogeneous
function of order one of the variables Ea. It turns out that the conjugated variables
Ia(E

b) are then homogeneous functions of order zero, that is, intensive quantities.
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This fact has a fundamental consequence: the Ia(Eb) are constant at equilibrium,
which means that they take the same value on every subsystem. For example,
a system at equilibrium must have a constant temperature among all its parts.
It follows that if one divides the system into two parts, these parts must have
the same value of the intensive quantities in order to be at equilibrium [1]. We
remark that this physical property descends from the mathematical requirement of
having the functions Ia(Eb) that are homogeneous of order zero. In fact, writing
the homogeneity relation

Ia(λE
b) = λ0Ia(E

b) , (2.10)

one can set λ equal to different fractions, that is, divide the original system into
subsystems, and see that the values of the Ia stay the same.
Let us now move from this consideration in order to find a new simple definition

of equilibrium which applies to homogeneous thermodynamic systems of any order,
it is consistent with the generalized Gibbs-Duhem identity - equation (2.8) - and at
the same time provides a natural generalization of the Tolman-Ehrenfest effect. As
we have seen, the mathematical property that explains why the Ia(Eb) are constant
in ordinary thermodynamics is that they are homogeneous of order zero. Therefore,
let us construct in the general case homogeneous quantities of order zero, that will
play the role of intensities. Consider a thermodynamic potential Φ(Ea) which is
homogeneous of order β in the variables Ea. By the properties of homogeneous
functions [56], it follows that the corresponding conjugated functions Ia(Eb) are
homogeneous of order β − 1. Thus, we define

Ĩa(E
b) ≡ Ia(E

b)

(Ea)β−1
a = 1, . . . , n . (2.11)

It is immediate to verify that the Ĩa(Eb) are homogeneous functions of order zero.
Now let us introduce a generalized zeroth law for homogeneous systems.

Definition 10. (Generalized Zeroth Law) We say that a homogeneous system
of order β is at equilibrium between its parts if and only if the values of the Ĩa(Eb)

are constant.

Furthermore, let us see now how the Gibbs-Duhem identity (2.8) is consistent
with the new definition of equilibrium. To make the discussion concrete, we present
the particular case of the region of coexistence of two different phases during a first
order phase transition, although the result is valid in general for any splitting of the
system into sub-parts at equilibrium. First let us recall that in the region where
the system is in a single phase, equation (2.8) is an identity for any homogeneous
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function, no matter which definition of equilibrium is given. The problem with the
use of non-intensive quantities for the definition of equilibrium only arises when the
system is divided into sub-parts. Perhaps the most evident and the most important
case is the one of coexistence, in which the system naturally separates into two
phases. So let us start by rewriting equation (2.8) in terms of the Ĩa(Eb) defined in
(2.11), to obtain

(1− β)Ĩa (Ea)β−1 dEa + Ead
(
Ĩa (Ea)β−1 ) = 0 . (2.12)

Now, considering a process of coexistence γc as in the preceding section, and rewrit-
ing equation (2.12) by expanding the second differential, we get

(1− β)Ĩa (Ea)β−1 dEa(γ̇c) + Ea
[

(Ea)β−1 dĨa(γ̇c) + (β − 1) (Ea)β−2 ĨadE
a(γ̇c)

]
= 0 .

(2.13)

Finally, imposing the condition that the coexistence process happens at equilibrium,
which means, according to the Definition 10, that the values of the Ĩa(Eb)(γc) must
be constant, the first addend in the square brackets vanishes and therefore we
recover an identity.

2.4 Conclusions

In sum, we have shown here how the breaking of the Legendre symmetry can be
always associated to first order phase transitions in the case of ordinary thermody-
namics. This signals that the region of the phase diagram in which the system is
in a single phase can be seen as a disordered, symmetric phase with respect to this
global symmetry of the general theory of thermodynamics, while in the region of co-
existence this symmetry is broken, the system separates into two phases and hence
new parameters are necessary to fully describe it. We have also argued that such
parameters shall be the complete set of thermodynamic variables that constitute the
thermodynamic phase space. Moreover, we have introduced a (contact) Hamilto-
nian energy for thermodynamics that defines all the possible equilibrium processes
as orbits constrained to submanifolds of the thermodynamic phase space defined
as zeroth levels of such energy. The construction has been given for homogeneous
thermodynamic potentials of any order and therefore these results apply to any
homogeneous generalization of standard extensive thermodynamics. An interesting
byproduct of our Hamiltonian formulation of homogeneous thermodynamics is that
a generalized zeroth law of thermodynamics shall be introduced in order to make
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the notion of equilibrium consistent with the generalized Gibbs-Duhem relation. In
particular, this result reminds of the generalized Tolman-Ehrenfest effect proposed
in [39] and it is of central interest in the study of the equilibrium properties of all the
systems with long-range interactions. For example, recently the thermodynamics of
many black holes in the AdS background has been shown to have similarities with
the Van der Waals model and, based on the analytical form of the potentials, the
presence of a first order phase transition has been inferred [40, 41, 44, 45, 46, 47].
We argue here that the analogy based on the equation of state and on the analytical
form of the potentials might also be integrated with a consistent definition of equi-
librium between the different phases. To this end, we have introduced here a new
zeroth law of thermodynamics that is consistent with the Gibbs-Duhem relation
for all systems with a homogeneous thermodynamic potential of any order. This
definition can easily be extended to all quasi-homogeneous functions [56] and there-
fore can apply to all the thermodynamic systems for which some scaling laws are
computable. It is also interesting to note that our definition of thermodynamic equi-
librium for homogeneous systems has a direct similarity with the Tolman-Ehrenfest
effect and also with the definition of equilibrium in Tsallis statistical mechanics (see
e.g. [66, 67]). These topics are of much interest, since our investigation is based
on a purely mathematical approach. Therefore we will investigate in more detail
the relationship with the generalizations of the Tolman-Ehrenfest effect and with
the equilibrium definition in statistical mechanics of non-extensive systems in our
future efforts.
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3 Symmetries and
Geometrothermodynamics

3.1 Introduction to GTD

In this chapter we introduce in detail the theory of Geometrothermodynamics, as
coined by H. Quevedo [24]. This theory aims at unifying the contact description
of the phase space T with the Riemannian description of the equilibrium space E .
This is done by means of introducing a metric structure on T and requiring that it
satisfies the Legendre symmetry, in order to make it compatible with the contact
structure.

Legendre invariance of the Riemannian structure is motivated by the fact that
Legendre transformations (1.30) only account for an interchange between conjugate
pairs of thermodynamic variables once a representation has been chosen (e.g. the
internal energy). This results in different but equivalent descriptions through the
distinct thermodynamic potentials (i.e. the enthalpy and the Helmholtz and Gibbs
free energies). Just as in General Relativity the physical reality cannot depend on
a particular choice of coordinates, thermodynamics is independent of the potential
one uses to describe a given system. Therefore, Legendre invariance should be an
essential ingredient of any geometric construction of thermodynamics. Moreover,
we have seen in Chapter 2 that the contact structure of the phase space of thermo-
dynamics and its symmetry with respect to Legendre transformations play a major
role in the realization of first order phase transitions and we have argued that they
can provide a unique frame to describe all the phenomena of ensemble inequivalence
in generalized homogeneous thermodynamics.

Therefore, the GTD programme aims to promote the contact geometry of the
phase space into a Riemannian contact manifold such that the metric has the Leg-
endre symmetry. This automatically translates into a Legendre invariant metric
description in its maximal integral submanifolds, i.e. the equilibrium manifolds E .
In this sense GTD comes as a synthesis of the previous works on the contact ge-
ometry of the phase space and the intrinsic geometry of the equilibrium space that
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we have summarized in Section 1.2, with the additional ingredient of the Legendre
symmetry for the Riemannian structure.

In addition, thermodynamics should also be independent of the representation
one employs to describe a system, i.e. one should be able to work with the internal
energy or entropy representations with no distinctions. This can be understood as
an additional symmetry that should be incorporated in order to obtain a completely
consistent geometric theory of thermodynamics. Such additional symmetry has
never been addressed in the context of GTD and will be the matter of Section 3.3.

3.2 The Riemannian structure of the GTD programme

As we have seen in Section 1.2.2 , the contact 1-form Θ is invariant under Legendre
transformations, whilst a change of representation corresponds to selecting a differ-
ent 1-form in the class (1.17) defining the same contact structure. Therefore these
symmetries all leave invariant both the contact structure (T , [Θ]) and the space
of equilibrium states E . In this sense, the intrinsic Riemannian structures intro-
duced by Weinhold and Ruppeiner (see equations (1.37) and (1.39) respectively) on
the equilibrium manifold E and the metric (1.40) on T found by Mrugala do not
respect the underlying symmetries of the ambient manifolds. In fact, as we have
seen in Sec. 1.2.3, selecting a different thermodynamic potential would change the
geometric structure of the equilibrium manifold.

On the contrary, in addition to the geometric description of thermodynamics in
terms of a contact structure, the GTD programme promotes the contact manifold
(T , [Θ]) into a Riemannian contact manifold (T , [Θ], G), where G is a metric sharing
the symmetries of [Θ]. We immediately comment that in the attempts to GTD
done so far, the only symmetry considered to specify G was the invariance under
LT. Hence in this section we will consider only this aspect, while we will address
the discussion on the invariance under a change of representation in Section 3.3.

The class of metrics satisfying the requirement of Legendre invariance is vast and
there is currently no general principle to select a particular one. The way to deal
with this ambiguity has been to introduce some physical input from known systems
and demanding that the curvature associated with the induced metric in the space of
equilibrium states accounts for the expected phenomena, i.e. to be zero in the case
of the ideal gas, or to diverge as one approaches a phase transition, taking us away
from the local equilibrium hypothesis. Thus far, there are two independent families
of metrics for T which can be classified according to their invariance properties [26],
that is, those which are invariant under total Legendre transformations only, and
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those which are also invariant under the full set of partial Legendre transformations.
Let us write them as

GT = Θ⊗Θ + Λ(ZA)
(
ξabE

bIa
) (
χcd dEd ⊗ dIc

)
(3.1)

and

GP = Θ⊗Θ + Λ
(
ZA
) n∑
i=1

[(
EiIi

)2k+1
dEi ⊗ dIi

]
, (3.2)

where Λ(ZA) is an arbitrary Legendre invariant function of the coordinates ZA, k is
an integer and ξab and χab are diagonal constant matrices. Note that these matrices
are not tensors. Their purpose is solely to indicate the form of the metrics. In
previous works on GTD (see e.g. [25]), the specific form has been determined
through the correct description of the relevant physical phenomena. On the one
hand, the choice

ξab = δab and χab = δab (3.3)

has been used to describe ordinary systems both with first order and continuous
phase transitions. On the other hand, second order phase transitions in black holes
(the so-called Davies phase transitions) have been correctly described when

ξab = δab and χab = ηab , (3.4)

where ηab = diag[−1, 1, . . . , 1]. The metrics (3.1) with the choices (3.3) and (3.4)
are known in the GTD literature as GI and GII , respectively. Finally, we use the
labels T and P to denote invariance under total and the full set of partial Legendre
transformations.

Using the pullback of the mapping (1.36), we can naturally calculate the induced
metrics in the space of equilibrium states, which are simply given by

gT = ϕ∗(GT) = Λ

(
ξabE

b ∂Φ

∂Ea

)
χcd

∂2Φ

∂Ec∂Ee
dEd ⊗ dEe, (3.5)

and

gP = ϕ∗(GP ) = Λ
n∑

i,j=1

[(
Ei ∂Φ

∂Ei

)2k+1
∂2Φ

∂Ei∂Ej
dEi ⊗ dEj

]
. (3.6)

The core idea in the GTD programme is that the curvature associated with either
(3.5) or (3.6) contains all the information about the “thermodynamic interaction”
of a system specified by its fundamental relation Φ(Ea). For example, the lack of
inter-particle interaction of the ideal gas is reflected by the vanishing of its associ-
ated curvature scalar. Similarly, this approach has proven to describe accurately
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continuous phase transitions as curvature singularities of the equilibrium manifold,
i.e. configurations where the local equilibrium hypothesis is no longer valid [25].
At the same time, the idea that phase transitions can be represented as singular-
ities of the equilibrium manifold has been extensively studied also in the case of
black holes. In particular, in the literature of GTD, the phase structure of black
holes is the one as first defined by Davies [35]. It turns out that, while ordinary
thermodynamic systems are fully described by the metric GI and its counterpart
on the equilibrium space introduced above, in the case of Davies phase transitions
in black holes one has to introduce a different geometric structure, the metric GII

and its pullback on E . We will comment on the physical meaning of this necessity
in Chapter 5.
Finally, the geometric structure of GTD has been used to infer new thermody-

namic aspects in a wide variety of systems, from ordinary systems [24, 25, 26] to
chemical reactions [27], form black holes [25, 28, 29, 30, 31, 32] to cosmological
analysis [33], and also in economic models [34].
In the following section we derive a new metric structure in the GTD context that

complies with all the symmetries of the underlying contact structure, as discussed
in Section 1.2.2.

3.3 Change of representation and the natural metric
in GTD

Having discussed the importance of the symmetry of the contact structure with
respect to Legendre transformations in Chapter 2, in this chapter we present a
thorough analysis of the symmetries of the metrics given in the GTD programme.
We centre our attention on the invariance of the curvature of the space of equilib-
rium states under a change of representation. Assuming that the systems under
consideration can be described by a fundamental relation which is a homogeneous
function of a definite order, we demonstrate that such invariance is only compatible
with total Legendre transformations in the present form of the programme. As
a result, we give the explicit form of a new metric which is invariant under total
Legendre transformations and whose induced metric produces a curvature which is
independent of the fundamental representation.
Despite the fact that both families of metrics for E , equations (3.5) and (3.6), are

induced from the manifestly Legendre invariant metrics on T , equations (3.1) and
(3.2), in general, do not produce the same curvature for E when one changes from
one fundamental representation to another (c.f. Section 1.2.2 above). The physical
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outcome of choosing a different member of the class [Θ] generating the contact
structure of T should leave the geometric properties of E unchanged. Therefore, in
what follows we will demand the change of representation (CR) symmetry of the
programme through the isometry of the metrics on E .

The symmetry under a change of representation has never been considered within
the GTD formalism. The main aim of this chapter is to address this issue and
arrive at the construction of a metric guided by its underlying symmetries. We
show that the outcome of this process leads to a particular generalization of one
of the previously known families of metrics in GTD. Thus, we obtain a consistent
result from a different point of view. We consider the change of representation as
described in Section 1.2.2 and we analyze how the induced metrics behave under
such transformation. To this end, let us note the following points:

1. Our analysis will only consider systems which are described by homogeneous
functions of a definite order.

2. If we have a homogeneous fundamental relation Φ(λEa) = λβΦ(Ea), the new
representation E(i) = E(i)(Φ, Ej) with j 6= i is not a homogeneous function
(one should extend the definition to quasi-homogeneous functions in order to
have this property conserved. More details can be found in [56]).

3. The representation in which the system is described by a homogeneous func-
tion will be called the canonical representation and we will label it by Φ.

In this sense, the phase space metrics (3.1) and (3.2), together with their correspond-
ing induced metrics (3.5) and (3.6), are written in the canonical representation.

Consider a slight generalization of the metric (3.1),

GΦ = Θ⊗Θ +
(
ξabE

bIa
) ∑

k,d

Λk(Z
A)
(
χkd dEd ⊗ dIk

)
, (3.7)

where ξab and χab are as in (3.1) and the functions Λk(Z
A) can now be different

for different values of k. Choosing the different representative Θ(i) [c.f. equation
(1.20)], we can rewrite GΦ as

GE(i)

= Θ(i) ⊗Θ(i) +
(
ξa
′

b′E
b′Ia′

) ∑
k′,d′

Λk′(Z
A′)
(
χk
′

d′ dEd′ ⊗ dIk′
)
, (3.8)
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which, using equations (1.22), can be related to the un-primed coordinates as

GE(i)

=
1

I 2
(i)

Θ⊗Θ +

[
ξ

(i)
(i)

Φ

Ii
−
∑
j 6=i

ξjj
EjIj
I(i)

] [
Λ(i)χ

(i)
(i)dΦ⊗ d

(
1

I(i)

)
+

+
∑
j 6=i

Λjχ
j
jdE

j ⊗ d

(
− Ij
I(i)

)]
. (3.9)

There is an implicit change in the Λ-functions under the prescribed coordinate
transformation, namely

Λ(i) = Λ(i)

[
ZA′

(
ZA
)]

and Λj = Λj

[
ZA′

(
ZA
)]
. (3.10)

Now we can state the following

Lemma 3. If Λk is a Legendre invariant function for all k, then GΦ is invariant
under TLTs.

Proof. It follows from the invariance of GT provided each of the Λk is itself invariant.

Proposition 3. Let the fundamental relation Φ = Φ(Ea) be a homogeneous function
of order β. Then, the induced metrics gΦ = ϕ∗(GΦ) and gE

(i)
= ϕ∗(GE(i)

) are

conformally related if and only if Λ(i) = Λj χ
j
j

(
χ

(i)
(i)

)−1

(no sum over j) for all
j 6= i.

Proof. The induced metric gΦ = ϕ∗(GΦ) can formally be written as

gΦ = (ξabIaE
b)
∑
k

Λk χ
k
c dIk ⊗ dEc, (3.11)

where Ia = ∂Φ/∂Ea and therefore

dIk =
∂2Φ

∂Ek∂Eb
dEb . (3.12)

Now, the induced metric in the E(i) representation, gE(i)
= ϕ∗(GE(i)

) is

gE
(i)

=

[
ξ

(i)
(i)

Φ

I(i)

−
∑
j 6=i

ξjj
EjIj
I(i)

][
Λ(i)χ

(i)
(i)

(
∂2E(i)

∂Φ2
dΦ⊗ dΦ +

∑
j 6=i

∂2E(i)

∂Ej∂Φ
dEj ⊗ dΦ

)

+
∑
j 6=i

Λjχ
j
j

(
∂2E(i)

∂Φ∂Ej
dΦ⊗ dEj +

∑
k 6=i

∂2E(i)

∂Ej∂Ek
dEj ⊗ dEk

)]
. (3.13)
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In this representation we have the analogous relations to (3.12)

d

(
1

I(i)

)
=
∂2E(i)

∂Φ2
dΦ +

∑
k 6=i

∂2E(i)

∂Ek∂Φ
dEk, (3.14)

d

(
− Ij
I(i)

)
=

∂2E(i)

∂Φ∂Ej
dΦ +

∑
k 6=i

∂2E(i)

∂Ek∂Ej
dEk . (3.15)

Since Φ(Ea) is a homogeneous function of order β, we have that

βΦ = IaE
a . (3.16)

Using this result, together with equations (3.14), (3.15) and the first law of ther-
modynamics, equation (1.35), the expression for the induced metric (3.13) becomes

gE
(i)

= − 1

βI(i)

[
ξ

(i)
(i)E

(i) +
∑
j 6=i

(
ξ

(i)
(i) − ξ

j
jβ
) IjEj

I(i)

]

×

[
−Λ(i)χ

(i)
(i)

1

I(i)

dE(i) ⊗ dI(i) − Λ(i)χ
(i)
(i)

∑
j 6=i

Ij
I2

(i)

dEj ⊗ dI(i)

−
∑
j 6=i

Λjχ
j
j

1

I(i)

dEj ⊗ dIj +
∑
j 6=i

Λjχ
j
j

Ij
I2

(i)

dEj ⊗ dI(i)

]
, (3.17)

which can be factorized to

gE
(i)

= − 1

βI(i)

[
ξ

(i)
(i)E

(i) +
∑
j 6=i

(
ξ

(i)
(i) − ξ

j
jβ
) IjEj

I(i)

]

×

[∑
k

Λkχ
k
cdIk ⊗ dEc +

∑
j 6=i

(
Λjχ

j
j − Λ(i)χ

(i)
(i)

) Ij

I(i)
2 dEj ⊗ dI(i)

]
. (3.18)

It follows that the two metrics are conformally related only when the condition

Λ(i) = Λj

χjj

χ
(i)
(i)

no sum over j ∀j 6= i, (3.19)

is satisfied. In such case, and using (3.11), equation (3.18) reduces to

gE
(i)

= − 1

βI(i)

[
ξ

(i)
(i)E

(i) +
∑
j 6=i

(
ξ

(i)
(i) − ξ

j
jβ
) IjEj

I(i)

] [
ξabE

bIa
]−1

gΦ. (3.20)

Hence, the induced metrics in the two representations are conformally related.
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In the case of the GTD programme, condition (3.19) together with Λ(i) = Λj = Λ,
yield (a slight generalization of) the metric determined by χab = δab, namely GI .
Notice that the same condition rules out the choice χab = ηab, that is, GII does not
lead to conformally related metrics in E for different representations.

Proposition 4. The induced metric is invariant under change of representation if
and only if the conformal factor is

Λ(ZA) =
1

ξabE
bIa

∑
j 6=i

1

EjIj
. (3.21)

Proof. The metric GΦ in (3.7) with the choice (3.21) gives,

GΦ = Θ⊗Θ +
∑
j 6=i

1

EjIj

∑
k,d

Λk(Z
A)
(
χkd dEd ⊗ dIk

)
, (3.22)

whilst

GE(i)

=
1

I(i)
2 Θ⊗Θ +

∑
j 6=i

−I(i)

EjIj

[
dΦ⊗ d

(
1

I(i)

)
+
∑
j 6=i

dEj ⊗ d

(
− Ij
I(i)

)]
. (3.23)

The pulled-back metrics are

gΦ =
∑
j 6=i

1

EjIj
dEa ⊗ dIa , (3.24)

and analogously to (3.18) we can factorize ϕ∗
(
GE(i)

)
to obtain,

gE
(i)

=
∑
j 6=i

−I(i)

EjIj

(
− 1

I(i)

dEa ⊗ dIa

)
. (3.25)

It follows immediately that
gΦ = gE

(i)

. (3.26)

Note that the Λ-function is related to the primed coordinates through

Λ
[
ZA′

(
ZA
)]

=
−βI(i)[

ξ
(i)
(i)E

(i) +
∑

j 6=i

(
ξ

(i)
(i) − ξ

j
jβ
)
IjEj

I(i)

] ∑
j 6=i

1

EjIj
. (3.27)

Corollary 2. Λ(ZA) is invariant under total Legendre transformations.
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Proof. Using (1.30) in (3.21) for every pair of indexes we obtain

Λ̃ =
−1

ξab Ẽ
bĨa

∑
j 6=i

−1

Ẽj Ĩj
=

1

ξab(Ẽ
bĨa)

∑
j 6=i

1

Ẽj Ĩj
=

1

ξabE
bIa

∑
j 6=i

1

EjIj
= Λ . (3.28)

Therefore, we have obtained a metric which is invariant under total Legendre
transformations and whose associated curvature in the space of equilibrium states
does not depend upon the chosen fundamental representation, provided one of the
potentials is a homogeneous function. We call this metric the natural metric for
GTD. In the canonical representation it is written as

G\ = Θ⊗Θ +
∑
j 6=i

1

EjIj
dEa ⊗ dIa . (3.29)

Now, let us show that invariance under change of representation is not compatible
with GP. To this end, let us write the metric (3.2) in the E(i) representation, that
is

GE(i)

P =
1

I(i)
2 Θ⊗Θ + Λ

[(
Φ

I(i)

)2k+1

dΦ⊗ d

(
1

I(i)

)
+

+
∑
j 6=i

(
EjIj
I(i)

)2k+1

dEj ⊗ d

(
− Ij
I(i)

)]
. (3.30)

Thus, we can prove the following

Proposition 5. Let Φ = Φ(Ea) be a homogeneous function of order β, GΦ
P and

GE(i)

P the metric (3.2) in the canonical and E(i) representations, respectively. Then,
the induced metrics gΦ

P = ϕ∗
(
GΦ

P

)
and gE

(i)

P = ϕ∗
(
GE(i)

P

)
cannot be conformally

related.

Proof. The induced metrics are

gΦ
P = Λ

n∑
i=1

(
Ei ∂Φ

∂Ei

)2k+1

dEi ⊗ dIi and (3.31)

gE
(i)

P = Λ

[(
Φ

I(i)

)2k+1

dΦ⊗ d

(
1

I(i)

)
+
∑
j 6=i

(
EjIj
I(i)

)2k+1

dEj ⊗ d

(
− Ij
I(i)

)]
,

(3.32)

where the differentials of the intensive variables are the same as in (3.12), (3.14)
and (3.15).
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Using the generalized Euler identity (3.16), we can rewrite (3.32) as

gE
(i)

P = Λ

[
−1

I(i)
2

(
EaIa
βI(i)

)2k+1

dΦ⊗ dI(i)+

+
∑
j 6=i

(
EjIj
I(i)

)2k+1

dEj ⊗
(
− 1

I(i)

dIj +
Ij

I(i)
2 dI(i)

)]
, (3.33)

and substituting the first law (1.35), we can factorize the expression above to obtain

gE
(i)

P =− Λ

[(
EaIa
βI(i)

)2k+1∑
j 6=i

Ij

I(i)
2

[
1−

(
β
EjIj
EaIa

)2k+1
]

dEj ⊗ dI(i)

+
1

I(i)

(
EaIa
βI(i)

)2k+1

dE(i) ⊗ dI(i) +
1

I(i)

∑
j 6=i

(
EjIj
I(i)

)2k+1

dEj ⊗ dIj

]
. (3.34)

The only possibility of making (3.34) conformal to (3.31) is that k = −1/2, which
is inconsistent with the partial Legendre invariance ofGP (k must be an integer).

3.4 Example: homogeneous systems with two degrees
of freedom

In the simplest situation, when the fundamental relation is homogeneous of order
one, i.e. when β = 1, and taking ξ(i)

(i) = ξjj = 1 for any i 6= j, the metric gE(i)

T ,
equation (3.20), reduces to

gE
(i)

= −
[
I−1

(i) E
(i) 1

IaEa

]
gΦ . (3.35)

Now, let us consider a system with two degrees of freedom. The two representations
that are commonly used are those of the internal energy and entropy. Let us take
Φ = U(S, V ) and E(i) = S(U, V ). In this case, the induced metrics are conformally
related as

gS = −
[
T−1S

(
1

ST − PV

)]
gU . (3.36)

It is clear that these two conformally related metrics do not produce the same
curvature. Thus, we will not obtain the same thermodynamic information whenever
we make a change of representation.
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Note that if we work instead with the metric (3.24)

g\ = ϕ∗
(
G\
)

=
∑
j 6=i

1

EjIj
dEa ⊗ dIa , (3.37)

we obtain
g\U = − 1

PV
(dS ⊗ dT − dV ⊗ dP ) = g\S (3.38)

and, therefore, the curvature scalar is the same in both representations, i.e., the
change of representation is a symmetry for such a metric.
Finally, let us consider the manifestly not Legendre invariant case of GP with

Λ = 1 and k = −1/2, whose pullback generates Hessian metrics for the equilibrium
space. In this case, the metrics gUP and gSP, equations (3.31) and (3.34) respectively,
are conformally related through [8, 9]

gSP = − 1

T
gUP . (3.39)

This case corresponds to the Hessian metrics of the energy and entropy potential
which have been introduced in Section 1.2.3.1 This simple exercise shows that Hes-
sian metrics not only fail to be symmetric with respect to Legendre transformations,
but they also give different curvatures in each representation.

3.5 Conclusions

In this chapter, we have analyzed in detail the symmetries of the metric structure of
the GTD programme. As it has been previously argued, the Legendre symmetry is
paramount in preserving the notion that the physical reality should be independent
of the thermodynamic potential used to describe it. Furthermore, we have pointed
out in Chapter 2 the physical meaning of such symmetry and the relationship
between the breaking of this conservation law and the appearence of ensemble
inequivalence.
Within the GTD programme, analogously to field theories, curvature is the geo-

metric object accounting for the physics of the system. The metrics GT and GP –
equations (3.1) and (3.2), respectively – satisfy the desired invariance in the ther-
modynamic phase space T and, therefore, produce the same curvature for the space
of equilibrium states E independently of the thermodynamic potential used. How-
ever, Legendre invariance alone is not sufficient to guarantee a unique description
1Note that we are using here the metric in the entropy representation defined as the Hessian of S,
without an overall minus sign. For this reason we get an extra minus sign with respect to Eq.
(1.38).
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3 Symmetries and Geometrothermodynamics

of a thermodynamic system in terms of its curvature, i.e. we also need to demand
invariance of the curvature under a change of fundamental representation. Such a
problem has remained largely unanalyzed.
We have derived a new metric compatible with the symmetry under change of

representation in the GTD programme. This has been found to be a slight general-
ization of GT with Λ given by (3.21), that is G\ [c.f. equation (3.29)]. The pullback
of this metric on the equilibrium manifold, in turn, is conformal to the Hessian
metrics of the energy and the entropy and therefore is the natural candidate to
account for the introduction of fluctuations in the context of GTD. Consequently,
the metric G\ should be applied to all the ordinary systems with continuous phase
transitions as a further ingredient to the equilibrium description provided by the
contact structure represented by Θ. Indeed, the two objects show some sort of
complementarity, the contact structure giving information about the first law and
hence equilibrium states of the system, including the region of coexistence, while
the metric structure corresponds to fluctuations and stability conditions derived
from the second law. Both descriptions break down in the critical region of con-
tinuous phase transitions, represented by a divergence of the scalar curvature. We
have also shown that symmetry with respect to partial Legendre transformations
cannot be preserved if we demand symmetry for a change of representation for GP,
a result which deserves a more detailed investigation in the future.
All the metrics found so far in GTD, using only the Legendre invariance condi-

tion, contain the arbitrary conformal factor Λ(ZA). This is an additional degree of
freedom that can be used to reach diverse objectives. For instance, in the study
of the thermodynamics of black holes [32], one finds that the curvature singular-
ities determine the Davies phase transition structure and, in addition, Λ can be
chosen in such a way that the limiting case of extremal black holes corresponds to
curvature singularities too. Here, we have found that Λ can also be used to reach
representation invariance directly from the phase space. We believe that the con-
formal freedom that follows from the phase space still might have more applications
at the level of the equilibrium space.
Finally, let us remark that the metric found here is expected to fail to represent

the correct description whenever the Legendre symmetry of the system is broken,
i.e. for systems showing ensemble inequivalence (see Chapter 5 for a more detailed
discussion on this topic in the case of black holes thermodynamics).
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4 Applications of the natural metric
to ordinary systems

In this chapter we employ the metric structure (3.29) to study ordinary thermo-
dynamic systems. The new feature of this metric is that, in addition to Legendre
symmetry, it exhibits symmetry under a change of representation. Here, we present
a thorough analysis for the ideal gas, the Van der Waals fluid, the one dimensional
Ising model and some other systems of cosmological interest.

Before starting, let us write the induced metric on the space of equilibrium states
E in general coordinates, that is

g\ =
∑
j 6=i

(
Ej ∂Φ

∂Ej

)−1
∂2Φ

∂Eb∂Ea
dEa ⊗ dEb. (4.1)

4.1 The ideal gas

Let us begin with the simplest example, the ideal gas. In this case, the fundamental
relation in the entropy representation is given by [1]

s(u, v) =
3

2
lnu+ ln v , (4.2)

where we use molar quantities, R = κB = NA = 1 with κB the Boltzmann constant,
NA the Avogadro number and u and v represent the molar internal energy and the
molar volume of the system, respectively. The natural metric, equation (4.1), for
this representation reads

g\s = −3

2

1

u2
du⊗ du− 1

v2
dv ⊗ dv , (4.3)

and its associated scalar curvature vanishes, in agreement with the hypothesis that
the curvature is a macroscopic measure of the inter-particle interaction.
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Working in the energy representation we have

u(s, v) =

(
1

v
es
) 2

3

, (4.4)

and the corresponding metric takes the form

g\u = −2

3
ds⊗ ds− 5

3v2
dv ⊗ dv +

4

3v
ds⊗ dv . (4.5)

As expected its curvature scalar also vanishes. Using any of the fundamental rela-
tions, equations (4.2) or (4.4), it is straightforward to verify that the metrics (4.3)
and (4.5) are the same geometric object. This can also be done for the Gibbs free
energy g(T, P ) = u − Ts + Pv as it comes from the total Legendre transforma-
tion applied to u. In view of the above agreement, it is an interesting exercise to
explore the geometric behavior if one attempts to work instead with a thermody-
namic potential obtained from a partial Legendre transformation. For instance, in
the Helmholtz free energy F (T, v) representation

F (T, v) = u− Ts =
1

2
T

[
3− 2 ln v − 3 ln

3

2
T

]
, (4.6)

the metric (4.1) takes the explicit form

g\F (T, v) =
3

2T 2
dT ⊗ dT − 1

v2
dv ⊗ dv +

2

Tv
dT ⊗ dv . (4.7)

If we write the expression above in terms of the coordinates {s, v} it becomes

g\F (s, v) =
2

3
ds⊗ ds− 5

3v2
dv ⊗ dv . (4.8)

Not surprisingly, it yields a different metric to (4.5), as G\ is not symmetric under
partial Legendre transformations. Nevertheless, an interesting feature is that the
scalar curvature for this potential vanishes as well. It is easy to verify that for the
enthalpy H(s, P ) = u+Pv the same situation is repeated. We will work out in the
next section a more complicated case in which this feature is no longer reproduced,
e.g. the Van der Waals fluid (see Section 1.1.5). In this case we will see that
the geometric description is exactly the same for both representations s and u,
and correctly signalizes both the first order and the continuous phase transition as
curvature singularities, while for a potential related to u through a partial Legendre
transformation (e.g. F (T, v)) we have that, being the natural metric a different
object, the geometric description of the phase transition might not be correct.
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4.2 The Van der Waals system

4.2 The Van der Waals system

The fundamental equation for the Van der Waals fluid in the entropy representation
is given by

s(u, v) =
3

2
ln
(
u+

a

v

)
+ ln (v − b) . (4.9)

The natural metric (4.1) is thus given by

g\s =
3v2(v − b)

(uv + a) [2uv2 − a(v − 3b)]
du⊗ du+

6a(v − b)
(uv + a) [uv2 − a(v − 3b)]

du⊗ dv+

+
2u2v4 − (v2 − 6bv + 3b2)(2auv + a2)

v2(v − b)(uv + a)(2uv2 − av + 3ab)
dv ⊗ dv, (4.10)

and the scalar curvature obtained is

R\
s =

NvdW
s (u, v)

4 (3ab− av + 2uv2) (a (−3b2 + 6bv − 2v2) + uv3)2 (4.11)

where the numerator function is

NvdW
s (u, v) =

[
a3
(
27b5 − 243b4v + 504b3v2 − 378b2v3 + 113bv4 − 11v5

)
+ 2a2uv2

(
−72b4 + 174b3v − 111b2v2 + 16bv3 + v4

)
+4au2v4

(
−3b3 + 12b2v − 11bv2 + v3

)
− 8bu3v7

]
. (4.12)

In the energy representation we have

u(s, v) =
a(v − b) 2

3 − ve 2
3
s

v(v − b) 2
3

. (4.13)

In this case, the metric takes the form

g\u =
4e2s/3v(v − b)

9a(v − b)5/3 − 6e2s/3v2
ds⊗ ds+

8e2s/3v

6e2s/3v2 − 9a(v − b)5/3
ds⊗ dv

+
2(5e2s/3v3 − 9a(v − b)8/3)

3v2(v − b)(2e2s/3v2 − 3a(v − b)5/3)
dv ⊗ dv .

(4.14)

and the curvature is given by

R\
u =

NvdW
u (s, v)

4(v − b)1/3 (2e2s/3v2 − 3a(v − b)5/3) (e2s/3v3 − 3a(v − b)8/3)
2 (4.15)
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where the numerator is now

NvdW
u (s, v) =

[
−9a3(v − b)16/3

(
3b2 − 2bv + v2

)
− 6a2e2s/3v2(v − b)11/3

(
24b2 − 14bv + v2

)
+4ae4s/3v4

(
3b4 − 15b3v + 17b2v2 − 6bv3 + v4

)
− 8be2sv7(v − b)1/3

]
.

(4.16)

It is a straightforward calculation to substitute the fundamental relation, equation
(4.9), in the above equation to obtain the same scalar curvature we get form the
entropy representation, equation (4.11).

In order to analyze the first order phase transition of the Van der Waals system
we start from (4.11). Using the equations of state

1

T
=
∂s

∂u
and

P

T
=
∂s

∂v
(4.17)

we obtain
P =

2uv2 − av + 3ab

3v2(v − b)
, (4.18)

which we can use to express the curvature scalar in the entropy representation,
equation (4.11), as a function of the pressure and the volume, that is,

R\(v, P ) =
1

3Pv2(v − b) (2ab− av + Pv3)2

[
− a2Pv2

(
18b3 − 5b2v − 4bv2 + v3

)
− a3(v − 6b)(v − 2b)2 − aP 2v4

(
−3b3 + 21b2v − 14bv2 + v3

)
+ 3bP 3v7(v − b)

]
.

(4.19)

It is immediate to see that the scalar curvature obtained from the natural metric
(4.19) diverges at

2ab− av + Pv3 = 0 . (4.20)

The denominator clearly vanishes at these points, while the numerator,

Num
[
R\(vc, Pc)

]
= − 1

v2
c

[
a3(vc − 2b)2

(
−9b3 + 21b2vc − 13bv2

c + v3
c

)]
, (4.21)

remains finite. It is worth mentioning that the additional points where the denom-
inator of the curvature scalar (4.19) vanishes lack of physical meaning, as one can
observe from the fundamental equation (4.9).

The curve described by (4.20) is of special interest in thermodynamics, because
it is the spinodal curve, i.e. the line where the local stability conditions fail. This

52



4.2 The Van der Waals system

means that it is the locus of points in the phase diagram where some of the second
derivatives of the potential vanish and after which the system enters an unsta-
ble (thus non-thermodynamical) region. Hence, we see that the analysis with the
curvature scalar of the thermodynamic metric following from the Van der Waals
analytical equation gives two important indications about the information carried
by the metric structure. The first information is that the intrinsic Riemannian
structure takes account of the local stability. In fact, for the Van der Waals sys-
tem, the global stability conditions, i.e. the global convexity of the thermodynamic
potential (together with the additivity of the system), imply phase separation and
Maxwell construction to happen before reaching the spinodal curve (see Sec. 1.1.3).
For example, looking at Figure 1.2 one sees that the Maxwell curve of coexistence
on a generic unstable isotherm begins much before the point of change of con-
cavity is reached. Therefore, the diverging of the curvature in this region signals
that there is a changing in the stability of the system and forbids to enter the
non-thermodynamical region of the phase diagram. However, the complete GTD
analysis, considering also the global contact structure of the phase space is telling
us that this region cannot be reached, because of the Maxwell process described in
Chapter 2. We note that this is the same as in ordinary thermodynamics, where one
“cuts away” the metastable as well as the unstable region by means of the Maxwell
law, based on the global analysis of the convexity of the potential, rather than on
local conditions.

The second feature about the geometric analysis by means of the curvature is
that, being the metric (4.1) conformal to the Hessian of the potential, the curvature
divergences correctly signal the points where the local stability fails. In other words,
provided we are to analyze a system where the global stability requirement does
not necessarily hold, or a non-extensive system (as in the case of black holes),
where phase separation cannot help to forbid the access to the metastable region,
therefore such analysis would be much useful to indicate where the potential loses
its concavity and where the ensemble inequivalence and the instabilities appear (c.f.
Chapter 2).

Besides, Ruppeiner showed (see [15]) that the scalar curvature of metrics based
on the Hessian of the potential diverges at the critical point of a continuous phase
transition exactly in the same way as the correlation volume. It is easy to check
that the curvature (4.19) diverges at

vcr = 3 b , Pcr =
a

27 b2
, (4.22)

which is the location of the Van der Waals critical point in our notation. Moreover,
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4 Applications of the natural metric to ordinary systems

repeating the same argument provided by Ruppeiner, that is, the scaling assumption
of the free energy in the critical region [15], one can show that the divergence of
the scalar curvature of the metric (4.1) at a continuous phase transition is always
the same as that of the correlation volume. Therefore, the macroscopic function of
state R\(v, P ) gives information about the microscopic nature of the system, at least
inside the critical region, where the two concepts of microscopic and macroscopic
seem to merge, due to the divergence of spatial correlations among microscopic
states.

Now we show explicitly that G\ does not carry the same information in the case of
the Van der Waals system if one attempts to derive it starting with the Helmholtz
free energy F (T, v) as the potential. This is easily understood by noting that
F (T, v) cannot be considered the canonical representation nor its related (inverse)
representation, given that it depends on T which is not an extensive parameter
evading the notion of homogeneity. The Helmholtz free energy is

F (T, v) =
1

2 v

[
3

(
T v − ln

3T

2

)
− 2 (a+ T v ln(v − b))

]
. (4.23)

In this case, the natural metric is

g\F =
3 v (v − b)

2T [a(v − b)− Tv2]
dT ⊗ dT +

2 v

T v2 − a (v − b)
dT ⊗ dv

+
TV 3 − 2a(v − b)2

v2(v − b) [a(v − b)− Tv2]
dv ⊗ dv , (4.24)

and its associated curvature scalar is written as

R\
F (T, v) =

N \
F (T, v)

[T v2 − a (v − b)] [6 a (v − b)2 − 5T v3]2
, (4.25)

where

N \
F (T, v) = −15 b T 3 v7 − 3 a2 T (v − b)2 v2

(
v2 − 14 b v + 24 b2

)
+

− 3 a3 (v − b)3
(
v2 − 2 b v + 3 b2

)
+ a T 2 v4

(
5 v3 − 25 b v2 + 54 b2 v − 9 b3

)
. (4.26)

Using the equations of state one can express this curvature in terms of the pressure
and the volume to obtain

R\
F (v, P ) =

−1

Pv2(v − b)(5Pv3 − av + 6ab)2

[
a3(v − 2b)(v − 6b)2 − 15bP 3v7(v − b)

− aP 2v4(5v3 − 70bv2 + 99b2v − 9b3)− aPv2(7v3 − 50bv2 + 39b2v + 54b3)

]
. (4.27)

54



4.3 The one-dimensional Ising model

Figure 4.1: This figure shows the curvature scalar for the Van der Waals system
in both, energy and entropy representations. As expected, they are
superimposed and show divergences at the points of the spinodal curve.
Here, we are using reduced variables.

Evidently, this curvature scalar does not coincide with the one obtained from the
canonical representations, equation (4.19), nor its description of the spinodal curve
and continuous phase transition is accurate. This is a consequence of the fact that
the natural metric is not symmetric under partial Legendre transformations.

4.3 The one-dimensional Ising model

A slightly more complicated example is that of the one-dimensional Ising model. It
is well known that there are no phase transitions for this system, albeit the statistical
origin of its fundamental relation presents non-trivial interaction (see [53] for a
particularly simple explanation of the reason why one-dimensional systems cannot
have phase transitions). In this case, the free energy obtained from the partition
function is written as

f(β,H) = −T ln

[
cosh

(
H

T

)
+

√
sinh2

(
H

T

)
+ exp

(
−4J

T

)]
, (4.28)

where H is the magnetic field, β is the inverse of the temperature T and J is the
coupling constant, measuring the intensity of the interaction between the spins.
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Figure 4.2: This figure shows the curvature scalar for the Van der Waals system
in both, energy and Helmholtz free-energy, representations. Here we
observe that the curvatures do not coincide. Moreover, the scalar cur-
vature R\

F diverges at different points.

Note that both, T and H are intensive parameters, thus the free-energy (4.28) cor-
responds to the total Legendre transformation of the internal energy U . Therefore,
using the invariance of the natural metric under such a transformation, we can
freely use this potential instead of the internal energy.

In this case, the scalar curvature has the form

R\ =
N(T,H)

HT

[
cosh

(
H
T

)
+
√

cosh2
(
H
T

)
− 1 + exp

(
−4J

T

)]−3

sinh
(
H
T

)
exp

(
8J
T

) , (4.29)

where N(T,H) corresponds to the numerator of R\, whose explicit expression is not
very illuminating for our argument.

According to our analysis, should we find that R\ becomes singular this would
indicate an instability and a consequent phase transition. However, it is easy to
show that this only happens in the limit when T goes to zero. In Figure 4.3 we show
a numeric analysis of the curvature scalar (4.29) where we observe that, indeed, the
only divergence occurs at T = 0. Moreover, the curvature becomes asymptotically
constant for larger values of T . Thus, as we knew, the one-dimensional Ising model
corresponds to an interacting system from the thermodynamic point of view, but
without phase transitions.
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4.4 Generalized Chaplygin gas and the dark fluid equation

Figure 4.3: This figure shows various plots of the curvature scalar with respect to
the temperature for distinct intensities of the magnetic field. The one-
dimensional Ising model does not present a curvature singularity other
than at T = 0, which is excluded by the third law of thermodynamics.
For large T the curvature becomes asymptotically constant.

4.4 Generalized Chaplygin gas and the dark fluid
equation

Recently, within the realm of cosmological applications of GTD [33], it has been
proposed a fundamental relation depending on a pair of parameters which encloses
the cases of the generalized Chaplygin gas and a dark fluid which can mimic the
phenomenology of the ΛCDM model. The fundamental equation in the entropy
representation is

s(u, v) = s0

(
lnu1+α + C ln v1+β

)
, (4.30)

where α and β are real constants that determine the type of fluid we are dealing
with.

In this case, the expression for the metric is not very illuminating. However, it is
interesting to note that the expression for the metric determinant,

det(g\S) =

[
C (α− β) v1+β + β es

]
es

C (1 + α)(1 + β) v3+β (−es + C vα+β)
, (4.31)

identically vanishes in the case α = β = 0 and thus the metric is degenerate.
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Interestingly, this corresponds exactly to the ΛCDM model.
The curvature scalar in the entropy representation is given by

R\
s = −

(β + 1)2
(
C2 α v2β+2 + 2C αuα+1 vβ+1 + β u2α+2

)
2 (Cαvβ+1 + β uα+1)2 , (4.32)

whereas in the energy representation one obtains

R\
u = −

(β + 1)2
(
−2C e

s
s0 vβ+1(β − α) + β e

2s
s0 + C2 v2β+2(β − α)

)
2
(
β e

s
s0 − C vβ+1(β − α)

)2 . (4.33)

It is an easy task to verify that the curvature is the same in both representations.
An interesting feature of this is that, in the case when α = β, the curvature scalar

is constant,

R\
α=β = −(1 + α)2

2α
. (4.34)

Spaces of constant curvature are important and interesting in physics. A full
analysis of them lies beyond the present work. However, it is worth mentioning
that the case of constant curvature with 0 ≤ α ≤ 1 reproduces the equations
of state for the generalized Chaplygin gas, while α = β = 1 corresponds to the
dubbed variable Chaplygin model. Moreover, when α = β ≤ 0 one obtains generic
equations of state for various polytropic fluids. We take this as an indication that
dark energy models might show some peculiar properties from the point of view of
the geometry of thermodynamics, from which we could get some insights about the
physical nature of the constituents of dark energy. It would be interesting to focus
on this characterization in the future.

4.5 Conclusions

In this chapter we have worked out some applications of the natural metric derived
in Chapter 3, which is symmetric under total Legendre transformations and change
of the fundamental representation [c.f. equations (3.29) and (4.1)].
We have shown that the thermodynamic curvature of (4.1) correctly accounts for

the thermodynamic interaction and phase transition structure of a number of phys-
ical systems. In particular, we analyzed the thermodynamic geometry of the ideal
gas, the Van der Waals fluid, the one-dimensional Ising model and a fundamental
relation with recent application in cosmology describing the generalized Chaplygin
gas or a dark fluid [33] from a completely invariant point of view.
The case of the Van der Waals gas, as usual, is very illustrative. On the one
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hand it helped us to show the local nature of the intrinsic metric description on the
equilibrium manifold and compare it with the global one examined in Chapter 2.
This also served us in order to discuss the possibility to use the local description
for systems in which the global condition on the convexity of the potential fails, i.e.
systems with long-range interactions, as we will further discuss in the next chapter
referring to the case of black holes. For such systems, due to the inequivalence of the
various statistical ensembles, it will be interesting to analyze the local description
in each potential, whenever possible. On the other hand, with the example of
the Van der Waals model, we have seen the importance of working in the canonical
representation of the metric (4.1), that is, using the internal energy or the entropy or
their total Legendre transform as the potential. In fact, as expected, the metric gives
a different thermodynamic information if instead one uses the Helmholtz free energy
F = F (T, v), which is the result of applying a partial Legendre transformation to the
canonical representation u = u(s, v). In this case, the singularities of the curvature
signal the occurrence of different instabilities which are in disagreement with the
known results [1], whereas working in the canonical representation we recover the
correct phase transition structure. This is clearly understood if one recalls how the
natural metric was constructed.
The situation with the one-dimensional Ising model was a bit more subtle. The

fundamental relation (4.28) is a function of the magnetic field intensity and the
temperature, both intensive variables. Here we used the fact that G\ is symmetric
with respect to total Legendre transformations to infer that the curvature associated
with the metric using the Gibbs free energy as the potential would correctly account
for the thermodynamic interaction as if an expression for the internal energy were
available.
Finally, the case of the generalized Chaplygin gas opened the possibility of an-

alyzing the class of thermodynamic potentials producing a space of equilibrium
states of constant curvature and also to understand the thermodynamic proper-
ties of cosmological fluids modeling dark energy. Such analysis will be carried out
elsewhere.
In the next chapter we will work out more in detail the discussion about the

physical significance of the local description given by the Riemannian geometry
of the equilibrium space in the case of systems with long-range interactions. In
particular, we will consider the phase transition structure in the case of black holes.
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5 Black holes thermodynamics and
phase transitions

One of the fields where the ideas presented in this work can have the largest appli-
cations is in black holes thermodynamics. This is because for systems where one
has a detailed microscopic description at hand, then one in principle has already
all the tools to understand the physics of the system. However, for black holes this
is not the case. Having a microscopic description for black holes thermodynamics
would mean having a microscopic description of the gravitational degrees of free-
dom, i.e. a microscopic description of gravity, which is dubbed to be far from being
achieved. Therefore, our geometric framework, which permits to infer microscopic
properties from the knowledge of the macroscopic functions of state, can provide
to be quite useful in this area. However, black holes must be handled with special
care, because they are not ordinary thermodynamic systems, as we will shortly see.

In particular in this chapter we address the concept of phase transitions in black
holes thermodynamics from a very general perspective. To do so, we will first review
the different definitions of phase transitions that have been given in the context of
black holes, since, as we shall see, they lead to different results. Having clarified the
definitions, we will make clear that continuous phase transitions can be described
in the case of black holes by the same means as for ordinary systems. On the other
side, we will give a general argument to show that a different tool from the GTD
description can be used to understand the so-called Davies phase transitions.

5.1 Phase transitions in black holes

After the seminal work of Davies [35], much attention has been devoted to phase
transitions in black holes thermodynamics (see e.g. [71, 72, 73, 74, 75, 76] for some
interesting early works on the topic). This is a peculiar and very active topic in
modern research on physics. Indeed, in the current approach to phase transitions
in black holes, we have (at least) five different definitions of phase transitions. Let
us quickly review these definitions here.
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The first definition is that of Davies [35], to which we refer here as Davies Phase
Transitions (DPT). According to Davies approach, second order phase transitions
happen in black holes whenever there is a change of sign in one of the heat capacities,
typically through a divergency. This is the most basic and at the same time the
most discussed definition of second order phase transitions in black holes. In fact,
Davies points of phase transitions are not exactly what one generally uses to define
phase transitions in ordinary thermodynamics (c.f. Section 1.1.6). In fact, as we will
discuss in the next section, from the point of view of ordinary thermodynamics, they
are more related to the change of stability of the system in the region dominated
by fluctuations in some of the thermodynamic variables. As such, they may better
account for stability with respect to different possible ensembles.
A second possibility is the Extremal Limit Transition (ELT), which has been

regarded by a number of authors as the only point where a phase transition can
occur in black holes, due to the change in the topological structure and symmetry
of the hole which happens at that limit [71, 73, 76]. However, it is not really clear
what the two different phases would be in that case, because on the one side one
has a black hole, but on the other side one would have a naked singularity, and
naked singularities are supposed to be forbidden in nature, according to the cosmic
censorship conjecture.
Moreover, in the recent years various authors have discovered an analogy between

black holes and ordinary thermodynamic systems, such as e.g. the Van der Waals
fluid, especially in the case of AdS background [42, 43, 44, 45, 46, 47]. Thence, we
are given a third type of phase transitions in black holes, i.e. the usual first order
and continuous phase transitions taking place in the Van der Waals phase diagram.
Such hypothesis has a special appeal, due to the fact that it is connected with
the AdS/CFT correspondence [77] and moreover because it permits to reconcile
standard definitions from thermodynamics in the case of black holes. However, as
we argued in Chapter 2, such coexistence à la VdW should be also implemented
with a consistent re-definition of the zeroth law (c.f. Section 2.3).
Furthermore, for black holes in dimensions higher than four, the uniqueness the-

orem does not apply and explicit solutions that can have different topologies of
the horizon for the same values of the parameters have been found recently [78].
Therefore, phase transitions are also possible related to a change in the topology at
points other than the extremal limit, as for instance in the case of the conjectured
black hole/black ring phase transition in five dimensions [79].
Finally, another type of black phase transitions has been studied in the literature,

the so-called glassy type (see e.g. [80, 81]). Glassy phase transitions are found
in nature in liquids that are supercooled and solidify without crystallization, for
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example silicate glasses. Although glassy systems are not well understood form the
physical point of view [53, 82], nevertheless they allow for a mathematical treatment,
and the same treatment is also possible in some black holes cases.

In this work, we give a brief account of Davies approach and we focus on the
debate about the physical meaning of DPT. In particular, we will compare DPT
to continuous phase transitions in the case of ordinary thermodynamics. Moreover,
we introduce tools from thermodynamic geometry that can distinguish between a
continuous phase transition and a DPT.

5.2 Davies phase transitions

When thinking about black holes, one should keep in mind that they are systems in
which the gravitational interaction is extremely strong. From the thermodynamic
point of view, the consequence is that the long-range interactions of the gravita-
tional field cannot be ignored. Therefore, we understand that black holes cannot be
considered as ordinary thermodynamic systems. Mathematically, this can be seen
for example from Bekenstein’s entropy area law [20], which in particular implies
that the entropy of a black hole is not an additive quantity. Moreover, the mass as
a thermodynamic potential (given by the Smarr formula [35]) is not a homogeneous
function of order one. Thus, one can try to deal with black holes thermodynamics
by means of the tools of ordinary thermodynamics and thermodynamic geometry,
but most likely some strange and inconsistent properties would come out, such as
e.g. negative or infinite heat capacities, ensemble inequivalence and thermodynamic
instabilities. In addition, from the point of view of phase transitions, one could ex-
pect to find phase transitions that appear in one ensemble and that are invisible
in a different one (see [49] for a detailed classification of phase transitions in sys-
tems that show ensemble inequivalence). Indeed, we argue here that it is perfectly
normal to find new types of phase transitions in black holes thermodynamics. In
particular, it is not surprising to find phase transitions that are accessible in one en-
semble only. When considered from the point of view of ordinary thermodynamics,
such transitions would be forbidden and the change from a stable to an unstable
phase in one of the ensembles would be prevented by phase separation as in the
VdW case (c.f. Chapter 2). However, in black holes thermodynamics the occur-
rence of ensemble inequivalence and different phase transitions is perfectly possible,
because of the loss of the additivity property of the potential, which means that
the system cannot simply separate into phases and follow the Maxwell (straight
line) construction. Davies [35] was the first to discover such type of transitions by
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investigating the Kerr-Newmann family of black holes. Davies phase transitions are
defined in general as the curves of divergence of one of the second order response
functions which define the local stability conditions of the system. As such, they
belong to a region of the thermodynamic diagram of metastability, a region in which
the Legendre transformation is ill-defined and the thermodynamic description using
different potentials gives different results (see the discussion in Chapter 2 for the
same situation in a first order phase transition and [49] for a general approach in
statistical mechanics).
Therefore, we argue here that one cannot expect to recover the correct results

for black holes thermodynamics (as for any thermodynamic systems with long-
range interactions) by means of the tools of thermodynamic geometry that apply
to ordinary systems. This can possibly explain the puzzling results obtained when
comparing Weinhold or Ruppeiner metrics with Davies curves of phase transitions
for black holes [16, 50, 51, 52]. For this reason, we propose here that a different
thermodynamic geometry from the GTD programme, one which has been shown
in the literature to apply to the case of black holes [28, 29, 31, 32], could be the
correct one to deal with transitions that emerge in the case of “non-extensive”
systems, whose thermodynamics is ensemble dependent.
Let us investigate Davies phase transitions more in detail and compare them with

continuous phase transitions at the critical point of e.g. the Van der Waals phase
diagram. Davies analyzes black holes phase transitions for the Kerr-Newman family
by looking at divergences of heat capacities at some fixed (extensive) quantity. In
particular, he writes that there is a second order phase transition for the Reissner-
Nordström black hole when CQ diverges and for the Kerr black hole when CJ

diverges.
However, such transitions do not happen at a point, but along a line, i.e. for the

case of the Reissner-Nordström black hole whenever φ = 1/
√

3 (φ being the “electric
field”) and for the Kerr black hole whenever J = 0.68M (J being the angular
momentum). Davies himself writes that “The phenomenon which occurs at the
critical values of α and β may be then classified as a second order phase transition.
Such a transition is characterized by continuity of G and its first derivatives, but a
discontinuity in the second derivatives, e.g. heat capacity”.
Such approach resembles Ehrenfest classification, which, however is not the stan-

dard definition in the modern treatments of thermodynamics [1, 55]. In fact, points
where heat capacities diverge (or change sign through a zero) are essentially points
where the thermodynamic potential changes the concavity and the local conditions
of equilibrium fail. Such points form a locus known in the literature as the spinodal
curve. Again, Davies underlies this fact by speaking of a stable phase contrary to
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an unstable one: “Above the transition values the specific heat is positive, permitting
isothermal equilibrium with a surrounding heat bath”. That is, below the critical
curve the heat capacity is negative and no equilibrium is possible with respect to
thermal fluctuations.

In fact, a real thermodynamic treatment (using ordinary thermodynamics) in such
region is therefore to be excluded, due to the fact that the system in the region of
the spinodal curve is unstable to fluctuations in the values of the thermodynamical
functions of state. To be more precise, in ordinary thermodynamics such curve
is of great interest because it signals the presence of unstable isotherms and the
need to literally “cut” them to reconstruct thermodynamic stability, following the
Maxwell equal area law, as discussed in Section 1.1.6. However, after cutting the
unstable region and restoring thermodynamic stability, such a region comprising
the spinodal curve is excluded from the domain of thermodynamic investigation
and does not play any role in the phase transitions phenomena. For example, in
the Van der Waals case, the spinodal curve is given by the equation (∂V P )T = 0,
which indicates that the pressure reaches a minimum along the isothermal, and
thence after such value the pressure will begin to increase as one increases the
volume, a typical sign of instability. Equivalently, we can rewrite such condition
as ∂2

V F = 0, where F (T, V ) is the Helmoltz free energy, or also as κT → ∞, with
κT being the isothermal compressibility [1]. Moreover, looking at Figure 1.2, it
is easy to see that, due to the global condition of convexity of the potential, the
Maxwell construction operates long before the region in which the local stability
conditions are broken (see also Figure 1.4, where the points at which the global
stability condition fails are indicated as 2 and 5, while the ones where the local
conditions break are indicated as 3 and 4). Therefore, as we see, in the case of the
VdW fluid, phase separation of the system happens long before we reach the region
where a second derivative of the potential changes sign, thus preventing such types
of local and ensemble inequivalent phase transitions.

On the other side, continuous phase transitions, or critical points, are encountered
as points in the phase diagram where a line of coexistence ends (see Figure 1.3).
This is the case for example of the VdW gas or of the Ising model in two dimensions
[1, 55]. For instance, in the VdW case, such point is at the end of the liquid-vapor
phase coexistence and is mathematically defined by adding another equation, e.g.
(∂2
V P )T = 0 to the one defining the spinodal curve. That is, the critical point lies at

the extremum of the spinodal curve. Therefore one obtains just one value for the
temperature, one for the pressure and only one for the volume, i.e. only one point
in the phase diagram, instead of having the full spinodal. In addition, typically a
continuous phase transition is associated with a change in the internal symmetries
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of the system, a process which has not been motivated yet for black holes, neither at
Davies points nor at critical points like the Van der Waals-like. On this regard, the
only physical change which represents a true change in the black hole structure for
black holes in the Einstein theory in four dimensions is the extremal limit transition,
but the problem in that case is the definition of the thermodynamic “phase” which
corresponds to a naked singularity. On the other hand, when General Relativity is
extended to higher dimensions, changes in the topology and hence in the symmetry
of black holes are possible for critical values of the thermodynamic functions, as
has been clearly pointed out e.g. in [79].

Therefore, based on all the preceding heuristic observations, we conclude that
Davies lines (in fact they are lines and not points) are in general better understood
from the thermodynamic perspective as spinodal curves, and they represent points
where the system passes from a stable (viz. thermodynamical) phase to an unstable
(viz. un-thermodynamical) one. This is perfectly in agreement with the changing
of the heat capacity from being positive to negative (with an infinite discontinuity
in the case of the KN family of black holes). However, being the heat capacity the
only diverging response function at this line, we see that this phenomenon is due
to the local aspects typical of non-extensive systems, and for this reason it strongly
depends on the choice of the ensemble.

In addition, we note that the interpretation given here of the diverging of only one
of the response functions as describing a change from a stable phase to an unstable
one perfectly matches with the Poincaré method to analyze stability by means of
turning points in conjugacy diagrams (see e.g. [79]).

Finally, we remark that such interpretation also immediately and very simply
explains the dependence of Davies points on the chosen ensemble. That is, for
an ordinary system the critical point representing a continuous phase transition is
independent of the chosen thermodynamic potential and/or representation, since
all the thermodynamic response functions diverge at such point. On the contrary,
Davies curves are lines of divergence of only one of the response functions, and
moreover in a region where the Legendre symmetry is broken. Therefore, it is an
obvious consequence that in general they are linked to the thermodynamic ensemble
in which the corresponding response function is directly defined.

In the next section we will see these topics in the context of thermodynamic
geometry.
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5.3 Thermodynamic geometries

5.3.1 Weinhold and Ruppeiner geometries

For black holes systems with two thermodynamic degrees of freedom, we can write
Weinhold metric (1.37) in terms of the mass M as follows

gW =
∂2M

∂S2
dS ⊗ dS + 2

∂2M

∂S∂X
dS ⊗ dX +

∂2M

∂X2
dX ⊗ dX , (5.1)

where X is an “extensive” variable depending on what are the parameters of the
black hole, e.g. charge X = Q or angular momentum X = J , for the Reissner-
Nordström black hole and the Kerr spacetime, respectively.

First we observe that one can express Weinhold metric in a more physical fashion,
using the heat capacity at constant X, the generalized adiabatic compressibility and
the coefficient of expansion. In fact, the heat capacity and the adiabatic compresi-
bility are defined as [1]

CX =

(
∂M

∂S

)
X

(
∂2M

∂S2

)−1

= T

(
∂2M

∂S2

)−1

X

, (5.2)

κS = − 1

X

(
∂X

∂P

)
S

=
1

X

(
∂2M

∂X2

)−1

S

, (5.3)

whereas the coefficient of expansion is

αS =
1

X

(
∂X

∂T

)
S

=
1

X

(
∂2M

∂X∂S

)−1

. (5.4)

Hence Weinhold metric can be rewritten as

gW =
T

CX
dS ⊗ dS +

2

XαS
dS ⊗ dX +

1

V κS
dX ⊗ dX . (5.5)

Although Weinhold never introduced a real metric structure and was not inter-
ested himself to calculate the scalar curvature of such structure, nevertheless sev-
eral authors have used this Riemannian geometry, especially to study Davies phase
transitions for black holes. The results are quite puzzling. In fact, there are some
examples in which the scalar curvature of Weinhold metric (5.5) diverges at points
that are different from those where CX is singular. Two relevant cases (which we
will use here as models, like the VdW fluid for ordinary thermodynamics) are those
of the Kerr black hole, for which the Weinhold scalar curvature vanishes and the
Reissner-Nordström black hole, for which the thermodynamic curvature is different
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from zero, but does not diverge along the curve φ = 1/
√

3 (see. e.g. [50, 51, 52]),
which is the line found by Davies, where the heat capacity becomes singular [35].
These simple examples immediately show that Weinhold geometry cannot in gen-

eral reproduce the singularities in the heat capacity, hence under this criterion it
is not a satisfactory choice, since it may yield to misleading results when seeking
Davies phase transitions for black holes. In any case, it might happen that for
some particular systems the curvature diverges at the phase transition point, but
this seems to be more a coincidence, rather than a general fact.
Let us now analyze Ruppeiner metric (1.39). Using the relation (1.38) and the

definitions (5.2)-(5.4), it turns out that one can rewrite this metric as

gR =
1

T

(
T

CX
dS ⊗ dS +

2

X αS
dS ⊗ dX +

1

X κS
dX ⊗ dX

)
. (5.6)

As we have argued in Section 1.2.3, it has been shown that for ordinary thermody-
namic systems the scalar curvature of Ruppeiner geometry gives information about
the underlying statistical model [14, 15, 16]. In particular, it has the same behavior
of the correlation volume near the critical point representing a continuous phase
transition and since the correlation volume diverges at critical points, then the di-
vergences of the curvature scalar of Ruppeiner metric always contain information
about the continuous phase transitions of the system.1 Therefore, it is tempting
to investigate the phase structure of black holes using Ruppeiner metric, and from
this infer information about the underlying statistical model corresponding to black
holes thermodynamics [16, 17].
However, it is important to consider that black holes are not ordinary thermo-

dynamic systems, that is, their entropy is not an additive quantity and in most of
the cases the fundamental equation is not even homogeneous, so that their phase
structure depends on the considered ensemble or fundamental relation. Indeed, we
see again from the model examples that Ruppeiner geometry cannot reproduce the
full variety of phase transitions occurring in black holes. For example, on the one
hand in the case of the Reissner-Nordström black hole the corresponding Ruppeiner
geometry is flat, which should be interpreted as the absence of thermodynamic fluc-
tuations. On the other hand the analysis of Davies [35] shows the presence of curves
of phase transitions. Furthermore, for the Kerr black hole, the thermodynamic man-
ifold with the Ruppeiner metric is curved, but shows no divergences at the curves
found by Davies. Notwithstanding, it shows a divergence at the extremal limit (see
e.g. [50, 51]).
We give here a simple interpretation of such puzzling results. Since the deter-

1Note that the same can be said about the natural metric for GTD presented in Section 3.3
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minant of Ruppeiner metric is, by definition, proportional to the determinant of
the Hessian of the entropy, Ruppeiner thermodynamic curvature diverges at all
points where the local stability conditions for the entropy fail, i.e. all points where
thermodynamic instabilities develop in the microcanonical ensemble. Moreover, it
is clear from expression (5.6) that if CX diverges, then not necessarily the deter-
minant is zero, i.e. not necessarily the scalar curvature diverges. It is therefore
interesting to note that Ruppeiner thermodynamic curvature diverges in a number
of cases on Davies line for black holes, but not in all the cases. This further supports
the interpretation of Davies lines as curves where a new type of phase transition
is occurring, a type which is typical of systems with long-range interactions and
that can possibly occur only in one ensemble. Therefore, according to this inter-
pretation given here, the different behavior of Ruppeiner thermodynamic curvature
might be depending on whether Davies phase transitions are visible or not in the
microcanonical ensemble where Ruppeiner geometry is defined [49].

5.3.2 The thermodynamic metric gII

Another argument that supports our interpretation of Davies phase transitions in
black holes comes from a different choice of the thermodynamic metric. In the
context of GTD, it has been argued that there is a metric which is dubbed to
reproduce Davies phase transitions for black holes [25]. The expression for this
metric in the equilibrium space in general coordinates is

gII =

(
Ec ∂Φ

∂Ec

)(
ηab δ

bf ∂2Φ

∂Ef∂Ed
dEa ⊗ dEd

)
, (5.7)

which corresponds to the choice (3.4) discussed in Chapter 3.
Due to the fact that this geometric structure is not symmetric with respect to

change in the representation (c.f. Chapter 3), we now write its expression in the M
representation for black holes, which reads

gIIM =

(
S
∂M

∂S
+X

∂M

∂X

)(
−∂

2M

∂S2
dS ⊗ dS +

∂2M

∂X2
dX ⊗ dX

)
. (5.8)

Using (5.8) and the equations of state ∂SM = T , ∂XM = Y , with Y the conjugated
variable corresponding to X (e.g. X = J and Y = Ω for the Kerr black hole), we can
rewrite this metric in terms of the heat capacity at constant X and the isentropic
compressibility κS, obtaining

gIIM = (TS +XY )

(
− T

CX
dS ⊗ dS +

1

XκS
dX ⊗ dX

)
. (5.9)
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From this expression, we immediately notice that, being the determinant of such
metric proportional to the diagonal elements of the Hessian of the potential M ,
i.e. to the inverse of the heat capacity at constant extensive variable and to the
inverse of the isentropic compressibility, it is obvious that the determinant vanishes
when (one of) these response functions diverge. Therefore at such points the scalar
curvature of this metric always diverges.

Thus, without the need of any complicated calculations, we have shown (somehow
heuristically but completely generally) that the metric (5.8) always diverges along
Davies curves for black holes phase transitions. Moreover, it can be easily verified
that the metric (5.8) does not diverge at the critical point for a VdW system (see
equation (4.22)), an explicit example of the fact that the two diverging phenom-
ena happening at a continuous phase transition or at Davies curves have indeed a
different nature.

5.4 Conclusions

Many authors have investigated phase transitions in black holes. In particular, it
has been suggested that the use of thermodynamic geometry in this field can give
important insights, overcoming in part the lack of a microscopic description.

In this work, we have speculated that there exist different kinds of phase transi-
tions in black holes, corresponding to different thermodynamical and geometrical
definitions. In particular, we have argued that Davies curves of phase transitions
are a peculiar effect that emerges in systems with long-range interactions. In partic-
ular, we can explain from this perspective why they depend on the chosen ensemble
and why the usual tools of thermodynamic geometry that apply to ordinary systems
are expected to fail when applied to Davies phase transitions. To make clear our
statements, we have provided examples of black holes for which the thermodynamic
curvatures derived from the Hessian of the internal energy and of the entropy fail
to reproduce the correct phase structure (the Reissner-Nordström and Kerr black
holes) and we have also given general arguments about the reasons why one should
include different geometric structures to represent such transitions. Finally, we
presented a geometric structure from GTD that has always been found in agree-
ment with Davies phase transitions structure and we have shown why from our
perspective this geometry is the correct one to account for these new thermody-
namic features characterizing not only black holes but in general all systems with
long-range interactions.

In this chapter we hope to have clarified the description of the different types of

70



5.4 Conclusions

possible phase transitions occurring in black holes, getting insights from both the
thermodynamical and thermodynamic geometric points of view.
In the next chapter we will further investigate Davies phase transitions using the

thermodynamic geometry (5.7) in the model examples of the Reissner-Nordström
and Kerr black holes in any spacetime dimensions and then also in the case of
the Myers-Perry black holes in five dimensions for different values of the angular
momenta, which will give us the chance to study a relatively simple black hole
system with three thermodynamic degrees of freedom.
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Myers-Perry black holes

In this chapter we study the thermodynamics and Geometrothermodynamics of
different black hole configurations in more than four spacetime dimensions. In the
first two sections we find the conditions under which Davies phase transitions occur
in higher-dimensional static Reissner-Nordström and stationary Kerr black holes.
Our results indicate that the equilibrium manifold of all these black hole configura-
tions is in general curved and that curvature singularities appear exactly at those
curves where Davies phase transitions occur. Then in the third section we consider
the Myers-Perry black holes in five dimensions for three different cases, depending
on the values of the angular momenta. Again, we find a non-trivial thermodynamic
structure in all cases, which is fully reproduced by the analysis performed with the
techniques of Geometrothermodynamics. Moreover, we observe that in the cases
when only one angular momentum is present or the two angular momenta are fixed
to be equal, i.e. when the thermodynamic system depends on two degrees of free-
dom only, there is a complete agreement between the divergences of the generalized
susceptibilities and the singularities of the equilibrium manifold, whereas when the
two angular momenta are fully independent, that is, when the thermodynamic sys-
tem is three dimensional, additional singularities in the curvature appear. However,
we prove that such singularities are due to the changing from a stable phase to an
unstable one.

6.1 Reissner-Nordström black hole in any dimension

The solution for the charged black hole with no angular momentum (Reissner-
Nordström black hole) can be extended to any dimension. The corresponding line
element in d spacetime dimensions reads [51]

ds2 = −V dt2 + V −1 dr2 + r2 dΩ2
(d−2) , (6.1)
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where dΩ2
(d−2) is the line element on the (d − 2)-dimensional unit sphere, Ω(d−2) =

2π
d−1
2 /Γ(d−1

2
), and V is defined as

V = 1− 16πGM

(d− 2)Ω(d−2)

1

rd−3
+

8πG

(d− 2)(d− 3)

Q2

r2(d−3)
. (6.2)

Solving the equation V = 0, one can find the event horizon in any dimensions
and thus derive the area and the corresponding entropy.

6.1.1 Thermodynamics

The fundamental equation for the entropy reads [51]

S(M,Q) =

(
M +M

√
1− d− 2

2(d− 3)

Q2

M2

) d−2
d−3

. (6.3)

Inverting (6.3), one obtains the mass function

M(S,Q) =
S

d−3
d−2

2
+

d− 2

4(d− 3)

Q2

S
d−3
d−2

, (6.4)

that satisfies the first law of thermodynamics dM = TdS+φdQ, where φ is usually
interpreted as an electric potential. Then, the temperature and the electric potential
are

T (S,Q) =
2(d− 3)S

2(d−3)
d−2 − (d− 2)Q2

4 (d− 2)S
2d−5
d−2

, φ(S,Q) =
(d− 2)Q

2 (d− 3)S
d−2
d−3

. (6.5)

In the extremal limit,

Q2

M2

∣∣∣∣
extremal

=
2(d− 3)

d− 2
i.e.

Q2

S
2(d−3)
d−2

∣∣∣∣
extremal

=
2(d− 3)

d− 2
, (6.6)

the temperature of the black hole vanishes and the electric potential is constant.
Incidentally, in the extremal case, one gets M2 = φ2Q2. Note that this limit exists
in any dimension. We will see in the next section that the situation is different for
the Kerr black hole, for which there is an extremal limit only up to dimension five
[51].

We now calculate the response functions (5.2)-(5.4) corresponding to the potential
M for the RN black hole to see what are the points where Davies phase transitions
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take place. The heat capacity at constant Q reads

CQ =
MS

MSS

= −
(d− 2)S

(
(d− 2)Q2 − 2(d− 3)S

2(d−3)
d−2

)
(d− 2)(2d− 5)Q2 − 2(d− 3)S

2(d−3)
d−2

, (6.7)

where MS = ∂M/∂S, etc. The other two response functions that can be directly
defined in this ensemble are the isentropic compressibility

κS =
M−1

QQ

Q
=

2 (d− 3)S
d−3
d−2

(d− 2)Q
, (6.8)

and the isentropic expansion

αS =
M−1

SQ

Q
= −2S

2d−5
d−2

Q2
. (6.9)

We note that the only possible divergence is that of the heat capacity, which takes
place when the denominator of (6.7) is zero, i.e. whenever

Q2

S
2(d−3)
d−2

∣∣∣∣
phase transition

=
2(d− 3)

(2d− 5)(d− 2)
. (6.10)

One can prove that this value is in the black hole region, i.e. that the condition

Q2

M2
≤ 2(d− 3)

d− 2
(6.11)

is satisfied. By using Eq. (6.3), we can rewrite Eq. (6.10) to be

Q2

M2
=

4d2 − 22d+ 30

(d− 2)3
, (6.12)

which is easily proven to be inside the black hole region for any value of d > 3.

It is also immediate to note in this model how Davies phase transitions depend
on the chosen ensemble. For instance, if we use the ensemble corresponding to the
“enthalpy”, H(S, φ) = M − φQ, we get

H(S, φ) = −S
d−3
d−2

2φ2 (d− 3)− d+ 2

2 (d− 2)
, (6.13)

from which we can calculate

Cφ =
HS

HSS

= −(d− 2)S . (6.14)
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We observe that the heat capacity at constant φ has no singularities. Thus we
expect no phase transitions from the thermodynamic analysis in this ensemble.

6.1.2 Geometrothermodynamics

Given the fundamental Eqs. (6.3) and (6.4) and the general metric (5.7), we can
calculate the particular metric and the scalar curvature for the RN black hole both
in the entropy and in the energy representations. The metric with Φ = S and
Ea = {M,Q} reads

gIIS = −
[

1
2
M(2 + E(M,Q))

] 2(d−2)
d−3

D(M,Q)

{
4(d− 2)2(d− 3)×

×
[[

(d− 2)2Q2 − 4(d− 3)M2
]
E(M,Q) + (6.15)

+ 2(d− 1)(d− 2)Q2 − 8(d− 3)M2

]
dM ⊗ dM +

+ 2(d− 2)3

[[
(d− 2)Q2 − 2(d− 3)2M2

]
E(M,Q)− 4(d− 3)2M2

]
dJ ⊗ dJ

}
,

where

D(M,Q) = M2(d− 3)4

(
(d− 2)Q2 − 2(d− 3)M2

)
E(M,Q)

(
2 + E(M,Q)

)2

(6.16)

and

E(M,Q) =

√
4− 2

(d− 2)

d− 3

Q2

M2
. (6.17)

The scalar curvature is

RII
S =

N1(M,Q)

A1(M,Q)2B1(M,Q)2
, (6.18)

where

A1(M,Q) =

[
d2Q2 − 4d(M2 +Q2) + 12M2 + 4Q2

]
E(M,Q) +

+ 2d2Q2 − 2d(4M2 + 3Q2) + 24M2 + 4Q2 (6.19)

and

B1(M,Q) =

[
−2d2M2+d(12M2+Q2)−18M2−2Q2

]
E(M,Q)−4(d−3)2M2 . (6.20)

Using a software for algebraic manipulations, we find that the only real root of
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the denominator of the curvature scalar (6.18) is given by

Q2

S
2(d−3)
d−2

∣∣∣∣
singularity

=
2(d− 3)

(2d− 5)(d− 2)
. (6.21)

Furthermore, it can be proven that N1(M,Q) is never zero where A1(M,Q) and
B1(M,Q) are. From Eqs. (6.10) and (6.21), we can conclude that in fact the
curvature singularities are located exactly at those points where phase transitions
occur.
It is interesting to note that, although the thermodynamic metric (5.7) is not

symmetric with respect to change in representation (see Chapter 3), nevertheless
for this model we get the same results for the divergences of the scalar curvature
using the thermodynamic potential Φ = M with independent variables Ea = {S,Q},
satisfying the fundamental equation (6.4). In fact, from the general thermodynamic
metric (5.7), we obtain the metric

gIIM =
1

16(d− 3)(d− 2)3S2

{
4(d− 3)3S

2(d−3)
d−2 +

− (d− 2)2Q2

[
(d− 1)(2d− 5)Q2S−

2(d−3)
d−2 + 4(d− 3)(d− 4)

]}
dS ⊗ dS+

+
1

8(d− 3)2

{
(d− 1)(d− 2)Q2S−

2(d−3)
d−2 + 2(d− 3)2

}
dQ⊗ dQ , (6.22)

from which we compute the curvature scalar

RII
M =

N2(S,Q)

A2(S,Q)4B2(S,Q)3
, (6.23)

where
A2(S,Q) = 2(d− 3)2S

2(d−3)
d−2 + (d− 1)(d− 2)Q2 (6.24)

and

B2(S,Q) = − 4(d− 3)3S
4(d−3)
d−2 + 4(d− 2)2(d− 3)(d− 4)Q2S

2(d−3)
d−2 +

+ (d− 1)(d− 2)2(2d− 5)Q4 . (6.25)

One can verify that the only points of divergence of RII
M are given by the equation

(6.21) which coincides with the condition for the phase transitions (6.10). Once
more we see a concrete relationship between the curvature of the metric (5.7) and
the phase structure of black holes defined by Davies.
To consider the behavior of the GTD analysis with respect to different ensembles,

we turn now to the metric (5.7) and write it with the fundamental equation (6.13)
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so that Φ = H and Ea = {S, φ}. The resulting metric reads

gIIH =
(d− 3)2(6φ2d− 14φ2 − d+ 2)

4(d− 2)3
×

×
{

2φ2d− 6φ2 − d+ 2

S
2

d−2 (d− 2)2
dS ⊗ dS + 4S2 d−3

d−2 dφ⊗ dφ

}
. (6.26)

Consequently, the scalar curvature reads

RII
H =

N3(S, φ)

A3(S, φ)3B3(S, φ)2
, (6.27)

where
A3(S, φ) = 6φ2d− 14φ2 − d+ 2 , (6.28)

i.e. the conformal factor in the metric (6.26) and

B3(S, φ) = 2φ2 (d− 3)− d+ 2 . (6.29)

Hence the first factor in the denominator, being the conformal factor in the metric
(6.26), is equal to SHS + φHφ, which, in turn, according to the generalized Eu-
ler identity, is proportional to H. Thus, the first term in the denominator of the
scalar curvature is zero if and only if the thermodynamic potential vanishes, H = 0.
Considering the equation of state φ = (∂M/∂Q)S, the second factor turns out to
be zero for S2 = [Q2(d − 2)/2(d − 3)](d−2)/(d−3), which corresponds exactly to the
extremal black hole limit (6.6) with zero temperature. This is due to the fact that
in this case the metric gIIH becomes degenerate in the extremal limit. Thus, the only
singularities arise from the limits of applicability of the thermodynamic approach to
black holes, where we also expect the GTD approach to break down. We conclude
that the scalar curvature in this ensemble has no true singularities, signaling the
absence of phase transitions, in agreement with the results obtained from the study
of the corresponding heat capacity (6.14).
As a final remark, we point out that the Hessian metric (5.1) with X = Q (Wein-

hold’s metric) for this case is curved, but the analysis of its scalar curvature gives
no special information about the phase transition points. Moreover, for Φ = S

(Ruppeiner’s metric) the equilibrium manifold is flat [51].
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6.2 Kerr black hole in any dimension

The solution for the Kerr black hole in arbitrary dimension corresponds to taking a
Myers-Perry black hole with only one angular momentum different from zero. The
line element is [83]

ds2 =− dt2 +
µ

rd−5ρ2
(dt+ a sin2θ dϕ)2 +

ρ2

∆
dr2 + ρ2 dθ2 + (r2 + a2)sin2θ dϕ2

+ r2cos2θ dΩ2
(d−4) ,

(6.30)

where
ρ2 = r2 + a2cos2θ , ∆ = r2 + a2 − µ

rd−5
(6.31)

and the physical mass M and angular momentum J are related to µ and a by

M =
(d− 2)∂Ωd−2

16πG
µ , J =

2

d− 2
M a , (6.32)

where ∂Ωd−2 is the area of the (d− 2)-dimensional unit sphere.

6.2.1 Thermodynamics

Following the notation of [51], the fundamental equation for the mass is

M(S, J) =
d− 2

4
S

d−3
d−2

(
1 +

4J2

S2

) 1
d−2

(6.33)

In the general case, it is not possible to invert to this equation, therefore we will
work with the mass representation only. From (6.33) it follows that the temperature
T = (∂M/∂S)J and the angular velocity at the horizon Ω = (∂M/∂J)S are

T (S, J) =
(d− 3)

(
1 + 4d−5

d−3
J2

S2

)
4S

1
d−2

(
1 + 4J

2

S2

) d−3
d−2

, Ω(S, J) =
2J

S
d−1
d−2

(
1 + 4J

2

S2

) d−3
d−2

, (6.34)

from which it can be easily seen that an extremal limit for the Kerr black hole only
exists only for d ≤ 5. When d = 4 the limit is the usual Kerr bound J/M2 = 1 and
for d = 5 it is the Myers-Perry black hole bound J2/M3 = 16/27 (see e.g. [51]).

To investigate Davies phase transition structure of this black hole, we calculate
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6 Reissner-Nordström, Kerr and Myers-Perry black holes

the heat capacity at constant angular momentum J , to obtain

CJ =
MJ

MJJ

= −
(d− 2)S(S2 + 4J2)

[
(d− 3)S2 + 4(d− 5)J2

]
48(d− 5)J4 − 24S2J2 + (d− 3)S4

(6.35)

Moreover, in this ensemble we can also define the isentropic compressibility

κS =
M−1

JJ

J
= −S

− d−5
d−2 (d− 2) (S2 + 4J2)

2d−5
d−2

2J [4(d− 4)J2 − (d− 2)S2]
(6.36)

and the isentropic expansion

αS =
M−1

SJ

J
=

S
3

d−2 (d− 2) (S2 + 4J2)
2d−5
d−2

2J2 [4(d− 5)J2 − (d− 1)S2]
. (6.37)

We note that in this case there can be divergences from all of these quantities. First
of all let us focus on the heat capacity. The divergences of the heat capacity are
situated at the points which satisfy the relation

J2

S2

∣∣∣∣
phase transition

=
d− 3

4
(
3 +
√
−3d2 + 24d− 36

) . (6.38)

The r.h.s. of eq. (6.38) is real only if d = 4, 5, 6, so that we can have a divergence in
the heat capacity (a phase transition à la Davies) only for d = 4, 5, 6. Furthermore,
investigating the other two response functions, we see that they diverge respectively
when

J2

S2

∣∣∣∣
phase transition

=
d− 2

4(d− 4)
, (6.39)

and
J2

S2

∣∣∣∣
phase transition

=
d− 1

4(d− 5)
, (6.40)

which exist in any dimension d > 4 and d > 5, respectively.

For d = 4, 5, we have to check that the singularities of the heat capacity and the
compressibility are in the black hole region. Indeed it is easily checked that they
are. For example, for d = 4, we can obtain S from Eq. (6.38) and evalute J/M2

at this critical value for S. Since the result is J/M2|Scritical =
√

3 + 2
√

3/(2 +
√

3),
which is less than the extremal limit J/M2 = 1, we can affirm that these points
belong to the black hole region. Repeating the same steps for d = 5 and for the
critical value for S from eq. (6.39), one can check that indeed all the singularities
of the response functions are in the black hole region.
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6.2.2 Geometrothermodynamics

Given the fundamental equation (6.33) and the general metric (5.7), we can cal-
culate the particular metric and the thermodynamic curvature for the Kerr black
hole only in the mass representation, which reads

gIIM =
(d− 3)

16(d− 2) (S2 + 4J2)
2(d−3)
d−2

{
48(d− 5)J4 − 24S2J2 + (d− 3)S4

S
6

d−2

dS ⊗ dS

− 8S
2(d−5)
d−2

[
4(d− 4)J2 − (d− 2)S2

]
dJ ⊗ dJ

}
. (6.41)

The scalar curvature can then be calculated. It turns out to be

RII
M =

N4(S, J)

(d− 3)A4(S, J)2B4(S, J)2
, (6.42)

where

A4(S, J) = 48(d− 5)J4 − 24J2S2 + (d− 3)S4 (6.43)

and
B4(S, J) = 4(d− 4)J2 − (d− 2)S2 . (6.44)

It is immediate to see that A4(S, J) is exactly the denominator of the heat capacity
(6.35) and B4(S, J) is the denominator of the compressibility (6.36). Since both of
them are in the denominator of RII

M and since the numerator does not vanish at
the points of singularity, we conclude that again we have a concrete relationship
between the singularities of the curvature of the metric (5.7) and Davies phase
transition structure.

6.3 Myers-Perry black hole in five dimensions

The Kerr black hole can be generalized to the case of arbitrary spacetime dimensions
and arbitrary number of spins. It turns out that, provided d is the number of
spacetime dimensions, then the maximum number of possible independent spins is
(d− 1)/2 if d is odd and (d− 2)/2 if d is even [84]. Such general configurations are
called Myers-Perry black holes. They deserve a special interest because they are the
natural generalization of the well-known Kerr black hole to higher number of spins
and because they are shown to coexist with the Emparan-Reall black ring solution
[78] for some values of the parameters, thus providing the first explicit example
of a violation in dimension higher than four of the uniqueness theorem (see e.g.
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[85] for more details). The line element of the Myers-Perry black hole with an
arbitrary number of independent angular momenta in Boyer-Lindquist coordinates
for d = 2n+ 1 (i.e. odd d) reads [84]

ds2 = − dt2 +
µ r2

ΠF

(
dt+

n∑
i=1

ai µ
2
i dφi

)2

+
ΠF

Π− µr2
dr2 +

+
n∑
i=1

(r2 + a 2
i )
(
dµ 2

i + µ2
i dφi

2
)
, (6.45)

with

F ≡ 1−
n∑
i=1

a 2
i µ

2
i

r2 + a 2
i

, Π ≡
n∏
i=1

(r2 + a 2
i ) , (6.46)

and

µ ≡ 16 π GM

(d− 2) Ω(d−2)

, ai ≡
(d− 2)

2

Ji
M

, (6.47)

where Ω(d−2) = 2πn

Γ(n)
, M is the mass of the black hole, Ji = J1, . . . , Jn are the

(d − 1)/2 independent angular momenta and the constraint
∑n

i=1 µ
2
i = 1 holds.

Solving the equation grr = 1/grr = 0, one finds the radius of the event horizon (in
any dimensions) and thus derives the area and the corresponding entropy, using
Bekenstein’s area law [51].

In particular, here we are interested in the five dimensional case, i.e. when d = 5.
Myers-Perry black holes in five dimensions can have up to two independent angular
momenta and the general equation for the area reads [51]

A =
2π2

r+

(r2
+ + a2

1)(r2
+ + a2

2) , (6.48)

where r+ is the radius of the event horizon. From the above expression the entropy
can be calculated, being

S =
kB A

4G
=

1

r+

(r2
+ + a2

1)(r2
+ + a2

2) , (6.49)

where we choose kB and G such that S simplifies as in the second equality in (6.49).

Since it is rather complicated to calculate explicitly the above expression for the
entropy, we will use the M representation. This is possible since the mass can be
written in terms of S, J1 and J2 as [51]
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M(S, J1, J2) =
3

4
S

2
3

(
1 + 4

J2
1

S2

) 1
3
(

1 + 4
J2

2

S2

) 1
3

. (6.50)

Eq. (6.50) thus represents the fundamental equation for the Myers-Perry black
hole in five dimensions as a thermodynamic system. Starting from Eq. (6.50), we
can analyze both the thermodynamic properties and their geometrothermodynamic
counterparts. We will split the work in order to consider the three most interesting
cases, i.e. when one of the two angular momenta is zero, when they are both non-
zero but equal and finally when they are both non-zero and different among each
other.

6.3.1 The case J2 = 0

If either J1 = 0 or J2 = 0, we obtain the Kerr black hole in 5 dimensions, which
has been analyzed in Section 6.2 (see the calculations and comments there for this
case).

Moreover, since the thermodynamics of black holes can depend on the chosen
ensemble (see e.g. [40] and [41]), we now proceed to calculate the Gibbsian response
functions for this case, which can possibly give new information about the phase
structure. Using the relations between thermodynamic derivatives (see [1]), we find
out that the expressions for such response functions in the coordinates (S, J1) used
here are

CΩ1 = −S(3S2 − 4J2
1 )

S2 + 4J2
1

, κT = − S2 − 12J2
1

2J1(S2 + 4J2
1 )

1
3

, αΩ1 = − 8S

(S2 + 4J2
1 )

1
3

. (6.51)

It is immediate to see that CΩ1 never diverges and it vanishes exactly at the
same points where κS diverges. On the other side, κT is never divergent and it
vanishes exactly where CJ1 diverges, while αΩ1 is always finite. It follows that the
Gibbsian response functions do not add any information to the knowledge of the
phase structure of this configuration, as they change sign exactly at the points that
we have already analyzed. Therefore, we conclude that the divergences of the scalar
curvature of the metric (5.7) match exactly the points of Davies phase transitions.

In the next section we extend the analysis presented here and in Section 6.2 and
show that when one adds a second spin there is still a concrete relation between the
geometric description performed with (5.7) and the thermodynamic properties. To
do so, we first focus on the special case of equation (6.50) in which J1 = J2 = J , and
afterwards we will consider the completely general case, i.e. with J1 and J2 both
different from zero and from each other. In that case, we will get a 3-dimensional
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6 Reissner-Nordström, Kerr and Myers-Perry black holes

thermodynamic manifold labelled by (E1 = S,E2 = J1, E
3 = J2) and hence we will

consider the 3-dimensional version of the metric (5.7).

6.3.2 The case J1 = J2 ≡ J

Another special case in Eq. (6.50) which is of interest is the case in which the two
angular momenta are fixed to be equal, i.e. J1 = J2 ≡ J . This is interesting from the
mathematical and physical point of view since it is the only case in which the angular
momenta are both different from zero and at the same time the thermodynamic
manifold is 2-dimensional. In fact, the mass fundamental equation (6.50) in this
case is given by

M(S, J) =
3

4
S

2
3

(
1 + 4

J2

S2

) 2
3

, (6.52)

and the response functions can then be accordingly calculated, to give

CJ = − 3S(S4 − 16J4)

S4 − 32J2S2 − 80J4
, κS =

3S
2
3 (S2 + 4J2)

4
3

4J(3S2 + 4J2)
,

αS = − 3

16

S
5
3 (S2 + 4J2)

4
3

J2(S2 + 2J2)
. (6.53)

From (6.53), it follows that in this case κS and αS do not show any singularity,
while CJ diverges at the roots of the denominator DC = S4 − 32J2S2 − 80J4. We
also observe that the temperature of this black hole is given by

T ≡
(
∂M

∂S

)
J

=
S2 − 4J2

2S5/3(S2 + 4J2)1/3
, (6.54)

therefore the extremal limit T = 0 is reached when J2

S2 = 1
4
.

Solving the Eq. DC = 0, we find that the singularities of the heat capacity are
situated at a value Scritical for the entropy such that

J2

S2

∣∣∣∣
S=Scritical

=

√
21− 4

20
, (6.55)

which is less than the extremal limit. Therefore Davies points of phase transition
belong to the black hole region and we shall investigate them.

It is convenient also in this case to write the full set of thermodynamic response
functions, including the Gibbsian ones. Again, making use of the relations between
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thermodynamic derivatives, we find out that they read

CΩ = −S (S2 − 4J2)(3S2 + 4J2)

(S2 + 4J2)2
, κT = −S

2/3

4 J

DC
(S2 + 4J2)5/3

,

αΩ = 8S5/3 S2 + 2J2

(S2 + 4J2)5/3
. (6.56)

In this case we observe that the only divergence of the response functions in (6.53),
i.e. the divergence of CJ , is again controlled by the vanishing of κT . Furthermore,
both CJ and CΩ vanish at the extremal limit, but this does not correspond to any
divergence of κS, hence we expect the curvature of the thermodynamic metric to
diverge only at the points where DC = 0.

From the point of view of Geometrothermodynamics, given the fundamental equa-
tion (6.52) and the general metric (5.7), we can calculate the particular metric and
the scalar curvature for the equilibrium manifold of the MP black hole with two
equal angular momenta, both in the mass and in the entropy representations.

The metric in the M representation reads

gIIM =
1

S4/3(S2 + 4J2)2/3

{
DC

12S2
dS ⊗ dS +

2(3S2 + 4J2)

3
dJ ⊗ dJ

}
, (6.57)

therefore its scalar curvature is

RM =
24S10/3(S2 + 4J2)2/3(5S6 + 48 J2 S4 − 368 J4 S2 − 896 J6)

D2
C(3S2 + 4J2)2

. (6.58)

The numerator is a not very illuminating function that never vanishes when the
denominator is zero and DC is exactly the denominator of the heat capacity CJ .
Therefore, the singularities of RM correspond exactly to those of CJ (resp. to the
vanishing of κT ). We remark that the factor 3S2 + 4J2 in the denominator of RM ,
though being always different from zero (thus not indicating any phase transition
in this case), is exactly the denominator of the compressibility κS (resp. a factor in
the numerator of CΩ).

To continue with the analysis, in Chapter 3 it was presented a general relation
(see Eq. (3.18) therein) to express gII with Φ = S (i.e. in the S representation) in
the coordinates of the M representation (i.e. {Ea} = (S, J)). Such relation in the
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present case reads

gIIS =
M − J Ω

T 3

[
T MSS dS ⊗ dS + 2 ΩMSS dS ⊗ dJ +

+ (2 ΩMSJ − T MJJ) dJ ⊗ dJ

]
, (6.59)

where T ≡ (∂M/∂S)J is the temperature, Ω ≡ (∂M/∂J)S is the angular velocity
at the horizon and MEaEb ≡ ∂2M

∂Ea∂Eb , for Ei = S, J . Using Eq. (6.59) and Eq. (6.52)
for the mass in terms of S and J , we can calculate the expression for metric gIIS in
the coordinates (S, J), which reads

gIIS =
1

3(S2 + 4J2)(S + 2J)2(S − 2J)2

{
− 3S2 − 4J2

2
DC dS ⊗ dS+

+ 8S J
(3S2 − 4J2)

(S + 2J)(S − 2J)
DC dS ⊗ dJ +

− 4S2 9S6 + 156S4 J2 + 112S2 J4 − 448 J6

(S + 2J)(S − 2J)
dJ ⊗ dJ

}
. (6.60)

Consequently, the scalar curvature is

RS =
NS

(3S2 − 4J2)3(S2 + 4J2)2D2
C

, (6.61)

where NS is again a function which never vanishes at the points where the denom-
inator is zero. From Eq. (6.61), we see that the denominator of CJ is present in
the denominator of RS. Furthermore, the factor S2 + 4J2 is never zero, hence it
does not give any additional singularity. On the other hand, the factor 3S2 − 4J2

is clearly vanishing when J2

S2 = 3
4
, which is readily greater than the extremal limit

J2

S2 = 1
4
and hence it has no physical relevance in our analysis.

We thus conclude that also in this case the GTD geometry gII exactly repro-
duces the Davies phase transition structure of the Myers-Perry black holes both
in the mass and in the entropy representation. We comment that in the entropy
representation there is an additional singularity which does not correspond to any
singularity of the response functions. However, such singularity is situated out of
the black hole region and thus it is not to be considered here. We also remark that
Ruppeiner curvature in this case reads

R = −S (S2 + 12J2)

S4 − 16J4
(6.62)

and hence it diverges only in the extremal limit, while Weinhold metric is flat.
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In the next section we will analyze the general case of the Myers-Perry black hole
in five dimensions, i.e. when the two angular momenta are allowed to vary freely.

6.3.3 The general case in which J1 6= J2 6= 0

Perhaps the most interesting case is the most general one, in which the two angular
momenta are allowed to vary freely. In this case the thermodynamic manifold is
3-dimensional and the mass fundamental equation is given by (6.50).

The generalized susceptibilities can then be accordingly calculated. The heat
capacity at constant angular momenta J1 and J2 reads

CJ1,J2 =
MS

MSS

= −3S (S2 + 4J2
1 )(S2 + 4J2

2 )(S4 − 16J2
1J

2
2 )

DC
, (6.63)

where

DC = S8 − 12(J2
1 + J2

2 )S6 − 320J2
1J

2
2S

4 − 576J2
1J

2
2 (J2

1 + J2
2 )S2 − 1280J4

1J
4
2 . (6.64)

Furthermore, one can define the 3 analogues of the adiabatic compressibility as
(κS)ij ≡ (∂Ji/∂Ωj)S. Therefore, we obtain

(κS)11 =
3S

2
3 (S2 + 4J2

1 )
5
3

2(S2 + 4J2
2 )

1
3 (3S2 − 4J2

1 )
, (κS)22 =

3S
2
3 (S2 + 4J2

2 )
5
3

2(S2 + 4J2
1 )

1
3 (3S2 − 4J2

2 )
,

(κS)12 =
3

16
S2/3 (S2 + 4 J2

1 )
2/3

(S2 + 4 J2
2 )

2/3

J1 J2

. (6.65)

Finally, the analogues of the expansion are given by

αS,J2 ≡
(
∂J1

∂T

)
S

= −3

8

S
5
3 (S2 + 4J2

1 )
5
3 (S2 + 4J2

2 )
2
3

J1(S4 + 6S2J2
2 + 8J2

1J
2
2 )

,

αS,J1 ≡
(
∂J2

∂T

)
S

= −3

8

S
5
3 (S2 + 4J2

2 )
5
3 (S2 + 4J2

1 )
2
3

J2(S4 + 6S2J2
1 + 8J2

1J
2
2 )

. (6.66)

In this case neither (κS)12 nor the expansions show any singularity, while CJ1,J2
diverges when DC = 0 and the compressibilities (κS)11 and (κS)22 diverge when
3S2− 4J2

1 = 0 and 3S2− 4J2
2 = 0 respectively. Furthermore, the temperature reads

T =
S4 − 16J2

1J
2
2

2S5/3 (S2 + 4J2
1 )2/3(S2 + 4J2

2 )2/3
, (6.67)

hence the extremal limit is reached for J1J2
S2 = 1

4
. The heat capacity diverges when

DC = 0, which is an algebraic equation of degree 8 in S. We can solve numerically
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such equation and obtain the critical value S = Scritical in terms of J1 and J2.
Taking only the roots which are real and positive, we can compare them with the
extremal limit by doing

J1J2

S2

∣∣∣∣
S=Sextremal

− J1J2

S2

∣∣∣∣
S=Scritical

=
1

4
− J1J2

S2

∣∣∣∣
S=Scritical

. (6.68)

The plot of the result is given in Fig. 6.1 for some values of J1 and J2. As we can

Figure 6.1: The difference between the extremal limit (J1J2
S2 = 1

4
) and the value of

J1J2
S2 at the critical point of the heat capacity, plotted for values of J1

and J2 in the interval [0, 10].

see from Fig. 6.1, the difference in Eq. (6.68) is always positive, hence the points
of phase transition signaled by the divergence of the heat capacity are always in
the black hole region.
In the same way, we can solve 3S2 − 4J2

1 = 0 and see whether the divergence of
(κS)11 lies in the black hole region or not. It turns out that the denominator of
(κS)11 vanishes for values of S such that J2

1

S2 = 3
4
, which means that J1J2

S2 = 3
4
J2
J1
.

Therefore, we have that 1
4
− 3

4
J2
J1

is positive provided J1 > 3J2 for J1 > 0 or J1 < 3J2

for J1 < 0. In sum, the divergences of (κS)11 can be in the black hole region for
appropriate values of J1 and J2. Analogously, the divergences of (κS)22 can also be
in the black hole region.
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6.3 Myers-Perry black hole in five dimensions

As in the preceding sections, we will now focus on the Gibbsian response functions,
in order to make the analysis complete. The heat capacity at constant angular
velocities can be defined as usual as CΩ1,Ω2 ≡ T (∂S/∂T )Ω1,Ω2

and it reads

CΩ1,Ω2 =
−3S(S4 − 16J2

1J
2
2 )(3S2 − 4J2

1 )(3S2 − 4J2
2 )(S2 + 4J2

1 )(S2 + 4J2
2 )

D(S, J1, J2)
, (6.69)

where the denominator is given by

D(S, J1, J2) = 9S12 + 72(J2
1 + J2

2 )S10 + 16(9J4
1 + 95J2

1J
2
2 + 9J4

2 )S8+

+ 5376J2
1J

2
2 (J2

1 + J2
2 )S6 − 256J2

1J
2
2 (9J4

1 − 101J2
1J

2
2 + 9J4

2 )S4+

− 6144J4
1J

4
2 (J2

1 + J2
2 )S2 − 53248J6

1J
6
2 . (6.70)

Furthermore, one can define three generalized susceptibilities, analogous to the
isothermal compressibility, as (κT )ij ≡ (∂Ji/∂Ωj)T .

For the Myers-Perry black hole they can be written as

(κT )11 =− S2/3DC
2

(S2 + 4J2
1 )−

1
3 (S2 + 4J2

2 )−
1
3

(S6 − 12J2
2S

4 + 48J2
1J

2
2S

2 + 192J2
1J

4
2 )
, (6.71)

(κT )22 =− S2/3DC
2

(S2 + 4J2
1 )−1/3(S2 + 4J2

2 )−1/3

(S6 − 12J2
1S

4 + 48J2
1J

2
2S

2 + 192J2
2J

4
1 )
, (6.72)

while (κT )12 has a more cumbersome expression and we will not write it here, since
it has the same properties of (κT )11 and (κT )22 for as regards our analysis, i.e. it is
proportional to the denominator of CJ1,J2 defined in (6.64) and it has a non-trivial
denominator (one can also introduce the two analogues of the thermal expansion,
but for the sake of simplicity we are not going to write them here, since they do
not show any singularities and hence they do not play any role in our analysis).

Therefore, from the thermodynamic point of view, we remark that the diver-
gences of CJ1,J2 are matched by the vanishing of the three quantities (κT )ij, while
the divergences of (κS)11 and (κS)22 are reproduced as zeroes of the heat capacity
CΩ1,Ω2 . This behavior is in agreement with the analysis of the preceding sections.
Furthermore, in this case the heat capacity CΩ1,Ω2 and the generalized compressibil-
ities (κT )ij possibly show additional phase transitions, which is a further indication
of the fact that black holes exhibit different thermodynamic behavior in different
ensembles.

Now let us turn to the GTD analysis. Given the fundamental equation (6.50)
and the general metric (5.7), we can calculate the particular metric and the scalar
curvature for the MP black hole with two free angular momenta, both in the mass
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and in the entropy representations. The metric in the M representation reads

gIIM =
(S2 + 4J2

1 )−1/3(S2 + 4J2
2 )−1/3

3S4/3

{
−DC

4S2(S2 + 4J2
1 )(S2 + 4J2

2 )
dS ⊗ dS+

+
(3S2 − 4J2

1 )(S2 + 4J2
2 )

S2 + 4J2
1

dJ1 ⊗ dJ1 +
(3S2 − 4J2

2 )(S2 + 4J2
1 )

S2 + 4J2
2

dJ2 ⊗ dJ2 +

+ 16J1J2 dJ1 ⊗ dJ2

}
, (6.73)

hence its scalar curvature is

RM =
NM

D2
C [3S4 − 4S2(J2

1 + J2
2 )− 16J2

1J
2
2 ]

2
(S2 + 4J2

1 )2/3(S2 + 4J2
2 )2/3

, (6.74)

where DC is as usual the denominator of CJ1,J2 defined in Eq. (6.64). Since there is
no term in the numerator NM which cancels out the divergences that happen when
DC = 0, we can conclude that every phase transition related to the heat capacity
CJ1,J2 is properly reproduced by the scalar curvature RM . In addition, in this case
the factor 3S4−4S2(J2

1 +J2
2 )−16J2

1J
2
2 can also vanish, possibly giving an additional

singularity which does not correspond to the ones shown by the response functions.
It is easy to calculate that 3S4 − 4S2(J2

1 + J2
2 ) − 16J2

1J
2
2 = 0 for values of S such

that
J1J2

S2
= −J

2
1 + J2

2 −
√
J4

1 + 14J2
1J

2
2 + J4

2

8 J1 J2

. (6.75)

We can thus calculate the difference between the extremal limit J1J2
S2 = 1

4
and the

critical value (6.75). The result is

1

4
+
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√
J4

1 + 14J2
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2
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2

8 J1 J2

= (6.76)
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)
48 J2

1 J
2
2

,

which can be positive for appropriate values of J1 and J2. Therefore such points of
divergence of RM are in the black hole region for some values of the parameters.
Hence we conclude that the behavior of RM perfectly matches the behavior of CJ1,J2 ,
but in this case it does not reproduce the possible additional phase transitions
indicated by the singularities of the compressibilities (κS)11 and (κS)22 and possibly
shows some additional unexpected singularities.

However, we can give a precise physical meaning to such additional singularities.
In fact, if we evaluate the determinant of the Hessian of the mass with respect to
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the angular momenta J1 and J2 only, we get

det( Hess(M)J1J2) =
4 (3S4 − 4S2(J2

1 + J2
2 )− 16J2

1J
2
2 )

3S4/3(S2 + 4J2
1 )4/3(S2 + 4J2

2 )4/3
, (6.77)

from which we can see that the numerator is exactly the factor in the denominator
of RM whose roots give the additional singularities. Since the Hessians of the energy
are related to the stability conditions, we suggest that the physical meaning of such
additional divergences of RM is to be found in a change of stability of the system,
e.g. from a stable phase to an unstable one, as it is usual for the case of Davies
phase transitions.

On the other side, using the relation (6.59) between the metrics gII in the M
and in the S representations, naturally extended to the 3-dimensional case with
coordinates (S, J1, J2), i.e.

gIIS =
M − J1 Ω1 − J2Ω2

T 3

[
T MSS dS ⊗ dS + 2 Ω1MSS dS ⊗ dJ1 + (6.78)

+ 2 Ω2MSS dS ⊗ dJ2 + (2 Ω1MSJ1 − T MJ1J1) dJ1 ⊗ dJ1 +

+ (2 Ω2MSJ2 − T MJ2J2) dJ2 ⊗ dJ2 +

− 2 (T MJ1J2 − Ω1MSJ2 − Ω2MSJ1) dJ1 ⊗ dJ2

]
,

we can now calculate the metric in the S representation, which reads

gIIS =
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The scalar curvature can thus be calculated to obtain

RS =
NS

D2
C [3S4 + 4S2(J2

1 + J2
2 )− 16J2

1J
2
2 ]

3
S2(S2 + 4J2

1 )(S2 + 4J2
2 )
. (6.80)

In this case we see again that the denominator of the heat capacity DC is present in
the denominator of RS. Furthermore, the second factor, which is slightly different
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from the factor in the denominator of RM , vanishes for values of S such that

J1J2

S2
=

J2
1 + J2

2 +
√
J4

1 + 14J2
1J

2
2 + J4

2

8 J1 J2

. (6.81)

The above discussion for the additional singularity of RM does not apply in this
case, since one can easily show that the points described by (6.81) do not belong to
the black hole region for any values of J1 and J2 and therefore they have no physical
meaning. However, we comment in passing that such additional singularities are
still related to the vanishing of the determinant of the Hessian of the entropy S

with respect to the angular momenta J1 and J2. Therefore they still indicate the
points where the Hessian vanishes, although they are not situated in the black
hole region in this case. We infer from these results that the physical meaning of
the divergences of the scalar curvature of the metric gII for such a 3-dimensional
equilibrium manifold is related to the divergences of the heat capacity at constant
angular momenta and to the zeroes of the Hessian of the potential with respect
to those momenta, both in the mass and in the entropy representation. On the
other side, from the full analysis of the divergences of the generalized response
functions, we see that there are other possible points of phase transitions, related
to divergences of the compressibilities, which appear to be not enclosed by the
analysis given with the metric gII . We also comment that we could have used the
potential Φ = G ≡M − T S− J1 Ω1− J2 Ω2 in writing the metric (5.7) to study the
GTD analysis in the G representation, but such investigation would have lead to
exactly the same results, since the metric (5.7) is symmetric with respect to total
Legendre transformations.

To conclude, we observe that in [51] the case of the full Myers-Perry black hole
thermodynamics has been investigated using Weinhold and Ruppeiner thermody-
namic geometries. The authors proved that both Weinhold and Ruppeiner scalar
curvatures only diverge in the extremal limit.

6.4 Conclusions

In this chapter we have analyzed the geometric structure of the equilibrium manifold
(5.7) for different black holes configurations in dimension higher than four.

We analyzed two of the most interesting higher dimensional black hole configura-
tions, namely, the Reissner-Nordström and the Kerr black holes, which we consider
because of their importance as model systems, like the Van der Waals and the Ising
models in ordinary thermodynamics. First of all, we have derived all the Davies
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phase transitions, that follow from the analysis of the divergences of the thermo-
dynamic response functions. In the case of the Reissner-Nordström black hole, we
found that if we use the ensemble associated with the mass of the black hole, there
exists only one curve of phase transition. On the other hand, if we use the ensemble
associated with the enthalpy, no phase transitions exist. This is in perfect accor-
dance with the interpretation given in Chapter 5 that Davies phase transitions are
a special type of phase transitions that is characteristic of systems with long-range
interactions and as such they depend on the ensemble. We have then explored the
geometric properties of the corresponding equilibrium space by using GTD, with
the mass as the thermodynamic potential, and found that a curvature singularity
appears exactly along the curve where the phase transition occurs. If, instead,
we use the enthalpy as thermodynamic potential, GTD provides a singularity-free
equilibrium manifold. Thus, GTD reproduces the Davies phase transition structure
of the Reissner-Norström black hole.
In the case of the higher dimensional Kerr black hole, the response functions

predict more phase transitions than in the Reissner-Nordström case. It is not
possible to compute explicitly other thermodynamic potentials, and so we perform
all the calculations in the mass and representations. Again, we found true curvature
singularities at the same points where phase transitions take place.
Finally, we have analyzed the thermodynamics and thermodynamic geometry

of different Myers-Perry black holes configurations in five dimensions, classifying
them according to the values of the two possible independent angular momenta.
Our results indicate that the Myers-Perry black holes in five dimensions have a
non-trivial phase structure in the sense of Davies. In particular, the analysis of the
response functions indicate that both the heat capacities and the compressibilities
defined in the M potential diverge at some points, which is usually interpreted as
the hallmark of a phase transition. Interestingly, such a behavior is matched by the
vanishing of the corresponding Gibbsian response functions in all the cases studied
here. Moreover, in the most general case when the two angular momenta vary
freely, we have shown that the Gibbsian response functions provide some additional
singularities, indicating that the analysis in the M potential is different from that
performed in the G potential, as expected.
In all the cases studied in this chapter, the phase transitions are well reproduced

by the GTD analysis, while they are not reproduced by the thermodynamic geome-
tries of Weinhold and Ruppeiner, whose analysis has been observed to correspond
to other approaches (see e.g. [79]). We have also found that the scalar curvature of
the metric gII shows a very similar behavior in the M representation to that of the
S representation. In particular, for the cases in which we have only two degrees of
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freedom we argue that no physical difference has been detected and we have shown
that not only the phase transitions indicated by CJ are reproduced, but also the
ones indicated by divergences of κS. Moreover, a detailed analysis of the Gibbsian
response functions showed that such divergences correspond to points where κT and
CΩ vanish and change their character. We therefore conclude that for such cases
the divergences of the scalar curvature of gII reproduce the full set of Davies phase
transitions considered here.
However, it seems that analyzing the general case in which both angular momenta

are switched on, i.e. a thermodynamic system with three degrees of freedom, some
differences might appear. In fact, the phase transitions signaled by CJ1,J2 are still
obtained as curvature singularities in both representations. Nevertheless, the scalar
curvature has some additional divergences, which for the case of the M representa-
tion can be in the black hole region for appropriate values of the angular momenta
and that apparently are not directly related to the response functions of the system.
Nevertheless, we claim that such additional divergences are linked to the vanishing
of the Hessian determinant of the potential M with respect to the two angular
momenta, therefore they mark the presence of a transition from a stable phase to
an unstable one, as it is always the case for Davies transitions. In our opinion this
means that in the case of black holes that depend on three degrees of freedom one
should enlarge the spectrum of possible phase transitions à la Davies, including
also questions of stability related to thermodynamically relevant combinations of
the response functions, i.e. (sub-)determinants of the Hessian of the potential. This
is also supported by the analysis of the scalar curvature in the S representation,
which again shows singularities exactly at those points where the Hessian of the en-
tropy with respect to the two angular momenta vanishes, so from the mathematical
point of view the situation is basically the same. It is interesting however to note
that in the S representation such points are not in the black hole region, another
direct evidence of the fact that black hole thermodynamics strictly depends on the
potential being used. Moreover, in the completely general case, some additional
divergences appear when considering the Gibbsian response functions, which are
not present in the thermodynamic analysis in the M potential, nor are indicated
as curvature singularities of gII . The study of such additional singularities goes
beyond the scope of this work and may be the matter of further investigation.
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7.1 Summary of new results

In this work we have obtained some new results both in the context of the mathe-
matical formulation of the contact and Riemannian structures of thermodynamics
and in its applications to the physics of ordinary systems and generalized homoge-
neous thermodynamics, among which black holes.
First of all, we have started with the distinction between the global contact struc-

ture of the phase space, taking account of all the equilibrium processes related to
the first law, including first order phase transitions, and the local metric structure,
both of the phase space and of the equilibrium space, which takes account of the
fluctuations from equilibrium and of the failure of the equilibrium hypothesis, i.e.
continuous phase transitions.
Moving from these ideas, we have shown that first order phase transitions in

generalized homogeneous thermodynamics are equilibrium processes on the phase
space of thermodynamics for which the Legendre symmetry is broken. This study
has also lead us to introduce a contact hamiltonian energy (which we named Euler’s
contact Hamiltonian) that fully characterizes equilibrium processes on the phase
space of thermodynamics.
Moreover, such novel formulation has then been employed in this thesis in two

ways. First, we have used Euler’s contact Hamiltonian to derive a new zeroth law
of thermodynamics that is completely consistent with the Gibbs-Duhem relation in
the case of homogeneous thermodynamic potentials of any order. In this context,
we have outlined the profound differences between ordinary systems and the ones
with long-range interactions, in particular black holes. Second, the importance
of the breaking of the Legendre symmetry in all the systems showing ensemble
inequivalence has been repeatedly outlined, since this comes has a special motiva-
tion for the introduction of metric structures both on the phase space and on the
equilibrium manifold that share this symmetry of the underlying contact structure.
Motivated by this symmetry property and by the other relevant symmetry of the
contact structure, i.e. the symmetry under change of representation, we have thus
introduced a new Riemannian thermodynamic metric and argued that this struc-
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ture is the natural metric to be used in the formalism of GTD. It turned out that
this metric in the equilibrium manifold is conformally equivalent to the ones intro-
duced by Weinhold and Ruppeiner, that is, it is conformal to an Hessian metric. As
such, it has been assumed to be the natural structure to introduce fluctuations in
the geometric formalism of GTD. Such assumption has been also tested here with
standard examples from ordinary thermodynamics.

Besides, we have seen that black holes are very particular thermodynamic systems,
since they are governed by long-range interactions and therefore they cannot be
homogeneous of order one. This implies that one should abandon the usual form
of the zeroth law of thermodynamics and perhaps generalize it in the way we have
proposed here. Moreover, from the thermodynamic geometric point of view, it turns
out that the geometric structures that give the complete description of the critical
behavior for ordinary systems, i.e. Hessian metrics and their conformal equivalents,
do not account for all the new possible phase transitions that emerge in the case of
black holes. This problem is known in the literature and several attempts to find
an explication have been given. We have given here the simplest explication for
such peculiar behavior. Indeed, regarding black holes as systems governed by long-
range interactions, we have claimed that their thermodynamics should be strictly
non-extensive. One of the implications of this deduction is that they show ensemble
inequivalence, negative specific heats and possibly phase transitions defined in only
one of the ensembles, as it is often the case in phase transitions à la Davies. We also
commented that this has some implications in the geometric description of black
holes thermodynamics. In particular, one cannot expect that the same structure
that governs ordinary extensive systems can be also comprehensive of all the new
features about black holes (and in general systems with long-range interactions).
From this point of view, we have investigated a metric structure in the GTD context
that seems to be the exact counterpart of Davies transitions for black holes. The
results here confirm this expectation, both in the particular cases examined and on
a more general footing.

7.2 Open questions

Several questions about this work remain open so far and eventually will be ad-
dressed in further efforts. In particular, having derived here a contact hamiltonian
formulation for generalized homogeneous thermodynamics, we expect that this can
be naturally generalized to the case of quasi-homogeneous thermodynamic poten-
tials [56]. It will be interesting to work out this further generalization and also
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express the new zeroth law derived here in such context. Moreover, we would
like to fully analyze black holes thermodynamics from the general point of view
of thermodynamics of systems with long-range interactions and generalized quasi-
homogeneous functions. We think that also a feedback can be gained from these
examples for as regards the geometric structure to be used in “non-extensive” ther-
modynamics, as for the case of the GTD metric gII used here. To this regard, it
would be interesting to adapt the formalism developed here making use of both
the contact structure of the phase space and the Riemannian structure of the equi-
librium manifold also to the general case of non-extensive systems. In fact, in the
statistical mechanics of systems with long-range interactions various generalizations
of the standard additive Boltzmann-Gibbs-Shannon entropy have been proposed
quite recently, e.g. the so-called Tsallis entropy [86], and also the zeroth law of
thermodynamics has been changed accordingly. We believe that there is a pro-
found connection with the results found here from the macroscopic point of view
and the ones encountered in “non-extensive” statistical mechanics. In this sense the
fields of applicability are numerous, from self-gravitating systems in astrophysics
to condensed matter, from black holes to high energy theories, up to the AdS-CFT
correspondence and so forth.
Another fascinating topic is the investigation of systems with ensembles inequiva-

lence with respect to the Renormalization Group techniques. As we have seen in this
work, a very simple example of ensemble inequivalence is represented by first order
phase transitions. We have also seen that this implies that the geometric space in
which one is working has to be extended to the full phase space in order to recover
the full information and we have speculated that this is similar to the description
of Renormalization Group, where one rules out irrelevant degrees of freedom by us-
ing repeated iterations of the procedure. We believe that this parallelism between
the RG techniques and the construction of phase spaces in thermodynamics that
contain all the necessary information is more than a mere analogy.
Furthermore, regarding the natural metric structure introduced here to study

ordinary thermodynamic systems, it has to be clarified what is exactly the physical
meaning of the symmetry under a change of representation. We believe that, as
the equilibrium contact hamiltonian is the conserved quantity related to symmetry
under Legendre transformations, it is also possible to find a conserved quantity in
the phase space of thermodynamics related to the symmetry under a change of
representation. In this context, also the role of partial Legendre transformations
should be clarified.
Finally, having built up a powerful geometric framework for generalized ther-

modynamics, it follows that we are in the position to use geometric tools such
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as distances, curvature, embedding and extremal principles to figure out relations
among the thermodynamic laws and even new thermodynamic equations of state
based on special geometric properties, a matter which can have applications e.g. in
cosmology.
In sum, we hope that this will not be the conclusion of our investigation, but

the starting point towards a deeper mathematical and physical understanding of
various thermodynamic aspects of Nature.
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